1 | /* |
2 | * Copyright (c) 2003-2021 Apple Inc. All rights reserved. |
3 | * |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
5 | * |
6 | * This file contains Original Code and/or Modifications of Original Code |
7 | * as defined in and that are subject to the Apple Public Source License |
8 | * Version 2.0 (the 'License'). You may not use this file except in |
9 | * compliance with the License. The rights granted to you under the License |
10 | * may not be used to create, or enable the creation or redistribution of, |
11 | * unlawful or unlicensed copies of an Apple operating system, or to |
12 | * circumvent, violate, or enable the circumvention or violation of, any |
13 | * terms of an Apple operating system software license agreement. |
14 | * |
15 | * Please obtain a copy of the License at |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
17 | * |
18 | * The Original Code and all software distributed under the License are |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
23 | * Please see the License for the specific language governing rights and |
24 | * limitations under the License. |
25 | * |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
27 | */ |
28 | |
29 | /* |
30 | * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. |
31 | * All rights reserved. |
32 | * |
33 | * Redistribution and use in source and binary forms, with or without |
34 | * modification, are permitted provided that the following conditions |
35 | * are met: |
36 | * 1. Redistributions of source code must retain the above copyright |
37 | * notice, this list of conditions and the following disclaimer. |
38 | * 2. Redistributions in binary form must reproduce the above copyright |
39 | * notice, this list of conditions and the following disclaimer in the |
40 | * documentation and/or other materials provided with the distribution. |
41 | * 3. Neither the name of the project nor the names of its contributors |
42 | * may be used to endorse or promote products derived from this software |
43 | * without specific prior written permission. |
44 | * |
45 | * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND |
46 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
47 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
48 | * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE |
49 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
50 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
51 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
52 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
53 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
54 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
55 | * SUCH DAMAGE. |
56 | */ |
57 | |
58 | /* |
59 | * Copyright (c) 1982, 1986, 1988, 1993 |
60 | * The Regents of the University of California. All rights reserved. |
61 | * |
62 | * Redistribution and use in source and binary forms, with or without |
63 | * modification, are permitted provided that the following conditions |
64 | * are met: |
65 | * 1. Redistributions of source code must retain the above copyright |
66 | * notice, this list of conditions and the following disclaimer. |
67 | * 2. Redistributions in binary form must reproduce the above copyright |
68 | * notice, this list of conditions and the following disclaimer in the |
69 | * documentation and/or other materials provided with the distribution. |
70 | * 3. All advertising materials mentioning features or use of this software |
71 | * must display the following acknowledgement: |
72 | * This product includes software developed by the University of |
73 | * California, Berkeley and its contributors. |
74 | * 4. Neither the name of the University nor the names of its contributors |
75 | * may be used to endorse or promote products derived from this software |
76 | * without specific prior written permission. |
77 | * |
78 | * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND |
79 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
80 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
81 | * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE |
82 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
83 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
84 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
85 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
86 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
87 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
88 | * SUCH DAMAGE. |
89 | * |
90 | * @(#)ip_input.c 8.2 (Berkeley) 1/4/94 |
91 | */ |
92 | |
93 | #include <sys/param.h> |
94 | #include <sys/systm.h> |
95 | #include <sys/malloc.h> |
96 | #include <sys/mbuf.h> |
97 | #include <sys/domain.h> |
98 | #include <sys/protosw.h> |
99 | #include <sys/socket.h> |
100 | #include <sys/socketvar.h> |
101 | #include <sys/errno.h> |
102 | #include <sys/time.h> |
103 | #include <sys/kernel.h> |
104 | #include <sys/syslog.h> |
105 | #include <sys/sysctl.h> |
106 | #include <sys/proc.h> |
107 | #include <sys/kauth.h> |
108 | #include <sys/mcache.h> |
109 | |
110 | #include <mach/mach_time.h> |
111 | #include <mach/sdt.h> |
112 | #include <pexpert/pexpert.h> |
113 | #include <dev/random/randomdev.h> |
114 | |
115 | #include <net/if.h> |
116 | #include <net/if_var.h> |
117 | #include <net/if_types.h> |
118 | #include <net/if_dl.h> |
119 | #include <net/route.h> |
120 | #include <net/kpi_protocol.h> |
121 | #include <net/ntstat.h> |
122 | #include <net/init.h> |
123 | #include <net/net_osdep.h> |
124 | #include <net/net_perf.h> |
125 | #include <net/if_ports_used.h> |
126 | |
127 | #include <netinet/in.h> |
128 | #include <netinet/in_systm.h> |
129 | #if INET |
130 | #include <netinet/ip.h> |
131 | #include <netinet/ip_icmp.h> |
132 | #endif /* INET */ |
133 | #include <netinet/kpi_ipfilter_var.h> |
134 | #include <netinet/ip6.h> |
135 | #include <netinet/udp.h> |
136 | #include <netinet6/in6_var.h> |
137 | #include <netinet6/ip6_var.h> |
138 | #include <netinet/in_pcb.h> |
139 | #include <netinet/icmp6.h> |
140 | #include <netinet6/in6_ifattach.h> |
141 | #include <netinet6/nd6.h> |
142 | #include <netinet6/scope6_var.h> |
143 | #include <netinet6/ip6protosw.h> |
144 | |
145 | #if IPSEC |
146 | #include <netinet6/ipsec.h> |
147 | #include <netinet6/ipsec6.h> |
148 | extern int ipsec_bypass; |
149 | #endif /* IPSEC */ |
150 | |
151 | #if DUMMYNET |
152 | #include <netinet/ip_dummynet.h> |
153 | #endif /* DUMMYNET */ |
154 | |
155 | /* we need it for NLOOP. */ |
156 | #include "loop.h" |
157 | |
158 | #if PF |
159 | #include <net/pfvar.h> |
160 | #endif /* PF */ |
161 | |
162 | #include <os/log.h> |
163 | |
164 | struct ip6protosw *ip6_protox[IPPROTO_MAX]; |
165 | |
166 | static LCK_GRP_DECLARE(in6_ifaddr_rwlock_grp, "in6_ifaddr_rwlock" ); |
167 | LCK_RW_DECLARE(in6_ifaddr_rwlock, &in6_ifaddr_rwlock_grp); |
168 | |
169 | /* Protected by in6_ifaddr_rwlock */ |
170 | struct in6_ifaddrhead in6_ifaddrhead; |
171 | uint32_t in6_ifaddrlist_genid = 0; |
172 | struct in6_ifaddrhashhead * in6_ifaddrhashtbl; |
173 | uint32_t in6_ifaddrhmask; |
174 | |
175 | #define IN6ADDR_NHASH 61 |
176 | u_int32_t in6addr_nhash = 0; /* hash table size */ |
177 | u_int32_t in6addr_hashp = 0; /* next largest prime */ |
178 | |
179 | |
180 | #define IN6_IFSTAT_REQUIRE_ALIGNED_64(f) \ |
181 | _CASSERT(!(offsetof(struct in6_ifstat, f) % sizeof (uint64_t))) |
182 | |
183 | #define ICMP6_IFSTAT_REQUIRE_ALIGNED_64(f) \ |
184 | _CASSERT(!(offsetof(struct icmp6_ifstat, f) % sizeof (uint64_t))) |
185 | |
186 | struct ip6stat ip6stat; |
187 | |
188 | LCK_ATTR_DECLARE(ip6_mutex_attr, 0, 0); |
189 | LCK_GRP_DECLARE(ip6_mutex_grp, "ip6" ); |
190 | |
191 | LCK_MTX_DECLARE_ATTR(proxy6_lock, &ip6_mutex_grp, &ip6_mutex_attr); |
192 | LCK_MTX_DECLARE_ATTR(nd6_mutex_data, &ip6_mutex_grp, &ip6_mutex_attr); |
193 | |
194 | extern int loopattach_done; |
195 | extern void addrsel_policy_init(void); |
196 | |
197 | static int sysctl_reset_ip6_input_stats SYSCTL_HANDLER_ARGS; |
198 | static int sysctl_ip6_input_measure_bins SYSCTL_HANDLER_ARGS; |
199 | static int sysctl_ip6_input_getperf SYSCTL_HANDLER_ARGS; |
200 | static void ip6_init_delayed(void); |
201 | static int ip6_hopopts_input(u_int32_t *, u_int32_t *, struct mbuf **, int *); |
202 | |
203 | static void in6_ifaddrhashtbl_init(void); |
204 | |
205 | static struct m_tag *m_tag_kalloc_inet6(u_int32_t id, u_int16_t type, uint16_t len, int wait); |
206 | static void m_tag_kfree_inet6(struct m_tag *tag); |
207 | |
208 | #if NSTF |
209 | extern void stfattach(void); |
210 | #endif /* NSTF */ |
211 | |
212 | SYSCTL_DECL(_net_inet6_ip6); |
213 | |
214 | static uint32_t ip6_adj_clear_hwcksum = 0; |
215 | SYSCTL_UINT(_net_inet6_ip6, OID_AUTO, adj_clear_hwcksum, |
216 | CTLFLAG_RW | CTLFLAG_LOCKED, &ip6_adj_clear_hwcksum, 0, |
217 | "Invalidate hwcksum info when adjusting length" ); |
218 | |
219 | static uint32_t ip6_adj_partial_sum = 1; |
220 | SYSCTL_UINT(_net_inet6_ip6, OID_AUTO, adj_partial_sum, |
221 | CTLFLAG_RW | CTLFLAG_LOCKED, &ip6_adj_partial_sum, 0, |
222 | "Perform partial sum adjustment of trailing bytes at IP layer" ); |
223 | |
224 | static int ip6_input_measure = 0; |
225 | SYSCTL_PROC(_net_inet6_ip6, OID_AUTO, input_perf, |
226 | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, |
227 | &ip6_input_measure, 0, sysctl_reset_ip6_input_stats, "I" , "Do time measurement" ); |
228 | |
229 | static uint64_t ip6_input_measure_bins = 0; |
230 | SYSCTL_PROC(_net_inet6_ip6, OID_AUTO, input_perf_bins, |
231 | CTLTYPE_QUAD | CTLFLAG_RW | CTLFLAG_LOCKED, &ip6_input_measure_bins, 0, |
232 | sysctl_ip6_input_measure_bins, "I" , |
233 | "bins for chaining performance data histogram" ); |
234 | |
235 | static net_perf_t net_perf; |
236 | SYSCTL_PROC(_net_inet6_ip6, OID_AUTO, input_perf_data, |
237 | CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED, |
238 | 0, 0, sysctl_ip6_input_getperf, "S,net_perf" , |
239 | "IP6 input performance data (struct net_perf, net/net_perf.h)" ); |
240 | |
241 | /* |
242 | * ip6_checkinterface controls the receive side of the models for multihoming |
243 | * that are discussed in RFC 1122. |
244 | * |
245 | * sysctl_ip6_checkinterface values are: |
246 | * IP6_CHECKINTERFACE_WEAK_ES: |
247 | * This corresponds to the Weak End-System model where incoming packets from |
248 | * any interface are accepted provided the destination address of the incoming packet |
249 | * is assigned to some interface. |
250 | * |
251 | * IP6_CHECKINTERFACE_HYBRID_ES: |
252 | * The Hybrid End-System model use the Strong End-System for tunnel interfaces |
253 | * (ipsec and utun) and the weak End-System model for other interfaces families. |
254 | * This prevents a rogue middle box to probe for signs of TCP connections |
255 | * that use the tunnel interface. |
256 | * |
257 | * IP6_CHECKINTERFACE_STRONG_ES: |
258 | * The Strong model model requires the packet arrived on an interface that |
259 | * is assigned the destination address of the packet. |
260 | * |
261 | * Since the routing table and transmit implementation do not implement the Strong ES model, |
262 | * setting this to a value different from IP6_CHECKINTERFACE_WEAK_ES may lead to unexpected results. |
263 | * |
264 | * When forwarding is enabled, the system reverts to the Weak ES model as a router |
265 | * is expected by design to receive packets from several interfaces to the same address. |
266 | */ |
267 | #define IP6_CHECKINTERFACE_WEAK_ES 0 |
268 | #define IP6_CHECKINTERFACE_HYBRID_ES 1 |
269 | #define IP6_CHECKINTERFACE_STRONG_ES 2 |
270 | |
271 | static int ip6_checkinterface = IP6_CHECKINTERFACE_HYBRID_ES; |
272 | |
273 | static int sysctl_ip6_checkinterface SYSCTL_HANDLER_ARGS; |
274 | SYSCTL_PROC(_net_inet6_ip6, OID_AUTO, check_interface, |
275 | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, |
276 | 0, 0, sysctl_ip6_checkinterface, "I" , "Verify packet arrives on correct interface" ); |
277 | |
278 | #if (DEBUG || DEVELOPMENT) |
279 | #define IP6_CHECK_IFDEBUG 1 |
280 | #else |
281 | #define IP6_CHECK_IFDEBUG 0 |
282 | #endif /* (DEBUG || DEVELOPMENT) */ |
283 | static int ip6_checkinterface_debug = IP6_CHECK_IFDEBUG; |
284 | SYSCTL_INT(_net_inet6_ip6, OID_AUTO, checkinterface_debug, CTLFLAG_RW | CTLFLAG_LOCKED, |
285 | &ip6_checkinterface_debug, IP6_CHECK_IFDEBUG, "" ); |
286 | |
287 | typedef enum ip6_check_if_result { |
288 | IP6_CHECK_IF_NONE = 0, |
289 | IP6_CHECK_IF_OURS = 1, |
290 | IP6_CHECK_IF_DROP = 2, |
291 | IP6_CHECK_IF_FORWARD = 3 |
292 | } ip6_check_if_result_t; |
293 | |
294 | static ip6_check_if_result_t ip6_input_check_interface(struct mbuf *, struct ip6_hdr *, struct ifnet *, struct route_in6 *rin6, struct ifnet **); |
295 | |
296 | /* |
297 | * On platforms which require strict alignment (currently for anything but |
298 | * i386 or x86_64 or arm64), check if the IP header pointer is 32-bit aligned; if not, |
299 | * copy the contents of the mbuf chain into a new chain, and free the original |
300 | * one. Create some head room in the first mbuf of the new chain, in case |
301 | * it's needed later on. |
302 | * |
303 | * RFC 2460 says that IPv6 headers are 64-bit aligned, but network interfaces |
304 | * mostly align to 32-bit boundaries. Care should be taken never to use 64-bit |
305 | * load/store operations on the fields in IPv6 headers. |
306 | */ |
307 | #if defined(__i386__) || defined(__x86_64__) || defined(__arm64__) |
308 | #define IP6_HDR_ALIGNMENT_FIXUP(_m, _ifp, _action) do { } while (0) |
309 | #else /* !__i386__ && !__x86_64__ && !__arm64__ */ |
310 | #define IP6_HDR_ALIGNMENT_FIXUP(_m, _ifp, _action) do { \ |
311 | if (!IP6_HDR_ALIGNED_P(mtod(_m, caddr_t))) { \ |
312 | struct mbuf *_n; \ |
313 | struct ifnet *__ifp = (_ifp); \ |
314 | os_atomic_inc(&(__ifp)->if_alignerrs, relaxed); \ |
315 | if (((_m)->m_flags & M_PKTHDR) && \ |
316 | (_m)->m_pkthdr.pkt_hdr != NULL) \ |
317 | (_m)->m_pkthdr.pkt_hdr = NULL; \ |
318 | _n = m_defrag_offset(_m, max_linkhdr, M_NOWAIT); \ |
319 | if (_n == NULL) { \ |
320 | ip6stat.ip6s_toosmall++; \ |
321 | m_freem(_m); \ |
322 | (_m) = NULL; \ |
323 | _action; \ |
324 | } else { \ |
325 | VERIFY(_n != (_m)); \ |
326 | (_m) = _n; \ |
327 | } \ |
328 | } \ |
329 | } while (0) |
330 | #endif /* !__i386__ && !__x86_64___ && !__arm64__ */ |
331 | |
332 | static void |
333 | ip6_proto_input(protocol_family_t protocol, mbuf_t packet) |
334 | { |
335 | #pragma unused(protocol) |
336 | #if INET |
337 | struct timeval start_tv; |
338 | if (ip6_input_measure) { |
339 | net_perf_start_time(npp: &net_perf, tv: &start_tv); |
340 | } |
341 | #endif /* INET */ |
342 | ip6_input(packet); |
343 | #if INET |
344 | if (ip6_input_measure) { |
345 | net_perf_measure_time(npp: &net_perf, start: &start_tv, num_pkts: 1); |
346 | net_perf_histogram(npp: &net_perf, num_pkts: 1); |
347 | } |
348 | #endif /* INET */ |
349 | } |
350 | |
351 | /* |
352 | * IP6 initialization: fill in IP6 protocol switch table. |
353 | * All protocols not implemented in kernel go to raw IP6 protocol handler. |
354 | */ |
355 | void |
356 | ip6_init(struct ip6protosw *pp, struct domain *dp) |
357 | { |
358 | static int ip6_initialized = 0; |
359 | struct protosw *pr; |
360 | struct timeval tv; |
361 | int i; |
362 | domain_unguard_t unguard; |
363 | |
364 | domain_proto_mtx_lock_assert_held(); |
365 | VERIFY((pp->pr_flags & (PR_INITIALIZED | PR_ATTACHED)) == PR_ATTACHED); |
366 | |
367 | _CASSERT((sizeof(struct ip6_hdr) + |
368 | sizeof(struct icmp6_hdr)) <= _MHLEN); |
369 | |
370 | if (ip6_initialized) { |
371 | return; |
372 | } |
373 | ip6_initialized = 1; |
374 | |
375 | eventhandler_lists_ctxt_init(evthdlr_lists_ctxt: &in6_evhdlr_ctxt); |
376 | (void)EVENTHANDLER_REGISTER(&in6_evhdlr_ctxt, in6_event, |
377 | in6_eventhdlr_callback, eventhandler_entry_dummy_arg, |
378 | EVENTHANDLER_PRI_ANY); |
379 | |
380 | eventhandler_lists_ctxt_init(evthdlr_lists_ctxt: &in6_clat46_evhdlr_ctxt); |
381 | (void)EVENTHANDLER_REGISTER(&in6_clat46_evhdlr_ctxt, in6_clat46_event, |
382 | in6_clat46_eventhdlr_callback, eventhandler_entry_dummy_arg, |
383 | EVENTHANDLER_PRI_ANY); |
384 | |
385 | for (i = 0; i < IN6_EVENT_MAX; i++) { |
386 | VERIFY(in6_event2kev_array[i].in6_event_code == i); |
387 | } |
388 | |
389 | pr = pffindproto_locked(PF_INET6, IPPROTO_RAW, SOCK_RAW); |
390 | if (pr == NULL) { |
391 | panic("%s: Unable to find [PF_INET6,IPPROTO_RAW,SOCK_RAW]" , |
392 | __func__); |
393 | /* NOTREACHED */ |
394 | } |
395 | |
396 | /* Initialize the entire ip6_protox[] array to IPPROTO_RAW. */ |
397 | for (i = 0; i < IPPROTO_MAX; i++) { |
398 | ip6_protox[i] = (struct ip6protosw *)pr; |
399 | } |
400 | /* |
401 | * Cycle through IP protocols and put them into the appropriate place |
402 | * in ip6_protox[], skipping protocols IPPROTO_{IP,RAW}. |
403 | */ |
404 | VERIFY(dp == inet6domain && dp->dom_family == PF_INET6); |
405 | TAILQ_FOREACH(pr, &dp->dom_protosw, pr_entry) { |
406 | VERIFY(pr->pr_domain == dp); |
407 | if (pr->pr_protocol != 0 && pr->pr_protocol != IPPROTO_RAW) { |
408 | /* Be careful to only index valid IP protocols. */ |
409 | if (pr->pr_protocol < IPPROTO_MAX) { |
410 | ip6_protox[pr->pr_protocol] = |
411 | (struct ip6protosw *)pr; |
412 | } |
413 | } |
414 | } |
415 | |
416 | TAILQ_INIT(&in6_ifaddrhead); |
417 | in6_ifaddrhashtbl_init(); |
418 | |
419 | IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_receive); |
420 | IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_hdrerr); |
421 | IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_toobig); |
422 | IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_noroute); |
423 | IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_addrerr); |
424 | IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_protounknown); |
425 | IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_truncated); |
426 | IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_discard); |
427 | IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_deliver); |
428 | IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_forward); |
429 | IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_request); |
430 | IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_discard); |
431 | IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_fragok); |
432 | IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_fragfail); |
433 | IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_fragcreat); |
434 | IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_reass_reqd); |
435 | IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_reass_ok); |
436 | IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_reass_fail); |
437 | IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_mcast); |
438 | IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_mcast); |
439 | |
440 | ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_msg); |
441 | ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_error); |
442 | ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_dstunreach); |
443 | ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_adminprohib); |
444 | ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_timeexceed); |
445 | ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_paramprob); |
446 | ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_pkttoobig); |
447 | ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_echo); |
448 | ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_echoreply); |
449 | ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_routersolicit); |
450 | ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_routeradvert); |
451 | ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_neighborsolicit); |
452 | ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_neighboradvert); |
453 | ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_redirect); |
454 | ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_mldquery); |
455 | ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_mldreport); |
456 | ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_mlddone); |
457 | |
458 | ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_msg); |
459 | ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_error); |
460 | ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_dstunreach); |
461 | ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_adminprohib); |
462 | ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_timeexceed); |
463 | ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_paramprob); |
464 | ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_pkttoobig); |
465 | ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_echo); |
466 | ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_echoreply); |
467 | ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_routersolicit); |
468 | ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_routeradvert); |
469 | ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_neighborsolicit); |
470 | ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_neighboradvert); |
471 | ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_redirect); |
472 | ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_mldquery); |
473 | ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_mldreport); |
474 | ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_mlddone); |
475 | |
476 | getmicrotime(&tv); |
477 | ip6_desync_factor = |
478 | (RandomULong() ^ tv.tv_usec) % MAX_TEMP_DESYNC_FACTOR; |
479 | |
480 | PE_parse_boot_argn(arg_string: "in6_embedded_scope" , arg_ptr: &in6_embedded_scope, max_arg: sizeof(in6_embedded_scope)); |
481 | PE_parse_boot_argn(arg_string: "ip6_checkinterface" , arg_ptr: &i, max_arg: sizeof(i)); |
482 | switch (i) { |
483 | case IP6_CHECKINTERFACE_WEAK_ES: |
484 | case IP6_CHECKINTERFACE_HYBRID_ES: |
485 | case IP6_CHECKINTERFACE_STRONG_ES: |
486 | ip6_checkinterface = i; |
487 | break; |
488 | default: |
489 | break; |
490 | } |
491 | |
492 | in6_ifaddr_init(); |
493 | ip6_moptions_init(); |
494 | nd6_init(); |
495 | frag6_init(); |
496 | icmp6_init(NULL, dp); |
497 | addrsel_policy_init(); |
498 | |
499 | /* |
500 | * P2P interfaces often route the local address to the loopback |
501 | * interface. At this point, lo0 hasn't been initialized yet, which |
502 | * means that we need to delay the IPv6 configuration of lo0. |
503 | */ |
504 | net_init_add(init_func: ip6_init_delayed); |
505 | |
506 | unguard = domain_unguard_deploy(); |
507 | i = proto_register_input(PF_INET6, input: ip6_proto_input, NULL, chains: 0); |
508 | if (i != 0) { |
509 | panic("%s: failed to register PF_INET6 protocol: %d" , |
510 | __func__, i); |
511 | /* NOTREACHED */ |
512 | } |
513 | domain_unguard_release(unguard); |
514 | } |
515 | |
516 | static void |
517 | ip6_init_delayed(void) |
518 | { |
519 | (void) in6_ifattach_prelim(lo_ifp); |
520 | |
521 | /* timer for regeneranation of temporary addresses randomize ID */ |
522 | timeout(in6_tmpaddrtimer, NULL, |
523 | ticks: (ip6_temp_preferred_lifetime - ip6_desync_factor - |
524 | ip6_temp_regen_advance) * hz); |
525 | |
526 | #if NSTF |
527 | stfattach(); |
528 | #endif /* NSTF */ |
529 | } |
530 | |
531 | static void |
532 | ip6_input_adjust(struct mbuf *m, struct ip6_hdr *ip6, uint32_t plen, |
533 | struct ifnet *inifp) |
534 | { |
535 | boolean_t adjust = TRUE; |
536 | uint32_t tot_len = sizeof(*ip6) + plen; |
537 | |
538 | ASSERT(m_pktlen(m) > tot_len); |
539 | |
540 | /* |
541 | * Invalidate hardware checksum info if ip6_adj_clear_hwcksum |
542 | * is set; useful to handle buggy drivers. Note that this |
543 | * should not be enabled by default, as we may get here due |
544 | * to link-layer padding. |
545 | */ |
546 | if (ip6_adj_clear_hwcksum && |
547 | (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) && |
548 | !(inifp->if_flags & IFF_LOOPBACK) && |
549 | !(m->m_pkthdr.pkt_flags & PKTF_LOOP)) { |
550 | m->m_pkthdr.csum_flags &= ~CSUM_DATA_VALID; |
551 | m->m_pkthdr.csum_data = 0; |
552 | ip6stat.ip6s_adj_hwcsum_clr++; |
553 | } |
554 | |
555 | /* |
556 | * If partial checksum information is available, subtract |
557 | * out the partial sum of postpended extraneous bytes, and |
558 | * update the checksum metadata accordingly. By doing it |
559 | * here, the upper layer transport only needs to adjust any |
560 | * prepended extraneous bytes (else it will do both.) |
561 | */ |
562 | if (ip6_adj_partial_sum && |
563 | (m->m_pkthdr.csum_flags & (CSUM_DATA_VALID | CSUM_PARTIAL)) == |
564 | (CSUM_DATA_VALID | CSUM_PARTIAL)) { |
565 | m->m_pkthdr.csum_rx_val = m_adj_sum16(m, |
566 | m->m_pkthdr.csum_rx_start, m->m_pkthdr.csum_rx_start, |
567 | (tot_len - m->m_pkthdr.csum_rx_start), |
568 | m->m_pkthdr.csum_rx_val); |
569 | } else if ((m->m_pkthdr.csum_flags & |
570 | (CSUM_DATA_VALID | CSUM_PARTIAL)) == |
571 | (CSUM_DATA_VALID | CSUM_PARTIAL)) { |
572 | /* |
573 | * If packet has partial checksum info and we decided not |
574 | * to subtract the partial sum of postpended extraneous |
575 | * bytes here (not the default case), leave that work to |
576 | * be handled by the other layers. For now, only TCP, UDP |
577 | * layers are capable of dealing with this. For all other |
578 | * protocols (including fragments), trim and ditch the |
579 | * partial sum as those layers might not implement partial |
580 | * checksumming (or adjustment) at all. |
581 | */ |
582 | if (ip6->ip6_nxt == IPPROTO_TCP || |
583 | ip6->ip6_nxt == IPPROTO_UDP) { |
584 | adjust = FALSE; |
585 | } else { |
586 | m->m_pkthdr.csum_flags &= ~CSUM_DATA_VALID; |
587 | m->m_pkthdr.csum_data = 0; |
588 | ip6stat.ip6s_adj_hwcsum_clr++; |
589 | } |
590 | } |
591 | |
592 | if (adjust) { |
593 | ip6stat.ip6s_adj++; |
594 | if (m->m_len == m->m_pkthdr.len) { |
595 | m->m_len = tot_len; |
596 | m->m_pkthdr.len = tot_len; |
597 | } else { |
598 | m_adj(m, tot_len - m->m_pkthdr.len); |
599 | } |
600 | } |
601 | } |
602 | static ip6_check_if_result_t |
603 | ip6_input_check_interface(struct mbuf *m, struct ip6_hdr *ip6, struct ifnet *inifp, struct route_in6 *rin6, struct ifnet **deliverifp) |
604 | { |
605 | struct in6_ifaddr *ia6 = NULL; |
606 | struct in6_addr tmp_dst = ip6->ip6_dst; /* copy to avoid unaligned access */ |
607 | struct in6_ifaddr *best_ia6 = NULL; |
608 | uint32_t dst_ifscope = IFSCOPE_NONE; |
609 | ip6_check_if_result_t result = IP6_CHECK_IF_NONE; |
610 | |
611 | *deliverifp = NULL; |
612 | |
613 | if (m->m_pkthdr.pkt_flags & PKTF_IFAINFO) { |
614 | dst_ifscope = m->m_pkthdr.dst_ifindex; |
615 | } else { |
616 | dst_ifscope = inifp->if_index; |
617 | } |
618 | /* |
619 | * Check for exact addresses in the hash bucket. |
620 | */ |
621 | lck_rw_lock_shared(lck: &in6_ifaddr_rwlock); |
622 | TAILQ_FOREACH(ia6, IN6ADDR_HASH(&tmp_dst), ia6_hash) { |
623 | /* |
624 | * TODO: should we accept loopback |
625 | */ |
626 | if (in6_are_addr_equal_scoped(&ia6->ia_addr.sin6_addr, &tmp_dst, ia6->ia_ifp->if_index, dst_ifscope)) { |
627 | if ((ia6->ia6_flags & (IN6_IFF_NOTREADY | IN6_IFF_CLAT46))) { |
628 | continue; |
629 | } |
630 | best_ia6 = ia6; |
631 | if (ia6->ia_ifp == inifp) { |
632 | /* |
633 | * TODO: should we also accept locally originated packets |
634 | * or from loopback ??? |
635 | */ |
636 | break; |
637 | } |
638 | /* |
639 | * Continue the loop in case there's a exact match with another |
640 | * interface |
641 | */ |
642 | } |
643 | } |
644 | if (best_ia6 != NULL) { |
645 | if (best_ia6->ia_ifp != inifp && ip6_forwarding == 0 && |
646 | ((ip6_checkinterface == IP6_CHECKINTERFACE_HYBRID_ES && |
647 | (best_ia6->ia_ifp->if_family == IFNET_FAMILY_IPSEC || |
648 | best_ia6->ia_ifp->if_family == IFNET_FAMILY_UTUN)) || |
649 | ip6_checkinterface == IP6_CHECKINTERFACE_STRONG_ES)) { |
650 | /* |
651 | * Drop when interface address check is strict and forwarding |
652 | * is disabled |
653 | */ |
654 | result = IP6_CHECK_IF_DROP; |
655 | } else { |
656 | result = IP6_CHECK_IF_OURS; |
657 | *deliverifp = best_ia6->ia_ifp; |
658 | ip6_setdstifaddr_info(m, 0, best_ia6); |
659 | ip6_setsrcifaddr_info(m, best_ia6->ia_ifp->if_index, NULL); |
660 | } |
661 | } |
662 | lck_rw_done(lck: &in6_ifaddr_rwlock); |
663 | |
664 | if (result == IP6_CHECK_IF_NONE) { |
665 | /* |
666 | * Slow path: route lookup. |
667 | */ |
668 | struct sockaddr_in6 *dst6; |
669 | |
670 | dst6 = SIN6(&rin6->ro_dst); |
671 | dst6->sin6_len = sizeof(struct sockaddr_in6); |
672 | dst6->sin6_family = AF_INET6; |
673 | dst6->sin6_addr = ip6->ip6_dst; |
674 | if (!in6_embedded_scope && IN6_IS_SCOPE_EMBED(&ip6->ip6_dst)) { |
675 | dst6->sin6_scope_id = dst_ifscope; |
676 | } |
677 | rtalloc_scoped_ign((struct route *)rin6, |
678 | RTF_PRCLONING, IFSCOPE_NONE); |
679 | if (rin6->ro_rt != NULL) { |
680 | RT_LOCK_SPIN(rin6->ro_rt); |
681 | } |
682 | |
683 | #define rt6_key(r) (SIN6((r)->rt_nodes->rn_key)) |
684 | |
685 | /* |
686 | * Accept the packet if the forwarding interface to the destination |
687 | * according to the routing table is the loopback interface, |
688 | * unless the associated route has a gateway. |
689 | * Note that this approach causes to accept a packet if there is a |
690 | * route to the loopback interface for the destination of the packet. |
691 | * But we think it's even useful in some situations, e.g. when using |
692 | * a special daemon which wants to intercept the packet. |
693 | * |
694 | * XXX: some OSes automatically make a cloned route for the destination |
695 | * of an outgoing packet. If the outgoing interface of the packet |
696 | * is a loopback one, the kernel would consider the packet to be |
697 | * accepted, even if we have no such address assinged on the interface. |
698 | * We check the cloned flag of the route entry to reject such cases, |
699 | * assuming that route entries for our own addresses are not made by |
700 | * cloning (it should be true because in6_addloop explicitly installs |
701 | * the host route). However, we might have to do an explicit check |
702 | * while it would be less efficient. Or, should we rather install a |
703 | * reject route for such a case? |
704 | */ |
705 | if (rin6->ro_rt != NULL && |
706 | (rin6->ro_rt->rt_flags & (RTF_HOST | RTF_GATEWAY)) == RTF_HOST && |
707 | #if RTF_WASCLONED |
708 | !(rin6->ro_rt->rt_flags & RTF_WASCLONED) && |
709 | #endif |
710 | rin6->ro_rt->rt_ifp->if_type == IFT_LOOP) { |
711 | ia6 = (struct in6_ifaddr *)rin6->ro_rt->rt_ifa; |
712 | /* |
713 | * Packets to a tentative, duplicated, or somehow invalid |
714 | * address must not be accepted. |
715 | * |
716 | * For performance, test without acquiring the address lock; |
717 | * a lot of things in the address are set once and never |
718 | * changed (e.g. ia_ifp.) |
719 | */ |
720 | if (!(ia6->ia6_flags & IN6_IFF_NOTREADY)) { |
721 | /* this address is ready */ |
722 | result = IP6_CHECK_IF_OURS; |
723 | *deliverifp = ia6->ia_ifp; /* correct? */ |
724 | /* |
725 | * record dst address information into mbuf. |
726 | */ |
727 | (void) ip6_setdstifaddr_info(m, 0, ia6); |
728 | (void) ip6_setsrcifaddr_info(m, ia6->ia_ifp->if_index, NULL); |
729 | } |
730 | } |
731 | |
732 | if (rin6->ro_rt != NULL) { |
733 | RT_UNLOCK(rin6->ro_rt); |
734 | } |
735 | } |
736 | |
737 | if (result == IP6_CHECK_IF_NONE) { |
738 | if (ip6_forwarding == 0) { |
739 | result = IP6_CHECK_IF_DROP; |
740 | } else { |
741 | result = IP6_CHECK_IF_FORWARD; |
742 | ip6_setdstifaddr_info(m, inifp->if_index, NULL); |
743 | ip6_setsrcifaddr_info(m, inifp->if_index, NULL); |
744 | } |
745 | } |
746 | |
747 | if (result == IP6_CHECK_IF_OURS && *deliverifp != inifp) { |
748 | ASSERT(*deliverifp != NULL); |
749 | ip6stat.ip6s_rcv_if_weak_match++; |
750 | |
751 | /* Logging is too noisy when forwarding is enabled */ |
752 | if (ip6_checkinterface_debug != IP6_CHECKINTERFACE_WEAK_ES && ip6_forwarding != 0) { |
753 | char src_str[MAX_IPv6_STR_LEN]; |
754 | char dst_str[MAX_IPv6_STR_LEN]; |
755 | |
756 | inet_ntop(AF_INET6, &ip6->ip6_src, src_str, sizeof(src_str)); |
757 | inet_ntop(AF_INET6, &ip6->ip6_dst, dst_str, sizeof(dst_str)); |
758 | os_log_info(OS_LOG_DEFAULT, |
759 | "%s: weak ES interface match to %s for packet from %s to %s proto %u received via %s" , |
760 | __func__, (*deliverifp)->if_xname, src_str, dst_str, ip6->ip6_nxt, inifp->if_xname); |
761 | } |
762 | } else if (result == IP6_CHECK_IF_DROP) { |
763 | ip6stat.ip6s_rcv_if_no_match++; |
764 | if (ip6_checkinterface_debug > 0) { |
765 | char src_str[MAX_IPv6_STR_LEN]; |
766 | char dst_str[MAX_IPv6_STR_LEN]; |
767 | |
768 | inet_ntop(AF_INET6, &ip6->ip6_src, src_str, sizeof(src_str)); |
769 | inet_ntop(AF_INET6, &ip6->ip6_dst, dst_str, sizeof(dst_str)); |
770 | os_log(OS_LOG_DEFAULT, |
771 | "%s: no interface match for packet from %s to %s proto %u received via %s" , |
772 | __func__, src_str, dst_str, ip6->ip6_nxt, inifp->if_xname); |
773 | } |
774 | } |
775 | |
776 | return result; |
777 | } |
778 | |
779 | void |
780 | ip6_input(struct mbuf *m) |
781 | { |
782 | struct ip6_hdr *ip6; |
783 | int off = sizeof(struct ip6_hdr), nest; |
784 | u_int32_t plen; |
785 | u_int32_t rtalert = ~0; |
786 | int nxt = 0, ours = 0; |
787 | struct ifnet *inifp, *deliverifp = NULL; |
788 | ipfilter_t inject_ipfref = NULL; |
789 | int seen = 1; |
790 | #if DUMMYNET |
791 | struct m_tag *tag; |
792 | struct ip_fw_args args = {}; |
793 | #endif /* DUMMYNET */ |
794 | struct route_in6 rin6 = {}; |
795 | |
796 | /* |
797 | * Check if the packet we received is valid after interface filter |
798 | * processing |
799 | */ |
800 | MBUF_INPUT_CHECK(m, m->m_pkthdr.rcvif); |
801 | inifp = m->m_pkthdr.rcvif; |
802 | VERIFY(inifp != NULL); |
803 | |
804 | /* Perform IP header alignment fixup, if needed */ |
805 | IP6_HDR_ALIGNMENT_FIXUP(m, inifp, return ); |
806 | |
807 | m->m_pkthdr.pkt_flags &= ~PKTF_FORWARDED; |
808 | #if IPSEC |
809 | /* |
810 | * should the inner packet be considered authentic? |
811 | * see comment in ah4_input(). |
812 | */ |
813 | m->m_flags &= ~M_AUTHIPHDR; |
814 | m->m_flags &= ~M_AUTHIPDGM; |
815 | #endif /* IPSEC */ |
816 | |
817 | /* |
818 | * make sure we don't have onion peering information into m_aux. |
819 | */ |
820 | ip6_delaux(m); |
821 | |
822 | #if DUMMYNET |
823 | if ((tag = m_tag_locate(m, KERNEL_MODULE_TAG_ID, |
824 | KERNEL_TAG_TYPE_DUMMYNET)) != NULL) { |
825 | struct dn_pkt_tag *dn_tag; |
826 | |
827 | dn_tag = (struct dn_pkt_tag *)(tag->m_tag_data); |
828 | |
829 | args.fwa_pf_rule = dn_tag->dn_pf_rule; |
830 | |
831 | m_tag_delete(m, tag); |
832 | } |
833 | |
834 | if (args.fwa_pf_rule) { |
835 | ip6 = mtod(m, struct ip6_hdr *); /* In case PF got disabled */ |
836 | |
837 | goto check_with_pf; |
838 | } |
839 | #endif /* DUMMYNET */ |
840 | |
841 | /* |
842 | * No need to process packet twice if we've already seen it. |
843 | */ |
844 | inject_ipfref = ipf_get_inject_filter(m); |
845 | if (inject_ipfref != NULL) { |
846 | ip6 = mtod(m, struct ip6_hdr *); |
847 | nxt = ip6->ip6_nxt; |
848 | seen = 0; |
849 | goto injectit; |
850 | } else { |
851 | seen = 1; |
852 | } |
853 | |
854 | if (__improbable(m->m_pkthdr.pkt_flags & PKTF_WAKE_PKT)) { |
855 | if_ports_used_match_mbuf(ifp: inifp, PF_INET6, m); |
856 | } |
857 | |
858 | /* |
859 | * mbuf statistics |
860 | */ |
861 | if (m->m_flags & M_EXT) { |
862 | if (m->m_next != NULL) { |
863 | ip6stat.ip6s_mext2m++; |
864 | } else { |
865 | ip6stat.ip6s_mext1++; |
866 | } |
867 | } else { |
868 | #define M2MMAX (sizeof (ip6stat.ip6s_m2m) / sizeof (ip6stat.ip6s_m2m[0])) |
869 | if (m->m_next != NULL) { |
870 | if (m->m_pkthdr.pkt_flags & PKTF_LOOP) { |
871 | /* XXX */ |
872 | ip6stat.ip6s_m2m[ifnet_index(interface: lo_ifp)]++; |
873 | } else if (inifp->if_index < M2MMAX) { |
874 | ip6stat.ip6s_m2m[inifp->if_index]++; |
875 | } else { |
876 | ip6stat.ip6s_m2m[0]++; |
877 | } |
878 | } else { |
879 | ip6stat.ip6s_m1++; |
880 | } |
881 | #undef M2MMAX |
882 | } |
883 | |
884 | /* |
885 | * Drop the packet if IPv6 operation is disabled on the interface. |
886 | */ |
887 | if (inifp->if_eflags & IFEF_IPV6_DISABLED) { |
888 | goto bad; |
889 | } |
890 | |
891 | in6_ifstat_inc_na(inifp, ifs6_in_receive); |
892 | ip6stat.ip6s_total++; |
893 | |
894 | /* |
895 | * L2 bridge code and some other code can return mbuf chain |
896 | * that does not conform to KAME requirement. too bad. |
897 | * XXX: fails to join if interface MTU > MCLBYTES. jumbogram? |
898 | */ |
899 | if (m->m_next != NULL && m->m_pkthdr.len < MCLBYTES) { |
900 | struct mbuf *n; |
901 | |
902 | MGETHDR(n, M_DONTWAIT, MT_HEADER); /* MAC-OK */ |
903 | if (n) { |
904 | M_COPY_PKTHDR(n, m); |
905 | } |
906 | if (n && m->m_pkthdr.len > MHLEN) { |
907 | MCLGET(n, M_DONTWAIT); |
908 | if ((n->m_flags & M_EXT) == 0) { |
909 | m_freem(n); |
910 | n = NULL; |
911 | } |
912 | } |
913 | if (n == NULL) { |
914 | goto bad; |
915 | } |
916 | |
917 | m_copydata(m, 0, m->m_pkthdr.len, mtod(n, caddr_t)); |
918 | n->m_len = m->m_pkthdr.len; |
919 | m_freem(m); |
920 | m = n; |
921 | } |
922 | IP6_EXTHDR_CHECK(m, 0, sizeof(struct ip6_hdr), { goto done; }); |
923 | |
924 | if (m->m_len < sizeof(struct ip6_hdr)) { |
925 | if ((m = m_pullup(m, sizeof(struct ip6_hdr))) == 0) { |
926 | ip6stat.ip6s_toosmall++; |
927 | in6_ifstat_inc(inifp, ifs6_in_hdrerr); |
928 | goto done; |
929 | } |
930 | } |
931 | |
932 | ip6 = mtod(m, struct ip6_hdr *); |
933 | |
934 | if ((ip6->ip6_vfc & IPV6_VERSION_MASK) != IPV6_VERSION) { |
935 | ip6stat.ip6s_badvers++; |
936 | in6_ifstat_inc(inifp, ifs6_in_hdrerr); |
937 | goto bad; |
938 | } |
939 | |
940 | ip6stat.ip6s_nxthist[ip6->ip6_nxt]++; |
941 | |
942 | /* |
943 | * Check against address spoofing/corruption. |
944 | */ |
945 | if (!(m->m_pkthdr.pkt_flags & PKTF_LOOP) && |
946 | IN6_IS_ADDR_LOOPBACK(&ip6->ip6_src)) { |
947 | ip6stat.ip6s_badscope++; |
948 | in6_ifstat_inc(inifp, ifs6_in_addrerr); |
949 | goto bad; |
950 | } |
951 | if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src) || |
952 | IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_dst)) { |
953 | /* |
954 | * XXX: "badscope" is not very suitable for a multicast source. |
955 | */ |
956 | ip6stat.ip6s_badscope++; |
957 | in6_ifstat_inc(inifp, ifs6_in_addrerr); |
958 | goto bad; |
959 | } |
960 | if (IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst) && |
961 | !(m->m_pkthdr.pkt_flags & PKTF_LOOP)) { |
962 | /* |
963 | * In this case, the packet should come from the loopback |
964 | * interface. However, we cannot just check the if_flags, |
965 | * because ip6_mloopback() passes the "actual" interface |
966 | * as the outgoing/incoming interface. |
967 | */ |
968 | ip6stat.ip6s_badscope++; |
969 | in6_ifstat_inc(inifp, ifs6_in_addrerr); |
970 | goto bad; |
971 | } |
972 | |
973 | /* |
974 | * The following check is not documented in specs. A malicious |
975 | * party may be able to use IPv4 mapped addr to confuse tcp/udp stack |
976 | * and bypass security checks (act as if it was from 127.0.0.1 by using |
977 | * IPv6 src ::ffff:127.0.0.1). Be cautious. |
978 | * |
979 | * This check chokes if we are in an SIIT cloud. As none of BSDs |
980 | * support IPv4-less kernel compilation, we cannot support SIIT |
981 | * environment at all. So, it makes more sense for us to reject any |
982 | * malicious packets for non-SIIT environment, than try to do a |
983 | * partial support for SIIT environment. |
984 | */ |
985 | if (IN6_IS_ADDR_V4MAPPED(&ip6->ip6_src) || |
986 | IN6_IS_ADDR_V4MAPPED(&ip6->ip6_dst)) { |
987 | ip6stat.ip6s_badscope++; |
988 | in6_ifstat_inc(inifp, ifs6_in_addrerr); |
989 | goto bad; |
990 | } |
991 | |
992 | if (((ntohl(ip6->ip6_flow & IPV6_FLOW_ECN_MASK) >> 20) & IPTOS_ECN_ECT1) == IPTOS_ECN_ECT1) { |
993 | m->m_pkthdr.pkt_ext_flags |= PKTF_EXT_L4S; |
994 | } |
995 | |
996 | #if 0 |
997 | /* |
998 | * Reject packets with IPv4 compatible addresses (auto tunnel). |
999 | * |
1000 | * The code forbids auto tunnel relay case in RFC1933 (the check is |
1001 | * stronger than RFC1933). We may want to re-enable it if mech-xx |
1002 | * is revised to forbid relaying case. |
1003 | */ |
1004 | if (IN6_IS_ADDR_V4COMPAT(&ip6->ip6_src) || |
1005 | IN6_IS_ADDR_V4COMPAT(&ip6->ip6_dst)) { |
1006 | ip6stat.ip6s_badscope++; |
1007 | in6_ifstat_inc(inifp, ifs6_in_addrerr); |
1008 | goto bad; |
1009 | } |
1010 | #endif |
1011 | |
1012 | /* |
1013 | * Naively assume we can attribute inbound data to the route we would |
1014 | * use to send to this destination. Asymetric routing breaks this |
1015 | * assumption, but it still allows us to account for traffic from |
1016 | * a remote node in the routing table. |
1017 | * this has a very significant performance impact so we bypass |
1018 | * if nstat_collect is disabled. We may also bypass if the |
1019 | * protocol is tcp in the future because tcp will have a route that |
1020 | * we can use to attribute the data to. That does mean we would not |
1021 | * account for forwarded tcp traffic. |
1022 | */ |
1023 | if (nstat_collect) { |
1024 | struct rtentry *rte = |
1025 | ifnet_cached_rtlookup_inet6(inifp, &ip6->ip6_src); |
1026 | if (rte != NULL) { |
1027 | nstat_route_rx(rte, packets: 1, bytes: m->m_pkthdr.len, flags: 0); |
1028 | rtfree(rte); |
1029 | } |
1030 | } |
1031 | |
1032 | #if DUMMYNET |
1033 | check_with_pf: |
1034 | #endif /* DUMMYNET */ |
1035 | #if PF |
1036 | /* Invoke inbound packet filter */ |
1037 | if (PF_IS_ENABLED) { |
1038 | int error; |
1039 | #if DUMMYNET |
1040 | error = pf_af_hook(inifp, NULL, &m, AF_INET6, TRUE, &args); |
1041 | #else /* !DUMMYNET */ |
1042 | error = pf_af_hook(inifp, NULL, &m, AF_INET6, TRUE, NULL); |
1043 | #endif /* !DUMMYNET */ |
1044 | if (error != 0 || m == NULL) { |
1045 | if (m != NULL) { |
1046 | panic("%s: unexpected packet %p" , |
1047 | __func__, m); |
1048 | /* NOTREACHED */ |
1049 | } |
1050 | /* Already freed by callee */ |
1051 | goto done; |
1052 | } |
1053 | ip6 = mtod(m, struct ip6_hdr *); |
1054 | } |
1055 | #endif /* PF */ |
1056 | |
1057 | /* drop packets if interface ID portion is already filled */ |
1058 | if (!(inifp->if_flags & IFF_LOOPBACK) && |
1059 | !(m->m_pkthdr.pkt_flags & PKTF_LOOP)) { |
1060 | if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src) && |
1061 | ip6->ip6_src.s6_addr16[1]) { |
1062 | ip6stat.ip6s_badscope++; |
1063 | goto bad; |
1064 | } |
1065 | if (IN6_IS_SCOPE_EMBED(&ip6->ip6_dst) && |
1066 | ip6->ip6_dst.s6_addr16[1]) { |
1067 | ip6stat.ip6s_badscope++; |
1068 | goto bad; |
1069 | } |
1070 | } |
1071 | |
1072 | if ((m->m_pkthdr.pkt_flags & PKTF_IFAINFO) != 0 && in6_embedded_scope) { |
1073 | if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src)) { |
1074 | ip6->ip6_src.s6_addr16[1] = |
1075 | htons(m->m_pkthdr.src_ifindex); |
1076 | } |
1077 | if (IN6_IS_SCOPE_EMBED(&ip6->ip6_dst)) { |
1078 | ip6->ip6_dst.s6_addr16[1] = |
1079 | htons(m->m_pkthdr.dst_ifindex); |
1080 | } |
1081 | } else if (in6_embedded_scope) { |
1082 | if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src)) { |
1083 | ip6->ip6_src.s6_addr16[1] = htons(inifp->if_index); |
1084 | } |
1085 | if (IN6_IS_SCOPE_EMBED(&ip6->ip6_dst)) { |
1086 | ip6->ip6_dst.s6_addr16[1] = htons(inifp->if_index); |
1087 | } |
1088 | } |
1089 | |
1090 | /* |
1091 | * Multicast check |
1092 | */ |
1093 | if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { |
1094 | struct in6_multi *in6m = NULL; |
1095 | |
1096 | in6_ifstat_inc_na(inifp, ifs6_in_mcast); |
1097 | /* |
1098 | * See if we belong to the destination multicast group on the |
1099 | * arrival interface. |
1100 | */ |
1101 | in6_multihead_lock_shared(); |
1102 | IN6_LOOKUP_MULTI(&ip6->ip6_dst, inifp, in6m); |
1103 | in6_multihead_lock_done(); |
1104 | if (in6m != NULL) { |
1105 | IN6M_REMREF(in6m); |
1106 | ours = 1; |
1107 | } else if (!nd6_prproxy) { |
1108 | ip6stat.ip6s_notmember++; |
1109 | ip6stat.ip6s_cantforward++; |
1110 | in6_ifstat_inc(inifp, ifs6_in_discard); |
1111 | goto bad; |
1112 | } |
1113 | deliverifp = inifp; |
1114 | /* |
1115 | * record dst address information into mbuf, if we don't have one yet. |
1116 | * note that we are unable to record it, if the address is not listed |
1117 | * as our interface address (e.g. multicast addresses, etc.) |
1118 | */ |
1119 | if (deliverifp != NULL) { |
1120 | struct in6_ifaddr *ia6 = NULL; |
1121 | |
1122 | ia6 = in6_ifawithifp(deliverifp, &ip6->ip6_dst); |
1123 | if (ia6 != NULL) { |
1124 | (void) ip6_setdstifaddr_info(m, 0, ia6); |
1125 | (void) ip6_setsrcifaddr_info(m, ia6->ia_ifp->if_index, NULL); |
1126 | ifa_remref(ifa: &ia6->ia_ifa); |
1127 | } else { |
1128 | (void) ip6_setdstifaddr_info(m, inifp->if_index, NULL); |
1129 | (void) ip6_setsrcifaddr_info(m, inifp->if_index, NULL); |
1130 | } |
1131 | } |
1132 | goto hbhcheck; |
1133 | } else { |
1134 | /* |
1135 | * Unicast check |
1136 | */ |
1137 | ip6_check_if_result_t check_if_result = IP6_CHECK_IF_NONE; |
1138 | check_if_result = ip6_input_check_interface(m, ip6, inifp, rin6: &rin6, deliverifp: &deliverifp); |
1139 | ASSERT(check_if_result != IP6_CHECK_IF_NONE); |
1140 | if (check_if_result == IP6_CHECK_IF_OURS) { |
1141 | ours = 1; |
1142 | goto hbhcheck; |
1143 | } else if (check_if_result == IP6_CHECK_IF_DROP) { |
1144 | goto bad; |
1145 | } |
1146 | } |
1147 | |
1148 | /* |
1149 | * Now there is no reason to process the packet if it's not our own |
1150 | * and we're not a router. |
1151 | */ |
1152 | if (!ip6_forwarding) { |
1153 | ip6stat.ip6s_cantforward++; |
1154 | in6_ifstat_inc(inifp, ifs6_in_discard); |
1155 | /* |
1156 | * Raise a kernel event if the packet received on cellular |
1157 | * interface is not intended for local host. |
1158 | * For now limit it to ICMPv6 packets. |
1159 | */ |
1160 | if (inifp->if_type == IFT_CELLULAR && |
1161 | ip6->ip6_nxt == IPPROTO_ICMPV6) { |
1162 | in6_ifstat_inc(inifp, ifs6_cantfoward_icmp6); |
1163 | } |
1164 | goto bad; |
1165 | } |
1166 | |
1167 | hbhcheck: |
1168 | /* |
1169 | * Process Hop-by-Hop options header if it's contained. |
1170 | * m may be modified in ip6_hopopts_input(). |
1171 | * If a JumboPayload option is included, plen will also be modified. |
1172 | */ |
1173 | plen = (u_int32_t)ntohs(ip6->ip6_plen); |
1174 | if (ip6->ip6_nxt == IPPROTO_HOPOPTS) { |
1175 | struct ip6_hbh *hbh; |
1176 | |
1177 | /* |
1178 | * Mark the packet to imply that HBH option has been checked. |
1179 | * This can only be true is the packet came in unfragmented |
1180 | * or if the option is in the first fragment |
1181 | */ |
1182 | m->m_pkthdr.pkt_flags |= PKTF_HBH_CHKED; |
1183 | if (ip6_hopopts_input(&plen, &rtalert, &m, &off)) { |
1184 | #if 0 /* touches NULL pointer */ |
1185 | in6_ifstat_inc(inifp, ifs6_in_discard); |
1186 | #endif |
1187 | goto done; /* m have already been freed */ |
1188 | } |
1189 | |
1190 | /* adjust pointer */ |
1191 | ip6 = mtod(m, struct ip6_hdr *); |
1192 | |
1193 | /* |
1194 | * if the payload length field is 0 and the next header field |
1195 | * indicates Hop-by-Hop Options header, then a Jumbo Payload |
1196 | * option MUST be included. |
1197 | */ |
1198 | if (ip6->ip6_plen == 0 && plen == 0) { |
1199 | /* |
1200 | * Note that if a valid jumbo payload option is |
1201 | * contained, ip6_hopopts_input() must set a valid |
1202 | * (non-zero) payload length to the variable plen. |
1203 | */ |
1204 | ip6stat.ip6s_badoptions++; |
1205 | in6_ifstat_inc(inifp, ifs6_in_discard); |
1206 | in6_ifstat_inc(inifp, ifs6_in_hdrerr); |
1207 | icmp6_error(m, ICMP6_PARAM_PROB, ICMP6_PARAMPROB_HEADER, |
1208 | (int)((caddr_t)&ip6->ip6_plen - (caddr_t)ip6)); |
1209 | goto done; |
1210 | } |
1211 | /* ip6_hopopts_input() ensures that mbuf is contiguous */ |
1212 | hbh = (struct ip6_hbh *)(ip6 + 1); |
1213 | nxt = hbh->ip6h_nxt; |
1214 | |
1215 | /* |
1216 | * If we are acting as a router and the packet contains a |
1217 | * router alert option, see if we know the option value. |
1218 | * Currently, we only support the option value for MLD, in which |
1219 | * case we should pass the packet to the multicast routing |
1220 | * daemon. |
1221 | */ |
1222 | if (rtalert != ~0 && ip6_forwarding) { |
1223 | switch (rtalert) { |
1224 | case IP6OPT_RTALERT_MLD: |
1225 | ours = 1; |
1226 | break; |
1227 | default: |
1228 | /* |
1229 | * RFC2711 requires unrecognized values must be |
1230 | * silently ignored. |
1231 | */ |
1232 | break; |
1233 | } |
1234 | } |
1235 | } else { |
1236 | nxt = ip6->ip6_nxt; |
1237 | } |
1238 | |
1239 | /* |
1240 | * Check that the amount of data in the buffers |
1241 | * is as at least much as the IPv6 header would have us expect. |
1242 | * Trim mbufs if longer than we expect. |
1243 | * Drop packet if shorter than we expect. |
1244 | */ |
1245 | if (m->m_pkthdr.len - sizeof(struct ip6_hdr) < plen) { |
1246 | ip6stat.ip6s_tooshort++; |
1247 | in6_ifstat_inc(inifp, ifs6_in_truncated); |
1248 | goto bad; |
1249 | } |
1250 | if (m->m_pkthdr.len > sizeof(struct ip6_hdr) + plen) { |
1251 | ip6_input_adjust(m, ip6, plen, inifp); |
1252 | } |
1253 | |
1254 | /* |
1255 | * Forward if desirable. |
1256 | */ |
1257 | if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { |
1258 | if (!ours && nd6_prproxy) { |
1259 | /* |
1260 | * If this isn't for us, this might be a Neighbor |
1261 | * Solicitation (dst is solicited-node multicast) |
1262 | * against an address in one of the proxied prefixes; |
1263 | * if so, claim the packet and let icmp6_input() |
1264 | * handle the rest. |
1265 | */ |
1266 | ours = nd6_prproxy_isours(m, ip6, NULL, IFSCOPE_NONE); |
1267 | VERIFY(!ours || |
1268 | (m->m_pkthdr.pkt_flags & PKTF_PROXY_DST)); |
1269 | } |
1270 | if (!ours) { |
1271 | goto bad; |
1272 | } |
1273 | } else if (!ours) { |
1274 | /* |
1275 | * The unicast forwarding function might return the packet |
1276 | * if we are proxying prefix(es), and if the packet is an |
1277 | * ICMPv6 packet that has failed the zone checks, but is |
1278 | * targetted towards a proxied address (this is optimized by |
1279 | * way of RTF_PROXY test.) If so, claim the packet as ours |
1280 | * and let icmp6_input() handle the rest. The packet's hop |
1281 | * limit value is kept intact (it's not decremented). This |
1282 | * is for supporting Neighbor Unreachability Detection between |
1283 | * proxied nodes on different links (src is link-local, dst |
1284 | * is target address.) |
1285 | */ |
1286 | if ((m = ip6_forward(m, &rin6, 0)) == NULL) { |
1287 | goto done; |
1288 | } |
1289 | VERIFY(rin6.ro_rt != NULL); |
1290 | VERIFY(m->m_pkthdr.pkt_flags & PKTF_PROXY_DST); |
1291 | deliverifp = rin6.ro_rt->rt_ifp; |
1292 | ours = 1; |
1293 | } |
1294 | |
1295 | ip6 = mtod(m, struct ip6_hdr *); |
1296 | |
1297 | /* |
1298 | * Malicious party may be able to use IPv4 mapped addr to confuse |
1299 | * tcp/udp stack and bypass security checks (act as if it was from |
1300 | * 127.0.0.1 by using IPv6 src ::ffff:127.0.0.1). Be cautious. |
1301 | * |
1302 | * For SIIT end node behavior, you may want to disable the check. |
1303 | * However, you will become vulnerable to attacks using IPv4 mapped |
1304 | * source. |
1305 | */ |
1306 | if (IN6_IS_ADDR_V4MAPPED(&ip6->ip6_src) || |
1307 | IN6_IS_ADDR_V4MAPPED(&ip6->ip6_dst)) { |
1308 | ip6stat.ip6s_badscope++; |
1309 | in6_ifstat_inc(inifp, ifs6_in_addrerr); |
1310 | goto bad; |
1311 | } |
1312 | |
1313 | /* |
1314 | * Tell launch routine the next header |
1315 | */ |
1316 | ip6stat.ip6s_delivered++; |
1317 | in6_ifstat_inc_na(deliverifp, ifs6_in_deliver); |
1318 | |
1319 | injectit: |
1320 | nest = 0; |
1321 | |
1322 | /* |
1323 | * Perform IP header alignment fixup again, if needed. Note that |
1324 | * we do it once for the outermost protocol, and we assume each |
1325 | * protocol handler wouldn't mess with the alignment afterwards. |
1326 | */ |
1327 | IP6_HDR_ALIGNMENT_FIXUP(m, inifp, return ); |
1328 | |
1329 | while (nxt != IPPROTO_DONE) { |
1330 | struct ipfilter *filter; |
1331 | int (*pr_input)(struct mbuf **, int *, int); |
1332 | |
1333 | /* |
1334 | * This would imply either IPPROTO_HOPOPTS was not the first |
1335 | * option or it did not come in the first fragment. |
1336 | */ |
1337 | if (nxt == IPPROTO_HOPOPTS && |
1338 | (m->m_pkthdr.pkt_flags & PKTF_HBH_CHKED) == 0) { |
1339 | /* |
1340 | * This implies that HBH option was not contained |
1341 | * in the first fragment |
1342 | */ |
1343 | ip6stat.ip6s_badoptions++; |
1344 | goto bad; |
1345 | } |
1346 | |
1347 | if (ip6_hdrnestlimit && (++nest > ip6_hdrnestlimit)) { |
1348 | ip6stat.ip6s_toomanyhdr++; |
1349 | goto bad; |
1350 | } |
1351 | |
1352 | /* |
1353 | * protection against faulty packet - there should be |
1354 | * more sanity checks in header chain processing. |
1355 | */ |
1356 | if (m->m_pkthdr.len < off) { |
1357 | ip6stat.ip6s_tooshort++; |
1358 | in6_ifstat_inc(inifp, ifs6_in_truncated); |
1359 | goto bad; |
1360 | } |
1361 | |
1362 | #if IPSEC |
1363 | /* |
1364 | * enforce IPsec policy checking if we are seeing last header. |
1365 | * note that we do not visit this with protocols with pcb layer |
1366 | * code - like udp/tcp/raw ip. |
1367 | */ |
1368 | if ((ipsec_bypass == 0) && |
1369 | (ip6_protox[nxt]->pr_flags & PR_LASTHDR) != 0) { |
1370 | if (ipsec6_in_reject(m, NULL)) { |
1371 | IPSEC_STAT_INCREMENT(ipsec6stat.in_polvio); |
1372 | goto bad; |
1373 | } |
1374 | } |
1375 | #endif /* IPSEC */ |
1376 | |
1377 | /* |
1378 | * Call IP filter |
1379 | */ |
1380 | if (!TAILQ_EMPTY(&ipv6_filters) && !IFNET_IS_INTCOPROC(inifp)) { |
1381 | ipf_ref(); |
1382 | TAILQ_FOREACH(filter, &ipv6_filters, ipf_link) { |
1383 | if (seen == 0) { |
1384 | if ((struct ipfilter *)inject_ipfref == |
1385 | filter) { |
1386 | seen = 1; |
1387 | } |
1388 | } else if (filter->ipf_filter.ipf_input) { |
1389 | errno_t result; |
1390 | |
1391 | result = filter->ipf_filter.ipf_input( |
1392 | filter->ipf_filter.cookie, |
1393 | (mbuf_t *)&m, off, (uint8_t)nxt); |
1394 | if (result == EJUSTRETURN) { |
1395 | ipf_unref(); |
1396 | goto done; |
1397 | } |
1398 | if (result != 0) { |
1399 | ipf_unref(); |
1400 | goto bad; |
1401 | } |
1402 | } |
1403 | } |
1404 | ipf_unref(); |
1405 | } |
1406 | |
1407 | DTRACE_IP6(receive, struct mbuf *, m, struct inpcb *, NULL, |
1408 | struct ip6_hdr *, ip6, struct ifnet *, inifp, |
1409 | struct ip *, NULL, struct ip6_hdr *, ip6); |
1410 | |
1411 | if ((pr_input = ip6_protox[nxt]->pr_input) == NULL) { |
1412 | m_freem(m); |
1413 | m = NULL; |
1414 | nxt = IPPROTO_DONE; |
1415 | } else if (!(ip6_protox[nxt]->pr_flags & PR_PROTOLOCK)) { |
1416 | lck_mtx_lock(lck: inet6_domain_mutex); |
1417 | nxt = pr_input(&m, &off, nxt); |
1418 | lck_mtx_unlock(lck: inet6_domain_mutex); |
1419 | } else { |
1420 | nxt = pr_input(&m, &off, nxt); |
1421 | } |
1422 | } |
1423 | done: |
1424 | ROUTE_RELEASE(&rin6); |
1425 | return; |
1426 | bad: |
1427 | m_freem(m); |
1428 | goto done; |
1429 | } |
1430 | |
1431 | void |
1432 | ip6_setsrcifaddr_info(struct mbuf *m, uint32_t src_idx, struct in6_ifaddr *ia6) |
1433 | { |
1434 | VERIFY(m->m_flags & M_PKTHDR); |
1435 | m->m_pkthdr.pkt_ext_flags &= ~PKTF_EXT_OUTPUT_SCOPE; |
1436 | /* |
1437 | * If the source ifaddr is specified, pick up the information |
1438 | * from there; otherwise just grab the passed-in ifindex as the |
1439 | * caller may not have the ifaddr available. |
1440 | */ |
1441 | if (ia6 != NULL) { |
1442 | m->m_pkthdr.pkt_flags |= PKTF_IFAINFO; |
1443 | m->m_pkthdr.src_ifindex = ia6->ia_ifp->if_index; |
1444 | |
1445 | /* See IN6_IFF comments in in6_var.h */ |
1446 | m->m_pkthdr.src_iff = (ia6->ia6_flags & 0xffff); |
1447 | } else { |
1448 | m->m_pkthdr.src_iff = 0; |
1449 | m->m_pkthdr.src_ifindex = (uint16_t)src_idx; |
1450 | if (src_idx != 0) { |
1451 | m->m_pkthdr.pkt_flags |= PKTF_IFAINFO; |
1452 | } |
1453 | } |
1454 | } |
1455 | |
1456 | void |
1457 | ip6_setdstifaddr_info(struct mbuf *m, uint32_t dst_idx, struct in6_ifaddr *ia6) |
1458 | { |
1459 | VERIFY(m->m_flags & M_PKTHDR); |
1460 | m->m_pkthdr.pkt_ext_flags &= ~PKTF_EXT_OUTPUT_SCOPE; |
1461 | |
1462 | /* |
1463 | * If the destination ifaddr is specified, pick up the information |
1464 | * from there; otherwise just grab the passed-in ifindex as the |
1465 | * caller may not have the ifaddr available. |
1466 | */ |
1467 | if (ia6 != NULL) { |
1468 | m->m_pkthdr.pkt_flags |= PKTF_IFAINFO; |
1469 | m->m_pkthdr.dst_ifindex = ia6->ia_ifp->if_index; |
1470 | |
1471 | /* See IN6_IFF comments in in6_var.h */ |
1472 | m->m_pkthdr.dst_iff = (ia6->ia6_flags & 0xffff); |
1473 | } else { |
1474 | m->m_pkthdr.dst_iff = 0; |
1475 | m->m_pkthdr.dst_ifindex = (uint16_t)dst_idx; |
1476 | if (dst_idx != 0) { |
1477 | m->m_pkthdr.pkt_flags |= PKTF_IFAINFO; |
1478 | } |
1479 | } |
1480 | } |
1481 | |
1482 | int |
1483 | ip6_getsrcifaddr_info(struct mbuf *m, uint32_t *src_idx, uint32_t *ia6f) |
1484 | { |
1485 | VERIFY(m->m_flags & M_PKTHDR); |
1486 | |
1487 | if (!(m->m_pkthdr.pkt_flags & PKTF_IFAINFO)) { |
1488 | return -1; |
1489 | } |
1490 | |
1491 | if (src_idx != NULL) { |
1492 | *src_idx = m->m_pkthdr.src_ifindex; |
1493 | } |
1494 | |
1495 | if (ia6f != NULL) { |
1496 | *ia6f = m->m_pkthdr.src_iff; |
1497 | } |
1498 | |
1499 | return 0; |
1500 | } |
1501 | |
1502 | int |
1503 | ip6_getdstifaddr_info(struct mbuf *m, uint32_t *dst_idx, uint32_t *ia6f) |
1504 | { |
1505 | VERIFY(m->m_flags & M_PKTHDR); |
1506 | |
1507 | if (!(m->m_pkthdr.pkt_flags & PKTF_IFAINFO)) { |
1508 | return -1; |
1509 | } |
1510 | |
1511 | if (dst_idx != NULL) { |
1512 | *dst_idx = m->m_pkthdr.dst_ifindex; |
1513 | } |
1514 | |
1515 | if (ia6f != NULL) { |
1516 | *ia6f = m->m_pkthdr.dst_iff; |
1517 | } |
1518 | |
1519 | return 0; |
1520 | } |
1521 | |
1522 | uint32_t |
1523 | ip6_input_getsrcifscope(struct mbuf *m) |
1524 | { |
1525 | VERIFY(m->m_flags & M_PKTHDR); |
1526 | |
1527 | if (m->m_pkthdr.rcvif != NULL) { |
1528 | return m->m_pkthdr.rcvif->if_index; |
1529 | } |
1530 | |
1531 | uint32_t src_ifscope = IFSCOPE_NONE; |
1532 | ip6_getsrcifaddr_info(m, src_idx: &src_ifscope, NULL); |
1533 | return src_ifscope; |
1534 | } |
1535 | |
1536 | uint32_t |
1537 | ip6_input_getdstifscope(struct mbuf *m) |
1538 | { |
1539 | VERIFY(m->m_flags & M_PKTHDR); |
1540 | |
1541 | if (m->m_pkthdr.rcvif != NULL) { |
1542 | return m->m_pkthdr.rcvif->if_index; |
1543 | } |
1544 | |
1545 | uint32_t dst_ifscope = IFSCOPE_NONE; |
1546 | ip6_getdstifaddr_info(m, dst_idx: &dst_ifscope, NULL); |
1547 | return dst_ifscope; |
1548 | } |
1549 | |
1550 | /* |
1551 | * Hop-by-Hop options header processing. If a valid jumbo payload option is |
1552 | * included, the real payload length will be stored in plenp. |
1553 | */ |
1554 | static int |
1555 | ip6_hopopts_input(uint32_t *plenp, uint32_t *rtalertp, struct mbuf **mp, |
1556 | int *offp) |
1557 | { |
1558 | struct mbuf *m = *mp; |
1559 | int off = *offp, hbhlen; |
1560 | struct ip6_hbh *hbh; |
1561 | u_int8_t *opt; |
1562 | |
1563 | /* validation of the length of the header */ |
1564 | IP6_EXTHDR_CHECK(m, off, sizeof(*hbh), return (-1)); |
1565 | hbh = (struct ip6_hbh *)(mtod(m, caddr_t) + off); |
1566 | hbhlen = (hbh->ip6h_len + 1) << 3; |
1567 | |
1568 | IP6_EXTHDR_CHECK(m, off, hbhlen, return (-1)); |
1569 | hbh = (struct ip6_hbh *)(mtod(m, caddr_t) + off); |
1570 | off += hbhlen; |
1571 | hbhlen -= sizeof(struct ip6_hbh); |
1572 | opt = (u_int8_t *)hbh + sizeof(struct ip6_hbh); |
1573 | |
1574 | if (ip6_process_hopopts(m, (u_int8_t *)hbh + sizeof(struct ip6_hbh), |
1575 | hbhlen, rtalertp, plenp) < 0) { |
1576 | return -1; |
1577 | } |
1578 | |
1579 | *offp = off; |
1580 | *mp = m; |
1581 | return 0; |
1582 | } |
1583 | |
1584 | /* |
1585 | * Search header for all Hop-by-hop options and process each option. |
1586 | * This function is separate from ip6_hopopts_input() in order to |
1587 | * handle a case where the sending node itself process its hop-by-hop |
1588 | * options header. In such a case, the function is called from ip6_output(). |
1589 | * |
1590 | * The function assumes that hbh header is located right after the IPv6 header |
1591 | * (RFC2460 p7), opthead is pointer into data content in m, and opthead to |
1592 | * opthead + hbhlen is located in continuous memory region. |
1593 | */ |
1594 | int |
1595 | ip6_process_hopopts(struct mbuf *m, u_int8_t *opthead, int hbhlen, |
1596 | u_int32_t *rtalertp, u_int32_t *plenp) |
1597 | { |
1598 | struct ip6_hdr *ip6; |
1599 | int optlen = 0; |
1600 | u_int8_t *opt = opthead; |
1601 | u_int16_t rtalert_val; |
1602 | u_int32_t jumboplen; |
1603 | const int erroff = sizeof(struct ip6_hdr) + sizeof(struct ip6_hbh); |
1604 | |
1605 | for (; hbhlen > 0; hbhlen -= optlen, opt += optlen) { |
1606 | switch (*opt) { |
1607 | case IP6OPT_PAD1: |
1608 | optlen = 1; |
1609 | break; |
1610 | case IP6OPT_PADN: |
1611 | if (hbhlen < IP6OPT_MINLEN) { |
1612 | ip6stat.ip6s_toosmall++; |
1613 | goto bad; |
1614 | } |
1615 | optlen = *(opt + 1) + 2; |
1616 | break; |
1617 | case IP6OPT_ROUTER_ALERT: |
1618 | /* XXX may need check for alignment */ |
1619 | if (hbhlen < IP6OPT_RTALERT_LEN) { |
1620 | ip6stat.ip6s_toosmall++; |
1621 | goto bad; |
1622 | } |
1623 | if (*(opt + 1) != IP6OPT_RTALERT_LEN - 2) { |
1624 | /* XXX stat */ |
1625 | icmp6_error(m, ICMP6_PARAM_PROB, |
1626 | ICMP6_PARAMPROB_HEADER, |
1627 | (int)(erroff + opt + 1 - opthead)); |
1628 | return -1; |
1629 | } |
1630 | optlen = IP6OPT_RTALERT_LEN; |
1631 | bcopy(src: (caddr_t)(opt + 2), dst: (caddr_t)&rtalert_val, n: 2); |
1632 | *rtalertp = ntohs(rtalert_val); |
1633 | break; |
1634 | case IP6OPT_JUMBO: |
1635 | /* XXX may need check for alignment */ |
1636 | if (hbhlen < IP6OPT_JUMBO_LEN) { |
1637 | ip6stat.ip6s_toosmall++; |
1638 | goto bad; |
1639 | } |
1640 | if (*(opt + 1) != IP6OPT_JUMBO_LEN - 2) { |
1641 | /* XXX stat */ |
1642 | icmp6_error(m, ICMP6_PARAM_PROB, |
1643 | ICMP6_PARAMPROB_HEADER, |
1644 | (int)(erroff + opt + 1 - opthead)); |
1645 | return -1; |
1646 | } |
1647 | optlen = IP6OPT_JUMBO_LEN; |
1648 | |
1649 | /* |
1650 | * IPv6 packets that have non 0 payload length |
1651 | * must not contain a jumbo payload option. |
1652 | */ |
1653 | ip6 = mtod(m, struct ip6_hdr *); |
1654 | if (ip6->ip6_plen) { |
1655 | ip6stat.ip6s_badoptions++; |
1656 | icmp6_error(m, ICMP6_PARAM_PROB, |
1657 | ICMP6_PARAMPROB_HEADER, |
1658 | (int)(erroff + opt - opthead)); |
1659 | return -1; |
1660 | } |
1661 | |
1662 | /* |
1663 | * We may see jumbolen in unaligned location, so |
1664 | * we'd need to perform bcopy(). |
1665 | */ |
1666 | bcopy(src: opt + 2, dst: &jumboplen, n: sizeof(jumboplen)); |
1667 | jumboplen = (u_int32_t)htonl(jumboplen); |
1668 | |
1669 | #if 1 |
1670 | /* |
1671 | * if there are multiple jumbo payload options, |
1672 | * *plenp will be non-zero and the packet will be |
1673 | * rejected. |
1674 | * the behavior may need some debate in ipngwg - |
1675 | * multiple options does not make sense, however, |
1676 | * there's no explicit mention in specification. |
1677 | */ |
1678 | if (*plenp != 0) { |
1679 | ip6stat.ip6s_badoptions++; |
1680 | icmp6_error(m, ICMP6_PARAM_PROB, |
1681 | ICMP6_PARAMPROB_HEADER, |
1682 | (int)(erroff + opt + 2 - opthead)); |
1683 | return -1; |
1684 | } |
1685 | #endif |
1686 | |
1687 | /* |
1688 | * jumbo payload length must be larger than 65535. |
1689 | */ |
1690 | if (jumboplen <= IPV6_MAXPACKET) { |
1691 | ip6stat.ip6s_badoptions++; |
1692 | icmp6_error(m, ICMP6_PARAM_PROB, |
1693 | ICMP6_PARAMPROB_HEADER, |
1694 | (int)(erroff + opt + 2 - opthead)); |
1695 | return -1; |
1696 | } |
1697 | *plenp = jumboplen; |
1698 | |
1699 | break; |
1700 | default: /* unknown option */ |
1701 | if (hbhlen < IP6OPT_MINLEN) { |
1702 | ip6stat.ip6s_toosmall++; |
1703 | goto bad; |
1704 | } |
1705 | optlen = ip6_unknown_opt(opt, m, |
1706 | erroff + opt - opthead); |
1707 | if (optlen == -1) { |
1708 | return -1; |
1709 | } |
1710 | optlen += 2; |
1711 | break; |
1712 | } |
1713 | } |
1714 | |
1715 | return 0; |
1716 | |
1717 | bad: |
1718 | m_freem(m); |
1719 | return -1; |
1720 | } |
1721 | |
1722 | /* |
1723 | * Unknown option processing. |
1724 | * The third argument `off' is the offset from the IPv6 header to the option, |
1725 | * which is necessary if the IPv6 header the and option header and IPv6 header |
1726 | * is not continuous in order to return an ICMPv6 error. |
1727 | */ |
1728 | int |
1729 | ip6_unknown_opt(uint8_t *optp, struct mbuf *m, size_t off) |
1730 | { |
1731 | struct ip6_hdr *ip6; |
1732 | |
1733 | switch (IP6OPT_TYPE(*optp)) { |
1734 | case IP6OPT_TYPE_SKIP: /* ignore the option */ |
1735 | return (int)*(optp + 1); |
1736 | |
1737 | case IP6OPT_TYPE_DISCARD: /* silently discard */ |
1738 | m_freem(m); |
1739 | return -1; |
1740 | |
1741 | case IP6OPT_TYPE_FORCEICMP: /* send ICMP even if multicasted */ |
1742 | ip6stat.ip6s_badoptions++; |
1743 | icmp6_error(m, ICMP6_PARAM_PROB, ICMP6_PARAMPROB_OPTION, (int)off); |
1744 | return -1; |
1745 | |
1746 | case IP6OPT_TYPE_ICMP: /* send ICMP if not multicasted */ |
1747 | ip6stat.ip6s_badoptions++; |
1748 | ip6 = mtod(m, struct ip6_hdr *); |
1749 | if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) || |
1750 | (m->m_flags & (M_BCAST | M_MCAST))) { |
1751 | m_freem(m); |
1752 | } else { |
1753 | icmp6_error(m, ICMP6_PARAM_PROB, |
1754 | ICMP6_PARAMPROB_OPTION, (int)off); |
1755 | } |
1756 | return -1; |
1757 | } |
1758 | |
1759 | m_freem(m); /* XXX: NOTREACHED */ |
1760 | return -1; |
1761 | } |
1762 | |
1763 | /* |
1764 | * Create the "control" list for this pcb. |
1765 | * These functions will not modify mbuf chain at all. |
1766 | * |
1767 | * With KAME mbuf chain restriction: |
1768 | * The routine will be called from upper layer handlers like tcp6_input(). |
1769 | * Thus the routine assumes that the caller (tcp6_input) have already |
1770 | * called IP6_EXTHDR_CHECK() and all the extension headers are located in the |
1771 | * very first mbuf on the mbuf chain. |
1772 | * |
1773 | * ip6_savecontrol_v4 will handle those options that are possible to be |
1774 | * set on a v4-mapped socket. |
1775 | * ip6_savecontrol will directly call ip6_savecontrol_v4 to handle those |
1776 | * options and handle the v6-only ones itself. |
1777 | */ |
1778 | struct mbuf ** |
1779 | ip6_savecontrol_v4(struct inpcb *inp, struct mbuf *m, struct mbuf **mp, |
1780 | int *v4only) |
1781 | { |
1782 | struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *); |
1783 | |
1784 | if ((inp->inp_socket->so_options & SO_TIMESTAMP) != 0) { |
1785 | struct timeval tv; |
1786 | |
1787 | getmicrotime(&tv); |
1788 | mp = sbcreatecontrol_mbuf(p: (caddr_t)&tv, size: sizeof(tv), |
1789 | SCM_TIMESTAMP, SOL_SOCKET, m: mp); |
1790 | if (*mp == NULL) { |
1791 | return NULL; |
1792 | } |
1793 | } |
1794 | if ((inp->inp_socket->so_options & SO_TIMESTAMP_MONOTONIC) != 0) { |
1795 | uint64_t time; |
1796 | |
1797 | time = mach_absolute_time(); |
1798 | mp = sbcreatecontrol_mbuf(p: (caddr_t)&time, size: sizeof(time), |
1799 | SCM_TIMESTAMP_MONOTONIC, SOL_SOCKET, m: mp); |
1800 | if (*mp == NULL) { |
1801 | return NULL; |
1802 | } |
1803 | } |
1804 | if ((inp->inp_socket->so_options & SO_TIMESTAMP_CONTINUOUS) != 0) { |
1805 | uint64_t time; |
1806 | |
1807 | time = mach_continuous_time(); |
1808 | mp = sbcreatecontrol_mbuf(p: (caddr_t)&time, size: sizeof(time), |
1809 | SCM_TIMESTAMP_CONTINUOUS, SOL_SOCKET, m: mp); |
1810 | if (*mp == NULL) { |
1811 | return NULL; |
1812 | } |
1813 | } |
1814 | if ((inp->inp_socket->so_flags & SOF_RECV_TRAFFIC_CLASS) != 0) { |
1815 | int tc = m_get_traffic_class(m); |
1816 | |
1817 | mp = sbcreatecontrol_mbuf(p: (caddr_t)&tc, size: sizeof(tc), |
1818 | SO_TRAFFIC_CLASS, SOL_SOCKET, m: mp); |
1819 | if (*mp == NULL) { |
1820 | return NULL; |
1821 | } |
1822 | } |
1823 | |
1824 | if ((inp->inp_socket->so_flags & SOF_RECV_WAKE_PKT) && |
1825 | (m->m_pkthdr.pkt_flags & PKTF_WAKE_PKT)) { |
1826 | int flag = 1; |
1827 | |
1828 | mp = sbcreatecontrol_mbuf(p: (caddr_t)&flag, size: sizeof(flag), |
1829 | SO_RECV_WAKE_PKT, SOL_SOCKET, m: mp); |
1830 | if (*mp == NULL) { |
1831 | return NULL; |
1832 | } |
1833 | } |
1834 | |
1835 | #define IS2292(inp, x, y) (((inp)->inp_flags & IN6P_RFC2292) ? (x) : (y)) |
1836 | if ((ip6->ip6_vfc & IPV6_VERSION_MASK) != IPV6_VERSION) { |
1837 | if (v4only != NULL) { |
1838 | *v4only = 1; |
1839 | } |
1840 | |
1841 | // Send ECN flags for v4-mapped addresses |
1842 | if ((inp->inp_flags & IN6P_TCLASS) != 0) { |
1843 | struct ip * = mtod(m, struct ip *); |
1844 | |
1845 | int tclass = (int)(ip_header->ip_tos); |
1846 | mp = sbcreatecontrol_mbuf(p: (caddr_t)&tclass, size: sizeof(tclass), |
1847 | IPV6_TCLASS, IPPROTO_IPV6, m: mp); |
1848 | if (*mp == NULL) { |
1849 | return NULL; |
1850 | } |
1851 | } |
1852 | |
1853 | // Send IN6P_PKTINFO for v4-mapped address |
1854 | if ((inp->inp_flags & IN6P_PKTINFO) != 0 || SOFLOW_ENABLED(inp->inp_socket)) { |
1855 | struct in6_pktinfo pi6 = { |
1856 | .ipi6_addr = IN6ADDR_V4MAPPED_INIT, |
1857 | .ipi6_ifindex = (m && m->m_pkthdr.rcvif) ? m->m_pkthdr.rcvif->if_index : 0, |
1858 | }; |
1859 | |
1860 | struct ip * = mtod(m, struct ip *); |
1861 | bcopy(src: &ip_header->ip_dst, dst: &pi6.ipi6_addr.s6_addr32[3], n: sizeof(struct in_addr)); |
1862 | |
1863 | mp = sbcreatecontrol_mbuf(p: (caddr_t)&pi6, |
1864 | size: sizeof(struct in6_pktinfo), |
1865 | IS2292(inp, IPV6_2292PKTINFO, IPV6_PKTINFO), |
1866 | IPPROTO_IPV6, m: mp); |
1867 | if (*mp == NULL) { |
1868 | return NULL; |
1869 | } |
1870 | } |
1871 | return mp; |
1872 | } |
1873 | |
1874 | /* RFC 2292 sec. 5 */ |
1875 | if ((inp->inp_flags & IN6P_PKTINFO) != 0 || SOFLOW_ENABLED(inp->inp_socket)) { |
1876 | struct in6_pktinfo pi6; |
1877 | |
1878 | bcopy(src: &ip6->ip6_dst, dst: &pi6.ipi6_addr, n: sizeof(struct in6_addr)); |
1879 | in6_clearscope(&pi6.ipi6_addr); /* XXX */ |
1880 | pi6.ipi6_ifindex = |
1881 | (m && m->m_pkthdr.rcvif) ? m->m_pkthdr.rcvif->if_index : 0; |
1882 | |
1883 | mp = sbcreatecontrol_mbuf(p: (caddr_t)&pi6, |
1884 | size: sizeof(struct in6_pktinfo), |
1885 | IS2292(inp, IPV6_2292PKTINFO, IPV6_PKTINFO), |
1886 | IPPROTO_IPV6, m: mp); |
1887 | if (*mp == NULL) { |
1888 | return NULL; |
1889 | } |
1890 | } |
1891 | |
1892 | if ((inp->inp_flags & IN6P_HOPLIMIT) != 0) { |
1893 | int hlim = ip6->ip6_hlim & 0xff; |
1894 | |
1895 | mp = sbcreatecontrol_mbuf(p: (caddr_t)&hlim, size: sizeof(int), |
1896 | IS2292(inp, IPV6_2292HOPLIMIT, IPV6_HOPLIMIT), |
1897 | IPPROTO_IPV6, m: mp); |
1898 | if (*mp == NULL) { |
1899 | return NULL; |
1900 | } |
1901 | } |
1902 | |
1903 | if (v4only != NULL) { |
1904 | *v4only = 0; |
1905 | } |
1906 | return mp; |
1907 | } |
1908 | |
1909 | int |
1910 | ip6_savecontrol(struct inpcb *in6p, struct mbuf *m, struct mbuf **mp) |
1911 | { |
1912 | struct mbuf **np; |
1913 | struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *); |
1914 | int v4only = 0; |
1915 | |
1916 | *mp = NULL; |
1917 | np = ip6_savecontrol_v4(inp: in6p, m, mp, v4only: &v4only); |
1918 | if (np == NULL) { |
1919 | goto no_mbufs; |
1920 | } |
1921 | |
1922 | mp = np; |
1923 | if (v4only) { |
1924 | return 0; |
1925 | } |
1926 | |
1927 | if ((in6p->inp_flags & IN6P_TCLASS) != 0) { |
1928 | u_int32_t flowinfo; |
1929 | int tclass; |
1930 | |
1931 | flowinfo = (u_int32_t)ntohl(ip6->ip6_flow & IPV6_FLOWINFO_MASK); |
1932 | flowinfo >>= 20; |
1933 | |
1934 | tclass = flowinfo & 0xff; |
1935 | mp = sbcreatecontrol_mbuf(p: (caddr_t)&tclass, size: sizeof(tclass), |
1936 | IPV6_TCLASS, IPPROTO_IPV6, m: mp); |
1937 | if (*mp == NULL) { |
1938 | goto no_mbufs; |
1939 | } |
1940 | } |
1941 | |
1942 | /* |
1943 | * IPV6_HOPOPTS socket option. Recall that we required super-user |
1944 | * privilege for the option (see ip6_ctloutput), but it might be too |
1945 | * strict, since there might be some hop-by-hop options which can be |
1946 | * returned to normal user. |
1947 | * See also RFC 2292 section 6 (or RFC 3542 section 8). |
1948 | */ |
1949 | if ((in6p->inp_flags & IN6P_HOPOPTS) != 0) { |
1950 | /* |
1951 | * Check if a hop-by-hop options header is contatined in the |
1952 | * received packet, and if so, store the options as ancillary |
1953 | * data. Note that a hop-by-hop options header must be |
1954 | * just after the IPv6 header, which is assured through the |
1955 | * IPv6 input processing. |
1956 | */ |
1957 | ip6 = mtod(m, struct ip6_hdr *); |
1958 | if (ip6->ip6_nxt == IPPROTO_HOPOPTS) { |
1959 | struct ip6_hbh *hbh; |
1960 | int hbhlen = 0; |
1961 | hbh = (struct ip6_hbh *)(ip6 + 1); |
1962 | hbhlen = (hbh->ip6h_len + 1) << 3; |
1963 | |
1964 | /* |
1965 | * XXX: We copy the whole header even if a |
1966 | * jumbo payload option is included, the option which |
1967 | * is to be removed before returning according to |
1968 | * RFC2292. |
1969 | * Note: this constraint is removed in RFC3542 |
1970 | */ |
1971 | mp = sbcreatecontrol_mbuf(p: (caddr_t)hbh, size: hbhlen, |
1972 | IS2292(in6p, IPV6_2292HOPOPTS, IPV6_HOPOPTS), |
1973 | IPPROTO_IPV6, m: mp); |
1974 | |
1975 | if (*mp == NULL) { |
1976 | goto no_mbufs; |
1977 | } |
1978 | } |
1979 | } |
1980 | |
1981 | if ((in6p->inp_flags & (IN6P_RTHDR | IN6P_DSTOPTS)) != 0) { |
1982 | int nxt = ip6->ip6_nxt, off = sizeof(struct ip6_hdr); |
1983 | |
1984 | /* |
1985 | * Search for destination options headers or routing |
1986 | * header(s) through the header chain, and stores each |
1987 | * header as ancillary data. |
1988 | * Note that the order of the headers remains in |
1989 | * the chain of ancillary data. |
1990 | */ |
1991 | while (1) { /* is explicit loop prevention necessary? */ |
1992 | struct ip6_ext *ip6e = NULL; |
1993 | int elen; |
1994 | |
1995 | /* |
1996 | * if it is not an extension header, don't try to |
1997 | * pull it from the chain. |
1998 | */ |
1999 | switch (nxt) { |
2000 | case IPPROTO_DSTOPTS: |
2001 | case IPPROTO_ROUTING: |
2002 | case IPPROTO_HOPOPTS: |
2003 | case IPPROTO_AH: /* is it possible? */ |
2004 | break; |
2005 | default: |
2006 | goto loopend; |
2007 | } |
2008 | |
2009 | if (off + sizeof(*ip6e) > m->m_len) { |
2010 | goto loopend; |
2011 | } |
2012 | ip6e = (struct ip6_ext *)(mtod(m, caddr_t) + off); |
2013 | if (nxt == IPPROTO_AH) { |
2014 | elen = (ip6e->ip6e_len + 2) << 2; |
2015 | } else { |
2016 | elen = (ip6e->ip6e_len + 1) << 3; |
2017 | } |
2018 | if (off + elen > m->m_len) { |
2019 | goto loopend; |
2020 | } |
2021 | |
2022 | switch (nxt) { |
2023 | case IPPROTO_DSTOPTS: |
2024 | if (!(in6p->inp_flags & IN6P_DSTOPTS)) { |
2025 | break; |
2026 | } |
2027 | |
2028 | mp = sbcreatecontrol_mbuf(p: (caddr_t)ip6e, size: elen, |
2029 | IS2292(in6p, IPV6_2292DSTOPTS, |
2030 | IPV6_DSTOPTS), IPPROTO_IPV6, m: mp); |
2031 | if (*mp == NULL) { |
2032 | goto no_mbufs; |
2033 | } |
2034 | break; |
2035 | case IPPROTO_ROUTING: |
2036 | if (!(in6p->inp_flags & IN6P_RTHDR)) { |
2037 | break; |
2038 | } |
2039 | |
2040 | mp = sbcreatecontrol_mbuf(p: (caddr_t)ip6e, size: elen, |
2041 | IS2292(in6p, IPV6_2292RTHDR, IPV6_RTHDR), |
2042 | IPPROTO_IPV6, m: mp); |
2043 | if (*mp == NULL) { |
2044 | goto no_mbufs; |
2045 | } |
2046 | break; |
2047 | case IPPROTO_HOPOPTS: |
2048 | case IPPROTO_AH: /* is it possible? */ |
2049 | break; |
2050 | |
2051 | default: |
2052 | /* |
2053 | * other cases have been filtered in the above. |
2054 | * none will visit this case. here we supply |
2055 | * the code just in case (nxt overwritten or |
2056 | * other cases). |
2057 | */ |
2058 | goto loopend; |
2059 | } |
2060 | |
2061 | /* proceed with the next header. */ |
2062 | off += elen; |
2063 | nxt = ip6e->ip6e_nxt; |
2064 | ip6e = NULL; |
2065 | } |
2066 | loopend: |
2067 | ; |
2068 | } |
2069 | return 0; |
2070 | no_mbufs: |
2071 | ip6stat.ip6s_pktdropcntrl++; |
2072 | /* XXX increment a stat to show the failure */ |
2073 | return ENOBUFS; |
2074 | } |
2075 | #undef IS2292 |
2076 | |
2077 | void |
2078 | ip6_notify_pmtu(struct inpcb *in6p, struct sockaddr_in6 *dst, u_int32_t *mtu) |
2079 | { |
2080 | struct socket *so; |
2081 | struct mbuf *m_mtu; |
2082 | struct ip6_mtuinfo mtuctl; |
2083 | |
2084 | so = in6p->inp_socket; |
2085 | |
2086 | if ((in6p->inp_flags & IN6P_MTU) == 0) { |
2087 | return; |
2088 | } |
2089 | |
2090 | if (mtu == NULL) { |
2091 | return; |
2092 | } |
2093 | |
2094 | if (IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_faddr) && SOCK_CHECK_PROTO(so, IPPROTO_TCP)) { |
2095 | return; |
2096 | } |
2097 | |
2098 | if (!IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_faddr) && |
2099 | !in6_are_addr_equal_scoped(&in6p->in6p_faddr, &dst->sin6_addr, in6p->inp_fifscope, dst->sin6_scope_id)) { |
2100 | return; |
2101 | } |
2102 | |
2103 | bzero(s: &mtuctl, n: sizeof(mtuctl)); /* zero-clear for safety */ |
2104 | mtuctl.ip6m_mtu = *mtu; |
2105 | mtuctl.ip6m_addr = *dst; |
2106 | if (!in6_embedded_scope) { |
2107 | mtuctl.ip6m_addr.sin6_scope_id = dst->sin6_scope_id; |
2108 | } |
2109 | if (sa6_recoverscope(&mtuctl.ip6m_addr, TRUE)) { |
2110 | return; |
2111 | } |
2112 | |
2113 | if ((m_mtu = sbcreatecontrol(p: (caddr_t)&mtuctl, size: sizeof(mtuctl), |
2114 | IPV6_PATHMTU, IPPROTO_IPV6)) == NULL) { |
2115 | return; |
2116 | } |
2117 | |
2118 | if (sbappendaddr(sb: &so->so_rcv, SA(dst), NULL, control: m_mtu, NULL) == 0) { |
2119 | return; |
2120 | } |
2121 | sorwakeup(so); |
2122 | } |
2123 | |
2124 | /* |
2125 | * Get pointer to the previous header followed by the header |
2126 | * currently processed. |
2127 | * XXX: This function supposes that |
2128 | * M includes all headers, |
2129 | * the next header field and the header length field of each header |
2130 | * are valid, and |
2131 | * the sum of each header length equals to OFF. |
2132 | * Because of these assumptions, this function must be called very |
2133 | * carefully. Moreover, it will not be used in the near future when |
2134 | * we develop `neater' mechanism to process extension headers. |
2135 | */ |
2136 | char * |
2137 | ip6_get_prevhdr(struct mbuf *m, int off) |
2138 | { |
2139 | struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *); |
2140 | |
2141 | if (off == sizeof(struct ip6_hdr)) { |
2142 | return (char *)&ip6->ip6_nxt; |
2143 | } else { |
2144 | int len, nxt; |
2145 | struct ip6_ext *ip6e = NULL; |
2146 | |
2147 | nxt = ip6->ip6_nxt; |
2148 | len = sizeof(struct ip6_hdr); |
2149 | while (len < off) { |
2150 | ip6e = (struct ip6_ext *)(mtod(m, caddr_t) + len); |
2151 | |
2152 | switch (nxt) { |
2153 | case IPPROTO_FRAGMENT: |
2154 | len += sizeof(struct ip6_frag); |
2155 | break; |
2156 | case IPPROTO_AH: |
2157 | len += (ip6e->ip6e_len + 2) << 2; |
2158 | break; |
2159 | default: |
2160 | len += (ip6e->ip6e_len + 1) << 3; |
2161 | break; |
2162 | } |
2163 | nxt = ip6e->ip6e_nxt; |
2164 | } |
2165 | if (ip6e) { |
2166 | return (char *)&ip6e->ip6e_nxt; |
2167 | } else { |
2168 | return NULL; |
2169 | } |
2170 | } |
2171 | } |
2172 | |
2173 | /* |
2174 | * get next header offset. m will be retained. |
2175 | */ |
2176 | int |
2177 | ip6_nexthdr(struct mbuf *m, int off, int proto, int *nxtp) |
2178 | { |
2179 | struct ip6_hdr ip6; |
2180 | struct ip6_ext ip6e; |
2181 | struct ip6_frag fh; |
2182 | |
2183 | /* just in case */ |
2184 | VERIFY(m != NULL); |
2185 | if ((m->m_flags & M_PKTHDR) == 0 || m->m_pkthdr.len < off) { |
2186 | return -1; |
2187 | } |
2188 | |
2189 | switch (proto) { |
2190 | case IPPROTO_IPV6: |
2191 | if (m->m_pkthdr.len < off + sizeof(ip6)) { |
2192 | return -1; |
2193 | } |
2194 | m_copydata(m, off, sizeof(ip6), (caddr_t)&ip6); |
2195 | if (nxtp) { |
2196 | *nxtp = ip6.ip6_nxt; |
2197 | } |
2198 | off += sizeof(ip6); |
2199 | return off; |
2200 | |
2201 | case IPPROTO_FRAGMENT: |
2202 | /* |
2203 | * terminate parsing if it is not the first fragment, |
2204 | * it does not make sense to parse through it. |
2205 | */ |
2206 | if (m->m_pkthdr.len < off + sizeof(fh)) { |
2207 | return -1; |
2208 | } |
2209 | m_copydata(m, off, sizeof(fh), (caddr_t)&fh); |
2210 | /* IP6F_OFF_MASK = 0xfff8(BigEndian), 0xf8ff(LittleEndian) */ |
2211 | if (fh.ip6f_offlg & IP6F_OFF_MASK) { |
2212 | return -1; |
2213 | } |
2214 | if (nxtp) { |
2215 | *nxtp = fh.ip6f_nxt; |
2216 | } |
2217 | off += sizeof(struct ip6_frag); |
2218 | return off; |
2219 | |
2220 | case IPPROTO_AH: |
2221 | if (m->m_pkthdr.len < off + sizeof(ip6e)) { |
2222 | return -1; |
2223 | } |
2224 | m_copydata(m, off, sizeof(ip6e), (caddr_t)&ip6e); |
2225 | if (nxtp) { |
2226 | *nxtp = ip6e.ip6e_nxt; |
2227 | } |
2228 | off += (ip6e.ip6e_len + 2) << 2; |
2229 | return off; |
2230 | |
2231 | case IPPROTO_HOPOPTS: |
2232 | case IPPROTO_ROUTING: |
2233 | case IPPROTO_DSTOPTS: |
2234 | if (m->m_pkthdr.len < off + sizeof(ip6e)) { |
2235 | return -1; |
2236 | } |
2237 | m_copydata(m, off, sizeof(ip6e), (caddr_t)&ip6e); |
2238 | if (nxtp) { |
2239 | *nxtp = ip6e.ip6e_nxt; |
2240 | } |
2241 | off += (ip6e.ip6e_len + 1) << 3; |
2242 | return off; |
2243 | |
2244 | case IPPROTO_NONE: |
2245 | case IPPROTO_ESP: |
2246 | case IPPROTO_IPCOMP: |
2247 | /* give up */ |
2248 | return -1; |
2249 | |
2250 | default: |
2251 | return -1; |
2252 | } |
2253 | } |
2254 | |
2255 | /* |
2256 | * get offset for the last header in the chain. m will be kept untainted. |
2257 | */ |
2258 | int |
2259 | ip6_lasthdr(struct mbuf *m, int off, int proto, int *nxtp) |
2260 | { |
2261 | int newoff; |
2262 | int nxt; |
2263 | |
2264 | if (!nxtp) { |
2265 | nxt = -1; |
2266 | nxtp = &nxt; |
2267 | } |
2268 | while (1) { |
2269 | newoff = ip6_nexthdr(m, off, proto, nxtp); |
2270 | if (newoff < 0) { |
2271 | return off; |
2272 | } else if (newoff < off) { |
2273 | return -1; /* invalid */ |
2274 | } else if (newoff == off) { |
2275 | return newoff; |
2276 | } |
2277 | |
2278 | off = newoff; |
2279 | proto = *nxtp; |
2280 | } |
2281 | } |
2282 | |
2283 | boolean_t |
2284 | ip6_pkt_has_ulp(struct mbuf *m) |
2285 | { |
2286 | int off = 0, nxt = IPPROTO_NONE; |
2287 | |
2288 | off = ip6_lasthdr(m, off: 0, IPPROTO_IPV6, nxtp: &nxt); |
2289 | if (off < 0 || m->m_pkthdr.len < off) { |
2290 | return FALSE; |
2291 | } |
2292 | |
2293 | switch (nxt) { |
2294 | case IPPROTO_TCP: |
2295 | if (off + sizeof(struct tcphdr) > m->m_pkthdr.len) { |
2296 | return FALSE; |
2297 | } |
2298 | break; |
2299 | case IPPROTO_UDP: |
2300 | if (off + sizeof(struct udphdr) > m->m_pkthdr.len) { |
2301 | return FALSE; |
2302 | } |
2303 | break; |
2304 | case IPPROTO_ICMPV6: |
2305 | if (off + sizeof(uint32_t) > m->m_pkthdr.len) { |
2306 | return FALSE; |
2307 | } |
2308 | break; |
2309 | case IPPROTO_NONE: |
2310 | return TRUE; |
2311 | case IPPROTO_ESP: |
2312 | return TRUE; |
2313 | case IPPROTO_IPCOMP: |
2314 | return TRUE; |
2315 | default: |
2316 | return FALSE; |
2317 | } |
2318 | return TRUE; |
2319 | } |
2320 | |
2321 | struct ip6aux * |
2322 | ip6_addaux(struct mbuf *m) |
2323 | { |
2324 | struct m_tag *tag; |
2325 | |
2326 | /* Check if one is already allocated */ |
2327 | tag = m_tag_locate(m, KERNEL_MODULE_TAG_ID, |
2328 | KERNEL_TAG_TYPE_INET6); |
2329 | if (tag == NULL) { |
2330 | /* Allocate a tag */ |
2331 | tag = m_tag_create(KERNEL_MODULE_TAG_ID, KERNEL_TAG_TYPE_INET6, |
2332 | sizeof(struct ip6aux), M_DONTWAIT, m); |
2333 | |
2334 | /* Attach it to the mbuf */ |
2335 | if (tag) { |
2336 | m_tag_prepend(m, tag); |
2337 | } |
2338 | } |
2339 | |
2340 | return tag ? (struct ip6aux *)(tag->m_tag_data) : NULL; |
2341 | } |
2342 | |
2343 | struct ip6aux * |
2344 | ip6_findaux(struct mbuf *m) |
2345 | { |
2346 | struct m_tag *tag; |
2347 | |
2348 | tag = m_tag_locate(m, KERNEL_MODULE_TAG_ID, |
2349 | KERNEL_TAG_TYPE_INET6); |
2350 | |
2351 | return tag != NULL ? (struct ip6aux *)(tag->m_tag_data) : NULL; |
2352 | } |
2353 | |
2354 | void |
2355 | ip6_delaux(struct mbuf *m) |
2356 | { |
2357 | struct m_tag *tag; |
2358 | |
2359 | tag = m_tag_locate(m, KERNEL_MODULE_TAG_ID, |
2360 | KERNEL_TAG_TYPE_INET6); |
2361 | if (tag != NULL) { |
2362 | m_tag_delete(m, tag); |
2363 | } |
2364 | } |
2365 | |
2366 | struct inet6_tag_container { |
2367 | struct m_tag inet6_m_tag; |
2368 | struct ip6aux inet6_ip6a; |
2369 | }; |
2370 | |
2371 | struct m_tag * |
2372 | m_tag_kalloc_inet6(u_int32_t id, u_int16_t type, uint16_t len, int wait) |
2373 | { |
2374 | struct inet6_tag_container *tag_container; |
2375 | struct m_tag *tag = NULL; |
2376 | |
2377 | assert3u(id, ==, KERNEL_MODULE_TAG_ID); |
2378 | assert3u(type, ==, KERNEL_TAG_TYPE_INET6); |
2379 | assert3u(len, ==, sizeof(struct ip6aux)); |
2380 | |
2381 | if (len != sizeof(struct ip6aux)) { |
2382 | return NULL; |
2383 | } |
2384 | |
2385 | tag_container = kalloc_type(struct inet6_tag_container, wait | M_ZERO); |
2386 | if (tag_container != NULL) { |
2387 | tag = &tag_container->inet6_m_tag; |
2388 | |
2389 | assert3p(tag, ==, tag_container); |
2390 | |
2391 | M_TAG_INIT(tag, id, type, len, &tag_container->inet6_ip6a, NULL); |
2392 | } |
2393 | |
2394 | return tag; |
2395 | } |
2396 | |
2397 | void |
2398 | m_tag_kfree_inet6(struct m_tag *tag) |
2399 | { |
2400 | struct inet6_tag_container *tag_container = (struct inet6_tag_container *)tag; |
2401 | |
2402 | assert3u(tag->m_tag_len, ==, sizeof(struct ip6aux)); |
2403 | |
2404 | kfree_type(struct inet6_tag_container, tag_container); |
2405 | } |
2406 | |
2407 | void |
2408 | ip6_register_m_tag(void) |
2409 | { |
2410 | int error; |
2411 | |
2412 | error = m_register_internal_tag_type(type: KERNEL_TAG_TYPE_INET6, len: sizeof(struct ip6aux), |
2413 | alloc_func: m_tag_kalloc_inet6, free_func: m_tag_kfree_inet6); |
2414 | |
2415 | assert3u(error, ==, 0); |
2416 | } |
2417 | |
2418 | /* |
2419 | * Drain callback |
2420 | */ |
2421 | void |
2422 | ip6_drain(void) |
2423 | { |
2424 | frag6_drain(); /* fragments */ |
2425 | in6_rtqdrain(); /* protocol cloned routes */ |
2426 | nd6_drain(NULL); /* cloned routes: ND6 */ |
2427 | } |
2428 | |
2429 | /* |
2430 | * System control for IP6 |
2431 | */ |
2432 | |
2433 | u_char inet6ctlerrmap[PRC_NCMDS] = { |
2434 | 0, 0, 0, 0, |
2435 | 0, EMSGSIZE, EHOSTDOWN, EHOSTUNREACH, |
2436 | EHOSTUNREACH, EHOSTUNREACH, ECONNREFUSED, ECONNREFUSED, |
2437 | EMSGSIZE, EHOSTUNREACH, 0, 0, |
2438 | 0, 0, 0, 0, |
2439 | ENOPROTOOPT, ECONNREFUSED |
2440 | }; |
2441 | |
2442 | static int |
2443 | sysctl_reset_ip6_input_stats SYSCTL_HANDLER_ARGS |
2444 | { |
2445 | #pragma unused(arg1, arg2) |
2446 | int error, i; |
2447 | |
2448 | i = ip6_input_measure; |
2449 | error = sysctl_handle_int(oidp, arg1: &i, arg2: 0, req); |
2450 | if (error || req->newptr == USER_ADDR_NULL) { |
2451 | goto done; |
2452 | } |
2453 | /* impose bounds */ |
2454 | if (i < 0 || i > 1) { |
2455 | error = EINVAL; |
2456 | goto done; |
2457 | } |
2458 | if (ip6_input_measure != i && i == 1) { |
2459 | net_perf_initialize(npp: &net_perf, bins: ip6_input_measure_bins); |
2460 | } |
2461 | ip6_input_measure = i; |
2462 | done: |
2463 | return error; |
2464 | } |
2465 | |
2466 | static int |
2467 | sysctl_ip6_input_measure_bins SYSCTL_HANDLER_ARGS |
2468 | { |
2469 | #pragma unused(arg1, arg2) |
2470 | int error; |
2471 | uint64_t i; |
2472 | |
2473 | i = ip6_input_measure_bins; |
2474 | error = sysctl_handle_quad(oidp, arg1: &i, arg2: 0, req); |
2475 | if (error || req->newptr == USER_ADDR_NULL) { |
2476 | goto done; |
2477 | } |
2478 | /* validate data */ |
2479 | if (!net_perf_validate_bins(bins: i)) { |
2480 | error = EINVAL; |
2481 | goto done; |
2482 | } |
2483 | ip6_input_measure_bins = i; |
2484 | done: |
2485 | return error; |
2486 | } |
2487 | |
2488 | static int |
2489 | sysctl_ip6_input_getperf SYSCTL_HANDLER_ARGS |
2490 | { |
2491 | #pragma unused(oidp, arg1, arg2) |
2492 | if (req->oldptr == USER_ADDR_NULL) { |
2493 | req->oldlen = (size_t)sizeof(struct net_perf); |
2494 | } |
2495 | |
2496 | return SYSCTL_OUT(req, &net_perf, MIN(sizeof(net_perf), req->oldlen)); |
2497 | } |
2498 | |
2499 | |
2500 | /* |
2501 | * Initialize IPv6 source address hash table. |
2502 | */ |
2503 | static void |
2504 | in6_ifaddrhashtbl_init(void) |
2505 | { |
2506 | int i, k, p; |
2507 | |
2508 | if (in6_ifaddrhashtbl != NULL) { |
2509 | return; |
2510 | } |
2511 | |
2512 | PE_parse_boot_argn(arg_string: "ina6ddr_nhash" , arg_ptr: &in6addr_nhash, |
2513 | max_arg: sizeof(in6addr_nhash)); |
2514 | if (in6addr_nhash == 0) { |
2515 | in6addr_nhash = IN6ADDR_NHASH; |
2516 | } |
2517 | |
2518 | in6_ifaddrhashtbl = zalloc_permanent( |
2519 | in6addr_nhash * sizeof(*in6_ifaddrhashtbl), |
2520 | ZALIGN_PTR); |
2521 | |
2522 | /* |
2523 | * Generate the next largest prime greater than in6addr_nhash. |
2524 | */ |
2525 | k = (in6addr_nhash % 2 == 0) ? in6addr_nhash + 1 : in6addr_nhash + 2; |
2526 | for (;;) { |
2527 | p = 1; |
2528 | for (i = 3; i * i <= k; i += 2) { |
2529 | if (k % i == 0) { |
2530 | p = 0; |
2531 | } |
2532 | } |
2533 | if (p == 1) { |
2534 | break; |
2535 | } |
2536 | k += 2; |
2537 | } |
2538 | in6addr_hashp = k; |
2539 | } |
2540 | |
2541 | static int |
2542 | sysctl_ip6_checkinterface SYSCTL_HANDLER_ARGS |
2543 | { |
2544 | #pragma unused(arg1, arg2) |
2545 | int error, i; |
2546 | |
2547 | i = ip6_checkinterface; |
2548 | error = sysctl_handle_int(oidp, arg1: &i, arg2: 0, req); |
2549 | if (error || req->newptr == USER_ADDR_NULL) { |
2550 | return error; |
2551 | } |
2552 | |
2553 | switch (i) { |
2554 | case IP6_CHECKINTERFACE_WEAK_ES: |
2555 | case IP6_CHECKINTERFACE_HYBRID_ES: |
2556 | case IP6_CHECKINTERFACE_STRONG_ES: |
2557 | if (ip6_checkinterface != i) { |
2558 | ip6_checkinterface = i; |
2559 | os_log(OS_LOG_DEFAULT, "%s: ip6_checkinterface is now %d\n" , |
2560 | __func__, ip6_checkinterface); |
2561 | } |
2562 | break; |
2563 | default: |
2564 | error = EINVAL; |
2565 | break; |
2566 | } |
2567 | return error; |
2568 | } |
2569 | |