| 1 | /* |
| 2 | * Copyright (c) 1991-2015 Apple Computer, Inc. All rights reserved. |
| 3 | * |
| 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
| 5 | * |
| 6 | * This file contains Original Code and/or Modifications of Original Code |
| 7 | * as defined in and that are subject to the Apple Public Source License |
| 8 | * Version 2.0 (the 'License'). You may not use this file except in |
| 9 | * compliance with the License. The rights granted to you under the License |
| 10 | * may not be used to create, or enable the creation or redistribution of, |
| 11 | * unlawful or unlicensed copies of an Apple operating system, or to |
| 12 | * circumvent, violate, or enable the circumvention or violation of, any |
| 13 | * terms of an Apple operating system software license agreement. |
| 14 | * |
| 15 | * Please obtain a copy of the License at |
| 16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
| 17 | * |
| 18 | * The Original Code and all software distributed under the License are |
| 19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| 23 | * Please see the License for the specific language governing rights and |
| 24 | * limitations under the License. |
| 25 | * |
| 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
| 27 | */ |
| 28 | #include <sys/param.h> |
| 29 | #include <sys/types.h> |
| 30 | #include <sys/uio.h> |
| 31 | #include <sys/vnode.h> |
| 32 | #include <vm/vm_kern.h> |
| 33 | #include <mach/kern_return.h> |
| 34 | #include <mach/vm_param.h> |
| 35 | #include <kern/cpu_number.h> |
| 36 | #include <mach-o/fat.h> |
| 37 | #include <kern/mach_loader.h> |
| 38 | #include <kern/mach_fat.h> |
| 39 | #include <libkern/OSByteOrder.h> |
| 40 | #include <machine/exec.h> |
| 41 | |
| 42 | /********************************************************************** |
| 43 | * Routine: fatfile_getarch() |
| 44 | * |
| 45 | * Function: Locate the architecture-dependant contents of a fat |
| 46 | * file that match this CPU. |
| 47 | * |
| 48 | * Args: header: A pointer to the fat file header. |
| 49 | * size: How large the fat file header is (including fat_arch array) |
| 50 | * req_cpu_type: The required cpu type. |
| 51 | * mask_bits: Bits to mask from the sub-image type when |
| 52 | * grading it vs. the req_cpu_type |
| 53 | * imgp: Image params |
| 54 | * archret (out): Pointer to fat_arch structure to hold |
| 55 | * the results. |
| 56 | * |
| 57 | * Returns: KERN_SUCCESS: Valid architecture found. |
| 58 | * KERN_FAILURE: No valid architecture found. |
| 59 | **********************************************************************/ |
| 60 | static load_return_t |
| 61 | fatfile_getarch( |
| 62 | vm_offset_t data_ptr, |
| 63 | vm_size_t data_size, |
| 64 | cpu_type_t req_cpu_type, |
| 65 | cpu_type_t mask_bits, |
| 66 | cpu_subtype_t req_subcpu_type, |
| 67 | struct image_params *imgp, |
| 68 | struct fat_arch *archret) |
| 69 | { |
| 70 | load_return_t lret; |
| 71 | struct fat_arch *arch; |
| 72 | struct fat_arch *best_arch; |
| 73 | int grade; |
| 74 | int best_grade; |
| 75 | size_t nfat_arch, max_nfat_arch; |
| 76 | cpu_type_t testtype; |
| 77 | cpu_subtype_t testsubtype; |
| 78 | cpu_subtype_t testfeatures; |
| 79 | struct fat_header *; |
| 80 | |
| 81 | if (sizeof(struct fat_header) > data_size) { |
| 82 | return LOAD_FAILURE; |
| 83 | } |
| 84 | |
| 85 | header = (struct fat_header *)data_ptr; |
| 86 | nfat_arch = OSSwapBigToHostInt32(header->nfat_arch); |
| 87 | |
| 88 | max_nfat_arch = (data_size - sizeof(struct fat_header)) / sizeof(struct fat_arch); |
| 89 | if (nfat_arch > max_nfat_arch) { |
| 90 | /* nfat_arch would cause us to read off end of buffer */ |
| 91 | return LOAD_BADMACHO; |
| 92 | } |
| 93 | |
| 94 | /* |
| 95 | * Scan the fat_arch's looking for the best one. */ |
| 96 | best_arch = NULL; |
| 97 | best_grade = 0; |
| 98 | arch = (struct fat_arch *) (data_ptr + sizeof(struct fat_header)); |
| 99 | for (; nfat_arch-- > 0; arch++) { |
| 100 | testtype = OSSwapBigToHostInt32(arch->cputype); |
| 101 | testsubtype = OSSwapBigToHostInt32(arch->cpusubtype) & ~CPU_SUBTYPE_MASK; |
| 102 | testfeatures = OSSwapBigToHostInt32(arch->cpusubtype) & CPU_SUBTYPE_MASK; |
| 103 | |
| 104 | /* |
| 105 | * Check to see if right cpu/subcpu type. |
| 106 | */ |
| 107 | if (!binary_match(mask_bits, req_cpu: req_cpu_type, req_subcpu: req_subcpu_type, test_cpu: testtype, test_subcpu: testsubtype)) { |
| 108 | continue; |
| 109 | } |
| 110 | |
| 111 | /* |
| 112 | * Get the grade of the cpu subtype |
| 113 | */ |
| 114 | grade = grade_binary(testtype, testsubtype, testfeatures, TRUE); |
| 115 | |
| 116 | /* |
| 117 | * Remember it if it's the best we've seen. |
| 118 | */ |
| 119 | if (grade > best_grade) { |
| 120 | best_grade = grade; |
| 121 | best_arch = arch; |
| 122 | } |
| 123 | } |
| 124 | |
| 125 | /* On X86_64, allow 32 bit exec only for simulator binaries. |
| 126 | * Failing here without re-running the grading algorithm is safe because i386 |
| 127 | * has the lowest possible grade value (so there can't be a lower best grade |
| 128 | * that would be allowed if this check denied the i386 slice). */ |
| 129 | if (best_arch != NULL && |
| 130 | validate_potential_simulator_binary(OSSwapBigToHostInt32(best_arch->cputype), |
| 131 | imgp, OSSwapBigToHostInt32(best_arch->offset), |
| 132 | OSSwapBigToHostInt32(best_arch->size)) != LOAD_SUCCESS) { |
| 133 | best_arch = NULL; |
| 134 | best_grade = 0; |
| 135 | } |
| 136 | |
| 137 | /* |
| 138 | * Return our results. |
| 139 | */ |
| 140 | if (best_arch == NULL) { |
| 141 | lret = LOAD_BADARCH; |
| 142 | } else { |
| 143 | archret->cputype = |
| 144 | OSSwapBigToHostInt32(best_arch->cputype); |
| 145 | archret->cpusubtype = |
| 146 | OSSwapBigToHostInt32(best_arch->cpusubtype); |
| 147 | archret->offset = |
| 148 | OSSwapBigToHostInt32(best_arch->offset); |
| 149 | archret->size = |
| 150 | OSSwapBigToHostInt32(best_arch->size); |
| 151 | archret->align = |
| 152 | OSSwapBigToHostInt32(best_arch->align); |
| 153 | |
| 154 | lret = LOAD_SUCCESS; |
| 155 | } |
| 156 | |
| 157 | /* |
| 158 | * Free the memory we allocated and return. |
| 159 | */ |
| 160 | return lret; |
| 161 | } |
| 162 | |
| 163 | load_return_t |
| 164 | fatfile_getbestarch( |
| 165 | vm_offset_t data_ptr, |
| 166 | vm_size_t data_size, |
| 167 | struct image_params *imgp, |
| 168 | struct fat_arch *archret, |
| 169 | __unused bool affinity) |
| 170 | { |
| 171 | int primary_type = cpu_type(); |
| 172 | |
| 173 | |
| 174 | /* |
| 175 | * Ignore all architectural bits when determining if an image |
| 176 | * in a fat file should be skipped or graded. |
| 177 | */ |
| 178 | load_return_t ret = fatfile_getarch(data_ptr, data_size, req_cpu_type: primary_type, CPU_ARCH_MASK, CPU_SUBTYPE_ANY, imgp, archret); |
| 179 | return ret; |
| 180 | } |
| 181 | |
| 182 | load_return_t |
| 183 | fatfile_getbestarch_for_cputype( |
| 184 | cpu_type_t cputype, |
| 185 | cpu_subtype_t cpusubtype, |
| 186 | vm_offset_t data_ptr, |
| 187 | vm_size_t data_size, |
| 188 | struct image_params *imgp, |
| 189 | struct fat_arch *archret) |
| 190 | { |
| 191 | /* |
| 192 | * Scan the fat_arch array for exact matches for this cpu_type_t only |
| 193 | */ |
| 194 | return fatfile_getarch(data_ptr, data_size, req_cpu_type: cputype, mask_bits: 0, req_subcpu_type: cpusubtype, imgp, archret); |
| 195 | } |
| 196 | |
| 197 | /********************************************************************** |
| 198 | * Routine: fatfile_getarch_with_bits() |
| 199 | * |
| 200 | * Function: Locate the architecture-dependant contents of a fat |
| 201 | * file that match this CPU. |
| 202 | * |
| 203 | * Args: vp: The vnode for the fat file. |
| 204 | * archbits: Architecture specific feature bits |
| 205 | * header: A pointer to the fat file header. |
| 206 | * archret (out): Pointer to fat_arch structure to hold |
| 207 | * the results. |
| 208 | * |
| 209 | * Returns: KERN_SUCCESS: Valid architecture found. |
| 210 | * KERN_FAILURE: No valid architecture found. |
| 211 | **********************************************************************/ |
| 212 | load_return_t |
| 213 | fatfile_getarch_with_bits( |
| 214 | integer_t archbits, |
| 215 | vm_offset_t data_ptr, |
| 216 | vm_size_t data_size, |
| 217 | struct fat_arch *archret) |
| 218 | { |
| 219 | /* |
| 220 | * Scan the fat_arch array for matches with the requested |
| 221 | * architectural bits set, and for the current hardware cpu CPU. |
| 222 | */ |
| 223 | return fatfile_getarch(data_ptr, data_size, req_cpu_type: (archbits & CPU_ARCH_MASK) | (cpu_type() & ~CPU_ARCH_MASK), mask_bits: 0, CPU_SUBTYPE_ANY, NULL, archret); |
| 224 | } |
| 225 | |
| 226 | /* |
| 227 | * Validate the fat_header and fat_arch array in memory. We check that: |
| 228 | * |
| 229 | * 1) arch count would not exceed the data buffer |
| 230 | * 2) arch list does not contain duplicate cputype/cpusubtype tuples |
| 231 | * 3) arch list does not have two overlapping slices. The area |
| 232 | * at the front of the file containing the fat headers is implicitly |
| 233 | * a range that a slice should also not try to cover |
| 234 | */ |
| 235 | load_return_t |
| 236 | fatfile_validate_fatarches(vm_offset_t data_ptr, vm_size_t data_size, off_t file_size) |
| 237 | { |
| 238 | uint32_t magic; |
| 239 | size_t nfat_arch, max_nfat_arch, i, j; |
| 240 | size_t ; |
| 241 | |
| 242 | struct fat_arch *arches; |
| 243 | struct fat_header *; |
| 244 | |
| 245 | if (sizeof(struct fat_header) > data_size) { |
| 246 | return LOAD_FAILURE; |
| 247 | } |
| 248 | |
| 249 | header = (struct fat_header *)data_ptr; |
| 250 | magic = OSSwapBigToHostInt32(header->magic); |
| 251 | nfat_arch = OSSwapBigToHostInt32(header->nfat_arch); |
| 252 | |
| 253 | if (magic != FAT_MAGIC) { |
| 254 | /* must be FAT_MAGIC big endian */ |
| 255 | return LOAD_FAILURE; |
| 256 | } |
| 257 | |
| 258 | max_nfat_arch = (data_size - sizeof(struct fat_header)) / sizeof(struct fat_arch); |
| 259 | if (nfat_arch > max_nfat_arch) { |
| 260 | /* nfat_arch would cause us to read off end of buffer */ |
| 261 | return LOAD_BADMACHO; |
| 262 | } |
| 263 | |
| 264 | /* now that we know the fat_arch list fits in the buffer, how much does it use? */ |
| 265 | fat_header_size = sizeof(struct fat_header) + nfat_arch * sizeof(struct fat_arch); |
| 266 | arches = (struct fat_arch *)(data_ptr + sizeof(struct fat_header)); |
| 267 | |
| 268 | for (i = 0; i < nfat_arch; i++) { |
| 269 | uint32_t i_begin = OSSwapBigToHostInt32(arches[i].offset); |
| 270 | uint32_t i_size = OSSwapBigToHostInt32(arches[i].size); |
| 271 | uint32_t i_cputype = OSSwapBigToHostInt32(arches[i].cputype); |
| 272 | uint32_t i_cpusubtype = OSSwapBigToHostInt32(arches[i].cpusubtype); |
| 273 | |
| 274 | if (i_begin < fat_header_size) { |
| 275 | /* slice is trying to claim part of the file used by fat headers themselves */ |
| 276 | return LOAD_BADMACHO; |
| 277 | } |
| 278 | |
| 279 | if ((UINT32_MAX - i_size) < i_begin) { |
| 280 | /* start + size would overflow */ |
| 281 | return LOAD_BADMACHO; |
| 282 | } |
| 283 | uint32_t i_end = i_begin + i_size; |
| 284 | |
| 285 | if ((off_t)i_end > file_size) { |
| 286 | /* start + size would exceed file size */ |
| 287 | return LOAD_BADMACHO; |
| 288 | } |
| 289 | |
| 290 | for (j = i + 1; j < nfat_arch; j++) { |
| 291 | uint32_t j_begin = OSSwapBigToHostInt32(arches[j].offset); |
| 292 | uint32_t j_size = OSSwapBigToHostInt32(arches[j].size); |
| 293 | uint32_t j_cputype = OSSwapBigToHostInt32(arches[j].cputype); |
| 294 | uint32_t j_cpusubtype = OSSwapBigToHostInt32(arches[j].cpusubtype); |
| 295 | |
| 296 | if ((i_cputype == j_cputype) && (i_cpusubtype == j_cpusubtype)) { |
| 297 | /* duplicate cputype/cpusubtype, results in ambiguous references */ |
| 298 | return LOAD_BADMACHO; |
| 299 | } |
| 300 | |
| 301 | if ((UINT32_MAX - j_size) < j_begin) { |
| 302 | /* start + size would overflow */ |
| 303 | return LOAD_BADMACHO; |
| 304 | } |
| 305 | uint32_t j_end = j_begin + j_size; |
| 306 | |
| 307 | if (i_begin <= j_begin) { |
| 308 | if (i_end <= j_begin) { |
| 309 | /* I completely precedes J */ |
| 310 | } else { |
| 311 | /* I started before J, but ends somewhere in or after J */ |
| 312 | return LOAD_BADMACHO; |
| 313 | } |
| 314 | } else { |
| 315 | if (i_begin >= j_end) { |
| 316 | /* I started after J started but also after J ended */ |
| 317 | } else { |
| 318 | /* I started after J started but before it ended, so there is overlap */ |
| 319 | return LOAD_BADMACHO; |
| 320 | } |
| 321 | } |
| 322 | } |
| 323 | } |
| 324 | |
| 325 | return LOAD_SUCCESS; |
| 326 | } |
| 327 | |