| 1 | /* |
| 2 | * Copyright (c) 1999-2020 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
| 5 | * |
| 6 | * This file contains Original Code and/or Modifications of Original Code |
| 7 | * as defined in and that are subject to the Apple Public Source License |
| 8 | * Version 2.0 (the 'License'). You may not use this file except in |
| 9 | * compliance with the License. The rights granted to you under the License |
| 10 | * may not be used to create, or enable the creation or redistribution of, |
| 11 | * unlawful or unlicensed copies of an Apple operating system, or to |
| 12 | * circumvent, violate, or enable the circumvention or violation of, any |
| 13 | * terms of an Apple operating system software license agreement. |
| 14 | * |
| 15 | * Please obtain a copy of the License at |
| 16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
| 17 | * |
| 18 | * The Original Code and all software distributed under the License are |
| 19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| 23 | * Please see the License for the specific language governing rights and |
| 24 | * limitations under the License. |
| 25 | * |
| 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
| 27 | */ |
| 28 | /* |
| 29 | * File: ubc_subr.c |
| 30 | * Author: Umesh Vaishampayan [umeshv@apple.com] |
| 31 | * 05-Aug-1999 umeshv Created. |
| 32 | * |
| 33 | * Functions related to Unified Buffer cache. |
| 34 | * |
| 35 | * Caller of UBC functions MUST have a valid reference on the vnode. |
| 36 | * |
| 37 | */ |
| 38 | |
| 39 | #include <sys/types.h> |
| 40 | #include <sys/param.h> |
| 41 | #include <sys/systm.h> |
| 42 | #include <sys/lock.h> |
| 43 | #include <sys/mman.h> |
| 44 | #include <sys/mount_internal.h> |
| 45 | #include <sys/vnode_internal.h> |
| 46 | #include <sys/ubc_internal.h> |
| 47 | #include <sys/ucred.h> |
| 48 | #include <sys/proc_internal.h> |
| 49 | #include <sys/kauth.h> |
| 50 | #include <sys/buf.h> |
| 51 | #include <sys/user.h> |
| 52 | #include <sys/codesign.h> |
| 53 | #include <sys/codedir_internal.h> |
| 54 | #include <sys/fsevents.h> |
| 55 | #include <sys/fcntl.h> |
| 56 | #include <sys/reboot.h> |
| 57 | #include <sys/code_signing.h> |
| 58 | |
| 59 | #include <mach/mach_types.h> |
| 60 | #include <mach/memory_object_types.h> |
| 61 | #include <mach/memory_object_control.h> |
| 62 | #include <mach/vm_map.h> |
| 63 | #include <mach/mach_vm.h> |
| 64 | #include <mach/upl.h> |
| 65 | |
| 66 | #include <kern/kern_types.h> |
| 67 | #include <kern/kalloc.h> |
| 68 | #include <kern/zalloc.h> |
| 69 | #include <kern/thread.h> |
| 70 | #include <vm/pmap.h> |
| 71 | #include <vm/vm_kern.h> |
| 72 | #include <vm/vm_protos.h> /* last */ |
| 73 | |
| 74 | #include <libkern/crypto/sha1.h> |
| 75 | #include <libkern/crypto/sha2.h> |
| 76 | #include <libkern/libkern.h> |
| 77 | |
| 78 | #include <security/mac_framework.h> |
| 79 | #include <stdbool.h> |
| 80 | #include <stdatomic.h> |
| 81 | #include <libkern/amfi/amfi.h> |
| 82 | |
| 83 | /* XXX These should be in a BSD accessible Mach header, but aren't. */ |
| 84 | extern kern_return_t memory_object_pages_resident(memory_object_control_t, |
| 85 | boolean_t *); |
| 86 | extern kern_return_t memory_object_signed(memory_object_control_t control, |
| 87 | boolean_t is_signed); |
| 88 | extern boolean_t memory_object_is_signed(memory_object_control_t); |
| 89 | extern void memory_object_mark_trusted( |
| 90 | memory_object_control_t control); |
| 91 | |
| 92 | extern void Debugger(const char *message); |
| 93 | |
| 94 | #if DIAGNOSTIC |
| 95 | #if defined(assert) |
| 96 | #undef assert |
| 97 | #endif |
| 98 | #define assert(cond) \ |
| 99 | ((void) ((cond) ? 0 : panic("Assert failed: %s", # cond))) |
| 100 | #else |
| 101 | #include <kern/assert.h> |
| 102 | #endif /* DIAGNOSTIC */ |
| 103 | |
| 104 | static int ubc_info_init_internal(struct vnode *vp, int withfsize, off_t filesize); |
| 105 | static int ubc_umcallback(vnode_t, void *); |
| 106 | static int ubc_msync_internal(vnode_t, off_t, off_t, off_t *, int, int *); |
| 107 | static void ubc_cs_free(struct ubc_info *uip); |
| 108 | |
| 109 | static boolean_t ubc_cs_supports_multilevel_hash(struct cs_blob *blob); |
| 110 | static kern_return_t ubc_cs_convert_to_multilevel_hash(struct cs_blob *blob); |
| 111 | |
| 112 | ZONE_DEFINE_TYPE(ubc_info_zone, "ubc_info zone" , struct ubc_info, |
| 113 | ZC_ZFREE_CLEARMEM); |
| 114 | static uint32_t cs_blob_generation_count = 1; |
| 115 | |
| 116 | /* |
| 117 | * CODESIGNING |
| 118 | * Routines to navigate code signing data structures in the kernel... |
| 119 | */ |
| 120 | |
| 121 | ZONE_DEFINE_ID(ZONE_ID_CS_BLOB, "cs_blob zone" , struct cs_blob, |
| 122 | ZC_READONLY | ZC_ZFREE_CLEARMEM); |
| 123 | |
| 124 | extern int cs_debug; |
| 125 | |
| 126 | #define PAGE_SHIFT_4K (12) |
| 127 | |
| 128 | static boolean_t |
| 129 | cs_valid_range( |
| 130 | const void *start, |
| 131 | const void *end, |
| 132 | const void *lower_bound, |
| 133 | const void *upper_bound) |
| 134 | { |
| 135 | if (upper_bound < lower_bound || |
| 136 | end < start) { |
| 137 | return FALSE; |
| 138 | } |
| 139 | |
| 140 | if (start < lower_bound || |
| 141 | end > upper_bound) { |
| 142 | return FALSE; |
| 143 | } |
| 144 | |
| 145 | return TRUE; |
| 146 | } |
| 147 | |
| 148 | typedef void (*cs_md_init)(void *ctx); |
| 149 | typedef void (*cs_md_update)(void *ctx, const void *data, size_t size); |
| 150 | typedef void (*cs_md_final)(void *hash, void *ctx); |
| 151 | |
| 152 | struct cs_hash { |
| 153 | uint8_t cs_type; /* type code as per code signing */ |
| 154 | size_t cs_size; /* size of effective hash (may be truncated) */ |
| 155 | size_t cs_digest_size;/* size of native hash */ |
| 156 | cs_md_init cs_init; |
| 157 | cs_md_update cs_update; |
| 158 | cs_md_final cs_final; |
| 159 | }; |
| 160 | |
| 161 | uint8_t |
| 162 | cs_hash_type( |
| 163 | struct cs_hash const * const cs_hash) |
| 164 | { |
| 165 | return cs_hash->cs_type; |
| 166 | } |
| 167 | |
| 168 | static const struct cs_hash cs_hash_sha1 = { |
| 169 | .cs_type = CS_HASHTYPE_SHA1, |
| 170 | .cs_size = CS_SHA1_LEN, |
| 171 | .cs_digest_size = SHA_DIGEST_LENGTH, |
| 172 | .cs_init = (cs_md_init)SHA1Init, |
| 173 | .cs_update = (cs_md_update)SHA1Update, |
| 174 | .cs_final = (cs_md_final)SHA1Final, |
| 175 | }; |
| 176 | #if CRYPTO_SHA2 |
| 177 | static const struct cs_hash cs_hash_sha256 = { |
| 178 | .cs_type = CS_HASHTYPE_SHA256, |
| 179 | .cs_size = SHA256_DIGEST_LENGTH, |
| 180 | .cs_digest_size = SHA256_DIGEST_LENGTH, |
| 181 | .cs_init = (cs_md_init)SHA256_Init, |
| 182 | .cs_update = (cs_md_update)SHA256_Update, |
| 183 | .cs_final = (cs_md_final)SHA256_Final, |
| 184 | }; |
| 185 | static const struct cs_hash cs_hash_sha256_truncate = { |
| 186 | .cs_type = CS_HASHTYPE_SHA256_TRUNCATED, |
| 187 | .cs_size = CS_SHA256_TRUNCATED_LEN, |
| 188 | .cs_digest_size = SHA256_DIGEST_LENGTH, |
| 189 | .cs_init = (cs_md_init)SHA256_Init, |
| 190 | .cs_update = (cs_md_update)SHA256_Update, |
| 191 | .cs_final = (cs_md_final)SHA256_Final, |
| 192 | }; |
| 193 | static const struct cs_hash cs_hash_sha384 = { |
| 194 | .cs_type = CS_HASHTYPE_SHA384, |
| 195 | .cs_size = SHA384_DIGEST_LENGTH, |
| 196 | .cs_digest_size = SHA384_DIGEST_LENGTH, |
| 197 | .cs_init = (cs_md_init)SHA384_Init, |
| 198 | .cs_update = (cs_md_update)SHA384_Update, |
| 199 | .cs_final = (cs_md_final)SHA384_Final, |
| 200 | }; |
| 201 | #endif |
| 202 | |
| 203 | static struct cs_hash const * |
| 204 | cs_find_md(uint8_t type) |
| 205 | { |
| 206 | if (type == CS_HASHTYPE_SHA1) { |
| 207 | return &cs_hash_sha1; |
| 208 | #if CRYPTO_SHA2 |
| 209 | } else if (type == CS_HASHTYPE_SHA256) { |
| 210 | return &cs_hash_sha256; |
| 211 | } else if (type == CS_HASHTYPE_SHA256_TRUNCATED) { |
| 212 | return &cs_hash_sha256_truncate; |
| 213 | } else if (type == CS_HASHTYPE_SHA384) { |
| 214 | return &cs_hash_sha384; |
| 215 | #endif |
| 216 | } |
| 217 | return NULL; |
| 218 | } |
| 219 | |
| 220 | union cs_hash_union { |
| 221 | SHA1_CTX sha1ctxt; |
| 222 | SHA256_CTX sha256ctx; |
| 223 | SHA384_CTX sha384ctx; |
| 224 | }; |
| 225 | |
| 226 | |
| 227 | /* |
| 228 | * Choose among different hash algorithms. |
| 229 | * Higher is better, 0 => don't use at all. |
| 230 | */ |
| 231 | static const uint32_t hashPriorities[] = { |
| 232 | CS_HASHTYPE_SHA1, |
| 233 | CS_HASHTYPE_SHA256_TRUNCATED, |
| 234 | CS_HASHTYPE_SHA256, |
| 235 | CS_HASHTYPE_SHA384, |
| 236 | }; |
| 237 | |
| 238 | static unsigned int |
| 239 | hash_rank(const CS_CodeDirectory *cd) |
| 240 | { |
| 241 | uint32_t type = cd->hashType; |
| 242 | unsigned int n; |
| 243 | |
| 244 | for (n = 0; n < sizeof(hashPriorities) / sizeof(hashPriorities[0]); ++n) { |
| 245 | if (hashPriorities[n] == type) { |
| 246 | return n + 1; |
| 247 | } |
| 248 | } |
| 249 | return 0; /* not supported */ |
| 250 | } |
| 251 | |
| 252 | |
| 253 | /* |
| 254 | * Locating a page hash |
| 255 | */ |
| 256 | static const unsigned char * |
| 257 | hashes( |
| 258 | const CS_CodeDirectory *cd, |
| 259 | uint32_t page, |
| 260 | size_t hash_len, |
| 261 | const char *lower_bound, |
| 262 | const char *upper_bound) |
| 263 | { |
| 264 | const unsigned char *base, *top, *hash; |
| 265 | uint32_t nCodeSlots = ntohl(cd->nCodeSlots); |
| 266 | |
| 267 | assert(cs_valid_range(cd, cd + 1, lower_bound, upper_bound)); |
| 268 | |
| 269 | if ((ntohl(cd->version) >= CS_SUPPORTSSCATTER) && (ntohl(cd->scatterOffset))) { |
| 270 | /* Get first scatter struct */ |
| 271 | const SC_Scatter *scatter = (const SC_Scatter*) |
| 272 | ((const char*)cd + ntohl(cd->scatterOffset)); |
| 273 | uint32_t hashindex = 0, scount, sbase = 0; |
| 274 | /* iterate all scatter structs */ |
| 275 | do { |
| 276 | if ((const char*)scatter > (const char*)cd + ntohl(cd->length)) { |
| 277 | if (cs_debug) { |
| 278 | printf("CODE SIGNING: Scatter extends past Code Directory\n" ); |
| 279 | } |
| 280 | return NULL; |
| 281 | } |
| 282 | |
| 283 | scount = ntohl(scatter->count); |
| 284 | uint32_t new_base = ntohl(scatter->base); |
| 285 | |
| 286 | /* last scatter? */ |
| 287 | if (scount == 0) { |
| 288 | return NULL; |
| 289 | } |
| 290 | |
| 291 | if ((hashindex > 0) && (new_base <= sbase)) { |
| 292 | if (cs_debug) { |
| 293 | printf("CODE SIGNING: unordered Scatter, prev base %d, cur base %d\n" , |
| 294 | sbase, new_base); |
| 295 | } |
| 296 | return NULL; /* unordered scatter array */ |
| 297 | } |
| 298 | sbase = new_base; |
| 299 | |
| 300 | /* this scatter beyond page we're looking for? */ |
| 301 | if (sbase > page) { |
| 302 | return NULL; |
| 303 | } |
| 304 | |
| 305 | if (sbase + scount >= page) { |
| 306 | /* Found the scatter struct that is |
| 307 | * referencing our page */ |
| 308 | |
| 309 | /* base = address of first hash covered by scatter */ |
| 310 | base = (const unsigned char *)cd + ntohl(cd->hashOffset) + |
| 311 | hashindex * hash_len; |
| 312 | /* top = address of first hash after this scatter */ |
| 313 | top = base + scount * hash_len; |
| 314 | if (!cs_valid_range(start: base, end: top, lower_bound, |
| 315 | upper_bound) || |
| 316 | hashindex > nCodeSlots) { |
| 317 | return NULL; |
| 318 | } |
| 319 | |
| 320 | break; |
| 321 | } |
| 322 | |
| 323 | /* this scatter struct is before the page we're looking |
| 324 | * for. Iterate. */ |
| 325 | hashindex += scount; |
| 326 | scatter++; |
| 327 | } while (1); |
| 328 | |
| 329 | hash = base + (page - sbase) * hash_len; |
| 330 | } else { |
| 331 | base = (const unsigned char *)cd + ntohl(cd->hashOffset); |
| 332 | top = base + nCodeSlots * hash_len; |
| 333 | if (!cs_valid_range(start: base, end: top, lower_bound, upper_bound) || |
| 334 | page > nCodeSlots) { |
| 335 | return NULL; |
| 336 | } |
| 337 | assert(page < nCodeSlots); |
| 338 | |
| 339 | hash = base + page * hash_len; |
| 340 | } |
| 341 | |
| 342 | if (!cs_valid_range(start: hash, end: hash + hash_len, |
| 343 | lower_bound, upper_bound)) { |
| 344 | hash = NULL; |
| 345 | } |
| 346 | |
| 347 | return hash; |
| 348 | } |
| 349 | |
| 350 | /* |
| 351 | * cs_validate_codedirectory |
| 352 | * |
| 353 | * Validate that pointers inside the code directory to make sure that |
| 354 | * all offsets and lengths are constrained within the buffer. |
| 355 | * |
| 356 | * Parameters: cd Pointer to code directory buffer |
| 357 | * length Length of buffer |
| 358 | * |
| 359 | * Returns: 0 Success |
| 360 | * EBADEXEC Invalid code signature |
| 361 | */ |
| 362 | |
| 363 | static int |
| 364 | cs_validate_codedirectory(const CS_CodeDirectory *cd, size_t length) |
| 365 | { |
| 366 | struct cs_hash const *hashtype; |
| 367 | |
| 368 | if (length < sizeof(*cd)) { |
| 369 | return EBADEXEC; |
| 370 | } |
| 371 | if (ntohl(cd->magic) != CSMAGIC_CODEDIRECTORY) { |
| 372 | return EBADEXEC; |
| 373 | } |
| 374 | if ((cd->pageSize != PAGE_SHIFT_4K) && (cd->pageSize != PAGE_SHIFT)) { |
| 375 | printf("disallowing unsupported code signature page shift: %u\n" , cd->pageSize); |
| 376 | return EBADEXEC; |
| 377 | } |
| 378 | hashtype = cs_find_md(type: cd->hashType); |
| 379 | if (hashtype == NULL) { |
| 380 | return EBADEXEC; |
| 381 | } |
| 382 | |
| 383 | if (cd->hashSize != hashtype->cs_size) { |
| 384 | return EBADEXEC; |
| 385 | } |
| 386 | |
| 387 | if (length < ntohl(cd->hashOffset)) { |
| 388 | return EBADEXEC; |
| 389 | } |
| 390 | |
| 391 | /* check that nSpecialSlots fits in the buffer in front of hashOffset */ |
| 392 | if (ntohl(cd->hashOffset) / hashtype->cs_size < ntohl(cd->nSpecialSlots)) { |
| 393 | return EBADEXEC; |
| 394 | } |
| 395 | |
| 396 | /* check that codeslots fits in the buffer */ |
| 397 | if ((length - ntohl(cd->hashOffset)) / hashtype->cs_size < ntohl(cd->nCodeSlots)) { |
| 398 | return EBADEXEC; |
| 399 | } |
| 400 | |
| 401 | if (ntohl(cd->version) >= CS_SUPPORTSSCATTER && cd->scatterOffset) { |
| 402 | if (length < ntohl(cd->scatterOffset)) { |
| 403 | return EBADEXEC; |
| 404 | } |
| 405 | |
| 406 | const SC_Scatter *scatter = (const SC_Scatter *) |
| 407 | (((const uint8_t *)cd) + ntohl(cd->scatterOffset)); |
| 408 | uint32_t nPages = 0; |
| 409 | |
| 410 | /* |
| 411 | * Check each scatter buffer, since we don't know the |
| 412 | * length of the scatter buffer array, we have to |
| 413 | * check each entry. |
| 414 | */ |
| 415 | while (1) { |
| 416 | /* check that the end of each scatter buffer in within the length */ |
| 417 | if (((const uint8_t *)scatter) + sizeof(scatter[0]) > (const uint8_t *)cd + length) { |
| 418 | return EBADEXEC; |
| 419 | } |
| 420 | uint32_t scount = ntohl(scatter->count); |
| 421 | if (scount == 0) { |
| 422 | break; |
| 423 | } |
| 424 | if (nPages + scount < nPages) { |
| 425 | return EBADEXEC; |
| 426 | } |
| 427 | nPages += scount; |
| 428 | scatter++; |
| 429 | |
| 430 | /* XXX check that basees doesn't overlap */ |
| 431 | /* XXX check that targetOffset doesn't overlap */ |
| 432 | } |
| 433 | #if 0 /* rdar://12579439 */ |
| 434 | if (nPages != ntohl(cd->nCodeSlots)) { |
| 435 | return EBADEXEC; |
| 436 | } |
| 437 | #endif |
| 438 | } |
| 439 | |
| 440 | if (length < ntohl(cd->identOffset)) { |
| 441 | return EBADEXEC; |
| 442 | } |
| 443 | |
| 444 | /* identifier is NUL terminated string */ |
| 445 | if (cd->identOffset) { |
| 446 | const uint8_t *ptr = (const uint8_t *)cd + ntohl(cd->identOffset); |
| 447 | if (memchr(ptr, 0, length - ntohl(cd->identOffset)) == NULL) { |
| 448 | return EBADEXEC; |
| 449 | } |
| 450 | } |
| 451 | |
| 452 | /* team identifier is NULL terminated string */ |
| 453 | if (ntohl(cd->version) >= CS_SUPPORTSTEAMID && ntohl(cd->teamOffset)) { |
| 454 | if (length < ntohl(cd->teamOffset)) { |
| 455 | return EBADEXEC; |
| 456 | } |
| 457 | |
| 458 | const uint8_t *ptr = (const uint8_t *)cd + ntohl(cd->teamOffset); |
| 459 | if (memchr(ptr, 0, length - ntohl(cd->teamOffset)) == NULL) { |
| 460 | return EBADEXEC; |
| 461 | } |
| 462 | } |
| 463 | |
| 464 | /* linkage is variable length binary data */ |
| 465 | if (ntohl(cd->version) >= CS_SUPPORTSLINKAGE && cd->linkageHashType != 0) { |
| 466 | const uintptr_t ptr = (uintptr_t)cd + ntohl(cd->linkageOffset); |
| 467 | const uintptr_t ptr_end = ptr + ntohl(cd->linkageSize); |
| 468 | |
| 469 | if (ptr_end < ptr || ptr < (uintptr_t)cd || ptr_end > (uintptr_t)cd + length) { |
| 470 | return EBADEXEC; |
| 471 | } |
| 472 | } |
| 473 | |
| 474 | |
| 475 | return 0; |
| 476 | } |
| 477 | |
| 478 | /* |
| 479 | * |
| 480 | */ |
| 481 | |
| 482 | static int |
| 483 | cs_validate_blob(const CS_GenericBlob *blob, size_t length) |
| 484 | { |
| 485 | if (length < sizeof(CS_GenericBlob) || length < ntohl(blob->length)) { |
| 486 | return EBADEXEC; |
| 487 | } |
| 488 | return 0; |
| 489 | } |
| 490 | |
| 491 | /* |
| 492 | * cs_validate_csblob |
| 493 | * |
| 494 | * Validate that superblob/embedded code directory to make sure that |
| 495 | * all internal pointers are valid. |
| 496 | * |
| 497 | * Will validate both a superblob csblob and a "raw" code directory. |
| 498 | * |
| 499 | * |
| 500 | * Parameters: buffer Pointer to code signature |
| 501 | * length Length of buffer |
| 502 | * rcd returns pointer to code directory |
| 503 | * |
| 504 | * Returns: 0 Success |
| 505 | * EBADEXEC Invalid code signature |
| 506 | */ |
| 507 | |
| 508 | static int |
| 509 | cs_validate_csblob( |
| 510 | const uint8_t *addr, |
| 511 | const size_t blob_size, |
| 512 | const CS_CodeDirectory **rcd, |
| 513 | const CS_GenericBlob **rentitlements, |
| 514 | const CS_GenericBlob **rder_entitlements) |
| 515 | { |
| 516 | const CS_GenericBlob *blob; |
| 517 | int error; |
| 518 | size_t length; |
| 519 | const CS_GenericBlob *self_constraint = NULL; |
| 520 | const CS_GenericBlob *parent_constraint = NULL; |
| 521 | const CS_GenericBlob *responsible_proc_constraint = NULL; |
| 522 | const CS_GenericBlob *library_constraint = NULL; |
| 523 | |
| 524 | *rcd = NULL; |
| 525 | *rentitlements = NULL; |
| 526 | *rder_entitlements = NULL; |
| 527 | |
| 528 | blob = (const CS_GenericBlob *)(const void *)addr; |
| 529 | |
| 530 | length = blob_size; |
| 531 | error = cs_validate_blob(blob, length); |
| 532 | if (error) { |
| 533 | return error; |
| 534 | } |
| 535 | length = ntohl(blob->length); |
| 536 | |
| 537 | if (ntohl(blob->magic) == CSMAGIC_EMBEDDED_SIGNATURE) { |
| 538 | const CS_SuperBlob *sb; |
| 539 | uint32_t n, count; |
| 540 | const CS_CodeDirectory *best_cd = NULL; |
| 541 | unsigned int best_rank = 0; |
| 542 | #if XNU_PLATFORM_WatchOS |
| 543 | const CS_CodeDirectory *sha1_cd = NULL; |
| 544 | #endif |
| 545 | |
| 546 | if (length < sizeof(CS_SuperBlob)) { |
| 547 | return EBADEXEC; |
| 548 | } |
| 549 | |
| 550 | sb = (const CS_SuperBlob *)blob; |
| 551 | count = ntohl(sb->count); |
| 552 | |
| 553 | /* check that the array of BlobIndex fits in the rest of the data */ |
| 554 | if ((length - sizeof(CS_SuperBlob)) / sizeof(CS_BlobIndex) < count) { |
| 555 | return EBADEXEC; |
| 556 | } |
| 557 | |
| 558 | /* now check each BlobIndex */ |
| 559 | for (n = 0; n < count; n++) { |
| 560 | const CS_BlobIndex *blobIndex = &sb->index[n]; |
| 561 | uint32_t type = ntohl(blobIndex->type); |
| 562 | uint32_t offset = ntohl(blobIndex->offset); |
| 563 | if (length < offset) { |
| 564 | return EBADEXEC; |
| 565 | } |
| 566 | |
| 567 | const CS_GenericBlob *subBlob = |
| 568 | (const CS_GenericBlob *)(const void *)(addr + offset); |
| 569 | |
| 570 | size_t subLength = length - offset; |
| 571 | |
| 572 | if ((error = cs_validate_blob(blob: subBlob, length: subLength)) != 0) { |
| 573 | return error; |
| 574 | } |
| 575 | subLength = ntohl(subBlob->length); |
| 576 | |
| 577 | /* extra validation for CDs, that is also returned */ |
| 578 | if (type == CSSLOT_CODEDIRECTORY || (type >= CSSLOT_ALTERNATE_CODEDIRECTORIES && type < CSSLOT_ALTERNATE_CODEDIRECTORY_LIMIT)) { |
| 579 | const CS_CodeDirectory *candidate = (const CS_CodeDirectory *)subBlob; |
| 580 | if ((error = cs_validate_codedirectory(cd: candidate, length: subLength)) != 0) { |
| 581 | return error; |
| 582 | } |
| 583 | unsigned int rank = hash_rank(cd: candidate); |
| 584 | if (cs_debug > 3) { |
| 585 | printf("CodeDirectory type %d rank %d at slot 0x%x index %d\n" , candidate->hashType, (int)rank, (int)type, (int)n); |
| 586 | } |
| 587 | if (best_cd == NULL || rank > best_rank) { |
| 588 | best_cd = candidate; |
| 589 | best_rank = rank; |
| 590 | |
| 591 | if (cs_debug > 2) { |
| 592 | printf("using CodeDirectory type %d (rank %d)\n" , (int)best_cd->hashType, best_rank); |
| 593 | } |
| 594 | *rcd = best_cd; |
| 595 | } else if (best_cd != NULL && rank == best_rank) { |
| 596 | /* repeat of a hash type (1:1 mapped to ranks), illegal and suspicious */ |
| 597 | printf("multiple hash=%d CodeDirectories in signature; rejecting\n" , best_cd->hashType); |
| 598 | return EBADEXEC; |
| 599 | } |
| 600 | #if XNU_PLATFORM_WatchOS |
| 601 | if (candidate->hashType == CS_HASHTYPE_SHA1) { |
| 602 | if (sha1_cd != NULL) { |
| 603 | printf("multiple sha1 CodeDirectories in signature; rejecting\n" ); |
| 604 | return EBADEXEC; |
| 605 | } |
| 606 | sha1_cd = candidate; |
| 607 | } |
| 608 | #endif |
| 609 | } else if (type == CSSLOT_ENTITLEMENTS) { |
| 610 | if (ntohl(subBlob->magic) != CSMAGIC_EMBEDDED_ENTITLEMENTS) { |
| 611 | return EBADEXEC; |
| 612 | } |
| 613 | if (*rentitlements != NULL) { |
| 614 | printf("multiple entitlements blobs\n" ); |
| 615 | return EBADEXEC; |
| 616 | } |
| 617 | *rentitlements = subBlob; |
| 618 | } else if (type == CSSLOT_DER_ENTITLEMENTS) { |
| 619 | if (ntohl(subBlob->magic) != CSMAGIC_EMBEDDED_DER_ENTITLEMENTS) { |
| 620 | return EBADEXEC; |
| 621 | } |
| 622 | if (*rder_entitlements != NULL) { |
| 623 | printf("multiple der entitlements blobs\n" ); |
| 624 | return EBADEXEC; |
| 625 | } |
| 626 | *rder_entitlements = subBlob; |
| 627 | } else if (type == CSSLOT_LAUNCH_CONSTRAINT_SELF) { |
| 628 | if (ntohl(subBlob->magic) != CSMAGIC_EMBEDDED_LAUNCH_CONSTRAINT) { |
| 629 | return EBADEXEC; |
| 630 | } |
| 631 | if (self_constraint != NULL) { |
| 632 | printf("multiple self constraint blobs\n" ); |
| 633 | return EBADEXEC; |
| 634 | } |
| 635 | self_constraint = subBlob; |
| 636 | } else if (type == CSSLOT_LAUNCH_CONSTRAINT_PARENT) { |
| 637 | if (ntohl(subBlob->magic) != CSMAGIC_EMBEDDED_LAUNCH_CONSTRAINT) { |
| 638 | return EBADEXEC; |
| 639 | } |
| 640 | if (parent_constraint != NULL) { |
| 641 | printf("multiple parent constraint blobs\n" ); |
| 642 | return EBADEXEC; |
| 643 | } |
| 644 | parent_constraint = subBlob; |
| 645 | } else if (type == CSSLOT_LAUNCH_CONSTRAINT_RESPONSIBLE) { |
| 646 | if (ntohl(subBlob->magic) != CSMAGIC_EMBEDDED_LAUNCH_CONSTRAINT) { |
| 647 | return EBADEXEC; |
| 648 | } |
| 649 | if (responsible_proc_constraint != NULL) { |
| 650 | printf("multiple responsible process constraint blobs\n" ); |
| 651 | return EBADEXEC; |
| 652 | } |
| 653 | responsible_proc_constraint = subBlob; |
| 654 | } else if (type == CSSLOT_LIBRARY_CONSTRAINT) { |
| 655 | if (ntohl(subBlob->magic) != CSMAGIC_EMBEDDED_LAUNCH_CONSTRAINT) { |
| 656 | return EBADEXEC; |
| 657 | } |
| 658 | if (library_constraint != NULL) { |
| 659 | printf("multiple library constraint blobs\n" ); |
| 660 | return EBADEXEC; |
| 661 | } |
| 662 | library_constraint = subBlob; |
| 663 | } |
| 664 | } |
| 665 | |
| 666 | #if XNU_PLATFORM_WatchOS |
| 667 | /* To keep watchOS fast enough, we have to resort to sha1 for |
| 668 | * some code. |
| 669 | * |
| 670 | * At the time of writing this comment, known sha1 attacks are |
| 671 | * collision attacks (not preimage or second preimage |
| 672 | * attacks), which do not apply to platform binaries since |
| 673 | * they have a fixed hash in the trust cache. Given this |
| 674 | * property, we only prefer sha1 code directories for adhoc |
| 675 | * signatures, which always have to be in a trust cache to be |
| 676 | * valid (can-load-cdhash does not exist for watchOS). Those |
| 677 | * are, incidentally, also the platform binaries, for which we |
| 678 | * care about the performance hit that sha256 would bring us. |
| 679 | * |
| 680 | * Platform binaries may still contain a (not chosen) sha256 |
| 681 | * code directory, which keeps software updates that switch to |
| 682 | * sha256-only small. |
| 683 | */ |
| 684 | |
| 685 | if (*rcd != NULL && sha1_cd != NULL && (ntohl(sha1_cd->flags) & CS_ADHOC)) { |
| 686 | if (sha1_cd->flags != (*rcd)->flags) { |
| 687 | printf("mismatched flags between hash %d (flags: %#x) and sha1 (flags: %#x) cd.\n" , |
| 688 | (int)(*rcd)->hashType, (*rcd)->flags, sha1_cd->flags); |
| 689 | *rcd = NULL; |
| 690 | return EBADEXEC; |
| 691 | } |
| 692 | |
| 693 | *rcd = sha1_cd; |
| 694 | } |
| 695 | #endif |
| 696 | } else if (ntohl(blob->magic) == CSMAGIC_CODEDIRECTORY) { |
| 697 | if ((error = cs_validate_codedirectory(cd: (const CS_CodeDirectory *)(const void *)addr, length)) != 0) { |
| 698 | return error; |
| 699 | } |
| 700 | *rcd = (const CS_CodeDirectory *)blob; |
| 701 | } else { |
| 702 | return EBADEXEC; |
| 703 | } |
| 704 | |
| 705 | if (*rcd == NULL) { |
| 706 | return EBADEXEC; |
| 707 | } |
| 708 | |
| 709 | return 0; |
| 710 | } |
| 711 | |
| 712 | /* |
| 713 | * cs_find_blob_bytes |
| 714 | * |
| 715 | * Find an blob from the superblob/code directory. The blob must have |
| 716 | * been been validated by cs_validate_csblob() before calling |
| 717 | * this. Use csblob_find_blob() instead. |
| 718 | * |
| 719 | * Will also find a "raw" code directory if its stored as well as |
| 720 | * searching the superblob. |
| 721 | * |
| 722 | * Parameters: buffer Pointer to code signature |
| 723 | * length Length of buffer |
| 724 | * type type of blob to find |
| 725 | * magic the magic number for that blob |
| 726 | * |
| 727 | * Returns: pointer Success |
| 728 | * NULL Buffer not found |
| 729 | */ |
| 730 | |
| 731 | const CS_GenericBlob * |
| 732 | csblob_find_blob_bytes(const uint8_t *addr, size_t length, uint32_t type, uint32_t magic) |
| 733 | { |
| 734 | const CS_GenericBlob *blob = (const CS_GenericBlob *)(const void *)addr; |
| 735 | |
| 736 | if ((addr + length) < addr) { |
| 737 | panic("CODE SIGNING: CS Blob length overflow for addr: %p" , addr); |
| 738 | } |
| 739 | |
| 740 | if (ntohl(blob->magic) == CSMAGIC_EMBEDDED_SIGNATURE) { |
| 741 | const CS_SuperBlob *sb = (const CS_SuperBlob *)blob; |
| 742 | size_t n, count = ntohl(sb->count); |
| 743 | |
| 744 | for (n = 0; n < count; n++) { |
| 745 | if (ntohl(sb->index[n].type) != type) { |
| 746 | continue; |
| 747 | } |
| 748 | uint32_t offset = ntohl(sb->index[n].offset); |
| 749 | if (length - sizeof(const CS_GenericBlob) < offset) { |
| 750 | return NULL; |
| 751 | } |
| 752 | blob = (const CS_GenericBlob *)(const void *)(addr + offset); |
| 753 | if (ntohl(blob->magic) != magic) { |
| 754 | continue; |
| 755 | } |
| 756 | if (((vm_address_t)blob + ntohl(blob->length)) < (vm_address_t)blob) { |
| 757 | panic("CODE SIGNING: CS Blob length overflow for blob at: %p" , blob); |
| 758 | } else if (((vm_address_t)blob + ntohl(blob->length)) > (vm_address_t)(addr + length)) { |
| 759 | continue; |
| 760 | } |
| 761 | return blob; |
| 762 | } |
| 763 | } else if (type == CSSLOT_CODEDIRECTORY && ntohl(blob->magic) == CSMAGIC_CODEDIRECTORY |
| 764 | && magic == CSMAGIC_CODEDIRECTORY) { |
| 765 | if (((vm_address_t)blob + ntohl(blob->length)) < (vm_address_t)blob) { |
| 766 | panic("CODE SIGNING: CS Blob length overflow for code directory blob at: %p" , blob); |
| 767 | } else if (((vm_address_t)blob + ntohl(blob->length)) > (vm_address_t)(addr + length)) { |
| 768 | return NULL; |
| 769 | } |
| 770 | return blob; |
| 771 | } |
| 772 | return NULL; |
| 773 | } |
| 774 | |
| 775 | |
| 776 | const CS_GenericBlob * |
| 777 | csblob_find_blob(struct cs_blob *csblob, uint32_t type, uint32_t magic) |
| 778 | { |
| 779 | if ((csblob->csb_flags & CS_VALID) == 0) { |
| 780 | return NULL; |
| 781 | } |
| 782 | return csblob_find_blob_bytes(addr: (const uint8_t *)csblob->csb_mem_kaddr, length: csblob->csb_mem_size, type, magic); |
| 783 | } |
| 784 | |
| 785 | static const uint8_t * |
| 786 | find_special_slot(const CS_CodeDirectory *cd, size_t slotsize, uint32_t slot) |
| 787 | { |
| 788 | /* there is no zero special slot since that is the first code slot */ |
| 789 | if (ntohl(cd->nSpecialSlots) < slot || slot == 0) { |
| 790 | return NULL; |
| 791 | } |
| 792 | |
| 793 | return (const uint8_t *)cd + ntohl(cd->hashOffset) - (slotsize * slot); |
| 794 | } |
| 795 | |
| 796 | static uint8_t cshash_zero[CS_HASH_MAX_SIZE] = { 0 }; |
| 797 | |
| 798 | static int |
| 799 | csblob_find_special_slot_blob(struct cs_blob* csblob, uint32_t slot, uint32_t magic, const CS_GenericBlob **out_start, size_t *out_length) |
| 800 | { |
| 801 | uint8_t computed_hash[CS_HASH_MAX_SIZE]; |
| 802 | const CS_GenericBlob *blob; |
| 803 | const CS_CodeDirectory *code_dir; |
| 804 | const uint8_t *embedded_hash; |
| 805 | union cs_hash_union context; |
| 806 | |
| 807 | if (out_start) { |
| 808 | *out_start = NULL; |
| 809 | } |
| 810 | if (out_length) { |
| 811 | *out_length = 0; |
| 812 | } |
| 813 | |
| 814 | if (csblob->csb_hashtype == NULL || csblob->csb_hashtype->cs_digest_size > sizeof(computed_hash)) { |
| 815 | return EBADEXEC; |
| 816 | } |
| 817 | |
| 818 | code_dir = csblob->csb_cd; |
| 819 | |
| 820 | blob = csblob_find_blob_bytes(addr: (const uint8_t *)csblob->csb_mem_kaddr, length: csblob->csb_mem_size, type: slot, magic); |
| 821 | |
| 822 | embedded_hash = find_special_slot(cd: code_dir, slotsize: csblob->csb_hashtype->cs_size, slot); |
| 823 | |
| 824 | if (embedded_hash == NULL) { |
| 825 | if (blob) { |
| 826 | return EBADEXEC; |
| 827 | } |
| 828 | return 0; |
| 829 | } else if (blob == NULL) { |
| 830 | if (memcmp(s1: embedded_hash, s2: cshash_zero, n: csblob->csb_hashtype->cs_size) != 0) { |
| 831 | return EBADEXEC; |
| 832 | } else { |
| 833 | return 0; |
| 834 | } |
| 835 | } |
| 836 | |
| 837 | csblob->csb_hashtype->cs_init(&context); |
| 838 | csblob->csb_hashtype->cs_update(&context, blob, ntohl(blob->length)); |
| 839 | csblob->csb_hashtype->cs_final(computed_hash, &context); |
| 840 | |
| 841 | if (memcmp(s1: computed_hash, s2: embedded_hash, n: csblob->csb_hashtype->cs_size) != 0) { |
| 842 | return EBADEXEC; |
| 843 | } |
| 844 | if (out_start) { |
| 845 | *out_start = blob; |
| 846 | } |
| 847 | if (out_length) { |
| 848 | *out_length = ntohl(blob->length); |
| 849 | } |
| 850 | |
| 851 | return 0; |
| 852 | } |
| 853 | |
| 854 | int |
| 855 | csblob_get_entitlements(struct cs_blob *csblob, void **out_start, size_t *out_length) |
| 856 | { |
| 857 | uint8_t computed_hash[CS_HASH_MAX_SIZE]; |
| 858 | const CS_GenericBlob *entitlements; |
| 859 | const CS_CodeDirectory *code_dir; |
| 860 | const uint8_t *embedded_hash; |
| 861 | union cs_hash_union context; |
| 862 | |
| 863 | *out_start = NULL; |
| 864 | *out_length = 0; |
| 865 | |
| 866 | if (csblob->csb_hashtype == NULL || csblob->csb_hashtype->cs_digest_size > sizeof(computed_hash)) { |
| 867 | return EBADEXEC; |
| 868 | } |
| 869 | |
| 870 | code_dir = csblob->csb_cd; |
| 871 | |
| 872 | if ((csblob->csb_flags & CS_VALID) == 0) { |
| 873 | entitlements = NULL; |
| 874 | } else { |
| 875 | entitlements = csblob->csb_entitlements_blob; |
| 876 | } |
| 877 | embedded_hash = find_special_slot(cd: code_dir, slotsize: csblob->csb_hashtype->cs_size, slot: CSSLOT_ENTITLEMENTS); |
| 878 | |
| 879 | if (embedded_hash == NULL) { |
| 880 | if (entitlements) { |
| 881 | return EBADEXEC; |
| 882 | } |
| 883 | return 0; |
| 884 | } else if (entitlements == NULL) { |
| 885 | if (memcmp(s1: embedded_hash, s2: cshash_zero, n: csblob->csb_hashtype->cs_size) != 0) { |
| 886 | return EBADEXEC; |
| 887 | } else { |
| 888 | return 0; |
| 889 | } |
| 890 | } |
| 891 | |
| 892 | csblob->csb_hashtype->cs_init(&context); |
| 893 | csblob->csb_hashtype->cs_update(&context, entitlements, ntohl(entitlements->length)); |
| 894 | csblob->csb_hashtype->cs_final(computed_hash, &context); |
| 895 | |
| 896 | if (memcmp(s1: computed_hash, s2: embedded_hash, n: csblob->csb_hashtype->cs_size) != 0) { |
| 897 | return EBADEXEC; |
| 898 | } |
| 899 | |
| 900 | *out_start = __DECONST(void *, entitlements); |
| 901 | *out_length = ntohl(entitlements->length); |
| 902 | |
| 903 | return 0; |
| 904 | } |
| 905 | |
| 906 | const CS_GenericBlob* |
| 907 | csblob_get_der_entitlements_unsafe(struct cs_blob * csblob) |
| 908 | { |
| 909 | if ((csblob->csb_flags & CS_VALID) == 0) { |
| 910 | return NULL; |
| 911 | } |
| 912 | |
| 913 | return csblob->csb_der_entitlements_blob; |
| 914 | } |
| 915 | |
| 916 | int |
| 917 | csblob_get_der_entitlements(struct cs_blob *csblob, const CS_GenericBlob **out_start, size_t *out_length) |
| 918 | { |
| 919 | uint8_t computed_hash[CS_HASH_MAX_SIZE]; |
| 920 | const CS_GenericBlob *der_entitlements; |
| 921 | const CS_CodeDirectory *code_dir; |
| 922 | const uint8_t *embedded_hash; |
| 923 | union cs_hash_union context; |
| 924 | |
| 925 | *out_start = NULL; |
| 926 | *out_length = 0; |
| 927 | |
| 928 | if (csblob->csb_hashtype == NULL || csblob->csb_hashtype->cs_digest_size > sizeof(computed_hash)) { |
| 929 | return EBADEXEC; |
| 930 | } |
| 931 | |
| 932 | code_dir = csblob->csb_cd; |
| 933 | |
| 934 | if ((csblob->csb_flags & CS_VALID) == 0) { |
| 935 | der_entitlements = NULL; |
| 936 | } else { |
| 937 | der_entitlements = csblob->csb_der_entitlements_blob; |
| 938 | } |
| 939 | embedded_hash = find_special_slot(cd: code_dir, slotsize: csblob->csb_hashtype->cs_size, slot: CSSLOT_DER_ENTITLEMENTS); |
| 940 | |
| 941 | if (embedded_hash == NULL) { |
| 942 | if (der_entitlements) { |
| 943 | return EBADEXEC; |
| 944 | } |
| 945 | return 0; |
| 946 | } else if (der_entitlements == NULL) { |
| 947 | if (memcmp(s1: embedded_hash, s2: cshash_zero, n: csblob->csb_hashtype->cs_size) != 0) { |
| 948 | return EBADEXEC; |
| 949 | } else { |
| 950 | return 0; |
| 951 | } |
| 952 | } |
| 953 | |
| 954 | csblob->csb_hashtype->cs_init(&context); |
| 955 | csblob->csb_hashtype->cs_update(&context, der_entitlements, ntohl(der_entitlements->length)); |
| 956 | csblob->csb_hashtype->cs_final(computed_hash, &context); |
| 957 | |
| 958 | if (memcmp(s1: computed_hash, s2: embedded_hash, n: csblob->csb_hashtype->cs_size) != 0) { |
| 959 | return EBADEXEC; |
| 960 | } |
| 961 | |
| 962 | *out_start = der_entitlements; |
| 963 | *out_length = ntohl(der_entitlements->length); |
| 964 | |
| 965 | return 0; |
| 966 | } |
| 967 | |
| 968 | static bool |
| 969 | ubc_cs_blob_pagewise_allocate( |
| 970 | __unused vm_size_t size) |
| 971 | { |
| 972 | #if CODE_SIGNING_MONITOR |
| 973 | /* If the monitor isn't enabled, then we don't need to page-align */ |
| 974 | if (csm_enabled() == false) { |
| 975 | return false; |
| 976 | } |
| 977 | |
| 978 | /* |
| 979 | * Small allocations can be maanged by the monitor itself. We only need to allocate |
| 980 | * page-wise when it is a sufficiently large allocation and the monitor cannot manage |
| 981 | * it on its own. |
| 982 | */ |
| 983 | if (size <= csm_signature_size_limit()) { |
| 984 | return false; |
| 985 | } |
| 986 | |
| 987 | return true; |
| 988 | #else |
| 989 | /* Without a monitor, we never need to page align */ |
| 990 | return false; |
| 991 | #endif /* CODE_SIGNING_MONITOR */ |
| 992 | } |
| 993 | |
| 994 | int |
| 995 | csblob_register_profile_uuid( |
| 996 | struct cs_blob __unused *csblob, |
| 997 | const uuid_t __unused profile_uuid, |
| 998 | void __unused *profile_addr, |
| 999 | vm_size_t __unused profile_size) |
| 1000 | { |
| 1001 | #if CODE_SIGNING_MONITOR |
| 1002 | /* Profiles only need to be registered for monitor environments */ |
| 1003 | assert(profile_addr != NULL); |
| 1004 | assert(profile_size != 0); |
| 1005 | assert(csblob != NULL); |
| 1006 | |
| 1007 | kern_return_t kr = csm_register_provisioning_profile( |
| 1008 | profile_uuid, |
| 1009 | profile_addr, profile_size); |
| 1010 | |
| 1011 | if ((kr != KERN_SUCCESS) && (kr != KERN_ALREADY_IN_SET)) { |
| 1012 | return EPERM; |
| 1013 | } |
| 1014 | |
| 1015 | /* Associate the profile with the monitor's signature object */ |
| 1016 | kr = csm_associate_provisioning_profile( |
| 1017 | csblob->csb_csm_obj, |
| 1018 | profile_uuid); |
| 1019 | |
| 1020 | if ((kr != KERN_SUCCESS) && (kr != KERN_NOT_SUPPORTED)) { |
| 1021 | return EPERM; |
| 1022 | } |
| 1023 | |
| 1024 | return 0; |
| 1025 | #else |
| 1026 | return 0; |
| 1027 | #endif /* CODE_SIGNING_MONITOR */ |
| 1028 | } |
| 1029 | |
| 1030 | /* |
| 1031 | * CODESIGNING |
| 1032 | * End of routines to navigate code signing data structures in the kernel. |
| 1033 | */ |
| 1034 | |
| 1035 | |
| 1036 | |
| 1037 | /* |
| 1038 | * ubc_info_init |
| 1039 | * |
| 1040 | * Allocate and attach an empty ubc_info structure to a vnode |
| 1041 | * |
| 1042 | * Parameters: vp Pointer to the vnode |
| 1043 | * |
| 1044 | * Returns: 0 Success |
| 1045 | * vnode_size:ENOMEM Not enough space |
| 1046 | * vnode_size:??? Other error from vnode_getattr |
| 1047 | * |
| 1048 | */ |
| 1049 | int |
| 1050 | ubc_info_init(struct vnode *vp) |
| 1051 | { |
| 1052 | return ubc_info_init_internal(vp, withfsize: 0, filesize: 0); |
| 1053 | } |
| 1054 | |
| 1055 | |
| 1056 | /* |
| 1057 | * ubc_info_init_withsize |
| 1058 | * |
| 1059 | * Allocate and attach a sized ubc_info structure to a vnode |
| 1060 | * |
| 1061 | * Parameters: vp Pointer to the vnode |
| 1062 | * filesize The size of the file |
| 1063 | * |
| 1064 | * Returns: 0 Success |
| 1065 | * vnode_size:ENOMEM Not enough space |
| 1066 | * vnode_size:??? Other error from vnode_getattr |
| 1067 | */ |
| 1068 | int |
| 1069 | ubc_info_init_withsize(struct vnode *vp, off_t filesize) |
| 1070 | { |
| 1071 | return ubc_info_init_internal(vp, withfsize: 1, filesize); |
| 1072 | } |
| 1073 | |
| 1074 | |
| 1075 | /* |
| 1076 | * ubc_info_init_internal |
| 1077 | * |
| 1078 | * Allocate and attach a ubc_info structure to a vnode |
| 1079 | * |
| 1080 | * Parameters: vp Pointer to the vnode |
| 1081 | * withfsize{0,1} Zero if the size should be obtained |
| 1082 | * from the vnode; otherwise, use filesize |
| 1083 | * filesize The size of the file, if withfsize == 1 |
| 1084 | * |
| 1085 | * Returns: 0 Success |
| 1086 | * vnode_size:ENOMEM Not enough space |
| 1087 | * vnode_size:??? Other error from vnode_getattr |
| 1088 | * |
| 1089 | * Notes: We call a blocking zalloc(), and the zone was created as an |
| 1090 | * expandable and collectable zone, so if no memory is available, |
| 1091 | * it is possible for zalloc() to block indefinitely. zalloc() |
| 1092 | * may also panic if the zone of zones is exhausted, since it's |
| 1093 | * NOT expandable. |
| 1094 | * |
| 1095 | * We unconditionally call vnode_pager_setup(), even if this is |
| 1096 | * a reuse of a ubc_info; in that case, we should probably assert |
| 1097 | * that it does not already have a pager association, but do not. |
| 1098 | * |
| 1099 | * Since memory_object_create_named() can only fail from receiving |
| 1100 | * an invalid pager argument, the explicit check and panic is |
| 1101 | * merely precautionary. |
| 1102 | */ |
| 1103 | static int |
| 1104 | ubc_info_init_internal(vnode_t vp, int withfsize, off_t filesize) |
| 1105 | { |
| 1106 | struct ubc_info *uip; |
| 1107 | void * ; |
| 1108 | int error = 0; |
| 1109 | kern_return_t kret; |
| 1110 | memory_object_control_t control; |
| 1111 | |
| 1112 | uip = vp->v_ubcinfo; |
| 1113 | |
| 1114 | /* |
| 1115 | * If there is not already a ubc_info attached to the vnode, we |
| 1116 | * attach one; otherwise, we will reuse the one that's there. |
| 1117 | */ |
| 1118 | if (uip == UBC_INFO_NULL) { |
| 1119 | uip = zalloc_flags(ubc_info_zone, Z_WAITOK | Z_ZERO); |
| 1120 | |
| 1121 | uip->ui_vnode = vp; |
| 1122 | uip->ui_flags = UI_INITED; |
| 1123 | uip->ui_ucred = NOCRED; |
| 1124 | } |
| 1125 | assert(uip->ui_flags != UI_NONE); |
| 1126 | assert(uip->ui_vnode == vp); |
| 1127 | |
| 1128 | /* now set this ubc_info in the vnode */ |
| 1129 | vp->v_ubcinfo = uip; |
| 1130 | |
| 1131 | /* |
| 1132 | * Allocate a pager object for this vnode |
| 1133 | * |
| 1134 | * XXX The value of the pager parameter is currently ignored. |
| 1135 | * XXX Presumably, this API changed to avoid the race between |
| 1136 | * XXX setting the pager and the UI_HASPAGER flag. |
| 1137 | */ |
| 1138 | pager = (void *)vnode_pager_setup(vp, uip->ui_pager); |
| 1139 | assert(pager); |
| 1140 | |
| 1141 | /* |
| 1142 | * Explicitly set the pager into the ubc_info, after setting the |
| 1143 | * UI_HASPAGER flag. |
| 1144 | */ |
| 1145 | SET(uip->ui_flags, UI_HASPAGER); |
| 1146 | uip->ui_pager = pager; |
| 1147 | |
| 1148 | /* |
| 1149 | * Note: We can not use VNOP_GETATTR() to get accurate |
| 1150 | * value of ui_size because this may be an NFS vnode, and |
| 1151 | * nfs_getattr() can call vinvalbuf(); if this happens, |
| 1152 | * ubc_info is not set up to deal with that event. |
| 1153 | * So use bogus size. |
| 1154 | */ |
| 1155 | |
| 1156 | /* |
| 1157 | * create a vnode - vm_object association |
| 1158 | * memory_object_create_named() creates a "named" reference on the |
| 1159 | * memory object we hold this reference as long as the vnode is |
| 1160 | * "alive." Since memory_object_create_named() took its own reference |
| 1161 | * on the vnode pager we passed it, we can drop the reference |
| 1162 | * vnode_pager_setup() returned here. |
| 1163 | */ |
| 1164 | kret = memory_object_create_named(pager, |
| 1165 | size: (memory_object_size_t)uip->ui_size, control: &control); |
| 1166 | vnode_pager_deallocate(pager); |
| 1167 | if (kret != KERN_SUCCESS) { |
| 1168 | panic("ubc_info_init: memory_object_create_named returned %d" , kret); |
| 1169 | } |
| 1170 | |
| 1171 | assert(control); |
| 1172 | uip->ui_control = control; /* cache the value of the mo control */ |
| 1173 | SET(uip->ui_flags, UI_HASOBJREF); /* with a named reference */ |
| 1174 | |
| 1175 | if (withfsize == 0) { |
| 1176 | /* initialize the size */ |
| 1177 | error = vnode_size(vp, &uip->ui_size, vfs_context_current()); |
| 1178 | if (error) { |
| 1179 | uip->ui_size = 0; |
| 1180 | } |
| 1181 | } else { |
| 1182 | uip->ui_size = filesize; |
| 1183 | } |
| 1184 | vp->v_lflag |= VNAMED_UBC; /* vnode has a named ubc reference */ |
| 1185 | |
| 1186 | return error; |
| 1187 | } |
| 1188 | |
| 1189 | |
| 1190 | /* |
| 1191 | * ubc_info_free |
| 1192 | * |
| 1193 | * Free a ubc_info structure |
| 1194 | * |
| 1195 | * Parameters: uip A pointer to the ubc_info to free |
| 1196 | * |
| 1197 | * Returns: (void) |
| 1198 | * |
| 1199 | * Notes: If there is a credential that has subsequently been associated |
| 1200 | * with the ubc_info, the reference to the credential is dropped. |
| 1201 | * |
| 1202 | * It's actually impossible for a ubc_info.ui_control to take the |
| 1203 | * value MEMORY_OBJECT_CONTROL_NULL. |
| 1204 | */ |
| 1205 | static void |
| 1206 | ubc_info_free(struct ubc_info *uip) |
| 1207 | { |
| 1208 | if (IS_VALID_CRED(uip->ui_ucred)) { |
| 1209 | kauth_cred_unref(&uip->ui_ucred); |
| 1210 | } |
| 1211 | |
| 1212 | if (uip->ui_control != MEMORY_OBJECT_CONTROL_NULL) { |
| 1213 | memory_object_control_deallocate(control: uip->ui_control); |
| 1214 | } |
| 1215 | |
| 1216 | cluster_release(uip); |
| 1217 | ubc_cs_free(uip); |
| 1218 | |
| 1219 | zfree(ubc_info_zone, uip); |
| 1220 | return; |
| 1221 | } |
| 1222 | |
| 1223 | |
| 1224 | void |
| 1225 | ubc_info_deallocate(struct ubc_info *uip) |
| 1226 | { |
| 1227 | ubc_info_free(uip); |
| 1228 | } |
| 1229 | |
| 1230 | /* |
| 1231 | * ubc_setsize_ex |
| 1232 | * |
| 1233 | * Tell the VM that the the size of the file represented by the vnode has |
| 1234 | * changed |
| 1235 | * |
| 1236 | * Parameters: vp The vp whose backing file size is |
| 1237 | * being changed |
| 1238 | * nsize The new size of the backing file |
| 1239 | * opts Options |
| 1240 | * |
| 1241 | * Returns: EINVAL for new size < 0 |
| 1242 | * ENOENT if no UBC info exists |
| 1243 | * EAGAIN if UBC_SETSIZE_NO_FS_REENTRY option is set and new_size < old size |
| 1244 | * Other errors (mapped to errno_t) returned by VM functions |
| 1245 | * |
| 1246 | * Notes: This function will indicate success if the new size is the |
| 1247 | * same or larger than the old size (in this case, the |
| 1248 | * remainder of the file will require modification or use of |
| 1249 | * an existing upl to access successfully). |
| 1250 | * |
| 1251 | * This function will fail if the new file size is smaller, |
| 1252 | * and the memory region being invalidated was unable to |
| 1253 | * actually be invalidated and/or the last page could not be |
| 1254 | * flushed, if the new size is not aligned to a page |
| 1255 | * boundary. This is usually indicative of an I/O error. |
| 1256 | */ |
| 1257 | errno_t |
| 1258 | ubc_setsize_ex(struct vnode *vp, off_t nsize, ubc_setsize_opts_t opts) |
| 1259 | { |
| 1260 | off_t osize; /* ui_size before change */ |
| 1261 | off_t lastpg, olastpgend, lastoff; |
| 1262 | struct ubc_info *uip; |
| 1263 | memory_object_control_t control; |
| 1264 | kern_return_t kret = KERN_SUCCESS; |
| 1265 | |
| 1266 | if (nsize < (off_t)0) { |
| 1267 | return EINVAL; |
| 1268 | } |
| 1269 | |
| 1270 | if (!UBCINFOEXISTS(vp)) { |
| 1271 | return ENOENT; |
| 1272 | } |
| 1273 | |
| 1274 | uip = vp->v_ubcinfo; |
| 1275 | osize = uip->ui_size; |
| 1276 | |
| 1277 | if (ISSET(opts, UBC_SETSIZE_NO_FS_REENTRY) && nsize < osize) { |
| 1278 | return EAGAIN; |
| 1279 | } |
| 1280 | |
| 1281 | /* |
| 1282 | * Update the size before flushing the VM |
| 1283 | */ |
| 1284 | uip->ui_size = nsize; |
| 1285 | |
| 1286 | if (nsize >= osize) { /* Nothing more to do */ |
| 1287 | if (nsize > osize) { |
| 1288 | lock_vnode_and_post(vp, NOTE_EXTEND); |
| 1289 | } |
| 1290 | |
| 1291 | return 0; |
| 1292 | } |
| 1293 | |
| 1294 | /* |
| 1295 | * When the file shrinks, invalidate the pages beyond the |
| 1296 | * new size. Also get rid of garbage beyond nsize on the |
| 1297 | * last page. The ui_size already has the nsize, so any |
| 1298 | * subsequent page-in will zero-fill the tail properly |
| 1299 | */ |
| 1300 | lastpg = trunc_page_64(nsize); |
| 1301 | olastpgend = round_page_64(x: osize); |
| 1302 | control = uip->ui_control; |
| 1303 | assert(control); |
| 1304 | lastoff = (nsize & PAGE_MASK_64); |
| 1305 | |
| 1306 | if (lastoff) { |
| 1307 | upl_t upl; |
| 1308 | upl_page_info_t *pl; |
| 1309 | |
| 1310 | /* |
| 1311 | * new EOF ends up in the middle of a page |
| 1312 | * zero the tail of this page if it's currently |
| 1313 | * present in the cache |
| 1314 | */ |
| 1315 | kret = ubc_create_upl_kernel(vp, lastpg, PAGE_SIZE, &upl, &pl, UPL_SET_LITE | UPL_WILL_MODIFY, VM_KERN_MEMORY_FILE); |
| 1316 | |
| 1317 | if (kret != KERN_SUCCESS) { |
| 1318 | panic("ubc_setsize: ubc_create_upl (error = %d)" , kret); |
| 1319 | } |
| 1320 | |
| 1321 | if (upl_valid_page(upl: pl, index: 0)) { |
| 1322 | cluster_zero(upl, (uint32_t)lastoff, PAGE_SIZE - (uint32_t)lastoff, NULL); |
| 1323 | } |
| 1324 | |
| 1325 | ubc_upl_abort_range(upl, 0, PAGE_SIZE, UPL_ABORT_FREE_ON_EMPTY); |
| 1326 | |
| 1327 | lastpg += PAGE_SIZE_64; |
| 1328 | } |
| 1329 | if (olastpgend > lastpg) { |
| 1330 | int flags; |
| 1331 | |
| 1332 | if (lastpg == 0) { |
| 1333 | flags = MEMORY_OBJECT_DATA_FLUSH_ALL; |
| 1334 | } else { |
| 1335 | flags = MEMORY_OBJECT_DATA_FLUSH; |
| 1336 | } |
| 1337 | /* |
| 1338 | * invalidate the pages beyond the new EOF page |
| 1339 | * |
| 1340 | */ |
| 1341 | kret = memory_object_lock_request(memory_control: control, |
| 1342 | offset: (memory_object_offset_t)lastpg, |
| 1343 | size: (memory_object_size_t)(olastpgend - lastpg), NULL, NULL, |
| 1344 | MEMORY_OBJECT_RETURN_NONE, flags, VM_PROT_NO_CHANGE); |
| 1345 | if (kret != KERN_SUCCESS) { |
| 1346 | printf("ubc_setsize: invalidate failed (error = %d)\n" , kret); |
| 1347 | } |
| 1348 | } |
| 1349 | return mach_to_bsd_errno(mach_err: kret); |
| 1350 | } |
| 1351 | |
| 1352 | // Returns true for success |
| 1353 | int |
| 1354 | ubc_setsize(vnode_t vp, off_t nsize) |
| 1355 | { |
| 1356 | return ubc_setsize_ex(vp, nsize, opts: 0) == 0; |
| 1357 | } |
| 1358 | |
| 1359 | /* |
| 1360 | * ubc_getsize |
| 1361 | * |
| 1362 | * Get the size of the file assocated with the specified vnode |
| 1363 | * |
| 1364 | * Parameters: vp The vnode whose size is of interest |
| 1365 | * |
| 1366 | * Returns: 0 There is no ubc_info associated with |
| 1367 | * this vnode, or the size is zero |
| 1368 | * !0 The size of the file |
| 1369 | * |
| 1370 | * Notes: Using this routine, it is not possible for a caller to |
| 1371 | * successfully distinguish between a vnode associate with a zero |
| 1372 | * length file, and a vnode with no associated ubc_info. The |
| 1373 | * caller therefore needs to not care, or needs to ensure that |
| 1374 | * they have previously successfully called ubc_info_init() or |
| 1375 | * ubc_info_init_withsize(). |
| 1376 | */ |
| 1377 | off_t |
| 1378 | ubc_getsize(struct vnode *vp) |
| 1379 | { |
| 1380 | /* people depend on the side effect of this working this way |
| 1381 | * as they call this for directory |
| 1382 | */ |
| 1383 | if (!UBCINFOEXISTS(vp)) { |
| 1384 | return (off_t)0; |
| 1385 | } |
| 1386 | return vp->v_ubcinfo->ui_size; |
| 1387 | } |
| 1388 | |
| 1389 | |
| 1390 | /* |
| 1391 | * ubc_umount |
| 1392 | * |
| 1393 | * Call ubc_msync(vp, 0, EOF, NULL, UBC_PUSHALL) on all the vnodes for this |
| 1394 | * mount point |
| 1395 | * |
| 1396 | * Parameters: mp The mount point |
| 1397 | * |
| 1398 | * Returns: 0 Success |
| 1399 | * |
| 1400 | * Notes: There is no failure indication for this function. |
| 1401 | * |
| 1402 | * This function is used in the unmount path; since it may block |
| 1403 | * I/O indefinitely, it should not be used in the forced unmount |
| 1404 | * path, since a device unavailability could also block that |
| 1405 | * indefinitely. |
| 1406 | * |
| 1407 | * Because there is no device ejection interlock on USB, FireWire, |
| 1408 | * or similar devices, it's possible that an ejection that begins |
| 1409 | * subsequent to the vnode_iterate() completing, either on one of |
| 1410 | * those devices, or a network mount for which the server quits |
| 1411 | * responding, etc., may cause the caller to block indefinitely. |
| 1412 | */ |
| 1413 | __private_extern__ int |
| 1414 | ubc_umount(struct mount *mp) |
| 1415 | { |
| 1416 | vnode_iterate(mp, flags: 0, callout: ubc_umcallback, arg: 0); |
| 1417 | return 0; |
| 1418 | } |
| 1419 | |
| 1420 | |
| 1421 | /* |
| 1422 | * ubc_umcallback |
| 1423 | * |
| 1424 | * Used by ubc_umount() as an internal implementation detail; see ubc_umount() |
| 1425 | * and vnode_iterate() for details of implementation. |
| 1426 | */ |
| 1427 | static int |
| 1428 | ubc_umcallback(vnode_t vp, __unused void * args) |
| 1429 | { |
| 1430 | if (UBCINFOEXISTS(vp)) { |
| 1431 | (void) ubc_msync(vp, (off_t)0, ubc_getsize(vp), NULL, UBC_PUSHALL); |
| 1432 | } |
| 1433 | return VNODE_RETURNED; |
| 1434 | } |
| 1435 | |
| 1436 | |
| 1437 | /* |
| 1438 | * ubc_getcred |
| 1439 | * |
| 1440 | * Get the credentials currently active for the ubc_info associated with the |
| 1441 | * vnode. |
| 1442 | * |
| 1443 | * Parameters: vp The vnode whose ubc_info credentials |
| 1444 | * are to be retrieved |
| 1445 | * |
| 1446 | * Returns: !NOCRED The credentials |
| 1447 | * NOCRED If there is no ubc_info for the vnode, |
| 1448 | * or if there is one, but it has not had |
| 1449 | * any credentials associated with it. |
| 1450 | */ |
| 1451 | kauth_cred_t |
| 1452 | ubc_getcred(struct vnode *vp) |
| 1453 | { |
| 1454 | if (UBCINFOEXISTS(vp)) { |
| 1455 | return vp->v_ubcinfo->ui_ucred; |
| 1456 | } |
| 1457 | |
| 1458 | return NOCRED; |
| 1459 | } |
| 1460 | |
| 1461 | |
| 1462 | /* |
| 1463 | * ubc_setthreadcred |
| 1464 | * |
| 1465 | * If they are not already set, set the credentials of the ubc_info structure |
| 1466 | * associated with the vnode to those of the supplied thread; otherwise leave |
| 1467 | * them alone. |
| 1468 | * |
| 1469 | * Parameters: vp The vnode whose ubc_info creds are to |
| 1470 | * be set |
| 1471 | * p The process whose credentials are to |
| 1472 | * be used, if not running on an assumed |
| 1473 | * credential |
| 1474 | * thread The thread whose credentials are to |
| 1475 | * be used |
| 1476 | * |
| 1477 | * Returns: 1 This vnode has no associated ubc_info |
| 1478 | * 0 Success |
| 1479 | * |
| 1480 | * Notes: This function is generally used only in the following cases: |
| 1481 | * |
| 1482 | * o a memory mapped file via the mmap() system call |
| 1483 | * o a swap store backing file |
| 1484 | * o subsequent to a successful write via vn_write() |
| 1485 | * |
| 1486 | * The information is then used by the NFS client in order to |
| 1487 | * cons up a wire message in either the page-in or page-out path. |
| 1488 | * |
| 1489 | * There are two potential problems with the use of this API: |
| 1490 | * |
| 1491 | * o Because the write path only set it on a successful |
| 1492 | * write, there is a race window between setting the |
| 1493 | * credential and its use to evict the pages to the |
| 1494 | * remote file server |
| 1495 | * |
| 1496 | * o Because a page-in may occur prior to a write, the |
| 1497 | * credential may not be set at this time, if the page-in |
| 1498 | * is not the result of a mapping established via mmap(). |
| 1499 | * |
| 1500 | * In both these cases, this will be triggered from the paging |
| 1501 | * path, which will instead use the credential of the current |
| 1502 | * process, which in this case is either the dynamic_pager or |
| 1503 | * the kernel task, both of which utilize "root" credentials. |
| 1504 | * |
| 1505 | * This may potentially permit operations to occur which should |
| 1506 | * be denied, or it may cause to be denied operations which |
| 1507 | * should be permitted, depending on the configuration of the NFS |
| 1508 | * server. |
| 1509 | */ |
| 1510 | int |
| 1511 | ubc_setthreadcred(struct vnode *vp, proc_t p, thread_t thread) |
| 1512 | { |
| 1513 | #pragma unused(p, thread) |
| 1514 | assert(p == current_proc()); |
| 1515 | assert(thread == current_thread()); |
| 1516 | |
| 1517 | return ubc_setcred(vp, kauth_cred_get()); |
| 1518 | } |
| 1519 | |
| 1520 | |
| 1521 | /* |
| 1522 | * ubc_setcred |
| 1523 | * |
| 1524 | * If they are not already set, set the credentials of the ubc_info structure |
| 1525 | * associated with the vnode to those specified; otherwise leave them |
| 1526 | * alone. |
| 1527 | * |
| 1528 | * Parameters: vp The vnode whose ubc_info creds are to |
| 1529 | * be set |
| 1530 | * ucred The credentials to use |
| 1531 | * |
| 1532 | * Returns: 0 This vnode has no associated ubc_info |
| 1533 | * 1 Success |
| 1534 | * |
| 1535 | * Notes: The return values for this function are inverted from nearly |
| 1536 | * all other uses in the kernel. |
| 1537 | * |
| 1538 | * See also ubc_setthreadcred(), above. |
| 1539 | */ |
| 1540 | int |
| 1541 | ubc_setcred(struct vnode *vp, kauth_cred_t ucred) |
| 1542 | { |
| 1543 | struct ubc_info *uip; |
| 1544 | |
| 1545 | /* If there is no ubc_info, deny the operation */ |
| 1546 | if (!UBCINFOEXISTS(vp)) { |
| 1547 | return 0; |
| 1548 | } |
| 1549 | |
| 1550 | /* |
| 1551 | * Check to see if there is already a credential reference in the |
| 1552 | * ubc_info; if there is not, take one on the supplied credential. |
| 1553 | */ |
| 1554 | vnode_lock(vp); |
| 1555 | uip = vp->v_ubcinfo; |
| 1556 | if (!IS_VALID_CRED(uip->ui_ucred)) { |
| 1557 | kauth_cred_ref(cred: ucred); |
| 1558 | uip->ui_ucred = ucred; |
| 1559 | } |
| 1560 | vnode_unlock(vp); |
| 1561 | |
| 1562 | return 1; |
| 1563 | } |
| 1564 | |
| 1565 | /* |
| 1566 | * ubc_getpager |
| 1567 | * |
| 1568 | * Get the pager associated with the ubc_info associated with the vnode. |
| 1569 | * |
| 1570 | * Parameters: vp The vnode to obtain the pager from |
| 1571 | * |
| 1572 | * Returns: !VNODE_PAGER_NULL The memory_object_t for the pager |
| 1573 | * VNODE_PAGER_NULL There is no ubc_info for this vnode |
| 1574 | * |
| 1575 | * Notes: For each vnode that has a ubc_info associated with it, that |
| 1576 | * ubc_info SHALL have a pager associated with it, so in the |
| 1577 | * normal case, it's impossible to return VNODE_PAGER_NULL for |
| 1578 | * a vnode with an associated ubc_info. |
| 1579 | */ |
| 1580 | __private_extern__ memory_object_t |
| 1581 | (struct vnode *vp) |
| 1582 | { |
| 1583 | if (UBCINFOEXISTS(vp)) { |
| 1584 | return vp->v_ubcinfo->ui_pager; |
| 1585 | } |
| 1586 | |
| 1587 | return 0; |
| 1588 | } |
| 1589 | |
| 1590 | |
| 1591 | /* |
| 1592 | * ubc_getobject |
| 1593 | * |
| 1594 | * Get the memory object control associated with the ubc_info associated with |
| 1595 | * the vnode |
| 1596 | * |
| 1597 | * Parameters: vp The vnode to obtain the memory object |
| 1598 | * from |
| 1599 | * flags DEPRECATED |
| 1600 | * |
| 1601 | * Returns: !MEMORY_OBJECT_CONTROL_NULL |
| 1602 | * MEMORY_OBJECT_CONTROL_NULL |
| 1603 | * |
| 1604 | * Notes: Historically, if the flags were not "do not reactivate", this |
| 1605 | * function would look up the memory object using the pager if |
| 1606 | * it did not exist (this could be the case if the vnode had |
| 1607 | * been previously reactivated). The flags would also permit a |
| 1608 | * hold to be requested, which would have created an object |
| 1609 | * reference, if one had not already existed. This usage is |
| 1610 | * deprecated, as it would permit a race between finding and |
| 1611 | * taking the reference vs. a single reference being dropped in |
| 1612 | * another thread. |
| 1613 | */ |
| 1614 | memory_object_control_t |
| 1615 | ubc_getobject(struct vnode *vp, __unused int flags) |
| 1616 | { |
| 1617 | if (UBCINFOEXISTS(vp)) { |
| 1618 | return vp->v_ubcinfo->ui_control; |
| 1619 | } |
| 1620 | |
| 1621 | return MEMORY_OBJECT_CONTROL_NULL; |
| 1622 | } |
| 1623 | |
| 1624 | /* |
| 1625 | * ubc_blktooff |
| 1626 | * |
| 1627 | * Convert a given block number to a memory backing object (file) offset for a |
| 1628 | * given vnode |
| 1629 | * |
| 1630 | * Parameters: vp The vnode in which the block is located |
| 1631 | * blkno The block number to convert |
| 1632 | * |
| 1633 | * Returns: !-1 The offset into the backing object |
| 1634 | * -1 There is no ubc_info associated with |
| 1635 | * the vnode |
| 1636 | * -1 An error occurred in the underlying VFS |
| 1637 | * while translating the block to an |
| 1638 | * offset; the most likely cause is that |
| 1639 | * the caller specified a block past the |
| 1640 | * end of the file, but this could also be |
| 1641 | * any other error from VNOP_BLKTOOFF(). |
| 1642 | * |
| 1643 | * Note: Representing the error in band loses some information, but does |
| 1644 | * not occlude a valid offset, since an off_t of -1 is normally |
| 1645 | * used to represent EOF. If we had a more reliable constant in |
| 1646 | * our header files for it (i.e. explicitly cast to an off_t), we |
| 1647 | * would use it here instead. |
| 1648 | */ |
| 1649 | off_t |
| 1650 | ubc_blktooff(vnode_t vp, daddr64_t blkno) |
| 1651 | { |
| 1652 | off_t file_offset = -1; |
| 1653 | int error; |
| 1654 | |
| 1655 | if (UBCINFOEXISTS(vp)) { |
| 1656 | error = VNOP_BLKTOOFF(vp, blkno, &file_offset); |
| 1657 | if (error) { |
| 1658 | file_offset = -1; |
| 1659 | } |
| 1660 | } |
| 1661 | |
| 1662 | return file_offset; |
| 1663 | } |
| 1664 | |
| 1665 | |
| 1666 | /* |
| 1667 | * ubc_offtoblk |
| 1668 | * |
| 1669 | * Convert a given offset in a memory backing object into a block number for a |
| 1670 | * given vnode |
| 1671 | * |
| 1672 | * Parameters: vp The vnode in which the offset is |
| 1673 | * located |
| 1674 | * offset The offset into the backing object |
| 1675 | * |
| 1676 | * Returns: !-1 The returned block number |
| 1677 | * -1 There is no ubc_info associated with |
| 1678 | * the vnode |
| 1679 | * -1 An error occurred in the underlying VFS |
| 1680 | * while translating the block to an |
| 1681 | * offset; the most likely cause is that |
| 1682 | * the caller specified a block past the |
| 1683 | * end of the file, but this could also be |
| 1684 | * any other error from VNOP_OFFTOBLK(). |
| 1685 | * |
| 1686 | * Note: Representing the error in band loses some information, but does |
| 1687 | * not occlude a valid block number, since block numbers exceed |
| 1688 | * the valid range for offsets, due to their relative sizes. If |
| 1689 | * we had a more reliable constant than -1 in our header files |
| 1690 | * for it (i.e. explicitly cast to an daddr64_t), we would use it |
| 1691 | * here instead. |
| 1692 | */ |
| 1693 | daddr64_t |
| 1694 | ubc_offtoblk(vnode_t vp, off_t offset) |
| 1695 | { |
| 1696 | daddr64_t blkno = -1; |
| 1697 | int error = 0; |
| 1698 | |
| 1699 | if (UBCINFOEXISTS(vp)) { |
| 1700 | error = VNOP_OFFTOBLK(vp, offset, &blkno); |
| 1701 | if (error) { |
| 1702 | blkno = -1; |
| 1703 | } |
| 1704 | } |
| 1705 | |
| 1706 | return blkno; |
| 1707 | } |
| 1708 | |
| 1709 | |
| 1710 | /* |
| 1711 | * ubc_pages_resident |
| 1712 | * |
| 1713 | * Determine whether or not a given vnode has pages resident via the memory |
| 1714 | * object control associated with the ubc_info associated with the vnode |
| 1715 | * |
| 1716 | * Parameters: vp The vnode we want to know about |
| 1717 | * |
| 1718 | * Returns: 1 Yes |
| 1719 | * 0 No |
| 1720 | */ |
| 1721 | int |
| 1722 | ubc_pages_resident(vnode_t vp) |
| 1723 | { |
| 1724 | kern_return_t kret; |
| 1725 | boolean_t has_pages_resident; |
| 1726 | |
| 1727 | if (!UBCINFOEXISTS(vp)) { |
| 1728 | return 0; |
| 1729 | } |
| 1730 | |
| 1731 | /* |
| 1732 | * The following call may fail if an invalid ui_control is specified, |
| 1733 | * or if there is no VM object associated with the control object. In |
| 1734 | * either case, reacting to it as if there were no pages resident will |
| 1735 | * result in correct behavior. |
| 1736 | */ |
| 1737 | kret = memory_object_pages_resident(vp->v_ubcinfo->ui_control, &has_pages_resident); |
| 1738 | |
| 1739 | if (kret != KERN_SUCCESS) { |
| 1740 | return 0; |
| 1741 | } |
| 1742 | |
| 1743 | if (has_pages_resident == TRUE) { |
| 1744 | return 1; |
| 1745 | } |
| 1746 | |
| 1747 | return 0; |
| 1748 | } |
| 1749 | |
| 1750 | /* |
| 1751 | * ubc_msync |
| 1752 | * |
| 1753 | * Clean and/or invalidate a range in the memory object that backs this vnode |
| 1754 | * |
| 1755 | * Parameters: vp The vnode whose associated ubc_info's |
| 1756 | * associated memory object is to have a |
| 1757 | * range invalidated within it |
| 1758 | * beg_off The start of the range, as an offset |
| 1759 | * end_off The end of the range, as an offset |
| 1760 | * resid_off The address of an off_t supplied by the |
| 1761 | * caller; may be set to NULL to ignore |
| 1762 | * flags See ubc_msync_internal() |
| 1763 | * |
| 1764 | * Returns: 0 Success |
| 1765 | * !0 Failure; an errno is returned |
| 1766 | * |
| 1767 | * Implicit Returns: |
| 1768 | * *resid_off, modified If non-NULL, the contents are ALWAYS |
| 1769 | * modified; they are initialized to the |
| 1770 | * beg_off, and in case of an I/O error, |
| 1771 | * the difference between beg_off and the |
| 1772 | * current value will reflect what was |
| 1773 | * able to be written before the error |
| 1774 | * occurred. If no error is returned, the |
| 1775 | * value of the resid_off is undefined; do |
| 1776 | * NOT use it in place of end_off if you |
| 1777 | * intend to increment from the end of the |
| 1778 | * last call and call iteratively. |
| 1779 | * |
| 1780 | * Notes: see ubc_msync_internal() for more detailed information. |
| 1781 | * |
| 1782 | */ |
| 1783 | errno_t |
| 1784 | ubc_msync(vnode_t vp, off_t beg_off, off_t end_off, off_t *resid_off, int flags) |
| 1785 | { |
| 1786 | int retval; |
| 1787 | int io_errno = 0; |
| 1788 | |
| 1789 | if (resid_off) { |
| 1790 | *resid_off = beg_off; |
| 1791 | } |
| 1792 | |
| 1793 | retval = ubc_msync_internal(vp, beg_off, end_off, resid_off, flags, &io_errno); |
| 1794 | |
| 1795 | if (retval == 0 && io_errno == 0) { |
| 1796 | return EINVAL; |
| 1797 | } |
| 1798 | return io_errno; |
| 1799 | } |
| 1800 | |
| 1801 | |
| 1802 | /* |
| 1803 | * ubc_msync_internal |
| 1804 | * |
| 1805 | * Clean and/or invalidate a range in the memory object that backs this vnode |
| 1806 | * |
| 1807 | * Parameters: vp The vnode whose associated ubc_info's |
| 1808 | * associated memory object is to have a |
| 1809 | * range invalidated within it |
| 1810 | * beg_off The start of the range, as an offset |
| 1811 | * end_off The end of the range, as an offset |
| 1812 | * resid_off The address of an off_t supplied by the |
| 1813 | * caller; may be set to NULL to ignore |
| 1814 | * flags MUST contain at least one of the flags |
| 1815 | * UBC_INVALIDATE, UBC_PUSHDIRTY, or |
| 1816 | * UBC_PUSHALL; if UBC_PUSHDIRTY is used, |
| 1817 | * UBC_SYNC may also be specified to cause |
| 1818 | * this function to block until the |
| 1819 | * operation is complete. The behavior |
| 1820 | * of UBC_SYNC is otherwise undefined. |
| 1821 | * io_errno The address of an int to contain the |
| 1822 | * errno from a failed I/O operation, if |
| 1823 | * one occurs; may be set to NULL to |
| 1824 | * ignore |
| 1825 | * |
| 1826 | * Returns: 1 Success |
| 1827 | * 0 Failure |
| 1828 | * |
| 1829 | * Implicit Returns: |
| 1830 | * *resid_off, modified The contents of this offset MAY be |
| 1831 | * modified; in case of an I/O error, the |
| 1832 | * difference between beg_off and the |
| 1833 | * current value will reflect what was |
| 1834 | * able to be written before the error |
| 1835 | * occurred. |
| 1836 | * *io_errno, modified The contents of this offset are set to |
| 1837 | * an errno, if an error occurs; if the |
| 1838 | * caller supplies an io_errno parameter, |
| 1839 | * they should be careful to initialize it |
| 1840 | * to 0 before calling this function to |
| 1841 | * enable them to distinguish an error |
| 1842 | * with a valid *resid_off from an invalid |
| 1843 | * one, and to avoid potentially falsely |
| 1844 | * reporting an error, depending on use. |
| 1845 | * |
| 1846 | * Notes: If there is no ubc_info associated with the vnode supplied, |
| 1847 | * this function immediately returns success. |
| 1848 | * |
| 1849 | * If the value of end_off is less than or equal to beg_off, this |
| 1850 | * function immediately returns success; that is, end_off is NOT |
| 1851 | * inclusive. |
| 1852 | * |
| 1853 | * IMPORTANT: one of the flags UBC_INVALIDATE, UBC_PUSHDIRTY, or |
| 1854 | * UBC_PUSHALL MUST be specified; that is, it is NOT possible to |
| 1855 | * attempt to block on in-progress I/O by calling this function |
| 1856 | * with UBC_PUSHDIRTY, and then later call it with just UBC_SYNC |
| 1857 | * in order to block pending on the I/O already in progress. |
| 1858 | * |
| 1859 | * The start offset is truncated to the page boundary and the |
| 1860 | * size is adjusted to include the last page in the range; that |
| 1861 | * is, end_off on exactly a page boundary will not change if it |
| 1862 | * is rounded, and the range of bytes written will be from the |
| 1863 | * truncate beg_off to the rounded (end_off - 1). |
| 1864 | */ |
| 1865 | static int |
| 1866 | ubc_msync_internal(vnode_t vp, off_t beg_off, off_t end_off, off_t *resid_off, int flags, int *io_errno) |
| 1867 | { |
| 1868 | memory_object_size_t tsize; |
| 1869 | kern_return_t kret; |
| 1870 | int request_flags = 0; |
| 1871 | int flush_flags = MEMORY_OBJECT_RETURN_NONE; |
| 1872 | |
| 1873 | if (!UBCINFOEXISTS(vp)) { |
| 1874 | return 0; |
| 1875 | } |
| 1876 | if ((flags & (UBC_INVALIDATE | UBC_PUSHDIRTY | UBC_PUSHALL)) == 0) { |
| 1877 | return 0; |
| 1878 | } |
| 1879 | if (end_off <= beg_off) { |
| 1880 | return 1; |
| 1881 | } |
| 1882 | |
| 1883 | if (flags & UBC_INVALIDATE) { |
| 1884 | /* |
| 1885 | * discard the resident pages |
| 1886 | */ |
| 1887 | request_flags = (MEMORY_OBJECT_DATA_FLUSH | MEMORY_OBJECT_DATA_NO_CHANGE); |
| 1888 | } |
| 1889 | |
| 1890 | if (flags & UBC_SYNC) { |
| 1891 | /* |
| 1892 | * wait for all the I/O to complete before returning |
| 1893 | */ |
| 1894 | request_flags |= MEMORY_OBJECT_IO_SYNC; |
| 1895 | } |
| 1896 | |
| 1897 | if (flags & UBC_PUSHDIRTY) { |
| 1898 | /* |
| 1899 | * we only return the dirty pages in the range |
| 1900 | */ |
| 1901 | flush_flags = MEMORY_OBJECT_RETURN_DIRTY; |
| 1902 | } |
| 1903 | |
| 1904 | if (flags & UBC_PUSHALL) { |
| 1905 | /* |
| 1906 | * then return all the interesting pages in the range (both |
| 1907 | * dirty and precious) to the pager |
| 1908 | */ |
| 1909 | flush_flags = MEMORY_OBJECT_RETURN_ALL; |
| 1910 | } |
| 1911 | |
| 1912 | beg_off = trunc_page_64(beg_off); |
| 1913 | end_off = round_page_64(x: end_off); |
| 1914 | tsize = (memory_object_size_t)end_off - beg_off; |
| 1915 | |
| 1916 | /* flush and/or invalidate pages in the range requested */ |
| 1917 | kret = memory_object_lock_request(memory_control: vp->v_ubcinfo->ui_control, |
| 1918 | offset: beg_off, size: tsize, |
| 1919 | resid_offset: (memory_object_offset_t *)resid_off, |
| 1920 | io_errno, should_return: flush_flags, flags: request_flags, |
| 1921 | VM_PROT_NO_CHANGE); |
| 1922 | |
| 1923 | return (kret == KERN_SUCCESS) ? 1 : 0; |
| 1924 | } |
| 1925 | |
| 1926 | |
| 1927 | /* |
| 1928 | * ubc_map |
| 1929 | * |
| 1930 | * Explicitly map a vnode that has an associate ubc_info, and add a reference |
| 1931 | * to it for the ubc system, if there isn't one already, so it will not be |
| 1932 | * recycled while it's in use, and set flags on the ubc_info to indicate that |
| 1933 | * we have done this |
| 1934 | * |
| 1935 | * Parameters: vp The vnode to map |
| 1936 | * flags The mapping flags for the vnode; this |
| 1937 | * will be a combination of one or more of |
| 1938 | * PROT_READ, PROT_WRITE, and PROT_EXEC |
| 1939 | * |
| 1940 | * Returns: 0 Success |
| 1941 | * EPERM Permission was denied |
| 1942 | * |
| 1943 | * Notes: An I/O reference on the vnode must already be held on entry |
| 1944 | * |
| 1945 | * If there is no ubc_info associated with the vnode, this function |
| 1946 | * will return success. |
| 1947 | * |
| 1948 | * If a permission error occurs, this function will return |
| 1949 | * failure; all other failures will cause this function to return |
| 1950 | * success. |
| 1951 | * |
| 1952 | * IMPORTANT: This is an internal use function, and its symbols |
| 1953 | * are not exported, hence its error checking is not very robust. |
| 1954 | * It is primarily used by: |
| 1955 | * |
| 1956 | * o mmap(), when mapping a file |
| 1957 | * o When mapping a shared file (a shared library in the |
| 1958 | * shared segment region) |
| 1959 | * o When loading a program image during the exec process |
| 1960 | * |
| 1961 | * ...all of these uses ignore the return code, and any fault that |
| 1962 | * results later because of a failure is handled in the fix-up path |
| 1963 | * of the fault handler. The interface exists primarily as a |
| 1964 | * performance hint. |
| 1965 | * |
| 1966 | * Given that third party implementation of the type of interfaces |
| 1967 | * that would use this function, such as alternative executable |
| 1968 | * formats, etc., are unsupported, this function is not exported |
| 1969 | * for general use. |
| 1970 | * |
| 1971 | * The extra reference is held until the VM system unmaps the |
| 1972 | * vnode from its own context to maintain a vnode reference in |
| 1973 | * cases like open()/mmap()/close(), which leave the backing |
| 1974 | * object referenced by a mapped memory region in a process |
| 1975 | * address space. |
| 1976 | */ |
| 1977 | __private_extern__ int |
| 1978 | ubc_map(vnode_t vp, int flags) |
| 1979 | { |
| 1980 | struct ubc_info *uip; |
| 1981 | int error = 0; |
| 1982 | int need_ref = 0; |
| 1983 | int need_wakeup = 0; |
| 1984 | |
| 1985 | if (UBCINFOEXISTS(vp)) { |
| 1986 | vnode_lock(vp); |
| 1987 | uip = vp->v_ubcinfo; |
| 1988 | |
| 1989 | while (ISSET(uip->ui_flags, UI_MAPBUSY)) { |
| 1990 | SET(uip->ui_flags, UI_MAPWAITING); |
| 1991 | (void) msleep(chan: &uip->ui_flags, mtx: &vp->v_lock, |
| 1992 | PRIBIO, wmesg: "ubc_map" , NULL); |
| 1993 | } |
| 1994 | SET(uip->ui_flags, UI_MAPBUSY); |
| 1995 | vnode_unlock(vp); |
| 1996 | |
| 1997 | error = VNOP_MMAP(vp, flags, vfs_context_current()); |
| 1998 | |
| 1999 | /* |
| 2000 | * rdar://problem/22587101 required that we stop propagating |
| 2001 | * EPERM up the stack. Otherwise, we would have to funnel up |
| 2002 | * the error at all the call sites for memory_object_map(). |
| 2003 | * The risk is in having to undo the map/object/entry state at |
| 2004 | * all these call sites. It would also affect more than just mmap() |
| 2005 | * e.g. vm_remap(). |
| 2006 | * |
| 2007 | * if (error != EPERM) |
| 2008 | * error = 0; |
| 2009 | */ |
| 2010 | |
| 2011 | error = 0; |
| 2012 | |
| 2013 | vnode_lock_spin(vp); |
| 2014 | |
| 2015 | if (error == 0) { |
| 2016 | if (!ISSET(uip->ui_flags, UI_ISMAPPED)) { |
| 2017 | need_ref = 1; |
| 2018 | } |
| 2019 | SET(uip->ui_flags, (UI_WASMAPPED | UI_ISMAPPED)); |
| 2020 | if (flags & PROT_WRITE) { |
| 2021 | SET(uip->ui_flags, (UI_WASMAPPEDWRITE | UI_MAPPEDWRITE)); |
| 2022 | } |
| 2023 | } |
| 2024 | CLR(uip->ui_flags, UI_MAPBUSY); |
| 2025 | |
| 2026 | if (ISSET(uip->ui_flags, UI_MAPWAITING)) { |
| 2027 | CLR(uip->ui_flags, UI_MAPWAITING); |
| 2028 | need_wakeup = 1; |
| 2029 | } |
| 2030 | vnode_unlock(vp); |
| 2031 | |
| 2032 | if (need_wakeup) { |
| 2033 | wakeup(chan: &uip->ui_flags); |
| 2034 | } |
| 2035 | |
| 2036 | if (need_ref) { |
| 2037 | /* |
| 2038 | * Make sure we get a ref as we can't unwind from here |
| 2039 | */ |
| 2040 | if (vnode_ref_ext(vp, 0, VNODE_REF_FORCE)) { |
| 2041 | panic("%s : VNODE_REF_FORCE failed" , __FUNCTION__); |
| 2042 | } |
| 2043 | /* |
| 2044 | * Vnodes that are on "unreliable" media (like disk |
| 2045 | * images, network filesystems, 3rd-party filesystems, |
| 2046 | * and possibly external devices) could see their |
| 2047 | * contents be changed via the backing store without |
| 2048 | * triggering copy-on-write, so we can't fully rely |
| 2049 | * on copy-on-write and might have to resort to |
| 2050 | * copy-on-read to protect "privileged" processes and |
| 2051 | * prevent privilege escalation. |
| 2052 | * |
| 2053 | * The root filesystem is considered "reliable" because |
| 2054 | * there's not much point in trying to protect |
| 2055 | * ourselves from such a vulnerability and the extra |
| 2056 | * cost of copy-on-read (CPU time and memory pressure) |
| 2057 | * could result in some serious regressions. |
| 2058 | */ |
| 2059 | if (vp->v_mount != NULL && |
| 2060 | ((vp->v_mount->mnt_flag & MNT_ROOTFS) || |
| 2061 | vnode_on_reliable_media(vp))) { |
| 2062 | /* |
| 2063 | * This vnode is deemed "reliable" so mark |
| 2064 | * its VM object as "trusted". |
| 2065 | */ |
| 2066 | memory_object_mark_trusted(control: uip->ui_control); |
| 2067 | } else { |
| 2068 | // printf("BUGGYCOW: %s:%d vp %p \"%s\" in mnt %p \"%s\" is untrusted\n", __FUNCTION__, __LINE__, vp, vp->v_name, vp->v_mount, vp->v_mount->mnt_vnodecovered->v_name); |
| 2069 | } |
| 2070 | } |
| 2071 | } |
| 2072 | return error; |
| 2073 | } |
| 2074 | |
| 2075 | |
| 2076 | /* |
| 2077 | * ubc_destroy_named |
| 2078 | * |
| 2079 | * Destroy the named memory object associated with the ubc_info control object |
| 2080 | * associated with the designated vnode, if there is a ubc_info associated |
| 2081 | * with the vnode, and a control object is associated with it |
| 2082 | * |
| 2083 | * Parameters: vp The designated vnode |
| 2084 | * |
| 2085 | * Returns: (void) |
| 2086 | * |
| 2087 | * Notes: This function is called on vnode termination for all vnodes, |
| 2088 | * and must therefore not assume that there is a ubc_info that is |
| 2089 | * associated with the vnode, nor that there is a control object |
| 2090 | * associated with the ubc_info. |
| 2091 | * |
| 2092 | * If all the conditions necessary are present, this function |
| 2093 | * calls memory_object_destory(), which will in turn end up |
| 2094 | * calling ubc_unmap() to release any vnode references that were |
| 2095 | * established via ubc_map(). |
| 2096 | * |
| 2097 | * IMPORTANT: This is an internal use function that is used |
| 2098 | * exclusively by the internal use function vclean(). |
| 2099 | */ |
| 2100 | __private_extern__ void |
| 2101 | ubc_destroy_named(vnode_t vp, vm_object_destroy_reason_t reason) |
| 2102 | { |
| 2103 | memory_object_control_t control; |
| 2104 | struct ubc_info *uip; |
| 2105 | kern_return_t kret; |
| 2106 | |
| 2107 | if (UBCINFOEXISTS(vp)) { |
| 2108 | uip = vp->v_ubcinfo; |
| 2109 | |
| 2110 | /* Terminate the memory object */ |
| 2111 | control = ubc_getobject(vp, UBC_HOLDOBJECT); |
| 2112 | if (control != MEMORY_OBJECT_CONTROL_NULL) { |
| 2113 | kret = memory_object_destroy(memory_control: control, reason); |
| 2114 | if (kret != KERN_SUCCESS) { |
| 2115 | panic("ubc_destroy_named: memory_object_destroy failed" ); |
| 2116 | } |
| 2117 | } |
| 2118 | } |
| 2119 | } |
| 2120 | |
| 2121 | |
| 2122 | /* |
| 2123 | * ubc_isinuse |
| 2124 | * |
| 2125 | * Determine whether or not a vnode is currently in use by ubc at a level in |
| 2126 | * excess of the requested busycount |
| 2127 | * |
| 2128 | * Parameters: vp The vnode to check |
| 2129 | * busycount The threshold busy count, used to bias |
| 2130 | * the count usually already held by the |
| 2131 | * caller to avoid races |
| 2132 | * |
| 2133 | * Returns: 1 The vnode is in use over the threshold |
| 2134 | * 0 The vnode is not in use over the |
| 2135 | * threshold |
| 2136 | * |
| 2137 | * Notes: Because the vnode is only held locked while actually asking |
| 2138 | * the use count, this function only represents a snapshot of the |
| 2139 | * current state of the vnode. If more accurate information is |
| 2140 | * required, an additional busycount should be held by the caller |
| 2141 | * and a non-zero busycount used. |
| 2142 | * |
| 2143 | * If there is no ubc_info associated with the vnode, this |
| 2144 | * function will report that the vnode is not in use by ubc. |
| 2145 | */ |
| 2146 | int |
| 2147 | ubc_isinuse(struct vnode *vp, int busycount) |
| 2148 | { |
| 2149 | if (!UBCINFOEXISTS(vp)) { |
| 2150 | return 0; |
| 2151 | } |
| 2152 | return ubc_isinuse_locked(vp, busycount, 0); |
| 2153 | } |
| 2154 | |
| 2155 | |
| 2156 | /* |
| 2157 | * ubc_isinuse_locked |
| 2158 | * |
| 2159 | * Determine whether or not a vnode is currently in use by ubc at a level in |
| 2160 | * excess of the requested busycount |
| 2161 | * |
| 2162 | * Parameters: vp The vnode to check |
| 2163 | * busycount The threshold busy count, used to bias |
| 2164 | * the count usually already held by the |
| 2165 | * caller to avoid races |
| 2166 | * locked True if the vnode is already locked by |
| 2167 | * the caller |
| 2168 | * |
| 2169 | * Returns: 1 The vnode is in use over the threshold |
| 2170 | * 0 The vnode is not in use over the |
| 2171 | * threshold |
| 2172 | * |
| 2173 | * Notes: If the vnode is not locked on entry, it is locked while |
| 2174 | * actually asking the use count. If this is the case, this |
| 2175 | * function only represents a snapshot of the current state of |
| 2176 | * the vnode. If more accurate information is required, the |
| 2177 | * vnode lock should be held by the caller, otherwise an |
| 2178 | * additional busycount should be held by the caller and a |
| 2179 | * non-zero busycount used. |
| 2180 | * |
| 2181 | * If there is no ubc_info associated with the vnode, this |
| 2182 | * function will report that the vnode is not in use by ubc. |
| 2183 | */ |
| 2184 | int |
| 2185 | ubc_isinuse_locked(struct vnode *vp, int busycount, int locked) |
| 2186 | { |
| 2187 | int retval = 0; |
| 2188 | |
| 2189 | |
| 2190 | if (!locked) { |
| 2191 | vnode_lock_spin(vp); |
| 2192 | } |
| 2193 | |
| 2194 | if ((vp->v_usecount - vp->v_kusecount) > busycount) { |
| 2195 | retval = 1; |
| 2196 | } |
| 2197 | |
| 2198 | if (!locked) { |
| 2199 | vnode_unlock(vp); |
| 2200 | } |
| 2201 | return retval; |
| 2202 | } |
| 2203 | |
| 2204 | |
| 2205 | /* |
| 2206 | * ubc_unmap |
| 2207 | * |
| 2208 | * Reverse the effects of a ubc_map() call for a given vnode |
| 2209 | * |
| 2210 | * Parameters: vp vnode to unmap from ubc |
| 2211 | * |
| 2212 | * Returns: (void) |
| 2213 | * |
| 2214 | * Notes: This is an internal use function used by vnode_pager_unmap(). |
| 2215 | * It will attempt to obtain a reference on the supplied vnode, |
| 2216 | * and if it can do so, and there is an associated ubc_info, and |
| 2217 | * the flags indicate that it was mapped via ubc_map(), then the |
| 2218 | * flag is cleared, the mapping removed, and the reference taken |
| 2219 | * by ubc_map() is released. |
| 2220 | * |
| 2221 | * IMPORTANT: This MUST only be called by the VM |
| 2222 | * to prevent race conditions. |
| 2223 | */ |
| 2224 | __private_extern__ void |
| 2225 | ubc_unmap(struct vnode *vp) |
| 2226 | { |
| 2227 | struct ubc_info *uip; |
| 2228 | int need_rele = 0; |
| 2229 | int need_wakeup = 0; |
| 2230 | |
| 2231 | if (vnode_getwithref(vp)) { |
| 2232 | return; |
| 2233 | } |
| 2234 | |
| 2235 | if (UBCINFOEXISTS(vp)) { |
| 2236 | bool want_fsevent = false; |
| 2237 | |
| 2238 | vnode_lock(vp); |
| 2239 | uip = vp->v_ubcinfo; |
| 2240 | |
| 2241 | while (ISSET(uip->ui_flags, UI_MAPBUSY)) { |
| 2242 | SET(uip->ui_flags, UI_MAPWAITING); |
| 2243 | (void) msleep(chan: &uip->ui_flags, mtx: &vp->v_lock, |
| 2244 | PRIBIO, wmesg: "ubc_unmap" , NULL); |
| 2245 | } |
| 2246 | SET(uip->ui_flags, UI_MAPBUSY); |
| 2247 | |
| 2248 | if (ISSET(uip->ui_flags, UI_ISMAPPED)) { |
| 2249 | if (ISSET(uip->ui_flags, UI_MAPPEDWRITE)) { |
| 2250 | want_fsevent = true; |
| 2251 | } |
| 2252 | |
| 2253 | need_rele = 1; |
| 2254 | |
| 2255 | /* |
| 2256 | * We want to clear the mapped flags after we've called |
| 2257 | * VNOP_MNOMAP to avoid certain races and allow |
| 2258 | * VNOP_MNOMAP to call ubc_is_mapped_writable. |
| 2259 | */ |
| 2260 | } |
| 2261 | vnode_unlock(vp); |
| 2262 | |
| 2263 | if (need_rele) { |
| 2264 | vfs_context_t ctx = vfs_context_current(); |
| 2265 | |
| 2266 | (void)VNOP_MNOMAP(vp, ctx); |
| 2267 | |
| 2268 | #if CONFIG_FSE |
| 2269 | /* |
| 2270 | * Why do we want an fsevent here? Normally the |
| 2271 | * content modified fsevent is posted when a file is |
| 2272 | * closed and only if it's written to via conventional |
| 2273 | * means. It's perfectly legal to close a file and |
| 2274 | * keep your mappings and we don't currently track |
| 2275 | * whether it was written to via a mapping. |
| 2276 | * Therefore, we need to post an fsevent here if the |
| 2277 | * file was mapped writable. This may result in false |
| 2278 | * events, i.e. we post a notification when nothing |
| 2279 | * has really changed. |
| 2280 | */ |
| 2281 | if (want_fsevent && need_fsevent(FSE_CONTENT_MODIFIED, vp)) { |
| 2282 | add_fsevent(FSE_CONTENT_MODIFIED_NO_HLINK, ctx, |
| 2283 | FSE_ARG_VNODE, vp, |
| 2284 | FSE_ARG_DONE); |
| 2285 | } |
| 2286 | #endif |
| 2287 | |
| 2288 | vnode_rele(vp); |
| 2289 | } |
| 2290 | |
| 2291 | vnode_lock_spin(vp); |
| 2292 | |
| 2293 | if (need_rele) { |
| 2294 | CLR(uip->ui_flags, UI_ISMAPPED | UI_MAPPEDWRITE); |
| 2295 | } |
| 2296 | |
| 2297 | CLR(uip->ui_flags, UI_MAPBUSY); |
| 2298 | |
| 2299 | if (ISSET(uip->ui_flags, UI_MAPWAITING)) { |
| 2300 | CLR(uip->ui_flags, UI_MAPWAITING); |
| 2301 | need_wakeup = 1; |
| 2302 | } |
| 2303 | vnode_unlock(vp); |
| 2304 | |
| 2305 | if (need_wakeup) { |
| 2306 | wakeup(chan: &uip->ui_flags); |
| 2307 | } |
| 2308 | } |
| 2309 | /* |
| 2310 | * the drop of the vnode ref will cleanup |
| 2311 | */ |
| 2312 | vnode_put(vp); |
| 2313 | } |
| 2314 | |
| 2315 | |
| 2316 | /* |
| 2317 | * ubc_page_op |
| 2318 | * |
| 2319 | * Manipulate individual page state for a vnode with an associated ubc_info |
| 2320 | * with an associated memory object control. |
| 2321 | * |
| 2322 | * Parameters: vp The vnode backing the page |
| 2323 | * f_offset A file offset interior to the page |
| 2324 | * ops The operations to perform, as a bitmap |
| 2325 | * (see below for more information) |
| 2326 | * phys_entryp The address of a ppnum_t; may be NULL |
| 2327 | * to ignore |
| 2328 | * flagsp A pointer to an int to contain flags; |
| 2329 | * may be NULL to ignore |
| 2330 | * |
| 2331 | * Returns: KERN_SUCCESS Success |
| 2332 | * KERN_INVALID_ARGUMENT If the memory object control has no VM |
| 2333 | * object associated |
| 2334 | * KERN_INVALID_OBJECT If UPL_POP_PHYSICAL and the object is |
| 2335 | * not physically contiguous |
| 2336 | * KERN_INVALID_OBJECT If !UPL_POP_PHYSICAL and the object is |
| 2337 | * physically contiguous |
| 2338 | * KERN_FAILURE If the page cannot be looked up |
| 2339 | * |
| 2340 | * Implicit Returns: |
| 2341 | * *phys_entryp (modified) If phys_entryp is non-NULL and |
| 2342 | * UPL_POP_PHYSICAL |
| 2343 | * *flagsp (modified) If flagsp is non-NULL and there was |
| 2344 | * !UPL_POP_PHYSICAL and a KERN_SUCCESS |
| 2345 | * |
| 2346 | * Notes: For object boundaries, it is considerably more efficient to |
| 2347 | * ensure that f_offset is in fact on a page boundary, as this |
| 2348 | * will avoid internal use of the hash table to identify the |
| 2349 | * page, and would therefore skip a number of early optimizations. |
| 2350 | * Since this is a page operation anyway, the caller should try |
| 2351 | * to pass only a page aligned offset because of this. |
| 2352 | * |
| 2353 | * *flagsp may be modified even if this function fails. If it is |
| 2354 | * modified, it will contain the condition of the page before the |
| 2355 | * requested operation was attempted; these will only include the |
| 2356 | * bitmap flags, and not the PL_POP_PHYSICAL, UPL_POP_DUMP, |
| 2357 | * UPL_POP_SET, or UPL_POP_CLR bits. |
| 2358 | * |
| 2359 | * The flags field may contain a specific operation, such as |
| 2360 | * UPL_POP_PHYSICAL or UPL_POP_DUMP: |
| 2361 | * |
| 2362 | * o UPL_POP_PHYSICAL Fail if not contiguous; if |
| 2363 | * *phys_entryp and successful, set |
| 2364 | * *phys_entryp |
| 2365 | * o UPL_POP_DUMP Dump the specified page |
| 2366 | * |
| 2367 | * Otherwise, it is treated as a bitmap of one or more page |
| 2368 | * operations to perform on the final memory object; allowable |
| 2369 | * bit values are: |
| 2370 | * |
| 2371 | * o UPL_POP_DIRTY The page is dirty |
| 2372 | * o UPL_POP_PAGEOUT The page is paged out |
| 2373 | * o UPL_POP_PRECIOUS The page is precious |
| 2374 | * o UPL_POP_ABSENT The page is absent |
| 2375 | * o UPL_POP_BUSY The page is busy |
| 2376 | * |
| 2377 | * If the page status is only being queried and not modified, then |
| 2378 | * not other bits should be specified. However, if it is being |
| 2379 | * modified, exactly ONE of the following bits should be set: |
| 2380 | * |
| 2381 | * o UPL_POP_SET Set the current bitmap bits |
| 2382 | * o UPL_POP_CLR Clear the current bitmap bits |
| 2383 | * |
| 2384 | * Thus to effect a combination of setting an clearing, it may be |
| 2385 | * necessary to call this function twice. If this is done, the |
| 2386 | * set should be used before the clear, since clearing may trigger |
| 2387 | * a wakeup on the destination page, and if the page is backed by |
| 2388 | * an encrypted swap file, setting will trigger the decryption |
| 2389 | * needed before the wakeup occurs. |
| 2390 | */ |
| 2391 | kern_return_t |
| 2392 | ubc_page_op( |
| 2393 | struct vnode *vp, |
| 2394 | off_t f_offset, |
| 2395 | int ops, |
| 2396 | ppnum_t *phys_entryp, |
| 2397 | int *flagsp) |
| 2398 | { |
| 2399 | memory_object_control_t control; |
| 2400 | |
| 2401 | control = ubc_getobject(vp, UBC_FLAGS_NONE); |
| 2402 | if (control == MEMORY_OBJECT_CONTROL_NULL) { |
| 2403 | return KERN_INVALID_ARGUMENT; |
| 2404 | } |
| 2405 | |
| 2406 | return memory_object_page_op(memory_control: control, |
| 2407 | offset: (memory_object_offset_t)f_offset, |
| 2408 | ops, |
| 2409 | phys_entry: phys_entryp, |
| 2410 | flags: flagsp); |
| 2411 | } |
| 2412 | |
| 2413 | |
| 2414 | /* |
| 2415 | * ubc_range_op |
| 2416 | * |
| 2417 | * Manipulate page state for a range of memory for a vnode with an associated |
| 2418 | * ubc_info with an associated memory object control, when page level state is |
| 2419 | * not required to be returned from the call (i.e. there are no phys_entryp or |
| 2420 | * flagsp parameters to this call, and it takes a range which may contain |
| 2421 | * multiple pages, rather than an offset interior to a single page). |
| 2422 | * |
| 2423 | * Parameters: vp The vnode backing the page |
| 2424 | * f_offset_beg A file offset interior to the start page |
| 2425 | * f_offset_end A file offset interior to the end page |
| 2426 | * ops The operations to perform, as a bitmap |
| 2427 | * (see below for more information) |
| 2428 | * range The address of an int; may be NULL to |
| 2429 | * ignore |
| 2430 | * |
| 2431 | * Returns: KERN_SUCCESS Success |
| 2432 | * KERN_INVALID_ARGUMENT If the memory object control has no VM |
| 2433 | * object associated |
| 2434 | * KERN_INVALID_OBJECT If the object is physically contiguous |
| 2435 | * |
| 2436 | * Implicit Returns: |
| 2437 | * *range (modified) If range is non-NULL, its contents will |
| 2438 | * be modified to contain the number of |
| 2439 | * bytes successfully operated upon. |
| 2440 | * |
| 2441 | * Notes: IMPORTANT: This function cannot be used on a range that |
| 2442 | * consists of physically contiguous pages. |
| 2443 | * |
| 2444 | * For object boundaries, it is considerably more efficient to |
| 2445 | * ensure that f_offset_beg and f_offset_end are in fact on page |
| 2446 | * boundaries, as this will avoid internal use of the hash table |
| 2447 | * to identify the page, and would therefore skip a number of |
| 2448 | * early optimizations. Since this is an operation on a set of |
| 2449 | * pages anyway, the caller should try to pass only a page aligned |
| 2450 | * offsets because of this. |
| 2451 | * |
| 2452 | * *range will be modified only if this function succeeds. |
| 2453 | * |
| 2454 | * The flags field MUST contain a specific operation; allowable |
| 2455 | * values are: |
| 2456 | * |
| 2457 | * o UPL_ROP_ABSENT Returns the extent of the range |
| 2458 | * presented which is absent, starting |
| 2459 | * with the start address presented |
| 2460 | * |
| 2461 | * o UPL_ROP_PRESENT Returns the extent of the range |
| 2462 | * presented which is present (resident), |
| 2463 | * starting with the start address |
| 2464 | * presented |
| 2465 | * o UPL_ROP_DUMP Dump the pages which are found in the |
| 2466 | * target object for the target range. |
| 2467 | * |
| 2468 | * IMPORTANT: For UPL_ROP_ABSENT and UPL_ROP_PRESENT; if there are |
| 2469 | * multiple regions in the range, only the first matching region |
| 2470 | * is returned. |
| 2471 | */ |
| 2472 | kern_return_t |
| 2473 | ubc_range_op( |
| 2474 | struct vnode *vp, |
| 2475 | off_t f_offset_beg, |
| 2476 | off_t f_offset_end, |
| 2477 | int ops, |
| 2478 | int *range) |
| 2479 | { |
| 2480 | memory_object_control_t control; |
| 2481 | |
| 2482 | control = ubc_getobject(vp, UBC_FLAGS_NONE); |
| 2483 | if (control == MEMORY_OBJECT_CONTROL_NULL) { |
| 2484 | return KERN_INVALID_ARGUMENT; |
| 2485 | } |
| 2486 | |
| 2487 | return memory_object_range_op(memory_control: control, |
| 2488 | offset_beg: (memory_object_offset_t)f_offset_beg, |
| 2489 | offset_end: (memory_object_offset_t)f_offset_end, |
| 2490 | ops, |
| 2491 | range); |
| 2492 | } |
| 2493 | |
| 2494 | |
| 2495 | /* |
| 2496 | * ubc_create_upl |
| 2497 | * |
| 2498 | * Given a vnode, cause the population of a portion of the vm_object; based on |
| 2499 | * the nature of the request, the pages returned may contain valid data, or |
| 2500 | * they may be uninitialized. |
| 2501 | * |
| 2502 | * Parameters: vp The vnode from which to create the upl |
| 2503 | * f_offset The start offset into the backing store |
| 2504 | * represented by the vnode |
| 2505 | * bufsize The size of the upl to create |
| 2506 | * uplp Pointer to the upl_t to receive the |
| 2507 | * created upl; MUST NOT be NULL |
| 2508 | * plp Pointer to receive the internal page |
| 2509 | * list for the created upl; MAY be NULL |
| 2510 | * to ignore |
| 2511 | * |
| 2512 | * Returns: KERN_SUCCESS The requested upl has been created |
| 2513 | * KERN_INVALID_ARGUMENT The bufsize argument is not an even |
| 2514 | * multiple of the page size |
| 2515 | * KERN_INVALID_ARGUMENT There is no ubc_info associated with |
| 2516 | * the vnode, or there is no memory object |
| 2517 | * control associated with the ubc_info |
| 2518 | * memory_object_upl_request:KERN_INVALID_VALUE |
| 2519 | * The supplied upl_flags argument is |
| 2520 | * invalid |
| 2521 | * Implicit Returns: |
| 2522 | * *uplp (modified) |
| 2523 | * *plp (modified) If non-NULL, the value of *plp will be |
| 2524 | * modified to point to the internal page |
| 2525 | * list; this modification may occur even |
| 2526 | * if this function is unsuccessful, in |
| 2527 | * which case the contents may be invalid |
| 2528 | * |
| 2529 | * Note: If successful, the returned *uplp MUST subsequently be freed |
| 2530 | * via a call to ubc_upl_commit(), ubc_upl_commit_range(), |
| 2531 | * ubc_upl_abort(), or ubc_upl_abort_range(). |
| 2532 | */ |
| 2533 | kern_return_t |
| 2534 | ubc_create_upl_external( |
| 2535 | struct vnode *vp, |
| 2536 | off_t f_offset, |
| 2537 | int bufsize, |
| 2538 | upl_t *uplp, |
| 2539 | upl_page_info_t **plp, |
| 2540 | int uplflags) |
| 2541 | { |
| 2542 | return ubc_create_upl_kernel(vp, f_offset, bufsize, uplp, plp, uplflags, vm_tag_bt()); |
| 2543 | } |
| 2544 | |
| 2545 | kern_return_t |
| 2546 | ubc_create_upl_kernel( |
| 2547 | struct vnode *vp, |
| 2548 | off_t f_offset, |
| 2549 | int bufsize, |
| 2550 | upl_t *uplp, |
| 2551 | upl_page_info_t **plp, |
| 2552 | int uplflags, |
| 2553 | vm_tag_t tag) |
| 2554 | { |
| 2555 | memory_object_control_t control; |
| 2556 | kern_return_t kr; |
| 2557 | |
| 2558 | if (plp != NULL) { |
| 2559 | *plp = NULL; |
| 2560 | } |
| 2561 | *uplp = NULL; |
| 2562 | |
| 2563 | if (bufsize & 0xfff) { |
| 2564 | return KERN_INVALID_ARGUMENT; |
| 2565 | } |
| 2566 | |
| 2567 | if (bufsize > MAX_UPL_SIZE_BYTES) { |
| 2568 | return KERN_INVALID_ARGUMENT; |
| 2569 | } |
| 2570 | |
| 2571 | if (uplflags & (UPL_UBC_MSYNC | UPL_UBC_PAGEOUT | UPL_UBC_PAGEIN)) { |
| 2572 | if (uplflags & UPL_UBC_MSYNC) { |
| 2573 | uplflags &= UPL_RET_ONLY_DIRTY; |
| 2574 | |
| 2575 | uplflags |= UPL_COPYOUT_FROM | UPL_CLEAN_IN_PLACE | |
| 2576 | UPL_SET_INTERNAL | UPL_SET_LITE; |
| 2577 | } else if (uplflags & UPL_UBC_PAGEOUT) { |
| 2578 | uplflags &= UPL_RET_ONLY_DIRTY; |
| 2579 | |
| 2580 | if (uplflags & UPL_RET_ONLY_DIRTY) { |
| 2581 | uplflags |= UPL_NOBLOCK; |
| 2582 | } |
| 2583 | |
| 2584 | uplflags |= UPL_FOR_PAGEOUT | UPL_CLEAN_IN_PLACE | |
| 2585 | UPL_COPYOUT_FROM | UPL_SET_INTERNAL | UPL_SET_LITE; |
| 2586 | } else { |
| 2587 | uplflags |= UPL_RET_ONLY_ABSENT | |
| 2588 | UPL_NO_SYNC | UPL_CLEAN_IN_PLACE | |
| 2589 | UPL_SET_INTERNAL | UPL_SET_LITE; |
| 2590 | |
| 2591 | /* |
| 2592 | * if the requested size == PAGE_SIZE, we don't want to set |
| 2593 | * the UPL_NOBLOCK since we may be trying to recover from a |
| 2594 | * previous partial pagein I/O that occurred because we were low |
| 2595 | * on memory and bailed early in order to honor the UPL_NOBLOCK... |
| 2596 | * since we're only asking for a single page, we can block w/o fear |
| 2597 | * of tying up pages while waiting for more to become available |
| 2598 | */ |
| 2599 | if (bufsize > PAGE_SIZE) { |
| 2600 | uplflags |= UPL_NOBLOCK; |
| 2601 | } |
| 2602 | } |
| 2603 | } else { |
| 2604 | uplflags &= ~UPL_FOR_PAGEOUT; |
| 2605 | |
| 2606 | if (uplflags & UPL_WILL_BE_DUMPED) { |
| 2607 | uplflags &= ~UPL_WILL_BE_DUMPED; |
| 2608 | uplflags |= (UPL_NO_SYNC | UPL_SET_INTERNAL); |
| 2609 | } else { |
| 2610 | uplflags |= (UPL_NO_SYNC | UPL_CLEAN_IN_PLACE | UPL_SET_INTERNAL); |
| 2611 | } |
| 2612 | } |
| 2613 | control = ubc_getobject(vp, UBC_FLAGS_NONE); |
| 2614 | if (control == MEMORY_OBJECT_CONTROL_NULL) { |
| 2615 | return KERN_INVALID_ARGUMENT; |
| 2616 | } |
| 2617 | |
| 2618 | kr = memory_object_upl_request(memory_control: control, offset: f_offset, size: bufsize, upl: uplp, NULL, NULL, cntrl_flags: uplflags, tag); |
| 2619 | if (kr == KERN_SUCCESS && plp != NULL) { |
| 2620 | *plp = UPL_GET_INTERNAL_PAGE_LIST(*uplp); |
| 2621 | } |
| 2622 | return kr; |
| 2623 | } |
| 2624 | |
| 2625 | |
| 2626 | /* |
| 2627 | * ubc_upl_maxbufsize |
| 2628 | * |
| 2629 | * Return the maximum bufsize ubc_create_upl( ) will take. |
| 2630 | * |
| 2631 | * Parameters: none |
| 2632 | * |
| 2633 | * Returns: maximum size buffer (in bytes) ubc_create_upl( ) will take. |
| 2634 | */ |
| 2635 | upl_size_t |
| 2636 | ubc_upl_maxbufsize( |
| 2637 | void) |
| 2638 | { |
| 2639 | return MAX_UPL_SIZE_BYTES; |
| 2640 | } |
| 2641 | |
| 2642 | /* |
| 2643 | * ubc_upl_map |
| 2644 | * |
| 2645 | * Map the page list assocated with the supplied upl into the kernel virtual |
| 2646 | * address space at the virtual address indicated by the dst_addr argument; |
| 2647 | * the entire upl is mapped |
| 2648 | * |
| 2649 | * Parameters: upl The upl to map |
| 2650 | * dst_addr The address at which to map the upl |
| 2651 | * |
| 2652 | * Returns: KERN_SUCCESS The upl has been mapped |
| 2653 | * KERN_INVALID_ARGUMENT The upl is UPL_NULL |
| 2654 | * KERN_FAILURE The upl is already mapped |
| 2655 | * vm_map_enter:KERN_INVALID_ARGUMENT |
| 2656 | * A failure code from vm_map_enter() due |
| 2657 | * to an invalid argument |
| 2658 | */ |
| 2659 | kern_return_t |
| 2660 | ubc_upl_map( |
| 2661 | upl_t upl, |
| 2662 | vm_offset_t *dst_addr) |
| 2663 | { |
| 2664 | return vm_upl_map(target_task: kernel_map, upl, address: dst_addr); |
| 2665 | } |
| 2666 | |
| 2667 | /* |
| 2668 | * ubc_upl_map_range:- similar to ubc_upl_map but the focus is on a range |
| 2669 | * of the UPL. Takes an offset, size, and protection so that only a part |
| 2670 | * of the UPL can be mapped with the right protections. |
| 2671 | */ |
| 2672 | kern_return_t |
| 2673 | ubc_upl_map_range( |
| 2674 | upl_t upl, |
| 2675 | vm_offset_t offset_to_map, |
| 2676 | vm_size_t size_to_map, |
| 2677 | vm_prot_t prot_to_map, |
| 2678 | vm_offset_t *dst_addr) |
| 2679 | { |
| 2680 | return vm_upl_map_range(target_task: kernel_map, upl, offset: offset_to_map, size: size_to_map, prot: prot_to_map, address: dst_addr); |
| 2681 | } |
| 2682 | |
| 2683 | |
| 2684 | /* |
| 2685 | * ubc_upl_unmap |
| 2686 | * |
| 2687 | * Unmap the page list assocated with the supplied upl from the kernel virtual |
| 2688 | * address space; the entire upl is unmapped. |
| 2689 | * |
| 2690 | * Parameters: upl The upl to unmap |
| 2691 | * |
| 2692 | * Returns: KERN_SUCCESS The upl has been unmapped |
| 2693 | * KERN_FAILURE The upl is not currently mapped |
| 2694 | * KERN_INVALID_ARGUMENT If the upl is UPL_NULL |
| 2695 | */ |
| 2696 | kern_return_t |
| 2697 | ubc_upl_unmap( |
| 2698 | upl_t upl) |
| 2699 | { |
| 2700 | return vm_upl_unmap(target_task: kernel_map, upl); |
| 2701 | } |
| 2702 | |
| 2703 | /* |
| 2704 | * ubc_upl_unmap_range:- similar to ubc_upl_unmap but the focus is |
| 2705 | * on part of the UPL that is mapped. The offset and size parameter |
| 2706 | * specifies what part of the UPL needs to be unmapped. |
| 2707 | * |
| 2708 | * Note: Currrently offset & size are unused as we always initiate the unmap from the |
| 2709 | * very beginning of the UPL's mapping and track the mapped size in the UPL. But we |
| 2710 | * might want to allow unmapping a UPL in the middle, for example, and we can use the |
| 2711 | * offset + size parameters for that purpose. |
| 2712 | */ |
| 2713 | kern_return_t |
| 2714 | ubc_upl_unmap_range( |
| 2715 | upl_t upl, |
| 2716 | vm_offset_t offset_to_unmap, |
| 2717 | vm_size_t size_to_unmap) |
| 2718 | { |
| 2719 | return vm_upl_unmap_range(target_task: kernel_map, upl, offset: offset_to_unmap, size: size_to_unmap); |
| 2720 | } |
| 2721 | |
| 2722 | |
| 2723 | /* |
| 2724 | * ubc_upl_commit |
| 2725 | * |
| 2726 | * Commit the contents of the upl to the backing store |
| 2727 | * |
| 2728 | * Parameters: upl The upl to commit |
| 2729 | * |
| 2730 | * Returns: KERN_SUCCESS The upl has been committed |
| 2731 | * KERN_INVALID_ARGUMENT The supplied upl was UPL_NULL |
| 2732 | * KERN_FAILURE The supplied upl does not represent |
| 2733 | * device memory, and the offset plus the |
| 2734 | * size would exceed the actual size of |
| 2735 | * the upl |
| 2736 | * |
| 2737 | * Notes: In practice, the only return value for this function should be |
| 2738 | * KERN_SUCCESS, unless there has been data structure corruption; |
| 2739 | * since the upl is deallocated regardless of success or failure, |
| 2740 | * there's really nothing to do about this other than panic. |
| 2741 | * |
| 2742 | * IMPORTANT: Use of this function should not be mixed with use of |
| 2743 | * ubc_upl_commit_range(), due to the unconditional deallocation |
| 2744 | * by this function. |
| 2745 | */ |
| 2746 | kern_return_t |
| 2747 | ubc_upl_commit( |
| 2748 | upl_t upl) |
| 2749 | { |
| 2750 | upl_page_info_t *pl; |
| 2751 | kern_return_t kr; |
| 2752 | |
| 2753 | pl = UPL_GET_INTERNAL_PAGE_LIST(upl); |
| 2754 | kr = upl_commit(upl_object: upl, page_list: pl, MAX_UPL_SIZE_BYTES >> PAGE_SHIFT); |
| 2755 | upl_deallocate(upl); |
| 2756 | return kr; |
| 2757 | } |
| 2758 | |
| 2759 | |
| 2760 | /* |
| 2761 | * ubc_upl_commit |
| 2762 | * |
| 2763 | * Commit the contents of the specified range of the upl to the backing store |
| 2764 | * |
| 2765 | * Parameters: upl The upl to commit |
| 2766 | * offset The offset into the upl |
| 2767 | * size The size of the region to be committed, |
| 2768 | * starting at the specified offset |
| 2769 | * flags commit type (see below) |
| 2770 | * |
| 2771 | * Returns: KERN_SUCCESS The range has been committed |
| 2772 | * KERN_INVALID_ARGUMENT The supplied upl was UPL_NULL |
| 2773 | * KERN_FAILURE The supplied upl does not represent |
| 2774 | * device memory, and the offset plus the |
| 2775 | * size would exceed the actual size of |
| 2776 | * the upl |
| 2777 | * |
| 2778 | * Notes: IMPORTANT: If the commit is successful, and the object is now |
| 2779 | * empty, the upl will be deallocated. Since the caller cannot |
| 2780 | * check that this is the case, the UPL_COMMIT_FREE_ON_EMPTY flag |
| 2781 | * should generally only be used when the offset is 0 and the size |
| 2782 | * is equal to the upl size. |
| 2783 | * |
| 2784 | * The flags argument is a bitmap of flags on the rage of pages in |
| 2785 | * the upl to be committed; allowable flags are: |
| 2786 | * |
| 2787 | * o UPL_COMMIT_FREE_ON_EMPTY Free the upl when it is |
| 2788 | * both empty and has been |
| 2789 | * successfully committed |
| 2790 | * o UPL_COMMIT_CLEAR_DIRTY Clear each pages dirty |
| 2791 | * bit; will prevent a |
| 2792 | * later pageout |
| 2793 | * o UPL_COMMIT_SET_DIRTY Set each pages dirty |
| 2794 | * bit; will cause a later |
| 2795 | * pageout |
| 2796 | * o UPL_COMMIT_INACTIVATE Clear each pages |
| 2797 | * reference bit; the page |
| 2798 | * will not be accessed |
| 2799 | * o UPL_COMMIT_ALLOW_ACCESS Unbusy each page; pages |
| 2800 | * become busy when an |
| 2801 | * IOMemoryDescriptor is |
| 2802 | * mapped or redirected, |
| 2803 | * and we have to wait for |
| 2804 | * an IOKit driver |
| 2805 | * |
| 2806 | * The flag UPL_COMMIT_NOTIFY_EMPTY is used internally, and should |
| 2807 | * not be specified by the caller. |
| 2808 | * |
| 2809 | * The UPL_COMMIT_CLEAR_DIRTY and UPL_COMMIT_SET_DIRTY flags are |
| 2810 | * mutually exclusive, and should not be combined. |
| 2811 | */ |
| 2812 | kern_return_t |
| 2813 | ubc_upl_commit_range( |
| 2814 | upl_t upl, |
| 2815 | upl_offset_t offset, |
| 2816 | upl_size_t size, |
| 2817 | int flags) |
| 2818 | { |
| 2819 | upl_page_info_t *pl; |
| 2820 | boolean_t empty; |
| 2821 | kern_return_t kr; |
| 2822 | |
| 2823 | if (flags & UPL_COMMIT_FREE_ON_EMPTY) { |
| 2824 | flags |= UPL_COMMIT_NOTIFY_EMPTY; |
| 2825 | } |
| 2826 | |
| 2827 | if (flags & UPL_COMMIT_KERNEL_ONLY_FLAGS) { |
| 2828 | return KERN_INVALID_ARGUMENT; |
| 2829 | } |
| 2830 | |
| 2831 | pl = UPL_GET_INTERNAL_PAGE_LIST(upl); |
| 2832 | |
| 2833 | kr = upl_commit_range(upl_object: upl, offset, size, cntrl_flags: flags, |
| 2834 | page_list: pl, MAX_UPL_SIZE_BYTES >> PAGE_SHIFT, empty: &empty); |
| 2835 | |
| 2836 | if ((flags & UPL_COMMIT_FREE_ON_EMPTY) && empty) { |
| 2837 | upl_deallocate(upl); |
| 2838 | } |
| 2839 | |
| 2840 | return kr; |
| 2841 | } |
| 2842 | |
| 2843 | |
| 2844 | /* |
| 2845 | * ubc_upl_abort_range |
| 2846 | * |
| 2847 | * Abort the contents of the specified range of the specified upl |
| 2848 | * |
| 2849 | * Parameters: upl The upl to abort |
| 2850 | * offset The offset into the upl |
| 2851 | * size The size of the region to be aborted, |
| 2852 | * starting at the specified offset |
| 2853 | * abort_flags abort type (see below) |
| 2854 | * |
| 2855 | * Returns: KERN_SUCCESS The range has been aborted |
| 2856 | * KERN_INVALID_ARGUMENT The supplied upl was UPL_NULL |
| 2857 | * KERN_FAILURE The supplied upl does not represent |
| 2858 | * device memory, and the offset plus the |
| 2859 | * size would exceed the actual size of |
| 2860 | * the upl |
| 2861 | * |
| 2862 | * Notes: IMPORTANT: If the abort is successful, and the object is now |
| 2863 | * empty, the upl will be deallocated. Since the caller cannot |
| 2864 | * check that this is the case, the UPL_ABORT_FREE_ON_EMPTY flag |
| 2865 | * should generally only be used when the offset is 0 and the size |
| 2866 | * is equal to the upl size. |
| 2867 | * |
| 2868 | * The abort_flags argument is a bitmap of flags on the range of |
| 2869 | * pages in the upl to be aborted; allowable flags are: |
| 2870 | * |
| 2871 | * o UPL_ABORT_FREE_ON_EMPTY Free the upl when it is both |
| 2872 | * empty and has been successfully |
| 2873 | * aborted |
| 2874 | * o UPL_ABORT_RESTART The operation must be restarted |
| 2875 | * o UPL_ABORT_UNAVAILABLE The pages are unavailable |
| 2876 | * o UPL_ABORT_ERROR An I/O error occurred |
| 2877 | * o UPL_ABORT_DUMP_PAGES Just free the pages |
| 2878 | * o UPL_ABORT_NOTIFY_EMPTY RESERVED |
| 2879 | * o UPL_ABORT_ALLOW_ACCESS RESERVED |
| 2880 | * |
| 2881 | * The UPL_ABORT_NOTIFY_EMPTY is an internal use flag and should |
| 2882 | * not be specified by the caller. It is intended to fulfill the |
| 2883 | * same role as UPL_COMMIT_NOTIFY_EMPTY does in the function |
| 2884 | * ubc_upl_commit_range(), but is never referenced internally. |
| 2885 | * |
| 2886 | * The UPL_ABORT_ALLOW_ACCESS is defined, but neither set nor |
| 2887 | * referenced; do not use it. |
| 2888 | */ |
| 2889 | kern_return_t |
| 2890 | ubc_upl_abort_range( |
| 2891 | upl_t upl, |
| 2892 | upl_offset_t offset, |
| 2893 | upl_size_t size, |
| 2894 | int abort_flags) |
| 2895 | { |
| 2896 | kern_return_t kr; |
| 2897 | boolean_t empty = FALSE; |
| 2898 | |
| 2899 | if (abort_flags & UPL_ABORT_FREE_ON_EMPTY) { |
| 2900 | abort_flags |= UPL_ABORT_NOTIFY_EMPTY; |
| 2901 | } |
| 2902 | |
| 2903 | kr = upl_abort_range(upl_object: upl, offset, size, abort_cond: abort_flags, empty: &empty); |
| 2904 | |
| 2905 | if ((abort_flags & UPL_ABORT_FREE_ON_EMPTY) && empty) { |
| 2906 | upl_deallocate(upl); |
| 2907 | } |
| 2908 | |
| 2909 | return kr; |
| 2910 | } |
| 2911 | |
| 2912 | |
| 2913 | /* |
| 2914 | * ubc_upl_abort |
| 2915 | * |
| 2916 | * Abort the contents of the specified upl |
| 2917 | * |
| 2918 | * Parameters: upl The upl to abort |
| 2919 | * abort_type abort type (see below) |
| 2920 | * |
| 2921 | * Returns: KERN_SUCCESS The range has been aborted |
| 2922 | * KERN_INVALID_ARGUMENT The supplied upl was UPL_NULL |
| 2923 | * KERN_FAILURE The supplied upl does not represent |
| 2924 | * device memory, and the offset plus the |
| 2925 | * size would exceed the actual size of |
| 2926 | * the upl |
| 2927 | * |
| 2928 | * Notes: IMPORTANT: If the abort is successful, and the object is now |
| 2929 | * empty, the upl will be deallocated. Since the caller cannot |
| 2930 | * check that this is the case, the UPL_ABORT_FREE_ON_EMPTY flag |
| 2931 | * should generally only be used when the offset is 0 and the size |
| 2932 | * is equal to the upl size. |
| 2933 | * |
| 2934 | * The abort_type is a bitmap of flags on the range of |
| 2935 | * pages in the upl to be aborted; allowable flags are: |
| 2936 | * |
| 2937 | * o UPL_ABORT_FREE_ON_EMPTY Free the upl when it is both |
| 2938 | * empty and has been successfully |
| 2939 | * aborted |
| 2940 | * o UPL_ABORT_RESTART The operation must be restarted |
| 2941 | * o UPL_ABORT_UNAVAILABLE The pages are unavailable |
| 2942 | * o UPL_ABORT_ERROR An I/O error occurred |
| 2943 | * o UPL_ABORT_DUMP_PAGES Just free the pages |
| 2944 | * o UPL_ABORT_NOTIFY_EMPTY RESERVED |
| 2945 | * o UPL_ABORT_ALLOW_ACCESS RESERVED |
| 2946 | * |
| 2947 | * The UPL_ABORT_NOTIFY_EMPTY is an internal use flag and should |
| 2948 | * not be specified by the caller. It is intended to fulfill the |
| 2949 | * same role as UPL_COMMIT_NOTIFY_EMPTY does in the function |
| 2950 | * ubc_upl_commit_range(), but is never referenced internally. |
| 2951 | * |
| 2952 | * The UPL_ABORT_ALLOW_ACCESS is defined, but neither set nor |
| 2953 | * referenced; do not use it. |
| 2954 | */ |
| 2955 | kern_return_t |
| 2956 | ubc_upl_abort( |
| 2957 | upl_t upl, |
| 2958 | int abort_type) |
| 2959 | { |
| 2960 | kern_return_t kr; |
| 2961 | |
| 2962 | kr = upl_abort(upl_object: upl, abort_cond: abort_type); |
| 2963 | upl_deallocate(upl); |
| 2964 | return kr; |
| 2965 | } |
| 2966 | |
| 2967 | |
| 2968 | /* |
| 2969 | * ubc_upl_pageinfo |
| 2970 | * |
| 2971 | * Retrieve the internal page list for the specified upl |
| 2972 | * |
| 2973 | * Parameters: upl The upl to obtain the page list from |
| 2974 | * |
| 2975 | * Returns: !NULL The (upl_page_info_t *) for the page |
| 2976 | * list internal to the upl |
| 2977 | * NULL Error/no page list associated |
| 2978 | * |
| 2979 | * Notes: IMPORTANT: The function is only valid on internal objects |
| 2980 | * where the list request was made with the UPL_INTERNAL flag. |
| 2981 | * |
| 2982 | * This function is a utility helper function, since some callers |
| 2983 | * may not have direct access to the header defining the macro, |
| 2984 | * due to abstraction layering constraints. |
| 2985 | */ |
| 2986 | upl_page_info_t * |
| 2987 | ubc_upl_pageinfo( |
| 2988 | upl_t upl) |
| 2989 | { |
| 2990 | return UPL_GET_INTERNAL_PAGE_LIST(upl); |
| 2991 | } |
| 2992 | |
| 2993 | |
| 2994 | int |
| 2995 | UBCINFOEXISTS(const struct vnode * vp) |
| 2996 | { |
| 2997 | return (vp) && ((vp)->v_type == VREG) && ((vp)->v_ubcinfo != UBC_INFO_NULL); |
| 2998 | } |
| 2999 | |
| 3000 | |
| 3001 | void |
| 3002 | ubc_upl_range_needed( |
| 3003 | upl_t upl, |
| 3004 | int index, |
| 3005 | int count) |
| 3006 | { |
| 3007 | upl_range_needed(upl, index, count); |
| 3008 | } |
| 3009 | |
| 3010 | boolean_t |
| 3011 | ubc_is_mapped(const struct vnode *vp, boolean_t *writable) |
| 3012 | { |
| 3013 | if (!UBCINFOEXISTS(vp) || !ISSET(vp->v_ubcinfo->ui_flags, UI_ISMAPPED)) { |
| 3014 | return FALSE; |
| 3015 | } |
| 3016 | if (writable) { |
| 3017 | *writable = ISSET(vp->v_ubcinfo->ui_flags, UI_MAPPEDWRITE); |
| 3018 | } |
| 3019 | return TRUE; |
| 3020 | } |
| 3021 | |
| 3022 | boolean_t |
| 3023 | ubc_is_mapped_writable(const struct vnode *vp) |
| 3024 | { |
| 3025 | boolean_t writable; |
| 3026 | return ubc_is_mapped(vp, writable: &writable) && writable; |
| 3027 | } |
| 3028 | |
| 3029 | boolean_t |
| 3030 | ubc_was_mapped(const struct vnode *vp, boolean_t *writable) |
| 3031 | { |
| 3032 | if (!UBCINFOEXISTS(vp) || !ISSET(vp->v_ubcinfo->ui_flags, UI_WASMAPPED)) { |
| 3033 | return FALSE; |
| 3034 | } |
| 3035 | if (writable) { |
| 3036 | *writable = ISSET(vp->v_ubcinfo->ui_flags, UI_WASMAPPEDWRITE); |
| 3037 | } |
| 3038 | return TRUE; |
| 3039 | } |
| 3040 | |
| 3041 | boolean_t |
| 3042 | ubc_was_mapped_writable(const struct vnode *vp) |
| 3043 | { |
| 3044 | boolean_t writable; |
| 3045 | return ubc_was_mapped(vp, writable: &writable) && writable; |
| 3046 | } |
| 3047 | |
| 3048 | |
| 3049 | /* |
| 3050 | * CODE SIGNING |
| 3051 | */ |
| 3052 | static atomic_size_t cs_blob_size = 0; |
| 3053 | static atomic_uint_fast32_t cs_blob_count = 0; |
| 3054 | static atomic_size_t cs_blob_size_peak = 0; |
| 3055 | static atomic_size_t cs_blob_size_max = 0; |
| 3056 | static atomic_uint_fast32_t cs_blob_count_peak = 0; |
| 3057 | |
| 3058 | SYSCTL_UINT(_vm, OID_AUTO, cs_blob_count, CTLFLAG_RD | CTLFLAG_LOCKED, &cs_blob_count, 0, "Current number of code signature blobs" ); |
| 3059 | SYSCTL_ULONG(_vm, OID_AUTO, cs_blob_size, CTLFLAG_RD | CTLFLAG_LOCKED, &cs_blob_size, "Current size of all code signature blobs" ); |
| 3060 | SYSCTL_UINT(_vm, OID_AUTO, cs_blob_count_peak, CTLFLAG_RD | CTLFLAG_LOCKED, &cs_blob_count_peak, 0, "Peak number of code signature blobs" ); |
| 3061 | SYSCTL_ULONG(_vm, OID_AUTO, cs_blob_size_peak, CTLFLAG_RD | CTLFLAG_LOCKED, &cs_blob_size_peak, "Peak size of code signature blobs" ); |
| 3062 | SYSCTL_ULONG(_vm, OID_AUTO, cs_blob_size_max, CTLFLAG_RD | CTLFLAG_LOCKED, &cs_blob_size_max, "Size of biggest code signature blob" ); |
| 3063 | |
| 3064 | /* |
| 3065 | * Function: csblob_parse_teamid |
| 3066 | * |
| 3067 | * Description: This function returns a pointer to the team id |
| 3068 | * stored within the codedirectory of the csblob. |
| 3069 | * If the codedirectory predates team-ids, it returns |
| 3070 | * NULL. |
| 3071 | * This does not copy the name but returns a pointer to |
| 3072 | * it within the CD. Subsequently, the CD must be |
| 3073 | * available when this is used. |
| 3074 | */ |
| 3075 | |
| 3076 | static const char * |
| 3077 | csblob_parse_teamid(struct cs_blob *csblob) |
| 3078 | { |
| 3079 | const CS_CodeDirectory *cd; |
| 3080 | |
| 3081 | cd = csblob->csb_cd; |
| 3082 | |
| 3083 | if (ntohl(cd->version) < CS_SUPPORTSTEAMID) { |
| 3084 | return NULL; |
| 3085 | } |
| 3086 | |
| 3087 | if (cd->teamOffset == 0) { |
| 3088 | return NULL; |
| 3089 | } |
| 3090 | |
| 3091 | const char *name = ((const char *)cd) + ntohl(cd->teamOffset); |
| 3092 | if (cs_debug > 1) { |
| 3093 | printf("found team-id %s in cdblob\n" , name); |
| 3094 | } |
| 3095 | |
| 3096 | return name; |
| 3097 | } |
| 3098 | |
| 3099 | kern_return_t |
| 3100 | ubc_cs_blob_allocate( |
| 3101 | vm_offset_t *blob_addr_p, |
| 3102 | vm_size_t *blob_size_p) |
| 3103 | { |
| 3104 | kern_return_t kr = KERN_FAILURE; |
| 3105 | vm_size_t allocation_size = 0; |
| 3106 | |
| 3107 | if (!blob_addr_p || !blob_size_p) { |
| 3108 | return KERN_INVALID_ARGUMENT; |
| 3109 | } |
| 3110 | allocation_size = *blob_size_p; |
| 3111 | |
| 3112 | if (ubc_cs_blob_pagewise_allocate(size: allocation_size) == true) { |
| 3113 | /* Round up to page size */ |
| 3114 | allocation_size = round_page(x: allocation_size); |
| 3115 | |
| 3116 | /* Allocate page-wise */ |
| 3117 | kr = kmem_alloc( |
| 3118 | map: kernel_map, |
| 3119 | addrp: blob_addr_p, |
| 3120 | size: allocation_size, |
| 3121 | flags: KMA_KOBJECT | KMA_DATA | KMA_ZERO, |
| 3122 | VM_KERN_MEMORY_SECURITY); |
| 3123 | } else { |
| 3124 | *blob_addr_p = (vm_offset_t)kalloc_data_tag( |
| 3125 | allocation_size, |
| 3126 | Z_WAITOK | Z_ZERO, |
| 3127 | VM_KERN_MEMORY_SECURITY); |
| 3128 | |
| 3129 | assert(*blob_addr_p != 0); |
| 3130 | kr = KERN_SUCCESS; |
| 3131 | } |
| 3132 | |
| 3133 | if (kr == KERN_SUCCESS) { |
| 3134 | *blob_size_p = allocation_size; |
| 3135 | } |
| 3136 | |
| 3137 | return kr; |
| 3138 | } |
| 3139 | |
| 3140 | void |
| 3141 | ubc_cs_blob_deallocate( |
| 3142 | vm_offset_t blob_addr, |
| 3143 | vm_size_t blob_size) |
| 3144 | { |
| 3145 | if (ubc_cs_blob_pagewise_allocate(size: blob_size) == true) { |
| 3146 | kmem_free(map: kernel_map, addr: blob_addr, size: blob_size); |
| 3147 | } else { |
| 3148 | kfree_data(blob_addr, blob_size); |
| 3149 | } |
| 3150 | } |
| 3151 | |
| 3152 | /* |
| 3153 | * Some codesigned files use a lowest common denominator page size of |
| 3154 | * 4KiB, but can be used on systems that have a runtime page size of |
| 3155 | * 16KiB. Since faults will only occur on 16KiB ranges in |
| 3156 | * cs_validate_range(), we can convert the original Code Directory to |
| 3157 | * a multi-level scheme where groups of 4 hashes are combined to form |
| 3158 | * a new hash, which represents 16KiB in the on-disk file. This can |
| 3159 | * reduce the wired memory requirement for the Code Directory by |
| 3160 | * 75%. Care must be taken for binaries that use the "fourk" VM pager |
| 3161 | * for unaligned access, which may still attempt to validate on |
| 3162 | * non-16KiB multiples for compatibility with 3rd party binaries. |
| 3163 | */ |
| 3164 | static boolean_t |
| 3165 | ubc_cs_supports_multilevel_hash(struct cs_blob *blob __unused) |
| 3166 | { |
| 3167 | const CS_CodeDirectory *cd; |
| 3168 | |
| 3169 | #if CODE_SIGNING_MONITOR |
| 3170 | // TODO: <rdar://problem/30954826> |
| 3171 | if (csm_enabled() == true) { |
| 3172 | return FALSE; |
| 3173 | } |
| 3174 | #endif |
| 3175 | |
| 3176 | /* |
| 3177 | * Only applies to binaries that ship as part of the OS, |
| 3178 | * primarily the shared cache. |
| 3179 | */ |
| 3180 | if (!blob->csb_platform_binary || blob->csb_teamid != NULL) { |
| 3181 | return FALSE; |
| 3182 | } |
| 3183 | |
| 3184 | /* |
| 3185 | * If the runtime page size matches the code signing page |
| 3186 | * size, there is no work to do. |
| 3187 | */ |
| 3188 | if (PAGE_SHIFT <= blob->csb_hash_pageshift) { |
| 3189 | return FALSE; |
| 3190 | } |
| 3191 | |
| 3192 | cd = blob->csb_cd; |
| 3193 | |
| 3194 | /* |
| 3195 | * There must be a valid integral multiple of hashes |
| 3196 | */ |
| 3197 | if (ntohl(cd->nCodeSlots) & (PAGE_MASK >> blob->csb_hash_pageshift)) { |
| 3198 | return FALSE; |
| 3199 | } |
| 3200 | |
| 3201 | /* |
| 3202 | * Scatter lists must also have ranges that have an integral number of hashes |
| 3203 | */ |
| 3204 | if ((ntohl(cd->version) >= CS_SUPPORTSSCATTER) && (ntohl(cd->scatterOffset))) { |
| 3205 | const SC_Scatter *scatter = (const SC_Scatter*) |
| 3206 | ((const char*)cd + ntohl(cd->scatterOffset)); |
| 3207 | /* iterate all scatter structs to make sure they are all aligned */ |
| 3208 | do { |
| 3209 | uint32_t sbase = ntohl(scatter->base); |
| 3210 | uint32_t scount = ntohl(scatter->count); |
| 3211 | |
| 3212 | /* last scatter? */ |
| 3213 | if (scount == 0) { |
| 3214 | break; |
| 3215 | } |
| 3216 | |
| 3217 | if (sbase & (PAGE_MASK >> blob->csb_hash_pageshift)) { |
| 3218 | return FALSE; |
| 3219 | } |
| 3220 | |
| 3221 | if (scount & (PAGE_MASK >> blob->csb_hash_pageshift)) { |
| 3222 | return FALSE; |
| 3223 | } |
| 3224 | |
| 3225 | scatter++; |
| 3226 | } while (1); |
| 3227 | } |
| 3228 | |
| 3229 | /* Covered range must be a multiple of the new page size */ |
| 3230 | if (ntohl(cd->codeLimit) & PAGE_MASK) { |
| 3231 | return FALSE; |
| 3232 | } |
| 3233 | |
| 3234 | /* All checks pass */ |
| 3235 | return TRUE; |
| 3236 | } |
| 3237 | |
| 3238 | /* |
| 3239 | * Reconstruct a cs_blob with the code signature fields. This helper function |
| 3240 | * is useful because a lot of things often change the base address of the code |
| 3241 | * signature blob, which requires reconstructing some of the other pointers |
| 3242 | * within. |
| 3243 | */ |
| 3244 | static errno_t |
| 3245 | ubc_cs_blob_reconstruct( |
| 3246 | struct cs_blob *cs_blob, |
| 3247 | const vm_address_t signature_addr, |
| 3248 | const vm_address_t signature_size, |
| 3249 | const vm_offset_t code_directory_offset) |
| 3250 | { |
| 3251 | const CS_CodeDirectory *code_directory = NULL; |
| 3252 | |
| 3253 | /* Setup the signature blob address */ |
| 3254 | cs_blob->csb_mem_kaddr = (void*)signature_addr; |
| 3255 | cs_blob->csb_mem_size = signature_size; |
| 3256 | |
| 3257 | /* Setup the code directory in the blob */ |
| 3258 | code_directory = (const CS_CodeDirectory*)(signature_addr + code_directory_offset); |
| 3259 | cs_blob->csb_cd = code_directory; |
| 3260 | |
| 3261 | /* Setup the XML entitlements */ |
| 3262 | cs_blob->csb_entitlements_blob = csblob_find_blob_bytes( |
| 3263 | addr: (uint8_t*)signature_addr, |
| 3264 | length: signature_size, |
| 3265 | type: CSSLOT_ENTITLEMENTS, |
| 3266 | magic: CSMAGIC_EMBEDDED_ENTITLEMENTS); |
| 3267 | |
| 3268 | /* Setup the DER entitlements */ |
| 3269 | cs_blob->csb_der_entitlements_blob = csblob_find_blob_bytes( |
| 3270 | addr: (uint8_t*)signature_addr, |
| 3271 | length: signature_size, |
| 3272 | type: CSSLOT_DER_ENTITLEMENTS, |
| 3273 | magic: CSMAGIC_EMBEDDED_DER_ENTITLEMENTS); |
| 3274 | |
| 3275 | return 0; |
| 3276 | } |
| 3277 | |
| 3278 | /* |
| 3279 | * Given a validated cs_blob, we reformat the structure to only include |
| 3280 | * the blobs which are required by the kernel for our current platform. |
| 3281 | * This saves significant memory with agile signatures. |
| 3282 | * |
| 3283 | * To support rewriting the code directory, potentially through |
| 3284 | * multilevel hashes, we provide a mechanism to allocate a code directory |
| 3285 | * of a specified size and zero it out --> caller can fill it in. |
| 3286 | * |
| 3287 | * We don't need to perform a lot of overflow checks as the assumption |
| 3288 | * here is that the cs_blob has already been validated. |
| 3289 | */ |
| 3290 | static errno_t |
| 3291 | ubc_cs_reconstitute_code_signature( |
| 3292 | const struct cs_blob * const blob, |
| 3293 | vm_address_t * const ret_mem_kaddr, |
| 3294 | vm_size_t * const ret_mem_size, |
| 3295 | vm_size_t code_directory_size, |
| 3296 | CS_CodeDirectory ** const code_directory |
| 3297 | ) |
| 3298 | { |
| 3299 | vm_address_t new_blob_addr = 0; |
| 3300 | vm_size_t new_blob_size = 0; |
| 3301 | vm_size_t new_code_directory_size = 0; |
| 3302 | const CS_GenericBlob *best_code_directory = NULL; |
| 3303 | const CS_GenericBlob *first_code_directory = NULL; |
| 3304 | const CS_GenericBlob *der_entitlements_blob = NULL; |
| 3305 | const CS_GenericBlob *entitlements_blob = NULL; |
| 3306 | const CS_GenericBlob *cms_blob = NULL; |
| 3307 | const CS_GenericBlob *launch_constraint_self = NULL; |
| 3308 | const CS_GenericBlob *launch_constraint_parent = NULL; |
| 3309 | const CS_GenericBlob *launch_constraint_responsible = NULL; |
| 3310 | const CS_GenericBlob *library_constraint = NULL; |
| 3311 | CS_SuperBlob *superblob = NULL; |
| 3312 | uint32_t num_blobs = 0; |
| 3313 | uint32_t blob_index = 0; |
| 3314 | uint32_t blob_offset = 0; |
| 3315 | kern_return_t ret; |
| 3316 | int err; |
| 3317 | |
| 3318 | if (!blob) { |
| 3319 | if (cs_debug > 1) { |
| 3320 | printf("CODE SIGNING: CS Blob passed in is NULL\n" ); |
| 3321 | } |
| 3322 | return EINVAL; |
| 3323 | } |
| 3324 | |
| 3325 | best_code_directory = (const CS_GenericBlob*)blob->csb_cd; |
| 3326 | if (!best_code_directory) { |
| 3327 | /* This case can never happen, and it is a sign of bad things */ |
| 3328 | panic("CODE SIGNING: Validated CS Blob has no code directory" ); |
| 3329 | } |
| 3330 | |
| 3331 | new_code_directory_size = code_directory_size; |
| 3332 | if (new_code_directory_size == 0) { |
| 3333 | new_code_directory_size = ntohl(best_code_directory->length); |
| 3334 | } |
| 3335 | |
| 3336 | /* |
| 3337 | * A code signature can contain multiple code directories, each of which contains hashes |
| 3338 | * of pages based on a hashing algorithm. The kernel selects which hashing algorithm is |
| 3339 | * the strongest, and consequently, marks one of these code directories as the best |
| 3340 | * matched one. More often than not, the best matched one is _not_ the first one. |
| 3341 | * |
| 3342 | * However, the CMS blob which cryptographically verifies the code signature is only |
| 3343 | * signed against the first code directory. Therefore, if the CMS blob is present, we also |
| 3344 | * need the first code directory to be able to verify it. Given this, we organize the |
| 3345 | * new cs_blob as following order: |
| 3346 | * |
| 3347 | * 1. best code directory |
| 3348 | * 2. DER encoded entitlements blob (if present) |
| 3349 | * 3. launch constraint self (if present) |
| 3350 | * 4. launch constraint parent (if present) |
| 3351 | * 5. launch constraint responsible (if present) |
| 3352 | * 6. library constraint (if present) |
| 3353 | * 7. entitlements blob (if present) |
| 3354 | * 8. cms blob (if present) |
| 3355 | * 9. first code directory (if not already the best match, and if cms blob is present) |
| 3356 | * |
| 3357 | * This order is chosen deliberately, as later on, we expect to get rid of the CMS blob |
| 3358 | * and the first code directory once their verification is complete. |
| 3359 | */ |
| 3360 | |
| 3361 | /* Storage for the super blob header */ |
| 3362 | new_blob_size += sizeof(CS_SuperBlob); |
| 3363 | |
| 3364 | /* Guaranteed storage for the best code directory */ |
| 3365 | new_blob_size += sizeof(CS_BlobIndex); |
| 3366 | new_blob_size += new_code_directory_size; |
| 3367 | num_blobs += 1; |
| 3368 | |
| 3369 | /* Conditional storage for the DER entitlements blob */ |
| 3370 | der_entitlements_blob = blob->csb_der_entitlements_blob; |
| 3371 | if (der_entitlements_blob) { |
| 3372 | new_blob_size += sizeof(CS_BlobIndex); |
| 3373 | new_blob_size += ntohl(der_entitlements_blob->length); |
| 3374 | num_blobs += 1; |
| 3375 | } |
| 3376 | |
| 3377 | /* Conditional storage for the launch constraints self blob */ |
| 3378 | launch_constraint_self = csblob_find_blob_bytes( |
| 3379 | addr: (const uint8_t *)blob->csb_mem_kaddr, |
| 3380 | length: blob->csb_mem_size, |
| 3381 | type: CSSLOT_LAUNCH_CONSTRAINT_SELF, |
| 3382 | magic: CSMAGIC_EMBEDDED_LAUNCH_CONSTRAINT); |
| 3383 | if (launch_constraint_self) { |
| 3384 | new_blob_size += sizeof(CS_BlobIndex); |
| 3385 | new_blob_size += ntohl(launch_constraint_self->length); |
| 3386 | num_blobs += 1; |
| 3387 | } |
| 3388 | |
| 3389 | /* Conditional storage for the launch constraints parent blob */ |
| 3390 | launch_constraint_parent = csblob_find_blob_bytes( |
| 3391 | addr: (const uint8_t *)blob->csb_mem_kaddr, |
| 3392 | length: blob->csb_mem_size, |
| 3393 | type: CSSLOT_LAUNCH_CONSTRAINT_PARENT, |
| 3394 | magic: CSMAGIC_EMBEDDED_LAUNCH_CONSTRAINT); |
| 3395 | if (launch_constraint_parent) { |
| 3396 | new_blob_size += sizeof(CS_BlobIndex); |
| 3397 | new_blob_size += ntohl(launch_constraint_parent->length); |
| 3398 | num_blobs += 1; |
| 3399 | } |
| 3400 | |
| 3401 | /* Conditional storage for the launch constraints responsible blob */ |
| 3402 | launch_constraint_responsible = csblob_find_blob_bytes( |
| 3403 | addr: (const uint8_t *)blob->csb_mem_kaddr, |
| 3404 | length: blob->csb_mem_size, |
| 3405 | type: CSSLOT_LAUNCH_CONSTRAINT_RESPONSIBLE, |
| 3406 | magic: CSMAGIC_EMBEDDED_LAUNCH_CONSTRAINT); |
| 3407 | if (launch_constraint_responsible) { |
| 3408 | new_blob_size += sizeof(CS_BlobIndex); |
| 3409 | new_blob_size += ntohl(launch_constraint_responsible->length); |
| 3410 | num_blobs += 1; |
| 3411 | } |
| 3412 | |
| 3413 | /* Conditional storage for the library constraintsblob */ |
| 3414 | library_constraint = csblob_find_blob_bytes( |
| 3415 | addr: (const uint8_t *)blob->csb_mem_kaddr, |
| 3416 | length: blob->csb_mem_size, |
| 3417 | type: CSSLOT_LIBRARY_CONSTRAINT, |
| 3418 | magic: CSMAGIC_EMBEDDED_LAUNCH_CONSTRAINT); |
| 3419 | if (library_constraint) { |
| 3420 | new_blob_size += sizeof(CS_BlobIndex); |
| 3421 | new_blob_size += ntohl(library_constraint->length); |
| 3422 | num_blobs += 1; |
| 3423 | } |
| 3424 | |
| 3425 | /* Conditional storage for the entitlements blob */ |
| 3426 | entitlements_blob = blob->csb_entitlements_blob; |
| 3427 | if (entitlements_blob) { |
| 3428 | new_blob_size += sizeof(CS_BlobIndex); |
| 3429 | new_blob_size += ntohl(entitlements_blob->length); |
| 3430 | num_blobs += 1; |
| 3431 | } |
| 3432 | |
| 3433 | /* Conditional storage for the CMS blob */ |
| 3434 | cms_blob = csblob_find_blob_bytes(addr: (const uint8_t *)blob->csb_mem_kaddr, length: blob->csb_mem_size, type: CSSLOT_SIGNATURESLOT, magic: CSMAGIC_BLOBWRAPPER); |
| 3435 | if (cms_blob) { |
| 3436 | new_blob_size += sizeof(CS_BlobIndex); |
| 3437 | new_blob_size += ntohl(cms_blob->length); |
| 3438 | num_blobs += 1; |
| 3439 | } |
| 3440 | |
| 3441 | /* |
| 3442 | * Conditional storage for the first code directory. |
| 3443 | * This is only needed if a CMS blob exists and the best code directory isn't already |
| 3444 | * the first one. It is an error if we find a CMS blob but do not find a first code directory. |
| 3445 | */ |
| 3446 | if (cms_blob) { |
| 3447 | first_code_directory = csblob_find_blob_bytes(addr: (const uint8_t *)blob->csb_mem_kaddr, length: blob->csb_mem_size, type: CSSLOT_CODEDIRECTORY, magic: CSMAGIC_CODEDIRECTORY); |
| 3448 | if (first_code_directory == best_code_directory) { |
| 3449 | /* We don't need the first code directory anymore, since the best one is already it */ |
| 3450 | first_code_directory = NULL; |
| 3451 | } else if (first_code_directory) { |
| 3452 | new_blob_size += sizeof(CS_BlobIndex); |
| 3453 | new_blob_size += ntohl(first_code_directory->length); |
| 3454 | num_blobs += 1; |
| 3455 | } else { |
| 3456 | printf("CODE SIGNING: Invalid CS Blob: found CMS blob but not a first code directory\n" ); |
| 3457 | return EINVAL; |
| 3458 | } |
| 3459 | } |
| 3460 | |
| 3461 | /* |
| 3462 | * The blob size could be rouded up to page size here, so we keep a copy |
| 3463 | * of the actual superblob length as well. |
| 3464 | */ |
| 3465 | vm_size_t new_blob_allocation_size = new_blob_size; |
| 3466 | ret = ubc_cs_blob_allocate(blob_addr_p: &new_blob_addr, blob_size_p: &new_blob_allocation_size); |
| 3467 | if (ret != KERN_SUCCESS) { |
| 3468 | printf("CODE SIGNING: Failed to allocate memory for new code signing blob: %d\n" , ret); |
| 3469 | return ENOMEM; |
| 3470 | } |
| 3471 | |
| 3472 | /* |
| 3473 | * Fill out the superblob header and then all the blobs in the order listed |
| 3474 | * above. |
| 3475 | */ |
| 3476 | superblob = (CS_SuperBlob*)new_blob_addr; |
| 3477 | superblob->magic = htonl(CSMAGIC_EMBEDDED_SIGNATURE); |
| 3478 | superblob->length = htonl((uint32_t)new_blob_size); |
| 3479 | superblob->count = htonl(num_blobs); |
| 3480 | |
| 3481 | blob_index = 0; |
| 3482 | blob_offset = sizeof(CS_SuperBlob) + (num_blobs * sizeof(CS_BlobIndex)); |
| 3483 | |
| 3484 | /* Best code directory */ |
| 3485 | superblob->index[blob_index].offset = htonl(blob_offset); |
| 3486 | if (first_code_directory) { |
| 3487 | superblob->index[blob_index].type = htonl(CSSLOT_ALTERNATE_CODEDIRECTORIES); |
| 3488 | } else { |
| 3489 | superblob->index[blob_index].type = htonl(CSSLOT_CODEDIRECTORY); |
| 3490 | } |
| 3491 | |
| 3492 | if (code_directory_size > 0) { |
| 3493 | /* We zero out the code directory, as we expect the caller to fill it in */ |
| 3494 | memset(s: (void*)(new_blob_addr + blob_offset), c: 0, n: new_code_directory_size); |
| 3495 | } else { |
| 3496 | memcpy(dst: (void*)(new_blob_addr + blob_offset), src: best_code_directory, n: new_code_directory_size); |
| 3497 | } |
| 3498 | |
| 3499 | if (code_directory) { |
| 3500 | *code_directory = (CS_CodeDirectory*)(new_blob_addr + blob_offset); |
| 3501 | } |
| 3502 | blob_offset += new_code_directory_size; |
| 3503 | |
| 3504 | /* DER entitlements blob */ |
| 3505 | if (der_entitlements_blob) { |
| 3506 | blob_index += 1; |
| 3507 | superblob->index[blob_index].offset = htonl(blob_offset); |
| 3508 | superblob->index[blob_index].type = htonl(CSSLOT_DER_ENTITLEMENTS); |
| 3509 | |
| 3510 | memcpy(dst: (void*)(new_blob_addr + blob_offset), src: der_entitlements_blob, ntohl(der_entitlements_blob->length)); |
| 3511 | blob_offset += ntohl(der_entitlements_blob->length); |
| 3512 | } |
| 3513 | |
| 3514 | /* Launch constraints self blob */ |
| 3515 | if (launch_constraint_self) { |
| 3516 | blob_index += 1; |
| 3517 | superblob->index[blob_index].offset = htonl(blob_offset); |
| 3518 | superblob->index[blob_index].type = htonl(CSSLOT_LAUNCH_CONSTRAINT_SELF); |
| 3519 | |
| 3520 | memcpy( |
| 3521 | dst: (void*)(new_blob_addr + blob_offset), |
| 3522 | src: launch_constraint_self, |
| 3523 | ntohl(launch_constraint_self->length)); |
| 3524 | |
| 3525 | blob_offset += ntohl(launch_constraint_self->length); |
| 3526 | } |
| 3527 | |
| 3528 | /* Launch constraints parent blob */ |
| 3529 | if (launch_constraint_parent) { |
| 3530 | blob_index += 1; |
| 3531 | superblob->index[blob_index].offset = htonl(blob_offset); |
| 3532 | superblob->index[blob_index].type = htonl(CSSLOT_LAUNCH_CONSTRAINT_PARENT); |
| 3533 | |
| 3534 | memcpy( |
| 3535 | dst: (void*)(new_blob_addr + blob_offset), |
| 3536 | src: launch_constraint_parent, |
| 3537 | ntohl(launch_constraint_parent->length)); |
| 3538 | |
| 3539 | blob_offset += ntohl(launch_constraint_parent->length); |
| 3540 | } |
| 3541 | |
| 3542 | /* Launch constraints responsible blob */ |
| 3543 | if (launch_constraint_responsible) { |
| 3544 | blob_index += 1; |
| 3545 | superblob->index[blob_index].offset = htonl(blob_offset); |
| 3546 | superblob->index[blob_index].type = htonl(CSSLOT_LAUNCH_CONSTRAINT_RESPONSIBLE); |
| 3547 | |
| 3548 | memcpy( |
| 3549 | dst: (void*)(new_blob_addr + blob_offset), |
| 3550 | src: launch_constraint_responsible, |
| 3551 | ntohl(launch_constraint_responsible->length)); |
| 3552 | |
| 3553 | blob_offset += ntohl(launch_constraint_responsible->length); |
| 3554 | } |
| 3555 | |
| 3556 | /* library constraints blob */ |
| 3557 | if (library_constraint) { |
| 3558 | blob_index += 1; |
| 3559 | superblob->index[blob_index].offset = htonl(blob_offset); |
| 3560 | superblob->index[blob_index].type = htonl(CSSLOT_LIBRARY_CONSTRAINT); |
| 3561 | |
| 3562 | memcpy( |
| 3563 | dst: (void*)(new_blob_addr + blob_offset), |
| 3564 | src: library_constraint, |
| 3565 | ntohl(library_constraint->length)); |
| 3566 | |
| 3567 | blob_offset += ntohl(library_constraint->length); |
| 3568 | } |
| 3569 | |
| 3570 | /* Entitlements blob */ |
| 3571 | if (entitlements_blob) { |
| 3572 | blob_index += 1; |
| 3573 | superblob->index[blob_index].offset = htonl(blob_offset); |
| 3574 | superblob->index[blob_index].type = htonl(CSSLOT_ENTITLEMENTS); |
| 3575 | |
| 3576 | memcpy(dst: (void*)(new_blob_addr + blob_offset), src: entitlements_blob, ntohl(entitlements_blob->length)); |
| 3577 | blob_offset += ntohl(entitlements_blob->length); |
| 3578 | } |
| 3579 | |
| 3580 | /* CMS blob */ |
| 3581 | if (cms_blob) { |
| 3582 | blob_index += 1; |
| 3583 | superblob->index[blob_index].offset = htonl(blob_offset); |
| 3584 | superblob->index[blob_index].type = htonl(CSSLOT_SIGNATURESLOT); |
| 3585 | memcpy(dst: (void*)(new_blob_addr + blob_offset), src: cms_blob, ntohl(cms_blob->length)); |
| 3586 | blob_offset += ntohl(cms_blob->length); |
| 3587 | } |
| 3588 | |
| 3589 | /* First code directory */ |
| 3590 | if (first_code_directory) { |
| 3591 | blob_index += 1; |
| 3592 | superblob->index[blob_index].offset = htonl(blob_offset); |
| 3593 | superblob->index[blob_index].type = htonl(CSSLOT_CODEDIRECTORY); |
| 3594 | memcpy(dst: (void*)(new_blob_addr + blob_offset), src: first_code_directory, ntohl(first_code_directory->length)); |
| 3595 | blob_offset += ntohl(first_code_directory->length); |
| 3596 | } |
| 3597 | |
| 3598 | /* |
| 3599 | * We only validate the blob in case we copied in the best code directory. |
| 3600 | * In case the code directory size we were passed in wasn't 0, we memset the best |
| 3601 | * code directory to 0 and expect the caller to fill it in. In the same spirit, we |
| 3602 | * expect the caller to validate the code signature after they fill in the code |
| 3603 | * directory. |
| 3604 | */ |
| 3605 | if (code_directory_size == 0) { |
| 3606 | const CS_CodeDirectory *validated_code_directory = NULL; |
| 3607 | const CS_GenericBlob *validated_entitlements_blob = NULL; |
| 3608 | const CS_GenericBlob *validated_der_entitlements_blob = NULL; |
| 3609 | |
| 3610 | ret = cs_validate_csblob( |
| 3611 | addr: (const uint8_t *)superblob, |
| 3612 | blob_size: new_blob_size, |
| 3613 | rcd: &validated_code_directory, |
| 3614 | rentitlements: &validated_entitlements_blob, |
| 3615 | rder_entitlements: &validated_der_entitlements_blob); |
| 3616 | |
| 3617 | if (ret) { |
| 3618 | printf("unable to validate reconstituted cs_blob: %d\n" , ret); |
| 3619 | err = EINVAL; |
| 3620 | goto fail; |
| 3621 | } |
| 3622 | } |
| 3623 | |
| 3624 | if (ret_mem_kaddr) { |
| 3625 | *ret_mem_kaddr = new_blob_addr; |
| 3626 | } |
| 3627 | if (ret_mem_size) { |
| 3628 | *ret_mem_size = new_blob_allocation_size; |
| 3629 | } |
| 3630 | |
| 3631 | return 0; |
| 3632 | |
| 3633 | fail: |
| 3634 | ubc_cs_blob_deallocate(blob_addr: new_blob_addr, blob_size: new_blob_allocation_size); |
| 3635 | return err; |
| 3636 | } |
| 3637 | |
| 3638 | /* |
| 3639 | * We use this function to clear out unnecessary bits from the code signature |
| 3640 | * blob which are no longer needed. We free these bits and give them back to |
| 3641 | * the kernel. This is needed since reconstitution includes extra data which is |
| 3642 | * needed only for verification but has no point in keeping afterwards. |
| 3643 | * |
| 3644 | * This results in significant memory reduction, especially for 3rd party apps |
| 3645 | * since we also get rid of the CMS blob. |
| 3646 | */ |
| 3647 | static errno_t |
| 3648 | ubc_cs_reconstitute_code_signature_2nd_stage( |
| 3649 | struct cs_blob *blob |
| 3650 | ) |
| 3651 | { |
| 3652 | kern_return_t ret = KERN_FAILURE; |
| 3653 | const CS_GenericBlob *launch_constraint_self = NULL; |
| 3654 | const CS_GenericBlob *launch_constraint_parent = NULL; |
| 3655 | const CS_GenericBlob *launch_constraint_responsible = NULL; |
| 3656 | const CS_GenericBlob *library_constraint = NULL; |
| 3657 | CS_SuperBlob *superblob = NULL; |
| 3658 | uint32_t num_blobs = 0; |
| 3659 | vm_size_t last_needed_blob_offset = 0; |
| 3660 | vm_offset_t code_directory_offset = 0; |
| 3661 | |
| 3662 | /* |
| 3663 | * Ordering of blobs we need to keep: |
| 3664 | * 1. Code directory |
| 3665 | * 2. DER encoded entitlements (if present) |
| 3666 | * 3. Launch constraints self (if present) |
| 3667 | * 4. Launch constraints parent (if present) |
| 3668 | * 5. Launch constraints responsible (if present) |
| 3669 | * 6. Library constraints (if present) |
| 3670 | * |
| 3671 | * We need to clear out the remaining page after these blobs end, and fix up |
| 3672 | * the superblob for the changes. Things gets a little more complicated for |
| 3673 | * blobs which may not have been kmem_allocated. For those, we simply just |
| 3674 | * allocate the new required space and copy into it. |
| 3675 | */ |
| 3676 | |
| 3677 | if (blob == NULL) { |
| 3678 | printf("NULL blob passed in for 2nd stage reconstitution\n" ); |
| 3679 | return EINVAL; |
| 3680 | } |
| 3681 | assert(blob->csb_reconstituted == true); |
| 3682 | |
| 3683 | /* Ensure we're not page-wise allocated when in this function */ |
| 3684 | assert(ubc_cs_blob_pagewise_allocate(blob->csb_mem_size) == false); |
| 3685 | |
| 3686 | if (!blob->csb_cd) { |
| 3687 | /* This case can never happen, and it is a sign of bad things */ |
| 3688 | panic("validated cs_blob has no code directory" ); |
| 3689 | } |
| 3690 | superblob = (CS_SuperBlob*)blob->csb_mem_kaddr; |
| 3691 | |
| 3692 | num_blobs = 1; |
| 3693 | last_needed_blob_offset = ntohl(superblob->index[0].offset) + ntohl(blob->csb_cd->length); |
| 3694 | |
| 3695 | /* Check for DER entitlements */ |
| 3696 | if (blob->csb_der_entitlements_blob) { |
| 3697 | num_blobs += 1; |
| 3698 | last_needed_blob_offset += ntohl(blob->csb_der_entitlements_blob->length); |
| 3699 | } |
| 3700 | |
| 3701 | /* Check for launch constraints self */ |
| 3702 | launch_constraint_self = csblob_find_blob_bytes( |
| 3703 | addr: (const uint8_t *)blob->csb_mem_kaddr, |
| 3704 | length: blob->csb_mem_size, |
| 3705 | type: CSSLOT_LAUNCH_CONSTRAINT_SELF, |
| 3706 | magic: CSMAGIC_EMBEDDED_LAUNCH_CONSTRAINT); |
| 3707 | if (launch_constraint_self) { |
| 3708 | num_blobs += 1; |
| 3709 | last_needed_blob_offset += ntohl(launch_constraint_self->length); |
| 3710 | } |
| 3711 | |
| 3712 | /* Check for launch constraints parent */ |
| 3713 | launch_constraint_parent = csblob_find_blob_bytes( |
| 3714 | addr: (const uint8_t *)blob->csb_mem_kaddr, |
| 3715 | length: blob->csb_mem_size, |
| 3716 | type: CSSLOT_LAUNCH_CONSTRAINT_PARENT, |
| 3717 | magic: CSMAGIC_EMBEDDED_LAUNCH_CONSTRAINT); |
| 3718 | if (launch_constraint_parent) { |
| 3719 | num_blobs += 1; |
| 3720 | last_needed_blob_offset += ntohl(launch_constraint_parent->length); |
| 3721 | } |
| 3722 | |
| 3723 | /* Check for launch constraints responsible */ |
| 3724 | launch_constraint_responsible = csblob_find_blob_bytes( |
| 3725 | addr: (const uint8_t *)blob->csb_mem_kaddr, |
| 3726 | length: blob->csb_mem_size, |
| 3727 | type: CSSLOT_LAUNCH_CONSTRAINT_RESPONSIBLE, |
| 3728 | magic: CSMAGIC_EMBEDDED_LAUNCH_CONSTRAINT); |
| 3729 | if (launch_constraint_responsible) { |
| 3730 | num_blobs += 1; |
| 3731 | last_needed_blob_offset += ntohl(launch_constraint_responsible->length); |
| 3732 | } |
| 3733 | |
| 3734 | /* Check for library constraint */ |
| 3735 | library_constraint = csblob_find_blob_bytes( |
| 3736 | addr: (const uint8_t *)blob->csb_mem_kaddr, |
| 3737 | length: blob->csb_mem_size, |
| 3738 | type: CSSLOT_LIBRARY_CONSTRAINT, |
| 3739 | magic: CSMAGIC_EMBEDDED_LAUNCH_CONSTRAINT); |
| 3740 | if (library_constraint) { |
| 3741 | num_blobs += 1; |
| 3742 | last_needed_blob_offset += ntohl(library_constraint->length); |
| 3743 | } |
| 3744 | |
| 3745 | superblob->count = htonl(num_blobs); |
| 3746 | superblob->length = htonl((uint32_t)last_needed_blob_offset); |
| 3747 | |
| 3748 | /* |
| 3749 | * There is a chance that the code directory is marked within the superblob as an |
| 3750 | * alternate code directory. This happens when the first code directory isn't the |
| 3751 | * best one chosen by the kernel, so to be able to access both the first and the best, |
| 3752 | * we save the best one as an alternate one. Since we're getting rid of the first one |
| 3753 | * here, we mark the best one as the first one. |
| 3754 | */ |
| 3755 | superblob->index[0].type = htonl(CSSLOT_CODEDIRECTORY); |
| 3756 | |
| 3757 | vm_address_t new_superblob = 0; |
| 3758 | vm_size_t new_superblob_size = last_needed_blob_offset; |
| 3759 | |
| 3760 | ret = ubc_cs_blob_allocate(blob_addr_p: &new_superblob, blob_size_p: &new_superblob_size); |
| 3761 | if (ret != KERN_SUCCESS) { |
| 3762 | printf("unable to allocate memory for 2nd stage reconstitution: %d\n" , ret); |
| 3763 | return ENOMEM; |
| 3764 | } |
| 3765 | assert(new_superblob_size == last_needed_blob_offset); |
| 3766 | |
| 3767 | /* Calculate the code directory offset */ |
| 3768 | code_directory_offset = (vm_offset_t)blob->csb_cd - (vm_offset_t)blob->csb_mem_kaddr; |
| 3769 | |
| 3770 | /* Copy in the updated superblob into the new memory */ |
| 3771 | memcpy(dst: (void*)new_superblob, src: superblob, n: new_superblob_size); |
| 3772 | |
| 3773 | /* Free the old code signature and old memory */ |
| 3774 | ubc_cs_blob_deallocate(blob_addr: (vm_offset_t)blob->csb_mem_kaddr, blob_size: blob->csb_mem_size); |
| 3775 | |
| 3776 | /* Reconstruct critical fields in the blob object */ |
| 3777 | ubc_cs_blob_reconstruct( |
| 3778 | cs_blob: blob, |
| 3779 | signature_addr: new_superblob, |
| 3780 | signature_size: new_superblob_size, |
| 3781 | code_directory_offset); |
| 3782 | |
| 3783 | /* XML entitlements should've been removed */ |
| 3784 | assert(blob->csb_entitlements_blob == NULL); |
| 3785 | |
| 3786 | const CS_CodeDirectory *validated_code_directory = NULL; |
| 3787 | const CS_GenericBlob *validated_entitlements_blob = NULL; |
| 3788 | const CS_GenericBlob *validated_der_entitlements_blob = NULL; |
| 3789 | |
| 3790 | ret = cs_validate_csblob( |
| 3791 | addr: (const uint8_t*)blob->csb_mem_kaddr, |
| 3792 | blob_size: blob->csb_mem_size, |
| 3793 | rcd: &validated_code_directory, |
| 3794 | rentitlements: &validated_entitlements_blob, |
| 3795 | rder_entitlements: &validated_der_entitlements_blob); |
| 3796 | if (ret) { |
| 3797 | printf("unable to validate code signature after 2nd stage reconstitution: %d\n" , ret); |
| 3798 | return EINVAL; |
| 3799 | } |
| 3800 | |
| 3801 | return 0; |
| 3802 | } |
| 3803 | |
| 3804 | static int |
| 3805 | ubc_cs_convert_to_multilevel_hash(struct cs_blob *blob) |
| 3806 | { |
| 3807 | const CS_CodeDirectory *old_cd, *cd; |
| 3808 | CS_CodeDirectory *new_cd; |
| 3809 | const CS_GenericBlob *entitlements; |
| 3810 | const CS_GenericBlob *der_entitlements; |
| 3811 | vm_offset_t new_blob_addr; |
| 3812 | vm_size_t new_blob_size; |
| 3813 | vm_size_t new_cdsize; |
| 3814 | int error; |
| 3815 | |
| 3816 | uint32_t hashes_per_new_hash_shift = (uint32_t)(PAGE_SHIFT - blob->csb_hash_pageshift); |
| 3817 | |
| 3818 | if (cs_debug > 1) { |
| 3819 | printf("CODE SIGNING: Attempting to convert Code Directory for %lu -> %lu page shift\n" , |
| 3820 | (unsigned long)blob->csb_hash_pageshift, (unsigned long)PAGE_SHIFT); |
| 3821 | } |
| 3822 | |
| 3823 | old_cd = blob->csb_cd; |
| 3824 | |
| 3825 | /* Up to the hashes, we can copy all data */ |
| 3826 | new_cdsize = ntohl(old_cd->hashOffset); |
| 3827 | new_cdsize += (ntohl(old_cd->nCodeSlots) >> hashes_per_new_hash_shift) * old_cd->hashSize; |
| 3828 | |
| 3829 | error = ubc_cs_reconstitute_code_signature(blob, ret_mem_kaddr: &new_blob_addr, ret_mem_size: &new_blob_size, code_directory_size: new_cdsize, code_directory: &new_cd); |
| 3830 | if (error != 0) { |
| 3831 | printf("CODE SIGNING: Failed to reconsitute code signature: %d\n" , error); |
| 3832 | return error; |
| 3833 | } |
| 3834 | entitlements = csblob_find_blob_bytes(addr: (uint8_t*)new_blob_addr, length: new_blob_size, type: CSSLOT_ENTITLEMENTS, magic: CSMAGIC_EMBEDDED_ENTITLEMENTS); |
| 3835 | der_entitlements = csblob_find_blob_bytes(addr: (uint8_t*)new_blob_addr, length: new_blob_size, type: CSSLOT_DER_ENTITLEMENTS, magic: CSMAGIC_EMBEDDED_DER_ENTITLEMENTS); |
| 3836 | |
| 3837 | memcpy(dst: new_cd, src: old_cd, ntohl(old_cd->hashOffset)); |
| 3838 | |
| 3839 | /* Update fields in the Code Directory structure */ |
| 3840 | new_cd->length = htonl((uint32_t)new_cdsize); |
| 3841 | |
| 3842 | uint32_t nCodeSlots = ntohl(new_cd->nCodeSlots); |
| 3843 | nCodeSlots >>= hashes_per_new_hash_shift; |
| 3844 | new_cd->nCodeSlots = htonl(nCodeSlots); |
| 3845 | |
| 3846 | new_cd->pageSize = (uint8_t)PAGE_SHIFT; /* Not byte-swapped */ |
| 3847 | |
| 3848 | if ((ntohl(new_cd->version) >= CS_SUPPORTSSCATTER) && (ntohl(new_cd->scatterOffset))) { |
| 3849 | SC_Scatter *scatter = (SC_Scatter*) |
| 3850 | ((char *)new_cd + ntohl(new_cd->scatterOffset)); |
| 3851 | /* iterate all scatter structs to scale their counts */ |
| 3852 | do { |
| 3853 | uint32_t scount = ntohl(scatter->count); |
| 3854 | uint32_t sbase = ntohl(scatter->base); |
| 3855 | |
| 3856 | /* last scatter? */ |
| 3857 | if (scount == 0) { |
| 3858 | break; |
| 3859 | } |
| 3860 | |
| 3861 | scount >>= hashes_per_new_hash_shift; |
| 3862 | scatter->count = htonl(scount); |
| 3863 | |
| 3864 | sbase >>= hashes_per_new_hash_shift; |
| 3865 | scatter->base = htonl(sbase); |
| 3866 | |
| 3867 | scatter++; |
| 3868 | } while (1); |
| 3869 | } |
| 3870 | |
| 3871 | /* For each group of hashes, hash them together */ |
| 3872 | const unsigned char *src_base = (const unsigned char *)old_cd + ntohl(old_cd->hashOffset); |
| 3873 | unsigned char *dst_base = (unsigned char *)new_cd + ntohl(new_cd->hashOffset); |
| 3874 | |
| 3875 | uint32_t hash_index; |
| 3876 | for (hash_index = 0; hash_index < nCodeSlots; hash_index++) { |
| 3877 | union cs_hash_union mdctx; |
| 3878 | |
| 3879 | uint32_t source_hash_len = old_cd->hashSize << hashes_per_new_hash_shift; |
| 3880 | const unsigned char *src = src_base + hash_index * source_hash_len; |
| 3881 | unsigned char *dst = dst_base + hash_index * new_cd->hashSize; |
| 3882 | |
| 3883 | blob->csb_hashtype->cs_init(&mdctx); |
| 3884 | blob->csb_hashtype->cs_update(&mdctx, src, source_hash_len); |
| 3885 | blob->csb_hashtype->cs_final(dst, &mdctx); |
| 3886 | } |
| 3887 | |
| 3888 | error = cs_validate_csblob(addr: (const uint8_t *)new_blob_addr, blob_size: new_blob_size, rcd: &cd, rentitlements: &entitlements, rder_entitlements: &der_entitlements); |
| 3889 | if (error != 0) { |
| 3890 | printf("CODE SIGNING: Failed to validate new Code Signing Blob: %d\n" , |
| 3891 | error); |
| 3892 | |
| 3893 | ubc_cs_blob_deallocate(blob_addr: new_blob_addr, blob_size: new_blob_size); |
| 3894 | return error; |
| 3895 | } |
| 3896 | |
| 3897 | /* New Code Directory is ready for use, swap it out in the blob structure */ |
| 3898 | ubc_cs_blob_deallocate(blob_addr: (vm_offset_t)blob->csb_mem_kaddr, blob_size: blob->csb_mem_size); |
| 3899 | |
| 3900 | blob->csb_mem_size = new_blob_size; |
| 3901 | blob->csb_mem_kaddr = (void *)new_blob_addr; |
| 3902 | blob->csb_cd = cd; |
| 3903 | blob->csb_entitlements_blob = NULL; |
| 3904 | |
| 3905 | blob->csb_der_entitlements_blob = der_entitlements; /* may be NULL, not yet validated */ |
| 3906 | blob->csb_reconstituted = true; |
| 3907 | |
| 3908 | /* The blob has some cached attributes of the Code Directory, so update those */ |
| 3909 | |
| 3910 | blob->csb_hash_firstlevel_pageshift = blob->csb_hash_pageshift; /* Save the original page size */ |
| 3911 | |
| 3912 | blob->csb_hash_pageshift = PAGE_SHIFT; |
| 3913 | blob->csb_end_offset = ntohl(cd->codeLimit); |
| 3914 | if ((ntohl(cd->version) >= CS_SUPPORTSSCATTER) && (ntohl(cd->scatterOffset))) { |
| 3915 | const SC_Scatter *scatter = (const SC_Scatter*) |
| 3916 | ((const char*)cd + ntohl(cd->scatterOffset)); |
| 3917 | blob->csb_start_offset = ((off_t)ntohl(scatter->base)) * PAGE_SIZE; |
| 3918 | } else { |
| 3919 | blob->csb_start_offset = 0; |
| 3920 | } |
| 3921 | |
| 3922 | return 0; |
| 3923 | } |
| 3924 | |
| 3925 | static void |
| 3926 | cs_blob_cleanup(struct cs_blob *blob) |
| 3927 | { |
| 3928 | if (blob->csb_entitlements != NULL) { |
| 3929 | amfi->OSEntitlements_invalidate(blob->csb_entitlements); |
| 3930 | osobject_release(object: blob->csb_entitlements); |
| 3931 | blob->csb_entitlements = NULL; |
| 3932 | } |
| 3933 | |
| 3934 | #if CODE_SIGNING_MONITOR |
| 3935 | if (blob->csb_csm_obj != NULL) { |
| 3936 | /* Unconditionally remove any profiles we may have associated */ |
| 3937 | csm_disassociate_provisioning_profile(blob->csb_csm_obj); |
| 3938 | |
| 3939 | kern_return_t kr = csm_unregister_code_signature(blob->csb_csm_obj); |
| 3940 | if (kr == KERN_SUCCESS) { |
| 3941 | /* |
| 3942 | * If the code signature was monitor managed, the monitor will have freed it |
| 3943 | * itself in the unregistration call. It means we do not need to free the data |
| 3944 | * over here. |
| 3945 | */ |
| 3946 | if (blob->csb_csm_managed) { |
| 3947 | blob->csb_mem_kaddr = NULL; |
| 3948 | blob->csb_mem_size = 0; |
| 3949 | } |
| 3950 | } |
| 3951 | } |
| 3952 | |
| 3953 | /* Unconditionally remove references to the monitor */ |
| 3954 | blob->csb_csm_obj = NULL; |
| 3955 | blob->csb_csm_managed = false; |
| 3956 | #endif |
| 3957 | |
| 3958 | if (blob->csb_mem_kaddr) { |
| 3959 | ubc_cs_blob_deallocate(blob_addr: (vm_offset_t)blob->csb_mem_kaddr, blob_size: blob->csb_mem_size); |
| 3960 | } |
| 3961 | blob->csb_mem_kaddr = NULL; |
| 3962 | blob->csb_mem_size = 0; |
| 3963 | } |
| 3964 | |
| 3965 | static void |
| 3966 | cs_blob_ro_free(struct cs_blob *blob) |
| 3967 | { |
| 3968 | struct cs_blob tmp; |
| 3969 | |
| 3970 | if (blob != NULL) { |
| 3971 | /* |
| 3972 | * cs_blob_cleanup clears fields, so we need to pass it a |
| 3973 | * mutable copy. |
| 3974 | */ |
| 3975 | tmp = *blob; |
| 3976 | cs_blob_cleanup(blob: &tmp); |
| 3977 | |
| 3978 | zfree_ro(ZONE_ID_CS_BLOB, blob); |
| 3979 | } |
| 3980 | } |
| 3981 | |
| 3982 | /* |
| 3983 | * Free a cs_blob previously created by cs_blob_create_validated. |
| 3984 | */ |
| 3985 | void |
| 3986 | cs_blob_free( |
| 3987 | struct cs_blob *blob) |
| 3988 | { |
| 3989 | cs_blob_ro_free(blob); |
| 3990 | } |
| 3991 | |
| 3992 | static int |
| 3993 | cs_blob_init_validated( |
| 3994 | vm_address_t * const addr, |
| 3995 | vm_size_t size, |
| 3996 | struct cs_blob *blob, |
| 3997 | CS_CodeDirectory const ** const ret_cd) |
| 3998 | { |
| 3999 | int error = EINVAL; |
| 4000 | const CS_CodeDirectory *cd = NULL; |
| 4001 | const CS_GenericBlob *entitlements = NULL; |
| 4002 | const CS_GenericBlob *der_entitlements = NULL; |
| 4003 | union cs_hash_union mdctx; |
| 4004 | size_t length; |
| 4005 | |
| 4006 | bzero(s: blob, n: sizeof(*blob)); |
| 4007 | |
| 4008 | /* fill in the new blob */ |
| 4009 | blob->csb_mem_size = size; |
| 4010 | blob->csb_mem_offset = 0; |
| 4011 | blob->csb_mem_kaddr = (void *)*addr; |
| 4012 | blob->csb_flags = 0; |
| 4013 | blob->csb_signer_type = CS_SIGNER_TYPE_UNKNOWN; |
| 4014 | blob->csb_platform_binary = 0; |
| 4015 | blob->csb_platform_path = 0; |
| 4016 | blob->csb_teamid = NULL; |
| 4017 | #if CONFIG_SUPPLEMENTAL_SIGNATURES |
| 4018 | blob->csb_supplement_teamid = NULL; |
| 4019 | #endif |
| 4020 | blob->csb_entitlements_blob = NULL; |
| 4021 | blob->csb_der_entitlements_blob = NULL; |
| 4022 | blob->csb_entitlements = NULL; |
| 4023 | #if CODE_SIGNING_MONITOR |
| 4024 | blob->csb_csm_obj = NULL; |
| 4025 | blob->csb_csm_managed = false; |
| 4026 | #endif |
| 4027 | blob->csb_reconstituted = false; |
| 4028 | blob->csb_validation_category = CS_VALIDATION_CATEGORY_INVALID; |
| 4029 | |
| 4030 | /* Transfer ownership. Even on error, this function will deallocate */ |
| 4031 | *addr = 0; |
| 4032 | |
| 4033 | /* |
| 4034 | * Validate the blob's contents |
| 4035 | */ |
| 4036 | length = (size_t) size; |
| 4037 | error = cs_validate_csblob(addr: (const uint8_t *)blob->csb_mem_kaddr, |
| 4038 | blob_size: length, rcd: &cd, rentitlements: &entitlements, rder_entitlements: &der_entitlements); |
| 4039 | if (error) { |
| 4040 | if (cs_debug) { |
| 4041 | printf("CODESIGNING: csblob invalid: %d\n" , error); |
| 4042 | } |
| 4043 | /* |
| 4044 | * The vnode checker can't make the rest of this function |
| 4045 | * succeed if csblob validation failed, so bail */ |
| 4046 | goto out; |
| 4047 | } else { |
| 4048 | const unsigned char *md_base; |
| 4049 | uint8_t hash[CS_HASH_MAX_SIZE]; |
| 4050 | int md_size; |
| 4051 | vm_offset_t hash_pagemask; |
| 4052 | |
| 4053 | blob->csb_cd = cd; |
| 4054 | blob->csb_entitlements_blob = entitlements; /* may be NULL, not yet validated */ |
| 4055 | blob->csb_der_entitlements_blob = der_entitlements; /* may be NULL, not yet validated */ |
| 4056 | blob->csb_hashtype = cs_find_md(type: cd->hashType); |
| 4057 | if (blob->csb_hashtype == NULL || blob->csb_hashtype->cs_digest_size > sizeof(hash)) { |
| 4058 | panic("validated CodeDirectory but unsupported type" ); |
| 4059 | } |
| 4060 | |
| 4061 | blob->csb_hash_pageshift = cd->pageSize; |
| 4062 | hash_pagemask = (1U << cd->pageSize) - 1; |
| 4063 | blob->csb_hash_firstlevel_pageshift = 0; |
| 4064 | blob->csb_flags = (ntohl(cd->flags) & CS_ALLOWED_MACHO) | CS_VALID; |
| 4065 | blob->csb_end_offset = (((vm_offset_t)ntohl(cd->codeLimit) + hash_pagemask) & ~hash_pagemask); |
| 4066 | if ((ntohl(cd->version) >= CS_SUPPORTSSCATTER) && (ntohl(cd->scatterOffset))) { |
| 4067 | const SC_Scatter *scatter = (const SC_Scatter*) |
| 4068 | ((const char*)cd + ntohl(cd->scatterOffset)); |
| 4069 | blob->csb_start_offset = ((off_t)ntohl(scatter->base)) * (1U << blob->csb_hash_pageshift); |
| 4070 | } else { |
| 4071 | blob->csb_start_offset = 0; |
| 4072 | } |
| 4073 | /* compute the blob's cdhash */ |
| 4074 | md_base = (const unsigned char *) cd; |
| 4075 | md_size = ntohl(cd->length); |
| 4076 | |
| 4077 | blob->csb_hashtype->cs_init(&mdctx); |
| 4078 | blob->csb_hashtype->cs_update(&mdctx, md_base, md_size); |
| 4079 | blob->csb_hashtype->cs_final(hash, &mdctx); |
| 4080 | |
| 4081 | memcpy(dst: blob->csb_cdhash, src: hash, n: CS_CDHASH_LEN); |
| 4082 | |
| 4083 | #if CONFIG_SUPPLEMENTAL_SIGNATURES |
| 4084 | blob->csb_linkage_hashtype = NULL; |
| 4085 | if (ntohl(cd->version) >= CS_SUPPORTSLINKAGE && cd->linkageHashType != 0 && |
| 4086 | ntohl(cd->linkageSize) >= CS_CDHASH_LEN) { |
| 4087 | blob->csb_linkage_hashtype = cs_find_md(type: cd->linkageHashType); |
| 4088 | |
| 4089 | if (blob->csb_linkage_hashtype != NULL) { |
| 4090 | memcpy(dst: blob->csb_linkage, src: (uint8_t const*)cd + ntohl(cd->linkageOffset), |
| 4091 | n: CS_CDHASH_LEN); |
| 4092 | } |
| 4093 | } |
| 4094 | #endif |
| 4095 | } |
| 4096 | |
| 4097 | error = 0; |
| 4098 | |
| 4099 | out: |
| 4100 | if (error != 0) { |
| 4101 | cs_blob_cleanup(blob); |
| 4102 | blob = NULL; |
| 4103 | cd = NULL; |
| 4104 | } |
| 4105 | |
| 4106 | if (ret_cd != NULL) { |
| 4107 | *ret_cd = cd; |
| 4108 | } |
| 4109 | |
| 4110 | return error; |
| 4111 | } |
| 4112 | |
| 4113 | /* |
| 4114 | * Validate the code signature blob, create a struct cs_blob wrapper |
| 4115 | * and return it together with a pointer to the chosen code directory |
| 4116 | * and entitlements blob. |
| 4117 | * |
| 4118 | * Note that this takes ownership of the memory as addr, mainly because |
| 4119 | * this function can actually replace the passed in blob with another |
| 4120 | * one, e.g. when performing multilevel hashing optimization. |
| 4121 | */ |
| 4122 | int |
| 4123 | cs_blob_create_validated( |
| 4124 | vm_address_t * const addr, |
| 4125 | vm_size_t size, |
| 4126 | struct cs_blob ** const ret_blob, |
| 4127 | CS_CodeDirectory const ** const ret_cd) |
| 4128 | { |
| 4129 | struct cs_blob blob = {}; |
| 4130 | struct cs_blob *ro_blob; |
| 4131 | int error; |
| 4132 | |
| 4133 | if (ret_blob) { |
| 4134 | *ret_blob = NULL; |
| 4135 | } |
| 4136 | |
| 4137 | if ((error = cs_blob_init_validated(addr, size, blob: &blob, ret_cd)) != 0) { |
| 4138 | return error; |
| 4139 | } |
| 4140 | |
| 4141 | if (ret_blob != NULL) { |
| 4142 | ro_blob = zalloc_ro(ZONE_ID_CS_BLOB, Z_WAITOK | Z_NOFAIL); |
| 4143 | zalloc_ro_update_elem(ZONE_ID_CS_BLOB, ro_blob, &blob); |
| 4144 | *ret_blob = ro_blob; |
| 4145 | } |
| 4146 | |
| 4147 | return error; |
| 4148 | } |
| 4149 | |
| 4150 | #if CONFIG_SUPPLEMENTAL_SIGNATURES |
| 4151 | static void |
| 4152 | cs_blob_supplement_free(struct cs_blob * const blob) |
| 4153 | { |
| 4154 | void *teamid; |
| 4155 | |
| 4156 | if (blob != NULL) { |
| 4157 | if (blob->csb_supplement_teamid != NULL) { |
| 4158 | teamid = blob->csb_supplement_teamid; |
| 4159 | vm_size_t teamid_size = strlen(s: blob->csb_supplement_teamid) + 1; |
| 4160 | kfree_data(teamid, teamid_size); |
| 4161 | } |
| 4162 | cs_blob_ro_free(blob); |
| 4163 | } |
| 4164 | } |
| 4165 | #endif |
| 4166 | |
| 4167 | static void |
| 4168 | ubc_cs_blob_adjust_statistics(struct cs_blob const *blob) |
| 4169 | { |
| 4170 | /* Note that the atomic ops are not enough to guarantee |
| 4171 | * correctness: If a blob with an intermediate size is inserted |
| 4172 | * concurrently, we can lose a peak value assignment. But these |
| 4173 | * statistics are only advisory anyway, so we're not going to |
| 4174 | * employ full locking here. (Consequently, we are also okay with |
| 4175 | * relaxed ordering of those accesses.) |
| 4176 | */ |
| 4177 | |
| 4178 | unsigned int new_cs_blob_count = os_atomic_add(&cs_blob_count, 1, relaxed); |
| 4179 | if (new_cs_blob_count > os_atomic_load(&cs_blob_count_peak, relaxed)) { |
| 4180 | os_atomic_store(&cs_blob_count_peak, new_cs_blob_count, relaxed); |
| 4181 | } |
| 4182 | |
| 4183 | size_t new_cs_blob_size = os_atomic_add(&cs_blob_size, blob->csb_mem_size, relaxed); |
| 4184 | |
| 4185 | if (new_cs_blob_size > os_atomic_load(&cs_blob_size_peak, relaxed)) { |
| 4186 | os_atomic_store(&cs_blob_size_peak, new_cs_blob_size, relaxed); |
| 4187 | } |
| 4188 | if (blob->csb_mem_size > os_atomic_load(&cs_blob_size_max, relaxed)) { |
| 4189 | os_atomic_store(&cs_blob_size_max, blob->csb_mem_size, relaxed); |
| 4190 | } |
| 4191 | } |
| 4192 | |
| 4193 | static void |
| 4194 | cs_blob_set_cpu_type(struct cs_blob *blob, cpu_type_t cputype) |
| 4195 | { |
| 4196 | zalloc_ro_update_field(ZONE_ID_CS_BLOB, blob, csb_cpu_type, &cputype); |
| 4197 | } |
| 4198 | |
| 4199 | __abortlike |
| 4200 | static void |
| 4201 | panic_cs_blob_backref_mismatch(struct cs_blob *blob, struct vnode *vp) |
| 4202 | { |
| 4203 | panic("cs_blob vnode backref mismatch: blob=%p, vp=%p, " |
| 4204 | "blob->csb_vnode=%p" , blob, vp, blob->csb_vnode); |
| 4205 | } |
| 4206 | |
| 4207 | void |
| 4208 | cs_blob_require(struct cs_blob *blob, vnode_t vp) |
| 4209 | { |
| 4210 | zone_require_ro(zone_id: ZONE_ID_CS_BLOB, elem_size: sizeof(struct cs_blob), addr: blob); |
| 4211 | |
| 4212 | if (vp != NULL && __improbable(blob->csb_vnode != vp)) { |
| 4213 | panic_cs_blob_backref_mismatch(blob, vp); |
| 4214 | } |
| 4215 | } |
| 4216 | |
| 4217 | #if CODE_SIGNING_MONITOR |
| 4218 | |
| 4219 | /** |
| 4220 | * Independently verify the authenticity of the code signature through the monitor |
| 4221 | * environment. This is required as otherwise the monitor won't allow associations |
| 4222 | * of the code signature with address spaces. |
| 4223 | * |
| 4224 | * Once we've verified the code signature, we no longer need to keep around any |
| 4225 | * provisioning profiles we may have registered with it. AMFI associates profiles |
| 4226 | * with the monitor during its validation (which happens before the monitor's). |
| 4227 | */ |
| 4228 | static errno_t |
| 4229 | verify_code_signature_monitor( |
| 4230 | struct cs_blob *cs_blob) |
| 4231 | { |
| 4232 | kern_return_t ret = KERN_DENIED; |
| 4233 | |
| 4234 | ret = csm_verify_code_signature(cs_blob->csb_csm_obj); |
| 4235 | if ((ret != KERN_SUCCESS) && (ret != KERN_NOT_SUPPORTED)) { |
| 4236 | printf("unable to verify code signature with monitor: %d\n" , ret); |
| 4237 | return EPERM; |
| 4238 | } |
| 4239 | |
| 4240 | ret = csm_disassociate_provisioning_profile(cs_blob->csb_csm_obj); |
| 4241 | if ((ret != KERN_SUCCESS) && (ret != KERN_NOT_FOUND) && (ret != KERN_NOT_SUPPORTED)) { |
| 4242 | printf("unable to disassociate profile from code signature: %d\n" , ret); |
| 4243 | return EPERM; |
| 4244 | } |
| 4245 | |
| 4246 | /* Associate the OSEntitlements kernel object with the monitor */ |
| 4247 | ret = csm_associate_os_entitlements(cs_blob->csb_csm_obj, cs_blob->csb_entitlements); |
| 4248 | if ((ret != KERN_SUCCESS) && (ret != KERN_NOT_SUPPORTED)) { |
| 4249 | printf("unable to associate OSEntitlements with monitor: %d\n" , ret); |
| 4250 | return EPERM; |
| 4251 | } |
| 4252 | |
| 4253 | return 0; |
| 4254 | } |
| 4255 | |
| 4256 | /** |
| 4257 | * Register the code signature with the code signing monitor environment. This |
| 4258 | * will effectively make the blob data immutable, either because the blob memory |
| 4259 | * will be allocated and managed directory by the monitor, or because the monitor |
| 4260 | * will lockdown the memory associated with the blob. |
| 4261 | */ |
| 4262 | static errno_t |
| 4263 | register_code_signature_monitor( |
| 4264 | struct vnode *vnode, |
| 4265 | struct cs_blob *cs_blob, |
| 4266 | vm_offset_t code_directory_offset) |
| 4267 | { |
| 4268 | kern_return_t ret = KERN_DENIED; |
| 4269 | vm_address_t monitor_signature_addr = 0; |
| 4270 | void *monitor_sig_object = NULL; |
| 4271 | const char *vnode_path_ptr = NULL; |
| 4272 | |
| 4273 | /* |
| 4274 | * Attempt to resolve the path for this vnode and pass it in to the code |
| 4275 | * signing monitor during registration. |
| 4276 | */ |
| 4277 | int vnode_path_len = MAXPATHLEN; |
| 4278 | char *vnode_path = kalloc_data(vnode_path_len, Z_WAITOK); |
| 4279 | |
| 4280 | /* |
| 4281 | * Taking a reference on the vnode recursively can sometimes lead to a |
| 4282 | * deadlock on the system. Since we already have a vnode pointer, it means |
| 4283 | * the caller performed a vnode lookup, which implicitly takes a reference |
| 4284 | * on the vnode. However, there is more than just having a reference on a |
| 4285 | * vnode which is important. vnode's also have an iocount, and we must only |
| 4286 | * access a vnode which has an iocount of greater than 0. Thankfully, all |
| 4287 | * the conditions which lead to calling this function ensure that this |
| 4288 | * vnode is safe to access here. |
| 4289 | * |
| 4290 | * For more details: rdar://105819068. |
| 4291 | */ |
| 4292 | errno_t error = vn_getpath(vnode, vnode_path, &vnode_path_len); |
| 4293 | if (error == 0) { |
| 4294 | vnode_path_ptr = vnode_path; |
| 4295 | } |
| 4296 | |
| 4297 | ret = csm_register_code_signature( |
| 4298 | (vm_address_t)cs_blob->csb_mem_kaddr, |
| 4299 | cs_blob->csb_mem_size, |
| 4300 | code_directory_offset, |
| 4301 | vnode_path_ptr, |
| 4302 | &monitor_sig_object, |
| 4303 | &monitor_signature_addr); |
| 4304 | |
| 4305 | kfree_data(vnode_path, MAXPATHLEN); |
| 4306 | vnode_path_ptr = NULL; |
| 4307 | |
| 4308 | if (ret == KERN_SUCCESS) { |
| 4309 | /* Reconstruct the cs_blob if the monitor used its own allocation */ |
| 4310 | if (monitor_signature_addr != (vm_address_t)cs_blob->csb_mem_kaddr) { |
| 4311 | vm_address_t monitor_signature_size = cs_blob->csb_mem_size; |
| 4312 | |
| 4313 | /* Free the old memory for the blob */ |
| 4314 | ubc_cs_blob_deallocate( |
| 4315 | (vm_address_t)cs_blob->csb_mem_kaddr, |
| 4316 | cs_blob->csb_mem_size); |
| 4317 | |
| 4318 | /* Reconstruct critical fields in the blob object */ |
| 4319 | ubc_cs_blob_reconstruct( |
| 4320 | cs_blob, |
| 4321 | monitor_signature_addr, |
| 4322 | monitor_signature_size, |
| 4323 | code_directory_offset); |
| 4324 | |
| 4325 | /* Mark the signature as monitor managed */ |
| 4326 | cs_blob->csb_csm_managed = true; |
| 4327 | } |
| 4328 | } else if (ret != KERN_NOT_SUPPORTED) { |
| 4329 | printf("unable to register code signature with monitor: %d\n" , ret); |
| 4330 | return EPERM; |
| 4331 | } |
| 4332 | |
| 4333 | /* Save the monitor handle for the signature object -- may be NULL */ |
| 4334 | cs_blob->csb_csm_obj = monitor_sig_object; |
| 4335 | |
| 4336 | return 0; |
| 4337 | } |
| 4338 | |
| 4339 | #endif /* CODE_SIGNING_MONITOR */ |
| 4340 | |
| 4341 | /** |
| 4342 | * Accelerate entitlements for a code signature object. When we have a code |
| 4343 | * signing monitor, this acceleration is done within the monitor which then |
| 4344 | * passes back a CoreEntitlements query context the kernel can use. When we |
| 4345 | * don't have a code signing monitor, we accelerate the queries within the |
| 4346 | * kernel memory itself. |
| 4347 | * |
| 4348 | * This function must be called when the storage for the code signature can |
| 4349 | * no longer change. |
| 4350 | */ |
| 4351 | static errno_t |
| 4352 | accelerate_entitlement_queries( |
| 4353 | struct cs_blob *cs_blob) |
| 4354 | { |
| 4355 | kern_return_t ret = KERN_NOT_SUPPORTED; |
| 4356 | |
| 4357 | #if CODE_SIGNING_MONITOR |
| 4358 | CEQueryContext_t ce_ctx = NULL; |
| 4359 | const char *signing_id = NULL; |
| 4360 | |
| 4361 | ret = csm_accelerate_entitlements(cs_blob->csb_csm_obj, &ce_ctx); |
| 4362 | if ((ret != KERN_SUCCESS) && (ret != KERN_NOT_SUPPORTED)) { |
| 4363 | printf("unable to accelerate entitlements through the monitor: %d\n" , ret); |
| 4364 | return EPERM; |
| 4365 | } |
| 4366 | |
| 4367 | if (ret == KERN_SUCCESS) { |
| 4368 | /* Call cannot not fail at this stage */ |
| 4369 | ret = csm_acquire_signing_identifier(cs_blob->csb_csm_obj, &signing_id); |
| 4370 | assert(ret == KERN_SUCCESS); |
| 4371 | |
| 4372 | /* Adjust the OSEntitlements context with AMFI */ |
| 4373 | ret = amfi->OSEntitlements.adjustContextWithMonitor( |
| 4374 | cs_blob->csb_entitlements, |
| 4375 | ce_ctx, |
| 4376 | cs_blob->csb_csm_obj, |
| 4377 | signing_id, |
| 4378 | cs_blob->csb_flags); |
| 4379 | if (ret != KERN_SUCCESS) { |
| 4380 | printf("unable to adjust OSEntitlements context with monitor: %d\n" , ret); |
| 4381 | return EPERM; |
| 4382 | } |
| 4383 | |
| 4384 | return 0; |
| 4385 | } |
| 4386 | #endif |
| 4387 | |
| 4388 | /* |
| 4389 | * If we reach here, then either we don't have a code signing monitor, or |
| 4390 | * the code signing monitor isn't enabled for code signing, in which case, |
| 4391 | * AMFI is going to accelerate the entitlements context and adjust its |
| 4392 | * context on its own. |
| 4393 | */ |
| 4394 | assert(ret == KERN_NOT_SUPPORTED); |
| 4395 | |
| 4396 | ret = amfi->OSEntitlements.adjustContextWithoutMonitor( |
| 4397 | cs_blob->csb_entitlements, |
| 4398 | cs_blob); |
| 4399 | |
| 4400 | if (ret != KERN_SUCCESS) { |
| 4401 | printf("unable to adjust OSEntitlements context without monitor: %d\n" , ret); |
| 4402 | return EPERM; |
| 4403 | } |
| 4404 | |
| 4405 | return 0; |
| 4406 | } |
| 4407 | |
| 4408 | /** |
| 4409 | * Ensure and validate that some security critical code signing blobs haven't |
| 4410 | * been stripped off from the code signature. This can happen if an attacker |
| 4411 | * chose to load a code signature sans these critical blobs, or if there is a |
| 4412 | * bug in reconstitution logic which remove these blobs from the code signature. |
| 4413 | */ |
| 4414 | static errno_t |
| 4415 | validate_auxiliary_signed_blobs( |
| 4416 | struct cs_blob *cs_blob) |
| 4417 | { |
| 4418 | struct cs_blob_identifier { |
| 4419 | uint32_t cs_slot; |
| 4420 | uint32_t cs_magic; |
| 4421 | }; |
| 4422 | |
| 4423 | const struct cs_blob_identifier identifiers[] = { |
| 4424 | {CSSLOT_LAUNCH_CONSTRAINT_SELF, CSMAGIC_EMBEDDED_LAUNCH_CONSTRAINT}, |
| 4425 | {CSSLOT_LAUNCH_CONSTRAINT_PARENT, CSMAGIC_EMBEDDED_LAUNCH_CONSTRAINT}, |
| 4426 | {CSSLOT_LAUNCH_CONSTRAINT_RESPONSIBLE, CSMAGIC_EMBEDDED_LAUNCH_CONSTRAINT}, |
| 4427 | {CSSLOT_LIBRARY_CONSTRAINT, CSMAGIC_EMBEDDED_LAUNCH_CONSTRAINT} |
| 4428 | }; |
| 4429 | const uint32_t num_identifiers = sizeof(identifiers) / sizeof(identifiers[0]); |
| 4430 | |
| 4431 | for (uint32_t i = 0; i < num_identifiers; i++) { |
| 4432 | errno_t err = csblob_find_special_slot_blob( |
| 4433 | csblob: cs_blob, |
| 4434 | slot: identifiers[i].cs_slot, |
| 4435 | magic: identifiers[i].cs_magic, |
| 4436 | NULL, |
| 4437 | NULL); |
| 4438 | |
| 4439 | if (err != 0) { |
| 4440 | printf("unable to validate security-critical blob: %d [%u|%u]\n" , |
| 4441 | err, identifiers[i].cs_slot, identifiers[i].cs_magic); |
| 4442 | |
| 4443 | return EPERM; |
| 4444 | } |
| 4445 | } |
| 4446 | |
| 4447 | return 0; |
| 4448 | } |
| 4449 | |
| 4450 | /** |
| 4451 | * Setup multi-level hashing for the code signature. This isn't supported on most |
| 4452 | * shipping devices, but on ones where it is, it can result in significant savings |
| 4453 | * of memory from the code signature standpoint. |
| 4454 | * |
| 4455 | * Multi-level hashing is used to condense the code directory hashes in order to |
| 4456 | * improve memory consumption. We take four 4K page hashes, and condense them into |
| 4457 | * a single 16K hash, hence reducing the space consumed by the code directory by |
| 4458 | * about ~75%. |
| 4459 | */ |
| 4460 | static errno_t |
| 4461 | setup_multilevel_hashing( |
| 4462 | struct cs_blob *cs_blob) |
| 4463 | { |
| 4464 | code_signing_monitor_type_t monitor_type = CS_MONITOR_TYPE_NONE; |
| 4465 | errno_t err = -1; |
| 4466 | |
| 4467 | /* |
| 4468 | * When we have a code signing monitor, we do not support multi-level hashing |
| 4469 | * since the code signature data is expected to be locked within memory which |
| 4470 | * cannot be written to by the kernel. |
| 4471 | * |
| 4472 | * Even when the code signing monitor isn't explicitly enabled, there are other |
| 4473 | * reasons for not performing multi-level hashing. For instance, Rosetta creates |
| 4474 | * issues with multi-level hashing on Apple Silicon Macs. |
| 4475 | */ |
| 4476 | code_signing_configuration(monitor_type: &monitor_type, NULL); |
| 4477 | if (monitor_type != CS_MONITOR_TYPE_NONE) { |
| 4478 | return 0; |
| 4479 | } |
| 4480 | |
| 4481 | /* We need to check if multi-level hashing is supported for this blob */ |
| 4482 | if (ubc_cs_supports_multilevel_hash(blob: cs_blob) == false) { |
| 4483 | return 0; |
| 4484 | } |
| 4485 | |
| 4486 | err = ubc_cs_convert_to_multilevel_hash(blob: cs_blob); |
| 4487 | if (err != 0) { |
| 4488 | printf("unable to setup multi-level hashing: %d\n" , err); |
| 4489 | return err; |
| 4490 | } |
| 4491 | |
| 4492 | assert(cs_blob->csb_reconstituted == true); |
| 4493 | return 0; |
| 4494 | } |
| 4495 | |
| 4496 | /** |
| 4497 | * Once code signature validation is complete, we can remove even more blobs from the |
| 4498 | * code signature as they are no longer needed. This goes on to conserve even more |
| 4499 | * system memory. |
| 4500 | */ |
| 4501 | static errno_t |
| 4502 | reconstitute_code_signature_2nd_stage( |
| 4503 | struct cs_blob *cs_blob) |
| 4504 | { |
| 4505 | kern_return_t ret = KERN_NOT_SUPPORTED; |
| 4506 | errno_t err = EPERM; |
| 4507 | |
| 4508 | /* If we never reconstituted before, we won't be reconstituting again */ |
| 4509 | if (cs_blob->csb_reconstituted == false) { |
| 4510 | return 0; |
| 4511 | } |
| 4512 | |
| 4513 | #if CODE_SIGNING_MONITOR |
| 4514 | /* |
| 4515 | * When we have a code signing monitor, the code signature is immutable until the |
| 4516 | * monitor decides to unlock parts of it. Therefore, 2nd stage reconstitution takes |
| 4517 | * place in the monitor when we have a monitor available. |
| 4518 | * |
| 4519 | * If the monitor isn't enforcing code signing (in which case the code signature is |
| 4520 | * NOT immutable), then we perform 2nd stage reconstitution within the kernel itself. |
| 4521 | */ |
| 4522 | vm_address_t unneeded_addr = 0; |
| 4523 | vm_size_t unneeded_size = 0; |
| 4524 | |
| 4525 | ret = csm_reconstitute_code_signature( |
| 4526 | cs_blob->csb_csm_obj, |
| 4527 | &unneeded_addr, |
| 4528 | &unneeded_size); |
| 4529 | |
| 4530 | if ((ret == KERN_SUCCESS) && unneeded_addr && unneeded_size) { |
| 4531 | /* Free the unneded part of the blob */ |
| 4532 | kmem_free(kernel_map, unneeded_addr, unneeded_size); |
| 4533 | |
| 4534 | /* Adjust the size in the blob object */ |
| 4535 | cs_blob->csb_mem_size -= unneeded_size; |
| 4536 | } |
| 4537 | #endif |
| 4538 | |
| 4539 | if (ret == KERN_SUCCESS) { |
| 4540 | goto success; |
| 4541 | } else if (ret != KERN_NOT_SUPPORTED) { |
| 4542 | /* |
| 4543 | * A monitor environment is available, and it failed in performing 2nd stage |
| 4544 | * reconstitution. This is a fatal issue for code signing validation. |
| 4545 | */ |
| 4546 | printf("unable to reconstitute code signature through monitor: %d\n" , ret); |
| 4547 | return EPERM; |
| 4548 | } |
| 4549 | |
| 4550 | /* No monitor available if we reached here */ |
| 4551 | err = ubc_cs_reconstitute_code_signature_2nd_stage(blob: cs_blob); |
| 4552 | if (err != 0) { |
| 4553 | return err; |
| 4554 | } |
| 4555 | |
| 4556 | success: |
| 4557 | /* |
| 4558 | * Regardless of whether we are performing 2nd stage reconstitution in the monitor |
| 4559 | * or in the kernel, we remove references to XML entitlements from the blob here. |
| 4560 | * None of the 2nd stage reconstitution code ever keeps these around, and they have |
| 4561 | * been explicitly deprecated and disallowed. |
| 4562 | */ |
| 4563 | cs_blob->csb_entitlements_blob = NULL; |
| 4564 | |
| 4565 | return 0; |
| 4566 | } |
| 4567 | |
| 4568 | /** |
| 4569 | * A code signature blob often contains blob which aren't needed in the kernel. Since |
| 4570 | * the code signature is wired into kernel memory for the time it is used, it behooves |
| 4571 | * us to remove any blobs we have no need for in order to conserve memory. |
| 4572 | * |
| 4573 | * Some platforms support copying the entire SuperBlob stored in kernel memory into |
| 4574 | * userspace memory through the "csops" system call. There is an expectation that when |
| 4575 | * this happens, all the blobs which were a part of the code signature are copied in |
| 4576 | * to userspace memory. As a result, these platforms cannot reconstitute the code |
| 4577 | * signature since, or rather, these platforms cannot remove blobs from the signature, |
| 4578 | * thereby making reconstitution useless. |
| 4579 | */ |
| 4580 | static errno_t |
| 4581 | reconstitute_code_signature( |
| 4582 | struct cs_blob *cs_blob) |
| 4583 | { |
| 4584 | CS_CodeDirectory *code_directory = NULL; |
| 4585 | vm_address_t signature_addr = 0; |
| 4586 | vm_size_t signature_size = 0; |
| 4587 | vm_offset_t code_directory_offset = 0; |
| 4588 | bool platform_supports_reconstitution = false; |
| 4589 | |
| 4590 | #if CONFIG_CODE_SIGNATURE_RECONSTITUTION |
| 4591 | platform_supports_reconstitution = true; |
| 4592 | #endif |
| 4593 | |
| 4594 | /* |
| 4595 | * We can skip reconstitution if the code signing monitor isn't available or not |
| 4596 | * enabled. But if we do have a monitor, then reconsitution becomes required, as |
| 4597 | * there is an expectation of performing 2nd stage reconstitution through the |
| 4598 | * monitor itself. |
| 4599 | */ |
| 4600 | if (platform_supports_reconstitution == false) { |
| 4601 | #if CODE_SIGNING_MONITOR |
| 4602 | if (csm_enabled() == true) { |
| 4603 | printf("reconstitution required when code signing monitor is enabled\n" ); |
| 4604 | return EPERM; |
| 4605 | } |
| 4606 | #endif |
| 4607 | return 0; |
| 4608 | } |
| 4609 | |
| 4610 | errno_t err = ubc_cs_reconstitute_code_signature( |
| 4611 | blob: cs_blob, |
| 4612 | ret_mem_kaddr: &signature_addr, |
| 4613 | ret_mem_size: &signature_size, |
| 4614 | code_directory_size: 0, |
| 4615 | code_directory: &code_directory); |
| 4616 | |
| 4617 | if (err != 0) { |
| 4618 | printf("unable to reconstitute code signature: %d\n" , err); |
| 4619 | return err; |
| 4620 | } |
| 4621 | |
| 4622 | /* Calculate the code directory offset */ |
| 4623 | code_directory_offset = (vm_offset_t)code_directory - signature_addr; |
| 4624 | |
| 4625 | /* Reconstitution allocates new memory -- free the old one */ |
| 4626 | ubc_cs_blob_deallocate(blob_addr: (vm_address_t)cs_blob->csb_mem_kaddr, blob_size: cs_blob->csb_mem_size); |
| 4627 | |
| 4628 | /* Reconstruct critical fields in the blob object */ |
| 4629 | ubc_cs_blob_reconstruct( |
| 4630 | cs_blob, |
| 4631 | signature_addr, |
| 4632 | signature_size, |
| 4633 | code_directory_offset); |
| 4634 | |
| 4635 | /* Mark the object as reconstituted */ |
| 4636 | cs_blob->csb_reconstituted = true; |
| 4637 | |
| 4638 | return 0; |
| 4639 | } |
| 4640 | |
| 4641 | int |
| 4642 | ubc_cs_blob_add( |
| 4643 | struct vnode *vp, |
| 4644 | uint32_t platform, |
| 4645 | cpu_type_t cputype, |
| 4646 | cpu_subtype_t cpusubtype, |
| 4647 | off_t base_offset, |
| 4648 | vm_address_t *addr, |
| 4649 | vm_size_t size, |
| 4650 | struct image_params *imgp, |
| 4651 | __unused int flags, |
| 4652 | struct cs_blob **ret_blob) |
| 4653 | { |
| 4654 | ptrauth_generic_signature_t cs_blob_sig = {0}; |
| 4655 | struct ubc_info *uip = NULL; |
| 4656 | struct cs_blob tmp_blob = {0}; |
| 4657 | struct cs_blob *blob_ro = NULL; |
| 4658 | struct cs_blob *oblob = NULL; |
| 4659 | CS_CodeDirectory const *cd = NULL; |
| 4660 | off_t blob_start_offset = 0; |
| 4661 | off_t blob_end_offset = 0; |
| 4662 | boolean_t record_mtime = false; |
| 4663 | kern_return_t kr = KERN_DENIED; |
| 4664 | errno_t error = -1; |
| 4665 | |
| 4666 | #if HAS_APPLE_PAC |
| 4667 | void *signed_entitlements = NULL; |
| 4668 | #if CODE_SIGNING_MONITOR |
| 4669 | void *signed_monitor_obj = NULL; |
| 4670 | #endif |
| 4671 | #endif |
| 4672 | |
| 4673 | if (ret_blob) { |
| 4674 | *ret_blob = NULL; |
| 4675 | } |
| 4676 | |
| 4677 | /* |
| 4678 | * Create the struct cs_blob abstract data type which will get attached to |
| 4679 | * the vnode object. This function also validates the structural integrity |
| 4680 | * of the code signature blob being passed in. |
| 4681 | * |
| 4682 | * We initialize a temporary blob whose contents are then copied into an RO |
| 4683 | * blob which we allocate from the read-only allocator. |
| 4684 | */ |
| 4685 | error = cs_blob_init_validated(addr, size, blob: &tmp_blob, ret_cd: &cd); |
| 4686 | if (error != 0) { |
| 4687 | printf("unable to create a validated cs_blob object: %d\n" , error); |
| 4688 | return error; |
| 4689 | } |
| 4690 | |
| 4691 | tmp_blob.csb_cpu_type = cputype; |
| 4692 | tmp_blob.csb_cpu_subtype = cpusubtype & ~CPU_SUBTYPE_MASK; |
| 4693 | tmp_blob.csb_base_offset = base_offset; |
| 4694 | |
| 4695 | /* Perform 1st stage reconstitution */ |
| 4696 | error = reconstitute_code_signature(cs_blob: &tmp_blob); |
| 4697 | if (error != 0) { |
| 4698 | goto out; |
| 4699 | } |
| 4700 | |
| 4701 | /* |
| 4702 | * There is a strong design pattern we have to follow carefully within this |
| 4703 | * function. Since we're storing the struct cs_blob within RO-allocated |
| 4704 | * memory, it is immutable to modifications from within the kernel itself. |
| 4705 | * |
| 4706 | * However, before the contents of the blob are transferred to the immutable |
| 4707 | * cs_blob, they are kept on the stack. In order to protect against a kernel |
| 4708 | * R/W attacker, we must protect this stack variable. Most importantly, any |
| 4709 | * code paths which can block for a while must compute a PAC signature over |
| 4710 | * the stack variable, then perform the blocking operation, and then ensure |
| 4711 | * that the PAC signature over the stack variable is still valid to ensure |
| 4712 | * that an attacker did not overwrite contents of the blob by introducing a |
| 4713 | * maliciously long blocking operation, giving them the time required to go |
| 4714 | * and overwrite the contents of the blob. |
| 4715 | * |
| 4716 | * The most important fields to protect here are the OSEntitlements and the |
| 4717 | * code signing monitor object references. For these ones, we keep around |
| 4718 | * extra signed pointers diversified against the read-only blobs' memory |
| 4719 | * and then update the stack variable with these before updating the full |
| 4720 | * read-only blob. |
| 4721 | */ |
| 4722 | |
| 4723 | blob_ro = zalloc_ro(ZONE_ID_CS_BLOB, Z_WAITOK | Z_NOFAIL); |
| 4724 | assert(blob_ro != NULL); |
| 4725 | |
| 4726 | tmp_blob.csb_ro_addr = blob_ro; |
| 4727 | tmp_blob.csb_vnode = vp; |
| 4728 | |
| 4729 | /* AMFI needs to see the current blob state at the RO address */ |
| 4730 | zalloc_ro_update_elem(ZONE_ID_CS_BLOB, blob_ro, &tmp_blob); |
| 4731 | |
| 4732 | #if CODE_SIGNING_MONITOR |
| 4733 | error = register_code_signature_monitor( |
| 4734 | vp, |
| 4735 | &tmp_blob, |
| 4736 | (vm_offset_t)tmp_blob.csb_cd - (vm_offset_t)tmp_blob.csb_mem_kaddr); |
| 4737 | |
| 4738 | if (error != 0) { |
| 4739 | goto out; |
| 4740 | } |
| 4741 | |
| 4742 | #if HAS_APPLE_PAC |
| 4743 | signed_monitor_obj = ptrauth_sign_unauthenticated( |
| 4744 | tmp_blob.csb_csm_obj, |
| 4745 | ptrauth_key_process_independent_data, |
| 4746 | ptrauth_blend_discriminator(&blob_ro->csb_csm_obj, |
| 4747 | OS_PTRAUTH_DISCRIMINATOR("cs_blob.csb_csm_obj" ))); |
| 4748 | #endif /* HAS_APPLE_PAC */ |
| 4749 | |
| 4750 | #endif /* CODE_SIGNING_MONITOR */ |
| 4751 | |
| 4752 | #if CONFIG_MACF |
| 4753 | unsigned int cs_flags = tmp_blob.csb_flags; |
| 4754 | unsigned int signer_type = tmp_blob.csb_signer_type; |
| 4755 | |
| 4756 | error = mac_vnode_check_signature( |
| 4757 | vp, |
| 4758 | cs_blob: &tmp_blob, |
| 4759 | imgp, |
| 4760 | cs_flags: &cs_flags, |
| 4761 | signer_type: &signer_type, |
| 4762 | flags, |
| 4763 | platform); |
| 4764 | |
| 4765 | if (error != 0) { |
| 4766 | printf("validation of code signature failed through MACF policy: %d\n" , error); |
| 4767 | goto out; |
| 4768 | } |
| 4769 | |
| 4770 | #if HAS_APPLE_PAC |
| 4771 | signed_entitlements = ptrauth_sign_unauthenticated( |
| 4772 | tmp_blob.csb_entitlements, |
| 4773 | ptrauth_key_process_independent_data, |
| 4774 | ptrauth_blend_discriminator(&blob_ro->csb_entitlements, |
| 4775 | OS_PTRAUTH_DISCRIMINATOR("cs_blob.csb_entitlements" ))); |
| 4776 | #endif |
| 4777 | |
| 4778 | tmp_blob.csb_flags = cs_flags; |
| 4779 | tmp_blob.csb_signer_type = signer_type; |
| 4780 | |
| 4781 | if (tmp_blob.csb_flags & CS_PLATFORM_BINARY) { |
| 4782 | tmp_blob.csb_platform_binary = 1; |
| 4783 | tmp_blob.csb_platform_path = !!(tmp_blob.csb_flags & CS_PLATFORM_PATH); |
| 4784 | tmp_blob.csb_teamid = NULL; |
| 4785 | } else { |
| 4786 | tmp_blob.csb_platform_binary = 0; |
| 4787 | tmp_blob.csb_platform_path = 0; |
| 4788 | } |
| 4789 | |
| 4790 | if ((flags & MAC_VNODE_CHECK_DYLD_SIM) && !tmp_blob.csb_platform_binary) { |
| 4791 | printf("dyld simulator runtime is not apple signed: proc: %d\n" , |
| 4792 | proc_getpid(current_proc())); |
| 4793 | |
| 4794 | error = EPERM; |
| 4795 | goto out; |
| 4796 | } |
| 4797 | #endif /* CONFIG_MACF */ |
| 4798 | |
| 4799 | #if CODE_SIGNING_MONITOR |
| 4800 | error = verify_code_signature_monitor(&tmp_blob); |
| 4801 | if (error != 0) { |
| 4802 | goto out; |
| 4803 | } |
| 4804 | #endif |
| 4805 | |
| 4806 | /* Perform 2nd stage reconstitution */ |
| 4807 | error = reconstitute_code_signature_2nd_stage(cs_blob: &tmp_blob); |
| 4808 | if (error != 0) { |
| 4809 | goto out; |
| 4810 | } |
| 4811 | |
| 4812 | /* Setup any multi-level hashing for the code signature */ |
| 4813 | error = setup_multilevel_hashing(&tmp_blob); |
| 4814 | if (error != 0) { |
| 4815 | goto out; |
| 4816 | } |
| 4817 | |
| 4818 | /* Ensure security critical auxiliary blobs still exist */ |
| 4819 | error = validate_auxiliary_signed_blobs(cs_blob: &tmp_blob); |
| 4820 | if (error != 0) { |
| 4821 | goto out; |
| 4822 | } |
| 4823 | |
| 4824 | /* |
| 4825 | * Accelerate the entitlement queries for this code signature. This must |
| 4826 | * be done only after we know that the code signature pointers within the |
| 4827 | * struct cs_blob aren't going to be shifted around anymore, which is why |
| 4828 | * this acceleration is done after setting up multilevel hashing, since |
| 4829 | * that is the last part of signature validation which can shift the code |
| 4830 | * signature around. |
| 4831 | */ |
| 4832 | error = accelerate_entitlement_queries(cs_blob: &tmp_blob); |
| 4833 | if (error != 0) { |
| 4834 | goto out; |
| 4835 | } |
| 4836 | |
| 4837 | /* |
| 4838 | * Parse and set the Team ID for this code signature. This only needs to |
| 4839 | * happen when the signature isn't marked as platform. Like above, this |
| 4840 | * has to happen after we know the pointers within struct cs_blob aren't |
| 4841 | * going to be shifted anymore. |
| 4842 | */ |
| 4843 | if ((tmp_blob.csb_flags & CS_PLATFORM_BINARY) == 0) { |
| 4844 | tmp_blob.csb_teamid = csblob_parse_teamid(csblob: &tmp_blob); |
| 4845 | } |
| 4846 | |
| 4847 | /* |
| 4848 | * Validate the code signing blob's coverage. Ideally, we can just do this |
| 4849 | * in the beginning, right after structural validation, however, multilevel |
| 4850 | * hashing can change some offets. |
| 4851 | */ |
| 4852 | blob_start_offset = tmp_blob.csb_base_offset + tmp_blob.csb_start_offset; |
| 4853 | blob_end_offset = tmp_blob.csb_base_offset + tmp_blob.csb_end_offset; |
| 4854 | if (blob_start_offset >= blob_end_offset) { |
| 4855 | error = EINVAL; |
| 4856 | goto out; |
| 4857 | } else if (blob_start_offset < 0 || blob_end_offset <= 0) { |
| 4858 | error = EINVAL; |
| 4859 | goto out; |
| 4860 | } |
| 4861 | |
| 4862 | /* |
| 4863 | * The vnode_lock, linked list traversal, and marking of the memory object as |
| 4864 | * signed can all be blocking operations. Compute a PAC over the tmp_blob. |
| 4865 | */ |
| 4866 | cs_blob_sig = ptrauth_utils_sign_blob_generic( |
| 4867 | ptr: &tmp_blob, |
| 4868 | len_bytes: sizeof(tmp_blob), |
| 4869 | OS_PTRAUTH_DISCRIMINATOR("ubc_cs_blob_add.blocking_op0" ), |
| 4870 | PTRAUTH_ADDR_DIVERSIFY); |
| 4871 | |
| 4872 | vnode_lock(vp); |
| 4873 | if (!UBCINFOEXISTS(vp)) { |
| 4874 | vnode_unlock(vp); |
| 4875 | error = ENOENT; |
| 4876 | goto out; |
| 4877 | } |
| 4878 | uip = vp->v_ubcinfo; |
| 4879 | |
| 4880 | /* check if this new blob overlaps with an existing blob */ |
| 4881 | for (oblob = ubc_get_cs_blobs(vp); |
| 4882 | oblob != NULL; |
| 4883 | oblob = oblob->csb_next) { |
| 4884 | off_t oblob_start_offset, oblob_end_offset; |
| 4885 | |
| 4886 | if (tmp_blob.csb_signer_type != oblob->csb_signer_type) { // signer type needs to be the same for slices |
| 4887 | vnode_unlock(vp); |
| 4888 | error = EALREADY; |
| 4889 | goto out; |
| 4890 | } else if (tmp_blob.csb_platform_binary) { //platform binary needs to be the same for app slices |
| 4891 | if (!oblob->csb_platform_binary) { |
| 4892 | vnode_unlock(vp); |
| 4893 | error = EALREADY; |
| 4894 | goto out; |
| 4895 | } |
| 4896 | } else if (tmp_blob.csb_teamid) { //teamid binary needs to be the same for app slices |
| 4897 | if (oblob->csb_platform_binary || |
| 4898 | oblob->csb_teamid == NULL || |
| 4899 | strcmp(s1: oblob->csb_teamid, s2: tmp_blob.csb_teamid) != 0) { |
| 4900 | vnode_unlock(vp); |
| 4901 | error = EALREADY; |
| 4902 | goto out; |
| 4903 | } |
| 4904 | } else { // non teamid binary needs to be the same for app slices |
| 4905 | if (oblob->csb_platform_binary || |
| 4906 | oblob->csb_teamid != NULL) { |
| 4907 | vnode_unlock(vp); |
| 4908 | error = EALREADY; |
| 4909 | goto out; |
| 4910 | } |
| 4911 | } |
| 4912 | |
| 4913 | oblob_start_offset = (oblob->csb_base_offset + |
| 4914 | oblob->csb_start_offset); |
| 4915 | oblob_end_offset = (oblob->csb_base_offset + |
| 4916 | oblob->csb_end_offset); |
| 4917 | if (blob_start_offset >= oblob_end_offset || |
| 4918 | blob_end_offset <= oblob_start_offset) { |
| 4919 | /* no conflict with this existing blob */ |
| 4920 | } else { |
| 4921 | /* conflict ! */ |
| 4922 | if (blob_start_offset == oblob_start_offset && |
| 4923 | blob_end_offset == oblob_end_offset && |
| 4924 | tmp_blob.csb_mem_size == oblob->csb_mem_size && |
| 4925 | tmp_blob.csb_flags == oblob->csb_flags && |
| 4926 | (tmp_blob.csb_cpu_type == CPU_TYPE_ANY || |
| 4927 | oblob->csb_cpu_type == CPU_TYPE_ANY || |
| 4928 | tmp_blob.csb_cpu_type == oblob->csb_cpu_type) && |
| 4929 | !bcmp(s1: tmp_blob.csb_cdhash, |
| 4930 | s2: oblob->csb_cdhash, |
| 4931 | n: CS_CDHASH_LEN)) { |
| 4932 | /* |
| 4933 | * We already have this blob: |
| 4934 | * we'll return success but |
| 4935 | * throw away the new blob. |
| 4936 | */ |
| 4937 | if (oblob->csb_cpu_type == CPU_TYPE_ANY) { |
| 4938 | /* |
| 4939 | * The old blob matches this one |
| 4940 | * but doesn't have any CPU type. |
| 4941 | * Update it with whatever the caller |
| 4942 | * provided this time. |
| 4943 | */ |
| 4944 | cs_blob_set_cpu_type(blob: oblob, cputype); |
| 4945 | } |
| 4946 | |
| 4947 | /* The signature is still accepted, so update the |
| 4948 | * generation count. */ |
| 4949 | uip->cs_add_gen = cs_blob_generation_count; |
| 4950 | |
| 4951 | vnode_unlock(vp); |
| 4952 | if (ret_blob) { |
| 4953 | *ret_blob = oblob; |
| 4954 | } |
| 4955 | error = EAGAIN; |
| 4956 | goto out; |
| 4957 | } else { |
| 4958 | /* different blob: reject the new one */ |
| 4959 | vnode_unlock(vp); |
| 4960 | error = EALREADY; |
| 4961 | goto out; |
| 4962 | } |
| 4963 | } |
| 4964 | } |
| 4965 | |
| 4966 | /* mark this vnode's VM object as having "signed pages" */ |
| 4967 | kr = memory_object_signed(control: uip->ui_control, TRUE); |
| 4968 | if (kr != KERN_SUCCESS) { |
| 4969 | vnode_unlock(vp); |
| 4970 | error = ENOENT; |
| 4971 | goto out; |
| 4972 | } |
| 4973 | |
| 4974 | if (uip->cs_blobs == NULL) { |
| 4975 | /* loading 1st blob: record the file's current "modify time" */ |
| 4976 | record_mtime = TRUE; |
| 4977 | } |
| 4978 | |
| 4979 | /* set the generation count for cs_blobs */ |
| 4980 | uip->cs_add_gen = cs_blob_generation_count; |
| 4981 | |
| 4982 | /* Authenticate the PAC signature after blocking operation */ |
| 4983 | ptrauth_utils_auth_blob_generic( |
| 4984 | ptr: &tmp_blob, |
| 4985 | len_bytes: sizeof(tmp_blob), |
| 4986 | OS_PTRAUTH_DISCRIMINATOR("ubc_cs_blob_add.blocking_op0" ), |
| 4987 | PTRAUTH_ADDR_DIVERSIFY, |
| 4988 | signature: cs_blob_sig); |
| 4989 | |
| 4990 | /* Update the system statistics for code signatures blobs */ |
| 4991 | ubc_cs_blob_adjust_statistics(blob: &tmp_blob); |
| 4992 | |
| 4993 | /* Update the list pointer to reference other blobs for this vnode */ |
| 4994 | tmp_blob.csb_next = uip->cs_blobs; |
| 4995 | |
| 4996 | #if HAS_APPLE_PAC |
| 4997 | /* |
| 4998 | * Update all the critical pointers in the blob with the RO diversified |
| 4999 | * values before updating the read-only blob with the full contents of |
| 5000 | * the struct cs_blob. We need to use memcpy here as otherwise a simple |
| 5001 | * assignment will cause the compiler to re-sign using the stack variable |
| 5002 | * as the address diversifier. |
| 5003 | */ |
| 5004 | memcpy(dst: (void*)&tmp_blob.csb_entitlements, src: &signed_entitlements, n: sizeof(void*)); |
| 5005 | #if CODE_SIGNING_MONITOR |
| 5006 | memcpy((void*)&tmp_blob.csb_csm_obj, &signed_monitor_obj, sizeof(void*)); |
| 5007 | #endif |
| 5008 | #endif |
| 5009 | zalloc_ro_update_elem(ZONE_ID_CS_BLOB, blob_ro, &tmp_blob); |
| 5010 | |
| 5011 | /* Add a fence to ensure writes to the blob are visible on all threads */ |
| 5012 | os_atomic_thread_fence(seq_cst); |
| 5013 | |
| 5014 | /* |
| 5015 | * Add the cs_blob to the front of the list of blobs for this vnode. We |
| 5016 | * add to the front of the list, and we never remove a blob from the list |
| 5017 | * which means ubc_cs_get_blobs can return whatever the top of the list |
| 5018 | * is, while still keeping the list valid. Useful for if we validate a |
| 5019 | * page while adding in a new blob for this vnode. |
| 5020 | */ |
| 5021 | uip->cs_blobs = blob_ro; |
| 5022 | |
| 5023 | /* Make sure to reload pointer from uip to double check */ |
| 5024 | if (uip->cs_blobs->csb_next) { |
| 5025 | zone_require_ro(zone_id: ZONE_ID_CS_BLOB, elem_size: sizeof(struct cs_blob), addr: uip->cs_blobs->csb_next); |
| 5026 | } |
| 5027 | |
| 5028 | if (cs_debug > 1) { |
| 5029 | proc_t p; |
| 5030 | const char *name = vnode_getname_printable(vp); |
| 5031 | p = current_proc(); |
| 5032 | printf("CODE SIGNING: proc %d(%s) " |
| 5033 | "loaded %s signatures for file (%s) " |
| 5034 | "range 0x%llx:0x%llx flags 0x%x\n" , |
| 5035 | proc_getpid(p), p->p_comm, |
| 5036 | blob_ro->csb_cpu_type == -1 ? "detached" : "embedded" , |
| 5037 | name, |
| 5038 | blob_ro->csb_base_offset + blob_ro->csb_start_offset, |
| 5039 | blob_ro->csb_base_offset + blob_ro->csb_end_offset, |
| 5040 | blob_ro->csb_flags); |
| 5041 | vnode_putname_printable(name); |
| 5042 | } |
| 5043 | |
| 5044 | vnode_unlock(vp); |
| 5045 | |
| 5046 | if (record_mtime) { |
| 5047 | vnode_mtime(vp, &uip->cs_mtime, vfs_context_current()); |
| 5048 | } |
| 5049 | |
| 5050 | if (ret_blob) { |
| 5051 | *ret_blob = blob_ro; |
| 5052 | } |
| 5053 | |
| 5054 | error = 0; /* success ! */ |
| 5055 | |
| 5056 | out: |
| 5057 | if (error) { |
| 5058 | if (error != EAGAIN) { |
| 5059 | printf("check_signature[pid: %d]: error = %d\n" , proc_getpid(current_proc()), error); |
| 5060 | } |
| 5061 | |
| 5062 | cs_blob_cleanup(blob: &tmp_blob); |
| 5063 | if (blob_ro) { |
| 5064 | zfree_ro(ZONE_ID_CS_BLOB, blob_ro); |
| 5065 | } |
| 5066 | } |
| 5067 | |
| 5068 | if (error == EAGAIN) { |
| 5069 | /* |
| 5070 | * See above: error is EAGAIN if we were asked |
| 5071 | * to add an existing blob again. We cleaned the new |
| 5072 | * blob and we want to return success. |
| 5073 | */ |
| 5074 | error = 0; |
| 5075 | } |
| 5076 | |
| 5077 | return error; |
| 5078 | } |
| 5079 | |
| 5080 | #if CONFIG_SUPPLEMENTAL_SIGNATURES |
| 5081 | int |
| 5082 | ubc_cs_blob_add_supplement( |
| 5083 | struct vnode *vp, |
| 5084 | struct vnode *orig_vp, |
| 5085 | off_t base_offset, |
| 5086 | vm_address_t *addr, |
| 5087 | vm_size_t size, |
| 5088 | struct cs_blob **ret_blob) |
| 5089 | { |
| 5090 | kern_return_t kr; |
| 5091 | struct ubc_info *uip, *orig_uip; |
| 5092 | int error; |
| 5093 | struct cs_blob tmp_blob; |
| 5094 | struct cs_blob *orig_blob; |
| 5095 | struct cs_blob *blob_ro = NULL; |
| 5096 | CS_CodeDirectory const *cd; |
| 5097 | off_t blob_start_offset, blob_end_offset; |
| 5098 | |
| 5099 | if (ret_blob) { |
| 5100 | *ret_blob = NULL; |
| 5101 | } |
| 5102 | |
| 5103 | /* Create the struct cs_blob wrapper that will be attached to the vnode. |
| 5104 | * Validates the passed in blob in the process. */ |
| 5105 | error = cs_blob_init_validated(addr, size, blob: &tmp_blob, ret_cd: &cd); |
| 5106 | |
| 5107 | if (error != 0) { |
| 5108 | printf("malformed code signature supplement blob: %d\n" , error); |
| 5109 | return error; |
| 5110 | } |
| 5111 | |
| 5112 | tmp_blob.csb_cpu_type = -1; |
| 5113 | tmp_blob.csb_base_offset = base_offset; |
| 5114 | |
| 5115 | tmp_blob.csb_reconstituted = false; |
| 5116 | |
| 5117 | vnode_lock(orig_vp); |
| 5118 | if (!UBCINFOEXISTS(vp: orig_vp)) { |
| 5119 | vnode_unlock(orig_vp); |
| 5120 | error = ENOENT; |
| 5121 | goto out; |
| 5122 | } |
| 5123 | |
| 5124 | orig_uip = orig_vp->v_ubcinfo; |
| 5125 | |
| 5126 | /* check that the supplement's linked cdhash matches a cdhash of |
| 5127 | * the target image. |
| 5128 | */ |
| 5129 | |
| 5130 | if (tmp_blob.csb_linkage_hashtype == NULL) { |
| 5131 | proc_t p; |
| 5132 | const char *iname = vnode_getname_printable(vp); |
| 5133 | p = current_proc(); |
| 5134 | |
| 5135 | printf("CODE SIGNING: proc %d(%s) supplemental signature for file (%s) " |
| 5136 | "is not a supplemental.\n" , |
| 5137 | proc_getpid(p), p->p_comm, iname); |
| 5138 | |
| 5139 | error = EINVAL; |
| 5140 | |
| 5141 | vnode_putname_printable(name: iname); |
| 5142 | vnode_unlock(orig_vp); |
| 5143 | goto out; |
| 5144 | } |
| 5145 | bool found_but_not_valid = false; |
| 5146 | for (orig_blob = ubc_get_cs_blobs(orig_vp); orig_blob != NULL; |
| 5147 | orig_blob = orig_blob->csb_next) { |
| 5148 | if (orig_blob->csb_hashtype == tmp_blob.csb_linkage_hashtype && |
| 5149 | memcmp(s1: orig_blob->csb_cdhash, s2: tmp_blob.csb_linkage, n: CS_CDHASH_LEN) == 0) { |
| 5150 | // Found match! |
| 5151 | found_but_not_valid = ((orig_blob->csb_flags & CS_VALID) != CS_VALID); |
| 5152 | break; |
| 5153 | } |
| 5154 | } |
| 5155 | |
| 5156 | if (orig_blob == NULL || found_but_not_valid) { |
| 5157 | // Not found. |
| 5158 | |
| 5159 | proc_t p; |
| 5160 | const char *iname = vnode_getname_printable(vp); |
| 5161 | p = current_proc(); |
| 5162 | |
| 5163 | error = (orig_blob == NULL) ? ESRCH : EPERM; |
| 5164 | |
| 5165 | printf("CODE SIGNING: proc %d(%s) supplemental signature for file (%s) " |
| 5166 | "does not match any attached cdhash (error: %d).\n" , |
| 5167 | proc_getpid(p), p->p_comm, iname, error); |
| 5168 | |
| 5169 | vnode_putname_printable(name: iname); |
| 5170 | vnode_unlock(orig_vp); |
| 5171 | goto out; |
| 5172 | } |
| 5173 | |
| 5174 | vnode_unlock(orig_vp); |
| 5175 | |
| 5176 | blob_ro = zalloc_ro(ZONE_ID_CS_BLOB, Z_WAITOK | Z_NOFAIL); |
| 5177 | tmp_blob.csb_ro_addr = blob_ro; |
| 5178 | tmp_blob.csb_vnode = vp; |
| 5179 | |
| 5180 | /* AMFI needs to see the current blob state at the RO address. */ |
| 5181 | zalloc_ro_update_elem(ZONE_ID_CS_BLOB, blob_ro, &tmp_blob); |
| 5182 | |
| 5183 | // validate the signature against policy! |
| 5184 | #if CONFIG_MACF |
| 5185 | unsigned int signer_type = tmp_blob.csb_signer_type; |
| 5186 | error = mac_vnode_check_supplemental_signature(vp, cs_blob: &tmp_blob, linked_vp: orig_vp, linked_cs_blob: orig_blob, signer_type: &signer_type); |
| 5187 | |
| 5188 | tmp_blob.csb_signer_type = signer_type; |
| 5189 | |
| 5190 | if (error) { |
| 5191 | if (cs_debug) { |
| 5192 | printf("check_supplemental_signature[pid: %d], error = %d\n" , proc_getpid(current_proc()), error); |
| 5193 | } |
| 5194 | goto out; |
| 5195 | } |
| 5196 | #endif |
| 5197 | |
| 5198 | // We allowed the supplemental signature blob so |
| 5199 | // copy the platform bit or team-id from the linked signature and whether or not the original is developer code |
| 5200 | tmp_blob.csb_platform_binary = 0; |
| 5201 | tmp_blob.csb_platform_path = 0; |
| 5202 | if (orig_blob->csb_platform_binary == 1) { |
| 5203 | tmp_blob.csb_platform_binary = orig_blob->csb_platform_binary; |
| 5204 | tmp_blob.csb_platform_path = orig_blob->csb_platform_path; |
| 5205 | } else if (orig_blob->csb_teamid != NULL) { |
| 5206 | vm_size_t teamid_size = strlen(s: orig_blob->csb_teamid) + 1; |
| 5207 | tmp_blob.csb_supplement_teamid = kalloc_data(teamid_size, Z_WAITOK); |
| 5208 | if (tmp_blob.csb_supplement_teamid == NULL) { |
| 5209 | error = ENOMEM; |
| 5210 | goto out; |
| 5211 | } |
| 5212 | strlcpy(dst: tmp_blob.csb_supplement_teamid, src: orig_blob->csb_teamid, n: teamid_size); |
| 5213 | } |
| 5214 | tmp_blob.csb_flags = (orig_blob->csb_flags & CS_DEV_CODE); |
| 5215 | |
| 5216 | // Validate the blob's coverage |
| 5217 | blob_start_offset = tmp_blob.csb_base_offset + tmp_blob.csb_start_offset; |
| 5218 | blob_end_offset = tmp_blob.csb_base_offset + tmp_blob.csb_end_offset; |
| 5219 | |
| 5220 | if (blob_start_offset >= blob_end_offset || blob_start_offset < 0 || blob_end_offset <= 0) { |
| 5221 | /* reject empty or backwards blob */ |
| 5222 | error = EINVAL; |
| 5223 | goto out; |
| 5224 | } |
| 5225 | |
| 5226 | vnode_lock(vp); |
| 5227 | if (!UBCINFOEXISTS(vp)) { |
| 5228 | vnode_unlock(vp); |
| 5229 | error = ENOENT; |
| 5230 | goto out; |
| 5231 | } |
| 5232 | uip = vp->v_ubcinfo; |
| 5233 | |
| 5234 | struct cs_blob *existing = uip->cs_blob_supplement; |
| 5235 | if (existing != NULL) { |
| 5236 | if (tmp_blob.csb_hashtype == existing->csb_hashtype && |
| 5237 | memcmp(s1: tmp_blob.csb_cdhash, s2: existing->csb_cdhash, n: CS_CDHASH_LEN) == 0) { |
| 5238 | error = EAGAIN; // non-fatal |
| 5239 | } else { |
| 5240 | error = EALREADY; // fatal |
| 5241 | } |
| 5242 | |
| 5243 | vnode_unlock(vp); |
| 5244 | goto out; |
| 5245 | } |
| 5246 | |
| 5247 | /* mark this vnode's VM object as having "signed pages" */ |
| 5248 | kr = memory_object_signed(control: uip->ui_control, TRUE); |
| 5249 | if (kr != KERN_SUCCESS) { |
| 5250 | vnode_unlock(vp); |
| 5251 | error = ENOENT; |
| 5252 | goto out; |
| 5253 | } |
| 5254 | |
| 5255 | |
| 5256 | /* We still adjust statistics even for supplemental blobs, as they |
| 5257 | * consume memory just the same. */ |
| 5258 | ubc_cs_blob_adjust_statistics(blob: &tmp_blob); |
| 5259 | /* Unlike regular cs_blobs, we only ever support one supplement. */ |
| 5260 | tmp_blob.csb_next = NULL; |
| 5261 | zalloc_ro_update_elem(ZONE_ID_CS_BLOB, blob_ro, &tmp_blob); |
| 5262 | |
| 5263 | os_atomic_thread_fence(seq_cst); // Fence to prevent reordering here |
| 5264 | uip->cs_blob_supplement = blob_ro; |
| 5265 | |
| 5266 | /* Make sure to reload pointer from uip to double check */ |
| 5267 | if (__improbable(uip->cs_blob_supplement->csb_next)) { |
| 5268 | panic("csb_next does not match expected NULL value" ); |
| 5269 | } |
| 5270 | |
| 5271 | vnode_unlock(vp); |
| 5272 | |
| 5273 | |
| 5274 | if (cs_debug > 1) { |
| 5275 | proc_t p; |
| 5276 | const char *name = vnode_getname_printable(vp); |
| 5277 | p = current_proc(); |
| 5278 | printf("CODE SIGNING: proc %d(%s) " |
| 5279 | "loaded supplemental signature for file (%s) " |
| 5280 | "range 0x%llx:0x%llx\n" , |
| 5281 | proc_getpid(p), p->p_comm, |
| 5282 | name, |
| 5283 | blob_ro->csb_base_offset + blob_ro->csb_start_offset, |
| 5284 | blob_ro->csb_base_offset + blob_ro->csb_end_offset); |
| 5285 | vnode_putname_printable(name); |
| 5286 | } |
| 5287 | |
| 5288 | if (ret_blob) { |
| 5289 | *ret_blob = blob_ro; |
| 5290 | } |
| 5291 | |
| 5292 | error = 0; // Success! |
| 5293 | out: |
| 5294 | if (error) { |
| 5295 | if (cs_debug) { |
| 5296 | printf("ubc_cs_blob_add_supplement[pid: %d]: error = %d\n" , proc_getpid(current_proc()), error); |
| 5297 | } |
| 5298 | |
| 5299 | cs_blob_cleanup(blob: &tmp_blob); |
| 5300 | if (blob_ro) { |
| 5301 | zfree_ro(ZONE_ID_CS_BLOB, blob_ro); |
| 5302 | } |
| 5303 | } |
| 5304 | |
| 5305 | if (error == EAGAIN) { |
| 5306 | /* We were asked to add an existing blob. |
| 5307 | * We cleaned up and ignore the attempt. */ |
| 5308 | error = 0; |
| 5309 | } |
| 5310 | |
| 5311 | return error; |
| 5312 | } |
| 5313 | #endif |
| 5314 | |
| 5315 | |
| 5316 | |
| 5317 | void |
| 5318 | csvnode_print_debug(struct vnode *vp) |
| 5319 | { |
| 5320 | const char *name = NULL; |
| 5321 | struct ubc_info *uip; |
| 5322 | struct cs_blob *blob; |
| 5323 | |
| 5324 | name = vnode_getname_printable(vp); |
| 5325 | if (name) { |
| 5326 | printf("csvnode: name: %s\n" , name); |
| 5327 | vnode_putname_printable(name); |
| 5328 | } |
| 5329 | |
| 5330 | vnode_lock_spin(vp); |
| 5331 | |
| 5332 | if (!UBCINFOEXISTS(vp)) { |
| 5333 | blob = NULL; |
| 5334 | goto out; |
| 5335 | } |
| 5336 | |
| 5337 | uip = vp->v_ubcinfo; |
| 5338 | for (blob = uip->cs_blobs; blob != NULL; blob = blob->csb_next) { |
| 5339 | printf("csvnode: range: %lu -> %lu flags: 0x%08x platform: %s path: %s team: %s\n" , |
| 5340 | (unsigned long)blob->csb_start_offset, |
| 5341 | (unsigned long)blob->csb_end_offset, |
| 5342 | blob->csb_flags, |
| 5343 | blob->csb_platform_binary ? "yes" : "no" , |
| 5344 | blob->csb_platform_path ? "yes" : "no" , |
| 5345 | blob->csb_teamid ? blob->csb_teamid : "<NO-TEAM>" ); |
| 5346 | } |
| 5347 | |
| 5348 | out: |
| 5349 | vnode_unlock(vp); |
| 5350 | } |
| 5351 | |
| 5352 | #if CONFIG_SUPPLEMENTAL_SIGNATURES |
| 5353 | struct cs_blob * |
| 5354 | ubc_cs_blob_get_supplement( |
| 5355 | struct vnode *vp, |
| 5356 | off_t offset) |
| 5357 | { |
| 5358 | struct cs_blob *blob; |
| 5359 | off_t offset_in_blob; |
| 5360 | |
| 5361 | vnode_lock_spin(vp); |
| 5362 | |
| 5363 | if (!UBCINFOEXISTS(vp)) { |
| 5364 | blob = NULL; |
| 5365 | goto out; |
| 5366 | } |
| 5367 | |
| 5368 | blob = vp->v_ubcinfo->cs_blob_supplement; |
| 5369 | |
| 5370 | if (blob == NULL) { |
| 5371 | // no supplemental blob |
| 5372 | goto out; |
| 5373 | } |
| 5374 | |
| 5375 | |
| 5376 | if (offset != -1) { |
| 5377 | offset_in_blob = offset - blob->csb_base_offset; |
| 5378 | if (offset_in_blob < blob->csb_start_offset || offset_in_blob >= blob->csb_end_offset) { |
| 5379 | // not actually covered by this blob |
| 5380 | blob = NULL; |
| 5381 | } |
| 5382 | } |
| 5383 | |
| 5384 | out: |
| 5385 | vnode_unlock(vp); |
| 5386 | |
| 5387 | return blob; |
| 5388 | } |
| 5389 | #endif |
| 5390 | |
| 5391 | struct cs_blob * |
| 5392 | ubc_cs_blob_get( |
| 5393 | struct vnode *vp, |
| 5394 | cpu_type_t cputype, |
| 5395 | cpu_subtype_t cpusubtype, |
| 5396 | off_t offset) |
| 5397 | { |
| 5398 | struct cs_blob *blob; |
| 5399 | off_t offset_in_blob; |
| 5400 | |
| 5401 | vnode_lock_spin(vp); |
| 5402 | |
| 5403 | if (!UBCINFOEXISTS(vp)) { |
| 5404 | blob = NULL; |
| 5405 | goto out; |
| 5406 | } |
| 5407 | |
| 5408 | for (blob = ubc_get_cs_blobs(vp); |
| 5409 | blob != NULL; |
| 5410 | blob = blob->csb_next) { |
| 5411 | if (cputype != -1 && blob->csb_cpu_type == cputype && (cpusubtype == -1 || blob->csb_cpu_subtype == (cpusubtype & ~CPU_SUBTYPE_MASK))) { |
| 5412 | break; |
| 5413 | } |
| 5414 | if (offset != -1) { |
| 5415 | offset_in_blob = offset - blob->csb_base_offset; |
| 5416 | if (offset_in_blob >= blob->csb_start_offset && |
| 5417 | offset_in_blob < blob->csb_end_offset) { |
| 5418 | /* our offset is covered by this blob */ |
| 5419 | break; |
| 5420 | } |
| 5421 | } |
| 5422 | } |
| 5423 | |
| 5424 | out: |
| 5425 | vnode_unlock(vp); |
| 5426 | |
| 5427 | return blob; |
| 5428 | } |
| 5429 | |
| 5430 | void |
| 5431 | ubc_cs_free_and_vnode_unlock( |
| 5432 | vnode_t vp) |
| 5433 | { |
| 5434 | struct ubc_info *uip = vp->v_ubcinfo; |
| 5435 | struct cs_blob *cs_blobs, *blob, *next_blob; |
| 5436 | |
| 5437 | if (!(uip->ui_flags & UI_CSBLOBINVALID)) { |
| 5438 | vnode_unlock(vp); |
| 5439 | return; |
| 5440 | } |
| 5441 | |
| 5442 | uip->ui_flags &= ~UI_CSBLOBINVALID; |
| 5443 | |
| 5444 | cs_blobs = uip->cs_blobs; |
| 5445 | uip->cs_blobs = NULL; |
| 5446 | |
| 5447 | #if CHECK_CS_VALIDATION_BITMAP |
| 5448 | ubc_cs_validation_bitmap_deallocate( uip ); |
| 5449 | #endif |
| 5450 | |
| 5451 | #if CONFIG_SUPPLEMENTAL_SIGNATURES |
| 5452 | struct cs_blob *cs_blob_supplement = uip->cs_blob_supplement; |
| 5453 | uip->cs_blob_supplement = NULL; |
| 5454 | #endif |
| 5455 | |
| 5456 | vnode_unlock(vp); |
| 5457 | |
| 5458 | for (blob = cs_blobs; |
| 5459 | blob != NULL; |
| 5460 | blob = next_blob) { |
| 5461 | next_blob = blob->csb_next; |
| 5462 | os_atomic_add(&cs_blob_count, -1, relaxed); |
| 5463 | os_atomic_add(&cs_blob_size, -blob->csb_mem_size, relaxed); |
| 5464 | cs_blob_ro_free(blob); |
| 5465 | } |
| 5466 | |
| 5467 | #if CONFIG_SUPPLEMENTAL_SIGNATURES |
| 5468 | if (cs_blob_supplement != NULL) { |
| 5469 | os_atomic_add(&cs_blob_count, -1, relaxed); |
| 5470 | os_atomic_add(&cs_blob_size, -cs_blob_supplement->csb_mem_size, relaxed); |
| 5471 | cs_blob_supplement_free(blob: cs_blob_supplement); |
| 5472 | } |
| 5473 | #endif |
| 5474 | } |
| 5475 | |
| 5476 | static void |
| 5477 | ubc_cs_free( |
| 5478 | struct ubc_info *uip) |
| 5479 | { |
| 5480 | struct cs_blob *blob, *next_blob; |
| 5481 | |
| 5482 | for (blob = uip->cs_blobs; |
| 5483 | blob != NULL; |
| 5484 | blob = next_blob) { |
| 5485 | next_blob = blob->csb_next; |
| 5486 | os_atomic_add(&cs_blob_count, -1, relaxed); |
| 5487 | os_atomic_add(&cs_blob_size, -blob->csb_mem_size, relaxed); |
| 5488 | cs_blob_ro_free(blob); |
| 5489 | } |
| 5490 | #if CHECK_CS_VALIDATION_BITMAP |
| 5491 | ubc_cs_validation_bitmap_deallocate( uip ); |
| 5492 | #endif |
| 5493 | uip->cs_blobs = NULL; |
| 5494 | #if CONFIG_SUPPLEMENTAL_SIGNATURES |
| 5495 | if (uip->cs_blob_supplement != NULL) { |
| 5496 | blob = uip->cs_blob_supplement; |
| 5497 | os_atomic_add(&cs_blob_count, -1, relaxed); |
| 5498 | os_atomic_add(&cs_blob_size, -blob->csb_mem_size, relaxed); |
| 5499 | cs_blob_supplement_free(blob: uip->cs_blob_supplement); |
| 5500 | uip->cs_blob_supplement = NULL; |
| 5501 | } |
| 5502 | #endif |
| 5503 | } |
| 5504 | |
| 5505 | /* check cs blob generation on vnode |
| 5506 | * returns: |
| 5507 | * 0 : Success, the cs_blob attached is current |
| 5508 | * ENEEDAUTH : Generation count mismatch. Needs authentication again. |
| 5509 | */ |
| 5510 | int |
| 5511 | ubc_cs_generation_check( |
| 5512 | struct vnode *vp) |
| 5513 | { |
| 5514 | int retval = ENEEDAUTH; |
| 5515 | |
| 5516 | vnode_lock_spin(vp); |
| 5517 | |
| 5518 | if (UBCINFOEXISTS(vp) && vp->v_ubcinfo->cs_add_gen == cs_blob_generation_count) { |
| 5519 | retval = 0; |
| 5520 | } |
| 5521 | |
| 5522 | vnode_unlock(vp); |
| 5523 | return retval; |
| 5524 | } |
| 5525 | |
| 5526 | int |
| 5527 | ubc_cs_blob_revalidate( |
| 5528 | struct vnode *vp, |
| 5529 | struct cs_blob *blob, |
| 5530 | struct image_params *imgp, |
| 5531 | int flags, |
| 5532 | uint32_t platform |
| 5533 | ) |
| 5534 | { |
| 5535 | int error = 0; |
| 5536 | const CS_CodeDirectory *cd = NULL; |
| 5537 | const CS_GenericBlob *entitlements = NULL; |
| 5538 | const CS_GenericBlob *der_entitlements = NULL; |
| 5539 | size_t size; |
| 5540 | assert(vp != NULL); |
| 5541 | assert(blob != NULL); |
| 5542 | |
| 5543 | if ((blob->csb_flags & CS_VALID) == 0) { |
| 5544 | // If the blob attached to the vnode was invalidated, don't try to revalidate it |
| 5545 | // Blob invalidation only occurs when the file that the blob is attached to is |
| 5546 | // opened for writing, giving us a signal that the file is modified. |
| 5547 | printf("CODESIGNING: can not re-validate a previously invalidated blob, reboot or create a new file.\n" ); |
| 5548 | error = EPERM; |
| 5549 | goto out; |
| 5550 | } |
| 5551 | |
| 5552 | size = blob->csb_mem_size; |
| 5553 | error = cs_validate_csblob(addr: (const uint8_t *)blob->csb_mem_kaddr, |
| 5554 | blob_size: size, rcd: &cd, rentitlements: &entitlements, rder_entitlements: &der_entitlements); |
| 5555 | if (error) { |
| 5556 | if (cs_debug) { |
| 5557 | printf("CODESIGNING: csblob invalid: %d\n" , error); |
| 5558 | } |
| 5559 | goto out; |
| 5560 | } |
| 5561 | |
| 5562 | unsigned int cs_flags = (ntohl(cd->flags) & CS_ALLOWED_MACHO) | CS_VALID; |
| 5563 | unsigned int signer_type = CS_SIGNER_TYPE_UNKNOWN; |
| 5564 | |
| 5565 | if (blob->csb_reconstituted) { |
| 5566 | /* |
| 5567 | * Code signatures that have been modified after validation |
| 5568 | * cannot be revalidated inline from their in-memory blob. |
| 5569 | * |
| 5570 | * That's okay, though, because the only path left that relies |
| 5571 | * on revalidation of existing in-memory blobs is the legacy |
| 5572 | * detached signature database path, which only exists on macOS, |
| 5573 | * which does not do reconstitution of any kind. |
| 5574 | */ |
| 5575 | if (cs_debug) { |
| 5576 | printf("CODESIGNING: revalidate: not inline revalidating reconstituted signature.\n" ); |
| 5577 | } |
| 5578 | |
| 5579 | /* |
| 5580 | * EAGAIN tells the caller that they may reread the code |
| 5581 | * signature and try attaching it again, which is the same |
| 5582 | * thing they would do if there was no cs_blob yet in the |
| 5583 | * first place. |
| 5584 | * |
| 5585 | * Conveniently, after ubc_cs_blob_add did a successful |
| 5586 | * validation, it will detect that a matching cs_blob (cdhash, |
| 5587 | * offset, arch etc.) already exists, and return success |
| 5588 | * without re-adding a cs_blob to the vnode. |
| 5589 | */ |
| 5590 | return EAGAIN; |
| 5591 | } |
| 5592 | |
| 5593 | /* callout to mac_vnode_check_signature */ |
| 5594 | #if CONFIG_MACF |
| 5595 | error = mac_vnode_check_signature(vp, cs_blob: blob, imgp, cs_flags: &cs_flags, signer_type: &signer_type, flags, platform); |
| 5596 | if (cs_debug && error) { |
| 5597 | printf("revalidate: check_signature[pid: %d], error = %d\n" , proc_getpid(current_proc()), error); |
| 5598 | } |
| 5599 | #else |
| 5600 | (void)flags; |
| 5601 | (void)signer_type; |
| 5602 | #endif |
| 5603 | |
| 5604 | /* update generation number if success */ |
| 5605 | vnode_lock_spin(vp); |
| 5606 | struct cs_signer_info signer_info = { |
| 5607 | .csb_flags = cs_flags, |
| 5608 | .csb_signer_type = signer_type |
| 5609 | }; |
| 5610 | zalloc_ro_update_field(ZONE_ID_CS_BLOB, blob, csb_signer_info, &signer_info); |
| 5611 | if (UBCINFOEXISTS(vp)) { |
| 5612 | if (error == 0) { |
| 5613 | vp->v_ubcinfo->cs_add_gen = cs_blob_generation_count; |
| 5614 | } else { |
| 5615 | vp->v_ubcinfo->cs_add_gen = 0; |
| 5616 | } |
| 5617 | } |
| 5618 | |
| 5619 | vnode_unlock(vp); |
| 5620 | |
| 5621 | out: |
| 5622 | return error; |
| 5623 | } |
| 5624 | |
| 5625 | void |
| 5626 | cs_blob_reset_cache() |
| 5627 | { |
| 5628 | /* incrementing odd no by 2 makes sure '0' is never reached. */ |
| 5629 | OSAddAtomic(+2, &cs_blob_generation_count); |
| 5630 | printf("Reseting cs_blob cache from all vnodes. \n" ); |
| 5631 | } |
| 5632 | |
| 5633 | struct cs_blob * |
| 5634 | ubc_get_cs_blobs( |
| 5635 | struct vnode *vp) |
| 5636 | { |
| 5637 | struct ubc_info *uip; |
| 5638 | struct cs_blob *blobs; |
| 5639 | |
| 5640 | /* |
| 5641 | * No need to take the vnode lock here. The caller must be holding |
| 5642 | * a reference on the vnode (via a VM mapping or open file descriptor), |
| 5643 | * so the vnode will not go away. The ubc_info stays until the vnode |
| 5644 | * goes away. And we only modify "blobs" by adding to the head of the |
| 5645 | * list. |
| 5646 | * The ubc_info could go away entirely if the vnode gets reclaimed as |
| 5647 | * part of a forced unmount. In the case of a code-signature validation |
| 5648 | * during a page fault, the "paging_in_progress" reference on the VM |
| 5649 | * object guarantess that the vnode pager (and the ubc_info) won't go |
| 5650 | * away during the fault. |
| 5651 | * Other callers need to protect against vnode reclaim by holding the |
| 5652 | * vnode lock, for example. |
| 5653 | */ |
| 5654 | |
| 5655 | if (!UBCINFOEXISTS(vp)) { |
| 5656 | blobs = NULL; |
| 5657 | goto out; |
| 5658 | } |
| 5659 | |
| 5660 | uip = vp->v_ubcinfo; |
| 5661 | blobs = uip->cs_blobs; |
| 5662 | if (blobs != NULL) { |
| 5663 | cs_blob_require(blob: blobs, vp); |
| 5664 | } |
| 5665 | |
| 5666 | out: |
| 5667 | return blobs; |
| 5668 | } |
| 5669 | |
| 5670 | #if CONFIG_SUPPLEMENTAL_SIGNATURES |
| 5671 | struct cs_blob * |
| 5672 | ubc_get_cs_supplement( |
| 5673 | struct vnode *vp) |
| 5674 | { |
| 5675 | struct ubc_info *uip; |
| 5676 | struct cs_blob *blob; |
| 5677 | |
| 5678 | /* |
| 5679 | * No need to take the vnode lock here. The caller must be holding |
| 5680 | * a reference on the vnode (via a VM mapping or open file descriptor), |
| 5681 | * so the vnode will not go away. The ubc_info stays until the vnode |
| 5682 | * goes away. |
| 5683 | * The ubc_info could go away entirely if the vnode gets reclaimed as |
| 5684 | * part of a forced unmount. In the case of a code-signature validation |
| 5685 | * during a page fault, the "paging_in_progress" reference on the VM |
| 5686 | * object guarantess that the vnode pager (and the ubc_info) won't go |
| 5687 | * away during the fault. |
| 5688 | * Other callers need to protect against vnode reclaim by holding the |
| 5689 | * vnode lock, for example. |
| 5690 | */ |
| 5691 | |
| 5692 | if (!UBCINFOEXISTS(vp)) { |
| 5693 | blob = NULL; |
| 5694 | goto out; |
| 5695 | } |
| 5696 | |
| 5697 | uip = vp->v_ubcinfo; |
| 5698 | blob = uip->cs_blob_supplement; |
| 5699 | if (blob != NULL) { |
| 5700 | cs_blob_require(blob, vp); |
| 5701 | } |
| 5702 | |
| 5703 | out: |
| 5704 | return blob; |
| 5705 | } |
| 5706 | #endif |
| 5707 | |
| 5708 | |
| 5709 | void |
| 5710 | ubc_get_cs_mtime( |
| 5711 | struct vnode *vp, |
| 5712 | struct timespec *cs_mtime) |
| 5713 | { |
| 5714 | struct ubc_info *uip; |
| 5715 | |
| 5716 | if (!UBCINFOEXISTS(vp)) { |
| 5717 | cs_mtime->tv_sec = 0; |
| 5718 | cs_mtime->tv_nsec = 0; |
| 5719 | return; |
| 5720 | } |
| 5721 | |
| 5722 | uip = vp->v_ubcinfo; |
| 5723 | cs_mtime->tv_sec = uip->cs_mtime.tv_sec; |
| 5724 | cs_mtime->tv_nsec = uip->cs_mtime.tv_nsec; |
| 5725 | } |
| 5726 | |
| 5727 | unsigned long cs_validate_page_no_hash = 0; |
| 5728 | unsigned long cs_validate_page_bad_hash = 0; |
| 5729 | static boolean_t |
| 5730 | cs_validate_hash( |
| 5731 | struct cs_blob *blobs, |
| 5732 | memory_object_t , |
| 5733 | memory_object_offset_t page_offset, |
| 5734 | const void *data, |
| 5735 | vm_size_t *bytes_processed, |
| 5736 | unsigned *tainted) |
| 5737 | { |
| 5738 | union cs_hash_union mdctx; |
| 5739 | struct cs_hash const *hashtype = NULL; |
| 5740 | unsigned char actual_hash[CS_HASH_MAX_SIZE]; |
| 5741 | unsigned char expected_hash[CS_HASH_MAX_SIZE]; |
| 5742 | boolean_t found_hash; |
| 5743 | struct cs_blob *blob; |
| 5744 | const CS_CodeDirectory *cd; |
| 5745 | const unsigned char *hash; |
| 5746 | boolean_t validated; |
| 5747 | off_t offset; /* page offset in the file */ |
| 5748 | size_t size; |
| 5749 | off_t codeLimit = 0; |
| 5750 | const char *lower_bound, *upper_bound; |
| 5751 | vm_offset_t kaddr, blob_addr; |
| 5752 | |
| 5753 | /* retrieve the expected hash */ |
| 5754 | found_hash = FALSE; |
| 5755 | |
| 5756 | for (blob = blobs; |
| 5757 | blob != NULL; |
| 5758 | blob = blob->csb_next) { |
| 5759 | offset = page_offset - blob->csb_base_offset; |
| 5760 | if (offset < blob->csb_start_offset || |
| 5761 | offset >= blob->csb_end_offset) { |
| 5762 | /* our page is not covered by this blob */ |
| 5763 | continue; |
| 5764 | } |
| 5765 | |
| 5766 | /* blob data has been released */ |
| 5767 | kaddr = (vm_offset_t)blob->csb_mem_kaddr; |
| 5768 | if (kaddr == 0) { |
| 5769 | continue; |
| 5770 | } |
| 5771 | |
| 5772 | blob_addr = kaddr + blob->csb_mem_offset; |
| 5773 | lower_bound = CAST_DOWN(char *, blob_addr); |
| 5774 | upper_bound = lower_bound + blob->csb_mem_size; |
| 5775 | |
| 5776 | cd = blob->csb_cd; |
| 5777 | if (cd != NULL) { |
| 5778 | /* all CD's that have been injected is already validated */ |
| 5779 | |
| 5780 | hashtype = blob->csb_hashtype; |
| 5781 | if (hashtype == NULL) { |
| 5782 | panic("unknown hash type ?" ); |
| 5783 | } |
| 5784 | if (hashtype->cs_digest_size > sizeof(actual_hash)) { |
| 5785 | panic("hash size too large" ); |
| 5786 | } |
| 5787 | if (offset & ((1U << blob->csb_hash_pageshift) - 1)) { |
| 5788 | panic("offset not aligned to cshash boundary" ); |
| 5789 | } |
| 5790 | |
| 5791 | codeLimit = ntohl(cd->codeLimit); |
| 5792 | |
| 5793 | hash = hashes(cd, page: (uint32_t)(offset >> blob->csb_hash_pageshift), |
| 5794 | hash_len: hashtype->cs_size, |
| 5795 | lower_bound, upper_bound); |
| 5796 | if (hash != NULL) { |
| 5797 | bcopy(src: hash, dst: expected_hash, n: hashtype->cs_size); |
| 5798 | found_hash = TRUE; |
| 5799 | } |
| 5800 | |
| 5801 | break; |
| 5802 | } |
| 5803 | } |
| 5804 | |
| 5805 | if (found_hash == FALSE) { |
| 5806 | /* |
| 5807 | * We can't verify this page because there is no signature |
| 5808 | * for it (yet). It's possible that this part of the object |
| 5809 | * is not signed, or that signatures for that part have not |
| 5810 | * been loaded yet. |
| 5811 | * Report that the page has not been validated and let the |
| 5812 | * caller decide if it wants to accept it or not. |
| 5813 | */ |
| 5814 | cs_validate_page_no_hash++; |
| 5815 | if (cs_debug > 1) { |
| 5816 | printf("CODE SIGNING: cs_validate_page: " |
| 5817 | "mobj %p off 0x%llx: no hash to validate !?\n" , |
| 5818 | pager, page_offset); |
| 5819 | } |
| 5820 | validated = FALSE; |
| 5821 | *tainted = 0; |
| 5822 | } else { |
| 5823 | *tainted = 0; |
| 5824 | |
| 5825 | size = (1U << blob->csb_hash_pageshift); |
| 5826 | *bytes_processed = size; |
| 5827 | |
| 5828 | const uint32_t *asha1, *esha1; |
| 5829 | if ((off_t)(offset + size) > codeLimit) { |
| 5830 | /* partial page at end of segment */ |
| 5831 | assert(offset < codeLimit); |
| 5832 | size = (size_t) (codeLimit & (size - 1)); |
| 5833 | *tainted |= CS_VALIDATE_NX; |
| 5834 | } |
| 5835 | |
| 5836 | hashtype->cs_init(&mdctx); |
| 5837 | |
| 5838 | if (blob->csb_hash_firstlevel_pageshift) { |
| 5839 | const unsigned char *partial_data = (const unsigned char *)data; |
| 5840 | size_t i; |
| 5841 | for (i = 0; i < size;) { |
| 5842 | union cs_hash_union partialctx; |
| 5843 | unsigned char partial_digest[CS_HASH_MAX_SIZE]; |
| 5844 | size_t partial_size = MIN(size - i, (1U << blob->csb_hash_firstlevel_pageshift)); |
| 5845 | |
| 5846 | hashtype->cs_init(&partialctx); |
| 5847 | hashtype->cs_update(&partialctx, partial_data, partial_size); |
| 5848 | hashtype->cs_final(partial_digest, &partialctx); |
| 5849 | |
| 5850 | /* Update cumulative multi-level hash */ |
| 5851 | hashtype->cs_update(&mdctx, partial_digest, hashtype->cs_size); |
| 5852 | partial_data = partial_data + partial_size; |
| 5853 | i += partial_size; |
| 5854 | } |
| 5855 | } else { |
| 5856 | hashtype->cs_update(&mdctx, data, size); |
| 5857 | } |
| 5858 | hashtype->cs_final(actual_hash, &mdctx); |
| 5859 | |
| 5860 | asha1 = (const uint32_t *) actual_hash; |
| 5861 | esha1 = (const uint32_t *) expected_hash; |
| 5862 | |
| 5863 | if (bcmp(s1: expected_hash, s2: actual_hash, n: hashtype->cs_size) != 0) { |
| 5864 | if (cs_debug) { |
| 5865 | printf("CODE SIGNING: cs_validate_page: " |
| 5866 | "mobj %p off 0x%llx size 0x%lx: " |
| 5867 | "actual [0x%x 0x%x 0x%x 0x%x 0x%x] != " |
| 5868 | "expected [0x%x 0x%x 0x%x 0x%x 0x%x]\n" , |
| 5869 | pager, page_offset, size, |
| 5870 | asha1[0], asha1[1], asha1[2], |
| 5871 | asha1[3], asha1[4], |
| 5872 | esha1[0], esha1[1], esha1[2], |
| 5873 | esha1[3], esha1[4]); |
| 5874 | } |
| 5875 | cs_validate_page_bad_hash++; |
| 5876 | *tainted |= CS_VALIDATE_TAINTED; |
| 5877 | } else { |
| 5878 | if (cs_debug > 10) { |
| 5879 | printf("CODE SIGNING: cs_validate_page: " |
| 5880 | "mobj %p off 0x%llx size 0x%lx: " |
| 5881 | "SHA1 OK\n" , |
| 5882 | pager, page_offset, size); |
| 5883 | } |
| 5884 | } |
| 5885 | validated = TRUE; |
| 5886 | } |
| 5887 | |
| 5888 | return validated; |
| 5889 | } |
| 5890 | |
| 5891 | boolean_t |
| 5892 | cs_validate_range( |
| 5893 | struct vnode *vp, |
| 5894 | memory_object_t , |
| 5895 | memory_object_offset_t page_offset, |
| 5896 | const void *data, |
| 5897 | vm_size_t dsize, |
| 5898 | unsigned *tainted) |
| 5899 | { |
| 5900 | vm_size_t offset_in_range; |
| 5901 | boolean_t all_subranges_validated = TRUE; /* turn false if any subrange fails */ |
| 5902 | |
| 5903 | struct cs_blob *blobs = ubc_get_cs_blobs(vp); |
| 5904 | |
| 5905 | #if CONFIG_SUPPLEMENTAL_SIGNATURES |
| 5906 | if (blobs == NULL && proc_is_translated(current_proc())) { |
| 5907 | struct cs_blob *supp = ubc_get_cs_supplement(vp); |
| 5908 | |
| 5909 | if (supp != NULL) { |
| 5910 | blobs = supp; |
| 5911 | } else { |
| 5912 | return FALSE; |
| 5913 | } |
| 5914 | } |
| 5915 | #endif |
| 5916 | |
| 5917 | #if DEVELOPMENT || DEBUG |
| 5918 | code_signing_config_t cs_config = 0; |
| 5919 | |
| 5920 | /* |
| 5921 | * This exemption is specifically useful for systems which want to avoid paying |
| 5922 | * the cost of verifying the integrity of pages, since that is done by computing |
| 5923 | * hashes, which can take some time. |
| 5924 | */ |
| 5925 | code_signing_configuration(NULL, &cs_config); |
| 5926 | if (cs_config & CS_CONFIG_INTEGRITY_SKIP) { |
| 5927 | *tainted = 0; |
| 5928 | |
| 5929 | /* Return early to avoid paying the cost of hashing */ |
| 5930 | return true; |
| 5931 | } |
| 5932 | #endif |
| 5933 | |
| 5934 | *tainted = 0; |
| 5935 | |
| 5936 | for (offset_in_range = 0; |
| 5937 | offset_in_range < dsize; |
| 5938 | /* offset_in_range updated based on bytes processed */) { |
| 5939 | unsigned subrange_tainted = 0; |
| 5940 | boolean_t subrange_validated; |
| 5941 | vm_size_t bytes_processed = 0; |
| 5942 | |
| 5943 | subrange_validated = cs_validate_hash(blobs, |
| 5944 | pager, |
| 5945 | page_offset: page_offset + offset_in_range, |
| 5946 | data: (const void *)((const char *)data + offset_in_range), |
| 5947 | bytes_processed: &bytes_processed, |
| 5948 | tainted: &subrange_tainted); |
| 5949 | |
| 5950 | *tainted |= subrange_tainted; |
| 5951 | |
| 5952 | if (bytes_processed == 0) { |
| 5953 | /* Cannote make forward progress, so return an error */ |
| 5954 | all_subranges_validated = FALSE; |
| 5955 | break; |
| 5956 | } else if (subrange_validated == FALSE) { |
| 5957 | all_subranges_validated = FALSE; |
| 5958 | /* Keep going to detect other types of failures in subranges */ |
| 5959 | } |
| 5960 | |
| 5961 | offset_in_range += bytes_processed; |
| 5962 | } |
| 5963 | |
| 5964 | return all_subranges_validated; |
| 5965 | } |
| 5966 | |
| 5967 | void |
| 5968 | cs_validate_page( |
| 5969 | struct vnode *vp, |
| 5970 | memory_object_t , |
| 5971 | memory_object_offset_t page_offset, |
| 5972 | const void *data, |
| 5973 | int *validated_p, |
| 5974 | int *tainted_p, |
| 5975 | int *nx_p) |
| 5976 | { |
| 5977 | vm_size_t offset_in_page; |
| 5978 | struct cs_blob *blobs; |
| 5979 | |
| 5980 | blobs = ubc_get_cs_blobs(vp); |
| 5981 | |
| 5982 | #if CONFIG_SUPPLEMENTAL_SIGNATURES |
| 5983 | if (blobs == NULL && proc_is_translated(current_proc())) { |
| 5984 | struct cs_blob *supp = ubc_get_cs_supplement(vp); |
| 5985 | |
| 5986 | if (supp != NULL) { |
| 5987 | blobs = supp; |
| 5988 | } |
| 5989 | } |
| 5990 | #endif |
| 5991 | |
| 5992 | #if DEVELOPMENT || DEBUG |
| 5993 | code_signing_config_t cs_config = 0; |
| 5994 | |
| 5995 | /* |
| 5996 | * This exemption is specifically useful for systems which want to avoid paying |
| 5997 | * the cost of verifying the integrity of pages, since that is done by computing |
| 5998 | * hashes, which can take some time. |
| 5999 | */ |
| 6000 | code_signing_configuration(NULL, &cs_config); |
| 6001 | if (cs_config & CS_CONFIG_INTEGRITY_SKIP) { |
| 6002 | *validated_p = VMP_CS_ALL_TRUE; |
| 6003 | *tainted_p = VMP_CS_ALL_FALSE; |
| 6004 | *nx_p = VMP_CS_ALL_FALSE; |
| 6005 | |
| 6006 | /* Return early to avoid paying the cost of hashing */ |
| 6007 | return; |
| 6008 | } |
| 6009 | #endif |
| 6010 | |
| 6011 | *validated_p = VMP_CS_ALL_FALSE; |
| 6012 | *tainted_p = VMP_CS_ALL_FALSE; |
| 6013 | *nx_p = VMP_CS_ALL_FALSE; |
| 6014 | |
| 6015 | for (offset_in_page = 0; |
| 6016 | offset_in_page < PAGE_SIZE; |
| 6017 | /* offset_in_page updated based on bytes processed */) { |
| 6018 | unsigned subrange_tainted = 0; |
| 6019 | boolean_t subrange_validated; |
| 6020 | vm_size_t bytes_processed = 0; |
| 6021 | int sub_bit; |
| 6022 | |
| 6023 | subrange_validated = cs_validate_hash(blobs, |
| 6024 | pager, |
| 6025 | page_offset: page_offset + offset_in_page, |
| 6026 | data: (const void *)((const char *)data + offset_in_page), |
| 6027 | bytes_processed: &bytes_processed, |
| 6028 | tainted: &subrange_tainted); |
| 6029 | |
| 6030 | if (bytes_processed == 0) { |
| 6031 | /* 4k chunk not code-signed: try next one */ |
| 6032 | offset_in_page += FOURK_PAGE_SIZE; |
| 6033 | continue; |
| 6034 | } |
| 6035 | if (offset_in_page == 0 && |
| 6036 | bytes_processed > PAGE_SIZE - FOURK_PAGE_SIZE) { |
| 6037 | /* all processed: no 4k granularity */ |
| 6038 | if (subrange_validated) { |
| 6039 | *validated_p = VMP_CS_ALL_TRUE; |
| 6040 | } |
| 6041 | if (subrange_tainted & CS_VALIDATE_TAINTED) { |
| 6042 | *tainted_p = VMP_CS_ALL_TRUE; |
| 6043 | } |
| 6044 | if (subrange_tainted & CS_VALIDATE_NX) { |
| 6045 | *nx_p = VMP_CS_ALL_TRUE; |
| 6046 | } |
| 6047 | break; |
| 6048 | } |
| 6049 | /* we only handle 4k or 16k code-signing granularity... */ |
| 6050 | assertf(bytes_processed <= FOURK_PAGE_SIZE, |
| 6051 | "vp %p blobs %p offset 0x%llx + 0x%llx bytes_processed 0x%llx\n" , |
| 6052 | vp, blobs, (uint64_t)page_offset, |
| 6053 | (uint64_t)offset_in_page, (uint64_t)bytes_processed); |
| 6054 | sub_bit = 1 << (offset_in_page >> FOURK_PAGE_SHIFT); |
| 6055 | if (subrange_validated) { |
| 6056 | *validated_p |= sub_bit; |
| 6057 | } |
| 6058 | if (subrange_tainted & CS_VALIDATE_TAINTED) { |
| 6059 | *tainted_p |= sub_bit; |
| 6060 | } |
| 6061 | if (subrange_tainted & CS_VALIDATE_NX) { |
| 6062 | *nx_p |= sub_bit; |
| 6063 | } |
| 6064 | /* go to next 4k chunk */ |
| 6065 | offset_in_page += FOURK_PAGE_SIZE; |
| 6066 | } |
| 6067 | |
| 6068 | return; |
| 6069 | } |
| 6070 | |
| 6071 | int |
| 6072 | ubc_cs_getcdhash( |
| 6073 | vnode_t vp, |
| 6074 | off_t offset, |
| 6075 | unsigned char *cdhash) |
| 6076 | { |
| 6077 | struct cs_blob *blobs, *blob; |
| 6078 | off_t rel_offset; |
| 6079 | int ret; |
| 6080 | |
| 6081 | vnode_lock(vp); |
| 6082 | |
| 6083 | blobs = ubc_get_cs_blobs(vp); |
| 6084 | for (blob = blobs; |
| 6085 | blob != NULL; |
| 6086 | blob = blob->csb_next) { |
| 6087 | /* compute offset relative to this blob */ |
| 6088 | rel_offset = offset - blob->csb_base_offset; |
| 6089 | if (rel_offset >= blob->csb_start_offset && |
| 6090 | rel_offset < blob->csb_end_offset) { |
| 6091 | /* this blob does cover our "offset" ! */ |
| 6092 | break; |
| 6093 | } |
| 6094 | } |
| 6095 | |
| 6096 | if (blob == NULL) { |
| 6097 | /* we didn't find a blob covering "offset" */ |
| 6098 | ret = EBADEXEC; /* XXX any better error ? */ |
| 6099 | } else { |
| 6100 | /* get the SHA1 hash of that blob */ |
| 6101 | bcopy(src: blob->csb_cdhash, dst: cdhash, n: sizeof(blob->csb_cdhash)); |
| 6102 | ret = 0; |
| 6103 | } |
| 6104 | |
| 6105 | vnode_unlock(vp); |
| 6106 | |
| 6107 | return ret; |
| 6108 | } |
| 6109 | |
| 6110 | boolean_t |
| 6111 | ubc_cs_is_range_codesigned( |
| 6112 | vnode_t vp, |
| 6113 | mach_vm_offset_t start, |
| 6114 | mach_vm_size_t size) |
| 6115 | { |
| 6116 | struct cs_blob *csblob; |
| 6117 | mach_vm_offset_t blob_start; |
| 6118 | mach_vm_offset_t blob_end; |
| 6119 | |
| 6120 | if (vp == NULL) { |
| 6121 | /* no file: no code signature */ |
| 6122 | return FALSE; |
| 6123 | } |
| 6124 | if (size == 0) { |
| 6125 | /* no range: no code signature */ |
| 6126 | return FALSE; |
| 6127 | } |
| 6128 | if (start + size < start) { |
| 6129 | /* overflow */ |
| 6130 | return FALSE; |
| 6131 | } |
| 6132 | |
| 6133 | csblob = ubc_cs_blob_get(vp, cputype: -1, cpusubtype: -1, offset: start); |
| 6134 | if (csblob == NULL) { |
| 6135 | return FALSE; |
| 6136 | } |
| 6137 | |
| 6138 | /* |
| 6139 | * We currently check if the range is covered by a single blob, |
| 6140 | * which should always be the case for the dyld shared cache. |
| 6141 | * If we ever want to make this routine handle other cases, we |
| 6142 | * would have to iterate if the blob does not cover the full range. |
| 6143 | */ |
| 6144 | blob_start = (mach_vm_offset_t) (csblob->csb_base_offset + |
| 6145 | csblob->csb_start_offset); |
| 6146 | blob_end = (mach_vm_offset_t) (csblob->csb_base_offset + |
| 6147 | csblob->csb_end_offset); |
| 6148 | if (blob_start > start || blob_end < (start + size)) { |
| 6149 | /* range not fully covered by this code-signing blob */ |
| 6150 | return FALSE; |
| 6151 | } |
| 6152 | |
| 6153 | return TRUE; |
| 6154 | } |
| 6155 | |
| 6156 | #if CHECK_CS_VALIDATION_BITMAP |
| 6157 | #define stob(s) (((atop_64(round_page_64(s))) + 07) >> 3) |
| 6158 | extern boolean_t root_fs_upgrade_try; |
| 6159 | |
| 6160 | /* |
| 6161 | * Should we use the code-sign bitmap to avoid repeated code-sign validation? |
| 6162 | * Depends: |
| 6163 | * a) Is the target vnode on the root filesystem? |
| 6164 | * b) Has someone tried to mount the root filesystem read-write? |
| 6165 | * If answers are (a) yes AND (b) no, then we can use the bitmap. |
| 6166 | */ |
| 6167 | #define USE_CODE_SIGN_BITMAP(vp) ( (vp != NULL) && (vp->v_mount != NULL) && (vp->v_mount->mnt_flag & MNT_ROOTFS) && !root_fs_upgrade_try) |
| 6168 | kern_return_t |
| 6169 | ubc_cs_validation_bitmap_allocate( |
| 6170 | vnode_t vp) |
| 6171 | { |
| 6172 | kern_return_t kr = KERN_SUCCESS; |
| 6173 | struct ubc_info *uip; |
| 6174 | char *target_bitmap; |
| 6175 | vm_object_size_t bitmap_size; |
| 6176 | |
| 6177 | if (!USE_CODE_SIGN_BITMAP(vp) || (!UBCINFOEXISTS(vp))) { |
| 6178 | kr = KERN_INVALID_ARGUMENT; |
| 6179 | } else { |
| 6180 | uip = vp->v_ubcinfo; |
| 6181 | |
| 6182 | if (uip->cs_valid_bitmap == NULL) { |
| 6183 | bitmap_size = stob(uip->ui_size); |
| 6184 | target_bitmap = (char*) kalloc_data((vm_size_t)bitmap_size, Z_WAITOK | Z_ZERO); |
| 6185 | if (target_bitmap == 0) { |
| 6186 | kr = KERN_NO_SPACE; |
| 6187 | } else { |
| 6188 | kr = KERN_SUCCESS; |
| 6189 | } |
| 6190 | if (kr == KERN_SUCCESS) { |
| 6191 | uip->cs_valid_bitmap = (void*)target_bitmap; |
| 6192 | uip->cs_valid_bitmap_size = bitmap_size; |
| 6193 | } |
| 6194 | } |
| 6195 | } |
| 6196 | return kr; |
| 6197 | } |
| 6198 | |
| 6199 | kern_return_t |
| 6200 | ubc_cs_check_validation_bitmap( |
| 6201 | vnode_t vp, |
| 6202 | memory_object_offset_t offset, |
| 6203 | int optype) |
| 6204 | { |
| 6205 | kern_return_t kr = KERN_SUCCESS; |
| 6206 | |
| 6207 | if (!USE_CODE_SIGN_BITMAP(vp) || !UBCINFOEXISTS(vp)) { |
| 6208 | kr = KERN_INVALID_ARGUMENT; |
| 6209 | } else { |
| 6210 | struct ubc_info *uip = vp->v_ubcinfo; |
| 6211 | char *target_bitmap = uip->cs_valid_bitmap; |
| 6212 | |
| 6213 | if (target_bitmap == NULL) { |
| 6214 | kr = KERN_INVALID_ARGUMENT; |
| 6215 | } else { |
| 6216 | uint64_t bit, byte; |
| 6217 | bit = atop_64( offset ); |
| 6218 | byte = bit >> 3; |
| 6219 | |
| 6220 | if (byte > uip->cs_valid_bitmap_size) { |
| 6221 | kr = KERN_INVALID_ARGUMENT; |
| 6222 | } else { |
| 6223 | if (optype == CS_BITMAP_SET) { |
| 6224 | target_bitmap[byte] |= (1 << (bit & 07)); |
| 6225 | kr = KERN_SUCCESS; |
| 6226 | } else if (optype == CS_BITMAP_CLEAR) { |
| 6227 | target_bitmap[byte] &= ~(1 << (bit & 07)); |
| 6228 | kr = KERN_SUCCESS; |
| 6229 | } else if (optype == CS_BITMAP_CHECK) { |
| 6230 | if (target_bitmap[byte] & (1 << (bit & 07))) { |
| 6231 | kr = KERN_SUCCESS; |
| 6232 | } else { |
| 6233 | kr = KERN_FAILURE; |
| 6234 | } |
| 6235 | } |
| 6236 | } |
| 6237 | } |
| 6238 | } |
| 6239 | return kr; |
| 6240 | } |
| 6241 | |
| 6242 | void |
| 6243 | ubc_cs_validation_bitmap_deallocate( |
| 6244 | struct ubc_info *uip) |
| 6245 | { |
| 6246 | if (uip->cs_valid_bitmap != NULL) { |
| 6247 | kfree_data(uip->cs_valid_bitmap, (vm_size_t)uip->cs_valid_bitmap_size); |
| 6248 | uip->cs_valid_bitmap = NULL; |
| 6249 | } |
| 6250 | } |
| 6251 | #else |
| 6252 | kern_return_t |
| 6253 | ubc_cs_validation_bitmap_allocate(__unused vnode_t vp) |
| 6254 | { |
| 6255 | return KERN_INVALID_ARGUMENT; |
| 6256 | } |
| 6257 | |
| 6258 | kern_return_t |
| 6259 | ubc_cs_check_validation_bitmap( |
| 6260 | __unused struct vnode *vp, |
| 6261 | __unused memory_object_offset_t offset, |
| 6262 | __unused int optype) |
| 6263 | { |
| 6264 | return KERN_INVALID_ARGUMENT; |
| 6265 | } |
| 6266 | |
| 6267 | void |
| 6268 | ubc_cs_validation_bitmap_deallocate(__unused struct ubc_info *uip) |
| 6269 | { |
| 6270 | return; |
| 6271 | } |
| 6272 | #endif /* CHECK_CS_VALIDATION_BITMAP */ |
| 6273 | |
| 6274 | #if CODE_SIGNING_MONITOR |
| 6275 | |
| 6276 | kern_return_t |
| 6277 | cs_associate_blob_with_mapping( |
| 6278 | void *pmap, |
| 6279 | vm_map_offset_t start, |
| 6280 | vm_map_size_t size, |
| 6281 | vm_object_offset_t offset, |
| 6282 | void *blobs_p) |
| 6283 | { |
| 6284 | off_t blob_start_offset, blob_end_offset; |
| 6285 | kern_return_t kr; |
| 6286 | struct cs_blob *blobs, *blob; |
| 6287 | vm_offset_t kaddr; |
| 6288 | void *monitor_sig_obj = NULL; |
| 6289 | |
| 6290 | if (csm_enabled() == false) { |
| 6291 | return KERN_NOT_SUPPORTED; |
| 6292 | } |
| 6293 | |
| 6294 | blobs = (struct cs_blob *)blobs_p; |
| 6295 | |
| 6296 | for (blob = blobs; |
| 6297 | blob != NULL; |
| 6298 | blob = blob->csb_next) { |
| 6299 | blob_start_offset = (blob->csb_base_offset + |
| 6300 | blob->csb_start_offset); |
| 6301 | blob_end_offset = (blob->csb_base_offset + |
| 6302 | blob->csb_end_offset); |
| 6303 | if ((off_t) offset < blob_start_offset || |
| 6304 | (off_t) offset >= blob_end_offset || |
| 6305 | (off_t) (offset + size) <= blob_start_offset || |
| 6306 | (off_t) (offset + size) > blob_end_offset) { |
| 6307 | continue; |
| 6308 | } |
| 6309 | |
| 6310 | kaddr = (vm_offset_t)blob->csb_mem_kaddr; |
| 6311 | if (kaddr == 0) { |
| 6312 | /* blob data has been released */ |
| 6313 | continue; |
| 6314 | } |
| 6315 | |
| 6316 | monitor_sig_obj = blob->csb_csm_obj; |
| 6317 | if (monitor_sig_obj == NULL) { |
| 6318 | continue; |
| 6319 | } |
| 6320 | |
| 6321 | break; |
| 6322 | } |
| 6323 | |
| 6324 | if (monitor_sig_obj != NULL) { |
| 6325 | vm_offset_t segment_offset = offset - blob_start_offset; |
| 6326 | kr = csm_associate_code_signature(pmap, monitor_sig_obj, start, size, segment_offset); |
| 6327 | } else { |
| 6328 | kr = KERN_CODESIGN_ERROR; |
| 6329 | } |
| 6330 | |
| 6331 | return kr; |
| 6332 | } |
| 6333 | |
| 6334 | #endif /* CODE_SIGNING_MONITOR */ |
| 6335 | |