| 1 | /* |
| 2 | * Copyright (c) 2000-2016 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
| 5 | * |
| 6 | * This file contains Original Code and/or Modifications of Original Code |
| 7 | * as defined in and that are subject to the Apple Public Source License |
| 8 | * Version 2.0 (the 'License'). You may not use this file except in |
| 9 | * compliance with the License. The rights granted to you under the License |
| 10 | * may not be used to create, or enable the creation or redistribution of, |
| 11 | * unlawful or unlicensed copies of an Apple operating system, or to |
| 12 | * circumvent, violate, or enable the circumvention or violation of, any |
| 13 | * terms of an Apple operating system software license agreement. |
| 14 | * |
| 15 | * Please obtain a copy of the License at |
| 16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
| 17 | * |
| 18 | * The Original Code and all software distributed under the License are |
| 19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| 23 | * Please see the License for the specific language governing rights and |
| 24 | * limitations under the License. |
| 25 | * |
| 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
| 27 | */ |
| 28 | /* Copyright (c) 1995, 1997 Apple Computer, Inc. All Rights Reserved */ |
| 29 | /* |
| 30 | * Copyright (c) 1982, 1986, 1989, 1991, 1993 |
| 31 | * The Regents of the University of California. All rights reserved. |
| 32 | * (c) UNIX System Laboratories, Inc. |
| 33 | * All or some portions of this file are derived from material licensed |
| 34 | * to the University of California by American Telephone and Telegraph |
| 35 | * Co. or Unix System Laboratories, Inc. and are reproduced herein with |
| 36 | * the permission of UNIX System Laboratories, Inc. |
| 37 | * |
| 38 | * Redistribution and use in source and binary forms, with or without |
| 39 | * modification, are permitted provided that the following conditions |
| 40 | * are met: |
| 41 | * 1. Redistributions of source code must retain the above copyright |
| 42 | * notice, this list of conditions and the following disclaimer. |
| 43 | * 2. Redistributions in binary form must reproduce the above copyright |
| 44 | * notice, this list of conditions and the following disclaimer in the |
| 45 | * documentation and/or other materials provided with the distribution. |
| 46 | * 3. All advertising materials mentioning features or use of this software |
| 47 | * must display the following acknowledgement: |
| 48 | * This product includes software developed by the University of |
| 49 | * California, Berkeley and its contributors. |
| 50 | * 4. Neither the name of the University nor the names of its contributors |
| 51 | * may be used to endorse or promote products derived from this software |
| 52 | * without specific prior written permission. |
| 53 | * |
| 54 | * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND |
| 55 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 56 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 57 | * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE |
| 58 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| 59 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| 60 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| 61 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| 62 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| 63 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| 64 | * SUCH DAMAGE. |
| 65 | * |
| 66 | * @(#)kern_exit.c 8.7 (Berkeley) 2/12/94 |
| 67 | */ |
| 68 | /* |
| 69 | * NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce |
| 70 | * support for mandatory and extensible security protections. This notice |
| 71 | * is included in support of clause 2.2 (b) of the Apple Public License, |
| 72 | * Version 2.0. |
| 73 | */ |
| 74 | |
| 75 | #include <machine/reg.h> |
| 76 | #include <machine/psl.h> |
| 77 | #include <stdatomic.h> |
| 78 | |
| 79 | #include <sys/param.h> |
| 80 | #include <sys/systm.h> |
| 81 | #include <sys/ioctl.h> |
| 82 | #include <sys/proc_internal.h> |
| 83 | #include <sys/proc.h> |
| 84 | #include <sys/kauth.h> |
| 85 | #include <sys/tty.h> |
| 86 | #include <sys/time.h> |
| 87 | #include <sys/resource.h> |
| 88 | #include <sys/kernel.h> |
| 89 | #include <sys/wait.h> |
| 90 | #include <sys/file_internal.h> |
| 91 | #include <sys/vnode_internal.h> |
| 92 | #include <sys/syslog.h> |
| 93 | #include <sys/malloc.h> |
| 94 | #include <sys/resourcevar.h> |
| 95 | #include <sys/ptrace.h> |
| 96 | #include <sys/proc_info.h> |
| 97 | #include <sys/reason.h> |
| 98 | #include <sys/_types/_timeval64.h> |
| 99 | #include <sys/user.h> |
| 100 | #include <sys/aio_kern.h> |
| 101 | #include <sys/sysproto.h> |
| 102 | #include <sys/signalvar.h> |
| 103 | #include <sys/kdebug.h> |
| 104 | #include <sys/kdebug_triage.h> |
| 105 | #include <sys/acct.h> /* acct_process */ |
| 106 | #include <sys/codesign.h> |
| 107 | #include <sys/event.h> /* kevent_proc_copy_uptrs */ |
| 108 | #include <sys/sdt.h> |
| 109 | #include <sys/bsdtask_info.h> /* bsd_getthreadname */ |
| 110 | #include <sys/spawn.h> |
| 111 | #include <sys/ubc.h> |
| 112 | #include <sys/code_signing.h> |
| 113 | |
| 114 | #include <security/audit/audit.h> |
| 115 | #include <bsm/audit_kevents.h> |
| 116 | |
| 117 | #include <mach/mach_types.h> |
| 118 | #include <mach/task.h> |
| 119 | #include <mach/thread_act.h> |
| 120 | |
| 121 | #include <kern/exc_resource.h> |
| 122 | #include <kern/kern_types.h> |
| 123 | #include <kern/kalloc.h> |
| 124 | #include <kern/task.h> |
| 125 | #include <corpses/task_corpse.h> |
| 126 | #include <kern/thread.h> |
| 127 | #include <kern/thread_call.h> |
| 128 | #include <kern/sched_prim.h> |
| 129 | #include <kern/assert.h> |
| 130 | #include <kern/locks.h> |
| 131 | #include <kern/policy_internal.h> |
| 132 | #include <kern/exc_guard.h> |
| 133 | #include <kern/backtrace.h> |
| 134 | |
| 135 | #include <vm/vm_protos.h> |
| 136 | #include <os/log.h> |
| 137 | #include <os/system_event_log.h> |
| 138 | |
| 139 | #include <pexpert/pexpert.h> |
| 140 | |
| 141 | #include <kdp/kdp_dyld.h> |
| 142 | |
| 143 | #if SYSV_SHM |
| 144 | #include <sys/shm_internal.h> /* shmexit */ |
| 145 | #endif /* SYSV_SHM */ |
| 146 | #if CONFIG_PERSONAS |
| 147 | #include <sys/persona.h> |
| 148 | #endif /* CONFIG_PERSONAS */ |
| 149 | #if CONFIG_MEMORYSTATUS |
| 150 | #include <sys/kern_memorystatus.h> |
| 151 | #endif /* CONFIG_MEMORYSTATUS */ |
| 152 | #if CONFIG_DTRACE |
| 153 | /* Do not include dtrace.h, it redefines kmem_[alloc/free] */ |
| 154 | void dtrace_proc_exit(proc_t p); |
| 155 | #include <sys/dtrace_ptss.h> |
| 156 | #endif /* CONFIG_DTRACE */ |
| 157 | #if CONFIG_MACF |
| 158 | #include <security/mac_framework.h> |
| 159 | #include <security/mac_mach_internal.h> |
| 160 | #include <sys/syscall.h> |
| 161 | #endif /* CONFIG_MACF */ |
| 162 | |
| 163 | #ifdef CONFIG_EXCLAVES |
| 164 | void |
| 165 | task_add_conclave_crash_info(task_t task, void *crash_info_ptr); |
| 166 | #endif /* CONFIG_EXCLAVES */ |
| 167 | |
| 168 | #if CONFIG_MEMORYSTATUS |
| 169 | static void proc_memorystatus_remove(proc_t p); |
| 170 | #endif /* CONFIG_MEMORYSTATUS */ |
| 171 | void proc_prepareexit(proc_t p, int rv, boolean_t perf_notify); |
| 172 | void gather_populate_corpse_crashinfo(proc_t p, task_t corpse_task, |
| 173 | mach_exception_data_type_t code, mach_exception_data_type_t subcode, |
| 174 | uint64_t *udata_buffer, int num_udata, void *reason, exception_type_t etype); |
| 175 | mach_exception_data_type_t proc_encode_exit_exception_code(proc_t p); |
| 176 | exception_type_t get_exception_from_corpse_crashinfo(kcdata_descriptor_t corpse_info); |
| 177 | __private_extern__ void munge_user64_rusage(struct rusage *a_rusage_p, struct user64_rusage *a_user_rusage_p); |
| 178 | __private_extern__ void munge_user32_rusage(struct rusage *a_rusage_p, struct user32_rusage *a_user_rusage_p); |
| 179 | static void populate_corpse_crashinfo(proc_t p, task_t corpse_task, |
| 180 | struct rusage_superset *rup, mach_exception_data_type_t code, |
| 181 | mach_exception_data_type_t subcode, uint64_t *udata_buffer, |
| 182 | int num_udata, os_reason_t reason, exception_type_t etype); |
| 183 | static void proc_update_corpse_exception_codes(proc_t p, mach_exception_data_type_t *code, mach_exception_data_type_t *subcode); |
| 184 | extern int proc_pidpathinfo_internal(proc_t p, uint64_t arg, char *buffer, uint32_t buffersize, int32_t *retval); |
| 185 | extern void proc_piduniqidentifierinfo(proc_t p, struct proc_uniqidentifierinfo *p_uniqidinfo); |
| 186 | extern void task_coalition_ids(task_t task, uint64_t ids[COALITION_NUM_TYPES]); |
| 187 | extern uint64_t (task_t); |
| 188 | int proc_list_uptrs(void *p, uint64_t *udata_buffer, int size); |
| 189 | extern uint64_t task_corpse_get_crashed_thread_id(task_t corpse_task); |
| 190 | |
| 191 | extern unsigned int exception_log_max_pid; |
| 192 | |
| 193 | extern void IOUserServerRecordExitReason(task_t task, os_reason_t reason); |
| 194 | |
| 195 | /* |
| 196 | * Flags for `reap_child_locked`. |
| 197 | */ |
| 198 | __options_decl(reap_flags_t, uint32_t, { |
| 199 | /* |
| 200 | * Parent is exiting, so the kernel is responsible for reaping children. |
| 201 | */ |
| 202 | REAP_DEAD_PARENT = 0x01, |
| 203 | /* |
| 204 | * Childr process was re-parented to initproc. |
| 205 | */ |
| 206 | REAP_REPARENTED_TO_INIT = 0x02, |
| 207 | /* |
| 208 | * `proc_list_lock` is held on entry. |
| 209 | */ |
| 210 | REAP_LOCKED = 0x04, |
| 211 | /* |
| 212 | * Drop the `proc_list_lock` on return. Note that the `proc_list_lock` will |
| 213 | * be dropped internally by the function regardless. |
| 214 | */ |
| 215 | REAP_DROP_LOCK = 0x08, |
| 216 | }); |
| 217 | static void reap_child_locked(proc_t parent, proc_t child, reap_flags_t flags); |
| 218 | |
| 219 | static KALLOC_TYPE_DEFINE(zombie_zone, struct rusage_superset, KT_DEFAULT); |
| 220 | |
| 221 | /* |
| 222 | * Things which should have prototypes in headers, but don't |
| 223 | */ |
| 224 | void proc_exit(proc_t p); |
| 225 | int wait1continue(int result); |
| 226 | int waitidcontinue(int result); |
| 227 | kern_return_t sys_perf_notify(thread_t thread, int pid); |
| 228 | kern_return_t task_exception_notify(exception_type_t exception, |
| 229 | mach_exception_data_type_t code, mach_exception_data_type_t subcode, bool fatal); |
| 230 | void delay(int); |
| 231 | |
| 232 | #if __has_feature(ptrauth_calls) |
| 233 | int exit_with_pac_exception(proc_t p, exception_type_t exception, mach_exception_code_t code, |
| 234 | mach_exception_subcode_t subcode); |
| 235 | #endif /* __has_feature(ptrauth_calls) */ |
| 236 | |
| 237 | int exit_with_guard_exception(proc_t p, mach_exception_data_type_t code, |
| 238 | mach_exception_data_type_t subcode); |
| 239 | int exit_with_port_space_exception(proc_t p, mach_exception_data_type_t code, |
| 240 | mach_exception_data_type_t subcode); |
| 241 | static int exit_with_mach_exception(proc_t p, os_reason_t reason, exception_type_t exception, |
| 242 | mach_exception_code_t code, mach_exception_subcode_t subcode); |
| 243 | |
| 244 | #if CONFIG_EXCLAVES |
| 245 | int |
| 246 | exit_with_exclave_exception(proc_t p); |
| 247 | #endif /* CONFIG_EXCLAVES */ |
| 248 | |
| 249 | int |
| 250 | exit_with_jit_exception(proc_t p); |
| 251 | |
| 252 | #if DEVELOPMENT || DEBUG |
| 253 | static LCK_GRP_DECLARE(proc_exit_lpexit_spin_lock_grp, "proc_exit_lpexit_spin" ); |
| 254 | static LCK_MTX_DECLARE(proc_exit_lpexit_spin_lock, &proc_exit_lpexit_spin_lock_grp); |
| 255 | static pid_t proc_exit_lpexit_spin_pid = -1; /* wakeup point */ |
| 256 | static int proc_exit_lpexit_spin_pos = -1; /* point to block */ |
| 257 | static int proc_exit_lpexit_spinning = 0; |
| 258 | enum { |
| 259 | PELS_POS_START = 0, /* beginning of proc_exit */ |
| 260 | PELS_POS_PRE_TASK_DETACH, /* before task/proc detach */ |
| 261 | PELS_POS_POST_TASK_DETACH, /* after task/proc detach */ |
| 262 | PELS_POS_END, /* end of proc_exit */ |
| 263 | PELS_NPOS /* # valid values */ |
| 264 | }; |
| 265 | |
| 266 | /* Panic if matching processes (delimited by ',') exit on error. */ |
| 267 | static TUNABLE_STR(panic_on_eexit_pcomms, 128, "panic_on_error_exit" , "" ); |
| 268 | |
| 269 | static int |
| 270 | proc_exit_lpexit_spin_pid_sysctl SYSCTL_HANDLER_ARGS |
| 271 | { |
| 272 | #pragma unused(oidp, arg1, arg2) |
| 273 | pid_t new_value; |
| 274 | int changed; |
| 275 | int error; |
| 276 | |
| 277 | if (!PE_parse_boot_argn("enable_proc_exit_lpexit_spin" , NULL, 0)) { |
| 278 | return ENOENT; |
| 279 | } |
| 280 | |
| 281 | error = sysctl_io_number(req, proc_exit_lpexit_spin_pid, |
| 282 | sizeof(proc_exit_lpexit_spin_pid), &new_value, &changed); |
| 283 | if (error == 0 && changed != 0) { |
| 284 | if (new_value < -1) { |
| 285 | return EINVAL; |
| 286 | } |
| 287 | lck_mtx_lock(&proc_exit_lpexit_spin_lock); |
| 288 | proc_exit_lpexit_spin_pid = new_value; |
| 289 | wakeup(&proc_exit_lpexit_spin_pid); |
| 290 | proc_exit_lpexit_spinning = 0; |
| 291 | lck_mtx_unlock(&proc_exit_lpexit_spin_lock); |
| 292 | } |
| 293 | return error; |
| 294 | } |
| 295 | |
| 296 | static int |
| 297 | proc_exit_lpexit_spin_pos_sysctl SYSCTL_HANDLER_ARGS |
| 298 | { |
| 299 | #pragma unused(oidp, arg1, arg2) |
| 300 | int new_value; |
| 301 | int changed; |
| 302 | int error; |
| 303 | |
| 304 | if (!PE_parse_boot_argn("enable_proc_exit_lpexit_spin" , NULL, 0)) { |
| 305 | return ENOENT; |
| 306 | } |
| 307 | |
| 308 | error = sysctl_io_number(req, proc_exit_lpexit_spin_pos, |
| 309 | sizeof(proc_exit_lpexit_spin_pos), &new_value, &changed); |
| 310 | if (error == 0 && changed != 0) { |
| 311 | if (new_value < -1 || new_value >= PELS_NPOS) { |
| 312 | return EINVAL; |
| 313 | } |
| 314 | lck_mtx_lock(&proc_exit_lpexit_spin_lock); |
| 315 | proc_exit_lpexit_spin_pos = new_value; |
| 316 | wakeup(&proc_exit_lpexit_spin_pid); |
| 317 | proc_exit_lpexit_spinning = 0; |
| 318 | lck_mtx_unlock(&proc_exit_lpexit_spin_lock); |
| 319 | } |
| 320 | return error; |
| 321 | } |
| 322 | |
| 323 | static int |
| 324 | proc_exit_lpexit_spinning_sysctl SYSCTL_HANDLER_ARGS |
| 325 | { |
| 326 | #pragma unused(oidp, arg1, arg2) |
| 327 | int new_value; |
| 328 | int changed; |
| 329 | int error; |
| 330 | |
| 331 | if (!PE_parse_boot_argn("enable_proc_exit_lpexit_spin" , NULL, 0)) { |
| 332 | return ENOENT; |
| 333 | } |
| 334 | |
| 335 | error = sysctl_io_number(req, proc_exit_lpexit_spinning, |
| 336 | sizeof(proc_exit_lpexit_spinning), &new_value, &changed); |
| 337 | if (error == 0 && changed != 0) { |
| 338 | return EINVAL; |
| 339 | } |
| 340 | return error; |
| 341 | } |
| 342 | |
| 343 | SYSCTL_PROC(_debug, OID_AUTO, proc_exit_lpexit_spin_pid, |
| 344 | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, |
| 345 | NULL, sizeof(pid_t), |
| 346 | proc_exit_lpexit_spin_pid_sysctl, "I" , "PID to hold in proc_exit" ); |
| 347 | |
| 348 | SYSCTL_PROC(_debug, OID_AUTO, proc_exit_lpexit_spin_pos, |
| 349 | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, |
| 350 | NULL, sizeof(int), |
| 351 | proc_exit_lpexit_spin_pos_sysctl, "I" , "position to hold in proc_exit" ); |
| 352 | |
| 353 | SYSCTL_PROC(_debug, OID_AUTO, proc_exit_lpexit_spinning, |
| 354 | CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_LOCKED, |
| 355 | NULL, sizeof(int), |
| 356 | proc_exit_lpexit_spinning_sysctl, "I" , "is a thread at requested pid/pos" ); |
| 357 | |
| 358 | static inline void |
| 359 | proc_exit_lpexit_check(pid_t pid, int pos) |
| 360 | { |
| 361 | if (proc_exit_lpexit_spin_pid == pid) { |
| 362 | bool slept = false; |
| 363 | lck_mtx_lock(&proc_exit_lpexit_spin_lock); |
| 364 | while (proc_exit_lpexit_spin_pid == pid && |
| 365 | proc_exit_lpexit_spin_pos == pos) { |
| 366 | if (!slept) { |
| 367 | os_log(OS_LOG_DEFAULT, |
| 368 | "proc_exit_lpexit_check: Process[%d] waiting during proc_exit at pos %d as requested" , pid, pos); |
| 369 | slept = true; |
| 370 | } |
| 371 | proc_exit_lpexit_spinning = 1; |
| 372 | msleep(&proc_exit_lpexit_spin_pid, &proc_exit_lpexit_spin_lock, |
| 373 | PWAIT, "proc_exit_lpexit_check" , NULL); |
| 374 | proc_exit_lpexit_spinning = 0; |
| 375 | } |
| 376 | lck_mtx_unlock(&proc_exit_lpexit_spin_lock); |
| 377 | if (slept) { |
| 378 | os_log(OS_LOG_DEFAULT, |
| 379 | "proc_exit_lpexit_check: Process[%d] driving on from pos %d" , pid, pos); |
| 380 | } |
| 381 | } |
| 382 | } |
| 383 | #endif /* DEVELOPMENT || DEBUG */ |
| 384 | |
| 385 | /* |
| 386 | * NOTE: Source and target may *NOT* overlap! |
| 387 | * XXX Should share code with bsd/dev/ppc/unix_signal.c |
| 388 | */ |
| 389 | void |
| 390 | siginfo_user_to_user32(user_siginfo_t *in, user32_siginfo_t *out) |
| 391 | { |
| 392 | out->si_signo = in->si_signo; |
| 393 | out->si_errno = in->si_errno; |
| 394 | out->si_code = in->si_code; |
| 395 | out->si_pid = in->si_pid; |
| 396 | out->si_uid = in->si_uid; |
| 397 | out->si_status = in->si_status; |
| 398 | out->si_addr = CAST_DOWN_EXPLICIT(user32_addr_t, in->si_addr); |
| 399 | /* following cast works for sival_int because of padding */ |
| 400 | out->si_value.sival_ptr = CAST_DOWN_EXPLICIT(user32_addr_t, in->si_value.sival_ptr); |
| 401 | out->si_band = (user32_long_t)in->si_band; /* range reduction */ |
| 402 | } |
| 403 | |
| 404 | void |
| 405 | siginfo_user_to_user64(user_siginfo_t *in, user64_siginfo_t *out) |
| 406 | { |
| 407 | out->si_signo = in->si_signo; |
| 408 | out->si_errno = in->si_errno; |
| 409 | out->si_code = in->si_code; |
| 410 | out->si_pid = in->si_pid; |
| 411 | out->si_uid = in->si_uid; |
| 412 | out->si_status = in->si_status; |
| 413 | out->si_addr = in->si_addr; |
| 414 | /* following cast works for sival_int because of padding */ |
| 415 | out->si_value.sival_ptr = in->si_value.sival_ptr; |
| 416 | out->si_band = in->si_band; /* range reduction */ |
| 417 | } |
| 418 | |
| 419 | static int |
| 420 | copyoutsiginfo(user_siginfo_t *native, boolean_t is64, user_addr_t uaddr) |
| 421 | { |
| 422 | if (is64) { |
| 423 | user64_siginfo_t sinfo64; |
| 424 | |
| 425 | bzero(s: &sinfo64, n: sizeof(sinfo64)); |
| 426 | siginfo_user_to_user64(in: native, out: &sinfo64); |
| 427 | return copyout(&sinfo64, uaddr, sizeof(sinfo64)); |
| 428 | } else { |
| 429 | user32_siginfo_t sinfo32; |
| 430 | |
| 431 | bzero(s: &sinfo32, n: sizeof(sinfo32)); |
| 432 | siginfo_user_to_user32(in: native, out: &sinfo32); |
| 433 | return copyout(&sinfo32, uaddr, sizeof(sinfo32)); |
| 434 | } |
| 435 | } |
| 436 | |
| 437 | void |
| 438 | gather_populate_corpse_crashinfo(proc_t p, task_t corpse_task, |
| 439 | mach_exception_data_type_t code, mach_exception_data_type_t subcode, |
| 440 | uint64_t *udata_buffer, int num_udata, void *reason, exception_type_t etype) |
| 441 | { |
| 442 | struct rusage_superset rup; |
| 443 | |
| 444 | gather_rusage_info(p, ru: &rup.ri, RUSAGE_INFO_CURRENT); |
| 445 | rup.ri.ri_phys_footprint = 0; |
| 446 | populate_corpse_crashinfo(p, corpse_task, rup: &rup, code, subcode, |
| 447 | udata_buffer, num_udata, reason, etype); |
| 448 | } |
| 449 | |
| 450 | static void |
| 451 | proc_update_corpse_exception_codes(proc_t p, mach_exception_data_type_t *code, mach_exception_data_type_t *subcode) |
| 452 | { |
| 453 | mach_exception_data_type_t code_update = *code; |
| 454 | mach_exception_data_type_t subcode_update = *subcode; |
| 455 | if (p->p_exit_reason == OS_REASON_NULL) { |
| 456 | return; |
| 457 | } |
| 458 | |
| 459 | switch (p->p_exit_reason->osr_namespace) { |
| 460 | case OS_REASON_JETSAM: |
| 461 | if (p->p_exit_reason->osr_code == JETSAM_REASON_MEMORY_PERPROCESSLIMIT) { |
| 462 | /* Update the code with EXC_RESOURCE code for high memory watermark */ |
| 463 | EXC_RESOURCE_ENCODE_TYPE(code_update, RESOURCE_TYPE_MEMORY); |
| 464 | EXC_RESOURCE_ENCODE_FLAVOR(code_update, FLAVOR_HIGH_WATERMARK); |
| 465 | EXC_RESOURCE_HWM_ENCODE_LIMIT(code_update, ((get_task_phys_footprint_limit(proc_task(p))) >> 20)); |
| 466 | subcode_update = 0; |
| 467 | break; |
| 468 | } |
| 469 | |
| 470 | break; |
| 471 | default: |
| 472 | break; |
| 473 | } |
| 474 | |
| 475 | *code = code_update; |
| 476 | *subcode = subcode_update; |
| 477 | return; |
| 478 | } |
| 479 | |
| 480 | mach_exception_data_type_t |
| 481 | proc_encode_exit_exception_code(proc_t p) |
| 482 | { |
| 483 | uint64_t subcode = 0; |
| 484 | |
| 485 | if (p->p_exit_reason == OS_REASON_NULL) { |
| 486 | return 0; |
| 487 | } |
| 488 | |
| 489 | /* Embed first 32 bits of osr_namespace and osr_code in exception code */ |
| 490 | ENCODE_OSR_NAMESPACE_TO_MACH_EXCEPTION_CODE(subcode, p->p_exit_reason->osr_namespace); |
| 491 | ENCODE_OSR_CODE_TO_MACH_EXCEPTION_CODE(subcode, p->p_exit_reason->osr_code); |
| 492 | return (mach_exception_data_type_t)subcode; |
| 493 | } |
| 494 | |
| 495 | static void |
| 496 | populate_corpse_crashinfo(proc_t p, task_t corpse_task, struct rusage_superset *rup, |
| 497 | mach_exception_data_type_t code, mach_exception_data_type_t subcode, |
| 498 | uint64_t *udata_buffer, int num_udata, os_reason_t reason, exception_type_t etype) |
| 499 | { |
| 500 | mach_vm_address_t uaddr = 0; |
| 501 | mach_exception_data_type_t exc_codes[EXCEPTION_CODE_MAX]; |
| 502 | exc_codes[0] = code; |
| 503 | exc_codes[1] = subcode; |
| 504 | cpu_type_t cputype; |
| 505 | struct proc_uniqidentifierinfo p_uniqidinfo; |
| 506 | struct proc_workqueueinfo pwqinfo; |
| 507 | int retval = 0; |
| 508 | uint64_t crashed_threadid = task_corpse_get_crashed_thread_id(corpse_task); |
| 509 | boolean_t is_corpse_fork; |
| 510 | uint32_t csflags; |
| 511 | unsigned int pflags = 0; |
| 512 | uint64_t ; |
| 513 | uint64_t ; |
| 514 | |
| 515 | uint64_t ledger_internal; |
| 516 | uint64_t ledger_internal_compressed; |
| 517 | uint64_t ledger_iokit_mapped; |
| 518 | uint64_t ledger_alternate_accounting; |
| 519 | uint64_t ledger_alternate_accounting_compressed; |
| 520 | uint64_t ledger_purgeable_nonvolatile; |
| 521 | uint64_t ledger_purgeable_nonvolatile_compressed; |
| 522 | uint64_t ledger_page_table; |
| 523 | uint64_t ; |
| 524 | uint64_t ; |
| 525 | uint64_t ledger_network_nonvolatile; |
| 526 | uint64_t ledger_network_nonvolatile_compressed; |
| 527 | uint64_t ledger_wired_mem; |
| 528 | uint64_t ; |
| 529 | uint64_t ; |
| 530 | uint64_t ; |
| 531 | uint64_t ; |
| 532 | uint64_t ; |
| 533 | uint64_t ; |
| 534 | uint64_t ; |
| 535 | uint64_t ; |
| 536 | |
| 537 | void *crash_info_ptr = task_get_corpseinfo(task: corpse_task); |
| 538 | |
| 539 | #if CONFIG_MEMORYSTATUS |
| 540 | int memstat_dirty_flags = 0; |
| 541 | #endif |
| 542 | |
| 543 | if (KERN_SUCCESS == kcdata_get_memory_addr(data: crash_info_ptr, TASK_CRASHINFO_EXCEPTION_CODES, size: sizeof(exc_codes), user_addr: &uaddr)) { |
| 544 | kcdata_memcpy(data: crash_info_ptr, dst_addr: uaddr, src_addr: exc_codes, size: sizeof(exc_codes)); |
| 545 | } |
| 546 | |
| 547 | if (KERN_SUCCESS == kcdata_get_memory_addr(data: crash_info_ptr, TASK_CRASHINFO_PID, size: sizeof(pid_t), user_addr: &uaddr)) { |
| 548 | pid_t pid = proc_getpid(p); |
| 549 | kcdata_memcpy(data: crash_info_ptr, dst_addr: uaddr, src_addr: &pid, size: sizeof(pid)); |
| 550 | } |
| 551 | |
| 552 | if (KERN_SUCCESS == kcdata_get_memory_addr(data: crash_info_ptr, TASK_CRASHINFO_PPID, size: sizeof(p->p_ppid), user_addr: &uaddr)) { |
| 553 | kcdata_memcpy(data: crash_info_ptr, dst_addr: uaddr, src_addr: &p->p_ppid, size: sizeof(p->p_ppid)); |
| 554 | } |
| 555 | |
| 556 | /* Don't include the crashed thread ID if there's an exit reason that indicates it's irrelevant */ |
| 557 | if ((p->p_exit_reason == OS_REASON_NULL) || !(p->p_exit_reason->osr_flags & OS_REASON_FLAG_NO_CRASHED_TID)) { |
| 558 | if (KERN_SUCCESS == kcdata_get_memory_addr(data: crash_info_ptr, TASK_CRASHINFO_CRASHED_THREADID, size: sizeof(uint64_t), user_addr: &uaddr)) { |
| 559 | kcdata_memcpy(data: crash_info_ptr, dst_addr: uaddr, src_addr: &crashed_threadid, size: sizeof(uint64_t)); |
| 560 | } |
| 561 | } |
| 562 | |
| 563 | static_assert(sizeof(struct proc_uniqidentifierinfo) == sizeof(struct crashinfo_proc_uniqidentifierinfo)); |
| 564 | if (KERN_SUCCESS == |
| 565 | kcdata_get_memory_addr(data: crash_info_ptr, TASK_CRASHINFO_BSDINFOWITHUNIQID, size: sizeof(struct proc_uniqidentifierinfo), user_addr: &uaddr)) { |
| 566 | proc_piduniqidentifierinfo(p, p_uniqidinfo: &p_uniqidinfo); |
| 567 | kcdata_memcpy(data: crash_info_ptr, dst_addr: uaddr, src_addr: &p_uniqidinfo, size: sizeof(struct proc_uniqidentifierinfo)); |
| 568 | } |
| 569 | |
| 570 | if (KERN_SUCCESS == kcdata_get_memory_addr(data: crash_info_ptr, TASK_CRASHINFO_RUSAGE_INFO, size: sizeof(rusage_info_current), user_addr: &uaddr)) { |
| 571 | kcdata_memcpy(data: crash_info_ptr, dst_addr: uaddr, src_addr: &rup->ri, size: sizeof(rusage_info_current)); |
| 572 | } |
| 573 | |
| 574 | csflags = (uint32_t)proc_getcsflags(p); |
| 575 | if (KERN_SUCCESS == kcdata_get_memory_addr(data: crash_info_ptr, TASK_CRASHINFO_PROC_CSFLAGS, size: sizeof(csflags), user_addr: &uaddr)) { |
| 576 | kcdata_memcpy(data: crash_info_ptr, dst_addr: uaddr, src_addr: &csflags, size: sizeof(csflags)); |
| 577 | } |
| 578 | |
| 579 | if (KERN_SUCCESS == kcdata_get_memory_addr(data: crash_info_ptr, TASK_CRASHINFO_PROC_NAME, size: sizeof(p->p_comm), user_addr: &uaddr)) { |
| 580 | kcdata_memcpy(data: crash_info_ptr, dst_addr: uaddr, src_addr: &p->p_comm, size: sizeof(p->p_comm)); |
| 581 | } |
| 582 | |
| 583 | if (KERN_SUCCESS == kcdata_get_memory_addr(data: crash_info_ptr, TASK_CRASHINFO_PROC_STARTTIME, size: sizeof(p->p_start), user_addr: &uaddr)) { |
| 584 | struct timeval64 t64; |
| 585 | t64.tv_sec = (int64_t)p->p_start.tv_sec; |
| 586 | t64.tv_usec = (int64_t)p->p_start.tv_usec; |
| 587 | kcdata_memcpy(data: crash_info_ptr, dst_addr: uaddr, src_addr: &t64, size: sizeof(t64)); |
| 588 | } |
| 589 | |
| 590 | if (KERN_SUCCESS == kcdata_get_memory_addr(data: crash_info_ptr, TASK_CRASHINFO_USERSTACK, size: sizeof(p->user_stack), user_addr: &uaddr)) { |
| 591 | kcdata_memcpy(data: crash_info_ptr, dst_addr: uaddr, src_addr: &p->user_stack, size: sizeof(p->user_stack)); |
| 592 | } |
| 593 | |
| 594 | if (KERN_SUCCESS == kcdata_get_memory_addr(data: crash_info_ptr, TASK_CRASHINFO_ARGSLEN, size: sizeof(p->p_argslen), user_addr: &uaddr)) { |
| 595 | kcdata_memcpy(data: crash_info_ptr, dst_addr: uaddr, src_addr: &p->p_argslen, size: sizeof(p->p_argslen)); |
| 596 | } |
| 597 | |
| 598 | if (KERN_SUCCESS == kcdata_get_memory_addr(data: crash_info_ptr, TASK_CRASHINFO_PROC_ARGC, size: sizeof(p->p_argc), user_addr: &uaddr)) { |
| 599 | kcdata_memcpy(data: crash_info_ptr, dst_addr: uaddr, src_addr: &p->p_argc, size: sizeof(p->p_argc)); |
| 600 | } |
| 601 | |
| 602 | if (KERN_SUCCESS == kcdata_get_memory_addr(data: crash_info_ptr, TASK_CRASHINFO_PROC_PATH, MAXPATHLEN, user_addr: &uaddr)) { |
| 603 | char *buf = zalloc_flags(ZV_NAMEI, Z_WAITOK | Z_ZERO); |
| 604 | proc_pidpathinfo_internal(p, arg: 0, buffer: buf, MAXPATHLEN, retval: &retval); |
| 605 | kcdata_memcpy(data: crash_info_ptr, dst_addr: uaddr, src_addr: buf, MAXPATHLEN); |
| 606 | zfree(ZV_NAMEI, buf); |
| 607 | } |
| 608 | |
| 609 | pflags = p->p_flag & (P_LP64 | P_SUGID | P_TRANSLATED); |
| 610 | if (KERN_SUCCESS == kcdata_get_memory_addr(data: crash_info_ptr, TASK_CRASHINFO_PROC_FLAGS, size: sizeof(pflags), user_addr: &uaddr)) { |
| 611 | kcdata_memcpy(data: crash_info_ptr, dst_addr: uaddr, src_addr: &pflags, size: sizeof(pflags)); |
| 612 | } |
| 613 | |
| 614 | if (KERN_SUCCESS == kcdata_get_memory_addr(data: crash_info_ptr, TASK_CRASHINFO_UID, size: sizeof(p->p_uid), user_addr: &uaddr)) { |
| 615 | kcdata_memcpy(data: crash_info_ptr, dst_addr: uaddr, src_addr: &p->p_uid, size: sizeof(p->p_uid)); |
| 616 | } |
| 617 | |
| 618 | if (KERN_SUCCESS == kcdata_get_memory_addr(data: crash_info_ptr, TASK_CRASHINFO_GID, size: sizeof(p->p_gid), user_addr: &uaddr)) { |
| 619 | kcdata_memcpy(data: crash_info_ptr, dst_addr: uaddr, src_addr: &p->p_gid, size: sizeof(p->p_gid)); |
| 620 | } |
| 621 | |
| 622 | cputype = cpu_type() & ~CPU_ARCH_MASK; |
| 623 | if (IS_64BIT_PROCESS(p)) { |
| 624 | cputype |= CPU_ARCH_ABI64; |
| 625 | } else if (proc_is64bit_data(p)) { |
| 626 | cputype |= CPU_ARCH_ABI64_32; |
| 627 | } |
| 628 | |
| 629 | if (KERN_SUCCESS == kcdata_get_memory_addr(data: crash_info_ptr, TASK_CRASHINFO_CPUTYPE, size: sizeof(cpu_type_t), user_addr: &uaddr)) { |
| 630 | kcdata_memcpy(data: crash_info_ptr, dst_addr: uaddr, src_addr: &cputype, size: sizeof(cpu_type_t)); |
| 631 | } |
| 632 | |
| 633 | if (KERN_SUCCESS == kcdata_get_memory_addr(data: crash_info_ptr, TASK_CRASHINFO_PROC_CPUTYPE, size: sizeof(cpu_type_t), user_addr: &uaddr)) { |
| 634 | kcdata_memcpy(data: crash_info_ptr, dst_addr: uaddr, src_addr: &p->p_cputype, size: sizeof(cpu_type_t)); |
| 635 | } |
| 636 | |
| 637 | if (KERN_SUCCESS == kcdata_get_memory_addr(data: crash_info_ptr, TASK_CRASHINFO_MEMORY_LIMIT, size: sizeof(max_footprint_mb), user_addr: &uaddr)) { |
| 638 | max_footprint = get_task_phys_footprint_limit(proc_task(p)); |
| 639 | max_footprint_mb = max_footprint >> 20; |
| 640 | kcdata_memcpy(data: crash_info_ptr, dst_addr: uaddr, src_addr: &max_footprint_mb, size: sizeof(max_footprint_mb)); |
| 641 | } |
| 642 | |
| 643 | if (KERN_SUCCESS == kcdata_get_memory_addr(data: crash_info_ptr, TASK_CRASHINFO_LEDGER_PHYS_FOOTPRINT_LIFETIME_MAX, size: sizeof(ledger_phys_footprint_lifetime_max), user_addr: &uaddr)) { |
| 644 | ledger_phys_footprint_lifetime_max = get_task_phys_footprint_lifetime_max(proc_task(p)); |
| 645 | kcdata_memcpy(data: crash_info_ptr, dst_addr: uaddr, src_addr: &ledger_phys_footprint_lifetime_max, size: sizeof(ledger_phys_footprint_lifetime_max)); |
| 646 | } |
| 647 | |
| 648 | // In the forking case, the current ledger info is copied into the corpse while the original task is suspended for consistency |
| 649 | if (KERN_SUCCESS == kcdata_get_memory_addr(data: crash_info_ptr, TASK_CRASHINFO_LEDGER_INTERNAL, size: sizeof(ledger_internal), user_addr: &uaddr)) { |
| 650 | ledger_internal = get_task_internal(corpse_task); |
| 651 | kcdata_memcpy(data: crash_info_ptr, dst_addr: uaddr, src_addr: &ledger_internal, size: sizeof(ledger_internal)); |
| 652 | } |
| 653 | |
| 654 | if (KERN_SUCCESS == kcdata_get_memory_addr(data: crash_info_ptr, TASK_CRASHINFO_LEDGER_INTERNAL_COMPRESSED, size: sizeof(ledger_internal_compressed), user_addr: &uaddr)) { |
| 655 | ledger_internal_compressed = get_task_internal_compressed(corpse_task); |
| 656 | kcdata_memcpy(data: crash_info_ptr, dst_addr: uaddr, src_addr: &ledger_internal_compressed, size: sizeof(ledger_internal_compressed)); |
| 657 | } |
| 658 | |
| 659 | if (KERN_SUCCESS == kcdata_get_memory_addr(data: crash_info_ptr, TASK_CRASHINFO_LEDGER_IOKIT_MAPPED, size: sizeof(ledger_iokit_mapped), user_addr: &uaddr)) { |
| 660 | ledger_iokit_mapped = get_task_iokit_mapped(corpse_task); |
| 661 | kcdata_memcpy(data: crash_info_ptr, dst_addr: uaddr, src_addr: &ledger_iokit_mapped, size: sizeof(ledger_iokit_mapped)); |
| 662 | } |
| 663 | |
| 664 | if (KERN_SUCCESS == kcdata_get_memory_addr(data: crash_info_ptr, TASK_CRASHINFO_LEDGER_ALTERNATE_ACCOUNTING, size: sizeof(ledger_alternate_accounting), user_addr: &uaddr)) { |
| 665 | ledger_alternate_accounting = get_task_alternate_accounting(corpse_task); |
| 666 | kcdata_memcpy(data: crash_info_ptr, dst_addr: uaddr, src_addr: &ledger_alternate_accounting, size: sizeof(ledger_alternate_accounting)); |
| 667 | } |
| 668 | |
| 669 | if (KERN_SUCCESS == kcdata_get_memory_addr(data: crash_info_ptr, TASK_CRASHINFO_LEDGER_ALTERNATE_ACCOUNTING_COMPRESSED, size: sizeof(ledger_alternate_accounting_compressed), user_addr: &uaddr)) { |
| 670 | ledger_alternate_accounting_compressed = get_task_alternate_accounting_compressed(corpse_task); |
| 671 | kcdata_memcpy(data: crash_info_ptr, dst_addr: uaddr, src_addr: &ledger_alternate_accounting_compressed, size: sizeof(ledger_alternate_accounting_compressed)); |
| 672 | } |
| 673 | |
| 674 | if (KERN_SUCCESS == kcdata_get_memory_addr(data: crash_info_ptr, TASK_CRASHINFO_LEDGER_PURGEABLE_NONVOLATILE, size: sizeof(ledger_purgeable_nonvolatile), user_addr: &uaddr)) { |
| 675 | ledger_purgeable_nonvolatile = get_task_purgeable_nonvolatile(corpse_task); |
| 676 | kcdata_memcpy(data: crash_info_ptr, dst_addr: uaddr, src_addr: &ledger_purgeable_nonvolatile, size: sizeof(ledger_purgeable_nonvolatile)); |
| 677 | } |
| 678 | |
| 679 | if (KERN_SUCCESS == kcdata_get_memory_addr(data: crash_info_ptr, TASK_CRASHINFO_LEDGER_PURGEABLE_NONVOLATILE_COMPRESSED, size: sizeof(ledger_purgeable_nonvolatile_compressed), user_addr: &uaddr)) { |
| 680 | ledger_purgeable_nonvolatile_compressed = get_task_purgeable_nonvolatile_compressed(corpse_task); |
| 681 | kcdata_memcpy(data: crash_info_ptr, dst_addr: uaddr, src_addr: &ledger_purgeable_nonvolatile_compressed, size: sizeof(ledger_purgeable_nonvolatile_compressed)); |
| 682 | } |
| 683 | |
| 684 | if (KERN_SUCCESS == kcdata_get_memory_addr(data: crash_info_ptr, TASK_CRASHINFO_LEDGER_PAGE_TABLE, size: sizeof(ledger_page_table), user_addr: &uaddr)) { |
| 685 | ledger_page_table = get_task_page_table(corpse_task); |
| 686 | kcdata_memcpy(data: crash_info_ptr, dst_addr: uaddr, src_addr: &ledger_page_table, size: sizeof(ledger_page_table)); |
| 687 | } |
| 688 | |
| 689 | if (KERN_SUCCESS == kcdata_get_memory_addr(data: crash_info_ptr, TASK_CRASHINFO_LEDGER_PHYS_FOOTPRINT, size: sizeof(ledger_phys_footprint), user_addr: &uaddr)) { |
| 690 | ledger_phys_footprint = get_task_phys_footprint(corpse_task); |
| 691 | kcdata_memcpy(data: crash_info_ptr, dst_addr: uaddr, src_addr: &ledger_phys_footprint, size: sizeof(ledger_phys_footprint)); |
| 692 | } |
| 693 | |
| 694 | if (KERN_SUCCESS == kcdata_get_memory_addr(data: crash_info_ptr, TASK_CRASHINFO_LEDGER_NETWORK_NONVOLATILE, size: sizeof(ledger_network_nonvolatile), user_addr: &uaddr)) { |
| 695 | ledger_network_nonvolatile = get_task_network_nonvolatile(corpse_task); |
| 696 | kcdata_memcpy(data: crash_info_ptr, dst_addr: uaddr, src_addr: &ledger_network_nonvolatile, size: sizeof(ledger_network_nonvolatile)); |
| 697 | } |
| 698 | |
| 699 | if (KERN_SUCCESS == kcdata_get_memory_addr(data: crash_info_ptr, TASK_CRASHINFO_LEDGER_NETWORK_NONVOLATILE_COMPRESSED, size: sizeof(ledger_network_nonvolatile_compressed), user_addr: &uaddr)) { |
| 700 | ledger_network_nonvolatile_compressed = get_task_network_nonvolatile_compressed(corpse_task); |
| 701 | kcdata_memcpy(data: crash_info_ptr, dst_addr: uaddr, src_addr: &ledger_network_nonvolatile_compressed, size: sizeof(ledger_network_nonvolatile_compressed)); |
| 702 | } |
| 703 | |
| 704 | if (KERN_SUCCESS == kcdata_get_memory_addr(data: crash_info_ptr, TASK_CRASHINFO_LEDGER_WIRED_MEM, size: sizeof(ledger_wired_mem), user_addr: &uaddr)) { |
| 705 | ledger_wired_mem = get_task_wired_mem(corpse_task); |
| 706 | kcdata_memcpy(data: crash_info_ptr, dst_addr: uaddr, src_addr: &ledger_wired_mem, size: sizeof(ledger_wired_mem)); |
| 707 | } |
| 708 | |
| 709 | bzero(s: &pwqinfo, n: sizeof(struct proc_workqueueinfo)); |
| 710 | retval = fill_procworkqueue(p, &pwqinfo); |
| 711 | if (retval == 0) { |
| 712 | if (KERN_SUCCESS == kcdata_get_memory_addr(data: crash_info_ptr, TASK_CRASHINFO_WORKQUEUEINFO, size: sizeof(struct proc_workqueueinfo), user_addr: &uaddr)) { |
| 713 | kcdata_memcpy(data: crash_info_ptr, dst_addr: uaddr, src_addr: &pwqinfo, size: sizeof(struct proc_workqueueinfo)); |
| 714 | } |
| 715 | } |
| 716 | |
| 717 | if (KERN_SUCCESS == kcdata_get_memory_addr(data: crash_info_ptr, TASK_CRASHINFO_RESPONSIBLE_PID, size: sizeof(p->p_responsible_pid), user_addr: &uaddr)) { |
| 718 | kcdata_memcpy(data: crash_info_ptr, dst_addr: uaddr, src_addr: &p->p_responsible_pid, size: sizeof(p->p_responsible_pid)); |
| 719 | } |
| 720 | |
| 721 | if (KERN_SUCCESS == kcdata_get_memory_addr(data: crash_info_ptr, TASK_CRASHINFO_PROC_PERSONA_ID, size: sizeof(uid_t), user_addr: &uaddr)) { |
| 722 | uid_t persona_id = proc_persona_id(p); |
| 723 | kcdata_memcpy(data: crash_info_ptr, dst_addr: uaddr, src_addr: &persona_id, size: sizeof(persona_id)); |
| 724 | } |
| 725 | |
| 726 | #if CONFIG_COALITIONS |
| 727 | if (KERN_SUCCESS == kcdata_get_memory_addr_for_array(data: crash_info_ptr, TASK_CRASHINFO_COALITION_ID, size_of_element: sizeof(uint64_t), COALITION_NUM_TYPES, user_addr: &uaddr)) { |
| 728 | uint64_t coalition_ids[COALITION_NUM_TYPES]; |
| 729 | task_coalition_ids(task: proc_task(p), ids: coalition_ids); |
| 730 | kcdata_memcpy(data: crash_info_ptr, dst_addr: uaddr, src_addr: coalition_ids, size: sizeof(coalition_ids)); |
| 731 | } |
| 732 | #endif /* CONFIG_COALITIONS */ |
| 733 | |
| 734 | #if CONFIG_MEMORYSTATUS |
| 735 | memstat_dirty_flags = memorystatus_dirty_get(p, FALSE); |
| 736 | if (KERN_SUCCESS == kcdata_get_memory_addr(data: crash_info_ptr, TASK_CRASHINFO_DIRTY_FLAGS, size: sizeof(memstat_dirty_flags), user_addr: &uaddr)) { |
| 737 | kcdata_memcpy(data: crash_info_ptr, dst_addr: uaddr, src_addr: &memstat_dirty_flags, size: sizeof(memstat_dirty_flags)); |
| 738 | } |
| 739 | #endif |
| 740 | |
| 741 | if (KERN_SUCCESS == kcdata_get_memory_addr(data: crash_info_ptr, TASK_CRASHINFO_MEMORY_LIMIT_INCREASE, size: sizeof(p->p_memlimit_increase), user_addr: &uaddr)) { |
| 742 | kcdata_memcpy(data: crash_info_ptr, dst_addr: uaddr, src_addr: &p->p_memlimit_increase, size: sizeof(p->p_memlimit_increase)); |
| 743 | } |
| 744 | |
| 745 | if (KERN_SUCCESS == kcdata_get_memory_addr(data: crash_info_ptr, TASK_CRASHINFO_LEDGER_TAGGED_FOOTPRINT, size: sizeof(ledger_tagged_footprint), user_addr: &uaddr)) { |
| 746 | ledger_tagged_footprint = get_task_tagged_footprint(task: corpse_task); |
| 747 | kcdata_memcpy(data: crash_info_ptr, dst_addr: uaddr, src_addr: &ledger_tagged_footprint, size: sizeof(ledger_tagged_footprint)); |
| 748 | } |
| 749 | |
| 750 | if (KERN_SUCCESS == kcdata_get_memory_addr(data: crash_info_ptr, TASK_CRASHINFO_LEDGER_TAGGED_FOOTPRINT_COMPRESSED, size: sizeof(ledger_tagged_footprint_compressed), user_addr: &uaddr)) { |
| 751 | ledger_tagged_footprint_compressed = get_task_tagged_footprint_compressed(task: corpse_task); |
| 752 | kcdata_memcpy(data: crash_info_ptr, dst_addr: uaddr, src_addr: &ledger_tagged_footprint_compressed, size: sizeof(ledger_tagged_footprint_compressed)); |
| 753 | } |
| 754 | |
| 755 | if (KERN_SUCCESS == kcdata_get_memory_addr(data: crash_info_ptr, TASK_CRASHINFO_LEDGER_MEDIA_FOOTPRINT, size: sizeof(ledger_media_footprint), user_addr: &uaddr)) { |
| 756 | ledger_media_footprint = get_task_media_footprint(task: corpse_task); |
| 757 | kcdata_memcpy(data: crash_info_ptr, dst_addr: uaddr, src_addr: &ledger_media_footprint, size: sizeof(ledger_media_footprint)); |
| 758 | } |
| 759 | |
| 760 | if (KERN_SUCCESS == kcdata_get_memory_addr(data: crash_info_ptr, TASK_CRASHINFO_LEDGER_MEDIA_FOOTPRINT_COMPRESSED, size: sizeof(ledger_media_footprint_compressed), user_addr: &uaddr)) { |
| 761 | ledger_media_footprint_compressed = get_task_media_footprint_compressed(task: corpse_task); |
| 762 | kcdata_memcpy(data: crash_info_ptr, dst_addr: uaddr, src_addr: &ledger_media_footprint_compressed, size: sizeof(ledger_media_footprint_compressed)); |
| 763 | } |
| 764 | |
| 765 | if (KERN_SUCCESS == kcdata_get_memory_addr(data: crash_info_ptr, TASK_CRASHINFO_LEDGER_GRAPHICS_FOOTPRINT, size: sizeof(ledger_graphics_footprint), user_addr: &uaddr)) { |
| 766 | ledger_graphics_footprint = get_task_graphics_footprint(task: corpse_task); |
| 767 | kcdata_memcpy(data: crash_info_ptr, dst_addr: uaddr, src_addr: &ledger_graphics_footprint, size: sizeof(ledger_graphics_footprint)); |
| 768 | } |
| 769 | |
| 770 | if (KERN_SUCCESS == kcdata_get_memory_addr(data: crash_info_ptr, TASK_CRASHINFO_LEDGER_GRAPHICS_FOOTPRINT_COMPRESSED, size: sizeof(ledger_graphics_footprint_compressed), user_addr: &uaddr)) { |
| 771 | ledger_graphics_footprint_compressed = get_task_graphics_footprint_compressed(task: corpse_task); |
| 772 | kcdata_memcpy(data: crash_info_ptr, dst_addr: uaddr, src_addr: &ledger_graphics_footprint_compressed, size: sizeof(ledger_graphics_footprint_compressed)); |
| 773 | } |
| 774 | |
| 775 | if (KERN_SUCCESS == kcdata_get_memory_addr(data: crash_info_ptr, TASK_CRASHINFO_LEDGER_NEURAL_FOOTPRINT, size: sizeof(ledger_neural_footprint), user_addr: &uaddr)) { |
| 776 | ledger_neural_footprint = get_task_neural_footprint(task: corpse_task); |
| 777 | kcdata_memcpy(data: crash_info_ptr, dst_addr: uaddr, src_addr: &ledger_neural_footprint, size: sizeof(ledger_neural_footprint)); |
| 778 | } |
| 779 | |
| 780 | if (KERN_SUCCESS == kcdata_get_memory_addr(data: crash_info_ptr, TASK_CRASHINFO_LEDGER_NEURAL_FOOTPRINT_COMPRESSED, size: sizeof(ledger_neural_footprint_compressed), user_addr: &uaddr)) { |
| 781 | ledger_neural_footprint_compressed = get_task_neural_footprint_compressed(task: corpse_task); |
| 782 | kcdata_memcpy(data: crash_info_ptr, dst_addr: uaddr, src_addr: &ledger_neural_footprint_compressed, size: sizeof(ledger_neural_footprint_compressed)); |
| 783 | } |
| 784 | |
| 785 | if (KERN_SUCCESS == kcdata_get_memory_addr(data: crash_info_ptr, TASK_CRASHINFO_MEMORYSTATUS_EFFECTIVE_PRIORITY, size: sizeof(p->p_memstat_effectivepriority), user_addr: &uaddr)) { |
| 786 | kcdata_memcpy(data: crash_info_ptr, dst_addr: uaddr, src_addr: &p->p_memstat_effectivepriority, size: sizeof(p->p_memstat_effectivepriority)); |
| 787 | } |
| 788 | |
| 789 | if (KERN_SUCCESS == kcdata_get_memory_addr(data: crash_info_ptr, TASK_CRASHINFO_KERNEL_TRIAGE_INFO_V1, size: sizeof(struct kernel_triage_info_v1), user_addr: &uaddr)) { |
| 790 | char triage_strings[KDBG_TRIAGE_MAX_STRINGS][KDBG_TRIAGE_MAX_STRLEN]; |
| 791 | ktriage_extract(thread_id: thread_tid(thread: current_thread()), buf: triage_strings, KDBG_TRIAGE_MAX_STRINGS * KDBG_TRIAGE_MAX_STRLEN); |
| 792 | kcdata_memcpy(data: crash_info_ptr, dst_addr: uaddr, src_addr: (void*) triage_strings, size: sizeof(struct kernel_triage_info_v1)); |
| 793 | } |
| 794 | |
| 795 | if (KERN_SUCCESS == kcdata_get_memory_addr(data: crash_info_ptr, TASK_CRASHINFO_TASK_IS_CORPSE_FORK, size: sizeof(is_corpse_fork), user_addr: &uaddr)) { |
| 796 | is_corpse_fork = is_corpsefork(task: corpse_task); |
| 797 | kcdata_memcpy(data: crash_info_ptr, dst_addr: uaddr, src_addr: &is_corpse_fork, size: sizeof(is_corpse_fork)); |
| 798 | } |
| 799 | |
| 800 | if (KERN_SUCCESS == kcdata_get_memory_addr(data: crash_info_ptr, TASK_CRASHINFO_EXCEPTION_TYPE, size: sizeof(etype), user_addr: &uaddr)) { |
| 801 | kcdata_memcpy(data: crash_info_ptr, dst_addr: uaddr, src_addr: &etype, size: sizeof(etype)); |
| 802 | } |
| 803 | |
| 804 | if (KERN_SUCCESS == kcdata_get_memory_addr(data: crash_info_ptr, TASK_CRASHINFO_CRASH_COUNT, size: sizeof(int), user_addr: &uaddr)) { |
| 805 | kcdata_memcpy(data: crash_info_ptr, dst_addr: uaddr, src_addr: &p->p_crash_count, size: sizeof(int)); |
| 806 | } |
| 807 | |
| 808 | if (KERN_SUCCESS == kcdata_get_memory_addr(data: crash_info_ptr, TASK_CRASHINFO_THROTTLE_TIMEOUT, size: sizeof(int), user_addr: &uaddr)) { |
| 809 | kcdata_memcpy(data: crash_info_ptr, dst_addr: uaddr, src_addr: &p->p_throttle_timeout, size: sizeof(int)); |
| 810 | } |
| 811 | |
| 812 | char signing_id[MAX_CRASHINFO_SIGNING_ID_LEN] = {}; |
| 813 | if (KERN_SUCCESS == kcdata_get_memory_addr(data: crash_info_ptr, TASK_CRASHINFO_CS_SIGNING_ID, size: sizeof(signing_id), user_addr: &uaddr)) { |
| 814 | const char * id = cs_identity_get(p); |
| 815 | if (id) { |
| 816 | strlcpy(dst: signing_id, src: id, n: sizeof(signing_id)); |
| 817 | } |
| 818 | kcdata_memcpy(data: crash_info_ptr, dst_addr: uaddr, src_addr: &signing_id, size: sizeof(signing_id)); |
| 819 | } |
| 820 | char team_id[MAX_CRASHINFO_TEAM_ID_LEN] = {}; |
| 821 | if (KERN_SUCCESS == kcdata_get_memory_addr(data: crash_info_ptr, TASK_CRASHINFO_CS_TEAM_ID, size: sizeof(team_id), user_addr: &uaddr)) { |
| 822 | const char * id = csproc_get_teamid(p); |
| 823 | if (id) { |
| 824 | strlcpy(dst: team_id, src: id, n: sizeof(team_id)); |
| 825 | } |
| 826 | kcdata_memcpy(data: crash_info_ptr, dst_addr: uaddr, src_addr: &team_id, size: sizeof(team_id)); |
| 827 | } |
| 828 | |
| 829 | if (KERN_SUCCESS == kcdata_get_memory_addr(data: crash_info_ptr, TASK_CRASHINFO_CS_VALIDATION_CATEGORY, size: sizeof(uint32_t), user_addr: &uaddr)) { |
| 830 | uint32_t category = 0; |
| 831 | if (csproc_get_validation_category(p, &category) != KERN_SUCCESS) { |
| 832 | category = CS_VALIDATION_CATEGORY_INVALID; |
| 833 | } |
| 834 | kcdata_memcpy(data: crash_info_ptr, dst_addr: uaddr, src_addr: &category, size: sizeof(category)); |
| 835 | } |
| 836 | |
| 837 | if (KERN_SUCCESS == kcdata_get_memory_addr(data: crash_info_ptr, TASK_CRASHINFO_CS_TRUST_LEVEL, size: sizeof(uint32_t), user_addr: &uaddr)) { |
| 838 | uint32_t trust = 0; |
| 839 | kern_return_t ret = get_trust_level_kdp(pmap: get_task_pmap(corpse_task), trust_level: &trust); |
| 840 | if (ret != KERN_SUCCESS) { |
| 841 | trust = KCDATA_INVALID_CS_TRUST_LEVEL; |
| 842 | } |
| 843 | kcdata_memcpy(data: crash_info_ptr, dst_addr: uaddr, src_addr: &trust, size: sizeof(trust)); |
| 844 | } |
| 845 | |
| 846 | |
| 847 | if (p->p_exit_reason != OS_REASON_NULL && reason == OS_REASON_NULL) { |
| 848 | reason = p->p_exit_reason; |
| 849 | } |
| 850 | if (reason != OS_REASON_NULL) { |
| 851 | if (KERN_SUCCESS == kcdata_get_memory_addr(data: crash_info_ptr, EXIT_REASON_SNAPSHOT, size: sizeof(struct exit_reason_snapshot), user_addr: &uaddr)) { |
| 852 | struct exit_reason_snapshot ers = { |
| 853 | .ers_namespace = reason->osr_namespace, |
| 854 | .ers_code = reason->osr_code, |
| 855 | .ers_flags = reason->osr_flags |
| 856 | }; |
| 857 | |
| 858 | kcdata_memcpy(data: crash_info_ptr, dst_addr: uaddr, src_addr: &ers, size: sizeof(ers)); |
| 859 | } |
| 860 | |
| 861 | if (reason->osr_kcd_buf != 0) { |
| 862 | uint32_t reason_buf_size = (uint32_t)kcdata_memory_get_used_bytes(kcd: &reason->osr_kcd_descriptor); |
| 863 | assert(reason_buf_size != 0); |
| 864 | |
| 865 | if (KERN_SUCCESS == kcdata_get_memory_addr(data: crash_info_ptr, KCDATA_TYPE_NESTED_KCDATA, size: reason_buf_size, user_addr: &uaddr)) { |
| 866 | kcdata_memcpy(data: crash_info_ptr, dst_addr: uaddr, src_addr: reason->osr_kcd_buf, size: reason_buf_size); |
| 867 | } |
| 868 | } |
| 869 | } |
| 870 | |
| 871 | if (num_udata > 0) { |
| 872 | if (KERN_SUCCESS == kcdata_get_memory_addr_for_array(data: crash_info_ptr, TASK_CRASHINFO_UDATA_PTRS, |
| 873 | size_of_element: sizeof(uint64_t), count: num_udata, user_addr: &uaddr)) { |
| 874 | kcdata_memcpy(data: crash_info_ptr, dst_addr: uaddr, src_addr: udata_buffer, size: sizeof(uint64_t) * num_udata); |
| 875 | } |
| 876 | } |
| 877 | |
| 878 | #if CONFIG_EXCLAVES |
| 879 | task_add_conclave_crash_info(corpse_task, crash_info_ptr); |
| 880 | #endif /* CONFIG_EXCLAVES */ |
| 881 | } |
| 882 | |
| 883 | exception_type_t |
| 884 | get_exception_from_corpse_crashinfo(kcdata_descriptor_t corpse_info) |
| 885 | { |
| 886 | kcdata_iter_t iter = kcdata_iter(buffer: (void *)corpse_info->kcd_addr_begin, |
| 887 | size: corpse_info->kcd_length); |
| 888 | __assert_only uint32_t type = kcdata_iter_type(iter); |
| 889 | assert(type == KCDATA_BUFFER_BEGIN_CRASHINFO); |
| 890 | |
| 891 | iter = kcdata_iter_find_type(iter, TASK_CRASHINFO_EXCEPTION_TYPE); |
| 892 | exception_type_t *etype = kcdata_iter_payload(iter); |
| 893 | return *etype; |
| 894 | } |
| 895 | |
| 896 | /* |
| 897 | * Collect information required for generating lightwight corpse for current |
| 898 | * task, which can be terminating. |
| 899 | */ |
| 900 | kern_return_t |
| 901 | current_thread_collect_backtrace_info( |
| 902 | kcdata_descriptor_t *new_desc, |
| 903 | exception_type_t etype, |
| 904 | mach_exception_data_t code, |
| 905 | mach_msg_type_number_t codeCnt, |
| 906 | void *reasonp) |
| 907 | { |
| 908 | kcdata_descriptor_t kcdata; |
| 909 | kern_return_t kr; |
| 910 | int frame_count = 0, max_frames = 100; |
| 911 | mach_vm_address_t uuid_info_addr = 0; |
| 912 | uint32_t uuid_info_count = 0; |
| 913 | uint32_t btinfo_flag = 0; |
| 914 | mach_vm_address_t btinfo_flag_addr = 0, kaddr = 0; |
| 915 | natural_t alloc_size = BTINFO_ALLOCATION_SIZE; |
| 916 | mach_msg_type_number_t th_info_count = THREAD_IDENTIFIER_INFO_COUNT; |
| 917 | thread_identifier_info_data_t th_info; |
| 918 | char threadname[MAXTHREADNAMESIZE]; |
| 919 | void *btdata_kernel = NULL; |
| 920 | typedef uintptr_t user_btframe_t __kernel_data_semantics; |
| 921 | user_btframe_t *btframes = NULL; |
| 922 | os_reason_t reason = (os_reason_t)reasonp; |
| 923 | struct backtrace_user_info info = BTUINFO_INIT; |
| 924 | struct rusage_superset rup; |
| 925 | uint32_t platform; |
| 926 | |
| 927 | task_t task = current_task(); |
| 928 | proc_t p = current_proc(); |
| 929 | |
| 930 | bool has_64bit_addr = task_get_64bit_addr(task: current_task()); |
| 931 | bool has_64bit_data = task_get_64bit_data(task: current_task()); |
| 932 | |
| 933 | if (new_desc == NULL) { |
| 934 | return KERN_INVALID_ARGUMENT; |
| 935 | } |
| 936 | |
| 937 | /* First, collect backtrace frames */ |
| 938 | btframes = kalloc_data(max_frames * sizeof(btframes[0]), Z_WAITOK | Z_ZERO); |
| 939 | if (!btframes) { |
| 940 | return KERN_RESOURCE_SHORTAGE; |
| 941 | } |
| 942 | |
| 943 | frame_count = backtrace_user(bt: btframes, btlen: max_frames, NULL, info_out: &info); |
| 944 | if (info.btui_error || frame_count == 0) { |
| 945 | kfree_data(btframes, max_frames * sizeof(btframes[0])); |
| 946 | return KERN_FAILURE; |
| 947 | } |
| 948 | |
| 949 | if ((info.btui_info & BTI_TRUNCATED) != 0) { |
| 950 | btinfo_flag |= TASK_BTINFO_FLAG_BT_TRUNCATED; |
| 951 | } |
| 952 | |
| 953 | /* Captured in kcdata descriptor below */ |
| 954 | btdata_kernel = kalloc_data(alloc_size, Z_WAITOK | Z_ZERO); |
| 955 | if (!btdata_kernel) { |
| 956 | kfree_data(btframes, max_frames * sizeof(btframes[0])); |
| 957 | return KERN_RESOURCE_SHORTAGE; |
| 958 | } |
| 959 | |
| 960 | kcdata = task_btinfo_alloc_init(addr: (mach_vm_address_t)btdata_kernel, size: alloc_size); |
| 961 | if (!kcdata) { |
| 962 | kfree_data(btdata_kernel, alloc_size); |
| 963 | kfree_data(btframes, max_frames * sizeof(btframes[0])); |
| 964 | return KERN_RESOURCE_SHORTAGE; |
| 965 | } |
| 966 | |
| 967 | /* First reserve space in kcdata blob for the btinfo flag fields */ |
| 968 | if (KERN_SUCCESS != kcdata_get_memory_addr(data: kcdata, TASK_BTINFO_FLAGS, |
| 969 | size: sizeof(uint32_t), user_addr: &btinfo_flag_addr)) { |
| 970 | kfree_data(btdata_kernel, alloc_size); |
| 971 | kfree_data(btframes, max_frames * sizeof(btframes[0])); |
| 972 | kcdata_memory_destroy(data: kcdata); |
| 973 | return KERN_RESOURCE_SHORTAGE; |
| 974 | } |
| 975 | |
| 976 | if (KERN_SUCCESS == kcdata_get_memory_addr_for_array(data: kcdata, |
| 977 | type_of_element: (has_64bit_addr ? TASK_BTINFO_BACKTRACE64 : TASK_BTINFO_BACKTRACE), |
| 978 | size_of_element: sizeof(uintptr_t), count: frame_count, user_addr: &kaddr)) { |
| 979 | kcdata_memcpy(data: kcdata, dst_addr: kaddr, src_addr: btframes, size: sizeof(uintptr_t) * frame_count); |
| 980 | } |
| 981 | |
| 982 | #if __LP64__ |
| 983 | /* We only support async stacks on 64-bit kernels */ |
| 984 | frame_count = 0; |
| 985 | |
| 986 | if (info.btui_async_frame_addr != 0) { |
| 987 | if (KERN_SUCCESS == kcdata_get_memory_addr(data: kcdata, TASK_BTINFO_ASYNC_START_INDEX, |
| 988 | size: sizeof(uint32_t), user_addr: &kaddr)) { |
| 989 | uint32_t idx = info.btui_async_start_index; |
| 990 | kcdata_memcpy(data: kcdata, dst_addr: kaddr, src_addr: &idx, size: sizeof(uint32_t)); |
| 991 | } |
| 992 | struct backtrace_control ctl = { |
| 993 | .btc_frame_addr = info.btui_async_frame_addr, |
| 994 | .btc_addr_offset = BTCTL_ASYNC_ADDR_OFFSET, |
| 995 | }; |
| 996 | |
| 997 | info = BTUINFO_INIT; |
| 998 | frame_count = backtrace_user(bt: btframes, btlen: max_frames, ctl: &ctl, info_out: &info); |
| 999 | if (info.btui_error == 0 && frame_count > 0) { |
| 1000 | if (KERN_SUCCESS == kcdata_get_memory_addr_for_array(data: kcdata, |
| 1001 | TASK_BTINFO_ASYNC_BACKTRACE64, |
| 1002 | size_of_element: sizeof(uintptr_t), count: frame_count, user_addr: &kaddr)) { |
| 1003 | kcdata_memcpy(data: kcdata, dst_addr: kaddr, src_addr: btframes, size: sizeof(uintptr_t) * frame_count); |
| 1004 | } |
| 1005 | } |
| 1006 | |
| 1007 | if ((info.btui_info & BTI_TRUNCATED) != 0) { |
| 1008 | btinfo_flag |= TASK_BTINFO_FLAG_ASYNC_BT_TRUNCATED; |
| 1009 | } |
| 1010 | } |
| 1011 | #endif |
| 1012 | |
| 1013 | /* Backtrace collection done, free the frames buffer */ |
| 1014 | kfree_data(btframes, max_frames * sizeof(btframes[0])); |
| 1015 | btframes = NULL; |
| 1016 | |
| 1017 | thread_set_exec_promotion(thread: current_thread()); |
| 1018 | /* Next, suspend the task briefly and collect image load infos */ |
| 1019 | task_suspend_internal(task); |
| 1020 | |
| 1021 | /* all_image_info struct is ABI, in agreement with address width */ |
| 1022 | if (has_64bit_addr) { |
| 1023 | struct user64_dyld_all_image_infos task_image_infos = {}; |
| 1024 | struct btinfo_sc_load_info64 sc_info; |
| 1025 | (void)copyin((user_addr_t)task_get_all_image_info_addr(task), &task_image_infos, |
| 1026 | sizeof(struct user64_dyld_all_image_infos)); |
| 1027 | uuid_info_count = (uint32_t)task_image_infos.uuidArrayCount; |
| 1028 | uuid_info_addr = task_image_infos.uuidArray; |
| 1029 | |
| 1030 | sc_info.sharedCacheSlide = task_image_infos.sharedCacheSlide; |
| 1031 | sc_info.sharedCacheBaseAddress = task_image_infos.sharedCacheBaseAddress; |
| 1032 | memcpy(dst: &sc_info.sharedCacheUUID, src: &task_image_infos.sharedCacheUUID, |
| 1033 | n: sizeof(task_image_infos.sharedCacheUUID)); |
| 1034 | |
| 1035 | if (KERN_SUCCESS == kcdata_get_memory_addr(data: kcdata, |
| 1036 | TASK_BTINFO_SC_LOADINFO64, size: sizeof(sc_info), user_addr: &kaddr)) { |
| 1037 | kcdata_memcpy(data: kcdata, dst_addr: kaddr, src_addr: &sc_info, size: sizeof(sc_info)); |
| 1038 | } |
| 1039 | } else { |
| 1040 | struct user32_dyld_all_image_infos task_image_infos = {}; |
| 1041 | struct btinfo_sc_load_info sc_info; |
| 1042 | (void)copyin((user_addr_t)task_get_all_image_info_addr(task), &task_image_infos, |
| 1043 | sizeof(struct user32_dyld_all_image_infos)); |
| 1044 | uuid_info_count = task_image_infos.uuidArrayCount; |
| 1045 | uuid_info_addr = task_image_infos.uuidArray; |
| 1046 | |
| 1047 | sc_info.sharedCacheSlide = task_image_infos.sharedCacheSlide; |
| 1048 | sc_info.sharedCacheBaseAddress = task_image_infos.sharedCacheBaseAddress; |
| 1049 | memcpy(dst: &sc_info.sharedCacheUUID, src: &task_image_infos.sharedCacheUUID, |
| 1050 | n: sizeof(task_image_infos.sharedCacheUUID)); |
| 1051 | |
| 1052 | if (KERN_SUCCESS == kcdata_get_memory_addr(data: kcdata, |
| 1053 | TASK_BTINFO_SC_LOADINFO, size: sizeof(sc_info), user_addr: &kaddr)) { |
| 1054 | kcdata_memcpy(data: kcdata, dst_addr: kaddr, src_addr: &sc_info, size: sizeof(sc_info)); |
| 1055 | } |
| 1056 | } |
| 1057 | |
| 1058 | if (!uuid_info_addr) { |
| 1059 | /* |
| 1060 | * Can happen when we catch dyld in the middle of updating |
| 1061 | * this data structure, or copyin of all_image_info struct failed. |
| 1062 | */ |
| 1063 | task_resume_internal(task); |
| 1064 | thread_clear_exec_promotion(thread: current_thread()); |
| 1065 | kfree_data(btdata_kernel, alloc_size); |
| 1066 | kcdata_memory_destroy(data: kcdata); |
| 1067 | return KERN_MEMORY_ERROR; |
| 1068 | } |
| 1069 | |
| 1070 | if (uuid_info_count > 0) { |
| 1071 | uint32_t uuid_info_size = (uint32_t)(has_64bit_addr ? |
| 1072 | sizeof(struct user64_dyld_uuid_info) : sizeof(struct user32_dyld_uuid_info)); |
| 1073 | |
| 1074 | if (KERN_SUCCESS == kcdata_get_memory_addr_for_array(data: kcdata, |
| 1075 | type_of_element: (has_64bit_addr ? TASK_BTINFO_DYLD_LOADINFO64 : TASK_BTINFO_DYLD_LOADINFO), |
| 1076 | size_of_element: uuid_info_size, count: uuid_info_count, user_addr: &kaddr)) { |
| 1077 | if (copyin((user_addr_t)uuid_info_addr, (void *)kaddr, uuid_info_size * uuid_info_count)) { |
| 1078 | task_resume_internal(task); |
| 1079 | thread_clear_exec_promotion(thread: current_thread()); |
| 1080 | kfree_data(btdata_kernel, alloc_size); |
| 1081 | kcdata_memory_destroy(data: kcdata); |
| 1082 | return KERN_MEMORY_ERROR; |
| 1083 | } |
| 1084 | } |
| 1085 | } |
| 1086 | |
| 1087 | task_resume_internal(task); |
| 1088 | thread_clear_exec_promotion(thread: current_thread()); |
| 1089 | |
| 1090 | /* Next, collect all other information */ |
| 1091 | thread_flavor_t tsflavor; |
| 1092 | mach_msg_type_number_t tscount; |
| 1093 | |
| 1094 | #if defined(__x86_64__) || defined(__i386__) |
| 1095 | tsflavor = x86_THREAD_STATE; /* unified */ |
| 1096 | tscount = x86_THREAD_STATE_COUNT; |
| 1097 | #else |
| 1098 | tsflavor = ARM_THREAD_STATE; /* unified */ |
| 1099 | tscount = ARM_UNIFIED_THREAD_STATE_COUNT; |
| 1100 | #endif |
| 1101 | |
| 1102 | if (KERN_SUCCESS == kcdata_get_memory_addr(data: kcdata, TASK_BTINFO_THREAD_STATE, |
| 1103 | size: sizeof(struct btinfo_thread_state_data_t) + sizeof(int) * tscount, user_addr: &kaddr)) { |
| 1104 | struct btinfo_thread_state_data_t *bt_thread_state = (struct btinfo_thread_state_data_t *)kaddr; |
| 1105 | bt_thread_state->flavor = tsflavor; |
| 1106 | bt_thread_state->count = tscount; |
| 1107 | /* variable-sized tstate array follows */ |
| 1108 | |
| 1109 | kr = thread_getstatus_to_user(thread: current_thread(), flavor: bt_thread_state->flavor, |
| 1110 | tstate: (thread_state_t)&bt_thread_state->tstate, count: &bt_thread_state->count, flags: TSSF_FLAGS_NONE); |
| 1111 | if (kr != KERN_SUCCESS) { |
| 1112 | bzero(s: (void *)kaddr, n: sizeof(struct btinfo_thread_state_data_t) + sizeof(int) * tscount); |
| 1113 | if (kr == KERN_TERMINATED) { |
| 1114 | btinfo_flag |= TASK_BTINFO_FLAG_TASK_TERMINATED; |
| 1115 | } |
| 1116 | } |
| 1117 | } |
| 1118 | |
| 1119 | #if defined(__x86_64__) || defined(__i386__) |
| 1120 | tsflavor = x86_EXCEPTION_STATE; /* unified */ |
| 1121 | tscount = x86_EXCEPTION_STATE_COUNT; |
| 1122 | #else |
| 1123 | #if defined(__arm64__) |
| 1124 | if (has_64bit_data) { |
| 1125 | tsflavor = ARM_EXCEPTION_STATE64; |
| 1126 | tscount = ARM_EXCEPTION_STATE64_COUNT; |
| 1127 | } else |
| 1128 | #endif /* defined(__arm64__) */ |
| 1129 | { |
| 1130 | tsflavor = ARM_EXCEPTION_STATE; |
| 1131 | tscount = ARM_EXCEPTION_STATE_COUNT; |
| 1132 | } |
| 1133 | #endif /* defined(__x86_64__) || defined(__i386__) */ |
| 1134 | |
| 1135 | if (KERN_SUCCESS == kcdata_get_memory_addr(data: kcdata, TASK_BTINFO_THREAD_EXCEPTION_STATE, |
| 1136 | size: sizeof(struct btinfo_thread_state_data_t) + sizeof(int) * tscount, user_addr: &kaddr)) { |
| 1137 | struct btinfo_thread_state_data_t *bt_thread_state = (struct btinfo_thread_state_data_t *)kaddr; |
| 1138 | bt_thread_state->flavor = tsflavor; |
| 1139 | bt_thread_state->count = tscount; |
| 1140 | /* variable-sized tstate array follows */ |
| 1141 | |
| 1142 | kr = thread_getstatus_to_user(thread: current_thread(), flavor: bt_thread_state->flavor, |
| 1143 | tstate: (thread_state_t)&bt_thread_state->tstate, count: &bt_thread_state->count, flags: TSSF_FLAGS_NONE); |
| 1144 | if (kr != KERN_SUCCESS) { |
| 1145 | bzero(s: (void *)kaddr, n: sizeof(struct btinfo_thread_state_data_t) + sizeof(int) * tscount); |
| 1146 | if (kr == KERN_TERMINATED) { |
| 1147 | btinfo_flag |= TASK_BTINFO_FLAG_TASK_TERMINATED; |
| 1148 | } |
| 1149 | } |
| 1150 | } |
| 1151 | |
| 1152 | if (KERN_SUCCESS == kcdata_get_memory_addr(data: kcdata, TASK_BTINFO_PID, size: sizeof(pid_t), user_addr: &kaddr)) { |
| 1153 | pid_t pid = proc_getpid(p); |
| 1154 | kcdata_memcpy(data: kcdata, dst_addr: kaddr, src_addr: &pid, size: sizeof(pid)); |
| 1155 | } |
| 1156 | |
| 1157 | if (KERN_SUCCESS == kcdata_get_memory_addr(data: kcdata, TASK_BTINFO_PPID, size: sizeof(p->p_ppid), user_addr: &kaddr)) { |
| 1158 | kcdata_memcpy(data: kcdata, dst_addr: kaddr, src_addr: &p->p_ppid, size: sizeof(p->p_ppid)); |
| 1159 | } |
| 1160 | |
| 1161 | if (KERN_SUCCESS == kcdata_get_memory_addr(data: kcdata, TASK_BTINFO_PROC_NAME, size: sizeof(p->p_comm), user_addr: &kaddr)) { |
| 1162 | kcdata_memcpy(data: kcdata, dst_addr: kaddr, src_addr: &p->p_comm, size: sizeof(p->p_comm)); |
| 1163 | } |
| 1164 | |
| 1165 | #if CONFIG_COALITIONS |
| 1166 | if (KERN_SUCCESS == kcdata_get_memory_addr_for_array(data: kcdata, TASK_BTINFO_COALITION_ID, size_of_element: sizeof(uint64_t), COALITION_NUM_TYPES, user_addr: &kaddr)) { |
| 1167 | uint64_t coalition_ids[COALITION_NUM_TYPES]; |
| 1168 | task_coalition_ids(task: proc_task(p), ids: coalition_ids); |
| 1169 | kcdata_memcpy(data: kcdata, dst_addr: kaddr, src_addr: coalition_ids, size: sizeof(coalition_ids)); |
| 1170 | } |
| 1171 | #endif /* CONFIG_COALITIONS */ |
| 1172 | |
| 1173 | /* V0 is sufficient for ReportCrash */ |
| 1174 | gather_rusage_info(p: current_proc(), ru: &rup.ri, RUSAGE_INFO_V0); |
| 1175 | rup.ri.ri_phys_footprint = 0; |
| 1176 | /* Soft crash, proc did not exit */ |
| 1177 | rup.ri.ri_proc_exit_abstime = 0; |
| 1178 | if (KERN_SUCCESS == kcdata_get_memory_addr(data: kcdata, TASK_BTINFO_RUSAGE_INFO, size: sizeof(struct rusage_info_v0), user_addr: &kaddr)) { |
| 1179 | kcdata_memcpy(data: kcdata, dst_addr: kaddr, src_addr: &rup.ri, size: sizeof(struct rusage_info_v0)); |
| 1180 | } |
| 1181 | |
| 1182 | platform = proc_platform(current_proc()); |
| 1183 | if (KERN_SUCCESS == kcdata_get_memory_addr(data: kcdata, TASK_BTINFO_PLATFORM, size: sizeof(platform), user_addr: &kaddr)) { |
| 1184 | kcdata_memcpy(data: kcdata, dst_addr: kaddr, src_addr: &platform, size: sizeof(platform)); |
| 1185 | } |
| 1186 | |
| 1187 | if (KERN_SUCCESS == kcdata_get_memory_addr(data: kcdata, TASK_BTINFO_PROC_PATH, MAXPATHLEN, user_addr: &kaddr)) { |
| 1188 | char *buf = zalloc_flags(ZV_NAMEI, Z_WAITOK | Z_ZERO); |
| 1189 | proc_pidpathinfo_internal(p, arg: 0, buffer: buf, MAXPATHLEN, NULL); |
| 1190 | kcdata_memcpy(data: kcdata, dst_addr: kaddr, src_addr: buf, MAXPATHLEN); |
| 1191 | zfree(ZV_NAMEI, buf); |
| 1192 | } |
| 1193 | |
| 1194 | if (KERN_SUCCESS == kcdata_get_memory_addr(data: kcdata, TASK_BTINFO_UID, size: sizeof(p->p_uid), user_addr: &kaddr)) { |
| 1195 | kcdata_memcpy(data: kcdata, dst_addr: kaddr, src_addr: &p->p_uid, size: sizeof(p->p_uid)); |
| 1196 | } |
| 1197 | |
| 1198 | if (KERN_SUCCESS == kcdata_get_memory_addr(data: kcdata, TASK_BTINFO_GID, size: sizeof(p->p_gid), user_addr: &kaddr)) { |
| 1199 | kcdata_memcpy(data: kcdata, dst_addr: kaddr, src_addr: &p->p_gid, size: sizeof(p->p_gid)); |
| 1200 | } |
| 1201 | |
| 1202 | if (KERN_SUCCESS == kcdata_get_memory_addr(data: kcdata, TASK_BTINFO_PROC_FLAGS, size: sizeof(unsigned int), user_addr: &kaddr)) { |
| 1203 | unsigned int pflags = p->p_flag & (P_LP64 | P_SUGID | P_TRANSLATED); |
| 1204 | kcdata_memcpy(data: kcdata, dst_addr: kaddr, src_addr: &pflags, size: sizeof(pflags)); |
| 1205 | } |
| 1206 | |
| 1207 | if (KERN_SUCCESS == kcdata_get_memory_addr(data: kcdata, TASK_BTINFO_CPUTYPE, size: sizeof(cpu_type_t), user_addr: &kaddr)) { |
| 1208 | cpu_type_t cputype = cpu_type() & ~CPU_ARCH_MASK; |
| 1209 | if (has_64bit_addr) { |
| 1210 | cputype |= CPU_ARCH_ABI64; |
| 1211 | } else if (has_64bit_data) { |
| 1212 | cputype |= CPU_ARCH_ABI64_32; |
| 1213 | } |
| 1214 | kcdata_memcpy(data: kcdata, dst_addr: kaddr, src_addr: &cputype, size: sizeof(cpu_type_t)); |
| 1215 | } |
| 1216 | |
| 1217 | if (KERN_SUCCESS == kcdata_get_memory_addr(data: kcdata, TASK_BTINFO_EXCEPTION_TYPE, size: sizeof(etype), user_addr: &kaddr)) { |
| 1218 | kcdata_memcpy(data: kcdata, dst_addr: kaddr, src_addr: &etype, size: sizeof(etype)); |
| 1219 | } |
| 1220 | |
| 1221 | if (KERN_SUCCESS == kcdata_get_memory_addr(data: kcdata, TASK_BTINFO_CRASH_COUNT, size: sizeof(int), user_addr: &kaddr)) { |
| 1222 | kcdata_memcpy(data: kcdata, dst_addr: kaddr, src_addr: &p->p_crash_count, size: sizeof(int)); |
| 1223 | } |
| 1224 | |
| 1225 | if (KERN_SUCCESS == kcdata_get_memory_addr(data: kcdata, TASK_BTINFO_THROTTLE_TIMEOUT, size: sizeof(int), user_addr: &kaddr)) { |
| 1226 | kcdata_memcpy(data: kcdata, dst_addr: kaddr, src_addr: &p->p_throttle_timeout, size: sizeof(int)); |
| 1227 | } |
| 1228 | |
| 1229 | assert(codeCnt <= EXCEPTION_CODE_MAX); |
| 1230 | |
| 1231 | if (KERN_SUCCESS == kcdata_get_memory_addr(data: kcdata, TASK_BTINFO_EXCEPTION_CODES, |
| 1232 | size: sizeof(mach_exception_code_t) * codeCnt, user_addr: &kaddr)) { |
| 1233 | kcdata_memcpy(data: kcdata, dst_addr: kaddr, src_addr: code, size: sizeof(mach_exception_code_t) * codeCnt); |
| 1234 | } |
| 1235 | |
| 1236 | if (reason != OS_REASON_NULL) { |
| 1237 | if (KERN_SUCCESS == kcdata_get_memory_addr(data: kcdata, EXIT_REASON_SNAPSHOT, size: sizeof(struct exit_reason_snapshot), user_addr: &kaddr)) { |
| 1238 | struct exit_reason_snapshot ers = { |
| 1239 | .ers_namespace = reason->osr_namespace, |
| 1240 | .ers_code = reason->osr_code, |
| 1241 | .ers_flags = reason->osr_flags |
| 1242 | }; |
| 1243 | |
| 1244 | kcdata_memcpy(data: kcdata, dst_addr: kaddr, src_addr: &ers, size: sizeof(ers)); |
| 1245 | } |
| 1246 | |
| 1247 | if (reason->osr_kcd_buf != 0) { |
| 1248 | uint32_t reason_buf_size = (uint32_t)kcdata_memory_get_used_bytes(kcd: &reason->osr_kcd_descriptor); |
| 1249 | assert(reason_buf_size != 0); |
| 1250 | |
| 1251 | if (KERN_SUCCESS == kcdata_get_memory_addr(data: kcdata, KCDATA_TYPE_NESTED_KCDATA, size: reason_buf_size, user_addr: &kaddr)) { |
| 1252 | kcdata_memcpy(data: kcdata, dst_addr: kaddr, src_addr: reason->osr_kcd_buf, size: reason_buf_size); |
| 1253 | } |
| 1254 | } |
| 1255 | } |
| 1256 | |
| 1257 | threadname[0] = '\0'; |
| 1258 | if (KERN_SUCCESS == kcdata_get_memory_addr(data: kcdata, TASK_BTINFO_THREAD_NAME, |
| 1259 | size: sizeof(threadname), user_addr: &kaddr)) { |
| 1260 | bsd_getthreadname(uth: get_bsdthread_info(current_thread()), buffer: threadname); |
| 1261 | kcdata_memcpy(data: kcdata, dst_addr: kaddr, src_addr: threadname, size: sizeof(threadname)); |
| 1262 | } |
| 1263 | |
| 1264 | kr = thread_info(target_act: current_thread(), THREAD_IDENTIFIER_INFO, thread_info_out: (thread_info_t)&th_info, thread_info_outCnt: &th_info_count); |
| 1265 | if (kr == KERN_TERMINATED) { |
| 1266 | btinfo_flag |= TASK_BTINFO_FLAG_TASK_TERMINATED; |
| 1267 | } |
| 1268 | |
| 1269 | |
| 1270 | kern_return_t last_kr = kcdata_get_memory_addr(data: kcdata, TASK_BTINFO_THREAD_ID, |
| 1271 | size: sizeof(uint64_t), user_addr: &kaddr); |
| 1272 | |
| 1273 | /* |
| 1274 | * If the last kcdata_get_memory_addr() failed (unlikely), signal to exception |
| 1275 | * handler (ReportCrash) that lw corpse collection ran out of space and the |
| 1276 | * result is incomplete. |
| 1277 | */ |
| 1278 | if (last_kr != KERN_SUCCESS) { |
| 1279 | btinfo_flag |= TASK_BTINFO_FLAG_KCDATA_INCOMPLETE; |
| 1280 | } |
| 1281 | |
| 1282 | if (KERN_SUCCESS == kr && KERN_SUCCESS == last_kr) { |
| 1283 | kcdata_memcpy(data: kcdata, dst_addr: kaddr, src_addr: &th_info.thread_id, size: sizeof(uint64_t)); |
| 1284 | } |
| 1285 | |
| 1286 | /* Lastly, copy the flags to the address we reserved at the beginning. */ |
| 1287 | kcdata_memcpy(data: kcdata, dst_addr: btinfo_flag_addr, src_addr: &btinfo_flag, size: sizeof(uint32_t)); |
| 1288 | |
| 1289 | *new_desc = kcdata; |
| 1290 | |
| 1291 | return KERN_SUCCESS; |
| 1292 | } |
| 1293 | |
| 1294 | /* |
| 1295 | * We only parse exit reason kcdata blobs for critical process before they die |
| 1296 | * and we're going to panic or for opt-in, limited diagnostic tools. |
| 1297 | * |
| 1298 | * Meant to be called immediately before panicking or limited diagnostic |
| 1299 | * scenarios. |
| 1300 | */ |
| 1301 | char * |
| 1302 | exit_reason_get_string_desc(os_reason_t exit_reason) |
| 1303 | { |
| 1304 | kcdata_iter_t iter; |
| 1305 | |
| 1306 | if (exit_reason == OS_REASON_NULL || exit_reason->osr_kcd_buf == NULL || |
| 1307 | exit_reason->osr_bufsize == 0) { |
| 1308 | return NULL; |
| 1309 | } |
| 1310 | |
| 1311 | iter = kcdata_iter(buffer: exit_reason->osr_kcd_buf, size: exit_reason->osr_bufsize); |
| 1312 | if (!kcdata_iter_valid(iter)) { |
| 1313 | #if DEBUG || DEVELOPMENT |
| 1314 | printf("exit reason has invalid exit reason buffer\n" ); |
| 1315 | #endif |
| 1316 | return NULL; |
| 1317 | } |
| 1318 | |
| 1319 | if (kcdata_iter_type(iter) != KCDATA_BUFFER_BEGIN_OS_REASON) { |
| 1320 | #if DEBUG || DEVELOPMENT |
| 1321 | printf("exit reason buffer type mismatch, expected %d got %d\n" , |
| 1322 | KCDATA_BUFFER_BEGIN_OS_REASON, kcdata_iter_type(iter)); |
| 1323 | #endif |
| 1324 | return NULL; |
| 1325 | } |
| 1326 | |
| 1327 | iter = kcdata_iter_find_type(iter, EXIT_REASON_USER_DESC); |
| 1328 | if (!kcdata_iter_valid(iter)) { |
| 1329 | return NULL; |
| 1330 | } |
| 1331 | |
| 1332 | return (char *)kcdata_iter_payload(iter); |
| 1333 | } |
| 1334 | |
| 1335 | static int initproc_spawned = 0; |
| 1336 | |
| 1337 | static int |
| 1338 | sysctl_initproc_spawned(struct sysctl_oid *oidp, __unused void *arg1, __unused int arg2, struct sysctl_req *req) |
| 1339 | { |
| 1340 | if (req->newptr != 0 && (proc_getpid(req->p) != 1 || initproc_spawned != 0)) { |
| 1341 | // Can only ever be set by launchd, and only once at boot |
| 1342 | return EPERM; |
| 1343 | } |
| 1344 | return sysctl_handle_int(oidp, arg1: &initproc_spawned, arg2: 0, req); |
| 1345 | } |
| 1346 | |
| 1347 | SYSCTL_PROC(_kern, OID_AUTO, initproc_spawned, |
| 1348 | CTLFLAG_RW | CTLFLAG_KERN | CTLTYPE_INT | CTLFLAG_LOCKED, 0, 0, |
| 1349 | sysctl_initproc_spawned, "I" , "Boolean indicator that launchd has reached main" ); |
| 1350 | |
| 1351 | #if DEVELOPMENT || DEBUG |
| 1352 | |
| 1353 | /* disable user faults */ |
| 1354 | static TUNABLE(bool, bootarg_disable_user_faults, "-disable_user_faults" , false); |
| 1355 | #endif /* DEVELOPMENT || DEBUG */ |
| 1356 | |
| 1357 | #define OS_REASON_IFLAG_USER_FAULT 0x1 |
| 1358 | |
| 1359 | #define OS_REASON_TOTAL_USER_FAULTS_PER_PROC 5 |
| 1360 | |
| 1361 | static int |
| 1362 | abort_with_payload_internal(proc_t p, |
| 1363 | uint32_t reason_namespace, uint64_t reason_code, |
| 1364 | user_addr_t payload, uint32_t payload_size, |
| 1365 | user_addr_t reason_string, uint64_t reason_flags, |
| 1366 | uint32_t internal_flags) |
| 1367 | { |
| 1368 | os_reason_t exit_reason = OS_REASON_NULL; |
| 1369 | kern_return_t kr = KERN_SUCCESS; |
| 1370 | |
| 1371 | if (internal_flags & OS_REASON_IFLAG_USER_FAULT) { |
| 1372 | uint32_t old_value = atomic_load_explicit(&p->p_user_faults, |
| 1373 | memory_order_relaxed); |
| 1374 | |
| 1375 | #if DEVELOPMENT || DEBUG |
| 1376 | if (bootarg_disable_user_faults) { |
| 1377 | return EQFULL; |
| 1378 | } |
| 1379 | #endif /* DEVELOPMENT || DEBUG */ |
| 1380 | |
| 1381 | for (;;) { |
| 1382 | if (old_value >= OS_REASON_TOTAL_USER_FAULTS_PER_PROC) { |
| 1383 | return EQFULL; |
| 1384 | } |
| 1385 | // this reloads the value in old_value |
| 1386 | if (atomic_compare_exchange_strong_explicit(&p->p_user_faults, |
| 1387 | &old_value, old_value + 1, memory_order_relaxed, |
| 1388 | memory_order_relaxed)) { |
| 1389 | break; |
| 1390 | } |
| 1391 | } |
| 1392 | } |
| 1393 | |
| 1394 | KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_PROC, BSD_PROC_EXITREASON_CREATE) | DBG_FUNC_NONE, |
| 1395 | proc_getpid(p), reason_namespace, |
| 1396 | reason_code, 0, 0); |
| 1397 | |
| 1398 | exit_reason = build_userspace_exit_reason(reason_namespace, reason_code, |
| 1399 | payload, payload_size, reason_string, reason_flags: reason_flags | OS_REASON_FLAG_ABORT); |
| 1400 | |
| 1401 | if (internal_flags & OS_REASON_IFLAG_USER_FAULT) { |
| 1402 | mach_exception_code_t code = 0; |
| 1403 | |
| 1404 | EXC_GUARD_ENCODE_TYPE(code, GUARD_TYPE_USER); /* simulated EXC_GUARD */ |
| 1405 | EXC_GUARD_ENCODE_FLAVOR(code, 0); |
| 1406 | EXC_GUARD_ENCODE_TARGET(code, reason_namespace); |
| 1407 | |
| 1408 | if (exit_reason == OS_REASON_NULL) { |
| 1409 | kr = KERN_RESOURCE_SHORTAGE; |
| 1410 | } else { |
| 1411 | kr = task_violated_guard(code, reason_code, exit_reason, TRUE); |
| 1412 | } |
| 1413 | os_reason_free(cur_reason: exit_reason); |
| 1414 | } else { |
| 1415 | /* |
| 1416 | * We use SIGABRT (rather than calling exit directly from here) so that |
| 1417 | * the debugger can catch abort_with_{reason,payload} calls. |
| 1418 | */ |
| 1419 | psignal_try_thread_with_reason(p, current_thread(), SIGABRT, exit_reason); |
| 1420 | } |
| 1421 | |
| 1422 | switch (kr) { |
| 1423 | case KERN_SUCCESS: |
| 1424 | return 0; |
| 1425 | case KERN_NOT_SUPPORTED: |
| 1426 | return ENOTSUP; |
| 1427 | case KERN_INVALID_ARGUMENT: |
| 1428 | return EINVAL; |
| 1429 | case KERN_RESOURCE_SHORTAGE: |
| 1430 | default: |
| 1431 | return EBUSY; |
| 1432 | } |
| 1433 | } |
| 1434 | |
| 1435 | int |
| 1436 | abort_with_payload(struct proc *cur_proc, struct abort_with_payload_args *args, |
| 1437 | __unused void *retval) |
| 1438 | { |
| 1439 | abort_with_payload_internal(p: cur_proc, reason_namespace: args->reason_namespace, |
| 1440 | reason_code: args->reason_code, payload: args->payload, payload_size: args->payload_size, |
| 1441 | reason_string: args->reason_string, reason_flags: args->reason_flags, internal_flags: 0); |
| 1442 | |
| 1443 | return 0; |
| 1444 | } |
| 1445 | |
| 1446 | int |
| 1447 | os_fault_with_payload(struct proc *cur_proc, |
| 1448 | struct os_fault_with_payload_args *args, __unused int *retval) |
| 1449 | { |
| 1450 | return abort_with_payload_internal(p: cur_proc, reason_namespace: args->reason_namespace, |
| 1451 | reason_code: args->reason_code, payload: args->payload, payload_size: args->payload_size, |
| 1452 | reason_string: args->reason_string, reason_flags: args->reason_flags, OS_REASON_IFLAG_USER_FAULT); |
| 1453 | } |
| 1454 | |
| 1455 | |
| 1456 | /* |
| 1457 | * exit -- |
| 1458 | * Death of process. |
| 1459 | */ |
| 1460 | __attribute__((noreturn)) |
| 1461 | void |
| 1462 | exit(proc_t p, struct exit_args *uap, int *retval) |
| 1463 | { |
| 1464 | p->p_xhighbits = ((uint32_t)(uap->rval) & 0xFF000000) >> 24; |
| 1465 | exit1(p, W_EXITCODE((uint32_t)uap->rval, 0), retval); |
| 1466 | |
| 1467 | thread_exception_return(); |
| 1468 | /* NOTREACHED */ |
| 1469 | while (TRUE) { |
| 1470 | thread_block(THREAD_CONTINUE_NULL); |
| 1471 | } |
| 1472 | /* NOTREACHED */ |
| 1473 | } |
| 1474 | |
| 1475 | /* |
| 1476 | * Exit: deallocate address space and other resources, change proc state |
| 1477 | * to zombie, and unlink proc from allproc and parent's lists. Save exit |
| 1478 | * status and rusage for wait(). Check for child processes and orphan them. |
| 1479 | */ |
| 1480 | int |
| 1481 | exit1(proc_t p, int rv, int *retval) |
| 1482 | { |
| 1483 | return exit1_internal(p, rv, retval, FALSE, TRUE, 0); |
| 1484 | } |
| 1485 | |
| 1486 | int |
| 1487 | exit1_internal(proc_t p, int rv, int *retval, boolean_t thread_can_terminate, boolean_t perf_notify, |
| 1488 | int jetsam_flags) |
| 1489 | { |
| 1490 | return exit_with_reason(p, rv, retval, thread_can_terminate, perf_notify, jetsam_flags, OS_REASON_NULL); |
| 1491 | } |
| 1492 | |
| 1493 | /* |
| 1494 | * NOTE: exit_with_reason drops a reference on the passed exit_reason |
| 1495 | */ |
| 1496 | int |
| 1497 | exit_with_reason(proc_t p, int rv, int *retval, boolean_t thread_can_terminate, boolean_t perf_notify, |
| 1498 | int jetsam_flags, struct os_reason *exit_reason) |
| 1499 | { |
| 1500 | thread_t self = current_thread(); |
| 1501 | struct task *task = proc_task(p); |
| 1502 | struct uthread *ut; |
| 1503 | int error = 0; |
| 1504 | bool proc_exiting = false; |
| 1505 | |
| 1506 | #if DEVELOPMENT || DEBUG |
| 1507 | /* |
| 1508 | * Debug boot-arg: panic here if matching process is exiting with non-zero code. |
| 1509 | * Example usage: panic_on_error_exit=launchd,logd,watchdogd |
| 1510 | */ |
| 1511 | if (rv && strnstr(panic_on_eexit_pcomms, p->p_comm, sizeof(panic_on_eexit_pcomms))) { |
| 1512 | panic("%s: Process %s with pid %d exited on error with code 0x%x." , |
| 1513 | __FUNCTION__, p->p_comm, proc_getpid(p), rv); |
| 1514 | } |
| 1515 | #endif |
| 1516 | |
| 1517 | /* |
| 1518 | * If a thread in this task has already |
| 1519 | * called exit(), then halt any others |
| 1520 | * right here. |
| 1521 | */ |
| 1522 | |
| 1523 | ut = get_bsdthread_info(self); |
| 1524 | (void)retval; |
| 1525 | |
| 1526 | /* |
| 1527 | * The parameter list of audit_syscall_exit() was augmented to |
| 1528 | * take the Darwin syscall number as the first parameter, |
| 1529 | * which is currently required by mac_audit_postselect(). |
| 1530 | */ |
| 1531 | |
| 1532 | /* |
| 1533 | * The BSM token contains two components: an exit status as passed |
| 1534 | * to exit(), and a return value to indicate what sort of exit it |
| 1535 | * was. The exit status is WEXITSTATUS(rv), but it's not clear |
| 1536 | * what the return value is. |
| 1537 | */ |
| 1538 | AUDIT_ARG(exit, WEXITSTATUS(rv), 0); |
| 1539 | /* |
| 1540 | * TODO: what to audit here when jetsam calls exit and the uthread, |
| 1541 | * 'ut' does not belong to the proc, 'p'. |
| 1542 | */ |
| 1543 | AUDIT_SYSCALL_EXIT(SYS_exit, p, ut, 0); /* Exit is always successfull */ |
| 1544 | |
| 1545 | DTRACE_PROC1(exit, int, CLD_EXITED); |
| 1546 | |
| 1547 | /* mark process is going to exit and pull out of DBG/disk throttle */ |
| 1548 | /* TODO: This should be done after becoming exit thread */ |
| 1549 | proc_set_task_policy(task: proc_task(p), TASK_POLICY_ATTRIBUTE, |
| 1550 | TASK_POLICY_TERMINATED, TASK_POLICY_ENABLE); |
| 1551 | |
| 1552 | proc_lock(p); |
| 1553 | error = proc_transstart(p, locked: 1, non_blocking: (jetsam_flags ? 1 : 0)); |
| 1554 | if (error == EDEADLK) { |
| 1555 | /* |
| 1556 | * If proc_transstart() returns EDEADLK, then another thread |
| 1557 | * is either exec'ing or exiting. Return an error and allow |
| 1558 | * the other thread to continue. |
| 1559 | */ |
| 1560 | proc_unlock(p); |
| 1561 | os_reason_free(cur_reason: exit_reason); |
| 1562 | if (current_proc() == p) { |
| 1563 | if (p->exit_thread == self) { |
| 1564 | panic("exit_thread failed to exit" ); |
| 1565 | } |
| 1566 | |
| 1567 | if (thread_can_terminate) { |
| 1568 | thread_exception_return(); |
| 1569 | } |
| 1570 | } |
| 1571 | |
| 1572 | return error; |
| 1573 | } |
| 1574 | |
| 1575 | proc_exiting = !!(p->p_lflag & P_LEXIT); |
| 1576 | |
| 1577 | while (proc_exiting || p->exit_thread != self) { |
| 1578 | if (proc_exiting || sig_try_locked(p) <= 0) { |
| 1579 | proc_transend(p, locked: 1); |
| 1580 | os_reason_free(cur_reason: exit_reason); |
| 1581 | |
| 1582 | if (get_threadtask(self) != task) { |
| 1583 | proc_unlock(p); |
| 1584 | return 0; |
| 1585 | } |
| 1586 | proc_unlock(p); |
| 1587 | |
| 1588 | thread_terminate(target_act: self); |
| 1589 | if (!thread_can_terminate) { |
| 1590 | return 0; |
| 1591 | } |
| 1592 | |
| 1593 | thread_exception_return(); |
| 1594 | /* NOTREACHED */ |
| 1595 | } |
| 1596 | sig_lock_to_exit(p); |
| 1597 | } |
| 1598 | |
| 1599 | if (exit_reason != OS_REASON_NULL) { |
| 1600 | KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_PROC, BSD_PROC_EXITREASON_COMMIT) | DBG_FUNC_NONE, |
| 1601 | proc_getpid(p), exit_reason->osr_namespace, |
| 1602 | exit_reason->osr_code, 0, 0); |
| 1603 | } |
| 1604 | |
| 1605 | assert(p->p_exit_reason == OS_REASON_NULL); |
| 1606 | p->p_exit_reason = exit_reason; |
| 1607 | |
| 1608 | p->p_lflag |= P_LEXIT; |
| 1609 | p->p_xstat = rv; |
| 1610 | p->p_lflag |= jetsam_flags; |
| 1611 | |
| 1612 | proc_transend(p, locked: 1); |
| 1613 | proc_unlock(p); |
| 1614 | |
| 1615 | proc_prepareexit(p, rv, perf_notify); |
| 1616 | |
| 1617 | /* Last thread to terminate will call proc_exit() */ |
| 1618 | task_terminate_internal(task); |
| 1619 | |
| 1620 | return 0; |
| 1621 | } |
| 1622 | |
| 1623 | #if CONFIG_MEMORYSTATUS |
| 1624 | /* |
| 1625 | * Remove this process from jetsam bands for freezing or exiting. Note this will block, if the process |
| 1626 | * is currently being frozen. |
| 1627 | * The proc_list_lock is held by the caller. |
| 1628 | * NB: If the process should be ineligible for future freezing or jetsaming the caller should first set |
| 1629 | * the p_refcount P_REF_DEAD bit. |
| 1630 | */ |
| 1631 | static void |
| 1632 | proc_memorystatus_remove(proc_t p) |
| 1633 | { |
| 1634 | LCK_MTX_ASSERT(&proc_list_mlock, LCK_MTX_ASSERT_OWNED); |
| 1635 | while (memorystatus_remove(p) == EAGAIN) { |
| 1636 | os_log(OS_LOG_DEFAULT, "memorystatus_remove: Process[%d] tried to exit while being frozen. Blocking exit until freeze completes." , proc_getpid(p)); |
| 1637 | msleep(chan: &p->p_memstat_state, mtx: &proc_list_mlock, PWAIT, wmesg: "proc_memorystatus_remove" , NULL); |
| 1638 | } |
| 1639 | } |
| 1640 | #endif |
| 1641 | |
| 1642 | #if DEVELOPMENT |
| 1643 | boolean_t crash_behavior_test_mode = FALSE; |
| 1644 | boolean_t crash_behavior_test_would_panic = FALSE; |
| 1645 | SYSCTL_UINT(_kern, OID_AUTO, crash_behavior_test_mode, CTLFLAG_RW, &crash_behavior_test_mode, 0, "" ); |
| 1646 | SYSCTL_UINT(_kern, OID_AUTO, crash_behavior_test_would_panic, CTLFLAG_RW, &crash_behavior_test_would_panic, 0, "" ); |
| 1647 | #endif /* DEVELOPMENT */ |
| 1648 | |
| 1649 | static bool |
| 1650 | _proc_is_crashing_signal(int sig) |
| 1651 | { |
| 1652 | bool result = false; |
| 1653 | switch (sig) { |
| 1654 | case SIGILL: |
| 1655 | case SIGABRT: |
| 1656 | case SIGFPE: |
| 1657 | case SIGBUS: |
| 1658 | case SIGSEGV: |
| 1659 | case SIGSYS: |
| 1660 | /* |
| 1661 | * If SIGTRAP is the terminating signal, then we can safely assume the |
| 1662 | * process crashed. (On iOS, SIGTRAP will be the terminating signal when |
| 1663 | * a process calls __builtin_trap(), which will abort.) |
| 1664 | */ |
| 1665 | case SIGTRAP: |
| 1666 | result = true; |
| 1667 | } |
| 1668 | |
| 1669 | return result; |
| 1670 | } |
| 1671 | |
| 1672 | static bool |
| 1673 | _proc_is_fatal_reason(os_reason_t reason) |
| 1674 | { |
| 1675 | if ((reason->osr_flags & OS_REASON_FLAG_ABORT) != 0) { |
| 1676 | /* Abort is always fatal even if there is no crash report generated */ |
| 1677 | return true; |
| 1678 | } |
| 1679 | if ((reason->osr_flags & OS_REASON_FLAG_NO_CRASH_REPORT) != 0) { |
| 1680 | /* |
| 1681 | * No crash report means this reason shouldn't be considered fatal |
| 1682 | * unless we are in test mode |
| 1683 | */ |
| 1684 | #if DEVELOPMENT |
| 1685 | if (crash_behavior_test_mode) { |
| 1686 | return true; |
| 1687 | } |
| 1688 | #endif /* DEVELOPMENT */ |
| 1689 | return false; |
| 1690 | } |
| 1691 | // By default all OS_REASON are fatal |
| 1692 | return true; |
| 1693 | } |
| 1694 | |
| 1695 | static TUNABLE(bool, panic_on_crash_disabled, "panic_on_crash_disabled" , false); |
| 1696 | |
| 1697 | static bool |
| 1698 | proc_should_trigger_panic(proc_t p, int rv) |
| 1699 | { |
| 1700 | if (p == initproc) { |
| 1701 | /* Always panic for launchd */ |
| 1702 | return true; |
| 1703 | } |
| 1704 | |
| 1705 | if (panic_on_crash_disabled) { |
| 1706 | printf("panic-on-crash disabled via boot-arg\n" ); |
| 1707 | return false; |
| 1708 | } |
| 1709 | |
| 1710 | if ((p->p_crash_behavior & POSIX_SPAWN_PANIC_ON_EXIT) != 0) { |
| 1711 | return true; |
| 1712 | } |
| 1713 | |
| 1714 | if ((p->p_crash_behavior & POSIX_SPAWN_PANIC_ON_SPAWN_FAIL) != 0) { |
| 1715 | return true; |
| 1716 | } |
| 1717 | |
| 1718 | if (p->p_posix_spawn_failed) { |
| 1719 | /* posix_spawn failures normally don't qualify for panics */ |
| 1720 | return false; |
| 1721 | } |
| 1722 | |
| 1723 | bool deadline_expired = (mach_continuous_time() > p->p_crash_behavior_deadline); |
| 1724 | if (p->p_crash_behavior_deadline != 0 && deadline_expired) { |
| 1725 | return false; |
| 1726 | } |
| 1727 | |
| 1728 | if (WIFEXITED(rv)) { |
| 1729 | int code = WEXITSTATUS(rv); |
| 1730 | |
| 1731 | if ((p->p_crash_behavior & POSIX_SPAWN_PANIC_ON_NON_ZERO_EXIT) != 0) { |
| 1732 | if (code == 0) { |
| 1733 | /* No panic if we exit 0 */ |
| 1734 | return false; |
| 1735 | } else { |
| 1736 | /* Panic on non-zero exit */ |
| 1737 | return true; |
| 1738 | } |
| 1739 | } else { |
| 1740 | /* No panic on normal exit if the process doesn't have the non-zero flag set */ |
| 1741 | return false; |
| 1742 | } |
| 1743 | } else if (WIFSIGNALED(rv)) { |
| 1744 | int signal = WTERMSIG(rv); |
| 1745 | /* This is a crash (non-normal exit) */ |
| 1746 | if ((p->p_crash_behavior & POSIX_SPAWN_PANIC_ON_CRASH) != 0) { |
| 1747 | os_reason_t reason = p->p_exit_reason; |
| 1748 | if (reason != OS_REASON_NULL) { |
| 1749 | if (!_proc_is_fatal_reason(reason)) { |
| 1750 | // Skip non-fatal terminate_with_reason |
| 1751 | return false; |
| 1752 | } |
| 1753 | if (reason->osr_namespace == OS_REASON_SIGNAL) { |
| 1754 | /* |
| 1755 | * OS_REASON_SIGNAL delivers as a SIGKILL with the actual signal |
| 1756 | * in osr_code, so we should check that signal here |
| 1757 | */ |
| 1758 | return _proc_is_crashing_signal(sig: (int)reason->osr_code); |
| 1759 | } else { |
| 1760 | /* |
| 1761 | * This branch covers the case of terminate_with_reason which |
| 1762 | * delivers a SIGTERM which is still considered a crash even |
| 1763 | * thought the signal is not considered a crashing signal |
| 1764 | */ |
| 1765 | return true; |
| 1766 | } |
| 1767 | } |
| 1768 | return _proc_is_crashing_signal(sig: signal); |
| 1769 | } else { |
| 1770 | return false; |
| 1771 | } |
| 1772 | } else { |
| 1773 | /* |
| 1774 | * This branch implies that we didn't exit normally nor did we receive |
| 1775 | * a signal. This should be unreachable. |
| 1776 | */ |
| 1777 | return true; |
| 1778 | } |
| 1779 | } |
| 1780 | |
| 1781 | static void |
| 1782 | proc_crash_coredump(proc_t p) |
| 1783 | { |
| 1784 | (void)p; |
| 1785 | #if (DEVELOPMENT || DEBUG) && CONFIG_COREDUMP |
| 1786 | /* |
| 1787 | * For debugging purposes, generate a core file of initproc before |
| 1788 | * panicking. Leave at least 300 MB free on the root volume, and ignore |
| 1789 | * the process's corefile ulimit. fsync() the file to ensure it lands on disk |
| 1790 | * before the panic hits. |
| 1791 | */ |
| 1792 | |
| 1793 | int err; |
| 1794 | uint64_t coredump_start = mach_absolute_time(); |
| 1795 | uint64_t coredump_end; |
| 1796 | clock_sec_t tv_sec; |
| 1797 | clock_usec_t tv_usec; |
| 1798 | uint32_t tv_msec; |
| 1799 | |
| 1800 | |
| 1801 | err = coredump(p, 300, COREDUMP_IGNORE_ULIMIT | COREDUMP_FULLFSYNC); |
| 1802 | |
| 1803 | coredump_end = mach_absolute_time(); |
| 1804 | |
| 1805 | absolutetime_to_microtime(coredump_end - coredump_start, &tv_sec, &tv_usec); |
| 1806 | |
| 1807 | tv_msec = tv_usec / 1000; |
| 1808 | |
| 1809 | if (err != 0) { |
| 1810 | printf("Failed to generate core file for pid: %d: error %d, took %d.%03d seconds\n" , |
| 1811 | proc_getpid(p), err, (uint32_t)tv_sec, tv_msec); |
| 1812 | } else { |
| 1813 | printf("Generated core file for pid: %d in %d.%03d seconds\n" , |
| 1814 | proc_getpid(p), (uint32_t)tv_sec, tv_msec); |
| 1815 | } |
| 1816 | #endif /* (DEVELOPMENT || DEBUG) && CONFIG_COREDUMP */ |
| 1817 | } |
| 1818 | |
| 1819 | static void |
| 1820 | proc_handle_critical_exit(proc_t p, int rv) |
| 1821 | { |
| 1822 | if (!proc_should_trigger_panic(p, rv)) { |
| 1823 | // No panic, bail out |
| 1824 | return; |
| 1825 | } |
| 1826 | |
| 1827 | #if DEVELOPMENT |
| 1828 | if (crash_behavior_test_mode) { |
| 1829 | crash_behavior_test_would_panic = TRUE; |
| 1830 | // Force test mode off after hitting a panic |
| 1831 | crash_behavior_test_mode = FALSE; |
| 1832 | return; |
| 1833 | } |
| 1834 | #endif /* DEVELOPMENT */ |
| 1835 | |
| 1836 | char *exit_reason_desc = exit_reason_get_string_desc(exit_reason: p->p_exit_reason); |
| 1837 | |
| 1838 | if (p->p_exit_reason == OS_REASON_NULL) { |
| 1839 | printf("pid %d exited -- no exit reason available -- (signal %d, exit %d)\n" , |
| 1840 | proc_getpid(p), WTERMSIG(rv), WEXITSTATUS(rv)); |
| 1841 | } else { |
| 1842 | printf("pid %d exited -- exit reason namespace %d subcode 0x%llx, description %s\n" , proc_getpid(p), |
| 1843 | p->p_exit_reason->osr_namespace, p->p_exit_reason->osr_code, exit_reason_desc ? |
| 1844 | exit_reason_desc : "none" ); |
| 1845 | } |
| 1846 | |
| 1847 | const char *prefix_str; |
| 1848 | char prefix_str_buf[128]; |
| 1849 | |
| 1850 | if (p == initproc) { |
| 1851 | if (strnstr(s: p->p_name, find: "preinit" , slen: sizeof(p->p_name))) { |
| 1852 | prefix_str = "LTE preinit process exited" ; |
| 1853 | } else if (initproc_spawned) { |
| 1854 | prefix_str = "initproc exited" ; |
| 1855 | } else { |
| 1856 | prefix_str = "initproc failed to start" ; |
| 1857 | } |
| 1858 | } else { |
| 1859 | /* For processes that aren't launchd, just use the process name and pid */ |
| 1860 | snprintf(prefix_str_buf, count: sizeof(prefix_str_buf), "%s[%d] exited" , p->p_name, proc_getpid(p)); |
| 1861 | prefix_str = prefix_str_buf; |
| 1862 | } |
| 1863 | |
| 1864 | proc_crash_coredump(p); |
| 1865 | |
| 1866 | sync(p, (void *)NULL, (int *)NULL); |
| 1867 | |
| 1868 | if (p->p_exit_reason == OS_REASON_NULL) { |
| 1869 | panic_with_options(reason: 0, NULL, DEBUGGER_OPTION_INITPROC_PANIC, str: "%s -- no exit reason available -- (signal %d, exit status %d %s)" , |
| 1870 | prefix_str, WTERMSIG(rv), WEXITSTATUS(rv), ((proc_getcsflags(p) & CS_KILLED) ? "CS_KILLED" : "" )); |
| 1871 | } else { |
| 1872 | panic_with_options(reason: 0, NULL, DEBUGGER_OPTION_INITPROC_PANIC, str: "%s %s -- exit reason namespace %d subcode 0x%llx description: %." LAUNCHD_PANIC_REASON_STRING_MAXLEN "s" , |
| 1873 | ((proc_getcsflags(p) & CS_KILLED) ? "CS_KILLED" : "" ), |
| 1874 | prefix_str, p->p_exit_reason->osr_namespace, p->p_exit_reason->osr_code, |
| 1875 | exit_reason_desc ? exit_reason_desc : "none" ); |
| 1876 | } |
| 1877 | } |
| 1878 | |
| 1879 | void |
| 1880 | proc_prepareexit(proc_t p, int rv, boolean_t perf_notify) |
| 1881 | { |
| 1882 | mach_exception_data_type_t code = 0, subcode = 0; |
| 1883 | exception_type_t etype; |
| 1884 | |
| 1885 | struct uthread *ut; |
| 1886 | thread_t self = current_thread(); |
| 1887 | ut = get_bsdthread_info(self); |
| 1888 | struct rusage_superset *rup; |
| 1889 | int kr = 0; |
| 1890 | int create_corpse = FALSE; |
| 1891 | bool corpse_source = false; |
| 1892 | task_t task = proc_task(p); |
| 1893 | |
| 1894 | |
| 1895 | if (p->p_crash_behavior != 0 || p == initproc) { |
| 1896 | proc_handle_critical_exit(p, rv); |
| 1897 | } |
| 1898 | |
| 1899 | if (task) { |
| 1900 | corpse_source = vm_map_is_corpse_source(map: get_task_map(task)); |
| 1901 | } |
| 1902 | |
| 1903 | /* |
| 1904 | * Generate a corefile/crashlog if: |
| 1905 | * The process doesn't have an exit reason that indicates no crash report should be created |
| 1906 | * AND any of the following are true: |
| 1907 | * - The process was terminated due to a fatal signal that generates a core |
| 1908 | * - The process was killed due to a code signing violation |
| 1909 | * - The process has an exit reason that indicates we should generate a crash report |
| 1910 | * |
| 1911 | * The first condition is necessary because abort_with_reason()/payload() use SIGABRT |
| 1912 | * (which normally triggers a core) but may indicate that no crash report should be created. |
| 1913 | */ |
| 1914 | if (!(PROC_HAS_EXITREASON(p) && (PROC_EXITREASON_FLAGS(p) & OS_REASON_FLAG_NO_CRASH_REPORT)) && |
| 1915 | (hassigprop(WTERMSIG(rv), SA_CORE) || ((proc_getcsflags(p) & CS_KILLED) != 0) || |
| 1916 | (PROC_HAS_EXITREASON(p) && (PROC_EXITREASON_FLAGS(p) & |
| 1917 | OS_REASON_FLAG_GENERATE_CRASH_REPORT)))) { |
| 1918 | /* |
| 1919 | * Workaround for processes checking up on PT_DENY_ATTACH: |
| 1920 | * should be backed out post-Leopard (details in 5431025). |
| 1921 | */ |
| 1922 | if ((SIGSEGV == WTERMSIG(rv)) && |
| 1923 | (p->p_pptr->p_lflag & P_LNOATTACH)) { |
| 1924 | goto skipcheck; |
| 1925 | } |
| 1926 | |
| 1927 | /* |
| 1928 | * Crash Reporter looks for the signal value, original exception |
| 1929 | * type, and low 20 bits of the original code in code[0] |
| 1930 | * (8, 4, and 20 bits respectively). code[1] is unmodified. |
| 1931 | */ |
| 1932 | code = ((WTERMSIG(rv) & 0xff) << 24) | |
| 1933 | ((ut->uu_exception & 0x0f) << 20) | |
| 1934 | ((int)ut->uu_code & 0xfffff); |
| 1935 | subcode = ut->uu_subcode; |
| 1936 | etype = ut->uu_exception; |
| 1937 | |
| 1938 | /* Defualt to EXC_CRASH if the exception is not an EXC_RESOURCE or EXC_GUARD */ |
| 1939 | if (etype != EXC_RESOURCE || etype != EXC_GUARD) { |
| 1940 | etype = EXC_CRASH; |
| 1941 | } |
| 1942 | |
| 1943 | #if (DEVELOPMENT || DEBUG) |
| 1944 | if (p->p_pid <= exception_log_max_pid) { |
| 1945 | char *proc_name = proc_best_name(p); |
| 1946 | if (PROC_HAS_EXITREASON(p)) { |
| 1947 | record_system_event(SYSTEM_EVENT_TYPE_INFO, SYSTEM_EVENT_SUBSYSTEM_PROCESS, "process exit" , |
| 1948 | "pid: %d -- process name: %s -- exit reason namespace: %d -- subcode: 0x%llx -- description: %s" , |
| 1949 | proc_getpid(p), proc_name, p->p_exit_reason->osr_namespace, p->p_exit_reason->osr_code, |
| 1950 | exit_reason_get_string_desc(p->p_exit_reason)); |
| 1951 | } else { |
| 1952 | record_system_event(SYSTEM_EVENT_TYPE_INFO, SYSTEM_EVENT_SUBSYSTEM_PROCESS, "process exit" , |
| 1953 | "pid: %d -- process name: %s -- exit status %d" , |
| 1954 | proc_getpid(p), proc_name, WEXITSTATUS(rv)); |
| 1955 | } |
| 1956 | } |
| 1957 | #endif |
| 1958 | const bool fatal = false; |
| 1959 | kr = task_exception_notify(EXC_CRASH, code, subcode, fatal); |
| 1960 | /* Nobody handled EXC_CRASH?? remember to make corpse */ |
| 1961 | if ((kr != 0 || corpse_source) && p == current_proc()) { |
| 1962 | /* |
| 1963 | * Do not create corpse when exit is called from jetsam thread. |
| 1964 | * Corpse creation code requires that proc_prepareexit is |
| 1965 | * called by the exiting proc and not the kernel_proc. |
| 1966 | */ |
| 1967 | create_corpse = TRUE; |
| 1968 | } |
| 1969 | |
| 1970 | /* |
| 1971 | * Revalidate the code signing of the text pages around current PC. |
| 1972 | * This is an attempt to detect and repair faults due to memory |
| 1973 | * corruption of text pages. |
| 1974 | * |
| 1975 | * The goal here is to fixup infrequent memory corruptions due to |
| 1976 | * things like aging RAM bit flips. So the approach is to only expect |
| 1977 | * to have to fixup one thing per crash. This also limits the amount |
| 1978 | * of extra work we cause in case this is a development kernel with an |
| 1979 | * active memory stomp happening. |
| 1980 | */ |
| 1981 | uintptr_t bt[2]; |
| 1982 | struct backtrace_user_info btinfo = BTUINFO_INIT; |
| 1983 | unsigned int frame_count = backtrace_user(bt, btlen: 2, NULL, info_out: &btinfo); |
| 1984 | int bt_err = btinfo.btui_error; |
| 1985 | if (bt_err == 0 && frame_count >= 1) { |
| 1986 | /* |
| 1987 | * First check at the page containing the current PC. |
| 1988 | * This passes if the page code signs -or- if we can't figure out |
| 1989 | * what is at that address. The latter action is so we continue checking |
| 1990 | * previous pages which may be corrupt and caused a wild branch. |
| 1991 | */ |
| 1992 | kr = revalidate_text_page(task, bt[0]); |
| 1993 | |
| 1994 | /* No corruption found, check the previous sequential page */ |
| 1995 | if (kr == KERN_SUCCESS) { |
| 1996 | kr = revalidate_text_page(task, bt[0] - get_task_page_size(task)); |
| 1997 | } |
| 1998 | |
| 1999 | /* Still no corruption found, check the current function's caller */ |
| 2000 | if (kr == KERN_SUCCESS) { |
| 2001 | if (frame_count > 1 && |
| 2002 | atop(bt[0]) != atop(bt[1]) && /* don't recheck PC page */ |
| 2003 | atop(bt[0]) - 1 != atop(bt[1])) { /* don't recheck page before */ |
| 2004 | kr = revalidate_text_page(task, (vm_map_offset_t)bt[1]); |
| 2005 | } |
| 2006 | } |
| 2007 | |
| 2008 | /* |
| 2009 | * Log that we found a corruption. |
| 2010 | */ |
| 2011 | if (kr != KERN_SUCCESS) { |
| 2012 | os_log(OS_LOG_DEFAULT, |
| 2013 | "Text page corruption detected in dying process %d\n" , proc_getpid(p)); |
| 2014 | } |
| 2015 | } |
| 2016 | } |
| 2017 | |
| 2018 | skipcheck: |
| 2019 | if (task_is_driver(task) && PROC_HAS_EXITREASON(p)) { |
| 2020 | IOUserServerRecordExitReason(task, reason: p->p_exit_reason); |
| 2021 | } |
| 2022 | |
| 2023 | /* Notify the perf server? */ |
| 2024 | if (perf_notify) { |
| 2025 | (void)sys_perf_notify(thread: self, pid: proc_getpid(p)); |
| 2026 | } |
| 2027 | |
| 2028 | |
| 2029 | /* stash the usage into corpse data if making_corpse == true */ |
| 2030 | if (create_corpse == TRUE) { |
| 2031 | kr = task_mark_corpse(task); |
| 2032 | if (kr != KERN_SUCCESS) { |
| 2033 | if (kr == KERN_NO_SPACE) { |
| 2034 | printf("Process[%d] has no vm space for corpse info.\n" , proc_getpid(p)); |
| 2035 | } else if (kr == KERN_NOT_SUPPORTED) { |
| 2036 | printf("Process[%d] was destined to be corpse. But corpse is disabled by config.\n" , proc_getpid(p)); |
| 2037 | } else if (kr == KERN_TERMINATED) { |
| 2038 | printf("Process[%d] has been terminated before it could be converted to a corpse.\n" , proc_getpid(p)); |
| 2039 | } else { |
| 2040 | printf("Process[%d] crashed: %s. Too many corpses being created.\n" , proc_getpid(p), p->p_comm); |
| 2041 | } |
| 2042 | create_corpse = FALSE; |
| 2043 | } |
| 2044 | } |
| 2045 | |
| 2046 | if (corpse_source && !create_corpse) { |
| 2047 | /* vm_map was marked for corpse, but we decided to not create one, unmark the vmmap */ |
| 2048 | vm_map_unset_corpse_source(map: get_task_map(task)); |
| 2049 | } |
| 2050 | |
| 2051 | if (!proc_is_shadow(p)) { |
| 2052 | /* |
| 2053 | * Before this process becomes a zombie, stash resource usage |
| 2054 | * stats in the proc for external observers to query |
| 2055 | * via proc_pid_rusage(). |
| 2056 | * |
| 2057 | * If the zombie allocation fails, just punt the stats. |
| 2058 | */ |
| 2059 | rup = zalloc(kt_view: zombie_zone); |
| 2060 | gather_rusage_info(p, ru: &rup->ri, RUSAGE_INFO_CURRENT); |
| 2061 | rup->ri.ri_phys_footprint = 0; |
| 2062 | rup->ri.ri_proc_exit_abstime = mach_absolute_time(); |
| 2063 | /* |
| 2064 | * Make the rusage_info visible to external observers |
| 2065 | * only after it has been completely filled in. |
| 2066 | */ |
| 2067 | p->p_ru = rup; |
| 2068 | } |
| 2069 | |
| 2070 | if (create_corpse) { |
| 2071 | int est_knotes = 0, num_knotes = 0; |
| 2072 | uint64_t *buffer = NULL; |
| 2073 | uint32_t buf_size = 0; |
| 2074 | |
| 2075 | /* Get all the udata pointers from kqueue */ |
| 2076 | est_knotes = kevent_proc_copy_uptrs(proc: p, NULL, bufsize: 0); |
| 2077 | if (est_knotes > 0) { |
| 2078 | buf_size = (uint32_t)((est_knotes + 32) * sizeof(uint64_t)); |
| 2079 | buffer = kalloc_data(buf_size, Z_WAITOK); |
| 2080 | if (buffer) { |
| 2081 | num_knotes = kevent_proc_copy_uptrs(proc: p, buf: buffer, bufsize: buf_size); |
| 2082 | if (num_knotes > est_knotes + 32) { |
| 2083 | num_knotes = est_knotes + 32; |
| 2084 | } |
| 2085 | } |
| 2086 | } |
| 2087 | |
| 2088 | /* Update the code, subcode based on exit reason */ |
| 2089 | proc_update_corpse_exception_codes(p, code: &code, subcode: &subcode); |
| 2090 | populate_corpse_crashinfo(p, corpse_task: task, rup, |
| 2091 | code, subcode, udata_buffer: buffer, num_udata: num_knotes, NULL, etype); |
| 2092 | kfree_data(buffer, buf_size); |
| 2093 | } |
| 2094 | /* |
| 2095 | * Remove proc from allproc queue and from pidhash chain. |
| 2096 | * Need to do this before we do anything that can block. |
| 2097 | * Not doing causes things like mount() find this on allproc |
| 2098 | * in partially cleaned state. |
| 2099 | */ |
| 2100 | |
| 2101 | proc_list_lock(); |
| 2102 | |
| 2103 | #if CONFIG_MEMORYSTATUS |
| 2104 | proc_memorystatus_remove(p); |
| 2105 | #endif |
| 2106 | |
| 2107 | LIST_REMOVE(p, p_list); |
| 2108 | LIST_INSERT_HEAD(&zombproc, p, p_list); /* Place onto zombproc. */ |
| 2109 | /* will not be visible via proc_find */ |
| 2110 | os_atomic_or(&p->p_refcount, P_REF_DEAD, relaxed); |
| 2111 | |
| 2112 | proc_list_unlock(); |
| 2113 | |
| 2114 | /* |
| 2115 | * If parent is waiting for us to exit or exec, |
| 2116 | * P_LPPWAIT is set; we will wakeup the parent below. |
| 2117 | */ |
| 2118 | proc_lock(p); |
| 2119 | p->p_lflag &= ~(P_LTRACED | P_LPPWAIT); |
| 2120 | p->p_sigignore = ~(sigcantmask); |
| 2121 | |
| 2122 | /* |
| 2123 | * If a thread is already waiting for us in proc_exit, |
| 2124 | * P_LTERM is set, wakeup the thread. |
| 2125 | */ |
| 2126 | if (p->p_lflag & P_LTERM) { |
| 2127 | wakeup(chan: &p->exit_thread); |
| 2128 | } else { |
| 2129 | p->p_lflag |= P_LTERM; |
| 2130 | } |
| 2131 | |
| 2132 | /* If current proc is exiting, ignore signals on the exit thread */ |
| 2133 | if (p == current_proc()) { |
| 2134 | ut->uu_siglist = 0; |
| 2135 | } |
| 2136 | proc_unlock(p); |
| 2137 | } |
| 2138 | |
| 2139 | void |
| 2140 | proc_exit(proc_t p) |
| 2141 | { |
| 2142 | proc_t q; |
| 2143 | proc_t pp; |
| 2144 | struct task *task = proc_task(p); |
| 2145 | vnode_t tvp = NULLVP; |
| 2146 | struct pgrp * pg; |
| 2147 | struct session *sessp; |
| 2148 | struct uthread * uth; |
| 2149 | pid_t pid; |
| 2150 | int exitval; |
| 2151 | int knote_hint; |
| 2152 | |
| 2153 | uth = current_uthread(); |
| 2154 | |
| 2155 | proc_lock(p); |
| 2156 | proc_transstart(p, locked: 1, non_blocking: 0); |
| 2157 | if (!(p->p_lflag & P_LEXIT)) { |
| 2158 | /* |
| 2159 | * This can happen if a thread_terminate() occurs |
| 2160 | * in a single-threaded process. |
| 2161 | */ |
| 2162 | p->p_lflag |= P_LEXIT; |
| 2163 | proc_transend(p, locked: 1); |
| 2164 | proc_unlock(p); |
| 2165 | proc_prepareexit(p, rv: 0, TRUE); |
| 2166 | (void) task_terminate_internal(task); |
| 2167 | proc_lock(p); |
| 2168 | } else if (!(p->p_lflag & P_LTERM)) { |
| 2169 | proc_transend(p, locked: 1); |
| 2170 | /* Jetsam is in middle of calling proc_prepareexit, wait for it */ |
| 2171 | p->p_lflag |= P_LTERM; |
| 2172 | msleep(chan: &p->exit_thread, mtx: &p->p_mlock, PWAIT, wmesg: "proc_prepareexit_wait" , NULL); |
| 2173 | } else { |
| 2174 | proc_transend(p, locked: 1); |
| 2175 | } |
| 2176 | |
| 2177 | p->p_lflag |= P_LPEXIT; |
| 2178 | |
| 2179 | /* |
| 2180 | * Other kernel threads may be in the middle of signalling this process. |
| 2181 | * Wait for those threads to wrap it up before making the process |
| 2182 | * disappear on them. |
| 2183 | */ |
| 2184 | if ((p->p_lflag & P_LINSIGNAL) || (p->p_sigwaitcnt > 0)) { |
| 2185 | p->p_sigwaitcnt++; |
| 2186 | while ((p->p_lflag & P_LINSIGNAL) || (p->p_sigwaitcnt > 1)) { |
| 2187 | msleep(chan: &p->p_sigmask, mtx: &p->p_mlock, PWAIT, wmesg: "proc_sigdrain" , NULL); |
| 2188 | } |
| 2189 | p->p_sigwaitcnt--; |
| 2190 | } |
| 2191 | |
| 2192 | proc_unlock(p); |
| 2193 | pid = proc_getpid(p); |
| 2194 | exitval = p->p_xstat; |
| 2195 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_COMMON, |
| 2196 | BSDDBG_CODE(DBG_BSD_PROC, BSD_PROC_EXIT) | DBG_FUNC_START, |
| 2197 | pid, exitval, 0, 0, 0); |
| 2198 | |
| 2199 | #if DEVELOPMENT || DEBUG |
| 2200 | proc_exit_lpexit_check(pid, PELS_POS_START); |
| 2201 | #endif |
| 2202 | |
| 2203 | #if CONFIG_DTRACE |
| 2204 | dtrace_proc_exit(p); |
| 2205 | #endif |
| 2206 | |
| 2207 | proc_refdrain(p); |
| 2208 | /* We now have unique ref to the proc */ |
| 2209 | |
| 2210 | /* if any pending cpu limits action, clear it */ |
| 2211 | task_clear_cpuusage(task: proc_task(p), TRUE); |
| 2212 | |
| 2213 | workq_mark_exiting(p); |
| 2214 | |
| 2215 | /* |
| 2216 | * need to cancel async IO requests that can be cancelled and wait for those |
| 2217 | * already active. MAY BLOCK! |
| 2218 | */ |
| 2219 | _aio_exit( p ); |
| 2220 | |
| 2221 | /* |
| 2222 | * Close open files and release open-file table. |
| 2223 | * This may block! |
| 2224 | */ |
| 2225 | fdt_invalidate(p); |
| 2226 | |
| 2227 | /* |
| 2228 | * Once all the knotes, kqueues & workloops are destroyed, get rid of the |
| 2229 | * workqueue. |
| 2230 | */ |
| 2231 | workq_exit(p); |
| 2232 | |
| 2233 | if (uth->uu_lowpri_window) { |
| 2234 | /* |
| 2235 | * task is marked as a low priority I/O type |
| 2236 | * and the I/O we issued while in flushing files on close |
| 2237 | * collided with normal I/O operations... |
| 2238 | * no need to throttle this thread since its going away |
| 2239 | * but we do need to update our bookeeping w/r to throttled threads |
| 2240 | */ |
| 2241 | throttle_lowpri_io(sleep_amount: 0); |
| 2242 | } |
| 2243 | |
| 2244 | if (p->p_lflag & P_LNSPACE_RESOLVER) { |
| 2245 | /* |
| 2246 | * The namespace resolver is exiting; there may be |
| 2247 | * outstanding materialization requests to clean up. |
| 2248 | */ |
| 2249 | nspace_resolver_exited(p); |
| 2250 | } |
| 2251 | |
| 2252 | #if SYSV_SHM |
| 2253 | /* Close ref SYSV Shared memory*/ |
| 2254 | if (p->vm_shm) { |
| 2255 | shmexit(p); |
| 2256 | } |
| 2257 | #endif |
| 2258 | #if SYSV_SEM |
| 2259 | /* Release SYSV semaphores */ |
| 2260 | semexit(p); |
| 2261 | #endif |
| 2262 | |
| 2263 | #if PSYNCH |
| 2264 | pth_proc_hashdelete(p); |
| 2265 | #endif /* PSYNCH */ |
| 2266 | |
| 2267 | pg = proc_pgrp(p, &sessp); |
| 2268 | if (SESS_LEADER(p, sessp)) { |
| 2269 | if (sessp->s_ttyvp != NULLVP) { |
| 2270 | struct vnode *ttyvp; |
| 2271 | int ttyvid; |
| 2272 | int cttyflag = 0; |
| 2273 | struct vfs_context context; |
| 2274 | struct tty *tp; |
| 2275 | struct pgrp *tpgrp = PGRP_NULL; |
| 2276 | |
| 2277 | /* |
| 2278 | * Controlling process. |
| 2279 | * Signal foreground pgrp, |
| 2280 | * drain controlling terminal |
| 2281 | * and revoke access to controlling terminal. |
| 2282 | */ |
| 2283 | |
| 2284 | proc_list_lock(); /* prevent any t_pgrp from changing */ |
| 2285 | session_lock(sess: sessp); |
| 2286 | if (sessp->s_ttyp && sessp->s_ttyp->t_session == sessp) { |
| 2287 | tpgrp = tty_pgrp_locked(tp: sessp->s_ttyp); |
| 2288 | } |
| 2289 | proc_list_unlock(); |
| 2290 | |
| 2291 | if (tpgrp != PGRP_NULL) { |
| 2292 | session_unlock(sess: sessp); |
| 2293 | pgsignal(pgrp: tpgrp, SIGHUP, checkctty: 1); |
| 2294 | pgrp_rele(pgrp: tpgrp); |
| 2295 | session_lock(sess: sessp); |
| 2296 | } |
| 2297 | |
| 2298 | cttyflag = (os_atomic_andnot_orig(&sessp->s_refcount, |
| 2299 | S_CTTYREF, relaxed) & S_CTTYREF); |
| 2300 | ttyvp = sessp->s_ttyvp; |
| 2301 | ttyvid = sessp->s_ttyvid; |
| 2302 | tp = session_clear_tty_locked(sess: sessp); |
| 2303 | if (ttyvp) { |
| 2304 | vnode_hold(vp: ttyvp); |
| 2305 | } |
| 2306 | session_unlock(sess: sessp); |
| 2307 | |
| 2308 | if ((ttyvp != NULLVP) && (vnode_getwithvid(ttyvp, ttyvid) == 0)) { |
| 2309 | if (tp != TTY_NULL) { |
| 2310 | tty_lock(tp); |
| 2311 | (void) ttywait(tp); |
| 2312 | tty_unlock(tp); |
| 2313 | } |
| 2314 | |
| 2315 | context.vc_thread = NULL; |
| 2316 | context.vc_ucred = kauth_cred_proc_ref(procp: p); |
| 2317 | VNOP_REVOKE(ttyvp, REVOKEALL, &context); |
| 2318 | if (cttyflag) { |
| 2319 | /* |
| 2320 | * Release the extra usecount taken in cttyopen. |
| 2321 | * usecount should be released after VNOP_REVOKE is called. |
| 2322 | * This usecount was taken to ensure that |
| 2323 | * the VNOP_REVOKE results in a close to |
| 2324 | * the tty since cttyclose is a no-op. |
| 2325 | */ |
| 2326 | vnode_rele(vp: ttyvp); |
| 2327 | } |
| 2328 | vnode_put(vp: ttyvp); |
| 2329 | kauth_cred_unref(&context.vc_ucred); |
| 2330 | vnode_drop(vp: ttyvp); |
| 2331 | ttyvp = NULLVP; |
| 2332 | } |
| 2333 | if (ttyvp) { |
| 2334 | vnode_drop(vp: ttyvp); |
| 2335 | } |
| 2336 | if (tp) { |
| 2337 | ttyfree(tp); |
| 2338 | } |
| 2339 | } |
| 2340 | session_lock(sess: sessp); |
| 2341 | sessp->s_leader = NULL; |
| 2342 | session_unlock(sess: sessp); |
| 2343 | } |
| 2344 | |
| 2345 | if (!proc_is_shadow(p)) { |
| 2346 | fixjobc(p, pgrp: pg, entering: 0); |
| 2347 | } |
| 2348 | pgrp_rele(pgrp: pg); |
| 2349 | |
| 2350 | /* |
| 2351 | * Change RLIMIT_FSIZE for accounting/debugging. |
| 2352 | */ |
| 2353 | proc_limitsetcur_fsize(p, RLIM_INFINITY); |
| 2354 | |
| 2355 | (void)acct_process(p); |
| 2356 | |
| 2357 | proc_list_lock(); |
| 2358 | |
| 2359 | if ((p->p_listflag & P_LIST_EXITCOUNT) == P_LIST_EXITCOUNT) { |
| 2360 | p->p_listflag &= ~P_LIST_EXITCOUNT; |
| 2361 | proc_shutdown_exitcount--; |
| 2362 | if (proc_shutdown_exitcount == 0) { |
| 2363 | wakeup(chan: &proc_shutdown_exitcount); |
| 2364 | } |
| 2365 | } |
| 2366 | |
| 2367 | /* wait till parentrefs are dropped and grant no more */ |
| 2368 | proc_childdrainstart(p); |
| 2369 | while ((q = p->p_children.lh_first) != NULL) { |
| 2370 | if (q->p_stat == SZOMB) { |
| 2371 | if (p != q->p_pptr) { |
| 2372 | panic("parent child linkage broken" ); |
| 2373 | } |
| 2374 | /* check for sysctl zomb lookup */ |
| 2375 | while ((q->p_listflag & P_LIST_WAITING) == P_LIST_WAITING) { |
| 2376 | msleep(chan: &q->p_stat, mtx: &proc_list_mlock, PWAIT, wmesg: "waitcoll" , ts: 0); |
| 2377 | } |
| 2378 | q->p_listflag |= P_LIST_WAITING; |
| 2379 | /* |
| 2380 | * This is a named reference and it is not granted |
| 2381 | * if the reap is already in progress. So we get |
| 2382 | * the reference here exclusively and their can be |
| 2383 | * no waiters. So there is no need for a wakeup |
| 2384 | * after we are done. Also the reap frees the structure |
| 2385 | * and the proc struct cannot be used for wakeups as well. |
| 2386 | * It is safe to use q here as this is system reap |
| 2387 | */ |
| 2388 | reap_flags_t reparent_flags = (q->p_listflag & P_LIST_DEADPARENT) ? |
| 2389 | REAP_REPARENTED_TO_INIT : 0; |
| 2390 | reap_child_locked(parent: p, child: q, |
| 2391 | flags: REAP_DEAD_PARENT | REAP_LOCKED | reparent_flags); |
| 2392 | } else { |
| 2393 | /* |
| 2394 | * Traced processes are killed |
| 2395 | * since their existence means someone is messing up. |
| 2396 | */ |
| 2397 | if (q->p_lflag & P_LTRACED) { |
| 2398 | struct proc *opp; |
| 2399 | |
| 2400 | /* |
| 2401 | * Take a reference on the child process to |
| 2402 | * ensure it doesn't exit and disappear between |
| 2403 | * the time we drop the list_lock and attempt |
| 2404 | * to acquire its proc_lock. |
| 2405 | */ |
| 2406 | if (proc_ref(p: q, true) != q) { |
| 2407 | continue; |
| 2408 | } |
| 2409 | |
| 2410 | proc_list_unlock(); |
| 2411 | |
| 2412 | opp = proc_find(pid: q->p_oppid); |
| 2413 | if (opp != PROC_NULL) { |
| 2414 | proc_list_lock(); |
| 2415 | q->p_oppid = 0; |
| 2416 | proc_list_unlock(); |
| 2417 | proc_reparentlocked(child: q, newparent: opp, cansignal: 0, locked: 0); |
| 2418 | proc_rele(p: opp); |
| 2419 | } else { |
| 2420 | /* original parent exited while traced */ |
| 2421 | proc_list_lock(); |
| 2422 | q->p_listflag |= P_LIST_DEADPARENT; |
| 2423 | q->p_oppid = 0; |
| 2424 | proc_list_unlock(); |
| 2425 | proc_reparentlocked(child: q, newparent: initproc, cansignal: 0, locked: 0); |
| 2426 | } |
| 2427 | |
| 2428 | proc_lock(q); |
| 2429 | q->p_lflag &= ~P_LTRACED; |
| 2430 | |
| 2431 | if (q->sigwait_thread) { |
| 2432 | thread_t thread = q->sigwait_thread; |
| 2433 | |
| 2434 | proc_unlock(q); |
| 2435 | /* |
| 2436 | * The sigwait_thread could be stopped at a |
| 2437 | * breakpoint. Wake it up to kill. |
| 2438 | * Need to do this as it could be a thread which is not |
| 2439 | * the first thread in the task. So any attempts to kill |
| 2440 | * the process would result into a deadlock on q->sigwait. |
| 2441 | */ |
| 2442 | thread_resume(target_act: thread); |
| 2443 | clear_wait(thread, THREAD_INTERRUPTED); |
| 2444 | threadsignal(sig_actthread: thread, SIGKILL, code: 0, TRUE); |
| 2445 | } else { |
| 2446 | proc_unlock(q); |
| 2447 | } |
| 2448 | |
| 2449 | psignal(p: q, SIGKILL); |
| 2450 | proc_list_lock(); |
| 2451 | proc_rele(p: q); |
| 2452 | } else { |
| 2453 | q->p_listflag |= P_LIST_DEADPARENT; |
| 2454 | proc_reparentlocked(child: q, newparent: initproc, cansignal: 0, locked: 1); |
| 2455 | } |
| 2456 | } |
| 2457 | } |
| 2458 | |
| 2459 | proc_childdrainend(p); |
| 2460 | proc_list_unlock(); |
| 2461 | |
| 2462 | #if CONFIG_MACF |
| 2463 | if (!proc_is_shadow(p)) { |
| 2464 | /* |
| 2465 | * Notify MAC policies that proc is dead. |
| 2466 | * This should be replaced with proper label management |
| 2467 | * (rdar://problem/32126399). |
| 2468 | */ |
| 2469 | mac_proc_notify_exit(proc: p); |
| 2470 | } |
| 2471 | #endif |
| 2472 | |
| 2473 | /* |
| 2474 | * Release reference to text vnode |
| 2475 | */ |
| 2476 | tvp = p->p_textvp; |
| 2477 | p->p_textvp = NULL; |
| 2478 | if (tvp != NULLVP) { |
| 2479 | vnode_rele(vp: tvp); |
| 2480 | } |
| 2481 | |
| 2482 | /* |
| 2483 | * Save exit status and final rusage info, adding in child rusage |
| 2484 | * info and self times. If we were unable to allocate a zombie |
| 2485 | * structure, this information is lost. |
| 2486 | */ |
| 2487 | if (p->p_ru != NULL) { |
| 2488 | calcru(p, up: &p->p_stats->p_ru.ru_utime, sp: &p->p_stats->p_ru.ru_stime, NULL); |
| 2489 | p->p_ru->ru = p->p_stats->p_ru; |
| 2490 | |
| 2491 | ruadd(ru: &(p->p_ru->ru), ru2: &p->p_stats->p_cru); |
| 2492 | } |
| 2493 | |
| 2494 | /* |
| 2495 | * Free up profiling buffers. |
| 2496 | */ |
| 2497 | { |
| 2498 | struct uprof *p0 = &p->p_stats->p_prof, *p1, *pn; |
| 2499 | |
| 2500 | p1 = p0->pr_next; |
| 2501 | p0->pr_next = NULL; |
| 2502 | p0->pr_scale = 0; |
| 2503 | |
| 2504 | for (; p1 != NULL; p1 = pn) { |
| 2505 | pn = p1->pr_next; |
| 2506 | kfree_type(struct uprof, p1); |
| 2507 | } |
| 2508 | } |
| 2509 | |
| 2510 | proc_free_realitimer(proc: p); |
| 2511 | |
| 2512 | /* |
| 2513 | * Other substructures are freed from wait(). |
| 2514 | */ |
| 2515 | zfree(proc_stats_zone, p->p_stats); |
| 2516 | p->p_stats = NULL; |
| 2517 | |
| 2518 | if (p->p_subsystem_root_path) { |
| 2519 | zfree(ZV_NAMEI, p->p_subsystem_root_path); |
| 2520 | p->p_subsystem_root_path = NULL; |
| 2521 | } |
| 2522 | |
| 2523 | proc_limitdrop(p); |
| 2524 | |
| 2525 | #if DEVELOPMENT || DEBUG |
| 2526 | proc_exit_lpexit_check(pid, PELS_POS_PRE_TASK_DETACH); |
| 2527 | #endif |
| 2528 | |
| 2529 | /* |
| 2530 | * Finish up by terminating the task |
| 2531 | * and halt this thread (only if a |
| 2532 | * member of the task exiting). |
| 2533 | */ |
| 2534 | proc_set_task(p, TASK_NULL); |
| 2535 | set_bsdtask_info(task, NULL); |
| 2536 | clear_thread_ro_proc(get_machthread(uth)); |
| 2537 | |
| 2538 | #if DEVELOPMENT || DEBUG |
| 2539 | proc_exit_lpexit_check(pid, PELS_POS_POST_TASK_DETACH); |
| 2540 | #endif |
| 2541 | |
| 2542 | knote_hint = NOTE_EXIT | (p->p_xstat & 0xffff); |
| 2543 | proc_knote(p, hint: knote_hint); |
| 2544 | |
| 2545 | /* mark the thread as the one that is doing proc_exit |
| 2546 | * no need to hold proc lock in uthread_free |
| 2547 | */ |
| 2548 | uth->uu_flag |= UT_PROCEXIT; |
| 2549 | /* |
| 2550 | * Notify parent that we're gone. |
| 2551 | */ |
| 2552 | pp = proc_parent(p); |
| 2553 | if (proc_is_shadow(p)) { |
| 2554 | /* kernel can reap this one, no need to move it to launchd */ |
| 2555 | proc_list_lock(); |
| 2556 | p->p_listflag |= P_LIST_DEADPARENT; |
| 2557 | proc_list_unlock(); |
| 2558 | } else if (pp->p_flag & P_NOCLDWAIT) { |
| 2559 | if (p->p_ru != NULL) { |
| 2560 | proc_lock(pp); |
| 2561 | #if 3839178 |
| 2562 | /* |
| 2563 | * If the parent is ignoring SIGCHLD, then POSIX requires |
| 2564 | * us to not add the resource usage to the parent process - |
| 2565 | * we are only going to hand it off to init to get reaped. |
| 2566 | * We should contest the standard in this case on the basis |
| 2567 | * of RLIMIT_CPU. |
| 2568 | */ |
| 2569 | #else /* !3839178 */ |
| 2570 | /* |
| 2571 | * Add child resource usage to parent before giving |
| 2572 | * zombie to init. If we were unable to allocate a |
| 2573 | * zombie structure, this information is lost. |
| 2574 | */ |
| 2575 | ruadd(&pp->p_stats->p_cru, &p->p_ru->ru); |
| 2576 | #endif /* !3839178 */ |
| 2577 | update_rusage_info_child(ru: &pp->p_stats->ri_child, ru_current: &p->p_ru->ri); |
| 2578 | proc_unlock(pp); |
| 2579 | } |
| 2580 | |
| 2581 | /* kernel can reap this one, no need to move it to launchd */ |
| 2582 | proc_list_lock(); |
| 2583 | p->p_listflag |= P_LIST_DEADPARENT; |
| 2584 | proc_list_unlock(); |
| 2585 | } |
| 2586 | if (!proc_is_shadow(p) && |
| 2587 | ((p->p_listflag & P_LIST_DEADPARENT) == 0 || p->p_oppid)) { |
| 2588 | if (pp != initproc) { |
| 2589 | proc_lock(pp); |
| 2590 | pp->si_pid = proc_getpid(p); |
| 2591 | pp->p_xhighbits = p->p_xhighbits; |
| 2592 | p->p_xhighbits = 0; |
| 2593 | pp->si_status = p->p_xstat; |
| 2594 | pp->si_code = CLD_EXITED; |
| 2595 | /* |
| 2596 | * p_ucred usage is safe as it is an exiting process |
| 2597 | * and reference is dropped in reap |
| 2598 | */ |
| 2599 | pp->si_uid = kauth_cred_getruid(cred: proc_ucred_unsafe(p)); |
| 2600 | proc_unlock(pp); |
| 2601 | } |
| 2602 | /* mark as a zombie */ |
| 2603 | /* No need to take proc lock as all refs are drained and |
| 2604 | * no one except parent (reaping ) can look at this. |
| 2605 | * The write is to an int and is coherent. Also parent is |
| 2606 | * keyed off of list lock for reaping |
| 2607 | */ |
| 2608 | DTRACE_PROC2(exited, proc_t, p, int, exitval); |
| 2609 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_COMMON, |
| 2610 | BSDDBG_CODE(DBG_BSD_PROC, BSD_PROC_EXIT) | DBG_FUNC_END, |
| 2611 | pid, exitval, 0, 0, 0); |
| 2612 | p->p_stat = SZOMB; |
| 2613 | /* |
| 2614 | * The current process can be reaped so, no one |
| 2615 | * can depend on this |
| 2616 | */ |
| 2617 | |
| 2618 | psignal(p: pp, SIGCHLD); |
| 2619 | |
| 2620 | /* and now wakeup the parent */ |
| 2621 | proc_list_lock(); |
| 2622 | wakeup(chan: (caddr_t)pp); |
| 2623 | proc_list_unlock(); |
| 2624 | } else { |
| 2625 | /* should be fine as parent proc would be initproc */ |
| 2626 | /* mark as a zombie */ |
| 2627 | /* No need to take proc lock as all refs are drained and |
| 2628 | * no one except parent (reaping ) can look at this. |
| 2629 | * The write is to an int and is coherent. Also parent is |
| 2630 | * keyed off of list lock for reaping |
| 2631 | */ |
| 2632 | DTRACE_PROC2(exited, proc_t, p, int, exitval); |
| 2633 | proc_list_lock(); |
| 2634 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_COMMON, |
| 2635 | BSDDBG_CODE(DBG_BSD_PROC, BSD_PROC_EXIT) | DBG_FUNC_END, |
| 2636 | pid, exitval, 0, 0, 0); |
| 2637 | /* check for sysctl zomb lookup */ |
| 2638 | while ((p->p_listflag & P_LIST_WAITING) == P_LIST_WAITING) { |
| 2639 | msleep(chan: &p->p_stat, mtx: &proc_list_mlock, PWAIT, wmesg: "waitcoll" , ts: 0); |
| 2640 | } |
| 2641 | /* safe to use p as this is a system reap */ |
| 2642 | p->p_stat = SZOMB; |
| 2643 | p->p_listflag |= P_LIST_WAITING; |
| 2644 | |
| 2645 | /* |
| 2646 | * This is a named reference and it is not granted |
| 2647 | * if the reap is already in progress. So we get |
| 2648 | * the reference here exclusively and their can be |
| 2649 | * no waiters. So there is no need for a wakeup |
| 2650 | * after we are done. AlsO the reap frees the structure |
| 2651 | * and the proc struct cannot be used for wakeups as well. |
| 2652 | * It is safe to use p here as this is system reap |
| 2653 | */ |
| 2654 | reap_child_locked(parent: pp, child: p, |
| 2655 | flags: REAP_DEAD_PARENT | REAP_LOCKED | REAP_DROP_LOCK); |
| 2656 | } |
| 2657 | if (uth->uu_lowpri_window) { |
| 2658 | /* |
| 2659 | * task is marked as a low priority I/O type and we've |
| 2660 | * somehow picked up another throttle during exit processing... |
| 2661 | * no need to throttle this thread since its going away |
| 2662 | * but we do need to update our bookeeping w/r to throttled threads |
| 2663 | */ |
| 2664 | throttle_lowpri_io(sleep_amount: 0); |
| 2665 | } |
| 2666 | |
| 2667 | proc_rele(p: pp); |
| 2668 | #if DEVELOPMENT || DEBUG |
| 2669 | proc_exit_lpexit_check(pid, PELS_POS_END); |
| 2670 | #endif |
| 2671 | } |
| 2672 | |
| 2673 | |
| 2674 | /* |
| 2675 | * reap_child_locked |
| 2676 | * |
| 2677 | * Finalize a child exit once its status has been saved. |
| 2678 | * |
| 2679 | * If ptrace has attached, detach it and return it to its real parent. Free any |
| 2680 | * remaining resources. |
| 2681 | * |
| 2682 | * Parameters: |
| 2683 | * - proc_t parent Parent of process being reaped |
| 2684 | * - proc_t child Process to reap |
| 2685 | * - reap_flags_t flags Control locking and re-parenting behavior |
| 2686 | */ |
| 2687 | static void |
| 2688 | reap_child_locked(proc_t parent, proc_t child, reap_flags_t flags) |
| 2689 | { |
| 2690 | struct pgrp *pg; |
| 2691 | boolean_t shadow_proc = proc_is_shadow(p: child); |
| 2692 | |
| 2693 | if (flags & REAP_LOCKED) { |
| 2694 | proc_list_unlock(); |
| 2695 | } |
| 2696 | |
| 2697 | /* |
| 2698 | * Under ptrace, the child should now be re-parented back to its original |
| 2699 | * parent, unless that parent was initproc or it didn't come to initproc |
| 2700 | * through re-parenting. |
| 2701 | */ |
| 2702 | bool child_ptraced = child->p_oppid != 0; |
| 2703 | if (!shadow_proc && child_ptraced) { |
| 2704 | int knote_hint; |
| 2705 | pid_t orig_ppid = 0; |
| 2706 | proc_t orig_parent = PROC_NULL; |
| 2707 | |
| 2708 | proc_lock(child); |
| 2709 | orig_ppid = child->p_oppid; |
| 2710 | child->p_oppid = 0; |
| 2711 | knote_hint = NOTE_EXIT | (child->p_xstat & 0xffff); |
| 2712 | proc_unlock(child); |
| 2713 | |
| 2714 | orig_parent = proc_find(pid: orig_ppid); |
| 2715 | if (orig_parent) { |
| 2716 | /* |
| 2717 | * Only re-parent the process if its original parent was not |
| 2718 | * initproc and it did not come to initproc from re-parenting. |
| 2719 | */ |
| 2720 | bool reparenting = orig_parent != initproc || |
| 2721 | (flags & REAP_REPARENTED_TO_INIT) == 0; |
| 2722 | if (reparenting) { |
| 2723 | if (orig_parent != initproc) { |
| 2724 | /* |
| 2725 | * Internal fields should be safe to access here because the |
| 2726 | * child is exited and not reaped or re-parented yet. |
| 2727 | */ |
| 2728 | proc_lock(orig_parent); |
| 2729 | orig_parent->si_pid = proc_getpid(child); |
| 2730 | orig_parent->si_status = child->p_xstat; |
| 2731 | orig_parent->si_code = CLD_CONTINUED; |
| 2732 | orig_parent->si_uid = kauth_cred_getruid(cred: proc_ucred_unsafe(p: child)); |
| 2733 | proc_unlock(orig_parent); |
| 2734 | } |
| 2735 | proc_reparentlocked(child, newparent: orig_parent, cansignal: 1, locked: 0); |
| 2736 | |
| 2737 | /* |
| 2738 | * After re-parenting, re-send the child's NOTE_EXIT to the |
| 2739 | * original parent. |
| 2740 | */ |
| 2741 | proc_knote(p: child, hint: knote_hint); |
| 2742 | psignal(p: orig_parent, SIGCHLD); |
| 2743 | |
| 2744 | proc_list_lock(); |
| 2745 | wakeup(chan: (caddr_t)orig_parent); |
| 2746 | child->p_listflag &= ~P_LIST_WAITING; |
| 2747 | wakeup(chan: &child->p_stat); |
| 2748 | proc_list_unlock(); |
| 2749 | |
| 2750 | proc_rele(p: orig_parent); |
| 2751 | if ((flags & REAP_LOCKED) && !(flags & REAP_DROP_LOCK)) { |
| 2752 | proc_list_lock(); |
| 2753 | } |
| 2754 | return; |
| 2755 | } else { |
| 2756 | /* |
| 2757 | * Satisfy the knote lifecycle because ptraced processes don't |
| 2758 | * broadcast NOTE_EXIT during initial child termination. |
| 2759 | */ |
| 2760 | proc_knote(p: child, hint: knote_hint); |
| 2761 | proc_rele(p: orig_parent); |
| 2762 | } |
| 2763 | } |
| 2764 | } |
| 2765 | |
| 2766 | #pragma clang diagnostic push |
| 2767 | #pragma clang diagnostic ignored "-Wdeprecated-declarations" |
| 2768 | proc_knote(p: child, NOTE_REAP); |
| 2769 | #pragma clang diagnostic pop |
| 2770 | |
| 2771 | proc_knote_drain(p: child); |
| 2772 | |
| 2773 | child->p_xstat = 0; |
| 2774 | if (!shadow_proc && child->p_ru) { |
| 2775 | /* |
| 2776 | * Roll up the rusage statistics to the parent, unless the parent is |
| 2777 | * ignoring SIGCHLD. POSIX requires the children's resources of such a |
| 2778 | * parent to not be included in the parent's usage (seems odd given |
| 2779 | * RLIMIT_CPU, though). |
| 2780 | */ |
| 2781 | proc_lock(parent); |
| 2782 | bool rollup_child = (parent->p_flag & P_NOCLDWAIT) == 0; |
| 2783 | if (rollup_child) { |
| 2784 | ruadd(ru: &parent->p_stats->p_cru, ru2: &child->p_ru->ru); |
| 2785 | } |
| 2786 | update_rusage_info_child(ru: &parent->p_stats->ri_child, ru_current: &child->p_ru->ri); |
| 2787 | proc_unlock(parent); |
| 2788 | zfree(zombie_zone, child->p_ru); |
| 2789 | child->p_ru = NULL; |
| 2790 | } else if (!shadow_proc) { |
| 2791 | printf("Warning : lost p_ru for %s\n" , child->p_comm); |
| 2792 | } else { |
| 2793 | assert(child->p_ru == NULL); |
| 2794 | } |
| 2795 | |
| 2796 | AUDIT_SESSION_PROCEXIT(child); |
| 2797 | |
| 2798 | #if CONFIG_PERSONAS |
| 2799 | persona_proc_drop(p: child); |
| 2800 | #endif /* CONFIG_PERSONAS */ |
| 2801 | /* proc_ucred_unsafe is safe, because child is not running */ |
| 2802 | (void)chgproccnt(uid: kauth_cred_getruid(cred: proc_ucred_unsafe(p: child)), diff: -1); |
| 2803 | |
| 2804 | os_reason_free(cur_reason: child->p_exit_reason); |
| 2805 | |
| 2806 | proc_list_lock(); |
| 2807 | |
| 2808 | pg = pgrp_leave_locked(p: child); |
| 2809 | LIST_REMOVE(child, p_list); |
| 2810 | parent->p_childrencnt--; |
| 2811 | LIST_REMOVE(child, p_sibling); |
| 2812 | bool no_more_children = (flags & REAP_DEAD_PARENT) && |
| 2813 | LIST_EMPTY(&parent->p_children); |
| 2814 | if (no_more_children) { |
| 2815 | wakeup(chan: (caddr_t)parent); |
| 2816 | } |
| 2817 | child->p_listflag &= ~P_LIST_WAITING; |
| 2818 | wakeup(chan: &child->p_stat); |
| 2819 | |
| 2820 | /* Take it out of process hash */ |
| 2821 | if (!shadow_proc) { |
| 2822 | phash_remove_locked(child); |
| 2823 | } |
| 2824 | proc_checkdeadrefs(child); |
| 2825 | nprocs--; |
| 2826 | if (flags & REAP_DEAD_PARENT) { |
| 2827 | child->p_listflag |= P_LIST_DEADPARENT; |
| 2828 | } |
| 2829 | |
| 2830 | proc_list_unlock(); |
| 2831 | |
| 2832 | pgrp_rele(pgrp: pg); |
| 2833 | fdt_destroy(p: child); |
| 2834 | lck_mtx_destroy(lck: &child->p_mlock, grp: &proc_mlock_grp); |
| 2835 | lck_mtx_destroy(lck: &child->p_ucred_mlock, grp: &proc_ucred_mlock_grp); |
| 2836 | #if CONFIG_AUDIT |
| 2837 | lck_mtx_destroy(lck: &child->p_audit_mlock, grp: &proc_ucred_mlock_grp); |
| 2838 | #endif /* CONFIG_AUDIT */ |
| 2839 | #if CONFIG_DTRACE |
| 2840 | lck_mtx_destroy(lck: &child->p_dtrace_sprlock, grp: &proc_lck_grp); |
| 2841 | #endif |
| 2842 | lck_spin_destroy(lck: &child->p_slock, grp: &proc_slock_grp); |
| 2843 | proc_wait_release(p: child); |
| 2844 | |
| 2845 | if ((flags & REAP_LOCKED) && (flags & REAP_DROP_LOCK) == 0) { |
| 2846 | proc_list_lock(); |
| 2847 | } |
| 2848 | } |
| 2849 | |
| 2850 | int |
| 2851 | wait1continue(int result) |
| 2852 | { |
| 2853 | proc_t p; |
| 2854 | thread_t thread; |
| 2855 | uthread_t uth; |
| 2856 | struct _wait4_data *wait4_data; |
| 2857 | struct wait4_nocancel_args *uap; |
| 2858 | int *retval; |
| 2859 | |
| 2860 | if (result) { |
| 2861 | return result; |
| 2862 | } |
| 2863 | |
| 2864 | p = current_proc(); |
| 2865 | thread = current_thread(); |
| 2866 | uth = (struct uthread *)get_bsdthread_info(thread); |
| 2867 | |
| 2868 | wait4_data = &uth->uu_save.uus_wait4_data; |
| 2869 | uap = wait4_data->args; |
| 2870 | retval = wait4_data->retval; |
| 2871 | return wait4_nocancel(p, uap, retval); |
| 2872 | } |
| 2873 | |
| 2874 | int |
| 2875 | wait4(proc_t q, struct wait4_args *uap, int32_t *retval) |
| 2876 | { |
| 2877 | __pthread_testcancel(presyscall: 1); |
| 2878 | return wait4_nocancel(q, (struct wait4_nocancel_args *)uap, retval); |
| 2879 | } |
| 2880 | |
| 2881 | int |
| 2882 | wait4_nocancel(proc_t q, struct wait4_nocancel_args *uap, int32_t *retval) |
| 2883 | { |
| 2884 | int nfound; |
| 2885 | int sibling_count; |
| 2886 | proc_t p; |
| 2887 | int status, error; |
| 2888 | uthread_t uth; |
| 2889 | struct _wait4_data *wait4_data; |
| 2890 | |
| 2891 | AUDIT_ARG(pid, uap->pid); |
| 2892 | |
| 2893 | if (uap->pid == 0) { |
| 2894 | uap->pid = -q->p_pgrpid; |
| 2895 | } |
| 2896 | |
| 2897 | if (uap->pid == INT_MIN) { |
| 2898 | return EINVAL; |
| 2899 | } |
| 2900 | |
| 2901 | loop: |
| 2902 | proc_list_lock(); |
| 2903 | loop1: |
| 2904 | nfound = 0; |
| 2905 | sibling_count = 0; |
| 2906 | |
| 2907 | PCHILDREN_FOREACH(q, p) { |
| 2908 | if (p->p_sibling.le_next != 0) { |
| 2909 | sibling_count++; |
| 2910 | } |
| 2911 | if (uap->pid != WAIT_ANY && |
| 2912 | proc_getpid(p) != uap->pid && |
| 2913 | p->p_pgrpid != -(uap->pid)) { |
| 2914 | continue; |
| 2915 | } |
| 2916 | |
| 2917 | if (proc_is_shadow(p)) { |
| 2918 | continue; |
| 2919 | } |
| 2920 | |
| 2921 | nfound++; |
| 2922 | |
| 2923 | /* XXX This is racy because we don't get the lock!!!! */ |
| 2924 | |
| 2925 | if (p->p_listflag & P_LIST_WAITING) { |
| 2926 | /* we're not using a continuation here but we still need to stash |
| 2927 | * the args for stackshot. */ |
| 2928 | uth = current_uthread(); |
| 2929 | wait4_data = &uth->uu_save.uus_wait4_data; |
| 2930 | wait4_data->args = uap; |
| 2931 | thread_set_pending_block_hint(thread: current_thread(), block_hint: kThreadWaitOnProcess); |
| 2932 | |
| 2933 | (void)msleep(chan: &p->p_stat, mtx: &proc_list_mlock, PWAIT, wmesg: "waitcoll" , ts: 0); |
| 2934 | goto loop1; |
| 2935 | } |
| 2936 | p->p_listflag |= P_LIST_WAITING; /* only allow single thread to wait() */ |
| 2937 | |
| 2938 | |
| 2939 | if (p->p_stat == SZOMB) { |
| 2940 | reap_flags_t reap_flags = (p->p_listflag & P_LIST_DEADPARENT) ? |
| 2941 | REAP_REPARENTED_TO_INIT : 0; |
| 2942 | |
| 2943 | proc_list_unlock(); |
| 2944 | #if CONFIG_MACF |
| 2945 | if ((error = mac_proc_check_wait(proc1: q, proc2: p)) != 0) { |
| 2946 | goto out; |
| 2947 | } |
| 2948 | #endif |
| 2949 | retval[0] = proc_getpid(p); |
| 2950 | if (uap->status) { |
| 2951 | /* Legacy apps expect only 8 bits of status */ |
| 2952 | status = 0xffff & p->p_xstat; /* convert to int */ |
| 2953 | error = copyout((caddr_t)&status, |
| 2954 | uap->status, |
| 2955 | sizeof(status)); |
| 2956 | if (error) { |
| 2957 | goto out; |
| 2958 | } |
| 2959 | } |
| 2960 | if (uap->rusage) { |
| 2961 | if (p->p_ru == NULL) { |
| 2962 | error = ENOMEM; |
| 2963 | } else { |
| 2964 | if (IS_64BIT_PROCESS(q)) { |
| 2965 | struct user64_rusage my_rusage = {}; |
| 2966 | munge_user64_rusage(a_rusage_p: &p->p_ru->ru, a_user_rusage_p: &my_rusage); |
| 2967 | error = copyout((caddr_t)&my_rusage, |
| 2968 | uap->rusage, |
| 2969 | sizeof(my_rusage)); |
| 2970 | } else { |
| 2971 | struct user32_rusage my_rusage = {}; |
| 2972 | munge_user32_rusage(a_rusage_p: &p->p_ru->ru, a_user_rusage_p: &my_rusage); |
| 2973 | error = copyout((caddr_t)&my_rusage, |
| 2974 | uap->rusage, |
| 2975 | sizeof(my_rusage)); |
| 2976 | } |
| 2977 | } |
| 2978 | /* information unavailable? */ |
| 2979 | if (error) { |
| 2980 | goto out; |
| 2981 | } |
| 2982 | } |
| 2983 | |
| 2984 | /* Conformance change for 6577252. |
| 2985 | * When SIGCHLD is blocked and wait() returns because the status |
| 2986 | * of a child process is available and there are no other |
| 2987 | * children processes, then any pending SIGCHLD signal is cleared. |
| 2988 | */ |
| 2989 | if (sibling_count == 0) { |
| 2990 | int mask = sigmask(SIGCHLD); |
| 2991 | uth = current_uthread(); |
| 2992 | |
| 2993 | if ((uth->uu_sigmask & mask) != 0) { |
| 2994 | /* we are blocking SIGCHLD signals. clear any pending SIGCHLD. |
| 2995 | * This locking looks funny but it is protecting access to the |
| 2996 | * thread via p_uthlist. |
| 2997 | */ |
| 2998 | proc_lock(q); |
| 2999 | uth->uu_siglist &= ~mask; /* clear pending signal */ |
| 3000 | proc_unlock(q); |
| 3001 | } |
| 3002 | } |
| 3003 | |
| 3004 | /* Clean up */ |
| 3005 | (void)reap_child_locked(parent: q, child: p, flags: reap_flags); |
| 3006 | |
| 3007 | return 0; |
| 3008 | } |
| 3009 | if (p->p_stat == SSTOP && (p->p_lflag & P_LWAITED) == 0 && |
| 3010 | (p->p_lflag & P_LTRACED || uap->options & WUNTRACED)) { |
| 3011 | proc_list_unlock(); |
| 3012 | #if CONFIG_MACF |
| 3013 | if ((error = mac_proc_check_wait(proc1: q, proc2: p)) != 0) { |
| 3014 | goto out; |
| 3015 | } |
| 3016 | #endif |
| 3017 | proc_lock(p); |
| 3018 | p->p_lflag |= P_LWAITED; |
| 3019 | proc_unlock(p); |
| 3020 | retval[0] = proc_getpid(p); |
| 3021 | if (uap->status) { |
| 3022 | status = W_STOPCODE(p->p_xstat); |
| 3023 | error = copyout((caddr_t)&status, |
| 3024 | uap->status, |
| 3025 | sizeof(status)); |
| 3026 | } else { |
| 3027 | error = 0; |
| 3028 | } |
| 3029 | goto out; |
| 3030 | } |
| 3031 | /* |
| 3032 | * If we are waiting for continued processses, and this |
| 3033 | * process was continued |
| 3034 | */ |
| 3035 | if ((uap->options & WCONTINUED) && |
| 3036 | (p->p_flag & P_CONTINUED)) { |
| 3037 | proc_list_unlock(); |
| 3038 | #if CONFIG_MACF |
| 3039 | if ((error = mac_proc_check_wait(proc1: q, proc2: p)) != 0) { |
| 3040 | goto out; |
| 3041 | } |
| 3042 | #endif |
| 3043 | |
| 3044 | /* Prevent other process for waiting for this event */ |
| 3045 | OSBitAndAtomic(~((uint32_t)P_CONTINUED), &p->p_flag); |
| 3046 | retval[0] = proc_getpid(p); |
| 3047 | if (uap->status) { |
| 3048 | status = W_STOPCODE(SIGCONT); |
| 3049 | error = copyout((caddr_t)&status, |
| 3050 | uap->status, |
| 3051 | sizeof(status)); |
| 3052 | } else { |
| 3053 | error = 0; |
| 3054 | } |
| 3055 | goto out; |
| 3056 | } |
| 3057 | p->p_listflag &= ~P_LIST_WAITING; |
| 3058 | wakeup(chan: &p->p_stat); |
| 3059 | } |
| 3060 | /* list lock is held when we get here any which way */ |
| 3061 | if (nfound == 0) { |
| 3062 | proc_list_unlock(); |
| 3063 | return ECHILD; |
| 3064 | } |
| 3065 | |
| 3066 | if (uap->options & WNOHANG) { |
| 3067 | retval[0] = 0; |
| 3068 | proc_list_unlock(); |
| 3069 | return 0; |
| 3070 | } |
| 3071 | |
| 3072 | /* Save arguments for continuation. Backing storage is in uthread->uu_arg, and will not be deallocated */ |
| 3073 | uth = current_uthread(); |
| 3074 | wait4_data = &uth->uu_save.uus_wait4_data; |
| 3075 | wait4_data->args = uap; |
| 3076 | wait4_data->retval = retval; |
| 3077 | |
| 3078 | thread_set_pending_block_hint(thread: current_thread(), block_hint: kThreadWaitOnProcess); |
| 3079 | if ((error = msleep0(chan: (caddr_t)q, mtx: &proc_list_mlock, PWAIT | PCATCH | PDROP, wmesg: "wait" , timo: 0, continuation: wait1continue))) { |
| 3080 | return error; |
| 3081 | } |
| 3082 | |
| 3083 | goto loop; |
| 3084 | out: |
| 3085 | proc_list_lock(); |
| 3086 | p->p_listflag &= ~P_LIST_WAITING; |
| 3087 | wakeup(chan: &p->p_stat); |
| 3088 | proc_list_unlock(); |
| 3089 | return error; |
| 3090 | } |
| 3091 | |
| 3092 | #if DEBUG |
| 3093 | #define ASSERT_LCK_MTX_OWNED(lock) \ |
| 3094 | lck_mtx_assert(lock, LCK_MTX_ASSERT_OWNED) |
| 3095 | #else |
| 3096 | #define ASSERT_LCK_MTX_OWNED(lock) /* nothing */ |
| 3097 | #endif |
| 3098 | |
| 3099 | int |
| 3100 | waitidcontinue(int result) |
| 3101 | { |
| 3102 | proc_t p; |
| 3103 | thread_t thread; |
| 3104 | uthread_t uth; |
| 3105 | struct _waitid_data *waitid_data; |
| 3106 | struct waitid_nocancel_args *uap; |
| 3107 | int *retval; |
| 3108 | |
| 3109 | if (result) { |
| 3110 | return result; |
| 3111 | } |
| 3112 | |
| 3113 | p = current_proc(); |
| 3114 | thread = current_thread(); |
| 3115 | uth = (struct uthread *)get_bsdthread_info(thread); |
| 3116 | |
| 3117 | waitid_data = &uth->uu_save.uus_waitid_data; |
| 3118 | uap = waitid_data->args; |
| 3119 | retval = waitid_data->retval; |
| 3120 | return waitid_nocancel(p, uap, retval); |
| 3121 | } |
| 3122 | |
| 3123 | /* |
| 3124 | * Description: Suspend the calling thread until one child of the process |
| 3125 | * containing the calling thread changes state. |
| 3126 | * |
| 3127 | * Parameters: uap->idtype one of P_PID, P_PGID, P_ALL |
| 3128 | * uap->id pid_t or gid_t or ignored |
| 3129 | * uap->infop Address of siginfo_t struct in |
| 3130 | * user space into which to return status |
| 3131 | * uap->options flag values |
| 3132 | * |
| 3133 | * Returns: 0 Success |
| 3134 | * !0 Error returning status to user space |
| 3135 | */ |
| 3136 | int |
| 3137 | waitid(proc_t q, struct waitid_args *uap, int32_t *retval) |
| 3138 | { |
| 3139 | __pthread_testcancel(presyscall: 1); |
| 3140 | return waitid_nocancel(q, (struct waitid_nocancel_args *)uap, retval); |
| 3141 | } |
| 3142 | |
| 3143 | int |
| 3144 | waitid_nocancel(proc_t q, struct waitid_nocancel_args *uap, |
| 3145 | __unused int32_t *retval) |
| 3146 | { |
| 3147 | user_siginfo_t siginfo; /* siginfo data to return to caller */ |
| 3148 | boolean_t caller64 = IS_64BIT_PROCESS(q); |
| 3149 | int nfound; |
| 3150 | proc_t p; |
| 3151 | int error; |
| 3152 | uthread_t uth; |
| 3153 | struct _waitid_data *waitid_data; |
| 3154 | |
| 3155 | if (uap->options == 0 || |
| 3156 | (uap->options & ~(WNOHANG | WNOWAIT | WCONTINUED | WSTOPPED | WEXITED))) { |
| 3157 | return EINVAL; /* bits set that aren't recognized */ |
| 3158 | } |
| 3159 | switch (uap->idtype) { |
| 3160 | case P_PID: /* child with process ID equal to... */ |
| 3161 | case P_PGID: /* child with process group ID equal to... */ |
| 3162 | if (((int)uap->id) < 0) { |
| 3163 | return EINVAL; |
| 3164 | } |
| 3165 | break; |
| 3166 | case P_ALL: /* any child */ |
| 3167 | break; |
| 3168 | } |
| 3169 | |
| 3170 | loop: |
| 3171 | proc_list_lock(); |
| 3172 | loop1: |
| 3173 | nfound = 0; |
| 3174 | |
| 3175 | PCHILDREN_FOREACH(q, p) { |
| 3176 | switch (uap->idtype) { |
| 3177 | case P_PID: /* child with process ID equal to... */ |
| 3178 | if (proc_getpid(p) != (pid_t)uap->id) { |
| 3179 | continue; |
| 3180 | } |
| 3181 | break; |
| 3182 | case P_PGID: /* child with process group ID equal to... */ |
| 3183 | if (p->p_pgrpid != (pid_t)uap->id) { |
| 3184 | continue; |
| 3185 | } |
| 3186 | break; |
| 3187 | case P_ALL: /* any child */ |
| 3188 | break; |
| 3189 | } |
| 3190 | |
| 3191 | if (proc_is_shadow(p)) { |
| 3192 | continue; |
| 3193 | } |
| 3194 | /* XXX This is racy because we don't get the lock!!!! */ |
| 3195 | |
| 3196 | /* |
| 3197 | * Wait collision; go to sleep and restart; used to maintain |
| 3198 | * the single return for waited process guarantee. |
| 3199 | */ |
| 3200 | if (p->p_listflag & P_LIST_WAITING) { |
| 3201 | (void) msleep(chan: &p->p_stat, mtx: &proc_list_mlock, |
| 3202 | PWAIT, wmesg: "waitidcoll" , ts: 0); |
| 3203 | goto loop1; |
| 3204 | } |
| 3205 | p->p_listflag |= P_LIST_WAITING; /* mark busy */ |
| 3206 | |
| 3207 | nfound++; |
| 3208 | |
| 3209 | bzero(s: &siginfo, n: sizeof(siginfo)); |
| 3210 | |
| 3211 | switch (p->p_stat) { |
| 3212 | case SZOMB: /* Exited */ |
| 3213 | if (!(uap->options & WEXITED)) { |
| 3214 | break; |
| 3215 | } |
| 3216 | proc_list_unlock(); |
| 3217 | #if CONFIG_MACF |
| 3218 | if ((error = mac_proc_check_wait(proc1: q, proc2: p)) != 0) { |
| 3219 | goto out; |
| 3220 | } |
| 3221 | #endif |
| 3222 | siginfo.si_signo = SIGCHLD; |
| 3223 | siginfo.si_pid = proc_getpid(p); |
| 3224 | |
| 3225 | /* If the child terminated abnormally due to a signal, the signum |
| 3226 | * needs to be preserved in the exit status. |
| 3227 | */ |
| 3228 | if (WIFSIGNALED(p->p_xstat)) { |
| 3229 | siginfo.si_code = WCOREDUMP(p->p_xstat) ? |
| 3230 | CLD_DUMPED : CLD_KILLED; |
| 3231 | siginfo.si_status = WTERMSIG(p->p_xstat); |
| 3232 | } else { |
| 3233 | siginfo.si_code = CLD_EXITED; |
| 3234 | siginfo.si_status = WEXITSTATUS(p->p_xstat) & 0x00FFFFFF; |
| 3235 | } |
| 3236 | siginfo.si_status |= (((uint32_t)(p->p_xhighbits) << 24) & 0xFF000000); |
| 3237 | p->p_xhighbits = 0; |
| 3238 | |
| 3239 | if ((error = copyoutsiginfo(native: &siginfo, |
| 3240 | is64: caller64, uaddr: uap->infop)) != 0) { |
| 3241 | goto out; |
| 3242 | } |
| 3243 | |
| 3244 | /* Prevent other process for waiting for this event? */ |
| 3245 | if (!(uap->options & WNOWAIT)) { |
| 3246 | reap_child_locked(parent: q, child: p, flags: 0); |
| 3247 | return 0; |
| 3248 | } |
| 3249 | goto out; |
| 3250 | |
| 3251 | case SSTOP: /* Stopped */ |
| 3252 | /* |
| 3253 | * If we are not interested in stopped processes, then |
| 3254 | * ignore this one. |
| 3255 | */ |
| 3256 | if (!(uap->options & WSTOPPED)) { |
| 3257 | break; |
| 3258 | } |
| 3259 | |
| 3260 | /* |
| 3261 | * If someone has already waited it, we lost a race |
| 3262 | * to be the one to return status. |
| 3263 | */ |
| 3264 | if ((p->p_lflag & P_LWAITED) != 0) { |
| 3265 | break; |
| 3266 | } |
| 3267 | proc_list_unlock(); |
| 3268 | #if CONFIG_MACF |
| 3269 | if ((error = mac_proc_check_wait(proc1: q, proc2: p)) != 0) { |
| 3270 | goto out; |
| 3271 | } |
| 3272 | #endif |
| 3273 | siginfo.si_signo = SIGCHLD; |
| 3274 | siginfo.si_pid = proc_getpid(p); |
| 3275 | siginfo.si_status = p->p_xstat; /* signal number */ |
| 3276 | siginfo.si_code = CLD_STOPPED; |
| 3277 | |
| 3278 | if ((error = copyoutsiginfo(native: &siginfo, |
| 3279 | is64: caller64, uaddr: uap->infop)) != 0) { |
| 3280 | goto out; |
| 3281 | } |
| 3282 | |
| 3283 | /* Prevent other process for waiting for this event? */ |
| 3284 | if (!(uap->options & WNOWAIT)) { |
| 3285 | proc_lock(p); |
| 3286 | p->p_lflag |= P_LWAITED; |
| 3287 | proc_unlock(p); |
| 3288 | } |
| 3289 | goto out; |
| 3290 | |
| 3291 | default: /* All other states => Continued */ |
| 3292 | if (!(uap->options & WCONTINUED)) { |
| 3293 | break; |
| 3294 | } |
| 3295 | |
| 3296 | /* |
| 3297 | * If the flag isn't set, then this process has not |
| 3298 | * been stopped and continued, or the status has |
| 3299 | * already been reaped by another caller of waitid(). |
| 3300 | */ |
| 3301 | if ((p->p_flag & P_CONTINUED) == 0) { |
| 3302 | break; |
| 3303 | } |
| 3304 | proc_list_unlock(); |
| 3305 | #if CONFIG_MACF |
| 3306 | if ((error = mac_proc_check_wait(proc1: q, proc2: p)) != 0) { |
| 3307 | goto out; |
| 3308 | } |
| 3309 | #endif |
| 3310 | siginfo.si_signo = SIGCHLD; |
| 3311 | siginfo.si_code = CLD_CONTINUED; |
| 3312 | proc_lock(p); |
| 3313 | siginfo.si_pid = p->p_contproc; |
| 3314 | siginfo.si_status = p->p_xstat; |
| 3315 | proc_unlock(p); |
| 3316 | |
| 3317 | if ((error = copyoutsiginfo(native: &siginfo, |
| 3318 | is64: caller64, uaddr: uap->infop)) != 0) { |
| 3319 | goto out; |
| 3320 | } |
| 3321 | |
| 3322 | /* Prevent other process for waiting for this event? */ |
| 3323 | if (!(uap->options & WNOWAIT)) { |
| 3324 | OSBitAndAtomic(~((uint32_t)P_CONTINUED), |
| 3325 | &p->p_flag); |
| 3326 | } |
| 3327 | goto out; |
| 3328 | } |
| 3329 | ASSERT_LCK_MTX_OWNED(&proc_list_mlock); |
| 3330 | |
| 3331 | /* Not a process we are interested in; go on to next child */ |
| 3332 | |
| 3333 | p->p_listflag &= ~P_LIST_WAITING; |
| 3334 | wakeup(chan: &p->p_stat); |
| 3335 | } |
| 3336 | ASSERT_LCK_MTX_OWNED(&proc_list_mlock); |
| 3337 | |
| 3338 | /* No child processes that could possibly satisfy the request? */ |
| 3339 | |
| 3340 | if (nfound == 0) { |
| 3341 | proc_list_unlock(); |
| 3342 | return ECHILD; |
| 3343 | } |
| 3344 | |
| 3345 | if (uap->options & WNOHANG) { |
| 3346 | proc_list_unlock(); |
| 3347 | #if CONFIG_MACF |
| 3348 | if ((error = mac_proc_check_wait(proc1: q, proc2: p)) != 0) { |
| 3349 | return error; |
| 3350 | } |
| 3351 | #endif |
| 3352 | /* |
| 3353 | * The state of the siginfo structure in this case |
| 3354 | * is undefined. Some implementations bzero it, some |
| 3355 | * (like here) leave it untouched for efficiency. |
| 3356 | * |
| 3357 | * Thus the most portable check for "no matching pid with |
| 3358 | * WNOHANG" is to store a zero into si_pid before |
| 3359 | * invocation, then check for a non-zero value afterwards. |
| 3360 | */ |
| 3361 | return 0; |
| 3362 | } |
| 3363 | |
| 3364 | /* Save arguments for continuation. Backing storage is in uthread->uu_arg, and will not be deallocated */ |
| 3365 | uth = current_uthread(); |
| 3366 | waitid_data = &uth->uu_save.uus_waitid_data; |
| 3367 | waitid_data->args = uap; |
| 3368 | waitid_data->retval = retval; |
| 3369 | |
| 3370 | if ((error = msleep0(chan: q, mtx: &proc_list_mlock, |
| 3371 | PWAIT | PCATCH | PDROP, wmesg: "waitid" , timo: 0, continuation: waitidcontinue)) != 0) { |
| 3372 | return error; |
| 3373 | } |
| 3374 | |
| 3375 | goto loop; |
| 3376 | out: |
| 3377 | proc_list_lock(); |
| 3378 | p->p_listflag &= ~P_LIST_WAITING; |
| 3379 | wakeup(chan: &p->p_stat); |
| 3380 | proc_list_unlock(); |
| 3381 | return error; |
| 3382 | } |
| 3383 | |
| 3384 | /* |
| 3385 | * make process 'parent' the new parent of process 'child'. |
| 3386 | */ |
| 3387 | void |
| 3388 | proc_reparentlocked(proc_t child, proc_t parent, int signallable, int locked) |
| 3389 | { |
| 3390 | proc_t oldparent = PROC_NULL; |
| 3391 | |
| 3392 | if (child->p_pptr == parent) { |
| 3393 | return; |
| 3394 | } |
| 3395 | |
| 3396 | if (locked == 0) { |
| 3397 | proc_list_lock(); |
| 3398 | } |
| 3399 | |
| 3400 | oldparent = child->p_pptr; |
| 3401 | #if __PROC_INTERNAL_DEBUG |
| 3402 | if (oldparent == PROC_NULL) { |
| 3403 | panic("proc_reparent: process %p does not have a parent" , child); |
| 3404 | } |
| 3405 | #endif |
| 3406 | |
| 3407 | LIST_REMOVE(child, p_sibling); |
| 3408 | #if __PROC_INTERNAL_DEBUG |
| 3409 | if (oldparent->p_childrencnt == 0) { |
| 3410 | panic("process children count already 0" ); |
| 3411 | } |
| 3412 | #endif |
| 3413 | oldparent->p_childrencnt--; |
| 3414 | #if __PROC_INTERNAL_DEBUG |
| 3415 | if (oldparent->p_childrencnt < 0) { |
| 3416 | panic("process children count -ve" ); |
| 3417 | } |
| 3418 | #endif |
| 3419 | LIST_INSERT_HEAD(&parent->p_children, child, p_sibling); |
| 3420 | parent->p_childrencnt++; |
| 3421 | child->p_pptr = parent; |
| 3422 | child->p_ppid = proc_getpid(parent); |
| 3423 | |
| 3424 | proc_list_unlock(); |
| 3425 | |
| 3426 | if ((signallable != 0) && (initproc == parent) && (child->p_stat == SZOMB)) { |
| 3427 | psignal(p: initproc, SIGCHLD); |
| 3428 | } |
| 3429 | if (locked == 1) { |
| 3430 | proc_list_lock(); |
| 3431 | } |
| 3432 | } |
| 3433 | |
| 3434 | /* |
| 3435 | * Exit: deallocate address space and other resources, change proc state |
| 3436 | * to zombie, and unlink proc from allproc and parent's lists. Save exit |
| 3437 | * status and rusage for wait(). Check for child processes and orphan them. |
| 3438 | */ |
| 3439 | |
| 3440 | |
| 3441 | /* |
| 3442 | * munge_rusage |
| 3443 | * LP64 support - long is 64 bits if we are dealing with a 64 bit user |
| 3444 | * process. We munge the kernel version of rusage into the |
| 3445 | * 64 bit version. |
| 3446 | */ |
| 3447 | __private_extern__ void |
| 3448 | munge_user64_rusage(struct rusage *a_rusage_p, struct user64_rusage *a_user_rusage_p) |
| 3449 | { |
| 3450 | /* Zero-out struct so that padding is cleared */ |
| 3451 | bzero(s: a_user_rusage_p, n: sizeof(struct user64_rusage)); |
| 3452 | |
| 3453 | /* timeval changes size, so utime and stime need special handling */ |
| 3454 | a_user_rusage_p->ru_utime.tv_sec = a_rusage_p->ru_utime.tv_sec; |
| 3455 | a_user_rusage_p->ru_utime.tv_usec = a_rusage_p->ru_utime.tv_usec; |
| 3456 | a_user_rusage_p->ru_stime.tv_sec = a_rusage_p->ru_stime.tv_sec; |
| 3457 | a_user_rusage_p->ru_stime.tv_usec = a_rusage_p->ru_stime.tv_usec; |
| 3458 | /* |
| 3459 | * everything else can be a direct assign, since there is no loss |
| 3460 | * of precision implied boing 32->64. |
| 3461 | */ |
| 3462 | a_user_rusage_p->ru_maxrss = a_rusage_p->ru_maxrss; |
| 3463 | a_user_rusage_p->ru_ixrss = a_rusage_p->ru_ixrss; |
| 3464 | a_user_rusage_p->ru_idrss = a_rusage_p->ru_idrss; |
| 3465 | a_user_rusage_p->ru_isrss = a_rusage_p->ru_isrss; |
| 3466 | a_user_rusage_p->ru_minflt = a_rusage_p->ru_minflt; |
| 3467 | a_user_rusage_p->ru_majflt = a_rusage_p->ru_majflt; |
| 3468 | a_user_rusage_p->ru_nswap = a_rusage_p->ru_nswap; |
| 3469 | a_user_rusage_p->ru_inblock = a_rusage_p->ru_inblock; |
| 3470 | a_user_rusage_p->ru_oublock = a_rusage_p->ru_oublock; |
| 3471 | a_user_rusage_p->ru_msgsnd = a_rusage_p->ru_msgsnd; |
| 3472 | a_user_rusage_p->ru_msgrcv = a_rusage_p->ru_msgrcv; |
| 3473 | a_user_rusage_p->ru_nsignals = a_rusage_p->ru_nsignals; |
| 3474 | a_user_rusage_p->ru_nvcsw = a_rusage_p->ru_nvcsw; |
| 3475 | a_user_rusage_p->ru_nivcsw = a_rusage_p->ru_nivcsw; |
| 3476 | } |
| 3477 | |
| 3478 | /* For a 64-bit kernel and 32-bit userspace, munging may be needed */ |
| 3479 | __private_extern__ void |
| 3480 | munge_user32_rusage(struct rusage *a_rusage_p, struct user32_rusage *a_user_rusage_p) |
| 3481 | { |
| 3482 | bzero(s: a_user_rusage_p, n: sizeof(struct user32_rusage)); |
| 3483 | |
| 3484 | /* timeval changes size, so utime and stime need special handling */ |
| 3485 | a_user_rusage_p->ru_utime.tv_sec = (user32_time_t)a_rusage_p->ru_utime.tv_sec; |
| 3486 | a_user_rusage_p->ru_utime.tv_usec = a_rusage_p->ru_utime.tv_usec; |
| 3487 | a_user_rusage_p->ru_stime.tv_sec = (user32_time_t)a_rusage_p->ru_stime.tv_sec; |
| 3488 | a_user_rusage_p->ru_stime.tv_usec = a_rusage_p->ru_stime.tv_usec; |
| 3489 | /* |
| 3490 | * everything else can be a direct assign. We currently ignore |
| 3491 | * the loss of precision |
| 3492 | */ |
| 3493 | a_user_rusage_p->ru_maxrss = (user32_long_t)a_rusage_p->ru_maxrss; |
| 3494 | a_user_rusage_p->ru_ixrss = (user32_long_t)a_rusage_p->ru_ixrss; |
| 3495 | a_user_rusage_p->ru_idrss = (user32_long_t)a_rusage_p->ru_idrss; |
| 3496 | a_user_rusage_p->ru_isrss = (user32_long_t)a_rusage_p->ru_isrss; |
| 3497 | a_user_rusage_p->ru_minflt = (user32_long_t)a_rusage_p->ru_minflt; |
| 3498 | a_user_rusage_p->ru_majflt = (user32_long_t)a_rusage_p->ru_majflt; |
| 3499 | a_user_rusage_p->ru_nswap = (user32_long_t)a_rusage_p->ru_nswap; |
| 3500 | a_user_rusage_p->ru_inblock = (user32_long_t)a_rusage_p->ru_inblock; |
| 3501 | a_user_rusage_p->ru_oublock = (user32_long_t)a_rusage_p->ru_oublock; |
| 3502 | a_user_rusage_p->ru_msgsnd = (user32_long_t)a_rusage_p->ru_msgsnd; |
| 3503 | a_user_rusage_p->ru_msgrcv = (user32_long_t)a_rusage_p->ru_msgrcv; |
| 3504 | a_user_rusage_p->ru_nsignals = (user32_long_t)a_rusage_p->ru_nsignals; |
| 3505 | a_user_rusage_p->ru_nvcsw = (user32_long_t)a_rusage_p->ru_nvcsw; |
| 3506 | a_user_rusage_p->ru_nivcsw = (user32_long_t)a_rusage_p->ru_nivcsw; |
| 3507 | } |
| 3508 | |
| 3509 | void |
| 3510 | kdp_wait4_find_process(thread_t thread, __unused event64_t wait_event, thread_waitinfo_t *waitinfo) |
| 3511 | { |
| 3512 | assert(thread != NULL); |
| 3513 | assert(waitinfo != NULL); |
| 3514 | |
| 3515 | struct uthread *ut = get_bsdthread_info(thread); |
| 3516 | waitinfo->context = 0; |
| 3517 | // ensure wmesg is consistent with a thread waiting in wait4 |
| 3518 | assert(!strcmp(ut->uu_wmesg, "waitcoll" ) || !strcmp(ut->uu_wmesg, "wait" )); |
| 3519 | struct wait4_nocancel_args *args = ut->uu_save.uus_wait4_data.args; |
| 3520 | // May not actually contain a pid; this is just the argument to wait4. |
| 3521 | // See man wait4 for other valid wait4 arguments. |
| 3522 | waitinfo->owner = args->pid; |
| 3523 | } |
| 3524 | |
| 3525 | int |
| 3526 | exit_with_guard_exception( |
| 3527 | proc_t p, |
| 3528 | mach_exception_data_type_t code, |
| 3529 | mach_exception_data_type_t subcode) |
| 3530 | { |
| 3531 | os_reason_t reason = os_reason_create(OS_REASON_GUARD, osr_code: (uint64_t)code); |
| 3532 | assert(reason != OS_REASON_NULL); |
| 3533 | |
| 3534 | return exit_with_mach_exception(p, reason, EXC_GUARD, code, subcode); |
| 3535 | } |
| 3536 | |
| 3537 | #if __has_feature(ptrauth_calls) |
| 3538 | int |
| 3539 | exit_with_pac_exception(proc_t p, exception_type_t exception, mach_exception_code_t code, |
| 3540 | mach_exception_subcode_t subcode) |
| 3541 | { |
| 3542 | os_reason_t reason = os_reason_create(OS_REASON_PAC_EXCEPTION, (uint64_t)code); |
| 3543 | assert(reason != OS_REASON_NULL); |
| 3544 | |
| 3545 | return exit_with_mach_exception(p, reason, exception, code, subcode); |
| 3546 | } |
| 3547 | #endif /* __has_feature(ptrauth_calls) */ |
| 3548 | |
| 3549 | int |
| 3550 | exit_with_port_space_exception(proc_t p, mach_exception_data_type_t code, |
| 3551 | mach_exception_data_type_t subcode) |
| 3552 | { |
| 3553 | os_reason_t reason = os_reason_create(OS_REASON_PORT_SPACE, osr_code: (uint64_t)code); |
| 3554 | assert(reason != OS_REASON_NULL); |
| 3555 | |
| 3556 | return exit_with_mach_exception(p, reason, EXC_RESOURCE, code, subcode); |
| 3557 | } |
| 3558 | |
| 3559 | static int |
| 3560 | exit_with_mach_exception(proc_t p, os_reason_t reason, exception_type_t exception, mach_exception_code_t code, |
| 3561 | mach_exception_subcode_t subcode) |
| 3562 | { |
| 3563 | thread_t self = current_thread(); |
| 3564 | struct uthread *ut = get_bsdthread_info(self); |
| 3565 | |
| 3566 | ut->uu_exception = exception; |
| 3567 | ut->uu_code = code; |
| 3568 | ut->uu_subcode = subcode; |
| 3569 | |
| 3570 | reason->osr_flags |= OS_REASON_FLAG_GENERATE_CRASH_REPORT; |
| 3571 | return exit_with_reason(p, W_EXITCODE(0, SIGKILL), NULL, |
| 3572 | FALSE, FALSE, jetsam_flags: 0, exit_reason: reason); |
| 3573 | } |
| 3574 | |
| 3575 | #if CONFIG_EXCLAVES |
| 3576 | int |
| 3577 | exit_with_exclave_exception(proc_t p) |
| 3578 | { |
| 3579 | /* Using OS_REASON_GUARD for now */ |
| 3580 | os_reason_t reason = os_reason_create(OS_REASON_GUARD, (uint64_t)GUARD_REASON_EXCLAVES); |
| 3581 | assert(reason != OS_REASON_NULL); |
| 3582 | reason->osr_flags |= OS_REASON_FLAG_GENERATE_CRASH_REPORT; |
| 3583 | |
| 3584 | return exit_with_reason(p, W_EXITCODE(0, SIGKILL), (int *)NULL, FALSE, FALSE, |
| 3585 | 0, reason); |
| 3586 | } |
| 3587 | #endif /* CONFIG_EXCLAVES */ |
| 3588 | |
| 3589 | int |
| 3590 | exit_with_jit_exception(proc_t p) |
| 3591 | { |
| 3592 | os_reason_t reason = os_reason_create(OS_REASON_GUARD, osr_code: (uint64_t)GUARD_REASON_JIT); |
| 3593 | assert(reason != OS_REASON_NULL); |
| 3594 | reason->osr_flags |= OS_REASON_FLAG_GENERATE_CRASH_REPORT; |
| 3595 | |
| 3596 | return exit_with_reason(p, W_EXITCODE(0, SIGKILL), retval: (int *)NULL, FALSE, FALSE, |
| 3597 | jetsam_flags: 0, exit_reason: reason); |
| 3598 | } |
| 3599 | |