| 1 | /* |
| 2 | * Copyright (c) 2000-2022 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
| 5 | * |
| 6 | * This file contains Original Code and/or Modifications of Original Code |
| 7 | * as defined in and that are subject to the Apple Public Source License |
| 8 | * Version 2.0 (the 'License'). You may not use this file except in |
| 9 | * compliance with the License. The rights granted to you under the License |
| 10 | * may not be used to create, or enable the creation or redistribution of, |
| 11 | * unlawful or unlicensed copies of an Apple operating system, or to |
| 12 | * circumvent, violate, or enable the circumvention or violation of, any |
| 13 | * terms of an Apple operating system software license agreement. |
| 14 | * |
| 15 | * Please obtain a copy of the License at |
| 16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
| 17 | * |
| 18 | * The Original Code and all software distributed under the License are |
| 19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| 23 | * Please see the License for the specific language governing rights and |
| 24 | * limitations under the License. |
| 25 | * |
| 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
| 27 | */ |
| 28 | /* |
| 29 | * Copyright (c) 1998-2002 Luigi Rizzo, Universita` di Pisa |
| 30 | * Portions Copyright (c) 2000 Akamba Corp. |
| 31 | * All rights reserved |
| 32 | * |
| 33 | * Redistribution and use in source and binary forms, with or without |
| 34 | * modification, are permitted provided that the following conditions |
| 35 | * are met: |
| 36 | * 1. Redistributions of source code must retain the above copyright |
| 37 | * notice, this list of conditions and the following disclaimer. |
| 38 | * 2. Redistributions in binary form must reproduce the above copyright |
| 39 | * notice, this list of conditions and the following disclaimer in the |
| 40 | * documentation and/or other materials provided with the distribution. |
| 41 | * |
| 42 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND |
| 43 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 44 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 45 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
| 46 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| 47 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| 48 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| 49 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| 50 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| 51 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| 52 | * SUCH DAMAGE. |
| 53 | * |
| 54 | * $FreeBSD: src/sys/netinet/ip_dummynet.c,v 1.84 2004/08/25 09:31:30 pjd Exp $ |
| 55 | */ |
| 56 | |
| 57 | #define DUMMYNET_DEBUG |
| 58 | |
| 59 | /* |
| 60 | * This module implements IP dummynet, a bandwidth limiter/delay emulator |
| 61 | * Description of the data structures used is in ip_dummynet.h |
| 62 | * Here you mainly find the following blocks of code: |
| 63 | * + variable declarations; |
| 64 | * + heap management functions; |
| 65 | * + scheduler and dummynet functions; |
| 66 | * + configuration and initialization. |
| 67 | * |
| 68 | * NOTA BENE: critical sections are protected by the "dummynet lock". |
| 69 | * |
| 70 | * Most important Changes: |
| 71 | * |
| 72 | * 010124: Fixed WF2Q behaviour |
| 73 | * 010122: Fixed spl protection. |
| 74 | * 000601: WF2Q support |
| 75 | * 000106: large rewrite, use heaps to handle very many pipes. |
| 76 | * 980513: initial release |
| 77 | * |
| 78 | * include files marked with XXX are probably not needed |
| 79 | */ |
| 80 | |
| 81 | #include <sys/param.h> |
| 82 | #include <sys/systm.h> |
| 83 | #include <sys/malloc.h> |
| 84 | #include <sys/mbuf.h> |
| 85 | #include <sys/queue.h> /* XXX */ |
| 86 | #include <sys/kernel.h> |
| 87 | #include <sys/random.h> |
| 88 | #include <sys/socket.h> |
| 89 | #include <sys/socketvar.h> |
| 90 | #include <sys/time.h> |
| 91 | #include <sys/sysctl.h> |
| 92 | #include <net/if.h> |
| 93 | #include <net/route.h> |
| 94 | #include <net/kpi_protocol.h> |
| 95 | #if DUMMYNET |
| 96 | #include <net/kpi_protocol.h> |
| 97 | #endif /* DUMMYNET */ |
| 98 | #include <net/nwk_wq.h> |
| 99 | #include <net/pfvar.h> |
| 100 | #include <netinet/in.h> |
| 101 | #include <netinet/in_systm.h> |
| 102 | #include <netinet/in_var.h> |
| 103 | #include <netinet/ip.h> |
| 104 | #include <netinet/ip_dummynet.h> |
| 105 | #include <netinet/ip_var.h> |
| 106 | |
| 107 | #include <netinet/ip6.h> /* for ip6_input, ip6_output prototypes */ |
| 108 | #include <netinet6/ip6_var.h> |
| 109 | |
| 110 | #include <stdbool.h> |
| 111 | #include <net/sockaddr_utils.h> |
| 112 | |
| 113 | /* |
| 114 | * We keep a private variable for the simulation time, but we could |
| 115 | * probably use an existing one ("softticks" in sys/kern/kern_timer.c) |
| 116 | */ |
| 117 | static dn_key curr_time = 0; /* current simulation time */ |
| 118 | |
| 119 | /* this is for the timer that fires to call dummynet() - we only enable the timer when |
| 120 | * there are packets to process, otherwise it's disabled */ |
| 121 | static int timer_enabled = 0; |
| 122 | |
| 123 | static int dn_hash_size = 64; /* default hash size */ |
| 124 | |
| 125 | /* statistics on number of queue searches and search steps */ |
| 126 | static int searches, search_steps; |
| 127 | static int pipe_expire = 1; /* expire queue if empty */ |
| 128 | static int dn_max_ratio = 16; /* max queues/buckets ratio */ |
| 129 | |
| 130 | static int red_lookup_depth = 256; /* RED - default lookup table depth */ |
| 131 | static int red_avg_pkt_size = 512; /* RED - default medium packet size */ |
| 132 | static int red_max_pkt_size = 1500; /* RED - default max packet size */ |
| 133 | |
| 134 | static int serialize = 0; |
| 135 | |
| 136 | /* |
| 137 | * Three heaps contain queues and pipes that the scheduler handles: |
| 138 | * |
| 139 | * ready_heap contains all dn_flow_queue related to fixed-rate pipes. |
| 140 | * |
| 141 | * wfq_ready_heap contains the pipes associated with WF2Q flows |
| 142 | * |
| 143 | * extract_heap contains pipes associated with delay lines. |
| 144 | * |
| 145 | */ |
| 146 | static struct dn_heap ready_heap, , wfq_ready_heap; |
| 147 | |
| 148 | static int heap_init(struct dn_heap *h, int size); |
| 149 | static int heap_insert(struct dn_heap *h, dn_key key1, void *p); |
| 150 | static void heap_extract(struct dn_heap *h, void *obj); |
| 151 | |
| 152 | |
| 153 | static void transmit_event(struct dn_pipe *pipe, struct mbuf **head, |
| 154 | struct mbuf **tail); |
| 155 | static void ready_event(struct dn_flow_queue *q, struct mbuf **head, |
| 156 | struct mbuf **tail); |
| 157 | static void ready_event_wfq(struct dn_pipe *p, struct mbuf **head, |
| 158 | struct mbuf **tail); |
| 159 | |
| 160 | /* |
| 161 | * Packets are retrieved from queues in Dummynet in chains instead of |
| 162 | * packet-by-packet. The entire list of packets is first dequeued and |
| 163 | * sent out by the following function. |
| 164 | */ |
| 165 | static void dummynet_send(struct mbuf *m); |
| 166 | |
| 167 | #define HASHSIZE 16 |
| 168 | #define HASH(num) ((((num) >> 8) ^ ((num) >> 4) ^ (num)) & 0x0f) |
| 169 | static struct dn_pipe_head pipehash[HASHSIZE]; /* all pipes */ |
| 170 | static struct dn_flow_set_head flowsethash[HASHSIZE]; /* all flowsets */ |
| 171 | |
| 172 | #ifdef SYSCTL_NODE |
| 173 | SYSCTL_NODE(_net_inet_ip, OID_AUTO, dummynet, |
| 174 | CTLFLAG_RW | CTLFLAG_LOCKED, 0, "Dummynet" ); |
| 175 | SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, hash_size, |
| 176 | CTLFLAG_RW | CTLFLAG_LOCKED, &dn_hash_size, 0, "Default hash table size" ); |
| 177 | SYSCTL_QUAD(_net_inet_ip_dummynet, OID_AUTO, curr_time, |
| 178 | CTLFLAG_RD | CTLFLAG_LOCKED, &curr_time, "Current tick" ); |
| 179 | SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, ready_heap, |
| 180 | CTLFLAG_RD | CTLFLAG_LOCKED, &ready_heap.size, 0, "Size of ready heap" ); |
| 181 | SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, extract_heap, |
| 182 | CTLFLAG_RD | CTLFLAG_LOCKED, &extract_heap.size, 0, "Size of extract heap" ); |
| 183 | SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, searches, |
| 184 | CTLFLAG_RD | CTLFLAG_LOCKED, &searches, 0, "Number of queue searches" ); |
| 185 | SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, search_steps, |
| 186 | CTLFLAG_RD | CTLFLAG_LOCKED, &search_steps, 0, "Number of queue search steps" ); |
| 187 | SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, expire, |
| 188 | CTLFLAG_RW | CTLFLAG_LOCKED, &pipe_expire, 0, "Expire queue if empty" ); |
| 189 | SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, max_chain_len, |
| 190 | CTLFLAG_RW | CTLFLAG_LOCKED, &dn_max_ratio, 0, |
| 191 | "Max ratio between dynamic queues and buckets" ); |
| 192 | SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, red_lookup_depth, |
| 193 | CTLFLAG_RD | CTLFLAG_LOCKED, &red_lookup_depth, 0, "Depth of RED lookup table" ); |
| 194 | SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, red_avg_pkt_size, |
| 195 | CTLFLAG_RD | CTLFLAG_LOCKED, &red_avg_pkt_size, 0, "RED Medium packet size" ); |
| 196 | SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, red_max_pkt_size, |
| 197 | CTLFLAG_RD | CTLFLAG_LOCKED, &red_max_pkt_size, 0, "RED Max packet size" ); |
| 198 | #endif |
| 199 | |
| 200 | #ifdef DUMMYNET_DEBUG |
| 201 | int dummynet_debug = 0; |
| 202 | #ifdef SYSCTL_NODE |
| 203 | SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, debug, CTLFLAG_RW | CTLFLAG_LOCKED, &dummynet_debug, |
| 204 | 0, "control debugging printfs" ); |
| 205 | #endif |
| 206 | #define DPRINTF(X) if (dummynet_debug) printf X |
| 207 | #else |
| 208 | #define DPRINTF(X) |
| 209 | #endif |
| 210 | |
| 211 | /* dummynet lock */ |
| 212 | static LCK_GRP_DECLARE(dn_mutex_grp, "dn" ); |
| 213 | static LCK_MTX_DECLARE(dn_mutex, &dn_mutex_grp); |
| 214 | |
| 215 | static int config_pipe(struct dn_pipe *p); |
| 216 | static int ip_dn_ctl(struct sockopt *sopt); |
| 217 | |
| 218 | static void dummynet(void *); |
| 219 | static void dummynet_flush(void); |
| 220 | void dummynet_drain(void); |
| 221 | static ip_dn_io_t dummynet_io; |
| 222 | |
| 223 | static void cp_flow_set_to_64_user(struct dn_flow_set *set, struct dn_flow_set_64 *fs_bp); |
| 224 | static void cp_queue_to_64_user( struct dn_flow_queue *q, struct dn_flow_queue_64 *qp); |
| 225 | static char *cp_pipe_to_64_user(struct dn_pipe *p, struct dn_pipe_64 *pipe_bp); |
| 226 | static char* dn_copy_set_64(struct dn_flow_set *set, char *bp); |
| 227 | static int cp_pipe_from_user_64( struct sockopt *sopt, struct dn_pipe *p ); |
| 228 | |
| 229 | static void cp_flow_set_to_32_user(struct dn_flow_set *set, struct dn_flow_set_32 *fs_bp); |
| 230 | static void cp_queue_to_32_user( struct dn_flow_queue *q, struct dn_flow_queue_32 *qp); |
| 231 | static char *cp_pipe_to_32_user(struct dn_pipe *p, struct dn_pipe_32 *pipe_bp); |
| 232 | static char* dn_copy_set_32(struct dn_flow_set *set, char *bp); |
| 233 | static int cp_pipe_from_user_32( struct sockopt *sopt, struct dn_pipe *p ); |
| 234 | |
| 235 | static struct m_tag * m_tag_kalloc_dummynet(u_int32_t id, u_int16_t type, uint16_t len, int wait); |
| 236 | static void m_tag_kfree_dummynet(struct m_tag *tag); |
| 237 | |
| 238 | struct eventhandler_lists_ctxt dummynet_evhdlr_ctxt; |
| 239 | |
| 240 | uint32_t |
| 241 | my_random(void) |
| 242 | { |
| 243 | uint32_t val; |
| 244 | read_frandom(buffer: &val, numBytes: sizeof(val)); |
| 245 | val &= 0x7FFFFFFF; |
| 246 | |
| 247 | return val; |
| 248 | } |
| 249 | |
| 250 | /* |
| 251 | * Heap management functions. |
| 252 | * |
| 253 | * In the heap, first node is element 0. Children of i are 2i+1 and 2i+2. |
| 254 | * Some macros help finding parent/children so we can optimize them. |
| 255 | * |
| 256 | * heap_init() is called to expand the heap when needed. |
| 257 | * Increment size in blocks of 16 entries. |
| 258 | * XXX failure to allocate a new element is a pretty bad failure |
| 259 | * as we basically stall a whole queue forever!! |
| 260 | * Returns 1 on error, 0 on success |
| 261 | */ |
| 262 | #define HEAP_FATHER(x) ( ( (x) - 1 ) / 2 ) |
| 263 | #define HEAP_LEFT(x) ( 2*(x) + 1 ) |
| 264 | #define HEAP_IS_LEFT(x) ( (x) & 1 ) |
| 265 | #define HEAP_RIGHT(x) ( 2*(x) + 2 ) |
| 266 | #define HEAP_SWAP(a, b, buffer) { buffer = a ; a = b ; b = buffer ; } |
| 267 | #define HEAP_INCREMENT 15 |
| 268 | |
| 269 | |
| 270 | int |
| 271 | cp_pipe_from_user_32( struct sockopt *sopt, struct dn_pipe *p ) |
| 272 | { |
| 273 | struct dn_pipe_32 user_pipe_32; |
| 274 | int error = 0; |
| 275 | |
| 276 | error = sooptcopyin(sopt, &user_pipe_32, len: sizeof(struct dn_pipe_32), minlen: sizeof(struct dn_pipe_32)); |
| 277 | if (!error) { |
| 278 | p->pipe_nr = user_pipe_32.pipe_nr; |
| 279 | p->bandwidth = user_pipe_32.bandwidth; |
| 280 | p->delay = user_pipe_32.delay; |
| 281 | p->V = user_pipe_32.V; |
| 282 | p->sum = user_pipe_32.sum; |
| 283 | p->numbytes = user_pipe_32.numbytes; |
| 284 | p->sched_time = user_pipe_32.sched_time; |
| 285 | bcopy( src: user_pipe_32.if_name, dst: p->if_name, IFNAMSIZ); |
| 286 | p->if_name[IFNAMSIZ - 1] = '\0'; |
| 287 | p->ready = user_pipe_32.ready; |
| 288 | |
| 289 | p->fs.fs_nr = user_pipe_32.fs.fs_nr; |
| 290 | p->fs.flags_fs = user_pipe_32.fs.flags_fs; |
| 291 | p->fs.parent_nr = user_pipe_32.fs.parent_nr; |
| 292 | p->fs.weight = user_pipe_32.fs.weight; |
| 293 | p->fs.qsize = user_pipe_32.fs.qsize; |
| 294 | p->fs.plr = user_pipe_32.fs.plr; |
| 295 | p->fs.flow_mask = user_pipe_32.fs.flow_mask; |
| 296 | p->fs.rq_size = user_pipe_32.fs.rq_size; |
| 297 | p->fs.rq_elements = user_pipe_32.fs.rq_elements; |
| 298 | p->fs.last_expired = user_pipe_32.fs.last_expired; |
| 299 | p->fs.backlogged = user_pipe_32.fs.backlogged; |
| 300 | p->fs.w_q = user_pipe_32.fs.w_q; |
| 301 | p->fs.max_th = user_pipe_32.fs.max_th; |
| 302 | p->fs.min_th = user_pipe_32.fs.min_th; |
| 303 | p->fs.max_p = user_pipe_32.fs.max_p; |
| 304 | p->fs.c_1 = user_pipe_32.fs.c_1; |
| 305 | p->fs.c_2 = user_pipe_32.fs.c_2; |
| 306 | p->fs.c_3 = user_pipe_32.fs.c_3; |
| 307 | p->fs.c_4 = user_pipe_32.fs.c_4; |
| 308 | p->fs.lookup_depth = user_pipe_32.fs.lookup_depth; |
| 309 | p->fs.lookup_step = user_pipe_32.fs.lookup_step; |
| 310 | p->fs.lookup_weight = user_pipe_32.fs.lookup_weight; |
| 311 | p->fs.avg_pkt_size = user_pipe_32.fs.avg_pkt_size; |
| 312 | p->fs.max_pkt_size = user_pipe_32.fs.max_pkt_size; |
| 313 | } |
| 314 | return error; |
| 315 | } |
| 316 | |
| 317 | |
| 318 | int |
| 319 | cp_pipe_from_user_64( struct sockopt *sopt, struct dn_pipe *p ) |
| 320 | { |
| 321 | struct dn_pipe_64 user_pipe_64; |
| 322 | int error = 0; |
| 323 | |
| 324 | error = sooptcopyin(sopt, &user_pipe_64, len: sizeof(struct dn_pipe_64), minlen: sizeof(struct dn_pipe_64)); |
| 325 | if (!error) { |
| 326 | p->pipe_nr = user_pipe_64.pipe_nr; |
| 327 | p->bandwidth = user_pipe_64.bandwidth; |
| 328 | p->delay = user_pipe_64.delay; |
| 329 | p->V = user_pipe_64.V; |
| 330 | p->sum = user_pipe_64.sum; |
| 331 | p->numbytes = user_pipe_64.numbytes; |
| 332 | p->sched_time = user_pipe_64.sched_time; |
| 333 | bcopy( src: user_pipe_64.if_name, dst: p->if_name, IFNAMSIZ); |
| 334 | p->if_name[IFNAMSIZ - 1] = '\0'; |
| 335 | p->ready = user_pipe_64.ready; |
| 336 | |
| 337 | p->fs.fs_nr = user_pipe_64.fs.fs_nr; |
| 338 | p->fs.flags_fs = user_pipe_64.fs.flags_fs; |
| 339 | p->fs.parent_nr = user_pipe_64.fs.parent_nr; |
| 340 | p->fs.weight = user_pipe_64.fs.weight; |
| 341 | p->fs.qsize = user_pipe_64.fs.qsize; |
| 342 | p->fs.plr = user_pipe_64.fs.plr; |
| 343 | p->fs.flow_mask = user_pipe_64.fs.flow_mask; |
| 344 | p->fs.rq_size = user_pipe_64.fs.rq_size; |
| 345 | p->fs.rq_elements = user_pipe_64.fs.rq_elements; |
| 346 | p->fs.last_expired = user_pipe_64.fs.last_expired; |
| 347 | p->fs.backlogged = user_pipe_64.fs.backlogged; |
| 348 | p->fs.w_q = user_pipe_64.fs.w_q; |
| 349 | p->fs.max_th = user_pipe_64.fs.max_th; |
| 350 | p->fs.min_th = user_pipe_64.fs.min_th; |
| 351 | p->fs.max_p = user_pipe_64.fs.max_p; |
| 352 | p->fs.c_1 = user_pipe_64.fs.c_1; |
| 353 | p->fs.c_2 = user_pipe_64.fs.c_2; |
| 354 | p->fs.c_3 = user_pipe_64.fs.c_3; |
| 355 | p->fs.c_4 = user_pipe_64.fs.c_4; |
| 356 | p->fs.lookup_depth = user_pipe_64.fs.lookup_depth; |
| 357 | p->fs.lookup_step = user_pipe_64.fs.lookup_step; |
| 358 | p->fs.lookup_weight = user_pipe_64.fs.lookup_weight; |
| 359 | p->fs.avg_pkt_size = user_pipe_64.fs.avg_pkt_size; |
| 360 | p->fs.max_pkt_size = user_pipe_64.fs.max_pkt_size; |
| 361 | } |
| 362 | return error; |
| 363 | } |
| 364 | |
| 365 | static void |
| 366 | cp_flow_set_to_32_user(struct dn_flow_set *set, struct dn_flow_set_32 *fs_bp) |
| 367 | { |
| 368 | fs_bp->fs_nr = set->fs_nr; |
| 369 | fs_bp->flags_fs = set->flags_fs; |
| 370 | fs_bp->parent_nr = set->parent_nr; |
| 371 | fs_bp->weight = set->weight; |
| 372 | fs_bp->qsize = set->qsize; |
| 373 | fs_bp->plr = set->plr; |
| 374 | fs_bp->flow_mask = set->flow_mask; |
| 375 | fs_bp->rq_size = set->rq_size; |
| 376 | fs_bp->rq_elements = set->rq_elements; |
| 377 | fs_bp->last_expired = set->last_expired; |
| 378 | fs_bp->backlogged = set->backlogged; |
| 379 | fs_bp->w_q = set->w_q; |
| 380 | fs_bp->max_th = set->max_th; |
| 381 | fs_bp->min_th = set->min_th; |
| 382 | fs_bp->max_p = set->max_p; |
| 383 | fs_bp->c_1 = set->c_1; |
| 384 | fs_bp->c_2 = set->c_2; |
| 385 | fs_bp->c_3 = set->c_3; |
| 386 | fs_bp->c_4 = set->c_4; |
| 387 | fs_bp->w_q_lookup = CAST_DOWN_EXPLICIT(user32_addr_t, VM_KERNEL_ADDRHIDE(set->w_q_lookup)); |
| 388 | fs_bp->lookup_depth = set->lookup_depth; |
| 389 | fs_bp->lookup_step = set->lookup_step; |
| 390 | fs_bp->lookup_weight = set->lookup_weight; |
| 391 | fs_bp->avg_pkt_size = set->avg_pkt_size; |
| 392 | fs_bp->max_pkt_size = set->max_pkt_size; |
| 393 | } |
| 394 | |
| 395 | static void |
| 396 | cp_flow_set_to_64_user(struct dn_flow_set *set, struct dn_flow_set_64 *fs_bp) |
| 397 | { |
| 398 | fs_bp->fs_nr = set->fs_nr; |
| 399 | fs_bp->flags_fs = set->flags_fs; |
| 400 | fs_bp->parent_nr = set->parent_nr; |
| 401 | fs_bp->weight = set->weight; |
| 402 | fs_bp->qsize = set->qsize; |
| 403 | fs_bp->plr = set->plr; |
| 404 | fs_bp->flow_mask = set->flow_mask; |
| 405 | fs_bp->rq_size = set->rq_size; |
| 406 | fs_bp->rq_elements = set->rq_elements; |
| 407 | fs_bp->last_expired = set->last_expired; |
| 408 | fs_bp->backlogged = set->backlogged; |
| 409 | fs_bp->w_q = set->w_q; |
| 410 | fs_bp->max_th = set->max_th; |
| 411 | fs_bp->min_th = set->min_th; |
| 412 | fs_bp->max_p = set->max_p; |
| 413 | fs_bp->c_1 = set->c_1; |
| 414 | fs_bp->c_2 = set->c_2; |
| 415 | fs_bp->c_3 = set->c_3; |
| 416 | fs_bp->c_4 = set->c_4; |
| 417 | fs_bp->w_q_lookup = CAST_DOWN(user64_addr_t, VM_KERNEL_ADDRHIDE(set->w_q_lookup)); |
| 418 | fs_bp->lookup_depth = set->lookup_depth; |
| 419 | fs_bp->lookup_step = set->lookup_step; |
| 420 | fs_bp->lookup_weight = set->lookup_weight; |
| 421 | fs_bp->avg_pkt_size = set->avg_pkt_size; |
| 422 | fs_bp->max_pkt_size = set->max_pkt_size; |
| 423 | } |
| 424 | |
| 425 | static |
| 426 | void |
| 427 | cp_queue_to_32_user( struct dn_flow_queue *q, struct dn_flow_queue_32 *qp) |
| 428 | { |
| 429 | qp->id = q->id; |
| 430 | qp->len = q->len; |
| 431 | qp->len_bytes = q->len_bytes; |
| 432 | qp->numbytes = q->numbytes; |
| 433 | qp->tot_pkts = q->tot_pkts; |
| 434 | qp->tot_bytes = q->tot_bytes; |
| 435 | qp->drops = q->drops; |
| 436 | qp->hash_slot = q->hash_slot; |
| 437 | qp->avg = q->avg; |
| 438 | qp->count = q->count; |
| 439 | qp->random = q->random; |
| 440 | qp->q_time = (u_int32_t)q->q_time; |
| 441 | qp->heap_pos = q->heap_pos; |
| 442 | qp->sched_time = q->sched_time; |
| 443 | qp->S = q->S; |
| 444 | qp->F = q->F; |
| 445 | } |
| 446 | |
| 447 | static |
| 448 | void |
| 449 | cp_queue_to_64_user( struct dn_flow_queue *q, struct dn_flow_queue_64 *qp) |
| 450 | { |
| 451 | qp->id = q->id; |
| 452 | qp->len = q->len; |
| 453 | qp->len_bytes = q->len_bytes; |
| 454 | qp->numbytes = q->numbytes; |
| 455 | qp->tot_pkts = q->tot_pkts; |
| 456 | qp->tot_bytes = q->tot_bytes; |
| 457 | qp->drops = q->drops; |
| 458 | qp->hash_slot = q->hash_slot; |
| 459 | qp->avg = q->avg; |
| 460 | qp->count = q->count; |
| 461 | qp->random = q->random; |
| 462 | qp->q_time = (u_int32_t)q->q_time; |
| 463 | qp->heap_pos = q->heap_pos; |
| 464 | qp->sched_time = q->sched_time; |
| 465 | qp->S = q->S; |
| 466 | qp->F = q->F; |
| 467 | } |
| 468 | |
| 469 | static |
| 470 | char * |
| 471 | cp_pipe_to_32_user(struct dn_pipe *p, struct dn_pipe_32 *pipe_bp) |
| 472 | { |
| 473 | char *bp; |
| 474 | |
| 475 | pipe_bp->pipe_nr = p->pipe_nr; |
| 476 | pipe_bp->bandwidth = p->bandwidth; |
| 477 | pipe_bp->delay = p->delay; |
| 478 | bcopy( src: &(p->scheduler_heap), dst: &(pipe_bp->scheduler_heap), n: sizeof(struct dn_heap_32)); |
| 479 | pipe_bp->scheduler_heap.p = CAST_DOWN_EXPLICIT(user32_addr_t, VM_KERNEL_ADDRHIDE(pipe_bp->scheduler_heap.p)); |
| 480 | bcopy( src: &(p->not_eligible_heap), dst: &(pipe_bp->not_eligible_heap), n: sizeof(struct dn_heap_32)); |
| 481 | pipe_bp->not_eligible_heap.p = CAST_DOWN_EXPLICIT(user32_addr_t, VM_KERNEL_ADDRHIDE(pipe_bp->not_eligible_heap.p)); |
| 482 | bcopy( src: &(p->idle_heap), dst: &(pipe_bp->idle_heap), n: sizeof(struct dn_heap_32)); |
| 483 | pipe_bp->idle_heap.p = CAST_DOWN_EXPLICIT(user32_addr_t, VM_KERNEL_ADDRHIDE(pipe_bp->idle_heap.p)); |
| 484 | pipe_bp->V = p->V; |
| 485 | pipe_bp->sum = p->sum; |
| 486 | pipe_bp->numbytes = p->numbytes; |
| 487 | pipe_bp->sched_time = p->sched_time; |
| 488 | bcopy( src: p->if_name, dst: pipe_bp->if_name, IFNAMSIZ); |
| 489 | pipe_bp->ifp = CAST_DOWN_EXPLICIT(user32_addr_t, VM_KERNEL_ADDRHIDE(p->ifp)); |
| 490 | pipe_bp->ready = p->ready; |
| 491 | |
| 492 | cp_flow_set_to_32_user( set: &(p->fs), fs_bp: &(pipe_bp->fs)); |
| 493 | |
| 494 | pipe_bp->delay = (pipe_bp->delay * 1000) / (hz * 10); |
| 495 | /* |
| 496 | * XXX the following is a hack based on ->next being the |
| 497 | * first field in dn_pipe and dn_flow_set. The correct |
| 498 | * solution would be to move the dn_flow_set to the beginning |
| 499 | * of struct dn_pipe. |
| 500 | */ |
| 501 | pipe_bp->next = CAST_DOWN_EXPLICIT( user32_addr_t, DN_IS_PIPE ); |
| 502 | /* clean pointers */ |
| 503 | pipe_bp->head = pipe_bp->tail = (user32_addr_t) 0; |
| 504 | pipe_bp->fs.next = (user32_addr_t)0; |
| 505 | pipe_bp->fs.pipe = (user32_addr_t)0; |
| 506 | pipe_bp->fs.rq = (user32_addr_t)0; |
| 507 | bp = ((char *)pipe_bp) + sizeof(struct dn_pipe_32); |
| 508 | return dn_copy_set_32( set: &(p->fs), bp); |
| 509 | } |
| 510 | |
| 511 | static |
| 512 | char * |
| 513 | cp_pipe_to_64_user(struct dn_pipe *p, struct dn_pipe_64 *pipe_bp) |
| 514 | { |
| 515 | char *bp; |
| 516 | |
| 517 | pipe_bp->pipe_nr = p->pipe_nr; |
| 518 | pipe_bp->bandwidth = p->bandwidth; |
| 519 | pipe_bp->delay = p->delay; |
| 520 | bcopy( src: &(p->scheduler_heap), dst: &(pipe_bp->scheduler_heap), n: sizeof(struct dn_heap_64)); |
| 521 | pipe_bp->scheduler_heap.p = CAST_DOWN(user64_addr_t, VM_KERNEL_ADDRHIDE(pipe_bp->scheduler_heap.p)); |
| 522 | bcopy( src: &(p->not_eligible_heap), dst: &(pipe_bp->not_eligible_heap), n: sizeof(struct dn_heap_64)); |
| 523 | pipe_bp->not_eligible_heap.p = CAST_DOWN(user64_addr_t, VM_KERNEL_ADDRHIDE(pipe_bp->not_eligible_heap.p)); |
| 524 | bcopy( src: &(p->idle_heap), dst: &(pipe_bp->idle_heap), n: sizeof(struct dn_heap_64)); |
| 525 | pipe_bp->idle_heap.p = CAST_DOWN(user64_addr_t, VM_KERNEL_ADDRHIDE(pipe_bp->idle_heap.p)); |
| 526 | pipe_bp->V = p->V; |
| 527 | pipe_bp->sum = p->sum; |
| 528 | pipe_bp->numbytes = p->numbytes; |
| 529 | pipe_bp->sched_time = p->sched_time; |
| 530 | bcopy( src: p->if_name, dst: pipe_bp->if_name, IFNAMSIZ); |
| 531 | pipe_bp->ifp = CAST_DOWN(user64_addr_t, VM_KERNEL_ADDRHIDE(p->ifp)); |
| 532 | pipe_bp->ready = p->ready; |
| 533 | |
| 534 | cp_flow_set_to_64_user( set: &(p->fs), fs_bp: &(pipe_bp->fs)); |
| 535 | |
| 536 | pipe_bp->delay = (pipe_bp->delay * 1000) / (hz * 10); |
| 537 | /* |
| 538 | * XXX the following is a hack based on ->next being the |
| 539 | * first field in dn_pipe and dn_flow_set. The correct |
| 540 | * solution would be to move the dn_flow_set to the beginning |
| 541 | * of struct dn_pipe. |
| 542 | */ |
| 543 | pipe_bp->next = CAST_DOWN( user64_addr_t, DN_IS_PIPE ); |
| 544 | /* clean pointers */ |
| 545 | pipe_bp->head = pipe_bp->tail = USER_ADDR_NULL; |
| 546 | pipe_bp->fs.next = USER_ADDR_NULL; |
| 547 | pipe_bp->fs.pipe = USER_ADDR_NULL; |
| 548 | pipe_bp->fs.rq = USER_ADDR_NULL; |
| 549 | bp = ((char *)pipe_bp) + sizeof(struct dn_pipe_64); |
| 550 | return dn_copy_set_64( set: &(p->fs), bp); |
| 551 | } |
| 552 | |
| 553 | static int |
| 554 | heap_init(struct dn_heap *h, int new_size) |
| 555 | { |
| 556 | struct dn_heap_entry *p; |
| 557 | |
| 558 | if (h->size >= new_size) { |
| 559 | printf("dummynet: heap_init, Bogus call, have %d want %d\n" , |
| 560 | h->size, new_size); |
| 561 | return 0; |
| 562 | } |
| 563 | new_size = (new_size + HEAP_INCREMENT) & ~HEAP_INCREMENT; |
| 564 | p = krealloc_type(struct dn_heap_entry, h->size, new_size, |
| 565 | h->p, Z_NOWAIT | Z_ZERO); |
| 566 | if (p == NULL) { |
| 567 | printf("dummynet: heap_init, resize %d failed\n" , new_size ); |
| 568 | return 1; /* error */ |
| 569 | } |
| 570 | h->p = p; |
| 571 | h->size = new_size; |
| 572 | return 0; |
| 573 | } |
| 574 | |
| 575 | /* |
| 576 | * Insert element in heap. Normally, p != NULL, we insert p in |
| 577 | * a new position and bubble up. If p == NULL, then the element is |
| 578 | * already in place, and key is the position where to start the |
| 579 | * bubble-up. |
| 580 | * Returns 1 on failure (cannot allocate new heap entry) |
| 581 | * |
| 582 | * If offset > 0 the position (index, int) of the element in the heap is |
| 583 | * also stored in the element itself at the given offset in bytes. |
| 584 | */ |
| 585 | #define SET_OFFSET(heap, node) \ |
| 586 | if (heap->offset > 0) \ |
| 587 | *((int *)(void *)((char *)(heap->p[node].object) + heap->offset)) = node ; |
| 588 | /* |
| 589 | * RESET_OFFSET is used for sanity checks. It sets offset to an invalid value. |
| 590 | */ |
| 591 | #define RESET_OFFSET(heap, node) \ |
| 592 | if (heap->offset > 0) \ |
| 593 | *((int *)(void *)((char *)(heap->p[node].object) + heap->offset)) = -1 ; |
| 594 | static int |
| 595 | heap_insert(struct dn_heap *h, dn_key key1, void *p) |
| 596 | { |
| 597 | int son = h->elements; |
| 598 | |
| 599 | if (p == NULL) { /* data already there, set starting point */ |
| 600 | VERIFY(key1 < INT_MAX); |
| 601 | son = (int)key1; |
| 602 | } else { /* insert new element at the end, possibly resize */ |
| 603 | son = h->elements; |
| 604 | if (son == h->size) { /* need resize... */ |
| 605 | if (heap_init(h, new_size: h->elements + 1)) { |
| 606 | return 1; /* failure... */ |
| 607 | } |
| 608 | } |
| 609 | h->p[son].object = p; |
| 610 | h->p[son].key = key1; |
| 611 | h->elements++; |
| 612 | } |
| 613 | while (son > 0) { /* bubble up */ |
| 614 | int father = HEAP_FATHER(son); |
| 615 | struct dn_heap_entry tmp; |
| 616 | |
| 617 | if (DN_KEY_LT( h->p[father].key, h->p[son].key )) { |
| 618 | break; /* found right position */ |
| 619 | } |
| 620 | /* son smaller than father, swap and repeat */ |
| 621 | HEAP_SWAP(h->p[son], h->p[father], tmp); |
| 622 | SET_OFFSET(h, son); |
| 623 | son = father; |
| 624 | } |
| 625 | SET_OFFSET(h, son); |
| 626 | return 0; |
| 627 | } |
| 628 | |
| 629 | /* |
| 630 | * remove top element from heap, or obj if obj != NULL |
| 631 | */ |
| 632 | static void |
| 633 | (struct dn_heap *h, void *obj) |
| 634 | { |
| 635 | int child, father, maxelt = h->elements - 1; |
| 636 | |
| 637 | if (maxelt < 0) { |
| 638 | printf("dummynet: warning, extract from empty heap 0x%llx\n" , |
| 639 | (uint64_t)VM_KERNEL_ADDRPERM(h)); |
| 640 | return; |
| 641 | } |
| 642 | father = 0; /* default: move up smallest child */ |
| 643 | if (obj != NULL) { /* extract specific element, index is at offset */ |
| 644 | if (h->offset <= 0) { |
| 645 | panic("dummynet: heap_extract from middle not supported on this heap!!!" ); |
| 646 | } |
| 647 | father = *((int *)(void *)((char *)obj + h->offset)); |
| 648 | if (father < 0 || father >= h->elements) { |
| 649 | printf("dummynet: heap_extract, father %d out of bound 0..%d\n" , |
| 650 | father, h->elements); |
| 651 | panic("dummynet: heap_extract" ); |
| 652 | } |
| 653 | } |
| 654 | RESET_OFFSET(h, father); |
| 655 | child = HEAP_LEFT(father); /* left child */ |
| 656 | while (child <= maxelt) { /* valid entry */ |
| 657 | if (child != maxelt && DN_KEY_LT(h->p[child + 1].key, h->p[child].key)) { |
| 658 | child = child + 1; /* take right child, otherwise left */ |
| 659 | } |
| 660 | h->p[father] = h->p[child]; |
| 661 | SET_OFFSET(h, father); |
| 662 | father = child; |
| 663 | child = HEAP_LEFT(child); /* left child for next loop */ |
| 664 | } |
| 665 | h->elements--; |
| 666 | if (father != maxelt) { |
| 667 | /* |
| 668 | * Fill hole with last entry and bubble up, reusing the insert code |
| 669 | */ |
| 670 | h->p[father] = h->p[maxelt]; |
| 671 | heap_insert(h, key1: father, NULL); /* this one cannot fail */ |
| 672 | } |
| 673 | } |
| 674 | |
| 675 | /* |
| 676 | * heapify() will reorganize data inside an array to maintain the |
| 677 | * heap property. It is needed when we delete a bunch of entries. |
| 678 | */ |
| 679 | static void |
| 680 | heapify(struct dn_heap *h) |
| 681 | { |
| 682 | int i; |
| 683 | |
| 684 | for (i = 0; i < h->elements; i++) { |
| 685 | heap_insert(h, key1: i, NULL); |
| 686 | } |
| 687 | } |
| 688 | |
| 689 | /* |
| 690 | * cleanup the heap and free data structure |
| 691 | */ |
| 692 | static void |
| 693 | heap_free(struct dn_heap *h) |
| 694 | { |
| 695 | kfree_type(struct dn_heap_entry, h->size, h->p); |
| 696 | bzero(s: h, n: sizeof(*h)); |
| 697 | } |
| 698 | |
| 699 | /* |
| 700 | * --- end of heap management functions --- |
| 701 | */ |
| 702 | |
| 703 | /* |
| 704 | * Return the mbuf tag holding the dummynet state. As an optimization |
| 705 | * this is assumed to be the first tag on the list. If this turns out |
| 706 | * wrong we'll need to search the list. |
| 707 | */ |
| 708 | static struct dn_pkt_tag * |
| 709 | dn_tag_get(struct mbuf *m) |
| 710 | { |
| 711 | struct m_tag *mtag = m_tag_first(m); |
| 712 | |
| 713 | if (!(mtag != NULL && |
| 714 | mtag->m_tag_id == KERNEL_MODULE_TAG_ID && |
| 715 | mtag->m_tag_type == KERNEL_TAG_TYPE_DUMMYNET)) { |
| 716 | panic("packet on dummynet queue w/o dummynet tag: 0x%llx" , |
| 717 | (uint64_t)VM_KERNEL_ADDRPERM(m)); |
| 718 | } |
| 719 | |
| 720 | return (struct dn_pkt_tag *)(mtag->m_tag_data); |
| 721 | } |
| 722 | |
| 723 | /* |
| 724 | * Scheduler functions: |
| 725 | * |
| 726 | * transmit_event() is called when the delay-line needs to enter |
| 727 | * the scheduler, either because of existing pkts getting ready, |
| 728 | * or new packets entering the queue. The event handled is the delivery |
| 729 | * time of the packet. |
| 730 | * |
| 731 | * ready_event() does something similar with fixed-rate queues, and the |
| 732 | * event handled is the finish time of the head pkt. |
| 733 | * |
| 734 | * wfq_ready_event() does something similar with WF2Q queues, and the |
| 735 | * event handled is the start time of the head pkt. |
| 736 | * |
| 737 | * In all cases, we make sure that the data structures are consistent |
| 738 | * before passing pkts out, because this might trigger recursive |
| 739 | * invocations of the procedures. |
| 740 | */ |
| 741 | static void |
| 742 | transmit_event(struct dn_pipe *pipe, struct mbuf **head, struct mbuf **tail) |
| 743 | { |
| 744 | struct mbuf *m; |
| 745 | struct dn_pkt_tag *pkt = NULL; |
| 746 | u_int64_t schedule_time; |
| 747 | |
| 748 | LCK_MTX_ASSERT(&dn_mutex, LCK_MTX_ASSERT_OWNED); |
| 749 | ASSERT(serialize >= 0); |
| 750 | if (serialize == 0) { |
| 751 | while ((m = pipe->head) != NULL) { |
| 752 | pkt = dn_tag_get(m); |
| 753 | if (!DN_KEY_LEQ(pkt->dn_output_time, curr_time)) { |
| 754 | break; |
| 755 | } |
| 756 | |
| 757 | pipe->head = m->m_nextpkt; |
| 758 | if (*tail != NULL) { |
| 759 | (*tail)->m_nextpkt = m; |
| 760 | } else { |
| 761 | *head = m; |
| 762 | } |
| 763 | *tail = m; |
| 764 | } |
| 765 | |
| 766 | if (*tail != NULL) { |
| 767 | (*tail)->m_nextpkt = NULL; |
| 768 | } |
| 769 | } |
| 770 | |
| 771 | schedule_time = pkt == NULL || DN_KEY_LEQ(pkt->dn_output_time, curr_time) ? |
| 772 | curr_time + 1 : pkt->dn_output_time; |
| 773 | |
| 774 | /* if there are leftover packets, put the pipe into the heap for next ready event */ |
| 775 | if ((m = pipe->head) != NULL) { |
| 776 | pkt = dn_tag_get(m); |
| 777 | /* XXX should check errors on heap_insert, by draining the |
| 778 | * whole pipe p and hoping in the future we are more successful |
| 779 | */ |
| 780 | heap_insert(h: &extract_heap, key1: schedule_time, p: pipe); |
| 781 | } |
| 782 | } |
| 783 | |
| 784 | /* |
| 785 | * the following macro computes how many ticks we have to wait |
| 786 | * before being able to transmit a packet. The credit is taken from |
| 787 | * either a pipe (WF2Q) or a flow_queue (per-flow queueing) |
| 788 | */ |
| 789 | |
| 790 | /* hz is 100, which gives a granularity of 10ms in the old timer. |
| 791 | * The timer has been changed to fire every 1ms, so the use of |
| 792 | * hz has been modified here. All instances of hz have been left |
| 793 | * in place but adjusted by a factor of 10 so that hz is functionally |
| 794 | * equal to 1000. |
| 795 | */ |
| 796 | #define SET_TICKS(_m, q, p) \ |
| 797 | ((_m)->m_pkthdr.len*8*(hz*10) - (q)->numbytes + p->bandwidth - 1 ) / \ |
| 798 | p->bandwidth ; |
| 799 | |
| 800 | /* |
| 801 | * extract pkt from queue, compute output time (could be now) |
| 802 | * and put into delay line (p_queue) |
| 803 | */ |
| 804 | static void |
| 805 | move_pkt(struct mbuf *pkt, struct dn_flow_queue *q, |
| 806 | struct dn_pipe *p, int len) |
| 807 | { |
| 808 | struct dn_pkt_tag *dt = dn_tag_get(m: pkt); |
| 809 | |
| 810 | q->head = pkt->m_nextpkt; |
| 811 | q->len--; |
| 812 | q->len_bytes -= len; |
| 813 | |
| 814 | dt->dn_output_time = curr_time + p->delay; |
| 815 | |
| 816 | if (p->head == NULL) { |
| 817 | p->head = pkt; |
| 818 | } else { |
| 819 | p->tail->m_nextpkt = pkt; |
| 820 | } |
| 821 | p->tail = pkt; |
| 822 | p->tail->m_nextpkt = NULL; |
| 823 | } |
| 824 | |
| 825 | /* |
| 826 | * ready_event() is invoked every time the queue must enter the |
| 827 | * scheduler, either because the first packet arrives, or because |
| 828 | * a previously scheduled event fired. |
| 829 | * On invokation, drain as many pkts as possible (could be 0) and then |
| 830 | * if there are leftover packets reinsert the pkt in the scheduler. |
| 831 | */ |
| 832 | static void |
| 833 | ready_event(struct dn_flow_queue *q, struct mbuf **head, struct mbuf **tail) |
| 834 | { |
| 835 | struct mbuf *pkt; |
| 836 | struct dn_pipe *p = q->fs->pipe; |
| 837 | int p_was_empty; |
| 838 | |
| 839 | LCK_MTX_ASSERT(&dn_mutex, LCK_MTX_ASSERT_OWNED); |
| 840 | |
| 841 | if (p == NULL) { |
| 842 | printf("dummynet: ready_event pipe is gone\n" ); |
| 843 | return; |
| 844 | } |
| 845 | p_was_empty = (p->head == NULL); |
| 846 | |
| 847 | /* |
| 848 | * schedule fixed-rate queues linked to this pipe: |
| 849 | * Account for the bw accumulated since last scheduling, then |
| 850 | * drain as many pkts as allowed by q->numbytes and move to |
| 851 | * the delay line (in p) computing output time. |
| 852 | * bandwidth==0 (no limit) means we can drain the whole queue, |
| 853 | * setting len_scaled = 0 does the job. |
| 854 | */ |
| 855 | q->numbytes += (curr_time - q->sched_time) * p->bandwidth; |
| 856 | while ((pkt = q->head) != NULL) { |
| 857 | int len = pkt->m_pkthdr.len; |
| 858 | int len_scaled = p->bandwidth ? len * 8 * (hz * 10) : 0; |
| 859 | if (len_scaled > q->numbytes) { |
| 860 | break; |
| 861 | } |
| 862 | q->numbytes -= len_scaled; |
| 863 | move_pkt(pkt, q, p, len); |
| 864 | } |
| 865 | /* |
| 866 | * If we have more packets queued, schedule next ready event |
| 867 | * (can only occur when bandwidth != 0, otherwise we would have |
| 868 | * flushed the whole queue in the previous loop). |
| 869 | * To this purpose we record the current time and compute how many |
| 870 | * ticks to go for the finish time of the packet. |
| 871 | */ |
| 872 | if ((pkt = q->head) != NULL) { /* this implies bandwidth != 0 */ |
| 873 | dn_key t = SET_TICKS(pkt, q, p); /* ticks i have to wait */ |
| 874 | q->sched_time = curr_time; |
| 875 | heap_insert(h: &ready_heap, key1: curr_time + t, p: (void *)q ); |
| 876 | /* XXX should check errors on heap_insert, and drain the whole |
| 877 | * queue on error hoping next time we are luckier. |
| 878 | */ |
| 879 | } else { /* RED needs to know when the queue becomes empty */ |
| 880 | q->q_time = curr_time; |
| 881 | q->numbytes = 0; |
| 882 | } |
| 883 | /* |
| 884 | * If the delay line was empty call transmit_event(p) now. |
| 885 | * Otherwise, the scheduler will take care of it. |
| 886 | */ |
| 887 | if (p_was_empty) { |
| 888 | transmit_event(pipe: p, head, tail); |
| 889 | } |
| 890 | } |
| 891 | |
| 892 | /* |
| 893 | * Called when we can transmit packets on WF2Q queues. Take pkts out of |
| 894 | * the queues at their start time, and enqueue into the delay line. |
| 895 | * Packets are drained until p->numbytes < 0. As long as |
| 896 | * len_scaled >= p->numbytes, the packet goes into the delay line |
| 897 | * with a deadline p->delay. For the last packet, if p->numbytes<0, |
| 898 | * there is an additional delay. |
| 899 | */ |
| 900 | static void |
| 901 | ready_event_wfq(struct dn_pipe *p, struct mbuf **head, struct mbuf **tail) |
| 902 | { |
| 903 | int p_was_empty = (p->head == NULL); |
| 904 | struct dn_heap *sch = &(p->scheduler_heap); |
| 905 | struct dn_heap *neh = &(p->not_eligible_heap); |
| 906 | int64_t p_numbytes = p->numbytes; |
| 907 | |
| 908 | LCK_MTX_ASSERT(&dn_mutex, LCK_MTX_ASSERT_OWNED); |
| 909 | |
| 910 | if (p->if_name[0] == 0) { /* tx clock is simulated */ |
| 911 | p_numbytes += (curr_time - p->sched_time) * p->bandwidth; |
| 912 | } else { /* tx clock is for real, the ifq must be empty or this is a NOP */ |
| 913 | if (p->ifp && !IFCQ_IS_EMPTY(p->ifp->if_snd)) { |
| 914 | return; |
| 915 | } else { |
| 916 | DPRINTF(("dummynet: pipe %d ready from %s --\n" , |
| 917 | p->pipe_nr, p->if_name)); |
| 918 | } |
| 919 | } |
| 920 | |
| 921 | /* |
| 922 | * While we have backlogged traffic AND credit, we need to do |
| 923 | * something on the queue. |
| 924 | */ |
| 925 | while (p_numbytes >= 0 && (sch->elements > 0 || neh->elements > 0)) { |
| 926 | if (sch->elements > 0) { /* have some eligible pkts to send out */ |
| 927 | struct dn_flow_queue *q = sch->p[0].object; |
| 928 | struct mbuf *pkt = q->head; |
| 929 | struct dn_flow_set *fs = q->fs; |
| 930 | u_int32_t len = pkt->m_pkthdr.len; |
| 931 | u_int64_t len_scaled = p->bandwidth ? len * 8 * (hz * 10) : 0; |
| 932 | |
| 933 | heap_extract(h: sch, NULL); /* remove queue from heap */ |
| 934 | p_numbytes -= len_scaled; |
| 935 | move_pkt(pkt, q, p, len); |
| 936 | |
| 937 | p->V += (len << MY_M) / p->sum; /* update V */ |
| 938 | q->S = q->F; /* update start time */ |
| 939 | if (q->len == 0) { /* Flow not backlogged any more */ |
| 940 | fs->backlogged--; |
| 941 | heap_insert(h: &(p->idle_heap), key1: q->F, p: q); |
| 942 | } else { /* still backlogged */ |
| 943 | /* |
| 944 | * update F and position in backlogged queue, then |
| 945 | * put flow in not_eligible_heap (we will fix this later). |
| 946 | */ |
| 947 | len = (q->head)->m_pkthdr.len; |
| 948 | q->F += (len << MY_M) / (u_int64_t) fs->weight; |
| 949 | if (DN_KEY_LEQ(q->S, p->V)) { |
| 950 | heap_insert(h: neh, key1: q->S, p: q); |
| 951 | } else { |
| 952 | heap_insert(h: sch, key1: q->F, p: q); |
| 953 | } |
| 954 | } |
| 955 | } |
| 956 | /* |
| 957 | * now compute V = max(V, min(S_i)). Remember that all elements in sch |
| 958 | * have by definition S_i <= V so if sch is not empty, V is surely |
| 959 | * the max and we must not update it. Conversely, if sch is empty |
| 960 | * we only need to look at neh. |
| 961 | */ |
| 962 | if (sch->elements == 0 && neh->elements > 0) { |
| 963 | p->V = MAX64( p->V, neh->p[0].key ); |
| 964 | } |
| 965 | /* move from neh to sch any packets that have become eligible */ |
| 966 | while (neh->elements > 0 && DN_KEY_LEQ(neh->p[0].key, p->V)) { |
| 967 | struct dn_flow_queue *q = neh->p[0].object; |
| 968 | heap_extract(h: neh, NULL); |
| 969 | heap_insert(h: sch, key1: q->F, p: q); |
| 970 | } |
| 971 | |
| 972 | if (p->if_name[0] != '\0') {/* tx clock is from a real thing */ |
| 973 | p_numbytes = -1; /* mark not ready for I/O */ |
| 974 | break; |
| 975 | } |
| 976 | } |
| 977 | if (sch->elements == 0 && neh->elements == 0 && p_numbytes >= 0 |
| 978 | && p->idle_heap.elements > 0) { |
| 979 | /* |
| 980 | * no traffic and no events scheduled. We can get rid of idle-heap. |
| 981 | */ |
| 982 | int i; |
| 983 | |
| 984 | for (i = 0; i < p->idle_heap.elements; i++) { |
| 985 | struct dn_flow_queue *q = p->idle_heap.p[i].object; |
| 986 | |
| 987 | q->F = 0; |
| 988 | q->S = q->F + 1; |
| 989 | } |
| 990 | p->sum = 0; |
| 991 | p->V = 0; |
| 992 | p->idle_heap.elements = 0; |
| 993 | } |
| 994 | /* |
| 995 | * If we are getting clocks from dummynet (not a real interface) and |
| 996 | * If we are under credit, schedule the next ready event. |
| 997 | * Also fix the delivery time of the last packet. |
| 998 | */ |
| 999 | if (p->if_name[0] == 0 && p_numbytes < 0) { /* this implies bandwidth >0 */ |
| 1000 | dn_key t = 0; /* number of ticks i have to wait */ |
| 1001 | |
| 1002 | if (p->bandwidth > 0) { |
| 1003 | t = (p->bandwidth - 1 - p_numbytes) / p->bandwidth; |
| 1004 | } |
| 1005 | dn_tag_get(m: p->tail)->dn_output_time += t; |
| 1006 | p->sched_time = curr_time; |
| 1007 | heap_insert(h: &wfq_ready_heap, key1: curr_time + t, p: (void *)p); |
| 1008 | /* XXX should check errors on heap_insert, and drain the whole |
| 1009 | * queue on error hoping next time we are luckier. |
| 1010 | */ |
| 1011 | } |
| 1012 | |
| 1013 | /* Fit (adjust if necessary) 64bit result into 32bit variable. */ |
| 1014 | if (p_numbytes > INT_MAX) { |
| 1015 | p->numbytes = INT_MAX; |
| 1016 | } else if (p_numbytes < INT_MIN) { |
| 1017 | p->numbytes = INT_MIN; |
| 1018 | } else { |
| 1019 | p->numbytes = (int)p_numbytes; |
| 1020 | } |
| 1021 | |
| 1022 | /* |
| 1023 | * If the delay line was empty call transmit_event(p) now. |
| 1024 | * Otherwise, the scheduler will take care of it. |
| 1025 | */ |
| 1026 | if (p_was_empty) { |
| 1027 | transmit_event(pipe: p, head, tail); |
| 1028 | } |
| 1029 | } |
| 1030 | |
| 1031 | /* |
| 1032 | * This is called every 1ms. It is used to |
| 1033 | * increment the current tick counter and schedule expired events. |
| 1034 | */ |
| 1035 | static void |
| 1036 | dummynet(__unused void * unused) |
| 1037 | { |
| 1038 | void *p; /* generic parameter to handler */ |
| 1039 | struct dn_heap *h; |
| 1040 | struct dn_heap *heaps[3]; |
| 1041 | struct mbuf *head = NULL, *tail = NULL; |
| 1042 | int i; |
| 1043 | struct dn_pipe *pe; |
| 1044 | struct timespec ts; |
| 1045 | struct timeval tv; |
| 1046 | |
| 1047 | heaps[0] = &ready_heap; /* fixed-rate queues */ |
| 1048 | heaps[1] = &wfq_ready_heap; /* wfq queues */ |
| 1049 | heaps[2] = &extract_heap; /* delay line */ |
| 1050 | |
| 1051 | lck_mtx_lock(lck: &dn_mutex); |
| 1052 | |
| 1053 | /* make all time measurements in milliseconds (ms) - |
| 1054 | * here we convert secs and usecs to msecs (just divide the |
| 1055 | * usecs and take the closest whole number). |
| 1056 | */ |
| 1057 | microuptime(tv: &tv); |
| 1058 | curr_time = (tv.tv_sec * 1000) + (tv.tv_usec / 1000); |
| 1059 | |
| 1060 | for (i = 0; i < 3; i++) { |
| 1061 | h = heaps[i]; |
| 1062 | while (h->elements > 0 && DN_KEY_LEQ(h->p[0].key, curr_time)) { |
| 1063 | if (h->p[0].key > curr_time) { |
| 1064 | printf("dummynet: warning, heap %d is %d ticks late\n" , |
| 1065 | i, (int)(curr_time - h->p[0].key)); |
| 1066 | } |
| 1067 | p = h->p[0].object; /* store a copy before heap_extract */ |
| 1068 | heap_extract(h, NULL); /* need to extract before processing */ |
| 1069 | if (i == 0) { |
| 1070 | ready_event(q: p, head: &head, tail: &tail); |
| 1071 | } else if (i == 1) { |
| 1072 | struct dn_pipe *pipe = p; |
| 1073 | if (pipe->if_name[0] != '\0') { |
| 1074 | printf("dummynet: bad ready_event_wfq for pipe %s\n" , |
| 1075 | pipe->if_name); |
| 1076 | } else { |
| 1077 | ready_event_wfq(p, head: &head, tail: &tail); |
| 1078 | } |
| 1079 | } else { |
| 1080 | transmit_event(pipe: p, head: &head, tail: &tail); |
| 1081 | } |
| 1082 | } |
| 1083 | } |
| 1084 | /* sweep pipes trying to expire idle flow_queues */ |
| 1085 | for (i = 0; i < HASHSIZE; i++) { |
| 1086 | SLIST_FOREACH(pe, &pipehash[i], next) { |
| 1087 | if (pe->idle_heap.elements > 0 && |
| 1088 | DN_KEY_LT(pe->idle_heap.p[0].key, pe->V)) { |
| 1089 | struct dn_flow_queue *q = pe->idle_heap.p[0].object; |
| 1090 | |
| 1091 | heap_extract(h: &(pe->idle_heap), NULL); |
| 1092 | q->S = q->F + 1; /* mark timestamp as invalid */ |
| 1093 | pe->sum -= q->fs->weight; |
| 1094 | } |
| 1095 | } |
| 1096 | } |
| 1097 | |
| 1098 | /* check the heaps to see if there's still stuff in there, and |
| 1099 | * only set the timer if there are packets to process |
| 1100 | */ |
| 1101 | timer_enabled = 0; |
| 1102 | for (i = 0; i < 3; i++) { |
| 1103 | h = heaps[i]; |
| 1104 | if (h->elements > 0) { // set the timer |
| 1105 | ts.tv_sec = 0; |
| 1106 | ts.tv_nsec = 1 * 1000000; // 1ms |
| 1107 | timer_enabled = 1; |
| 1108 | bsd_timeout(dummynet, NULL, ts: &ts); |
| 1109 | break; |
| 1110 | } |
| 1111 | } |
| 1112 | |
| 1113 | if (head != NULL) { |
| 1114 | serialize++; |
| 1115 | } |
| 1116 | |
| 1117 | lck_mtx_unlock(lck: &dn_mutex); |
| 1118 | |
| 1119 | /* Send out the de-queued list of ready-to-send packets */ |
| 1120 | if (head != NULL) { |
| 1121 | dummynet_send(m: head); |
| 1122 | lck_mtx_lock(lck: &dn_mutex); |
| 1123 | serialize--; |
| 1124 | lck_mtx_unlock(lck: &dn_mutex); |
| 1125 | } |
| 1126 | } |
| 1127 | |
| 1128 | |
| 1129 | static void |
| 1130 | dummynet_send(struct mbuf *m) |
| 1131 | { |
| 1132 | struct dn_pkt_tag *pkt; |
| 1133 | struct mbuf *n; |
| 1134 | |
| 1135 | for (; m != NULL; m = n) { |
| 1136 | n = m->m_nextpkt; |
| 1137 | m->m_nextpkt = NULL; |
| 1138 | pkt = dn_tag_get(m); |
| 1139 | |
| 1140 | DPRINTF(("dummynet_send m: 0x%llx dn_dir: %d dn_flags: 0x%x\n" , |
| 1141 | (uint64_t)VM_KERNEL_ADDRPERM(m), pkt->dn_dir, |
| 1142 | pkt->dn_flags)); |
| 1143 | |
| 1144 | switch (pkt->dn_dir) { |
| 1145 | case DN_TO_IP_OUT: { |
| 1146 | struct route tmp_rt; |
| 1147 | |
| 1148 | /* route is already in the packet's dn_ro */ |
| 1149 | bzero(s: &tmp_rt, n: sizeof(tmp_rt)); |
| 1150 | |
| 1151 | /* Force IP_RAWOUTPUT as the IP header is fully formed */ |
| 1152 | pkt->dn_flags |= IP_RAWOUTPUT | IP_FORWARDING; |
| 1153 | (void)ip_output(m, NULL, &tmp_rt, pkt->dn_flags, NULL, NULL); |
| 1154 | ROUTE_RELEASE(&tmp_rt); |
| 1155 | break; |
| 1156 | } |
| 1157 | case DN_TO_IP_IN: |
| 1158 | proto_inject(PF_INET, packet: m); |
| 1159 | break; |
| 1160 | case DN_TO_IP6_OUT: { |
| 1161 | /* routes already in the packet's dn_{ro6,pmtu} */ |
| 1162 | if (pkt->dn_origifp != NULL) { |
| 1163 | ip6_output_setsrcifscope(m, pkt->dn_origifp->if_index, NULL); |
| 1164 | ip6_output_setdstifscope(m, pkt->dn_origifp->if_index, NULL); |
| 1165 | } else { |
| 1166 | ip6_output_setsrcifscope(m, IFSCOPE_UNKNOWN, NULL); |
| 1167 | ip6_output_setdstifscope(m, IFSCOPE_UNKNOWN, NULL); |
| 1168 | } |
| 1169 | |
| 1170 | ip6_output(m, NULL, NULL, IPV6_FORWARDING, NULL, NULL, NULL); |
| 1171 | break; |
| 1172 | } |
| 1173 | case DN_TO_IP6_IN: |
| 1174 | proto_inject(PF_INET6, packet: m); |
| 1175 | break; |
| 1176 | default: |
| 1177 | printf("dummynet: bad switch %d!\n" , pkt->dn_dir); |
| 1178 | m_freem(m); |
| 1179 | break; |
| 1180 | } |
| 1181 | } |
| 1182 | } |
| 1183 | |
| 1184 | /* |
| 1185 | * Unconditionally expire empty queues in case of shortage. |
| 1186 | * Returns the number of queues freed. |
| 1187 | */ |
| 1188 | static int |
| 1189 | expire_queues(struct dn_flow_set *fs) |
| 1190 | { |
| 1191 | struct dn_flow_queue *q, *prev; |
| 1192 | int i, initial_elements = fs->rq_elements; |
| 1193 | struct timeval timenow; |
| 1194 | |
| 1195 | /* reviewed for getmicrotime usage */ |
| 1196 | getmicrotime(&timenow); |
| 1197 | |
| 1198 | if (fs->last_expired == timenow.tv_sec) { |
| 1199 | return 0; |
| 1200 | } |
| 1201 | fs->last_expired = (int)timenow.tv_sec; |
| 1202 | for (i = 0; i <= fs->rq_size; i++) { /* last one is overflow */ |
| 1203 | for (prev = NULL, q = fs->rq[i]; q != NULL;) { |
| 1204 | if (q->head != NULL || q->S != q->F + 1) { |
| 1205 | prev = q; |
| 1206 | q = q->next; |
| 1207 | } else { /* entry is idle, expire it */ |
| 1208 | struct dn_flow_queue *old_q = q; |
| 1209 | |
| 1210 | if (prev != NULL) { |
| 1211 | prev->next = q = q->next; |
| 1212 | } else { |
| 1213 | fs->rq[i] = q = q->next; |
| 1214 | } |
| 1215 | fs->rq_elements--; |
| 1216 | kfree_type(struct dn_flow_queue, old_q); |
| 1217 | } |
| 1218 | } |
| 1219 | } |
| 1220 | return initial_elements - fs->rq_elements; |
| 1221 | } |
| 1222 | |
| 1223 | /* |
| 1224 | * If room, create a new queue and put at head of slot i; |
| 1225 | * otherwise, create or use the default queue. |
| 1226 | */ |
| 1227 | static struct dn_flow_queue * |
| 1228 | create_queue(struct dn_flow_set *fs, int i) |
| 1229 | { |
| 1230 | struct dn_flow_queue *q; |
| 1231 | |
| 1232 | if (fs->rq_elements > fs->rq_size * dn_max_ratio && |
| 1233 | expire_queues(fs) == 0) { |
| 1234 | /* |
| 1235 | * No way to get room, use or create overflow queue. |
| 1236 | */ |
| 1237 | i = fs->rq_size; |
| 1238 | if (fs->rq[i] != NULL) { |
| 1239 | return fs->rq[i]; |
| 1240 | } |
| 1241 | } |
| 1242 | q = kalloc_type(struct dn_flow_queue, Z_NOWAIT | Z_ZERO); |
| 1243 | if (q == NULL) { |
| 1244 | printf("dummynet: sorry, cannot allocate queue for new flow\n" ); |
| 1245 | return NULL; |
| 1246 | } |
| 1247 | q->fs = fs; |
| 1248 | q->hash_slot = i; |
| 1249 | q->next = fs->rq[i]; |
| 1250 | q->S = q->F + 1; /* hack - mark timestamp as invalid */ |
| 1251 | fs->rq[i] = q; |
| 1252 | fs->rq_elements++; |
| 1253 | return q; |
| 1254 | } |
| 1255 | |
| 1256 | /* |
| 1257 | * Given a flow_set and a pkt in last_pkt, find a matching queue |
| 1258 | * after appropriate masking. The queue is moved to front |
| 1259 | * so that further searches take less time. |
| 1260 | */ |
| 1261 | static struct dn_flow_queue * |
| 1262 | find_queue(struct dn_flow_set *fs, struct ip_flow_id *id) |
| 1263 | { |
| 1264 | int i = 0; /* we need i and q for new allocations */ |
| 1265 | struct dn_flow_queue *q, *prev; |
| 1266 | int is_v6 = IS_IP6_FLOW_ID(id); |
| 1267 | |
| 1268 | if (!(fs->flags_fs & DN_HAVE_FLOW_MASK)) { |
| 1269 | q = fs->rq[0]; |
| 1270 | } else { |
| 1271 | /* first, do the masking, then hash */ |
| 1272 | id->dst_port &= fs->flow_mask.dst_port; |
| 1273 | id->src_port &= fs->flow_mask.src_port; |
| 1274 | id->proto &= fs->flow_mask.proto; |
| 1275 | id->flags = 0; /* we don't care about this one */ |
| 1276 | if (is_v6) { |
| 1277 | APPLY_MASK(&id->dst_ip6, &fs->flow_mask.dst_ip6); |
| 1278 | APPLY_MASK(&id->src_ip6, &fs->flow_mask.src_ip6); |
| 1279 | id->flow_id6 &= fs->flow_mask.flow_id6; |
| 1280 | |
| 1281 | i = ((id->dst_ip6.__u6_addr.__u6_addr32[0]) & 0xffff) ^ |
| 1282 | ((id->dst_ip6.__u6_addr.__u6_addr32[1]) & 0xffff) ^ |
| 1283 | ((id->dst_ip6.__u6_addr.__u6_addr32[2]) & 0xffff) ^ |
| 1284 | ((id->dst_ip6.__u6_addr.__u6_addr32[3]) & 0xffff) ^ |
| 1285 | |
| 1286 | ((id->dst_ip6.__u6_addr.__u6_addr32[0] >> 15) & 0xffff) ^ |
| 1287 | ((id->dst_ip6.__u6_addr.__u6_addr32[1] >> 15) & 0xffff) ^ |
| 1288 | ((id->dst_ip6.__u6_addr.__u6_addr32[2] >> 15) & 0xffff) ^ |
| 1289 | ((id->dst_ip6.__u6_addr.__u6_addr32[3] >> 15) & 0xffff) ^ |
| 1290 | |
| 1291 | ((id->src_ip6.__u6_addr.__u6_addr32[0] << 1) & 0xfffff) ^ |
| 1292 | ((id->src_ip6.__u6_addr.__u6_addr32[1] << 1) & 0xfffff) ^ |
| 1293 | ((id->src_ip6.__u6_addr.__u6_addr32[2] << 1) & 0xfffff) ^ |
| 1294 | ((id->src_ip6.__u6_addr.__u6_addr32[3] << 1) & 0xfffff) ^ |
| 1295 | |
| 1296 | ((id->src_ip6.__u6_addr.__u6_addr32[0] >> 16) & 0xffff) ^ |
| 1297 | ((id->src_ip6.__u6_addr.__u6_addr32[1] >> 16) & 0xffff) ^ |
| 1298 | ((id->src_ip6.__u6_addr.__u6_addr32[2] >> 16) & 0xffff) ^ |
| 1299 | ((id->src_ip6.__u6_addr.__u6_addr32[3] >> 16) & 0xffff) ^ |
| 1300 | |
| 1301 | (id->dst_port << 1) ^ (id->src_port) ^ |
| 1302 | (id->proto) ^ |
| 1303 | (id->flow_id6); |
| 1304 | } else { |
| 1305 | id->dst_ip &= fs->flow_mask.dst_ip; |
| 1306 | id->src_ip &= fs->flow_mask.src_ip; |
| 1307 | |
| 1308 | i = ((id->dst_ip) & 0xffff) ^ |
| 1309 | ((id->dst_ip >> 15) & 0xffff) ^ |
| 1310 | ((id->src_ip << 1) & 0xffff) ^ |
| 1311 | ((id->src_ip >> 16) & 0xffff) ^ |
| 1312 | (id->dst_port << 1) ^ (id->src_port) ^ |
| 1313 | (id->proto); |
| 1314 | } |
| 1315 | i = i % fs->rq_size; |
| 1316 | /* finally, scan the current list for a match */ |
| 1317 | searches++; |
| 1318 | for (prev = NULL, q = fs->rq[i]; q;) { |
| 1319 | search_steps++; |
| 1320 | if (is_v6 && |
| 1321 | IN6_ARE_ADDR_EQUAL(&id->dst_ip6, &q->id.dst_ip6) && |
| 1322 | IN6_ARE_ADDR_EQUAL(&id->src_ip6, &q->id.src_ip6) && |
| 1323 | id->dst_port == q->id.dst_port && |
| 1324 | id->src_port == q->id.src_port && |
| 1325 | id->proto == q->id.proto && |
| 1326 | id->flags == q->id.flags && |
| 1327 | id->flow_id6 == q->id.flow_id6) { |
| 1328 | break; /* found */ |
| 1329 | } |
| 1330 | if (!is_v6 && id->dst_ip == q->id.dst_ip && |
| 1331 | id->src_ip == q->id.src_ip && |
| 1332 | id->dst_port == q->id.dst_port && |
| 1333 | id->src_port == q->id.src_port && |
| 1334 | id->proto == q->id.proto && |
| 1335 | id->flags == q->id.flags) { |
| 1336 | break; /* found */ |
| 1337 | } |
| 1338 | /* No match. Check if we can expire the entry */ |
| 1339 | if (pipe_expire && q->head == NULL && q->S == q->F + 1) { |
| 1340 | /* entry is idle and not in any heap, expire it */ |
| 1341 | struct dn_flow_queue *old_q = q; |
| 1342 | |
| 1343 | if (prev != NULL) { |
| 1344 | prev->next = q = q->next; |
| 1345 | } else { |
| 1346 | fs->rq[i] = q = q->next; |
| 1347 | } |
| 1348 | fs->rq_elements--; |
| 1349 | kfree_type(struct dn_flow_queue, old_q); |
| 1350 | continue; |
| 1351 | } |
| 1352 | prev = q; |
| 1353 | q = q->next; |
| 1354 | } |
| 1355 | if (q && prev != NULL) { /* found and not in front */ |
| 1356 | prev->next = q->next; |
| 1357 | q->next = fs->rq[i]; |
| 1358 | fs->rq[i] = q; |
| 1359 | } |
| 1360 | } |
| 1361 | if (q == NULL) { /* no match, need to allocate a new entry */ |
| 1362 | q = create_queue(fs, i); |
| 1363 | if (q != NULL) { |
| 1364 | q->id = *id; |
| 1365 | } |
| 1366 | } |
| 1367 | return q; |
| 1368 | } |
| 1369 | |
| 1370 | static int |
| 1371 | red_drops(struct dn_flow_set *fs, struct dn_flow_queue *q, int len) |
| 1372 | { |
| 1373 | /* |
| 1374 | * RED algorithm |
| 1375 | * |
| 1376 | * RED calculates the average queue size (avg) using a low-pass filter |
| 1377 | * with an exponential weighted (w_q) moving average: |
| 1378 | * avg <- (1-w_q) * avg + w_q * q_size |
| 1379 | * where q_size is the queue length (measured in bytes or * packets). |
| 1380 | * |
| 1381 | * If q_size == 0, we compute the idle time for the link, and set |
| 1382 | * avg = (1 - w_q)^(idle/s) |
| 1383 | * where s is the time needed for transmitting a medium-sized packet. |
| 1384 | * |
| 1385 | * Now, if avg < min_th the packet is enqueued. |
| 1386 | * If avg > max_th the packet is dropped. Otherwise, the packet is |
| 1387 | * dropped with probability P function of avg. |
| 1388 | * |
| 1389 | */ |
| 1390 | |
| 1391 | int64_t p_b = 0; |
| 1392 | /* queue in bytes or packets ? */ |
| 1393 | u_int q_size = (fs->flags_fs & DN_QSIZE_IS_BYTES) ? q->len_bytes : q->len; |
| 1394 | |
| 1395 | DPRINTF(("\ndummynet: %d q: %2u " , (int) curr_time, q_size)); |
| 1396 | |
| 1397 | /* average queue size estimation */ |
| 1398 | if (q_size != 0) { |
| 1399 | /* |
| 1400 | * queue is not empty, avg <- avg + (q_size - avg) * w_q |
| 1401 | */ |
| 1402 | int diff = SCALE(q_size) - q->avg; |
| 1403 | int64_t v = SCALE_MUL((int64_t) diff, (int64_t) fs->w_q); |
| 1404 | |
| 1405 | q->avg += (int) v; |
| 1406 | } else { |
| 1407 | /* |
| 1408 | * queue is empty, find for how long the queue has been |
| 1409 | * empty and use a lookup table for computing |
| 1410 | * (1 - * w_q)^(idle_time/s) where s is the time to send a |
| 1411 | * (small) packet. |
| 1412 | * XXX check wraps... |
| 1413 | */ |
| 1414 | if (q->avg) { |
| 1415 | u_int64_t t = (curr_time - q->q_time) / fs->lookup_step; |
| 1416 | |
| 1417 | q->avg = (t < fs->lookup_depth) ? |
| 1418 | SCALE_MUL(q->avg, fs->w_q_lookup[t]) : 0; |
| 1419 | } |
| 1420 | } |
| 1421 | DPRINTF(("dummynet: avg: %u " , SCALE_VAL(q->avg))); |
| 1422 | |
| 1423 | /* should i drop ? */ |
| 1424 | |
| 1425 | if (q->avg < fs->min_th) { |
| 1426 | q->count = -1; |
| 1427 | return 0; /* accept packet ; */ |
| 1428 | } |
| 1429 | if (q->avg >= fs->max_th) { /* average queue >= max threshold */ |
| 1430 | if (fs->flags_fs & DN_IS_GENTLE_RED) { |
| 1431 | /* |
| 1432 | * According to Gentle-RED, if avg is greater than max_th the |
| 1433 | * packet is dropped with a probability |
| 1434 | * p_b = c_3 * avg - c_4 |
| 1435 | * where c_3 = (1 - max_p) / max_th, and c_4 = 1 - 2 * max_p |
| 1436 | */ |
| 1437 | p_b = SCALE_MUL((int64_t) fs->c_3, (int64_t) q->avg) - fs->c_4; |
| 1438 | } else { |
| 1439 | q->count = -1; |
| 1440 | DPRINTF(("dummynet: - drop" )); |
| 1441 | return 1; |
| 1442 | } |
| 1443 | } else if (q->avg > fs->min_th) { |
| 1444 | /* |
| 1445 | * we compute p_b using the linear dropping function p_b = c_1 * |
| 1446 | * avg - c_2, where c_1 = max_p / (max_th - min_th), and c_2 = |
| 1447 | * max_p * min_th / (max_th - min_th) |
| 1448 | */ |
| 1449 | p_b = SCALE_MUL((int64_t) fs->c_1, (int64_t) q->avg) - fs->c_2; |
| 1450 | } |
| 1451 | if (fs->flags_fs & DN_QSIZE_IS_BYTES) { |
| 1452 | p_b = (p_b * len) / fs->max_pkt_size; |
| 1453 | } |
| 1454 | if (++q->count == 0) { |
| 1455 | q->random = (my_random() & 0xffff); |
| 1456 | } else { |
| 1457 | /* |
| 1458 | * q->count counts packets arrived since last drop, so a greater |
| 1459 | * value of q->count means a greater packet drop probability. |
| 1460 | */ |
| 1461 | if (SCALE_MUL(p_b, SCALE((int64_t) q->count)) > q->random) { |
| 1462 | q->count = 0; |
| 1463 | DPRINTF(("dummynet: - red drop" )); |
| 1464 | /* after a drop we calculate a new random value */ |
| 1465 | q->random = (my_random() & 0xffff); |
| 1466 | return 1; /* drop */ |
| 1467 | } |
| 1468 | } |
| 1469 | /* end of RED algorithm */ |
| 1470 | return 0; /* accept */ |
| 1471 | } |
| 1472 | |
| 1473 | static __inline |
| 1474 | struct dn_flow_set * |
| 1475 | locate_flowset(int fs_nr) |
| 1476 | { |
| 1477 | struct dn_flow_set *fs; |
| 1478 | SLIST_FOREACH(fs, &flowsethash[HASH(fs_nr)], next) { |
| 1479 | if (fs->fs_nr == fs_nr) { |
| 1480 | return fs; |
| 1481 | } |
| 1482 | } |
| 1483 | |
| 1484 | return NULL; |
| 1485 | } |
| 1486 | |
| 1487 | static __inline struct dn_pipe * |
| 1488 | locate_pipe(int pipe_nr) |
| 1489 | { |
| 1490 | struct dn_pipe *pipe; |
| 1491 | |
| 1492 | SLIST_FOREACH(pipe, &pipehash[HASH(pipe_nr)], next) { |
| 1493 | if (pipe->pipe_nr == pipe_nr) { |
| 1494 | return pipe; |
| 1495 | } |
| 1496 | } |
| 1497 | |
| 1498 | return NULL; |
| 1499 | } |
| 1500 | |
| 1501 | |
| 1502 | |
| 1503 | /* |
| 1504 | * dummynet hook for packets. Below 'pipe' is a pipe or a queue |
| 1505 | * depending on whether WF2Q or fixed bw is used. |
| 1506 | * |
| 1507 | * pipe_nr pipe or queue the packet is destined for. |
| 1508 | * dir where shall we send the packet after dummynet. |
| 1509 | * m the mbuf with the packet |
| 1510 | * ifp the 'ifp' parameter from the caller. |
| 1511 | * NULL in ip_input, destination interface in ip_output, |
| 1512 | * real_dst in bdg_forward |
| 1513 | * ro route parameter (only used in ip_output, NULL otherwise) |
| 1514 | * dst destination address, only used by ip_output |
| 1515 | * rule matching rule, in case of multiple passes |
| 1516 | * flags flags from the caller, only used in ip_output |
| 1517 | * |
| 1518 | */ |
| 1519 | static int |
| 1520 | dummynet_io(struct mbuf *m, int pipe_nr, int dir, struct ip_fw_args *fwa) |
| 1521 | { |
| 1522 | struct mbuf *head = NULL, *tail = NULL; |
| 1523 | struct dn_pkt_tag *pkt; |
| 1524 | struct m_tag *mtag; |
| 1525 | struct dn_flow_set *fs = NULL; |
| 1526 | struct dn_pipe *pipe; |
| 1527 | u_int32_t len = m->m_pkthdr.len; |
| 1528 | struct dn_flow_queue *q = NULL; |
| 1529 | int is_pipe = 0; |
| 1530 | struct timespec ts; |
| 1531 | struct timeval tv; |
| 1532 | |
| 1533 | DPRINTF(("dummynet_io m: 0x%llx pipe: %d dir: %d\n" , |
| 1534 | (uint64_t)VM_KERNEL_ADDRPERM(m), pipe_nr, dir)); |
| 1535 | |
| 1536 | |
| 1537 | #if DUMMYNET |
| 1538 | is_pipe = fwa->fwa_flags == DN_IS_PIPE ? 1 : 0; |
| 1539 | #endif /* DUMMYNET */ |
| 1540 | |
| 1541 | pipe_nr &= 0xffff; |
| 1542 | |
| 1543 | lck_mtx_lock(lck: &dn_mutex); |
| 1544 | |
| 1545 | /* make all time measurements in milliseconds (ms) - |
| 1546 | * here we convert secs and usecs to msecs (just divide the |
| 1547 | * usecs and take the closest whole number). |
| 1548 | */ |
| 1549 | microuptime(tv: &tv); |
| 1550 | curr_time = (tv.tv_sec * 1000) + (tv.tv_usec / 1000); |
| 1551 | |
| 1552 | /* |
| 1553 | * This is a dummynet rule, so we expect an O_PIPE or O_QUEUE rule. |
| 1554 | */ |
| 1555 | if (is_pipe) { |
| 1556 | pipe = locate_pipe(pipe_nr); |
| 1557 | if (pipe != NULL) { |
| 1558 | fs = &(pipe->fs); |
| 1559 | } |
| 1560 | } else { |
| 1561 | fs = locate_flowset(fs_nr: pipe_nr); |
| 1562 | } |
| 1563 | |
| 1564 | |
| 1565 | if (fs == NULL) { |
| 1566 | goto dropit; /* this queue/pipe does not exist! */ |
| 1567 | } |
| 1568 | pipe = fs->pipe; |
| 1569 | if (pipe == NULL) { /* must be a queue, try find a matching pipe */ |
| 1570 | pipe = locate_pipe(pipe_nr: fs->parent_nr); |
| 1571 | |
| 1572 | if (pipe != NULL) { |
| 1573 | fs->pipe = pipe; |
| 1574 | } else { |
| 1575 | printf("dummynet: no pipe %d for queue %d, drop pkt\n" , |
| 1576 | fs->parent_nr, fs->fs_nr); |
| 1577 | goto dropit; |
| 1578 | } |
| 1579 | } |
| 1580 | q = find_queue(fs, id: &(fwa->fwa_id)); |
| 1581 | if (q == NULL) { |
| 1582 | goto dropit; /* cannot allocate queue */ |
| 1583 | } |
| 1584 | /* |
| 1585 | * update statistics, then check reasons to drop pkt |
| 1586 | */ |
| 1587 | q->tot_bytes += len; |
| 1588 | q->tot_pkts++; |
| 1589 | if (fs->plr && (my_random() < fs->plr)) { |
| 1590 | goto dropit; /* random pkt drop */ |
| 1591 | } |
| 1592 | if (fs->flags_fs & DN_QSIZE_IS_BYTES) { |
| 1593 | if (q->len_bytes > fs->qsize) { |
| 1594 | goto dropit; /* queue size overflow */ |
| 1595 | } |
| 1596 | } else { |
| 1597 | if (q->len >= fs->qsize) { |
| 1598 | goto dropit; /* queue count overflow */ |
| 1599 | } |
| 1600 | } |
| 1601 | if (fs->flags_fs & DN_IS_RED && red_drops(fs, q, len)) { |
| 1602 | goto dropit; |
| 1603 | } |
| 1604 | |
| 1605 | /* XXX expensive to zero, see if we can remove it*/ |
| 1606 | mtag = m_tag_create(KERNEL_MODULE_TAG_ID, KERNEL_TAG_TYPE_DUMMYNET, |
| 1607 | sizeof(struct dn_pkt_tag), M_NOWAIT, m); |
| 1608 | if (mtag == NULL) { |
| 1609 | goto dropit; /* cannot allocate packet header */ |
| 1610 | } |
| 1611 | m_tag_prepend(m, mtag); /* attach to mbuf chain */ |
| 1612 | |
| 1613 | pkt = (struct dn_pkt_tag *)(mtag->m_tag_data); |
| 1614 | bzero(s: pkt, n: sizeof(struct dn_pkt_tag)); |
| 1615 | /* ok, i can handle the pkt now... */ |
| 1616 | /* build and enqueue packet + parameters */ |
| 1617 | pkt->dn_pf_rule = fwa->fwa_pf_rule; |
| 1618 | pkt->dn_dir = dir; |
| 1619 | |
| 1620 | pkt->dn_ifp = fwa->fwa_oif; |
| 1621 | if (dir == DN_TO_IP_OUT) { |
| 1622 | /* |
| 1623 | * We need to copy *ro because for ICMP pkts (and maybe others) |
| 1624 | * the caller passed a pointer into the stack; dst might also be |
| 1625 | * a pointer into *ro so it needs to be updated. |
| 1626 | */ |
| 1627 | if (fwa->fwa_ro) { |
| 1628 | route_copyout(&pkt->dn_ro, fwa->fwa_ro, sizeof(pkt->dn_ro)); |
| 1629 | } |
| 1630 | if (fwa->fwa_dst) { |
| 1631 | if (fwa->fwa_dst == SIN(&fwa->fwa_ro->ro_dst)) { /* dst points into ro */ |
| 1632 | fwa->fwa_dst = SIN(&(pkt->dn_ro.ro_dst)); |
| 1633 | } |
| 1634 | |
| 1635 | SOCKADDR_COPY(fwa->fwa_dst, &pkt->dn_dst, sizeof(pkt->dn_dst)); |
| 1636 | } |
| 1637 | } else if (dir == DN_TO_IP6_OUT) { |
| 1638 | if (fwa->fwa_ro6) { |
| 1639 | route_copyout((struct route *)&pkt->dn_ro6, |
| 1640 | (struct route *)fwa->fwa_ro6, sizeof(pkt->dn_ro6)); |
| 1641 | } |
| 1642 | if (fwa->fwa_ro6_pmtu) { |
| 1643 | route_copyout((struct route *)&pkt->dn_ro6_pmtu, |
| 1644 | (struct route *)fwa->fwa_ro6_pmtu, sizeof(pkt->dn_ro6_pmtu)); |
| 1645 | } |
| 1646 | if (fwa->fwa_dst6) { |
| 1647 | if (fwa->fwa_dst6 == SIN6(&fwa->fwa_ro6->ro_dst)) { /* dst points into ro */ |
| 1648 | fwa->fwa_dst6 = SIN6(&(pkt->dn_ro6.ro_dst)); |
| 1649 | } |
| 1650 | |
| 1651 | SOCKADDR_COPY(fwa->fwa_dst6, &pkt->dn_dst6, sizeof(pkt->dn_dst6)); |
| 1652 | } |
| 1653 | pkt->dn_origifp = fwa->fwa_origifp; |
| 1654 | pkt->dn_mtu = fwa->fwa_mtu; |
| 1655 | pkt->dn_unfragpartlen = fwa->fwa_unfragpartlen; |
| 1656 | if (fwa->fwa_exthdrs) { |
| 1657 | bcopy(src: fwa->fwa_exthdrs, dst: &pkt->dn_exthdrs, n: sizeof(pkt->dn_exthdrs)); |
| 1658 | /* |
| 1659 | * Need to zero out the source structure so the mbufs |
| 1660 | * won't be freed by ip6_output() |
| 1661 | */ |
| 1662 | bzero(s: fwa->fwa_exthdrs, n: sizeof(struct ip6_exthdrs)); |
| 1663 | } |
| 1664 | } |
| 1665 | if (dir == DN_TO_IP_OUT || dir == DN_TO_IP6_OUT) { |
| 1666 | pkt->dn_flags = fwa->fwa_oflags; |
| 1667 | if (fwa->fwa_ipoa != NULL) { |
| 1668 | pkt->dn_ipoa = *(fwa->fwa_ipoa); |
| 1669 | } |
| 1670 | } |
| 1671 | if (q->head == NULL) { |
| 1672 | q->head = m; |
| 1673 | } else { |
| 1674 | q->tail->m_nextpkt = m; |
| 1675 | } |
| 1676 | q->tail = m; |
| 1677 | q->len++; |
| 1678 | q->len_bytes += len; |
| 1679 | |
| 1680 | if (q->head != m) { /* flow was not idle, we are done */ |
| 1681 | goto done; |
| 1682 | } |
| 1683 | /* |
| 1684 | * If we reach this point the flow was previously idle, so we need |
| 1685 | * to schedule it. This involves different actions for fixed-rate or |
| 1686 | * WF2Q queues. |
| 1687 | */ |
| 1688 | if (is_pipe) { |
| 1689 | /* |
| 1690 | * Fixed-rate queue: just insert into the ready_heap. |
| 1691 | */ |
| 1692 | dn_key t = 0; |
| 1693 | if (pipe->bandwidth) { |
| 1694 | t = SET_TICKS(m, q, pipe); |
| 1695 | } |
| 1696 | q->sched_time = curr_time; |
| 1697 | if (t == 0) { /* must process it now */ |
| 1698 | ready_event( q, head: &head, tail: &tail ); |
| 1699 | } else { |
| 1700 | heap_insert(h: &ready_heap, key1: curr_time + t, p: q ); |
| 1701 | } |
| 1702 | } else { |
| 1703 | /* |
| 1704 | * WF2Q. First, compute start time S: if the flow was idle (S=F+1) |
| 1705 | * set S to the virtual time V for the controlling pipe, and update |
| 1706 | * the sum of weights for the pipe; otherwise, remove flow from |
| 1707 | * idle_heap and set S to max(F,V). |
| 1708 | * Second, compute finish time F = S + len/weight. |
| 1709 | * Third, if pipe was idle, update V=max(S, V). |
| 1710 | * Fourth, count one more backlogged flow. |
| 1711 | */ |
| 1712 | if (DN_KEY_GT(q->S, q->F)) { /* means timestamps are invalid */ |
| 1713 | q->S = pipe->V; |
| 1714 | pipe->sum += fs->weight; /* add weight of new queue */ |
| 1715 | } else { |
| 1716 | heap_extract(h: &(pipe->idle_heap), obj: q); |
| 1717 | q->S = MAX64(q->F, pipe->V ); |
| 1718 | } |
| 1719 | q->F = q->S + (len << MY_M) / (u_int64_t) fs->weight; |
| 1720 | |
| 1721 | if (pipe->not_eligible_heap.elements == 0 && |
| 1722 | pipe->scheduler_heap.elements == 0) { |
| 1723 | pipe->V = MAX64( q->S, pipe->V ); |
| 1724 | } |
| 1725 | fs->backlogged++; |
| 1726 | /* |
| 1727 | * Look at eligibility. A flow is not eligibile if S>V (when |
| 1728 | * this happens, it means that there is some other flow already |
| 1729 | * scheduled for the same pipe, so the scheduler_heap cannot be |
| 1730 | * empty). If the flow is not eligible we just store it in the |
| 1731 | * not_eligible_heap. Otherwise, we store in the scheduler_heap |
| 1732 | * and possibly invoke ready_event_wfq() right now if there is |
| 1733 | * leftover credit. |
| 1734 | * Note that for all flows in scheduler_heap (SCH), S_i <= V, |
| 1735 | * and for all flows in not_eligible_heap (NEH), S_i > V . |
| 1736 | * So when we need to compute max( V, min(S_i) ) forall i in SCH+NEH, |
| 1737 | * we only need to look into NEH. |
| 1738 | */ |
| 1739 | if (DN_KEY_GT(q->S, pipe->V)) { /* not eligible */ |
| 1740 | if (pipe->scheduler_heap.elements == 0) { |
| 1741 | printf("dummynet: ++ ouch! not eligible but empty scheduler!\n" ); |
| 1742 | } |
| 1743 | heap_insert(h: &(pipe->not_eligible_heap), key1: q->S, p: q); |
| 1744 | } else { |
| 1745 | heap_insert(h: &(pipe->scheduler_heap), key1: q->F, p: q); |
| 1746 | if (pipe->numbytes >= 0) { /* pipe is idle */ |
| 1747 | if (pipe->scheduler_heap.elements != 1) { |
| 1748 | printf("dummynet: OUCH! pipe should have been idle!\n" ); |
| 1749 | } |
| 1750 | DPRINTF(("dummynet: waking up pipe %d at %d\n" , |
| 1751 | pipe->pipe_nr, (int)(q->F >> MY_M))); |
| 1752 | pipe->sched_time = curr_time; |
| 1753 | ready_event_wfq(p: pipe, head: &head, tail: &tail); |
| 1754 | } |
| 1755 | } |
| 1756 | } |
| 1757 | done: |
| 1758 | /* start the timer and set global if not already set */ |
| 1759 | if (!timer_enabled) { |
| 1760 | ts.tv_sec = 0; |
| 1761 | ts.tv_nsec = 1 * 1000000; // 1ms |
| 1762 | timer_enabled = 1; |
| 1763 | bsd_timeout(dummynet, NULL, ts: &ts); |
| 1764 | } |
| 1765 | |
| 1766 | lck_mtx_unlock(lck: &dn_mutex); |
| 1767 | |
| 1768 | if (head != NULL) { |
| 1769 | dummynet_send(m: head); |
| 1770 | } |
| 1771 | |
| 1772 | return 0; |
| 1773 | |
| 1774 | dropit: |
| 1775 | if (q) { |
| 1776 | q->drops++; |
| 1777 | } |
| 1778 | lck_mtx_unlock(lck: &dn_mutex); |
| 1779 | m_freem(m); |
| 1780 | return (fs && (fs->flags_fs & DN_NOERROR)) ? 0 : ENOBUFS; |
| 1781 | } |
| 1782 | |
| 1783 | /* |
| 1784 | * Below, the ROUTE_RELEASE is only needed when (pkt->dn_dir == DN_TO_IP_OUT) |
| 1785 | * Doing this would probably save us the initial bzero of dn_pkt |
| 1786 | */ |
| 1787 | #define DN_FREE_PKT(_m) do { \ |
| 1788 | struct m_tag *tag = m_tag_locate(m, KERNEL_MODULE_TAG_ID, KERNEL_TAG_TYPE_DUMMYNET); \ |
| 1789 | if (tag) { \ |
| 1790 | struct dn_pkt_tag *n = (struct dn_pkt_tag *)(tag->m_tag_data); \ |
| 1791 | ROUTE_RELEASE(&n->dn_ro); \ |
| 1792 | } \ |
| 1793 | m_tag_delete(_m, tag); \ |
| 1794 | m_freem(_m); \ |
| 1795 | } while (0) |
| 1796 | |
| 1797 | /* |
| 1798 | * Dispose all packets and flow_queues on a flow_set. |
| 1799 | * If all=1, also remove red lookup table and other storage, |
| 1800 | * including the descriptor itself. |
| 1801 | * For the one in dn_pipe MUST also cleanup ready_heap... |
| 1802 | */ |
| 1803 | static void |
| 1804 | purge_flow_set(struct dn_flow_set *fs, int all) |
| 1805 | { |
| 1806 | struct dn_flow_queue *q, *qn; |
| 1807 | int i; |
| 1808 | |
| 1809 | LCK_MTX_ASSERT(&dn_mutex, LCK_MTX_ASSERT_OWNED); |
| 1810 | |
| 1811 | for (i = 0; i <= fs->rq_size; i++) { |
| 1812 | for (q = fs->rq[i]; q; q = qn) { |
| 1813 | struct mbuf *m, *mnext; |
| 1814 | |
| 1815 | mnext = q->head; |
| 1816 | while ((m = mnext) != NULL) { |
| 1817 | mnext = m->m_nextpkt; |
| 1818 | DN_FREE_PKT(m); |
| 1819 | } |
| 1820 | qn = q->next; |
| 1821 | kfree_type(struct dn_flow_queue, q); |
| 1822 | } |
| 1823 | fs->rq[i] = NULL; |
| 1824 | } |
| 1825 | fs->rq_elements = 0; |
| 1826 | if (all) { |
| 1827 | /* RED - free lookup table */ |
| 1828 | if (fs->w_q_lookup) { |
| 1829 | kfree_data(fs->w_q_lookup, fs->lookup_depth * sizeof(int)); |
| 1830 | } |
| 1831 | kfree_type(struct dn_flow_queue *, fs->rq_size + 1, fs->rq); |
| 1832 | /* if this fs is not part of a pipe, free it */ |
| 1833 | if (fs->pipe && fs != &(fs->pipe->fs)) { |
| 1834 | kfree_type(struct dn_flow_set, fs); |
| 1835 | } |
| 1836 | } |
| 1837 | } |
| 1838 | |
| 1839 | /* |
| 1840 | * Dispose all packets queued on a pipe (not a flow_set). |
| 1841 | * Also free all resources associated to a pipe, which is about |
| 1842 | * to be deleted. |
| 1843 | */ |
| 1844 | static void |
| 1845 | purge_pipe(struct dn_pipe *pipe) |
| 1846 | { |
| 1847 | struct mbuf *m, *mnext; |
| 1848 | |
| 1849 | purge_flow_set( fs: &(pipe->fs), all: 1 ); |
| 1850 | |
| 1851 | mnext = pipe->head; |
| 1852 | while ((m = mnext) != NULL) { |
| 1853 | mnext = m->m_nextpkt; |
| 1854 | DN_FREE_PKT(m); |
| 1855 | } |
| 1856 | |
| 1857 | heap_free( h: &(pipe->scheduler_heap)); |
| 1858 | heap_free( h: &(pipe->not_eligible_heap)); |
| 1859 | heap_free( h: &(pipe->idle_heap)); |
| 1860 | } |
| 1861 | |
| 1862 | /* |
| 1863 | * Delete all pipes and heaps returning memory. |
| 1864 | */ |
| 1865 | static void |
| 1866 | dummynet_flush(void) |
| 1867 | { |
| 1868 | struct dn_pipe *pipe, *pipe1; |
| 1869 | struct dn_flow_set *fs, *fs1; |
| 1870 | int i; |
| 1871 | |
| 1872 | lck_mtx_lock(lck: &dn_mutex); |
| 1873 | |
| 1874 | |
| 1875 | /* Free heaps so we don't have unwanted events. */ |
| 1876 | heap_free(h: &ready_heap); |
| 1877 | heap_free(h: &wfq_ready_heap); |
| 1878 | heap_free(h: &extract_heap); |
| 1879 | |
| 1880 | /* |
| 1881 | * Now purge all queued pkts and delete all pipes. |
| 1882 | * |
| 1883 | * XXXGL: can we merge the for(;;) cycles into one or not? |
| 1884 | */ |
| 1885 | for (i = 0; i < HASHSIZE; i++) { |
| 1886 | SLIST_FOREACH_SAFE(fs, &flowsethash[i], next, fs1) { |
| 1887 | SLIST_REMOVE(&flowsethash[i], fs, dn_flow_set, next); |
| 1888 | purge_flow_set(fs, all: 1); |
| 1889 | } |
| 1890 | } |
| 1891 | for (i = 0; i < HASHSIZE; i++) { |
| 1892 | SLIST_FOREACH_SAFE(pipe, &pipehash[i], next, pipe1) { |
| 1893 | SLIST_REMOVE(&pipehash[i], pipe, dn_pipe, next); |
| 1894 | purge_pipe(pipe); |
| 1895 | kfree_type(struct dn_pipe, pipe); |
| 1896 | } |
| 1897 | } |
| 1898 | lck_mtx_unlock(lck: &dn_mutex); |
| 1899 | } |
| 1900 | |
| 1901 | /* |
| 1902 | * setup RED parameters |
| 1903 | */ |
| 1904 | static int |
| 1905 | config_red(struct dn_flow_set *p, struct dn_flow_set * x) |
| 1906 | { |
| 1907 | int i; |
| 1908 | |
| 1909 | x->w_q = p->w_q; |
| 1910 | x->min_th = SCALE(p->min_th); |
| 1911 | x->max_th = SCALE(p->max_th); |
| 1912 | x->max_p = p->max_p; |
| 1913 | |
| 1914 | x->c_1 = p->max_p / (p->max_th - p->min_th); |
| 1915 | x->c_2 = SCALE_MUL(x->c_1, SCALE(p->min_th)); |
| 1916 | if (x->flags_fs & DN_IS_GENTLE_RED) { |
| 1917 | x->c_3 = (SCALE(1) - p->max_p) / p->max_th; |
| 1918 | x->c_4 = (SCALE(1) - 2 * p->max_p); |
| 1919 | } |
| 1920 | |
| 1921 | /* if the lookup table already exist, free and create it again */ |
| 1922 | if (x->w_q_lookup) { |
| 1923 | kfree_data(x->w_q_lookup, x->lookup_depth * sizeof(int)); |
| 1924 | x->w_q_lookup = NULL; |
| 1925 | } |
| 1926 | if (red_lookup_depth == 0) { |
| 1927 | printf("\ndummynet: net.inet.ip.dummynet.red_lookup_depth must be > 0\n" ); |
| 1928 | return EINVAL; |
| 1929 | } |
| 1930 | x->lookup_depth = red_lookup_depth; |
| 1931 | x->w_q_lookup = (u_int *) kalloc_data(x->lookup_depth * sizeof(int), |
| 1932 | Z_NOWAIT); |
| 1933 | if (x->w_q_lookup == NULL) { |
| 1934 | printf("dummynet: sorry, cannot allocate red lookup table\n" ); |
| 1935 | return ENOSPC; |
| 1936 | } |
| 1937 | |
| 1938 | /* fill the lookup table with (1 - w_q)^x */ |
| 1939 | x->lookup_step = p->lookup_step; |
| 1940 | x->lookup_weight = p->lookup_weight; |
| 1941 | x->w_q_lookup[0] = SCALE(1) - x->w_q; |
| 1942 | for (i = 1; i < x->lookup_depth; i++) { |
| 1943 | x->w_q_lookup[i] = SCALE_MUL(x->w_q_lookup[i - 1], x->lookup_weight); |
| 1944 | } |
| 1945 | if (red_avg_pkt_size < 1) { |
| 1946 | red_avg_pkt_size = 512; |
| 1947 | } |
| 1948 | x->avg_pkt_size = red_avg_pkt_size; |
| 1949 | if (red_max_pkt_size < 1) { |
| 1950 | red_max_pkt_size = 1500; |
| 1951 | } |
| 1952 | x->max_pkt_size = red_max_pkt_size; |
| 1953 | return 0; |
| 1954 | } |
| 1955 | |
| 1956 | static int |
| 1957 | alloc_hash(struct dn_flow_set *x, struct dn_flow_set *pfs) |
| 1958 | { |
| 1959 | if (x->flags_fs & DN_HAVE_FLOW_MASK) { /* allocate some slots */ |
| 1960 | int l = pfs->rq_size; |
| 1961 | |
| 1962 | if (l == 0) { |
| 1963 | l = dn_hash_size; |
| 1964 | } |
| 1965 | if (l < 4) { |
| 1966 | l = 4; |
| 1967 | } else if (l > DN_MAX_HASH_SIZE) { |
| 1968 | l = DN_MAX_HASH_SIZE; |
| 1969 | } |
| 1970 | x->rq_size = l; |
| 1971 | } else { /* one is enough for null mask */ |
| 1972 | x->rq_size = 1; |
| 1973 | } |
| 1974 | x->rq = kalloc_type(struct dn_flow_queue *, x->rq_size + 1, |
| 1975 | Z_NOWAIT | Z_ZERO); |
| 1976 | if (x->rq == NULL) { |
| 1977 | printf("dummynet: sorry, cannot allocate queue\n" ); |
| 1978 | return ENOSPC; |
| 1979 | } |
| 1980 | x->rq_elements = 0; |
| 1981 | return 0; |
| 1982 | } |
| 1983 | |
| 1984 | static int |
| 1985 | set_fs_parms(struct dn_flow_set *x, struct dn_flow_set *src) |
| 1986 | { |
| 1987 | x->flags_fs = src->flags_fs; |
| 1988 | x->qsize = src->qsize; |
| 1989 | x->plr = src->plr; |
| 1990 | x->flow_mask = src->flow_mask; |
| 1991 | if (x->flags_fs & DN_QSIZE_IS_BYTES) { |
| 1992 | if (x->qsize > 1024 * 1024) { |
| 1993 | x->qsize = 1024 * 1024; |
| 1994 | } |
| 1995 | } else { |
| 1996 | if (x->qsize == 0) { |
| 1997 | x->qsize = 50; |
| 1998 | } |
| 1999 | if (x->qsize > 100) { |
| 2000 | x->qsize = 50; |
| 2001 | } |
| 2002 | } |
| 2003 | /* configuring RED */ |
| 2004 | if (x->flags_fs & DN_IS_RED) { |
| 2005 | return config_red(p: src, x); /* XXX should check errors */ |
| 2006 | } |
| 2007 | return 0; |
| 2008 | } |
| 2009 | |
| 2010 | /* |
| 2011 | * setup pipe or queue parameters. |
| 2012 | */ |
| 2013 | static int |
| 2014 | config_pipe(struct dn_pipe *p) |
| 2015 | { |
| 2016 | int i, r; |
| 2017 | struct dn_flow_set *pfs = &(p->fs); |
| 2018 | struct dn_flow_queue *q; |
| 2019 | bool is_new = false; |
| 2020 | |
| 2021 | /* |
| 2022 | * The config program passes parameters as follows: |
| 2023 | * bw = bits/second (0 means no limits), |
| 2024 | * delay = ms, must be translated into ticks. |
| 2025 | * qsize = slots/bytes |
| 2026 | */ |
| 2027 | p->delay = (p->delay * (hz * 10)) / 1000; |
| 2028 | /* We need either a pipe number or a flow_set number */ |
| 2029 | if (p->pipe_nr == 0 && pfs->fs_nr == 0) { |
| 2030 | return EINVAL; |
| 2031 | } |
| 2032 | if (p->pipe_nr != 0 && pfs->fs_nr != 0) { |
| 2033 | return EINVAL; |
| 2034 | } |
| 2035 | if (p->pipe_nr != 0) { /* this is a pipe */ |
| 2036 | struct dn_pipe *x, *b; |
| 2037 | struct dummynet_event dn_event; |
| 2038 | lck_mtx_lock(lck: &dn_mutex); |
| 2039 | |
| 2040 | /* locate pipe */ |
| 2041 | b = locate_pipe(pipe_nr: p->pipe_nr); |
| 2042 | |
| 2043 | if (b == NULL || b->pipe_nr != p->pipe_nr) { /* new pipe */ |
| 2044 | is_new = true; |
| 2045 | x = kalloc_type(struct dn_pipe, Z_NOWAIT | Z_ZERO); |
| 2046 | if (x == NULL) { |
| 2047 | lck_mtx_unlock(lck: &dn_mutex); |
| 2048 | printf("dummynet: no memory for new pipe\n" ); |
| 2049 | return ENOSPC; |
| 2050 | } |
| 2051 | x->pipe_nr = p->pipe_nr; |
| 2052 | x->fs.pipe = x; |
| 2053 | /* idle_heap is the only one from which we extract from the middle. |
| 2054 | */ |
| 2055 | x->idle_heap.size = x->idle_heap.elements = 0; |
| 2056 | x->idle_heap.offset = offsetof(struct dn_flow_queue, heap_pos); |
| 2057 | } else { |
| 2058 | x = b; |
| 2059 | /* Flush accumulated credit for all queues */ |
| 2060 | for (i = 0; i <= x->fs.rq_size; i++) { |
| 2061 | for (q = x->fs.rq[i]; q; q = q->next) { |
| 2062 | q->numbytes = 0; |
| 2063 | } |
| 2064 | } |
| 2065 | } |
| 2066 | |
| 2067 | x->bandwidth = p->bandwidth; |
| 2068 | x->numbytes = 0; /* just in case... */ |
| 2069 | bcopy(src: p->if_name, dst: x->if_name, n: sizeof(p->if_name)); |
| 2070 | x->ifp = NULL; /* reset interface ptr */ |
| 2071 | x->delay = p->delay; |
| 2072 | r = set_fs_parms(x: &(x->fs), src: pfs); |
| 2073 | if (r != 0) { |
| 2074 | lck_mtx_unlock(lck: &dn_mutex); |
| 2075 | if (is_new) { /* a new pipe */ |
| 2076 | kfree_type(struct dn_pipe, x); |
| 2077 | } |
| 2078 | return r; |
| 2079 | } |
| 2080 | |
| 2081 | if (x->fs.rq == NULL) { /* a new pipe */ |
| 2082 | r = alloc_hash(x: &(x->fs), pfs); |
| 2083 | if (r) { |
| 2084 | lck_mtx_unlock(lck: &dn_mutex); |
| 2085 | if (is_new) { |
| 2086 | kfree_type(struct dn_pipe, x); |
| 2087 | } |
| 2088 | return r; |
| 2089 | } |
| 2090 | SLIST_INSERT_HEAD(&pipehash[HASH(x->pipe_nr)], |
| 2091 | x, next); |
| 2092 | } |
| 2093 | lck_mtx_unlock(lck: &dn_mutex); |
| 2094 | |
| 2095 | bzero(s: &dn_event, n: sizeof(dn_event)); |
| 2096 | dn_event.dn_event_code = DUMMYNET_PIPE_CONFIG; |
| 2097 | dn_event.dn_event_pipe_config.bandwidth = p->bandwidth; |
| 2098 | dn_event.dn_event_pipe_config.delay = p->delay; |
| 2099 | dn_event.dn_event_pipe_config.plr = pfs->plr; |
| 2100 | |
| 2101 | dummynet_event_enqueue_nwk_wq_entry(&dn_event); |
| 2102 | } else { /* config queue */ |
| 2103 | struct dn_flow_set *x, *b; |
| 2104 | |
| 2105 | lck_mtx_lock(lck: &dn_mutex); |
| 2106 | /* locate flow_set */ |
| 2107 | b = locate_flowset(fs_nr: pfs->fs_nr); |
| 2108 | |
| 2109 | if (b == NULL || b->fs_nr != pfs->fs_nr) { /* new */ |
| 2110 | is_new = true; |
| 2111 | if (pfs->parent_nr == 0) { /* need link to a pipe */ |
| 2112 | lck_mtx_unlock(lck: &dn_mutex); |
| 2113 | return EINVAL; |
| 2114 | } |
| 2115 | x = kalloc_type(struct dn_flow_set, Z_NOWAIT | Z_ZERO); |
| 2116 | if (x == NULL) { |
| 2117 | lck_mtx_unlock(lck: &dn_mutex); |
| 2118 | printf("dummynet: no memory for new flow_set\n" ); |
| 2119 | return ENOSPC; |
| 2120 | } |
| 2121 | x->fs_nr = pfs->fs_nr; |
| 2122 | x->parent_nr = pfs->parent_nr; |
| 2123 | x->weight = pfs->weight; |
| 2124 | if (x->weight == 0) { |
| 2125 | x->weight = 1; |
| 2126 | } else if (x->weight > 100) { |
| 2127 | x->weight = 100; |
| 2128 | } |
| 2129 | } else { |
| 2130 | /* Change parent pipe not allowed; must delete and recreate */ |
| 2131 | if (pfs->parent_nr != 0 && b->parent_nr != pfs->parent_nr) { |
| 2132 | lck_mtx_unlock(lck: &dn_mutex); |
| 2133 | return EINVAL; |
| 2134 | } |
| 2135 | x = b; |
| 2136 | } |
| 2137 | r = set_fs_parms(x, src: pfs); |
| 2138 | if (r != 0) { |
| 2139 | lck_mtx_unlock(lck: &dn_mutex); |
| 2140 | printf("dummynet: no memory for new flow_set\n" ); |
| 2141 | if (is_new) { |
| 2142 | kfree_type(struct dn_flow_set, x); |
| 2143 | } |
| 2144 | return r; |
| 2145 | } |
| 2146 | |
| 2147 | if (x->rq == NULL) { /* a new flow_set */ |
| 2148 | r = alloc_hash(x, pfs); |
| 2149 | if (r) { |
| 2150 | lck_mtx_unlock(lck: &dn_mutex); |
| 2151 | kfree_type(struct dn_flow_set, x); |
| 2152 | return r; |
| 2153 | } |
| 2154 | SLIST_INSERT_HEAD(&flowsethash[HASH(x->fs_nr)], |
| 2155 | x, next); |
| 2156 | } |
| 2157 | lck_mtx_unlock(lck: &dn_mutex); |
| 2158 | } |
| 2159 | return 0; |
| 2160 | } |
| 2161 | |
| 2162 | /* |
| 2163 | * Helper function to remove from a heap queues which are linked to |
| 2164 | * a flow_set about to be deleted. |
| 2165 | */ |
| 2166 | static void |
| 2167 | fs_remove_from_heap(struct dn_heap *h, struct dn_flow_set *fs) |
| 2168 | { |
| 2169 | int i = 0, found = 0; |
| 2170 | for (; i < h->elements;) { |
| 2171 | if (((struct dn_flow_queue *)h->p[i].object)->fs == fs) { |
| 2172 | h->elements--; |
| 2173 | h->p[i] = h->p[h->elements]; |
| 2174 | found++; |
| 2175 | } else { |
| 2176 | i++; |
| 2177 | } |
| 2178 | } |
| 2179 | if (found) { |
| 2180 | heapify(h); |
| 2181 | } |
| 2182 | } |
| 2183 | |
| 2184 | /* |
| 2185 | * helper function to remove a pipe from a heap (can be there at most once) |
| 2186 | */ |
| 2187 | static void |
| 2188 | pipe_remove_from_heap(struct dn_heap *h, struct dn_pipe *p) |
| 2189 | { |
| 2190 | if (h->elements > 0) { |
| 2191 | int i = 0; |
| 2192 | for (i = 0; i < h->elements; i++) { |
| 2193 | if (h->p[i].object == p) { /* found it */ |
| 2194 | h->elements--; |
| 2195 | h->p[i] = h->p[h->elements]; |
| 2196 | heapify(h); |
| 2197 | break; |
| 2198 | } |
| 2199 | } |
| 2200 | } |
| 2201 | } |
| 2202 | |
| 2203 | /* |
| 2204 | * drain all queues. Called in case of severe mbuf shortage. |
| 2205 | */ |
| 2206 | void |
| 2207 | dummynet_drain(void) |
| 2208 | { |
| 2209 | struct dn_flow_set *fs; |
| 2210 | struct dn_pipe *p; |
| 2211 | struct mbuf *m, *mnext; |
| 2212 | int i; |
| 2213 | |
| 2214 | LCK_MTX_ASSERT(&dn_mutex, LCK_MTX_ASSERT_OWNED); |
| 2215 | |
| 2216 | heap_free(h: &ready_heap); |
| 2217 | heap_free(h: &wfq_ready_heap); |
| 2218 | heap_free(h: &extract_heap); |
| 2219 | /* remove all references to this pipe from flow_sets */ |
| 2220 | for (i = 0; i < HASHSIZE; i++) { |
| 2221 | SLIST_FOREACH(fs, &flowsethash[i], next) { |
| 2222 | purge_flow_set(fs, all: 0); |
| 2223 | } |
| 2224 | } |
| 2225 | |
| 2226 | for (i = 0; i < HASHSIZE; i++) { |
| 2227 | SLIST_FOREACH(p, &pipehash[i], next) { |
| 2228 | purge_flow_set(fs: &(p->fs), all: 0); |
| 2229 | |
| 2230 | mnext = p->head; |
| 2231 | while ((m = mnext) != NULL) { |
| 2232 | mnext = m->m_nextpkt; |
| 2233 | DN_FREE_PKT(m); |
| 2234 | } |
| 2235 | p->head = p->tail = NULL; |
| 2236 | } |
| 2237 | } |
| 2238 | } |
| 2239 | |
| 2240 | /* |
| 2241 | * Fully delete a pipe or a queue, cleaning up associated info. |
| 2242 | */ |
| 2243 | static int |
| 2244 | delete_pipe(struct dn_pipe *p) |
| 2245 | { |
| 2246 | if (p->pipe_nr == 0 && p->fs.fs_nr == 0) { |
| 2247 | return EINVAL; |
| 2248 | } |
| 2249 | if (p->pipe_nr != 0 && p->fs.fs_nr != 0) { |
| 2250 | return EINVAL; |
| 2251 | } |
| 2252 | if (p->pipe_nr != 0) { /* this is an old-style pipe */ |
| 2253 | struct dn_pipe *b; |
| 2254 | struct dn_flow_set *fs; |
| 2255 | int i; |
| 2256 | |
| 2257 | lck_mtx_lock(lck: &dn_mutex); |
| 2258 | /* locate pipe */ |
| 2259 | b = locate_pipe(pipe_nr: p->pipe_nr); |
| 2260 | if (b == NULL) { |
| 2261 | lck_mtx_unlock(lck: &dn_mutex); |
| 2262 | return EINVAL; /* not found */ |
| 2263 | } |
| 2264 | |
| 2265 | /* Unlink from list of pipes. */ |
| 2266 | SLIST_REMOVE(&pipehash[HASH(b->pipe_nr)], b, dn_pipe, next); |
| 2267 | |
| 2268 | |
| 2269 | /* Remove all references to this pipe from flow_sets. */ |
| 2270 | for (i = 0; i < HASHSIZE; i++) { |
| 2271 | SLIST_FOREACH(fs, &flowsethash[i], next) { |
| 2272 | if (fs->pipe == b) { |
| 2273 | printf("dummynet: ++ ref to pipe %d from fs %d\n" , |
| 2274 | p->pipe_nr, fs->fs_nr); |
| 2275 | fs->pipe = NULL; |
| 2276 | purge_flow_set(fs, all: 0); |
| 2277 | } |
| 2278 | } |
| 2279 | } |
| 2280 | fs_remove_from_heap(h: &ready_heap, fs: &(b->fs)); |
| 2281 | |
| 2282 | purge_pipe(pipe: b); /* remove all data associated to this pipe */ |
| 2283 | /* remove reference to here from extract_heap and wfq_ready_heap */ |
| 2284 | pipe_remove_from_heap(h: &extract_heap, p: b); |
| 2285 | pipe_remove_from_heap(h: &wfq_ready_heap, p: b); |
| 2286 | lck_mtx_unlock(lck: &dn_mutex); |
| 2287 | |
| 2288 | kfree_type(struct dn_pipe, b); |
| 2289 | } else { /* this is a WF2Q queue (dn_flow_set) */ |
| 2290 | struct dn_flow_set *b; |
| 2291 | |
| 2292 | lck_mtx_lock(lck: &dn_mutex); |
| 2293 | /* locate set */ |
| 2294 | b = locate_flowset(fs_nr: p->fs.fs_nr); |
| 2295 | if (b == NULL) { |
| 2296 | lck_mtx_unlock(lck: &dn_mutex); |
| 2297 | return EINVAL; /* not found */ |
| 2298 | } |
| 2299 | |
| 2300 | |
| 2301 | /* Unlink from list of flowsets. */ |
| 2302 | SLIST_REMOVE( &flowsethash[HASH(b->fs_nr)], b, dn_flow_set, next); |
| 2303 | |
| 2304 | if (b->pipe != NULL) { |
| 2305 | /* Update total weight on parent pipe and cleanup parent heaps */ |
| 2306 | b->pipe->sum -= b->weight * b->backlogged; |
| 2307 | fs_remove_from_heap(h: &(b->pipe->not_eligible_heap), fs: b); |
| 2308 | fs_remove_from_heap(h: &(b->pipe->scheduler_heap), fs: b); |
| 2309 | #if 1 /* XXX should i remove from idle_heap as well ? */ |
| 2310 | fs_remove_from_heap(h: &(b->pipe->idle_heap), fs: b); |
| 2311 | #endif |
| 2312 | } |
| 2313 | purge_flow_set(fs: b, all: 1); |
| 2314 | lck_mtx_unlock(lck: &dn_mutex); |
| 2315 | } |
| 2316 | return 0; |
| 2317 | } |
| 2318 | |
| 2319 | /* |
| 2320 | * helper function used to copy data from kernel in DUMMYNET_GET |
| 2321 | */ |
| 2322 | static |
| 2323 | char* |
| 2324 | dn_copy_set_32(struct dn_flow_set *set, char *bp) |
| 2325 | { |
| 2326 | int i, copied = 0; |
| 2327 | struct dn_flow_queue *q; |
| 2328 | struct dn_flow_queue_32 *qp = (struct dn_flow_queue_32 *)(void *)bp; |
| 2329 | |
| 2330 | LCK_MTX_ASSERT(&dn_mutex, LCK_MTX_ASSERT_OWNED); |
| 2331 | |
| 2332 | for (i = 0; i <= set->rq_size; i++) { |
| 2333 | for (q = set->rq[i]; q; q = q->next, qp++) { |
| 2334 | if (q->hash_slot != i) { |
| 2335 | printf("dummynet: ++ at %d: wrong slot (have %d, " |
| 2336 | "should be %d)\n" , copied, q->hash_slot, i); |
| 2337 | } |
| 2338 | if (q->fs != set) { |
| 2339 | printf("dummynet: ++ at %d: wrong fs ptr " |
| 2340 | "(have 0x%llx, should be 0x%llx)\n" , i, |
| 2341 | (uint64_t)VM_KERNEL_ADDRPERM(q->fs), |
| 2342 | (uint64_t)VM_KERNEL_ADDRPERM(set)); |
| 2343 | } |
| 2344 | copied++; |
| 2345 | cp_queue_to_32_user( q, qp ); |
| 2346 | /* cleanup pointers */ |
| 2347 | qp->next = (user32_addr_t)0; |
| 2348 | qp->head = qp->tail = (user32_addr_t)0; |
| 2349 | qp->fs = (user32_addr_t)0; |
| 2350 | } |
| 2351 | } |
| 2352 | if (copied != set->rq_elements) { |
| 2353 | printf("dummynet: ++ wrong count, have %d should be %d\n" , |
| 2354 | copied, set->rq_elements); |
| 2355 | } |
| 2356 | return (char *)qp; |
| 2357 | } |
| 2358 | |
| 2359 | static |
| 2360 | char* |
| 2361 | dn_copy_set_64(struct dn_flow_set *set, char *bp) |
| 2362 | { |
| 2363 | int i, copied = 0; |
| 2364 | struct dn_flow_queue *q; |
| 2365 | struct dn_flow_queue_64 *qp = (struct dn_flow_queue_64 *)(void *)bp; |
| 2366 | |
| 2367 | LCK_MTX_ASSERT(&dn_mutex, LCK_MTX_ASSERT_OWNED); |
| 2368 | |
| 2369 | for (i = 0; i <= set->rq_size; i++) { |
| 2370 | for (q = set->rq[i]; q; q = q->next, qp++) { |
| 2371 | if (q->hash_slot != i) { |
| 2372 | printf("dummynet: ++ at %d: wrong slot (have %d, " |
| 2373 | "should be %d)\n" , copied, q->hash_slot, i); |
| 2374 | } |
| 2375 | if (q->fs != set) { |
| 2376 | printf("dummynet: ++ at %d: wrong fs ptr " |
| 2377 | "(have 0x%llx, should be 0x%llx)\n" , i, |
| 2378 | (uint64_t)VM_KERNEL_ADDRPERM(q->fs), |
| 2379 | (uint64_t)VM_KERNEL_ADDRPERM(set)); |
| 2380 | } |
| 2381 | copied++; |
| 2382 | //bcopy(q, qp, sizeof(*q)); |
| 2383 | cp_queue_to_64_user( q, qp ); |
| 2384 | /* cleanup pointers */ |
| 2385 | qp->next = USER_ADDR_NULL; |
| 2386 | qp->head = qp->tail = USER_ADDR_NULL; |
| 2387 | qp->fs = USER_ADDR_NULL; |
| 2388 | } |
| 2389 | } |
| 2390 | if (copied != set->rq_elements) { |
| 2391 | printf("dummynet: ++ wrong count, have %d should be %d\n" , |
| 2392 | copied, set->rq_elements); |
| 2393 | } |
| 2394 | return (char *)qp; |
| 2395 | } |
| 2396 | |
| 2397 | static size_t |
| 2398 | dn_calc_size(int is64user) |
| 2399 | { |
| 2400 | struct dn_flow_set *set; |
| 2401 | struct dn_pipe *p; |
| 2402 | size_t size = 0; |
| 2403 | size_t pipesize; |
| 2404 | size_t queuesize; |
| 2405 | size_t setsize; |
| 2406 | int i; |
| 2407 | |
| 2408 | LCK_MTX_ASSERT(&dn_mutex, LCK_MTX_ASSERT_OWNED); |
| 2409 | if (is64user) { |
| 2410 | pipesize = sizeof(struct dn_pipe_64); |
| 2411 | queuesize = sizeof(struct dn_flow_queue_64); |
| 2412 | setsize = sizeof(struct dn_flow_set_64); |
| 2413 | } else { |
| 2414 | pipesize = sizeof(struct dn_pipe_32); |
| 2415 | queuesize = sizeof(struct dn_flow_queue_32); |
| 2416 | setsize = sizeof(struct dn_flow_set_32); |
| 2417 | } |
| 2418 | /* |
| 2419 | * compute size of data structures: list of pipes and flow_sets. |
| 2420 | */ |
| 2421 | for (i = 0; i < HASHSIZE; i++) { |
| 2422 | SLIST_FOREACH(p, &pipehash[i], next) { |
| 2423 | size += sizeof(*p) + |
| 2424 | p->fs.rq_elements * sizeof(struct dn_flow_queue); |
| 2425 | } |
| 2426 | SLIST_FOREACH(set, &flowsethash[i], next) { |
| 2427 | size += sizeof(*set) + |
| 2428 | set->rq_elements * sizeof(struct dn_flow_queue); |
| 2429 | } |
| 2430 | } |
| 2431 | return size; |
| 2432 | } |
| 2433 | |
| 2434 | static int |
| 2435 | dummynet_get(struct sockopt *sopt) |
| 2436 | { |
| 2437 | char *buf = NULL, *bp = NULL; /* bp is the "copy-pointer" */ |
| 2438 | size_t size = 0; |
| 2439 | struct dn_flow_set *set; |
| 2440 | struct dn_pipe *p; |
| 2441 | int error = 0, i; |
| 2442 | int is64user = 0; |
| 2443 | |
| 2444 | /* XXX lock held too long */ |
| 2445 | lck_mtx_lock(lck: &dn_mutex); |
| 2446 | /* |
| 2447 | * XXX: Ugly, but we need to allocate memory with M_WAITOK flag |
| 2448 | * and we cannot use this flag while holding a mutex. |
| 2449 | */ |
| 2450 | if (proc_is64bit(sopt->sopt_p)) { |
| 2451 | is64user = 1; |
| 2452 | } |
| 2453 | for (i = 0; i < 10; i++) { |
| 2454 | size = dn_calc_size(is64user); |
| 2455 | lck_mtx_unlock(lck: &dn_mutex); |
| 2456 | buf = kalloc_data(size, Z_WAITOK | Z_ZERO); |
| 2457 | if (buf == NULL) { |
| 2458 | return ENOBUFS; |
| 2459 | } |
| 2460 | lck_mtx_lock(lck: &dn_mutex); |
| 2461 | if (size == dn_calc_size(is64user)) { |
| 2462 | break; |
| 2463 | } |
| 2464 | kfree_data(buf, size); |
| 2465 | buf = NULL; |
| 2466 | } |
| 2467 | if (buf == NULL) { |
| 2468 | lck_mtx_unlock(lck: &dn_mutex); |
| 2469 | return ENOBUFS; |
| 2470 | } |
| 2471 | |
| 2472 | bp = buf; |
| 2473 | for (i = 0; i < HASHSIZE; i++) { |
| 2474 | SLIST_FOREACH(p, &pipehash[i], next) { |
| 2475 | /* |
| 2476 | * copy pipe descriptor into *bp, convert delay |
| 2477 | * back to ms, then copy the flow_set descriptor(s) |
| 2478 | * one at a time. After each flow_set, copy the |
| 2479 | * queue descriptor it owns. |
| 2480 | */ |
| 2481 | if (is64user) { |
| 2482 | bp = cp_pipe_to_64_user(p, |
| 2483 | pipe_bp: (struct dn_pipe_64 *)(void *)bp); |
| 2484 | } else { |
| 2485 | bp = cp_pipe_to_32_user(p, |
| 2486 | pipe_bp: (struct dn_pipe_32 *)(void *)bp); |
| 2487 | } |
| 2488 | } |
| 2489 | } |
| 2490 | for (i = 0; i < HASHSIZE; i++) { |
| 2491 | SLIST_FOREACH(set, &flowsethash[i], next) { |
| 2492 | struct dn_flow_set_64 *fs_bp = |
| 2493 | (struct dn_flow_set_64 *)(void *)bp; |
| 2494 | cp_flow_set_to_64_user(set, fs_bp); |
| 2495 | /* XXX same hack as above */ |
| 2496 | fs_bp->next = CAST_DOWN(user64_addr_t, |
| 2497 | DN_IS_QUEUE); |
| 2498 | fs_bp->pipe = USER_ADDR_NULL; |
| 2499 | fs_bp->rq = USER_ADDR_NULL; |
| 2500 | bp += sizeof(struct dn_flow_set_64); |
| 2501 | bp = dn_copy_set_64( set, bp ); |
| 2502 | } |
| 2503 | } |
| 2504 | lck_mtx_unlock(lck: &dn_mutex); |
| 2505 | error = sooptcopyout(sopt, data: buf, len: size); |
| 2506 | kfree_data(buf, size); |
| 2507 | return error; |
| 2508 | } |
| 2509 | |
| 2510 | /* |
| 2511 | * Handler for the various dummynet socket options (get, flush, config, del) |
| 2512 | */ |
| 2513 | static int |
| 2514 | ip_dn_ctl(struct sockopt *sopt) |
| 2515 | { |
| 2516 | int error = 0; |
| 2517 | struct dn_pipe *p, tmp_pipe; |
| 2518 | |
| 2519 | /* Disallow sets in really-really secure mode. */ |
| 2520 | if (sopt->sopt_dir == SOPT_SET && securelevel >= 3) { |
| 2521 | return EPERM; |
| 2522 | } |
| 2523 | |
| 2524 | switch (sopt->sopt_name) { |
| 2525 | default: |
| 2526 | printf("dummynet: -- unknown option %d" , sopt->sopt_name); |
| 2527 | return EINVAL; |
| 2528 | |
| 2529 | case IP_DUMMYNET_GET: |
| 2530 | error = dummynet_get(sopt); |
| 2531 | break; |
| 2532 | |
| 2533 | case IP_DUMMYNET_FLUSH: |
| 2534 | dummynet_flush(); |
| 2535 | break; |
| 2536 | |
| 2537 | case IP_DUMMYNET_CONFIGURE: |
| 2538 | p = &tmp_pipe; |
| 2539 | if (proc_is64bit(sopt->sopt_p)) { |
| 2540 | error = cp_pipe_from_user_64( sopt, p ); |
| 2541 | } else { |
| 2542 | error = cp_pipe_from_user_32( sopt, p ); |
| 2543 | } |
| 2544 | |
| 2545 | if (error) { |
| 2546 | break; |
| 2547 | } |
| 2548 | error = config_pipe(p); |
| 2549 | break; |
| 2550 | |
| 2551 | case IP_DUMMYNET_DEL: /* remove a pipe or queue */ |
| 2552 | p = &tmp_pipe; |
| 2553 | if (proc_is64bit(sopt->sopt_p)) { |
| 2554 | error = cp_pipe_from_user_64( sopt, p ); |
| 2555 | } else { |
| 2556 | error = cp_pipe_from_user_32( sopt, p ); |
| 2557 | } |
| 2558 | if (error) { |
| 2559 | break; |
| 2560 | } |
| 2561 | |
| 2562 | error = delete_pipe(p); |
| 2563 | break; |
| 2564 | } |
| 2565 | return error; |
| 2566 | } |
| 2567 | |
| 2568 | void |
| 2569 | dummynet_init(void) |
| 2570 | { |
| 2571 | eventhandler_lists_ctxt_init(evthdlr_lists_ctxt: &dummynet_evhdlr_ctxt); |
| 2572 | } |
| 2573 | |
| 2574 | void |
| 2575 | ip_dn_init(void) |
| 2576 | { |
| 2577 | /* setup locks */ |
| 2578 | ready_heap.size = ready_heap.elements = 0; |
| 2579 | ready_heap.offset = 0; |
| 2580 | |
| 2581 | wfq_ready_heap.size = wfq_ready_heap.elements = 0; |
| 2582 | wfq_ready_heap.offset = 0; |
| 2583 | |
| 2584 | extract_heap.size = extract_heap.elements = 0; |
| 2585 | extract_heap.offset = 0; |
| 2586 | ip_dn_ctl_ptr = ip_dn_ctl; |
| 2587 | ip_dn_io_ptr = dummynet_io; |
| 2588 | } |
| 2589 | |
| 2590 | struct dn_event_nwk_wq_entry { |
| 2591 | struct nwk_wq_entry nwk_wqe; |
| 2592 | struct dummynet_event dn_ev_arg; |
| 2593 | }; |
| 2594 | |
| 2595 | static void |
| 2596 | dummynet_event_callback(struct nwk_wq_entry *nwk_item) |
| 2597 | { |
| 2598 | struct dn_event_nwk_wq_entry *p_ev; |
| 2599 | |
| 2600 | p_ev = __container_of(nwk_item, struct dn_event_nwk_wq_entry, nwk_wqe); |
| 2601 | |
| 2602 | EVENTHANDLER_INVOKE(&dummynet_evhdlr_ctxt, dummynet_event, &p_ev->dn_ev_arg); |
| 2603 | |
| 2604 | kfree_type(struct dn_event_nwk_wq_entry, p_ev); |
| 2605 | } |
| 2606 | |
| 2607 | void |
| 2608 | dummynet_event_enqueue_nwk_wq_entry(struct dummynet_event *p_dn_event) |
| 2609 | { |
| 2610 | struct dn_event_nwk_wq_entry *p_ev = NULL; |
| 2611 | |
| 2612 | p_ev = kalloc_type(struct dn_event_nwk_wq_entry, |
| 2613 | Z_WAITOK | Z_ZERO | Z_NOFAIL); |
| 2614 | p_ev->nwk_wqe.func = dummynet_event_callback; |
| 2615 | p_ev->dn_ev_arg = *p_dn_event; |
| 2616 | nwk_wq_enqueue(nwk_item: &p_ev->nwk_wqe); |
| 2617 | } |
| 2618 | |
| 2619 | struct dummynet_tag_container { |
| 2620 | struct m_tag dtc_m_tag; |
| 2621 | struct dn_pkt_tag dtc_dn_pkt_tag; |
| 2622 | }; |
| 2623 | |
| 2624 | struct m_tag * |
| 2625 | m_tag_kalloc_dummynet(u_int32_t id, u_int16_t type, uint16_t len, int wait) |
| 2626 | { |
| 2627 | struct dummynet_tag_container *tag_container; |
| 2628 | struct m_tag *tag = NULL; |
| 2629 | |
| 2630 | assert3u(id, ==, KERNEL_MODULE_TAG_ID); |
| 2631 | assert3u(type, ==, KERNEL_TAG_TYPE_DUMMYNET); |
| 2632 | assert3u(len, ==, sizeof(struct dn_pkt_tag)); |
| 2633 | |
| 2634 | if (len != sizeof(struct dn_pkt_tag)) { |
| 2635 | return NULL; |
| 2636 | } |
| 2637 | |
| 2638 | tag_container = kalloc_type(struct dummynet_tag_container, wait | M_ZERO); |
| 2639 | if (tag_container != NULL) { |
| 2640 | tag = &tag_container->dtc_m_tag; |
| 2641 | |
| 2642 | assert3p(tag, ==, tag_container); |
| 2643 | |
| 2644 | M_TAG_INIT(tag, id, type, len, &tag_container->dtc_dn_pkt_tag, NULL); |
| 2645 | } |
| 2646 | |
| 2647 | return tag; |
| 2648 | } |
| 2649 | |
| 2650 | void |
| 2651 | m_tag_kfree_dummynet(struct m_tag *tag) |
| 2652 | { |
| 2653 | struct dummynet_tag_container *tag_container = (struct dummynet_tag_container *)tag; |
| 2654 | |
| 2655 | assert3u(tag->m_tag_len, ==, sizeof(struct dn_pkt_tag)); |
| 2656 | |
| 2657 | kfree_type(struct dummynet_tag_container, tag_container); |
| 2658 | } |
| 2659 | |
| 2660 | void |
| 2661 | dummynet_register_m_tag(void) |
| 2662 | { |
| 2663 | int error; |
| 2664 | |
| 2665 | error = m_register_internal_tag_type(type: KERNEL_TAG_TYPE_DUMMYNET, len: sizeof(struct dn_pkt_tag), |
| 2666 | alloc_func: m_tag_kalloc_dummynet, free_func: m_tag_kfree_dummynet); |
| 2667 | |
| 2668 | assert3u(error, ==, 0); |
| 2669 | } |
| 2670 | |