1 | /* |
2 | * CDDL HEADER START |
3 | * |
4 | * The contents of this file are subject to the terms of the |
5 | * Common Development and Distribution License (the "License"). |
6 | * You may not use this file except in compliance with the License. |
7 | * |
8 | * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE |
9 | * or http://www.opensolaris.org/os/licensing. |
10 | * See the License for the specific language governing permissions |
11 | * and limitations under the License. |
12 | * |
13 | * When distributing Covered Code, include this CDDL HEADER in each |
14 | * file and include the License file at usr/src/OPENSOLARIS.LICENSE. |
15 | * If applicable, add the following below this CDDL HEADER, with the |
16 | * fields enclosed by brackets "[]" replaced with your own identifying |
17 | * information: Portions Copyright [yyyy] [name of copyright owner] |
18 | * |
19 | * CDDL HEADER END |
20 | */ |
21 | |
22 | /* |
23 | * Portions Copyright (c) 2013, 2016, Joyent, Inc. All rights reserved. |
24 | * Portions Copyright (c) 2013 by Delphix. All rights reserved. |
25 | */ |
26 | |
27 | /* |
28 | * Copyright 2009 Sun Microsystems, Inc. All rights reserved. |
29 | * Use is subject to license terms. |
30 | */ |
31 | |
32 | /* |
33 | * DTrace - Dynamic Tracing for Solaris |
34 | * |
35 | * This is the implementation of the Solaris Dynamic Tracing framework |
36 | * (DTrace). The user-visible interface to DTrace is described at length in |
37 | * the "Solaris Dynamic Tracing Guide". The interfaces between the libdtrace |
38 | * library, the in-kernel DTrace framework, and the DTrace providers are |
39 | * described in the block comments in the <sys/dtrace.h> header file. The |
40 | * internal architecture of DTrace is described in the block comments in the |
41 | * <sys/dtrace_impl.h> header file. The comments contained within the DTrace |
42 | * implementation very much assume mastery of all of these sources; if one has |
43 | * an unanswered question about the implementation, one should consult them |
44 | * first. |
45 | * |
46 | * The functions here are ordered roughly as follows: |
47 | * |
48 | * - Probe context functions |
49 | * - Probe hashing functions |
50 | * - Non-probe context utility functions |
51 | * - Matching functions |
52 | * - Provider-to-Framework API functions |
53 | * - Probe management functions |
54 | * - DIF object functions |
55 | * - Format functions |
56 | * - Predicate functions |
57 | * - ECB functions |
58 | * - Buffer functions |
59 | * - Enabling functions |
60 | * - DOF functions |
61 | * - Anonymous enabling functions |
62 | * - Process functions |
63 | * - Consumer state functions |
64 | * - Helper functions |
65 | * - Hook functions |
66 | * - Driver cookbook functions |
67 | * |
68 | * Each group of functions begins with a block comment labelled the "DTrace |
69 | * [Group] Functions", allowing one to find each block by searching forward |
70 | * on capital-f functions. |
71 | */ |
72 | #include <sys/errno.h> |
73 | #include <sys/types.h> |
74 | #include <sys/stat.h> |
75 | #include <sys/conf.h> |
76 | #include <sys/random.h> |
77 | #include <sys/systm.h> |
78 | #include <sys/dtrace_impl.h> |
79 | #include <sys/param.h> |
80 | #include <sys/proc_internal.h> |
81 | #include <sys/ioctl.h> |
82 | #include <sys/fcntl.h> |
83 | #include <miscfs/devfs/devfs.h> |
84 | #include <sys/malloc.h> |
85 | #include <sys/kernel_types.h> |
86 | #include <sys/proc_internal.h> |
87 | #include <sys/uio_internal.h> |
88 | #include <sys/kauth.h> |
89 | #include <vm/pmap.h> |
90 | #include <sys/user.h> |
91 | #include <mach/exception_types.h> |
92 | #include <sys/signalvar.h> |
93 | #include <mach/task.h> |
94 | #include <kern/ast.h> |
95 | #include <kern/hvg_hypercall.h> |
96 | #include <kern/sched_prim.h> |
97 | #include <kern/processor.h> |
98 | #include <kern/task.h> |
99 | #include <kern/zalloc.h> |
100 | #include <netinet/in.h> |
101 | #include <libkern/sysctl.h> |
102 | #include <sys/kdebug.h> |
103 | #include <sys/sdt_impl.h> |
104 | |
105 | #if CONFIG_PERVASIVE_CPI |
106 | #include <kern/monotonic.h> |
107 | #include <machine/monotonic.h> |
108 | #endif /* CONFIG_PERVASIVE_CPI */ |
109 | |
110 | #include "dtrace_xoroshiro128_plus.h" |
111 | |
112 | #include <IOKit/IOPlatformExpert.h> |
113 | |
114 | #include <kern/cpu_data.h> |
115 | |
116 | extern addr64_t kvtophys(vm_offset_t va); |
117 | |
118 | extern uint32_t pmap_find_phys(void *, uint64_t); |
119 | extern boolean_t pmap_valid_page(uint32_t); |
120 | extern void OSKextRegisterKextsWithDTrace(void); |
121 | extern kmod_info_t g_kernel_kmod_info; |
122 | extern void commpage_update_dof(boolean_t enabled); |
123 | |
124 | /* Solaris proc_t is the struct. Darwin's proc_t is a pointer to it. */ |
125 | #define proc_t struct proc /* Steer clear of the Darwin typedef for proc_t */ |
126 | |
127 | #define t_predcache t_dtrace_predcache /* Cosmetic. Helps readability of thread.h */ |
128 | |
129 | extern void dtrace_suspend(void); |
130 | extern void dtrace_resume(void); |
131 | extern void dtrace_early_init(void); |
132 | extern int dtrace_keep_kernel_symbols(void); |
133 | extern void dtrace_init(void); |
134 | extern void helper_init(void); |
135 | extern void fasttrap_init(void); |
136 | |
137 | static int dtrace_lazy_dofs_duplicate(proc_t *, proc_t *); |
138 | extern void dtrace_lazy_dofs_destroy(proc_t *); |
139 | extern void dtrace_postinit(void); |
140 | |
141 | extern void dtrace_proc_fork(proc_t*, proc_t*, int); |
142 | extern void dtrace_proc_exec(proc_t*); |
143 | extern void dtrace_proc_exit(proc_t*); |
144 | |
145 | /* |
146 | * DTrace Tunable Variables |
147 | * |
148 | * The following variables may be dynamically tuned by using sysctl(8), the |
149 | * variables being stored in the kern.dtrace namespace. For example: |
150 | * sysctl kern.dtrace.dof_maxsize = 1048575 # 1M |
151 | * |
152 | * In general, the only variables that one should be tuning this way are those |
153 | * that affect system-wide DTrace behavior, and for which the default behavior |
154 | * is undesirable. Most of these variables are tunable on a per-consumer |
155 | * basis using DTrace options, and need not be tuned on a system-wide basis. |
156 | * When tuning these variables, avoid pathological values; while some attempt |
157 | * is made to verify the integrity of these variables, they are not considered |
158 | * part of the supported interface to DTrace, and they are therefore not |
159 | * checked comprehensively. |
160 | */ |
161 | uint64_t dtrace_buffer_memory_maxsize = 0; /* initialized in dtrace_init */ |
162 | uint64_t dtrace_buffer_memory_inuse = 0; |
163 | int dtrace_destructive_disallow = 1; |
164 | dtrace_optval_t dtrace_nonroot_maxsize = (16 * 1024 * 1024); |
165 | size_t dtrace_difo_maxsize = (256 * 1024); |
166 | dtrace_optval_t dtrace_dof_maxsize = (512 * 1024); |
167 | dtrace_optval_t dtrace_statvar_maxsize = (16 * 1024); |
168 | dtrace_optval_t dtrace_statvar_maxsize_max = (16 * 10 * 1024); |
169 | size_t dtrace_actions_max = (16 * 1024); |
170 | size_t dtrace_retain_max = 1024; |
171 | dtrace_optval_t dtrace_helper_actions_max = 32; |
172 | dtrace_optval_t dtrace_helper_providers_max = 64; |
173 | dtrace_optval_t dtrace_dstate_defsize = (1 * 1024 * 1024); |
174 | size_t dtrace_strsize_default = 256; |
175 | dtrace_optval_t dtrace_strsize_min = 8; |
176 | dtrace_optval_t dtrace_strsize_max = 65536; |
177 | dtrace_optval_t dtrace_cleanrate_default = 990099000; /* 1.1 hz */ |
178 | dtrace_optval_t dtrace_cleanrate_min = 20000000; /* 50 hz */ |
179 | dtrace_optval_t dtrace_cleanrate_max = (uint64_t)60 * NANOSEC; /* 1/minute */ |
180 | dtrace_optval_t dtrace_aggrate_default = NANOSEC; /* 1 hz */ |
181 | dtrace_optval_t dtrace_statusrate_default = NANOSEC; /* 1 hz */ |
182 | dtrace_optval_t dtrace_statusrate_max = (hrtime_t)10 * NANOSEC; /* 6/minute */ |
183 | dtrace_optval_t dtrace_switchrate_default = NANOSEC; /* 1 hz */ |
184 | dtrace_optval_t dtrace_nspec_default = 1; |
185 | dtrace_optval_t dtrace_specsize_default = 32 * 1024; |
186 | dtrace_optval_t dtrace_stackframes_default = 20; |
187 | dtrace_optval_t dtrace_ustackframes_default = 20; |
188 | dtrace_optval_t dtrace_jstackframes_default = 50; |
189 | dtrace_optval_t dtrace_jstackstrsize_default = 512; |
190 | dtrace_optval_t dtrace_buflimit_default = 75; |
191 | dtrace_optval_t dtrace_buflimit_min = 1; |
192 | dtrace_optval_t dtrace_buflimit_max = 99; |
193 | size_t dtrace_nprobes_default = 4; |
194 | int dtrace_msgdsize_max = 128; |
195 | hrtime_t dtrace_chill_max = 500 * (NANOSEC / MILLISEC); /* 500 ms */ |
196 | hrtime_t dtrace_chill_interval = NANOSEC; /* 1000 ms */ |
197 | int dtrace_devdepth_max = 32; |
198 | int dtrace_err_verbose; |
199 | hrtime_t dtrace_deadman_interval = NANOSEC; |
200 | hrtime_t dtrace_deadman_timeout = (hrtime_t)10 * NANOSEC; |
201 | hrtime_t dtrace_deadman_user = (hrtime_t)30 * NANOSEC; |
202 | |
203 | /* |
204 | * DTrace External Variables |
205 | * |
206 | * As dtrace(7D) is a kernel module, any DTrace variables are obviously |
207 | * available to DTrace consumers via the backtick (`) syntax. One of these, |
208 | * dtrace_zero, is made deliberately so: it is provided as a source of |
209 | * well-known, zero-filled memory. While this variable is not documented, |
210 | * it is used by some translators as an implementation detail. |
211 | */ |
212 | const char dtrace_zero[256] = { 0 }; /* zero-filled memory */ |
213 | unsigned int dtrace_max_cpus = 0; /* number of enabled cpus */ |
214 | /* |
215 | * DTrace Internal Variables |
216 | */ |
217 | static dev_info_t *dtrace_devi; /* device info */ |
218 | static vmem_t *dtrace_arena; /* probe ID arena */ |
219 | static dtrace_probe_t **dtrace_probes; /* array of all probes */ |
220 | static int dtrace_nprobes; /* number of probes */ |
221 | static dtrace_provider_t *dtrace_provider; /* provider list */ |
222 | static dtrace_meta_t *dtrace_meta_pid; /* user-land meta provider */ |
223 | static int dtrace_opens; /* number of opens */ |
224 | static int dtrace_helpers; /* number of helpers */ |
225 | static dtrace_hash_t *dtrace_strings; |
226 | static dtrace_hash_t *dtrace_byprov; /* probes hashed by provider */ |
227 | static dtrace_hash_t *dtrace_bymod; /* probes hashed by module */ |
228 | static dtrace_hash_t *dtrace_byfunc; /* probes hashed by function */ |
229 | static dtrace_hash_t *dtrace_byname; /* probes hashed by name */ |
230 | static dtrace_toxrange_t *dtrace_toxrange; /* toxic range array */ |
231 | static int dtrace_toxranges; /* number of toxic ranges */ |
232 | static int dtrace_toxranges_max; /* size of toxic range array */ |
233 | static dtrace_anon_t dtrace_anon; /* anonymous enabling */ |
234 | static uint64_t dtrace_vtime_references; /* number of vtimestamp refs */ |
235 | static kthread_t *dtrace_panicked; /* panicking thread */ |
236 | static dtrace_ecb_t *dtrace_ecb_create_cache; /* cached created ECB */ |
237 | static dtrace_genid_t dtrace_probegen; /* current probe generation */ |
238 | static dtrace_helpers_t *dtrace_deferred_pid; /* deferred helper list */ |
239 | static dtrace_enabling_t *dtrace_retained; /* list of retained enablings */ |
240 | static dtrace_genid_t dtrace_retained_gen; /* current retained enab gen */ |
241 | static dtrace_dynvar_t dtrace_dynhash_sink; /* end of dynamic hash chains */ |
242 | |
243 | static int dtrace_dof_mode; /* See dtrace_impl.h for a description of Darwin's dof modes. */ |
244 | |
245 | /* |
246 | * This does't quite fit as an internal variable, as it must be accessed in |
247 | * fbt_provide and sdt_provide. Its clearly not a dtrace tunable variable either... |
248 | */ |
249 | int dtrace_kernel_symbol_mode; /* See dtrace_impl.h for a description of Darwin's kernel symbol modes. */ |
250 | static uint32_t dtrace_wake_clients; |
251 | static uint8_t dtrace_kerneluuid[16]; /* the 128-bit uuid */ |
252 | |
253 | /* |
254 | * To save memory, some common memory allocations are given a |
255 | * unique zone. For example, dtrace_probe_t is 72 bytes in size, |
256 | * which means it would fall into the kalloc.128 bucket. With |
257 | * 20k elements allocated, the space saved is substantial. |
258 | */ |
259 | |
260 | static ZONE_DEFINE_TYPE(dtrace_probe_t_zone, "dtrace.dtrace_probe_t" , |
261 | dtrace_probe_t, ZC_PGZ_USE_GUARDS); |
262 | |
263 | static ZONE_DEFINE(dtrace_state_pcpu_zone, "dtrace.dtrace_dstate_percpu_t" , |
264 | sizeof(dtrace_dstate_percpu_t), ZC_PERCPU); |
265 | |
266 | static int dtrace_module_unloaded(struct kmod_info *kmod); |
267 | |
268 | /* |
269 | * DTrace Locking |
270 | * DTrace is protected by three (relatively coarse-grained) locks: |
271 | * |
272 | * (1) dtrace_lock is required to manipulate essentially any DTrace state, |
273 | * including enabling state, probes, ECBs, consumer state, helper state, |
274 | * etc. Importantly, dtrace_lock is _not_ required when in probe context; |
275 | * probe context is lock-free -- synchronization is handled via the |
276 | * dtrace_sync() cross call mechanism. |
277 | * |
278 | * (2) dtrace_provider_lock is required when manipulating provider state, or |
279 | * when provider state must be held constant. |
280 | * |
281 | * (3) dtrace_meta_lock is required when manipulating meta provider state, or |
282 | * when meta provider state must be held constant. |
283 | * |
284 | * The lock ordering between these three locks is dtrace_meta_lock before |
285 | * dtrace_provider_lock before dtrace_lock. (In particular, there are |
286 | * several places where dtrace_provider_lock is held by the framework as it |
287 | * calls into the providers -- which then call back into the framework, |
288 | * grabbing dtrace_lock.) |
289 | * |
290 | * There are two other locks in the mix: mod_lock and cpu_lock. With respect |
291 | * to dtrace_provider_lock and dtrace_lock, cpu_lock continues its historical |
292 | * role as a coarse-grained lock; it is acquired before both of these locks. |
293 | * With respect to dtrace_meta_lock, its behavior is stranger: cpu_lock must |
294 | * be acquired _between_ dtrace_meta_lock and any other DTrace locks. |
295 | * mod_lock is similar with respect to dtrace_provider_lock in that it must be |
296 | * acquired _between_ dtrace_provider_lock and dtrace_lock. |
297 | */ |
298 | |
299 | |
300 | /* |
301 | * APPLE NOTE: |
302 | * |
303 | * For porting purposes, all kmutex_t vars have been changed |
304 | * to lck_mtx_t, which require explicit initialization. |
305 | * |
306 | * kmutex_t becomes lck_mtx_t |
307 | * mutex_enter() becomes lck_mtx_lock() |
308 | * mutex_exit() becomes lck_mtx_unlock() |
309 | * |
310 | * Lock asserts are changed like this: |
311 | * |
312 | * ASSERT(MUTEX_HELD(&cpu_lock)); |
313 | * becomes: |
314 | * LCK_MTX_ASSERT(&cpu_lock, LCK_MTX_ASSERT_OWNED); |
315 | * |
316 | */ |
317 | static LCK_MTX_DECLARE_ATTR(dtrace_lock, |
318 | &dtrace_lck_grp, &dtrace_lck_attr); /* probe state lock */ |
319 | static LCK_MTX_DECLARE_ATTR(dtrace_provider_lock, |
320 | &dtrace_lck_grp, &dtrace_lck_attr); /* provider state lock */ |
321 | static LCK_MTX_DECLARE_ATTR(dtrace_meta_lock, |
322 | &dtrace_lck_grp, &dtrace_lck_attr); /* meta-provider state lock */ |
323 | static LCK_RW_DECLARE_ATTR(dtrace_dof_mode_lock, |
324 | &dtrace_lck_grp, &dtrace_lck_attr); /* dof mode lock */ |
325 | |
326 | /* |
327 | * DTrace Provider Variables |
328 | * |
329 | * These are the variables relating to DTrace as a provider (that is, the |
330 | * provider of the BEGIN, END, and ERROR probes). |
331 | */ |
332 | static dtrace_pattr_t dtrace_provider_attr = { |
333 | { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, |
334 | { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN }, |
335 | { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN }, |
336 | { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, |
337 | { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, |
338 | }; |
339 | |
340 | static void |
341 | dtrace_provide_nullop(void *arg, const dtrace_probedesc_t *desc) |
342 | { |
343 | #pragma unused(arg, desc) |
344 | } |
345 | |
346 | static void |
347 | dtrace_provide_module_nullop(void *arg, struct modctl *ctl) |
348 | { |
349 | #pragma unused(arg, ctl) |
350 | } |
351 | |
352 | static int |
353 | dtrace_enable_nullop(void *arg, dtrace_id_t id, void *parg) |
354 | { |
355 | #pragma unused(arg, id, parg) |
356 | return (0); |
357 | } |
358 | |
359 | static void |
360 | dtrace_disable_nullop(void *arg, dtrace_id_t id, void *parg) |
361 | { |
362 | #pragma unused(arg, id, parg) |
363 | } |
364 | |
365 | static void |
366 | dtrace_suspend_nullop(void *arg, dtrace_id_t id, void *parg) |
367 | { |
368 | #pragma unused(arg, id, parg) |
369 | } |
370 | |
371 | static void |
372 | dtrace_resume_nullop(void *arg, dtrace_id_t id, void *parg) |
373 | { |
374 | #pragma unused(arg, id, parg) |
375 | } |
376 | |
377 | static void |
378 | dtrace_destroy_nullop(void *arg, dtrace_id_t id, void *parg) |
379 | { |
380 | #pragma unused(arg, id, parg) |
381 | } |
382 | |
383 | |
384 | static dtrace_pops_t dtrace_provider_ops = { |
385 | .dtps_provide = dtrace_provide_nullop, |
386 | .dtps_provide_module = dtrace_provide_module_nullop, |
387 | .dtps_enable = dtrace_enable_nullop, |
388 | .dtps_disable = dtrace_disable_nullop, |
389 | .dtps_suspend = dtrace_suspend_nullop, |
390 | .dtps_resume = dtrace_resume_nullop, |
391 | .dtps_getargdesc = NULL, |
392 | .dtps_getargval = NULL, |
393 | .dtps_usermode = NULL, |
394 | .dtps_destroy = dtrace_destroy_nullop, |
395 | }; |
396 | |
397 | static dtrace_id_t dtrace_probeid_begin; /* special BEGIN probe */ |
398 | static dtrace_id_t dtrace_probeid_end; /* special END probe */ |
399 | dtrace_id_t dtrace_probeid_error; /* special ERROR probe */ |
400 | |
401 | /* |
402 | * DTrace Helper Tracing Variables |
403 | */ |
404 | uint32_t dtrace_helptrace_next = 0; |
405 | uint32_t dtrace_helptrace_nlocals; |
406 | char *dtrace_helptrace_buffer; |
407 | size_t dtrace_helptrace_bufsize = 512 * 1024; |
408 | |
409 | #if DEBUG |
410 | int dtrace_helptrace_enabled = 1; |
411 | #else |
412 | int dtrace_helptrace_enabled = 0; |
413 | #endif |
414 | |
415 | #if defined (__arm64__) |
416 | /* |
417 | * The ioctl for adding helper DOF is based on the |
418 | * size of a user_addr_t. We need to recognize both |
419 | * U32 and U64 as the same action. |
420 | */ |
421 | #define DTRACEHIOC_ADDDOF_U32 _IOW('h', 4, user32_addr_t) |
422 | #define DTRACEHIOC_ADDDOF_U64 _IOW('h', 4, user64_addr_t) |
423 | #endif /* __arm64__ */ |
424 | |
425 | /* |
426 | * DTrace Error Hashing |
427 | * |
428 | * On DEBUG kernels, DTrace will track the errors that has seen in a hash |
429 | * table. This is very useful for checking coverage of tests that are |
430 | * expected to induce DIF or DOF processing errors, and may be useful for |
431 | * debugging problems in the DIF code generator or in DOF generation . The |
432 | * error hash may be examined with the ::dtrace_errhash MDB dcmd. |
433 | */ |
434 | #if DEBUG |
435 | static dtrace_errhash_t dtrace_errhash[DTRACE_ERRHASHSZ]; |
436 | static const char *dtrace_errlast; |
437 | static kthread_t *dtrace_errthread; |
438 | static LCK_MTX_DECLARE_ATTR(dtrace_errlock, &dtrace_lck_grp, &dtrace_lck_attr); |
439 | #endif |
440 | |
441 | /* |
442 | * DTrace Macros and Constants |
443 | * |
444 | * These are various macros that are useful in various spots in the |
445 | * implementation, along with a few random constants that have no meaning |
446 | * outside of the implementation. There is no real structure to this cpp |
447 | * mishmash -- but is there ever? |
448 | */ |
449 | |
450 | #define DTRACE_GETSTR(hash, elm) \ |
451 | (hash->dth_getstr(elm, hash->dth_stroffs)) |
452 | |
453 | #define DTRACE_HASHSTR(hash, elm) \ |
454 | dtrace_hash_str(DTRACE_GETSTR(hash, elm)) |
455 | |
456 | #define DTRACE_HASHNEXT(hash, elm) \ |
457 | (void**)((uintptr_t)(elm) + (hash)->dth_nextoffs) |
458 | |
459 | #define DTRACE_HASHPREV(hash, elm) \ |
460 | (void**)((uintptr_t)(elm) + (hash)->dth_prevoffs) |
461 | |
462 | #define DTRACE_HASHEQ(hash, lhs, rhs) \ |
463 | (strcmp(DTRACE_GETSTR(hash, lhs), \ |
464 | DTRACE_GETSTR(hash, rhs)) == 0) |
465 | |
466 | #define DTRACE_AGGHASHSIZE_SLEW 17 |
467 | |
468 | #define DTRACE_V4MAPPED_OFFSET (sizeof (uint32_t) * 3) |
469 | |
470 | /* |
471 | * The key for a thread-local variable needs to be unique to a single |
472 | * thread over the lifetime of the system, and not overlap with any variable |
473 | * IDs. So we take thread's thread_id, a unique 64-bit number that is never |
474 | * reused after the thread exits, and add DIF_VARIABLE_MAX to it, which |
475 | * guarantees that it won’t overlap any variable IDs. We also want to treat |
476 | * running in interrupt context as independent of thread-context. So if |
477 | * interrupts are active, we set the 63rd bit, otherwise it’s cleared. |
478 | * |
479 | * This is necessary (but not sufficient) to assure that global associative |
480 | * arrays never collide with thread-local variables. To guarantee that they |
481 | * cannot collide, we must also define the order for keying dynamic variables. |
482 | * |
483 | * That order is: |
484 | * |
485 | * [ key0 ] ... [ keyn ] [ variable-key ] [ tls-key ] |
486 | * |
487 | * Because the variable-key and the tls-key are in orthogonal spaces, there is |
488 | * no way for a global variable key signature to match a thread-local key |
489 | * signature. |
490 | */ |
491 | #if defined (__x86_64__) || defined(__arm64__) |
492 | #define DTRACE_TLS_THRKEY(where) { \ |
493 | uint_t intr = ml_at_interrupt_context(); /* Note: just one measly bit */ \ |
494 | uint64_t thr = thread_tid(current_thread()); \ |
495 | ASSERT(intr < 2); \ |
496 | (where) = ((thr + DIF_VARIABLE_MAX) & (~((uint64_t)1 << 63))) | \ |
497 | ((uint64_t)intr << 63); \ |
498 | } |
499 | #else |
500 | #error Unknown architecture |
501 | #endif |
502 | |
503 | #define DT_BSWAP_8(x) ((x) & 0xff) |
504 | #define DT_BSWAP_16(x) ((DT_BSWAP_8(x) << 8) | DT_BSWAP_8((x) >> 8)) |
505 | #define DT_BSWAP_32(x) ((DT_BSWAP_16(x) << 16) | DT_BSWAP_16((x) >> 16)) |
506 | #define DT_BSWAP_64(x) ((DT_BSWAP_32(x) << 32) | DT_BSWAP_32((x) >> 32)) |
507 | |
508 | #define DT_MASK_LO 0x00000000FFFFFFFFULL |
509 | |
510 | #define DTRACE_STORE(type, tomax, offset, what) \ |
511 | *((type *)((uintptr_t)(tomax) + (uintptr_t)offset)) = (type)(what); |
512 | |
513 | |
514 | #define DTRACE_ALIGNCHECK(addr, size, flags) \ |
515 | if (addr & (MIN(size,4) - 1)) { \ |
516 | *flags |= CPU_DTRACE_BADALIGN; \ |
517 | cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr; \ |
518 | return (0); \ |
519 | } |
520 | |
521 | #define DTRACE_RANGE_REMAIN(remp, addr, baseaddr, basesz) \ |
522 | do { \ |
523 | if ((remp) != NULL) { \ |
524 | *(remp) = (uintptr_t)(baseaddr) + (basesz) - (addr); \ |
525 | } \ |
526 | } while (0) |
527 | |
528 | |
529 | /* |
530 | * Test whether a range of memory starting at testaddr of size testsz falls |
531 | * within the range of memory described by addr, sz. We take care to avoid |
532 | * problems with overflow and underflow of the unsigned quantities, and |
533 | * disallow all negative sizes. Ranges of size 0 are allowed. |
534 | */ |
535 | #define DTRACE_INRANGE(testaddr, testsz, baseaddr, basesz) \ |
536 | ((testaddr) - (baseaddr) < (basesz) && \ |
537 | (testaddr) + (testsz) - (baseaddr) <= (basesz) && \ |
538 | (testaddr) + (testsz) >= (testaddr)) |
539 | |
540 | /* |
541 | * Test whether alloc_sz bytes will fit in the scratch region. We isolate |
542 | * alloc_sz on the righthand side of the comparison in order to avoid overflow |
543 | * or underflow in the comparison with it. This is simpler than the INRANGE |
544 | * check above, because we know that the dtms_scratch_ptr is valid in the |
545 | * range. Allocations of size zero are allowed. |
546 | */ |
547 | #define DTRACE_INSCRATCH(mstate, alloc_sz) \ |
548 | ((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - \ |
549 | (mstate)->dtms_scratch_ptr >= (alloc_sz)) |
550 | |
551 | #if defined (__x86_64__) || defined (__arm64__) |
552 | #define DTRACE_LOADFUNC(bits) \ |
553 | /*CSTYLED*/ \ |
554 | uint##bits##_t dtrace_load##bits(uintptr_t addr); \ |
555 | \ |
556 | extern int dtrace_nofault_copy##bits(uintptr_t, uint##bits##_t *); \ |
557 | \ |
558 | uint##bits##_t \ |
559 | dtrace_load##bits(uintptr_t addr) \ |
560 | { \ |
561 | size_t size = bits / NBBY; \ |
562 | /*CSTYLED*/ \ |
563 | uint##bits##_t rval = 0; \ |
564 | int i; \ |
565 | volatile uint16_t *flags = (volatile uint16_t *) \ |
566 | &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; \ |
567 | \ |
568 | DTRACE_ALIGNCHECK(addr, size, flags); \ |
569 | \ |
570 | for (i = 0; i < dtrace_toxranges; i++) { \ |
571 | if (addr >= dtrace_toxrange[i].dtt_limit) \ |
572 | continue; \ |
573 | \ |
574 | if (addr + size <= dtrace_toxrange[i].dtt_base) \ |
575 | continue; \ |
576 | \ |
577 | /* \ |
578 | * This address falls within a toxic region; return 0. \ |
579 | */ \ |
580 | *flags |= CPU_DTRACE_BADADDR; \ |
581 | cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr; \ |
582 | return (0); \ |
583 | } \ |
584 | \ |
585 | { \ |
586 | *flags |= CPU_DTRACE_NOFAULT; \ |
587 | /*CSTYLED*/ \ |
588 | /* \ |
589 | * PR6394061 - avoid device memory that is unpredictably \ |
590 | * mapped and unmapped \ |
591 | */ \ |
592 | if (!pmap_valid_page(pmap_find_phys(kernel_pmap, addr)) || \ |
593 | dtrace_nofault_copy##bits(addr, &rval)) { \ |
594 | *flags |= CPU_DTRACE_BADADDR; \ |
595 | cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr; \ |
596 | return (0); \ |
597 | } \ |
598 | \ |
599 | *flags &= ~CPU_DTRACE_NOFAULT; \ |
600 | } \ |
601 | \ |
602 | return (rval); \ |
603 | } |
604 | #else /* all other architectures */ |
605 | #error Unknown Architecture |
606 | #endif |
607 | |
608 | #ifdef __LP64__ |
609 | #define dtrace_loadptr dtrace_load64 |
610 | #else |
611 | #define dtrace_loadptr dtrace_load32 |
612 | #endif |
613 | |
614 | #define DTRACE_DYNHASH_FREE 0 |
615 | #define DTRACE_DYNHASH_SINK 1 |
616 | #define DTRACE_DYNHASH_VALID 2 |
617 | |
618 | #define DTRACE_MATCH_FAIL -1 |
619 | #define DTRACE_MATCH_NEXT 0 |
620 | #define DTRACE_MATCH_DONE 1 |
621 | #define DTRACE_ANCHORED(probe) ((probe)->dtpr_func[0] != '\0') |
622 | #define DTRACE_STATE_ALIGN 64 |
623 | |
624 | #define DTRACE_FLAGS2FLT(flags) \ |
625 | (((flags) & CPU_DTRACE_BADADDR) ? DTRACEFLT_BADADDR : \ |
626 | ((flags) & CPU_DTRACE_ILLOP) ? DTRACEFLT_ILLOP : \ |
627 | ((flags) & CPU_DTRACE_DIVZERO) ? DTRACEFLT_DIVZERO : \ |
628 | ((flags) & CPU_DTRACE_KPRIV) ? DTRACEFLT_KPRIV : \ |
629 | ((flags) & CPU_DTRACE_UPRIV) ? DTRACEFLT_UPRIV : \ |
630 | ((flags) & CPU_DTRACE_TUPOFLOW) ? DTRACEFLT_TUPOFLOW : \ |
631 | ((flags) & CPU_DTRACE_BADALIGN) ? DTRACEFLT_BADALIGN : \ |
632 | ((flags) & CPU_DTRACE_NOSCRATCH) ? DTRACEFLT_NOSCRATCH : \ |
633 | ((flags) & CPU_DTRACE_BADSTACK) ? DTRACEFLT_BADSTACK : \ |
634 | DTRACEFLT_UNKNOWN) |
635 | |
636 | #define DTRACEACT_ISSTRING(act) \ |
637 | ((act)->dta_kind == DTRACEACT_DIFEXPR && \ |
638 | (act)->dta_difo->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) |
639 | |
640 | |
641 | static size_t dtrace_strlen(const char *, size_t); |
642 | static dtrace_probe_t *dtrace_probe_lookup_id(dtrace_id_t id); |
643 | static void dtrace_enabling_provide(dtrace_provider_t *); |
644 | static int dtrace_enabling_match(dtrace_enabling_t *, int *, dtrace_match_cond_t *cond); |
645 | static void dtrace_enabling_matchall_with_cond(dtrace_match_cond_t *cond); |
646 | static void dtrace_enabling_matchall(void); |
647 | static dtrace_state_t *dtrace_anon_grab(void); |
648 | static uint64_t dtrace_helper(int, dtrace_mstate_t *, |
649 | dtrace_state_t *, uint64_t, uint64_t); |
650 | static dtrace_helpers_t *dtrace_helpers_create(proc_t *); |
651 | static void dtrace_buffer_drop(dtrace_buffer_t *); |
652 | static intptr_t dtrace_buffer_reserve(dtrace_buffer_t *, size_t, size_t, |
653 | dtrace_state_t *, dtrace_mstate_t *); |
654 | static int dtrace_state_option(dtrace_state_t *, dtrace_optid_t, |
655 | dtrace_optval_t); |
656 | static int dtrace_ecb_create_enable(dtrace_probe_t *, void *, void *); |
657 | static void dtrace_helper_provider_destroy(dtrace_helper_provider_t *); |
658 | static int dtrace_canload_remains(uint64_t, size_t, size_t *, |
659 | dtrace_mstate_t *, dtrace_vstate_t *); |
660 | static int dtrace_canstore_remains(uint64_t, size_t, size_t *, |
661 | dtrace_mstate_t *, dtrace_vstate_t *); |
662 | |
663 | |
664 | /* |
665 | * DTrace sysctl handlers |
666 | * |
667 | * These declarations and functions are used for a deeper DTrace configuration. |
668 | * Most of them are not per-consumer basis and may impact the other DTrace |
669 | * consumers. Correctness may not be supported for all the variables, so you |
670 | * should be careful about what values you are using. |
671 | */ |
672 | |
673 | SYSCTL_DECL(_kern_dtrace); |
674 | SYSCTL_NODE(_kern, OID_AUTO, dtrace, CTLFLAG_RW | CTLFLAG_LOCKED, 0, "dtrace" ); |
675 | |
676 | static int |
677 | sysctl_dtrace_err_verbose SYSCTL_HANDLER_ARGS |
678 | { |
679 | #pragma unused(oidp, arg2) |
680 | int changed, error; |
681 | int value = *(int *) arg1; |
682 | |
683 | error = sysctl_io_number(req, bigValue: value, valueSize: sizeof(value), pValue: &value, changed: &changed); |
684 | if (error || !changed) |
685 | return (error); |
686 | |
687 | if (value != 0 && value != 1) |
688 | return (ERANGE); |
689 | |
690 | lck_mtx_lock(lck: &dtrace_lock); |
691 | dtrace_err_verbose = value; |
692 | lck_mtx_unlock(lck: &dtrace_lock); |
693 | |
694 | return (0); |
695 | } |
696 | |
697 | /* |
698 | * kern.dtrace.err_verbose |
699 | * |
700 | * Set DTrace verbosity when an error occured (0 = disabled, 1 = enabld). |
701 | * Errors are reported when a DIFO or a DOF has been rejected by the kernel. |
702 | */ |
703 | SYSCTL_PROC(_kern_dtrace, OID_AUTO, err_verbose, |
704 | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, |
705 | &dtrace_err_verbose, 0, |
706 | sysctl_dtrace_err_verbose, "I" , "dtrace error verbose" ); |
707 | |
708 | static int |
709 | sysctl_dtrace_buffer_memory_maxsize SYSCTL_HANDLER_ARGS |
710 | { |
711 | #pragma unused(oidp, arg2, req) |
712 | int changed, error; |
713 | uint64_t value = *(uint64_t *) arg1; |
714 | |
715 | error = sysctl_io_number(req, bigValue: value, valueSize: sizeof(value), pValue: &value, changed: &changed); |
716 | if (error || !changed) |
717 | return (error); |
718 | |
719 | if (value <= dtrace_buffer_memory_inuse) |
720 | return (ERANGE); |
721 | |
722 | lck_mtx_lock(lck: &dtrace_lock); |
723 | dtrace_buffer_memory_maxsize = value; |
724 | lck_mtx_unlock(lck: &dtrace_lock); |
725 | |
726 | return (0); |
727 | } |
728 | |
729 | /* |
730 | * kern.dtrace.buffer_memory_maxsize |
731 | * |
732 | * Set DTrace maximal size in bytes used by all the consumers' state buffers. By default |
733 | * the limit is PHYS_MEM / 3 for *all* consumers. Attempting to set a null, a negative value |
734 | * or a value <= to dtrace_buffer_memory_inuse will result in a failure. |
735 | */ |
736 | SYSCTL_PROC(_kern_dtrace, OID_AUTO, buffer_memory_maxsize, |
737 | CTLTYPE_QUAD | CTLFLAG_RW | CTLFLAG_LOCKED, |
738 | &dtrace_buffer_memory_maxsize, 0, |
739 | sysctl_dtrace_buffer_memory_maxsize, "Q" , "dtrace state buffer memory maxsize" ); |
740 | |
741 | /* |
742 | * kern.dtrace.buffer_memory_inuse |
743 | * |
744 | * Current state buffer memory used, in bytes, by all the DTrace consumers. |
745 | * This value is read-only. |
746 | */ |
747 | SYSCTL_QUAD(_kern_dtrace, OID_AUTO, buffer_memory_inuse, CTLFLAG_RD | CTLFLAG_LOCKED, |
748 | &dtrace_buffer_memory_inuse, "dtrace state buffer memory in-use" ); |
749 | |
750 | static int |
751 | sysctl_dtrace_difo_maxsize SYSCTL_HANDLER_ARGS |
752 | { |
753 | #pragma unused(oidp, arg2, req) |
754 | int changed, error; |
755 | size_t value = *(size_t*) arg1; |
756 | |
757 | error = sysctl_io_number(req, bigValue: value, valueSize: sizeof(value), pValue: &value, changed: &changed); |
758 | if (error || !changed) |
759 | return (error); |
760 | |
761 | if (value <= 0) |
762 | return (ERANGE); |
763 | |
764 | lck_mtx_lock(lck: &dtrace_lock); |
765 | dtrace_difo_maxsize = value; |
766 | lck_mtx_unlock(lck: &dtrace_lock); |
767 | |
768 | return (0); |
769 | } |
770 | |
771 | /* |
772 | * kern.dtrace.difo_maxsize |
773 | * |
774 | * Set the DIFO max size in bytes, check the definition of dtrace_difo_maxsize |
775 | * to get the default value. Attempting to set a null or negative size will |
776 | * result in a failure. |
777 | */ |
778 | SYSCTL_PROC(_kern_dtrace, OID_AUTO, difo_maxsize, |
779 | CTLTYPE_QUAD | CTLFLAG_RW | CTLFLAG_LOCKED, |
780 | &dtrace_difo_maxsize, 0, |
781 | sysctl_dtrace_difo_maxsize, "Q" , "dtrace difo maxsize" ); |
782 | |
783 | static int |
784 | sysctl_dtrace_dof_maxsize SYSCTL_HANDLER_ARGS |
785 | { |
786 | #pragma unused(oidp, arg2, req) |
787 | int changed, error; |
788 | dtrace_optval_t value = *(dtrace_optval_t *) arg1; |
789 | |
790 | error = sysctl_io_number(req, bigValue: value, valueSize: sizeof(value), pValue: &value, changed: &changed); |
791 | if (error || !changed) |
792 | return (error); |
793 | |
794 | if (value <= 0) |
795 | return (ERANGE); |
796 | |
797 | if (value >= dtrace_copy_maxsize()) |
798 | return (ERANGE); |
799 | |
800 | lck_mtx_lock(lck: &dtrace_lock); |
801 | dtrace_dof_maxsize = value; |
802 | lck_mtx_unlock(lck: &dtrace_lock); |
803 | |
804 | return (0); |
805 | } |
806 | |
807 | /* |
808 | * kern.dtrace.dof_maxsize |
809 | * |
810 | * Set the DOF max size in bytes, check the definition of dtrace_dof_maxsize to |
811 | * get the default value. Attempting to set a null or negative size will result |
812 | * in a failure. |
813 | */ |
814 | SYSCTL_PROC(_kern_dtrace, OID_AUTO, dof_maxsize, |
815 | CTLTYPE_QUAD | CTLFLAG_RW | CTLFLAG_LOCKED, |
816 | &dtrace_dof_maxsize, 0, |
817 | sysctl_dtrace_dof_maxsize, "Q" , "dtrace dof maxsize" ); |
818 | |
819 | static int |
820 | sysctl_dtrace_statvar_maxsize SYSCTL_HANDLER_ARGS |
821 | { |
822 | #pragma unused(oidp, arg2, req) |
823 | int changed, error; |
824 | dtrace_optval_t value = *(dtrace_optval_t*) arg1; |
825 | |
826 | error = sysctl_io_number(req, bigValue: value, valueSize: sizeof(value), pValue: &value, changed: &changed); |
827 | if (error || !changed) |
828 | return (error); |
829 | |
830 | if (value <= 0) |
831 | return (ERANGE); |
832 | if (value > dtrace_statvar_maxsize_max) |
833 | return (ERANGE); |
834 | |
835 | lck_mtx_lock(lck: &dtrace_lock); |
836 | dtrace_statvar_maxsize = value; |
837 | lck_mtx_unlock(lck: &dtrace_lock); |
838 | |
839 | return (0); |
840 | } |
841 | |
842 | /* |
843 | * kern.dtrace.global_maxsize |
844 | * |
845 | * Set the variable max size in bytes, check the definition of |
846 | * dtrace_statvar_maxsize to get the default value. Attempting to set a null, |
847 | * too high or negative size will result in a failure. |
848 | */ |
849 | SYSCTL_PROC(_kern_dtrace, OID_AUTO, global_maxsize, |
850 | CTLTYPE_QUAD | CTLFLAG_RW | CTLFLAG_LOCKED, |
851 | &dtrace_statvar_maxsize, 0, |
852 | sysctl_dtrace_statvar_maxsize, "Q" , "dtrace statvar maxsize" ); |
853 | |
854 | |
855 | /* |
856 | * kern.dtrace.provide_private_probes |
857 | * |
858 | * Set whether the providers must provide the private probes. This is |
859 | * kept as compatibility as they are always provided. |
860 | */ |
861 | SYSCTL_INT(_kern_dtrace, OID_AUTO, provide_private_probes, |
862 | CTLFLAG_RD | CTLFLAG_LOCKED, |
863 | (int *)NULL, 1, "provider must provide the private probes" ); |
864 | |
865 | /* |
866 | * kern.dtrace.dof_mode |
867 | * |
868 | * Returns the current DOF mode. |
869 | * This value is read-only. |
870 | */ |
871 | SYSCTL_INT(_kern_dtrace, OID_AUTO, dof_mode, CTLFLAG_RD | CTLFLAG_LOCKED, |
872 | &dtrace_dof_mode, 0, "dtrace dof mode" ); |
873 | |
874 | /* |
875 | * DTrace Probe Context Functions |
876 | * |
877 | * These functions are called from probe context. Because probe context is |
878 | * any context in which C may be called, arbitrarily locks may be held, |
879 | * interrupts may be disabled, we may be in arbitrary dispatched state, etc. |
880 | * As a result, functions called from probe context may only call other DTrace |
881 | * support functions -- they may not interact at all with the system at large. |
882 | * (Note that the ASSERT macro is made probe-context safe by redefining it in |
883 | * terms of dtrace_assfail(), a probe-context safe function.) If arbitrary |
884 | * loads are to be performed from probe context, they _must_ be in terms of |
885 | * the safe dtrace_load*() variants. |
886 | * |
887 | * Some functions in this block are not actually called from probe context; |
888 | * for these functions, there will be a comment above the function reading |
889 | * "Note: not called from probe context." |
890 | */ |
891 | |
892 | int |
893 | dtrace_assfail(const char *a, const char *f, int l) |
894 | { |
895 | panic("dtrace: assertion failed: %s, file: %s, line: %d" , a, f, l); |
896 | |
897 | /* |
898 | * We just need something here that even the most clever compiler |
899 | * cannot optimize away. |
900 | */ |
901 | return (a[(uintptr_t)f]); |
902 | } |
903 | |
904 | /* |
905 | * Atomically increment a specified error counter from probe context. |
906 | */ |
907 | static void |
908 | dtrace_error(uint32_t *counter) |
909 | { |
910 | /* |
911 | * Most counters stored to in probe context are per-CPU counters. |
912 | * However, there are some error conditions that are sufficiently |
913 | * arcane that they don't merit per-CPU storage. If these counters |
914 | * are incremented concurrently on different CPUs, scalability will be |
915 | * adversely affected -- but we don't expect them to be white-hot in a |
916 | * correctly constructed enabling... |
917 | */ |
918 | uint32_t oval, nval; |
919 | |
920 | do { |
921 | oval = *counter; |
922 | |
923 | if ((nval = oval + 1) == 0) { |
924 | /* |
925 | * If the counter would wrap, set it to 1 -- assuring |
926 | * that the counter is never zero when we have seen |
927 | * errors. (The counter must be 32-bits because we |
928 | * aren't guaranteed a 64-bit compare&swap operation.) |
929 | * To save this code both the infamy of being fingered |
930 | * by a priggish news story and the indignity of being |
931 | * the target of a neo-puritan witch trial, we're |
932 | * carefully avoiding any colorful description of the |
933 | * likelihood of this condition -- but suffice it to |
934 | * say that it is only slightly more likely than the |
935 | * overflow of predicate cache IDs, as discussed in |
936 | * dtrace_predicate_create(). |
937 | */ |
938 | nval = 1; |
939 | } |
940 | } while (dtrace_cas32(counter, oval, nval) != oval); |
941 | } |
942 | |
943 | /* |
944 | * Use the DTRACE_LOADFUNC macro to define functions for each of loading a |
945 | * uint8_t, a uint16_t, a uint32_t and a uint64_t. |
946 | */ |
947 | DTRACE_LOADFUNC(8) |
948 | DTRACE_LOADFUNC(16) |
949 | DTRACE_LOADFUNC(32) |
950 | DTRACE_LOADFUNC(64) |
951 | |
952 | static int |
953 | dtrace_inscratch(uintptr_t dest, size_t size, dtrace_mstate_t *mstate) |
954 | { |
955 | if (dest < mstate->dtms_scratch_base) |
956 | return (0); |
957 | |
958 | if (dest + size < dest) |
959 | return (0); |
960 | |
961 | if (dest + size > mstate->dtms_scratch_ptr) |
962 | return (0); |
963 | |
964 | return (1); |
965 | } |
966 | |
967 | static int |
968 | dtrace_canstore_statvar(uint64_t addr, size_t sz, size_t *remain, |
969 | dtrace_statvar_t **svars, int nsvars) |
970 | { |
971 | int i; |
972 | |
973 | size_t maxglobalsize, maxlocalsize; |
974 | |
975 | maxglobalsize = dtrace_statvar_maxsize + sizeof (uint64_t); |
976 | maxlocalsize = (maxglobalsize) * NCPU; |
977 | |
978 | if (nsvars == 0) |
979 | return (0); |
980 | |
981 | for (i = 0; i < nsvars; i++) { |
982 | dtrace_statvar_t *svar = svars[i]; |
983 | uint8_t scope; |
984 | size_t size; |
985 | |
986 | if (svar == NULL || (size = svar->dtsv_size) == 0) |
987 | continue; |
988 | |
989 | scope = svar->dtsv_var.dtdv_scope; |
990 | |
991 | /** |
992 | * We verify that our size is valid in the spirit of providing |
993 | * defense in depth: we want to prevent attackers from using |
994 | * DTrace to escalate an orthogonal kernel heap corruption bug |
995 | * into the ability to store to arbitrary locations in memory. |
996 | */ |
997 | VERIFY((scope == DIFV_SCOPE_GLOBAL && size <= maxglobalsize) || |
998 | (scope == DIFV_SCOPE_LOCAL && size <= maxlocalsize)); |
999 | |
1000 | if (DTRACE_INRANGE(addr, sz, svar->dtsv_data, svar->dtsv_size)) { |
1001 | DTRACE_RANGE_REMAIN(remain, addr, svar->dtsv_data, |
1002 | svar->dtsv_size); |
1003 | return (1); |
1004 | } |
1005 | } |
1006 | |
1007 | return (0); |
1008 | } |
1009 | |
1010 | /* |
1011 | * Check to see if the address is within a memory region to which a store may |
1012 | * be issued. This includes the DTrace scratch areas, and any DTrace variable |
1013 | * region. The caller of dtrace_canstore() is responsible for performing any |
1014 | * alignment checks that are needed before stores are actually executed. |
1015 | */ |
1016 | static int |
1017 | dtrace_canstore(uint64_t addr, size_t sz, dtrace_mstate_t *mstate, |
1018 | dtrace_vstate_t *vstate) |
1019 | { |
1020 | return (dtrace_canstore_remains(addr, sz, NULL, mstate, vstate)); |
1021 | } |
1022 | /* |
1023 | * Implementation of dtrace_canstore which communicates the upper bound of the |
1024 | * allowed memory region. |
1025 | */ |
1026 | static int |
1027 | dtrace_canstore_remains(uint64_t addr, size_t sz, size_t *remain, |
1028 | dtrace_mstate_t *mstate, dtrace_vstate_t *vstate) |
1029 | { |
1030 | /* |
1031 | * First, check to see if the address is in allocated scratch space... |
1032 | */ |
1033 | if (DTRACE_INRANGE(addr, sz, mstate->dtms_scratch_base, |
1034 | mstate->dtms_scratch_ptr - mstate->dtms_scratch_base)) { |
1035 | DTRACE_RANGE_REMAIN(remain, addr, mstate->dtms_scratch_base, |
1036 | mstate->dtms_scratch_ptr - mstate->dtms_scratch_base); |
1037 | return (1); |
1038 | } |
1039 | /* |
1040 | * Now check to see if it's a dynamic variable. This check will pick |
1041 | * up both thread-local variables and any global dynamically-allocated |
1042 | * variables. |
1043 | */ |
1044 | if (DTRACE_INRANGE(addr, sz, (uintptr_t)vstate->dtvs_dynvars.dtds_base, |
1045 | vstate->dtvs_dynvars.dtds_size)) { |
1046 | dtrace_dstate_t *dstate = &vstate->dtvs_dynvars; |
1047 | uintptr_t base = (uintptr_t)dstate->dtds_base + |
1048 | (dstate->dtds_hashsize * sizeof (dtrace_dynhash_t)); |
1049 | uintptr_t chunkoffs; |
1050 | dtrace_dynvar_t *dvar; |
1051 | |
1052 | /* |
1053 | * Before we assume that we can store here, we need to make |
1054 | * sure that it isn't in our metadata -- storing to our |
1055 | * dynamic variable metadata would corrupt our state. For |
1056 | * the range to not include any dynamic variable metadata, |
1057 | * it must: |
1058 | * |
1059 | * (1) Start above the hash table that is at the base of |
1060 | * the dynamic variable space |
1061 | * |
1062 | * (2) Have a starting chunk offset that is beyond the |
1063 | * dtrace_dynvar_t that is at the base of every chunk |
1064 | * |
1065 | * (3) Not span a chunk boundary |
1066 | * |
1067 | * (4) Not be in the tuple space of a dynamic variable |
1068 | * |
1069 | */ |
1070 | if (addr < base) |
1071 | return (0); |
1072 | |
1073 | chunkoffs = (addr - base) % dstate->dtds_chunksize; |
1074 | |
1075 | if (chunkoffs < sizeof (dtrace_dynvar_t)) |
1076 | return (0); |
1077 | |
1078 | if (chunkoffs + sz > dstate->dtds_chunksize) |
1079 | return (0); |
1080 | |
1081 | dvar = (dtrace_dynvar_t *)((uintptr_t)addr - chunkoffs); |
1082 | |
1083 | if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) |
1084 | return (0); |
1085 | |
1086 | if (chunkoffs < sizeof (dtrace_dynvar_t) + |
1087 | ((dvar->dtdv_tuple.dtt_nkeys - 1) * sizeof (dtrace_key_t))) |
1088 | return (0); |
1089 | |
1090 | return (1); |
1091 | } |
1092 | |
1093 | /* |
1094 | * Finally, check the static local and global variables. These checks |
1095 | * take the longest, so we perform them last. |
1096 | */ |
1097 | if (dtrace_canstore_statvar(addr, sz, remain, |
1098 | svars: vstate->dtvs_locals, nsvars: vstate->dtvs_nlocals)) |
1099 | return (1); |
1100 | |
1101 | if (dtrace_canstore_statvar(addr, sz, remain, |
1102 | svars: vstate->dtvs_globals, nsvars: vstate->dtvs_nglobals)) |
1103 | return (1); |
1104 | |
1105 | return (0); |
1106 | } |
1107 | |
1108 | |
1109 | /* |
1110 | * Convenience routine to check to see if the address is within a memory |
1111 | * region in which a load may be issued given the user's privilege level; |
1112 | * if not, it sets the appropriate error flags and loads 'addr' into the |
1113 | * illegal value slot. |
1114 | * |
1115 | * DTrace subroutines (DIF_SUBR_*) should use this helper to implement |
1116 | * appropriate memory access protection. |
1117 | */ |
1118 | int |
1119 | dtrace_canload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate, |
1120 | dtrace_vstate_t *vstate) |
1121 | { |
1122 | return (dtrace_canload_remains(addr, sz, NULL, mstate, vstate)); |
1123 | } |
1124 | |
1125 | /* |
1126 | * Implementation of dtrace_canload which communicates the upper bound of the |
1127 | * allowed memory region. |
1128 | */ |
1129 | static int |
1130 | dtrace_canload_remains(uint64_t addr, size_t sz, size_t *remain, |
1131 | dtrace_mstate_t *mstate, dtrace_vstate_t *vstate) |
1132 | { |
1133 | volatile uint64_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval; |
1134 | |
1135 | /* |
1136 | * If we hold the privilege to read from kernel memory, then |
1137 | * everything is readable. |
1138 | */ |
1139 | if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) { |
1140 | DTRACE_RANGE_REMAIN(remain, addr, addr, sz); |
1141 | return (1); |
1142 | } |
1143 | |
1144 | /* |
1145 | * You can obviously read that which you can store. |
1146 | */ |
1147 | if (dtrace_canstore_remains(addr, sz, remain, mstate, vstate)) |
1148 | return (1); |
1149 | |
1150 | /* |
1151 | * We're allowed to read from our own string table. |
1152 | */ |
1153 | if (DTRACE_INRANGE(addr, sz, (uintptr_t)mstate->dtms_difo->dtdo_strtab, |
1154 | mstate->dtms_difo->dtdo_strlen)) { |
1155 | DTRACE_RANGE_REMAIN(remain, addr, |
1156 | mstate->dtms_difo->dtdo_strtab, |
1157 | mstate->dtms_difo->dtdo_strlen); |
1158 | return (1); |
1159 | } |
1160 | |
1161 | DTRACE_CPUFLAG_SET(CPU_DTRACE_KPRIV); |
1162 | *illval = addr; |
1163 | return (0); |
1164 | } |
1165 | |
1166 | /* |
1167 | * Convenience routine to check to see if a given string is within a memory |
1168 | * region in which a load may be issued given the user's privilege level; |
1169 | * this exists so that we don't need to issue unnecessary dtrace_strlen() |
1170 | * calls in the event that the user has all privileges. |
1171 | */ |
1172 | static int |
1173 | dtrace_strcanload(uint64_t addr, size_t sz, size_t *remain, |
1174 | dtrace_mstate_t *mstate, dtrace_vstate_t *vstate) |
1175 | { |
1176 | size_t rsize = 0; |
1177 | |
1178 | /* |
1179 | * If we hold the privilege to read from kernel memory, then |
1180 | * everything is readable. |
1181 | */ |
1182 | if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) { |
1183 | DTRACE_RANGE_REMAIN(remain, addr, addr, sz); |
1184 | return (1); |
1185 | } |
1186 | |
1187 | /* |
1188 | * Even if the caller is uninterested in querying the remaining valid |
1189 | * range, it is required to ensure that the access is allowed. |
1190 | */ |
1191 | if (remain == NULL) { |
1192 | remain = &rsize; |
1193 | } |
1194 | if (dtrace_canload_remains(addr, sz: 0, remain, mstate, vstate)) { |
1195 | size_t strsz; |
1196 | /* |
1197 | * Perform the strlen after determining the length of the |
1198 | * memory region which is accessible. This prevents timing |
1199 | * information from being used to find NULs in memory which is |
1200 | * not accessible to the caller. |
1201 | */ |
1202 | strsz = 1 + dtrace_strlen((char *)(uintptr_t)addr, |
1203 | MIN(sz, *remain)); |
1204 | if (strsz <= *remain) { |
1205 | return (1); |
1206 | } |
1207 | } |
1208 | |
1209 | return (0); |
1210 | } |
1211 | |
1212 | /* |
1213 | * Convenience routine to check to see if a given variable is within a memory |
1214 | * region in which a load may be issued given the user's privilege level. |
1215 | */ |
1216 | static int |
1217 | dtrace_vcanload(void *src, dtrace_diftype_t *type, size_t *remain, |
1218 | dtrace_mstate_t *mstate, dtrace_vstate_t *vstate) |
1219 | { |
1220 | size_t sz; |
1221 | ASSERT(type->dtdt_flags & DIF_TF_BYREF); |
1222 | |
1223 | /* |
1224 | * Calculate the max size before performing any checks since even |
1225 | * DTRACE_ACCESS_KERNEL-credentialed callers expect that this function |
1226 | * return the max length via 'remain'. |
1227 | */ |
1228 | if (type->dtdt_kind == DIF_TYPE_STRING) { |
1229 | dtrace_state_t *state = vstate->dtvs_state; |
1230 | |
1231 | if (state != NULL) { |
1232 | sz = state->dts_options[DTRACEOPT_STRSIZE]; |
1233 | } else { |
1234 | /* |
1235 | * In helper context, we have a NULL state; fall back |
1236 | * to using the system-wide default for the string size |
1237 | * in this case. |
1238 | */ |
1239 | sz = dtrace_strsize_default; |
1240 | } |
1241 | } else { |
1242 | sz = type->dtdt_size; |
1243 | } |
1244 | |
1245 | /* |
1246 | * If we hold the privilege to read from kernel memory, then |
1247 | * everything is readable. |
1248 | */ |
1249 | if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) { |
1250 | DTRACE_RANGE_REMAIN(remain, (uintptr_t)src, src, sz); |
1251 | return (1); |
1252 | } |
1253 | |
1254 | if (type->dtdt_kind == DIF_TYPE_STRING) { |
1255 | return (dtrace_strcanload(addr: (uintptr_t)src, sz, remain, mstate, |
1256 | vstate)); |
1257 | } |
1258 | return (dtrace_canload_remains(addr: (uintptr_t)src, sz, remain, mstate, |
1259 | vstate)); |
1260 | } |
1261 | |
1262 | #define isdigit(ch) ((ch) >= '0' && (ch) <= '9') |
1263 | #define islower(ch) ((ch) >= 'a' && (ch) <= 'z') |
1264 | #define isspace(ch) (((ch) == ' ') || ((ch) == '\r') || ((ch) == '\n') || \ |
1265 | ((ch) == '\t') || ((ch) == '\f')) |
1266 | #define isxdigit(ch) (isdigit(ch) || ((ch) >= 'a' && (ch) <= 'f') || \ |
1267 | ((ch) >= 'A' && (ch) <= 'F')) |
1268 | #define lisalnum(x) \ |
1269 | (isdigit(x) || ((x) >= 'a' && (x) <= 'z') || ((x) >= 'A' && (x) <= 'Z')) |
1270 | |
1271 | #define DIGIT(x) \ |
1272 | (isdigit(x) ? (x) - '0' : islower(x) ? (x) + 10 - 'a' : (x) + 10 - 'A') |
1273 | |
1274 | /* |
1275 | * Convert a string to a signed integer using safe loads. |
1276 | */ |
1277 | static int64_t |
1278 | dtrace_strtoll(char *input, int base, size_t limit) |
1279 | { |
1280 | uintptr_t pos = (uintptr_t)input; |
1281 | int64_t val = 0; |
1282 | int x; |
1283 | boolean_t neg = B_FALSE; |
1284 | char c, cc, ccc; |
1285 | uintptr_t end = pos + limit; |
1286 | |
1287 | /* |
1288 | * Consume any whitespace preceding digits. |
1289 | */ |
1290 | while ((c = dtrace_load8(addr: pos)) == ' ' || c == '\t') |
1291 | pos++; |
1292 | |
1293 | /* |
1294 | * Handle an explicit sign if one is present. |
1295 | */ |
1296 | if (c == '-' || c == '+') { |
1297 | if (c == '-') |
1298 | neg = B_TRUE; |
1299 | c = dtrace_load8(addr: ++pos); |
1300 | } |
1301 | |
1302 | /* |
1303 | * Check for an explicit hexadecimal prefix ("0x" or "0X") and skip it |
1304 | * if present. |
1305 | */ |
1306 | if (base == 16 && c == '0' && ((cc = dtrace_load8(addr: pos + 1)) == 'x' || |
1307 | cc == 'X') && isxdigit(ccc = dtrace_load8(pos + 2))) { |
1308 | pos += 2; |
1309 | c = ccc; |
1310 | } |
1311 | |
1312 | /* |
1313 | * Read in contiguous digits until the first non-digit character. |
1314 | */ |
1315 | for (; pos < end && c != '\0' && lisalnum(c) && (x = DIGIT(c)) < base; |
1316 | c = dtrace_load8(addr: ++pos)) |
1317 | val = val * base + x; |
1318 | |
1319 | return (neg ? -val : val); |
1320 | } |
1321 | |
1322 | |
1323 | /* |
1324 | * Compare two strings using safe loads. |
1325 | */ |
1326 | static int |
1327 | dtrace_strncmp(const char *s1, const char *s2, size_t limit) |
1328 | { |
1329 | uint8_t c1, c2; |
1330 | volatile uint16_t *flags; |
1331 | |
1332 | if (s1 == s2 || limit == 0) |
1333 | return (0); |
1334 | |
1335 | flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags; |
1336 | |
1337 | do { |
1338 | if (s1 == NULL) { |
1339 | c1 = '\0'; |
1340 | } else { |
1341 | c1 = dtrace_load8(addr: (uintptr_t)s1++); |
1342 | } |
1343 | |
1344 | if (s2 == NULL) { |
1345 | c2 = '\0'; |
1346 | } else { |
1347 | c2 = dtrace_load8(addr: (uintptr_t)s2++); |
1348 | } |
1349 | |
1350 | if (c1 != c2) |
1351 | return (c1 - c2); |
1352 | } while (--limit && c1 != '\0' && !(*flags & CPU_DTRACE_FAULT)); |
1353 | |
1354 | return (0); |
1355 | } |
1356 | |
1357 | /* |
1358 | * Compute strlen(s) for a string using safe memory accesses. The additional |
1359 | * len parameter is used to specify a maximum length to ensure completion. |
1360 | */ |
1361 | static size_t |
1362 | dtrace_strlen(const char *s, size_t lim) |
1363 | { |
1364 | uint_t len; |
1365 | |
1366 | for (len = 0; len != lim; len++) { |
1367 | if (dtrace_load8(addr: (uintptr_t)s++) == '\0') |
1368 | break; |
1369 | } |
1370 | |
1371 | return (len); |
1372 | } |
1373 | |
1374 | /* |
1375 | * Check if an address falls within a toxic region. |
1376 | */ |
1377 | static int |
1378 | dtrace_istoxic(uintptr_t kaddr, size_t size) |
1379 | { |
1380 | uintptr_t taddr, tsize; |
1381 | int i; |
1382 | |
1383 | for (i = 0; i < dtrace_toxranges; i++) { |
1384 | taddr = dtrace_toxrange[i].dtt_base; |
1385 | tsize = dtrace_toxrange[i].dtt_limit - taddr; |
1386 | |
1387 | if (kaddr - taddr < tsize) { |
1388 | DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); |
1389 | cpu_core[CPU->cpu_id].cpuc_dtrace_illval = kaddr; |
1390 | return (1); |
1391 | } |
1392 | |
1393 | if (taddr - kaddr < size) { |
1394 | DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); |
1395 | cpu_core[CPU->cpu_id].cpuc_dtrace_illval = taddr; |
1396 | return (1); |
1397 | } |
1398 | } |
1399 | |
1400 | return (0); |
1401 | } |
1402 | |
1403 | /* |
1404 | * Copy src to dst using safe memory accesses. The src is assumed to be unsafe |
1405 | * memory specified by the DIF program. The dst is assumed to be safe memory |
1406 | * that we can store to directly because it is managed by DTrace. As with |
1407 | * standard bcopy, overlapping copies are handled properly. |
1408 | */ |
1409 | static void |
1410 | dtrace_bcopy(const void *src, void *dst, size_t len) |
1411 | { |
1412 | if (len != 0) { |
1413 | uint8_t *s1 = dst; |
1414 | const uint8_t *s2 = src; |
1415 | |
1416 | if (s1 <= s2) { |
1417 | do { |
1418 | *s1++ = dtrace_load8(addr: (uintptr_t)s2++); |
1419 | } while (--len != 0); |
1420 | } else { |
1421 | s2 += len; |
1422 | s1 += len; |
1423 | |
1424 | do { |
1425 | *--s1 = dtrace_load8(addr: (uintptr_t)--s2); |
1426 | } while (--len != 0); |
1427 | } |
1428 | } |
1429 | } |
1430 | |
1431 | /* |
1432 | * Copy src to dst using safe memory accesses, up to either the specified |
1433 | * length, or the point that a nul byte is encountered. The src is assumed to |
1434 | * be unsafe memory specified by the DIF program. The dst is assumed to be |
1435 | * safe memory that we can store to directly because it is managed by DTrace. |
1436 | * Unlike dtrace_bcopy(), overlapping regions are not handled. |
1437 | */ |
1438 | static void |
1439 | dtrace_strcpy(const void *src, void *dst, size_t len) |
1440 | { |
1441 | if (len != 0) { |
1442 | uint8_t *s1 = dst, c; |
1443 | const uint8_t *s2 = src; |
1444 | |
1445 | do { |
1446 | *s1++ = c = dtrace_load8(addr: (uintptr_t)s2++); |
1447 | } while (--len != 0 && c != '\0'); |
1448 | } |
1449 | } |
1450 | |
1451 | /* |
1452 | * Copy src to dst, deriving the size and type from the specified (BYREF) |
1453 | * variable type. The src is assumed to be unsafe memory specified by the DIF |
1454 | * program. The dst is assumed to be DTrace variable memory that is of the |
1455 | * specified type; we assume that we can store to directly. |
1456 | */ |
1457 | static void |
1458 | dtrace_vcopy(void *src, void *dst, dtrace_diftype_t *type, size_t limit) |
1459 | { |
1460 | ASSERT(type->dtdt_flags & DIF_TF_BYREF); |
1461 | |
1462 | if (type->dtdt_kind == DIF_TYPE_STRING) { |
1463 | dtrace_strcpy(src, dst, MIN(type->dtdt_size, limit)); |
1464 | } else { |
1465 | dtrace_bcopy(src, dst, MIN(type->dtdt_size, limit)); |
1466 | } |
1467 | } |
1468 | |
1469 | /* |
1470 | * Compare s1 to s2 using safe memory accesses. The s1 data is assumed to be |
1471 | * unsafe memory specified by the DIF program. The s2 data is assumed to be |
1472 | * safe memory that we can access directly because it is managed by DTrace. |
1473 | */ |
1474 | static int |
1475 | dtrace_bcmp(const void *s1, const void *s2, size_t len) |
1476 | { |
1477 | volatile uint16_t *flags; |
1478 | |
1479 | flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags; |
1480 | |
1481 | if (s1 == s2) |
1482 | return (0); |
1483 | |
1484 | if (s1 == NULL || s2 == NULL) |
1485 | return (1); |
1486 | |
1487 | if (s1 != s2 && len != 0) { |
1488 | const uint8_t *ps1 = s1; |
1489 | const uint8_t *ps2 = s2; |
1490 | |
1491 | do { |
1492 | if (dtrace_load8(addr: (uintptr_t)ps1++) != *ps2++) |
1493 | return (1); |
1494 | } while (--len != 0 && !(*flags & CPU_DTRACE_FAULT)); |
1495 | } |
1496 | return (0); |
1497 | } |
1498 | |
1499 | /* |
1500 | * Zero the specified region using a simple byte-by-byte loop. Note that this |
1501 | * is for safe DTrace-managed memory only. |
1502 | */ |
1503 | static void |
1504 | dtrace_bzero(void *dst, size_t len) |
1505 | { |
1506 | uchar_t *cp; |
1507 | |
1508 | for (cp = dst; len != 0; len--) |
1509 | *cp++ = 0; |
1510 | } |
1511 | |
1512 | static void |
1513 | dtrace_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum) |
1514 | { |
1515 | uint64_t result[2]; |
1516 | |
1517 | result[0] = addend1[0] + addend2[0]; |
1518 | result[1] = addend1[1] + addend2[1] + |
1519 | (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0); |
1520 | |
1521 | sum[0] = result[0]; |
1522 | sum[1] = result[1]; |
1523 | } |
1524 | |
1525 | /* |
1526 | * Shift the 128-bit value in a by b. If b is positive, shift left. |
1527 | * If b is negative, shift right. |
1528 | */ |
1529 | static void |
1530 | dtrace_shift_128(uint64_t *a, int b) |
1531 | { |
1532 | uint64_t mask; |
1533 | |
1534 | if (b == 0) |
1535 | return; |
1536 | |
1537 | if (b < 0) { |
1538 | b = -b; |
1539 | if (b >= 64) { |
1540 | a[0] = a[1] >> (b - 64); |
1541 | a[1] = 0; |
1542 | } else { |
1543 | a[0] >>= b; |
1544 | mask = 1LL << (64 - b); |
1545 | mask -= 1; |
1546 | a[0] |= ((a[1] & mask) << (64 - b)); |
1547 | a[1] >>= b; |
1548 | } |
1549 | } else { |
1550 | if (b >= 64) { |
1551 | a[1] = a[0] << (b - 64); |
1552 | a[0] = 0; |
1553 | } else { |
1554 | a[1] <<= b; |
1555 | mask = a[0] >> (64 - b); |
1556 | a[1] |= mask; |
1557 | a[0] <<= b; |
1558 | } |
1559 | } |
1560 | } |
1561 | |
1562 | /* |
1563 | * The basic idea is to break the 2 64-bit values into 4 32-bit values, |
1564 | * use native multiplication on those, and then re-combine into the |
1565 | * resulting 128-bit value. |
1566 | * |
1567 | * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) = |
1568 | * hi1 * hi2 << 64 + |
1569 | * hi1 * lo2 << 32 + |
1570 | * hi2 * lo1 << 32 + |
1571 | * lo1 * lo2 |
1572 | */ |
1573 | static void |
1574 | dtrace_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product) |
1575 | { |
1576 | uint64_t hi1, hi2, lo1, lo2; |
1577 | uint64_t tmp[2]; |
1578 | |
1579 | hi1 = factor1 >> 32; |
1580 | hi2 = factor2 >> 32; |
1581 | |
1582 | lo1 = factor1 & DT_MASK_LO; |
1583 | lo2 = factor2 & DT_MASK_LO; |
1584 | |
1585 | product[0] = lo1 * lo2; |
1586 | product[1] = hi1 * hi2; |
1587 | |
1588 | tmp[0] = hi1 * lo2; |
1589 | tmp[1] = 0; |
1590 | dtrace_shift_128(a: tmp, b: 32); |
1591 | dtrace_add_128(addend1: product, addend2: tmp, sum: product); |
1592 | |
1593 | tmp[0] = hi2 * lo1; |
1594 | tmp[1] = 0; |
1595 | dtrace_shift_128(a: tmp, b: 32); |
1596 | dtrace_add_128(addend1: product, addend2: tmp, sum: product); |
1597 | } |
1598 | |
1599 | /* |
1600 | * This privilege check should be used by actions and subroutines to |
1601 | * verify that the user credentials of the process that enabled the |
1602 | * invoking ECB match the target credentials |
1603 | */ |
1604 | static int |
1605 | dtrace_priv_proc_common_user(dtrace_state_t *state) |
1606 | { |
1607 | cred_t *cr, *s_cr = state->dts_cred.dcr_cred; |
1608 | |
1609 | /* |
1610 | * We should always have a non-NULL state cred here, since if cred |
1611 | * is null (anonymous tracing), we fast-path bypass this routine. |
1612 | */ |
1613 | ASSERT(s_cr != NULL); |
1614 | |
1615 | if ((cr = dtrace_CRED()) != NULL && |
1616 | posix_cred_get(cred: s_cr)->cr_uid == posix_cred_get(cred: cr)->cr_uid && |
1617 | posix_cred_get(cred: s_cr)->cr_uid == posix_cred_get(cred: cr)->cr_ruid && |
1618 | posix_cred_get(cred: s_cr)->cr_uid == posix_cred_get(cred: cr)->cr_suid && |
1619 | posix_cred_get(cred: s_cr)->cr_gid == posix_cred_get(cred: cr)->cr_gid && |
1620 | posix_cred_get(cred: s_cr)->cr_gid == posix_cred_get(cred: cr)->cr_rgid && |
1621 | posix_cred_get(cred: s_cr)->cr_gid == posix_cred_get(cred: cr)->cr_sgid) |
1622 | return (1); |
1623 | |
1624 | return (0); |
1625 | } |
1626 | |
1627 | /* |
1628 | * This privilege check should be used by actions and subroutines to |
1629 | * verify that the zone of the process that enabled the invoking ECB |
1630 | * matches the target credentials |
1631 | */ |
1632 | static int |
1633 | dtrace_priv_proc_common_zone(dtrace_state_t *state) |
1634 | { |
1635 | cred_t *cr, *s_cr = state->dts_cred.dcr_cred; |
1636 | #pragma unused(cr, s_cr, state) /* __APPLE__ */ |
1637 | |
1638 | /* |
1639 | * We should always have a non-NULL state cred here, since if cred |
1640 | * is null (anonymous tracing), we fast-path bypass this routine. |
1641 | */ |
1642 | ASSERT(s_cr != NULL); |
1643 | |
1644 | return 1; /* APPLE NOTE: Darwin doesn't do zones. */ |
1645 | } |
1646 | |
1647 | /* |
1648 | * This privilege check should be used by actions and subroutines to |
1649 | * verify that the process has not setuid or changed credentials. |
1650 | */ |
1651 | static int |
1652 | dtrace_priv_proc_common_nocd(void) |
1653 | { |
1654 | return 1; /* Darwin omits "No Core Dump" flag. */ |
1655 | } |
1656 | |
1657 | static int |
1658 | dtrace_priv_proc_destructive(dtrace_state_t *state) |
1659 | { |
1660 | int action = state->dts_cred.dcr_action; |
1661 | |
1662 | if (ISSET(current_proc()->p_lflag, P_LNOATTACH)) |
1663 | goto bad; |
1664 | |
1665 | if (dtrace_is_restricted() && !dtrace_can_attach_to_proc(current_proc())) |
1666 | goto bad; |
1667 | |
1668 | if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE) == 0) && |
1669 | dtrace_priv_proc_common_zone(state) == 0) |
1670 | goto bad; |
1671 | |
1672 | if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER) == 0) && |
1673 | dtrace_priv_proc_common_user(state) == 0) |
1674 | goto bad; |
1675 | |
1676 | if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG) == 0) && |
1677 | dtrace_priv_proc_common_nocd() == 0) |
1678 | goto bad; |
1679 | |
1680 | return (1); |
1681 | |
1682 | bad: |
1683 | cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; |
1684 | |
1685 | return (0); |
1686 | } |
1687 | |
1688 | static int |
1689 | dtrace_priv_proc_control(dtrace_state_t *state) |
1690 | { |
1691 | if (ISSET(current_proc()->p_lflag, P_LNOATTACH)) |
1692 | goto bad; |
1693 | |
1694 | if (dtrace_is_restricted() && !dtrace_can_attach_to_proc(current_proc())) |
1695 | goto bad; |
1696 | |
1697 | if (state->dts_cred.dcr_action & DTRACE_CRA_PROC_CONTROL) |
1698 | return (1); |
1699 | |
1700 | if (dtrace_priv_proc_common_zone(state) && |
1701 | dtrace_priv_proc_common_user(state) && |
1702 | dtrace_priv_proc_common_nocd()) |
1703 | return (1); |
1704 | |
1705 | bad: |
1706 | cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; |
1707 | |
1708 | return (0); |
1709 | } |
1710 | |
1711 | static int |
1712 | dtrace_priv_proc(dtrace_state_t *state) |
1713 | { |
1714 | if (ISSET(current_proc()->p_lflag, P_LNOATTACH)) |
1715 | goto bad; |
1716 | |
1717 | if (dtrace_is_restricted() && !dtrace_are_restrictions_relaxed() && !dtrace_can_attach_to_proc(current_proc())) |
1718 | goto bad; |
1719 | |
1720 | if (state->dts_cred.dcr_action & DTRACE_CRA_PROC) |
1721 | return (1); |
1722 | |
1723 | bad: |
1724 | cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; |
1725 | |
1726 | return (0); |
1727 | } |
1728 | |
1729 | /* |
1730 | * The P_LNOATTACH check is an Apple specific check. |
1731 | * We need a version of dtrace_priv_proc() that omits |
1732 | * that check for PID and EXECNAME accesses |
1733 | */ |
1734 | static int |
1735 | dtrace_priv_proc_relaxed(dtrace_state_t *state) |
1736 | { |
1737 | |
1738 | if (state->dts_cred.dcr_action & DTRACE_CRA_PROC) |
1739 | return (1); |
1740 | |
1741 | cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; |
1742 | |
1743 | return (0); |
1744 | } |
1745 | |
1746 | static int |
1747 | dtrace_priv_kernel(dtrace_state_t *state) |
1748 | { |
1749 | if (dtrace_is_restricted() && !dtrace_are_restrictions_relaxed()) |
1750 | goto bad; |
1751 | |
1752 | if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL) |
1753 | return (1); |
1754 | |
1755 | bad: |
1756 | cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV; |
1757 | |
1758 | return (0); |
1759 | } |
1760 | |
1761 | static int |
1762 | dtrace_priv_kernel_destructive(dtrace_state_t *state) |
1763 | { |
1764 | if (dtrace_is_restricted()) |
1765 | goto bad; |
1766 | |
1767 | if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL_DESTRUCTIVE) |
1768 | return (1); |
1769 | |
1770 | bad: |
1771 | cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV; |
1772 | |
1773 | return (0); |
1774 | } |
1775 | |
1776 | /* |
1777 | * Note: not called from probe context. This function is called |
1778 | * asynchronously (and at a regular interval) from outside of probe context to |
1779 | * clean the dirty dynamic variable lists on all CPUs. Dynamic variable |
1780 | * cleaning is explained in detail in <sys/dtrace_impl.h>. |
1781 | */ |
1782 | static void |
1783 | dtrace_dynvar_clean(dtrace_dstate_t *dstate) |
1784 | { |
1785 | dtrace_dynvar_t *dirty; |
1786 | int work = 0; |
1787 | |
1788 | zpercpu_foreach(dcpu, dstate->dtds_percpu) { |
1789 | ASSERT(dcpu->dtdsc_rinsing == NULL); |
1790 | |
1791 | /* |
1792 | * If the dirty list is NULL, there is no dirty work to do. |
1793 | */ |
1794 | if (dcpu->dtdsc_dirty == NULL) |
1795 | continue; |
1796 | |
1797 | /* |
1798 | * If the clean list is non-NULL, then we're not going to do |
1799 | * any work for this CPU -- it means that there has not been |
1800 | * a dtrace_dynvar() allocation on this CPU (or from this CPU) |
1801 | * since the last time we cleaned house. |
1802 | */ |
1803 | if (dcpu->dtdsc_clean != NULL) |
1804 | continue; |
1805 | |
1806 | work = 1; |
1807 | |
1808 | /* |
1809 | * Atomically move the dirty list aside. |
1810 | */ |
1811 | do { |
1812 | dirty = dcpu->dtdsc_dirty; |
1813 | |
1814 | /* |
1815 | * Before we zap the dirty list, set the rinsing list. |
1816 | * (This allows for a potential assertion in |
1817 | * dtrace_dynvar(): if a free dynamic variable appears |
1818 | * on a hash chain, either the dirty list or the |
1819 | * rinsing list for some CPU must be non-NULL.) |
1820 | */ |
1821 | dcpu->dtdsc_rinsing = dirty; |
1822 | dtrace_membar_producer(); |
1823 | } while (dtrace_casptr(&dcpu->dtdsc_dirty, |
1824 | dirty, NULL) != dirty); |
1825 | } |
1826 | |
1827 | if (!work) { |
1828 | /* |
1829 | * We have no work to do; we can simply return. |
1830 | */ |
1831 | return; |
1832 | } |
1833 | |
1834 | dtrace_sync(); |
1835 | |
1836 | zpercpu_foreach(dcpu, dstate->dtds_percpu) { |
1837 | if (dcpu->dtdsc_rinsing == NULL) |
1838 | continue; |
1839 | |
1840 | /* |
1841 | * We are now guaranteed that no hash chain contains a pointer |
1842 | * into this dirty list; we can make it clean. |
1843 | */ |
1844 | ASSERT(dcpu->dtdsc_clean == NULL); |
1845 | dcpu->dtdsc_clean = dcpu->dtdsc_rinsing; |
1846 | dcpu->dtdsc_rinsing = NULL; |
1847 | } |
1848 | |
1849 | /* |
1850 | * Before we actually set the state to be DTRACE_DSTATE_CLEAN, make |
1851 | * sure that all CPUs have seen all of the dtdsc_clean pointers. |
1852 | * This prevents a race whereby a CPU incorrectly decides that |
1853 | * the state should be something other than DTRACE_DSTATE_CLEAN |
1854 | * after dtrace_dynvar_clean() has completed. |
1855 | */ |
1856 | dtrace_sync(); |
1857 | |
1858 | dstate->dtds_state = DTRACE_DSTATE_CLEAN; |
1859 | } |
1860 | |
1861 | /* |
1862 | * Depending on the value of the op parameter, this function looks-up, |
1863 | * allocates or deallocates an arbitrarily-keyed dynamic variable. If an |
1864 | * allocation is requested, this function will return a pointer to a |
1865 | * dtrace_dynvar_t corresponding to the allocated variable -- or NULL if no |
1866 | * variable can be allocated. If NULL is returned, the appropriate counter |
1867 | * will be incremented. |
1868 | */ |
1869 | static dtrace_dynvar_t * |
1870 | dtrace_dynvar(dtrace_dstate_t *dstate, uint_t nkeys, |
1871 | dtrace_key_t *key, size_t dsize, dtrace_dynvar_op_t op, |
1872 | dtrace_mstate_t *mstate, dtrace_vstate_t *vstate) |
1873 | { |
1874 | uint64_t hashval = DTRACE_DYNHASH_VALID; |
1875 | dtrace_dynhash_t *hash = dstate->dtds_hash; |
1876 | dtrace_dynvar_t *free, *new_free, *next, *dvar, *start, *prev = NULL; |
1877 | processorid_t me = CPU->cpu_id, cpu = me; |
1878 | dtrace_dstate_percpu_t *dcpu = zpercpu_get_cpu(dstate->dtds_percpu, me); |
1879 | size_t bucket, ksize; |
1880 | size_t chunksize = dstate->dtds_chunksize; |
1881 | uintptr_t kdata, lock, nstate; |
1882 | uint_t i; |
1883 | |
1884 | ASSERT(nkeys != 0); |
1885 | |
1886 | /* |
1887 | * Hash the key. As with aggregations, we use Jenkins' "One-at-a-time" |
1888 | * algorithm. For the by-value portions, we perform the algorithm in |
1889 | * 16-bit chunks (as opposed to 8-bit chunks). This speeds things up a |
1890 | * bit, and seems to have only a minute effect on distribution. For |
1891 | * the by-reference data, we perform "One-at-a-time" iterating (safely) |
1892 | * over each referenced byte. It's painful to do this, but it's much |
1893 | * better than pathological hash distribution. The efficacy of the |
1894 | * hashing algorithm (and a comparison with other algorithms) may be |
1895 | * found by running the ::dtrace_dynstat MDB dcmd. |
1896 | */ |
1897 | for (i = 0; i < nkeys; i++) { |
1898 | if (key[i].dttk_size == 0) { |
1899 | uint64_t val = key[i].dttk_value; |
1900 | |
1901 | hashval += (val >> 48) & 0xffff; |
1902 | hashval += (hashval << 10); |
1903 | hashval ^= (hashval >> 6); |
1904 | |
1905 | hashval += (val >> 32) & 0xffff; |
1906 | hashval += (hashval << 10); |
1907 | hashval ^= (hashval >> 6); |
1908 | |
1909 | hashval += (val >> 16) & 0xffff; |
1910 | hashval += (hashval << 10); |
1911 | hashval ^= (hashval >> 6); |
1912 | |
1913 | hashval += val & 0xffff; |
1914 | hashval += (hashval << 10); |
1915 | hashval ^= (hashval >> 6); |
1916 | } else { |
1917 | /* |
1918 | * This is incredibly painful, but it beats the hell |
1919 | * out of the alternative. |
1920 | */ |
1921 | uint64_t j, size = key[i].dttk_size; |
1922 | uintptr_t base = (uintptr_t)key[i].dttk_value; |
1923 | |
1924 | if (!dtrace_canload(addr: base, sz: size, mstate, vstate)) |
1925 | break; |
1926 | |
1927 | for (j = 0; j < size; j++) { |
1928 | hashval += dtrace_load8(addr: base + j); |
1929 | hashval += (hashval << 10); |
1930 | hashval ^= (hashval >> 6); |
1931 | } |
1932 | } |
1933 | } |
1934 | |
1935 | if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT)) |
1936 | return (NULL); |
1937 | |
1938 | hashval += (hashval << 3); |
1939 | hashval ^= (hashval >> 11); |
1940 | hashval += (hashval << 15); |
1941 | |
1942 | /* |
1943 | * There is a remote chance (ideally, 1 in 2^31) that our hashval |
1944 | * comes out to be one of our two sentinel hash values. If this |
1945 | * actually happens, we set the hashval to be a value known to be a |
1946 | * non-sentinel value. |
1947 | */ |
1948 | if (hashval == DTRACE_DYNHASH_FREE || hashval == DTRACE_DYNHASH_SINK) |
1949 | hashval = DTRACE_DYNHASH_VALID; |
1950 | |
1951 | /* |
1952 | * Yes, it's painful to do a divide here. If the cycle count becomes |
1953 | * important here, tricks can be pulled to reduce it. (However, it's |
1954 | * critical that hash collisions be kept to an absolute minimum; |
1955 | * they're much more painful than a divide.) It's better to have a |
1956 | * solution that generates few collisions and still keeps things |
1957 | * relatively simple. |
1958 | */ |
1959 | bucket = hashval % dstate->dtds_hashsize; |
1960 | |
1961 | if (op == DTRACE_DYNVAR_DEALLOC) { |
1962 | volatile uintptr_t *lockp = &hash[bucket].dtdh_lock; |
1963 | |
1964 | for (;;) { |
1965 | while ((lock = *lockp) & 1) |
1966 | continue; |
1967 | |
1968 | if (dtrace_casptr((void *)(uintptr_t)lockp, |
1969 | (void *)lock, (void *)(lock + 1)) == (void *)lock) |
1970 | break; |
1971 | } |
1972 | |
1973 | dtrace_membar_producer(); |
1974 | } |
1975 | |
1976 | top: |
1977 | prev = NULL; |
1978 | lock = hash[bucket].dtdh_lock; |
1979 | |
1980 | dtrace_membar_consumer(); |
1981 | |
1982 | start = hash[bucket].dtdh_chain; |
1983 | ASSERT(start != NULL && (start->dtdv_hashval == DTRACE_DYNHASH_SINK || |
1984 | start->dtdv_hashval != DTRACE_DYNHASH_FREE || |
1985 | op != DTRACE_DYNVAR_DEALLOC)); |
1986 | |
1987 | for (dvar = start; dvar != NULL; dvar = dvar->dtdv_next) { |
1988 | dtrace_tuple_t *dtuple = &dvar->dtdv_tuple; |
1989 | dtrace_key_t *dkey = &dtuple->dtt_key[0]; |
1990 | |
1991 | if (dvar->dtdv_hashval != hashval) { |
1992 | if (dvar->dtdv_hashval == DTRACE_DYNHASH_SINK) { |
1993 | /* |
1994 | * We've reached the sink, and therefore the |
1995 | * end of the hash chain; we can kick out of |
1996 | * the loop knowing that we have seen a valid |
1997 | * snapshot of state. |
1998 | */ |
1999 | ASSERT(dvar->dtdv_next == NULL); |
2000 | ASSERT(dvar == &dtrace_dynhash_sink); |
2001 | break; |
2002 | } |
2003 | |
2004 | if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) { |
2005 | /* |
2006 | * We've gone off the rails: somewhere along |
2007 | * the line, one of the members of this hash |
2008 | * chain was deleted. Note that we could also |
2009 | * detect this by simply letting this loop run |
2010 | * to completion, as we would eventually hit |
2011 | * the end of the dirty list. However, we |
2012 | * want to avoid running the length of the |
2013 | * dirty list unnecessarily (it might be quite |
2014 | * long), so we catch this as early as |
2015 | * possible by detecting the hash marker. In |
2016 | * this case, we simply set dvar to NULL and |
2017 | * break; the conditional after the loop will |
2018 | * send us back to top. |
2019 | */ |
2020 | dvar = NULL; |
2021 | break; |
2022 | } |
2023 | |
2024 | goto next; |
2025 | } |
2026 | |
2027 | if (dtuple->dtt_nkeys != nkeys) |
2028 | goto next; |
2029 | |
2030 | for (i = 0; i < nkeys; i++, dkey++) { |
2031 | if (dkey->dttk_size != key[i].dttk_size) |
2032 | goto next; /* size or type mismatch */ |
2033 | |
2034 | if (dkey->dttk_size != 0) { |
2035 | if (dtrace_bcmp( |
2036 | s1: (void *)(uintptr_t)key[i].dttk_value, |
2037 | s2: (void *)(uintptr_t)dkey->dttk_value, |
2038 | len: dkey->dttk_size)) |
2039 | goto next; |
2040 | } else { |
2041 | if (dkey->dttk_value != key[i].dttk_value) |
2042 | goto next; |
2043 | } |
2044 | } |
2045 | |
2046 | if (op != DTRACE_DYNVAR_DEALLOC) |
2047 | return (dvar); |
2048 | |
2049 | ASSERT(dvar->dtdv_next == NULL || |
2050 | dvar->dtdv_next->dtdv_hashval != DTRACE_DYNHASH_FREE); |
2051 | |
2052 | if (prev != NULL) { |
2053 | ASSERT(hash[bucket].dtdh_chain != dvar); |
2054 | ASSERT(start != dvar); |
2055 | ASSERT(prev->dtdv_next == dvar); |
2056 | prev->dtdv_next = dvar->dtdv_next; |
2057 | } else { |
2058 | if (dtrace_casptr(&hash[bucket].dtdh_chain, |
2059 | start, dvar->dtdv_next) != start) { |
2060 | /* |
2061 | * We have failed to atomically swing the |
2062 | * hash table head pointer, presumably because |
2063 | * of a conflicting allocation on another CPU. |
2064 | * We need to reread the hash chain and try |
2065 | * again. |
2066 | */ |
2067 | goto top; |
2068 | } |
2069 | } |
2070 | |
2071 | dtrace_membar_producer(); |
2072 | |
2073 | /* |
2074 | * Now set the hash value to indicate that it's free. |
2075 | */ |
2076 | ASSERT(hash[bucket].dtdh_chain != dvar); |
2077 | dvar->dtdv_hashval = DTRACE_DYNHASH_FREE; |
2078 | |
2079 | dtrace_membar_producer(); |
2080 | |
2081 | /* |
2082 | * Set the next pointer to point at the dirty list, and |
2083 | * atomically swing the dirty pointer to the newly freed dvar. |
2084 | */ |
2085 | do { |
2086 | next = dcpu->dtdsc_dirty; |
2087 | dvar->dtdv_next = next; |
2088 | } while (dtrace_casptr(&dcpu->dtdsc_dirty, next, dvar) != next); |
2089 | |
2090 | /* |
2091 | * Finally, unlock this hash bucket. |
2092 | */ |
2093 | ASSERT(hash[bucket].dtdh_lock == lock); |
2094 | ASSERT(lock & 1); |
2095 | hash[bucket].dtdh_lock++; |
2096 | |
2097 | return (NULL); |
2098 | next: |
2099 | prev = dvar; |
2100 | continue; |
2101 | } |
2102 | |
2103 | if (dvar == NULL) { |
2104 | /* |
2105 | * If dvar is NULL, it is because we went off the rails: |
2106 | * one of the elements that we traversed in the hash chain |
2107 | * was deleted while we were traversing it. In this case, |
2108 | * we assert that we aren't doing a dealloc (deallocs lock |
2109 | * the hash bucket to prevent themselves from racing with |
2110 | * one another), and retry the hash chain traversal. |
2111 | */ |
2112 | ASSERT(op != DTRACE_DYNVAR_DEALLOC); |
2113 | goto top; |
2114 | } |
2115 | |
2116 | if (op != DTRACE_DYNVAR_ALLOC) { |
2117 | /* |
2118 | * If we are not to allocate a new variable, we want to |
2119 | * return NULL now. Before we return, check that the value |
2120 | * of the lock word hasn't changed. If it has, we may have |
2121 | * seen an inconsistent snapshot. |
2122 | */ |
2123 | if (op == DTRACE_DYNVAR_NOALLOC) { |
2124 | if (hash[bucket].dtdh_lock != lock) |
2125 | goto top; |
2126 | } else { |
2127 | ASSERT(op == DTRACE_DYNVAR_DEALLOC); |
2128 | ASSERT(hash[bucket].dtdh_lock == lock); |
2129 | ASSERT(lock & 1); |
2130 | hash[bucket].dtdh_lock++; |
2131 | } |
2132 | |
2133 | return (NULL); |
2134 | } |
2135 | |
2136 | /* |
2137 | * We need to allocate a new dynamic variable. The size we need is the |
2138 | * size of dtrace_dynvar plus the size of nkeys dtrace_key_t's plus the |
2139 | * size of any auxiliary key data (rounded up to 8-byte alignment) plus |
2140 | * the size of any referred-to data (dsize). We then round the final |
2141 | * size up to the chunksize for allocation. |
2142 | */ |
2143 | for (ksize = 0, i = 0; i < nkeys; i++) |
2144 | ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t)); |
2145 | |
2146 | /* |
2147 | * This should be pretty much impossible, but could happen if, say, |
2148 | * strange DIF specified the tuple. Ideally, this should be an |
2149 | * assertion and not an error condition -- but that requires that the |
2150 | * chunksize calculation in dtrace_difo_chunksize() be absolutely |
2151 | * bullet-proof. (That is, it must not be able to be fooled by |
2152 | * malicious DIF.) Given the lack of backwards branches in DIF, |
2153 | * solving this would presumably not amount to solving the Halting |
2154 | * Problem -- but it still seems awfully hard. |
2155 | */ |
2156 | if (sizeof (dtrace_dynvar_t) + sizeof (dtrace_key_t) * (nkeys - 1) + |
2157 | ksize + dsize > chunksize) { |
2158 | dcpu->dtdsc_drops++; |
2159 | return (NULL); |
2160 | } |
2161 | |
2162 | nstate = DTRACE_DSTATE_EMPTY; |
2163 | |
2164 | do { |
2165 | retry: |
2166 | free = dcpu->dtdsc_free; |
2167 | |
2168 | if (free == NULL) { |
2169 | dtrace_dynvar_t *clean = dcpu->dtdsc_clean; |
2170 | void *rval; |
2171 | |
2172 | if (clean == NULL) { |
2173 | /* |
2174 | * We're out of dynamic variable space on |
2175 | * this CPU. Unless we have tried all CPUs, |
2176 | * we'll try to allocate from a different |
2177 | * CPU. |
2178 | */ |
2179 | switch (dstate->dtds_state) { |
2180 | case DTRACE_DSTATE_CLEAN: { |
2181 | void *sp = &dstate->dtds_state; |
2182 | |
2183 | if (++cpu >= (int)NCPU) |
2184 | cpu = 0; |
2185 | |
2186 | if (dcpu->dtdsc_dirty != NULL && |
2187 | nstate == DTRACE_DSTATE_EMPTY) |
2188 | nstate = DTRACE_DSTATE_DIRTY; |
2189 | |
2190 | if (dcpu->dtdsc_rinsing != NULL) |
2191 | nstate = DTRACE_DSTATE_RINSING; |
2192 | |
2193 | dcpu = zpercpu_get_cpu(dstate->dtds_percpu, cpu); |
2194 | |
2195 | if (cpu != me) |
2196 | goto retry; |
2197 | |
2198 | (void) dtrace_cas32(sp, |
2199 | DTRACE_DSTATE_CLEAN, nstate); |
2200 | |
2201 | /* |
2202 | * To increment the correct bean |
2203 | * counter, take another lap. |
2204 | */ |
2205 | goto retry; |
2206 | } |
2207 | |
2208 | case DTRACE_DSTATE_DIRTY: |
2209 | dcpu->dtdsc_dirty_drops++; |
2210 | break; |
2211 | |
2212 | case DTRACE_DSTATE_RINSING: |
2213 | dcpu->dtdsc_rinsing_drops++; |
2214 | break; |
2215 | |
2216 | case DTRACE_DSTATE_EMPTY: |
2217 | dcpu->dtdsc_drops++; |
2218 | break; |
2219 | } |
2220 | |
2221 | DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP); |
2222 | return (NULL); |
2223 | } |
2224 | |
2225 | /* |
2226 | * The clean list appears to be non-empty. We want to |
2227 | * move the clean list to the free list; we start by |
2228 | * moving the clean pointer aside. |
2229 | */ |
2230 | if (dtrace_casptr(&dcpu->dtdsc_clean, |
2231 | clean, NULL) != clean) { |
2232 | /* |
2233 | * We are in one of two situations: |
2234 | * |
2235 | * (a) The clean list was switched to the |
2236 | * free list by another CPU. |
2237 | * |
2238 | * (b) The clean list was added to by the |
2239 | * cleansing cyclic. |
2240 | * |
2241 | * In either of these situations, we can |
2242 | * just reattempt the free list allocation. |
2243 | */ |
2244 | goto retry; |
2245 | } |
2246 | |
2247 | ASSERT(clean->dtdv_hashval == DTRACE_DYNHASH_FREE); |
2248 | |
2249 | /* |
2250 | * Now we'll move the clean list to the free list. |
2251 | * It's impossible for this to fail: the only way |
2252 | * the free list can be updated is through this |
2253 | * code path, and only one CPU can own the clean list. |
2254 | * Thus, it would only be possible for this to fail if |
2255 | * this code were racing with dtrace_dynvar_clean(). |
2256 | * (That is, if dtrace_dynvar_clean() updated the clean |
2257 | * list, and we ended up racing to update the free |
2258 | * list.) This race is prevented by the dtrace_sync() |
2259 | * in dtrace_dynvar_clean() -- which flushes the |
2260 | * owners of the clean lists out before resetting |
2261 | * the clean lists. |
2262 | */ |
2263 | rval = dtrace_casptr(&dcpu->dtdsc_free, NULL, clean); |
2264 | ASSERT(rval == NULL); |
2265 | goto retry; |
2266 | } |
2267 | |
2268 | dvar = free; |
2269 | new_free = dvar->dtdv_next; |
2270 | } while (dtrace_casptr(&dcpu->dtdsc_free, free, new_free) != free); |
2271 | |
2272 | /* |
2273 | * We have now allocated a new chunk. We copy the tuple keys into the |
2274 | * tuple array and copy any referenced key data into the data space |
2275 | * following the tuple array. As we do this, we relocate dttk_value |
2276 | * in the final tuple to point to the key data address in the chunk. |
2277 | */ |
2278 | kdata = (uintptr_t)&dvar->dtdv_tuple.dtt_key[nkeys]; |
2279 | dvar->dtdv_data = (void *)(kdata + ksize); |
2280 | dvar->dtdv_tuple.dtt_nkeys = nkeys; |
2281 | |
2282 | for (i = 0; i < nkeys; i++) { |
2283 | dtrace_key_t *dkey = &dvar->dtdv_tuple.dtt_key[i]; |
2284 | size_t kesize = key[i].dttk_size; |
2285 | |
2286 | if (kesize != 0) { |
2287 | dtrace_bcopy( |
2288 | src: (const void *)(uintptr_t)key[i].dttk_value, |
2289 | dst: (void *)kdata, len: kesize); |
2290 | dkey->dttk_value = kdata; |
2291 | kdata += P2ROUNDUP(kesize, sizeof (uint64_t)); |
2292 | } else { |
2293 | dkey->dttk_value = key[i].dttk_value; |
2294 | } |
2295 | |
2296 | dkey->dttk_size = kesize; |
2297 | } |
2298 | |
2299 | ASSERT(dvar->dtdv_hashval == DTRACE_DYNHASH_FREE); |
2300 | dvar->dtdv_hashval = hashval; |
2301 | dvar->dtdv_next = start; |
2302 | |
2303 | if (dtrace_casptr(&hash[bucket].dtdh_chain, start, dvar) == start) |
2304 | return (dvar); |
2305 | |
2306 | /* |
2307 | * The cas has failed. Either another CPU is adding an element to |
2308 | * this hash chain, or another CPU is deleting an element from this |
2309 | * hash chain. The simplest way to deal with both of these cases |
2310 | * (though not necessarily the most efficient) is to free our |
2311 | * allocated block and tail-call ourselves. Note that the free is |
2312 | * to the dirty list and _not_ to the free list. This is to prevent |
2313 | * races with allocators, above. |
2314 | */ |
2315 | dvar->dtdv_hashval = DTRACE_DYNHASH_FREE; |
2316 | |
2317 | dtrace_membar_producer(); |
2318 | |
2319 | do { |
2320 | free = dcpu->dtdsc_dirty; |
2321 | dvar->dtdv_next = free; |
2322 | } while (dtrace_casptr(&dcpu->dtdsc_dirty, free, dvar) != free); |
2323 | |
2324 | return (dtrace_dynvar(dstate, nkeys, key, dsize, op, mstate, vstate)); |
2325 | } |
2326 | |
2327 | /*ARGSUSED*/ |
2328 | static void |
2329 | dtrace_aggregate_min(uint64_t *oval, uint64_t nval, uint64_t arg) |
2330 | { |
2331 | #pragma unused(arg) /* __APPLE__ */ |
2332 | if ((int64_t)nval < (int64_t)*oval) |
2333 | *oval = nval; |
2334 | } |
2335 | |
2336 | /*ARGSUSED*/ |
2337 | static void |
2338 | dtrace_aggregate_max(uint64_t *oval, uint64_t nval, uint64_t arg) |
2339 | { |
2340 | #pragma unused(arg) /* __APPLE__ */ |
2341 | if ((int64_t)nval > (int64_t)*oval) |
2342 | *oval = nval; |
2343 | } |
2344 | |
2345 | static void |
2346 | dtrace_aggregate_quantize(uint64_t *quanta, uint64_t nval, uint64_t incr) |
2347 | { |
2348 | int i, zero = DTRACE_QUANTIZE_ZEROBUCKET; |
2349 | int64_t val = (int64_t)nval; |
2350 | |
2351 | if (val < 0) { |
2352 | for (i = 0; i < zero; i++) { |
2353 | if (val <= DTRACE_QUANTIZE_BUCKETVAL(i)) { |
2354 | quanta[i] += incr; |
2355 | return; |
2356 | } |
2357 | } |
2358 | } else { |
2359 | for (i = zero + 1; i < DTRACE_QUANTIZE_NBUCKETS; i++) { |
2360 | if (val < DTRACE_QUANTIZE_BUCKETVAL(i)) { |
2361 | quanta[i - 1] += incr; |
2362 | return; |
2363 | } |
2364 | } |
2365 | |
2366 | quanta[DTRACE_QUANTIZE_NBUCKETS - 1] += incr; |
2367 | return; |
2368 | } |
2369 | |
2370 | ASSERT(0); |
2371 | } |
2372 | |
2373 | static void |
2374 | dtrace_aggregate_lquantize(uint64_t *lquanta, uint64_t nval, uint64_t incr) |
2375 | { |
2376 | uint64_t arg = *lquanta++; |
2377 | int32_t base = DTRACE_LQUANTIZE_BASE(arg); |
2378 | uint16_t step = DTRACE_LQUANTIZE_STEP(arg); |
2379 | uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg); |
2380 | int32_t val = (int32_t)nval, level; |
2381 | |
2382 | ASSERT(step != 0); |
2383 | ASSERT(levels != 0); |
2384 | |
2385 | if (val < base) { |
2386 | /* |
2387 | * This is an underflow. |
2388 | */ |
2389 | lquanta[0] += incr; |
2390 | return; |
2391 | } |
2392 | |
2393 | level = (val - base) / step; |
2394 | |
2395 | if (level < levels) { |
2396 | lquanta[level + 1] += incr; |
2397 | return; |
2398 | } |
2399 | |
2400 | /* |
2401 | * This is an overflow. |
2402 | */ |
2403 | lquanta[levels + 1] += incr; |
2404 | } |
2405 | |
2406 | static int |
2407 | dtrace_aggregate_llquantize_bucket(int16_t factor, int16_t low, int16_t high, |
2408 | int16_t nsteps, int64_t value) |
2409 | { |
2410 | int64_t this = 1, last, next; |
2411 | int base = 1, order; |
2412 | |
2413 | for (order = 0; order < low; ++order) |
2414 | this *= factor; |
2415 | |
2416 | /* |
2417 | * If our value is less than our factor taken to the power of the |
2418 | * low order of magnitude, it goes into the zeroth bucket. |
2419 | */ |
2420 | if (value < this) |
2421 | return 0; |
2422 | else |
2423 | last = this; |
2424 | |
2425 | for (this *= factor; order <= high; ++order) { |
2426 | int nbuckets = this > nsteps ? nsteps : this; |
2427 | |
2428 | /* |
2429 | * We should not generally get log/linear quantizations |
2430 | * with a high magnitude that allows 64-bits to |
2431 | * overflow, but we nonetheless protect against this |
2432 | * by explicitly checking for overflow, and clamping |
2433 | * our value accordingly. |
2434 | */ |
2435 | next = this * factor; |
2436 | if (next < this) { |
2437 | value = this - 1; |
2438 | } |
2439 | |
2440 | /* |
2441 | * If our value lies within this order of magnitude, |
2442 | * determine its position by taking the offset within |
2443 | * the order of magnitude, dividing by the bucket |
2444 | * width, and adding to our (accumulated) base. |
2445 | */ |
2446 | if (value < this) { |
2447 | return (base + (value - last) / (this / nbuckets)); |
2448 | } |
2449 | |
2450 | base += nbuckets - (nbuckets / factor); |
2451 | last = this; |
2452 | this = next; |
2453 | } |
2454 | |
2455 | /* |
2456 | * Our value is greater than or equal to our factor taken to the |
2457 | * power of one plus the high magnitude -- return the top bucket. |
2458 | */ |
2459 | return base; |
2460 | } |
2461 | |
2462 | static void |
2463 | dtrace_aggregate_llquantize(uint64_t *llquanta, uint64_t nval, uint64_t incr) |
2464 | { |
2465 | uint64_t arg = *llquanta++; |
2466 | uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(arg); |
2467 | uint16_t low = DTRACE_LLQUANTIZE_LOW(arg); |
2468 | uint16_t high = DTRACE_LLQUANTIZE_HIGH(arg); |
2469 | uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(arg); |
2470 | |
2471 | llquanta[dtrace_aggregate_llquantize_bucket(factor, low, high, nsteps, value: nval)] += incr; |
2472 | } |
2473 | |
2474 | /*ARGSUSED*/ |
2475 | static void |
2476 | dtrace_aggregate_avg(uint64_t *data, uint64_t nval, uint64_t arg) |
2477 | { |
2478 | #pragma unused(arg) /* __APPLE__ */ |
2479 | data[0]++; |
2480 | data[1] += nval; |
2481 | } |
2482 | |
2483 | /*ARGSUSED*/ |
2484 | static void |
2485 | dtrace_aggregate_stddev(uint64_t *data, uint64_t nval, uint64_t arg) |
2486 | { |
2487 | #pragma unused(arg) /* __APPLE__ */ |
2488 | int64_t snval = (int64_t)nval; |
2489 | uint64_t tmp[2]; |
2490 | |
2491 | data[0]++; |
2492 | data[1] += nval; |
2493 | |
2494 | /* |
2495 | * What we want to say here is: |
2496 | * |
2497 | * data[2] += nval * nval; |
2498 | * |
2499 | * But given that nval is 64-bit, we could easily overflow, so |
2500 | * we do this as 128-bit arithmetic. |
2501 | */ |
2502 | if (snval < 0) |
2503 | snval = -snval; |
2504 | |
2505 | dtrace_multiply_128(factor1: (uint64_t)snval, factor2: (uint64_t)snval, product: tmp); |
2506 | dtrace_add_128(addend1: data + 2, addend2: tmp, sum: data + 2); |
2507 | } |
2508 | |
2509 | /*ARGSUSED*/ |
2510 | static void |
2511 | dtrace_aggregate_count(uint64_t *oval, uint64_t nval, uint64_t arg) |
2512 | { |
2513 | #pragma unused(nval, arg) /* __APPLE__ */ |
2514 | *oval = *oval + 1; |
2515 | } |
2516 | |
2517 | /*ARGSUSED*/ |
2518 | static void |
2519 | dtrace_aggregate_sum(uint64_t *oval, uint64_t nval, uint64_t arg) |
2520 | { |
2521 | #pragma unused(arg) /* __APPLE__ */ |
2522 | *oval += nval; |
2523 | } |
2524 | |
2525 | /* |
2526 | * Aggregate given the tuple in the principal data buffer, and the aggregating |
2527 | * action denoted by the specified dtrace_aggregation_t. The aggregation |
2528 | * buffer is specified as the buf parameter. This routine does not return |
2529 | * failure; if there is no space in the aggregation buffer, the data will be |
2530 | * dropped, and a corresponding counter incremented. |
2531 | */ |
2532 | __attribute__((noinline)) |
2533 | static void |
2534 | dtrace_aggregate(dtrace_aggregation_t *agg, dtrace_buffer_t *dbuf, |
2535 | intptr_t offset, dtrace_buffer_t *buf, uint64_t expr, uint64_t arg) |
2536 | { |
2537 | #pragma unused(arg) |
2538 | dtrace_recdesc_t *rec = &agg->dtag_action.dta_rec; |
2539 | uint32_t i, ndx, size, fsize; |
2540 | uint32_t align = sizeof (uint64_t) - 1; |
2541 | dtrace_aggbuffer_t *agb; |
2542 | dtrace_aggkey_t *key; |
2543 | uint32_t hashval = 0, limit, isstr; |
2544 | caddr_t tomax, data, kdata; |
2545 | dtrace_actkind_t action; |
2546 | dtrace_action_t *act; |
2547 | uintptr_t offs; |
2548 | |
2549 | if (buf == NULL) |
2550 | return; |
2551 | |
2552 | if (!agg->dtag_hasarg) { |
2553 | /* |
2554 | * Currently, only quantize() and lquantize() take additional |
2555 | * arguments, and they have the same semantics: an increment |
2556 | * value that defaults to 1 when not present. If additional |
2557 | * aggregating actions take arguments, the setting of the |
2558 | * default argument value will presumably have to become more |
2559 | * sophisticated... |
2560 | */ |
2561 | arg = 1; |
2562 | } |
2563 | |
2564 | action = agg->dtag_action.dta_kind - DTRACEACT_AGGREGATION; |
2565 | size = rec->dtrd_offset - agg->dtag_base; |
2566 | fsize = size + rec->dtrd_size; |
2567 | |
2568 | ASSERT(dbuf->dtb_tomax != NULL); |
2569 | data = dbuf->dtb_tomax + offset + agg->dtag_base; |
2570 | |
2571 | if ((tomax = buf->dtb_tomax) == NULL) { |
2572 | dtrace_buffer_drop(buf); |
2573 | return; |
2574 | } |
2575 | |
2576 | /* |
2577 | * The metastructure is always at the bottom of the buffer. |
2578 | */ |
2579 | agb = (dtrace_aggbuffer_t *)(tomax + buf->dtb_size - |
2580 | sizeof (dtrace_aggbuffer_t)); |
2581 | |
2582 | if (buf->dtb_offset == 0) { |
2583 | /* |
2584 | * We just kludge up approximately 1/8th of the size to be |
2585 | * buckets. If this guess ends up being routinely |
2586 | * off-the-mark, we may need to dynamically readjust this |
2587 | * based on past performance. |
2588 | */ |
2589 | uintptr_t hashsize = (buf->dtb_size >> 3) / sizeof (uintptr_t); |
2590 | |
2591 | if ((uintptr_t)agb - hashsize * sizeof (dtrace_aggkey_t *) < |
2592 | (uintptr_t)tomax || hashsize == 0) { |
2593 | /* |
2594 | * We've been given a ludicrously small buffer; |
2595 | * increment our drop count and leave. |
2596 | */ |
2597 | dtrace_buffer_drop(buf); |
2598 | return; |
2599 | } |
2600 | |
2601 | /* |
2602 | * And now, a pathetic attempt to try to get a an odd (or |
2603 | * perchance, a prime) hash size for better hash distribution. |
2604 | */ |
2605 | if (hashsize > (DTRACE_AGGHASHSIZE_SLEW << 3)) |
2606 | hashsize -= DTRACE_AGGHASHSIZE_SLEW; |
2607 | |
2608 | agb->dtagb_hashsize = hashsize; |
2609 | agb->dtagb_hash = (dtrace_aggkey_t **)((uintptr_t)agb - |
2610 | agb->dtagb_hashsize * sizeof (dtrace_aggkey_t *)); |
2611 | agb->dtagb_free = (uintptr_t)agb->dtagb_hash; |
2612 | |
2613 | for (i = 0; i < agb->dtagb_hashsize; i++) |
2614 | agb->dtagb_hash[i] = NULL; |
2615 | } |
2616 | |
2617 | ASSERT(agg->dtag_first != NULL); |
2618 | ASSERT(agg->dtag_first->dta_intuple); |
2619 | |
2620 | /* |
2621 | * Calculate the hash value based on the key. Note that we _don't_ |
2622 | * include the aggid in the hashing (but we will store it as part of |
2623 | * the key). The hashing algorithm is Bob Jenkins' "One-at-a-time" |
2624 | * algorithm: a simple, quick algorithm that has no known funnels, and |
2625 | * gets good distribution in practice. The efficacy of the hashing |
2626 | * algorithm (and a comparison with other algorithms) may be found by |
2627 | * running the ::dtrace_aggstat MDB dcmd. |
2628 | */ |
2629 | for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) { |
2630 | i = act->dta_rec.dtrd_offset - agg->dtag_base; |
2631 | limit = i + act->dta_rec.dtrd_size; |
2632 | ASSERT(limit <= size); |
2633 | isstr = DTRACEACT_ISSTRING(act); |
2634 | |
2635 | for (; i < limit; i++) { |
2636 | hashval += data[i]; |
2637 | hashval += (hashval << 10); |
2638 | hashval ^= (hashval >> 6); |
2639 | |
2640 | if (isstr && data[i] == '\0') |
2641 | break; |
2642 | } |
2643 | } |
2644 | |
2645 | hashval += (hashval << 3); |
2646 | hashval ^= (hashval >> 11); |
2647 | hashval += (hashval << 15); |
2648 | |
2649 | /* |
2650 | * Yes, the divide here is expensive -- but it's generally the least |
2651 | * of the performance issues given the amount of data that we iterate |
2652 | * over to compute hash values, compare data, etc. |
2653 | */ |
2654 | ndx = hashval % agb->dtagb_hashsize; |
2655 | |
2656 | for (key = agb->dtagb_hash[ndx]; key != NULL; key = key->dtak_next) { |
2657 | ASSERT((caddr_t)key >= tomax); |
2658 | ASSERT((caddr_t)key < tomax + buf->dtb_size); |
2659 | |
2660 | if (hashval != key->dtak_hashval || key->dtak_size != size) |
2661 | continue; |
2662 | |
2663 | kdata = key->dtak_data; |
2664 | ASSERT(kdata >= tomax && kdata < tomax + buf->dtb_size); |
2665 | |
2666 | for (act = agg->dtag_first; act->dta_intuple; |
2667 | act = act->dta_next) { |
2668 | i = act->dta_rec.dtrd_offset - agg->dtag_base; |
2669 | limit = i + act->dta_rec.dtrd_size; |
2670 | ASSERT(limit <= size); |
2671 | isstr = DTRACEACT_ISSTRING(act); |
2672 | |
2673 | for (; i < limit; i++) { |
2674 | if (kdata[i] != data[i]) |
2675 | goto next; |
2676 | |
2677 | if (isstr && data[i] == '\0') |
2678 | break; |
2679 | } |
2680 | } |
2681 | |
2682 | if (action != key->dtak_action) { |
2683 | /* |
2684 | * We are aggregating on the same value in the same |
2685 | * aggregation with two different aggregating actions. |
2686 | * (This should have been picked up in the compiler, |
2687 | * so we may be dealing with errant or devious DIF.) |
2688 | * This is an error condition; we indicate as much, |
2689 | * and return. |
2690 | */ |
2691 | DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); |
2692 | return; |
2693 | } |
2694 | |
2695 | /* |
2696 | * This is a hit: we need to apply the aggregator to |
2697 | * the value at this key. |
2698 | */ |
2699 | agg->dtag_aggregate((uint64_t *)(kdata + size), expr, arg); |
2700 | return; |
2701 | next: |
2702 | continue; |
2703 | } |
2704 | |
2705 | /* |
2706 | * We didn't find it. We need to allocate some zero-filled space, |
2707 | * link it into the hash table appropriately, and apply the aggregator |
2708 | * to the (zero-filled) value. |
2709 | */ |
2710 | offs = buf->dtb_offset; |
2711 | while (offs & (align - 1)) |
2712 | offs += sizeof (uint32_t); |
2713 | |
2714 | /* |
2715 | * If we don't have enough room to both allocate a new key _and_ |
2716 | * its associated data, increment the drop count and return. |
2717 | */ |
2718 | if ((uintptr_t)tomax + offs + fsize > |
2719 | agb->dtagb_free - sizeof (dtrace_aggkey_t)) { |
2720 | dtrace_buffer_drop(buf); |
2721 | return; |
2722 | } |
2723 | |
2724 | /*CONSTCOND*/ |
2725 | ASSERT(!(sizeof (dtrace_aggkey_t) & (sizeof (uintptr_t) - 1))); |
2726 | key = (dtrace_aggkey_t *)(agb->dtagb_free - sizeof (dtrace_aggkey_t)); |
2727 | agb->dtagb_free -= sizeof (dtrace_aggkey_t); |
2728 | |
2729 | key->dtak_data = kdata = tomax + offs; |
2730 | buf->dtb_offset = offs + fsize; |
2731 | |
2732 | /* |
2733 | * Now copy the data across. |
2734 | */ |
2735 | *((dtrace_aggid_t *)kdata) = agg->dtag_id; |
2736 | |
2737 | for (i = sizeof (dtrace_aggid_t); i < size; i++) |
2738 | kdata[i] = data[i]; |
2739 | |
2740 | /* |
2741 | * Because strings are not zeroed out by default, we need to iterate |
2742 | * looking for actions that store strings, and we need to explicitly |
2743 | * pad these strings out with zeroes. |
2744 | */ |
2745 | for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) { |
2746 | int nul; |
2747 | |
2748 | if (!DTRACEACT_ISSTRING(act)) |
2749 | continue; |
2750 | |
2751 | i = act->dta_rec.dtrd_offset - agg->dtag_base; |
2752 | limit = i + act->dta_rec.dtrd_size; |
2753 | ASSERT(limit <= size); |
2754 | |
2755 | for (nul = 0; i < limit; i++) { |
2756 | if (nul) { |
2757 | kdata[i] = '\0'; |
2758 | continue; |
2759 | } |
2760 | |
2761 | if (data[i] != '\0') |
2762 | continue; |
2763 | |
2764 | nul = 1; |
2765 | } |
2766 | } |
2767 | |
2768 | for (i = size; i < fsize; i++) |
2769 | kdata[i] = 0; |
2770 | |
2771 | key->dtak_hashval = hashval; |
2772 | key->dtak_size = size; |
2773 | key->dtak_action = action; |
2774 | key->dtak_next = agb->dtagb_hash[ndx]; |
2775 | agb->dtagb_hash[ndx] = key; |
2776 | |
2777 | /* |
2778 | * Finally, apply the aggregator. |
2779 | */ |
2780 | *((uint64_t *)(key->dtak_data + size)) = agg->dtag_initial; |
2781 | agg->dtag_aggregate((uint64_t *)(key->dtak_data + size), expr, arg); |
2782 | } |
2783 | |
2784 | /* |
2785 | * Given consumer state, this routine finds a speculation in the INACTIVE |
2786 | * state and transitions it into the ACTIVE state. If there is no speculation |
2787 | * in the INACTIVE state, 0 is returned. In this case, no error counter is |
2788 | * incremented -- it is up to the caller to take appropriate action. |
2789 | */ |
2790 | static int |
2791 | dtrace_speculation(dtrace_state_t *state) |
2792 | { |
2793 | int i = 0; |
2794 | dtrace_speculation_state_t current; |
2795 | uint32_t *stat = &state->dts_speculations_unavail, count; |
2796 | |
2797 | while (i < state->dts_nspeculations) { |
2798 | dtrace_speculation_t *spec = &state->dts_speculations[i]; |
2799 | |
2800 | current = spec->dtsp_state; |
2801 | |
2802 | if (current != DTRACESPEC_INACTIVE) { |
2803 | if (current == DTRACESPEC_COMMITTINGMANY || |
2804 | current == DTRACESPEC_COMMITTING || |
2805 | current == DTRACESPEC_DISCARDING) |
2806 | stat = &state->dts_speculations_busy; |
2807 | i++; |
2808 | continue; |
2809 | } |
2810 | |
2811 | if (dtrace_cas32((uint32_t *)&spec->dtsp_state, |
2812 | current, DTRACESPEC_ACTIVE) == current) |
2813 | return (i + 1); |
2814 | } |
2815 | |
2816 | /* |
2817 | * We couldn't find a speculation. If we found as much as a single |
2818 | * busy speculation buffer, we'll attribute this failure as "busy" |
2819 | * instead of "unavail". |
2820 | */ |
2821 | do { |
2822 | count = *stat; |
2823 | } while (dtrace_cas32(stat, count, count + 1) != count); |
2824 | |
2825 | return (0); |
2826 | } |
2827 | |
2828 | /* |
2829 | * This routine commits an active speculation. If the specified speculation |
2830 | * is not in a valid state to perform a commit(), this routine will silently do |
2831 | * nothing. The state of the specified speculation is transitioned according |
2832 | * to the state transition diagram outlined in <sys/dtrace_impl.h> |
2833 | */ |
2834 | static void |
2835 | dtrace_speculation_commit(dtrace_state_t *state, processorid_t cpu, |
2836 | dtrace_specid_t which) |
2837 | { |
2838 | dtrace_speculation_t *spec; |
2839 | dtrace_buffer_t *src, *dest; |
2840 | uintptr_t daddr, saddr, dlimit, slimit; |
2841 | dtrace_speculation_state_t current, new = DTRACESPEC_INACTIVE; |
2842 | intptr_t offs; |
2843 | uint64_t timestamp; |
2844 | |
2845 | if (which == 0) |
2846 | return; |
2847 | |
2848 | if (which > (dtrace_specid_t)state->dts_nspeculations) { |
2849 | cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; |
2850 | return; |
2851 | } |
2852 | |
2853 | spec = &state->dts_speculations[which - 1]; |
2854 | src = &spec->dtsp_buffer[cpu]; |
2855 | dest = &state->dts_buffer[cpu]; |
2856 | |
2857 | do { |
2858 | current = spec->dtsp_state; |
2859 | |
2860 | if (current == DTRACESPEC_COMMITTINGMANY) |
2861 | break; |
2862 | |
2863 | switch (current) { |
2864 | case DTRACESPEC_INACTIVE: |
2865 | case DTRACESPEC_DISCARDING: |
2866 | return; |
2867 | |
2868 | case DTRACESPEC_COMMITTING: |
2869 | /* |
2870 | * This is only possible if we are (a) commit()'ing |
2871 | * without having done a prior speculate() on this CPU |
2872 | * and (b) racing with another commit() on a different |
2873 | * CPU. There's nothing to do -- we just assert that |
2874 | * our offset is 0. |
2875 | */ |
2876 | ASSERT(src->dtb_offset == 0); |
2877 | return; |
2878 | |
2879 | case DTRACESPEC_ACTIVE: |
2880 | new = DTRACESPEC_COMMITTING; |
2881 | break; |
2882 | |
2883 | case DTRACESPEC_ACTIVEONE: |
2884 | /* |
2885 | * This speculation is active on one CPU. If our |
2886 | * buffer offset is non-zero, we know that the one CPU |
2887 | * must be us. Otherwise, we are committing on a |
2888 | * different CPU from the speculate(), and we must |
2889 | * rely on being asynchronously cleaned. |
2890 | */ |
2891 | if (src->dtb_offset != 0) { |
2892 | new = DTRACESPEC_COMMITTING; |
2893 | break; |
2894 | } |
2895 | OS_FALLTHROUGH; |
2896 | |
2897 | case DTRACESPEC_ACTIVEMANY: |
2898 | new = DTRACESPEC_COMMITTINGMANY; |
2899 | break; |
2900 | |
2901 | default: |
2902 | ASSERT(0); |
2903 | } |
2904 | } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, |
2905 | current, new) != current); |
2906 | |
2907 | /* |
2908 | * We have set the state to indicate that we are committing this |
2909 | * speculation. Now reserve the necessary space in the destination |
2910 | * buffer. |
2911 | */ |
2912 | if ((offs = dtrace_buffer_reserve(dest, src->dtb_offset, |
2913 | sizeof (uint64_t), state, NULL)) < 0) { |
2914 | dtrace_buffer_drop(dest); |
2915 | goto out; |
2916 | } |
2917 | |
2918 | /* |
2919 | * We have sufficient space to copy the speculative buffer into the |
2920 | * primary buffer. First, modify the speculative buffer, filling |
2921 | * in the timestamp of all entries with the current time. The data |
2922 | * must have the commit() time rather than the time it was traced, |
2923 | * so that all entries in the primary buffer are in timestamp order. |
2924 | */ |
2925 | timestamp = dtrace_gethrtime(); |
2926 | saddr = (uintptr_t)src->dtb_tomax; |
2927 | slimit = saddr + src->dtb_offset; |
2928 | while (saddr < slimit) { |
2929 | size_t size; |
2930 | dtrace_rechdr_t *dtrh = (dtrace_rechdr_t *)saddr; |
2931 | |
2932 | if (dtrh->dtrh_epid == DTRACE_EPIDNONE) { |
2933 | saddr += sizeof (dtrace_epid_t); |
2934 | continue; |
2935 | } |
2936 | |
2937 | ASSERT(dtrh->dtrh_epid <= ((dtrace_epid_t) state->dts_necbs)); |
2938 | size = state->dts_ecbs[dtrh->dtrh_epid - 1]->dte_size; |
2939 | |
2940 | ASSERT(saddr + size <= slimit); |
2941 | ASSERT(size >= sizeof(dtrace_rechdr_t)); |
2942 | ASSERT(DTRACE_RECORD_LOAD_TIMESTAMP(dtrh) == UINT64_MAX); |
2943 | |
2944 | DTRACE_RECORD_STORE_TIMESTAMP(dtrh, timestamp); |
2945 | |
2946 | saddr += size; |
2947 | } |
2948 | |
2949 | /* |
2950 | * Copy the buffer across. (Note that this is a |
2951 | * highly subobtimal bcopy(); in the unlikely event that this becomes |
2952 | * a serious performance issue, a high-performance DTrace-specific |
2953 | * bcopy() should obviously be invented.) |
2954 | */ |
2955 | daddr = (uintptr_t)dest->dtb_tomax + offs; |
2956 | dlimit = daddr + src->dtb_offset; |
2957 | saddr = (uintptr_t)src->dtb_tomax; |
2958 | |
2959 | /* |
2960 | * First, the aligned portion. |
2961 | */ |
2962 | while (dlimit - daddr >= sizeof (uint64_t)) { |
2963 | *((uint64_t *)daddr) = *((uint64_t *)saddr); |
2964 | |
2965 | daddr += sizeof (uint64_t); |
2966 | saddr += sizeof (uint64_t); |
2967 | } |
2968 | |
2969 | /* |
2970 | * Now any left-over bit... |
2971 | */ |
2972 | while (dlimit - daddr) |
2973 | *((uint8_t *)daddr++) = *((uint8_t *)saddr++); |
2974 | |
2975 | /* |
2976 | * Finally, commit the reserved space in the destination buffer. |
2977 | */ |
2978 | dest->dtb_offset = offs + src->dtb_offset; |
2979 | |
2980 | out: |
2981 | /* |
2982 | * If we're lucky enough to be the only active CPU on this speculation |
2983 | * buffer, we can just set the state back to DTRACESPEC_INACTIVE. |
2984 | */ |
2985 | if (current == DTRACESPEC_ACTIVE || |
2986 | (current == DTRACESPEC_ACTIVEONE && new == DTRACESPEC_COMMITTING)) { |
2987 | uint32_t rval = dtrace_cas32((uint32_t *)&spec->dtsp_state, |
2988 | DTRACESPEC_COMMITTING, DTRACESPEC_INACTIVE); |
2989 | #pragma unused(rval) /* __APPLE__ */ |
2990 | |
2991 | ASSERT(rval == DTRACESPEC_COMMITTING); |
2992 | } |
2993 | |
2994 | src->dtb_offset = 0; |
2995 | src->dtb_xamot_drops += src->dtb_drops; |
2996 | src->dtb_drops = 0; |
2997 | } |
2998 | |
2999 | /* |
3000 | * This routine discards an active speculation. If the specified speculation |
3001 | * is not in a valid state to perform a discard(), this routine will silently |
3002 | * do nothing. The state of the specified speculation is transitioned |
3003 | * according to the state transition diagram outlined in <sys/dtrace_impl.h> |
3004 | */ |
3005 | __attribute__((noinline)) |
3006 | static void |
3007 | dtrace_speculation_discard(dtrace_state_t *state, processorid_t cpu, |
3008 | dtrace_specid_t which) |
3009 | { |
3010 | dtrace_speculation_t *spec; |
3011 | dtrace_speculation_state_t current, new = DTRACESPEC_INACTIVE; |
3012 | dtrace_buffer_t *buf; |
3013 | |
3014 | if (which == 0) |
3015 | return; |
3016 | |
3017 | if (which > (dtrace_specid_t)state->dts_nspeculations) { |
3018 | cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; |
3019 | return; |
3020 | } |
3021 | |
3022 | spec = &state->dts_speculations[which - 1]; |
3023 | buf = &spec->dtsp_buffer[cpu]; |
3024 | |
3025 | do { |
3026 | current = spec->dtsp_state; |
3027 | |
3028 | switch (current) { |
3029 | case DTRACESPEC_INACTIVE: |
3030 | case DTRACESPEC_COMMITTINGMANY: |
3031 | case DTRACESPEC_COMMITTING: |
3032 | case DTRACESPEC_DISCARDING: |
3033 | return; |
3034 | |
3035 | case DTRACESPEC_ACTIVE: |
3036 | case DTRACESPEC_ACTIVEMANY: |
3037 | new = DTRACESPEC_DISCARDING; |
3038 | break; |
3039 | |
3040 | case DTRACESPEC_ACTIVEONE: |
3041 | if (buf->dtb_offset != 0) { |
3042 | new = DTRACESPEC_INACTIVE; |
3043 | } else { |
3044 | new = DTRACESPEC_DISCARDING; |
3045 | } |
3046 | break; |
3047 | |
3048 | default: |
3049 | ASSERT(0); |
3050 | } |
3051 | } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, |
3052 | current, new) != current); |
3053 | |
3054 | buf->dtb_offset = 0; |
3055 | buf->dtb_drops = 0; |
3056 | } |
3057 | |
3058 | /* |
3059 | * Note: not called from probe context. This function is called |
3060 | * asynchronously from cross call context to clean any speculations that are |
3061 | * in the COMMITTINGMANY or DISCARDING states. These speculations may not be |
3062 | * transitioned back to the INACTIVE state until all CPUs have cleaned the |
3063 | * speculation. |
3064 | */ |
3065 | static void |
3066 | dtrace_speculation_clean_here(dtrace_state_t *state) |
3067 | { |
3068 | dtrace_icookie_t cookie; |
3069 | processorid_t cpu = CPU->cpu_id; |
3070 | dtrace_buffer_t *dest = &state->dts_buffer[cpu]; |
3071 | dtrace_specid_t i; |
3072 | |
3073 | cookie = dtrace_interrupt_disable(); |
3074 | |
3075 | if (dest->dtb_tomax == NULL) { |
3076 | dtrace_interrupt_enable(cookie); |
3077 | return; |
3078 | } |
3079 | |
3080 | for (i = 0; i < (dtrace_specid_t)state->dts_nspeculations; i++) { |
3081 | dtrace_speculation_t *spec = &state->dts_speculations[i]; |
3082 | dtrace_buffer_t *src = &spec->dtsp_buffer[cpu]; |
3083 | |
3084 | if (src->dtb_tomax == NULL) |
3085 | continue; |
3086 | |
3087 | if (spec->dtsp_state == DTRACESPEC_DISCARDING) { |
3088 | src->dtb_offset = 0; |
3089 | continue; |
3090 | } |
3091 | |
3092 | if (spec->dtsp_state != DTRACESPEC_COMMITTINGMANY) |
3093 | continue; |
3094 | |
3095 | if (src->dtb_offset == 0) |
3096 | continue; |
3097 | |
3098 | dtrace_speculation_commit(state, cpu, which: i + 1); |
3099 | } |
3100 | |
3101 | dtrace_interrupt_enable(cookie); |
3102 | } |
3103 | |
3104 | /* |
3105 | * Note: not called from probe context. This function is called |
3106 | * asynchronously (and at a regular interval) to clean any speculations that |
3107 | * are in the COMMITTINGMANY or DISCARDING states. If it discovers that there |
3108 | * is work to be done, it cross calls all CPUs to perform that work; |
3109 | * COMMITMANY and DISCARDING speculations may not be transitioned back to the |
3110 | * INACTIVE state until they have been cleaned by all CPUs. |
3111 | */ |
3112 | static void |
3113 | dtrace_speculation_clean(dtrace_state_t *state) |
3114 | { |
3115 | int work = 0; |
3116 | uint32_t rv; |
3117 | dtrace_specid_t i; |
3118 | |
3119 | for (i = 0; i < (dtrace_specid_t)state->dts_nspeculations; i++) { |
3120 | dtrace_speculation_t *spec = &state->dts_speculations[i]; |
3121 | |
3122 | ASSERT(!spec->dtsp_cleaning); |
3123 | |
3124 | if (spec->dtsp_state != DTRACESPEC_DISCARDING && |
3125 | spec->dtsp_state != DTRACESPEC_COMMITTINGMANY) |
3126 | continue; |
3127 | |
3128 | work++; |
3129 | spec->dtsp_cleaning = 1; |
3130 | } |
3131 | |
3132 | if (!work) |
3133 | return; |
3134 | |
3135 | dtrace_xcall(DTRACE_CPUALL, |
3136 | (dtrace_xcall_t)dtrace_speculation_clean_here, state); |
3137 | |
3138 | /* |
3139 | * We now know that all CPUs have committed or discarded their |
3140 | * speculation buffers, as appropriate. We can now set the state |
3141 | * to inactive. |
3142 | */ |
3143 | for (i = 0; i < (dtrace_specid_t)state->dts_nspeculations; i++) { |
3144 | dtrace_speculation_t *spec = &state->dts_speculations[i]; |
3145 | dtrace_speculation_state_t current, new; |
3146 | |
3147 | if (!spec->dtsp_cleaning) |
3148 | continue; |
3149 | |
3150 | current = spec->dtsp_state; |
3151 | ASSERT(current == DTRACESPEC_DISCARDING || |
3152 | current == DTRACESPEC_COMMITTINGMANY); |
3153 | |
3154 | new = DTRACESPEC_INACTIVE; |
3155 | |
3156 | rv = dtrace_cas32((uint32_t *)&spec->dtsp_state, current, new); |
3157 | ASSERT(rv == current); |
3158 | spec->dtsp_cleaning = 0; |
3159 | } |
3160 | } |
3161 | |
3162 | /* |
3163 | * Called as part of a speculate() to get the speculative buffer associated |
3164 | * with a given speculation. Returns NULL if the specified speculation is not |
3165 | * in an ACTIVE state. If the speculation is in the ACTIVEONE state -- and |
3166 | * the active CPU is not the specified CPU -- the speculation will be |
3167 | * atomically transitioned into the ACTIVEMANY state. |
3168 | */ |
3169 | __attribute__((noinline)) |
3170 | static dtrace_buffer_t * |
3171 | dtrace_speculation_buffer(dtrace_state_t *state, processorid_t cpuid, |
3172 | dtrace_specid_t which) |
3173 | { |
3174 | dtrace_speculation_t *spec; |
3175 | dtrace_speculation_state_t current, new = DTRACESPEC_INACTIVE; |
3176 | dtrace_buffer_t *buf; |
3177 | |
3178 | if (which == 0) |
3179 | return (NULL); |
3180 | |
3181 | if (which > (dtrace_specid_t)state->dts_nspeculations) { |
3182 | cpu_core[cpuid].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; |
3183 | return (NULL); |
3184 | } |
3185 | |
3186 | spec = &state->dts_speculations[which - 1]; |
3187 | buf = &spec->dtsp_buffer[cpuid]; |
3188 | |
3189 | do { |
3190 | current = spec->dtsp_state; |
3191 | |
3192 | switch (current) { |
3193 | case DTRACESPEC_INACTIVE: |
3194 | case DTRACESPEC_COMMITTINGMANY: |
3195 | case DTRACESPEC_DISCARDING: |
3196 | return (NULL); |
3197 | |
3198 | case DTRACESPEC_COMMITTING: |
3199 | ASSERT(buf->dtb_offset == 0); |
3200 | return (NULL); |
3201 | |
3202 | case DTRACESPEC_ACTIVEONE: |
3203 | /* |
3204 | * This speculation is currently active on one CPU. |
3205 | * Check the offset in the buffer; if it's non-zero, |
3206 | * that CPU must be us (and we leave the state alone). |
3207 | * If it's zero, assume that we're starting on a new |
3208 | * CPU -- and change the state to indicate that the |
3209 | * speculation is active on more than one CPU. |
3210 | */ |
3211 | if (buf->dtb_offset != 0) |
3212 | return (buf); |
3213 | |
3214 | new = DTRACESPEC_ACTIVEMANY; |
3215 | break; |
3216 | |
3217 | case DTRACESPEC_ACTIVEMANY: |
3218 | return (buf); |
3219 | |
3220 | case DTRACESPEC_ACTIVE: |
3221 | new = DTRACESPEC_ACTIVEONE; |
3222 | break; |
3223 | |
3224 | default: |
3225 | ASSERT(0); |
3226 | } |
3227 | } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, |
3228 | current, new) != current); |
3229 | |
3230 | ASSERT(new == DTRACESPEC_ACTIVEONE || new == DTRACESPEC_ACTIVEMANY); |
3231 | return (buf); |
3232 | } |
3233 | |
3234 | /* |
3235 | * Return a string. In the event that the user lacks the privilege to access |
3236 | * arbitrary kernel memory, we copy the string out to scratch memory so that we |
3237 | * don't fail access checking. |
3238 | * |
3239 | * dtrace_dif_variable() uses this routine as a helper for various |
3240 | * builtin values such as 'execname' and 'probefunc.' |
3241 | */ |
3242 | static |
3243 | uintptr_t |
3244 | dtrace_dif_varstr(uintptr_t addr, dtrace_state_t *state, |
3245 | dtrace_mstate_t *mstate) |
3246 | { |
3247 | uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; |
3248 | uintptr_t ret; |
3249 | size_t strsz; |
3250 | |
3251 | /* |
3252 | * The easy case: this probe is allowed to read all of memory, so |
3253 | * we can just return this as a vanilla pointer. |
3254 | */ |
3255 | if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) |
3256 | return (addr); |
3257 | |
3258 | /* |
3259 | * This is the tougher case: we copy the string in question from |
3260 | * kernel memory into scratch memory and return it that way: this |
3261 | * ensures that we won't trip up when access checking tests the |
3262 | * BYREF return value. |
3263 | */ |
3264 | strsz = dtrace_strlen(s: (char *)addr, lim: size) + 1; |
3265 | |
3266 | if (mstate->dtms_scratch_ptr + strsz > |
3267 | mstate->dtms_scratch_base + mstate->dtms_scratch_size) { |
3268 | DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); |
3269 | return (0); |
3270 | } |
3271 | |
3272 | dtrace_strcpy(src: (const void *)addr, dst: (void *)mstate->dtms_scratch_ptr, |
3273 | len: strsz); |
3274 | ret = mstate->dtms_scratch_ptr; |
3275 | mstate->dtms_scratch_ptr += strsz; |
3276 | return (ret); |
3277 | } |
3278 | |
3279 | /* |
3280 | * This function implements the DIF emulator's variable lookups. The emulator |
3281 | * passes a reserved variable identifier and optional built-in array index. |
3282 | */ |
3283 | static uint64_t |
3284 | dtrace_dif_variable(dtrace_mstate_t *mstate, dtrace_state_t *state, uint64_t v, |
3285 | uint64_t ndx) |
3286 | { |
3287 | /* |
3288 | * If we're accessing one of the uncached arguments, we'll turn this |
3289 | * into a reference in the args array. |
3290 | */ |
3291 | if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) { |
3292 | ndx = v - DIF_VAR_ARG0; |
3293 | v = DIF_VAR_ARGS; |
3294 | } |
3295 | |
3296 | switch (v) { |
3297 | case DIF_VAR_ARGS: |
3298 | ASSERT(mstate->dtms_present & DTRACE_MSTATE_ARGS); |
3299 | if (ndx >= sizeof (mstate->dtms_arg) / |
3300 | sizeof (mstate->dtms_arg[0])) { |
3301 | int aframes = mstate->dtms_probe->dtpr_aframes + 2; |
3302 | dtrace_vstate_t *vstate = &state->dts_vstate; |
3303 | dtrace_provider_t *pv; |
3304 | uint64_t val; |
3305 | int argndx = ndx; |
3306 | |
3307 | if (argndx < 0) { |
3308 | DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); |
3309 | return (0); |
3310 | } |
3311 | |
3312 | pv = mstate->dtms_probe->dtpr_provider; |
3313 | if (pv->dtpv_pops.dtps_getargval != NULL) |
3314 | val = pv->dtpv_pops.dtps_getargval(pv->dtpv_arg, |
3315 | mstate->dtms_probe->dtpr_id, |
3316 | mstate->dtms_probe->dtpr_arg, argndx, aframes); |
3317 | /* Special case access of arg5 as passed to dtrace_probe_error() (which see.) */ |
3318 | else if (mstate->dtms_probe->dtpr_id == dtrace_probeid_error && argndx == 5) { |
3319 | return ((dtrace_state_t *)(uintptr_t)(mstate->dtms_arg[0]))->dts_arg_error_illval; |
3320 | } |
3321 | |
3322 | else |
3323 | val = dtrace_getarg(argndx, aframes, mstate, vstate); |
3324 | |
3325 | /* |
3326 | * This is regrettably required to keep the compiler |
3327 | * from tail-optimizing the call to dtrace_getarg(). |
3328 | * The condition always evaluates to true, but the |
3329 | * compiler has no way of figuring that out a priori. |
3330 | * (None of this would be necessary if the compiler |
3331 | * could be relied upon to _always_ tail-optimize |
3332 | * the call to dtrace_getarg() -- but it can't.) |
3333 | */ |
3334 | if (mstate->dtms_probe != NULL) |
3335 | return (val); |
3336 | |
3337 | ASSERT(0); |
3338 | } |
3339 | |
3340 | return (mstate->dtms_arg[ndx]); |
3341 | |
3342 | case DIF_VAR_UREGS: { |
3343 | thread_t thread; |
3344 | |
3345 | if (!dtrace_priv_proc(state)) |
3346 | return (0); |
3347 | |
3348 | if ((thread = current_thread()) == NULL) { |
3349 | DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); |
3350 | cpu_core[CPU->cpu_id].cpuc_dtrace_illval = 0; |
3351 | return (0); |
3352 | } |
3353 | |
3354 | return (dtrace_getreg(find_user_regs(thread), ndx)); |
3355 | } |
3356 | |
3357 | case DIF_VAR_VMREGS: { |
3358 | uint64_t rval; |
3359 | |
3360 | if (!dtrace_priv_kernel(state)) |
3361 | return (0); |
3362 | |
3363 | DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); |
3364 | |
3365 | rval = dtrace_getvmreg(ndx); |
3366 | |
3367 | DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); |
3368 | |
3369 | return (rval); |
3370 | } |
3371 | |
3372 | case DIF_VAR_CURTHREAD: |
3373 | if (!dtrace_priv_kernel(state)) |
3374 | return (0); |
3375 | |
3376 | return ((uint64_t)(uintptr_t)current_thread()); |
3377 | |
3378 | case DIF_VAR_TIMESTAMP: |
3379 | if (!(mstate->dtms_present & DTRACE_MSTATE_TIMESTAMP)) { |
3380 | mstate->dtms_timestamp = dtrace_gethrtime(); |
3381 | mstate->dtms_present |= DTRACE_MSTATE_TIMESTAMP; |
3382 | } |
3383 | return (mstate->dtms_timestamp); |
3384 | |
3385 | case DIF_VAR_VTIMESTAMP: |
3386 | ASSERT(dtrace_vtime_references != 0); |
3387 | return (dtrace_get_thread_vtime(current_thread())); |
3388 | |
3389 | case DIF_VAR_WALLTIMESTAMP: |
3390 | if (!(mstate->dtms_present & DTRACE_MSTATE_WALLTIMESTAMP)) { |
3391 | mstate->dtms_walltimestamp = dtrace_gethrestime(); |
3392 | mstate->dtms_present |= DTRACE_MSTATE_WALLTIMESTAMP; |
3393 | } |
3394 | return (mstate->dtms_walltimestamp); |
3395 | |
3396 | case DIF_VAR_MACHTIMESTAMP: |
3397 | if (!(mstate->dtms_present & DTRACE_MSTATE_MACHTIMESTAMP)) { |
3398 | mstate->dtms_machtimestamp = mach_absolute_time(); |
3399 | mstate->dtms_present |= DTRACE_MSTATE_MACHTIMESTAMP; |
3400 | } |
3401 | return (mstate->dtms_machtimestamp); |
3402 | |
3403 | case DIF_VAR_MACHCTIMESTAMP: |
3404 | if (!(mstate->dtms_present & DTRACE_MSTATE_MACHCTIMESTAMP)) { |
3405 | mstate->dtms_machctimestamp = mach_continuous_time(); |
3406 | mstate->dtms_present |= DTRACE_MSTATE_MACHCTIMESTAMP; |
3407 | } |
3408 | return (mstate->dtms_machctimestamp); |
3409 | |
3410 | |
3411 | case DIF_VAR_CPU: |
3412 | return ((uint64_t) dtrace_get_thread_last_cpu_id(current_thread())); |
3413 | |
3414 | case DIF_VAR_IPL: |
3415 | if (!dtrace_priv_kernel(state)) |
3416 | return (0); |
3417 | if (!(mstate->dtms_present & DTRACE_MSTATE_IPL)) { |
3418 | mstate->dtms_ipl = dtrace_getipl(); |
3419 | mstate->dtms_present |= DTRACE_MSTATE_IPL; |
3420 | } |
3421 | return (mstate->dtms_ipl); |
3422 | |
3423 | case DIF_VAR_EPID: |
3424 | ASSERT(mstate->dtms_present & DTRACE_MSTATE_EPID); |
3425 | return (mstate->dtms_epid); |
3426 | |
3427 | case DIF_VAR_ID: |
3428 | ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); |
3429 | return (mstate->dtms_probe->dtpr_id); |
3430 | |
3431 | case DIF_VAR_STACKDEPTH: |
3432 | if (!dtrace_priv_kernel(state)) |
3433 | return (0); |
3434 | if (!(mstate->dtms_present & DTRACE_MSTATE_STACKDEPTH)) { |
3435 | int aframes = mstate->dtms_probe->dtpr_aframes + 2; |
3436 | |
3437 | mstate->dtms_stackdepth = dtrace_getstackdepth(aframes); |
3438 | mstate->dtms_present |= DTRACE_MSTATE_STACKDEPTH; |
3439 | } |
3440 | return (mstate->dtms_stackdepth); |
3441 | |
3442 | case DIF_VAR_USTACKDEPTH: |
3443 | if (!dtrace_priv_proc(state)) |
3444 | return (0); |
3445 | if (!(mstate->dtms_present & DTRACE_MSTATE_USTACKDEPTH)) { |
3446 | /* |
3447 | * See comment in DIF_VAR_PID. |
3448 | */ |
3449 | if (DTRACE_ANCHORED(mstate->dtms_probe) && |
3450 | CPU_ON_INTR(CPU)) { |
3451 | mstate->dtms_ustackdepth = 0; |
3452 | } else { |
3453 | DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); |
3454 | mstate->dtms_ustackdepth = |
3455 | dtrace_getustackdepth(); |
3456 | DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); |
3457 | } |
3458 | mstate->dtms_present |= DTRACE_MSTATE_USTACKDEPTH; |
3459 | } |
3460 | return (mstate->dtms_ustackdepth); |
3461 | |
3462 | case DIF_VAR_CALLER: |
3463 | if (!dtrace_priv_kernel(state)) |
3464 | return (0); |
3465 | if (!(mstate->dtms_present & DTRACE_MSTATE_CALLER)) { |
3466 | int aframes = mstate->dtms_probe->dtpr_aframes + 2; |
3467 | |
3468 | if (!DTRACE_ANCHORED(mstate->dtms_probe)) { |
3469 | /* |
3470 | * If this is an unanchored probe, we are |
3471 | * required to go through the slow path: |
3472 | * dtrace_caller() only guarantees correct |
3473 | * results for anchored probes. |
3474 | */ |
3475 | pc_t caller[2]; |
3476 | |
3477 | dtrace_getpcstack(caller, 2, aframes, |
3478 | (uint32_t *)(uintptr_t)mstate->dtms_arg[0]); |
3479 | mstate->dtms_caller = caller[1]; |
3480 | } else if ((mstate->dtms_caller = |
3481 | dtrace_caller(aframes)) == (uintptr_t)-1) { |
3482 | /* |
3483 | * We have failed to do this the quick way; |
3484 | * we must resort to the slower approach of |
3485 | * calling dtrace_getpcstack(). |
3486 | */ |
3487 | pc_t caller; |
3488 | |
3489 | dtrace_getpcstack(&caller, 1, aframes, NULL); |
3490 | mstate->dtms_caller = caller; |
3491 | } |
3492 | |
3493 | mstate->dtms_present |= DTRACE_MSTATE_CALLER; |
3494 | } |
3495 | return (mstate->dtms_caller); |
3496 | |
3497 | case DIF_VAR_UCALLER: |
3498 | if (!dtrace_priv_proc(state)) |
3499 | return (0); |
3500 | |
3501 | if (!(mstate->dtms_present & DTRACE_MSTATE_UCALLER)) { |
3502 | uint64_t ustack[3]; |
3503 | |
3504 | /* |
3505 | * dtrace_getupcstack() fills in the first uint64_t |
3506 | * with the current PID. The second uint64_t will |
3507 | * be the program counter at user-level. The third |
3508 | * uint64_t will contain the caller, which is what |
3509 | * we're after. |
3510 | */ |
3511 | ustack[2] = 0; |
3512 | DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); |
3513 | dtrace_getupcstack(ustack, 3); |
3514 | DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); |
3515 | mstate->dtms_ucaller = ustack[2]; |
3516 | mstate->dtms_present |= DTRACE_MSTATE_UCALLER; |
3517 | } |
3518 | |
3519 | return (mstate->dtms_ucaller); |
3520 | |
3521 | case DIF_VAR_PROBEPROV: |
3522 | ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); |
3523 | return (dtrace_dif_varstr( |
3524 | addr: (uintptr_t)mstate->dtms_probe->dtpr_provider->dtpv_name, |
3525 | state, mstate)); |
3526 | |
3527 | case DIF_VAR_PROBEMOD: |
3528 | ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); |
3529 | return (dtrace_dif_varstr( |
3530 | addr: (uintptr_t)mstate->dtms_probe->dtpr_mod, |
3531 | state, mstate)); |
3532 | |
3533 | case DIF_VAR_PROBEFUNC: |
3534 | ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); |
3535 | return (dtrace_dif_varstr( |
3536 | addr: (uintptr_t)mstate->dtms_probe->dtpr_func, |
3537 | state, mstate)); |
3538 | |
3539 | case DIF_VAR_PROBENAME: |
3540 | ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); |
3541 | return (dtrace_dif_varstr( |
3542 | addr: (uintptr_t)mstate->dtms_probe->dtpr_name, |
3543 | state, mstate)); |
3544 | |
3545 | case DIF_VAR_PID: |
3546 | if (!dtrace_priv_proc_relaxed(state)) |
3547 | return (0); |
3548 | |
3549 | /* |
3550 | * Note that we are assuming that an unanchored probe is |
3551 | * always due to a high-level interrupt. (And we're assuming |
3552 | * that there is only a single high level interrupt.) |
3553 | */ |
3554 | if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) |
3555 | /* Anchored probe that fires while on an interrupt accrues to process 0 */ |
3556 | return 0; |
3557 | |
3558 | return ((uint64_t)dtrace_proc_selfpid()); |
3559 | |
3560 | case DIF_VAR_PPID: |
3561 | if (!dtrace_priv_proc_relaxed(state)) |
3562 | return (0); |
3563 | |
3564 | /* |
3565 | * See comment in DIF_VAR_PID. |
3566 | */ |
3567 | if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) |
3568 | return (0); |
3569 | |
3570 | return ((uint64_t)dtrace_proc_selfppid()); |
3571 | |
3572 | case DIF_VAR_TID: |
3573 | /* We do not need to check for null current_thread() */ |
3574 | return thread_tid(thread: current_thread()); /* globally unique */ |
3575 | |
3576 | case DIF_VAR_PTHREAD_SELF: |
3577 | if (!dtrace_priv_proc(state)) |
3578 | return (0); |
3579 | |
3580 | /* Not currently supported, but we should be able to delta the dispatchqaddr and dispatchqoffset to get pthread_self */ |
3581 | return 0; |
3582 | |
3583 | case DIF_VAR_DISPATCHQADDR: |
3584 | if (!dtrace_priv_proc(state)) |
3585 | return (0); |
3586 | |
3587 | /* We do not need to check for null current_thread() */ |
3588 | return thread_dispatchqaddr(thread: current_thread()); |
3589 | |
3590 | case DIF_VAR_EXECNAME: |
3591 | { |
3592 | char *xname = (char *)mstate->dtms_scratch_ptr; |
3593 | char *pname = proc_best_name(curproc); |
3594 | size_t scratch_size = sizeof(proc_name_t); |
3595 | |
3596 | /* The scratch allocation's lifetime is that of the clause. */ |
3597 | if (!DTRACE_INSCRATCH(mstate, scratch_size)) { |
3598 | DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); |
3599 | return 0; |
3600 | } |
3601 | |
3602 | if (!dtrace_priv_proc_relaxed(state)) |
3603 | return (0); |
3604 | |
3605 | mstate->dtms_scratch_ptr += scratch_size; |
3606 | strlcpy(dst: xname, src: pname, n: scratch_size); |
3607 | |
3608 | return ((uint64_t)(uintptr_t)xname); |
3609 | } |
3610 | |
3611 | |
3612 | case DIF_VAR_ZONENAME: |
3613 | { |
3614 | /* scratch_size is equal to length('global') + 1 for the null-terminator. */ |
3615 | char *zname = (char *)mstate->dtms_scratch_ptr; |
3616 | size_t scratch_size = 6 + 1; |
3617 | |
3618 | if (!dtrace_priv_proc(state)) |
3619 | return (0); |
3620 | |
3621 | /* The scratch allocation's lifetime is that of the clause. */ |
3622 | if (!DTRACE_INSCRATCH(mstate, scratch_size)) { |
3623 | DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); |
3624 | return 0; |
3625 | } |
3626 | |
3627 | mstate->dtms_scratch_ptr += scratch_size; |
3628 | |
3629 | /* The kernel does not provide zonename, it will always return 'global'. */ |
3630 | strlcpy(dst: zname, src: "global" , n: scratch_size); |
3631 | |
3632 | return ((uint64_t)(uintptr_t)zname); |
3633 | } |
3634 | |
3635 | #if CONFIG_PERVASIVE_CPI && CONFIG_CPU_COUNTERS |
3636 | case DIF_VAR_CPUINSTRS: |
3637 | return mt_cur_cpu_instrs(); |
3638 | |
3639 | case DIF_VAR_CPUCYCLES: |
3640 | return mt_cur_cpu_cycles(); |
3641 | |
3642 | case DIF_VAR_VINSTRS: { |
3643 | struct recount_usage usage = { 0 }; |
3644 | recount_current_thread_usage(&usage); |
3645 | return recount_usage_instructions(&usage); |
3646 | } |
3647 | |
3648 | case DIF_VAR_VCYCLES: { |
3649 | struct recount_usage usage = { 0 }; |
3650 | recount_current_thread_usage(&usage); |
3651 | return recount_usage_cycles(&usage); |
3652 | } |
3653 | |
3654 | #else /* CONFIG_PERVASIVE_CPI && CONFIG_CPU_COUNTERS */ |
3655 | case DIF_VAR_CPUINSTRS: |
3656 | case DIF_VAR_CPUCYCLES: |
3657 | case DIF_VAR_VINSTRS: |
3658 | case DIF_VAR_VCYCLES: |
3659 | return 0; |
3660 | #endif /* !CONFIG_PERVASIVE_CPI || !CONFIG_CPU_COUNTERS */ |
3661 | |
3662 | case DIF_VAR_UID: |
3663 | if (!dtrace_priv_proc_relaxed(state)) |
3664 | return (0); |
3665 | |
3666 | /* |
3667 | * See comment in DIF_VAR_PID. |
3668 | */ |
3669 | if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) |
3670 | return (0); |
3671 | |
3672 | return ((uint64_t) dtrace_proc_selfruid()); |
3673 | |
3674 | case DIF_VAR_GID: |
3675 | if (!dtrace_priv_proc(state)) |
3676 | return (0); |
3677 | |
3678 | /* |
3679 | * See comment in DIF_VAR_PID. |
3680 | */ |
3681 | if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) |
3682 | return (0); |
3683 | |
3684 | if (dtrace_CRED() != NULL) |
3685 | /* Credential does not require lazy initialization. */ |
3686 | return ((uint64_t)kauth_getgid()); |
3687 | else { |
3688 | /* proc_lock would be taken under kauth_cred_proc_ref() in kauth_cred_get(). */ |
3689 | DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); |
3690 | return -1ULL; |
3691 | } |
3692 | |
3693 | case DIF_VAR_ERRNO: { |
3694 | uthread_t uthread = current_uthread(); |
3695 | if (!dtrace_priv_proc(state)) |
3696 | return (0); |
3697 | |
3698 | /* |
3699 | * See comment in DIF_VAR_PID. |
3700 | */ |
3701 | if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) |
3702 | return (0); |
3703 | |
3704 | if (uthread) |
3705 | return (uint64_t)uthread->t_dtrace_errno; |
3706 | else { |
3707 | DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); |
3708 | return -1ULL; |
3709 | } |
3710 | } |
3711 | |
3712 | default: |
3713 | DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); |
3714 | return (0); |
3715 | } |
3716 | } |
3717 | |
3718 | typedef enum dtrace_json_state { |
3719 | DTRACE_JSON_REST = 1, |
3720 | DTRACE_JSON_OBJECT, |
3721 | DTRACE_JSON_STRING, |
3722 | DTRACE_JSON_STRING_ESCAPE, |
3723 | DTRACE_JSON_STRING_ESCAPE_UNICODE, |
3724 | DTRACE_JSON_COLON, |
3725 | DTRACE_JSON_COMMA, |
3726 | DTRACE_JSON_VALUE, |
3727 | DTRACE_JSON_IDENTIFIER, |
3728 | DTRACE_JSON_NUMBER, |
3729 | DTRACE_JSON_NUMBER_FRAC, |
3730 | DTRACE_JSON_NUMBER_EXP, |
3731 | DTRACE_JSON_COLLECT_OBJECT |
3732 | } dtrace_json_state_t; |
3733 | |
3734 | /* |
3735 | * This function possesses just enough knowledge about JSON to extract a single |
3736 | * value from a JSON string and store it in the scratch buffer. It is able |
3737 | * to extract nested object values, and members of arrays by index. |
3738 | * |
3739 | * elemlist is a list of JSON keys, stored as packed NUL-terminated strings, to |
3740 | * be looked up as we descend into the object tree. e.g. |
3741 | * |
3742 | * foo[0].bar.baz[32] --> "foo" NUL "0" NUL "bar" NUL "baz" NUL "32" NUL |
3743 | * with nelems = 5. |
3744 | * |
3745 | * The run time of this function must be bounded above by strsize to limit the |
3746 | * amount of work done in probe context. As such, it is implemented as a |
3747 | * simple state machine, reading one character at a time using safe loads |
3748 | * until we find the requested element, hit a parsing error or run off the |
3749 | * end of the object or string. |
3750 | * |
3751 | * As there is no way for a subroutine to return an error without interrupting |
3752 | * clause execution, we simply return NULL in the event of a missing key or any |
3753 | * other error condition. Each NULL return in this function is commented with |
3754 | * the error condition it represents -- parsing or otherwise. |
3755 | * |
3756 | * The set of states for the state machine closely matches the JSON |
3757 | * specification (http://json.org/). Briefly: |
3758 | * |
3759 | * DTRACE_JSON_REST: |
3760 | * Skip whitespace until we find either a top-level Object, moving |
3761 | * to DTRACE_JSON_OBJECT; or an Array, moving to DTRACE_JSON_VALUE. |
3762 | * |
3763 | * DTRACE_JSON_OBJECT: |
3764 | * Locate the next key String in an Object. Sets a flag to denote |
3765 | * the next String as a key string and moves to DTRACE_JSON_STRING. |
3766 | * |
3767 | * DTRACE_JSON_COLON: |
3768 | * Skip whitespace until we find the colon that separates key Strings |
3769 | * from their values. Once found, move to DTRACE_JSON_VALUE. |
3770 | * |
3771 | * DTRACE_JSON_VALUE: |
3772 | * Detects the type of the next value (String, Number, Identifier, Object |
3773 | * or Array) and routes to the states that process that type. Here we also |
3774 | * deal with the element selector list if we are requested to traverse down |
3775 | * into the object tree. |
3776 | * |
3777 | * DTRACE_JSON_COMMA: |
3778 | * Skip whitespace until we find the comma that separates key-value pairs |
3779 | * in Objects (returning to DTRACE_JSON_OBJECT) or values in Arrays |
3780 | * (similarly DTRACE_JSON_VALUE). All following literal value processing |
3781 | * states return to this state at the end of their value, unless otherwise |
3782 | * noted. |
3783 | * |
3784 | * DTRACE_JSON_NUMBER, DTRACE_JSON_NUMBER_FRAC, DTRACE_JSON_NUMBER_EXP: |
3785 | * Processes a Number literal from the JSON, including any exponent |
3786 | * component that may be present. Numbers are returned as strings, which |
3787 | * may be passed to strtoll() if an integer is required. |
3788 | * |
3789 | * DTRACE_JSON_IDENTIFIER: |
3790 | * Processes a "true", "false" or "null" literal in the JSON. |
3791 | * |
3792 | * DTRACE_JSON_STRING, DTRACE_JSON_STRING_ESCAPE, |
3793 | * DTRACE_JSON_STRING_ESCAPE_UNICODE: |
3794 | * Processes a String literal from the JSON, whether the String denotes |
3795 | * a key, a value or part of a larger Object. Handles all escape sequences |
3796 | * present in the specification, including four-digit unicode characters, |
3797 | * but merely includes the escape sequence without converting it to the |
3798 | * actual escaped character. If the String is flagged as a key, we |
3799 | * move to DTRACE_JSON_COLON rather than DTRACE_JSON_COMMA. |
3800 | * |
3801 | * DTRACE_JSON_COLLECT_OBJECT: |
3802 | * This state collects an entire Object (or Array), correctly handling |
3803 | * embedded strings. If the full element selector list matches this nested |
3804 | * object, we return the Object in full as a string. If not, we use this |
3805 | * state to skip to the next value at this level and continue processing. |
3806 | */ |
3807 | static char * |
3808 | dtrace_json(uint64_t size, uintptr_t json, char *elemlist, int nelems, |
3809 | char *dest) |
3810 | { |
3811 | dtrace_json_state_t state = DTRACE_JSON_REST; |
3812 | int64_t array_elem = INT64_MIN; |
3813 | int64_t array_pos = 0; |
3814 | uint8_t escape_unicount = 0; |
3815 | boolean_t string_is_key = B_FALSE; |
3816 | boolean_t collect_object = B_FALSE; |
3817 | boolean_t found_key = B_FALSE; |
3818 | boolean_t in_array = B_FALSE; |
3819 | uint32_t braces = 0, brackets = 0; |
3820 | char *elem = elemlist; |
3821 | char *dd = dest; |
3822 | uintptr_t cur; |
3823 | |
3824 | for (cur = json; cur < json + size; cur++) { |
3825 | char cc = dtrace_load8(addr: cur); |
3826 | if (cc == '\0') |
3827 | return (NULL); |
3828 | |
3829 | switch (state) { |
3830 | case DTRACE_JSON_REST: |
3831 | if (isspace(cc)) |
3832 | break; |
3833 | |
3834 | if (cc == '{') { |
3835 | state = DTRACE_JSON_OBJECT; |
3836 | break; |
3837 | } |
3838 | |
3839 | if (cc == '[') { |
3840 | in_array = B_TRUE; |
3841 | array_pos = 0; |
3842 | array_elem = dtrace_strtoll(input: elem, base: 10, limit: size); |
3843 | found_key = array_elem == 0 ? B_TRUE : B_FALSE; |
3844 | state = DTRACE_JSON_VALUE; |
3845 | break; |
3846 | } |
3847 | |
3848 | /* |
3849 | * ERROR: expected to find a top-level object or array. |
3850 | */ |
3851 | return (NULL); |
3852 | case DTRACE_JSON_OBJECT: |
3853 | if (isspace(cc)) |
3854 | break; |
3855 | |
3856 | if (cc == '"') { |
3857 | state = DTRACE_JSON_STRING; |
3858 | string_is_key = B_TRUE; |
3859 | break; |
3860 | } |
3861 | |
3862 | /* |
3863 | * ERROR: either the object did not start with a key |
3864 | * string, or we've run off the end of the object |
3865 | * without finding the requested key. |
3866 | */ |
3867 | return (NULL); |
3868 | case DTRACE_JSON_STRING: |
3869 | if (cc == '\\') { |
3870 | *dd++ = '\\'; |
3871 | state = DTRACE_JSON_STRING_ESCAPE; |
3872 | break; |
3873 | } |
3874 | |
3875 | if (cc == '"') { |
3876 | if (collect_object) { |
3877 | /* |
3878 | * We don't reset the dest here, as |
3879 | * the string is part of a larger |
3880 | * object being collected. |
3881 | */ |
3882 | *dd++ = cc; |
3883 | collect_object = B_FALSE; |
3884 | state = DTRACE_JSON_COLLECT_OBJECT; |
3885 | break; |
3886 | } |
3887 | *dd = '\0'; |
3888 | dd = dest; /* reset string buffer */ |
3889 | if (string_is_key) { |
3890 | if (dtrace_strncmp(s1: dest, s2: elem, |
3891 | limit: size) == 0) |
3892 | found_key = B_TRUE; |
3893 | } else if (found_key) { |
3894 | if (nelems > 1) { |
3895 | /* |
3896 | * We expected an object, not |
3897 | * this string. |
3898 | */ |
3899 | return (NULL); |
3900 | } |
3901 | return (dest); |
3902 | } |
3903 | state = string_is_key ? DTRACE_JSON_COLON : |
3904 | DTRACE_JSON_COMMA; |
3905 | string_is_key = B_FALSE; |
3906 | break; |
3907 | } |
3908 | |
3909 | *dd++ = cc; |
3910 | break; |
3911 | case DTRACE_JSON_STRING_ESCAPE: |
3912 | *dd++ = cc; |
3913 | if (cc == 'u') { |
3914 | escape_unicount = 0; |
3915 | state = DTRACE_JSON_STRING_ESCAPE_UNICODE; |
3916 | } else { |
3917 | state = DTRACE_JSON_STRING; |
3918 | } |
3919 | break; |
3920 | case DTRACE_JSON_STRING_ESCAPE_UNICODE: |
3921 | if (!isxdigit(cc)) { |
3922 | /* |
3923 | * ERROR: invalid unicode escape, expected |
3924 | * four valid hexidecimal digits. |
3925 | */ |
3926 | return (NULL); |
3927 | } |
3928 | |
3929 | *dd++ = cc; |
3930 | if (++escape_unicount == 4) |
3931 | state = DTRACE_JSON_STRING; |
3932 | break; |
3933 | case DTRACE_JSON_COLON: |
3934 | if (isspace(cc)) |
3935 | break; |
3936 | |
3937 | if (cc == ':') { |
3938 | state = DTRACE_JSON_VALUE; |
3939 | break; |
3940 | } |
3941 | |
3942 | /* |
3943 | * ERROR: expected a colon. |
3944 | */ |
3945 | return (NULL); |
3946 | case DTRACE_JSON_COMMA: |
3947 | if (isspace(cc)) |
3948 | break; |
3949 | |
3950 | if (cc == ',') { |
3951 | if (in_array) { |
3952 | state = DTRACE_JSON_VALUE; |
3953 | if (++array_pos == array_elem) |
3954 | found_key = B_TRUE; |
3955 | } else { |
3956 | state = DTRACE_JSON_OBJECT; |
3957 | } |
3958 | break; |
3959 | } |
3960 | |
3961 | /* |
3962 | * ERROR: either we hit an unexpected character, or |
3963 | * we reached the end of the object or array without |
3964 | * finding the requested key. |
3965 | */ |
3966 | return (NULL); |
3967 | case DTRACE_JSON_IDENTIFIER: |
3968 | if (islower(cc)) { |
3969 | *dd++ = cc; |
3970 | break; |
3971 | } |
3972 | |
3973 | *dd = '\0'; |
3974 | dd = dest; /* reset string buffer */ |
3975 | |
3976 | if (dtrace_strncmp(s1: dest, s2: "true" , limit: 5) == 0 || |
3977 | dtrace_strncmp(s1: dest, s2: "false" , limit: 6) == 0 || |
3978 | dtrace_strncmp(s1: dest, s2: "null" , limit: 5) == 0) { |
3979 | if (found_key) { |
3980 | if (nelems > 1) { |
3981 | /* |
3982 | * ERROR: We expected an object, |
3983 | * not this identifier. |
3984 | */ |
3985 | return (NULL); |
3986 | } |
3987 | return (dest); |
3988 | } else { |
3989 | cur--; |
3990 | state = DTRACE_JSON_COMMA; |
3991 | break; |
3992 | } |
3993 | } |
3994 | |
3995 | /* |
3996 | * ERROR: we did not recognise the identifier as one |
3997 | * of those in the JSON specification. |
3998 | */ |
3999 | return (NULL); |
4000 | case DTRACE_JSON_NUMBER: |
4001 | if (cc == '.') { |
4002 | *dd++ = cc; |
4003 | state = DTRACE_JSON_NUMBER_FRAC; |
4004 | break; |
4005 | } |
4006 | |
4007 | if (cc == 'x' || cc == 'X') { |
4008 | /* |
4009 | * ERROR: specification explicitly excludes |
4010 | * hexidecimal or octal numbers. |
4011 | */ |
4012 | return (NULL); |
4013 | } |
4014 | |
4015 | OS_FALLTHROUGH; |
4016 | case DTRACE_JSON_NUMBER_FRAC: |
4017 | if (cc == 'e' || cc == 'E') { |
4018 | *dd++ = cc; |
4019 | state = DTRACE_JSON_NUMBER_EXP; |
4020 | break; |
4021 | } |
4022 | |
4023 | if (cc == '+' || cc == '-') { |
4024 | /* |
4025 | * ERROR: expect sign as part of exponent only. |
4026 | */ |
4027 | return (NULL); |
4028 | } |
4029 | OS_FALLTHROUGH; |
4030 | case DTRACE_JSON_NUMBER_EXP: |
4031 | if (isdigit(cc) || cc == '+' || cc == '-') { |
4032 | *dd++ = cc; |
4033 | break; |
4034 | } |
4035 | |
4036 | *dd = '\0'; |
4037 | dd = dest; /* reset string buffer */ |
4038 | if (found_key) { |
4039 | if (nelems > 1) { |
4040 | /* |
4041 | * ERROR: We expected an object, not |
4042 | * this number. |
4043 | */ |
4044 | return (NULL); |
4045 | } |
4046 | return (dest); |
4047 | } |
4048 | |
4049 | cur--; |
4050 | state = DTRACE_JSON_COMMA; |
4051 | break; |
4052 | case DTRACE_JSON_VALUE: |
4053 | if (isspace(cc)) |
4054 | break; |
4055 | |
4056 | if (cc == '{' || cc == '[') { |
4057 | if (nelems > 1 && found_key) { |
4058 | in_array = cc == '[' ? B_TRUE : B_FALSE; |
4059 | /* |
4060 | * If our element selector directs us |
4061 | * to descend into this nested object, |
4062 | * then move to the next selector |
4063 | * element in the list and restart the |
4064 | * state machine. |
4065 | */ |
4066 | while (*elem != '\0') |
4067 | elem++; |
4068 | elem++; /* skip the inter-element NUL */ |
4069 | nelems--; |
4070 | dd = dest; |
4071 | if (in_array) { |
4072 | state = DTRACE_JSON_VALUE; |
4073 | array_pos = 0; |
4074 | array_elem = dtrace_strtoll( |
4075 | input: elem, base: 10, limit: size); |
4076 | found_key = array_elem == 0 ? |
4077 | B_TRUE : B_FALSE; |
4078 | } else { |
4079 | found_key = B_FALSE; |
4080 | state = DTRACE_JSON_OBJECT; |
4081 | } |
4082 | break; |
4083 | } |
4084 | |
4085 | /* |
4086 | * Otherwise, we wish to either skip this |
4087 | * nested object or return it in full. |
4088 | */ |
4089 | if (cc == '[') |
4090 | brackets = 1; |
4091 | else |
4092 | braces = 1; |
4093 | *dd++ = cc; |
4094 | state = DTRACE_JSON_COLLECT_OBJECT; |
4095 | break; |
4096 | } |
4097 | |
4098 | if (cc == '"') { |
4099 | state = DTRACE_JSON_STRING; |
4100 | break; |
4101 | } |
4102 | |
4103 | if (islower(cc)) { |
4104 | /* |
4105 | * Here we deal with true, false and null. |
4106 | */ |
4107 | *dd++ = cc; |
4108 | state = DTRACE_JSON_IDENTIFIER; |
4109 | break; |
4110 | } |
4111 | |
4112 | if (cc == '-' || isdigit(cc)) { |
4113 | *dd++ = cc; |
4114 | state = DTRACE_JSON_NUMBER; |
4115 | break; |
4116 | } |
4117 | |
4118 | /* |
4119 | * ERROR: unexpected character at start of value. |
4120 | */ |
4121 | return (NULL); |
4122 | case DTRACE_JSON_COLLECT_OBJECT: |
4123 | if (cc == '\0') |
4124 | /* |
4125 | * ERROR: unexpected end of input. |
4126 | */ |
4127 | return (NULL); |
4128 | |
4129 | *dd++ = cc; |
4130 | if (cc == '"') { |
4131 | collect_object = B_TRUE; |
4132 | state = DTRACE_JSON_STRING; |
4133 | break; |
4134 | } |
4135 | |
4136 | if (cc == ']') { |
4137 | if (brackets-- == 0) { |
4138 | /* |
4139 | * ERROR: unbalanced brackets. |
4140 | */ |
4141 | return (NULL); |
4142 | } |
4143 | } else if (cc == '}') { |
4144 | if (braces-- == 0) { |
4145 | /* |
4146 | * ERROR: unbalanced braces. |
4147 | */ |
4148 | return (NULL); |
4149 | } |
4150 | } else if (cc == '{') { |
4151 | braces++; |
4152 | } else if (cc == '[') { |
4153 | brackets++; |
4154 | } |
4155 | |
4156 | if (brackets == 0 && braces == 0) { |
4157 | if (found_key) { |
4158 | *dd = '\0'; |
4159 | return (dest); |
4160 | } |
4161 | dd = dest; /* reset string buffer */ |
4162 | state = DTRACE_JSON_COMMA; |
4163 | } |
4164 | break; |
4165 | } |
4166 | } |
4167 | return (NULL); |
4168 | } |
4169 | |
4170 | /* |
4171 | * Emulate the execution of DTrace ID subroutines invoked by the call opcode. |
4172 | * Notice that we don't bother validating the proper number of arguments or |
4173 | * their types in the tuple stack. This isn't needed because all argument |
4174 | * interpretation is safe because of our load safety -- the worst that can |
4175 | * happen is that a bogus program can obtain bogus results. |
4176 | */ |
4177 | static void |
4178 | dtrace_dif_subr(uint_t subr, uint_t rd, uint64_t *regs, |
4179 | dtrace_key_t *tupregs, int nargs, |
4180 | dtrace_mstate_t *mstate, dtrace_state_t *state) |
4181 | { |
4182 | volatile uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; |
4183 | volatile uint64_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval; |
4184 | dtrace_vstate_t *vstate = &state->dts_vstate; |
4185 | |
4186 | #if !defined(__APPLE__) |
4187 | union { |
4188 | mutex_impl_t mi; |
4189 | uint64_t mx; |
4190 | } m; |
4191 | |
4192 | union { |
4193 | krwlock_t ri; |
4194 | uintptr_t rw; |
4195 | } r; |
4196 | #else |
4197 | /* FIXME: awaits lock/mutex work */ |
4198 | #endif /* __APPLE__ */ |
4199 | |
4200 | switch (subr) { |
4201 | case DIF_SUBR_RAND: |
4202 | regs[rd] = dtrace_xoroshiro128_plus_next( |
4203 | state->dts_rstate[CPU->cpu_id]); |
4204 | break; |
4205 | |
4206 | #if !defined(__APPLE__) |
4207 | case DIF_SUBR_MUTEX_OWNED: |
4208 | if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), |
4209 | mstate, vstate)) { |
4210 | regs[rd] = 0; |
4211 | break; |
4212 | } |
4213 | |
4214 | m.mx = dtrace_load64(tupregs[0].dttk_value); |
4215 | if (MUTEX_TYPE_ADAPTIVE(&m.mi)) |
4216 | regs[rd] = MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER; |
4217 | else |
4218 | regs[rd] = LOCK_HELD(&m.mi.m_spin.m_spinlock); |
4219 | break; |
4220 | |
4221 | case DIF_SUBR_MUTEX_OWNER: |
4222 | if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), |
4223 | mstate, vstate)) { |
4224 | regs[rd] = 0; |
4225 | break; |
4226 | } |
4227 | |
4228 | m.mx = dtrace_load64(tupregs[0].dttk_value); |
4229 | if (MUTEX_TYPE_ADAPTIVE(&m.mi) && |
4230 | MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER) |
4231 | regs[rd] = (uintptr_t)MUTEX_OWNER(&m.mi); |
4232 | else |
4233 | regs[rd] = 0; |
4234 | break; |
4235 | |
4236 | case DIF_SUBR_MUTEX_TYPE_ADAPTIVE: |
4237 | if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), |
4238 | mstate, vstate)) { |
4239 | regs[rd] = 0; |
4240 | break; |
4241 | } |
4242 | |
4243 | m.mx = dtrace_load64(tupregs[0].dttk_value); |
4244 | regs[rd] = MUTEX_TYPE_ADAPTIVE(&m.mi); |
4245 | break; |
4246 | |
4247 | case DIF_SUBR_MUTEX_TYPE_SPIN: |
4248 | if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), |
4249 | mstate, vstate)) { |
4250 | regs[rd] = 0; |
4251 | break; |
4252 | } |
4253 | |
4254 | m.mx = dtrace_load64(tupregs[0].dttk_value); |
4255 | regs[rd] = MUTEX_TYPE_SPIN(&m.mi); |
4256 | break; |
4257 | |
4258 | case DIF_SUBR_RW_READ_HELD: { |
4259 | uintptr_t tmp; |
4260 | |
4261 | if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t), |
4262 | mstate, vstate)) { |
4263 | regs[rd] = 0; |
4264 | break; |
4265 | } |
4266 | |
4267 | r.rw = dtrace_loadptr(tupregs[0].dttk_value); |
4268 | regs[rd] = _RW_READ_HELD(&r.ri, tmp); |
4269 | break; |
4270 | } |
4271 | |
4272 | case DIF_SUBR_RW_WRITE_HELD: |
4273 | if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t), |
4274 | mstate, vstate)) { |
4275 | regs[rd] = 0; |
4276 | break; |
4277 | } |
4278 | |
4279 | r.rw = dtrace_loadptr(tupregs[0].dttk_value); |
4280 | regs[rd] = _RW_WRITE_HELD(&r.ri); |
4281 | break; |
4282 | |
4283 | case DIF_SUBR_RW_ISWRITER: |
4284 | if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t), |
4285 | mstate, vstate)) { |
4286 | regs[rd] = 0; |
4287 | break; |
4288 | } |
4289 | |
4290 | r.rw = dtrace_loadptr(tupregs[0].dttk_value); |
4291 | regs[rd] = _RW_ISWRITER(&r.ri); |
4292 | break; |
4293 | #else |
4294 | /* FIXME: awaits lock/mutex work */ |
4295 | #endif /* __APPLE__ */ |
4296 | |
4297 | case DIF_SUBR_BCOPY: { |
4298 | /* |
4299 | * We need to be sure that the destination is in the scratch |
4300 | * region -- no other region is allowed. |
4301 | */ |
4302 | uintptr_t src = tupregs[0].dttk_value; |
4303 | uintptr_t dest = tupregs[1].dttk_value; |
4304 | size_t size = tupregs[2].dttk_value; |
4305 | |
4306 | if (!dtrace_inscratch(dest, size, mstate)) { |
4307 | *flags |= CPU_DTRACE_BADADDR; |
4308 | *illval = regs[rd]; |
4309 | break; |
4310 | } |
4311 | |
4312 | if (!dtrace_canload(addr: src, sz: size, mstate, vstate)) { |
4313 | regs[rd] = 0; |
4314 | break; |
4315 | } |
4316 | |
4317 | dtrace_bcopy(src: (void *)src, dst: (void *)dest, len: size); |
4318 | break; |
4319 | } |
4320 | |
4321 | case DIF_SUBR_ALLOCA: |
4322 | case DIF_SUBR_COPYIN: { |
4323 | uintptr_t dest = P2ROUNDUP(mstate->dtms_scratch_ptr, 8); |
4324 | uint64_t size = |
4325 | tupregs[subr == DIF_SUBR_ALLOCA ? 0 : 1].dttk_value; |
4326 | size_t scratch_size = (dest - mstate->dtms_scratch_ptr) + size; |
4327 | |
4328 | /* |
4329 | * Check whether the user can access kernel memory |
4330 | */ |
4331 | if (dtrace_priv_kernel(state) == 0) { |
4332 | DTRACE_CPUFLAG_SET(CPU_DTRACE_KPRIV); |
4333 | regs[rd] = 0; |
4334 | break; |
4335 | } |
4336 | /* |
4337 | * This action doesn't require any credential checks since |
4338 | * probes will not activate in user contexts to which the |
4339 | * enabling user does not have permissions. |
4340 | */ |
4341 | |
4342 | /* |
4343 | * Rounding up the user allocation size could have overflowed |
4344 | * a large, bogus allocation (like -1ULL) to 0. |
4345 | */ |
4346 | if (scratch_size < size || |
4347 | !DTRACE_INSCRATCH(mstate, scratch_size)) { |
4348 | DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); |
4349 | regs[rd] = 0; |
4350 | break; |
4351 | } |
4352 | |
4353 | if (subr == DIF_SUBR_COPYIN) { |
4354 | DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); |
4355 | if (dtrace_priv_proc(state)) |
4356 | dtrace_copyin(tupregs[0].dttk_value, dest, size, flags); |
4357 | DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); |
4358 | } |
4359 | |
4360 | mstate->dtms_scratch_ptr += scratch_size; |
4361 | regs[rd] = dest; |
4362 | break; |
4363 | } |
4364 | |
4365 | case DIF_SUBR_COPYINTO: { |
4366 | uint64_t size = tupregs[1].dttk_value; |
4367 | uintptr_t dest = tupregs[2].dttk_value; |
4368 | |
4369 | /* |
4370 | * This action doesn't require any credential checks since |
4371 | * probes will not activate in user contexts to which the |
4372 | * enabling user does not have permissions. |
4373 | */ |
4374 | if (!dtrace_inscratch(dest, size, mstate)) { |
4375 | *flags |= CPU_DTRACE_BADADDR; |
4376 | *illval = regs[rd]; |
4377 | break; |
4378 | } |
4379 | |
4380 | DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); |
4381 | if (dtrace_priv_proc(state)) |
4382 | dtrace_copyin(tupregs[0].dttk_value, dest, size, flags); |
4383 | DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); |
4384 | break; |
4385 | } |
4386 | |
4387 | case DIF_SUBR_COPYINSTR: { |
4388 | uintptr_t dest = mstate->dtms_scratch_ptr; |
4389 | uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; |
4390 | |
4391 | if (nargs > 1 && tupregs[1].dttk_value < size) |
4392 | size = tupregs[1].dttk_value + 1; |
4393 | |
4394 | /* |
4395 | * This action doesn't require any credential checks since |
4396 | * probes will not activate in user contexts to which the |
4397 | * enabling user does not have permissions. |
4398 | */ |
4399 | if (!DTRACE_INSCRATCH(mstate, size)) { |
4400 | DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); |
4401 | regs[rd] = 0; |
4402 | break; |
4403 | } |
4404 | |
4405 | DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); |
4406 | if (dtrace_priv_proc(state)) |
4407 | dtrace_copyinstr(tupregs[0].dttk_value, dest, size, flags); |
4408 | DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); |
4409 | |
4410 | ((char *)dest)[size - 1] = '\0'; |
4411 | mstate->dtms_scratch_ptr += size; |
4412 | regs[rd] = dest; |
4413 | break; |
4414 | } |
4415 | |
4416 | case DIF_SUBR_MSGSIZE: |
4417 | case DIF_SUBR_MSGDSIZE: { |
4418 | /* Darwin does not implement SysV streams messages */ |
4419 | DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); |
4420 | regs[rd] = 0; |
4421 | break; |
4422 | } |
4423 | |
4424 | case DIF_SUBR_PROGENYOF: { |
4425 | pid_t pid = tupregs[0].dttk_value; |
4426 | struct proc *p = current_proc(); |
4427 | int rval = 0, lim = nprocs; |
4428 | |
4429 | while(p && (lim-- > 0)) { |
4430 | pid_t ppid; |
4431 | |
4432 | ppid = (pid_t)dtrace_load32(addr: (uintptr_t)&(p->p_pid)); |
4433 | if (*flags & CPU_DTRACE_FAULT) |
4434 | break; |
4435 | |
4436 | if (ppid == pid) { |
4437 | rval = 1; |
4438 | break; |
4439 | } |
4440 | |
4441 | if (ppid == 0) |
4442 | break; /* Can't climb process tree any further. */ |
4443 | |
4444 | p = (struct proc *)dtrace_loadptr(addr: (uintptr_t)&(p->p_pptr)); |
4445 | #if __has_feature(ptrauth_calls) |
4446 | p = ptrauth_strip(p, ptrauth_key_process_independent_data); |
4447 | #endif |
4448 | if (*flags & CPU_DTRACE_FAULT) |
4449 | break; |
4450 | } |
4451 | |
4452 | regs[rd] = rval; |
4453 | break; |
4454 | } |
4455 | |
4456 | case DIF_SUBR_SPECULATION: |
4457 | regs[rd] = dtrace_speculation(state); |
4458 | break; |
4459 | |
4460 | |
4461 | case DIF_SUBR_COPYOUT: { |
4462 | uintptr_t kaddr = tupregs[0].dttk_value; |
4463 | user_addr_t uaddr = tupregs[1].dttk_value; |
4464 | uint64_t size = tupregs[2].dttk_value; |
4465 | |
4466 | if (!dtrace_destructive_disallow && |
4467 | dtrace_priv_proc_control(state) && |
4468 | !dtrace_istoxic(kaddr, size) && |
4469 | dtrace_canload(addr: kaddr, sz: size, mstate, vstate)) { |
4470 | DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); |
4471 | dtrace_copyout(kaddr, uaddr, size, flags); |
4472 | DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); |
4473 | } |
4474 | break; |
4475 | } |
4476 | |
4477 | case DIF_SUBR_COPYOUTSTR: { |
4478 | uintptr_t kaddr = tupregs[0].dttk_value; |
4479 | user_addr_t uaddr = tupregs[1].dttk_value; |
4480 | uint64_t size = tupregs[2].dttk_value; |
4481 | size_t lim; |
4482 | |
4483 | if (!dtrace_destructive_disallow && |
4484 | dtrace_priv_proc_control(state) && |
4485 | !dtrace_istoxic(kaddr, size) && |
4486 | dtrace_strcanload(addr: kaddr, sz: size, remain: &lim, mstate, vstate)) { |
4487 | DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); |
4488 | dtrace_copyoutstr(kaddr, uaddr, lim, flags); |
4489 | DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); |
4490 | } |
4491 | break; |
4492 | } |
4493 | |
4494 | case DIF_SUBR_STRLEN: { |
4495 | size_t size = state->dts_options[DTRACEOPT_STRSIZE]; |
4496 | uintptr_t addr = (uintptr_t)tupregs[0].dttk_value; |
4497 | size_t lim; |
4498 | |
4499 | if (!dtrace_strcanload(addr, sz: size, remain: &lim, mstate, vstate)) { |
4500 | regs[rd] = 0; |
4501 | break; |
4502 | } |
4503 | |
4504 | regs[rd] = dtrace_strlen(s: (char *)addr, lim); |
4505 | |
4506 | break; |
4507 | } |
4508 | |
4509 | case DIF_SUBR_STRCHR: |
4510 | case DIF_SUBR_STRRCHR: { |
4511 | /* |
4512 | * We're going to iterate over the string looking for the |
4513 | * specified character. We will iterate until we have reached |
4514 | * the string length or we have found the character. If this |
4515 | * is DIF_SUBR_STRRCHR, we will look for the last occurrence |
4516 | * of the specified character instead of the first. |
4517 | */ |
4518 | uintptr_t addr = tupregs[0].dttk_value; |
4519 | uintptr_t addr_limit; |
4520 | uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; |
4521 | size_t lim; |
4522 | char c, target = (char)tupregs[1].dttk_value; |
4523 | |
4524 | if (!dtrace_strcanload(addr, sz: size, remain: &lim, mstate, vstate)) { |
4525 | regs[rd] = 0; |
4526 | break; |
4527 | } |
4528 | addr_limit = addr + lim; |
4529 | |
4530 | for (regs[rd] = 0; addr < addr_limit; addr++) { |
4531 | if ((c = dtrace_load8(addr)) == target) { |
4532 | regs[rd] = addr; |
4533 | |
4534 | if (subr == DIF_SUBR_STRCHR) |
4535 | break; |
4536 | } |
4537 | |
4538 | if (c == '\0') |
4539 | break; |
4540 | } |
4541 | |
4542 | break; |
4543 | } |
4544 | |
4545 | case DIF_SUBR_STRSTR: |
4546 | case DIF_SUBR_INDEX: |
4547 | case DIF_SUBR_RINDEX: { |
4548 | /* |
4549 | * We're going to iterate over the string looking for the |
4550 | * specified string. We will iterate until we have reached |
4551 | * the string length or we have found the string. (Yes, this |
4552 | * is done in the most naive way possible -- but considering |
4553 | * that the string we're searching for is likely to be |
4554 | * relatively short, the complexity of Rabin-Karp or similar |
4555 | * hardly seems merited.) |
4556 | */ |
4557 | char *addr = (char *)(uintptr_t)tupregs[0].dttk_value; |
4558 | char *substr = (char *)(uintptr_t)tupregs[1].dttk_value; |
4559 | uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; |
4560 | size_t len = dtrace_strlen(s: addr, lim: size); |
4561 | size_t sublen = dtrace_strlen(s: substr, lim: size); |
4562 | char *limit = addr + len, *orig = addr; |
4563 | int notfound = subr == DIF_SUBR_STRSTR ? 0 : -1; |
4564 | int inc = 1; |
4565 | |
4566 | regs[rd] = notfound; |
4567 | |
4568 | if (!dtrace_canload(addr: (uintptr_t)addr, sz: len + 1, mstate, vstate)) { |
4569 | regs[rd] = 0; |
4570 | break; |
4571 | } |
4572 | |
4573 | if (!dtrace_canload(addr: (uintptr_t)substr, sz: sublen + 1, mstate, |
4574 | vstate)) { |
4575 | regs[rd] = 0; |
4576 | break; |
4577 | } |
4578 | |
4579 | /* |
4580 | * strstr() and index()/rindex() have similar semantics if |
4581 | * both strings are the empty string: strstr() returns a |
4582 | * pointer to the (empty) string, and index() and rindex() |
4583 | * both return index 0 (regardless of any position argument). |
4584 | */ |
4585 | if (sublen == 0 && len == 0) { |
4586 | if (subr == DIF_SUBR_STRSTR) |
4587 | regs[rd] = (uintptr_t)addr; |
4588 | else |
4589 | regs[rd] = 0; |
4590 | break; |
4591 | } |
4592 | |
4593 | if (subr != DIF_SUBR_STRSTR) { |
4594 | if (subr == DIF_SUBR_RINDEX) { |
4595 | limit = orig - 1; |
4596 | addr += len; |
4597 | inc = -1; |
4598 | } |
4599 | |
4600 | /* |
4601 | * Both index() and rindex() take an optional position |
4602 | * argument that denotes the starting position. |
4603 | */ |
4604 | if (nargs == 3) { |
4605 | int64_t pos = (int64_t)tupregs[2].dttk_value; |
4606 | |
4607 | /* |
4608 | * If the position argument to index() is |
4609 | * negative, Perl implicitly clamps it at |
4610 | * zero. This semantic is a little surprising |
4611 | * given the special meaning of negative |
4612 | * positions to similar Perl functions like |
4613 | * substr(), but it appears to reflect a |
4614 | * notion that index() can start from a |
4615 | * negative index and increment its way up to |
4616 | * the string. Given this notion, Perl's |
4617 | * rindex() is at least self-consistent in |
4618 | * that it implicitly clamps positions greater |
4619 | * than the string length to be the string |
4620 | * length. Where Perl completely loses |
4621 | * coherence, however, is when the specified |
4622 | * substring is the empty string (""). In |
4623 | * this case, even if the position is |
4624 | * negative, rindex() returns 0 -- and even if |
4625 | * the position is greater than the length, |
4626 | * index() returns the string length. These |
4627 | * semantics violate the notion that index() |
4628 | * should never return a value less than the |
4629 | * specified position and that rindex() should |
4630 | * never return a value greater than the |
4631 | * specified position. (One assumes that |
4632 | * these semantics are artifacts of Perl's |
4633 | * implementation and not the results of |
4634 | * deliberate design -- it beggars belief that |
4635 | * even Larry Wall could desire such oddness.) |
4636 | * While in the abstract one would wish for |
4637 | * consistent position semantics across |
4638 | * substr(), index() and rindex() -- or at the |
4639 | * very least self-consistent position |
4640 | * semantics for index() and rindex() -- we |
4641 | * instead opt to keep with the extant Perl |
4642 | * semantics, in all their broken glory. (Do |
4643 | * we have more desire to maintain Perl's |
4644 | * semantics than Perl does? Probably.) |
4645 | */ |
4646 | if (subr == DIF_SUBR_RINDEX) { |
4647 | if (pos < 0) { |
4648 | if (sublen == 0) |
4649 | regs[rd] = 0; |
4650 | break; |
4651 | } |
4652 | |
4653 | if ((size_t)pos > len) |
4654 | pos = len; |
4655 | } else { |
4656 | if (pos < 0) |
4657 | pos = 0; |
4658 | |
4659 | if ((size_t)pos >= len) { |
4660 | if (sublen == 0) |
4661 | regs[rd] = len; |
4662 | break; |
4663 | } |
4664 | } |
4665 | |
4666 | addr = orig + pos; |
4667 | } |
4668 | } |
4669 | |
4670 | for (regs[rd] = notfound; addr != limit; addr += inc) { |
4671 | if (dtrace_strncmp(s1: addr, s2: substr, limit: sublen) == 0) { |
4672 | if (subr != DIF_SUBR_STRSTR) { |
4673 | /* |
4674 | * As D index() and rindex() are |
4675 | * modeled on Perl (and not on awk), |
4676 | * we return a zero-based (and not a |
4677 | * one-based) index. (For you Perl |
4678 | * weenies: no, we're not going to add |
4679 | * $[ -- and shouldn't you be at a con |
4680 | * or something?) |
4681 | */ |
4682 | regs[rd] = (uintptr_t)(addr - orig); |
4683 | break; |
4684 | } |
4685 | |
4686 | ASSERT(subr == DIF_SUBR_STRSTR); |
4687 | regs[rd] = (uintptr_t)addr; |
4688 | break; |
4689 | } |
4690 | } |
4691 | |
4692 | break; |
4693 | } |
4694 | |
4695 | case DIF_SUBR_STRTOK: { |
4696 | uintptr_t addr = tupregs[0].dttk_value; |
4697 | uintptr_t tokaddr = tupregs[1].dttk_value; |
4698 | uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; |
4699 | uintptr_t limit, toklimit; |
4700 | size_t clim; |
4701 | char *dest = (char *)mstate->dtms_scratch_ptr; |
4702 | uint8_t c='\0', tokmap[32]; /* 256 / 8 */ |
4703 | uint64_t i = 0; |
4704 | |
4705 | /* |
4706 | * Check both the token buffer and (later) the input buffer, |
4707 | * since both could be non-scratch addresses. |
4708 | */ |
4709 | if (!dtrace_strcanload(addr: tokaddr, sz: size, remain: &clim, mstate, vstate)) { |
4710 | regs[rd] = 0; |
4711 | break; |
4712 | } |
4713 | toklimit = tokaddr + clim; |
4714 | |
4715 | if (!DTRACE_INSCRATCH(mstate, size)) { |
4716 | DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); |
4717 | regs[rd] = 0; |
4718 | break; |
4719 | } |
4720 | |
4721 | if (addr == 0) { |
4722 | /* |
4723 | * If the address specified is NULL, we use our saved |
4724 | * strtok pointer from the mstate. Note that this |
4725 | * means that the saved strtok pointer is _only_ |
4726 | * valid within multiple enablings of the same probe -- |
4727 | * it behaves like an implicit clause-local variable. |
4728 | */ |
4729 | addr = mstate->dtms_strtok; |
4730 | limit = mstate->dtms_strtok_limit; |
4731 | } else { |
4732 | /* |
4733 | * If the user-specified address is non-NULL we must |
4734 | * access check it. This is the only time we have |
4735 | * a chance to do so, since this address may reside |
4736 | * in the string table of this clause-- future calls |
4737 | * (when we fetch addr from mstate->dtms_strtok) |
4738 | * would fail this access check. |
4739 | */ |
4740 | if (!dtrace_strcanload(addr, sz: size, remain: &clim, mstate, |
4741 | vstate)) { |
4742 | regs[rd] = 0; |
4743 | break; |
4744 | } |
4745 | limit = addr + clim; |
4746 | } |
4747 | |
4748 | /* |
4749 | * First, zero the token map, and then process the token |
4750 | * string -- setting a bit in the map for every character |
4751 | * found in the token string. |
4752 | */ |
4753 | for (i = 0; i < (int)sizeof (tokmap); i++) |
4754 | tokmap[i] = 0; |
4755 | |
4756 | for (; tokaddr < toklimit; tokaddr++) { |
4757 | if ((c = dtrace_load8(addr: tokaddr)) == '\0') |
4758 | break; |
4759 | |
4760 | ASSERT((c >> 3) < sizeof (tokmap)); |
4761 | tokmap[c >> 3] |= (1 << (c & 0x7)); |
4762 | } |
4763 | |
4764 | for (; addr < limit; addr++) { |
4765 | /* |
4766 | * We're looking for a character that is _not_ |
4767 | * contained in the token string. |
4768 | */ |
4769 | if ((c = dtrace_load8(addr)) == '\0') |
4770 | break; |
4771 | |
4772 | if (!(tokmap[c >> 3] & (1 << (c & 0x7)))) |
4773 | break; |
4774 | } |
4775 | |
4776 | if (c == '\0') { |
4777 | /* |
4778 | * We reached the end of the string without finding |
4779 | * any character that was not in the token string. |
4780 | * We return NULL in this case, and we set the saved |
4781 | * address to NULL as well. |
4782 | */ |
4783 | regs[rd] = 0; |
4784 | mstate->dtms_strtok = 0; |
4785 | mstate->dtms_strtok_limit = 0; |
4786 | break; |
4787 | } |
4788 | |
4789 | /* |
4790 | * From here on, we're copying into the destination string. |
4791 | */ |
4792 | for (i = 0; addr < limit && i < size - 1; addr++) { |
4793 | if ((c = dtrace_load8(addr)) == '\0') |
4794 | break; |
4795 | |
4796 | if (tokmap[c >> 3] & (1 << (c & 0x7))) |
4797 | break; |
4798 | |
4799 | ASSERT(i < size); |
4800 | dest[i++] = c; |
4801 | } |
4802 | |
4803 | ASSERT(i < size); |
4804 | dest[i] = '\0'; |
4805 | regs[rd] = (uintptr_t)dest; |
4806 | mstate->dtms_scratch_ptr += size; |
4807 | mstate->dtms_strtok = addr; |
4808 | mstate->dtms_strtok_limit = limit; |
4809 | break; |
4810 | } |
4811 | |
4812 | case DIF_SUBR_SUBSTR: { |
4813 | uintptr_t s = tupregs[0].dttk_value; |
4814 | uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; |
4815 | char *d = (char *)mstate->dtms_scratch_ptr; |
4816 | int64_t index = (int64_t)tupregs[1].dttk_value; |
4817 | int64_t remaining = (int64_t)tupregs[2].dttk_value; |
4818 | size_t len = dtrace_strlen(s: (char *)s, lim: size); |
4819 | int64_t i = 0; |
4820 | |
4821 | if (!dtrace_canload(addr: s, sz: len + 1, mstate, vstate)) { |
4822 | regs[rd] = 0; |
4823 | break; |
4824 | } |
4825 | |
4826 | if (!DTRACE_INSCRATCH(mstate, size)) { |
4827 | DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); |
4828 | regs[rd] = 0; |
4829 | break; |
4830 | } |
4831 | |
4832 | if (nargs <= 2) |
4833 | remaining = (int64_t)size; |
4834 | |
4835 | if (index < 0) { |
4836 | index += len; |
4837 | |
4838 | if (index < 0 && index + remaining > 0) { |
4839 | remaining += index; |
4840 | index = 0; |
4841 | } |
4842 | } |
4843 | |
4844 | if ((size_t)index >= len || index < 0) { |
4845 | remaining = 0; |
4846 | } else if (remaining < 0) { |
4847 | remaining += len - index; |
4848 | } else if ((uint64_t)index + (uint64_t)remaining > size) { |
4849 | remaining = size - index; |
4850 | } |
4851 | |
4852 | for (i = 0; i < remaining; i++) { |
4853 | if ((d[i] = dtrace_load8(addr: s + index + i)) == '\0') |
4854 | break; |
4855 | } |
4856 | |
4857 | d[i] = '\0'; |
4858 | |
4859 | mstate->dtms_scratch_ptr += size; |
4860 | regs[rd] = (uintptr_t)d; |
4861 | break; |
4862 | } |
4863 | |
4864 | case DIF_SUBR_GETMAJOR: |
4865 | regs[rd] = (uintptr_t)major( (dev_t)tupregs[0].dttk_value ); |
4866 | break; |
4867 | |
4868 | case DIF_SUBR_GETMINOR: |
4869 | regs[rd] = (uintptr_t)minor( (dev_t)tupregs[0].dttk_value ); |
4870 | break; |
4871 | |
4872 | case DIF_SUBR_DDI_PATHNAME: { |
4873 | /* APPLE NOTE: currently unsupported on Darwin */ |
4874 | DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); |
4875 | regs[rd] = 0; |
4876 | break; |
4877 | } |
4878 | |
4879 | case DIF_SUBR_STRJOIN: { |
4880 | char *d = (char *)mstate->dtms_scratch_ptr; |
4881 | uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; |
4882 | uintptr_t s1 = tupregs[0].dttk_value; |
4883 | uintptr_t s2 = tupregs[1].dttk_value; |
4884 | uint64_t i = 0, j = 0; |
4885 | size_t lim1, lim2; |
4886 | char c; |
4887 | |
4888 | if (!dtrace_strcanload(addr: s1, sz: size, remain: &lim1, mstate, vstate) || |
4889 | !dtrace_strcanload(addr: s2, sz: size, remain: &lim2, mstate, vstate)) { |
4890 | regs[rd] = 0; |
4891 | break; |
4892 | } |
4893 | |
4894 | if (!DTRACE_INSCRATCH(mstate, size)) { |
4895 | DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); |
4896 | regs[rd] = 0; |
4897 | break; |
4898 | } |
4899 | |
4900 | for (;;) { |
4901 | if (i >= size) { |
4902 | DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); |
4903 | regs[rd] = 0; |
4904 | break; |
4905 | } |
4906 | c = (i >= lim1) ? '\0' : dtrace_load8(addr: s1++); |
4907 | if ((d[i++] = c) == '\0') { |
4908 | i--; |
4909 | break; |
4910 | } |
4911 | } |
4912 | |
4913 | for (;;) { |
4914 | if (i >= size) { |
4915 | DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); |
4916 | regs[rd] = 0; |
4917 | break; |
4918 | } |
4919 | c = (j++ >= lim2) ? '\0' : dtrace_load8(addr: s2++); |
4920 | if ((d[i++] = c) == '\0') |
4921 | break; |
4922 | } |
4923 | |
4924 | if (i < size) { |
4925 | mstate->dtms_scratch_ptr += i; |
4926 | regs[rd] = (uintptr_t)d; |
4927 | } |
4928 | |
4929 | break; |
4930 | } |
4931 | |
4932 | case DIF_SUBR_STRTOLL: { |
4933 | uintptr_t s = tupregs[0].dttk_value; |
4934 | uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; |
4935 | size_t lim; |
4936 | int base = 10; |
4937 | |
4938 | if (nargs > 1) { |
4939 | if ((base = tupregs[1].dttk_value) <= 1 || |
4940 | base > ('z' - 'a' + 1) + ('9' - '0' + 1)) { |
4941 | *flags |= CPU_DTRACE_ILLOP; |
4942 | break; |
4943 | } |
4944 | } |
4945 | |
4946 | if (!dtrace_strcanload(addr: s, sz: size, remain: &lim, mstate, vstate)) { |
4947 | regs[rd] = INT64_MIN; |
4948 | break; |
4949 | } |
4950 | |
4951 | regs[rd] = dtrace_strtoll(input: (char *)s, base, limit: lim); |
4952 | break; |
4953 | } |
4954 | |
4955 | case DIF_SUBR_LLTOSTR: { |
4956 | int64_t i = (int64_t)tupregs[0].dttk_value; |
4957 | uint64_t val, digit; |
4958 | uint64_t size = 65; /* enough room for 2^64 in binary */ |
4959 | char *end = (char *)mstate->dtms_scratch_ptr + size - 1; |
4960 | int base = 10; |
4961 | |
4962 | if (nargs > 1) { |
4963 | if ((base = tupregs[1].dttk_value) <= 1 || |
4964 | base > ('z' - 'a' + 1) + ('9' - '0' + 1)) { |
4965 | *flags |= CPU_DTRACE_ILLOP; |
4966 | break; |
4967 | } |
4968 | } |
4969 | |
4970 | val = (base == 10 && i < 0) ? i * -1 : i; |
4971 | |
4972 | if (!DTRACE_INSCRATCH(mstate, size)) { |
4973 | DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); |
4974 | regs[rd] = 0; |
4975 | break; |
4976 | } |
4977 | |
4978 | for (*end-- = '\0'; val; val /= base) { |
4979 | if ((digit = val % base) <= '9' - '0') { |
4980 | *end-- = '0' + digit; |
4981 | } else { |
4982 | *end-- = 'a' + (digit - ('9' - '0') - 1); |
4983 | } |
4984 | } |
4985 | |
4986 | if (i == 0 && base == 16) |
4987 | *end-- = '0'; |
4988 | |
4989 | if (base == 16) |
4990 | *end-- = 'x'; |
4991 | |
4992 | if (i == 0 || base == 8 || base == 16) |
4993 | *end-- = '0'; |
4994 | |
4995 | if (i < 0 && base == 10) |
4996 | *end-- = '-'; |
4997 | |
4998 | regs[rd] = (uintptr_t)end + 1; |
4999 | mstate->dtms_scratch_ptr += size; |
5000 | break; |
5001 | } |
5002 | |
5003 | case DIF_SUBR_HTONS: |
5004 | case DIF_SUBR_NTOHS: |
5005 | #ifdef _BIG_ENDIAN |
5006 | regs[rd] = (uint16_t)tupregs[0].dttk_value; |
5007 | #else |
5008 | regs[rd] = DT_BSWAP_16((uint16_t)tupregs[0].dttk_value); |
5009 | #endif |
5010 | break; |
5011 | |
5012 | |
5013 | case DIF_SUBR_HTONL: |
5014 | case DIF_SUBR_NTOHL: |
5015 | #ifdef _BIG_ENDIAN |
5016 | regs[rd] = (uint32_t)tupregs[0].dttk_value; |
5017 | #else |
5018 | regs[rd] = DT_BSWAP_32((uint32_t)tupregs[0].dttk_value); |
5019 | #endif |
5020 | break; |
5021 | |
5022 | |
5023 | case DIF_SUBR_HTONLL: |
5024 | case DIF_SUBR_NTOHLL: |
5025 | #ifdef _BIG_ENDIAN |
5026 | regs[rd] = (uint64_t)tupregs[0].dttk_value; |
5027 | #else |
5028 | regs[rd] = DT_BSWAP_64((uint64_t)tupregs[0].dttk_value); |
5029 | #endif |
5030 | break; |
5031 | |
5032 | |
5033 | case DIF_SUBR_DIRNAME: |
5034 | case DIF_SUBR_BASENAME: { |
5035 | char *dest = (char *)mstate->dtms_scratch_ptr; |
5036 | uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; |
5037 | uintptr_t src = tupregs[0].dttk_value; |
5038 | int i, j, len = dtrace_strlen(s: (char *)src, lim: size); |
5039 | int lastbase = -1, firstbase = -1, lastdir = -1; |
5040 | int start, end; |
5041 | |
5042 | if (!dtrace_canload(addr: src, sz: len + 1, mstate, vstate)) { |
5043 | regs[rd] = 0; |
5044 | break; |
5045 | } |
5046 | |
5047 | if (!DTRACE_INSCRATCH(mstate, size)) { |
5048 | DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); |
5049 | regs[rd] = 0; |
5050 | break; |
5051 | } |
5052 | |
5053 | /* |
5054 | * The basename and dirname for a zero-length string is |
5055 | * defined to be "." |
5056 | */ |
5057 | if (len == 0) { |
5058 | len = 1; |
5059 | src = (uintptr_t)"." ; |
5060 | } |
5061 | |
5062 | /* |
5063 | * Start from the back of the string, moving back toward the |
5064 | * front until we see a character that isn't a slash. That |
5065 | * character is the last character in the basename. |
5066 | */ |
5067 | for (i = len - 1; i >= 0; i--) { |
5068 | if (dtrace_load8(addr: src + i) != '/') |
5069 | break; |
5070 | } |
5071 | |
5072 | if (i >= 0) |
5073 | lastbase = i; |
5074 | |
5075 | /* |
5076 | * Starting from the last character in the basename, move |
5077 | * towards the front until we find a slash. The character |
5078 | * that we processed immediately before that is the first |
5079 | * character in the basename. |
5080 | */ |
5081 | for (; i >= 0; i--) { |
5082 | if (dtrace_load8(addr: src + i) == '/') |
5083 | break; |
5084 | } |
5085 | |
5086 | if (i >= 0) |
5087 | firstbase = i + 1; |
5088 | |
5089 | /* |
5090 | * Now keep going until we find a non-slash character. That |
5091 | * character is the last character in the dirname. |
5092 | */ |
5093 | for (; i >= 0; i--) { |
5094 | if (dtrace_load8(addr: src + i) != '/') |
5095 | break; |
5096 | } |
5097 | |
5098 | if (i >= 0) |
5099 | lastdir = i; |
5100 | |
5101 | ASSERT(!(lastbase == -1 && firstbase != -1)); |
5102 | ASSERT(!(firstbase == -1 && lastdir != -1)); |
5103 | |
5104 | if (lastbase == -1) { |
5105 | /* |
5106 | * We didn't find a non-slash character. We know that |
5107 | * the length is non-zero, so the whole string must be |
5108 | * slashes. In either the dirname or the basename |
5109 | * case, we return '/'. |
5110 | */ |
5111 | ASSERT(firstbase == -1); |
5112 | firstbase = lastbase = lastdir = 0; |
5113 | } |
5114 | |
5115 | if (firstbase == -1) { |
5116 | /* |
5117 | * The entire string consists only of a basename |
5118 | * component. If we're looking for dirname, we need |
5119 | * to change our string to be just "."; if we're |
5120 | * looking for a basename, we'll just set the first |
5121 | * character of the basename to be 0. |
5122 | */ |
5123 | if (subr == DIF_SUBR_DIRNAME) { |
5124 | ASSERT(lastdir == -1); |
5125 | src = (uintptr_t)"." ; |
5126 | lastdir = 0; |
5127 | } else { |
5128 | firstbase = 0; |
5129 | } |
5130 | } |
5131 | |
5132 | if (subr == DIF_SUBR_DIRNAME) { |
5133 | if (lastdir == -1) { |
5134 | /* |
5135 | * We know that we have a slash in the name -- |
5136 | * or lastdir would be set to 0, above. And |
5137 | * because lastdir is -1, we know that this |
5138 | * slash must be the first character. (That |
5139 | * is, the full string must be of the form |
5140 | * "/basename".) In this case, the last |
5141 | * character of the directory name is 0. |
5142 | */ |
5143 | lastdir = 0; |
5144 | } |
5145 | |
5146 | start = 0; |
5147 | end = lastdir; |
5148 | } else { |
5149 | ASSERT(subr == DIF_SUBR_BASENAME); |
5150 | ASSERT(firstbase != -1 && lastbase != -1); |
5151 | start = firstbase; |
5152 | end = lastbase; |
5153 | } |
5154 | |
5155 | for (i = start, j = 0; i <= end && (uint64_t)j < size - 1; i++, j++) |
5156 | dest[j] = dtrace_load8(addr: src + i); |
5157 | |
5158 | dest[j] = '\0'; |
5159 | regs[rd] = (uintptr_t)dest; |
5160 | mstate->dtms_scratch_ptr += size; |
5161 | break; |
5162 | } |
5163 | |
5164 | case DIF_SUBR_CLEANPATH: { |
5165 | char *dest = (char *)mstate->dtms_scratch_ptr, c; |
5166 | uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; |
5167 | uintptr_t src = tupregs[0].dttk_value; |
5168 | size_t lim; |
5169 | size_t i = 0, j = 0; |
5170 | |
5171 | if (!dtrace_strcanload(addr: src, sz: size, remain: &lim, mstate, vstate)) { |
5172 | regs[rd] = 0; |
5173 | break; |
5174 | } |
5175 | |
5176 | if (!DTRACE_INSCRATCH(mstate, size)) { |
5177 | DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); |
5178 | regs[rd] = 0; |
5179 | break; |
5180 | } |
5181 | |
5182 | /* |
5183 | * Move forward, loading each character. |
5184 | */ |
5185 | do { |
5186 | c = (i >= lim) ? '\0' : dtrace_load8(addr: src + i++); |
5187 | next: |
5188 | if ((uint64_t)(j + 5) >= size) /* 5 = strlen("/..c\0") */ |
5189 | break; |
5190 | |
5191 | if (c != '/') { |
5192 | dest[j++] = c; |
5193 | continue; |
5194 | } |
5195 | |
5196 | c = (i >= lim) ? '\0' : dtrace_load8(addr: src + i++); |
5197 | |
5198 | if (c == '/') { |
5199 | /* |
5200 | * We have two slashes -- we can just advance |
5201 | * to the next character. |
5202 | */ |
5203 | goto next; |
5204 | } |
5205 | |
5206 | if (c != '.') { |
5207 | /* |
5208 | * This is not "." and it's not ".." -- we can |
5209 | * just store the "/" and this character and |
5210 | * drive on. |
5211 | */ |
5212 | dest[j++] = '/'; |
5213 | dest[j++] = c; |
5214 | continue; |
5215 | } |
5216 | |
5217 | c = (i >= lim) ? '\0' : dtrace_load8(addr: src + i++); |
5218 | |
5219 | if (c == '/') { |
5220 | /* |
5221 | * This is a "/./" component. We're not going |
5222 | * to store anything in the destination buffer; |
5223 | * we're just going to go to the next component. |
5224 | */ |
5225 | goto next; |
5226 | } |
5227 | |
5228 | if (c != '.') { |
5229 | /* |
5230 | * This is not ".." -- we can just store the |
5231 | * "/." and this character and continue |
5232 | * processing. |
5233 | */ |
5234 | dest[j++] = '/'; |
5235 | dest[j++] = '.'; |
5236 | dest[j++] = c; |
5237 | continue; |
5238 | } |
5239 | |
5240 | c = (i >= lim) ? '\0' : dtrace_load8(addr: src + i++); |
5241 | |
5242 | if (c != '/' && c != '\0') { |
5243 | /* |
5244 | * This is not ".." -- it's "..[mumble]". |
5245 | * We'll store the "/.." and this character |
5246 | * and continue processing. |
5247 | */ |
5248 | dest[j++] = '/'; |
5249 | dest[j++] = '.'; |
5250 | dest[j++] = '.'; |
5251 | dest[j++] = c; |
5252 | continue; |
5253 | } |
5254 | |
5255 | /* |
5256 | * This is "/../" or "/..\0". We need to back up |
5257 | * our destination pointer until we find a "/". |
5258 | */ |
5259 | i--; |
5260 | while (j != 0 && dest[--j] != '/') |
5261 | continue; |
5262 | |
5263 | if (c == '\0') |
5264 | dest[++j] = '/'; |
5265 | } while (c != '\0'); |
5266 | |
5267 | dest[j] = '\0'; |
5268 | regs[rd] = (uintptr_t)dest; |
5269 | mstate->dtms_scratch_ptr += size; |
5270 | break; |
5271 | } |
5272 | |
5273 | case DIF_SUBR_INET_NTOA: |
5274 | case DIF_SUBR_INET_NTOA6: |
5275 | case DIF_SUBR_INET_NTOP: { |
5276 | size_t size; |
5277 | int af, argi, i; |
5278 | char *base, *end; |
5279 | |
5280 | if (subr == DIF_SUBR_INET_NTOP) { |
5281 | af = (int)tupregs[0].dttk_value; |
5282 | argi = 1; |
5283 | } else { |
5284 | af = subr == DIF_SUBR_INET_NTOA ? AF_INET: AF_INET6; |
5285 | argi = 0; |
5286 | } |
5287 | |
5288 | if (af == AF_INET) { |
5289 | #if !defined(__APPLE__) |
5290 | ipaddr_t ip4; |
5291 | #else |
5292 | uint32_t ip4; |
5293 | #endif /* __APPLE__ */ |
5294 | uint8_t *ptr8, val; |
5295 | |
5296 | /* |
5297 | * Safely load the IPv4 address. |
5298 | */ |
5299 | #if !defined(__APPLE__) |
5300 | ip4 = dtrace_load32(tupregs[argi].dttk_value); |
5301 | #else |
5302 | if (!dtrace_canload(addr: tupregs[argi].dttk_value, sz: sizeof(ip4), |
5303 | mstate, vstate)) { |
5304 | regs[rd] = 0; |
5305 | break; |
5306 | } |
5307 | |
5308 | dtrace_bcopy( |
5309 | src: (void *)(uintptr_t)tupregs[argi].dttk_value, |
5310 | dst: (void *)(uintptr_t)&ip4, len: sizeof (ip4)); |
5311 | #endif /* __APPLE__ */ |
5312 | /* |
5313 | * Check an IPv4 string will fit in scratch. |
5314 | */ |
5315 | #if !defined(__APPLE__) |
5316 | size = INET_ADDRSTRLEN; |
5317 | #else |
5318 | size = MAX_IPv4_STR_LEN; |
5319 | #endif /* __APPLE__ */ |
5320 | if (!DTRACE_INSCRATCH(mstate, size)) { |
5321 | DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); |
5322 | regs[rd] = 0; |
5323 | break; |
5324 | } |
5325 | base = (char *)mstate->dtms_scratch_ptr; |
5326 | end = (char *)mstate->dtms_scratch_ptr + size - 1; |
5327 | |
5328 | /* |
5329 | * Stringify as a dotted decimal quad. |
5330 | */ |
5331 | *end-- = '\0'; |
5332 | ptr8 = (uint8_t *)&ip4; |
5333 | for (i = 3; i >= 0; i--) { |
5334 | val = ptr8[i]; |
5335 | |
5336 | if (val == 0) { |
5337 | *end-- = '0'; |
5338 | } else { |
5339 | for (; val; val /= 10) { |
5340 | *end-- = '0' + (val % 10); |
5341 | } |
5342 | } |
5343 | |
5344 | if (i > 0) |
5345 | *end-- = '.'; |
5346 | } |
5347 | ASSERT(end + 1 >= base); |
5348 | |
5349 | } else if (af == AF_INET6) { |
5350 | #if defined(__APPLE__) |
5351 | #define _S6_un __u6_addr |
5352 | #define _S6_u8 __u6_addr8 |
5353 | #endif /* __APPLE__ */ |
5354 | struct in6_addr ip6; |
5355 | int firstzero, tryzero, numzero, v6end; |
5356 | uint16_t val; |
5357 | const char digits[] = "0123456789abcdef" ; |
5358 | |
5359 | /* |
5360 | * Stringify using RFC 1884 convention 2 - 16 bit |
5361 | * hexadecimal values with a zero-run compression. |
5362 | * Lower case hexadecimal digits are used. |
5363 | * eg, fe80::214:4fff:fe0b:76c8. |
5364 | * The IPv4 embedded form is returned for inet_ntop, |
5365 | * just the IPv4 string is returned for inet_ntoa6. |
5366 | */ |
5367 | |
5368 | if (!dtrace_canload(addr: tupregs[argi].dttk_value, |
5369 | sz: sizeof(struct in6_addr), mstate, vstate)) { |
5370 | regs[rd] = 0; |
5371 | break; |
5372 | } |
5373 | |
5374 | /* |
5375 | * Safely load the IPv6 address. |
5376 | */ |
5377 | dtrace_bcopy( |
5378 | src: (void *)(uintptr_t)tupregs[argi].dttk_value, |
5379 | dst: (void *)(uintptr_t)&ip6, len: sizeof (struct in6_addr)); |
5380 | |
5381 | /* |
5382 | * Check an IPv6 string will fit in scratch. |
5383 | */ |
5384 | size = INET6_ADDRSTRLEN; |
5385 | if (!DTRACE_INSCRATCH(mstate, size)) { |
5386 | DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); |
5387 | regs[rd] = 0; |
5388 | break; |
5389 | } |
5390 | base = (char *)mstate->dtms_scratch_ptr; |
5391 | end = (char *)mstate->dtms_scratch_ptr + size - 1; |
5392 | *end-- = '\0'; |
5393 | |
5394 | /* |
5395 | * Find the longest run of 16 bit zero values |
5396 | * for the single allowed zero compression - "::". |
5397 | */ |
5398 | firstzero = -1; |
5399 | tryzero = -1; |
5400 | numzero = 1; |
5401 | for (i = 0; i < (int)sizeof (struct in6_addr); i++) { |
5402 | if (ip6._S6_un._S6_u8[i] == 0 && |
5403 | tryzero == -1 && i % 2 == 0) { |
5404 | tryzero = i; |
5405 | continue; |
5406 | } |
5407 | |
5408 | if (tryzero != -1 && |
5409 | (ip6._S6_un._S6_u8[i] != 0 || |
5410 | i == sizeof (struct in6_addr) - 1)) { |
5411 | |
5412 | if (i - tryzero <= numzero) { |
5413 | tryzero = -1; |
5414 | continue; |
5415 | } |
5416 | |
5417 | firstzero = tryzero; |
5418 | numzero = i - i % 2 - tryzero; |
5419 | tryzero = -1; |
5420 | |
5421 | if (ip6._S6_un._S6_u8[i] == 0 && |
5422 | i == sizeof (struct in6_addr) - 1) |
5423 | numzero += 2; |
5424 | } |
5425 | } |
5426 | ASSERT(firstzero + numzero <= (int)sizeof (struct in6_addr)); |
5427 | |
5428 | /* |
5429 | * Check for an IPv4 embedded address. |
5430 | */ |
5431 | v6end = sizeof (struct in6_addr) - 2; |
5432 | if (IN6_IS_ADDR_V4MAPPED(&ip6) || |
5433 | IN6_IS_ADDR_V4COMPAT(&ip6)) { |
5434 | for (i = sizeof (struct in6_addr) - 1; |
5435 | i >= (int)DTRACE_V4MAPPED_OFFSET; i--) { |
5436 | ASSERT(end >= base); |
5437 | |
5438 | val = ip6._S6_un._S6_u8[i]; |
5439 | |
5440 | if (val == 0) { |
5441 | *end-- = '0'; |
5442 | } else { |
5443 | for (; val; val /= 10) { |
5444 | *end-- = '0' + val % 10; |
5445 | } |
5446 | } |
5447 | |
5448 | if (i > (int)DTRACE_V4MAPPED_OFFSET) |
5449 | *end-- = '.'; |
5450 | } |
5451 | |
5452 | if (subr == DIF_SUBR_INET_NTOA6) |
5453 | goto inetout; |
5454 | |
5455 | /* |
5456 | * Set v6end to skip the IPv4 address that |
5457 | * we have already stringified. |
5458 | */ |
5459 | v6end = 10; |
5460 | } |
5461 | |
5462 | /* |
5463 | * Build the IPv6 string by working through the |
5464 | * address in reverse. |
5465 | */ |
5466 | for (i = v6end; i >= 0; i -= 2) { |
5467 | ASSERT(end >= base); |
5468 | |
5469 | if (i == firstzero + numzero - 2) { |
5470 | *end-- = ':'; |
5471 | *end-- = ':'; |
5472 | i -= numzero - 2; |
5473 | continue; |
5474 | } |
5475 | |
5476 | if (i < 14 && i != firstzero - 2) |
5477 | *end-- = ':'; |
5478 | |
5479 | val = (ip6._S6_un._S6_u8[i] << 8) + |
5480 | ip6._S6_un._S6_u8[i + 1]; |
5481 | |
5482 | if (val == 0) { |
5483 | *end-- = '0'; |
5484 | } else { |
5485 | for (; val; val /= 16) { |
5486 | *end-- = digits[val % 16]; |
5487 | } |
5488 | } |
5489 | } |
5490 | ASSERT(end + 1 >= base); |
5491 | |
5492 | #if defined(__APPLE__) |
5493 | #undef _S6_un |
5494 | #undef _S6_u8 |
5495 | #endif /* __APPLE__ */ |
5496 | } else { |
5497 | /* |
5498 | * The user didn't use AH_INET or AH_INET6. |
5499 | */ |
5500 | DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); |
5501 | regs[rd] = 0; |
5502 | break; |
5503 | } |
5504 | |
5505 | inetout: regs[rd] = (uintptr_t)end + 1; |
5506 | mstate->dtms_scratch_ptr += size; |
5507 | break; |
5508 | } |
5509 | |
5510 | case DIF_SUBR_JSON: { |
5511 | uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; |
5512 | uintptr_t json = tupregs[0].dttk_value; |
5513 | size_t jsonlen = dtrace_strlen(s: (char *)json, lim: size); |
5514 | uintptr_t elem = tupregs[1].dttk_value; |
5515 | size_t elemlen = dtrace_strlen(s: (char *)elem, lim: size); |
5516 | |
5517 | char *dest = (char *)mstate->dtms_scratch_ptr; |
5518 | char *elemlist = (char *)mstate->dtms_scratch_ptr + jsonlen + 1; |
5519 | char *ee = elemlist; |
5520 | int nelems = 1; |
5521 | uintptr_t cur; |
5522 | |
5523 | if (!dtrace_canload(addr: json, sz: jsonlen + 1, mstate, vstate) || |
5524 | !dtrace_canload(addr: elem, sz: elemlen + 1, mstate, vstate)) { |
5525 | regs[rd] = 0; |
5526 | break; |
5527 | } |
5528 | |
5529 | if (!DTRACE_INSCRATCH(mstate, jsonlen + 1 + elemlen + 1)) { |
5530 | DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); |
5531 | regs[rd] = 0; |
5532 | break; |
5533 | } |
5534 | |
5535 | /* |
5536 | * Read the element selector and split it up into a packed list |
5537 | * of strings. |
5538 | */ |
5539 | for (cur = elem; cur < elem + elemlen; cur++) { |
5540 | char cc = dtrace_load8(addr: cur); |
5541 | |
5542 | if (cur == elem && cc == '[') { |
5543 | /* |
5544 | * If the first element selector key is |
5545 | * actually an array index then ignore the |
5546 | * bracket. |
5547 | */ |
5548 | continue; |
5549 | } |
5550 | |
5551 | if (cc == ']') |
5552 | continue; |
5553 | |
5554 | if (cc == '.' || cc == '[') { |
5555 | nelems++; |
5556 | cc = '\0'; |
5557 | } |
5558 | |
5559 | *ee++ = cc; |
5560 | } |
5561 | *ee++ = '\0'; |
5562 | |
5563 | if ((regs[rd] = (uintptr_t)dtrace_json(size, json, elemlist, |
5564 | nelems, dest)) != 0) |
5565 | mstate->dtms_scratch_ptr += jsonlen + 1; |
5566 | break; |
5567 | } |
5568 | |
5569 | case DIF_SUBR_TOUPPER: |
5570 | case DIF_SUBR_TOLOWER: { |
5571 | uintptr_t src = tupregs[0].dttk_value; |
5572 | char *dest = (char *)mstate->dtms_scratch_ptr; |
5573 | char lower, upper, base, c; |
5574 | uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; |
5575 | size_t len = dtrace_strlen(s: (char*) src, lim: size); |
5576 | size_t i = 0; |
5577 | |
5578 | lower = (subr == DIF_SUBR_TOUPPER) ? 'a' : 'A'; |
5579 | upper = (subr == DIF_SUBR_TOUPPER) ? 'z' : 'Z'; |
5580 | base = (subr == DIF_SUBR_TOUPPER) ? 'A' : 'a'; |
5581 | |
5582 | if (!dtrace_canload(addr: src, sz: len + 1, mstate, vstate)) { |
5583 | regs[rd] = 0; |
5584 | break; |
5585 | } |
5586 | |
5587 | if (!DTRACE_INSCRATCH(mstate, size)) { |
5588 | DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); |
5589 | regs[rd] = 0; |
5590 | break; |
5591 | } |
5592 | |
5593 | for (i = 0; i < size - 1; ++i) { |
5594 | if ((c = dtrace_load8(addr: src + i)) == '\0') |
5595 | break; |
5596 | if (c >= lower && c <= upper) |
5597 | c = base + (c - lower); |
5598 | dest[i] = c; |
5599 | } |
5600 | |
5601 | ASSERT(i < size); |
5602 | |
5603 | dest[i] = '\0'; |
5604 | regs[rd] = (uintptr_t) dest; |
5605 | mstate->dtms_scratch_ptr += size; |
5606 | |
5607 | break; |
5608 | } |
5609 | |
5610 | case DIF_SUBR_STRIP: |
5611 | if (!dtrace_is_valid_ptrauth_key(tupregs[1].dttk_value)) { |
5612 | DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); |
5613 | break; |
5614 | } |
5615 | regs[rd] = (uint64_t)dtrace_ptrauth_strip( |
5616 | (void*)tupregs[0].dttk_value, tupregs[1].dttk_value); |
5617 | break; |
5618 | |
5619 | #if defined(__APPLE__) |
5620 | case DIF_SUBR_VM_KERNEL_ADDRPERM: { |
5621 | if (!dtrace_priv_kernel(state)) { |
5622 | regs[rd] = 0; |
5623 | } else { |
5624 | regs[rd] = VM_KERNEL_ADDRPERM((vm_offset_t) tupregs[0].dttk_value); |
5625 | } |
5626 | |
5627 | break; |
5628 | } |
5629 | |
5630 | case DIF_SUBR_KDEBUG_TRACE: { |
5631 | uint32_t debugid; |
5632 | uintptr_t args[4] = {0}; |
5633 | int i; |
5634 | |
5635 | if (nargs < 2 || nargs > 5) { |
5636 | DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); |
5637 | break; |
5638 | } |
5639 | |
5640 | if (dtrace_destructive_disallow || |
5641 | !dtrace_priv_kernel_destructive(state)) { |
5642 | return; |
5643 | } |
5644 | |
5645 | debugid = tupregs[0].dttk_value; |
5646 | for (i = 0; i < nargs - 1; i++) |
5647 | args[i] = tupregs[i + 1].dttk_value; |
5648 | |
5649 | kernel_debug(debugid, arg1: args[0], arg2: args[1], arg3: args[2], arg4: args[3], arg5: 0); |
5650 | |
5651 | break; |
5652 | } |
5653 | |
5654 | case DIF_SUBR_KDEBUG_TRACE_STRING: { |
5655 | if (nargs != 3) { |
5656 | break; |
5657 | } |
5658 | |
5659 | if (dtrace_destructive_disallow || |
5660 | !dtrace_priv_kernel_destructive(state)) { |
5661 | return; |
5662 | } |
5663 | |
5664 | uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; |
5665 | uint32_t debugid = tupregs[0].dttk_value; |
5666 | uint64_t str_id = tupregs[1].dttk_value; |
5667 | uintptr_t src = tupregs[2].dttk_value; |
5668 | size_t lim; |
5669 | char buf[size]; |
5670 | char* str = NULL; |
5671 | |
5672 | if (src != (uintptr_t)0) { |
5673 | str = buf; |
5674 | if (!dtrace_strcanload(addr: src, sz: size, remain: &lim, mstate, vstate)) { |
5675 | break; |
5676 | } |
5677 | dtrace_strcpy(src: (void*)src, dst: buf, len: size); |
5678 | } |
5679 | |
5680 | (void)kernel_debug_string(debugid, str_id: &str_id, str); |
5681 | regs[rd] = str_id; |
5682 | |
5683 | break; |
5684 | } |
5685 | |
5686 | case DIF_SUBR_MTONS: |
5687 | absolutetime_to_nanoseconds(abstime: tupregs[0].dttk_value, result: ®s[rd]); |
5688 | |
5689 | break; |
5690 | case DIF_SUBR_PHYSMEM_READ: { |
5691 | #if DEBUG || DEVELOPMENT |
5692 | if (dtrace_destructive_disallow || |
5693 | !dtrace_priv_kernel_destructive(state)) { |
5694 | return; |
5695 | } |
5696 | regs[rd] = dtrace_physmem_read(tupregs[0].dttk_value, |
5697 | tupregs[1].dttk_value); |
5698 | #else |
5699 | DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); |
5700 | #endif /* DEBUG || DEVELOPMENT */ |
5701 | break; |
5702 | } |
5703 | case DIF_SUBR_PHYSMEM_WRITE: { |
5704 | #if DEBUG || DEVELOPMENT |
5705 | if (dtrace_destructive_disallow || |
5706 | !dtrace_priv_kernel_destructive(state)) { |
5707 | return; |
5708 | } |
5709 | |
5710 | dtrace_physmem_write(tupregs[0].dttk_value, |
5711 | tupregs[1].dttk_value, (size_t)tupregs[2].dttk_value); |
5712 | #else |
5713 | DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); |
5714 | #endif /* DEBUG || DEVELOPMENT */ |
5715 | break; |
5716 | } |
5717 | |
5718 | case DIF_SUBR_KVTOPHYS: { |
5719 | #if DEBUG || DEVELOPMENT |
5720 | regs[rd] = kvtophys(tupregs[0].dttk_value); |
5721 | #else |
5722 | DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); |
5723 | #endif /* DEBUG || DEVELOPMENT */ |
5724 | break; |
5725 | } |
5726 | |
5727 | case DIF_SUBR_LIVEDUMP: { |
5728 | #if DEBUG || DEVELOPMENT |
5729 | if (dtrace_destructive_disallow || |
5730 | !dtrace_priv_kernel_destructive(state)) { |
5731 | break; |
5732 | } |
5733 | |
5734 | /* For the moment, there is only one type of livedump. */ |
5735 | if (nargs != 1 || tupregs[0].dttk_value != 0) { |
5736 | DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); |
5737 | break; |
5738 | } |
5739 | |
5740 | char *dest = (char *)mstate->dtms_scratch_ptr; |
5741 | uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; |
5742 | |
5743 | if (!DTRACE_INSCRATCH(mstate, size)) { |
5744 | DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); |
5745 | regs[rd] = 0; |
5746 | break; |
5747 | } |
5748 | |
5749 | dtrace_livedump(dest, size); |
5750 | regs[rd] = (uintptr_t) dest; |
5751 | mstate->dtms_scratch_ptr += strlen(dest) + 1; |
5752 | #else |
5753 | DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); |
5754 | #endif /* DEBUG || DEVELOPMENT */ |
5755 | break; |
5756 | } |
5757 | #endif /* defined(__APPLE__) */ |
5758 | |
5759 | } |
5760 | } |
5761 | |
5762 | /* |
5763 | * Emulate the execution of DTrace IR instructions specified by the given |
5764 | * DIF object. This function is deliberately void of assertions as all of |
5765 | * the necessary checks are handled by a call to dtrace_difo_validate(). |
5766 | */ |
5767 | static uint64_t |
5768 | dtrace_dif_emulate(dtrace_difo_t *difo, dtrace_mstate_t *mstate, |
5769 | dtrace_vstate_t *vstate, dtrace_state_t *state) |
5770 | { |
5771 | const dif_instr_t *text = difo->dtdo_buf; |
5772 | const uint_t textlen = difo->dtdo_len; |
5773 | const char *strtab = difo->dtdo_strtab; |
5774 | const uint64_t *inttab = difo->dtdo_inttab; |
5775 | |
5776 | uint64_t rval = 0; |
5777 | dtrace_statvar_t *svar; |
5778 | dtrace_dstate_t *dstate = &vstate->dtvs_dynvars; |
5779 | dtrace_difv_t *v; |
5780 | volatile uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; |
5781 | volatile uint64_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval; |
5782 | |
5783 | dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */ |
5784 | uint64_t regs[DIF_DIR_NREGS]; |
5785 | uint64_t *tmp; |
5786 | |
5787 | uint8_t cc_n = 0, cc_z = 0, cc_v = 0, cc_c = 0; |
5788 | int64_t cc_r; |
5789 | uint_t pc = 0, id, opc = 0; |
5790 | uint8_t ttop = 0; |
5791 | dif_instr_t instr; |
5792 | uint_t r1, r2, rd; |
5793 | |
5794 | /* |
5795 | * We stash the current DIF object into the machine state: we need it |
5796 | * for subsequent access checking. |
5797 | */ |
5798 | mstate->dtms_difo = difo; |
5799 | |
5800 | regs[DIF_REG_R0] = 0; /* %r0 is fixed at zero */ |
5801 | |
5802 | while (pc < textlen && !(*flags & CPU_DTRACE_FAULT)) { |
5803 | opc = pc; |
5804 | |
5805 | instr = text[pc++]; |
5806 | r1 = DIF_INSTR_R1(instr); |
5807 | r2 = DIF_INSTR_R2(instr); |
5808 | rd = DIF_INSTR_RD(instr); |
5809 | |
5810 | switch (DIF_INSTR_OP(instr)) { |
5811 | case DIF_OP_OR: |
5812 | regs[rd] = regs[r1] | regs[r2]; |
5813 | break; |
5814 | case DIF_OP_XOR: |
5815 | regs[rd] = regs[r1] ^ regs[r2]; |
5816 | break; |
5817 | case DIF_OP_AND: |
5818 | regs[rd] = regs[r1] & regs[r2]; |
5819 | break; |
5820 | case DIF_OP_SLL: |
5821 | regs[rd] = regs[r1] << regs[r2]; |
5822 | break; |
5823 | case DIF_OP_SRL: |
5824 | regs[rd] = regs[r1] >> regs[r2]; |
5825 | break; |
5826 | case DIF_OP_SUB: |
5827 | regs[rd] = regs[r1] - regs[r2]; |
5828 | break; |
5829 | case DIF_OP_ADD: |
5830 | regs[rd] = regs[r1] + regs[r2]; |
5831 | break; |
5832 | case DIF_OP_MUL: |
5833 | regs[rd] = regs[r1] * regs[r2]; |
5834 | break; |
5835 | case DIF_OP_SDIV: |
5836 | if (regs[r2] == 0) { |
5837 | regs[rd] = 0; |
5838 | *flags |= CPU_DTRACE_DIVZERO; |
5839 | } else { |
5840 | regs[rd] = (int64_t)regs[r1] / |
5841 | (int64_t)regs[r2]; |
5842 | } |
5843 | break; |
5844 | |
5845 | case DIF_OP_UDIV: |
5846 | if (regs[r2] == 0) { |
5847 | regs[rd] = 0; |
5848 | *flags |= CPU_DTRACE_DIVZERO; |
5849 | } else { |
5850 | regs[rd] = regs[r1] / regs[r2]; |
5851 | } |
5852 | break; |
5853 | |
5854 | case DIF_OP_SREM: |
5855 | if (regs[r2] == 0) { |
5856 | regs[rd] = 0; |
5857 | *flags |= CPU_DTRACE_DIVZERO; |
5858 | } else { |
5859 | regs[rd] = (int64_t)regs[r1] % |
5860 | (int64_t)regs[r2]; |
5861 | } |
5862 | break; |
5863 | |
5864 | case DIF_OP_UREM: |
5865 | if (regs[r2] == 0) { |
5866 | regs[rd] = 0; |
5867 | *flags |= CPU_DTRACE_DIVZERO; |
5868 | } else { |
5869 | regs[rd] = regs[r1] % regs[r2]; |
5870 | } |
5871 | break; |
5872 | |
5873 | case DIF_OP_NOT: |
5874 | regs[rd] = ~regs[r1]; |
5875 | break; |
5876 | case DIF_OP_MOV: |
5877 | regs[rd] = regs[r1]; |
5878 | break; |
5879 | case DIF_OP_CMP: |
5880 | cc_r = regs[r1] - regs[r2]; |
5881 | cc_n = cc_r < 0; |
5882 | cc_z = cc_r == 0; |
5883 | cc_v = 0; |
5884 | cc_c = regs[r1] < regs[r2]; |
5885 | break; |
5886 | case DIF_OP_TST: |
5887 | cc_n = cc_v = cc_c = 0; |
5888 | cc_z = regs[r1] == 0; |
5889 | break; |
5890 | case DIF_OP_BA: |
5891 | pc = DIF_INSTR_LABEL(instr); |
5892 | break; |
5893 | case DIF_OP_BE: |
5894 | if (cc_z) |
5895 | pc = DIF_INSTR_LABEL(instr); |
5896 | break; |
5897 | case DIF_OP_BNE: |
5898 | if (cc_z == 0) |
5899 | pc = DIF_INSTR_LABEL(instr); |
5900 | break; |
5901 | case DIF_OP_BG: |
5902 | if ((cc_z | (cc_n ^ cc_v)) == 0) |
5903 | pc = DIF_INSTR_LABEL(instr); |
5904 | break; |
5905 | case DIF_OP_BGU: |
5906 | if ((cc_c | cc_z) == 0) |
5907 | pc = DIF_INSTR_LABEL(instr); |
5908 | break; |
5909 | case DIF_OP_BGE: |
5910 | if ((cc_n ^ cc_v) == 0) |
5911 | pc = DIF_INSTR_LABEL(instr); |
5912 | break; |
5913 | case DIF_OP_BGEU: |
5914 | if (cc_c == 0) |
5915 | pc = DIF_INSTR_LABEL(instr); |
5916 | break; |
5917 | case DIF_OP_BL: |
5918 | if (cc_n ^ cc_v) |
5919 | pc = DIF_INSTR_LABEL(instr); |
5920 | break; |
5921 | case DIF_OP_BLU: |
5922 | if (cc_c) |
5923 | pc = DIF_INSTR_LABEL(instr); |
5924 | break; |
5925 | case DIF_OP_BLE: |
5926 | if (cc_z | (cc_n ^ cc_v)) |
5927 | pc = DIF_INSTR_LABEL(instr); |
5928 | break; |
5929 | case DIF_OP_BLEU: |
5930 | if (cc_c | cc_z) |
5931 | pc = DIF_INSTR_LABEL(instr); |
5932 | break; |
5933 | case DIF_OP_RLDSB: |
5934 | if (!dtrace_canstore(regs[r1], sz: 1, mstate, vstate)) { |
5935 | *flags |= CPU_DTRACE_KPRIV; |
5936 | *illval = regs[r1]; |
5937 | break; |
5938 | } |
5939 | OS_FALLTHROUGH; |
5940 | case DIF_OP_LDSB: |
5941 | regs[rd] = (int8_t)dtrace_load8(regs[r1]); |
5942 | break; |
5943 | case DIF_OP_RLDSH: |
5944 | if (!dtrace_canstore(regs[r1], sz: 2, mstate, vstate)) { |
5945 | *flags |= CPU_DTRACE_KPRIV; |
5946 | *illval = regs[r1]; |
5947 | break; |
5948 | } |
5949 | OS_FALLTHROUGH; |
5950 | case DIF_OP_LDSH: |
5951 | regs[rd] = (int16_t)dtrace_load16(regs[r1]); |
5952 | break; |
5953 | case DIF_OP_RLDSW: |
5954 | if (!dtrace_canstore(regs[r1], sz: 4, mstate, vstate)) { |
5955 | *flags |= CPU_DTRACE_KPRIV; |
5956 | *illval = regs[r1]; |
5957 | break; |
5958 | } |
5959 | OS_FALLTHROUGH; |
5960 | case DIF_OP_LDSW: |
5961 | regs[rd] = (int32_t)dtrace_load32(regs[r1]); |
5962 | break; |
5963 | case DIF_OP_RLDUB: |
5964 | if (!dtrace_canstore(regs[r1], sz: 1, mstate, vstate)) { |
5965 | *flags |= CPU_DTRACE_KPRIV; |
5966 | *illval = regs[r1]; |
5967 | break; |
5968 | } |
5969 | OS_FALLTHROUGH; |
5970 | case DIF_OP_LDUB: |
5971 | regs[rd] = dtrace_load8(regs[r1]); |
5972 | break; |
5973 | case DIF_OP_RLDUH: |
5974 | if (!dtrace_canstore(regs[r1], sz: 2, mstate, vstate)) { |
5975 | *flags |= CPU_DTRACE_KPRIV; |
5976 | *illval = regs[r1]; |
5977 | break; |
5978 | } |
5979 | OS_FALLTHROUGH; |
5980 | case DIF_OP_LDUH: |
5981 | regs[rd] = dtrace_load16(regs[r1]); |
5982 | break; |
5983 | case DIF_OP_RLDUW: |
5984 | if (!dtrace_canstore(regs[r1], sz: 4, mstate, vstate)) { |
5985 | *flags |= CPU_DTRACE_KPRIV; |
5986 | *illval = regs[r1]; |
5987 | break; |
5988 | } |
5989 | OS_FALLTHROUGH; |
5990 | case DIF_OP_LDUW: |
5991 | regs[rd] = dtrace_load32(regs[r1]); |
5992 | break; |
5993 | case DIF_OP_RLDX: |
5994 | if (!dtrace_canstore(regs[r1], sz: 8, mstate, vstate)) { |
5995 | *flags |= CPU_DTRACE_KPRIV; |
5996 | *illval = regs[r1]; |
5997 | break; |
5998 | } |
5999 | OS_FALLTHROUGH; |
6000 | case DIF_OP_LDX: |
6001 | regs[rd] = dtrace_load64(regs[r1]); |
6002 | break; |
6003 | /* |
6004 | * Darwin 32-bit kernel may fetch from 64-bit user. |
6005 | * Do not cast regs to uintptr_t |
6006 | * DIF_OP_ULDSB,DIF_OP_ULDSH, DIF_OP_ULDSW, DIF_OP_ULDUB |
6007 | * DIF_OP_ULDUH, DIF_OP_ULDUW, DIF_OP_ULDX |
6008 | */ |
6009 | case DIF_OP_ULDSB: |
6010 | regs[rd] = (int8_t) |
6011 | dtrace_fuword8(regs[r1]); |
6012 | break; |
6013 | case DIF_OP_ULDSH: |
6014 | regs[rd] = (int16_t) |
6015 | dtrace_fuword16(regs[r1]); |
6016 | break; |
6017 | case DIF_OP_ULDSW: |
6018 | regs[rd] = (int32_t) |
6019 | dtrace_fuword32(regs[r1]); |
6020 | break; |
6021 | case DIF_OP_ULDUB: |
6022 | regs[rd] = |
6023 | dtrace_fuword8(regs[r1]); |
6024 | break; |
6025 | case DIF_OP_ULDUH: |
6026 | regs[rd] = |
6027 | dtrace_fuword16(regs[r1]); |
6028 | break; |
6029 | case DIF_OP_ULDUW: |
6030 | regs[rd] = |
6031 | dtrace_fuword32(regs[r1]); |
6032 | break; |
6033 | case DIF_OP_ULDX: |
6034 | regs[rd] = |
6035 | dtrace_fuword64(regs[r1]); |
6036 | break; |
6037 | case DIF_OP_RET: |
6038 | rval = regs[rd]; |
6039 | pc = textlen; |
6040 | break; |
6041 | case DIF_OP_NOP: |
6042 | break; |
6043 | case DIF_OP_SETX: |
6044 | regs[rd] = inttab[DIF_INSTR_INTEGER(instr)]; |
6045 | break; |
6046 | case DIF_OP_SETS: |
6047 | regs[rd] = (uint64_t)(uintptr_t) |
6048 | (strtab + DIF_INSTR_STRING(instr)); |
6049 | break; |
6050 | case DIF_OP_SCMP: { |
6051 | size_t sz = state->dts_options[DTRACEOPT_STRSIZE]; |
6052 | uintptr_t s1 = regs[r1]; |
6053 | uintptr_t s2 = regs[r2]; |
6054 | size_t lim1 = sz, lim2 = sz; |
6055 | |
6056 | if (s1 != 0 && |
6057 | !dtrace_strcanload(addr: s1, sz, remain: &lim1, mstate, vstate)) |
6058 | break; |
6059 | if (s2 != 0 && |
6060 | !dtrace_strcanload(addr: s2, sz, remain: &lim2, mstate, vstate)) |
6061 | break; |
6062 | |
6063 | cc_r = dtrace_strncmp(s1: (char *)s1, s2: (char *)s2, |
6064 | MIN(lim1, lim2)); |
6065 | |
6066 | cc_n = cc_r < 0; |
6067 | cc_z = cc_r == 0; |
6068 | cc_v = cc_c = 0; |
6069 | break; |
6070 | } |
6071 | case DIF_OP_LDGA: |
6072 | regs[rd] = dtrace_dif_variable(mstate, state, |
6073 | v: r1, regs[r2]); |
6074 | break; |
6075 | case DIF_OP_LDGS: |
6076 | id = DIF_INSTR_VAR(instr); |
6077 | |
6078 | if (id >= DIF_VAR_OTHER_UBASE) { |
6079 | uintptr_t a; |
6080 | |
6081 | id -= DIF_VAR_OTHER_UBASE; |
6082 | svar = vstate->dtvs_globals[id]; |
6083 | ASSERT(svar != NULL); |
6084 | v = &svar->dtsv_var; |
6085 | |
6086 | if (!(v->dtdv_type.dtdt_flags & DIF_TF_BYREF)) { |
6087 | regs[rd] = svar->dtsv_data; |
6088 | break; |
6089 | } |
6090 | |
6091 | a = (uintptr_t)svar->dtsv_data; |
6092 | |
6093 | if (*(uint8_t *)a == UINT8_MAX) { |
6094 | /* |
6095 | * If the 0th byte is set to UINT8_MAX |
6096 | * then this is to be treated as a |
6097 | * reference to a NULL variable. |
6098 | */ |
6099 | regs[rd] = 0; |
6100 | } else { |
6101 | regs[rd] = a + sizeof (uint64_t); |
6102 | } |
6103 | |
6104 | break; |
6105 | } |
6106 | |
6107 | regs[rd] = dtrace_dif_variable(mstate, state, v: id, ndx: 0); |
6108 | break; |
6109 | |
6110 | case DIF_OP_STGS: |
6111 | id = DIF_INSTR_VAR(instr); |
6112 | |
6113 | ASSERT(id >= DIF_VAR_OTHER_UBASE); |
6114 | id -= DIF_VAR_OTHER_UBASE; |
6115 | |
6116 | VERIFY(id < (uint_t)vstate->dtvs_nglobals); |
6117 | svar = vstate->dtvs_globals[id]; |
6118 | ASSERT(svar != NULL); |
6119 | v = &svar->dtsv_var; |
6120 | |
6121 | if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { |
6122 | uintptr_t a = (uintptr_t)svar->dtsv_data; |
6123 | size_t lim = 0; |
6124 | |
6125 | ASSERT(a != 0); |
6126 | ASSERT(svar->dtsv_size != 0); |
6127 | |
6128 | if (regs[rd] == 0) { |
6129 | *(uint8_t *)a = UINT8_MAX; |
6130 | break; |
6131 | } else { |
6132 | *(uint8_t *)a = 0; |
6133 | a += sizeof (uint64_t); |
6134 | } |
6135 | if (!dtrace_vcanload( |
6136 | src: (void *)(uintptr_t)regs[rd], type: &v->dtdv_type, |
6137 | remain: &lim, mstate, vstate)) |
6138 | break; |
6139 | |
6140 | dtrace_vcopy(src: (void *)(uintptr_t)regs[rd], |
6141 | dst: (void *)a, type: &v->dtdv_type, limit: lim); |
6142 | break; |
6143 | } |
6144 | |
6145 | svar->dtsv_data = regs[rd]; |
6146 | break; |
6147 | |
6148 | case DIF_OP_LDTA: |
6149 | /* |
6150 | * There are no DTrace built-in thread-local arrays at |
6151 | * present. This opcode is saved for future work. |
6152 | */ |
6153 | *flags |= CPU_DTRACE_ILLOP; |
6154 | regs[rd] = 0; |
6155 | break; |
6156 | |
6157 | case DIF_OP_LDLS: |
6158 | id = DIF_INSTR_VAR(instr); |
6159 | |
6160 | if (id < DIF_VAR_OTHER_UBASE) { |
6161 | /* |
6162 | * For now, this has no meaning. |
6163 | */ |
6164 | regs[rd] = 0; |
6165 | break; |
6166 | } |
6167 | |
6168 | id -= DIF_VAR_OTHER_UBASE; |
6169 | |
6170 | ASSERT(id < (uint_t)vstate->dtvs_nlocals); |
6171 | ASSERT(vstate->dtvs_locals != NULL); |
6172 | svar = vstate->dtvs_locals[id]; |
6173 | ASSERT(svar != NULL); |
6174 | v = &svar->dtsv_var; |
6175 | |
6176 | if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { |
6177 | uintptr_t a = (uintptr_t)svar->dtsv_data; |
6178 | size_t sz = v->dtdv_type.dtdt_size; |
6179 | |
6180 | sz += sizeof (uint64_t); |
6181 | ASSERT(svar->dtsv_size == (int)NCPU * sz); |
6182 | a += CPU->cpu_id * sz; |
6183 | |
6184 | if (*(uint8_t *)a == UINT8_MAX) { |
6185 | /* |
6186 | * If the 0th byte is set to UINT8_MAX |
6187 | * then this is to be treated as a |
6188 | * reference to a NULL variable. |
6189 | */ |
6190 | regs[rd] = 0; |
6191 | } else { |
6192 | regs[rd] = a + sizeof (uint64_t); |
6193 | } |
6194 | |
6195 | break; |
6196 | } |
6197 | |
6198 | ASSERT(svar->dtsv_size == (int)NCPU * sizeof (uint64_t)); |
6199 | tmp = (uint64_t *)(uintptr_t)svar->dtsv_data; |
6200 | regs[rd] = tmp[CPU->cpu_id]; |
6201 | break; |
6202 | |
6203 | case DIF_OP_STLS: |
6204 | id = DIF_INSTR_VAR(instr); |
6205 | |
6206 | ASSERT(id >= DIF_VAR_OTHER_UBASE); |
6207 | id -= DIF_VAR_OTHER_UBASE; |
6208 | VERIFY(id < (uint_t)vstate->dtvs_nlocals); |
6209 | ASSERT(vstate->dtvs_locals != NULL); |
6210 | svar = vstate->dtvs_locals[id]; |
6211 | ASSERT(svar != NULL); |
6212 | v = &svar->dtsv_var; |
6213 | |
6214 | if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { |
6215 | uintptr_t a = (uintptr_t)svar->dtsv_data; |
6216 | size_t sz = v->dtdv_type.dtdt_size; |
6217 | size_t lim = 0; |
6218 | |
6219 | sz += sizeof (uint64_t); |
6220 | ASSERT(svar->dtsv_size == (int)NCPU * sz); |
6221 | a += CPU->cpu_id * sz; |
6222 | |
6223 | if (regs[rd] == 0) { |
6224 | *(uint8_t *)a = UINT8_MAX; |
6225 | break; |
6226 | } else { |
6227 | *(uint8_t *)a = 0; |
6228 | a += sizeof (uint64_t); |
6229 | } |
6230 | |
6231 | if (!dtrace_vcanload( |
6232 | src: (void *)(uintptr_t)regs[rd], type: &v->dtdv_type, |
6233 | remain: &lim, mstate, vstate)) |
6234 | break; |
6235 | |
6236 | dtrace_vcopy(src: (void *)(uintptr_t)regs[rd], |
6237 | dst: (void *)a, type: &v->dtdv_type, limit: lim); |
6238 | break; |
6239 | } |
6240 | |
6241 | ASSERT(svar->dtsv_size == (int)NCPU * sizeof (uint64_t)); |
6242 | tmp = (uint64_t *)(uintptr_t)svar->dtsv_data; |
6243 | tmp[CPU->cpu_id] = regs[rd]; |
6244 | break; |
6245 | |
6246 | case DIF_OP_LDTS: { |
6247 | dtrace_dynvar_t *dvar; |
6248 | dtrace_key_t *key; |
6249 | |
6250 | id = DIF_INSTR_VAR(instr); |
6251 | ASSERT(id >= DIF_VAR_OTHER_UBASE); |
6252 | id -= DIF_VAR_OTHER_UBASE; |
6253 | v = &vstate->dtvs_tlocals[id]; |
6254 | |
6255 | key = &tupregs[DIF_DTR_NREGS]; |
6256 | key[0].dttk_value = (uint64_t)id; |
6257 | key[0].dttk_size = 0; |
6258 | DTRACE_TLS_THRKEY(key[1].dttk_value); |
6259 | key[1].dttk_size = 0; |
6260 | |
6261 | dvar = dtrace_dynvar(dstate, nkeys: 2, key, |
6262 | dsize: sizeof (uint64_t), op: DTRACE_DYNVAR_NOALLOC, |
6263 | mstate, vstate); |
6264 | |
6265 | if (dvar == NULL) { |
6266 | regs[rd] = 0; |
6267 | break; |
6268 | } |
6269 | |
6270 | if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { |
6271 | regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data; |
6272 | } else { |
6273 | regs[rd] = *((uint64_t *)dvar->dtdv_data); |
6274 | } |
6275 | |
6276 | break; |
6277 | } |
6278 | |
6279 | case DIF_OP_STTS: { |
6280 | dtrace_dynvar_t *dvar; |
6281 | dtrace_key_t *key; |
6282 | |
6283 | id = DIF_INSTR_VAR(instr); |
6284 | ASSERT(id >= DIF_VAR_OTHER_UBASE); |
6285 | id -= DIF_VAR_OTHER_UBASE; |
6286 | VERIFY(id < (uint_t)vstate->dtvs_ntlocals); |
6287 | |
6288 | key = &tupregs[DIF_DTR_NREGS]; |
6289 | key[0].dttk_value = (uint64_t)id; |
6290 | key[0].dttk_size = 0; |
6291 | DTRACE_TLS_THRKEY(key[1].dttk_value); |
6292 | key[1].dttk_size = 0; |
6293 | v = &vstate->dtvs_tlocals[id]; |
6294 | |
6295 | dvar = dtrace_dynvar(dstate, nkeys: 2, key, |
6296 | dsize: v->dtdv_type.dtdt_size > sizeof (uint64_t) ? |
6297 | v->dtdv_type.dtdt_size : sizeof (uint64_t), |
6298 | regs[rd] ? DTRACE_DYNVAR_ALLOC : |
6299 | DTRACE_DYNVAR_DEALLOC, mstate, vstate); |
6300 | |
6301 | /* |
6302 | * Given that we're storing to thread-local data, |
6303 | * we need to flush our predicate cache. |
6304 | */ |
6305 | dtrace_set_thread_predcache(current_thread(), 0); |
6306 | |
6307 | if (dvar == NULL) |
6308 | break; |
6309 | |
6310 | if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { |
6311 | size_t lim = 0; |
6312 | |
6313 | if (!dtrace_vcanload( |
6314 | src: (void *)(uintptr_t)regs[rd], |
6315 | type: &v->dtdv_type, remain: &lim, mstate, vstate)) |
6316 | break; |
6317 | |
6318 | dtrace_vcopy(src: (void *)(uintptr_t)regs[rd], |
6319 | dst: dvar->dtdv_data, type: &v->dtdv_type, limit: lim); |
6320 | } else { |
6321 | *((uint64_t *)dvar->dtdv_data) = regs[rd]; |
6322 | } |
6323 | |
6324 | break; |
6325 | } |
6326 | |
6327 | case DIF_OP_SRA: |
6328 | regs[rd] = (int64_t)regs[r1] >> regs[r2]; |
6329 | break; |
6330 | |
6331 | case DIF_OP_CALL: |
6332 | dtrace_dif_subr(DIF_INSTR_SUBR(instr), rd, |
6333 | regs, tupregs, nargs: ttop, mstate, state); |
6334 | break; |
6335 | |
6336 | case DIF_OP_PUSHTR: |
6337 | if (ttop == DIF_DTR_NREGS) { |
6338 | *flags |= CPU_DTRACE_TUPOFLOW; |
6339 | break; |
6340 | } |
6341 | |
6342 | if (r1 == DIF_TYPE_STRING) { |
6343 | /* |
6344 | * If this is a string type and the size is 0, |
6345 | * we'll use the system-wide default string |
6346 | * size. Note that we are _not_ looking at |
6347 | * the value of the DTRACEOPT_STRSIZE option; |
6348 | * had this been set, we would expect to have |
6349 | * a non-zero size value in the "pushtr". |
6350 | */ |
6351 | tupregs[ttop].dttk_size = |
6352 | dtrace_strlen(s: (char *)(uintptr_t)regs[rd], |
6353 | regs[r2] ? regs[r2] : |
6354 | dtrace_strsize_default) + 1; |
6355 | } else { |
6356 | if (regs[r2] > LONG_MAX) { |
6357 | *flags |= CPU_DTRACE_ILLOP; |
6358 | break; |
6359 | } |
6360 | tupregs[ttop].dttk_size = regs[r2]; |
6361 | } |
6362 | |
6363 | tupregs[ttop++].dttk_value = regs[rd]; |
6364 | break; |
6365 | |
6366 | case DIF_OP_PUSHTV: |
6367 | if (ttop == DIF_DTR_NREGS) { |
6368 | *flags |= CPU_DTRACE_TUPOFLOW; |
6369 | break; |
6370 | } |
6371 | |
6372 | tupregs[ttop].dttk_value = regs[rd]; |
6373 | tupregs[ttop++].dttk_size = 0; |
6374 | break; |
6375 | |
6376 | case DIF_OP_POPTS: |
6377 | if (ttop != 0) |
6378 | ttop--; |
6379 | break; |
6380 | |
6381 | case DIF_OP_FLUSHTS: |
6382 | ttop = 0; |
6383 | break; |
6384 | |
6385 | case DIF_OP_LDGAA: |
6386 | case DIF_OP_LDTAA: { |
6387 | dtrace_dynvar_t *dvar; |
6388 | dtrace_key_t *key = tupregs; |
6389 | uint_t nkeys = ttop; |
6390 | |
6391 | id = DIF_INSTR_VAR(instr); |
6392 | ASSERT(id >= DIF_VAR_OTHER_UBASE); |
6393 | id -= DIF_VAR_OTHER_UBASE; |
6394 | |
6395 | key[nkeys].dttk_value = (uint64_t)id; |
6396 | key[nkeys++].dttk_size = 0; |
6397 | |
6398 | if (DIF_INSTR_OP(instr) == DIF_OP_LDTAA) { |
6399 | DTRACE_TLS_THRKEY(key[nkeys].dttk_value); |
6400 | key[nkeys++].dttk_size = 0; |
6401 | VERIFY(id < (uint_t)vstate->dtvs_ntlocals); |
6402 | v = &vstate->dtvs_tlocals[id]; |
6403 | } else { |
6404 | VERIFY(id < (uint_t)vstate->dtvs_nglobals); |
6405 | v = &vstate->dtvs_globals[id]->dtsv_var; |
6406 | } |
6407 | |
6408 | dvar = dtrace_dynvar(dstate, nkeys, key, |
6409 | dsize: v->dtdv_type.dtdt_size > sizeof (uint64_t) ? |
6410 | v->dtdv_type.dtdt_size : sizeof (uint64_t), |
6411 | op: DTRACE_DYNVAR_NOALLOC, mstate, vstate); |
6412 | |
6413 | if (dvar == NULL) { |
6414 | regs[rd] = 0; |
6415 | break; |
6416 | } |
6417 | |
6418 | if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { |
6419 | regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data; |
6420 | } else { |
6421 | regs[rd] = *((uint64_t *)dvar->dtdv_data); |
6422 | } |
6423 | |
6424 | break; |
6425 | } |
6426 | |
6427 | case DIF_OP_STGAA: |
6428 | case DIF_OP_STTAA: { |
6429 | dtrace_dynvar_t *dvar; |
6430 | dtrace_key_t *key = tupregs; |
6431 | uint_t nkeys = ttop; |
6432 | |
6433 | id = DIF_INSTR_VAR(instr); |
6434 | ASSERT(id >= DIF_VAR_OTHER_UBASE); |
6435 | id -= DIF_VAR_OTHER_UBASE; |
6436 | |
6437 | key[nkeys].dttk_value = (uint64_t)id; |
6438 | key[nkeys++].dttk_size = 0; |
6439 | |
6440 | if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) { |
6441 | DTRACE_TLS_THRKEY(key[nkeys].dttk_value); |
6442 | key[nkeys++].dttk_size = 0; |
6443 | VERIFY(id < (uint_t)vstate->dtvs_ntlocals); |
6444 | v = &vstate->dtvs_tlocals[id]; |
6445 | } else { |
6446 | VERIFY(id < (uint_t)vstate->dtvs_nglobals); |
6447 | v = &vstate->dtvs_globals[id]->dtsv_var; |
6448 | } |
6449 | |
6450 | dvar = dtrace_dynvar(dstate, nkeys, key, |
6451 | dsize: v->dtdv_type.dtdt_size > sizeof (uint64_t) ? |
6452 | v->dtdv_type.dtdt_size : sizeof (uint64_t), |
6453 | regs[rd] ? DTRACE_DYNVAR_ALLOC : |
6454 | DTRACE_DYNVAR_DEALLOC, mstate, vstate); |
6455 | |
6456 | if (dvar == NULL) |
6457 | break; |
6458 | |
6459 | if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { |
6460 | size_t lim = 0; |
6461 | |
6462 | if (!dtrace_vcanload( |
6463 | src: (void *)(uintptr_t)regs[rd], type: &v->dtdv_type, |
6464 | remain: &lim, mstate, vstate)) |
6465 | break; |
6466 | |
6467 | dtrace_vcopy(src: (void *)(uintptr_t)regs[rd], |
6468 | dst: dvar->dtdv_data, type: &v->dtdv_type, limit: lim); |
6469 | } else { |
6470 | *((uint64_t *)dvar->dtdv_data) = regs[rd]; |
6471 | } |
6472 | |
6473 | break; |
6474 | } |
6475 | |
6476 | case DIF_OP_ALLOCS: { |
6477 | uintptr_t ptr = P2ROUNDUP(mstate->dtms_scratch_ptr, 8); |
6478 | size_t size = ptr - mstate->dtms_scratch_ptr + regs[r1]; |
6479 | |
6480 | /* |
6481 | * Rounding up the user allocation size could have |
6482 | * overflowed large, bogus allocations (like -1ULL) to |
6483 | * 0. |
6484 | */ |
6485 | if (size < regs[r1] || |
6486 | !DTRACE_INSCRATCH(mstate, size)) { |
6487 | DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); |
6488 | regs[rd] = 0; |
6489 | break; |
6490 | } |
6491 | |
6492 | dtrace_bzero(dst: (void *) mstate->dtms_scratch_ptr, len: size); |
6493 | mstate->dtms_scratch_ptr += size; |
6494 | regs[rd] = ptr; |
6495 | break; |
6496 | } |
6497 | |
6498 | case DIF_OP_COPYS: |
6499 | if (!dtrace_canstore(regs[rd], regs[r2], |
6500 | mstate, vstate)) { |
6501 | *flags |= CPU_DTRACE_BADADDR; |
6502 | *illval = regs[rd]; |
6503 | break; |
6504 | } |
6505 | |
6506 | if (!dtrace_canload(regs[r1], regs[r2], mstate, vstate)) |
6507 | break; |
6508 | |
6509 | dtrace_bcopy(src: (void *)(uintptr_t)regs[r1], |
6510 | dst: (void *)(uintptr_t)regs[rd], len: (size_t)regs[r2]); |
6511 | break; |
6512 | |
6513 | case DIF_OP_STB: |
6514 | if (!dtrace_canstore(regs[rd], sz: 1, mstate, vstate)) { |
6515 | *flags |= CPU_DTRACE_BADADDR; |
6516 | *illval = regs[rd]; |
6517 | break; |
6518 | } |
6519 | *((uint8_t *)(uintptr_t)regs[rd]) = (uint8_t)regs[r1]; |
6520 | break; |
6521 | |
6522 | case DIF_OP_STH: |
6523 | if (!dtrace_canstore(regs[rd], sz: 2, mstate, vstate)) { |
6524 | *flags |= CPU_DTRACE_BADADDR; |
6525 | *illval = regs[rd]; |
6526 | break; |
6527 | } |
6528 | if (regs[rd] & 1) { |
6529 | *flags |= CPU_DTRACE_BADALIGN; |
6530 | *illval = regs[rd]; |
6531 | break; |
6532 | } |
6533 | *((uint16_t *)(uintptr_t)regs[rd]) = (uint16_t)regs[r1]; |
6534 | break; |
6535 | |
6536 | case DIF_OP_STW: |
6537 | if (!dtrace_canstore(regs[rd], sz: 4, mstate, vstate)) { |
6538 | *flags |= CPU_DTRACE_BADADDR; |
6539 | *illval = regs[rd]; |
6540 | break; |
6541 | } |
6542 | if (regs[rd] & 3) { |
6543 | *flags |= CPU_DTRACE_BADALIGN; |
6544 | *illval = regs[rd]; |
6545 | break; |
6546 | } |
6547 | *((uint32_t *)(uintptr_t)regs[rd]) = (uint32_t)regs[r1]; |
6548 | break; |
6549 | |
6550 | case DIF_OP_STX: |
6551 | if (!dtrace_canstore(regs[rd], sz: 8, mstate, vstate)) { |
6552 | *flags |= CPU_DTRACE_BADADDR; |
6553 | *illval = regs[rd]; |
6554 | break; |
6555 | } |
6556 | |
6557 | /* |
6558 | * Darwin kmem_zalloc() called from |
6559 | * dtrace_difo_init() is 4-byte aligned. |
6560 | */ |
6561 | if (regs[rd] & 3) { |
6562 | *flags |= CPU_DTRACE_BADALIGN; |
6563 | *illval = regs[rd]; |
6564 | break; |
6565 | } |
6566 | *((uint64_t *)(uintptr_t)regs[rd]) = regs[r1]; |
6567 | break; |
6568 | case DIF_OP_STRIP: |
6569 | regs[rd] = (uint64_t)dtrace_ptrauth_strip( |
6570 | (void*)regs[r1], r2); |
6571 | break; |
6572 | } |
6573 | } |
6574 | |
6575 | if (!(*flags & CPU_DTRACE_FAULT)) |
6576 | return (rval); |
6577 | |
6578 | mstate->dtms_fltoffs = opc * sizeof (dif_instr_t); |
6579 | mstate->dtms_present |= DTRACE_MSTATE_FLTOFFS; |
6580 | |
6581 | return (0); |
6582 | } |
6583 | |
6584 | __attribute__((noinline)) |
6585 | static void |
6586 | dtrace_action_breakpoint(dtrace_ecb_t *ecb) |
6587 | { |
6588 | dtrace_probe_t *probe = ecb->dte_probe; |
6589 | dtrace_provider_t *prov = probe->dtpr_provider; |
6590 | char c[DTRACE_FULLNAMELEN + 80], *str; |
6591 | const char *msg = "dtrace: breakpoint action at probe " ; |
6592 | const char *ecbmsg = " (ecb " ; |
6593 | uintptr_t mask = (0xf << (sizeof (uintptr_t) * NBBY / 4)); |
6594 | uintptr_t val = (uintptr_t)ecb; |
6595 | int shift = (sizeof (uintptr_t) * NBBY) - 4, i = 0; |
6596 | |
6597 | if (dtrace_destructive_disallow) |
6598 | return; |
6599 | |
6600 | /* |
6601 | * It's impossible to be taking action on the NULL probe. |
6602 | */ |
6603 | ASSERT(probe != NULL); |
6604 | |
6605 | /* |
6606 | * This is a poor man's (destitute man's?) sprintf(): we want to |
6607 | * print the provider name, module name, function name and name of |
6608 | * the probe, along with the hex address of the ECB with the breakpoint |
6609 | * action -- all of which we must place in the character buffer by |
6610 | * hand. |
6611 | */ |
6612 | while (*msg != '\0') |
6613 | c[i++] = *msg++; |
6614 | |
6615 | for (str = prov->dtpv_name; *str != '\0'; str++) |
6616 | c[i++] = *str; |
6617 | c[i++] = ':'; |
6618 | |
6619 | for (str = probe->dtpr_mod; *str != '\0'; str++) |
6620 | c[i++] = *str; |
6621 | c[i++] = ':'; |
6622 | |
6623 | for (str = probe->dtpr_func; *str != '\0'; str++) |
6624 | c[i++] = *str; |
6625 | c[i++] = ':'; |
6626 | |
6627 | for (str = probe->dtpr_name; *str != '\0'; str++) |
6628 | c[i++] = *str; |
6629 | |
6630 | while (*ecbmsg != '\0') |
6631 | c[i++] = *ecbmsg++; |
6632 | |
6633 | while (shift >= 0) { |
6634 | mask = (uintptr_t)0xf << shift; |
6635 | |
6636 | if (val >= ((uintptr_t)1 << shift)) |
6637 | c[i++] = "0123456789abcdef" [(val & mask) >> shift]; |
6638 | shift -= 4; |
6639 | } |
6640 | |
6641 | c[i++] = ')'; |
6642 | c[i] = '\0'; |
6643 | |
6644 | debug_enter(c); |
6645 | } |
6646 | |
6647 | __attribute__((noinline)) |
6648 | static void |
6649 | dtrace_action_panic(dtrace_ecb_t *ecb) |
6650 | { |
6651 | dtrace_probe_t *probe = ecb->dte_probe; |
6652 | |
6653 | /* |
6654 | * It's impossible to be taking action on the NULL probe. |
6655 | */ |
6656 | ASSERT(probe != NULL); |
6657 | |
6658 | if (dtrace_destructive_disallow) |
6659 | return; |
6660 | |
6661 | if (dtrace_panicked != NULL) |
6662 | return; |
6663 | |
6664 | if (dtrace_casptr(&dtrace_panicked, NULL, current_thread()) != NULL) |
6665 | return; |
6666 | |
6667 | /* |
6668 | * We won the right to panic. (We want to be sure that only one |
6669 | * thread calls panic() from dtrace_probe(), and that panic() is |
6670 | * called exactly once.) |
6671 | */ |
6672 | panic("dtrace: panic action at probe %s:%s:%s:%s (ecb %p)" , |
6673 | probe->dtpr_provider->dtpv_name, probe->dtpr_mod, |
6674 | probe->dtpr_func, probe->dtpr_name, (void *)ecb); |
6675 | |
6676 | /* |
6677 | * APPLE NOTE: this was for an old Mac OS X debug feature |
6678 | * allowing a return from panic(). Revisit someday. |
6679 | */ |
6680 | dtrace_panicked = NULL; |
6681 | } |
6682 | |
6683 | static void |
6684 | dtrace_action_raise(uint64_t sig) |
6685 | { |
6686 | if (dtrace_destructive_disallow) |
6687 | return; |
6688 | |
6689 | if (sig >= NSIG) { |
6690 | DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); |
6691 | return; |
6692 | } |
6693 | |
6694 | /* |
6695 | * raise() has a queue depth of 1 -- we ignore all subsequent |
6696 | * invocations of the raise() action. |
6697 | */ |
6698 | |
6699 | uthread_t uthread = current_uthread(); |
6700 | |
6701 | if (uthread && uthread->t_dtrace_sig == 0) { |
6702 | uthread->t_dtrace_sig = sig; |
6703 | act_set_astbsd(current_thread()); |
6704 | } |
6705 | } |
6706 | |
6707 | static void |
6708 | dtrace_action_stop(void) |
6709 | { |
6710 | if (dtrace_destructive_disallow) |
6711 | return; |
6712 | |
6713 | uthread_t uthread = current_uthread(); |
6714 | if (uthread) { |
6715 | /* |
6716 | * The currently running process will be set to task_suspend |
6717 | * when it next leaves the kernel. |
6718 | */ |
6719 | uthread->t_dtrace_stop = 1; |
6720 | act_set_astbsd(current_thread()); |
6721 | } |
6722 | } |
6723 | |
6724 | |
6725 | /* |
6726 | * APPLE NOTE: pidresume works in conjunction with the dtrace stop action. |
6727 | * Both activate only when the currently running process next leaves the |
6728 | * kernel. |
6729 | */ |
6730 | static void |
6731 | dtrace_action_pidresume(uint64_t pid) |
6732 | { |
6733 | if (dtrace_destructive_disallow) |
6734 | return; |
6735 | |
6736 | if (kauth_cred_issuser(cred: kauth_cred_get()) == 0) { |
6737 | DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); |
6738 | return; |
6739 | } |
6740 | uthread_t uthread = current_uthread(); |
6741 | |
6742 | /* |
6743 | * When the currently running process leaves the kernel, it attempts to |
6744 | * task_resume the process (denoted by pid), if that pid appears to have |
6745 | * been stopped by dtrace_action_stop(). |
6746 | * The currently running process has a pidresume() queue depth of 1 -- |
6747 | * subsequent invocations of the pidresume() action are ignored. |
6748 | */ |
6749 | |
6750 | if (pid != 0 && uthread && uthread->t_dtrace_resumepid == 0) { |
6751 | uthread->t_dtrace_resumepid = pid; |
6752 | act_set_astbsd(current_thread()); |
6753 | } |
6754 | } |
6755 | |
6756 | __attribute__((noinline)) |
6757 | static void |
6758 | dtrace_action_chill(dtrace_mstate_t *mstate, hrtime_t val) |
6759 | { |
6760 | hrtime_t now; |
6761 | volatile uint16_t *flags; |
6762 | dtrace_cpu_t *cpu = CPU; |
6763 | |
6764 | if (dtrace_destructive_disallow) |
6765 | return; |
6766 | |
6767 | flags = (volatile uint16_t *)&cpu_core[cpu->cpu_id].cpuc_dtrace_flags; |
6768 | |
6769 | now = dtrace_gethrtime(); |
6770 | |
6771 | if (now - cpu->cpu_dtrace_chillmark > dtrace_chill_interval) { |
6772 | /* |
6773 | * We need to advance the mark to the current time. |
6774 | */ |
6775 | cpu->cpu_dtrace_chillmark = now; |
6776 | cpu->cpu_dtrace_chilled = 0; |
6777 | } |
6778 | |
6779 | /* |
6780 | * Now check to see if the requested chill time would take us over |
6781 | * the maximum amount of time allowed in the chill interval. (Or |
6782 | * worse, if the calculation itself induces overflow.) |
6783 | */ |
6784 | if (cpu->cpu_dtrace_chilled + val > dtrace_chill_max || |
6785 | cpu->cpu_dtrace_chilled + val < cpu->cpu_dtrace_chilled) { |
6786 | *flags |= CPU_DTRACE_ILLOP; |
6787 | return; |
6788 | } |
6789 | |
6790 | while (dtrace_gethrtime() - now < val) |
6791 | continue; |
6792 | |
6793 | /* |
6794 | * Normally, we assure that the value of the variable "timestamp" does |
6795 | * not change within an ECB. The presence of chill() represents an |
6796 | * exception to this rule, however. |
6797 | */ |
6798 | mstate->dtms_present &= ~DTRACE_MSTATE_TIMESTAMP; |
6799 | cpu->cpu_dtrace_chilled += val; |
6800 | } |
6801 | |
6802 | __attribute__((noinline)) |
6803 | static void |
6804 | dtrace_action_ustack(dtrace_mstate_t *mstate, dtrace_state_t *state, |
6805 | uint64_t *buf, uint64_t arg) |
6806 | { |
6807 | int nframes = DTRACE_USTACK_NFRAMES(arg); |
6808 | int strsize = DTRACE_USTACK_STRSIZE(arg); |
6809 | uint64_t *pcs = &buf[1], *fps; |
6810 | char *str = (char *)&pcs[nframes]; |
6811 | int size, offs = 0, i, j; |
6812 | uintptr_t old = mstate->dtms_scratch_ptr, saved; |
6813 | uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; |
6814 | char *sym; |
6815 | |
6816 | /* |
6817 | * Should be taking a faster path if string space has not been |
6818 | * allocated. |
6819 | */ |
6820 | ASSERT(strsize != 0); |
6821 | |
6822 | /* |
6823 | * We will first allocate some temporary space for the frame pointers. |
6824 | */ |
6825 | fps = (uint64_t *)P2ROUNDUP(mstate->dtms_scratch_ptr, 8); |
6826 | size = (uintptr_t)fps - mstate->dtms_scratch_ptr + |
6827 | (nframes * sizeof (uint64_t)); |
6828 | |
6829 | if (!DTRACE_INSCRATCH(mstate, (uintptr_t)size)) { |
6830 | /* |
6831 | * Not enough room for our frame pointers -- need to indicate |
6832 | * that we ran out of scratch space. |
6833 | */ |
6834 | DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); |
6835 | return; |
6836 | } |
6837 | |
6838 | mstate->dtms_scratch_ptr += size; |
6839 | saved = mstate->dtms_scratch_ptr; |
6840 | |
6841 | /* |
6842 | * Now get a stack with both program counters and frame pointers. |
6843 | */ |
6844 | DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); |
6845 | dtrace_getufpstack(buf, fps, nframes + 1); |
6846 | DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); |
6847 | |
6848 | /* |
6849 | * If that faulted, we're cooked. |
6850 | */ |
6851 | if (*flags & CPU_DTRACE_FAULT) |
6852 | goto out; |
6853 | |
6854 | /* |
6855 | * Now we want to walk up the stack, calling the USTACK helper. For |
6856 | * each iteration, we restore the scratch pointer. |
6857 | */ |
6858 | for (i = 0; i < nframes; i++) { |
6859 | mstate->dtms_scratch_ptr = saved; |
6860 | |
6861 | if (offs >= strsize) |
6862 | break; |
6863 | |
6864 | sym = (char *)(uintptr_t)dtrace_helper( |
6865 | DTRACE_HELPER_ACTION_USTACK, |
6866 | mstate, state, pcs[i], fps[i]); |
6867 | |
6868 | /* |
6869 | * If we faulted while running the helper, we're going to |
6870 | * clear the fault and null out the corresponding string. |
6871 | */ |
6872 | if (*flags & CPU_DTRACE_FAULT) { |
6873 | *flags &= ~CPU_DTRACE_FAULT; |
6874 | str[offs++] = '\0'; |
6875 | continue; |
6876 | } |
6877 | |
6878 | if (sym == NULL) { |
6879 | str[offs++] = '\0'; |
6880 | continue; |
6881 | } |
6882 | |
6883 | DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); |
6884 | |
6885 | /* |
6886 | * Now copy in the string that the helper returned to us. |
6887 | */ |
6888 | for (j = 0; offs + j < strsize; j++) { |
6889 | if ((str[offs + j] = sym[j]) == '\0') |
6890 | break; |
6891 | } |
6892 | |
6893 | DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); |
6894 | |
6895 | offs += j + 1; |
6896 | } |
6897 | |
6898 | if (offs >= strsize) { |
6899 | /* |
6900 | * If we didn't have room for all of the strings, we don't |
6901 | * abort processing -- this needn't be a fatal error -- but we |
6902 | * still want to increment a counter (dts_stkstroverflows) to |
6903 | * allow this condition to be warned about. (If this is from |
6904 | * a jstack() action, it is easily tuned via jstackstrsize.) |
6905 | */ |
6906 | dtrace_error(counter: &state->dts_stkstroverflows); |
6907 | } |
6908 | |
6909 | while (offs < strsize) |
6910 | str[offs++] = '\0'; |
6911 | |
6912 | out: |
6913 | mstate->dtms_scratch_ptr = old; |
6914 | } |
6915 | |
6916 | __attribute__((noinline)) |
6917 | static void |
6918 | dtrace_store_by_ref(dtrace_difo_t *dp, caddr_t tomax, size_t size, |
6919 | size_t *valoffsp, uint64_t *valp, uint64_t end, int intuple, int dtkind) |
6920 | { |
6921 | volatile uint16_t *flags; |
6922 | uint64_t val = *valp; |
6923 | size_t valoffs = *valoffsp; |
6924 | |
6925 | flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags; |
6926 | ASSERT(dtkind == DIF_TF_BYREF || dtkind == DIF_TF_BYUREF); |
6927 | |
6928 | /* |
6929 | * If this is a string, we're going to only load until we find the zero |
6930 | * byte -- after which we'll store zero bytes. |
6931 | */ |
6932 | if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) { |
6933 | char c = '\0' + 1; |
6934 | size_t s; |
6935 | |
6936 | for (s = 0; s < size; s++) { |
6937 | if (c != '\0' && dtkind == DIF_TF_BYREF) { |
6938 | c = dtrace_load8(addr: val++); |
6939 | } else if (c != '\0' && dtkind == DIF_TF_BYUREF) { |
6940 | DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); |
6941 | c = dtrace_fuword8((user_addr_t)(uintptr_t)val++); |
6942 | DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); |
6943 | if (*flags & CPU_DTRACE_FAULT) |
6944 | break; |
6945 | } |
6946 | |
6947 | DTRACE_STORE(uint8_t, tomax, valoffs++, c); |
6948 | |
6949 | if (c == '\0' && intuple) |
6950 | break; |
6951 | } |
6952 | } else { |
6953 | uint8_t c; |
6954 | while (valoffs < end) { |
6955 | if (dtkind == DIF_TF_BYREF) { |
6956 | c = dtrace_load8(addr: val++); |
6957 | } else if (dtkind == DIF_TF_BYUREF) { |
6958 | DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); |
6959 | c = dtrace_fuword8((user_addr_t)(uintptr_t)val++); |
6960 | DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); |
6961 | if (*flags & CPU_DTRACE_FAULT) |
6962 | break; |
6963 | } |
6964 | |
6965 | DTRACE_STORE(uint8_t, tomax, |
6966 | valoffs++, c); |
6967 | } |
6968 | } |
6969 | |
6970 | *valp = val; |
6971 | *valoffsp = valoffs; |
6972 | } |
6973 | |
6974 | /* |
6975 | * Disables interrupts and sets the per-thread inprobe flag. When DEBUG is |
6976 | * defined, we also assert that we are not recursing unless the probe ID is an |
6977 | * error probe. |
6978 | */ |
6979 | static dtrace_icookie_t |
6980 | dtrace_probe_enter(dtrace_id_t id) |
6981 | { |
6982 | thread_t thread = current_thread(); |
6983 | uint16_t inprobe; |
6984 | |
6985 | dtrace_icookie_t cookie; |
6986 | |
6987 | cookie = dtrace_interrupt_disable(); |
6988 | |
6989 | /* |
6990 | * Unless this is an ERROR probe, we are not allowed to recurse in |
6991 | * dtrace_probe(). Recursing into DTrace probe usually means that a |
6992 | * function is instrumented that should not have been instrumented or |
6993 | * that the ordering guarantee of the records will be violated, |
6994 | * resulting in unexpected output. If there is an exception to this |
6995 | * assertion, a new case should be added. |
6996 | */ |
6997 | inprobe = dtrace_get_thread_inprobe(thread); |
6998 | VERIFY(inprobe == 0 || |
6999 | id == dtrace_probeid_error); |
7000 | ASSERT(inprobe < UINT16_MAX); |
7001 | dtrace_set_thread_inprobe(thread, inprobe + 1); |
7002 | |
7003 | return (cookie); |
7004 | } |
7005 | |
7006 | /* |
7007 | * Clears the per-thread inprobe flag and enables interrupts. |
7008 | */ |
7009 | static void |
7010 | dtrace_probe_exit(dtrace_icookie_t cookie) |
7011 | { |
7012 | thread_t thread = current_thread(); |
7013 | uint16_t inprobe = dtrace_get_thread_inprobe(thread); |
7014 | |
7015 | ASSERT(inprobe > 0); |
7016 | dtrace_set_thread_inprobe(thread, inprobe - 1); |
7017 | |
7018 | #if SCHED_HYGIENE_DEBUG |
7019 | /* |
7020 | * Probes can take a relatively long time depending on what the user has |
7021 | * requested be done in probe context. |
7022 | * Probes can fire from places where interrupts are already disabled |
7023 | * (like an interrupt handler) or where preemption has been disabled. |
7024 | * In order to not trip the interrupt or preemption thresholds, it is |
7025 | * important to reset timestamps when leaving probe context. |
7026 | */ |
7027 | |
7028 | /* Interrupts were disabled for the duration of this probe. */ |
7029 | ml_spin_debug_reset(thread); |
7030 | |
7031 | /* May have been called from an interrupt handler. */ |
7032 | ml_irq_debug_abandon(); |
7033 | |
7034 | /* May have been called with preemption disabled. */ |
7035 | abandon_preemption_disable_measurement(); |
7036 | |
7037 | #endif /* SCHED_HYGIENE_DEBUG */ |
7038 | |
7039 | dtrace_interrupt_enable(cookie); |
7040 | } |
7041 | |
7042 | /* |
7043 | * If you're looking for the epicenter of DTrace, you just found it. This |
7044 | * is the function called by the provider to fire a probe -- from which all |
7045 | * subsequent probe-context DTrace activity emanates. |
7046 | */ |
7047 | void |
7048 | dtrace_probe(dtrace_id_t id, uint64_t arg0, uint64_t arg1, |
7049 | uint64_t arg2, uint64_t arg3, uint64_t arg4) |
7050 | { |
7051 | processorid_t cpuid; |
7052 | dtrace_icookie_t cookie; |
7053 | dtrace_probe_t *probe; |
7054 | dtrace_mstate_t mstate; |
7055 | dtrace_ecb_t *ecb; |
7056 | dtrace_action_t *act; |
7057 | intptr_t offs; |
7058 | size_t size; |
7059 | int vtime, onintr; |
7060 | volatile uint16_t *flags; |
7061 | hrtime_t now; |
7062 | |
7063 | cookie = dtrace_probe_enter(id); |
7064 | |
7065 | /* Ensure that probe id is valid. */ |
7066 | if (id - 1 >= (dtrace_id_t)dtrace_nprobes) { |
7067 | dtrace_probe_exit(cookie); |
7068 | return; |
7069 | } |
7070 | |
7071 | probe = dtrace_probes[id - 1]; |
7072 | if (probe == NULL) { |
7073 | dtrace_probe_exit(cookie); |
7074 | return; |
7075 | } |
7076 | |
7077 | cpuid = CPU->cpu_id; |
7078 | onintr = CPU_ON_INTR(CPU); |
7079 | |
7080 | if (!onintr && probe->dtpr_predcache != DTRACE_CACHEIDNONE && |
7081 | probe->dtpr_predcache == dtrace_get_thread_predcache(current_thread())) { |
7082 | /* |
7083 | * We have hit in the predicate cache; we know that |
7084 | * this predicate would evaluate to be false. |
7085 | */ |
7086 | dtrace_probe_exit(cookie); |
7087 | return; |
7088 | } |
7089 | |
7090 | if (panic_quiesce) { |
7091 | /* |
7092 | * We don't trace anything if we're panicking. |
7093 | */ |
7094 | dtrace_probe_exit(cookie); |
7095 | return; |
7096 | } |
7097 | |
7098 | #if !defined(__APPLE__) |
7099 | now = dtrace_gethrtime(); |
7100 | vtime = dtrace_vtime_references != 0; |
7101 | |
7102 | if (vtime && curthread->t_dtrace_start) |
7103 | curthread->t_dtrace_vtime += now - curthread->t_dtrace_start; |
7104 | #else |
7105 | /* |
7106 | * APPLE NOTE: The time spent entering DTrace and arriving |
7107 | * to this point, is attributed to the current thread. |
7108 | * Instead it should accrue to DTrace. FIXME |
7109 | */ |
7110 | vtime = dtrace_vtime_references != 0; |
7111 | |
7112 | if (vtime) |
7113 | { |
7114 | int64_t dtrace_accum_time, recent_vtime; |
7115 | thread_t thread = current_thread(); |
7116 | |
7117 | dtrace_accum_time = dtrace_get_thread_tracing(thread); /* Time spent inside DTrace so far (nanoseconds) */ |
7118 | |
7119 | if (dtrace_accum_time >= 0) { |
7120 | recent_vtime = dtrace_abs_to_nano(dtrace_calc_thread_recent_vtime(thread)); /* up to the moment thread vtime */ |
7121 | |
7122 | recent_vtime = recent_vtime - dtrace_accum_time; /* Time without DTrace contribution */ |
7123 | |
7124 | dtrace_set_thread_vtime(thread, recent_vtime); |
7125 | } |
7126 | } |
7127 | |
7128 | now = dtrace_gethrtime(); /* must not precede dtrace_calc_thread_recent_vtime() call! */ |
7129 | #endif /* __APPLE__ */ |
7130 | |
7131 | /* |
7132 | * APPLE NOTE: A provider may call dtrace_probe_error() in lieu of |
7133 | * dtrace_probe() in some circumstances. See, e.g. fasttrap_isa.c. |
7134 | * However the provider has no access to ECB context, so passes |
7135 | * 0 through "arg0" and the probe_id of the overridden probe as arg1. |
7136 | * Detect that here and cons up a viable state (from the probe_id). |
7137 | */ |
7138 | if (dtrace_probeid_error == id && 0 == arg0) { |
7139 | dtrace_id_t ftp_id = (dtrace_id_t)arg1; |
7140 | dtrace_probe_t *ftp_probe = dtrace_probes[ftp_id - 1]; |
7141 | dtrace_ecb_t *ftp_ecb = ftp_probe->dtpr_ecb; |
7142 | |
7143 | if (NULL != ftp_ecb) { |
7144 | dtrace_state_t *ftp_state = ftp_ecb->dte_state; |
7145 | |
7146 | arg0 = (uint64_t)(uintptr_t)ftp_state; |
7147 | arg1 = ftp_ecb->dte_epid; |
7148 | /* |
7149 | * args[2-4] established by caller. |
7150 | */ |
7151 | ftp_state->dts_arg_error_illval = -1; /* arg5 */ |
7152 | } |
7153 | } |
7154 | |
7155 | mstate.dtms_difo = NULL; |
7156 | mstate.dtms_probe = probe; |
7157 | mstate.dtms_strtok = 0; |
7158 | mstate.dtms_arg[0] = arg0; |
7159 | mstate.dtms_arg[1] = arg1; |
7160 | mstate.dtms_arg[2] = arg2; |
7161 | mstate.dtms_arg[3] = arg3; |
7162 | mstate.dtms_arg[4] = arg4; |
7163 | |
7164 | flags = (volatile uint16_t *)&cpu_core[cpuid].cpuc_dtrace_flags; |
7165 | |
7166 | for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) { |
7167 | dtrace_predicate_t *pred = ecb->dte_predicate; |
7168 | dtrace_state_t *state = ecb->dte_state; |
7169 | dtrace_buffer_t *buf = &state->dts_buffer[cpuid]; |
7170 | dtrace_buffer_t *aggbuf = &state->dts_aggbuffer[cpuid]; |
7171 | dtrace_vstate_t *vstate = &state->dts_vstate; |
7172 | dtrace_provider_t *prov = probe->dtpr_provider; |
7173 | uint64_t tracememsize = 0; |
7174 | int committed = 0; |
7175 | caddr_t tomax; |
7176 | |
7177 | /* |
7178 | * A little subtlety with the following (seemingly innocuous) |
7179 | * declaration of the automatic 'val': by looking at the |
7180 | * code, you might think that it could be declared in the |
7181 | * action processing loop, below. (That is, it's only used in |
7182 | * the action processing loop.) However, it must be declared |
7183 | * out of that scope because in the case of DIF expression |
7184 | * arguments to aggregating actions, one iteration of the |
7185 | * action loop will use the last iteration's value. |
7186 | */ |
7187 | #ifdef lint |
7188 | uint64_t val = 0; |
7189 | #else |
7190 | uint64_t val = 0; |
7191 | #endif |
7192 | |
7193 | mstate.dtms_present = DTRACE_MSTATE_ARGS | DTRACE_MSTATE_PROBE; |
7194 | *flags &= ~CPU_DTRACE_ERROR; |
7195 | |
7196 | if (prov == dtrace_provider) { |
7197 | /* |
7198 | * If dtrace itself is the provider of this probe, |
7199 | * we're only going to continue processing the ECB if |
7200 | * arg0 (the dtrace_state_t) is equal to the ECB's |
7201 | * creating state. (This prevents disjoint consumers |
7202 | * from seeing one another's metaprobes.) |
7203 | */ |
7204 | if (arg0 != (uint64_t)(uintptr_t)state) |
7205 | continue; |
7206 | } |
7207 | |
7208 | if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) { |
7209 | /* |
7210 | * We're not currently active. If our provider isn't |
7211 | * the dtrace pseudo provider, we're not interested. |
7212 | */ |
7213 | if (prov != dtrace_provider) |
7214 | continue; |
7215 | |
7216 | /* |
7217 | * Now we must further check if we are in the BEGIN |
7218 | * probe. If we are, we will only continue processing |
7219 | * if we're still in WARMUP -- if one BEGIN enabling |
7220 | * has invoked the exit() action, we don't want to |
7221 | * evaluate subsequent BEGIN enablings. |
7222 | */ |
7223 | if (probe->dtpr_id == dtrace_probeid_begin && |
7224 | state->dts_activity != DTRACE_ACTIVITY_WARMUP) { |
7225 | ASSERT(state->dts_activity == |
7226 | DTRACE_ACTIVITY_DRAINING); |
7227 | continue; |
7228 | } |
7229 | } |
7230 | |
7231 | if (ecb->dte_cond) { |
7232 | /* |
7233 | * If the dte_cond bits indicate that this |
7234 | * consumer is only allowed to see user-mode firings |
7235 | * of this probe, call the provider's dtps_usermode() |
7236 | * entry point to check that the probe was fired |
7237 | * while in a user context. Skip this ECB if that's |
7238 | * not the case. |
7239 | */ |
7240 | if ((ecb->dte_cond & DTRACE_COND_USERMODE) && |
7241 | prov->dtpv_pops.dtps_usermode && |
7242 | prov->dtpv_pops.dtps_usermode(prov->dtpv_arg, |
7243 | probe->dtpr_id, probe->dtpr_arg) == 0) |
7244 | continue; |
7245 | |
7246 | /* |
7247 | * This is more subtle than it looks. We have to be |
7248 | * absolutely certain that CRED() isn't going to |
7249 | * change out from under us so it's only legit to |
7250 | * examine that structure if we're in constrained |
7251 | * situations. Currently, the only times we'll this |
7252 | * check is if a non-super-user has enabled the |
7253 | * profile or syscall providers -- providers that |
7254 | * allow visibility of all processes. For the |
7255 | * profile case, the check above will ensure that |
7256 | * we're examining a user context. |
7257 | */ |
7258 | if (ecb->dte_cond & DTRACE_COND_OWNER) { |
7259 | cred_t *cr; |
7260 | cred_t *s_cr = |
7261 | ecb->dte_state->dts_cred.dcr_cred; |
7262 | proc_t *proc; |
7263 | #pragma unused(proc) /* __APPLE__ */ |
7264 | |
7265 | ASSERT(s_cr != NULL); |
7266 | |
7267 | /* |
7268 | * XXX this is hackish, but so is setting a variable |
7269 | * XXX in a McCarthy OR... |
7270 | */ |
7271 | if ((cr = dtrace_CRED()) == NULL || |
7272 | posix_cred_get(cred: s_cr)->cr_uid != posix_cred_get(cred: cr)->cr_uid || |
7273 | posix_cred_get(cred: s_cr)->cr_uid != posix_cred_get(cred: cr)->cr_ruid || |
7274 | posix_cred_get(cred: s_cr)->cr_uid != posix_cred_get(cred: cr)->cr_suid || |
7275 | posix_cred_get(cred: s_cr)->cr_gid != posix_cred_get(cred: cr)->cr_gid || |
7276 | posix_cred_get(cred: s_cr)->cr_gid != posix_cred_get(cred: cr)->cr_rgid || |
7277 | posix_cred_get(cred: s_cr)->cr_gid != posix_cred_get(cred: cr)->cr_sgid || |
7278 | #if !defined(__APPLE__) |
7279 | (proc = ttoproc(curthread)) == NULL || |
7280 | (proc->p_flag & SNOCD)) |
7281 | #else |
7282 | 1) /* APPLE NOTE: Darwin omits "No Core Dump" flag */ |
7283 | #endif /* __APPLE__ */ |
7284 | continue; |
7285 | } |
7286 | |
7287 | if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) { |
7288 | cred_t *cr; |
7289 | cred_t *s_cr = |
7290 | ecb->dte_state->dts_cred.dcr_cred; |
7291 | #pragma unused(cr, s_cr) /* __APPLE__ */ |
7292 | |
7293 | ASSERT(s_cr != NULL); |
7294 | |
7295 | #if !defined(__APPLE__) |
7296 | if ((cr = CRED()) == NULL || |
7297 | s_cr->cr_zone->zone_id != |
7298 | cr->cr_zone->zone_id) |
7299 | continue; |
7300 | #else |
7301 | /* APPLE NOTE: Darwin doesn't do zones. */ |
7302 | #endif /* __APPLE__ */ |
7303 | } |
7304 | } |
7305 | |
7306 | if (now - state->dts_alive > dtrace_deadman_timeout) { |
7307 | /* |
7308 | * We seem to be dead. Unless we (a) have kernel |
7309 | * destructive permissions (b) have expicitly enabled |
7310 | * destructive actions and (c) destructive actions have |
7311 | * not been disabled, we're going to transition into |
7312 | * the KILLED state, from which no further processing |
7313 | * on this state will be performed. |
7314 | */ |
7315 | if (!dtrace_priv_kernel_destructive(state) || |
7316 | !state->dts_cred.dcr_destructive || |
7317 | dtrace_destructive_disallow) { |
7318 | void *activity = &state->dts_activity; |
7319 | dtrace_activity_t current; |
7320 | |
7321 | do { |
7322 | current = state->dts_activity; |
7323 | } while (dtrace_cas32(activity, current, |
7324 | DTRACE_ACTIVITY_KILLED) != current); |
7325 | |
7326 | continue; |
7327 | } |
7328 | } |
7329 | |
7330 | if ((offs = dtrace_buffer_reserve(buf, ecb->dte_needed, |
7331 | ecb->dte_alignment, state, &mstate)) < 0) |
7332 | continue; |
7333 | |
7334 | tomax = buf->dtb_tomax; |
7335 | ASSERT(tomax != NULL); |
7336 | |
7337 | /* |
7338 | * Build and store the record header corresponding to the ECB. |
7339 | */ |
7340 | if (ecb->dte_size != 0) { |
7341 | dtrace_rechdr_t dtrh; |
7342 | |
7343 | if (!(mstate.dtms_present & DTRACE_MSTATE_TIMESTAMP)) { |
7344 | mstate.dtms_timestamp = dtrace_gethrtime(); |
7345 | mstate.dtms_present |= DTRACE_MSTATE_TIMESTAMP; |
7346 | } |
7347 | |
7348 | ASSERT(ecb->dte_size >= sizeof(dtrace_rechdr_t)); |
7349 | |
7350 | dtrh.dtrh_epid = ecb->dte_epid; |
7351 | DTRACE_RECORD_STORE_TIMESTAMP(&dtrh, mstate.dtms_timestamp); |
7352 | DTRACE_STORE(dtrace_rechdr_t, tomax, offs, dtrh); |
7353 | } |
7354 | |
7355 | mstate.dtms_epid = ecb->dte_epid; |
7356 | mstate.dtms_present |= DTRACE_MSTATE_EPID; |
7357 | |
7358 | if (state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) |
7359 | mstate.dtms_access = DTRACE_ACCESS_KERNEL; |
7360 | else |
7361 | mstate.dtms_access = 0; |
7362 | |
7363 | if (pred != NULL) { |
7364 | dtrace_difo_t *dp = pred->dtp_difo; |
7365 | uint64_t rval; |
7366 | |
7367 | rval = dtrace_dif_emulate(difo: dp, mstate: &mstate, vstate, state); |
7368 | |
7369 | if (!(*flags & CPU_DTRACE_ERROR) && !rval) { |
7370 | dtrace_cacheid_t cid = probe->dtpr_predcache; |
7371 | |
7372 | if (cid != DTRACE_CACHEIDNONE && !onintr) { |
7373 | /* |
7374 | * Update the predicate cache... |
7375 | */ |
7376 | ASSERT(cid == pred->dtp_cacheid); |
7377 | |
7378 | dtrace_set_thread_predcache(current_thread(), cid); |
7379 | } |
7380 | |
7381 | continue; |
7382 | } |
7383 | } |
7384 | |
7385 | for (act = ecb->dte_action; !(*flags & CPU_DTRACE_ERROR) && |
7386 | act != NULL; act = act->dta_next) { |
7387 | size_t valoffs; |
7388 | dtrace_difo_t *dp; |
7389 | dtrace_recdesc_t *rec = &act->dta_rec; |
7390 | |
7391 | size = rec->dtrd_size; |
7392 | valoffs = offs + rec->dtrd_offset; |
7393 | |
7394 | if (DTRACEACT_ISAGG(act->dta_kind)) { |
7395 | uint64_t v = 0xbad; |
7396 | dtrace_aggregation_t *agg; |
7397 | |
7398 | agg = (dtrace_aggregation_t *)act; |
7399 | |
7400 | if ((dp = act->dta_difo) != NULL) |
7401 | v = dtrace_dif_emulate(difo: dp, |
7402 | mstate: &mstate, vstate, state); |
7403 | |
7404 | if (*flags & CPU_DTRACE_ERROR) |
7405 | continue; |
7406 | |
7407 | /* |
7408 | * Note that we always pass the expression |
7409 | * value from the previous iteration of the |
7410 | * action loop. This value will only be used |
7411 | * if there is an expression argument to the |
7412 | * aggregating action, denoted by the |
7413 | * dtag_hasarg field. |
7414 | */ |
7415 | dtrace_aggregate(agg, dbuf: buf, |
7416 | offset: offs, buf: aggbuf, expr: v, arg: val); |
7417 | continue; |
7418 | } |
7419 | |
7420 | switch (act->dta_kind) { |
7421 | case DTRACEACT_STOP: |
7422 | if (dtrace_priv_proc_destructive(state)) |
7423 | dtrace_action_stop(); |
7424 | continue; |
7425 | |
7426 | case DTRACEACT_BREAKPOINT: |
7427 | if (dtrace_priv_kernel_destructive(state)) |
7428 | dtrace_action_breakpoint(ecb); |
7429 | continue; |
7430 | |
7431 | case DTRACEACT_PANIC: |
7432 | if (dtrace_priv_kernel_destructive(state)) |
7433 | dtrace_action_panic(ecb); |
7434 | continue; |
7435 | |
7436 | case DTRACEACT_STACK: |
7437 | if (!dtrace_priv_kernel(state)) |
7438 | continue; |
7439 | |
7440 | dtrace_getpcstack((pc_t *)(tomax + valoffs), |
7441 | size / sizeof (pc_t), probe->dtpr_aframes, |
7442 | DTRACE_ANCHORED(probe) ? NULL : |
7443 | (uint32_t *)(uintptr_t)arg0); |
7444 | continue; |
7445 | |
7446 | case DTRACEACT_JSTACK: |
7447 | case DTRACEACT_USTACK: |
7448 | if (!dtrace_priv_proc(state)) |
7449 | continue; |
7450 | |
7451 | /* |
7452 | * See comment in DIF_VAR_PID. |
7453 | */ |
7454 | if (DTRACE_ANCHORED(mstate.dtms_probe) && |
7455 | CPU_ON_INTR(CPU)) { |
7456 | int depth = DTRACE_USTACK_NFRAMES( |
7457 | rec->dtrd_arg) + 1; |
7458 | |
7459 | dtrace_bzero(dst: (void *)(tomax + valoffs), |
7460 | DTRACE_USTACK_STRSIZE(rec->dtrd_arg) |
7461 | + depth * sizeof (uint64_t)); |
7462 | |
7463 | continue; |
7464 | } |
7465 | |
7466 | if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0 && |
7467 | curproc->p_dtrace_helpers != NULL) { |
7468 | /* |
7469 | * This is the slow path -- we have |
7470 | * allocated string space, and we're |
7471 | * getting the stack of a process that |
7472 | * has helpers. Call into a separate |
7473 | * routine to perform this processing. |
7474 | */ |
7475 | dtrace_action_ustack(mstate: &mstate, state, |
7476 | buf: (uint64_t *)(tomax + valoffs), |
7477 | arg: rec->dtrd_arg); |
7478 | continue; |
7479 | } |
7480 | |
7481 | DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); |
7482 | dtrace_getupcstack((uint64_t *) |
7483 | (tomax + valoffs), |
7484 | DTRACE_USTACK_NFRAMES(rec->dtrd_arg) + 1); |
7485 | DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); |
7486 | continue; |
7487 | |
7488 | default: |
7489 | break; |
7490 | } |
7491 | |
7492 | dp = act->dta_difo; |
7493 | ASSERT(dp != NULL); |
7494 | |
7495 | val = dtrace_dif_emulate(difo: dp, mstate: &mstate, vstate, state); |
7496 | |
7497 | if (*flags & CPU_DTRACE_ERROR) |
7498 | continue; |
7499 | |
7500 | switch (act->dta_kind) { |
7501 | case DTRACEACT_SPECULATE: { |
7502 | dtrace_rechdr_t *dtrh = NULL; |
7503 | |
7504 | ASSERT(buf == &state->dts_buffer[cpuid]); |
7505 | buf = dtrace_speculation_buffer(state, |
7506 | cpuid, which: val); |
7507 | |
7508 | if (buf == NULL) { |
7509 | *flags |= CPU_DTRACE_DROP; |
7510 | continue; |
7511 | } |
7512 | |
7513 | offs = dtrace_buffer_reserve(buf, |
7514 | ecb->dte_needed, ecb->dte_alignment, |
7515 | state, NULL); |
7516 | |
7517 | if (offs < 0) { |
7518 | *flags |= CPU_DTRACE_DROP; |
7519 | continue; |
7520 | } |
7521 | |
7522 | tomax = buf->dtb_tomax; |
7523 | ASSERT(tomax != NULL); |
7524 | |
7525 | if (ecb->dte_size == 0) |
7526 | continue; |
7527 | |
7528 | ASSERT(ecb->dte_size >= sizeof(dtrace_rechdr_t)); |
7529 | dtrh = ((void *)(tomax + offs)); |
7530 | dtrh->dtrh_epid = ecb->dte_epid; |
7531 | |
7532 | /* |
7533 | * When the speculation is committed, all of |
7534 | * the records in the speculative buffer will |
7535 | * have their timestamps set to the commit |
7536 | * time. Until then, it is set to a sentinel |
7537 | * value, for debugability. |
7538 | */ |
7539 | DTRACE_RECORD_STORE_TIMESTAMP(dtrh, UINT64_MAX); |
7540 | |
7541 | continue; |
7542 | } |
7543 | |
7544 | case DTRACEACT_CHILL: |
7545 | if (dtrace_priv_kernel_destructive(state)) |
7546 | dtrace_action_chill(mstate: &mstate, val); |
7547 | continue; |
7548 | |
7549 | case DTRACEACT_RAISE: |
7550 | if (dtrace_priv_proc_destructive(state)) |
7551 | dtrace_action_raise(sig: val); |
7552 | continue; |
7553 | |
7554 | case DTRACEACT_PIDRESUME: /* __APPLE__ */ |
7555 | if (dtrace_priv_proc_destructive(state)) |
7556 | dtrace_action_pidresume(pid: val); |
7557 | continue; |
7558 | |
7559 | case DTRACEACT_COMMIT: |
7560 | ASSERT(!committed); |
7561 | |
7562 | /* |
7563 | * We need to commit our buffer state. |
7564 | */ |
7565 | if (ecb->dte_size) |
7566 | buf->dtb_offset = offs + ecb->dte_size; |
7567 | buf = &state->dts_buffer[cpuid]; |
7568 | dtrace_speculation_commit(state, cpu: cpuid, which: val); |
7569 | committed = 1; |
7570 | continue; |
7571 | |
7572 | case DTRACEACT_DISCARD: |
7573 | dtrace_speculation_discard(state, cpu: cpuid, which: val); |
7574 | continue; |
7575 | |
7576 | case DTRACEACT_DIFEXPR: |
7577 | case DTRACEACT_LIBACT: |
7578 | case DTRACEACT_PRINTF: |
7579 | case DTRACEACT_PRINTA: |
7580 | case DTRACEACT_SYSTEM: |
7581 | case DTRACEACT_FREOPEN: |
7582 | case DTRACEACT_APPLEBINARY: /* __APPLE__ */ |
7583 | case DTRACEACT_TRACEMEM: |
7584 | break; |
7585 | |
7586 | case DTRACEACT_TRACEMEM_DYNSIZE: |
7587 | tracememsize = val; |
7588 | break; |
7589 | |
7590 | case DTRACEACT_SYM: |
7591 | case DTRACEACT_MOD: |
7592 | if (!dtrace_priv_kernel(state)) |
7593 | continue; |
7594 | break; |
7595 | |
7596 | case DTRACEACT_USYM: |
7597 | case DTRACEACT_UMOD: |
7598 | case DTRACEACT_UADDR: { |
7599 | if (!dtrace_priv_proc(state)) |
7600 | continue; |
7601 | |
7602 | DTRACE_STORE(uint64_t, tomax, |
7603 | valoffs, (uint64_t)dtrace_proc_selfpid()); |
7604 | DTRACE_STORE(uint64_t, tomax, |
7605 | valoffs + sizeof (uint64_t), val); |
7606 | |
7607 | continue; |
7608 | } |
7609 | |
7610 | case DTRACEACT_EXIT: { |
7611 | /* |
7612 | * For the exit action, we are going to attempt |
7613 | * to atomically set our activity to be |
7614 | * draining. If this fails (either because |
7615 | * another CPU has beat us to the exit action, |
7616 | * or because our current activity is something |
7617 | * other than ACTIVE or WARMUP), we will |
7618 | * continue. This assures that the exit action |
7619 | * can be successfully recorded at most once |
7620 | * when we're in the ACTIVE state. If we're |
7621 | * encountering the exit() action while in |
7622 | * COOLDOWN, however, we want to honor the new |
7623 | * status code. (We know that we're the only |
7624 | * thread in COOLDOWN, so there is no race.) |
7625 | */ |
7626 | void *activity = &state->dts_activity; |
7627 | dtrace_activity_t current = state->dts_activity; |
7628 | |
7629 | if (current == DTRACE_ACTIVITY_COOLDOWN) |
7630 | break; |
7631 | |
7632 | if (current != DTRACE_ACTIVITY_WARMUP) |
7633 | current = DTRACE_ACTIVITY_ACTIVE; |
7634 | |
7635 | if (dtrace_cas32(activity, current, |
7636 | DTRACE_ACTIVITY_DRAINING) != current) { |
7637 | *flags |= CPU_DTRACE_DROP; |
7638 | continue; |
7639 | } |
7640 | |
7641 | break; |
7642 | } |
7643 | |
7644 | default: |
7645 | ASSERT(0); |
7646 | } |
7647 | |
7648 | if (dp->dtdo_rtype.dtdt_flags & (DIF_TF_BYREF | DIF_TF_BYUREF)) { |
7649 | uintptr_t end = valoffs + size; |
7650 | |
7651 | if (tracememsize != 0 && |
7652 | valoffs + tracememsize < end) |
7653 | { |
7654 | end = valoffs + tracememsize; |
7655 | tracememsize = 0; |
7656 | } |
7657 | |
7658 | if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF && |
7659 | !dtrace_vcanload(src: (void *)(uintptr_t)val, |
7660 | type: &dp->dtdo_rtype, NULL, mstate: &mstate, vstate)) |
7661 | { |
7662 | continue; |
7663 | } |
7664 | |
7665 | dtrace_store_by_ref(dp, tomax, size, valoffsp: &valoffs, |
7666 | valp: &val, end, intuple: act->dta_intuple, |
7667 | dtkind: dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF ? |
7668 | DIF_TF_BYREF: DIF_TF_BYUREF); |
7669 | |
7670 | continue; |
7671 | } |
7672 | |
7673 | switch (size) { |
7674 | case 0: |
7675 | break; |
7676 | |
7677 | case sizeof (uint8_t): |
7678 | DTRACE_STORE(uint8_t, tomax, valoffs, val); |
7679 | break; |
7680 | case sizeof (uint16_t): |
7681 | DTRACE_STORE(uint16_t, tomax, valoffs, val); |
7682 | break; |
7683 | case sizeof (uint32_t): |
7684 | DTRACE_STORE(uint32_t, tomax, valoffs, val); |
7685 | break; |
7686 | case sizeof (uint64_t): |
7687 | DTRACE_STORE(uint64_t, tomax, valoffs, val); |
7688 | break; |
7689 | default: |
7690 | /* |
7691 | * Any other size should have been returned by |
7692 | * reference, not by value. |
7693 | */ |
7694 | ASSERT(0); |
7695 | break; |
7696 | } |
7697 | } |
7698 | |
7699 | if (*flags & CPU_DTRACE_DROP) |
7700 | continue; |
7701 | |
7702 | if (*flags & CPU_DTRACE_FAULT) { |
7703 | int ndx; |
7704 | dtrace_action_t *err; |
7705 | |
7706 | buf->dtb_errors++; |
7707 | |
7708 | if (probe->dtpr_id == dtrace_probeid_error) { |
7709 | /* |
7710 | * There's nothing we can do -- we had an |
7711 | * error on the error probe. We bump an |
7712 | * error counter to at least indicate that |
7713 | * this condition happened. |
7714 | */ |
7715 | dtrace_error(counter: &state->dts_dblerrors); |
7716 | continue; |
7717 | } |
7718 | |
7719 | if (vtime) { |
7720 | /* |
7721 | * Before recursing on dtrace_probe(), we |
7722 | * need to explicitly clear out our start |
7723 | * time to prevent it from being accumulated |
7724 | * into t_dtrace_vtime. |
7725 | */ |
7726 | |
7727 | /* |
7728 | * Darwin sets the sign bit on t_dtrace_tracing |
7729 | * to suspend accumulation to it. |
7730 | */ |
7731 | dtrace_set_thread_tracing(current_thread(), |
7732 | (1ULL<<63) | dtrace_get_thread_tracing(current_thread())); |
7733 | } |
7734 | |
7735 | /* |
7736 | * Iterate over the actions to figure out which action |
7737 | * we were processing when we experienced the error. |
7738 | * Note that act points _past_ the faulting action; if |
7739 | * act is ecb->dte_action, the fault was in the |
7740 | * predicate, if it's ecb->dte_action->dta_next it's |
7741 | * in action #1, and so on. |
7742 | */ |
7743 | for (err = ecb->dte_action, ndx = 0; |
7744 | err != act; err = err->dta_next, ndx++) |
7745 | continue; |
7746 | |
7747 | dtrace_probe_error(state, ecb->dte_epid, ndx, |
7748 | (mstate.dtms_present & DTRACE_MSTATE_FLTOFFS) ? |
7749 | mstate.dtms_fltoffs : -1, DTRACE_FLAGS2FLT(*flags), |
7750 | cpu_core[cpuid].cpuc_dtrace_illval); |
7751 | |
7752 | continue; |
7753 | } |
7754 | |
7755 | if (!committed) |
7756 | buf->dtb_offset = offs + ecb->dte_size; |
7757 | } |
7758 | |
7759 | /* FIXME: On Darwin the time spent leaving DTrace from this point to the rti is attributed |
7760 | to the current thread. Instead it should accrue to DTrace. */ |
7761 | if (vtime) { |
7762 | thread_t thread = current_thread(); |
7763 | int64_t t = dtrace_get_thread_tracing(thread); |
7764 | |
7765 | if (t >= 0) { |
7766 | /* Usual case, accumulate time spent here into t_dtrace_tracing */ |
7767 | dtrace_set_thread_tracing(thread, t + (dtrace_gethrtime() - now)); |
7768 | } else { |
7769 | /* Return from error recursion. No accumulation, just clear the sign bit on t_dtrace_tracing. */ |
7770 | dtrace_set_thread_tracing(thread, (~(1ULL<<63)) & t); |
7771 | } |
7772 | } |
7773 | |
7774 | dtrace_probe_exit(cookie); |
7775 | } |
7776 | |
7777 | /* |
7778 | * DTrace Probe Hashing Functions |
7779 | * |
7780 | * The functions in this section (and indeed, the functions in remaining |
7781 | * sections) are not _called_ from probe context. (Any exceptions to this are |
7782 | * marked with a "Note:".) Rather, they are called from elsewhere in the |
7783 | * DTrace framework to look-up probes in, add probes to and remove probes from |
7784 | * the DTrace probe hashes. (Each probe is hashed by each element of the |
7785 | * probe tuple -- allowing for fast lookups, regardless of what was |
7786 | * specified.) |
7787 | */ |
7788 | static uint_t |
7789 | dtrace_hash_str(const char *p) |
7790 | { |
7791 | unsigned int g; |
7792 | uint_t hval = 0; |
7793 | |
7794 | while (*p) { |
7795 | hval = (hval << 4) + *p++; |
7796 | if ((g = (hval & 0xf0000000)) != 0) |
7797 | hval ^= g >> 24; |
7798 | hval &= ~g; |
7799 | } |
7800 | return (hval); |
7801 | } |
7802 | |
7803 | static const char* |
7804 | dtrace_strkey_probe_provider(void *elm, uintptr_t offs) |
7805 | { |
7806 | #pragma unused(offs) |
7807 | dtrace_probe_t *probe = (dtrace_probe_t*)elm; |
7808 | return probe->dtpr_provider->dtpv_name; |
7809 | } |
7810 | |
7811 | static const char* |
7812 | dtrace_strkey_offset(void *elm, uintptr_t offs) |
7813 | { |
7814 | return ((char *)((uintptr_t)(elm) + offs)); |
7815 | } |
7816 | |
7817 | static const char* |
7818 | dtrace_strkey_deref_offset(void *elm, uintptr_t offs) |
7819 | { |
7820 | return *((char **)((uintptr_t)(elm) + offs)); |
7821 | } |
7822 | |
7823 | static dtrace_hash_t * |
7824 | dtrace_hash_create(dtrace_strkey_f func, uintptr_t arg, uintptr_t nextoffs, uintptr_t prevoffs) |
7825 | { |
7826 | dtrace_hash_t *hash = kmem_zalloc(sizeof (dtrace_hash_t), KM_SLEEP); |
7827 | |
7828 | hash->dth_getstr = func; |
7829 | hash->dth_stroffs = arg; |
7830 | hash->dth_nextoffs = nextoffs; |
7831 | hash->dth_prevoffs = prevoffs; |
7832 | |
7833 | hash->dth_size = 1; |
7834 | hash->dth_mask = hash->dth_size - 1; |
7835 | |
7836 | hash->dth_tab = kmem_zalloc(hash->dth_size * |
7837 | sizeof (dtrace_hashbucket_t *), KM_SLEEP); |
7838 | |
7839 | return (hash); |
7840 | } |
7841 | |
7842 | /* |
7843 | * APPLE NOTE: dtrace_hash_destroy is not used. |
7844 | * It is called by dtrace_detach which is not |
7845 | * currently implemented. Revisit someday. |
7846 | */ |
7847 | #if !defined(__APPLE__) |
7848 | static void |
7849 | dtrace_hash_destroy(dtrace_hash_t *hash) |
7850 | { |
7851 | #if DEBUG |
7852 | int i; |
7853 | |
7854 | for (i = 0; i < hash->dth_size; i++) |
7855 | ASSERT(hash->dth_tab[i] == NULL); |
7856 | #endif |
7857 | |
7858 | kmem_free(hash->dth_tab, |
7859 | hash->dth_size * sizeof (dtrace_hashbucket_t *)); |
7860 | kmem_free(hash, sizeof (dtrace_hash_t)); |
7861 | } |
7862 | #endif /* __APPLE__ */ |
7863 | |
7864 | static void |
7865 | dtrace_hash_resize(dtrace_hash_t *hash) |
7866 | { |
7867 | int size = hash->dth_size, i, ndx; |
7868 | int new_size = hash->dth_size << 1; |
7869 | int new_mask = new_size - 1; |
7870 | dtrace_hashbucket_t **new_tab, *bucket, *next; |
7871 | |
7872 | ASSERT((new_size & new_mask) == 0); |
7873 | |
7874 | new_tab = kmem_zalloc(new_size * sizeof (void *), KM_SLEEP); |
7875 | |
7876 | for (i = 0; i < size; i++) { |
7877 | for (bucket = hash->dth_tab[i]; bucket != NULL; bucket = next) { |
7878 | void *elm = bucket->dthb_chain; |
7879 | |
7880 | ASSERT(elm != NULL); |
7881 | ndx = DTRACE_HASHSTR(hash, elm) & new_mask; |
7882 | |
7883 | next = bucket->dthb_next; |
7884 | bucket->dthb_next = new_tab[ndx]; |
7885 | new_tab[ndx] = bucket; |
7886 | } |
7887 | } |
7888 | |
7889 | kmem_free(hash->dth_tab, hash->dth_size * sizeof (void *)); |
7890 | hash->dth_tab = new_tab; |
7891 | hash->dth_size = new_size; |
7892 | hash->dth_mask = new_mask; |
7893 | } |
7894 | |
7895 | static void |
7896 | dtrace_hash_add(dtrace_hash_t *hash, void *new) |
7897 | { |
7898 | int hashval = DTRACE_HASHSTR(hash, new); |
7899 | int ndx = hashval & hash->dth_mask; |
7900 | dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; |
7901 | void **nextp, **prevp; |
7902 | |
7903 | for (; bucket != NULL; bucket = bucket->dthb_next) { |
7904 | if (DTRACE_HASHEQ(hash, bucket->dthb_chain, new)) |
7905 | goto add; |
7906 | } |
7907 | |
7908 | if ((hash->dth_nbuckets >> 1) > hash->dth_size) { |
7909 | dtrace_hash_resize(hash); |
7910 | dtrace_hash_add(hash, new); |
7911 | return; |
7912 | } |
7913 | |
7914 | bucket = kmem_zalloc(sizeof (dtrace_hashbucket_t), KM_SLEEP); |
7915 | bucket->dthb_next = hash->dth_tab[ndx]; |
7916 | hash->dth_tab[ndx] = bucket; |
7917 | hash->dth_nbuckets++; |
7918 | |
7919 | add: |
7920 | nextp = DTRACE_HASHNEXT(hash, new); |
7921 | ASSERT(*nextp == NULL && *(DTRACE_HASHPREV(hash, new)) == NULL); |
7922 | *nextp = bucket->dthb_chain; |
7923 | |
7924 | if (bucket->dthb_chain != NULL) { |
7925 | prevp = DTRACE_HASHPREV(hash, bucket->dthb_chain); |
7926 | ASSERT(*prevp == NULL); |
7927 | *prevp = new; |
7928 | } |
7929 | |
7930 | bucket->dthb_chain = new; |
7931 | bucket->dthb_len++; |
7932 | } |
7933 | |
7934 | static void * |
7935 | dtrace_hash_lookup_string(dtrace_hash_t *hash, const char *str) |
7936 | { |
7937 | int hashval = dtrace_hash_str(p: str); |
7938 | int ndx = hashval & hash->dth_mask; |
7939 | dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; |
7940 | |
7941 | for (; bucket != NULL; bucket = bucket->dthb_next) { |
7942 | if (strcmp(s1: str, DTRACE_GETSTR(hash, bucket->dthb_chain)) == 0) |
7943 | return (bucket->dthb_chain); |
7944 | } |
7945 | |
7946 | return (NULL); |
7947 | } |
7948 | |
7949 | static dtrace_probe_t * |
7950 | dtrace_hash_lookup(dtrace_hash_t *hash, void *template) |
7951 | { |
7952 | return dtrace_hash_lookup_string(hash, DTRACE_GETSTR(hash, template)); |
7953 | } |
7954 | |
7955 | static int |
7956 | dtrace_hash_collisions(dtrace_hash_t *hash, void *template) |
7957 | { |
7958 | int hashval = DTRACE_HASHSTR(hash, template); |
7959 | int ndx = hashval & hash->dth_mask; |
7960 | dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; |
7961 | |
7962 | for (; bucket != NULL; bucket = bucket->dthb_next) { |
7963 | if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template)) |
7964 | return (bucket->dthb_len); |
7965 | } |
7966 | |
7967 | return (0); |
7968 | } |
7969 | |
7970 | static void |
7971 | dtrace_hash_remove(dtrace_hash_t *hash, void *elm) |
7972 | { |
7973 | int ndx = DTRACE_HASHSTR(hash, elm) & hash->dth_mask; |
7974 | dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; |
7975 | |
7976 | void **prevp = DTRACE_HASHPREV(hash, elm); |
7977 | void **nextp = DTRACE_HASHNEXT(hash, elm); |
7978 | |
7979 | /* |
7980 | * Find the bucket that we're removing this elm from. |
7981 | */ |
7982 | for (; bucket != NULL; bucket = bucket->dthb_next) { |
7983 | if (DTRACE_HASHEQ(hash, bucket->dthb_chain, elm)) |
7984 | break; |
7985 | } |
7986 | |
7987 | ASSERT(bucket != NULL); |
7988 | |
7989 | if (*prevp == NULL) { |
7990 | if (*nextp == NULL) { |
7991 | /* |
7992 | * The removed element was the only element on this |
7993 | * bucket; we need to remove the bucket. |
7994 | */ |
7995 | dtrace_hashbucket_t *b = hash->dth_tab[ndx]; |
7996 | |
7997 | ASSERT(bucket->dthb_chain == elm); |
7998 | ASSERT(b != NULL); |
7999 | |
8000 | if (b == bucket) { |
8001 | hash->dth_tab[ndx] = bucket->dthb_next; |
8002 | } else { |
8003 | while (b->dthb_next != bucket) |
8004 | b = b->dthb_next; |
8005 | b->dthb_next = bucket->dthb_next; |
8006 | } |
8007 | |
8008 | ASSERT(hash->dth_nbuckets > 0); |
8009 | hash->dth_nbuckets--; |
8010 | kmem_free(bucket, sizeof (dtrace_hashbucket_t)); |
8011 | return; |
8012 | } |
8013 | |
8014 | bucket->dthb_chain = *nextp; |
8015 | } else { |
8016 | *(DTRACE_HASHNEXT(hash, *prevp)) = *nextp; |
8017 | } |
8018 | |
8019 | if (*nextp != NULL) |
8020 | *(DTRACE_HASHPREV(hash, *nextp)) = *prevp; |
8021 | } |
8022 | |
8023 | /* |
8024 | * DTrace Utility Functions |
8025 | * |
8026 | * These are random utility functions that are _not_ called from probe context. |
8027 | */ |
8028 | static int |
8029 | dtrace_badattr(const dtrace_attribute_t *a) |
8030 | { |
8031 | return (a->dtat_name > DTRACE_STABILITY_MAX || |
8032 | a->dtat_data > DTRACE_STABILITY_MAX || |
8033 | a->dtat_class > DTRACE_CLASS_MAX); |
8034 | } |
8035 | |
8036 | /* |
8037 | * Returns a dtrace-managed copy of a string, and will |
8038 | * deduplicate copies of the same string. |
8039 | * If the specified string is NULL, returns an empty string |
8040 | */ |
8041 | static char * |
8042 | dtrace_strref(const char *str) |
8043 | { |
8044 | dtrace_string_t *s = NULL; |
8045 | size_t bufsize = (str != NULL ? strlen(s: str) : 0) + 1; |
8046 | |
8047 | LCK_MTX_ASSERT(&dtrace_lock, LCK_MTX_ASSERT_OWNED); |
8048 | |
8049 | if (str == NULL) |
8050 | str = "" ; |
8051 | |
8052 | for (s = dtrace_hash_lookup_string(hash: dtrace_strings, str); s != NULL; |
8053 | s = *(DTRACE_HASHNEXT(dtrace_strings, s))) { |
8054 | if (strncmp(s1: str, s2: s->dtst_str, n: bufsize) != 0) { |
8055 | continue; |
8056 | } |
8057 | ASSERT(s->dtst_refcount != UINT32_MAX); |
8058 | s->dtst_refcount++; |
8059 | return s->dtst_str; |
8060 | } |
8061 | |
8062 | s = kmem_zalloc(sizeof(dtrace_string_t) + bufsize, KM_SLEEP); |
8063 | s->dtst_refcount = 1; |
8064 | (void) strlcpy(dst: s->dtst_str, src: str, n: bufsize); |
8065 | |
8066 | dtrace_hash_add(hash: dtrace_strings, new: s); |
8067 | |
8068 | return s->dtst_str; |
8069 | } |
8070 | |
8071 | static void |
8072 | dtrace_strunref(const char *str) |
8073 | { |
8074 | ASSERT(str != NULL); |
8075 | dtrace_string_t *s = NULL; |
8076 | size_t bufsize = strlen(s: str) + 1; |
8077 | |
8078 | LCK_MTX_ASSERT(&dtrace_lock, LCK_MTX_ASSERT_OWNED); |
8079 | |
8080 | for (s = dtrace_hash_lookup_string(hash: dtrace_strings, str); s != NULL; |
8081 | s = *(DTRACE_HASHNEXT(dtrace_strings, s))) { |
8082 | if (strncmp(s1: str, s2: s->dtst_str, n: bufsize) != 0) { |
8083 | continue; |
8084 | } |
8085 | ASSERT(s->dtst_refcount != 0); |
8086 | s->dtst_refcount--; |
8087 | if (s->dtst_refcount == 0) { |
8088 | dtrace_hash_remove(hash: dtrace_strings, elm: s); |
8089 | kmem_free(s, sizeof(dtrace_string_t) + bufsize); |
8090 | } |
8091 | return; |
8092 | } |
8093 | panic("attempt to unref non-existent string %s" , str); |
8094 | } |
8095 | |
8096 | #define DTRACE_ISALPHA(c) \ |
8097 | (((c) >= 'a' && (c) <= 'z') || ((c) >= 'A' && (c) <= 'Z')) |
8098 | |
8099 | static int |
8100 | dtrace_badname(const char *s) |
8101 | { |
8102 | char c; |
8103 | |
8104 | if (s == NULL || (c = *s++) == '\0') |
8105 | return (0); |
8106 | |
8107 | if (!DTRACE_ISALPHA(c) && c != '-' && c != '_' && c != '.') |
8108 | return (1); |
8109 | |
8110 | while ((c = *s++) != '\0') { |
8111 | if (!DTRACE_ISALPHA(c) && (c < '0' || c > '9') && |
8112 | c != '-' && c != '_' && c != '.' && c != '`') |
8113 | return (1); |
8114 | } |
8115 | |
8116 | return (0); |
8117 | } |
8118 | |
8119 | static void |
8120 | dtrace_cred2priv(cred_t *cr, uint32_t *privp, uid_t *uidp, zoneid_t *zoneidp) |
8121 | { |
8122 | uint32_t priv; |
8123 | |
8124 | if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) { |
8125 | if (dtrace_is_restricted() && !dtrace_are_restrictions_relaxed()) { |
8126 | priv = DTRACE_PRIV_USER | DTRACE_PRIV_PROC | DTRACE_PRIV_OWNER; |
8127 | } |
8128 | else { |
8129 | priv = DTRACE_PRIV_ALL; |
8130 | } |
8131 | *uidp = 0; |
8132 | *zoneidp = 0; |
8133 | } else { |
8134 | *uidp = crgetuid(cr); |
8135 | *zoneidp = crgetzoneid(cr); |
8136 | |
8137 | priv = 0; |
8138 | if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) |
8139 | priv |= DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER; |
8140 | else if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) |
8141 | priv |= DTRACE_PRIV_USER; |
8142 | if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) |
8143 | priv |= DTRACE_PRIV_PROC; |
8144 | if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) |
8145 | priv |= DTRACE_PRIV_OWNER; |
8146 | if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) |
8147 | priv |= DTRACE_PRIV_ZONEOWNER; |
8148 | } |
8149 | |
8150 | *privp = priv; |
8151 | } |
8152 | |
8153 | #ifdef DTRACE_ERRDEBUG |
8154 | static void |
8155 | dtrace_errdebug(const char *str) |
8156 | { |
8157 | int hval = dtrace_hash_str(str) % DTRACE_ERRHASHSZ; |
8158 | int occupied = 0; |
8159 | |
8160 | lck_mtx_lock(&dtrace_errlock); |
8161 | dtrace_errlast = str; |
8162 | dtrace_errthread = (kthread_t *)current_thread(); |
8163 | |
8164 | while (occupied++ < DTRACE_ERRHASHSZ) { |
8165 | if (dtrace_errhash[hval].dter_msg == str) { |
8166 | dtrace_errhash[hval].dter_count++; |
8167 | goto out; |
8168 | } |
8169 | |
8170 | if (dtrace_errhash[hval].dter_msg != NULL) { |
8171 | hval = (hval + 1) % DTRACE_ERRHASHSZ; |
8172 | continue; |
8173 | } |
8174 | |
8175 | dtrace_errhash[hval].dter_msg = str; |
8176 | dtrace_errhash[hval].dter_count = 1; |
8177 | goto out; |
8178 | } |
8179 | |
8180 | panic("dtrace: undersized error hash" ); |
8181 | out: |
8182 | lck_mtx_unlock(&dtrace_errlock); |
8183 | } |
8184 | #endif |
8185 | |
8186 | /* |
8187 | * DTrace Matching Functions |
8188 | * |
8189 | * These functions are used to match groups of probes, given some elements of |
8190 | * a probe tuple, or some globbed expressions for elements of a probe tuple. |
8191 | */ |
8192 | static int |
8193 | dtrace_match_priv(const dtrace_probe_t *prp, uint32_t priv, uid_t uid, |
8194 | zoneid_t zoneid) |
8195 | { |
8196 | if (priv != DTRACE_PRIV_ALL) { |
8197 | uint32_t ppriv = prp->dtpr_provider->dtpv_priv.dtpp_flags; |
8198 | uint32_t match = priv & ppriv; |
8199 | |
8200 | /* |
8201 | * No PRIV_DTRACE_* privileges... |
8202 | */ |
8203 | if ((priv & (DTRACE_PRIV_PROC | DTRACE_PRIV_USER | |
8204 | DTRACE_PRIV_KERNEL)) == 0) |
8205 | return (0); |
8206 | |
8207 | /* |
8208 | * No matching bits, but there were bits to match... |
8209 | */ |
8210 | if (match == 0 && ppriv != 0) |
8211 | return (0); |
8212 | |
8213 | /* |
8214 | * Need to have permissions to the process, but don't... |
8215 | */ |
8216 | if (((ppriv & ~match) & DTRACE_PRIV_OWNER) != 0 && |
8217 | uid != prp->dtpr_provider->dtpv_priv.dtpp_uid) { |
8218 | return (0); |
8219 | } |
8220 | |
8221 | /* |
8222 | * Need to be in the same zone unless we possess the |
8223 | * privilege to examine all zones. |
8224 | */ |
8225 | if (((ppriv & ~match) & DTRACE_PRIV_ZONEOWNER) != 0 && |
8226 | zoneid != prp->dtpr_provider->dtpv_priv.dtpp_zoneid) { |
8227 | return (0); |
8228 | } |
8229 | } |
8230 | |
8231 | return (1); |
8232 | } |
8233 | |
8234 | /* |
8235 | * dtrace_match_probe compares a dtrace_probe_t to a pre-compiled key, which |
8236 | * consists of input pattern strings and an ops-vector to evaluate them. |
8237 | * This function returns >0 for match, 0 for no match, and <0 for error. |
8238 | */ |
8239 | static int |
8240 | dtrace_match_probe(const dtrace_probe_t *prp, const dtrace_probekey_t *pkp, |
8241 | uint32_t priv, uid_t uid, zoneid_t zoneid) |
8242 | { |
8243 | dtrace_provider_t *pvp = prp->dtpr_provider; |
8244 | int rv; |
8245 | |
8246 | if (pvp->dtpv_defunct) |
8247 | return (0); |
8248 | |
8249 | if ((rv = pkp->dtpk_pmatch(pvp->dtpv_name, pkp->dtpk_prov, 0)) <= 0) |
8250 | return (rv); |
8251 | |
8252 | if ((rv = pkp->dtpk_mmatch(prp->dtpr_mod, pkp->dtpk_mod, 0)) <= 0) |
8253 | return (rv); |
8254 | |
8255 | if ((rv = pkp->dtpk_fmatch(prp->dtpr_func, pkp->dtpk_func, 0)) <= 0) |
8256 | return (rv); |
8257 | |
8258 | if ((rv = pkp->dtpk_nmatch(prp->dtpr_name, pkp->dtpk_name, 0)) <= 0) |
8259 | return (rv); |
8260 | |
8261 | if (dtrace_match_priv(prp, priv, uid, zoneid) == 0) |
8262 | return (0); |
8263 | |
8264 | return (rv); |
8265 | } |
8266 | |
8267 | /* |
8268 | * dtrace_match_glob() is a safe kernel implementation of the gmatch(3GEN) |
8269 | * interface for matching a glob pattern 'p' to an input string 's'. Unlike |
8270 | * libc's version, the kernel version only applies to 8-bit ASCII strings. |
8271 | * In addition, all of the recursion cases except for '*' matching have been |
8272 | * unwound. For '*', we still implement recursive evaluation, but a depth |
8273 | * counter is maintained and matching is aborted if we recurse too deep. |
8274 | * The function returns 0 if no match, >0 if match, and <0 if recursion error. |
8275 | */ |
8276 | static int |
8277 | dtrace_match_glob(const char *s, const char *p, int depth) |
8278 | { |
8279 | const char *olds; |
8280 | char s1, c; |
8281 | int gs; |
8282 | |
8283 | if (depth > DTRACE_PROBEKEY_MAXDEPTH) |
8284 | return (-1); |
8285 | |
8286 | if (s == NULL) |
8287 | s = "" ; /* treat NULL as empty string */ |
8288 | |
8289 | top: |
8290 | olds = s; |
8291 | s1 = *s++; |
8292 | |
8293 | if (p == NULL) |
8294 | return (0); |
8295 | |
8296 | if ((c = *p++) == '\0') |
8297 | return (s1 == '\0'); |
8298 | |
8299 | switch (c) { |
8300 | case '[': { |
8301 | int ok = 0, notflag = 0; |
8302 | char lc = '\0'; |
8303 | |
8304 | if (s1 == '\0') |
8305 | return (0); |
8306 | |
8307 | if (*p == '!') { |
8308 | notflag = 1; |
8309 | p++; |
8310 | } |
8311 | |
8312 | if ((c = *p++) == '\0') |
8313 | return (0); |
8314 | |
8315 | do { |
8316 | if (c == '-' && lc != '\0' && *p != ']') { |
8317 | if ((c = *p++) == '\0') |
8318 | return (0); |
8319 | if (c == '\\' && (c = *p++) == '\0') |
8320 | return (0); |
8321 | |
8322 | if (notflag) { |
8323 | if (s1 < lc || s1 > c) |
8324 | ok++; |
8325 | else |
8326 | return (0); |
8327 | } else if (lc <= s1 && s1 <= c) |
8328 | ok++; |
8329 | |
8330 | } else if (c == '\\' && (c = *p++) == '\0') |
8331 | return (0); |
8332 | |
8333 | lc = c; /* save left-hand 'c' for next iteration */ |
8334 | |
8335 | if (notflag) { |
8336 | if (s1 != c) |
8337 | ok++; |
8338 | else |
8339 | return (0); |
8340 | } else if (s1 == c) |
8341 | ok++; |
8342 | |
8343 | if ((c = *p++) == '\0') |
8344 | return (0); |
8345 | |
8346 | } while (c != ']'); |
8347 | |
8348 | if (ok) |
8349 | goto top; |
8350 | |
8351 | return (0); |
8352 | } |
8353 | |
8354 | case '\\': |
8355 | if ((c = *p++) == '\0') |
8356 | return (0); |
8357 | OS_FALLTHROUGH; |
8358 | |
8359 | default: |
8360 | if (c != s1) |
8361 | return (0); |
8362 | OS_FALLTHROUGH; |
8363 | |
8364 | case '?': |
8365 | if (s1 != '\0') |
8366 | goto top; |
8367 | return (0); |
8368 | |
8369 | case '*': |
8370 | while (*p == '*') |
8371 | p++; /* consecutive *'s are identical to a single one */ |
8372 | |
8373 | if (*p == '\0') |
8374 | return (1); |
8375 | |
8376 | for (s = olds; *s != '\0'; s++) { |
8377 | if ((gs = dtrace_match_glob(s, p, depth: depth + 1)) != 0) |
8378 | return (gs); |
8379 | } |
8380 | |
8381 | return (0); |
8382 | } |
8383 | } |
8384 | |
8385 | /*ARGSUSED*/ |
8386 | static int |
8387 | dtrace_match_string(const char *s, const char *p, int depth) |
8388 | { |
8389 | #pragma unused(depth) /* __APPLE__ */ |
8390 | return (s != NULL && s == p); |
8391 | } |
8392 | |
8393 | /*ARGSUSED*/ |
8394 | static int |
8395 | dtrace_match_module(const char *s, const char *p, int depth) |
8396 | { |
8397 | #pragma unused(depth) /* __APPLE__ */ |
8398 | size_t len; |
8399 | if (s == NULL || p == NULL) |
8400 | return (0); |
8401 | |
8402 | len = strlen(s: p); |
8403 | |
8404 | if (strncmp(s1: p, s2: s, n: len) != 0) |
8405 | return (0); |
8406 | |
8407 | if (s[len] == '.' || s[len] == '\0') |
8408 | return (1); |
8409 | |
8410 | return (0); |
8411 | } |
8412 | |
8413 | /*ARGSUSED*/ |
8414 | static int |
8415 | dtrace_match_nul(const char *s, const char *p, int depth) |
8416 | { |
8417 | #pragma unused(s, p, depth) /* __APPLE__ */ |
8418 | return (1); /* always match the empty pattern */ |
8419 | } |
8420 | |
8421 | /*ARGSUSED*/ |
8422 | static int |
8423 | dtrace_match_nonzero(const char *s, const char *p, int depth) |
8424 | { |
8425 | #pragma unused(p, depth) /* __APPLE__ */ |
8426 | return (s != NULL && s[0] != '\0'); |
8427 | } |
8428 | |
8429 | static int |
8430 | dtrace_match(const dtrace_probekey_t *pkp, uint32_t priv, uid_t uid, |
8431 | zoneid_t zoneid, int (*matched)(dtrace_probe_t *, void *, void *), void *arg1, void *arg2) |
8432 | { |
8433 | dtrace_probe_t *probe; |
8434 | dtrace_provider_t prov_template = { |
8435 | .dtpv_name = (char *)(uintptr_t)pkp->dtpk_prov |
8436 | }; |
8437 | |
8438 | dtrace_probe_t template = { |
8439 | .dtpr_provider = &prov_template, |
8440 | .dtpr_mod = (char *)(uintptr_t)pkp->dtpk_mod, |
8441 | .dtpr_func = (char *)(uintptr_t)pkp->dtpk_func, |
8442 | .dtpr_name = (char *)(uintptr_t)pkp->dtpk_name |
8443 | }; |
8444 | |
8445 | dtrace_hash_t *hash = NULL; |
8446 | int len, rc, best = INT_MAX, nmatched = 0; |
8447 | dtrace_id_t i; |
8448 | |
8449 | LCK_MTX_ASSERT(&dtrace_lock, LCK_MTX_ASSERT_OWNED); |
8450 | |
8451 | /* |
8452 | * If the probe ID is specified in the key, just lookup by ID and |
8453 | * invoke the match callback once if a matching probe is found. |
8454 | */ |
8455 | if (pkp->dtpk_id != DTRACE_IDNONE) { |
8456 | if ((probe = dtrace_probe_lookup_id(id: pkp->dtpk_id)) != NULL && |
8457 | dtrace_match_probe(prp: probe, pkp, priv, uid, zoneid) > 0) { |
8458 | if ((*matched)(probe, arg1, arg2) == DTRACE_MATCH_FAIL) |
8459 | return (DTRACE_MATCH_FAIL); |
8460 | nmatched++; |
8461 | } |
8462 | return (nmatched); |
8463 | } |
8464 | |
8465 | /* |
8466 | * We want to find the most distinct of the provider name, module name, |
8467 | * function name, and name. So for each one that is not a glob |
8468 | * pattern or empty string, we perform a lookup in the corresponding |
8469 | * hash and use the hash table with the fewest collisions to do our |
8470 | * search. |
8471 | */ |
8472 | if (pkp->dtpk_pmatch == &dtrace_match_string && |
8473 | (len = dtrace_hash_collisions(hash: dtrace_byprov, template: &template)) < best) { |
8474 | best = len; |
8475 | hash = dtrace_byprov; |
8476 | } |
8477 | |
8478 | if (pkp->dtpk_mmatch == &dtrace_match_string && |
8479 | (len = dtrace_hash_collisions(hash: dtrace_bymod, template: &template)) < best) { |
8480 | best = len; |
8481 | hash = dtrace_bymod; |
8482 | } |
8483 | |
8484 | if (pkp->dtpk_fmatch == &dtrace_match_string && |
8485 | (len = dtrace_hash_collisions(hash: dtrace_byfunc, template: &template)) < best) { |
8486 | best = len; |
8487 | hash = dtrace_byfunc; |
8488 | } |
8489 | |
8490 | if (pkp->dtpk_nmatch == &dtrace_match_string && |
8491 | (len = dtrace_hash_collisions(hash: dtrace_byname, template: &template)) < best) { |
8492 | best = len; |
8493 | hash = dtrace_byname; |
8494 | } |
8495 | |
8496 | /* |
8497 | * If we did not select a hash table, iterate over every probe and |
8498 | * invoke our callback for each one that matches our input probe key. |
8499 | */ |
8500 | if (hash == NULL) { |
8501 | for (i = 0; i < (dtrace_id_t)dtrace_nprobes; i++) { |
8502 | if ((probe = dtrace_probes[i]) == NULL || |
8503 | dtrace_match_probe(prp: probe, pkp, priv, uid, |
8504 | zoneid) <= 0) |
8505 | continue; |
8506 | |
8507 | nmatched++; |
8508 | |
8509 | if ((rc = (*matched)(probe, arg1, arg2)) != DTRACE_MATCH_NEXT) { |
8510 | if (rc == DTRACE_MATCH_FAIL) |
8511 | return (DTRACE_MATCH_FAIL); |
8512 | break; |
8513 | } |
8514 | } |
8515 | |
8516 | return (nmatched); |
8517 | } |
8518 | |
8519 | /* |
8520 | * If we selected a hash table, iterate over each probe of the same key |
8521 | * name and invoke the callback for every probe that matches the other |
8522 | * attributes of our input probe key. |
8523 | */ |
8524 | for (probe = dtrace_hash_lookup(hash, template: &template); probe != NULL; |
8525 | probe = *(DTRACE_HASHNEXT(hash, probe))) { |
8526 | |
8527 | if (dtrace_match_probe(prp: probe, pkp, priv, uid, zoneid) <= 0) |
8528 | continue; |
8529 | |
8530 | nmatched++; |
8531 | |
8532 | if ((rc = (*matched)(probe, arg1, arg2)) != DTRACE_MATCH_NEXT) { |
8533 | if (rc == DTRACE_MATCH_FAIL) |
8534 | return (DTRACE_MATCH_FAIL); |
8535 | break; |
8536 | } |
8537 | } |
8538 | |
8539 | return (nmatched); |
8540 | } |
8541 | |
8542 | /* |
8543 | * Return the function pointer dtrace_probecmp() should use to compare the |
8544 | * specified pattern with a string. For NULL or empty patterns, we select |
8545 | * dtrace_match_nul(). For glob pattern strings, we use dtrace_match_glob(). |
8546 | * For non-empty non-glob strings, we use dtrace_match_string(). |
8547 | */ |
8548 | static dtrace_probekey_f * |
8549 | dtrace_probekey_func(const char *p) |
8550 | { |
8551 | char c; |
8552 | |
8553 | if (p == NULL || *p == '\0') |
8554 | return (&dtrace_match_nul); |
8555 | |
8556 | while ((c = *p++) != '\0') { |
8557 | if (c == '[' || c == '?' || c == '*' || c == '\\') |
8558 | return (&dtrace_match_glob); |
8559 | } |
8560 | |
8561 | return (&dtrace_match_string); |
8562 | } |
8563 | |
8564 | static dtrace_probekey_f * |
8565 | dtrace_probekey_module_func(const char *p) |
8566 | { |
8567 | LCK_MTX_ASSERT(&dtrace_lock, LCK_MTX_ASSERT_OWNED); |
8568 | |
8569 | dtrace_probekey_f *f = dtrace_probekey_func(p); |
8570 | if (f == &dtrace_match_string) { |
8571 | dtrace_probe_t template = { |
8572 | .dtpr_mod = (char *)(uintptr_t)p, |
8573 | }; |
8574 | if (dtrace_hash_lookup(hash: dtrace_bymod, template: &template) == NULL) { |
8575 | return (&dtrace_match_module); |
8576 | } |
8577 | return (&dtrace_match_string); |
8578 | } |
8579 | return f; |
8580 | } |
8581 | |
8582 | /* |
8583 | * Build a probe comparison key for use with dtrace_match_probe() from the |
8584 | * given probe description. By convention, a null key only matches anchored |
8585 | * probes: if each field is the empty string, reset dtpk_fmatch to |
8586 | * dtrace_match_nonzero(). |
8587 | */ |
8588 | static void |
8589 | dtrace_probekey(const dtrace_probedesc_t *pdp, dtrace_probekey_t *pkp) |
8590 | { |
8591 | |
8592 | pkp->dtpk_prov = dtrace_strref(str: pdp->dtpd_provider); |
8593 | pkp->dtpk_pmatch = dtrace_probekey_func(p: pdp->dtpd_provider); |
8594 | |
8595 | pkp->dtpk_mod = dtrace_strref(str: pdp->dtpd_mod); |
8596 | pkp->dtpk_mmatch = dtrace_probekey_module_func(p: pdp->dtpd_mod); |
8597 | |
8598 | pkp->dtpk_func = dtrace_strref(str: pdp->dtpd_func); |
8599 | pkp->dtpk_fmatch = dtrace_probekey_func(p: pdp->dtpd_func); |
8600 | |
8601 | pkp->dtpk_name = dtrace_strref(str: pdp->dtpd_name); |
8602 | pkp->dtpk_nmatch = dtrace_probekey_func(p: pdp->dtpd_name); |
8603 | |
8604 | pkp->dtpk_id = pdp->dtpd_id; |
8605 | |
8606 | if (pkp->dtpk_id == DTRACE_IDNONE && |
8607 | pkp->dtpk_pmatch == &dtrace_match_nul && |
8608 | pkp->dtpk_mmatch == &dtrace_match_nul && |
8609 | pkp->dtpk_fmatch == &dtrace_match_nul && |
8610 | pkp->dtpk_nmatch == &dtrace_match_nul) |
8611 | pkp->dtpk_fmatch = &dtrace_match_nonzero; |
8612 | } |
8613 | |
8614 | static void |
8615 | dtrace_probekey_release(dtrace_probekey_t *pkp) |
8616 | { |
8617 | dtrace_strunref(str: pkp->dtpk_prov); |
8618 | dtrace_strunref(str: pkp->dtpk_mod); |
8619 | dtrace_strunref(str: pkp->dtpk_func); |
8620 | dtrace_strunref(str: pkp->dtpk_name); |
8621 | } |
8622 | |
8623 | static int |
8624 | dtrace_cond_provider_match(dtrace_probedesc_t *desc, void *data) |
8625 | { |
8626 | if (desc == NULL) |
8627 | return 1; |
8628 | |
8629 | dtrace_probekey_f *func = dtrace_probekey_func(p: desc->dtpd_provider); |
8630 | |
8631 | return func((char*)data, desc->dtpd_provider, 0); |
8632 | } |
8633 | |
8634 | /* |
8635 | * DTrace Provider-to-Framework API Functions |
8636 | * |
8637 | * These functions implement much of the Provider-to-Framework API, as |
8638 | * described in <sys/dtrace.h>. The parts of the API not in this section are |
8639 | * the functions in the API for probe management (found below), and |
8640 | * dtrace_probe() itself (found above). |
8641 | */ |
8642 | |
8643 | /* |
8644 | * Register the calling provider with the DTrace framework. This should |
8645 | * generally be called by DTrace providers in their attach(9E) entry point. |
8646 | */ |
8647 | int |
8648 | dtrace_register(const char *name, const dtrace_pattr_t *pap, uint32_t priv, |
8649 | cred_t *cr, const dtrace_pops_t *pops, void *arg, dtrace_provider_id_t *idp) |
8650 | { |
8651 | dtrace_provider_t *provider; |
8652 | |
8653 | if (name == NULL || pap == NULL || pops == NULL || idp == NULL) { |
8654 | cmn_err(CE_WARN, "failed to register provider '%s': invalid " |
8655 | "arguments" , name ? name : "<NULL>" ); |
8656 | return (EINVAL); |
8657 | } |
8658 | |
8659 | if (name[0] == '\0' || dtrace_badname(s: name)) { |
8660 | cmn_err(CE_WARN, "failed to register provider '%s': invalid " |
8661 | "provider name" , name); |
8662 | return (EINVAL); |
8663 | } |
8664 | |
8665 | if ((pops->dtps_provide == NULL && pops->dtps_provide_module == NULL) || |
8666 | pops->dtps_enable == NULL || pops->dtps_disable == NULL || |
8667 | pops->dtps_destroy == NULL || |
8668 | ((pops->dtps_resume == NULL) != (pops->dtps_suspend == NULL))) { |
8669 | cmn_err(CE_WARN, "failed to register provider '%s': invalid " |
8670 | "provider ops" , name); |
8671 | return (EINVAL); |
8672 | } |
8673 | |
8674 | if (dtrace_badattr(a: &pap->dtpa_provider) || |
8675 | dtrace_badattr(a: &pap->dtpa_mod) || |
8676 | dtrace_badattr(a: &pap->dtpa_func) || |
8677 | dtrace_badattr(a: &pap->dtpa_name) || |
8678 | dtrace_badattr(a: &pap->dtpa_args)) { |
8679 | cmn_err(CE_WARN, "failed to register provider '%s': invalid " |
8680 | "provider attributes" , name); |
8681 | return (EINVAL); |
8682 | } |
8683 | |
8684 | if (priv & ~DTRACE_PRIV_ALL) { |
8685 | cmn_err(CE_WARN, "failed to register provider '%s': invalid " |
8686 | "privilege attributes" , name); |
8687 | return (EINVAL); |
8688 | } |
8689 | |
8690 | if ((priv & DTRACE_PRIV_KERNEL) && |
8691 | (priv & (DTRACE_PRIV_USER | DTRACE_PRIV_OWNER)) && |
8692 | pops->dtps_usermode == NULL) { |
8693 | cmn_err(CE_WARN, "failed to register provider '%s': need " |
8694 | "dtps_usermode() op for given privilege attributes" , name); |
8695 | return (EINVAL); |
8696 | } |
8697 | |
8698 | provider = kmem_zalloc(sizeof (dtrace_provider_t), KM_SLEEP); |
8699 | |
8700 | provider->dtpv_attr = *pap; |
8701 | provider->dtpv_priv.dtpp_flags = priv; |
8702 | if (cr != NULL) { |
8703 | provider->dtpv_priv.dtpp_uid = crgetuid(cr); |
8704 | provider->dtpv_priv.dtpp_zoneid = crgetzoneid(cr); |
8705 | } |
8706 | provider->dtpv_pops = *pops; |
8707 | |
8708 | if (pops->dtps_provide == NULL) { |
8709 | ASSERT(pops->dtps_provide_module != NULL); |
8710 | provider->dtpv_pops.dtps_provide = dtrace_provide_nullop; |
8711 | } |
8712 | |
8713 | if (pops->dtps_provide_module == NULL) { |
8714 | ASSERT(pops->dtps_provide != NULL); |
8715 | provider->dtpv_pops.dtps_provide_module = |
8716 | dtrace_provide_module_nullop; |
8717 | } |
8718 | |
8719 | if (pops->dtps_suspend == NULL) { |
8720 | ASSERT(pops->dtps_resume == NULL); |
8721 | provider->dtpv_pops.dtps_suspend = dtrace_suspend_nullop; |
8722 | provider->dtpv_pops.dtps_resume = dtrace_resume_nullop; |
8723 | } |
8724 | |
8725 | provider->dtpv_arg = arg; |
8726 | *idp = (dtrace_provider_id_t)provider; |
8727 | |
8728 | if (pops == &dtrace_provider_ops) { |
8729 | LCK_MTX_ASSERT(&dtrace_provider_lock, LCK_MTX_ASSERT_OWNED); |
8730 | LCK_MTX_ASSERT(&dtrace_lock, LCK_MTX_ASSERT_OWNED); |
8731 | |
8732 | provider->dtpv_name = dtrace_strref(str: name); |
8733 | |
8734 | ASSERT(dtrace_anon.dta_enabling == NULL); |
8735 | |
8736 | /* |
8737 | * We make sure that the DTrace provider is at the head of |
8738 | * the provider chain. |
8739 | */ |
8740 | provider->dtpv_next = dtrace_provider; |
8741 | dtrace_provider = provider; |
8742 | return (0); |
8743 | } |
8744 | |
8745 | lck_mtx_lock(lck: &dtrace_provider_lock); |
8746 | lck_mtx_lock(lck: &dtrace_lock); |
8747 | |
8748 | provider->dtpv_name = dtrace_strref(str: name); |
8749 | |
8750 | /* |
8751 | * If there is at least one provider registered, we'll add this |
8752 | * provider after the first provider. |
8753 | */ |
8754 | if (dtrace_provider != NULL) { |
8755 | provider->dtpv_next = dtrace_provider->dtpv_next; |
8756 | dtrace_provider->dtpv_next = provider; |
8757 | } else { |
8758 | dtrace_provider = provider; |
8759 | } |
8760 | |
8761 | if (dtrace_retained != NULL) { |
8762 | dtrace_enabling_provide(provider); |
8763 | |
8764 | /* |
8765 | * Now we need to call dtrace_enabling_matchall_with_cond() -- |
8766 | * with a condition matching the provider name we just added, |
8767 | * which will acquire cpu_lock and dtrace_lock. We therefore need |
8768 | * to drop all of our locks before calling into it... |
8769 | */ |
8770 | lck_mtx_unlock(lck: &dtrace_lock); |
8771 | lck_mtx_unlock(lck: &dtrace_provider_lock); |
8772 | |
8773 | dtrace_match_cond_t cond = {dtrace_cond_provider_match, provider->dtpv_name}; |
8774 | dtrace_enabling_matchall_with_cond(cond: &cond); |
8775 | |
8776 | return (0); |
8777 | } |
8778 | |
8779 | lck_mtx_unlock(lck: &dtrace_lock); |
8780 | lck_mtx_unlock(lck: &dtrace_provider_lock); |
8781 | |
8782 | return (0); |
8783 | } |
8784 | |
8785 | /* |
8786 | * Unregister the specified provider from the DTrace framework. This should |
8787 | * generally be called by DTrace providers in their detach(9E) entry point. |
8788 | */ |
8789 | int |
8790 | dtrace_unregister(dtrace_provider_id_t id) |
8791 | { |
8792 | dtrace_provider_t *old = (dtrace_provider_t *)id; |
8793 | dtrace_provider_t *prev = NULL; |
8794 | int self = 0; |
8795 | dtrace_probe_t *probe, *first = NULL, *next = NULL; |
8796 | dtrace_probe_t template = { |
8797 | .dtpr_provider = old |
8798 | }; |
8799 | |
8800 | if (old->dtpv_pops.dtps_enable == |
8801 | (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop) { |
8802 | /* |
8803 | * If DTrace itself is the provider, we're called with locks |
8804 | * already held. |
8805 | */ |
8806 | ASSERT(old == dtrace_provider); |
8807 | ASSERT(dtrace_devi != NULL); |
8808 | LCK_MTX_ASSERT(&dtrace_provider_lock, LCK_MTX_ASSERT_OWNED); |
8809 | LCK_MTX_ASSERT(&dtrace_lock, LCK_MTX_ASSERT_OWNED); |
8810 | self = 1; |
8811 | |
8812 | if (dtrace_provider->dtpv_next != NULL) { |
8813 | /* |
8814 | * There's another provider here; return failure. |
8815 | */ |
8816 | return (EBUSY); |
8817 | } |
8818 | } else { |
8819 | lck_mtx_lock(lck: &dtrace_provider_lock); |
8820 | lck_mtx_lock(lck: &mod_lock); |
8821 | lck_mtx_lock(lck: &dtrace_lock); |
8822 | } |
8823 | |
8824 | /* |
8825 | * If anyone has /dev/dtrace open, or if there are anonymous enabled |
8826 | * probes, we refuse to let providers slither away, unless this |
8827 | * provider has already been explicitly invalidated. |
8828 | */ |
8829 | if (!old->dtpv_defunct && |
8830 | (dtrace_opens || (dtrace_anon.dta_state != NULL && |
8831 | dtrace_anon.dta_state->dts_necbs > 0))) { |
8832 | if (!self) { |
8833 | lck_mtx_unlock(lck: &dtrace_lock); |
8834 | lck_mtx_unlock(lck: &mod_lock); |
8835 | lck_mtx_unlock(lck: &dtrace_provider_lock); |
8836 | } |
8837 | return (EBUSY); |
8838 | } |
8839 | |
8840 | /* |
8841 | * Attempt to destroy the probes associated with this provider. |
8842 | */ |
8843 | if (old->dtpv_ecb_count!=0) { |
8844 | /* |
8845 | * We have at least one ECB; we can't remove this provider. |
8846 | */ |
8847 | if (!self) { |
8848 | lck_mtx_unlock(lck: &dtrace_lock); |
8849 | lck_mtx_unlock(lck: &mod_lock); |
8850 | lck_mtx_unlock(lck: &dtrace_provider_lock); |
8851 | } |
8852 | return (EBUSY); |
8853 | } |
8854 | |
8855 | /* |
8856 | * All of the probes for this provider are disabled; we can safely |
8857 | * remove all of them from their hash chains and from the probe array. |
8858 | */ |
8859 | for (probe = dtrace_hash_lookup(hash: dtrace_byprov, template: &template); probe != NULL; |
8860 | probe = *(DTRACE_HASHNEXT(dtrace_byprov, probe))) { |
8861 | if (probe->dtpr_provider != old) |
8862 | continue; |
8863 | |
8864 | dtrace_probes[probe->dtpr_id - 1] = NULL; |
8865 | old->dtpv_probe_count--; |
8866 | |
8867 | dtrace_hash_remove(hash: dtrace_bymod, elm: probe); |
8868 | dtrace_hash_remove(hash: dtrace_byfunc, elm: probe); |
8869 | dtrace_hash_remove(hash: dtrace_byname, elm: probe); |
8870 | |
8871 | if (first == NULL) { |
8872 | first = probe; |
8873 | probe->dtpr_nextmod = NULL; |
8874 | } else { |
8875 | /* |
8876 | * Use nextmod as the chain of probes to remove |
8877 | */ |
8878 | probe->dtpr_nextmod = first; |
8879 | first = probe; |
8880 | } |
8881 | } |
8882 | |
8883 | for (probe = first; probe != NULL; probe = next) { |
8884 | next = probe->dtpr_nextmod; |
8885 | dtrace_hash_remove(hash: dtrace_byprov, elm: probe); |
8886 | } |
8887 | |
8888 | /* |
8889 | * The provider's probes have been removed from the hash chains and |
8890 | * from the probe array. Now issue a dtrace_sync() to be sure that |
8891 | * everyone has cleared out from any probe array processing. |
8892 | */ |
8893 | dtrace_sync(); |
8894 | |
8895 | for (probe = first; probe != NULL; probe = next) { |
8896 | next = probe->dtpr_nextmod; |
8897 | |
8898 | old->dtpv_pops.dtps_destroy(old->dtpv_arg, probe->dtpr_id, |
8899 | probe->dtpr_arg); |
8900 | dtrace_strunref(str: probe->dtpr_mod); |
8901 | dtrace_strunref(str: probe->dtpr_func); |
8902 | dtrace_strunref(str: probe->dtpr_name); |
8903 | vmem_free(vmp: dtrace_arena, vaddr: (void *)(uintptr_t)(probe->dtpr_id), size: 1); |
8904 | zfree(dtrace_probe_t_zone, probe); |
8905 | } |
8906 | |
8907 | if ((prev = dtrace_provider) == old) { |
8908 | ASSERT(self || dtrace_devi == NULL); |
8909 | ASSERT(old->dtpv_next == NULL || dtrace_devi == NULL); |
8910 | dtrace_provider = old->dtpv_next; |
8911 | } else { |
8912 | while (prev != NULL && prev->dtpv_next != old) |
8913 | prev = prev->dtpv_next; |
8914 | |
8915 | if (prev == NULL) { |
8916 | panic("attempt to unregister non-existent " |
8917 | "dtrace provider %p\n" , (void *)id); |
8918 | } |
8919 | |
8920 | prev->dtpv_next = old->dtpv_next; |
8921 | } |
8922 | |
8923 | dtrace_strunref(str: old->dtpv_name); |
8924 | |
8925 | if (!self) { |
8926 | lck_mtx_unlock(lck: &dtrace_lock); |
8927 | lck_mtx_unlock(lck: &mod_lock); |
8928 | lck_mtx_unlock(lck: &dtrace_provider_lock); |
8929 | } |
8930 | |
8931 | kmem_free(old, sizeof (dtrace_provider_t)); |
8932 | |
8933 | return (0); |
8934 | } |
8935 | |
8936 | /* |
8937 | * Invalidate the specified provider. All subsequent probe lookups for the |
8938 | * specified provider will fail, but its probes will not be removed. |
8939 | */ |
8940 | void |
8941 | dtrace_invalidate(dtrace_provider_id_t id) |
8942 | { |
8943 | dtrace_provider_t *pvp = (dtrace_provider_t *)id; |
8944 | |
8945 | ASSERT(pvp->dtpv_pops.dtps_enable != |
8946 | (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop); |
8947 | |
8948 | lck_mtx_lock(lck: &dtrace_provider_lock); |
8949 | lck_mtx_lock(lck: &dtrace_lock); |
8950 | |
8951 | pvp->dtpv_defunct = 1; |
8952 | |
8953 | lck_mtx_unlock(lck: &dtrace_lock); |
8954 | lck_mtx_unlock(lck: &dtrace_provider_lock); |
8955 | } |
8956 | |
8957 | /* |
8958 | * Indicate whether or not DTrace has attached. |
8959 | */ |
8960 | int |
8961 | dtrace_attached(void) |
8962 | { |
8963 | /* |
8964 | * dtrace_provider will be non-NULL iff the DTrace driver has |
8965 | * attached. (It's non-NULL because DTrace is always itself a |
8966 | * provider.) |
8967 | */ |
8968 | return (dtrace_provider != NULL); |
8969 | } |
8970 | |
8971 | /* |
8972 | * Remove all the unenabled probes for the given provider. This function is |
8973 | * not unlike dtrace_unregister(), except that it doesn't remove the provider |
8974 | * -- just as many of its associated probes as it can. |
8975 | */ |
8976 | int |
8977 | dtrace_condense(dtrace_provider_id_t id) |
8978 | { |
8979 | dtrace_provider_t *prov = (dtrace_provider_t *)id; |
8980 | dtrace_probe_t *probe, *first = NULL; |
8981 | dtrace_probe_t template = { |
8982 | .dtpr_provider = prov |
8983 | }; |
8984 | |
8985 | /* |
8986 | * Make sure this isn't the dtrace provider itself. |
8987 | */ |
8988 | ASSERT(prov->dtpv_pops.dtps_enable != |
8989 | (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop); |
8990 | |
8991 | lck_mtx_lock(lck: &dtrace_provider_lock); |
8992 | lck_mtx_lock(lck: &dtrace_lock); |
8993 | |
8994 | /* |
8995 | * Attempt to destroy the probes associated with this provider. |
8996 | */ |
8997 | for (probe = dtrace_hash_lookup(hash: dtrace_byprov, template: &template); probe != NULL; |
8998 | probe = *(DTRACE_HASHNEXT(dtrace_byprov, probe))) { |
8999 | |
9000 | if (probe->dtpr_provider != prov) |
9001 | continue; |
9002 | |
9003 | if (probe->dtpr_ecb != NULL) |
9004 | continue; |
9005 | |
9006 | dtrace_probes[probe->dtpr_id - 1] = NULL; |
9007 | prov->dtpv_probe_count--; |
9008 | |
9009 | dtrace_hash_remove(hash: dtrace_bymod, elm: probe); |
9010 | dtrace_hash_remove(hash: dtrace_byfunc, elm: probe); |
9011 | dtrace_hash_remove(hash: dtrace_byname, elm: probe); |
9012 | |
9013 | prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, probe->dtpr_id, |
9014 | probe->dtpr_arg); |
9015 | dtrace_strunref(str: probe->dtpr_mod); |
9016 | dtrace_strunref(str: probe->dtpr_func); |
9017 | dtrace_strunref(str: probe->dtpr_name); |
9018 | if (first == NULL) { |
9019 | first = probe; |
9020 | probe->dtpr_nextmod = NULL; |
9021 | } else { |
9022 | /* |
9023 | * Use nextmod as the chain of probes to remove |
9024 | */ |
9025 | probe->dtpr_nextmod = first; |
9026 | first = probe; |
9027 | } |
9028 | } |
9029 | |
9030 | for (probe = first; probe != NULL; probe = first) { |
9031 | first = probe->dtpr_nextmod; |
9032 | dtrace_hash_remove(hash: dtrace_byprov, elm: probe); |
9033 | vmem_free(vmp: dtrace_arena, vaddr: (void *)((uintptr_t)probe->dtpr_id), size: 1); |
9034 | zfree(dtrace_probe_t_zone, probe); |
9035 | } |
9036 | |
9037 | lck_mtx_unlock(lck: &dtrace_lock); |
9038 | lck_mtx_unlock(lck: &dtrace_provider_lock); |
9039 | |
9040 | return (0); |
9041 | } |
9042 | |
9043 | /* |
9044 | * DTrace Probe Management Functions |
9045 | * |
9046 | * The functions in this section perform the DTrace probe management, |
9047 | * including functions to create probes, look-up probes, and call into the |
9048 | * providers to request that probes be provided. Some of these functions are |
9049 | * in the Provider-to-Framework API; these functions can be identified by the |
9050 | * fact that they are not declared "static". |
9051 | */ |
9052 | |
9053 | /* |
9054 | * Create a probe with the specified module name, function name, and name. |
9055 | */ |
9056 | dtrace_id_t |
9057 | dtrace_probe_create(dtrace_provider_id_t prov, const char *mod, |
9058 | const char *func, const char *name, int aframes, void *arg) |
9059 | { |
9060 | dtrace_probe_t *probe, **probes; |
9061 | dtrace_provider_t *provider = (dtrace_provider_t *)prov; |
9062 | dtrace_id_t id; |
9063 | |
9064 | if (provider == dtrace_provider) { |
9065 | LCK_MTX_ASSERT(&dtrace_lock, LCK_MTX_ASSERT_OWNED); |
9066 | } else { |
9067 | lck_mtx_lock(lck: &dtrace_lock); |
9068 | } |
9069 | |
9070 | id = (dtrace_id_t)(uintptr_t)vmem_alloc(dtrace_arena, 1, |
9071 | VM_BESTFIT | VM_SLEEP); |
9072 | |
9073 | probe = zalloc_flags(dtrace_probe_t_zone, Z_WAITOK | Z_ZERO); |
9074 | |
9075 | probe->dtpr_id = id; |
9076 | probe->dtpr_gen = dtrace_probegen++; |
9077 | probe->dtpr_mod = dtrace_strref(str: mod); |
9078 | probe->dtpr_func = dtrace_strref(str: func); |
9079 | probe->dtpr_name = dtrace_strref(str: name); |
9080 | probe->dtpr_arg = arg; |
9081 | probe->dtpr_aframes = aframes; |
9082 | probe->dtpr_provider = provider; |
9083 | |
9084 | dtrace_hash_add(hash: dtrace_byprov, new: probe); |
9085 | dtrace_hash_add(hash: dtrace_bymod, new: probe); |
9086 | dtrace_hash_add(hash: dtrace_byfunc, new: probe); |
9087 | dtrace_hash_add(hash: dtrace_byname, new: probe); |
9088 | |
9089 | if (id - 1 >= (dtrace_id_t)dtrace_nprobes) { |
9090 | size_t osize = dtrace_nprobes * sizeof (dtrace_probe_t *); |
9091 | size_t nsize = osize * 2; |
9092 | |
9093 | probes = kmem_zalloc(nsize, KM_SLEEP); |
9094 | |
9095 | dtrace_probe_t **oprobes = dtrace_probes; |
9096 | |
9097 | bcopy(src: oprobes, dst: probes, n: osize); |
9098 | dtrace_membar_producer(); |
9099 | dtrace_probes = probes; |
9100 | |
9101 | dtrace_sync(); |
9102 | |
9103 | /* |
9104 | * All CPUs are now seeing the new probes array; we can |
9105 | * safely free the old array. |
9106 | */ |
9107 | kmem_free(oprobes, osize); |
9108 | dtrace_nprobes *= 2; |
9109 | |
9110 | ASSERT(id - 1 < (dtrace_id_t)dtrace_nprobes); |
9111 | } |
9112 | |
9113 | ASSERT(dtrace_probes[id - 1] == NULL); |
9114 | dtrace_probes[id - 1] = probe; |
9115 | provider->dtpv_probe_count++; |
9116 | |
9117 | if (provider != dtrace_provider) |
9118 | lck_mtx_unlock(lck: &dtrace_lock); |
9119 | |
9120 | return (id); |
9121 | } |
9122 | |
9123 | static dtrace_probe_t * |
9124 | dtrace_probe_lookup_id(dtrace_id_t id) |
9125 | { |
9126 | LCK_MTX_ASSERT(&dtrace_lock, LCK_MTX_ASSERT_OWNED); |
9127 | |
9128 | if (id == 0 || id > (dtrace_id_t)dtrace_nprobes) |
9129 | return (NULL); |
9130 | |
9131 | return (dtrace_probes[id - 1]); |
9132 | } |
9133 | |
9134 | static int |
9135 | dtrace_probe_lookup_match(dtrace_probe_t *probe, void *arg1, void *arg2) |
9136 | { |
9137 | #pragma unused(arg2) |
9138 | *((dtrace_id_t *)arg1) = probe->dtpr_id; |
9139 | |
9140 | return (DTRACE_MATCH_DONE); |
9141 | } |
9142 | |
9143 | /* |
9144 | * Look up a probe based on provider and one or more of module name, function |
9145 | * name and probe name. |
9146 | */ |
9147 | dtrace_id_t |
9148 | dtrace_probe_lookup(dtrace_provider_id_t prid, const char *mod, |
9149 | const char *func, const char *name) |
9150 | { |
9151 | dtrace_probekey_t pkey; |
9152 | dtrace_id_t id; |
9153 | int match; |
9154 | |
9155 | lck_mtx_lock(lck: &dtrace_lock); |
9156 | |
9157 | pkey.dtpk_prov = dtrace_strref(str: ((dtrace_provider_t *)prid)->dtpv_name); |
9158 | pkey.dtpk_pmatch = &dtrace_match_string; |
9159 | pkey.dtpk_mod = dtrace_strref(str: mod); |
9160 | pkey.dtpk_mmatch = mod ? &dtrace_match_string : &dtrace_match_nul; |
9161 | pkey.dtpk_func = dtrace_strref(str: func); |
9162 | pkey.dtpk_fmatch = func ? &dtrace_match_string : &dtrace_match_nul; |
9163 | pkey.dtpk_name = dtrace_strref(str: name); |
9164 | pkey.dtpk_nmatch = name ? &dtrace_match_string : &dtrace_match_nul; |
9165 | pkey.dtpk_id = DTRACE_IDNONE; |
9166 | |
9167 | match = dtrace_match(pkp: &pkey, DTRACE_PRIV_ALL, uid: 0, zoneid: 0, |
9168 | matched: dtrace_probe_lookup_match, arg1: &id, NULL); |
9169 | |
9170 | dtrace_probekey_release(pkp: &pkey); |
9171 | |
9172 | lck_mtx_unlock(lck: &dtrace_lock); |
9173 | |
9174 | ASSERT(match == 1 || match == 0); |
9175 | return (match ? id : 0); |
9176 | } |
9177 | |
9178 | /* |
9179 | * Returns the probe argument associated with the specified probe. |
9180 | */ |
9181 | void * |
9182 | dtrace_probe_arg(dtrace_provider_id_t id, dtrace_id_t pid) |
9183 | { |
9184 | dtrace_probe_t *probe; |
9185 | void *rval = NULL; |
9186 | |
9187 | lck_mtx_lock(lck: &dtrace_lock); |
9188 | |
9189 | if ((probe = dtrace_probe_lookup_id(id: pid)) != NULL && |
9190 | probe->dtpr_provider == (dtrace_provider_t *)id) |
9191 | rval = probe->dtpr_arg; |
9192 | |
9193 | lck_mtx_unlock(lck: &dtrace_lock); |
9194 | |
9195 | return (rval); |
9196 | } |
9197 | |
9198 | /* |
9199 | * Copy a probe into a probe description. |
9200 | */ |
9201 | static void |
9202 | dtrace_probe_description(const dtrace_probe_t *prp, dtrace_probedesc_t *pdp) |
9203 | { |
9204 | bzero(s: pdp, n: sizeof (dtrace_probedesc_t)); |
9205 | pdp->dtpd_id = prp->dtpr_id; |
9206 | |
9207 | /* APPLE NOTE: Darwin employs size bounded string operation. */ |
9208 | (void) strlcpy(dst: pdp->dtpd_provider, |
9209 | src: prp->dtpr_provider->dtpv_name, DTRACE_PROVNAMELEN); |
9210 | |
9211 | (void) strlcpy(dst: pdp->dtpd_mod, src: prp->dtpr_mod, DTRACE_MODNAMELEN); |
9212 | (void) strlcpy(dst: pdp->dtpd_func, src: prp->dtpr_func, DTRACE_FUNCNAMELEN); |
9213 | (void) strlcpy(dst: pdp->dtpd_name, src: prp->dtpr_name, DTRACE_NAMELEN); |
9214 | } |
9215 | |
9216 | /* |
9217 | * Called to indicate that a probe -- or probes -- should be provided by a |
9218 | * specfied provider. If the specified description is NULL, the provider will |
9219 | * be told to provide all of its probes. (This is done whenever a new |
9220 | * consumer comes along, or whenever a retained enabling is to be matched.) If |
9221 | * the specified description is non-NULL, the provider is given the |
9222 | * opportunity to dynamically provide the specified probe, allowing providers |
9223 | * to support the creation of probes on-the-fly. (So-called _autocreated_ |
9224 | * probes.) If the provider is NULL, the operations will be applied to all |
9225 | * providers; if the provider is non-NULL the operations will only be applied |
9226 | * to the specified provider. The dtrace_provider_lock must be held, and the |
9227 | * dtrace_lock must _not_ be held -- the provider's dtps_provide() operation |
9228 | * will need to grab the dtrace_lock when it reenters the framework through |
9229 | * dtrace_probe_lookup(), dtrace_probe_create(), etc. |
9230 | */ |
9231 | static void |
9232 | dtrace_probe_provide(dtrace_probedesc_t *desc, dtrace_provider_t *prv) |
9233 | { |
9234 | struct modctl *ctl; |
9235 | int all = 0; |
9236 | |
9237 | LCK_MTX_ASSERT(&dtrace_provider_lock, LCK_MTX_ASSERT_OWNED); |
9238 | |
9239 | if (prv == NULL) { |
9240 | all = 1; |
9241 | prv = dtrace_provider; |
9242 | } |
9243 | |
9244 | do { |
9245 | /* |
9246 | * First, call the blanket provide operation. |
9247 | */ |
9248 | prv->dtpv_pops.dtps_provide(prv->dtpv_arg, desc); |
9249 | |
9250 | /* |
9251 | * Now call the per-module provide operation. We will grab |
9252 | * mod_lock to prevent the list from being modified. Note |
9253 | * that this also prevents the mod_busy bits from changing. |
9254 | * (mod_busy can only be changed with mod_lock held.) |
9255 | */ |
9256 | lck_mtx_lock(lck: &mod_lock); |
9257 | |
9258 | ctl = dtrace_modctl_list; |
9259 | while (ctl) { |
9260 | prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl); |
9261 | ctl = ctl->mod_next; |
9262 | } |
9263 | |
9264 | lck_mtx_unlock(lck: &mod_lock); |
9265 | } while (all && (prv = prv->dtpv_next) != NULL); |
9266 | } |
9267 | |
9268 | /* |
9269 | * Iterate over each probe, and call the Framework-to-Provider API function |
9270 | * denoted by offs. |
9271 | */ |
9272 | static void |
9273 | dtrace_probe_foreach(uintptr_t offs) |
9274 | { |
9275 | dtrace_provider_t *prov; |
9276 | void (*func)(void *, dtrace_id_t, void *); |
9277 | dtrace_probe_t *probe; |
9278 | dtrace_icookie_t cookie; |
9279 | int i; |
9280 | |
9281 | /* |
9282 | * We disable interrupts to walk through the probe array. This is |
9283 | * safe -- the dtrace_sync() in dtrace_unregister() assures that we |
9284 | * won't see stale data. |
9285 | */ |
9286 | cookie = dtrace_interrupt_disable(); |
9287 | |
9288 | for (i = 0; i < dtrace_nprobes; i++) { |
9289 | if ((probe = dtrace_probes[i]) == NULL) |
9290 | continue; |
9291 | |
9292 | if (probe->dtpr_ecb == NULL) { |
9293 | /* |
9294 | * This probe isn't enabled -- don't call the function. |
9295 | */ |
9296 | continue; |
9297 | } |
9298 | |
9299 | prov = probe->dtpr_provider; |
9300 | func = *((void(**)(void *, dtrace_id_t, void *)) |
9301 | ((uintptr_t)&prov->dtpv_pops + offs)); |
9302 | |
9303 | func(prov->dtpv_arg, i + 1, probe->dtpr_arg); |
9304 | } |
9305 | |
9306 | dtrace_interrupt_enable(cookie); |
9307 | } |
9308 | |
9309 | static int |
9310 | dtrace_probe_enable(const dtrace_probedesc_t *desc, dtrace_enabling_t *enab, dtrace_ecbdesc_t *ep) |
9311 | { |
9312 | dtrace_probekey_t pkey; |
9313 | uint32_t priv; |
9314 | uid_t uid; |
9315 | zoneid_t zoneid; |
9316 | int err; |
9317 | |
9318 | LCK_MTX_ASSERT(&dtrace_lock, LCK_MTX_ASSERT_OWNED); |
9319 | |
9320 | dtrace_ecb_create_cache = NULL; |
9321 | |
9322 | if (desc == NULL) { |
9323 | /* |
9324 | * If we're passed a NULL description, we're being asked to |
9325 | * create an ECB with a NULL probe. |
9326 | */ |
9327 | (void) dtrace_ecb_create_enable(NULL, enab, ep); |
9328 | return (0); |
9329 | } |
9330 | |
9331 | dtrace_probekey(pdp: desc, pkp: &pkey); |
9332 | dtrace_cred2priv(cr: enab->dten_vstate->dtvs_state->dts_cred.dcr_cred, |
9333 | privp: &priv, uidp: &uid, zoneidp: &zoneid); |
9334 | |
9335 | err = dtrace_match(pkp: &pkey, priv, uid, zoneid, matched: dtrace_ecb_create_enable, arg1: enab, arg2: ep); |
9336 | |
9337 | dtrace_probekey_release(pkp: &pkey); |
9338 | |
9339 | return err; |
9340 | } |
9341 | |
9342 | /* |
9343 | * DTrace Helper Provider Functions |
9344 | */ |
9345 | static void |
9346 | dtrace_dofattr2attr(dtrace_attribute_t *attr, const dof_attr_t dofattr) |
9347 | { |
9348 | attr->dtat_name = DOF_ATTR_NAME(dofattr); |
9349 | attr->dtat_data = DOF_ATTR_DATA(dofattr); |
9350 | attr->dtat_class = DOF_ATTR_CLASS(dofattr); |
9351 | } |
9352 | |
9353 | static void |
9354 | dtrace_dofprov2hprov(dtrace_helper_provdesc_t *hprov, |
9355 | const dof_provider_t *dofprov, char *strtab) |
9356 | { |
9357 | hprov->dthpv_provname = strtab + dofprov->dofpv_name; |
9358 | dtrace_dofattr2attr(attr: &hprov->dthpv_pattr.dtpa_provider, |
9359 | dofattr: dofprov->dofpv_provattr); |
9360 | dtrace_dofattr2attr(attr: &hprov->dthpv_pattr.dtpa_mod, |
9361 | dofattr: dofprov->dofpv_modattr); |
9362 | dtrace_dofattr2attr(attr: &hprov->dthpv_pattr.dtpa_func, |
9363 | dofattr: dofprov->dofpv_funcattr); |
9364 | dtrace_dofattr2attr(attr: &hprov->dthpv_pattr.dtpa_name, |
9365 | dofattr: dofprov->dofpv_nameattr); |
9366 | dtrace_dofattr2attr(attr: &hprov->dthpv_pattr.dtpa_args, |
9367 | dofattr: dofprov->dofpv_argsattr); |
9368 | } |
9369 | |
9370 | static void |
9371 | dtrace_helper_provide_one(dof_helper_t *dhp, dof_sec_t *sec, proc_t *p) |
9372 | { |
9373 | uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; |
9374 | dof_hdr_t *dof = (dof_hdr_t *)daddr; |
9375 | dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec; |
9376 | dof_provider_t *provider; |
9377 | dof_probe_t *probe; |
9378 | uint32_t *off, *enoff; |
9379 | uint8_t *arg; |
9380 | char *strtab; |
9381 | uint_t i, nprobes; |
9382 | dtrace_helper_provdesc_t dhpv; |
9383 | dtrace_helper_probedesc_t dhpb; |
9384 | dtrace_meta_t *meta = dtrace_meta_pid; |
9385 | dtrace_mops_t *mops = &meta->dtm_mops; |
9386 | void *parg; |
9387 | |
9388 | provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); |
9389 | str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + |
9390 | provider->dofpv_strtab * dof->dofh_secsize); |
9391 | prb_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + |
9392 | provider->dofpv_probes * dof->dofh_secsize); |
9393 | arg_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + |
9394 | provider->dofpv_prargs * dof->dofh_secsize); |
9395 | off_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + |
9396 | provider->dofpv_proffs * dof->dofh_secsize); |
9397 | |
9398 | strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); |
9399 | off = (uint32_t *)(uintptr_t)(daddr + off_sec->dofs_offset); |
9400 | arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset); |
9401 | enoff = NULL; |
9402 | |
9403 | /* |
9404 | * See dtrace_helper_provider_validate(). |
9405 | */ |
9406 | if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && |
9407 | provider->dofpv_prenoffs != DOF_SECT_NONE) { |
9408 | enoff_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + |
9409 | provider->dofpv_prenoffs * dof->dofh_secsize); |
9410 | enoff = (uint32_t *)(uintptr_t)(daddr + enoff_sec->dofs_offset); |
9411 | } |
9412 | |
9413 | nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize; |
9414 | |
9415 | /* |
9416 | * Create the provider. |
9417 | */ |
9418 | dtrace_dofprov2hprov(hprov: &dhpv, dofprov: provider, strtab); |
9419 | |
9420 | if ((parg = mops->dtms_provide_proc(meta->dtm_arg, &dhpv, p)) == NULL) |
9421 | return; |
9422 | |
9423 | meta->dtm_count++; |
9424 | |
9425 | /* |
9426 | * Create the probes. |
9427 | */ |
9428 | for (i = 0; i < nprobes; i++) { |
9429 | probe = (dof_probe_t *)(uintptr_t)(daddr + |
9430 | prb_sec->dofs_offset + i * prb_sec->dofs_entsize); |
9431 | |
9432 | dhpb.dthpb_mod = dhp->dofhp_mod; |
9433 | dhpb.dthpb_func = strtab + probe->dofpr_func; |
9434 | dhpb.dthpb_name = strtab + probe->dofpr_name; |
9435 | #if !defined(__APPLE__) |
9436 | dhpb.dthpb_base = probe->dofpr_addr; |
9437 | #else |
9438 | dhpb.dthpb_base = dhp->dofhp_addr; /* FIXME: James, why? */ |
9439 | #endif |
9440 | dhpb.dthpb_offs = (int32_t *)(off + probe->dofpr_offidx); |
9441 | dhpb.dthpb_noffs = probe->dofpr_noffs; |
9442 | if (enoff != NULL) { |
9443 | dhpb.dthpb_enoffs = (int32_t *)(enoff + probe->dofpr_enoffidx); |
9444 | dhpb.dthpb_nenoffs = probe->dofpr_nenoffs; |
9445 | } else { |
9446 | dhpb.dthpb_enoffs = NULL; |
9447 | dhpb.dthpb_nenoffs = 0; |
9448 | } |
9449 | dhpb.dthpb_args = arg + probe->dofpr_argidx; |
9450 | dhpb.dthpb_nargc = probe->dofpr_nargc; |
9451 | dhpb.dthpb_xargc = probe->dofpr_xargc; |
9452 | dhpb.dthpb_ntypes = strtab + probe->dofpr_nargv; |
9453 | dhpb.dthpb_xtypes = strtab + probe->dofpr_xargv; |
9454 | |
9455 | mops->dtms_create_probe(meta->dtm_arg, parg, &dhpb); |
9456 | } |
9457 | |
9458 | /* |
9459 | * Since we just created probes, we need to match our enablings |
9460 | * against those, with a precondition knowing that we have only |
9461 | * added probes from this provider |
9462 | */ |
9463 | char *prov_name = mops->dtms_provider_name(parg); |
9464 | ASSERT(prov_name != NULL); |
9465 | dtrace_match_cond_t cond = {dtrace_cond_provider_match, (void*)prov_name}; |
9466 | |
9467 | dtrace_enabling_matchall_with_cond(cond: &cond); |
9468 | } |
9469 | |
9470 | static void |
9471 | dtrace_helper_provide(dof_helper_t *dhp, proc_t *p) |
9472 | { |
9473 | uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; |
9474 | dof_hdr_t *dof = (dof_hdr_t *)daddr; |
9475 | uint32_t i; |
9476 | |
9477 | LCK_MTX_ASSERT(&dtrace_meta_lock, LCK_MTX_ASSERT_OWNED); |
9478 | |
9479 | for (i = 0; i < dof->dofh_secnum; i++) { |
9480 | dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + |
9481 | dof->dofh_secoff + i * dof->dofh_secsize); |
9482 | |
9483 | if (sec->dofs_type != DOF_SECT_PROVIDER) |
9484 | continue; |
9485 | |
9486 | dtrace_helper_provide_one(dhp, sec, p); |
9487 | } |
9488 | } |
9489 | |
9490 | static void |
9491 | dtrace_helper_provider_remove_one(dof_helper_t *dhp, dof_sec_t *sec, proc_t *p) |
9492 | { |
9493 | uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; |
9494 | dof_hdr_t *dof = (dof_hdr_t *)daddr; |
9495 | dof_sec_t *str_sec; |
9496 | dof_provider_t *provider; |
9497 | char *strtab; |
9498 | dtrace_helper_provdesc_t dhpv; |
9499 | dtrace_meta_t *meta = dtrace_meta_pid; |
9500 | dtrace_mops_t *mops = &meta->dtm_mops; |
9501 | |
9502 | provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); |
9503 | str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + |
9504 | provider->dofpv_strtab * dof->dofh_secsize); |
9505 | |
9506 | strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); |
9507 | |
9508 | /* |
9509 | * Create the provider. |
9510 | */ |
9511 | dtrace_dofprov2hprov(hprov: &dhpv, dofprov: provider, strtab); |
9512 | |
9513 | mops->dtms_remove_proc(meta->dtm_arg, &dhpv, p); |
9514 | |
9515 | meta->dtm_count--; |
9516 | } |
9517 | |
9518 | static void |
9519 | dtrace_helper_provider_remove(dof_helper_t *dhp, proc_t *p) |
9520 | { |
9521 | uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; |
9522 | dof_hdr_t *dof = (dof_hdr_t *)daddr; |
9523 | uint32_t i; |
9524 | |
9525 | LCK_MTX_ASSERT(&dtrace_meta_lock, LCK_MTX_ASSERT_OWNED); |
9526 | |
9527 | for (i = 0; i < dof->dofh_secnum; i++) { |
9528 | dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + |
9529 | dof->dofh_secoff + i * dof->dofh_secsize); |
9530 | |
9531 | if (sec->dofs_type != DOF_SECT_PROVIDER) |
9532 | continue; |
9533 | |
9534 | dtrace_helper_provider_remove_one(dhp, sec, p); |
9535 | } |
9536 | } |
9537 | |
9538 | /* |
9539 | * DTrace Meta Provider-to-Framework API Functions |
9540 | * |
9541 | * These functions implement the Meta Provider-to-Framework API, as described |
9542 | * in <sys/dtrace.h>. |
9543 | */ |
9544 | int |
9545 | dtrace_meta_register(const char *name, const dtrace_mops_t *mops, void *arg, |
9546 | dtrace_meta_provider_id_t *idp) |
9547 | { |
9548 | dtrace_meta_t *meta; |
9549 | dtrace_helpers_t *help, *next; |
9550 | uint_t i; |
9551 | |
9552 | *idp = DTRACE_METAPROVNONE; |
9553 | |
9554 | /* |
9555 | * We strictly don't need the name, but we hold onto it for |
9556 | * debuggability. All hail error queues! |
9557 | */ |
9558 | if (name == NULL) { |
9559 | cmn_err(CE_WARN, "failed to register meta-provider: " |
9560 | "invalid name" ); |
9561 | return (EINVAL); |
9562 | } |
9563 | |
9564 | if (mops == NULL || |
9565 | mops->dtms_create_probe == NULL || |
9566 | mops->dtms_provide_proc == NULL || |
9567 | mops->dtms_remove_proc == NULL) { |
9568 | cmn_err(CE_WARN, "failed to register meta-register %s: " |
9569 | "invalid ops" , name); |
9570 | return (EINVAL); |
9571 | } |
9572 | |
9573 | meta = kmem_zalloc(sizeof (dtrace_meta_t), KM_SLEEP); |
9574 | meta->dtm_mops = *mops; |
9575 | meta->dtm_arg = arg; |
9576 | |
9577 | lck_mtx_lock(lck: &dtrace_meta_lock); |
9578 | lck_mtx_lock(lck: &dtrace_lock); |
9579 | |
9580 | if (dtrace_meta_pid != NULL) { |
9581 | lck_mtx_unlock(lck: &dtrace_lock); |
9582 | lck_mtx_unlock(lck: &dtrace_meta_lock); |
9583 | cmn_err(CE_WARN, "failed to register meta-register %s: " |
9584 | "user-land meta-provider exists" , name); |
9585 | kmem_free(meta, sizeof (dtrace_meta_t)); |
9586 | return (EINVAL); |
9587 | } |
9588 | |
9589 | meta->dtm_name = dtrace_strref(str: name); |
9590 | |
9591 | dtrace_meta_pid = meta; |
9592 | *idp = (dtrace_meta_provider_id_t)meta; |
9593 | |
9594 | /* |
9595 | * If there are providers and probes ready to go, pass them |
9596 | * off to the new meta provider now. |
9597 | */ |
9598 | |
9599 | help = dtrace_deferred_pid; |
9600 | dtrace_deferred_pid = NULL; |
9601 | |
9602 | lck_mtx_unlock(lck: &dtrace_lock); |
9603 | |
9604 | while (help != NULL) { |
9605 | for (i = 0; i < help->dthps_nprovs; i++) { |
9606 | proc_t *p = proc_find(pid: help->dthps_pid); |
9607 | if (p == PROC_NULL) |
9608 | continue; |
9609 | dtrace_helper_provide(dhp: &help->dthps_provs[i]->dthp_prov, |
9610 | p); |
9611 | proc_rele(p); |
9612 | } |
9613 | |
9614 | next = help->dthps_next; |
9615 | help->dthps_next = NULL; |
9616 | help->dthps_prev = NULL; |
9617 | help->dthps_deferred = 0; |
9618 | help = next; |
9619 | } |
9620 | |
9621 | lck_mtx_unlock(lck: &dtrace_meta_lock); |
9622 | |
9623 | return (0); |
9624 | } |
9625 | |
9626 | int |
9627 | dtrace_meta_unregister(dtrace_meta_provider_id_t id) |
9628 | { |
9629 | dtrace_meta_t **pp, *old = (dtrace_meta_t *)id; |
9630 | |
9631 | lck_mtx_lock(lck: &dtrace_meta_lock); |
9632 | lck_mtx_lock(lck: &dtrace_lock); |
9633 | |
9634 | if (old == dtrace_meta_pid) { |
9635 | pp = &dtrace_meta_pid; |
9636 | } else { |
9637 | panic("attempt to unregister non-existent " |
9638 | "dtrace meta-provider %p\n" , (void *)old); |
9639 | } |
9640 | |
9641 | if (old->dtm_count != 0) { |
9642 | lck_mtx_unlock(lck: &dtrace_lock); |
9643 | lck_mtx_unlock(lck: &dtrace_meta_lock); |
9644 | return (EBUSY); |
9645 | } |
9646 | |
9647 | *pp = NULL; |
9648 | |
9649 | dtrace_strunref(str: old->dtm_name); |
9650 | |
9651 | lck_mtx_unlock(lck: &dtrace_lock); |
9652 | lck_mtx_unlock(lck: &dtrace_meta_lock); |
9653 | |
9654 | kmem_free(old, sizeof (dtrace_meta_t)); |
9655 | |
9656 | return (0); |
9657 | } |
9658 | |
9659 | |
9660 | /* |
9661 | * DTrace DIF Object Functions |
9662 | */ |
9663 | static int |
9664 | dtrace_difo_err(uint_t pc, const char *format, ...) |
9665 | { |
9666 | if (dtrace_err_verbose) { |
9667 | va_list alist; |
9668 | |
9669 | (void) uprintf("dtrace DIF object error: [%u]: " , pc); |
9670 | va_start(alist, format); |
9671 | (void) vuprintf(format, alist); |
9672 | va_end(alist); |
9673 | } |
9674 | |
9675 | #ifdef DTRACE_ERRDEBUG |
9676 | dtrace_errdebug(format); |
9677 | #endif |
9678 | return (1); |
9679 | } |
9680 | |
9681 | /* |
9682 | * Validate a DTrace DIF object by checking the IR instructions. The following |
9683 | * rules are currently enforced by dtrace_difo_validate(): |
9684 | * |
9685 | * 1. Each instruction must have a valid opcode |
9686 | * 2. Each register, string, variable, or subroutine reference must be valid |
9687 | * 3. No instruction can modify register %r0 (must be zero) |
9688 | * 4. All instruction reserved bits must be set to zero |
9689 | * 5. The last instruction must be a "ret" instruction |
9690 | * 6. All branch targets must reference a valid instruction _after_ the branch |
9691 | */ |
9692 | static int |
9693 | dtrace_difo_validate(dtrace_difo_t *dp, dtrace_vstate_t *vstate, uint_t nregs, |
9694 | cred_t *cr) |
9695 | { |
9696 | int err = 0; |
9697 | uint_t i; |
9698 | |
9699 | int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err; |
9700 | int kcheckload; |
9701 | uint_t pc; |
9702 | int maxglobal = -1, maxlocal = -1, maxtlocal = -1; |
9703 | |
9704 | kcheckload = cr == NULL || |
9705 | (vstate->dtvs_state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) == 0; |
9706 | |
9707 | dp->dtdo_destructive = 0; |
9708 | |
9709 | for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) { |
9710 | dif_instr_t instr = dp->dtdo_buf[pc]; |
9711 | |
9712 | uint_t r1 = DIF_INSTR_R1(instr); |
9713 | uint_t r2 = DIF_INSTR_R2(instr); |
9714 | uint_t rd = DIF_INSTR_RD(instr); |
9715 | uint_t rs = DIF_INSTR_RS(instr); |
9716 | uint_t label = DIF_INSTR_LABEL(instr); |
9717 | uint_t v = DIF_INSTR_VAR(instr); |
9718 | uint_t subr = DIF_INSTR_SUBR(instr); |
9719 | uint_t type = DIF_INSTR_TYPE(instr); |
9720 | uint_t op = DIF_INSTR_OP(instr); |
9721 | |
9722 | switch (op) { |
9723 | case DIF_OP_OR: |
9724 | case DIF_OP_XOR: |
9725 | case DIF_OP_AND: |
9726 | case DIF_OP_SLL: |
9727 | case DIF_OP_SRL: |
9728 | case DIF_OP_SRA: |
9729 | case DIF_OP_SUB: |
9730 | case DIF_OP_ADD: |
9731 | case DIF_OP_MUL: |
9732 | case DIF_OP_SDIV: |
9733 | case DIF_OP_UDIV: |
9734 | case DIF_OP_SREM: |
9735 | case DIF_OP_UREM: |
9736 | case DIF_OP_COPYS: |
9737 | if (r1 >= nregs) |
9738 | err += efunc(pc, "invalid register %u\n" , r1); |
9739 | if (r2 >= nregs) |
9740 | err += efunc(pc, "invalid register %u\n" , r2); |
9741 | if (rd >= nregs) |
9742 | err += efunc(pc, "invalid register %u\n" , rd); |
9743 | if (rd == 0) |
9744 | err += efunc(pc, "cannot write to %%r0\n" ); |
9745 | break; |
9746 | case DIF_OP_NOT: |
9747 | case DIF_OP_MOV: |
9748 | case DIF_OP_ALLOCS: |
9749 | if (r1 >= nregs) |
9750 | err += efunc(pc, "invalid register %u\n" , r1); |
9751 | if (r2 != 0) |
9752 | err += efunc(pc, "non-zero reserved bits\n" ); |
9753 | if (rd >= nregs) |
9754 | err += efunc(pc, "invalid register %u\n" , rd); |
9755 | if (rd == 0) |
9756 | err += efunc(pc, "cannot write to %%r0\n" ); |
9757 | break; |
9758 | case DIF_OP_LDSB: |
9759 | case DIF_OP_LDSH: |
9760 | case DIF_OP_LDSW: |
9761 | case DIF_OP_LDUB: |
9762 | case DIF_OP_LDUH: |
9763 | case DIF_OP_LDUW: |
9764 | case DIF_OP_LDX: |
9765 | if (r1 >= nregs) |
9766 | err += efunc(pc, "invalid register %u\n" , r1); |
9767 | if (r2 != 0) |
9768 | err += efunc(pc, "non-zero reserved bits\n" ); |
9769 | if (rd >= nregs) |
9770 | err += efunc(pc, "invalid register %u\n" , rd); |
9771 | if (rd == 0) |
9772 | err += efunc(pc, "cannot write to %%r0\n" ); |
9773 | if (kcheckload) |
9774 | dp->dtdo_buf[pc] = DIF_INSTR_LOAD(op + |
9775 | DIF_OP_RLDSB - DIF_OP_LDSB, r1, rd); |
9776 | break; |
9777 | case DIF_OP_RLDSB: |
9778 | case DIF_OP_RLDSH: |
9779 | case DIF_OP_RLDSW: |
9780 | case DIF_OP_RLDUB: |
9781 | case DIF_OP_RLDUH: |
9782 | case DIF_OP_RLDUW: |
9783 | case DIF_OP_RLDX: |
9784 | if (r1 >= nregs) |
9785 | err += efunc(pc, "invalid register %u\n" , r1); |
9786 | if (r2 != 0) |
9787 | err += efunc(pc, "non-zero reserved bits\n" ); |
9788 | if (rd >= nregs) |
9789 | err += efunc(pc, "invalid register %u\n" , rd); |
9790 | if (rd == 0) |
9791 | err += efunc(pc, "cannot write to %%r0\n" ); |
9792 | break; |
9793 | case DIF_OP_ULDSB: |
9794 | case DIF_OP_ULDSH: |
9795 | case DIF_OP_ULDSW: |
9796 | case DIF_OP_ULDUB: |
9797 | case DIF_OP_ULDUH: |
9798 | case DIF_OP_ULDUW: |
9799 | case DIF_OP_ULDX: |
9800 | if (r1 >= nregs) |
9801 | err += efunc(pc, "invalid register %u\n" , r1); |
9802 | if (r2 != 0) |
9803 | err += efunc(pc, "non-zero reserved bits\n" ); |
9804 | if (rd >= nregs) |
9805 | err += efunc(pc, "invalid register %u\n" , rd); |
9806 | if (rd == 0) |
9807 | err += efunc(pc, "cannot write to %%r0\n" ); |
9808 | break; |
9809 | case DIF_OP_STB: |
9810 | case DIF_OP_STH: |
9811 | case DIF_OP_STW: |
9812 | case DIF_OP_STX: |
9813 | if (r1 >= nregs) |
9814 | err += efunc(pc, "invalid register %u\n" , r1); |
9815 | if (r2 != 0) |
9816 | err += efunc(pc, "non-zero reserved bits\n" ); |
9817 | if (rd >= nregs) |
9818 | err += efunc(pc, "invalid register %u\n" , rd); |
9819 | if (rd == 0) |
9820 | err += efunc(pc, "cannot write to 0 address\n" ); |
9821 | break; |
9822 | case DIF_OP_CMP: |
9823 | case DIF_OP_SCMP: |
9824 | if (r1 >= nregs) |
9825 | err += efunc(pc, "invalid register %u\n" , r1); |
9826 | if (r2 >= nregs) |
9827 | err += efunc(pc, "invalid register %u\n" , r2); |
9828 | if (rd != 0) |
9829 | err += efunc(pc, "non-zero reserved bits\n" ); |
9830 | break; |
9831 | case DIF_OP_TST: |
9832 | if (r1 >= nregs) |
9833 | err += efunc(pc, "invalid register %u\n" , r1); |
9834 | if (r2 != 0 || rd != 0) |
9835 | err += efunc(pc, "non-zero reserved bits\n" ); |
9836 | break; |
9837 | case DIF_OP_BA: |
9838 | case DIF_OP_BE: |
9839 | case DIF_OP_BNE: |
9840 | case DIF_OP_BG: |
9841 | case DIF_OP_BGU: |
9842 | case DIF_OP_BGE: |
9843 | case DIF_OP_BGEU: |
9844 | case DIF_OP_BL: |
9845 | case DIF_OP_BLU: |
9846 | case DIF_OP_BLE: |
9847 | case DIF_OP_BLEU: |
9848 | if (label >= dp->dtdo_len) { |
9849 | err += efunc(pc, "invalid branch target %u\n" , |
9850 | label); |
9851 | } |
9852 | if (label <= pc) { |
9853 | err += efunc(pc, "backward branch to %u\n" , |
9854 | label); |
9855 | } |
9856 | break; |
9857 | case DIF_OP_RET: |
9858 | if (r1 != 0 || r2 != 0) |
9859 | err += efunc(pc, "non-zero reserved bits\n" ); |
9860 | if (rd >= nregs) |
9861 | err += efunc(pc, "invalid register %u\n" , rd); |
9862 | break; |
9863 | case DIF_OP_NOP: |
9864 | case DIF_OP_POPTS: |
9865 | case DIF_OP_FLUSHTS: |
9866 | if (r1 != 0 || r2 != 0 || rd != 0) |
9867 | err += efunc(pc, "non-zero reserved bits\n" ); |
9868 | break; |
9869 | case DIF_OP_SETX: |
9870 | if (DIF_INSTR_INTEGER(instr) >= dp->dtdo_intlen) { |
9871 | err += efunc(pc, "invalid integer ref %u\n" , |
9872 | DIF_INSTR_INTEGER(instr)); |
9873 | } |
9874 | if (rd >= nregs) |
9875 | err += efunc(pc, "invalid register %u\n" , rd); |
9876 | if (rd == 0) |
9877 | err += efunc(pc, "cannot write to %%r0\n" ); |
9878 | break; |
9879 | case DIF_OP_SETS: |
9880 | if (DIF_INSTR_STRING(instr) >= dp->dtdo_strlen) { |
9881 | err += efunc(pc, "invalid string ref %u\n" , |
9882 | DIF_INSTR_STRING(instr)); |
9883 | } |
9884 | if (rd >= nregs) |
9885 | err += efunc(pc, "invalid register %u\n" , rd); |
9886 | if (rd == 0) |
9887 | err += efunc(pc, "cannot write to %%r0\n" ); |
9888 | break; |
9889 | case DIF_OP_LDGA: |
9890 | case DIF_OP_LDTA: |
9891 | if (r1 > DIF_VAR_ARRAY_MAX) |
9892 | err += efunc(pc, "invalid array %u\n" , r1); |
9893 | if (r2 >= nregs) |
9894 | err += efunc(pc, "invalid register %u\n" , r2); |
9895 | if (rd >= nregs) |
9896 | err += efunc(pc, "invalid register %u\n" , rd); |
9897 | if (rd == 0) |
9898 | err += efunc(pc, "cannot write to %%r0\n" ); |
9899 | break; |
9900 | case DIF_OP_LDGS: |
9901 | case DIF_OP_LDTS: |
9902 | case DIF_OP_LDLS: |
9903 | case DIF_OP_LDGAA: |
9904 | case DIF_OP_LDTAA: |
9905 | if (v < DIF_VAR_OTHER_MIN || v > DIF_VAR_OTHER_MAX) |
9906 | err += efunc(pc, "invalid variable %u\n" , v); |
9907 | if (rd >= nregs) |
9908 | err += efunc(pc, "invalid register %u\n" , rd); |
9909 | if (rd == 0) |
9910 | err += efunc(pc, "cannot write to %%r0\n" ); |
9911 | break; |
9912 | case DIF_OP_STGS: |
9913 | case DIF_OP_STTS: |
9914 | case DIF_OP_STLS: |
9915 | case DIF_OP_STGAA: |
9916 | case DIF_OP_STTAA: |
9917 | if (v < DIF_VAR_OTHER_UBASE || v > DIF_VAR_OTHER_MAX) |
9918 | err += efunc(pc, "invalid variable %u\n" , v); |
9919 | if (rs >= nregs) |
9920 | err += efunc(pc, "invalid register %u\n" , rd); |
9921 | break; |
9922 | case DIF_OP_CALL: |
9923 | if (subr > DIF_SUBR_MAX && |
9924 | !(subr >= DIF_SUBR_APPLE_MIN && subr <= DIF_SUBR_APPLE_MAX)) |
9925 | err += efunc(pc, "invalid subr %u\n" , subr); |
9926 | if (rd >= nregs) |
9927 | err += efunc(pc, "invalid register %u\n" , rd); |
9928 | if (rd == 0) |
9929 | err += efunc(pc, "cannot write to %%r0\n" ); |
9930 | |
9931 | switch (subr) { |
9932 | case DIF_SUBR_COPYOUT: |
9933 | case DIF_SUBR_COPYOUTSTR: |
9934 | case DIF_SUBR_KDEBUG_TRACE: |
9935 | case DIF_SUBR_KDEBUG_TRACE_STRING: |
9936 | case DIF_SUBR_PHYSMEM_READ: |
9937 | case DIF_SUBR_PHYSMEM_WRITE: |
9938 | case DIF_SUBR_LIVEDUMP: |
9939 | dp->dtdo_destructive = 1; |
9940 | break; |
9941 | default: |
9942 | break; |
9943 | } |
9944 | break; |
9945 | case DIF_OP_PUSHTR: |
9946 | if (type != DIF_TYPE_STRING && type != DIF_TYPE_CTF) |
9947 | err += efunc(pc, "invalid ref type %u\n" , type); |
9948 | if (r2 >= nregs) |
9949 | err += efunc(pc, "invalid register %u\n" , r2); |
9950 | if (rs >= nregs) |
9951 | err += efunc(pc, "invalid register %u\n" , rs); |
9952 | break; |
9953 | case DIF_OP_PUSHTV: |
9954 | if (type != DIF_TYPE_CTF) |
9955 | err += efunc(pc, "invalid val type %u\n" , type); |
9956 | if (r2 >= nregs) |
9957 | err += efunc(pc, "invalid register %u\n" , r2); |
9958 | if (rs >= nregs) |
9959 | err += efunc(pc, "invalid register %u\n" , rs); |
9960 | break; |
9961 | case DIF_OP_STRIP: |
9962 | if (r1 >= nregs) |
9963 | err += efunc(pc, "invalid register %u\n" , r1); |
9964 | if (!dtrace_is_valid_ptrauth_key(r2)) |
9965 | err += efunc(pc, "invalid key\n" ); |
9966 | if (rd >= nregs) |
9967 | err += efunc(pc, "invalid register %u\n" , rd); |
9968 | if (rd == 0) |
9969 | err += efunc(pc, "cannot write to %%r0\n" ); |
9970 | break; |
9971 | default: |
9972 | err += efunc(pc, "invalid opcode %u\n" , |
9973 | DIF_INSTR_OP(instr)); |
9974 | } |
9975 | } |
9976 | |
9977 | if (dp->dtdo_len != 0 && |
9978 | DIF_INSTR_OP(dp->dtdo_buf[dp->dtdo_len - 1]) != DIF_OP_RET) { |
9979 | err += efunc(dp->dtdo_len - 1, |
9980 | "expected 'ret' as last DIF instruction\n" ); |
9981 | } |
9982 | |
9983 | if (!(dp->dtdo_rtype.dtdt_flags & (DIF_TF_BYREF | DIF_TF_BYUREF))) { |
9984 | /* |
9985 | * If we're not returning by reference, the size must be either |
9986 | * 0 or the size of one of the base types. |
9987 | */ |
9988 | switch (dp->dtdo_rtype.dtdt_size) { |
9989 | case 0: |
9990 | case sizeof (uint8_t): |
9991 | case sizeof (uint16_t): |
9992 | case sizeof (uint32_t): |
9993 | case sizeof (uint64_t): |
9994 | break; |
9995 | |
9996 | default: |
9997 | err += efunc(dp->dtdo_len - 1, "bad return size\n" ); |
9998 | } |
9999 | } |
10000 | |
10001 | for (i = 0; i < dp->dtdo_varlen && err == 0; i++) { |
10002 | dtrace_difv_t *v = &dp->dtdo_vartab[i], *existing = NULL; |
10003 | dtrace_diftype_t *vt, *et; |
10004 | uint_t id; |
10005 | int ndx; |
10006 | |
10007 | if (v->dtdv_scope != DIFV_SCOPE_GLOBAL && |
10008 | v->dtdv_scope != DIFV_SCOPE_THREAD && |
10009 | v->dtdv_scope != DIFV_SCOPE_LOCAL) { |
10010 | err += efunc(i, "unrecognized variable scope %d\n" , |
10011 | v->dtdv_scope); |
10012 | break; |
10013 | } |
10014 | |
10015 | if (v->dtdv_kind != DIFV_KIND_ARRAY && |
10016 | v->dtdv_kind != DIFV_KIND_SCALAR) { |
10017 | err += efunc(i, "unrecognized variable type %d\n" , |
10018 | v->dtdv_kind); |
10019 | break; |
10020 | } |
10021 | |
10022 | if ((id = v->dtdv_id) > DIF_VARIABLE_MAX) { |
10023 | err += efunc(i, "%d exceeds variable id limit\n" , id); |
10024 | break; |
10025 | } |
10026 | |
10027 | if (id < DIF_VAR_OTHER_UBASE) |
10028 | continue; |
10029 | |
10030 | /* |
10031 | * For user-defined variables, we need to check that this |
10032 | * definition is identical to any previous definition that we |
10033 | * encountered. |
10034 | */ |
10035 | ndx = id - DIF_VAR_OTHER_UBASE; |
10036 | |
10037 | switch (v->dtdv_scope) { |
10038 | case DIFV_SCOPE_GLOBAL: |
10039 | if (maxglobal == -1 || ndx > maxglobal) |
10040 | maxglobal = ndx; |
10041 | |
10042 | if (ndx < vstate->dtvs_nglobals) { |
10043 | dtrace_statvar_t *svar; |
10044 | |
10045 | if ((svar = vstate->dtvs_globals[ndx]) != NULL) |
10046 | existing = &svar->dtsv_var; |
10047 | } |
10048 | |
10049 | break; |
10050 | |
10051 | case DIFV_SCOPE_THREAD: |
10052 | if (maxtlocal == -1 || ndx > maxtlocal) |
10053 | maxtlocal = ndx; |
10054 | |
10055 | if (ndx < vstate->dtvs_ntlocals) |
10056 | existing = &vstate->dtvs_tlocals[ndx]; |
10057 | break; |
10058 | |
10059 | case DIFV_SCOPE_LOCAL: |
10060 | if (maxlocal == -1 || ndx > maxlocal) |
10061 | maxlocal = ndx; |
10062 | if (ndx < vstate->dtvs_nlocals) { |
10063 | dtrace_statvar_t *svar; |
10064 | |
10065 | if ((svar = vstate->dtvs_locals[ndx]) != NULL) |
10066 | existing = &svar->dtsv_var; |
10067 | } |
10068 | |
10069 | break; |
10070 | } |
10071 | |
10072 | vt = &v->dtdv_type; |
10073 | |
10074 | if (vt->dtdt_flags & DIF_TF_BYREF) { |
10075 | if (vt->dtdt_size == 0) { |
10076 | err += efunc(i, "zero-sized variable\n" ); |
10077 | break; |
10078 | } |
10079 | |
10080 | if ((v->dtdv_scope == DIFV_SCOPE_GLOBAL || |
10081 | v->dtdv_scope == DIFV_SCOPE_LOCAL) && |
10082 | vt->dtdt_size > dtrace_statvar_maxsize) { |
10083 | err += efunc(i, "oversized by-ref static\n" ); |
10084 | break; |
10085 | } |
10086 | } |
10087 | |
10088 | if (existing == NULL || existing->dtdv_id == 0) |
10089 | continue; |
10090 | |
10091 | ASSERT(existing->dtdv_id == v->dtdv_id); |
10092 | ASSERT(existing->dtdv_scope == v->dtdv_scope); |
10093 | |
10094 | if (existing->dtdv_kind != v->dtdv_kind) |
10095 | err += efunc(i, "%d changed variable kind\n" , id); |
10096 | |
10097 | et = &existing->dtdv_type; |
10098 | |
10099 | if (vt->dtdt_flags != et->dtdt_flags) { |
10100 | err += efunc(i, "%d changed variable type flags\n" , id); |
10101 | break; |
10102 | } |
10103 | |
10104 | if (vt->dtdt_size != 0 && vt->dtdt_size != et->dtdt_size) { |
10105 | err += efunc(i, "%d changed variable type size\n" , id); |
10106 | break; |
10107 | } |
10108 | } |
10109 | |
10110 | for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) { |
10111 | dif_instr_t instr = dp->dtdo_buf[pc]; |
10112 | |
10113 | uint_t v = DIF_INSTR_VAR(instr); |
10114 | uint_t op = DIF_INSTR_OP(instr); |
10115 | |
10116 | switch (op) { |
10117 | case DIF_OP_LDGS: |
10118 | case DIF_OP_LDGAA: |
10119 | case DIF_OP_STGS: |
10120 | case DIF_OP_STGAA: |
10121 | if (v > (uint_t)(DIF_VAR_OTHER_UBASE + maxglobal)) |
10122 | err += efunc(pc, "invalid variable %u\n" , v); |
10123 | break; |
10124 | case DIF_OP_LDTS: |
10125 | case DIF_OP_LDTAA: |
10126 | case DIF_OP_STTS: |
10127 | case DIF_OP_STTAA: |
10128 | if (v > (uint_t)(DIF_VAR_OTHER_UBASE + maxtlocal)) |
10129 | err += efunc(pc, "invalid variable %u\n" , v); |
10130 | break; |
10131 | case DIF_OP_LDLS: |
10132 | case DIF_OP_STLS: |
10133 | if (v > (uint_t)(DIF_VAR_OTHER_UBASE + maxlocal)) |
10134 | err += efunc(pc, "invalid variable %u\n" , v); |
10135 | break; |
10136 | default: |
10137 | break; |
10138 | } |
10139 | } |
10140 | |
10141 | return (err); |
10142 | } |
10143 | |
10144 | /* |
10145 | * Validate a DTrace DIF object that it is to be used as a helper. Helpers |
10146 | * are much more constrained than normal DIFOs. Specifically, they may |
10147 | * not: |
10148 | * |
10149 | * 1. Make calls to subroutines other than copyin(), copyinstr() or |
10150 | * miscellaneous string routines |
10151 | * 2. Access DTrace variables other than the args[] array, and the |
10152 | * curthread, pid, ppid, tid, execname, zonename, uid and gid variables. |
10153 | * 3. Have thread-local variables. |
10154 | * 4. Have dynamic variables. |
10155 | */ |
10156 | static int |
10157 | dtrace_difo_validate_helper(dtrace_difo_t *dp) |
10158 | { |
10159 | int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err; |
10160 | int err = 0; |
10161 | uint_t pc; |
10162 | |
10163 | for (pc = 0; pc < dp->dtdo_len; pc++) { |
10164 | dif_instr_t instr = dp->dtdo_buf[pc]; |
10165 | |
10166 | uint_t v = DIF_INSTR_VAR(instr); |
10167 | uint_t subr = DIF_INSTR_SUBR(instr); |
10168 | uint_t op = DIF_INSTR_OP(instr); |
10169 | |
10170 | switch (op) { |
10171 | case DIF_OP_OR: |
10172 | case DIF_OP_XOR: |
10173 | case DIF_OP_AND: |
10174 | case DIF_OP_SLL: |
10175 | case DIF_OP_SRL: |
10176 | case DIF_OP_SRA: |
10177 | case DIF_OP_SUB: |
10178 | case DIF_OP_ADD: |
10179 | case DIF_OP_MUL: |
10180 | case DIF_OP_SDIV: |
10181 | case DIF_OP_UDIV: |
10182 | case DIF_OP_SREM: |
10183 | case DIF_OP_UREM: |
10184 | case DIF_OP_COPYS: |
10185 | case DIF_OP_NOT: |
10186 | case DIF_OP_MOV: |
10187 | case DIF_OP_RLDSB: |
10188 | case DIF_OP_RLDSH: |
10189 | case DIF_OP_RLDSW: |
10190 | case DIF_OP_RLDUB: |
10191 | case DIF_OP_RLDUH: |
10192 | case DIF_OP_RLDUW: |
10193 | case DIF_OP_RLDX: |
10194 | case DIF_OP_ULDSB: |
10195 | case DIF_OP_ULDSH: |
10196 | case DIF_OP_ULDSW: |
10197 | case DIF_OP_ULDUB: |
10198 | case DIF_OP_ULDUH: |
10199 | case DIF_OP_ULDUW: |
10200 | case DIF_OP_ULDX: |
10201 | case DIF_OP_STB: |
10202 | case DIF_OP_STH: |
10203 | case DIF_OP_STW: |
10204 | case DIF_OP_STX: |
10205 | case DIF_OP_ALLOCS: |
10206 | case DIF_OP_CMP: |
10207 | case DIF_OP_SCMP: |
10208 | case DIF_OP_TST: |
10209 | case DIF_OP_BA: |
10210 | case DIF_OP_BE: |
10211 | case DIF_OP_BNE: |
10212 | case DIF_OP_BG: |
10213 | case DIF_OP_BGU: |
10214 | case DIF_OP_BGE: |
10215 | case DIF_OP_BGEU: |
10216 | case DIF_OP_BL: |
10217 | case DIF_OP_BLU: |
10218 | case DIF_OP_BLE: |
10219 | case DIF_OP_BLEU: |
10220 | case DIF_OP_RET: |
10221 | case DIF_OP_NOP: |
10222 | case DIF_OP_POPTS: |
10223 | case DIF_OP_FLUSHTS: |
10224 | case DIF_OP_SETX: |
10225 | case DIF_OP_SETS: |
10226 | case DIF_OP_LDGA: |
10227 | case DIF_OP_LDLS: |
10228 | case DIF_OP_STGS: |
10229 | case DIF_OP_STLS: |
10230 | case DIF_OP_PUSHTR: |
10231 | case DIF_OP_PUSHTV: |
10232 | break; |
10233 | |
10234 | case DIF_OP_LDGS: |
10235 | if (v >= DIF_VAR_OTHER_UBASE) |
10236 | break; |
10237 | |
10238 | if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) |
10239 | break; |
10240 | |
10241 | if (v == DIF_VAR_CURTHREAD || v == DIF_VAR_PID || |
10242 | v == DIF_VAR_PPID || v == DIF_VAR_TID || |
10243 | v == DIF_VAR_EXECNAME || v == DIF_VAR_ZONENAME || |
10244 | v == DIF_VAR_UID || v == DIF_VAR_GID) |
10245 | break; |
10246 | |
10247 | err += efunc(pc, "illegal variable %u\n" , v); |
10248 | break; |
10249 | |
10250 | case DIF_OP_LDTA: |
10251 | case DIF_OP_LDTS: |
10252 | case DIF_OP_LDGAA: |
10253 | case DIF_OP_LDTAA: |
10254 | err += efunc(pc, "illegal dynamic variable load\n" ); |
10255 | break; |
10256 | |
10257 | case DIF_OP_STTS: |
10258 | case DIF_OP_STGAA: |
10259 | case DIF_OP_STTAA: |
10260 | err += efunc(pc, "illegal dynamic variable store\n" ); |
10261 | break; |
10262 | |
10263 | case DIF_OP_CALL: |
10264 | switch (subr) { |
10265 | case DIF_SUBR_ALLOCA: |
10266 | case DIF_SUBR_BCOPY: |
10267 | case DIF_SUBR_COPYIN: |
10268 | case DIF_SUBR_COPYINTO: |
10269 | case DIF_SUBR_COPYINSTR: |
10270 | case DIF_SUBR_HTONS: |
10271 | case DIF_SUBR_HTONL: |
10272 | case DIF_SUBR_HTONLL: |
10273 | case DIF_SUBR_INDEX: |
10274 | case DIF_SUBR_INET_NTOA: |
10275 | case DIF_SUBR_INET_NTOA6: |
10276 | case DIF_SUBR_INET_NTOP: |
10277 | case DIF_SUBR_JSON: |
10278 | case DIF_SUBR_LLTOSTR: |
10279 | case DIF_SUBR_NTOHS: |
10280 | case DIF_SUBR_NTOHL: |
10281 | case DIF_SUBR_NTOHLL: |
10282 | case DIF_SUBR_RINDEX: |
10283 | case DIF_SUBR_STRCHR: |
10284 | case DIF_SUBR_STRTOLL: |
10285 | case DIF_SUBR_STRJOIN: |
10286 | case DIF_SUBR_STRRCHR: |
10287 | case DIF_SUBR_STRSTR: |
10288 | break; |
10289 | default: |
10290 | err += efunc(pc, "invalid subr %u\n" , subr); |
10291 | } |
10292 | break; |
10293 | |
10294 | default: |
10295 | err += efunc(pc, "invalid opcode %u\n" , |
10296 | DIF_INSTR_OP(instr)); |
10297 | } |
10298 | } |
10299 | |
10300 | return (err); |
10301 | } |
10302 | |
10303 | /* |
10304 | * Returns 1 if the expression in the DIF object can be cached on a per-thread |
10305 | * basis; 0 if not. |
10306 | */ |
10307 | static int |
10308 | dtrace_difo_cacheable(dtrace_difo_t *dp) |
10309 | { |
10310 | uint_t i; |
10311 | |
10312 | if (dp == NULL) |
10313 | return (0); |
10314 | |
10315 | for (i = 0; i < dp->dtdo_varlen; i++) { |
10316 | dtrace_difv_t *v = &dp->dtdo_vartab[i]; |
10317 | |
10318 | if (v->dtdv_scope != DIFV_SCOPE_GLOBAL) |
10319 | continue; |
10320 | |
10321 | switch (v->dtdv_id) { |
10322 | case DIF_VAR_CURTHREAD: |
10323 | case DIF_VAR_PID: |
10324 | case DIF_VAR_TID: |
10325 | case DIF_VAR_EXECNAME: |
10326 | case DIF_VAR_ZONENAME: |
10327 | break; |
10328 | |
10329 | default: |
10330 | return (0); |
10331 | } |
10332 | } |
10333 | |
10334 | /* |
10335 | * This DIF object may be cacheable. Now we need to look for any |
10336 | * array loading instructions, any memory loading instructions, or |
10337 | * any stores to thread-local variables. |
10338 | */ |
10339 | for (i = 0; i < dp->dtdo_len; i++) { |
10340 | uint_t op = DIF_INSTR_OP(dp->dtdo_buf[i]); |
10341 | |
10342 | if ((op >= DIF_OP_LDSB && op <= DIF_OP_LDX) || |
10343 | (op >= DIF_OP_ULDSB && op <= DIF_OP_ULDX) || |
10344 | (op >= DIF_OP_RLDSB && op <= DIF_OP_RLDX) || |
10345 | op == DIF_OP_LDGA || op == DIF_OP_STTS) |
10346 | return (0); |
10347 | } |
10348 | |
10349 | return (1); |
10350 | } |
10351 | |
10352 | static void |
10353 | dtrace_difo_hold(dtrace_difo_t *dp) |
10354 | { |
10355 | uint_t i; |
10356 | |
10357 | LCK_MTX_ASSERT(&dtrace_lock, LCK_MTX_ASSERT_OWNED); |
10358 | |
10359 | dp->dtdo_refcnt++; |
10360 | ASSERT(dp->dtdo_refcnt != 0); |
10361 | |
10362 | /* |
10363 | * We need to check this DIF object for references to the variable |
10364 | * DIF_VAR_VTIMESTAMP. |
10365 | */ |
10366 | for (i = 0; i < dp->dtdo_varlen; i++) { |
10367 | dtrace_difv_t *v = &dp->dtdo_vartab[i]; |
10368 | |
10369 | if (v->dtdv_id != DIF_VAR_VTIMESTAMP) |
10370 | continue; |
10371 | |
10372 | if (dtrace_vtime_references++ == 0) |
10373 | dtrace_vtime_enable(); |
10374 | } |
10375 | } |
10376 | |
10377 | /* |
10378 | * This routine calculates the dynamic variable chunksize for a given DIF |
10379 | * object. The calculation is not fool-proof, and can probably be tricked by |
10380 | * malicious DIF -- but it works for all compiler-generated DIF. Because this |
10381 | * calculation is likely imperfect, dtrace_dynvar() is able to gracefully fail |
10382 | * if a dynamic variable size exceeds the chunksize. |
10383 | */ |
10384 | static void |
10385 | dtrace_difo_chunksize(dtrace_difo_t *dp, dtrace_vstate_t *vstate) |
10386 | { |
10387 | uint64_t sval = 0; |
10388 | dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */ |
10389 | const dif_instr_t *text = dp->dtdo_buf; |
10390 | uint_t pc, srd = 0; |
10391 | uint_t ttop = 0; |
10392 | size_t size, ksize; |
10393 | uint_t id, i; |
10394 | |
10395 | for (pc = 0; pc < dp->dtdo_len; pc++) { |
10396 | dif_instr_t instr = text[pc]; |
10397 | uint_t op = DIF_INSTR_OP(instr); |
10398 | uint_t rd = DIF_INSTR_RD(instr); |
10399 | uint_t r1 = DIF_INSTR_R1(instr); |
10400 | uint_t nkeys = 0; |
10401 | uchar_t scope; |
10402 | |
10403 | dtrace_key_t *key = tupregs; |
10404 | |
10405 | switch (op) { |
10406 | case DIF_OP_SETX: |
10407 | sval = dp->dtdo_inttab[DIF_INSTR_INTEGER(instr)]; |
10408 | srd = rd; |
10409 | continue; |
10410 | |
10411 | case DIF_OP_STTS: |
10412 | key = &tupregs[DIF_DTR_NREGS]; |
10413 | key[0].dttk_size = 0; |
10414 | key[1].dttk_size = 0; |
10415 | nkeys = 2; |
10416 | scope = DIFV_SCOPE_THREAD; |
10417 | break; |
10418 | |
10419 | case DIF_OP_STGAA: |
10420 | case DIF_OP_STTAA: |
10421 | nkeys = ttop; |
10422 | |
10423 | if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) |
10424 | key[nkeys++].dttk_size = 0; |
10425 | |
10426 | key[nkeys++].dttk_size = 0; |
10427 | |
10428 | if (op == DIF_OP_STTAA) { |
10429 | scope = DIFV_SCOPE_THREAD; |
10430 | } else { |
10431 | scope = DIFV_SCOPE_GLOBAL; |
10432 | } |
10433 | |
10434 | break; |
10435 | |
10436 | case DIF_OP_PUSHTR: |
10437 | if (ttop == DIF_DTR_NREGS) |
10438 | return; |
10439 | |
10440 | if ((srd == 0 || sval == 0) && r1 == DIF_TYPE_STRING) { |
10441 | /* |
10442 | * If the register for the size of the "pushtr" |
10443 | * is %r0 (or the value is 0) and the type is |
10444 | * a string, we'll use the system-wide default |
10445 | * string size. |
10446 | */ |
10447 | tupregs[ttop++].dttk_size = |
10448 | dtrace_strsize_default; |
10449 | } else { |
10450 | if (srd == 0) |
10451 | return; |
10452 | |
10453 | if (sval > LONG_MAX) |
10454 | return; |
10455 | |
10456 | tupregs[ttop++].dttk_size = sval; |
10457 | } |
10458 | |
10459 | break; |
10460 | |
10461 | case DIF_OP_PUSHTV: |
10462 | if (ttop == DIF_DTR_NREGS) |
10463 | return; |
10464 | |
10465 | tupregs[ttop++].dttk_size = 0; |
10466 | break; |
10467 | |
10468 | case DIF_OP_FLUSHTS: |
10469 | ttop = 0; |
10470 | break; |
10471 | |
10472 | case DIF_OP_POPTS: |
10473 | if (ttop != 0) |
10474 | ttop--; |
10475 | break; |
10476 | } |
10477 | |
10478 | sval = 0; |
10479 | srd = 0; |
10480 | |
10481 | if (nkeys == 0) |
10482 | continue; |
10483 | |
10484 | /* |
10485 | * We have a dynamic variable allocation; calculate its size. |
10486 | */ |
10487 | for (ksize = 0, i = 0; i < nkeys; i++) |
10488 | ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t)); |
10489 | |
10490 | size = sizeof (dtrace_dynvar_t); |
10491 | size += sizeof (dtrace_key_t) * (nkeys - 1); |
10492 | size += ksize; |
10493 | |
10494 | /* |
10495 | * Now we need to determine the size of the stored data. |
10496 | */ |
10497 | id = DIF_INSTR_VAR(instr); |
10498 | |
10499 | for (i = 0; i < dp->dtdo_varlen; i++) { |
10500 | dtrace_difv_t *v = &dp->dtdo_vartab[i]; |
10501 | |
10502 | if (v->dtdv_id == id && v->dtdv_scope == scope) { |
10503 | size += v->dtdv_type.dtdt_size; |
10504 | break; |
10505 | } |
10506 | } |
10507 | |
10508 | if (i == dp->dtdo_varlen) |
10509 | return; |
10510 | |
10511 | /* |
10512 | * We have the size. If this is larger than the chunk size |
10513 | * for our dynamic variable state, reset the chunk size. |
10514 | */ |
10515 | size = P2ROUNDUP(size, sizeof (uint64_t)); |
10516 | |
10517 | /* |
10518 | * Before setting the chunk size, check that we're not going |
10519 | * to set it to a negative value... |
10520 | */ |
10521 | if (size > LONG_MAX) |
10522 | return; |
10523 | |
10524 | /* |
10525 | * ...and make certain that we didn't badly overflow. |
10526 | */ |
10527 | if (size < ksize || size < sizeof (dtrace_dynvar_t)) |
10528 | return; |
10529 | |
10530 | if (size > vstate->dtvs_dynvars.dtds_chunksize) |
10531 | vstate->dtvs_dynvars.dtds_chunksize = size; |
10532 | } |
10533 | } |
10534 | |
10535 | static void |
10536 | dtrace_difo_init(dtrace_difo_t *dp, dtrace_vstate_t *vstate) |
10537 | { |
10538 | int oldsvars, osz, nsz, otlocals, ntlocals; |
10539 | uint_t i, id; |
10540 | |
10541 | LCK_MTX_ASSERT(&dtrace_lock, LCK_MTX_ASSERT_OWNED); |
10542 | ASSERT(dp->dtdo_buf != NULL && dp->dtdo_len != 0); |
10543 | |
10544 | for (i = 0; i < dp->dtdo_varlen; i++) { |
10545 | dtrace_difv_t *v = &dp->dtdo_vartab[i]; |
10546 | dtrace_statvar_t *svar; |
10547 | dtrace_statvar_t ***svarp = NULL; |
10548 | size_t dsize = 0; |
10549 | uint8_t scope = v->dtdv_scope; |
10550 | int *np = (int *)NULL; |
10551 | |
10552 | if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE) |
10553 | continue; |
10554 | |
10555 | id -= DIF_VAR_OTHER_UBASE; |
10556 | |
10557 | switch (scope) { |
10558 | case DIFV_SCOPE_THREAD: |
10559 | while (id >= (uint_t)(otlocals = vstate->dtvs_ntlocals)) { |
10560 | dtrace_difv_t *tlocals; |
10561 | |
10562 | if ((ntlocals = (otlocals << 1)) == 0) |
10563 | ntlocals = 1; |
10564 | |
10565 | osz = otlocals * sizeof (dtrace_difv_t); |
10566 | nsz = ntlocals * sizeof (dtrace_difv_t); |
10567 | |
10568 | tlocals = kmem_zalloc(nsz, KM_SLEEP); |
10569 | |
10570 | if (osz != 0) { |
10571 | bcopy(src: vstate->dtvs_tlocals, |
10572 | dst: tlocals, n: osz); |
10573 | kmem_free(vstate->dtvs_tlocals, osz); |
10574 | } |
10575 | |
10576 | vstate->dtvs_tlocals = tlocals; |
10577 | vstate->dtvs_ntlocals = ntlocals; |
10578 | } |
10579 | |
10580 | vstate->dtvs_tlocals[id] = *v; |
10581 | continue; |
10582 | |
10583 | case DIFV_SCOPE_LOCAL: |
10584 | np = &vstate->dtvs_nlocals; |
10585 | svarp = &vstate->dtvs_locals; |
10586 | |
10587 | if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) |
10588 | dsize = (int)NCPU * (v->dtdv_type.dtdt_size + |
10589 | sizeof (uint64_t)); |
10590 | else |
10591 | dsize = (int)NCPU * sizeof (uint64_t); |
10592 | |
10593 | break; |
10594 | |
10595 | case DIFV_SCOPE_GLOBAL: |
10596 | np = &vstate->dtvs_nglobals; |
10597 | svarp = &vstate->dtvs_globals; |
10598 | |
10599 | if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) |
10600 | dsize = v->dtdv_type.dtdt_size + |
10601 | sizeof (uint64_t); |
10602 | |
10603 | break; |
10604 | |
10605 | default: |
10606 | ASSERT(0); |
10607 | } |
10608 | |
10609 | while (id >= (uint_t)(oldsvars = *np)) { |
10610 | dtrace_statvar_t **statics; |
10611 | int newsvars, oldsize, newsize; |
10612 | |
10613 | if ((newsvars = (oldsvars << 1)) == 0) |
10614 | newsvars = 1; |
10615 | |
10616 | oldsize = oldsvars * sizeof (dtrace_statvar_t *); |
10617 | newsize = newsvars * sizeof (dtrace_statvar_t *); |
10618 | |
10619 | statics = kmem_zalloc(newsize, KM_SLEEP); |
10620 | |
10621 | if (oldsize != 0) { |
10622 | bcopy(src: *svarp, dst: statics, n: oldsize); |
10623 | kmem_free(*svarp, oldsize); |
10624 | } |
10625 | |
10626 | *svarp = statics; |
10627 | *np = newsvars; |
10628 | } |
10629 | |
10630 | if ((svar = (*svarp)[id]) == NULL) { |
10631 | svar = kmem_zalloc(sizeof (dtrace_statvar_t), KM_SLEEP); |
10632 | svar->dtsv_var = *v; |
10633 | |
10634 | if ((svar->dtsv_size = dsize) != 0) { |
10635 | svar->dtsv_data = (uint64_t)(uintptr_t) |
10636 | kmem_zalloc(dsize, KM_SLEEP); |
10637 | } |
10638 | |
10639 | (*svarp)[id] = svar; |
10640 | } |
10641 | |
10642 | svar->dtsv_refcnt++; |
10643 | } |
10644 | |
10645 | dtrace_difo_chunksize(dp, vstate); |
10646 | dtrace_difo_hold(dp); |
10647 | } |
10648 | |
10649 | static dtrace_difo_t * |
10650 | dtrace_difo_duplicate(dtrace_difo_t *dp, dtrace_vstate_t *vstate) |
10651 | { |
10652 | dtrace_difo_t *new; |
10653 | size_t sz; |
10654 | |
10655 | ASSERT(dp->dtdo_buf != NULL); |
10656 | ASSERT(dp->dtdo_refcnt != 0); |
10657 | |
10658 | new = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP); |
10659 | |
10660 | ASSERT(dp->dtdo_buf != NULL); |
10661 | sz = dp->dtdo_len * sizeof (dif_instr_t); |
10662 | new->dtdo_buf = kmem_alloc(sz, KM_SLEEP); |
10663 | bcopy(src: dp->dtdo_buf, dst: new->dtdo_buf, n: sz); |
10664 | new->dtdo_len = dp->dtdo_len; |
10665 | |
10666 | if (dp->dtdo_strtab != NULL) { |
10667 | ASSERT(dp->dtdo_strlen != 0); |
10668 | new->dtdo_strtab = kmem_alloc(dp->dtdo_strlen, KM_SLEEP); |
10669 | bcopy(src: dp->dtdo_strtab, dst: new->dtdo_strtab, n: dp->dtdo_strlen); |
10670 | new->dtdo_strlen = dp->dtdo_strlen; |
10671 | } |
10672 | |
10673 | if (dp->dtdo_inttab != NULL) { |
10674 | ASSERT(dp->dtdo_intlen != 0); |
10675 | sz = dp->dtdo_intlen * sizeof (uint64_t); |
10676 | new->dtdo_inttab = kmem_alloc(sz, KM_SLEEP); |
10677 | bcopy(src: dp->dtdo_inttab, dst: new->dtdo_inttab, n: sz); |
10678 | new->dtdo_intlen = dp->dtdo_intlen; |
10679 | } |
10680 | |
10681 | if (dp->dtdo_vartab != NULL) { |
10682 | ASSERT(dp->dtdo_varlen != 0); |
10683 | sz = dp->dtdo_varlen * sizeof (dtrace_difv_t); |
10684 | new->dtdo_vartab = kmem_alloc(sz, KM_SLEEP); |
10685 | bcopy(src: dp->dtdo_vartab, dst: new->dtdo_vartab, n: sz); |
10686 | new->dtdo_varlen = dp->dtdo_varlen; |
10687 | } |
10688 | |
10689 | dtrace_difo_init(dp: new, vstate); |
10690 | return (new); |
10691 | } |
10692 | |
10693 | static void |
10694 | dtrace_difo_destroy(dtrace_difo_t *dp, dtrace_vstate_t *vstate) |
10695 | { |
10696 | uint_t i; |
10697 | |
10698 | ASSERT(dp->dtdo_refcnt == 0); |
10699 | |
10700 | for (i = 0; i < dp->dtdo_varlen; i++) { |
10701 | dtrace_difv_t *v = &dp->dtdo_vartab[i]; |
10702 | dtrace_statvar_t *svar; |
10703 | dtrace_statvar_t **svarp = NULL; |
10704 | uint_t id; |
10705 | uint8_t scope = v->dtdv_scope; |
10706 | int *np = NULL; |
10707 | |
10708 | switch (scope) { |
10709 | case DIFV_SCOPE_THREAD: |
10710 | continue; |
10711 | |
10712 | case DIFV_SCOPE_LOCAL: |
10713 | np = &vstate->dtvs_nlocals; |
10714 | svarp = vstate->dtvs_locals; |
10715 | break; |
10716 | |
10717 | case DIFV_SCOPE_GLOBAL: |
10718 | np = &vstate->dtvs_nglobals; |
10719 | svarp = vstate->dtvs_globals; |
10720 | break; |
10721 | |
10722 | default: |
10723 | ASSERT(0); |
10724 | } |
10725 | |
10726 | if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE) |
10727 | continue; |
10728 | |
10729 | id -= DIF_VAR_OTHER_UBASE; |
10730 | |
10731 | ASSERT(id < (uint_t)*np); |
10732 | |
10733 | svar = svarp[id]; |
10734 | ASSERT(svar != NULL); |
10735 | ASSERT(svar->dtsv_refcnt > 0); |
10736 | |
10737 | if (--svar->dtsv_refcnt > 0) |
10738 | continue; |
10739 | |
10740 | if (svar->dtsv_size != 0) { |
10741 | ASSERT(svar->dtsv_data != 0); |
10742 | kmem_free((void *)(uintptr_t)svar->dtsv_data, |
10743 | svar->dtsv_size); |
10744 | } |
10745 | |
10746 | kmem_free(svar, sizeof (dtrace_statvar_t)); |
10747 | svarp[id] = NULL; |
10748 | } |
10749 | |
10750 | kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t)); |
10751 | kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t)); |
10752 | kmem_free(dp->dtdo_strtab, dp->dtdo_strlen); |
10753 | kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t)); |
10754 | |
10755 | kmem_free(dp, sizeof (dtrace_difo_t)); |
10756 | } |
10757 | |
10758 | static void |
10759 | dtrace_difo_release(dtrace_difo_t *dp, dtrace_vstate_t *vstate) |
10760 | { |
10761 | uint_t i; |
10762 | |
10763 | LCK_MTX_ASSERT(&dtrace_lock, LCK_MTX_ASSERT_OWNED); |
10764 | ASSERT(dp->dtdo_refcnt != 0); |
10765 | |
10766 | for (i = 0; i < dp->dtdo_varlen; i++) { |
10767 | dtrace_difv_t *v = &dp->dtdo_vartab[i]; |
10768 | |
10769 | if (v->dtdv_id != DIF_VAR_VTIMESTAMP) |
10770 | continue; |
10771 | |
10772 | ASSERT(dtrace_vtime_references > 0); |
10773 | if (--dtrace_vtime_references == 0) |
10774 | dtrace_vtime_disable(); |
10775 | } |
10776 | |
10777 | if (--dp->dtdo_refcnt == 0) |
10778 | dtrace_difo_destroy(dp, vstate); |
10779 | } |
10780 | |
10781 | /* |
10782 | * DTrace Format Functions |
10783 | */ |
10784 | |
10785 | static dtrace_format_t* |
10786 | dtrace_format_new(char *str) |
10787 | { |
10788 | dtrace_format_t *fmt = NULL; |
10789 | size_t bufsize = strlen(s: str) + 1; |
10790 | |
10791 | fmt = kmem_zalloc(sizeof(*fmt) + bufsize, KM_SLEEP); |
10792 | |
10793 | fmt->dtf_refcount = 1; |
10794 | (void) strlcpy(dst: fmt->dtf_str, src: str, n: bufsize); |
10795 | |
10796 | return fmt; |
10797 | } |
10798 | |
10799 | static uint16_t |
10800 | dtrace_format_add(dtrace_state_t *state, char *str) |
10801 | { |
10802 | dtrace_format_t **new; |
10803 | uint16_t ndx; |
10804 | |
10805 | for (ndx = 0; ndx < state->dts_nformats; ndx++) { |
10806 | if (state->dts_formats[ndx] == NULL) { |
10807 | state->dts_formats[ndx] = dtrace_format_new(str); |
10808 | return (ndx + 1); |
10809 | } |
10810 | else if (strcmp(s1: state->dts_formats[ndx]->dtf_str, s2: str) == 0) { |
10811 | VERIFY(state->dts_formats[ndx]->dtf_refcount < UINT64_MAX); |
10812 | state->dts_formats[ndx]->dtf_refcount++; |
10813 | return (ndx + 1); |
10814 | } |
10815 | } |
10816 | |
10817 | if (state->dts_nformats == USHRT_MAX) { |
10818 | /* |
10819 | * This is only likely if a denial-of-service attack is being |
10820 | * attempted. As such, it's okay to fail silently here. |
10821 | */ |
10822 | return (0); |
10823 | } |
10824 | |
10825 | /* |
10826 | * For simplicity, we always resize the formats array to be exactly the |
10827 | * number of formats. |
10828 | */ |
10829 | ndx = state->dts_nformats++; |
10830 | new = kmem_alloc((ndx + 1) * sizeof (*state->dts_formats), KM_SLEEP); |
10831 | |
10832 | if (state->dts_formats != NULL) { |
10833 | ASSERT(ndx != 0); |
10834 | bcopy(src: state->dts_formats, dst: new, n: ndx * sizeof (*state->dts_formats)); |
10835 | kmem_free(state->dts_formats, ndx * sizeof (*state->dts_formats)); |
10836 | } |
10837 | |
10838 | state->dts_formats = new; |
10839 | state->dts_formats[ndx] = dtrace_format_new(str); |
10840 | |
10841 | return (ndx + 1); |
10842 | } |
10843 | |
10844 | static void |
10845 | dtrace_format_remove(dtrace_state_t *state, uint16_t format) |
10846 | { |
10847 | dtrace_format_t *fmt; |
10848 | |
10849 | ASSERT(state->dts_formats != NULL); |
10850 | ASSERT(format <= state->dts_nformats); |
10851 | |
10852 | fmt = state->dts_formats[format - 1]; |
10853 | |
10854 | ASSERT(fmt != NULL); |
10855 | VERIFY(fmt->dtf_refcount > 0); |
10856 | |
10857 | fmt->dtf_refcount--; |
10858 | |
10859 | if (fmt->dtf_refcount == 0) { |
10860 | kmem_free(fmt, DTRACE_FORMAT_SIZE(fmt)); |
10861 | state->dts_formats[format - 1] = NULL; |
10862 | } |
10863 | } |
10864 | |
10865 | static void |
10866 | dtrace_format_destroy(dtrace_state_t *state) |
10867 | { |
10868 | int i; |
10869 | |
10870 | if (state->dts_nformats == 0) { |
10871 | ASSERT(state->dts_formats == NULL); |
10872 | return; |
10873 | } |
10874 | |
10875 | ASSERT(state->dts_formats != NULL); |
10876 | |
10877 | for (i = 0; i < state->dts_nformats; i++) { |
10878 | dtrace_format_t *fmt = state->dts_formats[i]; |
10879 | |
10880 | if (fmt == NULL) |
10881 | continue; |
10882 | |
10883 | kmem_free(fmt, DTRACE_FORMAT_SIZE(fmt)); |
10884 | } |
10885 | |
10886 | kmem_free(state->dts_formats, state->dts_nformats * sizeof (*state->dts_formats)); |
10887 | state->dts_nformats = 0; |
10888 | state->dts_formats = NULL; |
10889 | } |
10890 | |
10891 | /* |
10892 | * DTrace Predicate Functions |
10893 | */ |
10894 | static dtrace_predicate_t * |
10895 | dtrace_predicate_create(dtrace_difo_t *dp) |
10896 | { |
10897 | dtrace_predicate_t *pred; |
10898 | |
10899 | LCK_MTX_ASSERT(&dtrace_lock, LCK_MTX_ASSERT_OWNED); |
10900 | ASSERT(dp->dtdo_refcnt != 0); |
10901 | |
10902 | pred = kmem_zalloc(sizeof (dtrace_predicate_t), KM_SLEEP); |
10903 | pred->dtp_difo = dp; |
10904 | pred->dtp_refcnt = 1; |
10905 | |
10906 | if (!dtrace_difo_cacheable(dp)) |
10907 | return (pred); |
10908 | |
10909 | if (dtrace_predcache_id == DTRACE_CACHEIDNONE) { |
10910 | /* |
10911 | * This is only theoretically possible -- we have had 2^32 |
10912 | * cacheable predicates on this machine. We cannot allow any |
10913 | * more predicates to become cacheable: as unlikely as it is, |
10914 | * there may be a thread caching a (now stale) predicate cache |
10915 | * ID. (N.B.: the temptation is being successfully resisted to |
10916 | * have this cmn_err() "Holy shit -- we executed this code!") |
10917 | */ |
10918 | return (pred); |
10919 | } |
10920 | |
10921 | pred->dtp_cacheid = dtrace_predcache_id++; |
10922 | |
10923 | return (pred); |
10924 | } |
10925 | |
10926 | static void |
10927 | dtrace_predicate_hold(dtrace_predicate_t *pred) |
10928 | { |
10929 | LCK_MTX_ASSERT(&dtrace_lock, LCK_MTX_ASSERT_OWNED); |
10930 | ASSERT(pred->dtp_difo != NULL && pred->dtp_difo->dtdo_refcnt != 0); |
10931 | ASSERT(pred->dtp_refcnt > 0); |
10932 | |
10933 | pred->dtp_refcnt++; |
10934 | } |
10935 | |
10936 | static void |
10937 | dtrace_predicate_release(dtrace_predicate_t *pred, dtrace_vstate_t *vstate) |
10938 | { |
10939 | dtrace_difo_t *dp = pred->dtp_difo; |
10940 | #pragma unused(dp) /* __APPLE__ */ |
10941 | |
10942 | LCK_MTX_ASSERT(&dtrace_lock, LCK_MTX_ASSERT_OWNED); |
10943 | ASSERT(dp != NULL && dp->dtdo_refcnt != 0); |
10944 | ASSERT(pred->dtp_refcnt > 0); |
10945 | |
10946 | if (--pred->dtp_refcnt == 0) { |
10947 | dtrace_difo_release(dp: pred->dtp_difo, vstate); |
10948 | kmem_free(pred, sizeof (dtrace_predicate_t)); |
10949 | } |
10950 | } |
10951 | |
10952 | /* |
10953 | * DTrace Action Description Functions |
10954 | */ |
10955 | static dtrace_actdesc_t * |
10956 | dtrace_actdesc_create(dtrace_actkind_t kind, uint32_t ntuple, |
10957 | uint64_t uarg, uint64_t arg) |
10958 | { |
10959 | dtrace_actdesc_t *act; |
10960 | |
10961 | ASSERT(!DTRACEACT_ISPRINTFLIKE(kind) || (arg != 0 && |
10962 | arg >= KERNELBASE) || (arg == 0 && kind == DTRACEACT_PRINTA)); |
10963 | |
10964 | act = kmem_zalloc(sizeof (dtrace_actdesc_t), KM_SLEEP); |
10965 | act->dtad_kind = kind; |
10966 | act->dtad_ntuple = ntuple; |
10967 | act->dtad_uarg = uarg; |
10968 | act->dtad_arg = arg; |
10969 | act->dtad_refcnt = 1; |
10970 | |
10971 | return (act); |
10972 | } |
10973 | |
10974 | static void |
10975 | dtrace_actdesc_hold(dtrace_actdesc_t *act) |
10976 | { |
10977 | ASSERT(act->dtad_refcnt >= 1); |
10978 | act->dtad_refcnt++; |
10979 | } |
10980 | |
10981 | static void |
10982 | dtrace_actdesc_release(dtrace_actdesc_t *act, dtrace_vstate_t *vstate) |
10983 | { |
10984 | dtrace_actkind_t kind = act->dtad_kind; |
10985 | dtrace_difo_t *dp; |
10986 | |
10987 | ASSERT(act->dtad_refcnt >= 1); |
10988 | |
10989 | if (--act->dtad_refcnt != 0) |
10990 | return; |
10991 | |
10992 | if ((dp = act->dtad_difo) != NULL) |
10993 | dtrace_difo_release(dp, vstate); |
10994 | |
10995 | if (DTRACEACT_ISPRINTFLIKE(kind)) { |
10996 | char *str = (char *)(uintptr_t)act->dtad_arg; |
10997 | |
10998 | ASSERT((str != NULL && (uintptr_t)str >= KERNELBASE) || |
10999 | (str == NULL && act->dtad_kind == DTRACEACT_PRINTA)); |
11000 | |
11001 | if (str != NULL) |
11002 | kmem_free(str, strlen(s: str) + 1); |
11003 | } |
11004 | |
11005 | kmem_free(act, sizeof (dtrace_actdesc_t)); |
11006 | } |
11007 | |
11008 | /* |
11009 | * DTrace ECB Functions |
11010 | */ |
11011 | static dtrace_ecb_t * |
11012 | dtrace_ecb_add(dtrace_state_t *state, dtrace_probe_t *probe) |
11013 | { |
11014 | dtrace_ecb_t *ecb; |
11015 | dtrace_epid_t epid; |
11016 | |
11017 | LCK_MTX_ASSERT(&dtrace_lock, LCK_MTX_ASSERT_OWNED); |
11018 | |
11019 | ecb = kmem_zalloc(sizeof (dtrace_ecb_t), KM_SLEEP); |
11020 | ecb->dte_predicate = NULL; |
11021 | ecb->dte_probe = probe; |
11022 | |
11023 | /* |
11024 | * The default size is the size of the default action: recording |
11025 | * the header. |
11026 | */ |
11027 | ecb->dte_size = ecb->dte_needed = sizeof (dtrace_rechdr_t); |
11028 | ecb->dte_alignment = sizeof (dtrace_epid_t); |
11029 | |
11030 | epid = state->dts_epid++; |
11031 | |
11032 | if (epid - 1 >= (dtrace_epid_t)state->dts_necbs) { |
11033 | dtrace_ecb_t **oecbs = state->dts_ecbs, **ecbs; |
11034 | int necbs = state->dts_necbs << 1; |
11035 | |
11036 | ASSERT(epid == (dtrace_epid_t)state->dts_necbs + 1); |
11037 | |
11038 | if (necbs == 0) { |
11039 | ASSERT(oecbs == NULL); |
11040 | necbs = 1; |
11041 | } |
11042 | |
11043 | ecbs = kmem_zalloc(necbs * sizeof (*ecbs), KM_SLEEP); |
11044 | |
11045 | if (oecbs != NULL) |
11046 | bcopy(src: oecbs, dst: ecbs, n: state->dts_necbs * sizeof (*ecbs)); |
11047 | |
11048 | dtrace_membar_producer(); |
11049 | state->dts_ecbs = ecbs; |
11050 | |
11051 | if (oecbs != NULL) { |
11052 | /* |
11053 | * If this state is active, we must dtrace_sync() |
11054 | * before we can free the old dts_ecbs array: we're |
11055 | * coming in hot, and there may be active ring |
11056 | * buffer processing (which indexes into the dts_ecbs |
11057 | * array) on another CPU. |
11058 | */ |
11059 | if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) |
11060 | dtrace_sync(); |
11061 | |
11062 | kmem_free(oecbs, state->dts_necbs * sizeof (*ecbs)); |
11063 | } |
11064 | |
11065 | dtrace_membar_producer(); |
11066 | state->dts_necbs = necbs; |
11067 | } |
11068 | |
11069 | ecb->dte_state = state; |
11070 | |
11071 | ASSERT(state->dts_ecbs[epid - 1] == NULL); |
11072 | dtrace_membar_producer(); |
11073 | state->dts_ecbs[(ecb->dte_epid = epid) - 1] = ecb; |
11074 | |
11075 | return (ecb); |
11076 | } |
11077 | |
11078 | static int |
11079 | dtrace_ecb_enable(dtrace_ecb_t *ecb) |
11080 | { |
11081 | dtrace_probe_t *probe = ecb->dte_probe; |
11082 | |
11083 | LCK_MTX_ASSERT(&cpu_lock, LCK_MTX_ASSERT_OWNED); |
11084 | LCK_MTX_ASSERT(&dtrace_lock, LCK_MTX_ASSERT_OWNED); |
11085 | ASSERT(ecb->dte_next == NULL); |
11086 | |
11087 | if (probe == NULL) { |
11088 | /* |
11089 | * This is the NULL probe -- there's nothing to do. |
11090 | */ |
11091 | return(0); |
11092 | } |
11093 | |
11094 | probe->dtpr_provider->dtpv_ecb_count++; |
11095 | if (probe->dtpr_ecb == NULL) { |
11096 | dtrace_provider_t *prov = probe->dtpr_provider; |
11097 | |
11098 | /* |
11099 | * We're the first ECB on this probe. |
11100 | */ |
11101 | probe->dtpr_ecb = probe->dtpr_ecb_last = ecb; |
11102 | |
11103 | if (ecb->dte_predicate != NULL) |
11104 | probe->dtpr_predcache = ecb->dte_predicate->dtp_cacheid; |
11105 | |
11106 | return (prov->dtpv_pops.dtps_enable(prov->dtpv_arg, |
11107 | probe->dtpr_id, probe->dtpr_arg)); |
11108 | } else { |
11109 | /* |
11110 | * This probe is already active. Swing the last pointer to |
11111 | * point to the new ECB, and issue a dtrace_sync() to assure |
11112 | * that all CPUs have seen the change. |
11113 | */ |
11114 | ASSERT(probe->dtpr_ecb_last != NULL); |
11115 | probe->dtpr_ecb_last->dte_next = ecb; |
11116 | probe->dtpr_ecb_last = ecb; |
11117 | probe->dtpr_predcache = 0; |
11118 | |
11119 | dtrace_sync(); |
11120 | return(0); |
11121 | } |
11122 | } |
11123 | |
11124 | static int |
11125 | dtrace_ecb_resize(dtrace_ecb_t *ecb) |
11126 | { |
11127 | dtrace_action_t *act; |
11128 | uint32_t curneeded = UINT32_MAX; |
11129 | uint32_t aggbase = UINT32_MAX; |
11130 | |
11131 | /* |
11132 | * If we record anything, we always record the dtrace_rechdr_t. (And |
11133 | * we always record it first.) |
11134 | */ |
11135 | ecb->dte_size = sizeof (dtrace_rechdr_t); |
11136 | ecb->dte_alignment = sizeof (dtrace_epid_t); |
11137 | |
11138 | for (act = ecb->dte_action; act != NULL; act = act->dta_next) { |
11139 | dtrace_recdesc_t *rec = &act->dta_rec; |
11140 | ASSERT(rec->dtrd_size > 0 || rec->dtrd_alignment == 1); |
11141 | |
11142 | ecb->dte_alignment = MAX(ecb->dte_alignment, rec->dtrd_alignment); |
11143 | |
11144 | if (DTRACEACT_ISAGG(act->dta_kind)) { |
11145 | dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act; |
11146 | |
11147 | ASSERT(rec->dtrd_size != 0); |
11148 | ASSERT(agg->dtag_first != NULL); |
11149 | ASSERT(act->dta_prev->dta_intuple); |
11150 | ASSERT(aggbase != UINT32_MAX); |
11151 | ASSERT(curneeded != UINT32_MAX); |
11152 | |
11153 | agg->dtag_base = aggbase; |
11154 | curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment); |
11155 | rec->dtrd_offset = curneeded; |
11156 | if (curneeded + rec->dtrd_size < curneeded) |
11157 | return (EINVAL); |
11158 | curneeded += rec->dtrd_size; |
11159 | ecb->dte_needed = MAX(ecb->dte_needed, curneeded); |
11160 | |
11161 | aggbase = UINT32_MAX; |
11162 | curneeded = UINT32_MAX; |
11163 | } else if (act->dta_intuple) { |
11164 | if (curneeded == UINT32_MAX) { |
11165 | /* |
11166 | * This is the first record in a tuple. Align |
11167 | * curneeded to be at offset 4 in an 8-byte |
11168 | * aligned block. |
11169 | */ |
11170 | ASSERT(act->dta_prev == NULL || !act->dta_prev->dta_intuple); |
11171 | ASSERT(aggbase == UINT32_MAX); |
11172 | |
11173 | curneeded = P2PHASEUP(ecb->dte_size, |
11174 | sizeof (uint64_t), sizeof (dtrace_aggid_t)); |
11175 | |
11176 | aggbase = curneeded - sizeof (dtrace_aggid_t); |
11177 | ASSERT(IS_P2ALIGNED(aggbase, |
11178 | sizeof (uint64_t))); |
11179 | } |
11180 | |
11181 | curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment); |
11182 | rec->dtrd_offset = curneeded; |
11183 | curneeded += rec->dtrd_size; |
11184 | if (curneeded + rec->dtrd_size < curneeded) |
11185 | return (EINVAL); |
11186 | } else { |
11187 | /* tuples must be followed by an aggregation */ |
11188 | ASSERT(act->dta_prev == NULL || !act->dta_prev->dta_intuple); |
11189 | ecb->dte_size = P2ROUNDUP(ecb->dte_size, rec->dtrd_alignment); |
11190 | rec->dtrd_offset = ecb->dte_size; |
11191 | if (ecb->dte_size + rec->dtrd_size < ecb->dte_size) |
11192 | return (EINVAL); |
11193 | ecb->dte_size += rec->dtrd_size; |
11194 | ecb->dte_needed = MAX(ecb->dte_needed, ecb->dte_size); |
11195 | } |
11196 | } |
11197 | |
11198 | if ((act = ecb->dte_action) != NULL && |
11199 | !(act->dta_kind == DTRACEACT_SPECULATE && act->dta_next == NULL) && |
11200 | ecb->dte_size == sizeof (dtrace_rechdr_t)) { |
11201 | /* |
11202 | * If the size is still sizeof (dtrace_rechdr_t), then all |
11203 | * actions store no data; set the size to 0. |
11204 | */ |
11205 | ecb->dte_size = 0; |
11206 | } |
11207 | |
11208 | ecb->dte_size = P2ROUNDUP(ecb->dte_size, sizeof (dtrace_epid_t)); |
11209 | ecb->dte_needed = P2ROUNDUP(ecb->dte_needed, (sizeof (dtrace_epid_t))); |
11210 | ecb->dte_state->dts_needed = MAX(ecb->dte_state->dts_needed, ecb->dte_needed); |
11211 | return (0); |
11212 | } |
11213 | |
11214 | static dtrace_action_t * |
11215 | dtrace_ecb_aggregation_create(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc) |
11216 | { |
11217 | dtrace_aggregation_t *agg; |
11218 | size_t size = sizeof (uint64_t); |
11219 | int ntuple = desc->dtad_ntuple; |
11220 | dtrace_action_t *act; |
11221 | dtrace_recdesc_t *frec; |
11222 | dtrace_aggid_t aggid; |
11223 | dtrace_state_t *state = ecb->dte_state; |
11224 | |
11225 | agg = kmem_zalloc(sizeof (dtrace_aggregation_t), KM_SLEEP); |
11226 | agg->dtag_ecb = ecb; |
11227 | |
11228 | ASSERT(DTRACEACT_ISAGG(desc->dtad_kind)); |
11229 | |
11230 | switch (desc->dtad_kind) { |
11231 | case DTRACEAGG_MIN: |
11232 | agg->dtag_initial = INT64_MAX; |
11233 | agg->dtag_aggregate = dtrace_aggregate_min; |
11234 | break; |
11235 | |
11236 | case DTRACEAGG_MAX: |
11237 | agg->dtag_initial = INT64_MIN; |
11238 | agg->dtag_aggregate = dtrace_aggregate_max; |
11239 | break; |
11240 | |
11241 | case DTRACEAGG_COUNT: |
11242 | agg->dtag_aggregate = dtrace_aggregate_count; |
11243 | break; |
11244 | |
11245 | case DTRACEAGG_QUANTIZE: |
11246 | agg->dtag_aggregate = dtrace_aggregate_quantize; |
11247 | size = (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) * |
11248 | sizeof (uint64_t); |
11249 | break; |
11250 | |
11251 | case DTRACEAGG_LQUANTIZE: { |
11252 | uint16_t step = DTRACE_LQUANTIZE_STEP(desc->dtad_arg); |
11253 | uint16_t levels = DTRACE_LQUANTIZE_LEVELS(desc->dtad_arg); |
11254 | |
11255 | agg->dtag_initial = desc->dtad_arg; |
11256 | agg->dtag_aggregate = dtrace_aggregate_lquantize; |
11257 | |
11258 | if (step == 0 || levels == 0) |
11259 | goto err; |
11260 | |
11261 | size = levels * sizeof (uint64_t) + 3 * sizeof (uint64_t); |
11262 | break; |
11263 | } |
11264 | |
11265 | case DTRACEAGG_LLQUANTIZE: { |
11266 | uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(desc->dtad_arg); |
11267 | uint16_t low = DTRACE_LLQUANTIZE_LOW(desc->dtad_arg); |
11268 | uint16_t high = DTRACE_LLQUANTIZE_HIGH(desc->dtad_arg); |
11269 | uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(desc->dtad_arg); |
11270 | int64_t v; |
11271 | |
11272 | agg->dtag_initial = desc->dtad_arg; |
11273 | agg->dtag_aggregate = dtrace_aggregate_llquantize; |
11274 | |
11275 | if (factor < 2 || low >= high || nsteps < factor) |
11276 | goto err; |
11277 | |
11278 | /* |
11279 | * Now check that the number of steps evenly divides a power |
11280 | * of the factor. (This assures both integer bucket size and |
11281 | * linearity within each magnitude.) |
11282 | */ |
11283 | for (v = factor; v < nsteps; v *= factor) |
11284 | continue; |
11285 | |
11286 | if ((v % nsteps) || (nsteps % factor)) |
11287 | goto err; |
11288 | |
11289 | size = (dtrace_aggregate_llquantize_bucket(factor, low, high, nsteps, INT64_MAX) + 2) * sizeof (uint64_t); |
11290 | break; |
11291 | } |
11292 | |
11293 | case DTRACEAGG_AVG: |
11294 | agg->dtag_aggregate = dtrace_aggregate_avg; |
11295 | size = sizeof (uint64_t) * 2; |
11296 | break; |
11297 | |
11298 | case DTRACEAGG_STDDEV: |
11299 | agg->dtag_aggregate = dtrace_aggregate_stddev; |
11300 | size = sizeof (uint64_t) * 4; |
11301 | break; |
11302 | |
11303 | case DTRACEAGG_SUM: |
11304 | agg->dtag_aggregate = dtrace_aggregate_sum; |
11305 | break; |
11306 | |
11307 | default: |
11308 | goto err; |
11309 | } |
11310 | |
11311 | agg->dtag_action.dta_rec.dtrd_size = size; |
11312 | |
11313 | if (ntuple == 0) |
11314 | goto err; |
11315 | |
11316 | /* |
11317 | * We must make sure that we have enough actions for the n-tuple. |
11318 | */ |
11319 | for (act = ecb->dte_action_last; act != NULL; act = act->dta_prev) { |
11320 | if (DTRACEACT_ISAGG(act->dta_kind)) |
11321 | break; |
11322 | |
11323 | if (--ntuple == 0) { |
11324 | /* |
11325 | * This is the action with which our n-tuple begins. |
11326 | */ |
11327 | agg->dtag_first = act; |
11328 | goto success; |
11329 | } |
11330 | } |
11331 | |
11332 | /* |
11333 | * This n-tuple is short by ntuple elements. Return failure. |
11334 | */ |
11335 | ASSERT(ntuple != 0); |
11336 | err: |
11337 | kmem_free(agg, sizeof (dtrace_aggregation_t)); |
11338 | return (NULL); |
11339 | |
11340 | success: |
11341 | /* |
11342 | * If the last action in the tuple has a size of zero, it's actually |
11343 | * an expression argument for the aggregating action. |
11344 | */ |
11345 | ASSERT(ecb->dte_action_last != NULL); |
11346 | act = ecb->dte_action_last; |
11347 | |
11348 | if (act->dta_kind == DTRACEACT_DIFEXPR) { |
11349 | ASSERT(act->dta_difo != NULL); |
11350 | |
11351 | if (act->dta_difo->dtdo_rtype.dtdt_size == 0) |
11352 | agg->dtag_hasarg = 1; |
11353 | } |
11354 | |
11355 | /* |
11356 | * We need to allocate an id for this aggregation. |
11357 | */ |
11358 | aggid = (dtrace_aggid_t)(uintptr_t)vmem_alloc(state->dts_aggid_arena, 1, |
11359 | VM_BESTFIT | VM_SLEEP); |
11360 | |
11361 | if (aggid - 1 >= (dtrace_aggid_t)state->dts_naggregations) { |
11362 | dtrace_aggregation_t **oaggs = state->dts_aggregations; |
11363 | dtrace_aggregation_t **aggs; |
11364 | int naggs = state->dts_naggregations << 1; |
11365 | int onaggs = state->dts_naggregations; |
11366 | |
11367 | ASSERT(aggid == (dtrace_aggid_t)state->dts_naggregations + 1); |
11368 | |
11369 | if (naggs == 0) { |
11370 | ASSERT(oaggs == NULL); |
11371 | naggs = 1; |
11372 | } |
11373 | |
11374 | aggs = kmem_zalloc(naggs * sizeof (*aggs), KM_SLEEP); |
11375 | |
11376 | if (oaggs != NULL) { |
11377 | bcopy(src: oaggs, dst: aggs, n: onaggs * sizeof (*aggs)); |
11378 | kmem_free(oaggs, onaggs * sizeof (*aggs)); |
11379 | } |
11380 | |
11381 | state->dts_aggregations = aggs; |
11382 | state->dts_naggregations = naggs; |
11383 | } |
11384 | |
11385 | ASSERT(state->dts_aggregations[aggid - 1] == NULL); |
11386 | state->dts_aggregations[(agg->dtag_id = aggid) - 1] = agg; |
11387 | |
11388 | frec = &agg->dtag_first->dta_rec; |
11389 | if (frec->dtrd_alignment < sizeof (dtrace_aggid_t)) |
11390 | frec->dtrd_alignment = sizeof (dtrace_aggid_t); |
11391 | |
11392 | for (act = agg->dtag_first; act != NULL; act = act->dta_next) { |
11393 | ASSERT(!act->dta_intuple); |
11394 | act->dta_intuple = 1; |
11395 | } |
11396 | |
11397 | return (&agg->dtag_action); |
11398 | } |
11399 | |
11400 | static void |
11401 | dtrace_ecb_aggregation_destroy(dtrace_ecb_t *ecb, dtrace_action_t *act) |
11402 | { |
11403 | dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act; |
11404 | dtrace_state_t *state = ecb->dte_state; |
11405 | dtrace_aggid_t aggid = agg->dtag_id; |
11406 | |
11407 | ASSERT(DTRACEACT_ISAGG(act->dta_kind)); |
11408 | vmem_free(vmp: state->dts_aggid_arena, vaddr: (void *)(uintptr_t)aggid, size: 1); |
11409 | |
11410 | ASSERT(state->dts_aggregations[aggid - 1] == agg); |
11411 | state->dts_aggregations[aggid - 1] = NULL; |
11412 | |
11413 | kmem_free(agg, sizeof (dtrace_aggregation_t)); |
11414 | } |
11415 | |
11416 | static int |
11417 | dtrace_ecb_action_add(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc) |
11418 | { |
11419 | dtrace_action_t *action, *last; |
11420 | dtrace_difo_t *dp = desc->dtad_difo; |
11421 | uint32_t size = 0, align = sizeof (uint8_t), mask; |
11422 | uint16_t format = 0; |
11423 | dtrace_recdesc_t *rec; |
11424 | dtrace_state_t *state = ecb->dte_state; |
11425 | dtrace_optval_t *opt = state->dts_options; |
11426 | dtrace_optval_t nframes=0, strsize; |
11427 | uint64_t arg = desc->dtad_arg; |
11428 | |
11429 | LCK_MTX_ASSERT(&dtrace_lock, LCK_MTX_ASSERT_OWNED); |
11430 | ASSERT(ecb->dte_action == NULL || ecb->dte_action->dta_refcnt == 1); |
11431 | |
11432 | if (DTRACEACT_ISAGG(desc->dtad_kind)) { |
11433 | /* |
11434 | * If this is an aggregating action, there must be neither |
11435 | * a speculate nor a commit on the action chain. |
11436 | */ |
11437 | dtrace_action_t *act; |
11438 | |
11439 | for (act = ecb->dte_action; act != NULL; act = act->dta_next) { |
11440 | if (act->dta_kind == DTRACEACT_COMMIT) |
11441 | return (EINVAL); |
11442 | |
11443 | if (act->dta_kind == DTRACEACT_SPECULATE) |
11444 | return (EINVAL); |
11445 | } |
11446 | |
11447 | action = dtrace_ecb_aggregation_create(ecb, desc); |
11448 | |
11449 | if (action == NULL) |
11450 | return (EINVAL); |
11451 | } else { |
11452 | if (DTRACEACT_ISDESTRUCTIVE(desc->dtad_kind) || |
11453 | (desc->dtad_kind == DTRACEACT_DIFEXPR && |
11454 | dp != NULL && dp->dtdo_destructive)) { |
11455 | state->dts_destructive = 1; |
11456 | } |
11457 | |
11458 | switch (desc->dtad_kind) { |
11459 | case DTRACEACT_PRINTF: |
11460 | case DTRACEACT_PRINTA: |
11461 | case DTRACEACT_SYSTEM: |
11462 | case DTRACEACT_FREOPEN: |
11463 | case DTRACEACT_DIFEXPR: |
11464 | /* |
11465 | * We know that our arg is a string -- turn it into a |
11466 | * format. |
11467 | */ |
11468 | if (arg == 0) { |
11469 | ASSERT(desc->dtad_kind == DTRACEACT_PRINTA || |
11470 | desc->dtad_kind == DTRACEACT_DIFEXPR); |
11471 | format = 0; |
11472 | } else { |
11473 | ASSERT(arg != 0); |
11474 | ASSERT(arg > KERNELBASE); |
11475 | format = dtrace_format_add(state, |
11476 | str: (char *)(uintptr_t)arg); |
11477 | } |
11478 | |
11479 | OS_FALLTHROUGH; |
11480 | case DTRACEACT_LIBACT: |
11481 | case DTRACEACT_TRACEMEM: |
11482 | case DTRACEACT_TRACEMEM_DYNSIZE: |
11483 | case DTRACEACT_APPLEBINARY: /* __APPLE__ */ |
11484 | if (dp == NULL) |
11485 | return (EINVAL); |
11486 | |
11487 | if ((size = dp->dtdo_rtype.dtdt_size) != 0) |
11488 | break; |
11489 | |
11490 | if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) { |
11491 | if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) |
11492 | return (EINVAL); |
11493 | |
11494 | size = opt[DTRACEOPT_STRSIZE]; |
11495 | } |
11496 | |
11497 | break; |
11498 | |
11499 | case DTRACEACT_STACK: |
11500 | if ((nframes = arg) == 0) { |
11501 | nframes = opt[DTRACEOPT_STACKFRAMES]; |
11502 | ASSERT(nframes > 0); |
11503 | arg = nframes; |
11504 | } |
11505 | |
11506 | size = nframes * sizeof (pc_t); |
11507 | break; |
11508 | |
11509 | case DTRACEACT_JSTACK: |
11510 | if ((strsize = DTRACE_USTACK_STRSIZE(arg)) == 0) |
11511 | strsize = opt[DTRACEOPT_JSTACKSTRSIZE]; |
11512 | |
11513 | if ((nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) |
11514 | nframes = opt[DTRACEOPT_JSTACKFRAMES]; |
11515 | |
11516 | arg = DTRACE_USTACK_ARG(nframes, strsize); |
11517 | |
11518 | OS_FALLTHROUGH; |
11519 | case DTRACEACT_USTACK: |
11520 | if (desc->dtad_kind != DTRACEACT_JSTACK && |
11521 | (nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) { |
11522 | strsize = DTRACE_USTACK_STRSIZE(arg); |
11523 | nframes = opt[DTRACEOPT_USTACKFRAMES]; |
11524 | ASSERT(nframes > 0); |
11525 | arg = DTRACE_USTACK_ARG(nframes, strsize); |
11526 | } |
11527 | |
11528 | /* |
11529 | * Save a slot for the pid. |
11530 | */ |
11531 | size = (nframes + 1) * sizeof (uint64_t); |
11532 | size += DTRACE_USTACK_STRSIZE(arg); |
11533 | size = P2ROUNDUP(size, (uint32_t)(sizeof (uintptr_t))); |
11534 | |
11535 | break; |
11536 | |
11537 | case DTRACEACT_SYM: |
11538 | case DTRACEACT_MOD: |
11539 | if (dp == NULL || ((size = dp->dtdo_rtype.dtdt_size) != |
11540 | sizeof (uint64_t)) || |
11541 | (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) |
11542 | return (EINVAL); |
11543 | break; |
11544 | |
11545 | case DTRACEACT_USYM: |
11546 | case DTRACEACT_UMOD: |
11547 | case DTRACEACT_UADDR: |
11548 | if (dp == NULL || |
11549 | (dp->dtdo_rtype.dtdt_size != sizeof (uint64_t)) || |
11550 | (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) |
11551 | return (EINVAL); |
11552 | |
11553 | /* |
11554 | * We have a slot for the pid, plus a slot for the |
11555 | * argument. To keep things simple (aligned with |
11556 | * bitness-neutral sizing), we store each as a 64-bit |
11557 | * quantity. |
11558 | */ |
11559 | size = 2 * sizeof (uint64_t); |
11560 | break; |
11561 | |
11562 | case DTRACEACT_STOP: |
11563 | case DTRACEACT_BREAKPOINT: |
11564 | case DTRACEACT_PANIC: |
11565 | break; |
11566 | |
11567 | case DTRACEACT_CHILL: |
11568 | case DTRACEACT_DISCARD: |
11569 | case DTRACEACT_RAISE: |
11570 | case DTRACEACT_PIDRESUME: /* __APPLE__ */ |
11571 | if (dp == NULL) |
11572 | return (EINVAL); |
11573 | break; |
11574 | |
11575 | case DTRACEACT_EXIT: |
11576 | if (dp == NULL || |
11577 | (size = dp->dtdo_rtype.dtdt_size) != sizeof (int) || |
11578 | (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) |
11579 | return (EINVAL); |
11580 | break; |
11581 | |
11582 | case DTRACEACT_SPECULATE: |
11583 | if (ecb->dte_size > sizeof (dtrace_rechdr_t)) |
11584 | return (EINVAL); |
11585 | |
11586 | if (dp == NULL) |
11587 | return (EINVAL); |
11588 | |
11589 | state->dts_speculates = 1; |
11590 | break; |
11591 | |
11592 | case DTRACEACT_COMMIT: { |
11593 | dtrace_action_t *act = ecb->dte_action; |
11594 | |
11595 | for (; act != NULL; act = act->dta_next) { |
11596 | if (act->dta_kind == DTRACEACT_COMMIT) |
11597 | return (EINVAL); |
11598 | } |
11599 | |
11600 | if (dp == NULL) |
11601 | return (EINVAL); |
11602 | break; |
11603 | } |
11604 | |
11605 | default: |
11606 | return (EINVAL); |
11607 | } |
11608 | |
11609 | if (size != 0 || desc->dtad_kind == DTRACEACT_SPECULATE) { |
11610 | /* |
11611 | * If this is a data-storing action or a speculate, |
11612 | * we must be sure that there isn't a commit on the |
11613 | * action chain. |
11614 | */ |
11615 | dtrace_action_t *act = ecb->dte_action; |
11616 | |
11617 | for (; act != NULL; act = act->dta_next) { |
11618 | if (act->dta_kind == DTRACEACT_COMMIT) |
11619 | return (EINVAL); |
11620 | } |
11621 | } |
11622 | |
11623 | action = kmem_zalloc(sizeof (dtrace_action_t), KM_SLEEP); |
11624 | action->dta_rec.dtrd_size = size; |
11625 | } |
11626 | |
11627 | action->dta_refcnt = 1; |
11628 | rec = &action->dta_rec; |
11629 | size = rec->dtrd_size; |
11630 | |
11631 | for (mask = sizeof (uint64_t) - 1; size != 0 && mask > 0; mask >>= 1) { |
11632 | if (!(size & mask)) { |
11633 | align = mask + 1; |
11634 | break; |
11635 | } |
11636 | } |
11637 | |
11638 | action->dta_kind = desc->dtad_kind; |
11639 | |
11640 | if ((action->dta_difo = dp) != NULL) |
11641 | dtrace_difo_hold(dp); |
11642 | |
11643 | rec->dtrd_action = action->dta_kind; |
11644 | rec->dtrd_arg = arg; |
11645 | rec->dtrd_uarg = desc->dtad_uarg; |
11646 | rec->dtrd_alignment = (uint16_t)align; |
11647 | rec->dtrd_format = format; |
11648 | |
11649 | if ((last = ecb->dte_action_last) != NULL) { |
11650 | ASSERT(ecb->dte_action != NULL); |
11651 | action->dta_prev = last; |
11652 | last->dta_next = action; |
11653 | } else { |
11654 | ASSERT(ecb->dte_action == NULL); |
11655 | ecb->dte_action = action; |
11656 | } |
11657 | |
11658 | ecb->dte_action_last = action; |
11659 | |
11660 | return (0); |
11661 | } |
11662 | |
11663 | static void |
11664 | dtrace_ecb_action_remove(dtrace_ecb_t *ecb) |
11665 | { |
11666 | dtrace_action_t *act = ecb->dte_action, *next; |
11667 | dtrace_vstate_t *vstate = &ecb->dte_state->dts_vstate; |
11668 | dtrace_difo_t *dp; |
11669 | uint16_t format; |
11670 | |
11671 | if (act != NULL && act->dta_refcnt > 1) { |
11672 | ASSERT(act->dta_next == NULL || act->dta_next->dta_refcnt == 1); |
11673 | act->dta_refcnt--; |
11674 | } else { |
11675 | for (; act != NULL; act = next) { |
11676 | next = act->dta_next; |
11677 | ASSERT(next != NULL || act == ecb->dte_action_last); |
11678 | ASSERT(act->dta_refcnt == 1); |
11679 | |
11680 | if ((format = act->dta_rec.dtrd_format) != 0) |
11681 | dtrace_format_remove(state: ecb->dte_state, format); |
11682 | |
11683 | if ((dp = act->dta_difo) != NULL) |
11684 | dtrace_difo_release(dp, vstate); |
11685 | |
11686 | if (DTRACEACT_ISAGG(act->dta_kind)) { |
11687 | dtrace_ecb_aggregation_destroy(ecb, act); |
11688 | } else { |
11689 | kmem_free(act, sizeof (dtrace_action_t)); |
11690 | } |
11691 | } |
11692 | } |
11693 | |
11694 | ecb->dte_action = NULL; |
11695 | ecb->dte_action_last = NULL; |
11696 | ecb->dte_size = 0; |
11697 | } |
11698 | |
11699 | static void |
11700 | dtrace_ecb_disable(dtrace_ecb_t *ecb) |
11701 | { |
11702 | /* |
11703 | * We disable the ECB by removing it from its probe. |
11704 | */ |
11705 | dtrace_ecb_t *pecb, *prev = NULL; |
11706 | dtrace_probe_t *probe = ecb->dte_probe; |
11707 | |
11708 | LCK_MTX_ASSERT(&dtrace_lock, LCK_MTX_ASSERT_OWNED); |
11709 | |
11710 | if (probe == NULL) { |
11711 | /* |
11712 | * This is the NULL probe; there is nothing to disable. |
11713 | */ |
11714 | return; |
11715 | } |
11716 | |
11717 | for (pecb = probe->dtpr_ecb; pecb != NULL; pecb = pecb->dte_next) { |
11718 | if (pecb == ecb) |
11719 | break; |
11720 | prev = pecb; |
11721 | } |
11722 | |
11723 | ASSERT(pecb != NULL); |
11724 | |
11725 | if (prev == NULL) { |
11726 | probe->dtpr_ecb = ecb->dte_next; |
11727 | } else { |
11728 | prev->dte_next = ecb->dte_next; |
11729 | } |
11730 | |
11731 | if (ecb == probe->dtpr_ecb_last) { |
11732 | ASSERT(ecb->dte_next == NULL); |
11733 | probe->dtpr_ecb_last = prev; |
11734 | } |
11735 | |
11736 | probe->dtpr_provider->dtpv_ecb_count--; |
11737 | /* |
11738 | * The ECB has been disconnected from the probe; now sync to assure |
11739 | * that all CPUs have seen the change before returning. |
11740 | */ |
11741 | dtrace_sync(); |
11742 | |
11743 | if (probe->dtpr_ecb == NULL) { |
11744 | /* |
11745 | * That was the last ECB on the probe; clear the predicate |
11746 | * cache ID for the probe, disable it and sync one more time |
11747 | * to assure that we'll never hit it again. |
11748 | */ |
11749 | dtrace_provider_t *prov = probe->dtpr_provider; |
11750 | |
11751 | ASSERT(ecb->dte_next == NULL); |
11752 | ASSERT(probe->dtpr_ecb_last == NULL); |
11753 | probe->dtpr_predcache = DTRACE_CACHEIDNONE; |
11754 | prov->dtpv_pops.dtps_disable(prov->dtpv_arg, |
11755 | probe->dtpr_id, probe->dtpr_arg); |
11756 | dtrace_sync(); |
11757 | } else { |
11758 | /* |
11759 | * There is at least one ECB remaining on the probe. If there |
11760 | * is _exactly_ one, set the probe's predicate cache ID to be |
11761 | * the predicate cache ID of the remaining ECB. |
11762 | */ |
11763 | ASSERT(probe->dtpr_ecb_last != NULL); |
11764 | ASSERT(probe->dtpr_predcache == DTRACE_CACHEIDNONE); |
11765 | |
11766 | if (probe->dtpr_ecb == probe->dtpr_ecb_last) { |
11767 | dtrace_predicate_t *p = probe->dtpr_ecb->dte_predicate; |
11768 | |
11769 | ASSERT(probe->dtpr_ecb->dte_next == NULL); |
11770 | |
11771 | if (p != NULL) |
11772 | probe->dtpr_predcache = p->dtp_cacheid; |
11773 | } |
11774 | |
11775 | ecb->dte_next = NULL; |
11776 | } |
11777 | } |
11778 | |
11779 | static void |
11780 | dtrace_ecb_destroy(dtrace_ecb_t *ecb) |
11781 | { |
11782 | dtrace_state_t *state = ecb->dte_state; |
11783 | dtrace_vstate_t *vstate = &state->dts_vstate; |
11784 | dtrace_predicate_t *pred; |
11785 | dtrace_epid_t epid = ecb->dte_epid; |
11786 | |
11787 | LCK_MTX_ASSERT(&dtrace_lock, LCK_MTX_ASSERT_OWNED); |
11788 | ASSERT(ecb->dte_next == NULL); |
11789 | ASSERT(ecb->dte_probe == NULL || ecb->dte_probe->dtpr_ecb != ecb); |
11790 | |
11791 | if ((pred = ecb->dte_predicate) != NULL) |
11792 | dtrace_predicate_release(pred, vstate); |
11793 | |
11794 | dtrace_ecb_action_remove(ecb); |
11795 | |
11796 | ASSERT(state->dts_ecbs[epid - 1] == ecb); |
11797 | state->dts_ecbs[epid - 1] = NULL; |
11798 | |
11799 | kmem_free(ecb, sizeof (dtrace_ecb_t)); |
11800 | } |
11801 | |
11802 | static dtrace_ecb_t * |
11803 | dtrace_ecb_create(dtrace_state_t *state, dtrace_probe_t *probe, |
11804 | dtrace_enabling_t *enab) |
11805 | { |
11806 | dtrace_ecb_t *ecb; |
11807 | dtrace_predicate_t *pred; |
11808 | dtrace_actdesc_t *act; |
11809 | dtrace_provider_t *prov; |
11810 | dtrace_ecbdesc_t *desc = enab->dten_current; |
11811 | |
11812 | LCK_MTX_ASSERT(&dtrace_lock, LCK_MTX_ASSERT_OWNED); |
11813 | ASSERT(state != NULL); |
11814 | |
11815 | ecb = dtrace_ecb_add(state, probe); |
11816 | ecb->dte_uarg = desc->dted_uarg; |
11817 | |
11818 | if ((pred = desc->dted_pred.dtpdd_predicate) != NULL) { |
11819 | dtrace_predicate_hold(pred); |
11820 | ecb->dte_predicate = pred; |
11821 | } |
11822 | |
11823 | if (probe != NULL) { |
11824 | /* |
11825 | * If the provider shows more leg than the consumer is old |
11826 | * enough to see, we need to enable the appropriate implicit |
11827 | * predicate bits to prevent the ecb from activating at |
11828 | * revealing times. |
11829 | * |
11830 | * Providers specifying DTRACE_PRIV_USER at register time |
11831 | * are stating that they need the /proc-style privilege |
11832 | * model to be enforced, and this is what DTRACE_COND_OWNER |
11833 | * and DTRACE_COND_ZONEOWNER will then do at probe time. |
11834 | */ |
11835 | prov = probe->dtpr_provider; |
11836 | if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLPROC) && |
11837 | (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER)) |
11838 | ecb->dte_cond |= DTRACE_COND_OWNER; |
11839 | |
11840 | if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLZONE) && |
11841 | (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER)) |
11842 | ecb->dte_cond |= DTRACE_COND_ZONEOWNER; |
11843 | |
11844 | /* |
11845 | * If the provider shows us kernel innards and the user |
11846 | * is lacking sufficient privilege, enable the |
11847 | * DTRACE_COND_USERMODE implicit predicate. |
11848 | */ |
11849 | if (!(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) && |
11850 | (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_KERNEL)) |
11851 | ecb->dte_cond |= DTRACE_COND_USERMODE; |
11852 | } |
11853 | |
11854 | if (dtrace_ecb_create_cache != NULL) { |
11855 | /* |
11856 | * If we have a cached ecb, we'll use its action list instead |
11857 | * of creating our own (saving both time and space). |
11858 | */ |
11859 | dtrace_ecb_t *cached = dtrace_ecb_create_cache; |
11860 | dtrace_action_t *act_if = cached->dte_action; |
11861 | |
11862 | if (act_if != NULL) { |
11863 | ASSERT(act_if->dta_refcnt > 0); |
11864 | act_if->dta_refcnt++; |
11865 | ecb->dte_action = act_if; |
11866 | ecb->dte_action_last = cached->dte_action_last; |
11867 | ecb->dte_needed = cached->dte_needed; |
11868 | ecb->dte_size = cached->dte_size; |
11869 | ecb->dte_alignment = cached->dte_alignment; |
11870 | } |
11871 | |
11872 | return (ecb); |
11873 | } |
11874 | |
11875 | for (act = desc->dted_action; act != NULL; act = act->dtad_next) { |
11876 | if ((enab->dten_error = dtrace_ecb_action_add(ecb, desc: act)) != 0) { |
11877 | dtrace_ecb_destroy(ecb); |
11878 | return (NULL); |
11879 | } |
11880 | } |
11881 | |
11882 | if ((enab->dten_error = dtrace_ecb_resize(ecb)) != 0) { |
11883 | dtrace_ecb_destroy(ecb); |
11884 | return (NULL); |
11885 | } |
11886 | |
11887 | return (dtrace_ecb_create_cache = ecb); |
11888 | } |
11889 | |
11890 | static int |
11891 | dtrace_ecb_create_enable(dtrace_probe_t *probe, void *arg1, void *arg2) |
11892 | { |
11893 | dtrace_ecb_t *ecb; |
11894 | dtrace_enabling_t *enab = arg1; |
11895 | dtrace_ecbdesc_t *ep = arg2; |
11896 | dtrace_state_t *state = enab->dten_vstate->dtvs_state; |
11897 | |
11898 | ASSERT(state != NULL); |
11899 | |
11900 | if (probe != NULL && ep != NULL && probe->dtpr_gen < ep->dted_probegen) { |
11901 | /* |
11902 | * This probe was created in a generation for which this |
11903 | * enabling has previously created ECBs; we don't want to |
11904 | * enable it again, so just kick out. |
11905 | */ |
11906 | return (DTRACE_MATCH_NEXT); |
11907 | } |
11908 | |
11909 | if ((ecb = dtrace_ecb_create(state, probe, enab)) == NULL) |
11910 | return (DTRACE_MATCH_DONE); |
11911 | |
11912 | if (dtrace_ecb_enable(ecb) < 0) |
11913 | return (DTRACE_MATCH_FAIL); |
11914 | |
11915 | return (DTRACE_MATCH_NEXT); |
11916 | } |
11917 | |
11918 | static dtrace_ecb_t * |
11919 | dtrace_epid2ecb(dtrace_state_t *state, dtrace_epid_t id) |
11920 | { |
11921 | dtrace_ecb_t *ecb; |
11922 | #pragma unused(ecb) /* __APPLE__ */ |
11923 | |
11924 | LCK_MTX_ASSERT(&dtrace_lock, LCK_MTX_ASSERT_OWNED); |
11925 | |
11926 | if (id == 0 || id > (dtrace_epid_t)state->dts_necbs) |
11927 | return (NULL); |
11928 | |
11929 | ASSERT(state->dts_necbs > 0 && state->dts_ecbs != NULL); |
11930 | ASSERT((ecb = state->dts_ecbs[id - 1]) == NULL || ecb->dte_epid == id); |
11931 | |
11932 | return (state->dts_ecbs[id - 1]); |
11933 | } |
11934 | |
11935 | static dtrace_aggregation_t * |
11936 | dtrace_aggid2agg(dtrace_state_t *state, dtrace_aggid_t id) |
11937 | { |
11938 | dtrace_aggregation_t *agg; |
11939 | #pragma unused(agg) /* __APPLE__ */ |
11940 | |
11941 | LCK_MTX_ASSERT(&dtrace_lock, LCK_MTX_ASSERT_OWNED); |
11942 | |
11943 | if (id == 0 || id > (dtrace_aggid_t)state->dts_naggregations) |
11944 | return (NULL); |
11945 | |
11946 | ASSERT(state->dts_naggregations > 0 && state->dts_aggregations != NULL); |
11947 | ASSERT((agg = state->dts_aggregations[id - 1]) == NULL || |
11948 | agg->dtag_id == id); |
11949 | |
11950 | return (state->dts_aggregations[id - 1]); |
11951 | } |
11952 | |
11953 | /* |
11954 | * DTrace Buffer Functions |
11955 | * |
11956 | * The following functions manipulate DTrace buffers. Most of these functions |
11957 | * are called in the context of establishing or processing consumer state; |
11958 | * exceptions are explicitly noted. |
11959 | */ |
11960 | |
11961 | /* |
11962 | * Note: called from cross call context. This function switches the two |
11963 | * buffers on a given CPU. The atomicity of this operation is assured by |
11964 | * disabling interrupts while the actual switch takes place; the disabling of |
11965 | * interrupts serializes the execution with any execution of dtrace_probe() on |
11966 | * the same CPU. |
11967 | */ |
11968 | static void |
11969 | dtrace_buffer_switch(dtrace_buffer_t *buf) |
11970 | { |
11971 | caddr_t tomax = buf->dtb_tomax; |
11972 | caddr_t xamot = buf->dtb_xamot; |
11973 | dtrace_icookie_t cookie; |
11974 | hrtime_t now; |
11975 | |
11976 | ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); |
11977 | ASSERT(!(buf->dtb_flags & DTRACEBUF_RING)); |
11978 | |
11979 | cookie = dtrace_interrupt_disable(); |
11980 | now = dtrace_gethrtime(); |
11981 | buf->dtb_tomax = xamot; |
11982 | buf->dtb_xamot = tomax; |
11983 | buf->dtb_xamot_drops = buf->dtb_drops; |
11984 | buf->dtb_xamot_offset = buf->dtb_offset; |
11985 | buf->dtb_xamot_errors = buf->dtb_errors; |
11986 | buf->dtb_xamot_flags = buf->dtb_flags; |
11987 | buf->dtb_offset = 0; |
11988 | buf->dtb_drops = 0; |
11989 | buf->dtb_errors = 0; |
11990 | buf->dtb_flags &= ~(DTRACEBUF_ERROR | DTRACEBUF_DROPPED); |
11991 | buf->dtb_interval = now - buf->dtb_switched; |
11992 | buf->dtb_switched = now; |
11993 | buf->dtb_cur_limit = buf->dtb_limit; |
11994 | |
11995 | dtrace_interrupt_enable(cookie); |
11996 | } |
11997 | |
11998 | /* |
11999 | * Note: called from cross call context. This function activates a buffer |
12000 | * on a CPU. As with dtrace_buffer_switch(), the atomicity of the operation |
12001 | * is guaranteed by the disabling of interrupts. |
12002 | */ |
12003 | static void |
12004 | dtrace_buffer_activate(dtrace_state_t *state) |
12005 | { |
12006 | dtrace_buffer_t *buf; |
12007 | dtrace_icookie_t cookie = dtrace_interrupt_disable(); |
12008 | |
12009 | buf = &state->dts_buffer[CPU->cpu_id]; |
12010 | |
12011 | if (buf->dtb_tomax != NULL) { |
12012 | /* |
12013 | * We might like to assert that the buffer is marked inactive, |
12014 | * but this isn't necessarily true: the buffer for the CPU |
12015 | * that processes the BEGIN probe has its buffer activated |
12016 | * manually. In this case, we take the (harmless) action |
12017 | * re-clearing the bit INACTIVE bit. |
12018 | */ |
12019 | buf->dtb_flags &= ~DTRACEBUF_INACTIVE; |
12020 | } |
12021 | |
12022 | dtrace_interrupt_enable(cookie); |
12023 | } |
12024 | |
12025 | static int |
12026 | dtrace_buffer_canalloc(size_t size) |
12027 | { |
12028 | if (size > (UINT64_MAX - dtrace_buffer_memory_inuse)) |
12029 | return (B_FALSE); |
12030 | if ((size + dtrace_buffer_memory_inuse) > dtrace_buffer_memory_maxsize) |
12031 | return (B_FALSE); |
12032 | |
12033 | return (B_TRUE); |
12034 | } |
12035 | |
12036 | static int |
12037 | dtrace_buffer_alloc(dtrace_buffer_t *bufs, size_t limit, size_t size, int flags, |
12038 | processorid_t cpu) |
12039 | { |
12040 | dtrace_cpu_t *cp; |
12041 | dtrace_buffer_t *buf; |
12042 | size_t size_before_alloc = dtrace_buffer_memory_inuse; |
12043 | |
12044 | LCK_MTX_ASSERT(&cpu_lock, LCK_MTX_ASSERT_OWNED); |
12045 | LCK_MTX_ASSERT(&dtrace_lock, LCK_MTX_ASSERT_OWNED); |
12046 | |
12047 | if (size > (size_t)dtrace_nonroot_maxsize && |
12048 | !PRIV_POLICY_CHOICE(CRED(), PRIV_ALL, B_FALSE)) |
12049 | return (EFBIG); |
12050 | |
12051 | cp = cpu_list; |
12052 | |
12053 | do { |
12054 | if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id) |
12055 | continue; |
12056 | |
12057 | buf = &bufs[cp->cpu_id]; |
12058 | |
12059 | /* |
12060 | * If there is already a buffer allocated for this CPU, it |
12061 | * is only possible that this is a DR event. In this case, |
12062 | * the buffer size must match our specified size. |
12063 | */ |
12064 | if (buf->dtb_tomax != NULL) { |
12065 | ASSERT(buf->dtb_size == size); |
12066 | continue; |
12067 | } |
12068 | |
12069 | ASSERT(buf->dtb_xamot == NULL); |
12070 | |
12071 | /* DTrace, please do not eat all the memory. */ |
12072 | if (dtrace_buffer_canalloc(size) == B_FALSE) |
12073 | goto err; |
12074 | if ((buf->dtb_tomax = kmem_zalloc(size, KM_NOSLEEP)) == NULL) |
12075 | goto err; |
12076 | dtrace_buffer_memory_inuse += size; |
12077 | |
12078 | /* Unsure that limit is always lower than size */ |
12079 | limit = limit == size ? limit - 1 : limit; |
12080 | buf->dtb_cur_limit = limit; |
12081 | buf->dtb_limit = limit; |
12082 | buf->dtb_size = size; |
12083 | buf->dtb_flags = flags; |
12084 | buf->dtb_offset = 0; |
12085 | buf->dtb_drops = 0; |
12086 | |
12087 | if (flags & DTRACEBUF_NOSWITCH) |
12088 | continue; |
12089 | |
12090 | /* DTrace, please do not eat all the memory. */ |
12091 | if (dtrace_buffer_canalloc(size) == B_FALSE) |
12092 | goto err; |
12093 | if ((buf->dtb_xamot = kmem_zalloc(size, KM_NOSLEEP)) == NULL) |
12094 | goto err; |
12095 | dtrace_buffer_memory_inuse += size; |
12096 | } while ((cp = cp->cpu_next) != cpu_list); |
12097 | |
12098 | ASSERT(dtrace_buffer_memory_inuse <= dtrace_buffer_memory_maxsize); |
12099 | |
12100 | return (0); |
12101 | |
12102 | err: |
12103 | cp = cpu_list; |
12104 | |
12105 | do { |
12106 | if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id) |
12107 | continue; |
12108 | |
12109 | buf = &bufs[cp->cpu_id]; |
12110 | |
12111 | if (buf->dtb_xamot != NULL) { |
12112 | ASSERT(buf->dtb_tomax != NULL); |
12113 | ASSERT(buf->dtb_size == size); |
12114 | kmem_free(buf->dtb_xamot, size); |
12115 | } |
12116 | |
12117 | if (buf->dtb_tomax != NULL) { |
12118 | ASSERT(buf->dtb_size == size); |
12119 | kmem_free(buf->dtb_tomax, size); |
12120 | } |
12121 | |
12122 | buf->dtb_tomax = NULL; |
12123 | buf->dtb_xamot = NULL; |
12124 | buf->dtb_size = 0; |
12125 | } while ((cp = cp->cpu_next) != cpu_list); |
12126 | |
12127 | /* Restore the size saved before allocating memory */ |
12128 | dtrace_buffer_memory_inuse = size_before_alloc; |
12129 | |
12130 | return (ENOMEM); |
12131 | } |
12132 | |
12133 | /* |
12134 | * Note: called from probe context. This function just increments the drop |
12135 | * count on a buffer. It has been made a function to allow for the |
12136 | * possibility of understanding the source of mysterious drop counts. (A |
12137 | * problem for which one may be particularly disappointed that DTrace cannot |
12138 | * be used to understand DTrace.) |
12139 | */ |
12140 | static void |
12141 | dtrace_buffer_drop(dtrace_buffer_t *buf) |
12142 | { |
12143 | buf->dtb_drops++; |
12144 | } |
12145 | |
12146 | /* |
12147 | * Note: called from probe context. This function is called to reserve space |
12148 | * in a buffer. If mstate is non-NULL, sets the scratch base and size in the |
12149 | * mstate. Returns the new offset in the buffer, or a negative value if an |
12150 | * error has occurred. |
12151 | */ |
12152 | static intptr_t |
12153 | dtrace_buffer_reserve(dtrace_buffer_t *buf, size_t needed, size_t align, |
12154 | dtrace_state_t *state, dtrace_mstate_t *mstate) |
12155 | { |
12156 | intptr_t offs = buf->dtb_offset, soffs; |
12157 | intptr_t woffs; |
12158 | caddr_t tomax; |
12159 | size_t total_off; |
12160 | |
12161 | if (buf->dtb_flags & DTRACEBUF_INACTIVE) |
12162 | return (-1); |
12163 | |
12164 | if ((tomax = buf->dtb_tomax) == NULL) { |
12165 | dtrace_buffer_drop(buf); |
12166 | return (-1); |
12167 | } |
12168 | |
12169 | if (!(buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL))) { |
12170 | while (offs & (align - 1)) { |
12171 | /* |
12172 | * Assert that our alignment is off by a number which |
12173 | * is itself sizeof (uint32_t) aligned. |
12174 | */ |
12175 | ASSERT(!((align - (offs & (align - 1))) & |
12176 | (sizeof (uint32_t) - 1))); |
12177 | DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE); |
12178 | offs += sizeof (uint32_t); |
12179 | } |
12180 | |
12181 | if ((uint64_t)(soffs = offs + needed) > buf->dtb_cur_limit) { |
12182 | if (buf->dtb_cur_limit == buf->dtb_limit) { |
12183 | buf->dtb_cur_limit = buf->dtb_size; |
12184 | |
12185 | os_atomic_inc(&state->dts_buf_over_limit, relaxed); |
12186 | /** |
12187 | * Set an AST on the current processor |
12188 | * so that we can wake up the process |
12189 | * outside of probe context, when we know |
12190 | * it is safe to do so |
12191 | */ |
12192 | minor_t minor = getminor(state->dts_dev); |
12193 | ASSERT(minor < 32); |
12194 | |
12195 | os_atomic_or(&dtrace_wake_clients, 1 << minor, relaxed); |
12196 | ast_dtrace_on(); |
12197 | } |
12198 | if ((uint64_t)soffs > buf->dtb_size) { |
12199 | dtrace_buffer_drop(buf); |
12200 | return (-1); |
12201 | } |
12202 | } |
12203 | |
12204 | if (mstate == NULL) |
12205 | return (offs); |
12206 | |
12207 | mstate->dtms_scratch_base = (uintptr_t)tomax + soffs; |
12208 | mstate->dtms_scratch_size = buf->dtb_size - soffs; |
12209 | mstate->dtms_scratch_ptr = mstate->dtms_scratch_base; |
12210 | |
12211 | return (offs); |
12212 | } |
12213 | |
12214 | if (buf->dtb_flags & DTRACEBUF_FILL) { |
12215 | if (state->dts_activity != DTRACE_ACTIVITY_COOLDOWN && |
12216 | (buf->dtb_flags & DTRACEBUF_FULL)) |
12217 | return (-1); |
12218 | goto out; |
12219 | } |
12220 | |
12221 | total_off = needed + (offs & (align - 1)); |
12222 | |
12223 | /* |
12224 | * For a ring buffer, life is quite a bit more complicated. Before |
12225 | * we can store any padding, we need to adjust our wrapping offset. |
12226 | * (If we've never before wrapped or we're not about to, no adjustment |
12227 | * is required.) |
12228 | */ |
12229 | if ((buf->dtb_flags & DTRACEBUF_WRAPPED) || |
12230 | offs + total_off > buf->dtb_size) { |
12231 | woffs = buf->dtb_xamot_offset; |
12232 | |
12233 | if (offs + total_off > buf->dtb_size) { |
12234 | /* |
12235 | * We can't fit in the end of the buffer. First, a |
12236 | * sanity check that we can fit in the buffer at all. |
12237 | */ |
12238 | if (total_off > buf->dtb_size) { |
12239 | dtrace_buffer_drop(buf); |
12240 | return (-1); |
12241 | } |
12242 | |
12243 | /* |
12244 | * We're going to be storing at the top of the buffer, |
12245 | * so now we need to deal with the wrapped offset. We |
12246 | * only reset our wrapped offset to 0 if it is |
12247 | * currently greater than the current offset. If it |
12248 | * is less than the current offset, it is because a |
12249 | * previous allocation induced a wrap -- but the |
12250 | * allocation didn't subsequently take the space due |
12251 | * to an error or false predicate evaluation. In this |
12252 | * case, we'll just leave the wrapped offset alone: if |
12253 | * the wrapped offset hasn't been advanced far enough |
12254 | * for this allocation, it will be adjusted in the |
12255 | * lower loop. |
12256 | */ |
12257 | if (buf->dtb_flags & DTRACEBUF_WRAPPED) { |
12258 | if (woffs >= offs) |
12259 | woffs = 0; |
12260 | } else { |
12261 | woffs = 0; |
12262 | } |
12263 | |
12264 | /* |
12265 | * Now we know that we're going to be storing to the |
12266 | * top of the buffer and that there is room for us |
12267 | * there. We need to clear the buffer from the current |
12268 | * offset to the end (there may be old gunk there). |
12269 | */ |
12270 | while ((uint64_t)offs < buf->dtb_size) |
12271 | tomax[offs++] = 0; |
12272 | |
12273 | /* |
12274 | * We need to set our offset to zero. And because we |
12275 | * are wrapping, we need to set the bit indicating as |
12276 | * much. We can also adjust our needed space back |
12277 | * down to the space required by the ECB -- we know |
12278 | * that the top of the buffer is aligned. |
12279 | */ |
12280 | offs = 0; |
12281 | total_off = needed; |
12282 | buf->dtb_flags |= DTRACEBUF_WRAPPED; |
12283 | } else { |
12284 | /* |
12285 | * There is room for us in the buffer, so we simply |
12286 | * need to check the wrapped offset. |
12287 | */ |
12288 | if (woffs < offs) { |
12289 | /* |
12290 | * The wrapped offset is less than the offset. |
12291 | * This can happen if we allocated buffer space |
12292 | * that induced a wrap, but then we didn't |
12293 | * subsequently take the space due to an error |
12294 | * or false predicate evaluation. This is |
12295 | * okay; we know that _this_ allocation isn't |
12296 | * going to induce a wrap. We still can't |
12297 | * reset the wrapped offset to be zero, |
12298 | * however: the space may have been trashed in |
12299 | * the previous failed probe attempt. But at |
12300 | * least the wrapped offset doesn't need to |
12301 | * be adjusted at all... |
12302 | */ |
12303 | goto out; |
12304 | } |
12305 | } |
12306 | |
12307 | while (offs + total_off > (size_t)woffs) { |
12308 | dtrace_epid_t epid = *(uint32_t *)(tomax + woffs); |
12309 | size_t size; |
12310 | |
12311 | if (epid == DTRACE_EPIDNONE) { |
12312 | size = sizeof (uint32_t); |
12313 | } else { |
12314 | ASSERT(epid <= (dtrace_epid_t)state->dts_necbs); |
12315 | ASSERT(state->dts_ecbs[epid - 1] != NULL); |
12316 | |
12317 | size = state->dts_ecbs[epid - 1]->dte_size; |
12318 | } |
12319 | |
12320 | ASSERT(woffs + size <= buf->dtb_size); |
12321 | ASSERT(size != 0); |
12322 | |
12323 | if (woffs + size == buf->dtb_size) { |
12324 | /* |
12325 | * We've reached the end of the buffer; we want |
12326 | * to set the wrapped offset to 0 and break |
12327 | * out. However, if the offs is 0, then we're |
12328 | * in a strange edge-condition: the amount of |
12329 | * space that we want to reserve plus the size |
12330 | * of the record that we're overwriting is |
12331 | * greater than the size of the buffer. This |
12332 | * is problematic because if we reserve the |
12333 | * space but subsequently don't consume it (due |
12334 | * to a failed predicate or error) the wrapped |
12335 | * offset will be 0 -- yet the EPID at offset 0 |
12336 | * will not be committed. This situation is |
12337 | * relatively easy to deal with: if we're in |
12338 | * this case, the buffer is indistinguishable |
12339 | * from one that hasn't wrapped; we need only |
12340 | * finish the job by clearing the wrapped bit, |
12341 | * explicitly setting the offset to be 0, and |
12342 | * zero'ing out the old data in the buffer. |
12343 | */ |
12344 | if (offs == 0) { |
12345 | buf->dtb_flags &= ~DTRACEBUF_WRAPPED; |
12346 | buf->dtb_offset = 0; |
12347 | woffs = total_off; |
12348 | |
12349 | while ((uint64_t)woffs < buf->dtb_size) |
12350 | tomax[woffs++] = 0; |
12351 | } |
12352 | |
12353 | woffs = 0; |
12354 | break; |
12355 | } |
12356 | |
12357 | woffs += size; |
12358 | } |
12359 | |
12360 | /* |
12361 | * We have a wrapped offset. It may be that the wrapped offset |
12362 | * has become zero -- that's okay. |
12363 | */ |
12364 | buf->dtb_xamot_offset = woffs; |
12365 | } |
12366 | |
12367 | out: |
12368 | /* |
12369 | * Now we can plow the buffer with any necessary padding. |
12370 | */ |
12371 | while (offs & (align - 1)) { |
12372 | /* |
12373 | * Assert that our alignment is off by a number which |
12374 | * is itself sizeof (uint32_t) aligned. |
12375 | */ |
12376 | ASSERT(!((align - (offs & (align - 1))) & |
12377 | (sizeof (uint32_t) - 1))); |
12378 | DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE); |
12379 | offs += sizeof (uint32_t); |
12380 | } |
12381 | |
12382 | if (buf->dtb_flags & DTRACEBUF_FILL) { |
12383 | if (offs + needed > buf->dtb_size - state->dts_reserve) { |
12384 | buf->dtb_flags |= DTRACEBUF_FULL; |
12385 | return (-1); |
12386 | } |
12387 | } |
12388 | |
12389 | if (mstate == NULL) |
12390 | return (offs); |
12391 | |
12392 | /* |
12393 | * For ring buffers and fill buffers, the scratch space is always |
12394 | * the inactive buffer. |
12395 | */ |
12396 | mstate->dtms_scratch_base = (uintptr_t)buf->dtb_xamot; |
12397 | mstate->dtms_scratch_size = buf->dtb_size; |
12398 | mstate->dtms_scratch_ptr = mstate->dtms_scratch_base; |
12399 | |
12400 | return (offs); |
12401 | } |
12402 | |
12403 | static void |
12404 | dtrace_buffer_polish(dtrace_buffer_t *buf) |
12405 | { |
12406 | ASSERT(buf->dtb_flags & DTRACEBUF_RING); |
12407 | LCK_MTX_ASSERT(&dtrace_lock, LCK_MTX_ASSERT_OWNED); |
12408 | |
12409 | if (!(buf->dtb_flags & DTRACEBUF_WRAPPED)) |
12410 | return; |
12411 | |
12412 | /* |
12413 | * We need to polish the ring buffer. There are three cases: |
12414 | * |
12415 | * - The first (and presumably most common) is that there is no gap |
12416 | * between the buffer offset and the wrapped offset. In this case, |
12417 | * there is nothing in the buffer that isn't valid data; we can |
12418 | * mark the buffer as polished and return. |
12419 | * |
12420 | * - The second (less common than the first but still more common |
12421 | * than the third) is that there is a gap between the buffer offset |
12422 | * and the wrapped offset, and the wrapped offset is larger than the |
12423 | * buffer offset. This can happen because of an alignment issue, or |
12424 | * can happen because of a call to dtrace_buffer_reserve() that |
12425 | * didn't subsequently consume the buffer space. In this case, |
12426 | * we need to zero the data from the buffer offset to the wrapped |
12427 | * offset. |
12428 | * |
12429 | * - The third (and least common) is that there is a gap between the |
12430 | * buffer offset and the wrapped offset, but the wrapped offset is |
12431 | * _less_ than the buffer offset. This can only happen because a |
12432 | * call to dtrace_buffer_reserve() induced a wrap, but the space |
12433 | * was not subsequently consumed. In this case, we need to zero the |
12434 | * space from the offset to the end of the buffer _and_ from the |
12435 | * top of the buffer to the wrapped offset. |
12436 | */ |
12437 | if (buf->dtb_offset < buf->dtb_xamot_offset) { |
12438 | bzero(s: buf->dtb_tomax + buf->dtb_offset, |
12439 | n: buf->dtb_xamot_offset - buf->dtb_offset); |
12440 | } |
12441 | |
12442 | if (buf->dtb_offset > buf->dtb_xamot_offset) { |
12443 | bzero(s: buf->dtb_tomax + buf->dtb_offset, |
12444 | n: buf->dtb_size - buf->dtb_offset); |
12445 | bzero(s: buf->dtb_tomax, n: buf->dtb_xamot_offset); |
12446 | } |
12447 | } |
12448 | |
12449 | static void |
12450 | dtrace_buffer_free(dtrace_buffer_t *bufs) |
12451 | { |
12452 | int i; |
12453 | |
12454 | for (i = 0; i < (int)NCPU; i++) { |
12455 | dtrace_buffer_t *buf = &bufs[i]; |
12456 | |
12457 | if (buf->dtb_tomax == NULL) { |
12458 | ASSERT(buf->dtb_xamot == NULL); |
12459 | ASSERT(buf->dtb_size == 0); |
12460 | continue; |
12461 | } |
12462 | |
12463 | if (buf->dtb_xamot != NULL) { |
12464 | ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); |
12465 | kmem_free(buf->dtb_xamot, buf->dtb_size); |
12466 | |
12467 | ASSERT(dtrace_buffer_memory_inuse >= buf->dtb_size); |
12468 | dtrace_buffer_memory_inuse -= buf->dtb_size; |
12469 | } |
12470 | |
12471 | kmem_free(buf->dtb_tomax, buf->dtb_size); |
12472 | ASSERT(dtrace_buffer_memory_inuse >= buf->dtb_size); |
12473 | dtrace_buffer_memory_inuse -= buf->dtb_size; |
12474 | |
12475 | buf->dtb_size = 0; |
12476 | buf->dtb_tomax = NULL; |
12477 | buf->dtb_xamot = NULL; |
12478 | } |
12479 | } |
12480 | |
12481 | /* |
12482 | * DTrace Enabling Functions |
12483 | */ |
12484 | static dtrace_enabling_t * |
12485 | dtrace_enabling_create(dtrace_vstate_t *vstate) |
12486 | { |
12487 | dtrace_enabling_t *enab; |
12488 | |
12489 | enab = kmem_zalloc(sizeof (dtrace_enabling_t), KM_SLEEP); |
12490 | enab->dten_vstate = vstate; |
12491 | |
12492 | return (enab); |
12493 | } |
12494 | |
12495 | static void |
12496 | dtrace_enabling_add(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb) |
12497 | { |
12498 | dtrace_ecbdesc_t **ndesc; |
12499 | size_t osize, nsize; |
12500 | |
12501 | /* |
12502 | * We can't add to enablings after we've enabled them, or after we've |
12503 | * retained them. |
12504 | */ |
12505 | ASSERT(enab->dten_probegen == 0); |
12506 | ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL); |
12507 | |
12508 | /* APPLE NOTE: this protects against gcc 4.0 botch on x86 */ |
12509 | if (ecb == NULL) return; |
12510 | |
12511 | if (enab->dten_ndesc < enab->dten_maxdesc) { |
12512 | enab->dten_desc[enab->dten_ndesc++] = ecb; |
12513 | return; |
12514 | } |
12515 | |
12516 | osize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *); |
12517 | |
12518 | if (enab->dten_maxdesc == 0) { |
12519 | enab->dten_maxdesc = 1; |
12520 | } else { |
12521 | enab->dten_maxdesc <<= 1; |
12522 | } |
12523 | |
12524 | ASSERT(enab->dten_ndesc < enab->dten_maxdesc); |
12525 | |
12526 | nsize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *); |
12527 | ndesc = kmem_zalloc(nsize, KM_SLEEP); |
12528 | bcopy(src: enab->dten_desc, dst: ndesc, n: osize); |
12529 | kmem_free(enab->dten_desc, osize); |
12530 | |
12531 | enab->dten_desc = ndesc; |
12532 | enab->dten_desc[enab->dten_ndesc++] = ecb; |
12533 | } |
12534 | |
12535 | static void |
12536 | dtrace_enabling_addlike(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb, |
12537 | dtrace_probedesc_t *pd) |
12538 | { |
12539 | dtrace_ecbdesc_t *new; |
12540 | dtrace_predicate_t *pred; |
12541 | dtrace_actdesc_t *act; |
12542 | |
12543 | /* |
12544 | * We're going to create a new ECB description that matches the |
12545 | * specified ECB in every way, but has the specified probe description. |
12546 | */ |
12547 | new = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP); |
12548 | |
12549 | if ((pred = ecb->dted_pred.dtpdd_predicate) != NULL) |
12550 | dtrace_predicate_hold(pred); |
12551 | |
12552 | for (act = ecb->dted_action; act != NULL; act = act->dtad_next) |
12553 | dtrace_actdesc_hold(act); |
12554 | |
12555 | new->dted_action = ecb->dted_action; |
12556 | new->dted_pred = ecb->dted_pred; |
12557 | new->dted_probe = *pd; |
12558 | new->dted_uarg = ecb->dted_uarg; |
12559 | |
12560 | dtrace_enabling_add(enab, ecb: new); |
12561 | } |
12562 | |
12563 | static void |
12564 | dtrace_enabling_dump(dtrace_enabling_t *enab) |
12565 | { |
12566 | int i; |
12567 | |
12568 | for (i = 0; i < enab->dten_ndesc; i++) { |
12569 | dtrace_probedesc_t *desc = &enab->dten_desc[i]->dted_probe; |
12570 | |
12571 | cmn_err(CE_NOTE, "enabling probe %d (%s:%s:%s:%s)" , i, |
12572 | desc->dtpd_provider, desc->dtpd_mod, |
12573 | desc->dtpd_func, desc->dtpd_name); |
12574 | } |
12575 | } |
12576 | |
12577 | static void |
12578 | dtrace_enabling_destroy(dtrace_enabling_t *enab) |
12579 | { |
12580 | int i; |
12581 | dtrace_ecbdesc_t *ep; |
12582 | dtrace_vstate_t *vstate = enab->dten_vstate; |
12583 | |
12584 | LCK_MTX_ASSERT(&dtrace_lock, LCK_MTX_ASSERT_OWNED); |
12585 | |
12586 | for (i = 0; i < enab->dten_ndesc; i++) { |
12587 | dtrace_actdesc_t *act, *next; |
12588 | dtrace_predicate_t *pred; |
12589 | |
12590 | ep = enab->dten_desc[i]; |
12591 | |
12592 | if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) |
12593 | dtrace_predicate_release(pred, vstate); |
12594 | |
12595 | for (act = ep->dted_action; act != NULL; act = next) { |
12596 | next = act->dtad_next; |
12597 | dtrace_actdesc_release(act, vstate); |
12598 | } |
12599 | |
12600 | kmem_free(ep, sizeof (dtrace_ecbdesc_t)); |
12601 | } |
12602 | |
12603 | kmem_free(enab->dten_desc, |
12604 | enab->dten_maxdesc * sizeof (dtrace_enabling_t *)); |
12605 | |
12606 | /* |
12607 | * If this was a retained enabling, decrement the dts_nretained count |
12608 | * and take it off of the dtrace_retained list. |
12609 | */ |
12610 | if (enab->dten_prev != NULL || enab->dten_next != NULL || |
12611 | dtrace_retained == enab) { |
12612 | ASSERT(enab->dten_vstate->dtvs_state != NULL); |
12613 | ASSERT(enab->dten_vstate->dtvs_state->dts_nretained > 0); |
12614 | enab->dten_vstate->dtvs_state->dts_nretained--; |
12615 | dtrace_retained_gen++; |
12616 | } |
12617 | |
12618 | if (enab->dten_prev == NULL) { |
12619 | if (dtrace_retained == enab) { |
12620 | dtrace_retained = enab->dten_next; |
12621 | |
12622 | if (dtrace_retained != NULL) |
12623 | dtrace_retained->dten_prev = NULL; |
12624 | } |
12625 | } else { |
12626 | ASSERT(enab != dtrace_retained); |
12627 | ASSERT(dtrace_retained != NULL); |
12628 | enab->dten_prev->dten_next = enab->dten_next; |
12629 | } |
12630 | |
12631 | if (enab->dten_next != NULL) { |
12632 | ASSERT(dtrace_retained != NULL); |
12633 | enab->dten_next->dten_prev = enab->dten_prev; |
12634 | } |
12635 | |
12636 | kmem_free(enab, sizeof (dtrace_enabling_t)); |
12637 | } |
12638 | |
12639 | static int |
12640 | dtrace_enabling_retain(dtrace_enabling_t *enab) |
12641 | { |
12642 | dtrace_state_t *state; |
12643 | |
12644 | LCK_MTX_ASSERT(&dtrace_lock, LCK_MTX_ASSERT_OWNED); |
12645 | ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL); |
12646 | ASSERT(enab->dten_vstate != NULL); |
12647 | |
12648 | state = enab->dten_vstate->dtvs_state; |
12649 | ASSERT(state != NULL); |
12650 | |
12651 | /* |
12652 | * We only allow each state to retain dtrace_retain_max enablings. |
12653 | */ |
12654 | if (state->dts_nretained >= dtrace_retain_max) |
12655 | return (ENOSPC); |
12656 | |
12657 | state->dts_nretained++; |
12658 | dtrace_retained_gen++; |
12659 | |
12660 | if (dtrace_retained == NULL) { |
12661 | dtrace_retained = enab; |
12662 | return (0); |
12663 | } |
12664 | |
12665 | enab->dten_next = dtrace_retained; |
12666 | dtrace_retained->dten_prev = enab; |
12667 | dtrace_retained = enab; |
12668 | |
12669 | return (0); |
12670 | } |
12671 | |
12672 | static int |
12673 | dtrace_enabling_replicate(dtrace_state_t *state, dtrace_probedesc_t *match, |
12674 | dtrace_probedesc_t *create) |
12675 | { |
12676 | dtrace_enabling_t *new, *enab; |
12677 | int found = 0, err = ENOENT; |
12678 | |
12679 | LCK_MTX_ASSERT(&dtrace_lock, LCK_MTX_ASSERT_OWNED); |
12680 | ASSERT(strlen(match->dtpd_provider) < DTRACE_PROVNAMELEN); |
12681 | ASSERT(strlen(match->dtpd_mod) < DTRACE_MODNAMELEN); |
12682 | ASSERT(strlen(match->dtpd_func) < DTRACE_FUNCNAMELEN); |
12683 | ASSERT(strlen(match->dtpd_name) < DTRACE_NAMELEN); |
12684 | |
12685 | new = dtrace_enabling_create(vstate: &state->dts_vstate); |
12686 | |
12687 | /* |
12688 | * Iterate over all retained enablings, looking for enablings that |
12689 | * match the specified state. |
12690 | */ |
12691 | for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { |
12692 | int i; |
12693 | |
12694 | /* |
12695 | * dtvs_state can only be NULL for helper enablings -- and |
12696 | * helper enablings can't be retained. |
12697 | */ |
12698 | ASSERT(enab->dten_vstate->dtvs_state != NULL); |
12699 | |
12700 | if (enab->dten_vstate->dtvs_state != state) |
12701 | continue; |
12702 | |
12703 | /* |
12704 | * Now iterate over each probe description; we're looking for |
12705 | * an exact match to the specified probe description. |
12706 | */ |
12707 | for (i = 0; i < enab->dten_ndesc; i++) { |
12708 | dtrace_ecbdesc_t *ep = enab->dten_desc[i]; |
12709 | dtrace_probedesc_t *pd = &ep->dted_probe; |
12710 | |
12711 | /* APPLE NOTE: Darwin employs size bounded string operation. */ |
12712 | if (strncmp(s1: pd->dtpd_provider, s2: match->dtpd_provider, DTRACE_PROVNAMELEN)) |
12713 | continue; |
12714 | |
12715 | if (strncmp(s1: pd->dtpd_mod, s2: match->dtpd_mod, DTRACE_MODNAMELEN)) |
12716 | continue; |
12717 | |
12718 | if (strncmp(s1: pd->dtpd_func, s2: match->dtpd_func, DTRACE_FUNCNAMELEN)) |
12719 | continue; |
12720 | |
12721 | if (strncmp(s1: pd->dtpd_name, s2: match->dtpd_name, DTRACE_NAMELEN)) |
12722 | continue; |
12723 | |
12724 | /* |
12725 | * We have a winning probe! Add it to our growing |
12726 | * enabling. |
12727 | */ |
12728 | found = 1; |
12729 | dtrace_enabling_addlike(enab: new, ecb: ep, pd: create); |
12730 | } |
12731 | } |
12732 | |
12733 | if (!found || (err = dtrace_enabling_retain(enab: new)) != 0) { |
12734 | dtrace_enabling_destroy(enab: new); |
12735 | return (err); |
12736 | } |
12737 | |
12738 | return (0); |
12739 | } |
12740 | |
12741 | static void |
12742 | dtrace_enabling_retract(dtrace_state_t *state) |
12743 | { |
12744 | dtrace_enabling_t *enab, *next; |
12745 | |
12746 | LCK_MTX_ASSERT(&dtrace_lock, LCK_MTX_ASSERT_OWNED); |
12747 | |
12748 | /* |
12749 | * Iterate over all retained enablings, destroy the enablings retained |
12750 | * for the specified state. |
12751 | */ |
12752 | for (enab = dtrace_retained; enab != NULL; enab = next) { |
12753 | next = enab->dten_next; |
12754 | |
12755 | /* |
12756 | * dtvs_state can only be NULL for helper enablings -- and |
12757 | * helper enablings can't be retained. |
12758 | */ |
12759 | ASSERT(enab->dten_vstate->dtvs_state != NULL); |
12760 | |
12761 | if (enab->dten_vstate->dtvs_state == state) { |
12762 | ASSERT(state->dts_nretained > 0); |
12763 | dtrace_enabling_destroy(enab); |
12764 | } |
12765 | } |
12766 | |
12767 | ASSERT(state->dts_nretained == 0); |
12768 | } |
12769 | |
12770 | static int |
12771 | dtrace_enabling_match(dtrace_enabling_t *enab, int *nmatched, dtrace_match_cond_t *cond) |
12772 | { |
12773 | int i = 0; |
12774 | int total_matched = 0, matched = 0; |
12775 | |
12776 | LCK_MTX_ASSERT(&cpu_lock, LCK_MTX_ASSERT_OWNED); |
12777 | LCK_MTX_ASSERT(&dtrace_lock, LCK_MTX_ASSERT_OWNED); |
12778 | |
12779 | for (i = 0; i < enab->dten_ndesc; i++) { |
12780 | dtrace_ecbdesc_t *ep = enab->dten_desc[i]; |
12781 | |
12782 | enab->dten_current = ep; |
12783 | enab->dten_error = 0; |
12784 | |
12785 | /** |
12786 | * Before doing a dtrace_probe_enable, which is really |
12787 | * expensive, check that this enabling matches the matching precondition |
12788 | * if we have one |
12789 | */ |
12790 | if (cond && (cond->dmc_func(&ep->dted_probe, cond->dmc_data) == 0)) { |
12791 | continue; |
12792 | } |
12793 | /* |
12794 | * If a provider failed to enable a probe then get out and |
12795 | * let the consumer know we failed. |
12796 | */ |
12797 | if ((matched = dtrace_probe_enable(desc: &ep->dted_probe, enab, ep)) < 0) |
12798 | return (EBUSY); |
12799 | |
12800 | total_matched += matched; |
12801 | |
12802 | if (enab->dten_error != 0) { |
12803 | /* |
12804 | * If we get an error half-way through enabling the |
12805 | * probes, we kick out -- perhaps with some number of |
12806 | * them enabled. Leaving enabled probes enabled may |
12807 | * be slightly confusing for user-level, but we expect |
12808 | * that no one will attempt to actually drive on in |
12809 | * the face of such errors. If this is an anonymous |
12810 | * enabling (indicated with a NULL nmatched pointer), |
12811 | * we cmn_err() a message. We aren't expecting to |
12812 | * get such an error -- such as it can exist at all, |
12813 | * it would be a result of corrupted DOF in the driver |
12814 | * properties. |
12815 | */ |
12816 | if (nmatched == NULL) { |
12817 | cmn_err(CE_WARN, "dtrace_enabling_match() " |
12818 | "error on %p: %d" , (void *)ep, |
12819 | enab->dten_error); |
12820 | } |
12821 | |
12822 | return (enab->dten_error); |
12823 | } |
12824 | |
12825 | ep->dted_probegen = dtrace_probegen; |
12826 | } |
12827 | |
12828 | if (nmatched != NULL) |
12829 | *nmatched = total_matched; |
12830 | |
12831 | return (0); |
12832 | } |
12833 | |
12834 | static void |
12835 | dtrace_enabling_matchall_with_cond(dtrace_match_cond_t *cond) |
12836 | { |
12837 | dtrace_enabling_t *enab; |
12838 | |
12839 | lck_mtx_lock(lck: &cpu_lock); |
12840 | lck_mtx_lock(lck: &dtrace_lock); |
12841 | |
12842 | /* |
12843 | * Iterate over all retained enablings to see if any probes match |
12844 | * against them. We only perform this operation on enablings for which |
12845 | * we have sufficient permissions by virtue of being in the global zone |
12846 | * or in the same zone as the DTrace client. Because we can be called |
12847 | * after dtrace_detach() has been called, we cannot assert that there |
12848 | * are retained enablings. We can safely load from dtrace_retained, |
12849 | * however: the taskq_destroy() at the end of dtrace_detach() will |
12850 | * block pending our completion. |
12851 | */ |
12852 | |
12853 | /* |
12854 | * Darwin doesn't do zones. |
12855 | * Behave as if always in "global" zone." |
12856 | */ |
12857 | for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { |
12858 | (void) dtrace_enabling_match(enab, NULL, cond); |
12859 | } |
12860 | |
12861 | lck_mtx_unlock(lck: &dtrace_lock); |
12862 | lck_mtx_unlock(lck: &cpu_lock); |
12863 | |
12864 | } |
12865 | |
12866 | static void |
12867 | dtrace_enabling_matchall(void) |
12868 | { |
12869 | dtrace_enabling_matchall_with_cond(NULL); |
12870 | } |
12871 | |
12872 | |
12873 | |
12874 | /* |
12875 | * If an enabling is to be enabled without having matched probes (that is, if |
12876 | * dtrace_state_go() is to be called on the underlying dtrace_state_t), the |
12877 | * enabling must be _primed_ by creating an ECB for every ECB description. |
12878 | * This must be done to assure that we know the number of speculations, the |
12879 | * number of aggregations, the minimum buffer size needed, etc. before we |
12880 | * transition out of DTRACE_ACTIVITY_INACTIVE. To do this without actually |
12881 | * enabling any probes, we create ECBs for every ECB decription, but with a |
12882 | * NULL probe -- which is exactly what this function does. |
12883 | */ |
12884 | static void |
12885 | dtrace_enabling_prime(dtrace_state_t *state) |
12886 | { |
12887 | dtrace_enabling_t *enab; |
12888 | int i; |
12889 | |
12890 | for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { |
12891 | ASSERT(enab->dten_vstate->dtvs_state != NULL); |
12892 | |
12893 | if (enab->dten_vstate->dtvs_state != state) |
12894 | continue; |
12895 | |
12896 | /* |
12897 | * We don't want to prime an enabling more than once, lest |
12898 | * we allow a malicious user to induce resource exhaustion. |
12899 | * (The ECBs that result from priming an enabling aren't |
12900 | * leaked -- but they also aren't deallocated until the |
12901 | * consumer state is destroyed.) |
12902 | */ |
12903 | if (enab->dten_primed) |
12904 | continue; |
12905 | |
12906 | for (i = 0; i < enab->dten_ndesc; i++) { |
12907 | enab->dten_current = enab->dten_desc[i]; |
12908 | (void) dtrace_probe_enable(NULL, enab, NULL); |
12909 | } |
12910 | |
12911 | enab->dten_primed = 1; |
12912 | } |
12913 | } |
12914 | |
12915 | /* |
12916 | * Called to indicate that probes should be provided due to retained |
12917 | * enablings. This is implemented in terms of dtrace_probe_provide(), but it |
12918 | * must take an initial lap through the enabling calling the dtps_provide() |
12919 | * entry point explicitly to allow for autocreated probes. |
12920 | */ |
12921 | static void |
12922 | dtrace_enabling_provide(dtrace_provider_t *prv) |
12923 | { |
12924 | int i, all = 0; |
12925 | dtrace_probedesc_t desc; |
12926 | dtrace_genid_t gen; |
12927 | |
12928 | LCK_MTX_ASSERT(&dtrace_lock, LCK_MTX_ASSERT_OWNED); |
12929 | LCK_MTX_ASSERT(&dtrace_provider_lock, LCK_MTX_ASSERT_OWNED); |
12930 | |
12931 | if (prv == NULL) { |
12932 | all = 1; |
12933 | prv = dtrace_provider; |
12934 | } |
12935 | |
12936 | do { |
12937 | dtrace_enabling_t *enab; |
12938 | void *parg = prv->dtpv_arg; |
12939 | |
12940 | retry: |
12941 | gen = dtrace_retained_gen; |
12942 | for (enab = dtrace_retained; enab != NULL; |
12943 | enab = enab->dten_next) { |
12944 | for (i = 0; i < enab->dten_ndesc; i++) { |
12945 | desc = enab->dten_desc[i]->dted_probe; |
12946 | lck_mtx_unlock(lck: &dtrace_lock); |
12947 | prv->dtpv_pops.dtps_provide(parg, &desc); |
12948 | lck_mtx_lock(lck: &dtrace_lock); |
12949 | /* |
12950 | * Process the retained enablings again if |
12951 | * they have changed while we weren't holding |
12952 | * dtrace_lock. |
12953 | */ |
12954 | if (gen != dtrace_retained_gen) |
12955 | goto retry; |
12956 | } |
12957 | } |
12958 | } while (all && (prv = prv->dtpv_next) != NULL); |
12959 | |
12960 | lck_mtx_unlock(lck: &dtrace_lock); |
12961 | dtrace_probe_provide(NULL, prv: all ? NULL : prv); |
12962 | lck_mtx_lock(lck: &dtrace_lock); |
12963 | } |
12964 | |
12965 | /* |
12966 | * DTrace DOF Functions |
12967 | */ |
12968 | /*ARGSUSED*/ |
12969 | static void |
12970 | dtrace_dof_error(dof_hdr_t *dof, const char *str) |
12971 | { |
12972 | #pragma unused(dof) /* __APPLE__ */ |
12973 | if (dtrace_err_verbose) |
12974 | cmn_err(CE_WARN, "failed to process DOF: %s" , str); |
12975 | |
12976 | #ifdef DTRACE_ERRDEBUG |
12977 | dtrace_errdebug(str); |
12978 | #endif |
12979 | } |
12980 | |
12981 | /* |
12982 | * Create DOF out of a currently enabled state. Right now, we only create |
12983 | * DOF containing the run-time options -- but this could be expanded to create |
12984 | * complete DOF representing the enabled state. |
12985 | */ |
12986 | static dof_hdr_t * |
12987 | dtrace_dof_create(dtrace_state_t *state) |
12988 | { |
12989 | dof_hdr_t *dof; |
12990 | dof_sec_t *sec; |
12991 | dof_optdesc_t *opt; |
12992 | int i, len = sizeof (dof_hdr_t) + |
12993 | roundup(sizeof (dof_sec_t), sizeof (uint64_t)) + |
12994 | sizeof (dof_optdesc_t) * DTRACEOPT_MAX; |
12995 | |
12996 | LCK_MTX_ASSERT(&dtrace_lock, LCK_MTX_ASSERT_OWNED); |
12997 | |
12998 | dof = kmem_zalloc_aligned(len, 8, KM_SLEEP); |
12999 | dof->dofh_ident[DOF_ID_MAG0] = DOF_MAG_MAG0; |
13000 | dof->dofh_ident[DOF_ID_MAG1] = DOF_MAG_MAG1; |
13001 | dof->dofh_ident[DOF_ID_MAG2] = DOF_MAG_MAG2; |
13002 | dof->dofh_ident[DOF_ID_MAG3] = DOF_MAG_MAG3; |
13003 | |
13004 | dof->dofh_ident[DOF_ID_MODEL] = DOF_MODEL_NATIVE; |
13005 | dof->dofh_ident[DOF_ID_ENCODING] = DOF_ENCODE_NATIVE; |
13006 | dof->dofh_ident[DOF_ID_VERSION] = DOF_VERSION; |
13007 | dof->dofh_ident[DOF_ID_DIFVERS] = DIF_VERSION; |
13008 | dof->dofh_ident[DOF_ID_DIFIREG] = DIF_DIR_NREGS; |
13009 | dof->dofh_ident[DOF_ID_DIFTREG] = DIF_DTR_NREGS; |
13010 | |
13011 | dof->dofh_flags = 0; |
13012 | dof->dofh_hdrsize = sizeof (dof_hdr_t); |
13013 | dof->dofh_secsize = sizeof (dof_sec_t); |
13014 | dof->dofh_secnum = 1; /* only DOF_SECT_OPTDESC */ |
13015 | dof->dofh_secoff = sizeof (dof_hdr_t); |
13016 | dof->dofh_loadsz = len; |
13017 | dof->dofh_filesz = len; |
13018 | dof->dofh_pad = 0; |
13019 | |
13020 | /* |
13021 | * Fill in the option section header... |
13022 | */ |
13023 | sec = (dof_sec_t *)((uintptr_t)dof + sizeof (dof_hdr_t)); |
13024 | sec->dofs_type = DOF_SECT_OPTDESC; |
13025 | sec->dofs_align = sizeof (uint64_t); |
13026 | sec->dofs_flags = DOF_SECF_LOAD; |
13027 | sec->dofs_entsize = sizeof (dof_optdesc_t); |
13028 | |
13029 | opt = (dof_optdesc_t *)((uintptr_t)sec + |
13030 | roundup(sizeof (dof_sec_t), sizeof (uint64_t))); |
13031 | |
13032 | sec->dofs_offset = (uintptr_t)opt - (uintptr_t)dof; |
13033 | sec->dofs_size = sizeof (dof_optdesc_t) * DTRACEOPT_MAX; |
13034 | |
13035 | for (i = 0; i < DTRACEOPT_MAX; i++) { |
13036 | opt[i].dofo_option = i; |
13037 | opt[i].dofo_strtab = DOF_SECIDX_NONE; |
13038 | opt[i].dofo_value = state->dts_options[i]; |
13039 | } |
13040 | |
13041 | return (dof); |
13042 | } |
13043 | |
13044 | static dof_hdr_t * |
13045 | dtrace_dof_copyin(user_addr_t uarg, int *errp) |
13046 | { |
13047 | dof_hdr_t hdr, *dof; |
13048 | |
13049 | LCK_MTX_ASSERT(&dtrace_lock, LCK_MTX_ASSERT_NOTOWNED); |
13050 | |
13051 | /* |
13052 | * First, we're going to copyin() the sizeof (dof_hdr_t). |
13053 | */ |
13054 | if (copyin(uarg, &hdr, sizeof (hdr)) != 0) { |
13055 | dtrace_dof_error(NULL, str: "failed to copyin DOF header" ); |
13056 | *errp = EFAULT; |
13057 | return (NULL); |
13058 | } |
13059 | |
13060 | /* |
13061 | * Now we'll allocate the entire DOF and copy it in -- provided |
13062 | * that the length isn't outrageous. |
13063 | */ |
13064 | if (hdr.dofh_loadsz >= (uint64_t)dtrace_dof_maxsize) { |
13065 | dtrace_dof_error(dof: &hdr, str: "load size exceeds maximum" ); |
13066 | *errp = E2BIG; |
13067 | return (NULL); |
13068 | } |
13069 | |
13070 | if (hdr.dofh_loadsz < sizeof (hdr)) { |
13071 | dtrace_dof_error(dof: &hdr, str: "invalid load size" ); |
13072 | *errp = EINVAL; |
13073 | return (NULL); |
13074 | } |
13075 | |
13076 | dof = kmem_alloc_aligned(hdr.dofh_loadsz, 8, KM_SLEEP); |
13077 | |
13078 | if (copyin(uarg, dof, hdr.dofh_loadsz) != 0 || |
13079 | dof->dofh_loadsz != hdr.dofh_loadsz) { |
13080 | kmem_free_aligned(dof, hdr.dofh_loadsz); |
13081 | *errp = EFAULT; |
13082 | return (NULL); |
13083 | } |
13084 | |
13085 | return (dof); |
13086 | } |
13087 | |
13088 | static dof_hdr_t * |
13089 | dtrace_dof_copyin_from_proc(proc_t* p, user_addr_t uarg, int *errp) |
13090 | { |
13091 | dof_hdr_t hdr, *dof; |
13092 | |
13093 | LCK_MTX_ASSERT(&dtrace_lock, LCK_MTX_ASSERT_NOTOWNED); |
13094 | |
13095 | /* |
13096 | * First, we're going to copyin() the sizeof (dof_hdr_t). |
13097 | */ |
13098 | if (uread(p, buf: &hdr, len: sizeof(hdr), a: uarg) != KERN_SUCCESS) { |
13099 | dtrace_dof_error(NULL, str: "failed to copyin DOF header" ); |
13100 | *errp = EFAULT; |
13101 | return (NULL); |
13102 | } |
13103 | |
13104 | /* |
13105 | * Now we'll allocate the entire DOF and copy it in -- provided |
13106 | * that the length isn't outrageous. |
13107 | */ |
13108 | if (hdr.dofh_loadsz >= (uint64_t)dtrace_dof_maxsize) { |
13109 | dtrace_dof_error(dof: &hdr, str: "load size exceeds maximum" ); |
13110 | *errp = E2BIG; |
13111 | return (NULL); |
13112 | } |
13113 | |
13114 | if (hdr.dofh_loadsz < sizeof (hdr)) { |
13115 | dtrace_dof_error(dof: &hdr, str: "invalid load size" ); |
13116 | *errp = EINVAL; |
13117 | return (NULL); |
13118 | } |
13119 | |
13120 | dof = kmem_alloc_aligned(hdr.dofh_loadsz, 8, KM_SLEEP); |
13121 | |
13122 | if (uread(p, buf: dof, len: hdr.dofh_loadsz, a: uarg) != KERN_SUCCESS || |
13123 | dof->dofh_loadsz != hdr.dofh_loadsz) { |
13124 | kmem_free_aligned(dof, hdr.dofh_loadsz); |
13125 | *errp = EFAULT; |
13126 | return (NULL); |
13127 | } |
13128 | |
13129 | return (dof); |
13130 | } |
13131 | |
13132 | static void |
13133 | dtrace_dof_destroy(dof_hdr_t *dof) |
13134 | { |
13135 | kmem_free_aligned(dof, dof->dofh_loadsz); |
13136 | } |
13137 | |
13138 | static dof_hdr_t * |
13139 | dtrace_dof_property(const char *name) |
13140 | { |
13141 | unsigned int len = 0; |
13142 | dof_hdr_t *dof; |
13143 | |
13144 | if (dtrace_is_restricted() && !dtrace_are_restrictions_relaxed()) { |
13145 | return NULL; |
13146 | } |
13147 | |
13148 | if (!PEReadNVRAMProperty(symbol: name, NULL, len: &len)) { |
13149 | return NULL; |
13150 | } |
13151 | |
13152 | dof = kmem_alloc_aligned(len, 8, KM_SLEEP); |
13153 | |
13154 | if (!PEReadNVRAMProperty(symbol: name, value: dof, len: &len)) { |
13155 | dtrace_dof_destroy(dof); |
13156 | dtrace_dof_error(NULL, str: "unreadable DOF" ); |
13157 | return NULL; |
13158 | } |
13159 | |
13160 | if (len < sizeof (dof_hdr_t)) { |
13161 | dtrace_dof_destroy(dof); |
13162 | dtrace_dof_error(NULL, str: "truncated header" ); |
13163 | return (NULL); |
13164 | } |
13165 | |
13166 | if (len < dof->dofh_loadsz) { |
13167 | dtrace_dof_destroy(dof); |
13168 | dtrace_dof_error(NULL, str: "truncated DOF" ); |
13169 | return (NULL); |
13170 | } |
13171 | |
13172 | if (len != dof->dofh_loadsz) { |
13173 | dtrace_dof_destroy(dof); |
13174 | dtrace_dof_error(NULL, str: "invalid DOF size" ); |
13175 | return (NULL); |
13176 | } |
13177 | |
13178 | if (dof->dofh_loadsz >= (uint64_t)dtrace_dof_maxsize) { |
13179 | dtrace_dof_destroy(dof); |
13180 | dtrace_dof_error(NULL, str: "oversized DOF" ); |
13181 | return (NULL); |
13182 | } |
13183 | |
13184 | return (dof); |
13185 | } |
13186 | |
13187 | /* |
13188 | * Return the dof_sec_t pointer corresponding to a given section index. If the |
13189 | * index is not valid, dtrace_dof_error() is called and NULL is returned. If |
13190 | * a type other than DOF_SECT_NONE is specified, the header is checked against |
13191 | * this type and NULL is returned if the types do not match. |
13192 | */ |
13193 | static dof_sec_t * |
13194 | dtrace_dof_sect(dof_hdr_t *dof, uint32_t type, dof_secidx_t i) |
13195 | { |
13196 | dof_sec_t *sec = (dof_sec_t *)(uintptr_t) |
13197 | ((uintptr_t)dof + dof->dofh_secoff + i * dof->dofh_secsize); |
13198 | |
13199 | if (i >= dof->dofh_secnum) { |
13200 | dtrace_dof_error(dof, str: "referenced section index is invalid" ); |
13201 | return (NULL); |
13202 | } |
13203 | |
13204 | if (!(sec->dofs_flags & DOF_SECF_LOAD)) { |
13205 | dtrace_dof_error(dof, str: "referenced section is not loadable" ); |
13206 | return (NULL); |
13207 | } |
13208 | |
13209 | if (type != DOF_SECT_NONE && type != sec->dofs_type) { |
13210 | dtrace_dof_error(dof, str: "referenced section is the wrong type" ); |
13211 | return (NULL); |
13212 | } |
13213 | |
13214 | return (sec); |
13215 | } |
13216 | |
13217 | static dtrace_probedesc_t * |
13218 | dtrace_dof_probedesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_probedesc_t *desc) |
13219 | { |
13220 | dof_probedesc_t *probe; |
13221 | dof_sec_t *strtab; |
13222 | uintptr_t daddr = (uintptr_t)dof; |
13223 | uintptr_t str; |
13224 | size_t size; |
13225 | |
13226 | if (sec->dofs_type != DOF_SECT_PROBEDESC) { |
13227 | dtrace_dof_error(dof, str: "invalid probe section" ); |
13228 | return (NULL); |
13229 | } |
13230 | |
13231 | if (sec->dofs_align != sizeof (dof_secidx_t)) { |
13232 | dtrace_dof_error(dof, str: "bad alignment in probe description" ); |
13233 | return (NULL); |
13234 | } |
13235 | |
13236 | if (sec->dofs_offset + sizeof (dof_probedesc_t) > dof->dofh_loadsz) { |
13237 | dtrace_dof_error(dof, str: "truncated probe description" ); |
13238 | return (NULL); |
13239 | } |
13240 | |
13241 | probe = (dof_probedesc_t *)(uintptr_t)(daddr + sec->dofs_offset); |
13242 | strtab = dtrace_dof_sect(dof, DOF_SECT_STRTAB, i: probe->dofp_strtab); |
13243 | |
13244 | if (strtab == NULL) |
13245 | return (NULL); |
13246 | |
13247 | str = daddr + strtab->dofs_offset; |
13248 | size = strtab->dofs_size; |
13249 | |
13250 | if (probe->dofp_provider >= strtab->dofs_size) { |
13251 | dtrace_dof_error(dof, str: "corrupt probe provider" ); |
13252 | return (NULL); |
13253 | } |
13254 | |
13255 | (void) strncpy(desc->dtpd_provider, |
13256 | (char *)(str + probe->dofp_provider), |
13257 | MIN(DTRACE_PROVNAMELEN - 1, size - probe->dofp_provider)); |
13258 | |
13259 | /* APPLE NOTE: Darwin employs size bounded string operation. */ |
13260 | desc->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; |
13261 | |
13262 | if (probe->dofp_mod >= strtab->dofs_size) { |
13263 | dtrace_dof_error(dof, str: "corrupt probe module" ); |
13264 | return (NULL); |
13265 | } |
13266 | |
13267 | (void) strncpy(desc->dtpd_mod, (char *)(str + probe->dofp_mod), |
13268 | MIN(DTRACE_MODNAMELEN - 1, size - probe->dofp_mod)); |
13269 | |
13270 | /* APPLE NOTE: Darwin employs size bounded string operation. */ |
13271 | desc->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; |
13272 | |
13273 | if (probe->dofp_func >= strtab->dofs_size) { |
13274 | dtrace_dof_error(dof, str: "corrupt probe function" ); |
13275 | return (NULL); |
13276 | } |
13277 | |
13278 | (void) strncpy(desc->dtpd_func, (char *)(str + probe->dofp_func), |
13279 | MIN(DTRACE_FUNCNAMELEN - 1, size - probe->dofp_func)); |
13280 | |
13281 | /* APPLE NOTE: Darwin employs size bounded string operation. */ |
13282 | desc->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; |
13283 | |
13284 | if (probe->dofp_name >= strtab->dofs_size) { |
13285 | dtrace_dof_error(dof, str: "corrupt probe name" ); |
13286 | return (NULL); |
13287 | } |
13288 | |
13289 | (void) strncpy(desc->dtpd_name, (char *)(str + probe->dofp_name), |
13290 | MIN(DTRACE_NAMELEN - 1, size - probe->dofp_name)); |
13291 | |
13292 | /* APPLE NOTE: Darwin employs size bounded string operation. */ |
13293 | desc->dtpd_name[DTRACE_NAMELEN - 1] = '\0'; |
13294 | |
13295 | return (desc); |
13296 | } |
13297 | |
13298 | static dtrace_difo_t * |
13299 | dtrace_dof_difo(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, |
13300 | cred_t *cr) |
13301 | { |
13302 | dtrace_difo_t *dp; |
13303 | size_t ttl = 0; |
13304 | dof_difohdr_t *dofd; |
13305 | uintptr_t daddr = (uintptr_t)dof; |
13306 | size_t max_size = dtrace_difo_maxsize; |
13307 | uint_t i; |
13308 | int l, n; |
13309 | |
13310 | |
13311 | static const struct { |
13312 | int section; |
13313 | int bufoffs; |
13314 | int lenoffs; |
13315 | int entsize; |
13316 | int align; |
13317 | const char *msg; |
13318 | } difo[] = { |
13319 | { DOF_SECT_DIF, offsetof(dtrace_difo_t, dtdo_buf), |
13320 | offsetof(dtrace_difo_t, dtdo_len), .lenoffs: sizeof (dif_instr_t), |
13321 | .entsize: sizeof (dif_instr_t), .align: "multiple DIF sections" }, |
13322 | |
13323 | { DOF_SECT_INTTAB, offsetof(dtrace_difo_t, dtdo_inttab), |
13324 | offsetof(dtrace_difo_t, dtdo_intlen), .entsize: sizeof (uint64_t), |
13325 | .align: sizeof (uint64_t), .msg: "multiple integer tables" }, |
13326 | |
13327 | { DOF_SECT_STRTAB, offsetof(dtrace_difo_t, dtdo_strtab), |
13328 | offsetof(dtrace_difo_t, dtdo_strlen), .entsize: 0, |
13329 | .align: sizeof (char), .msg: "multiple string tables" }, |
13330 | |
13331 | { DOF_SECT_VARTAB, offsetof(dtrace_difo_t, dtdo_vartab), |
13332 | offsetof(dtrace_difo_t, dtdo_varlen), .entsize: sizeof (dtrace_difv_t), |
13333 | .align: sizeof (uint_t), .msg: "multiple variable tables" }, |
13334 | |
13335 | { DOF_SECT_NONE, .bufoffs: 0, .lenoffs: 0, .entsize: 0, .align: 0, NULL } |
13336 | }; |
13337 | |
13338 | if (sec->dofs_type != DOF_SECT_DIFOHDR) { |
13339 | dtrace_dof_error(dof, str: "invalid DIFO header section" ); |
13340 | return (NULL); |
13341 | } |
13342 | |
13343 | if (sec->dofs_align != sizeof (dof_secidx_t)) { |
13344 | dtrace_dof_error(dof, str: "bad alignment in DIFO header" ); |
13345 | return (NULL); |
13346 | } |
13347 | |
13348 | if (sec->dofs_size < sizeof (dof_difohdr_t) || |
13349 | sec->dofs_size % sizeof (dof_secidx_t)) { |
13350 | dtrace_dof_error(dof, str: "bad size in DIFO header" ); |
13351 | return (NULL); |
13352 | } |
13353 | |
13354 | dofd = (dof_difohdr_t *)(uintptr_t)(daddr + sec->dofs_offset); |
13355 | n = (sec->dofs_size - sizeof (*dofd)) / sizeof (dof_secidx_t) + 1; |
13356 | |
13357 | dp = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP); |
13358 | dp->dtdo_rtype = dofd->dofd_rtype; |
13359 | |
13360 | for (l = 0; l < n; l++) { |
13361 | dof_sec_t *subsec; |
13362 | void **bufp; |
13363 | uint32_t *lenp; |
13364 | |
13365 | if ((subsec = dtrace_dof_sect(dof, DOF_SECT_NONE, |
13366 | i: dofd->dofd_links[l])) == NULL) |
13367 | goto err; /* invalid section link */ |
13368 | |
13369 | if (ttl + subsec->dofs_size > max_size) { |
13370 | dtrace_dof_error(dof, str: "exceeds maximum size" ); |
13371 | goto err; |
13372 | } |
13373 | |
13374 | ttl += subsec->dofs_size; |
13375 | |
13376 | for (i = 0; difo[i].section != DOF_SECT_NONE; i++) { |
13377 | |
13378 | if (subsec->dofs_type != (uint32_t)difo[i].section) |
13379 | continue; |
13380 | |
13381 | if (!(subsec->dofs_flags & DOF_SECF_LOAD)) { |
13382 | dtrace_dof_error(dof, str: "section not loaded" ); |
13383 | goto err; |
13384 | } |
13385 | |
13386 | if (subsec->dofs_align != (uint32_t)difo[i].align) { |
13387 | dtrace_dof_error(dof, str: "bad alignment" ); |
13388 | goto err; |
13389 | } |
13390 | |
13391 | bufp = (void **)((uintptr_t)dp + difo[i].bufoffs); |
13392 | lenp = (uint32_t *)((uintptr_t)dp + difo[i].lenoffs); |
13393 | |
13394 | if (*bufp != NULL) { |
13395 | dtrace_dof_error(dof, str: difo[i].msg); |
13396 | goto err; |
13397 | } |
13398 | |
13399 | if ((uint32_t)difo[i].entsize != subsec->dofs_entsize) { |
13400 | dtrace_dof_error(dof, str: "entry size mismatch" ); |
13401 | goto err; |
13402 | } |
13403 | |
13404 | if (subsec->dofs_entsize != 0 && |
13405 | (subsec->dofs_size % subsec->dofs_entsize) != 0) { |
13406 | dtrace_dof_error(dof, str: "corrupt entry size" ); |
13407 | goto err; |
13408 | } |
13409 | |
13410 | *lenp = subsec->dofs_size; |
13411 | *bufp = kmem_alloc(subsec->dofs_size, KM_SLEEP); |
13412 | bcopy(src: (char *)(uintptr_t)(daddr + subsec->dofs_offset), |
13413 | dst: *bufp, n: subsec->dofs_size); |
13414 | |
13415 | if (subsec->dofs_entsize != 0) |
13416 | *lenp /= subsec->dofs_entsize; |
13417 | |
13418 | break; |
13419 | } |
13420 | |
13421 | /* |
13422 | * If we encounter a loadable DIFO sub-section that is not |
13423 | * known to us, assume this is a broken program and fail. |
13424 | */ |
13425 | if (difo[i].section == DOF_SECT_NONE && |
13426 | (subsec->dofs_flags & DOF_SECF_LOAD)) { |
13427 | dtrace_dof_error(dof, str: "unrecognized DIFO subsection" ); |
13428 | goto err; |
13429 | } |
13430 | } |
13431 | |
13432 | if (dp->dtdo_buf == NULL) { |
13433 | /* |
13434 | * We can't have a DIF object without DIF text. |
13435 | */ |
13436 | dtrace_dof_error(dof, str: "missing DIF text" ); |
13437 | goto err; |
13438 | } |
13439 | |
13440 | /* |
13441 | * Before we validate the DIF object, run through the variable table |
13442 | * looking for the strings -- if any of their size are under, we'll set |
13443 | * their size to be the system-wide default string size. Note that |
13444 | * this should _not_ happen if the "strsize" option has been set -- |
13445 | * in this case, the compiler should have set the size to reflect the |
13446 | * setting of the option. |
13447 | */ |
13448 | for (i = 0; i < dp->dtdo_varlen; i++) { |
13449 | dtrace_difv_t *v = &dp->dtdo_vartab[i]; |
13450 | dtrace_diftype_t *t = &v->dtdv_type; |
13451 | |
13452 | if (v->dtdv_id < DIF_VAR_OTHER_UBASE) |
13453 | continue; |
13454 | |
13455 | if (t->dtdt_kind == DIF_TYPE_STRING && t->dtdt_size == 0) |
13456 | t->dtdt_size = dtrace_strsize_default; |
13457 | } |
13458 | |
13459 | if (dtrace_difo_validate(dp, vstate, DIF_DIR_NREGS, cr) != 0) |
13460 | goto err; |
13461 | |
13462 | dtrace_difo_init(dp, vstate); |
13463 | return (dp); |
13464 | |
13465 | err: |
13466 | kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t)); |
13467 | kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t)); |
13468 | kmem_free(dp->dtdo_strtab, dp->dtdo_strlen); |
13469 | kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t)); |
13470 | |
13471 | kmem_free(dp, sizeof (dtrace_difo_t)); |
13472 | return (NULL); |
13473 | } |
13474 | |
13475 | static dtrace_predicate_t * |
13476 | dtrace_dof_predicate(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, |
13477 | cred_t *cr) |
13478 | { |
13479 | dtrace_difo_t *dp; |
13480 | |
13481 | if ((dp = dtrace_dof_difo(dof, sec, vstate, cr)) == NULL) |
13482 | return (NULL); |
13483 | |
13484 | return (dtrace_predicate_create(dp)); |
13485 | } |
13486 | |
13487 | static dtrace_actdesc_t * |
13488 | dtrace_dof_actdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, |
13489 | cred_t *cr) |
13490 | { |
13491 | dtrace_actdesc_t *act, *first = NULL, *last = NULL, *next; |
13492 | dof_actdesc_t *desc; |
13493 | dof_sec_t *difosec; |
13494 | size_t offs; |
13495 | uintptr_t daddr = (uintptr_t)dof; |
13496 | uint64_t arg; |
13497 | dtrace_actkind_t kind; |
13498 | |
13499 | if (sec->dofs_type != DOF_SECT_ACTDESC) { |
13500 | dtrace_dof_error(dof, str: "invalid action section" ); |
13501 | return (NULL); |
13502 | } |
13503 | |
13504 | if (sec->dofs_offset + sizeof (dof_actdesc_t) > dof->dofh_loadsz) { |
13505 | dtrace_dof_error(dof, str: "truncated action description" ); |
13506 | return (NULL); |
13507 | } |
13508 | |
13509 | if (sec->dofs_align != sizeof (uint64_t)) { |
13510 | dtrace_dof_error(dof, str: "bad alignment in action description" ); |
13511 | return (NULL); |
13512 | } |
13513 | |
13514 | if (sec->dofs_size < sec->dofs_entsize) { |
13515 | dtrace_dof_error(dof, str: "section entry size exceeds total size" ); |
13516 | return (NULL); |
13517 | } |
13518 | |
13519 | if (sec->dofs_entsize != sizeof (dof_actdesc_t)) { |
13520 | dtrace_dof_error(dof, str: "bad entry size in action description" ); |
13521 | return (NULL); |
13522 | } |
13523 | |
13524 | if (sec->dofs_size / sec->dofs_entsize > dtrace_actions_max) { |
13525 | dtrace_dof_error(dof, str: "actions exceed dtrace_actions_max" ); |
13526 | return (NULL); |
13527 | } |
13528 | |
13529 | for (offs = 0; offs < sec->dofs_size; offs += sec->dofs_entsize) { |
13530 | desc = (dof_actdesc_t *)(daddr + |
13531 | (uintptr_t)sec->dofs_offset + offs); |
13532 | kind = (dtrace_actkind_t)desc->dofa_kind; |
13533 | |
13534 | if ((DTRACEACT_ISPRINTFLIKE(kind) && |
13535 | (kind != DTRACEACT_PRINTA || desc->dofa_strtab != DOF_SECIDX_NONE)) || |
13536 | (kind == DTRACEACT_DIFEXPR && desc->dofa_strtab != DOF_SECIDX_NONE)) |
13537 | { |
13538 | dof_sec_t *strtab; |
13539 | char *str, *fmt; |
13540 | uint64_t i; |
13541 | |
13542 | /* |
13543 | * The argument to these actions is an index into the |
13544 | * DOF string table. For printf()-like actions, this |
13545 | * is the format string. For print(), this is the |
13546 | * CTF type of the expression result. |
13547 | */ |
13548 | if ((strtab = dtrace_dof_sect(dof, |
13549 | DOF_SECT_STRTAB, i: desc->dofa_strtab)) == NULL) |
13550 | goto err; |
13551 | |
13552 | str = (char *)((uintptr_t)dof + |
13553 | (uintptr_t)strtab->dofs_offset); |
13554 | |
13555 | for (i = desc->dofa_arg; i < strtab->dofs_size; i++) { |
13556 | if (str[i] == '\0') |
13557 | break; |
13558 | } |
13559 | |
13560 | if (i >= strtab->dofs_size) { |
13561 | dtrace_dof_error(dof, str: "bogus format string" ); |
13562 | goto err; |
13563 | } |
13564 | |
13565 | if (i == desc->dofa_arg) { |
13566 | dtrace_dof_error(dof, str: "empty format string" ); |
13567 | goto err; |
13568 | } |
13569 | |
13570 | i -= desc->dofa_arg; |
13571 | fmt = kmem_alloc(i + 1, KM_SLEEP); |
13572 | bcopy(src: &str[desc->dofa_arg], dst: fmt, n: i + 1); |
13573 | arg = (uint64_t)(uintptr_t)fmt; |
13574 | } else { |
13575 | if (kind == DTRACEACT_PRINTA) { |
13576 | ASSERT(desc->dofa_strtab == DOF_SECIDX_NONE); |
13577 | arg = 0; |
13578 | } else { |
13579 | arg = desc->dofa_arg; |
13580 | } |
13581 | } |
13582 | |
13583 | act = dtrace_actdesc_create(kind, ntuple: desc->dofa_ntuple, |
13584 | uarg: desc->dofa_uarg, arg); |
13585 | |
13586 | if (last != NULL) { |
13587 | last->dtad_next = act; |
13588 | } else { |
13589 | first = act; |
13590 | } |
13591 | |
13592 | last = act; |
13593 | |
13594 | if (desc->dofa_difo == DOF_SECIDX_NONE) |
13595 | continue; |
13596 | |
13597 | if ((difosec = dtrace_dof_sect(dof, |
13598 | DOF_SECT_DIFOHDR, i: desc->dofa_difo)) == NULL) |
13599 | goto err; |
13600 | |
13601 | act->dtad_difo = dtrace_dof_difo(dof, sec: difosec, vstate, cr); |
13602 | |
13603 | if (act->dtad_difo == NULL) |
13604 | goto err; |
13605 | } |
13606 | |
13607 | ASSERT(first != NULL); |
13608 | return (first); |
13609 | |
13610 | err: |
13611 | for (act = first; act != NULL; act = next) { |
13612 | next = act->dtad_next; |
13613 | dtrace_actdesc_release(act, vstate); |
13614 | } |
13615 | |
13616 | return (NULL); |
13617 | } |
13618 | |
13619 | static dtrace_ecbdesc_t * |
13620 | dtrace_dof_ecbdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, |
13621 | cred_t *cr) |
13622 | { |
13623 | dtrace_ecbdesc_t *ep; |
13624 | dof_ecbdesc_t *ecb; |
13625 | dtrace_probedesc_t *desc; |
13626 | dtrace_predicate_t *pred = NULL; |
13627 | |
13628 | if (sec->dofs_size < sizeof (dof_ecbdesc_t)) { |
13629 | dtrace_dof_error(dof, str: "truncated ECB description" ); |
13630 | return (NULL); |
13631 | } |
13632 | |
13633 | if (sec->dofs_align != sizeof (uint64_t)) { |
13634 | dtrace_dof_error(dof, str: "bad alignment in ECB description" ); |
13635 | return (NULL); |
13636 | } |
13637 | |
13638 | ecb = (dof_ecbdesc_t *)((uintptr_t)dof + (uintptr_t)sec->dofs_offset); |
13639 | sec = dtrace_dof_sect(dof, DOF_SECT_PROBEDESC, i: ecb->dofe_probes); |
13640 | |
13641 | if (sec == NULL) |
13642 | return (NULL); |
13643 | |
13644 | ep = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP); |
13645 | ep->dted_uarg = ecb->dofe_uarg; |
13646 | desc = &ep->dted_probe; |
13647 | |
13648 | if (dtrace_dof_probedesc(dof, sec, desc) == NULL) |
13649 | goto err; |
13650 | |
13651 | if (ecb->dofe_pred != DOF_SECIDX_NONE) { |
13652 | if ((sec = dtrace_dof_sect(dof, |
13653 | DOF_SECT_DIFOHDR, i: ecb->dofe_pred)) == NULL) |
13654 | goto err; |
13655 | |
13656 | if ((pred = dtrace_dof_predicate(dof, sec, vstate, cr)) == NULL) |
13657 | goto err; |
13658 | |
13659 | ep->dted_pred.dtpdd_predicate = pred; |
13660 | } |
13661 | |
13662 | if (ecb->dofe_actions != DOF_SECIDX_NONE) { |
13663 | if ((sec = dtrace_dof_sect(dof, |
13664 | DOF_SECT_ACTDESC, i: ecb->dofe_actions)) == NULL) |
13665 | goto err; |
13666 | |
13667 | ep->dted_action = dtrace_dof_actdesc(dof, sec, vstate, cr); |
13668 | |
13669 | if (ep->dted_action == NULL) |
13670 | goto err; |
13671 | } |
13672 | |
13673 | return (ep); |
13674 | |
13675 | err: |
13676 | if (pred != NULL) |
13677 | dtrace_predicate_release(pred, vstate); |
13678 | kmem_free(ep, sizeof (dtrace_ecbdesc_t)); |
13679 | return (NULL); |
13680 | } |
13681 | |
13682 | /* |
13683 | * APPLE NOTE: dyld handles dof relocation. |
13684 | * Darwin does not need dtrace_dof_relocate() |
13685 | */ |
13686 | |
13687 | /* |
13688 | * The dof_hdr_t passed to dtrace_dof_slurp() should be a partially validated |
13689 | * header: it should be at the front of a memory region that is at least |
13690 | * sizeof (dof_hdr_t) in size -- and then at least dof_hdr.dofh_loadsz in |
13691 | * size. It need not be validated in any other way. |
13692 | */ |
13693 | static int |
13694 | dtrace_dof_slurp(dof_hdr_t *dof, dtrace_vstate_t *vstate, cred_t *cr, |
13695 | dtrace_enabling_t **enabp, uint64_t ubase, int noprobes) |
13696 | { |
13697 | #pragma unused(ubase) /* __APPLE__ */ |
13698 | uint64_t len = dof->dofh_loadsz, seclen; |
13699 | uintptr_t daddr = (uintptr_t)dof; |
13700 | dtrace_ecbdesc_t *ep; |
13701 | dtrace_enabling_t *enab; |
13702 | uint_t i; |
13703 | |
13704 | LCK_MTX_ASSERT(&dtrace_lock, LCK_MTX_ASSERT_OWNED); |
13705 | ASSERT(dof->dofh_loadsz >= sizeof (dof_hdr_t)); |
13706 | |
13707 | /* |
13708 | * Check the DOF header identification bytes. In addition to checking |
13709 | * valid settings, we also verify that unused bits/bytes are zeroed so |
13710 | * we can use them later without fear of regressing existing binaries. |
13711 | */ |
13712 | if (bcmp(s1: &dof->dofh_ident[DOF_ID_MAG0], |
13713 | DOF_MAG_STRING, DOF_MAG_STRLEN) != 0) { |
13714 | dtrace_dof_error(dof, str: "DOF magic string mismatch" ); |
13715 | return (-1); |
13716 | } |
13717 | |
13718 | if (dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_ILP32 && |
13719 | dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_LP64) { |
13720 | dtrace_dof_error(dof, str: "DOF has invalid data model" ); |
13721 | return (-1); |
13722 | } |
13723 | |
13724 | if (dof->dofh_ident[DOF_ID_ENCODING] != DOF_ENCODE_NATIVE) { |
13725 | dtrace_dof_error(dof, str: "DOF encoding mismatch" ); |
13726 | return (-1); |
13727 | } |
13728 | |
13729 | /* |
13730 | * APPLE NOTE: Darwin only supports DOF_VERSION_3 for now. |
13731 | */ |
13732 | if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_3) { |
13733 | dtrace_dof_error(dof, str: "DOF version mismatch" ); |
13734 | return (-1); |
13735 | } |
13736 | |
13737 | if (dof->dofh_ident[DOF_ID_DIFVERS] != DIF_VERSION_2) { |
13738 | dtrace_dof_error(dof, str: "DOF uses unsupported instruction set" ); |
13739 | return (-1); |
13740 | } |
13741 | |
13742 | if (dof->dofh_ident[DOF_ID_DIFIREG] > DIF_DIR_NREGS) { |
13743 | dtrace_dof_error(dof, str: "DOF uses too many integer registers" ); |
13744 | return (-1); |
13745 | } |
13746 | |
13747 | if (dof->dofh_ident[DOF_ID_DIFTREG] > DIF_DTR_NREGS) { |
13748 | dtrace_dof_error(dof, str: "DOF uses too many tuple registers" ); |
13749 | return (-1); |
13750 | } |
13751 | |
13752 | for (i = DOF_ID_PAD; i < DOF_ID_SIZE; i++) { |
13753 | if (dof->dofh_ident[i] != 0) { |
13754 | dtrace_dof_error(dof, str: "DOF has invalid ident byte set" ); |
13755 | return (-1); |
13756 | } |
13757 | } |
13758 | |
13759 | if (dof->dofh_flags & ~DOF_FL_VALID) { |
13760 | dtrace_dof_error(dof, str: "DOF has invalid flag bits set" ); |
13761 | return (-1); |
13762 | } |
13763 | |
13764 | if (dof->dofh_secsize < sizeof(dof_sec_t)) { |
13765 | dtrace_dof_error(dof, str: "invalid section header size" ); |
13766 | return (-1); |
13767 | } |
13768 | |
13769 | /* |
13770 | * Check that the section headers don't exceed the amount of DOF |
13771 | * data. Note that we cast the section size and number of sections |
13772 | * to uint64_t's to prevent possible overflow in the multiplication. |
13773 | */ |
13774 | seclen = (uint64_t)dof->dofh_secnum * (uint64_t)dof->dofh_secsize; |
13775 | |
13776 | if (dof->dofh_secoff > len || seclen > len || |
13777 | dof->dofh_secoff + seclen > len) { |
13778 | dtrace_dof_error(dof, str: "truncated section headers" ); |
13779 | return (-1); |
13780 | } |
13781 | |
13782 | if (!IS_P2ALIGNED(dof->dofh_secoff, sizeof (uint64_t))) { |
13783 | dtrace_dof_error(dof, str: "misaligned section headers" ); |
13784 | return (-1); |
13785 | } |
13786 | |
13787 | if (!IS_P2ALIGNED(dof->dofh_secsize, sizeof (uint64_t))) { |
13788 | dtrace_dof_error(dof, str: "misaligned section size" ); |
13789 | return (-1); |
13790 | } |
13791 | |
13792 | /* |
13793 | * Take an initial pass through the section headers to be sure that |
13794 | * the headers don't have stray offsets. If the 'noprobes' flag is |
13795 | * set, do not permit sections relating to providers, probes, or args. |
13796 | */ |
13797 | for (i = 0; i < dof->dofh_secnum; i++) { |
13798 | dof_sec_t *sec = (dof_sec_t *)(daddr + |
13799 | (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); |
13800 | |
13801 | if (noprobes) { |
13802 | switch (sec->dofs_type) { |
13803 | case DOF_SECT_PROVIDER: |
13804 | case DOF_SECT_PROBES: |
13805 | case DOF_SECT_PRARGS: |
13806 | case DOF_SECT_PROFFS: |
13807 | dtrace_dof_error(dof, str: "illegal sections " |
13808 | "for enabling" ); |
13809 | return (-1); |
13810 | } |
13811 | } |
13812 | |
13813 | if (sec->dofs_align & (sec->dofs_align - 1)) { |
13814 | dtrace_dof_error(dof, str: "bad section alignment" ); |
13815 | return (-1); |
13816 | } |
13817 | |
13818 | if (sec->dofs_offset & (sec->dofs_align - 1)) { |
13819 | dtrace_dof_error(dof, str: "misaligned section" ); |
13820 | return (-1); |
13821 | } |
13822 | |
13823 | if (sec->dofs_flags & DOF_SECF_LOAD) { |
13824 | len = dof->dofh_loadsz; |
13825 | } else { |
13826 | len = dof->dofh_filesz; |
13827 | } |
13828 | |
13829 | if (sec->dofs_offset > len || sec->dofs_size > len || |
13830 | sec->dofs_offset + sec->dofs_size > len) { |
13831 | dtrace_dof_error(dof, str: "corrupt section header" ); |
13832 | return (-1); |
13833 | } |
13834 | |
13835 | if (sec->dofs_type == DOF_SECT_STRTAB && *((char *)daddr + |
13836 | sec->dofs_offset + sec->dofs_size - 1) != '\0') { |
13837 | dtrace_dof_error(dof, str: "non-terminating string table" ); |
13838 | return (-1); |
13839 | } |
13840 | } |
13841 | |
13842 | /* |
13843 | * APPLE NOTE: We have no further relocation to perform. |
13844 | * All dof values are relative offsets. |
13845 | */ |
13846 | |
13847 | if ((enab = *enabp) == NULL) |
13848 | enab = *enabp = dtrace_enabling_create(vstate); |
13849 | |
13850 | for (i = 0; i < dof->dofh_secnum; i++) { |
13851 | dof_sec_t *sec = (dof_sec_t *)(daddr + |
13852 | (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); |
13853 | |
13854 | if (sec->dofs_type != DOF_SECT_ECBDESC) |
13855 | continue; |
13856 | |
13857 | /* |
13858 | * APPLE NOTE: Defend against gcc 4.0 botch on x86. |
13859 | * not all paths out of inlined dtrace_dof_ecbdesc |
13860 | * are checked for the NULL return value. |
13861 | * Check for NULL explicitly here. |
13862 | */ |
13863 | ep = dtrace_dof_ecbdesc(dof, sec, vstate, cr); |
13864 | if (ep == NULL) { |
13865 | dtrace_enabling_destroy(enab); |
13866 | *enabp = NULL; |
13867 | return (-1); |
13868 | } |
13869 | |
13870 | dtrace_enabling_add(enab, ecb: ep); |
13871 | } |
13872 | |
13873 | return (0); |
13874 | } |
13875 | |
13876 | /* |
13877 | * Process DOF for any options. This routine assumes that the DOF has been |
13878 | * at least processed by dtrace_dof_slurp(). |
13879 | */ |
13880 | static int |
13881 | dtrace_dof_options(dof_hdr_t *dof, dtrace_state_t *state) |
13882 | { |
13883 | uint_t i; |
13884 | int rval; |
13885 | uint32_t entsize; |
13886 | size_t offs; |
13887 | dof_optdesc_t *desc; |
13888 | |
13889 | for (i = 0; i < dof->dofh_secnum; i++) { |
13890 | dof_sec_t *sec = (dof_sec_t *)((uintptr_t)dof + |
13891 | (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); |
13892 | |
13893 | if (sec->dofs_type != DOF_SECT_OPTDESC) |
13894 | continue; |
13895 | |
13896 | if (sec->dofs_align != sizeof (uint64_t)) { |
13897 | dtrace_dof_error(dof, str: "bad alignment in " |
13898 | "option description" ); |
13899 | return (EINVAL); |
13900 | } |
13901 | |
13902 | if ((entsize = sec->dofs_entsize) == 0) { |
13903 | dtrace_dof_error(dof, str: "zeroed option entry size" ); |
13904 | return (EINVAL); |
13905 | } |
13906 | |
13907 | if (entsize < sizeof (dof_optdesc_t)) { |
13908 | dtrace_dof_error(dof, str: "bad option entry size" ); |
13909 | return (EINVAL); |
13910 | } |
13911 | |
13912 | for (offs = 0; offs < sec->dofs_size; offs += entsize) { |
13913 | desc = (dof_optdesc_t *)((uintptr_t)dof + |
13914 | (uintptr_t)sec->dofs_offset + offs); |
13915 | |
13916 | if (desc->dofo_strtab != DOF_SECIDX_NONE) { |
13917 | dtrace_dof_error(dof, str: "non-zero option string" ); |
13918 | return (EINVAL); |
13919 | } |
13920 | |
13921 | if (desc->dofo_value == (uint64_t)DTRACEOPT_UNSET) { |
13922 | dtrace_dof_error(dof, str: "unset option" ); |
13923 | return (EINVAL); |
13924 | } |
13925 | |
13926 | if ((rval = dtrace_state_option(state, |
13927 | desc->dofo_option, desc->dofo_value)) != 0) { |
13928 | dtrace_dof_error(dof, str: "rejected option" ); |
13929 | return (rval); |
13930 | } |
13931 | } |
13932 | } |
13933 | |
13934 | return (0); |
13935 | } |
13936 | |
13937 | /* |
13938 | * DTrace Consumer State Functions |
13939 | */ |
13940 | static int |
13941 | dtrace_dstate_init(dtrace_dstate_t *dstate, size_t size) |
13942 | { |
13943 | size_t hashsize, maxper, min_size, chunksize = dstate->dtds_chunksize; |
13944 | void *base; |
13945 | uintptr_t limit; |
13946 | dtrace_dynvar_t *dvar, *next, *start; |
13947 | |
13948 | LCK_MTX_ASSERT(&dtrace_lock, LCK_MTX_ASSERT_OWNED); |
13949 | ASSERT(dstate->dtds_base == NULL && dstate->dtds_percpu == NULL); |
13950 | |
13951 | bzero(s: dstate, n: sizeof (dtrace_dstate_t)); |
13952 | |
13953 | if ((dstate->dtds_chunksize = chunksize) == 0) |
13954 | dstate->dtds_chunksize = DTRACE_DYNVAR_CHUNKSIZE; |
13955 | |
13956 | VERIFY(dstate->dtds_chunksize < (LONG_MAX - sizeof (dtrace_dynhash_t))); |
13957 | |
13958 | if (size < (min_size = dstate->dtds_chunksize + sizeof (dtrace_dynhash_t))) |
13959 | size = min_size; |
13960 | |
13961 | if ((base = kmem_zalloc(size, KM_NOSLEEP)) == NULL) |
13962 | return (ENOMEM); |
13963 | |
13964 | dstate->dtds_size = size; |
13965 | dstate->dtds_base = base; |
13966 | dstate->dtds_percpu = zalloc_percpu(dtrace_state_pcpu_zone, Z_WAITOK | Z_ZERO); |
13967 | |
13968 | hashsize = size / (dstate->dtds_chunksize + sizeof (dtrace_dynhash_t)); |
13969 | |
13970 | if (hashsize != 1 && (hashsize & 1)) |
13971 | hashsize--; |
13972 | |
13973 | dstate->dtds_hashsize = hashsize; |
13974 | dstate->dtds_hash = dstate->dtds_base; |
13975 | |
13976 | /* |
13977 | * Set all of our hash buckets to point to the single sink, and (if |
13978 | * it hasn't already been set), set the sink's hash value to be the |
13979 | * sink sentinel value. The sink is needed for dynamic variable |
13980 | * lookups to know that they have iterated over an entire, valid hash |
13981 | * chain. |
13982 | */ |
13983 | for (size_t i = 0; i < hashsize; i++) |
13984 | dstate->dtds_hash[i].dtdh_chain = &dtrace_dynhash_sink; |
13985 | |
13986 | if (dtrace_dynhash_sink.dtdv_hashval != DTRACE_DYNHASH_SINK) |
13987 | dtrace_dynhash_sink.dtdv_hashval = DTRACE_DYNHASH_SINK; |
13988 | |
13989 | /* |
13990 | * Determine number of active CPUs. Divide free list evenly among |
13991 | * active CPUs. |
13992 | */ |
13993 | start = (dtrace_dynvar_t *) |
13994 | ((uintptr_t)base + hashsize * sizeof (dtrace_dynhash_t)); |
13995 | limit = (uintptr_t)base + size; |
13996 | |
13997 | VERIFY((uintptr_t)start < limit); |
13998 | VERIFY((uintptr_t)start >= (uintptr_t)base); |
13999 | |
14000 | maxper = (limit - (uintptr_t)start) / (int)NCPU; |
14001 | maxper = (maxper / dstate->dtds_chunksize) * dstate->dtds_chunksize; |
14002 | |
14003 | zpercpu_foreach_cpu(i) { |
14004 | dtrace_dstate_percpu_t *dcpu = zpercpu_get_cpu(dstate->dtds_percpu, i); |
14005 | |
14006 | dcpu->dtdsc_free = dvar = start; |
14007 | |
14008 | /* |
14009 | * If we don't even have enough chunks to make it once through |
14010 | * NCPUs, we're just going to allocate everything to the first |
14011 | * CPU. And if we're on the last CPU, we're going to allocate |
14012 | * whatever is left over. In either case, we set the limit to |
14013 | * be the limit of the dynamic variable space. |
14014 | */ |
14015 | if (maxper == 0 || i == NCPU - 1) { |
14016 | limit = (uintptr_t)base + size; |
14017 | start = NULL; |
14018 | } else { |
14019 | limit = (uintptr_t)start + maxper; |
14020 | start = (dtrace_dynvar_t *)limit; |
14021 | } |
14022 | |
14023 | VERIFY(limit <= (uintptr_t)base + size); |
14024 | |
14025 | for (;;) { |
14026 | next = (dtrace_dynvar_t *)((uintptr_t)dvar + |
14027 | dstate->dtds_chunksize); |
14028 | |
14029 | if ((uintptr_t)next + dstate->dtds_chunksize >= limit) |
14030 | break; |
14031 | |
14032 | VERIFY((uintptr_t)dvar >= (uintptr_t)base && |
14033 | (uintptr_t)dvar <= (uintptr_t)base + size); |
14034 | dvar->dtdv_next = next; |
14035 | dvar = next; |
14036 | } |
14037 | |
14038 | if (maxper == 0) |
14039 | break; |
14040 | } |
14041 | |
14042 | return (0); |
14043 | } |
14044 | |
14045 | static void |
14046 | dtrace_dstate_fini(dtrace_dstate_t *dstate) |
14047 | { |
14048 | LCK_MTX_ASSERT(&cpu_lock, LCK_MTX_ASSERT_OWNED); |
14049 | |
14050 | if (dstate->dtds_base == NULL) |
14051 | return; |
14052 | |
14053 | kmem_free(dstate->dtds_base, dstate->dtds_size); |
14054 | zfree_percpu(zone_or_view: dtrace_state_pcpu_zone, addr: dstate->dtds_percpu); |
14055 | } |
14056 | |
14057 | static void |
14058 | dtrace_vstate_fini(dtrace_vstate_t *vstate) |
14059 | { |
14060 | /* |
14061 | * Logical XOR, where are you? |
14062 | */ |
14063 | ASSERT((vstate->dtvs_nglobals == 0) ^ (vstate->dtvs_globals != NULL)); |
14064 | |
14065 | if (vstate->dtvs_nglobals > 0) { |
14066 | kmem_free(vstate->dtvs_globals, vstate->dtvs_nglobals * |
14067 | sizeof (dtrace_statvar_t *)); |
14068 | } |
14069 | |
14070 | if (vstate->dtvs_ntlocals > 0) { |
14071 | kmem_free(vstate->dtvs_tlocals, vstate->dtvs_ntlocals * |
14072 | sizeof (dtrace_difv_t)); |
14073 | } |
14074 | |
14075 | ASSERT((vstate->dtvs_nlocals == 0) ^ (vstate->dtvs_locals != NULL)); |
14076 | |
14077 | if (vstate->dtvs_nlocals > 0) { |
14078 | kmem_free(vstate->dtvs_locals, vstate->dtvs_nlocals * |
14079 | sizeof (dtrace_statvar_t *)); |
14080 | } |
14081 | } |
14082 | |
14083 | static void |
14084 | dtrace_state_clean(dtrace_state_t *state) |
14085 | { |
14086 | if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) |
14087 | return; |
14088 | |
14089 | dtrace_dynvar_clean(dstate: &state->dts_vstate.dtvs_dynvars); |
14090 | dtrace_speculation_clean(state); |
14091 | } |
14092 | |
14093 | static void |
14094 | dtrace_state_deadman(dtrace_state_t *state) |
14095 | { |
14096 | hrtime_t now; |
14097 | |
14098 | dtrace_sync(); |
14099 | |
14100 | now = dtrace_gethrtime(); |
14101 | |
14102 | if (state != dtrace_anon.dta_state && |
14103 | now - state->dts_laststatus >= dtrace_deadman_user) |
14104 | return; |
14105 | |
14106 | /* |
14107 | * We must be sure that dts_alive never appears to be less than the |
14108 | * value upon entry to dtrace_state_deadman(), and because we lack a |
14109 | * dtrace_cas64(), we cannot store to it atomically. We thus instead |
14110 | * store INT64_MAX to it, followed by a memory barrier, followed by |
14111 | * the new value. This assures that dts_alive never appears to be |
14112 | * less than its true value, regardless of the order in which the |
14113 | * stores to the underlying storage are issued. |
14114 | */ |
14115 | state->dts_alive = INT64_MAX; |
14116 | dtrace_membar_producer(); |
14117 | state->dts_alive = now; |
14118 | } |
14119 | |
14120 | static int |
14121 | dtrace_state_create(dev_t *devp, cred_t *cr, dtrace_state_t **new_state) |
14122 | { |
14123 | minor_t minor; |
14124 | major_t major; |
14125 | char c[30]; |
14126 | dtrace_state_t *state; |
14127 | dtrace_optval_t *opt; |
14128 | int bufsize = (int)NCPU * sizeof (dtrace_buffer_t), i; |
14129 | unsigned int cpu_it; |
14130 | |
14131 | LCK_MTX_ASSERT(&dtrace_lock, LCK_MTX_ASSERT_OWNED); |
14132 | LCK_MTX_ASSERT(&cpu_lock, LCK_MTX_ASSERT_OWNED); |
14133 | |
14134 | /* Cause restart */ |
14135 | *new_state = NULL; |
14136 | |
14137 | if (devp != NULL) { |
14138 | minor = getminor(*devp); |
14139 | } |
14140 | else { |
14141 | minor = DTRACE_NCLIENTS - 1; |
14142 | } |
14143 | |
14144 | state = dtrace_state_allocate(minor); |
14145 | if (NULL == state) { |
14146 | printf("dtrace_open: couldn't acquire minor number %d. This usually means that too many DTrace clients are in use at the moment" , minor); |
14147 | return (ERESTART); /* can't reacquire */ |
14148 | } |
14149 | |
14150 | state->dts_epid = DTRACE_EPIDNONE + 1; |
14151 | |
14152 | (void) snprintf(c, count: sizeof (c), "dtrace_aggid_%d" , minor); |
14153 | state->dts_aggid_arena = vmem_create(c, (void *)1, INT32_MAX, 1, |
14154 | NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER); |
14155 | |
14156 | if (devp != NULL) { |
14157 | major = getemajor(*devp); |
14158 | } else { |
14159 | major = ddi_driver_major(dtrace_devi); |
14160 | } |
14161 | |
14162 | state->dts_dev = makedev(major, minor); |
14163 | |
14164 | if (devp != NULL) |
14165 | *devp = state->dts_dev; |
14166 | |
14167 | /* |
14168 | * We allocate NCPU buffers. On the one hand, this can be quite |
14169 | * a bit of memory per instance (nearly 36K on a Starcat). On the |
14170 | * other hand, it saves an additional memory reference in the probe |
14171 | * path. |
14172 | */ |
14173 | state->dts_buffer = kmem_zalloc(bufsize, KM_SLEEP); |
14174 | state->dts_aggbuffer = kmem_zalloc(bufsize, KM_SLEEP); |
14175 | state->dts_buf_over_limit = 0; |
14176 | |
14177 | /* |
14178 | * Allocate and initialise the per-process per-CPU random state. |
14179 | * SI_SUB_RANDOM < SI_SUB_DTRACE_ANON therefore entropy device is |
14180 | * assumed to be seeded at this point (if from Fortuna seed file). |
14181 | */ |
14182 | state->dts_rstate = kmem_zalloc(NCPU * sizeof(uint64_t*), KM_SLEEP); |
14183 | state->dts_rstate[0] = kmem_zalloc(2 * sizeof(uint64_t), KM_SLEEP); |
14184 | (void) read_random(buffer: state->dts_rstate[0], numBytes: 2 * sizeof(uint64_t)); |
14185 | for (cpu_it = 1; cpu_it < NCPU; cpu_it++) { |
14186 | state->dts_rstate[cpu_it] = kmem_zalloc(2 * sizeof(uint64_t), KM_SLEEP); |
14187 | /* |
14188 | * Each CPU is assigned a 2^64 period, non-overlapping |
14189 | * subsequence. |
14190 | */ |
14191 | dtrace_xoroshiro128_plus_jump(state->dts_rstate[cpu_it-1], |
14192 | state->dts_rstate[cpu_it]); |
14193 | } |
14194 | |
14195 | state->dts_cleaner = CYCLIC_NONE; |
14196 | state->dts_deadman = CYCLIC_NONE; |
14197 | state->dts_vstate.dtvs_state = state; |
14198 | |
14199 | for (i = 0; i < DTRACEOPT_MAX; i++) |
14200 | state->dts_options[i] = DTRACEOPT_UNSET; |
14201 | |
14202 | /* |
14203 | * Set the default options. |
14204 | */ |
14205 | opt = state->dts_options; |
14206 | opt[DTRACEOPT_BUFPOLICY] = DTRACEOPT_BUFPOLICY_SWITCH; |
14207 | opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_AUTO; |
14208 | opt[DTRACEOPT_NSPEC] = dtrace_nspec_default; |
14209 | opt[DTRACEOPT_SPECSIZE] = dtrace_specsize_default; |
14210 | opt[DTRACEOPT_CPU] = (dtrace_optval_t)DTRACE_CPUALL; |
14211 | opt[DTRACEOPT_STRSIZE] = dtrace_strsize_default; |
14212 | opt[DTRACEOPT_STACKFRAMES] = dtrace_stackframes_default; |
14213 | opt[DTRACEOPT_USTACKFRAMES] = dtrace_ustackframes_default; |
14214 | opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_default; |
14215 | opt[DTRACEOPT_AGGRATE] = dtrace_aggrate_default; |
14216 | opt[DTRACEOPT_SWITCHRATE] = dtrace_switchrate_default; |
14217 | opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_default; |
14218 | opt[DTRACEOPT_JSTACKFRAMES] = dtrace_jstackframes_default; |
14219 | opt[DTRACEOPT_JSTACKSTRSIZE] = dtrace_jstackstrsize_default; |
14220 | opt[DTRACEOPT_BUFLIMIT] = dtrace_buflimit_default; |
14221 | |
14222 | /* |
14223 | * Depending on the user credentials, we set flag bits which alter probe |
14224 | * visibility or the amount of destructiveness allowed. In the case of |
14225 | * actual anonymous tracing, or the possession of all privileges, all of |
14226 | * the normal checks are bypassed. |
14227 | */ |
14228 | #if defined(__APPLE__) |
14229 | if (cr != NULL) { |
14230 | kauth_cred_ref(cred: cr); |
14231 | state->dts_cred.dcr_cred = cr; |
14232 | } |
14233 | if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) { |
14234 | if (dtrace_is_restricted() && !dtrace_are_restrictions_relaxed()) { |
14235 | /* |
14236 | * Allow only proc credentials when DTrace is |
14237 | * restricted by the current security policy |
14238 | */ |
14239 | state->dts_cred.dcr_visible = DTRACE_CRV_ALLPROC; |
14240 | state->dts_cred.dcr_action = DTRACE_CRA_PROC | DTRACE_CRA_PROC_CONTROL | DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; |
14241 | } |
14242 | else { |
14243 | state->dts_cred.dcr_visible = DTRACE_CRV_ALL; |
14244 | state->dts_cred.dcr_action = DTRACE_CRA_ALL; |
14245 | } |
14246 | } |
14247 | |
14248 | #else |
14249 | if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) { |
14250 | state->dts_cred.dcr_visible = DTRACE_CRV_ALL; |
14251 | state->dts_cred.dcr_action = DTRACE_CRA_ALL; |
14252 | } |
14253 | else { |
14254 | /* |
14255 | * Set up the credentials for this instantiation. We take a |
14256 | * hold on the credential to prevent it from disappearing on |
14257 | * us; this in turn prevents the zone_t referenced by this |
14258 | * credential from disappearing. This means that we can |
14259 | * examine the credential and the zone from probe context. |
14260 | */ |
14261 | crhold(cr); |
14262 | state->dts_cred.dcr_cred = cr; |
14263 | |
14264 | /* |
14265 | * CRA_PROC means "we have *some* privilege for dtrace" and |
14266 | * unlocks the use of variables like pid, zonename, etc. |
14267 | */ |
14268 | if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE) || |
14269 | PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) { |
14270 | state->dts_cred.dcr_action |= DTRACE_CRA_PROC; |
14271 | } |
14272 | |
14273 | /* |
14274 | * dtrace_user allows use of syscall and profile providers. |
14275 | * If the user also has proc_owner and/or proc_zone, we |
14276 | * extend the scope to include additional visibility and |
14277 | * destructive power. |
14278 | */ |
14279 | if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) { |
14280 | if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) { |
14281 | state->dts_cred.dcr_visible |= |
14282 | DTRACE_CRV_ALLPROC; |
14283 | |
14284 | state->dts_cred.dcr_action |= |
14285 | DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; |
14286 | } |
14287 | |
14288 | if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) { |
14289 | state->dts_cred.dcr_visible |= |
14290 | DTRACE_CRV_ALLZONE; |
14291 | |
14292 | state->dts_cred.dcr_action |= |
14293 | DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; |
14294 | } |
14295 | |
14296 | /* |
14297 | * If we have all privs in whatever zone this is, |
14298 | * we can do destructive things to processes which |
14299 | * have altered credentials. |
14300 | * |
14301 | * APPLE NOTE: Darwin doesn't do zones. |
14302 | * Behave as if zone always has destructive privs. |
14303 | */ |
14304 | |
14305 | state->dts_cred.dcr_action |= |
14306 | DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG; |
14307 | } |
14308 | |
14309 | /* |
14310 | * Holding the dtrace_kernel privilege also implies that |
14311 | * the user has the dtrace_user privilege from a visibility |
14312 | * perspective. But without further privileges, some |
14313 | * destructive actions are not available. |
14314 | */ |
14315 | if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) { |
14316 | /* |
14317 | * Make all probes in all zones visible. However, |
14318 | * this doesn't mean that all actions become available |
14319 | * to all zones. |
14320 | */ |
14321 | state->dts_cred.dcr_visible |= DTRACE_CRV_KERNEL | |
14322 | DTRACE_CRV_ALLPROC | DTRACE_CRV_ALLZONE; |
14323 | |
14324 | state->dts_cred.dcr_action |= DTRACE_CRA_KERNEL | |
14325 | DTRACE_CRA_PROC; |
14326 | /* |
14327 | * Holding proc_owner means that destructive actions |
14328 | * for *this* zone are allowed. |
14329 | */ |
14330 | if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) |
14331 | state->dts_cred.dcr_action |= |
14332 | DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; |
14333 | |
14334 | /* |
14335 | * Holding proc_zone means that destructive actions |
14336 | * for this user/group ID in all zones is allowed. |
14337 | */ |
14338 | if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) |
14339 | state->dts_cred.dcr_action |= |
14340 | DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; |
14341 | |
14342 | /* |
14343 | * If we have all privs in whatever zone this is, |
14344 | * we can do destructive things to processes which |
14345 | * have altered credentials. |
14346 | * |
14347 | * APPLE NOTE: Darwin doesn't do zones. |
14348 | * Behave as if zone always has destructive privs. |
14349 | */ |
14350 | state->dts_cred.dcr_action |= |
14351 | DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG; |
14352 | } |
14353 | |
14354 | /* |
14355 | * Holding the dtrace_proc privilege gives control over fasttrap |
14356 | * and pid providers. We need to grant wider destructive |
14357 | * privileges in the event that the user has proc_owner and/or |
14358 | * proc_zone. |
14359 | */ |
14360 | if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) { |
14361 | if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) |
14362 | state->dts_cred.dcr_action |= |
14363 | DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; |
14364 | |
14365 | if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) |
14366 | state->dts_cred.dcr_action |= |
14367 | DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; |
14368 | } |
14369 | } |
14370 | #endif |
14371 | |
14372 | *new_state = state; |
14373 | return(0); /* Success */ |
14374 | } |
14375 | |
14376 | static int |
14377 | dtrace_state_buffer(dtrace_state_t *state, dtrace_buffer_t *buf, int which) |
14378 | { |
14379 | dtrace_optval_t *opt = state->dts_options, size; |
14380 | processorid_t cpu = 0; |
14381 | size_t limit = buf->dtb_size; |
14382 | int flags = 0, rval; |
14383 | |
14384 | LCK_MTX_ASSERT(&dtrace_lock, LCK_MTX_ASSERT_OWNED); |
14385 | LCK_MTX_ASSERT(&cpu_lock, LCK_MTX_ASSERT_OWNED); |
14386 | ASSERT(which < DTRACEOPT_MAX); |
14387 | ASSERT(state->dts_activity == DTRACE_ACTIVITY_INACTIVE || |
14388 | (state == dtrace_anon.dta_state && |
14389 | state->dts_activity == DTRACE_ACTIVITY_ACTIVE)); |
14390 | |
14391 | if (opt[which] == DTRACEOPT_UNSET || opt[which] == 0) |
14392 | return (0); |
14393 | |
14394 | if (opt[DTRACEOPT_CPU] != DTRACEOPT_UNSET) |
14395 | cpu = opt[DTRACEOPT_CPU]; |
14396 | |
14397 | if (which == DTRACEOPT_SPECSIZE) |
14398 | flags |= DTRACEBUF_NOSWITCH; |
14399 | |
14400 | if (which == DTRACEOPT_BUFSIZE) { |
14401 | if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_RING) |
14402 | flags |= DTRACEBUF_RING; |
14403 | |
14404 | if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_FILL) |
14405 | flags |= DTRACEBUF_FILL; |
14406 | |
14407 | if (state != dtrace_anon.dta_state || |
14408 | state->dts_activity != DTRACE_ACTIVITY_ACTIVE) |
14409 | flags |= DTRACEBUF_INACTIVE; |
14410 | } |
14411 | |
14412 | for (size = opt[which]; (size_t)size >= sizeof (uint64_t); size >>= 1) { |
14413 | /* |
14414 | * The size must be 8-byte aligned. If the size is not 8-byte |
14415 | * aligned, drop it down by the difference. |
14416 | */ |
14417 | if (size & (sizeof (uint64_t) - 1)) |
14418 | size -= size & (sizeof (uint64_t) - 1); |
14419 | |
14420 | if (size < state->dts_reserve) { |
14421 | /* |
14422 | * Buffers always must be large enough to accommodate |
14423 | * their prereserved space. We return E2BIG instead |
14424 | * of ENOMEM in this case to allow for user-level |
14425 | * software to differentiate the cases. |
14426 | */ |
14427 | return (E2BIG); |
14428 | } |
14429 | limit = opt[DTRACEOPT_BUFLIMIT] * size / 100; |
14430 | rval = dtrace_buffer_alloc(bufs: buf, limit, size, flags, cpu); |
14431 | |
14432 | if (rval != ENOMEM) { |
14433 | opt[which] = size; |
14434 | return (rval); |
14435 | } |
14436 | |
14437 | if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL) |
14438 | return (rval); |
14439 | } |
14440 | |
14441 | return (ENOMEM); |
14442 | } |
14443 | |
14444 | static int |
14445 | dtrace_state_buffers(dtrace_state_t *state) |
14446 | { |
14447 | dtrace_speculation_t *spec = state->dts_speculations; |
14448 | int rval, i; |
14449 | |
14450 | if ((rval = dtrace_state_buffer(state, buf: state->dts_buffer, |
14451 | DTRACEOPT_BUFSIZE)) != 0) |
14452 | return (rval); |
14453 | |
14454 | if ((rval = dtrace_state_buffer(state, buf: state->dts_aggbuffer, |
14455 | DTRACEOPT_AGGSIZE)) != 0) |
14456 | return (rval); |
14457 | |
14458 | for (i = 0; i < state->dts_nspeculations; i++) { |
14459 | if ((rval = dtrace_state_buffer(state, |
14460 | buf: spec[i].dtsp_buffer, DTRACEOPT_SPECSIZE)) != 0) |
14461 | return (rval); |
14462 | } |
14463 | |
14464 | return (0); |
14465 | } |
14466 | |
14467 | static void |
14468 | dtrace_state_prereserve(dtrace_state_t *state) |
14469 | { |
14470 | dtrace_ecb_t *ecb; |
14471 | dtrace_probe_t *probe; |
14472 | |
14473 | state->dts_reserve = 0; |
14474 | |
14475 | if (state->dts_options[DTRACEOPT_BUFPOLICY] != DTRACEOPT_BUFPOLICY_FILL) |
14476 | return; |
14477 | |
14478 | /* |
14479 | * If our buffer policy is a "fill" buffer policy, we need to set the |
14480 | * prereserved space to be the space required by the END probes. |
14481 | */ |
14482 | probe = dtrace_probes[dtrace_probeid_end - 1]; |
14483 | ASSERT(probe != NULL); |
14484 | |
14485 | for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) { |
14486 | if (ecb->dte_state != state) |
14487 | continue; |
14488 | |
14489 | state->dts_reserve += ecb->dte_needed + ecb->dte_alignment; |
14490 | } |
14491 | } |
14492 | |
14493 | static int |
14494 | dtrace_state_go(dtrace_state_t *state, processorid_t *cpu) |
14495 | { |
14496 | dtrace_optval_t *opt = state->dts_options, sz, nspec; |
14497 | dtrace_speculation_t *spec; |
14498 | dtrace_buffer_t *buf; |
14499 | cyc_handler_t hdlr; |
14500 | cyc_time_t when; |
14501 | int rval = 0, i, bufsize = (int)NCPU * sizeof (dtrace_buffer_t); |
14502 | dtrace_icookie_t cookie; |
14503 | |
14504 | lck_mtx_lock(lck: &cpu_lock); |
14505 | lck_mtx_lock(lck: &dtrace_lock); |
14506 | |
14507 | if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) { |
14508 | rval = EBUSY; |
14509 | goto out; |
14510 | } |
14511 | |
14512 | /* |
14513 | * Before we can perform any checks, we must prime all of the |
14514 | * retained enablings that correspond to this state. |
14515 | */ |
14516 | dtrace_enabling_prime(state); |
14517 | |
14518 | if (state->dts_destructive && !state->dts_cred.dcr_destructive) { |
14519 | rval = EACCES; |
14520 | goto out; |
14521 | } |
14522 | |
14523 | dtrace_state_prereserve(state); |
14524 | |
14525 | /* |
14526 | * Now we want to do is try to allocate our speculations. |
14527 | * We do not automatically resize the number of speculations; if |
14528 | * this fails, we will fail the operation. |
14529 | */ |
14530 | nspec = opt[DTRACEOPT_NSPEC]; |
14531 | ASSERT(nspec != DTRACEOPT_UNSET); |
14532 | |
14533 | if (nspec > INT_MAX) { |
14534 | rval = ENOMEM; |
14535 | goto out; |
14536 | } |
14537 | |
14538 | spec = kmem_zalloc(nspec * sizeof (dtrace_speculation_t), KM_NOSLEEP); |
14539 | |
14540 | if (spec == NULL) { |
14541 | rval = ENOMEM; |
14542 | goto out; |
14543 | } |
14544 | |
14545 | state->dts_speculations = spec; |
14546 | state->dts_nspeculations = (int)nspec; |
14547 | |
14548 | for (i = 0; i < nspec; i++) { |
14549 | if ((buf = kmem_zalloc(bufsize, KM_NOSLEEP)) == NULL) { |
14550 | rval = ENOMEM; |
14551 | goto err; |
14552 | } |
14553 | |
14554 | spec[i].dtsp_buffer = buf; |
14555 | } |
14556 | |
14557 | if (opt[DTRACEOPT_GRABANON] != DTRACEOPT_UNSET) { |
14558 | if (dtrace_anon.dta_state == NULL) { |
14559 | rval = ENOENT; |
14560 | goto out; |
14561 | } |
14562 | |
14563 | if (state->dts_necbs != 0) { |
14564 | rval = EALREADY; |
14565 | goto out; |
14566 | } |
14567 | |
14568 | state->dts_anon = dtrace_anon_grab(); |
14569 | ASSERT(state->dts_anon != NULL); |
14570 | state = state->dts_anon; |
14571 | |
14572 | /* |
14573 | * We want "grabanon" to be set in the grabbed state, so we'll |
14574 | * copy that option value from the grabbing state into the |
14575 | * grabbed state. |
14576 | */ |
14577 | state->dts_options[DTRACEOPT_GRABANON] = |
14578 | opt[DTRACEOPT_GRABANON]; |
14579 | |
14580 | *cpu = dtrace_anon.dta_beganon; |
14581 | |
14582 | /* |
14583 | * If the anonymous state is active (as it almost certainly |
14584 | * is if the anonymous enabling ultimately matched anything), |
14585 | * we don't allow any further option processing -- but we |
14586 | * don't return failure. |
14587 | */ |
14588 | if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) |
14589 | goto out; |
14590 | } |
14591 | |
14592 | if (opt[DTRACEOPT_AGGSIZE] != DTRACEOPT_UNSET && |
14593 | opt[DTRACEOPT_AGGSIZE] != 0) { |
14594 | if (state->dts_aggregations == NULL) { |
14595 | /* |
14596 | * We're not going to create an aggregation buffer |
14597 | * because we don't have any ECBs that contain |
14598 | * aggregations -- set this option to 0. |
14599 | */ |
14600 | opt[DTRACEOPT_AGGSIZE] = 0; |
14601 | } else { |
14602 | /* |
14603 | * If we have an aggregation buffer, we must also have |
14604 | * a buffer to use as scratch. |
14605 | */ |
14606 | if (opt[DTRACEOPT_BUFSIZE] == DTRACEOPT_UNSET || |
14607 | (size_t)opt[DTRACEOPT_BUFSIZE] < state->dts_needed) { |
14608 | opt[DTRACEOPT_BUFSIZE] = state->dts_needed; |
14609 | } |
14610 | } |
14611 | } |
14612 | |
14613 | if (opt[DTRACEOPT_SPECSIZE] != DTRACEOPT_UNSET && |
14614 | opt[DTRACEOPT_SPECSIZE] != 0) { |
14615 | if (!state->dts_speculates) { |
14616 | /* |
14617 | * We're not going to create speculation buffers |
14618 | * because we don't have any ECBs that actually |
14619 | * speculate -- set the speculation size to 0. |
14620 | */ |
14621 | opt[DTRACEOPT_SPECSIZE] = 0; |
14622 | } |
14623 | } |
14624 | |
14625 | /* |
14626 | * The bare minimum size for any buffer that we're actually going to |
14627 | * do anything to is sizeof (uint64_t). |
14628 | */ |
14629 | sz = sizeof (uint64_t); |
14630 | |
14631 | if ((state->dts_needed != 0 && opt[DTRACEOPT_BUFSIZE] < sz) || |
14632 | (state->dts_speculates && opt[DTRACEOPT_SPECSIZE] < sz) || |
14633 | (state->dts_aggregations != NULL && opt[DTRACEOPT_AGGSIZE] < sz)) { |
14634 | /* |
14635 | * A buffer size has been explicitly set to 0 (or to a size |
14636 | * that will be adjusted to 0) and we need the space -- we |
14637 | * need to return failure. We return ENOSPC to differentiate |
14638 | * it from failing to allocate a buffer due to failure to meet |
14639 | * the reserve (for which we return E2BIG). |
14640 | */ |
14641 | rval = ENOSPC; |
14642 | goto out; |
14643 | } |
14644 | |
14645 | if ((rval = dtrace_state_buffers(state)) != 0) |
14646 | goto err; |
14647 | |
14648 | if ((sz = opt[DTRACEOPT_DYNVARSIZE]) == DTRACEOPT_UNSET) |
14649 | sz = dtrace_dstate_defsize; |
14650 | |
14651 | do { |
14652 | rval = dtrace_dstate_init(dstate: &state->dts_vstate.dtvs_dynvars, size: sz); |
14653 | |
14654 | if (rval == 0) |
14655 | break; |
14656 | |
14657 | if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL) |
14658 | goto err; |
14659 | } while (sz >>= 1); |
14660 | |
14661 | opt[DTRACEOPT_DYNVARSIZE] = sz; |
14662 | |
14663 | if (rval != 0) |
14664 | goto err; |
14665 | |
14666 | if (opt[DTRACEOPT_STATUSRATE] > dtrace_statusrate_max) |
14667 | opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_max; |
14668 | |
14669 | if (opt[DTRACEOPT_CLEANRATE] == 0) |
14670 | opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max; |
14671 | |
14672 | if (opt[DTRACEOPT_CLEANRATE] < dtrace_cleanrate_min) |
14673 | opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_min; |
14674 | |
14675 | if (opt[DTRACEOPT_CLEANRATE] > dtrace_cleanrate_max) |
14676 | opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max; |
14677 | |
14678 | if (opt[DTRACEOPT_STRSIZE] > dtrace_strsize_max) |
14679 | opt[DTRACEOPT_STRSIZE] = dtrace_strsize_max; |
14680 | |
14681 | if (opt[DTRACEOPT_STRSIZE] < dtrace_strsize_min) |
14682 | opt[DTRACEOPT_STRSIZE] = dtrace_strsize_min; |
14683 | |
14684 | if (opt[DTRACEOPT_BUFLIMIT] > dtrace_buflimit_max) |
14685 | opt[DTRACEOPT_BUFLIMIT] = dtrace_buflimit_max; |
14686 | |
14687 | if (opt[DTRACEOPT_BUFLIMIT] < dtrace_buflimit_min) |
14688 | opt[DTRACEOPT_BUFLIMIT] = dtrace_buflimit_min; |
14689 | |
14690 | hdlr.cyh_func = (cyc_func_t)dtrace_state_clean; |
14691 | hdlr.cyh_arg = state; |
14692 | hdlr.cyh_level = CY_LOW_LEVEL; |
14693 | |
14694 | when.cyt_when = 0; |
14695 | when.cyt_interval = opt[DTRACEOPT_CLEANRATE]; |
14696 | |
14697 | state->dts_cleaner = cyclic_add(&hdlr, &when); |
14698 | |
14699 | hdlr.cyh_func = (cyc_func_t)dtrace_state_deadman; |
14700 | hdlr.cyh_arg = state; |
14701 | hdlr.cyh_level = CY_LOW_LEVEL; |
14702 | |
14703 | when.cyt_when = 0; |
14704 | when.cyt_interval = dtrace_deadman_interval; |
14705 | |
14706 | state->dts_alive = state->dts_laststatus = dtrace_gethrtime(); |
14707 | state->dts_deadman = cyclic_add(&hdlr, &when); |
14708 | |
14709 | state->dts_activity = DTRACE_ACTIVITY_WARMUP; |
14710 | |
14711 | /* |
14712 | * Now it's time to actually fire the BEGIN probe. We need to disable |
14713 | * interrupts here both to record the CPU on which we fired the BEGIN |
14714 | * probe (the data from this CPU will be processed first at user |
14715 | * level) and to manually activate the buffer for this CPU. |
14716 | */ |
14717 | cookie = dtrace_interrupt_disable(); |
14718 | *cpu = CPU->cpu_id; |
14719 | ASSERT(state->dts_buffer[*cpu].dtb_flags & DTRACEBUF_INACTIVE); |
14720 | state->dts_buffer[*cpu].dtb_flags &= ~DTRACEBUF_INACTIVE; |
14721 | |
14722 | dtrace_probe(id: dtrace_probeid_begin, |
14723 | arg0: (uint64_t)(uintptr_t)state, arg1: 0, arg2: 0, arg3: 0, arg4: 0); |
14724 | dtrace_interrupt_enable(cookie); |
14725 | /* |
14726 | * We may have had an exit action from a BEGIN probe; only change our |
14727 | * state to ACTIVE if we're still in WARMUP. |
14728 | */ |
14729 | ASSERT(state->dts_activity == DTRACE_ACTIVITY_WARMUP || |
14730 | state->dts_activity == DTRACE_ACTIVITY_DRAINING); |
14731 | |
14732 | if (state->dts_activity == DTRACE_ACTIVITY_WARMUP) |
14733 | state->dts_activity = DTRACE_ACTIVITY_ACTIVE; |
14734 | |
14735 | /* |
14736 | * Regardless of whether or not now we're in ACTIVE or DRAINING, we |
14737 | * want each CPU to transition its principal buffer out of the |
14738 | * INACTIVE state. Doing this assures that no CPU will suddenly begin |
14739 | * processing an ECB halfway down a probe's ECB chain; all CPUs will |
14740 | * atomically transition from processing none of a state's ECBs to |
14741 | * processing all of them. |
14742 | */ |
14743 | dtrace_xcall(DTRACE_CPUALL, |
14744 | (dtrace_xcall_t)dtrace_buffer_activate, state); |
14745 | goto out; |
14746 | |
14747 | err: |
14748 | dtrace_buffer_free(bufs: state->dts_buffer); |
14749 | dtrace_buffer_free(bufs: state->dts_aggbuffer); |
14750 | |
14751 | if ((nspec = state->dts_nspeculations) == 0) { |
14752 | ASSERT(state->dts_speculations == NULL); |
14753 | goto out; |
14754 | } |
14755 | |
14756 | spec = state->dts_speculations; |
14757 | ASSERT(spec != NULL); |
14758 | |
14759 | for (i = 0; i < state->dts_nspeculations; i++) { |
14760 | if ((buf = spec[i].dtsp_buffer) == NULL) |
14761 | break; |
14762 | |
14763 | dtrace_buffer_free(bufs: buf); |
14764 | kmem_free(buf, bufsize); |
14765 | } |
14766 | |
14767 | kmem_free(spec, nspec * sizeof (dtrace_speculation_t)); |
14768 | state->dts_nspeculations = 0; |
14769 | state->dts_speculations = NULL; |
14770 | |
14771 | out: |
14772 | lck_mtx_unlock(lck: &dtrace_lock); |
14773 | lck_mtx_unlock(lck: &cpu_lock); |
14774 | |
14775 | return (rval); |
14776 | } |
14777 | |
14778 | static int |
14779 | dtrace_state_stop(dtrace_state_t *state, processorid_t *cpu) |
14780 | { |
14781 | dtrace_icookie_t cookie; |
14782 | |
14783 | LCK_MTX_ASSERT(&dtrace_lock, LCK_MTX_ASSERT_OWNED); |
14784 | |
14785 | if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE && |
14786 | state->dts_activity != DTRACE_ACTIVITY_DRAINING) |
14787 | return (EINVAL); |
14788 | |
14789 | /* |
14790 | * We'll set the activity to DTRACE_ACTIVITY_DRAINING, and issue a sync |
14791 | * to be sure that every CPU has seen it. See below for the details |
14792 | * on why this is done. |
14793 | */ |
14794 | state->dts_activity = DTRACE_ACTIVITY_DRAINING; |
14795 | dtrace_sync(); |
14796 | |
14797 | /* |
14798 | * By this point, it is impossible for any CPU to be still processing |
14799 | * with DTRACE_ACTIVITY_ACTIVE. We can thus set our activity to |
14800 | * DTRACE_ACTIVITY_COOLDOWN and know that we're not racing with any |
14801 | * other CPU in dtrace_buffer_reserve(). This allows dtrace_probe() |
14802 | * and callees to know that the activity is DTRACE_ACTIVITY_COOLDOWN |
14803 | * iff we're in the END probe. |
14804 | */ |
14805 | state->dts_activity = DTRACE_ACTIVITY_COOLDOWN; |
14806 | dtrace_sync(); |
14807 | ASSERT(state->dts_activity == DTRACE_ACTIVITY_COOLDOWN); |
14808 | |
14809 | /* |
14810 | * Finally, we can release the reserve and call the END probe. We |
14811 | * disable interrupts across calling the END probe to allow us to |
14812 | * return the CPU on which we actually called the END probe. This |
14813 | * allows user-land to be sure that this CPU's principal buffer is |
14814 | * processed last. |
14815 | */ |
14816 | state->dts_reserve = 0; |
14817 | |
14818 | cookie = dtrace_interrupt_disable(); |
14819 | *cpu = CPU->cpu_id; |
14820 | dtrace_probe(id: dtrace_probeid_end, |
14821 | arg0: (uint64_t)(uintptr_t)state, arg1: 0, arg2: 0, arg3: 0, arg4: 0); |
14822 | dtrace_interrupt_enable(cookie); |
14823 | |
14824 | state->dts_activity = DTRACE_ACTIVITY_STOPPED; |
14825 | dtrace_sync(); |
14826 | |
14827 | return (0); |
14828 | } |
14829 | |
14830 | static int |
14831 | dtrace_state_option(dtrace_state_t *state, dtrace_optid_t option, |
14832 | dtrace_optval_t val) |
14833 | { |
14834 | LCK_MTX_ASSERT(&dtrace_lock, LCK_MTX_ASSERT_OWNED); |
14835 | |
14836 | if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) |
14837 | return (EBUSY); |
14838 | |
14839 | if (option >= DTRACEOPT_MAX) |
14840 | return (EINVAL); |
14841 | |
14842 | if (option != DTRACEOPT_CPU && val < 0) |
14843 | return (EINVAL); |
14844 | |
14845 | switch (option) { |
14846 | case DTRACEOPT_DESTRUCTIVE: |
14847 | if (dtrace_destructive_disallow) |
14848 | return (EACCES); |
14849 | |
14850 | state->dts_cred.dcr_destructive = 1; |
14851 | break; |
14852 | |
14853 | case DTRACEOPT_BUFSIZE: |
14854 | case DTRACEOPT_DYNVARSIZE: |
14855 | case DTRACEOPT_AGGSIZE: |
14856 | case DTRACEOPT_SPECSIZE: |
14857 | case DTRACEOPT_STRSIZE: |
14858 | if (val < 0) |
14859 | return (EINVAL); |
14860 | |
14861 | if (val >= LONG_MAX) { |
14862 | /* |
14863 | * If this is an otherwise negative value, set it to |
14864 | * the highest multiple of 128m less than LONG_MAX. |
14865 | * Technically, we're adjusting the size without |
14866 | * regard to the buffer resizing policy, but in fact, |
14867 | * this has no effect -- if we set the buffer size to |
14868 | * ~LONG_MAX and the buffer policy is ultimately set to |
14869 | * be "manual", the buffer allocation is guaranteed to |
14870 | * fail, if only because the allocation requires two |
14871 | * buffers. (We set the the size to the highest |
14872 | * multiple of 128m because it ensures that the size |
14873 | * will remain a multiple of a megabyte when |
14874 | * repeatedly halved -- all the way down to 15m.) |
14875 | */ |
14876 | val = LONG_MAX - (1 << 27) + 1; |
14877 | } |
14878 | } |
14879 | |
14880 | state->dts_options[option] = val; |
14881 | |
14882 | return (0); |
14883 | } |
14884 | |
14885 | static void |
14886 | dtrace_state_destroy(dtrace_state_t *state) |
14887 | { |
14888 | dtrace_ecb_t *ecb; |
14889 | dtrace_vstate_t *vstate = &state->dts_vstate; |
14890 | minor_t minor = getminor(state->dts_dev); |
14891 | int i, bufsize = (int)NCPU * sizeof (dtrace_buffer_t); |
14892 | dtrace_speculation_t *spec = state->dts_speculations; |
14893 | int nspec = state->dts_nspeculations; |
14894 | uint32_t match; |
14895 | |
14896 | LCK_MTX_ASSERT(&dtrace_lock, LCK_MTX_ASSERT_OWNED); |
14897 | LCK_MTX_ASSERT(&cpu_lock, LCK_MTX_ASSERT_OWNED); |
14898 | |
14899 | /* |
14900 | * First, retract any retained enablings for this state. |
14901 | */ |
14902 | dtrace_enabling_retract(state); |
14903 | ASSERT(state->dts_nretained == 0); |
14904 | |
14905 | if (state->dts_activity == DTRACE_ACTIVITY_ACTIVE || |
14906 | state->dts_activity == DTRACE_ACTIVITY_DRAINING) { |
14907 | /* |
14908 | * We have managed to come into dtrace_state_destroy() on a |
14909 | * hot enabling -- almost certainly because of a disorderly |
14910 | * shutdown of a consumer. (That is, a consumer that is |
14911 | * exiting without having called dtrace_stop().) In this case, |
14912 | * we're going to set our activity to be KILLED, and then |
14913 | * issue a sync to be sure that everyone is out of probe |
14914 | * context before we start blowing away ECBs. |
14915 | */ |
14916 | state->dts_activity = DTRACE_ACTIVITY_KILLED; |
14917 | dtrace_sync(); |
14918 | } |
14919 | |
14920 | /* |
14921 | * Release the credential hold we took in dtrace_state_create(). |
14922 | */ |
14923 | if (state->dts_cred.dcr_cred != NULL) |
14924 | kauth_cred_unref(&state->dts_cred.dcr_cred); |
14925 | |
14926 | /* |
14927 | * Now we can safely disable and destroy any enabled probes. Because |
14928 | * any DTRACE_PRIV_KERNEL probes may actually be slowing our progress |
14929 | * (especially if they're all enabled), we take two passes through the |
14930 | * ECBs: in the first, we disable just DTRACE_PRIV_KERNEL probes, and |
14931 | * in the second we disable whatever is left over. |
14932 | */ |
14933 | for (match = DTRACE_PRIV_KERNEL; ; match = 0) { |
14934 | for (i = 0; i < state->dts_necbs; i++) { |
14935 | if ((ecb = state->dts_ecbs[i]) == NULL) |
14936 | continue; |
14937 | |
14938 | if (match && ecb->dte_probe != NULL) { |
14939 | dtrace_probe_t *probe = ecb->dte_probe; |
14940 | dtrace_provider_t *prov = probe->dtpr_provider; |
14941 | |
14942 | if (!(prov->dtpv_priv.dtpp_flags & match)) |
14943 | continue; |
14944 | } |
14945 | |
14946 | dtrace_ecb_disable(ecb); |
14947 | dtrace_ecb_destroy(ecb); |
14948 | } |
14949 | |
14950 | if (!match) |
14951 | break; |
14952 | } |
14953 | |
14954 | /* |
14955 | * Before we free the buffers, perform one more sync to assure that |
14956 | * every CPU is out of probe context. |
14957 | */ |
14958 | dtrace_sync(); |
14959 | |
14960 | dtrace_buffer_free(bufs: state->dts_buffer); |
14961 | dtrace_buffer_free(bufs: state->dts_aggbuffer); |
14962 | |
14963 | for (i = 0; i < (int)NCPU; i++) { |
14964 | kmem_free(state->dts_rstate[i], 2 * sizeof(uint64_t)); |
14965 | } |
14966 | kmem_free(state->dts_rstate, NCPU * sizeof(uint64_t*)); |
14967 | |
14968 | for (i = 0; i < nspec; i++) |
14969 | dtrace_buffer_free(bufs: spec[i].dtsp_buffer); |
14970 | |
14971 | if (state->dts_cleaner != CYCLIC_NONE) |
14972 | cyclic_remove(state->dts_cleaner); |
14973 | |
14974 | if (state->dts_deadman != CYCLIC_NONE) |
14975 | cyclic_remove(state->dts_deadman); |
14976 | |
14977 | dtrace_dstate_fini(dstate: &vstate->dtvs_dynvars); |
14978 | dtrace_vstate_fini(vstate); |
14979 | kmem_free(state->dts_ecbs, state->dts_necbs * sizeof (dtrace_ecb_t *)); |
14980 | |
14981 | if (state->dts_aggregations != NULL) { |
14982 | #if DEBUG |
14983 | for (i = 0; i < state->dts_naggregations; i++) |
14984 | ASSERT(state->dts_aggregations[i] == NULL); |
14985 | #endif |
14986 | ASSERT(state->dts_naggregations > 0); |
14987 | kmem_free(state->dts_aggregations, |
14988 | state->dts_naggregations * sizeof (dtrace_aggregation_t *)); |
14989 | } |
14990 | |
14991 | kmem_free(state->dts_buffer, bufsize); |
14992 | kmem_free(state->dts_aggbuffer, bufsize); |
14993 | |
14994 | for (i = 0; i < nspec; i++) |
14995 | kmem_free(spec[i].dtsp_buffer, bufsize); |
14996 | |
14997 | kmem_free(spec, nspec * sizeof (dtrace_speculation_t)); |
14998 | |
14999 | dtrace_format_destroy(state); |
15000 | |
15001 | vmem_destroy(state->dts_aggid_arena); |
15002 | dtrace_state_free(minor); |
15003 | } |
15004 | |
15005 | /* |
15006 | * DTrace Anonymous Enabling Functions |
15007 | */ |
15008 | |
15009 | int |
15010 | dtrace_keep_kernel_symbols(void) |
15011 | { |
15012 | if (dtrace_is_restricted() && !dtrace_are_restrictions_relaxed()) { |
15013 | return 0; |
15014 | } |
15015 | |
15016 | if (dtrace_kernel_symbol_mode == DTRACE_KERNEL_SYMBOLS_ALWAYS_FROM_KERNEL) |
15017 | return 1; |
15018 | |
15019 | return 0; |
15020 | } |
15021 | |
15022 | static dtrace_state_t * |
15023 | dtrace_anon_grab(void) |
15024 | { |
15025 | dtrace_state_t *state; |
15026 | |
15027 | LCK_MTX_ASSERT(&dtrace_lock, LCK_MTX_ASSERT_OWNED); |
15028 | |
15029 | if ((state = dtrace_anon.dta_state) == NULL) { |
15030 | ASSERT(dtrace_anon.dta_enabling == NULL); |
15031 | return (NULL); |
15032 | } |
15033 | |
15034 | ASSERT(dtrace_anon.dta_enabling != NULL); |
15035 | ASSERT(dtrace_retained != NULL); |
15036 | |
15037 | dtrace_enabling_destroy(enab: dtrace_anon.dta_enabling); |
15038 | dtrace_anon.dta_enabling = NULL; |
15039 | dtrace_anon.dta_state = NULL; |
15040 | |
15041 | return (state); |
15042 | } |
15043 | |
15044 | static void |
15045 | dtrace_anon_property(void) |
15046 | { |
15047 | int i, rv; |
15048 | dtrace_state_t *state; |
15049 | dof_hdr_t *dof; |
15050 | char c[32]; /* enough for "dof-data-" + digits */ |
15051 | |
15052 | LCK_MTX_ASSERT(&dtrace_lock, LCK_MTX_ASSERT_OWNED); |
15053 | LCK_MTX_ASSERT(&cpu_lock, LCK_MTX_ASSERT_OWNED); |
15054 | |
15055 | for (i = 0; ; i++) { |
15056 | (void) snprintf(c, count: sizeof (c), "dof-data-%d" , i); |
15057 | |
15058 | dtrace_err_verbose = 1; |
15059 | |
15060 | if ((dof = dtrace_dof_property(name: c)) == NULL) { |
15061 | dtrace_err_verbose = 0; |
15062 | break; |
15063 | } |
15064 | |
15065 | #ifdef illumos |
15066 | /* |
15067 | * We want to create anonymous state, so we need to transition |
15068 | * the kernel debugger to indicate that DTrace is active. If |
15069 | * this fails (e.g. because the debugger has modified text in |
15070 | * some way), we won't continue with the processing. |
15071 | */ |
15072 | if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) { |
15073 | cmn_err(CE_NOTE, "kernel debugger active; anonymous " |
15074 | "enabling ignored." ); |
15075 | dtrace_dof_destroy(dof); |
15076 | break; |
15077 | } |
15078 | #endif |
15079 | |
15080 | /* |
15081 | * If we haven't allocated an anonymous state, we'll do so now. |
15082 | */ |
15083 | if ((state = dtrace_anon.dta_state) == NULL) { |
15084 | rv = dtrace_state_create(NULL, NULL, new_state: &state); |
15085 | dtrace_anon.dta_state = state; |
15086 | if (rv != 0 || state == NULL) { |
15087 | /* |
15088 | * This basically shouldn't happen: the only |
15089 | * failure mode from dtrace_state_create() is a |
15090 | * failure of ddi_soft_state_zalloc() that |
15091 | * itself should never happen. Still, the |
15092 | * interface allows for a failure mode, and |
15093 | * we want to fail as gracefully as possible: |
15094 | * we'll emit an error message and cease |
15095 | * processing anonymous state in this case. |
15096 | */ |
15097 | cmn_err(CE_WARN, "failed to create " |
15098 | "anonymous state" ); |
15099 | dtrace_dof_destroy(dof); |
15100 | break; |
15101 | } |
15102 | } |
15103 | |
15104 | rv = dtrace_dof_slurp(dof, vstate: &state->dts_vstate, CRED(), |
15105 | enabp: &dtrace_anon.dta_enabling, ubase: 0, noprobes: B_TRUE); |
15106 | |
15107 | if (rv == 0) |
15108 | rv = dtrace_dof_options(dof, state); |
15109 | |
15110 | dtrace_err_verbose = 0; |
15111 | dtrace_dof_destroy(dof); |
15112 | |
15113 | if (rv != 0) { |
15114 | /* |
15115 | * This is malformed DOF; chuck any anonymous state |
15116 | * that we created. |
15117 | */ |
15118 | ASSERT(dtrace_anon.dta_enabling == NULL); |
15119 | dtrace_state_destroy(state); |
15120 | dtrace_anon.dta_state = NULL; |
15121 | break; |
15122 | } |
15123 | |
15124 | ASSERT(dtrace_anon.dta_enabling != NULL); |
15125 | } |
15126 | |
15127 | if (dtrace_anon.dta_enabling != NULL) { |
15128 | int rval; |
15129 | |
15130 | /* |
15131 | * dtrace_enabling_retain() can only fail because we are |
15132 | * trying to retain more enablings than are allowed -- but |
15133 | * we only have one anonymous enabling, and we are guaranteed |
15134 | * to be allowed at least one retained enabling; we assert |
15135 | * that dtrace_enabling_retain() returns success. |
15136 | */ |
15137 | rval = dtrace_enabling_retain(enab: dtrace_anon.dta_enabling); |
15138 | ASSERT(rval == 0); |
15139 | |
15140 | dtrace_enabling_dump(enab: dtrace_anon.dta_enabling); |
15141 | } |
15142 | } |
15143 | |
15144 | /* |
15145 | * DTrace Helper Functions |
15146 | */ |
15147 | static void |
15148 | dtrace_helper_trace(dtrace_helper_action_t *helper, |
15149 | dtrace_mstate_t *mstate, dtrace_vstate_t *vstate, int where) |
15150 | { |
15151 | uint32_t size, next, nnext; |
15152 | int i; |
15153 | dtrace_helptrace_t *ent; |
15154 | uint16_t flags = cpu_core[CPU->cpu_id].cpuc_dtrace_flags; |
15155 | |
15156 | if (!dtrace_helptrace_enabled) |
15157 | return; |
15158 | |
15159 | ASSERT((uint32_t)vstate->dtvs_nlocals <= dtrace_helptrace_nlocals); |
15160 | |
15161 | /* |
15162 | * What would a tracing framework be without its own tracing |
15163 | * framework? (Well, a hell of a lot simpler, for starters...) |
15164 | */ |
15165 | size = sizeof (dtrace_helptrace_t) + dtrace_helptrace_nlocals * |
15166 | sizeof (uint64_t) - sizeof (uint64_t); |
15167 | |
15168 | /* |
15169 | * Iterate until we can allocate a slot in the trace buffer. |
15170 | */ |
15171 | do { |
15172 | next = dtrace_helptrace_next; |
15173 | |
15174 | if (next + size < dtrace_helptrace_bufsize) { |
15175 | nnext = next + size; |
15176 | } else { |
15177 | nnext = size; |
15178 | } |
15179 | } while (dtrace_cas32(&dtrace_helptrace_next, next, nnext) != next); |
15180 | |
15181 | /* |
15182 | * We have our slot; fill it in. |
15183 | */ |
15184 | if (nnext == size) |
15185 | next = 0; |
15186 | |
15187 | ent = (dtrace_helptrace_t *)&dtrace_helptrace_buffer[next]; |
15188 | ent->dtht_helper = helper; |
15189 | ent->dtht_where = where; |
15190 | ent->dtht_nlocals = vstate->dtvs_nlocals; |
15191 | |
15192 | ent->dtht_fltoffs = (mstate->dtms_present & DTRACE_MSTATE_FLTOFFS) ? |
15193 | mstate->dtms_fltoffs : -1; |
15194 | ent->dtht_fault = DTRACE_FLAGS2FLT(flags); |
15195 | ent->dtht_illval = cpu_core[CPU->cpu_id].cpuc_dtrace_illval; |
15196 | |
15197 | for (i = 0; i < vstate->dtvs_nlocals; i++) { |
15198 | dtrace_statvar_t *svar; |
15199 | |
15200 | if ((svar = vstate->dtvs_locals[i]) == NULL) |
15201 | continue; |
15202 | |
15203 | ASSERT(svar->dtsv_size >= (int)NCPU * sizeof (uint64_t)); |
15204 | ent->dtht_locals[i] = |
15205 | ((uint64_t *)(uintptr_t)svar->dtsv_data)[CPU->cpu_id]; |
15206 | } |
15207 | } |
15208 | |
15209 | __attribute__((noinline)) |
15210 | static uint64_t |
15211 | dtrace_helper(int which, dtrace_mstate_t *mstate, |
15212 | dtrace_state_t *state, uint64_t arg0, uint64_t arg1) |
15213 | { |
15214 | uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; |
15215 | uint64_t sarg0 = mstate->dtms_arg[0]; |
15216 | uint64_t sarg1 = mstate->dtms_arg[1]; |
15217 | uint64_t rval = 0; |
15218 | dtrace_helpers_t *helpers = curproc->p_dtrace_helpers; |
15219 | dtrace_helper_action_t *helper; |
15220 | dtrace_vstate_t *vstate; |
15221 | dtrace_difo_t *pred; |
15222 | int i, trace = dtrace_helptrace_enabled; |
15223 | |
15224 | ASSERT(which >= 0 && which < DTRACE_NHELPER_ACTIONS); |
15225 | |
15226 | if (helpers == NULL) |
15227 | return (0); |
15228 | |
15229 | if ((helper = helpers->dthps_actions[which]) == NULL) |
15230 | return (0); |
15231 | |
15232 | vstate = &helpers->dthps_vstate; |
15233 | mstate->dtms_arg[0] = arg0; |
15234 | mstate->dtms_arg[1] = arg1; |
15235 | |
15236 | /* |
15237 | * Now iterate over each helper. If its predicate evaluates to 'true', |
15238 | * we'll call the corresponding actions. Note that the below calls |
15239 | * to dtrace_dif_emulate() may set faults in machine state. This is |
15240 | * okay: our caller (the outer dtrace_dif_emulate()) will simply plow |
15241 | * the stored DIF offset with its own (which is the desired behavior). |
15242 | * Also, note the calls to dtrace_dif_emulate() may allocate scratch |
15243 | * from machine state; this is okay, too. |
15244 | */ |
15245 | for (; helper != NULL; helper = helper->dtha_next) { |
15246 | if ((pred = helper->dtha_predicate) != NULL) { |
15247 | if (trace) |
15248 | dtrace_helper_trace(helper, mstate, vstate, where: 0); |
15249 | |
15250 | if (!dtrace_dif_emulate(difo: pred, mstate, vstate, state)) |
15251 | goto next; |
15252 | |
15253 | if (*flags & CPU_DTRACE_FAULT) |
15254 | goto err; |
15255 | } |
15256 | |
15257 | for (i = 0; i < helper->dtha_nactions; i++) { |
15258 | if (trace) |
15259 | dtrace_helper_trace(helper, |
15260 | mstate, vstate, where: i + 1); |
15261 | |
15262 | rval = dtrace_dif_emulate(difo: helper->dtha_actions[i], |
15263 | mstate, vstate, state); |
15264 | |
15265 | if (*flags & CPU_DTRACE_FAULT) |
15266 | goto err; |
15267 | } |
15268 | |
15269 | next: |
15270 | if (trace) |
15271 | dtrace_helper_trace(helper, mstate, vstate, |
15272 | DTRACE_HELPTRACE_NEXT); |
15273 | } |
15274 | |
15275 | if (trace) |
15276 | dtrace_helper_trace(helper, mstate, vstate, |
15277 | DTRACE_HELPTRACE_DONE); |
15278 | |
15279 | /* |
15280 | * Restore the arg0 that we saved upon entry. |
15281 | */ |
15282 | mstate->dtms_arg[0] = sarg0; |
15283 | mstate->dtms_arg[1] = sarg1; |
15284 | |
15285 | return (rval); |
15286 | |
15287 | err: |
15288 | if (trace) |
15289 | dtrace_helper_trace(helper, mstate, vstate, |
15290 | DTRACE_HELPTRACE_ERR); |
15291 | |
15292 | /* |
15293 | * Restore the arg0 that we saved upon entry. |
15294 | */ |
15295 | mstate->dtms_arg[0] = sarg0; |
15296 | mstate->dtms_arg[1] = sarg1; |
15297 | |
15298 | return (0); |
15299 | } |
15300 | |
15301 | static void |
15302 | dtrace_helper_action_destroy(dtrace_helper_action_t *helper, |
15303 | dtrace_vstate_t *vstate) |
15304 | { |
15305 | int i; |
15306 | |
15307 | if (helper->dtha_predicate != NULL) |
15308 | dtrace_difo_release(dp: helper->dtha_predicate, vstate); |
15309 | |
15310 | for (i = 0; i < helper->dtha_nactions; i++) { |
15311 | ASSERT(helper->dtha_actions[i] != NULL); |
15312 | dtrace_difo_release(dp: helper->dtha_actions[i], vstate); |
15313 | } |
15314 | |
15315 | kmem_free(helper->dtha_actions, |
15316 | helper->dtha_nactions * sizeof (dtrace_difo_t *)); |
15317 | kmem_free(helper, sizeof (dtrace_helper_action_t)); |
15318 | } |
15319 | |
15320 | static int |
15321 | dtrace_helper_destroygen(proc_t* p, int gen) |
15322 | { |
15323 | dtrace_helpers_t *help = p->p_dtrace_helpers; |
15324 | dtrace_vstate_t *vstate; |
15325 | uint_t i; |
15326 | |
15327 | LCK_MTX_ASSERT(&dtrace_meta_lock, LCK_MTX_ASSERT_OWNED); |
15328 | LCK_MTX_ASSERT(&dtrace_lock, LCK_MTX_ASSERT_OWNED); |
15329 | |
15330 | if (help == NULL || gen > help->dthps_generation) |
15331 | return (EINVAL); |
15332 | |
15333 | vstate = &help->dthps_vstate; |
15334 | |
15335 | for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { |
15336 | dtrace_helper_action_t *last = NULL, *h, *next; |
15337 | |
15338 | for (h = help->dthps_actions[i]; h != NULL; h = next) { |
15339 | next = h->dtha_next; |
15340 | |
15341 | if (h->dtha_generation == gen) { |
15342 | if (last != NULL) { |
15343 | last->dtha_next = next; |
15344 | } else { |
15345 | help->dthps_actions[i] = next; |
15346 | } |
15347 | |
15348 | dtrace_helper_action_destroy(helper: h, vstate); |
15349 | } else { |
15350 | last = h; |
15351 | } |
15352 | } |
15353 | } |
15354 | |
15355 | /* |
15356 | * Interate until we've cleared out all helper providers with the |
15357 | * given generation number. |
15358 | */ |
15359 | for (;;) { |
15360 | dtrace_helper_provider_t *prov = NULL; |
15361 | |
15362 | /* |
15363 | * Look for a helper provider with the right generation. We |
15364 | * have to start back at the beginning of the list each time |
15365 | * because we drop dtrace_lock. It's unlikely that we'll make |
15366 | * more than two passes. |
15367 | */ |
15368 | for (i = 0; i < help->dthps_nprovs; i++) { |
15369 | prov = help->dthps_provs[i]; |
15370 | |
15371 | if (prov->dthp_generation == gen) |
15372 | break; |
15373 | } |
15374 | |
15375 | /* |
15376 | * If there were no matches, we're done. |
15377 | */ |
15378 | if (i == help->dthps_nprovs) |
15379 | break; |
15380 | |
15381 | /* |
15382 | * Move the last helper provider into this slot. |
15383 | */ |
15384 | help->dthps_nprovs--; |
15385 | help->dthps_provs[i] = help->dthps_provs[help->dthps_nprovs]; |
15386 | help->dthps_provs[help->dthps_nprovs] = NULL; |
15387 | |
15388 | lck_mtx_unlock(lck: &dtrace_lock); |
15389 | |
15390 | /* |
15391 | * If we have a meta provider, remove this helper provider. |
15392 | */ |
15393 | if (dtrace_meta_pid != NULL) { |
15394 | ASSERT(dtrace_deferred_pid == NULL); |
15395 | dtrace_helper_provider_remove(dhp: &prov->dthp_prov, |
15396 | p); |
15397 | } |
15398 | |
15399 | dtrace_helper_provider_destroy(prov); |
15400 | |
15401 | lck_mtx_lock(lck: &dtrace_lock); |
15402 | } |
15403 | |
15404 | return (0); |
15405 | } |
15406 | |
15407 | static int |
15408 | dtrace_helper_validate(dtrace_helper_action_t *helper) |
15409 | { |
15410 | int err = 0, i; |
15411 | dtrace_difo_t *dp; |
15412 | |
15413 | if ((dp = helper->dtha_predicate) != NULL) |
15414 | err += dtrace_difo_validate_helper(dp); |
15415 | |
15416 | for (i = 0; i < helper->dtha_nactions; i++) |
15417 | err += dtrace_difo_validate_helper(dp: helper->dtha_actions[i]); |
15418 | |
15419 | return (err == 0); |
15420 | } |
15421 | |
15422 | static int |
15423 | dtrace_helper_action_add(proc_t* p, int which, dtrace_ecbdesc_t *ep) |
15424 | { |
15425 | dtrace_helpers_t *help; |
15426 | dtrace_helper_action_t *helper, *last; |
15427 | dtrace_actdesc_t *act; |
15428 | dtrace_vstate_t *vstate; |
15429 | dtrace_predicate_t *pred; |
15430 | int count = 0, nactions = 0, i; |
15431 | |
15432 | if (which < 0 || which >= DTRACE_NHELPER_ACTIONS) |
15433 | return (EINVAL); |
15434 | |
15435 | help = p->p_dtrace_helpers; |
15436 | last = help->dthps_actions[which]; |
15437 | vstate = &help->dthps_vstate; |
15438 | |
15439 | for (count = 0; last != NULL; last = last->dtha_next) { |
15440 | count++; |
15441 | if (last->dtha_next == NULL) |
15442 | break; |
15443 | } |
15444 | |
15445 | /* |
15446 | * If we already have dtrace_helper_actions_max helper actions for this |
15447 | * helper action type, we'll refuse to add a new one. |
15448 | */ |
15449 | if (count >= dtrace_helper_actions_max) |
15450 | return (ENOSPC); |
15451 | |
15452 | helper = kmem_zalloc(sizeof (dtrace_helper_action_t), KM_SLEEP); |
15453 | helper->dtha_generation = help->dthps_generation; |
15454 | |
15455 | if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) { |
15456 | ASSERT(pred->dtp_difo != NULL); |
15457 | dtrace_difo_hold(dp: pred->dtp_difo); |
15458 | helper->dtha_predicate = pred->dtp_difo; |
15459 | } |
15460 | |
15461 | for (act = ep->dted_action; act != NULL; act = act->dtad_next) { |
15462 | if (act->dtad_kind != DTRACEACT_DIFEXPR) |
15463 | goto err; |
15464 | |
15465 | if (act->dtad_difo == NULL) |
15466 | goto err; |
15467 | |
15468 | nactions++; |
15469 | } |
15470 | |
15471 | helper->dtha_actions = kmem_zalloc(sizeof (dtrace_difo_t *) * |
15472 | (helper->dtha_nactions = nactions), KM_SLEEP); |
15473 | |
15474 | for (act = ep->dted_action, i = 0; act != NULL; act = act->dtad_next) { |
15475 | dtrace_difo_hold(dp: act->dtad_difo); |
15476 | helper->dtha_actions[i++] = act->dtad_difo; |
15477 | } |
15478 | |
15479 | if (!dtrace_helper_validate(helper)) |
15480 | goto err; |
15481 | |
15482 | if (last == NULL) { |
15483 | help->dthps_actions[which] = helper; |
15484 | } else { |
15485 | last->dtha_next = helper; |
15486 | } |
15487 | |
15488 | if ((uint32_t)vstate->dtvs_nlocals > dtrace_helptrace_nlocals) { |
15489 | dtrace_helptrace_nlocals = vstate->dtvs_nlocals; |
15490 | dtrace_helptrace_next = 0; |
15491 | } |
15492 | |
15493 | return (0); |
15494 | err: |
15495 | dtrace_helper_action_destroy(helper, vstate); |
15496 | return (EINVAL); |
15497 | } |
15498 | |
15499 | static void |
15500 | dtrace_helper_provider_register(proc_t *p, dtrace_helpers_t *help, |
15501 | dof_helper_t *dofhp) |
15502 | { |
15503 | LCK_MTX_ASSERT(&dtrace_meta_lock, LCK_MTX_ASSERT_OWNED); |
15504 | LCK_MTX_ASSERT(&dtrace_lock, LCK_MTX_ASSERT_NOTOWNED); |
15505 | |
15506 | lck_mtx_lock(lck: &dtrace_lock); |
15507 | |
15508 | if (!dtrace_attached() || dtrace_meta_pid == NULL) { |
15509 | /* |
15510 | * If the dtrace module is loaded but not attached, or if |
15511 | * there aren't isn't a meta provider registered to deal with |
15512 | * these provider descriptions, we need to postpone creating |
15513 | * the actual providers until later. |
15514 | */ |
15515 | |
15516 | if (help->dthps_next == NULL && help->dthps_prev == NULL && |
15517 | dtrace_deferred_pid != help) { |
15518 | help->dthps_deferred = 1; |
15519 | help->dthps_pid = proc_getpid(p); |
15520 | help->dthps_next = dtrace_deferred_pid; |
15521 | help->dthps_prev = NULL; |
15522 | if (dtrace_deferred_pid != NULL) |
15523 | dtrace_deferred_pid->dthps_prev = help; |
15524 | dtrace_deferred_pid = help; |
15525 | } |
15526 | |
15527 | lck_mtx_unlock(lck: &dtrace_lock); |
15528 | |
15529 | } else if (dofhp != NULL) { |
15530 | /* |
15531 | * If the dtrace module is loaded and we have a particular |
15532 | * helper provider description, pass that off to the |
15533 | * meta provider. |
15534 | */ |
15535 | |
15536 | lck_mtx_unlock(lck: &dtrace_lock); |
15537 | |
15538 | dtrace_helper_provide(dhp: dofhp, p); |
15539 | |
15540 | } else { |
15541 | /* |
15542 | * Otherwise, just pass all the helper provider descriptions |
15543 | * off to the meta provider. |
15544 | */ |
15545 | |
15546 | uint_t i; |
15547 | lck_mtx_unlock(lck: &dtrace_lock); |
15548 | |
15549 | for (i = 0; i < help->dthps_nprovs; i++) { |
15550 | dtrace_helper_provide(dhp: &help->dthps_provs[i]->dthp_prov, |
15551 | p); |
15552 | } |
15553 | } |
15554 | } |
15555 | |
15556 | static int |
15557 | dtrace_helper_provider_add(proc_t* p, dof_helper_t *dofhp, int gen) |
15558 | { |
15559 | dtrace_helpers_t *help; |
15560 | dtrace_helper_provider_t *hprov, **tmp_provs; |
15561 | uint_t tmp_maxprovs, i; |
15562 | |
15563 | LCK_MTX_ASSERT(&dtrace_lock, LCK_MTX_ASSERT_OWNED); |
15564 | help = p->p_dtrace_helpers; |
15565 | ASSERT(help != NULL); |
15566 | |
15567 | /* |
15568 | * If we already have dtrace_helper_providers_max helper providers, |
15569 | * we're refuse to add a new one. |
15570 | */ |
15571 | if (help->dthps_nprovs >= dtrace_helper_providers_max) |
15572 | return (ENOSPC); |
15573 | |
15574 | /* |
15575 | * Check to make sure this isn't a duplicate. |
15576 | */ |
15577 | for (i = 0; i < help->dthps_nprovs; i++) { |
15578 | if (dofhp->dofhp_addr == |
15579 | help->dthps_provs[i]->dthp_prov.dofhp_addr) |
15580 | return (EALREADY); |
15581 | } |
15582 | |
15583 | hprov = kmem_zalloc(sizeof (dtrace_helper_provider_t), KM_SLEEP); |
15584 | hprov->dthp_prov = *dofhp; |
15585 | hprov->dthp_ref = 1; |
15586 | hprov->dthp_generation = gen; |
15587 | |
15588 | /* |
15589 | * Allocate a bigger table for helper providers if it's already full. |
15590 | */ |
15591 | if (help->dthps_maxprovs == help->dthps_nprovs) { |
15592 | tmp_maxprovs = help->dthps_maxprovs; |
15593 | tmp_provs = help->dthps_provs; |
15594 | |
15595 | if (help->dthps_maxprovs == 0) |
15596 | help->dthps_maxprovs = 2; |
15597 | else |
15598 | help->dthps_maxprovs *= 2; |
15599 | if (help->dthps_maxprovs > dtrace_helper_providers_max) |
15600 | help->dthps_maxprovs = dtrace_helper_providers_max; |
15601 | |
15602 | ASSERT(tmp_maxprovs < help->dthps_maxprovs); |
15603 | |
15604 | help->dthps_provs = kmem_zalloc(help->dthps_maxprovs * |
15605 | sizeof (dtrace_helper_provider_t *), KM_SLEEP); |
15606 | |
15607 | if (tmp_provs != NULL) { |
15608 | bcopy(src: tmp_provs, dst: help->dthps_provs, n: tmp_maxprovs * |
15609 | sizeof (dtrace_helper_provider_t *)); |
15610 | kmem_free(tmp_provs, tmp_maxprovs * |
15611 | sizeof (dtrace_helper_provider_t *)); |
15612 | } |
15613 | } |
15614 | |
15615 | help->dthps_provs[help->dthps_nprovs] = hprov; |
15616 | help->dthps_nprovs++; |
15617 | |
15618 | return (0); |
15619 | } |
15620 | |
15621 | static void |
15622 | dtrace_helper_provider_destroy(dtrace_helper_provider_t *hprov) |
15623 | { |
15624 | lck_mtx_lock(lck: &dtrace_lock); |
15625 | |
15626 | if (--hprov->dthp_ref == 0) { |
15627 | dof_hdr_t *dof; |
15628 | lck_mtx_unlock(lck: &dtrace_lock); |
15629 | dof = (dof_hdr_t *)(uintptr_t)hprov->dthp_prov.dofhp_dof; |
15630 | dtrace_dof_destroy(dof); |
15631 | kmem_free(hprov, sizeof (dtrace_helper_provider_t)); |
15632 | } else { |
15633 | lck_mtx_unlock(lck: &dtrace_lock); |
15634 | } |
15635 | } |
15636 | |
15637 | static int |
15638 | dtrace_helper_provider_validate(dof_hdr_t *dof, dof_sec_t *sec) |
15639 | { |
15640 | uintptr_t daddr = (uintptr_t)dof; |
15641 | dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec; |
15642 | dof_provider_t *provider; |
15643 | dof_probe_t *probe; |
15644 | uint8_t *arg; |
15645 | char *strtab, *typestr; |
15646 | dof_stridx_t typeidx; |
15647 | size_t typesz; |
15648 | uint_t nprobes, j, k; |
15649 | |
15650 | ASSERT(sec->dofs_type == DOF_SECT_PROVIDER); |
15651 | |
15652 | if (sec->dofs_offset & (sizeof (uint_t) - 1)) { |
15653 | dtrace_dof_error(dof, str: "misaligned section offset" ); |
15654 | return (-1); |
15655 | } |
15656 | |
15657 | /* |
15658 | * The section needs to be large enough to contain the DOF provider |
15659 | * structure appropriate for the given version. |
15660 | */ |
15661 | if (sec->dofs_size < |
15662 | ((dof->dofh_ident[DOF_ID_VERSION] == DOF_VERSION_1) ? |
15663 | offsetof(dof_provider_t, dofpv_prenoffs) : |
15664 | sizeof (dof_provider_t))) { |
15665 | dtrace_dof_error(dof, str: "provider section too small" ); |
15666 | return (-1); |
15667 | } |
15668 | |
15669 | provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); |
15670 | str_sec = dtrace_dof_sect(dof, DOF_SECT_STRTAB, i: provider->dofpv_strtab); |
15671 | prb_sec = dtrace_dof_sect(dof, DOF_SECT_PROBES, i: provider->dofpv_probes); |
15672 | arg_sec = dtrace_dof_sect(dof, DOF_SECT_PRARGS, i: provider->dofpv_prargs); |
15673 | off_sec = dtrace_dof_sect(dof, DOF_SECT_PROFFS, i: provider->dofpv_proffs); |
15674 | |
15675 | if (str_sec == NULL || prb_sec == NULL || |
15676 | arg_sec == NULL || off_sec == NULL) |
15677 | return (-1); |
15678 | |
15679 | enoff_sec = NULL; |
15680 | |
15681 | if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && |
15682 | provider->dofpv_prenoffs != DOF_SECT_NONE && |
15683 | (enoff_sec = dtrace_dof_sect(dof, DOF_SECT_PRENOFFS, |
15684 | i: provider->dofpv_prenoffs)) == NULL) |
15685 | return (-1); |
15686 | |
15687 | strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); |
15688 | |
15689 | if (provider->dofpv_name >= str_sec->dofs_size || |
15690 | strlen(s: strtab + provider->dofpv_name) >= DTRACE_PROVNAMELEN) { |
15691 | dtrace_dof_error(dof, str: "invalid provider name" ); |
15692 | return (-1); |
15693 | } |
15694 | |
15695 | if (prb_sec->dofs_entsize == 0 || |
15696 | prb_sec->dofs_entsize > prb_sec->dofs_size) { |
15697 | dtrace_dof_error(dof, str: "invalid entry size" ); |
15698 | return (-1); |
15699 | } |
15700 | |
15701 | if (prb_sec->dofs_entsize & (sizeof (uintptr_t) - 1)) { |
15702 | dtrace_dof_error(dof, str: "misaligned entry size" ); |
15703 | return (-1); |
15704 | } |
15705 | |
15706 | if (off_sec->dofs_entsize != sizeof (uint32_t)) { |
15707 | dtrace_dof_error(dof, str: "invalid entry size" ); |
15708 | return (-1); |
15709 | } |
15710 | |
15711 | if (off_sec->dofs_offset & (sizeof (uint32_t) - 1)) { |
15712 | dtrace_dof_error(dof, str: "misaligned section offset" ); |
15713 | return (-1); |
15714 | } |
15715 | |
15716 | if (arg_sec->dofs_entsize != sizeof (uint8_t)) { |
15717 | dtrace_dof_error(dof, str: "invalid entry size" ); |
15718 | return (-1); |
15719 | } |
15720 | |
15721 | arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset); |
15722 | |
15723 | nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize; |
15724 | |
15725 | /* |
15726 | * Take a pass through the probes to check for errors. |
15727 | */ |
15728 | for (j = 0; j < nprobes; j++) { |
15729 | probe = (dof_probe_t *)(uintptr_t)(daddr + |
15730 | prb_sec->dofs_offset + j * prb_sec->dofs_entsize); |
15731 | |
15732 | if (probe->dofpr_func >= str_sec->dofs_size) { |
15733 | dtrace_dof_error(dof, str: "invalid function name" ); |
15734 | return (-1); |
15735 | } |
15736 | |
15737 | if (strlen(s: strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) { |
15738 | dtrace_dof_error(dof, str: "function name too long" ); |
15739 | return (-1); |
15740 | } |
15741 | |
15742 | if (probe->dofpr_name >= str_sec->dofs_size || |
15743 | strlen(s: strtab + probe->dofpr_name) >= DTRACE_NAMELEN) { |
15744 | dtrace_dof_error(dof, str: "invalid probe name" ); |
15745 | return (-1); |
15746 | } |
15747 | |
15748 | /* |
15749 | * The offset count must not wrap the index, and the offsets |
15750 | * must also not overflow the section's data. |
15751 | */ |
15752 | if (probe->dofpr_offidx + probe->dofpr_noffs < |
15753 | probe->dofpr_offidx || |
15754 | (probe->dofpr_offidx + probe->dofpr_noffs) * |
15755 | off_sec->dofs_entsize > off_sec->dofs_size) { |
15756 | dtrace_dof_error(dof, str: "invalid probe offset" ); |
15757 | return (-1); |
15758 | } |
15759 | |
15760 | if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1) { |
15761 | /* |
15762 | * If there's no is-enabled offset section, make sure |
15763 | * there aren't any is-enabled offsets. Otherwise |
15764 | * perform the same checks as for probe offsets |
15765 | * (immediately above). |
15766 | */ |
15767 | if (enoff_sec == NULL) { |
15768 | if (probe->dofpr_enoffidx != 0 || |
15769 | probe->dofpr_nenoffs != 0) { |
15770 | dtrace_dof_error(dof, str: "is-enabled " |
15771 | "offsets with null section" ); |
15772 | return (-1); |
15773 | } |
15774 | } else if (probe->dofpr_enoffidx + |
15775 | probe->dofpr_nenoffs < probe->dofpr_enoffidx || |
15776 | (probe->dofpr_enoffidx + probe->dofpr_nenoffs) * |
15777 | enoff_sec->dofs_entsize > enoff_sec->dofs_size) { |
15778 | dtrace_dof_error(dof, str: "invalid is-enabled " |
15779 | "offset" ); |
15780 | return (-1); |
15781 | } |
15782 | |
15783 | if (probe->dofpr_noffs + probe->dofpr_nenoffs == 0) { |
15784 | dtrace_dof_error(dof, str: "zero probe and " |
15785 | "is-enabled offsets" ); |
15786 | return (-1); |
15787 | } |
15788 | } else if (probe->dofpr_noffs == 0) { |
15789 | dtrace_dof_error(dof, str: "zero probe offsets" ); |
15790 | return (-1); |
15791 | } |
15792 | |
15793 | if (probe->dofpr_argidx + probe->dofpr_xargc < |
15794 | probe->dofpr_argidx || |
15795 | (probe->dofpr_argidx + probe->dofpr_xargc) * |
15796 | arg_sec->dofs_entsize > arg_sec->dofs_size) { |
15797 | dtrace_dof_error(dof, str: "invalid args" ); |
15798 | return (-1); |
15799 | } |
15800 | |
15801 | typeidx = probe->dofpr_nargv; |
15802 | typestr = strtab + probe->dofpr_nargv; |
15803 | for (k = 0; k < probe->dofpr_nargc; k++) { |
15804 | if (typeidx >= str_sec->dofs_size) { |
15805 | dtrace_dof_error(dof, str: "bad " |
15806 | "native argument type" ); |
15807 | return (-1); |
15808 | } |
15809 | |
15810 | typesz = strlen(s: typestr) + 1; |
15811 | if (typesz > DTRACE_ARGTYPELEN) { |
15812 | dtrace_dof_error(dof, str: "native " |
15813 | "argument type too long" ); |
15814 | return (-1); |
15815 | } |
15816 | typeidx += typesz; |
15817 | typestr += typesz; |
15818 | } |
15819 | |
15820 | typeidx = probe->dofpr_xargv; |
15821 | typestr = strtab + probe->dofpr_xargv; |
15822 | for (k = 0; k < probe->dofpr_xargc; k++) { |
15823 | if (arg[probe->dofpr_argidx + k] > probe->dofpr_nargc) { |
15824 | dtrace_dof_error(dof, str: "bad " |
15825 | "native argument index" ); |
15826 | return (-1); |
15827 | } |
15828 | |
15829 | if (typeidx >= str_sec->dofs_size) { |
15830 | dtrace_dof_error(dof, str: "bad " |
15831 | "translated argument type" ); |
15832 | return (-1); |
15833 | } |
15834 | |
15835 | typesz = strlen(s: typestr) + 1; |
15836 | if (typesz > DTRACE_ARGTYPELEN) { |
15837 | dtrace_dof_error(dof, str: "translated argument " |
15838 | "type too long" ); |
15839 | return (-1); |
15840 | } |
15841 | |
15842 | typeidx += typesz; |
15843 | typestr += typesz; |
15844 | } |
15845 | } |
15846 | |
15847 | return (0); |
15848 | } |
15849 | |
15850 | static int |
15851 | dtrace_helper_slurp(proc_t* p, dof_hdr_t *dof, dof_helper_t *dhp) |
15852 | { |
15853 | dtrace_helpers_t *help; |
15854 | dtrace_vstate_t *vstate; |
15855 | dtrace_enabling_t *enab = NULL; |
15856 | int i, gen, rv, nhelpers = 0, nprovs = 0, destroy = 1; |
15857 | uintptr_t daddr = (uintptr_t)dof; |
15858 | |
15859 | LCK_MTX_ASSERT(&dtrace_meta_lock, LCK_MTX_ASSERT_OWNED); |
15860 | LCK_MTX_ASSERT(&dtrace_lock, LCK_MTX_ASSERT_OWNED); |
15861 | |
15862 | if ((help = p->p_dtrace_helpers) == NULL) |
15863 | help = dtrace_helpers_create(p); |
15864 | |
15865 | vstate = &help->dthps_vstate; |
15866 | |
15867 | if ((rv = dtrace_dof_slurp(dof, vstate, NULL, enabp: &enab, |
15868 | ubase: dhp != NULL ? dhp->dofhp_addr : 0, noprobes: B_FALSE)) != 0) { |
15869 | dtrace_dof_destroy(dof); |
15870 | return (rv); |
15871 | } |
15872 | |
15873 | /* |
15874 | * Look for helper providers and validate their descriptions. |
15875 | */ |
15876 | if (dhp != NULL) { |
15877 | for (i = 0; (uint32_t)i < dof->dofh_secnum; i++) { |
15878 | dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + |
15879 | dof->dofh_secoff + i * dof->dofh_secsize); |
15880 | |
15881 | if (sec->dofs_type != DOF_SECT_PROVIDER) |
15882 | continue; |
15883 | |
15884 | if (dtrace_helper_provider_validate(dof, sec) != 0) { |
15885 | dtrace_enabling_destroy(enab); |
15886 | dtrace_dof_destroy(dof); |
15887 | return (-1); |
15888 | } |
15889 | |
15890 | nprovs++; |
15891 | } |
15892 | } |
15893 | |
15894 | /* |
15895 | * Now we need to walk through the ECB descriptions in the enabling. |
15896 | */ |
15897 | for (i = 0; i < enab->dten_ndesc; i++) { |
15898 | dtrace_ecbdesc_t *ep = enab->dten_desc[i]; |
15899 | dtrace_probedesc_t *desc = &ep->dted_probe; |
15900 | |
15901 | /* APPLE NOTE: Darwin employs size bounded string operation. */ |
15902 | if (!LIT_STRNEQL(desc->dtpd_provider, "dtrace" )) |
15903 | continue; |
15904 | |
15905 | if (!LIT_STRNEQL(desc->dtpd_mod, "helper" )) |
15906 | continue; |
15907 | |
15908 | if (!LIT_STRNEQL(desc->dtpd_func, "ustack" )) |
15909 | continue; |
15910 | |
15911 | if ((rv = dtrace_helper_action_add(p, DTRACE_HELPER_ACTION_USTACK, |
15912 | ep)) != 0) { |
15913 | /* |
15914 | * Adding this helper action failed -- we are now going |
15915 | * to rip out the entire generation and return failure. |
15916 | */ |
15917 | (void) dtrace_helper_destroygen(p, gen: help->dthps_generation); |
15918 | dtrace_enabling_destroy(enab); |
15919 | dtrace_dof_destroy(dof); |
15920 | return (-1); |
15921 | } |
15922 | |
15923 | nhelpers++; |
15924 | } |
15925 | |
15926 | if (nhelpers < enab->dten_ndesc) |
15927 | dtrace_dof_error(dof, str: "unmatched helpers" ); |
15928 | |
15929 | gen = help->dthps_generation++; |
15930 | dtrace_enabling_destroy(enab); |
15931 | |
15932 | if (dhp != NULL && nprovs > 0) { |
15933 | dhp->dofhp_dof = (uint64_t)(uintptr_t)dof; |
15934 | if (dtrace_helper_provider_add(p, dofhp: dhp, gen) == 0) { |
15935 | lck_mtx_unlock(lck: &dtrace_lock); |
15936 | dtrace_helper_provider_register(p, help, dofhp: dhp); |
15937 | lck_mtx_lock(lck: &dtrace_lock); |
15938 | |
15939 | destroy = 0; |
15940 | } |
15941 | } |
15942 | |
15943 | if (destroy) |
15944 | dtrace_dof_destroy(dof); |
15945 | |
15946 | return (gen); |
15947 | } |
15948 | |
15949 | /* |
15950 | * APPLE NOTE: DTrace lazy dof implementation |
15951 | * |
15952 | * DTrace user static probes (USDT probes) and helper actions are loaded |
15953 | * in a process by proccessing dof sections. The dof sections are passed |
15954 | * into the kernel by dyld, in a dof_ioctl_data_t block. It is rather |
15955 | * expensive to process dof for a process that will never use it. There |
15956 | * is a memory cost (allocating the providers/probes), and a cpu cost |
15957 | * (creating the providers/probes). |
15958 | * |
15959 | * To reduce this cost, we use "lazy dof". The normal proceedure for |
15960 | * dof processing is to copyin the dof(s) pointed to by the dof_ioctl_data_t |
15961 | * block, and invoke dof_slurp_helper() on them. When "lazy dof" is |
15962 | * used, each process retains the dof_ioctl_data_t block, instead of |
15963 | * copying in the data it points to. |
15964 | * |
15965 | * The dof_ioctl_data_t blocks are managed as if they were the actual |
15966 | * processed dof; on fork the block is copied to the child, on exec and |
15967 | * exit the block is freed. |
15968 | * |
15969 | * If the process loads library(s) containing additional dof, the |
15970 | * new dof_ioctl_data_t is merged with the existing block. |
15971 | * |
15972 | * There are a few catches that make this slightly more difficult. |
15973 | * When dyld registers dof_ioctl_data_t blocks, it expects a unique |
15974 | * identifier value for each dof in the block. In non-lazy dof terms, |
15975 | * this is the generation that dof was loaded in. If we hand back |
15976 | * a UID for a lazy dof, that same UID must be able to unload the |
15977 | * dof once it has become non-lazy. To meet this requirement, the |
15978 | * code that loads lazy dof requires that the UID's for dof(s) in |
15979 | * the lazy dof be sorted, and in ascending order. It is okay to skip |
15980 | * UID's, I.E., 1 -> 5 -> 6 is legal. |
15981 | * |
15982 | * Once a process has become non-lazy, it will stay non-lazy. All |
15983 | * future dof operations for that process will be non-lazy, even |
15984 | * if the dof mode transitions back to lazy. |
15985 | * |
15986 | * Always do lazy dof checks before non-lazy (I.E. In fork, exit, exec.). |
15987 | * That way if the lazy check fails due to transitioning to non-lazy, the |
15988 | * right thing is done with the newly faulted in dof. |
15989 | */ |
15990 | |
15991 | /* |
15992 | * This method is a bit squicky. It must handle: |
15993 | * |
15994 | * dof should not be lazy. |
15995 | * dof should have been handled lazily, but there was an error |
15996 | * dof was handled lazily, and needs to be freed. |
15997 | * dof was handled lazily, and must not be freed. |
15998 | * |
15999 | * |
16000 | * Returns EACCESS if dof should be handled non-lazily. |
16001 | * |
16002 | * KERN_SUCCESS and all other return codes indicate lazy handling of dof. |
16003 | * |
16004 | * If the dofs data is claimed by this method, dofs_claimed will be set. |
16005 | * Callers should not free claimed dofs. |
16006 | */ |
16007 | static int |
16008 | dtrace_lazy_dofs_add(proc_t *p, dof_ioctl_data_t* incoming_dofs, int *dofs_claimed) |
16009 | { |
16010 | ASSERT(p); |
16011 | ASSERT(incoming_dofs && incoming_dofs->dofiod_count > 0); |
16012 | |
16013 | int rval = 0; |
16014 | *dofs_claimed = 0; |
16015 | |
16016 | lck_rw_lock_shared(lck: &dtrace_dof_mode_lock); |
16017 | |
16018 | ASSERT(p->p_dtrace_lazy_dofs == NULL || p->p_dtrace_helpers == NULL); |
16019 | ASSERT(dtrace_dof_mode != DTRACE_DOF_MODE_NEVER); |
16020 | |
16021 | /* |
16022 | * Any existing helpers force non-lazy behavior. |
16023 | */ |
16024 | if (dtrace_dof_mode == DTRACE_DOF_MODE_LAZY_ON && (p->p_dtrace_helpers == NULL)) { |
16025 | dtrace_sprlock(p); |
16026 | |
16027 | dof_ioctl_data_t* existing_dofs = p->p_dtrace_lazy_dofs; |
16028 | unsigned int existing_dofs_count = (existing_dofs) ? existing_dofs->dofiod_count : 0; |
16029 | unsigned int i, merged_dofs_count = incoming_dofs->dofiod_count + existing_dofs_count; |
16030 | |
16031 | /* |
16032 | * Range check... |
16033 | */ |
16034 | if (merged_dofs_count == 0 || merged_dofs_count > 1024) { |
16035 | dtrace_dof_error(NULL, str: "lazy_dofs_add merged_dofs_count out of range" ); |
16036 | rval = EINVAL; |
16037 | goto unlock; |
16038 | } |
16039 | |
16040 | /* |
16041 | * Each dof being added must be assigned a unique generation. |
16042 | */ |
16043 | uint64_t generation = (existing_dofs) ? existing_dofs->dofiod_helpers[existing_dofs_count - 1].dofhp_dof + 1 : 1; |
16044 | for (i=0; i<incoming_dofs->dofiod_count; i++) { |
16045 | /* |
16046 | * We rely on these being the same so we can overwrite dofhp_dof and not lose info. |
16047 | */ |
16048 | ASSERT(incoming_dofs->dofiod_helpers[i].dofhp_dof == incoming_dofs->dofiod_helpers[i].dofhp_addr); |
16049 | incoming_dofs->dofiod_helpers[i].dofhp_dof = generation++; |
16050 | } |
16051 | |
16052 | |
16053 | if (existing_dofs) { |
16054 | /* |
16055 | * Merge the existing and incoming dofs |
16056 | */ |
16057 | size_t merged_dofs_size = DOF_IOCTL_DATA_T_SIZE(merged_dofs_count); |
16058 | dof_ioctl_data_t* merged_dofs = kmem_alloc(merged_dofs_size, KM_SLEEP); |
16059 | |
16060 | bcopy(src: &existing_dofs->dofiod_helpers[0], |
16061 | dst: &merged_dofs->dofiod_helpers[0], |
16062 | n: sizeof(dof_helper_t) * existing_dofs_count); |
16063 | bcopy(src: &incoming_dofs->dofiod_helpers[0], |
16064 | dst: &merged_dofs->dofiod_helpers[existing_dofs_count], |
16065 | n: sizeof(dof_helper_t) * incoming_dofs->dofiod_count); |
16066 | |
16067 | merged_dofs->dofiod_count = merged_dofs_count; |
16068 | |
16069 | kmem_free(existing_dofs, DOF_IOCTL_DATA_T_SIZE(existing_dofs_count)); |
16070 | |
16071 | p->p_dtrace_lazy_dofs = merged_dofs; |
16072 | } else { |
16073 | /* |
16074 | * Claim the incoming dofs |
16075 | */ |
16076 | *dofs_claimed = 1; |
16077 | p->p_dtrace_lazy_dofs = incoming_dofs; |
16078 | } |
16079 | |
16080 | #if DEBUG |
16081 | dof_ioctl_data_t* all_dofs = p->p_dtrace_lazy_dofs; |
16082 | for (i=0; i<all_dofs->dofiod_count-1; i++) { |
16083 | ASSERT(all_dofs->dofiod_helpers[i].dofhp_dof < all_dofs->dofiod_helpers[i+1].dofhp_dof); |
16084 | } |
16085 | #endif /* DEBUG */ |
16086 | |
16087 | unlock: |
16088 | dtrace_sprunlock(p); |
16089 | } else { |
16090 | rval = EACCES; |
16091 | } |
16092 | |
16093 | lck_rw_unlock_shared(lck: &dtrace_dof_mode_lock); |
16094 | |
16095 | return rval; |
16096 | } |
16097 | |
16098 | /* |
16099 | * Returns: |
16100 | * |
16101 | * EINVAL: lazy dof is enabled, but the requested generation was not found. |
16102 | * EACCES: This removal needs to be handled non-lazily. |
16103 | */ |
16104 | static int |
16105 | dtrace_lazy_dofs_remove(proc_t *p, int generation) |
16106 | { |
16107 | int rval = EINVAL; |
16108 | |
16109 | lck_rw_lock_shared(lck: &dtrace_dof_mode_lock); |
16110 | |
16111 | ASSERT(p->p_dtrace_lazy_dofs == NULL || p->p_dtrace_helpers == NULL); |
16112 | ASSERT(dtrace_dof_mode != DTRACE_DOF_MODE_NEVER); |
16113 | |
16114 | /* |
16115 | * Any existing helpers force non-lazy behavior. |
16116 | */ |
16117 | if (dtrace_dof_mode == DTRACE_DOF_MODE_LAZY_ON && (p->p_dtrace_helpers == NULL)) { |
16118 | dtrace_sprlock(p); |
16119 | |
16120 | dof_ioctl_data_t* existing_dofs = p->p_dtrace_lazy_dofs; |
16121 | |
16122 | if (existing_dofs) { |
16123 | int index, existing_dofs_count = existing_dofs->dofiod_count; |
16124 | for (index=0; index<existing_dofs_count; index++) { |
16125 | if ((int)existing_dofs->dofiod_helpers[index].dofhp_dof == generation) { |
16126 | dof_ioctl_data_t* removed_dofs = NULL; |
16127 | |
16128 | /* |
16129 | * If there is only 1 dof, we'll delete it and swap in NULL. |
16130 | */ |
16131 | if (existing_dofs_count > 1) { |
16132 | int removed_dofs_count = existing_dofs_count - 1; |
16133 | size_t removed_dofs_size = DOF_IOCTL_DATA_T_SIZE(removed_dofs_count); |
16134 | |
16135 | removed_dofs = kmem_alloc(removed_dofs_size, KM_SLEEP); |
16136 | removed_dofs->dofiod_count = removed_dofs_count; |
16137 | |
16138 | /* |
16139 | * copy the remaining data. |
16140 | */ |
16141 | if (index > 0) { |
16142 | bcopy(src: &existing_dofs->dofiod_helpers[0], |
16143 | dst: &removed_dofs->dofiod_helpers[0], |
16144 | n: index * sizeof(dof_helper_t)); |
16145 | } |
16146 | |
16147 | if (index < existing_dofs_count-1) { |
16148 | bcopy(src: &existing_dofs->dofiod_helpers[index+1], |
16149 | dst: &removed_dofs->dofiod_helpers[index], |
16150 | n: (existing_dofs_count - index - 1) * sizeof(dof_helper_t)); |
16151 | } |
16152 | } |
16153 | |
16154 | kmem_free(existing_dofs, DOF_IOCTL_DATA_T_SIZE(existing_dofs_count)); |
16155 | |
16156 | p->p_dtrace_lazy_dofs = removed_dofs; |
16157 | |
16158 | rval = KERN_SUCCESS; |
16159 | |
16160 | break; |
16161 | } |
16162 | } |
16163 | |
16164 | #if DEBUG |
16165 | dof_ioctl_data_t* all_dofs = p->p_dtrace_lazy_dofs; |
16166 | if (all_dofs) { |
16167 | unsigned int i; |
16168 | for (i=0; i<all_dofs->dofiod_count-1; i++) { |
16169 | ASSERT(all_dofs->dofiod_helpers[i].dofhp_dof < all_dofs->dofiod_helpers[i+1].dofhp_dof); |
16170 | } |
16171 | } |
16172 | #endif |
16173 | |
16174 | } |
16175 | dtrace_sprunlock(p); |
16176 | } else { |
16177 | rval = EACCES; |
16178 | } |
16179 | |
16180 | lck_rw_unlock_shared(lck: &dtrace_dof_mode_lock); |
16181 | |
16182 | return rval; |
16183 | } |
16184 | |
16185 | void |
16186 | dtrace_lazy_dofs_destroy(proc_t *p) |
16187 | { |
16188 | lck_rw_lock_shared(lck: &dtrace_dof_mode_lock); |
16189 | dtrace_sprlock(p); |
16190 | |
16191 | ASSERT(p->p_dtrace_lazy_dofs == NULL || p->p_dtrace_helpers == NULL); |
16192 | |
16193 | dof_ioctl_data_t* lazy_dofs = p->p_dtrace_lazy_dofs; |
16194 | p->p_dtrace_lazy_dofs = NULL; |
16195 | |
16196 | dtrace_sprunlock(p); |
16197 | lck_rw_unlock_shared(lck: &dtrace_dof_mode_lock); |
16198 | |
16199 | if (lazy_dofs) { |
16200 | kmem_free(lazy_dofs, DOF_IOCTL_DATA_T_SIZE(lazy_dofs->dofiod_count)); |
16201 | } |
16202 | } |
16203 | |
16204 | static int |
16205 | dtrace_lazy_dofs_proc_iterate_filter(proc_t *p, void* ignored) |
16206 | { |
16207 | #pragma unused(ignored) |
16208 | /* |
16209 | * Okay to NULL test without taking the sprlock. |
16210 | */ |
16211 | return p->p_dtrace_lazy_dofs != NULL; |
16212 | } |
16213 | |
16214 | static void |
16215 | dtrace_lazy_dofs_process(proc_t *p) { |
16216 | /* |
16217 | * It is possible this process may exit during our attempt to |
16218 | * fault in the dof. We could fix this by holding locks longer, |
16219 | * but the errors are benign. |
16220 | */ |
16221 | dtrace_sprlock(p); |
16222 | |
16223 | |
16224 | ASSERT(p->p_dtrace_lazy_dofs == NULL || p->p_dtrace_helpers == NULL); |
16225 | ASSERT(dtrace_dof_mode == DTRACE_DOF_MODE_LAZY_OFF); |
16226 | |
16227 | dof_ioctl_data_t* lazy_dofs = p->p_dtrace_lazy_dofs; |
16228 | p->p_dtrace_lazy_dofs = NULL; |
16229 | |
16230 | dtrace_sprunlock(p); |
16231 | lck_mtx_lock(lck: &dtrace_meta_lock); |
16232 | /* |
16233 | * Process each dof_helper_t |
16234 | */ |
16235 | if (lazy_dofs != NULL) { |
16236 | unsigned int i; |
16237 | int rval; |
16238 | |
16239 | for (i=0; i<lazy_dofs->dofiod_count; i++) { |
16240 | /* |
16241 | * When loading lazy dof, we depend on the generations being sorted in ascending order. |
16242 | */ |
16243 | ASSERT(i >= (lazy_dofs->dofiod_count - 1) || lazy_dofs->dofiod_helpers[i].dofhp_dof < lazy_dofs->dofiod_helpers[i+1].dofhp_dof); |
16244 | |
16245 | dof_helper_t *dhp = &lazy_dofs->dofiod_helpers[i]; |
16246 | |
16247 | /* |
16248 | * We stored the generation in dofhp_dof. Save it, and restore the original value. |
16249 | */ |
16250 | int generation = dhp->dofhp_dof; |
16251 | dhp->dofhp_dof = dhp->dofhp_addr; |
16252 | |
16253 | dof_hdr_t *dof = dtrace_dof_copyin_from_proc(p, uarg: dhp->dofhp_dof, errp: &rval); |
16254 | |
16255 | if (dof != NULL) { |
16256 | dtrace_helpers_t *help; |
16257 | |
16258 | lck_mtx_lock(lck: &dtrace_lock); |
16259 | |
16260 | /* |
16261 | * This must be done with the dtrace_lock held |
16262 | */ |
16263 | if ((help = p->p_dtrace_helpers) == NULL) |
16264 | help = dtrace_helpers_create(p); |
16265 | |
16266 | /* |
16267 | * If the generation value has been bumped, someone snuck in |
16268 | * when we released the dtrace lock. We have to dump this generation, |
16269 | * there is no safe way to load it. |
16270 | */ |
16271 | if (help->dthps_generation <= generation) { |
16272 | help->dthps_generation = generation; |
16273 | |
16274 | /* |
16275 | * dtrace_helper_slurp() takes responsibility for the dof -- |
16276 | * it may free it now or it may save it and free it later. |
16277 | */ |
16278 | if ((rval = dtrace_helper_slurp(p, dof, dhp)) != generation) { |
16279 | dtrace_dof_error(NULL, str: "returned value did not match expected generation" ); |
16280 | } |
16281 | } |
16282 | |
16283 | lck_mtx_unlock(lck: &dtrace_lock); |
16284 | } |
16285 | } |
16286 | lck_mtx_unlock(lck: &dtrace_meta_lock); |
16287 | kmem_free(lazy_dofs, DOF_IOCTL_DATA_T_SIZE(lazy_dofs->dofiod_count)); |
16288 | } else { |
16289 | lck_mtx_unlock(lck: &dtrace_meta_lock); |
16290 | } |
16291 | } |
16292 | |
16293 | static int |
16294 | dtrace_lazy_dofs_proc_iterate_doit(proc_t *p, void* ignored) |
16295 | { |
16296 | #pragma unused(ignored) |
16297 | |
16298 | dtrace_lazy_dofs_process(p); |
16299 | |
16300 | return PROC_RETURNED; |
16301 | } |
16302 | |
16303 | #define DTRACE_LAZY_DOFS_DUPLICATED 1 |
16304 | |
16305 | static int |
16306 | dtrace_lazy_dofs_duplicate(proc_t *parent, proc_t *child) |
16307 | { |
16308 | LCK_MTX_ASSERT(&dtrace_lock, LCK_MTX_ASSERT_NOTOWNED); |
16309 | LCK_MTX_ASSERT(&parent->p_dtrace_sprlock, LCK_MTX_ASSERT_NOTOWNED); |
16310 | LCK_MTX_ASSERT(&child->p_dtrace_sprlock, LCK_MTX_ASSERT_NOTOWNED); |
16311 | |
16312 | lck_rw_lock_shared(lck: &dtrace_dof_mode_lock); |
16313 | dtrace_sprlock(p: parent); |
16314 | |
16315 | /* |
16316 | * We need to make sure that the transition to lazy dofs -> helpers |
16317 | * was atomic for our parent |
16318 | */ |
16319 | ASSERT(parent->p_dtrace_lazy_dofs == NULL || parent->p_dtrace_helpers == NULL); |
16320 | /* |
16321 | * In theory we should hold the child sprlock, but this is safe... |
16322 | */ |
16323 | ASSERT(child->p_dtrace_lazy_dofs == NULL && child->p_dtrace_helpers == NULL); |
16324 | |
16325 | dof_ioctl_data_t* parent_dofs = parent->p_dtrace_lazy_dofs; |
16326 | dof_ioctl_data_t* child_dofs = NULL; |
16327 | if (parent_dofs) { |
16328 | size_t parent_dofs_size = DOF_IOCTL_DATA_T_SIZE(parent_dofs->dofiod_count); |
16329 | child_dofs = kmem_alloc(parent_dofs_size, KM_SLEEP); |
16330 | bcopy(src: parent_dofs, dst: child_dofs, n: parent_dofs_size); |
16331 | } |
16332 | |
16333 | dtrace_sprunlock(p: parent); |
16334 | |
16335 | if (child_dofs) { |
16336 | dtrace_sprlock(p: child); |
16337 | child->p_dtrace_lazy_dofs = child_dofs; |
16338 | dtrace_sprunlock(p: child); |
16339 | /** |
16340 | * We process the DOF at this point if the mode is set to |
16341 | * LAZY_OFF. This can happen if DTrace is still processing the |
16342 | * DOF of other process (which can happen because the |
16343 | * protected pager can have a huge latency) |
16344 | * but has not processed our parent yet |
16345 | */ |
16346 | if (dtrace_dof_mode == DTRACE_DOF_MODE_LAZY_OFF) { |
16347 | dtrace_lazy_dofs_process(p: child); |
16348 | } |
16349 | lck_rw_unlock_shared(lck: &dtrace_dof_mode_lock); |
16350 | |
16351 | return DTRACE_LAZY_DOFS_DUPLICATED; |
16352 | } |
16353 | lck_rw_unlock_shared(lck: &dtrace_dof_mode_lock); |
16354 | |
16355 | return 0; |
16356 | } |
16357 | |
16358 | static dtrace_helpers_t * |
16359 | dtrace_helpers_create(proc_t *p) |
16360 | { |
16361 | dtrace_helpers_t *help; |
16362 | |
16363 | LCK_MTX_ASSERT(&dtrace_lock, LCK_MTX_ASSERT_OWNED); |
16364 | ASSERT(p->p_dtrace_helpers == NULL); |
16365 | |
16366 | help = kmem_zalloc(sizeof (dtrace_helpers_t), KM_SLEEP); |
16367 | help->dthps_actions = kmem_zalloc(sizeof (dtrace_helper_action_t *) * |
16368 | DTRACE_NHELPER_ACTIONS, KM_SLEEP); |
16369 | |
16370 | p->p_dtrace_helpers = help; |
16371 | dtrace_helpers++; |
16372 | |
16373 | return (help); |
16374 | } |
16375 | |
16376 | static void |
16377 | dtrace_helpers_destroy(proc_t* p) |
16378 | { |
16379 | dtrace_helpers_t *help; |
16380 | dtrace_vstate_t *vstate; |
16381 | uint_t i; |
16382 | |
16383 | lck_mtx_lock(lck: &dtrace_meta_lock); |
16384 | lck_mtx_lock(lck: &dtrace_lock); |
16385 | |
16386 | ASSERT(p->p_dtrace_helpers != NULL); |
16387 | ASSERT(dtrace_helpers > 0); |
16388 | |
16389 | help = p->p_dtrace_helpers; |
16390 | vstate = &help->dthps_vstate; |
16391 | |
16392 | /* |
16393 | * We're now going to lose the help from this process. |
16394 | */ |
16395 | p->p_dtrace_helpers = NULL; |
16396 | dtrace_sync(); |
16397 | |
16398 | /* |
16399 | * Destory the helper actions. |
16400 | */ |
16401 | for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { |
16402 | dtrace_helper_action_t *h, *next; |
16403 | |
16404 | for (h = help->dthps_actions[i]; h != NULL; h = next) { |
16405 | next = h->dtha_next; |
16406 | dtrace_helper_action_destroy(helper: h, vstate); |
16407 | h = next; |
16408 | } |
16409 | } |
16410 | |
16411 | lck_mtx_unlock(lck: &dtrace_lock); |
16412 | |
16413 | /* |
16414 | * Destroy the helper providers. |
16415 | */ |
16416 | if (help->dthps_maxprovs > 0) { |
16417 | if (dtrace_meta_pid != NULL) { |
16418 | ASSERT(dtrace_deferred_pid == NULL); |
16419 | |
16420 | for (i = 0; i < help->dthps_nprovs; i++) { |
16421 | dtrace_helper_provider_remove( |
16422 | dhp: &help->dthps_provs[i]->dthp_prov, p); |
16423 | } |
16424 | } else { |
16425 | lck_mtx_lock(lck: &dtrace_lock); |
16426 | ASSERT(help->dthps_deferred == 0 || |
16427 | help->dthps_next != NULL || |
16428 | help->dthps_prev != NULL || |
16429 | help == dtrace_deferred_pid); |
16430 | |
16431 | /* |
16432 | * Remove the helper from the deferred list. |
16433 | */ |
16434 | if (help->dthps_next != NULL) |
16435 | help->dthps_next->dthps_prev = help->dthps_prev; |
16436 | if (help->dthps_prev != NULL) |
16437 | help->dthps_prev->dthps_next = help->dthps_next; |
16438 | if (dtrace_deferred_pid == help) { |
16439 | dtrace_deferred_pid = help->dthps_next; |
16440 | ASSERT(help->dthps_prev == NULL); |
16441 | } |
16442 | |
16443 | lck_mtx_unlock(lck: &dtrace_lock); |
16444 | } |
16445 | |
16446 | |
16447 | for (i = 0; i < help->dthps_nprovs; i++) { |
16448 | dtrace_helper_provider_destroy(hprov: help->dthps_provs[i]); |
16449 | } |
16450 | |
16451 | kmem_free(help->dthps_provs, help->dthps_maxprovs * |
16452 | sizeof (dtrace_helper_provider_t *)); |
16453 | } |
16454 | |
16455 | lck_mtx_lock(lck: &dtrace_lock); |
16456 | |
16457 | dtrace_vstate_fini(vstate: &help->dthps_vstate); |
16458 | kmem_free(help->dthps_actions, |
16459 | sizeof (dtrace_helper_action_t *) * DTRACE_NHELPER_ACTIONS); |
16460 | kmem_free(help, sizeof (dtrace_helpers_t)); |
16461 | |
16462 | --dtrace_helpers; |
16463 | lck_mtx_unlock(lck: &dtrace_lock); |
16464 | lck_mtx_unlock(lck: &dtrace_meta_lock); |
16465 | } |
16466 | |
16467 | static void |
16468 | dtrace_helpers_duplicate(proc_t *from, proc_t *to) |
16469 | { |
16470 | dtrace_helpers_t *help, *newhelp; |
16471 | dtrace_helper_action_t *helper, *new, *last; |
16472 | dtrace_difo_t *dp; |
16473 | dtrace_vstate_t *vstate; |
16474 | uint_t i; |
16475 | int j, sz, hasprovs = 0; |
16476 | |
16477 | lck_mtx_lock(lck: &dtrace_meta_lock); |
16478 | lck_mtx_lock(lck: &dtrace_lock); |
16479 | ASSERT(from->p_dtrace_helpers != NULL); |
16480 | ASSERT(dtrace_helpers > 0); |
16481 | |
16482 | help = from->p_dtrace_helpers; |
16483 | newhelp = dtrace_helpers_create(p: to); |
16484 | ASSERT(to->p_dtrace_helpers != NULL); |
16485 | |
16486 | newhelp->dthps_generation = help->dthps_generation; |
16487 | vstate = &newhelp->dthps_vstate; |
16488 | |
16489 | /* |
16490 | * Duplicate the helper actions. |
16491 | */ |
16492 | for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { |
16493 | if ((helper = help->dthps_actions[i]) == NULL) |
16494 | continue; |
16495 | |
16496 | for (last = NULL; helper != NULL; helper = helper->dtha_next) { |
16497 | new = kmem_zalloc(sizeof (dtrace_helper_action_t), |
16498 | KM_SLEEP); |
16499 | new->dtha_generation = helper->dtha_generation; |
16500 | |
16501 | if ((dp = helper->dtha_predicate) != NULL) { |
16502 | dp = dtrace_difo_duplicate(dp, vstate); |
16503 | new->dtha_predicate = dp; |
16504 | } |
16505 | |
16506 | new->dtha_nactions = helper->dtha_nactions; |
16507 | sz = sizeof (dtrace_difo_t *) * new->dtha_nactions; |
16508 | new->dtha_actions = kmem_alloc(sz, KM_SLEEP); |
16509 | |
16510 | for (j = 0; j < new->dtha_nactions; j++) { |
16511 | dtrace_difo_t *dpj = helper->dtha_actions[j]; |
16512 | |
16513 | ASSERT(dpj != NULL); |
16514 | dpj = dtrace_difo_duplicate(dp: dpj, vstate); |
16515 | new->dtha_actions[j] = dpj; |
16516 | } |
16517 | |
16518 | if (last != NULL) { |
16519 | last->dtha_next = new; |
16520 | } else { |
16521 | newhelp->dthps_actions[i] = new; |
16522 | } |
16523 | |
16524 | last = new; |
16525 | } |
16526 | } |
16527 | |
16528 | /* |
16529 | * Duplicate the helper providers and register them with the |
16530 | * DTrace framework. |
16531 | */ |
16532 | if (help->dthps_nprovs > 0) { |
16533 | newhelp->dthps_nprovs = help->dthps_nprovs; |
16534 | newhelp->dthps_maxprovs = help->dthps_nprovs; |
16535 | newhelp->dthps_provs = kmem_alloc(newhelp->dthps_nprovs * |
16536 | sizeof (dtrace_helper_provider_t *), KM_SLEEP); |
16537 | for (i = 0; i < newhelp->dthps_nprovs; i++) { |
16538 | newhelp->dthps_provs[i] = help->dthps_provs[i]; |
16539 | newhelp->dthps_provs[i]->dthp_ref++; |
16540 | } |
16541 | |
16542 | hasprovs = 1; |
16543 | } |
16544 | |
16545 | lck_mtx_unlock(lck: &dtrace_lock); |
16546 | |
16547 | if (hasprovs) |
16548 | dtrace_helper_provider_register(p: to, help: newhelp, NULL); |
16549 | |
16550 | lck_mtx_unlock(lck: &dtrace_meta_lock); |
16551 | } |
16552 | |
16553 | /** |
16554 | * DTrace Process functions |
16555 | */ |
16556 | |
16557 | void |
16558 | dtrace_proc_fork(proc_t *parent_proc, proc_t *child_proc, int spawn) |
16559 | { |
16560 | /* |
16561 | * This code applies to new processes who are copying the task |
16562 | * and thread state and address spaces of their parent process. |
16563 | */ |
16564 | if (!spawn) { |
16565 | /* |
16566 | * APPLE NOTE: Solaris does a sprlock() and drops the |
16567 | * proc_lock here. We're cheating a bit and only taking |
16568 | * the p_dtrace_sprlock lock. A full sprlock would |
16569 | * task_suspend the parent. |
16570 | */ |
16571 | dtrace_sprlock(p: parent_proc); |
16572 | |
16573 | /* |
16574 | * Remove all DTrace tracepoints from the child process. We |
16575 | * need to do this _before_ duplicating USDT providers since |
16576 | * any associated probes may be immediately enabled. |
16577 | */ |
16578 | if (parent_proc->p_dtrace_count > 0) { |
16579 | dtrace_fasttrap_fork(parent_proc, child_proc); |
16580 | } |
16581 | |
16582 | dtrace_sprunlock(p: parent_proc); |
16583 | |
16584 | /* |
16585 | * Duplicate any lazy dof(s). This must be done while NOT |
16586 | * holding the parent sprlock! Lock ordering is |
16587 | * dtrace_dof_mode_lock, then sprlock. It is imperative we |
16588 | * always call dtrace_lazy_dofs_duplicate, rather than null |
16589 | * check and call if !NULL. If we NULL test, during lazy dof |
16590 | * faulting we can race with the faulting code and proceed |
16591 | * from here to beyond the helpers copy. The lazy dof |
16592 | * faulting will then fail to copy the helpers to the child |
16593 | * process. We return if we duplicated lazy dofs as a process |
16594 | * can only have one at the same time to avoid a race between |
16595 | * a dtrace client and dtrace_proc_fork where a process would |
16596 | * end up with both lazy dofs and helpers. |
16597 | */ |
16598 | if (dtrace_lazy_dofs_duplicate(parent: parent_proc, child: child_proc) == DTRACE_LAZY_DOFS_DUPLICATED) { |
16599 | return; |
16600 | } |
16601 | |
16602 | /* |
16603 | * Duplicate any helper actions and providers if they haven't |
16604 | * already. |
16605 | */ |
16606 | #if !defined(__APPLE__) |
16607 | /* |
16608 | * The SFORKING |
16609 | * we set above informs the code to enable USDT probes that |
16610 | * sprlock() may fail because the child is being forked. |
16611 | */ |
16612 | #endif |
16613 | /* |
16614 | * APPLE NOTE: As best I can tell, Apple's sprlock() equivalent |
16615 | * never fails to find the child. We do not set SFORKING. |
16616 | */ |
16617 | if (parent_proc->p_dtrace_helpers != NULL && dtrace_helpers_fork) { |
16618 | (*dtrace_helpers_fork)(parent_proc, child_proc); |
16619 | } |
16620 | } |
16621 | } |
16622 | |
16623 | void |
16624 | dtrace_proc_exec(proc_t *p) |
16625 | { |
16626 | /* |
16627 | * Invalidate any predicate evaluation already cached for this thread by DTrace. |
16628 | * That's because we've just stored to p_comm and DTrace refers to that when it |
16629 | * evaluates the "execname" special variable. uid and gid may have changed as well. |
16630 | */ |
16631 | dtrace_set_thread_predcache(current_thread(), 0); |
16632 | |
16633 | /* |
16634 | * Free any outstanding lazy dof entries. It is imperative we |
16635 | * always call dtrace_lazy_dofs_destroy, rather than null check |
16636 | * and call if !NULL. If we NULL test, during lazy dof faulting |
16637 | * we can race with the faulting code and proceed from here to |
16638 | * beyond the helpers cleanup. The lazy dof faulting will then |
16639 | * install new helpers which no longer belong to this process! |
16640 | */ |
16641 | dtrace_lazy_dofs_destroy(p); |
16642 | |
16643 | |
16644 | /* |
16645 | * Clean up any DTrace helpers for the process. |
16646 | */ |
16647 | if (p->p_dtrace_helpers != NULL && dtrace_helpers_cleanup) { |
16648 | (*dtrace_helpers_cleanup)(p); |
16649 | } |
16650 | |
16651 | /* |
16652 | * Cleanup the DTrace provider associated with this process. |
16653 | */ |
16654 | proc_lock(p); |
16655 | if (p->p_dtrace_probes && dtrace_fasttrap_exec_ptr) { |
16656 | (*dtrace_fasttrap_exec_ptr)(p); |
16657 | } |
16658 | proc_unlock(p); |
16659 | } |
16660 | |
16661 | void |
16662 | dtrace_proc_exit(proc_t *p) |
16663 | { |
16664 | /* |
16665 | * Free any outstanding lazy dof entries. It is imperative we |
16666 | * always call dtrace_lazy_dofs_destroy, rather than null check |
16667 | * and call if !NULL. If we NULL test, during lazy dof faulting |
16668 | * we can race with the faulting code and proceed from here to |
16669 | * beyond the helpers cleanup. The lazy dof faulting will then |
16670 | * install new helpers which will never be cleaned up, and leak. |
16671 | */ |
16672 | dtrace_lazy_dofs_destroy(p); |
16673 | |
16674 | /* |
16675 | * Clean up any DTrace helper actions or probes for the process. |
16676 | */ |
16677 | if (p->p_dtrace_helpers != NULL) { |
16678 | (*dtrace_helpers_cleanup)(p); |
16679 | } |
16680 | |
16681 | /* |
16682 | * Clean up any DTrace probes associated with this process. |
16683 | */ |
16684 | /* |
16685 | * APPLE NOTE: We release ptss pages/entries in dtrace_fasttrap_exit_ptr(), |
16686 | * call this after dtrace_helpers_cleanup() |
16687 | */ |
16688 | proc_lock(p); |
16689 | if (p->p_dtrace_probes && dtrace_fasttrap_exit_ptr) { |
16690 | (*dtrace_fasttrap_exit_ptr)(p); |
16691 | } |
16692 | proc_unlock(p); |
16693 | } |
16694 | |
16695 | /* |
16696 | * DTrace Hook Functions |
16697 | */ |
16698 | |
16699 | /* |
16700 | * APPLE NOTE: dtrace_modctl_* routines for kext support. |
16701 | * Used to manipulate the modctl list within dtrace xnu. |
16702 | */ |
16703 | |
16704 | modctl_t *dtrace_modctl_list; |
16705 | |
16706 | static void |
16707 | dtrace_modctl_add(struct modctl * newctl) |
16708 | { |
16709 | struct modctl *nextp, *prevp; |
16710 | |
16711 | ASSERT(newctl != NULL); |
16712 | LCK_MTX_ASSERT(&mod_lock, LCK_MTX_ASSERT_OWNED); |
16713 | |
16714 | // Insert new module at the front of the list, |
16715 | |
16716 | newctl->mod_next = dtrace_modctl_list; |
16717 | dtrace_modctl_list = newctl; |
16718 | |
16719 | /* |
16720 | * If a module exists with the same name, then that module |
16721 | * must have been unloaded with enabled probes. We will move |
16722 | * the unloaded module to the new module's stale chain and |
16723 | * then stop traversing the list. |
16724 | */ |
16725 | |
16726 | prevp = newctl; |
16727 | nextp = newctl->mod_next; |
16728 | |
16729 | while (nextp != NULL) { |
16730 | if (nextp->mod_loaded) { |
16731 | /* This is a loaded module. Keep traversing. */ |
16732 | prevp = nextp; |
16733 | nextp = nextp->mod_next; |
16734 | continue; |
16735 | } |
16736 | else { |
16737 | /* Found an unloaded module */ |
16738 | if (strncmp (s1: newctl->mod_modname, s2: nextp->mod_modname, KMOD_MAX_NAME)) { |
16739 | /* Names don't match. Keep traversing. */ |
16740 | prevp = nextp; |
16741 | nextp = nextp->mod_next; |
16742 | continue; |
16743 | } |
16744 | else { |
16745 | /* We found a stale entry, move it. We're done. */ |
16746 | prevp->mod_next = nextp->mod_next; |
16747 | newctl->mod_stale = nextp; |
16748 | nextp->mod_next = NULL; |
16749 | break; |
16750 | } |
16751 | } |
16752 | } |
16753 | } |
16754 | |
16755 | static modctl_t * |
16756 | dtrace_modctl_lookup(struct kmod_info * kmod) |
16757 | { |
16758 | LCK_MTX_ASSERT(&mod_lock, LCK_MTX_ASSERT_OWNED); |
16759 | |
16760 | struct modctl * ctl; |
16761 | |
16762 | for (ctl = dtrace_modctl_list; ctl; ctl=ctl->mod_next) { |
16763 | if (ctl->mod_id == kmod->id) |
16764 | return(ctl); |
16765 | } |
16766 | return (NULL); |
16767 | } |
16768 | |
16769 | /* |
16770 | * This routine is called from dtrace_module_unloaded(). |
16771 | * It removes a modctl structure and its stale chain |
16772 | * from the kext shadow list. |
16773 | */ |
16774 | static void |
16775 | dtrace_modctl_remove(struct modctl * ctl) |
16776 | { |
16777 | ASSERT(ctl != NULL); |
16778 | LCK_MTX_ASSERT(&mod_lock, LCK_MTX_ASSERT_OWNED); |
16779 | modctl_t *prevp, *nextp, *curp; |
16780 | |
16781 | // Remove stale chain first |
16782 | for (curp=ctl->mod_stale; curp != NULL; curp=nextp) { |
16783 | nextp = curp->mod_stale; |
16784 | /* There should NEVER be user symbols allocated at this point */ |
16785 | ASSERT(curp->mod_user_symbols == NULL); |
16786 | kmem_free(curp, sizeof(modctl_t)); |
16787 | } |
16788 | |
16789 | prevp = NULL; |
16790 | curp = dtrace_modctl_list; |
16791 | |
16792 | while (curp != ctl) { |
16793 | prevp = curp; |
16794 | curp = curp->mod_next; |
16795 | } |
16796 | |
16797 | if (prevp != NULL) { |
16798 | prevp->mod_next = ctl->mod_next; |
16799 | } |
16800 | else { |
16801 | dtrace_modctl_list = ctl->mod_next; |
16802 | } |
16803 | |
16804 | /* There should NEVER be user symbols allocated at this point */ |
16805 | ASSERT(ctl->mod_user_symbols == NULL); |
16806 | |
16807 | kmem_free (ctl, sizeof(modctl_t)); |
16808 | } |
16809 | |
16810 | /* |
16811 | * APPLE NOTE: The kext loader will call dtrace_module_loaded |
16812 | * when the kext is loaded in memory, but before calling the |
16813 | * kext's start routine. |
16814 | * |
16815 | * Return 0 on success |
16816 | * Return -1 on failure |
16817 | */ |
16818 | |
16819 | static int |
16820 | dtrace_module_loaded(struct kmod_info *kmod, uint32_t flag) |
16821 | { |
16822 | dtrace_provider_t *prv; |
16823 | |
16824 | /* |
16825 | * If kernel symbols have been disabled, return immediately |
16826 | * DTRACE_KERNEL_SYMBOLS_NEVER is a permanent mode, it is safe to test without holding locks |
16827 | */ |
16828 | if (dtrace_kernel_symbol_mode == DTRACE_KERNEL_SYMBOLS_NEVER) |
16829 | return 0; |
16830 | |
16831 | #if CONFIG_SPTM |
16832 | /* Opt-out the SPTM/TXM fake kexts from being loaded by DTrace. */ |
16833 | extern kmod_info_t g_sptm_kmod_info, g_txm_kmod_info; |
16834 | if ((kmod == &g_sptm_kmod_info) || (kmod == &g_txm_kmod_info)) { |
16835 | return 0; |
16836 | } |
16837 | #endif |
16838 | |
16839 | struct modctl *ctl = NULL; |
16840 | if (!kmod || kmod->address == 0 || kmod->size == 0) |
16841 | return(-1); |
16842 | |
16843 | lck_mtx_lock(lck: &dtrace_provider_lock); |
16844 | lck_mtx_lock(lck: &mod_lock); |
16845 | |
16846 | /* |
16847 | * Have we seen this kext before? |
16848 | */ |
16849 | |
16850 | ctl = dtrace_modctl_lookup(kmod); |
16851 | |
16852 | if (ctl != NULL) { |
16853 | /* bail... we already have this kext in the modctl list */ |
16854 | lck_mtx_unlock(lck: &mod_lock); |
16855 | lck_mtx_unlock(lck: &dtrace_provider_lock); |
16856 | if (dtrace_err_verbose) |
16857 | cmn_err(CE_WARN, "dtrace load module already exists '%s %u' is failing against '%s %u'" , kmod->name, (uint_t)kmod->id, ctl->mod_modname, ctl->mod_id); |
16858 | return(-1); |
16859 | } |
16860 | else { |
16861 | ctl = kmem_alloc(sizeof(struct modctl), KM_SLEEP); |
16862 | if (ctl == NULL) { |
16863 | if (dtrace_err_verbose) |
16864 | cmn_err(CE_WARN, "dtrace module load '%s %u' is failing " , kmod->name, (uint_t)kmod->id); |
16865 | lck_mtx_unlock(lck: &mod_lock); |
16866 | lck_mtx_unlock(lck: &dtrace_provider_lock); |
16867 | return (-1); |
16868 | } |
16869 | ctl->mod_next = NULL; |
16870 | ctl->mod_stale = NULL; |
16871 | strlcpy (dst: ctl->mod_modname, src: kmod->name, n: sizeof(ctl->mod_modname)); |
16872 | ctl->mod_loadcnt = kmod->id; |
16873 | ctl->mod_nenabled = 0; |
16874 | ctl->mod_address = kmod->address; |
16875 | ctl->mod_size = kmod->size; |
16876 | ctl->mod_id = kmod->id; |
16877 | ctl->mod_loaded = 1; |
16878 | ctl->mod_flags = 0; |
16879 | ctl->mod_user_symbols = NULL; |
16880 | ctl->mod_sdtprobecnt = 0; |
16881 | ctl->mod_sdtdesc = NULL; |
16882 | |
16883 | /* |
16884 | * Find the UUID for this module, if it has one |
16885 | */ |
16886 | kernel_mach_header_t* = (kernel_mach_header_t *)ctl->mod_address; |
16887 | struct load_command* load_cmd = (struct load_command *)&header[1]; |
16888 | uint32_t i; |
16889 | for (i = 0; i < header->ncmds; i++) { |
16890 | if (load_cmd->cmd == LC_UUID) { |
16891 | struct uuid_command* uuid_cmd = (struct uuid_command *)load_cmd; |
16892 | memcpy(dst: ctl->mod_uuid, src: uuid_cmd->uuid, n: sizeof(uuid_cmd->uuid)); |
16893 | ctl->mod_flags |= MODCTL_HAS_UUID; |
16894 | break; |
16895 | } |
16896 | load_cmd = (struct load_command *)((caddr_t)load_cmd + load_cmd->cmdsize); |
16897 | } |
16898 | |
16899 | if (ctl->mod_address == g_kernel_kmod_info.address) { |
16900 | ctl->mod_flags |= MODCTL_IS_MACH_KERNEL; |
16901 | memcpy(dst: dtrace_kerneluuid, src: ctl->mod_uuid, n: sizeof(dtrace_kerneluuid)); |
16902 | } |
16903 | /* |
16904 | * Static kexts have a UUID that is not used for symbolication, as all their |
16905 | * symbols are in kernel |
16906 | */ |
16907 | else if ((flag & KMOD_DTRACE_STATIC_KEXT) == KMOD_DTRACE_STATIC_KEXT) { |
16908 | memcpy(dst: ctl->mod_uuid, src: dtrace_kerneluuid, n: sizeof(dtrace_kerneluuid)); |
16909 | ctl->mod_flags |= MODCTL_IS_STATIC_KEXT; |
16910 | } |
16911 | } |
16912 | dtrace_modctl_add(newctl: ctl); |
16913 | |
16914 | /* |
16915 | * We must hold the dtrace_lock to safely test non permanent dtrace_fbt_symbol_mode(s) |
16916 | */ |
16917 | lck_mtx_lock(lck: &dtrace_lock); |
16918 | |
16919 | /* |
16920 | * DTrace must decide if it will instrument modules lazily via |
16921 | * userspace symbols (default mode), or instrument immediately via |
16922 | * kernel symbols (non-default mode) |
16923 | * |
16924 | * When in default/lazy mode, DTrace will only support modules |
16925 | * built with a valid UUID. |
16926 | * |
16927 | * Overriding the default can be done explicitly in one of |
16928 | * the following two ways. |
16929 | * |
16930 | * A module can force symbols from kernel space using the plist key, |
16931 | * OSBundleForceDTraceInit (see kmod.h). If this per kext state is set, |
16932 | * we fall through and instrument this module now. |
16933 | * |
16934 | * Or, the boot-arg, dtrace_kernel_symbol_mode, can be set to force symbols |
16935 | * from kernel space (see dtrace_impl.h). If this system state is set |
16936 | * to a non-userspace mode, we fall through and instrument the module now. |
16937 | */ |
16938 | |
16939 | if ((dtrace_kernel_symbol_mode == DTRACE_KERNEL_SYMBOLS_FROM_USERSPACE) && |
16940 | (!(flag & KMOD_DTRACE_FORCE_INIT))) |
16941 | { |
16942 | /* Load SDT section for module. Symbol related data will be handled lazily. */ |
16943 | sdt_load_machsect(ctl); |
16944 | |
16945 | /* We will instrument the module lazily -- this is the default */ |
16946 | lck_mtx_unlock(lck: &dtrace_lock); |
16947 | lck_mtx_unlock(lck: &mod_lock); |
16948 | lck_mtx_unlock(lck: &dtrace_provider_lock); |
16949 | return 0; |
16950 | } |
16951 | |
16952 | /* We will instrument the module immediately using kernel symbols */ |
16953 | if (!(flag & KMOD_DTRACE_NO_KERNEL_SYMS)) { |
16954 | ctl->mod_flags |= MODCTL_HAS_KERNEL_SYMBOLS; |
16955 | } |
16956 | |
16957 | /* Load SDT section for module. Symbol related data will be handled lazily. */ |
16958 | sdt_load_machsect(ctl); |
16959 | |
16960 | lck_mtx_unlock(lck: &dtrace_lock); |
16961 | |
16962 | /* |
16963 | * We're going to call each providers per-module provide operation |
16964 | * specifying only this module. |
16965 | */ |
16966 | for (prv = dtrace_provider; prv != NULL; prv = prv->dtpv_next) |
16967 | prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl); |
16968 | |
16969 | /* |
16970 | * APPLE NOTE: The contract with the kext loader is that once this function |
16971 | * has completed, it may delete kernel symbols at will. |
16972 | * We must set this while still holding the mod_lock. |
16973 | */ |
16974 | ctl->mod_flags &= ~MODCTL_HAS_KERNEL_SYMBOLS; |
16975 | |
16976 | lck_mtx_unlock(lck: &mod_lock); |
16977 | lck_mtx_unlock(lck: &dtrace_provider_lock); |
16978 | |
16979 | /* |
16980 | * If we have any retained enablings, we need to match against them. |
16981 | * Enabling probes requires that cpu_lock be held, and we cannot hold |
16982 | * cpu_lock here -- it is legal for cpu_lock to be held when loading a |
16983 | * module. (In particular, this happens when loading scheduling |
16984 | * classes.) So if we have any retained enablings, we need to dispatch |
16985 | * our task queue to do the match for us. |
16986 | */ |
16987 | lck_mtx_lock(lck: &dtrace_lock); |
16988 | |
16989 | if (dtrace_retained == NULL) { |
16990 | lck_mtx_unlock(lck: &dtrace_lock); |
16991 | return 0; |
16992 | } |
16993 | |
16994 | /* APPLE NOTE! |
16995 | * |
16996 | * The cpu_lock mentioned above is only held by dtrace code, Apple's xnu never actually |
16997 | * holds it for any reason. Thus the comment above is invalid, we can directly invoke |
16998 | * dtrace_enabling_matchall without jumping through all the hoops, and we can avoid |
16999 | * the delay call as well. |
17000 | */ |
17001 | lck_mtx_unlock(lck: &dtrace_lock); |
17002 | |
17003 | dtrace_enabling_matchall(); |
17004 | |
17005 | return 0; |
17006 | } |
17007 | |
17008 | /* |
17009 | * Return 0 on success |
17010 | * Return -1 on failure |
17011 | */ |
17012 | static int |
17013 | dtrace_module_unloaded(struct kmod_info *kmod) |
17014 | { |
17015 | dtrace_probe_t template, *probe, *first, *next; |
17016 | dtrace_provider_t *prov; |
17017 | struct modctl *ctl = NULL; |
17018 | struct modctl *syncctl = NULL; |
17019 | struct modctl *nextsyncctl = NULL; |
17020 | int syncmode = 0; |
17021 | |
17022 | lck_mtx_lock(lck: &dtrace_provider_lock); |
17023 | lck_mtx_lock(lck: &mod_lock); |
17024 | lck_mtx_lock(lck: &dtrace_lock); |
17025 | |
17026 | if (kmod == NULL) { |
17027 | syncmode = 1; |
17028 | } |
17029 | else { |
17030 | ctl = dtrace_modctl_lookup(kmod); |
17031 | if (ctl == NULL) |
17032 | { |
17033 | lck_mtx_unlock(lck: &dtrace_lock); |
17034 | lck_mtx_unlock(lck: &mod_lock); |
17035 | lck_mtx_unlock(lck: &dtrace_provider_lock); |
17036 | return (-1); |
17037 | } |
17038 | ctl->mod_loaded = 0; |
17039 | ctl->mod_address = 0; |
17040 | ctl->mod_size = 0; |
17041 | } |
17042 | |
17043 | if (dtrace_bymod == NULL) { |
17044 | /* |
17045 | * The DTrace module is loaded (obviously) but not attached; |
17046 | * we don't have any work to do. |
17047 | */ |
17048 | if (ctl != NULL) |
17049 | (void)dtrace_modctl_remove(ctl); |
17050 | lck_mtx_unlock(lck: &dtrace_lock); |
17051 | lck_mtx_unlock(lck: &mod_lock); |
17052 | lck_mtx_unlock(lck: &dtrace_provider_lock); |
17053 | return(0); |
17054 | } |
17055 | |
17056 | /* Syncmode set means we target and traverse entire modctl list. */ |
17057 | if (syncmode) |
17058 | nextsyncctl = dtrace_modctl_list; |
17059 | |
17060 | syncloop: |
17061 | if (syncmode) |
17062 | { |
17063 | /* find a stale modctl struct */ |
17064 | for (syncctl = nextsyncctl; syncctl != NULL; syncctl=syncctl->mod_next) { |
17065 | if (syncctl->mod_address == 0) |
17066 | break; |
17067 | } |
17068 | if (syncctl==NULL) |
17069 | { |
17070 | /* We have no more work to do */ |
17071 | lck_mtx_unlock(lck: &dtrace_lock); |
17072 | lck_mtx_unlock(lck: &mod_lock); |
17073 | lck_mtx_unlock(lck: &dtrace_provider_lock); |
17074 | return(0); |
17075 | } |
17076 | else { |
17077 | /* keep track of next syncctl in case this one is removed */ |
17078 | nextsyncctl = syncctl->mod_next; |
17079 | ctl = syncctl; |
17080 | } |
17081 | } |
17082 | |
17083 | template.dtpr_mod = ctl->mod_modname; |
17084 | |
17085 | for (probe = first = dtrace_hash_lookup(hash: dtrace_bymod, template: &template); |
17086 | probe != NULL; probe = probe->dtpr_nextmod) { |
17087 | if (probe->dtpr_ecb != NULL) { |
17088 | /* |
17089 | * This shouldn't _actually_ be possible -- we're |
17090 | * unloading a module that has an enabled probe in it. |
17091 | * (It's normally up to the provider to make sure that |
17092 | * this can't happen.) However, because dtps_enable() |
17093 | * doesn't have a failure mode, there can be an |
17094 | * enable/unload race. Upshot: we don't want to |
17095 | * assert, but we're not going to disable the |
17096 | * probe, either. |
17097 | */ |
17098 | |
17099 | |
17100 | if (syncmode) { |
17101 | /* We're syncing, let's look at next in list */ |
17102 | goto syncloop; |
17103 | } |
17104 | |
17105 | lck_mtx_unlock(lck: &dtrace_lock); |
17106 | lck_mtx_unlock(lck: &mod_lock); |
17107 | lck_mtx_unlock(lck: &dtrace_provider_lock); |
17108 | |
17109 | if (dtrace_err_verbose) { |
17110 | cmn_err(CE_WARN, "unloaded module '%s' had " |
17111 | "enabled probes" , ctl->mod_modname); |
17112 | } |
17113 | return(-1); |
17114 | } |
17115 | } |
17116 | |
17117 | probe = first; |
17118 | |
17119 | for (first = NULL; probe != NULL; probe = next) { |
17120 | ASSERT(dtrace_probes[probe->dtpr_id - 1] == probe); |
17121 | |
17122 | dtrace_probes[probe->dtpr_id - 1] = NULL; |
17123 | probe->dtpr_provider->dtpv_probe_count--; |
17124 | |
17125 | next = probe->dtpr_nextmod; |
17126 | dtrace_hash_remove(hash: dtrace_byprov, elm: probe); |
17127 | dtrace_hash_remove(hash: dtrace_bymod, elm: probe); |
17128 | dtrace_hash_remove(hash: dtrace_byfunc, elm: probe); |
17129 | dtrace_hash_remove(hash: dtrace_byname, elm: probe); |
17130 | |
17131 | if (first == NULL) { |
17132 | first = probe; |
17133 | probe->dtpr_nextmod = NULL; |
17134 | } else { |
17135 | probe->dtpr_nextmod = first; |
17136 | first = probe; |
17137 | } |
17138 | } |
17139 | |
17140 | /* |
17141 | * We've removed all of the module's probes from the hash chains and |
17142 | * from the probe array. Now issue a dtrace_sync() to be sure that |
17143 | * everyone has cleared out from any probe array processing. |
17144 | */ |
17145 | dtrace_sync(); |
17146 | |
17147 | for (probe = first; probe != NULL; probe = first) { |
17148 | first = probe->dtpr_nextmod; |
17149 | prov = probe->dtpr_provider; |
17150 | prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, probe->dtpr_id, |
17151 | probe->dtpr_arg); |
17152 | dtrace_strunref(str: probe->dtpr_mod); |
17153 | dtrace_strunref(str: probe->dtpr_func); |
17154 | dtrace_strunref(str: probe->dtpr_name); |
17155 | vmem_free(vmp: dtrace_arena, vaddr: (void *)(uintptr_t)probe->dtpr_id, size: 1); |
17156 | |
17157 | zfree(dtrace_probe_t_zone, probe); |
17158 | } |
17159 | |
17160 | dtrace_modctl_remove(ctl); |
17161 | |
17162 | if (syncmode) |
17163 | goto syncloop; |
17164 | |
17165 | lck_mtx_unlock(lck: &dtrace_lock); |
17166 | lck_mtx_unlock(lck: &mod_lock); |
17167 | lck_mtx_unlock(lck: &dtrace_provider_lock); |
17168 | |
17169 | return(0); |
17170 | } |
17171 | |
17172 | void |
17173 | dtrace_suspend(void) |
17174 | { |
17175 | dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_suspend)); |
17176 | } |
17177 | |
17178 | void |
17179 | dtrace_resume(void) |
17180 | { |
17181 | dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_resume)); |
17182 | } |
17183 | |
17184 | static int |
17185 | dtrace_cpu_setup(cpu_setup_t what, processorid_t cpu) |
17186 | { |
17187 | LCK_MTX_ASSERT(&cpu_lock, LCK_MTX_ASSERT_OWNED); |
17188 | lck_mtx_lock(lck: &dtrace_lock); |
17189 | |
17190 | switch (what) { |
17191 | case CPU_CONFIG: { |
17192 | dtrace_state_t *state; |
17193 | dtrace_optval_t *opt, rs, c; |
17194 | |
17195 | /* |
17196 | * For now, we only allocate a new buffer for anonymous state. |
17197 | */ |
17198 | if ((state = dtrace_anon.dta_state) == NULL) |
17199 | break; |
17200 | |
17201 | if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) |
17202 | break; |
17203 | |
17204 | opt = state->dts_options; |
17205 | c = opt[DTRACEOPT_CPU]; |
17206 | |
17207 | if (c != DTRACE_CPUALL && c != DTRACEOPT_UNSET && c != cpu) |
17208 | break; |
17209 | |
17210 | /* |
17211 | * Regardless of what the actual policy is, we're going to |
17212 | * temporarily set our resize policy to be manual. We're |
17213 | * also going to temporarily set our CPU option to denote |
17214 | * the newly configured CPU. |
17215 | */ |
17216 | rs = opt[DTRACEOPT_BUFRESIZE]; |
17217 | opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_MANUAL; |
17218 | opt[DTRACEOPT_CPU] = (dtrace_optval_t)cpu; |
17219 | |
17220 | (void) dtrace_state_buffers(state); |
17221 | |
17222 | opt[DTRACEOPT_BUFRESIZE] = rs; |
17223 | opt[DTRACEOPT_CPU] = c; |
17224 | |
17225 | break; |
17226 | } |
17227 | |
17228 | case CPU_UNCONFIG: |
17229 | /* |
17230 | * We don't free the buffer in the CPU_UNCONFIG case. (The |
17231 | * buffer will be freed when the consumer exits.) |
17232 | */ |
17233 | break; |
17234 | |
17235 | default: |
17236 | break; |
17237 | } |
17238 | |
17239 | lck_mtx_unlock(lck: &dtrace_lock); |
17240 | return (0); |
17241 | } |
17242 | |
17243 | static void |
17244 | dtrace_cpu_setup_initial(processorid_t cpu) |
17245 | { |
17246 | (void) dtrace_cpu_setup(what: CPU_CONFIG, cpu); |
17247 | } |
17248 | |
17249 | static void |
17250 | dtrace_toxrange_add(uintptr_t base, uintptr_t limit) |
17251 | { |
17252 | if (dtrace_toxranges >= dtrace_toxranges_max) { |
17253 | int osize, nsize; |
17254 | dtrace_toxrange_t *range; |
17255 | |
17256 | osize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t); |
17257 | |
17258 | if (osize == 0) { |
17259 | ASSERT(dtrace_toxrange == NULL); |
17260 | ASSERT(dtrace_toxranges_max == 0); |
17261 | dtrace_toxranges_max = 1; |
17262 | } else { |
17263 | dtrace_toxranges_max <<= 1; |
17264 | } |
17265 | |
17266 | nsize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t); |
17267 | range = kmem_zalloc(nsize, KM_SLEEP); |
17268 | |
17269 | if (dtrace_toxrange != NULL) { |
17270 | ASSERT(osize != 0); |
17271 | bcopy(src: dtrace_toxrange, dst: range, n: osize); |
17272 | kmem_free(dtrace_toxrange, osize); |
17273 | } |
17274 | |
17275 | dtrace_toxrange = range; |
17276 | } |
17277 | |
17278 | ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_base == 0); |
17279 | ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_limit == 0); |
17280 | |
17281 | dtrace_toxrange[dtrace_toxranges].dtt_base = base; |
17282 | dtrace_toxrange[dtrace_toxranges].dtt_limit = limit; |
17283 | dtrace_toxranges++; |
17284 | } |
17285 | |
17286 | /* |
17287 | * DTrace Driver Cookbook Functions |
17288 | */ |
17289 | /*ARGSUSED*/ |
17290 | static int |
17291 | dtrace_attach(dev_info_t *devi) |
17292 | { |
17293 | dtrace_provider_id_t id; |
17294 | dtrace_state_t *state = NULL; |
17295 | dtrace_enabling_t *enab; |
17296 | |
17297 | lck_mtx_lock(lck: &cpu_lock); |
17298 | lck_mtx_lock(lck: &dtrace_provider_lock); |
17299 | lck_mtx_lock(lck: &dtrace_lock); |
17300 | |
17301 | /* Darwin uses BSD cloning device driver to automagically obtain minor device number. */ |
17302 | dtrace_devi = devi; |
17303 | |
17304 | dtrace_modload = dtrace_module_loaded; |
17305 | dtrace_modunload = dtrace_module_unloaded; |
17306 | dtrace_cpu_init = dtrace_cpu_setup_initial; |
17307 | dtrace_helpers_cleanup = dtrace_helpers_destroy; |
17308 | dtrace_helpers_fork = dtrace_helpers_duplicate; |
17309 | dtrace_cpustart_init = dtrace_suspend; |
17310 | dtrace_cpustart_fini = dtrace_resume; |
17311 | dtrace_debugger_init = dtrace_suspend; |
17312 | dtrace_debugger_fini = dtrace_resume; |
17313 | |
17314 | register_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL); |
17315 | |
17316 | LCK_MTX_ASSERT(&cpu_lock, LCK_MTX_ASSERT_OWNED); |
17317 | |
17318 | dtrace_arena = vmem_create("dtrace" , (void *)1, INT32_MAX, 1, |
17319 | NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER); |
17320 | |
17321 | LCK_MTX_ASSERT(&cpu_lock, LCK_MTX_ASSERT_OWNED); |
17322 | |
17323 | dtrace_nprobes = dtrace_nprobes_default; |
17324 | dtrace_probes = kmem_zalloc(sizeof(dtrace_probe_t*) * dtrace_nprobes, |
17325 | KM_SLEEP); |
17326 | |
17327 | dtrace_byprov = dtrace_hash_create(func: dtrace_strkey_probe_provider, |
17328 | arg: 0, /* unused */ |
17329 | offsetof(dtrace_probe_t, dtpr_nextprov), |
17330 | offsetof(dtrace_probe_t, dtpr_prevprov)); |
17331 | |
17332 | dtrace_bymod = dtrace_hash_create(func: dtrace_strkey_deref_offset, |
17333 | offsetof(dtrace_probe_t, dtpr_mod), |
17334 | offsetof(dtrace_probe_t, dtpr_nextmod), |
17335 | offsetof(dtrace_probe_t, dtpr_prevmod)); |
17336 | |
17337 | dtrace_byfunc = dtrace_hash_create(func: dtrace_strkey_deref_offset, |
17338 | offsetof(dtrace_probe_t, dtpr_func), |
17339 | offsetof(dtrace_probe_t, dtpr_nextfunc), |
17340 | offsetof(dtrace_probe_t, dtpr_prevfunc)); |
17341 | |
17342 | dtrace_byname = dtrace_hash_create(func: dtrace_strkey_deref_offset, |
17343 | offsetof(dtrace_probe_t, dtpr_name), |
17344 | offsetof(dtrace_probe_t, dtpr_nextname), |
17345 | offsetof(dtrace_probe_t, dtpr_prevname)); |
17346 | |
17347 | if (dtrace_retain_max < 1) { |
17348 | cmn_err(CE_WARN, "illegal value (%lu) for dtrace_retain_max; " |
17349 | "setting to 1" , dtrace_retain_max); |
17350 | dtrace_retain_max = 1; |
17351 | } |
17352 | |
17353 | /* |
17354 | * Now discover our toxic ranges. |
17355 | */ |
17356 | dtrace_toxic_ranges(dtrace_toxrange_add); |
17357 | |
17358 | /* |
17359 | * Before we register ourselves as a provider to our own framework, |
17360 | * we would like to assert that dtrace_provider is NULL -- but that's |
17361 | * not true if we were loaded as a dependency of a DTrace provider. |
17362 | * Once we've registered, we can assert that dtrace_provider is our |
17363 | * pseudo provider. |
17364 | */ |
17365 | (void) dtrace_register(name: "dtrace" , pap: &dtrace_provider_attr, |
17366 | DTRACE_PRIV_NONE, cr: 0, pops: &dtrace_provider_ops, NULL, idp: &id); |
17367 | |
17368 | ASSERT(dtrace_provider != NULL); |
17369 | ASSERT((dtrace_provider_id_t)dtrace_provider == id); |
17370 | |
17371 | #if defined (__x86_64__) |
17372 | dtrace_probeid_begin = dtrace_probe_create((dtrace_provider_id_t) |
17373 | dtrace_provider, NULL, NULL, "BEGIN" , 1, NULL); |
17374 | dtrace_probeid_end = dtrace_probe_create((dtrace_provider_id_t) |
17375 | dtrace_provider, NULL, NULL, "END" , 0, NULL); |
17376 | dtrace_probeid_error = dtrace_probe_create((dtrace_provider_id_t) |
17377 | dtrace_provider, NULL, NULL, "ERROR" , 3, NULL); |
17378 | #elif defined(__arm64__) |
17379 | dtrace_probeid_begin = dtrace_probe_create(prov: (dtrace_provider_id_t) |
17380 | dtrace_provider, NULL, NULL, name: "BEGIN" , aframes: 2, NULL); |
17381 | dtrace_probeid_end = dtrace_probe_create(prov: (dtrace_provider_id_t) |
17382 | dtrace_provider, NULL, NULL, name: "END" , aframes: 1, NULL); |
17383 | dtrace_probeid_error = dtrace_probe_create(prov: (dtrace_provider_id_t) |
17384 | dtrace_provider, NULL, NULL, name: "ERROR" , aframes: 4, NULL); |
17385 | #else |
17386 | #error Unknown Architecture |
17387 | #endif |
17388 | |
17389 | dtrace_anon_property(); |
17390 | lck_mtx_unlock(lck: &cpu_lock); |
17391 | |
17392 | /* |
17393 | * If DTrace helper tracing is enabled, we need to allocate the |
17394 | * trace buffer and initialize the values. |
17395 | */ |
17396 | if (dtrace_helptrace_enabled) { |
17397 | ASSERT(dtrace_helptrace_buffer == NULL); |
17398 | dtrace_helptrace_buffer = |
17399 | kmem_zalloc(dtrace_helptrace_bufsize, KM_SLEEP); |
17400 | dtrace_helptrace_next = 0; |
17401 | } |
17402 | |
17403 | /* |
17404 | * If there are already providers, we must ask them to provide their |
17405 | * probes, and then match any anonymous enabling against them. Note |
17406 | * that there should be no other retained enablings at this time: |
17407 | * the only retained enablings at this time should be the anonymous |
17408 | * enabling. |
17409 | */ |
17410 | if (dtrace_anon.dta_enabling != NULL) { |
17411 | ASSERT(dtrace_retained == dtrace_anon.dta_enabling); |
17412 | |
17413 | /* |
17414 | * APPLE NOTE: if handling anonymous dof, switch symbol modes. |
17415 | */ |
17416 | if (dtrace_kernel_symbol_mode == DTRACE_KERNEL_SYMBOLS_FROM_USERSPACE) { |
17417 | dtrace_kernel_symbol_mode = DTRACE_KERNEL_SYMBOLS_FROM_KERNEL; |
17418 | } |
17419 | |
17420 | dtrace_enabling_provide(NULL); |
17421 | state = dtrace_anon.dta_state; |
17422 | |
17423 | /* |
17424 | * We couldn't hold cpu_lock across the above call to |
17425 | * dtrace_enabling_provide(), but we must hold it to actually |
17426 | * enable the probes. We have to drop all of our locks, pick |
17427 | * up cpu_lock, and regain our locks before matching the |
17428 | * retained anonymous enabling. |
17429 | */ |
17430 | lck_mtx_unlock(lck: &dtrace_lock); |
17431 | lck_mtx_unlock(lck: &dtrace_provider_lock); |
17432 | |
17433 | lck_mtx_lock(lck: &cpu_lock); |
17434 | lck_mtx_lock(lck: &dtrace_provider_lock); |
17435 | lck_mtx_lock(lck: &dtrace_lock); |
17436 | |
17437 | if ((enab = dtrace_anon.dta_enabling) != NULL) |
17438 | (void) dtrace_enabling_match(enab, NULL, NULL); |
17439 | |
17440 | lck_mtx_unlock(lck: &cpu_lock); |
17441 | } |
17442 | |
17443 | lck_mtx_unlock(lck: &dtrace_lock); |
17444 | lck_mtx_unlock(lck: &dtrace_provider_lock); |
17445 | |
17446 | if (state != NULL) { |
17447 | /* |
17448 | * If we created any anonymous state, set it going now. |
17449 | */ |
17450 | (void) dtrace_state_go(state, cpu: &dtrace_anon.dta_beganon); |
17451 | } |
17452 | |
17453 | return (DDI_SUCCESS); |
17454 | } |
17455 | |
17456 | /*ARGSUSED*/ |
17457 | static int |
17458 | dtrace_open(dev_t *devp, int flag, int otyp, cred_t *cred_p) |
17459 | { |
17460 | #pragma unused(flag, otyp) |
17461 | dtrace_state_t *state; |
17462 | uint32_t priv; |
17463 | uid_t uid; |
17464 | zoneid_t zoneid; |
17465 | int rv; |
17466 | |
17467 | if (minor(*devp) < 0 || minor(*devp) >= DTRACE_NCLIENTS) |
17468 | return (ENXIO); |
17469 | |
17470 | /* APPLE: Darwin puts Helper on its own major device. */ |
17471 | |
17472 | /* |
17473 | * If no DTRACE_PRIV_* bits are set in the credential, then the |
17474 | * caller lacks sufficient permission to do anything with DTrace. |
17475 | */ |
17476 | dtrace_cred2priv(cr: cred_p, privp: &priv, uidp: &uid, zoneidp: &zoneid); |
17477 | if (priv == DTRACE_PRIV_NONE) |
17478 | return (EACCES); |
17479 | |
17480 | /* |
17481 | * APPLE NOTE: We delay the initialization of fasttrap as late as possible. |
17482 | * It certainly can't be later than now! |
17483 | */ |
17484 | fasttrap_init(); |
17485 | |
17486 | /* |
17487 | * Ask all providers to provide all their probes. |
17488 | */ |
17489 | lck_mtx_lock(lck: &dtrace_provider_lock); |
17490 | dtrace_probe_provide(NULL, NULL); |
17491 | lck_mtx_unlock(lck: &dtrace_provider_lock); |
17492 | |
17493 | lck_mtx_lock(lck: &cpu_lock); |
17494 | lck_mtx_lock(lck: &dtrace_lock); |
17495 | dtrace_opens++; |
17496 | dtrace_membar_producer(); |
17497 | |
17498 | #ifdef illumos |
17499 | /* |
17500 | * If the kernel debugger is active (that is, if the kernel debugger |
17501 | * modified text in some way), we won't allow the open. |
17502 | */ |
17503 | if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) { |
17504 | dtrace_opens--; |
17505 | lck_mtx_unlock(&dtrace_lock); |
17506 | lck_mtx_unlock(&cpu_lock); |
17507 | return (EBUSY); |
17508 | } |
17509 | #endif |
17510 | |
17511 | rv = dtrace_state_create(devp, cr: cred_p, new_state: &state); |
17512 | lck_mtx_unlock(lck: &cpu_lock); |
17513 | |
17514 | if (rv != 0 || state == NULL) { |
17515 | if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL) { |
17516 | #ifdef illumos |
17517 | (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); |
17518 | #endif |
17519 | } |
17520 | lck_mtx_unlock(lck: &dtrace_lock); |
17521 | /* propagate EAGAIN or ERESTART */ |
17522 | return (rv); |
17523 | } |
17524 | |
17525 | lck_mtx_unlock(lck: &dtrace_lock); |
17526 | |
17527 | lck_rw_lock_exclusive(lck: &dtrace_dof_mode_lock); |
17528 | |
17529 | /* |
17530 | * If we are currently lazy, transition states. |
17531 | * |
17532 | * Unlike dtrace_close, we do not need to check the |
17533 | * value of dtrace_opens, as any positive value (and |
17534 | * we count as 1) means we transition states. |
17535 | */ |
17536 | if (dtrace_dof_mode == DTRACE_DOF_MODE_LAZY_ON) { |
17537 | dtrace_dof_mode = DTRACE_DOF_MODE_LAZY_OFF; |
17538 | /* |
17539 | * We do not need to hold the exclusive lock while processing |
17540 | * DOF on processes. We do need to make sure the mode does not get |
17541 | * changed to DTRACE_DOF_MODE_LAZY_ON during that stage though |
17542 | * (which should not happen anyway since it only happens in |
17543 | * dtrace_close). There is no way imcomplete USDT probes can be |
17544 | * activate by any DTrace clients here since they all have to |
17545 | * call dtrace_open and be blocked on dtrace_dof_mode_lock |
17546 | */ |
17547 | lck_rw_lock_exclusive_to_shared(lck: &dtrace_dof_mode_lock); |
17548 | /* |
17549 | * Iterate all existing processes and load lazy dofs. |
17550 | */ |
17551 | proc_iterate(PROC_ALLPROCLIST | PROC_NOWAITTRANS, |
17552 | callout: dtrace_lazy_dofs_proc_iterate_doit, |
17553 | NULL, |
17554 | filterfn: dtrace_lazy_dofs_proc_iterate_filter, |
17555 | NULL); |
17556 | |
17557 | lck_rw_unlock_shared(lck: &dtrace_dof_mode_lock); |
17558 | } |
17559 | else { |
17560 | lck_rw_unlock_exclusive(lck: &dtrace_dof_mode_lock); |
17561 | } |
17562 | |
17563 | |
17564 | /* |
17565 | * Update kernel symbol state. |
17566 | * |
17567 | * We must own the provider and dtrace locks. |
17568 | * |
17569 | * NOTE! It may appear there is a race by setting this value so late |
17570 | * after dtrace_probe_provide. However, any kext loaded after the |
17571 | * call to probe provide and before we set LAZY_OFF will be marked as |
17572 | * eligible for symbols from userspace. The same dtrace that is currently |
17573 | * calling dtrace_open() (this call!) will get a list of kexts needing |
17574 | * symbols and fill them in, thus closing the race window. |
17575 | * |
17576 | * We want to set this value only after it certain it will succeed, as |
17577 | * this significantly reduces the complexity of error exits. |
17578 | */ |
17579 | lck_mtx_lock(lck: &dtrace_lock); |
17580 | if (dtrace_kernel_symbol_mode == DTRACE_KERNEL_SYMBOLS_FROM_USERSPACE) { |
17581 | dtrace_kernel_symbol_mode = DTRACE_KERNEL_SYMBOLS_FROM_KERNEL; |
17582 | } |
17583 | lck_mtx_unlock(lck: &dtrace_lock); |
17584 | |
17585 | /* Suspend cluster powerdown while DTrace device is opened. */ |
17586 | suspend_cluster_powerdown(); |
17587 | return (0); |
17588 | } |
17589 | |
17590 | /*ARGSUSED*/ |
17591 | static int |
17592 | dtrace_close(dev_t dev, int flag, int otyp, cred_t *cred_p) |
17593 | { |
17594 | #pragma unused(flag, otyp, cred_p) /* __APPLE__ */ |
17595 | minor_t minor = getminor(dev); |
17596 | dtrace_state_t *state; |
17597 | |
17598 | /* APPLE NOTE: Darwin puts Helper on its own major device. */ |
17599 | state = dtrace_state_get(minor); |
17600 | |
17601 | lck_mtx_lock(lck: &cpu_lock); |
17602 | lck_mtx_lock(lck: &dtrace_lock); |
17603 | |
17604 | if (state->dts_anon) { |
17605 | /* |
17606 | * There is anonymous state. Destroy that first. |
17607 | */ |
17608 | ASSERT(dtrace_anon.dta_state == NULL); |
17609 | dtrace_state_destroy(state: state->dts_anon); |
17610 | } |
17611 | |
17612 | dtrace_state_destroy(state); |
17613 | ASSERT(dtrace_opens > 0); |
17614 | |
17615 | /* |
17616 | * Only relinquish control of the kernel debugger interface when there |
17617 | * are no consumers and no anonymous enablings. |
17618 | */ |
17619 | if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL) { |
17620 | #ifdef illumos |
17621 | (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); |
17622 | #endif |
17623 | } |
17624 | |
17625 | lck_mtx_unlock(lck: &dtrace_lock); |
17626 | lck_mtx_unlock(lck: &cpu_lock); |
17627 | |
17628 | /* |
17629 | * Lock ordering requires the dof mode lock be taken before |
17630 | * the dtrace_lock. |
17631 | */ |
17632 | lck_rw_lock_exclusive(lck: &dtrace_dof_mode_lock); |
17633 | lck_mtx_lock(lck: &dtrace_lock); |
17634 | |
17635 | if (dtrace_opens == 0) { |
17636 | /* |
17637 | * If we are currently lazy-off, and this is the last close, transition to |
17638 | * lazy state. |
17639 | */ |
17640 | if (dtrace_dof_mode == DTRACE_DOF_MODE_LAZY_OFF) { |
17641 | dtrace_dof_mode = DTRACE_DOF_MODE_LAZY_ON; |
17642 | } |
17643 | |
17644 | /* |
17645 | * If we are the last dtrace client, switch back to lazy (from userspace) symbols |
17646 | */ |
17647 | if (dtrace_kernel_symbol_mode == DTRACE_KERNEL_SYMBOLS_FROM_KERNEL) { |
17648 | dtrace_kernel_symbol_mode = DTRACE_KERNEL_SYMBOLS_FROM_USERSPACE; |
17649 | } |
17650 | } |
17651 | |
17652 | lck_mtx_unlock(lck: &dtrace_lock); |
17653 | lck_rw_unlock_exclusive(lck: &dtrace_dof_mode_lock); |
17654 | |
17655 | /* |
17656 | * Kext probes may be retained past the end of the kext's lifespan. The |
17657 | * probes are kept until the last reference to them has been removed. |
17658 | * Since closing an active dtrace context is likely to drop that last reference, |
17659 | * lets take a shot at cleaning out the orphaned probes now. |
17660 | */ |
17661 | dtrace_module_unloaded(NULL); |
17662 | |
17663 | /* State is gone so resume cluster powerdown. */ |
17664 | resume_cluster_powerdown(); |
17665 | return (0); |
17666 | } |
17667 | |
17668 | /*ARGSUSED*/ |
17669 | static int |
17670 | dtrace_ioctl_helper(u_long cmd, caddr_t arg, int *rv) |
17671 | { |
17672 | #pragma unused(rv) |
17673 | /* |
17674 | * Safe to check this outside the dof mode lock |
17675 | */ |
17676 | if (dtrace_dof_mode == DTRACE_DOF_MODE_NEVER) |
17677 | return KERN_SUCCESS; |
17678 | |
17679 | switch (cmd) { |
17680 | #if defined (__arm64__) |
17681 | case DTRACEHIOC_ADDDOF_U32: |
17682 | case DTRACEHIOC_ADDDOF_U64: |
17683 | #else |
17684 | case DTRACEHIOC_ADDDOF: |
17685 | #endif /* __arm64__*/ |
17686 | { |
17687 | dof_helper_t *dhp = NULL; |
17688 | size_t dof_ioctl_data_size; |
17689 | dof_ioctl_data_t* multi_dof; |
17690 | unsigned int i; |
17691 | int rval = 0; |
17692 | user_addr_t user_address = *(user_addr_t*)arg; |
17693 | uint64_t dof_count; |
17694 | int multi_dof_claimed = 0; |
17695 | proc_t* p = current_proc(); |
17696 | |
17697 | /* |
17698 | * If this is a restricted process and dtrace is restricted, |
17699 | * do not allow DOFs to be registered |
17700 | */ |
17701 | if (dtrace_is_restricted() && |
17702 | !dtrace_are_restrictions_relaxed() && |
17703 | !dtrace_can_attach_to_proc(current_proc())) { |
17704 | return (EACCES); |
17705 | } |
17706 | |
17707 | /* |
17708 | * Read the number of DOF sections being passed in. |
17709 | */ |
17710 | if (copyin(user_address + offsetof(dof_ioctl_data_t, dofiod_count), |
17711 | &dof_count, |
17712 | sizeof(dof_count))) { |
17713 | dtrace_dof_error(NULL, str: "failed to copyin dofiod_count" ); |
17714 | return (EFAULT); |
17715 | } |
17716 | |
17717 | /* |
17718 | * Range check the count. |
17719 | */ |
17720 | if (dof_count == 0 || dof_count > 1024) { |
17721 | dtrace_dof_error(NULL, str: "dofiod_count is not valid" ); |
17722 | return (EINVAL); |
17723 | } |
17724 | |
17725 | /* |
17726 | * Allocate a correctly sized structure and copyin the data. |
17727 | */ |
17728 | dof_ioctl_data_size = DOF_IOCTL_DATA_T_SIZE(dof_count); |
17729 | if ((multi_dof = kmem_alloc(dof_ioctl_data_size, KM_SLEEP)) == NULL) |
17730 | return (ENOMEM); |
17731 | |
17732 | /* NOTE! We can no longer exit this method via return */ |
17733 | if (copyin(user_address, multi_dof, dof_ioctl_data_size) != 0) { |
17734 | dtrace_dof_error(NULL, str: "failed copyin of dof_ioctl_data_t" ); |
17735 | rval = EFAULT; |
17736 | goto cleanup; |
17737 | } |
17738 | |
17739 | /* |
17740 | * Check that the count didn't change between the first copyin and the second. |
17741 | */ |
17742 | if (multi_dof->dofiod_count != dof_count) { |
17743 | rval = EINVAL; |
17744 | goto cleanup; |
17745 | } |
17746 | |
17747 | /* |
17748 | * Try to process lazily first. |
17749 | */ |
17750 | rval = dtrace_lazy_dofs_add(p, incoming_dofs: multi_dof, dofs_claimed: &multi_dof_claimed); |
17751 | |
17752 | /* |
17753 | * If rval is EACCES, we must be non-lazy. |
17754 | */ |
17755 | if (rval == EACCES) { |
17756 | rval = 0; |
17757 | /* |
17758 | * Process each dof_helper_t |
17759 | */ |
17760 | i = 0; |
17761 | do { |
17762 | dhp = &multi_dof->dofiod_helpers[i]; |
17763 | |
17764 | dof_hdr_t *dof = dtrace_dof_copyin(uarg: dhp->dofhp_dof, errp: &rval); |
17765 | |
17766 | if (dof != NULL) { |
17767 | lck_mtx_lock(lck: &dtrace_meta_lock); |
17768 | lck_mtx_lock(lck: &dtrace_lock); |
17769 | |
17770 | /* |
17771 | * dtrace_helper_slurp() takes responsibility for the dof -- |
17772 | * it may free it now or it may save it and free it later. |
17773 | */ |
17774 | if ((dhp->dofhp_dof = (uint64_t)dtrace_helper_slurp(p, dof, dhp)) == -1ULL) { |
17775 | rval = EINVAL; |
17776 | } |
17777 | |
17778 | lck_mtx_unlock(lck: &dtrace_lock); |
17779 | lck_mtx_unlock(lck: &dtrace_meta_lock); |
17780 | } |
17781 | } while (++i < multi_dof->dofiod_count && rval == 0); |
17782 | } |
17783 | |
17784 | /* |
17785 | * We need to copyout the multi_dof struct, because it contains |
17786 | * the generation (unique id) values needed to call DTRACEHIOC_REMOVE |
17787 | * |
17788 | * This could certainly be better optimized. |
17789 | */ |
17790 | if (copyout(multi_dof, user_address, dof_ioctl_data_size) != 0) { |
17791 | dtrace_dof_error(NULL, str: "failed copyout of dof_ioctl_data_t" ); |
17792 | /* Don't overwrite pre-existing error code */ |
17793 | if (rval == 0) rval = EFAULT; |
17794 | } |
17795 | |
17796 | cleanup: |
17797 | /* |
17798 | * If we had to allocate struct memory, free it. |
17799 | */ |
17800 | if (multi_dof != NULL && !multi_dof_claimed) { |
17801 | kmem_free(multi_dof, dof_ioctl_data_size); |
17802 | } |
17803 | |
17804 | return rval; |
17805 | } |
17806 | |
17807 | case DTRACEHIOC_REMOVE: { |
17808 | int generation = *(int*)arg; |
17809 | proc_t* p = current_proc(); |
17810 | |
17811 | /* |
17812 | * Try lazy first. |
17813 | */ |
17814 | int rval = dtrace_lazy_dofs_remove(p, generation); |
17815 | |
17816 | /* |
17817 | * EACCES means non-lazy |
17818 | */ |
17819 | if (rval == EACCES) { |
17820 | lck_mtx_lock(lck: &dtrace_meta_lock); |
17821 | lck_mtx_lock(lck: &dtrace_lock); |
17822 | rval = dtrace_helper_destroygen(p, gen: generation); |
17823 | lck_mtx_unlock(lck: &dtrace_lock); |
17824 | lck_mtx_unlock(lck: &dtrace_meta_lock); |
17825 | } |
17826 | |
17827 | return (rval); |
17828 | } |
17829 | |
17830 | default: |
17831 | break; |
17832 | } |
17833 | |
17834 | return ENOTTY; |
17835 | } |
17836 | |
17837 | /*ARGSUSED*/ |
17838 | static int |
17839 | dtrace_ioctl(dev_t dev, u_long cmd, user_addr_t arg, int md, cred_t *cr, int *rv) |
17840 | { |
17841 | #pragma unused(md) |
17842 | minor_t minor = getminor(dev); |
17843 | dtrace_state_t *state; |
17844 | int rval; |
17845 | |
17846 | /* Darwin puts Helper on its own major device. */ |
17847 | |
17848 | state = dtrace_state_get(minor); |
17849 | |
17850 | if (state->dts_anon) { |
17851 | ASSERT(dtrace_anon.dta_state == NULL); |
17852 | state = state->dts_anon; |
17853 | } |
17854 | |
17855 | switch (cmd) { |
17856 | case DTRACEIOC_PROVIDER: { |
17857 | dtrace_providerdesc_t pvd; |
17858 | dtrace_provider_t *pvp; |
17859 | |
17860 | if (copyin(arg, &pvd, sizeof (pvd)) != 0) |
17861 | return (EFAULT); |
17862 | |
17863 | pvd.dtvd_name[DTRACE_PROVNAMELEN - 1] = '\0'; |
17864 | lck_mtx_lock(lck: &dtrace_provider_lock); |
17865 | |
17866 | for (pvp = dtrace_provider; pvp != NULL; pvp = pvp->dtpv_next) { |
17867 | if (strncmp(s1: pvp->dtpv_name, s2: pvd.dtvd_name, DTRACE_PROVNAMELEN) == 0) |
17868 | break; |
17869 | } |
17870 | |
17871 | lck_mtx_unlock(lck: &dtrace_provider_lock); |
17872 | |
17873 | if (pvp == NULL) |
17874 | return (ESRCH); |
17875 | |
17876 | bcopy(src: &pvp->dtpv_priv, dst: &pvd.dtvd_priv, n: sizeof (dtrace_ppriv_t)); |
17877 | bcopy(src: &pvp->dtpv_attr, dst: &pvd.dtvd_attr, n: sizeof (dtrace_pattr_t)); |
17878 | if (copyout(&pvd, arg, sizeof (pvd)) != 0) |
17879 | return (EFAULT); |
17880 | |
17881 | return (0); |
17882 | } |
17883 | |
17884 | case DTRACEIOC_EPROBE: { |
17885 | dtrace_eprobedesc_t epdesc; |
17886 | dtrace_ecb_t *ecb; |
17887 | dtrace_action_t *act; |
17888 | void *buf; |
17889 | size_t size; |
17890 | uintptr_t dest; |
17891 | int nrecs; |
17892 | |
17893 | if (copyin(arg, &epdesc, sizeof (epdesc)) != 0) |
17894 | return (EFAULT); |
17895 | |
17896 | lck_mtx_lock(lck: &dtrace_lock); |
17897 | |
17898 | if ((ecb = dtrace_epid2ecb(state, id: epdesc.dtepd_epid)) == NULL) { |
17899 | lck_mtx_unlock(lck: &dtrace_lock); |
17900 | return (EINVAL); |
17901 | } |
17902 | |
17903 | if (ecb->dte_probe == NULL) { |
17904 | lck_mtx_unlock(lck: &dtrace_lock); |
17905 | return (EINVAL); |
17906 | } |
17907 | |
17908 | epdesc.dtepd_probeid = ecb->dte_probe->dtpr_id; |
17909 | epdesc.dtepd_uarg = ecb->dte_uarg; |
17910 | epdesc.dtepd_size = ecb->dte_size; |
17911 | |
17912 | nrecs = epdesc.dtepd_nrecs; |
17913 | epdesc.dtepd_nrecs = 0; |
17914 | for (act = ecb->dte_action; act != NULL; act = act->dta_next) { |
17915 | if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple) |
17916 | continue; |
17917 | |
17918 | epdesc.dtepd_nrecs++; |
17919 | } |
17920 | |
17921 | /* |
17922 | * Now that we have the size, we need to allocate a temporary |
17923 | * buffer in which to store the complete description. We need |
17924 | * the temporary buffer to be able to drop dtrace_lock() |
17925 | * across the copyout(), below. |
17926 | */ |
17927 | size = sizeof (dtrace_eprobedesc_t) + |
17928 | (epdesc.dtepd_nrecs * sizeof (dtrace_recdesc_t)); |
17929 | |
17930 | buf = kmem_alloc(size, KM_SLEEP); |
17931 | dest = (uintptr_t)buf; |
17932 | |
17933 | bcopy(src: &epdesc, dst: (void *)dest, n: sizeof (epdesc)); |
17934 | dest += offsetof(dtrace_eprobedesc_t, dtepd_rec[0]); |
17935 | |
17936 | for (act = ecb->dte_action; act != NULL; act = act->dta_next) { |
17937 | if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple) |
17938 | continue; |
17939 | |
17940 | if (nrecs-- == 0) |
17941 | break; |
17942 | |
17943 | bcopy(src: &act->dta_rec, dst: (void *)dest, |
17944 | n: sizeof (dtrace_recdesc_t)); |
17945 | dest += sizeof (dtrace_recdesc_t); |
17946 | } |
17947 | |
17948 | lck_mtx_unlock(lck: &dtrace_lock); |
17949 | |
17950 | if (copyout(buf, arg, dest - (uintptr_t)buf) != 0) { |
17951 | kmem_free(buf, size); |
17952 | return (EFAULT); |
17953 | } |
17954 | |
17955 | kmem_free(buf, size); |
17956 | return (0); |
17957 | } |
17958 | |
17959 | case DTRACEIOC_AGGDESC: { |
17960 | dtrace_aggdesc_t aggdesc; |
17961 | dtrace_action_t *act; |
17962 | dtrace_aggregation_t *agg; |
17963 | int nrecs; |
17964 | uint32_t offs; |
17965 | dtrace_recdesc_t *lrec; |
17966 | void *buf; |
17967 | size_t size; |
17968 | uintptr_t dest; |
17969 | |
17970 | if (copyin(arg, &aggdesc, sizeof (aggdesc)) != 0) |
17971 | return (EFAULT); |
17972 | |
17973 | lck_mtx_lock(lck: &dtrace_lock); |
17974 | |
17975 | if ((agg = dtrace_aggid2agg(state, id: aggdesc.dtagd_id)) == NULL) { |
17976 | lck_mtx_unlock(lck: &dtrace_lock); |
17977 | return (EINVAL); |
17978 | } |
17979 | |
17980 | aggdesc.dtagd_epid = agg->dtag_ecb->dte_epid; |
17981 | |
17982 | nrecs = aggdesc.dtagd_nrecs; |
17983 | aggdesc.dtagd_nrecs = 0; |
17984 | |
17985 | offs = agg->dtag_base; |
17986 | lrec = &agg->dtag_action.dta_rec; |
17987 | aggdesc.dtagd_size = lrec->dtrd_offset + lrec->dtrd_size - offs; |
17988 | |
17989 | for (act = agg->dtag_first; ; act = act->dta_next) { |
17990 | ASSERT(act->dta_intuple || |
17991 | DTRACEACT_ISAGG(act->dta_kind)); |
17992 | |
17993 | /* |
17994 | * If this action has a record size of zero, it |
17995 | * denotes an argument to the aggregating action. |
17996 | * Because the presence of this record doesn't (or |
17997 | * shouldn't) affect the way the data is interpreted, |
17998 | * we don't copy it out to save user-level the |
17999 | * confusion of dealing with a zero-length record. |
18000 | */ |
18001 | if (act->dta_rec.dtrd_size == 0) { |
18002 | ASSERT(agg->dtag_hasarg); |
18003 | continue; |
18004 | } |
18005 | |
18006 | aggdesc.dtagd_nrecs++; |
18007 | |
18008 | if (act == &agg->dtag_action) |
18009 | break; |
18010 | } |
18011 | |
18012 | /* |
18013 | * Now that we have the size, we need to allocate a temporary |
18014 | * buffer in which to store the complete description. We need |
18015 | * the temporary buffer to be able to drop dtrace_lock() |
18016 | * across the copyout(), below. |
18017 | */ |
18018 | size = sizeof (dtrace_aggdesc_t) + |
18019 | (aggdesc.dtagd_nrecs * sizeof (dtrace_recdesc_t)); |
18020 | |
18021 | buf = kmem_alloc(size, KM_SLEEP); |
18022 | dest = (uintptr_t)buf; |
18023 | |
18024 | bcopy(src: &aggdesc, dst: (void *)dest, n: sizeof (aggdesc)); |
18025 | dest += offsetof(dtrace_aggdesc_t, dtagd_rec[0]); |
18026 | |
18027 | for (act = agg->dtag_first; ; act = act->dta_next) { |
18028 | dtrace_recdesc_t rec = act->dta_rec; |
18029 | |
18030 | /* |
18031 | * See the comment in the above loop for why we pass |
18032 | * over zero-length records. |
18033 | */ |
18034 | if (rec.dtrd_size == 0) { |
18035 | ASSERT(agg->dtag_hasarg); |
18036 | continue; |
18037 | } |
18038 | |
18039 | if (nrecs-- == 0) |
18040 | break; |
18041 | |
18042 | rec.dtrd_offset -= offs; |
18043 | bcopy(src: &rec, dst: (void *)dest, n: sizeof (rec)); |
18044 | dest += sizeof (dtrace_recdesc_t); |
18045 | |
18046 | if (act == &agg->dtag_action) |
18047 | break; |
18048 | } |
18049 | |
18050 | lck_mtx_unlock(lck: &dtrace_lock); |
18051 | |
18052 | if (copyout(buf, arg, dest - (uintptr_t)buf) != 0) { |
18053 | kmem_free(buf, size); |
18054 | return (EFAULT); |
18055 | } |
18056 | |
18057 | kmem_free(buf, size); |
18058 | return (0); |
18059 | } |
18060 | |
18061 | case DTRACEIOC_ENABLE: { |
18062 | dof_hdr_t *dof; |
18063 | dtrace_enabling_t *enab = NULL; |
18064 | dtrace_vstate_t *vstate; |
18065 | int err = 0; |
18066 | |
18067 | *rv = 0; |
18068 | |
18069 | /* |
18070 | * If a NULL argument has been passed, we take this as our |
18071 | * cue to reevaluate our enablings. |
18072 | */ |
18073 | if (arg == 0) { |
18074 | dtrace_enabling_matchall(); |
18075 | |
18076 | return (0); |
18077 | } |
18078 | |
18079 | if ((dof = dtrace_dof_copyin(uarg: arg, errp: &rval)) == NULL) |
18080 | return (rval); |
18081 | |
18082 | lck_mtx_lock(lck: &cpu_lock); |
18083 | lck_mtx_lock(lck: &dtrace_lock); |
18084 | vstate = &state->dts_vstate; |
18085 | |
18086 | if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) { |
18087 | lck_mtx_unlock(lck: &dtrace_lock); |
18088 | lck_mtx_unlock(lck: &cpu_lock); |
18089 | dtrace_dof_destroy(dof); |
18090 | return (EBUSY); |
18091 | } |
18092 | |
18093 | if (dtrace_dof_slurp(dof, vstate, cr, enabp: &enab, ubase: 0, noprobes: B_TRUE) != 0) { |
18094 | lck_mtx_unlock(lck: &dtrace_lock); |
18095 | lck_mtx_unlock(lck: &cpu_lock); |
18096 | dtrace_dof_destroy(dof); |
18097 | return (EINVAL); |
18098 | } |
18099 | |
18100 | if ((rval = dtrace_dof_options(dof, state)) != 0) { |
18101 | dtrace_enabling_destroy(enab); |
18102 | lck_mtx_unlock(lck: &dtrace_lock); |
18103 | lck_mtx_unlock(lck: &cpu_lock); |
18104 | dtrace_dof_destroy(dof); |
18105 | return (rval); |
18106 | } |
18107 | |
18108 | if ((err = dtrace_enabling_match(enab, nmatched: rv, NULL)) == 0) { |
18109 | err = dtrace_enabling_retain(enab); |
18110 | } else { |
18111 | dtrace_enabling_destroy(enab); |
18112 | } |
18113 | |
18114 | lck_mtx_unlock(lck: &dtrace_lock); |
18115 | lck_mtx_unlock(lck: &cpu_lock); |
18116 | dtrace_dof_destroy(dof); |
18117 | |
18118 | return (err); |
18119 | } |
18120 | |
18121 | case DTRACEIOC_REPLICATE: { |
18122 | dtrace_repldesc_t desc; |
18123 | dtrace_probedesc_t *match = &desc.dtrpd_match; |
18124 | dtrace_probedesc_t *create = &desc.dtrpd_create; |
18125 | int err; |
18126 | |
18127 | if (copyin(arg, &desc, sizeof (desc)) != 0) |
18128 | return (EFAULT); |
18129 | |
18130 | match->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; |
18131 | match->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; |
18132 | match->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; |
18133 | match->dtpd_name[DTRACE_NAMELEN - 1] = '\0'; |
18134 | |
18135 | create->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; |
18136 | create->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; |
18137 | create->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; |
18138 | create->dtpd_name[DTRACE_NAMELEN - 1] = '\0'; |
18139 | |
18140 | lck_mtx_lock(lck: &dtrace_lock); |
18141 | err = dtrace_enabling_replicate(state, match, create); |
18142 | lck_mtx_unlock(lck: &dtrace_lock); |
18143 | |
18144 | return (err); |
18145 | } |
18146 | |
18147 | case DTRACEIOC_PROBEMATCH: |
18148 | case DTRACEIOC_PROBES: { |
18149 | dtrace_probe_t *probe = NULL; |
18150 | dtrace_probedesc_t desc; |
18151 | dtrace_probekey_t pkey; |
18152 | dtrace_id_t i; |
18153 | int m = 0; |
18154 | uint32_t priv; |
18155 | uid_t uid; |
18156 | zoneid_t zoneid; |
18157 | |
18158 | if (copyin(arg, &desc, sizeof (desc)) != 0) |
18159 | return (EFAULT); |
18160 | |
18161 | desc.dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; |
18162 | desc.dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; |
18163 | desc.dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; |
18164 | desc.dtpd_name[DTRACE_NAMELEN - 1] = '\0'; |
18165 | |
18166 | /* |
18167 | * Before we attempt to match this probe, we want to give |
18168 | * all providers the opportunity to provide it. |
18169 | */ |
18170 | if (desc.dtpd_id == DTRACE_IDNONE) { |
18171 | lck_mtx_lock(lck: &dtrace_provider_lock); |
18172 | dtrace_probe_provide(desc: &desc, NULL); |
18173 | lck_mtx_unlock(lck: &dtrace_provider_lock); |
18174 | desc.dtpd_id++; |
18175 | } |
18176 | |
18177 | dtrace_cred2priv(cr, privp: &priv, uidp: &uid, zoneidp: &zoneid); |
18178 | |
18179 | lck_mtx_lock(lck: &dtrace_lock); |
18180 | |
18181 | if (cmd == DTRACEIOC_PROBEMATCH) { |
18182 | dtrace_probekey(pdp: &desc, pkp: &pkey); |
18183 | pkey.dtpk_id = DTRACE_IDNONE; |
18184 | |
18185 | /* Quiet compiler warning */ |
18186 | for (i = desc.dtpd_id; i <= (dtrace_id_t)dtrace_nprobes; i++) { |
18187 | if ((probe = dtrace_probes[i - 1]) != NULL && |
18188 | (m = dtrace_match_probe(prp: probe, pkp: &pkey, |
18189 | priv, uid, zoneid)) != 0) |
18190 | break; |
18191 | } |
18192 | |
18193 | if (m < 0) { |
18194 | lck_mtx_unlock(lck: &dtrace_lock); |
18195 | return (EINVAL); |
18196 | } |
18197 | dtrace_probekey_release(pkp: &pkey); |
18198 | |
18199 | } else { |
18200 | /* Quiet compiler warning */ |
18201 | for (i = desc.dtpd_id; i <= (dtrace_id_t)dtrace_nprobes; i++) { |
18202 | if ((probe = dtrace_probes[i - 1]) != NULL && |
18203 | dtrace_match_priv(prp: probe, priv, uid, zoneid)) |
18204 | break; |
18205 | } |
18206 | } |
18207 | |
18208 | if (probe == NULL) { |
18209 | lck_mtx_unlock(lck: &dtrace_lock); |
18210 | return (ESRCH); |
18211 | } |
18212 | |
18213 | dtrace_probe_description(prp: probe, pdp: &desc); |
18214 | lck_mtx_unlock(lck: &dtrace_lock); |
18215 | |
18216 | if (copyout(&desc, arg, sizeof (desc)) != 0) |
18217 | return (EFAULT); |
18218 | |
18219 | return (0); |
18220 | } |
18221 | |
18222 | case DTRACEIOC_PROBEARG: { |
18223 | dtrace_argdesc_t desc; |
18224 | dtrace_probe_t *probe; |
18225 | dtrace_provider_t *prov; |
18226 | |
18227 | if (copyin(arg, &desc, sizeof (desc)) != 0) |
18228 | return (EFAULT); |
18229 | |
18230 | if (desc.dtargd_id == DTRACE_IDNONE) |
18231 | return (EINVAL); |
18232 | |
18233 | if (desc.dtargd_ndx == DTRACE_ARGNONE) |
18234 | return (EINVAL); |
18235 | |
18236 | lck_mtx_lock(lck: &dtrace_provider_lock); |
18237 | lck_mtx_lock(lck: &mod_lock); |
18238 | lck_mtx_lock(lck: &dtrace_lock); |
18239 | |
18240 | /* Quiet compiler warning */ |
18241 | if (desc.dtargd_id > (dtrace_id_t)dtrace_nprobes) { |
18242 | lck_mtx_unlock(lck: &dtrace_lock); |
18243 | lck_mtx_unlock(lck: &mod_lock); |
18244 | lck_mtx_unlock(lck: &dtrace_provider_lock); |
18245 | return (EINVAL); |
18246 | } |
18247 | |
18248 | if ((probe = dtrace_probes[desc.dtargd_id - 1]) == NULL) { |
18249 | lck_mtx_unlock(lck: &dtrace_lock); |
18250 | lck_mtx_unlock(lck: &mod_lock); |
18251 | lck_mtx_unlock(lck: &dtrace_provider_lock); |
18252 | return (EINVAL); |
18253 | } |
18254 | |
18255 | lck_mtx_unlock(lck: &dtrace_lock); |
18256 | |
18257 | prov = probe->dtpr_provider; |
18258 | |
18259 | if (prov->dtpv_pops.dtps_getargdesc == NULL) { |
18260 | /* |
18261 | * There isn't any typed information for this probe. |
18262 | * Set the argument number to DTRACE_ARGNONE. |
18263 | */ |
18264 | desc.dtargd_ndx = DTRACE_ARGNONE; |
18265 | } else { |
18266 | desc.dtargd_native[0] = '\0'; |
18267 | desc.dtargd_xlate[0] = '\0'; |
18268 | desc.dtargd_mapping = desc.dtargd_ndx; |
18269 | |
18270 | prov->dtpv_pops.dtps_getargdesc(prov->dtpv_arg, |
18271 | probe->dtpr_id, probe->dtpr_arg, &desc); |
18272 | } |
18273 | |
18274 | lck_mtx_unlock(lck: &mod_lock); |
18275 | lck_mtx_unlock(lck: &dtrace_provider_lock); |
18276 | |
18277 | if (copyout(&desc, arg, sizeof (desc)) != 0) |
18278 | return (EFAULT); |
18279 | |
18280 | return (0); |
18281 | } |
18282 | |
18283 | case DTRACEIOC_GO: { |
18284 | processorid_t cpuid; |
18285 | rval = dtrace_state_go(state, cpu: &cpuid); |
18286 | |
18287 | if (rval != 0) |
18288 | return (rval); |
18289 | |
18290 | if (copyout(&cpuid, arg, sizeof (cpuid)) != 0) |
18291 | return (EFAULT); |
18292 | |
18293 | return (0); |
18294 | } |
18295 | |
18296 | case DTRACEIOC_STOP: { |
18297 | processorid_t cpuid; |
18298 | |
18299 | lck_mtx_lock(lck: &dtrace_lock); |
18300 | rval = dtrace_state_stop(state, cpu: &cpuid); |
18301 | lck_mtx_unlock(lck: &dtrace_lock); |
18302 | |
18303 | if (rval != 0) |
18304 | return (rval); |
18305 | |
18306 | if (copyout(&cpuid, arg, sizeof (cpuid)) != 0) |
18307 | return (EFAULT); |
18308 | |
18309 | return (0); |
18310 | } |
18311 | |
18312 | case DTRACEIOC_DOFGET: { |
18313 | dof_hdr_t hdr, *dof; |
18314 | uint64_t len; |
18315 | |
18316 | if (copyin(arg, &hdr, sizeof (hdr)) != 0) |
18317 | return (EFAULT); |
18318 | |
18319 | lck_mtx_lock(lck: &dtrace_lock); |
18320 | dof = dtrace_dof_create(state); |
18321 | lck_mtx_unlock(lck: &dtrace_lock); |
18322 | |
18323 | len = MIN(hdr.dofh_loadsz, dof->dofh_loadsz); |
18324 | rval = copyout(dof, arg, len); |
18325 | dtrace_dof_destroy(dof); |
18326 | |
18327 | return (rval == 0 ? 0 : EFAULT); |
18328 | } |
18329 | |
18330 | case DTRACEIOC_SLEEP: { |
18331 | int64_t time; |
18332 | uint64_t abstime; |
18333 | uint64_t rvalue = DTRACE_WAKE_TIMEOUT; |
18334 | |
18335 | if (copyin(arg, &time, sizeof(time)) != 0) |
18336 | return (EFAULT); |
18337 | |
18338 | nanoseconds_to_absolutetime(nanoseconds: (uint64_t)time, result: &abstime); |
18339 | clock_absolutetime_interval_to_deadline(abstime, result: &abstime); |
18340 | |
18341 | if (assert_wait_deadline(event: state, THREAD_ABORTSAFE, deadline: abstime) == THREAD_WAITING) { |
18342 | if (state->dts_buf_over_limit > 0) { |
18343 | clear_wait(thread: current_thread(), THREAD_INTERRUPTED); |
18344 | rvalue = DTRACE_WAKE_BUF_LIMIT; |
18345 | } else { |
18346 | thread_block(THREAD_CONTINUE_NULL); |
18347 | if (state->dts_buf_over_limit > 0) { |
18348 | rvalue = DTRACE_WAKE_BUF_LIMIT; |
18349 | } |
18350 | } |
18351 | } |
18352 | |
18353 | if (copyout(&rvalue, arg, sizeof(rvalue)) != 0) |
18354 | return (EFAULT); |
18355 | |
18356 | return (0); |
18357 | } |
18358 | |
18359 | case DTRACEIOC_SIGNAL: { |
18360 | wakeup(chan: state); |
18361 | return (0); |
18362 | } |
18363 | |
18364 | case DTRACEIOC_AGGSNAP: |
18365 | case DTRACEIOC_BUFSNAP: { |
18366 | dtrace_bufdesc_t desc; |
18367 | caddr_t cached; |
18368 | boolean_t over_limit; |
18369 | dtrace_buffer_t *buf; |
18370 | |
18371 | if (copyin(arg, &desc, sizeof (desc)) != 0) |
18372 | return (EFAULT); |
18373 | |
18374 | if ((int)desc.dtbd_cpu < 0 || desc.dtbd_cpu >= NCPU) |
18375 | return (EINVAL); |
18376 | |
18377 | lck_mtx_lock(lck: &dtrace_lock); |
18378 | |
18379 | if (cmd == DTRACEIOC_BUFSNAP) { |
18380 | buf = &state->dts_buffer[desc.dtbd_cpu]; |
18381 | } else { |
18382 | buf = &state->dts_aggbuffer[desc.dtbd_cpu]; |
18383 | } |
18384 | |
18385 | if (buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL)) { |
18386 | size_t sz = buf->dtb_offset; |
18387 | |
18388 | if (state->dts_activity != DTRACE_ACTIVITY_STOPPED) { |
18389 | lck_mtx_unlock(lck: &dtrace_lock); |
18390 | return (EBUSY); |
18391 | } |
18392 | |
18393 | /* |
18394 | * If this buffer has already been consumed, we're |
18395 | * going to indicate that there's nothing left here |
18396 | * to consume. |
18397 | */ |
18398 | if (buf->dtb_flags & DTRACEBUF_CONSUMED) { |
18399 | lck_mtx_unlock(lck: &dtrace_lock); |
18400 | |
18401 | desc.dtbd_size = 0; |
18402 | desc.dtbd_drops = 0; |
18403 | desc.dtbd_errors = 0; |
18404 | desc.dtbd_oldest = 0; |
18405 | sz = sizeof (desc); |
18406 | |
18407 | if (copyout(&desc, arg, sz) != 0) |
18408 | return (EFAULT); |
18409 | |
18410 | return (0); |
18411 | } |
18412 | |
18413 | /* |
18414 | * If this is a ring buffer that has wrapped, we want |
18415 | * to copy the whole thing out. |
18416 | */ |
18417 | if (buf->dtb_flags & DTRACEBUF_WRAPPED) { |
18418 | dtrace_buffer_polish(buf); |
18419 | sz = buf->dtb_size; |
18420 | } |
18421 | |
18422 | if (copyout(buf->dtb_tomax, (user_addr_t)desc.dtbd_data, sz) != 0) { |
18423 | lck_mtx_unlock(lck: &dtrace_lock); |
18424 | return (EFAULT); |
18425 | } |
18426 | |
18427 | desc.dtbd_size = sz; |
18428 | desc.dtbd_drops = buf->dtb_drops; |
18429 | desc.dtbd_errors = buf->dtb_errors; |
18430 | desc.dtbd_oldest = buf->dtb_xamot_offset; |
18431 | desc.dtbd_timestamp = dtrace_gethrtime(); |
18432 | |
18433 | lck_mtx_unlock(lck: &dtrace_lock); |
18434 | |
18435 | if (copyout(&desc, arg, sizeof (desc)) != 0) |
18436 | return (EFAULT); |
18437 | |
18438 | buf->dtb_flags |= DTRACEBUF_CONSUMED; |
18439 | |
18440 | return (0); |
18441 | } |
18442 | |
18443 | if (buf->dtb_tomax == NULL) { |
18444 | ASSERT(buf->dtb_xamot == NULL); |
18445 | lck_mtx_unlock(lck: &dtrace_lock); |
18446 | return (ENOENT); |
18447 | } |
18448 | |
18449 | cached = buf->dtb_tomax; |
18450 | over_limit = buf->dtb_cur_limit == buf->dtb_size; |
18451 | |
18452 | ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); |
18453 | |
18454 | dtrace_xcall(desc.dtbd_cpu, |
18455 | (dtrace_xcall_t)dtrace_buffer_switch, buf); |
18456 | |
18457 | state->dts_errors += buf->dtb_xamot_errors; |
18458 | |
18459 | /* |
18460 | * If the buffers did not actually switch, then the cross call |
18461 | * did not take place -- presumably because the given CPU is |
18462 | * not in the ready set. If this is the case, we'll return |
18463 | * ENOENT. |
18464 | */ |
18465 | if (buf->dtb_tomax == cached) { |
18466 | ASSERT(buf->dtb_xamot != cached); |
18467 | lck_mtx_unlock(lck: &dtrace_lock); |
18468 | return (ENOENT); |
18469 | } |
18470 | |
18471 | ASSERT(cached == buf->dtb_xamot); |
18472 | /* |
18473 | * At this point we know the buffer have switched, so we |
18474 | * can decrement the over limit count if the buffer was over |
18475 | * its limit. The new buffer might already be over its limit |
18476 | * yet, but we don't care since we're guaranteed not to be |
18477 | * checking the buffer over limit count at this point. |
18478 | */ |
18479 | if (over_limit) { |
18480 | uint32_t old = os_atomic_dec_orig(&state->dts_buf_over_limit, relaxed); |
18481 | #pragma unused(old) |
18482 | |
18483 | /* |
18484 | * Verify that we didn't underflow the value |
18485 | */ |
18486 | ASSERT(old != 0); |
18487 | } |
18488 | |
18489 | /* |
18490 | * We have our snapshot; now copy it out. |
18491 | */ |
18492 | if (dtrace_buffer_copyout(buf->dtb_xamot, |
18493 | (user_addr_t)desc.dtbd_data, |
18494 | buf->dtb_xamot_offset) != 0) { |
18495 | lck_mtx_unlock(lck: &dtrace_lock); |
18496 | return (EFAULT); |
18497 | } |
18498 | |
18499 | desc.dtbd_size = buf->dtb_xamot_offset; |
18500 | desc.dtbd_drops = buf->dtb_xamot_drops; |
18501 | desc.dtbd_errors = buf->dtb_xamot_errors; |
18502 | desc.dtbd_oldest = 0; |
18503 | desc.dtbd_timestamp = buf->dtb_switched; |
18504 | |
18505 | lck_mtx_unlock(lck: &dtrace_lock); |
18506 | |
18507 | /* |
18508 | * Finally, copy out the buffer description. |
18509 | */ |
18510 | if (copyout(&desc, arg, sizeof (desc)) != 0) |
18511 | return (EFAULT); |
18512 | |
18513 | return (0); |
18514 | } |
18515 | |
18516 | case DTRACEIOC_CONF: { |
18517 | dtrace_conf_t conf; |
18518 | |
18519 | bzero(s: &conf, n: sizeof (conf)); |
18520 | conf.dtc_difversion = DIF_VERSION; |
18521 | conf.dtc_difintregs = DIF_DIR_NREGS; |
18522 | conf.dtc_diftupregs = DIF_DTR_NREGS; |
18523 | conf.dtc_ctfmodel = CTF_MODEL_NATIVE; |
18524 | |
18525 | if (copyout(&conf, arg, sizeof (conf)) != 0) |
18526 | return (EFAULT); |
18527 | |
18528 | return (0); |
18529 | } |
18530 | |
18531 | case DTRACEIOC_STATUS: { |
18532 | dtrace_status_t stat; |
18533 | dtrace_dstate_t *dstate; |
18534 | int j; |
18535 | uint64_t nerrs; |
18536 | |
18537 | /* |
18538 | * See the comment in dtrace_state_deadman() for the reason |
18539 | * for setting dts_laststatus to INT64_MAX before setting |
18540 | * it to the correct value. |
18541 | */ |
18542 | state->dts_laststatus = INT64_MAX; |
18543 | dtrace_membar_producer(); |
18544 | state->dts_laststatus = dtrace_gethrtime(); |
18545 | |
18546 | bzero(s: &stat, n: sizeof (stat)); |
18547 | |
18548 | lck_mtx_lock(lck: &dtrace_lock); |
18549 | |
18550 | if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) { |
18551 | lck_mtx_unlock(lck: &dtrace_lock); |
18552 | return (ENOENT); |
18553 | } |
18554 | |
18555 | if (state->dts_activity == DTRACE_ACTIVITY_DRAINING) |
18556 | stat.dtst_exiting = 1; |
18557 | |
18558 | nerrs = state->dts_errors; |
18559 | dstate = &state->dts_vstate.dtvs_dynvars; |
18560 | |
18561 | zpercpu_foreach_cpu(i) { |
18562 | dtrace_dstate_percpu_t *dcpu = zpercpu_get_cpu(dstate->dtds_percpu, i); |
18563 | |
18564 | stat.dtst_dyndrops += dcpu->dtdsc_drops; |
18565 | stat.dtst_dyndrops_dirty += dcpu->dtdsc_dirty_drops; |
18566 | stat.dtst_dyndrops_rinsing += dcpu->dtdsc_rinsing_drops; |
18567 | |
18568 | if (state->dts_buffer[i].dtb_flags & DTRACEBUF_FULL) |
18569 | stat.dtst_filled++; |
18570 | |
18571 | nerrs += state->dts_buffer[i].dtb_errors; |
18572 | |
18573 | for (j = 0; j < state->dts_nspeculations; j++) { |
18574 | dtrace_speculation_t *spec; |
18575 | dtrace_buffer_t *buf; |
18576 | |
18577 | spec = &state->dts_speculations[j]; |
18578 | buf = &spec->dtsp_buffer[i]; |
18579 | stat.dtst_specdrops += buf->dtb_xamot_drops; |
18580 | } |
18581 | } |
18582 | |
18583 | stat.dtst_specdrops_busy = state->dts_speculations_busy; |
18584 | stat.dtst_specdrops_unavail = state->dts_speculations_unavail; |
18585 | stat.dtst_stkstroverflows = state->dts_stkstroverflows; |
18586 | stat.dtst_dblerrors = state->dts_dblerrors; |
18587 | stat.dtst_killed = |
18588 | (state->dts_activity == DTRACE_ACTIVITY_KILLED); |
18589 | stat.dtst_errors = nerrs; |
18590 | |
18591 | lck_mtx_unlock(lck: &dtrace_lock); |
18592 | |
18593 | if (copyout(&stat, arg, sizeof (stat)) != 0) |
18594 | return (EFAULT); |
18595 | |
18596 | return (0); |
18597 | } |
18598 | |
18599 | case DTRACEIOC_FORMAT: { |
18600 | dtrace_fmtdesc_t fmt; |
18601 | char *str; |
18602 | int len; |
18603 | |
18604 | if (copyin(arg, &fmt, sizeof (fmt)) != 0) |
18605 | return (EFAULT); |
18606 | |
18607 | lck_mtx_lock(lck: &dtrace_lock); |
18608 | |
18609 | if (fmt.dtfd_format == 0 || |
18610 | fmt.dtfd_format > state->dts_nformats) { |
18611 | lck_mtx_unlock(lck: &dtrace_lock); |
18612 | return (EINVAL); |
18613 | } |
18614 | |
18615 | /* |
18616 | * Format strings are allocated contiguously and they are |
18617 | * never freed; if a format index is less than the number |
18618 | * of formats, we can assert that the format map is non-NULL |
18619 | * and that the format for the specified index is non-NULL. |
18620 | */ |
18621 | ASSERT(state->dts_formats != NULL); |
18622 | str = state->dts_formats[fmt.dtfd_format - 1]->dtf_str; |
18623 | ASSERT(str != NULL); |
18624 | |
18625 | len = strlen(s: str) + 1; |
18626 | |
18627 | if (len > fmt.dtfd_length) { |
18628 | fmt.dtfd_length = len; |
18629 | |
18630 | if (copyout(&fmt, arg, sizeof (fmt)) != 0) { |
18631 | lck_mtx_unlock(lck: &dtrace_lock); |
18632 | return (EINVAL); |
18633 | } |
18634 | } else { |
18635 | if (copyout(str, (user_addr_t)fmt.dtfd_string, len) != 0) { |
18636 | lck_mtx_unlock(lck: &dtrace_lock); |
18637 | return (EINVAL); |
18638 | } |
18639 | } |
18640 | |
18641 | lck_mtx_unlock(lck: &dtrace_lock); |
18642 | return (0); |
18643 | } |
18644 | |
18645 | case DTRACEIOC_MODUUIDSLIST: { |
18646 | size_t module_uuids_list_size; |
18647 | dtrace_module_uuids_list_t* uuids_list; |
18648 | uint64_t dtmul_count; |
18649 | |
18650 | /* |
18651 | * Security restrictions make this operation illegal, if this is enabled DTrace |
18652 | * must refuse to provide any fbt probes. |
18653 | */ |
18654 | if (dtrace_fbt_probes_restricted()) { |
18655 | cmn_err(CE_WARN, "security restrictions disallow DTRACEIOC_MODUUIDSLIST" ); |
18656 | return (EPERM); |
18657 | } |
18658 | |
18659 | /* |
18660 | * Fail if the kernel symbol mode makes this operation illegal. |
18661 | * Both NEVER & ALWAYS_FROM_KERNEL are permanent states, it is legal to check |
18662 | * for them without holding the dtrace_lock. |
18663 | */ |
18664 | if (dtrace_kernel_symbol_mode == DTRACE_KERNEL_SYMBOLS_NEVER || |
18665 | dtrace_kernel_symbol_mode == DTRACE_KERNEL_SYMBOLS_ALWAYS_FROM_KERNEL) { |
18666 | cmn_err(CE_WARN, "dtrace_kernel_symbol_mode of %u disallows DTRACEIOC_MODUUIDSLIST" , dtrace_kernel_symbol_mode); |
18667 | return (EPERM); |
18668 | } |
18669 | |
18670 | /* |
18671 | * Read the number of symbolsdesc structs being passed in. |
18672 | */ |
18673 | if (copyin(arg + offsetof(dtrace_module_uuids_list_t, dtmul_count), |
18674 | &dtmul_count, sizeof(dtmul_count)) != 0) { |
18675 | cmn_err(CE_WARN, "failed to copyin dtmul_count" ); |
18676 | return (EFAULT); |
18677 | } |
18678 | |
18679 | /* |
18680 | * Range check the count. More than 2k kexts is probably an error. |
18681 | */ |
18682 | if (dtmul_count > 2048) { |
18683 | cmn_err(CE_WARN, "dtmul_count is not valid" ); |
18684 | return (EINVAL); |
18685 | } |
18686 | |
18687 | /* |
18688 | * For all queries, we return EINVAL when the user specified |
18689 | * count does not match the actual number of modules we find |
18690 | * available. |
18691 | * |
18692 | * If the user specified count is zero, then this serves as a |
18693 | * simple query to count the available modules in need of symbols. |
18694 | */ |
18695 | |
18696 | rval = 0; |
18697 | |
18698 | if (dtmul_count == 0) |
18699 | { |
18700 | lck_mtx_lock(lck: &mod_lock); |
18701 | struct modctl* ctl = dtrace_modctl_list; |
18702 | while (ctl) { |
18703 | ASSERT(!MOD_HAS_USERSPACE_SYMBOLS(ctl)); |
18704 | if (!MOD_SYMBOLS_DONE(ctl) && !MOD_IS_STATIC_KEXT(ctl)) { |
18705 | dtmul_count++; |
18706 | rval = EINVAL; |
18707 | } |
18708 | ctl = ctl->mod_next; |
18709 | } |
18710 | lck_mtx_unlock(lck: &mod_lock); |
18711 | |
18712 | if (copyout(&dtmul_count, arg, sizeof (dtmul_count)) != 0) |
18713 | return (EFAULT); |
18714 | else |
18715 | return (rval); |
18716 | } |
18717 | |
18718 | /* |
18719 | * If we reach this point, then we have a request for full list data. |
18720 | * Allocate a correctly sized structure and copyin the data. |
18721 | */ |
18722 | module_uuids_list_size = DTRACE_MODULE_UUIDS_LIST_SIZE(dtmul_count); |
18723 | if ((uuids_list = kmem_alloc(module_uuids_list_size, KM_SLEEP)) == NULL) |
18724 | return (ENOMEM); |
18725 | |
18726 | /* NOTE! We can no longer exit this method via return */ |
18727 | if (copyin(arg, uuids_list, module_uuids_list_size) != 0) { |
18728 | cmn_err(CE_WARN, "failed copyin of dtrace_module_uuids_list_t" ); |
18729 | rval = EFAULT; |
18730 | goto moduuidslist_cleanup; |
18731 | } |
18732 | |
18733 | /* |
18734 | * Check that the count didn't change between the first copyin and the second. |
18735 | */ |
18736 | if (uuids_list->dtmul_count != dtmul_count) { |
18737 | rval = EINVAL; |
18738 | goto moduuidslist_cleanup; |
18739 | } |
18740 | |
18741 | /* |
18742 | * Build the list of UUID's that need symbols |
18743 | */ |
18744 | lck_mtx_lock(lck: &mod_lock); |
18745 | |
18746 | dtmul_count = 0; |
18747 | |
18748 | struct modctl* ctl = dtrace_modctl_list; |
18749 | while (ctl) { |
18750 | /* |
18751 | * We assume that userspace symbols will be "better" than kernel level symbols, |
18752 | * as userspace can search for dSYM(s) and symbol'd binaries. Even if kernel syms |
18753 | * are available, add user syms if the module might use them. |
18754 | */ |
18755 | ASSERT(!MOD_HAS_USERSPACE_SYMBOLS(ctl)); |
18756 | if (!MOD_SYMBOLS_DONE(ctl) && !MOD_IS_STATIC_KEXT(ctl)) { |
18757 | UUID* uuid = &uuids_list->dtmul_uuid[dtmul_count]; |
18758 | if (dtmul_count++ < uuids_list->dtmul_count) { |
18759 | memcpy(dst: uuid, src: ctl->mod_uuid, n: sizeof(UUID)); |
18760 | } |
18761 | } |
18762 | ctl = ctl->mod_next; |
18763 | } |
18764 | |
18765 | lck_mtx_unlock(lck: &mod_lock); |
18766 | |
18767 | if (uuids_list->dtmul_count < dtmul_count) |
18768 | rval = EINVAL; |
18769 | |
18770 | uuids_list->dtmul_count = dtmul_count; |
18771 | |
18772 | /* |
18773 | * Copyout the symbols list (or at least the count!) |
18774 | */ |
18775 | if (copyout(uuids_list, arg, module_uuids_list_size) != 0) { |
18776 | cmn_err(CE_WARN, "failed copyout of dtrace_symbolsdesc_list_t" ); |
18777 | rval = EFAULT; |
18778 | } |
18779 | |
18780 | moduuidslist_cleanup: |
18781 | /* |
18782 | * If we had to allocate struct memory, free it. |
18783 | */ |
18784 | if (uuids_list != NULL) { |
18785 | kmem_free(uuids_list, module_uuids_list_size); |
18786 | } |
18787 | |
18788 | return rval; |
18789 | } |
18790 | |
18791 | case DTRACEIOC_PROVMODSYMS: { |
18792 | size_t module_symbols_size; |
18793 | dtrace_module_symbols_t* module_symbols; |
18794 | uint64_t dtmodsyms_count; |
18795 | |
18796 | /* |
18797 | * Security restrictions make this operation illegal, if this is enabled DTrace |
18798 | * must refuse to provide any fbt probes. |
18799 | */ |
18800 | if (dtrace_fbt_probes_restricted()) { |
18801 | cmn_err(CE_WARN, "security restrictions disallow DTRACEIOC_MODUUIDSLIST" ); |
18802 | return (EPERM); |
18803 | } |
18804 | |
18805 | /* |
18806 | * Fail if the kernel symbol mode makes this operation illegal. |
18807 | * Both NEVER & ALWAYS_FROM_KERNEL are permanent states, it is legal to check |
18808 | * for them without holding the dtrace_lock. |
18809 | */ |
18810 | if (dtrace_kernel_symbol_mode == DTRACE_KERNEL_SYMBOLS_NEVER || |
18811 | dtrace_kernel_symbol_mode == DTRACE_KERNEL_SYMBOLS_ALWAYS_FROM_KERNEL) { |
18812 | cmn_err(CE_WARN, "dtrace_kernel_symbol_mode of %u disallows DTRACEIOC_PROVMODSYMS" , dtrace_kernel_symbol_mode); |
18813 | return (EPERM); |
18814 | } |
18815 | |
18816 | /* |
18817 | * Read the number of module symbols structs being passed in. |
18818 | */ |
18819 | if (copyin(arg + offsetof(dtrace_module_symbols_t, dtmodsyms_count), |
18820 | &dtmodsyms_count, sizeof(dtmodsyms_count)) != 0) { |
18821 | cmn_err(CE_WARN, "failed to copyin dtmodsyms_count" ); |
18822 | return (EFAULT); |
18823 | } |
18824 | |
18825 | /* Ensure that we have at least one symbol. */ |
18826 | if (dtmodsyms_count == 0) { |
18827 | cmn_err(CE_WARN, "Invalid dtmodsyms_count value" ); |
18828 | return (EINVAL); |
18829 | } |
18830 | |
18831 | /* Safely calculate size we need for copyin buffer. */ |
18832 | module_symbols_size = DTRACE_MODULE_SYMBOLS_SIZE(dtmodsyms_count); |
18833 | if (module_symbols_size == 0 || module_symbols_size > (size_t)dtrace_copy_maxsize()) { |
18834 | cmn_err(CE_WARN, "Invalid module_symbols_size %ld" , module_symbols_size); |
18835 | return (EINVAL); |
18836 | } |
18837 | |
18838 | if ((module_symbols = kmem_alloc(module_symbols_size, KM_SLEEP)) == NULL) |
18839 | return (ENOMEM); |
18840 | |
18841 | rval = 0; |
18842 | |
18843 | /* NOTE! We can no longer exit this method via return */ |
18844 | if (copyin(arg, module_symbols, module_symbols_size) != 0) { |
18845 | cmn_err(CE_WARN, "failed copyin of dtrace_module_symbols_t" ); |
18846 | rval = EFAULT; |
18847 | goto module_symbols_cleanup; |
18848 | } |
18849 | |
18850 | /* |
18851 | * Check that the count didn't change between the first copyin and the second. |
18852 | */ |
18853 | if (module_symbols->dtmodsyms_count != dtmodsyms_count) { |
18854 | rval = EINVAL; |
18855 | goto module_symbols_cleanup; |
18856 | } |
18857 | |
18858 | /* |
18859 | * Find the modctl to add symbols to. |
18860 | */ |
18861 | lck_mtx_lock(lck: &dtrace_provider_lock); |
18862 | lck_mtx_lock(lck: &mod_lock); |
18863 | |
18864 | struct modctl* ctl = dtrace_modctl_list; |
18865 | while (ctl) { |
18866 | ASSERT(!MOD_HAS_USERSPACE_SYMBOLS(ctl)); |
18867 | if (MOD_HAS_UUID(ctl) && !MOD_SYMBOLS_DONE(ctl) && memcmp(s1: module_symbols->dtmodsyms_uuid, s2: ctl->mod_uuid, n: sizeof(UUID)) == 0) { |
18868 | dtrace_provider_t *prv; |
18869 | ctl->mod_user_symbols = module_symbols; |
18870 | |
18871 | /* |
18872 | * We're going to call each providers per-module provide operation |
18873 | * specifying only this module. |
18874 | */ |
18875 | for (prv = dtrace_provider; prv != NULL; prv = prv->dtpv_next) |
18876 | prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl); |
18877 | /* |
18878 | * We gave every provider a chance to provide with the user syms, go ahead and clear them |
18879 | */ |
18880 | ctl->mod_user_symbols = NULL; /* MUST reset this to clear HAS_USERSPACE_SYMBOLS */ |
18881 | } |
18882 | ctl = ctl->mod_next; |
18883 | } |
18884 | |
18885 | lck_mtx_unlock(lck: &mod_lock); |
18886 | lck_mtx_unlock(lck: &dtrace_provider_lock); |
18887 | |
18888 | module_symbols_cleanup: |
18889 | /* |
18890 | * If we had to allocate struct memory, free it. |
18891 | */ |
18892 | if (module_symbols != NULL) { |
18893 | kmem_free(module_symbols, module_symbols_size); |
18894 | } |
18895 | |
18896 | return rval; |
18897 | } |
18898 | |
18899 | case DTRACEIOC_PROCWAITFOR: { |
18900 | dtrace_procdesc_t pdesc = { |
18901 | .p_name = {0}, |
18902 | .p_pid = -1 |
18903 | }; |
18904 | |
18905 | if ((rval = copyin(arg, &pdesc, sizeof(pdesc))) != 0) |
18906 | goto proc_waitfor_error; |
18907 | |
18908 | if ((rval = dtrace_proc_waitfor(&pdesc)) != 0) |
18909 | goto proc_waitfor_error; |
18910 | |
18911 | if ((rval = copyout(&pdesc, arg, sizeof(pdesc))) != 0) |
18912 | goto proc_waitfor_error; |
18913 | |
18914 | return 0; |
18915 | |
18916 | proc_waitfor_error: |
18917 | /* The process was suspended, revert this since the client will not do it. */ |
18918 | if (pdesc.p_pid != -1) { |
18919 | proc_t *proc = proc_find(pid: pdesc.p_pid); |
18920 | if (proc != PROC_NULL) { |
18921 | task_pidresume(task: proc_task(proc)); |
18922 | proc_rele(p: proc); |
18923 | } |
18924 | } |
18925 | |
18926 | return rval; |
18927 | } |
18928 | |
18929 | default: |
18930 | break; |
18931 | } |
18932 | |
18933 | return (ENOTTY); |
18934 | } |
18935 | |
18936 | /* |
18937 | * APPLE NOTE: dtrace_detach not implemented |
18938 | */ |
18939 | #if !defined(__APPLE__) |
18940 | /*ARGSUSED*/ |
18941 | static int |
18942 | dtrace_detach(dev_info_t *dip, ddi_detach_cmd_t cmd) |
18943 | { |
18944 | dtrace_state_t *state; |
18945 | |
18946 | switch (cmd) { |
18947 | case DDI_DETACH: |
18948 | break; |
18949 | |
18950 | case DDI_SUSPEND: |
18951 | return (DDI_SUCCESS); |
18952 | |
18953 | default: |
18954 | return (DDI_FAILURE); |
18955 | } |
18956 | |
18957 | lck_mtx_lock(&cpu_lock); |
18958 | lck_mtx_lock(&dtrace_provider_lock); |
18959 | lck_mtx_lock(&dtrace_lock); |
18960 | |
18961 | ASSERT(dtrace_opens == 0); |
18962 | |
18963 | if (dtrace_helpers > 0) { |
18964 | lck_mtx_unlock(&dtrace_lock); |
18965 | lck_mtx_unlock(&dtrace_provider_lock); |
18966 | lck_mtx_unlock(&cpu_lock); |
18967 | return (DDI_FAILURE); |
18968 | } |
18969 | |
18970 | if (dtrace_unregister((dtrace_provider_id_t)dtrace_provider) != 0) { |
18971 | lck_mtx_unlock(&dtrace_lock); |
18972 | lck_mtx_unlock(&dtrace_provider_lock); |
18973 | lck_mtx_unlock(&cpu_lock); |
18974 | return (DDI_FAILURE); |
18975 | } |
18976 | |
18977 | dtrace_provider = NULL; |
18978 | |
18979 | if ((state = dtrace_anon_grab()) != NULL) { |
18980 | /* |
18981 | * If there were ECBs on this state, the provider should |
18982 | * have not been allowed to detach; assert that there is |
18983 | * none. |
18984 | */ |
18985 | ASSERT(state->dts_necbs == 0); |
18986 | dtrace_state_destroy(state); |
18987 | |
18988 | /* |
18989 | * If we're being detached with anonymous state, we need to |
18990 | * indicate to the kernel debugger that DTrace is now inactive. |
18991 | */ |
18992 | (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); |
18993 | } |
18994 | |
18995 | bzero(&dtrace_anon, sizeof (dtrace_anon_t)); |
18996 | unregister_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL); |
18997 | dtrace_cpu_init = NULL; |
18998 | dtrace_helpers_cleanup = NULL; |
18999 | dtrace_helpers_fork = NULL; |
19000 | dtrace_cpustart_init = NULL; |
19001 | dtrace_cpustart_fini = NULL; |
19002 | dtrace_debugger_init = NULL; |
19003 | dtrace_debugger_fini = NULL; |
19004 | dtrace_kreloc_init = NULL; |
19005 | dtrace_kreloc_fini = NULL; |
19006 | dtrace_modload = NULL; |
19007 | dtrace_modunload = NULL; |
19008 | |
19009 | lck_mtx_unlock(&cpu_lock); |
19010 | |
19011 | if (dtrace_helptrace_enabled) { |
19012 | kmem_free(dtrace_helptrace_buffer, dtrace_helptrace_bufsize); |
19013 | dtrace_helptrace_buffer = NULL; |
19014 | } |
19015 | |
19016 | kmem_free(dtrace_probes, dtrace_nprobes * sizeof (dtrace_probe_t *)); |
19017 | dtrace_probes = NULL; |
19018 | dtrace_nprobes = 0; |
19019 | |
19020 | dtrace_hash_destroy(dtrace_strings); |
19021 | dtrace_hash_destroy(dtrace_byprov); |
19022 | dtrace_hash_destroy(dtrace_bymod); |
19023 | dtrace_hash_destroy(dtrace_byfunc); |
19024 | dtrace_hash_destroy(dtrace_byname); |
19025 | dtrace_strings = NULL; |
19026 | dtrace_byprov = NULL; |
19027 | dtrace_bymod = NULL; |
19028 | dtrace_byfunc = NULL; |
19029 | dtrace_byname = NULL; |
19030 | |
19031 | kmem_cache_destroy(dtrace_state_cache); |
19032 | vmem_destroy(dtrace_arena); |
19033 | |
19034 | if (dtrace_toxrange != NULL) { |
19035 | kmem_free(dtrace_toxrange, |
19036 | dtrace_toxranges_max * sizeof (dtrace_toxrange_t)); |
19037 | dtrace_toxrange = NULL; |
19038 | dtrace_toxranges = 0; |
19039 | dtrace_toxranges_max = 0; |
19040 | } |
19041 | |
19042 | ddi_remove_minor_node(dtrace_devi, NULL); |
19043 | dtrace_devi = NULL; |
19044 | |
19045 | ddi_soft_state_fini(&dtrace_softstate); |
19046 | |
19047 | ASSERT(dtrace_vtime_references == 0); |
19048 | ASSERT(dtrace_opens == 0); |
19049 | ASSERT(dtrace_retained == NULL); |
19050 | |
19051 | lck_mtx_unlock(&dtrace_lock); |
19052 | lck_mtx_unlock(&dtrace_provider_lock); |
19053 | |
19054 | #ifdef illumos |
19055 | /* |
19056 | * We don't destroy the task queue until after we have dropped our |
19057 | * locks (taskq_destroy() may block on running tasks). To prevent |
19058 | * attempting to do work after we have effectively detached but before |
19059 | * the task queue has been destroyed, all tasks dispatched via the |
19060 | * task queue must check that DTrace is still attached before |
19061 | * performing any operation. |
19062 | */ |
19063 | taskq_destroy(dtrace_taskq); |
19064 | dtrace_taskq = NULL; |
19065 | #endif |
19066 | |
19067 | return (DDI_SUCCESS); |
19068 | } |
19069 | #endif /* __APPLE__ */ |
19070 | |
19071 | d_open_t _dtrace_open, helper_open; |
19072 | d_close_t _dtrace_close, helper_close; |
19073 | d_ioctl_t _dtrace_ioctl, helper_ioctl; |
19074 | |
19075 | int |
19076 | _dtrace_open(dev_t dev, int flags, int devtype, struct proc *p) |
19077 | { |
19078 | #pragma unused(p) |
19079 | dev_t locdev = dev; |
19080 | |
19081 | return dtrace_open( devp: &locdev, flag: flags, otyp: devtype, CRED()); |
19082 | } |
19083 | |
19084 | int |
19085 | helper_open(dev_t dev, int flags, int devtype, struct proc *p) |
19086 | { |
19087 | #pragma unused(dev,flags,devtype,p) |
19088 | return 0; |
19089 | } |
19090 | |
19091 | int |
19092 | _dtrace_close(dev_t dev, int flags, int devtype, struct proc *p) |
19093 | { |
19094 | #pragma unused(p) |
19095 | return dtrace_close( dev, flag: flags, otyp: devtype, CRED()); |
19096 | } |
19097 | |
19098 | int |
19099 | helper_close(dev_t dev, int flags, int devtype, struct proc *p) |
19100 | { |
19101 | #pragma unused(dev,flags,devtype,p) |
19102 | return 0; |
19103 | } |
19104 | |
19105 | int |
19106 | _dtrace_ioctl(dev_t dev, u_long cmd, caddr_t data, int fflag, struct proc *p) |
19107 | { |
19108 | #pragma unused(p) |
19109 | int err, rv = 0; |
19110 | user_addr_t uaddrp; |
19111 | |
19112 | if (proc_is64bit(p)) |
19113 | uaddrp = *(user_addr_t *)data; |
19114 | else |
19115 | uaddrp = (user_addr_t) *(uint32_t *)data; |
19116 | |
19117 | err = dtrace_ioctl(dev, cmd, arg: uaddrp, md: fflag, CRED(), rv: &rv); |
19118 | |
19119 | /* Darwin's BSD ioctls only return -1 or zero. Overload errno to mimic Solaris. 20 bits suffice. */ |
19120 | if (err != 0) { |
19121 | ASSERT( (err & 0xfffff000) == 0 ); |
19122 | return (err & 0xfff); /* ioctl will return -1 and will set errno to an error code < 4096 */ |
19123 | } else if (rv != 0) { |
19124 | ASSERT( (rv & 0xfff00000) == 0 ); |
19125 | return (((rv & 0xfffff) << 12)); /* ioctl will return -1 and will set errno to a value >= 4096 */ |
19126 | } else |
19127 | return 0; |
19128 | } |
19129 | |
19130 | int |
19131 | helper_ioctl(dev_t dev, u_long cmd, caddr_t data, int fflag, struct proc *p) |
19132 | { |
19133 | #pragma unused(dev,fflag,p) |
19134 | int err, rv = 0; |
19135 | |
19136 | err = dtrace_ioctl_helper(cmd, arg: data, rv: &rv); |
19137 | /* Darwin's BSD ioctls only return -1 or zero. Overload errno to mimic Solaris. 20 bits suffice. */ |
19138 | if (err != 0) { |
19139 | ASSERT( (err & 0xfffff000) == 0 ); |
19140 | return (err & 0xfff); /* ioctl will return -1 and will set errno to an error code < 4096 */ |
19141 | } else if (rv != 0) { |
19142 | ASSERT( (rv & 0xfff00000) == 0 ); |
19143 | return (((rv & 0xfffff) << 12)); /* ioctl will return -1 and will set errno to a value >= 4096 */ |
19144 | } else |
19145 | return 0; |
19146 | } |
19147 | |
19148 | #define HELPER_MAJOR -24 /* let the kernel pick the device number */ |
19149 | |
19150 | #define nulldevfp (void (*)(void))&nulldev |
19151 | |
19152 | const static struct cdevsw helper_cdevsw = |
19153 | { |
19154 | .d_open = helper_open, |
19155 | .d_close = helper_close, |
19156 | .d_read = eno_rdwrt, |
19157 | .d_write = eno_rdwrt, |
19158 | .d_ioctl = helper_ioctl, |
19159 | .d_stop = eno_stop, |
19160 | .d_reset = eno_reset, |
19161 | .d_select = eno_select, |
19162 | .d_mmap = eno_mmap, |
19163 | .d_strategy = eno_strat, |
19164 | .d_reserved_1 = eno_getc, |
19165 | .d_reserved_2 = eno_putc, |
19166 | }; |
19167 | |
19168 | static int helper_majdevno = 0; |
19169 | |
19170 | static int gDTraceInited = 0; |
19171 | |
19172 | void |
19173 | helper_init( void ) |
19174 | { |
19175 | /* |
19176 | * Once the "helper" is initialized, it can take ioctl calls that use locks |
19177 | * and zones initialized in dtrace_init. Make certain dtrace_init was called |
19178 | * before us. |
19179 | */ |
19180 | |
19181 | if (!gDTraceInited) { |
19182 | panic("helper_init before dtrace_init" ); |
19183 | } |
19184 | |
19185 | if (0 >= helper_majdevno) |
19186 | { |
19187 | helper_majdevno = cdevsw_add(HELPER_MAJOR, &helper_cdevsw); |
19188 | |
19189 | if (helper_majdevno < 0) { |
19190 | printf("helper_init: failed to allocate a major number!\n" ); |
19191 | return; |
19192 | } |
19193 | |
19194 | if (NULL == devfs_make_node( makedev(helper_majdevno, 0), DEVFS_CHAR, UID_ROOT, GID_WHEEL, perms: 0666, |
19195 | DTRACEMNR_HELPER )) { |
19196 | printf("dtrace_init: failed to devfs_make_node for helper!\n" ); |
19197 | return; |
19198 | } |
19199 | } else |
19200 | panic("helper_init: called twice!" ); |
19201 | } |
19202 | |
19203 | #undef HELPER_MAJOR |
19204 | |
19205 | static int |
19206 | dtrace_clone_func(dev_t dev, int action) |
19207 | { |
19208 | #pragma unused(dev) |
19209 | |
19210 | if (action == DEVFS_CLONE_ALLOC) { |
19211 | return dtrace_state_reserve(); |
19212 | } |
19213 | else if (action == DEVFS_CLONE_FREE) { |
19214 | return 0; |
19215 | } |
19216 | else return -1; |
19217 | } |
19218 | |
19219 | void dtrace_ast(void); |
19220 | |
19221 | void |
19222 | dtrace_ast(void) |
19223 | { |
19224 | int i; |
19225 | uint32_t clients = os_atomic_xchg(&dtrace_wake_clients, 0, relaxed); |
19226 | if (clients == 0) |
19227 | return; |
19228 | /** |
19229 | * We disable preemption here to be sure that we won't get |
19230 | * interrupted by a wakeup to a thread that is higher |
19231 | * priority than us, so that we do issue all wakeups |
19232 | */ |
19233 | disable_preemption(); |
19234 | for (i = 0; i < DTRACE_NCLIENTS; i++) { |
19235 | if (clients & (1 << i)) { |
19236 | dtrace_state_t *state = dtrace_state_get(minor: i); |
19237 | if (state) { |
19238 | wakeup(chan: state); |
19239 | } |
19240 | |
19241 | } |
19242 | } |
19243 | enable_preemption(); |
19244 | } |
19245 | |
19246 | |
19247 | #define DTRACE_MAJOR -24 /* let the kernel pick the device number */ |
19248 | |
19249 | static const struct cdevsw dtrace_cdevsw = |
19250 | { |
19251 | .d_open = _dtrace_open, |
19252 | .d_close = _dtrace_close, |
19253 | .d_read = eno_rdwrt, |
19254 | .d_write = eno_rdwrt, |
19255 | .d_ioctl = _dtrace_ioctl, |
19256 | .d_stop = eno_stop, |
19257 | .d_reset = eno_reset, |
19258 | .d_select = eno_select, |
19259 | .d_mmap = eno_mmap, |
19260 | .d_strategy = eno_strat, |
19261 | .d_reserved_1 = eno_getc, |
19262 | .d_reserved_2 = eno_putc, |
19263 | }; |
19264 | |
19265 | LCK_ATTR_DECLARE(dtrace_lck_attr, 0, 0); |
19266 | LCK_GRP_DECLARE(dtrace_lck_grp, "dtrace" ); |
19267 | |
19268 | static int gMajDevNo; |
19269 | |
19270 | void dtrace_early_init (void) |
19271 | { |
19272 | dtrace_restriction_policy_load(); |
19273 | |
19274 | /* |
19275 | * See dtrace_impl.h for a description of kernel symbol modes. |
19276 | * The default is to wait for symbols from userspace (lazy symbols). |
19277 | */ |
19278 | if (!PE_parse_boot_argn(arg_string: "dtrace_kernel_symbol_mode" , arg_ptr: &dtrace_kernel_symbol_mode, max_arg: sizeof (dtrace_kernel_symbol_mode))) { |
19279 | dtrace_kernel_symbol_mode = DTRACE_KERNEL_SYMBOLS_FROM_USERSPACE; |
19280 | } |
19281 | } |
19282 | |
19283 | void |
19284 | dtrace_init( void ) |
19285 | { |
19286 | if (0 == gDTraceInited) { |
19287 | unsigned int i, ncpu; |
19288 | size_t size = sizeof(dtrace_buffer_memory_maxsize); |
19289 | |
19290 | /* |
19291 | * Disable destructive actions when dtrace is running |
19292 | * in a restricted environment |
19293 | */ |
19294 | dtrace_destructive_disallow = dtrace_is_restricted() && |
19295 | !dtrace_are_restrictions_relaxed(); |
19296 | |
19297 | /* |
19298 | * DTrace allocates buffers based on the maximum number |
19299 | * of enabled cpus. This call avoids any race when finding |
19300 | * that count. |
19301 | */ |
19302 | ASSERT(dtrace_max_cpus == 0); |
19303 | ncpu = dtrace_max_cpus = ml_wait_max_cpus(); |
19304 | |
19305 | /* |
19306 | * Retrieve the size of the physical memory in order to define |
19307 | * the state buffer memory maximal size. If we cannot retrieve |
19308 | * this value, we'll consider that we have 1Gb of memory per CPU, that's |
19309 | * still better than raising a kernel panic. |
19310 | */ |
19311 | if (0 != kernel_sysctlbyname("hw.memsize" , &dtrace_buffer_memory_maxsize, |
19312 | &size, NULL, 0)) |
19313 | { |
19314 | dtrace_buffer_memory_maxsize = ncpu * 1024 * 1024 * 1024; |
19315 | printf("dtrace_init: failed to retrieve the hw.memsize, defaulted to %lld bytes\n" , |
19316 | dtrace_buffer_memory_maxsize); |
19317 | } |
19318 | |
19319 | /* |
19320 | * Finally, divide by three to prevent DTrace from eating too |
19321 | * much memory. |
19322 | */ |
19323 | dtrace_buffer_memory_maxsize /= 3; |
19324 | ASSERT(dtrace_buffer_memory_maxsize > 0); |
19325 | |
19326 | gMajDevNo = cdevsw_add(DTRACE_MAJOR, &dtrace_cdevsw); |
19327 | |
19328 | if (gMajDevNo < 0) { |
19329 | printf("dtrace_init: failed to allocate a major number!\n" ); |
19330 | gDTraceInited = 0; |
19331 | return; |
19332 | } |
19333 | |
19334 | if (NULL == devfs_make_node_clone( makedev(gMajDevNo, 0), DEVFS_CHAR, UID_ROOT, GID_WHEEL, perms: 0666, |
19335 | clone: dtrace_clone_func, DTRACEMNR_DTRACE )) { |
19336 | printf("dtrace_init: failed to devfs_make_node_clone for dtrace!\n" ); |
19337 | gDTraceInited = 0; |
19338 | return; |
19339 | } |
19340 | |
19341 | /* |
19342 | * The cpu_core structure consists of per-CPU state available in any context. |
19343 | * On some architectures, this may mean that the page(s) containing the |
19344 | * NCPU-sized array of cpu_core structures must be locked in the TLB -- it |
19345 | * is up to the platform to assure that this is performed properly. Note that |
19346 | * the structure is sized to avoid false sharing. |
19347 | */ |
19348 | |
19349 | dtrace_modctl_list = NULL; |
19350 | |
19351 | cpu_core = (cpu_core_t *)kmem_zalloc( ncpu * sizeof(cpu_core_t), KM_SLEEP ); |
19352 | for (i = 0; i < ncpu; ++i) { |
19353 | lck_mtx_init(lck: &cpu_core[i].cpuc_pid_lock, grp: &dtrace_lck_grp, attr: &dtrace_lck_attr); |
19354 | } |
19355 | |
19356 | cpu_list = (dtrace_cpu_t *)kmem_zalloc( ncpu * sizeof(dtrace_cpu_t), KM_SLEEP ); |
19357 | for (i = 0; i < ncpu; ++i) { |
19358 | cpu_list[i].cpu_id = (processorid_t)i; |
19359 | cpu_list[i].cpu_next = &(cpu_list[(i+1) % ncpu]); |
19360 | LIST_INIT(&cpu_list[i].cpu_cyc_list); |
19361 | lck_rw_init(lck: &cpu_list[i].cpu_ft_lock, grp: &dtrace_lck_grp, attr: &dtrace_lck_attr); |
19362 | } |
19363 | |
19364 | /* |
19365 | * Initialize the CPU offline/online hooks. |
19366 | */ |
19367 | dtrace_install_cpu_hooks(); |
19368 | |
19369 | lck_mtx_lock(lck: &cpu_lock); |
19370 | for (i = 0; i < ncpu; ++i) |
19371 | /* FIXME: track CPU configuration */ |
19372 | dtrace_cpu_setup_initial( cpu: (processorid_t)i ); /* In lieu of register_cpu_setup_func() callback */ |
19373 | lck_mtx_unlock(lck: &cpu_lock); |
19374 | |
19375 | (void)dtrace_abs_to_nano(0LL); /* Force once only call to clock_timebase_info (which can take a lock) */ |
19376 | |
19377 | dtrace_strings = dtrace_hash_create(func: dtrace_strkey_offset, |
19378 | offsetof(dtrace_string_t, dtst_str), |
19379 | offsetof(dtrace_string_t, dtst_next), |
19380 | offsetof(dtrace_string_t, dtst_prev)); |
19381 | |
19382 | /* |
19383 | * See dtrace_impl.h for a description of dof modes. |
19384 | * The default is lazy dof. |
19385 | * |
19386 | * FIXME: Warn if state is LAZY_OFF? It won't break anything, but |
19387 | * makes no sense... |
19388 | */ |
19389 | if (!PE_parse_boot_argn(arg_string: "dtrace_dof_mode" , arg_ptr: &dtrace_dof_mode, max_arg: sizeof (dtrace_dof_mode))) { |
19390 | #if defined(XNU_TARGET_OS_OSX) |
19391 | dtrace_dof_mode = DTRACE_DOF_MODE_LAZY_ON; |
19392 | #else |
19393 | dtrace_dof_mode = DTRACE_DOF_MODE_NEVER; |
19394 | #endif |
19395 | } |
19396 | |
19397 | /* |
19398 | * Sanity check of dof mode value. |
19399 | */ |
19400 | switch (dtrace_dof_mode) { |
19401 | case DTRACE_DOF_MODE_NEVER: |
19402 | case DTRACE_DOF_MODE_LAZY_ON: |
19403 | /* valid modes, but nothing else we need to do */ |
19404 | break; |
19405 | |
19406 | case DTRACE_DOF_MODE_LAZY_OFF: |
19407 | case DTRACE_DOF_MODE_NON_LAZY: |
19408 | /* Cannot wait for a dtrace_open to init fasttrap */ |
19409 | fasttrap_init(); |
19410 | break; |
19411 | |
19412 | default: |
19413 | /* Invalid, clamp to non lazy */ |
19414 | dtrace_dof_mode = DTRACE_DOF_MODE_NON_LAZY; |
19415 | fasttrap_init(); |
19416 | break; |
19417 | } |
19418 | |
19419 | #if CONFIG_DTRACE |
19420 | if (dtrace_dof_mode != DTRACE_DOF_MODE_NEVER) |
19421 | commpage_update_dof(true); |
19422 | #endif |
19423 | |
19424 | gDTraceInited = 1; |
19425 | |
19426 | } else |
19427 | panic("dtrace_init: called twice!" ); |
19428 | } |
19429 | |
19430 | void |
19431 | dtrace_postinit(void) |
19432 | { |
19433 | /* |
19434 | * Called from bsd_init after all provider's *_init() routines have been |
19435 | * run. That way, anonymous DOF enabled under dtrace_attach() is safe |
19436 | * to go. |
19437 | */ |
19438 | dtrace_attach( devi: (dev_info_t *)(uintptr_t)makedev(gMajDevNo, 0)); /* Punning a dev_t to a dev_info_t* */ |
19439 | |
19440 | /* |
19441 | * Add the mach_kernel to the module list for lazy processing |
19442 | */ |
19443 | struct kmod_info fake_kernel_kmod; |
19444 | memset(s: &fake_kernel_kmod, c: 0, n: sizeof(fake_kernel_kmod)); |
19445 | |
19446 | strlcpy(dst: fake_kernel_kmod.name, src: "mach_kernel" , n: sizeof(fake_kernel_kmod.name)); |
19447 | fake_kernel_kmod.id = 1; |
19448 | fake_kernel_kmod.address = g_kernel_kmod_info.address; |
19449 | fake_kernel_kmod.size = g_kernel_kmod_info.size; |
19450 | |
19451 | /* Ensure we don't try to touch symbols if they are gone. */ |
19452 | boolean_t keepsyms = false; |
19453 | PE_parse_boot_argn(arg_string: "keepsyms" , arg_ptr: &keepsyms, max_arg: sizeof(keepsyms)); |
19454 | |
19455 | if (dtrace_module_loaded(kmod: &fake_kernel_kmod, flag: (keepsyms) ? 0 : KMOD_DTRACE_NO_KERNEL_SYMS) != 0) { |
19456 | printf("dtrace_postinit: Could not register mach_kernel modctl\n" ); |
19457 | } |
19458 | |
19459 | (void)OSKextRegisterKextsWithDTrace(); |
19460 | } |
19461 | #undef DTRACE_MAJOR |
19462 | |
19463 | /* |
19464 | * Routines used to register interest in cpu's being added to or removed |
19465 | * from the system. |
19466 | */ |
19467 | void |
19468 | register_cpu_setup_func(cpu_setup_func_t *ignore1, void *ignore2) |
19469 | { |
19470 | #pragma unused(ignore1,ignore2) |
19471 | } |
19472 | |
19473 | void |
19474 | unregister_cpu_setup_func(cpu_setup_func_t *ignore1, void *ignore2) |
19475 | { |
19476 | #pragma unused(ignore1,ignore2) |
19477 | } |
19478 | |