| 1 | /* |
| 2 | * Copyright (c) 2000-2023 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
| 5 | * |
| 6 | * This file contains Original Code and/or Modifications of Original Code |
| 7 | * as defined in and that are subject to the Apple Public Source License |
| 8 | * Version 2.0 (the 'License'). You may not use this file except in |
| 9 | * compliance with the License. The rights granted to you under the License |
| 10 | * may not be used to create, or enable the creation or redistribution of, |
| 11 | * unlawful or unlicensed copies of an Apple operating system, or to |
| 12 | * circumvent, violate, or enable the circumvention or violation of, any |
| 13 | * terms of an Apple operating system software license agreement. |
| 14 | * |
| 15 | * Please obtain a copy of the License at |
| 16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
| 17 | * |
| 18 | * The Original Code and all software distributed under the License are |
| 19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| 23 | * Please see the License for the specific language governing rights and |
| 24 | * limitations under the License. |
| 25 | * |
| 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
| 27 | */ |
| 28 | /* |
| 29 | * Copyright (c) 1980, 1986, 1991, 1993 |
| 30 | * The Regents of the University of California. All rights reserved. |
| 31 | * |
| 32 | * Redistribution and use in source and binary forms, with or without |
| 33 | * modification, are permitted provided that the following conditions |
| 34 | * are met: |
| 35 | * 1. Redistributions of source code must retain the above copyright |
| 36 | * notice, this list of conditions and the following disclaimer. |
| 37 | * 2. Redistributions in binary form must reproduce the above copyright |
| 38 | * notice, this list of conditions and the following disclaimer in the |
| 39 | * documentation and/or other materials provided with the distribution. |
| 40 | * 3. All advertising materials mentioning features or use of this software |
| 41 | * must display the following acknowledgement: |
| 42 | * This product includes software developed by the University of |
| 43 | * California, Berkeley and its contributors. |
| 44 | * 4. Neither the name of the University nor the names of its contributors |
| 45 | * may be used to endorse or promote products derived from this software |
| 46 | * without specific prior written permission. |
| 47 | * |
| 48 | * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND |
| 49 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 50 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 51 | * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE |
| 52 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| 53 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| 54 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| 55 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| 56 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| 57 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| 58 | * SUCH DAMAGE. |
| 59 | * |
| 60 | * @(#)route.c 8.2 (Berkeley) 11/15/93 |
| 61 | * $FreeBSD: src/sys/net/route.c,v 1.59.2.3 2001/07/29 19:18:02 ume Exp $ |
| 62 | */ |
| 63 | |
| 64 | #include <sys/param.h> |
| 65 | #include <sys/sysctl.h> |
| 66 | #include <sys/systm.h> |
| 67 | #include <sys/malloc.h> |
| 68 | #include <sys/mbuf.h> |
| 69 | #include <sys/socket.h> |
| 70 | #include <sys/domain.h> |
| 71 | #include <sys/stat.h> |
| 72 | #include <sys/ubc.h> |
| 73 | #include <sys/vnode.h> |
| 74 | #include <sys/syslog.h> |
| 75 | #include <sys/queue.h> |
| 76 | #include <sys/mcache.h> |
| 77 | #include <sys/priv.h> |
| 78 | #include <sys/protosw.h> |
| 79 | #include <sys/sdt.h> |
| 80 | #include <sys/kernel.h> |
| 81 | #include <kern/locks.h> |
| 82 | #include <kern/zalloc.h> |
| 83 | |
| 84 | #include <net/dlil.h> |
| 85 | #include <net/if.h> |
| 86 | #include <net/route.h> |
| 87 | #include <net/ntstat.h> |
| 88 | #include <net/nwk_wq.h> |
| 89 | #if NECP |
| 90 | #include <net/necp.h> |
| 91 | #endif /* NECP */ |
| 92 | |
| 93 | #include <netinet/in.h> |
| 94 | #include <netinet/in_var.h> |
| 95 | #include <netinet/ip_var.h> |
| 96 | #include <netinet/ip.h> |
| 97 | #include <netinet/ip6.h> |
| 98 | #include <netinet/in_arp.h> |
| 99 | |
| 100 | #include <netinet6/ip6_var.h> |
| 101 | #include <netinet6/in6_var.h> |
| 102 | #include <netinet6/nd6.h> |
| 103 | |
| 104 | #include <net/if_dl.h> |
| 105 | |
| 106 | #include <net/sockaddr_utils.h> |
| 107 | |
| 108 | #include <libkern/OSAtomic.h> |
| 109 | #include <libkern/OSDebug.h> |
| 110 | |
| 111 | #include <pexpert/pexpert.h> |
| 112 | |
| 113 | #if CONFIG_MACF |
| 114 | #include <sys/kauth.h> |
| 115 | #endif |
| 116 | |
| 117 | #include <sys/constrained_ctypes.h> |
| 118 | |
| 119 | /* |
| 120 | * Synchronization notes: |
| 121 | * |
| 122 | * Routing entries fall under two locking domains: the global routing table |
| 123 | * lock (rnh_lock) and the per-entry lock (rt_lock); the latter is a mutex that |
| 124 | * resides (statically defined) in the rtentry structure. |
| 125 | * |
| 126 | * The locking domains for routing are defined as follows: |
| 127 | * |
| 128 | * The global routing lock is used to serialize all accesses to the radix |
| 129 | * trees defined by rt_tables[], as well as the tree of masks. This includes |
| 130 | * lookups, insertions and removals of nodes to/from the respective tree. |
| 131 | * It is also used to protect certain fields in the route entry that aren't |
| 132 | * often modified and/or require global serialization (more details below.) |
| 133 | * |
| 134 | * The per-route entry lock is used to serialize accesses to several routing |
| 135 | * entry fields (more details below.) Acquiring and releasing this lock is |
| 136 | * done via RT_LOCK() and RT_UNLOCK() routines. |
| 137 | * |
| 138 | * In cases where both rnh_lock and rt_lock must be held, the former must be |
| 139 | * acquired first in order to maintain lock ordering. It is not a requirement |
| 140 | * that rnh_lock be acquired first before rt_lock, but in case both must be |
| 141 | * acquired in succession, the correct lock ordering must be followed. |
| 142 | * |
| 143 | * The fields of the rtentry structure are protected in the following way: |
| 144 | * |
| 145 | * rt_nodes[] |
| 146 | * |
| 147 | * - Routing table lock (rnh_lock). |
| 148 | * |
| 149 | * rt_parent, rt_mask, rt_llinfo_free, rt_tree_genid |
| 150 | * |
| 151 | * - Set once during creation and never changes; no locks to read. |
| 152 | * |
| 153 | * rt_flags, rt_genmask, rt_llinfo, rt_rmx, rt_refcnt, rt_gwroute |
| 154 | * |
| 155 | * - Routing entry lock (rt_lock) for read/write access. |
| 156 | * |
| 157 | * - Some values of rt_flags are either set once at creation time, |
| 158 | * or aren't currently used, and thus checking against them can |
| 159 | * be done without rt_lock: RTF_GATEWAY, RTF_HOST, RTF_DYNAMIC, |
| 160 | * RTF_DONE, RTF_XRESOLVE, RTF_STATIC, RTF_BLACKHOLE, RTF_ANNOUNCE, |
| 161 | * RTF_USETRAILERS, RTF_WASCLONED, RTF_PINNED, RTF_LOCAL, |
| 162 | * RTF_BROADCAST, RTF_MULTICAST, RTF_IFSCOPE, RTF_IFREF. |
| 163 | * |
| 164 | * rt_key, rt_gateway, rt_ifp, rt_ifa |
| 165 | * |
| 166 | * - Always written/modified with both rnh_lock and rt_lock held. |
| 167 | * |
| 168 | * - May be read freely with rnh_lock held, else must hold rt_lock |
| 169 | * for read access; holding both locks for read is also okay. |
| 170 | * |
| 171 | * - In the event rnh_lock is not acquired, or is not possible to be |
| 172 | * acquired across the operation, setting RTF_CONDEMNED on a route |
| 173 | * entry will prevent its rt_key, rt_gateway, rt_ifp and rt_ifa |
| 174 | * from being modified. This is typically done on a route that |
| 175 | * has been chosen for a removal (from the tree) prior to dropping |
| 176 | * the rt_lock, so that those values will remain the same until |
| 177 | * the route is freed. |
| 178 | * |
| 179 | * When rnh_lock is held rt_setgate(), rt_setif(), and rtsetifa() are |
| 180 | * single-threaded, thus exclusive. This flag will also prevent the |
| 181 | * route from being looked up via rt_lookup(). |
| 182 | * |
| 183 | * rt_genid |
| 184 | * |
| 185 | * - Assumes that 32-bit writes are atomic; no locks. |
| 186 | * |
| 187 | * rt_dlt, rt_output |
| 188 | * |
| 189 | * - Currently unused; no locks. |
| 190 | * |
| 191 | * Operations on a route entry can be described as follows: |
| 192 | * |
| 193 | * CREATE an entry with reference count set to 0 as part of RTM_ADD/RESOLVE. |
| 194 | * |
| 195 | * INSERTION of an entry into the radix tree holds the rnh_lock, checks |
| 196 | * for duplicates and then adds the entry. rtrequest returns the entry |
| 197 | * after bumping up the reference count to 1 (for the caller). |
| 198 | * |
| 199 | * LOOKUP of an entry holds the rnh_lock and bumps up the reference count |
| 200 | * before returning; it is valid to also bump up the reference count using |
| 201 | * RT_ADDREF after the lookup has returned an entry. |
| 202 | * |
| 203 | * REMOVAL of an entry from the radix tree holds the rnh_lock, removes the |
| 204 | * entry but does not decrement the reference count. Removal happens when |
| 205 | * the route is explicitly deleted (RTM_DELETE) or when it is in the cached |
| 206 | * state and it expires. The route is said to be "down" when it is no |
| 207 | * longer present in the tree. Freeing the entry will happen on the last |
| 208 | * reference release of such a "down" route. |
| 209 | * |
| 210 | * RT_ADDREF/RT_REMREF operates on the routing entry which increments/ |
| 211 | * decrements the reference count, rt_refcnt, atomically on the rtentry. |
| 212 | * rt_refcnt is modified only using this routine. The general rule is to |
| 213 | * do RT_ADDREF in the function that is passing the entry as an argument, |
| 214 | * in order to prevent the entry from being freed by the callee. |
| 215 | */ |
| 216 | extern void kdp_set_gateway_mac(void *gatewaymac); |
| 217 | |
| 218 | __private_extern__ struct rtstat rtstat = { |
| 219 | .rts_badredirect = 0, |
| 220 | .rts_dynamic = 0, |
| 221 | .rts_newgateway = 0, |
| 222 | .rts_unreach = 0, |
| 223 | .rts_wildcard = 0, |
| 224 | .rts_badrtgwroute = 0 |
| 225 | }; |
| 226 | struct radix_node_head *rt_tables[AF_MAX + 1]; |
| 227 | |
| 228 | static LCK_GRP_DECLARE(rnh_lock_grp, "route" ); |
| 229 | LCK_MTX_DECLARE(rnh_lock_data, &rnh_lock_grp); /* global routing tables mutex */ |
| 230 | |
| 231 | int rttrash = 0; /* routes not in table but not freed */ |
| 232 | |
| 233 | boolean_t trigger_v6_defrtr_select = FALSE; |
| 234 | unsigned int rte_debug = 0; |
| 235 | |
| 236 | /* Possible flags for rte_debug */ |
| 237 | #define RTD_DEBUG 0x1 /* enable or disable rtentry debug facility */ |
| 238 | #define RTD_TRACE 0x2 /* trace alloc, free, refcnt and lock */ |
| 239 | #define RTD_NO_FREE 0x4 /* don't free (good to catch corruptions) */ |
| 240 | |
| 241 | #define RTE_NAME "rtentry" /* name for zone and rt_lock */ |
| 242 | |
| 243 | static struct zone *rte_zone; /* special zone for rtentry */ |
| 244 | #define RTE_ZONE_MAX 65536 /* maximum elements in zone */ |
| 245 | #define RTE_ZONE_NAME RTE_NAME /* name of rtentry zone */ |
| 246 | |
| 247 | #define RTD_INUSE 0xFEEDFACE /* entry is in use */ |
| 248 | #define RTD_FREED 0xDEADBEEF /* entry is freed */ |
| 249 | |
| 250 | #define MAX_SCOPE_ADDR_STR_LEN (MAX_IPv6_STR_LEN + 6) |
| 251 | |
| 252 | /* Lock group and attribute for routing entry locks */ |
| 253 | static LCK_ATTR_DECLARE(rte_mtx_attr, 0, 0); |
| 254 | static LCK_GRP_DECLARE(rte_mtx_grp, RTE_NAME); |
| 255 | |
| 256 | /* For gdb */ |
| 257 | __private_extern__ unsigned int ctrace_stack_size = CTRACE_STACK_SIZE; |
| 258 | __private_extern__ unsigned int ctrace_hist_size = CTRACE_HIST_SIZE; |
| 259 | |
| 260 | /* |
| 261 | * Debug variant of rtentry structure. |
| 262 | */ |
| 263 | struct rtentry_dbg { |
| 264 | struct rtentry rtd_entry; /* rtentry */ |
| 265 | struct rtentry rtd_entry_saved; /* saved rtentry */ |
| 266 | uint32_t rtd_inuse; /* in use pattern */ |
| 267 | uint16_t rtd_refhold_cnt; /* # of rtref */ |
| 268 | uint16_t rtd_refrele_cnt; /* # of rtunref */ |
| 269 | uint32_t rtd_lock_cnt; /* # of locks */ |
| 270 | uint32_t rtd_unlock_cnt; /* # of unlocks */ |
| 271 | /* |
| 272 | * Alloc and free callers. |
| 273 | */ |
| 274 | ctrace_t rtd_alloc; |
| 275 | ctrace_t rtd_free; |
| 276 | /* |
| 277 | * Circular lists of rtref and rtunref callers. |
| 278 | */ |
| 279 | ctrace_t rtd_refhold[CTRACE_HIST_SIZE]; |
| 280 | ctrace_t rtd_refrele[CTRACE_HIST_SIZE]; |
| 281 | /* |
| 282 | * Circular lists of locks and unlocks. |
| 283 | */ |
| 284 | ctrace_t rtd_lock[CTRACE_HIST_SIZE]; |
| 285 | ctrace_t rtd_unlock[CTRACE_HIST_SIZE]; |
| 286 | /* |
| 287 | * Trash list linkage |
| 288 | */ |
| 289 | TAILQ_ENTRY(rtentry_dbg) rtd_trash_link; |
| 290 | }; |
| 291 | __CCT_DECLARE_CONSTRAINED_PTR_TYPES(struct rtentry_dbg, rtentry_dbg); |
| 292 | |
| 293 | /* List of trash route entries protected by rnh_lock */ |
| 294 | static TAILQ_HEAD(, rtentry_dbg) rttrash_head; |
| 295 | |
| 296 | static void rte_lock_init(struct rtentry *); |
| 297 | static void rte_lock_destroy(struct rtentry *); |
| 298 | static inline struct rtentry *rte_alloc_debug(void); |
| 299 | static inline void rte_free_debug(struct rtentry *); |
| 300 | static inline void rte_lock_debug(struct rtentry_dbg *); |
| 301 | static inline void rte_unlock_debug(struct rtentry_dbg *); |
| 302 | static void rt_maskedcopy(const struct sockaddr *, |
| 303 | struct sockaddr *, const struct sockaddr *); |
| 304 | static void rtable_init(void **); |
| 305 | static inline void rtref_audit(struct rtentry_dbg *); |
| 306 | static inline void rtunref_audit(struct rtentry_dbg *); |
| 307 | static struct rtentry *rtalloc1_common_locked(struct sockaddr *, int, uint32_t, |
| 308 | unsigned int); |
| 309 | static int rtrequest_common_locked(int, struct sockaddr *, |
| 310 | struct sockaddr *, struct sockaddr *, int, struct rtentry **, |
| 311 | unsigned int); |
| 312 | static struct rtentry *rtalloc1_locked(struct sockaddr *, int, uint32_t); |
| 313 | static void rtalloc_ign_common_locked(struct route *, uint32_t, unsigned int); |
| 314 | static inline void sin6_set_ifscope(struct sockaddr *, unsigned int); |
| 315 | static inline void sin6_set_embedded_ifscope(struct sockaddr *, unsigned int); |
| 316 | static inline unsigned int sin6_get_embedded_ifscope(struct sockaddr *); |
| 317 | static struct sockaddr *ma_copy(int, struct sockaddr *, |
| 318 | struct sockaddr_storage *, unsigned int); |
| 319 | static struct sockaddr *sa_trim(struct sockaddr *, uint8_t); |
| 320 | static struct radix_node *node_lookup(struct sockaddr *, struct sockaddr *, |
| 321 | unsigned int); |
| 322 | static struct radix_node *node_lookup_default(int); |
| 323 | static struct rtentry *rt_lookup_common(boolean_t, boolean_t, struct sockaddr *, |
| 324 | struct sockaddr *, struct radix_node_head *, unsigned int); |
| 325 | static int rn_match_ifscope(struct radix_node *, void *); |
| 326 | static struct ifaddr *ifa_ifwithroute_common_locked(int, |
| 327 | const struct sockaddr *, const struct sockaddr *, unsigned int); |
| 328 | static struct rtentry *rte_alloc(void); |
| 329 | static void rte_free(struct rtentry *); |
| 330 | static void rtfree_common(struct rtentry *, boolean_t); |
| 331 | static void rte_if_ref(struct ifnet *, int); |
| 332 | static void rt_set_idleref(struct rtentry *); |
| 333 | static void rt_clear_idleref(struct rtentry *); |
| 334 | static void rt_str4(struct rtentry *, char *, uint32_t, char *, uint32_t); |
| 335 | static void rt_str6(struct rtentry *, char *, uint32_t, char *, uint32_t); |
| 336 | static boolean_t route_ignore_protocol_cloning_for_dst(struct rtentry *, struct sockaddr *); |
| 337 | |
| 338 | uint32_t route_genid_inet = 0; |
| 339 | uint32_t route_genid_inet6 = 0; |
| 340 | |
| 341 | #define ASSERT_SINIFSCOPE(sa) { \ |
| 342 | if ((sa)->sa_family != AF_INET || \ |
| 343 | (sa)->sa_len < sizeof (struct sockaddr_in)) \ |
| 344 | panic("%s: bad sockaddr_in %p", __func__, sa); \ |
| 345 | } |
| 346 | |
| 347 | #define ASSERT_SIN6IFSCOPE(sa) { \ |
| 348 | if ((sa)->sa_family != AF_INET6 || \ |
| 349 | (sa)->sa_len < sizeof (struct sockaddr_in6)) \ |
| 350 | panic("%s: bad sockaddr_in6 %p", __func__, sa); \ |
| 351 | } |
| 352 | |
| 353 | /* |
| 354 | * Argument to leaf-matching routine; at present it is scoped routing |
| 355 | * specific but can be expanded in future to include other search filters. |
| 356 | */ |
| 357 | struct matchleaf_arg { |
| 358 | unsigned int ifscope; /* interface scope */ |
| 359 | }; |
| 360 | |
| 361 | /* |
| 362 | * For looking up the non-scoped default route (sockaddr instead |
| 363 | * of sockaddr_in for convenience). |
| 364 | */ |
| 365 | static struct sockaddr sin_def = { |
| 366 | .sa_len = sizeof(struct sockaddr_in), |
| 367 | .sa_family = AF_INET, |
| 368 | .sa_data = { 0, } |
| 369 | }; |
| 370 | |
| 371 | static struct sockaddr_in6 sin6_def = { |
| 372 | .sin6_len = sizeof(struct sockaddr_in6), |
| 373 | .sin6_family = AF_INET6, |
| 374 | .sin6_port = 0, |
| 375 | .sin6_flowinfo = 0, |
| 376 | .sin6_addr = IN6ADDR_ANY_INIT, |
| 377 | .sin6_scope_id = 0 |
| 378 | }; |
| 379 | |
| 380 | /* |
| 381 | * Interface index (scope) of the primary interface; determined at |
| 382 | * the time when the default, non-scoped route gets added, changed |
| 383 | * or deleted. Protected by rnh_lock. |
| 384 | */ |
| 385 | static unsigned int primary_ifscope = IFSCOPE_NONE; |
| 386 | static unsigned int primary6_ifscope = IFSCOPE_NONE; |
| 387 | |
| 388 | #define INET_DEFAULT(sa) \ |
| 389 | ((sa)->sa_family == AF_INET && SIN(sa)->sin_addr.s_addr == 0) |
| 390 | |
| 391 | #define INET6_DEFAULT(sa) \ |
| 392 | ((sa)->sa_family == AF_INET6 && \ |
| 393 | IN6_IS_ADDR_UNSPECIFIED(&SIN6(sa)->sin6_addr)) |
| 394 | |
| 395 | #define SA_DEFAULT(sa) (INET_DEFAULT(sa) || INET6_DEFAULT(sa)) |
| 396 | #define RT(r) ((rtentry_ref_t)r) |
| 397 | #define RN(r) ((struct radix_node *)r) |
| 398 | #define RT_HOST(r) (RT(r)->rt_flags & RTF_HOST) |
| 399 | |
| 400 | #define ROUTE_VERBOSE_LOGGING 0 |
| 401 | unsigned int rt_verbose = ROUTE_VERBOSE_LOGGING; |
| 402 | SYSCTL_DECL(_net_route); |
| 403 | SYSCTL_UINT(_net_route, OID_AUTO, verbose, CTLFLAG_RW | CTLFLAG_LOCKED, |
| 404 | &rt_verbose, ROUTE_VERBOSE_LOGGING, "" ); |
| 405 | |
| 406 | static void |
| 407 | rtable_init(void **table) |
| 408 | { |
| 409 | struct domain *dom; |
| 410 | |
| 411 | domain_proto_mtx_lock_assert_held(); |
| 412 | |
| 413 | TAILQ_FOREACH(dom, &domains, dom_entry) { |
| 414 | if (dom->dom_rtattach != NULL) { |
| 415 | dom->dom_rtattach(&table[dom->dom_family], |
| 416 | dom->dom_rtoffset); |
| 417 | } |
| 418 | } |
| 419 | } |
| 420 | |
| 421 | /* |
| 422 | * Called by route_dinit(). |
| 423 | */ |
| 424 | void |
| 425 | route_init(void) |
| 426 | { |
| 427 | int size; |
| 428 | |
| 429 | _CASSERT(offsetof(struct route, ro_rt) == |
| 430 | offsetof(struct route_in6, ro_rt)); |
| 431 | _CASSERT(offsetof(struct route, ro_srcia) == |
| 432 | offsetof(struct route_in6, ro_srcia)); |
| 433 | _CASSERT(offsetof(struct route, ro_flags) == |
| 434 | offsetof(struct route_in6, ro_flags)); |
| 435 | _CASSERT(offsetof(struct route, ro_dst) == |
| 436 | offsetof(struct route_in6, ro_dst)); |
| 437 | |
| 438 | PE_parse_boot_argn(arg_string: "rte_debug" , arg_ptr: &rte_debug, max_arg: sizeof(rte_debug)); |
| 439 | if (rte_debug != 0) { |
| 440 | rte_debug |= RTD_DEBUG; |
| 441 | } |
| 442 | |
| 443 | lck_mtx_lock(rnh_lock); |
| 444 | rn_init(); /* initialize all zeroes, all ones, mask table */ |
| 445 | lck_mtx_unlock(rnh_lock); |
| 446 | rtable_init(table: (void **)rt_tables); |
| 447 | |
| 448 | if (rte_debug & RTD_DEBUG) { |
| 449 | size = sizeof(struct rtentry_dbg); |
| 450 | } else { |
| 451 | size = sizeof(struct rtentry); |
| 452 | } |
| 453 | |
| 454 | rte_zone = zone_create(RTE_ZONE_NAME, size, flags: ZC_NONE); |
| 455 | |
| 456 | TAILQ_INIT(&rttrash_head); |
| 457 | } |
| 458 | |
| 459 | /* |
| 460 | * Given a route, determine whether or not it is the non-scoped default |
| 461 | * route; dst typically comes from rt_key(rt) but may be coming from |
| 462 | * a separate place when rt is in the process of being created. |
| 463 | */ |
| 464 | boolean_t |
| 465 | rt_primary_default(struct rtentry *rt, struct sockaddr *dst) |
| 466 | { |
| 467 | return SA_DEFAULT(dst) && !(rt->rt_flags & RTF_IFSCOPE); |
| 468 | } |
| 469 | |
| 470 | /* |
| 471 | * Set the ifscope of the primary interface; caller holds rnh_lock. |
| 472 | */ |
| 473 | void |
| 474 | set_primary_ifscope(int af, unsigned int ifscope) |
| 475 | { |
| 476 | if (af == AF_INET) { |
| 477 | primary_ifscope = ifscope; |
| 478 | } else { |
| 479 | primary6_ifscope = ifscope; |
| 480 | } |
| 481 | } |
| 482 | |
| 483 | /* |
| 484 | * Return the ifscope of the primary interface; caller holds rnh_lock. |
| 485 | */ |
| 486 | unsigned int |
| 487 | get_primary_ifscope(int af) |
| 488 | { |
| 489 | return af == AF_INET ? primary_ifscope : primary6_ifscope; |
| 490 | } |
| 491 | |
| 492 | /* |
| 493 | * Set the scope ID of a given a sockaddr_in. |
| 494 | */ |
| 495 | void |
| 496 | sin_set_ifscope(struct sockaddr *sa, unsigned int ifscope) |
| 497 | { |
| 498 | /* Caller must pass in sockaddr_in */ |
| 499 | ASSERT_SINIFSCOPE(sa); |
| 500 | |
| 501 | SINIFSCOPE(sa)->sin_scope_id = ifscope; |
| 502 | } |
| 503 | |
| 504 | /* |
| 505 | * Set the scope ID of given a sockaddr_in6. |
| 506 | */ |
| 507 | static inline void |
| 508 | sin6_set_ifscope(struct sockaddr *sa, unsigned int ifscope) |
| 509 | { |
| 510 | /* Caller must pass in sockaddr_in6 */ |
| 511 | ASSERT_SIN6IFSCOPE(sa); |
| 512 | |
| 513 | SIN6IFSCOPE(sa)->sin6_scope_id = ifscope; |
| 514 | } |
| 515 | |
| 516 | /* |
| 517 | * Given a sockaddr_in, return the scope ID to the caller. |
| 518 | */ |
| 519 | unsigned int |
| 520 | sin_get_ifscope(struct sockaddr *sa) |
| 521 | { |
| 522 | /* Caller must pass in sockaddr_in */ |
| 523 | ASSERT_SINIFSCOPE(sa); |
| 524 | |
| 525 | return SINIFSCOPE(sa)->sin_scope_id; |
| 526 | } |
| 527 | |
| 528 | /* |
| 529 | * Given a sockaddr_in6, return the scope ID to the caller. |
| 530 | */ |
| 531 | unsigned int |
| 532 | sin6_get_ifscope(struct sockaddr *sa) |
| 533 | { |
| 534 | /* Caller must pass in sockaddr_in6 */ |
| 535 | ASSERT_SIN6IFSCOPE(sa); |
| 536 | |
| 537 | return SIN6IFSCOPE(sa)->sin6_scope_id; |
| 538 | } |
| 539 | |
| 540 | static inline void |
| 541 | sin6_set_embedded_ifscope(struct sockaddr *sa, unsigned int ifscope) |
| 542 | { |
| 543 | if (!in6_embedded_scope) { |
| 544 | SIN6(sa)->sin6_scope_id = ifscope; |
| 545 | return; |
| 546 | } |
| 547 | |
| 548 | /* Caller must pass in sockaddr_in6 */ |
| 549 | ASSERT_SIN6IFSCOPE(sa); |
| 550 | VERIFY(IN6_IS_SCOPE_EMBED(&(SIN6(sa)->sin6_addr))); |
| 551 | |
| 552 | SIN6(sa)->sin6_addr.s6_addr16[1] = htons((uint16_t)ifscope); |
| 553 | } |
| 554 | |
| 555 | static inline unsigned int |
| 556 | sin6_get_embedded_ifscope(struct sockaddr *sa) |
| 557 | { |
| 558 | if (!in6_embedded_scope) { |
| 559 | return SIN6(sa)->sin6_scope_id; |
| 560 | } |
| 561 | /* Caller must pass in sockaddr_in6 */ |
| 562 | ASSERT_SIN6IFSCOPE(sa); |
| 563 | |
| 564 | return ntohs(SIN6(sa)->sin6_addr.s6_addr16[1]); |
| 565 | } |
| 566 | |
| 567 | /* |
| 568 | * Copy a sockaddr_{in,in6} src to a dst storage and set scope ID into dst. |
| 569 | * |
| 570 | * To clear the scope ID, pass is a NULL pifscope. To set the scope ID, pass |
| 571 | * in a non-NULL pifscope with non-zero ifscope. Otherwise if pifscope is |
| 572 | * non-NULL and ifscope is IFSCOPE_NONE, the existing scope ID is left intact. |
| 573 | * In any case, the effective scope ID value is returned to the caller via |
| 574 | * pifscope, if it is non-NULL. |
| 575 | */ |
| 576 | struct sockaddr * |
| 577 | sa_copy(struct sockaddr *src, struct sockaddr_storage *dst, |
| 578 | unsigned int *pifscope) |
| 579 | { |
| 580 | int af = src->sa_family; |
| 581 | unsigned int ifscope = (pifscope != NULL) ? *pifscope : IFSCOPE_NONE; |
| 582 | |
| 583 | VERIFY(af == AF_INET || af == AF_INET6); |
| 584 | |
| 585 | bzero(s: dst, n: sizeof(*dst)); |
| 586 | |
| 587 | if (af == AF_INET) { |
| 588 | SOCKADDR_COPY(src, dst, sizeof(struct sockaddr_in)); |
| 589 | dst->ss_len = sizeof(struct sockaddr_in); |
| 590 | if (pifscope == NULL || ifscope != IFSCOPE_NONE) { |
| 591 | sin_set_ifscope(SA(dst), ifscope); |
| 592 | } |
| 593 | } else { |
| 594 | SOCKADDR_COPY(src, dst, sizeof(struct sockaddr_in6)); |
| 595 | dst->ss_len = sizeof(struct sockaddr_in6); |
| 596 | if (pifscope != NULL && |
| 597 | IN6_IS_SCOPE_EMBED(&SIN6(dst)->sin6_addr)) { |
| 598 | unsigned int eifscope; |
| 599 | /* |
| 600 | * If the address contains the embedded scope ID, |
| 601 | * use that as the value for sin6_scope_id as long |
| 602 | * the caller doesn't insist on clearing it (by |
| 603 | * passing NULL) or setting it. |
| 604 | */ |
| 605 | eifscope = sin6_get_embedded_ifscope(SA(dst)); |
| 606 | if (eifscope != IFSCOPE_NONE && ifscope == IFSCOPE_NONE) { |
| 607 | ifscope = eifscope; |
| 608 | } |
| 609 | if (ifscope != IFSCOPE_NONE) { |
| 610 | /* Set ifscope from pifscope or eifscope */ |
| 611 | sin6_set_ifscope(SA(dst), ifscope); |
| 612 | } else { |
| 613 | /* If sin6_scope_id has a value, use that one */ |
| 614 | ifscope = sin6_get_ifscope(SA(dst)); |
| 615 | } |
| 616 | /* |
| 617 | * If sin6_scope_id is set but the address doesn't |
| 618 | * contain the equivalent embedded value, set it. |
| 619 | */ |
| 620 | if (ifscope != IFSCOPE_NONE && eifscope != ifscope) { |
| 621 | sin6_set_embedded_ifscope(SA(dst), ifscope); |
| 622 | } |
| 623 | } else if (pifscope == NULL || ifscope != IFSCOPE_NONE) { |
| 624 | sin6_set_ifscope(SA(dst), ifscope); |
| 625 | } |
| 626 | } |
| 627 | |
| 628 | if (pifscope != NULL) { |
| 629 | *pifscope = (af == AF_INET) ? sin_get_ifscope(SA(dst)) : |
| 630 | sin6_get_ifscope(SA(dst)); |
| 631 | } |
| 632 | |
| 633 | return SA(dst); |
| 634 | } |
| 635 | |
| 636 | /* |
| 637 | * Copy a mask from src to a dst storage and set scope ID into dst. |
| 638 | */ |
| 639 | static struct sockaddr * |
| 640 | ma_copy(int af, struct sockaddr *src, struct sockaddr_storage *dst, |
| 641 | unsigned int ifscope) |
| 642 | { |
| 643 | VERIFY(af == AF_INET || af == AF_INET6); |
| 644 | |
| 645 | bzero(s: dst, n: sizeof(*dst)); |
| 646 | rt_maskedcopy(src, SA(dst), src); |
| 647 | |
| 648 | /* |
| 649 | * The length of the mask sockaddr would need to be adjusted |
| 650 | * to cover the additional {sin,sin6}_ifscope field; when ifscope |
| 651 | * is IFSCOPE_NONE, we'd end up clearing the scope ID field on |
| 652 | * the destination mask in addition to extending the length |
| 653 | * of the sockaddr, as a side effect. This is okay, as any |
| 654 | * trailing zeroes would be skipped by rn_addmask prior to |
| 655 | * inserting or looking up the mask in the mask tree. |
| 656 | */ |
| 657 | if (af == AF_INET) { |
| 658 | SINIFSCOPE(dst)->sin_scope_id = ifscope; |
| 659 | SINIFSCOPE(dst)->sin_len = |
| 660 | offsetof(struct sockaddr_inifscope, sin_scope_id) + |
| 661 | sizeof(SINIFSCOPE(dst)->sin_scope_id); |
| 662 | } else { |
| 663 | SIN6IFSCOPE(dst)->sin6_scope_id = ifscope; |
| 664 | SIN6IFSCOPE(dst)->sin6_len = |
| 665 | offsetof(struct sockaddr_in6, sin6_scope_id) + |
| 666 | sizeof(SIN6IFSCOPE(dst)->sin6_scope_id); |
| 667 | } |
| 668 | |
| 669 | return SA(dst); |
| 670 | } |
| 671 | |
| 672 | /* |
| 673 | * Trim trailing zeroes on a sockaddr and update its length. |
| 674 | */ |
| 675 | static struct sockaddr * |
| 676 | sa_trim(struct sockaddr *sa, uint8_t skip) |
| 677 | { |
| 678 | caddr_t cp; |
| 679 | caddr_t base = (caddr_t)__SA_UTILS_CONV_TO_BYTES(sa) + skip; |
| 680 | |
| 681 | if (sa->sa_len <= skip) { |
| 682 | return sa; |
| 683 | } |
| 684 | |
| 685 | for (cp = base + (sa->sa_len - skip); cp > base && cp[-1] == 0;) { |
| 686 | cp--; |
| 687 | } |
| 688 | |
| 689 | sa->sa_len = (uint8_t)(cp - base) + skip; |
| 690 | if (sa->sa_len < skip) { |
| 691 | /* Must not happen, and if so, panic */ |
| 692 | panic("%s: broken logic (sa_len %d < skip %d )" , __func__, |
| 693 | sa->sa_len, skip); |
| 694 | /* NOTREACHED */ |
| 695 | } else if (sa->sa_len == skip) { |
| 696 | /* If we end up with all zeroes, then there's no mask */ |
| 697 | sa->sa_len = 0; |
| 698 | } |
| 699 | |
| 700 | return sa; |
| 701 | } |
| 702 | |
| 703 | /* |
| 704 | * Called by rtm_msg{1,2} routines to "scrub" socket address structures of |
| 705 | * kernel private information, so that clients of the routing socket will |
| 706 | * not be confused by the presence of the information, or the side effect of |
| 707 | * the increased length due to that. The source sockaddr is not modified; |
| 708 | * instead, the scrubbing happens on the destination sockaddr storage that |
| 709 | * is passed in by the caller. |
| 710 | * |
| 711 | * Scrubbing entails: |
| 712 | * - removing embedded scope identifiers from network mask and destination |
| 713 | * IPv4 and IPv6 socket addresses |
| 714 | * - optionally removing global scope interface hardware addresses from |
| 715 | * link-layer interface addresses when the MAC framework check fails. |
| 716 | */ |
| 717 | struct sockaddr * |
| 718 | rtm_scrub(int type, int idx, struct sockaddr *hint, struct sockaddr *sa, |
| 719 | void *buf __sized_by(buflen), uint32_t buflen, kauth_cred_t *credp) |
| 720 | { |
| 721 | struct sockaddr_storage *ss = (struct sockaddr_storage *)buf; |
| 722 | struct sockaddr *ret = sa; |
| 723 | |
| 724 | VERIFY(buf != NULL && buflen >= sizeof(*ss)); |
| 725 | bzero(s: buf, n: buflen); |
| 726 | |
| 727 | switch (idx) { |
| 728 | case RTAX_DST: |
| 729 | /* |
| 730 | * If this is for an AF_INET/AF_INET6 destination address, |
| 731 | * call sa_copy() to clear the scope ID field. |
| 732 | */ |
| 733 | if (sa->sa_family == AF_INET && |
| 734 | SINIFSCOPE(sa)->sin_scope_id != IFSCOPE_NONE) { |
| 735 | ret = sa_copy(src: sa, dst: ss, NULL); |
| 736 | } else if (sa->sa_family == AF_INET6 && |
| 737 | SIN6IFSCOPE(sa)->sin6_scope_id != IFSCOPE_NONE) { |
| 738 | ret = sa_copy(src: sa, dst: ss, NULL); |
| 739 | } |
| 740 | break; |
| 741 | |
| 742 | case RTAX_NETMASK: { |
| 743 | uint8_t skip, af; |
| 744 | /* |
| 745 | * If this is for a mask, we can't tell whether or not there |
| 746 | * is an valid scope ID value, as the span of bytes between |
| 747 | * sa_len and the beginning of the mask (offset of sin_addr in |
| 748 | * the case of AF_INET, or sin6_addr for AF_INET6) may be |
| 749 | * filled with all-ones by rn_addmask(), and hence we cannot |
| 750 | * rely on sa_family. Because of this, we use the sa_family |
| 751 | * of the hint sockaddr (RTAX_{DST,IFA}) as indicator as to |
| 752 | * whether or not the mask is to be treated as one for AF_INET |
| 753 | * or AF_INET6. Clearing the scope ID field involves setting |
| 754 | * it to IFSCOPE_NONE followed by calling sa_trim() to trim |
| 755 | * trailing zeroes from the storage sockaddr, which reverses |
| 756 | * what was done earlier by ma_copy() on the source sockaddr. |
| 757 | */ |
| 758 | if (hint == NULL || |
| 759 | ((af = hint->sa_family) != AF_INET && af != AF_INET6)) { |
| 760 | break; /* nothing to do */ |
| 761 | } |
| 762 | skip = (af == AF_INET) ? |
| 763 | offsetof(struct sockaddr_in, sin_addr) : |
| 764 | offsetof(struct sockaddr_in6, sin6_addr); |
| 765 | |
| 766 | if (sa->sa_len > skip && sa->sa_len <= sizeof(*ss)) { |
| 767 | SOCKADDR_COPY(sa, ss, sa->sa_len); |
| 768 | /* |
| 769 | * Don't use {sin,sin6}_set_ifscope() as sa_family |
| 770 | * and sa_len for the netmask might not be set to |
| 771 | * the corresponding expected values of the hint. |
| 772 | */ |
| 773 | if (hint->sa_family == AF_INET) { |
| 774 | SINIFSCOPE(ss)->sin_scope_id = IFSCOPE_NONE; |
| 775 | } else { |
| 776 | SIN6IFSCOPE(ss)->sin6_scope_id = IFSCOPE_NONE; |
| 777 | } |
| 778 | ret = sa_trim(SA(ss), skip); |
| 779 | |
| 780 | /* |
| 781 | * For AF_INET6 mask, set sa_len appropriately unless |
| 782 | * this is requested via systl_dumpentry(), in which |
| 783 | * case we return the raw value. |
| 784 | */ |
| 785 | if (hint->sa_family == AF_INET6 && |
| 786 | type != RTM_GET && type != RTM_GET2) { |
| 787 | SA(ret)->sa_len = sizeof(struct sockaddr_in6); |
| 788 | } |
| 789 | } |
| 790 | break; |
| 791 | } |
| 792 | case RTAX_GATEWAY: { |
| 793 | /* |
| 794 | * Break if the gateway is not AF_LINK type (indirect routes) |
| 795 | * |
| 796 | * Else, if is, check if it is resolved. If not yet resolved |
| 797 | * simply break else scrub the link layer address. |
| 798 | */ |
| 799 | if ((sa->sa_family != AF_LINK) || (SDL(sa)->sdl_alen == 0)) { |
| 800 | break; |
| 801 | } |
| 802 | OS_FALLTHROUGH; |
| 803 | } |
| 804 | |
| 805 | case RTAX_IFP: { |
| 806 | if (sa->sa_family == AF_LINK && credp) { |
| 807 | struct sockaddr_dl *sdl = SDL(buf); |
| 808 | const void *bytes; |
| 809 | size_t size; |
| 810 | |
| 811 | /* caller should handle worst case: SOCK_MAXADDRLEN */ |
| 812 | VERIFY(buflen >= sa->sa_len); |
| 813 | |
| 814 | SOCKADDR_COPY(sa, sdl, sa->sa_len); |
| 815 | bytes = dlil_ifaddr_bytes(sdl, &size, credp); |
| 816 | if (bytes != CONST_LLADDR(sdl)) { |
| 817 | VERIFY(sdl->sdl_alen == size); |
| 818 | bcopy(src: bytes, LLADDR(sdl), n: size); |
| 819 | } |
| 820 | ret = SA(sdl); |
| 821 | } |
| 822 | break; |
| 823 | } |
| 824 | default: |
| 825 | break; |
| 826 | } |
| 827 | |
| 828 | return ret; |
| 829 | } |
| 830 | |
| 831 | /* |
| 832 | * Callback leaf-matching routine for rn_matchaddr_args used |
| 833 | * for looking up an exact match for a scoped route entry. |
| 834 | */ |
| 835 | static int |
| 836 | rn_match_ifscope(struct radix_node *rn, void *arg) |
| 837 | { |
| 838 | rtentry_ref_t rt = (rtentry_ref_t)rn; |
| 839 | struct matchleaf_arg *ma = arg; |
| 840 | int af = rt_key(rt)->sa_family; |
| 841 | |
| 842 | if (!(rt->rt_flags & RTF_IFSCOPE) || (af != AF_INET && af != AF_INET6)) { |
| 843 | return 0; |
| 844 | } |
| 845 | |
| 846 | return af == AF_INET ? |
| 847 | (SINIFSCOPE(rt_key(rt))->sin_scope_id == ma->ifscope) : |
| 848 | (SIN6IFSCOPE(rt_key(rt))->sin6_scope_id == ma->ifscope); |
| 849 | } |
| 850 | |
| 851 | /* |
| 852 | * Atomically increment route generation counter |
| 853 | */ |
| 854 | void |
| 855 | routegenid_update(void) |
| 856 | { |
| 857 | routegenid_inet_update(); |
| 858 | routegenid_inet6_update(); |
| 859 | } |
| 860 | |
| 861 | void |
| 862 | routegenid_inet_update(void) |
| 863 | { |
| 864 | os_atomic_inc(&route_genid_inet, relaxed); |
| 865 | } |
| 866 | |
| 867 | void |
| 868 | routegenid_inet6_update(void) |
| 869 | { |
| 870 | os_atomic_inc(&route_genid_inet6, relaxed); |
| 871 | } |
| 872 | |
| 873 | /* |
| 874 | * Packet routing routines. |
| 875 | */ |
| 876 | void |
| 877 | rtalloc(struct route *ro) |
| 878 | { |
| 879 | rtalloc_ign(ro, 0); |
| 880 | } |
| 881 | |
| 882 | void |
| 883 | rtalloc_scoped(struct route *ro, unsigned int ifscope) |
| 884 | { |
| 885 | rtalloc_scoped_ign(ro, 0, ifscope); |
| 886 | } |
| 887 | |
| 888 | static void |
| 889 | rtalloc_ign_common_locked(struct route *ro, uint32_t ignore, |
| 890 | unsigned int ifscope) |
| 891 | { |
| 892 | rtentry_ref_t rt; |
| 893 | |
| 894 | if ((rt = ro->ro_rt) != NULL) { |
| 895 | RT_LOCK_SPIN(rt); |
| 896 | if (rt->rt_ifp != NULL && !ROUTE_UNUSABLE(ro)) { |
| 897 | RT_UNLOCK(rt); |
| 898 | return; |
| 899 | } |
| 900 | RT_UNLOCK(rt); |
| 901 | ROUTE_RELEASE_LOCKED(ro); /* rnh_lock already held */ |
| 902 | } |
| 903 | ro->ro_rt = rtalloc1_common_locked(SA(&ro->ro_dst), 1, ignore, ifscope); |
| 904 | if (ro->ro_rt != NULL) { |
| 905 | RT_GENID_SYNC(ro->ro_rt); |
| 906 | RT_LOCK_ASSERT_NOTHELD(ro->ro_rt); |
| 907 | } |
| 908 | } |
| 909 | |
| 910 | void |
| 911 | rtalloc_ign(struct route *ro, uint32_t ignore) |
| 912 | { |
| 913 | LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_NOTOWNED); |
| 914 | lck_mtx_lock(rnh_lock); |
| 915 | rtalloc_ign_common_locked(ro, ignore, IFSCOPE_NONE); |
| 916 | lck_mtx_unlock(rnh_lock); |
| 917 | } |
| 918 | |
| 919 | void |
| 920 | rtalloc_scoped_ign(struct route *ro, uint32_t ignore, unsigned int ifscope) |
| 921 | { |
| 922 | LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_NOTOWNED); |
| 923 | lck_mtx_lock(rnh_lock); |
| 924 | rtalloc_ign_common_locked(ro, ignore, ifscope); |
| 925 | lck_mtx_unlock(rnh_lock); |
| 926 | } |
| 927 | |
| 928 | static struct rtentry * |
| 929 | rtalloc1_locked(struct sockaddr *dst, int report, uint32_t ignflags) |
| 930 | { |
| 931 | return rtalloc1_common_locked(dst, report, ignflags, IFSCOPE_NONE); |
| 932 | } |
| 933 | |
| 934 | struct rtentry * |
| 935 | rtalloc1_scoped_locked(struct sockaddr *dst, int report, uint32_t ignflags, |
| 936 | unsigned int ifscope) |
| 937 | { |
| 938 | return rtalloc1_common_locked(dst, report, ignflags, ifscope); |
| 939 | } |
| 940 | |
| 941 | static boolean_t |
| 942 | route_ignore_protocol_cloning_for_dst(struct rtentry *rt, struct sockaddr *dst) |
| 943 | { |
| 944 | /* |
| 945 | * For now keep protocol cloning for any type of IPv4 |
| 946 | * destination. |
| 947 | */ |
| 948 | if (dst->sa_family != AF_INET6) { |
| 949 | return FALSE; |
| 950 | } |
| 951 | |
| 952 | /* |
| 953 | * Limit protocol route creation of IPv6 ULA destinations |
| 954 | * from default route, |
| 955 | * Just to be safe, even though it doesn't affect routability, |
| 956 | * still allow protocol cloned routes if we happen to hit |
| 957 | * default route over companion link for ULA destination. |
| 958 | */ |
| 959 | if (!IFNET_IS_COMPANION_LINK(rt->rt_ifp) && |
| 960 | (rt->rt_flags & RTF_GATEWAY) && |
| 961 | (rt->rt_flags & RTF_PRCLONING) && |
| 962 | SA_DEFAULT(rt_key(rt)) && |
| 963 | (IN6_IS_ADDR_UNIQUE_LOCAL(&SIN6(dst)->sin6_addr) || IN6_IS_SCOPE_EMBED(&SIN6(dst)->sin6_addr))) { |
| 964 | return TRUE; |
| 965 | } |
| 966 | return FALSE; |
| 967 | } |
| 968 | |
| 969 | struct rtentry * |
| 970 | rtalloc1_common_locked(struct sockaddr *dst, int report, uint32_t ignflags, |
| 971 | unsigned int ifscope) |
| 972 | { |
| 973 | struct radix_node_head *rnh = rt_tables[dst->sa_family]; |
| 974 | rtentry_ref_t rt = NULL; |
| 975 | rtentry_ref_t newrt = NULL; |
| 976 | struct rt_addrinfo info; |
| 977 | uint32_t nflags; |
| 978 | int err = 0; |
| 979 | u_char msgtype = RTM_MISS; |
| 980 | |
| 981 | if (rnh == NULL) { |
| 982 | goto unreachable; |
| 983 | } |
| 984 | |
| 985 | if (!in6_embedded_scope && dst->sa_family == AF_INET6) { |
| 986 | if (IN6_IS_SCOPE_EMBED(&SIN6(dst)->sin6_addr) && |
| 987 | SIN6(dst)->sin6_scope_id == 0) { |
| 988 | SIN6(dst)->sin6_scope_id = ifscope; |
| 989 | } |
| 990 | } |
| 991 | |
| 992 | /* |
| 993 | * Find the longest prefix or exact (in the scoped case) address match; |
| 994 | * callee adds a reference to entry and checks for root node as well |
| 995 | */ |
| 996 | rt = rt_lookup(FALSE, dst, NULL, rnh, ifscope); |
| 997 | if (rt == NULL) { |
| 998 | goto unreachable; |
| 999 | } |
| 1000 | |
| 1001 | /* |
| 1002 | * Explicitly ignore protocol cloning for certain destinations. |
| 1003 | * Some checks below are kind of redundant, as for now, RTF_PRCLONING |
| 1004 | * is only set on indirect (RTF_GATEWAY) routes. |
| 1005 | * Also, we do this only when the route lookup above, resulted in default |
| 1006 | * route. |
| 1007 | * This is done to ensure, the resulting indirect host route doesn't |
| 1008 | * interfere when routing table gets configured with a indirect subnet |
| 1009 | * route/direct subnet route that is more specific than the current |
| 1010 | * parent route of the resulting protocol cloned route. |
| 1011 | * |
| 1012 | * At the crux of it all, it is a problem that we maintain host cache |
| 1013 | * in the routing table. We should revisit this for a generic solution. |
| 1014 | */ |
| 1015 | if (route_ignore_protocol_cloning_for_dst(rt, dst)) { |
| 1016 | ignflags |= RTF_PRCLONING; |
| 1017 | } |
| 1018 | |
| 1019 | RT_LOCK_SPIN(rt); |
| 1020 | newrt = rt; |
| 1021 | nflags = rt->rt_flags & ~ignflags; |
| 1022 | RT_UNLOCK(rt); |
| 1023 | |
| 1024 | if (report && (nflags & (RTF_CLONING | RTF_PRCLONING))) { |
| 1025 | /* |
| 1026 | * We are apparently adding (report = 0 in delete). |
| 1027 | * If it requires that it be cloned, do so. |
| 1028 | * (This implies it wasn't a HOST route.) |
| 1029 | */ |
| 1030 | err = rtrequest_locked(RTM_RESOLVE, dst, NULL, NULL, 0, &newrt); |
| 1031 | if (err) { |
| 1032 | /* |
| 1033 | * If the cloning didn't succeed, maybe what we |
| 1034 | * have from lookup above will do. Return that; |
| 1035 | * no need to hold another reference since it's |
| 1036 | * already done. |
| 1037 | */ |
| 1038 | newrt = rt; |
| 1039 | goto miss; |
| 1040 | } |
| 1041 | |
| 1042 | /* |
| 1043 | * We cloned it; drop the original route found during lookup. |
| 1044 | * The resulted cloned route (newrt) would now have an extra |
| 1045 | * reference held during rtrequest. |
| 1046 | */ |
| 1047 | rtfree_locked(rt); |
| 1048 | |
| 1049 | /* |
| 1050 | * If the newly created cloned route is a direct host route |
| 1051 | * then also check if it is to a router or not. |
| 1052 | * If it is, then set the RTF_ROUTER flag on the host route |
| 1053 | * for the gateway. |
| 1054 | * |
| 1055 | * XXX It is possible for the default route to be created post |
| 1056 | * cloned route creation of router's IP. |
| 1057 | * We can handle that corner case by special handing for RTM_ADD |
| 1058 | * of default route. |
| 1059 | */ |
| 1060 | if ((newrt->rt_flags & (RTF_HOST | RTF_LLINFO)) == |
| 1061 | (RTF_HOST | RTF_LLINFO)) { |
| 1062 | rtentry_ref_t defrt = NULL; |
| 1063 | struct sockaddr_storage def_key; |
| 1064 | |
| 1065 | bzero(s: &def_key, n: sizeof(def_key)); |
| 1066 | def_key.ss_len = rt_key(newrt)->sa_len; |
| 1067 | def_key.ss_family = rt_key(newrt)->sa_family; |
| 1068 | |
| 1069 | defrt = rtalloc1_scoped_locked(SA(&def_key), |
| 1070 | report: 0, ignflags: 0, ifscope: newrt->rt_ifp->if_index); |
| 1071 | |
| 1072 | if (defrt) { |
| 1073 | if (sa_equal(rt_key(newrt), defrt->rt_gateway)) { |
| 1074 | newrt->rt_flags |= RTF_ROUTER; |
| 1075 | } |
| 1076 | rtfree_locked(defrt); |
| 1077 | } |
| 1078 | } |
| 1079 | |
| 1080 | if ((rt = newrt) && (rt->rt_flags & RTF_XRESOLVE)) { |
| 1081 | /* |
| 1082 | * If the new route specifies it be |
| 1083 | * externally resolved, then go do that. |
| 1084 | */ |
| 1085 | msgtype = RTM_RESOLVE; |
| 1086 | goto miss; |
| 1087 | } |
| 1088 | } |
| 1089 | goto done; |
| 1090 | |
| 1091 | unreachable: |
| 1092 | /* |
| 1093 | * Either we hit the root or couldn't find any match, |
| 1094 | * Which basically means "cant get there from here" |
| 1095 | */ |
| 1096 | rtstat.rts_unreach++; |
| 1097 | |
| 1098 | miss: |
| 1099 | if (report) { |
| 1100 | /* |
| 1101 | * If required, report the failure to the supervising |
| 1102 | * Authorities. |
| 1103 | * For a delete, this is not an error. (report == 0) |
| 1104 | */ |
| 1105 | bzero(s: (caddr_t)&info, n: sizeof(info)); |
| 1106 | info.rti_info[RTAX_DST] = dst; |
| 1107 | rt_missmsg(msgtype, &info, 0, err); |
| 1108 | } |
| 1109 | done: |
| 1110 | return newrt; |
| 1111 | } |
| 1112 | |
| 1113 | struct rtentry * |
| 1114 | rtalloc1(struct sockaddr *dst, int report, uint32_t ignflags) |
| 1115 | { |
| 1116 | rtentry_ref_t entry; |
| 1117 | LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_NOTOWNED); |
| 1118 | lck_mtx_lock(rnh_lock); |
| 1119 | entry = rtalloc1_locked(dst, report, ignflags); |
| 1120 | lck_mtx_unlock(rnh_lock); |
| 1121 | return entry; |
| 1122 | } |
| 1123 | |
| 1124 | struct rtentry * |
| 1125 | rtalloc1_scoped(struct sockaddr *dst, int report, uint32_t ignflags, |
| 1126 | unsigned int ifscope) |
| 1127 | { |
| 1128 | rtentry_ref_t entry; |
| 1129 | LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_NOTOWNED); |
| 1130 | lck_mtx_lock(rnh_lock); |
| 1131 | entry = rtalloc1_scoped_locked(dst, report, ignflags, ifscope); |
| 1132 | lck_mtx_unlock(rnh_lock); |
| 1133 | return entry; |
| 1134 | } |
| 1135 | |
| 1136 | /* |
| 1137 | * Remove a reference count from an rtentry. |
| 1138 | * If the count gets low enough, take it out of the routing table |
| 1139 | */ |
| 1140 | void |
| 1141 | rtfree_locked(struct rtentry *rt) |
| 1142 | { |
| 1143 | rtfree_common(rt, TRUE); |
| 1144 | } |
| 1145 | |
| 1146 | static void |
| 1147 | rtfree_common(struct rtentry *rt, boolean_t locked) |
| 1148 | { |
| 1149 | struct radix_node_head *rnh; |
| 1150 | |
| 1151 | LCK_MTX_ASSERT(rnh_lock, locked ? |
| 1152 | LCK_MTX_ASSERT_OWNED : LCK_MTX_ASSERT_NOTOWNED); |
| 1153 | |
| 1154 | /* |
| 1155 | * Atomically decrement the reference count and if it reaches 0, |
| 1156 | * and there is a close function defined, call the close function. |
| 1157 | */ |
| 1158 | RT_LOCK_SPIN(rt); |
| 1159 | if (rtunref(rt) > 0) { |
| 1160 | RT_UNLOCK(rt); |
| 1161 | return; |
| 1162 | } |
| 1163 | |
| 1164 | /* |
| 1165 | * To avoid violating lock ordering, we must drop rt_lock before |
| 1166 | * trying to acquire the global rnh_lock. If we are called with |
| 1167 | * rnh_lock held, then we already have exclusive access; otherwise |
| 1168 | * we do the lock dance. |
| 1169 | */ |
| 1170 | if (!locked) { |
| 1171 | /* |
| 1172 | * Note that we check it again below after grabbing rnh_lock, |
| 1173 | * since it is possible that another thread doing a lookup wins |
| 1174 | * the race, grabs the rnh_lock first, and bumps up reference |
| 1175 | * count in which case the route should be left alone as it is |
| 1176 | * still in use. It's also possible that another thread frees |
| 1177 | * the route after we drop rt_lock; to prevent the route from |
| 1178 | * being freed, we hold an extra reference. |
| 1179 | */ |
| 1180 | RT_ADDREF_LOCKED(rt); |
| 1181 | RT_UNLOCK(rt); |
| 1182 | lck_mtx_lock(rnh_lock); |
| 1183 | RT_LOCK_SPIN(rt); |
| 1184 | if (rtunref(rt) > 0) { |
| 1185 | /* We've lost the race, so abort */ |
| 1186 | RT_UNLOCK(rt); |
| 1187 | goto done; |
| 1188 | } |
| 1189 | } |
| 1190 | |
| 1191 | /* |
| 1192 | * We may be blocked on other lock(s) as part of freeing |
| 1193 | * the entry below, so convert from spin to full mutex. |
| 1194 | */ |
| 1195 | RT_CONVERT_LOCK(rt); |
| 1196 | |
| 1197 | LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_OWNED); |
| 1198 | |
| 1199 | /* Negative refcnt must never happen */ |
| 1200 | if (rt->rt_refcnt != 0) { |
| 1201 | panic("rt %p invalid refcnt %d" , rt, rt->rt_refcnt); |
| 1202 | /* NOTREACHED */ |
| 1203 | } |
| 1204 | /* Idle refcnt must have been dropped during rtunref() */ |
| 1205 | VERIFY(!(rt->rt_flags & RTF_IFREF)); |
| 1206 | |
| 1207 | /* |
| 1208 | * find the tree for that address family |
| 1209 | * Note: in the case of igmp packets, there might not be an rnh |
| 1210 | */ |
| 1211 | rnh = rt_tables[rt_key(rt)->sa_family]; |
| 1212 | |
| 1213 | /* |
| 1214 | * On last reference give the "close method" a chance to cleanup |
| 1215 | * private state. This also permits (for IPv4 and IPv6) a chance |
| 1216 | * to decide if the routing table entry should be purged immediately |
| 1217 | * or at a later time. When an immediate purge is to happen the |
| 1218 | * close routine typically issues RTM_DELETE which clears the RTF_UP |
| 1219 | * flag on the entry so that the code below reclaims the storage. |
| 1220 | */ |
| 1221 | if (rnh != NULL && rnh->rnh_close != NULL) { |
| 1222 | rnh->rnh_close((struct radix_node *)rt, rnh); |
| 1223 | } |
| 1224 | |
| 1225 | /* |
| 1226 | * If we are no longer "up" (and ref == 0) then we can free the |
| 1227 | * resources associated with the route. |
| 1228 | */ |
| 1229 | if (!(rt->rt_flags & RTF_UP)) { |
| 1230 | rtentry_ref_t rt_parent; |
| 1231 | struct ifaddr *rt_ifa; |
| 1232 | |
| 1233 | rt->rt_flags |= RTF_DEAD; |
| 1234 | if (rt->rt_nodes->rn_flags & (RNF_ACTIVE | RNF_ROOT)) { |
| 1235 | panic("rt %p freed while in radix tree" , rt); |
| 1236 | /* NOTREACHED */ |
| 1237 | } |
| 1238 | /* |
| 1239 | * the rtentry must have been removed from the routing table |
| 1240 | * so it is represented in rttrash; remove that now. |
| 1241 | */ |
| 1242 | (void) OSDecrementAtomic(&rttrash); |
| 1243 | if (rte_debug & RTD_DEBUG) { |
| 1244 | TAILQ_REMOVE(&rttrash_head, (rtentry_dbg_ref_t)rt, |
| 1245 | rtd_trash_link); |
| 1246 | } |
| 1247 | |
| 1248 | /* |
| 1249 | * release references on items we hold them on.. |
| 1250 | * e.g other routes and ifaddrs. |
| 1251 | */ |
| 1252 | if ((rt_parent = rt->rt_parent) != NULL) { |
| 1253 | rt->rt_parent = NULL; |
| 1254 | } |
| 1255 | |
| 1256 | if ((rt_ifa = rt->rt_ifa) != NULL) { |
| 1257 | rt->rt_ifa = NULL; |
| 1258 | } |
| 1259 | |
| 1260 | /* |
| 1261 | * Now free any attached link-layer info. |
| 1262 | */ |
| 1263 | if (rt->rt_llinfo != NULL) { |
| 1264 | VERIFY(rt->rt_llinfo_free != NULL); |
| 1265 | (*rt->rt_llinfo_free)(rt->rt_llinfo); |
| 1266 | rt->rt_llinfo = NULL; |
| 1267 | } |
| 1268 | |
| 1269 | /* Destroy eventhandler lists context */ |
| 1270 | eventhandler_lists_ctxt_destroy(evthdlr_lists_ctxt: &rt->rt_evhdlr_ctxt); |
| 1271 | |
| 1272 | /* |
| 1273 | * Route is no longer in the tree and refcnt is 0; |
| 1274 | * we have exclusive access, so destroy it. |
| 1275 | */ |
| 1276 | RT_UNLOCK(rt); |
| 1277 | rte_lock_destroy(rt); |
| 1278 | |
| 1279 | if (rt_parent != NULL) { |
| 1280 | rtfree_locked(rt: rt_parent); |
| 1281 | } |
| 1282 | |
| 1283 | if (rt_ifa != NULL) { |
| 1284 | ifa_remref(ifa: rt_ifa); |
| 1285 | } |
| 1286 | |
| 1287 | /* |
| 1288 | * The key is separately alloc'd so free it (see rt_setgate()). |
| 1289 | * This also frees the gateway, as they are always malloc'd |
| 1290 | * together. |
| 1291 | */ |
| 1292 | rt_key_free(rt); |
| 1293 | |
| 1294 | /* |
| 1295 | * Free any statistics that may have been allocated |
| 1296 | */ |
| 1297 | nstat_route_detach(rte: rt); |
| 1298 | |
| 1299 | /* |
| 1300 | * and the rtentry itself of course |
| 1301 | */ |
| 1302 | rte_free(rt); |
| 1303 | } else { |
| 1304 | /* |
| 1305 | * The "close method" has been called, but the route is |
| 1306 | * still in the radix tree with zero refcnt, i.e. "up" |
| 1307 | * and in the cached state. |
| 1308 | */ |
| 1309 | RT_UNLOCK(rt); |
| 1310 | } |
| 1311 | done: |
| 1312 | if (!locked) { |
| 1313 | lck_mtx_unlock(rnh_lock); |
| 1314 | } |
| 1315 | } |
| 1316 | |
| 1317 | void |
| 1318 | rtfree(struct rtentry *rt) |
| 1319 | { |
| 1320 | rtfree_common(rt, FALSE); |
| 1321 | } |
| 1322 | |
| 1323 | /* |
| 1324 | * Decrements the refcount but does not free the route when |
| 1325 | * the refcount reaches zero. Unless you have really good reason, |
| 1326 | * use rtfree not rtunref. |
| 1327 | */ |
| 1328 | int |
| 1329 | rtunref(struct rtentry *p) |
| 1330 | { |
| 1331 | RT_LOCK_ASSERT_HELD(p); |
| 1332 | |
| 1333 | if (p->rt_refcnt == 0) { |
| 1334 | panic("%s(%p) bad refcnt" , __func__, p); |
| 1335 | /* NOTREACHED */ |
| 1336 | } else if (--p->rt_refcnt == 0) { |
| 1337 | /* |
| 1338 | * Release any idle reference count held on the interface; |
| 1339 | * if the route is eligible, still UP and the refcnt becomes |
| 1340 | * non-zero at some point in future before it is purged from |
| 1341 | * the routing table, rt_set_idleref() will undo this. |
| 1342 | */ |
| 1343 | rt_clear_idleref(p); |
| 1344 | } |
| 1345 | |
| 1346 | if (rte_debug & RTD_DEBUG) { |
| 1347 | rtunref_audit((rtentry_dbg_ref_t)p); |
| 1348 | } |
| 1349 | |
| 1350 | /* Return new value */ |
| 1351 | return p->rt_refcnt; |
| 1352 | } |
| 1353 | |
| 1354 | static inline void |
| 1355 | rtunref_audit(struct rtentry_dbg *rte) |
| 1356 | { |
| 1357 | uint16_t idx; |
| 1358 | |
| 1359 | if (rte->rtd_inuse != RTD_INUSE) { |
| 1360 | panic("rtunref: on freed rte=%p" , rte); |
| 1361 | /* NOTREACHED */ |
| 1362 | } |
| 1363 | idx = os_atomic_inc_orig(&rte->rtd_refrele_cnt, relaxed) % CTRACE_HIST_SIZE; |
| 1364 | if (rte_debug & RTD_TRACE) { |
| 1365 | ctrace_record(&rte->rtd_refrele[idx]); |
| 1366 | } |
| 1367 | } |
| 1368 | |
| 1369 | /* |
| 1370 | * Add a reference count from an rtentry. |
| 1371 | */ |
| 1372 | void |
| 1373 | rtref(struct rtentry *p) |
| 1374 | { |
| 1375 | RT_LOCK_ASSERT_HELD(p); |
| 1376 | |
| 1377 | VERIFY((p->rt_flags & RTF_DEAD) == 0); |
| 1378 | if (++p->rt_refcnt == 0) { |
| 1379 | panic("%s(%p) bad refcnt" , __func__, p); |
| 1380 | /* NOTREACHED */ |
| 1381 | } else if (p->rt_refcnt == 1) { |
| 1382 | /* |
| 1383 | * Hold an idle reference count on the interface, |
| 1384 | * if the route is eligible for it. |
| 1385 | */ |
| 1386 | rt_set_idleref(p); |
| 1387 | } |
| 1388 | |
| 1389 | if (rte_debug & RTD_DEBUG) { |
| 1390 | rtref_audit((rtentry_dbg_ref_t)p); |
| 1391 | } |
| 1392 | } |
| 1393 | |
| 1394 | static inline void |
| 1395 | rtref_audit(struct rtentry_dbg *rte) |
| 1396 | { |
| 1397 | uint16_t idx; |
| 1398 | |
| 1399 | if (rte->rtd_inuse != RTD_INUSE) { |
| 1400 | panic("rtref_audit: on freed rte=%p" , rte); |
| 1401 | /* NOTREACHED */ |
| 1402 | } |
| 1403 | idx = os_atomic_inc_orig(&rte->rtd_refhold_cnt, relaxed) % CTRACE_HIST_SIZE; |
| 1404 | if (rte_debug & RTD_TRACE) { |
| 1405 | ctrace_record(&rte->rtd_refhold[idx]); |
| 1406 | } |
| 1407 | } |
| 1408 | |
| 1409 | void |
| 1410 | rtsetifa(struct rtentry *rt, struct ifaddr *ifa) |
| 1411 | { |
| 1412 | LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_OWNED); |
| 1413 | |
| 1414 | RT_LOCK_ASSERT_HELD(rt); |
| 1415 | |
| 1416 | if (rt->rt_ifa == ifa) { |
| 1417 | return; |
| 1418 | } |
| 1419 | |
| 1420 | /* Become a regular mutex, just in case */ |
| 1421 | RT_CONVERT_LOCK(rt); |
| 1422 | |
| 1423 | /* Release the old ifa */ |
| 1424 | if (rt->rt_ifa) { |
| 1425 | ifa_remref(ifa: rt->rt_ifa); |
| 1426 | } |
| 1427 | |
| 1428 | /* Set rt_ifa */ |
| 1429 | rt->rt_ifa = ifa; |
| 1430 | |
| 1431 | /* Take a reference to the ifa */ |
| 1432 | if (rt->rt_ifa) { |
| 1433 | ifa_addref(ifa: rt->rt_ifa); |
| 1434 | } |
| 1435 | } |
| 1436 | |
| 1437 | /* |
| 1438 | * Force a routing table entry to the specified |
| 1439 | * destination to go through the given gateway. |
| 1440 | * Normally called as a result of a routing redirect |
| 1441 | * message from the network layer. |
| 1442 | */ |
| 1443 | void |
| 1444 | rtredirect(struct ifnet *ifp, struct sockaddr *dst, struct sockaddr *gateway, |
| 1445 | struct sockaddr *netmask, int flags, struct sockaddr *src, |
| 1446 | struct rtentry **rtp) |
| 1447 | { |
| 1448 | rtentry_ref_t rt = NULL; |
| 1449 | int error = 0; |
| 1450 | short *stat = 0; |
| 1451 | struct rt_addrinfo info; |
| 1452 | struct ifaddr *ifa = NULL; |
| 1453 | unsigned int ifscope = (ifp != NULL) ? ifp->if_index : IFSCOPE_NONE; |
| 1454 | struct sockaddr_storage ss; |
| 1455 | int af = src->sa_family; |
| 1456 | |
| 1457 | LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_NOTOWNED); |
| 1458 | lck_mtx_lock(rnh_lock); |
| 1459 | |
| 1460 | /* |
| 1461 | * Transform src into the internal routing table form for |
| 1462 | * comparison against rt_gateway below. |
| 1463 | */ |
| 1464 | if ((af == AF_INET) || (af == AF_INET6)) { |
| 1465 | src = sa_copy(src, dst: &ss, pifscope: &ifscope); |
| 1466 | } |
| 1467 | |
| 1468 | /* |
| 1469 | * Verify the gateway is directly reachable; if scoped routing |
| 1470 | * is enabled, verify that it is reachable from the interface |
| 1471 | * where the ICMP redirect arrived on. |
| 1472 | */ |
| 1473 | if ((ifa = ifa_ifwithnet_scoped(gateway, ifscope)) == NULL) { |
| 1474 | error = ENETUNREACH; |
| 1475 | goto out; |
| 1476 | } |
| 1477 | |
| 1478 | /* Lookup route to the destination (from the original IP header) */ |
| 1479 | rt = rtalloc1_scoped_locked(dst, report: 0, RTF_CLONING | RTF_PRCLONING, ifscope); |
| 1480 | if (rt != NULL) { |
| 1481 | RT_LOCK(rt); |
| 1482 | } |
| 1483 | |
| 1484 | /* |
| 1485 | * If the redirect isn't from our current router for this dst, |
| 1486 | * it's either old or wrong. If it redirects us to ourselves, |
| 1487 | * we have a routing loop, perhaps as a result of an interface |
| 1488 | * going down recently. Holding rnh_lock here prevents the |
| 1489 | * possibility of rt_ifa/ifa's ifa_addr from changing (e.g. |
| 1490 | * in_ifinit), so okay to access ifa_addr without locking. |
| 1491 | */ |
| 1492 | if (!(flags & RTF_DONE) && rt != NULL && |
| 1493 | (!sa_equal(src, rt->rt_gateway) || !sa_equal(rt->rt_ifa->ifa_addr, |
| 1494 | ifa->ifa_addr))) { |
| 1495 | error = EINVAL; |
| 1496 | } else { |
| 1497 | ifa_remref(ifa); |
| 1498 | if ((ifa = ifa_ifwithaddr(gateway))) { |
| 1499 | ifa_remref(ifa); |
| 1500 | ifa = NULL; |
| 1501 | error = EHOSTUNREACH; |
| 1502 | } |
| 1503 | } |
| 1504 | |
| 1505 | if (ifa) { |
| 1506 | ifa_remref(ifa); |
| 1507 | ifa = NULL; |
| 1508 | } |
| 1509 | |
| 1510 | if (error) { |
| 1511 | if (rt != NULL) { |
| 1512 | RT_UNLOCK(rt); |
| 1513 | } |
| 1514 | goto done; |
| 1515 | } |
| 1516 | |
| 1517 | /* |
| 1518 | * Create a new entry if we just got back a wildcard entry |
| 1519 | * or the the lookup failed. This is necessary for hosts |
| 1520 | * which use routing redirects generated by smart gateways |
| 1521 | * to dynamically build the routing tables. |
| 1522 | */ |
| 1523 | if ((rt == NULL) || (rt_mask(rt) != NULL && rt_mask(rt)->sa_len < 2)) { |
| 1524 | goto create; |
| 1525 | } |
| 1526 | /* |
| 1527 | * Don't listen to the redirect if it's |
| 1528 | * for a route to an interface. |
| 1529 | */ |
| 1530 | RT_LOCK_ASSERT_HELD(rt); |
| 1531 | if (rt->rt_flags & RTF_GATEWAY) { |
| 1532 | if (((rt->rt_flags & RTF_HOST) == 0) && (flags & RTF_HOST)) { |
| 1533 | /* |
| 1534 | * Changing from route to net => route to host. |
| 1535 | * Create new route, rather than smashing route |
| 1536 | * to net; similar to cloned routes, the newly |
| 1537 | * created host route is scoped as well. |
| 1538 | */ |
| 1539 | create: |
| 1540 | if (rt != NULL) { |
| 1541 | RT_UNLOCK(rt); |
| 1542 | } |
| 1543 | flags |= RTF_GATEWAY | RTF_DYNAMIC; |
| 1544 | error = rtrequest_scoped_locked(RTM_ADD, dst, |
| 1545 | gateway, netmask, flags, NULL, ifscope); |
| 1546 | stat = &rtstat.rts_dynamic; |
| 1547 | } else { |
| 1548 | /* |
| 1549 | * Smash the current notion of the gateway to |
| 1550 | * this destination. Should check about netmask!!! |
| 1551 | */ |
| 1552 | rt->rt_flags |= RTF_MODIFIED; |
| 1553 | flags |= RTF_MODIFIED; |
| 1554 | stat = &rtstat.rts_newgateway; |
| 1555 | /* |
| 1556 | * add the key and gateway (in one malloc'd chunk). |
| 1557 | */ |
| 1558 | error = rt_setgate(rt, rt_key(rt), gateway); |
| 1559 | RT_UNLOCK(rt); |
| 1560 | } |
| 1561 | } else { |
| 1562 | RT_UNLOCK(rt); |
| 1563 | error = EHOSTUNREACH; |
| 1564 | } |
| 1565 | done: |
| 1566 | if (rt != NULL) { |
| 1567 | RT_LOCK_ASSERT_NOTHELD(rt); |
| 1568 | if (!error) { |
| 1569 | /* Enqueue event to refresh flow route entries */ |
| 1570 | route_event_enqueue_nwk_wq_entry(rt, NULL, ROUTE_ENTRY_REFRESH, NULL, FALSE); |
| 1571 | if (rtp) { |
| 1572 | *rtp = rt; |
| 1573 | } else { |
| 1574 | rtfree_locked(rt); |
| 1575 | } |
| 1576 | } else { |
| 1577 | rtfree_locked(rt); |
| 1578 | } |
| 1579 | } |
| 1580 | out: |
| 1581 | if (error) { |
| 1582 | rtstat.rts_badredirect++; |
| 1583 | } else { |
| 1584 | if (stat != NULL) { |
| 1585 | (*stat)++; |
| 1586 | } |
| 1587 | |
| 1588 | if (af == AF_INET) { |
| 1589 | routegenid_inet_update(); |
| 1590 | } else if (af == AF_INET6) { |
| 1591 | routegenid_inet6_update(); |
| 1592 | } |
| 1593 | } |
| 1594 | lck_mtx_unlock(rnh_lock); |
| 1595 | bzero(s: (caddr_t)&info, n: sizeof(info)); |
| 1596 | info.rti_info[RTAX_DST] = dst; |
| 1597 | info.rti_info[RTAX_GATEWAY] = gateway; |
| 1598 | info.rti_info[RTAX_NETMASK] = netmask; |
| 1599 | info.rti_info[RTAX_AUTHOR] = src; |
| 1600 | rt_missmsg(RTM_REDIRECT, &info, flags, error); |
| 1601 | } |
| 1602 | |
| 1603 | /* |
| 1604 | * Routing table ioctl interface. |
| 1605 | */ |
| 1606 | int |
| 1607 | rtioctl(unsigned long req, caddr_t data, struct proc *p) |
| 1608 | { |
| 1609 | #pragma unused(p, req, data) |
| 1610 | return ENXIO; |
| 1611 | } |
| 1612 | |
| 1613 | struct ifaddr * |
| 1614 | ifa_ifwithroute( |
| 1615 | int flags, |
| 1616 | const struct sockaddr *dst, |
| 1617 | const struct sockaddr *gateway) |
| 1618 | { |
| 1619 | struct ifaddr *ifa; |
| 1620 | |
| 1621 | lck_mtx_lock(rnh_lock); |
| 1622 | ifa = ifa_ifwithroute_locked(flags, dst, gateway); |
| 1623 | lck_mtx_unlock(rnh_lock); |
| 1624 | |
| 1625 | return ifa; |
| 1626 | } |
| 1627 | |
| 1628 | struct ifaddr * |
| 1629 | ifa_ifwithroute_locked(int flags, const struct sockaddr *dst, |
| 1630 | const struct sockaddr *gateway) |
| 1631 | { |
| 1632 | return ifa_ifwithroute_common_locked((flags & ~RTF_IFSCOPE), dst, |
| 1633 | gateway, IFSCOPE_NONE); |
| 1634 | } |
| 1635 | |
| 1636 | struct ifaddr * |
| 1637 | ifa_ifwithroute_scoped_locked(int flags, const struct sockaddr *dst, |
| 1638 | const struct sockaddr *gateway, unsigned int ifscope) |
| 1639 | { |
| 1640 | if (ifscope != IFSCOPE_NONE) { |
| 1641 | flags |= RTF_IFSCOPE; |
| 1642 | } else { |
| 1643 | flags &= ~RTF_IFSCOPE; |
| 1644 | } |
| 1645 | |
| 1646 | return ifa_ifwithroute_common_locked(flags, dst, gateway, ifscope); |
| 1647 | } |
| 1648 | |
| 1649 | static struct ifaddr * |
| 1650 | ifa_ifwithroute_common_locked(int flags, const struct sockaddr *dst, |
| 1651 | const struct sockaddr *gw, unsigned int ifscope) |
| 1652 | { |
| 1653 | struct ifaddr *ifa = NULL; |
| 1654 | rtentry_ref_t rt = NULL; |
| 1655 | struct sockaddr_storage dst_ss, gw_ss; |
| 1656 | |
| 1657 | if (!in6_embedded_scope) { |
| 1658 | const struct sockaddr_in6 *dst_addr = SIN6(dst); |
| 1659 | if (dst->sa_family == AF_INET6 && |
| 1660 | IN6_IS_SCOPE_EMBED(&dst_addr->sin6_addr) && |
| 1661 | ifscope == IFSCOPE_NONE) { |
| 1662 | ifscope = dst_addr->sin6_scope_id; |
| 1663 | VERIFY(ifscope != IFSCOPE_NONE); |
| 1664 | } |
| 1665 | |
| 1666 | const struct sockaddr_in6 *gw_addr = SIN6(gw); |
| 1667 | if (dst->sa_family == AF_INET6 && |
| 1668 | IN6_IS_SCOPE_EMBED(&gw_addr->sin6_addr) && |
| 1669 | ifscope == IFSCOPE_NONE) { |
| 1670 | ifscope = gw_addr->sin6_scope_id; |
| 1671 | VERIFY(ifscope != IFSCOPE_NONE); |
| 1672 | } |
| 1673 | |
| 1674 | if (ifscope != IFSCOPE_NONE) { |
| 1675 | flags |= RTF_IFSCOPE; |
| 1676 | } else { |
| 1677 | flags &= ~RTF_IFSCOPE; |
| 1678 | } |
| 1679 | } |
| 1680 | |
| 1681 | LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_OWNED); |
| 1682 | |
| 1683 | /* |
| 1684 | * Just in case the sockaddr passed in by the caller |
| 1685 | * contains a scope ID, make sure to clear it since |
| 1686 | * interface addresses aren't scoped. |
| 1687 | */ |
| 1688 | if (dst != NULL && |
| 1689 | ((dst->sa_family == AF_INET) || |
| 1690 | (dst->sa_family == AF_INET6))) { |
| 1691 | dst = sa_copy(__DECONST_SA(dst), dst: &dst_ss, IN6_NULL_IF_EMBEDDED_SCOPE(&ifscope)); |
| 1692 | } |
| 1693 | |
| 1694 | if (gw != NULL && |
| 1695 | ((gw->sa_family == AF_INET) || |
| 1696 | (gw->sa_family == AF_INET6))) { |
| 1697 | gw = sa_copy(__DECONST_SA(gw), dst: &gw_ss, IN6_NULL_IF_EMBEDDED_SCOPE(&ifscope)); |
| 1698 | } |
| 1699 | |
| 1700 | if (!(flags & RTF_GATEWAY)) { |
| 1701 | /* |
| 1702 | * If we are adding a route to an interface, |
| 1703 | * and the interface is a pt to pt link |
| 1704 | * we should search for the destination |
| 1705 | * as our clue to the interface. Otherwise |
| 1706 | * we can use the local address. |
| 1707 | */ |
| 1708 | if (flags & RTF_HOST) { |
| 1709 | ifa = ifa_ifwithdstaddr(dst); |
| 1710 | } |
| 1711 | if (ifa == NULL) { |
| 1712 | ifa = ifa_ifwithaddr_scoped(gw, ifscope); |
| 1713 | } |
| 1714 | } else { |
| 1715 | /* |
| 1716 | * If we are adding a route to a remote net |
| 1717 | * or host, the gateway may still be on the |
| 1718 | * other end of a pt to pt link. |
| 1719 | */ |
| 1720 | if ((flags & RTF_IFSCOPE) != 0 && ifscope != IFSCOPE_NONE) { |
| 1721 | ifa = ifa_ifwithdstaddr_scoped(gw, ifscope); |
| 1722 | } |
| 1723 | if (ifa == NULL) { |
| 1724 | ifa = ifa_ifwithdstaddr(gw); |
| 1725 | } |
| 1726 | } |
| 1727 | if (ifa == NULL) { |
| 1728 | ifa = ifa_ifwithnet_scoped(gw, ifscope); |
| 1729 | } |
| 1730 | if (ifa == NULL) { |
| 1731 | /* Workaround to avoid gcc warning regarding const variable */ |
| 1732 | rt = rtalloc1_scoped_locked(__DECONST_SA(dst), |
| 1733 | report: 0, ignflags: 0, ifscope); |
| 1734 | if (rt != NULL) { |
| 1735 | RT_LOCK_SPIN(rt); |
| 1736 | ifa = rt->rt_ifa; |
| 1737 | if (ifa != NULL) { |
| 1738 | /* Become a regular mutex */ |
| 1739 | RT_CONVERT_LOCK(rt); |
| 1740 | ifa_addref(ifa); |
| 1741 | } |
| 1742 | RT_REMREF_LOCKED(rt); |
| 1743 | RT_UNLOCK(rt); |
| 1744 | rt = NULL; |
| 1745 | } |
| 1746 | } |
| 1747 | /* |
| 1748 | * Holding rnh_lock here prevents the possibility of ifa from |
| 1749 | * changing (e.g. in_ifinit), so it is safe to access its |
| 1750 | * ifa_addr (here and down below) without locking. |
| 1751 | */ |
| 1752 | if (ifa != NULL && ifa->ifa_addr->sa_family != dst->sa_family) { |
| 1753 | struct ifaddr *newifa; |
| 1754 | /* Callee adds reference to newifa upon success */ |
| 1755 | newifa = ifaof_ifpforaddr(dst, ifa->ifa_ifp); |
| 1756 | if (newifa != NULL) { |
| 1757 | ifa_remref(ifa); |
| 1758 | ifa = newifa; |
| 1759 | } |
| 1760 | } |
| 1761 | /* |
| 1762 | * If we are adding a gateway, it is quite possible that the |
| 1763 | * routing table has a static entry in place for the gateway, |
| 1764 | * that may not agree with info garnered from the interfaces. |
| 1765 | * The routing table should carry more precedence than the |
| 1766 | * interfaces in this matter. Must be careful not to stomp |
| 1767 | * on new entries from rtinit, hence (ifa->ifa_addr != gw). |
| 1768 | */ |
| 1769 | if ((ifa == NULL || (gw != NULL && |
| 1770 | !sa_equal(ifa->ifa_addr, __DECONST_SA(gw)))) && |
| 1771 | (rt = rtalloc1_scoped_locked(__DECONST_SA(gw), |
| 1772 | report: 0, ignflags: 0, ifscope)) != NULL) { |
| 1773 | if (ifa != NULL) { |
| 1774 | ifa_remref(ifa); |
| 1775 | } |
| 1776 | RT_LOCK_SPIN(rt); |
| 1777 | ifa = rt->rt_ifa; |
| 1778 | if (ifa != NULL) { |
| 1779 | /* Become a regular mutex */ |
| 1780 | RT_CONVERT_LOCK(rt); |
| 1781 | ifa_addref(ifa); |
| 1782 | } |
| 1783 | RT_REMREF_LOCKED(rt); |
| 1784 | RT_UNLOCK(rt); |
| 1785 | } |
| 1786 | /* |
| 1787 | * If an interface scope was specified, the interface index of |
| 1788 | * the found ifaddr must be equivalent to that of the scope; |
| 1789 | * otherwise there is no match. |
| 1790 | */ |
| 1791 | if ((flags & RTF_IFSCOPE) && |
| 1792 | ifa != NULL && ifa->ifa_ifp->if_index != ifscope) { |
| 1793 | ifa_remref(ifa); |
| 1794 | ifa = NULL; |
| 1795 | } |
| 1796 | |
| 1797 | /* |
| 1798 | * ifa's address family must match destination's address family |
| 1799 | * after all is said and done. |
| 1800 | */ |
| 1801 | if (ifa != NULL && |
| 1802 | ifa->ifa_addr->sa_family != dst->sa_family) { |
| 1803 | ifa_remref(ifa); |
| 1804 | ifa = NULL; |
| 1805 | } |
| 1806 | |
| 1807 | return ifa; |
| 1808 | } |
| 1809 | |
| 1810 | static int rt_fixdelete(struct radix_node *, void *); |
| 1811 | static int rt_fixchange(struct radix_node *, void *); |
| 1812 | |
| 1813 | struct rtfc_arg { |
| 1814 | struct rtentry *rt0; |
| 1815 | struct radix_node_head *rnh; |
| 1816 | }; |
| 1817 | |
| 1818 | int |
| 1819 | rtrequest_locked(int req, struct sockaddr *dst, struct sockaddr *gateway, |
| 1820 | struct sockaddr *netmask, int flags, struct rtentry **ret_nrt) |
| 1821 | { |
| 1822 | return rtrequest_common_locked(req, dst, gateway, netmask, |
| 1823 | (flags & ~RTF_IFSCOPE), ret_nrt, IFSCOPE_NONE); |
| 1824 | } |
| 1825 | |
| 1826 | int |
| 1827 | rtrequest_scoped_locked(int req, struct sockaddr *dst, |
| 1828 | struct sockaddr *gateway, struct sockaddr *netmask, int flags, |
| 1829 | struct rtentry **ret_nrt, unsigned int ifscope) |
| 1830 | { |
| 1831 | if (ifscope != IFSCOPE_NONE) { |
| 1832 | flags |= RTF_IFSCOPE; |
| 1833 | } else { |
| 1834 | flags &= ~RTF_IFSCOPE; |
| 1835 | } |
| 1836 | |
| 1837 | return rtrequest_common_locked(req, dst, gateway, netmask, |
| 1838 | flags, ret_nrt, ifscope); |
| 1839 | } |
| 1840 | |
| 1841 | /* |
| 1842 | * Do appropriate manipulations of a routing tree given all the bits of |
| 1843 | * info needed. |
| 1844 | * |
| 1845 | * Storing the scope ID in the radix key is an internal job that should be |
| 1846 | * left to routines in this module. Callers should specify the scope value |
| 1847 | * to the "scoped" variants of route routines instead of manipulating the |
| 1848 | * key itself. This is typically done when creating a scoped route, e.g. |
| 1849 | * rtrequest(RTM_ADD). Once such a route is created and marked with the |
| 1850 | * RTF_IFSCOPE flag, callers can simply use its rt_key(rt) to clone it |
| 1851 | * (RTM_RESOLVE) or to remove it (RTM_DELETE). An exception to this is |
| 1852 | * during certain routing socket operations where the search key might be |
| 1853 | * derived from the routing message itself, in which case the caller must |
| 1854 | * specify the destination address and scope value for RTM_ADD/RTM_DELETE. |
| 1855 | */ |
| 1856 | static int |
| 1857 | rtrequest_common_locked(int req, struct sockaddr *dst0, |
| 1858 | struct sockaddr *gateway, struct sockaddr *netmask, int flags, |
| 1859 | struct rtentry **ret_nrt, unsigned int ifscope) |
| 1860 | { |
| 1861 | int error = 0; |
| 1862 | rtentry_ref_t rt; |
| 1863 | struct radix_node *rn; |
| 1864 | struct radix_node_head *rnh; |
| 1865 | struct ifaddr *ifa = NULL; |
| 1866 | struct sockaddr *ndst, *dst = dst0; |
| 1867 | struct sockaddr_storage ss, mask; |
| 1868 | struct timeval caltime; |
| 1869 | int af = dst->sa_family; |
| 1870 | void (*ifa_rtrequest)(int, struct rtentry *, struct sockaddr *); |
| 1871 | |
| 1872 | #define senderr(x) { error = x; goto bad; } |
| 1873 | |
| 1874 | DTRACE_ROUTE6(rtrequest, int, req, struct sockaddr *, dst0, |
| 1875 | struct sockaddr *, gateway, struct sockaddr *, netmask, |
| 1876 | int, flags, unsigned int, ifscope); |
| 1877 | |
| 1878 | LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_OWNED); |
| 1879 | |
| 1880 | #if !(DEVELOPMENT || DEBUG) |
| 1881 | /* |
| 1882 | * Setting the global internet flag external is only for testing |
| 1883 | */ |
| 1884 | flags &= ~RTF_GLOBAL; |
| 1885 | #endif /* !(DEVELOPMENT || DEBUG) */ |
| 1886 | |
| 1887 | /* |
| 1888 | * Find the correct routing tree to use for this Address Family |
| 1889 | */ |
| 1890 | if ((rnh = rt_tables[af]) == NULL) { |
| 1891 | senderr(ESRCH); |
| 1892 | } |
| 1893 | /* |
| 1894 | * If we are adding a host route then we don't want to put |
| 1895 | * a netmask in the tree |
| 1896 | */ |
| 1897 | if (flags & RTF_HOST) { |
| 1898 | netmask = NULL; |
| 1899 | } |
| 1900 | |
| 1901 | /* |
| 1902 | * If Scoped Routing is enabled, use a local copy of the destination |
| 1903 | * address to store the scope ID into. This logic is repeated below |
| 1904 | * in the RTM_RESOLVE handler since the caller does not normally |
| 1905 | * specify such a flag during a resolve, as well as for the handling |
| 1906 | * of IPv4 link-local address; instead, it passes in the route used for |
| 1907 | * cloning for which the scope info is derived from. Note also that |
| 1908 | * in the case of RTM_DELETE, the address passed in by the caller |
| 1909 | * might already contain the scope ID info when it is the key itself, |
| 1910 | * thus making RTF_IFSCOPE unnecessary; one instance where it is |
| 1911 | * explicitly set is inside route_output() as part of handling a |
| 1912 | * routing socket request. |
| 1913 | */ |
| 1914 | if (req != RTM_RESOLVE && ((af == AF_INET) || (af == AF_INET6))) { |
| 1915 | /* Transform dst into the internal routing table form */ |
| 1916 | dst = sa_copy(src: dst, dst: &ss, pifscope: &ifscope); |
| 1917 | |
| 1918 | /* Transform netmask into the internal routing table form */ |
| 1919 | if (netmask != NULL) { |
| 1920 | netmask = ma_copy(af, src: netmask, dst: &mask, ifscope); |
| 1921 | } |
| 1922 | |
| 1923 | if (ifscope != IFSCOPE_NONE) { |
| 1924 | flags |= RTF_IFSCOPE; |
| 1925 | } |
| 1926 | } else if ((flags & RTF_IFSCOPE) && |
| 1927 | (af != AF_INET && af != AF_INET6)) { |
| 1928 | senderr(EINVAL); |
| 1929 | } |
| 1930 | |
| 1931 | if (ifscope == IFSCOPE_NONE) { |
| 1932 | flags &= ~RTF_IFSCOPE; |
| 1933 | } |
| 1934 | |
| 1935 | if (!in6_embedded_scope) { |
| 1936 | if (af == AF_INET6 && |
| 1937 | IN6_IS_SCOPE_EMBED(&SIN6(dst)->sin6_addr) && |
| 1938 | SIN6(dst)->sin6_scope_id == IFSCOPE_NONE) { |
| 1939 | SIN6(dst)->sin6_scope_id = ifscope; |
| 1940 | if (in6_embedded_scope_debug) { |
| 1941 | VERIFY(SIN6(dst)->sin6_scope_id != IFSCOPE_NONE); |
| 1942 | } |
| 1943 | } |
| 1944 | |
| 1945 | if (af == AF_INET6 && |
| 1946 | IN6_IS_SCOPE_EMBED(&SIN6(dst)->sin6_addr) && |
| 1947 | ifscope == IFSCOPE_NONE) { |
| 1948 | ifscope = SIN6(dst)->sin6_scope_id; |
| 1949 | flags |= RTF_IFSCOPE; |
| 1950 | if (in6_embedded_scope_debug) { |
| 1951 | VERIFY(ifscope!= IFSCOPE_NONE); |
| 1952 | } |
| 1953 | } |
| 1954 | } |
| 1955 | |
| 1956 | switch (req) { |
| 1957 | case RTM_DELETE: { |
| 1958 | rtentry_ref_t gwrt = NULL; |
| 1959 | boolean_t was_router = FALSE; |
| 1960 | uint32_t old_rt_refcnt = 0; |
| 1961 | /* |
| 1962 | * Remove the item from the tree and return it. |
| 1963 | * Complain if it is not there and do no more processing. |
| 1964 | */ |
| 1965 | if ((rn = rnh->rnh_deladdr(dst, netmask, rnh)) == NULL) { |
| 1966 | senderr(ESRCH); |
| 1967 | } |
| 1968 | if (rn->rn_flags & (RNF_ACTIVE | RNF_ROOT)) { |
| 1969 | panic("rtrequest delete" ); |
| 1970 | /* NOTREACHED */ |
| 1971 | } |
| 1972 | rt = RT(rn); |
| 1973 | |
| 1974 | RT_LOCK(rt); |
| 1975 | old_rt_refcnt = rt->rt_refcnt; |
| 1976 | rt->rt_flags &= ~RTF_UP; |
| 1977 | /* |
| 1978 | * Release any idle reference count held on the interface |
| 1979 | * as this route is no longer externally visible. |
| 1980 | */ |
| 1981 | rt_clear_idleref(rt); |
| 1982 | /* |
| 1983 | * Take an extra reference to handle the deletion of a route |
| 1984 | * entry whose reference count is already 0; e.g. an expiring |
| 1985 | * cloned route entry or an entry that was added to the table |
| 1986 | * with 0 reference. If the caller is interested in this route, |
| 1987 | * we will return it with the reference intact. Otherwise we |
| 1988 | * will decrement the reference via rtfree_locked() and then |
| 1989 | * possibly deallocate it. |
| 1990 | */ |
| 1991 | RT_ADDREF_LOCKED(rt); |
| 1992 | |
| 1993 | /* |
| 1994 | * For consistency, in case the caller didn't set the flag. |
| 1995 | */ |
| 1996 | rt->rt_flags |= RTF_CONDEMNED; |
| 1997 | |
| 1998 | /* |
| 1999 | * Clear RTF_ROUTER if it's set. |
| 2000 | */ |
| 2001 | if (rt->rt_flags & RTF_ROUTER) { |
| 2002 | was_router = TRUE; |
| 2003 | VERIFY(rt->rt_flags & RTF_HOST); |
| 2004 | rt->rt_flags &= ~RTF_ROUTER; |
| 2005 | } |
| 2006 | |
| 2007 | /* |
| 2008 | * Enqueue work item to invoke callback for this route entry |
| 2009 | * |
| 2010 | * If the old count is 0, it implies that last reference is being |
| 2011 | * removed and there's no one listening for this route event. |
| 2012 | */ |
| 2013 | if (old_rt_refcnt != 0) { |
| 2014 | route_event_enqueue_nwk_wq_entry(rt, NULL, |
| 2015 | ROUTE_ENTRY_DELETED, NULL, TRUE); |
| 2016 | } |
| 2017 | |
| 2018 | /* |
| 2019 | * Now search what's left of the subtree for any cloned |
| 2020 | * routes which might have been formed from this node. |
| 2021 | */ |
| 2022 | if ((rt->rt_flags & (RTF_CLONING | RTF_PRCLONING)) && |
| 2023 | rt_mask(rt)) { |
| 2024 | RT_UNLOCK(rt); |
| 2025 | rnh->rnh_walktree_from(rnh, dst, rt_mask(rt), |
| 2026 | rt_fixdelete, rt); |
| 2027 | RT_LOCK(rt); |
| 2028 | } |
| 2029 | |
| 2030 | if (was_router) { |
| 2031 | struct route_event rt_ev; |
| 2032 | route_event_init(p_route_ev: &rt_ev, rt, NULL, route_ev_code: ROUTE_LLENTRY_DELETED); |
| 2033 | RT_UNLOCK(rt); |
| 2034 | (void) rnh->rnh_walktree(rnh, |
| 2035 | route_event_walktree, (void *)&rt_ev); |
| 2036 | RT_LOCK(rt); |
| 2037 | } |
| 2038 | |
| 2039 | /* |
| 2040 | * Remove any external references we may have. |
| 2041 | */ |
| 2042 | if ((gwrt = rt->rt_gwroute) != NULL) { |
| 2043 | rt->rt_gwroute = NULL; |
| 2044 | } |
| 2045 | |
| 2046 | /* |
| 2047 | * give the protocol a chance to keep things in sync. |
| 2048 | */ |
| 2049 | if ((ifa = rt->rt_ifa) != NULL) { |
| 2050 | IFA_LOCK_SPIN(ifa); |
| 2051 | ifa_rtrequest = ifa->ifa_rtrequest; |
| 2052 | IFA_UNLOCK(ifa); |
| 2053 | if (ifa_rtrequest != NULL) { |
| 2054 | ifa_rtrequest(RTM_DELETE, rt, NULL); |
| 2055 | } |
| 2056 | /* keep reference on rt_ifa */ |
| 2057 | ifa = NULL; |
| 2058 | } |
| 2059 | |
| 2060 | /* |
| 2061 | * one more rtentry floating around that is not |
| 2062 | * linked to the routing table. |
| 2063 | */ |
| 2064 | (void) OSIncrementAtomic(&rttrash); |
| 2065 | if (rte_debug & RTD_DEBUG) { |
| 2066 | TAILQ_INSERT_TAIL(&rttrash_head, |
| 2067 | (rtentry_dbg_ref_t)rt, rtd_trash_link); |
| 2068 | } |
| 2069 | |
| 2070 | /* |
| 2071 | * If this is the (non-scoped) default route, clear |
| 2072 | * the interface index used for the primary ifscope. |
| 2073 | */ |
| 2074 | if (rt_primary_default(rt, rt_key(rt))) { |
| 2075 | set_primary_ifscope(rt_key(rt)->sa_family, |
| 2076 | IFSCOPE_NONE); |
| 2077 | if ((rt->rt_flags & RTF_STATIC) && |
| 2078 | rt_key(rt)->sa_family == PF_INET6) { |
| 2079 | trigger_v6_defrtr_select = TRUE; |
| 2080 | } |
| 2081 | } |
| 2082 | |
| 2083 | #if NECP |
| 2084 | /* |
| 2085 | * If this is a change in a default route, update |
| 2086 | * necp client watchers to re-evaluate |
| 2087 | */ |
| 2088 | if (SA_DEFAULT(rt_key(rt))) { |
| 2089 | if (rt->rt_ifp != NULL) { |
| 2090 | ifnet_touch_lastupdown(interface: rt->rt_ifp); |
| 2091 | } |
| 2092 | necp_update_all_clients(); |
| 2093 | } |
| 2094 | #endif /* NECP */ |
| 2095 | |
| 2096 | RT_UNLOCK(rt); |
| 2097 | |
| 2098 | /* |
| 2099 | * This might result in another rtentry being freed if |
| 2100 | * we held its last reference. Do this after the rtentry |
| 2101 | * lock is dropped above, as it could lead to the same |
| 2102 | * lock being acquired if gwrt is a clone of rt. |
| 2103 | */ |
| 2104 | if (gwrt != NULL) { |
| 2105 | rtfree_locked(rt: gwrt); |
| 2106 | } |
| 2107 | |
| 2108 | /* |
| 2109 | * If the caller wants it, then it can have it, |
| 2110 | * but it's up to it to free the rtentry as we won't be |
| 2111 | * doing it. |
| 2112 | */ |
| 2113 | if (ret_nrt != NULL) { |
| 2114 | /* Return the route to caller with reference intact */ |
| 2115 | *ret_nrt = rt; |
| 2116 | } else { |
| 2117 | /* Dereference or deallocate the route */ |
| 2118 | rtfree_locked(rt); |
| 2119 | } |
| 2120 | if (af == AF_INET) { |
| 2121 | routegenid_inet_update(); |
| 2122 | } else if (af == AF_INET6) { |
| 2123 | routegenid_inet6_update(); |
| 2124 | } |
| 2125 | break; |
| 2126 | } |
| 2127 | case RTM_RESOLVE: |
| 2128 | if (ret_nrt == NULL || (rt = *ret_nrt) == NULL) { |
| 2129 | senderr(EINVAL); |
| 2130 | } |
| 2131 | /* |
| 2132 | * According to the UNIX conformance tests, we need to return |
| 2133 | * ENETUNREACH when the parent route is RTF_REJECT. |
| 2134 | * However, there isn't any point in cloning RTF_REJECT |
| 2135 | * routes, so we immediately return an error. |
| 2136 | */ |
| 2137 | if (rt->rt_flags & RTF_REJECT) { |
| 2138 | if (rt->rt_flags & RTF_HOST) { |
| 2139 | senderr(EHOSTUNREACH); |
| 2140 | } else { |
| 2141 | senderr(ENETUNREACH); |
| 2142 | } |
| 2143 | } |
| 2144 | /* |
| 2145 | * If cloning, we have the parent route given by the caller |
| 2146 | * and will use its rt_gateway, rt_rmx as part of the cloning |
| 2147 | * process below. Since rnh_lock is held at this point, the |
| 2148 | * parent's rt_ifa and rt_gateway will not change, and its |
| 2149 | * relevant rt_flags will not change as well. The only thing |
| 2150 | * that could change are the metrics, and thus we hold the |
| 2151 | * parent route's rt_lock later on during the actual copying |
| 2152 | * of rt_rmx. |
| 2153 | */ |
| 2154 | ifa = rt->rt_ifa; |
| 2155 | ifa_addref(ifa); |
| 2156 | flags = rt->rt_flags & |
| 2157 | ~(RTF_CLONING | RTF_PRCLONING | RTF_STATIC); |
| 2158 | flags |= RTF_WASCLONED; |
| 2159 | gateway = rt->rt_gateway; |
| 2160 | if ((netmask = rt->rt_genmask) == NULL) { |
| 2161 | flags |= RTF_HOST; |
| 2162 | } |
| 2163 | |
| 2164 | if (af != AF_INET && af != AF_INET6) { |
| 2165 | goto makeroute; |
| 2166 | } |
| 2167 | |
| 2168 | /* |
| 2169 | * When scoped routing is enabled, cloned entries are |
| 2170 | * always scoped according to the interface portion of |
| 2171 | * the parent route. The exception to this are IPv4 |
| 2172 | * link local addresses, or those routes that are cloned |
| 2173 | * from a RTF_PROXY route. For the latter, the clone |
| 2174 | * gets to keep the RTF_PROXY flag. |
| 2175 | */ |
| 2176 | if ((af == AF_INET && |
| 2177 | IN_LINKLOCAL(ntohl(SIN(dst)->sin_addr.s_addr))) || |
| 2178 | (rt->rt_flags & RTF_PROXY)) { |
| 2179 | ifscope = IFSCOPE_NONE; |
| 2180 | flags &= ~RTF_IFSCOPE; |
| 2181 | /* |
| 2182 | * These types of cloned routes aren't currently |
| 2183 | * eligible for idle interface reference counting. |
| 2184 | */ |
| 2185 | flags |= RTF_NOIFREF; |
| 2186 | } else { |
| 2187 | if (flags & RTF_IFSCOPE) { |
| 2188 | ifscope = (af == AF_INET) ? |
| 2189 | sin_get_ifscope(rt_key(rt)) : |
| 2190 | sin6_get_ifscope(rt_key(rt)); |
| 2191 | } else { |
| 2192 | ifscope = rt->rt_ifp->if_index; |
| 2193 | flags |= RTF_IFSCOPE; |
| 2194 | } |
| 2195 | VERIFY(ifscope != IFSCOPE_NONE); |
| 2196 | } |
| 2197 | |
| 2198 | /* |
| 2199 | * Transform dst into the internal routing table form, |
| 2200 | * clearing out the scope ID field if ifscope isn't set. |
| 2201 | */ |
| 2202 | dst = sa_copy(src: dst, dst: &ss, pifscope: (ifscope == IFSCOPE_NONE) ? |
| 2203 | NULL : &ifscope); |
| 2204 | |
| 2205 | /* Transform netmask into the internal routing table form */ |
| 2206 | if (netmask != NULL) { |
| 2207 | netmask = ma_copy(af, src: netmask, dst: &mask, ifscope); |
| 2208 | } |
| 2209 | |
| 2210 | goto makeroute; |
| 2211 | |
| 2212 | case RTM_ADD: |
| 2213 | if ((flags & RTF_GATEWAY) && !gateway) { |
| 2214 | panic("rtrequest: RTF_GATEWAY but no gateway" ); |
| 2215 | /* NOTREACHED */ |
| 2216 | } |
| 2217 | if (flags & RTF_IFSCOPE) { |
| 2218 | ifa = ifa_ifwithroute_scoped_locked(flags, dst: dst0, |
| 2219 | gateway, ifscope); |
| 2220 | } else { |
| 2221 | ifa = ifa_ifwithroute_locked(flags, dst: dst0, gateway); |
| 2222 | } |
| 2223 | if (ifa == NULL) { |
| 2224 | senderr(ENETUNREACH); |
| 2225 | } |
| 2226 | makeroute: |
| 2227 | /* |
| 2228 | * We land up here for both RTM_RESOLVE and RTM_ADD |
| 2229 | * when we decide to create a route. |
| 2230 | */ |
| 2231 | if ((rt = rte_alloc()) == NULL) { |
| 2232 | senderr(ENOBUFS); |
| 2233 | } |
| 2234 | Bzero(rt, sizeof(*rt)); |
| 2235 | rte_lock_init(rt); |
| 2236 | eventhandler_lists_ctxt_init(evthdlr_lists_ctxt: &rt->rt_evhdlr_ctxt); |
| 2237 | getmicrotime(&caltime); |
| 2238 | rt->base_calendartime = caltime.tv_sec; |
| 2239 | rt->base_uptime = net_uptime(); |
| 2240 | RT_LOCK(rt); |
| 2241 | rt->rt_flags = RTF_UP | flags; |
| 2242 | |
| 2243 | /* |
| 2244 | * Point the generation ID to the tree's. |
| 2245 | */ |
| 2246 | switch (af) { |
| 2247 | case AF_INET: |
| 2248 | rt->rt_tree_genid = &route_genid_inet; |
| 2249 | break; |
| 2250 | case AF_INET6: |
| 2251 | rt->rt_tree_genid = &route_genid_inet6; |
| 2252 | break; |
| 2253 | default: |
| 2254 | break; |
| 2255 | } |
| 2256 | |
| 2257 | /* |
| 2258 | * Add the gateway. Possibly re-malloc-ing the storage for it |
| 2259 | * also add the rt_gwroute if possible. |
| 2260 | */ |
| 2261 | if ((error = rt_setgate(rt, dst, gateway)) != 0) { |
| 2262 | int tmp = error; |
| 2263 | RT_UNLOCK(rt); |
| 2264 | nstat_route_detach(rte: rt); |
| 2265 | rte_lock_destroy(rt); |
| 2266 | rte_free(rt); |
| 2267 | senderr(tmp); |
| 2268 | } |
| 2269 | |
| 2270 | /* |
| 2271 | * point to the (possibly newly malloc'd) dest address. |
| 2272 | */ |
| 2273 | ndst = rt_key(rt); |
| 2274 | |
| 2275 | /* |
| 2276 | * make sure it contains the value we want (masked if needed). |
| 2277 | */ |
| 2278 | if (netmask) { |
| 2279 | rt_maskedcopy(dst, ndst, netmask); |
| 2280 | } else { |
| 2281 | SOCKADDR_COPY(dst, ndst, dst->sa_len); |
| 2282 | } |
| 2283 | |
| 2284 | /* |
| 2285 | * Note that we now have a reference to the ifa. |
| 2286 | * This moved from below so that rnh->rnh_addaddr() can |
| 2287 | * examine the ifa and ifa->ifa_ifp if it so desires. |
| 2288 | */ |
| 2289 | rtsetifa(rt, ifa); |
| 2290 | rt->rt_ifp = rt->rt_ifa->ifa_ifp; |
| 2291 | |
| 2292 | /* XXX mtu manipulation will be done in rnh_addaddr -- itojun */ |
| 2293 | |
| 2294 | rn = rnh->rnh_addaddr((caddr_t)ndst, (caddr_t)netmask, |
| 2295 | rnh, rt->rt_nodes); |
| 2296 | if (rn == 0) { |
| 2297 | rtentry_ref_t rt2; |
| 2298 | /* |
| 2299 | * Uh-oh, we already have one of these in the tree. |
| 2300 | * We do a special hack: if the route that's already |
| 2301 | * there was generated by the protocol-cloning |
| 2302 | * mechanism, then we just blow it away and retry |
| 2303 | * the insertion of the new one. |
| 2304 | */ |
| 2305 | if (flags & RTF_IFSCOPE) { |
| 2306 | rt2 = rtalloc1_scoped_locked(dst: dst0, report: 0, |
| 2307 | RTF_CLONING | RTF_PRCLONING, ifscope); |
| 2308 | } else { |
| 2309 | rt2 = rtalloc1_locked(dst, report: 0, |
| 2310 | RTF_CLONING | RTF_PRCLONING); |
| 2311 | } |
| 2312 | if (rt2 && rt2->rt_parent) { |
| 2313 | /* |
| 2314 | * rnh_lock is held here, so rt_key and |
| 2315 | * rt_gateway of rt2 will not change. |
| 2316 | */ |
| 2317 | (void) rtrequest_locked(RTM_DELETE, rt_key(rt2), |
| 2318 | gateway: rt2->rt_gateway, rt_mask(rt2), |
| 2319 | flags: rt2->rt_flags, ret_nrt: 0); |
| 2320 | rtfree_locked(rt: rt2); |
| 2321 | rn = rnh->rnh_addaddr((caddr_t)ndst, |
| 2322 | (caddr_t)netmask, rnh, rt->rt_nodes); |
| 2323 | } else if (rt2) { |
| 2324 | /* undo the extra ref we got */ |
| 2325 | rtfree_locked(rt: rt2); |
| 2326 | } |
| 2327 | } |
| 2328 | |
| 2329 | /* |
| 2330 | * If it still failed to go into the tree, |
| 2331 | * then un-make it (this should be a function) |
| 2332 | */ |
| 2333 | if (rn == NULL) { |
| 2334 | char dbuf[MAX_IPv6_STR_LEN], gbuf[MAX_IPv6_STR_LEN]; |
| 2335 | |
| 2336 | rt_str(rt, dbuf, sizeof(dbuf), gbuf, sizeof(gbuf)); |
| 2337 | os_log_error(OS_LOG_DEFAULT, "%s: route already exists: " |
| 2338 | "%s->%s->%s" , |
| 2339 | __func__, dbuf, gbuf, |
| 2340 | ((rt->rt_ifp != NULL) ? |
| 2341 | rt->rt_ifp->if_xname : "" )); |
| 2342 | |
| 2343 | /* Clear gateway route */ |
| 2344 | rt_set_gwroute(rt, rt_key(rt), NULL); |
| 2345 | if (rt->rt_ifa) { |
| 2346 | ifa_remref(ifa: rt->rt_ifa); |
| 2347 | rt->rt_ifa = NULL; |
| 2348 | } |
| 2349 | rt_key_free(rt); |
| 2350 | RT_UNLOCK(rt); |
| 2351 | nstat_route_detach(rte: rt); |
| 2352 | rte_lock_destroy(rt); |
| 2353 | rte_free(rt); |
| 2354 | senderr(EEXIST); |
| 2355 | } |
| 2356 | |
| 2357 | rt->rt_parent = NULL; |
| 2358 | |
| 2359 | /* |
| 2360 | * If we got here from RESOLVE, then we are cloning so clone |
| 2361 | * the rest, and note that we are a clone (and increment the |
| 2362 | * parent's references). rnh_lock is still held, which prevents |
| 2363 | * a lookup from returning the newly-created route. Hence |
| 2364 | * holding and releasing the parent's rt_lock while still |
| 2365 | * holding the route's rt_lock is safe since the new route |
| 2366 | * is not yet externally visible. |
| 2367 | */ |
| 2368 | if (req == RTM_RESOLVE) { |
| 2369 | RT_LOCK_SPIN(*ret_nrt); |
| 2370 | VERIFY((*ret_nrt)->rt_expire == 0 || |
| 2371 | (*ret_nrt)->rt_rmx.rmx_expire != 0); |
| 2372 | VERIFY((*ret_nrt)->rt_expire != 0 || |
| 2373 | (*ret_nrt)->rt_rmx.rmx_expire == 0); |
| 2374 | rt->rt_rmx = (*ret_nrt)->rt_rmx; |
| 2375 | rt_setexpire(rt, (*ret_nrt)->rt_expire); |
| 2376 | if ((*ret_nrt)->rt_flags & |
| 2377 | (RTF_CLONING | RTF_PRCLONING)) { |
| 2378 | rt->rt_parent = (*ret_nrt); |
| 2379 | RT_ADDREF_LOCKED(*ret_nrt); |
| 2380 | } |
| 2381 | RT_UNLOCK(*ret_nrt); |
| 2382 | } |
| 2383 | |
| 2384 | /* |
| 2385 | * if this protocol has something to add to this then |
| 2386 | * allow it to do that as well. |
| 2387 | */ |
| 2388 | IFA_LOCK_SPIN(ifa); |
| 2389 | ifa_rtrequest = ifa->ifa_rtrequest; |
| 2390 | IFA_UNLOCK(ifa); |
| 2391 | if (ifa_rtrequest != NULL) { |
| 2392 | /* |
| 2393 | * Can not use SA(ret_nrt ? *ret_nrt : NULL), |
| 2394 | * because *ret_nrt is not a sockadr. |
| 2395 | */ |
| 2396 | ifa_rtrequest(req, rt, |
| 2397 | __unsafe_forge_single(struct sockaddr*, ret_nrt ? *ret_nrt : NULL)); |
| 2398 | } |
| 2399 | ifa_remref(ifa); |
| 2400 | ifa = NULL; |
| 2401 | |
| 2402 | /* |
| 2403 | * If this is the (non-scoped) default route, record |
| 2404 | * the interface index used for the primary ifscope. |
| 2405 | */ |
| 2406 | if (rt_primary_default(rt, rt_key(rt))) { |
| 2407 | set_primary_ifscope(rt_key(rt)->sa_family, |
| 2408 | ifscope: rt->rt_ifp->if_index); |
| 2409 | } |
| 2410 | |
| 2411 | #if NECP |
| 2412 | /* |
| 2413 | * If this is a change in a default route, update |
| 2414 | * necp client watchers to re-evaluate |
| 2415 | */ |
| 2416 | if (SA_DEFAULT(rt_key(rt))) { |
| 2417 | /* |
| 2418 | * Mark default routes as (potentially) leading to the global internet |
| 2419 | * this can be used for policy decisions. |
| 2420 | * The clone routes will inherit this flag. |
| 2421 | * We check against the host flag as this works for default routes that have |
| 2422 | * a gateway and defaults routes when all subnets are local. |
| 2423 | */ |
| 2424 | if (req == RTM_ADD && (rt->rt_flags & RTF_HOST) == 0) { |
| 2425 | rt->rt_flags |= RTF_GLOBAL; |
| 2426 | } |
| 2427 | if (rt->rt_ifp != NULL) { |
| 2428 | ifnet_touch_lastupdown(interface: rt->rt_ifp); |
| 2429 | } |
| 2430 | necp_update_all_clients(); |
| 2431 | } |
| 2432 | #endif /* NECP */ |
| 2433 | |
| 2434 | /* |
| 2435 | * actually return a resultant rtentry and |
| 2436 | * give the caller a single reference. |
| 2437 | */ |
| 2438 | if (ret_nrt) { |
| 2439 | *ret_nrt = rt; |
| 2440 | RT_ADDREF_LOCKED(rt); |
| 2441 | } |
| 2442 | |
| 2443 | if (af == AF_INET) { |
| 2444 | routegenid_inet_update(); |
| 2445 | } else if (af == AF_INET6) { |
| 2446 | routegenid_inet6_update(); |
| 2447 | } |
| 2448 | |
| 2449 | RT_GENID_SYNC(rt); |
| 2450 | |
| 2451 | /* |
| 2452 | * We repeat the same procedures from rt_setgate() here |
| 2453 | * because they weren't completed when we called it earlier, |
| 2454 | * since the node was embryonic. |
| 2455 | */ |
| 2456 | if ((rt->rt_flags & RTF_GATEWAY) && rt->rt_gwroute != NULL) { |
| 2457 | rt_set_gwroute(rt, rt_key(rt), rt->rt_gwroute); |
| 2458 | } |
| 2459 | |
| 2460 | if (req == RTM_ADD && |
| 2461 | !(rt->rt_flags & RTF_HOST) && rt_mask(rt) != NULL) { |
| 2462 | struct rtfc_arg arg; |
| 2463 | arg.rnh = rnh; |
| 2464 | arg.rt0 = rt; |
| 2465 | RT_UNLOCK(rt); |
| 2466 | rnh->rnh_walktree_from(rnh, rt_key(rt), rt_mask(rt), |
| 2467 | rt_fixchange, &arg); |
| 2468 | } else { |
| 2469 | RT_UNLOCK(rt); |
| 2470 | } |
| 2471 | |
| 2472 | nstat_route_new_entry(rt); |
| 2473 | break; |
| 2474 | } |
| 2475 | bad: |
| 2476 | if (ifa) { |
| 2477 | ifa_remref(ifa); |
| 2478 | } |
| 2479 | return error; |
| 2480 | } |
| 2481 | #undef senderr |
| 2482 | |
| 2483 | int |
| 2484 | rtrequest(int req, struct sockaddr *dst, struct sockaddr *gateway, |
| 2485 | struct sockaddr *netmask, int flags, struct rtentry **ret_nrt) |
| 2486 | { |
| 2487 | int error; |
| 2488 | LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_NOTOWNED); |
| 2489 | lck_mtx_lock(rnh_lock); |
| 2490 | error = rtrequest_locked(req, dst, gateway, netmask, flags, ret_nrt); |
| 2491 | lck_mtx_unlock(rnh_lock); |
| 2492 | return error; |
| 2493 | } |
| 2494 | |
| 2495 | int |
| 2496 | rtrequest_scoped(int req, struct sockaddr *dst, struct sockaddr *gateway, |
| 2497 | struct sockaddr *netmask, int flags, struct rtentry **ret_nrt, |
| 2498 | unsigned int ifscope) |
| 2499 | { |
| 2500 | int error; |
| 2501 | LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_NOTOWNED); |
| 2502 | lck_mtx_lock(rnh_lock); |
| 2503 | error = rtrequest_scoped_locked(req, dst, gateway, netmask, flags, |
| 2504 | ret_nrt, ifscope); |
| 2505 | lck_mtx_unlock(rnh_lock); |
| 2506 | return error; |
| 2507 | } |
| 2508 | |
| 2509 | /* |
| 2510 | * Called from rtrequest(RTM_DELETE, ...) to fix up the route's ``family'' |
| 2511 | * (i.e., the routes related to it by the operation of cloning). This |
| 2512 | * routine is iterated over all potential former-child-routes by way of |
| 2513 | * rnh->rnh_walktree_from() above, and those that actually are children of |
| 2514 | * the late parent (passed in as VP here) are themselves deleted. |
| 2515 | */ |
| 2516 | static int |
| 2517 | rt_fixdelete(struct radix_node *rn, void *vp) |
| 2518 | { |
| 2519 | rtentry_ref_t rt = (rtentry_ref_t)rn; |
| 2520 | rtentry_ref_t rt0 = (rtentry_ref_t)vp; |
| 2521 | |
| 2522 | LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_OWNED); |
| 2523 | |
| 2524 | RT_LOCK(rt); |
| 2525 | if (rt->rt_parent == rt0 && |
| 2526 | !(rt->rt_flags & (RTF_CLONING | RTF_PRCLONING))) { |
| 2527 | /* |
| 2528 | * Safe to drop rt_lock and use rt_key, since holding |
| 2529 | * rnh_lock here prevents another thread from calling |
| 2530 | * rt_setgate() on this route. |
| 2531 | */ |
| 2532 | RT_UNLOCK(rt); |
| 2533 | return rtrequest_locked(RTM_DELETE, rt_key(rt), NULL, |
| 2534 | rt_mask(rt), flags: rt->rt_flags, NULL); |
| 2535 | } |
| 2536 | RT_UNLOCK(rt); |
| 2537 | return 0; |
| 2538 | } |
| 2539 | |
| 2540 | /* |
| 2541 | * This routine is called from rt_setgate() to do the analogous thing for |
| 2542 | * adds and changes. There is the added complication in this case of a |
| 2543 | * middle insert; i.e., insertion of a new network route between an older |
| 2544 | * network route and (cloned) host routes. For this reason, a simple check |
| 2545 | * of rt->rt_parent is insufficient; each candidate route must be tested |
| 2546 | * against the (mask, value) of the new route (passed as before in vp) |
| 2547 | * to see if the new route matches it. |
| 2548 | * |
| 2549 | * XXX - it may be possible to do fixdelete() for changes and reserve this |
| 2550 | * routine just for adds. I'm not sure why I thought it was necessary to do |
| 2551 | * changes this way. |
| 2552 | */ |
| 2553 | static int |
| 2554 | rt_fixchange(struct radix_node *rn, void *vp) |
| 2555 | { |
| 2556 | rtentry_ref_t rt = (rtentry_ref_t)rn; |
| 2557 | struct rtfc_arg *ap = vp; |
| 2558 | rtentry_ref_t rt0 = ap->rt0; |
| 2559 | struct radix_node_head *rnh = ap->rnh; |
| 2560 | u_char *xk1, *xm1, *xk2, *xmp; |
| 2561 | int i, len; |
| 2562 | |
| 2563 | LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_OWNED); |
| 2564 | |
| 2565 | RT_LOCK(rt); |
| 2566 | |
| 2567 | if (!rt->rt_parent || |
| 2568 | (rt->rt_flags & (RTF_CLONING | RTF_PRCLONING))) { |
| 2569 | RT_UNLOCK(rt); |
| 2570 | return 0; |
| 2571 | } |
| 2572 | |
| 2573 | if (rt->rt_parent == rt0) { |
| 2574 | goto delete_rt; |
| 2575 | } |
| 2576 | |
| 2577 | /* |
| 2578 | * There probably is a function somewhere which does this... |
| 2579 | * if not, there should be. |
| 2580 | */ |
| 2581 | len = imin(rt_key(rt0)->sa_len, rt_key(rt)->sa_len); |
| 2582 | |
| 2583 | xk1 = (u_char *)rt_key(rt0); |
| 2584 | xm1 = (u_char *)rt_mask(rt0); |
| 2585 | xk2 = (u_char *)rt_key(rt); |
| 2586 | |
| 2587 | /* |
| 2588 | * Avoid applying a less specific route; do this only if the parent |
| 2589 | * route (rt->rt_parent) is a network route, since otherwise its mask |
| 2590 | * will be NULL if it is a cloning host route. |
| 2591 | */ |
| 2592 | if ((xmp = (u_char *)rt_mask(rt->rt_parent)) != NULL) { |
| 2593 | int mlen = rt_mask(rt->rt_parent)->sa_len; |
| 2594 | if (mlen > rt_mask(rt0)->sa_len) { |
| 2595 | RT_UNLOCK(rt); |
| 2596 | return 0; |
| 2597 | } |
| 2598 | |
| 2599 | for (i = rnh->rnh_treetop->rn_offset; i < mlen; i++) { |
| 2600 | if ((xmp[i] & ~(xmp[i] ^ xm1[i])) != xmp[i]) { |
| 2601 | RT_UNLOCK(rt); |
| 2602 | return 0; |
| 2603 | } |
| 2604 | } |
| 2605 | } |
| 2606 | |
| 2607 | for (i = rnh->rnh_treetop->rn_offset; i < len; i++) { |
| 2608 | if ((xk2[i] & xm1[i]) != xk1[i]) { |
| 2609 | RT_UNLOCK(rt); |
| 2610 | return 0; |
| 2611 | } |
| 2612 | } |
| 2613 | |
| 2614 | /* |
| 2615 | * OK, this node is a clone, and matches the node currently being |
| 2616 | * changed/added under the node's mask. So, get rid of it. |
| 2617 | */ |
| 2618 | delete_rt: |
| 2619 | /* |
| 2620 | * Safe to drop rt_lock and use rt_key, since holding rnh_lock here |
| 2621 | * prevents another thread from calling rt_setgate() on this route. |
| 2622 | */ |
| 2623 | RT_UNLOCK(rt); |
| 2624 | return rtrequest_locked(RTM_DELETE, rt_key(rt), NULL, |
| 2625 | rt_mask(rt), flags: rt->rt_flags, NULL); |
| 2626 | } |
| 2627 | |
| 2628 | /* |
| 2629 | * Round up sockaddr len to multiples of 32-bytes. This will reduce |
| 2630 | * or even eliminate the need to re-allocate the chunk of memory used |
| 2631 | * for rt_key and rt_gateway in the event the gateway portion changes. |
| 2632 | * Certain code paths (e.g. IPsec) are notorious for caching the address |
| 2633 | * of rt_gateway; this rounding-up would help ensure that the gateway |
| 2634 | * portion never gets deallocated (though it may change contents) and |
| 2635 | * thus greatly simplifies things. |
| 2636 | */ |
| 2637 | #define SA_SIZE(x) (-(-((uintptr_t)(x)) & -(32))) |
| 2638 | |
| 2639 | /* |
| 2640 | * Sets the gateway and/or gateway route portion of a route; may be |
| 2641 | * called on an existing route to modify the gateway portion. Both |
| 2642 | * rt_key and rt_gateway are allocated out of the same memory chunk. |
| 2643 | * Route entry lock must be held by caller; this routine will return |
| 2644 | * with the lock held. |
| 2645 | */ |
| 2646 | int |
| 2647 | rt_setgate(struct rtentry *rt, struct sockaddr *dst, struct sockaddr *gate) |
| 2648 | { |
| 2649 | int dlen = (int)SA_SIZE(dst->sa_len), glen = (int)SA_SIZE(gate->sa_len); |
| 2650 | struct radix_node_head *rnh = NULL; |
| 2651 | boolean_t loop = FALSE; |
| 2652 | |
| 2653 | if (dst->sa_family != AF_INET && dst->sa_family != AF_INET6) { |
| 2654 | return EINVAL; |
| 2655 | } |
| 2656 | |
| 2657 | rnh = rt_tables[dst->sa_family]; |
| 2658 | LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_OWNED); |
| 2659 | RT_LOCK_ASSERT_HELD(rt); |
| 2660 | |
| 2661 | /* |
| 2662 | * If this is for a route that is on its way of being removed, |
| 2663 | * or is temporarily frozen, reject the modification request. |
| 2664 | */ |
| 2665 | if (rt->rt_flags & RTF_CONDEMNED) { |
| 2666 | return EBUSY; |
| 2667 | } |
| 2668 | |
| 2669 | /* Add an extra ref for ourselves */ |
| 2670 | RT_ADDREF_LOCKED(rt); |
| 2671 | |
| 2672 | if (rt->rt_flags & RTF_GATEWAY) { |
| 2673 | if ((dst->sa_len == gate->sa_len) && |
| 2674 | (dst->sa_family == AF_INET || dst->sa_family == AF_INET6)) { |
| 2675 | struct sockaddr_storage dst_ss, gate_ss; |
| 2676 | |
| 2677 | (void) sa_copy(src: dst, dst: &dst_ss, NULL); |
| 2678 | (void) sa_copy(src: gate, dst: &gate_ss, NULL); |
| 2679 | |
| 2680 | loop = sa_equal(SA(&dst_ss), SA(&gate_ss)); |
| 2681 | } else { |
| 2682 | loop = (dst->sa_len == gate->sa_len && |
| 2683 | sa_equal(dst, gate)); |
| 2684 | } |
| 2685 | } |
| 2686 | |
| 2687 | /* |
| 2688 | * A (cloning) network route with the destination equal to the gateway |
| 2689 | * will create an endless loop (see notes below), so disallow it. |
| 2690 | */ |
| 2691 | if (((rt->rt_flags & (RTF_HOST | RTF_GATEWAY | RTF_LLINFO)) == |
| 2692 | RTF_GATEWAY) && loop) { |
| 2693 | /* Release extra ref */ |
| 2694 | RT_REMREF_LOCKED(rt); |
| 2695 | return EADDRNOTAVAIL; |
| 2696 | } |
| 2697 | |
| 2698 | /* |
| 2699 | * A host route with the destination equal to the gateway |
| 2700 | * will interfere with keeping LLINFO in the routing |
| 2701 | * table, so disallow it. |
| 2702 | */ |
| 2703 | if (((rt->rt_flags & (RTF_HOST | RTF_GATEWAY | RTF_LLINFO)) == |
| 2704 | (RTF_HOST | RTF_GATEWAY)) && loop) { |
| 2705 | /* |
| 2706 | * The route might already exist if this is an RTM_CHANGE |
| 2707 | * or a routing redirect, so try to delete it. |
| 2708 | */ |
| 2709 | if (rt_key(rt) != NULL) { |
| 2710 | /* |
| 2711 | * Safe to drop rt_lock and use rt_key, rt_gateway, |
| 2712 | * since holding rnh_lock here prevents another thread |
| 2713 | * from calling rt_setgate() on this route. |
| 2714 | */ |
| 2715 | RT_UNLOCK(rt); |
| 2716 | (void) rtrequest_locked(RTM_DELETE, rt_key(rt), |
| 2717 | gateway: rt->rt_gateway, rt_mask(rt), flags: rt->rt_flags, NULL); |
| 2718 | RT_LOCK(rt); |
| 2719 | } |
| 2720 | /* Release extra ref */ |
| 2721 | RT_REMREF_LOCKED(rt); |
| 2722 | return EADDRNOTAVAIL; |
| 2723 | } |
| 2724 | |
| 2725 | /* |
| 2726 | * The destination is not directly reachable. Get a route |
| 2727 | * to the next-hop gateway and store it in rt_gwroute. |
| 2728 | */ |
| 2729 | if (rt->rt_flags & RTF_GATEWAY) { |
| 2730 | rtentry_ref_t gwrt; |
| 2731 | unsigned int ifscope; |
| 2732 | |
| 2733 | if (dst->sa_family == AF_INET) { |
| 2734 | ifscope = sin_get_ifscope(sa: dst); |
| 2735 | } else if (dst->sa_family == AF_INET6) { |
| 2736 | ifscope = sin6_get_ifscope(sa: dst); |
| 2737 | } else { |
| 2738 | ifscope = IFSCOPE_NONE; |
| 2739 | } |
| 2740 | |
| 2741 | RT_UNLOCK(rt); |
| 2742 | /* |
| 2743 | * Don't ignore RTF_CLONING, since we prefer that rt_gwroute |
| 2744 | * points to a clone rather than a cloning route; see above |
| 2745 | * check for cloning loop avoidance (dst == gate). |
| 2746 | */ |
| 2747 | gwrt = rtalloc1_scoped_locked(dst: gate, report: 1, RTF_PRCLONING, ifscope); |
| 2748 | if (gwrt != NULL) { |
| 2749 | RT_LOCK_ASSERT_NOTHELD(gwrt); |
| 2750 | } |
| 2751 | RT_LOCK(rt); |
| 2752 | |
| 2753 | /* |
| 2754 | * Cloning loop avoidance: |
| 2755 | * |
| 2756 | * In the presence of protocol-cloning and bad configuration, |
| 2757 | * it is possible to get stuck in bottomless mutual recursion |
| 2758 | * (rtrequest rt_setgate rtalloc1). We avoid this by not |
| 2759 | * allowing protocol-cloning to operate for gateways (which |
| 2760 | * is probably the correct choice anyway), and avoid the |
| 2761 | * resulting reference loops by disallowing any route to run |
| 2762 | * through itself as a gateway. This is obviously mandatory |
| 2763 | * when we get rt->rt_output(). It implies that a route to |
| 2764 | * the gateway must already be present in the system in order |
| 2765 | * for the gateway to be referred to by another route. |
| 2766 | */ |
| 2767 | if (gwrt == rt) { |
| 2768 | RT_REMREF_LOCKED(gwrt); |
| 2769 | /* Release extra ref */ |
| 2770 | RT_REMREF_LOCKED(rt); |
| 2771 | return EADDRINUSE; /* failure */ |
| 2772 | } |
| 2773 | |
| 2774 | /* |
| 2775 | * If scoped, the gateway route must use the same interface; |
| 2776 | * we're holding rnh_lock now, so rt_gateway and rt_ifp of gwrt |
| 2777 | * should not change and are freely accessible. |
| 2778 | */ |
| 2779 | if (ifscope != IFSCOPE_NONE && (rt->rt_flags & RTF_IFSCOPE) && |
| 2780 | gwrt != NULL && gwrt->rt_ifp != NULL && |
| 2781 | gwrt->rt_ifp->if_index != ifscope) { |
| 2782 | rtfree_locked(rt: gwrt); /* rt != gwrt, no deadlock */ |
| 2783 | /* Release extra ref */ |
| 2784 | RT_REMREF_LOCKED(rt); |
| 2785 | return (rt->rt_flags & RTF_HOST) ? |
| 2786 | EHOSTUNREACH : ENETUNREACH; |
| 2787 | } |
| 2788 | |
| 2789 | /* Check again since we dropped the lock above */ |
| 2790 | if (rt->rt_flags & RTF_CONDEMNED) { |
| 2791 | if (gwrt != NULL) { |
| 2792 | rtfree_locked(rt: gwrt); |
| 2793 | } |
| 2794 | /* Release extra ref */ |
| 2795 | RT_REMREF_LOCKED(rt); |
| 2796 | return EBUSY; |
| 2797 | } |
| 2798 | |
| 2799 | /* Set gateway route; callee adds ref to gwrt if non-NULL */ |
| 2800 | rt_set_gwroute(rt, dst, gwrt); |
| 2801 | |
| 2802 | /* |
| 2803 | * In case the (non-scoped) default route gets modified via |
| 2804 | * an ICMP redirect, record the interface index used for the |
| 2805 | * primary ifscope. Also done in rt_setif() to take care |
| 2806 | * of the non-redirect cases. |
| 2807 | */ |
| 2808 | if (rt_primary_default(rt, dst) && rt->rt_ifp != NULL) { |
| 2809 | set_primary_ifscope(af: dst->sa_family, |
| 2810 | ifscope: rt->rt_ifp->if_index); |
| 2811 | } |
| 2812 | |
| 2813 | #if NECP |
| 2814 | /* |
| 2815 | * If this is a change in a default route, update |
| 2816 | * necp client watchers to re-evaluate |
| 2817 | */ |
| 2818 | if (SA_DEFAULT(dst)) { |
| 2819 | necp_update_all_clients(); |
| 2820 | } |
| 2821 | #endif /* NECP */ |
| 2822 | |
| 2823 | /* |
| 2824 | * Tell the kernel debugger about the new default gateway |
| 2825 | * if the gateway route uses the primary interface, or |
| 2826 | * if we are in a transient state before the non-scoped |
| 2827 | * default gateway is installed (similar to how the system |
| 2828 | * was behaving in the past). In future, it would be good |
| 2829 | * to do all this only when KDP is enabled. |
| 2830 | */ |
| 2831 | if ((dst->sa_family == AF_INET) && |
| 2832 | gwrt != NULL && gwrt->rt_gateway->sa_family == AF_LINK && |
| 2833 | (gwrt->rt_ifp->if_index == get_primary_ifscope(AF_INET) || |
| 2834 | get_primary_ifscope(AF_INET) == IFSCOPE_NONE)) { |
| 2835 | kdp_set_gateway_mac(SDL(gwrt->rt_gateway)-> |
| 2836 | sdl_data); |
| 2837 | } |
| 2838 | |
| 2839 | /* Release extra ref from rtalloc1() */ |
| 2840 | if (gwrt != NULL) { |
| 2841 | RT_REMREF(gwrt); |
| 2842 | } |
| 2843 | } |
| 2844 | |
| 2845 | /* |
| 2846 | * Prepare to store the gateway in rt_gateway. Both dst and gateway |
| 2847 | * are stored one after the other in the same malloc'd chunk. If we |
| 2848 | * have room, reuse the old buffer since rt_gateway already points |
| 2849 | * to the right place. Otherwise, malloc a new block and update |
| 2850 | * the 'dst' address and point rt_gateway to the right place. |
| 2851 | */ |
| 2852 | if (rt->rt_gateway == NULL || glen > SA_SIZE(rt->rt_gateway->sa_len)) { |
| 2853 | caddr_t new; |
| 2854 | |
| 2855 | /* The underlying allocation is done with M_WAITOK set */ |
| 2856 | new = kalloc_data(dlen + glen, Z_WAITOK | Z_ZERO); |
| 2857 | if (new == NULL) { |
| 2858 | /* Clear gateway route */ |
| 2859 | rt_set_gwroute(rt, dst, NULL); |
| 2860 | /* Release extra ref */ |
| 2861 | RT_REMREF_LOCKED(rt); |
| 2862 | return ENOBUFS; |
| 2863 | } |
| 2864 | |
| 2865 | /* |
| 2866 | * Copy from 'dst' and not rt_key(rt) because we can get |
| 2867 | * here to initialize a newly allocated route entry, in |
| 2868 | * which case rt_key(rt) is NULL (and so does rt_gateway). |
| 2869 | */ |
| 2870 | SOCKADDR_COPY(dst, new, dst->sa_len); |
| 2871 | rt_key_free(rt); /* free old block; NULL is okay */ |
| 2872 | rt->rt_nodes->rn_key = new; |
| 2873 | rt->rt_gateway = SA(new + dlen); |
| 2874 | } |
| 2875 | |
| 2876 | /* |
| 2877 | * Copy the new gateway value into the memory chunk. |
| 2878 | */ |
| 2879 | SOCKADDR_COPY(gate, rt->rt_gateway, gate->sa_len); |
| 2880 | |
| 2881 | /* |
| 2882 | * For consistency between rt_gateway and rt_key(gwrt). |
| 2883 | */ |
| 2884 | if ((rt->rt_flags & RTF_GATEWAY) && rt->rt_gwroute != NULL && |
| 2885 | (rt->rt_gwroute->rt_flags & RTF_IFSCOPE)) { |
| 2886 | if (rt->rt_gateway->sa_family == AF_INET && |
| 2887 | rt_key(rt->rt_gwroute)->sa_family == AF_INET) { |
| 2888 | sin_set_ifscope(sa: rt->rt_gateway, |
| 2889 | ifscope: sin_get_ifscope(rt_key(rt->rt_gwroute))); |
| 2890 | } else if (rt->rt_gateway->sa_family == AF_INET6 && |
| 2891 | rt_key(rt->rt_gwroute)->sa_family == AF_INET6) { |
| 2892 | sin6_set_ifscope(sa: rt->rt_gateway, |
| 2893 | ifscope: sin6_get_ifscope(rt_key(rt->rt_gwroute))); |
| 2894 | } |
| 2895 | } |
| 2896 | |
| 2897 | /* |
| 2898 | * This isn't going to do anything useful for host routes, so |
| 2899 | * don't bother. Also make sure we have a reasonable mask |
| 2900 | * (we don't yet have one during adds). |
| 2901 | */ |
| 2902 | if (!(rt->rt_flags & RTF_HOST) && rt_mask(rt) != 0) { |
| 2903 | struct rtfc_arg arg; |
| 2904 | arg.rnh = rnh; |
| 2905 | arg.rt0 = rt; |
| 2906 | RT_UNLOCK(rt); |
| 2907 | rnh->rnh_walktree_from(rnh, rt_key(rt), rt_mask(rt), |
| 2908 | rt_fixchange, &arg); |
| 2909 | RT_LOCK(rt); |
| 2910 | } |
| 2911 | |
| 2912 | /* Release extra ref */ |
| 2913 | RT_REMREF_LOCKED(rt); |
| 2914 | return 0; |
| 2915 | } |
| 2916 | |
| 2917 | #undef SA_SIZE |
| 2918 | |
| 2919 | void |
| 2920 | rt_set_gwroute(struct rtentry *rt, struct sockaddr *dst, struct rtentry *gwrt) |
| 2921 | { |
| 2922 | boolean_t gwrt_isrouter; |
| 2923 | |
| 2924 | LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_OWNED); |
| 2925 | RT_LOCK_ASSERT_HELD(rt); |
| 2926 | |
| 2927 | if (gwrt != NULL) { |
| 2928 | RT_ADDREF(gwrt); /* for this routine */ |
| 2929 | } |
| 2930 | /* |
| 2931 | * Get rid of existing gateway route; if rt_gwroute is already |
| 2932 | * set to gwrt, this is slightly redundant (though safe since |
| 2933 | * we held an extra ref above) but makes the code simpler. |
| 2934 | */ |
| 2935 | if (rt->rt_gwroute != NULL) { |
| 2936 | rtentry_ref_t ogwrt = rt->rt_gwroute; |
| 2937 | |
| 2938 | VERIFY(rt != ogwrt); /* sanity check */ |
| 2939 | rt->rt_gwroute = NULL; |
| 2940 | RT_UNLOCK(rt); |
| 2941 | rtfree_locked(rt: ogwrt); |
| 2942 | RT_LOCK(rt); |
| 2943 | VERIFY(rt->rt_gwroute == NULL); |
| 2944 | } |
| 2945 | |
| 2946 | /* |
| 2947 | * And associate the new gateway route. |
| 2948 | */ |
| 2949 | if ((rt->rt_gwroute = gwrt) != NULL) { |
| 2950 | RT_ADDREF(gwrt); /* for rt */ |
| 2951 | |
| 2952 | if (rt->rt_flags & RTF_WASCLONED) { |
| 2953 | /* rt_parent might be NULL if rt is embryonic */ |
| 2954 | gwrt_isrouter = (rt->rt_parent != NULL && |
| 2955 | SA_DEFAULT(rt_key(rt->rt_parent)) && |
| 2956 | !RT_HOST(rt->rt_parent)); |
| 2957 | } else { |
| 2958 | gwrt_isrouter = (SA_DEFAULT(dst) && !RT_HOST(rt)); |
| 2959 | } |
| 2960 | |
| 2961 | /* If gwrt points to a default router, mark it accordingly */ |
| 2962 | if (gwrt_isrouter && RT_HOST(gwrt) && |
| 2963 | !(gwrt->rt_flags & RTF_ROUTER)) { |
| 2964 | RT_LOCK(gwrt); |
| 2965 | gwrt->rt_flags |= RTF_ROUTER; |
| 2966 | RT_UNLOCK(gwrt); |
| 2967 | } |
| 2968 | |
| 2969 | RT_REMREF(gwrt); /* for this routine */ |
| 2970 | } |
| 2971 | } |
| 2972 | |
| 2973 | static void |
| 2974 | rt_maskedcopy(const struct sockaddr *src, struct sockaddr *dst, |
| 2975 | const struct sockaddr *netmask) |
| 2976 | { |
| 2977 | const char *netmaskp = &netmask->sa_data[0]; |
| 2978 | const char *srcp = &src->sa_data[0]; |
| 2979 | char *dstp = &dst->sa_data[0]; |
| 2980 | const char *maskend = (char *)dst |
| 2981 | + MIN(netmask->sa_len, src->sa_len); |
| 2982 | const char *srcend = (char *)dst + src->sa_len; |
| 2983 | |
| 2984 | dst->sa_len = src->sa_len; |
| 2985 | dst->sa_family = src->sa_family; |
| 2986 | |
| 2987 | while (dstp < maskend) { |
| 2988 | *dstp++ = *srcp++ & *netmaskp++; |
| 2989 | } |
| 2990 | if (dstp < srcend) { |
| 2991 | memset(s: dstp, c: 0, n: (size_t)(srcend - dstp)); |
| 2992 | } |
| 2993 | } |
| 2994 | |
| 2995 | /* |
| 2996 | * Lookup an AF_INET/AF_INET6 scoped or non-scoped route depending on the |
| 2997 | * ifscope value passed in by the caller (IFSCOPE_NONE implies non-scoped). |
| 2998 | */ |
| 2999 | static struct radix_node * |
| 3000 | node_lookup(struct sockaddr *dst, struct sockaddr *netmask, |
| 3001 | unsigned int ifscope) |
| 3002 | { |
| 3003 | struct radix_node_head *rnh; |
| 3004 | struct radix_node *rn; |
| 3005 | struct sockaddr_storage ss, mask; |
| 3006 | int af = dst->sa_family; |
| 3007 | struct matchleaf_arg ma = { .ifscope = ifscope }; |
| 3008 | rn_matchf_t *f = rn_match_ifscope; |
| 3009 | void *w = &ma; |
| 3010 | |
| 3011 | if (af != AF_INET && af != AF_INET6) { |
| 3012 | return NULL; |
| 3013 | } |
| 3014 | |
| 3015 | rnh = rt_tables[af]; |
| 3016 | |
| 3017 | /* |
| 3018 | * Transform dst into the internal routing table form, |
| 3019 | * clearing out the scope ID field if ifscope isn't set. |
| 3020 | */ |
| 3021 | dst = sa_copy(src: dst, dst: &ss, pifscope: (ifscope == IFSCOPE_NONE) ? NULL : &ifscope); |
| 3022 | |
| 3023 | /* Transform netmask into the internal routing table form */ |
| 3024 | if (netmask != NULL) { |
| 3025 | netmask = ma_copy(af, src: netmask, dst: &mask, ifscope); |
| 3026 | } |
| 3027 | |
| 3028 | if (ifscope == IFSCOPE_NONE) { |
| 3029 | f = w = NULL; |
| 3030 | } |
| 3031 | |
| 3032 | rn = rnh->rnh_lookup_args(dst, netmask, rnh, f, w); |
| 3033 | if (rn != NULL && (rn->rn_flags & RNF_ROOT)) { |
| 3034 | rn = NULL; |
| 3035 | } |
| 3036 | |
| 3037 | return rn; |
| 3038 | } |
| 3039 | |
| 3040 | /* |
| 3041 | * Lookup the AF_INET/AF_INET6 non-scoped default route. |
| 3042 | */ |
| 3043 | static struct radix_node * |
| 3044 | node_lookup_default(int af) |
| 3045 | { |
| 3046 | struct radix_node_head *rnh; |
| 3047 | |
| 3048 | VERIFY(af == AF_INET || af == AF_INET6); |
| 3049 | rnh = rt_tables[af]; |
| 3050 | |
| 3051 | return af == AF_INET ? rnh->rnh_lookup(&sin_def, NULL, rnh) : |
| 3052 | rnh->rnh_lookup(&sin6_def, NULL, rnh); |
| 3053 | } |
| 3054 | |
| 3055 | boolean_t |
| 3056 | rt_ifa_is_dst(struct sockaddr *dst, struct ifaddr *ifa) |
| 3057 | { |
| 3058 | boolean_t result = FALSE; |
| 3059 | |
| 3060 | if (ifa == NULL || ifa->ifa_addr == NULL) { |
| 3061 | return result; |
| 3062 | } |
| 3063 | |
| 3064 | IFA_LOCK_SPIN(ifa); |
| 3065 | |
| 3066 | if (dst->sa_family == ifa->ifa_addr->sa_family && |
| 3067 | ((dst->sa_family == AF_INET && |
| 3068 | SIN(dst)->sin_addr.s_addr == |
| 3069 | SIN(ifa->ifa_addr)->sin_addr.s_addr) || |
| 3070 | (dst->sa_family == AF_INET6 && |
| 3071 | SA6_ARE_ADDR_EQUAL(SIN6(dst), SIN6(ifa->ifa_addr))))) { |
| 3072 | result = TRUE; |
| 3073 | } |
| 3074 | |
| 3075 | IFA_UNLOCK(ifa); |
| 3076 | |
| 3077 | return result; |
| 3078 | } |
| 3079 | |
| 3080 | /* |
| 3081 | * Common routine to lookup/match a route. It invokes the lookup/matchaddr |
| 3082 | * callback which could be address family-specific. The main difference |
| 3083 | * between the two (at least for AF_INET/AF_INET6) is that a lookup does |
| 3084 | * not alter the expiring state of a route, whereas a match would unexpire |
| 3085 | * or revalidate the route. |
| 3086 | * |
| 3087 | * The optional scope or interface index property of a route allows for a |
| 3088 | * per-interface route instance. This permits multiple route entries having |
| 3089 | * the same destination (but not necessarily the same gateway) to exist in |
| 3090 | * the routing table; each of these entries is specific to the corresponding |
| 3091 | * interface. This is made possible by storing the scope ID value into the |
| 3092 | * radix key, thus making each route entry unique. These scoped entries |
| 3093 | * exist along with the regular, non-scoped entries in the same radix tree |
| 3094 | * for a given address family (AF_INET/AF_INET6); the scope logically |
| 3095 | * partitions it into multiple per-interface sub-trees. |
| 3096 | * |
| 3097 | * When a scoped route lookup is performed, the routing table is searched for |
| 3098 | * the best match that would result in a route using the same interface as the |
| 3099 | * one associated with the scope (the exception to this are routes that point |
| 3100 | * to the loopback interface). The search rule follows the longest matching |
| 3101 | * prefix with the additional interface constraint. |
| 3102 | */ |
| 3103 | static struct rtentry * |
| 3104 | rt_lookup_common(boolean_t lookup_only, boolean_t coarse, struct sockaddr *dst, |
| 3105 | struct sockaddr *netmask, struct radix_node_head *rnh, unsigned int ifscope) |
| 3106 | { |
| 3107 | struct radix_node *rn0, *rn = NULL; |
| 3108 | int af = dst->sa_family; |
| 3109 | struct sockaddr_storage dst_ss; |
| 3110 | struct sockaddr_storage mask_ss; |
| 3111 | boolean_t dontcare; |
| 3112 | #if (DEVELOPMENT || DEBUG) |
| 3113 | char dbuf[MAX_SCOPE_ADDR_STR_LEN], gbuf[MAX_IPv6_STR_LEN]; |
| 3114 | char s_dst[MAX_IPv6_STR_LEN], s_netmask[MAX_IPv6_STR_LEN]; |
| 3115 | #endif |
| 3116 | VERIFY(!coarse || ifscope == IFSCOPE_NONE); |
| 3117 | |
| 3118 | LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_OWNED); |
| 3119 | /* |
| 3120 | * While we have rnh_lock held, see if we need to schedule the timer. |
| 3121 | */ |
| 3122 | if (nd6_sched_timeout_want) { |
| 3123 | nd6_sched_timeout(NULL, NULL); |
| 3124 | } |
| 3125 | |
| 3126 | if (!lookup_only) { |
| 3127 | netmask = NULL; |
| 3128 | } |
| 3129 | |
| 3130 | /* |
| 3131 | * Non-scoped route lookup. |
| 3132 | */ |
| 3133 | if (af != AF_INET && af != AF_INET6) { |
| 3134 | rn = rnh->rnh_matchaddr(dst, rnh); |
| 3135 | |
| 3136 | /* |
| 3137 | * Don't return a root node; also, rnh_matchaddr callback |
| 3138 | * would have done the necessary work to clear RTPRF_OURS |
| 3139 | * for certain protocol families. |
| 3140 | */ |
| 3141 | if (rn != NULL && (rn->rn_flags & RNF_ROOT)) { |
| 3142 | rn = NULL; |
| 3143 | } |
| 3144 | if (rn != NULL) { |
| 3145 | RT_LOCK_SPIN(RT(rn)); |
| 3146 | if (!(RT(rn)->rt_flags & RTF_CONDEMNED)) { |
| 3147 | RT_ADDREF_LOCKED(RT(rn)); |
| 3148 | RT_UNLOCK(RT(rn)); |
| 3149 | } else { |
| 3150 | RT_UNLOCK(RT(rn)); |
| 3151 | rn = NULL; |
| 3152 | } |
| 3153 | } |
| 3154 | return RT(rn); |
| 3155 | } |
| 3156 | |
| 3157 | /* Transform dst/netmask into the internal routing table form */ |
| 3158 | dst = sa_copy(src: dst, dst: &dst_ss, pifscope: &ifscope); |
| 3159 | if (netmask != NULL) { |
| 3160 | netmask = ma_copy(af, src: netmask, dst: &mask_ss, ifscope); |
| 3161 | } |
| 3162 | dontcare = (ifscope == IFSCOPE_NONE); |
| 3163 | |
| 3164 | #if (DEVELOPMENT || DEBUG) |
| 3165 | if (rt_verbose > 2) { |
| 3166 | if (af == AF_INET) { |
| 3167 | (void) inet_ntop(af, &SIN(dst)->sin_addr.s_addr, |
| 3168 | s_dst, sizeof(s_dst)); |
| 3169 | } else { |
| 3170 | (void) inet_ntop(af, &SIN6(dst)->sin6_addr, |
| 3171 | s_dst, sizeof(s_dst)); |
| 3172 | } |
| 3173 | |
| 3174 | if (netmask != NULL && af == AF_INET) { |
| 3175 | (void) inet_ntop(af, &SIN(netmask)->sin_addr.s_addr, |
| 3176 | s_netmask, sizeof(s_netmask)); |
| 3177 | } |
| 3178 | if (netmask != NULL && af == AF_INET6) { |
| 3179 | (void) inet_ntop(af, &SIN6(netmask)->sin6_addr, |
| 3180 | s_netmask, sizeof(s_netmask)); |
| 3181 | } else { |
| 3182 | *s_netmask = '\0'; |
| 3183 | } |
| 3184 | os_log(OS_LOG_DEFAULT, "%s:%d (%d, %d, %s, %s, %u)\n" , |
| 3185 | __func__, __LINE__, lookup_only, coarse, s_dst, s_netmask, ifscope); |
| 3186 | } |
| 3187 | #endif |
| 3188 | |
| 3189 | /* |
| 3190 | * Scoped route lookup: |
| 3191 | * |
| 3192 | * We first perform a non-scoped lookup for the original result. |
| 3193 | * Afterwards, depending on whether or not the caller has specified |
| 3194 | * a scope, we perform a more specific scoped search and fallback |
| 3195 | * to this original result upon failure. |
| 3196 | */ |
| 3197 | rn0 = rn = node_lookup(dst, netmask, IFSCOPE_NONE); |
| 3198 | |
| 3199 | /* |
| 3200 | * If the caller did not specify a scope, use the primary scope |
| 3201 | * derived from the system's non-scoped default route. If, for |
| 3202 | * any reason, there is no primary interface, ifscope will be |
| 3203 | * set to IFSCOPE_NONE; if the above lookup resulted in a route, |
| 3204 | * we'll do a more-specific search below, scoped to the interface |
| 3205 | * of that route. |
| 3206 | */ |
| 3207 | if (dontcare) { |
| 3208 | ifscope = get_primary_ifscope(af); |
| 3209 | } |
| 3210 | |
| 3211 | /* |
| 3212 | * Keep the original result if either of the following is true: |
| 3213 | * |
| 3214 | * 1) The interface portion of the route has the same interface |
| 3215 | * index as the scope value and it is marked with RTF_IFSCOPE. |
| 3216 | * 2) The route uses the loopback interface, in which case the |
| 3217 | * destination (host/net) is local/loopback. |
| 3218 | * |
| 3219 | * Otherwise, do a more specified search using the scope; |
| 3220 | * we're holding rnh_lock now, so rt_ifp should not change. |
| 3221 | */ |
| 3222 | if (rn != NULL) { |
| 3223 | rtentry_ref_t rt = RT(rn); |
| 3224 | #if (DEVELOPMENT || DEBUG) |
| 3225 | if (rt_verbose > 2) { |
| 3226 | rt_str(rt, dbuf, sizeof(dbuf), gbuf, sizeof(gbuf)); |
| 3227 | os_log(OS_LOG_DEFAULT, "%s unscoped search %p to %s->%s->%s ifa_ifp %s\n" , |
| 3228 | __func__, rt, |
| 3229 | dbuf, gbuf, |
| 3230 | (rt->rt_ifp != NULL) ? rt->rt_ifp->if_xname : "" , |
| 3231 | (rt->rt_ifa->ifa_ifp != NULL) ? |
| 3232 | rt->rt_ifa->ifa_ifp->if_xname : "" ); |
| 3233 | } |
| 3234 | #endif |
| 3235 | if (!(rt->rt_ifp->if_flags & IFF_LOOPBACK) || |
| 3236 | (rt->rt_flags & RTF_GATEWAY)) { |
| 3237 | if (rt->rt_ifp->if_index != ifscope) { |
| 3238 | /* |
| 3239 | * Wrong interface; keep the original result |
| 3240 | * only if the caller did not specify a scope, |
| 3241 | * and do a more specific scoped search using |
| 3242 | * the scope of the found route. Otherwise, |
| 3243 | * start again from scratch. |
| 3244 | * |
| 3245 | * For loopback scope we keep the unscoped |
| 3246 | * route for local addresses |
| 3247 | */ |
| 3248 | rn = NULL; |
| 3249 | if (dontcare) { |
| 3250 | ifscope = rt->rt_ifp->if_index; |
| 3251 | } else if (ifscope != lo_ifp->if_index || |
| 3252 | rt_ifa_is_dst(dst, ifa: rt->rt_ifa) == FALSE) { |
| 3253 | rn0 = NULL; |
| 3254 | } |
| 3255 | } else if (!(rt->rt_flags & RTF_IFSCOPE)) { |
| 3256 | /* |
| 3257 | * Right interface, except that this route |
| 3258 | * isn't marked with RTF_IFSCOPE. Do a more |
| 3259 | * specific scoped search. Keep the original |
| 3260 | * result and return it it in case the scoped |
| 3261 | * search fails. |
| 3262 | */ |
| 3263 | rn = NULL; |
| 3264 | } |
| 3265 | } |
| 3266 | } |
| 3267 | |
| 3268 | /* |
| 3269 | * Scoped search. Find the most specific entry having the same |
| 3270 | * interface scope as the one requested. The following will result |
| 3271 | * in searching for the longest prefix scoped match. |
| 3272 | */ |
| 3273 | if (rn == NULL) { |
| 3274 | rn = node_lookup(dst, netmask, ifscope); |
| 3275 | #if (DEVELOPMENT || DEBUG) |
| 3276 | if (rt_verbose > 2 && rn != NULL) { |
| 3277 | rtentry_ref_t rt = RT(rn); |
| 3278 | rt_str(rt, dbuf, sizeof(dbuf), gbuf, sizeof(gbuf)); |
| 3279 | os_log(OS_LOG_DEFAULT, "%s scoped search %p to %s->%s->%s ifa %s\n" , |
| 3280 | __func__, rt, |
| 3281 | dbuf, gbuf, |
| 3282 | (rt->rt_ifp != NULL) ? rt->rt_ifp->if_xname : "" , |
| 3283 | (rt->rt_ifa->ifa_ifp != NULL) ? |
| 3284 | rt->rt_ifa->ifa_ifp->if_xname : "" ); |
| 3285 | } |
| 3286 | #endif |
| 3287 | } |
| 3288 | /* |
| 3289 | * Use the original result if either of the following is true: |
| 3290 | * |
| 3291 | * 1) The scoped search did not yield any result. |
| 3292 | * 2) The caller insists on performing a coarse-grained lookup. |
| 3293 | * 3) The result from the scoped search is a scoped default route, |
| 3294 | * and the original (non-scoped) result is not a default route, |
| 3295 | * i.e. the original result is a more specific host/net route. |
| 3296 | * 4) The scoped search yielded a net route but the original |
| 3297 | * result is a host route, i.e. the original result is treated |
| 3298 | * as a more specific route. |
| 3299 | */ |
| 3300 | if (rn == NULL || coarse || (rn0 != NULL && |
| 3301 | ((SA_DEFAULT(rt_key(RT(rn))) && !SA_DEFAULT(rt_key(RT(rn0)))) || |
| 3302 | (!RT_HOST(rn) && RT_HOST(rn0))))) { |
| 3303 | rn = rn0; |
| 3304 | } |
| 3305 | |
| 3306 | /* |
| 3307 | * If we still don't have a route, use the non-scoped default |
| 3308 | * route as long as the interface portion satistifes the scope. |
| 3309 | */ |
| 3310 | if (rn == NULL && (rn = node_lookup_default(af)) != NULL && |
| 3311 | RT(rn)->rt_ifp->if_index != ifscope) { |
| 3312 | rn = NULL; |
| 3313 | } |
| 3314 | |
| 3315 | if (rn != NULL) { |
| 3316 | /* |
| 3317 | * Manually clear RTPRF_OURS using rt_validate() and |
| 3318 | * bump up the reference count after, and not before; |
| 3319 | * we only get here for AF_INET/AF_INET6. node_lookup() |
| 3320 | * has done the check against RNF_ROOT, so we can be sure |
| 3321 | * that we're not returning a root node here. |
| 3322 | */ |
| 3323 | RT_LOCK_SPIN(RT(rn)); |
| 3324 | if (rt_validate(RT(rn))) { |
| 3325 | RT_ADDREF_LOCKED(RT(rn)); |
| 3326 | RT_UNLOCK(RT(rn)); |
| 3327 | } else { |
| 3328 | RT_UNLOCK(RT(rn)); |
| 3329 | rn = NULL; |
| 3330 | } |
| 3331 | } |
| 3332 | #if (DEVELOPMENT || DEBUG) |
| 3333 | if (rt_verbose > 2) { |
| 3334 | if (rn == NULL) { |
| 3335 | os_log(OS_LOG_DEFAULT, "%s %u return NULL\n" , __func__, ifscope); |
| 3336 | } else { |
| 3337 | rtentry_ref_t rt = RT(rn); |
| 3338 | |
| 3339 | rt_str(rt, dbuf, sizeof(dbuf), gbuf, sizeof(gbuf)); |
| 3340 | |
| 3341 | os_log(OS_LOG_DEFAULT, "%s %u return %p to %s->%s->%s ifa_ifp %s\n" , |
| 3342 | __func__, ifscope, rt, |
| 3343 | dbuf, gbuf, |
| 3344 | (rt->rt_ifp != NULL) ? rt->rt_ifp->if_xname : "" , |
| 3345 | (rt->rt_ifa->ifa_ifp != NULL) ? |
| 3346 | rt->rt_ifa->ifa_ifp->if_xname : "" ); |
| 3347 | } |
| 3348 | } |
| 3349 | #endif |
| 3350 | return RT(rn); |
| 3351 | } |
| 3352 | |
| 3353 | struct rtentry * |
| 3354 | rt_lookup(boolean_t lookup_only, struct sockaddr *dst, struct sockaddr *netmask, |
| 3355 | struct radix_node_head *rnh, unsigned int ifscope) |
| 3356 | { |
| 3357 | return rt_lookup_common(lookup_only, FALSE, dst, netmask, |
| 3358 | rnh, ifscope); |
| 3359 | } |
| 3360 | |
| 3361 | struct rtentry * |
| 3362 | rt_lookup_coarse(boolean_t lookup_only, struct sockaddr *dst, |
| 3363 | struct sockaddr *netmask, struct radix_node_head *rnh) |
| 3364 | { |
| 3365 | return rt_lookup_common(lookup_only, TRUE, dst, netmask, |
| 3366 | rnh, IFSCOPE_NONE); |
| 3367 | } |
| 3368 | |
| 3369 | boolean_t |
| 3370 | rt_validate(struct rtentry *rt) |
| 3371 | { |
| 3372 | RT_LOCK_ASSERT_HELD(rt); |
| 3373 | |
| 3374 | if ((rt->rt_flags & (RTF_UP | RTF_CONDEMNED)) == RTF_UP) { |
| 3375 | int af = rt_key(rt)->sa_family; |
| 3376 | |
| 3377 | if (af == AF_INET) { |
| 3378 | (void) in_validate(RN(rt)); |
| 3379 | } else if (af == AF_INET6) { |
| 3380 | (void) in6_validate(RN(rt)); |
| 3381 | } |
| 3382 | } else { |
| 3383 | rt = NULL; |
| 3384 | } |
| 3385 | |
| 3386 | return rt != NULL; |
| 3387 | } |
| 3388 | |
| 3389 | /* |
| 3390 | * Set up a routing table entry, normally |
| 3391 | * for an interface. |
| 3392 | */ |
| 3393 | int |
| 3394 | rtinit(struct ifaddr *ifa, uint8_t cmd, int flags) |
| 3395 | { |
| 3396 | int error; |
| 3397 | |
| 3398 | LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_NOTOWNED); |
| 3399 | |
| 3400 | lck_mtx_lock(rnh_lock); |
| 3401 | error = rtinit_locked(ifa, cmd, flags); |
| 3402 | lck_mtx_unlock(rnh_lock); |
| 3403 | |
| 3404 | return error; |
| 3405 | } |
| 3406 | |
| 3407 | int |
| 3408 | rtinit_locked(struct ifaddr *ifa, uint8_t cmd, int flags) |
| 3409 | { |
| 3410 | struct radix_node_head *rnh; |
| 3411 | uint8_t nbuf[128]; /* long enough for IPv6 */ |
| 3412 | char dbuf[MAX_IPv6_STR_LEN], gbuf[MAX_IPv6_STR_LEN]; |
| 3413 | char abuf[MAX_IPv6_STR_LEN]; |
| 3414 | rtentry_ref_t rt = NULL; |
| 3415 | struct sockaddr *dst; |
| 3416 | struct sockaddr *netmask; |
| 3417 | int error = 0; |
| 3418 | |
| 3419 | /* |
| 3420 | * Holding rnh_lock here prevents the possibility of ifa from |
| 3421 | * changing (e.g. in_ifinit), so it is safe to access its |
| 3422 | * ifa_{dst}addr (here and down below) without locking. |
| 3423 | */ |
| 3424 | LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_OWNED); |
| 3425 | |
| 3426 | if (flags & RTF_HOST) { |
| 3427 | dst = ifa->ifa_dstaddr; |
| 3428 | netmask = NULL; |
| 3429 | } else { |
| 3430 | dst = ifa->ifa_addr; |
| 3431 | netmask = ifa->ifa_netmask; |
| 3432 | } |
| 3433 | |
| 3434 | if (dst->sa_len == 0) { |
| 3435 | log(LOG_ERR, "%s: %s failed, invalid dst sa_len %d\n" , |
| 3436 | __func__, rtm2str(cmd), dst->sa_len); |
| 3437 | error = EINVAL; |
| 3438 | goto done; |
| 3439 | } |
| 3440 | if (netmask != NULL && netmask->sa_len > sizeof(nbuf)) { |
| 3441 | log(LOG_ERR, "%s: %s failed, mask sa_len %d too large\n" , |
| 3442 | __func__, rtm2str(cmd), dst->sa_len); |
| 3443 | error = EINVAL; |
| 3444 | goto done; |
| 3445 | } |
| 3446 | |
| 3447 | if (rt_verbose) { |
| 3448 | if (dst->sa_family == AF_INET) { |
| 3449 | (void) inet_ntop(AF_INET, &SIN(dst)->sin_addr.s_addr, |
| 3450 | abuf, sizeof(abuf)); |
| 3451 | } else if (dst->sa_family == AF_INET6) { |
| 3452 | (void) inet_ntop(AF_INET6, &SIN6(dst)->sin6_addr, |
| 3453 | abuf, sizeof(abuf)); |
| 3454 | } |
| 3455 | } |
| 3456 | |
| 3457 | if ((rnh = rt_tables[dst->sa_family]) == NULL) { |
| 3458 | error = EINVAL; |
| 3459 | goto done; |
| 3460 | } |
| 3461 | |
| 3462 | /* |
| 3463 | * If it's a delete, check that if it exists, it's on the correct |
| 3464 | * interface or we might scrub a route to another ifa which would |
| 3465 | * be confusing at best and possibly worse. |
| 3466 | */ |
| 3467 | if (cmd == RTM_DELETE) { |
| 3468 | /* |
| 3469 | * It's a delete, so it should already exist.. |
| 3470 | * If it's a net, mask off the host bits |
| 3471 | * (Assuming we have a mask) |
| 3472 | */ |
| 3473 | if (netmask != NULL) { |
| 3474 | rt_maskedcopy(src: dst, SA(nbuf), netmask); |
| 3475 | dst = SA(nbuf); |
| 3476 | } |
| 3477 | /* |
| 3478 | * Get an rtentry that is in the routing tree and contains |
| 3479 | * the correct info. Note that we perform a coarse-grained |
| 3480 | * lookup here, in case there is a scoped variant of the |
| 3481 | * subnet/prefix route which we should ignore, as we never |
| 3482 | * add a scoped subnet/prefix route as part of adding an |
| 3483 | * interface address. |
| 3484 | */ |
| 3485 | rt = rt_lookup_coarse(TRUE, dst, NULL, rnh); |
| 3486 | if (rt != NULL) { |
| 3487 | if (rt_verbose) { |
| 3488 | rt_str(rt, dbuf, sizeof(dbuf), gbuf, sizeof(gbuf)); |
| 3489 | } |
| 3490 | |
| 3491 | /* |
| 3492 | * Ok so we found the rtentry. it has an extra reference |
| 3493 | * for us at this stage. we won't need that so |
| 3494 | * lop that off now. |
| 3495 | */ |
| 3496 | RT_LOCK(rt); |
| 3497 | if (rt->rt_ifa != ifa) { |
| 3498 | /* |
| 3499 | * If the interface address in the rtentry |
| 3500 | * doesn't match the interface we are using, |
| 3501 | * then we don't want to delete it, so return |
| 3502 | * an error. This seems to be the only point |
| 3503 | * of this whole RTM_DELETE clause. |
| 3504 | */ |
| 3505 | #if (DEVELOPMENT || DEBUG) |
| 3506 | if (rt_verbose) { |
| 3507 | log(LOG_DEBUG, "%s: not removing " |
| 3508 | "route to %s->%s->%s, flags 0x%x, " |
| 3509 | "ifaddr %s, rt_ifa 0x%llx != " |
| 3510 | "ifa 0x%llx\n" , __func__, dbuf, |
| 3511 | gbuf, ((rt->rt_ifp != NULL) ? |
| 3512 | rt->rt_ifp->if_xname : "" ), |
| 3513 | rt->rt_flags, abuf, |
| 3514 | (uint64_t)VM_KERNEL_ADDRPERM( |
| 3515 | rt->rt_ifa), |
| 3516 | (uint64_t)VM_KERNEL_ADDRPERM(ifa)); |
| 3517 | } |
| 3518 | #endif /* (DEVELOPMENT || DEBUG) */ |
| 3519 | RT_REMREF_LOCKED(rt); |
| 3520 | RT_UNLOCK(rt); |
| 3521 | rt = NULL; |
| 3522 | error = ((flags & RTF_HOST) ? |
| 3523 | EHOSTUNREACH : ENETUNREACH); |
| 3524 | goto done; |
| 3525 | } else if (rt->rt_flags & RTF_STATIC) { |
| 3526 | /* |
| 3527 | * Don't remove the subnet/prefix route if |
| 3528 | * this was manually added from above. |
| 3529 | */ |
| 3530 | #if (DEVELOPMENT || DEBUG) |
| 3531 | if (rt_verbose) { |
| 3532 | log(LOG_DEBUG, "%s: not removing " |
| 3533 | "static route to %s->%s->%s, " |
| 3534 | "flags 0x%x, ifaddr %s\n" , __func__, |
| 3535 | dbuf, gbuf, ((rt->rt_ifp != NULL) ? |
| 3536 | rt->rt_ifp->if_xname : "" ), |
| 3537 | rt->rt_flags, abuf); |
| 3538 | } |
| 3539 | #endif /* (DEVELOPMENT || DEBUG) */ |
| 3540 | RT_REMREF_LOCKED(rt); |
| 3541 | RT_UNLOCK(rt); |
| 3542 | rt = NULL; |
| 3543 | error = EBUSY; |
| 3544 | goto done; |
| 3545 | } |
| 3546 | if (rt_verbose) { |
| 3547 | log(LOG_INFO, "%s: removing route to " |
| 3548 | "%s->%s->%s, flags 0x%x, ifaddr %s\n" , |
| 3549 | __func__, dbuf, gbuf, |
| 3550 | ((rt->rt_ifp != NULL) ? |
| 3551 | rt->rt_ifp->if_xname : "" ), |
| 3552 | rt->rt_flags, abuf); |
| 3553 | } |
| 3554 | RT_REMREF_LOCKED(rt); |
| 3555 | RT_UNLOCK(rt); |
| 3556 | rt = NULL; |
| 3557 | } |
| 3558 | } |
| 3559 | /* |
| 3560 | * Do the actual request |
| 3561 | */ |
| 3562 | if ((error = rtrequest_locked(req: cmd, dst, gateway: ifa->ifa_addr, netmask, |
| 3563 | flags: flags | ifa->ifa_flags, ret_nrt: &rt)) != 0) { |
| 3564 | goto done; |
| 3565 | } |
| 3566 | |
| 3567 | VERIFY(rt != NULL); |
| 3568 | |
| 3569 | if (rt_verbose) { |
| 3570 | rt_str(rt, dbuf, sizeof(dbuf), gbuf, sizeof(gbuf)); |
| 3571 | } |
| 3572 | |
| 3573 | switch (cmd) { |
| 3574 | case RTM_DELETE: |
| 3575 | /* |
| 3576 | * If we are deleting, and we found an entry, then it's |
| 3577 | * been removed from the tree. Notify any listening |
| 3578 | * routing agents of the change and throw it away. |
| 3579 | */ |
| 3580 | RT_LOCK(rt); |
| 3581 | rt_newaddrmsg(cmd, ifa, error, rt); |
| 3582 | RT_UNLOCK(rt); |
| 3583 | if (rt_verbose) { |
| 3584 | log(LOG_INFO, "%s: removed route to %s->%s->%s, " |
| 3585 | "flags 0x%x, ifaddr %s\n" , __func__, dbuf, gbuf, |
| 3586 | ((rt->rt_ifp != NULL) ? rt->rt_ifp->if_xname : "" ), |
| 3587 | rt->rt_flags, abuf); |
| 3588 | } |
| 3589 | rtfree_locked(rt); |
| 3590 | break; |
| 3591 | |
| 3592 | case RTM_ADD: |
| 3593 | /* |
| 3594 | * We are adding, and we have a returned routing entry. |
| 3595 | * We need to sanity check the result. If it came back |
| 3596 | * with an unexpected interface, then it must have already |
| 3597 | * existed or something. |
| 3598 | */ |
| 3599 | RT_LOCK(rt); |
| 3600 | if (rt->rt_ifa != ifa) { |
| 3601 | void (*ifa_rtrequest) |
| 3602 | (int, struct rtentry *, struct sockaddr *); |
| 3603 | #if (DEVELOPMENT || DEBUG) |
| 3604 | if (rt_verbose) { |
| 3605 | if (!(rt->rt_ifa->ifa_ifp->if_flags & |
| 3606 | (IFF_POINTOPOINT | IFF_LOOPBACK))) { |
| 3607 | log(LOG_ERR, "%s: %s route to %s->%s->%s, " |
| 3608 | "flags 0x%x, ifaddr %s, rt_ifa 0x%llx != " |
| 3609 | "ifa 0x%llx\n" , __func__, rtm2str(cmd), |
| 3610 | dbuf, gbuf, ((rt->rt_ifp != NULL) ? |
| 3611 | rt->rt_ifp->if_xname : "" ), rt->rt_flags, |
| 3612 | abuf, |
| 3613 | (uint64_t)VM_KERNEL_ADDRPERM(rt->rt_ifa), |
| 3614 | (uint64_t)VM_KERNEL_ADDRPERM(ifa)); |
| 3615 | } |
| 3616 | |
| 3617 | log(LOG_DEBUG, "%s: %s route to %s->%s->%s, " |
| 3618 | "flags 0x%x, ifaddr %s, rt_ifa was 0x%llx " |
| 3619 | "now 0x%llx\n" , __func__, rtm2str(cmd), |
| 3620 | dbuf, gbuf, ((rt->rt_ifp != NULL) ? |
| 3621 | rt->rt_ifp->if_xname : "" ), rt->rt_flags, |
| 3622 | abuf, |
| 3623 | (uint64_t)VM_KERNEL_ADDRPERM(rt->rt_ifa), |
| 3624 | (uint64_t)VM_KERNEL_ADDRPERM(ifa)); |
| 3625 | } |
| 3626 | #endif /* (DEVELOPMENT || DEBUG) */ |
| 3627 | |
| 3628 | /* |
| 3629 | * Ask that the protocol in question |
| 3630 | * remove anything it has associated with |
| 3631 | * this route and ifaddr. |
| 3632 | */ |
| 3633 | ifa_rtrequest = rt->rt_ifa->ifa_rtrequest; |
| 3634 | if (ifa_rtrequest != NULL) { |
| 3635 | ifa_rtrequest(RTM_DELETE, rt, NULL); |
| 3636 | } |
| 3637 | /* |
| 3638 | * Set the route's ifa. |
| 3639 | */ |
| 3640 | rtsetifa(rt, ifa); |
| 3641 | |
| 3642 | if (rt->rt_ifp != ifa->ifa_ifp) { |
| 3643 | /* |
| 3644 | * Purge any link-layer info caching. |
| 3645 | */ |
| 3646 | if (rt->rt_llinfo_purge != NULL) { |
| 3647 | rt->rt_llinfo_purge(rt); |
| 3648 | } |
| 3649 | /* |
| 3650 | * Adjust route ref count for the interfaces. |
| 3651 | */ |
| 3652 | if (rt->rt_if_ref_fn != NULL) { |
| 3653 | rt->rt_if_ref_fn(ifa->ifa_ifp, 1); |
| 3654 | rt->rt_if_ref_fn(rt->rt_ifp, -1); |
| 3655 | } |
| 3656 | } |
| 3657 | |
| 3658 | /* |
| 3659 | * And substitute in references to the ifaddr |
| 3660 | * we are adding. |
| 3661 | */ |
| 3662 | rt->rt_ifp = ifa->ifa_ifp; |
| 3663 | /* |
| 3664 | * If rmx_mtu is not locked, update it |
| 3665 | * to the MTU used by the new interface. |
| 3666 | */ |
| 3667 | if (!(rt->rt_rmx.rmx_locks & RTV_MTU)) { |
| 3668 | rt->rt_rmx.rmx_mtu = rt->rt_ifp->if_mtu; |
| 3669 | if (dst->sa_family == AF_INET && |
| 3670 | INTF_ADJUST_MTU_FOR_CLAT46(rt->rt_ifp)) { |
| 3671 | rt->rt_rmx.rmx_mtu = IN6_LINKMTU(rt->rt_ifp); |
| 3672 | /* Further adjust the size for CLAT46 expansion */ |
| 3673 | rt->rt_rmx.rmx_mtu -= CLAT46_HDR_EXPANSION_OVERHD; |
| 3674 | } |
| 3675 | } |
| 3676 | |
| 3677 | /* |
| 3678 | * Now ask the protocol to check if it needs |
| 3679 | * any special processing in its new form. |
| 3680 | */ |
| 3681 | ifa_rtrequest = ifa->ifa_rtrequest; |
| 3682 | if (ifa_rtrequest != NULL) { |
| 3683 | ifa_rtrequest(RTM_ADD, rt, NULL); |
| 3684 | } |
| 3685 | } else { |
| 3686 | if (rt_verbose) { |
| 3687 | log(LOG_INFO, "%s: added route to %s->%s->%s, " |
| 3688 | "flags 0x%x, ifaddr %s\n" , __func__, dbuf, |
| 3689 | gbuf, ((rt->rt_ifp != NULL) ? |
| 3690 | rt->rt_ifp->if_xname : "" ), rt->rt_flags, |
| 3691 | abuf); |
| 3692 | } |
| 3693 | } |
| 3694 | /* |
| 3695 | * notify any listening routing agents of the change |
| 3696 | */ |
| 3697 | rt_newaddrmsg(cmd, ifa, error, rt); |
| 3698 | /* |
| 3699 | * We just wanted to add it; we don't actually need a |
| 3700 | * reference. This will result in a route that's added |
| 3701 | * to the routing table without a reference count. The |
| 3702 | * RTM_DELETE code will do the necessary step to adjust |
| 3703 | * the reference count at deletion time. |
| 3704 | */ |
| 3705 | RT_REMREF_LOCKED(rt); |
| 3706 | RT_UNLOCK(rt); |
| 3707 | break; |
| 3708 | |
| 3709 | default: |
| 3710 | VERIFY(0); |
| 3711 | /* NOTREACHED */ |
| 3712 | } |
| 3713 | done: |
| 3714 | return error; |
| 3715 | } |
| 3716 | |
| 3717 | static void |
| 3718 | rt_set_idleref(struct rtentry *rt) |
| 3719 | { |
| 3720 | RT_LOCK_ASSERT_HELD(rt); |
| 3721 | |
| 3722 | /* |
| 3723 | * We currently keep idle refcnt only on unicast cloned routes |
| 3724 | * that aren't marked with RTF_NOIFREF. |
| 3725 | */ |
| 3726 | if (rt->rt_parent != NULL && !(rt->rt_flags & |
| 3727 | (RTF_NOIFREF | RTF_BROADCAST | RTF_MULTICAST)) && |
| 3728 | (rt->rt_flags & (RTF_UP | RTF_WASCLONED | RTF_IFREF)) == |
| 3729 | (RTF_UP | RTF_WASCLONED)) { |
| 3730 | rt_clear_idleref(rt); /* drop existing refcnt if any */ |
| 3731 | rt->rt_if_ref_fn = rte_if_ref; |
| 3732 | /* Become a regular mutex, just in case */ |
| 3733 | RT_CONVERT_LOCK(rt); |
| 3734 | rt->rt_if_ref_fn(rt->rt_ifp, 1); |
| 3735 | rt->rt_flags |= RTF_IFREF; |
| 3736 | } |
| 3737 | } |
| 3738 | |
| 3739 | void |
| 3740 | rt_clear_idleref(struct rtentry *rt) |
| 3741 | { |
| 3742 | RT_LOCK_ASSERT_HELD(rt); |
| 3743 | |
| 3744 | if (rt->rt_if_ref_fn != NULL) { |
| 3745 | VERIFY((rt->rt_flags & (RTF_NOIFREF | RTF_IFREF)) == RTF_IFREF); |
| 3746 | /* Become a regular mutex, just in case */ |
| 3747 | RT_CONVERT_LOCK(rt); |
| 3748 | rt->rt_if_ref_fn(rt->rt_ifp, -1); |
| 3749 | rt->rt_flags &= ~RTF_IFREF; |
| 3750 | rt->rt_if_ref_fn = NULL; |
| 3751 | } |
| 3752 | } |
| 3753 | |
| 3754 | void |
| 3755 | rt_set_proxy(struct rtentry *rt, boolean_t set) |
| 3756 | { |
| 3757 | lck_mtx_lock(rnh_lock); |
| 3758 | RT_LOCK(rt); |
| 3759 | /* |
| 3760 | * Search for any cloned routes which might have |
| 3761 | * been formed from this node, and delete them. |
| 3762 | */ |
| 3763 | if (rt->rt_flags & (RTF_CLONING | RTF_PRCLONING)) { |
| 3764 | struct radix_node_head *rnh = rt_tables[rt_key(rt)->sa_family]; |
| 3765 | |
| 3766 | if (set) { |
| 3767 | rt->rt_flags |= RTF_PROXY; |
| 3768 | } else { |
| 3769 | rt->rt_flags &= ~RTF_PROXY; |
| 3770 | } |
| 3771 | |
| 3772 | RT_UNLOCK(rt); |
| 3773 | if (rnh != NULL && rt_mask(rt)) { |
| 3774 | rnh->rnh_walktree_from(rnh, rt_key(rt), rt_mask(rt), |
| 3775 | rt_fixdelete, rt); |
| 3776 | } |
| 3777 | } else { |
| 3778 | RT_UNLOCK(rt); |
| 3779 | } |
| 3780 | lck_mtx_unlock(rnh_lock); |
| 3781 | } |
| 3782 | |
| 3783 | static void |
| 3784 | rte_lock_init(struct rtentry *rt) |
| 3785 | { |
| 3786 | lck_mtx_init(lck: &rt->rt_lock, grp: &rte_mtx_grp, attr: &rte_mtx_attr); |
| 3787 | } |
| 3788 | |
| 3789 | static void |
| 3790 | rte_lock_destroy(struct rtentry *rt) |
| 3791 | { |
| 3792 | RT_LOCK_ASSERT_NOTHELD(rt); |
| 3793 | lck_mtx_destroy(lck: &rt->rt_lock, grp: &rte_mtx_grp); |
| 3794 | } |
| 3795 | |
| 3796 | void |
| 3797 | rt_lock(struct rtentry *rt, boolean_t spin) |
| 3798 | { |
| 3799 | RT_LOCK_ASSERT_NOTHELD(rt); |
| 3800 | if (spin) { |
| 3801 | lck_mtx_lock_spin(lck: &rt->rt_lock); |
| 3802 | } else { |
| 3803 | lck_mtx_lock(lck: &rt->rt_lock); |
| 3804 | } |
| 3805 | if (rte_debug & RTD_DEBUG) { |
| 3806 | rte_lock_debug((rtentry_dbg_ref_t)rt); |
| 3807 | } |
| 3808 | } |
| 3809 | |
| 3810 | void |
| 3811 | rt_unlock(struct rtentry *rt) |
| 3812 | { |
| 3813 | if (rte_debug & RTD_DEBUG) { |
| 3814 | rte_unlock_debug((rtentry_dbg_ref_t)rt); |
| 3815 | } |
| 3816 | lck_mtx_unlock(lck: &rt->rt_lock); |
| 3817 | } |
| 3818 | |
| 3819 | static inline void |
| 3820 | rte_lock_debug(struct rtentry_dbg *rte) |
| 3821 | { |
| 3822 | uint32_t idx; |
| 3823 | |
| 3824 | RT_LOCK_ASSERT_HELD((rtentry_ref_t)rte); |
| 3825 | idx = os_atomic_inc_orig(&rte->rtd_lock_cnt, relaxed) % CTRACE_HIST_SIZE; |
| 3826 | if (rte_debug & RTD_TRACE) { |
| 3827 | ctrace_record(&rte->rtd_lock[idx]); |
| 3828 | } |
| 3829 | } |
| 3830 | |
| 3831 | static inline void |
| 3832 | rte_unlock_debug(struct rtentry_dbg *rte) |
| 3833 | { |
| 3834 | uint32_t idx; |
| 3835 | |
| 3836 | RT_LOCK_ASSERT_HELD((rtentry_ref_t)rte); |
| 3837 | idx = os_atomic_inc_orig(&rte->rtd_unlock_cnt, relaxed) % CTRACE_HIST_SIZE; |
| 3838 | if (rte_debug & RTD_TRACE) { |
| 3839 | ctrace_record(&rte->rtd_unlock[idx]); |
| 3840 | } |
| 3841 | } |
| 3842 | |
| 3843 | static struct rtentry * |
| 3844 | rte_alloc(void) |
| 3845 | { |
| 3846 | if (rte_debug & RTD_DEBUG) { |
| 3847 | return rte_alloc_debug(); |
| 3848 | } |
| 3849 | |
| 3850 | return (rtentry_ref_t)zalloc(zone: rte_zone); |
| 3851 | } |
| 3852 | |
| 3853 | static void |
| 3854 | rte_free(struct rtentry *p) |
| 3855 | { |
| 3856 | if (rte_debug & RTD_DEBUG) { |
| 3857 | rte_free_debug(p); |
| 3858 | return; |
| 3859 | } |
| 3860 | |
| 3861 | if (p->rt_refcnt != 0) { |
| 3862 | panic("rte_free: rte=%p refcnt=%d non-zero" , p, p->rt_refcnt); |
| 3863 | /* NOTREACHED */ |
| 3864 | } |
| 3865 | |
| 3866 | zfree(rte_zone, p); |
| 3867 | } |
| 3868 | |
| 3869 | static void |
| 3870 | rte_if_ref(struct ifnet *ifp, int cnt) |
| 3871 | { |
| 3872 | struct kev_msg ev_msg; |
| 3873 | struct net_event_data ev_data; |
| 3874 | uint32_t old; |
| 3875 | |
| 3876 | /* Force cnt to 1 increment/decrement */ |
| 3877 | if (cnt < -1 || cnt > 1) { |
| 3878 | panic("%s: invalid count argument (%d)" , __func__, cnt); |
| 3879 | /* NOTREACHED */ |
| 3880 | } |
| 3881 | old = os_atomic_add_orig(&ifp->if_route_refcnt, cnt, relaxed); |
| 3882 | if (cnt < 0 && old == 0) { |
| 3883 | panic("%s: ifp=%p negative route refcnt!" , __func__, ifp); |
| 3884 | /* NOTREACHED */ |
| 3885 | } |
| 3886 | /* |
| 3887 | * The following is done without first holding the ifnet lock, |
| 3888 | * for performance reasons. The relevant ifnet fields, with |
| 3889 | * the exception of the if_idle_flags, are never changed |
| 3890 | * during the lifetime of the ifnet. The if_idle_flags |
| 3891 | * may possibly be modified, so in the event that the value |
| 3892 | * is stale because IFRF_IDLE_NOTIFY was cleared, we'd end up |
| 3893 | * sending the event anyway. This is harmless as it is just |
| 3894 | * a notification to the monitoring agent in user space, and |
| 3895 | * it is expected to check via SIOCGIFGETRTREFCNT again anyway. |
| 3896 | */ |
| 3897 | if ((ifp->if_idle_flags & IFRF_IDLE_NOTIFY) && cnt < 0 && old == 1) { |
| 3898 | bzero(s: &ev_msg, n: sizeof(ev_msg)); |
| 3899 | bzero(s: &ev_data, n: sizeof(ev_data)); |
| 3900 | |
| 3901 | ev_msg.vendor_code = KEV_VENDOR_APPLE; |
| 3902 | ev_msg.kev_class = KEV_NETWORK_CLASS; |
| 3903 | ev_msg.kev_subclass = KEV_DL_SUBCLASS; |
| 3904 | ev_msg.event_code = KEV_DL_IF_IDLE_ROUTE_REFCNT; |
| 3905 | |
| 3906 | strlcpy(dst: &ev_data.if_name[0], src: ifp->if_name, IFNAMSIZ); |
| 3907 | |
| 3908 | ev_data.if_family = ifp->if_family; |
| 3909 | ev_data.if_unit = ifp->if_unit; |
| 3910 | ev_msg.dv[0].data_length = sizeof(struct net_event_data); |
| 3911 | ev_msg.dv[0].data_ptr = &ev_data; |
| 3912 | |
| 3913 | dlil_post_complete_msg(NULL, &ev_msg); |
| 3914 | } |
| 3915 | } |
| 3916 | |
| 3917 | static inline struct rtentry * |
| 3918 | rte_alloc_debug(void) |
| 3919 | { |
| 3920 | rtentry_dbg_ref_t rte; |
| 3921 | |
| 3922 | rte = ((rtentry_dbg_ref_t)zalloc(zone: rte_zone)); |
| 3923 | if (rte != NULL) { |
| 3924 | bzero(s: rte, n: sizeof(*rte)); |
| 3925 | if (rte_debug & RTD_TRACE) { |
| 3926 | ctrace_record(&rte->rtd_alloc); |
| 3927 | } |
| 3928 | rte->rtd_inuse = RTD_INUSE; |
| 3929 | } |
| 3930 | return (rtentry_ref_t)rte; |
| 3931 | } |
| 3932 | |
| 3933 | static inline void |
| 3934 | rte_free_debug(struct rtentry *p) |
| 3935 | { |
| 3936 | rtentry_dbg_ref_t rte = (rtentry_dbg_ref_t)p; |
| 3937 | |
| 3938 | if (p->rt_refcnt != 0) { |
| 3939 | panic("rte_free: rte=%p refcnt=%d" , p, p->rt_refcnt); |
| 3940 | /* NOTREACHED */ |
| 3941 | } |
| 3942 | if (rte->rtd_inuse == RTD_FREED) { |
| 3943 | panic("rte_free: double free rte=%p" , rte); |
| 3944 | /* NOTREACHED */ |
| 3945 | } else if (rte->rtd_inuse != RTD_INUSE) { |
| 3946 | panic("rte_free: corrupted rte=%p" , rte); |
| 3947 | /* NOTREACHED */ |
| 3948 | } |
| 3949 | bcopy(src: (caddr_t)p, dst: (caddr_t)&rte->rtd_entry_saved, n: sizeof(*p)); |
| 3950 | /* Preserve rt_lock to help catch use-after-free cases */ |
| 3951 | bzero(s: (caddr_t)p, offsetof(struct rtentry, rt_lock)); |
| 3952 | |
| 3953 | rte->rtd_inuse = RTD_FREED; |
| 3954 | |
| 3955 | if (rte_debug & RTD_TRACE) { |
| 3956 | ctrace_record(&rte->rtd_free); |
| 3957 | } |
| 3958 | |
| 3959 | if (!(rte_debug & RTD_NO_FREE)) { |
| 3960 | zfree(rte_zone, p); |
| 3961 | } |
| 3962 | } |
| 3963 | |
| 3964 | void |
| 3965 | ctrace_record(ctrace_t *tr) |
| 3966 | { |
| 3967 | tr->th = current_thread(); |
| 3968 | bzero(s: tr->pc, n: sizeof(tr->pc)); |
| 3969 | (void) OSBacktrace(bt: tr->pc, CTRACE_STACK_SIZE); |
| 3970 | } |
| 3971 | |
| 3972 | void |
| 3973 | route_clear(struct route *ro) |
| 3974 | { |
| 3975 | if (ro == NULL) { |
| 3976 | return; |
| 3977 | } |
| 3978 | |
| 3979 | if (ro->ro_rt != NULL) { |
| 3980 | rtfree(rt: ro->ro_rt); |
| 3981 | ro->ro_rt = NULL; |
| 3982 | } |
| 3983 | |
| 3984 | if (ro->ro_srcia != NULL) { |
| 3985 | ifa_remref(ifa: ro->ro_srcia); |
| 3986 | ro->ro_srcia = NULL; |
| 3987 | } |
| 3988 | return; |
| 3989 | } |
| 3990 | |
| 3991 | |
| 3992 | void |
| 3993 | route_copyout(struct route *dst, const struct route *src, size_t length) |
| 3994 | { |
| 3995 | /* Copy everything (rt, srcif, flags, dst) from src */ |
| 3996 | bcopy(src, dst, n: length); |
| 3997 | |
| 3998 | /* Hold one reference for the local copy of struct route */ |
| 3999 | if (dst->ro_rt != NULL) { |
| 4000 | RT_ADDREF(dst->ro_rt); |
| 4001 | } |
| 4002 | |
| 4003 | /* Hold one reference for the local copy of struct ifaddr */ |
| 4004 | if (dst->ro_srcia != NULL) { |
| 4005 | ifa_addref(ifa: dst->ro_srcia); |
| 4006 | } |
| 4007 | } |
| 4008 | |
| 4009 | void |
| 4010 | route_copyin(struct route *src, struct route *dst, size_t length) |
| 4011 | { |
| 4012 | /* |
| 4013 | * No cached route at the destination? |
| 4014 | * If none, then remove old references if present |
| 4015 | * and copy entire src route. |
| 4016 | */ |
| 4017 | if (dst->ro_rt == NULL) { |
| 4018 | /* |
| 4019 | * Ditch the address in the cached copy (dst) since |
| 4020 | * we're about to take everything there is in src. |
| 4021 | */ |
| 4022 | if (dst->ro_srcia != NULL) { |
| 4023 | ifa_remref(ifa: dst->ro_srcia); |
| 4024 | } |
| 4025 | /* |
| 4026 | * Copy everything (rt, srcia, flags, dst) from src; the |
| 4027 | * references to rt and/or srcia were held at the time |
| 4028 | * of storage and are kept intact. |
| 4029 | */ |
| 4030 | bcopy(src, dst, n: length); |
| 4031 | goto done; |
| 4032 | } |
| 4033 | |
| 4034 | /* |
| 4035 | * We know dst->ro_rt is not NULL here. |
| 4036 | * If the src->ro_rt is the same, update srcia and flags |
| 4037 | * and ditch the route in the local copy. |
| 4038 | */ |
| 4039 | if (dst->ro_rt == src->ro_rt) { |
| 4040 | dst->ro_flags = src->ro_flags; |
| 4041 | |
| 4042 | if (dst->ro_srcia != src->ro_srcia) { |
| 4043 | if (dst->ro_srcia != NULL) { |
| 4044 | ifa_remref(ifa: dst->ro_srcia); |
| 4045 | } |
| 4046 | dst->ro_srcia = src->ro_srcia; |
| 4047 | } else if (src->ro_srcia != NULL) { |
| 4048 | ifa_remref(ifa: src->ro_srcia); |
| 4049 | } |
| 4050 | rtfree(rt: src->ro_rt); |
| 4051 | goto done; |
| 4052 | } |
| 4053 | |
| 4054 | /* |
| 4055 | * If they are dst's ro_rt is not equal to src's, |
| 4056 | * and src'd rt is not NULL, then remove old references |
| 4057 | * if present and copy entire src route. |
| 4058 | */ |
| 4059 | if (src->ro_rt != NULL) { |
| 4060 | rtfree(rt: dst->ro_rt); |
| 4061 | |
| 4062 | if (dst->ro_srcia != NULL) { |
| 4063 | ifa_remref(ifa: dst->ro_srcia); |
| 4064 | } |
| 4065 | bcopy(src, dst, n: length); |
| 4066 | goto done; |
| 4067 | } |
| 4068 | |
| 4069 | /* |
| 4070 | * Here, dst's cached route is not NULL but source's is. |
| 4071 | * Just get rid of all the other cached reference in src. |
| 4072 | */ |
| 4073 | if (src->ro_srcia != NULL) { |
| 4074 | /* |
| 4075 | * Ditch src address in the local copy (src) since we're |
| 4076 | * not caching the route entry anyway (ro_rt is NULL). |
| 4077 | */ |
| 4078 | ifa_remref(ifa: src->ro_srcia); |
| 4079 | } |
| 4080 | done: |
| 4081 | /* This function consumes the references on src */ |
| 4082 | src->ro_rt = NULL; |
| 4083 | src->ro_srcia = NULL; |
| 4084 | } |
| 4085 | |
| 4086 | /* |
| 4087 | * route_to_gwroute will find the gateway route for a given route. |
| 4088 | * |
| 4089 | * If the route is down, look the route up again. |
| 4090 | * If the route goes through a gateway, get the route to the gateway. |
| 4091 | * If the gateway route is down, look it up again. |
| 4092 | * If the route is set to reject, verify it hasn't expired. |
| 4093 | * |
| 4094 | * If the returned route is non-NULL, the caller is responsible for |
| 4095 | * releasing the reference and unlocking the route. |
| 4096 | */ |
| 4097 | #define senderr(e) { error = (e); goto bad; } |
| 4098 | errno_t |
| 4099 | route_to_gwroute(const struct sockaddr *net_dest, struct rtentry *hint0, |
| 4100 | struct rtentry **out_route) |
| 4101 | { |
| 4102 | uint64_t timenow; |
| 4103 | rtentry_ref_t rt = hint0; |
| 4104 | rtentry_ref_t hint = hint0; |
| 4105 | errno_t error = 0; |
| 4106 | unsigned int ifindex; |
| 4107 | boolean_t gwroute; |
| 4108 | |
| 4109 | *out_route = NULL; |
| 4110 | |
| 4111 | if (rt == NULL) { |
| 4112 | return 0; |
| 4113 | } |
| 4114 | |
| 4115 | /* |
| 4116 | * Next hop determination. Because we may involve the gateway route |
| 4117 | * in addition to the original route, locking is rather complicated. |
| 4118 | * The general concept is that regardless of whether the route points |
| 4119 | * to the original route or to the gateway route, this routine takes |
| 4120 | * an extra reference on such a route. This extra reference will be |
| 4121 | * released at the end. |
| 4122 | * |
| 4123 | * Care must be taken to ensure that the "hint0" route never gets freed |
| 4124 | * via rtfree(), since the caller may have stored it inside a struct |
| 4125 | * route with a reference held for that placeholder. |
| 4126 | */ |
| 4127 | RT_LOCK_SPIN(rt); |
| 4128 | ifindex = rt->rt_ifp->if_index; |
| 4129 | RT_ADDREF_LOCKED(rt); |
| 4130 | if (!(rt->rt_flags & RTF_UP)) { |
| 4131 | RT_REMREF_LOCKED(rt); |
| 4132 | RT_UNLOCK(rt); |
| 4133 | /* route is down, find a new one */ |
| 4134 | hint = rt = rtalloc1_scoped( |
| 4135 | __DECONST_SA(net_dest), report: 1, ignflags: 0, ifscope: ifindex); |
| 4136 | if (hint != NULL) { |
| 4137 | RT_LOCK_SPIN(rt); |
| 4138 | ifindex = rt->rt_ifp->if_index; |
| 4139 | } else { |
| 4140 | senderr(EHOSTUNREACH); |
| 4141 | } |
| 4142 | } |
| 4143 | |
| 4144 | /* |
| 4145 | * We have a reference to "rt" by now; it will either |
| 4146 | * be released or freed at the end of this routine. |
| 4147 | */ |
| 4148 | RT_LOCK_ASSERT_HELD(rt); |
| 4149 | if ((gwroute = (rt->rt_flags & RTF_GATEWAY))) { |
| 4150 | rtentry_ref_t gwrt = rt->rt_gwroute; |
| 4151 | struct sockaddr_storage ss; |
| 4152 | struct sockaddr *gw = SA(&ss); |
| 4153 | |
| 4154 | VERIFY(rt == hint); |
| 4155 | RT_ADDREF_LOCKED(hint); |
| 4156 | |
| 4157 | /* If there's no gateway rt, look it up */ |
| 4158 | if (gwrt == NULL) { |
| 4159 | SOCKADDR_COPY(rt->rt_gateway, gw, MIN(sizeof(ss), |
| 4160 | rt->rt_gateway->sa_len)); |
| 4161 | gw->sa_len = MIN(sizeof(ss), rt->rt_gateway->sa_len); |
| 4162 | RT_UNLOCK(rt); |
| 4163 | goto lookup; |
| 4164 | } |
| 4165 | /* Become a regular mutex */ |
| 4166 | RT_CONVERT_LOCK(rt); |
| 4167 | |
| 4168 | /* |
| 4169 | * Take gwrt's lock while holding route's lock; |
| 4170 | * this is okay since gwrt never points back |
| 4171 | * to "rt", so no lock ordering issues. |
| 4172 | */ |
| 4173 | RT_LOCK_SPIN(gwrt); |
| 4174 | if (!(gwrt->rt_flags & RTF_UP)) { |
| 4175 | rt->rt_gwroute = NULL; |
| 4176 | RT_UNLOCK(gwrt); |
| 4177 | SOCKADDR_COPY(rt->rt_gateway, gw, MIN(sizeof(ss), |
| 4178 | rt->rt_gateway->sa_len)); |
| 4179 | gw->sa_len = MIN(sizeof(ss), rt->rt_gateway->sa_len); |
| 4180 | RT_UNLOCK(rt); |
| 4181 | rtfree(rt: gwrt); |
| 4182 | lookup: |
| 4183 | lck_mtx_lock(rnh_lock); |
| 4184 | gwrt = rtalloc1_scoped_locked(dst: gw, report: 1, ignflags: 0, ifscope: ifindex); |
| 4185 | |
| 4186 | RT_LOCK(rt); |
| 4187 | /* |
| 4188 | * Bail out if the route is down, no route |
| 4189 | * to gateway, circular route, or if the |
| 4190 | * gateway portion of "rt" has changed. |
| 4191 | */ |
| 4192 | if (!(rt->rt_flags & RTF_UP) || gwrt == NULL || |
| 4193 | gwrt == rt || !sa_equal(gw, rt->rt_gateway)) { |
| 4194 | if (gwrt == rt) { |
| 4195 | RT_REMREF_LOCKED(gwrt); |
| 4196 | gwrt = NULL; |
| 4197 | } |
| 4198 | VERIFY(rt == hint); |
| 4199 | RT_REMREF_LOCKED(hint); |
| 4200 | hint = NULL; |
| 4201 | RT_UNLOCK(rt); |
| 4202 | if (gwrt != NULL) { |
| 4203 | rtfree_locked(rt: gwrt); |
| 4204 | } |
| 4205 | lck_mtx_unlock(rnh_lock); |
| 4206 | senderr(EHOSTUNREACH); |
| 4207 | } |
| 4208 | VERIFY(gwrt != NULL); |
| 4209 | /* |
| 4210 | * Set gateway route; callee adds ref to gwrt; |
| 4211 | * gwrt has an extra ref from rtalloc1() for |
| 4212 | * this routine. |
| 4213 | */ |
| 4214 | rt_set_gwroute(rt, rt_key(rt), gwrt); |
| 4215 | VERIFY(rt == hint); |
| 4216 | RT_REMREF_LOCKED(rt); /* hint still holds a refcnt */ |
| 4217 | RT_UNLOCK(rt); |
| 4218 | lck_mtx_unlock(rnh_lock); |
| 4219 | rt = gwrt; |
| 4220 | } else { |
| 4221 | RT_ADDREF_LOCKED(gwrt); |
| 4222 | RT_UNLOCK(gwrt); |
| 4223 | VERIFY(rt == hint); |
| 4224 | RT_REMREF_LOCKED(rt); /* hint still holds a refcnt */ |
| 4225 | RT_UNLOCK(rt); |
| 4226 | rt = gwrt; |
| 4227 | } |
| 4228 | VERIFY(rt == gwrt && rt != hint); |
| 4229 | |
| 4230 | /* |
| 4231 | * This is an opportunity to revalidate the parent route's |
| 4232 | * rt_gwroute, in case it now points to a dead route entry. |
| 4233 | * Parent route won't go away since the clone (hint) holds |
| 4234 | * a reference to it. rt == gwrt. |
| 4235 | */ |
| 4236 | RT_LOCK_SPIN(hint); |
| 4237 | if ((hint->rt_flags & (RTF_WASCLONED | RTF_UP)) == |
| 4238 | (RTF_WASCLONED | RTF_UP)) { |
| 4239 | rtentry_ref_t prt = hint->rt_parent; |
| 4240 | VERIFY(prt != NULL); |
| 4241 | |
| 4242 | RT_CONVERT_LOCK(hint); |
| 4243 | RT_ADDREF(prt); |
| 4244 | RT_UNLOCK(hint); |
| 4245 | rt_revalidate_gwroute(prt, rt); |
| 4246 | RT_REMREF(prt); |
| 4247 | } else { |
| 4248 | RT_UNLOCK(hint); |
| 4249 | } |
| 4250 | |
| 4251 | /* Clean up "hint" now; see notes above regarding hint0 */ |
| 4252 | if (hint == hint0) { |
| 4253 | RT_REMREF(hint); |
| 4254 | } else { |
| 4255 | rtfree(rt: hint); |
| 4256 | } |
| 4257 | hint = NULL; |
| 4258 | |
| 4259 | /* rt == gwrt; if it is now down, give up */ |
| 4260 | RT_LOCK_SPIN(rt); |
| 4261 | if (!(rt->rt_flags & RTF_UP)) { |
| 4262 | RT_UNLOCK(rt); |
| 4263 | senderr(EHOSTUNREACH); |
| 4264 | } |
| 4265 | } |
| 4266 | |
| 4267 | if (rt->rt_flags & RTF_REJECT) { |
| 4268 | VERIFY(rt->rt_expire == 0 || rt->rt_rmx.rmx_expire != 0); |
| 4269 | VERIFY(rt->rt_expire != 0 || rt->rt_rmx.rmx_expire == 0); |
| 4270 | timenow = net_uptime(); |
| 4271 | if (rt->rt_expire == 0 || timenow < rt->rt_expire) { |
| 4272 | RT_UNLOCK(rt); |
| 4273 | senderr(!gwroute ? EHOSTDOWN : EHOSTUNREACH); |
| 4274 | } |
| 4275 | } |
| 4276 | |
| 4277 | /* Become a regular mutex */ |
| 4278 | RT_CONVERT_LOCK(rt); |
| 4279 | |
| 4280 | /* Caller is responsible for cleaning up "rt" */ |
| 4281 | *out_route = rt; |
| 4282 | return 0; |
| 4283 | |
| 4284 | bad: |
| 4285 | /* Clean up route (either it is "rt" or "gwrt") */ |
| 4286 | if (rt != NULL) { |
| 4287 | RT_LOCK_SPIN(rt); |
| 4288 | if (rt == hint0) { |
| 4289 | RT_REMREF_LOCKED(rt); |
| 4290 | RT_UNLOCK(rt); |
| 4291 | } else { |
| 4292 | RT_UNLOCK(rt); |
| 4293 | rtfree(rt); |
| 4294 | } |
| 4295 | } |
| 4296 | return error; |
| 4297 | } |
| 4298 | #undef senderr |
| 4299 | |
| 4300 | void |
| 4301 | rt_revalidate_gwroute(struct rtentry *rt, struct rtentry *gwrt) |
| 4302 | { |
| 4303 | VERIFY(gwrt != NULL); |
| 4304 | |
| 4305 | RT_LOCK_SPIN(rt); |
| 4306 | if ((rt->rt_flags & (RTF_GATEWAY | RTF_UP)) == (RTF_GATEWAY | RTF_UP) && |
| 4307 | rt->rt_ifp == gwrt->rt_ifp && rt->rt_gateway->sa_family == |
| 4308 | rt_key(gwrt)->sa_family && (rt->rt_gwroute == NULL || |
| 4309 | !(rt->rt_gwroute->rt_flags & RTF_UP))) { |
| 4310 | boolean_t isequal; |
| 4311 | VERIFY(rt->rt_flags & (RTF_CLONING | RTF_PRCLONING)); |
| 4312 | |
| 4313 | if (rt->rt_gateway->sa_family == AF_INET || |
| 4314 | rt->rt_gateway->sa_family == AF_INET6) { |
| 4315 | struct sockaddr_storage key_ss, gw_ss; |
| 4316 | /* |
| 4317 | * We need to compare rt_key and rt_gateway; create |
| 4318 | * local copies to get rid of any ifscope association. |
| 4319 | */ |
| 4320 | (void) sa_copy(rt_key(gwrt), dst: &key_ss, NULL); |
| 4321 | (void) sa_copy(src: rt->rt_gateway, dst: &gw_ss, NULL); |
| 4322 | |
| 4323 | isequal = sa_equal(SA(&key_ss), SA(&gw_ss)); |
| 4324 | } else { |
| 4325 | isequal = sa_equal(rt_key(gwrt), rt->rt_gateway); |
| 4326 | } |
| 4327 | |
| 4328 | /* If they are the same, update gwrt */ |
| 4329 | if (isequal) { |
| 4330 | RT_UNLOCK(rt); |
| 4331 | lck_mtx_lock(rnh_lock); |
| 4332 | RT_LOCK(rt); |
| 4333 | rt_set_gwroute(rt, rt_key(rt), gwrt); |
| 4334 | RT_UNLOCK(rt); |
| 4335 | lck_mtx_unlock(rnh_lock); |
| 4336 | } else { |
| 4337 | RT_UNLOCK(rt); |
| 4338 | } |
| 4339 | } else { |
| 4340 | RT_UNLOCK(rt); |
| 4341 | } |
| 4342 | } |
| 4343 | |
| 4344 | static void |
| 4345 | rt_str4(struct rtentry *rt, char *ds, uint32_t dslen, char *gs, uint32_t gslen) |
| 4346 | { |
| 4347 | VERIFY(rt_key(rt)->sa_family == AF_INET); |
| 4348 | |
| 4349 | if (ds != NULL) { |
| 4350 | (void) inet_ntop(AF_INET, |
| 4351 | &SIN(rt_key(rt))->sin_addr.s_addr, ds, dslen); |
| 4352 | if (dslen >= MAX_SCOPE_ADDR_STR_LEN && |
| 4353 | SINIFSCOPE(rt_key(rt))->sin_scope_id != IFSCOPE_NONE) { |
| 4354 | char scpstr[16]; |
| 4355 | |
| 4356 | snprintf(scpstr, count: sizeof(scpstr), "@%u" , |
| 4357 | SINIFSCOPE(rt_key(rt))->sin_scope_id); |
| 4358 | |
| 4359 | strlcat(dst: ds, src: scpstr, n: dslen); |
| 4360 | } |
| 4361 | } |
| 4362 | |
| 4363 | if (gs != NULL) { |
| 4364 | if (rt->rt_flags & RTF_GATEWAY) { |
| 4365 | (void) inet_ntop(AF_INET, |
| 4366 | &SIN(rt->rt_gateway)->sin_addr.s_addr, gs, gslen); |
| 4367 | } else if (rt->rt_ifp != NULL) { |
| 4368 | snprintf(gs, count: gslen, "link#%u" , rt->rt_ifp->if_unit); |
| 4369 | } else { |
| 4370 | snprintf(gs, count: gslen, "%s" , "link" ); |
| 4371 | } |
| 4372 | } |
| 4373 | } |
| 4374 | |
| 4375 | static void |
| 4376 | rt_str6(struct rtentry *rt, char *ds, uint32_t dslen, char *gs, uint32_t gslen) |
| 4377 | { |
| 4378 | VERIFY(rt_key(rt)->sa_family == AF_INET6); |
| 4379 | |
| 4380 | if (ds != NULL) { |
| 4381 | (void) inet_ntop(AF_INET6, |
| 4382 | &SIN6(rt_key(rt))->sin6_addr, ds, dslen); |
| 4383 | if (dslen >= MAX_SCOPE_ADDR_STR_LEN && |
| 4384 | SIN6IFSCOPE(rt_key(rt))->sin6_scope_id != IFSCOPE_NONE) { |
| 4385 | char scpstr[16]; |
| 4386 | |
| 4387 | snprintf(scpstr, count: sizeof(scpstr), "@%u" , |
| 4388 | SIN6IFSCOPE(rt_key(rt))->sin6_scope_id); |
| 4389 | |
| 4390 | strlcat(dst: ds, src: scpstr, n: dslen); |
| 4391 | } |
| 4392 | } |
| 4393 | |
| 4394 | if (gs != NULL) { |
| 4395 | if (rt->rt_flags & RTF_GATEWAY) { |
| 4396 | (void) inet_ntop(AF_INET6, |
| 4397 | &SIN6(rt->rt_gateway)->sin6_addr, gs, gslen); |
| 4398 | } else if (rt->rt_ifp != NULL) { |
| 4399 | snprintf(gs, count: gslen, "link#%u" , rt->rt_ifp->if_unit); |
| 4400 | } else { |
| 4401 | snprintf(gs, count: gslen, "%s" , "link" ); |
| 4402 | } |
| 4403 | } |
| 4404 | } |
| 4405 | |
| 4406 | void |
| 4407 | rt_str(struct rtentry *rt, char *ds, uint32_t dslen, char *gs, uint32_t gslen) |
| 4408 | { |
| 4409 | switch (rt_key(rt)->sa_family) { |
| 4410 | case AF_INET: |
| 4411 | rt_str4(rt, ds, dslen, gs, gslen); |
| 4412 | break; |
| 4413 | case AF_INET6: |
| 4414 | rt_str6(rt, ds, dslen, gs, gslen); |
| 4415 | break; |
| 4416 | default: |
| 4417 | if (ds != NULL) { |
| 4418 | bzero(s: ds, n: dslen); |
| 4419 | } |
| 4420 | if (gs != NULL) { |
| 4421 | bzero(s: gs, n: gslen); |
| 4422 | } |
| 4423 | break; |
| 4424 | } |
| 4425 | } |
| 4426 | |
| 4427 | void |
| 4428 | route_event_init(struct route_event *p_route_ev, struct rtentry *rt, |
| 4429 | struct rtentry *gwrt, int route_ev_code) |
| 4430 | { |
| 4431 | VERIFY(p_route_ev != NULL); |
| 4432 | bzero(s: p_route_ev, n: sizeof(*p_route_ev)); |
| 4433 | |
| 4434 | p_route_ev->rt = rt; |
| 4435 | p_route_ev->gwrt = gwrt; |
| 4436 | p_route_ev->route_event_code = route_ev_code; |
| 4437 | } |
| 4438 | |
| 4439 | struct route_event_nwk_wq_entry { |
| 4440 | struct nwk_wq_entry nwk_wqe; |
| 4441 | struct route_event rt_ev_arg; |
| 4442 | }; |
| 4443 | |
| 4444 | static void |
| 4445 | route_event_callback(struct nwk_wq_entry *nwk_item) |
| 4446 | { |
| 4447 | struct route_event_nwk_wq_entry *p_ev = __container_of(nwk_item, |
| 4448 | struct route_event_nwk_wq_entry, nwk_wqe); |
| 4449 | |
| 4450 | rtentry_ref_t rt = p_ev->rt_ev_arg.rt; |
| 4451 | eventhandler_tag evtag = p_ev->rt_ev_arg.evtag; |
| 4452 | int route_ev_code = p_ev->rt_ev_arg.route_event_code; |
| 4453 | |
| 4454 | if (route_ev_code == ROUTE_EVHDLR_DEREGISTER) { |
| 4455 | VERIFY(evtag != NULL); |
| 4456 | EVENTHANDLER_DEREGISTER(&rt->rt_evhdlr_ctxt, route_event, |
| 4457 | evtag); |
| 4458 | rtfree(rt); |
| 4459 | kfree_type(struct route_event_nwk_wq_entry, p_ev); |
| 4460 | return; |
| 4461 | } |
| 4462 | |
| 4463 | EVENTHANDLER_INVOKE(&rt->rt_evhdlr_ctxt, route_event, rt_key(rt), |
| 4464 | route_ev_code, SA(&p_ev->rt_ev_arg.rtev_ipaddr), |
| 4465 | rt->rt_flags); |
| 4466 | |
| 4467 | /* The code enqueuing the route event held a reference */ |
| 4468 | rtfree(rt); |
| 4469 | /* XXX No reference is taken on gwrt */ |
| 4470 | kfree_type(struct route_event_nwk_wq_entry, p_ev); |
| 4471 | } |
| 4472 | |
| 4473 | int |
| 4474 | route_event_walktree(struct radix_node *rn, void *arg) |
| 4475 | { |
| 4476 | struct route_event *p_route_ev = (struct route_event *)arg; |
| 4477 | rtentry_ref_t rt = (rtentry_ref_t)rn; |
| 4478 | rtentry_ref_t gwrt = p_route_ev->rt; |
| 4479 | |
| 4480 | LCK_MTX_ASSERT(rnh_lock, LCK_MTX_ASSERT_OWNED); |
| 4481 | |
| 4482 | RT_LOCK(rt); |
| 4483 | |
| 4484 | /* Return if the entry is pending cleanup */ |
| 4485 | if (rt->rt_flags & RTPRF_OURS) { |
| 4486 | RT_UNLOCK(rt); |
| 4487 | return 0; |
| 4488 | } |
| 4489 | |
| 4490 | /* Return if it is not an indirect route */ |
| 4491 | if (!(rt->rt_flags & RTF_GATEWAY)) { |
| 4492 | RT_UNLOCK(rt); |
| 4493 | return 0; |
| 4494 | } |
| 4495 | |
| 4496 | if (rt->rt_gwroute != gwrt) { |
| 4497 | RT_UNLOCK(rt); |
| 4498 | return 0; |
| 4499 | } |
| 4500 | |
| 4501 | route_event_enqueue_nwk_wq_entry(rt, gwrt, p_route_ev->route_event_code, |
| 4502 | NULL, TRUE); |
| 4503 | RT_UNLOCK(rt); |
| 4504 | |
| 4505 | return 0; |
| 4506 | } |
| 4507 | |
| 4508 | void |
| 4509 | route_event_enqueue_nwk_wq_entry(struct rtentry *rt, struct rtentry *gwrt, |
| 4510 | uint32_t route_event_code, eventhandler_tag evtag, boolean_t rt_locked) |
| 4511 | { |
| 4512 | struct route_event_nwk_wq_entry *p_rt_ev = NULL; |
| 4513 | struct sockaddr *p_gw_saddr = NULL; |
| 4514 | |
| 4515 | p_rt_ev = kalloc_type(struct route_event_nwk_wq_entry, |
| 4516 | Z_WAITOK | Z_ZERO | Z_NOFAIL); |
| 4517 | |
| 4518 | /* |
| 4519 | * If the intent is to de-register, don't take |
| 4520 | * reference, route event registration already takes |
| 4521 | * a reference on route. |
| 4522 | */ |
| 4523 | if (route_event_code != ROUTE_EVHDLR_DEREGISTER) { |
| 4524 | /* The reference is released by route_event_callback */ |
| 4525 | if (rt_locked) { |
| 4526 | RT_ADDREF_LOCKED(rt); |
| 4527 | } else { |
| 4528 | RT_ADDREF(rt); |
| 4529 | } |
| 4530 | } |
| 4531 | |
| 4532 | p_rt_ev->rt_ev_arg.rt = rt; |
| 4533 | p_rt_ev->rt_ev_arg.gwrt = gwrt; |
| 4534 | p_rt_ev->rt_ev_arg.evtag = evtag; |
| 4535 | |
| 4536 | if (gwrt != NULL) { |
| 4537 | p_gw_saddr = gwrt->rt_gateway; |
| 4538 | } else { |
| 4539 | p_gw_saddr = rt->rt_gateway; |
| 4540 | } |
| 4541 | |
| 4542 | VERIFY(p_gw_saddr->sa_len <= sizeof(p_rt_ev->rt_ev_arg.rt_addr)); |
| 4543 | SOCKADDR_COPY(p_gw_saddr, &(p_rt_ev->rt_ev_arg.rtev_ipaddr), p_gw_saddr->sa_len); |
| 4544 | |
| 4545 | p_rt_ev->rt_ev_arg.route_event_code = route_event_code; |
| 4546 | p_rt_ev->nwk_wqe.func = route_event_callback; |
| 4547 | nwk_wq_enqueue(nwk_item: &p_rt_ev->nwk_wqe); |
| 4548 | } |
| 4549 | |
| 4550 | const char * |
| 4551 | route_event2str(int route_event) |
| 4552 | { |
| 4553 | const char *route_event_str = "ROUTE_EVENT_UNKNOWN" ; |
| 4554 | switch (route_event) { |
| 4555 | case ROUTE_STATUS_UPDATE: |
| 4556 | route_event_str = "ROUTE_STATUS_UPDATE" ; |
| 4557 | break; |
| 4558 | case ROUTE_ENTRY_REFRESH: |
| 4559 | route_event_str = "ROUTE_ENTRY_REFRESH" ; |
| 4560 | break; |
| 4561 | case ROUTE_ENTRY_DELETED: |
| 4562 | route_event_str = "ROUTE_ENTRY_DELETED" ; |
| 4563 | break; |
| 4564 | case ROUTE_LLENTRY_RESOLVED: |
| 4565 | route_event_str = "ROUTE_LLENTRY_RESOLVED" ; |
| 4566 | break; |
| 4567 | case ROUTE_LLENTRY_UNREACH: |
| 4568 | route_event_str = "ROUTE_LLENTRY_UNREACH" ; |
| 4569 | break; |
| 4570 | case ROUTE_LLENTRY_CHANGED: |
| 4571 | route_event_str = "ROUTE_LLENTRY_CHANGED" ; |
| 4572 | break; |
| 4573 | case ROUTE_LLENTRY_STALE: |
| 4574 | route_event_str = "ROUTE_LLENTRY_STALE" ; |
| 4575 | break; |
| 4576 | case ROUTE_LLENTRY_TIMEDOUT: |
| 4577 | route_event_str = "ROUTE_LLENTRY_TIMEDOUT" ; |
| 4578 | break; |
| 4579 | case ROUTE_LLENTRY_DELETED: |
| 4580 | route_event_str = "ROUTE_LLENTRY_DELETED" ; |
| 4581 | break; |
| 4582 | case ROUTE_LLENTRY_EXPIRED: |
| 4583 | route_event_str = "ROUTE_LLENTRY_EXPIRED" ; |
| 4584 | break; |
| 4585 | case ROUTE_LLENTRY_PROBED: |
| 4586 | route_event_str = "ROUTE_LLENTRY_PROBED" ; |
| 4587 | break; |
| 4588 | case ROUTE_EVHDLR_DEREGISTER: |
| 4589 | route_event_str = "ROUTE_EVHDLR_DEREGISTER" ; |
| 4590 | break; |
| 4591 | default: |
| 4592 | /* Init'd to ROUTE_EVENT_UNKNOWN */ |
| 4593 | break; |
| 4594 | } |
| 4595 | return route_event_str; |
| 4596 | } |
| 4597 | |
| 4598 | int |
| 4599 | route_op_entitlement_check(struct socket *so, |
| 4600 | kauth_cred_t cred, |
| 4601 | int route_op_type, |
| 4602 | boolean_t allow_root) |
| 4603 | { |
| 4604 | if (so != NULL) { |
| 4605 | if (route_op_type == ROUTE_OP_READ) { |
| 4606 | /* |
| 4607 | * If needed we can later extend this for more |
| 4608 | * granular entitlements and return a bit set of |
| 4609 | * allowed accesses. |
| 4610 | */ |
| 4611 | if (soopt_cred_check(so, PRIV_NET_RESTRICTED_ROUTE_NC_READ, |
| 4612 | allow_root, false) == 0) { |
| 4613 | return 0; |
| 4614 | } else { |
| 4615 | return -1; |
| 4616 | } |
| 4617 | } |
| 4618 | } else if (cred != NULL) { |
| 4619 | uid_t uid = kauth_cred_getuid(cred: cred); |
| 4620 | |
| 4621 | /* uid is 0 for root */ |
| 4622 | if (uid != 0 || !allow_root) { |
| 4623 | if (route_op_type == ROUTE_OP_READ) { |
| 4624 | if (priv_check_cred(cred, |
| 4625 | PRIV_NET_RESTRICTED_ROUTE_NC_READ, flags: 0) == 0) { |
| 4626 | return 0; |
| 4627 | } else { |
| 4628 | return -1; |
| 4629 | } |
| 4630 | } |
| 4631 | } |
| 4632 | } |
| 4633 | return -1; |
| 4634 | } |
| 4635 | |
| 4636 | /* |
| 4637 | * RTM_xxx. |
| 4638 | * |
| 4639 | * The switch statement below does nothing at runtime, as it serves as a |
| 4640 | * compile time check to ensure that all of the RTM_xxx constants are |
| 4641 | * unique. This works as long as this routine gets updated each time a |
| 4642 | * new RTM_xxx constant gets added. |
| 4643 | * |
| 4644 | * Any failures at compile time indicates duplicated RTM_xxx values. |
| 4645 | */ |
| 4646 | static __attribute__((unused)) void |
| 4647 | rtm_cassert(void) |
| 4648 | { |
| 4649 | /* |
| 4650 | * This is equivalent to _CASSERT() and the compiler wouldn't |
| 4651 | * generate any instructions, thus for compile time only. |
| 4652 | */ |
| 4653 | switch ((u_int16_t)0) { |
| 4654 | case 0: |
| 4655 | |
| 4656 | /* bsd/net/route.h */ |
| 4657 | case RTM_ADD: |
| 4658 | case RTM_DELETE: |
| 4659 | case RTM_CHANGE: |
| 4660 | case RTM_GET: |
| 4661 | case RTM_LOSING: |
| 4662 | case RTM_REDIRECT: |
| 4663 | case RTM_MISS: |
| 4664 | case RTM_LOCK: |
| 4665 | case RTM_OLDADD: |
| 4666 | case RTM_OLDDEL: |
| 4667 | case RTM_RESOLVE: |
| 4668 | case RTM_NEWADDR: |
| 4669 | case RTM_DELADDR: |
| 4670 | case RTM_IFINFO: |
| 4671 | case RTM_NEWMADDR: |
| 4672 | case RTM_DELMADDR: |
| 4673 | case RTM_IFINFO2: |
| 4674 | case RTM_NEWMADDR2: |
| 4675 | case RTM_GET2: |
| 4676 | |
| 4677 | /* bsd/net/route_private.h */ |
| 4678 | case RTM_GET_SILENT: |
| 4679 | case RTM_GET_EXT: |
| 4680 | ; |
| 4681 | } |
| 4682 | } |
| 4683 | |
| 4684 | static __attribute__((unused)) void |
| 4685 | rtv_cassert(void) |
| 4686 | { |
| 4687 | switch ((u_int16_t)0) { |
| 4688 | case 0: |
| 4689 | |
| 4690 | /* bsd/net/route.h */ |
| 4691 | case RTV_MTU: |
| 4692 | case RTV_HOPCOUNT: |
| 4693 | case RTV_EXPIRE: |
| 4694 | case RTV_RPIPE: |
| 4695 | case RTV_SPIPE: |
| 4696 | case RTV_SSTHRESH: |
| 4697 | case RTV_RTT: |
| 4698 | case RTV_RTTVAR: |
| 4699 | |
| 4700 | /* net/route_private.h */ |
| 4701 | case RTV_REFRESH_HOST: |
| 4702 | ; |
| 4703 | } |
| 4704 | } |
| 4705 | |