| 1 | /* |
| 2 | * Copyright (c) 2005-2018 Apple Computer, Inc. All rights reserved. |
| 3 | * |
| 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
| 5 | * |
| 6 | * This file contains Original Code and/or Modifications of Original Code |
| 7 | * as defined in and that are subject to the Apple Public Source License |
| 8 | * Version 2.0 (the 'License'). You may not use this file except in |
| 9 | * compliance with the License. The rights granted to you under the License |
| 10 | * may not be used to create, or enable the creation or redistribution of, |
| 11 | * unlawful or unlicensed copies of an Apple operating system, or to |
| 12 | * circumvent, violate, or enable the circumvention or violation of, any |
| 13 | * terms of an Apple operating system software license agreement. |
| 14 | * |
| 15 | * Please obtain a copy of the License at |
| 16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
| 17 | * |
| 18 | * The Original Code and all software distributed under the License are |
| 19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| 23 | * Please see the License for the specific language governing rights and |
| 24 | * limitations under the License. |
| 25 | * |
| 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
| 27 | */ |
| 28 | |
| 29 | #include <arm/caches_internal.h> |
| 30 | #include <kern/thread.h> |
| 31 | |
| 32 | #if __has_include(<ptrauth.h>) |
| 33 | #include <ptrauth.h> |
| 34 | #endif |
| 35 | #include <stdarg.h> |
| 36 | #include <sys/time.h> |
| 37 | #include <sys/systm.h> |
| 38 | #include <sys/proc.h> |
| 39 | #include <sys/proc_internal.h> |
| 40 | #include <sys/kauth.h> |
| 41 | #include <sys/dtrace.h> |
| 42 | #include <sys/dtrace_impl.h> |
| 43 | #include <machine/atomic.h> |
| 44 | #include <kern/cambria_layout.h> |
| 45 | #include <kern/simple_lock.h> |
| 46 | #include <kern/sched_prim.h> /* for thread_wakeup() */ |
| 47 | #include <kern/thread_call.h> |
| 48 | #include <kern/task.h> |
| 49 | #include <machine/atomic.h> |
| 50 | #include <machine/machine_routines.h> |
| 51 | |
| 52 | extern struct arm_saved_state *find_kern_regs(thread_t); |
| 53 | |
| 54 | extern dtrace_id_t dtrace_probeid_error; /* special ERROR probe */ |
| 55 | typedef arm_saved_state_t savearea_t; |
| 56 | |
| 57 | struct frame { |
| 58 | struct frame *backchain; |
| 59 | uintptr_t retaddr; |
| 60 | }; |
| 61 | |
| 62 | /* |
| 63 | * Atomicity and synchronization |
| 64 | */ |
| 65 | inline void |
| 66 | dtrace_membar_producer(void) |
| 67 | { |
| 68 | __builtin_arm_dmb(DMB_ISH); |
| 69 | } |
| 70 | |
| 71 | inline void |
| 72 | dtrace_membar_consumer(void) |
| 73 | { |
| 74 | __builtin_arm_dmb(DMB_ISH); |
| 75 | } |
| 76 | |
| 77 | /* |
| 78 | * Interrupt manipulation |
| 79 | * XXX dtrace_getipl() can be called from probe context. |
| 80 | */ |
| 81 | int |
| 82 | dtrace_getipl(void) |
| 83 | { |
| 84 | /* |
| 85 | * XXX Drat, get_interrupt_level is MACH_KERNEL_PRIVATE |
| 86 | * in osfmk/kern/cpu_data.h |
| 87 | */ |
| 88 | /* return get_interrupt_level(); */ |
| 89 | return ml_at_interrupt_context() ? 1 : 0; |
| 90 | } |
| 91 | |
| 92 | /* |
| 93 | * MP coordination |
| 94 | */ |
| 95 | |
| 96 | static LCK_MTX_DECLARE_ATTR(dt_xc_lock, &dtrace_lck_grp, &dtrace_lck_attr); |
| 97 | static uint32_t dt_xc_sync; |
| 98 | |
| 99 | typedef struct xcArg { |
| 100 | processorid_t cpu; |
| 101 | dtrace_xcall_t f; |
| 102 | void *arg; |
| 103 | } xcArg_t; |
| 104 | |
| 105 | static void |
| 106 | xcRemote(void *foo) |
| 107 | { |
| 108 | xcArg_t *pArg = (xcArg_t *) foo; |
| 109 | |
| 110 | if (pArg->cpu == CPU->cpu_id || pArg->cpu == DTRACE_CPUALL) { |
| 111 | (pArg->f)(pArg->arg); |
| 112 | } |
| 113 | |
| 114 | if (os_atomic_dec(&dt_xc_sync, relaxed) == 0) { |
| 115 | thread_wakeup((event_t) &dt_xc_sync); |
| 116 | } |
| 117 | } |
| 118 | |
| 119 | /* |
| 120 | * dtrace_xcall() is not called from probe context. |
| 121 | */ |
| 122 | void |
| 123 | dtrace_xcall(processorid_t cpu, dtrace_xcall_t f, void *arg) |
| 124 | { |
| 125 | /* Only one dtrace_xcall in flight allowed */ |
| 126 | lck_mtx_lock(lck: &dt_xc_lock); |
| 127 | |
| 128 | xcArg_t xcArg; |
| 129 | |
| 130 | xcArg.cpu = cpu; |
| 131 | xcArg.f = f; |
| 132 | xcArg.arg = arg; |
| 133 | |
| 134 | cpu_broadcast_xcall(&dt_xc_sync, TRUE, xcRemote, (void*) &xcArg); |
| 135 | |
| 136 | lck_mtx_unlock(lck: &dt_xc_lock); |
| 137 | return; |
| 138 | } |
| 139 | |
| 140 | |
| 141 | /** |
| 142 | * Register definitions |
| 143 | */ |
| 144 | #define ARM64_FP 29 |
| 145 | #define ARM64_LR 30 |
| 146 | #define ARM64_SP 31 |
| 147 | #define ARM64_PC 32 |
| 148 | #define ARM64_CPSR 33 |
| 149 | |
| 150 | /* |
| 151 | * Runtime and ABI |
| 152 | */ |
| 153 | uint64_t |
| 154 | dtrace_getreg(struct regs * savearea, uint_t reg) |
| 155 | { |
| 156 | struct arm_saved_state *regs = (struct arm_saved_state *) savearea; |
| 157 | |
| 158 | if (regs == NULL) { |
| 159 | DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); |
| 160 | return 0; |
| 161 | } |
| 162 | |
| 163 | if (!check_saved_state_reglimit(regs, reg)) { |
| 164 | DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); |
| 165 | return 0; |
| 166 | } |
| 167 | |
| 168 | return (uint64_t)get_saved_state_reg(regs, reg); |
| 169 | } |
| 170 | |
| 171 | uint64_t |
| 172 | dtrace_getvmreg(uint_t ndx) |
| 173 | { |
| 174 | #pragma unused(ndx) |
| 175 | DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); |
| 176 | return 0; |
| 177 | } |
| 178 | |
| 179 | void |
| 180 | dtrace_livedump(char *filename, size_t len) |
| 181 | { |
| 182 | #pragma unused(filename) |
| 183 | #pragma unused(len) |
| 184 | DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); |
| 185 | } |
| 186 | |
| 187 | #define RETURN_OFFSET64 8 |
| 188 | |
| 189 | static int |
| 190 | dtrace_getustack_common(uint64_t * pcstack, int pcstack_limit, user_addr_t pc, |
| 191 | user_addr_t sp) |
| 192 | { |
| 193 | volatile uint16_t *flags = (volatile uint16_t *) &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; |
| 194 | int ret = 0; |
| 195 | |
| 196 | ASSERT(pcstack == NULL || pcstack_limit > 0); |
| 197 | |
| 198 | while (pc != 0) { |
| 199 | ret++; |
| 200 | if (pcstack != NULL) { |
| 201 | *pcstack++ = (uint64_t) pc; |
| 202 | pcstack_limit--; |
| 203 | if (pcstack_limit <= 0) { |
| 204 | break; |
| 205 | } |
| 206 | } |
| 207 | |
| 208 | if (sp == 0) { |
| 209 | break; |
| 210 | } |
| 211 | |
| 212 | pc = dtrace_fuword64((sp + RETURN_OFFSET64)); |
| 213 | sp = dtrace_fuword64(sp); |
| 214 | |
| 215 | /* Truncate ustack if the iterator causes fault. */ |
| 216 | if (*flags & CPU_DTRACE_FAULT) { |
| 217 | *flags &= ~CPU_DTRACE_FAULT; |
| 218 | break; |
| 219 | } |
| 220 | } |
| 221 | |
| 222 | return ret; |
| 223 | } |
| 224 | |
| 225 | void |
| 226 | dtrace_getupcstack(uint64_t * pcstack, int pcstack_limit) |
| 227 | { |
| 228 | thread_t thread = current_thread(); |
| 229 | savearea_t *regs; |
| 230 | user_addr_t pc, sp, fp; |
| 231 | volatile uint16_t *flags = (volatile uint16_t *) &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; |
| 232 | int n; |
| 233 | |
| 234 | if (*flags & CPU_DTRACE_FAULT) { |
| 235 | return; |
| 236 | } |
| 237 | |
| 238 | if (pcstack_limit <= 0) { |
| 239 | return; |
| 240 | } |
| 241 | |
| 242 | /* |
| 243 | * If there's no user context we still need to zero the stack. |
| 244 | */ |
| 245 | if (thread == NULL) { |
| 246 | goto zero; |
| 247 | } |
| 248 | |
| 249 | regs = (savearea_t *) find_user_regs(thread); |
| 250 | if (regs == NULL) { |
| 251 | goto zero; |
| 252 | } |
| 253 | |
| 254 | *pcstack++ = (uint64_t)dtrace_proc_selfpid(); |
| 255 | pcstack_limit--; |
| 256 | |
| 257 | if (pcstack_limit <= 0) { |
| 258 | return; |
| 259 | } |
| 260 | |
| 261 | pc = get_saved_state_pc(regs); |
| 262 | sp = get_saved_state_sp(regs); |
| 263 | |
| 264 | { |
| 265 | fp = get_saved_state_fp(regs); |
| 266 | } |
| 267 | |
| 268 | if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_ENTRY)) { |
| 269 | *pcstack++ = (uint64_t) pc; |
| 270 | pcstack_limit--; |
| 271 | if (pcstack_limit <= 0) { |
| 272 | return; |
| 273 | } |
| 274 | |
| 275 | pc = get_saved_state_lr(regs); |
| 276 | } |
| 277 | |
| 278 | n = dtrace_getustack_common(pcstack, pcstack_limit, pc, sp: fp); |
| 279 | |
| 280 | ASSERT(n >= 0); |
| 281 | ASSERT(n <= pcstack_limit); |
| 282 | |
| 283 | pcstack += n; |
| 284 | pcstack_limit -= n; |
| 285 | |
| 286 | zero: |
| 287 | while (pcstack_limit-- > 0) { |
| 288 | *pcstack++ = 0ULL; |
| 289 | } |
| 290 | } |
| 291 | |
| 292 | int |
| 293 | dtrace_getustackdepth(void) |
| 294 | { |
| 295 | thread_t thread = current_thread(); |
| 296 | savearea_t *regs; |
| 297 | user_addr_t pc, sp, fp; |
| 298 | int n = 0; |
| 299 | |
| 300 | if (thread == NULL) { |
| 301 | return 0; |
| 302 | } |
| 303 | |
| 304 | if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT)) { |
| 305 | return -1; |
| 306 | } |
| 307 | |
| 308 | regs = (savearea_t *) find_user_regs(thread); |
| 309 | if (regs == NULL) { |
| 310 | return 0; |
| 311 | } |
| 312 | |
| 313 | pc = get_saved_state_pc(regs); |
| 314 | sp = get_saved_state_sp(regs); |
| 315 | fp = get_saved_state_fp(regs); |
| 316 | |
| 317 | if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_ENTRY)) { |
| 318 | n++; |
| 319 | pc = get_saved_state_lr(regs); |
| 320 | } |
| 321 | |
| 322 | /* |
| 323 | * Note that unlike ppc, the arm code does not use |
| 324 | * CPU_DTRACE_USTACK_FP. This is because arm always |
| 325 | * traces from the sp, even in syscall/profile/fbt |
| 326 | * providers. |
| 327 | */ |
| 328 | |
| 329 | n += dtrace_getustack_common(NULL, pcstack_limit: 0, pc, sp: fp); |
| 330 | |
| 331 | return n; |
| 332 | } |
| 333 | |
| 334 | void |
| 335 | dtrace_getufpstack(uint64_t * pcstack, uint64_t * fpstack, int pcstack_limit) |
| 336 | { |
| 337 | thread_t thread = current_thread(); |
| 338 | boolean_t is64bit = proc_is64bit_data(current_proc()); |
| 339 | savearea_t *regs; |
| 340 | user_addr_t pc, sp; |
| 341 | volatile uint16_t *flags = (volatile uint16_t *) &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; |
| 342 | |
| 343 | |
| 344 | if (*flags & CPU_DTRACE_FAULT) { |
| 345 | return; |
| 346 | } |
| 347 | |
| 348 | if (pcstack_limit <= 0) { |
| 349 | return; |
| 350 | } |
| 351 | |
| 352 | /* |
| 353 | * If there's no user context we still need to zero the stack. |
| 354 | */ |
| 355 | if (thread == NULL) { |
| 356 | goto zero; |
| 357 | } |
| 358 | |
| 359 | regs = (savearea_t *) find_user_regs(thread); |
| 360 | if (regs == NULL) { |
| 361 | goto zero; |
| 362 | } |
| 363 | |
| 364 | *pcstack++ = (uint64_t)dtrace_proc_selfpid(); |
| 365 | pcstack_limit--; |
| 366 | |
| 367 | if (pcstack_limit <= 0) { |
| 368 | return; |
| 369 | } |
| 370 | |
| 371 | pc = get_saved_state_pc(regs); |
| 372 | sp = get_saved_state_lr(regs); |
| 373 | |
| 374 | #if 0 /* XXX signal stack crawl */ |
| 375 | oldcontext = lwp->lwp_oldcontext; |
| 376 | |
| 377 | if (p->p_model == DATAMODEL_NATIVE) { |
| 378 | s1 = sizeof(struct frame) + 2 * sizeof(long); |
| 379 | s2 = s1 + sizeof(siginfo_t); |
| 380 | } else { |
| 381 | s1 = sizeof(struct frame32) + 3 * sizeof(int); |
| 382 | s2 = s1 + sizeof(siginfo32_t); |
| 383 | } |
| 384 | #endif |
| 385 | |
| 386 | if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_ENTRY)) { |
| 387 | *pcstack++ = (uint64_t) pc; |
| 388 | *fpstack++ = 0; |
| 389 | pcstack_limit--; |
| 390 | if (pcstack_limit <= 0) { |
| 391 | return; |
| 392 | } |
| 393 | |
| 394 | if (is64bit) { |
| 395 | pc = dtrace_fuword64(sp); |
| 396 | } else { |
| 397 | pc = dtrace_fuword32(sp); |
| 398 | } |
| 399 | } |
| 400 | while (pc != 0 && sp != 0) { |
| 401 | *pcstack++ = (uint64_t) pc; |
| 402 | *fpstack++ = sp; |
| 403 | pcstack_limit--; |
| 404 | if (pcstack_limit <= 0) { |
| 405 | break; |
| 406 | } |
| 407 | |
| 408 | #if 0 /* XXX signal stack crawl */ |
| 409 | if (oldcontext == sp + s1 || oldcontext == sp + s2) { |
| 410 | if (p->p_model == DATAMODEL_NATIVE) { |
| 411 | ucontext_t *ucp = (ucontext_t *) oldcontext; |
| 412 | greg_t *gregs = ucp->uc_mcontext.gregs; |
| 413 | |
| 414 | sp = dtrace_fulword(&gregs[REG_FP]); |
| 415 | pc = dtrace_fulword(&gregs[REG_PC]); |
| 416 | |
| 417 | oldcontext = dtrace_fulword(&ucp->uc_link); |
| 418 | } else { |
| 419 | ucontext_t *ucp = (ucontext_t *) oldcontext; |
| 420 | greg_t *gregs = ucp->uc_mcontext.gregs; |
| 421 | |
| 422 | sp = dtrace_fuword32(&gregs[EBP]); |
| 423 | pc = dtrace_fuword32(&gregs[EIP]); |
| 424 | |
| 425 | oldcontext = dtrace_fuword32(&ucp->uc_link); |
| 426 | } |
| 427 | } else |
| 428 | #endif |
| 429 | { |
| 430 | pc = dtrace_fuword64((sp + RETURN_OFFSET64)); |
| 431 | sp = dtrace_fuword64(sp); |
| 432 | } |
| 433 | |
| 434 | /* Truncate ustack if the iterator causes fault. */ |
| 435 | if (*flags & CPU_DTRACE_FAULT) { |
| 436 | *flags &= ~CPU_DTRACE_FAULT; |
| 437 | break; |
| 438 | } |
| 439 | } |
| 440 | |
| 441 | zero: |
| 442 | while (pcstack_limit-- > 0) { |
| 443 | *pcstack++ = 0ULL; |
| 444 | } |
| 445 | } |
| 446 | |
| 447 | /** |
| 448 | * Return whether a frame is located within the current thread's kernel stack. |
| 449 | * |
| 450 | * @param fp The frame to check. |
| 451 | */ |
| 452 | static inline bool |
| 453 | dtrace_frame_in_kernel_stack(struct frame * fp) |
| 454 | { |
| 455 | const uintptr_t bottom = dtrace_get_kernel_stack(current_thread()); |
| 456 | |
| 457 | /* Return early if there is no kernel stack. */ |
| 458 | if (bottom == 0) { |
| 459 | return false; |
| 460 | } |
| 461 | |
| 462 | const uintptr_t top = bottom + kernel_stack_size; |
| 463 | return ((uintptr_t)fp >= bottom) && ((uintptr_t)fp < top); |
| 464 | } |
| 465 | |
| 466 | void |
| 467 | dtrace_getpcstack(pc_t * pcstack, int pcstack_limit, int aframes, |
| 468 | uint32_t * intrpc) |
| 469 | { |
| 470 | struct frame *fp = (struct frame *) __builtin_frame_address(0); |
| 471 | struct frame *nextfp; |
| 472 | int depth = 0; |
| 473 | int on_intr = CPU_ON_INTR(CPU); |
| 474 | int last = 0; |
| 475 | uintptr_t pc; |
| 476 | uintptr_t caller = CPU->cpu_dtrace_caller; |
| 477 | |
| 478 | aframes++; |
| 479 | |
| 480 | if (intrpc != NULL && depth < pcstack_limit) { |
| 481 | pcstack[depth++] = (pc_t) intrpc; |
| 482 | } |
| 483 | |
| 484 | while (depth < pcstack_limit) { |
| 485 | nextfp = fp->backchain; |
| 486 | pc = fp->retaddr; |
| 487 | |
| 488 | /* |
| 489 | * Stacks grow down; backtracing should always be moving to higher |
| 490 | * addresses except when the backtrace spans multiple different stacks. |
| 491 | */ |
| 492 | if (nextfp <= fp) { |
| 493 | if (on_intr) { |
| 494 | /* |
| 495 | * Let's check whether we're moving from the interrupt stack to |
| 496 | * either a kernel stack or a non-XNU stack. |
| 497 | */ |
| 498 | arm_saved_state_t *arm_kern_regs = (arm_saved_state_t *) find_kern_regs(current_thread()); |
| 499 | if (arm_kern_regs) { |
| 500 | /* |
| 501 | * If this frame is not stitching from the interrupt stack |
| 502 | * to either the kernel stack or a known non-XNU stack, then |
| 503 | * stop the backtrace. |
| 504 | */ |
| 505 | if (!dtrace_frame_in_kernel_stack(fp: nextfp) && |
| 506 | !ml_addr_in_non_xnu_stack(addr: (uintptr_t)nextfp)) { |
| 507 | last = 1; |
| 508 | } |
| 509 | |
| 510 | /* Not on the interrupt stack anymore. */ |
| 511 | on_intr = 0; |
| 512 | } else { |
| 513 | /* |
| 514 | * If this thread was on the interrupt stack, but did not |
| 515 | * take an interrupt (i.e, the idle thread), there is no |
| 516 | * explicit saved state for us to use. |
| 517 | */ |
| 518 | last = 1; |
| 519 | } |
| 520 | } else if (!ml_addr_in_non_xnu_stack(addr: (uintptr_t)fp) && |
| 521 | !ml_addr_in_non_xnu_stack(addr: (uintptr_t)nextfp)) { |
| 522 | /* |
| 523 | * This is the last frame we can process; indicate that we |
| 524 | * should return after processing this frame. |
| 525 | * |
| 526 | * This could be for a few reasons. If the nextfp is NULL, then |
| 527 | * this logic will be triggered. Beyond that, the only valid |
| 528 | * stack switches are either going from kernel stack to non-xnu |
| 529 | * stack, non-xnu stack to kernel stack, or between one non-xnu |
| 530 | * stack and another. So if none of those transitions are |
| 531 | * happening, then stop the backtrace. |
| 532 | */ |
| 533 | last = 1; |
| 534 | } |
| 535 | } |
| 536 | if (aframes > 0) { |
| 537 | if (--aframes == 0 && caller != (uintptr_t)NULL) { |
| 538 | /* |
| 539 | * We've just run out of artificial frames, |
| 540 | * and we have a valid caller -- fill it in |
| 541 | * now. |
| 542 | */ |
| 543 | ASSERT(depth < pcstack_limit); |
| 544 | pcstack[depth++] = (pc_t) caller; |
| 545 | caller = (uintptr_t)NULL; |
| 546 | } |
| 547 | } else { |
| 548 | if (depth < pcstack_limit) { |
| 549 | pcstack[depth++] = (pc_t) pc; |
| 550 | } |
| 551 | } |
| 552 | |
| 553 | if (last) { |
| 554 | while (depth < pcstack_limit) { |
| 555 | pcstack[depth++] = (pc_t) NULL; |
| 556 | } |
| 557 | return; |
| 558 | } |
| 559 | fp = nextfp; |
| 560 | } |
| 561 | } |
| 562 | |
| 563 | uint64_t |
| 564 | dtrace_getarg(int arg, int aframes, dtrace_mstate_t *mstate, dtrace_vstate_t *vstate) |
| 565 | { |
| 566 | #pragma unused(arg, aframes) |
| 567 | uint64_t val = 0; |
| 568 | struct frame *fp = (struct frame *)__builtin_frame_address(0); |
| 569 | uintptr_t *stack; |
| 570 | uintptr_t pc; |
| 571 | int i; |
| 572 | |
| 573 | /* |
| 574 | * A total of 8 arguments are passed via registers; any argument with |
| 575 | * index of 7 or lower is therefore in a register. |
| 576 | */ |
| 577 | int inreg = 7; |
| 578 | |
| 579 | for (i = 1; i <= aframes; ++i) { |
| 580 | #if __has_feature(ptrauth_frames) |
| 581 | fp = ptrauth_strip(fp->backchain, ptrauth_key_frame_pointer); |
| 582 | #else |
| 583 | fp = fp->backchain; |
| 584 | #endif |
| 585 | |
| 586 | #if __has_feature(ptrauth_returns) |
| 587 | pc = (uintptr_t)ptrauth_strip((void*)fp->retaddr, ptrauth_key_return_address); |
| 588 | #else |
| 589 | pc = fp->retaddr; |
| 590 | #endif |
| 591 | |
| 592 | if (dtrace_invop_callsite_pre != NULL |
| 593 | && pc > (uintptr_t) dtrace_invop_callsite_pre |
| 594 | && pc <= (uintptr_t) dtrace_invop_callsite_post) { |
| 595 | /* fp points to frame of dtrace_invop() activation */ |
| 596 | fp = fp->backchain; /* to fbt_perfCallback activation */ |
| 597 | fp = fp->backchain; /* to sleh_synchronous activation */ |
| 598 | fp = fp->backchain; /* to fleh_synchronous activation */ |
| 599 | |
| 600 | arm_saved_state_t *tagged_regs = (arm_saved_state_t*) ((void*) &fp[1]); |
| 601 | arm_saved_state64_t *saved_state = saved_state64(iss: tagged_regs); |
| 602 | |
| 603 | if (arg <= inreg) { |
| 604 | /* the argument will be found in a register */ |
| 605 | stack = (uintptr_t*) &saved_state->x[0]; |
| 606 | } else { |
| 607 | /* the argument will be found in the stack */ |
| 608 | fp = (struct frame*) saved_state->sp; |
| 609 | stack = (uintptr_t*) &fp[1]; |
| 610 | arg -= (inreg + 1); |
| 611 | } |
| 612 | |
| 613 | goto load; |
| 614 | } |
| 615 | } |
| 616 | |
| 617 | /* |
| 618 | * We know that we did not come through a trap to get into |
| 619 | * dtrace_probe() -- We arrive here when the provider has |
| 620 | * called dtrace_probe() directly. |
| 621 | * The probe ID is the first argument to dtrace_probe(). |
| 622 | * We must advance beyond that to get the argX. |
| 623 | */ |
| 624 | arg++; /* Advance past probeID */ |
| 625 | |
| 626 | if (arg <= inreg) { |
| 627 | /* |
| 628 | * This shouldn't happen. If the argument is passed in a |
| 629 | * register then it should have been, well, passed in a |
| 630 | * register... |
| 631 | */ |
| 632 | DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); |
| 633 | return 0; |
| 634 | } |
| 635 | |
| 636 | arg -= (inreg + 1); |
| 637 | stack = (uintptr_t*) &fp[1]; /* Find marshalled arguments */ |
| 638 | |
| 639 | load: |
| 640 | if (dtrace_canload((uint64_t)(stack + arg), sizeof(uint64_t), |
| 641 | mstate, vstate)) { |
| 642 | /* dtrace_probe arguments arg0 ... arg4 are 64bits wide */ |
| 643 | val = dtrace_load64((uint64_t)(stack + arg)); |
| 644 | } |
| 645 | |
| 646 | return val; |
| 647 | } |
| 648 | |
| 649 | void |
| 650 | dtrace_probe_error(dtrace_state_t *state, dtrace_epid_t epid, int which, |
| 651 | int fltoffs, int fault, uint64_t illval) |
| 652 | { |
| 653 | /* XXX ARMTODO */ |
| 654 | /* |
| 655 | * For the case of the error probe firing lets |
| 656 | * stash away "illval" here, and special-case retrieving it in DIF_VARIABLE_ARG. |
| 657 | */ |
| 658 | state->dts_arg_error_illval = illval; |
| 659 | dtrace_probe( dtrace_probeid_error, arg0: (uint64_t)(uintptr_t)state, arg1: epid, arg2: which, arg3: fltoffs, arg4: fault ); |
| 660 | } |
| 661 | |
| 662 | void |
| 663 | dtrace_toxic_ranges(void (*func)(uintptr_t base, uintptr_t limit)) |
| 664 | { |
| 665 | /* XXX ARMTODO check copied from ppc/x86*/ |
| 666 | /* |
| 667 | * "base" is the smallest toxic address in the range, "limit" is the first |
| 668 | * VALID address greater than "base". |
| 669 | */ |
| 670 | func(0x0, VM_MIN_KERNEL_ADDRESS); |
| 671 | if (VM_MAX_KERNEL_ADDRESS < ~(uintptr_t)0) { |
| 672 | func(VM_MAX_KERNEL_ADDRESS + 1, ~(uintptr_t)0); |
| 673 | } |
| 674 | } |
| 675 | |
| 676 | void |
| 677 | dtrace_flush_caches(void) |
| 678 | { |
| 679 | /* TODO There were some problems with flushing just the cache line that had been modified. |
| 680 | * For now, we'll flush the entire cache, until we figure out how to flush just the patched block. |
| 681 | */ |
| 682 | FlushPoU_Dcache(); |
| 683 | InvalidatePoU_Icache(); |
| 684 | } |
| 685 | |