1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Portions copyright (c) 2013, Joyent, Inc. All rights reserved.
24 * Portions Copyright (c) 2013 by Delphix. All rights reserved.
25 */
26
27/*
28 * Copyright 2007 Sun Microsystems, Inc. All rights reserved.
29 * Use is subject to license terms.
30 *
31 * Portions Copyright (c) 2012 by Delphix. All rights reserved.
32 */
33
34#ifndef _SYS_DTRACE_H
35#define _SYS_DTRACE_H
36
37#ifdef __cplusplus
38extern "C" {
39#endif
40
41/*
42 * DTrace Dynamic Tracing Software: Kernel Interfaces
43 *
44 * Note: The contents of this file are private to the implementation of the
45 * Solaris system and DTrace subsystem and are subject to change at any time
46 * without notice. Applications and drivers using these interfaces will fail
47 * to run on future releases. These interfaces should not be used for any
48 * purpose except those expressly outlined in dtrace(7D) and libdtrace(3LIB).
49 * Please refer to the "Solaris Dynamic Tracing Guide" for more information.
50 */
51
52#ifndef _ASM
53
54#if !defined(__APPLE__)
55#include <sys/types.h>
56#include <sys/modctl.h>
57#include <sys/processor.h>
58#include <sys/systm.h>
59#include <sys/ctf_api.h>
60#include <sys/cyclic.h>
61#include <sys/int_limits.h>
62#else /* is Apple Mac OS X */
63
64#if defined(__LP64__)
65#if !defined(_LP64)
66#define _LP64 /* Solaris vs. Darwin */
67#endif
68#else
69#if !defined(_ILP32)
70#define _ILP32 /* Solaris vs. Darwin */
71#endif
72#endif
73
74#if defined(__BIG_ENDIAN__)
75#if !defined(_BIG_ENDIAN)
76#define _BIG_ENDIAN /* Solaris vs. Darwin */
77#endif
78#elif defined(__LITTLE_ENDIAN__)
79#if !defined(_LITTLE_ENDIAN)
80#define _LITTLE_ENDIAN /* Solaris vs. Darwin */
81#endif
82#else
83#error Unknown endian-ness
84#endif
85
86#ifdef KERNEL
87#ifndef _KERNEL
88#define _KERNEL /* Solaris vs. Darwin */
89#endif
90#endif
91
92#include <sys/types.h>
93#include <sys/param.h>
94#include <stdint.h>
95
96#ifndef NULL
97#define NULL ((void *)0) /* quiets many warnings */
98#endif
99
100#define SEC 1
101#define MILLISEC 1000
102#define MICROSEC 1000000
103#define NANOSEC 1000000000
104
105#define S_ROUND(x, a) ((x) + (((a) ? (a) : 1) - 1) & ~(((a) ? (a) : 1) - 1))
106#define P2ROUNDUP(x, align) (-(-(x) & -(align)))
107#define P2PHASEUP(x, align, phase) ((phase) - (((phase) - (x)) & -(align)))
108
109#define CTF_MODEL_ILP32 1 /* object data model is ILP32 */
110#define CTF_MODEL_LP64 2 /* object data model is LP64 */
111#ifdef __LP64__
112#define CTF_MODEL_NATIVE CTF_MODEL_LP64
113#else
114#define CTF_MODEL_NATIVE CTF_MODEL_ILP32
115#endif
116
117typedef uint8_t uchar_t;
118typedef uint16_t ushort_t;
119typedef uint32_t uint_t;
120typedef unsigned long ulong_t;
121typedef uint64_t u_longlong_t;
122typedef int64_t longlong_t;
123typedef int64_t off64_t;
124typedef int processorid_t;
125typedef int64_t hrtime_t;
126
127typedef enum { B_FALSE = 0, B_TRUE = 1 } _dtrace_boolean;
128
129typedef uint8_t UUID[16]; /* For modctl use in dtrace.h */
130
131struct modctl; /* In lieu of Solaris <sys/modctl.h> */
132/* NOTHING */ /* In lieu of Solaris <sys/processor.h> */
133#include <sys/ioctl.h> /* In lieu of Solaris <sys/systm.h> */
134#ifdef KERNEL
135/* NOTHING */ /* In lieu of Solaris <sys/ctf_api.h> */
136#else
137/* In lieu of Solaris <sys/ctf_api.h> */
138typedef struct ctf_file ctf_file_t;
139typedef long ctf_id_t;
140#endif
141/* NOTHING */ /* In lieu of Solaris <sys/cyclic.h> */
142/* NOTHING */ /* In lieu of Solaris <sys/int_limits.h> */
143
144typedef uint32_t zoneid_t;
145
146#include <sys/dtrace_glue.h>
147
148#include <stdarg.h>
149typedef va_list __va_list;
150
151/* Solaris proc_t is the struct. Darwin's proc_t is a pointer to it. */
152#define proc_t struct proc /* Steer clear of the Darwin typedef for proc_t */
153
154#include <os/overflow.h>
155#endif /* __APPLE__ */
156
157/*
158 * DTrace Universal Constants and Typedefs
159 */
160#define DTRACE_CPUALL -1 /* all CPUs */
161#define DTRACE_IDNONE 0 /* invalid probe identifier */
162#define DTRACE_EPIDNONE 0 /* invalid enabled probe identifier */
163#define DTRACE_AGGIDNONE 0 /* invalid aggregation identifier */
164#define DTRACE_AGGVARIDNONE 0 /* invalid aggregation variable ID */
165#define DTRACE_CACHEIDNONE 0 /* invalid predicate cache */
166#define DTRACE_PROVNONE 0 /* invalid provider identifier */
167#define DTRACE_METAPROVNONE 0 /* invalid meta-provider identifier */
168#define DTRACE_ARGNONE -1 /* invalid argument index */
169
170#define DTRACE_PROVNAMELEN 64
171#define DTRACE_MODNAMELEN 64
172#define DTRACE_FUNCNAMELEN 128
173#define DTRACE_NAMELEN 64
174#define DTRACE_FULLNAMELEN (DTRACE_PROVNAMELEN + DTRACE_MODNAMELEN + \
175 DTRACE_FUNCNAMELEN + DTRACE_NAMELEN + 4)
176#define DTRACE_ARGTYPELEN 128
177
178typedef uint32_t dtrace_id_t; /* probe identifier */
179typedef uint32_t dtrace_epid_t; /* enabled probe identifier */
180typedef uint32_t dtrace_aggid_t; /* aggregation identifier */
181typedef int64_t dtrace_aggvarid_t; /* aggregation variable identifier */
182typedef uint16_t dtrace_actkind_t; /* action kind */
183typedef int64_t dtrace_optval_t; /* option value */
184typedef uint32_t dtrace_cacheid_t; /* predicate cache identifier */
185
186typedef enum dtrace_probespec {
187 DTRACE_PROBESPEC_NONE = -1,
188 DTRACE_PROBESPEC_PROVIDER = 0,
189 DTRACE_PROBESPEC_MOD,
190 DTRACE_PROBESPEC_FUNC,
191 DTRACE_PROBESPEC_NAME
192} dtrace_probespec_t;
193
194/*
195 * DTrace Intermediate Format (DIF)
196 *
197 * The following definitions describe the DTrace Intermediate Format (DIF), a
198 * a RISC-like instruction set and program encoding used to represent
199 * predicates and actions that can be bound to DTrace probes. The constants
200 * below defining the number of available registers are suggested minimums; the
201 * compiler should use DTRACEIOC_CONF to dynamically obtain the number of
202 * registers provided by the current DTrace implementation.
203 */
204#define DIF_VERSION_1 1 /* DIF version 1: Solaris 10 Beta */
205#define DIF_VERSION_2 2 /* DIF version 2: Solaris 10 FCS */
206#define DIF_VERSION DIF_VERSION_2 /* latest DIF instruction set version */
207#define DIF_DIR_NREGS 8 /* number of DIF integer registers */
208#define DIF_DTR_NREGS 8 /* number of DIF tuple registers */
209
210#define DIF_OP_OR 1 /* or r1, r2, rd */
211#define DIF_OP_XOR 2 /* xor r1, r2, rd */
212#define DIF_OP_AND 3 /* and r1, r2, rd */
213#define DIF_OP_SLL 4 /* sll r1, r2, rd */
214#define DIF_OP_SRL 5 /* srl r1, r2, rd */
215#define DIF_OP_SUB 6 /* sub r1, r2, rd */
216#define DIF_OP_ADD 7 /* add r1, r2, rd */
217#define DIF_OP_MUL 8 /* mul r1, r2, rd */
218#define DIF_OP_SDIV 9 /* sdiv r1, r2, rd */
219#define DIF_OP_UDIV 10 /* udiv r1, r2, rd */
220#define DIF_OP_SREM 11 /* srem r1, r2, rd */
221#define DIF_OP_UREM 12 /* urem r1, r2, rd */
222#define DIF_OP_NOT 13 /* not r1, rd */
223#define DIF_OP_MOV 14 /* mov r1, rd */
224#define DIF_OP_CMP 15 /* cmp r1, r2 */
225#define DIF_OP_TST 16 /* tst r1 */
226#define DIF_OP_BA 17 /* ba label */
227#define DIF_OP_BE 18 /* be label */
228#define DIF_OP_BNE 19 /* bne label */
229#define DIF_OP_BG 20 /* bg label */
230#define DIF_OP_BGU 21 /* bgu label */
231#define DIF_OP_BGE 22 /* bge label */
232#define DIF_OP_BGEU 23 /* bgeu label */
233#define DIF_OP_BL 24 /* bl label */
234#define DIF_OP_BLU 25 /* blu label */
235#define DIF_OP_BLE 26 /* ble label */
236#define DIF_OP_BLEU 27 /* bleu label */
237#define DIF_OP_LDSB 28 /* ldsb [r1], rd */
238#define DIF_OP_LDSH 29 /* ldsh [r1], rd */
239#define DIF_OP_LDSW 30 /* ldsw [r1], rd */
240#define DIF_OP_LDUB 31 /* ldub [r1], rd */
241#define DIF_OP_LDUH 32 /* lduh [r1], rd */
242#define DIF_OP_LDUW 33 /* lduw [r1], rd */
243#define DIF_OP_LDX 34 /* ldx [r1], rd */
244#define DIF_OP_RET 35 /* ret rd */
245#define DIF_OP_NOP 36 /* nop */
246#define DIF_OP_SETX 37 /* setx intindex, rd */
247#define DIF_OP_SETS 38 /* sets strindex, rd */
248#define DIF_OP_SCMP 39 /* scmp r1, r2 */
249#define DIF_OP_LDGA 40 /* ldga var, ri, rd */
250#define DIF_OP_LDGS 41 /* ldgs var, rd */
251#define DIF_OP_STGS 42 /* stgs var, rs */
252#define DIF_OP_LDTA 43 /* ldta var, ri, rd */
253#define DIF_OP_LDTS 44 /* ldts var, rd */
254#define DIF_OP_STTS 45 /* stts var, rs */
255#define DIF_OP_SRA 46 /* sra r1, r2, rd */
256#define DIF_OP_CALL 47 /* call subr, rd */
257#define DIF_OP_PUSHTR 48 /* pushtr type, rs, rr */
258#define DIF_OP_PUSHTV 49 /* pushtv type, rs, rv */
259#define DIF_OP_POPTS 50 /* popts */
260#define DIF_OP_FLUSHTS 51 /* flushts */
261#define DIF_OP_LDGAA 52 /* ldgaa var, rd */
262#define DIF_OP_LDTAA 53 /* ldtaa var, rd */
263#define DIF_OP_STGAA 54 /* stgaa var, rs */
264#define DIF_OP_STTAA 55 /* sttaa var, rs */
265#define DIF_OP_LDLS 56 /* ldls var, rd */
266#define DIF_OP_STLS 57 /* stls var, rs */
267#define DIF_OP_ALLOCS 58 /* allocs r1, rd */
268#define DIF_OP_COPYS 59 /* copys r1, r2, rd */
269#define DIF_OP_STB 60 /* stb r1, [rd] */
270#define DIF_OP_STH 61 /* sth r1, [rd] */
271#define DIF_OP_STW 62 /* stw r1, [rd] */
272#define DIF_OP_STX 63 /* stx r1, [rd] */
273#define DIF_OP_ULDSB 64 /* uldsb [r1], rd */
274#define DIF_OP_ULDSH 65 /* uldsh [r1], rd */
275#define DIF_OP_ULDSW 66 /* uldsw [r1], rd */
276#define DIF_OP_ULDUB 67 /* uldub [r1], rd */
277#define DIF_OP_ULDUH 68 /* ulduh [r1], rd */
278#define DIF_OP_ULDUW 69 /* ulduw [r1], rd */
279#define DIF_OP_ULDX 70 /* uldx [r1], rd */
280#define DIF_OP_RLDSB 71 /* rldsb [r1], rd */
281#define DIF_OP_RLDSH 72 /* rldsh [r1], rd */
282#define DIF_OP_RLDSW 73 /* rldsw [r1], rd */
283#define DIF_OP_RLDUB 74 /* rldub [r1], rd */
284#define DIF_OP_RLDUH 75 /* rlduh [r1], rd */
285#define DIF_OP_RLDUW 76 /* rlduw [r1], rd */
286#define DIF_OP_RLDX 77 /* rldx [r1], rd */
287#define DIF_OP_XLATE 78 /* xlate xlrindex, rd */
288#define DIF_OP_XLARG 79 /* xlarg xlrindex, rd */
289#define DIF_OP_STRIP 80 /* strip r1, key, rd */
290
291#define DIF_INTOFF_MAX 0xffff /* highest integer table offset */
292#define DIF_STROFF_MAX 0xffff /* highest string table offset */
293#define DIF_REGISTER_MAX 0xff /* highest register number */
294#define DIF_VARIABLE_MAX 0xffff /* highest variable identifier */
295#define DIF_SUBROUTINE_MAX 0xffff /* highest subroutine code */
296
297#define DIF_VAR_ARRAY_MIN 0x0000 /* lowest numbered array variable */
298#define DIF_VAR_ARRAY_UBASE 0x0080 /* lowest user-defined array */
299#define DIF_VAR_ARRAY_MAX 0x00ff /* highest numbered array variable */
300
301#define DIF_VAR_OTHER_MIN 0x0100 /* lowest numbered scalar or assc */
302#define DIF_VAR_OTHER_UBASE 0x0500 /* lowest user-defined scalar or assc */
303#define DIF_VAR_OTHER_MAX 0xffff /* highest numbered scalar or assc */
304
305#define DIF_VAR_ARGS 0x0000 /* arguments array */
306#define DIF_VAR_REGS 0x0001 /* registers array */
307#define DIF_VAR_UREGS 0x0002 /* user registers array */
308#define DIF_VAR_VMREGS 0x0003 /* virtual machine registers array */
309#define DIF_VAR_CURTHREAD 0x0100 /* thread pointer */
310#define DIF_VAR_TIMESTAMP 0x0101 /* timestamp */
311#define DIF_VAR_VTIMESTAMP 0x0102 /* virtual timestamp */
312#define DIF_VAR_IPL 0x0103 /* interrupt priority level */
313#define DIF_VAR_EPID 0x0104 /* enabled probe ID */
314#define DIF_VAR_ID 0x0105 /* probe ID */
315#define DIF_VAR_ARG0 0x0106 /* first argument */
316#define DIF_VAR_ARG1 0x0107 /* second argument */
317#define DIF_VAR_ARG2 0x0108 /* third argument */
318#define DIF_VAR_ARG3 0x0109 /* fourth argument */
319#define DIF_VAR_ARG4 0x010a /* fifth argument */
320#define DIF_VAR_ARG5 0x010b /* sixth argument */
321#define DIF_VAR_ARG6 0x010c /* seventh argument */
322#define DIF_VAR_ARG7 0x010d /* eighth argument */
323#define DIF_VAR_ARG8 0x010e /* ninth argument */
324#define DIF_VAR_ARG9 0x010f /* tenth argument */
325#define DIF_VAR_STACKDEPTH 0x0110 /* stack depth */
326#define DIF_VAR_CALLER 0x0111 /* caller */
327#define DIF_VAR_PROBEPROV 0x0112 /* probe provider */
328#define DIF_VAR_PROBEMOD 0x0113 /* probe module */
329#define DIF_VAR_PROBEFUNC 0x0114 /* probe function */
330#define DIF_VAR_PROBENAME 0x0115 /* probe name */
331#define DIF_VAR_PID 0x0116 /* process ID */
332#define DIF_VAR_TID 0x0117 /* (per-process) thread ID */
333#define DIF_VAR_EXECNAME 0x0118 /* name of executable */
334#define DIF_VAR_ZONENAME 0x0119 /* zone name associated with process */
335#define DIF_VAR_WALLTIMESTAMP 0x011a /* wall-clock timestamp */
336#define DIF_VAR_USTACKDEPTH 0x011b /* user-land stack depth */
337#define DIF_VAR_UCALLER 0x011c /* user-level caller */
338#define DIF_VAR_PPID 0x011d /* parent process ID */
339#define DIF_VAR_UID 0x011e /* process user ID */
340#define DIF_VAR_GID 0x011f /* process group ID */
341#define DIF_VAR_ERRNO 0x0120 /* thread errno */
342#if defined(__APPLE__)
343#define DIF_VAR_PTHREAD_SELF 0x0200 /* Apple specific PTHREAD_SELF (Not currently supported!) */
344#define DIF_VAR_DISPATCHQADDR 0x0201 /* Apple specific dispatch queue addr */
345#define DIF_VAR_MACHTIMESTAMP 0x0202 /* mach_absolute_time() */
346#define DIF_VAR_CPU 0x0203 /* cpu number */
347#define DIF_VAR_CPUINSTRS 0x0204 /* cpu instructions */
348#define DIF_VAR_CPUCYCLES 0x0205 /* cpu cycles */
349#define DIF_VAR_VINSTRS 0x0206 /* virtual instructions */
350#define DIF_VAR_VCYCLES 0x0207 /* virtual cycles */
351#define DIF_VAR_MACHCTIMESTAMP 0x0208 /* mach_continuous_time() */
352#endif /* __APPLE __ */
353
354#define DIF_SUBR_RAND 0
355#define DIF_SUBR_MUTEX_OWNED 1
356#define DIF_SUBR_MUTEX_OWNER 2
357#define DIF_SUBR_MUTEX_TYPE_ADAPTIVE 3
358#define DIF_SUBR_MUTEX_TYPE_SPIN 4
359#define DIF_SUBR_RW_READ_HELD 5
360#define DIF_SUBR_RW_WRITE_HELD 6
361#define DIF_SUBR_RW_ISWRITER 7
362#define DIF_SUBR_COPYIN 8
363#define DIF_SUBR_COPYINSTR 9
364#define DIF_SUBR_SPECULATION 10
365#define DIF_SUBR_PROGENYOF 11
366#define DIF_SUBR_STRLEN 12
367#define DIF_SUBR_COPYOUT 13
368#define DIF_SUBR_COPYOUTSTR 14
369#define DIF_SUBR_ALLOCA 15
370#define DIF_SUBR_BCOPY 16
371#define DIF_SUBR_COPYINTO 17
372#define DIF_SUBR_MSGDSIZE 18
373#define DIF_SUBR_MSGSIZE 19
374#define DIF_SUBR_GETMAJOR 20
375#define DIF_SUBR_GETMINOR 21
376#define DIF_SUBR_DDI_PATHNAME 22
377#define DIF_SUBR_STRJOIN 23
378#define DIF_SUBR_LLTOSTR 24
379#define DIF_SUBR_BASENAME 25
380#define DIF_SUBR_DIRNAME 26
381#define DIF_SUBR_CLEANPATH 27
382#define DIF_SUBR_STRCHR 28
383#define DIF_SUBR_STRRCHR 29
384#define DIF_SUBR_STRSTR 30
385#define DIF_SUBR_STRTOK 31
386#define DIF_SUBR_SUBSTR 32
387#define DIF_SUBR_INDEX 33
388#define DIF_SUBR_RINDEX 34
389#define DIF_SUBR_HTONS 35
390#define DIF_SUBR_HTONL 36
391#define DIF_SUBR_HTONLL 37
392#define DIF_SUBR_NTOHS 38
393#define DIF_SUBR_NTOHL 39
394#define DIF_SUBR_NTOHLL 40
395#define DIF_SUBR_INET_NTOP 41
396#define DIF_SUBR_INET_NTOA 42
397#define DIF_SUBR_INET_NTOA6 43
398#define DIF_SUBR_TOUPPER 44
399#define DIF_SUBR_TOLOWER 45
400#define DIF_SUBR_JSON 46
401#define DIF_SUBR_STRTOLL 47
402#define DIF_SUBR_STRIP 48
403#define DIF_SUBR_MAX 48 /* max subroutine value */
404
405/* Apple-specific subroutines */
406#if defined(__APPLE__)
407#define DIF_SUBR_APPLE_MIN 200 /* min apple-specific subroutine value */
408#define DIF_SUBR_VM_KERNEL_ADDRPERM 200
409#define DIF_SUBR_KDEBUG_TRACE 201
410#define DIF_SUBR_KDEBUG_TRACE_STRING 202
411#define DIF_SUBR_MTONS 203
412#define DIF_SUBR_PHYSMEM_READ 204
413#define DIF_SUBR_PHYSMEM_WRITE 205
414#define DIF_SUBR_KVTOPHYS 206
415#define DIF_SUBR_LIVEDUMP 207
416#define DIF_SUBR_APPLE_MAX 207 /* max apple-specific subroutine value */
417#endif /* __APPLE__ */
418
419typedef uint32_t dif_instr_t;
420
421#define DIF_INSTR_OP(i) (((i) >> 24) & 0xff)
422#define DIF_INSTR_R1(i) (((i) >> 16) & 0xff)
423#define DIF_INSTR_R2(i) (((i) >> 8) & 0xff)
424#define DIF_INSTR_RD(i) ((i) & 0xff)
425#define DIF_INSTR_RS(i) ((i) & 0xff)
426#define DIF_INSTR_IMM2(i) (((i) >> 8) & 0xff)
427#define DIF_INSTR_LABEL(i) ((i) & 0xffffff)
428#define DIF_INSTR_VAR(i) (((i) >> 8) & 0xffff)
429#define DIF_INSTR_INTEGER(i) (((i) >> 8) & 0xffff)
430#define DIF_INSTR_STRING(i) (((i) >> 8) & 0xffff)
431#define DIF_INSTR_SUBR(i) (((i) >> 8) & 0xffff)
432#define DIF_INSTR_TYPE(i) (((i) >> 16) & 0xff)
433#define DIF_INSTR_XLREF(i) (((i) >> 8) & 0xffff)
434
435#define DIF_INSTR_FMT(op, r1, r2, d) \
436 (((op) << 24) | ((r1) << 16) | ((r2) << 8) | (d))
437
438#define DIF_INSTR_NOT(r1, d) (DIF_INSTR_FMT(DIF_OP_NOT, r1, 0, d))
439#define DIF_INSTR_MOV(r1, d) (DIF_INSTR_FMT(DIF_OP_MOV, r1, 0, d))
440#define DIF_INSTR_CMP(op, r1, r2) (DIF_INSTR_FMT(op, r1, r2, 0))
441#define DIF_INSTR_TST(r1) (DIF_INSTR_FMT(DIF_OP_TST, r1, 0, 0))
442#define DIF_INSTR_BRANCH(op, label) (((op) << 24) | (label))
443#define DIF_INSTR_LOAD(op, r1, d) (DIF_INSTR_FMT(op, r1, 0, d))
444#define DIF_INSTR_STORE(op, r1, d) (DIF_INSTR_FMT(op, r1, 0, d))
445#define DIF_INSTR_SETX(i, d) ((DIF_OP_SETX << 24) | ((i) << 8) | (d))
446#define DIF_INSTR_SETS(s, d) ((DIF_OP_SETS << 24) | ((s) << 8) | (d))
447#define DIF_INSTR_RET(d) (DIF_INSTR_FMT(DIF_OP_RET, 0, 0, d))
448#define DIF_INSTR_NOP (DIF_OP_NOP << 24)
449#define DIF_INSTR_LDA(op, v, r, d) (DIF_INSTR_FMT(op, v, r, d))
450#define DIF_INSTR_LDV(op, v, d) (((op) << 24) | ((v) << 8) | (d))
451#define DIF_INSTR_STV(op, v, rs) (((op) << 24) | ((v) << 8) | (rs))
452#define DIF_INSTR_CALL(s, d) ((DIF_OP_CALL << 24) | ((s) << 8) | (d))
453#define DIF_INSTR_PUSHTS(op, t, r2, rs) (DIF_INSTR_FMT(op, t, r2, rs))
454#define DIF_INSTR_POPTS (DIF_OP_POPTS << 24)
455#define DIF_INSTR_FLUSHTS (DIF_OP_FLUSHTS << 24)
456#define DIF_INSTR_ALLOCS(r1, d) (DIF_INSTR_FMT(DIF_OP_ALLOCS, r1, 0, d))
457#define DIF_INSTR_COPYS(r1, r2, d) (DIF_INSTR_FMT(DIF_OP_COPYS, r1, r2, d))
458#define DIF_INSTR_XLATE(op, r, d) (((op) << 24) | ((r) << 8) | (d))
459
460#define DIF_REG_R0 0 /* %r0 is always set to zero */
461
462/*
463 * A DTrace Intermediate Format Type (DIF Type) is used to represent the types
464 * of variables, function and associative array arguments, and the return type
465 * for each DIF object (shown below). It contains a description of the type,
466 * its size in bytes, and a module identifier.
467 */
468typedef struct dtrace_diftype {
469 uint8_t dtdt_kind; /* type kind (see below) */
470 uint8_t dtdt_ckind; /* type kind in CTF */
471 uint8_t dtdt_flags; /* type flags (see below) */
472 uint8_t dtdt_pad; /* reserved for future use */
473 uint32_t dtdt_size; /* type size in bytes (unless string) */
474} dtrace_diftype_t;
475
476#define DIF_TYPE_CTF 0 /* type is a CTF type */
477#define DIF_TYPE_STRING 1 /* type is a D string */
478
479#define DIF_TF_BYREF 0x1 /* type is passed by reference */
480#define DIF_TF_BYUREF 0x2 /* user type is passed by reference */
481
482/*
483 * A DTrace Intermediate Format variable record is used to describe each of the
484 * variables referenced by a given DIF object. It contains an integer variable
485 * identifier along with variable scope and properties, as shown below. The
486 * size of this structure must be sizeof (int) aligned.
487 */
488typedef struct dtrace_difv {
489 uint32_t dtdv_name; /* variable name index in dtdo_strtab */
490 uint32_t dtdv_id; /* variable reference identifier */
491 uint8_t dtdv_kind; /* variable kind (see below) */
492 uint8_t dtdv_scope; /* variable scope (see below) */
493 uint16_t dtdv_flags; /* variable flags (see below) */
494 dtrace_diftype_t dtdv_type; /* variable type (see above) */
495} dtrace_difv_t;
496
497#define DIFV_KIND_ARRAY 0 /* variable is an array of quantities */
498#define DIFV_KIND_SCALAR 1 /* variable is a scalar quantity */
499
500#define DIFV_SCOPE_GLOBAL 0 /* variable has global scope */
501#define DIFV_SCOPE_THREAD 1 /* variable has thread scope */
502#define DIFV_SCOPE_LOCAL 2 /* variable has local scope */
503
504#define DIFV_F_REF 0x1 /* variable is referenced by DIFO */
505#define DIFV_F_MOD 0x2 /* variable is written by DIFO */
506
507/*
508 * DTrace Actions
509 *
510 * The upper byte determines the class of the action; the low bytes determines
511 * the specific action within that class. The classes of actions are as
512 * follows:
513 *
514 * [ no class ] <= May record process- or kernel-related data
515 * DTRACEACT_PROC <= Only records process-related data
516 * DTRACEACT_PROC_DESTRUCTIVE <= Potentially destructive to processes
517 * DTRACEACT_KERNEL <= Only records kernel-related data
518 * DTRACEACT_KERNEL_DESTRUCTIVE <= Potentially destructive to the kernel
519 * DTRACEACT_SPECULATIVE <= Speculation-related action
520 * DTRACEACT_AGGREGATION <= Aggregating action
521 */
522#define DTRACEACT_NONE 0 /* no action */
523#define DTRACEACT_DIFEXPR 1 /* action is DIF expression */
524#define DTRACEACT_EXIT 2 /* exit() action */
525#define DTRACEACT_PRINTF 3 /* printf() action */
526#define DTRACEACT_PRINTA 4 /* printa() action */
527#define DTRACEACT_LIBACT 5 /* library-controlled action */
528#define DTRACEACT_TRACEMEM 6 /* tracemem() action */
529#define DTRACEACT_TRACEMEM_DYNSIZE 7 /* dynamic tracemem() size */
530
531#if defined(__APPLE__)
532#define DTRACEACT_APPLEBINARY 50 /* Apple DT perf. tool action */
533#endif /* __APPLE__ */
534
535#define DTRACEACT_PROC 0x0100
536#define DTRACEACT_USTACK (DTRACEACT_PROC + 1)
537#define DTRACEACT_JSTACK (DTRACEACT_PROC + 2)
538#define DTRACEACT_USYM (DTRACEACT_PROC + 3)
539#define DTRACEACT_UMOD (DTRACEACT_PROC + 4)
540#define DTRACEACT_UADDR (DTRACEACT_PROC + 5)
541
542#define DTRACEACT_PROC_DESTRUCTIVE 0x0200
543#define DTRACEACT_STOP (DTRACEACT_PROC_DESTRUCTIVE + 1)
544#define DTRACEACT_RAISE (DTRACEACT_PROC_DESTRUCTIVE + 2)
545#define DTRACEACT_SYSTEM (DTRACEACT_PROC_DESTRUCTIVE + 3)
546#define DTRACEACT_FREOPEN (DTRACEACT_PROC_DESTRUCTIVE + 4)
547
548#if defined(__APPLE__)
549/*
550 * Dtrace stop() will task_suspend the currently running process.
551 * Dtrace pidresume(pid) will task_resume it.
552 */
553
554#define DTRACEACT_PIDRESUME (DTRACEACT_PROC_DESTRUCTIVE + 50)
555#endif /* __APPLE__ */
556
557#define DTRACEACT_PROC_CONTROL 0x0300
558
559#define DTRACEACT_KERNEL 0x0400
560#define DTRACEACT_STACK (DTRACEACT_KERNEL + 1)
561#define DTRACEACT_SYM (DTRACEACT_KERNEL + 2)
562#define DTRACEACT_MOD (DTRACEACT_KERNEL + 3)
563
564#define DTRACEACT_KERNEL_DESTRUCTIVE 0x0500
565#define DTRACEACT_BREAKPOINT (DTRACEACT_KERNEL_DESTRUCTIVE + 1)
566#define DTRACEACT_PANIC (DTRACEACT_KERNEL_DESTRUCTIVE + 2)
567#define DTRACEACT_CHILL (DTRACEACT_KERNEL_DESTRUCTIVE + 3)
568
569#define DTRACEACT_SPECULATIVE 0x0600
570#define DTRACEACT_SPECULATE (DTRACEACT_SPECULATIVE + 1)
571#define DTRACEACT_COMMIT (DTRACEACT_SPECULATIVE + 2)
572#define DTRACEACT_DISCARD (DTRACEACT_SPECULATIVE + 3)
573
574#define DTRACEACT_CLASS(x) ((x) & 0xff00)
575
576#define DTRACEACT_ISDESTRUCTIVE(x) \
577 (DTRACEACT_CLASS(x) == DTRACEACT_PROC_DESTRUCTIVE || \
578 DTRACEACT_CLASS(x) == DTRACEACT_KERNEL_DESTRUCTIVE)
579
580#define DTRACEACT_ISSPECULATIVE(x) \
581 (DTRACEACT_CLASS(x) == DTRACEACT_SPECULATIVE)
582
583#define DTRACEACT_ISPRINTFLIKE(x) \
584 ((x) == DTRACEACT_PRINTF || (x) == DTRACEACT_PRINTA || \
585 (x) == DTRACEACT_SYSTEM || (x) == DTRACEACT_FREOPEN)
586
587/*
588 * DTrace Aggregating Actions
589 *
590 * These are functions f(x) for which the following is true:
591 *
592 * f(f(x_0) U f(x_1) U ... U f(x_n)) = f(x_0 U x_1 U ... U x_n)
593 *
594 * where x_n is a set of arbitrary data. Aggregating actions are in their own
595 * DTrace action class, DTTRACEACT_AGGREGATION. The macros provided here allow
596 * for easier processing of the aggregation argument and data payload for a few
597 * aggregating actions (notably: quantize(), lquantize(), and ustack()).
598 */
599#define DTRACEACT_AGGREGATION 0x0700
600#define DTRACEAGG_COUNT (DTRACEACT_AGGREGATION + 1)
601#define DTRACEAGG_MIN (DTRACEACT_AGGREGATION + 2)
602#define DTRACEAGG_MAX (DTRACEACT_AGGREGATION + 3)
603#define DTRACEAGG_AVG (DTRACEACT_AGGREGATION + 4)
604#define DTRACEAGG_SUM (DTRACEACT_AGGREGATION + 5)
605#define DTRACEAGG_STDDEV (DTRACEACT_AGGREGATION + 6)
606#define DTRACEAGG_QUANTIZE (DTRACEACT_AGGREGATION + 7)
607#define DTRACEAGG_LQUANTIZE (DTRACEACT_AGGREGATION + 8)
608#define DTRACEAGG_LLQUANTIZE (DTRACEACT_AGGREGATION + 9)
609
610#define DTRACEACT_ISAGG(x) \
611 (DTRACEACT_CLASS(x) == DTRACEACT_AGGREGATION)
612
613#if !defined(__APPLE__) /* Quiet compiler warning. */
614#define DTRACE_QUANTIZE_NBUCKETS \
615 (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1)
616
617#define DTRACE_QUANTIZE_ZEROBUCKET ((sizeof (uint64_t) * NBBY) - 1)
618#else
619#define DTRACE_QUANTIZE_NBUCKETS \
620 (int)(((sizeof (uint64_t) * NBBY) - 1) * 2 + 1)
621
622#define DTRACE_QUANTIZE_ZEROBUCKET (int64_t)((sizeof (uint64_t) * NBBY) - 1)
623#endif /* __APPLE __*/
624
625#define DTRACE_QUANTIZE_BUCKETVAL(buck) \
626 (int64_t)((buck) < DTRACE_QUANTIZE_ZEROBUCKET ? \
627 -(1LL << (DTRACE_QUANTIZE_ZEROBUCKET - 1 - (buck))) : \
628 (buck) == DTRACE_QUANTIZE_ZEROBUCKET ? 0 : \
629 1LL << ((buck) - DTRACE_QUANTIZE_ZEROBUCKET - 1))
630
631#define DTRACE_LQUANTIZE_STEPSHIFT 48
632#define DTRACE_LQUANTIZE_STEPMASK ((uint64_t)UINT16_MAX << 48)
633#define DTRACE_LQUANTIZE_LEVELSHIFT 32
634#define DTRACE_LQUANTIZE_LEVELMASK ((uint64_t)UINT16_MAX << 32)
635#define DTRACE_LQUANTIZE_BASESHIFT 0
636#define DTRACE_LQUANTIZE_BASEMASK UINT32_MAX
637
638#define DTRACE_LQUANTIZE_STEP(x) \
639 (uint16_t)(((x) & DTRACE_LQUANTIZE_STEPMASK) >> \
640 DTRACE_LQUANTIZE_STEPSHIFT)
641
642#define DTRACE_LQUANTIZE_LEVELS(x) \
643 (uint16_t)(((x) & DTRACE_LQUANTIZE_LEVELMASK) >> \
644 DTRACE_LQUANTIZE_LEVELSHIFT)
645
646#define DTRACE_LQUANTIZE_BASE(x) \
647 (int32_t)(((x) & DTRACE_LQUANTIZE_BASEMASK) >> \
648 DTRACE_LQUANTIZE_BASESHIFT)
649
650#define DTRACE_LLQUANTIZE_FACTORSHIFT 48
651#define DTRACE_LLQUANTIZE_FACTORMASK ((uint64_t)UINT16_MAX << 48)
652#define DTRACE_LLQUANTIZE_LOWSHIFT 32
653#define DTRACE_LLQUANTIZE_LOWMASK ((uint64_t)UINT16_MAX << 32)
654#define DTRACE_LLQUANTIZE_HIGHSHIFT 16
655#define DTRACE_LLQUANTIZE_HIGHMASK ((uint64_t)UINT16_MAX << 16)
656#define DTRACE_LLQUANTIZE_NSTEPSHIFT 0
657#define DTRACE_LLQUANTIZE_NSTEPMASK UINT16_MAX
658
659#define DTRACE_LLQUANTIZE_FACTOR(x) \
660 (uint16_t)(((x) & DTRACE_LLQUANTIZE_FACTORMASK) >> \
661 DTRACE_LLQUANTIZE_FACTORSHIFT)
662
663#define DTRACE_LLQUANTIZE_LOW(x) \
664 (uint16_t)(((x) & DTRACE_LLQUANTIZE_LOWMASK) >> \
665 DTRACE_LLQUANTIZE_LOWSHIFT)
666
667#define DTRACE_LLQUANTIZE_HIGH(x) \
668 (uint16_t)(((x) & DTRACE_LLQUANTIZE_HIGHMASK) >> \
669 DTRACE_LLQUANTIZE_HIGHSHIFT)
670
671#define DTRACE_LLQUANTIZE_NSTEP(x) \
672 (uint16_t)(((x) & DTRACE_LLQUANTIZE_NSTEPMASK) >> \
673 DTRACE_LLQUANTIZE_NSTEPSHIFT)
674
675#define DTRACE_USTACK_NFRAMES(x) (uint32_t)((x) & UINT32_MAX)
676#define DTRACE_USTACK_STRSIZE(x) (uint32_t)((x) >> 32)
677#define DTRACE_USTACK_ARG(x, y) \
678 ((((uint64_t)(y)) << 32) | ((x) & UINT32_MAX))
679
680#if !defined(__APPLE__)
681
682#ifndef _LP64
683#ifndef _LITTLE_ENDIAN
684#define DTRACE_PTR(type, name) uint32_t name##pad; type *name
685#else
686#define DTRACE_PTR(type, name) type *name; uint32_t name##pad
687#endif
688#else
689#define DTRACE_PTR(type, name) type *name
690#endif
691
692#else
693
694#ifndef _LP64
695#define DTRACE_PTR(type, name) user_addr_t name
696#else
697#define DTRACE_PTR(type, name) type *name
698#endif
699
700#endif /* __APPLE__ */
701
702/*
703 * DTrace Object Format (DOF)
704 *
705 * DTrace programs can be persistently encoded in the DOF format so that they
706 * may be embedded in other programs (for example, in an ELF file) or in the
707 * dtrace driver configuration file for use in anonymous tracing. The DOF
708 * format is versioned and extensible so that it can be revised and so that
709 * internal data structures can be modified or extended compatibly. All DOF
710 * structures use fixed-size types, so the 32-bit and 64-bit representations
711 * are identical and consumers can use either data model transparently.
712 *
713 * The file layout is structured as follows:
714 *
715 * +---------------+-------------------+----- ... ----+---- ... ------+
716 * | dof_hdr_t | dof_sec_t[ ... ] | loadable | non-loadable |
717 * | (file header) | (section headers) | section data | section data |
718 * +---------------+-------------------+----- ... ----+---- ... ------+
719 * |<------------ dof_hdr.dofh_loadsz --------------->| |
720 * |<------------ dof_hdr.dofh_filesz ------------------------------->|
721 *
722 * The file header stores meta-data including a magic number, data model for
723 * the instrumentation, data encoding, and properties of the DIF code within.
724 * The header describes its own size and the size of the section headers. By
725 * convention, an array of section headers follows the file header, and then
726 * the data for all loadable sections and unloadable sections. This permits
727 * consumer code to easily download the headers and all loadable data into the
728 * DTrace driver in one contiguous chunk, omitting other extraneous sections.
729 *
730 * The section headers describe the size, offset, alignment, and section type
731 * for each section. Sections are described using a set of #defines that tell
732 * the consumer what kind of data is expected. Sections can contain links to
733 * other sections by storing a dof_secidx_t, an index into the section header
734 * array, inside of the section data structures. The section header includes
735 * an entry size so that sections with data arrays can grow their structures.
736 *
737 * The DOF data itself can contain many snippets of DIF (i.e. >1 DIFOs), which
738 * are represented themselves as a collection of related DOF sections. This
739 * permits us to change the set of sections associated with a DIFO over time,
740 * and also permits us to encode DIFOs that contain different sets of sections.
741 * When a DOF section wants to refer to a DIFO, it stores the dof_secidx_t of a
742 * section of type DOF_SECT_DIFOHDR. This section's data is then an array of
743 * dof_secidx_t's which in turn denote the sections associated with this DIFO.
744 *
745 * This loose coupling of the file structure (header and sections) to the
746 * structure of the DTrace program itself (ECB descriptions, action
747 * descriptions, and DIFOs) permits activities such as relocation processing
748 * to occur in a single pass without having to understand D program structure.
749 *
750 * Finally, strings are always stored in ELF-style string tables along with a
751 * string table section index and string table offset. Therefore strings in
752 * DOF are always arbitrary-length and not bound to the current implementation.
753 */
754
755#define DOF_ID_SIZE 16 /* total size of dofh_ident[] in bytes */
756
757typedef struct dof_hdr {
758 uint8_t dofh_ident[DOF_ID_SIZE]; /* identification bytes (see below) */
759 uint32_t dofh_flags; /* file attribute flags (if any) */
760 uint32_t dofh_hdrsize; /* size of file header in bytes */
761 uint32_t dofh_secsize; /* size of section header in bytes */
762 uint32_t dofh_secnum; /* number of section headers */
763 uint64_t dofh_secoff; /* file offset of section headers */
764 uint64_t dofh_loadsz; /* file size of loadable portion */
765 uint64_t dofh_filesz; /* file size of entire DOF file */
766 uint64_t dofh_pad; /* reserved for future use */
767} dof_hdr_t;
768
769#define DOF_ID_MAG0 0 /* first byte of magic number */
770#define DOF_ID_MAG1 1 /* second byte of magic number */
771#define DOF_ID_MAG2 2 /* third byte of magic number */
772#define DOF_ID_MAG3 3 /* fourth byte of magic number */
773#define DOF_ID_MODEL 4 /* DOF data model (see below) */
774#define DOF_ID_ENCODING 5 /* DOF data encoding (see below) */
775#define DOF_ID_VERSION 6 /* DOF file format major version (see below) */
776#define DOF_ID_DIFVERS 7 /* DIF instruction set version */
777#define DOF_ID_DIFIREG 8 /* DIF integer registers used by compiler */
778#define DOF_ID_DIFTREG 9 /* DIF tuple registers used by compiler */
779#define DOF_ID_PAD 10 /* start of padding bytes (all zeroes) */
780
781#define DOF_MAG_MAG0 0x7F /* DOF_ID_MAG[0-3] */
782#define DOF_MAG_MAG1 'D'
783#define DOF_MAG_MAG2 'O'
784#define DOF_MAG_MAG3 'F'
785
786#define DOF_MAG_STRING "\177DOF"
787#define DOF_MAG_STRLEN 4
788
789#define DOF_MODEL_NONE 0 /* DOF_ID_MODEL */
790#define DOF_MODEL_ILP32 1
791#define DOF_MODEL_LP64 2
792
793#ifdef _LP64
794#define DOF_MODEL_NATIVE DOF_MODEL_LP64
795#else
796#define DOF_MODEL_NATIVE DOF_MODEL_ILP32
797#endif
798
799#define DOF_ENCODE_NONE 0 /* DOF_ID_ENCODING */
800#define DOF_ENCODE_LSB 1
801#define DOF_ENCODE_MSB 2
802
803#ifdef _BIG_ENDIAN
804#define DOF_ENCODE_NATIVE DOF_ENCODE_MSB
805#else
806#define DOF_ENCODE_NATIVE DOF_ENCODE_LSB
807#endif
808
809#define DOF_VERSION_1 1 /* DOF version 1: Solaris 10 FCS */
810#define DOF_VERSION_2 2 /* DOF version 2: Solaris Express 6/06 */
811#if !defined(__APPLE__)
812#define DOF_VERSION DOF_VERSION_2 /* Latest DOF version */
813#else
814#define DOF_VERSION_3 3 /* DOF version 3: Minimum version for Leopard */
815#define DOF_VERSION DOF_VERSION_3 /* Latest DOF version */
816#endif /* __APPLE__ */
817
818#define DOF_FL_VALID 0 /* mask of all valid dofh_flags bits */
819
820typedef uint32_t dof_secidx_t; /* section header table index type */
821typedef uint32_t dof_stridx_t; /* string table index type */
822
823#define DOF_SECIDX_NONE (-1U) /* null value for section indices */
824#define DOF_STRIDX_NONE (-1U) /* null value for string indices */
825
826typedef struct dof_sec {
827 uint32_t dofs_type; /* section type (see below) */
828 uint32_t dofs_align; /* section data memory alignment */
829 uint32_t dofs_flags; /* section flags (if any) */
830 uint32_t dofs_entsize; /* size of section entry (if table) */
831 uint64_t dofs_offset; /* offset of section data within file */
832 uint64_t dofs_size; /* size of section data in bytes */
833} dof_sec_t;
834
835#define DOF_SECT_NONE 0 /* null section */
836#define DOF_SECT_COMMENTS 1 /* compiler comments */
837#define DOF_SECT_SOURCE 2 /* D program source code */
838#define DOF_SECT_ECBDESC 3 /* dof_ecbdesc_t */
839#define DOF_SECT_PROBEDESC 4 /* dof_probedesc_t */
840#define DOF_SECT_ACTDESC 5 /* dof_actdesc_t array */
841#define DOF_SECT_DIFOHDR 6 /* dof_difohdr_t (variable length) */
842#define DOF_SECT_DIF 7 /* uint32_t array of byte code */
843#define DOF_SECT_STRTAB 8 /* string table */
844#define DOF_SECT_VARTAB 9 /* dtrace_difv_t array */
845#define DOF_SECT_RELTAB 10 /* dof_relodesc_t array */
846#define DOF_SECT_TYPTAB 11 /* dtrace_diftype_t array */
847#define DOF_SECT_URELHDR 12 /* dof_relohdr_t (user relocations) */
848#define DOF_SECT_KRELHDR 13 /* dof_relohdr_t (kernel relocations) */
849#define DOF_SECT_OPTDESC 14 /* dof_optdesc_t array */
850#define DOF_SECT_PROVIDER 15 /* dof_provider_t */
851#define DOF_SECT_PROBES 16 /* dof_probe_t array */
852#define DOF_SECT_PRARGS 17 /* uint8_t array (probe arg mappings) */
853#define DOF_SECT_PROFFS 18 /* uint32_t array (probe arg offsets) */
854#define DOF_SECT_INTTAB 19 /* uint64_t array */
855#define DOF_SECT_UTSNAME 20 /* struct utsname */
856#define DOF_SECT_XLTAB 21 /* dof_xlref_t array */
857#define DOF_SECT_XLMEMBERS 22 /* dof_xlmember_t array */
858#define DOF_SECT_XLIMPORT 23 /* dof_xlator_t */
859#define DOF_SECT_XLEXPORT 24 /* dof_xlator_t */
860#define DOF_SECT_PREXPORT 25 /* dof_secidx_t array (exported objs) */
861#define DOF_SECT_PRENOFFS 26 /* uint32_t array (enabled offsets) */
862
863#define DOF_SECF_LOAD 1 /* section should be loaded */
864
865typedef struct dof_ecbdesc {
866 dof_secidx_t dofe_probes; /* link to DOF_SECT_PROBEDESC */
867 dof_secidx_t dofe_pred; /* link to DOF_SECT_DIFOHDR */
868 dof_secidx_t dofe_actions; /* link to DOF_SECT_ACTDESC */
869 uint32_t dofe_pad; /* reserved for future use */
870 uint64_t dofe_uarg; /* user-supplied library argument */
871} dof_ecbdesc_t;
872
873typedef struct dof_probedesc {
874 dof_secidx_t dofp_strtab; /* link to DOF_SECT_STRTAB section */
875 dof_stridx_t dofp_provider; /* provider string */
876 dof_stridx_t dofp_mod; /* module string */
877 dof_stridx_t dofp_func; /* function string */
878 dof_stridx_t dofp_name; /* name string */
879 uint32_t dofp_id; /* probe identifier (or zero) */
880} dof_probedesc_t;
881
882typedef struct dof_actdesc {
883 dof_secidx_t dofa_difo; /* link to DOF_SECT_DIFOHDR */
884 dof_secidx_t dofa_strtab; /* link to DOF_SECT_STRTAB section */
885 uint32_t dofa_kind; /* action kind (DTRACEACT_* constant) */
886 uint32_t dofa_ntuple; /* number of subsequent tuple actions */
887 uint64_t dofa_arg; /* kind-specific argument */
888 uint64_t dofa_uarg; /* user-supplied argument */
889} dof_actdesc_t;
890
891typedef struct dof_difohdr {
892 dtrace_diftype_t dofd_rtype; /* return type for this fragment */
893 dof_secidx_t dofd_links[1]; /* variable length array of indices */
894} dof_difohdr_t;
895
896typedef struct dof_relohdr {
897 dof_secidx_t dofr_strtab; /* link to DOF_SECT_STRTAB for names */
898 dof_secidx_t dofr_relsec; /* link to DOF_SECT_RELTAB for relos */
899 dof_secidx_t dofr_tgtsec; /* link to section we are relocating */
900} dof_relohdr_t;
901
902typedef struct dof_relodesc {
903 dof_stridx_t dofr_name; /* string name of relocation symbol */
904 uint32_t dofr_type; /* relo type (DOF_RELO_* constant) */
905 uint64_t dofr_offset; /* byte offset for relocation */
906 uint64_t dofr_data; /* additional type-specific data */
907} dof_relodesc_t;
908
909#define DOF_RELO_NONE 0 /* empty relocation entry */
910#define DOF_RELO_SETX 1 /* relocate setx value */
911
912typedef struct dof_optdesc {
913 uint32_t dofo_option; /* option identifier */
914 dof_secidx_t dofo_strtab; /* string table, if string option */
915 uint64_t dofo_value; /* option value or string index */
916} dof_optdesc_t;
917
918typedef uint32_t dof_attr_t; /* encoded stability attributes */
919
920#define DOF_ATTR(n, d, c) (((n) << 24) | ((d) << 16) | ((c) << 8))
921#define DOF_ATTR_NAME(a) (((a) >> 24) & 0xff)
922#define DOF_ATTR_DATA(a) (((a) >> 16) & 0xff)
923#define DOF_ATTR_CLASS(a) (((a) >> 8) & 0xff)
924
925typedef struct dof_provider {
926 dof_secidx_t dofpv_strtab; /* link to DOF_SECT_STRTAB section */
927 dof_secidx_t dofpv_probes; /* link to DOF_SECT_PROBES section */
928 dof_secidx_t dofpv_prargs; /* link to DOF_SECT_PRARGS section */
929 dof_secidx_t dofpv_proffs; /* link to DOF_SECT_PROFFS section */
930 dof_stridx_t dofpv_name; /* provider name string */
931 dof_attr_t dofpv_provattr; /* provider attributes */
932 dof_attr_t dofpv_modattr; /* module attributes */
933 dof_attr_t dofpv_funcattr; /* function attributes */
934 dof_attr_t dofpv_nameattr; /* name attributes */
935 dof_attr_t dofpv_argsattr; /* args attributes */
936 dof_secidx_t dofpv_prenoffs; /* link to DOF_SECT_PRENOFFS section */
937} dof_provider_t;
938
939typedef struct dof_probe {
940 uint64_t dofpr_addr; /* probe base address or offset */
941 dof_stridx_t dofpr_func; /* probe function string */
942 dof_stridx_t dofpr_name; /* probe name string */
943 dof_stridx_t dofpr_nargv; /* native argument type strings */
944 dof_stridx_t dofpr_xargv; /* translated argument type strings */
945 uint32_t dofpr_argidx; /* index of first argument mapping */
946 uint32_t dofpr_offidx; /* index of first offset entry */
947 uint8_t dofpr_nargc; /* native argument count */
948 uint8_t dofpr_xargc; /* translated argument count */
949 uint16_t dofpr_noffs; /* number of offset entries for probe */
950 uint32_t dofpr_enoffidx; /* index of first is-enabled offset */
951 uint16_t dofpr_nenoffs; /* number of is-enabled offsets */
952 uint16_t dofpr_pad1; /* reserved for future use */
953 uint32_t dofpr_pad2; /* reserved for future use */
954} dof_probe_t;
955
956typedef struct dof_xlator {
957 dof_secidx_t dofxl_members; /* link to DOF_SECT_XLMEMBERS section */
958 dof_secidx_t dofxl_strtab; /* link to DOF_SECT_STRTAB section */
959 dof_stridx_t dofxl_argv; /* input parameter type strings */
960 uint32_t dofxl_argc; /* input parameter list length */
961 dof_stridx_t dofxl_type; /* output type string name */
962 dof_attr_t dofxl_attr; /* output stability attributes */
963} dof_xlator_t;
964
965typedef struct dof_xlmember {
966 dof_secidx_t dofxm_difo; /* member link to DOF_SECT_DIFOHDR */
967 dof_stridx_t dofxm_name; /* member name */
968 dtrace_diftype_t dofxm_type; /* member type */
969} dof_xlmember_t;
970
971typedef struct dof_xlref {
972 dof_secidx_t dofxr_xlator; /* link to DOF_SECT_XLATORS section */
973 uint32_t dofxr_member; /* index of referenced dof_xlmember */
974 uint32_t dofxr_argn; /* index of argument for DIF_OP_XLARG */
975} dof_xlref_t;
976
977/*
978 * DTrace Intermediate Format Object (DIFO)
979 *
980 * A DIFO is used to store the compiled DIF for a D expression, its return
981 * type, and its string and variable tables. The string table is a single
982 * buffer of character data into which sets instructions and variable
983 * references can reference strings using a byte offset. The variable table
984 * is an array of dtrace_difv_t structures that describe the name and type of
985 * each variable and the id used in the DIF code. This structure is described
986 * above in the DIF section of this header file. The DIFO is used at both
987 * user-level (in the library) and in the kernel, but the structure is never
988 * passed between the two: the DOF structures form the only interface. As a
989 * result, the definition can change depending on the presence of _KERNEL.
990 */
991typedef struct dtrace_difo {
992 dif_instr_t *dtdo_buf; /* instruction buffer */
993 uint64_t *dtdo_inttab; /* integer table (optional) */
994 char *dtdo_strtab; /* string table (optional) */
995 dtrace_difv_t *dtdo_vartab; /* variable table (optional) */
996 uint_t dtdo_len; /* length of instruction buffer */
997 uint_t dtdo_intlen; /* length of integer table */
998 uint_t dtdo_strlen; /* length of string table */
999 uint_t dtdo_varlen; /* length of variable table */
1000 dtrace_diftype_t dtdo_rtype; /* return type */
1001 uint_t dtdo_refcnt; /* owner reference count */
1002 uint_t dtdo_destructive; /* invokes destructive subroutines */
1003#ifndef _KERNEL
1004 dof_relodesc_t *dtdo_kreltab; /* kernel relocations */
1005 dof_relodesc_t *dtdo_ureltab; /* user relocations */
1006 struct dt_node **dtdo_xlmtab; /* translator references */
1007 uint_t dtdo_krelen; /* length of krelo table */
1008 uint_t dtdo_urelen; /* length of urelo table */
1009 uint_t dtdo_xlmlen; /* length of translator table */
1010#endif
1011} dtrace_difo_t;
1012
1013/*
1014 * DTrace Enabling Description Structures
1015 *
1016 * When DTrace is tracking the description of a DTrace enabling entity (probe,
1017 * predicate, action, ECB, record, etc.), it does so in a description
1018 * structure. These structures all end in "desc", and are used at both
1019 * user-level and in the kernel -- but (with the exception of
1020 * dtrace_probedesc_t) they are never passed between them. Typically,
1021 * user-level will use the description structures when assembling an enabling.
1022 * It will then distill those description structures into a DOF object (see
1023 * above), and send it into the kernel. The kernel will again use the
1024 * description structures to create a description of the enabling as it reads
1025 * the DOF. When the description is complete, the enabling will be actually
1026 * created -- turning it into the structures that represent the enabling
1027 * instead of merely describing it. Not surprisingly, the description
1028 * structures bear a strong resemblance to the DOF structures that act as their
1029 * conduit.
1030 */
1031struct dtrace_predicate;
1032
1033typedef struct dtrace_probedesc {
1034 dtrace_id_t dtpd_id; /* probe identifier */
1035 char dtpd_provider[DTRACE_PROVNAMELEN]; /* probe provider name */
1036 char dtpd_mod[DTRACE_MODNAMELEN]; /* probe module name */
1037 char dtpd_func[DTRACE_FUNCNAMELEN]; /* probe function name */
1038 char dtpd_name[DTRACE_NAMELEN]; /* probe name */
1039} dtrace_probedesc_t;
1040
1041typedef struct dtrace_repldesc {
1042 dtrace_probedesc_t dtrpd_match; /* probe descr. to match */
1043 dtrace_probedesc_t dtrpd_create; /* probe descr. to create */
1044} dtrace_repldesc_t;
1045
1046typedef struct dtrace_preddesc {
1047 dtrace_difo_t *dtpdd_difo; /* pointer to DIF object */
1048 struct dtrace_predicate *dtpdd_predicate; /* pointer to predicate */
1049} dtrace_preddesc_t;
1050
1051typedef struct dtrace_actdesc {
1052 dtrace_difo_t *dtad_difo; /* pointer to DIF object */
1053 struct dtrace_actdesc *dtad_next; /* next action */
1054 dtrace_actkind_t dtad_kind; /* kind of action */
1055 uint32_t dtad_ntuple; /* number in tuple */
1056 uint64_t dtad_arg; /* action argument */
1057 uint64_t dtad_uarg; /* user argument */
1058 int dtad_refcnt; /* reference count */
1059} dtrace_actdesc_t;
1060
1061
1062typedef struct dtrace_ecbdesc {
1063 dtrace_actdesc_t *dted_action; /* action description(s) */
1064 dtrace_preddesc_t dted_pred; /* predicate description */
1065 dtrace_probedesc_t dted_probe; /* probe description */
1066 uint64_t dted_uarg; /* library argument */
1067 int dted_refcnt; /* reference count */
1068 uint64_t dted_probegen; /* matched probe generation */
1069} dtrace_ecbdesc_t;
1070
1071/*
1072 * APPLE NOTE: The kernel always rebuild dtrace_ecbdesc structures
1073 * coming from userspace, so there is no dted_probegen manipulation risk
1074 */
1075
1076/*
1077 * DTrace Metadata Description Structures
1078 *
1079 * DTrace separates the trace data stream from the metadata stream. The only
1080 * metadata tokens placed in the data stream are the dtrace_rechdr_t (EPID +
1081 * timestamp) or (in the case of aggregations) aggregation identifiers. To
1082 * determine the structure of the data, DTrace consumers pass the token to the
1083 * kernel, and receive in return a corresponding description of the enabled
1084 * probe (via the dtrace_eprobedesc structure) or the aggregation (via the
1085 * dtrace_aggdesc structure). Both of these structures are expressed in terms
1086 * of record descriptions (via the dtrace_recdesc structure) that describe the
1087 * exact structure of the data. Some record descriptions may also contain a
1088 * format identifier; this additional bit of metadata can be retrieved from the
1089 * kernel, for which a format description is returned via the dtrace_fmtdesc
1090 * structure. Note that all four of these structures must be bitness-neutral
1091 * to allow for a 32-bit DTrace consumer on a 64-bit kernel.
1092 */
1093typedef struct dtrace_recdesc {
1094 dtrace_actkind_t dtrd_action; /* kind of action */
1095 uint32_t dtrd_size; /* size of record */
1096 uint32_t dtrd_offset; /* offset in ECB's data */
1097 uint16_t dtrd_alignment; /* required alignment */
1098 uint16_t dtrd_format; /* format, if any */
1099 uint64_t dtrd_arg; /* action argument */
1100 uint64_t dtrd_uarg; /* user argument */
1101} dtrace_recdesc_t;
1102
1103typedef struct dtrace_eprobedesc {
1104 dtrace_epid_t dtepd_epid; /* enabled probe ID */
1105 dtrace_id_t dtepd_probeid; /* probe ID */
1106 uint64_t dtepd_uarg; /* library argument */
1107 uint32_t dtepd_size; /* total size */
1108 int dtepd_nrecs; /* number of records */
1109 dtrace_recdesc_t dtepd_rec[1]; /* records themselves */
1110} dtrace_eprobedesc_t;
1111
1112typedef struct dtrace_aggdesc {
1113 DTRACE_PTR(char, dtagd_name); /* not filled in by kernel */
1114 dtrace_aggvarid_t dtagd_varid; /* not filled in by kernel */
1115 int dtagd_flags; /* not filled in by kernel */
1116 dtrace_aggid_t dtagd_id; /* aggregation ID */
1117 dtrace_epid_t dtagd_epid; /* enabled probe ID */
1118 uint32_t dtagd_size; /* size in bytes */
1119 int dtagd_nrecs; /* number of records */
1120 uint32_t dtagd_pad; /* explicit padding */
1121 dtrace_recdesc_t dtagd_rec[1]; /* record descriptions */
1122} dtrace_aggdesc_t;
1123
1124typedef struct dtrace_fmtdesc {
1125 DTRACE_PTR(char, dtfd_string); /* format string */
1126 int dtfd_length; /* length of format string */
1127 uint16_t dtfd_format; /* format identifier */
1128} dtrace_fmtdesc_t;
1129
1130#define DTRACE_SIZEOF_EPROBEDESC(desc) \
1131 (sizeof (dtrace_eprobedesc_t) + ((desc)->dtepd_nrecs ? \
1132 (((desc)->dtepd_nrecs - 1) * sizeof (dtrace_recdesc_t)) : 0))
1133
1134#define DTRACE_SIZEOF_AGGDESC(desc) \
1135 (sizeof (dtrace_aggdesc_t) + ((desc)->dtagd_nrecs ? \
1136 (((desc)->dtagd_nrecs - 1) * sizeof (dtrace_recdesc_t)) : 0))
1137
1138/*
1139 * DTrace Option Interface
1140 *
1141 * Run-time DTrace options are set and retrieved via DOF_SECT_OPTDESC sections
1142 * in a DOF image. The dof_optdesc structure contains an option identifier and
1143 * an option value. The valid option identifiers are found below; the mapping
1144 * between option identifiers and option identifying strings is maintained at
1145 * user-level. Note that the value of DTRACEOPT_UNSET is such that all of the
1146 * following are potentially valid option values: all positive integers, zero
1147 * and negative one. Some options (notably "bufpolicy" and "bufresize") take
1148 * predefined tokens as their values; these are defined with
1149 * DTRACEOPT_{option}_{token}.
1150 */
1151#define DTRACEOPT_BUFSIZE 0 /* buffer size */
1152#define DTRACEOPT_BUFPOLICY 1 /* buffer policy */
1153#define DTRACEOPT_DYNVARSIZE 2 /* dynamic variable size */
1154#define DTRACEOPT_AGGSIZE 3 /* aggregation size */
1155#define DTRACEOPT_SPECSIZE 4 /* speculation size */
1156#define DTRACEOPT_NSPEC 5 /* number of speculations */
1157#define DTRACEOPT_STRSIZE 6 /* string size */
1158#define DTRACEOPT_CLEANRATE 7 /* dynvar cleaning rate */
1159#define DTRACEOPT_CPU 8 /* CPU to trace */
1160#define DTRACEOPT_BUFRESIZE 9 /* buffer resizing policy */
1161#define DTRACEOPT_GRABANON 10 /* grab anonymous state, if any */
1162#define DTRACEOPT_FLOWINDENT 11 /* indent function entry/return */
1163#define DTRACEOPT_QUIET 12 /* only output explicitly traced data */
1164#define DTRACEOPT_STACKFRAMES 13 /* number of stack frames */
1165#define DTRACEOPT_USTACKFRAMES 14 /* number of user stack frames */
1166#define DTRACEOPT_AGGRATE 15 /* aggregation snapshot rate */
1167#define DTRACEOPT_SWITCHRATE 16 /* buffer switching rate */
1168#define DTRACEOPT_STATUSRATE 17 /* status rate */
1169#define DTRACEOPT_DESTRUCTIVE 18 /* destructive actions allowed */
1170#define DTRACEOPT_STACKINDENT 19 /* output indent for stack traces */
1171#define DTRACEOPT_RAWBYTES 20 /* always print bytes in raw form */
1172#define DTRACEOPT_JSTACKFRAMES 21 /* number of jstack() frames */
1173#define DTRACEOPT_JSTACKSTRSIZE 22 /* size of jstack() string table */
1174#define DTRACEOPT_AGGSORTKEY 23 /* sort aggregations by key */
1175#define DTRACEOPT_AGGSORTREV 24 /* reverse-sort aggregations */
1176#define DTRACEOPT_AGGSORTPOS 25 /* agg. position to sort on */
1177#define DTRACEOPT_AGGSORTKEYPOS 26 /* agg. key position to sort on */
1178#define DTRACEOPT_AGGHIST 27 /* histogram aggregation output */
1179#define DTRACEOPT_AGGPACK 28 /* packed aggregation output */
1180#define DTRACEOPT_AGGZOOM 29 /* zoomed aggregation scaling */
1181#define DTRACEOPT_TEMPORAL 30 /* temporally ordered output */
1182#if !defined(__APPLE__)
1183#define DTRACEOPT_MAX 31 /* number of options */
1184#else
1185#define DTRACEOPT_STACKSYMBOLS 31 /* clear to prevent stack symbolication */
1186#define DTRACEOPT_BUFLIMIT 32 /* buffer signaling limit in % of the size */
1187#define DTRACEOPT_MAX 33 /* number of options */
1188#endif /* __APPLE__ */
1189
1190#define DTRACEOPT_UNSET (dtrace_optval_t)-2 /* unset option */
1191
1192#define DTRACEOPT_BUFPOLICY_RING 0 /* ring buffer */
1193#define DTRACEOPT_BUFPOLICY_FILL 1 /* fill buffer, then stop */
1194#define DTRACEOPT_BUFPOLICY_SWITCH 2 /* switch buffers */
1195
1196#define DTRACEOPT_BUFRESIZE_AUTO 0 /* automatic resizing */
1197#define DTRACEOPT_BUFRESIZE_MANUAL 1 /* manual resizing */
1198
1199/*
1200 * DTrace Buffer Interface
1201 *
1202 * In order to get a snapshot of the principal or aggregation buffer,
1203 * user-level passes a buffer description to the kernel with the dtrace_bufdesc
1204 * structure. This describes which CPU user-level is interested in, and
1205 * where user-level wishes the kernel to snapshot the buffer to (the
1206 * dtbd_data field). The kernel uses the same structure to pass back some
1207 * information regarding the buffer: the size of data actually copied out, the
1208 * number of drops, the number of errors, the offset of the oldest record,
1209 * and the time of the snapshot.
1210 *
1211 * If the buffer policy is a "switch" policy, taking a snapshot of the
1212 * principal buffer has the additional effect of switching the active and
1213 * inactive buffers. Taking a snapshot of the aggregation buffer _always_ has
1214 * the additional effect of switching the active and inactive buffers.
1215 */
1216typedef struct dtrace_bufdesc {
1217 uint64_t dtbd_size; /* size of buffer */
1218 uint32_t dtbd_cpu; /* CPU or DTRACE_CPUALL */
1219 uint32_t dtbd_errors; /* number of errors */
1220 uint64_t dtbd_drops; /* number of drops */
1221 DTRACE_PTR(char, dtbd_data); /* data */
1222 uint64_t dtbd_oldest; /* offset of oldest record */
1223 uint64_t dtbd_timestamp; /* hrtime of snapshot */
1224} dtrace_bufdesc_t;
1225
1226/*
1227 * Each record in the buffer (dtbd_data) begins with a header that includes
1228 * the epid and a timestamp. The timestamp is split into two 4-byte parts
1229 * so that we do not require 8-byte alignment.
1230 */
1231typedef struct dtrace_rechdr {
1232 dtrace_epid_t dtrh_epid; /* enabled probe id */
1233 uint32_t dtrh_timestamp_hi; /* high bits of hrtime_t */
1234 uint32_t dtrh_timestamp_lo; /* low bits of hrtime_t */
1235} dtrace_rechdr_t;
1236
1237#define DTRACE_RECORD_LOAD_TIMESTAMP(dtrh) \
1238 ((dtrh)->dtrh_timestamp_lo + \
1239 ((uint64_t)(dtrh)->dtrh_timestamp_hi << 32))
1240
1241#define DTRACE_RECORD_STORE_TIMESTAMP(dtrh, hrtime) { \
1242 (dtrh)->dtrh_timestamp_lo = (uint32_t)hrtime; \
1243 (dtrh)->dtrh_timestamp_hi = hrtime >> 32; \
1244}
1245
1246/*
1247 * DTrace Status
1248 *
1249 * The status of DTrace is relayed via the dtrace_status structure. This
1250 * structure contains members to count drops other than the capacity drops
1251 * available via the buffer interface (see above). This consists of dynamic
1252 * drops (including capacity dynamic drops, rinsing drops and dirty drops), and
1253 * speculative drops (including capacity speculative drops, drops due to busy
1254 * speculative buffers and drops due to unavailable speculative buffers).
1255 * Additionally, the status structure contains a field to indicate the number
1256 * of "fill"-policy buffers have been filled and a boolean field to indicate
1257 * that exit() has been called. If the dtst_exiting field is non-zero, no
1258 * further data will be generated until tracing is stopped (at which time any
1259 * enablings of the END action will be processed); if user-level sees that
1260 * this field is non-zero, tracing should be stopped as soon as possible.
1261 */
1262typedef struct dtrace_status {
1263 uint64_t dtst_dyndrops; /* dynamic drops */
1264 uint64_t dtst_dyndrops_rinsing; /* dyn drops due to rinsing */
1265 uint64_t dtst_dyndrops_dirty; /* dyn drops due to dirty */
1266 uint64_t dtst_specdrops; /* speculative drops */
1267 uint64_t dtst_specdrops_busy; /* spec drops due to busy */
1268 uint64_t dtst_specdrops_unavail; /* spec drops due to unavail */
1269 uint64_t dtst_errors; /* total errors */
1270 uint64_t dtst_filled; /* number of filled bufs */
1271 uint64_t dtst_stkstroverflows; /* stack string tab overflows */
1272 uint64_t dtst_dblerrors; /* errors in ERROR probes */
1273 char dtst_killed; /* non-zero if killed */
1274 char dtst_exiting; /* non-zero if exit() called */
1275 char dtst_pad[6]; /* pad out to 64-bit align */
1276} dtrace_status_t;
1277
1278/*
1279 * DTrace Configuration
1280 *
1281 * User-level may need to understand some elements of the kernel DTrace
1282 * configuration in order to generate correct DIF. This information is
1283 * conveyed via the dtrace_conf structure.
1284 */
1285typedef struct dtrace_conf {
1286 uint_t dtc_difversion; /* supported DIF version */
1287 uint_t dtc_difintregs; /* # of DIF integer registers */
1288 uint_t dtc_diftupregs; /* # of DIF tuple registers */
1289 uint_t dtc_ctfmodel; /* CTF data model */
1290 uint_t dtc_pad[8]; /* reserved for future use */
1291} dtrace_conf_t;
1292
1293/*
1294 * DTrace Faults
1295 *
1296 * The constants below DTRACEFLT_LIBRARY indicate probe processing faults;
1297 * constants at or above DTRACEFLT_LIBRARY indicate faults in probe
1298 * postprocessing at user-level. Probe processing faults induce an ERROR
1299 * probe and are replicated in unistd.d to allow users' ERROR probes to decode
1300 * the error condition using thse symbolic labels.
1301 */
1302#define DTRACEFLT_UNKNOWN 0 /* Unknown fault */
1303#define DTRACEFLT_BADADDR 1 /* Bad address */
1304#define DTRACEFLT_BADALIGN 2 /* Bad alignment */
1305#define DTRACEFLT_ILLOP 3 /* Illegal operation */
1306#define DTRACEFLT_DIVZERO 4 /* Divide-by-zero */
1307#define DTRACEFLT_NOSCRATCH 5 /* Out of scratch space */
1308#define DTRACEFLT_KPRIV 6 /* Illegal kernel access */
1309#define DTRACEFLT_UPRIV 7 /* Illegal user access */
1310#define DTRACEFLT_TUPOFLOW 8 /* Tuple stack overflow */
1311#define DTRACEFLT_BADSTACK 9 /* Bad stack */
1312
1313#define DTRACEFLT_LIBRARY 1000 /* Library-level fault */
1314
1315/*
1316 * DTrace Argument Types
1317 *
1318 * Because it would waste both space and time, argument types do not reside
1319 * with the probe. In order to determine argument types for args[X]
1320 * variables, the D compiler queries for argument types on a probe-by-probe
1321 * basis. (This optimizes for the common case that arguments are either not
1322 * used or used in an untyped fashion.) Typed arguments are specified with a
1323 * string of the type name in the dtragd_native member of the argument
1324 * description structure. Typed arguments may be further translated to types
1325 * of greater stability; the provider indicates such a translated argument by
1326 * filling in the dtargd_xlate member with the string of the translated type.
1327 * Finally, the provider may indicate which argument value a given argument
1328 * maps to by setting the dtargd_mapping member -- allowing a single argument
1329 * to map to multiple args[X] variables.
1330 */
1331typedef struct dtrace_argdesc {
1332 dtrace_id_t dtargd_id; /* probe identifier */
1333 int dtargd_ndx; /* arg number (-1 iff none) */
1334 int dtargd_mapping; /* value mapping */
1335 char dtargd_native[DTRACE_ARGTYPELEN]; /* native type name */
1336 char dtargd_xlate[DTRACE_ARGTYPELEN]; /* translated type name */
1337} dtrace_argdesc_t;
1338
1339/*
1340 * DTrace Stability Attributes
1341 *
1342 * Each DTrace provider advertises the name and data stability of each of its
1343 * probe description components, as well as its architectural dependencies.
1344 * The D compiler can query the provider attributes (dtrace_pattr_t below) in
1345 * order to compute the properties of an input program and report them.
1346 */
1347typedef uint8_t dtrace_stability_t; /* stability code (see attributes(5)) */
1348typedef uint8_t dtrace_class_t; /* architectural dependency class */
1349
1350#define DTRACE_STABILITY_INTERNAL 0 /* private to DTrace itself */
1351#define DTRACE_STABILITY_PRIVATE 1 /* private to Sun (see docs) */
1352#define DTRACE_STABILITY_OBSOLETE 2 /* scheduled for removal */
1353#define DTRACE_STABILITY_EXTERNAL 3 /* not controlled by Sun */
1354#define DTRACE_STABILITY_UNSTABLE 4 /* new or rapidly changing */
1355#define DTRACE_STABILITY_EVOLVING 5 /* less rapidly changing */
1356#define DTRACE_STABILITY_STABLE 6 /* mature interface from Sun */
1357#define DTRACE_STABILITY_STANDARD 7 /* industry standard */
1358#define DTRACE_STABILITY_MAX 7 /* maximum valid stability */
1359
1360#define DTRACE_CLASS_UNKNOWN 0 /* unknown architectural dependency */
1361#define DTRACE_CLASS_CPU 1 /* CPU-module-specific */
1362#define DTRACE_CLASS_PLATFORM 2 /* platform-specific (uname -i) */
1363#define DTRACE_CLASS_GROUP 3 /* hardware-group-specific (uname -m) */
1364#define DTRACE_CLASS_ISA 4 /* ISA-specific (uname -p) */
1365#define DTRACE_CLASS_COMMON 5 /* common to all systems */
1366#define DTRACE_CLASS_MAX 5 /* maximum valid class */
1367
1368#define DTRACE_PRIV_NONE 0x0000
1369#define DTRACE_PRIV_KERNEL 0x0001
1370#define DTRACE_PRIV_USER 0x0002
1371#define DTRACE_PRIV_PROC 0x0004
1372#define DTRACE_PRIV_OWNER 0x0008
1373#define DTRACE_PRIV_ZONEOWNER 0x0010
1374
1375#define DTRACE_PRIV_ALL \
1376 (DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER | \
1377 DTRACE_PRIV_PROC | DTRACE_PRIV_OWNER | DTRACE_PRIV_ZONEOWNER)
1378
1379typedef struct dtrace_ppriv {
1380 uint32_t dtpp_flags; /* privilege flags */
1381 uid_t dtpp_uid; /* user ID */
1382 zoneid_t dtpp_zoneid; /* zone ID */
1383} dtrace_ppriv_t;
1384
1385typedef struct dtrace_attribute {
1386 dtrace_stability_t dtat_name; /* entity name stability */
1387 dtrace_stability_t dtat_data; /* entity data stability */
1388 dtrace_class_t dtat_class; /* entity data dependency */
1389} dtrace_attribute_t;
1390
1391typedef struct dtrace_pattr {
1392 dtrace_attribute_t dtpa_provider; /* provider attributes */
1393 dtrace_attribute_t dtpa_mod; /* module attributes */
1394 dtrace_attribute_t dtpa_func; /* function attributes */
1395 dtrace_attribute_t dtpa_name; /* name attributes */
1396 dtrace_attribute_t dtpa_args; /* args[] attributes */
1397} dtrace_pattr_t;
1398
1399typedef struct dtrace_providerdesc {
1400 char dtvd_name[DTRACE_PROVNAMELEN]; /* provider name */
1401 dtrace_pattr_t dtvd_attr; /* stability attributes */
1402 dtrace_ppriv_t dtvd_priv; /* privileges required */
1403} dtrace_providerdesc_t;
1404
1405/*
1406 * DTrace Pseudodevice Interface
1407 *
1408 * DTrace is controlled through ioctl(2)'s to the in-kernel dtrace:dtrace
1409 * pseudodevice driver. These ioctls comprise the user-kernel interface to
1410 * DTrace.
1411 */
1412#if !defined(__APPLE__)
1413#define DTRACEIOC (('d' << 24) | ('t' << 16) | ('r' << 8))
1414#define DTRACEIOC_PROVIDER (DTRACEIOC | 1) /* provider query */
1415#define DTRACEIOC_PROBES (DTRACEIOC | 2) /* probe query */
1416#define DTRACEIOC_BUFSNAP (DTRACEIOC | 4) /* snapshot buffer */
1417#define DTRACEIOC_PROBEMATCH (DTRACEIOC | 5) /* match probes */
1418#define DTRACEIOC_ENABLE (DTRACEIOC | 6) /* enable probes */
1419#define DTRACEIOC_AGGSNAP (DTRACEIOC | 7) /* snapshot agg. */
1420#define DTRACEIOC_EPROBE (DTRACEIOC | 8) /* get eprobe desc. */
1421#define DTRACEIOC_PROBEARG (DTRACEIOC | 9) /* get probe arg */
1422#define DTRACEIOC_CONF (DTRACEIOC | 10) /* get config. */
1423#define DTRACEIOC_STATUS (DTRACEIOC | 11) /* get status */
1424#define DTRACEIOC_GO (DTRACEIOC | 12) /* start tracing */
1425#define DTRACEIOC_STOP (DTRACEIOC | 13) /* stop tracing */
1426#define DTRACEIOC_AGGDESC (DTRACEIOC | 15) /* get agg. desc. */
1427#define DTRACEIOC_FORMAT (DTRACEIOC | 16) /* get format str */
1428#define DTRACEIOC_DOFGET (DTRACEIOC | 17) /* get DOF */
1429#define DTRACEIOC_REPLICATE (DTRACEIOC | 18) /* replicate enab */
1430#else
1431/* coding this as IOC_VOID allows this driver to handle its own copyin/copuout */
1432#define DTRACEIOC _IO('d',0)
1433#define DTRACEIOC_PROVIDER (DTRACEIOC | 1) /* provider query */
1434#define DTRACEIOC_PROBES (DTRACEIOC | 2) /* probe query */
1435#define DTRACEIOC_BUFSNAP (DTRACEIOC | 4) /* snapshot buffer */
1436#define DTRACEIOC_PROBEMATCH (DTRACEIOC | 5) /* match probes */
1437#define DTRACEIOC_ENABLE (DTRACEIOC | 6) /* enable probes */
1438#define DTRACEIOC_AGGSNAP (DTRACEIOC | 7) /* snapshot agg. */
1439#define DTRACEIOC_EPROBE (DTRACEIOC | 8) /* get eprobe desc. */
1440#define DTRACEIOC_PROBEARG (DTRACEIOC | 9) /* get probe arg */
1441#define DTRACEIOC_CONF (DTRACEIOC | 10) /* get config. */
1442#define DTRACEIOC_STATUS (DTRACEIOC | 11) /* get status */
1443#define DTRACEIOC_GO (DTRACEIOC | 12) /* start tracing */
1444#define DTRACEIOC_STOP (DTRACEIOC | 13) /* stop tracing */
1445#define DTRACEIOC_AGGDESC (DTRACEIOC | 15) /* get agg. desc. */
1446#define DTRACEIOC_FORMAT (DTRACEIOC | 16) /* get format str */
1447#define DTRACEIOC_DOFGET (DTRACEIOC | 17) /* get DOF */
1448#define DTRACEIOC_REPLICATE (DTRACEIOC | 18) /* replicate enab */
1449#define DTRACEIOC_MODUUIDSLIST (DTRACEIOC | 30) /* APPLE ONLY, query for modules with missing symbols */
1450#define DTRACEIOC_PROVMODSYMS (DTRACEIOC | 31) /* APPLE ONLY, provide missing symbols for a given module */
1451#define DTRACEIOC_PROCWAITFOR (DTRACEIOC | 32) /* APPLE ONLY, wait for process exec */
1452#define DTRACEIOC_SLEEP (DTRACEIOC | 33) /* APPLE ONLY, sleep */
1453#define DTRACEIOC_SIGNAL (DTRACEIOC | 34) /* APPLE ONLY, signal sleeping process */
1454
1455/*
1456 * The following structs are used to provide symbol information to the kernel from userspace.
1457 */
1458
1459typedef struct dtrace_symbol {
1460 uint64_t dtsym_addr; /* address of the symbol */
1461 uint64_t dtsym_size; /* size of the symbol, must be uint64_t to maintain alignment when called by 64b uproc in i386 kernel */
1462 char dtsym_name[DTRACE_FUNCNAMELEN]; /* symbol name */
1463} dtrace_symbol_t;
1464
1465typedef struct dtrace_module_symbols {
1466 UUID dtmodsyms_uuid;
1467 uint64_t dtmodsyms_count;
1468 dtrace_symbol_t dtmodsyms_symbols[1];
1469} dtrace_module_symbols_t;
1470
1471/*
1472 * Safely compute the size in bytes of space we need to copyin module's symbols from userspace.
1473 * Assumes that count has been checked to be at least 1.
1474 */
1475#define DTRACE_MODULE_SYMBOLS_SIZE(count) ({\
1476 size_t _sym_count = (size_t)(count - 1); \
1477 size_t _buf_size = 0; \
1478 if (os_mul_and_add_overflow(_sym_count, \
1479 sizeof(dtrace_symbol_t), \
1480 sizeof(dtrace_module_symbols_t), \
1481 &_buf_size)) { \
1482 _buf_size = 0; \
1483 } \
1484 _buf_size; })
1485
1486typedef struct dtrace_module_uuids_list {
1487 uint64_t dtmul_count;
1488 UUID dtmul_uuid[1];
1489} dtrace_module_uuids_list_t;
1490
1491#define DTRACE_MODULE_UUIDS_LIST_SIZE(count) (sizeof(dtrace_module_uuids_list_t) + ((count - 1) * sizeof(UUID)))
1492
1493typedef struct dtrace_procdesc {
1494 /* Must be specified by user-space */
1495 char p_name[128];
1496 /* Set or modified by the Kernel */
1497 int p_name_length;
1498 pid_t p_pid;
1499} dtrace_procdesc_t;
1500
1501/**
1502 * DTrace wake reasons.
1503 * This is used in userspace to determine what's the reason why it woke up,
1504 * to start aggregating / switching buffer right away if it is because a buffer
1505 * got over its limit
1506 */
1507#define DTRACE_WAKE_TIMEOUT 0 /* dtrace client woke up because of a timeout */
1508#define DTRACE_WAKE_BUF_LIMIT 1 /* dtrace client woke up because of a over limit buffer */
1509
1510#endif /* __APPLE__ */
1511
1512/*
1513 * DTrace Helpers
1514 *
1515 * In general, DTrace establishes probes in processes and takes actions on
1516 * processes without knowing their specific user-level structures. Instead of
1517 * existing in the framework, process-specific knowledge is contained by the
1518 * enabling D program -- which can apply process-specific knowledge by making
1519 * appropriate use of DTrace primitives like copyin() and copyinstr() to
1520 * operate on user-level data. However, there may exist some specific probes
1521 * of particular semantic relevance that the application developer may wish to
1522 * explicitly export. For example, an application may wish to export a probe
1523 * at the point that it begins and ends certain well-defined transactions. In
1524 * addition to providing probes, programs may wish to offer assistance for
1525 * certain actions. For example, in highly dynamic environments (e.g., Java),
1526 * it may be difficult to obtain a stack trace in terms of meaningful symbol
1527 * names (the translation from instruction addresses to corresponding symbol
1528 * names may only be possible in situ); these environments may wish to define
1529 * a series of actions to be applied in situ to obtain a meaningful stack
1530 * trace.
1531 *
1532 * These two mechanisms -- user-level statically defined tracing and assisting
1533 * DTrace actions -- are provided via DTrace _helpers_. Helpers are specified
1534 * via DOF, but unlike enabling DOF, helper DOF may contain definitions of
1535 * providers, probes and their arguments. If a helper wishes to provide
1536 * action assistance, probe descriptions and corresponding DIF actions may be
1537 * specified in the helper DOF. For such helper actions, however, the probe
1538 * description describes the specific helper: all DTrace helpers have the
1539 * provider name "dtrace" and the module name "helper", and the name of the
1540 * helper is contained in the function name (for example, the ustack() helper
1541 * is named "ustack"). Any helper-specific name may be contained in the name
1542 * (for example, if a helper were to have a constructor, it might be named
1543 * "dtrace:helper:<helper>:init"). Helper actions are only called when the
1544 * action that they are helping is taken. Helper actions may only return DIF
1545 * expressions, and may only call the following subroutines:
1546 *
1547 * alloca() <= Allocates memory out of the consumer's scratch space
1548 * bcopy() <= Copies memory to scratch space
1549 * copyin() <= Copies memory from user-level into consumer's scratch
1550 * copyinto() <= Copies memory into a specific location in scratch
1551 * copyinstr() <= Copies a string into a specific location in scratch
1552 *
1553 * Helper actions may only access the following built-in variables:
1554 *
1555 * curthread <= Current kthread_t pointer
1556 * tid <= Current thread identifier
1557 * pid <= Current process identifier
1558 * ppid <= Parent process identifier
1559 * uid <= Current user ID
1560 * gid <= Current group ID
1561 * execname <= Current executable name
1562 * zonename <= Current zone name
1563 *
1564 * Helper actions may not manipulate or allocate dynamic variables, but they
1565 * may have clause-local and statically-allocated global variables. The
1566 * helper action variable state is specific to the helper action -- variables
1567 * used by the helper action may not be accessed outside of the helper
1568 * action, and the helper action may not access variables that like outside
1569 * of it. Helper actions may not load from kernel memory at-large; they are
1570 * restricting to loading current user state (via copyin() and variants) and
1571 * scratch space. As with probe enablings, helper actions are executed in
1572 * program order. The result of the helper action is the result of the last
1573 * executing helper expression.
1574 *
1575 * Helpers -- composed of either providers/probes or probes/actions (or both)
1576 * -- are added by opening the "helper" minor node, and issuing an ioctl(2)
1577 * (DTRACEHIOC_ADDDOF) that specifies the dof_helper_t structure. This
1578 * encapsulates the name and base address of the user-level library or
1579 * executable publishing the helpers and probes as well as the DOF that
1580 * contains the definitions of those helpers and probes.
1581 *
1582 * The DTRACEHIOC_ADD and DTRACEHIOC_REMOVE are left in place for legacy
1583 * helpers and should no longer be used. No other ioctls are valid on the
1584 * helper minor node.
1585 */
1586#if !defined(__APPLE__)
1587#define DTRACEHIOC (('d' << 24) | ('t' << 16) | ('h' << 8))
1588#define DTRACEHIOC_ADD (DTRACEHIOC | 1) /* add helper */
1589#define DTRACEHIOC_REMOVE (DTRACEHIOC | 2) /* remove helper */
1590#define DTRACEHIOC_ADDDOF (DTRACEHIOC | 3) /* add helper DOF */
1591#else
1592#define DTRACEHIOC_REMOVE _IO('h', 2) /* remove helper */
1593#define DTRACEHIOC_ADDDOF _IOW('h', 4, user_addr_t) /* add helper DOF */
1594#endif /* __APPLE__ */
1595
1596typedef struct dof_helper {
1597 char dofhp_mod[DTRACE_MODNAMELEN]; /* executable or library name */
1598 uint64_t dofhp_addr; /* base address of object */
1599 uint64_t dofhp_dof; /* address of helper DOF */
1600} dof_helper_t;
1601
1602#if defined(__APPLE__)
1603/*
1604 * This structure is used to register one or more dof_helper_t(s).
1605 * For counts greater than one, malloc the structure as if the
1606 * dofiod_helpers field was "count" sized. The kernel will copyin
1607 * data of size:
1608 *
1609 * sizeof(dof_ioctl_data_t) + ((count - 1) * sizeof(dof_helper_t))
1610 */
1611typedef struct dof_ioctl_data {
1612 /*
1613 * This field must be 64 bits to keep the alignment the same
1614 * when 64 bit user procs are sending data to 32 bit xnu
1615 */
1616 uint64_t dofiod_count;
1617 dof_helper_t dofiod_helpers[1];
1618} dof_ioctl_data_t;
1619
1620#define DOF_IOCTL_DATA_T_SIZE(count) (sizeof(dof_ioctl_data_t) + ((count - 1) * sizeof(dof_helper_t)))
1621
1622#endif
1623
1624#define DTRACEMNR_DTRACE "dtrace" /* node for DTrace ops */
1625#if !defined(__APPLE__)
1626#define DTRACEMNR_HELPER "helper" /* node for helpers */
1627#else
1628#define DTRACEMNR_HELPER "dtracehelper" /* node for helpers */
1629#endif /* __APPLE__ */
1630#define DTRACEMNRN_DTRACE 0 /* minor for DTrace ops */
1631#define DTRACEMNRN_HELPER 1 /* minor for helpers */
1632#define DTRACEMNRN_CLONE 2 /* first clone minor */
1633
1634#ifdef _KERNEL
1635
1636/*
1637 * DTrace Provider API
1638 *
1639 * The following functions are implemented by the DTrace framework and are
1640 * used to implement separate in-kernel DTrace providers. Common functions
1641 * are provided in uts/common/os/dtrace.c. ISA-dependent subroutines are
1642 * defined in uts/<isa>/dtrace/dtrace_asm.s or uts/<isa>/dtrace/dtrace_isa.c.
1643 *
1644 * The provider API has two halves: the API that the providers consume from
1645 * DTrace, and the API that providers make available to DTrace.
1646 *
1647 * 1 Framework-to-Provider API
1648 *
1649 * 1.1 Overview
1650 *
1651 * The Framework-to-Provider API is represented by the dtrace_pops structure
1652 * that the provider passes to the framework when registering itself. This
1653 * structure consists of the following members:
1654 *
1655 * dtps_provide() <-- Provide all probes, all modules
1656 * dtps_provide_module() <-- Provide all probes in specified module
1657 * dtps_enable() <-- Enable specified probe
1658 * dtps_disable() <-- Disable specified probe
1659 * dtps_suspend() <-- Suspend specified probe
1660 * dtps_resume() <-- Resume specified probe
1661 * dtps_getargdesc() <-- Get the argument description for args[X]
1662 * dtps_getargval() <-- Get the value for an argX or args[X] variable
1663 * dtps_usermode() <-- Find out if the probe was fired in user mode
1664 * dtps_destroy() <-- Destroy all state associated with this probe
1665 *
1666 * 1.2 void dtps_provide(void *arg, const dtrace_probedesc_t *spec)
1667 *
1668 * 1.2.1 Overview
1669 *
1670 * Called to indicate that the provider should provide all probes. If the
1671 * specified description is non-NULL, dtps_provide() is being called because
1672 * no probe matched a specified probe -- if the provider has the ability to
1673 * create custom probes, it may wish to create a probe that matches the
1674 * specified description.
1675 *
1676 * 1.2.2 Arguments and notes
1677 *
1678 * The first argument is the cookie as passed to dtrace_register(). The
1679 * second argument is a pointer to a probe description that the provider may
1680 * wish to consider when creating custom probes. The provider is expected to
1681 * call back into the DTrace framework via dtrace_probe_create() to create
1682 * any necessary probes. dtps_provide() may be called even if the provider
1683 * has made available all probes; the provider should check the return value
1684 * of dtrace_probe_create() to handle this case. Note that the provider need
1685 * not implement both dtps_provide() and dtps_provide_module(); see
1686 * "Arguments and Notes" for dtrace_register(), below.
1687 *
1688 * 1.2.3 Return value
1689 *
1690 * None.
1691 *
1692 * 1.2.4 Caller's context
1693 *
1694 * dtps_provide() is typically called from open() or ioctl() context, but may
1695 * be called from other contexts as well. The DTrace framework is locked in
1696 * such a way that providers may not register or unregister. This means that
1697 * the provider may not call any DTrace API that affects its registration with
1698 * the framework, including dtrace_register(), dtrace_unregister(),
1699 * dtrace_invalidate(), and dtrace_condense(). However, the context is such
1700 * that the provider may (and indeed, is expected to) call probe-related
1701 * DTrace routines, including dtrace_probe_create(), dtrace_probe_lookup(),
1702 * and dtrace_probe_arg().
1703 *
1704 * 1.3 void dtps_provide_module(void *arg, struct modctl *mp)
1705 *
1706 * 1.3.1 Overview
1707 *
1708 * Called to indicate that the provider should provide all probes in the
1709 * specified module.
1710 *
1711 * 1.3.2 Arguments and notes
1712 *
1713 * The first argument is the cookie as passed to dtrace_register(). The
1714 * second argument is a pointer to a modctl structure that indicates the
1715 * module for which probes should be created.
1716 *
1717 * 1.3.3 Return value
1718 *
1719 * None.
1720 *
1721 * 1.3.4 Caller's context
1722 *
1723 * dtps_provide_module() may be called from open() or ioctl() context, but
1724 * may also be called from a module loading context. mod_lock is held, and
1725 * the DTrace framework is locked in such a way that providers may not
1726 * register or unregister. This means that the provider may not call any
1727 * DTrace API that affects its registration with the framework, including
1728 * dtrace_register(), dtrace_unregister(), dtrace_invalidate(), and
1729 * dtrace_condense(). However, the context is such that the provider may (and
1730 * indeed, is expected to) call probe-related DTrace routines, including
1731 * dtrace_probe_create(), dtrace_probe_lookup(), and dtrace_probe_arg(). Note
1732 * that the provider need not implement both dtps_provide() and
1733 * dtps_provide_module(); see "Arguments and Notes" for dtrace_register(),
1734 * below.
1735 *
1736 * 1.4 int dtps_enable(void *arg, dtrace_id_t id, void *parg)
1737 *
1738 * 1.4.1 Overview
1739 *
1740 * Called to enable the specified probe.
1741 *
1742 * 1.4.2 Arguments and notes
1743 *
1744 * The first argument is the cookie as passed to dtrace_register(). The
1745 * second argument is the identifier of the probe to be enabled. The third
1746 * argument is the probe argument as passed to dtrace_probe_create().
1747 * dtps_enable() will be called when a probe transitions from not being
1748 * enabled at all to having one or more ECB. The number of ECBs associated
1749 * with the probe may change without subsequent calls into the provider.
1750 * When the number of ECBs drops to zero, the provider will be explicitly
1751 * told to disable the probe via dtps_disable(). dtrace_probe() should never
1752 * be called for a probe identifier that hasn't been explicitly enabled via
1753 * dtps_enable().
1754 *
1755 * 1.4.3 Return value
1756 *
1757 * On success, dtps_enable() should return 0. On failure, -1 should be
1758 * returned.
1759 *
1760 * 1.4.4 Caller's context
1761 *
1762 * The DTrace framework is locked in such a way that it may not be called
1763 * back into at all. cpu_lock is held. mod_lock is not held and may not
1764 * be acquired.
1765 *
1766 * 1.5 void dtps_disable(void *arg, dtrace_id_t id, void *parg)
1767 *
1768 * 1.5.1 Overview
1769 *
1770 * Called to disable the specified probe.
1771 *
1772 * 1.5.2 Arguments and notes
1773 *
1774 * The first argument is the cookie as passed to dtrace_register(). The
1775 * second argument is the identifier of the probe to be disabled. The third
1776 * argument is the probe argument as passed to dtrace_probe_create().
1777 * dtps_disable() will be called when a probe transitions from being enabled
1778 * to having zero ECBs. dtrace_probe() should never be called for a probe
1779 * identifier that has been explicitly enabled via dtps_disable().
1780 *
1781 * 1.5.3 Return value
1782 *
1783 * None.
1784 *
1785 * 1.5.4 Caller's context
1786 *
1787 * The DTrace framework is locked in such a way that it may not be called
1788 * back into at all. cpu_lock is held. mod_lock is not held and may not
1789 * be acquired.
1790 *
1791 * 1.6 void dtps_suspend(void *arg, dtrace_id_t id, void *parg)
1792 *
1793 * 1.6.1 Overview
1794 *
1795 * Called to suspend the specified enabled probe. This entry point is for
1796 * providers that may need to suspend some or all of their probes when CPUs
1797 * are being powered on or when the boot monitor is being entered for a
1798 * prolonged period of time.
1799 *
1800 * 1.6.2 Arguments and notes
1801 *
1802 * The first argument is the cookie as passed to dtrace_register(). The
1803 * second argument is the identifier of the probe to be suspended. The
1804 * third argument is the probe argument as passed to dtrace_probe_create().
1805 * dtps_suspend will only be called on an enabled probe. Providers that
1806 * provide a dtps_suspend entry point will want to take roughly the action
1807 * that it takes for dtps_disable.
1808 *
1809 * 1.6.3 Return value
1810 *
1811 * None.
1812 *
1813 * 1.6.4 Caller's context
1814 *
1815 * Interrupts are disabled. The DTrace framework is in a state such that the
1816 * specified probe cannot be disabled or destroyed for the duration of
1817 * dtps_suspend(). As interrupts are disabled, the provider is afforded
1818 * little latitude; the provider is expected to do no more than a store to
1819 * memory.
1820 *
1821 * 1.7 void dtps_resume(void *arg, dtrace_id_t id, void *parg)
1822 *
1823 * 1.7.1 Overview
1824 *
1825 * Called to resume the specified enabled probe. This entry point is for
1826 * providers that may need to resume some or all of their probes after the
1827 * completion of an event that induced a call to dtps_suspend().
1828 *
1829 * 1.7.2 Arguments and notes
1830 *
1831 * The first argument is the cookie as passed to dtrace_register(). The
1832 * second argument is the identifier of the probe to be resumed. The
1833 * third argument is the probe argument as passed to dtrace_probe_create().
1834 * dtps_resume will only be called on an enabled probe. Providers that
1835 * provide a dtps_resume entry point will want to take roughly the action
1836 * that it takes for dtps_enable.
1837 *
1838 * 1.7.3 Return value
1839 *
1840 * None.
1841 *
1842 * 1.7.4 Caller's context
1843 *
1844 * Interrupts are disabled. The DTrace framework is in a state such that the
1845 * specified probe cannot be disabled or destroyed for the duration of
1846 * dtps_resume(). As interrupts are disabled, the provider is afforded
1847 * little latitude; the provider is expected to do no more than a store to
1848 * memory.
1849 *
1850 * 1.8 void dtps_getargdesc(void *arg, dtrace_id_t id, void *parg,
1851 * dtrace_argdesc_t *desc)
1852 *
1853 * 1.8.1 Overview
1854 *
1855 * Called to retrieve the argument description for an args[X] variable.
1856 *
1857 * 1.8.2 Arguments and notes
1858 *
1859 * The first argument is the cookie as passed to dtrace_register(). The
1860 * second argument is the identifier of the current probe. The third
1861 * argument is the probe argument as passed to dtrace_probe_create(). The
1862 * fourth argument is a pointer to the argument description. This
1863 * description is both an input and output parameter: it contains the
1864 * index of the desired argument in the dtargd_ndx field, and expects
1865 * the other fields to be filled in upon return. If there is no argument
1866 * corresponding to the specified index, the dtargd_ndx field should be set
1867 * to DTRACE_ARGNONE.
1868 *
1869 * 1.8.3 Return value
1870 *
1871 * None. The dtargd_ndx, dtargd_native, dtargd_xlate and dtargd_mapping
1872 * members of the dtrace_argdesc_t structure are all output values.
1873 *
1874 * 1.8.4 Caller's context
1875 *
1876 * dtps_getargdesc() is called from ioctl() context. mod_lock is held, and
1877 * the DTrace framework is locked in such a way that providers may not
1878 * register or unregister. This means that the provider may not call any
1879 * DTrace API that affects its registration with the framework, including
1880 * dtrace_register(), dtrace_unregister(), dtrace_invalidate(), and
1881 * dtrace_condense().
1882 *
1883 * 1.9 uint64_t dtps_getargval(void *arg, dtrace_id_t id, void *parg,
1884 * int argno, int aframes)
1885 *
1886 * 1.9.1 Overview
1887 *
1888 * Called to retrieve a value for an argX or args[X] variable.
1889 *
1890 * 1.9.2 Arguments and notes
1891 *
1892 * The first argument is the cookie as passed to dtrace_register(). The
1893 * second argument is the identifier of the current probe. The third
1894 * argument is the probe argument as passed to dtrace_probe_create(). The
1895 * fourth argument is the number of the argument (the X in the example in
1896 * 1.9.1). The fifth argument is the number of stack frames that were used
1897 * to get from the actual place in the code that fired the probe to
1898 * dtrace_probe() itself, the so-called artificial frames. This argument may
1899 * be used to descend an appropriate number of frames to find the correct
1900 * values. If this entry point is left NULL, the dtrace_getarg() built-in
1901 * function is used.
1902 *
1903 * 1.9.3 Return value
1904 *
1905 * The value of the argument.
1906 *
1907 * 1.9.4 Caller's context
1908 *
1909 * This is called from within dtrace_probe() meaning that interrupts
1910 * are disabled. No locks should be taken within this entry point.
1911 *
1912 * 1.10 int dtps_usermode(void *arg, dtrace_id_t id, void *parg)
1913 *
1914 * 1.10.1 Overview
1915 *
1916 * Called to determine if the probe was fired in a user context.
1917 *
1918 * 1.10.2 Arguments and notes
1919 *
1920 * The first argument is the cookie as passed to dtrace_register(). The
1921 * second argument is the identifier of the current probe. The third
1922 * argument is the probe argument as passed to dtrace_probe_create(). This
1923 * entry point must not be left NULL for providers whose probes allow for
1924 * mixed mode tracing, that is to say those probes that can fire during
1925 * kernel- _or_ user-mode execution
1926 *
1927 * 1.10.3 Return value
1928 *
1929 * A boolean value.
1930 *
1931 * 1.10.4 Caller's context
1932 *
1933 * This is called from within dtrace_probe() meaning that interrupts
1934 * are disabled. No locks should be taken within this entry point.
1935 *
1936 * 1.11 void dtps_destroy(void *arg, dtrace_id_t id, void *parg)
1937 *
1938 * 1.11.1 Overview
1939 *
1940 * Called to destroy the specified probe.
1941 *
1942 * 1.11.2 Arguments and notes
1943 *
1944 * The first argument is the cookie as passed to dtrace_register(). The
1945 * second argument is the identifier of the probe to be destroyed. The third
1946 * argument is the probe argument as passed to dtrace_probe_create(). The
1947 * provider should free all state associated with the probe. The framework
1948 * guarantees that dtps_destroy() is only called for probes that have either
1949 * been disabled via dtps_disable() or were never enabled via dtps_enable().
1950 * Once dtps_disable() has been called for a probe, no further call will be
1951 * made specifying the probe.
1952 *
1953 * 1.11.3 Return value
1954 *
1955 * None.
1956 *
1957 * 1.11.4 Caller's context
1958 *
1959 * The DTrace framework is locked in such a way that it may not be called
1960 * back into at all. mod_lock is held. cpu_lock is not held, and may not be
1961 * acquired.
1962 *
1963 *
1964 * 2 Provider-to-Framework API
1965 *
1966 * 2.1 Overview
1967 *
1968 * The Provider-to-Framework API provides the mechanism for the provider to
1969 * register itself with the DTrace framework, to create probes, to lookup
1970 * probes and (most importantly) to fire probes. The Provider-to-Framework
1971 * consists of:
1972 *
1973 * dtrace_register() <-- Register a provider with the DTrace framework
1974 * dtrace_unregister() <-- Remove a provider's DTrace registration
1975 * dtrace_invalidate() <-- Invalidate the specified provider
1976 * dtrace_condense() <-- Remove a provider's unenabled probes
1977 * dtrace_attached() <-- Indicates whether or not DTrace has attached
1978 * dtrace_probe_create() <-- Create a DTrace probe
1979 * dtrace_probe_lookup() <-- Lookup a DTrace probe based on its name
1980 * dtrace_probe_arg() <-- Return the probe argument for a specific probe
1981 * dtrace_probe() <-- Fire the specified probe
1982 *
1983 * 2.2 int dtrace_register(const char *name, const dtrace_pattr_t *pap,
1984 * uint32_t priv, cred_t *cr, const dtrace_pops_t *pops, void *arg,
1985 * dtrace_provider_id_t *idp)
1986 *
1987 * 2.2.1 Overview
1988 *
1989 * dtrace_register() registers the calling provider with the DTrace
1990 * framework. It should generally be called by DTrace providers in their
1991 * attach(9E) entry point.
1992 *
1993 * 2.2.2 Arguments and Notes
1994 *
1995 * The first argument is the name of the provider. The second argument is a
1996 * pointer to the stability attributes for the provider. The third argument
1997 * is the privilege flags for the provider, and must be some combination of:
1998 *
1999 * DTRACE_PRIV_NONE <= All users may enable probes from this provider
2000 *
2001 * DTRACE_PRIV_PROC <= Any user with privilege of PRIV_DTRACE_PROC may
2002 * enable probes from this provider
2003 *
2004 * DTRACE_PRIV_USER <= Any user with privilege of PRIV_DTRACE_USER may
2005 * enable probes from this provider
2006 *
2007 * DTRACE_PRIV_KERNEL <= Any user with privilege of PRIV_DTRACE_KERNEL
2008 * may enable probes from this provider
2009 *
2010 * DTRACE_PRIV_OWNER <= This flag places an additional constraint on
2011 * the privilege requirements above. These probes
2012 * require either (a) a user ID matching the user
2013 * ID of the cred passed in the fourth argument
2014 * or (b) the PRIV_PROC_OWNER privilege.
2015 *
2016 * DTRACE_PRIV_ZONEOWNER<= This flag places an additional constraint on
2017 * the privilege requirements above. These probes
2018 * require either (a) a zone ID matching the zone
2019 * ID of the cred passed in the fourth argument
2020 * or (b) the PRIV_PROC_ZONE privilege.
2021 *
2022 * Note that these flags designate the _visibility_ of the probes, not
2023 * the conditions under which they may or may not fire.
2024 *
2025 * The fourth argument is the credential that is associated with the
2026 * provider. This argument should be NULL if the privilege flags don't
2027 * include DTRACE_PRIV_OWNER or DTRACE_PRIV_ZONEOWNER. If non-NULL, the
2028 * framework stashes the uid and zoneid represented by this credential
2029 * for use at probe-time, in implicit predicates. These limit visibility
2030 * of the probes to users and/or zones which have sufficient privilege to
2031 * access them.
2032 *
2033 * The fifth argument is a DTrace provider operations vector, which provides
2034 * the implementation for the Framework-to-Provider API. (See Section 1,
2035 * above.) This must be non-NULL, and each member must be non-NULL. The
2036 * exceptions to this are (1) the dtps_provide() and dtps_provide_module()
2037 * members (if the provider so desires, _one_ of these members may be left
2038 * NULL -- denoting that the provider only implements the other) and (2)
2039 * the dtps_suspend() and dtps_resume() members, which must either both be
2040 * NULL or both be non-NULL.
2041 *
2042 * The sixth argument is a cookie to be specified as the first argument for
2043 * each function in the Framework-to-Provider API. This argument may have
2044 * any value.
2045 *
2046 * The final argument is a pointer to dtrace_provider_id_t. If
2047 * dtrace_register() successfully completes, the provider identifier will be
2048 * stored in the memory pointed to be this argument. This argument must be
2049 * non-NULL.
2050 *
2051 * 2.2.3 Return value
2052 *
2053 * On success, dtrace_register() returns 0 and stores the new provider's
2054 * identifier into the memory pointed to by the idp argument. On failure,
2055 * dtrace_register() returns an errno:
2056 *
2057 * EINVAL The arguments passed to dtrace_register() were somehow invalid.
2058 * This may because a parameter that must be non-NULL was NULL,
2059 * because the name was invalid (either empty or an illegal
2060 * provider name) or because the attributes were invalid.
2061 *
2062 * No other failure code is returned.
2063 *
2064 * 2.2.4 Caller's context
2065 *
2066 * dtrace_register() may induce calls to dtrace_provide(); the provider must
2067 * hold no locks across dtrace_register() that may also be acquired by
2068 * dtrace_provide(). cpu_lock and mod_lock must not be held.
2069 *
2070 * 2.3 int dtrace_unregister(dtrace_provider_t id)
2071 *
2072 * 2.3.1 Overview
2073 *
2074 * Unregisters the specified provider from the DTrace framework. It should
2075 * generally be called by DTrace providers in their detach(9E) entry point.
2076 *
2077 * 2.3.2 Arguments and Notes
2078 *
2079 * The only argument is the provider identifier, as returned from a
2080 * successful call to dtrace_register(). As a result of calling
2081 * dtrace_unregister(), the DTrace framework will call back into the provider
2082 * via the dtps_destroy() entry point. Once dtrace_unregister() successfully
2083 * completes, however, the DTrace framework will no longer make calls through
2084 * the Framework-to-Provider API.
2085 *
2086 * 2.3.3 Return value
2087 *
2088 * On success, dtrace_unregister returns 0. On failure, dtrace_unregister()
2089 * returns an errno:
2090 *
2091 * EBUSY There are currently processes that have the DTrace pseudodevice
2092 * open, or there exists an anonymous enabling that hasn't yet
2093 * been claimed.
2094 *
2095 * No other failure code is returned.
2096 *
2097 * 2.3.4 Caller's context
2098 *
2099 * Because a call to dtrace_unregister() may induce calls through the
2100 * Framework-to-Provider API, the caller may not hold any lock across
2101 * dtrace_register() that is also acquired in any of the Framework-to-
2102 * Provider API functions. Additionally, mod_lock may not be held.
2103 *
2104 * 2.4 void dtrace_invalidate(dtrace_provider_id_t id)
2105 *
2106 * 2.4.1 Overview
2107 *
2108 * Invalidates the specified provider. All subsequent probe lookups for the
2109 * specified provider will fail, but its probes will not be removed.
2110 *
2111 * 2.4.2 Arguments and note
2112 *
2113 * The only argument is the provider identifier, as returned from a
2114 * successful call to dtrace_register(). In general, a provider's probes
2115 * always remain valid; dtrace_invalidate() is a mechanism for invalidating
2116 * an entire provider, regardless of whether or not probes are enabled or
2117 * not. Note that dtrace_invalidate() will _not_ prevent already enabled
2118 * probes from firing -- it will merely prevent any new enablings of the
2119 * provider's probes.
2120 *
2121 * 2.5 int dtrace_condense(dtrace_provider_id_t id)
2122 *
2123 * 2.5.1 Overview
2124 *
2125 * Removes all the unenabled probes for the given provider. This function is
2126 * not unlike dtrace_unregister(), except that it doesn't remove the
2127 * provider just as many of its associated probes as it can.
2128 *
2129 * 2.5.2 Arguments and Notes
2130 *
2131 * As with dtrace_unregister(), the sole argument is the provider identifier
2132 * as returned from a successful call to dtrace_register(). As a result of
2133 * calling dtrace_condense(), the DTrace framework will call back into the
2134 * given provider's dtps_destroy() entry point for each of the provider's
2135 * unenabled probes.
2136 *
2137 * 2.5.3 Return value
2138 *
2139 * Currently, dtrace_condense() always returns 0. However, consumers of this
2140 * function should check the return value as appropriate; its behavior may
2141 * change in the future.
2142 *
2143 * 2.5.4 Caller's context
2144 *
2145 * As with dtrace_unregister(), the caller may not hold any lock across
2146 * dtrace_condense() that is also acquired in the provider's entry points.
2147 * Also, mod_lock may not be held.
2148 *
2149 * 2.6 int dtrace_attached()
2150 *
2151 * 2.6.1 Overview
2152 *
2153 * Indicates whether or not DTrace has attached.
2154 *
2155 * 2.6.2 Arguments and Notes
2156 *
2157 * For most providers, DTrace makes initial contact beyond registration.
2158 * That is, once a provider has registered with DTrace, it waits to hear
2159 * from DTrace to create probes. However, some providers may wish to
2160 * proactively create probes without first being told by DTrace to do so.
2161 * If providers wish to do this, they must first call dtrace_attached() to
2162 * determine if DTrace itself has attached. If dtrace_attached() returns 0,
2163 * the provider must not make any other Provider-to-Framework API call.
2164 *
2165 * 2.6.3 Return value
2166 *
2167 * dtrace_attached() returns 1 if DTrace has attached, 0 otherwise.
2168 *
2169 * 2.7 int dtrace_probe_create(dtrace_provider_t id, const char *mod,
2170 * const char *func, const char *name, int aframes, void *arg)
2171 *
2172 * 2.7.1 Overview
2173 *
2174 * Creates a probe with specified module name, function name, and name.
2175 *
2176 * 2.7.2 Arguments and Notes
2177 *
2178 * The first argument is the provider identifier, as returned from a
2179 * successful call to dtrace_register(). The second, third, and fourth
2180 * arguments are the module name, function name, and probe name,
2181 * respectively. Of these, module name and function name may both be NULL
2182 * (in which case the probe is considered to be unanchored), or they may both
2183 * be non-NULL. The name must be non-NULL, and must point to a non-empty
2184 * string.
2185 *
2186 * The fifth argument is the number of artificial stack frames that will be
2187 * found on the stack when dtrace_probe() is called for the new probe. These
2188 * artificial frames will be automatically be pruned should the stack() or
2189 * stackdepth() functions be called as part of one of the probe's ECBs. If
2190 * the parameter doesn't add an artificial frame, this parameter should be
2191 * zero.
2192 *
2193 * The final argument is a probe argument that will be passed back to the
2194 * provider when a probe-specific operation is called. (e.g., via
2195 * dtps_enable(), dtps_disable(), etc.)
2196 *
2197 * Note that it is up to the provider to be sure that the probe that it
2198 * creates does not already exist -- if the provider is unsure of the probe's
2199 * existence, it should assure its absence with dtrace_probe_lookup() before
2200 * calling dtrace_probe_create().
2201 *
2202 * 2.7.3 Return value
2203 *
2204 * dtrace_probe_create() always succeeds, and always returns the identifier
2205 * of the newly-created probe.
2206 *
2207 * 2.7.4 Caller's context
2208 *
2209 * While dtrace_probe_create() is generally expected to be called from
2210 * dtps_provide() and/or dtps_provide_module(), it may be called from other
2211 * non-DTrace contexts. Neither cpu_lock nor mod_lock may be held.
2212 *
2213 * 2.8 dtrace_id_t dtrace_probe_lookup(dtrace_provider_t id, const char *mod,
2214 * const char *func, const char *name)
2215 *
2216 * 2.8.1 Overview
2217 *
2218 * Looks up a probe based on provdider and one or more of module name,
2219 * function name and probe name.
2220 *
2221 * 2.8.2 Arguments and Notes
2222 *
2223 * The first argument is the provider identifier, as returned from a
2224 * successful call to dtrace_register(). The second, third, and fourth
2225 * arguments are the module name, function name, and probe name,
2226 * respectively. Any of these may be NULL; dtrace_probe_lookup() will return
2227 * the identifier of the first probe that is provided by the specified
2228 * provider and matches all of the non-NULL matching criteria.
2229 * dtrace_probe_lookup() is generally used by a provider to be check the
2230 * existence of a probe before creating it with dtrace_probe_create().
2231 *
2232 * 2.8.3 Return value
2233 *
2234 * If the probe exists, returns its identifier. If the probe does not exist,
2235 * return DTRACE_IDNONE.
2236 *
2237 * 2.8.4 Caller's context
2238 *
2239 * While dtrace_probe_lookup() is generally expected to be called from
2240 * dtps_provide() and/or dtps_provide_module(), it may also be called from
2241 * other non-DTrace contexts. Neither cpu_lock nor mod_lock may be held.
2242 *
2243 * 2.9 void *dtrace_probe_arg(dtrace_provider_t id, dtrace_id_t probe)
2244 *
2245 * 2.9.1 Overview
2246 *
2247 * Returns the probe argument associated with the specified probe.
2248 *
2249 * 2.9.2 Arguments and Notes
2250 *
2251 * The first argument is the provider identifier, as returned from a
2252 * successful call to dtrace_register(). The second argument is a probe
2253 * identifier, as returned from dtrace_probe_lookup() or
2254 * dtrace_probe_create(). This is useful if a probe has multiple
2255 * provider-specific components to it: the provider can create the probe
2256 * once with provider-specific state, and then add to the state by looking
2257 * up the probe based on probe identifier.
2258 *
2259 * 2.9.3 Return value
2260 *
2261 * Returns the argument associated with the specified probe. If the
2262 * specified probe does not exist, or if the specified probe is not provided
2263 * by the specified provider, NULL is returned.
2264 *
2265 * 2.9.4 Caller's context
2266 *
2267 * While dtrace_probe_arg() is generally expected to be called from
2268 * dtps_provide() and/or dtps_provide_module(), it may also be called from
2269 * other non-DTrace contexts. Neither cpu_lock nor mod_lock may be held.
2270 *
2271 * 2.10 void dtrace_probe(dtrace_id_t probe, uintptr_t arg0, uintptr_t arg1,
2272 * uintptr_t arg2, uintptr_t arg3, uintptr_t arg4)
2273 *
2274 * 2.10.1 Overview
2275 *
2276 * The epicenter of DTrace: fires the specified probes with the specified
2277 * arguments.
2278 *
2279 * 2.10.2 Arguments and Notes
2280 *
2281 * The first argument is a probe identifier as returned by
2282 * dtrace_probe_create() or dtrace_probe_lookup(). The second through sixth
2283 * arguments are the values to which the D variables "arg0" through "arg4"
2284 * will be mapped.
2285 *
2286 * dtrace_probe() should be called whenever the specified probe has fired --
2287 * however the provider defines it.
2288 *
2289 * 2.10.3 Return value
2290 *
2291 * None.
2292 *
2293 * 2.10.4 Caller's context
2294 *
2295 * dtrace_probe() may be called in virtually any context: kernel, user,
2296 * interrupt, high-level interrupt, with arbitrary adaptive locks held, with
2297 * dispatcher locks held, with interrupts disabled, etc. The only latitude
2298 * that must be afforded to DTrace is the ability to make calls within
2299 * itself (and to its in-kernel subroutines) and the ability to access
2300 * arbitrary (but mapped) memory. On some platforms, this constrains
2301 * context. For example, on UltraSPARC, dtrace_probe() cannot be called
2302 * from any context in which TL is greater than zero. dtrace_probe() may
2303 * also not be called from any routine which may be called by dtrace_probe()
2304 * -- which includes functions in the DTrace framework and some in-kernel
2305 * DTrace subroutines. All such functions "dtrace_"; providers that
2306 * instrument the kernel arbitrarily should be sure to not instrument these
2307 * routines.
2308 */
2309typedef struct dtrace_pops {
2310 void (*dtps_provide)(void *arg, const dtrace_probedesc_t *spec);
2311 void (*dtps_provide_module)(void *arg, struct modctl *mp);
2312 int (*dtps_enable)(void *arg, dtrace_id_t id, void *parg);
2313 void (*dtps_disable)(void *arg, dtrace_id_t id, void *parg);
2314 void (*dtps_suspend)(void *arg, dtrace_id_t id, void *parg);
2315 void (*dtps_resume)(void *arg, dtrace_id_t id, void *parg);
2316 void (*dtps_getargdesc)(void *arg, dtrace_id_t id, void *parg,
2317 dtrace_argdesc_t *desc);
2318 uint64_t (*dtps_getargval)(void *arg, dtrace_id_t id, void *parg,
2319 int argno, int aframes);
2320 int (*dtps_usermode)(void *arg, dtrace_id_t id, void *parg);
2321 void (*dtps_destroy)(void *arg, dtrace_id_t id, void *parg);
2322} dtrace_pops_t;
2323
2324typedef uintptr_t dtrace_provider_id_t;
2325
2326extern int dtrace_register(const char *, const dtrace_pattr_t *, uint32_t,
2327 cred_t *, const dtrace_pops_t *, void *, dtrace_provider_id_t *);
2328extern int dtrace_unregister(dtrace_provider_id_t);
2329extern int dtrace_condense(dtrace_provider_id_t);
2330extern void dtrace_invalidate(dtrace_provider_id_t);
2331extern dtrace_id_t dtrace_probe_lookup(dtrace_provider_id_t, const char *,
2332 const char *, const char *);
2333extern dtrace_id_t dtrace_probe_create(dtrace_provider_id_t, const char *,
2334 const char *, const char *, int, void *);
2335extern void *dtrace_probe_arg(dtrace_provider_id_t, dtrace_id_t);
2336#if !defined(__APPLE__)
2337extern void dtrace_probe(dtrace_id_t, uintptr_t arg0, uintptr_t arg1,
2338 uintptr_t arg2, uintptr_t arg3, uintptr_t arg4);
2339#else
2340extern void dtrace_probe(dtrace_id_t, uint64_t arg0, uint64_t arg1,
2341 uint64_t arg2, uint64_t arg3, uint64_t arg4);
2342#endif /* __APPLE__ */
2343
2344/*
2345 * DTrace Meta Provider API
2346 *
2347 * The following functions are implemented by the DTrace framework and are
2348 * used to implement meta providers. Meta providers plug into the DTrace
2349 * framework and are used to instantiate new providers on the fly. At
2350 * present, there is only one type of meta provider and only one meta
2351 * provider may be registered with the DTrace framework at a time. The
2352 * sole meta provider type provides user-land static tracing facilities
2353 * by taking meta probe descriptions and adding a corresponding provider
2354 * into the DTrace framework.
2355 *
2356 * 1 Framework-to-Provider
2357 *
2358 * 1.1 Overview
2359 *
2360 * The Framework-to-Provider API is represented by the dtrace_mops structure
2361 * that the meta provider passes to the framework when registering itself as
2362 * a meta provider. This structure consists of the following members:
2363 *
2364 * dtms_create_probe() <-- Add a new probe to a created provider
2365 * dtms_provide_proc() <-- Create a new provider for a given process
2366 * dtms_remove_proc() <-- Remove a previously created provider
2367 *
2368 * 1.2 void dtms_create_probe(void *arg, void *parg,
2369 * dtrace_helper_probedesc_t *probedesc);
2370 *
2371 * 1.2.1 Overview
2372 *
2373 * Called by the DTrace framework to create a new probe in a provider
2374 * created by this meta provider.
2375 *
2376 * 1.2.2 Arguments and notes
2377 *
2378 * The first argument is the cookie as passed to dtrace_meta_register().
2379 * The second argument is the provider cookie for the associated provider;
2380 * this is obtained from the return value of dtms_provide_proc(). The third
2381 * argument is the helper probe description.
2382 *
2383 * 1.2.3 Return value
2384 *
2385 * None
2386 *
2387 * 1.2.4 Caller's context
2388 *
2389 * dtms_create_probe() is called from either ioctl() or module load context.
2390 * The DTrace framework is locked in such a way that meta providers may not
2391 * register or unregister. This means that the meta provider cannot call
2392 * dtrace_meta_register() or dtrace_meta_unregister(). However, the context is
2393 * such that the provider may (and is expected to) call provider-related
2394 * DTrace provider APIs including dtrace_probe_create().
2395 *
2396 * 1.3 void *dtms_provide_proc(void *arg, dtrace_meta_provider_t *mprov,
2397 * proc_t *proc)
2398 *
2399 * 1.3.1 Overview
2400 *
2401 * Called by the DTrace framework to instantiate a new provider given the
2402 * description of the provider and probes in the mprov argument. The
2403 * meta provider should call dtrace_register() to insert the new provider
2404 * into the DTrace framework.
2405 *
2406 * 1.3.2 Arguments and notes
2407 *
2408 * The first argument is the cookie as passed to dtrace_meta_register().
2409 * The second argument is a pointer to a structure describing the new
2410 * helper provider. The third argument is the process identifier for
2411 * process associated with this new provider. Note that the name of the
2412 * provider as passed to dtrace_register() should be the contatenation of
2413 * the dtmpb_provname member of the mprov argument and the processs
2414 * identifier as a string.
2415 *
2416 * 1.3.3 Return value
2417 *
2418 * The cookie for the provider that the meta provider creates. This is
2419 * the same value that it passed to dtrace_register().
2420 *
2421 * 1.3.4 Caller's context
2422 *
2423 * dtms_provide_proc() is called from either ioctl() or module load context.
2424 * The DTrace framework is locked in such a way that meta providers may not
2425 * register or unregister. This means that the meta provider cannot call
2426 * dtrace_meta_register() or dtrace_meta_unregister(). However, the context
2427 * is such that the provider may -- and is expected to -- call
2428 * provider-related DTrace provider APIs including dtrace_register().
2429 *
2430 * 1.4 void dtms_remove_proc(void *arg, dtrace_meta_provider_t *mprov,
2431 * proc_t proc)
2432 *
2433 * 1.4.1 Overview
2434 *
2435 * Called by the DTrace framework to remove a provider that had previously
2436 * been instantiated via the dtms_provide_pid() entry point. The meta
2437 * provider need not remove the provider immediately, but this entry
2438 * point indicates that the provider should be removed as soon as possible
2439 * using the dtrace_unregister() API.
2440 *
2441 * 1.4.2 Arguments and notes
2442 *
2443 * The first argument is the cookie as passed to dtrace_meta_register().
2444 * The second argument is a pointer to a structure describing the helper
2445 * provider. The third argument is the process identifier for process
2446 * associated with this new provider.
2447 *
2448 * 1.4.3 Return value
2449 *
2450 * None
2451 *
2452 * 1.4.4 Caller's context
2453 *
2454 * dtms_remove_proc() is called from either ioctl() or exit() context.
2455 * The DTrace framework is locked in such a way that meta providers may not
2456 * register or unregister. This means that the meta provider cannot call
2457 * dtrace_meta_register() or dtrace_meta_unregister(). However, the context
2458 * is such that the provider may -- and is expected to -- call
2459 * provider-related DTrace provider APIs including dtrace_unregister().
2460 */
2461typedef struct dtrace_helper_probedesc {
2462 char *dthpb_mod; /* probe module */
2463 char *dthpb_func; /* probe function */
2464 char *dthpb_name; /* probe name */
2465 uint64_t dthpb_base; /* base address */
2466#if !defined(__APPLE__)
2467 uint32_t *dthpb_offs; /* offsets array */
2468 uint32_t *dthpb_enoffs; /* is-enabled offsets array */
2469#else
2470 int32_t *dthpb_offs; /* (signed) offsets array */
2471 int32_t *dthpb_enoffs; /* (signed) is-enabled offsets array */
2472#endif
2473 uint32_t dthpb_noffs; /* offsets count */
2474 uint32_t dthpb_nenoffs; /* is-enabled offsets count */
2475 uint8_t *dthpb_args; /* argument mapping array */
2476 uint8_t dthpb_xargc; /* translated argument count */
2477 uint8_t dthpb_nargc; /* native argument count */
2478 char *dthpb_xtypes; /* translated types strings */
2479 char *dthpb_ntypes; /* native types strings */
2480} dtrace_helper_probedesc_t;
2481
2482typedef struct dtrace_helper_provdesc {
2483 char *dthpv_provname; /* provider name */
2484 dtrace_pattr_t dthpv_pattr; /* stability attributes */
2485} dtrace_helper_provdesc_t;
2486
2487/*
2488 * APPLE NOTE: dtms_provide_pid and dtms_remove_pid are replaced with
2489 * dtms_provide_proc on Darwin, and a proc reference need to be held
2490 * for the duration of the call.
2491 *
2492 * This is due to the fact that proc_find is not re-entrant on Darwin.
2493 */
2494
2495typedef struct dtrace_mops {
2496 void (*dtms_create_probe)(void *, void *, dtrace_helper_probedesc_t *);
2497 void *(*dtms_provide_proc)(void *, dtrace_helper_provdesc_t *, proc_t*);
2498 void (*dtms_remove_proc)(void *, dtrace_helper_provdesc_t *, proc_t*);
2499 char* (*dtms_provider_name)(void *);
2500} dtrace_mops_t;
2501
2502typedef uintptr_t dtrace_meta_provider_id_t;
2503
2504extern int dtrace_meta_register(const char *, const dtrace_mops_t *, void *,
2505 dtrace_meta_provider_id_t *);
2506extern int dtrace_meta_unregister(dtrace_meta_provider_id_t);
2507
2508/*
2509 * DTrace Kernel Hooks
2510 *
2511 * The following functions are implemented by the base kernel and form a set of
2512 * hooks used by the DTrace framework. DTrace hooks are implemented in either
2513 * uts/common/os/dtrace_subr.c, an ISA-specific assembly file, or in a
2514 * uts/<platform>/os/dtrace_subr.c corresponding to each hardware platform.
2515 */
2516
2517typedef enum dtrace_vtime_state {
2518 DTRACE_VTIME_INACTIVE = 0, /* No DTrace, no TNF */
2519 DTRACE_VTIME_ACTIVE, /* DTrace virtual time, no TNF */
2520 DTRACE_VTIME_INACTIVE_TNF, /* No DTrace, TNF active */
2521 DTRACE_VTIME_ACTIVE_TNF /* DTrace virtual time _and_ TNF */
2522} dtrace_vtime_state_t;
2523
2524extern dtrace_vtime_state_t dtrace_vtime_active;
2525extern void dtrace_vtime_switch(kthread_t *next);
2526extern void dtrace_vtime_enable_tnf(void);
2527extern void dtrace_vtime_disable_tnf(void);
2528extern void dtrace_vtime_enable(void);
2529extern void dtrace_vtime_disable(void);
2530
2531#if !defined(__APPLE__)
2532struct regs;
2533
2534extern int (*dtrace_pid_probe_ptr)(struct regs *);
2535extern int (*dtrace_return_probe_ptr)(struct regs *);
2536#else
2537#if defined (__i386__) || defined(__x86_64__)
2538extern int (*dtrace_pid_probe_ptr)(x86_saved_state_t *regs);
2539extern int (*dtrace_return_probe_ptr)(x86_saved_state_t* regs);
2540#elif defined (__arm__) || defined(__arm64__)
2541extern int (*dtrace_pid_probe_ptr)(arm_saved_state_t *regs);
2542extern int (*dtrace_return_probe_ptr)(arm_saved_state_t *regs);
2543#else
2544#error architecture not supported
2545#endif
2546#endif /* __APPLE__ */
2547extern void (*dtrace_fasttrap_fork_ptr)(proc_t *, proc_t *);
2548extern void (*dtrace_fasttrap_exec_ptr)(proc_t *);
2549extern void (*dtrace_fasttrap_exit_ptr)(proc_t *);
2550extern void dtrace_fasttrap_fork(proc_t *, proc_t *);
2551
2552typedef uintptr_t dtrace_icookie_t;
2553typedef void (*dtrace_xcall_t)(void *);
2554
2555extern dtrace_icookie_t dtrace_interrupt_disable(void);
2556extern void dtrace_interrupt_enable(dtrace_icookie_t);
2557
2558extern void dtrace_membar_producer(void);
2559extern void dtrace_membar_consumer(void);
2560
2561extern void (*dtrace_cpu_init)(processorid_t);
2562#if !defined(__APPLE__)
2563extern void (*dtrace_modload)(struct modctl *);
2564extern void (*dtrace_modunload)(struct modctl *);
2565#else
2566extern int (*dtrace_modload)(struct kmod_info *, uint32_t);
2567extern int (*dtrace_modunload)(struct kmod_info *);
2568#endif /* __APPLE__ */
2569extern void (*dtrace_helpers_cleanup)(proc_t*);
2570extern void (*dtrace_helpers_fork)(proc_t *parent, proc_t *child);
2571extern void (*dtrace_cpustart_init)(void);
2572extern void (*dtrace_cpustart_fini)(void);
2573
2574extern void (*dtrace_kreloc_init)(void);
2575extern void (*dtrace_kreloc_fini)(void);
2576
2577extern void (*dtrace_debugger_init)(void);
2578extern void (*dtrace_debugger_fini)(void);
2579extern dtrace_cacheid_t dtrace_predcache_id;
2580
2581extern hrtime_t dtrace_gethrtime(void);
2582extern void dtrace_sync(void);
2583extern void dtrace_toxic_ranges(void (*)(uintptr_t, uintptr_t));
2584extern void dtrace_xcall(processorid_t, dtrace_xcall_t, void *);
2585
2586#if defined(__i386__) || defined(__x86_64__)
2587extern int dtrace_instr_size(uchar_t *instr);
2588extern int dtrace_instr_size_isa(uchar_t *, model_t, int *);
2589extern void dtrace_invop_add(int (*)(uintptr_t, uintptr_t *, uintptr_t));
2590extern void dtrace_invop_remove(int (*)(uintptr_t, uintptr_t *, uintptr_t));
2591extern void *dtrace_invop_callsite_pre;
2592extern void *dtrace_invop_callsite_post;
2593#endif
2594
2595#if defined(__arm__)
2596extern int dtrace_instr_size(uint32_t instr, int thumb_mode);
2597#endif
2598#if defined(__arm__) || defined(__arm64__)
2599extern void dtrace_invop_add(int (*)(uintptr_t, uintptr_t *, uintptr_t));
2600extern void dtrace_invop_remove(int (*)(uintptr_t, uintptr_t *, uintptr_t));
2601extern void *dtrace_invop_callsite_pre;
2602extern void *dtrace_invop_callsite_post;
2603#endif
2604
2605#undef proc_t
2606
2607#define DTRACE_CPUFLAG_ISSET(flag) \
2608 (cpu_core[CPU->cpu_id].cpuc_dtrace_flags & (flag))
2609
2610#define DTRACE_CPUFLAG_SET(flag) \
2611 (cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= (flag))
2612
2613#define DTRACE_CPUFLAG_CLEAR(flag) \
2614 (cpu_core[CPU->cpu_id].cpuc_dtrace_flags &= ~(flag))
2615
2616#endif /* _KERNEL */
2617
2618#endif /* _ASM */
2619
2620#if defined(__i386__) || defined(__x86_64__)
2621
2622#define DTRACE_INVOP_PUSHL_EBP 1
2623#define DTRACE_INVOP_POPL_EBP 2
2624#define DTRACE_INVOP_LEAVE 3
2625#define DTRACE_INVOP_NOP 4
2626#define DTRACE_INVOP_RET 5
2627
2628#endif
2629
2630#if defined(__arm__) || defined(__arm64__)
2631
2632#define DTRACE_INVOP_NOP 4
2633#define DTRACE_INVOP_RET 5
2634#define DTRACE_INVOP_B 6
2635
2636#endif
2637
2638#ifdef __cplusplus
2639}
2640#endif
2641
2642#endif /* _SYS_DTRACE_H */
2643