1 | /* |
2 | * Copyright (c) 2000-2022 Apple Inc. All rights reserved. |
3 | * |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
5 | * |
6 | * This file contains Original Code and/or Modifications of Original Code |
7 | * as defined in and that are subject to the Apple Public Source License |
8 | * Version 2.0 (the 'License'). You may not use this file except in |
9 | * compliance with the License. The rights granted to you under the License |
10 | * may not be used to create, or enable the creation or redistribution of, |
11 | * unlawful or unlicensed copies of an Apple operating system, or to |
12 | * circumvent, violate, or enable the circumvention or violation of, any |
13 | * terms of an Apple operating system software license agreement. |
14 | * |
15 | * Please obtain a copy of the License at |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
17 | * |
18 | * The Original Code and all software distributed under the License are |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
23 | * Please see the License for the specific language governing rights and |
24 | * limitations under the License. |
25 | * |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
27 | */ |
28 | |
29 | #ifndef __CONSTRAINED_CTYPES__ |
30 | #define __CONSTRAINED_CTYPES__ |
31 | |
32 | #include <sys/cdefs.h> |
33 | |
34 | /* |
35 | * Constraining pointer types based on contracts. |
36 | * |
37 | * 1. List of supported constrained pointers. |
38 | * |
39 | * 1.1. `Reference' pointers. |
40 | * |
41 | * The `reference' pointers point to a single entity. The pointer |
42 | * arithmetics are not supported for the `reference' pointers. |
43 | * |
44 | * The `reference' pointers are fully ABI compatible with |
45 | * the unconstrained C pointers. |
46 | * |
47 | * The naming convention for the `reference' pointers uses |
48 | * the `ref' constraint tag. See `Naming conventions' below for furhter |
49 | * discussion. |
50 | * |
51 | * Examples: |
52 | * |
53 | * (1) `socket_ref_t' is `reference' pointer to `struct socket'. |
54 | * (2) `uint32_ref_t' is `reference' pointer to `uint32_t'. |
55 | * |
56 | * |
57 | * 1.2. `Checked' pointers. |
58 | * |
59 | * The `checked' pointers represent contigous data arrays, which |
60 | * can be traversed only in the direction of increasing memory addresses. |
61 | * The pointer arithmetics are partially supported: decrements (p--, --p) |
62 | * are disallowed. |
63 | * |
64 | * The `checked' pointers are not ABI-compatible with plain C pointers, |
65 | * due to the boundary checks instrumentation. See `ABI |
66 | * Compatibility Considerations' below for further discussion. |
67 | * |
68 | * The naming convention for the `checked' pointers uses the `ptr' |
69 | * constraint tag. See `Naming conventions' below for furhter discussion. |
70 | * |
71 | * Examples: |
72 | * |
73 | * (1) `socket_ptr_t' is `checked' pointer to `struct socket'. |
74 | * (2) `uint32_ptr_t' is `checked' pointer to `uint32_t'. |
75 | * |
76 | * |
77 | * 1.3. `Bidirectional' pointers. |
78 | * |
79 | * The `bidirectional' pointers represent contigous data arrays, |
80 | * which can be traversed in both directions. The pointer arithmetics are |
81 | * fully supported for the `array' pointers. |
82 | * |
83 | * The `bidirectional' pointers are not ABI-compatible with plain C |
84 | * pointers, due to the boundary checks instrumentation. Additionally, |
85 | * passing `bidirectional' pointers to functions require the use of stack. |
86 | * See `ABI Compatibility Considerations' below for further discussion. |
87 | * |
88 | * The naming convention for the `bidirectional' pointers uses |
89 | * the `bptr' constraint tag. See `Naming conventions' below for furhter |
90 | * discussion. |
91 | * |
92 | * Examples: |
93 | * |
94 | * (1) `socket_bptr_t' is `bidirectional' pointer to `struct socket'. |
95 | * (2) `uint32_bptr_t' is `bidirectional' pointer to `uint32_t'. |
96 | * |
97 | * |
98 | * 1.4. Multidimensional constrained pointers. |
99 | * |
100 | * Constraining multidimensional pointers is achieved by iteratively |
101 | * applying the constraints from the innermost type to the outermost type. |
102 | * |
103 | * Pointer arithmetics are supported for the dimensions that |
104 | * are not constrained to a `reference' or `const reference'. |
105 | * |
106 | * If any of the dimension constraints isn't ABI-compatible with its |
107 | * unconstrained counterpart, then the entire constrained multidimensional |
108 | * pointer is not ABI-compatible with the corresponding unconstrained |
109 | * multidimensional pointer. Otherwise, the two are ABI-compatible. See |
110 | * `ABI compatibility' below for further discussion. |
111 | * |
112 | * The naming convention for the multidimensional constrained pointers |
113 | * combines the naming tags that correspond to the individual constraints. |
114 | * See `Naming conventions' below for furhter discussion. |
115 | * |
116 | * Examples: |
117 | * |
118 | * (1) `socket_ref_bptr_t' is a `bidirectional' pointer to a `reference' |
119 | * pointer to `struct socket'. |
120 | * (2) `socket_ptr_ref_t' is a `reference' pointer to a `checked' |
121 | * pointer to `struct socket'. |
122 | * |
123 | * |
124 | * 1.5. Using `const', `volatile', and `restrict' type qualifiers with |
125 | * constrained types. |
126 | * |
127 | * The use of the `const', `volatile', and `restrict' type qualifiers |
128 | * (a.k.a. "CRV qualifiers") follows the syntax of the C language. |
129 | * |
130 | * As a special case, if a `const' qualifier is applied to inner |
131 | * dimensions of a multidimensional constrained pointer type, the |
132 | * constraint tag is prepended with letter `c'; thus `cref' can be used |
133 | * for const-qualified `reference' pointer. This abbreviation is only |
134 | * supported for the `const' qualifier, as use of `volatile' or `restrict' |
135 | * for inner constrained types is quite uncommon. See `Multidimensional |
136 | * constrained pointers' above and `Naming conventions' below for further |
137 | * discussion. |
138 | * |
139 | * Examples: |
140 | * |
141 | * (1) `socket_ref_t const' is the const-qualified `reference' pointer |
142 | * to `struct socket'. |
143 | * (2) `socket_ptr_t volatile' is the volatile-qualified `checked' pointer |
144 | * to `struct socket'. |
145 | * (3) `socket_ptr_ref_t const' is a const-qualified `reference' pointer |
146 | * to a `checked' pointer to `struct socket'. |
147 | * (4) `socket_cref_ptr_t const' is a `checked' pointer to a |
148 | * const-qualified `reference' pointer to `struct socket'. |
149 | * |
150 | * |
151 | * 1.6. Combining constrained pointers and unconstrained pointers. |
152 | * |
153 | * Unconstrained pointers to constrained pointers follow |
154 | * the standard C syntax. Defining constrained pointers to |
155 | * unconstrained pointers is possible via defining a constrained pointer |
156 | * to a typedef. |
157 | * |
158 | * Examples: |
159 | * |
160 | * (1) `socket_ref_t *' is an unconstrained pointer to `socket_ref_t', i.e. |
161 | * unconstrained pointer to a `reference' pointer to `struct socket'. |
162 | * (2) `socket_ref_t const *' is an unconstrained pointer to `socket_ref_t const', |
163 | * i.e. an unconstrained pointer to a const-qualified `reference' |
164 | * pointer to `struct socket'. |
165 | * (3) `socket_ref_t * const' is a const-qualified unconstrained pointer to |
166 | * `socket_ref_t', i.e. a const-qualified unconstrained pointer to a |
167 | * `reference' pointer to `struct socket'. |
168 | * (4) `intptr_ref_t' is a `reference' pointer to `intptr_t', i.e. |
169 | * a `reference' pointer to an unconstrained pointer to `int'. Note |
170 | * the use of `intptr_t' typedef, which is necessary at the moment. |
171 | * |
172 | * |
173 | * 2. Defining constrained pointer types. |
174 | * |
175 | * 2.1. Declaring multiple constrained types simultaneously. |
176 | * |
177 | * `__CCT_DECLARE_CONSTRAINED_PTR_TYPES(basetype, basetag)` |
178 | * is the suggested way to declare constrained pointer types. |
179 | * |
180 | * Parameters: |
181 | * |
182 | * `basetype`: the pointee type, including `struct' or `enum' keywords. |
183 | * `basetag`: the prefix of the constrained type. |
184 | * |
185 | * This macro acts differently in the user-space and the kernel-space |
186 | * code. |
187 | * When used in the user-space code, the macro will declare |
188 | * types which are ABI-safe. See `ABI Compatibility Considerations' |
189 | * below for more details on ABI-safety. In the user-space code, |
190 | * the macro is guarded by the `__CCT_ENABLE_USER_SPACE' compilation |
191 | * flag. |
192 | * When used in the kernel-space code, the macro will declare |
193 | * the common constrained types. |
194 | * |
195 | * Examples: |
196 | * |
197 | * (1) When used from the user space, and `__CCT_ENABLE_USER_SPACE' |
198 | * is defined, the expression |
199 | * `__CCT_DECLARE_CONSTRAINED_PTR_TYPES(struct socket, socket);' |
200 | * will declare types: |
201 | * |
202 | * (a) `socket_ref_t': the `reference' to `struct socket' |
203 | * (b) `socket_ref_ref_t': the `reference to reference' |
204 | * to `struct socket'. |
205 | * |
206 | * (2) When used from the kernel space, |
207 | * `__CCT_DECLARE_CONSTRAINED_PTR_TYPES(struct socket, socket);' |
208 | * will declare the above types, plus: |
209 | * |
210 | * (c) `socket_ptr_t': `checked' pointer to `struct socket'. |
211 | * (d) `socket_bptr_t': `bidirectional' pointer to `struct socket'. |
212 | * (e) `socket_ref_ptr_t': `checked' pointer to a `reference' |
213 | * to `struct socket'. |
214 | * (f) `socket_ptr_ref_t': `reference' to a `checked' pointer |
215 | * to `struct socket'. |
216 | * |
217 | * These additional types are not ABI-safe, and therefore are not exposed |
218 | * to the user space. See `ABI Compatibility Considerations' below. |
219 | * |
220 | * |
221 | * 2.2. Declaring individual constrained types. |
222 | * |
223 | * The above macro attempts to do many things at once, and under some |
224 | * circumstances can be not appropriate. For these circumstances, a |
225 | * finer-graned declarator can be used: |
226 | * |
227 | * `__CCT_DECLARE_CONSTRAINED_PTR_TYPE(basetype, basetag, ...)' |
228 | * |
229 | * Parameters: |
230 | * |
231 | * `basetype`: the pointee type. |
232 | * `basetag`: the prefix of the constrained type. |
233 | * `...`: list of constraints: |
234 | * - `__CCT_REF' for the "reference" contract; |
235 | * - `__CCT_CREF' for the "const reference" contract; |
236 | * - `__CCT_PTR' for the "checked pointer" contract; or |
237 | * - `__CCT_BPTR' for the "bidirectional pointer" contract. |
238 | * |
239 | * Examples: |
240 | * |
241 | * (1) `__CCT_DECLARE_CONSTRAINED_PTR_TYPE(struct socket, socket, __CCT_REF)' |
242 | * will declare the type |
243 | * `reference' pointer to `struct socket' |
244 | * and call this type by `socket_ref_t' |
245 | * |
246 | * (2) `__CCT_DECLARE_CONSTRAINED_PTR_TYPE(struct socket, socket, __CCT_REF, __CCT_PTR)' |
247 | * will declare the type |
248 | * `checked' pointer to `socket_ref_t' |
249 | * which in turn is equivalent to the type |
250 | * `checked' pointer to `reference' pointer to `struct socket' |
251 | * |
252 | * (3) `__CCT_DECLARE_CONSTRAINED_PTR_TYPE(struct socket, socket, __CCT_REF, __CCT_PTR, __CCT_REF)' |
253 | * will declare the type |
254 | * `reference' pointer to `socket_ref_ptr_t' |
255 | * which is equivalent to the type |
256 | * `reference' pointer to `checked' pointer to `socket_ref_t' |
257 | * which in turn is equivalent to the type |
258 | * `reference' pointer to `checked' pointer to `reference' pointer to `struct socket' |
259 | * |
260 | * |
261 | * 3. Using constrained pointer types. |
262 | * |
263 | * 3.1. Using constrained pointers for local variables. |
264 | * |
265 | * Constraining the pointers on the stack reduces the risk of stack |
266 | * overflow. Therefore, it is highly suggested to use the constrained |
267 | * versions of the pointers for stack parameters. For local array |
268 | * variables, opt for the `bidirectional' pointers. If only a single value |
269 | * needs to be pointed, opt for the `reference' pointers. |
270 | * |
271 | * There are two alternative approaches for using the `reference' pointers. |
272 | * One approach is to explicitly use `thing_ref_t ptr` instead of `thing *ptr`. |
273 | * The other approach is to surround the code with the directives |
274 | * `__ASSUME_PTR_ABI_SINGLE_BEGIN' and `__ASSUME_PTR_ABI_SINGLE_END', which |
275 | * will have the effect of turning every unconstrained pointer to its |
276 | * `reference' counterpart. |
277 | * |
278 | * |
279 | * 3.2. Using constrained pointers for function parameters |
280 | * |
281 | * 3.2.1. Use `reference' pointers for scalar parameters. |
282 | * |
283 | * Scalar parameters are safe to use across ABI boundaries. |
284 | * |
285 | * Examples: |
286 | * |
287 | * (1) Using `reference' pointers for scalar input: |
288 | * |
289 | * errno_t thing_is_valid(const thing_ref_t t) |
290 | * { |
291 | * return t == NULL ? EINVAL : 0; |
292 | * } |
293 | * |
294 | * |
295 | * (2) Using `reference' pointers for scalar output, which is |
296 | * allocated by the caller: |
297 | * |
298 | * errno_t thing_copy(const thing_ref_t src, thing_ref_t dst) |
299 | * { |
300 | * if (src == NULL || dst == NULL) { |
301 | * return EINVAL; |
302 | * } |
303 | * bcopy(src, dst); |
304 | * return 0; |
305 | * } |
306 | * |
307 | * (3) Using `reference to reference' for scalar output that is |
308 | * allocated by the callee: |
309 | * |
310 | * errno_t thing_dup(const thing_ref_t src, thing_ref_ref_t dst) |
311 | * { |
312 | * *dst = malloc(sizeof(*dst)); |
313 | * bcopy(src, *dst, sizeof(*src)); |
314 | * return 0; |
315 | * } |
316 | * |
317 | * |
318 | * 3.2.2. Use `checked' pointers for vector parameters. |
319 | * |
320 | * When the ABI isn't a concern, use of `checked' pointers |
321 | * increases the code readability. |
322 | * |
323 | * See `ABI Compatibility Considerations' below for vector parameters when |
324 | * ABI is a concern. |
325 | * |
326 | * Examples: |
327 | * |
328 | * (1) Using `checked' pointers for vector input: |
329 | * |
330 | * errno_t thing_find_best(const thing_ref_ptr_t things, |
331 | * thing_ref_ref_t best, size_t count) |
332 | * { |
333 | * for (int i = 0; i < count; i++) { |
334 | * if (thing_is_the_best(things[i])) { |
335 | * *best = things[i]; |
336 | * return 0; |
337 | * } |
338 | * } |
339 | * return ENOENT; // no best thing |
340 | * } |
341 | * |
342 | * (2) Using `checked' pointers for vector output parameters that |
343 | * are allocated by caller: |
344 | * |
345 | * errno_t thing_copy_things(thing_ref_ptr_t src, thing_ref_ptr_t dst, |
346 | * size_t count) |
347 | * { |
348 | * for (int i = 0; i < count; i++) { |
349 | * dst[i] = malloc(sizeof(*dst[i])); |
350 | * bcopy(src[i], dst[i], sizeof(*src[i])); |
351 | * } |
352 | * return 0; |
353 | * } |
354 | * |
355 | * (3) Using `reference to checked' pointers for vector output |
356 | * parameters that are allocated by callee: |
357 | * |
358 | * errno_t thing_dup_things(thing_ref_ptr_t src, thing_ref_ptr_ref_t dst, |
359 | * size_t count) |
360 | * { |
361 | * *dst = malloc(sizeof(**src) * count); |
362 | * return thing_copy_things(src, *dst, count); |
363 | * } |
364 | * |
365 | * |
366 | * 3.3. Using constrained pointers in struct definitions |
367 | * |
368 | * Examples: |
369 | * |
370 | * (1) Using a structure that points to array of things: |
371 | * |
372 | * struct things_crate { |
373 | * size_t tc_count; |
374 | * thing_bptr_t tc_things; |
375 | * }; |
376 | * |
377 | * |
378 | * 3.4. Variable-size structures |
379 | * |
380 | * Constrained pointer instrumentation depends on knowing the size of the |
381 | * structures. If the structure contains a variable array, the array needs |
382 | * to be annotated by `__sized_by' or `__counted_by' attribute: |
383 | * |
384 | * Example: |
385 | * |
386 | * struct sockaddr { |
387 | * __uint8_t sa_len; |
388 | * sa_family_t sa_family; |
389 | * char sa_data[__counted_by(sa_len - 2)]; |
390 | * }; |
391 | * |
392 | * |
393 | * 4. ABI Compatibility Considerations |
394 | * |
395 | * The pointer instrumentation process has ABI implications. |
396 | * |
397 | * When the pointer insrumentation is enabled, the size of `bidirectional' |
398 | * and `checked' pointers exceeds the size of the machine word. |
399 | * |
400 | * Thus, if there is a concern that the instrumentation is enabled only in |
401 | * some compilation units that use the function, these constrained |
402 | * pointers can not be used for function parameters. |
403 | * |
404 | * Instead, one should rely on `__counted_by(count)' or `__sized_by(size)' |
405 | * attributes. These attributes accept as a parameter the name of a |
406 | * variable that contains the cont of items, or the byte size, of the |
407 | * pointed-to array. Use of these attributes does not change the size of |
408 | * the pointer. |
409 | * |
410 | * The tradeoff is between maintaining code readabilty and ABI compatibility. |
411 | * |
412 | * A common pattern is to split the function into the implementation, |
413 | * which is statically linked and therefore is ABI-safe, and the interface |
414 | * wrapper, which uses `__counted_by' or `__sized_by' to preserve ABI |
415 | * compatibility. |
416 | * |
417 | * |
418 | * 4.1. When ABI is a concern, replace `bidirectional' and `checked' |
419 | * with `__counted_by(count)` and `__sized_by(size)` for vector |
420 | * parameters. |
421 | * |
422 | * |
423 | * Examples: |
424 | * |
425 | * (1) Using `const thing_ref_t __counted_by(count)' instead of `const |
426 | * thing_ref_ptr_t' for vector input in a wrapper: |
427 | * |
428 | * errno_t thing_find_best_compat(const thing_ref_t __counted_by(count)things, |
429 | * thing_ref_ref_t best, size_t count) |
430 | * { |
431 | * // __counted_by implicitly upgraded to `checked' |
432 | * return thing_find_best(things, best, count); |
433 | * } |
434 | * |
435 | * (2) Using `thing_ref_t __counted_by(count)' instead of `thing_ref_ptr_t' |
436 | * for vector output in a wrapper. |
437 | * |
438 | * errno_t thing_copy_things_compat(thing_ref_t __counted_by(count)src, |
439 | * things_ref_t __counted_by(count)dst, |
440 | * size_t count) |
441 | * { |
442 | * // __counted_by implicitly upgraded to `checked' |
443 | * return thing_copy_things(src, dst, count); |
444 | * } |
445 | * |
446 | * |
447 | * 4.2. When ABI is a concern, use `__counted_by(count)' and |
448 | * `__sized_by(size)' for struct members that point to arrays. |
449 | * |
450 | * Examples: |
451 | * |
452 | * (1) Using a structure that points to array of things: |
453 | * |
454 | * struct things_crate { |
455 | * size_t tc_count; |
456 | * struct thing * __counted_by(tc_count)tc_things; |
457 | * }; |
458 | * |
459 | * 5. Naming conventions |
460 | * |
461 | * If `typename' is the name of a C type, and `tag' is a constraint tag |
462 | * (one of `ref', `ptr', or `bptr'), then the name of a pointer to |
463 | * `typename' constrained by `tag' is `basetag_tag_t', where `basename' |
464 | * is defined by: |
465 | * |
466 | * (a) If `typename' is a name of an integral type, then `basetag' is same |
467 | * as `typename'. |
468 | * (b) If `typename' is a name of a function type, then `basetag' is same |
469 | * as `typename'. |
470 | * (c) If `typename' is a name of a structure, then `basetag' is formed by |
471 | * stripping the `struct' keyword from `typename'. |
472 | * (d) If `typename' is a name of an enumeration, then `basetag' is formed |
473 | * by stripping the `enum' keyword from `typename'. |
474 | * (e) If `typename' is a name of a typedef to a struct or an enum that ends |
475 | * with `_t', then `basetag' is formed by stripping the `_t' suffix |
476 | * from `typename'. See (h) below for when `typename' is a pointer typedef. |
477 | * (f) If `typename' is a name of constrained pointer type ending with `_t', |
478 | * then `basetag' is formed by stripping the `_t' suffix from `typename'. |
479 | * |
480 | * Additionally, constrained pointers to constrained const pointers are a |
481 | * special case: |
482 | * |
483 | * (g) If `typename' is a name of a constrained pointer type, ending with |
484 | * `_{innertag}_t', and `typename' has `const' qualifier, then `basetag' |
485 | * is formed by replacing `_{innertag}_t' with `_c{innertag}' |
486 | * |
487 | * Finally, sometimes `name_t' represents not `struct name' but `struct name *'. |
488 | * This creates additional special case: |
489 | * |
490 | * (h) If `typename' is a pointer typedef named `{struct}_t`, such as |
491 | * `mbuf_t', then creating a constrained pointer to a `typename' would |
492 | * require creating a constrained pointer to an unconstrained pointer, |
493 | * which is not supported at the moment. Instead, a constrained pointer to |
494 | * `typeof(*typename)` must be created first, and constrained again. Using |
495 | * the `mbuf_t` example, first one should create a constrained pointer to |
496 | * `struct mbuf`, e.g, `mbuf_bptr_t`, and then constrain it again with |
497 | * `tag`, leading to `mbuf_bptr_ref_t'. |
498 | * |
499 | * Examples: |
500 | * |
501 | * (1) `int_ref_t' is a `reference pointer' to `int', following the rule (a) above. |
502 | * (2) `so_pru_ref_t' is a `reference pointer' to function `so_pru', |
503 | * following the rule (b) above. |
504 | * (3) `socket_ref_t' is a `reference pointer' to `struct socket', |
505 | * following the rule (c) above. |
506 | * (4) `classq_pkt_type_ref_t' is a `reference pointer' to `enum classq_pkt_type' |
507 | * following the rule (d) above. |
508 | * (5) `classq_pkt_type_ref_t' is a also `reference pointer' to `classq_pkt_type_t' |
509 | * following the rule (e) above. |
510 | * (6) `socket_ref_ref_t' is a `reference pointer' to `socket_ref_t`, |
511 | * following the rule (f) above. |
512 | * (7) `socket_cref_ref_t' is a `reference pointer' to `socket_ref_t const`, |
513 | * following the rule (g) above. |
514 | * (8) `mbuf_ref_ref_t', is a `reference pointer' to `mbuf_ref_t`, and is one |
515 | * possible result of creating a `reference pointer' to `mbuf_t', |
516 | * following the rule (h) above. |
517 | * (9) `mbuf_bptr_ref_t', is a `reference pointer' to `mbuf_bptr_t`, and |
518 | * is another possible result of creating a `reference pointer' to |
519 | * `mbuf_t', following the rule (h) above. |
520 | * |
521 | */ |
522 | |
523 | /* |
524 | * Constraint contract constants. |
525 | * |
526 | * At the moment only clang (when compiled with `ptrcheck' feature) supports |
527 | * pointer tagging via `__single', `__indexable' and `__bidi_indexable' attributes. |
528 | * |
529 | * During the transitional period, the `__indexable__' and `__bidi_indexable' |
530 | * constraints will decay to raw pointers if the `ptrcheck' feature is not enabled. |
531 | * Once the transitional period is over, the `__CCT_CONTRACT_ATTR_{B}PTR' constraints |
532 | * will stop decaying to raw pointers when built by sufficiently recent version |
533 | * of clang. |
534 | * |
535 | * Support for other compilers will be added after the introduction of support |
536 | * for pointer tagging on those compilers. |
537 | */ |
538 | #if defined(KERNEL) || defined(__CCT_ENABLE_USER_SPACE) |
539 | #if defined(__clang__) |
540 | #define __CCT_CONTRACT_ATTR___CCT_REF __single |
541 | #define __CCT_CONTRACT_ATTR___CCT_CREF const __single |
542 | #if __has_ptrcheck |
543 | #define __CCT_CONTRACT_ATTR___CCT_BPTR __bidi_indexable |
544 | #define __CCT_CONTRACT_ATTR___CCT_PTR __indexable |
545 | #else /* __clang__ + __has_ptrcheck */ |
546 | #define __CCT_CONTRACT_ATTR___CCT_BPTR |
547 | #define __CCT_CONTRACT_ATTR___CCT_PTR |
548 | #endif /* __clang__ + !__has_ptrcheck */ |
549 | #else /* !__clang__ */ |
550 | #define __CCT_CONTRACT_ATTR___CCT_REF |
551 | #define __CCT_CONTRACT_ATTR___CCT_CREF const |
552 | #define __CCT_CONTRACT_ATTR___CCT_BPTR |
553 | #define __CCT_CONTRACT_ATTR___CCT_PTR |
554 | #endif /* __clang__ */ |
555 | |
556 | #define __CCT_CONTRACT_TAG___CCT_REF _ref |
557 | #define __CCT_CONTRACT_TAG___CCT_CREF _cref |
558 | #define __CCT_CONTRACT_TAG___CCT_BPTR _bptr |
559 | #define __CCT_CONTRACT_TAG___CCT_PTR _ptr |
560 | |
561 | /* Helper macros */ |
562 | #define __CCT_DEFER(F, ...) F(__VA_ARGS__) |
563 | #define __CCT_CONTRACT_TO_ATTR(kind) __CONCAT(__CCT_CONTRACT_ATTR_, kind) |
564 | #define __CCT_CONTRACT_TO_TAG(kind) __CCT_DEFER(__CONCAT, __CCT_CONTRACT_TAG_, kind) |
565 | |
566 | #define __CCT_COUNT_ARGS1(a0, a1, a2, a3, a4, a5, a6, a7, a8, a9, N, ...) N |
567 | #define __CCT_COUNT_ARGS(...) \ |
568 | __CCT_COUNT_ARGS1(, __VA_ARGS__, _9, _8, _7, _6, _5, _4, _3, _2, _1, _0) |
569 | #define __CCT_DISPATCH1(base, N, ...) __CONCAT(base, N)(__VA_ARGS__) |
570 | #define __CCT_DISPATCH(base, ...) \ |
571 | __CCT_DISPATCH1(base, __CCT_COUNT_ARGS(__VA_ARGS__), __VA_ARGS__) |
572 | |
573 | /* Covert a contract list to a type suffix */ |
574 | #define __CCT_CONTRACT_LIST_TO_TAGGED_SUFFIX_1(kind) \ |
575 | __CCT_DEFER(__CONCAT, __CCT_CONTRACT_TO_TAG(kind), _t) |
576 | #define __CCT_CONTRACT_LIST_TO_TAGGED_SUFFIX_2(kind1, kind2) \ |
577 | __CCT_DEFER(__CONCAT, __CCT_CONTRACT_TO_TAG(kind1), \ |
578 | __CCT_CONTRACT_LIST_TO_TAGGED_SUFFIX_1(kind2)) |
579 | #define __CCT_CONTRACT_LIST_TO_TAGGED_SUFFIX_3(kind1, kind2, kind3) \ |
580 | __CCT_DEFER(__CONCAT, __CCT_CONTRACT_TO_TAG(kind1), \ |
581 | __CCT_CONTRACT_LIST_TO_TAGGED_SUFFIX_2(kind2, kind3)) |
582 | |
583 | /* Create typedefs for the constrained pointer type */ |
584 | #define __CCT_DECLARE_CONSTRAINED_PTR_TYPE_3(basetype, basetag, kind) \ |
585 | typedef basetype * __CCT_CONTRACT_TO_ATTR(kind) \ |
586 | __CCT_DEFER(__CONCAT, basetag, __CCT_CONTRACT_LIST_TO_TAGGED_SUFFIX_1(kind)) |
587 | |
588 | #define __CCT_DECLARE_CONSTRAINED_PTR_TYPE_4(basetype, basetag, kind1, kind2) \ |
589 | typedef basetype * __CCT_CONTRACT_TO_ATTR(kind1) \ |
590 | * __CCT_CONTRACT_TO_ATTR(kind2) \ |
591 | __CCT_DEFER(__CONCAT, basetag, __CCT_CONTRACT_LIST_TO_TAGGED_SUFFIX_2(kind1, kind2)) |
592 | |
593 | #define __CCT_DECLARE_CONSTRAINED_PTR_TYPE_5(basetype, basetag, kind1, kind2, kind3) \ |
594 | typedef basetype * __CCT_CONTRACT_TO_ATTR(kind1) \ |
595 | * __CCT_CONTRACT_TO_ATTR(kind2) \ |
596 | * __CCT_CONTRACT_TO_ATTR(kind3) \ |
597 | __CCT_DEFER(__CONCAT, basetag, __CCT_CONTRACT_LIST_TO_TAGGED_SUFFIX_3(kind1, kind2, kind3)) |
598 | #endif /* defined(KERNEL) || defined(__CCT_ENABLE_USER_SPACE) */ |
599 | |
600 | /* |
601 | * Lower level type constructor. |
602 | */ |
603 | #if defined(KERNEL) || defined(__CCT_ENABLE_USER_SPACE) |
604 | #define __CCT_DECLARE_CONSTRAINED_PTR_TYPE(basetype, basetag, ...) \ |
605 | __CCT_DISPATCH(__CCT_DECLARE_CONSTRAINED_PTR_TYPE, basetype, basetag, __VA_ARGS__) |
606 | #else /* !defined(KERNEL) && !defined(__CCT_ENABLE_USER_SPACE) */ |
607 | #if defined(__clang__) |
608 | #pragma clang diagnostic push |
609 | #pragma clang diagnostic ignored "-Wextra-semi" |
610 | #endif /* defined(__clang__) */ |
611 | #define __CCT_DECLARE_CONSTRAINED_PTR_TYPE(basetype, basetag, ...) |
612 | #if defined(__clang__) |
613 | #pragma clang diagnostic pop |
614 | #endif /* defined(__clang__) */ |
615 | #endif /* !defined(KERNEL) && !defined(__CCT_ENABLE_USER_SPACE) */ |
616 | |
617 | /* |
618 | * Higher level type constructors. |
619 | */ |
620 | #if defined(KERNEL) |
621 | /* |
622 | * The constrained types that can potentially break the ABI are not exposed |
623 | * into the user-space. |
624 | */ |
625 | #define __CCT_DECLARE_CONSTRAINED_PTR_TYPES(basetype, basetag) \ |
626 | __CCT_DECLARE_CONSTRAINED_PTR_TYPE(basetype, basetag, __CCT_REF); \ |
627 | __CCT_DECLARE_CONSTRAINED_PTR_TYPE(basetype, basetag, __CCT_BPTR); \ |
628 | __CCT_DECLARE_CONSTRAINED_PTR_TYPE(basetype, basetag, __CCT_PTR); \ |
629 | __CCT_DECLARE_CONSTRAINED_PTR_TYPE(basetype, basetag, __CCT_REF, __CCT_REF); \ |
630 | __CCT_DECLARE_CONSTRAINED_PTR_TYPE(basetype, basetag, __CCT_REF, __CCT_PTR); \ |
631 | __CCT_DECLARE_CONSTRAINED_PTR_TYPE(basetype, basetag, __CCT_PTR, __CCT_REF) |
632 | #else /* !defined(KERNEL) */ |
633 | #if defined(__CCT_ENABLE_USER_SPACE) |
634 | /* Limiting the higher-level constructor to the ABI-preserving constructs. */ |
635 | #define __CCT_DECLARE_CONSTRAINED_PTR_TYPES(basetype, basetag) \ |
636 | __CCT_DECLARE_CONSTRAINED_PTR_TYPE(basetype, basetag, __CCT_REF); \ |
637 | __CCT_DECLARE_CONSTRAINED_PTR_TYPE(basetype, basetag, __CCT_REF, __CCT_REF) |
638 | #else /* !defined(__CCT_ENABLE_USER_SPACE) */ |
639 | /* Disabling the higher-level constructor */ |
640 | #if defined(__clang__) |
641 | #pragma clang diagnostic push |
642 | #pragma clang diagnostic ignored "-Wextra-semi" |
643 | #endif /* defined(__clang__) */ |
644 | #define __CCT_DECLARE_CONSTRAINED_PTR_TYPES(basetype, basetag) |
645 | #if defined(__clang__) |
646 | #pragma clang diagnostic pop |
647 | #endif /* defined(__clang__) */ |
648 | #endif /* !defined(__CCT_ENABLE_USER_SPACE) */ |
649 | #endif /* !defined(KERNEL) */ |
650 | |
651 | #endif /* __CONSTRAINED_CTYPES__ */ |
652 | |