| 1 | /* |
| 2 | * Copyright (c) 2017-2019 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
| 5 | * |
| 6 | * This file contains Original Code and/or Modifications of Original Code |
| 7 | * as defined in and that are subject to the Apple Public Source License |
| 8 | * Version 2.0 (the 'License'). You may not use this file except in |
| 9 | * compliance with the License. The rights granted to you under the License |
| 10 | * may not be used to create, or enable the creation or redistribution of, |
| 11 | * unlawful or unlicensed copies of an Apple operating system, or to |
| 12 | * circumvent, violate, or enable the circumvention or violation of, any |
| 13 | * terms of an Apple operating system software license agreement. |
| 14 | * |
| 15 | * Please obtain a copy of the License at |
| 16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
| 17 | * |
| 18 | * The Original Code and all software distributed under the License are |
| 19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| 23 | * Please see the License for the specific language governing rights and |
| 24 | * limitations under the License. |
| 25 | * |
| 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
| 27 | */ |
| 28 | /* |
| 29 | * File: arm/cpu_common.c |
| 30 | * |
| 31 | * cpu routines common to all supported arm variants |
| 32 | */ |
| 33 | |
| 34 | #include <kern/machine.h> |
| 35 | #include <kern/cpu_number.h> |
| 36 | #include <kern/thread.h> |
| 37 | #include <kern/percpu.h> |
| 38 | #include <kern/timer_queue.h> |
| 39 | #include <kern/locks.h> |
| 40 | #include <kern/clock.h> |
| 41 | #include <arm/cpu_data.h> |
| 42 | #include <arm/cpuid.h> |
| 43 | #include <arm/caches_internal.h> |
| 44 | #include <arm/cpu_data_internal.h> |
| 45 | #include <arm/cpu_internal.h> |
| 46 | #include <arm/misc_protos.h> |
| 47 | #include <arm/machine_cpu.h> |
| 48 | #include <arm/rtclock.h> |
| 49 | #include <mach/processor_info.h> |
| 50 | #include <machine/atomic.h> |
| 51 | #include <machine/config.h> |
| 52 | #include <vm/vm_kern.h> |
| 53 | #include <vm/vm_map.h> |
| 54 | #include <pexpert/arm/protos.h> |
| 55 | #include <pexpert/device_tree.h> |
| 56 | #include <sys/kdebug.h> |
| 57 | #include <arm/machine_routines.h> |
| 58 | #include <arm64/proc_reg.h> |
| 59 | #include <libkern/OSAtomic.h> |
| 60 | |
| 61 | SECURITY_READ_ONLY_LATE(struct percpu_base) percpu_base; |
| 62 | vm_address_t percpu_base_cur; |
| 63 | cpu_data_t PERCPU_DATA(cpu_data); |
| 64 | cpu_data_entry_t CpuDataEntries[MAX_CPUS]; |
| 65 | |
| 66 | static LCK_GRP_DECLARE(cpu_lck_grp, "cpu_lck_grp" ); |
| 67 | static LCK_RW_DECLARE(cpu_state_lock, &cpu_lck_grp); |
| 68 | |
| 69 | unsigned int real_ncpus = 1; |
| 70 | boolean_t idle_enable = FALSE; |
| 71 | uint64_t wake_abstime = 0x0ULL; |
| 72 | |
| 73 | extern uint64_t xcall_ack_timeout_abstime; |
| 74 | |
| 75 | #if defined(HAS_IPI) |
| 76 | extern unsigned int gFastIPI; |
| 77 | #endif /* defined(HAS_IPI) */ |
| 78 | |
| 79 | cpu_data_t * |
| 80 | cpu_datap(int cpu) |
| 81 | { |
| 82 | assert(cpu <= ml_get_max_cpu_number()); |
| 83 | return CpuDataEntries[cpu].cpu_data_vaddr; |
| 84 | } |
| 85 | |
| 86 | kern_return_t |
| 87 | cpu_control(int slot_num, |
| 88 | processor_info_t info, |
| 89 | unsigned int count) |
| 90 | { |
| 91 | printf(format: "cpu_control(%d,%p,%d) not implemented\n" , |
| 92 | slot_num, info, count); |
| 93 | return KERN_FAILURE; |
| 94 | } |
| 95 | |
| 96 | kern_return_t |
| 97 | cpu_info_count(processor_flavor_t flavor, |
| 98 | unsigned int *count) |
| 99 | { |
| 100 | switch (flavor) { |
| 101 | case PROCESSOR_CPU_STAT: |
| 102 | *count = PROCESSOR_CPU_STAT_COUNT; |
| 103 | return KERN_SUCCESS; |
| 104 | |
| 105 | case PROCESSOR_CPU_STAT64: |
| 106 | *count = PROCESSOR_CPU_STAT64_COUNT; |
| 107 | return KERN_SUCCESS; |
| 108 | |
| 109 | default: |
| 110 | *count = 0; |
| 111 | return KERN_FAILURE; |
| 112 | } |
| 113 | } |
| 114 | |
| 115 | kern_return_t |
| 116 | cpu_info(processor_flavor_t flavor, int slot_num, processor_info_t info, |
| 117 | unsigned int *count) |
| 118 | { |
| 119 | cpu_data_t *cpu_data_ptr = CpuDataEntries[slot_num].cpu_data_vaddr; |
| 120 | |
| 121 | switch (flavor) { |
| 122 | case PROCESSOR_CPU_STAT: |
| 123 | { |
| 124 | if (*count < PROCESSOR_CPU_STAT_COUNT) { |
| 125 | return KERN_FAILURE; |
| 126 | } |
| 127 | |
| 128 | processor_cpu_stat_t cpu_stat = (processor_cpu_stat_t)info; |
| 129 | cpu_stat->irq_ex_cnt = (uint32_t)cpu_data_ptr->cpu_stat.irq_ex_cnt; |
| 130 | cpu_stat->ipi_cnt = (uint32_t)cpu_data_ptr->cpu_stat.ipi_cnt; |
| 131 | cpu_stat->timer_cnt = (uint32_t)cpu_data_ptr->cpu_stat.timer_cnt; |
| 132 | cpu_stat->undef_ex_cnt = (uint32_t)cpu_data_ptr->cpu_stat.undef_ex_cnt; |
| 133 | cpu_stat->unaligned_cnt = (uint32_t)cpu_data_ptr->cpu_stat.unaligned_cnt; |
| 134 | cpu_stat->vfp_cnt = (uint32_t)cpu_data_ptr->cpu_stat.vfp_cnt; |
| 135 | cpu_stat->vfp_shortv_cnt = 0; |
| 136 | cpu_stat->data_ex_cnt = (uint32_t)cpu_data_ptr->cpu_stat.data_ex_cnt; |
| 137 | cpu_stat->instr_ex_cnt = (uint32_t)cpu_data_ptr->cpu_stat.instr_ex_cnt; |
| 138 | |
| 139 | *count = PROCESSOR_CPU_STAT_COUNT; |
| 140 | |
| 141 | return KERN_SUCCESS; |
| 142 | } |
| 143 | |
| 144 | case PROCESSOR_CPU_STAT64: |
| 145 | { |
| 146 | if (*count < PROCESSOR_CPU_STAT64_COUNT) { |
| 147 | return KERN_FAILURE; |
| 148 | } |
| 149 | |
| 150 | processor_cpu_stat64_t cpu_stat = (processor_cpu_stat64_t)info; |
| 151 | cpu_stat->irq_ex_cnt = cpu_data_ptr->cpu_stat.irq_ex_cnt; |
| 152 | cpu_stat->ipi_cnt = cpu_data_ptr->cpu_stat.ipi_cnt; |
| 153 | cpu_stat->timer_cnt = cpu_data_ptr->cpu_stat.timer_cnt; |
| 154 | cpu_stat->undef_ex_cnt = cpu_data_ptr->cpu_stat.undef_ex_cnt; |
| 155 | cpu_stat->unaligned_cnt = cpu_data_ptr->cpu_stat.unaligned_cnt; |
| 156 | cpu_stat->vfp_cnt = cpu_data_ptr->cpu_stat.vfp_cnt; |
| 157 | cpu_stat->vfp_shortv_cnt = 0; |
| 158 | cpu_stat->data_ex_cnt = cpu_data_ptr->cpu_stat.data_ex_cnt; |
| 159 | cpu_stat->instr_ex_cnt = cpu_data_ptr->cpu_stat.instr_ex_cnt; |
| 160 | #if CONFIG_CPU_COUNTERS |
| 161 | cpu_stat->pmi_cnt = cpu_data_ptr->cpu_monotonic.mtc_npmis; |
| 162 | #endif /* CONFIG_CPU_COUNTERS */ |
| 163 | |
| 164 | *count = PROCESSOR_CPU_STAT64_COUNT; |
| 165 | |
| 166 | return KERN_SUCCESS; |
| 167 | } |
| 168 | |
| 169 | default: |
| 170 | return KERN_FAILURE; |
| 171 | } |
| 172 | } |
| 173 | |
| 174 | /* |
| 175 | * Routine: cpu_doshutdown |
| 176 | * Function: |
| 177 | */ |
| 178 | void |
| 179 | cpu_doshutdown(void (*doshutdown)(processor_t), |
| 180 | processor_t processor) |
| 181 | { |
| 182 | doshutdown(processor); |
| 183 | } |
| 184 | |
| 185 | /* |
| 186 | * Routine: cpu_idle_tickle |
| 187 | * |
| 188 | */ |
| 189 | void |
| 190 | cpu_idle_tickle(void) |
| 191 | { |
| 192 | boolean_t intr; |
| 193 | cpu_data_t *cpu_data_ptr; |
| 194 | uint64_t new_idle_timeout_ticks = 0x0ULL; |
| 195 | |
| 196 | intr = ml_set_interrupts_enabled(FALSE); |
| 197 | cpu_data_ptr = getCpuDatap(); |
| 198 | |
| 199 | if (cpu_data_ptr->idle_timer_notify != NULL) { |
| 200 | cpu_data_ptr->idle_timer_notify(cpu_data_ptr->idle_timer_refcon, &new_idle_timeout_ticks); |
| 201 | if (new_idle_timeout_ticks != 0x0ULL) { |
| 202 | /* if a new idle timeout was requested set the new idle timer deadline */ |
| 203 | clock_absolutetime_interval_to_deadline(abstime: new_idle_timeout_ticks, result: &cpu_data_ptr->idle_timer_deadline); |
| 204 | } else { |
| 205 | /* turn off the idle timer */ |
| 206 | cpu_data_ptr->idle_timer_deadline = 0x0ULL; |
| 207 | } |
| 208 | timer_resync_deadlines(); |
| 209 | } |
| 210 | (void) ml_set_interrupts_enabled(enable: intr); |
| 211 | } |
| 212 | |
| 213 | static void |
| 214 | cpu_handle_xcall(cpu_data_t *cpu_data_ptr) |
| 215 | { |
| 216 | broadcastFunc xfunc; |
| 217 | void *xparam; |
| 218 | |
| 219 | os_atomic_thread_fence(acquire); |
| 220 | /* Come back around if cpu_signal_internal is running on another CPU and has just |
| 221 | * added SIGPxcall to the pending mask, but hasn't yet assigned the call params.*/ |
| 222 | if (cpu_data_ptr->cpu_xcall_p0 != NULL && cpu_data_ptr->cpu_xcall_p1 != NULL) { |
| 223 | xfunc = ptrauth_auth_function(cpu_data_ptr->cpu_xcall_p0, ptrauth_key_function_pointer, cpu_data_ptr); |
| 224 | INTERRUPT_MASKED_DEBUG_START(xfunc, DBG_INTR_TYPE_IPI); |
| 225 | xparam = cpu_data_ptr->cpu_xcall_p1; |
| 226 | cpu_data_ptr->cpu_xcall_p0 = NULL; |
| 227 | cpu_data_ptr->cpu_xcall_p1 = NULL; |
| 228 | os_atomic_thread_fence(acq_rel); |
| 229 | os_atomic_andnot(&cpu_data_ptr->cpu_signal, SIGPxcall, relaxed); |
| 230 | xfunc(xparam); |
| 231 | INTERRUPT_MASKED_DEBUG_END(); |
| 232 | } |
| 233 | if (cpu_data_ptr->cpu_imm_xcall_p0 != NULL && cpu_data_ptr->cpu_imm_xcall_p1 != NULL) { |
| 234 | xfunc = ptrauth_auth_function(cpu_data_ptr->cpu_imm_xcall_p0, ptrauth_key_function_pointer, cpu_data_ptr); |
| 235 | INTERRUPT_MASKED_DEBUG_START(xfunc, DBG_INTR_TYPE_IPI); |
| 236 | xparam = cpu_data_ptr->cpu_imm_xcall_p1; |
| 237 | cpu_data_ptr->cpu_imm_xcall_p0 = NULL; |
| 238 | cpu_data_ptr->cpu_imm_xcall_p1 = NULL; |
| 239 | os_atomic_thread_fence(acq_rel); |
| 240 | os_atomic_andnot(&cpu_data_ptr->cpu_signal, SIGPxcallImm, relaxed); |
| 241 | xfunc(xparam); |
| 242 | INTERRUPT_MASKED_DEBUG_END(); |
| 243 | } |
| 244 | } |
| 245 | |
| 246 | static unsigned int |
| 247 | cpu_broadcast_xcall_internal(unsigned int signal, |
| 248 | uint32_t *synch, |
| 249 | boolean_t self_xcall, |
| 250 | broadcastFunc func, |
| 251 | void *parm) |
| 252 | { |
| 253 | boolean_t intr; |
| 254 | cpu_data_t *cpu_data_ptr; |
| 255 | cpu_data_t *target_cpu_datap; |
| 256 | unsigned int failsig; |
| 257 | int cpu; |
| 258 | int max_cpu = ml_get_max_cpu_number() + 1; |
| 259 | |
| 260 | //yes, param ALSO cannot be NULL |
| 261 | assert(func); |
| 262 | assert(parm); |
| 263 | |
| 264 | intr = ml_set_interrupts_enabled(FALSE); |
| 265 | cpu_data_ptr = getCpuDatap(); |
| 266 | |
| 267 | failsig = 0; |
| 268 | |
| 269 | if (synch != NULL) { |
| 270 | *synch = max_cpu; |
| 271 | assert_wait(event: (event_t)synch, THREAD_UNINT); |
| 272 | } |
| 273 | |
| 274 | for (cpu = 0; cpu < max_cpu; cpu++) { |
| 275 | target_cpu_datap = (cpu_data_t *)CpuDataEntries[cpu].cpu_data_vaddr; |
| 276 | |
| 277 | if (target_cpu_datap == cpu_data_ptr) { |
| 278 | continue; |
| 279 | } |
| 280 | |
| 281 | if ((target_cpu_datap == NULL) || |
| 282 | KERN_SUCCESS != cpu_signal(target: target_cpu_datap, signal, ptrauth_nop_cast(void*, ptrauth_auth_and_resign(func, ptrauth_key_function_pointer, ptrauth_type_discriminator(broadcastFunc), ptrauth_key_function_pointer, target_cpu_datap)), p1: parm)) { |
| 283 | failsig++; |
| 284 | } |
| 285 | } |
| 286 | |
| 287 | if (self_xcall) { |
| 288 | func(parm); |
| 289 | } |
| 290 | |
| 291 | (void) ml_set_interrupts_enabled(enable: intr); |
| 292 | |
| 293 | if (synch != NULL) { |
| 294 | if (os_atomic_sub(synch, (!self_xcall) ? failsig + 1 : failsig, relaxed) == 0) { |
| 295 | clear_wait(thread: current_thread(), THREAD_AWAKENED); |
| 296 | } else { |
| 297 | thread_block(THREAD_CONTINUE_NULL); |
| 298 | } |
| 299 | } |
| 300 | |
| 301 | if (!self_xcall) { |
| 302 | return max_cpu - failsig - 1; |
| 303 | } else { |
| 304 | return max_cpu - failsig; |
| 305 | } |
| 306 | } |
| 307 | |
| 308 | unsigned int |
| 309 | cpu_broadcast_xcall(uint32_t *synch, |
| 310 | boolean_t self_xcall, |
| 311 | broadcastFunc func, |
| 312 | void *parm) |
| 313 | { |
| 314 | return cpu_broadcast_xcall_internal(SIGPxcall, synch, self_xcall, func, parm); |
| 315 | } |
| 316 | |
| 317 | struct cpu_broadcast_xcall_simple_data { |
| 318 | broadcastFunc func; |
| 319 | void* parm; |
| 320 | uint32_t sync; |
| 321 | }; |
| 322 | |
| 323 | static void |
| 324 | cpu_broadcast_xcall_simple_cbk(void *parm) |
| 325 | { |
| 326 | struct cpu_broadcast_xcall_simple_data *data = (struct cpu_broadcast_xcall_simple_data*)parm; |
| 327 | |
| 328 | data->func(data->parm); |
| 329 | |
| 330 | if (os_atomic_dec(&data->sync, relaxed) == 0) { |
| 331 | thread_wakeup((event_t)&data->sync); |
| 332 | } |
| 333 | } |
| 334 | |
| 335 | static unsigned int |
| 336 | cpu_xcall_simple(boolean_t self_xcall, |
| 337 | broadcastFunc func, |
| 338 | void *parm, |
| 339 | bool immediate) |
| 340 | { |
| 341 | struct cpu_broadcast_xcall_simple_data data = {}; |
| 342 | |
| 343 | data.func = func; |
| 344 | data.parm = parm; |
| 345 | |
| 346 | return cpu_broadcast_xcall_internal(signal: immediate ? SIGPxcallImm : SIGPxcall, synch: &data.sync, self_xcall, func: cpu_broadcast_xcall_simple_cbk, parm: &data); |
| 347 | } |
| 348 | |
| 349 | unsigned int |
| 350 | cpu_broadcast_immediate_xcall(uint32_t *synch, |
| 351 | boolean_t self_xcall, |
| 352 | broadcastFunc func, |
| 353 | void *parm) |
| 354 | { |
| 355 | return cpu_broadcast_xcall_internal(SIGPxcallImm, synch, self_xcall, func, parm); |
| 356 | } |
| 357 | |
| 358 | unsigned int |
| 359 | cpu_broadcast_xcall_simple(boolean_t self_xcall, |
| 360 | broadcastFunc func, |
| 361 | void *parm) |
| 362 | { |
| 363 | return cpu_xcall_simple(self_xcall, func, parm, false); |
| 364 | } |
| 365 | |
| 366 | unsigned int |
| 367 | cpu_broadcast_immediate_xcall_simple(boolean_t self_xcall, |
| 368 | broadcastFunc func, |
| 369 | void *parm) |
| 370 | { |
| 371 | return cpu_xcall_simple(self_xcall, func, parm, true); |
| 372 | } |
| 373 | |
| 374 | static kern_return_t |
| 375 | cpu_xcall_internal(unsigned int signal, int cpu_number, broadcastFunc func, void *param) |
| 376 | { |
| 377 | cpu_data_t *target_cpu_datap; |
| 378 | |
| 379 | if ((cpu_number < 0) || (cpu_number > ml_get_max_cpu_number())) { |
| 380 | panic("cpu_xcall_internal: invalid cpu_number %d" , cpu_number); |
| 381 | } |
| 382 | |
| 383 | if (func == NULL || param == NULL) { |
| 384 | // cpu_handle_xcall uses non-NULL-ness to tell when the value is ready |
| 385 | panic("cpu_xcall_internal: cannot have null func/param: %p %p" , func, param); |
| 386 | } |
| 387 | |
| 388 | target_cpu_datap = (cpu_data_t*)CpuDataEntries[cpu_number].cpu_data_vaddr; |
| 389 | if (target_cpu_datap == NULL) { |
| 390 | panic("cpu_xcall_internal: cpu %d not initialized" , cpu_number); |
| 391 | } |
| 392 | |
| 393 | return cpu_signal(target: target_cpu_datap, signal, ptrauth_nop_cast(void*, ptrauth_auth_and_resign(func, ptrauth_key_function_pointer, ptrauth_type_discriminator(broadcastFunc), ptrauth_key_function_pointer, target_cpu_datap)), p1: param); |
| 394 | } |
| 395 | |
| 396 | kern_return_t |
| 397 | cpu_xcall(int cpu_number, broadcastFunc func, void *param) |
| 398 | { |
| 399 | return cpu_xcall_internal(SIGPxcall, cpu_number, func, param); |
| 400 | } |
| 401 | |
| 402 | kern_return_t |
| 403 | cpu_immediate_xcall(int cpu_number, broadcastFunc func, void *param) |
| 404 | { |
| 405 | return cpu_xcall_internal(SIGPxcallImm, cpu_number, func, param); |
| 406 | } |
| 407 | |
| 408 | static kern_return_t |
| 409 | cpu_signal_internal(cpu_data_t *target_proc, |
| 410 | unsigned int signal, |
| 411 | void *p0, |
| 412 | void *p1, |
| 413 | boolean_t defer) |
| 414 | { |
| 415 | unsigned int Check_SIGPdisabled; |
| 416 | int current_signals; |
| 417 | bool swap_success; |
| 418 | boolean_t interruptible = ml_set_interrupts_enabled(FALSE); |
| 419 | cpu_data_t *current_proc = getCpuDatap(); |
| 420 | |
| 421 | /* We'll mandate that only IPIs meant to kick a core out of idle may ever be deferred. */ |
| 422 | if (defer) { |
| 423 | assert(signal == SIGPnop); |
| 424 | } |
| 425 | |
| 426 | if (current_proc != target_proc) { |
| 427 | Check_SIGPdisabled = SIGPdisabled; |
| 428 | } else { |
| 429 | Check_SIGPdisabled = 0; |
| 430 | } |
| 431 | |
| 432 | if ((signal == SIGPxcall) || (signal == SIGPxcallImm)) { |
| 433 | uint64_t start_mabs_time, max_mabs_time, current_mabs_time; |
| 434 | current_mabs_time = start_mabs_time = mach_absolute_time(); |
| 435 | max_mabs_time = xcall_ack_timeout_abstime + current_mabs_time; |
| 436 | assert(max_mabs_time > current_mabs_time); |
| 437 | |
| 438 | do { |
| 439 | current_signals = target_proc->cpu_signal; |
| 440 | if ((current_signals & SIGPdisabled) == SIGPdisabled) { |
| 441 | ml_set_interrupts_enabled(enable: interruptible); |
| 442 | return KERN_FAILURE; |
| 443 | } |
| 444 | swap_success = os_atomic_cmpxchg(&target_proc->cpu_signal, current_signals & (~signal), |
| 445 | current_signals | signal, release); |
| 446 | |
| 447 | if (!swap_success && (signal == SIGPxcallImm) && (target_proc->cpu_signal & SIGPxcallImm)) { |
| 448 | ml_set_interrupts_enabled(enable: interruptible); |
| 449 | return KERN_ALREADY_WAITING; |
| 450 | } |
| 451 | |
| 452 | /* Drain pending xcalls on this cpu; the CPU we're trying to xcall may in turn |
| 453 | * be trying to xcall us. Since we have interrupts disabled that can deadlock, |
| 454 | * so break the deadlock by draining pending xcalls. */ |
| 455 | if (!swap_success && (current_proc->cpu_signal & signal)) { |
| 456 | cpu_handle_xcall(cpu_data_ptr: current_proc); |
| 457 | } |
| 458 | } while (!swap_success && ((current_mabs_time = mach_absolute_time()) < max_mabs_time)); |
| 459 | |
| 460 | /* |
| 461 | * If we time out while waiting for the target CPU to respond, it's possible that no |
| 462 | * other CPU is available to handle the watchdog interrupt that would eventually trigger |
| 463 | * a panic. To prevent this from happening, we just panic here to flag this condition. |
| 464 | */ |
| 465 | if (__improbable(current_mabs_time >= max_mabs_time)) { |
| 466 | uint64_t end_time_ns, xcall_ack_timeout_ns; |
| 467 | absolutetime_to_nanoseconds(abstime: current_mabs_time - start_mabs_time, result: &end_time_ns); |
| 468 | absolutetime_to_nanoseconds(abstime: xcall_ack_timeout_abstime, result: &xcall_ack_timeout_ns); |
| 469 | panic("CPU%u has failed to respond to cross-call after %llu nanoseconds (timeout = %llu ns)" , |
| 470 | target_proc->cpu_number, end_time_ns, xcall_ack_timeout_ns); |
| 471 | } |
| 472 | |
| 473 | if (signal == SIGPxcallImm) { |
| 474 | target_proc->cpu_imm_xcall_p0 = p0; |
| 475 | target_proc->cpu_imm_xcall_p1 = p1; |
| 476 | } else { |
| 477 | target_proc->cpu_xcall_p0 = p0; |
| 478 | target_proc->cpu_xcall_p1 = p1; |
| 479 | } |
| 480 | } else { |
| 481 | do { |
| 482 | current_signals = target_proc->cpu_signal; |
| 483 | if ((Check_SIGPdisabled != 0) && (current_signals & Check_SIGPdisabled) == SIGPdisabled) { |
| 484 | ml_set_interrupts_enabled(enable: interruptible); |
| 485 | return KERN_FAILURE; |
| 486 | } |
| 487 | |
| 488 | swap_success = os_atomic_cmpxchg(&target_proc->cpu_signal, current_signals, |
| 489 | current_signals | signal, release); |
| 490 | } while (!swap_success); |
| 491 | } |
| 492 | |
| 493 | /* |
| 494 | * DSB is needed here to ensure prior stores to the pending signal mask and xcall params |
| 495 | * will be visible by the time the other cores are signaled. The IPI mechanism on any |
| 496 | * given platform will very likely use either an MSR or a non-coherent store that would |
| 497 | * not be ordered by a simple DMB. |
| 498 | */ |
| 499 | __builtin_arm_dsb(DSB_ISHST); |
| 500 | |
| 501 | if (!(target_proc->cpu_signal & SIGPdisabled)) { |
| 502 | if (defer) { |
| 503 | #if defined(HAS_IPI) |
| 504 | if (gFastIPI) { |
| 505 | ml_cpu_signal_deferred(target_proc->cpu_phys_id); |
| 506 | } else { |
| 507 | PE_cpu_signal_deferred(getCpuDatap()->cpu_id, target_proc->cpu_id); |
| 508 | } |
| 509 | #else |
| 510 | PE_cpu_signal_deferred(getCpuDatap()->cpu_id, target: target_proc->cpu_id); |
| 511 | #endif /* defined(HAS_IPI) */ |
| 512 | } else { |
| 513 | #if defined(HAS_IPI) |
| 514 | if (gFastIPI) { |
| 515 | ml_cpu_signal(target_proc->cpu_phys_id); |
| 516 | } else { |
| 517 | PE_cpu_signal(getCpuDatap()->cpu_id, target_proc->cpu_id); |
| 518 | } |
| 519 | #else |
| 520 | PE_cpu_signal(getCpuDatap()->cpu_id, target: target_proc->cpu_id); |
| 521 | #endif /* defined(HAS_IPI) */ |
| 522 | } |
| 523 | } |
| 524 | |
| 525 | ml_set_interrupts_enabled(enable: interruptible); |
| 526 | return KERN_SUCCESS; |
| 527 | } |
| 528 | |
| 529 | kern_return_t |
| 530 | cpu_signal(cpu_data_t *target_proc, |
| 531 | unsigned int signal, |
| 532 | void *p0, |
| 533 | void *p1) |
| 534 | { |
| 535 | return cpu_signal_internal(target_proc, signal, p0, p1, FALSE); |
| 536 | } |
| 537 | |
| 538 | kern_return_t |
| 539 | cpu_signal_deferred(cpu_data_t *target_proc) |
| 540 | { |
| 541 | return cpu_signal_internal(target_proc, SIGPnop, NULL, NULL, TRUE); |
| 542 | } |
| 543 | |
| 544 | void |
| 545 | cpu_signal_cancel(cpu_data_t *target_proc) |
| 546 | { |
| 547 | /* TODO: Should we care about the state of a core as far as squashing deferred IPIs goes? */ |
| 548 | if (!(target_proc->cpu_signal & SIGPdisabled)) { |
| 549 | #if defined(HAS_IPI) |
| 550 | if (gFastIPI) { |
| 551 | ml_cpu_signal_retract(target_proc->cpu_phys_id); |
| 552 | } else { |
| 553 | PE_cpu_signal_cancel(getCpuDatap()->cpu_id, target_proc->cpu_id); |
| 554 | } |
| 555 | #else |
| 556 | PE_cpu_signal_cancel(getCpuDatap()->cpu_id, target: target_proc->cpu_id); |
| 557 | #endif /* defined(HAS_IPI) */ |
| 558 | } |
| 559 | } |
| 560 | |
| 561 | void |
| 562 | cpu_signal_handler(void) |
| 563 | { |
| 564 | cpu_signal_handler_internal(FALSE); |
| 565 | } |
| 566 | |
| 567 | bool |
| 568 | cpu_has_SIGPdebug_pending(void) |
| 569 | { |
| 570 | cpu_data_t *cpu_data_ptr = getCpuDatap(); |
| 571 | |
| 572 | return cpu_data_ptr->cpu_signal & SIGPdebug; |
| 573 | } |
| 574 | |
| 575 | void |
| 576 | cpu_signal_handler_internal(boolean_t disable_signal) |
| 577 | { |
| 578 | cpu_data_t *cpu_data_ptr = getCpuDatap(); |
| 579 | unsigned int cpu_signal; |
| 580 | |
| 581 | cpu_data_ptr->cpu_stat.ipi_cnt++; |
| 582 | cpu_data_ptr->cpu_stat.ipi_cnt_wake++; |
| 583 | SCHED_STATS_INC(ipi_count); |
| 584 | |
| 585 | /* |
| 586 | * Employ an acquire barrier when loading cpu_signal to ensure that |
| 587 | * loads within individual signal handlers won't be speculated ahead |
| 588 | * of the load of cpu_signal. This pairs with the release barrier |
| 589 | * in cpu_signal_internal() to ensure that once a flag has been set in |
| 590 | * the cpu_signal mask, any prerequisite setup is also visible to signal |
| 591 | * handlers. |
| 592 | */ |
| 593 | cpu_signal = os_atomic_or(&cpu_data_ptr->cpu_signal, 0, acquire); |
| 594 | |
| 595 | if ((!(cpu_signal & SIGPdisabled)) && (disable_signal == TRUE)) { |
| 596 | os_atomic_or(&cpu_data_ptr->cpu_signal, SIGPdisabled, relaxed); |
| 597 | } else if ((cpu_signal & SIGPdisabled) && (disable_signal == FALSE)) { |
| 598 | os_atomic_andnot(&cpu_data_ptr->cpu_signal, SIGPdisabled, relaxed); |
| 599 | } |
| 600 | |
| 601 | while (cpu_signal & ~SIGPdisabled) { |
| 602 | if (cpu_signal & SIGPdebug) { |
| 603 | os_atomic_andnot(&cpu_data_ptr->cpu_signal, SIGPdebug, relaxed); |
| 604 | INTERRUPT_MASKED_DEBUG_START(DebuggerXCall, DBG_INTR_TYPE_IPI); |
| 605 | DebuggerXCall(ctx: cpu_data_ptr->cpu_int_state); |
| 606 | INTERRUPT_MASKED_DEBUG_END(); |
| 607 | } |
| 608 | if (cpu_signal & SIGPdec) { |
| 609 | os_atomic_andnot(&cpu_data_ptr->cpu_signal, SIGPdec, relaxed); |
| 610 | INTERRUPT_MASKED_DEBUG_START(rtclock_intr, DBG_INTR_TYPE_IPI); |
| 611 | rtclock_intr(FALSE); |
| 612 | INTERRUPT_MASKED_DEBUG_END(); |
| 613 | } |
| 614 | #if KPERF |
| 615 | if (cpu_signal & SIGPkppet) { |
| 616 | os_atomic_andnot(&cpu_data_ptr->cpu_signal, SIGPkppet, relaxed); |
| 617 | extern void kperf_signal_handler(void); |
| 618 | INTERRUPT_MASKED_DEBUG_START(kperf_signal_handler, DBG_INTR_TYPE_IPI); |
| 619 | kperf_signal_handler(); |
| 620 | INTERRUPT_MASKED_DEBUG_END(); |
| 621 | } |
| 622 | #endif /* KPERF */ |
| 623 | if (cpu_signal & (SIGPxcall | SIGPxcallImm)) { |
| 624 | cpu_handle_xcall(cpu_data_ptr); |
| 625 | } |
| 626 | if (cpu_signal & SIGPast) { |
| 627 | os_atomic_andnot(&cpu_data_ptr->cpu_signal, SIGPast, acquire); |
| 628 | INTERRUPT_MASKED_DEBUG_START(ast_check, DBG_INTR_TYPE_IPI); |
| 629 | ast_check(processor: current_processor()); |
| 630 | INTERRUPT_MASKED_DEBUG_END(); |
| 631 | } |
| 632 | |
| 633 | cpu_signal = os_atomic_or(&cpu_data_ptr->cpu_signal, 0, acquire); |
| 634 | } |
| 635 | } |
| 636 | |
| 637 | void |
| 638 | cpu_exit_wait(int cpu_id) |
| 639 | { |
| 640 | #if USE_APPLEARMSMP |
| 641 | if (!ml_is_quiescing()) { |
| 642 | // For runtime disable (non S2R) the CPU will shut down immediately. |
| 643 | ml_topology_cpu_t *cpu = &ml_get_topology_info()->cpus[cpu_id]; |
| 644 | assert(cpu && cpu->cpu_IMPL_regs); |
| 645 | volatile uint64_t *cpu_sts = (void *)(cpu->cpu_IMPL_regs + CPU_PIO_CPU_STS_OFFSET); |
| 646 | |
| 647 | // Poll the "CPU running state" field until it is 0 (off) |
| 648 | // This loop typically finishes in about 600ns. Sometimes it takes as long as 10us. |
| 649 | // If it takes longer than 10s, assume something went horribly wrong and panic. |
| 650 | uint64_t start = mach_absolute_time(), interval; |
| 651 | nanoseconds_to_absolutetime(nanoseconds: 10 * NSEC_PER_SEC, result: &interval); |
| 652 | |
| 653 | while ((*cpu_sts & CPU_PIO_CPU_STS_cpuRunSt_mask) != 0x00) { |
| 654 | __builtin_arm_dsb(DSB_ISH); |
| 655 | if (mach_absolute_time() > start + interval) { |
| 656 | #if NO_CPU_OVRD |
| 657 | // On platforms where CPU_OVRD is unavailable, a core can get stuck |
| 658 | // in a loop where it tries to enter WFI but is constantly woken up |
| 659 | // by an IRQ or FIQ. This condition persists until the cluster-wide |
| 660 | // deep sleep bits are set. |
| 661 | // |
| 662 | // Making this a fatal condition would be a poor UX, but it's good to |
| 663 | // print a warning so we know how often it happens. |
| 664 | kprintf("CPU%d failed to shut down\n" , cpu_id); |
| 665 | #else |
| 666 | panic("CPU%d failed to shut down" , cpu_id); |
| 667 | #endif |
| 668 | } |
| 669 | } |
| 670 | return; |
| 671 | } |
| 672 | #endif /* USE_APPLEARMSMP */ |
| 673 | |
| 674 | if (cpu_id != master_cpu) { |
| 675 | // For S2R, ml_arm_sleep() will do some extra polling after setting ARM_CPU_ON_SLEEP_PATH. |
| 676 | cpu_data_t *cpu_data_ptr; |
| 677 | |
| 678 | cpu_data_ptr = CpuDataEntries[cpu_id].cpu_data_vaddr; |
| 679 | while (!((*(volatile unsigned int*)&cpu_data_ptr->cpu_sleep_token) == ARM_CPU_ON_SLEEP_PATH)) { |
| 680 | } |
| 681 | ; |
| 682 | } |
| 683 | } |
| 684 | |
| 685 | boolean_t |
| 686 | cpu_can_exit(__unused int cpu) |
| 687 | { |
| 688 | return TRUE; |
| 689 | } |
| 690 | |
| 691 | void |
| 692 | cpu_machine_init(void) |
| 693 | { |
| 694 | static boolean_t started = FALSE; |
| 695 | cpu_data_t *cpu_data_ptr; |
| 696 | |
| 697 | cpu_data_ptr = getCpuDatap(); |
| 698 | started = ((cpu_data_ptr->cpu_flags & StartedState) == StartedState); |
| 699 | if (cpu_data_ptr->cpu_cache_dispatch != NULL) { |
| 700 | platform_cache_init(); |
| 701 | } |
| 702 | |
| 703 | /* Note: this calls IOCPURunPlatformActiveActions when resuming on boot cpu */ |
| 704 | PE_cpu_machine_init(target: cpu_data_ptr->cpu_id, bootb: !started); |
| 705 | |
| 706 | cpu_data_ptr->cpu_flags |= StartedState; |
| 707 | ml_init_interrupt(); |
| 708 | } |
| 709 | |
| 710 | processor_t |
| 711 | current_processor(void) |
| 712 | { |
| 713 | return PERCPU_GET(processor); |
| 714 | } |
| 715 | |
| 716 | processor_t |
| 717 | cpu_to_processor(int cpu) |
| 718 | { |
| 719 | cpu_data_t *cpu_data = cpu_datap(cpu); |
| 720 | if (cpu_data != NULL) { |
| 721 | return PERCPU_GET_RELATIVE(processor, cpu_data, cpu_data); |
| 722 | } else { |
| 723 | return NULL; |
| 724 | } |
| 725 | } |
| 726 | |
| 727 | cpu_data_t * |
| 728 | processor_to_cpu_datap(processor_t processor) |
| 729 | { |
| 730 | assert(processor->cpu_id <= ml_get_max_cpu_number()); |
| 731 | assert(CpuDataEntries[processor->cpu_id].cpu_data_vaddr != NULL); |
| 732 | |
| 733 | return PERCPU_GET_RELATIVE(cpu_data, processor, processor); |
| 734 | } |
| 735 | |
| 736 | __startup_func |
| 737 | static void |
| 738 | cpu_data_startup_init(void) |
| 739 | { |
| 740 | vm_size_t size = percpu_section_size() * (ml_get_cpu_count() - 1); |
| 741 | |
| 742 | percpu_base.size = percpu_section_size(); |
| 743 | if (ml_get_cpu_count() == 1) { |
| 744 | percpu_base.start = VM_MAX_KERNEL_ADDRESS; |
| 745 | return; |
| 746 | } |
| 747 | |
| 748 | /* |
| 749 | * The memory needs to be physically contiguous because it contains |
| 750 | * cpu_data_t structures sometimes accessed during reset |
| 751 | * with the MMU off. |
| 752 | * |
| 753 | * kmem_alloc_contig() can't be used early, at the time STARTUP_SUB_PERCPU |
| 754 | * normally runs, so we instead steal the memory for the PERCPU subsystem |
| 755 | * even earlier. |
| 756 | */ |
| 757 | percpu_base.start = (vm_offset_t)pmap_steal_memory(size, PAGE_SIZE); |
| 758 | bzero(s: (void *)percpu_base.start, n: size); |
| 759 | |
| 760 | percpu_base.start -= percpu_section_start(); |
| 761 | percpu_base.end = percpu_base.start + size - 1; |
| 762 | percpu_base_cur = percpu_base.start; |
| 763 | } |
| 764 | STARTUP(PMAP_STEAL, STARTUP_RANK_FIRST, cpu_data_startup_init); |
| 765 | |
| 766 | cpu_data_t * |
| 767 | cpu_data_alloc(boolean_t is_boot_cpu) |
| 768 | { |
| 769 | cpu_data_t *cpu_data_ptr = NULL; |
| 770 | vm_address_t base; |
| 771 | |
| 772 | if (is_boot_cpu) { |
| 773 | cpu_data_ptr = PERCPU_GET_MASTER(cpu_data); |
| 774 | } else { |
| 775 | base = os_atomic_add_orig(&percpu_base_cur, |
| 776 | percpu_section_size(), relaxed); |
| 777 | |
| 778 | cpu_data_ptr = PERCPU_GET_WITH_BASE(base, cpu_data); |
| 779 | cpu_stack_alloc(cpu_data_ptr); |
| 780 | } |
| 781 | |
| 782 | return cpu_data_ptr; |
| 783 | } |
| 784 | |
| 785 | ast_t * |
| 786 | ast_pending(void) |
| 787 | { |
| 788 | return &getCpuDatap()->cpu_pending_ast; |
| 789 | } |
| 790 | |
| 791 | cpu_type_t |
| 792 | slot_type(int slot_num) |
| 793 | { |
| 794 | return cpu_datap(cpu: slot_num)->cpu_type; |
| 795 | } |
| 796 | |
| 797 | cpu_subtype_t |
| 798 | slot_subtype(int slot_num) |
| 799 | { |
| 800 | return cpu_datap(cpu: slot_num)->cpu_subtype; |
| 801 | } |
| 802 | |
| 803 | cpu_threadtype_t |
| 804 | slot_threadtype(int slot_num) |
| 805 | { |
| 806 | return cpu_datap(cpu: slot_num)->cpu_threadtype; |
| 807 | } |
| 808 | |
| 809 | cpu_type_t |
| 810 | cpu_type(void) |
| 811 | { |
| 812 | return getCpuDatap()->cpu_type; |
| 813 | } |
| 814 | |
| 815 | cpu_subtype_t |
| 816 | cpu_subtype(void) |
| 817 | { |
| 818 | return getCpuDatap()->cpu_subtype; |
| 819 | } |
| 820 | |
| 821 | cpu_threadtype_t |
| 822 | cpu_threadtype(void) |
| 823 | { |
| 824 | return getCpuDatap()->cpu_threadtype; |
| 825 | } |
| 826 | |
| 827 | int |
| 828 | cpu_number(void) |
| 829 | { |
| 830 | return getCpuDatap()->cpu_number; |
| 831 | } |
| 832 | |
| 833 | vm_offset_t |
| 834 | current_percpu_base(void) |
| 835 | { |
| 836 | return current_thread()->machine.pcpu_data_base; |
| 837 | } |
| 838 | |
| 839 | vm_offset_t |
| 840 | other_percpu_base(int cpu) |
| 841 | { |
| 842 | return (char *)cpu_datap(cpu) - __PERCPU_ADDR(cpu_data); |
| 843 | } |
| 844 | |
| 845 | uint64_t |
| 846 | ml_get_wake_timebase(void) |
| 847 | { |
| 848 | return wake_abstime; |
| 849 | } |
| 850 | |
| 851 | bool |
| 852 | ml_cpu_signal_is_enabled(void) |
| 853 | { |
| 854 | return !(getCpuDatap()->cpu_signal & SIGPdisabled); |
| 855 | } |
| 856 | |
| 857 | bool |
| 858 | ml_cpu_can_exit(__unused int cpu_id, processor_reason_t reason) |
| 859 | { |
| 860 | /* processor_exit() is always allowed on the S2R path */ |
| 861 | if (ml_is_quiescing()) { |
| 862 | return true; |
| 863 | } |
| 864 | #if HAS_CLUSTER && USE_APPLEARMSMP |
| 865 | /* |
| 866 | * Until the feature is known to be stable, guard it with a boot-arg |
| 867 | */ |
| 868 | extern bool enable_processor_exit; |
| 869 | extern bool cluster_power_supported; |
| 870 | |
| 871 | if (!(enable_processor_exit || cluster_power_supported)) { |
| 872 | return false; |
| 873 | } |
| 874 | |
| 875 | if (!enable_processor_exit) { |
| 876 | /* Only cluster_power_supported so disallow any USER reason */ |
| 877 | if ((reason == REASON_USER) || (reason == REASON_CLPC_USER)) { |
| 878 | return false; |
| 879 | } |
| 880 | } |
| 881 | |
| 882 | /* |
| 883 | * Cyprus and newer chips can disable individual non-boot CPUs. The |
| 884 | * implementation polls cpuX_IMPL_CPU_STS, which differs on older chips. |
| 885 | */ |
| 886 | if (CpuDataEntries[cpu_id].cpu_data_vaddr != &BootCpuData) { |
| 887 | return true; |
| 888 | } |
| 889 | #else |
| 890 | (void)reason; |
| 891 | #endif |
| 892 | return false; |
| 893 | } |
| 894 | |
| 895 | #ifdef USE_APPLEARMSMP |
| 896 | |
| 897 | void |
| 898 | ml_cpu_begin_state_transition(int cpu_id) |
| 899 | { |
| 900 | lck_rw_lock_exclusive(lck: &cpu_state_lock); |
| 901 | CpuDataEntries[cpu_id].cpu_data_vaddr->in_state_transition = true; |
| 902 | lck_rw_unlock_exclusive(lck: &cpu_state_lock); |
| 903 | } |
| 904 | |
| 905 | void |
| 906 | ml_cpu_end_state_transition(int cpu_id) |
| 907 | { |
| 908 | lck_rw_lock_exclusive(lck: &cpu_state_lock); |
| 909 | CpuDataEntries[cpu_id].cpu_data_vaddr->in_state_transition = false; |
| 910 | lck_rw_unlock_exclusive(lck: &cpu_state_lock); |
| 911 | } |
| 912 | |
| 913 | void |
| 914 | ml_cpu_begin_loop(void) |
| 915 | { |
| 916 | lck_rw_lock_shared(lck: &cpu_state_lock); |
| 917 | } |
| 918 | |
| 919 | void |
| 920 | ml_cpu_end_loop(void) |
| 921 | { |
| 922 | lck_rw_unlock_shared(lck: &cpu_state_lock); |
| 923 | } |
| 924 | |
| 925 | void |
| 926 | ml_cpu_power_enable(int cpu_id) |
| 927 | { |
| 928 | PE_cpu_power_enable(cpu_id); |
| 929 | } |
| 930 | |
| 931 | void |
| 932 | ml_cpu_power_disable(int cpu_id) |
| 933 | { |
| 934 | PE_cpu_power_disable(cpu_id); |
| 935 | } |
| 936 | |
| 937 | #else /* USE_APPLEARMSMP */ |
| 938 | |
| 939 | void |
| 940 | ml_cpu_begin_state_transition(__unused int cpu_id) |
| 941 | { |
| 942 | } |
| 943 | |
| 944 | void |
| 945 | ml_cpu_end_state_transition(__unused int cpu_id) |
| 946 | { |
| 947 | } |
| 948 | |
| 949 | void |
| 950 | ml_cpu_begin_loop(void) |
| 951 | { |
| 952 | } |
| 953 | |
| 954 | void |
| 955 | ml_cpu_end_loop(void) |
| 956 | { |
| 957 | } |
| 958 | |
| 959 | void |
| 960 | ml_cpu_power_enable(__unused int cpu_id) |
| 961 | { |
| 962 | } |
| 963 | |
| 964 | void |
| 965 | ml_cpu_power_disable(__unused int cpu_id) |
| 966 | { |
| 967 | } |
| 968 | |
| 969 | #endif /* USE_APPLEARMSMP */ |
| 970 | |