| 1 | /* |
| 2 | * Copyright (c) 2000-2021 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * @Apple_LICENSE_HEADER_START@ |
| 5 | * |
| 6 | * The contents of this file constitute Original Code as defined in and |
| 7 | * are subject to the Apple Public Source License Version 1.1 (the |
| 8 | * "License"). You may not use this file except in compliance with the |
| 9 | * License. Please obtain a copy of the License at |
| 10 | * http://www.apple.com/publicsource and read it before using this file. |
| 11 | * |
| 12 | * This Original Code and all software distributed under the License are |
| 13 | * distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 14 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 15 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 16 | * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. Please see the |
| 17 | * License for the specific language governing rights and limitations |
| 18 | * under the License. |
| 19 | * |
| 20 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
| 21 | */ |
| 22 | |
| 23 | #include <sys/errno.h> |
| 24 | #include <sys/kdebug_private.h> |
| 25 | #include <sys/proc_internal.h> |
| 26 | #include <sys/vm.h> |
| 27 | #include <sys/sysctl.h> |
| 28 | #include <sys/kdebug_common.h> |
| 29 | #include <sys/kdebug.h> |
| 30 | #include <sys/kdebug_triage.h> |
| 31 | #include <sys/kauth.h> |
| 32 | #include <sys/ktrace.h> |
| 33 | #include <sys/sysproto.h> |
| 34 | #include <sys/bsdtask_info.h> |
| 35 | #include <sys/random.h> |
| 36 | |
| 37 | #include <mach/mach_vm.h> |
| 38 | #include <machine/atomic.h> |
| 39 | |
| 40 | #include <mach/machine.h> |
| 41 | #include <mach/vm_map.h> |
| 42 | #include <kern/clock.h> |
| 43 | |
| 44 | #include <kern/task.h> |
| 45 | #include <kern/debug.h> |
| 46 | #include <kern/kalloc.h> |
| 47 | #include <kern/telemetry.h> |
| 48 | #include <kern/sched_prim.h> |
| 49 | #include <sys/lock.h> |
| 50 | #include <pexpert/device_tree.h> |
| 51 | |
| 52 | #include <sys/malloc.h> |
| 53 | |
| 54 | #include <sys/vnode.h> |
| 55 | #include <sys/vnode_internal.h> |
| 56 | #include <sys/fcntl.h> |
| 57 | #include <sys/file_internal.h> |
| 58 | #include <sys/ubc.h> |
| 59 | #include <sys/param.h> /* for isset() */ |
| 60 | |
| 61 | #include <libkern/OSAtomic.h> |
| 62 | |
| 63 | #include <machine/pal_routines.h> |
| 64 | #include <machine/atomic.h> |
| 65 | |
| 66 | |
| 67 | extern unsigned int wake_nkdbufs; |
| 68 | extern unsigned int trace_wrap; |
| 69 | |
| 70 | // Coprocessors (or "IOP"s) |
| 71 | // |
| 72 | // Coprocessors are auxiliary cores that want to participate in kdebug event |
| 73 | // logging. They are registered dynamically, as devices match hardware, and are |
| 74 | // each assigned an ID at registration. |
| 75 | // |
| 76 | // Once registered, a coprocessor is permanent; it cannot be unregistered. |
| 77 | // The current implementation depends on this for thread safety. |
| 78 | // |
| 79 | // The `kd_coprocs` list may be safely walked at any time, without holding |
| 80 | // locks. |
| 81 | // |
| 82 | // When starting a trace session, the current `kd_coprocs` head is captured. Any |
| 83 | // operations that depend on the buffer state (such as flushing IOP traces on |
| 84 | // reads, etc.) should use the captured list head. This will allow registrations |
| 85 | // to take place while trace is in use, though their events will be rejected |
| 86 | // until the next time a trace session is started. |
| 87 | |
| 88 | struct kd_coproc { |
| 89 | char full_name[32]; |
| 90 | kdebug_coproc_flags_t flags; |
| 91 | kd_callback_t callback; |
| 92 | uint32_t cpu_id; |
| 93 | struct kd_coproc *next; |
| 94 | struct mpsc_queue_chain chain; |
| 95 | }; |
| 96 | |
| 97 | static struct kd_coproc *kd_coprocs = NULL; |
| 98 | |
| 99 | // Use an MPSC queue to notify coprocessors of the current trace state during |
| 100 | // registration, if space is available for them in the current trace session. |
| 101 | static struct mpsc_daemon_queue _coproc_notify_queue; |
| 102 | |
| 103 | // Typefilter(s) |
| 104 | // |
| 105 | // A typefilter is a 8KB bitmap that is used to selectively filter events |
| 106 | // being recorded. It is able to individually address every class & subclass. |
| 107 | // |
| 108 | // There is a shared typefilter in the kernel which is lazily allocated. Once |
| 109 | // allocated, the shared typefilter is never deallocated. The shared typefilter |
| 110 | // is also mapped on demand into userspace processes that invoke kdebug_trace |
| 111 | // API from Libsyscall. When mapped into a userspace process, the memory is |
| 112 | // read only, and does not have a fixed address. |
| 113 | // |
| 114 | // It is a requirement that the kernel's shared typefilter always pass DBG_TRACE |
| 115 | // events. This is enforced automatically, by having the needed bits set any |
| 116 | // time the shared typefilter is mutated. |
| 117 | |
| 118 | typedef uint8_t *typefilter_t; |
| 119 | |
| 120 | static typefilter_t kdbg_typefilter; |
| 121 | static mach_port_t kdbg_typefilter_memory_entry; |
| 122 | |
| 123 | /* |
| 124 | * There are 3 combinations of page sizes: |
| 125 | * |
| 126 | * 4KB / 4KB |
| 127 | * 4KB / 16KB |
| 128 | * 16KB / 16KB |
| 129 | * |
| 130 | * The typefilter is exactly 8KB. In the first two scenarios, we would like |
| 131 | * to use 2 pages exactly; in the third scenario we must make certain that |
| 132 | * a full page is allocated so we do not inadvertantly share 8KB of random |
| 133 | * data to userspace. The round_page_32 macro rounds to kernel page size. |
| 134 | */ |
| 135 | #define TYPEFILTER_ALLOC_SIZE MAX(round_page_32(KDBG_TYPEFILTER_BITMAP_SIZE), KDBG_TYPEFILTER_BITMAP_SIZE) |
| 136 | |
| 137 | static typefilter_t |
| 138 | typefilter_create(void) |
| 139 | { |
| 140 | typefilter_t tf; |
| 141 | if (KERN_SUCCESS == kmem_alloc(map: kernel_map, addrp: (vm_offset_t*)&tf, |
| 142 | TYPEFILTER_ALLOC_SIZE, flags: KMA_DATA | KMA_ZERO, VM_KERN_MEMORY_DIAG)) { |
| 143 | return tf; |
| 144 | } |
| 145 | return NULL; |
| 146 | } |
| 147 | |
| 148 | static void |
| 149 | typefilter_deallocate(typefilter_t tf) |
| 150 | { |
| 151 | assert(tf != NULL); |
| 152 | assert(tf != kdbg_typefilter); |
| 153 | kmem_free(map: kernel_map, addr: (vm_offset_t)tf, TYPEFILTER_ALLOC_SIZE); |
| 154 | } |
| 155 | |
| 156 | static void |
| 157 | typefilter_copy(typefilter_t dst, typefilter_t src) |
| 158 | { |
| 159 | assert(src != NULL); |
| 160 | assert(dst != NULL); |
| 161 | memcpy(dst, src, KDBG_TYPEFILTER_BITMAP_SIZE); |
| 162 | } |
| 163 | |
| 164 | static void |
| 165 | typefilter_reject_all(typefilter_t tf) |
| 166 | { |
| 167 | assert(tf != NULL); |
| 168 | memset(s: tf, c: 0, KDBG_TYPEFILTER_BITMAP_SIZE); |
| 169 | } |
| 170 | |
| 171 | static void |
| 172 | typefilter_allow_all(typefilter_t tf) |
| 173 | { |
| 174 | assert(tf != NULL); |
| 175 | memset(s: tf, c: ~0, KDBG_TYPEFILTER_BITMAP_SIZE); |
| 176 | } |
| 177 | |
| 178 | static void |
| 179 | typefilter_allow_class(typefilter_t tf, uint8_t class) |
| 180 | { |
| 181 | assert(tf != NULL); |
| 182 | const uint32_t BYTES_PER_CLASS = 256 / 8; // 256 subclasses, 1 bit each |
| 183 | memset(s: &tf[class * BYTES_PER_CLASS], c: 0xFF, n: BYTES_PER_CLASS); |
| 184 | } |
| 185 | |
| 186 | static void |
| 187 | typefilter_allow_csc(typefilter_t tf, uint16_t csc) |
| 188 | { |
| 189 | assert(tf != NULL); |
| 190 | setbit(tf, csc); |
| 191 | } |
| 192 | |
| 193 | static bool |
| 194 | typefilter_is_debugid_allowed(typefilter_t tf, uint32_t id) |
| 195 | { |
| 196 | assert(tf != NULL); |
| 197 | return isset(tf, KDBG_EXTRACT_CSC(id)); |
| 198 | } |
| 199 | |
| 200 | static mach_port_t |
| 201 | typefilter_create_memory_entry(typefilter_t tf) |
| 202 | { |
| 203 | assert(tf != NULL); |
| 204 | |
| 205 | mach_port_t memory_entry = MACH_PORT_NULL; |
| 206 | memory_object_size_t size = TYPEFILTER_ALLOC_SIZE; |
| 207 | |
| 208 | kern_return_t kr = mach_make_memory_entry_64(target_task: kernel_map, |
| 209 | size: &size, |
| 210 | offset: (memory_object_offset_t)tf, |
| 211 | VM_PROT_READ, |
| 212 | object_handle: &memory_entry, |
| 213 | MACH_PORT_NULL); |
| 214 | if (kr != KERN_SUCCESS) { |
| 215 | return MACH_PORT_NULL; |
| 216 | } |
| 217 | |
| 218 | return memory_entry; |
| 219 | } |
| 220 | |
| 221 | static int kdbg_copyin_typefilter(user_addr_t addr, size_t size); |
| 222 | static void kdbg_enable_typefilter(void); |
| 223 | static void kdbg_disable_typefilter(void); |
| 224 | |
| 225 | // External prototypes |
| 226 | |
| 227 | void commpage_update_kdebug_state(void); |
| 228 | |
| 229 | static int kdbg_readcurthrmap(user_addr_t, size_t *); |
| 230 | static int kdbg_setpidex(kd_regtype *); |
| 231 | static int kdbg_setpid(kd_regtype *); |
| 232 | static int kdbg_reinit(unsigned int ); |
| 233 | #if DEVELOPMENT || DEBUG |
| 234 | static int kdbg_test(size_t flavor); |
| 235 | #endif /* DEVELOPMENT || DEBUG */ |
| 236 | |
| 237 | static int _write_legacy_header(bool write_thread_map, vnode_t vp, |
| 238 | vfs_context_t ctx); |
| 239 | static int kdbg_write_thread_map(vnode_t vp, vfs_context_t ctx); |
| 240 | static int kdbg_copyout_thread_map(user_addr_t buffer, size_t *buffer_size); |
| 241 | static void _clear_thread_map(void); |
| 242 | |
| 243 | static bool kdbg_wait(uint64_t timeout_ms); |
| 244 | static void kdbg_wakeup(void); |
| 245 | |
| 246 | static int _copy_cpu_map(int version, void **dst, size_t *size); |
| 247 | |
| 248 | static kd_threadmap *_thread_map_create_live(size_t max_count, |
| 249 | vm_size_t *map_size, vm_size_t *map_count); |
| 250 | |
| 251 | static bool kdebug_current_proc_enabled(uint32_t debugid); |
| 252 | static errno_t kdebug_check_trace_string(uint32_t debugid, uint64_t str_id); |
| 253 | |
| 254 | int kernel_debug_trace_write_to_file(user_addr_t *buffer, size_t *number, |
| 255 | size_t *count, size_t tempbuf_number, vnode_t vp, vfs_context_t ctx, |
| 256 | bool chunk); |
| 257 | |
| 258 | extern void IOSleep(int); |
| 259 | |
| 260 | unsigned int kdebug_enable = 0; |
| 261 | |
| 262 | // A static buffer to record events prior to the start of regular logging. |
| 263 | |
| 264 | #define KD_EARLY_BUFFER_SIZE (16 * 1024) |
| 265 | #define KD_EARLY_EVENT_COUNT (KD_EARLY_BUFFER_SIZE / sizeof(kd_buf)) |
| 266 | #if defined(__x86_64__) |
| 267 | __attribute__((aligned(KD_EARLY_BUFFER_SIZE))) |
| 268 | static kd_buf kd_early_buffer[KD_EARLY_EVENT_COUNT]; |
| 269 | #else /* defined(__x86_64__) */ |
| 270 | // On ARM, the space for this is carved out by osfmk/arm/data.s -- clang |
| 271 | // has problems aligning to greater than 4K. |
| 272 | extern kd_buf kd_early_buffer[KD_EARLY_EVENT_COUNT]; |
| 273 | #endif /* !defined(__x86_64__) */ |
| 274 | |
| 275 | static __security_const_late unsigned int kd_early_index = 0; |
| 276 | static __security_const_late bool kd_early_overflow = false; |
| 277 | static __security_const_late bool kd_early_done = false; |
| 278 | |
| 279 | static bool kd_waiter = false; |
| 280 | static LCK_SPIN_DECLARE(kd_wait_lock, &kdebug_lck_grp); |
| 281 | // Synchronize access to coprocessor list for kdebug trace. |
| 282 | static LCK_SPIN_DECLARE(kd_coproc_spinlock, &kdebug_lck_grp); |
| 283 | |
| 284 | #define TRACE_KDCOPYBUF_COUNT 8192 |
| 285 | #define TRACE_KDCOPYBUF_SIZE (TRACE_KDCOPYBUF_COUNT * sizeof(kd_buf)) |
| 286 | |
| 287 | struct kd_control kd_control_trace = { |
| 288 | .kds_free_list = {.raw = KDS_PTR_NULL}, |
| 289 | .enabled = 0, |
| 290 | .mode = KDEBUG_MODE_TRACE, |
| 291 | .kdebug_events_per_storage_unit = TRACE_EVENTS_PER_STORAGE_UNIT, |
| 292 | .kdebug_min_storage_units_per_cpu = TRACE_MIN_STORAGE_UNITS_PER_CPU, |
| 293 | .kdebug_kdcopybuf_count = TRACE_KDCOPYBUF_COUNT, |
| 294 | .kdebug_kdcopybuf_size = TRACE_KDCOPYBUF_SIZE, |
| 295 | .kdc_flags = 0, |
| 296 | .kdc_emit = KDEMIT_DISABLE, |
| 297 | .kdc_oldest_time = 0 |
| 298 | }; |
| 299 | |
| 300 | struct kd_buffer kd_buffer_trace = { |
| 301 | .kdb_event_count = 0, |
| 302 | .kdb_storage_count = 0, |
| 303 | .kdb_storage_threshold = 0, |
| 304 | .kdb_region_count = 0, |
| 305 | .kdb_info = NULL, |
| 306 | .kd_bufs = NULL, |
| 307 | .kdcopybuf = NULL |
| 308 | }; |
| 309 | |
| 310 | unsigned int kdlog_beg = 0; |
| 311 | unsigned int kdlog_end = 0; |
| 312 | unsigned int kdlog_value1 = 0; |
| 313 | unsigned int kdlog_value2 = 0; |
| 314 | unsigned int kdlog_value3 = 0; |
| 315 | unsigned int kdlog_value4 = 0; |
| 316 | |
| 317 | kd_threadmap *kd_mapptr = 0; |
| 318 | vm_size_t kd_mapsize = 0; |
| 319 | vm_size_t kd_mapcount = 0; |
| 320 | |
| 321 | off_t RAW_file_offset = 0; |
| 322 | int RAW_file_written = 0; |
| 323 | |
| 324 | /* |
| 325 | * A globally increasing counter for identifying strings in trace. Starts at |
| 326 | * 1 because 0 is a reserved return value. |
| 327 | */ |
| 328 | __attribute__((aligned(MAX_CPU_CACHE_LINE_SIZE))) |
| 329 | static uint64_t g_curr_str_id = 1; |
| 330 | |
| 331 | #define STR_ID_SIG_OFFSET (48) |
| 332 | #define STR_ID_MASK ((1ULL << STR_ID_SIG_OFFSET) - 1) |
| 333 | #define STR_ID_SIG_MASK (~STR_ID_MASK) |
| 334 | |
| 335 | /* |
| 336 | * A bit pattern for identifying string IDs generated by |
| 337 | * kdebug_trace_string(2). |
| 338 | */ |
| 339 | static uint64_t g_str_id_signature = (0x70acULL << STR_ID_SIG_OFFSET); |
| 340 | |
| 341 | #define RAW_VERSION3 0x00001000 |
| 342 | |
| 343 | #define V3_RAW_EVENTS 0x00001e00 |
| 344 | |
| 345 | static void |
| 346 | _coproc_lock(void) |
| 347 | { |
| 348 | lck_spin_lock_grp(lck: &kd_coproc_spinlock, grp: &kdebug_lck_grp); |
| 349 | } |
| 350 | |
| 351 | static void |
| 352 | _coproc_unlock(void) |
| 353 | { |
| 354 | lck_spin_unlock(lck: &kd_coproc_spinlock); |
| 355 | } |
| 356 | |
| 357 | static void |
| 358 | _coproc_list_check(void) |
| 359 | { |
| 360 | #if MACH_ASSERT |
| 361 | _coproc_lock(); |
| 362 | struct kd_coproc *coproc = kd_control_trace.kdc_coprocs; |
| 363 | if (coproc) { |
| 364 | /* Is list sorted by cpu_id? */ |
| 365 | struct kd_coproc* temp = coproc; |
| 366 | do { |
| 367 | assert(!temp->next || temp->next->cpu_id == temp->cpu_id - 1); |
| 368 | assert(temp->next || (temp->cpu_id == kdbg_cpu_count())); |
| 369 | } while ((temp = temp->next)); |
| 370 | |
| 371 | /* Does each entry have a function and a name? */ |
| 372 | temp = coproc; |
| 373 | do { |
| 374 | assert(temp->callback.func); |
| 375 | assert(strlen(temp->callback.iop_name) < sizeof(temp->callback.iop_name)); |
| 376 | } while ((temp = temp->next)); |
| 377 | } |
| 378 | _coproc_unlock(); |
| 379 | #endif // MACH_ASSERT |
| 380 | } |
| 381 | |
| 382 | static void |
| 383 | _coproc_list_callback(kd_callback_type type, void *arg) |
| 384 | { |
| 385 | if (kd_control_trace.kdc_flags & KDBG_DISABLE_COPROCS) { |
| 386 | return; |
| 387 | } |
| 388 | |
| 389 | _coproc_lock(); |
| 390 | // Coprocessor list is only ever prepended to. |
| 391 | struct kd_coproc *head = kd_control_trace.kdc_coprocs; |
| 392 | _coproc_unlock(); |
| 393 | while (head) { |
| 394 | head->callback.func(head->callback.context, type, arg); |
| 395 | head = head->next; |
| 396 | } |
| 397 | } |
| 398 | |
| 399 | // Leave some extra space for coprocessors to register while tracing is active. |
| 400 | #define (16) |
| 401 | // There are more coprocessors registering during boot tracing. |
| 402 | #define (32) |
| 403 | |
| 404 | static kdebug_emit_filter_t |
| 405 | _trace_emit_filter(void) |
| 406 | { |
| 407 | if (!kdebug_enable) { |
| 408 | return KDEMIT_DISABLE; |
| 409 | } else if (kd_control_trace.kdc_flags & KDBG_TYPEFILTER_CHECK) { |
| 410 | return KDEMIT_TYPEFILTER; |
| 411 | } else if (kd_control_trace.kdc_flags & KDBG_RANGECHECK) { |
| 412 | return KDEMIT_RANGE; |
| 413 | } else if (kd_control_trace.kdc_flags & KDBG_VALCHECK) { |
| 414 | return KDEMIT_EXACT; |
| 415 | } else { |
| 416 | return KDEMIT_ALL; |
| 417 | } |
| 418 | } |
| 419 | |
| 420 | static void |
| 421 | kdbg_set_tracing_enabled(bool enabled, uint32_t trace_type) |
| 422 | { |
| 423 | // Drain any events from coprocessors before making the state change. On |
| 424 | // enabling, this removes any stale events from before tracing. On |
| 425 | // disabling, this saves any events up to the point tracing is disabled. |
| 426 | _coproc_list_callback(type: KD_CALLBACK_SYNC_FLUSH, NULL); |
| 427 | |
| 428 | if (!enabled) { |
| 429 | // Give coprocessors a chance to log any events before tracing is |
| 430 | // disabled, outside the lock. |
| 431 | _coproc_list_callback(type: KD_CALLBACK_KDEBUG_DISABLED, NULL); |
| 432 | } |
| 433 | |
| 434 | int intrs_en = kdebug_storage_lock(ctl: &kd_control_trace); |
| 435 | if (enabled) { |
| 436 | // The oldest valid time is now; reject past events from coprocessors. |
| 437 | kd_control_trace.kdc_oldest_time = kdebug_timestamp(); |
| 438 | kdebug_enable |= trace_type; |
| 439 | kd_control_trace.kdc_emit = _trace_emit_filter(); |
| 440 | kd_control_trace.enabled = 1; |
| 441 | commpage_update_kdebug_state(); |
| 442 | } else { |
| 443 | kdebug_enable = 0; |
| 444 | kd_control_trace.kdc_emit = KDEMIT_DISABLE; |
| 445 | kd_control_trace.enabled = 0; |
| 446 | commpage_update_kdebug_state(); |
| 447 | } |
| 448 | kdebug_storage_unlock(ctl: &kd_control_trace, intrs_en); |
| 449 | |
| 450 | if (enabled) { |
| 451 | _coproc_list_callback(type: KD_CALLBACK_KDEBUG_ENABLED, NULL); |
| 452 | } |
| 453 | } |
| 454 | |
| 455 | static int |
| 456 | create_buffers_trace(unsigned int ) |
| 457 | { |
| 458 | int events_per_storage_unit = kd_control_trace.kdebug_events_per_storage_unit; |
| 459 | int min_storage_units_per_cpu = kd_control_trace.kdebug_min_storage_units_per_cpu; |
| 460 | |
| 461 | // For the duration of this allocation, trace code will only reference |
| 462 | // kdc_coprocs. |
| 463 | kd_control_trace.kdc_coprocs = kd_coprocs; |
| 464 | _coproc_list_check(); |
| 465 | |
| 466 | // If the list is valid, it is sorted from newest to oldest. Each entry is |
| 467 | // prepended, so the CPU IDs are sorted in descending order. |
| 468 | kd_control_trace.kdebug_cpus = kd_control_trace.kdc_coprocs ? |
| 469 | kd_control_trace.kdc_coprocs->cpu_id + 1 : kdbg_cpu_count(); |
| 470 | kd_control_trace.alloc_cpus = kd_control_trace.kdebug_cpus + extra_cpus; |
| 471 | |
| 472 | size_t min_event_count = kd_control_trace.alloc_cpus * |
| 473 | events_per_storage_unit * min_storage_units_per_cpu; |
| 474 | if (kd_buffer_trace.kdb_event_count < min_event_count) { |
| 475 | kd_buffer_trace.kdb_storage_count = kd_control_trace.alloc_cpus * min_storage_units_per_cpu; |
| 476 | } else { |
| 477 | kd_buffer_trace.kdb_storage_count = kd_buffer_trace.kdb_event_count / events_per_storage_unit; |
| 478 | } |
| 479 | |
| 480 | kd_buffer_trace.kdb_event_count = kd_buffer_trace.kdb_storage_count * events_per_storage_unit; |
| 481 | |
| 482 | kd_buffer_trace.kd_bufs = NULL; |
| 483 | |
| 484 | int error = create_buffers(ctl: &kd_control_trace, buf: &kd_buffer_trace, |
| 485 | VM_KERN_MEMORY_DIAG); |
| 486 | if (!error) { |
| 487 | struct kd_bufinfo *info = kd_buffer_trace.kdb_info; |
| 488 | struct kd_coproc *cur_iop = kd_control_trace.kdc_coprocs; |
| 489 | while (cur_iop != NULL) { |
| 490 | info[cur_iop->cpu_id].continuous_timestamps = ISSET(cur_iop->flags, |
| 491 | KDCP_CONTINUOUS_TIME); |
| 492 | cur_iop = cur_iop->next; |
| 493 | } |
| 494 | kd_buffer_trace.kdb_storage_threshold = kd_buffer_trace.kdb_storage_count / 2; |
| 495 | } |
| 496 | |
| 497 | return error; |
| 498 | } |
| 499 | |
| 500 | static void |
| 501 | delete_buffers_trace(void) |
| 502 | { |
| 503 | delete_buffers(ctl: &kd_control_trace, buf: &kd_buffer_trace); |
| 504 | } |
| 505 | |
| 506 | static int |
| 507 | _register_coproc_internal(const char *name, kdebug_coproc_flags_t flags, |
| 508 | kd_callback_fn callback, void *context) |
| 509 | { |
| 510 | struct kd_coproc *coproc = NULL; |
| 511 | |
| 512 | coproc = zalloc_permanent_type(struct kd_coproc); |
| 513 | coproc->callback.func = callback; |
| 514 | coproc->callback.context = context; |
| 515 | coproc->flags = flags; |
| 516 | strlcpy(dst: coproc->full_name, src: name, n: sizeof(coproc->full_name)); |
| 517 | |
| 518 | _coproc_lock(); |
| 519 | coproc->next = kd_coprocs; |
| 520 | coproc->cpu_id = kd_coprocs == NULL ? kdbg_cpu_count() : kd_coprocs->cpu_id + 1; |
| 521 | kd_coprocs = coproc; |
| 522 | if (coproc->cpu_id < kd_control_trace.alloc_cpus) { |
| 523 | kd_control_trace.kdc_coprocs = kd_coprocs; |
| 524 | kd_control_trace.kdebug_cpus += 1; |
| 525 | if (kdebug_enable) { |
| 526 | mpsc_daemon_enqueue(dq: &_coproc_notify_queue, elm: &coproc->chain, |
| 527 | options: MPSC_QUEUE_NONE); |
| 528 | } |
| 529 | } |
| 530 | _coproc_unlock(); |
| 531 | |
| 532 | return coproc->cpu_id; |
| 533 | } |
| 534 | |
| 535 | int |
| 536 | kernel_debug_register_callback(kd_callback_t callback) |
| 537 | { |
| 538 | // Be paranoid about using the provided name, but it's too late to reject |
| 539 | // it. |
| 540 | bool is_valid_name = false; |
| 541 | for (uint32_t length = 0; length < sizeof(callback.iop_name); ++length) { |
| 542 | if (callback.iop_name[length] > 0x20 && callback.iop_name[length] < 0x7F) { |
| 543 | continue; |
| 544 | } |
| 545 | if (callback.iop_name[length] == 0) { |
| 546 | if (length) { |
| 547 | is_valid_name = true; |
| 548 | } |
| 549 | break; |
| 550 | } |
| 551 | } |
| 552 | kd_callback_t sane_cb = callback; |
| 553 | if (!is_valid_name) { |
| 554 | strlcpy(dst: sane_cb.iop_name, src: "IOP-???" , n: sizeof(sane_cb.iop_name)); |
| 555 | } |
| 556 | |
| 557 | return _register_coproc_internal(name: sane_cb.iop_name, flags: 0, callback: sane_cb.func, |
| 558 | context: sane_cb.context); |
| 559 | } |
| 560 | |
| 561 | int |
| 562 | kdebug_register_coproc(const char *name, kdebug_coproc_flags_t flags, |
| 563 | kd_callback_fn callback, void *context) |
| 564 | { |
| 565 | size_t name_len = strlen(s: name); |
| 566 | if (!name || name_len == 0) { |
| 567 | panic("kdebug: invalid name for coprocessor: %p" , name); |
| 568 | } |
| 569 | for (size_t i = 0; i < name_len; i++) { |
| 570 | if (name[i] <= 0x20 || name[i] >= 0x7F) { |
| 571 | panic("kdebug: invalid name for coprocessor: %s" , name); |
| 572 | } |
| 573 | } |
| 574 | if (!callback) { |
| 575 | panic("kdebug: no callback for coprocessor `%s'" , name); |
| 576 | } |
| 577 | return _register_coproc_internal(name, flags, callback, context); |
| 578 | } |
| 579 | |
| 580 | static inline bool |
| 581 | _should_emit_debugid(kdebug_emit_filter_t emit, uint32_t debugid) |
| 582 | { |
| 583 | switch (emit) { |
| 584 | case KDEMIT_DISABLE: |
| 585 | return false; |
| 586 | case KDEMIT_TYPEFILTER: |
| 587 | return typefilter_is_debugid_allowed(tf: kdbg_typefilter, id: debugid); |
| 588 | case KDEMIT_RANGE: |
| 589 | return debugid >= kdlog_beg && debugid <= kdlog_end; |
| 590 | case KDEMIT_EXACT:; |
| 591 | uint32_t eventid = debugid & KDBG_EVENTID_MASK; |
| 592 | return eventid == kdlog_value1 || eventid == kdlog_value2 || |
| 593 | eventid == kdlog_value3 || eventid == kdlog_value4; |
| 594 | case KDEMIT_ALL: |
| 595 | return true; |
| 596 | } |
| 597 | } |
| 598 | |
| 599 | static void |
| 600 | _try_wakeup_above_threshold(uint32_t debugid) |
| 601 | { |
| 602 | bool over_threshold = kd_control_trace.kdc_storage_used >= |
| 603 | kd_buffer_trace.kdb_storage_threshold; |
| 604 | if (kd_waiter && over_threshold) { |
| 605 | // Wakeup any waiters if called from a safe context. |
| 606 | |
| 607 | const uint32_t INTERRUPT_EVENT = 0x01050000; |
| 608 | const uint32_t VMFAULT_EVENT = 0x01300008; |
| 609 | const uint32_t BSD_SYSCALL_CSC = 0x040c0000; |
| 610 | const uint32_t MACH_SYSCALL_CSC = 0x010c0000; |
| 611 | |
| 612 | uint32_t eventid = debugid & KDBG_EVENTID_MASK; |
| 613 | uint32_t csc = debugid & KDBG_CSC_MASK; |
| 614 | |
| 615 | if (eventid == INTERRUPT_EVENT || eventid == VMFAULT_EVENT || |
| 616 | csc == BSD_SYSCALL_CSC || csc == MACH_SYSCALL_CSC) { |
| 617 | kdbg_wakeup(); |
| 618 | } |
| 619 | } |
| 620 | } |
| 621 | |
| 622 | // Emit events from coprocessors. |
| 623 | void |
| 624 | kernel_debug_enter( |
| 625 | uint32_t coreid, |
| 626 | uint32_t debugid, |
| 627 | uint64_t timestamp, |
| 628 | uintptr_t arg1, |
| 629 | uintptr_t arg2, |
| 630 | uintptr_t arg3, |
| 631 | uintptr_t arg4, |
| 632 | uintptr_t threadid |
| 633 | ) |
| 634 | { |
| 635 | if (kd_control_trace.kdc_flags & KDBG_DISABLE_COPROCS) { |
| 636 | return; |
| 637 | } |
| 638 | kdebug_emit_filter_t emit = kd_control_trace.kdc_emit; |
| 639 | if (!emit || !kdebug_enable) { |
| 640 | return; |
| 641 | } |
| 642 | if (!_should_emit_debugid(emit, debugid)) { |
| 643 | return; |
| 644 | } |
| 645 | |
| 646 | struct kd_record kd_rec = { |
| 647 | .cpu = (int32_t)coreid, |
| 648 | .timestamp = (int64_t)timestamp, |
| 649 | .debugid = debugid, |
| 650 | .arg1 = arg1, |
| 651 | .arg2 = arg2, |
| 652 | .arg3 = arg3, |
| 653 | .arg4 = arg4, |
| 654 | .arg5 = threadid, |
| 655 | }; |
| 656 | kernel_debug_write(ctl: &kd_control_trace, buf: &kd_buffer_trace, kd_rec); |
| 657 | } |
| 658 | |
| 659 | __pure2 |
| 660 | static inline proc_t |
| 661 | kdebug_current_proc_unsafe(void) |
| 662 | { |
| 663 | return get_thread_ro_unchecked(current_thread())->tro_proc; |
| 664 | } |
| 665 | |
| 666 | // Return true iff the debug ID should be traced by the current process. |
| 667 | static inline bool |
| 668 | kdebug_debugid_procfilt_allowed(uint32_t debugid) |
| 669 | { |
| 670 | uint32_t procfilt_flags = kd_control_trace.kdc_flags & |
| 671 | (KDBG_PIDCHECK | KDBG_PIDEXCLUDE); |
| 672 | if (!procfilt_flags) { |
| 673 | return true; |
| 674 | } |
| 675 | |
| 676 | // DBG_TRACE and MACH_SCHED tracepoints ignore the process filter. |
| 677 | if ((debugid & KDBG_CSC_MASK) == MACHDBG_CODE(DBG_MACH_SCHED, 0) || |
| 678 | (KDBG_EXTRACT_CLASS(debugid) == DBG_TRACE)) { |
| 679 | return true; |
| 680 | } |
| 681 | |
| 682 | struct proc *curproc = kdebug_current_proc_unsafe(); |
| 683 | // If the process is missing (early in boot), allow it. |
| 684 | if (!curproc) { |
| 685 | return true; |
| 686 | } |
| 687 | |
| 688 | switch (procfilt_flags) { |
| 689 | case KDBG_PIDCHECK: |
| 690 | return curproc->p_kdebug; |
| 691 | case KDBG_PIDEXCLUDE: |
| 692 | return !curproc->p_kdebug; |
| 693 | default: |
| 694 | panic("kdebug: invalid procfilt flags %x" , kd_control_trace.kdc_flags); |
| 695 | } |
| 696 | } |
| 697 | |
| 698 | static void |
| 699 | kdebug_emit_internal(kdebug_emit_filter_t emit, |
| 700 | uint32_t debugid, |
| 701 | uintptr_t arg1, |
| 702 | uintptr_t arg2, |
| 703 | uintptr_t arg3, |
| 704 | uintptr_t arg4, |
| 705 | uintptr_t arg5, |
| 706 | uint64_t flags) |
| 707 | { |
| 708 | bool only_filter = flags & KDBG_FLAG_FILTERED; |
| 709 | bool observe_procfilt = !(flags & KDBG_FLAG_NOPROCFILT); |
| 710 | |
| 711 | if (!_should_emit_debugid(emit, debugid)) { |
| 712 | return; |
| 713 | } |
| 714 | if (emit == KDEMIT_ALL && only_filter) { |
| 715 | return; |
| 716 | } |
| 717 | if (!ml_at_interrupt_context() && observe_procfilt && |
| 718 | !kdebug_debugid_procfilt_allowed(debugid)) { |
| 719 | return; |
| 720 | } |
| 721 | |
| 722 | struct kd_record kd_rec = { |
| 723 | .cpu = -1, |
| 724 | .timestamp = -1, |
| 725 | .debugid = debugid, |
| 726 | .arg1 = arg1, |
| 727 | .arg2 = arg2, |
| 728 | .arg3 = arg3, |
| 729 | .arg4 = arg4, |
| 730 | .arg5 = arg5, |
| 731 | }; |
| 732 | kernel_debug_write(ctl: &kd_control_trace, buf: &kd_buffer_trace, kd_rec); |
| 733 | |
| 734 | #if KPERF |
| 735 | kperf_kdebug_callback(debugid: kd_rec.debugid, starting_fp: __builtin_frame_address(0)); |
| 736 | #endif // KPERF |
| 737 | } |
| 738 | |
| 739 | static void |
| 740 | kernel_debug_internal( |
| 741 | uint32_t debugid, |
| 742 | uintptr_t arg1, |
| 743 | uintptr_t arg2, |
| 744 | uintptr_t arg3, |
| 745 | uintptr_t arg4, |
| 746 | uintptr_t arg5, |
| 747 | uint64_t flags) |
| 748 | { |
| 749 | kdebug_emit_filter_t emit = kd_control_trace.kdc_emit; |
| 750 | if (!emit || !kdebug_enable) { |
| 751 | return; |
| 752 | } |
| 753 | kdebug_emit_internal(emit, debugid, arg1, arg2, arg3, arg4, arg5, flags); |
| 754 | _try_wakeup_above_threshold(debugid); |
| 755 | } |
| 756 | |
| 757 | __attribute__((noinline)) |
| 758 | void |
| 759 | kernel_debug(uint32_t debugid, uintptr_t arg1, uintptr_t arg2, uintptr_t arg3, |
| 760 | uintptr_t arg4, __unused uintptr_t arg5) |
| 761 | { |
| 762 | kernel_debug_internal(debugid, arg1, arg2, arg3, arg4, |
| 763 | arg5: (uintptr_t)thread_tid(thread: current_thread()), flags: 0); |
| 764 | } |
| 765 | |
| 766 | __attribute__((noinline)) |
| 767 | void |
| 768 | kernel_debug1(uint32_t debugid, uintptr_t arg1, uintptr_t arg2, uintptr_t arg3, |
| 769 | uintptr_t arg4, uintptr_t arg5) |
| 770 | { |
| 771 | kernel_debug_internal(debugid, arg1, arg2, arg3, arg4, arg5, flags: 0); |
| 772 | } |
| 773 | |
| 774 | __attribute__((noinline)) |
| 775 | void |
| 776 | kernel_debug_flags( |
| 777 | uint32_t debugid, |
| 778 | uintptr_t arg1, |
| 779 | uintptr_t arg2, |
| 780 | uintptr_t arg3, |
| 781 | uintptr_t arg4, |
| 782 | uint64_t flags) |
| 783 | { |
| 784 | kernel_debug_internal(debugid, arg1, arg2, arg3, arg4, |
| 785 | arg5: (uintptr_t)thread_tid(thread: current_thread()), flags); |
| 786 | } |
| 787 | |
| 788 | __attribute__((noinline)) |
| 789 | void |
| 790 | kernel_debug_filtered( |
| 791 | uint32_t debugid, |
| 792 | uintptr_t arg1, |
| 793 | uintptr_t arg2, |
| 794 | uintptr_t arg3, |
| 795 | uintptr_t arg4) |
| 796 | { |
| 797 | kernel_debug_flags(debugid, arg1, arg2, arg3, arg4, KDBG_FLAG_FILTERED); |
| 798 | } |
| 799 | |
| 800 | void |
| 801 | kernel_debug_string_early(const char *message) |
| 802 | { |
| 803 | uintptr_t a[4] = { 0 }; |
| 804 | strncpy((char *)a, message, sizeof(a)); |
| 805 | KERNEL_DEBUG_EARLY(TRACE_INFO_STRING, a[0], a[1], a[2], a[3]); |
| 806 | } |
| 807 | |
| 808 | #define SIMPLE_STR_LEN (64) |
| 809 | static_assert(SIMPLE_STR_LEN % sizeof(uintptr_t) == 0); |
| 810 | |
| 811 | void |
| 812 | kernel_debug_string_simple(uint32_t eventid, const char *str) |
| 813 | { |
| 814 | if (!kdebug_enable) { |
| 815 | return; |
| 816 | } |
| 817 | |
| 818 | /* array of uintptr_ts simplifies emitting the string as arguments */ |
| 819 | uintptr_t str_buf[(SIMPLE_STR_LEN / sizeof(uintptr_t)) + 1] = { 0 }; |
| 820 | size_t len = strlcpy(dst: (char *)str_buf, src: str, SIMPLE_STR_LEN + 1); |
| 821 | len = MIN(len, SIMPLE_STR_LEN); |
| 822 | |
| 823 | uintptr_t thread_id = (uintptr_t)thread_tid(thread: current_thread()); |
| 824 | uint32_t debugid = eventid | DBG_FUNC_START; |
| 825 | |
| 826 | /* string can fit in a single tracepoint */ |
| 827 | if (len <= (4 * sizeof(uintptr_t))) { |
| 828 | debugid |= DBG_FUNC_END; |
| 829 | } |
| 830 | |
| 831 | kernel_debug_internal(debugid, arg1: str_buf[0], arg2: str_buf[1], arg3: str_buf[2], |
| 832 | arg4: str_buf[3], arg5: thread_id, flags: 0); |
| 833 | |
| 834 | debugid &= KDBG_EVENTID_MASK; |
| 835 | int i = 4; |
| 836 | size_t written = 4 * sizeof(uintptr_t); |
| 837 | |
| 838 | for (; written < len; i += 4, written += 4 * sizeof(uintptr_t)) { |
| 839 | /* if this is the last tracepoint to be emitted */ |
| 840 | if ((written + (4 * sizeof(uintptr_t))) >= len) { |
| 841 | debugid |= DBG_FUNC_END; |
| 842 | } |
| 843 | kernel_debug_internal(debugid, arg1: str_buf[i], |
| 844 | arg2: str_buf[i + 1], |
| 845 | arg3: str_buf[i + 2], |
| 846 | arg4: str_buf[i + 3], arg5: thread_id, flags: 0); |
| 847 | } |
| 848 | } |
| 849 | |
| 850 | extern int master_cpu; /* MACH_KERNEL_PRIVATE */ |
| 851 | /* |
| 852 | * Used prior to start_kern_tracing() being called. |
| 853 | * Log temporarily into a static buffer. |
| 854 | */ |
| 855 | void |
| 856 | kernel_debug_early( |
| 857 | uint32_t debugid, |
| 858 | uintptr_t arg1, |
| 859 | uintptr_t arg2, |
| 860 | uintptr_t arg3, |
| 861 | uintptr_t arg4) |
| 862 | { |
| 863 | #if defined(__x86_64__) |
| 864 | extern int early_boot; |
| 865 | /* |
| 866 | * Note that "early" isn't early enough in some cases where |
| 867 | * we're invoked before gsbase is set on x86, hence the |
| 868 | * check of "early_boot". |
| 869 | */ |
| 870 | if (early_boot) { |
| 871 | return; |
| 872 | } |
| 873 | #endif |
| 874 | |
| 875 | /* If early tracing is over, use the normal path. */ |
| 876 | if (kd_early_done) { |
| 877 | KDBG_RELEASE(debugid, arg1, arg2, arg3, arg4); |
| 878 | return; |
| 879 | } |
| 880 | |
| 881 | /* Do nothing if the buffer is full or we're not on the boot cpu. */ |
| 882 | kd_early_overflow = kd_early_index >= KD_EARLY_EVENT_COUNT; |
| 883 | if (kd_early_overflow || cpu_number() != master_cpu) { |
| 884 | return; |
| 885 | } |
| 886 | |
| 887 | kd_early_buffer[kd_early_index].debugid = debugid; |
| 888 | kd_early_buffer[kd_early_index].timestamp = mach_absolute_time(); |
| 889 | kd_early_buffer[kd_early_index].arg1 = arg1; |
| 890 | kd_early_buffer[kd_early_index].arg2 = arg2; |
| 891 | kd_early_buffer[kd_early_index].arg3 = arg3; |
| 892 | kd_early_buffer[kd_early_index].arg4 = arg4; |
| 893 | kd_early_buffer[kd_early_index].arg5 = 0; |
| 894 | kd_early_index++; |
| 895 | } |
| 896 | |
| 897 | /* |
| 898 | * Transfer the contents of the temporary buffer into the trace buffers. |
| 899 | * Precede that by logging the rebase time (offset) - the TSC-based time (in ns) |
| 900 | * when mach_absolute_time is set to 0. |
| 901 | */ |
| 902 | static void |
| 903 | kernel_debug_early_end(void) |
| 904 | { |
| 905 | if (cpu_number() != master_cpu) { |
| 906 | panic("kernel_debug_early_end() not call on boot processor" ); |
| 907 | } |
| 908 | |
| 909 | /* reset the current oldest time to allow early events */ |
| 910 | kd_control_trace.kdc_oldest_time = 0; |
| 911 | |
| 912 | #if defined(__x86_64__) |
| 913 | /* Fake sentinel marking the start of kernel time relative to TSC */ |
| 914 | kernel_debug_enter(0, TRACE_TIMESTAMPS, 0, |
| 915 | (uint32_t)(tsc_rebase_abs_time >> 32), (uint32_t)tsc_rebase_abs_time, |
| 916 | tsc_at_boot, 0, 0); |
| 917 | #endif /* defined(__x86_64__) */ |
| 918 | for (unsigned int i = 0; i < kd_early_index; i++) { |
| 919 | kernel_debug_enter(coreid: 0, |
| 920 | debugid: kd_early_buffer[i].debugid, |
| 921 | timestamp: kd_early_buffer[i].timestamp, |
| 922 | arg1: kd_early_buffer[i].arg1, |
| 923 | arg2: kd_early_buffer[i].arg2, |
| 924 | arg3: kd_early_buffer[i].arg3, |
| 925 | arg4: kd_early_buffer[i].arg4, |
| 926 | threadid: 0); |
| 927 | } |
| 928 | |
| 929 | /* Cut events-lost event on overflow */ |
| 930 | if (kd_early_overflow) { |
| 931 | KDBG_RELEASE(TRACE_LOST_EVENTS, 1); |
| 932 | } |
| 933 | |
| 934 | kd_early_done = true; |
| 935 | |
| 936 | /* This trace marks the start of kernel tracing */ |
| 937 | kernel_debug_string_early(message: "early trace done" ); |
| 938 | } |
| 939 | |
| 940 | void |
| 941 | kernel_debug_disable(void) |
| 942 | { |
| 943 | if (kdebug_enable) { |
| 944 | kdbg_set_tracing_enabled(false, trace_type: 0); |
| 945 | kdbg_wakeup(); |
| 946 | } |
| 947 | } |
| 948 | |
| 949 | // Returns true if debugid should only be traced from the kernel. |
| 950 | static int |
| 951 | _kernel_only_event(uint32_t debugid) |
| 952 | { |
| 953 | return KDBG_EXTRACT_CLASS(debugid) == DBG_TRACE; |
| 954 | } |
| 955 | |
| 956 | /* |
| 957 | * Support syscall SYS_kdebug_typefilter. |
| 958 | */ |
| 959 | int |
| 960 | kdebug_typefilter(__unused struct proc* p, struct kdebug_typefilter_args* uap, |
| 961 | __unused int *retval) |
| 962 | { |
| 963 | if (uap->addr == USER_ADDR_NULL || uap->size == USER_ADDR_NULL) { |
| 964 | return EINVAL; |
| 965 | } |
| 966 | |
| 967 | mach_vm_offset_t user_addr = 0; |
| 968 | vm_map_t user_map = current_map(); |
| 969 | const bool copy = false; |
| 970 | kern_return_t kr = mach_vm_map_kernel(target_map: user_map, address: &user_addr, |
| 971 | TYPEFILTER_ALLOC_SIZE, mask: 0, VM_MAP_KERNEL_FLAGS_ANYWHERE(), |
| 972 | port: kdbg_typefilter_memory_entry, offset: 0, copy, |
| 973 | VM_PROT_READ, VM_PROT_READ, VM_INHERIT_SHARE); |
| 974 | if (kr != KERN_SUCCESS) { |
| 975 | return mach_to_bsd_errno(mach_err: kr); |
| 976 | } |
| 977 | |
| 978 | vm_size_t user_ptr_size = vm_map_is_64bit(map: user_map) ? 8 : 4; |
| 979 | int error = copyout((void *)&user_addr, uap->addr, user_ptr_size); |
| 980 | if (error != 0) { |
| 981 | mach_vm_deallocate(target: user_map, address: user_addr, TYPEFILTER_ALLOC_SIZE); |
| 982 | } |
| 983 | return error; |
| 984 | } |
| 985 | |
| 986 | // Support SYS_kdebug_trace. |
| 987 | int |
| 988 | kdebug_trace(struct proc *p, struct kdebug_trace_args *uap, int32_t *retval) |
| 989 | { |
| 990 | struct kdebug_trace64_args uap64 = { |
| 991 | .code = uap->code, |
| 992 | .arg1 = uap->arg1, |
| 993 | .arg2 = uap->arg2, |
| 994 | .arg3 = uap->arg3, |
| 995 | .arg4 = uap->arg4, |
| 996 | }; |
| 997 | return kdebug_trace64(p, &uap64, retval); |
| 998 | } |
| 999 | |
| 1000 | // Support kdebug_trace(2). 64-bit arguments on K32 will get truncated |
| 1001 | // to fit in the 32-bit record format. |
| 1002 | // |
| 1003 | // It is intentional that error conditions are not checked until kdebug is |
| 1004 | // enabled. This is to match the userspace wrapper behavior, which is optimizing |
| 1005 | // for non-error case performance. |
| 1006 | int |
| 1007 | kdebug_trace64(__unused struct proc *p, struct kdebug_trace64_args *uap, |
| 1008 | __unused int32_t *retval) |
| 1009 | { |
| 1010 | if (__probable(kdebug_enable == 0)) { |
| 1011 | return 0; |
| 1012 | } |
| 1013 | if (_kernel_only_event(debugid: uap->code)) { |
| 1014 | return EPERM; |
| 1015 | } |
| 1016 | kernel_debug_internal(debugid: uap->code, arg1: (uintptr_t)uap->arg1, |
| 1017 | arg2: (uintptr_t)uap->arg2, arg3: (uintptr_t)uap->arg3, arg4: (uintptr_t)uap->arg4, |
| 1018 | arg5: (uintptr_t)thread_tid(thread: current_thread()), flags: 0); |
| 1019 | return 0; |
| 1020 | } |
| 1021 | |
| 1022 | /* |
| 1023 | * Adding enough padding to contain a full tracepoint for the last |
| 1024 | * portion of the string greatly simplifies the logic of splitting the |
| 1025 | * string between tracepoints. Full tracepoints can be generated using |
| 1026 | * the buffer itself, without having to manually add zeros to pad the |
| 1027 | * arguments. |
| 1028 | */ |
| 1029 | |
| 1030 | /* 2 string args in first tracepoint and 9 string data tracepoints */ |
| 1031 | #define STR_BUF_ARGS (2 + (32 * 4)) |
| 1032 | /* times the size of each arg on K64 */ |
| 1033 | #define MAX_STR_LEN (STR_BUF_ARGS * sizeof(uint64_t)) |
| 1034 | /* on K32, ending straddles a tracepoint, so reserve blanks */ |
| 1035 | #define STR_BUF_SIZE (MAX_STR_LEN + (2 * sizeof(uint32_t))) |
| 1036 | |
| 1037 | /* |
| 1038 | * This function does no error checking and assumes that it is called with |
| 1039 | * the correct arguments, including that the buffer pointed to by str is at |
| 1040 | * least STR_BUF_SIZE bytes. However, str must be aligned to word-size and |
| 1041 | * be NUL-terminated. In cases where a string can fit evenly into a final |
| 1042 | * tracepoint without its NUL-terminator, this function will not end those |
| 1043 | * strings with a NUL in trace. It's up to clients to look at the function |
| 1044 | * qualifier for DBG_FUNC_END in this case, to end the string. |
| 1045 | */ |
| 1046 | static uint64_t |
| 1047 | kernel_debug_string_internal(uint32_t debugid, uint64_t str_id, void *vstr, |
| 1048 | size_t str_len) |
| 1049 | { |
| 1050 | /* str must be word-aligned */ |
| 1051 | uintptr_t *str = vstr; |
| 1052 | size_t written = 0; |
| 1053 | uintptr_t thread_id; |
| 1054 | int i; |
| 1055 | uint32_t trace_debugid = TRACEDBG_CODE(DBG_TRACE_STRING, |
| 1056 | TRACE_STRING_GLOBAL); |
| 1057 | |
| 1058 | thread_id = (uintptr_t)thread_tid(thread: current_thread()); |
| 1059 | |
| 1060 | /* if the ID is being invalidated, just emit that */ |
| 1061 | if (str_id != 0 && str_len == 0) { |
| 1062 | kernel_debug_internal(debugid: trace_debugid | DBG_FUNC_START | DBG_FUNC_END, |
| 1063 | arg1: (uintptr_t)debugid, arg2: (uintptr_t)str_id, arg3: 0, arg4: 0, arg5: thread_id, flags: 0); |
| 1064 | return str_id; |
| 1065 | } |
| 1066 | |
| 1067 | /* generate an ID, if necessary */ |
| 1068 | if (str_id == 0) { |
| 1069 | str_id = OSIncrementAtomic64(address: (SInt64 *)&g_curr_str_id); |
| 1070 | str_id = (str_id & STR_ID_MASK) | g_str_id_signature; |
| 1071 | } |
| 1072 | |
| 1073 | trace_debugid |= DBG_FUNC_START; |
| 1074 | /* string can fit in a single tracepoint */ |
| 1075 | if (str_len <= (2 * sizeof(uintptr_t))) { |
| 1076 | trace_debugid |= DBG_FUNC_END; |
| 1077 | } |
| 1078 | |
| 1079 | kernel_debug_internal(debugid: trace_debugid, arg1: (uintptr_t)debugid, arg2: (uintptr_t)str_id, |
| 1080 | arg3: str[0], arg4: str[1], arg5: thread_id, flags: 0); |
| 1081 | |
| 1082 | trace_debugid &= KDBG_EVENTID_MASK; |
| 1083 | i = 2; |
| 1084 | written += 2 * sizeof(uintptr_t); |
| 1085 | |
| 1086 | for (; written < str_len; i += 4, written += 4 * sizeof(uintptr_t)) { |
| 1087 | if ((written + (4 * sizeof(uintptr_t))) >= str_len) { |
| 1088 | trace_debugid |= DBG_FUNC_END; |
| 1089 | } |
| 1090 | kernel_debug_internal(debugid: trace_debugid, arg1: str[i], |
| 1091 | arg2: str[i + 1], |
| 1092 | arg3: str[i + 2], |
| 1093 | arg4: str[i + 3], arg5: thread_id, flags: 0); |
| 1094 | } |
| 1095 | |
| 1096 | return str_id; |
| 1097 | } |
| 1098 | |
| 1099 | /* |
| 1100 | * Returns true if the current process can emit events, and false otherwise. |
| 1101 | * Trace system and scheduling events circumvent this check, as do events |
| 1102 | * emitted in interrupt context. |
| 1103 | */ |
| 1104 | static bool |
| 1105 | kdebug_current_proc_enabled(uint32_t debugid) |
| 1106 | { |
| 1107 | /* can't determine current process in interrupt context */ |
| 1108 | if (ml_at_interrupt_context()) { |
| 1109 | return true; |
| 1110 | } |
| 1111 | |
| 1112 | /* always emit trace system and scheduling events */ |
| 1113 | if ((KDBG_EXTRACT_CLASS(debugid) == DBG_TRACE || |
| 1114 | (debugid & KDBG_CSC_MASK) == MACHDBG_CODE(DBG_MACH_SCHED, 0))) { |
| 1115 | return true; |
| 1116 | } |
| 1117 | |
| 1118 | if (kd_control_trace.kdc_flags & KDBG_PIDCHECK) { |
| 1119 | proc_t cur_proc = kdebug_current_proc_unsafe(); |
| 1120 | |
| 1121 | /* only the process with the kdebug bit set is allowed */ |
| 1122 | if (cur_proc && !(cur_proc->p_kdebug)) { |
| 1123 | return false; |
| 1124 | } |
| 1125 | } else if (kd_control_trace.kdc_flags & KDBG_PIDEXCLUDE) { |
| 1126 | proc_t cur_proc = kdebug_current_proc_unsafe(); |
| 1127 | |
| 1128 | /* every process except the one with the kdebug bit set is allowed */ |
| 1129 | if (cur_proc && cur_proc->p_kdebug) { |
| 1130 | return false; |
| 1131 | } |
| 1132 | } |
| 1133 | |
| 1134 | return true; |
| 1135 | } |
| 1136 | |
| 1137 | bool |
| 1138 | kdebug_debugid_enabled(uint32_t debugid) |
| 1139 | { |
| 1140 | return _should_emit_debugid(emit: kd_control_trace.kdc_emit, debugid); |
| 1141 | } |
| 1142 | |
| 1143 | bool |
| 1144 | kdebug_debugid_explicitly_enabled(uint32_t debugid) |
| 1145 | { |
| 1146 | if (kd_control_trace.kdc_flags & KDBG_TYPEFILTER_CHECK) { |
| 1147 | return typefilter_is_debugid_allowed(tf: kdbg_typefilter, id: debugid); |
| 1148 | } else if (KDBG_EXTRACT_CLASS(debugid) == DBG_TRACE) { |
| 1149 | return true; |
| 1150 | } else if (kd_control_trace.kdc_flags & KDBG_RANGECHECK) { |
| 1151 | if (debugid < kdlog_beg || debugid > kdlog_end) { |
| 1152 | return false; |
| 1153 | } |
| 1154 | } else if (kd_control_trace.kdc_flags & KDBG_VALCHECK) { |
| 1155 | if ((debugid & KDBG_EVENTID_MASK) != kdlog_value1 && |
| 1156 | (debugid & KDBG_EVENTID_MASK) != kdlog_value2 && |
| 1157 | (debugid & KDBG_EVENTID_MASK) != kdlog_value3 && |
| 1158 | (debugid & KDBG_EVENTID_MASK) != kdlog_value4) { |
| 1159 | return false; |
| 1160 | } |
| 1161 | } |
| 1162 | |
| 1163 | return true; |
| 1164 | } |
| 1165 | |
| 1166 | /* |
| 1167 | * Returns 0 if a string can be traced with these arguments. Returns errno |
| 1168 | * value if error occurred. |
| 1169 | */ |
| 1170 | static errno_t |
| 1171 | kdebug_check_trace_string(uint32_t debugid, uint64_t str_id) |
| 1172 | { |
| 1173 | if (debugid & (DBG_FUNC_START | DBG_FUNC_END)) { |
| 1174 | return EINVAL; |
| 1175 | } |
| 1176 | if (_kernel_only_event(debugid)) { |
| 1177 | return EPERM; |
| 1178 | } |
| 1179 | if (str_id != 0 && (str_id & STR_ID_SIG_MASK) != g_str_id_signature) { |
| 1180 | return EINVAL; |
| 1181 | } |
| 1182 | return 0; |
| 1183 | } |
| 1184 | |
| 1185 | /* |
| 1186 | * Implementation of KPI kernel_debug_string. |
| 1187 | */ |
| 1188 | int |
| 1189 | kernel_debug_string(uint32_t debugid, uint64_t *str_id, const char *str) |
| 1190 | { |
| 1191 | /* arguments to tracepoints must be word-aligned */ |
| 1192 | __attribute__((aligned(sizeof(uintptr_t)))) char str_buf[STR_BUF_SIZE]; |
| 1193 | static_assert(sizeof(str_buf) > MAX_STR_LEN); |
| 1194 | vm_size_t len_copied; |
| 1195 | int err; |
| 1196 | |
| 1197 | assert(str_id); |
| 1198 | |
| 1199 | if (__probable(kdebug_enable == 0)) { |
| 1200 | return 0; |
| 1201 | } |
| 1202 | |
| 1203 | if (!kdebug_current_proc_enabled(debugid)) { |
| 1204 | return 0; |
| 1205 | } |
| 1206 | |
| 1207 | if (!kdebug_debugid_enabled(debugid)) { |
| 1208 | return 0; |
| 1209 | } |
| 1210 | |
| 1211 | if ((err = kdebug_check_trace_string(debugid, str_id: *str_id)) != 0) { |
| 1212 | return err; |
| 1213 | } |
| 1214 | |
| 1215 | if (str == NULL) { |
| 1216 | if (str_id == 0) { |
| 1217 | return EINVAL; |
| 1218 | } |
| 1219 | |
| 1220 | *str_id = kernel_debug_string_internal(debugid, str_id: *str_id, NULL, str_len: 0); |
| 1221 | return 0; |
| 1222 | } |
| 1223 | |
| 1224 | memset(s: str_buf, c: 0, n: sizeof(str_buf)); |
| 1225 | len_copied = strlcpy(dst: str_buf, src: str, MAX_STR_LEN + 1); |
| 1226 | *str_id = kernel_debug_string_internal(debugid, str_id: *str_id, vstr: str_buf, |
| 1227 | str_len: len_copied); |
| 1228 | return 0; |
| 1229 | } |
| 1230 | |
| 1231 | // Support kdebug_trace_string(2). |
| 1232 | int |
| 1233 | kdebug_trace_string(__unused struct proc *p, |
| 1234 | struct kdebug_trace_string_args *uap, |
| 1235 | uint64_t *retval) |
| 1236 | { |
| 1237 | __attribute__((aligned(sizeof(uintptr_t)))) char str_buf[STR_BUF_SIZE]; |
| 1238 | static_assert(sizeof(str_buf) > MAX_STR_LEN); |
| 1239 | size_t len_copied; |
| 1240 | int err; |
| 1241 | |
| 1242 | if (__probable(kdebug_enable == 0)) { |
| 1243 | return 0; |
| 1244 | } |
| 1245 | |
| 1246 | if (!kdebug_current_proc_enabled(debugid: uap->debugid)) { |
| 1247 | return 0; |
| 1248 | } |
| 1249 | |
| 1250 | if (!kdebug_debugid_enabled(debugid: uap->debugid)) { |
| 1251 | return 0; |
| 1252 | } |
| 1253 | |
| 1254 | if ((err = kdebug_check_trace_string(debugid: uap->debugid, str_id: uap->str_id)) != 0) { |
| 1255 | return err; |
| 1256 | } |
| 1257 | |
| 1258 | if (uap->str == USER_ADDR_NULL) { |
| 1259 | if (uap->str_id == 0) { |
| 1260 | return EINVAL; |
| 1261 | } |
| 1262 | |
| 1263 | *retval = kernel_debug_string_internal(debugid: uap->debugid, str_id: uap->str_id, |
| 1264 | NULL, str_len: 0); |
| 1265 | return 0; |
| 1266 | } |
| 1267 | |
| 1268 | memset(s: str_buf, c: 0, n: sizeof(str_buf)); |
| 1269 | err = copyinstr(uaddr: uap->str, kaddr: str_buf, MAX_STR_LEN + 1, done: &len_copied); |
| 1270 | |
| 1271 | /* it's alright to truncate the string, so allow ENAMETOOLONG */ |
| 1272 | if (err == ENAMETOOLONG) { |
| 1273 | str_buf[MAX_STR_LEN] = '\0'; |
| 1274 | } else if (err) { |
| 1275 | return err; |
| 1276 | } |
| 1277 | |
| 1278 | if (len_copied <= 1) { |
| 1279 | return EINVAL; |
| 1280 | } |
| 1281 | |
| 1282 | /* convert back to a length */ |
| 1283 | len_copied--; |
| 1284 | |
| 1285 | *retval = kernel_debug_string_internal(debugid: uap->debugid, str_id: uap->str_id, vstr: str_buf, |
| 1286 | str_len: len_copied); |
| 1287 | return 0; |
| 1288 | } |
| 1289 | |
| 1290 | int |
| 1291 | kdbg_reinit(unsigned int ) |
| 1292 | { |
| 1293 | kernel_debug_disable(); |
| 1294 | // Wait for any event writers to see the disable status. |
| 1295 | IOSleep(100); |
| 1296 | delete_buffers_trace(); |
| 1297 | |
| 1298 | _clear_thread_map(); |
| 1299 | kd_control_trace.kdc_live_flags &= ~KDBG_WRAPPED; |
| 1300 | |
| 1301 | RAW_file_offset = 0; |
| 1302 | RAW_file_written = 0; |
| 1303 | |
| 1304 | return create_buffers_trace(extra_cpus); |
| 1305 | } |
| 1306 | |
| 1307 | void |
| 1308 | kdbg_trace_data(struct proc *proc, long *arg_pid, long *arg_uniqueid) |
| 1309 | { |
| 1310 | if (proc) { |
| 1311 | *arg_pid = proc_getpid(proc); |
| 1312 | *arg_uniqueid = (long)proc_uniqueid(proc); |
| 1313 | if ((uint64_t)*arg_uniqueid != proc_uniqueid(proc)) { |
| 1314 | *arg_uniqueid = 0; |
| 1315 | } |
| 1316 | } else { |
| 1317 | *arg_pid = 0; |
| 1318 | *arg_uniqueid = 0; |
| 1319 | } |
| 1320 | } |
| 1321 | |
| 1322 | void kdebug_proc_name_args(struct proc *proc, long args[static 4]); |
| 1323 | void |
| 1324 | kdebug_proc_name_args(struct proc *proc, long args[static 4]) |
| 1325 | { |
| 1326 | if (proc) { |
| 1327 | strncpy((char *)args, proc_best_name(proc), 4 * sizeof(args[0])); |
| 1328 | } |
| 1329 | } |
| 1330 | |
| 1331 | static void |
| 1332 | _copy_ap_name(unsigned int cpuid, void *dst, size_t size) |
| 1333 | { |
| 1334 | const char *name = "AP" ; |
| 1335 | #if defined(__arm64__) |
| 1336 | const ml_topology_info_t *topology = ml_get_topology_info(); |
| 1337 | switch (topology->cpus[cpuid].cluster_type) { |
| 1338 | case CLUSTER_TYPE_E: |
| 1339 | name = "AP-E" ; |
| 1340 | break; |
| 1341 | case CLUSTER_TYPE_P: |
| 1342 | name = "AP-P" ; |
| 1343 | break; |
| 1344 | default: |
| 1345 | break; |
| 1346 | } |
| 1347 | #else /* defined(__arm64__) */ |
| 1348 | #pragma unused(cpuid) |
| 1349 | #endif /* !defined(__arm64__) */ |
| 1350 | strlcpy(dst, src: name, n: size); |
| 1351 | } |
| 1352 | |
| 1353 | // Write the specified `map_version` of CPU map to the `dst` buffer, using at |
| 1354 | // most `size` bytes. Returns 0 on success and sets `size` to the number of |
| 1355 | // bytes written, and either ENOMEM or EINVAL on failure. |
| 1356 | // |
| 1357 | // If the value pointed to by `dst` is NULL, memory is allocated, and `size` is |
| 1358 | // adjusted to the allocated buffer's size. |
| 1359 | // |
| 1360 | // NB: `coprocs` is used to determine whether the stashed CPU map captured at |
| 1361 | // the start of tracing should be used. |
| 1362 | static errno_t |
| 1363 | _copy_cpu_map(int map_version, void **dst, size_t *size) |
| 1364 | { |
| 1365 | _coproc_lock(); |
| 1366 | struct kd_coproc *coprocs = kd_control_trace.kdc_coprocs; |
| 1367 | unsigned int cpu_count = kd_control_trace.kdebug_cpus; |
| 1368 | _coproc_unlock(); |
| 1369 | |
| 1370 | assert(cpu_count != 0); |
| 1371 | assert(coprocs == NULL || coprocs[0].cpu_id + 1 == cpu_count); |
| 1372 | |
| 1373 | bool ext = map_version != RAW_VERSION1; |
| 1374 | size_t stride = ext ? sizeof(kd_cpumap_ext) : sizeof(kd_cpumap); |
| 1375 | |
| 1376 | size_t size_needed = sizeof(kd_cpumap_header) + cpu_count * stride; |
| 1377 | size_t size_avail = *size; |
| 1378 | *size = size_needed; |
| 1379 | |
| 1380 | if (*dst == NULL) { |
| 1381 | kern_return_t alloc_ret = kmem_alloc(map: kernel_map, addrp: (vm_offset_t *)dst, |
| 1382 | size: (vm_size_t)size_needed, flags: KMA_DATA | KMA_ZERO, VM_KERN_MEMORY_DIAG); |
| 1383 | if (alloc_ret != KERN_SUCCESS) { |
| 1384 | return ENOMEM; |
| 1385 | } |
| 1386 | } else if (size_avail < size_needed) { |
| 1387 | return EINVAL; |
| 1388 | } |
| 1389 | |
| 1390 | kd_cpumap_header * = *dst; |
| 1391 | header->version_no = map_version; |
| 1392 | header->cpu_count = cpu_count; |
| 1393 | |
| 1394 | void *cpus = &header[1]; |
| 1395 | size_t name_size = ext ? sizeof(((kd_cpumap_ext *)NULL)->name) : |
| 1396 | sizeof(((kd_cpumap *)NULL)->name); |
| 1397 | |
| 1398 | int i = cpu_count - 1; |
| 1399 | for (struct kd_coproc *cur_coproc = coprocs; cur_coproc != NULL; |
| 1400 | cur_coproc = cur_coproc->next, i--) { |
| 1401 | kd_cpumap_ext *cpu = (kd_cpumap_ext *)((uintptr_t)cpus + stride * i); |
| 1402 | cpu->cpu_id = cur_coproc->cpu_id; |
| 1403 | cpu->flags = KDBG_CPUMAP_IS_IOP; |
| 1404 | strlcpy(dst: (void *)&cpu->name, src: cur_coproc->full_name, n: name_size); |
| 1405 | } |
| 1406 | for (; i >= 0; i--) { |
| 1407 | kd_cpumap *cpu = (kd_cpumap *)((uintptr_t)cpus + stride * i); |
| 1408 | cpu->cpu_id = i; |
| 1409 | cpu->flags = 0; |
| 1410 | _copy_ap_name(cpuid: i, dst: &cpu->name, size: name_size); |
| 1411 | } |
| 1412 | |
| 1413 | return 0; |
| 1414 | } |
| 1415 | |
| 1416 | static void |
| 1417 | _threadmap_init(void) |
| 1418 | { |
| 1419 | ktrace_assert_lock_held(); |
| 1420 | |
| 1421 | if (kd_control_trace.kdc_flags & KDBG_MAPINIT) { |
| 1422 | return; |
| 1423 | } |
| 1424 | |
| 1425 | kd_mapptr = _thread_map_create_live(max_count: 0, map_size: &kd_mapsize, map_count: &kd_mapcount); |
| 1426 | |
| 1427 | if (kd_mapptr) { |
| 1428 | kd_control_trace.kdc_flags |= KDBG_MAPINIT; |
| 1429 | } |
| 1430 | } |
| 1431 | |
| 1432 | struct kd_resolver { |
| 1433 | kd_threadmap *krs_map; |
| 1434 | vm_size_t krs_count; |
| 1435 | vm_size_t krs_maxcount; |
| 1436 | }; |
| 1437 | |
| 1438 | static int |
| 1439 | _resolve_iterator(proc_t proc, void *opaque) |
| 1440 | { |
| 1441 | if (proc == kernproc) { |
| 1442 | /* Handled specially as it lacks uthreads. */ |
| 1443 | return PROC_RETURNED; |
| 1444 | } |
| 1445 | struct kd_resolver *resolver = opaque; |
| 1446 | struct uthread *uth = NULL; |
| 1447 | const char *proc_name = proc_best_name(p: proc); |
| 1448 | pid_t pid = proc_getpid(proc); |
| 1449 | |
| 1450 | proc_lock(proc); |
| 1451 | TAILQ_FOREACH(uth, &proc->p_uthlist, uu_list) { |
| 1452 | if (resolver->krs_count >= resolver->krs_maxcount) { |
| 1453 | break; |
| 1454 | } |
| 1455 | kd_threadmap *map = &resolver->krs_map[resolver->krs_count]; |
| 1456 | map->thread = (uintptr_t)uthread_tid(uth); |
| 1457 | (void)strlcpy(dst: map->command, src: proc_name, n: sizeof(map->command)); |
| 1458 | map->valid = pid; |
| 1459 | resolver->krs_count++; |
| 1460 | } |
| 1461 | proc_unlock(proc); |
| 1462 | |
| 1463 | bool done = resolver->krs_count >= resolver->krs_maxcount; |
| 1464 | return done ? PROC_RETURNED_DONE : PROC_RETURNED; |
| 1465 | } |
| 1466 | |
| 1467 | static void |
| 1468 | _resolve_kernel_task(thread_t thread, void *opaque) |
| 1469 | { |
| 1470 | struct kd_resolver *resolver = opaque; |
| 1471 | if (resolver->krs_count >= resolver->krs_maxcount) { |
| 1472 | return; |
| 1473 | } |
| 1474 | kd_threadmap *map = &resolver->krs_map[resolver->krs_count]; |
| 1475 | map->thread = (uintptr_t)thread_tid(thread); |
| 1476 | (void)strlcpy(dst: map->command, src: "kernel_task" , n: sizeof(map->command)); |
| 1477 | map->valid = 1; |
| 1478 | resolver->krs_count++; |
| 1479 | } |
| 1480 | |
| 1481 | static vm_size_t |
| 1482 | _resolve_threads(kd_threadmap *map, vm_size_t nthreads) |
| 1483 | { |
| 1484 | struct kd_resolver resolver = { |
| 1485 | .krs_map = map, .krs_count = 0, .krs_maxcount = nthreads, |
| 1486 | }; |
| 1487 | |
| 1488 | // Handle kernel_task specially, as it lacks uthreads. |
| 1489 | extern void task_act_iterate_wth_args(task_t, void (*)(thread_t, void *), |
| 1490 | void *); |
| 1491 | task_act_iterate_wth_args(kernel_task, _resolve_kernel_task, &resolver); |
| 1492 | proc_iterate(PROC_ALLPROCLIST | PROC_NOWAITTRANS, callout: _resolve_iterator, |
| 1493 | arg: &resolver, NULL, NULL); |
| 1494 | return resolver.krs_count; |
| 1495 | } |
| 1496 | |
| 1497 | static kd_threadmap * |
| 1498 | _thread_map_create_live(size_t maxthreads, vm_size_t *mapsize, |
| 1499 | vm_size_t *mapcount) |
| 1500 | { |
| 1501 | kd_threadmap *thread_map = NULL; |
| 1502 | |
| 1503 | assert(mapsize != NULL); |
| 1504 | assert(mapcount != NULL); |
| 1505 | |
| 1506 | extern int threads_count; |
| 1507 | vm_size_t nthreads = threads_count; |
| 1508 | |
| 1509 | // Allow 25% more threads to be started while iterating processes. |
| 1510 | if (os_add_overflow(nthreads, nthreads / 4, &nthreads)) { |
| 1511 | return NULL; |
| 1512 | } |
| 1513 | |
| 1514 | *mapcount = nthreads; |
| 1515 | if (os_mul_overflow(nthreads, sizeof(kd_threadmap), mapsize)) { |
| 1516 | return NULL; |
| 1517 | } |
| 1518 | |
| 1519 | // Wait until the out-parameters have been filled with the needed size to |
| 1520 | // do the bounds checking on the provided maximum. |
| 1521 | if (maxthreads != 0 && maxthreads < nthreads) { |
| 1522 | return NULL; |
| 1523 | } |
| 1524 | |
| 1525 | // This allocation can be too large for `Z_NOFAIL`. |
| 1526 | thread_map = kalloc_data_tag(*mapsize, Z_WAITOK | Z_ZERO, |
| 1527 | VM_KERN_MEMORY_DIAG); |
| 1528 | if (thread_map != NULL) { |
| 1529 | *mapcount = _resolve_threads(map: thread_map, nthreads); |
| 1530 | } |
| 1531 | return thread_map; |
| 1532 | } |
| 1533 | |
| 1534 | static void |
| 1535 | kdbg_clear(void) |
| 1536 | { |
| 1537 | kernel_debug_disable(); |
| 1538 | kdbg_disable_typefilter(); |
| 1539 | |
| 1540 | // Wait for any event writers to see the disable status. |
| 1541 | IOSleep(100); |
| 1542 | |
| 1543 | // Reset kdebug status for each process. |
| 1544 | if (kd_control_trace.kdc_flags & (KDBG_PIDCHECK | KDBG_PIDEXCLUDE)) { |
| 1545 | proc_list_lock(); |
| 1546 | proc_t p; |
| 1547 | ALLPROC_FOREACH(p) { |
| 1548 | p->p_kdebug = 0; |
| 1549 | } |
| 1550 | proc_list_unlock(); |
| 1551 | } |
| 1552 | |
| 1553 | kd_control_trace.kdc_flags &= (unsigned int)~KDBG_CKTYPES; |
| 1554 | kd_control_trace.kdc_flags &= ~(KDBG_RANGECHECK | KDBG_VALCHECK); |
| 1555 | kd_control_trace.kdc_flags &= ~(KDBG_PIDCHECK | KDBG_PIDEXCLUDE); |
| 1556 | kd_control_trace.kdc_flags &= ~KDBG_CONTINUOUS_TIME; |
| 1557 | kd_control_trace.kdc_flags &= ~KDBG_DISABLE_COPROCS; |
| 1558 | kd_control_trace.kdc_flags &= ~KDBG_MATCH_DISABLE; |
| 1559 | kd_control_trace.kdc_live_flags &= ~(KDBG_NOWRAP | KDBG_WRAPPED); |
| 1560 | |
| 1561 | kd_control_trace.kdc_oldest_time = 0; |
| 1562 | |
| 1563 | delete_buffers_trace(); |
| 1564 | kd_buffer_trace.kdb_event_count = 0; |
| 1565 | |
| 1566 | _clear_thread_map(); |
| 1567 | |
| 1568 | RAW_file_offset = 0; |
| 1569 | RAW_file_written = 0; |
| 1570 | } |
| 1571 | |
| 1572 | void |
| 1573 | kdebug_reset(void) |
| 1574 | { |
| 1575 | ktrace_assert_lock_held(); |
| 1576 | |
| 1577 | kdbg_clear(); |
| 1578 | typefilter_reject_all(tf: kdbg_typefilter); |
| 1579 | typefilter_allow_class(tf: kdbg_typefilter, DBG_TRACE); |
| 1580 | } |
| 1581 | |
| 1582 | void |
| 1583 | kdebug_free_early_buf(void) |
| 1584 | { |
| 1585 | #if defined(__x86_64__) |
| 1586 | ml_static_mfree((vm_offset_t)&kd_early_buffer, sizeof(kd_early_buffer)); |
| 1587 | #endif /* defined(__x86_64__) */ |
| 1588 | // ARM handles this as part of the BOOTDATA segment. |
| 1589 | } |
| 1590 | |
| 1591 | int |
| 1592 | kdbg_setpid(kd_regtype *kdr) |
| 1593 | { |
| 1594 | pid_t pid; |
| 1595 | int flag, ret = 0; |
| 1596 | struct proc *p; |
| 1597 | |
| 1598 | pid = (pid_t)kdr->value1; |
| 1599 | flag = (int)kdr->value2; |
| 1600 | |
| 1601 | if (pid >= 0) { |
| 1602 | if ((p = proc_find(pid)) == NULL) { |
| 1603 | ret = ESRCH; |
| 1604 | } else { |
| 1605 | if (flag == 1) { |
| 1606 | /* |
| 1607 | * turn on pid check for this and all pids |
| 1608 | */ |
| 1609 | kd_control_trace.kdc_flags |= KDBG_PIDCHECK; |
| 1610 | kd_control_trace.kdc_flags &= ~KDBG_PIDEXCLUDE; |
| 1611 | |
| 1612 | p->p_kdebug = 1; |
| 1613 | } else { |
| 1614 | /* |
| 1615 | * turn off pid check for this pid value |
| 1616 | * Don't turn off all pid checking though |
| 1617 | * |
| 1618 | * kd_control_trace.kdc_flags &= ~KDBG_PIDCHECK; |
| 1619 | */ |
| 1620 | p->p_kdebug = 0; |
| 1621 | } |
| 1622 | proc_rele(p); |
| 1623 | } |
| 1624 | } else { |
| 1625 | ret = EINVAL; |
| 1626 | } |
| 1627 | |
| 1628 | return ret; |
| 1629 | } |
| 1630 | |
| 1631 | /* This is for pid exclusion in the trace buffer */ |
| 1632 | int |
| 1633 | kdbg_setpidex(kd_regtype *kdr) |
| 1634 | { |
| 1635 | pid_t pid; |
| 1636 | int flag, ret = 0; |
| 1637 | struct proc *p; |
| 1638 | |
| 1639 | pid = (pid_t)kdr->value1; |
| 1640 | flag = (int)kdr->value2; |
| 1641 | |
| 1642 | if (pid >= 0) { |
| 1643 | if ((p = proc_find(pid)) == NULL) { |
| 1644 | ret = ESRCH; |
| 1645 | } else { |
| 1646 | if (flag == 1) { |
| 1647 | /* |
| 1648 | * turn on pid exclusion |
| 1649 | */ |
| 1650 | kd_control_trace.kdc_flags |= KDBG_PIDEXCLUDE; |
| 1651 | kd_control_trace.kdc_flags &= ~KDBG_PIDCHECK; |
| 1652 | |
| 1653 | p->p_kdebug = 1; |
| 1654 | } else { |
| 1655 | /* |
| 1656 | * turn off pid exclusion for this pid value |
| 1657 | * Don't turn off all pid exclusion though |
| 1658 | * |
| 1659 | * kd_control_trace.kdc_flags &= ~KDBG_PIDEXCLUDE; |
| 1660 | */ |
| 1661 | p->p_kdebug = 0; |
| 1662 | } |
| 1663 | proc_rele(p); |
| 1664 | } |
| 1665 | } else { |
| 1666 | ret = EINVAL; |
| 1667 | } |
| 1668 | |
| 1669 | return ret; |
| 1670 | } |
| 1671 | |
| 1672 | /* |
| 1673 | * The following functions all operate on the typefilter singleton. |
| 1674 | */ |
| 1675 | |
| 1676 | static int |
| 1677 | kdbg_copyin_typefilter(user_addr_t addr, size_t size) |
| 1678 | { |
| 1679 | int ret = ENOMEM; |
| 1680 | typefilter_t tf; |
| 1681 | |
| 1682 | ktrace_assert_lock_held(); |
| 1683 | |
| 1684 | if (size != KDBG_TYPEFILTER_BITMAP_SIZE) { |
| 1685 | return EINVAL; |
| 1686 | } |
| 1687 | |
| 1688 | if ((tf = typefilter_create())) { |
| 1689 | if ((ret = copyin(addr, tf, KDBG_TYPEFILTER_BITMAP_SIZE)) == 0) { |
| 1690 | /* The kernel typefilter must always allow DBG_TRACE */ |
| 1691 | typefilter_allow_class(tf, DBG_TRACE); |
| 1692 | |
| 1693 | typefilter_copy(dst: kdbg_typefilter, src: tf); |
| 1694 | |
| 1695 | kdbg_enable_typefilter(); |
| 1696 | _coproc_list_callback(type: KD_CALLBACK_TYPEFILTER_CHANGED, arg: kdbg_typefilter); |
| 1697 | } |
| 1698 | |
| 1699 | if (tf) { |
| 1700 | typefilter_deallocate(tf); |
| 1701 | } |
| 1702 | } |
| 1703 | |
| 1704 | return ret; |
| 1705 | } |
| 1706 | |
| 1707 | /* |
| 1708 | * Enable the flags in the control page for the typefilter. Assumes that |
| 1709 | * kdbg_typefilter has already been allocated, so events being written |
| 1710 | * don't see a bad typefilter. |
| 1711 | */ |
| 1712 | static void |
| 1713 | kdbg_enable_typefilter(void) |
| 1714 | { |
| 1715 | kd_control_trace.kdc_flags &= ~(KDBG_RANGECHECK | KDBG_VALCHECK); |
| 1716 | kd_control_trace.kdc_flags |= KDBG_TYPEFILTER_CHECK; |
| 1717 | if (kdebug_enable) { |
| 1718 | kd_control_trace.kdc_emit = _trace_emit_filter(); |
| 1719 | } |
| 1720 | commpage_update_kdebug_state(); |
| 1721 | } |
| 1722 | |
| 1723 | // Disable the flags in the control page for the typefilter. The typefilter |
| 1724 | // may be safely deallocated shortly after this function returns. |
| 1725 | static void |
| 1726 | kdbg_disable_typefilter(void) |
| 1727 | { |
| 1728 | bool notify_coprocs = kd_control_trace.kdc_flags & KDBG_TYPEFILTER_CHECK; |
| 1729 | kd_control_trace.kdc_flags &= ~KDBG_TYPEFILTER_CHECK; |
| 1730 | |
| 1731 | commpage_update_kdebug_state(); |
| 1732 | |
| 1733 | if (notify_coprocs) { |
| 1734 | // Notify coprocessors that the typefilter will now allow everything. |
| 1735 | // Otherwise, they won't know a typefilter is no longer in effect. |
| 1736 | typefilter_allow_all(tf: kdbg_typefilter); |
| 1737 | _coproc_list_callback(type: KD_CALLBACK_TYPEFILTER_CHANGED, arg: kdbg_typefilter); |
| 1738 | } |
| 1739 | } |
| 1740 | |
| 1741 | uint32_t |
| 1742 | kdebug_commpage_state(void) |
| 1743 | { |
| 1744 | uint32_t state = 0; |
| 1745 | if (kdebug_enable) { |
| 1746 | state |= KDEBUG_COMMPAGE_ENABLE_TRACE; |
| 1747 | if (kd_control_trace.kdc_flags & KDBG_TYPEFILTER_CHECK) { |
| 1748 | state |= KDEBUG_COMMPAGE_ENABLE_TYPEFILTER; |
| 1749 | } |
| 1750 | if (kd_control_trace.kdc_flags & KDBG_CONTINUOUS_TIME) { |
| 1751 | state |= KDEBUG_COMMPAGE_CONTINUOUS; |
| 1752 | } |
| 1753 | } |
| 1754 | return state; |
| 1755 | } |
| 1756 | |
| 1757 | static int |
| 1758 | kdbg_setreg(kd_regtype * kdr) |
| 1759 | { |
| 1760 | switch (kdr->type) { |
| 1761 | case KDBG_CLASSTYPE: |
| 1762 | kdlog_beg = KDBG_EVENTID(kdr->value1 & 0xff, 0, 0); |
| 1763 | kdlog_end = KDBG_EVENTID(kdr->value2 & 0xff, 0, 0); |
| 1764 | kd_control_trace.kdc_flags &= ~KDBG_VALCHECK; |
| 1765 | kd_control_trace.kdc_flags |= KDBG_RANGECHECK; |
| 1766 | break; |
| 1767 | case KDBG_SUBCLSTYPE:; |
| 1768 | unsigned int cls = kdr->value1 & 0xff; |
| 1769 | unsigned int subcls = kdr->value2 & 0xff; |
| 1770 | unsigned int subcls_end = subcls + 1; |
| 1771 | kdlog_beg = KDBG_EVENTID(cls, subcls, 0); |
| 1772 | kdlog_end = KDBG_EVENTID(cls, subcls_end, 0); |
| 1773 | kd_control_trace.kdc_flags &= ~KDBG_VALCHECK; |
| 1774 | kd_control_trace.kdc_flags |= KDBG_RANGECHECK; |
| 1775 | break; |
| 1776 | case KDBG_RANGETYPE: |
| 1777 | kdlog_beg = kdr->value1; |
| 1778 | kdlog_end = kdr->value2; |
| 1779 | kd_control_trace.kdc_flags &= ~KDBG_VALCHECK; |
| 1780 | kd_control_trace.kdc_flags |= KDBG_RANGECHECK; |
| 1781 | break; |
| 1782 | case KDBG_VALCHECK: |
| 1783 | kdlog_value1 = kdr->value1; |
| 1784 | kdlog_value2 = kdr->value2; |
| 1785 | kdlog_value3 = kdr->value3; |
| 1786 | kdlog_value4 = kdr->value4; |
| 1787 | kd_control_trace.kdc_flags &= ~KDBG_RANGECHECK; |
| 1788 | kd_control_trace.kdc_flags |= KDBG_VALCHECK; |
| 1789 | break; |
| 1790 | case KDBG_TYPENONE: |
| 1791 | kd_control_trace.kdc_flags &= ~(KDBG_RANGECHECK | KDBG_VALCHECK); |
| 1792 | kdlog_beg = 0; |
| 1793 | kdlog_end = 0; |
| 1794 | break; |
| 1795 | default: |
| 1796 | return EINVAL; |
| 1797 | } |
| 1798 | if (kdebug_enable) { |
| 1799 | kd_control_trace.kdc_emit = _trace_emit_filter(); |
| 1800 | } |
| 1801 | return 0; |
| 1802 | } |
| 1803 | |
| 1804 | static int |
| 1805 | _copyin_event_disable_mask(user_addr_t uaddr, size_t usize) |
| 1806 | { |
| 1807 | if (usize < 2 * sizeof(kd_event_matcher)) { |
| 1808 | return ERANGE; |
| 1809 | } |
| 1810 | int ret = copyin(uaddr, &kd_control_trace.disable_event_match, |
| 1811 | sizeof(kd_event_matcher)); |
| 1812 | if (ret != 0) { |
| 1813 | return ret; |
| 1814 | } |
| 1815 | ret = copyin(uaddr + sizeof(kd_event_matcher), |
| 1816 | &kd_control_trace.disable_event_mask, sizeof(kd_event_matcher)); |
| 1817 | if (ret != 0) { |
| 1818 | memset(s: &kd_control_trace.disable_event_match, c: 0, |
| 1819 | n: sizeof(kd_event_matcher)); |
| 1820 | return ret; |
| 1821 | } |
| 1822 | return 0; |
| 1823 | } |
| 1824 | |
| 1825 | static int |
| 1826 | _copyout_event_disable_mask(user_addr_t uaddr, size_t usize) |
| 1827 | { |
| 1828 | if (usize < 2 * sizeof(kd_event_matcher)) { |
| 1829 | return ERANGE; |
| 1830 | } |
| 1831 | int ret = copyout(&kd_control_trace.disable_event_match, uaddr, |
| 1832 | sizeof(kd_event_matcher)); |
| 1833 | if (ret != 0) { |
| 1834 | return ret; |
| 1835 | } |
| 1836 | ret = copyout(&kd_control_trace.disable_event_mask, |
| 1837 | uaddr + sizeof(kd_event_matcher), sizeof(kd_event_matcher)); |
| 1838 | if (ret != 0) { |
| 1839 | return ret; |
| 1840 | } |
| 1841 | return 0; |
| 1842 | } |
| 1843 | |
| 1844 | static int |
| 1845 | kdbg_write_to_vnode(caddr_t buffer, size_t size, vnode_t vp, vfs_context_t ctx, off_t file_offset) |
| 1846 | { |
| 1847 | assert(size < INT_MAX); |
| 1848 | return vn_rdwr(rw: UIO_WRITE, vp, base: buffer, len: (int)size, offset: file_offset, segflg: UIO_SYSSPACE, |
| 1849 | IO_NODELOCKED | IO_UNIT, cred: vfs_context_ucred(ctx), aresid: (int *) 0, |
| 1850 | p: vfs_context_proc(ctx)); |
| 1851 | } |
| 1852 | |
| 1853 | static errno_t |
| 1854 | _copyout_cpu_map(int map_version, user_addr_t udst, size_t *usize) |
| 1855 | { |
| 1856 | if ((kd_control_trace.kdc_flags & KDBG_BUFINIT) == 0) { |
| 1857 | return EINVAL; |
| 1858 | } |
| 1859 | |
| 1860 | void *cpu_map = NULL; |
| 1861 | size_t size = 0; |
| 1862 | int error = _copy_cpu_map(map_version, dst: &cpu_map, size: &size); |
| 1863 | if (0 == error) { |
| 1864 | if (udst) { |
| 1865 | size_t copy_size = MIN(*usize, size); |
| 1866 | error = copyout(cpu_map, udst, copy_size); |
| 1867 | } |
| 1868 | *usize = size; |
| 1869 | kmem_free(map: kernel_map, addr: (vm_offset_t)cpu_map, size); |
| 1870 | } |
| 1871 | if (EINVAL == error && 0 == udst) { |
| 1872 | *usize = size; |
| 1873 | // User space only needs the size if it passes NULL; |
| 1874 | error = 0; |
| 1875 | } |
| 1876 | return error; |
| 1877 | } |
| 1878 | |
| 1879 | int |
| 1880 | kdbg_readcurthrmap(user_addr_t buffer, size_t *bufsize) |
| 1881 | { |
| 1882 | kd_threadmap *mapptr; |
| 1883 | vm_size_t mapsize; |
| 1884 | vm_size_t mapcount; |
| 1885 | int ret = 0; |
| 1886 | size_t count = *bufsize / sizeof(kd_threadmap); |
| 1887 | |
| 1888 | *bufsize = 0; |
| 1889 | |
| 1890 | if ((mapptr = _thread_map_create_live(maxthreads: count, mapsize: &mapsize, mapcount: &mapcount))) { |
| 1891 | if (copyout(mapptr, buffer, mapcount * sizeof(kd_threadmap))) { |
| 1892 | ret = EFAULT; |
| 1893 | } else { |
| 1894 | *bufsize = (mapcount * sizeof(kd_threadmap)); |
| 1895 | } |
| 1896 | |
| 1897 | kfree_data(mapptr, mapsize); |
| 1898 | } else { |
| 1899 | ret = EINVAL; |
| 1900 | } |
| 1901 | |
| 1902 | return ret; |
| 1903 | } |
| 1904 | |
| 1905 | static int |
| 1906 | (bool write_thread_map, vnode_t vp, vfs_context_t ctx) |
| 1907 | { |
| 1908 | int ret = 0; |
| 1909 | RAW_header ; |
| 1910 | clock_sec_t secs; |
| 1911 | clock_usec_t usecs; |
| 1912 | void *pad_buf; |
| 1913 | uint32_t pad_size; |
| 1914 | uint32_t = 0; |
| 1915 | uint32_t cpumap_size; |
| 1916 | size_t map_size = 0; |
| 1917 | uint32_t map_count = 0; |
| 1918 | |
| 1919 | if (write_thread_map) { |
| 1920 | assert(kd_control_trace.kdc_flags & KDBG_MAPINIT); |
| 1921 | if (kd_mapcount > UINT32_MAX) { |
| 1922 | return ERANGE; |
| 1923 | } |
| 1924 | map_count = (uint32_t)kd_mapcount; |
| 1925 | if (os_mul_overflow(map_count, sizeof(kd_threadmap), &map_size)) { |
| 1926 | return ERANGE; |
| 1927 | } |
| 1928 | if (map_size >= INT_MAX) { |
| 1929 | return ERANGE; |
| 1930 | } |
| 1931 | } |
| 1932 | |
| 1933 | /* |
| 1934 | * Without the buffers initialized, we cannot construct a CPU map or a |
| 1935 | * thread map, and cannot write a header. |
| 1936 | */ |
| 1937 | if (!(kd_control_trace.kdc_flags & KDBG_BUFINIT)) { |
| 1938 | return EINVAL; |
| 1939 | } |
| 1940 | |
| 1941 | /* |
| 1942 | * To write a RAW_VERSION1+ file, we must embed a cpumap in the |
| 1943 | * "padding" used to page align the events following the threadmap. If |
| 1944 | * the threadmap happens to not require enough padding, we artificially |
| 1945 | * increase its footprint until it needs enough padding. |
| 1946 | */ |
| 1947 | |
| 1948 | assert(vp); |
| 1949 | assert(ctx); |
| 1950 | |
| 1951 | pad_size = 16384 - ((sizeof(RAW_header) + map_size) & PAGE_MASK); |
| 1952 | cpumap_size = sizeof(kd_cpumap_header) + kd_control_trace.kdebug_cpus * sizeof(kd_cpumap); |
| 1953 | |
| 1954 | if (cpumap_size > pad_size) { |
| 1955 | /* If the cpu map doesn't fit in the current available pad_size, |
| 1956 | * we increase the pad_size by 16K. We do this so that the event |
| 1957 | * data is always available on a page aligned boundary for both |
| 1958 | * 4k and 16k systems. We enforce this alignment for the event |
| 1959 | * data so that we can take advantage of optimized file/disk writes. |
| 1960 | */ |
| 1961 | pad_size += 16384; |
| 1962 | } |
| 1963 | |
| 1964 | /* The way we are silently embedding a cpumap in the "padding" is by artificially |
| 1965 | * increasing the number of thread entries. However, we'll also need to ensure that |
| 1966 | * the cpumap is embedded in the last 4K page before when the event data is expected. |
| 1967 | * This way the tools can read the data starting the next page boundary on both |
| 1968 | * 4K and 16K systems preserving compatibility with older versions of the tools |
| 1969 | */ |
| 1970 | if (pad_size > 4096) { |
| 1971 | pad_size -= 4096; |
| 1972 | extra_thread_count = (pad_size / sizeof(kd_threadmap)) + 1; |
| 1973 | } |
| 1974 | |
| 1975 | memset(s: &header, c: 0, n: sizeof(header)); |
| 1976 | header.version_no = RAW_VERSION1; |
| 1977 | header.thread_count = map_count + extra_thread_count; |
| 1978 | |
| 1979 | clock_get_calendar_microtime(secs: &secs, microsecs: &usecs); |
| 1980 | header.TOD_secs = secs; |
| 1981 | header.TOD_usecs = usecs; |
| 1982 | |
| 1983 | ret = vn_rdwr(rw: UIO_WRITE, vp, base: (caddr_t)&header, len: (int)sizeof(RAW_header), offset: RAW_file_offset, |
| 1984 | segflg: UIO_SYSSPACE, IO_NODELOCKED | IO_UNIT, cred: vfs_context_ucred(ctx), aresid: (int *) 0, p: vfs_context_proc(ctx)); |
| 1985 | if (ret) { |
| 1986 | goto write_error; |
| 1987 | } |
| 1988 | RAW_file_offset += sizeof(RAW_header); |
| 1989 | RAW_file_written += sizeof(RAW_header); |
| 1990 | |
| 1991 | if (write_thread_map) { |
| 1992 | assert(map_size < INT_MAX); |
| 1993 | ret = vn_rdwr(rw: UIO_WRITE, vp, base: (caddr_t)kd_mapptr, len: (int)map_size, offset: RAW_file_offset, |
| 1994 | segflg: UIO_SYSSPACE, IO_NODELOCKED | IO_UNIT, cred: vfs_context_ucred(ctx), aresid: (int *) 0, p: vfs_context_proc(ctx)); |
| 1995 | if (ret) { |
| 1996 | goto write_error; |
| 1997 | } |
| 1998 | |
| 1999 | RAW_file_offset += map_size; |
| 2000 | RAW_file_written += map_size; |
| 2001 | } |
| 2002 | |
| 2003 | if (extra_thread_count) { |
| 2004 | pad_size = extra_thread_count * sizeof(kd_threadmap); |
| 2005 | pad_buf = (char *)kalloc_data(pad_size, Z_WAITOK | Z_ZERO); |
| 2006 | if (!pad_buf) { |
| 2007 | ret = ENOMEM; |
| 2008 | goto write_error; |
| 2009 | } |
| 2010 | |
| 2011 | assert(pad_size < INT_MAX); |
| 2012 | ret = vn_rdwr(rw: UIO_WRITE, vp, base: (caddr_t)pad_buf, len: (int)pad_size, offset: RAW_file_offset, |
| 2013 | segflg: UIO_SYSSPACE, IO_NODELOCKED | IO_UNIT, cred: vfs_context_ucred(ctx), aresid: (int *) 0, p: vfs_context_proc(ctx)); |
| 2014 | kfree_data(pad_buf, pad_size); |
| 2015 | if (ret) { |
| 2016 | goto write_error; |
| 2017 | } |
| 2018 | |
| 2019 | RAW_file_offset += pad_size; |
| 2020 | RAW_file_written += pad_size; |
| 2021 | } |
| 2022 | |
| 2023 | pad_size = PAGE_SIZE - (RAW_file_offset & PAGE_MASK); |
| 2024 | if (pad_size) { |
| 2025 | pad_buf = (char *)kalloc_data(pad_size, Z_WAITOK | Z_ZERO); |
| 2026 | if (!pad_buf) { |
| 2027 | ret = ENOMEM; |
| 2028 | goto write_error; |
| 2029 | } |
| 2030 | |
| 2031 | /* |
| 2032 | * Embed the CPU map in the padding bytes -- old code will skip it, |
| 2033 | * while newer code knows it's there. |
| 2034 | */ |
| 2035 | size_t temp = pad_size; |
| 2036 | errno_t error = _copy_cpu_map(RAW_VERSION1, dst: &pad_buf, size: &temp); |
| 2037 | if (0 != error) { |
| 2038 | memset(s: pad_buf, c: 0, n: pad_size); |
| 2039 | } |
| 2040 | |
| 2041 | assert(pad_size < INT_MAX); |
| 2042 | ret = vn_rdwr(rw: UIO_WRITE, vp, base: (caddr_t)pad_buf, len: (int)pad_size, offset: RAW_file_offset, |
| 2043 | segflg: UIO_SYSSPACE, IO_NODELOCKED | IO_UNIT, cred: vfs_context_ucred(ctx), aresid: (int *) 0, p: vfs_context_proc(ctx)); |
| 2044 | kfree_data(pad_buf, pad_size); |
| 2045 | if (ret) { |
| 2046 | goto write_error; |
| 2047 | } |
| 2048 | |
| 2049 | RAW_file_offset += pad_size; |
| 2050 | RAW_file_written += pad_size; |
| 2051 | } |
| 2052 | |
| 2053 | write_error: |
| 2054 | return ret; |
| 2055 | } |
| 2056 | |
| 2057 | static void |
| 2058 | _clear_thread_map(void) |
| 2059 | { |
| 2060 | ktrace_assert_lock_held(); |
| 2061 | |
| 2062 | if (kd_control_trace.kdc_flags & KDBG_MAPINIT) { |
| 2063 | assert(kd_mapptr != NULL); |
| 2064 | kfree_data(kd_mapptr, kd_mapsize); |
| 2065 | kd_mapptr = NULL; |
| 2066 | kd_mapsize = 0; |
| 2067 | kd_mapcount = 0; |
| 2068 | kd_control_trace.kdc_flags &= ~KDBG_MAPINIT; |
| 2069 | } |
| 2070 | } |
| 2071 | |
| 2072 | /* |
| 2073 | * Write out a version 1 header and the thread map, if it is initialized, to a |
| 2074 | * vnode. Used by KDWRITEMAP and kdbg_dump_trace_to_file. |
| 2075 | * |
| 2076 | * Returns write errors from vn_rdwr if a write fails. Returns ENODATA if the |
| 2077 | * thread map has not been initialized, but the header will still be written. |
| 2078 | * Returns ENOMEM if padding could not be allocated. Returns 0 otherwise. |
| 2079 | */ |
| 2080 | static int |
| 2081 | kdbg_write_thread_map(vnode_t vp, vfs_context_t ctx) |
| 2082 | { |
| 2083 | int ret = 0; |
| 2084 | bool map_initialized; |
| 2085 | |
| 2086 | ktrace_assert_lock_held(); |
| 2087 | assert(ctx != NULL); |
| 2088 | |
| 2089 | map_initialized = (kd_control_trace.kdc_flags & KDBG_MAPINIT); |
| 2090 | |
| 2091 | ret = _write_legacy_header(write_thread_map: map_initialized, vp, ctx); |
| 2092 | if (ret == 0) { |
| 2093 | if (map_initialized) { |
| 2094 | _clear_thread_map(); |
| 2095 | } else { |
| 2096 | ret = ENODATA; |
| 2097 | } |
| 2098 | } |
| 2099 | |
| 2100 | return ret; |
| 2101 | } |
| 2102 | |
| 2103 | /* |
| 2104 | * Copy out the thread map to a user space buffer. Used by KDTHRMAP. |
| 2105 | * |
| 2106 | * Returns copyout errors if the copyout fails. Returns ENODATA if the thread |
| 2107 | * map has not been initialized. Returns EINVAL if the buffer provided is not |
| 2108 | * large enough for the entire thread map. Returns 0 otherwise. |
| 2109 | */ |
| 2110 | static int |
| 2111 | kdbg_copyout_thread_map(user_addr_t buffer, size_t *buffer_size) |
| 2112 | { |
| 2113 | bool map_initialized; |
| 2114 | size_t map_size; |
| 2115 | int ret = 0; |
| 2116 | |
| 2117 | ktrace_assert_lock_held(); |
| 2118 | assert(buffer_size != NULL); |
| 2119 | |
| 2120 | map_initialized = (kd_control_trace.kdc_flags & KDBG_MAPINIT); |
| 2121 | if (!map_initialized) { |
| 2122 | return ENODATA; |
| 2123 | } |
| 2124 | |
| 2125 | map_size = kd_mapcount * sizeof(kd_threadmap); |
| 2126 | if (*buffer_size < map_size) { |
| 2127 | return EINVAL; |
| 2128 | } |
| 2129 | |
| 2130 | ret = copyout(kd_mapptr, buffer, map_size); |
| 2131 | if (ret == 0) { |
| 2132 | _clear_thread_map(); |
| 2133 | } |
| 2134 | |
| 2135 | return ret; |
| 2136 | } |
| 2137 | |
| 2138 | static void |
| 2139 | kdbg_set_nkdbufs_trace(unsigned int req_nkdbufs_trace) |
| 2140 | { |
| 2141 | /* |
| 2142 | * Only allow allocations of up to half the kernel's data range or "sane |
| 2143 | * size", whichever is smaller. |
| 2144 | */ |
| 2145 | const uint64_t max_nkdbufs_trace_64 = |
| 2146 | MIN(kmem_range_id_size(KMEM_RANGE_ID_DATA), sane_size) / 2 / |
| 2147 | sizeof(kd_buf); |
| 2148 | /* |
| 2149 | * Can't allocate more than 2^38 (2^32 * 64) bytes of events without |
| 2150 | * switching to a 64-bit event count; should be fine. |
| 2151 | */ |
| 2152 | const unsigned int max_nkdbufs_trace = |
| 2153 | (unsigned int)MIN(max_nkdbufs_trace_64, UINT_MAX); |
| 2154 | |
| 2155 | kd_buffer_trace.kdb_event_count = MIN(req_nkdbufs_trace, max_nkdbufs_trace); |
| 2156 | } |
| 2157 | |
| 2158 | /* |
| 2159 | * Block until there are `kd_buffer_trace.kdb_storage_threshold` storage units filled with |
| 2160 | * events or `timeout_ms` milliseconds have passed. If `locked_wait` is true, |
| 2161 | * `ktrace_lock` is held while waiting. This is necessary while waiting to |
| 2162 | * write events out of the buffers. |
| 2163 | * |
| 2164 | * Returns true if the threshold was reached and false otherwise. |
| 2165 | * |
| 2166 | * Called with `ktrace_lock` locked and interrupts enabled. |
| 2167 | */ |
| 2168 | static bool |
| 2169 | kdbg_wait(uint64_t timeout_ms) |
| 2170 | { |
| 2171 | int wait_result = THREAD_AWAKENED; |
| 2172 | uint64_t deadline_mach = 0; |
| 2173 | |
| 2174 | ktrace_assert_lock_held(); |
| 2175 | |
| 2176 | if (timeout_ms != 0) { |
| 2177 | uint64_t ns = timeout_ms * NSEC_PER_MSEC; |
| 2178 | nanoseconds_to_absolutetime(nanoseconds: ns, result: &deadline_mach); |
| 2179 | clock_absolutetime_interval_to_deadline(abstime: deadline_mach, result: &deadline_mach); |
| 2180 | } |
| 2181 | |
| 2182 | bool s = ml_set_interrupts_enabled(false); |
| 2183 | if (!s) { |
| 2184 | panic("kdbg_wait() called with interrupts disabled" ); |
| 2185 | } |
| 2186 | lck_spin_lock_grp(lck: &kd_wait_lock, grp: &kdebug_lck_grp); |
| 2187 | |
| 2188 | /* drop the mutex to allow others to access trace */ |
| 2189 | ktrace_unlock(); |
| 2190 | |
| 2191 | while (wait_result == THREAD_AWAKENED && |
| 2192 | kd_control_trace.kdc_storage_used < kd_buffer_trace.kdb_storage_threshold) { |
| 2193 | kd_waiter = true; |
| 2194 | |
| 2195 | if (deadline_mach) { |
| 2196 | wait_result = lck_spin_sleep_deadline(lck: &kd_wait_lock, lck_sleep_action: 0, event: &kd_waiter, |
| 2197 | THREAD_ABORTSAFE, deadline: deadline_mach); |
| 2198 | } else { |
| 2199 | wait_result = lck_spin_sleep(lck: &kd_wait_lock, lck_sleep_action: 0, event: &kd_waiter, |
| 2200 | THREAD_ABORTSAFE); |
| 2201 | } |
| 2202 | } |
| 2203 | |
| 2204 | bool threshold_exceeded = (kd_control_trace.kdc_storage_used >= kd_buffer_trace.kdb_storage_threshold); |
| 2205 | |
| 2206 | lck_spin_unlock(lck: &kd_wait_lock); |
| 2207 | ml_set_interrupts_enabled(enable: s); |
| 2208 | |
| 2209 | ktrace_lock(); |
| 2210 | |
| 2211 | return threshold_exceeded; |
| 2212 | } |
| 2213 | |
| 2214 | /* |
| 2215 | * Wakeup a thread waiting using `kdbg_wait` if there are at least |
| 2216 | * `kd_buffer_trace.kdb_storage_threshold` storage units in use. |
| 2217 | */ |
| 2218 | static void |
| 2219 | kdbg_wakeup(void) |
| 2220 | { |
| 2221 | bool need_kds_wakeup = false; |
| 2222 | |
| 2223 | /* |
| 2224 | * Try to take the lock here to synchronize with the waiter entering |
| 2225 | * the blocked state. Use the try mode to prevent deadlocks caused by |
| 2226 | * re-entering this routine due to various trace points triggered in the |
| 2227 | * lck_spin_sleep_xxxx routines used to actually enter one of our 2 wait |
| 2228 | * conditions. No problem if we fail, there will be lots of additional |
| 2229 | * events coming in that will eventually succeed in grabbing this lock. |
| 2230 | */ |
| 2231 | bool s = ml_set_interrupts_enabled(false); |
| 2232 | |
| 2233 | if (lck_spin_try_lock(lck: &kd_wait_lock)) { |
| 2234 | if (kd_waiter && |
| 2235 | (kd_control_trace.kdc_storage_used >= kd_buffer_trace.kdb_storage_threshold)) { |
| 2236 | kd_waiter = 0; |
| 2237 | need_kds_wakeup = true; |
| 2238 | } |
| 2239 | lck_spin_unlock(lck: &kd_wait_lock); |
| 2240 | } |
| 2241 | |
| 2242 | ml_set_interrupts_enabled(enable: s); |
| 2243 | |
| 2244 | if (need_kds_wakeup == true) { |
| 2245 | wakeup(chan: &kd_waiter); |
| 2246 | } |
| 2247 | } |
| 2248 | |
| 2249 | static int |
| 2250 | _read_merged_trace_events(user_addr_t buffer, size_t *number, vnode_t vp, |
| 2251 | vfs_context_t ctx, bool chunk) |
| 2252 | { |
| 2253 | ktrace_assert_lock_held(); |
| 2254 | size_t count = *number / sizeof(kd_buf); |
| 2255 | if (count == 0 || !(kd_control_trace.kdc_flags & KDBG_BUFINIT) || |
| 2256 | kd_buffer_trace.kdcopybuf == 0) { |
| 2257 | *number = 0; |
| 2258 | return EINVAL; |
| 2259 | } |
| 2260 | |
| 2261 | // Before merging, make sure coprocessors have provided up-to-date events. |
| 2262 | _coproc_list_callback(type: KD_CALLBACK_SYNC_FLUSH, NULL); |
| 2263 | return kernel_debug_read(ctl: &kd_control_trace, buf: &kd_buffer_trace, buffer, |
| 2264 | number, vp, ctx, file_version: chunk); |
| 2265 | } |
| 2266 | |
| 2267 | struct { |
| 2268 | uint32_t ; |
| 2269 | uint32_t ; |
| 2270 | uint64_t ; |
| 2271 | uint64_t ; |
| 2272 | }; |
| 2273 | |
| 2274 | static int |
| 2275 | (user_addr_t udst, vnode_t vp, vfs_context_t ctx, |
| 2276 | uint64_t length) |
| 2277 | { |
| 2278 | struct event_chunk_header = { |
| 2279 | .tag = V3_RAW_EVENTS, |
| 2280 | .sub_tag = 1, |
| 2281 | .length = length, |
| 2282 | }; |
| 2283 | |
| 2284 | if (vp) { |
| 2285 | assert(udst == USER_ADDR_NULL); |
| 2286 | assert(ctx != NULL); |
| 2287 | int error = kdbg_write_to_vnode(buffer: (caddr_t)&header, size: sizeof(header), vp, |
| 2288 | ctx, file_offset: RAW_file_offset); |
| 2289 | if (0 == error) { |
| 2290 | RAW_file_offset += sizeof(header); |
| 2291 | } |
| 2292 | return error; |
| 2293 | } else { |
| 2294 | assert(udst != USER_ADDR_NULL); |
| 2295 | return copyout(&header, udst, sizeof(header)); |
| 2296 | } |
| 2297 | } |
| 2298 | |
| 2299 | int |
| 2300 | kernel_debug_trace_write_to_file(user_addr_t *buffer, size_t *number, |
| 2301 | size_t *count, size_t tempbuf_number, vnode_t vp, vfs_context_t ctx, |
| 2302 | bool chunk) |
| 2303 | { |
| 2304 | int error = 0; |
| 2305 | |
| 2306 | if (chunk) { |
| 2307 | error = _write_event_chunk_header(udst: *buffer, vp, ctx, |
| 2308 | length: tempbuf_number * sizeof(kd_buf)); |
| 2309 | if (error) { |
| 2310 | return error; |
| 2311 | } |
| 2312 | if (buffer) { |
| 2313 | *buffer += sizeof(struct event_chunk_header); |
| 2314 | } |
| 2315 | |
| 2316 | assert(*count >= sizeof(struct event_chunk_header)); |
| 2317 | *count -= sizeof(struct event_chunk_header); |
| 2318 | *number += sizeof(struct event_chunk_header); |
| 2319 | } |
| 2320 | if (vp) { |
| 2321 | size_t write_size = tempbuf_number * sizeof(kd_buf); |
| 2322 | error = kdbg_write_to_vnode(buffer: (caddr_t)kd_buffer_trace.kdcopybuf, |
| 2323 | size: write_size, vp, ctx, file_offset: RAW_file_offset); |
| 2324 | if (!error) { |
| 2325 | RAW_file_offset += write_size; |
| 2326 | } |
| 2327 | |
| 2328 | if (RAW_file_written >= RAW_FLUSH_SIZE) { |
| 2329 | error = VNOP_FSYNC(vp, MNT_NOWAIT, ctx); |
| 2330 | |
| 2331 | RAW_file_written = 0; |
| 2332 | } |
| 2333 | } else { |
| 2334 | error = copyout(kd_buffer_trace.kdcopybuf, *buffer, tempbuf_number * sizeof(kd_buf)); |
| 2335 | *buffer += (tempbuf_number * sizeof(kd_buf)); |
| 2336 | } |
| 2337 | |
| 2338 | return error; |
| 2339 | } |
| 2340 | |
| 2341 | #pragma mark - User space interface |
| 2342 | |
| 2343 | static int |
| 2344 | _kd_sysctl_internal(int op, int value, user_addr_t where, size_t *sizep) |
| 2345 | { |
| 2346 | size_t size = *sizep; |
| 2347 | kd_regtype kd_Reg; |
| 2348 | proc_t p; |
| 2349 | |
| 2350 | bool read_only = (op == KERN_KDGETBUF || op == KERN_KDREADCURTHRMAP); |
| 2351 | int perm_error = read_only ? ktrace_read_check() : |
| 2352 | ktrace_configure(KTRACE_KDEBUG); |
| 2353 | if (perm_error != 0) { |
| 2354 | return perm_error; |
| 2355 | } |
| 2356 | |
| 2357 | switch (op) { |
| 2358 | case KERN_KDGETBUF:; |
| 2359 | pid_t owning_pid = ktrace_get_owning_pid(); |
| 2360 | kbufinfo_t info = { |
| 2361 | .nkdbufs = kd_buffer_trace.kdb_event_count, |
| 2362 | .nkdthreads = (int)MIN(kd_mapcount, INT_MAX), |
| 2363 | .nolog = kd_control_trace.kdc_emit == KDEMIT_DISABLE, |
| 2364 | .flags = kd_control_trace.kdc_flags | kd_control_trace.kdc_live_flags, |
| 2365 | .bufid = owning_pid ?: -1, |
| 2366 | }; |
| 2367 | #if defined(__LP64__) |
| 2368 | info.flags |= KDBG_LP64; |
| 2369 | #endif // defined(__LP64__) |
| 2370 | |
| 2371 | size = MIN(size, sizeof(info)); |
| 2372 | return copyout(&info, where, size); |
| 2373 | case KERN_KDREADCURTHRMAP: |
| 2374 | return kdbg_readcurthrmap(buffer: where, bufsize: sizep); |
| 2375 | case KERN_KDEFLAGS: |
| 2376 | value &= KDBG_USERFLAGS; |
| 2377 | kd_control_trace.kdc_flags |= value; |
| 2378 | return 0; |
| 2379 | case KERN_KDDFLAGS: |
| 2380 | value &= KDBG_USERFLAGS; |
| 2381 | kd_control_trace.kdc_flags &= ~value; |
| 2382 | return 0; |
| 2383 | case KERN_KDENABLE: |
| 2384 | if (value) { |
| 2385 | if (!(kd_control_trace.kdc_flags & KDBG_BUFINIT) || |
| 2386 | !(value == KDEBUG_ENABLE_TRACE || value == KDEBUG_ENABLE_PPT)) { |
| 2387 | return EINVAL; |
| 2388 | } |
| 2389 | _threadmap_init(); |
| 2390 | |
| 2391 | kdbg_set_tracing_enabled(true, trace_type: value); |
| 2392 | } else { |
| 2393 | if (!kdebug_enable) { |
| 2394 | return 0; |
| 2395 | } |
| 2396 | |
| 2397 | kernel_debug_disable(); |
| 2398 | } |
| 2399 | return 0; |
| 2400 | case KERN_KDSETBUF: |
| 2401 | kdbg_set_nkdbufs_trace(req_nkdbufs_trace: value); |
| 2402 | return 0; |
| 2403 | case KERN_KDSETUP: |
| 2404 | return kdbg_reinit(EXTRA_COPROC_COUNT); |
| 2405 | case KERN_KDREMOVE: |
| 2406 | ktrace_reset(KTRACE_KDEBUG); |
| 2407 | return 0; |
| 2408 | case KERN_KDSETREG: |
| 2409 | if (size < sizeof(kd_regtype)) { |
| 2410 | return EINVAL; |
| 2411 | } |
| 2412 | if (copyin(where, &kd_Reg, sizeof(kd_regtype))) { |
| 2413 | return EINVAL; |
| 2414 | } |
| 2415 | return kdbg_setreg(kdr: &kd_Reg); |
| 2416 | case KERN_KDGETREG: |
| 2417 | return EINVAL; |
| 2418 | case KERN_KDREADTR: |
| 2419 | return _read_merged_trace_events(buffer: where, number: sizep, NULL, NULL, false); |
| 2420 | case KERN_KDWRITETR: |
| 2421 | case KERN_KDWRITETR_V3: |
| 2422 | case KERN_KDWRITEMAP: { |
| 2423 | struct vfs_context context; |
| 2424 | struct fileproc *fp; |
| 2425 | size_t number; |
| 2426 | vnode_t vp; |
| 2427 | int fd; |
| 2428 | int ret = 0; |
| 2429 | |
| 2430 | if (op == KERN_KDWRITETR || op == KERN_KDWRITETR_V3) { |
| 2431 | (void)kdbg_wait(timeout_ms: size); |
| 2432 | // Re-check whether this process can configure ktrace, since waiting |
| 2433 | // will drop the ktrace lock. |
| 2434 | int no_longer_owner_error = ktrace_configure(KTRACE_KDEBUG); |
| 2435 | if (no_longer_owner_error != 0) { |
| 2436 | return no_longer_owner_error; |
| 2437 | } |
| 2438 | } |
| 2439 | |
| 2440 | p = current_proc(); |
| 2441 | fd = value; |
| 2442 | |
| 2443 | if (fp_get_ftype(p, fd, ftype: DTYPE_VNODE, EBADF, fpp: &fp)) { |
| 2444 | return EBADF; |
| 2445 | } |
| 2446 | |
| 2447 | vp = fp_get_data(fp); |
| 2448 | context.vc_thread = current_thread(); |
| 2449 | context.vc_ucred = fp->fp_glob->fg_cred; |
| 2450 | |
| 2451 | if ((ret = vnode_getwithref(vp)) == 0) { |
| 2452 | RAW_file_offset = fp->fp_glob->fg_offset; |
| 2453 | if (op == KERN_KDWRITETR || op == KERN_KDWRITETR_V3) { |
| 2454 | number = kd_buffer_trace.kdb_event_count * sizeof(kd_buf); |
| 2455 | |
| 2456 | KDBG_RELEASE(TRACE_WRITING_EVENTS | DBG_FUNC_START); |
| 2457 | ret = _read_merged_trace_events(buffer: 0, number: &number, vp, ctx: &context, |
| 2458 | chunk: op == KERN_KDWRITETR_V3); |
| 2459 | KDBG_RELEASE(TRACE_WRITING_EVENTS | DBG_FUNC_END, number); |
| 2460 | |
| 2461 | *sizep = number; |
| 2462 | } else { |
| 2463 | number = kd_mapcount * sizeof(kd_threadmap); |
| 2464 | ret = kdbg_write_thread_map(vp, ctx: &context); |
| 2465 | } |
| 2466 | fp->fp_glob->fg_offset = RAW_file_offset; |
| 2467 | vnode_put(vp); |
| 2468 | } |
| 2469 | fp_drop(p, fd, fp, locked: 0); |
| 2470 | |
| 2471 | return ret; |
| 2472 | } |
| 2473 | case KERN_KDBUFWAIT: |
| 2474 | *sizep = kdbg_wait(timeout_ms: size); |
| 2475 | return 0; |
| 2476 | case KERN_KDPIDTR: |
| 2477 | if (size < sizeof(kd_regtype)) { |
| 2478 | return EINVAL; |
| 2479 | } |
| 2480 | if (copyin(where, &kd_Reg, sizeof(kd_regtype))) { |
| 2481 | return EINVAL; |
| 2482 | } |
| 2483 | return kdbg_setpid(kdr: &kd_Reg); |
| 2484 | case KERN_KDPIDEX: |
| 2485 | if (size < sizeof(kd_regtype)) { |
| 2486 | return EINVAL; |
| 2487 | } |
| 2488 | if (copyin(where, &kd_Reg, sizeof(kd_regtype))) { |
| 2489 | return EINVAL; |
| 2490 | } |
| 2491 | return kdbg_setpidex(kdr: &kd_Reg); |
| 2492 | case KERN_KDCPUMAP: |
| 2493 | return _copyout_cpu_map(RAW_VERSION1, udst: where, usize: sizep); |
| 2494 | case KERN_KDCPUMAP_EXT: |
| 2495 | return _copyout_cpu_map(map_version: 1, udst: where, usize: sizep); |
| 2496 | case KERN_KDTHRMAP: |
| 2497 | return kdbg_copyout_thread_map(buffer: where, buffer_size: sizep); |
| 2498 | case KERN_KDSET_TYPEFILTER: |
| 2499 | return kdbg_copyin_typefilter(addr: where, size); |
| 2500 | case KERN_KDSET_EDM: |
| 2501 | return _copyin_event_disable_mask(uaddr: where, usize: size); |
| 2502 | case KERN_KDGET_EDM: |
| 2503 | return _copyout_event_disable_mask(uaddr: where, usize: size); |
| 2504 | #if DEVELOPMENT || DEBUG |
| 2505 | case KERN_KDTEST: |
| 2506 | return kdbg_test(size); |
| 2507 | #endif // DEVELOPMENT || DEBUG |
| 2508 | |
| 2509 | default: |
| 2510 | return ENOTSUP; |
| 2511 | } |
| 2512 | } |
| 2513 | |
| 2514 | static int |
| 2515 | kdebug_sysctl SYSCTL_HANDLER_ARGS |
| 2516 | { |
| 2517 | int *names = arg1; |
| 2518 | int name_count = arg2; |
| 2519 | user_addr_t udst = req->oldptr; |
| 2520 | size_t *usize = &req->oldlen; |
| 2521 | int value = 0; |
| 2522 | |
| 2523 | if (name_count == 0) { |
| 2524 | return ENOTSUP; |
| 2525 | } |
| 2526 | |
| 2527 | int op = names[0]; |
| 2528 | |
| 2529 | // Some operations have an argument stuffed into the next OID argument. |
| 2530 | switch (op) { |
| 2531 | case KERN_KDWRITETR: |
| 2532 | case KERN_KDWRITETR_V3: |
| 2533 | case KERN_KDWRITEMAP: |
| 2534 | case KERN_KDEFLAGS: |
| 2535 | case KERN_KDDFLAGS: |
| 2536 | case KERN_KDENABLE: |
| 2537 | case KERN_KDSETBUF: |
| 2538 | if (name_count < 2) { |
| 2539 | return EINVAL; |
| 2540 | } |
| 2541 | value = names[1]; |
| 2542 | break; |
| 2543 | default: |
| 2544 | break; |
| 2545 | } |
| 2546 | |
| 2547 | ktrace_lock(); |
| 2548 | int ret = _kd_sysctl_internal(op, value, where: udst, sizep: usize); |
| 2549 | ktrace_unlock(); |
| 2550 | if (0 == ret) { |
| 2551 | req->oldidx += req->oldlen; |
| 2552 | } |
| 2553 | return ret; |
| 2554 | } |
| 2555 | SYSCTL_PROC(_kern, KERN_KDEBUG, kdebug, |
| 2556 | CTLTYPE_NODE | CTLFLAG_RD | CTLFLAG_LOCKED, 0, 0, kdebug_sysctl, NULL, "" ); |
| 2557 | |
| 2558 | #pragma mark - Tests |
| 2559 | |
| 2560 | #if DEVELOPMENT || DEBUG |
| 2561 | |
| 2562 | static int test_coproc = 0; |
| 2563 | static int sync_flush_coproc = 0; |
| 2564 | |
| 2565 | #define KDEBUG_TEST_CODE(code) BSDDBG_CODE(DBG_BSD_KDEBUG_TEST, (code)) |
| 2566 | |
| 2567 | /* |
| 2568 | * A test IOP for the SYNC_FLUSH callback. |
| 2569 | */ |
| 2570 | |
| 2571 | static void |
| 2572 | sync_flush_callback(void * __unused context, kd_callback_type reason, |
| 2573 | void * __unused arg) |
| 2574 | { |
| 2575 | assert(sync_flush_coproc > 0); |
| 2576 | |
| 2577 | if (reason == KD_CALLBACK_SYNC_FLUSH) { |
| 2578 | kernel_debug_enter(sync_flush_coproc, KDEBUG_TEST_CODE(0xff), |
| 2579 | kdebug_timestamp(), 0, 0, 0, 0, 0); |
| 2580 | } |
| 2581 | } |
| 2582 | |
| 2583 | static struct kd_callback sync_flush_kdcb = { |
| 2584 | .func = sync_flush_callback, |
| 2585 | .iop_name = "test_sf" , |
| 2586 | }; |
| 2587 | |
| 2588 | #define TEST_COPROC_CTX 0xabadcafe |
| 2589 | |
| 2590 | static void |
| 2591 | test_coproc_cb(void *context, kd_callback_type __unused reason, |
| 2592 | void * __unused arg) |
| 2593 | { |
| 2594 | assert((uintptr_t)context == TEST_COPROC_CTX); |
| 2595 | } |
| 2596 | |
| 2597 | static int |
| 2598 | kdbg_test(size_t flavor) |
| 2599 | { |
| 2600 | int code = 0; |
| 2601 | int dummy_iop = 0; |
| 2602 | |
| 2603 | switch (flavor) { |
| 2604 | case KDTEST_KERNEL_MACROS: |
| 2605 | /* try each macro */ |
| 2606 | KDBG(KDEBUG_TEST_CODE(code)); code++; |
| 2607 | KDBG(KDEBUG_TEST_CODE(code), 1); code++; |
| 2608 | KDBG(KDEBUG_TEST_CODE(code), 1, 2); code++; |
| 2609 | KDBG(KDEBUG_TEST_CODE(code), 1, 2, 3); code++; |
| 2610 | KDBG(KDEBUG_TEST_CODE(code), 1, 2, 3, 4); code++; |
| 2611 | |
| 2612 | KDBG_RELEASE(KDEBUG_TEST_CODE(code)); code++; |
| 2613 | KDBG_RELEASE(KDEBUG_TEST_CODE(code), 1); code++; |
| 2614 | KDBG_RELEASE(KDEBUG_TEST_CODE(code), 1, 2); code++; |
| 2615 | KDBG_RELEASE(KDEBUG_TEST_CODE(code), 1, 2, 3); code++; |
| 2616 | KDBG_RELEASE(KDEBUG_TEST_CODE(code), 1, 2, 3, 4); code++; |
| 2617 | |
| 2618 | KDBG_FILTERED(KDEBUG_TEST_CODE(code)); code++; |
| 2619 | KDBG_FILTERED(KDEBUG_TEST_CODE(code), 1); code++; |
| 2620 | KDBG_FILTERED(KDEBUG_TEST_CODE(code), 1, 2); code++; |
| 2621 | KDBG_FILTERED(KDEBUG_TEST_CODE(code), 1, 2, 3); code++; |
| 2622 | KDBG_FILTERED(KDEBUG_TEST_CODE(code), 1, 2, 3, 4); code++; |
| 2623 | |
| 2624 | KDBG_RELEASE_NOPROCFILT(KDEBUG_TEST_CODE(code)); code++; |
| 2625 | KDBG_RELEASE_NOPROCFILT(KDEBUG_TEST_CODE(code), 1); code++; |
| 2626 | KDBG_RELEASE_NOPROCFILT(KDEBUG_TEST_CODE(code), 1, 2); code++; |
| 2627 | KDBG_RELEASE_NOPROCFILT(KDEBUG_TEST_CODE(code), 1, 2, 3); code++; |
| 2628 | KDBG_RELEASE_NOPROCFILT(KDEBUG_TEST_CODE(code), 1, 2, 3, 4); code++; |
| 2629 | |
| 2630 | KDBG_DEBUG(KDEBUG_TEST_CODE(code)); code++; |
| 2631 | KDBG_DEBUG(KDEBUG_TEST_CODE(code), 1); code++; |
| 2632 | KDBG_DEBUG(KDEBUG_TEST_CODE(code), 1, 2); code++; |
| 2633 | KDBG_DEBUG(KDEBUG_TEST_CODE(code), 1, 2, 3); code++; |
| 2634 | KDBG_DEBUG(KDEBUG_TEST_CODE(code), 1, 2, 3, 4); code++; |
| 2635 | break; |
| 2636 | |
| 2637 | case KDTEST_OLD_TIMESTAMP: |
| 2638 | if (kd_control_trace.kdc_coprocs) { |
| 2639 | /* avoid the assertion in kernel_debug_enter for a valid IOP */ |
| 2640 | dummy_iop = kd_control_trace.kdc_coprocs[0].cpu_id; |
| 2641 | } |
| 2642 | |
| 2643 | /* ensure old timestamps are not emitted from kernel_debug_enter */ |
| 2644 | kernel_debug_enter(dummy_iop, KDEBUG_TEST_CODE(code), |
| 2645 | 100 /* very old timestamp */, 0, 0, 0, 0, 0); |
| 2646 | code++; |
| 2647 | kernel_debug_enter(dummy_iop, KDEBUG_TEST_CODE(code), |
| 2648 | kdebug_timestamp(), 0, 0, 0, 0, 0); |
| 2649 | code++; |
| 2650 | break; |
| 2651 | |
| 2652 | case KDTEST_FUTURE_TIMESTAMP: |
| 2653 | if (kd_control_trace.kdc_coprocs) { |
| 2654 | dummy_iop = kd_control_trace.kdc_coprocs[0].cpu_id; |
| 2655 | } |
| 2656 | kernel_debug_enter(dummy_iop, KDEBUG_TEST_CODE(code), |
| 2657 | kdebug_timestamp() * 2 /* !!! */, 0, 0, 0, 0, 0); |
| 2658 | break; |
| 2659 | |
| 2660 | case KDTEST_SETUP_IOP: |
| 2661 | if (!sync_flush_coproc) { |
| 2662 | ktrace_unlock(); |
| 2663 | int new_sync_flush_coproc = kernel_debug_register_callback( |
| 2664 | sync_flush_kdcb); |
| 2665 | assert(new_sync_flush_coproc > 0); |
| 2666 | ktrace_lock(); |
| 2667 | if (!sync_flush_coproc) { |
| 2668 | sync_flush_coproc = new_sync_flush_coproc; |
| 2669 | } |
| 2670 | } |
| 2671 | break; |
| 2672 | |
| 2673 | case KDTEST_SETUP_COPROCESSOR: |
| 2674 | if (!test_coproc) { |
| 2675 | ktrace_unlock(); |
| 2676 | int new_test_coproc = kdebug_register_coproc("test_coproc" , |
| 2677 | KDCP_CONTINUOUS_TIME, test_coproc_cb, (void *)TEST_COPROC_CTX); |
| 2678 | assert(new_test_coproc > 0); |
| 2679 | ktrace_lock(); |
| 2680 | if (!test_coproc) { |
| 2681 | test_coproc = new_test_coproc; |
| 2682 | } |
| 2683 | } |
| 2684 | break; |
| 2685 | |
| 2686 | case KDTEST_ABSOLUTE_TIMESTAMP:; |
| 2687 | uint64_t atime = mach_absolute_time(); |
| 2688 | kernel_debug_enter(sync_flush_coproc, KDEBUG_TEST_CODE(0), |
| 2689 | atime, (uintptr_t)atime, (uintptr_t)(atime >> 32), 0, 0, 0); |
| 2690 | break; |
| 2691 | |
| 2692 | case KDTEST_CONTINUOUS_TIMESTAMP:; |
| 2693 | uint64_t ctime = mach_continuous_time(); |
| 2694 | kernel_debug_enter(test_coproc, KDEBUG_TEST_CODE(1), |
| 2695 | ctime, (uintptr_t)ctime, (uintptr_t)(ctime >> 32), 0, 0, 0); |
| 2696 | break; |
| 2697 | |
| 2698 | case KDTEST_PAST_EVENT:; |
| 2699 | uint64_t old_time = 1; |
| 2700 | kernel_debug_enter(test_coproc, KDEBUG_TEST_CODE(1), old_time, 0, 0, 0, |
| 2701 | 0, 0); |
| 2702 | kernel_debug_enter(test_coproc, KDEBUG_TEST_CODE(1), kdebug_timestamp(), |
| 2703 | 0, 0, 0, 0, 0); |
| 2704 | break; |
| 2705 | |
| 2706 | default: |
| 2707 | return ENOTSUP; |
| 2708 | } |
| 2709 | |
| 2710 | return 0; |
| 2711 | } |
| 2712 | |
| 2713 | #undef KDEBUG_TEST_CODE |
| 2714 | |
| 2715 | #endif /* DEVELOPMENT || DEBUG */ |
| 2716 | |
| 2717 | static void |
| 2718 | _deferred_coproc_notify(mpsc_queue_chain_t e, mpsc_daemon_queue_t queue __unused) |
| 2719 | { |
| 2720 | struct kd_coproc *coproc = mpsc_queue_element(e, struct kd_coproc, chain); |
| 2721 | if (kd_control_trace.kdc_emit == KDEMIT_TYPEFILTER) { |
| 2722 | coproc->callback.func(coproc->callback.context, |
| 2723 | KD_CALLBACK_TYPEFILTER_CHANGED, kdbg_typefilter); |
| 2724 | } |
| 2725 | if (kdebug_enable) { |
| 2726 | coproc->callback.func(coproc->callback.context, |
| 2727 | KD_CALLBACK_KDEBUG_ENABLED, kdbg_typefilter); |
| 2728 | } |
| 2729 | } |
| 2730 | |
| 2731 | void |
| 2732 | kdebug_init(unsigned int n_events, char *filter_desc, enum kdebug_opts opts) |
| 2733 | { |
| 2734 | assert(filter_desc != NULL); |
| 2735 | |
| 2736 | kdbg_typefilter = typefilter_create(); |
| 2737 | assert(kdbg_typefilter != NULL); |
| 2738 | kdbg_typefilter_memory_entry = typefilter_create_memory_entry(tf: kdbg_typefilter); |
| 2739 | assert(kdbg_typefilter_memory_entry != MACH_PORT_NULL); |
| 2740 | |
| 2741 | (void)mpsc_daemon_queue_init_with_thread_call(dq: &_coproc_notify_queue, |
| 2742 | invoke: _deferred_coproc_notify, pri: THREAD_CALL_PRIORITY_KERNEL, |
| 2743 | flags: MPSC_DAEMON_INIT_NONE); |
| 2744 | |
| 2745 | kdebug_trace_start(n_events, filterdesc: filter_desc, opts); |
| 2746 | } |
| 2747 | |
| 2748 | static void |
| 2749 | kdbg_set_typefilter_string(const char *filter_desc) |
| 2750 | { |
| 2751 | char *end = NULL; |
| 2752 | |
| 2753 | ktrace_assert_lock_held(); |
| 2754 | |
| 2755 | assert(filter_desc != NULL); |
| 2756 | |
| 2757 | typefilter_reject_all(tf: kdbg_typefilter); |
| 2758 | typefilter_allow_class(tf: kdbg_typefilter, DBG_TRACE); |
| 2759 | |
| 2760 | /* if the filter description starts with a number, assume it's a csc */ |
| 2761 | if (filter_desc[0] >= '0' && filter_desc[0] <= '9') { |
| 2762 | unsigned long csc = strtoul(filter_desc, NULL, 0); |
| 2763 | if (filter_desc != end && csc <= KDBG_CSC_MAX) { |
| 2764 | typefilter_allow_csc(tf: kdbg_typefilter, csc: (uint16_t)csc); |
| 2765 | } |
| 2766 | return; |
| 2767 | } |
| 2768 | |
| 2769 | while (filter_desc[0] != '\0') { |
| 2770 | unsigned long allow_value; |
| 2771 | |
| 2772 | char filter_type = filter_desc[0]; |
| 2773 | if (filter_type != 'C' && filter_type != 'S') { |
| 2774 | printf("kdebug: unexpected filter type `%c'\n" , filter_type); |
| 2775 | return; |
| 2776 | } |
| 2777 | filter_desc++; |
| 2778 | |
| 2779 | allow_value = strtoul(filter_desc, &end, 0); |
| 2780 | if (filter_desc == end) { |
| 2781 | printf("kdebug: cannot parse `%s' as integer\n" , filter_desc); |
| 2782 | return; |
| 2783 | } |
| 2784 | |
| 2785 | switch (filter_type) { |
| 2786 | case 'C': |
| 2787 | if (allow_value > KDBG_CLASS_MAX) { |
| 2788 | printf("kdebug: class 0x%lx is invalid\n" , allow_value); |
| 2789 | return; |
| 2790 | } |
| 2791 | printf("kdebug: C 0x%lx\n" , allow_value); |
| 2792 | typefilter_allow_class(tf: kdbg_typefilter, class: (uint8_t)allow_value); |
| 2793 | break; |
| 2794 | case 'S': |
| 2795 | if (allow_value > KDBG_CSC_MAX) { |
| 2796 | printf("kdebug: class-subclass 0x%lx is invalid\n" , allow_value); |
| 2797 | return; |
| 2798 | } |
| 2799 | printf("kdebug: S 0x%lx\n" , allow_value); |
| 2800 | typefilter_allow_csc(tf: kdbg_typefilter, csc: (uint16_t)allow_value); |
| 2801 | break; |
| 2802 | default: |
| 2803 | __builtin_unreachable(); |
| 2804 | } |
| 2805 | |
| 2806 | /* advance to next filter entry */ |
| 2807 | filter_desc = end; |
| 2808 | if (filter_desc[0] == ',') { |
| 2809 | filter_desc++; |
| 2810 | } |
| 2811 | } |
| 2812 | } |
| 2813 | |
| 2814 | uint64_t |
| 2815 | kdebug_wake(void) |
| 2816 | { |
| 2817 | if (!wake_nkdbufs) { |
| 2818 | return 0; |
| 2819 | } |
| 2820 | uint64_t start = mach_absolute_time(); |
| 2821 | kdebug_trace_start(n_events: wake_nkdbufs, NULL, opts: trace_wrap ? KDOPT_WRAPPING : 0); |
| 2822 | return mach_absolute_time() - start; |
| 2823 | } |
| 2824 | |
| 2825 | /* |
| 2826 | * This function is meant to be called from the bootstrap thread or kdebug_wake. |
| 2827 | */ |
| 2828 | void |
| 2829 | kdebug_trace_start(unsigned int n_events, const char *filter_desc, |
| 2830 | enum kdebug_opts opts) |
| 2831 | { |
| 2832 | if (!n_events) { |
| 2833 | kd_early_done = true; |
| 2834 | return; |
| 2835 | } |
| 2836 | |
| 2837 | ktrace_start_single_threaded(); |
| 2838 | |
| 2839 | ktrace_kernel_configure(KTRACE_KDEBUG); |
| 2840 | |
| 2841 | kdbg_set_nkdbufs_trace(req_nkdbufs_trace: n_events); |
| 2842 | |
| 2843 | kernel_debug_string_early(message: "start_kern_tracing" ); |
| 2844 | |
| 2845 | int error = kdbg_reinit(EXTRA_COPROC_COUNT_BOOT); |
| 2846 | if (error != 0) { |
| 2847 | printf("kdebug: allocation failed, kernel tracing not started: %d\n" , |
| 2848 | error); |
| 2849 | kd_early_done = true; |
| 2850 | goto out; |
| 2851 | } |
| 2852 | |
| 2853 | /* |
| 2854 | * Wrapping is disabled because boot and wake tracing is interested in |
| 2855 | * the earliest events, at the expense of later ones. |
| 2856 | */ |
| 2857 | if ((opts & KDOPT_WRAPPING) == 0) { |
| 2858 | kd_control_trace.kdc_live_flags |= KDBG_NOWRAP; |
| 2859 | } |
| 2860 | |
| 2861 | if (filter_desc && filter_desc[0] != '\0') { |
| 2862 | kdbg_set_typefilter_string(filter_desc); |
| 2863 | kdbg_enable_typefilter(); |
| 2864 | } |
| 2865 | |
| 2866 | /* |
| 2867 | * Hold off interrupts between getting a thread map and enabling trace |
| 2868 | * and until the early traces are recorded. |
| 2869 | */ |
| 2870 | bool s = ml_set_interrupts_enabled(false); |
| 2871 | |
| 2872 | if (!(opts & KDOPT_ATBOOT)) { |
| 2873 | _threadmap_init(); |
| 2874 | } |
| 2875 | |
| 2876 | kdbg_set_tracing_enabled(true, KDEBUG_ENABLE_TRACE); |
| 2877 | |
| 2878 | if ((opts & KDOPT_ATBOOT)) { |
| 2879 | /* |
| 2880 | * Transfer all very early events from the static buffer into the real |
| 2881 | * buffers. |
| 2882 | */ |
| 2883 | kernel_debug_early_end(); |
| 2884 | } |
| 2885 | |
| 2886 | ml_set_interrupts_enabled(enable: s); |
| 2887 | |
| 2888 | printf("kernel tracing started with %u events, filter = %s\n" , n_events, |
| 2889 | filter_desc ?: "none" ); |
| 2890 | |
| 2891 | out: |
| 2892 | ktrace_end_single_threaded(); |
| 2893 | } |
| 2894 | |
| 2895 | void |
| 2896 | kdbg_dump_trace_to_file(const char *filename, bool reenable) |
| 2897 | { |
| 2898 | vfs_context_t ctx; |
| 2899 | vnode_t vp; |
| 2900 | size_t write_size; |
| 2901 | int ret; |
| 2902 | int reenable_trace = 0; |
| 2903 | |
| 2904 | ktrace_lock(); |
| 2905 | |
| 2906 | if (!(kdebug_enable & KDEBUG_ENABLE_TRACE)) { |
| 2907 | goto out; |
| 2908 | } |
| 2909 | |
| 2910 | if (ktrace_get_owning_pid() != 0) { |
| 2911 | /* |
| 2912 | * Another process owns ktrace and is still active, disable tracing to |
| 2913 | * prevent wrapping. |
| 2914 | */ |
| 2915 | kdebug_enable = 0; |
| 2916 | kd_control_trace.enabled = 0; |
| 2917 | commpage_update_kdebug_state(); |
| 2918 | goto out; |
| 2919 | } |
| 2920 | |
| 2921 | KDBG_RELEASE(TRACE_WRITING_EVENTS | DBG_FUNC_START); |
| 2922 | |
| 2923 | reenable_trace = reenable ? kdebug_enable : 0; |
| 2924 | kdebug_enable = 0; |
| 2925 | kd_control_trace.enabled = 0; |
| 2926 | commpage_update_kdebug_state(); |
| 2927 | |
| 2928 | ctx = vfs_context_kernel(); |
| 2929 | |
| 2930 | if (vnode_open(path: filename, fmode: (O_CREAT | FWRITE | O_NOFOLLOW), cmode: 0600, flags: 0, vpp: &vp, ctx)) { |
| 2931 | goto out; |
| 2932 | } |
| 2933 | |
| 2934 | kdbg_write_thread_map(vp, ctx); |
| 2935 | |
| 2936 | write_size = kd_buffer_trace.kdb_event_count * sizeof(kd_buf); |
| 2937 | ret = _read_merged_trace_events(buffer: 0, number: &write_size, vp, ctx, false); |
| 2938 | if (ret) { |
| 2939 | goto out_close; |
| 2940 | } |
| 2941 | |
| 2942 | /* |
| 2943 | * Wait to synchronize the file to capture the I/O in the |
| 2944 | * TRACE_WRITING_EVENTS interval. |
| 2945 | */ |
| 2946 | ret = VNOP_FSYNC(vp, MNT_WAIT, ctx); |
| 2947 | if (ret == KERN_SUCCESS) { |
| 2948 | ret = VNOP_IOCTL(vp, F_FULLFSYNC, data: (caddr_t)NULL, fflag: 0, ctx); |
| 2949 | } |
| 2950 | |
| 2951 | /* |
| 2952 | * Balance the starting TRACE_WRITING_EVENTS tracepoint manually. |
| 2953 | */ |
| 2954 | kd_buf end_event = { |
| 2955 | .debugid = TRACE_WRITING_EVENTS | DBG_FUNC_END, |
| 2956 | .arg1 = write_size, |
| 2957 | .arg2 = ret, |
| 2958 | .arg5 = (kd_buf_argtype)thread_tid(thread: current_thread()), |
| 2959 | }; |
| 2960 | kdbg_set_timestamp_and_cpu(kp: &end_event, thetime: kdebug_timestamp(), |
| 2961 | cpu: cpu_number()); |
| 2962 | |
| 2963 | /* this is best effort -- ignore any errors */ |
| 2964 | (void)kdbg_write_to_vnode(buffer: (caddr_t)&end_event, size: sizeof(kd_buf), vp, ctx, |
| 2965 | file_offset: RAW_file_offset); |
| 2966 | |
| 2967 | out_close: |
| 2968 | vnode_close(vp, FWRITE, ctx); |
| 2969 | sync(current_proc(), (void *)NULL, (int *)NULL); |
| 2970 | |
| 2971 | out: |
| 2972 | if (reenable_trace != 0) { |
| 2973 | kdebug_enable = reenable_trace; |
| 2974 | kd_control_trace.enabled = 1; |
| 2975 | commpage_update_kdebug_state(); |
| 2976 | } |
| 2977 | |
| 2978 | ktrace_unlock(); |
| 2979 | } |
| 2980 | |
| 2981 | SYSCTL_NODE(_kern, OID_AUTO, kdbg, CTLFLAG_RD | CTLFLAG_LOCKED, 0, |
| 2982 | "kdbg" ); |
| 2983 | |
| 2984 | SYSCTL_INT(_kern_kdbg, OID_AUTO, debug, |
| 2985 | CTLFLAG_RW | CTLFLAG_LOCKED, |
| 2986 | &kdbg_debug, 0, "Set kdebug debug mode" ); |
| 2987 | |
| 2988 | SYSCTL_QUAD(_kern_kdbg, OID_AUTO, oldest_time, |
| 2989 | CTLTYPE_QUAD | CTLFLAG_RD | CTLFLAG_LOCKED, |
| 2990 | &kd_control_trace.kdc_oldest_time, |
| 2991 | "Find the oldest timestamp still in trace" ); |
| 2992 | |