| 1 | /* |
| 2 | * Copyright (c) 2000-2023 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
| 5 | * |
| 6 | * This file contains Original Code and/or Modifications of Original Code |
| 7 | * as defined in and that are subject to the Apple Public Source License |
| 8 | * Version 2.0 (the 'License'). You may not use this file except in |
| 9 | * compliance with the License. The rights granted to you under the License |
| 10 | * may not be used to create, or enable the creation or redistribution of, |
| 11 | * unlawful or unlicensed copies of an Apple operating system, or to |
| 12 | * circumvent, violate, or enable the circumvention or violation of, any |
| 13 | * terms of an Apple operating system software license agreement. |
| 14 | * |
| 15 | * Please obtain a copy of the License at |
| 16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
| 17 | * |
| 18 | * The Original Code and all software distributed under the License are |
| 19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| 23 | * Please see the License for the specific language governing rights and |
| 24 | * limitations under the License. |
| 25 | * |
| 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
| 27 | */ |
| 28 | /* |
| 29 | * Copyright (c) 1982, 1986, 1988, 1990, 1993 |
| 30 | * The Regents of the University of California. All rights reserved. |
| 31 | * |
| 32 | * Redistribution and use in source and binary forms, with or without |
| 33 | * modification, are permitted provided that the following conditions |
| 34 | * are met: |
| 35 | * 1. Redistributions of source code must retain the above copyright |
| 36 | * notice, this list of conditions and the following disclaimer. |
| 37 | * 2. Redistributions in binary form must reproduce the above copyright |
| 38 | * notice, this list of conditions and the following disclaimer in the |
| 39 | * documentation and/or other materials provided with the distribution. |
| 40 | * 3. All advertising materials mentioning features or use of this software |
| 41 | * must display the following acknowledgement: |
| 42 | * This product includes software developed by the University of |
| 43 | * California, Berkeley and its contributors. |
| 44 | * 4. Neither the name of the University nor the names of its contributors |
| 45 | * may be used to endorse or promote products derived from this software |
| 46 | * without specific prior written permission. |
| 47 | * |
| 48 | * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND |
| 49 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 50 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 51 | * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE |
| 52 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| 53 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| 54 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| 55 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| 56 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| 57 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| 58 | * SUCH DAMAGE. |
| 59 | * |
| 60 | * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 |
| 61 | */ |
| 62 | /* |
| 63 | * NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce |
| 64 | * support for mandatory and extensible security protections. This notice |
| 65 | * is included in support of clause 2.2 (b) of the Apple Public License, |
| 66 | * Version 2.0. |
| 67 | */ |
| 68 | |
| 69 | #define _IP_VHL |
| 70 | |
| 71 | #include <sys/param.h> |
| 72 | #include <sys/systm.h> |
| 73 | #include <sys/kernel.h> |
| 74 | #include <sys/malloc.h> |
| 75 | #include <sys/mbuf.h> |
| 76 | #include <sys/protosw.h> |
| 77 | #include <sys/socket.h> |
| 78 | #include <sys/socketvar.h> |
| 79 | #include <kern/locks.h> |
| 80 | #include <sys/sysctl.h> |
| 81 | #include <sys/mcache.h> |
| 82 | #include <sys/kdebug.h> |
| 83 | |
| 84 | #include <machine/endian.h> |
| 85 | #include <pexpert/pexpert.h> |
| 86 | #include <mach/sdt.h> |
| 87 | |
| 88 | #include <libkern/OSAtomic.h> |
| 89 | #include <libkern/OSByteOrder.h> |
| 90 | |
| 91 | #include <net/if.h> |
| 92 | #include <net/if_dl.h> |
| 93 | #include <net/if_types.h> |
| 94 | #include <net/route.h> |
| 95 | #include <net/ntstat.h> |
| 96 | #include <net/net_osdep.h> |
| 97 | #include <net/dlil.h> |
| 98 | #include <net/net_perf.h> |
| 99 | |
| 100 | #include <netinet/in.h> |
| 101 | #include <netinet/in_systm.h> |
| 102 | #include <netinet/ip.h> |
| 103 | #include <netinet/in_pcb.h> |
| 104 | #include <netinet/in_var.h> |
| 105 | #include <netinet/ip_var.h> |
| 106 | #include <netinet/kpi_ipfilter_var.h> |
| 107 | #include <netinet/in_tclass.h> |
| 108 | #include <netinet/udp.h> |
| 109 | |
| 110 | #include <netinet6/nd6.h> |
| 111 | |
| 112 | #define DBG_LAYER_BEG NETDBG_CODE(DBG_NETIP, 1) |
| 113 | #define DBG_LAYER_END NETDBG_CODE(DBG_NETIP, 3) |
| 114 | #define DBG_FNC_IP_OUTPUT NETDBG_CODE(DBG_NETIP, (1 << 8) | 1) |
| 115 | #define DBG_FNC_IPSEC4_OUTPUT NETDBG_CODE(DBG_NETIP, (2 << 8) | 1) |
| 116 | |
| 117 | #if IPSEC |
| 118 | #include <netinet6/ipsec.h> |
| 119 | #include <netkey/key.h> |
| 120 | #if IPSEC_DEBUG |
| 121 | #include <netkey/key_debug.h> |
| 122 | #else |
| 123 | #define KEYDEBUG(lev, arg) |
| 124 | #endif |
| 125 | #endif /* IPSEC */ |
| 126 | |
| 127 | #if NECP |
| 128 | #include <net/necp.h> |
| 129 | #endif /* NECP */ |
| 130 | |
| 131 | |
| 132 | #if DUMMYNET |
| 133 | #include <netinet/ip_dummynet.h> |
| 134 | #endif |
| 135 | |
| 136 | #if PF |
| 137 | #include <net/pfvar.h> |
| 138 | #endif /* PF */ |
| 139 | |
| 140 | #include <net/sockaddr_utils.h> |
| 141 | |
| 142 | u_short ip_id; |
| 143 | |
| 144 | static int sysctl_reset_ip_output_stats SYSCTL_HANDLER_ARGS; |
| 145 | static int sysctl_ip_output_measure_bins SYSCTL_HANDLER_ARGS; |
| 146 | static int sysctl_ip_output_getperf SYSCTL_HANDLER_ARGS; |
| 147 | static void ip_out_cksum_stats(int, u_int32_t); |
| 148 | static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *); |
| 149 | static int ip_optcopy(struct ip *, struct ip *); |
| 150 | static int ip_pcbopts(int, struct mbuf **, struct mbuf *); |
| 151 | static void imo_trace(struct ip_moptions *, int); |
| 152 | static void ip_mloopback(struct ifnet *, struct ifnet *, struct mbuf *, |
| 153 | struct sockaddr_in *, int); |
| 154 | static struct ifaddr *in_selectsrcif(struct ip *, struct route *, unsigned int); |
| 155 | |
| 156 | extern struct ip_linklocal_stat ip_linklocal_stat; |
| 157 | |
| 158 | /* temporary: for testing */ |
| 159 | #if IPSEC |
| 160 | extern int ipsec_bypass; |
| 161 | #endif |
| 162 | |
| 163 | static int force_ipsum = 0; |
| 164 | static int ip_maxchainsent = 0; |
| 165 | SYSCTL_INT(_net_inet_ip, OID_AUTO, maxchainsent, |
| 166 | CTLFLAG_RW | CTLFLAG_LOCKED, &ip_maxchainsent, 0, |
| 167 | "use dlil_output_list" ); |
| 168 | |
| 169 | SYSCTL_INT(_net_inet_ip, OID_AUTO, force_ipsum, |
| 170 | CTLFLAG_RW | CTLFLAG_LOCKED, &force_ipsum, 0, |
| 171 | "force IP checksum" ); |
| 172 | #if DEBUG |
| 173 | static int forge_ce = 0; |
| 174 | SYSCTL_INT(_net_inet_ip, OID_AUTO, forge_ce, |
| 175 | CTLFLAG_RW | CTLFLAG_LOCKED, &forge_ce, 0, |
| 176 | "Forge ECN CE" ); |
| 177 | #endif /* DEBUG */ |
| 178 | |
| 179 | static int ip_select_srcif_debug = 0; |
| 180 | SYSCTL_INT(_net_inet_ip, OID_AUTO, select_srcif_debug, |
| 181 | CTLFLAG_RW | CTLFLAG_LOCKED, &ip_select_srcif_debug, 0, |
| 182 | "log source interface selection debug info" ); |
| 183 | |
| 184 | static int ip_output_measure = 0; |
| 185 | SYSCTL_PROC(_net_inet_ip, OID_AUTO, output_perf, |
| 186 | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, |
| 187 | &ip_output_measure, 0, sysctl_reset_ip_output_stats, "I" , |
| 188 | "Do time measurement" ); |
| 189 | |
| 190 | static uint64_t ip_output_measure_bins = 0; |
| 191 | SYSCTL_PROC(_net_inet_ip, OID_AUTO, output_perf_bins, |
| 192 | CTLTYPE_QUAD | CTLFLAG_RW | CTLFLAG_LOCKED, &ip_output_measure_bins, 0, |
| 193 | sysctl_ip_output_measure_bins, "I" , |
| 194 | "bins for chaining performance data histogram" ); |
| 195 | |
| 196 | static net_perf_t net_perf; |
| 197 | SYSCTL_PROC(_net_inet_ip, OID_AUTO, output_perf_data, |
| 198 | CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED, |
| 199 | 0, 0, sysctl_ip_output_getperf, "S,net_perf" , |
| 200 | "IP output performance data (struct net_perf, net/net_perf.h)" ); |
| 201 | |
| 202 | __private_extern__ int rfc6864 = 1; |
| 203 | SYSCTL_INT(_net_inet_ip, OID_AUTO, rfc6864, CTLFLAG_RW | CTLFLAG_LOCKED, |
| 204 | &rfc6864, 0, "updated ip id field behavior" ); |
| 205 | |
| 206 | #define IMO_TRACE_HIST_SIZE 32 /* size of trace history */ |
| 207 | |
| 208 | /* For gdb */ |
| 209 | __private_extern__ unsigned int imo_trace_hist_size = IMO_TRACE_HIST_SIZE; |
| 210 | |
| 211 | struct ip_moptions_dbg { |
| 212 | struct ip_moptions imo; /* ip_moptions */ |
| 213 | u_int16_t imo_refhold_cnt; /* # of IMO_ADDREF */ |
| 214 | u_int16_t imo_refrele_cnt; /* # of IMO_REMREF */ |
| 215 | /* |
| 216 | * Alloc and free callers. |
| 217 | */ |
| 218 | ctrace_t imo_alloc; |
| 219 | ctrace_t imo_free; |
| 220 | /* |
| 221 | * Circular lists of IMO_ADDREF and IMO_REMREF callers. |
| 222 | */ |
| 223 | ctrace_t imo_refhold[IMO_TRACE_HIST_SIZE]; |
| 224 | ctrace_t imo_refrele[IMO_TRACE_HIST_SIZE]; |
| 225 | }; |
| 226 | |
| 227 | #if DEBUG |
| 228 | static unsigned int imo_debug = 1; /* debugging (enabled) */ |
| 229 | #else |
| 230 | static unsigned int imo_debug; /* debugging (disabled) */ |
| 231 | #endif /* !DEBUG */ |
| 232 | |
| 233 | static struct zone *imo_zone; /* zone for ip_moptions */ |
| 234 | #define IMO_ZONE_NAME "ip_moptions" /* zone name */ |
| 235 | |
| 236 | #if PF |
| 237 | __attribute__((noinline)) |
| 238 | static int |
| 239 | ip_output_pf_dn_hook(struct ifnet *ifp, struct mbuf **mppn, struct mbuf **mp, |
| 240 | struct pf_rule *dn_pf_rule, struct route *ro, struct sockaddr_in *dst, int flags, |
| 241 | struct ip_out_args *ipoa) |
| 242 | { |
| 243 | int rc; |
| 244 | struct ip_fw_args args = {}; |
| 245 | |
| 246 | args.fwa_pf_rule = dn_pf_rule; |
| 247 | args.fwa_oif = ifp; |
| 248 | args.fwa_ro = ro; |
| 249 | args.fwa_dst = dst; |
| 250 | args.fwa_oflags = flags; |
| 251 | if (flags & IP_OUTARGS) { |
| 252 | args.fwa_ipoa = ipoa; |
| 253 | } |
| 254 | rc = pf_af_hook(ifp, mppn, mp, AF_INET, FALSE, &args); |
| 255 | |
| 256 | return rc; |
| 257 | } |
| 258 | |
| 259 | #endif /* PF */ |
| 260 | |
| 261 | |
| 262 | /* |
| 263 | * IP output. The packet in mbuf chain m contains a skeletal IP |
| 264 | * header (with len, off, ttl, proto, tos, src, dst). |
| 265 | * The mbuf chain containing the packet will be freed. |
| 266 | * The mbuf opt, if present, will not be freed. |
| 267 | */ |
| 268 | int |
| 269 | ip_output(struct mbuf *m0, struct mbuf *opt, struct route *ro, int flags, |
| 270 | struct ip_moptions *imo, struct ip_out_args *ipoa) |
| 271 | { |
| 272 | return ip_output_list(m0, 0, opt, ro, flags, imo, ipoa); |
| 273 | } |
| 274 | |
| 275 | /* |
| 276 | * IP output. The packet in mbuf chain m contains a skeletal IP |
| 277 | * header (with len, off, ttl, proto, tos, src, dst). |
| 278 | * The mbuf chain containing the packet will be freed. |
| 279 | * The mbuf opt, if present, will not be freed. |
| 280 | * |
| 281 | * Route ro MUST be non-NULL; if ro->ro_rt is valid, route lookup would be |
| 282 | * skipped and ro->ro_rt would be used. Otherwise the result of route |
| 283 | * lookup is stored in ro->ro_rt. |
| 284 | * |
| 285 | * In the IP forwarding case, the packet will arrive with options already |
| 286 | * inserted, so must have a NULL opt pointer. |
| 287 | */ |
| 288 | int |
| 289 | ip_output_list(struct mbuf *m0, int packetchain, struct mbuf *opt, |
| 290 | struct route *ro, int flags, struct ip_moptions *imo, |
| 291 | struct ip_out_args *ipoa) |
| 292 | { |
| 293 | struct ip *ip; |
| 294 | struct ifnet *ifp = NULL; /* not refcnt'd */ |
| 295 | struct mbuf *m = m0, *prevnxt = NULL, **mppn = &prevnxt; |
| 296 | int hlen = sizeof(struct ip); |
| 297 | int len = 0, error = 0; |
| 298 | struct sockaddr_in *dst = NULL; |
| 299 | struct in_ifaddr *ia = NULL, *src_ia = NULL; |
| 300 | struct in_addr pkt_dst; |
| 301 | struct ipf_pktopts *ippo = NULL; |
| 302 | ipfilter_t inject_filter_ref = NULL; |
| 303 | struct mbuf *packetlist; |
| 304 | uint32_t sw_csum, pktcnt = 0, scnt = 0, bytecnt = 0; |
| 305 | uint32_t packets_processed = 0; |
| 306 | unsigned int ifscope = IFSCOPE_NONE; |
| 307 | struct flowadv *adv = NULL; |
| 308 | struct timeval start_tv; |
| 309 | #if IPSEC |
| 310 | struct socket *so = NULL; |
| 311 | struct secpolicy *sp = NULL; |
| 312 | #endif /* IPSEC */ |
| 313 | #if NECP |
| 314 | necp_kernel_policy_result necp_result = 0; |
| 315 | necp_kernel_policy_result_parameter necp_result_parameter; |
| 316 | necp_kernel_policy_id necp_matched_policy_id = 0; |
| 317 | #endif /* NECP */ |
| 318 | #if DUMMYNET |
| 319 | struct m_tag *tag; |
| 320 | struct ip_out_args saved_ipoa; |
| 321 | struct sockaddr_in dst_buf; |
| 322 | #endif /* DUMMYNET */ |
| 323 | struct { |
| 324 | #if IPSEC |
| 325 | struct ipsec_output_state ipsec_state; |
| 326 | #endif /* IPSEC */ |
| 327 | #if NECP |
| 328 | struct route necp_route; |
| 329 | #endif /* NECP */ |
| 330 | #if DUMMYNET |
| 331 | struct route saved_route; |
| 332 | #endif /* DUMMYNET */ |
| 333 | struct ipf_pktopts ipf_pktopts; |
| 334 | } ipobz; |
| 335 | #define ipsec_state ipobz.ipsec_state |
| 336 | #define necp_route ipobz.necp_route |
| 337 | #define sro_fwd ipobz.sro_fwd |
| 338 | #define saved_route ipobz.saved_route |
| 339 | #define ipf_pktopts ipobz.ipf_pktopts |
| 340 | union { |
| 341 | struct { |
| 342 | boolean_t select_srcif : 1; /* set once */ |
| 343 | boolean_t srcbound : 1; /* set once */ |
| 344 | boolean_t nocell : 1; /* set once */ |
| 345 | boolean_t isbroadcast : 1; |
| 346 | boolean_t didfilter : 1; |
| 347 | boolean_t noexpensive : 1; /* set once */ |
| 348 | boolean_t noconstrained : 1; /* set once */ |
| 349 | boolean_t awdl_unrestricted : 1; /* set once */ |
| 350 | boolean_t management_allowed : 1; /* set once */ |
| 351 | }; |
| 352 | uint32_t raw; |
| 353 | } ipobf = { .raw = 0 }; |
| 354 | |
| 355 | int interface_mtu = 0; |
| 356 | struct pf_rule *dn_pf_rule = NULL; |
| 357 | /* |
| 358 | * Here we check for restrictions when sending frames. |
| 359 | * N.B.: IPv4 over internal co-processor interfaces is not allowed. |
| 360 | */ |
| 361 | #define IP_CHECK_RESTRICTIONS(_ifp, _ipobf) \ |
| 362 | (((_ipobf).nocell && IFNET_IS_CELLULAR(_ifp)) || \ |
| 363 | ((_ipobf).noexpensive && IFNET_IS_EXPENSIVE(_ifp)) || \ |
| 364 | ((_ipobf).noconstrained && IFNET_IS_CONSTRAINED(_ifp)) || \ |
| 365 | (IFNET_IS_INTCOPROC(_ifp)) || \ |
| 366 | (!(_ipobf).management_allowed && IFNET_IS_MANAGEMENT(_ifp)) || \ |
| 367 | (!(_ipobf).awdl_unrestricted && IFNET_IS_AWDL_RESTRICTED(_ifp))) |
| 368 | |
| 369 | if (ip_output_measure) { |
| 370 | net_perf_start_time(npp: &net_perf, tv: &start_tv); |
| 371 | } |
| 372 | KERNEL_DEBUG(DBG_FNC_IP_OUTPUT | DBG_FUNC_START, 0, 0, 0, 0, 0); |
| 373 | |
| 374 | VERIFY(m0->m_flags & M_PKTHDR); |
| 375 | packetlist = m0; |
| 376 | |
| 377 | /* zero out {ipsec_state, args, sro_fwd, saved_route, ipf_pktops} */ |
| 378 | bzero(s: &ipobz, n: sizeof(ipobz)); |
| 379 | ippo = &ipf_pktopts; |
| 380 | |
| 381 | #if DUMMYNET |
| 382 | if (SLIST_EMPTY(&m0->m_pkthdr.tags)) { |
| 383 | goto ipfw_tags_done; |
| 384 | } |
| 385 | |
| 386 | /* Grab info from mtags prepended to the chain */ |
| 387 | if ((tag = m_tag_locate(m0, KERNEL_MODULE_TAG_ID, |
| 388 | KERNEL_TAG_TYPE_DUMMYNET)) != NULL) { |
| 389 | struct dn_pkt_tag *dn_tag; |
| 390 | |
| 391 | dn_tag = (struct dn_pkt_tag *)(tag->m_tag_data); |
| 392 | dn_pf_rule = dn_tag->dn_pf_rule; |
| 393 | opt = NULL; |
| 394 | saved_route = dn_tag->dn_ro; |
| 395 | ro = &saved_route; |
| 396 | |
| 397 | imo = NULL; |
| 398 | SOCKADDR_COPY(&dn_tag->dn_dst, &dst_buf, sizeof(dst_buf)); |
| 399 | dst = &dst_buf; |
| 400 | ifp = dn_tag->dn_ifp; |
| 401 | flags = dn_tag->dn_flags; |
| 402 | if ((dn_tag->dn_flags & IP_OUTARGS)) { |
| 403 | saved_ipoa = dn_tag->dn_ipoa; |
| 404 | ipoa = &saved_ipoa; |
| 405 | } |
| 406 | |
| 407 | m_tag_delete(m0, tag); |
| 408 | } |
| 409 | ipfw_tags_done: |
| 410 | #endif /* DUMMYNET */ |
| 411 | |
| 412 | m = m0; |
| 413 | m->m_pkthdr.pkt_flags &= ~(PKTF_LOOP | PKTF_IFAINFO); |
| 414 | |
| 415 | #if IPSEC |
| 416 | if (ipsec_bypass == 0 && !(flags & IP_NOIPSEC)) { |
| 417 | /* If packet is bound to an interface, check bound policies */ |
| 418 | if ((flags & IP_OUTARGS) && (ipoa != NULL) && |
| 419 | (ipoa->ipoa_flags & IPOAF_BOUND_IF) && |
| 420 | ipoa->ipoa_boundif != IFSCOPE_NONE) { |
| 421 | if (ipsec4_getpolicybyinterface(m, IPSEC_DIR_OUTBOUND, |
| 422 | &flags, ipoa, &sp) != 0) { |
| 423 | goto bad; |
| 424 | } |
| 425 | } |
| 426 | } |
| 427 | #endif /* IPSEC */ |
| 428 | |
| 429 | VERIFY(ro != NULL); |
| 430 | |
| 431 | if (flags & IP_OUTARGS) { |
| 432 | /* |
| 433 | * In the forwarding case, only the ifscope value is used, |
| 434 | * as source interface selection doesn't take place. |
| 435 | */ |
| 436 | if ((ipobf.select_srcif = (!(flags & IP_FORWARDING) && |
| 437 | (ipoa->ipoa_flags & IPOAF_SELECT_SRCIF)))) { |
| 438 | ipf_pktopts.ippo_flags |= IPPOF_SELECT_SRCIF; |
| 439 | } |
| 440 | |
| 441 | if ((ipoa->ipoa_flags & IPOAF_BOUND_IF) && |
| 442 | ipoa->ipoa_boundif != IFSCOPE_NONE) { |
| 443 | ifscope = ipoa->ipoa_boundif; |
| 444 | ipf_pktopts.ippo_flags |= |
| 445 | (IPPOF_BOUND_IF | (ifscope << IPPOF_SHIFT_IFSCOPE)); |
| 446 | } |
| 447 | |
| 448 | /* double negation needed for bool bit field */ |
| 449 | ipobf.srcbound = !!(ipoa->ipoa_flags & IPOAF_BOUND_SRCADDR); |
| 450 | if (ipobf.srcbound) { |
| 451 | ipf_pktopts.ippo_flags |= IPPOF_BOUND_SRCADDR; |
| 452 | } |
| 453 | } else { |
| 454 | ipobf.select_srcif = FALSE; |
| 455 | ipobf.srcbound = FALSE; |
| 456 | ifscope = IFSCOPE_NONE; |
| 457 | if (flags & IP_OUTARGS) { |
| 458 | ipoa->ipoa_boundif = IFSCOPE_NONE; |
| 459 | ipoa->ipoa_flags &= ~(IPOAF_SELECT_SRCIF | |
| 460 | IPOAF_BOUND_IF | IPOAF_BOUND_SRCADDR); |
| 461 | } |
| 462 | } |
| 463 | |
| 464 | if (flags & IP_OUTARGS) { |
| 465 | if (ipoa->ipoa_flags & IPOAF_NO_CELLULAR) { |
| 466 | ipobf.nocell = true; |
| 467 | ipf_pktopts.ippo_flags |= IPPOF_NO_IFT_CELLULAR; |
| 468 | } |
| 469 | if (ipoa->ipoa_flags & IPOAF_NO_EXPENSIVE) { |
| 470 | ipobf.noexpensive = true; |
| 471 | ipf_pktopts.ippo_flags |= IPPOF_NO_IFF_EXPENSIVE; |
| 472 | } |
| 473 | if (ipoa->ipoa_flags & IPOAF_NO_CONSTRAINED) { |
| 474 | ipobf.noconstrained = true; |
| 475 | ipf_pktopts.ippo_flags |= IPPOF_NO_IFF_CONSTRAINED; |
| 476 | } |
| 477 | if (ipoa->ipoa_flags & IPOAF_AWDL_UNRESTRICTED) { |
| 478 | ipobf.awdl_unrestricted = true; |
| 479 | } |
| 480 | if (ipoa->ipoa_flags & IPOAF_MANAGEMENT_ALLOWED) { |
| 481 | ipobf.management_allowed = true; |
| 482 | } |
| 483 | adv = &ipoa->ipoa_flowadv; |
| 484 | adv->code = FADV_SUCCESS; |
| 485 | ipoa->ipoa_flags &= ~IPOAF_RET_MASK; |
| 486 | } |
| 487 | |
| 488 | #if IPSEC |
| 489 | if (ipsec_bypass == 0 && !(flags & IP_NOIPSEC)) { |
| 490 | so = ipsec_getsocket(m); |
| 491 | if (so != NULL) { |
| 492 | (void) ipsec_setsocket(m, NULL); |
| 493 | } |
| 494 | } |
| 495 | #endif /* IPSEC */ |
| 496 | |
| 497 | #if DUMMYNET |
| 498 | if (dn_pf_rule != NULL) { |
| 499 | /* dummynet already saw us */ |
| 500 | ip = mtod(m, struct ip *); |
| 501 | hlen = IP_VHL_HL(ip->ip_vhl) << 2; |
| 502 | pkt_dst = ip->ip_dst; |
| 503 | if (ro->ro_rt != NULL) { |
| 504 | RT_LOCK_SPIN(ro->ro_rt); |
| 505 | ia = (struct in_ifaddr *)ro->ro_rt->rt_ifa; |
| 506 | if (ia) { |
| 507 | /* Become a regular mutex */ |
| 508 | RT_CONVERT_LOCK(ro->ro_rt); |
| 509 | ifa_addref(ifa: &ia->ia_ifa); |
| 510 | } |
| 511 | RT_UNLOCK(ro->ro_rt); |
| 512 | } |
| 513 | |
| 514 | goto sendit; |
| 515 | } |
| 516 | #endif /* DUMMYNET */ |
| 517 | |
| 518 | loopit: |
| 519 | packets_processed++; |
| 520 | ipobf.isbroadcast = FALSE; |
| 521 | ipobf.didfilter = FALSE; |
| 522 | |
| 523 | VERIFY(m->m_flags & M_PKTHDR); |
| 524 | /* |
| 525 | * No need to proccess packet twice if we've already seen it. |
| 526 | */ |
| 527 | if (!SLIST_EMPTY(&m->m_pkthdr.tags)) { |
| 528 | inject_filter_ref = ipf_get_inject_filter(m); |
| 529 | } else { |
| 530 | inject_filter_ref = NULL; |
| 531 | } |
| 532 | |
| 533 | if (opt) { |
| 534 | m = ip_insertoptions(m, opt, &len); |
| 535 | hlen = len; |
| 536 | /* Update the chain */ |
| 537 | if (m != m0) { |
| 538 | if (m0 == packetlist) { |
| 539 | packetlist = m; |
| 540 | } |
| 541 | m0 = m; |
| 542 | } |
| 543 | } |
| 544 | ip = mtod(m, struct ip *); |
| 545 | |
| 546 | pkt_dst = ip->ip_dst; |
| 547 | |
| 548 | /* |
| 549 | * We must not send if the packet is destined to network zero. |
| 550 | * RFC1122 3.2.1.3 (a) and (b). |
| 551 | */ |
| 552 | if (IN_ZERONET(ntohl(pkt_dst.s_addr))) { |
| 553 | error = EHOSTUNREACH; |
| 554 | goto bad; |
| 555 | } |
| 556 | |
| 557 | /* |
| 558 | * Fill in IP header. |
| 559 | */ |
| 560 | if (!(flags & (IP_FORWARDING | IP_RAWOUTPUT))) { |
| 561 | ip->ip_vhl = IP_MAKE_VHL(IPVERSION, hlen >> 2); |
| 562 | ip->ip_off &= IP_DF; |
| 563 | if (rfc6864 && IP_OFF_IS_ATOMIC(ip->ip_off)) { |
| 564 | // Per RFC6864, value of ip_id is undefined for atomic ip packets |
| 565 | ip->ip_id = 0; |
| 566 | } else { |
| 567 | ip->ip_id = ip_randomid((uint64_t)m); |
| 568 | } |
| 569 | OSAddAtomic(1, &ipstat.ips_localout); |
| 570 | } else { |
| 571 | hlen = IP_VHL_HL(ip->ip_vhl) << 2; |
| 572 | } |
| 573 | |
| 574 | #if DEBUG |
| 575 | /* For debugging, we let the stack forge congestion */ |
| 576 | if (forge_ce != 0 && |
| 577 | ((ip->ip_tos & IPTOS_ECN_MASK) == IPTOS_ECN_ECT1 || |
| 578 | (ip->ip_tos & IPTOS_ECN_MASK) == IPTOS_ECN_ECT0)) { |
| 579 | ip->ip_tos = (ip->ip_tos & ~IPTOS_ECN_MASK) | IPTOS_ECN_CE; |
| 580 | forge_ce--; |
| 581 | } |
| 582 | #endif /* DEBUG */ |
| 583 | |
| 584 | if ((ip->ip_tos & IPTOS_ECN_MASK) == IPTOS_ECN_ECT1) { |
| 585 | m->m_pkthdr.pkt_ext_flags |= PKTF_EXT_L4S; |
| 586 | } |
| 587 | |
| 588 | KERNEL_DEBUG(DBG_LAYER_BEG, ip->ip_dst.s_addr, ip->ip_src.s_addr, |
| 589 | ip->ip_p, ip->ip_off, ip->ip_len); |
| 590 | |
| 591 | dst = SIN(&ro->ro_dst); |
| 592 | |
| 593 | /* |
| 594 | * If there is a cached route, |
| 595 | * check that it is to the same destination |
| 596 | * and is still up. If not, free it and try again. |
| 597 | * The address family should also be checked in case of sharing the |
| 598 | * cache with IPv6. |
| 599 | */ |
| 600 | |
| 601 | if (ro->ro_rt != NULL) { |
| 602 | if (ROUTE_UNUSABLE(ro) && ip->ip_src.s_addr != INADDR_ANY && |
| 603 | !(flags & (IP_ROUTETOIF | IP_FORWARDING))) { |
| 604 | src_ia = ifa_foraddr(ip->ip_src.s_addr); |
| 605 | if (src_ia == NULL) { |
| 606 | error = EADDRNOTAVAIL; |
| 607 | goto bad; |
| 608 | } |
| 609 | ifa_remref(ifa: &src_ia->ia_ifa); |
| 610 | src_ia = NULL; |
| 611 | } |
| 612 | /* |
| 613 | * Test rt_flags without holding rt_lock for performance |
| 614 | * reasons; if the route is down it will hopefully be |
| 615 | * caught by the layer below (since it uses this route |
| 616 | * as a hint) or during the next transmit. |
| 617 | */ |
| 618 | if (ROUTE_UNUSABLE(ro) || dst->sin_family != AF_INET || |
| 619 | dst->sin_addr.s_addr != pkt_dst.s_addr) { |
| 620 | ROUTE_RELEASE(ro); |
| 621 | } |
| 622 | |
| 623 | /* |
| 624 | * If we're doing source interface selection, we may not |
| 625 | * want to use this route; only synch up the generation |
| 626 | * count otherwise. |
| 627 | */ |
| 628 | if (!ipobf.select_srcif && ro->ro_rt != NULL && |
| 629 | RT_GENID_OUTOFSYNC(ro->ro_rt)) { |
| 630 | RT_GENID_SYNC(ro->ro_rt); |
| 631 | } |
| 632 | } |
| 633 | if (ro->ro_rt == NULL) { |
| 634 | SOCKADDR_ZERO(dst, sizeof(*dst)); |
| 635 | dst->sin_family = AF_INET; |
| 636 | dst->sin_len = sizeof(*dst); |
| 637 | dst->sin_addr = pkt_dst; |
| 638 | } |
| 639 | /* |
| 640 | * If routing to interface only, |
| 641 | * short circuit routing lookup. |
| 642 | */ |
| 643 | if (flags & IP_ROUTETOIF) { |
| 644 | if (ia != NULL) { |
| 645 | ifa_remref(ifa: &ia->ia_ifa); |
| 646 | } |
| 647 | if ((ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst)))) == NULL) { |
| 648 | ia = ifatoia(ifa_ifwithnet(sintosa(dst))); |
| 649 | if (ia == NULL) { |
| 650 | OSAddAtomic(1, &ipstat.ips_noroute); |
| 651 | error = ENETUNREACH; |
| 652 | /* XXX IPv6 APN fallback notification?? */ |
| 653 | goto bad; |
| 654 | } |
| 655 | } |
| 656 | ifp = ia->ia_ifp; |
| 657 | ip->ip_ttl = 1; |
| 658 | ipobf.isbroadcast = in_broadcast(dst->sin_addr, ifp); |
| 659 | /* |
| 660 | * For consistency with other cases below. Loopback |
| 661 | * multicast case is handled separately by ip_mloopback(). |
| 662 | */ |
| 663 | if ((ifp->if_flags & IFF_LOOPBACK) && |
| 664 | !IN_MULTICAST(ntohl(pkt_dst.s_addr))) { |
| 665 | m->m_pkthdr.rcvif = ifp; |
| 666 | ip_setsrcifaddr_info(m, ifp->if_index, NULL); |
| 667 | ip_setdstifaddr_info(m, ifp->if_index, NULL); |
| 668 | } |
| 669 | } else if (IN_MULTICAST(ntohl(pkt_dst.s_addr)) && |
| 670 | imo != NULL && (ifp = imo->imo_multicast_ifp) != NULL) { |
| 671 | /* |
| 672 | * Bypass the normal routing lookup for multicast |
| 673 | * packets if the interface is specified. |
| 674 | */ |
| 675 | ipobf.isbroadcast = FALSE; |
| 676 | if (ia != NULL) { |
| 677 | ifa_remref(ifa: &ia->ia_ifa); |
| 678 | } |
| 679 | |
| 680 | /* Macro takes reference on ia */ |
| 681 | IFP_TO_IA(ifp, ia); |
| 682 | } else { |
| 683 | struct ifaddr *ia0 = NULL; |
| 684 | boolean_t cloneok = FALSE; |
| 685 | /* |
| 686 | * Perform source interface selection; the source IP address |
| 687 | * must belong to one of the addresses of the interface used |
| 688 | * by the route. For performance reasons, do this only if |
| 689 | * there is no route, or if the routing table has changed, |
| 690 | * or if we haven't done source interface selection on this |
| 691 | * route (for this PCB instance) before. |
| 692 | */ |
| 693 | if (ipobf.select_srcif && |
| 694 | ip->ip_src.s_addr != INADDR_ANY && (ROUTE_UNUSABLE(ro) || |
| 695 | !(ro->ro_flags & ROF_SRCIF_SELECTED))) { |
| 696 | /* Find the source interface */ |
| 697 | ia0 = in_selectsrcif(ip, ro, ifscope); |
| 698 | |
| 699 | /* |
| 700 | * If the source address belongs to a restricted |
| 701 | * interface and the caller forbids our using |
| 702 | * interfaces of such type, pretend that there is no |
| 703 | * route. |
| 704 | */ |
| 705 | if (ia0 != NULL && |
| 706 | IP_CHECK_RESTRICTIONS(ia0->ifa_ifp, ipobf)) { |
| 707 | ifa_remref(ifa: ia0); |
| 708 | ia0 = NULL; |
| 709 | error = EHOSTUNREACH; |
| 710 | if (flags & IP_OUTARGS) { |
| 711 | ipoa->ipoa_flags |= IPOAF_R_IFDENIED; |
| 712 | } |
| 713 | goto bad; |
| 714 | } |
| 715 | |
| 716 | /* |
| 717 | * If the source address is spoofed (in the case of |
| 718 | * IP_RAWOUTPUT on an unbounded socket), or if this |
| 719 | * is destined for local/loopback, just let it go out |
| 720 | * using the interface of the route. Otherwise, |
| 721 | * there's no interface having such an address, |
| 722 | * so bail out. |
| 723 | */ |
| 724 | if (ia0 == NULL && (!(flags & IP_RAWOUTPUT) || |
| 725 | ipobf.srcbound) && ifscope != lo_ifp->if_index) { |
| 726 | error = EADDRNOTAVAIL; |
| 727 | goto bad; |
| 728 | } |
| 729 | |
| 730 | /* |
| 731 | * If the caller didn't explicitly specify the scope, |
| 732 | * pick it up from the source interface. If the cached |
| 733 | * route was wrong and was blown away as part of source |
| 734 | * interface selection, don't mask out RTF_PRCLONING |
| 735 | * since that route may have been allocated by the ULP, |
| 736 | * unless the IP header was created by the caller or |
| 737 | * the destination is IPv4 LLA. The check for the |
| 738 | * latter is needed because IPv4 LLAs are never scoped |
| 739 | * in the current implementation, and we don't want to |
| 740 | * replace the resolved IPv4 LLA route with one whose |
| 741 | * gateway points to that of the default gateway on |
| 742 | * the primary interface of the system. |
| 743 | */ |
| 744 | if (ia0 != NULL) { |
| 745 | if (ifscope == IFSCOPE_NONE) { |
| 746 | ifscope = ia0->ifa_ifp->if_index; |
| 747 | } |
| 748 | cloneok = (!(flags & IP_RAWOUTPUT) && |
| 749 | !(IN_LINKLOCAL(ntohl(ip->ip_dst.s_addr)))); |
| 750 | } |
| 751 | } |
| 752 | |
| 753 | /* |
| 754 | * If this is the case, we probably don't want to allocate |
| 755 | * a protocol-cloned route since we didn't get one from the |
| 756 | * ULP. This lets TCP do its thing, while not burdening |
| 757 | * forwarding or ICMP with the overhead of cloning a route. |
| 758 | * Of course, we still want to do any cloning requested by |
| 759 | * the link layer, as this is probably required in all cases |
| 760 | * for correct operation (as it is for ARP). |
| 761 | */ |
| 762 | if (ro->ro_rt == NULL) { |
| 763 | uint32_t ign = RTF_PRCLONING; |
| 764 | /* |
| 765 | * We make an exception here: if the destination |
| 766 | * address is INADDR_BROADCAST, allocate a protocol- |
| 767 | * cloned host route so that we end up with a route |
| 768 | * marked with the RTF_BROADCAST flag. Otherwise, |
| 769 | * we would end up referring to the default route, |
| 770 | * instead of creating a cloned host route entry. |
| 771 | * That would introduce inconsistencies between ULPs |
| 772 | * that allocate a route and those that don't. The |
| 773 | * RTF_BROADCAST route is important since we'd want |
| 774 | * to send out undirected IP broadcast packets using |
| 775 | * link-level broadcast address. Another exception |
| 776 | * is for ULP-created routes that got blown away by |
| 777 | * source interface selection (see above). |
| 778 | * |
| 779 | * These exceptions will no longer be necessary when |
| 780 | * the RTF_PRCLONING scheme is no longer present. |
| 781 | */ |
| 782 | if (cloneok || dst->sin_addr.s_addr == INADDR_BROADCAST) { |
| 783 | ign &= ~RTF_PRCLONING; |
| 784 | } |
| 785 | |
| 786 | /* |
| 787 | * Loosen the route lookup criteria if the ifscope |
| 788 | * corresponds to the loopback interface; this is |
| 789 | * needed to support Application Layer Gateways |
| 790 | * listening on loopback, in conjunction with packet |
| 791 | * filter redirection rules. The final source IP |
| 792 | * address will be rewritten by the packet filter |
| 793 | * prior to the RFC1122 loopback check below. |
| 794 | */ |
| 795 | if (ifscope == lo_ifp->if_index) { |
| 796 | rtalloc_ign(ro, ign); |
| 797 | } else { |
| 798 | rtalloc_scoped_ign(ro, ign, ifscope); |
| 799 | } |
| 800 | |
| 801 | /* |
| 802 | * If the route points to a cellular/expensive interface |
| 803 | * and the caller forbids our using interfaces of such type, |
| 804 | * pretend that there is no route. |
| 805 | */ |
| 806 | if (ro->ro_rt != NULL) { |
| 807 | RT_LOCK_SPIN(ro->ro_rt); |
| 808 | if (IP_CHECK_RESTRICTIONS(ro->ro_rt->rt_ifp, |
| 809 | ipobf)) { |
| 810 | RT_UNLOCK(ro->ro_rt); |
| 811 | ROUTE_RELEASE(ro); |
| 812 | if (flags & IP_OUTARGS) { |
| 813 | ipoa->ipoa_flags |= |
| 814 | IPOAF_R_IFDENIED; |
| 815 | } |
| 816 | } else { |
| 817 | RT_UNLOCK(ro->ro_rt); |
| 818 | } |
| 819 | } |
| 820 | } |
| 821 | |
| 822 | if (ro->ro_rt == NULL) { |
| 823 | OSAddAtomic(1, &ipstat.ips_noroute); |
| 824 | error = EHOSTUNREACH; |
| 825 | if (ia0 != NULL) { |
| 826 | ifa_remref(ifa: ia0); |
| 827 | ia0 = NULL; |
| 828 | } |
| 829 | goto bad; |
| 830 | } |
| 831 | |
| 832 | if (ia != NULL) { |
| 833 | ifa_remref(ifa: &ia->ia_ifa); |
| 834 | } |
| 835 | RT_LOCK_SPIN(ro->ro_rt); |
| 836 | ia = ifatoia(ro->ro_rt->rt_ifa); |
| 837 | if (ia != NULL) { |
| 838 | /* Become a regular mutex */ |
| 839 | RT_CONVERT_LOCK(ro->ro_rt); |
| 840 | ifa_addref(ifa: &ia->ia_ifa); |
| 841 | } |
| 842 | /* |
| 843 | * Note: ia_ifp may not be the same as rt_ifp; the latter |
| 844 | * is what we use for determining outbound i/f, mtu, etc. |
| 845 | */ |
| 846 | ifp = ro->ro_rt->rt_ifp; |
| 847 | ro->ro_rt->rt_use++; |
| 848 | if (ro->ro_rt->rt_flags & RTF_GATEWAY) { |
| 849 | dst = SIN(ro->ro_rt->rt_gateway); |
| 850 | } |
| 851 | if (ro->ro_rt->rt_flags & RTF_HOST) { |
| 852 | /* double negation needed for bool bit field */ |
| 853 | ipobf.isbroadcast = |
| 854 | !!(ro->ro_rt->rt_flags & RTF_BROADCAST); |
| 855 | } else { |
| 856 | /* Become a regular mutex */ |
| 857 | RT_CONVERT_LOCK(ro->ro_rt); |
| 858 | ipobf.isbroadcast = in_broadcast(dst->sin_addr, ifp); |
| 859 | } |
| 860 | /* |
| 861 | * For consistency with IPv6, as well as to ensure that |
| 862 | * IP_RECVIF is set correctly for packets that are sent |
| 863 | * to one of the local addresses. ia (rt_ifa) would have |
| 864 | * been fixed up by rt_setif for local routes. This |
| 865 | * would make it appear as if the packet arrives on the |
| 866 | * interface which owns the local address. Loopback |
| 867 | * multicast case is handled separately by ip_mloopback(). |
| 868 | */ |
| 869 | if (ia != NULL && (ifp->if_flags & IFF_LOOPBACK) && |
| 870 | !IN_MULTICAST(ntohl(pkt_dst.s_addr))) { |
| 871 | uint16_t srcidx; |
| 872 | |
| 873 | m->m_pkthdr.rcvif = ia->ia_ifa.ifa_ifp; |
| 874 | |
| 875 | if (ia0 != NULL) { |
| 876 | srcidx = ia0->ifa_ifp->if_index; |
| 877 | } else if ((ro->ro_flags & ROF_SRCIF_SELECTED) && |
| 878 | ro->ro_srcia != NULL) { |
| 879 | srcidx = ro->ro_srcia->ifa_ifp->if_index; |
| 880 | } else { |
| 881 | srcidx = 0; |
| 882 | } |
| 883 | |
| 884 | ip_setsrcifaddr_info(m, srcidx, NULL); |
| 885 | ip_setdstifaddr_info(m, 0, ia); |
| 886 | } |
| 887 | RT_UNLOCK(ro->ro_rt); |
| 888 | if (ia0 != NULL) { |
| 889 | ifa_remref(ifa: ia0); |
| 890 | ia0 = NULL; |
| 891 | } |
| 892 | } |
| 893 | |
| 894 | if (IN_MULTICAST(ntohl(pkt_dst.s_addr))) { |
| 895 | struct ifnet *srcifp = NULL; |
| 896 | struct in_multi *inm; |
| 897 | u_int32_t vif = 0; |
| 898 | u_int8_t ttl = IP_DEFAULT_MULTICAST_TTL; |
| 899 | u_int8_t loop = IP_DEFAULT_MULTICAST_LOOP; |
| 900 | |
| 901 | m->m_flags |= M_MCAST; |
| 902 | /* |
| 903 | * IP destination address is multicast. Make sure "dst" |
| 904 | * still points to the address in "ro". (It may have been |
| 905 | * changed to point to a gateway address, above.) |
| 906 | */ |
| 907 | dst = SIN(&ro->ro_dst); |
| 908 | /* |
| 909 | * See if the caller provided any multicast options |
| 910 | */ |
| 911 | if (imo != NULL) { |
| 912 | IMO_LOCK(imo); |
| 913 | vif = imo->imo_multicast_vif; |
| 914 | ttl = imo->imo_multicast_ttl; |
| 915 | loop = imo->imo_multicast_loop; |
| 916 | if (!(flags & IP_RAWOUTPUT)) { |
| 917 | ip->ip_ttl = ttl; |
| 918 | } |
| 919 | if (imo->imo_multicast_ifp != NULL) { |
| 920 | ifp = imo->imo_multicast_ifp; |
| 921 | } |
| 922 | IMO_UNLOCK(imo); |
| 923 | } else if (!(flags & IP_RAWOUTPUT)) { |
| 924 | vif = -1; |
| 925 | ip->ip_ttl = ttl; |
| 926 | } |
| 927 | /* |
| 928 | * Confirm that the outgoing interface supports multicast. |
| 929 | */ |
| 930 | if (imo == NULL || vif == -1) { |
| 931 | if (!(ifp->if_flags & IFF_MULTICAST)) { |
| 932 | OSAddAtomic(1, &ipstat.ips_noroute); |
| 933 | error = ENETUNREACH; |
| 934 | goto bad; |
| 935 | } |
| 936 | } |
| 937 | /* |
| 938 | * If source address not specified yet, use address |
| 939 | * of outgoing interface. |
| 940 | */ |
| 941 | if (ip->ip_src.s_addr == INADDR_ANY) { |
| 942 | struct in_ifaddr *ia1; |
| 943 | lck_rw_lock_shared(lck: &in_ifaddr_rwlock); |
| 944 | TAILQ_FOREACH(ia1, &in_ifaddrhead, ia_link) { |
| 945 | IFA_LOCK_SPIN(&ia1->ia_ifa); |
| 946 | if (ia1->ia_ifp == ifp) { |
| 947 | ip->ip_src = IA_SIN(ia1)->sin_addr; |
| 948 | srcifp = ifp; |
| 949 | IFA_UNLOCK(&ia1->ia_ifa); |
| 950 | break; |
| 951 | } |
| 952 | IFA_UNLOCK(&ia1->ia_ifa); |
| 953 | } |
| 954 | lck_rw_done(lck: &in_ifaddr_rwlock); |
| 955 | if (ip->ip_src.s_addr == INADDR_ANY) { |
| 956 | error = ENETUNREACH; |
| 957 | goto bad; |
| 958 | } |
| 959 | } |
| 960 | |
| 961 | in_multihead_lock_shared(); |
| 962 | IN_LOOKUP_MULTI(&pkt_dst, ifp, inm); |
| 963 | in_multihead_lock_done(); |
| 964 | if (inm != NULL && (imo == NULL || loop)) { |
| 965 | /* |
| 966 | * If we belong to the destination multicast group |
| 967 | * on the outgoing interface, and the caller did not |
| 968 | * forbid loopback, loop back a copy. |
| 969 | */ |
| 970 | if (!TAILQ_EMPTY(&ipv4_filters) |
| 971 | #if NECP |
| 972 | && !necp_packet_should_skip_filters(packet: m) |
| 973 | #endif // NECP |
| 974 | ) { |
| 975 | struct ipfilter *filter; |
| 976 | int seen = (inject_filter_ref == NULL); |
| 977 | |
| 978 | if (imo != NULL) { |
| 979 | ipf_pktopts.ippo_flags |= |
| 980 | IPPOF_MCAST_OPTS; |
| 981 | ipf_pktopts.ippo_mcast_ifnet = ifp; |
| 982 | ipf_pktopts.ippo_mcast_ttl = ttl; |
| 983 | ipf_pktopts.ippo_mcast_loop = loop; |
| 984 | } |
| 985 | |
| 986 | ipf_ref(); |
| 987 | |
| 988 | /* |
| 989 | * 4135317 - always pass network byte |
| 990 | * order to filter |
| 991 | */ |
| 992 | #if BYTE_ORDER != BIG_ENDIAN |
| 993 | HTONS(ip->ip_len); |
| 994 | HTONS(ip->ip_off); |
| 995 | #endif |
| 996 | TAILQ_FOREACH(filter, &ipv4_filters, ipf_link) { |
| 997 | if (seen == 0) { |
| 998 | if ((struct ipfilter *) |
| 999 | inject_filter_ref == filter) { |
| 1000 | seen = 1; |
| 1001 | } |
| 1002 | } else if (filter->ipf_filter. |
| 1003 | ipf_output != NULL) { |
| 1004 | errno_t result; |
| 1005 | result = filter->ipf_filter. |
| 1006 | ipf_output(filter-> |
| 1007 | ipf_filter.cookie, |
| 1008 | (mbuf_t *)&m, ippo); |
| 1009 | if (result == EJUSTRETURN) { |
| 1010 | ipf_unref(); |
| 1011 | INM_REMREF(inm); |
| 1012 | goto done; |
| 1013 | } |
| 1014 | if (result != 0) { |
| 1015 | ipf_unref(); |
| 1016 | INM_REMREF(inm); |
| 1017 | goto bad; |
| 1018 | } |
| 1019 | } |
| 1020 | } |
| 1021 | |
| 1022 | /* set back to host byte order */ |
| 1023 | ip = mtod(m, struct ip *); |
| 1024 | #if BYTE_ORDER != BIG_ENDIAN |
| 1025 | NTOHS(ip->ip_len); |
| 1026 | NTOHS(ip->ip_off); |
| 1027 | #endif |
| 1028 | ipf_unref(); |
| 1029 | ipobf.didfilter = true; |
| 1030 | } |
| 1031 | ip_mloopback(srcifp, ifp, m, dst, hlen); |
| 1032 | } |
| 1033 | if (inm != NULL) { |
| 1034 | INM_REMREF(inm); |
| 1035 | } |
| 1036 | /* |
| 1037 | * Multicasts with a time-to-live of zero may be looped- |
| 1038 | * back, above, but must not be transmitted on a network. |
| 1039 | * Also, multicasts addressed to the loopback interface |
| 1040 | * are not sent -- the above call to ip_mloopback() will |
| 1041 | * loop back a copy if this host actually belongs to the |
| 1042 | * destination group on the loopback interface. |
| 1043 | */ |
| 1044 | if (ip->ip_ttl == 0 || ifp->if_flags & IFF_LOOPBACK) { |
| 1045 | m_freem(m); |
| 1046 | goto done; |
| 1047 | } |
| 1048 | |
| 1049 | goto sendit; |
| 1050 | } |
| 1051 | /* |
| 1052 | * If source address not specified yet, use address |
| 1053 | * of outgoing interface. |
| 1054 | */ |
| 1055 | if (ip->ip_src.s_addr == INADDR_ANY) { |
| 1056 | IFA_LOCK_SPIN(&ia->ia_ifa); |
| 1057 | ip->ip_src = IA_SIN(ia)->sin_addr; |
| 1058 | IFA_UNLOCK(&ia->ia_ifa); |
| 1059 | } |
| 1060 | |
| 1061 | /* |
| 1062 | * Look for broadcast address and |
| 1063 | * and verify user is allowed to send |
| 1064 | * such a packet. |
| 1065 | */ |
| 1066 | if (ipobf.isbroadcast) { |
| 1067 | if (!(ifp->if_flags & IFF_BROADCAST)) { |
| 1068 | error = EADDRNOTAVAIL; |
| 1069 | goto bad; |
| 1070 | } |
| 1071 | if (!(flags & IP_ALLOWBROADCAST)) { |
| 1072 | error = EACCES; |
| 1073 | goto bad; |
| 1074 | } |
| 1075 | /* don't allow broadcast messages to be fragmented */ |
| 1076 | if ((u_short)ip->ip_len > ifp->if_mtu) { |
| 1077 | error = EMSGSIZE; |
| 1078 | goto bad; |
| 1079 | } |
| 1080 | m->m_flags |= M_BCAST; |
| 1081 | } else { |
| 1082 | m->m_flags &= ~M_BCAST; |
| 1083 | } |
| 1084 | |
| 1085 | sendit: |
| 1086 | #if PF |
| 1087 | /* Invoke outbound packet filter */ |
| 1088 | if (PF_IS_ENABLED) { |
| 1089 | int rc; |
| 1090 | |
| 1091 | m0 = m; /* Save for later */ |
| 1092 | #if DUMMYNET |
| 1093 | rc = ip_output_pf_dn_hook(ifp, mppn, mp: &m, dn_pf_rule, ro, dst, flags, ipoa); |
| 1094 | #else /* DUMMYNET */ |
| 1095 | rc = pf_af_hook(ifp, mppn, &m, AF_INET, FALSE, NULL); |
| 1096 | #endif /* DUMMYNET */ |
| 1097 | if (rc != 0 || m == NULL) { |
| 1098 | /* Move to the next packet */ |
| 1099 | m = *mppn; |
| 1100 | |
| 1101 | /* Skip ahead if first packet in list got dropped */ |
| 1102 | if (packetlist == m0) { |
| 1103 | packetlist = m; |
| 1104 | } |
| 1105 | |
| 1106 | if (m != NULL) { |
| 1107 | m0 = m; |
| 1108 | /* Next packet in the chain */ |
| 1109 | goto loopit; |
| 1110 | } else if (packetlist != NULL) { |
| 1111 | /* No more packet; send down the chain */ |
| 1112 | goto sendchain; |
| 1113 | } |
| 1114 | /* Nothing left; we're done */ |
| 1115 | goto done; |
| 1116 | } |
| 1117 | m0 = m; |
| 1118 | ip = mtod(m, struct ip *); |
| 1119 | pkt_dst = ip->ip_dst; |
| 1120 | hlen = IP_VHL_HL(ip->ip_vhl) << 2; |
| 1121 | } |
| 1122 | #endif /* PF */ |
| 1123 | /* |
| 1124 | * Force IP TTL to 255 following draft-ietf-zeroconf-ipv4-linklocal.txt |
| 1125 | */ |
| 1126 | if (IN_LINKLOCAL(ntohl(ip->ip_src.s_addr)) || |
| 1127 | IN_LINKLOCAL(ntohl(ip->ip_dst.s_addr))) { |
| 1128 | ip_linklocal_stat.iplls_out_total++; |
| 1129 | if (ip->ip_ttl != MAXTTL) { |
| 1130 | ip_linklocal_stat.iplls_out_badttl++; |
| 1131 | ip->ip_ttl = MAXTTL; |
| 1132 | } |
| 1133 | } |
| 1134 | |
| 1135 | if (!ipobf.didfilter && |
| 1136 | !TAILQ_EMPTY(&ipv4_filters) |
| 1137 | #if NECP |
| 1138 | && !necp_packet_should_skip_filters(packet: m) |
| 1139 | #endif // NECP |
| 1140 | ) { |
| 1141 | struct ipfilter *filter; |
| 1142 | int seen = (inject_filter_ref == NULL); |
| 1143 | ipf_pktopts.ippo_flags &= ~IPPOF_MCAST_OPTS; |
| 1144 | |
| 1145 | /* |
| 1146 | * Check that a TSO frame isn't passed to a filter. |
| 1147 | * This could happen if a filter is inserted while |
| 1148 | * TCP is sending the TSO packet. |
| 1149 | */ |
| 1150 | if (m->m_pkthdr.csum_flags & CSUM_TSO_IPV4) { |
| 1151 | error = EMSGSIZE; |
| 1152 | goto bad; |
| 1153 | } |
| 1154 | |
| 1155 | ipf_ref(); |
| 1156 | |
| 1157 | /* 4135317 - always pass network byte order to filter */ |
| 1158 | #if BYTE_ORDER != BIG_ENDIAN |
| 1159 | HTONS(ip->ip_len); |
| 1160 | HTONS(ip->ip_off); |
| 1161 | #endif |
| 1162 | TAILQ_FOREACH(filter, &ipv4_filters, ipf_link) { |
| 1163 | if (seen == 0) { |
| 1164 | if ((struct ipfilter *)inject_filter_ref == |
| 1165 | filter) { |
| 1166 | seen = 1; |
| 1167 | } |
| 1168 | } else if (filter->ipf_filter.ipf_output) { |
| 1169 | errno_t result; |
| 1170 | result = filter->ipf_filter. |
| 1171 | ipf_output(filter->ipf_filter.cookie, |
| 1172 | (mbuf_t *)&m, ippo); |
| 1173 | if (result == EJUSTRETURN) { |
| 1174 | ipf_unref(); |
| 1175 | goto done; |
| 1176 | } |
| 1177 | if (result != 0) { |
| 1178 | ipf_unref(); |
| 1179 | goto bad; |
| 1180 | } |
| 1181 | } |
| 1182 | } |
| 1183 | /* set back to host byte order */ |
| 1184 | ip = mtod(m, struct ip *); |
| 1185 | #if BYTE_ORDER != BIG_ENDIAN |
| 1186 | NTOHS(ip->ip_len); |
| 1187 | NTOHS(ip->ip_off); |
| 1188 | #endif |
| 1189 | ipf_unref(); |
| 1190 | } |
| 1191 | |
| 1192 | #if NECP |
| 1193 | /* Process Network Extension Policy. Will Pass, Drop, or Rebind packet. */ |
| 1194 | necp_matched_policy_id = necp_ip_output_find_policy_match(packet: m, |
| 1195 | flags, ipoa: (flags & IP_OUTARGS) ? ipoa : NULL, rt: ro ? ro->ro_rt : NULL, result: &necp_result, result_parameter: &necp_result_parameter); |
| 1196 | if (necp_matched_policy_id) { |
| 1197 | necp_mark_packet_from_ip(packet: m, policy_id: necp_matched_policy_id); |
| 1198 | switch (necp_result) { |
| 1199 | case NECP_KERNEL_POLICY_RESULT_PASS: |
| 1200 | if (necp_result_parameter.pass_flags & NECP_KERNEL_POLICY_PASS_NO_SKIP_IPSEC) { |
| 1201 | break; |
| 1202 | } |
| 1203 | /* Check if the interface is allowed */ |
| 1204 | if (!necp_packet_is_allowed_over_interface(packet: m, interface: ifp)) { |
| 1205 | error = EHOSTUNREACH; |
| 1206 | OSAddAtomic(1, &ipstat.ips_necp_policy_drop); |
| 1207 | goto bad; |
| 1208 | } |
| 1209 | goto skip_ipsec; |
| 1210 | case NECP_KERNEL_POLICY_RESULT_DROP: |
| 1211 | case NECP_KERNEL_POLICY_RESULT_SOCKET_DIVERT: |
| 1212 | /* Flow divert packets should be blocked at the IP layer */ |
| 1213 | error = EHOSTUNREACH; |
| 1214 | OSAddAtomic(1, &ipstat.ips_necp_policy_drop); |
| 1215 | goto bad; |
| 1216 | case NECP_KERNEL_POLICY_RESULT_IP_TUNNEL: { |
| 1217 | /* Verify that the packet is being routed to the tunnel */ |
| 1218 | struct ifnet *policy_ifp = necp_get_ifnet_from_result_parameter(result_parameter: &necp_result_parameter); |
| 1219 | if (policy_ifp == ifp) { |
| 1220 | /* Check if the interface is allowed */ |
| 1221 | if (!necp_packet_is_allowed_over_interface(packet: m, interface: ifp)) { |
| 1222 | error = EHOSTUNREACH; |
| 1223 | OSAddAtomic(1, &ipstat.ips_necp_policy_drop); |
| 1224 | goto bad; |
| 1225 | } |
| 1226 | goto skip_ipsec; |
| 1227 | } else { |
| 1228 | if (necp_packet_can_rebind_to_ifnet(packet: m, interface: policy_ifp, new_route: &necp_route, AF_INET)) { |
| 1229 | /* Check if the interface is allowed */ |
| 1230 | if (!necp_packet_is_allowed_over_interface(packet: m, interface: policy_ifp)) { |
| 1231 | error = EHOSTUNREACH; |
| 1232 | OSAddAtomic(1, &ipstat.ips_necp_policy_drop); |
| 1233 | goto bad; |
| 1234 | } |
| 1235 | |
| 1236 | /* |
| 1237 | * Update the QOS marking policy if |
| 1238 | * 1. up layer asks it to do so |
| 1239 | * 2. net_qos_policy_restricted is not set |
| 1240 | * 3. qos_marking_gencount doesn't match necp_kernel_socket_policies_gencount (checked in necp_lookup_current_qos_marking) |
| 1241 | */ |
| 1242 | if (ipoa != NULL && |
| 1243 | (ipoa->ipoa_flags & IPOAF_REDO_QOSMARKING_POLICY) && |
| 1244 | net_qos_policy_restricted != 0) { |
| 1245 | bool qos_marking = (ipoa->ipoa_flags & IPOAF_QOSMARKING_ALLOWED) ? TRUE : FALSE; |
| 1246 | qos_marking = necp_lookup_current_qos_marking(qos_marking_gencount: &ipoa->qos_marking_gencount, NULL, interface: policy_ifp, route_rule_id: necp_result_parameter.route_rule_id, old_qos_marking: qos_marking); |
| 1247 | if (qos_marking) { |
| 1248 | ipoa->ipoa_flags |= IPOAF_QOSMARKING_ALLOWED; |
| 1249 | } else { |
| 1250 | ipoa->ipoa_flags &= ~IPOAF_QOSMARKING_ALLOWED; |
| 1251 | } |
| 1252 | } |
| 1253 | |
| 1254 | /* Set ifp to the tunnel interface, since it is compatible with the packet */ |
| 1255 | ifp = policy_ifp; |
| 1256 | ro = &necp_route; |
| 1257 | goto skip_ipsec; |
| 1258 | } else { |
| 1259 | error = ENETUNREACH; |
| 1260 | OSAddAtomic(1, &ipstat.ips_necp_policy_drop); |
| 1261 | goto bad; |
| 1262 | } |
| 1263 | } |
| 1264 | } |
| 1265 | default: |
| 1266 | break; |
| 1267 | } |
| 1268 | } |
| 1269 | /* Catch-all to check if the interface is allowed */ |
| 1270 | if (!necp_packet_is_allowed_over_interface(packet: m, interface: ifp)) { |
| 1271 | error = EHOSTUNREACH; |
| 1272 | OSAddAtomic(1, &ipstat.ips_necp_policy_drop); |
| 1273 | goto bad; |
| 1274 | } |
| 1275 | #endif /* NECP */ |
| 1276 | |
| 1277 | #if IPSEC |
| 1278 | if (ipsec_bypass != 0 || (flags & IP_NOIPSEC)) { |
| 1279 | goto skip_ipsec; |
| 1280 | } |
| 1281 | |
| 1282 | KERNEL_DEBUG(DBG_FNC_IPSEC4_OUTPUT | DBG_FUNC_START, 0, 0, 0, 0, 0); |
| 1283 | |
| 1284 | if (sp == NULL) { |
| 1285 | /* get SP for this packet */ |
| 1286 | if (so != NULL) { |
| 1287 | sp = ipsec4_getpolicybysock(m, IPSEC_DIR_OUTBOUND, |
| 1288 | so, &error); |
| 1289 | } else { |
| 1290 | sp = ipsec4_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND, |
| 1291 | flags, &error); |
| 1292 | } |
| 1293 | if (sp == NULL) { |
| 1294 | IPSEC_STAT_INCREMENT(ipsecstat.out_inval); |
| 1295 | KERNEL_DEBUG(DBG_FNC_IPSEC4_OUTPUT | DBG_FUNC_END, |
| 1296 | 0, 0, 0, 0, 0); |
| 1297 | goto bad; |
| 1298 | } |
| 1299 | } |
| 1300 | |
| 1301 | error = 0; |
| 1302 | |
| 1303 | /* check policy */ |
| 1304 | switch (sp->policy) { |
| 1305 | case IPSEC_POLICY_DISCARD: |
| 1306 | case IPSEC_POLICY_GENERATE: |
| 1307 | /* |
| 1308 | * This packet is just discarded. |
| 1309 | */ |
| 1310 | IPSEC_STAT_INCREMENT(ipsecstat.out_polvio); |
| 1311 | KERNEL_DEBUG(DBG_FNC_IPSEC4_OUTPUT | DBG_FUNC_END, |
| 1312 | 1, 0, 0, 0, 0); |
| 1313 | goto bad; |
| 1314 | |
| 1315 | case IPSEC_POLICY_BYPASS: |
| 1316 | case IPSEC_POLICY_NONE: |
| 1317 | /* no need to do IPsec. */ |
| 1318 | KERNEL_DEBUG(DBG_FNC_IPSEC4_OUTPUT | DBG_FUNC_END, |
| 1319 | 2, 0, 0, 0, 0); |
| 1320 | goto skip_ipsec; |
| 1321 | |
| 1322 | case IPSEC_POLICY_IPSEC: |
| 1323 | if (sp->req == NULL) { |
| 1324 | /* acquire a policy */ |
| 1325 | error = key_spdacquire(sp); |
| 1326 | KERNEL_DEBUG(DBG_FNC_IPSEC4_OUTPUT | DBG_FUNC_END, |
| 1327 | 3, 0, 0, 0, 0); |
| 1328 | goto bad; |
| 1329 | } |
| 1330 | if (sp->ipsec_if) { |
| 1331 | /* Verify the redirect to ipsec interface */ |
| 1332 | if (sp->ipsec_if == ifp) { |
| 1333 | goto skip_ipsec; |
| 1334 | } |
| 1335 | goto bad; |
| 1336 | } |
| 1337 | break; |
| 1338 | |
| 1339 | case IPSEC_POLICY_ENTRUST: |
| 1340 | default: |
| 1341 | printf("ip_output: Invalid policy found. %d\n" , sp->policy); |
| 1342 | } |
| 1343 | { |
| 1344 | ipsec_state.m = m; |
| 1345 | if (flags & IP_ROUTETOIF) { |
| 1346 | bzero(s: &ipsec_state.ro, n: sizeof(ipsec_state.ro)); |
| 1347 | } else { |
| 1348 | route_copyout((struct route *)&ipsec_state.ro, ro, sizeof(struct route)); |
| 1349 | } |
| 1350 | ipsec_state.dst = SA(dst); |
| 1351 | |
| 1352 | ip->ip_sum = 0; |
| 1353 | |
| 1354 | /* |
| 1355 | * XXX |
| 1356 | * delayed checksums are not currently compatible with IPsec |
| 1357 | */ |
| 1358 | if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { |
| 1359 | in_delayed_cksum(m); |
| 1360 | } |
| 1361 | |
| 1362 | #if BYTE_ORDER != BIG_ENDIAN |
| 1363 | HTONS(ip->ip_len); |
| 1364 | HTONS(ip->ip_off); |
| 1365 | #endif |
| 1366 | |
| 1367 | DTRACE_IP6(send, struct mbuf *, m, struct inpcb *, NULL, |
| 1368 | struct ip *, ip, struct ifnet *, ifp, |
| 1369 | struct ip *, ip, struct ip6_hdr *, NULL); |
| 1370 | |
| 1371 | error = ipsec4_output(&ipsec_state, sp, flags); |
| 1372 | if (ipsec_state.tunneled == 6) { |
| 1373 | m0 = m = NULL; |
| 1374 | error = 0; |
| 1375 | goto bad; |
| 1376 | } |
| 1377 | |
| 1378 | m0 = m = ipsec_state.m; |
| 1379 | |
| 1380 | #if DUMMYNET |
| 1381 | /* |
| 1382 | * If we're about to use the route in ipsec_state |
| 1383 | * and this came from dummynet, cleaup now. |
| 1384 | */ |
| 1385 | if (ro == &saved_route && |
| 1386 | (!(flags & IP_ROUTETOIF) || ipsec_state.tunneled)) { |
| 1387 | ROUTE_RELEASE(ro); |
| 1388 | } |
| 1389 | #endif /* DUMMYNET */ |
| 1390 | |
| 1391 | if (flags & IP_ROUTETOIF) { |
| 1392 | /* |
| 1393 | * if we have tunnel mode SA, we may need to ignore |
| 1394 | * IP_ROUTETOIF. |
| 1395 | */ |
| 1396 | if (ipsec_state.tunneled) { |
| 1397 | flags &= ~IP_ROUTETOIF; |
| 1398 | ro = (struct route *)&ipsec_state.ro; |
| 1399 | } |
| 1400 | } else { |
| 1401 | ro = (struct route *)&ipsec_state.ro; |
| 1402 | } |
| 1403 | dst = SIN(ipsec_state.dst); |
| 1404 | if (error) { |
| 1405 | /* mbuf is already reclaimed in ipsec4_output. */ |
| 1406 | m0 = NULL; |
| 1407 | switch (error) { |
| 1408 | case EHOSTUNREACH: |
| 1409 | case ENETUNREACH: |
| 1410 | case EMSGSIZE: |
| 1411 | case ENOBUFS: |
| 1412 | case ENOMEM: |
| 1413 | break; |
| 1414 | default: |
| 1415 | printf("ip4_output (ipsec): error code %d\n" , error); |
| 1416 | OS_FALLTHROUGH; |
| 1417 | case ENOENT: |
| 1418 | /* don't show these error codes to the user */ |
| 1419 | error = 0; |
| 1420 | break; |
| 1421 | } |
| 1422 | KERNEL_DEBUG(DBG_FNC_IPSEC4_OUTPUT | DBG_FUNC_END, |
| 1423 | 4, 0, 0, 0, 0); |
| 1424 | goto bad; |
| 1425 | } |
| 1426 | } |
| 1427 | |
| 1428 | /* be sure to update variables that are affected by ipsec4_output() */ |
| 1429 | ip = mtod(m, struct ip *); |
| 1430 | |
| 1431 | #ifdef _IP_VHL |
| 1432 | hlen = IP_VHL_HL(ip->ip_vhl) << 2; |
| 1433 | #else /* !_IP_VHL */ |
| 1434 | hlen = ip->ip_hl << 2; |
| 1435 | #endif /* !_IP_VHL */ |
| 1436 | /* Check that there wasn't a route change and src is still valid */ |
| 1437 | if (ROUTE_UNUSABLE(ro)) { |
| 1438 | ROUTE_RELEASE(ro); |
| 1439 | VERIFY(src_ia == NULL); |
| 1440 | if (ip->ip_src.s_addr != INADDR_ANY && |
| 1441 | !(flags & (IP_ROUTETOIF | IP_FORWARDING)) && |
| 1442 | (src_ia = ifa_foraddr(ip->ip_src.s_addr)) == NULL) { |
| 1443 | error = EADDRNOTAVAIL; |
| 1444 | KERNEL_DEBUG(DBG_FNC_IPSEC4_OUTPUT | DBG_FUNC_END, |
| 1445 | 5, 0, 0, 0, 0); |
| 1446 | goto bad; |
| 1447 | } |
| 1448 | if (src_ia != NULL) { |
| 1449 | ifa_remref(ifa: &src_ia->ia_ifa); |
| 1450 | src_ia = NULL; |
| 1451 | } |
| 1452 | } |
| 1453 | |
| 1454 | if (ro->ro_rt == NULL) { |
| 1455 | if (!(flags & IP_ROUTETOIF)) { |
| 1456 | printf("%s: can't update route after " |
| 1457 | "IPsec processing\n" , __func__); |
| 1458 | error = EHOSTUNREACH; /* XXX */ |
| 1459 | KERNEL_DEBUG(DBG_FNC_IPSEC4_OUTPUT | DBG_FUNC_END, |
| 1460 | 6, 0, 0, 0, 0); |
| 1461 | goto bad; |
| 1462 | } |
| 1463 | } else { |
| 1464 | if (ia != NULL) { |
| 1465 | ifa_remref(ifa: &ia->ia_ifa); |
| 1466 | } |
| 1467 | RT_LOCK_SPIN(ro->ro_rt); |
| 1468 | ia = ifatoia(ro->ro_rt->rt_ifa); |
| 1469 | if (ia != NULL) { |
| 1470 | /* Become a regular mutex */ |
| 1471 | RT_CONVERT_LOCK(ro->ro_rt); |
| 1472 | ifa_addref(ifa: &ia->ia_ifa); |
| 1473 | } |
| 1474 | ifp = ro->ro_rt->rt_ifp; |
| 1475 | RT_UNLOCK(ro->ro_rt); |
| 1476 | } |
| 1477 | |
| 1478 | /* make it flipped, again. */ |
| 1479 | #if BYTE_ORDER != BIG_ENDIAN |
| 1480 | NTOHS(ip->ip_len); |
| 1481 | NTOHS(ip->ip_off); |
| 1482 | #endif |
| 1483 | KERNEL_DEBUG(DBG_FNC_IPSEC4_OUTPUT | DBG_FUNC_END, |
| 1484 | 7, 0xff, 0xff, 0xff, 0xff); |
| 1485 | |
| 1486 | /* Pass to filters again */ |
| 1487 | if (!TAILQ_EMPTY(&ipv4_filters) |
| 1488 | #if NECP |
| 1489 | && !necp_packet_should_skip_filters(packet: m) |
| 1490 | #endif // NECP |
| 1491 | ) { |
| 1492 | struct ipfilter *filter; |
| 1493 | |
| 1494 | ipf_pktopts.ippo_flags &= ~IPPOF_MCAST_OPTS; |
| 1495 | |
| 1496 | /* |
| 1497 | * Check that a TSO frame isn't passed to a filter. |
| 1498 | * This could happen if a filter is inserted while |
| 1499 | * TCP is sending the TSO packet. |
| 1500 | */ |
| 1501 | if (m->m_pkthdr.csum_flags & CSUM_TSO_IPV4) { |
| 1502 | error = EMSGSIZE; |
| 1503 | goto bad; |
| 1504 | } |
| 1505 | |
| 1506 | ipf_ref(); |
| 1507 | |
| 1508 | /* 4135317 - always pass network byte order to filter */ |
| 1509 | #if BYTE_ORDER != BIG_ENDIAN |
| 1510 | HTONS(ip->ip_len); |
| 1511 | HTONS(ip->ip_off); |
| 1512 | #endif |
| 1513 | TAILQ_FOREACH(filter, &ipv4_filters, ipf_link) { |
| 1514 | if (filter->ipf_filter.ipf_output) { |
| 1515 | errno_t result; |
| 1516 | result = filter->ipf_filter. |
| 1517 | ipf_output(filter->ipf_filter.cookie, |
| 1518 | (mbuf_t *)&m, ippo); |
| 1519 | if (result == EJUSTRETURN) { |
| 1520 | ipf_unref(); |
| 1521 | goto done; |
| 1522 | } |
| 1523 | if (result != 0) { |
| 1524 | ipf_unref(); |
| 1525 | goto bad; |
| 1526 | } |
| 1527 | } |
| 1528 | } |
| 1529 | /* set back to host byte order */ |
| 1530 | ip = mtod(m, struct ip *); |
| 1531 | #if BYTE_ORDER != BIG_ENDIAN |
| 1532 | NTOHS(ip->ip_len); |
| 1533 | NTOHS(ip->ip_off); |
| 1534 | #endif |
| 1535 | ipf_unref(); |
| 1536 | } |
| 1537 | skip_ipsec: |
| 1538 | #endif /* IPSEC */ |
| 1539 | |
| 1540 | |
| 1541 | /* 127/8 must not appear on wire - RFC1122 */ |
| 1542 | if (!(ifp->if_flags & IFF_LOOPBACK) && |
| 1543 | ((ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET || |
| 1544 | (ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET)) { |
| 1545 | OSAddAtomic(1, &ipstat.ips_badaddr); |
| 1546 | error = EADDRNOTAVAIL; |
| 1547 | goto bad; |
| 1548 | } |
| 1549 | |
| 1550 | if (ipoa != NULL) { |
| 1551 | u_int8_t dscp = ip->ip_tos >> IPTOS_DSCP_SHIFT; |
| 1552 | |
| 1553 | error = set_packet_qos(m, ifp, |
| 1554 | ipoa->ipoa_flags & IPOAF_QOSMARKING_ALLOWED ? TRUE : FALSE, |
| 1555 | ipoa->ipoa_sotc, ipoa->ipoa_netsvctype, &dscp); |
| 1556 | if (error == 0) { |
| 1557 | ip->ip_tos &= IPTOS_ECN_MASK; |
| 1558 | ip->ip_tos |= (u_char)(dscp << IPTOS_DSCP_SHIFT); |
| 1559 | } else { |
| 1560 | printf("%s if_dscp_for_mbuf() error %d\n" , __func__, error); |
| 1561 | error = 0; |
| 1562 | } |
| 1563 | } |
| 1564 | |
| 1565 | ip_output_checksum(ifp, m, (IP_VHL_HL(ip->ip_vhl) << 2), |
| 1566 | ip->ip_len, &sw_csum); |
| 1567 | |
| 1568 | interface_mtu = ifp->if_mtu; |
| 1569 | |
| 1570 | if (INTF_ADJUST_MTU_FOR_CLAT46(ifp)) { |
| 1571 | interface_mtu = IN6_LINKMTU(ifp); |
| 1572 | /* Further adjust the size for CLAT46 expansion */ |
| 1573 | interface_mtu -= CLAT46_HDR_EXPANSION_OVERHD; |
| 1574 | } |
| 1575 | |
| 1576 | /* |
| 1577 | * If small enough for interface, or the interface will take |
| 1578 | * care of the fragmentation for us, can just send directly. |
| 1579 | */ |
| 1580 | if ((u_short)ip->ip_len <= interface_mtu || TSO_IPV4_OK(ifp, m) || |
| 1581 | (!(ip->ip_off & IP_DF) && (ifp->if_hwassist & CSUM_FRAGMENT))) { |
| 1582 | #if BYTE_ORDER != BIG_ENDIAN |
| 1583 | HTONS(ip->ip_len); |
| 1584 | HTONS(ip->ip_off); |
| 1585 | #endif |
| 1586 | |
| 1587 | ip->ip_sum = 0; |
| 1588 | if ((sw_csum & CSUM_DELAY_IP) || __improbable(force_ipsum != 0)) { |
| 1589 | ip->ip_sum = ip_cksum_hdr_out(m, hlen); |
| 1590 | sw_csum &= ~CSUM_DELAY_IP; |
| 1591 | m->m_pkthdr.csum_flags &= ~CSUM_DELAY_IP; |
| 1592 | } |
| 1593 | |
| 1594 | #if IPSEC |
| 1595 | /* clean ipsec history once it goes out of the node */ |
| 1596 | if (ipsec_bypass == 0 && !(flags & IP_NOIPSEC)) { |
| 1597 | ipsec_delaux(m); |
| 1598 | } |
| 1599 | #endif /* IPSEC */ |
| 1600 | if ((m->m_pkthdr.csum_flags & CSUM_TSO_IPV4) && |
| 1601 | (m->m_pkthdr.tso_segsz > 0)) { |
| 1602 | scnt += m->m_pkthdr.len / m->m_pkthdr.tso_segsz; |
| 1603 | } else { |
| 1604 | scnt++; |
| 1605 | } |
| 1606 | |
| 1607 | if (packetchain == 0) { |
| 1608 | if (ro->ro_rt != NULL && nstat_collect) { |
| 1609 | nstat_route_tx(rte: ro->ro_rt, packets: scnt, |
| 1610 | bytes: m->m_pkthdr.len, flags: 0); |
| 1611 | } |
| 1612 | |
| 1613 | error = dlil_output(ifp, PF_INET, m, ro->ro_rt, |
| 1614 | SA(dst), 0, adv); |
| 1615 | if (dlil_verbose && error) { |
| 1616 | printf("dlil_output error on interface %s: %d\n" , |
| 1617 | ifp->if_xname, error); |
| 1618 | } |
| 1619 | scnt = 0; |
| 1620 | goto done; |
| 1621 | } else { |
| 1622 | /* |
| 1623 | * packet chaining allows us to reuse the |
| 1624 | * route for all packets |
| 1625 | */ |
| 1626 | bytecnt += m->m_pkthdr.len; |
| 1627 | mppn = &m->m_nextpkt; |
| 1628 | m = m->m_nextpkt; |
| 1629 | if (m == NULL) { |
| 1630 | #if PF |
| 1631 | sendchain: |
| 1632 | #endif /* PF */ |
| 1633 | if (pktcnt > ip_maxchainsent) { |
| 1634 | ip_maxchainsent = pktcnt; |
| 1635 | } |
| 1636 | if (ro->ro_rt != NULL && nstat_collect) { |
| 1637 | nstat_route_tx(rte: ro->ro_rt, packets: scnt, |
| 1638 | bytes: bytecnt, flags: 0); |
| 1639 | } |
| 1640 | |
| 1641 | error = dlil_output(ifp, PF_INET, packetlist, |
| 1642 | ro->ro_rt, SA(dst), 0, adv); |
| 1643 | if (dlil_verbose && error) { |
| 1644 | printf("dlil_output error on interface %s: %d\n" , |
| 1645 | ifp->if_xname, error); |
| 1646 | } |
| 1647 | pktcnt = 0; |
| 1648 | scnt = 0; |
| 1649 | bytecnt = 0; |
| 1650 | goto done; |
| 1651 | } |
| 1652 | m0 = m; |
| 1653 | pktcnt++; |
| 1654 | goto loopit; |
| 1655 | } |
| 1656 | } |
| 1657 | |
| 1658 | VERIFY(interface_mtu != 0); |
| 1659 | /* |
| 1660 | * Too large for interface; fragment if possible. |
| 1661 | * Must be able to put at least 8 bytes per fragment. |
| 1662 | * Balk when DF bit is set or the interface didn't support TSO. |
| 1663 | */ |
| 1664 | if ((ip->ip_off & IP_DF) || pktcnt > 0 || |
| 1665 | (m->m_pkthdr.csum_flags & CSUM_TSO_IPV4)) { |
| 1666 | error = EMSGSIZE; |
| 1667 | /* |
| 1668 | * This case can happen if the user changed the MTU |
| 1669 | * of an interface after enabling IP on it. Because |
| 1670 | * most netifs don't keep track of routes pointing to |
| 1671 | * them, there is no way for one to update all its |
| 1672 | * routes when the MTU is changed. |
| 1673 | */ |
| 1674 | if (ro->ro_rt) { |
| 1675 | RT_LOCK_SPIN(ro->ro_rt); |
| 1676 | if ((ro->ro_rt->rt_flags & (RTF_UP | RTF_HOST)) && |
| 1677 | !(ro->ro_rt->rt_rmx.rmx_locks & RTV_MTU) && |
| 1678 | (ro->ro_rt->rt_rmx.rmx_mtu > interface_mtu)) { |
| 1679 | ro->ro_rt->rt_rmx.rmx_mtu = interface_mtu; |
| 1680 | } |
| 1681 | RT_UNLOCK(ro->ro_rt); |
| 1682 | } |
| 1683 | if (pktcnt > 0) { |
| 1684 | m0 = packetlist; |
| 1685 | } |
| 1686 | OSAddAtomic(1, &ipstat.ips_cantfrag); |
| 1687 | goto bad; |
| 1688 | } |
| 1689 | |
| 1690 | /* |
| 1691 | * XXX Only TCP seems to be passing a list of packets here. |
| 1692 | * The following issue is limited to UDP datagrams with 0 checksum. |
| 1693 | * For now limit it to the case when single packet is passed down. |
| 1694 | */ |
| 1695 | if (packetchain == 0 && IS_INTF_CLAT46(ifp)) { |
| 1696 | /* |
| 1697 | * If it is a UDP packet that has checksum set to 0 |
| 1698 | * and is also not being offloaded, compute a full checksum |
| 1699 | * and update the UDP checksum. |
| 1700 | */ |
| 1701 | if (ip->ip_p == IPPROTO_UDP && |
| 1702 | !(m->m_pkthdr.csum_flags & (CSUM_UDP | CSUM_PARTIAL))) { |
| 1703 | struct udphdr *uh = NULL; |
| 1704 | |
| 1705 | if (m->m_len < hlen + sizeof(struct udphdr)) { |
| 1706 | m = m_pullup(m, hlen + sizeof(struct udphdr)); |
| 1707 | if (m == NULL) { |
| 1708 | error = ENOBUFS; |
| 1709 | m0 = m; |
| 1710 | goto bad; |
| 1711 | } |
| 1712 | m0 = m; |
| 1713 | ip = mtod(m, struct ip *); |
| 1714 | } |
| 1715 | /* |
| 1716 | * Get UDP header and if checksum is 0, then compute the full |
| 1717 | * checksum. |
| 1718 | */ |
| 1719 | uh = (struct udphdr *)(void *)((caddr_t)ip + hlen); |
| 1720 | if (uh->uh_sum == 0) { |
| 1721 | uh->uh_sum = inet_cksum(m, IPPROTO_UDP, hlen, |
| 1722 | ip->ip_len - hlen); |
| 1723 | if (uh->uh_sum == 0) { |
| 1724 | uh->uh_sum = 0xffff; |
| 1725 | } |
| 1726 | } |
| 1727 | } |
| 1728 | } |
| 1729 | |
| 1730 | error = ip_fragment(m, ifp, interface_mtu, sw_csum); |
| 1731 | if (error != 0) { |
| 1732 | m0 = m = NULL; |
| 1733 | goto bad; |
| 1734 | } |
| 1735 | |
| 1736 | KERNEL_DEBUG(DBG_LAYER_END, ip->ip_dst.s_addr, |
| 1737 | ip->ip_src.s_addr, ip->ip_p, ip->ip_off, ip->ip_len); |
| 1738 | |
| 1739 | for (m = m0; m; m = m0) { |
| 1740 | m0 = m->m_nextpkt; |
| 1741 | m->m_nextpkt = 0; |
| 1742 | #if IPSEC |
| 1743 | /* clean ipsec history once it goes out of the node */ |
| 1744 | if (ipsec_bypass == 0 && !(flags & IP_NOIPSEC)) { |
| 1745 | ipsec_delaux(m); |
| 1746 | } |
| 1747 | #endif /* IPSEC */ |
| 1748 | if (error == 0) { |
| 1749 | if ((packetchain != 0) && (pktcnt > 0)) { |
| 1750 | panic("%s: mix of packet in packetlist is " |
| 1751 | "wrong=%p" , __func__, packetlist); |
| 1752 | /* NOTREACHED */ |
| 1753 | } |
| 1754 | if (ro->ro_rt != NULL && nstat_collect) { |
| 1755 | nstat_route_tx(rte: ro->ro_rt, packets: 1, |
| 1756 | bytes: m->m_pkthdr.len, flags: 0); |
| 1757 | } |
| 1758 | error = dlil_output(ifp, PF_INET, m, ro->ro_rt, |
| 1759 | SA(dst), 0, adv); |
| 1760 | if (dlil_verbose && error) { |
| 1761 | printf("dlil_output error on interface %s: %d\n" , |
| 1762 | ifp->if_xname, error); |
| 1763 | } |
| 1764 | } else { |
| 1765 | m_freem(m); |
| 1766 | } |
| 1767 | } |
| 1768 | |
| 1769 | if (error == 0) { |
| 1770 | OSAddAtomic(1, &ipstat.ips_fragmented); |
| 1771 | } |
| 1772 | |
| 1773 | done: |
| 1774 | if (ia != NULL) { |
| 1775 | ifa_remref(ifa: &ia->ia_ifa); |
| 1776 | ia = NULL; |
| 1777 | } |
| 1778 | #if IPSEC |
| 1779 | ROUTE_RELEASE(&ipsec_state.ro); |
| 1780 | if (sp != NULL) { |
| 1781 | KEYDEBUG(KEYDEBUG_IPSEC_STAMP, |
| 1782 | printf("DP ip_output call free SP:%x\n" , sp)); |
| 1783 | key_freesp(sp, KEY_SADB_UNLOCKED); |
| 1784 | } |
| 1785 | #endif /* IPSEC */ |
| 1786 | #if NECP |
| 1787 | ROUTE_RELEASE(&necp_route); |
| 1788 | #endif /* NECP */ |
| 1789 | #if DUMMYNET |
| 1790 | ROUTE_RELEASE(&saved_route); |
| 1791 | #endif /* DUMMYNET */ |
| 1792 | |
| 1793 | KERNEL_DEBUG(DBG_FNC_IP_OUTPUT | DBG_FUNC_END, error, 0, 0, 0, 0); |
| 1794 | if (ip_output_measure) { |
| 1795 | net_perf_measure_time(npp: &net_perf, start: &start_tv, num_pkts: packets_processed); |
| 1796 | net_perf_histogram(npp: &net_perf, num_pkts: packets_processed); |
| 1797 | } |
| 1798 | return error; |
| 1799 | bad: |
| 1800 | if (pktcnt > 0) { |
| 1801 | m0 = packetlist; |
| 1802 | } |
| 1803 | m_freem_list(m0); |
| 1804 | goto done; |
| 1805 | |
| 1806 | #undef ipsec_state |
| 1807 | #undef args |
| 1808 | #undef sro_fwd |
| 1809 | #undef saved_route |
| 1810 | #undef ipf_pktopts |
| 1811 | #undef IP_CHECK_RESTRICTIONS |
| 1812 | } |
| 1813 | |
| 1814 | int |
| 1815 | ip_fragment(struct mbuf *m, struct ifnet *ifp, uint32_t mtu, int sw_csum) |
| 1816 | { |
| 1817 | struct ip *ip, *mhip; |
| 1818 | int len, hlen, mhlen, firstlen, off, error = 0; |
| 1819 | struct mbuf **mnext = &m->m_nextpkt, *m0; |
| 1820 | int nfrags = 1; |
| 1821 | |
| 1822 | ip = mtod(m, struct ip *); |
| 1823 | #ifdef _IP_VHL |
| 1824 | hlen = IP_VHL_HL(ip->ip_vhl) << 2; |
| 1825 | #else /* !_IP_VHL */ |
| 1826 | hlen = ip->ip_hl << 2; |
| 1827 | #endif /* !_IP_VHL */ |
| 1828 | |
| 1829 | /* |
| 1830 | * We need to adjust the fragment sizes to account |
| 1831 | * for IPv6 fragment header if it needs to be translated |
| 1832 | * from IPv4 to IPv6. |
| 1833 | */ |
| 1834 | if (IS_INTF_CLAT46(ifp)) { |
| 1835 | mtu -= sizeof(struct ip6_frag); |
| 1836 | } |
| 1837 | |
| 1838 | firstlen = len = (mtu - hlen) & ~7; |
| 1839 | if (len < 8) { |
| 1840 | m_freem(m); |
| 1841 | return EMSGSIZE; |
| 1842 | } |
| 1843 | |
| 1844 | /* |
| 1845 | * if the interface will not calculate checksums on |
| 1846 | * fragmented packets, then do it here. |
| 1847 | */ |
| 1848 | if ((m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) && |
| 1849 | !(ifp->if_hwassist & CSUM_IP_FRAGS)) { |
| 1850 | in_delayed_cksum(m); |
| 1851 | } |
| 1852 | |
| 1853 | /* |
| 1854 | * Loop through length of segment after first fragment, |
| 1855 | * make new header and copy data of each part and link onto chain. |
| 1856 | */ |
| 1857 | m0 = m; |
| 1858 | mhlen = sizeof(struct ip); |
| 1859 | for (off = hlen + len; off < (u_short)ip->ip_len; off += len) { |
| 1860 | MGETHDR(m, M_DONTWAIT, MT_HEADER); /* MAC-OK */ |
| 1861 | if (m == NULL) { |
| 1862 | error = ENOBUFS; |
| 1863 | OSAddAtomic(1, &ipstat.ips_odropped); |
| 1864 | goto sendorfree; |
| 1865 | } |
| 1866 | m->m_flags |= (m0->m_flags & M_MCAST) | M_FRAG; |
| 1867 | m->m_data += max_linkhdr; |
| 1868 | mhip = mtod(m, struct ip *); |
| 1869 | *mhip = *ip; |
| 1870 | if (hlen > sizeof(struct ip)) { |
| 1871 | mhlen = ip_optcopy(ip, mhip) + sizeof(struct ip); |
| 1872 | mhip->ip_vhl = IP_MAKE_VHL(IPVERSION, mhlen >> 2); |
| 1873 | } |
| 1874 | m->m_len = mhlen; |
| 1875 | mhip->ip_off = (u_short)(((off - hlen) >> 3) + (ip->ip_off & ~IP_MF)); |
| 1876 | if (ip->ip_off & IP_MF) { |
| 1877 | mhip->ip_off |= IP_MF; |
| 1878 | } |
| 1879 | if (off + len >= (u_short)ip->ip_len) { |
| 1880 | len = (u_short)ip->ip_len - off; |
| 1881 | } else { |
| 1882 | mhip->ip_off |= IP_MF; |
| 1883 | } |
| 1884 | mhip->ip_len = htons((u_short)(len + mhlen)); |
| 1885 | m->m_next = m_copy(m0, off, len); |
| 1886 | if (m->m_next == NULL) { |
| 1887 | (void) m_free(m); |
| 1888 | error = ENOBUFS; /* ??? */ |
| 1889 | OSAddAtomic(1, &ipstat.ips_odropped); |
| 1890 | goto sendorfree; |
| 1891 | } |
| 1892 | m->m_pkthdr.len = mhlen + len; |
| 1893 | m->m_pkthdr.rcvif = NULL; |
| 1894 | m->m_pkthdr.csum_flags = m0->m_pkthdr.csum_flags; |
| 1895 | |
| 1896 | M_COPY_CLASSIFIER(m, m0); |
| 1897 | M_COPY_PFTAG(m, m0); |
| 1898 | M_COPY_NECPTAG(m, m0); |
| 1899 | |
| 1900 | #if BYTE_ORDER != BIG_ENDIAN |
| 1901 | HTONS(mhip->ip_off); |
| 1902 | #endif |
| 1903 | |
| 1904 | mhip->ip_sum = 0; |
| 1905 | if (sw_csum & CSUM_DELAY_IP) { |
| 1906 | mhip->ip_sum = ip_cksum_hdr_out(m, mhlen); |
| 1907 | m->m_pkthdr.csum_flags &= ~CSUM_DELAY_IP; |
| 1908 | } |
| 1909 | *mnext = m; |
| 1910 | mnext = &m->m_nextpkt; |
| 1911 | nfrags++; |
| 1912 | } |
| 1913 | OSAddAtomic(nfrags, &ipstat.ips_ofragments); |
| 1914 | |
| 1915 | /* set first/last markers for fragment chain */ |
| 1916 | m->m_flags |= M_LASTFRAG; |
| 1917 | m0->m_flags |= M_FIRSTFRAG | M_FRAG; |
| 1918 | m0->m_pkthdr.csum_data = nfrags; |
| 1919 | |
| 1920 | /* |
| 1921 | * Update first fragment by trimming what's been copied out |
| 1922 | * and updating header, then send each fragment (in order). |
| 1923 | */ |
| 1924 | m = m0; |
| 1925 | m_adj(m, hlen + firstlen - (u_short)ip->ip_len); |
| 1926 | m->m_pkthdr.len = hlen + firstlen; |
| 1927 | ip->ip_len = htons((u_short)m->m_pkthdr.len); |
| 1928 | ip->ip_off |= IP_MF; |
| 1929 | |
| 1930 | #if BYTE_ORDER != BIG_ENDIAN |
| 1931 | HTONS(ip->ip_off); |
| 1932 | #endif |
| 1933 | |
| 1934 | ip->ip_sum = 0; |
| 1935 | if (sw_csum & CSUM_DELAY_IP) { |
| 1936 | ip->ip_sum = ip_cksum_hdr_out(m, hlen); |
| 1937 | m->m_pkthdr.csum_flags &= ~CSUM_DELAY_IP; |
| 1938 | } |
| 1939 | sendorfree: |
| 1940 | if (error) { |
| 1941 | m_freem_list(m0); |
| 1942 | } |
| 1943 | |
| 1944 | return error; |
| 1945 | } |
| 1946 | |
| 1947 | static void |
| 1948 | ip_out_cksum_stats(int proto, u_int32_t len) |
| 1949 | { |
| 1950 | switch (proto) { |
| 1951 | case IPPROTO_TCP: |
| 1952 | tcp_out_cksum_stats(len); |
| 1953 | break; |
| 1954 | case IPPROTO_UDP: |
| 1955 | udp_out_cksum_stats(len); |
| 1956 | break; |
| 1957 | default: |
| 1958 | /* keep only TCP or UDP stats for now */ |
| 1959 | break; |
| 1960 | } |
| 1961 | } |
| 1962 | |
| 1963 | /* |
| 1964 | * Process a delayed payload checksum calculation (outbound path.) |
| 1965 | * |
| 1966 | * hoff is the number of bytes beyond the mbuf data pointer which |
| 1967 | * points to the IP header. |
| 1968 | * |
| 1969 | * Returns a bitmask representing all the work done in software. |
| 1970 | */ |
| 1971 | uint32_t |
| 1972 | in_finalize_cksum(struct mbuf *m, uint32_t hoff, uint32_t csum_flags) |
| 1973 | { |
| 1974 | unsigned char buf[15 << 2] __attribute__((aligned(8))); |
| 1975 | struct ip *ip; |
| 1976 | uint32_t offset, _hlen, mlen, hlen, len, sw_csum; |
| 1977 | uint16_t csum, ip_len; |
| 1978 | |
| 1979 | _CASSERT(sizeof(csum) == sizeof(uint16_t)); |
| 1980 | VERIFY(m->m_flags & M_PKTHDR); |
| 1981 | |
| 1982 | sw_csum = (csum_flags & m->m_pkthdr.csum_flags); |
| 1983 | |
| 1984 | if ((sw_csum &= (CSUM_DELAY_IP | CSUM_DELAY_DATA)) == 0) { |
| 1985 | goto done; |
| 1986 | } |
| 1987 | |
| 1988 | mlen = m->m_pkthdr.len; /* total mbuf len */ |
| 1989 | |
| 1990 | /* sanity check (need at least simple IP header) */ |
| 1991 | if (mlen < (hoff + sizeof(*ip))) { |
| 1992 | panic("%s: mbuf %p pkt len (%u) < hoff+ip_hdr " |
| 1993 | "(%u+%u)\n" , __func__, m, mlen, hoff, |
| 1994 | (uint32_t)sizeof(*ip)); |
| 1995 | /* NOTREACHED */ |
| 1996 | } |
| 1997 | |
| 1998 | /* |
| 1999 | * In case the IP header is not contiguous, or not 32-bit aligned, |
| 2000 | * or if we're computing the IP header checksum, copy it to a local |
| 2001 | * buffer. Copy only the simple IP header here (IP options case |
| 2002 | * is handled below.) |
| 2003 | */ |
| 2004 | if ((sw_csum & CSUM_DELAY_IP) || (hoff + sizeof(*ip)) > m->m_len || |
| 2005 | !IP_HDR_ALIGNED_P(mtod(m, caddr_t) + hoff)) { |
| 2006 | m_copydata(m, hoff, sizeof(*ip), (caddr_t)buf); |
| 2007 | ip = (struct ip *)(void *)buf; |
| 2008 | _hlen = sizeof(*ip); |
| 2009 | } else { |
| 2010 | ip = (struct ip *)(void *)(m->m_data + hoff); |
| 2011 | _hlen = 0; |
| 2012 | } |
| 2013 | |
| 2014 | hlen = IP_VHL_HL(ip->ip_vhl) << 2; /* IP header len */ |
| 2015 | |
| 2016 | /* sanity check */ |
| 2017 | if (mlen < (hoff + hlen)) { |
| 2018 | panic("%s: mbuf %p pkt too short (%d) for IP header (%u), " |
| 2019 | "hoff %u" , __func__, m, mlen, hlen, hoff); |
| 2020 | /* NOTREACHED */ |
| 2021 | } |
| 2022 | |
| 2023 | /* |
| 2024 | * We could be in the context of an IP or interface filter; in the |
| 2025 | * former case, ip_len would be in host (correct) order while for |
| 2026 | * the latter it would be in network order. Because of this, we |
| 2027 | * attempt to interpret the length field by comparing it against |
| 2028 | * the actual packet length. If the comparison fails, byte swap |
| 2029 | * the length and check again. If it still fails, use the actual |
| 2030 | * packet length. This also covers the trailing bytes case. |
| 2031 | */ |
| 2032 | ip_len = ip->ip_len; |
| 2033 | if (ip_len != (mlen - hoff)) { |
| 2034 | ip_len = OSSwapInt16(ip_len); |
| 2035 | if (ip_len != (mlen - hoff)) { |
| 2036 | printf("%s: mbuf 0x%llx proto %d IP len %d (%x) " |
| 2037 | "[swapped %d (%x)] doesn't match actual packet " |
| 2038 | "length; %d is used instead\n" , __func__, |
| 2039 | (uint64_t)VM_KERNEL_ADDRHASH(m), ip->ip_p, |
| 2040 | ip->ip_len, ip->ip_len, ip_len, ip_len, |
| 2041 | (mlen - hoff)); |
| 2042 | if (mlen - hoff > UINT16_MAX) { |
| 2043 | panic("%s: mlen %u - hoff %u > 65535" , |
| 2044 | __func__, mlen, hoff); |
| 2045 | } |
| 2046 | ip_len = (uint16_t)(mlen - hoff); |
| 2047 | } |
| 2048 | } |
| 2049 | |
| 2050 | len = ip_len - hlen; /* csum span */ |
| 2051 | |
| 2052 | if (sw_csum & CSUM_DELAY_DATA) { |
| 2053 | uint16_t ulpoff; |
| 2054 | |
| 2055 | /* |
| 2056 | * offset is added to the lower 16-bit value of csum_data, |
| 2057 | * which is expected to contain the ULP offset; therefore |
| 2058 | * CSUM_PARTIAL offset adjustment must be undone. |
| 2059 | */ |
| 2060 | if ((m->m_pkthdr.csum_flags & (CSUM_PARTIAL | CSUM_DATA_VALID)) == |
| 2061 | (CSUM_PARTIAL | CSUM_DATA_VALID)) { |
| 2062 | /* |
| 2063 | * Get back the original ULP offset (this will |
| 2064 | * undo the CSUM_PARTIAL logic in ip_output.) |
| 2065 | */ |
| 2066 | m->m_pkthdr.csum_data = (m->m_pkthdr.csum_tx_stuff - |
| 2067 | m->m_pkthdr.csum_tx_start); |
| 2068 | } |
| 2069 | |
| 2070 | ulpoff = (m->m_pkthdr.csum_data & 0xffff); /* ULP csum offset */ |
| 2071 | offset = hoff + hlen; /* ULP header */ |
| 2072 | |
| 2073 | if (mlen < (ulpoff + sizeof(csum))) { |
| 2074 | panic("%s: mbuf %p pkt len (%u) proto %d invalid ULP " |
| 2075 | "cksum offset (%u) cksum flags 0x%x\n" , __func__, |
| 2076 | m, mlen, ip->ip_p, ulpoff, m->m_pkthdr.csum_flags); |
| 2077 | /* NOTREACHED */ |
| 2078 | } |
| 2079 | |
| 2080 | csum = inet_cksum(m, 0, offset, len); |
| 2081 | |
| 2082 | /* Update stats */ |
| 2083 | ip_out_cksum_stats(proto: ip->ip_p, len); |
| 2084 | |
| 2085 | /* RFC1122 4.1.3.4 */ |
| 2086 | if (csum == 0 && |
| 2087 | (m->m_pkthdr.csum_flags & (CSUM_UDP | CSUM_ZERO_INVERT))) { |
| 2088 | csum = 0xffff; |
| 2089 | } |
| 2090 | |
| 2091 | /* Insert the checksum in the ULP csum field */ |
| 2092 | offset += ulpoff; |
| 2093 | if (offset + sizeof(csum) > m->m_len) { |
| 2094 | m_copyback(m, offset, sizeof(csum), &csum); |
| 2095 | } else if (IP_HDR_ALIGNED_P(mtod(m, char *) + hoff)) { |
| 2096 | *(uint16_t *)(void *)(mtod(m, char *) + offset) = csum; |
| 2097 | } else { |
| 2098 | bcopy(src: &csum, dst: (mtod(m, char *) + offset), n: sizeof(csum)); |
| 2099 | } |
| 2100 | m->m_pkthdr.csum_flags &= ~(CSUM_DELAY_DATA | CSUM_DATA_VALID | |
| 2101 | CSUM_PARTIAL | CSUM_ZERO_INVERT); |
| 2102 | } |
| 2103 | |
| 2104 | if (sw_csum & CSUM_DELAY_IP) { |
| 2105 | /* IP header must be in the local buffer */ |
| 2106 | VERIFY(_hlen == sizeof(*ip)); |
| 2107 | if (_hlen != hlen) { |
| 2108 | VERIFY(hlen <= sizeof(buf)); |
| 2109 | m_copydata(m, hoff, hlen, (caddr_t)buf); |
| 2110 | ip = (struct ip *)(void *)buf; |
| 2111 | _hlen = hlen; |
| 2112 | } |
| 2113 | |
| 2114 | /* |
| 2115 | * Compute the IP header checksum as if the IP length |
| 2116 | * is the length which we believe is "correct"; see |
| 2117 | * how ip_len gets calculated above. Note that this |
| 2118 | * is done on the local copy and not on the real one. |
| 2119 | */ |
| 2120 | ip->ip_len = htons(ip_len); |
| 2121 | ip->ip_sum = 0; |
| 2122 | csum = in_cksum_hdr_opt(ip); |
| 2123 | |
| 2124 | /* Update stats */ |
| 2125 | ipstat.ips_snd_swcsum++; |
| 2126 | ipstat.ips_snd_swcsum_bytes += hlen; |
| 2127 | |
| 2128 | /* |
| 2129 | * Insert only the checksum in the existing IP header |
| 2130 | * csum field; all other fields are left unchanged. |
| 2131 | */ |
| 2132 | offset = hoff + offsetof(struct ip, ip_sum); |
| 2133 | if (offset + sizeof(csum) > m->m_len) { |
| 2134 | m_copyback(m, offset, sizeof(csum), &csum); |
| 2135 | } else if (IP_HDR_ALIGNED_P(mtod(m, char *) + hoff)) { |
| 2136 | *(uint16_t *)(void *)(mtod(m, char *) + offset) = csum; |
| 2137 | } else { |
| 2138 | bcopy(src: &csum, dst: (mtod(m, char *) + offset), n: sizeof(csum)); |
| 2139 | } |
| 2140 | m->m_pkthdr.csum_flags &= ~CSUM_DELAY_IP; |
| 2141 | } |
| 2142 | |
| 2143 | done: |
| 2144 | return sw_csum; |
| 2145 | } |
| 2146 | |
| 2147 | /* |
| 2148 | * Insert IP options into preformed packet. |
| 2149 | * Adjust IP destination as required for IP source routing, |
| 2150 | * as indicated by a non-zero in_addr at the start of the options. |
| 2151 | * |
| 2152 | * XXX This routine assumes that the packet has no options in place. |
| 2153 | */ |
| 2154 | static struct mbuf * |
| 2155 | ip_insertoptions(struct mbuf *m, struct mbuf *opt, int *phlen) |
| 2156 | { |
| 2157 | struct ipoption *p = mtod(opt, struct ipoption *); |
| 2158 | struct mbuf *n; |
| 2159 | struct ip *ip = mtod(m, struct ip *); |
| 2160 | unsigned optlen; |
| 2161 | |
| 2162 | optlen = opt->m_len - sizeof(p->ipopt_dst); |
| 2163 | if (optlen + (u_short)ip->ip_len > IP_MAXPACKET) { |
| 2164 | return m; /* XXX should fail */ |
| 2165 | } |
| 2166 | if (p->ipopt_dst.s_addr) { |
| 2167 | ip->ip_dst = p->ipopt_dst; |
| 2168 | } |
| 2169 | if (m->m_flags & M_EXT || m_mtod_current(m) - optlen < m->m_pktdat) { |
| 2170 | MGETHDR(n, M_DONTWAIT, MT_HEADER); /* MAC-OK */ |
| 2171 | if (n == NULL) { |
| 2172 | return m; |
| 2173 | } |
| 2174 | n->m_pkthdr.rcvif = 0; |
| 2175 | n->m_pkthdr.len = m->m_pkthdr.len + optlen; |
| 2176 | m->m_len -= sizeof(struct ip); |
| 2177 | m->m_data += sizeof(struct ip); |
| 2178 | n->m_next = m; |
| 2179 | m = n; |
| 2180 | m->m_len = optlen + sizeof(struct ip); |
| 2181 | m->m_data += max_linkhdr; |
| 2182 | (void) memcpy(mtod(m, void *), src: ip, n: sizeof(struct ip)); |
| 2183 | } else { |
| 2184 | m->m_data -= optlen; |
| 2185 | m->m_len += optlen; |
| 2186 | m->m_pkthdr.len += optlen; |
| 2187 | ovbcopy(from: (caddr_t)ip, mtod(m, caddr_t), len: sizeof(struct ip)); |
| 2188 | } |
| 2189 | ip = mtod(m, struct ip *); |
| 2190 | bcopy(src: p->ipopt_list, dst: ip + 1, n: optlen); |
| 2191 | *phlen = sizeof(struct ip) + optlen; |
| 2192 | ip->ip_vhl = IP_MAKE_VHL(IPVERSION, *phlen >> 2); |
| 2193 | ip->ip_len += optlen; |
| 2194 | return m; |
| 2195 | } |
| 2196 | |
| 2197 | /* |
| 2198 | * Copy options from ip to jp, |
| 2199 | * omitting those not copied during fragmentation. |
| 2200 | */ |
| 2201 | static int |
| 2202 | ip_optcopy(struct ip *ip, struct ip *jp) |
| 2203 | { |
| 2204 | u_char *cp, *dp; |
| 2205 | int opt, optlen, cnt; |
| 2206 | |
| 2207 | cp = (u_char *)(ip + 1); |
| 2208 | dp = (u_char *)(jp + 1); |
| 2209 | cnt = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof(struct ip); |
| 2210 | for (; cnt > 0; cnt -= optlen, cp += optlen) { |
| 2211 | opt = cp[0]; |
| 2212 | if (opt == IPOPT_EOL) { |
| 2213 | break; |
| 2214 | } |
| 2215 | if (opt == IPOPT_NOP) { |
| 2216 | /* Preserve for IP mcast tunnel's LSRR alignment. */ |
| 2217 | *dp++ = IPOPT_NOP; |
| 2218 | optlen = 1; |
| 2219 | continue; |
| 2220 | } |
| 2221 | #if DIAGNOSTIC |
| 2222 | if (cnt < IPOPT_OLEN + sizeof(*cp)) { |
| 2223 | panic("malformed IPv4 option passed to ip_optcopy" ); |
| 2224 | /* NOTREACHED */ |
| 2225 | } |
| 2226 | #endif |
| 2227 | optlen = cp[IPOPT_OLEN]; |
| 2228 | #if DIAGNOSTIC |
| 2229 | if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt) { |
| 2230 | panic("malformed IPv4 option passed to ip_optcopy" ); |
| 2231 | /* NOTREACHED */ |
| 2232 | } |
| 2233 | #endif |
| 2234 | /* bogus lengths should have been caught by ip_dooptions */ |
| 2235 | if (optlen > cnt) { |
| 2236 | optlen = cnt; |
| 2237 | } |
| 2238 | if (IPOPT_COPIED(opt)) { |
| 2239 | bcopy(src: cp, dst: dp, n: optlen); |
| 2240 | dp += optlen; |
| 2241 | } |
| 2242 | } |
| 2243 | for (optlen = (int)(dp - (u_char *)(jp + 1)); optlen & 0x3; optlen++) { |
| 2244 | *dp++ = IPOPT_EOL; |
| 2245 | } |
| 2246 | return optlen; |
| 2247 | } |
| 2248 | |
| 2249 | /* |
| 2250 | * IP socket option processing. |
| 2251 | */ |
| 2252 | int |
| 2253 | ip_ctloutput(struct socket *so, struct sockopt *sopt) |
| 2254 | { |
| 2255 | struct inpcb *inp = sotoinpcb(so); |
| 2256 | int error, optval; |
| 2257 | lck_mtx_t *mutex_held = NULL; |
| 2258 | |
| 2259 | error = optval = 0; |
| 2260 | if (sopt->sopt_level != IPPROTO_IP) { |
| 2261 | return EINVAL; |
| 2262 | } |
| 2263 | |
| 2264 | switch (sopt->sopt_dir) { |
| 2265 | case SOPT_SET: |
| 2266 | mutex_held = socket_getlock(so, PR_F_WILLUNLOCK); |
| 2267 | /* |
| 2268 | * Wait if we are in the middle of ip_output |
| 2269 | * as we unlocked the socket there and don't |
| 2270 | * want to overwrite the IP options |
| 2271 | */ |
| 2272 | if (inp->inp_sndinprog_cnt > 0) { |
| 2273 | inp->inp_sndingprog_waiters++; |
| 2274 | |
| 2275 | while (inp->inp_sndinprog_cnt > 0) { |
| 2276 | msleep(chan: &inp->inp_sndinprog_cnt, mtx: mutex_held, |
| 2277 | PSOCK | PCATCH, wmesg: "inp_sndinprog_cnt" , NULL); |
| 2278 | } |
| 2279 | inp->inp_sndingprog_waiters--; |
| 2280 | } |
| 2281 | switch (sopt->sopt_name) { |
| 2282 | #ifdef notyet |
| 2283 | case IP_RETOPTS: |
| 2284 | #endif |
| 2285 | case IP_OPTIONS: { |
| 2286 | struct mbuf *m; |
| 2287 | |
| 2288 | if (sopt->sopt_valsize > MLEN) { |
| 2289 | error = EMSGSIZE; |
| 2290 | break; |
| 2291 | } |
| 2292 | MGET(m, sopt->sopt_p != kernproc ? M_WAIT : M_DONTWAIT, |
| 2293 | MT_HEADER); |
| 2294 | if (m == NULL) { |
| 2295 | error = ENOBUFS; |
| 2296 | break; |
| 2297 | } |
| 2298 | m->m_len = (int32_t)sopt->sopt_valsize; |
| 2299 | error = sooptcopyin(sopt, mtod(m, char *), |
| 2300 | len: m->m_len, minlen: m->m_len); |
| 2301 | if (error) { |
| 2302 | m_freem(m); |
| 2303 | break; |
| 2304 | } |
| 2305 | |
| 2306 | return ip_pcbopts(sopt->sopt_name, |
| 2307 | &inp->inp_options, m); |
| 2308 | } |
| 2309 | |
| 2310 | case IP_TOS: |
| 2311 | case IP_TTL: |
| 2312 | case IP_RECVOPTS: |
| 2313 | case IP_RECVRETOPTS: |
| 2314 | case IP_RECVDSTADDR: |
| 2315 | case IP_RECVIF: |
| 2316 | case IP_RECVTTL: |
| 2317 | case IP_RECVPKTINFO: |
| 2318 | case IP_RECVTOS: |
| 2319 | case IP_DONTFRAG: |
| 2320 | error = sooptcopyin(sopt, &optval, len: sizeof(optval), |
| 2321 | minlen: sizeof(optval)); |
| 2322 | if (error) { |
| 2323 | break; |
| 2324 | } |
| 2325 | |
| 2326 | switch (sopt->sopt_name) { |
| 2327 | case IP_TOS: |
| 2328 | if (optval > UINT8_MAX) { |
| 2329 | error = EINVAL; |
| 2330 | break; |
| 2331 | } |
| 2332 | inp->inp_ip_tos = (uint8_t)optval; |
| 2333 | break; |
| 2334 | |
| 2335 | case IP_TTL: |
| 2336 | if (optval > UINT8_MAX) { |
| 2337 | error = EINVAL; |
| 2338 | break; |
| 2339 | } |
| 2340 | inp->inp_ip_ttl = (uint8_t)optval; |
| 2341 | break; |
| 2342 | #define OPTSET(bit) do { \ |
| 2343 | if (optval) { \ |
| 2344 | inp->inp_flags |= bit; \ |
| 2345 | } else { \ |
| 2346 | inp->inp_flags &= ~bit; \ |
| 2347 | } \ |
| 2348 | } while (0) |
| 2349 | |
| 2350 | #define OPTSET2(bit) do { \ |
| 2351 | if (optval) { \ |
| 2352 | inp->inp_flags2 |= bit; \ |
| 2353 | } else { \ |
| 2354 | inp->inp_flags2 &= ~bit; \ |
| 2355 | } \ |
| 2356 | } while (0) |
| 2357 | |
| 2358 | case IP_RECVOPTS: |
| 2359 | OPTSET(INP_RECVOPTS); |
| 2360 | break; |
| 2361 | |
| 2362 | case IP_RECVRETOPTS: |
| 2363 | OPTSET(INP_RECVRETOPTS); |
| 2364 | break; |
| 2365 | |
| 2366 | case IP_RECVDSTADDR: |
| 2367 | OPTSET(INP_RECVDSTADDR); |
| 2368 | break; |
| 2369 | |
| 2370 | case IP_RECVIF: |
| 2371 | OPTSET(INP_RECVIF); |
| 2372 | break; |
| 2373 | |
| 2374 | case IP_RECVTTL: |
| 2375 | OPTSET(INP_RECVTTL); |
| 2376 | break; |
| 2377 | |
| 2378 | case IP_RECVPKTINFO: |
| 2379 | OPTSET(INP_PKTINFO); |
| 2380 | break; |
| 2381 | |
| 2382 | case IP_RECVTOS: |
| 2383 | OPTSET(INP_RECVTOS); |
| 2384 | break; |
| 2385 | |
| 2386 | case IP_DONTFRAG: |
| 2387 | /* This option is settable only for IPv4 */ |
| 2388 | if (!(inp->inp_vflag & INP_IPV4)) { |
| 2389 | error = EINVAL; |
| 2390 | break; |
| 2391 | } |
| 2392 | OPTSET2(INP2_DONTFRAG); |
| 2393 | break; |
| 2394 | #undef OPTSET |
| 2395 | #undef OPTSET2 |
| 2396 | } |
| 2397 | break; |
| 2398 | /* |
| 2399 | * Multicast socket options are processed by the in_mcast |
| 2400 | * module. |
| 2401 | */ |
| 2402 | case IP_MULTICAST_IF: |
| 2403 | case IP_MULTICAST_IFINDEX: |
| 2404 | case IP_MULTICAST_VIF: |
| 2405 | case IP_MULTICAST_TTL: |
| 2406 | case IP_MULTICAST_LOOP: |
| 2407 | case IP_ADD_MEMBERSHIP: |
| 2408 | case IP_DROP_MEMBERSHIP: |
| 2409 | case IP_ADD_SOURCE_MEMBERSHIP: |
| 2410 | case IP_DROP_SOURCE_MEMBERSHIP: |
| 2411 | case IP_BLOCK_SOURCE: |
| 2412 | case IP_UNBLOCK_SOURCE: |
| 2413 | case IP_MSFILTER: |
| 2414 | case MCAST_JOIN_GROUP: |
| 2415 | case MCAST_LEAVE_GROUP: |
| 2416 | case MCAST_JOIN_SOURCE_GROUP: |
| 2417 | case MCAST_LEAVE_SOURCE_GROUP: |
| 2418 | case MCAST_BLOCK_SOURCE: |
| 2419 | case MCAST_UNBLOCK_SOURCE: |
| 2420 | error = inp_setmoptions(inp, sopt); |
| 2421 | break; |
| 2422 | |
| 2423 | case IP_PORTRANGE: |
| 2424 | error = sooptcopyin(sopt, &optval, len: sizeof(optval), |
| 2425 | minlen: sizeof(optval)); |
| 2426 | if (error) { |
| 2427 | break; |
| 2428 | } |
| 2429 | |
| 2430 | switch (optval) { |
| 2431 | case IP_PORTRANGE_DEFAULT: |
| 2432 | inp->inp_flags &= ~(INP_LOWPORT); |
| 2433 | inp->inp_flags &= ~(INP_HIGHPORT); |
| 2434 | break; |
| 2435 | |
| 2436 | case IP_PORTRANGE_HIGH: |
| 2437 | inp->inp_flags &= ~(INP_LOWPORT); |
| 2438 | inp->inp_flags |= INP_HIGHPORT; |
| 2439 | break; |
| 2440 | |
| 2441 | case IP_PORTRANGE_LOW: |
| 2442 | inp->inp_flags &= ~(INP_HIGHPORT); |
| 2443 | inp->inp_flags |= INP_LOWPORT; |
| 2444 | break; |
| 2445 | |
| 2446 | default: |
| 2447 | error = EINVAL; |
| 2448 | break; |
| 2449 | } |
| 2450 | break; |
| 2451 | |
| 2452 | #if IPSEC |
| 2453 | case IP_IPSEC_POLICY: { |
| 2454 | caddr_t req = NULL; |
| 2455 | size_t len = 0; |
| 2456 | int priv; |
| 2457 | struct mbuf *m; |
| 2458 | int optname; |
| 2459 | |
| 2460 | if ((error = soopt_getm(sopt, mp: &m)) != 0) { /* XXX */ |
| 2461 | break; |
| 2462 | } |
| 2463 | if ((error = soopt_mcopyin(sopt, m)) != 0) { /* XXX */ |
| 2464 | break; |
| 2465 | } |
| 2466 | priv = (proc_suser(p: sopt->sopt_p) == 0); |
| 2467 | if (m) { |
| 2468 | req = mtod(m, caddr_t); |
| 2469 | len = m->m_len; |
| 2470 | } |
| 2471 | optname = sopt->sopt_name; |
| 2472 | error = ipsec4_set_policy(inp, optname, request: req, len, priv); |
| 2473 | m_freem(m); |
| 2474 | break; |
| 2475 | } |
| 2476 | #endif /* IPSEC */ |
| 2477 | |
| 2478 | #if TRAFFIC_MGT |
| 2479 | case IP_TRAFFIC_MGT_BACKGROUND: { |
| 2480 | unsigned background = 0; |
| 2481 | |
| 2482 | error = sooptcopyin(sopt, &background, |
| 2483 | len: sizeof(background), minlen: sizeof(background)); |
| 2484 | if (error) { |
| 2485 | break; |
| 2486 | } |
| 2487 | |
| 2488 | if (background) { |
| 2489 | socket_set_traffic_mgt_flags_locked(so, |
| 2490 | TRAFFIC_MGT_SO_BACKGROUND); |
| 2491 | } else { |
| 2492 | socket_clear_traffic_mgt_flags_locked(so, |
| 2493 | TRAFFIC_MGT_SO_BACKGROUND); |
| 2494 | } |
| 2495 | |
| 2496 | break; |
| 2497 | } |
| 2498 | #endif /* TRAFFIC_MGT */ |
| 2499 | |
| 2500 | /* |
| 2501 | * On a multihomed system, scoped routing can be used to |
| 2502 | * restrict the source interface used for sending packets. |
| 2503 | * The socket option IP_BOUND_IF binds a particular AF_INET |
| 2504 | * socket to an interface such that data sent on the socket |
| 2505 | * is restricted to that interface. This is unlike the |
| 2506 | * SO_DONTROUTE option where the routing table is bypassed; |
| 2507 | * therefore it allows for a greater flexibility and control |
| 2508 | * over the system behavior, and does not place any restriction |
| 2509 | * on the destination address type (e.g. unicast, multicast, |
| 2510 | * or broadcast if applicable) or whether or not the host is |
| 2511 | * directly reachable. Note that in the multicast transmit |
| 2512 | * case, IP_MULTICAST_{IF,IFINDEX} takes precedence over |
| 2513 | * IP_BOUND_IF, since the former practically bypasses the |
| 2514 | * routing table; in this case, IP_BOUND_IF sets the default |
| 2515 | * interface used for sending multicast packets in the absence |
| 2516 | * of an explicit multicast transmit interface. |
| 2517 | */ |
| 2518 | case IP_BOUND_IF: |
| 2519 | /* This option is settable only for IPv4 */ |
| 2520 | if (!(inp->inp_vflag & INP_IPV4)) { |
| 2521 | error = EINVAL; |
| 2522 | break; |
| 2523 | } |
| 2524 | |
| 2525 | error = sooptcopyin(sopt, &optval, len: sizeof(optval), |
| 2526 | minlen: sizeof(optval)); |
| 2527 | |
| 2528 | if (error) { |
| 2529 | break; |
| 2530 | } |
| 2531 | |
| 2532 | error = inp_bindif(inp, optval, NULL); |
| 2533 | break; |
| 2534 | |
| 2535 | case IP_NO_IFT_CELLULAR: |
| 2536 | /* This option is settable only for IPv4 */ |
| 2537 | if (!(inp->inp_vflag & INP_IPV4)) { |
| 2538 | error = EINVAL; |
| 2539 | break; |
| 2540 | } |
| 2541 | |
| 2542 | error = sooptcopyin(sopt, &optval, len: sizeof(optval), |
| 2543 | minlen: sizeof(optval)); |
| 2544 | |
| 2545 | if (error) { |
| 2546 | break; |
| 2547 | } |
| 2548 | |
| 2549 | /* once set, it cannot be unset */ |
| 2550 | if (!optval && INP_NO_CELLULAR(inp)) { |
| 2551 | error = EINVAL; |
| 2552 | break; |
| 2553 | } |
| 2554 | |
| 2555 | error = so_set_restrictions(so, |
| 2556 | SO_RESTRICT_DENY_CELLULAR); |
| 2557 | break; |
| 2558 | |
| 2559 | case IP_OUT_IF: |
| 2560 | /* This option is not settable */ |
| 2561 | error = EINVAL; |
| 2562 | break; |
| 2563 | |
| 2564 | default: |
| 2565 | error = ENOPROTOOPT; |
| 2566 | break; |
| 2567 | } |
| 2568 | break; |
| 2569 | |
| 2570 | case SOPT_GET: |
| 2571 | switch (sopt->sopt_name) { |
| 2572 | case IP_OPTIONS: |
| 2573 | case IP_RETOPTS: |
| 2574 | if (inp->inp_options) { |
| 2575 | error = sooptcopyout(sopt, |
| 2576 | mtod(inp->inp_options, char *), |
| 2577 | len: inp->inp_options->m_len); |
| 2578 | } else { |
| 2579 | sopt->sopt_valsize = 0; |
| 2580 | } |
| 2581 | break; |
| 2582 | |
| 2583 | case IP_TOS: |
| 2584 | case IP_TTL: |
| 2585 | case IP_RECVOPTS: |
| 2586 | case IP_RECVRETOPTS: |
| 2587 | case IP_RECVDSTADDR: |
| 2588 | case IP_RECVIF: |
| 2589 | case IP_RECVTTL: |
| 2590 | case IP_PORTRANGE: |
| 2591 | case IP_RECVPKTINFO: |
| 2592 | case IP_RECVTOS: |
| 2593 | case IP_DONTFRAG: |
| 2594 | switch (sopt->sopt_name) { |
| 2595 | case IP_TOS: |
| 2596 | optval = inp->inp_ip_tos; |
| 2597 | break; |
| 2598 | |
| 2599 | case IP_TTL: |
| 2600 | optval = inp->inp_ip_ttl; |
| 2601 | break; |
| 2602 | |
| 2603 | #define OPTBIT(bit) (inp->inp_flags & bit ? 1 : 0) |
| 2604 | #define OPTBIT2(bit) (inp->inp_flags2 & bit ? 1 : 0) |
| 2605 | case IP_RECVOPTS: |
| 2606 | optval = OPTBIT(INP_RECVOPTS); |
| 2607 | break; |
| 2608 | |
| 2609 | case IP_RECVRETOPTS: |
| 2610 | optval = OPTBIT(INP_RECVRETOPTS); |
| 2611 | break; |
| 2612 | |
| 2613 | case IP_RECVDSTADDR: |
| 2614 | optval = OPTBIT(INP_RECVDSTADDR); |
| 2615 | break; |
| 2616 | |
| 2617 | case IP_RECVIF: |
| 2618 | optval = OPTBIT(INP_RECVIF); |
| 2619 | break; |
| 2620 | |
| 2621 | case IP_RECVTTL: |
| 2622 | optval = OPTBIT(INP_RECVTTL); |
| 2623 | break; |
| 2624 | |
| 2625 | case IP_PORTRANGE: |
| 2626 | if (inp->inp_flags & INP_HIGHPORT) { |
| 2627 | optval = IP_PORTRANGE_HIGH; |
| 2628 | } else if (inp->inp_flags & INP_LOWPORT) { |
| 2629 | optval = IP_PORTRANGE_LOW; |
| 2630 | } else { |
| 2631 | optval = 0; |
| 2632 | } |
| 2633 | break; |
| 2634 | |
| 2635 | case IP_RECVPKTINFO: |
| 2636 | optval = OPTBIT(INP_PKTINFO); |
| 2637 | break; |
| 2638 | |
| 2639 | case IP_RECVTOS: |
| 2640 | optval = OPTBIT(INP_RECVTOS); |
| 2641 | break; |
| 2642 | case IP_DONTFRAG: |
| 2643 | optval = OPTBIT2(INP2_DONTFRAG); |
| 2644 | break; |
| 2645 | } |
| 2646 | error = sooptcopyout(sopt, data: &optval, len: sizeof(optval)); |
| 2647 | break; |
| 2648 | |
| 2649 | case IP_MULTICAST_IF: |
| 2650 | case IP_MULTICAST_IFINDEX: |
| 2651 | case IP_MULTICAST_VIF: |
| 2652 | case IP_MULTICAST_TTL: |
| 2653 | case IP_MULTICAST_LOOP: |
| 2654 | case IP_MSFILTER: |
| 2655 | error = inp_getmoptions(inp, sopt); |
| 2656 | break; |
| 2657 | |
| 2658 | #if IPSEC |
| 2659 | case IP_IPSEC_POLICY: { |
| 2660 | error = 0; /* This option is no longer supported */ |
| 2661 | break; |
| 2662 | } |
| 2663 | #endif /* IPSEC */ |
| 2664 | |
| 2665 | #if TRAFFIC_MGT |
| 2666 | case IP_TRAFFIC_MGT_BACKGROUND: { |
| 2667 | unsigned background = (so->so_flags1 & |
| 2668 | SOF1_TRAFFIC_MGT_SO_BACKGROUND) ? 1 : 0; |
| 2669 | return sooptcopyout(sopt, data: &background, |
| 2670 | len: sizeof(background)); |
| 2671 | } |
| 2672 | #endif /* TRAFFIC_MGT */ |
| 2673 | |
| 2674 | case IP_BOUND_IF: |
| 2675 | if (inp->inp_flags & INP_BOUND_IF) { |
| 2676 | optval = inp->inp_boundifp->if_index; |
| 2677 | } |
| 2678 | error = sooptcopyout(sopt, data: &optval, len: sizeof(optval)); |
| 2679 | break; |
| 2680 | |
| 2681 | case IP_NO_IFT_CELLULAR: |
| 2682 | optval = INP_NO_CELLULAR(inp) ? 1 : 0; |
| 2683 | error = sooptcopyout(sopt, data: &optval, len: sizeof(optval)); |
| 2684 | break; |
| 2685 | |
| 2686 | case IP_OUT_IF: |
| 2687 | optval = (inp->inp_last_outifp != NULL) ? |
| 2688 | inp->inp_last_outifp->if_index : 0; |
| 2689 | error = sooptcopyout(sopt, data: &optval, len: sizeof(optval)); |
| 2690 | break; |
| 2691 | |
| 2692 | default: |
| 2693 | error = ENOPROTOOPT; |
| 2694 | break; |
| 2695 | } |
| 2696 | break; |
| 2697 | } |
| 2698 | return error; |
| 2699 | } |
| 2700 | |
| 2701 | /* |
| 2702 | * Set up IP options in pcb for insertion in output packets. |
| 2703 | * Store in mbuf with pointer in pcbopt, adding pseudo-option |
| 2704 | * with destination address if source routed. |
| 2705 | */ |
| 2706 | static int |
| 2707 | ip_pcbopts(int optname, struct mbuf **pcbopt, struct mbuf *m) |
| 2708 | { |
| 2709 | #pragma unused(optname) |
| 2710 | int cnt, optlen; |
| 2711 | u_char *cp; |
| 2712 | u_char opt; |
| 2713 | |
| 2714 | /* turn off any old options */ |
| 2715 | if (*pcbopt) { |
| 2716 | (void) m_free(*pcbopt); |
| 2717 | } |
| 2718 | *pcbopt = 0; |
| 2719 | if (m == (struct mbuf *)0 || m->m_len == 0) { |
| 2720 | /* |
| 2721 | * Only turning off any previous options. |
| 2722 | */ |
| 2723 | if (m) { |
| 2724 | (void) m_free(m); |
| 2725 | } |
| 2726 | return 0; |
| 2727 | } |
| 2728 | |
| 2729 | if (m->m_len % sizeof(int32_t)) { |
| 2730 | goto bad; |
| 2731 | } |
| 2732 | |
| 2733 | /* |
| 2734 | * IP first-hop destination address will be stored before |
| 2735 | * actual options; move other options back |
| 2736 | * and clear it when none present. |
| 2737 | */ |
| 2738 | if (m_mtod_upper_bound(m) - m_mtod_end(m) < sizeof(struct in_addr)) { |
| 2739 | goto bad; |
| 2740 | } |
| 2741 | cnt = m->m_len; |
| 2742 | m->m_len += sizeof(struct in_addr); |
| 2743 | cp = mtod(m, u_char *) + sizeof(struct in_addr); |
| 2744 | ovbcopy(mtod(m, caddr_t), to: (caddr_t)cp, len: (unsigned)cnt); |
| 2745 | bzero(mtod(m, caddr_t), n: sizeof(struct in_addr)); |
| 2746 | |
| 2747 | for (; cnt > 0; cnt -= optlen, cp += optlen) { |
| 2748 | opt = cp[IPOPT_OPTVAL]; |
| 2749 | if (opt == IPOPT_EOL) { |
| 2750 | break; |
| 2751 | } |
| 2752 | if (opt == IPOPT_NOP) { |
| 2753 | optlen = 1; |
| 2754 | } else { |
| 2755 | if (cnt < IPOPT_OLEN + sizeof(*cp)) { |
| 2756 | goto bad; |
| 2757 | } |
| 2758 | optlen = cp[IPOPT_OLEN]; |
| 2759 | if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt) { |
| 2760 | goto bad; |
| 2761 | } |
| 2762 | } |
| 2763 | switch (opt) { |
| 2764 | default: |
| 2765 | break; |
| 2766 | |
| 2767 | case IPOPT_LSRR: |
| 2768 | case IPOPT_SSRR: |
| 2769 | /* |
| 2770 | * user process specifies route as: |
| 2771 | * ->A->B->C->D |
| 2772 | * D must be our final destination (but we can't |
| 2773 | * check that since we may not have connected yet). |
| 2774 | * A is first hop destination, which doesn't appear in |
| 2775 | * actual IP option, but is stored before the options. |
| 2776 | */ |
| 2777 | if (optlen < IPOPT_MINOFF - 1 + sizeof(struct in_addr)) { |
| 2778 | goto bad; |
| 2779 | } |
| 2780 | if (optlen > UINT8_MAX) { |
| 2781 | goto bad; |
| 2782 | } |
| 2783 | m->m_len -= sizeof(struct in_addr); |
| 2784 | cnt -= sizeof(struct in_addr); |
| 2785 | optlen -= sizeof(struct in_addr); |
| 2786 | cp[IPOPT_OLEN] = (uint8_t)optlen; |
| 2787 | /* |
| 2788 | * Move first hop before start of options. |
| 2789 | */ |
| 2790 | bcopy(src: (caddr_t)&cp[IPOPT_OFFSET + 1], mtod(m, caddr_t), |
| 2791 | n: sizeof(struct in_addr)); |
| 2792 | /* |
| 2793 | * Then copy rest of options back |
| 2794 | * to close up the deleted entry. |
| 2795 | */ |
| 2796 | ovbcopy(from: (caddr_t)(&cp[IPOPT_OFFSET + 1] + |
| 2797 | sizeof(struct in_addr)), |
| 2798 | to: (caddr_t)&cp[IPOPT_OFFSET + 1], |
| 2799 | len: (unsigned)cnt - (IPOPT_MINOFF - 1)); |
| 2800 | break; |
| 2801 | } |
| 2802 | } |
| 2803 | if (m->m_len > MAX_IPOPTLEN + sizeof(struct in_addr)) { |
| 2804 | goto bad; |
| 2805 | } |
| 2806 | *pcbopt = m; |
| 2807 | return 0; |
| 2808 | |
| 2809 | bad: |
| 2810 | (void) m_free(m); |
| 2811 | return EINVAL; |
| 2812 | } |
| 2813 | |
| 2814 | void |
| 2815 | ip_moptions_init(void) |
| 2816 | { |
| 2817 | PE_parse_boot_argn(arg_string: "ifa_debug" , arg_ptr: &imo_debug, max_arg: sizeof(imo_debug)); |
| 2818 | |
| 2819 | vm_size_t imo_size = (imo_debug == 0) ? sizeof(struct ip_moptions) : |
| 2820 | sizeof(struct ip_moptions_dbg); |
| 2821 | |
| 2822 | imo_zone = zone_create(IMO_ZONE_NAME, size: imo_size, flags: ZC_ZFREE_CLEARMEM); |
| 2823 | } |
| 2824 | |
| 2825 | void |
| 2826 | imo_addref(struct ip_moptions *imo, int locked) |
| 2827 | { |
| 2828 | if (!locked) { |
| 2829 | IMO_LOCK(imo); |
| 2830 | } else { |
| 2831 | IMO_LOCK_ASSERT_HELD(imo); |
| 2832 | } |
| 2833 | |
| 2834 | if (++imo->imo_refcnt == 0) { |
| 2835 | panic("%s: imo %p wraparound refcnt" , __func__, imo); |
| 2836 | /* NOTREACHED */ |
| 2837 | } else if (imo->imo_trace != NULL) { |
| 2838 | (*imo->imo_trace)(imo, TRUE); |
| 2839 | } |
| 2840 | |
| 2841 | if (!locked) { |
| 2842 | IMO_UNLOCK(imo); |
| 2843 | } |
| 2844 | } |
| 2845 | |
| 2846 | void |
| 2847 | imo_remref(struct ip_moptions *imo) |
| 2848 | { |
| 2849 | IMO_LOCK(imo); |
| 2850 | if (imo->imo_refcnt == 0) { |
| 2851 | panic("%s: imo %p negative refcnt" , __func__, imo); |
| 2852 | /* NOTREACHED */ |
| 2853 | } else if (imo->imo_trace != NULL) { |
| 2854 | (*imo->imo_trace)(imo, FALSE); |
| 2855 | } |
| 2856 | |
| 2857 | --imo->imo_refcnt; |
| 2858 | if (imo->imo_refcnt > 0) { |
| 2859 | IMO_UNLOCK(imo); |
| 2860 | return; |
| 2861 | } |
| 2862 | |
| 2863 | IMO_PURGE_LOCKED(imo); |
| 2864 | |
| 2865 | IMO_UNLOCK(imo); |
| 2866 | |
| 2867 | kfree_type(struct in_multi *, imo->imo_max_memberships, imo->imo_membership); |
| 2868 | kfree_type(struct in_mfilter, imo->imo_max_memberships, imo->imo_mfilters); |
| 2869 | lck_mtx_destroy(lck: &imo->imo_lock, grp: &ifa_mtx_grp); |
| 2870 | |
| 2871 | if (!(imo->imo_debug & IFD_ALLOC)) { |
| 2872 | panic("%s: imo %p cannot be freed" , __func__, imo); |
| 2873 | /* NOTREACHED */ |
| 2874 | } |
| 2875 | zfree(imo_zone, imo); |
| 2876 | } |
| 2877 | |
| 2878 | static void |
| 2879 | imo_trace(struct ip_moptions *imo, int refhold) |
| 2880 | { |
| 2881 | struct ip_moptions_dbg *imo_dbg = (struct ip_moptions_dbg *)imo; |
| 2882 | ctrace_t *tr; |
| 2883 | u_int32_t idx; |
| 2884 | u_int16_t *cnt; |
| 2885 | |
| 2886 | if (!(imo->imo_debug & IFD_DEBUG)) { |
| 2887 | panic("%s: imo %p has no debug structure" , __func__, imo); |
| 2888 | /* NOTREACHED */ |
| 2889 | } |
| 2890 | if (refhold) { |
| 2891 | cnt = &imo_dbg->imo_refhold_cnt; |
| 2892 | tr = imo_dbg->imo_refhold; |
| 2893 | } else { |
| 2894 | cnt = &imo_dbg->imo_refrele_cnt; |
| 2895 | tr = imo_dbg->imo_refrele; |
| 2896 | } |
| 2897 | |
| 2898 | idx = os_atomic_inc_orig(cnt, relaxed) % IMO_TRACE_HIST_SIZE; |
| 2899 | ctrace_record(&tr[idx]); |
| 2900 | } |
| 2901 | |
| 2902 | struct ip_moptions * |
| 2903 | ip_allocmoptions(zalloc_flags_t how) |
| 2904 | { |
| 2905 | struct ip_moptions *imo; |
| 2906 | |
| 2907 | imo = zalloc_flags(imo_zone, how | Z_ZERO); |
| 2908 | if (imo != NULL) { |
| 2909 | lck_mtx_init(lck: &imo->imo_lock, grp: &ifa_mtx_grp, attr: &ifa_mtx_attr); |
| 2910 | imo->imo_debug |= IFD_ALLOC; |
| 2911 | if (imo_debug != 0) { |
| 2912 | imo->imo_debug |= IFD_DEBUG; |
| 2913 | imo->imo_trace = imo_trace; |
| 2914 | } |
| 2915 | IMO_ADDREF(imo); |
| 2916 | } |
| 2917 | |
| 2918 | return imo; |
| 2919 | } |
| 2920 | |
| 2921 | /* |
| 2922 | * Routine called from ip_output() to loop back a copy of an IP multicast |
| 2923 | * packet to the input queue of a specified interface. Note that this |
| 2924 | * calls the output routine of the loopback "driver", but with an interface |
| 2925 | * pointer that might NOT be a loopback interface -- evil, but easier than |
| 2926 | * replicating that code here. |
| 2927 | */ |
| 2928 | static void |
| 2929 | ip_mloopback(struct ifnet *srcifp, struct ifnet *origifp, struct mbuf *m, |
| 2930 | struct sockaddr_in *dst, int hlen) |
| 2931 | { |
| 2932 | struct mbuf *copym; |
| 2933 | struct ip *ip; |
| 2934 | |
| 2935 | if (lo_ifp == NULL) { |
| 2936 | return; |
| 2937 | } |
| 2938 | |
| 2939 | /* |
| 2940 | * Copy the packet header as it's needed for the checksum |
| 2941 | * Make sure to deep-copy IP header portion in case the data |
| 2942 | * is in an mbuf cluster, so that we can safely override the IP |
| 2943 | * header portion later. |
| 2944 | */ |
| 2945 | copym = m_copym_mode(m, 0, M_COPYALL, M_DONTWAIT, NULL, NULL, M_COPYM_COPY_HDR); |
| 2946 | if (copym != NULL && ((copym->m_flags & M_EXT) || copym->m_len < hlen)) { |
| 2947 | copym = m_pullup(copym, hlen); |
| 2948 | } |
| 2949 | |
| 2950 | if (copym == NULL) { |
| 2951 | return; |
| 2952 | } |
| 2953 | |
| 2954 | /* |
| 2955 | * We don't bother to fragment if the IP length is greater |
| 2956 | * than the interface's MTU. Can this possibly matter? |
| 2957 | */ |
| 2958 | ip = mtod(copym, struct ip *); |
| 2959 | #if BYTE_ORDER != BIG_ENDIAN |
| 2960 | HTONS(ip->ip_len); |
| 2961 | HTONS(ip->ip_off); |
| 2962 | #endif |
| 2963 | ip->ip_sum = 0; |
| 2964 | ip->ip_sum = ip_cksum_hdr_out(copym, hlen); |
| 2965 | |
| 2966 | /* |
| 2967 | * Mark checksum as valid unless receive checksum offload is |
| 2968 | * disabled; if so, compute checksum in software. If the |
| 2969 | * interface itself is lo0, this will be overridden by if_loop. |
| 2970 | */ |
| 2971 | if (hwcksum_rx) { |
| 2972 | copym->m_pkthdr.csum_flags &= ~(CSUM_PARTIAL | CSUM_ZERO_INVERT); |
| 2973 | copym->m_pkthdr.csum_flags |= |
| 2974 | CSUM_DATA_VALID | CSUM_PSEUDO_HDR; |
| 2975 | copym->m_pkthdr.csum_data = 0xffff; |
| 2976 | } else if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { |
| 2977 | #if BYTE_ORDER != BIG_ENDIAN |
| 2978 | NTOHS(ip->ip_len); |
| 2979 | #endif |
| 2980 | in_delayed_cksum(copym); |
| 2981 | #if BYTE_ORDER != BIG_ENDIAN |
| 2982 | HTONS(ip->ip_len); |
| 2983 | #endif |
| 2984 | } |
| 2985 | |
| 2986 | /* |
| 2987 | * Stuff the 'real' ifp into the pkthdr, to be used in matching |
| 2988 | * in ip_input(); we need the loopback ifp/dl_tag passed as args |
| 2989 | * to make the loopback driver compliant with the data link |
| 2990 | * requirements. |
| 2991 | */ |
| 2992 | copym->m_pkthdr.rcvif = origifp; |
| 2993 | |
| 2994 | /* |
| 2995 | * Also record the source interface (which owns the source address). |
| 2996 | * This is basically a stripped down version of ifa_foraddr(). |
| 2997 | */ |
| 2998 | if (srcifp == NULL) { |
| 2999 | struct in_ifaddr *ia; |
| 3000 | |
| 3001 | lck_rw_lock_shared(lck: &in_ifaddr_rwlock); |
| 3002 | TAILQ_FOREACH(ia, INADDR_HASH(ip->ip_src.s_addr), ia_hash) { |
| 3003 | IFA_LOCK_SPIN(&ia->ia_ifa); |
| 3004 | if (IA_SIN(ia)->sin_addr.s_addr == ip->ip_src.s_addr) { |
| 3005 | srcifp = ia->ia_ifp; |
| 3006 | IFA_UNLOCK(&ia->ia_ifa); |
| 3007 | break; |
| 3008 | } |
| 3009 | IFA_UNLOCK(&ia->ia_ifa); |
| 3010 | } |
| 3011 | lck_rw_done(lck: &in_ifaddr_rwlock); |
| 3012 | } |
| 3013 | if (srcifp != NULL) { |
| 3014 | ip_setsrcifaddr_info(copym, srcifp->if_index, NULL); |
| 3015 | } |
| 3016 | ip_setdstifaddr_info(copym, origifp->if_index, NULL); |
| 3017 | |
| 3018 | dlil_output(lo_ifp, PF_INET, copym, NULL, SA(dst), 0, NULL); |
| 3019 | } |
| 3020 | |
| 3021 | /* |
| 3022 | * Given a source IP address (and route, if available), determine the best |
| 3023 | * interface to send the packet from. Checking for (and updating) the |
| 3024 | * ROF_SRCIF_SELECTED flag in the pcb-supplied route placeholder is done |
| 3025 | * without any locks based on the assumption that ip_output() is single- |
| 3026 | * threaded per-pcb, i.e. for any given pcb there can only be one thread |
| 3027 | * performing output at the IP layer. |
| 3028 | * |
| 3029 | * This routine is analogous to in6_selectroute() for IPv6. |
| 3030 | */ |
| 3031 | static struct ifaddr * |
| 3032 | in_selectsrcif(struct ip *ip, struct route *ro, unsigned int ifscope) |
| 3033 | { |
| 3034 | struct ifaddr *ifa = NULL; |
| 3035 | struct in_addr src = ip->ip_src; |
| 3036 | struct in_addr dst = ip->ip_dst; |
| 3037 | struct ifnet *rt_ifp; |
| 3038 | char s_src[MAX_IPv4_STR_LEN], s_dst[MAX_IPv4_STR_LEN]; |
| 3039 | |
| 3040 | VERIFY(src.s_addr != INADDR_ANY); |
| 3041 | |
| 3042 | if (ip_select_srcif_debug) { |
| 3043 | (void) inet_ntop(AF_INET, &src.s_addr, s_src, sizeof(s_src)); |
| 3044 | (void) inet_ntop(AF_INET, &dst.s_addr, s_dst, sizeof(s_dst)); |
| 3045 | } |
| 3046 | |
| 3047 | if (ro->ro_rt != NULL) { |
| 3048 | RT_LOCK(ro->ro_rt); |
| 3049 | } |
| 3050 | |
| 3051 | rt_ifp = (ro->ro_rt != NULL) ? ro->ro_rt->rt_ifp : NULL; |
| 3052 | |
| 3053 | /* |
| 3054 | * Given the source IP address, find a suitable source interface |
| 3055 | * to use for transmission; if the caller has specified a scope, |
| 3056 | * optimize the search by looking at the addresses only for that |
| 3057 | * interface. This is still suboptimal, however, as we need to |
| 3058 | * traverse the per-interface list. |
| 3059 | */ |
| 3060 | if (ifscope != IFSCOPE_NONE || ro->ro_rt != NULL) { |
| 3061 | unsigned int scope = ifscope; |
| 3062 | |
| 3063 | /* |
| 3064 | * If no scope is specified and the route is stale (pointing |
| 3065 | * to a defunct interface) use the current primary interface; |
| 3066 | * this happens when switching between interfaces configured |
| 3067 | * with the same IP address. Otherwise pick up the scope |
| 3068 | * information from the route; the ULP may have looked up a |
| 3069 | * correct route and we just need to verify it here and mark |
| 3070 | * it with the ROF_SRCIF_SELECTED flag below. |
| 3071 | */ |
| 3072 | if (scope == IFSCOPE_NONE) { |
| 3073 | scope = rt_ifp->if_index; |
| 3074 | if (scope != get_primary_ifscope(AF_INET) && |
| 3075 | ROUTE_UNUSABLE(ro)) { |
| 3076 | scope = get_primary_ifscope(AF_INET); |
| 3077 | } |
| 3078 | } |
| 3079 | |
| 3080 | ifa = (struct ifaddr *)ifa_foraddr_scoped(src.s_addr, scope); |
| 3081 | |
| 3082 | if (ifa == NULL && ip->ip_p != IPPROTO_UDP && |
| 3083 | ip->ip_p != IPPROTO_TCP && ipforwarding) { |
| 3084 | /* |
| 3085 | * If forwarding is enabled, and if the packet isn't |
| 3086 | * TCP or UDP, check if the source address belongs |
| 3087 | * to one of our own interfaces; if so, demote the |
| 3088 | * interface scope and do a route lookup right below. |
| 3089 | */ |
| 3090 | ifa = (struct ifaddr *)ifa_foraddr(src.s_addr); |
| 3091 | if (ifa != NULL) { |
| 3092 | ifa_remref(ifa); |
| 3093 | ifa = NULL; |
| 3094 | ifscope = IFSCOPE_NONE; |
| 3095 | } |
| 3096 | } |
| 3097 | |
| 3098 | if (ip_select_srcif_debug && ifa != NULL) { |
| 3099 | if (ro->ro_rt != NULL) { |
| 3100 | printf("%s->%s ifscope %d->%d ifa_if %s " |
| 3101 | "ro_if %s\n" , s_src, s_dst, ifscope, |
| 3102 | scope, if_name(ifa->ifa_ifp), |
| 3103 | if_name(rt_ifp)); |
| 3104 | } else { |
| 3105 | printf("%s->%s ifscope %d->%d ifa_if %s\n" , |
| 3106 | s_src, s_dst, ifscope, scope, |
| 3107 | if_name(ifa->ifa_ifp)); |
| 3108 | } |
| 3109 | } |
| 3110 | } |
| 3111 | |
| 3112 | /* |
| 3113 | * Slow path; search for an interface having the corresponding source |
| 3114 | * IP address if the scope was not specified by the caller, and: |
| 3115 | * |
| 3116 | * 1) There currently isn't any route, or, |
| 3117 | * 2) The interface used by the route does not own that source |
| 3118 | * IP address; in this case, the route will get blown away |
| 3119 | * and we'll do a more specific scoped search using the newly |
| 3120 | * found interface. |
| 3121 | */ |
| 3122 | if (ifa == NULL && ifscope == IFSCOPE_NONE) { |
| 3123 | ifa = (struct ifaddr *)ifa_foraddr(src.s_addr); |
| 3124 | |
| 3125 | /* |
| 3126 | * If we have the IP address, but not the route, we don't |
| 3127 | * really know whether or not it belongs to the correct |
| 3128 | * interface (it could be shared across multiple interfaces.) |
| 3129 | * The only way to find out is to do a route lookup. |
| 3130 | */ |
| 3131 | if (ifa != NULL && ro->ro_rt == NULL) { |
| 3132 | struct rtentry *rt; |
| 3133 | struct sockaddr_in sin; |
| 3134 | struct ifaddr *oifa = NULL; |
| 3135 | |
| 3136 | SOCKADDR_ZERO(&sin, sizeof(sin)); |
| 3137 | sin.sin_family = AF_INET; |
| 3138 | sin.sin_len = sizeof(sin); |
| 3139 | sin.sin_addr = dst; |
| 3140 | |
| 3141 | lck_mtx_lock(rnh_lock); |
| 3142 | if ((rt = rt_lookup(TRUE, SA(&sin), NULL, |
| 3143 | rt_tables[AF_INET], IFSCOPE_NONE)) != NULL) { |
| 3144 | RT_LOCK(rt); |
| 3145 | /* |
| 3146 | * If the route uses a different interface, |
| 3147 | * use that one instead. The IP address of |
| 3148 | * the ifaddr that we pick up here is not |
| 3149 | * relevant. |
| 3150 | */ |
| 3151 | if (ifa->ifa_ifp != rt->rt_ifp) { |
| 3152 | oifa = ifa; |
| 3153 | ifa = rt->rt_ifa; |
| 3154 | ifa_addref(ifa); |
| 3155 | RT_UNLOCK(rt); |
| 3156 | } else { |
| 3157 | RT_UNLOCK(rt); |
| 3158 | } |
| 3159 | rtfree_locked(rt); |
| 3160 | } |
| 3161 | lck_mtx_unlock(rnh_lock); |
| 3162 | |
| 3163 | if (oifa != NULL) { |
| 3164 | struct ifaddr *iifa; |
| 3165 | |
| 3166 | /* |
| 3167 | * See if the interface pointed to by the |
| 3168 | * route is configured with the source IP |
| 3169 | * address of the packet. |
| 3170 | */ |
| 3171 | iifa = (struct ifaddr *)ifa_foraddr_scoped( |
| 3172 | src.s_addr, ifa->ifa_ifp->if_index); |
| 3173 | |
| 3174 | if (iifa != NULL) { |
| 3175 | /* |
| 3176 | * Found it; drop the original one |
| 3177 | * as well as the route interface |
| 3178 | * address, and use this instead. |
| 3179 | */ |
| 3180 | ifa_remref(ifa: oifa); |
| 3181 | ifa_remref(ifa); |
| 3182 | ifa = iifa; |
| 3183 | } else if (!ipforwarding || |
| 3184 | (rt->rt_flags & RTF_GATEWAY)) { |
| 3185 | /* |
| 3186 | * This interface doesn't have that |
| 3187 | * source IP address; drop the route |
| 3188 | * interface address and just use the |
| 3189 | * original one, and let the caller |
| 3190 | * do a scoped route lookup. |
| 3191 | */ |
| 3192 | ifa_remref(ifa); |
| 3193 | ifa = oifa; |
| 3194 | } else { |
| 3195 | /* |
| 3196 | * Forwarding is enabled and the source |
| 3197 | * address belongs to one of our own |
| 3198 | * interfaces which isn't the outgoing |
| 3199 | * interface, and we have a route, and |
| 3200 | * the destination is on a network that |
| 3201 | * is directly attached (onlink); drop |
| 3202 | * the original one and use the route |
| 3203 | * interface address instead. |
| 3204 | */ |
| 3205 | ifa_remref(ifa: oifa); |
| 3206 | } |
| 3207 | } |
| 3208 | } else if (ifa != NULL && ro->ro_rt != NULL && |
| 3209 | !(ro->ro_rt->rt_flags & RTF_GATEWAY) && |
| 3210 | ifa->ifa_ifp != ro->ro_rt->rt_ifp && ipforwarding) { |
| 3211 | /* |
| 3212 | * Forwarding is enabled and the source address belongs |
| 3213 | * to one of our own interfaces which isn't the same |
| 3214 | * as the interface used by the known route; drop the |
| 3215 | * original one and use the route interface address. |
| 3216 | */ |
| 3217 | ifa_remref(ifa); |
| 3218 | ifa = ro->ro_rt->rt_ifa; |
| 3219 | ifa_addref(ifa); |
| 3220 | } |
| 3221 | |
| 3222 | if (ip_select_srcif_debug && ifa != NULL) { |
| 3223 | printf("%s->%s ifscope %d ifa_if %s\n" , |
| 3224 | s_src, s_dst, ifscope, if_name(ifa->ifa_ifp)); |
| 3225 | } |
| 3226 | } |
| 3227 | |
| 3228 | if (ro->ro_rt != NULL) { |
| 3229 | RT_LOCK_ASSERT_HELD(ro->ro_rt); |
| 3230 | } |
| 3231 | /* |
| 3232 | * If there is a non-loopback route with the wrong interface, or if |
| 3233 | * there is no interface configured with such an address, blow it |
| 3234 | * away. Except for local/loopback, we look for one with a matching |
| 3235 | * interface scope/index. |
| 3236 | */ |
| 3237 | if (ro->ro_rt != NULL && |
| 3238 | (ifa == NULL || (ifa->ifa_ifp != rt_ifp && rt_ifp != lo_ifp) || |
| 3239 | !(ro->ro_rt->rt_flags & RTF_UP))) { |
| 3240 | if (ip_select_srcif_debug) { |
| 3241 | if (ifa != NULL) { |
| 3242 | printf("%s->%s ifscope %d ro_if %s != " |
| 3243 | "ifa_if %s (cached route cleared)\n" , |
| 3244 | s_src, s_dst, ifscope, if_name(rt_ifp), |
| 3245 | if_name(ifa->ifa_ifp)); |
| 3246 | } else { |
| 3247 | printf("%s->%s ifscope %d ro_if %s " |
| 3248 | "(no ifa_if found)\n" , |
| 3249 | s_src, s_dst, ifscope, if_name(rt_ifp)); |
| 3250 | } |
| 3251 | } |
| 3252 | |
| 3253 | RT_UNLOCK(ro->ro_rt); |
| 3254 | ROUTE_RELEASE(ro); |
| 3255 | |
| 3256 | /* |
| 3257 | * If the destination is IPv4 LLA and the route's interface |
| 3258 | * doesn't match the source interface, then the source IP |
| 3259 | * address is wrong; it most likely belongs to the primary |
| 3260 | * interface associated with the IPv4 LL subnet. Drop the |
| 3261 | * packet rather than letting it go out and return an error |
| 3262 | * to the ULP. This actually applies not only to IPv4 LL |
| 3263 | * but other shared subnets; for now we explicitly test only |
| 3264 | * for the former case and save the latter for future. |
| 3265 | */ |
| 3266 | if (IN_LINKLOCAL(ntohl(dst.s_addr)) && |
| 3267 | !IN_LINKLOCAL(ntohl(src.s_addr)) && ifa != NULL) { |
| 3268 | ifa_remref(ifa); |
| 3269 | ifa = NULL; |
| 3270 | } |
| 3271 | } |
| 3272 | |
| 3273 | if (ip_select_srcif_debug && ifa == NULL) { |
| 3274 | printf("%s->%s ifscope %d (neither ro_if/ifa_if found)\n" , |
| 3275 | s_src, s_dst, ifscope); |
| 3276 | } |
| 3277 | |
| 3278 | /* |
| 3279 | * If there is a route, mark it accordingly. If there isn't one, |
| 3280 | * we'll get here again during the next transmit (possibly with a |
| 3281 | * route) and the flag will get set at that point. For IPv4 LLA |
| 3282 | * destination, mark it only if the route has been fully resolved; |
| 3283 | * otherwise we want to come back here again when the route points |
| 3284 | * to the interface over which the ARP reply arrives on. |
| 3285 | */ |
| 3286 | if (ro->ro_rt != NULL && (!IN_LINKLOCAL(ntohl(dst.s_addr)) || |
| 3287 | (ro->ro_rt->rt_gateway->sa_family == AF_LINK && |
| 3288 | SDL(ro->ro_rt->rt_gateway)->sdl_alen != 0))) { |
| 3289 | if (ifa != NULL) { |
| 3290 | ifa_addref(ifa); /* for route */ |
| 3291 | } |
| 3292 | if (ro->ro_srcia != NULL) { |
| 3293 | ifa_remref(ifa: ro->ro_srcia); |
| 3294 | } |
| 3295 | ro->ro_srcia = ifa; |
| 3296 | ro->ro_flags |= ROF_SRCIF_SELECTED; |
| 3297 | RT_GENID_SYNC(ro->ro_rt); |
| 3298 | } |
| 3299 | |
| 3300 | if (ro->ro_rt != NULL) { |
| 3301 | RT_UNLOCK(ro->ro_rt); |
| 3302 | } |
| 3303 | |
| 3304 | return ifa; |
| 3305 | } |
| 3306 | |
| 3307 | /* |
| 3308 | * @brief Given outgoing interface it determines what checksum needs |
| 3309 | * to be computed in software and what needs to be offloaded to the |
| 3310 | * interface. |
| 3311 | * |
| 3312 | * @param ifp Pointer to the outgoing interface |
| 3313 | * @param m Pointer to the packet |
| 3314 | * @param hlen IP header length |
| 3315 | * @param ip_len Total packet size i.e. headers + data payload |
| 3316 | * @param sw_csum Pointer to a software checksum flag set |
| 3317 | * |
| 3318 | * @return void |
| 3319 | */ |
| 3320 | void |
| 3321 | ip_output_checksum(struct ifnet *ifp, struct mbuf *m, int hlen, int ip_len, |
| 3322 | uint32_t *sw_csum) |
| 3323 | { |
| 3324 | uint32_t hwcap = ifp->if_hwassist; |
| 3325 | |
| 3326 | m->m_pkthdr.csum_flags |= CSUM_IP; |
| 3327 | |
| 3328 | if (!hwcksum_tx) { |
| 3329 | /* do all in software; hardware checksum offload is disabled */ |
| 3330 | *sw_csum = (CSUM_DELAY_DATA | CSUM_DELAY_IP) & |
| 3331 | m->m_pkthdr.csum_flags; |
| 3332 | } else { |
| 3333 | /* do in software what the hardware cannot */ |
| 3334 | *sw_csum = m->m_pkthdr.csum_flags & ~IF_HWASSIST_CSUM_FLAGS(hwcap); |
| 3335 | } |
| 3336 | |
| 3337 | if (hlen != sizeof(struct ip)) { |
| 3338 | *sw_csum |= ((CSUM_DELAY_DATA | CSUM_DELAY_IP) & |
| 3339 | m->m_pkthdr.csum_flags); |
| 3340 | } else if ((*sw_csum & CSUM_DELAY_DATA) && (hwcap & CSUM_PARTIAL)) { |
| 3341 | /* |
| 3342 | * If the explicitly required data csum offload is not supported by hardware, |
| 3343 | * do it by partial checksum. Here we assume TSO implies support for IP |
| 3344 | * and data sum. |
| 3345 | */ |
| 3346 | int interface_mtu = ifp->if_mtu; |
| 3347 | |
| 3348 | if (INTF_ADJUST_MTU_FOR_CLAT46(ifp)) { |
| 3349 | interface_mtu = IN6_LINKMTU(ifp); |
| 3350 | /* Further adjust the size for CLAT46 expansion */ |
| 3351 | interface_mtu -= CLAT46_HDR_EXPANSION_OVERHD; |
| 3352 | } |
| 3353 | |
| 3354 | /* |
| 3355 | * Partial checksum offload, if non-IP fragment, and TCP only |
| 3356 | * (no UDP support, as the hardware may not be able to convert |
| 3357 | * +0 to -0 (0xffff) per RFC1122 4.1.3.4. unless the interface |
| 3358 | * supports "invert zero" capability.) |
| 3359 | */ |
| 3360 | if (hwcksum_tx && |
| 3361 | ((m->m_pkthdr.csum_flags & CSUM_TCP) || |
| 3362 | ((hwcap & CSUM_ZERO_INVERT) && |
| 3363 | (m->m_pkthdr.csum_flags & CSUM_ZERO_INVERT))) && |
| 3364 | ip_len <= interface_mtu) { |
| 3365 | uint16_t start = sizeof(struct ip); |
| 3366 | uint16_t ulpoff = m->m_pkthdr.csum_data & 0xffff; |
| 3367 | m->m_pkthdr.csum_flags |= |
| 3368 | (CSUM_DATA_VALID | CSUM_PARTIAL); |
| 3369 | m->m_pkthdr.csum_tx_stuff = (ulpoff + start); |
| 3370 | m->m_pkthdr.csum_tx_start = start; |
| 3371 | /* do IP hdr chksum in software */ |
| 3372 | *sw_csum = CSUM_DELAY_IP; |
| 3373 | } else { |
| 3374 | *sw_csum |= (CSUM_DELAY_DATA & m->m_pkthdr.csum_flags); |
| 3375 | } |
| 3376 | } |
| 3377 | |
| 3378 | if (*sw_csum & CSUM_DELAY_DATA) { |
| 3379 | in_delayed_cksum(m); |
| 3380 | *sw_csum &= ~CSUM_DELAY_DATA; |
| 3381 | } |
| 3382 | |
| 3383 | if (hwcksum_tx) { |
| 3384 | uint32_t delay_data = m->m_pkthdr.csum_flags & CSUM_DELAY_DATA; |
| 3385 | uint32_t hw_csum = IF_HWASSIST_CSUM_FLAGS(hwcap); |
| 3386 | |
| 3387 | /* |
| 3388 | * Drop off bits that aren't supported by hardware; |
| 3389 | * also make sure to preserve non-checksum related bits. |
| 3390 | */ |
| 3391 | m->m_pkthdr.csum_flags = |
| 3392 | ((m->m_pkthdr.csum_flags & (hw_csum | CSUM_DATA_VALID)) | |
| 3393 | (m->m_pkthdr.csum_flags & ~IF_HWASSIST_CSUM_MASK)); |
| 3394 | |
| 3395 | /* |
| 3396 | * If hardware supports partial checksum but not delay_data, |
| 3397 | * add back delay_data. |
| 3398 | */ |
| 3399 | if ((hw_csum & CSUM_PARTIAL) != 0 && |
| 3400 | (hw_csum & delay_data) == 0) { |
| 3401 | m->m_pkthdr.csum_flags |= delay_data; |
| 3402 | } |
| 3403 | } else { |
| 3404 | /* drop all bits; hardware checksum offload is disabled */ |
| 3405 | m->m_pkthdr.csum_flags = 0; |
| 3406 | } |
| 3407 | } |
| 3408 | |
| 3409 | /* |
| 3410 | * GRE protocol output for PPP/PPTP |
| 3411 | */ |
| 3412 | int |
| 3413 | ip_gre_output(struct mbuf *m) |
| 3414 | { |
| 3415 | struct route ro; |
| 3416 | int error; |
| 3417 | |
| 3418 | bzero(s: &ro, n: sizeof(ro)); |
| 3419 | |
| 3420 | error = ip_output(m0: m, NULL, ro: &ro, flags: 0, NULL, NULL); |
| 3421 | |
| 3422 | ROUTE_RELEASE(&ro); |
| 3423 | |
| 3424 | return error; |
| 3425 | } |
| 3426 | |
| 3427 | static int |
| 3428 | sysctl_reset_ip_output_stats SYSCTL_HANDLER_ARGS |
| 3429 | { |
| 3430 | #pragma unused(arg1, arg2) |
| 3431 | int error, i; |
| 3432 | |
| 3433 | i = ip_output_measure; |
| 3434 | error = sysctl_handle_int(oidp, arg1: &i, arg2: 0, req); |
| 3435 | if (error || req->newptr == USER_ADDR_NULL) { |
| 3436 | goto done; |
| 3437 | } |
| 3438 | /* impose bounds */ |
| 3439 | if (i < 0 || i > 1) { |
| 3440 | error = EINVAL; |
| 3441 | goto done; |
| 3442 | } |
| 3443 | if (ip_output_measure != i && i == 1) { |
| 3444 | net_perf_initialize(npp: &net_perf, bins: ip_output_measure_bins); |
| 3445 | } |
| 3446 | ip_output_measure = i; |
| 3447 | done: |
| 3448 | return error; |
| 3449 | } |
| 3450 | |
| 3451 | static int |
| 3452 | sysctl_ip_output_measure_bins SYSCTL_HANDLER_ARGS |
| 3453 | { |
| 3454 | #pragma unused(arg1, arg2) |
| 3455 | int error; |
| 3456 | uint64_t i; |
| 3457 | |
| 3458 | i = ip_output_measure_bins; |
| 3459 | error = sysctl_handle_quad(oidp, arg1: &i, arg2: 0, req); |
| 3460 | if (error || req->newptr == USER_ADDR_NULL) { |
| 3461 | goto done; |
| 3462 | } |
| 3463 | /* validate data */ |
| 3464 | if (!net_perf_validate_bins(bins: i)) { |
| 3465 | error = EINVAL; |
| 3466 | goto done; |
| 3467 | } |
| 3468 | ip_output_measure_bins = i; |
| 3469 | done: |
| 3470 | return error; |
| 3471 | } |
| 3472 | |
| 3473 | static int |
| 3474 | sysctl_ip_output_getperf SYSCTL_HANDLER_ARGS |
| 3475 | { |
| 3476 | #pragma unused(oidp, arg1, arg2) |
| 3477 | if (req->oldptr == USER_ADDR_NULL) { |
| 3478 | req->oldlen = (size_t)sizeof(struct ipstat); |
| 3479 | } |
| 3480 | |
| 3481 | return SYSCTL_OUT(req, &net_perf, MIN(sizeof(net_perf), req->oldlen)); |
| 3482 | } |
| 3483 | |