| 1 | /* |
| 2 | * CDDL HEADER START |
| 3 | * |
| 4 | * The contents of this file are subject to the terms of the |
| 5 | * Common Development and Distribution License (the "License"). |
| 6 | * You may not use this file except in compliance with the License. |
| 7 | * |
| 8 | * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE |
| 9 | * or http://www.opensolaris.org/os/licensing. |
| 10 | * See the License for the specific language governing permissions |
| 11 | * and limitations under the License. |
| 12 | * |
| 13 | * When distributing Covered Code, include this CDDL HEADER in each |
| 14 | * file and include the License file at usr/src/OPENSOLARIS.LICENSE. |
| 15 | * If applicable, add the following below this CDDL HEADER, with the |
| 16 | * fields enclosed by brackets "[]" replaced with your own identifying |
| 17 | * information: Portions Copyright [yyyy] [name of copyright owner] |
| 18 | * |
| 19 | * CDDL HEADER END |
| 20 | */ |
| 21 | |
| 22 | /* |
| 23 | * Portions Copyright (c) 2013, 2016, Joyent, Inc. All rights reserved. |
| 24 | * Portions Copyright (c) 2013 by Delphix. All rights reserved. |
| 25 | */ |
| 26 | |
| 27 | /* |
| 28 | * Copyright 2009 Sun Microsystems, Inc. All rights reserved. |
| 29 | * Use is subject to license terms. |
| 30 | */ |
| 31 | |
| 32 | /* |
| 33 | * DTrace - Dynamic Tracing for Solaris |
| 34 | * |
| 35 | * This is the implementation of the Solaris Dynamic Tracing framework |
| 36 | * (DTrace). The user-visible interface to DTrace is described at length in |
| 37 | * the "Solaris Dynamic Tracing Guide". The interfaces between the libdtrace |
| 38 | * library, the in-kernel DTrace framework, and the DTrace providers are |
| 39 | * described in the block comments in the <sys/dtrace.h> header file. The |
| 40 | * internal architecture of DTrace is described in the block comments in the |
| 41 | * <sys/dtrace_impl.h> header file. The comments contained within the DTrace |
| 42 | * implementation very much assume mastery of all of these sources; if one has |
| 43 | * an unanswered question about the implementation, one should consult them |
| 44 | * first. |
| 45 | * |
| 46 | * The functions here are ordered roughly as follows: |
| 47 | * |
| 48 | * - Probe context functions |
| 49 | * - Probe hashing functions |
| 50 | * - Non-probe context utility functions |
| 51 | * - Matching functions |
| 52 | * - Provider-to-Framework API functions |
| 53 | * - Probe management functions |
| 54 | * - DIF object functions |
| 55 | * - Format functions |
| 56 | * - Predicate functions |
| 57 | * - ECB functions |
| 58 | * - Buffer functions |
| 59 | * - Enabling functions |
| 60 | * - DOF functions |
| 61 | * - Anonymous enabling functions |
| 62 | * - Process functions |
| 63 | * - Consumer state functions |
| 64 | * - Helper functions |
| 65 | * - Hook functions |
| 66 | * - Driver cookbook functions |
| 67 | * |
| 68 | * Each group of functions begins with a block comment labelled the "DTrace |
| 69 | * [Group] Functions", allowing one to find each block by searching forward |
| 70 | * on capital-f functions. |
| 71 | */ |
| 72 | #include <sys/errno.h> |
| 73 | #include <sys/types.h> |
| 74 | #include <sys/stat.h> |
| 75 | #include <sys/conf.h> |
| 76 | #include <sys/random.h> |
| 77 | #include <sys/systm.h> |
| 78 | #include <sys/dtrace_impl.h> |
| 79 | #include <sys/param.h> |
| 80 | #include <sys/proc_internal.h> |
| 81 | #include <sys/ioctl.h> |
| 82 | #include <sys/fcntl.h> |
| 83 | #include <miscfs/devfs/devfs.h> |
| 84 | #include <sys/malloc.h> |
| 85 | #include <sys/kernel_types.h> |
| 86 | #include <sys/proc_internal.h> |
| 87 | #include <sys/uio_internal.h> |
| 88 | #include <sys/kauth.h> |
| 89 | #include <vm/pmap.h> |
| 90 | #include <sys/user.h> |
| 91 | #include <mach/exception_types.h> |
| 92 | #include <sys/signalvar.h> |
| 93 | #include <mach/task.h> |
| 94 | #include <kern/ast.h> |
| 95 | #include <kern/hvg_hypercall.h> |
| 96 | #include <kern/sched_prim.h> |
| 97 | #include <kern/processor.h> |
| 98 | #include <kern/task.h> |
| 99 | #include <kern/zalloc.h> |
| 100 | #include <netinet/in.h> |
| 101 | #include <libkern/sysctl.h> |
| 102 | #include <sys/kdebug.h> |
| 103 | #include <sys/sdt_impl.h> |
| 104 | |
| 105 | #if CONFIG_PERVASIVE_CPI |
| 106 | #include <kern/monotonic.h> |
| 107 | #include <machine/monotonic.h> |
| 108 | #endif /* CONFIG_PERVASIVE_CPI */ |
| 109 | |
| 110 | #include "dtrace_xoroshiro128_plus.h" |
| 111 | |
| 112 | #include <IOKit/IOPlatformExpert.h> |
| 113 | |
| 114 | #include <kern/cpu_data.h> |
| 115 | |
| 116 | extern addr64_t kvtophys(vm_offset_t va); |
| 117 | |
| 118 | extern uint32_t pmap_find_phys(void *, uint64_t); |
| 119 | extern boolean_t pmap_valid_page(uint32_t); |
| 120 | extern void OSKextRegisterKextsWithDTrace(void); |
| 121 | extern kmod_info_t g_kernel_kmod_info; |
| 122 | extern void commpage_update_dof(boolean_t enabled); |
| 123 | |
| 124 | /* Solaris proc_t is the struct. Darwin's proc_t is a pointer to it. */ |
| 125 | #define proc_t struct proc /* Steer clear of the Darwin typedef for proc_t */ |
| 126 | |
| 127 | #define t_predcache t_dtrace_predcache /* Cosmetic. Helps readability of thread.h */ |
| 128 | |
| 129 | extern void dtrace_suspend(void); |
| 130 | extern void dtrace_resume(void); |
| 131 | extern void dtrace_early_init(void); |
| 132 | extern int dtrace_keep_kernel_symbols(void); |
| 133 | extern void dtrace_init(void); |
| 134 | extern void helper_init(void); |
| 135 | extern void fasttrap_init(void); |
| 136 | |
| 137 | static int dtrace_lazy_dofs_duplicate(proc_t *, proc_t *); |
| 138 | extern void dtrace_lazy_dofs_destroy(proc_t *); |
| 139 | extern void dtrace_postinit(void); |
| 140 | |
| 141 | extern void dtrace_proc_fork(proc_t*, proc_t*, int); |
| 142 | extern void dtrace_proc_exec(proc_t*); |
| 143 | extern void dtrace_proc_exit(proc_t*); |
| 144 | |
| 145 | /* |
| 146 | * DTrace Tunable Variables |
| 147 | * |
| 148 | * The following variables may be dynamically tuned by using sysctl(8), the |
| 149 | * variables being stored in the kern.dtrace namespace. For example: |
| 150 | * sysctl kern.dtrace.dof_maxsize = 1048575 # 1M |
| 151 | * |
| 152 | * In general, the only variables that one should be tuning this way are those |
| 153 | * that affect system-wide DTrace behavior, and for which the default behavior |
| 154 | * is undesirable. Most of these variables are tunable on a per-consumer |
| 155 | * basis using DTrace options, and need not be tuned on a system-wide basis. |
| 156 | * When tuning these variables, avoid pathological values; while some attempt |
| 157 | * is made to verify the integrity of these variables, they are not considered |
| 158 | * part of the supported interface to DTrace, and they are therefore not |
| 159 | * checked comprehensively. |
| 160 | */ |
| 161 | uint64_t dtrace_buffer_memory_maxsize = 0; /* initialized in dtrace_init */ |
| 162 | uint64_t dtrace_buffer_memory_inuse = 0; |
| 163 | int dtrace_destructive_disallow = 1; |
| 164 | dtrace_optval_t dtrace_nonroot_maxsize = (16 * 1024 * 1024); |
| 165 | size_t dtrace_difo_maxsize = (256 * 1024); |
| 166 | dtrace_optval_t dtrace_dof_maxsize = (512 * 1024); |
| 167 | dtrace_optval_t dtrace_statvar_maxsize = (16 * 1024); |
| 168 | dtrace_optval_t dtrace_statvar_maxsize_max = (16 * 10 * 1024); |
| 169 | size_t dtrace_actions_max = (16 * 1024); |
| 170 | size_t dtrace_retain_max = 1024; |
| 171 | dtrace_optval_t dtrace_helper_actions_max = 32; |
| 172 | dtrace_optval_t dtrace_helper_providers_max = 64; |
| 173 | dtrace_optval_t dtrace_dstate_defsize = (1 * 1024 * 1024); |
| 174 | size_t dtrace_strsize_default = 256; |
| 175 | dtrace_optval_t dtrace_strsize_min = 8; |
| 176 | dtrace_optval_t dtrace_strsize_max = 65536; |
| 177 | dtrace_optval_t dtrace_cleanrate_default = 990099000; /* 1.1 hz */ |
| 178 | dtrace_optval_t dtrace_cleanrate_min = 20000000; /* 50 hz */ |
| 179 | dtrace_optval_t dtrace_cleanrate_max = (uint64_t)60 * NANOSEC; /* 1/minute */ |
| 180 | dtrace_optval_t dtrace_aggrate_default = NANOSEC; /* 1 hz */ |
| 181 | dtrace_optval_t dtrace_statusrate_default = NANOSEC; /* 1 hz */ |
| 182 | dtrace_optval_t dtrace_statusrate_max = (hrtime_t)10 * NANOSEC; /* 6/minute */ |
| 183 | dtrace_optval_t dtrace_switchrate_default = NANOSEC; /* 1 hz */ |
| 184 | dtrace_optval_t dtrace_nspec_default = 1; |
| 185 | dtrace_optval_t dtrace_specsize_default = 32 * 1024; |
| 186 | dtrace_optval_t dtrace_stackframes_default = 20; |
| 187 | dtrace_optval_t dtrace_ustackframes_default = 20; |
| 188 | dtrace_optval_t dtrace_jstackframes_default = 50; |
| 189 | dtrace_optval_t dtrace_jstackstrsize_default = 512; |
| 190 | dtrace_optval_t dtrace_buflimit_default = 75; |
| 191 | dtrace_optval_t dtrace_buflimit_min = 1; |
| 192 | dtrace_optval_t dtrace_buflimit_max = 99; |
| 193 | size_t dtrace_nprobes_default = 4; |
| 194 | int dtrace_msgdsize_max = 128; |
| 195 | hrtime_t dtrace_chill_max = 500 * (NANOSEC / MILLISEC); /* 500 ms */ |
| 196 | hrtime_t dtrace_chill_interval = NANOSEC; /* 1000 ms */ |
| 197 | int dtrace_devdepth_max = 32; |
| 198 | int dtrace_err_verbose; |
| 199 | hrtime_t dtrace_deadman_interval = NANOSEC; |
| 200 | hrtime_t dtrace_deadman_timeout = (hrtime_t)10 * NANOSEC; |
| 201 | hrtime_t dtrace_deadman_user = (hrtime_t)30 * NANOSEC; |
| 202 | |
| 203 | /* |
| 204 | * DTrace External Variables |
| 205 | * |
| 206 | * As dtrace(7D) is a kernel module, any DTrace variables are obviously |
| 207 | * available to DTrace consumers via the backtick (`) syntax. One of these, |
| 208 | * dtrace_zero, is made deliberately so: it is provided as a source of |
| 209 | * well-known, zero-filled memory. While this variable is not documented, |
| 210 | * it is used by some translators as an implementation detail. |
| 211 | */ |
| 212 | const char dtrace_zero[256] = { 0 }; /* zero-filled memory */ |
| 213 | unsigned int dtrace_max_cpus = 0; /* number of enabled cpus */ |
| 214 | /* |
| 215 | * DTrace Internal Variables |
| 216 | */ |
| 217 | static dev_info_t *dtrace_devi; /* device info */ |
| 218 | static vmem_t *dtrace_arena; /* probe ID arena */ |
| 219 | static dtrace_probe_t **dtrace_probes; /* array of all probes */ |
| 220 | static int dtrace_nprobes; /* number of probes */ |
| 221 | static dtrace_provider_t *dtrace_provider; /* provider list */ |
| 222 | static dtrace_meta_t *dtrace_meta_pid; /* user-land meta provider */ |
| 223 | static int dtrace_opens; /* number of opens */ |
| 224 | static int dtrace_helpers; /* number of helpers */ |
| 225 | static dtrace_hash_t *dtrace_strings; |
| 226 | static dtrace_hash_t *dtrace_byprov; /* probes hashed by provider */ |
| 227 | static dtrace_hash_t *dtrace_bymod; /* probes hashed by module */ |
| 228 | static dtrace_hash_t *dtrace_byfunc; /* probes hashed by function */ |
| 229 | static dtrace_hash_t *dtrace_byname; /* probes hashed by name */ |
| 230 | static dtrace_toxrange_t *dtrace_toxrange; /* toxic range array */ |
| 231 | static int dtrace_toxranges; /* number of toxic ranges */ |
| 232 | static int dtrace_toxranges_max; /* size of toxic range array */ |
| 233 | static dtrace_anon_t dtrace_anon; /* anonymous enabling */ |
| 234 | static uint64_t dtrace_vtime_references; /* number of vtimestamp refs */ |
| 235 | static kthread_t *dtrace_panicked; /* panicking thread */ |
| 236 | static dtrace_ecb_t *dtrace_ecb_create_cache; /* cached created ECB */ |
| 237 | static dtrace_genid_t dtrace_probegen; /* current probe generation */ |
| 238 | static dtrace_helpers_t *dtrace_deferred_pid; /* deferred helper list */ |
| 239 | static dtrace_enabling_t *dtrace_retained; /* list of retained enablings */ |
| 240 | static dtrace_genid_t dtrace_retained_gen; /* current retained enab gen */ |
| 241 | static dtrace_dynvar_t dtrace_dynhash_sink; /* end of dynamic hash chains */ |
| 242 | |
| 243 | static int dtrace_dof_mode; /* See dtrace_impl.h for a description of Darwin's dof modes. */ |
| 244 | |
| 245 | /* |
| 246 | * This does't quite fit as an internal variable, as it must be accessed in |
| 247 | * fbt_provide and sdt_provide. Its clearly not a dtrace tunable variable either... |
| 248 | */ |
| 249 | int dtrace_kernel_symbol_mode; /* See dtrace_impl.h for a description of Darwin's kernel symbol modes. */ |
| 250 | static uint32_t dtrace_wake_clients; |
| 251 | static uint8_t dtrace_kerneluuid[16]; /* the 128-bit uuid */ |
| 252 | |
| 253 | /* |
| 254 | * To save memory, some common memory allocations are given a |
| 255 | * unique zone. For example, dtrace_probe_t is 72 bytes in size, |
| 256 | * which means it would fall into the kalloc.128 bucket. With |
| 257 | * 20k elements allocated, the space saved is substantial. |
| 258 | */ |
| 259 | |
| 260 | static ZONE_DEFINE_TYPE(dtrace_probe_t_zone, "dtrace.dtrace_probe_t" , |
| 261 | dtrace_probe_t, ZC_PGZ_USE_GUARDS); |
| 262 | |
| 263 | static ZONE_DEFINE(dtrace_state_pcpu_zone, "dtrace.dtrace_dstate_percpu_t" , |
| 264 | sizeof(dtrace_dstate_percpu_t), ZC_PERCPU); |
| 265 | |
| 266 | static int dtrace_module_unloaded(struct kmod_info *kmod); |
| 267 | |
| 268 | /* |
| 269 | * DTrace Locking |
| 270 | * DTrace is protected by three (relatively coarse-grained) locks: |
| 271 | * |
| 272 | * (1) dtrace_lock is required to manipulate essentially any DTrace state, |
| 273 | * including enabling state, probes, ECBs, consumer state, helper state, |
| 274 | * etc. Importantly, dtrace_lock is _not_ required when in probe context; |
| 275 | * probe context is lock-free -- synchronization is handled via the |
| 276 | * dtrace_sync() cross call mechanism. |
| 277 | * |
| 278 | * (2) dtrace_provider_lock is required when manipulating provider state, or |
| 279 | * when provider state must be held constant. |
| 280 | * |
| 281 | * (3) dtrace_meta_lock is required when manipulating meta provider state, or |
| 282 | * when meta provider state must be held constant. |
| 283 | * |
| 284 | * The lock ordering between these three locks is dtrace_meta_lock before |
| 285 | * dtrace_provider_lock before dtrace_lock. (In particular, there are |
| 286 | * several places where dtrace_provider_lock is held by the framework as it |
| 287 | * calls into the providers -- which then call back into the framework, |
| 288 | * grabbing dtrace_lock.) |
| 289 | * |
| 290 | * There are two other locks in the mix: mod_lock and cpu_lock. With respect |
| 291 | * to dtrace_provider_lock and dtrace_lock, cpu_lock continues its historical |
| 292 | * role as a coarse-grained lock; it is acquired before both of these locks. |
| 293 | * With respect to dtrace_meta_lock, its behavior is stranger: cpu_lock must |
| 294 | * be acquired _between_ dtrace_meta_lock and any other DTrace locks. |
| 295 | * mod_lock is similar with respect to dtrace_provider_lock in that it must be |
| 296 | * acquired _between_ dtrace_provider_lock and dtrace_lock. |
| 297 | */ |
| 298 | |
| 299 | |
| 300 | /* |
| 301 | * APPLE NOTE: |
| 302 | * |
| 303 | * For porting purposes, all kmutex_t vars have been changed |
| 304 | * to lck_mtx_t, which require explicit initialization. |
| 305 | * |
| 306 | * kmutex_t becomes lck_mtx_t |
| 307 | * mutex_enter() becomes lck_mtx_lock() |
| 308 | * mutex_exit() becomes lck_mtx_unlock() |
| 309 | * |
| 310 | * Lock asserts are changed like this: |
| 311 | * |
| 312 | * ASSERT(MUTEX_HELD(&cpu_lock)); |
| 313 | * becomes: |
| 314 | * LCK_MTX_ASSERT(&cpu_lock, LCK_MTX_ASSERT_OWNED); |
| 315 | * |
| 316 | */ |
| 317 | static LCK_MTX_DECLARE_ATTR(dtrace_lock, |
| 318 | &dtrace_lck_grp, &dtrace_lck_attr); /* probe state lock */ |
| 319 | static LCK_MTX_DECLARE_ATTR(dtrace_provider_lock, |
| 320 | &dtrace_lck_grp, &dtrace_lck_attr); /* provider state lock */ |
| 321 | static LCK_MTX_DECLARE_ATTR(dtrace_meta_lock, |
| 322 | &dtrace_lck_grp, &dtrace_lck_attr); /* meta-provider state lock */ |
| 323 | static LCK_RW_DECLARE_ATTR(dtrace_dof_mode_lock, |
| 324 | &dtrace_lck_grp, &dtrace_lck_attr); /* dof mode lock */ |
| 325 | |
| 326 | /* |
| 327 | * DTrace Provider Variables |
| 328 | * |
| 329 | * These are the variables relating to DTrace as a provider (that is, the |
| 330 | * provider of the BEGIN, END, and ERROR probes). |
| 331 | */ |
| 332 | static dtrace_pattr_t dtrace_provider_attr = { |
| 333 | { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, |
| 334 | { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN }, |
| 335 | { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN }, |
| 336 | { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, |
| 337 | { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON }, |
| 338 | }; |
| 339 | |
| 340 | static void |
| 341 | dtrace_provide_nullop(void *arg, const dtrace_probedesc_t *desc) |
| 342 | { |
| 343 | #pragma unused(arg, desc) |
| 344 | } |
| 345 | |
| 346 | static void |
| 347 | dtrace_provide_module_nullop(void *arg, struct modctl *ctl) |
| 348 | { |
| 349 | #pragma unused(arg, ctl) |
| 350 | } |
| 351 | |
| 352 | static int |
| 353 | dtrace_enable_nullop(void *arg, dtrace_id_t id, void *parg) |
| 354 | { |
| 355 | #pragma unused(arg, id, parg) |
| 356 | return (0); |
| 357 | } |
| 358 | |
| 359 | static void |
| 360 | dtrace_disable_nullop(void *arg, dtrace_id_t id, void *parg) |
| 361 | { |
| 362 | #pragma unused(arg, id, parg) |
| 363 | } |
| 364 | |
| 365 | static void |
| 366 | dtrace_suspend_nullop(void *arg, dtrace_id_t id, void *parg) |
| 367 | { |
| 368 | #pragma unused(arg, id, parg) |
| 369 | } |
| 370 | |
| 371 | static void |
| 372 | dtrace_resume_nullop(void *arg, dtrace_id_t id, void *parg) |
| 373 | { |
| 374 | #pragma unused(arg, id, parg) |
| 375 | } |
| 376 | |
| 377 | static void |
| 378 | dtrace_destroy_nullop(void *arg, dtrace_id_t id, void *parg) |
| 379 | { |
| 380 | #pragma unused(arg, id, parg) |
| 381 | } |
| 382 | |
| 383 | |
| 384 | static dtrace_pops_t dtrace_provider_ops = { |
| 385 | .dtps_provide = dtrace_provide_nullop, |
| 386 | .dtps_provide_module = dtrace_provide_module_nullop, |
| 387 | .dtps_enable = dtrace_enable_nullop, |
| 388 | .dtps_disable = dtrace_disable_nullop, |
| 389 | .dtps_suspend = dtrace_suspend_nullop, |
| 390 | .dtps_resume = dtrace_resume_nullop, |
| 391 | .dtps_getargdesc = NULL, |
| 392 | .dtps_getargval = NULL, |
| 393 | .dtps_usermode = NULL, |
| 394 | .dtps_destroy = dtrace_destroy_nullop, |
| 395 | }; |
| 396 | |
| 397 | static dtrace_id_t dtrace_probeid_begin; /* special BEGIN probe */ |
| 398 | static dtrace_id_t dtrace_probeid_end; /* special END probe */ |
| 399 | dtrace_id_t dtrace_probeid_error; /* special ERROR probe */ |
| 400 | |
| 401 | /* |
| 402 | * DTrace Helper Tracing Variables |
| 403 | */ |
| 404 | uint32_t dtrace_helptrace_next = 0; |
| 405 | uint32_t dtrace_helptrace_nlocals; |
| 406 | char *dtrace_helptrace_buffer; |
| 407 | size_t dtrace_helptrace_bufsize = 512 * 1024; |
| 408 | |
| 409 | #if DEBUG |
| 410 | int dtrace_helptrace_enabled = 1; |
| 411 | #else |
| 412 | int dtrace_helptrace_enabled = 0; |
| 413 | #endif |
| 414 | |
| 415 | #if defined (__arm64__) |
| 416 | /* |
| 417 | * The ioctl for adding helper DOF is based on the |
| 418 | * size of a user_addr_t. We need to recognize both |
| 419 | * U32 and U64 as the same action. |
| 420 | */ |
| 421 | #define DTRACEHIOC_ADDDOF_U32 _IOW('h', 4, user32_addr_t) |
| 422 | #define DTRACEHIOC_ADDDOF_U64 _IOW('h', 4, user64_addr_t) |
| 423 | #endif /* __arm64__ */ |
| 424 | |
| 425 | /* |
| 426 | * DTrace Error Hashing |
| 427 | * |
| 428 | * On DEBUG kernels, DTrace will track the errors that has seen in a hash |
| 429 | * table. This is very useful for checking coverage of tests that are |
| 430 | * expected to induce DIF or DOF processing errors, and may be useful for |
| 431 | * debugging problems in the DIF code generator or in DOF generation . The |
| 432 | * error hash may be examined with the ::dtrace_errhash MDB dcmd. |
| 433 | */ |
| 434 | #if DEBUG |
| 435 | static dtrace_errhash_t dtrace_errhash[DTRACE_ERRHASHSZ]; |
| 436 | static const char *dtrace_errlast; |
| 437 | static kthread_t *dtrace_errthread; |
| 438 | static LCK_MTX_DECLARE_ATTR(dtrace_errlock, &dtrace_lck_grp, &dtrace_lck_attr); |
| 439 | #endif |
| 440 | |
| 441 | /* |
| 442 | * DTrace Macros and Constants |
| 443 | * |
| 444 | * These are various macros that are useful in various spots in the |
| 445 | * implementation, along with a few random constants that have no meaning |
| 446 | * outside of the implementation. There is no real structure to this cpp |
| 447 | * mishmash -- but is there ever? |
| 448 | */ |
| 449 | |
| 450 | #define DTRACE_GETSTR(hash, elm) \ |
| 451 | (hash->dth_getstr(elm, hash->dth_stroffs)) |
| 452 | |
| 453 | #define DTRACE_HASHSTR(hash, elm) \ |
| 454 | dtrace_hash_str(DTRACE_GETSTR(hash, elm)) |
| 455 | |
| 456 | #define DTRACE_HASHNEXT(hash, elm) \ |
| 457 | (void**)((uintptr_t)(elm) + (hash)->dth_nextoffs) |
| 458 | |
| 459 | #define DTRACE_HASHPREV(hash, elm) \ |
| 460 | (void**)((uintptr_t)(elm) + (hash)->dth_prevoffs) |
| 461 | |
| 462 | #define DTRACE_HASHEQ(hash, lhs, rhs) \ |
| 463 | (strcmp(DTRACE_GETSTR(hash, lhs), \ |
| 464 | DTRACE_GETSTR(hash, rhs)) == 0) |
| 465 | |
| 466 | #define DTRACE_AGGHASHSIZE_SLEW 17 |
| 467 | |
| 468 | #define DTRACE_V4MAPPED_OFFSET (sizeof (uint32_t) * 3) |
| 469 | |
| 470 | /* |
| 471 | * The key for a thread-local variable needs to be unique to a single |
| 472 | * thread over the lifetime of the system, and not overlap with any variable |
| 473 | * IDs. So we take thread's thread_id, a unique 64-bit number that is never |
| 474 | * reused after the thread exits, and add DIF_VARIABLE_MAX to it, which |
| 475 | * guarantees that it won’t overlap any variable IDs. We also want to treat |
| 476 | * running in interrupt context as independent of thread-context. So if |
| 477 | * interrupts are active, we set the 63rd bit, otherwise it’s cleared. |
| 478 | * |
| 479 | * This is necessary (but not sufficient) to assure that global associative |
| 480 | * arrays never collide with thread-local variables. To guarantee that they |
| 481 | * cannot collide, we must also define the order for keying dynamic variables. |
| 482 | * |
| 483 | * That order is: |
| 484 | * |
| 485 | * [ key0 ] ... [ keyn ] [ variable-key ] [ tls-key ] |
| 486 | * |
| 487 | * Because the variable-key and the tls-key are in orthogonal spaces, there is |
| 488 | * no way for a global variable key signature to match a thread-local key |
| 489 | * signature. |
| 490 | */ |
| 491 | #if defined (__x86_64__) || defined(__arm64__) |
| 492 | #define DTRACE_TLS_THRKEY(where) { \ |
| 493 | uint_t intr = ml_at_interrupt_context(); /* Note: just one measly bit */ \ |
| 494 | uint64_t thr = thread_tid(current_thread()); \ |
| 495 | ASSERT(intr < 2); \ |
| 496 | (where) = ((thr + DIF_VARIABLE_MAX) & (~((uint64_t)1 << 63))) | \ |
| 497 | ((uint64_t)intr << 63); \ |
| 498 | } |
| 499 | #else |
| 500 | #error Unknown architecture |
| 501 | #endif |
| 502 | |
| 503 | #define DT_BSWAP_8(x) ((x) & 0xff) |
| 504 | #define DT_BSWAP_16(x) ((DT_BSWAP_8(x) << 8) | DT_BSWAP_8((x) >> 8)) |
| 505 | #define DT_BSWAP_32(x) ((DT_BSWAP_16(x) << 16) | DT_BSWAP_16((x) >> 16)) |
| 506 | #define DT_BSWAP_64(x) ((DT_BSWAP_32(x) << 32) | DT_BSWAP_32((x) >> 32)) |
| 507 | |
| 508 | #define DT_MASK_LO 0x00000000FFFFFFFFULL |
| 509 | |
| 510 | #define DTRACE_STORE(type, tomax, offset, what) \ |
| 511 | *((type *)((uintptr_t)(tomax) + (uintptr_t)offset)) = (type)(what); |
| 512 | |
| 513 | |
| 514 | #define DTRACE_ALIGNCHECK(addr, size, flags) \ |
| 515 | if (addr & (MIN(size,4) - 1)) { \ |
| 516 | *flags |= CPU_DTRACE_BADALIGN; \ |
| 517 | cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr; \ |
| 518 | return (0); \ |
| 519 | } |
| 520 | |
| 521 | #define DTRACE_RANGE_REMAIN(remp, addr, baseaddr, basesz) \ |
| 522 | do { \ |
| 523 | if ((remp) != NULL) { \ |
| 524 | *(remp) = (uintptr_t)(baseaddr) + (basesz) - (addr); \ |
| 525 | } \ |
| 526 | } while (0) |
| 527 | |
| 528 | |
| 529 | /* |
| 530 | * Test whether a range of memory starting at testaddr of size testsz falls |
| 531 | * within the range of memory described by addr, sz. We take care to avoid |
| 532 | * problems with overflow and underflow of the unsigned quantities, and |
| 533 | * disallow all negative sizes. Ranges of size 0 are allowed. |
| 534 | */ |
| 535 | #define DTRACE_INRANGE(testaddr, testsz, baseaddr, basesz) \ |
| 536 | ((testaddr) - (baseaddr) < (basesz) && \ |
| 537 | (testaddr) + (testsz) - (baseaddr) <= (basesz) && \ |
| 538 | (testaddr) + (testsz) >= (testaddr)) |
| 539 | |
| 540 | /* |
| 541 | * Test whether alloc_sz bytes will fit in the scratch region. We isolate |
| 542 | * alloc_sz on the righthand side of the comparison in order to avoid overflow |
| 543 | * or underflow in the comparison with it. This is simpler than the INRANGE |
| 544 | * check above, because we know that the dtms_scratch_ptr is valid in the |
| 545 | * range. Allocations of size zero are allowed. |
| 546 | */ |
| 547 | #define DTRACE_INSCRATCH(mstate, alloc_sz) \ |
| 548 | ((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - \ |
| 549 | (mstate)->dtms_scratch_ptr >= (alloc_sz)) |
| 550 | |
| 551 | #if defined (__x86_64__) || defined (__arm64__) |
| 552 | #define DTRACE_LOADFUNC(bits) \ |
| 553 | /*CSTYLED*/ \ |
| 554 | uint##bits##_t dtrace_load##bits(uintptr_t addr); \ |
| 555 | \ |
| 556 | extern int dtrace_nofault_copy##bits(uintptr_t, uint##bits##_t *); \ |
| 557 | \ |
| 558 | uint##bits##_t \ |
| 559 | dtrace_load##bits(uintptr_t addr) \ |
| 560 | { \ |
| 561 | size_t size = bits / NBBY; \ |
| 562 | /*CSTYLED*/ \ |
| 563 | uint##bits##_t rval = 0; \ |
| 564 | int i; \ |
| 565 | volatile uint16_t *flags = (volatile uint16_t *) \ |
| 566 | &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; \ |
| 567 | \ |
| 568 | DTRACE_ALIGNCHECK(addr, size, flags); \ |
| 569 | \ |
| 570 | for (i = 0; i < dtrace_toxranges; i++) { \ |
| 571 | if (addr >= dtrace_toxrange[i].dtt_limit) \ |
| 572 | continue; \ |
| 573 | \ |
| 574 | if (addr + size <= dtrace_toxrange[i].dtt_base) \ |
| 575 | continue; \ |
| 576 | \ |
| 577 | /* \ |
| 578 | * This address falls within a toxic region; return 0. \ |
| 579 | */ \ |
| 580 | *flags |= CPU_DTRACE_BADADDR; \ |
| 581 | cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr; \ |
| 582 | return (0); \ |
| 583 | } \ |
| 584 | \ |
| 585 | { \ |
| 586 | *flags |= CPU_DTRACE_NOFAULT; \ |
| 587 | /*CSTYLED*/ \ |
| 588 | /* \ |
| 589 | * PR6394061 - avoid device memory that is unpredictably \ |
| 590 | * mapped and unmapped \ |
| 591 | */ \ |
| 592 | if (!pmap_valid_page(pmap_find_phys(kernel_pmap, addr)) || \ |
| 593 | dtrace_nofault_copy##bits(addr, &rval)) { \ |
| 594 | *flags |= CPU_DTRACE_BADADDR; \ |
| 595 | cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr; \ |
| 596 | return (0); \ |
| 597 | } \ |
| 598 | \ |
| 599 | *flags &= ~CPU_DTRACE_NOFAULT; \ |
| 600 | } \ |
| 601 | \ |
| 602 | return (rval); \ |
| 603 | } |
| 604 | #else /* all other architectures */ |
| 605 | #error Unknown Architecture |
| 606 | #endif |
| 607 | |
| 608 | #ifdef __LP64__ |
| 609 | #define dtrace_loadptr dtrace_load64 |
| 610 | #else |
| 611 | #define dtrace_loadptr dtrace_load32 |
| 612 | #endif |
| 613 | |
| 614 | #define DTRACE_DYNHASH_FREE 0 |
| 615 | #define DTRACE_DYNHASH_SINK 1 |
| 616 | #define DTRACE_DYNHASH_VALID 2 |
| 617 | |
| 618 | #define DTRACE_MATCH_FAIL -1 |
| 619 | #define DTRACE_MATCH_NEXT 0 |
| 620 | #define DTRACE_MATCH_DONE 1 |
| 621 | #define DTRACE_ANCHORED(probe) ((probe)->dtpr_func[0] != '\0') |
| 622 | #define DTRACE_STATE_ALIGN 64 |
| 623 | |
| 624 | #define DTRACE_FLAGS2FLT(flags) \ |
| 625 | (((flags) & CPU_DTRACE_BADADDR) ? DTRACEFLT_BADADDR : \ |
| 626 | ((flags) & CPU_DTRACE_ILLOP) ? DTRACEFLT_ILLOP : \ |
| 627 | ((flags) & CPU_DTRACE_DIVZERO) ? DTRACEFLT_DIVZERO : \ |
| 628 | ((flags) & CPU_DTRACE_KPRIV) ? DTRACEFLT_KPRIV : \ |
| 629 | ((flags) & CPU_DTRACE_UPRIV) ? DTRACEFLT_UPRIV : \ |
| 630 | ((flags) & CPU_DTRACE_TUPOFLOW) ? DTRACEFLT_TUPOFLOW : \ |
| 631 | ((flags) & CPU_DTRACE_BADALIGN) ? DTRACEFLT_BADALIGN : \ |
| 632 | ((flags) & CPU_DTRACE_NOSCRATCH) ? DTRACEFLT_NOSCRATCH : \ |
| 633 | ((flags) & CPU_DTRACE_BADSTACK) ? DTRACEFLT_BADSTACK : \ |
| 634 | DTRACEFLT_UNKNOWN) |
| 635 | |
| 636 | #define DTRACEACT_ISSTRING(act) \ |
| 637 | ((act)->dta_kind == DTRACEACT_DIFEXPR && \ |
| 638 | (act)->dta_difo->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) |
| 639 | |
| 640 | |
| 641 | static size_t dtrace_strlen(const char *, size_t); |
| 642 | static dtrace_probe_t *dtrace_probe_lookup_id(dtrace_id_t id); |
| 643 | static void dtrace_enabling_provide(dtrace_provider_t *); |
| 644 | static int dtrace_enabling_match(dtrace_enabling_t *, int *, dtrace_match_cond_t *cond); |
| 645 | static void dtrace_enabling_matchall_with_cond(dtrace_match_cond_t *cond); |
| 646 | static void dtrace_enabling_matchall(void); |
| 647 | static dtrace_state_t *dtrace_anon_grab(void); |
| 648 | static uint64_t dtrace_helper(int, dtrace_mstate_t *, |
| 649 | dtrace_state_t *, uint64_t, uint64_t); |
| 650 | static dtrace_helpers_t *dtrace_helpers_create(proc_t *); |
| 651 | static void dtrace_buffer_drop(dtrace_buffer_t *); |
| 652 | static intptr_t dtrace_buffer_reserve(dtrace_buffer_t *, size_t, size_t, |
| 653 | dtrace_state_t *, dtrace_mstate_t *); |
| 654 | static int dtrace_state_option(dtrace_state_t *, dtrace_optid_t, |
| 655 | dtrace_optval_t); |
| 656 | static int dtrace_ecb_create_enable(dtrace_probe_t *, void *, void *); |
| 657 | static void dtrace_helper_provider_destroy(dtrace_helper_provider_t *); |
| 658 | static int dtrace_canload_remains(uint64_t, size_t, size_t *, |
| 659 | dtrace_mstate_t *, dtrace_vstate_t *); |
| 660 | static int dtrace_canstore_remains(uint64_t, size_t, size_t *, |
| 661 | dtrace_mstate_t *, dtrace_vstate_t *); |
| 662 | |
| 663 | |
| 664 | /* |
| 665 | * DTrace sysctl handlers |
| 666 | * |
| 667 | * These declarations and functions are used for a deeper DTrace configuration. |
| 668 | * Most of them are not per-consumer basis and may impact the other DTrace |
| 669 | * consumers. Correctness may not be supported for all the variables, so you |
| 670 | * should be careful about what values you are using. |
| 671 | */ |
| 672 | |
| 673 | SYSCTL_DECL(_kern_dtrace); |
| 674 | SYSCTL_NODE(_kern, OID_AUTO, dtrace, CTLFLAG_RW | CTLFLAG_LOCKED, 0, "dtrace" ); |
| 675 | |
| 676 | static int |
| 677 | sysctl_dtrace_err_verbose SYSCTL_HANDLER_ARGS |
| 678 | { |
| 679 | #pragma unused(oidp, arg2) |
| 680 | int changed, error; |
| 681 | int value = *(int *) arg1; |
| 682 | |
| 683 | error = sysctl_io_number(req, bigValue: value, valueSize: sizeof(value), pValue: &value, changed: &changed); |
| 684 | if (error || !changed) |
| 685 | return (error); |
| 686 | |
| 687 | if (value != 0 && value != 1) |
| 688 | return (ERANGE); |
| 689 | |
| 690 | lck_mtx_lock(lck: &dtrace_lock); |
| 691 | dtrace_err_verbose = value; |
| 692 | lck_mtx_unlock(lck: &dtrace_lock); |
| 693 | |
| 694 | return (0); |
| 695 | } |
| 696 | |
| 697 | /* |
| 698 | * kern.dtrace.err_verbose |
| 699 | * |
| 700 | * Set DTrace verbosity when an error occured (0 = disabled, 1 = enabld). |
| 701 | * Errors are reported when a DIFO or a DOF has been rejected by the kernel. |
| 702 | */ |
| 703 | SYSCTL_PROC(_kern_dtrace, OID_AUTO, err_verbose, |
| 704 | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, |
| 705 | &dtrace_err_verbose, 0, |
| 706 | sysctl_dtrace_err_verbose, "I" , "dtrace error verbose" ); |
| 707 | |
| 708 | static int |
| 709 | sysctl_dtrace_buffer_memory_maxsize SYSCTL_HANDLER_ARGS |
| 710 | { |
| 711 | #pragma unused(oidp, arg2, req) |
| 712 | int changed, error; |
| 713 | uint64_t value = *(uint64_t *) arg1; |
| 714 | |
| 715 | error = sysctl_io_number(req, bigValue: value, valueSize: sizeof(value), pValue: &value, changed: &changed); |
| 716 | if (error || !changed) |
| 717 | return (error); |
| 718 | |
| 719 | if (value <= dtrace_buffer_memory_inuse) |
| 720 | return (ERANGE); |
| 721 | |
| 722 | lck_mtx_lock(lck: &dtrace_lock); |
| 723 | dtrace_buffer_memory_maxsize = value; |
| 724 | lck_mtx_unlock(lck: &dtrace_lock); |
| 725 | |
| 726 | return (0); |
| 727 | } |
| 728 | |
| 729 | /* |
| 730 | * kern.dtrace.buffer_memory_maxsize |
| 731 | * |
| 732 | * Set DTrace maximal size in bytes used by all the consumers' state buffers. By default |
| 733 | * the limit is PHYS_MEM / 3 for *all* consumers. Attempting to set a null, a negative value |
| 734 | * or a value <= to dtrace_buffer_memory_inuse will result in a failure. |
| 735 | */ |
| 736 | SYSCTL_PROC(_kern_dtrace, OID_AUTO, buffer_memory_maxsize, |
| 737 | CTLTYPE_QUAD | CTLFLAG_RW | CTLFLAG_LOCKED, |
| 738 | &dtrace_buffer_memory_maxsize, 0, |
| 739 | sysctl_dtrace_buffer_memory_maxsize, "Q" , "dtrace state buffer memory maxsize" ); |
| 740 | |
| 741 | /* |
| 742 | * kern.dtrace.buffer_memory_inuse |
| 743 | * |
| 744 | * Current state buffer memory used, in bytes, by all the DTrace consumers. |
| 745 | * This value is read-only. |
| 746 | */ |
| 747 | SYSCTL_QUAD(_kern_dtrace, OID_AUTO, buffer_memory_inuse, CTLFLAG_RD | CTLFLAG_LOCKED, |
| 748 | &dtrace_buffer_memory_inuse, "dtrace state buffer memory in-use" ); |
| 749 | |
| 750 | static int |
| 751 | sysctl_dtrace_difo_maxsize SYSCTL_HANDLER_ARGS |
| 752 | { |
| 753 | #pragma unused(oidp, arg2, req) |
| 754 | int changed, error; |
| 755 | size_t value = *(size_t*) arg1; |
| 756 | |
| 757 | error = sysctl_io_number(req, bigValue: value, valueSize: sizeof(value), pValue: &value, changed: &changed); |
| 758 | if (error || !changed) |
| 759 | return (error); |
| 760 | |
| 761 | if (value <= 0) |
| 762 | return (ERANGE); |
| 763 | |
| 764 | lck_mtx_lock(lck: &dtrace_lock); |
| 765 | dtrace_difo_maxsize = value; |
| 766 | lck_mtx_unlock(lck: &dtrace_lock); |
| 767 | |
| 768 | return (0); |
| 769 | } |
| 770 | |
| 771 | /* |
| 772 | * kern.dtrace.difo_maxsize |
| 773 | * |
| 774 | * Set the DIFO max size in bytes, check the definition of dtrace_difo_maxsize |
| 775 | * to get the default value. Attempting to set a null or negative size will |
| 776 | * result in a failure. |
| 777 | */ |
| 778 | SYSCTL_PROC(_kern_dtrace, OID_AUTO, difo_maxsize, |
| 779 | CTLTYPE_QUAD | CTLFLAG_RW | CTLFLAG_LOCKED, |
| 780 | &dtrace_difo_maxsize, 0, |
| 781 | sysctl_dtrace_difo_maxsize, "Q" , "dtrace difo maxsize" ); |
| 782 | |
| 783 | static int |
| 784 | sysctl_dtrace_dof_maxsize SYSCTL_HANDLER_ARGS |
| 785 | { |
| 786 | #pragma unused(oidp, arg2, req) |
| 787 | int changed, error; |
| 788 | dtrace_optval_t value = *(dtrace_optval_t *) arg1; |
| 789 | |
| 790 | error = sysctl_io_number(req, bigValue: value, valueSize: sizeof(value), pValue: &value, changed: &changed); |
| 791 | if (error || !changed) |
| 792 | return (error); |
| 793 | |
| 794 | if (value <= 0) |
| 795 | return (ERANGE); |
| 796 | |
| 797 | if (value >= dtrace_copy_maxsize()) |
| 798 | return (ERANGE); |
| 799 | |
| 800 | lck_mtx_lock(lck: &dtrace_lock); |
| 801 | dtrace_dof_maxsize = value; |
| 802 | lck_mtx_unlock(lck: &dtrace_lock); |
| 803 | |
| 804 | return (0); |
| 805 | } |
| 806 | |
| 807 | /* |
| 808 | * kern.dtrace.dof_maxsize |
| 809 | * |
| 810 | * Set the DOF max size in bytes, check the definition of dtrace_dof_maxsize to |
| 811 | * get the default value. Attempting to set a null or negative size will result |
| 812 | * in a failure. |
| 813 | */ |
| 814 | SYSCTL_PROC(_kern_dtrace, OID_AUTO, dof_maxsize, |
| 815 | CTLTYPE_QUAD | CTLFLAG_RW | CTLFLAG_LOCKED, |
| 816 | &dtrace_dof_maxsize, 0, |
| 817 | sysctl_dtrace_dof_maxsize, "Q" , "dtrace dof maxsize" ); |
| 818 | |
| 819 | static int |
| 820 | sysctl_dtrace_statvar_maxsize SYSCTL_HANDLER_ARGS |
| 821 | { |
| 822 | #pragma unused(oidp, arg2, req) |
| 823 | int changed, error; |
| 824 | dtrace_optval_t value = *(dtrace_optval_t*) arg1; |
| 825 | |
| 826 | error = sysctl_io_number(req, bigValue: value, valueSize: sizeof(value), pValue: &value, changed: &changed); |
| 827 | if (error || !changed) |
| 828 | return (error); |
| 829 | |
| 830 | if (value <= 0) |
| 831 | return (ERANGE); |
| 832 | if (value > dtrace_statvar_maxsize_max) |
| 833 | return (ERANGE); |
| 834 | |
| 835 | lck_mtx_lock(lck: &dtrace_lock); |
| 836 | dtrace_statvar_maxsize = value; |
| 837 | lck_mtx_unlock(lck: &dtrace_lock); |
| 838 | |
| 839 | return (0); |
| 840 | } |
| 841 | |
| 842 | /* |
| 843 | * kern.dtrace.global_maxsize |
| 844 | * |
| 845 | * Set the variable max size in bytes, check the definition of |
| 846 | * dtrace_statvar_maxsize to get the default value. Attempting to set a null, |
| 847 | * too high or negative size will result in a failure. |
| 848 | */ |
| 849 | SYSCTL_PROC(_kern_dtrace, OID_AUTO, global_maxsize, |
| 850 | CTLTYPE_QUAD | CTLFLAG_RW | CTLFLAG_LOCKED, |
| 851 | &dtrace_statvar_maxsize, 0, |
| 852 | sysctl_dtrace_statvar_maxsize, "Q" , "dtrace statvar maxsize" ); |
| 853 | |
| 854 | |
| 855 | /* |
| 856 | * kern.dtrace.provide_private_probes |
| 857 | * |
| 858 | * Set whether the providers must provide the private probes. This is |
| 859 | * kept as compatibility as they are always provided. |
| 860 | */ |
| 861 | SYSCTL_INT(_kern_dtrace, OID_AUTO, provide_private_probes, |
| 862 | CTLFLAG_RD | CTLFLAG_LOCKED, |
| 863 | (int *)NULL, 1, "provider must provide the private probes" ); |
| 864 | |
| 865 | /* |
| 866 | * kern.dtrace.dof_mode |
| 867 | * |
| 868 | * Returns the current DOF mode. |
| 869 | * This value is read-only. |
| 870 | */ |
| 871 | SYSCTL_INT(_kern_dtrace, OID_AUTO, dof_mode, CTLFLAG_RD | CTLFLAG_LOCKED, |
| 872 | &dtrace_dof_mode, 0, "dtrace dof mode" ); |
| 873 | |
| 874 | /* |
| 875 | * DTrace Probe Context Functions |
| 876 | * |
| 877 | * These functions are called from probe context. Because probe context is |
| 878 | * any context in which C may be called, arbitrarily locks may be held, |
| 879 | * interrupts may be disabled, we may be in arbitrary dispatched state, etc. |
| 880 | * As a result, functions called from probe context may only call other DTrace |
| 881 | * support functions -- they may not interact at all with the system at large. |
| 882 | * (Note that the ASSERT macro is made probe-context safe by redefining it in |
| 883 | * terms of dtrace_assfail(), a probe-context safe function.) If arbitrary |
| 884 | * loads are to be performed from probe context, they _must_ be in terms of |
| 885 | * the safe dtrace_load*() variants. |
| 886 | * |
| 887 | * Some functions in this block are not actually called from probe context; |
| 888 | * for these functions, there will be a comment above the function reading |
| 889 | * "Note: not called from probe context." |
| 890 | */ |
| 891 | |
| 892 | int |
| 893 | dtrace_assfail(const char *a, const char *f, int l) |
| 894 | { |
| 895 | panic("dtrace: assertion failed: %s, file: %s, line: %d" , a, f, l); |
| 896 | |
| 897 | /* |
| 898 | * We just need something here that even the most clever compiler |
| 899 | * cannot optimize away. |
| 900 | */ |
| 901 | return (a[(uintptr_t)f]); |
| 902 | } |
| 903 | |
| 904 | /* |
| 905 | * Atomically increment a specified error counter from probe context. |
| 906 | */ |
| 907 | static void |
| 908 | dtrace_error(uint32_t *counter) |
| 909 | { |
| 910 | /* |
| 911 | * Most counters stored to in probe context are per-CPU counters. |
| 912 | * However, there are some error conditions that are sufficiently |
| 913 | * arcane that they don't merit per-CPU storage. If these counters |
| 914 | * are incremented concurrently on different CPUs, scalability will be |
| 915 | * adversely affected -- but we don't expect them to be white-hot in a |
| 916 | * correctly constructed enabling... |
| 917 | */ |
| 918 | uint32_t oval, nval; |
| 919 | |
| 920 | do { |
| 921 | oval = *counter; |
| 922 | |
| 923 | if ((nval = oval + 1) == 0) { |
| 924 | /* |
| 925 | * If the counter would wrap, set it to 1 -- assuring |
| 926 | * that the counter is never zero when we have seen |
| 927 | * errors. (The counter must be 32-bits because we |
| 928 | * aren't guaranteed a 64-bit compare&swap operation.) |
| 929 | * To save this code both the infamy of being fingered |
| 930 | * by a priggish news story and the indignity of being |
| 931 | * the target of a neo-puritan witch trial, we're |
| 932 | * carefully avoiding any colorful description of the |
| 933 | * likelihood of this condition -- but suffice it to |
| 934 | * say that it is only slightly more likely than the |
| 935 | * overflow of predicate cache IDs, as discussed in |
| 936 | * dtrace_predicate_create(). |
| 937 | */ |
| 938 | nval = 1; |
| 939 | } |
| 940 | } while (dtrace_cas32(counter, oval, nval) != oval); |
| 941 | } |
| 942 | |
| 943 | /* |
| 944 | * Use the DTRACE_LOADFUNC macro to define functions for each of loading a |
| 945 | * uint8_t, a uint16_t, a uint32_t and a uint64_t. |
| 946 | */ |
| 947 | DTRACE_LOADFUNC(8) |
| 948 | DTRACE_LOADFUNC(16) |
| 949 | DTRACE_LOADFUNC(32) |
| 950 | DTRACE_LOADFUNC(64) |
| 951 | |
| 952 | static int |
| 953 | dtrace_inscratch(uintptr_t dest, size_t size, dtrace_mstate_t *mstate) |
| 954 | { |
| 955 | if (dest < mstate->dtms_scratch_base) |
| 956 | return (0); |
| 957 | |
| 958 | if (dest + size < dest) |
| 959 | return (0); |
| 960 | |
| 961 | if (dest + size > mstate->dtms_scratch_ptr) |
| 962 | return (0); |
| 963 | |
| 964 | return (1); |
| 965 | } |
| 966 | |
| 967 | static int |
| 968 | dtrace_canstore_statvar(uint64_t addr, size_t sz, size_t *remain, |
| 969 | dtrace_statvar_t **svars, int nsvars) |
| 970 | { |
| 971 | int i; |
| 972 | |
| 973 | size_t maxglobalsize, maxlocalsize; |
| 974 | |
| 975 | maxglobalsize = dtrace_statvar_maxsize + sizeof (uint64_t); |
| 976 | maxlocalsize = (maxglobalsize) * NCPU; |
| 977 | |
| 978 | if (nsvars == 0) |
| 979 | return (0); |
| 980 | |
| 981 | for (i = 0; i < nsvars; i++) { |
| 982 | dtrace_statvar_t *svar = svars[i]; |
| 983 | uint8_t scope; |
| 984 | size_t size; |
| 985 | |
| 986 | if (svar == NULL || (size = svar->dtsv_size) == 0) |
| 987 | continue; |
| 988 | |
| 989 | scope = svar->dtsv_var.dtdv_scope; |
| 990 | |
| 991 | /** |
| 992 | * We verify that our size is valid in the spirit of providing |
| 993 | * defense in depth: we want to prevent attackers from using |
| 994 | * DTrace to escalate an orthogonal kernel heap corruption bug |
| 995 | * into the ability to store to arbitrary locations in memory. |
| 996 | */ |
| 997 | VERIFY((scope == DIFV_SCOPE_GLOBAL && size <= maxglobalsize) || |
| 998 | (scope == DIFV_SCOPE_LOCAL && size <= maxlocalsize)); |
| 999 | |
| 1000 | if (DTRACE_INRANGE(addr, sz, svar->dtsv_data, svar->dtsv_size)) { |
| 1001 | DTRACE_RANGE_REMAIN(remain, addr, svar->dtsv_data, |
| 1002 | svar->dtsv_size); |
| 1003 | return (1); |
| 1004 | } |
| 1005 | } |
| 1006 | |
| 1007 | return (0); |
| 1008 | } |
| 1009 | |
| 1010 | /* |
| 1011 | * Check to see if the address is within a memory region to which a store may |
| 1012 | * be issued. This includes the DTrace scratch areas, and any DTrace variable |
| 1013 | * region. The caller of dtrace_canstore() is responsible for performing any |
| 1014 | * alignment checks that are needed before stores are actually executed. |
| 1015 | */ |
| 1016 | static int |
| 1017 | dtrace_canstore(uint64_t addr, size_t sz, dtrace_mstate_t *mstate, |
| 1018 | dtrace_vstate_t *vstate) |
| 1019 | { |
| 1020 | return (dtrace_canstore_remains(addr, sz, NULL, mstate, vstate)); |
| 1021 | } |
| 1022 | /* |
| 1023 | * Implementation of dtrace_canstore which communicates the upper bound of the |
| 1024 | * allowed memory region. |
| 1025 | */ |
| 1026 | static int |
| 1027 | dtrace_canstore_remains(uint64_t addr, size_t sz, size_t *remain, |
| 1028 | dtrace_mstate_t *mstate, dtrace_vstate_t *vstate) |
| 1029 | { |
| 1030 | /* |
| 1031 | * First, check to see if the address is in allocated scratch space... |
| 1032 | */ |
| 1033 | if (DTRACE_INRANGE(addr, sz, mstate->dtms_scratch_base, |
| 1034 | mstate->dtms_scratch_ptr - mstate->dtms_scratch_base)) { |
| 1035 | DTRACE_RANGE_REMAIN(remain, addr, mstate->dtms_scratch_base, |
| 1036 | mstate->dtms_scratch_ptr - mstate->dtms_scratch_base); |
| 1037 | return (1); |
| 1038 | } |
| 1039 | /* |
| 1040 | * Now check to see if it's a dynamic variable. This check will pick |
| 1041 | * up both thread-local variables and any global dynamically-allocated |
| 1042 | * variables. |
| 1043 | */ |
| 1044 | if (DTRACE_INRANGE(addr, sz, (uintptr_t)vstate->dtvs_dynvars.dtds_base, |
| 1045 | vstate->dtvs_dynvars.dtds_size)) { |
| 1046 | dtrace_dstate_t *dstate = &vstate->dtvs_dynvars; |
| 1047 | uintptr_t base = (uintptr_t)dstate->dtds_base + |
| 1048 | (dstate->dtds_hashsize * sizeof (dtrace_dynhash_t)); |
| 1049 | uintptr_t chunkoffs; |
| 1050 | dtrace_dynvar_t *dvar; |
| 1051 | |
| 1052 | /* |
| 1053 | * Before we assume that we can store here, we need to make |
| 1054 | * sure that it isn't in our metadata -- storing to our |
| 1055 | * dynamic variable metadata would corrupt our state. For |
| 1056 | * the range to not include any dynamic variable metadata, |
| 1057 | * it must: |
| 1058 | * |
| 1059 | * (1) Start above the hash table that is at the base of |
| 1060 | * the dynamic variable space |
| 1061 | * |
| 1062 | * (2) Have a starting chunk offset that is beyond the |
| 1063 | * dtrace_dynvar_t that is at the base of every chunk |
| 1064 | * |
| 1065 | * (3) Not span a chunk boundary |
| 1066 | * |
| 1067 | * (4) Not be in the tuple space of a dynamic variable |
| 1068 | * |
| 1069 | */ |
| 1070 | if (addr < base) |
| 1071 | return (0); |
| 1072 | |
| 1073 | chunkoffs = (addr - base) % dstate->dtds_chunksize; |
| 1074 | |
| 1075 | if (chunkoffs < sizeof (dtrace_dynvar_t)) |
| 1076 | return (0); |
| 1077 | |
| 1078 | if (chunkoffs + sz > dstate->dtds_chunksize) |
| 1079 | return (0); |
| 1080 | |
| 1081 | dvar = (dtrace_dynvar_t *)((uintptr_t)addr - chunkoffs); |
| 1082 | |
| 1083 | if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) |
| 1084 | return (0); |
| 1085 | |
| 1086 | if (chunkoffs < sizeof (dtrace_dynvar_t) + |
| 1087 | ((dvar->dtdv_tuple.dtt_nkeys - 1) * sizeof (dtrace_key_t))) |
| 1088 | return (0); |
| 1089 | |
| 1090 | return (1); |
| 1091 | } |
| 1092 | |
| 1093 | /* |
| 1094 | * Finally, check the static local and global variables. These checks |
| 1095 | * take the longest, so we perform them last. |
| 1096 | */ |
| 1097 | if (dtrace_canstore_statvar(addr, sz, remain, |
| 1098 | svars: vstate->dtvs_locals, nsvars: vstate->dtvs_nlocals)) |
| 1099 | return (1); |
| 1100 | |
| 1101 | if (dtrace_canstore_statvar(addr, sz, remain, |
| 1102 | svars: vstate->dtvs_globals, nsvars: vstate->dtvs_nglobals)) |
| 1103 | return (1); |
| 1104 | |
| 1105 | return (0); |
| 1106 | } |
| 1107 | |
| 1108 | |
| 1109 | /* |
| 1110 | * Convenience routine to check to see if the address is within a memory |
| 1111 | * region in which a load may be issued given the user's privilege level; |
| 1112 | * if not, it sets the appropriate error flags and loads 'addr' into the |
| 1113 | * illegal value slot. |
| 1114 | * |
| 1115 | * DTrace subroutines (DIF_SUBR_*) should use this helper to implement |
| 1116 | * appropriate memory access protection. |
| 1117 | */ |
| 1118 | int |
| 1119 | dtrace_canload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate, |
| 1120 | dtrace_vstate_t *vstate) |
| 1121 | { |
| 1122 | return (dtrace_canload_remains(addr, sz, NULL, mstate, vstate)); |
| 1123 | } |
| 1124 | |
| 1125 | /* |
| 1126 | * Implementation of dtrace_canload which communicates the upper bound of the |
| 1127 | * allowed memory region. |
| 1128 | */ |
| 1129 | static int |
| 1130 | dtrace_canload_remains(uint64_t addr, size_t sz, size_t *remain, |
| 1131 | dtrace_mstate_t *mstate, dtrace_vstate_t *vstate) |
| 1132 | { |
| 1133 | volatile uint64_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval; |
| 1134 | |
| 1135 | /* |
| 1136 | * If we hold the privilege to read from kernel memory, then |
| 1137 | * everything is readable. |
| 1138 | */ |
| 1139 | if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) { |
| 1140 | DTRACE_RANGE_REMAIN(remain, addr, addr, sz); |
| 1141 | return (1); |
| 1142 | } |
| 1143 | |
| 1144 | /* |
| 1145 | * You can obviously read that which you can store. |
| 1146 | */ |
| 1147 | if (dtrace_canstore_remains(addr, sz, remain, mstate, vstate)) |
| 1148 | return (1); |
| 1149 | |
| 1150 | /* |
| 1151 | * We're allowed to read from our own string table. |
| 1152 | */ |
| 1153 | if (DTRACE_INRANGE(addr, sz, (uintptr_t)mstate->dtms_difo->dtdo_strtab, |
| 1154 | mstate->dtms_difo->dtdo_strlen)) { |
| 1155 | DTRACE_RANGE_REMAIN(remain, addr, |
| 1156 | mstate->dtms_difo->dtdo_strtab, |
| 1157 | mstate->dtms_difo->dtdo_strlen); |
| 1158 | return (1); |
| 1159 | } |
| 1160 | |
| 1161 | DTRACE_CPUFLAG_SET(CPU_DTRACE_KPRIV); |
| 1162 | *illval = addr; |
| 1163 | return (0); |
| 1164 | } |
| 1165 | |
| 1166 | /* |
| 1167 | * Convenience routine to check to see if a given string is within a memory |
| 1168 | * region in which a load may be issued given the user's privilege level; |
| 1169 | * this exists so that we don't need to issue unnecessary dtrace_strlen() |
| 1170 | * calls in the event that the user has all privileges. |
| 1171 | */ |
| 1172 | static int |
| 1173 | dtrace_strcanload(uint64_t addr, size_t sz, size_t *remain, |
| 1174 | dtrace_mstate_t *mstate, dtrace_vstate_t *vstate) |
| 1175 | { |
| 1176 | size_t rsize = 0; |
| 1177 | |
| 1178 | /* |
| 1179 | * If we hold the privilege to read from kernel memory, then |
| 1180 | * everything is readable. |
| 1181 | */ |
| 1182 | if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) { |
| 1183 | DTRACE_RANGE_REMAIN(remain, addr, addr, sz); |
| 1184 | return (1); |
| 1185 | } |
| 1186 | |
| 1187 | /* |
| 1188 | * Even if the caller is uninterested in querying the remaining valid |
| 1189 | * range, it is required to ensure that the access is allowed. |
| 1190 | */ |
| 1191 | if (remain == NULL) { |
| 1192 | remain = &rsize; |
| 1193 | } |
| 1194 | if (dtrace_canload_remains(addr, sz: 0, remain, mstate, vstate)) { |
| 1195 | size_t strsz; |
| 1196 | /* |
| 1197 | * Perform the strlen after determining the length of the |
| 1198 | * memory region which is accessible. This prevents timing |
| 1199 | * information from being used to find NULs in memory which is |
| 1200 | * not accessible to the caller. |
| 1201 | */ |
| 1202 | strsz = 1 + dtrace_strlen((char *)(uintptr_t)addr, |
| 1203 | MIN(sz, *remain)); |
| 1204 | if (strsz <= *remain) { |
| 1205 | return (1); |
| 1206 | } |
| 1207 | } |
| 1208 | |
| 1209 | return (0); |
| 1210 | } |
| 1211 | |
| 1212 | /* |
| 1213 | * Convenience routine to check to see if a given variable is within a memory |
| 1214 | * region in which a load may be issued given the user's privilege level. |
| 1215 | */ |
| 1216 | static int |
| 1217 | dtrace_vcanload(void *src, dtrace_diftype_t *type, size_t *remain, |
| 1218 | dtrace_mstate_t *mstate, dtrace_vstate_t *vstate) |
| 1219 | { |
| 1220 | size_t sz; |
| 1221 | ASSERT(type->dtdt_flags & DIF_TF_BYREF); |
| 1222 | |
| 1223 | /* |
| 1224 | * Calculate the max size before performing any checks since even |
| 1225 | * DTRACE_ACCESS_KERNEL-credentialed callers expect that this function |
| 1226 | * return the max length via 'remain'. |
| 1227 | */ |
| 1228 | if (type->dtdt_kind == DIF_TYPE_STRING) { |
| 1229 | dtrace_state_t *state = vstate->dtvs_state; |
| 1230 | |
| 1231 | if (state != NULL) { |
| 1232 | sz = state->dts_options[DTRACEOPT_STRSIZE]; |
| 1233 | } else { |
| 1234 | /* |
| 1235 | * In helper context, we have a NULL state; fall back |
| 1236 | * to using the system-wide default for the string size |
| 1237 | * in this case. |
| 1238 | */ |
| 1239 | sz = dtrace_strsize_default; |
| 1240 | } |
| 1241 | } else { |
| 1242 | sz = type->dtdt_size; |
| 1243 | } |
| 1244 | |
| 1245 | /* |
| 1246 | * If we hold the privilege to read from kernel memory, then |
| 1247 | * everything is readable. |
| 1248 | */ |
| 1249 | if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) { |
| 1250 | DTRACE_RANGE_REMAIN(remain, (uintptr_t)src, src, sz); |
| 1251 | return (1); |
| 1252 | } |
| 1253 | |
| 1254 | if (type->dtdt_kind == DIF_TYPE_STRING) { |
| 1255 | return (dtrace_strcanload(addr: (uintptr_t)src, sz, remain, mstate, |
| 1256 | vstate)); |
| 1257 | } |
| 1258 | return (dtrace_canload_remains(addr: (uintptr_t)src, sz, remain, mstate, |
| 1259 | vstate)); |
| 1260 | } |
| 1261 | |
| 1262 | #define isdigit(ch) ((ch) >= '0' && (ch) <= '9') |
| 1263 | #define islower(ch) ((ch) >= 'a' && (ch) <= 'z') |
| 1264 | #define isspace(ch) (((ch) == ' ') || ((ch) == '\r') || ((ch) == '\n') || \ |
| 1265 | ((ch) == '\t') || ((ch) == '\f')) |
| 1266 | #define isxdigit(ch) (isdigit(ch) || ((ch) >= 'a' && (ch) <= 'f') || \ |
| 1267 | ((ch) >= 'A' && (ch) <= 'F')) |
| 1268 | #define lisalnum(x) \ |
| 1269 | (isdigit(x) || ((x) >= 'a' && (x) <= 'z') || ((x) >= 'A' && (x) <= 'Z')) |
| 1270 | |
| 1271 | #define DIGIT(x) \ |
| 1272 | (isdigit(x) ? (x) - '0' : islower(x) ? (x) + 10 - 'a' : (x) + 10 - 'A') |
| 1273 | |
| 1274 | /* |
| 1275 | * Convert a string to a signed integer using safe loads. |
| 1276 | */ |
| 1277 | static int64_t |
| 1278 | dtrace_strtoll(char *input, int base, size_t limit) |
| 1279 | { |
| 1280 | uintptr_t pos = (uintptr_t)input; |
| 1281 | int64_t val = 0; |
| 1282 | int x; |
| 1283 | boolean_t neg = B_FALSE; |
| 1284 | char c, cc, ccc; |
| 1285 | uintptr_t end = pos + limit; |
| 1286 | |
| 1287 | /* |
| 1288 | * Consume any whitespace preceding digits. |
| 1289 | */ |
| 1290 | while ((c = dtrace_load8(addr: pos)) == ' ' || c == '\t') |
| 1291 | pos++; |
| 1292 | |
| 1293 | /* |
| 1294 | * Handle an explicit sign if one is present. |
| 1295 | */ |
| 1296 | if (c == '-' || c == '+') { |
| 1297 | if (c == '-') |
| 1298 | neg = B_TRUE; |
| 1299 | c = dtrace_load8(addr: ++pos); |
| 1300 | } |
| 1301 | |
| 1302 | /* |
| 1303 | * Check for an explicit hexadecimal prefix ("0x" or "0X") and skip it |
| 1304 | * if present. |
| 1305 | */ |
| 1306 | if (base == 16 && c == '0' && ((cc = dtrace_load8(addr: pos + 1)) == 'x' || |
| 1307 | cc == 'X') && isxdigit(ccc = dtrace_load8(pos + 2))) { |
| 1308 | pos += 2; |
| 1309 | c = ccc; |
| 1310 | } |
| 1311 | |
| 1312 | /* |
| 1313 | * Read in contiguous digits until the first non-digit character. |
| 1314 | */ |
| 1315 | for (; pos < end && c != '\0' && lisalnum(c) && (x = DIGIT(c)) < base; |
| 1316 | c = dtrace_load8(addr: ++pos)) |
| 1317 | val = val * base + x; |
| 1318 | |
| 1319 | return (neg ? -val : val); |
| 1320 | } |
| 1321 | |
| 1322 | |
| 1323 | /* |
| 1324 | * Compare two strings using safe loads. |
| 1325 | */ |
| 1326 | static int |
| 1327 | dtrace_strncmp(const char *s1, const char *s2, size_t limit) |
| 1328 | { |
| 1329 | uint8_t c1, c2; |
| 1330 | volatile uint16_t *flags; |
| 1331 | |
| 1332 | if (s1 == s2 || limit == 0) |
| 1333 | return (0); |
| 1334 | |
| 1335 | flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags; |
| 1336 | |
| 1337 | do { |
| 1338 | if (s1 == NULL) { |
| 1339 | c1 = '\0'; |
| 1340 | } else { |
| 1341 | c1 = dtrace_load8(addr: (uintptr_t)s1++); |
| 1342 | } |
| 1343 | |
| 1344 | if (s2 == NULL) { |
| 1345 | c2 = '\0'; |
| 1346 | } else { |
| 1347 | c2 = dtrace_load8(addr: (uintptr_t)s2++); |
| 1348 | } |
| 1349 | |
| 1350 | if (c1 != c2) |
| 1351 | return (c1 - c2); |
| 1352 | } while (--limit && c1 != '\0' && !(*flags & CPU_DTRACE_FAULT)); |
| 1353 | |
| 1354 | return (0); |
| 1355 | } |
| 1356 | |
| 1357 | /* |
| 1358 | * Compute strlen(s) for a string using safe memory accesses. The additional |
| 1359 | * len parameter is used to specify a maximum length to ensure completion. |
| 1360 | */ |
| 1361 | static size_t |
| 1362 | dtrace_strlen(const char *s, size_t lim) |
| 1363 | { |
| 1364 | uint_t len; |
| 1365 | |
| 1366 | for (len = 0; len != lim; len++) { |
| 1367 | if (dtrace_load8(addr: (uintptr_t)s++) == '\0') |
| 1368 | break; |
| 1369 | } |
| 1370 | |
| 1371 | return (len); |
| 1372 | } |
| 1373 | |
| 1374 | /* |
| 1375 | * Check if an address falls within a toxic region. |
| 1376 | */ |
| 1377 | static int |
| 1378 | dtrace_istoxic(uintptr_t kaddr, size_t size) |
| 1379 | { |
| 1380 | uintptr_t taddr, tsize; |
| 1381 | int i; |
| 1382 | |
| 1383 | for (i = 0; i < dtrace_toxranges; i++) { |
| 1384 | taddr = dtrace_toxrange[i].dtt_base; |
| 1385 | tsize = dtrace_toxrange[i].dtt_limit - taddr; |
| 1386 | |
| 1387 | if (kaddr - taddr < tsize) { |
| 1388 | DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); |
| 1389 | cpu_core[CPU->cpu_id].cpuc_dtrace_illval = kaddr; |
| 1390 | return (1); |
| 1391 | } |
| 1392 | |
| 1393 | if (taddr - kaddr < size) { |
| 1394 | DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); |
| 1395 | cpu_core[CPU->cpu_id].cpuc_dtrace_illval = taddr; |
| 1396 | return (1); |
| 1397 | } |
| 1398 | } |
| 1399 | |
| 1400 | return (0); |
| 1401 | } |
| 1402 | |
| 1403 | /* |
| 1404 | * Copy src to dst using safe memory accesses. The src is assumed to be unsafe |
| 1405 | * memory specified by the DIF program. The dst is assumed to be safe memory |
| 1406 | * that we can store to directly because it is managed by DTrace. As with |
| 1407 | * standard bcopy, overlapping copies are handled properly. |
| 1408 | */ |
| 1409 | static void |
| 1410 | dtrace_bcopy(const void *src, void *dst, size_t len) |
| 1411 | { |
| 1412 | if (len != 0) { |
| 1413 | uint8_t *s1 = dst; |
| 1414 | const uint8_t *s2 = src; |
| 1415 | |
| 1416 | if (s1 <= s2) { |
| 1417 | do { |
| 1418 | *s1++ = dtrace_load8(addr: (uintptr_t)s2++); |
| 1419 | } while (--len != 0); |
| 1420 | } else { |
| 1421 | s2 += len; |
| 1422 | s1 += len; |
| 1423 | |
| 1424 | do { |
| 1425 | *--s1 = dtrace_load8(addr: (uintptr_t)--s2); |
| 1426 | } while (--len != 0); |
| 1427 | } |
| 1428 | } |
| 1429 | } |
| 1430 | |
| 1431 | /* |
| 1432 | * Copy src to dst using safe memory accesses, up to either the specified |
| 1433 | * length, or the point that a nul byte is encountered. The src is assumed to |
| 1434 | * be unsafe memory specified by the DIF program. The dst is assumed to be |
| 1435 | * safe memory that we can store to directly because it is managed by DTrace. |
| 1436 | * Unlike dtrace_bcopy(), overlapping regions are not handled. |
| 1437 | */ |
| 1438 | static void |
| 1439 | dtrace_strcpy(const void *src, void *dst, size_t len) |
| 1440 | { |
| 1441 | if (len != 0) { |
| 1442 | uint8_t *s1 = dst, c; |
| 1443 | const uint8_t *s2 = src; |
| 1444 | |
| 1445 | do { |
| 1446 | *s1++ = c = dtrace_load8(addr: (uintptr_t)s2++); |
| 1447 | } while (--len != 0 && c != '\0'); |
| 1448 | } |
| 1449 | } |
| 1450 | |
| 1451 | /* |
| 1452 | * Copy src to dst, deriving the size and type from the specified (BYREF) |
| 1453 | * variable type. The src is assumed to be unsafe memory specified by the DIF |
| 1454 | * program. The dst is assumed to be DTrace variable memory that is of the |
| 1455 | * specified type; we assume that we can store to directly. |
| 1456 | */ |
| 1457 | static void |
| 1458 | dtrace_vcopy(void *src, void *dst, dtrace_diftype_t *type, size_t limit) |
| 1459 | { |
| 1460 | ASSERT(type->dtdt_flags & DIF_TF_BYREF); |
| 1461 | |
| 1462 | if (type->dtdt_kind == DIF_TYPE_STRING) { |
| 1463 | dtrace_strcpy(src, dst, MIN(type->dtdt_size, limit)); |
| 1464 | } else { |
| 1465 | dtrace_bcopy(src, dst, MIN(type->dtdt_size, limit)); |
| 1466 | } |
| 1467 | } |
| 1468 | |
| 1469 | /* |
| 1470 | * Compare s1 to s2 using safe memory accesses. The s1 data is assumed to be |
| 1471 | * unsafe memory specified by the DIF program. The s2 data is assumed to be |
| 1472 | * safe memory that we can access directly because it is managed by DTrace. |
| 1473 | */ |
| 1474 | static int |
| 1475 | dtrace_bcmp(const void *s1, const void *s2, size_t len) |
| 1476 | { |
| 1477 | volatile uint16_t *flags; |
| 1478 | |
| 1479 | flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags; |
| 1480 | |
| 1481 | if (s1 == s2) |
| 1482 | return (0); |
| 1483 | |
| 1484 | if (s1 == NULL || s2 == NULL) |
| 1485 | return (1); |
| 1486 | |
| 1487 | if (s1 != s2 && len != 0) { |
| 1488 | const uint8_t *ps1 = s1; |
| 1489 | const uint8_t *ps2 = s2; |
| 1490 | |
| 1491 | do { |
| 1492 | if (dtrace_load8(addr: (uintptr_t)ps1++) != *ps2++) |
| 1493 | return (1); |
| 1494 | } while (--len != 0 && !(*flags & CPU_DTRACE_FAULT)); |
| 1495 | } |
| 1496 | return (0); |
| 1497 | } |
| 1498 | |
| 1499 | /* |
| 1500 | * Zero the specified region using a simple byte-by-byte loop. Note that this |
| 1501 | * is for safe DTrace-managed memory only. |
| 1502 | */ |
| 1503 | static void |
| 1504 | dtrace_bzero(void *dst, size_t len) |
| 1505 | { |
| 1506 | uchar_t *cp; |
| 1507 | |
| 1508 | for (cp = dst; len != 0; len--) |
| 1509 | *cp++ = 0; |
| 1510 | } |
| 1511 | |
| 1512 | static void |
| 1513 | dtrace_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum) |
| 1514 | { |
| 1515 | uint64_t result[2]; |
| 1516 | |
| 1517 | result[0] = addend1[0] + addend2[0]; |
| 1518 | result[1] = addend1[1] + addend2[1] + |
| 1519 | (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0); |
| 1520 | |
| 1521 | sum[0] = result[0]; |
| 1522 | sum[1] = result[1]; |
| 1523 | } |
| 1524 | |
| 1525 | /* |
| 1526 | * Shift the 128-bit value in a by b. If b is positive, shift left. |
| 1527 | * If b is negative, shift right. |
| 1528 | */ |
| 1529 | static void |
| 1530 | dtrace_shift_128(uint64_t *a, int b) |
| 1531 | { |
| 1532 | uint64_t mask; |
| 1533 | |
| 1534 | if (b == 0) |
| 1535 | return; |
| 1536 | |
| 1537 | if (b < 0) { |
| 1538 | b = -b; |
| 1539 | if (b >= 64) { |
| 1540 | a[0] = a[1] >> (b - 64); |
| 1541 | a[1] = 0; |
| 1542 | } else { |
| 1543 | a[0] >>= b; |
| 1544 | mask = 1LL << (64 - b); |
| 1545 | mask -= 1; |
| 1546 | a[0] |= ((a[1] & mask) << (64 - b)); |
| 1547 | a[1] >>= b; |
| 1548 | } |
| 1549 | } else { |
| 1550 | if (b >= 64) { |
| 1551 | a[1] = a[0] << (b - 64); |
| 1552 | a[0] = 0; |
| 1553 | } else { |
| 1554 | a[1] <<= b; |
| 1555 | mask = a[0] >> (64 - b); |
| 1556 | a[1] |= mask; |
| 1557 | a[0] <<= b; |
| 1558 | } |
| 1559 | } |
| 1560 | } |
| 1561 | |
| 1562 | /* |
| 1563 | * The basic idea is to break the 2 64-bit values into 4 32-bit values, |
| 1564 | * use native multiplication on those, and then re-combine into the |
| 1565 | * resulting 128-bit value. |
| 1566 | * |
| 1567 | * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) = |
| 1568 | * hi1 * hi2 << 64 + |
| 1569 | * hi1 * lo2 << 32 + |
| 1570 | * hi2 * lo1 << 32 + |
| 1571 | * lo1 * lo2 |
| 1572 | */ |
| 1573 | static void |
| 1574 | dtrace_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product) |
| 1575 | { |
| 1576 | uint64_t hi1, hi2, lo1, lo2; |
| 1577 | uint64_t tmp[2]; |
| 1578 | |
| 1579 | hi1 = factor1 >> 32; |
| 1580 | hi2 = factor2 >> 32; |
| 1581 | |
| 1582 | lo1 = factor1 & DT_MASK_LO; |
| 1583 | lo2 = factor2 & DT_MASK_LO; |
| 1584 | |
| 1585 | product[0] = lo1 * lo2; |
| 1586 | product[1] = hi1 * hi2; |
| 1587 | |
| 1588 | tmp[0] = hi1 * lo2; |
| 1589 | tmp[1] = 0; |
| 1590 | dtrace_shift_128(a: tmp, b: 32); |
| 1591 | dtrace_add_128(addend1: product, addend2: tmp, sum: product); |
| 1592 | |
| 1593 | tmp[0] = hi2 * lo1; |
| 1594 | tmp[1] = 0; |
| 1595 | dtrace_shift_128(a: tmp, b: 32); |
| 1596 | dtrace_add_128(addend1: product, addend2: tmp, sum: product); |
| 1597 | } |
| 1598 | |
| 1599 | /* |
| 1600 | * This privilege check should be used by actions and subroutines to |
| 1601 | * verify that the user credentials of the process that enabled the |
| 1602 | * invoking ECB match the target credentials |
| 1603 | */ |
| 1604 | static int |
| 1605 | dtrace_priv_proc_common_user(dtrace_state_t *state) |
| 1606 | { |
| 1607 | cred_t *cr, *s_cr = state->dts_cred.dcr_cred; |
| 1608 | |
| 1609 | /* |
| 1610 | * We should always have a non-NULL state cred here, since if cred |
| 1611 | * is null (anonymous tracing), we fast-path bypass this routine. |
| 1612 | */ |
| 1613 | ASSERT(s_cr != NULL); |
| 1614 | |
| 1615 | if ((cr = dtrace_CRED()) != NULL && |
| 1616 | posix_cred_get(cred: s_cr)->cr_uid == posix_cred_get(cred: cr)->cr_uid && |
| 1617 | posix_cred_get(cred: s_cr)->cr_uid == posix_cred_get(cred: cr)->cr_ruid && |
| 1618 | posix_cred_get(cred: s_cr)->cr_uid == posix_cred_get(cred: cr)->cr_suid && |
| 1619 | posix_cred_get(cred: s_cr)->cr_gid == posix_cred_get(cred: cr)->cr_gid && |
| 1620 | posix_cred_get(cred: s_cr)->cr_gid == posix_cred_get(cred: cr)->cr_rgid && |
| 1621 | posix_cred_get(cred: s_cr)->cr_gid == posix_cred_get(cred: cr)->cr_sgid) |
| 1622 | return (1); |
| 1623 | |
| 1624 | return (0); |
| 1625 | } |
| 1626 | |
| 1627 | /* |
| 1628 | * This privilege check should be used by actions and subroutines to |
| 1629 | * verify that the zone of the process that enabled the invoking ECB |
| 1630 | * matches the target credentials |
| 1631 | */ |
| 1632 | static int |
| 1633 | dtrace_priv_proc_common_zone(dtrace_state_t *state) |
| 1634 | { |
| 1635 | cred_t *cr, *s_cr = state->dts_cred.dcr_cred; |
| 1636 | #pragma unused(cr, s_cr, state) /* __APPLE__ */ |
| 1637 | |
| 1638 | /* |
| 1639 | * We should always have a non-NULL state cred here, since if cred |
| 1640 | * is null (anonymous tracing), we fast-path bypass this routine. |
| 1641 | */ |
| 1642 | ASSERT(s_cr != NULL); |
| 1643 | |
| 1644 | return 1; /* APPLE NOTE: Darwin doesn't do zones. */ |
| 1645 | } |
| 1646 | |
| 1647 | /* |
| 1648 | * This privilege check should be used by actions and subroutines to |
| 1649 | * verify that the process has not setuid or changed credentials. |
| 1650 | */ |
| 1651 | static int |
| 1652 | dtrace_priv_proc_common_nocd(void) |
| 1653 | { |
| 1654 | return 1; /* Darwin omits "No Core Dump" flag. */ |
| 1655 | } |
| 1656 | |
| 1657 | static int |
| 1658 | dtrace_priv_proc_destructive(dtrace_state_t *state) |
| 1659 | { |
| 1660 | int action = state->dts_cred.dcr_action; |
| 1661 | |
| 1662 | if (ISSET(current_proc()->p_lflag, P_LNOATTACH)) |
| 1663 | goto bad; |
| 1664 | |
| 1665 | if (dtrace_is_restricted() && !dtrace_can_attach_to_proc(current_proc())) |
| 1666 | goto bad; |
| 1667 | |
| 1668 | if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE) == 0) && |
| 1669 | dtrace_priv_proc_common_zone(state) == 0) |
| 1670 | goto bad; |
| 1671 | |
| 1672 | if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER) == 0) && |
| 1673 | dtrace_priv_proc_common_user(state) == 0) |
| 1674 | goto bad; |
| 1675 | |
| 1676 | if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG) == 0) && |
| 1677 | dtrace_priv_proc_common_nocd() == 0) |
| 1678 | goto bad; |
| 1679 | |
| 1680 | return (1); |
| 1681 | |
| 1682 | bad: |
| 1683 | cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; |
| 1684 | |
| 1685 | return (0); |
| 1686 | } |
| 1687 | |
| 1688 | static int |
| 1689 | dtrace_priv_proc_control(dtrace_state_t *state) |
| 1690 | { |
| 1691 | if (ISSET(current_proc()->p_lflag, P_LNOATTACH)) |
| 1692 | goto bad; |
| 1693 | |
| 1694 | if (dtrace_is_restricted() && !dtrace_can_attach_to_proc(current_proc())) |
| 1695 | goto bad; |
| 1696 | |
| 1697 | if (state->dts_cred.dcr_action & DTRACE_CRA_PROC_CONTROL) |
| 1698 | return (1); |
| 1699 | |
| 1700 | if (dtrace_priv_proc_common_zone(state) && |
| 1701 | dtrace_priv_proc_common_user(state) && |
| 1702 | dtrace_priv_proc_common_nocd()) |
| 1703 | return (1); |
| 1704 | |
| 1705 | bad: |
| 1706 | cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; |
| 1707 | |
| 1708 | return (0); |
| 1709 | } |
| 1710 | |
| 1711 | static int |
| 1712 | dtrace_priv_proc(dtrace_state_t *state) |
| 1713 | { |
| 1714 | if (ISSET(current_proc()->p_lflag, P_LNOATTACH)) |
| 1715 | goto bad; |
| 1716 | |
| 1717 | if (dtrace_is_restricted() && !dtrace_are_restrictions_relaxed() && !dtrace_can_attach_to_proc(current_proc())) |
| 1718 | goto bad; |
| 1719 | |
| 1720 | if (state->dts_cred.dcr_action & DTRACE_CRA_PROC) |
| 1721 | return (1); |
| 1722 | |
| 1723 | bad: |
| 1724 | cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; |
| 1725 | |
| 1726 | return (0); |
| 1727 | } |
| 1728 | |
| 1729 | /* |
| 1730 | * The P_LNOATTACH check is an Apple specific check. |
| 1731 | * We need a version of dtrace_priv_proc() that omits |
| 1732 | * that check for PID and EXECNAME accesses |
| 1733 | */ |
| 1734 | static int |
| 1735 | dtrace_priv_proc_relaxed(dtrace_state_t *state) |
| 1736 | { |
| 1737 | |
| 1738 | if (state->dts_cred.dcr_action & DTRACE_CRA_PROC) |
| 1739 | return (1); |
| 1740 | |
| 1741 | cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV; |
| 1742 | |
| 1743 | return (0); |
| 1744 | } |
| 1745 | |
| 1746 | static int |
| 1747 | dtrace_priv_kernel(dtrace_state_t *state) |
| 1748 | { |
| 1749 | if (dtrace_is_restricted() && !dtrace_are_restrictions_relaxed()) |
| 1750 | goto bad; |
| 1751 | |
| 1752 | if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL) |
| 1753 | return (1); |
| 1754 | |
| 1755 | bad: |
| 1756 | cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV; |
| 1757 | |
| 1758 | return (0); |
| 1759 | } |
| 1760 | |
| 1761 | static int |
| 1762 | dtrace_priv_kernel_destructive(dtrace_state_t *state) |
| 1763 | { |
| 1764 | if (dtrace_is_restricted()) |
| 1765 | goto bad; |
| 1766 | |
| 1767 | if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL_DESTRUCTIVE) |
| 1768 | return (1); |
| 1769 | |
| 1770 | bad: |
| 1771 | cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV; |
| 1772 | |
| 1773 | return (0); |
| 1774 | } |
| 1775 | |
| 1776 | /* |
| 1777 | * Note: not called from probe context. This function is called |
| 1778 | * asynchronously (and at a regular interval) from outside of probe context to |
| 1779 | * clean the dirty dynamic variable lists on all CPUs. Dynamic variable |
| 1780 | * cleaning is explained in detail in <sys/dtrace_impl.h>. |
| 1781 | */ |
| 1782 | static void |
| 1783 | dtrace_dynvar_clean(dtrace_dstate_t *dstate) |
| 1784 | { |
| 1785 | dtrace_dynvar_t *dirty; |
| 1786 | int work = 0; |
| 1787 | |
| 1788 | zpercpu_foreach(dcpu, dstate->dtds_percpu) { |
| 1789 | ASSERT(dcpu->dtdsc_rinsing == NULL); |
| 1790 | |
| 1791 | /* |
| 1792 | * If the dirty list is NULL, there is no dirty work to do. |
| 1793 | */ |
| 1794 | if (dcpu->dtdsc_dirty == NULL) |
| 1795 | continue; |
| 1796 | |
| 1797 | /* |
| 1798 | * If the clean list is non-NULL, then we're not going to do |
| 1799 | * any work for this CPU -- it means that there has not been |
| 1800 | * a dtrace_dynvar() allocation on this CPU (or from this CPU) |
| 1801 | * since the last time we cleaned house. |
| 1802 | */ |
| 1803 | if (dcpu->dtdsc_clean != NULL) |
| 1804 | continue; |
| 1805 | |
| 1806 | work = 1; |
| 1807 | |
| 1808 | /* |
| 1809 | * Atomically move the dirty list aside. |
| 1810 | */ |
| 1811 | do { |
| 1812 | dirty = dcpu->dtdsc_dirty; |
| 1813 | |
| 1814 | /* |
| 1815 | * Before we zap the dirty list, set the rinsing list. |
| 1816 | * (This allows for a potential assertion in |
| 1817 | * dtrace_dynvar(): if a free dynamic variable appears |
| 1818 | * on a hash chain, either the dirty list or the |
| 1819 | * rinsing list for some CPU must be non-NULL.) |
| 1820 | */ |
| 1821 | dcpu->dtdsc_rinsing = dirty; |
| 1822 | dtrace_membar_producer(); |
| 1823 | } while (dtrace_casptr(&dcpu->dtdsc_dirty, |
| 1824 | dirty, NULL) != dirty); |
| 1825 | } |
| 1826 | |
| 1827 | if (!work) { |
| 1828 | /* |
| 1829 | * We have no work to do; we can simply return. |
| 1830 | */ |
| 1831 | return; |
| 1832 | } |
| 1833 | |
| 1834 | dtrace_sync(); |
| 1835 | |
| 1836 | zpercpu_foreach(dcpu, dstate->dtds_percpu) { |
| 1837 | if (dcpu->dtdsc_rinsing == NULL) |
| 1838 | continue; |
| 1839 | |
| 1840 | /* |
| 1841 | * We are now guaranteed that no hash chain contains a pointer |
| 1842 | * into this dirty list; we can make it clean. |
| 1843 | */ |
| 1844 | ASSERT(dcpu->dtdsc_clean == NULL); |
| 1845 | dcpu->dtdsc_clean = dcpu->dtdsc_rinsing; |
| 1846 | dcpu->dtdsc_rinsing = NULL; |
| 1847 | } |
| 1848 | |
| 1849 | /* |
| 1850 | * Before we actually set the state to be DTRACE_DSTATE_CLEAN, make |
| 1851 | * sure that all CPUs have seen all of the dtdsc_clean pointers. |
| 1852 | * This prevents a race whereby a CPU incorrectly decides that |
| 1853 | * the state should be something other than DTRACE_DSTATE_CLEAN |
| 1854 | * after dtrace_dynvar_clean() has completed. |
| 1855 | */ |
| 1856 | dtrace_sync(); |
| 1857 | |
| 1858 | dstate->dtds_state = DTRACE_DSTATE_CLEAN; |
| 1859 | } |
| 1860 | |
| 1861 | /* |
| 1862 | * Depending on the value of the op parameter, this function looks-up, |
| 1863 | * allocates or deallocates an arbitrarily-keyed dynamic variable. If an |
| 1864 | * allocation is requested, this function will return a pointer to a |
| 1865 | * dtrace_dynvar_t corresponding to the allocated variable -- or NULL if no |
| 1866 | * variable can be allocated. If NULL is returned, the appropriate counter |
| 1867 | * will be incremented. |
| 1868 | */ |
| 1869 | static dtrace_dynvar_t * |
| 1870 | dtrace_dynvar(dtrace_dstate_t *dstate, uint_t nkeys, |
| 1871 | dtrace_key_t *key, size_t dsize, dtrace_dynvar_op_t op, |
| 1872 | dtrace_mstate_t *mstate, dtrace_vstate_t *vstate) |
| 1873 | { |
| 1874 | uint64_t hashval = DTRACE_DYNHASH_VALID; |
| 1875 | dtrace_dynhash_t *hash = dstate->dtds_hash; |
| 1876 | dtrace_dynvar_t *free, *new_free, *next, *dvar, *start, *prev = NULL; |
| 1877 | processorid_t me = CPU->cpu_id, cpu = me; |
| 1878 | dtrace_dstate_percpu_t *dcpu = zpercpu_get_cpu(dstate->dtds_percpu, me); |
| 1879 | size_t bucket, ksize; |
| 1880 | size_t chunksize = dstate->dtds_chunksize; |
| 1881 | uintptr_t kdata, lock, nstate; |
| 1882 | uint_t i; |
| 1883 | |
| 1884 | ASSERT(nkeys != 0); |
| 1885 | |
| 1886 | /* |
| 1887 | * Hash the key. As with aggregations, we use Jenkins' "One-at-a-time" |
| 1888 | * algorithm. For the by-value portions, we perform the algorithm in |
| 1889 | * 16-bit chunks (as opposed to 8-bit chunks). This speeds things up a |
| 1890 | * bit, and seems to have only a minute effect on distribution. For |
| 1891 | * the by-reference data, we perform "One-at-a-time" iterating (safely) |
| 1892 | * over each referenced byte. It's painful to do this, but it's much |
| 1893 | * better than pathological hash distribution. The efficacy of the |
| 1894 | * hashing algorithm (and a comparison with other algorithms) may be |
| 1895 | * found by running the ::dtrace_dynstat MDB dcmd. |
| 1896 | */ |
| 1897 | for (i = 0; i < nkeys; i++) { |
| 1898 | if (key[i].dttk_size == 0) { |
| 1899 | uint64_t val = key[i].dttk_value; |
| 1900 | |
| 1901 | hashval += (val >> 48) & 0xffff; |
| 1902 | hashval += (hashval << 10); |
| 1903 | hashval ^= (hashval >> 6); |
| 1904 | |
| 1905 | hashval += (val >> 32) & 0xffff; |
| 1906 | hashval += (hashval << 10); |
| 1907 | hashval ^= (hashval >> 6); |
| 1908 | |
| 1909 | hashval += (val >> 16) & 0xffff; |
| 1910 | hashval += (hashval << 10); |
| 1911 | hashval ^= (hashval >> 6); |
| 1912 | |
| 1913 | hashval += val & 0xffff; |
| 1914 | hashval += (hashval << 10); |
| 1915 | hashval ^= (hashval >> 6); |
| 1916 | } else { |
| 1917 | /* |
| 1918 | * This is incredibly painful, but it beats the hell |
| 1919 | * out of the alternative. |
| 1920 | */ |
| 1921 | uint64_t j, size = key[i].dttk_size; |
| 1922 | uintptr_t base = (uintptr_t)key[i].dttk_value; |
| 1923 | |
| 1924 | if (!dtrace_canload(addr: base, sz: size, mstate, vstate)) |
| 1925 | break; |
| 1926 | |
| 1927 | for (j = 0; j < size; j++) { |
| 1928 | hashval += dtrace_load8(addr: base + j); |
| 1929 | hashval += (hashval << 10); |
| 1930 | hashval ^= (hashval >> 6); |
| 1931 | } |
| 1932 | } |
| 1933 | } |
| 1934 | |
| 1935 | if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT)) |
| 1936 | return (NULL); |
| 1937 | |
| 1938 | hashval += (hashval << 3); |
| 1939 | hashval ^= (hashval >> 11); |
| 1940 | hashval += (hashval << 15); |
| 1941 | |
| 1942 | /* |
| 1943 | * There is a remote chance (ideally, 1 in 2^31) that our hashval |
| 1944 | * comes out to be one of our two sentinel hash values. If this |
| 1945 | * actually happens, we set the hashval to be a value known to be a |
| 1946 | * non-sentinel value. |
| 1947 | */ |
| 1948 | if (hashval == DTRACE_DYNHASH_FREE || hashval == DTRACE_DYNHASH_SINK) |
| 1949 | hashval = DTRACE_DYNHASH_VALID; |
| 1950 | |
| 1951 | /* |
| 1952 | * Yes, it's painful to do a divide here. If the cycle count becomes |
| 1953 | * important here, tricks can be pulled to reduce it. (However, it's |
| 1954 | * critical that hash collisions be kept to an absolute minimum; |
| 1955 | * they're much more painful than a divide.) It's better to have a |
| 1956 | * solution that generates few collisions and still keeps things |
| 1957 | * relatively simple. |
| 1958 | */ |
| 1959 | bucket = hashval % dstate->dtds_hashsize; |
| 1960 | |
| 1961 | if (op == DTRACE_DYNVAR_DEALLOC) { |
| 1962 | volatile uintptr_t *lockp = &hash[bucket].dtdh_lock; |
| 1963 | |
| 1964 | for (;;) { |
| 1965 | while ((lock = *lockp) & 1) |
| 1966 | continue; |
| 1967 | |
| 1968 | if (dtrace_casptr((void *)(uintptr_t)lockp, |
| 1969 | (void *)lock, (void *)(lock + 1)) == (void *)lock) |
| 1970 | break; |
| 1971 | } |
| 1972 | |
| 1973 | dtrace_membar_producer(); |
| 1974 | } |
| 1975 | |
| 1976 | top: |
| 1977 | prev = NULL; |
| 1978 | lock = hash[bucket].dtdh_lock; |
| 1979 | |
| 1980 | dtrace_membar_consumer(); |
| 1981 | |
| 1982 | start = hash[bucket].dtdh_chain; |
| 1983 | ASSERT(start != NULL && (start->dtdv_hashval == DTRACE_DYNHASH_SINK || |
| 1984 | start->dtdv_hashval != DTRACE_DYNHASH_FREE || |
| 1985 | op != DTRACE_DYNVAR_DEALLOC)); |
| 1986 | |
| 1987 | for (dvar = start; dvar != NULL; dvar = dvar->dtdv_next) { |
| 1988 | dtrace_tuple_t *dtuple = &dvar->dtdv_tuple; |
| 1989 | dtrace_key_t *dkey = &dtuple->dtt_key[0]; |
| 1990 | |
| 1991 | if (dvar->dtdv_hashval != hashval) { |
| 1992 | if (dvar->dtdv_hashval == DTRACE_DYNHASH_SINK) { |
| 1993 | /* |
| 1994 | * We've reached the sink, and therefore the |
| 1995 | * end of the hash chain; we can kick out of |
| 1996 | * the loop knowing that we have seen a valid |
| 1997 | * snapshot of state. |
| 1998 | */ |
| 1999 | ASSERT(dvar->dtdv_next == NULL); |
| 2000 | ASSERT(dvar == &dtrace_dynhash_sink); |
| 2001 | break; |
| 2002 | } |
| 2003 | |
| 2004 | if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) { |
| 2005 | /* |
| 2006 | * We've gone off the rails: somewhere along |
| 2007 | * the line, one of the members of this hash |
| 2008 | * chain was deleted. Note that we could also |
| 2009 | * detect this by simply letting this loop run |
| 2010 | * to completion, as we would eventually hit |
| 2011 | * the end of the dirty list. However, we |
| 2012 | * want to avoid running the length of the |
| 2013 | * dirty list unnecessarily (it might be quite |
| 2014 | * long), so we catch this as early as |
| 2015 | * possible by detecting the hash marker. In |
| 2016 | * this case, we simply set dvar to NULL and |
| 2017 | * break; the conditional after the loop will |
| 2018 | * send us back to top. |
| 2019 | */ |
| 2020 | dvar = NULL; |
| 2021 | break; |
| 2022 | } |
| 2023 | |
| 2024 | goto next; |
| 2025 | } |
| 2026 | |
| 2027 | if (dtuple->dtt_nkeys != nkeys) |
| 2028 | goto next; |
| 2029 | |
| 2030 | for (i = 0; i < nkeys; i++, dkey++) { |
| 2031 | if (dkey->dttk_size != key[i].dttk_size) |
| 2032 | goto next; /* size or type mismatch */ |
| 2033 | |
| 2034 | if (dkey->dttk_size != 0) { |
| 2035 | if (dtrace_bcmp( |
| 2036 | s1: (void *)(uintptr_t)key[i].dttk_value, |
| 2037 | s2: (void *)(uintptr_t)dkey->dttk_value, |
| 2038 | len: dkey->dttk_size)) |
| 2039 | goto next; |
| 2040 | } else { |
| 2041 | if (dkey->dttk_value != key[i].dttk_value) |
| 2042 | goto next; |
| 2043 | } |
| 2044 | } |
| 2045 | |
| 2046 | if (op != DTRACE_DYNVAR_DEALLOC) |
| 2047 | return (dvar); |
| 2048 | |
| 2049 | ASSERT(dvar->dtdv_next == NULL || |
| 2050 | dvar->dtdv_next->dtdv_hashval != DTRACE_DYNHASH_FREE); |
| 2051 | |
| 2052 | if (prev != NULL) { |
| 2053 | ASSERT(hash[bucket].dtdh_chain != dvar); |
| 2054 | ASSERT(start != dvar); |
| 2055 | ASSERT(prev->dtdv_next == dvar); |
| 2056 | prev->dtdv_next = dvar->dtdv_next; |
| 2057 | } else { |
| 2058 | if (dtrace_casptr(&hash[bucket].dtdh_chain, |
| 2059 | start, dvar->dtdv_next) != start) { |
| 2060 | /* |
| 2061 | * We have failed to atomically swing the |
| 2062 | * hash table head pointer, presumably because |
| 2063 | * of a conflicting allocation on another CPU. |
| 2064 | * We need to reread the hash chain and try |
| 2065 | * again. |
| 2066 | */ |
| 2067 | goto top; |
| 2068 | } |
| 2069 | } |
| 2070 | |
| 2071 | dtrace_membar_producer(); |
| 2072 | |
| 2073 | /* |
| 2074 | * Now set the hash value to indicate that it's free. |
| 2075 | */ |
| 2076 | ASSERT(hash[bucket].dtdh_chain != dvar); |
| 2077 | dvar->dtdv_hashval = DTRACE_DYNHASH_FREE; |
| 2078 | |
| 2079 | dtrace_membar_producer(); |
| 2080 | |
| 2081 | /* |
| 2082 | * Set the next pointer to point at the dirty list, and |
| 2083 | * atomically swing the dirty pointer to the newly freed dvar. |
| 2084 | */ |
| 2085 | do { |
| 2086 | next = dcpu->dtdsc_dirty; |
| 2087 | dvar->dtdv_next = next; |
| 2088 | } while (dtrace_casptr(&dcpu->dtdsc_dirty, next, dvar) != next); |
| 2089 | |
| 2090 | /* |
| 2091 | * Finally, unlock this hash bucket. |
| 2092 | */ |
| 2093 | ASSERT(hash[bucket].dtdh_lock == lock); |
| 2094 | ASSERT(lock & 1); |
| 2095 | hash[bucket].dtdh_lock++; |
| 2096 | |
| 2097 | return (NULL); |
| 2098 | next: |
| 2099 | prev = dvar; |
| 2100 | continue; |
| 2101 | } |
| 2102 | |
| 2103 | if (dvar == NULL) { |
| 2104 | /* |
| 2105 | * If dvar is NULL, it is because we went off the rails: |
| 2106 | * one of the elements that we traversed in the hash chain |
| 2107 | * was deleted while we were traversing it. In this case, |
| 2108 | * we assert that we aren't doing a dealloc (deallocs lock |
| 2109 | * the hash bucket to prevent themselves from racing with |
| 2110 | * one another), and retry the hash chain traversal. |
| 2111 | */ |
| 2112 | ASSERT(op != DTRACE_DYNVAR_DEALLOC); |
| 2113 | goto top; |
| 2114 | } |
| 2115 | |
| 2116 | if (op != DTRACE_DYNVAR_ALLOC) { |
| 2117 | /* |
| 2118 | * If we are not to allocate a new variable, we want to |
| 2119 | * return NULL now. Before we return, check that the value |
| 2120 | * of the lock word hasn't changed. If it has, we may have |
| 2121 | * seen an inconsistent snapshot. |
| 2122 | */ |
| 2123 | if (op == DTRACE_DYNVAR_NOALLOC) { |
| 2124 | if (hash[bucket].dtdh_lock != lock) |
| 2125 | goto top; |
| 2126 | } else { |
| 2127 | ASSERT(op == DTRACE_DYNVAR_DEALLOC); |
| 2128 | ASSERT(hash[bucket].dtdh_lock == lock); |
| 2129 | ASSERT(lock & 1); |
| 2130 | hash[bucket].dtdh_lock++; |
| 2131 | } |
| 2132 | |
| 2133 | return (NULL); |
| 2134 | } |
| 2135 | |
| 2136 | /* |
| 2137 | * We need to allocate a new dynamic variable. The size we need is the |
| 2138 | * size of dtrace_dynvar plus the size of nkeys dtrace_key_t's plus the |
| 2139 | * size of any auxiliary key data (rounded up to 8-byte alignment) plus |
| 2140 | * the size of any referred-to data (dsize). We then round the final |
| 2141 | * size up to the chunksize for allocation. |
| 2142 | */ |
| 2143 | for (ksize = 0, i = 0; i < nkeys; i++) |
| 2144 | ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t)); |
| 2145 | |
| 2146 | /* |
| 2147 | * This should be pretty much impossible, but could happen if, say, |
| 2148 | * strange DIF specified the tuple. Ideally, this should be an |
| 2149 | * assertion and not an error condition -- but that requires that the |
| 2150 | * chunksize calculation in dtrace_difo_chunksize() be absolutely |
| 2151 | * bullet-proof. (That is, it must not be able to be fooled by |
| 2152 | * malicious DIF.) Given the lack of backwards branches in DIF, |
| 2153 | * solving this would presumably not amount to solving the Halting |
| 2154 | * Problem -- but it still seems awfully hard. |
| 2155 | */ |
| 2156 | if (sizeof (dtrace_dynvar_t) + sizeof (dtrace_key_t) * (nkeys - 1) + |
| 2157 | ksize + dsize > chunksize) { |
| 2158 | dcpu->dtdsc_drops++; |
| 2159 | return (NULL); |
| 2160 | } |
| 2161 | |
| 2162 | nstate = DTRACE_DSTATE_EMPTY; |
| 2163 | |
| 2164 | do { |
| 2165 | retry: |
| 2166 | free = dcpu->dtdsc_free; |
| 2167 | |
| 2168 | if (free == NULL) { |
| 2169 | dtrace_dynvar_t *clean = dcpu->dtdsc_clean; |
| 2170 | void *rval; |
| 2171 | |
| 2172 | if (clean == NULL) { |
| 2173 | /* |
| 2174 | * We're out of dynamic variable space on |
| 2175 | * this CPU. Unless we have tried all CPUs, |
| 2176 | * we'll try to allocate from a different |
| 2177 | * CPU. |
| 2178 | */ |
| 2179 | switch (dstate->dtds_state) { |
| 2180 | case DTRACE_DSTATE_CLEAN: { |
| 2181 | void *sp = &dstate->dtds_state; |
| 2182 | |
| 2183 | if (++cpu >= (int)NCPU) |
| 2184 | cpu = 0; |
| 2185 | |
| 2186 | if (dcpu->dtdsc_dirty != NULL && |
| 2187 | nstate == DTRACE_DSTATE_EMPTY) |
| 2188 | nstate = DTRACE_DSTATE_DIRTY; |
| 2189 | |
| 2190 | if (dcpu->dtdsc_rinsing != NULL) |
| 2191 | nstate = DTRACE_DSTATE_RINSING; |
| 2192 | |
| 2193 | dcpu = zpercpu_get_cpu(dstate->dtds_percpu, cpu); |
| 2194 | |
| 2195 | if (cpu != me) |
| 2196 | goto retry; |
| 2197 | |
| 2198 | (void) dtrace_cas32(sp, |
| 2199 | DTRACE_DSTATE_CLEAN, nstate); |
| 2200 | |
| 2201 | /* |
| 2202 | * To increment the correct bean |
| 2203 | * counter, take another lap. |
| 2204 | */ |
| 2205 | goto retry; |
| 2206 | } |
| 2207 | |
| 2208 | case DTRACE_DSTATE_DIRTY: |
| 2209 | dcpu->dtdsc_dirty_drops++; |
| 2210 | break; |
| 2211 | |
| 2212 | case DTRACE_DSTATE_RINSING: |
| 2213 | dcpu->dtdsc_rinsing_drops++; |
| 2214 | break; |
| 2215 | |
| 2216 | case DTRACE_DSTATE_EMPTY: |
| 2217 | dcpu->dtdsc_drops++; |
| 2218 | break; |
| 2219 | } |
| 2220 | |
| 2221 | DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP); |
| 2222 | return (NULL); |
| 2223 | } |
| 2224 | |
| 2225 | /* |
| 2226 | * The clean list appears to be non-empty. We want to |
| 2227 | * move the clean list to the free list; we start by |
| 2228 | * moving the clean pointer aside. |
| 2229 | */ |
| 2230 | if (dtrace_casptr(&dcpu->dtdsc_clean, |
| 2231 | clean, NULL) != clean) { |
| 2232 | /* |
| 2233 | * We are in one of two situations: |
| 2234 | * |
| 2235 | * (a) The clean list was switched to the |
| 2236 | * free list by another CPU. |
| 2237 | * |
| 2238 | * (b) The clean list was added to by the |
| 2239 | * cleansing cyclic. |
| 2240 | * |
| 2241 | * In either of these situations, we can |
| 2242 | * just reattempt the free list allocation. |
| 2243 | */ |
| 2244 | goto retry; |
| 2245 | } |
| 2246 | |
| 2247 | ASSERT(clean->dtdv_hashval == DTRACE_DYNHASH_FREE); |
| 2248 | |
| 2249 | /* |
| 2250 | * Now we'll move the clean list to the free list. |
| 2251 | * It's impossible for this to fail: the only way |
| 2252 | * the free list can be updated is through this |
| 2253 | * code path, and only one CPU can own the clean list. |
| 2254 | * Thus, it would only be possible for this to fail if |
| 2255 | * this code were racing with dtrace_dynvar_clean(). |
| 2256 | * (That is, if dtrace_dynvar_clean() updated the clean |
| 2257 | * list, and we ended up racing to update the free |
| 2258 | * list.) This race is prevented by the dtrace_sync() |
| 2259 | * in dtrace_dynvar_clean() -- which flushes the |
| 2260 | * owners of the clean lists out before resetting |
| 2261 | * the clean lists. |
| 2262 | */ |
| 2263 | rval = dtrace_casptr(&dcpu->dtdsc_free, NULL, clean); |
| 2264 | ASSERT(rval == NULL); |
| 2265 | goto retry; |
| 2266 | } |
| 2267 | |
| 2268 | dvar = free; |
| 2269 | new_free = dvar->dtdv_next; |
| 2270 | } while (dtrace_casptr(&dcpu->dtdsc_free, free, new_free) != free); |
| 2271 | |
| 2272 | /* |
| 2273 | * We have now allocated a new chunk. We copy the tuple keys into the |
| 2274 | * tuple array and copy any referenced key data into the data space |
| 2275 | * following the tuple array. As we do this, we relocate dttk_value |
| 2276 | * in the final tuple to point to the key data address in the chunk. |
| 2277 | */ |
| 2278 | kdata = (uintptr_t)&dvar->dtdv_tuple.dtt_key[nkeys]; |
| 2279 | dvar->dtdv_data = (void *)(kdata + ksize); |
| 2280 | dvar->dtdv_tuple.dtt_nkeys = nkeys; |
| 2281 | |
| 2282 | for (i = 0; i < nkeys; i++) { |
| 2283 | dtrace_key_t *dkey = &dvar->dtdv_tuple.dtt_key[i]; |
| 2284 | size_t kesize = key[i].dttk_size; |
| 2285 | |
| 2286 | if (kesize != 0) { |
| 2287 | dtrace_bcopy( |
| 2288 | src: (const void *)(uintptr_t)key[i].dttk_value, |
| 2289 | dst: (void *)kdata, len: kesize); |
| 2290 | dkey->dttk_value = kdata; |
| 2291 | kdata += P2ROUNDUP(kesize, sizeof (uint64_t)); |
| 2292 | } else { |
| 2293 | dkey->dttk_value = key[i].dttk_value; |
| 2294 | } |
| 2295 | |
| 2296 | dkey->dttk_size = kesize; |
| 2297 | } |
| 2298 | |
| 2299 | ASSERT(dvar->dtdv_hashval == DTRACE_DYNHASH_FREE); |
| 2300 | dvar->dtdv_hashval = hashval; |
| 2301 | dvar->dtdv_next = start; |
| 2302 | |
| 2303 | if (dtrace_casptr(&hash[bucket].dtdh_chain, start, dvar) == start) |
| 2304 | return (dvar); |
| 2305 | |
| 2306 | /* |
| 2307 | * The cas has failed. Either another CPU is adding an element to |
| 2308 | * this hash chain, or another CPU is deleting an element from this |
| 2309 | * hash chain. The simplest way to deal with both of these cases |
| 2310 | * (though not necessarily the most efficient) is to free our |
| 2311 | * allocated block and tail-call ourselves. Note that the free is |
| 2312 | * to the dirty list and _not_ to the free list. This is to prevent |
| 2313 | * races with allocators, above. |
| 2314 | */ |
| 2315 | dvar->dtdv_hashval = DTRACE_DYNHASH_FREE; |
| 2316 | |
| 2317 | dtrace_membar_producer(); |
| 2318 | |
| 2319 | do { |
| 2320 | free = dcpu->dtdsc_dirty; |
| 2321 | dvar->dtdv_next = free; |
| 2322 | } while (dtrace_casptr(&dcpu->dtdsc_dirty, free, dvar) != free); |
| 2323 | |
| 2324 | return (dtrace_dynvar(dstate, nkeys, key, dsize, op, mstate, vstate)); |
| 2325 | } |
| 2326 | |
| 2327 | /*ARGSUSED*/ |
| 2328 | static void |
| 2329 | dtrace_aggregate_min(uint64_t *oval, uint64_t nval, uint64_t arg) |
| 2330 | { |
| 2331 | #pragma unused(arg) /* __APPLE__ */ |
| 2332 | if ((int64_t)nval < (int64_t)*oval) |
| 2333 | *oval = nval; |
| 2334 | } |
| 2335 | |
| 2336 | /*ARGSUSED*/ |
| 2337 | static void |
| 2338 | dtrace_aggregate_max(uint64_t *oval, uint64_t nval, uint64_t arg) |
| 2339 | { |
| 2340 | #pragma unused(arg) /* __APPLE__ */ |
| 2341 | if ((int64_t)nval > (int64_t)*oval) |
| 2342 | *oval = nval; |
| 2343 | } |
| 2344 | |
| 2345 | static void |
| 2346 | dtrace_aggregate_quantize(uint64_t *quanta, uint64_t nval, uint64_t incr) |
| 2347 | { |
| 2348 | int i, zero = DTRACE_QUANTIZE_ZEROBUCKET; |
| 2349 | int64_t val = (int64_t)nval; |
| 2350 | |
| 2351 | if (val < 0) { |
| 2352 | for (i = 0; i < zero; i++) { |
| 2353 | if (val <= DTRACE_QUANTIZE_BUCKETVAL(i)) { |
| 2354 | quanta[i] += incr; |
| 2355 | return; |
| 2356 | } |
| 2357 | } |
| 2358 | } else { |
| 2359 | for (i = zero + 1; i < DTRACE_QUANTIZE_NBUCKETS; i++) { |
| 2360 | if (val < DTRACE_QUANTIZE_BUCKETVAL(i)) { |
| 2361 | quanta[i - 1] += incr; |
| 2362 | return; |
| 2363 | } |
| 2364 | } |
| 2365 | |
| 2366 | quanta[DTRACE_QUANTIZE_NBUCKETS - 1] += incr; |
| 2367 | return; |
| 2368 | } |
| 2369 | |
| 2370 | ASSERT(0); |
| 2371 | } |
| 2372 | |
| 2373 | static void |
| 2374 | dtrace_aggregate_lquantize(uint64_t *lquanta, uint64_t nval, uint64_t incr) |
| 2375 | { |
| 2376 | uint64_t arg = *lquanta++; |
| 2377 | int32_t base = DTRACE_LQUANTIZE_BASE(arg); |
| 2378 | uint16_t step = DTRACE_LQUANTIZE_STEP(arg); |
| 2379 | uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg); |
| 2380 | int32_t val = (int32_t)nval, level; |
| 2381 | |
| 2382 | ASSERT(step != 0); |
| 2383 | ASSERT(levels != 0); |
| 2384 | |
| 2385 | if (val < base) { |
| 2386 | /* |
| 2387 | * This is an underflow. |
| 2388 | */ |
| 2389 | lquanta[0] += incr; |
| 2390 | return; |
| 2391 | } |
| 2392 | |
| 2393 | level = (val - base) / step; |
| 2394 | |
| 2395 | if (level < levels) { |
| 2396 | lquanta[level + 1] += incr; |
| 2397 | return; |
| 2398 | } |
| 2399 | |
| 2400 | /* |
| 2401 | * This is an overflow. |
| 2402 | */ |
| 2403 | lquanta[levels + 1] += incr; |
| 2404 | } |
| 2405 | |
| 2406 | static int |
| 2407 | dtrace_aggregate_llquantize_bucket(int16_t factor, int16_t low, int16_t high, |
| 2408 | int16_t nsteps, int64_t value) |
| 2409 | { |
| 2410 | int64_t this = 1, last, next; |
| 2411 | int base = 1, order; |
| 2412 | |
| 2413 | for (order = 0; order < low; ++order) |
| 2414 | this *= factor; |
| 2415 | |
| 2416 | /* |
| 2417 | * If our value is less than our factor taken to the power of the |
| 2418 | * low order of magnitude, it goes into the zeroth bucket. |
| 2419 | */ |
| 2420 | if (value < this) |
| 2421 | return 0; |
| 2422 | else |
| 2423 | last = this; |
| 2424 | |
| 2425 | for (this *= factor; order <= high; ++order) { |
| 2426 | int nbuckets = this > nsteps ? nsteps : this; |
| 2427 | |
| 2428 | /* |
| 2429 | * We should not generally get log/linear quantizations |
| 2430 | * with a high magnitude that allows 64-bits to |
| 2431 | * overflow, but we nonetheless protect against this |
| 2432 | * by explicitly checking for overflow, and clamping |
| 2433 | * our value accordingly. |
| 2434 | */ |
| 2435 | next = this * factor; |
| 2436 | if (next < this) { |
| 2437 | value = this - 1; |
| 2438 | } |
| 2439 | |
| 2440 | /* |
| 2441 | * If our value lies within this order of magnitude, |
| 2442 | * determine its position by taking the offset within |
| 2443 | * the order of magnitude, dividing by the bucket |
| 2444 | * width, and adding to our (accumulated) base. |
| 2445 | */ |
| 2446 | if (value < this) { |
| 2447 | return (base + (value - last) / (this / nbuckets)); |
| 2448 | } |
| 2449 | |
| 2450 | base += nbuckets - (nbuckets / factor); |
| 2451 | last = this; |
| 2452 | this = next; |
| 2453 | } |
| 2454 | |
| 2455 | /* |
| 2456 | * Our value is greater than or equal to our factor taken to the |
| 2457 | * power of one plus the high magnitude -- return the top bucket. |
| 2458 | */ |
| 2459 | return base; |
| 2460 | } |
| 2461 | |
| 2462 | static void |
| 2463 | dtrace_aggregate_llquantize(uint64_t *llquanta, uint64_t nval, uint64_t incr) |
| 2464 | { |
| 2465 | uint64_t arg = *llquanta++; |
| 2466 | uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(arg); |
| 2467 | uint16_t low = DTRACE_LLQUANTIZE_LOW(arg); |
| 2468 | uint16_t high = DTRACE_LLQUANTIZE_HIGH(arg); |
| 2469 | uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(arg); |
| 2470 | |
| 2471 | llquanta[dtrace_aggregate_llquantize_bucket(factor, low, high, nsteps, value: nval)] += incr; |
| 2472 | } |
| 2473 | |
| 2474 | /*ARGSUSED*/ |
| 2475 | static void |
| 2476 | dtrace_aggregate_avg(uint64_t *data, uint64_t nval, uint64_t arg) |
| 2477 | { |
| 2478 | #pragma unused(arg) /* __APPLE__ */ |
| 2479 | data[0]++; |
| 2480 | data[1] += nval; |
| 2481 | } |
| 2482 | |
| 2483 | /*ARGSUSED*/ |
| 2484 | static void |
| 2485 | dtrace_aggregate_stddev(uint64_t *data, uint64_t nval, uint64_t arg) |
| 2486 | { |
| 2487 | #pragma unused(arg) /* __APPLE__ */ |
| 2488 | int64_t snval = (int64_t)nval; |
| 2489 | uint64_t tmp[2]; |
| 2490 | |
| 2491 | data[0]++; |
| 2492 | data[1] += nval; |
| 2493 | |
| 2494 | /* |
| 2495 | * What we want to say here is: |
| 2496 | * |
| 2497 | * data[2] += nval * nval; |
| 2498 | * |
| 2499 | * But given that nval is 64-bit, we could easily overflow, so |
| 2500 | * we do this as 128-bit arithmetic. |
| 2501 | */ |
| 2502 | if (snval < 0) |
| 2503 | snval = -snval; |
| 2504 | |
| 2505 | dtrace_multiply_128(factor1: (uint64_t)snval, factor2: (uint64_t)snval, product: tmp); |
| 2506 | dtrace_add_128(addend1: data + 2, addend2: tmp, sum: data + 2); |
| 2507 | } |
| 2508 | |
| 2509 | /*ARGSUSED*/ |
| 2510 | static void |
| 2511 | dtrace_aggregate_count(uint64_t *oval, uint64_t nval, uint64_t arg) |
| 2512 | { |
| 2513 | #pragma unused(nval, arg) /* __APPLE__ */ |
| 2514 | *oval = *oval + 1; |
| 2515 | } |
| 2516 | |
| 2517 | /*ARGSUSED*/ |
| 2518 | static void |
| 2519 | dtrace_aggregate_sum(uint64_t *oval, uint64_t nval, uint64_t arg) |
| 2520 | { |
| 2521 | #pragma unused(arg) /* __APPLE__ */ |
| 2522 | *oval += nval; |
| 2523 | } |
| 2524 | |
| 2525 | /* |
| 2526 | * Aggregate given the tuple in the principal data buffer, and the aggregating |
| 2527 | * action denoted by the specified dtrace_aggregation_t. The aggregation |
| 2528 | * buffer is specified as the buf parameter. This routine does not return |
| 2529 | * failure; if there is no space in the aggregation buffer, the data will be |
| 2530 | * dropped, and a corresponding counter incremented. |
| 2531 | */ |
| 2532 | __attribute__((noinline)) |
| 2533 | static void |
| 2534 | dtrace_aggregate(dtrace_aggregation_t *agg, dtrace_buffer_t *dbuf, |
| 2535 | intptr_t offset, dtrace_buffer_t *buf, uint64_t expr, uint64_t arg) |
| 2536 | { |
| 2537 | #pragma unused(arg) |
| 2538 | dtrace_recdesc_t *rec = &agg->dtag_action.dta_rec; |
| 2539 | uint32_t i, ndx, size, fsize; |
| 2540 | uint32_t align = sizeof (uint64_t) - 1; |
| 2541 | dtrace_aggbuffer_t *agb; |
| 2542 | dtrace_aggkey_t *key; |
| 2543 | uint32_t hashval = 0, limit, isstr; |
| 2544 | caddr_t tomax, data, kdata; |
| 2545 | dtrace_actkind_t action; |
| 2546 | dtrace_action_t *act; |
| 2547 | uintptr_t offs; |
| 2548 | |
| 2549 | if (buf == NULL) |
| 2550 | return; |
| 2551 | |
| 2552 | if (!agg->dtag_hasarg) { |
| 2553 | /* |
| 2554 | * Currently, only quantize() and lquantize() take additional |
| 2555 | * arguments, and they have the same semantics: an increment |
| 2556 | * value that defaults to 1 when not present. If additional |
| 2557 | * aggregating actions take arguments, the setting of the |
| 2558 | * default argument value will presumably have to become more |
| 2559 | * sophisticated... |
| 2560 | */ |
| 2561 | arg = 1; |
| 2562 | } |
| 2563 | |
| 2564 | action = agg->dtag_action.dta_kind - DTRACEACT_AGGREGATION; |
| 2565 | size = rec->dtrd_offset - agg->dtag_base; |
| 2566 | fsize = size + rec->dtrd_size; |
| 2567 | |
| 2568 | ASSERT(dbuf->dtb_tomax != NULL); |
| 2569 | data = dbuf->dtb_tomax + offset + agg->dtag_base; |
| 2570 | |
| 2571 | if ((tomax = buf->dtb_tomax) == NULL) { |
| 2572 | dtrace_buffer_drop(buf); |
| 2573 | return; |
| 2574 | } |
| 2575 | |
| 2576 | /* |
| 2577 | * The metastructure is always at the bottom of the buffer. |
| 2578 | */ |
| 2579 | agb = (dtrace_aggbuffer_t *)(tomax + buf->dtb_size - |
| 2580 | sizeof (dtrace_aggbuffer_t)); |
| 2581 | |
| 2582 | if (buf->dtb_offset == 0) { |
| 2583 | /* |
| 2584 | * We just kludge up approximately 1/8th of the size to be |
| 2585 | * buckets. If this guess ends up being routinely |
| 2586 | * off-the-mark, we may need to dynamically readjust this |
| 2587 | * based on past performance. |
| 2588 | */ |
| 2589 | uintptr_t hashsize = (buf->dtb_size >> 3) / sizeof (uintptr_t); |
| 2590 | |
| 2591 | if ((uintptr_t)agb - hashsize * sizeof (dtrace_aggkey_t *) < |
| 2592 | (uintptr_t)tomax || hashsize == 0) { |
| 2593 | /* |
| 2594 | * We've been given a ludicrously small buffer; |
| 2595 | * increment our drop count and leave. |
| 2596 | */ |
| 2597 | dtrace_buffer_drop(buf); |
| 2598 | return; |
| 2599 | } |
| 2600 | |
| 2601 | /* |
| 2602 | * And now, a pathetic attempt to try to get a an odd (or |
| 2603 | * perchance, a prime) hash size for better hash distribution. |
| 2604 | */ |
| 2605 | if (hashsize > (DTRACE_AGGHASHSIZE_SLEW << 3)) |
| 2606 | hashsize -= DTRACE_AGGHASHSIZE_SLEW; |
| 2607 | |
| 2608 | agb->dtagb_hashsize = hashsize; |
| 2609 | agb->dtagb_hash = (dtrace_aggkey_t **)((uintptr_t)agb - |
| 2610 | agb->dtagb_hashsize * sizeof (dtrace_aggkey_t *)); |
| 2611 | agb->dtagb_free = (uintptr_t)agb->dtagb_hash; |
| 2612 | |
| 2613 | for (i = 0; i < agb->dtagb_hashsize; i++) |
| 2614 | agb->dtagb_hash[i] = NULL; |
| 2615 | } |
| 2616 | |
| 2617 | ASSERT(agg->dtag_first != NULL); |
| 2618 | ASSERT(agg->dtag_first->dta_intuple); |
| 2619 | |
| 2620 | /* |
| 2621 | * Calculate the hash value based on the key. Note that we _don't_ |
| 2622 | * include the aggid in the hashing (but we will store it as part of |
| 2623 | * the key). The hashing algorithm is Bob Jenkins' "One-at-a-time" |
| 2624 | * algorithm: a simple, quick algorithm that has no known funnels, and |
| 2625 | * gets good distribution in practice. The efficacy of the hashing |
| 2626 | * algorithm (and a comparison with other algorithms) may be found by |
| 2627 | * running the ::dtrace_aggstat MDB dcmd. |
| 2628 | */ |
| 2629 | for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) { |
| 2630 | i = act->dta_rec.dtrd_offset - agg->dtag_base; |
| 2631 | limit = i + act->dta_rec.dtrd_size; |
| 2632 | ASSERT(limit <= size); |
| 2633 | isstr = DTRACEACT_ISSTRING(act); |
| 2634 | |
| 2635 | for (; i < limit; i++) { |
| 2636 | hashval += data[i]; |
| 2637 | hashval += (hashval << 10); |
| 2638 | hashval ^= (hashval >> 6); |
| 2639 | |
| 2640 | if (isstr && data[i] == '\0') |
| 2641 | break; |
| 2642 | } |
| 2643 | } |
| 2644 | |
| 2645 | hashval += (hashval << 3); |
| 2646 | hashval ^= (hashval >> 11); |
| 2647 | hashval += (hashval << 15); |
| 2648 | |
| 2649 | /* |
| 2650 | * Yes, the divide here is expensive -- but it's generally the least |
| 2651 | * of the performance issues given the amount of data that we iterate |
| 2652 | * over to compute hash values, compare data, etc. |
| 2653 | */ |
| 2654 | ndx = hashval % agb->dtagb_hashsize; |
| 2655 | |
| 2656 | for (key = agb->dtagb_hash[ndx]; key != NULL; key = key->dtak_next) { |
| 2657 | ASSERT((caddr_t)key >= tomax); |
| 2658 | ASSERT((caddr_t)key < tomax + buf->dtb_size); |
| 2659 | |
| 2660 | if (hashval != key->dtak_hashval || key->dtak_size != size) |
| 2661 | continue; |
| 2662 | |
| 2663 | kdata = key->dtak_data; |
| 2664 | ASSERT(kdata >= tomax && kdata < tomax + buf->dtb_size); |
| 2665 | |
| 2666 | for (act = agg->dtag_first; act->dta_intuple; |
| 2667 | act = act->dta_next) { |
| 2668 | i = act->dta_rec.dtrd_offset - agg->dtag_base; |
| 2669 | limit = i + act->dta_rec.dtrd_size; |
| 2670 | ASSERT(limit <= size); |
| 2671 | isstr = DTRACEACT_ISSTRING(act); |
| 2672 | |
| 2673 | for (; i < limit; i++) { |
| 2674 | if (kdata[i] != data[i]) |
| 2675 | goto next; |
| 2676 | |
| 2677 | if (isstr && data[i] == '\0') |
| 2678 | break; |
| 2679 | } |
| 2680 | } |
| 2681 | |
| 2682 | if (action != key->dtak_action) { |
| 2683 | /* |
| 2684 | * We are aggregating on the same value in the same |
| 2685 | * aggregation with two different aggregating actions. |
| 2686 | * (This should have been picked up in the compiler, |
| 2687 | * so we may be dealing with errant or devious DIF.) |
| 2688 | * This is an error condition; we indicate as much, |
| 2689 | * and return. |
| 2690 | */ |
| 2691 | DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); |
| 2692 | return; |
| 2693 | } |
| 2694 | |
| 2695 | /* |
| 2696 | * This is a hit: we need to apply the aggregator to |
| 2697 | * the value at this key. |
| 2698 | */ |
| 2699 | agg->dtag_aggregate((uint64_t *)(kdata + size), expr, arg); |
| 2700 | return; |
| 2701 | next: |
| 2702 | continue; |
| 2703 | } |
| 2704 | |
| 2705 | /* |
| 2706 | * We didn't find it. We need to allocate some zero-filled space, |
| 2707 | * link it into the hash table appropriately, and apply the aggregator |
| 2708 | * to the (zero-filled) value. |
| 2709 | */ |
| 2710 | offs = buf->dtb_offset; |
| 2711 | while (offs & (align - 1)) |
| 2712 | offs += sizeof (uint32_t); |
| 2713 | |
| 2714 | /* |
| 2715 | * If we don't have enough room to both allocate a new key _and_ |
| 2716 | * its associated data, increment the drop count and return. |
| 2717 | */ |
| 2718 | if ((uintptr_t)tomax + offs + fsize > |
| 2719 | agb->dtagb_free - sizeof (dtrace_aggkey_t)) { |
| 2720 | dtrace_buffer_drop(buf); |
| 2721 | return; |
| 2722 | } |
| 2723 | |
| 2724 | /*CONSTCOND*/ |
| 2725 | ASSERT(!(sizeof (dtrace_aggkey_t) & (sizeof (uintptr_t) - 1))); |
| 2726 | key = (dtrace_aggkey_t *)(agb->dtagb_free - sizeof (dtrace_aggkey_t)); |
| 2727 | agb->dtagb_free -= sizeof (dtrace_aggkey_t); |
| 2728 | |
| 2729 | key->dtak_data = kdata = tomax + offs; |
| 2730 | buf->dtb_offset = offs + fsize; |
| 2731 | |
| 2732 | /* |
| 2733 | * Now copy the data across. |
| 2734 | */ |
| 2735 | *((dtrace_aggid_t *)kdata) = agg->dtag_id; |
| 2736 | |
| 2737 | for (i = sizeof (dtrace_aggid_t); i < size; i++) |
| 2738 | kdata[i] = data[i]; |
| 2739 | |
| 2740 | /* |
| 2741 | * Because strings are not zeroed out by default, we need to iterate |
| 2742 | * looking for actions that store strings, and we need to explicitly |
| 2743 | * pad these strings out with zeroes. |
| 2744 | */ |
| 2745 | for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) { |
| 2746 | int nul; |
| 2747 | |
| 2748 | if (!DTRACEACT_ISSTRING(act)) |
| 2749 | continue; |
| 2750 | |
| 2751 | i = act->dta_rec.dtrd_offset - agg->dtag_base; |
| 2752 | limit = i + act->dta_rec.dtrd_size; |
| 2753 | ASSERT(limit <= size); |
| 2754 | |
| 2755 | for (nul = 0; i < limit; i++) { |
| 2756 | if (nul) { |
| 2757 | kdata[i] = '\0'; |
| 2758 | continue; |
| 2759 | } |
| 2760 | |
| 2761 | if (data[i] != '\0') |
| 2762 | continue; |
| 2763 | |
| 2764 | nul = 1; |
| 2765 | } |
| 2766 | } |
| 2767 | |
| 2768 | for (i = size; i < fsize; i++) |
| 2769 | kdata[i] = 0; |
| 2770 | |
| 2771 | key->dtak_hashval = hashval; |
| 2772 | key->dtak_size = size; |
| 2773 | key->dtak_action = action; |
| 2774 | key->dtak_next = agb->dtagb_hash[ndx]; |
| 2775 | agb->dtagb_hash[ndx] = key; |
| 2776 | |
| 2777 | /* |
| 2778 | * Finally, apply the aggregator. |
| 2779 | */ |
| 2780 | *((uint64_t *)(key->dtak_data + size)) = agg->dtag_initial; |
| 2781 | agg->dtag_aggregate((uint64_t *)(key->dtak_data + size), expr, arg); |
| 2782 | } |
| 2783 | |
| 2784 | /* |
| 2785 | * Given consumer state, this routine finds a speculation in the INACTIVE |
| 2786 | * state and transitions it into the ACTIVE state. If there is no speculation |
| 2787 | * in the INACTIVE state, 0 is returned. In this case, no error counter is |
| 2788 | * incremented -- it is up to the caller to take appropriate action. |
| 2789 | */ |
| 2790 | static int |
| 2791 | dtrace_speculation(dtrace_state_t *state) |
| 2792 | { |
| 2793 | int i = 0; |
| 2794 | dtrace_speculation_state_t current; |
| 2795 | uint32_t *stat = &state->dts_speculations_unavail, count; |
| 2796 | |
| 2797 | while (i < state->dts_nspeculations) { |
| 2798 | dtrace_speculation_t *spec = &state->dts_speculations[i]; |
| 2799 | |
| 2800 | current = spec->dtsp_state; |
| 2801 | |
| 2802 | if (current != DTRACESPEC_INACTIVE) { |
| 2803 | if (current == DTRACESPEC_COMMITTINGMANY || |
| 2804 | current == DTRACESPEC_COMMITTING || |
| 2805 | current == DTRACESPEC_DISCARDING) |
| 2806 | stat = &state->dts_speculations_busy; |
| 2807 | i++; |
| 2808 | continue; |
| 2809 | } |
| 2810 | |
| 2811 | if (dtrace_cas32((uint32_t *)&spec->dtsp_state, |
| 2812 | current, DTRACESPEC_ACTIVE) == current) |
| 2813 | return (i + 1); |
| 2814 | } |
| 2815 | |
| 2816 | /* |
| 2817 | * We couldn't find a speculation. If we found as much as a single |
| 2818 | * busy speculation buffer, we'll attribute this failure as "busy" |
| 2819 | * instead of "unavail". |
| 2820 | */ |
| 2821 | do { |
| 2822 | count = *stat; |
| 2823 | } while (dtrace_cas32(stat, count, count + 1) != count); |
| 2824 | |
| 2825 | return (0); |
| 2826 | } |
| 2827 | |
| 2828 | /* |
| 2829 | * This routine commits an active speculation. If the specified speculation |
| 2830 | * is not in a valid state to perform a commit(), this routine will silently do |
| 2831 | * nothing. The state of the specified speculation is transitioned according |
| 2832 | * to the state transition diagram outlined in <sys/dtrace_impl.h> |
| 2833 | */ |
| 2834 | static void |
| 2835 | dtrace_speculation_commit(dtrace_state_t *state, processorid_t cpu, |
| 2836 | dtrace_specid_t which) |
| 2837 | { |
| 2838 | dtrace_speculation_t *spec; |
| 2839 | dtrace_buffer_t *src, *dest; |
| 2840 | uintptr_t daddr, saddr, dlimit, slimit; |
| 2841 | dtrace_speculation_state_t current, new = DTRACESPEC_INACTIVE; |
| 2842 | intptr_t offs; |
| 2843 | uint64_t timestamp; |
| 2844 | |
| 2845 | if (which == 0) |
| 2846 | return; |
| 2847 | |
| 2848 | if (which > (dtrace_specid_t)state->dts_nspeculations) { |
| 2849 | cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; |
| 2850 | return; |
| 2851 | } |
| 2852 | |
| 2853 | spec = &state->dts_speculations[which - 1]; |
| 2854 | src = &spec->dtsp_buffer[cpu]; |
| 2855 | dest = &state->dts_buffer[cpu]; |
| 2856 | |
| 2857 | do { |
| 2858 | current = spec->dtsp_state; |
| 2859 | |
| 2860 | if (current == DTRACESPEC_COMMITTINGMANY) |
| 2861 | break; |
| 2862 | |
| 2863 | switch (current) { |
| 2864 | case DTRACESPEC_INACTIVE: |
| 2865 | case DTRACESPEC_DISCARDING: |
| 2866 | return; |
| 2867 | |
| 2868 | case DTRACESPEC_COMMITTING: |
| 2869 | /* |
| 2870 | * This is only possible if we are (a) commit()'ing |
| 2871 | * without having done a prior speculate() on this CPU |
| 2872 | * and (b) racing with another commit() on a different |
| 2873 | * CPU. There's nothing to do -- we just assert that |
| 2874 | * our offset is 0. |
| 2875 | */ |
| 2876 | ASSERT(src->dtb_offset == 0); |
| 2877 | return; |
| 2878 | |
| 2879 | case DTRACESPEC_ACTIVE: |
| 2880 | new = DTRACESPEC_COMMITTING; |
| 2881 | break; |
| 2882 | |
| 2883 | case DTRACESPEC_ACTIVEONE: |
| 2884 | /* |
| 2885 | * This speculation is active on one CPU. If our |
| 2886 | * buffer offset is non-zero, we know that the one CPU |
| 2887 | * must be us. Otherwise, we are committing on a |
| 2888 | * different CPU from the speculate(), and we must |
| 2889 | * rely on being asynchronously cleaned. |
| 2890 | */ |
| 2891 | if (src->dtb_offset != 0) { |
| 2892 | new = DTRACESPEC_COMMITTING; |
| 2893 | break; |
| 2894 | } |
| 2895 | OS_FALLTHROUGH; |
| 2896 | |
| 2897 | case DTRACESPEC_ACTIVEMANY: |
| 2898 | new = DTRACESPEC_COMMITTINGMANY; |
| 2899 | break; |
| 2900 | |
| 2901 | default: |
| 2902 | ASSERT(0); |
| 2903 | } |
| 2904 | } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, |
| 2905 | current, new) != current); |
| 2906 | |
| 2907 | /* |
| 2908 | * We have set the state to indicate that we are committing this |
| 2909 | * speculation. Now reserve the necessary space in the destination |
| 2910 | * buffer. |
| 2911 | */ |
| 2912 | if ((offs = dtrace_buffer_reserve(dest, src->dtb_offset, |
| 2913 | sizeof (uint64_t), state, NULL)) < 0) { |
| 2914 | dtrace_buffer_drop(dest); |
| 2915 | goto out; |
| 2916 | } |
| 2917 | |
| 2918 | /* |
| 2919 | * We have sufficient space to copy the speculative buffer into the |
| 2920 | * primary buffer. First, modify the speculative buffer, filling |
| 2921 | * in the timestamp of all entries with the current time. The data |
| 2922 | * must have the commit() time rather than the time it was traced, |
| 2923 | * so that all entries in the primary buffer are in timestamp order. |
| 2924 | */ |
| 2925 | timestamp = dtrace_gethrtime(); |
| 2926 | saddr = (uintptr_t)src->dtb_tomax; |
| 2927 | slimit = saddr + src->dtb_offset; |
| 2928 | while (saddr < slimit) { |
| 2929 | size_t size; |
| 2930 | dtrace_rechdr_t *dtrh = (dtrace_rechdr_t *)saddr; |
| 2931 | |
| 2932 | if (dtrh->dtrh_epid == DTRACE_EPIDNONE) { |
| 2933 | saddr += sizeof (dtrace_epid_t); |
| 2934 | continue; |
| 2935 | } |
| 2936 | |
| 2937 | ASSERT(dtrh->dtrh_epid <= ((dtrace_epid_t) state->dts_necbs)); |
| 2938 | size = state->dts_ecbs[dtrh->dtrh_epid - 1]->dte_size; |
| 2939 | |
| 2940 | ASSERT(saddr + size <= slimit); |
| 2941 | ASSERT(size >= sizeof(dtrace_rechdr_t)); |
| 2942 | ASSERT(DTRACE_RECORD_LOAD_TIMESTAMP(dtrh) == UINT64_MAX); |
| 2943 | |
| 2944 | DTRACE_RECORD_STORE_TIMESTAMP(dtrh, timestamp); |
| 2945 | |
| 2946 | saddr += size; |
| 2947 | } |
| 2948 | |
| 2949 | /* |
| 2950 | * Copy the buffer across. (Note that this is a |
| 2951 | * highly subobtimal bcopy(); in the unlikely event that this becomes |
| 2952 | * a serious performance issue, a high-performance DTrace-specific |
| 2953 | * bcopy() should obviously be invented.) |
| 2954 | */ |
| 2955 | daddr = (uintptr_t)dest->dtb_tomax + offs; |
| 2956 | dlimit = daddr + src->dtb_offset; |
| 2957 | saddr = (uintptr_t)src->dtb_tomax; |
| 2958 | |
| 2959 | /* |
| 2960 | * First, the aligned portion. |
| 2961 | */ |
| 2962 | while (dlimit - daddr >= sizeof (uint64_t)) { |
| 2963 | *((uint64_t *)daddr) = *((uint64_t *)saddr); |
| 2964 | |
| 2965 | daddr += sizeof (uint64_t); |
| 2966 | saddr += sizeof (uint64_t); |
| 2967 | } |
| 2968 | |
| 2969 | /* |
| 2970 | * Now any left-over bit... |
| 2971 | */ |
| 2972 | while (dlimit - daddr) |
| 2973 | *((uint8_t *)daddr++) = *((uint8_t *)saddr++); |
| 2974 | |
| 2975 | /* |
| 2976 | * Finally, commit the reserved space in the destination buffer. |
| 2977 | */ |
| 2978 | dest->dtb_offset = offs + src->dtb_offset; |
| 2979 | |
| 2980 | out: |
| 2981 | /* |
| 2982 | * If we're lucky enough to be the only active CPU on this speculation |
| 2983 | * buffer, we can just set the state back to DTRACESPEC_INACTIVE. |
| 2984 | */ |
| 2985 | if (current == DTRACESPEC_ACTIVE || |
| 2986 | (current == DTRACESPEC_ACTIVEONE && new == DTRACESPEC_COMMITTING)) { |
| 2987 | uint32_t rval = dtrace_cas32((uint32_t *)&spec->dtsp_state, |
| 2988 | DTRACESPEC_COMMITTING, DTRACESPEC_INACTIVE); |
| 2989 | #pragma unused(rval) /* __APPLE__ */ |
| 2990 | |
| 2991 | ASSERT(rval == DTRACESPEC_COMMITTING); |
| 2992 | } |
| 2993 | |
| 2994 | src->dtb_offset = 0; |
| 2995 | src->dtb_xamot_drops += src->dtb_drops; |
| 2996 | src->dtb_drops = 0; |
| 2997 | } |
| 2998 | |
| 2999 | /* |
| 3000 | * This routine discards an active speculation. If the specified speculation |
| 3001 | * is not in a valid state to perform a discard(), this routine will silently |
| 3002 | * do nothing. The state of the specified speculation is transitioned |
| 3003 | * according to the state transition diagram outlined in <sys/dtrace_impl.h> |
| 3004 | */ |
| 3005 | __attribute__((noinline)) |
| 3006 | static void |
| 3007 | dtrace_speculation_discard(dtrace_state_t *state, processorid_t cpu, |
| 3008 | dtrace_specid_t which) |
| 3009 | { |
| 3010 | dtrace_speculation_t *spec; |
| 3011 | dtrace_speculation_state_t current, new = DTRACESPEC_INACTIVE; |
| 3012 | dtrace_buffer_t *buf; |
| 3013 | |
| 3014 | if (which == 0) |
| 3015 | return; |
| 3016 | |
| 3017 | if (which > (dtrace_specid_t)state->dts_nspeculations) { |
| 3018 | cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; |
| 3019 | return; |
| 3020 | } |
| 3021 | |
| 3022 | spec = &state->dts_speculations[which - 1]; |
| 3023 | buf = &spec->dtsp_buffer[cpu]; |
| 3024 | |
| 3025 | do { |
| 3026 | current = spec->dtsp_state; |
| 3027 | |
| 3028 | switch (current) { |
| 3029 | case DTRACESPEC_INACTIVE: |
| 3030 | case DTRACESPEC_COMMITTINGMANY: |
| 3031 | case DTRACESPEC_COMMITTING: |
| 3032 | case DTRACESPEC_DISCARDING: |
| 3033 | return; |
| 3034 | |
| 3035 | case DTRACESPEC_ACTIVE: |
| 3036 | case DTRACESPEC_ACTIVEMANY: |
| 3037 | new = DTRACESPEC_DISCARDING; |
| 3038 | break; |
| 3039 | |
| 3040 | case DTRACESPEC_ACTIVEONE: |
| 3041 | if (buf->dtb_offset != 0) { |
| 3042 | new = DTRACESPEC_INACTIVE; |
| 3043 | } else { |
| 3044 | new = DTRACESPEC_DISCARDING; |
| 3045 | } |
| 3046 | break; |
| 3047 | |
| 3048 | default: |
| 3049 | ASSERT(0); |
| 3050 | } |
| 3051 | } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, |
| 3052 | current, new) != current); |
| 3053 | |
| 3054 | buf->dtb_offset = 0; |
| 3055 | buf->dtb_drops = 0; |
| 3056 | } |
| 3057 | |
| 3058 | /* |
| 3059 | * Note: not called from probe context. This function is called |
| 3060 | * asynchronously from cross call context to clean any speculations that are |
| 3061 | * in the COMMITTINGMANY or DISCARDING states. These speculations may not be |
| 3062 | * transitioned back to the INACTIVE state until all CPUs have cleaned the |
| 3063 | * speculation. |
| 3064 | */ |
| 3065 | static void |
| 3066 | dtrace_speculation_clean_here(dtrace_state_t *state) |
| 3067 | { |
| 3068 | dtrace_icookie_t cookie; |
| 3069 | processorid_t cpu = CPU->cpu_id; |
| 3070 | dtrace_buffer_t *dest = &state->dts_buffer[cpu]; |
| 3071 | dtrace_specid_t i; |
| 3072 | |
| 3073 | cookie = dtrace_interrupt_disable(); |
| 3074 | |
| 3075 | if (dest->dtb_tomax == NULL) { |
| 3076 | dtrace_interrupt_enable(cookie); |
| 3077 | return; |
| 3078 | } |
| 3079 | |
| 3080 | for (i = 0; i < (dtrace_specid_t)state->dts_nspeculations; i++) { |
| 3081 | dtrace_speculation_t *spec = &state->dts_speculations[i]; |
| 3082 | dtrace_buffer_t *src = &spec->dtsp_buffer[cpu]; |
| 3083 | |
| 3084 | if (src->dtb_tomax == NULL) |
| 3085 | continue; |
| 3086 | |
| 3087 | if (spec->dtsp_state == DTRACESPEC_DISCARDING) { |
| 3088 | src->dtb_offset = 0; |
| 3089 | continue; |
| 3090 | } |
| 3091 | |
| 3092 | if (spec->dtsp_state != DTRACESPEC_COMMITTINGMANY) |
| 3093 | continue; |
| 3094 | |
| 3095 | if (src->dtb_offset == 0) |
| 3096 | continue; |
| 3097 | |
| 3098 | dtrace_speculation_commit(state, cpu, which: i + 1); |
| 3099 | } |
| 3100 | |
| 3101 | dtrace_interrupt_enable(cookie); |
| 3102 | } |
| 3103 | |
| 3104 | /* |
| 3105 | * Note: not called from probe context. This function is called |
| 3106 | * asynchronously (and at a regular interval) to clean any speculations that |
| 3107 | * are in the COMMITTINGMANY or DISCARDING states. If it discovers that there |
| 3108 | * is work to be done, it cross calls all CPUs to perform that work; |
| 3109 | * COMMITMANY and DISCARDING speculations may not be transitioned back to the |
| 3110 | * INACTIVE state until they have been cleaned by all CPUs. |
| 3111 | */ |
| 3112 | static void |
| 3113 | dtrace_speculation_clean(dtrace_state_t *state) |
| 3114 | { |
| 3115 | int work = 0; |
| 3116 | uint32_t rv; |
| 3117 | dtrace_specid_t i; |
| 3118 | |
| 3119 | for (i = 0; i < (dtrace_specid_t)state->dts_nspeculations; i++) { |
| 3120 | dtrace_speculation_t *spec = &state->dts_speculations[i]; |
| 3121 | |
| 3122 | ASSERT(!spec->dtsp_cleaning); |
| 3123 | |
| 3124 | if (spec->dtsp_state != DTRACESPEC_DISCARDING && |
| 3125 | spec->dtsp_state != DTRACESPEC_COMMITTINGMANY) |
| 3126 | continue; |
| 3127 | |
| 3128 | work++; |
| 3129 | spec->dtsp_cleaning = 1; |
| 3130 | } |
| 3131 | |
| 3132 | if (!work) |
| 3133 | return; |
| 3134 | |
| 3135 | dtrace_xcall(DTRACE_CPUALL, |
| 3136 | (dtrace_xcall_t)dtrace_speculation_clean_here, state); |
| 3137 | |
| 3138 | /* |
| 3139 | * We now know that all CPUs have committed or discarded their |
| 3140 | * speculation buffers, as appropriate. We can now set the state |
| 3141 | * to inactive. |
| 3142 | */ |
| 3143 | for (i = 0; i < (dtrace_specid_t)state->dts_nspeculations; i++) { |
| 3144 | dtrace_speculation_t *spec = &state->dts_speculations[i]; |
| 3145 | dtrace_speculation_state_t current, new; |
| 3146 | |
| 3147 | if (!spec->dtsp_cleaning) |
| 3148 | continue; |
| 3149 | |
| 3150 | current = spec->dtsp_state; |
| 3151 | ASSERT(current == DTRACESPEC_DISCARDING || |
| 3152 | current == DTRACESPEC_COMMITTINGMANY); |
| 3153 | |
| 3154 | new = DTRACESPEC_INACTIVE; |
| 3155 | |
| 3156 | rv = dtrace_cas32((uint32_t *)&spec->dtsp_state, current, new); |
| 3157 | ASSERT(rv == current); |
| 3158 | spec->dtsp_cleaning = 0; |
| 3159 | } |
| 3160 | } |
| 3161 | |
| 3162 | /* |
| 3163 | * Called as part of a speculate() to get the speculative buffer associated |
| 3164 | * with a given speculation. Returns NULL if the specified speculation is not |
| 3165 | * in an ACTIVE state. If the speculation is in the ACTIVEONE state -- and |
| 3166 | * the active CPU is not the specified CPU -- the speculation will be |
| 3167 | * atomically transitioned into the ACTIVEMANY state. |
| 3168 | */ |
| 3169 | __attribute__((noinline)) |
| 3170 | static dtrace_buffer_t * |
| 3171 | dtrace_speculation_buffer(dtrace_state_t *state, processorid_t cpuid, |
| 3172 | dtrace_specid_t which) |
| 3173 | { |
| 3174 | dtrace_speculation_t *spec; |
| 3175 | dtrace_speculation_state_t current, new = DTRACESPEC_INACTIVE; |
| 3176 | dtrace_buffer_t *buf; |
| 3177 | |
| 3178 | if (which == 0) |
| 3179 | return (NULL); |
| 3180 | |
| 3181 | if (which > (dtrace_specid_t)state->dts_nspeculations) { |
| 3182 | cpu_core[cpuid].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; |
| 3183 | return (NULL); |
| 3184 | } |
| 3185 | |
| 3186 | spec = &state->dts_speculations[which - 1]; |
| 3187 | buf = &spec->dtsp_buffer[cpuid]; |
| 3188 | |
| 3189 | do { |
| 3190 | current = spec->dtsp_state; |
| 3191 | |
| 3192 | switch (current) { |
| 3193 | case DTRACESPEC_INACTIVE: |
| 3194 | case DTRACESPEC_COMMITTINGMANY: |
| 3195 | case DTRACESPEC_DISCARDING: |
| 3196 | return (NULL); |
| 3197 | |
| 3198 | case DTRACESPEC_COMMITTING: |
| 3199 | ASSERT(buf->dtb_offset == 0); |
| 3200 | return (NULL); |
| 3201 | |
| 3202 | case DTRACESPEC_ACTIVEONE: |
| 3203 | /* |
| 3204 | * This speculation is currently active on one CPU. |
| 3205 | * Check the offset in the buffer; if it's non-zero, |
| 3206 | * that CPU must be us (and we leave the state alone). |
| 3207 | * If it's zero, assume that we're starting on a new |
| 3208 | * CPU -- and change the state to indicate that the |
| 3209 | * speculation is active on more than one CPU. |
| 3210 | */ |
| 3211 | if (buf->dtb_offset != 0) |
| 3212 | return (buf); |
| 3213 | |
| 3214 | new = DTRACESPEC_ACTIVEMANY; |
| 3215 | break; |
| 3216 | |
| 3217 | case DTRACESPEC_ACTIVEMANY: |
| 3218 | return (buf); |
| 3219 | |
| 3220 | case DTRACESPEC_ACTIVE: |
| 3221 | new = DTRACESPEC_ACTIVEONE; |
| 3222 | break; |
| 3223 | |
| 3224 | default: |
| 3225 | ASSERT(0); |
| 3226 | } |
| 3227 | } while (dtrace_cas32((uint32_t *)&spec->dtsp_state, |
| 3228 | current, new) != current); |
| 3229 | |
| 3230 | ASSERT(new == DTRACESPEC_ACTIVEONE || new == DTRACESPEC_ACTIVEMANY); |
| 3231 | return (buf); |
| 3232 | } |
| 3233 | |
| 3234 | /* |
| 3235 | * Return a string. In the event that the user lacks the privilege to access |
| 3236 | * arbitrary kernel memory, we copy the string out to scratch memory so that we |
| 3237 | * don't fail access checking. |
| 3238 | * |
| 3239 | * dtrace_dif_variable() uses this routine as a helper for various |
| 3240 | * builtin values such as 'execname' and 'probefunc.' |
| 3241 | */ |
| 3242 | static |
| 3243 | uintptr_t |
| 3244 | dtrace_dif_varstr(uintptr_t addr, dtrace_state_t *state, |
| 3245 | dtrace_mstate_t *mstate) |
| 3246 | { |
| 3247 | uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; |
| 3248 | uintptr_t ret; |
| 3249 | size_t strsz; |
| 3250 | |
| 3251 | /* |
| 3252 | * The easy case: this probe is allowed to read all of memory, so |
| 3253 | * we can just return this as a vanilla pointer. |
| 3254 | */ |
| 3255 | if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) |
| 3256 | return (addr); |
| 3257 | |
| 3258 | /* |
| 3259 | * This is the tougher case: we copy the string in question from |
| 3260 | * kernel memory into scratch memory and return it that way: this |
| 3261 | * ensures that we won't trip up when access checking tests the |
| 3262 | * BYREF return value. |
| 3263 | */ |
| 3264 | strsz = dtrace_strlen(s: (char *)addr, lim: size) + 1; |
| 3265 | |
| 3266 | if (mstate->dtms_scratch_ptr + strsz > |
| 3267 | mstate->dtms_scratch_base + mstate->dtms_scratch_size) { |
| 3268 | DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); |
| 3269 | return (0); |
| 3270 | } |
| 3271 | |
| 3272 | dtrace_strcpy(src: (const void *)addr, dst: (void *)mstate->dtms_scratch_ptr, |
| 3273 | len: strsz); |
| 3274 | ret = mstate->dtms_scratch_ptr; |
| 3275 | mstate->dtms_scratch_ptr += strsz; |
| 3276 | return (ret); |
| 3277 | } |
| 3278 | |
| 3279 | /* |
| 3280 | * This function implements the DIF emulator's variable lookups. The emulator |
| 3281 | * passes a reserved variable identifier and optional built-in array index. |
| 3282 | */ |
| 3283 | static uint64_t |
| 3284 | dtrace_dif_variable(dtrace_mstate_t *mstate, dtrace_state_t *state, uint64_t v, |
| 3285 | uint64_t ndx) |
| 3286 | { |
| 3287 | /* |
| 3288 | * If we're accessing one of the uncached arguments, we'll turn this |
| 3289 | * into a reference in the args array. |
| 3290 | */ |
| 3291 | if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) { |
| 3292 | ndx = v - DIF_VAR_ARG0; |
| 3293 | v = DIF_VAR_ARGS; |
| 3294 | } |
| 3295 | |
| 3296 | switch (v) { |
| 3297 | case DIF_VAR_ARGS: |
| 3298 | ASSERT(mstate->dtms_present & DTRACE_MSTATE_ARGS); |
| 3299 | if (ndx >= sizeof (mstate->dtms_arg) / |
| 3300 | sizeof (mstate->dtms_arg[0])) { |
| 3301 | int aframes = mstate->dtms_probe->dtpr_aframes + 2; |
| 3302 | dtrace_vstate_t *vstate = &state->dts_vstate; |
| 3303 | dtrace_provider_t *pv; |
| 3304 | uint64_t val; |
| 3305 | int argndx = ndx; |
| 3306 | |
| 3307 | if (argndx < 0) { |
| 3308 | DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); |
| 3309 | return (0); |
| 3310 | } |
| 3311 | |
| 3312 | pv = mstate->dtms_probe->dtpr_provider; |
| 3313 | if (pv->dtpv_pops.dtps_getargval != NULL) |
| 3314 | val = pv->dtpv_pops.dtps_getargval(pv->dtpv_arg, |
| 3315 | mstate->dtms_probe->dtpr_id, |
| 3316 | mstate->dtms_probe->dtpr_arg, argndx, aframes); |
| 3317 | /* Special case access of arg5 as passed to dtrace_probe_error() (which see.) */ |
| 3318 | else if (mstate->dtms_probe->dtpr_id == dtrace_probeid_error && argndx == 5) { |
| 3319 | return ((dtrace_state_t *)(uintptr_t)(mstate->dtms_arg[0]))->dts_arg_error_illval; |
| 3320 | } |
| 3321 | |
| 3322 | else |
| 3323 | val = dtrace_getarg(argndx, aframes, mstate, vstate); |
| 3324 | |
| 3325 | /* |
| 3326 | * This is regrettably required to keep the compiler |
| 3327 | * from tail-optimizing the call to dtrace_getarg(). |
| 3328 | * The condition always evaluates to true, but the |
| 3329 | * compiler has no way of figuring that out a priori. |
| 3330 | * (None of this would be necessary if the compiler |
| 3331 | * could be relied upon to _always_ tail-optimize |
| 3332 | * the call to dtrace_getarg() -- but it can't.) |
| 3333 | */ |
| 3334 | if (mstate->dtms_probe != NULL) |
| 3335 | return (val); |
| 3336 | |
| 3337 | ASSERT(0); |
| 3338 | } |
| 3339 | |
| 3340 | return (mstate->dtms_arg[ndx]); |
| 3341 | |
| 3342 | case DIF_VAR_UREGS: { |
| 3343 | thread_t thread; |
| 3344 | |
| 3345 | if (!dtrace_priv_proc(state)) |
| 3346 | return (0); |
| 3347 | |
| 3348 | if ((thread = current_thread()) == NULL) { |
| 3349 | DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); |
| 3350 | cpu_core[CPU->cpu_id].cpuc_dtrace_illval = 0; |
| 3351 | return (0); |
| 3352 | } |
| 3353 | |
| 3354 | return (dtrace_getreg(find_user_regs(thread), ndx)); |
| 3355 | } |
| 3356 | |
| 3357 | case DIF_VAR_VMREGS: { |
| 3358 | uint64_t rval; |
| 3359 | |
| 3360 | if (!dtrace_priv_kernel(state)) |
| 3361 | return (0); |
| 3362 | |
| 3363 | DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); |
| 3364 | |
| 3365 | rval = dtrace_getvmreg(ndx); |
| 3366 | |
| 3367 | DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); |
| 3368 | |
| 3369 | return (rval); |
| 3370 | } |
| 3371 | |
| 3372 | case DIF_VAR_CURTHREAD: |
| 3373 | if (!dtrace_priv_kernel(state)) |
| 3374 | return (0); |
| 3375 | |
| 3376 | return ((uint64_t)(uintptr_t)current_thread()); |
| 3377 | |
| 3378 | case DIF_VAR_TIMESTAMP: |
| 3379 | if (!(mstate->dtms_present & DTRACE_MSTATE_TIMESTAMP)) { |
| 3380 | mstate->dtms_timestamp = dtrace_gethrtime(); |
| 3381 | mstate->dtms_present |= DTRACE_MSTATE_TIMESTAMP; |
| 3382 | } |
| 3383 | return (mstate->dtms_timestamp); |
| 3384 | |
| 3385 | case DIF_VAR_VTIMESTAMP: |
| 3386 | ASSERT(dtrace_vtime_references != 0); |
| 3387 | return (dtrace_get_thread_vtime(current_thread())); |
| 3388 | |
| 3389 | case DIF_VAR_WALLTIMESTAMP: |
| 3390 | if (!(mstate->dtms_present & DTRACE_MSTATE_WALLTIMESTAMP)) { |
| 3391 | mstate->dtms_walltimestamp = dtrace_gethrestime(); |
| 3392 | mstate->dtms_present |= DTRACE_MSTATE_WALLTIMESTAMP; |
| 3393 | } |
| 3394 | return (mstate->dtms_walltimestamp); |
| 3395 | |
| 3396 | case DIF_VAR_MACHTIMESTAMP: |
| 3397 | if (!(mstate->dtms_present & DTRACE_MSTATE_MACHTIMESTAMP)) { |
| 3398 | mstate->dtms_machtimestamp = mach_absolute_time(); |
| 3399 | mstate->dtms_present |= DTRACE_MSTATE_MACHTIMESTAMP; |
| 3400 | } |
| 3401 | return (mstate->dtms_machtimestamp); |
| 3402 | |
| 3403 | case DIF_VAR_MACHCTIMESTAMP: |
| 3404 | if (!(mstate->dtms_present & DTRACE_MSTATE_MACHCTIMESTAMP)) { |
| 3405 | mstate->dtms_machctimestamp = mach_continuous_time(); |
| 3406 | mstate->dtms_present |= DTRACE_MSTATE_MACHCTIMESTAMP; |
| 3407 | } |
| 3408 | return (mstate->dtms_machctimestamp); |
| 3409 | |
| 3410 | |
| 3411 | case DIF_VAR_CPU: |
| 3412 | return ((uint64_t) dtrace_get_thread_last_cpu_id(current_thread())); |
| 3413 | |
| 3414 | case DIF_VAR_IPL: |
| 3415 | if (!dtrace_priv_kernel(state)) |
| 3416 | return (0); |
| 3417 | if (!(mstate->dtms_present & DTRACE_MSTATE_IPL)) { |
| 3418 | mstate->dtms_ipl = dtrace_getipl(); |
| 3419 | mstate->dtms_present |= DTRACE_MSTATE_IPL; |
| 3420 | } |
| 3421 | return (mstate->dtms_ipl); |
| 3422 | |
| 3423 | case DIF_VAR_EPID: |
| 3424 | ASSERT(mstate->dtms_present & DTRACE_MSTATE_EPID); |
| 3425 | return (mstate->dtms_epid); |
| 3426 | |
| 3427 | case DIF_VAR_ID: |
| 3428 | ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); |
| 3429 | return (mstate->dtms_probe->dtpr_id); |
| 3430 | |
| 3431 | case DIF_VAR_STACKDEPTH: |
| 3432 | if (!dtrace_priv_kernel(state)) |
| 3433 | return (0); |
| 3434 | if (!(mstate->dtms_present & DTRACE_MSTATE_STACKDEPTH)) { |
| 3435 | int aframes = mstate->dtms_probe->dtpr_aframes + 2; |
| 3436 | |
| 3437 | mstate->dtms_stackdepth = dtrace_getstackdepth(aframes); |
| 3438 | mstate->dtms_present |= DTRACE_MSTATE_STACKDEPTH; |
| 3439 | } |
| 3440 | return (mstate->dtms_stackdepth); |
| 3441 | |
| 3442 | case DIF_VAR_USTACKDEPTH: |
| 3443 | if (!dtrace_priv_proc(state)) |
| 3444 | return (0); |
| 3445 | if (!(mstate->dtms_present & DTRACE_MSTATE_USTACKDEPTH)) { |
| 3446 | /* |
| 3447 | * See comment in DIF_VAR_PID. |
| 3448 | */ |
| 3449 | if (DTRACE_ANCHORED(mstate->dtms_probe) && |
| 3450 | CPU_ON_INTR(CPU)) { |
| 3451 | mstate->dtms_ustackdepth = 0; |
| 3452 | } else { |
| 3453 | DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); |
| 3454 | mstate->dtms_ustackdepth = |
| 3455 | dtrace_getustackdepth(); |
| 3456 | DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); |
| 3457 | } |
| 3458 | mstate->dtms_present |= DTRACE_MSTATE_USTACKDEPTH; |
| 3459 | } |
| 3460 | return (mstate->dtms_ustackdepth); |
| 3461 | |
| 3462 | case DIF_VAR_CALLER: |
| 3463 | if (!dtrace_priv_kernel(state)) |
| 3464 | return (0); |
| 3465 | if (!(mstate->dtms_present & DTRACE_MSTATE_CALLER)) { |
| 3466 | int aframes = mstate->dtms_probe->dtpr_aframes + 2; |
| 3467 | |
| 3468 | if (!DTRACE_ANCHORED(mstate->dtms_probe)) { |
| 3469 | /* |
| 3470 | * If this is an unanchored probe, we are |
| 3471 | * required to go through the slow path: |
| 3472 | * dtrace_caller() only guarantees correct |
| 3473 | * results for anchored probes. |
| 3474 | */ |
| 3475 | pc_t caller[2]; |
| 3476 | |
| 3477 | dtrace_getpcstack(caller, 2, aframes, |
| 3478 | (uint32_t *)(uintptr_t)mstate->dtms_arg[0]); |
| 3479 | mstate->dtms_caller = caller[1]; |
| 3480 | } else if ((mstate->dtms_caller = |
| 3481 | dtrace_caller(aframes)) == (uintptr_t)-1) { |
| 3482 | /* |
| 3483 | * We have failed to do this the quick way; |
| 3484 | * we must resort to the slower approach of |
| 3485 | * calling dtrace_getpcstack(). |
| 3486 | */ |
| 3487 | pc_t caller; |
| 3488 | |
| 3489 | dtrace_getpcstack(&caller, 1, aframes, NULL); |
| 3490 | mstate->dtms_caller = caller; |
| 3491 | } |
| 3492 | |
| 3493 | mstate->dtms_present |= DTRACE_MSTATE_CALLER; |
| 3494 | } |
| 3495 | return (mstate->dtms_caller); |
| 3496 | |
| 3497 | case DIF_VAR_UCALLER: |
| 3498 | if (!dtrace_priv_proc(state)) |
| 3499 | return (0); |
| 3500 | |
| 3501 | if (!(mstate->dtms_present & DTRACE_MSTATE_UCALLER)) { |
| 3502 | uint64_t ustack[3]; |
| 3503 | |
| 3504 | /* |
| 3505 | * dtrace_getupcstack() fills in the first uint64_t |
| 3506 | * with the current PID. The second uint64_t will |
| 3507 | * be the program counter at user-level. The third |
| 3508 | * uint64_t will contain the caller, which is what |
| 3509 | * we're after. |
| 3510 | */ |
| 3511 | ustack[2] = 0; |
| 3512 | DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); |
| 3513 | dtrace_getupcstack(ustack, 3); |
| 3514 | DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); |
| 3515 | mstate->dtms_ucaller = ustack[2]; |
| 3516 | mstate->dtms_present |= DTRACE_MSTATE_UCALLER; |
| 3517 | } |
| 3518 | |
| 3519 | return (mstate->dtms_ucaller); |
| 3520 | |
| 3521 | case DIF_VAR_PROBEPROV: |
| 3522 | ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); |
| 3523 | return (dtrace_dif_varstr( |
| 3524 | addr: (uintptr_t)mstate->dtms_probe->dtpr_provider->dtpv_name, |
| 3525 | state, mstate)); |
| 3526 | |
| 3527 | case DIF_VAR_PROBEMOD: |
| 3528 | ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); |
| 3529 | return (dtrace_dif_varstr( |
| 3530 | addr: (uintptr_t)mstate->dtms_probe->dtpr_mod, |
| 3531 | state, mstate)); |
| 3532 | |
| 3533 | case DIF_VAR_PROBEFUNC: |
| 3534 | ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); |
| 3535 | return (dtrace_dif_varstr( |
| 3536 | addr: (uintptr_t)mstate->dtms_probe->dtpr_func, |
| 3537 | state, mstate)); |
| 3538 | |
| 3539 | case DIF_VAR_PROBENAME: |
| 3540 | ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE); |
| 3541 | return (dtrace_dif_varstr( |
| 3542 | addr: (uintptr_t)mstate->dtms_probe->dtpr_name, |
| 3543 | state, mstate)); |
| 3544 | |
| 3545 | case DIF_VAR_PID: |
| 3546 | if (!dtrace_priv_proc_relaxed(state)) |
| 3547 | return (0); |
| 3548 | |
| 3549 | /* |
| 3550 | * Note that we are assuming that an unanchored probe is |
| 3551 | * always due to a high-level interrupt. (And we're assuming |
| 3552 | * that there is only a single high level interrupt.) |
| 3553 | */ |
| 3554 | if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) |
| 3555 | /* Anchored probe that fires while on an interrupt accrues to process 0 */ |
| 3556 | return 0; |
| 3557 | |
| 3558 | return ((uint64_t)dtrace_proc_selfpid()); |
| 3559 | |
| 3560 | case DIF_VAR_PPID: |
| 3561 | if (!dtrace_priv_proc_relaxed(state)) |
| 3562 | return (0); |
| 3563 | |
| 3564 | /* |
| 3565 | * See comment in DIF_VAR_PID. |
| 3566 | */ |
| 3567 | if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) |
| 3568 | return (0); |
| 3569 | |
| 3570 | return ((uint64_t)dtrace_proc_selfppid()); |
| 3571 | |
| 3572 | case DIF_VAR_TID: |
| 3573 | /* We do not need to check for null current_thread() */ |
| 3574 | return thread_tid(thread: current_thread()); /* globally unique */ |
| 3575 | |
| 3576 | case DIF_VAR_PTHREAD_SELF: |
| 3577 | if (!dtrace_priv_proc(state)) |
| 3578 | return (0); |
| 3579 | |
| 3580 | /* Not currently supported, but we should be able to delta the dispatchqaddr and dispatchqoffset to get pthread_self */ |
| 3581 | return 0; |
| 3582 | |
| 3583 | case DIF_VAR_DISPATCHQADDR: |
| 3584 | if (!dtrace_priv_proc(state)) |
| 3585 | return (0); |
| 3586 | |
| 3587 | /* We do not need to check for null current_thread() */ |
| 3588 | return thread_dispatchqaddr(thread: current_thread()); |
| 3589 | |
| 3590 | case DIF_VAR_EXECNAME: |
| 3591 | { |
| 3592 | char *xname = (char *)mstate->dtms_scratch_ptr; |
| 3593 | char *pname = proc_best_name(curproc); |
| 3594 | size_t scratch_size = sizeof(proc_name_t); |
| 3595 | |
| 3596 | /* The scratch allocation's lifetime is that of the clause. */ |
| 3597 | if (!DTRACE_INSCRATCH(mstate, scratch_size)) { |
| 3598 | DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); |
| 3599 | return 0; |
| 3600 | } |
| 3601 | |
| 3602 | if (!dtrace_priv_proc_relaxed(state)) |
| 3603 | return (0); |
| 3604 | |
| 3605 | mstate->dtms_scratch_ptr += scratch_size; |
| 3606 | strlcpy(dst: xname, src: pname, n: scratch_size); |
| 3607 | |
| 3608 | return ((uint64_t)(uintptr_t)xname); |
| 3609 | } |
| 3610 | |
| 3611 | |
| 3612 | case DIF_VAR_ZONENAME: |
| 3613 | { |
| 3614 | /* scratch_size is equal to length('global') + 1 for the null-terminator. */ |
| 3615 | char *zname = (char *)mstate->dtms_scratch_ptr; |
| 3616 | size_t scratch_size = 6 + 1; |
| 3617 | |
| 3618 | if (!dtrace_priv_proc(state)) |
| 3619 | return (0); |
| 3620 | |
| 3621 | /* The scratch allocation's lifetime is that of the clause. */ |
| 3622 | if (!DTRACE_INSCRATCH(mstate, scratch_size)) { |
| 3623 | DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); |
| 3624 | return 0; |
| 3625 | } |
| 3626 | |
| 3627 | mstate->dtms_scratch_ptr += scratch_size; |
| 3628 | |
| 3629 | /* The kernel does not provide zonename, it will always return 'global'. */ |
| 3630 | strlcpy(dst: zname, src: "global" , n: scratch_size); |
| 3631 | |
| 3632 | return ((uint64_t)(uintptr_t)zname); |
| 3633 | } |
| 3634 | |
| 3635 | #if CONFIG_PERVASIVE_CPI && CONFIG_CPU_COUNTERS |
| 3636 | case DIF_VAR_CPUINSTRS: |
| 3637 | return mt_cur_cpu_instrs(); |
| 3638 | |
| 3639 | case DIF_VAR_CPUCYCLES: |
| 3640 | return mt_cur_cpu_cycles(); |
| 3641 | |
| 3642 | case DIF_VAR_VINSTRS: { |
| 3643 | struct recount_usage usage = { 0 }; |
| 3644 | recount_current_thread_usage(&usage); |
| 3645 | return recount_usage_instructions(&usage); |
| 3646 | } |
| 3647 | |
| 3648 | case DIF_VAR_VCYCLES: { |
| 3649 | struct recount_usage usage = { 0 }; |
| 3650 | recount_current_thread_usage(&usage); |
| 3651 | return recount_usage_cycles(&usage); |
| 3652 | } |
| 3653 | |
| 3654 | #else /* CONFIG_PERVASIVE_CPI && CONFIG_CPU_COUNTERS */ |
| 3655 | case DIF_VAR_CPUINSTRS: |
| 3656 | case DIF_VAR_CPUCYCLES: |
| 3657 | case DIF_VAR_VINSTRS: |
| 3658 | case DIF_VAR_VCYCLES: |
| 3659 | return 0; |
| 3660 | #endif /* !CONFIG_PERVASIVE_CPI || !CONFIG_CPU_COUNTERS */ |
| 3661 | |
| 3662 | case DIF_VAR_UID: |
| 3663 | if (!dtrace_priv_proc_relaxed(state)) |
| 3664 | return (0); |
| 3665 | |
| 3666 | /* |
| 3667 | * See comment in DIF_VAR_PID. |
| 3668 | */ |
| 3669 | if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) |
| 3670 | return (0); |
| 3671 | |
| 3672 | return ((uint64_t) dtrace_proc_selfruid()); |
| 3673 | |
| 3674 | case DIF_VAR_GID: |
| 3675 | if (!dtrace_priv_proc(state)) |
| 3676 | return (0); |
| 3677 | |
| 3678 | /* |
| 3679 | * See comment in DIF_VAR_PID. |
| 3680 | */ |
| 3681 | if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) |
| 3682 | return (0); |
| 3683 | |
| 3684 | if (dtrace_CRED() != NULL) |
| 3685 | /* Credential does not require lazy initialization. */ |
| 3686 | return ((uint64_t)kauth_getgid()); |
| 3687 | else { |
| 3688 | /* proc_lock would be taken under kauth_cred_proc_ref() in kauth_cred_get(). */ |
| 3689 | DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); |
| 3690 | return -1ULL; |
| 3691 | } |
| 3692 | |
| 3693 | case DIF_VAR_ERRNO: { |
| 3694 | uthread_t uthread = current_uthread(); |
| 3695 | if (!dtrace_priv_proc(state)) |
| 3696 | return (0); |
| 3697 | |
| 3698 | /* |
| 3699 | * See comment in DIF_VAR_PID. |
| 3700 | */ |
| 3701 | if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU)) |
| 3702 | return (0); |
| 3703 | |
| 3704 | if (uthread) |
| 3705 | return (uint64_t)uthread->t_dtrace_errno; |
| 3706 | else { |
| 3707 | DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); |
| 3708 | return -1ULL; |
| 3709 | } |
| 3710 | } |
| 3711 | |
| 3712 | default: |
| 3713 | DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); |
| 3714 | return (0); |
| 3715 | } |
| 3716 | } |
| 3717 | |
| 3718 | typedef enum dtrace_json_state { |
| 3719 | DTRACE_JSON_REST = 1, |
| 3720 | DTRACE_JSON_OBJECT, |
| 3721 | DTRACE_JSON_STRING, |
| 3722 | DTRACE_JSON_STRING_ESCAPE, |
| 3723 | DTRACE_JSON_STRING_ESCAPE_UNICODE, |
| 3724 | DTRACE_JSON_COLON, |
| 3725 | DTRACE_JSON_COMMA, |
| 3726 | DTRACE_JSON_VALUE, |
| 3727 | DTRACE_JSON_IDENTIFIER, |
| 3728 | DTRACE_JSON_NUMBER, |
| 3729 | DTRACE_JSON_NUMBER_FRAC, |
| 3730 | DTRACE_JSON_NUMBER_EXP, |
| 3731 | DTRACE_JSON_COLLECT_OBJECT |
| 3732 | } dtrace_json_state_t; |
| 3733 | |
| 3734 | /* |
| 3735 | * This function possesses just enough knowledge about JSON to extract a single |
| 3736 | * value from a JSON string and store it in the scratch buffer. It is able |
| 3737 | * to extract nested object values, and members of arrays by index. |
| 3738 | * |
| 3739 | * elemlist is a list of JSON keys, stored as packed NUL-terminated strings, to |
| 3740 | * be looked up as we descend into the object tree. e.g. |
| 3741 | * |
| 3742 | * foo[0].bar.baz[32] --> "foo" NUL "0" NUL "bar" NUL "baz" NUL "32" NUL |
| 3743 | * with nelems = 5. |
| 3744 | * |
| 3745 | * The run time of this function must be bounded above by strsize to limit the |
| 3746 | * amount of work done in probe context. As such, it is implemented as a |
| 3747 | * simple state machine, reading one character at a time using safe loads |
| 3748 | * until we find the requested element, hit a parsing error or run off the |
| 3749 | * end of the object or string. |
| 3750 | * |
| 3751 | * As there is no way for a subroutine to return an error without interrupting |
| 3752 | * clause execution, we simply return NULL in the event of a missing key or any |
| 3753 | * other error condition. Each NULL return in this function is commented with |
| 3754 | * the error condition it represents -- parsing or otherwise. |
| 3755 | * |
| 3756 | * The set of states for the state machine closely matches the JSON |
| 3757 | * specification (http://json.org/). Briefly: |
| 3758 | * |
| 3759 | * DTRACE_JSON_REST: |
| 3760 | * Skip whitespace until we find either a top-level Object, moving |
| 3761 | * to DTRACE_JSON_OBJECT; or an Array, moving to DTRACE_JSON_VALUE. |
| 3762 | * |
| 3763 | * DTRACE_JSON_OBJECT: |
| 3764 | * Locate the next key String in an Object. Sets a flag to denote |
| 3765 | * the next String as a key string and moves to DTRACE_JSON_STRING. |
| 3766 | * |
| 3767 | * DTRACE_JSON_COLON: |
| 3768 | * Skip whitespace until we find the colon that separates key Strings |
| 3769 | * from their values. Once found, move to DTRACE_JSON_VALUE. |
| 3770 | * |
| 3771 | * DTRACE_JSON_VALUE: |
| 3772 | * Detects the type of the next value (String, Number, Identifier, Object |
| 3773 | * or Array) and routes to the states that process that type. Here we also |
| 3774 | * deal with the element selector list if we are requested to traverse down |
| 3775 | * into the object tree. |
| 3776 | * |
| 3777 | * DTRACE_JSON_COMMA: |
| 3778 | * Skip whitespace until we find the comma that separates key-value pairs |
| 3779 | * in Objects (returning to DTRACE_JSON_OBJECT) or values in Arrays |
| 3780 | * (similarly DTRACE_JSON_VALUE). All following literal value processing |
| 3781 | * states return to this state at the end of their value, unless otherwise |
| 3782 | * noted. |
| 3783 | * |
| 3784 | * DTRACE_JSON_NUMBER, DTRACE_JSON_NUMBER_FRAC, DTRACE_JSON_NUMBER_EXP: |
| 3785 | * Processes a Number literal from the JSON, including any exponent |
| 3786 | * component that may be present. Numbers are returned as strings, which |
| 3787 | * may be passed to strtoll() if an integer is required. |
| 3788 | * |
| 3789 | * DTRACE_JSON_IDENTIFIER: |
| 3790 | * Processes a "true", "false" or "null" literal in the JSON. |
| 3791 | * |
| 3792 | * DTRACE_JSON_STRING, DTRACE_JSON_STRING_ESCAPE, |
| 3793 | * DTRACE_JSON_STRING_ESCAPE_UNICODE: |
| 3794 | * Processes a String literal from the JSON, whether the String denotes |
| 3795 | * a key, a value or part of a larger Object. Handles all escape sequences |
| 3796 | * present in the specification, including four-digit unicode characters, |
| 3797 | * but merely includes the escape sequence without converting it to the |
| 3798 | * actual escaped character. If the String is flagged as a key, we |
| 3799 | * move to DTRACE_JSON_COLON rather than DTRACE_JSON_COMMA. |
| 3800 | * |
| 3801 | * DTRACE_JSON_COLLECT_OBJECT: |
| 3802 | * This state collects an entire Object (or Array), correctly handling |
| 3803 | * embedded strings. If the full element selector list matches this nested |
| 3804 | * object, we return the Object in full as a string. If not, we use this |
| 3805 | * state to skip to the next value at this level and continue processing. |
| 3806 | */ |
| 3807 | static char * |
| 3808 | dtrace_json(uint64_t size, uintptr_t json, char *elemlist, int nelems, |
| 3809 | char *dest) |
| 3810 | { |
| 3811 | dtrace_json_state_t state = DTRACE_JSON_REST; |
| 3812 | int64_t array_elem = INT64_MIN; |
| 3813 | int64_t array_pos = 0; |
| 3814 | uint8_t escape_unicount = 0; |
| 3815 | boolean_t string_is_key = B_FALSE; |
| 3816 | boolean_t collect_object = B_FALSE; |
| 3817 | boolean_t found_key = B_FALSE; |
| 3818 | boolean_t in_array = B_FALSE; |
| 3819 | uint32_t braces = 0, brackets = 0; |
| 3820 | char *elem = elemlist; |
| 3821 | char *dd = dest; |
| 3822 | uintptr_t cur; |
| 3823 | |
| 3824 | for (cur = json; cur < json + size; cur++) { |
| 3825 | char cc = dtrace_load8(addr: cur); |
| 3826 | if (cc == '\0') |
| 3827 | return (NULL); |
| 3828 | |
| 3829 | switch (state) { |
| 3830 | case DTRACE_JSON_REST: |
| 3831 | if (isspace(cc)) |
| 3832 | break; |
| 3833 | |
| 3834 | if (cc == '{') { |
| 3835 | state = DTRACE_JSON_OBJECT; |
| 3836 | break; |
| 3837 | } |
| 3838 | |
| 3839 | if (cc == '[') { |
| 3840 | in_array = B_TRUE; |
| 3841 | array_pos = 0; |
| 3842 | array_elem = dtrace_strtoll(input: elem, base: 10, limit: size); |
| 3843 | found_key = array_elem == 0 ? B_TRUE : B_FALSE; |
| 3844 | state = DTRACE_JSON_VALUE; |
| 3845 | break; |
| 3846 | } |
| 3847 | |
| 3848 | /* |
| 3849 | * ERROR: expected to find a top-level object or array. |
| 3850 | */ |
| 3851 | return (NULL); |
| 3852 | case DTRACE_JSON_OBJECT: |
| 3853 | if (isspace(cc)) |
| 3854 | break; |
| 3855 | |
| 3856 | if (cc == '"') { |
| 3857 | state = DTRACE_JSON_STRING; |
| 3858 | string_is_key = B_TRUE; |
| 3859 | break; |
| 3860 | } |
| 3861 | |
| 3862 | /* |
| 3863 | * ERROR: either the object did not start with a key |
| 3864 | * string, or we've run off the end of the object |
| 3865 | * without finding the requested key. |
| 3866 | */ |
| 3867 | return (NULL); |
| 3868 | case DTRACE_JSON_STRING: |
| 3869 | if (cc == '\\') { |
| 3870 | *dd++ = '\\'; |
| 3871 | state = DTRACE_JSON_STRING_ESCAPE; |
| 3872 | break; |
| 3873 | } |
| 3874 | |
| 3875 | if (cc == '"') { |
| 3876 | if (collect_object) { |
| 3877 | /* |
| 3878 | * We don't reset the dest here, as |
| 3879 | * the string is part of a larger |
| 3880 | * object being collected. |
| 3881 | */ |
| 3882 | *dd++ = cc; |
| 3883 | collect_object = B_FALSE; |
| 3884 | state = DTRACE_JSON_COLLECT_OBJECT; |
| 3885 | break; |
| 3886 | } |
| 3887 | *dd = '\0'; |
| 3888 | dd = dest; /* reset string buffer */ |
| 3889 | if (string_is_key) { |
| 3890 | if (dtrace_strncmp(s1: dest, s2: elem, |
| 3891 | limit: size) == 0) |
| 3892 | found_key = B_TRUE; |
| 3893 | } else if (found_key) { |
| 3894 | if (nelems > 1) { |
| 3895 | /* |
| 3896 | * We expected an object, not |
| 3897 | * this string. |
| 3898 | */ |
| 3899 | return (NULL); |
| 3900 | } |
| 3901 | return (dest); |
| 3902 | } |
| 3903 | state = string_is_key ? DTRACE_JSON_COLON : |
| 3904 | DTRACE_JSON_COMMA; |
| 3905 | string_is_key = B_FALSE; |
| 3906 | break; |
| 3907 | } |
| 3908 | |
| 3909 | *dd++ = cc; |
| 3910 | break; |
| 3911 | case DTRACE_JSON_STRING_ESCAPE: |
| 3912 | *dd++ = cc; |
| 3913 | if (cc == 'u') { |
| 3914 | escape_unicount = 0; |
| 3915 | state = DTRACE_JSON_STRING_ESCAPE_UNICODE; |
| 3916 | } else { |
| 3917 | state = DTRACE_JSON_STRING; |
| 3918 | } |
| 3919 | break; |
| 3920 | case DTRACE_JSON_STRING_ESCAPE_UNICODE: |
| 3921 | if (!isxdigit(cc)) { |
| 3922 | /* |
| 3923 | * ERROR: invalid unicode escape, expected |
| 3924 | * four valid hexidecimal digits. |
| 3925 | */ |
| 3926 | return (NULL); |
| 3927 | } |
| 3928 | |
| 3929 | *dd++ = cc; |
| 3930 | if (++escape_unicount == 4) |
| 3931 | state = DTRACE_JSON_STRING; |
| 3932 | break; |
| 3933 | case DTRACE_JSON_COLON: |
| 3934 | if (isspace(cc)) |
| 3935 | break; |
| 3936 | |
| 3937 | if (cc == ':') { |
| 3938 | state = DTRACE_JSON_VALUE; |
| 3939 | break; |
| 3940 | } |
| 3941 | |
| 3942 | /* |
| 3943 | * ERROR: expected a colon. |
| 3944 | */ |
| 3945 | return (NULL); |
| 3946 | case DTRACE_JSON_COMMA: |
| 3947 | if (isspace(cc)) |
| 3948 | break; |
| 3949 | |
| 3950 | if (cc == ',') { |
| 3951 | if (in_array) { |
| 3952 | state = DTRACE_JSON_VALUE; |
| 3953 | if (++array_pos == array_elem) |
| 3954 | found_key = B_TRUE; |
| 3955 | } else { |
| 3956 | state = DTRACE_JSON_OBJECT; |
| 3957 | } |
| 3958 | break; |
| 3959 | } |
| 3960 | |
| 3961 | /* |
| 3962 | * ERROR: either we hit an unexpected character, or |
| 3963 | * we reached the end of the object or array without |
| 3964 | * finding the requested key. |
| 3965 | */ |
| 3966 | return (NULL); |
| 3967 | case DTRACE_JSON_IDENTIFIER: |
| 3968 | if (islower(cc)) { |
| 3969 | *dd++ = cc; |
| 3970 | break; |
| 3971 | } |
| 3972 | |
| 3973 | *dd = '\0'; |
| 3974 | dd = dest; /* reset string buffer */ |
| 3975 | |
| 3976 | if (dtrace_strncmp(s1: dest, s2: "true" , limit: 5) == 0 || |
| 3977 | dtrace_strncmp(s1: dest, s2: "false" , limit: 6) == 0 || |
| 3978 | dtrace_strncmp(s1: dest, s2: "null" , limit: 5) == 0) { |
| 3979 | if (found_key) { |
| 3980 | if (nelems > 1) { |
| 3981 | /* |
| 3982 | * ERROR: We expected an object, |
| 3983 | * not this identifier. |
| 3984 | */ |
| 3985 | return (NULL); |
| 3986 | } |
| 3987 | return (dest); |
| 3988 | } else { |
| 3989 | cur--; |
| 3990 | state = DTRACE_JSON_COMMA; |
| 3991 | break; |
| 3992 | } |
| 3993 | } |
| 3994 | |
| 3995 | /* |
| 3996 | * ERROR: we did not recognise the identifier as one |
| 3997 | * of those in the JSON specification. |
| 3998 | */ |
| 3999 | return (NULL); |
| 4000 | case DTRACE_JSON_NUMBER: |
| 4001 | if (cc == '.') { |
| 4002 | *dd++ = cc; |
| 4003 | state = DTRACE_JSON_NUMBER_FRAC; |
| 4004 | break; |
| 4005 | } |
| 4006 | |
| 4007 | if (cc == 'x' || cc == 'X') { |
| 4008 | /* |
| 4009 | * ERROR: specification explicitly excludes |
| 4010 | * hexidecimal or octal numbers. |
| 4011 | */ |
| 4012 | return (NULL); |
| 4013 | } |
| 4014 | |
| 4015 | OS_FALLTHROUGH; |
| 4016 | case DTRACE_JSON_NUMBER_FRAC: |
| 4017 | if (cc == 'e' || cc == 'E') { |
| 4018 | *dd++ = cc; |
| 4019 | state = DTRACE_JSON_NUMBER_EXP; |
| 4020 | break; |
| 4021 | } |
| 4022 | |
| 4023 | if (cc == '+' || cc == '-') { |
| 4024 | /* |
| 4025 | * ERROR: expect sign as part of exponent only. |
| 4026 | */ |
| 4027 | return (NULL); |
| 4028 | } |
| 4029 | OS_FALLTHROUGH; |
| 4030 | case DTRACE_JSON_NUMBER_EXP: |
| 4031 | if (isdigit(cc) || cc == '+' || cc == '-') { |
| 4032 | *dd++ = cc; |
| 4033 | break; |
| 4034 | } |
| 4035 | |
| 4036 | *dd = '\0'; |
| 4037 | dd = dest; /* reset string buffer */ |
| 4038 | if (found_key) { |
| 4039 | if (nelems > 1) { |
| 4040 | /* |
| 4041 | * ERROR: We expected an object, not |
| 4042 | * this number. |
| 4043 | */ |
| 4044 | return (NULL); |
| 4045 | } |
| 4046 | return (dest); |
| 4047 | } |
| 4048 | |
| 4049 | cur--; |
| 4050 | state = DTRACE_JSON_COMMA; |
| 4051 | break; |
| 4052 | case DTRACE_JSON_VALUE: |
| 4053 | if (isspace(cc)) |
| 4054 | break; |
| 4055 | |
| 4056 | if (cc == '{' || cc == '[') { |
| 4057 | if (nelems > 1 && found_key) { |
| 4058 | in_array = cc == '[' ? B_TRUE : B_FALSE; |
| 4059 | /* |
| 4060 | * If our element selector directs us |
| 4061 | * to descend into this nested object, |
| 4062 | * then move to the next selector |
| 4063 | * element in the list and restart the |
| 4064 | * state machine. |
| 4065 | */ |
| 4066 | while (*elem != '\0') |
| 4067 | elem++; |
| 4068 | elem++; /* skip the inter-element NUL */ |
| 4069 | nelems--; |
| 4070 | dd = dest; |
| 4071 | if (in_array) { |
| 4072 | state = DTRACE_JSON_VALUE; |
| 4073 | array_pos = 0; |
| 4074 | array_elem = dtrace_strtoll( |
| 4075 | input: elem, base: 10, limit: size); |
| 4076 | found_key = array_elem == 0 ? |
| 4077 | B_TRUE : B_FALSE; |
| 4078 | } else { |
| 4079 | found_key = B_FALSE; |
| 4080 | state = DTRACE_JSON_OBJECT; |
| 4081 | } |
| 4082 | break; |
| 4083 | } |
| 4084 | |
| 4085 | /* |
| 4086 | * Otherwise, we wish to either skip this |
| 4087 | * nested object or return it in full. |
| 4088 | */ |
| 4089 | if (cc == '[') |
| 4090 | brackets = 1; |
| 4091 | else |
| 4092 | braces = 1; |
| 4093 | *dd++ = cc; |
| 4094 | state = DTRACE_JSON_COLLECT_OBJECT; |
| 4095 | break; |
| 4096 | } |
| 4097 | |
| 4098 | if (cc == '"') { |
| 4099 | state = DTRACE_JSON_STRING; |
| 4100 | break; |
| 4101 | } |
| 4102 | |
| 4103 | if (islower(cc)) { |
| 4104 | /* |
| 4105 | * Here we deal with true, false and null. |
| 4106 | */ |
| 4107 | *dd++ = cc; |
| 4108 | state = DTRACE_JSON_IDENTIFIER; |
| 4109 | break; |
| 4110 | } |
| 4111 | |
| 4112 | if (cc == '-' || isdigit(cc)) { |
| 4113 | *dd++ = cc; |
| 4114 | state = DTRACE_JSON_NUMBER; |
| 4115 | break; |
| 4116 | } |
| 4117 | |
| 4118 | /* |
| 4119 | * ERROR: unexpected character at start of value. |
| 4120 | */ |
| 4121 | return (NULL); |
| 4122 | case DTRACE_JSON_COLLECT_OBJECT: |
| 4123 | if (cc == '\0') |
| 4124 | /* |
| 4125 | * ERROR: unexpected end of input. |
| 4126 | */ |
| 4127 | return (NULL); |
| 4128 | |
| 4129 | *dd++ = cc; |
| 4130 | if (cc == '"') { |
| 4131 | collect_object = B_TRUE; |
| 4132 | state = DTRACE_JSON_STRING; |
| 4133 | break; |
| 4134 | } |
| 4135 | |
| 4136 | if (cc == ']') { |
| 4137 | if (brackets-- == 0) { |
| 4138 | /* |
| 4139 | * ERROR: unbalanced brackets. |
| 4140 | */ |
| 4141 | return (NULL); |
| 4142 | } |
| 4143 | } else if (cc == '}') { |
| 4144 | if (braces-- == 0) { |
| 4145 | /* |
| 4146 | * ERROR: unbalanced braces. |
| 4147 | */ |
| 4148 | return (NULL); |
| 4149 | } |
| 4150 | } else if (cc == '{') { |
| 4151 | braces++; |
| 4152 | } else if (cc == '[') { |
| 4153 | brackets++; |
| 4154 | } |
| 4155 | |
| 4156 | if (brackets == 0 && braces == 0) { |
| 4157 | if (found_key) { |
| 4158 | *dd = '\0'; |
| 4159 | return (dest); |
| 4160 | } |
| 4161 | dd = dest; /* reset string buffer */ |
| 4162 | state = DTRACE_JSON_COMMA; |
| 4163 | } |
| 4164 | break; |
| 4165 | } |
| 4166 | } |
| 4167 | return (NULL); |
| 4168 | } |
| 4169 | |
| 4170 | /* |
| 4171 | * Emulate the execution of DTrace ID subroutines invoked by the call opcode. |
| 4172 | * Notice that we don't bother validating the proper number of arguments or |
| 4173 | * their types in the tuple stack. This isn't needed because all argument |
| 4174 | * interpretation is safe because of our load safety -- the worst that can |
| 4175 | * happen is that a bogus program can obtain bogus results. |
| 4176 | */ |
| 4177 | static void |
| 4178 | dtrace_dif_subr(uint_t subr, uint_t rd, uint64_t *regs, |
| 4179 | dtrace_key_t *tupregs, int nargs, |
| 4180 | dtrace_mstate_t *mstate, dtrace_state_t *state) |
| 4181 | { |
| 4182 | volatile uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; |
| 4183 | volatile uint64_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval; |
| 4184 | dtrace_vstate_t *vstate = &state->dts_vstate; |
| 4185 | |
| 4186 | #if !defined(__APPLE__) |
| 4187 | union { |
| 4188 | mutex_impl_t mi; |
| 4189 | uint64_t mx; |
| 4190 | } m; |
| 4191 | |
| 4192 | union { |
| 4193 | krwlock_t ri; |
| 4194 | uintptr_t rw; |
| 4195 | } r; |
| 4196 | #else |
| 4197 | /* FIXME: awaits lock/mutex work */ |
| 4198 | #endif /* __APPLE__ */ |
| 4199 | |
| 4200 | switch (subr) { |
| 4201 | case DIF_SUBR_RAND: |
| 4202 | regs[rd] = dtrace_xoroshiro128_plus_next( |
| 4203 | state->dts_rstate[CPU->cpu_id]); |
| 4204 | break; |
| 4205 | |
| 4206 | #if !defined(__APPLE__) |
| 4207 | case DIF_SUBR_MUTEX_OWNED: |
| 4208 | if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), |
| 4209 | mstate, vstate)) { |
| 4210 | regs[rd] = 0; |
| 4211 | break; |
| 4212 | } |
| 4213 | |
| 4214 | m.mx = dtrace_load64(tupregs[0].dttk_value); |
| 4215 | if (MUTEX_TYPE_ADAPTIVE(&m.mi)) |
| 4216 | regs[rd] = MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER; |
| 4217 | else |
| 4218 | regs[rd] = LOCK_HELD(&m.mi.m_spin.m_spinlock); |
| 4219 | break; |
| 4220 | |
| 4221 | case DIF_SUBR_MUTEX_OWNER: |
| 4222 | if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), |
| 4223 | mstate, vstate)) { |
| 4224 | regs[rd] = 0; |
| 4225 | break; |
| 4226 | } |
| 4227 | |
| 4228 | m.mx = dtrace_load64(tupregs[0].dttk_value); |
| 4229 | if (MUTEX_TYPE_ADAPTIVE(&m.mi) && |
| 4230 | MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER) |
| 4231 | regs[rd] = (uintptr_t)MUTEX_OWNER(&m.mi); |
| 4232 | else |
| 4233 | regs[rd] = 0; |
| 4234 | break; |
| 4235 | |
| 4236 | case DIF_SUBR_MUTEX_TYPE_ADAPTIVE: |
| 4237 | if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), |
| 4238 | mstate, vstate)) { |
| 4239 | regs[rd] = 0; |
| 4240 | break; |
| 4241 | } |
| 4242 | |
| 4243 | m.mx = dtrace_load64(tupregs[0].dttk_value); |
| 4244 | regs[rd] = MUTEX_TYPE_ADAPTIVE(&m.mi); |
| 4245 | break; |
| 4246 | |
| 4247 | case DIF_SUBR_MUTEX_TYPE_SPIN: |
| 4248 | if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t), |
| 4249 | mstate, vstate)) { |
| 4250 | regs[rd] = 0; |
| 4251 | break; |
| 4252 | } |
| 4253 | |
| 4254 | m.mx = dtrace_load64(tupregs[0].dttk_value); |
| 4255 | regs[rd] = MUTEX_TYPE_SPIN(&m.mi); |
| 4256 | break; |
| 4257 | |
| 4258 | case DIF_SUBR_RW_READ_HELD: { |
| 4259 | uintptr_t tmp; |
| 4260 | |
| 4261 | if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t), |
| 4262 | mstate, vstate)) { |
| 4263 | regs[rd] = 0; |
| 4264 | break; |
| 4265 | } |
| 4266 | |
| 4267 | r.rw = dtrace_loadptr(tupregs[0].dttk_value); |
| 4268 | regs[rd] = _RW_READ_HELD(&r.ri, tmp); |
| 4269 | break; |
| 4270 | } |
| 4271 | |
| 4272 | case DIF_SUBR_RW_WRITE_HELD: |
| 4273 | if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t), |
| 4274 | mstate, vstate)) { |
| 4275 | regs[rd] = 0; |
| 4276 | break; |
| 4277 | } |
| 4278 | |
| 4279 | r.rw = dtrace_loadptr(tupregs[0].dttk_value); |
| 4280 | regs[rd] = _RW_WRITE_HELD(&r.ri); |
| 4281 | break; |
| 4282 | |
| 4283 | case DIF_SUBR_RW_ISWRITER: |
| 4284 | if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t), |
| 4285 | mstate, vstate)) { |
| 4286 | regs[rd] = 0; |
| 4287 | break; |
| 4288 | } |
| 4289 | |
| 4290 | r.rw = dtrace_loadptr(tupregs[0].dttk_value); |
| 4291 | regs[rd] = _RW_ISWRITER(&r.ri); |
| 4292 | break; |
| 4293 | #else |
| 4294 | /* FIXME: awaits lock/mutex work */ |
| 4295 | #endif /* __APPLE__ */ |
| 4296 | |
| 4297 | case DIF_SUBR_BCOPY: { |
| 4298 | /* |
| 4299 | * We need to be sure that the destination is in the scratch |
| 4300 | * region -- no other region is allowed. |
| 4301 | */ |
| 4302 | uintptr_t src = tupregs[0].dttk_value; |
| 4303 | uintptr_t dest = tupregs[1].dttk_value; |
| 4304 | size_t size = tupregs[2].dttk_value; |
| 4305 | |
| 4306 | if (!dtrace_inscratch(dest, size, mstate)) { |
| 4307 | *flags |= CPU_DTRACE_BADADDR; |
| 4308 | *illval = regs[rd]; |
| 4309 | break; |
| 4310 | } |
| 4311 | |
| 4312 | if (!dtrace_canload(addr: src, sz: size, mstate, vstate)) { |
| 4313 | regs[rd] = 0; |
| 4314 | break; |
| 4315 | } |
| 4316 | |
| 4317 | dtrace_bcopy(src: (void *)src, dst: (void *)dest, len: size); |
| 4318 | break; |
| 4319 | } |
| 4320 | |
| 4321 | case DIF_SUBR_ALLOCA: |
| 4322 | case DIF_SUBR_COPYIN: { |
| 4323 | uintptr_t dest = P2ROUNDUP(mstate->dtms_scratch_ptr, 8); |
| 4324 | uint64_t size = |
| 4325 | tupregs[subr == DIF_SUBR_ALLOCA ? 0 : 1].dttk_value; |
| 4326 | size_t scratch_size = (dest - mstate->dtms_scratch_ptr) + size; |
| 4327 | |
| 4328 | /* |
| 4329 | * Check whether the user can access kernel memory |
| 4330 | */ |
| 4331 | if (dtrace_priv_kernel(state) == 0) { |
| 4332 | DTRACE_CPUFLAG_SET(CPU_DTRACE_KPRIV); |
| 4333 | regs[rd] = 0; |
| 4334 | break; |
| 4335 | } |
| 4336 | /* |
| 4337 | * This action doesn't require any credential checks since |
| 4338 | * probes will not activate in user contexts to which the |
| 4339 | * enabling user does not have permissions. |
| 4340 | */ |
| 4341 | |
| 4342 | /* |
| 4343 | * Rounding up the user allocation size could have overflowed |
| 4344 | * a large, bogus allocation (like -1ULL) to 0. |
| 4345 | */ |
| 4346 | if (scratch_size < size || |
| 4347 | !DTRACE_INSCRATCH(mstate, scratch_size)) { |
| 4348 | DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); |
| 4349 | regs[rd] = 0; |
| 4350 | break; |
| 4351 | } |
| 4352 | |
| 4353 | if (subr == DIF_SUBR_COPYIN) { |
| 4354 | DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); |
| 4355 | if (dtrace_priv_proc(state)) |
| 4356 | dtrace_copyin(tupregs[0].dttk_value, dest, size, flags); |
| 4357 | DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); |
| 4358 | } |
| 4359 | |
| 4360 | mstate->dtms_scratch_ptr += scratch_size; |
| 4361 | regs[rd] = dest; |
| 4362 | break; |
| 4363 | } |
| 4364 | |
| 4365 | case DIF_SUBR_COPYINTO: { |
| 4366 | uint64_t size = tupregs[1].dttk_value; |
| 4367 | uintptr_t dest = tupregs[2].dttk_value; |
| 4368 | |
| 4369 | /* |
| 4370 | * This action doesn't require any credential checks since |
| 4371 | * probes will not activate in user contexts to which the |
| 4372 | * enabling user does not have permissions. |
| 4373 | */ |
| 4374 | if (!dtrace_inscratch(dest, size, mstate)) { |
| 4375 | *flags |= CPU_DTRACE_BADADDR; |
| 4376 | *illval = regs[rd]; |
| 4377 | break; |
| 4378 | } |
| 4379 | |
| 4380 | DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); |
| 4381 | if (dtrace_priv_proc(state)) |
| 4382 | dtrace_copyin(tupregs[0].dttk_value, dest, size, flags); |
| 4383 | DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); |
| 4384 | break; |
| 4385 | } |
| 4386 | |
| 4387 | case DIF_SUBR_COPYINSTR: { |
| 4388 | uintptr_t dest = mstate->dtms_scratch_ptr; |
| 4389 | uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; |
| 4390 | |
| 4391 | if (nargs > 1 && tupregs[1].dttk_value < size) |
| 4392 | size = tupregs[1].dttk_value + 1; |
| 4393 | |
| 4394 | /* |
| 4395 | * This action doesn't require any credential checks since |
| 4396 | * probes will not activate in user contexts to which the |
| 4397 | * enabling user does not have permissions. |
| 4398 | */ |
| 4399 | if (!DTRACE_INSCRATCH(mstate, size)) { |
| 4400 | DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); |
| 4401 | regs[rd] = 0; |
| 4402 | break; |
| 4403 | } |
| 4404 | |
| 4405 | DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); |
| 4406 | if (dtrace_priv_proc(state)) |
| 4407 | dtrace_copyinstr(tupregs[0].dttk_value, dest, size, flags); |
| 4408 | DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); |
| 4409 | |
| 4410 | ((char *)dest)[size - 1] = '\0'; |
| 4411 | mstate->dtms_scratch_ptr += size; |
| 4412 | regs[rd] = dest; |
| 4413 | break; |
| 4414 | } |
| 4415 | |
| 4416 | case DIF_SUBR_MSGSIZE: |
| 4417 | case DIF_SUBR_MSGDSIZE: { |
| 4418 | /* Darwin does not implement SysV streams messages */ |
| 4419 | DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); |
| 4420 | regs[rd] = 0; |
| 4421 | break; |
| 4422 | } |
| 4423 | |
| 4424 | case DIF_SUBR_PROGENYOF: { |
| 4425 | pid_t pid = tupregs[0].dttk_value; |
| 4426 | struct proc *p = current_proc(); |
| 4427 | int rval = 0, lim = nprocs; |
| 4428 | |
| 4429 | while(p && (lim-- > 0)) { |
| 4430 | pid_t ppid; |
| 4431 | |
| 4432 | ppid = (pid_t)dtrace_load32(addr: (uintptr_t)&(p->p_pid)); |
| 4433 | if (*flags & CPU_DTRACE_FAULT) |
| 4434 | break; |
| 4435 | |
| 4436 | if (ppid == pid) { |
| 4437 | rval = 1; |
| 4438 | break; |
| 4439 | } |
| 4440 | |
| 4441 | if (ppid == 0) |
| 4442 | break; /* Can't climb process tree any further. */ |
| 4443 | |
| 4444 | p = (struct proc *)dtrace_loadptr(addr: (uintptr_t)&(p->p_pptr)); |
| 4445 | #if __has_feature(ptrauth_calls) |
| 4446 | p = ptrauth_strip(p, ptrauth_key_process_independent_data); |
| 4447 | #endif |
| 4448 | if (*flags & CPU_DTRACE_FAULT) |
| 4449 | break; |
| 4450 | } |
| 4451 | |
| 4452 | regs[rd] = rval; |
| 4453 | break; |
| 4454 | } |
| 4455 | |
| 4456 | case DIF_SUBR_SPECULATION: |
| 4457 | regs[rd] = dtrace_speculation(state); |
| 4458 | break; |
| 4459 | |
| 4460 | |
| 4461 | case DIF_SUBR_COPYOUT: { |
| 4462 | uintptr_t kaddr = tupregs[0].dttk_value; |
| 4463 | user_addr_t uaddr = tupregs[1].dttk_value; |
| 4464 | uint64_t size = tupregs[2].dttk_value; |
| 4465 | |
| 4466 | if (!dtrace_destructive_disallow && |
| 4467 | dtrace_priv_proc_control(state) && |
| 4468 | !dtrace_istoxic(kaddr, size) && |
| 4469 | dtrace_canload(addr: kaddr, sz: size, mstate, vstate)) { |
| 4470 | DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); |
| 4471 | dtrace_copyout(kaddr, uaddr, size, flags); |
| 4472 | DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); |
| 4473 | } |
| 4474 | break; |
| 4475 | } |
| 4476 | |
| 4477 | case DIF_SUBR_COPYOUTSTR: { |
| 4478 | uintptr_t kaddr = tupregs[0].dttk_value; |
| 4479 | user_addr_t uaddr = tupregs[1].dttk_value; |
| 4480 | uint64_t size = tupregs[2].dttk_value; |
| 4481 | size_t lim; |
| 4482 | |
| 4483 | if (!dtrace_destructive_disallow && |
| 4484 | dtrace_priv_proc_control(state) && |
| 4485 | !dtrace_istoxic(kaddr, size) && |
| 4486 | dtrace_strcanload(addr: kaddr, sz: size, remain: &lim, mstate, vstate)) { |
| 4487 | DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); |
| 4488 | dtrace_copyoutstr(kaddr, uaddr, lim, flags); |
| 4489 | DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); |
| 4490 | } |
| 4491 | break; |
| 4492 | } |
| 4493 | |
| 4494 | case DIF_SUBR_STRLEN: { |
| 4495 | size_t size = state->dts_options[DTRACEOPT_STRSIZE]; |
| 4496 | uintptr_t addr = (uintptr_t)tupregs[0].dttk_value; |
| 4497 | size_t lim; |
| 4498 | |
| 4499 | if (!dtrace_strcanload(addr, sz: size, remain: &lim, mstate, vstate)) { |
| 4500 | regs[rd] = 0; |
| 4501 | break; |
| 4502 | } |
| 4503 | |
| 4504 | regs[rd] = dtrace_strlen(s: (char *)addr, lim); |
| 4505 | |
| 4506 | break; |
| 4507 | } |
| 4508 | |
| 4509 | case DIF_SUBR_STRCHR: |
| 4510 | case DIF_SUBR_STRRCHR: { |
| 4511 | /* |
| 4512 | * We're going to iterate over the string looking for the |
| 4513 | * specified character. We will iterate until we have reached |
| 4514 | * the string length or we have found the character. If this |
| 4515 | * is DIF_SUBR_STRRCHR, we will look for the last occurrence |
| 4516 | * of the specified character instead of the first. |
| 4517 | */ |
| 4518 | uintptr_t addr = tupregs[0].dttk_value; |
| 4519 | uintptr_t addr_limit; |
| 4520 | uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; |
| 4521 | size_t lim; |
| 4522 | char c, target = (char)tupregs[1].dttk_value; |
| 4523 | |
| 4524 | if (!dtrace_strcanload(addr, sz: size, remain: &lim, mstate, vstate)) { |
| 4525 | regs[rd] = 0; |
| 4526 | break; |
| 4527 | } |
| 4528 | addr_limit = addr + lim; |
| 4529 | |
| 4530 | for (regs[rd] = 0; addr < addr_limit; addr++) { |
| 4531 | if ((c = dtrace_load8(addr)) == target) { |
| 4532 | regs[rd] = addr; |
| 4533 | |
| 4534 | if (subr == DIF_SUBR_STRCHR) |
| 4535 | break; |
| 4536 | } |
| 4537 | |
| 4538 | if (c == '\0') |
| 4539 | break; |
| 4540 | } |
| 4541 | |
| 4542 | break; |
| 4543 | } |
| 4544 | |
| 4545 | case DIF_SUBR_STRSTR: |
| 4546 | case DIF_SUBR_INDEX: |
| 4547 | case DIF_SUBR_RINDEX: { |
| 4548 | /* |
| 4549 | * We're going to iterate over the string looking for the |
| 4550 | * specified string. We will iterate until we have reached |
| 4551 | * the string length or we have found the string. (Yes, this |
| 4552 | * is done in the most naive way possible -- but considering |
| 4553 | * that the string we're searching for is likely to be |
| 4554 | * relatively short, the complexity of Rabin-Karp or similar |
| 4555 | * hardly seems merited.) |
| 4556 | */ |
| 4557 | char *addr = (char *)(uintptr_t)tupregs[0].dttk_value; |
| 4558 | char *substr = (char *)(uintptr_t)tupregs[1].dttk_value; |
| 4559 | uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; |
| 4560 | size_t len = dtrace_strlen(s: addr, lim: size); |
| 4561 | size_t sublen = dtrace_strlen(s: substr, lim: size); |
| 4562 | char *limit = addr + len, *orig = addr; |
| 4563 | int notfound = subr == DIF_SUBR_STRSTR ? 0 : -1; |
| 4564 | int inc = 1; |
| 4565 | |
| 4566 | regs[rd] = notfound; |
| 4567 | |
| 4568 | if (!dtrace_canload(addr: (uintptr_t)addr, sz: len + 1, mstate, vstate)) { |
| 4569 | regs[rd] = 0; |
| 4570 | break; |
| 4571 | } |
| 4572 | |
| 4573 | if (!dtrace_canload(addr: (uintptr_t)substr, sz: sublen + 1, mstate, |
| 4574 | vstate)) { |
| 4575 | regs[rd] = 0; |
| 4576 | break; |
| 4577 | } |
| 4578 | |
| 4579 | /* |
| 4580 | * strstr() and index()/rindex() have similar semantics if |
| 4581 | * both strings are the empty string: strstr() returns a |
| 4582 | * pointer to the (empty) string, and index() and rindex() |
| 4583 | * both return index 0 (regardless of any position argument). |
| 4584 | */ |
| 4585 | if (sublen == 0 && len == 0) { |
| 4586 | if (subr == DIF_SUBR_STRSTR) |
| 4587 | regs[rd] = (uintptr_t)addr; |
| 4588 | else |
| 4589 | regs[rd] = 0; |
| 4590 | break; |
| 4591 | } |
| 4592 | |
| 4593 | if (subr != DIF_SUBR_STRSTR) { |
| 4594 | if (subr == DIF_SUBR_RINDEX) { |
| 4595 | limit = orig - 1; |
| 4596 | addr += len; |
| 4597 | inc = -1; |
| 4598 | } |
| 4599 | |
| 4600 | /* |
| 4601 | * Both index() and rindex() take an optional position |
| 4602 | * argument that denotes the starting position. |
| 4603 | */ |
| 4604 | if (nargs == 3) { |
| 4605 | int64_t pos = (int64_t)tupregs[2].dttk_value; |
| 4606 | |
| 4607 | /* |
| 4608 | * If the position argument to index() is |
| 4609 | * negative, Perl implicitly clamps it at |
| 4610 | * zero. This semantic is a little surprising |
| 4611 | * given the special meaning of negative |
| 4612 | * positions to similar Perl functions like |
| 4613 | * substr(), but it appears to reflect a |
| 4614 | * notion that index() can start from a |
| 4615 | * negative index and increment its way up to |
| 4616 | * the string. Given this notion, Perl's |
| 4617 | * rindex() is at least self-consistent in |
| 4618 | * that it implicitly clamps positions greater |
| 4619 | * than the string length to be the string |
| 4620 | * length. Where Perl completely loses |
| 4621 | * coherence, however, is when the specified |
| 4622 | * substring is the empty string (""). In |
| 4623 | * this case, even if the position is |
| 4624 | * negative, rindex() returns 0 -- and even if |
| 4625 | * the position is greater than the length, |
| 4626 | * index() returns the string length. These |
| 4627 | * semantics violate the notion that index() |
| 4628 | * should never return a value less than the |
| 4629 | * specified position and that rindex() should |
| 4630 | * never return a value greater than the |
| 4631 | * specified position. (One assumes that |
| 4632 | * these semantics are artifacts of Perl's |
| 4633 | * implementation and not the results of |
| 4634 | * deliberate design -- it beggars belief that |
| 4635 | * even Larry Wall could desire such oddness.) |
| 4636 | * While in the abstract one would wish for |
| 4637 | * consistent position semantics across |
| 4638 | * substr(), index() and rindex() -- or at the |
| 4639 | * very least self-consistent position |
| 4640 | * semantics for index() and rindex() -- we |
| 4641 | * instead opt to keep with the extant Perl |
| 4642 | * semantics, in all their broken glory. (Do |
| 4643 | * we have more desire to maintain Perl's |
| 4644 | * semantics than Perl does? Probably.) |
| 4645 | */ |
| 4646 | if (subr == DIF_SUBR_RINDEX) { |
| 4647 | if (pos < 0) { |
| 4648 | if (sublen == 0) |
| 4649 | regs[rd] = 0; |
| 4650 | break; |
| 4651 | } |
| 4652 | |
| 4653 | if ((size_t)pos > len) |
| 4654 | pos = len; |
| 4655 | } else { |
| 4656 | if (pos < 0) |
| 4657 | pos = 0; |
| 4658 | |
| 4659 | if ((size_t)pos >= len) { |
| 4660 | if (sublen == 0) |
| 4661 | regs[rd] = len; |
| 4662 | break; |
| 4663 | } |
| 4664 | } |
| 4665 | |
| 4666 | addr = orig + pos; |
| 4667 | } |
| 4668 | } |
| 4669 | |
| 4670 | for (regs[rd] = notfound; addr != limit; addr += inc) { |
| 4671 | if (dtrace_strncmp(s1: addr, s2: substr, limit: sublen) == 0) { |
| 4672 | if (subr != DIF_SUBR_STRSTR) { |
| 4673 | /* |
| 4674 | * As D index() and rindex() are |
| 4675 | * modeled on Perl (and not on awk), |
| 4676 | * we return a zero-based (and not a |
| 4677 | * one-based) index. (For you Perl |
| 4678 | * weenies: no, we're not going to add |
| 4679 | * $[ -- and shouldn't you be at a con |
| 4680 | * or something?) |
| 4681 | */ |
| 4682 | regs[rd] = (uintptr_t)(addr - orig); |
| 4683 | break; |
| 4684 | } |
| 4685 | |
| 4686 | ASSERT(subr == DIF_SUBR_STRSTR); |
| 4687 | regs[rd] = (uintptr_t)addr; |
| 4688 | break; |
| 4689 | } |
| 4690 | } |
| 4691 | |
| 4692 | break; |
| 4693 | } |
| 4694 | |
| 4695 | case DIF_SUBR_STRTOK: { |
| 4696 | uintptr_t addr = tupregs[0].dttk_value; |
| 4697 | uintptr_t tokaddr = tupregs[1].dttk_value; |
| 4698 | uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; |
| 4699 | uintptr_t limit, toklimit; |
| 4700 | size_t clim; |
| 4701 | char *dest = (char *)mstate->dtms_scratch_ptr; |
| 4702 | uint8_t c='\0', tokmap[32]; /* 256 / 8 */ |
| 4703 | uint64_t i = 0; |
| 4704 | |
| 4705 | /* |
| 4706 | * Check both the token buffer and (later) the input buffer, |
| 4707 | * since both could be non-scratch addresses. |
| 4708 | */ |
| 4709 | if (!dtrace_strcanload(addr: tokaddr, sz: size, remain: &clim, mstate, vstate)) { |
| 4710 | regs[rd] = 0; |
| 4711 | break; |
| 4712 | } |
| 4713 | toklimit = tokaddr + clim; |
| 4714 | |
| 4715 | if (!DTRACE_INSCRATCH(mstate, size)) { |
| 4716 | DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); |
| 4717 | regs[rd] = 0; |
| 4718 | break; |
| 4719 | } |
| 4720 | |
| 4721 | if (addr == 0) { |
| 4722 | /* |
| 4723 | * If the address specified is NULL, we use our saved |
| 4724 | * strtok pointer from the mstate. Note that this |
| 4725 | * means that the saved strtok pointer is _only_ |
| 4726 | * valid within multiple enablings of the same probe -- |
| 4727 | * it behaves like an implicit clause-local variable. |
| 4728 | */ |
| 4729 | addr = mstate->dtms_strtok; |
| 4730 | limit = mstate->dtms_strtok_limit; |
| 4731 | } else { |
| 4732 | /* |
| 4733 | * If the user-specified address is non-NULL we must |
| 4734 | * access check it. This is the only time we have |
| 4735 | * a chance to do so, since this address may reside |
| 4736 | * in the string table of this clause-- future calls |
| 4737 | * (when we fetch addr from mstate->dtms_strtok) |
| 4738 | * would fail this access check. |
| 4739 | */ |
| 4740 | if (!dtrace_strcanload(addr, sz: size, remain: &clim, mstate, |
| 4741 | vstate)) { |
| 4742 | regs[rd] = 0; |
| 4743 | break; |
| 4744 | } |
| 4745 | limit = addr + clim; |
| 4746 | } |
| 4747 | |
| 4748 | /* |
| 4749 | * First, zero the token map, and then process the token |
| 4750 | * string -- setting a bit in the map for every character |
| 4751 | * found in the token string. |
| 4752 | */ |
| 4753 | for (i = 0; i < (int)sizeof (tokmap); i++) |
| 4754 | tokmap[i] = 0; |
| 4755 | |
| 4756 | for (; tokaddr < toklimit; tokaddr++) { |
| 4757 | if ((c = dtrace_load8(addr: tokaddr)) == '\0') |
| 4758 | break; |
| 4759 | |
| 4760 | ASSERT((c >> 3) < sizeof (tokmap)); |
| 4761 | tokmap[c >> 3] |= (1 << (c & 0x7)); |
| 4762 | } |
| 4763 | |
| 4764 | for (; addr < limit; addr++) { |
| 4765 | /* |
| 4766 | * We're looking for a character that is _not_ |
| 4767 | * contained in the token string. |
| 4768 | */ |
| 4769 | if ((c = dtrace_load8(addr)) == '\0') |
| 4770 | break; |
| 4771 | |
| 4772 | if (!(tokmap[c >> 3] & (1 << (c & 0x7)))) |
| 4773 | break; |
| 4774 | } |
| 4775 | |
| 4776 | if (c == '\0') { |
| 4777 | /* |
| 4778 | * We reached the end of the string without finding |
| 4779 | * any character that was not in the token string. |
| 4780 | * We return NULL in this case, and we set the saved |
| 4781 | * address to NULL as well. |
| 4782 | */ |
| 4783 | regs[rd] = 0; |
| 4784 | mstate->dtms_strtok = 0; |
| 4785 | mstate->dtms_strtok_limit = 0; |
| 4786 | break; |
| 4787 | } |
| 4788 | |
| 4789 | /* |
| 4790 | * From here on, we're copying into the destination string. |
| 4791 | */ |
| 4792 | for (i = 0; addr < limit && i < size - 1; addr++) { |
| 4793 | if ((c = dtrace_load8(addr)) == '\0') |
| 4794 | break; |
| 4795 | |
| 4796 | if (tokmap[c >> 3] & (1 << (c & 0x7))) |
| 4797 | break; |
| 4798 | |
| 4799 | ASSERT(i < size); |
| 4800 | dest[i++] = c; |
| 4801 | } |
| 4802 | |
| 4803 | ASSERT(i < size); |
| 4804 | dest[i] = '\0'; |
| 4805 | regs[rd] = (uintptr_t)dest; |
| 4806 | mstate->dtms_scratch_ptr += size; |
| 4807 | mstate->dtms_strtok = addr; |
| 4808 | mstate->dtms_strtok_limit = limit; |
| 4809 | break; |
| 4810 | } |
| 4811 | |
| 4812 | case DIF_SUBR_SUBSTR: { |
| 4813 | uintptr_t s = tupregs[0].dttk_value; |
| 4814 | uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; |
| 4815 | char *d = (char *)mstate->dtms_scratch_ptr; |
| 4816 | int64_t index = (int64_t)tupregs[1].dttk_value; |
| 4817 | int64_t remaining = (int64_t)tupregs[2].dttk_value; |
| 4818 | size_t len = dtrace_strlen(s: (char *)s, lim: size); |
| 4819 | int64_t i = 0; |
| 4820 | |
| 4821 | if (!dtrace_canload(addr: s, sz: len + 1, mstate, vstate)) { |
| 4822 | regs[rd] = 0; |
| 4823 | break; |
| 4824 | } |
| 4825 | |
| 4826 | if (!DTRACE_INSCRATCH(mstate, size)) { |
| 4827 | DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); |
| 4828 | regs[rd] = 0; |
| 4829 | break; |
| 4830 | } |
| 4831 | |
| 4832 | if (nargs <= 2) |
| 4833 | remaining = (int64_t)size; |
| 4834 | |
| 4835 | if (index < 0) { |
| 4836 | index += len; |
| 4837 | |
| 4838 | if (index < 0 && index + remaining > 0) { |
| 4839 | remaining += index; |
| 4840 | index = 0; |
| 4841 | } |
| 4842 | } |
| 4843 | |
| 4844 | if ((size_t)index >= len || index < 0) { |
| 4845 | remaining = 0; |
| 4846 | } else if (remaining < 0) { |
| 4847 | remaining += len - index; |
| 4848 | } else if ((uint64_t)index + (uint64_t)remaining > size) { |
| 4849 | remaining = size - index; |
| 4850 | } |
| 4851 | |
| 4852 | for (i = 0; i < remaining; i++) { |
| 4853 | if ((d[i] = dtrace_load8(addr: s + index + i)) == '\0') |
| 4854 | break; |
| 4855 | } |
| 4856 | |
| 4857 | d[i] = '\0'; |
| 4858 | |
| 4859 | mstate->dtms_scratch_ptr += size; |
| 4860 | regs[rd] = (uintptr_t)d; |
| 4861 | break; |
| 4862 | } |
| 4863 | |
| 4864 | case DIF_SUBR_GETMAJOR: |
| 4865 | regs[rd] = (uintptr_t)major( (dev_t)tupregs[0].dttk_value ); |
| 4866 | break; |
| 4867 | |
| 4868 | case DIF_SUBR_GETMINOR: |
| 4869 | regs[rd] = (uintptr_t)minor( (dev_t)tupregs[0].dttk_value ); |
| 4870 | break; |
| 4871 | |
| 4872 | case DIF_SUBR_DDI_PATHNAME: { |
| 4873 | /* APPLE NOTE: currently unsupported on Darwin */ |
| 4874 | DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); |
| 4875 | regs[rd] = 0; |
| 4876 | break; |
| 4877 | } |
| 4878 | |
| 4879 | case DIF_SUBR_STRJOIN: { |
| 4880 | char *d = (char *)mstate->dtms_scratch_ptr; |
| 4881 | uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; |
| 4882 | uintptr_t s1 = tupregs[0].dttk_value; |
| 4883 | uintptr_t s2 = tupregs[1].dttk_value; |
| 4884 | uint64_t i = 0, j = 0; |
| 4885 | size_t lim1, lim2; |
| 4886 | char c; |
| 4887 | |
| 4888 | if (!dtrace_strcanload(addr: s1, sz: size, remain: &lim1, mstate, vstate) || |
| 4889 | !dtrace_strcanload(addr: s2, sz: size, remain: &lim2, mstate, vstate)) { |
| 4890 | regs[rd] = 0; |
| 4891 | break; |
| 4892 | } |
| 4893 | |
| 4894 | if (!DTRACE_INSCRATCH(mstate, size)) { |
| 4895 | DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); |
| 4896 | regs[rd] = 0; |
| 4897 | break; |
| 4898 | } |
| 4899 | |
| 4900 | for (;;) { |
| 4901 | if (i >= size) { |
| 4902 | DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); |
| 4903 | regs[rd] = 0; |
| 4904 | break; |
| 4905 | } |
| 4906 | c = (i >= lim1) ? '\0' : dtrace_load8(addr: s1++); |
| 4907 | if ((d[i++] = c) == '\0') { |
| 4908 | i--; |
| 4909 | break; |
| 4910 | } |
| 4911 | } |
| 4912 | |
| 4913 | for (;;) { |
| 4914 | if (i >= size) { |
| 4915 | DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); |
| 4916 | regs[rd] = 0; |
| 4917 | break; |
| 4918 | } |
| 4919 | c = (j++ >= lim2) ? '\0' : dtrace_load8(addr: s2++); |
| 4920 | if ((d[i++] = c) == '\0') |
| 4921 | break; |
| 4922 | } |
| 4923 | |
| 4924 | if (i < size) { |
| 4925 | mstate->dtms_scratch_ptr += i; |
| 4926 | regs[rd] = (uintptr_t)d; |
| 4927 | } |
| 4928 | |
| 4929 | break; |
| 4930 | } |
| 4931 | |
| 4932 | case DIF_SUBR_STRTOLL: { |
| 4933 | uintptr_t s = tupregs[0].dttk_value; |
| 4934 | uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; |
| 4935 | size_t lim; |
| 4936 | int base = 10; |
| 4937 | |
| 4938 | if (nargs > 1) { |
| 4939 | if ((base = tupregs[1].dttk_value) <= 1 || |
| 4940 | base > ('z' - 'a' + 1) + ('9' - '0' + 1)) { |
| 4941 | *flags |= CPU_DTRACE_ILLOP; |
| 4942 | break; |
| 4943 | } |
| 4944 | } |
| 4945 | |
| 4946 | if (!dtrace_strcanload(addr: s, sz: size, remain: &lim, mstate, vstate)) { |
| 4947 | regs[rd] = INT64_MIN; |
| 4948 | break; |
| 4949 | } |
| 4950 | |
| 4951 | regs[rd] = dtrace_strtoll(input: (char *)s, base, limit: lim); |
| 4952 | break; |
| 4953 | } |
| 4954 | |
| 4955 | case DIF_SUBR_LLTOSTR: { |
| 4956 | int64_t i = (int64_t)tupregs[0].dttk_value; |
| 4957 | uint64_t val, digit; |
| 4958 | uint64_t size = 65; /* enough room for 2^64 in binary */ |
| 4959 | char *end = (char *)mstate->dtms_scratch_ptr + size - 1; |
| 4960 | int base = 10; |
| 4961 | |
| 4962 | if (nargs > 1) { |
| 4963 | if ((base = tupregs[1].dttk_value) <= 1 || |
| 4964 | base > ('z' - 'a' + 1) + ('9' - '0' + 1)) { |
| 4965 | *flags |= CPU_DTRACE_ILLOP; |
| 4966 | break; |
| 4967 | } |
| 4968 | } |
| 4969 | |
| 4970 | val = (base == 10 && i < 0) ? i * -1 : i; |
| 4971 | |
| 4972 | if (!DTRACE_INSCRATCH(mstate, size)) { |
| 4973 | DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); |
| 4974 | regs[rd] = 0; |
| 4975 | break; |
| 4976 | } |
| 4977 | |
| 4978 | for (*end-- = '\0'; val; val /= base) { |
| 4979 | if ((digit = val % base) <= '9' - '0') { |
| 4980 | *end-- = '0' + digit; |
| 4981 | } else { |
| 4982 | *end-- = 'a' + (digit - ('9' - '0') - 1); |
| 4983 | } |
| 4984 | } |
| 4985 | |
| 4986 | if (i == 0 && base == 16) |
| 4987 | *end-- = '0'; |
| 4988 | |
| 4989 | if (base == 16) |
| 4990 | *end-- = 'x'; |
| 4991 | |
| 4992 | if (i == 0 || base == 8 || base == 16) |
| 4993 | *end-- = '0'; |
| 4994 | |
| 4995 | if (i < 0 && base == 10) |
| 4996 | *end-- = '-'; |
| 4997 | |
| 4998 | regs[rd] = (uintptr_t)end + 1; |
| 4999 | mstate->dtms_scratch_ptr += size; |
| 5000 | break; |
| 5001 | } |
| 5002 | |
| 5003 | case DIF_SUBR_HTONS: |
| 5004 | case DIF_SUBR_NTOHS: |
| 5005 | #ifdef _BIG_ENDIAN |
| 5006 | regs[rd] = (uint16_t)tupregs[0].dttk_value; |
| 5007 | #else |
| 5008 | regs[rd] = DT_BSWAP_16((uint16_t)tupregs[0].dttk_value); |
| 5009 | #endif |
| 5010 | break; |
| 5011 | |
| 5012 | |
| 5013 | case DIF_SUBR_HTONL: |
| 5014 | case DIF_SUBR_NTOHL: |
| 5015 | #ifdef _BIG_ENDIAN |
| 5016 | regs[rd] = (uint32_t)tupregs[0].dttk_value; |
| 5017 | #else |
| 5018 | regs[rd] = DT_BSWAP_32((uint32_t)tupregs[0].dttk_value); |
| 5019 | #endif |
| 5020 | break; |
| 5021 | |
| 5022 | |
| 5023 | case DIF_SUBR_HTONLL: |
| 5024 | case DIF_SUBR_NTOHLL: |
| 5025 | #ifdef _BIG_ENDIAN |
| 5026 | regs[rd] = (uint64_t)tupregs[0].dttk_value; |
| 5027 | #else |
| 5028 | regs[rd] = DT_BSWAP_64((uint64_t)tupregs[0].dttk_value); |
| 5029 | #endif |
| 5030 | break; |
| 5031 | |
| 5032 | |
| 5033 | case DIF_SUBR_DIRNAME: |
| 5034 | case DIF_SUBR_BASENAME: { |
| 5035 | char *dest = (char *)mstate->dtms_scratch_ptr; |
| 5036 | uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; |
| 5037 | uintptr_t src = tupregs[0].dttk_value; |
| 5038 | int i, j, len = dtrace_strlen(s: (char *)src, lim: size); |
| 5039 | int lastbase = -1, firstbase = -1, lastdir = -1; |
| 5040 | int start, end; |
| 5041 | |
| 5042 | if (!dtrace_canload(addr: src, sz: len + 1, mstate, vstate)) { |
| 5043 | regs[rd] = 0; |
| 5044 | break; |
| 5045 | } |
| 5046 | |
| 5047 | if (!DTRACE_INSCRATCH(mstate, size)) { |
| 5048 | DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); |
| 5049 | regs[rd] = 0; |
| 5050 | break; |
| 5051 | } |
| 5052 | |
| 5053 | /* |
| 5054 | * The basename and dirname for a zero-length string is |
| 5055 | * defined to be "." |
| 5056 | */ |
| 5057 | if (len == 0) { |
| 5058 | len = 1; |
| 5059 | src = (uintptr_t)"." ; |
| 5060 | } |
| 5061 | |
| 5062 | /* |
| 5063 | * Start from the back of the string, moving back toward the |
| 5064 | * front until we see a character that isn't a slash. That |
| 5065 | * character is the last character in the basename. |
| 5066 | */ |
| 5067 | for (i = len - 1; i >= 0; i--) { |
| 5068 | if (dtrace_load8(addr: src + i) != '/') |
| 5069 | break; |
| 5070 | } |
| 5071 | |
| 5072 | if (i >= 0) |
| 5073 | lastbase = i; |
| 5074 | |
| 5075 | /* |
| 5076 | * Starting from the last character in the basename, move |
| 5077 | * towards the front until we find a slash. The character |
| 5078 | * that we processed immediately before that is the first |
| 5079 | * character in the basename. |
| 5080 | */ |
| 5081 | for (; i >= 0; i--) { |
| 5082 | if (dtrace_load8(addr: src + i) == '/') |
| 5083 | break; |
| 5084 | } |
| 5085 | |
| 5086 | if (i >= 0) |
| 5087 | firstbase = i + 1; |
| 5088 | |
| 5089 | /* |
| 5090 | * Now keep going until we find a non-slash character. That |
| 5091 | * character is the last character in the dirname. |
| 5092 | */ |
| 5093 | for (; i >= 0; i--) { |
| 5094 | if (dtrace_load8(addr: src + i) != '/') |
| 5095 | break; |
| 5096 | } |
| 5097 | |
| 5098 | if (i >= 0) |
| 5099 | lastdir = i; |
| 5100 | |
| 5101 | ASSERT(!(lastbase == -1 && firstbase != -1)); |
| 5102 | ASSERT(!(firstbase == -1 && lastdir != -1)); |
| 5103 | |
| 5104 | if (lastbase == -1) { |
| 5105 | /* |
| 5106 | * We didn't find a non-slash character. We know that |
| 5107 | * the length is non-zero, so the whole string must be |
| 5108 | * slashes. In either the dirname or the basename |
| 5109 | * case, we return '/'. |
| 5110 | */ |
| 5111 | ASSERT(firstbase == -1); |
| 5112 | firstbase = lastbase = lastdir = 0; |
| 5113 | } |
| 5114 | |
| 5115 | if (firstbase == -1) { |
| 5116 | /* |
| 5117 | * The entire string consists only of a basename |
| 5118 | * component. If we're looking for dirname, we need |
| 5119 | * to change our string to be just "."; if we're |
| 5120 | * looking for a basename, we'll just set the first |
| 5121 | * character of the basename to be 0. |
| 5122 | */ |
| 5123 | if (subr == DIF_SUBR_DIRNAME) { |
| 5124 | ASSERT(lastdir == -1); |
| 5125 | src = (uintptr_t)"." ; |
| 5126 | lastdir = 0; |
| 5127 | } else { |
| 5128 | firstbase = 0; |
| 5129 | } |
| 5130 | } |
| 5131 | |
| 5132 | if (subr == DIF_SUBR_DIRNAME) { |
| 5133 | if (lastdir == -1) { |
| 5134 | /* |
| 5135 | * We know that we have a slash in the name -- |
| 5136 | * or lastdir would be set to 0, above. And |
| 5137 | * because lastdir is -1, we know that this |
| 5138 | * slash must be the first character. (That |
| 5139 | * is, the full string must be of the form |
| 5140 | * "/basename".) In this case, the last |
| 5141 | * character of the directory name is 0. |
| 5142 | */ |
| 5143 | lastdir = 0; |
| 5144 | } |
| 5145 | |
| 5146 | start = 0; |
| 5147 | end = lastdir; |
| 5148 | } else { |
| 5149 | ASSERT(subr == DIF_SUBR_BASENAME); |
| 5150 | ASSERT(firstbase != -1 && lastbase != -1); |
| 5151 | start = firstbase; |
| 5152 | end = lastbase; |
| 5153 | } |
| 5154 | |
| 5155 | for (i = start, j = 0; i <= end && (uint64_t)j < size - 1; i++, j++) |
| 5156 | dest[j] = dtrace_load8(addr: src + i); |
| 5157 | |
| 5158 | dest[j] = '\0'; |
| 5159 | regs[rd] = (uintptr_t)dest; |
| 5160 | mstate->dtms_scratch_ptr += size; |
| 5161 | break; |
| 5162 | } |
| 5163 | |
| 5164 | case DIF_SUBR_CLEANPATH: { |
| 5165 | char *dest = (char *)mstate->dtms_scratch_ptr, c; |
| 5166 | uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; |
| 5167 | uintptr_t src = tupregs[0].dttk_value; |
| 5168 | size_t lim; |
| 5169 | size_t i = 0, j = 0; |
| 5170 | |
| 5171 | if (!dtrace_strcanload(addr: src, sz: size, remain: &lim, mstate, vstate)) { |
| 5172 | regs[rd] = 0; |
| 5173 | break; |
| 5174 | } |
| 5175 | |
| 5176 | if (!DTRACE_INSCRATCH(mstate, size)) { |
| 5177 | DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); |
| 5178 | regs[rd] = 0; |
| 5179 | break; |
| 5180 | } |
| 5181 | |
| 5182 | /* |
| 5183 | * Move forward, loading each character. |
| 5184 | */ |
| 5185 | do { |
| 5186 | c = (i >= lim) ? '\0' : dtrace_load8(addr: src + i++); |
| 5187 | next: |
| 5188 | if ((uint64_t)(j + 5) >= size) /* 5 = strlen("/..c\0") */ |
| 5189 | break; |
| 5190 | |
| 5191 | if (c != '/') { |
| 5192 | dest[j++] = c; |
| 5193 | continue; |
| 5194 | } |
| 5195 | |
| 5196 | c = (i >= lim) ? '\0' : dtrace_load8(addr: src + i++); |
| 5197 | |
| 5198 | if (c == '/') { |
| 5199 | /* |
| 5200 | * We have two slashes -- we can just advance |
| 5201 | * to the next character. |
| 5202 | */ |
| 5203 | goto next; |
| 5204 | } |
| 5205 | |
| 5206 | if (c != '.') { |
| 5207 | /* |
| 5208 | * This is not "." and it's not ".." -- we can |
| 5209 | * just store the "/" and this character and |
| 5210 | * drive on. |
| 5211 | */ |
| 5212 | dest[j++] = '/'; |
| 5213 | dest[j++] = c; |
| 5214 | continue; |
| 5215 | } |
| 5216 | |
| 5217 | c = (i >= lim) ? '\0' : dtrace_load8(addr: src + i++); |
| 5218 | |
| 5219 | if (c == '/') { |
| 5220 | /* |
| 5221 | * This is a "/./" component. We're not going |
| 5222 | * to store anything in the destination buffer; |
| 5223 | * we're just going to go to the next component. |
| 5224 | */ |
| 5225 | goto next; |
| 5226 | } |
| 5227 | |
| 5228 | if (c != '.') { |
| 5229 | /* |
| 5230 | * This is not ".." -- we can just store the |
| 5231 | * "/." and this character and continue |
| 5232 | * processing. |
| 5233 | */ |
| 5234 | dest[j++] = '/'; |
| 5235 | dest[j++] = '.'; |
| 5236 | dest[j++] = c; |
| 5237 | continue; |
| 5238 | } |
| 5239 | |
| 5240 | c = (i >= lim) ? '\0' : dtrace_load8(addr: src + i++); |
| 5241 | |
| 5242 | if (c != '/' && c != '\0') { |
| 5243 | /* |
| 5244 | * This is not ".." -- it's "..[mumble]". |
| 5245 | * We'll store the "/.." and this character |
| 5246 | * and continue processing. |
| 5247 | */ |
| 5248 | dest[j++] = '/'; |
| 5249 | dest[j++] = '.'; |
| 5250 | dest[j++] = '.'; |
| 5251 | dest[j++] = c; |
| 5252 | continue; |
| 5253 | } |
| 5254 | |
| 5255 | /* |
| 5256 | * This is "/../" or "/..\0". We need to back up |
| 5257 | * our destination pointer until we find a "/". |
| 5258 | */ |
| 5259 | i--; |
| 5260 | while (j != 0 && dest[--j] != '/') |
| 5261 | continue; |
| 5262 | |
| 5263 | if (c == '\0') |
| 5264 | dest[++j] = '/'; |
| 5265 | } while (c != '\0'); |
| 5266 | |
| 5267 | dest[j] = '\0'; |
| 5268 | regs[rd] = (uintptr_t)dest; |
| 5269 | mstate->dtms_scratch_ptr += size; |
| 5270 | break; |
| 5271 | } |
| 5272 | |
| 5273 | case DIF_SUBR_INET_NTOA: |
| 5274 | case DIF_SUBR_INET_NTOA6: |
| 5275 | case DIF_SUBR_INET_NTOP: { |
| 5276 | size_t size; |
| 5277 | int af, argi, i; |
| 5278 | char *base, *end; |
| 5279 | |
| 5280 | if (subr == DIF_SUBR_INET_NTOP) { |
| 5281 | af = (int)tupregs[0].dttk_value; |
| 5282 | argi = 1; |
| 5283 | } else { |
| 5284 | af = subr == DIF_SUBR_INET_NTOA ? AF_INET: AF_INET6; |
| 5285 | argi = 0; |
| 5286 | } |
| 5287 | |
| 5288 | if (af == AF_INET) { |
| 5289 | #if !defined(__APPLE__) |
| 5290 | ipaddr_t ip4; |
| 5291 | #else |
| 5292 | uint32_t ip4; |
| 5293 | #endif /* __APPLE__ */ |
| 5294 | uint8_t *ptr8, val; |
| 5295 | |
| 5296 | /* |
| 5297 | * Safely load the IPv4 address. |
| 5298 | */ |
| 5299 | #if !defined(__APPLE__) |
| 5300 | ip4 = dtrace_load32(tupregs[argi].dttk_value); |
| 5301 | #else |
| 5302 | if (!dtrace_canload(addr: tupregs[argi].dttk_value, sz: sizeof(ip4), |
| 5303 | mstate, vstate)) { |
| 5304 | regs[rd] = 0; |
| 5305 | break; |
| 5306 | } |
| 5307 | |
| 5308 | dtrace_bcopy( |
| 5309 | src: (void *)(uintptr_t)tupregs[argi].dttk_value, |
| 5310 | dst: (void *)(uintptr_t)&ip4, len: sizeof (ip4)); |
| 5311 | #endif /* __APPLE__ */ |
| 5312 | /* |
| 5313 | * Check an IPv4 string will fit in scratch. |
| 5314 | */ |
| 5315 | #if !defined(__APPLE__) |
| 5316 | size = INET_ADDRSTRLEN; |
| 5317 | #else |
| 5318 | size = MAX_IPv4_STR_LEN; |
| 5319 | #endif /* __APPLE__ */ |
| 5320 | if (!DTRACE_INSCRATCH(mstate, size)) { |
| 5321 | DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); |
| 5322 | regs[rd] = 0; |
| 5323 | break; |
| 5324 | } |
| 5325 | base = (char *)mstate->dtms_scratch_ptr; |
| 5326 | end = (char *)mstate->dtms_scratch_ptr + size - 1; |
| 5327 | |
| 5328 | /* |
| 5329 | * Stringify as a dotted decimal quad. |
| 5330 | */ |
| 5331 | *end-- = '\0'; |
| 5332 | ptr8 = (uint8_t *)&ip4; |
| 5333 | for (i = 3; i >= 0; i--) { |
| 5334 | val = ptr8[i]; |
| 5335 | |
| 5336 | if (val == 0) { |
| 5337 | *end-- = '0'; |
| 5338 | } else { |
| 5339 | for (; val; val /= 10) { |
| 5340 | *end-- = '0' + (val % 10); |
| 5341 | } |
| 5342 | } |
| 5343 | |
| 5344 | if (i > 0) |
| 5345 | *end-- = '.'; |
| 5346 | } |
| 5347 | ASSERT(end + 1 >= base); |
| 5348 | |
| 5349 | } else if (af == AF_INET6) { |
| 5350 | #if defined(__APPLE__) |
| 5351 | #define _S6_un __u6_addr |
| 5352 | #define _S6_u8 __u6_addr8 |
| 5353 | #endif /* __APPLE__ */ |
| 5354 | struct in6_addr ip6; |
| 5355 | int firstzero, tryzero, numzero, v6end; |
| 5356 | uint16_t val; |
| 5357 | const char digits[] = "0123456789abcdef" ; |
| 5358 | |
| 5359 | /* |
| 5360 | * Stringify using RFC 1884 convention 2 - 16 bit |
| 5361 | * hexadecimal values with a zero-run compression. |
| 5362 | * Lower case hexadecimal digits are used. |
| 5363 | * eg, fe80::214:4fff:fe0b:76c8. |
| 5364 | * The IPv4 embedded form is returned for inet_ntop, |
| 5365 | * just the IPv4 string is returned for inet_ntoa6. |
| 5366 | */ |
| 5367 | |
| 5368 | if (!dtrace_canload(addr: tupregs[argi].dttk_value, |
| 5369 | sz: sizeof(struct in6_addr), mstate, vstate)) { |
| 5370 | regs[rd] = 0; |
| 5371 | break; |
| 5372 | } |
| 5373 | |
| 5374 | /* |
| 5375 | * Safely load the IPv6 address. |
| 5376 | */ |
| 5377 | dtrace_bcopy( |
| 5378 | src: (void *)(uintptr_t)tupregs[argi].dttk_value, |
| 5379 | dst: (void *)(uintptr_t)&ip6, len: sizeof (struct in6_addr)); |
| 5380 | |
| 5381 | /* |
| 5382 | * Check an IPv6 string will fit in scratch. |
| 5383 | */ |
| 5384 | size = INET6_ADDRSTRLEN; |
| 5385 | if (!DTRACE_INSCRATCH(mstate, size)) { |
| 5386 | DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); |
| 5387 | regs[rd] = 0; |
| 5388 | break; |
| 5389 | } |
| 5390 | base = (char *)mstate->dtms_scratch_ptr; |
| 5391 | end = (char *)mstate->dtms_scratch_ptr + size - 1; |
| 5392 | *end-- = '\0'; |
| 5393 | |
| 5394 | /* |
| 5395 | * Find the longest run of 16 bit zero values |
| 5396 | * for the single allowed zero compression - "::". |
| 5397 | */ |
| 5398 | firstzero = -1; |
| 5399 | tryzero = -1; |
| 5400 | numzero = 1; |
| 5401 | for (i = 0; i < (int)sizeof (struct in6_addr); i++) { |
| 5402 | if (ip6._S6_un._S6_u8[i] == 0 && |
| 5403 | tryzero == -1 && i % 2 == 0) { |
| 5404 | tryzero = i; |
| 5405 | continue; |
| 5406 | } |
| 5407 | |
| 5408 | if (tryzero != -1 && |
| 5409 | (ip6._S6_un._S6_u8[i] != 0 || |
| 5410 | i == sizeof (struct in6_addr) - 1)) { |
| 5411 | |
| 5412 | if (i - tryzero <= numzero) { |
| 5413 | tryzero = -1; |
| 5414 | continue; |
| 5415 | } |
| 5416 | |
| 5417 | firstzero = tryzero; |
| 5418 | numzero = i - i % 2 - tryzero; |
| 5419 | tryzero = -1; |
| 5420 | |
| 5421 | if (ip6._S6_un._S6_u8[i] == 0 && |
| 5422 | i == sizeof (struct in6_addr) - 1) |
| 5423 | numzero += 2; |
| 5424 | } |
| 5425 | } |
| 5426 | ASSERT(firstzero + numzero <= (int)sizeof (struct in6_addr)); |
| 5427 | |
| 5428 | /* |
| 5429 | * Check for an IPv4 embedded address. |
| 5430 | */ |
| 5431 | v6end = sizeof (struct in6_addr) - 2; |
| 5432 | if (IN6_IS_ADDR_V4MAPPED(&ip6) || |
| 5433 | IN6_IS_ADDR_V4COMPAT(&ip6)) { |
| 5434 | for (i = sizeof (struct in6_addr) - 1; |
| 5435 | i >= (int)DTRACE_V4MAPPED_OFFSET; i--) { |
| 5436 | ASSERT(end >= base); |
| 5437 | |
| 5438 | val = ip6._S6_un._S6_u8[i]; |
| 5439 | |
| 5440 | if (val == 0) { |
| 5441 | *end-- = '0'; |
| 5442 | } else { |
| 5443 | for (; val; val /= 10) { |
| 5444 | *end-- = '0' + val % 10; |
| 5445 | } |
| 5446 | } |
| 5447 | |
| 5448 | if (i > (int)DTRACE_V4MAPPED_OFFSET) |
| 5449 | *end-- = '.'; |
| 5450 | } |
| 5451 | |
| 5452 | if (subr == DIF_SUBR_INET_NTOA6) |
| 5453 | goto inetout; |
| 5454 | |
| 5455 | /* |
| 5456 | * Set v6end to skip the IPv4 address that |
| 5457 | * we have already stringified. |
| 5458 | */ |
| 5459 | v6end = 10; |
| 5460 | } |
| 5461 | |
| 5462 | /* |
| 5463 | * Build the IPv6 string by working through the |
| 5464 | * address in reverse. |
| 5465 | */ |
| 5466 | for (i = v6end; i >= 0; i -= 2) { |
| 5467 | ASSERT(end >= base); |
| 5468 | |
| 5469 | if (i == firstzero + numzero - 2) { |
| 5470 | *end-- = ':'; |
| 5471 | *end-- = ':'; |
| 5472 | i -= numzero - 2; |
| 5473 | continue; |
| 5474 | } |
| 5475 | |
| 5476 | if (i < 14 && i != firstzero - 2) |
| 5477 | *end-- = ':'; |
| 5478 | |
| 5479 | val = (ip6._S6_un._S6_u8[i] << 8) + |
| 5480 | ip6._S6_un._S6_u8[i + 1]; |
| 5481 | |
| 5482 | if (val == 0) { |
| 5483 | *end-- = '0'; |
| 5484 | } else { |
| 5485 | for (; val; val /= 16) { |
| 5486 | *end-- = digits[val % 16]; |
| 5487 | } |
| 5488 | } |
| 5489 | } |
| 5490 | ASSERT(end + 1 >= base); |
| 5491 | |
| 5492 | #if defined(__APPLE__) |
| 5493 | #undef _S6_un |
| 5494 | #undef _S6_u8 |
| 5495 | #endif /* __APPLE__ */ |
| 5496 | } else { |
| 5497 | /* |
| 5498 | * The user didn't use AH_INET or AH_INET6. |
| 5499 | */ |
| 5500 | DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); |
| 5501 | regs[rd] = 0; |
| 5502 | break; |
| 5503 | } |
| 5504 | |
| 5505 | inetout: regs[rd] = (uintptr_t)end + 1; |
| 5506 | mstate->dtms_scratch_ptr += size; |
| 5507 | break; |
| 5508 | } |
| 5509 | |
| 5510 | case DIF_SUBR_JSON: { |
| 5511 | uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; |
| 5512 | uintptr_t json = tupregs[0].dttk_value; |
| 5513 | size_t jsonlen = dtrace_strlen(s: (char *)json, lim: size); |
| 5514 | uintptr_t elem = tupregs[1].dttk_value; |
| 5515 | size_t elemlen = dtrace_strlen(s: (char *)elem, lim: size); |
| 5516 | |
| 5517 | char *dest = (char *)mstate->dtms_scratch_ptr; |
| 5518 | char *elemlist = (char *)mstate->dtms_scratch_ptr + jsonlen + 1; |
| 5519 | char *ee = elemlist; |
| 5520 | int nelems = 1; |
| 5521 | uintptr_t cur; |
| 5522 | |
| 5523 | if (!dtrace_canload(addr: json, sz: jsonlen + 1, mstate, vstate) || |
| 5524 | !dtrace_canload(addr: elem, sz: elemlen + 1, mstate, vstate)) { |
| 5525 | regs[rd] = 0; |
| 5526 | break; |
| 5527 | } |
| 5528 | |
| 5529 | if (!DTRACE_INSCRATCH(mstate, jsonlen + 1 + elemlen + 1)) { |
| 5530 | DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); |
| 5531 | regs[rd] = 0; |
| 5532 | break; |
| 5533 | } |
| 5534 | |
| 5535 | /* |
| 5536 | * Read the element selector and split it up into a packed list |
| 5537 | * of strings. |
| 5538 | */ |
| 5539 | for (cur = elem; cur < elem + elemlen; cur++) { |
| 5540 | char cc = dtrace_load8(addr: cur); |
| 5541 | |
| 5542 | if (cur == elem && cc == '[') { |
| 5543 | /* |
| 5544 | * If the first element selector key is |
| 5545 | * actually an array index then ignore the |
| 5546 | * bracket. |
| 5547 | */ |
| 5548 | continue; |
| 5549 | } |
| 5550 | |
| 5551 | if (cc == ']') |
| 5552 | continue; |
| 5553 | |
| 5554 | if (cc == '.' || cc == '[') { |
| 5555 | nelems++; |
| 5556 | cc = '\0'; |
| 5557 | } |
| 5558 | |
| 5559 | *ee++ = cc; |
| 5560 | } |
| 5561 | *ee++ = '\0'; |
| 5562 | |
| 5563 | if ((regs[rd] = (uintptr_t)dtrace_json(size, json, elemlist, |
| 5564 | nelems, dest)) != 0) |
| 5565 | mstate->dtms_scratch_ptr += jsonlen + 1; |
| 5566 | break; |
| 5567 | } |
| 5568 | |
| 5569 | case DIF_SUBR_TOUPPER: |
| 5570 | case DIF_SUBR_TOLOWER: { |
| 5571 | uintptr_t src = tupregs[0].dttk_value; |
| 5572 | char *dest = (char *)mstate->dtms_scratch_ptr; |
| 5573 | char lower, upper, base, c; |
| 5574 | uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; |
| 5575 | size_t len = dtrace_strlen(s: (char*) src, lim: size); |
| 5576 | size_t i = 0; |
| 5577 | |
| 5578 | lower = (subr == DIF_SUBR_TOUPPER) ? 'a' : 'A'; |
| 5579 | upper = (subr == DIF_SUBR_TOUPPER) ? 'z' : 'Z'; |
| 5580 | base = (subr == DIF_SUBR_TOUPPER) ? 'A' : 'a'; |
| 5581 | |
| 5582 | if (!dtrace_canload(addr: src, sz: len + 1, mstate, vstate)) { |
| 5583 | regs[rd] = 0; |
| 5584 | break; |
| 5585 | } |
| 5586 | |
| 5587 | if (!DTRACE_INSCRATCH(mstate, size)) { |
| 5588 | DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); |
| 5589 | regs[rd] = 0; |
| 5590 | break; |
| 5591 | } |
| 5592 | |
| 5593 | for (i = 0; i < size - 1; ++i) { |
| 5594 | if ((c = dtrace_load8(addr: src + i)) == '\0') |
| 5595 | break; |
| 5596 | if (c >= lower && c <= upper) |
| 5597 | c = base + (c - lower); |
| 5598 | dest[i] = c; |
| 5599 | } |
| 5600 | |
| 5601 | ASSERT(i < size); |
| 5602 | |
| 5603 | dest[i] = '\0'; |
| 5604 | regs[rd] = (uintptr_t) dest; |
| 5605 | mstate->dtms_scratch_ptr += size; |
| 5606 | |
| 5607 | break; |
| 5608 | } |
| 5609 | |
| 5610 | case DIF_SUBR_STRIP: |
| 5611 | if (!dtrace_is_valid_ptrauth_key(tupregs[1].dttk_value)) { |
| 5612 | DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); |
| 5613 | break; |
| 5614 | } |
| 5615 | regs[rd] = (uint64_t)dtrace_ptrauth_strip( |
| 5616 | (void*)tupregs[0].dttk_value, tupregs[1].dttk_value); |
| 5617 | break; |
| 5618 | |
| 5619 | #if defined(__APPLE__) |
| 5620 | case DIF_SUBR_VM_KERNEL_ADDRPERM: { |
| 5621 | if (!dtrace_priv_kernel(state)) { |
| 5622 | regs[rd] = 0; |
| 5623 | } else { |
| 5624 | regs[rd] = VM_KERNEL_ADDRPERM((vm_offset_t) tupregs[0].dttk_value); |
| 5625 | } |
| 5626 | |
| 5627 | break; |
| 5628 | } |
| 5629 | |
| 5630 | case DIF_SUBR_KDEBUG_TRACE: { |
| 5631 | uint32_t debugid; |
| 5632 | uintptr_t args[4] = {0}; |
| 5633 | int i; |
| 5634 | |
| 5635 | if (nargs < 2 || nargs > 5) { |
| 5636 | DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); |
| 5637 | break; |
| 5638 | } |
| 5639 | |
| 5640 | if (dtrace_destructive_disallow || |
| 5641 | !dtrace_priv_kernel_destructive(state)) { |
| 5642 | return; |
| 5643 | } |
| 5644 | |
| 5645 | debugid = tupregs[0].dttk_value; |
| 5646 | for (i = 0; i < nargs - 1; i++) |
| 5647 | args[i] = tupregs[i + 1].dttk_value; |
| 5648 | |
| 5649 | kernel_debug(debugid, arg1: args[0], arg2: args[1], arg3: args[2], arg4: args[3], arg5: 0); |
| 5650 | |
| 5651 | break; |
| 5652 | } |
| 5653 | |
| 5654 | case DIF_SUBR_KDEBUG_TRACE_STRING: { |
| 5655 | if (nargs != 3) { |
| 5656 | break; |
| 5657 | } |
| 5658 | |
| 5659 | if (dtrace_destructive_disallow || |
| 5660 | !dtrace_priv_kernel_destructive(state)) { |
| 5661 | return; |
| 5662 | } |
| 5663 | |
| 5664 | uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; |
| 5665 | uint32_t debugid = tupregs[0].dttk_value; |
| 5666 | uint64_t str_id = tupregs[1].dttk_value; |
| 5667 | uintptr_t src = tupregs[2].dttk_value; |
| 5668 | size_t lim; |
| 5669 | char buf[size]; |
| 5670 | char* str = NULL; |
| 5671 | |
| 5672 | if (src != (uintptr_t)0) { |
| 5673 | str = buf; |
| 5674 | if (!dtrace_strcanload(addr: src, sz: size, remain: &lim, mstate, vstate)) { |
| 5675 | break; |
| 5676 | } |
| 5677 | dtrace_strcpy(src: (void*)src, dst: buf, len: size); |
| 5678 | } |
| 5679 | |
| 5680 | (void)kernel_debug_string(debugid, str_id: &str_id, str); |
| 5681 | regs[rd] = str_id; |
| 5682 | |
| 5683 | break; |
| 5684 | } |
| 5685 | |
| 5686 | case DIF_SUBR_MTONS: |
| 5687 | absolutetime_to_nanoseconds(abstime: tupregs[0].dttk_value, result: ®s[rd]); |
| 5688 | |
| 5689 | break; |
| 5690 | case DIF_SUBR_PHYSMEM_READ: { |
| 5691 | #if DEBUG || DEVELOPMENT |
| 5692 | if (dtrace_destructive_disallow || |
| 5693 | !dtrace_priv_kernel_destructive(state)) { |
| 5694 | return; |
| 5695 | } |
| 5696 | regs[rd] = dtrace_physmem_read(tupregs[0].dttk_value, |
| 5697 | tupregs[1].dttk_value); |
| 5698 | #else |
| 5699 | DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); |
| 5700 | #endif /* DEBUG || DEVELOPMENT */ |
| 5701 | break; |
| 5702 | } |
| 5703 | case DIF_SUBR_PHYSMEM_WRITE: { |
| 5704 | #if DEBUG || DEVELOPMENT |
| 5705 | if (dtrace_destructive_disallow || |
| 5706 | !dtrace_priv_kernel_destructive(state)) { |
| 5707 | return; |
| 5708 | } |
| 5709 | |
| 5710 | dtrace_physmem_write(tupregs[0].dttk_value, |
| 5711 | tupregs[1].dttk_value, (size_t)tupregs[2].dttk_value); |
| 5712 | #else |
| 5713 | DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); |
| 5714 | #endif /* DEBUG || DEVELOPMENT */ |
| 5715 | break; |
| 5716 | } |
| 5717 | |
| 5718 | case DIF_SUBR_KVTOPHYS: { |
| 5719 | #if DEBUG || DEVELOPMENT |
| 5720 | regs[rd] = kvtophys(tupregs[0].dttk_value); |
| 5721 | #else |
| 5722 | DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); |
| 5723 | #endif /* DEBUG || DEVELOPMENT */ |
| 5724 | break; |
| 5725 | } |
| 5726 | |
| 5727 | case DIF_SUBR_LIVEDUMP: { |
| 5728 | #if DEBUG || DEVELOPMENT |
| 5729 | if (dtrace_destructive_disallow || |
| 5730 | !dtrace_priv_kernel_destructive(state)) { |
| 5731 | break; |
| 5732 | } |
| 5733 | |
| 5734 | /* For the moment, there is only one type of livedump. */ |
| 5735 | if (nargs != 1 || tupregs[0].dttk_value != 0) { |
| 5736 | DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); |
| 5737 | break; |
| 5738 | } |
| 5739 | |
| 5740 | char *dest = (char *)mstate->dtms_scratch_ptr; |
| 5741 | uint64_t size = state->dts_options[DTRACEOPT_STRSIZE]; |
| 5742 | |
| 5743 | if (!DTRACE_INSCRATCH(mstate, size)) { |
| 5744 | DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); |
| 5745 | regs[rd] = 0; |
| 5746 | break; |
| 5747 | } |
| 5748 | |
| 5749 | dtrace_livedump(dest, size); |
| 5750 | regs[rd] = (uintptr_t) dest; |
| 5751 | mstate->dtms_scratch_ptr += strlen(dest) + 1; |
| 5752 | #else |
| 5753 | DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); |
| 5754 | #endif /* DEBUG || DEVELOPMENT */ |
| 5755 | break; |
| 5756 | } |
| 5757 | #endif /* defined(__APPLE__) */ |
| 5758 | |
| 5759 | } |
| 5760 | } |
| 5761 | |
| 5762 | /* |
| 5763 | * Emulate the execution of DTrace IR instructions specified by the given |
| 5764 | * DIF object. This function is deliberately void of assertions as all of |
| 5765 | * the necessary checks are handled by a call to dtrace_difo_validate(). |
| 5766 | */ |
| 5767 | static uint64_t |
| 5768 | dtrace_dif_emulate(dtrace_difo_t *difo, dtrace_mstate_t *mstate, |
| 5769 | dtrace_vstate_t *vstate, dtrace_state_t *state) |
| 5770 | { |
| 5771 | const dif_instr_t *text = difo->dtdo_buf; |
| 5772 | const uint_t textlen = difo->dtdo_len; |
| 5773 | const char *strtab = difo->dtdo_strtab; |
| 5774 | const uint64_t *inttab = difo->dtdo_inttab; |
| 5775 | |
| 5776 | uint64_t rval = 0; |
| 5777 | dtrace_statvar_t *svar; |
| 5778 | dtrace_dstate_t *dstate = &vstate->dtvs_dynvars; |
| 5779 | dtrace_difv_t *v; |
| 5780 | volatile uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; |
| 5781 | volatile uint64_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval; |
| 5782 | |
| 5783 | dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */ |
| 5784 | uint64_t regs[DIF_DIR_NREGS]; |
| 5785 | uint64_t *tmp; |
| 5786 | |
| 5787 | uint8_t cc_n = 0, cc_z = 0, cc_v = 0, cc_c = 0; |
| 5788 | int64_t cc_r; |
| 5789 | uint_t pc = 0, id, opc = 0; |
| 5790 | uint8_t ttop = 0; |
| 5791 | dif_instr_t instr; |
| 5792 | uint_t r1, r2, rd; |
| 5793 | |
| 5794 | /* |
| 5795 | * We stash the current DIF object into the machine state: we need it |
| 5796 | * for subsequent access checking. |
| 5797 | */ |
| 5798 | mstate->dtms_difo = difo; |
| 5799 | |
| 5800 | regs[DIF_REG_R0] = 0; /* %r0 is fixed at zero */ |
| 5801 | |
| 5802 | while (pc < textlen && !(*flags & CPU_DTRACE_FAULT)) { |
| 5803 | opc = pc; |
| 5804 | |
| 5805 | instr = text[pc++]; |
| 5806 | r1 = DIF_INSTR_R1(instr); |
| 5807 | r2 = DIF_INSTR_R2(instr); |
| 5808 | rd = DIF_INSTR_RD(instr); |
| 5809 | |
| 5810 | switch (DIF_INSTR_OP(instr)) { |
| 5811 | case DIF_OP_OR: |
| 5812 | regs[rd] = regs[r1] | regs[r2]; |
| 5813 | break; |
| 5814 | case DIF_OP_XOR: |
| 5815 | regs[rd] = regs[r1] ^ regs[r2]; |
| 5816 | break; |
| 5817 | case DIF_OP_AND: |
| 5818 | regs[rd] = regs[r1] & regs[r2]; |
| 5819 | break; |
| 5820 | case DIF_OP_SLL: |
| 5821 | regs[rd] = regs[r1] << regs[r2]; |
| 5822 | break; |
| 5823 | case DIF_OP_SRL: |
| 5824 | regs[rd] = regs[r1] >> regs[r2]; |
| 5825 | break; |
| 5826 | case DIF_OP_SUB: |
| 5827 | regs[rd] = regs[r1] - regs[r2]; |
| 5828 | break; |
| 5829 | case DIF_OP_ADD: |
| 5830 | regs[rd] = regs[r1] + regs[r2]; |
| 5831 | break; |
| 5832 | case DIF_OP_MUL: |
| 5833 | regs[rd] = regs[r1] * regs[r2]; |
| 5834 | break; |
| 5835 | case DIF_OP_SDIV: |
| 5836 | if (regs[r2] == 0) { |
| 5837 | regs[rd] = 0; |
| 5838 | *flags |= CPU_DTRACE_DIVZERO; |
| 5839 | } else { |
| 5840 | regs[rd] = (int64_t)regs[r1] / |
| 5841 | (int64_t)regs[r2]; |
| 5842 | } |
| 5843 | break; |
| 5844 | |
| 5845 | case DIF_OP_UDIV: |
| 5846 | if (regs[r2] == 0) { |
| 5847 | regs[rd] = 0; |
| 5848 | *flags |= CPU_DTRACE_DIVZERO; |
| 5849 | } else { |
| 5850 | regs[rd] = regs[r1] / regs[r2]; |
| 5851 | } |
| 5852 | break; |
| 5853 | |
| 5854 | case DIF_OP_SREM: |
| 5855 | if (regs[r2] == 0) { |
| 5856 | regs[rd] = 0; |
| 5857 | *flags |= CPU_DTRACE_DIVZERO; |
| 5858 | } else { |
| 5859 | regs[rd] = (int64_t)regs[r1] % |
| 5860 | (int64_t)regs[r2]; |
| 5861 | } |
| 5862 | break; |
| 5863 | |
| 5864 | case DIF_OP_UREM: |
| 5865 | if (regs[r2] == 0) { |
| 5866 | regs[rd] = 0; |
| 5867 | *flags |= CPU_DTRACE_DIVZERO; |
| 5868 | } else { |
| 5869 | regs[rd] = regs[r1] % regs[r2]; |
| 5870 | } |
| 5871 | break; |
| 5872 | |
| 5873 | case DIF_OP_NOT: |
| 5874 | regs[rd] = ~regs[r1]; |
| 5875 | break; |
| 5876 | case DIF_OP_MOV: |
| 5877 | regs[rd] = regs[r1]; |
| 5878 | break; |
| 5879 | case DIF_OP_CMP: |
| 5880 | cc_r = regs[r1] - regs[r2]; |
| 5881 | cc_n = cc_r < 0; |
| 5882 | cc_z = cc_r == 0; |
| 5883 | cc_v = 0; |
| 5884 | cc_c = regs[r1] < regs[r2]; |
| 5885 | break; |
| 5886 | case DIF_OP_TST: |
| 5887 | cc_n = cc_v = cc_c = 0; |
| 5888 | cc_z = regs[r1] == 0; |
| 5889 | break; |
| 5890 | case DIF_OP_BA: |
| 5891 | pc = DIF_INSTR_LABEL(instr); |
| 5892 | break; |
| 5893 | case DIF_OP_BE: |
| 5894 | if (cc_z) |
| 5895 | pc = DIF_INSTR_LABEL(instr); |
| 5896 | break; |
| 5897 | case DIF_OP_BNE: |
| 5898 | if (cc_z == 0) |
| 5899 | pc = DIF_INSTR_LABEL(instr); |
| 5900 | break; |
| 5901 | case DIF_OP_BG: |
| 5902 | if ((cc_z | (cc_n ^ cc_v)) == 0) |
| 5903 | pc = DIF_INSTR_LABEL(instr); |
| 5904 | break; |
| 5905 | case DIF_OP_BGU: |
| 5906 | if ((cc_c | cc_z) == 0) |
| 5907 | pc = DIF_INSTR_LABEL(instr); |
| 5908 | break; |
| 5909 | case DIF_OP_BGE: |
| 5910 | if ((cc_n ^ cc_v) == 0) |
| 5911 | pc = DIF_INSTR_LABEL(instr); |
| 5912 | break; |
| 5913 | case DIF_OP_BGEU: |
| 5914 | if (cc_c == 0) |
| 5915 | pc = DIF_INSTR_LABEL(instr); |
| 5916 | break; |
| 5917 | case DIF_OP_BL: |
| 5918 | if (cc_n ^ cc_v) |
| 5919 | pc = DIF_INSTR_LABEL(instr); |
| 5920 | break; |
| 5921 | case DIF_OP_BLU: |
| 5922 | if (cc_c) |
| 5923 | pc = DIF_INSTR_LABEL(instr); |
| 5924 | break; |
| 5925 | case DIF_OP_BLE: |
| 5926 | if (cc_z | (cc_n ^ cc_v)) |
| 5927 | pc = DIF_INSTR_LABEL(instr); |
| 5928 | break; |
| 5929 | case DIF_OP_BLEU: |
| 5930 | if (cc_c | cc_z) |
| 5931 | pc = DIF_INSTR_LABEL(instr); |
| 5932 | break; |
| 5933 | case DIF_OP_RLDSB: |
| 5934 | if (!dtrace_canstore(regs[r1], sz: 1, mstate, vstate)) { |
| 5935 | *flags |= CPU_DTRACE_KPRIV; |
| 5936 | *illval = regs[r1]; |
| 5937 | break; |
| 5938 | } |
| 5939 | OS_FALLTHROUGH; |
| 5940 | case DIF_OP_LDSB: |
| 5941 | regs[rd] = (int8_t)dtrace_load8(regs[r1]); |
| 5942 | break; |
| 5943 | case DIF_OP_RLDSH: |
| 5944 | if (!dtrace_canstore(regs[r1], sz: 2, mstate, vstate)) { |
| 5945 | *flags |= CPU_DTRACE_KPRIV; |
| 5946 | *illval = regs[r1]; |
| 5947 | break; |
| 5948 | } |
| 5949 | OS_FALLTHROUGH; |
| 5950 | case DIF_OP_LDSH: |
| 5951 | regs[rd] = (int16_t)dtrace_load16(regs[r1]); |
| 5952 | break; |
| 5953 | case DIF_OP_RLDSW: |
| 5954 | if (!dtrace_canstore(regs[r1], sz: 4, mstate, vstate)) { |
| 5955 | *flags |= CPU_DTRACE_KPRIV; |
| 5956 | *illval = regs[r1]; |
| 5957 | break; |
| 5958 | } |
| 5959 | OS_FALLTHROUGH; |
| 5960 | case DIF_OP_LDSW: |
| 5961 | regs[rd] = (int32_t)dtrace_load32(regs[r1]); |
| 5962 | break; |
| 5963 | case DIF_OP_RLDUB: |
| 5964 | if (!dtrace_canstore(regs[r1], sz: 1, mstate, vstate)) { |
| 5965 | *flags |= CPU_DTRACE_KPRIV; |
| 5966 | *illval = regs[r1]; |
| 5967 | break; |
| 5968 | } |
| 5969 | OS_FALLTHROUGH; |
| 5970 | case DIF_OP_LDUB: |
| 5971 | regs[rd] = dtrace_load8(regs[r1]); |
| 5972 | break; |
| 5973 | case DIF_OP_RLDUH: |
| 5974 | if (!dtrace_canstore(regs[r1], sz: 2, mstate, vstate)) { |
| 5975 | *flags |= CPU_DTRACE_KPRIV; |
| 5976 | *illval = regs[r1]; |
| 5977 | break; |
| 5978 | } |
| 5979 | OS_FALLTHROUGH; |
| 5980 | case DIF_OP_LDUH: |
| 5981 | regs[rd] = dtrace_load16(regs[r1]); |
| 5982 | break; |
| 5983 | case DIF_OP_RLDUW: |
| 5984 | if (!dtrace_canstore(regs[r1], sz: 4, mstate, vstate)) { |
| 5985 | *flags |= CPU_DTRACE_KPRIV; |
| 5986 | *illval = regs[r1]; |
| 5987 | break; |
| 5988 | } |
| 5989 | OS_FALLTHROUGH; |
| 5990 | case DIF_OP_LDUW: |
| 5991 | regs[rd] = dtrace_load32(regs[r1]); |
| 5992 | break; |
| 5993 | case DIF_OP_RLDX: |
| 5994 | if (!dtrace_canstore(regs[r1], sz: 8, mstate, vstate)) { |
| 5995 | *flags |= CPU_DTRACE_KPRIV; |
| 5996 | *illval = regs[r1]; |
| 5997 | break; |
| 5998 | } |
| 5999 | OS_FALLTHROUGH; |
| 6000 | case DIF_OP_LDX: |
| 6001 | regs[rd] = dtrace_load64(regs[r1]); |
| 6002 | break; |
| 6003 | /* |
| 6004 | * Darwin 32-bit kernel may fetch from 64-bit user. |
| 6005 | * Do not cast regs to uintptr_t |
| 6006 | * DIF_OP_ULDSB,DIF_OP_ULDSH, DIF_OP_ULDSW, DIF_OP_ULDUB |
| 6007 | * DIF_OP_ULDUH, DIF_OP_ULDUW, DIF_OP_ULDX |
| 6008 | */ |
| 6009 | case DIF_OP_ULDSB: |
| 6010 | regs[rd] = (int8_t) |
| 6011 | dtrace_fuword8(regs[r1]); |
| 6012 | break; |
| 6013 | case DIF_OP_ULDSH: |
| 6014 | regs[rd] = (int16_t) |
| 6015 | dtrace_fuword16(regs[r1]); |
| 6016 | break; |
| 6017 | case DIF_OP_ULDSW: |
| 6018 | regs[rd] = (int32_t) |
| 6019 | dtrace_fuword32(regs[r1]); |
| 6020 | break; |
| 6021 | case DIF_OP_ULDUB: |
| 6022 | regs[rd] = |
| 6023 | dtrace_fuword8(regs[r1]); |
| 6024 | break; |
| 6025 | case DIF_OP_ULDUH: |
| 6026 | regs[rd] = |
| 6027 | dtrace_fuword16(regs[r1]); |
| 6028 | break; |
| 6029 | case DIF_OP_ULDUW: |
| 6030 | regs[rd] = |
| 6031 | dtrace_fuword32(regs[r1]); |
| 6032 | break; |
| 6033 | case DIF_OP_ULDX: |
| 6034 | regs[rd] = |
| 6035 | dtrace_fuword64(regs[r1]); |
| 6036 | break; |
| 6037 | case DIF_OP_RET: |
| 6038 | rval = regs[rd]; |
| 6039 | pc = textlen; |
| 6040 | break; |
| 6041 | case DIF_OP_NOP: |
| 6042 | break; |
| 6043 | case DIF_OP_SETX: |
| 6044 | regs[rd] = inttab[DIF_INSTR_INTEGER(instr)]; |
| 6045 | break; |
| 6046 | case DIF_OP_SETS: |
| 6047 | regs[rd] = (uint64_t)(uintptr_t) |
| 6048 | (strtab + DIF_INSTR_STRING(instr)); |
| 6049 | break; |
| 6050 | case DIF_OP_SCMP: { |
| 6051 | size_t sz = state->dts_options[DTRACEOPT_STRSIZE]; |
| 6052 | uintptr_t s1 = regs[r1]; |
| 6053 | uintptr_t s2 = regs[r2]; |
| 6054 | size_t lim1 = sz, lim2 = sz; |
| 6055 | |
| 6056 | if (s1 != 0 && |
| 6057 | !dtrace_strcanload(addr: s1, sz, remain: &lim1, mstate, vstate)) |
| 6058 | break; |
| 6059 | if (s2 != 0 && |
| 6060 | !dtrace_strcanload(addr: s2, sz, remain: &lim2, mstate, vstate)) |
| 6061 | break; |
| 6062 | |
| 6063 | cc_r = dtrace_strncmp(s1: (char *)s1, s2: (char *)s2, |
| 6064 | MIN(lim1, lim2)); |
| 6065 | |
| 6066 | cc_n = cc_r < 0; |
| 6067 | cc_z = cc_r == 0; |
| 6068 | cc_v = cc_c = 0; |
| 6069 | break; |
| 6070 | } |
| 6071 | case DIF_OP_LDGA: |
| 6072 | regs[rd] = dtrace_dif_variable(mstate, state, |
| 6073 | v: r1, regs[r2]); |
| 6074 | break; |
| 6075 | case DIF_OP_LDGS: |
| 6076 | id = DIF_INSTR_VAR(instr); |
| 6077 | |
| 6078 | if (id >= DIF_VAR_OTHER_UBASE) { |
| 6079 | uintptr_t a; |
| 6080 | |
| 6081 | id -= DIF_VAR_OTHER_UBASE; |
| 6082 | svar = vstate->dtvs_globals[id]; |
| 6083 | ASSERT(svar != NULL); |
| 6084 | v = &svar->dtsv_var; |
| 6085 | |
| 6086 | if (!(v->dtdv_type.dtdt_flags & DIF_TF_BYREF)) { |
| 6087 | regs[rd] = svar->dtsv_data; |
| 6088 | break; |
| 6089 | } |
| 6090 | |
| 6091 | a = (uintptr_t)svar->dtsv_data; |
| 6092 | |
| 6093 | if (*(uint8_t *)a == UINT8_MAX) { |
| 6094 | /* |
| 6095 | * If the 0th byte is set to UINT8_MAX |
| 6096 | * then this is to be treated as a |
| 6097 | * reference to a NULL variable. |
| 6098 | */ |
| 6099 | regs[rd] = 0; |
| 6100 | } else { |
| 6101 | regs[rd] = a + sizeof (uint64_t); |
| 6102 | } |
| 6103 | |
| 6104 | break; |
| 6105 | } |
| 6106 | |
| 6107 | regs[rd] = dtrace_dif_variable(mstate, state, v: id, ndx: 0); |
| 6108 | break; |
| 6109 | |
| 6110 | case DIF_OP_STGS: |
| 6111 | id = DIF_INSTR_VAR(instr); |
| 6112 | |
| 6113 | ASSERT(id >= DIF_VAR_OTHER_UBASE); |
| 6114 | id -= DIF_VAR_OTHER_UBASE; |
| 6115 | |
| 6116 | VERIFY(id < (uint_t)vstate->dtvs_nglobals); |
| 6117 | svar = vstate->dtvs_globals[id]; |
| 6118 | ASSERT(svar != NULL); |
| 6119 | v = &svar->dtsv_var; |
| 6120 | |
| 6121 | if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { |
| 6122 | uintptr_t a = (uintptr_t)svar->dtsv_data; |
| 6123 | size_t lim = 0; |
| 6124 | |
| 6125 | ASSERT(a != 0); |
| 6126 | ASSERT(svar->dtsv_size != 0); |
| 6127 | |
| 6128 | if (regs[rd] == 0) { |
| 6129 | *(uint8_t *)a = UINT8_MAX; |
| 6130 | break; |
| 6131 | } else { |
| 6132 | *(uint8_t *)a = 0; |
| 6133 | a += sizeof (uint64_t); |
| 6134 | } |
| 6135 | if (!dtrace_vcanload( |
| 6136 | src: (void *)(uintptr_t)regs[rd], type: &v->dtdv_type, |
| 6137 | remain: &lim, mstate, vstate)) |
| 6138 | break; |
| 6139 | |
| 6140 | dtrace_vcopy(src: (void *)(uintptr_t)regs[rd], |
| 6141 | dst: (void *)a, type: &v->dtdv_type, limit: lim); |
| 6142 | break; |
| 6143 | } |
| 6144 | |
| 6145 | svar->dtsv_data = regs[rd]; |
| 6146 | break; |
| 6147 | |
| 6148 | case DIF_OP_LDTA: |
| 6149 | /* |
| 6150 | * There are no DTrace built-in thread-local arrays at |
| 6151 | * present. This opcode is saved for future work. |
| 6152 | */ |
| 6153 | *flags |= CPU_DTRACE_ILLOP; |
| 6154 | regs[rd] = 0; |
| 6155 | break; |
| 6156 | |
| 6157 | case DIF_OP_LDLS: |
| 6158 | id = DIF_INSTR_VAR(instr); |
| 6159 | |
| 6160 | if (id < DIF_VAR_OTHER_UBASE) { |
| 6161 | /* |
| 6162 | * For now, this has no meaning. |
| 6163 | */ |
| 6164 | regs[rd] = 0; |
| 6165 | break; |
| 6166 | } |
| 6167 | |
| 6168 | id -= DIF_VAR_OTHER_UBASE; |
| 6169 | |
| 6170 | ASSERT(id < (uint_t)vstate->dtvs_nlocals); |
| 6171 | ASSERT(vstate->dtvs_locals != NULL); |
| 6172 | svar = vstate->dtvs_locals[id]; |
| 6173 | ASSERT(svar != NULL); |
| 6174 | v = &svar->dtsv_var; |
| 6175 | |
| 6176 | if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { |
| 6177 | uintptr_t a = (uintptr_t)svar->dtsv_data; |
| 6178 | size_t sz = v->dtdv_type.dtdt_size; |
| 6179 | |
| 6180 | sz += sizeof (uint64_t); |
| 6181 | ASSERT(svar->dtsv_size == (int)NCPU * sz); |
| 6182 | a += CPU->cpu_id * sz; |
| 6183 | |
| 6184 | if (*(uint8_t *)a == UINT8_MAX) { |
| 6185 | /* |
| 6186 | * If the 0th byte is set to UINT8_MAX |
| 6187 | * then this is to be treated as a |
| 6188 | * reference to a NULL variable. |
| 6189 | */ |
| 6190 | regs[rd] = 0; |
| 6191 | } else { |
| 6192 | regs[rd] = a + sizeof (uint64_t); |
| 6193 | } |
| 6194 | |
| 6195 | break; |
| 6196 | } |
| 6197 | |
| 6198 | ASSERT(svar->dtsv_size == (int)NCPU * sizeof (uint64_t)); |
| 6199 | tmp = (uint64_t *)(uintptr_t)svar->dtsv_data; |
| 6200 | regs[rd] = tmp[CPU->cpu_id]; |
| 6201 | break; |
| 6202 | |
| 6203 | case DIF_OP_STLS: |
| 6204 | id = DIF_INSTR_VAR(instr); |
| 6205 | |
| 6206 | ASSERT(id >= DIF_VAR_OTHER_UBASE); |
| 6207 | id -= DIF_VAR_OTHER_UBASE; |
| 6208 | VERIFY(id < (uint_t)vstate->dtvs_nlocals); |
| 6209 | ASSERT(vstate->dtvs_locals != NULL); |
| 6210 | svar = vstate->dtvs_locals[id]; |
| 6211 | ASSERT(svar != NULL); |
| 6212 | v = &svar->dtsv_var; |
| 6213 | |
| 6214 | if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { |
| 6215 | uintptr_t a = (uintptr_t)svar->dtsv_data; |
| 6216 | size_t sz = v->dtdv_type.dtdt_size; |
| 6217 | size_t lim = 0; |
| 6218 | |
| 6219 | sz += sizeof (uint64_t); |
| 6220 | ASSERT(svar->dtsv_size == (int)NCPU * sz); |
| 6221 | a += CPU->cpu_id * sz; |
| 6222 | |
| 6223 | if (regs[rd] == 0) { |
| 6224 | *(uint8_t *)a = UINT8_MAX; |
| 6225 | break; |
| 6226 | } else { |
| 6227 | *(uint8_t *)a = 0; |
| 6228 | a += sizeof (uint64_t); |
| 6229 | } |
| 6230 | |
| 6231 | if (!dtrace_vcanload( |
| 6232 | src: (void *)(uintptr_t)regs[rd], type: &v->dtdv_type, |
| 6233 | remain: &lim, mstate, vstate)) |
| 6234 | break; |
| 6235 | |
| 6236 | dtrace_vcopy(src: (void *)(uintptr_t)regs[rd], |
| 6237 | dst: (void *)a, type: &v->dtdv_type, limit: lim); |
| 6238 | break; |
| 6239 | } |
| 6240 | |
| 6241 | ASSERT(svar->dtsv_size == (int)NCPU * sizeof (uint64_t)); |
| 6242 | tmp = (uint64_t *)(uintptr_t)svar->dtsv_data; |
| 6243 | tmp[CPU->cpu_id] = regs[rd]; |
| 6244 | break; |
| 6245 | |
| 6246 | case DIF_OP_LDTS: { |
| 6247 | dtrace_dynvar_t *dvar; |
| 6248 | dtrace_key_t *key; |
| 6249 | |
| 6250 | id = DIF_INSTR_VAR(instr); |
| 6251 | ASSERT(id >= DIF_VAR_OTHER_UBASE); |
| 6252 | id -= DIF_VAR_OTHER_UBASE; |
| 6253 | v = &vstate->dtvs_tlocals[id]; |
| 6254 | |
| 6255 | key = &tupregs[DIF_DTR_NREGS]; |
| 6256 | key[0].dttk_value = (uint64_t)id; |
| 6257 | key[0].dttk_size = 0; |
| 6258 | DTRACE_TLS_THRKEY(key[1].dttk_value); |
| 6259 | key[1].dttk_size = 0; |
| 6260 | |
| 6261 | dvar = dtrace_dynvar(dstate, nkeys: 2, key, |
| 6262 | dsize: sizeof (uint64_t), op: DTRACE_DYNVAR_NOALLOC, |
| 6263 | mstate, vstate); |
| 6264 | |
| 6265 | if (dvar == NULL) { |
| 6266 | regs[rd] = 0; |
| 6267 | break; |
| 6268 | } |
| 6269 | |
| 6270 | if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { |
| 6271 | regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data; |
| 6272 | } else { |
| 6273 | regs[rd] = *((uint64_t *)dvar->dtdv_data); |
| 6274 | } |
| 6275 | |
| 6276 | break; |
| 6277 | } |
| 6278 | |
| 6279 | case DIF_OP_STTS: { |
| 6280 | dtrace_dynvar_t *dvar; |
| 6281 | dtrace_key_t *key; |
| 6282 | |
| 6283 | id = DIF_INSTR_VAR(instr); |
| 6284 | ASSERT(id >= DIF_VAR_OTHER_UBASE); |
| 6285 | id -= DIF_VAR_OTHER_UBASE; |
| 6286 | VERIFY(id < (uint_t)vstate->dtvs_ntlocals); |
| 6287 | |
| 6288 | key = &tupregs[DIF_DTR_NREGS]; |
| 6289 | key[0].dttk_value = (uint64_t)id; |
| 6290 | key[0].dttk_size = 0; |
| 6291 | DTRACE_TLS_THRKEY(key[1].dttk_value); |
| 6292 | key[1].dttk_size = 0; |
| 6293 | v = &vstate->dtvs_tlocals[id]; |
| 6294 | |
| 6295 | dvar = dtrace_dynvar(dstate, nkeys: 2, key, |
| 6296 | dsize: v->dtdv_type.dtdt_size > sizeof (uint64_t) ? |
| 6297 | v->dtdv_type.dtdt_size : sizeof (uint64_t), |
| 6298 | regs[rd] ? DTRACE_DYNVAR_ALLOC : |
| 6299 | DTRACE_DYNVAR_DEALLOC, mstate, vstate); |
| 6300 | |
| 6301 | /* |
| 6302 | * Given that we're storing to thread-local data, |
| 6303 | * we need to flush our predicate cache. |
| 6304 | */ |
| 6305 | dtrace_set_thread_predcache(current_thread(), 0); |
| 6306 | |
| 6307 | if (dvar == NULL) |
| 6308 | break; |
| 6309 | |
| 6310 | if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { |
| 6311 | size_t lim = 0; |
| 6312 | |
| 6313 | if (!dtrace_vcanload( |
| 6314 | src: (void *)(uintptr_t)regs[rd], |
| 6315 | type: &v->dtdv_type, remain: &lim, mstate, vstate)) |
| 6316 | break; |
| 6317 | |
| 6318 | dtrace_vcopy(src: (void *)(uintptr_t)regs[rd], |
| 6319 | dst: dvar->dtdv_data, type: &v->dtdv_type, limit: lim); |
| 6320 | } else { |
| 6321 | *((uint64_t *)dvar->dtdv_data) = regs[rd]; |
| 6322 | } |
| 6323 | |
| 6324 | break; |
| 6325 | } |
| 6326 | |
| 6327 | case DIF_OP_SRA: |
| 6328 | regs[rd] = (int64_t)regs[r1] >> regs[r2]; |
| 6329 | break; |
| 6330 | |
| 6331 | case DIF_OP_CALL: |
| 6332 | dtrace_dif_subr(DIF_INSTR_SUBR(instr), rd, |
| 6333 | regs, tupregs, nargs: ttop, mstate, state); |
| 6334 | break; |
| 6335 | |
| 6336 | case DIF_OP_PUSHTR: |
| 6337 | if (ttop == DIF_DTR_NREGS) { |
| 6338 | *flags |= CPU_DTRACE_TUPOFLOW; |
| 6339 | break; |
| 6340 | } |
| 6341 | |
| 6342 | if (r1 == DIF_TYPE_STRING) { |
| 6343 | /* |
| 6344 | * If this is a string type and the size is 0, |
| 6345 | * we'll use the system-wide default string |
| 6346 | * size. Note that we are _not_ looking at |
| 6347 | * the value of the DTRACEOPT_STRSIZE option; |
| 6348 | * had this been set, we would expect to have |
| 6349 | * a non-zero size value in the "pushtr". |
| 6350 | */ |
| 6351 | tupregs[ttop].dttk_size = |
| 6352 | dtrace_strlen(s: (char *)(uintptr_t)regs[rd], |
| 6353 | regs[r2] ? regs[r2] : |
| 6354 | dtrace_strsize_default) + 1; |
| 6355 | } else { |
| 6356 | if (regs[r2] > LONG_MAX) { |
| 6357 | *flags |= CPU_DTRACE_ILLOP; |
| 6358 | break; |
| 6359 | } |
| 6360 | tupregs[ttop].dttk_size = regs[r2]; |
| 6361 | } |
| 6362 | |
| 6363 | tupregs[ttop++].dttk_value = regs[rd]; |
| 6364 | break; |
| 6365 | |
| 6366 | case DIF_OP_PUSHTV: |
| 6367 | if (ttop == DIF_DTR_NREGS) { |
| 6368 | *flags |= CPU_DTRACE_TUPOFLOW; |
| 6369 | break; |
| 6370 | } |
| 6371 | |
| 6372 | tupregs[ttop].dttk_value = regs[rd]; |
| 6373 | tupregs[ttop++].dttk_size = 0; |
| 6374 | break; |
| 6375 | |
| 6376 | case DIF_OP_POPTS: |
| 6377 | if (ttop != 0) |
| 6378 | ttop--; |
| 6379 | break; |
| 6380 | |
| 6381 | case DIF_OP_FLUSHTS: |
| 6382 | ttop = 0; |
| 6383 | break; |
| 6384 | |
| 6385 | case DIF_OP_LDGAA: |
| 6386 | case DIF_OP_LDTAA: { |
| 6387 | dtrace_dynvar_t *dvar; |
| 6388 | dtrace_key_t *key = tupregs; |
| 6389 | uint_t nkeys = ttop; |
| 6390 | |
| 6391 | id = DIF_INSTR_VAR(instr); |
| 6392 | ASSERT(id >= DIF_VAR_OTHER_UBASE); |
| 6393 | id -= DIF_VAR_OTHER_UBASE; |
| 6394 | |
| 6395 | key[nkeys].dttk_value = (uint64_t)id; |
| 6396 | key[nkeys++].dttk_size = 0; |
| 6397 | |
| 6398 | if (DIF_INSTR_OP(instr) == DIF_OP_LDTAA) { |
| 6399 | DTRACE_TLS_THRKEY(key[nkeys].dttk_value); |
| 6400 | key[nkeys++].dttk_size = 0; |
| 6401 | VERIFY(id < (uint_t)vstate->dtvs_ntlocals); |
| 6402 | v = &vstate->dtvs_tlocals[id]; |
| 6403 | } else { |
| 6404 | VERIFY(id < (uint_t)vstate->dtvs_nglobals); |
| 6405 | v = &vstate->dtvs_globals[id]->dtsv_var; |
| 6406 | } |
| 6407 | |
| 6408 | dvar = dtrace_dynvar(dstate, nkeys, key, |
| 6409 | dsize: v->dtdv_type.dtdt_size > sizeof (uint64_t) ? |
| 6410 | v->dtdv_type.dtdt_size : sizeof (uint64_t), |
| 6411 | op: DTRACE_DYNVAR_NOALLOC, mstate, vstate); |
| 6412 | |
| 6413 | if (dvar == NULL) { |
| 6414 | regs[rd] = 0; |
| 6415 | break; |
| 6416 | } |
| 6417 | |
| 6418 | if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { |
| 6419 | regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data; |
| 6420 | } else { |
| 6421 | regs[rd] = *((uint64_t *)dvar->dtdv_data); |
| 6422 | } |
| 6423 | |
| 6424 | break; |
| 6425 | } |
| 6426 | |
| 6427 | case DIF_OP_STGAA: |
| 6428 | case DIF_OP_STTAA: { |
| 6429 | dtrace_dynvar_t *dvar; |
| 6430 | dtrace_key_t *key = tupregs; |
| 6431 | uint_t nkeys = ttop; |
| 6432 | |
| 6433 | id = DIF_INSTR_VAR(instr); |
| 6434 | ASSERT(id >= DIF_VAR_OTHER_UBASE); |
| 6435 | id -= DIF_VAR_OTHER_UBASE; |
| 6436 | |
| 6437 | key[nkeys].dttk_value = (uint64_t)id; |
| 6438 | key[nkeys++].dttk_size = 0; |
| 6439 | |
| 6440 | if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) { |
| 6441 | DTRACE_TLS_THRKEY(key[nkeys].dttk_value); |
| 6442 | key[nkeys++].dttk_size = 0; |
| 6443 | VERIFY(id < (uint_t)vstate->dtvs_ntlocals); |
| 6444 | v = &vstate->dtvs_tlocals[id]; |
| 6445 | } else { |
| 6446 | VERIFY(id < (uint_t)vstate->dtvs_nglobals); |
| 6447 | v = &vstate->dtvs_globals[id]->dtsv_var; |
| 6448 | } |
| 6449 | |
| 6450 | dvar = dtrace_dynvar(dstate, nkeys, key, |
| 6451 | dsize: v->dtdv_type.dtdt_size > sizeof (uint64_t) ? |
| 6452 | v->dtdv_type.dtdt_size : sizeof (uint64_t), |
| 6453 | regs[rd] ? DTRACE_DYNVAR_ALLOC : |
| 6454 | DTRACE_DYNVAR_DEALLOC, mstate, vstate); |
| 6455 | |
| 6456 | if (dvar == NULL) |
| 6457 | break; |
| 6458 | |
| 6459 | if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) { |
| 6460 | size_t lim = 0; |
| 6461 | |
| 6462 | if (!dtrace_vcanload( |
| 6463 | src: (void *)(uintptr_t)regs[rd], type: &v->dtdv_type, |
| 6464 | remain: &lim, mstate, vstate)) |
| 6465 | break; |
| 6466 | |
| 6467 | dtrace_vcopy(src: (void *)(uintptr_t)regs[rd], |
| 6468 | dst: dvar->dtdv_data, type: &v->dtdv_type, limit: lim); |
| 6469 | } else { |
| 6470 | *((uint64_t *)dvar->dtdv_data) = regs[rd]; |
| 6471 | } |
| 6472 | |
| 6473 | break; |
| 6474 | } |
| 6475 | |
| 6476 | case DIF_OP_ALLOCS: { |
| 6477 | uintptr_t ptr = P2ROUNDUP(mstate->dtms_scratch_ptr, 8); |
| 6478 | size_t size = ptr - mstate->dtms_scratch_ptr + regs[r1]; |
| 6479 | |
| 6480 | /* |
| 6481 | * Rounding up the user allocation size could have |
| 6482 | * overflowed large, bogus allocations (like -1ULL) to |
| 6483 | * 0. |
| 6484 | */ |
| 6485 | if (size < regs[r1] || |
| 6486 | !DTRACE_INSCRATCH(mstate, size)) { |
| 6487 | DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); |
| 6488 | regs[rd] = 0; |
| 6489 | break; |
| 6490 | } |
| 6491 | |
| 6492 | dtrace_bzero(dst: (void *) mstate->dtms_scratch_ptr, len: size); |
| 6493 | mstate->dtms_scratch_ptr += size; |
| 6494 | regs[rd] = ptr; |
| 6495 | break; |
| 6496 | } |
| 6497 | |
| 6498 | case DIF_OP_COPYS: |
| 6499 | if (!dtrace_canstore(regs[rd], regs[r2], |
| 6500 | mstate, vstate)) { |
| 6501 | *flags |= CPU_DTRACE_BADADDR; |
| 6502 | *illval = regs[rd]; |
| 6503 | break; |
| 6504 | } |
| 6505 | |
| 6506 | if (!dtrace_canload(regs[r1], regs[r2], mstate, vstate)) |
| 6507 | break; |
| 6508 | |
| 6509 | dtrace_bcopy(src: (void *)(uintptr_t)regs[r1], |
| 6510 | dst: (void *)(uintptr_t)regs[rd], len: (size_t)regs[r2]); |
| 6511 | break; |
| 6512 | |
| 6513 | case DIF_OP_STB: |
| 6514 | if (!dtrace_canstore(regs[rd], sz: 1, mstate, vstate)) { |
| 6515 | *flags |= CPU_DTRACE_BADADDR; |
| 6516 | *illval = regs[rd]; |
| 6517 | break; |
| 6518 | } |
| 6519 | *((uint8_t *)(uintptr_t)regs[rd]) = (uint8_t)regs[r1]; |
| 6520 | break; |
| 6521 | |
| 6522 | case DIF_OP_STH: |
| 6523 | if (!dtrace_canstore(regs[rd], sz: 2, mstate, vstate)) { |
| 6524 | *flags |= CPU_DTRACE_BADADDR; |
| 6525 | *illval = regs[rd]; |
| 6526 | break; |
| 6527 | } |
| 6528 | if (regs[rd] & 1) { |
| 6529 | *flags |= CPU_DTRACE_BADALIGN; |
| 6530 | *illval = regs[rd]; |
| 6531 | break; |
| 6532 | } |
| 6533 | *((uint16_t *)(uintptr_t)regs[rd]) = (uint16_t)regs[r1]; |
| 6534 | break; |
| 6535 | |
| 6536 | case DIF_OP_STW: |
| 6537 | if (!dtrace_canstore(regs[rd], sz: 4, mstate, vstate)) { |
| 6538 | *flags |= CPU_DTRACE_BADADDR; |
| 6539 | *illval = regs[rd]; |
| 6540 | break; |
| 6541 | } |
| 6542 | if (regs[rd] & 3) { |
| 6543 | *flags |= CPU_DTRACE_BADALIGN; |
| 6544 | *illval = regs[rd]; |
| 6545 | break; |
| 6546 | } |
| 6547 | *((uint32_t *)(uintptr_t)regs[rd]) = (uint32_t)regs[r1]; |
| 6548 | break; |
| 6549 | |
| 6550 | case DIF_OP_STX: |
| 6551 | if (!dtrace_canstore(regs[rd], sz: 8, mstate, vstate)) { |
| 6552 | *flags |= CPU_DTRACE_BADADDR; |
| 6553 | *illval = regs[rd]; |
| 6554 | break; |
| 6555 | } |
| 6556 | |
| 6557 | /* |
| 6558 | * Darwin kmem_zalloc() called from |
| 6559 | * dtrace_difo_init() is 4-byte aligned. |
| 6560 | */ |
| 6561 | if (regs[rd] & 3) { |
| 6562 | *flags |= CPU_DTRACE_BADALIGN; |
| 6563 | *illval = regs[rd]; |
| 6564 | break; |
| 6565 | } |
| 6566 | *((uint64_t *)(uintptr_t)regs[rd]) = regs[r1]; |
| 6567 | break; |
| 6568 | case DIF_OP_STRIP: |
| 6569 | regs[rd] = (uint64_t)dtrace_ptrauth_strip( |
| 6570 | (void*)regs[r1], r2); |
| 6571 | break; |
| 6572 | } |
| 6573 | } |
| 6574 | |
| 6575 | if (!(*flags & CPU_DTRACE_FAULT)) |
| 6576 | return (rval); |
| 6577 | |
| 6578 | mstate->dtms_fltoffs = opc * sizeof (dif_instr_t); |
| 6579 | mstate->dtms_present |= DTRACE_MSTATE_FLTOFFS; |
| 6580 | |
| 6581 | return (0); |
| 6582 | } |
| 6583 | |
| 6584 | __attribute__((noinline)) |
| 6585 | static void |
| 6586 | dtrace_action_breakpoint(dtrace_ecb_t *ecb) |
| 6587 | { |
| 6588 | dtrace_probe_t *probe = ecb->dte_probe; |
| 6589 | dtrace_provider_t *prov = probe->dtpr_provider; |
| 6590 | char c[DTRACE_FULLNAMELEN + 80], *str; |
| 6591 | const char *msg = "dtrace: breakpoint action at probe " ; |
| 6592 | const char *ecbmsg = " (ecb " ; |
| 6593 | uintptr_t mask = (0xf << (sizeof (uintptr_t) * NBBY / 4)); |
| 6594 | uintptr_t val = (uintptr_t)ecb; |
| 6595 | int shift = (sizeof (uintptr_t) * NBBY) - 4, i = 0; |
| 6596 | |
| 6597 | if (dtrace_destructive_disallow) |
| 6598 | return; |
| 6599 | |
| 6600 | /* |
| 6601 | * It's impossible to be taking action on the NULL probe. |
| 6602 | */ |
| 6603 | ASSERT(probe != NULL); |
| 6604 | |
| 6605 | /* |
| 6606 | * This is a poor man's (destitute man's?) sprintf(): we want to |
| 6607 | * print the provider name, module name, function name and name of |
| 6608 | * the probe, along with the hex address of the ECB with the breakpoint |
| 6609 | * action -- all of which we must place in the character buffer by |
| 6610 | * hand. |
| 6611 | */ |
| 6612 | while (*msg != '\0') |
| 6613 | c[i++] = *msg++; |
| 6614 | |
| 6615 | for (str = prov->dtpv_name; *str != '\0'; str++) |
| 6616 | c[i++] = *str; |
| 6617 | c[i++] = ':'; |
| 6618 | |
| 6619 | for (str = probe->dtpr_mod; *str != '\0'; str++) |
| 6620 | c[i++] = *str; |
| 6621 | c[i++] = ':'; |
| 6622 | |
| 6623 | for (str = probe->dtpr_func; *str != '\0'; str++) |
| 6624 | c[i++] = *str; |
| 6625 | c[i++] = ':'; |
| 6626 | |
| 6627 | for (str = probe->dtpr_name; *str != '\0'; str++) |
| 6628 | c[i++] = *str; |
| 6629 | |
| 6630 | while (*ecbmsg != '\0') |
| 6631 | c[i++] = *ecbmsg++; |
| 6632 | |
| 6633 | while (shift >= 0) { |
| 6634 | mask = (uintptr_t)0xf << shift; |
| 6635 | |
| 6636 | if (val >= ((uintptr_t)1 << shift)) |
| 6637 | c[i++] = "0123456789abcdef" [(val & mask) >> shift]; |
| 6638 | shift -= 4; |
| 6639 | } |
| 6640 | |
| 6641 | c[i++] = ')'; |
| 6642 | c[i] = '\0'; |
| 6643 | |
| 6644 | debug_enter(c); |
| 6645 | } |
| 6646 | |
| 6647 | __attribute__((noinline)) |
| 6648 | static void |
| 6649 | dtrace_action_panic(dtrace_ecb_t *ecb) |
| 6650 | { |
| 6651 | dtrace_probe_t *probe = ecb->dte_probe; |
| 6652 | |
| 6653 | /* |
| 6654 | * It's impossible to be taking action on the NULL probe. |
| 6655 | */ |
| 6656 | ASSERT(probe != NULL); |
| 6657 | |
| 6658 | if (dtrace_destructive_disallow) |
| 6659 | return; |
| 6660 | |
| 6661 | if (dtrace_panicked != NULL) |
| 6662 | return; |
| 6663 | |
| 6664 | if (dtrace_casptr(&dtrace_panicked, NULL, current_thread()) != NULL) |
| 6665 | return; |
| 6666 | |
| 6667 | /* |
| 6668 | * We won the right to panic. (We want to be sure that only one |
| 6669 | * thread calls panic() from dtrace_probe(), and that panic() is |
| 6670 | * called exactly once.) |
| 6671 | */ |
| 6672 | panic("dtrace: panic action at probe %s:%s:%s:%s (ecb %p)" , |
| 6673 | probe->dtpr_provider->dtpv_name, probe->dtpr_mod, |
| 6674 | probe->dtpr_func, probe->dtpr_name, (void *)ecb); |
| 6675 | |
| 6676 | /* |
| 6677 | * APPLE NOTE: this was for an old Mac OS X debug feature |
| 6678 | * allowing a return from panic(). Revisit someday. |
| 6679 | */ |
| 6680 | dtrace_panicked = NULL; |
| 6681 | } |
| 6682 | |
| 6683 | static void |
| 6684 | dtrace_action_raise(uint64_t sig) |
| 6685 | { |
| 6686 | if (dtrace_destructive_disallow) |
| 6687 | return; |
| 6688 | |
| 6689 | if (sig >= NSIG) { |
| 6690 | DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); |
| 6691 | return; |
| 6692 | } |
| 6693 | |
| 6694 | /* |
| 6695 | * raise() has a queue depth of 1 -- we ignore all subsequent |
| 6696 | * invocations of the raise() action. |
| 6697 | */ |
| 6698 | |
| 6699 | uthread_t uthread = current_uthread(); |
| 6700 | |
| 6701 | if (uthread && uthread->t_dtrace_sig == 0) { |
| 6702 | uthread->t_dtrace_sig = sig; |
| 6703 | act_set_astbsd(current_thread()); |
| 6704 | } |
| 6705 | } |
| 6706 | |
| 6707 | static void |
| 6708 | dtrace_action_stop(void) |
| 6709 | { |
| 6710 | if (dtrace_destructive_disallow) |
| 6711 | return; |
| 6712 | |
| 6713 | uthread_t uthread = current_uthread(); |
| 6714 | if (uthread) { |
| 6715 | /* |
| 6716 | * The currently running process will be set to task_suspend |
| 6717 | * when it next leaves the kernel. |
| 6718 | */ |
| 6719 | uthread->t_dtrace_stop = 1; |
| 6720 | act_set_astbsd(current_thread()); |
| 6721 | } |
| 6722 | } |
| 6723 | |
| 6724 | |
| 6725 | /* |
| 6726 | * APPLE NOTE: pidresume works in conjunction with the dtrace stop action. |
| 6727 | * Both activate only when the currently running process next leaves the |
| 6728 | * kernel. |
| 6729 | */ |
| 6730 | static void |
| 6731 | dtrace_action_pidresume(uint64_t pid) |
| 6732 | { |
| 6733 | if (dtrace_destructive_disallow) |
| 6734 | return; |
| 6735 | |
| 6736 | if (kauth_cred_issuser(cred: kauth_cred_get()) == 0) { |
| 6737 | DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); |
| 6738 | return; |
| 6739 | } |
| 6740 | uthread_t uthread = current_uthread(); |
| 6741 | |
| 6742 | /* |
| 6743 | * When the currently running process leaves the kernel, it attempts to |
| 6744 | * task_resume the process (denoted by pid), if that pid appears to have |
| 6745 | * been stopped by dtrace_action_stop(). |
| 6746 | * The currently running process has a pidresume() queue depth of 1 -- |
| 6747 | * subsequent invocations of the pidresume() action are ignored. |
| 6748 | */ |
| 6749 | |
| 6750 | if (pid != 0 && uthread && uthread->t_dtrace_resumepid == 0) { |
| 6751 | uthread->t_dtrace_resumepid = pid; |
| 6752 | act_set_astbsd(current_thread()); |
| 6753 | } |
| 6754 | } |
| 6755 | |
| 6756 | __attribute__((noinline)) |
| 6757 | static void |
| 6758 | dtrace_action_chill(dtrace_mstate_t *mstate, hrtime_t val) |
| 6759 | { |
| 6760 | hrtime_t now; |
| 6761 | volatile uint16_t *flags; |
| 6762 | dtrace_cpu_t *cpu = CPU; |
| 6763 | |
| 6764 | if (dtrace_destructive_disallow) |
| 6765 | return; |
| 6766 | |
| 6767 | flags = (volatile uint16_t *)&cpu_core[cpu->cpu_id].cpuc_dtrace_flags; |
| 6768 | |
| 6769 | now = dtrace_gethrtime(); |
| 6770 | |
| 6771 | if (now - cpu->cpu_dtrace_chillmark > dtrace_chill_interval) { |
| 6772 | /* |
| 6773 | * We need to advance the mark to the current time. |
| 6774 | */ |
| 6775 | cpu->cpu_dtrace_chillmark = now; |
| 6776 | cpu->cpu_dtrace_chilled = 0; |
| 6777 | } |
| 6778 | |
| 6779 | /* |
| 6780 | * Now check to see if the requested chill time would take us over |
| 6781 | * the maximum amount of time allowed in the chill interval. (Or |
| 6782 | * worse, if the calculation itself induces overflow.) |
| 6783 | */ |
| 6784 | if (cpu->cpu_dtrace_chilled + val > dtrace_chill_max || |
| 6785 | cpu->cpu_dtrace_chilled + val < cpu->cpu_dtrace_chilled) { |
| 6786 | *flags |= CPU_DTRACE_ILLOP; |
| 6787 | return; |
| 6788 | } |
| 6789 | |
| 6790 | while (dtrace_gethrtime() - now < val) |
| 6791 | continue; |
| 6792 | |
| 6793 | /* |
| 6794 | * Normally, we assure that the value of the variable "timestamp" does |
| 6795 | * not change within an ECB. The presence of chill() represents an |
| 6796 | * exception to this rule, however. |
| 6797 | */ |
| 6798 | mstate->dtms_present &= ~DTRACE_MSTATE_TIMESTAMP; |
| 6799 | cpu->cpu_dtrace_chilled += val; |
| 6800 | } |
| 6801 | |
| 6802 | __attribute__((noinline)) |
| 6803 | static void |
| 6804 | dtrace_action_ustack(dtrace_mstate_t *mstate, dtrace_state_t *state, |
| 6805 | uint64_t *buf, uint64_t arg) |
| 6806 | { |
| 6807 | int nframes = DTRACE_USTACK_NFRAMES(arg); |
| 6808 | int strsize = DTRACE_USTACK_STRSIZE(arg); |
| 6809 | uint64_t *pcs = &buf[1], *fps; |
| 6810 | char *str = (char *)&pcs[nframes]; |
| 6811 | int size, offs = 0, i, j; |
| 6812 | uintptr_t old = mstate->dtms_scratch_ptr, saved; |
| 6813 | uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; |
| 6814 | char *sym; |
| 6815 | |
| 6816 | /* |
| 6817 | * Should be taking a faster path if string space has not been |
| 6818 | * allocated. |
| 6819 | */ |
| 6820 | ASSERT(strsize != 0); |
| 6821 | |
| 6822 | /* |
| 6823 | * We will first allocate some temporary space for the frame pointers. |
| 6824 | */ |
| 6825 | fps = (uint64_t *)P2ROUNDUP(mstate->dtms_scratch_ptr, 8); |
| 6826 | size = (uintptr_t)fps - mstate->dtms_scratch_ptr + |
| 6827 | (nframes * sizeof (uint64_t)); |
| 6828 | |
| 6829 | if (!DTRACE_INSCRATCH(mstate, (uintptr_t)size)) { |
| 6830 | /* |
| 6831 | * Not enough room for our frame pointers -- need to indicate |
| 6832 | * that we ran out of scratch space. |
| 6833 | */ |
| 6834 | DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH); |
| 6835 | return; |
| 6836 | } |
| 6837 | |
| 6838 | mstate->dtms_scratch_ptr += size; |
| 6839 | saved = mstate->dtms_scratch_ptr; |
| 6840 | |
| 6841 | /* |
| 6842 | * Now get a stack with both program counters and frame pointers. |
| 6843 | */ |
| 6844 | DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); |
| 6845 | dtrace_getufpstack(buf, fps, nframes + 1); |
| 6846 | DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); |
| 6847 | |
| 6848 | /* |
| 6849 | * If that faulted, we're cooked. |
| 6850 | */ |
| 6851 | if (*flags & CPU_DTRACE_FAULT) |
| 6852 | goto out; |
| 6853 | |
| 6854 | /* |
| 6855 | * Now we want to walk up the stack, calling the USTACK helper. For |
| 6856 | * each iteration, we restore the scratch pointer. |
| 6857 | */ |
| 6858 | for (i = 0; i < nframes; i++) { |
| 6859 | mstate->dtms_scratch_ptr = saved; |
| 6860 | |
| 6861 | if (offs >= strsize) |
| 6862 | break; |
| 6863 | |
| 6864 | sym = (char *)(uintptr_t)dtrace_helper( |
| 6865 | DTRACE_HELPER_ACTION_USTACK, |
| 6866 | mstate, state, pcs[i], fps[i]); |
| 6867 | |
| 6868 | /* |
| 6869 | * If we faulted while running the helper, we're going to |
| 6870 | * clear the fault and null out the corresponding string. |
| 6871 | */ |
| 6872 | if (*flags & CPU_DTRACE_FAULT) { |
| 6873 | *flags &= ~CPU_DTRACE_FAULT; |
| 6874 | str[offs++] = '\0'; |
| 6875 | continue; |
| 6876 | } |
| 6877 | |
| 6878 | if (sym == NULL) { |
| 6879 | str[offs++] = '\0'; |
| 6880 | continue; |
| 6881 | } |
| 6882 | |
| 6883 | DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); |
| 6884 | |
| 6885 | /* |
| 6886 | * Now copy in the string that the helper returned to us. |
| 6887 | */ |
| 6888 | for (j = 0; offs + j < strsize; j++) { |
| 6889 | if ((str[offs + j] = sym[j]) == '\0') |
| 6890 | break; |
| 6891 | } |
| 6892 | |
| 6893 | DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); |
| 6894 | |
| 6895 | offs += j + 1; |
| 6896 | } |
| 6897 | |
| 6898 | if (offs >= strsize) { |
| 6899 | /* |
| 6900 | * If we didn't have room for all of the strings, we don't |
| 6901 | * abort processing -- this needn't be a fatal error -- but we |
| 6902 | * still want to increment a counter (dts_stkstroverflows) to |
| 6903 | * allow this condition to be warned about. (If this is from |
| 6904 | * a jstack() action, it is easily tuned via jstackstrsize.) |
| 6905 | */ |
| 6906 | dtrace_error(counter: &state->dts_stkstroverflows); |
| 6907 | } |
| 6908 | |
| 6909 | while (offs < strsize) |
| 6910 | str[offs++] = '\0'; |
| 6911 | |
| 6912 | out: |
| 6913 | mstate->dtms_scratch_ptr = old; |
| 6914 | } |
| 6915 | |
| 6916 | __attribute__((noinline)) |
| 6917 | static void |
| 6918 | dtrace_store_by_ref(dtrace_difo_t *dp, caddr_t tomax, size_t size, |
| 6919 | size_t *valoffsp, uint64_t *valp, uint64_t end, int intuple, int dtkind) |
| 6920 | { |
| 6921 | volatile uint16_t *flags; |
| 6922 | uint64_t val = *valp; |
| 6923 | size_t valoffs = *valoffsp; |
| 6924 | |
| 6925 | flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags; |
| 6926 | ASSERT(dtkind == DIF_TF_BYREF || dtkind == DIF_TF_BYUREF); |
| 6927 | |
| 6928 | /* |
| 6929 | * If this is a string, we're going to only load until we find the zero |
| 6930 | * byte -- after which we'll store zero bytes. |
| 6931 | */ |
| 6932 | if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) { |
| 6933 | char c = '\0' + 1; |
| 6934 | size_t s; |
| 6935 | |
| 6936 | for (s = 0; s < size; s++) { |
| 6937 | if (c != '\0' && dtkind == DIF_TF_BYREF) { |
| 6938 | c = dtrace_load8(addr: val++); |
| 6939 | } else if (c != '\0' && dtkind == DIF_TF_BYUREF) { |
| 6940 | DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); |
| 6941 | c = dtrace_fuword8((user_addr_t)(uintptr_t)val++); |
| 6942 | DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); |
| 6943 | if (*flags & CPU_DTRACE_FAULT) |
| 6944 | break; |
| 6945 | } |
| 6946 | |
| 6947 | DTRACE_STORE(uint8_t, tomax, valoffs++, c); |
| 6948 | |
| 6949 | if (c == '\0' && intuple) |
| 6950 | break; |
| 6951 | } |
| 6952 | } else { |
| 6953 | uint8_t c; |
| 6954 | while (valoffs < end) { |
| 6955 | if (dtkind == DIF_TF_BYREF) { |
| 6956 | c = dtrace_load8(addr: val++); |
| 6957 | } else if (dtkind == DIF_TF_BYUREF) { |
| 6958 | DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); |
| 6959 | c = dtrace_fuword8((user_addr_t)(uintptr_t)val++); |
| 6960 | DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); |
| 6961 | if (*flags & CPU_DTRACE_FAULT) |
| 6962 | break; |
| 6963 | } |
| 6964 | |
| 6965 | DTRACE_STORE(uint8_t, tomax, |
| 6966 | valoffs++, c); |
| 6967 | } |
| 6968 | } |
| 6969 | |
| 6970 | *valp = val; |
| 6971 | *valoffsp = valoffs; |
| 6972 | } |
| 6973 | |
| 6974 | /* |
| 6975 | * Disables interrupts and sets the per-thread inprobe flag. When DEBUG is |
| 6976 | * defined, we also assert that we are not recursing unless the probe ID is an |
| 6977 | * error probe. |
| 6978 | */ |
| 6979 | static dtrace_icookie_t |
| 6980 | dtrace_probe_enter(dtrace_id_t id) |
| 6981 | { |
| 6982 | thread_t thread = current_thread(); |
| 6983 | uint16_t inprobe; |
| 6984 | |
| 6985 | dtrace_icookie_t cookie; |
| 6986 | |
| 6987 | cookie = dtrace_interrupt_disable(); |
| 6988 | |
| 6989 | /* |
| 6990 | * Unless this is an ERROR probe, we are not allowed to recurse in |
| 6991 | * dtrace_probe(). Recursing into DTrace probe usually means that a |
| 6992 | * function is instrumented that should not have been instrumented or |
| 6993 | * that the ordering guarantee of the records will be violated, |
| 6994 | * resulting in unexpected output. If there is an exception to this |
| 6995 | * assertion, a new case should be added. |
| 6996 | */ |
| 6997 | inprobe = dtrace_get_thread_inprobe(thread); |
| 6998 | VERIFY(inprobe == 0 || |
| 6999 | id == dtrace_probeid_error); |
| 7000 | ASSERT(inprobe < UINT16_MAX); |
| 7001 | dtrace_set_thread_inprobe(thread, inprobe + 1); |
| 7002 | |
| 7003 | return (cookie); |
| 7004 | } |
| 7005 | |
| 7006 | /* |
| 7007 | * Clears the per-thread inprobe flag and enables interrupts. |
| 7008 | */ |
| 7009 | static void |
| 7010 | dtrace_probe_exit(dtrace_icookie_t cookie) |
| 7011 | { |
| 7012 | thread_t thread = current_thread(); |
| 7013 | uint16_t inprobe = dtrace_get_thread_inprobe(thread); |
| 7014 | |
| 7015 | ASSERT(inprobe > 0); |
| 7016 | dtrace_set_thread_inprobe(thread, inprobe - 1); |
| 7017 | |
| 7018 | #if SCHED_HYGIENE_DEBUG |
| 7019 | /* |
| 7020 | * Probes can take a relatively long time depending on what the user has |
| 7021 | * requested be done in probe context. |
| 7022 | * Probes can fire from places where interrupts are already disabled |
| 7023 | * (like an interrupt handler) or where preemption has been disabled. |
| 7024 | * In order to not trip the interrupt or preemption thresholds, it is |
| 7025 | * important to reset timestamps when leaving probe context. |
| 7026 | */ |
| 7027 | |
| 7028 | /* Interrupts were disabled for the duration of this probe. */ |
| 7029 | ml_spin_debug_reset(thread); |
| 7030 | |
| 7031 | /* May have been called from an interrupt handler. */ |
| 7032 | ml_irq_debug_abandon(); |
| 7033 | |
| 7034 | /* May have been called with preemption disabled. */ |
| 7035 | abandon_preemption_disable_measurement(); |
| 7036 | |
| 7037 | #endif /* SCHED_HYGIENE_DEBUG */ |
| 7038 | |
| 7039 | dtrace_interrupt_enable(cookie); |
| 7040 | } |
| 7041 | |
| 7042 | /* |
| 7043 | * If you're looking for the epicenter of DTrace, you just found it. This |
| 7044 | * is the function called by the provider to fire a probe -- from which all |
| 7045 | * subsequent probe-context DTrace activity emanates. |
| 7046 | */ |
| 7047 | void |
| 7048 | dtrace_probe(dtrace_id_t id, uint64_t arg0, uint64_t arg1, |
| 7049 | uint64_t arg2, uint64_t arg3, uint64_t arg4) |
| 7050 | { |
| 7051 | processorid_t cpuid; |
| 7052 | dtrace_icookie_t cookie; |
| 7053 | dtrace_probe_t *probe; |
| 7054 | dtrace_mstate_t mstate; |
| 7055 | dtrace_ecb_t *ecb; |
| 7056 | dtrace_action_t *act; |
| 7057 | intptr_t offs; |
| 7058 | size_t size; |
| 7059 | int vtime, onintr; |
| 7060 | volatile uint16_t *flags; |
| 7061 | hrtime_t now; |
| 7062 | |
| 7063 | cookie = dtrace_probe_enter(id); |
| 7064 | |
| 7065 | /* Ensure that probe id is valid. */ |
| 7066 | if (id - 1 >= (dtrace_id_t)dtrace_nprobes) { |
| 7067 | dtrace_probe_exit(cookie); |
| 7068 | return; |
| 7069 | } |
| 7070 | |
| 7071 | probe = dtrace_probes[id - 1]; |
| 7072 | if (probe == NULL) { |
| 7073 | dtrace_probe_exit(cookie); |
| 7074 | return; |
| 7075 | } |
| 7076 | |
| 7077 | cpuid = CPU->cpu_id; |
| 7078 | onintr = CPU_ON_INTR(CPU); |
| 7079 | |
| 7080 | if (!onintr && probe->dtpr_predcache != DTRACE_CACHEIDNONE && |
| 7081 | probe->dtpr_predcache == dtrace_get_thread_predcache(current_thread())) { |
| 7082 | /* |
| 7083 | * We have hit in the predicate cache; we know that |
| 7084 | * this predicate would evaluate to be false. |
| 7085 | */ |
| 7086 | dtrace_probe_exit(cookie); |
| 7087 | return; |
| 7088 | } |
| 7089 | |
| 7090 | if (panic_quiesce) { |
| 7091 | /* |
| 7092 | * We don't trace anything if we're panicking. |
| 7093 | */ |
| 7094 | dtrace_probe_exit(cookie); |
| 7095 | return; |
| 7096 | } |
| 7097 | |
| 7098 | #if !defined(__APPLE__) |
| 7099 | now = dtrace_gethrtime(); |
| 7100 | vtime = dtrace_vtime_references != 0; |
| 7101 | |
| 7102 | if (vtime && curthread->t_dtrace_start) |
| 7103 | curthread->t_dtrace_vtime += now - curthread->t_dtrace_start; |
| 7104 | #else |
| 7105 | /* |
| 7106 | * APPLE NOTE: The time spent entering DTrace and arriving |
| 7107 | * to this point, is attributed to the current thread. |
| 7108 | * Instead it should accrue to DTrace. FIXME |
| 7109 | */ |
| 7110 | vtime = dtrace_vtime_references != 0; |
| 7111 | |
| 7112 | if (vtime) |
| 7113 | { |
| 7114 | int64_t dtrace_accum_time, recent_vtime; |
| 7115 | thread_t thread = current_thread(); |
| 7116 | |
| 7117 | dtrace_accum_time = dtrace_get_thread_tracing(thread); /* Time spent inside DTrace so far (nanoseconds) */ |
| 7118 | |
| 7119 | if (dtrace_accum_time >= 0) { |
| 7120 | recent_vtime = dtrace_abs_to_nano(dtrace_calc_thread_recent_vtime(thread)); /* up to the moment thread vtime */ |
| 7121 | |
| 7122 | recent_vtime = recent_vtime - dtrace_accum_time; /* Time without DTrace contribution */ |
| 7123 | |
| 7124 | dtrace_set_thread_vtime(thread, recent_vtime); |
| 7125 | } |
| 7126 | } |
| 7127 | |
| 7128 | now = dtrace_gethrtime(); /* must not precede dtrace_calc_thread_recent_vtime() call! */ |
| 7129 | #endif /* __APPLE__ */ |
| 7130 | |
| 7131 | /* |
| 7132 | * APPLE NOTE: A provider may call dtrace_probe_error() in lieu of |
| 7133 | * dtrace_probe() in some circumstances. See, e.g. fasttrap_isa.c. |
| 7134 | * However the provider has no access to ECB context, so passes |
| 7135 | * 0 through "arg0" and the probe_id of the overridden probe as arg1. |
| 7136 | * Detect that here and cons up a viable state (from the probe_id). |
| 7137 | */ |
| 7138 | if (dtrace_probeid_error == id && 0 == arg0) { |
| 7139 | dtrace_id_t ftp_id = (dtrace_id_t)arg1; |
| 7140 | dtrace_probe_t *ftp_probe = dtrace_probes[ftp_id - 1]; |
| 7141 | dtrace_ecb_t *ftp_ecb = ftp_probe->dtpr_ecb; |
| 7142 | |
| 7143 | if (NULL != ftp_ecb) { |
| 7144 | dtrace_state_t *ftp_state = ftp_ecb->dte_state; |
| 7145 | |
| 7146 | arg0 = (uint64_t)(uintptr_t)ftp_state; |
| 7147 | arg1 = ftp_ecb->dte_epid; |
| 7148 | /* |
| 7149 | * args[2-4] established by caller. |
| 7150 | */ |
| 7151 | ftp_state->dts_arg_error_illval = -1; /* arg5 */ |
| 7152 | } |
| 7153 | } |
| 7154 | |
| 7155 | mstate.dtms_difo = NULL; |
| 7156 | mstate.dtms_probe = probe; |
| 7157 | mstate.dtms_strtok = 0; |
| 7158 | mstate.dtms_arg[0] = arg0; |
| 7159 | mstate.dtms_arg[1] = arg1; |
| 7160 | mstate.dtms_arg[2] = arg2; |
| 7161 | mstate.dtms_arg[3] = arg3; |
| 7162 | mstate.dtms_arg[4] = arg4; |
| 7163 | |
| 7164 | flags = (volatile uint16_t *)&cpu_core[cpuid].cpuc_dtrace_flags; |
| 7165 | |
| 7166 | for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) { |
| 7167 | dtrace_predicate_t *pred = ecb->dte_predicate; |
| 7168 | dtrace_state_t *state = ecb->dte_state; |
| 7169 | dtrace_buffer_t *buf = &state->dts_buffer[cpuid]; |
| 7170 | dtrace_buffer_t *aggbuf = &state->dts_aggbuffer[cpuid]; |
| 7171 | dtrace_vstate_t *vstate = &state->dts_vstate; |
| 7172 | dtrace_provider_t *prov = probe->dtpr_provider; |
| 7173 | uint64_t tracememsize = 0; |
| 7174 | int committed = 0; |
| 7175 | caddr_t tomax; |
| 7176 | |
| 7177 | /* |
| 7178 | * A little subtlety with the following (seemingly innocuous) |
| 7179 | * declaration of the automatic 'val': by looking at the |
| 7180 | * code, you might think that it could be declared in the |
| 7181 | * action processing loop, below. (That is, it's only used in |
| 7182 | * the action processing loop.) However, it must be declared |
| 7183 | * out of that scope because in the case of DIF expression |
| 7184 | * arguments to aggregating actions, one iteration of the |
| 7185 | * action loop will use the last iteration's value. |
| 7186 | */ |
| 7187 | #ifdef lint |
| 7188 | uint64_t val = 0; |
| 7189 | #else |
| 7190 | uint64_t val = 0; |
| 7191 | #endif |
| 7192 | |
| 7193 | mstate.dtms_present = DTRACE_MSTATE_ARGS | DTRACE_MSTATE_PROBE; |
| 7194 | *flags &= ~CPU_DTRACE_ERROR; |
| 7195 | |
| 7196 | if (prov == dtrace_provider) { |
| 7197 | /* |
| 7198 | * If dtrace itself is the provider of this probe, |
| 7199 | * we're only going to continue processing the ECB if |
| 7200 | * arg0 (the dtrace_state_t) is equal to the ECB's |
| 7201 | * creating state. (This prevents disjoint consumers |
| 7202 | * from seeing one another's metaprobes.) |
| 7203 | */ |
| 7204 | if (arg0 != (uint64_t)(uintptr_t)state) |
| 7205 | continue; |
| 7206 | } |
| 7207 | |
| 7208 | if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) { |
| 7209 | /* |
| 7210 | * We're not currently active. If our provider isn't |
| 7211 | * the dtrace pseudo provider, we're not interested. |
| 7212 | */ |
| 7213 | if (prov != dtrace_provider) |
| 7214 | continue; |
| 7215 | |
| 7216 | /* |
| 7217 | * Now we must further check if we are in the BEGIN |
| 7218 | * probe. If we are, we will only continue processing |
| 7219 | * if we're still in WARMUP -- if one BEGIN enabling |
| 7220 | * has invoked the exit() action, we don't want to |
| 7221 | * evaluate subsequent BEGIN enablings. |
| 7222 | */ |
| 7223 | if (probe->dtpr_id == dtrace_probeid_begin && |
| 7224 | state->dts_activity != DTRACE_ACTIVITY_WARMUP) { |
| 7225 | ASSERT(state->dts_activity == |
| 7226 | DTRACE_ACTIVITY_DRAINING); |
| 7227 | continue; |
| 7228 | } |
| 7229 | } |
| 7230 | |
| 7231 | if (ecb->dte_cond) { |
| 7232 | /* |
| 7233 | * If the dte_cond bits indicate that this |
| 7234 | * consumer is only allowed to see user-mode firings |
| 7235 | * of this probe, call the provider's dtps_usermode() |
| 7236 | * entry point to check that the probe was fired |
| 7237 | * while in a user context. Skip this ECB if that's |
| 7238 | * not the case. |
| 7239 | */ |
| 7240 | if ((ecb->dte_cond & DTRACE_COND_USERMODE) && |
| 7241 | prov->dtpv_pops.dtps_usermode && |
| 7242 | prov->dtpv_pops.dtps_usermode(prov->dtpv_arg, |
| 7243 | probe->dtpr_id, probe->dtpr_arg) == 0) |
| 7244 | continue; |
| 7245 | |
| 7246 | /* |
| 7247 | * This is more subtle than it looks. We have to be |
| 7248 | * absolutely certain that CRED() isn't going to |
| 7249 | * change out from under us so it's only legit to |
| 7250 | * examine that structure if we're in constrained |
| 7251 | * situations. Currently, the only times we'll this |
| 7252 | * check is if a non-super-user has enabled the |
| 7253 | * profile or syscall providers -- providers that |
| 7254 | * allow visibility of all processes. For the |
| 7255 | * profile case, the check above will ensure that |
| 7256 | * we're examining a user context. |
| 7257 | */ |
| 7258 | if (ecb->dte_cond & DTRACE_COND_OWNER) { |
| 7259 | cred_t *cr; |
| 7260 | cred_t *s_cr = |
| 7261 | ecb->dte_state->dts_cred.dcr_cred; |
| 7262 | proc_t *proc; |
| 7263 | #pragma unused(proc) /* __APPLE__ */ |
| 7264 | |
| 7265 | ASSERT(s_cr != NULL); |
| 7266 | |
| 7267 | /* |
| 7268 | * XXX this is hackish, but so is setting a variable |
| 7269 | * XXX in a McCarthy OR... |
| 7270 | */ |
| 7271 | if ((cr = dtrace_CRED()) == NULL || |
| 7272 | posix_cred_get(cred: s_cr)->cr_uid != posix_cred_get(cred: cr)->cr_uid || |
| 7273 | posix_cred_get(cred: s_cr)->cr_uid != posix_cred_get(cred: cr)->cr_ruid || |
| 7274 | posix_cred_get(cred: s_cr)->cr_uid != posix_cred_get(cred: cr)->cr_suid || |
| 7275 | posix_cred_get(cred: s_cr)->cr_gid != posix_cred_get(cred: cr)->cr_gid || |
| 7276 | posix_cred_get(cred: s_cr)->cr_gid != posix_cred_get(cred: cr)->cr_rgid || |
| 7277 | posix_cred_get(cred: s_cr)->cr_gid != posix_cred_get(cred: cr)->cr_sgid || |
| 7278 | #if !defined(__APPLE__) |
| 7279 | (proc = ttoproc(curthread)) == NULL || |
| 7280 | (proc->p_flag & SNOCD)) |
| 7281 | #else |
| 7282 | 1) /* APPLE NOTE: Darwin omits "No Core Dump" flag */ |
| 7283 | #endif /* __APPLE__ */ |
| 7284 | continue; |
| 7285 | } |
| 7286 | |
| 7287 | if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) { |
| 7288 | cred_t *cr; |
| 7289 | cred_t *s_cr = |
| 7290 | ecb->dte_state->dts_cred.dcr_cred; |
| 7291 | #pragma unused(cr, s_cr) /* __APPLE__ */ |
| 7292 | |
| 7293 | ASSERT(s_cr != NULL); |
| 7294 | |
| 7295 | #if !defined(__APPLE__) |
| 7296 | if ((cr = CRED()) == NULL || |
| 7297 | s_cr->cr_zone->zone_id != |
| 7298 | cr->cr_zone->zone_id) |
| 7299 | continue; |
| 7300 | #else |
| 7301 | /* APPLE NOTE: Darwin doesn't do zones. */ |
| 7302 | #endif /* __APPLE__ */ |
| 7303 | } |
| 7304 | } |
| 7305 | |
| 7306 | if (now - state->dts_alive > dtrace_deadman_timeout) { |
| 7307 | /* |
| 7308 | * We seem to be dead. Unless we (a) have kernel |
| 7309 | * destructive permissions (b) have expicitly enabled |
| 7310 | * destructive actions and (c) destructive actions have |
| 7311 | * not been disabled, we're going to transition into |
| 7312 | * the KILLED state, from which no further processing |
| 7313 | * on this state will be performed. |
| 7314 | */ |
| 7315 | if (!dtrace_priv_kernel_destructive(state) || |
| 7316 | !state->dts_cred.dcr_destructive || |
| 7317 | dtrace_destructive_disallow) { |
| 7318 | void *activity = &state->dts_activity; |
| 7319 | dtrace_activity_t current; |
| 7320 | |
| 7321 | do { |
| 7322 | current = state->dts_activity; |
| 7323 | } while (dtrace_cas32(activity, current, |
| 7324 | DTRACE_ACTIVITY_KILLED) != current); |
| 7325 | |
| 7326 | continue; |
| 7327 | } |
| 7328 | } |
| 7329 | |
| 7330 | if ((offs = dtrace_buffer_reserve(buf, ecb->dte_needed, |
| 7331 | ecb->dte_alignment, state, &mstate)) < 0) |
| 7332 | continue; |
| 7333 | |
| 7334 | tomax = buf->dtb_tomax; |
| 7335 | ASSERT(tomax != NULL); |
| 7336 | |
| 7337 | /* |
| 7338 | * Build and store the record header corresponding to the ECB. |
| 7339 | */ |
| 7340 | if (ecb->dte_size != 0) { |
| 7341 | dtrace_rechdr_t dtrh; |
| 7342 | |
| 7343 | if (!(mstate.dtms_present & DTRACE_MSTATE_TIMESTAMP)) { |
| 7344 | mstate.dtms_timestamp = dtrace_gethrtime(); |
| 7345 | mstate.dtms_present |= DTRACE_MSTATE_TIMESTAMP; |
| 7346 | } |
| 7347 | |
| 7348 | ASSERT(ecb->dte_size >= sizeof(dtrace_rechdr_t)); |
| 7349 | |
| 7350 | dtrh.dtrh_epid = ecb->dte_epid; |
| 7351 | DTRACE_RECORD_STORE_TIMESTAMP(&dtrh, mstate.dtms_timestamp); |
| 7352 | DTRACE_STORE(dtrace_rechdr_t, tomax, offs, dtrh); |
| 7353 | } |
| 7354 | |
| 7355 | mstate.dtms_epid = ecb->dte_epid; |
| 7356 | mstate.dtms_present |= DTRACE_MSTATE_EPID; |
| 7357 | |
| 7358 | if (state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) |
| 7359 | mstate.dtms_access = DTRACE_ACCESS_KERNEL; |
| 7360 | else |
| 7361 | mstate.dtms_access = 0; |
| 7362 | |
| 7363 | if (pred != NULL) { |
| 7364 | dtrace_difo_t *dp = pred->dtp_difo; |
| 7365 | uint64_t rval; |
| 7366 | |
| 7367 | rval = dtrace_dif_emulate(difo: dp, mstate: &mstate, vstate, state); |
| 7368 | |
| 7369 | if (!(*flags & CPU_DTRACE_ERROR) && !rval) { |
| 7370 | dtrace_cacheid_t cid = probe->dtpr_predcache; |
| 7371 | |
| 7372 | if (cid != DTRACE_CACHEIDNONE && !onintr) { |
| 7373 | /* |
| 7374 | * Update the predicate cache... |
| 7375 | */ |
| 7376 | ASSERT(cid == pred->dtp_cacheid); |
| 7377 | |
| 7378 | dtrace_set_thread_predcache(current_thread(), cid); |
| 7379 | } |
| 7380 | |
| 7381 | continue; |
| 7382 | } |
| 7383 | } |
| 7384 | |
| 7385 | for (act = ecb->dte_action; !(*flags & CPU_DTRACE_ERROR) && |
| 7386 | act != NULL; act = act->dta_next) { |
| 7387 | size_t valoffs; |
| 7388 | dtrace_difo_t *dp; |
| 7389 | dtrace_recdesc_t *rec = &act->dta_rec; |
| 7390 | |
| 7391 | size = rec->dtrd_size; |
| 7392 | valoffs = offs + rec->dtrd_offset; |
| 7393 | |
| 7394 | if (DTRACEACT_ISAGG(act->dta_kind)) { |
| 7395 | uint64_t v = 0xbad; |
| 7396 | dtrace_aggregation_t *agg; |
| 7397 | |
| 7398 | agg = (dtrace_aggregation_t *)act; |
| 7399 | |
| 7400 | if ((dp = act->dta_difo) != NULL) |
| 7401 | v = dtrace_dif_emulate(difo: dp, |
| 7402 | mstate: &mstate, vstate, state); |
| 7403 | |
| 7404 | if (*flags & CPU_DTRACE_ERROR) |
| 7405 | continue; |
| 7406 | |
| 7407 | /* |
| 7408 | * Note that we always pass the expression |
| 7409 | * value from the previous iteration of the |
| 7410 | * action loop. This value will only be used |
| 7411 | * if there is an expression argument to the |
| 7412 | * aggregating action, denoted by the |
| 7413 | * dtag_hasarg field. |
| 7414 | */ |
| 7415 | dtrace_aggregate(agg, dbuf: buf, |
| 7416 | offset: offs, buf: aggbuf, expr: v, arg: val); |
| 7417 | continue; |
| 7418 | } |
| 7419 | |
| 7420 | switch (act->dta_kind) { |
| 7421 | case DTRACEACT_STOP: |
| 7422 | if (dtrace_priv_proc_destructive(state)) |
| 7423 | dtrace_action_stop(); |
| 7424 | continue; |
| 7425 | |
| 7426 | case DTRACEACT_BREAKPOINT: |
| 7427 | if (dtrace_priv_kernel_destructive(state)) |
| 7428 | dtrace_action_breakpoint(ecb); |
| 7429 | continue; |
| 7430 | |
| 7431 | case DTRACEACT_PANIC: |
| 7432 | if (dtrace_priv_kernel_destructive(state)) |
| 7433 | dtrace_action_panic(ecb); |
| 7434 | continue; |
| 7435 | |
| 7436 | case DTRACEACT_STACK: |
| 7437 | if (!dtrace_priv_kernel(state)) |
| 7438 | continue; |
| 7439 | |
| 7440 | dtrace_getpcstack((pc_t *)(tomax + valoffs), |
| 7441 | size / sizeof (pc_t), probe->dtpr_aframes, |
| 7442 | DTRACE_ANCHORED(probe) ? NULL : |
| 7443 | (uint32_t *)(uintptr_t)arg0); |
| 7444 | continue; |
| 7445 | |
| 7446 | case DTRACEACT_JSTACK: |
| 7447 | case DTRACEACT_USTACK: |
| 7448 | if (!dtrace_priv_proc(state)) |
| 7449 | continue; |
| 7450 | |
| 7451 | /* |
| 7452 | * See comment in DIF_VAR_PID. |
| 7453 | */ |
| 7454 | if (DTRACE_ANCHORED(mstate.dtms_probe) && |
| 7455 | CPU_ON_INTR(CPU)) { |
| 7456 | int depth = DTRACE_USTACK_NFRAMES( |
| 7457 | rec->dtrd_arg) + 1; |
| 7458 | |
| 7459 | dtrace_bzero(dst: (void *)(tomax + valoffs), |
| 7460 | DTRACE_USTACK_STRSIZE(rec->dtrd_arg) |
| 7461 | + depth * sizeof (uint64_t)); |
| 7462 | |
| 7463 | continue; |
| 7464 | } |
| 7465 | |
| 7466 | if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0 && |
| 7467 | curproc->p_dtrace_helpers != NULL) { |
| 7468 | /* |
| 7469 | * This is the slow path -- we have |
| 7470 | * allocated string space, and we're |
| 7471 | * getting the stack of a process that |
| 7472 | * has helpers. Call into a separate |
| 7473 | * routine to perform this processing. |
| 7474 | */ |
| 7475 | dtrace_action_ustack(mstate: &mstate, state, |
| 7476 | buf: (uint64_t *)(tomax + valoffs), |
| 7477 | arg: rec->dtrd_arg); |
| 7478 | continue; |
| 7479 | } |
| 7480 | |
| 7481 | DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); |
| 7482 | dtrace_getupcstack((uint64_t *) |
| 7483 | (tomax + valoffs), |
| 7484 | DTRACE_USTACK_NFRAMES(rec->dtrd_arg) + 1); |
| 7485 | DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); |
| 7486 | continue; |
| 7487 | |
| 7488 | default: |
| 7489 | break; |
| 7490 | } |
| 7491 | |
| 7492 | dp = act->dta_difo; |
| 7493 | ASSERT(dp != NULL); |
| 7494 | |
| 7495 | val = dtrace_dif_emulate(difo: dp, mstate: &mstate, vstate, state); |
| 7496 | |
| 7497 | if (*flags & CPU_DTRACE_ERROR) |
| 7498 | continue; |
| 7499 | |
| 7500 | switch (act->dta_kind) { |
| 7501 | case DTRACEACT_SPECULATE: { |
| 7502 | dtrace_rechdr_t *dtrh = NULL; |
| 7503 | |
| 7504 | ASSERT(buf == &state->dts_buffer[cpuid]); |
| 7505 | buf = dtrace_speculation_buffer(state, |
| 7506 | cpuid, which: val); |
| 7507 | |
| 7508 | if (buf == NULL) { |
| 7509 | *flags |= CPU_DTRACE_DROP; |
| 7510 | continue; |
| 7511 | } |
| 7512 | |
| 7513 | offs = dtrace_buffer_reserve(buf, |
| 7514 | ecb->dte_needed, ecb->dte_alignment, |
| 7515 | state, NULL); |
| 7516 | |
| 7517 | if (offs < 0) { |
| 7518 | *flags |= CPU_DTRACE_DROP; |
| 7519 | continue; |
| 7520 | } |
| 7521 | |
| 7522 | tomax = buf->dtb_tomax; |
| 7523 | ASSERT(tomax != NULL); |
| 7524 | |
| 7525 | if (ecb->dte_size == 0) |
| 7526 | continue; |
| 7527 | |
| 7528 | ASSERT(ecb->dte_size >= sizeof(dtrace_rechdr_t)); |
| 7529 | dtrh = ((void *)(tomax + offs)); |
| 7530 | dtrh->dtrh_epid = ecb->dte_epid; |
| 7531 | |
| 7532 | /* |
| 7533 | * When the speculation is committed, all of |
| 7534 | * the records in the speculative buffer will |
| 7535 | * have their timestamps set to the commit |
| 7536 | * time. Until then, it is set to a sentinel |
| 7537 | * value, for debugability. |
| 7538 | */ |
| 7539 | DTRACE_RECORD_STORE_TIMESTAMP(dtrh, UINT64_MAX); |
| 7540 | |
| 7541 | continue; |
| 7542 | } |
| 7543 | |
| 7544 | case DTRACEACT_CHILL: |
| 7545 | if (dtrace_priv_kernel_destructive(state)) |
| 7546 | dtrace_action_chill(mstate: &mstate, val); |
| 7547 | continue; |
| 7548 | |
| 7549 | case DTRACEACT_RAISE: |
| 7550 | if (dtrace_priv_proc_destructive(state)) |
| 7551 | dtrace_action_raise(sig: val); |
| 7552 | continue; |
| 7553 | |
| 7554 | case DTRACEACT_PIDRESUME: /* __APPLE__ */ |
| 7555 | if (dtrace_priv_proc_destructive(state)) |
| 7556 | dtrace_action_pidresume(pid: val); |
| 7557 | continue; |
| 7558 | |
| 7559 | case DTRACEACT_COMMIT: |
| 7560 | ASSERT(!committed); |
| 7561 | |
| 7562 | /* |
| 7563 | * We need to commit our buffer state. |
| 7564 | */ |
| 7565 | if (ecb->dte_size) |
| 7566 | buf->dtb_offset = offs + ecb->dte_size; |
| 7567 | buf = &state->dts_buffer[cpuid]; |
| 7568 | dtrace_speculation_commit(state, cpu: cpuid, which: val); |
| 7569 | committed = 1; |
| 7570 | continue; |
| 7571 | |
| 7572 | case DTRACEACT_DISCARD: |
| 7573 | dtrace_speculation_discard(state, cpu: cpuid, which: val); |
| 7574 | continue; |
| 7575 | |
| 7576 | case DTRACEACT_DIFEXPR: |
| 7577 | case DTRACEACT_LIBACT: |
| 7578 | case DTRACEACT_PRINTF: |
| 7579 | case DTRACEACT_PRINTA: |
| 7580 | case DTRACEACT_SYSTEM: |
| 7581 | case DTRACEACT_FREOPEN: |
| 7582 | case DTRACEACT_APPLEBINARY: /* __APPLE__ */ |
| 7583 | case DTRACEACT_TRACEMEM: |
| 7584 | break; |
| 7585 | |
| 7586 | case DTRACEACT_TRACEMEM_DYNSIZE: |
| 7587 | tracememsize = val; |
| 7588 | break; |
| 7589 | |
| 7590 | case DTRACEACT_SYM: |
| 7591 | case DTRACEACT_MOD: |
| 7592 | if (!dtrace_priv_kernel(state)) |
| 7593 | continue; |
| 7594 | break; |
| 7595 | |
| 7596 | case DTRACEACT_USYM: |
| 7597 | case DTRACEACT_UMOD: |
| 7598 | case DTRACEACT_UADDR: { |
| 7599 | if (!dtrace_priv_proc(state)) |
| 7600 | continue; |
| 7601 | |
| 7602 | DTRACE_STORE(uint64_t, tomax, |
| 7603 | valoffs, (uint64_t)dtrace_proc_selfpid()); |
| 7604 | DTRACE_STORE(uint64_t, tomax, |
| 7605 | valoffs + sizeof (uint64_t), val); |
| 7606 | |
| 7607 | continue; |
| 7608 | } |
| 7609 | |
| 7610 | case DTRACEACT_EXIT: { |
| 7611 | /* |
| 7612 | * For the exit action, we are going to attempt |
| 7613 | * to atomically set our activity to be |
| 7614 | * draining. If this fails (either because |
| 7615 | * another CPU has beat us to the exit action, |
| 7616 | * or because our current activity is something |
| 7617 | * other than ACTIVE or WARMUP), we will |
| 7618 | * continue. This assures that the exit action |
| 7619 | * can be successfully recorded at most once |
| 7620 | * when we're in the ACTIVE state. If we're |
| 7621 | * encountering the exit() action while in |
| 7622 | * COOLDOWN, however, we want to honor the new |
| 7623 | * status code. (We know that we're the only |
| 7624 | * thread in COOLDOWN, so there is no race.) |
| 7625 | */ |
| 7626 | void *activity = &state->dts_activity; |
| 7627 | dtrace_activity_t current = state->dts_activity; |
| 7628 | |
| 7629 | if (current == DTRACE_ACTIVITY_COOLDOWN) |
| 7630 | break; |
| 7631 | |
| 7632 | if (current != DTRACE_ACTIVITY_WARMUP) |
| 7633 | current = DTRACE_ACTIVITY_ACTIVE; |
| 7634 | |
| 7635 | if (dtrace_cas32(activity, current, |
| 7636 | DTRACE_ACTIVITY_DRAINING) != current) { |
| 7637 | *flags |= CPU_DTRACE_DROP; |
| 7638 | continue; |
| 7639 | } |
| 7640 | |
| 7641 | break; |
| 7642 | } |
| 7643 | |
| 7644 | default: |
| 7645 | ASSERT(0); |
| 7646 | } |
| 7647 | |
| 7648 | if (dp->dtdo_rtype.dtdt_flags & (DIF_TF_BYREF | DIF_TF_BYUREF)) { |
| 7649 | uintptr_t end = valoffs + size; |
| 7650 | |
| 7651 | if (tracememsize != 0 && |
| 7652 | valoffs + tracememsize < end) |
| 7653 | { |
| 7654 | end = valoffs + tracememsize; |
| 7655 | tracememsize = 0; |
| 7656 | } |
| 7657 | |
| 7658 | if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF && |
| 7659 | !dtrace_vcanload(src: (void *)(uintptr_t)val, |
| 7660 | type: &dp->dtdo_rtype, NULL, mstate: &mstate, vstate)) |
| 7661 | { |
| 7662 | continue; |
| 7663 | } |
| 7664 | |
| 7665 | dtrace_store_by_ref(dp, tomax, size, valoffsp: &valoffs, |
| 7666 | valp: &val, end, intuple: act->dta_intuple, |
| 7667 | dtkind: dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF ? |
| 7668 | DIF_TF_BYREF: DIF_TF_BYUREF); |
| 7669 | |
| 7670 | continue; |
| 7671 | } |
| 7672 | |
| 7673 | switch (size) { |
| 7674 | case 0: |
| 7675 | break; |
| 7676 | |
| 7677 | case sizeof (uint8_t): |
| 7678 | DTRACE_STORE(uint8_t, tomax, valoffs, val); |
| 7679 | break; |
| 7680 | case sizeof (uint16_t): |
| 7681 | DTRACE_STORE(uint16_t, tomax, valoffs, val); |
| 7682 | break; |
| 7683 | case sizeof (uint32_t): |
| 7684 | DTRACE_STORE(uint32_t, tomax, valoffs, val); |
| 7685 | break; |
| 7686 | case sizeof (uint64_t): |
| 7687 | DTRACE_STORE(uint64_t, tomax, valoffs, val); |
| 7688 | break; |
| 7689 | default: |
| 7690 | /* |
| 7691 | * Any other size should have been returned by |
| 7692 | * reference, not by value. |
| 7693 | */ |
| 7694 | ASSERT(0); |
| 7695 | break; |
| 7696 | } |
| 7697 | } |
| 7698 | |
| 7699 | if (*flags & CPU_DTRACE_DROP) |
| 7700 | continue; |
| 7701 | |
| 7702 | if (*flags & CPU_DTRACE_FAULT) { |
| 7703 | int ndx; |
| 7704 | dtrace_action_t *err; |
| 7705 | |
| 7706 | buf->dtb_errors++; |
| 7707 | |
| 7708 | if (probe->dtpr_id == dtrace_probeid_error) { |
| 7709 | /* |
| 7710 | * There's nothing we can do -- we had an |
| 7711 | * error on the error probe. We bump an |
| 7712 | * error counter to at least indicate that |
| 7713 | * this condition happened. |
| 7714 | */ |
| 7715 | dtrace_error(counter: &state->dts_dblerrors); |
| 7716 | continue; |
| 7717 | } |
| 7718 | |
| 7719 | if (vtime) { |
| 7720 | /* |
| 7721 | * Before recursing on dtrace_probe(), we |
| 7722 | * need to explicitly clear out our start |
| 7723 | * time to prevent it from being accumulated |
| 7724 | * into t_dtrace_vtime. |
| 7725 | */ |
| 7726 | |
| 7727 | /* |
| 7728 | * Darwin sets the sign bit on t_dtrace_tracing |
| 7729 | * to suspend accumulation to it. |
| 7730 | */ |
| 7731 | dtrace_set_thread_tracing(current_thread(), |
| 7732 | (1ULL<<63) | dtrace_get_thread_tracing(current_thread())); |
| 7733 | } |
| 7734 | |
| 7735 | /* |
| 7736 | * Iterate over the actions to figure out which action |
| 7737 | * we were processing when we experienced the error. |
| 7738 | * Note that act points _past_ the faulting action; if |
| 7739 | * act is ecb->dte_action, the fault was in the |
| 7740 | * predicate, if it's ecb->dte_action->dta_next it's |
| 7741 | * in action #1, and so on. |
| 7742 | */ |
| 7743 | for (err = ecb->dte_action, ndx = 0; |
| 7744 | err != act; err = err->dta_next, ndx++) |
| 7745 | continue; |
| 7746 | |
| 7747 | dtrace_probe_error(state, ecb->dte_epid, ndx, |
| 7748 | (mstate.dtms_present & DTRACE_MSTATE_FLTOFFS) ? |
| 7749 | mstate.dtms_fltoffs : -1, DTRACE_FLAGS2FLT(*flags), |
| 7750 | cpu_core[cpuid].cpuc_dtrace_illval); |
| 7751 | |
| 7752 | continue; |
| 7753 | } |
| 7754 | |
| 7755 | if (!committed) |
| 7756 | buf->dtb_offset = offs + ecb->dte_size; |
| 7757 | } |
| 7758 | |
| 7759 | /* FIXME: On Darwin the time spent leaving DTrace from this point to the rti is attributed |
| 7760 | to the current thread. Instead it should accrue to DTrace. */ |
| 7761 | if (vtime) { |
| 7762 | thread_t thread = current_thread(); |
| 7763 | int64_t t = dtrace_get_thread_tracing(thread); |
| 7764 | |
| 7765 | if (t >= 0) { |
| 7766 | /* Usual case, accumulate time spent here into t_dtrace_tracing */ |
| 7767 | dtrace_set_thread_tracing(thread, t + (dtrace_gethrtime() - now)); |
| 7768 | } else { |
| 7769 | /* Return from error recursion. No accumulation, just clear the sign bit on t_dtrace_tracing. */ |
| 7770 | dtrace_set_thread_tracing(thread, (~(1ULL<<63)) & t); |
| 7771 | } |
| 7772 | } |
| 7773 | |
| 7774 | dtrace_probe_exit(cookie); |
| 7775 | } |
| 7776 | |
| 7777 | /* |
| 7778 | * DTrace Probe Hashing Functions |
| 7779 | * |
| 7780 | * The functions in this section (and indeed, the functions in remaining |
| 7781 | * sections) are not _called_ from probe context. (Any exceptions to this are |
| 7782 | * marked with a "Note:".) Rather, they are called from elsewhere in the |
| 7783 | * DTrace framework to look-up probes in, add probes to and remove probes from |
| 7784 | * the DTrace probe hashes. (Each probe is hashed by each element of the |
| 7785 | * probe tuple -- allowing for fast lookups, regardless of what was |
| 7786 | * specified.) |
| 7787 | */ |
| 7788 | static uint_t |
| 7789 | dtrace_hash_str(const char *p) |
| 7790 | { |
| 7791 | unsigned int g; |
| 7792 | uint_t hval = 0; |
| 7793 | |
| 7794 | while (*p) { |
| 7795 | hval = (hval << 4) + *p++; |
| 7796 | if ((g = (hval & 0xf0000000)) != 0) |
| 7797 | hval ^= g >> 24; |
| 7798 | hval &= ~g; |
| 7799 | } |
| 7800 | return (hval); |
| 7801 | } |
| 7802 | |
| 7803 | static const char* |
| 7804 | dtrace_strkey_probe_provider(void *elm, uintptr_t offs) |
| 7805 | { |
| 7806 | #pragma unused(offs) |
| 7807 | dtrace_probe_t *probe = (dtrace_probe_t*)elm; |
| 7808 | return probe->dtpr_provider->dtpv_name; |
| 7809 | } |
| 7810 | |
| 7811 | static const char* |
| 7812 | dtrace_strkey_offset(void *elm, uintptr_t offs) |
| 7813 | { |
| 7814 | return ((char *)((uintptr_t)(elm) + offs)); |
| 7815 | } |
| 7816 | |
| 7817 | static const char* |
| 7818 | dtrace_strkey_deref_offset(void *elm, uintptr_t offs) |
| 7819 | { |
| 7820 | return *((char **)((uintptr_t)(elm) + offs)); |
| 7821 | } |
| 7822 | |
| 7823 | static dtrace_hash_t * |
| 7824 | dtrace_hash_create(dtrace_strkey_f func, uintptr_t arg, uintptr_t nextoffs, uintptr_t prevoffs) |
| 7825 | { |
| 7826 | dtrace_hash_t *hash = kmem_zalloc(sizeof (dtrace_hash_t), KM_SLEEP); |
| 7827 | |
| 7828 | hash->dth_getstr = func; |
| 7829 | hash->dth_stroffs = arg; |
| 7830 | hash->dth_nextoffs = nextoffs; |
| 7831 | hash->dth_prevoffs = prevoffs; |
| 7832 | |
| 7833 | hash->dth_size = 1; |
| 7834 | hash->dth_mask = hash->dth_size - 1; |
| 7835 | |
| 7836 | hash->dth_tab = kmem_zalloc(hash->dth_size * |
| 7837 | sizeof (dtrace_hashbucket_t *), KM_SLEEP); |
| 7838 | |
| 7839 | return (hash); |
| 7840 | } |
| 7841 | |
| 7842 | /* |
| 7843 | * APPLE NOTE: dtrace_hash_destroy is not used. |
| 7844 | * It is called by dtrace_detach which is not |
| 7845 | * currently implemented. Revisit someday. |
| 7846 | */ |
| 7847 | #if !defined(__APPLE__) |
| 7848 | static void |
| 7849 | dtrace_hash_destroy(dtrace_hash_t *hash) |
| 7850 | { |
| 7851 | #if DEBUG |
| 7852 | int i; |
| 7853 | |
| 7854 | for (i = 0; i < hash->dth_size; i++) |
| 7855 | ASSERT(hash->dth_tab[i] == NULL); |
| 7856 | #endif |
| 7857 | |
| 7858 | kmem_free(hash->dth_tab, |
| 7859 | hash->dth_size * sizeof (dtrace_hashbucket_t *)); |
| 7860 | kmem_free(hash, sizeof (dtrace_hash_t)); |
| 7861 | } |
| 7862 | #endif /* __APPLE__ */ |
| 7863 | |
| 7864 | static void |
| 7865 | dtrace_hash_resize(dtrace_hash_t *hash) |
| 7866 | { |
| 7867 | int size = hash->dth_size, i, ndx; |
| 7868 | int new_size = hash->dth_size << 1; |
| 7869 | int new_mask = new_size - 1; |
| 7870 | dtrace_hashbucket_t **new_tab, *bucket, *next; |
| 7871 | |
| 7872 | ASSERT((new_size & new_mask) == 0); |
| 7873 | |
| 7874 | new_tab = kmem_zalloc(new_size * sizeof (void *), KM_SLEEP); |
| 7875 | |
| 7876 | for (i = 0; i < size; i++) { |
| 7877 | for (bucket = hash->dth_tab[i]; bucket != NULL; bucket = next) { |
| 7878 | void *elm = bucket->dthb_chain; |
| 7879 | |
| 7880 | ASSERT(elm != NULL); |
| 7881 | ndx = DTRACE_HASHSTR(hash, elm) & new_mask; |
| 7882 | |
| 7883 | next = bucket->dthb_next; |
| 7884 | bucket->dthb_next = new_tab[ndx]; |
| 7885 | new_tab[ndx] = bucket; |
| 7886 | } |
| 7887 | } |
| 7888 | |
| 7889 | kmem_free(hash->dth_tab, hash->dth_size * sizeof (void *)); |
| 7890 | hash->dth_tab = new_tab; |
| 7891 | hash->dth_size = new_size; |
| 7892 | hash->dth_mask = new_mask; |
| 7893 | } |
| 7894 | |
| 7895 | static void |
| 7896 | dtrace_hash_add(dtrace_hash_t *hash, void *new) |
| 7897 | { |
| 7898 | int hashval = DTRACE_HASHSTR(hash, new); |
| 7899 | int ndx = hashval & hash->dth_mask; |
| 7900 | dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; |
| 7901 | void **nextp, **prevp; |
| 7902 | |
| 7903 | for (; bucket != NULL; bucket = bucket->dthb_next) { |
| 7904 | if (DTRACE_HASHEQ(hash, bucket->dthb_chain, new)) |
| 7905 | goto add; |
| 7906 | } |
| 7907 | |
| 7908 | if ((hash->dth_nbuckets >> 1) > hash->dth_size) { |
| 7909 | dtrace_hash_resize(hash); |
| 7910 | dtrace_hash_add(hash, new); |
| 7911 | return; |
| 7912 | } |
| 7913 | |
| 7914 | bucket = kmem_zalloc(sizeof (dtrace_hashbucket_t), KM_SLEEP); |
| 7915 | bucket->dthb_next = hash->dth_tab[ndx]; |
| 7916 | hash->dth_tab[ndx] = bucket; |
| 7917 | hash->dth_nbuckets++; |
| 7918 | |
| 7919 | add: |
| 7920 | nextp = DTRACE_HASHNEXT(hash, new); |
| 7921 | ASSERT(*nextp == NULL && *(DTRACE_HASHPREV(hash, new)) == NULL); |
| 7922 | *nextp = bucket->dthb_chain; |
| 7923 | |
| 7924 | if (bucket->dthb_chain != NULL) { |
| 7925 | prevp = DTRACE_HASHPREV(hash, bucket->dthb_chain); |
| 7926 | ASSERT(*prevp == NULL); |
| 7927 | *prevp = new; |
| 7928 | } |
| 7929 | |
| 7930 | bucket->dthb_chain = new; |
| 7931 | bucket->dthb_len++; |
| 7932 | } |
| 7933 | |
| 7934 | static void * |
| 7935 | dtrace_hash_lookup_string(dtrace_hash_t *hash, const char *str) |
| 7936 | { |
| 7937 | int hashval = dtrace_hash_str(p: str); |
| 7938 | int ndx = hashval & hash->dth_mask; |
| 7939 | dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; |
| 7940 | |
| 7941 | for (; bucket != NULL; bucket = bucket->dthb_next) { |
| 7942 | if (strcmp(s1: str, DTRACE_GETSTR(hash, bucket->dthb_chain)) == 0) |
| 7943 | return (bucket->dthb_chain); |
| 7944 | } |
| 7945 | |
| 7946 | return (NULL); |
| 7947 | } |
| 7948 | |
| 7949 | static dtrace_probe_t * |
| 7950 | dtrace_hash_lookup(dtrace_hash_t *hash, void *template) |
| 7951 | { |
| 7952 | return dtrace_hash_lookup_string(hash, DTRACE_GETSTR(hash, template)); |
| 7953 | } |
| 7954 | |
| 7955 | static int |
| 7956 | dtrace_hash_collisions(dtrace_hash_t *hash, void *template) |
| 7957 | { |
| 7958 | int hashval = DTRACE_HASHSTR(hash, template); |
| 7959 | int ndx = hashval & hash->dth_mask; |
| 7960 | dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; |
| 7961 | |
| 7962 | for (; bucket != NULL; bucket = bucket->dthb_next) { |
| 7963 | if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template)) |
| 7964 | return (bucket->dthb_len); |
| 7965 | } |
| 7966 | |
| 7967 | return (0); |
| 7968 | } |
| 7969 | |
| 7970 | static void |
| 7971 | dtrace_hash_remove(dtrace_hash_t *hash, void *elm) |
| 7972 | { |
| 7973 | int ndx = DTRACE_HASHSTR(hash, elm) & hash->dth_mask; |
| 7974 | dtrace_hashbucket_t *bucket = hash->dth_tab[ndx]; |
| 7975 | |
| 7976 | void **prevp = DTRACE_HASHPREV(hash, elm); |
| 7977 | void **nextp = DTRACE_HASHNEXT(hash, elm); |
| 7978 | |
| 7979 | /* |
| 7980 | * Find the bucket that we're removing this elm from. |
| 7981 | */ |
| 7982 | for (; bucket != NULL; bucket = bucket->dthb_next) { |
| 7983 | if (DTRACE_HASHEQ(hash, bucket->dthb_chain, elm)) |
| 7984 | break; |
| 7985 | } |
| 7986 | |
| 7987 | ASSERT(bucket != NULL); |
| 7988 | |
| 7989 | if (*prevp == NULL) { |
| 7990 | if (*nextp == NULL) { |
| 7991 | /* |
| 7992 | * The removed element was the only element on this |
| 7993 | * bucket; we need to remove the bucket. |
| 7994 | */ |
| 7995 | dtrace_hashbucket_t *b = hash->dth_tab[ndx]; |
| 7996 | |
| 7997 | ASSERT(bucket->dthb_chain == elm); |
| 7998 | ASSERT(b != NULL); |
| 7999 | |
| 8000 | if (b == bucket) { |
| 8001 | hash->dth_tab[ndx] = bucket->dthb_next; |
| 8002 | } else { |
| 8003 | while (b->dthb_next != bucket) |
| 8004 | b = b->dthb_next; |
| 8005 | b->dthb_next = bucket->dthb_next; |
| 8006 | } |
| 8007 | |
| 8008 | ASSERT(hash->dth_nbuckets > 0); |
| 8009 | hash->dth_nbuckets--; |
| 8010 | kmem_free(bucket, sizeof (dtrace_hashbucket_t)); |
| 8011 | return; |
| 8012 | } |
| 8013 | |
| 8014 | bucket->dthb_chain = *nextp; |
| 8015 | } else { |
| 8016 | *(DTRACE_HASHNEXT(hash, *prevp)) = *nextp; |
| 8017 | } |
| 8018 | |
| 8019 | if (*nextp != NULL) |
| 8020 | *(DTRACE_HASHPREV(hash, *nextp)) = *prevp; |
| 8021 | } |
| 8022 | |
| 8023 | /* |
| 8024 | * DTrace Utility Functions |
| 8025 | * |
| 8026 | * These are random utility functions that are _not_ called from probe context. |
| 8027 | */ |
| 8028 | static int |
| 8029 | dtrace_badattr(const dtrace_attribute_t *a) |
| 8030 | { |
| 8031 | return (a->dtat_name > DTRACE_STABILITY_MAX || |
| 8032 | a->dtat_data > DTRACE_STABILITY_MAX || |
| 8033 | a->dtat_class > DTRACE_CLASS_MAX); |
| 8034 | } |
| 8035 | |
| 8036 | /* |
| 8037 | * Returns a dtrace-managed copy of a string, and will |
| 8038 | * deduplicate copies of the same string. |
| 8039 | * If the specified string is NULL, returns an empty string |
| 8040 | */ |
| 8041 | static char * |
| 8042 | dtrace_strref(const char *str) |
| 8043 | { |
| 8044 | dtrace_string_t *s = NULL; |
| 8045 | size_t bufsize = (str != NULL ? strlen(s: str) : 0) + 1; |
| 8046 | |
| 8047 | LCK_MTX_ASSERT(&dtrace_lock, LCK_MTX_ASSERT_OWNED); |
| 8048 | |
| 8049 | if (str == NULL) |
| 8050 | str = "" ; |
| 8051 | |
| 8052 | for (s = dtrace_hash_lookup_string(hash: dtrace_strings, str); s != NULL; |
| 8053 | s = *(DTRACE_HASHNEXT(dtrace_strings, s))) { |
| 8054 | if (strncmp(s1: str, s2: s->dtst_str, n: bufsize) != 0) { |
| 8055 | continue; |
| 8056 | } |
| 8057 | ASSERT(s->dtst_refcount != UINT32_MAX); |
| 8058 | s->dtst_refcount++; |
| 8059 | return s->dtst_str; |
| 8060 | } |
| 8061 | |
| 8062 | s = kmem_zalloc(sizeof(dtrace_string_t) + bufsize, KM_SLEEP); |
| 8063 | s->dtst_refcount = 1; |
| 8064 | (void) strlcpy(dst: s->dtst_str, src: str, n: bufsize); |
| 8065 | |
| 8066 | dtrace_hash_add(hash: dtrace_strings, new: s); |
| 8067 | |
| 8068 | return s->dtst_str; |
| 8069 | } |
| 8070 | |
| 8071 | static void |
| 8072 | dtrace_strunref(const char *str) |
| 8073 | { |
| 8074 | ASSERT(str != NULL); |
| 8075 | dtrace_string_t *s = NULL; |
| 8076 | size_t bufsize = strlen(s: str) + 1; |
| 8077 | |
| 8078 | LCK_MTX_ASSERT(&dtrace_lock, LCK_MTX_ASSERT_OWNED); |
| 8079 | |
| 8080 | for (s = dtrace_hash_lookup_string(hash: dtrace_strings, str); s != NULL; |
| 8081 | s = *(DTRACE_HASHNEXT(dtrace_strings, s))) { |
| 8082 | if (strncmp(s1: str, s2: s->dtst_str, n: bufsize) != 0) { |
| 8083 | continue; |
| 8084 | } |
| 8085 | ASSERT(s->dtst_refcount != 0); |
| 8086 | s->dtst_refcount--; |
| 8087 | if (s->dtst_refcount == 0) { |
| 8088 | dtrace_hash_remove(hash: dtrace_strings, elm: s); |
| 8089 | kmem_free(s, sizeof(dtrace_string_t) + bufsize); |
| 8090 | } |
| 8091 | return; |
| 8092 | } |
| 8093 | panic("attempt to unref non-existent string %s" , str); |
| 8094 | } |
| 8095 | |
| 8096 | #define DTRACE_ISALPHA(c) \ |
| 8097 | (((c) >= 'a' && (c) <= 'z') || ((c) >= 'A' && (c) <= 'Z')) |
| 8098 | |
| 8099 | static int |
| 8100 | dtrace_badname(const char *s) |
| 8101 | { |
| 8102 | char c; |
| 8103 | |
| 8104 | if (s == NULL || (c = *s++) == '\0') |
| 8105 | return (0); |
| 8106 | |
| 8107 | if (!DTRACE_ISALPHA(c) && c != '-' && c != '_' && c != '.') |
| 8108 | return (1); |
| 8109 | |
| 8110 | while ((c = *s++) != '\0') { |
| 8111 | if (!DTRACE_ISALPHA(c) && (c < '0' || c > '9') && |
| 8112 | c != '-' && c != '_' && c != '.' && c != '`') |
| 8113 | return (1); |
| 8114 | } |
| 8115 | |
| 8116 | return (0); |
| 8117 | } |
| 8118 | |
| 8119 | static void |
| 8120 | dtrace_cred2priv(cred_t *cr, uint32_t *privp, uid_t *uidp, zoneid_t *zoneidp) |
| 8121 | { |
| 8122 | uint32_t priv; |
| 8123 | |
| 8124 | if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) { |
| 8125 | if (dtrace_is_restricted() && !dtrace_are_restrictions_relaxed()) { |
| 8126 | priv = DTRACE_PRIV_USER | DTRACE_PRIV_PROC | DTRACE_PRIV_OWNER; |
| 8127 | } |
| 8128 | else { |
| 8129 | priv = DTRACE_PRIV_ALL; |
| 8130 | } |
| 8131 | *uidp = 0; |
| 8132 | *zoneidp = 0; |
| 8133 | } else { |
| 8134 | *uidp = crgetuid(cr); |
| 8135 | *zoneidp = crgetzoneid(cr); |
| 8136 | |
| 8137 | priv = 0; |
| 8138 | if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) |
| 8139 | priv |= DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER; |
| 8140 | else if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) |
| 8141 | priv |= DTRACE_PRIV_USER; |
| 8142 | if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) |
| 8143 | priv |= DTRACE_PRIV_PROC; |
| 8144 | if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) |
| 8145 | priv |= DTRACE_PRIV_OWNER; |
| 8146 | if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) |
| 8147 | priv |= DTRACE_PRIV_ZONEOWNER; |
| 8148 | } |
| 8149 | |
| 8150 | *privp = priv; |
| 8151 | } |
| 8152 | |
| 8153 | #ifdef DTRACE_ERRDEBUG |
| 8154 | static void |
| 8155 | dtrace_errdebug(const char *str) |
| 8156 | { |
| 8157 | int hval = dtrace_hash_str(str) % DTRACE_ERRHASHSZ; |
| 8158 | int occupied = 0; |
| 8159 | |
| 8160 | lck_mtx_lock(&dtrace_errlock); |
| 8161 | dtrace_errlast = str; |
| 8162 | dtrace_errthread = (kthread_t *)current_thread(); |
| 8163 | |
| 8164 | while (occupied++ < DTRACE_ERRHASHSZ) { |
| 8165 | if (dtrace_errhash[hval].dter_msg == str) { |
| 8166 | dtrace_errhash[hval].dter_count++; |
| 8167 | goto out; |
| 8168 | } |
| 8169 | |
| 8170 | if (dtrace_errhash[hval].dter_msg != NULL) { |
| 8171 | hval = (hval + 1) % DTRACE_ERRHASHSZ; |
| 8172 | continue; |
| 8173 | } |
| 8174 | |
| 8175 | dtrace_errhash[hval].dter_msg = str; |
| 8176 | dtrace_errhash[hval].dter_count = 1; |
| 8177 | goto out; |
| 8178 | } |
| 8179 | |
| 8180 | panic("dtrace: undersized error hash" ); |
| 8181 | out: |
| 8182 | lck_mtx_unlock(&dtrace_errlock); |
| 8183 | } |
| 8184 | #endif |
| 8185 | |
| 8186 | /* |
| 8187 | * DTrace Matching Functions |
| 8188 | * |
| 8189 | * These functions are used to match groups of probes, given some elements of |
| 8190 | * a probe tuple, or some globbed expressions for elements of a probe tuple. |
| 8191 | */ |
| 8192 | static int |
| 8193 | dtrace_match_priv(const dtrace_probe_t *prp, uint32_t priv, uid_t uid, |
| 8194 | zoneid_t zoneid) |
| 8195 | { |
| 8196 | if (priv != DTRACE_PRIV_ALL) { |
| 8197 | uint32_t ppriv = prp->dtpr_provider->dtpv_priv.dtpp_flags; |
| 8198 | uint32_t match = priv & ppriv; |
| 8199 | |
| 8200 | /* |
| 8201 | * No PRIV_DTRACE_* privileges... |
| 8202 | */ |
| 8203 | if ((priv & (DTRACE_PRIV_PROC | DTRACE_PRIV_USER | |
| 8204 | DTRACE_PRIV_KERNEL)) == 0) |
| 8205 | return (0); |
| 8206 | |
| 8207 | /* |
| 8208 | * No matching bits, but there were bits to match... |
| 8209 | */ |
| 8210 | if (match == 0 && ppriv != 0) |
| 8211 | return (0); |
| 8212 | |
| 8213 | /* |
| 8214 | * Need to have permissions to the process, but don't... |
| 8215 | */ |
| 8216 | if (((ppriv & ~match) & DTRACE_PRIV_OWNER) != 0 && |
| 8217 | uid != prp->dtpr_provider->dtpv_priv.dtpp_uid) { |
| 8218 | return (0); |
| 8219 | } |
| 8220 | |
| 8221 | /* |
| 8222 | * Need to be in the same zone unless we possess the |
| 8223 | * privilege to examine all zones. |
| 8224 | */ |
| 8225 | if (((ppriv & ~match) & DTRACE_PRIV_ZONEOWNER) != 0 && |
| 8226 | zoneid != prp->dtpr_provider->dtpv_priv.dtpp_zoneid) { |
| 8227 | return (0); |
| 8228 | } |
| 8229 | } |
| 8230 | |
| 8231 | return (1); |
| 8232 | } |
| 8233 | |
| 8234 | /* |
| 8235 | * dtrace_match_probe compares a dtrace_probe_t to a pre-compiled key, which |
| 8236 | * consists of input pattern strings and an ops-vector to evaluate them. |
| 8237 | * This function returns >0 for match, 0 for no match, and <0 for error. |
| 8238 | */ |
| 8239 | static int |
| 8240 | dtrace_match_probe(const dtrace_probe_t *prp, const dtrace_probekey_t *pkp, |
| 8241 | uint32_t priv, uid_t uid, zoneid_t zoneid) |
| 8242 | { |
| 8243 | dtrace_provider_t *pvp = prp->dtpr_provider; |
| 8244 | int rv; |
| 8245 | |
| 8246 | if (pvp->dtpv_defunct) |
| 8247 | return (0); |
| 8248 | |
| 8249 | if ((rv = pkp->dtpk_pmatch(pvp->dtpv_name, pkp->dtpk_prov, 0)) <= 0) |
| 8250 | return (rv); |
| 8251 | |
| 8252 | if ((rv = pkp->dtpk_mmatch(prp->dtpr_mod, pkp->dtpk_mod, 0)) <= 0) |
| 8253 | return (rv); |
| 8254 | |
| 8255 | if ((rv = pkp->dtpk_fmatch(prp->dtpr_func, pkp->dtpk_func, 0)) <= 0) |
| 8256 | return (rv); |
| 8257 | |
| 8258 | if ((rv = pkp->dtpk_nmatch(prp->dtpr_name, pkp->dtpk_name, 0)) <= 0) |
| 8259 | return (rv); |
| 8260 | |
| 8261 | if (dtrace_match_priv(prp, priv, uid, zoneid) == 0) |
| 8262 | return (0); |
| 8263 | |
| 8264 | return (rv); |
| 8265 | } |
| 8266 | |
| 8267 | /* |
| 8268 | * dtrace_match_glob() is a safe kernel implementation of the gmatch(3GEN) |
| 8269 | * interface for matching a glob pattern 'p' to an input string 's'. Unlike |
| 8270 | * libc's version, the kernel version only applies to 8-bit ASCII strings. |
| 8271 | * In addition, all of the recursion cases except for '*' matching have been |
| 8272 | * unwound. For '*', we still implement recursive evaluation, but a depth |
| 8273 | * counter is maintained and matching is aborted if we recurse too deep. |
| 8274 | * The function returns 0 if no match, >0 if match, and <0 if recursion error. |
| 8275 | */ |
| 8276 | static int |
| 8277 | dtrace_match_glob(const char *s, const char *p, int depth) |
| 8278 | { |
| 8279 | const char *olds; |
| 8280 | char s1, c; |
| 8281 | int gs; |
| 8282 | |
| 8283 | if (depth > DTRACE_PROBEKEY_MAXDEPTH) |
| 8284 | return (-1); |
| 8285 | |
| 8286 | if (s == NULL) |
| 8287 | s = "" ; /* treat NULL as empty string */ |
| 8288 | |
| 8289 | top: |
| 8290 | olds = s; |
| 8291 | s1 = *s++; |
| 8292 | |
| 8293 | if (p == NULL) |
| 8294 | return (0); |
| 8295 | |
| 8296 | if ((c = *p++) == '\0') |
| 8297 | return (s1 == '\0'); |
| 8298 | |
| 8299 | switch (c) { |
| 8300 | case '[': { |
| 8301 | int ok = 0, notflag = 0; |
| 8302 | char lc = '\0'; |
| 8303 | |
| 8304 | if (s1 == '\0') |
| 8305 | return (0); |
| 8306 | |
| 8307 | if (*p == '!') { |
| 8308 | notflag = 1; |
| 8309 | p++; |
| 8310 | } |
| 8311 | |
| 8312 | if ((c = *p++) == '\0') |
| 8313 | return (0); |
| 8314 | |
| 8315 | do { |
| 8316 | if (c == '-' && lc != '\0' && *p != ']') { |
| 8317 | if ((c = *p++) == '\0') |
| 8318 | return (0); |
| 8319 | if (c == '\\' && (c = *p++) == '\0') |
| 8320 | return (0); |
| 8321 | |
| 8322 | if (notflag) { |
| 8323 | if (s1 < lc || s1 > c) |
| 8324 | ok++; |
| 8325 | else |
| 8326 | return (0); |
| 8327 | } else if (lc <= s1 && s1 <= c) |
| 8328 | ok++; |
| 8329 | |
| 8330 | } else if (c == '\\' && (c = *p++) == '\0') |
| 8331 | return (0); |
| 8332 | |
| 8333 | lc = c; /* save left-hand 'c' for next iteration */ |
| 8334 | |
| 8335 | if (notflag) { |
| 8336 | if (s1 != c) |
| 8337 | ok++; |
| 8338 | else |
| 8339 | return (0); |
| 8340 | } else if (s1 == c) |
| 8341 | ok++; |
| 8342 | |
| 8343 | if ((c = *p++) == '\0') |
| 8344 | return (0); |
| 8345 | |
| 8346 | } while (c != ']'); |
| 8347 | |
| 8348 | if (ok) |
| 8349 | goto top; |
| 8350 | |
| 8351 | return (0); |
| 8352 | } |
| 8353 | |
| 8354 | case '\\': |
| 8355 | if ((c = *p++) == '\0') |
| 8356 | return (0); |
| 8357 | OS_FALLTHROUGH; |
| 8358 | |
| 8359 | default: |
| 8360 | if (c != s1) |
| 8361 | return (0); |
| 8362 | OS_FALLTHROUGH; |
| 8363 | |
| 8364 | case '?': |
| 8365 | if (s1 != '\0') |
| 8366 | goto top; |
| 8367 | return (0); |
| 8368 | |
| 8369 | case '*': |
| 8370 | while (*p == '*') |
| 8371 | p++; /* consecutive *'s are identical to a single one */ |
| 8372 | |
| 8373 | if (*p == '\0') |
| 8374 | return (1); |
| 8375 | |
| 8376 | for (s = olds; *s != '\0'; s++) { |
| 8377 | if ((gs = dtrace_match_glob(s, p, depth: depth + 1)) != 0) |
| 8378 | return (gs); |
| 8379 | } |
| 8380 | |
| 8381 | return (0); |
| 8382 | } |
| 8383 | } |
| 8384 | |
| 8385 | /*ARGSUSED*/ |
| 8386 | static int |
| 8387 | dtrace_match_string(const char *s, const char *p, int depth) |
| 8388 | { |
| 8389 | #pragma unused(depth) /* __APPLE__ */ |
| 8390 | return (s != NULL && s == p); |
| 8391 | } |
| 8392 | |
| 8393 | /*ARGSUSED*/ |
| 8394 | static int |
| 8395 | dtrace_match_module(const char *s, const char *p, int depth) |
| 8396 | { |
| 8397 | #pragma unused(depth) /* __APPLE__ */ |
| 8398 | size_t len; |
| 8399 | if (s == NULL || p == NULL) |
| 8400 | return (0); |
| 8401 | |
| 8402 | len = strlen(s: p); |
| 8403 | |
| 8404 | if (strncmp(s1: p, s2: s, n: len) != 0) |
| 8405 | return (0); |
| 8406 | |
| 8407 | if (s[len] == '.' || s[len] == '\0') |
| 8408 | return (1); |
| 8409 | |
| 8410 | return (0); |
| 8411 | } |
| 8412 | |
| 8413 | /*ARGSUSED*/ |
| 8414 | static int |
| 8415 | dtrace_match_nul(const char *s, const char *p, int depth) |
| 8416 | { |
| 8417 | #pragma unused(s, p, depth) /* __APPLE__ */ |
| 8418 | return (1); /* always match the empty pattern */ |
| 8419 | } |
| 8420 | |
| 8421 | /*ARGSUSED*/ |
| 8422 | static int |
| 8423 | dtrace_match_nonzero(const char *s, const char *p, int depth) |
| 8424 | { |
| 8425 | #pragma unused(p, depth) /* __APPLE__ */ |
| 8426 | return (s != NULL && s[0] != '\0'); |
| 8427 | } |
| 8428 | |
| 8429 | static int |
| 8430 | dtrace_match(const dtrace_probekey_t *pkp, uint32_t priv, uid_t uid, |
| 8431 | zoneid_t zoneid, int (*matched)(dtrace_probe_t *, void *, void *), void *arg1, void *arg2) |
| 8432 | { |
| 8433 | dtrace_probe_t *probe; |
| 8434 | dtrace_provider_t prov_template = { |
| 8435 | .dtpv_name = (char *)(uintptr_t)pkp->dtpk_prov |
| 8436 | }; |
| 8437 | |
| 8438 | dtrace_probe_t template = { |
| 8439 | .dtpr_provider = &prov_template, |
| 8440 | .dtpr_mod = (char *)(uintptr_t)pkp->dtpk_mod, |
| 8441 | .dtpr_func = (char *)(uintptr_t)pkp->dtpk_func, |
| 8442 | .dtpr_name = (char *)(uintptr_t)pkp->dtpk_name |
| 8443 | }; |
| 8444 | |
| 8445 | dtrace_hash_t *hash = NULL; |
| 8446 | int len, rc, best = INT_MAX, nmatched = 0; |
| 8447 | dtrace_id_t i; |
| 8448 | |
| 8449 | LCK_MTX_ASSERT(&dtrace_lock, LCK_MTX_ASSERT_OWNED); |
| 8450 | |
| 8451 | /* |
| 8452 | * If the probe ID is specified in the key, just lookup by ID and |
| 8453 | * invoke the match callback once if a matching probe is found. |
| 8454 | */ |
| 8455 | if (pkp->dtpk_id != DTRACE_IDNONE) { |
| 8456 | if ((probe = dtrace_probe_lookup_id(id: pkp->dtpk_id)) != NULL && |
| 8457 | dtrace_match_probe(prp: probe, pkp, priv, uid, zoneid) > 0) { |
| 8458 | if ((*matched)(probe, arg1, arg2) == DTRACE_MATCH_FAIL) |
| 8459 | return (DTRACE_MATCH_FAIL); |
| 8460 | nmatched++; |
| 8461 | } |
| 8462 | return (nmatched); |
| 8463 | } |
| 8464 | |
| 8465 | /* |
| 8466 | * We want to find the most distinct of the provider name, module name, |
| 8467 | * function name, and name. So for each one that is not a glob |
| 8468 | * pattern or empty string, we perform a lookup in the corresponding |
| 8469 | * hash and use the hash table with the fewest collisions to do our |
| 8470 | * search. |
| 8471 | */ |
| 8472 | if (pkp->dtpk_pmatch == &dtrace_match_string && |
| 8473 | (len = dtrace_hash_collisions(hash: dtrace_byprov, template: &template)) < best) { |
| 8474 | best = len; |
| 8475 | hash = dtrace_byprov; |
| 8476 | } |
| 8477 | |
| 8478 | if (pkp->dtpk_mmatch == &dtrace_match_string && |
| 8479 | (len = dtrace_hash_collisions(hash: dtrace_bymod, template: &template)) < best) { |
| 8480 | best = len; |
| 8481 | hash = dtrace_bymod; |
| 8482 | } |
| 8483 | |
| 8484 | if (pkp->dtpk_fmatch == &dtrace_match_string && |
| 8485 | (len = dtrace_hash_collisions(hash: dtrace_byfunc, template: &template)) < best) { |
| 8486 | best = len; |
| 8487 | hash = dtrace_byfunc; |
| 8488 | } |
| 8489 | |
| 8490 | if (pkp->dtpk_nmatch == &dtrace_match_string && |
| 8491 | (len = dtrace_hash_collisions(hash: dtrace_byname, template: &template)) < best) { |
| 8492 | best = len; |
| 8493 | hash = dtrace_byname; |
| 8494 | } |
| 8495 | |
| 8496 | /* |
| 8497 | * If we did not select a hash table, iterate over every probe and |
| 8498 | * invoke our callback for each one that matches our input probe key. |
| 8499 | */ |
| 8500 | if (hash == NULL) { |
| 8501 | for (i = 0; i < (dtrace_id_t)dtrace_nprobes; i++) { |
| 8502 | if ((probe = dtrace_probes[i]) == NULL || |
| 8503 | dtrace_match_probe(prp: probe, pkp, priv, uid, |
| 8504 | zoneid) <= 0) |
| 8505 | continue; |
| 8506 | |
| 8507 | nmatched++; |
| 8508 | |
| 8509 | if ((rc = (*matched)(probe, arg1, arg2)) != DTRACE_MATCH_NEXT) { |
| 8510 | if (rc == DTRACE_MATCH_FAIL) |
| 8511 | return (DTRACE_MATCH_FAIL); |
| 8512 | break; |
| 8513 | } |
| 8514 | } |
| 8515 | |
| 8516 | return (nmatched); |
| 8517 | } |
| 8518 | |
| 8519 | /* |
| 8520 | * If we selected a hash table, iterate over each probe of the same key |
| 8521 | * name and invoke the callback for every probe that matches the other |
| 8522 | * attributes of our input probe key. |
| 8523 | */ |
| 8524 | for (probe = dtrace_hash_lookup(hash, template: &template); probe != NULL; |
| 8525 | probe = *(DTRACE_HASHNEXT(hash, probe))) { |
| 8526 | |
| 8527 | if (dtrace_match_probe(prp: probe, pkp, priv, uid, zoneid) <= 0) |
| 8528 | continue; |
| 8529 | |
| 8530 | nmatched++; |
| 8531 | |
| 8532 | if ((rc = (*matched)(probe, arg1, arg2)) != DTRACE_MATCH_NEXT) { |
| 8533 | if (rc == DTRACE_MATCH_FAIL) |
| 8534 | return (DTRACE_MATCH_FAIL); |
| 8535 | break; |
| 8536 | } |
| 8537 | } |
| 8538 | |
| 8539 | return (nmatched); |
| 8540 | } |
| 8541 | |
| 8542 | /* |
| 8543 | * Return the function pointer dtrace_probecmp() should use to compare the |
| 8544 | * specified pattern with a string. For NULL or empty patterns, we select |
| 8545 | * dtrace_match_nul(). For glob pattern strings, we use dtrace_match_glob(). |
| 8546 | * For non-empty non-glob strings, we use dtrace_match_string(). |
| 8547 | */ |
| 8548 | static dtrace_probekey_f * |
| 8549 | dtrace_probekey_func(const char *p) |
| 8550 | { |
| 8551 | char c; |
| 8552 | |
| 8553 | if (p == NULL || *p == '\0') |
| 8554 | return (&dtrace_match_nul); |
| 8555 | |
| 8556 | while ((c = *p++) != '\0') { |
| 8557 | if (c == '[' || c == '?' || c == '*' || c == '\\') |
| 8558 | return (&dtrace_match_glob); |
| 8559 | } |
| 8560 | |
| 8561 | return (&dtrace_match_string); |
| 8562 | } |
| 8563 | |
| 8564 | static dtrace_probekey_f * |
| 8565 | dtrace_probekey_module_func(const char *p) |
| 8566 | { |
| 8567 | LCK_MTX_ASSERT(&dtrace_lock, LCK_MTX_ASSERT_OWNED); |
| 8568 | |
| 8569 | dtrace_probekey_f *f = dtrace_probekey_func(p); |
| 8570 | if (f == &dtrace_match_string) { |
| 8571 | dtrace_probe_t template = { |
| 8572 | .dtpr_mod = (char *)(uintptr_t)p, |
| 8573 | }; |
| 8574 | if (dtrace_hash_lookup(hash: dtrace_bymod, template: &template) == NULL) { |
| 8575 | return (&dtrace_match_module); |
| 8576 | } |
| 8577 | return (&dtrace_match_string); |
| 8578 | } |
| 8579 | return f; |
| 8580 | } |
| 8581 | |
| 8582 | /* |
| 8583 | * Build a probe comparison key for use with dtrace_match_probe() from the |
| 8584 | * given probe description. By convention, a null key only matches anchored |
| 8585 | * probes: if each field is the empty string, reset dtpk_fmatch to |
| 8586 | * dtrace_match_nonzero(). |
| 8587 | */ |
| 8588 | static void |
| 8589 | dtrace_probekey(const dtrace_probedesc_t *pdp, dtrace_probekey_t *pkp) |
| 8590 | { |
| 8591 | |
| 8592 | pkp->dtpk_prov = dtrace_strref(str: pdp->dtpd_provider); |
| 8593 | pkp->dtpk_pmatch = dtrace_probekey_func(p: pdp->dtpd_provider); |
| 8594 | |
| 8595 | pkp->dtpk_mod = dtrace_strref(str: pdp->dtpd_mod); |
| 8596 | pkp->dtpk_mmatch = dtrace_probekey_module_func(p: pdp->dtpd_mod); |
| 8597 | |
| 8598 | pkp->dtpk_func = dtrace_strref(str: pdp->dtpd_func); |
| 8599 | pkp->dtpk_fmatch = dtrace_probekey_func(p: pdp->dtpd_func); |
| 8600 | |
| 8601 | pkp->dtpk_name = dtrace_strref(str: pdp->dtpd_name); |
| 8602 | pkp->dtpk_nmatch = dtrace_probekey_func(p: pdp->dtpd_name); |
| 8603 | |
| 8604 | pkp->dtpk_id = pdp->dtpd_id; |
| 8605 | |
| 8606 | if (pkp->dtpk_id == DTRACE_IDNONE && |
| 8607 | pkp->dtpk_pmatch == &dtrace_match_nul && |
| 8608 | pkp->dtpk_mmatch == &dtrace_match_nul && |
| 8609 | pkp->dtpk_fmatch == &dtrace_match_nul && |
| 8610 | pkp->dtpk_nmatch == &dtrace_match_nul) |
| 8611 | pkp->dtpk_fmatch = &dtrace_match_nonzero; |
| 8612 | } |
| 8613 | |
| 8614 | static void |
| 8615 | dtrace_probekey_release(dtrace_probekey_t *pkp) |
| 8616 | { |
| 8617 | dtrace_strunref(str: pkp->dtpk_prov); |
| 8618 | dtrace_strunref(str: pkp->dtpk_mod); |
| 8619 | dtrace_strunref(str: pkp->dtpk_func); |
| 8620 | dtrace_strunref(str: pkp->dtpk_name); |
| 8621 | } |
| 8622 | |
| 8623 | static int |
| 8624 | dtrace_cond_provider_match(dtrace_probedesc_t *desc, void *data) |
| 8625 | { |
| 8626 | if (desc == NULL) |
| 8627 | return 1; |
| 8628 | |
| 8629 | dtrace_probekey_f *func = dtrace_probekey_func(p: desc->dtpd_provider); |
| 8630 | |
| 8631 | return func((char*)data, desc->dtpd_provider, 0); |
| 8632 | } |
| 8633 | |
| 8634 | /* |
| 8635 | * DTrace Provider-to-Framework API Functions |
| 8636 | * |
| 8637 | * These functions implement much of the Provider-to-Framework API, as |
| 8638 | * described in <sys/dtrace.h>. The parts of the API not in this section are |
| 8639 | * the functions in the API for probe management (found below), and |
| 8640 | * dtrace_probe() itself (found above). |
| 8641 | */ |
| 8642 | |
| 8643 | /* |
| 8644 | * Register the calling provider with the DTrace framework. This should |
| 8645 | * generally be called by DTrace providers in their attach(9E) entry point. |
| 8646 | */ |
| 8647 | int |
| 8648 | dtrace_register(const char *name, const dtrace_pattr_t *pap, uint32_t priv, |
| 8649 | cred_t *cr, const dtrace_pops_t *pops, void *arg, dtrace_provider_id_t *idp) |
| 8650 | { |
| 8651 | dtrace_provider_t *provider; |
| 8652 | |
| 8653 | if (name == NULL || pap == NULL || pops == NULL || idp == NULL) { |
| 8654 | cmn_err(CE_WARN, "failed to register provider '%s': invalid " |
| 8655 | "arguments" , name ? name : "<NULL>" ); |
| 8656 | return (EINVAL); |
| 8657 | } |
| 8658 | |
| 8659 | if (name[0] == '\0' || dtrace_badname(s: name)) { |
| 8660 | cmn_err(CE_WARN, "failed to register provider '%s': invalid " |
| 8661 | "provider name" , name); |
| 8662 | return (EINVAL); |
| 8663 | } |
| 8664 | |
| 8665 | if ((pops->dtps_provide == NULL && pops->dtps_provide_module == NULL) || |
| 8666 | pops->dtps_enable == NULL || pops->dtps_disable == NULL || |
| 8667 | pops->dtps_destroy == NULL || |
| 8668 | ((pops->dtps_resume == NULL) != (pops->dtps_suspend == NULL))) { |
| 8669 | cmn_err(CE_WARN, "failed to register provider '%s': invalid " |
| 8670 | "provider ops" , name); |
| 8671 | return (EINVAL); |
| 8672 | } |
| 8673 | |
| 8674 | if (dtrace_badattr(a: &pap->dtpa_provider) || |
| 8675 | dtrace_badattr(a: &pap->dtpa_mod) || |
| 8676 | dtrace_badattr(a: &pap->dtpa_func) || |
| 8677 | dtrace_badattr(a: &pap->dtpa_name) || |
| 8678 | dtrace_badattr(a: &pap->dtpa_args)) { |
| 8679 | cmn_err(CE_WARN, "failed to register provider '%s': invalid " |
| 8680 | "provider attributes" , name); |
| 8681 | return (EINVAL); |
| 8682 | } |
| 8683 | |
| 8684 | if (priv & ~DTRACE_PRIV_ALL) { |
| 8685 | cmn_err(CE_WARN, "failed to register provider '%s': invalid " |
| 8686 | "privilege attributes" , name); |
| 8687 | return (EINVAL); |
| 8688 | } |
| 8689 | |
| 8690 | if ((priv & DTRACE_PRIV_KERNEL) && |
| 8691 | (priv & (DTRACE_PRIV_USER | DTRACE_PRIV_OWNER)) && |
| 8692 | pops->dtps_usermode == NULL) { |
| 8693 | cmn_err(CE_WARN, "failed to register provider '%s': need " |
| 8694 | "dtps_usermode() op for given privilege attributes" , name); |
| 8695 | return (EINVAL); |
| 8696 | } |
| 8697 | |
| 8698 | provider = kmem_zalloc(sizeof (dtrace_provider_t), KM_SLEEP); |
| 8699 | |
| 8700 | provider->dtpv_attr = *pap; |
| 8701 | provider->dtpv_priv.dtpp_flags = priv; |
| 8702 | if (cr != NULL) { |
| 8703 | provider->dtpv_priv.dtpp_uid = crgetuid(cr); |
| 8704 | provider->dtpv_priv.dtpp_zoneid = crgetzoneid(cr); |
| 8705 | } |
| 8706 | provider->dtpv_pops = *pops; |
| 8707 | |
| 8708 | if (pops->dtps_provide == NULL) { |
| 8709 | ASSERT(pops->dtps_provide_module != NULL); |
| 8710 | provider->dtpv_pops.dtps_provide = dtrace_provide_nullop; |
| 8711 | } |
| 8712 | |
| 8713 | if (pops->dtps_provide_module == NULL) { |
| 8714 | ASSERT(pops->dtps_provide != NULL); |
| 8715 | provider->dtpv_pops.dtps_provide_module = |
| 8716 | dtrace_provide_module_nullop; |
| 8717 | } |
| 8718 | |
| 8719 | if (pops->dtps_suspend == NULL) { |
| 8720 | ASSERT(pops->dtps_resume == NULL); |
| 8721 | provider->dtpv_pops.dtps_suspend = dtrace_suspend_nullop; |
| 8722 | provider->dtpv_pops.dtps_resume = dtrace_resume_nullop; |
| 8723 | } |
| 8724 | |
| 8725 | provider->dtpv_arg = arg; |
| 8726 | *idp = (dtrace_provider_id_t)provider; |
| 8727 | |
| 8728 | if (pops == &dtrace_provider_ops) { |
| 8729 | LCK_MTX_ASSERT(&dtrace_provider_lock, LCK_MTX_ASSERT_OWNED); |
| 8730 | LCK_MTX_ASSERT(&dtrace_lock, LCK_MTX_ASSERT_OWNED); |
| 8731 | |
| 8732 | provider->dtpv_name = dtrace_strref(str: name); |
| 8733 | |
| 8734 | ASSERT(dtrace_anon.dta_enabling == NULL); |
| 8735 | |
| 8736 | /* |
| 8737 | * We make sure that the DTrace provider is at the head of |
| 8738 | * the provider chain. |
| 8739 | */ |
| 8740 | provider->dtpv_next = dtrace_provider; |
| 8741 | dtrace_provider = provider; |
| 8742 | return (0); |
| 8743 | } |
| 8744 | |
| 8745 | lck_mtx_lock(lck: &dtrace_provider_lock); |
| 8746 | lck_mtx_lock(lck: &dtrace_lock); |
| 8747 | |
| 8748 | provider->dtpv_name = dtrace_strref(str: name); |
| 8749 | |
| 8750 | /* |
| 8751 | * If there is at least one provider registered, we'll add this |
| 8752 | * provider after the first provider. |
| 8753 | */ |
| 8754 | if (dtrace_provider != NULL) { |
| 8755 | provider->dtpv_next = dtrace_provider->dtpv_next; |
| 8756 | dtrace_provider->dtpv_next = provider; |
| 8757 | } else { |
| 8758 | dtrace_provider = provider; |
| 8759 | } |
| 8760 | |
| 8761 | if (dtrace_retained != NULL) { |
| 8762 | dtrace_enabling_provide(provider); |
| 8763 | |
| 8764 | /* |
| 8765 | * Now we need to call dtrace_enabling_matchall_with_cond() -- |
| 8766 | * with a condition matching the provider name we just added, |
| 8767 | * which will acquire cpu_lock and dtrace_lock. We therefore need |
| 8768 | * to drop all of our locks before calling into it... |
| 8769 | */ |
| 8770 | lck_mtx_unlock(lck: &dtrace_lock); |
| 8771 | lck_mtx_unlock(lck: &dtrace_provider_lock); |
| 8772 | |
| 8773 | dtrace_match_cond_t cond = {dtrace_cond_provider_match, provider->dtpv_name}; |
| 8774 | dtrace_enabling_matchall_with_cond(cond: &cond); |
| 8775 | |
| 8776 | return (0); |
| 8777 | } |
| 8778 | |
| 8779 | lck_mtx_unlock(lck: &dtrace_lock); |
| 8780 | lck_mtx_unlock(lck: &dtrace_provider_lock); |
| 8781 | |
| 8782 | return (0); |
| 8783 | } |
| 8784 | |
| 8785 | /* |
| 8786 | * Unregister the specified provider from the DTrace framework. This should |
| 8787 | * generally be called by DTrace providers in their detach(9E) entry point. |
| 8788 | */ |
| 8789 | int |
| 8790 | dtrace_unregister(dtrace_provider_id_t id) |
| 8791 | { |
| 8792 | dtrace_provider_t *old = (dtrace_provider_t *)id; |
| 8793 | dtrace_provider_t *prev = NULL; |
| 8794 | int self = 0; |
| 8795 | dtrace_probe_t *probe, *first = NULL, *next = NULL; |
| 8796 | dtrace_probe_t template = { |
| 8797 | .dtpr_provider = old |
| 8798 | }; |
| 8799 | |
| 8800 | if (old->dtpv_pops.dtps_enable == |
| 8801 | (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop) { |
| 8802 | /* |
| 8803 | * If DTrace itself is the provider, we're called with locks |
| 8804 | * already held. |
| 8805 | */ |
| 8806 | ASSERT(old == dtrace_provider); |
| 8807 | ASSERT(dtrace_devi != NULL); |
| 8808 | LCK_MTX_ASSERT(&dtrace_provider_lock, LCK_MTX_ASSERT_OWNED); |
| 8809 | LCK_MTX_ASSERT(&dtrace_lock, LCK_MTX_ASSERT_OWNED); |
| 8810 | self = 1; |
| 8811 | |
| 8812 | if (dtrace_provider->dtpv_next != NULL) { |
| 8813 | /* |
| 8814 | * There's another provider here; return failure. |
| 8815 | */ |
| 8816 | return (EBUSY); |
| 8817 | } |
| 8818 | } else { |
| 8819 | lck_mtx_lock(lck: &dtrace_provider_lock); |
| 8820 | lck_mtx_lock(lck: &mod_lock); |
| 8821 | lck_mtx_lock(lck: &dtrace_lock); |
| 8822 | } |
| 8823 | |
| 8824 | /* |
| 8825 | * If anyone has /dev/dtrace open, or if there are anonymous enabled |
| 8826 | * probes, we refuse to let providers slither away, unless this |
| 8827 | * provider has already been explicitly invalidated. |
| 8828 | */ |
| 8829 | if (!old->dtpv_defunct && |
| 8830 | (dtrace_opens || (dtrace_anon.dta_state != NULL && |
| 8831 | dtrace_anon.dta_state->dts_necbs > 0))) { |
| 8832 | if (!self) { |
| 8833 | lck_mtx_unlock(lck: &dtrace_lock); |
| 8834 | lck_mtx_unlock(lck: &mod_lock); |
| 8835 | lck_mtx_unlock(lck: &dtrace_provider_lock); |
| 8836 | } |
| 8837 | return (EBUSY); |
| 8838 | } |
| 8839 | |
| 8840 | /* |
| 8841 | * Attempt to destroy the probes associated with this provider. |
| 8842 | */ |
| 8843 | if (old->dtpv_ecb_count!=0) { |
| 8844 | /* |
| 8845 | * We have at least one ECB; we can't remove this provider. |
| 8846 | */ |
| 8847 | if (!self) { |
| 8848 | lck_mtx_unlock(lck: &dtrace_lock); |
| 8849 | lck_mtx_unlock(lck: &mod_lock); |
| 8850 | lck_mtx_unlock(lck: &dtrace_provider_lock); |
| 8851 | } |
| 8852 | return (EBUSY); |
| 8853 | } |
| 8854 | |
| 8855 | /* |
| 8856 | * All of the probes for this provider are disabled; we can safely |
| 8857 | * remove all of them from their hash chains and from the probe array. |
| 8858 | */ |
| 8859 | for (probe = dtrace_hash_lookup(hash: dtrace_byprov, template: &template); probe != NULL; |
| 8860 | probe = *(DTRACE_HASHNEXT(dtrace_byprov, probe))) { |
| 8861 | if (probe->dtpr_provider != old) |
| 8862 | continue; |
| 8863 | |
| 8864 | dtrace_probes[probe->dtpr_id - 1] = NULL; |
| 8865 | old->dtpv_probe_count--; |
| 8866 | |
| 8867 | dtrace_hash_remove(hash: dtrace_bymod, elm: probe); |
| 8868 | dtrace_hash_remove(hash: dtrace_byfunc, elm: probe); |
| 8869 | dtrace_hash_remove(hash: dtrace_byname, elm: probe); |
| 8870 | |
| 8871 | if (first == NULL) { |
| 8872 | first = probe; |
| 8873 | probe->dtpr_nextmod = NULL; |
| 8874 | } else { |
| 8875 | /* |
| 8876 | * Use nextmod as the chain of probes to remove |
| 8877 | */ |
| 8878 | probe->dtpr_nextmod = first; |
| 8879 | first = probe; |
| 8880 | } |
| 8881 | } |
| 8882 | |
| 8883 | for (probe = first; probe != NULL; probe = next) { |
| 8884 | next = probe->dtpr_nextmod; |
| 8885 | dtrace_hash_remove(hash: dtrace_byprov, elm: probe); |
| 8886 | } |
| 8887 | |
| 8888 | /* |
| 8889 | * The provider's probes have been removed from the hash chains and |
| 8890 | * from the probe array. Now issue a dtrace_sync() to be sure that |
| 8891 | * everyone has cleared out from any probe array processing. |
| 8892 | */ |
| 8893 | dtrace_sync(); |
| 8894 | |
| 8895 | for (probe = first; probe != NULL; probe = next) { |
| 8896 | next = probe->dtpr_nextmod; |
| 8897 | |
| 8898 | old->dtpv_pops.dtps_destroy(old->dtpv_arg, probe->dtpr_id, |
| 8899 | probe->dtpr_arg); |
| 8900 | dtrace_strunref(str: probe->dtpr_mod); |
| 8901 | dtrace_strunref(str: probe->dtpr_func); |
| 8902 | dtrace_strunref(str: probe->dtpr_name); |
| 8903 | vmem_free(vmp: dtrace_arena, vaddr: (void *)(uintptr_t)(probe->dtpr_id), size: 1); |
| 8904 | zfree(dtrace_probe_t_zone, probe); |
| 8905 | } |
| 8906 | |
| 8907 | if ((prev = dtrace_provider) == old) { |
| 8908 | ASSERT(self || dtrace_devi == NULL); |
| 8909 | ASSERT(old->dtpv_next == NULL || dtrace_devi == NULL); |
| 8910 | dtrace_provider = old->dtpv_next; |
| 8911 | } else { |
| 8912 | while (prev != NULL && prev->dtpv_next != old) |
| 8913 | prev = prev->dtpv_next; |
| 8914 | |
| 8915 | if (prev == NULL) { |
| 8916 | panic("attempt to unregister non-existent " |
| 8917 | "dtrace provider %p\n" , (void *)id); |
| 8918 | } |
| 8919 | |
| 8920 | prev->dtpv_next = old->dtpv_next; |
| 8921 | } |
| 8922 | |
| 8923 | dtrace_strunref(str: old->dtpv_name); |
| 8924 | |
| 8925 | if (!self) { |
| 8926 | lck_mtx_unlock(lck: &dtrace_lock); |
| 8927 | lck_mtx_unlock(lck: &mod_lock); |
| 8928 | lck_mtx_unlock(lck: &dtrace_provider_lock); |
| 8929 | } |
| 8930 | |
| 8931 | kmem_free(old, sizeof (dtrace_provider_t)); |
| 8932 | |
| 8933 | return (0); |
| 8934 | } |
| 8935 | |
| 8936 | /* |
| 8937 | * Invalidate the specified provider. All subsequent probe lookups for the |
| 8938 | * specified provider will fail, but its probes will not be removed. |
| 8939 | */ |
| 8940 | void |
| 8941 | dtrace_invalidate(dtrace_provider_id_t id) |
| 8942 | { |
| 8943 | dtrace_provider_t *pvp = (dtrace_provider_t *)id; |
| 8944 | |
| 8945 | ASSERT(pvp->dtpv_pops.dtps_enable != |
| 8946 | (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop); |
| 8947 | |
| 8948 | lck_mtx_lock(lck: &dtrace_provider_lock); |
| 8949 | lck_mtx_lock(lck: &dtrace_lock); |
| 8950 | |
| 8951 | pvp->dtpv_defunct = 1; |
| 8952 | |
| 8953 | lck_mtx_unlock(lck: &dtrace_lock); |
| 8954 | lck_mtx_unlock(lck: &dtrace_provider_lock); |
| 8955 | } |
| 8956 | |
| 8957 | /* |
| 8958 | * Indicate whether or not DTrace has attached. |
| 8959 | */ |
| 8960 | int |
| 8961 | dtrace_attached(void) |
| 8962 | { |
| 8963 | /* |
| 8964 | * dtrace_provider will be non-NULL iff the DTrace driver has |
| 8965 | * attached. (It's non-NULL because DTrace is always itself a |
| 8966 | * provider.) |
| 8967 | */ |
| 8968 | return (dtrace_provider != NULL); |
| 8969 | } |
| 8970 | |
| 8971 | /* |
| 8972 | * Remove all the unenabled probes for the given provider. This function is |
| 8973 | * not unlike dtrace_unregister(), except that it doesn't remove the provider |
| 8974 | * -- just as many of its associated probes as it can. |
| 8975 | */ |
| 8976 | int |
| 8977 | dtrace_condense(dtrace_provider_id_t id) |
| 8978 | { |
| 8979 | dtrace_provider_t *prov = (dtrace_provider_t *)id; |
| 8980 | dtrace_probe_t *probe, *first = NULL; |
| 8981 | dtrace_probe_t template = { |
| 8982 | .dtpr_provider = prov |
| 8983 | }; |
| 8984 | |
| 8985 | /* |
| 8986 | * Make sure this isn't the dtrace provider itself. |
| 8987 | */ |
| 8988 | ASSERT(prov->dtpv_pops.dtps_enable != |
| 8989 | (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop); |
| 8990 | |
| 8991 | lck_mtx_lock(lck: &dtrace_provider_lock); |
| 8992 | lck_mtx_lock(lck: &dtrace_lock); |
| 8993 | |
| 8994 | /* |
| 8995 | * Attempt to destroy the probes associated with this provider. |
| 8996 | */ |
| 8997 | for (probe = dtrace_hash_lookup(hash: dtrace_byprov, template: &template); probe != NULL; |
| 8998 | probe = *(DTRACE_HASHNEXT(dtrace_byprov, probe))) { |
| 8999 | |
| 9000 | if (probe->dtpr_provider != prov) |
| 9001 | continue; |
| 9002 | |
| 9003 | if (probe->dtpr_ecb != NULL) |
| 9004 | continue; |
| 9005 | |
| 9006 | dtrace_probes[probe->dtpr_id - 1] = NULL; |
| 9007 | prov->dtpv_probe_count--; |
| 9008 | |
| 9009 | dtrace_hash_remove(hash: dtrace_bymod, elm: probe); |
| 9010 | dtrace_hash_remove(hash: dtrace_byfunc, elm: probe); |
| 9011 | dtrace_hash_remove(hash: dtrace_byname, elm: probe); |
| 9012 | |
| 9013 | prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, probe->dtpr_id, |
| 9014 | probe->dtpr_arg); |
| 9015 | dtrace_strunref(str: probe->dtpr_mod); |
| 9016 | dtrace_strunref(str: probe->dtpr_func); |
| 9017 | dtrace_strunref(str: probe->dtpr_name); |
| 9018 | if (first == NULL) { |
| 9019 | first = probe; |
| 9020 | probe->dtpr_nextmod = NULL; |
| 9021 | } else { |
| 9022 | /* |
| 9023 | * Use nextmod as the chain of probes to remove |
| 9024 | */ |
| 9025 | probe->dtpr_nextmod = first; |
| 9026 | first = probe; |
| 9027 | } |
| 9028 | } |
| 9029 | |
| 9030 | for (probe = first; probe != NULL; probe = first) { |
| 9031 | first = probe->dtpr_nextmod; |
| 9032 | dtrace_hash_remove(hash: dtrace_byprov, elm: probe); |
| 9033 | vmem_free(vmp: dtrace_arena, vaddr: (void *)((uintptr_t)probe->dtpr_id), size: 1); |
| 9034 | zfree(dtrace_probe_t_zone, probe); |
| 9035 | } |
| 9036 | |
| 9037 | lck_mtx_unlock(lck: &dtrace_lock); |
| 9038 | lck_mtx_unlock(lck: &dtrace_provider_lock); |
| 9039 | |
| 9040 | return (0); |
| 9041 | } |
| 9042 | |
| 9043 | /* |
| 9044 | * DTrace Probe Management Functions |
| 9045 | * |
| 9046 | * The functions in this section perform the DTrace probe management, |
| 9047 | * including functions to create probes, look-up probes, and call into the |
| 9048 | * providers to request that probes be provided. Some of these functions are |
| 9049 | * in the Provider-to-Framework API; these functions can be identified by the |
| 9050 | * fact that they are not declared "static". |
| 9051 | */ |
| 9052 | |
| 9053 | /* |
| 9054 | * Create a probe with the specified module name, function name, and name. |
| 9055 | */ |
| 9056 | dtrace_id_t |
| 9057 | dtrace_probe_create(dtrace_provider_id_t prov, const char *mod, |
| 9058 | const char *func, const char *name, int aframes, void *arg) |
| 9059 | { |
| 9060 | dtrace_probe_t *probe, **probes; |
| 9061 | dtrace_provider_t *provider = (dtrace_provider_t *)prov; |
| 9062 | dtrace_id_t id; |
| 9063 | |
| 9064 | if (provider == dtrace_provider) { |
| 9065 | LCK_MTX_ASSERT(&dtrace_lock, LCK_MTX_ASSERT_OWNED); |
| 9066 | } else { |
| 9067 | lck_mtx_lock(lck: &dtrace_lock); |
| 9068 | } |
| 9069 | |
| 9070 | id = (dtrace_id_t)(uintptr_t)vmem_alloc(dtrace_arena, 1, |
| 9071 | VM_BESTFIT | VM_SLEEP); |
| 9072 | |
| 9073 | probe = zalloc_flags(dtrace_probe_t_zone, Z_WAITOK | Z_ZERO); |
| 9074 | |
| 9075 | probe->dtpr_id = id; |
| 9076 | probe->dtpr_gen = dtrace_probegen++; |
| 9077 | probe->dtpr_mod = dtrace_strref(str: mod); |
| 9078 | probe->dtpr_func = dtrace_strref(str: func); |
| 9079 | probe->dtpr_name = dtrace_strref(str: name); |
| 9080 | probe->dtpr_arg = arg; |
| 9081 | probe->dtpr_aframes = aframes; |
| 9082 | probe->dtpr_provider = provider; |
| 9083 | |
| 9084 | dtrace_hash_add(hash: dtrace_byprov, new: probe); |
| 9085 | dtrace_hash_add(hash: dtrace_bymod, new: probe); |
| 9086 | dtrace_hash_add(hash: dtrace_byfunc, new: probe); |
| 9087 | dtrace_hash_add(hash: dtrace_byname, new: probe); |
| 9088 | |
| 9089 | if (id - 1 >= (dtrace_id_t)dtrace_nprobes) { |
| 9090 | size_t osize = dtrace_nprobes * sizeof (dtrace_probe_t *); |
| 9091 | size_t nsize = osize * 2; |
| 9092 | |
| 9093 | probes = kmem_zalloc(nsize, KM_SLEEP); |
| 9094 | |
| 9095 | dtrace_probe_t **oprobes = dtrace_probes; |
| 9096 | |
| 9097 | bcopy(src: oprobes, dst: probes, n: osize); |
| 9098 | dtrace_membar_producer(); |
| 9099 | dtrace_probes = probes; |
| 9100 | |
| 9101 | dtrace_sync(); |
| 9102 | |
| 9103 | /* |
| 9104 | * All CPUs are now seeing the new probes array; we can |
| 9105 | * safely free the old array. |
| 9106 | */ |
| 9107 | kmem_free(oprobes, osize); |
| 9108 | dtrace_nprobes *= 2; |
| 9109 | |
| 9110 | ASSERT(id - 1 < (dtrace_id_t)dtrace_nprobes); |
| 9111 | } |
| 9112 | |
| 9113 | ASSERT(dtrace_probes[id - 1] == NULL); |
| 9114 | dtrace_probes[id - 1] = probe; |
| 9115 | provider->dtpv_probe_count++; |
| 9116 | |
| 9117 | if (provider != dtrace_provider) |
| 9118 | lck_mtx_unlock(lck: &dtrace_lock); |
| 9119 | |
| 9120 | return (id); |
| 9121 | } |
| 9122 | |
| 9123 | static dtrace_probe_t * |
| 9124 | dtrace_probe_lookup_id(dtrace_id_t id) |
| 9125 | { |
| 9126 | LCK_MTX_ASSERT(&dtrace_lock, LCK_MTX_ASSERT_OWNED); |
| 9127 | |
| 9128 | if (id == 0 || id > (dtrace_id_t)dtrace_nprobes) |
| 9129 | return (NULL); |
| 9130 | |
| 9131 | return (dtrace_probes[id - 1]); |
| 9132 | } |
| 9133 | |
| 9134 | static int |
| 9135 | dtrace_probe_lookup_match(dtrace_probe_t *probe, void *arg1, void *arg2) |
| 9136 | { |
| 9137 | #pragma unused(arg2) |
| 9138 | *((dtrace_id_t *)arg1) = probe->dtpr_id; |
| 9139 | |
| 9140 | return (DTRACE_MATCH_DONE); |
| 9141 | } |
| 9142 | |
| 9143 | /* |
| 9144 | * Look up a probe based on provider and one or more of module name, function |
| 9145 | * name and probe name. |
| 9146 | */ |
| 9147 | dtrace_id_t |
| 9148 | dtrace_probe_lookup(dtrace_provider_id_t prid, const char *mod, |
| 9149 | const char *func, const char *name) |
| 9150 | { |
| 9151 | dtrace_probekey_t pkey; |
| 9152 | dtrace_id_t id; |
| 9153 | int match; |
| 9154 | |
| 9155 | lck_mtx_lock(lck: &dtrace_lock); |
| 9156 | |
| 9157 | pkey.dtpk_prov = dtrace_strref(str: ((dtrace_provider_t *)prid)->dtpv_name); |
| 9158 | pkey.dtpk_pmatch = &dtrace_match_string; |
| 9159 | pkey.dtpk_mod = dtrace_strref(str: mod); |
| 9160 | pkey.dtpk_mmatch = mod ? &dtrace_match_string : &dtrace_match_nul; |
| 9161 | pkey.dtpk_func = dtrace_strref(str: func); |
| 9162 | pkey.dtpk_fmatch = func ? &dtrace_match_string : &dtrace_match_nul; |
| 9163 | pkey.dtpk_name = dtrace_strref(str: name); |
| 9164 | pkey.dtpk_nmatch = name ? &dtrace_match_string : &dtrace_match_nul; |
| 9165 | pkey.dtpk_id = DTRACE_IDNONE; |
| 9166 | |
| 9167 | match = dtrace_match(pkp: &pkey, DTRACE_PRIV_ALL, uid: 0, zoneid: 0, |
| 9168 | matched: dtrace_probe_lookup_match, arg1: &id, NULL); |
| 9169 | |
| 9170 | dtrace_probekey_release(pkp: &pkey); |
| 9171 | |
| 9172 | lck_mtx_unlock(lck: &dtrace_lock); |
| 9173 | |
| 9174 | ASSERT(match == 1 || match == 0); |
| 9175 | return (match ? id : 0); |
| 9176 | } |
| 9177 | |
| 9178 | /* |
| 9179 | * Returns the probe argument associated with the specified probe. |
| 9180 | */ |
| 9181 | void * |
| 9182 | dtrace_probe_arg(dtrace_provider_id_t id, dtrace_id_t pid) |
| 9183 | { |
| 9184 | dtrace_probe_t *probe; |
| 9185 | void *rval = NULL; |
| 9186 | |
| 9187 | lck_mtx_lock(lck: &dtrace_lock); |
| 9188 | |
| 9189 | if ((probe = dtrace_probe_lookup_id(id: pid)) != NULL && |
| 9190 | probe->dtpr_provider == (dtrace_provider_t *)id) |
| 9191 | rval = probe->dtpr_arg; |
| 9192 | |
| 9193 | lck_mtx_unlock(lck: &dtrace_lock); |
| 9194 | |
| 9195 | return (rval); |
| 9196 | } |
| 9197 | |
| 9198 | /* |
| 9199 | * Copy a probe into a probe description. |
| 9200 | */ |
| 9201 | static void |
| 9202 | dtrace_probe_description(const dtrace_probe_t *prp, dtrace_probedesc_t *pdp) |
| 9203 | { |
| 9204 | bzero(s: pdp, n: sizeof (dtrace_probedesc_t)); |
| 9205 | pdp->dtpd_id = prp->dtpr_id; |
| 9206 | |
| 9207 | /* APPLE NOTE: Darwin employs size bounded string operation. */ |
| 9208 | (void) strlcpy(dst: pdp->dtpd_provider, |
| 9209 | src: prp->dtpr_provider->dtpv_name, DTRACE_PROVNAMELEN); |
| 9210 | |
| 9211 | (void) strlcpy(dst: pdp->dtpd_mod, src: prp->dtpr_mod, DTRACE_MODNAMELEN); |
| 9212 | (void) strlcpy(dst: pdp->dtpd_func, src: prp->dtpr_func, DTRACE_FUNCNAMELEN); |
| 9213 | (void) strlcpy(dst: pdp->dtpd_name, src: prp->dtpr_name, DTRACE_NAMELEN); |
| 9214 | } |
| 9215 | |
| 9216 | /* |
| 9217 | * Called to indicate that a probe -- or probes -- should be provided by a |
| 9218 | * specfied provider. If the specified description is NULL, the provider will |
| 9219 | * be told to provide all of its probes. (This is done whenever a new |
| 9220 | * consumer comes along, or whenever a retained enabling is to be matched.) If |
| 9221 | * the specified description is non-NULL, the provider is given the |
| 9222 | * opportunity to dynamically provide the specified probe, allowing providers |
| 9223 | * to support the creation of probes on-the-fly. (So-called _autocreated_ |
| 9224 | * probes.) If the provider is NULL, the operations will be applied to all |
| 9225 | * providers; if the provider is non-NULL the operations will only be applied |
| 9226 | * to the specified provider. The dtrace_provider_lock must be held, and the |
| 9227 | * dtrace_lock must _not_ be held -- the provider's dtps_provide() operation |
| 9228 | * will need to grab the dtrace_lock when it reenters the framework through |
| 9229 | * dtrace_probe_lookup(), dtrace_probe_create(), etc. |
| 9230 | */ |
| 9231 | static void |
| 9232 | dtrace_probe_provide(dtrace_probedesc_t *desc, dtrace_provider_t *prv) |
| 9233 | { |
| 9234 | struct modctl *ctl; |
| 9235 | int all = 0; |
| 9236 | |
| 9237 | LCK_MTX_ASSERT(&dtrace_provider_lock, LCK_MTX_ASSERT_OWNED); |
| 9238 | |
| 9239 | if (prv == NULL) { |
| 9240 | all = 1; |
| 9241 | prv = dtrace_provider; |
| 9242 | } |
| 9243 | |
| 9244 | do { |
| 9245 | /* |
| 9246 | * First, call the blanket provide operation. |
| 9247 | */ |
| 9248 | prv->dtpv_pops.dtps_provide(prv->dtpv_arg, desc); |
| 9249 | |
| 9250 | /* |
| 9251 | * Now call the per-module provide operation. We will grab |
| 9252 | * mod_lock to prevent the list from being modified. Note |
| 9253 | * that this also prevents the mod_busy bits from changing. |
| 9254 | * (mod_busy can only be changed with mod_lock held.) |
| 9255 | */ |
| 9256 | lck_mtx_lock(lck: &mod_lock); |
| 9257 | |
| 9258 | ctl = dtrace_modctl_list; |
| 9259 | while (ctl) { |
| 9260 | prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl); |
| 9261 | ctl = ctl->mod_next; |
| 9262 | } |
| 9263 | |
| 9264 | lck_mtx_unlock(lck: &mod_lock); |
| 9265 | } while (all && (prv = prv->dtpv_next) != NULL); |
| 9266 | } |
| 9267 | |
| 9268 | /* |
| 9269 | * Iterate over each probe, and call the Framework-to-Provider API function |
| 9270 | * denoted by offs. |
| 9271 | */ |
| 9272 | static void |
| 9273 | dtrace_probe_foreach(uintptr_t offs) |
| 9274 | { |
| 9275 | dtrace_provider_t *prov; |
| 9276 | void (*func)(void *, dtrace_id_t, void *); |
| 9277 | dtrace_probe_t *probe; |
| 9278 | dtrace_icookie_t cookie; |
| 9279 | int i; |
| 9280 | |
| 9281 | /* |
| 9282 | * We disable interrupts to walk through the probe array. This is |
| 9283 | * safe -- the dtrace_sync() in dtrace_unregister() assures that we |
| 9284 | * won't see stale data. |
| 9285 | */ |
| 9286 | cookie = dtrace_interrupt_disable(); |
| 9287 | |
| 9288 | for (i = 0; i < dtrace_nprobes; i++) { |
| 9289 | if ((probe = dtrace_probes[i]) == NULL) |
| 9290 | continue; |
| 9291 | |
| 9292 | if (probe->dtpr_ecb == NULL) { |
| 9293 | /* |
| 9294 | * This probe isn't enabled -- don't call the function. |
| 9295 | */ |
| 9296 | continue; |
| 9297 | } |
| 9298 | |
| 9299 | prov = probe->dtpr_provider; |
| 9300 | func = *((void(**)(void *, dtrace_id_t, void *)) |
| 9301 | ((uintptr_t)&prov->dtpv_pops + offs)); |
| 9302 | |
| 9303 | func(prov->dtpv_arg, i + 1, probe->dtpr_arg); |
| 9304 | } |
| 9305 | |
| 9306 | dtrace_interrupt_enable(cookie); |
| 9307 | } |
| 9308 | |
| 9309 | static int |
| 9310 | dtrace_probe_enable(const dtrace_probedesc_t *desc, dtrace_enabling_t *enab, dtrace_ecbdesc_t *ep) |
| 9311 | { |
| 9312 | dtrace_probekey_t pkey; |
| 9313 | uint32_t priv; |
| 9314 | uid_t uid; |
| 9315 | zoneid_t zoneid; |
| 9316 | int err; |
| 9317 | |
| 9318 | LCK_MTX_ASSERT(&dtrace_lock, LCK_MTX_ASSERT_OWNED); |
| 9319 | |
| 9320 | dtrace_ecb_create_cache = NULL; |
| 9321 | |
| 9322 | if (desc == NULL) { |
| 9323 | /* |
| 9324 | * If we're passed a NULL description, we're being asked to |
| 9325 | * create an ECB with a NULL probe. |
| 9326 | */ |
| 9327 | (void) dtrace_ecb_create_enable(NULL, enab, ep); |
| 9328 | return (0); |
| 9329 | } |
| 9330 | |
| 9331 | dtrace_probekey(pdp: desc, pkp: &pkey); |
| 9332 | dtrace_cred2priv(cr: enab->dten_vstate->dtvs_state->dts_cred.dcr_cred, |
| 9333 | privp: &priv, uidp: &uid, zoneidp: &zoneid); |
| 9334 | |
| 9335 | err = dtrace_match(pkp: &pkey, priv, uid, zoneid, matched: dtrace_ecb_create_enable, arg1: enab, arg2: ep); |
| 9336 | |
| 9337 | dtrace_probekey_release(pkp: &pkey); |
| 9338 | |
| 9339 | return err; |
| 9340 | } |
| 9341 | |
| 9342 | /* |
| 9343 | * DTrace Helper Provider Functions |
| 9344 | */ |
| 9345 | static void |
| 9346 | dtrace_dofattr2attr(dtrace_attribute_t *attr, const dof_attr_t dofattr) |
| 9347 | { |
| 9348 | attr->dtat_name = DOF_ATTR_NAME(dofattr); |
| 9349 | attr->dtat_data = DOF_ATTR_DATA(dofattr); |
| 9350 | attr->dtat_class = DOF_ATTR_CLASS(dofattr); |
| 9351 | } |
| 9352 | |
| 9353 | static void |
| 9354 | dtrace_dofprov2hprov(dtrace_helper_provdesc_t *hprov, |
| 9355 | const dof_provider_t *dofprov, char *strtab) |
| 9356 | { |
| 9357 | hprov->dthpv_provname = strtab + dofprov->dofpv_name; |
| 9358 | dtrace_dofattr2attr(attr: &hprov->dthpv_pattr.dtpa_provider, |
| 9359 | dofattr: dofprov->dofpv_provattr); |
| 9360 | dtrace_dofattr2attr(attr: &hprov->dthpv_pattr.dtpa_mod, |
| 9361 | dofattr: dofprov->dofpv_modattr); |
| 9362 | dtrace_dofattr2attr(attr: &hprov->dthpv_pattr.dtpa_func, |
| 9363 | dofattr: dofprov->dofpv_funcattr); |
| 9364 | dtrace_dofattr2attr(attr: &hprov->dthpv_pattr.dtpa_name, |
| 9365 | dofattr: dofprov->dofpv_nameattr); |
| 9366 | dtrace_dofattr2attr(attr: &hprov->dthpv_pattr.dtpa_args, |
| 9367 | dofattr: dofprov->dofpv_argsattr); |
| 9368 | } |
| 9369 | |
| 9370 | static void |
| 9371 | dtrace_helper_provide_one(dof_helper_t *dhp, dof_sec_t *sec, proc_t *p) |
| 9372 | { |
| 9373 | uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; |
| 9374 | dof_hdr_t *dof = (dof_hdr_t *)daddr; |
| 9375 | dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec; |
| 9376 | dof_provider_t *provider; |
| 9377 | dof_probe_t *probe; |
| 9378 | uint32_t *off, *enoff; |
| 9379 | uint8_t *arg; |
| 9380 | char *strtab; |
| 9381 | uint_t i, nprobes; |
| 9382 | dtrace_helper_provdesc_t dhpv; |
| 9383 | dtrace_helper_probedesc_t dhpb; |
| 9384 | dtrace_meta_t *meta = dtrace_meta_pid; |
| 9385 | dtrace_mops_t *mops = &meta->dtm_mops; |
| 9386 | void *parg; |
| 9387 | |
| 9388 | provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); |
| 9389 | str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + |
| 9390 | provider->dofpv_strtab * dof->dofh_secsize); |
| 9391 | prb_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + |
| 9392 | provider->dofpv_probes * dof->dofh_secsize); |
| 9393 | arg_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + |
| 9394 | provider->dofpv_prargs * dof->dofh_secsize); |
| 9395 | off_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + |
| 9396 | provider->dofpv_proffs * dof->dofh_secsize); |
| 9397 | |
| 9398 | strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); |
| 9399 | off = (uint32_t *)(uintptr_t)(daddr + off_sec->dofs_offset); |
| 9400 | arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset); |
| 9401 | enoff = NULL; |
| 9402 | |
| 9403 | /* |
| 9404 | * See dtrace_helper_provider_validate(). |
| 9405 | */ |
| 9406 | if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && |
| 9407 | provider->dofpv_prenoffs != DOF_SECT_NONE) { |
| 9408 | enoff_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + |
| 9409 | provider->dofpv_prenoffs * dof->dofh_secsize); |
| 9410 | enoff = (uint32_t *)(uintptr_t)(daddr + enoff_sec->dofs_offset); |
| 9411 | } |
| 9412 | |
| 9413 | nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize; |
| 9414 | |
| 9415 | /* |
| 9416 | * Create the provider. |
| 9417 | */ |
| 9418 | dtrace_dofprov2hprov(hprov: &dhpv, dofprov: provider, strtab); |
| 9419 | |
| 9420 | if ((parg = mops->dtms_provide_proc(meta->dtm_arg, &dhpv, p)) == NULL) |
| 9421 | return; |
| 9422 | |
| 9423 | meta->dtm_count++; |
| 9424 | |
| 9425 | /* |
| 9426 | * Create the probes. |
| 9427 | */ |
| 9428 | for (i = 0; i < nprobes; i++) { |
| 9429 | probe = (dof_probe_t *)(uintptr_t)(daddr + |
| 9430 | prb_sec->dofs_offset + i * prb_sec->dofs_entsize); |
| 9431 | |
| 9432 | dhpb.dthpb_mod = dhp->dofhp_mod; |
| 9433 | dhpb.dthpb_func = strtab + probe->dofpr_func; |
| 9434 | dhpb.dthpb_name = strtab + probe->dofpr_name; |
| 9435 | #if !defined(__APPLE__) |
| 9436 | dhpb.dthpb_base = probe->dofpr_addr; |
| 9437 | #else |
| 9438 | dhpb.dthpb_base = dhp->dofhp_addr; /* FIXME: James, why? */ |
| 9439 | #endif |
| 9440 | dhpb.dthpb_offs = (int32_t *)(off + probe->dofpr_offidx); |
| 9441 | dhpb.dthpb_noffs = probe->dofpr_noffs; |
| 9442 | if (enoff != NULL) { |
| 9443 | dhpb.dthpb_enoffs = (int32_t *)(enoff + probe->dofpr_enoffidx); |
| 9444 | dhpb.dthpb_nenoffs = probe->dofpr_nenoffs; |
| 9445 | } else { |
| 9446 | dhpb.dthpb_enoffs = NULL; |
| 9447 | dhpb.dthpb_nenoffs = 0; |
| 9448 | } |
| 9449 | dhpb.dthpb_args = arg + probe->dofpr_argidx; |
| 9450 | dhpb.dthpb_nargc = probe->dofpr_nargc; |
| 9451 | dhpb.dthpb_xargc = probe->dofpr_xargc; |
| 9452 | dhpb.dthpb_ntypes = strtab + probe->dofpr_nargv; |
| 9453 | dhpb.dthpb_xtypes = strtab + probe->dofpr_xargv; |
| 9454 | |
| 9455 | mops->dtms_create_probe(meta->dtm_arg, parg, &dhpb); |
| 9456 | } |
| 9457 | |
| 9458 | /* |
| 9459 | * Since we just created probes, we need to match our enablings |
| 9460 | * against those, with a precondition knowing that we have only |
| 9461 | * added probes from this provider |
| 9462 | */ |
| 9463 | char *prov_name = mops->dtms_provider_name(parg); |
| 9464 | ASSERT(prov_name != NULL); |
| 9465 | dtrace_match_cond_t cond = {dtrace_cond_provider_match, (void*)prov_name}; |
| 9466 | |
| 9467 | dtrace_enabling_matchall_with_cond(cond: &cond); |
| 9468 | } |
| 9469 | |
| 9470 | static void |
| 9471 | dtrace_helper_provide(dof_helper_t *dhp, proc_t *p) |
| 9472 | { |
| 9473 | uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; |
| 9474 | dof_hdr_t *dof = (dof_hdr_t *)daddr; |
| 9475 | uint32_t i; |
| 9476 | |
| 9477 | LCK_MTX_ASSERT(&dtrace_meta_lock, LCK_MTX_ASSERT_OWNED); |
| 9478 | |
| 9479 | for (i = 0; i < dof->dofh_secnum; i++) { |
| 9480 | dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + |
| 9481 | dof->dofh_secoff + i * dof->dofh_secsize); |
| 9482 | |
| 9483 | if (sec->dofs_type != DOF_SECT_PROVIDER) |
| 9484 | continue; |
| 9485 | |
| 9486 | dtrace_helper_provide_one(dhp, sec, p); |
| 9487 | } |
| 9488 | } |
| 9489 | |
| 9490 | static void |
| 9491 | dtrace_helper_provider_remove_one(dof_helper_t *dhp, dof_sec_t *sec, proc_t *p) |
| 9492 | { |
| 9493 | uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; |
| 9494 | dof_hdr_t *dof = (dof_hdr_t *)daddr; |
| 9495 | dof_sec_t *str_sec; |
| 9496 | dof_provider_t *provider; |
| 9497 | char *strtab; |
| 9498 | dtrace_helper_provdesc_t dhpv; |
| 9499 | dtrace_meta_t *meta = dtrace_meta_pid; |
| 9500 | dtrace_mops_t *mops = &meta->dtm_mops; |
| 9501 | |
| 9502 | provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); |
| 9503 | str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff + |
| 9504 | provider->dofpv_strtab * dof->dofh_secsize); |
| 9505 | |
| 9506 | strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); |
| 9507 | |
| 9508 | /* |
| 9509 | * Create the provider. |
| 9510 | */ |
| 9511 | dtrace_dofprov2hprov(hprov: &dhpv, dofprov: provider, strtab); |
| 9512 | |
| 9513 | mops->dtms_remove_proc(meta->dtm_arg, &dhpv, p); |
| 9514 | |
| 9515 | meta->dtm_count--; |
| 9516 | } |
| 9517 | |
| 9518 | static void |
| 9519 | dtrace_helper_provider_remove(dof_helper_t *dhp, proc_t *p) |
| 9520 | { |
| 9521 | uintptr_t daddr = (uintptr_t)dhp->dofhp_dof; |
| 9522 | dof_hdr_t *dof = (dof_hdr_t *)daddr; |
| 9523 | uint32_t i; |
| 9524 | |
| 9525 | LCK_MTX_ASSERT(&dtrace_meta_lock, LCK_MTX_ASSERT_OWNED); |
| 9526 | |
| 9527 | for (i = 0; i < dof->dofh_secnum; i++) { |
| 9528 | dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + |
| 9529 | dof->dofh_secoff + i * dof->dofh_secsize); |
| 9530 | |
| 9531 | if (sec->dofs_type != DOF_SECT_PROVIDER) |
| 9532 | continue; |
| 9533 | |
| 9534 | dtrace_helper_provider_remove_one(dhp, sec, p); |
| 9535 | } |
| 9536 | } |
| 9537 | |
| 9538 | /* |
| 9539 | * DTrace Meta Provider-to-Framework API Functions |
| 9540 | * |
| 9541 | * These functions implement the Meta Provider-to-Framework API, as described |
| 9542 | * in <sys/dtrace.h>. |
| 9543 | */ |
| 9544 | int |
| 9545 | dtrace_meta_register(const char *name, const dtrace_mops_t *mops, void *arg, |
| 9546 | dtrace_meta_provider_id_t *idp) |
| 9547 | { |
| 9548 | dtrace_meta_t *meta; |
| 9549 | dtrace_helpers_t *help, *next; |
| 9550 | uint_t i; |
| 9551 | |
| 9552 | *idp = DTRACE_METAPROVNONE; |
| 9553 | |
| 9554 | /* |
| 9555 | * We strictly don't need the name, but we hold onto it for |
| 9556 | * debuggability. All hail error queues! |
| 9557 | */ |
| 9558 | if (name == NULL) { |
| 9559 | cmn_err(CE_WARN, "failed to register meta-provider: " |
| 9560 | "invalid name" ); |
| 9561 | return (EINVAL); |
| 9562 | } |
| 9563 | |
| 9564 | if (mops == NULL || |
| 9565 | mops->dtms_create_probe == NULL || |
| 9566 | mops->dtms_provide_proc == NULL || |
| 9567 | mops->dtms_remove_proc == NULL) { |
| 9568 | cmn_err(CE_WARN, "failed to register meta-register %s: " |
| 9569 | "invalid ops" , name); |
| 9570 | return (EINVAL); |
| 9571 | } |
| 9572 | |
| 9573 | meta = kmem_zalloc(sizeof (dtrace_meta_t), KM_SLEEP); |
| 9574 | meta->dtm_mops = *mops; |
| 9575 | meta->dtm_arg = arg; |
| 9576 | |
| 9577 | lck_mtx_lock(lck: &dtrace_meta_lock); |
| 9578 | lck_mtx_lock(lck: &dtrace_lock); |
| 9579 | |
| 9580 | if (dtrace_meta_pid != NULL) { |
| 9581 | lck_mtx_unlock(lck: &dtrace_lock); |
| 9582 | lck_mtx_unlock(lck: &dtrace_meta_lock); |
| 9583 | cmn_err(CE_WARN, "failed to register meta-register %s: " |
| 9584 | "user-land meta-provider exists" , name); |
| 9585 | kmem_free(meta, sizeof (dtrace_meta_t)); |
| 9586 | return (EINVAL); |
| 9587 | } |
| 9588 | |
| 9589 | meta->dtm_name = dtrace_strref(str: name); |
| 9590 | |
| 9591 | dtrace_meta_pid = meta; |
| 9592 | *idp = (dtrace_meta_provider_id_t)meta; |
| 9593 | |
| 9594 | /* |
| 9595 | * If there are providers and probes ready to go, pass them |
| 9596 | * off to the new meta provider now. |
| 9597 | */ |
| 9598 | |
| 9599 | help = dtrace_deferred_pid; |
| 9600 | dtrace_deferred_pid = NULL; |
| 9601 | |
| 9602 | lck_mtx_unlock(lck: &dtrace_lock); |
| 9603 | |
| 9604 | while (help != NULL) { |
| 9605 | for (i = 0; i < help->dthps_nprovs; i++) { |
| 9606 | proc_t *p = proc_find(pid: help->dthps_pid); |
| 9607 | if (p == PROC_NULL) |
| 9608 | continue; |
| 9609 | dtrace_helper_provide(dhp: &help->dthps_provs[i]->dthp_prov, |
| 9610 | p); |
| 9611 | proc_rele(p); |
| 9612 | } |
| 9613 | |
| 9614 | next = help->dthps_next; |
| 9615 | help->dthps_next = NULL; |
| 9616 | help->dthps_prev = NULL; |
| 9617 | help->dthps_deferred = 0; |
| 9618 | help = next; |
| 9619 | } |
| 9620 | |
| 9621 | lck_mtx_unlock(lck: &dtrace_meta_lock); |
| 9622 | |
| 9623 | return (0); |
| 9624 | } |
| 9625 | |
| 9626 | int |
| 9627 | dtrace_meta_unregister(dtrace_meta_provider_id_t id) |
| 9628 | { |
| 9629 | dtrace_meta_t **pp, *old = (dtrace_meta_t *)id; |
| 9630 | |
| 9631 | lck_mtx_lock(lck: &dtrace_meta_lock); |
| 9632 | lck_mtx_lock(lck: &dtrace_lock); |
| 9633 | |
| 9634 | if (old == dtrace_meta_pid) { |
| 9635 | pp = &dtrace_meta_pid; |
| 9636 | } else { |
| 9637 | panic("attempt to unregister non-existent " |
| 9638 | "dtrace meta-provider %p\n" , (void *)old); |
| 9639 | } |
| 9640 | |
| 9641 | if (old->dtm_count != 0) { |
| 9642 | lck_mtx_unlock(lck: &dtrace_lock); |
| 9643 | lck_mtx_unlock(lck: &dtrace_meta_lock); |
| 9644 | return (EBUSY); |
| 9645 | } |
| 9646 | |
| 9647 | *pp = NULL; |
| 9648 | |
| 9649 | dtrace_strunref(str: old->dtm_name); |
| 9650 | |
| 9651 | lck_mtx_unlock(lck: &dtrace_lock); |
| 9652 | lck_mtx_unlock(lck: &dtrace_meta_lock); |
| 9653 | |
| 9654 | kmem_free(old, sizeof (dtrace_meta_t)); |
| 9655 | |
| 9656 | return (0); |
| 9657 | } |
| 9658 | |
| 9659 | |
| 9660 | /* |
| 9661 | * DTrace DIF Object Functions |
| 9662 | */ |
| 9663 | static int |
| 9664 | dtrace_difo_err(uint_t pc, const char *format, ...) |
| 9665 | { |
| 9666 | if (dtrace_err_verbose) { |
| 9667 | va_list alist; |
| 9668 | |
| 9669 | (void) uprintf("dtrace DIF object error: [%u]: " , pc); |
| 9670 | va_start(alist, format); |
| 9671 | (void) vuprintf(format, alist); |
| 9672 | va_end(alist); |
| 9673 | } |
| 9674 | |
| 9675 | #ifdef DTRACE_ERRDEBUG |
| 9676 | dtrace_errdebug(format); |
| 9677 | #endif |
| 9678 | return (1); |
| 9679 | } |
| 9680 | |
| 9681 | /* |
| 9682 | * Validate a DTrace DIF object by checking the IR instructions. The following |
| 9683 | * rules are currently enforced by dtrace_difo_validate(): |
| 9684 | * |
| 9685 | * 1. Each instruction must have a valid opcode |
| 9686 | * 2. Each register, string, variable, or subroutine reference must be valid |
| 9687 | * 3. No instruction can modify register %r0 (must be zero) |
| 9688 | * 4. All instruction reserved bits must be set to zero |
| 9689 | * 5. The last instruction must be a "ret" instruction |
| 9690 | * 6. All branch targets must reference a valid instruction _after_ the branch |
| 9691 | */ |
| 9692 | static int |
| 9693 | dtrace_difo_validate(dtrace_difo_t *dp, dtrace_vstate_t *vstate, uint_t nregs, |
| 9694 | cred_t *cr) |
| 9695 | { |
| 9696 | int err = 0; |
| 9697 | uint_t i; |
| 9698 | |
| 9699 | int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err; |
| 9700 | int kcheckload; |
| 9701 | uint_t pc; |
| 9702 | int maxglobal = -1, maxlocal = -1, maxtlocal = -1; |
| 9703 | |
| 9704 | kcheckload = cr == NULL || |
| 9705 | (vstate->dtvs_state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) == 0; |
| 9706 | |
| 9707 | dp->dtdo_destructive = 0; |
| 9708 | |
| 9709 | for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) { |
| 9710 | dif_instr_t instr = dp->dtdo_buf[pc]; |
| 9711 | |
| 9712 | uint_t r1 = DIF_INSTR_R1(instr); |
| 9713 | uint_t r2 = DIF_INSTR_R2(instr); |
| 9714 | uint_t rd = DIF_INSTR_RD(instr); |
| 9715 | uint_t rs = DIF_INSTR_RS(instr); |
| 9716 | uint_t label = DIF_INSTR_LABEL(instr); |
| 9717 | uint_t v = DIF_INSTR_VAR(instr); |
| 9718 | uint_t subr = DIF_INSTR_SUBR(instr); |
| 9719 | uint_t type = DIF_INSTR_TYPE(instr); |
| 9720 | uint_t op = DIF_INSTR_OP(instr); |
| 9721 | |
| 9722 | switch (op) { |
| 9723 | case DIF_OP_OR: |
| 9724 | case DIF_OP_XOR: |
| 9725 | case DIF_OP_AND: |
| 9726 | case DIF_OP_SLL: |
| 9727 | case DIF_OP_SRL: |
| 9728 | case DIF_OP_SRA: |
| 9729 | case DIF_OP_SUB: |
| 9730 | case DIF_OP_ADD: |
| 9731 | case DIF_OP_MUL: |
| 9732 | case DIF_OP_SDIV: |
| 9733 | case DIF_OP_UDIV: |
| 9734 | case DIF_OP_SREM: |
| 9735 | case DIF_OP_UREM: |
| 9736 | case DIF_OP_COPYS: |
| 9737 | if (r1 >= nregs) |
| 9738 | err += efunc(pc, "invalid register %u\n" , r1); |
| 9739 | if (r2 >= nregs) |
| 9740 | err += efunc(pc, "invalid register %u\n" , r2); |
| 9741 | if (rd >= nregs) |
| 9742 | err += efunc(pc, "invalid register %u\n" , rd); |
| 9743 | if (rd == 0) |
| 9744 | err += efunc(pc, "cannot write to %%r0\n" ); |
| 9745 | break; |
| 9746 | case DIF_OP_NOT: |
| 9747 | case DIF_OP_MOV: |
| 9748 | case DIF_OP_ALLOCS: |
| 9749 | if (r1 >= nregs) |
| 9750 | err += efunc(pc, "invalid register %u\n" , r1); |
| 9751 | if (r2 != 0) |
| 9752 | err += efunc(pc, "non-zero reserved bits\n" ); |
| 9753 | if (rd >= nregs) |
| 9754 | err += efunc(pc, "invalid register %u\n" , rd); |
| 9755 | if (rd == 0) |
| 9756 | err += efunc(pc, "cannot write to %%r0\n" ); |
| 9757 | break; |
| 9758 | case DIF_OP_LDSB: |
| 9759 | case DIF_OP_LDSH: |
| 9760 | case DIF_OP_LDSW: |
| 9761 | case DIF_OP_LDUB: |
| 9762 | case DIF_OP_LDUH: |
| 9763 | case DIF_OP_LDUW: |
| 9764 | case DIF_OP_LDX: |
| 9765 | if (r1 >= nregs) |
| 9766 | err += efunc(pc, "invalid register %u\n" , r1); |
| 9767 | if (r2 != 0) |
| 9768 | err += efunc(pc, "non-zero reserved bits\n" ); |
| 9769 | if (rd >= nregs) |
| 9770 | err += efunc(pc, "invalid register %u\n" , rd); |
| 9771 | if (rd == 0) |
| 9772 | err += efunc(pc, "cannot write to %%r0\n" ); |
| 9773 | if (kcheckload) |
| 9774 | dp->dtdo_buf[pc] = DIF_INSTR_LOAD(op + |
| 9775 | DIF_OP_RLDSB - DIF_OP_LDSB, r1, rd); |
| 9776 | break; |
| 9777 | case DIF_OP_RLDSB: |
| 9778 | case DIF_OP_RLDSH: |
| 9779 | case DIF_OP_RLDSW: |
| 9780 | case DIF_OP_RLDUB: |
| 9781 | case DIF_OP_RLDUH: |
| 9782 | case DIF_OP_RLDUW: |
| 9783 | case DIF_OP_RLDX: |
| 9784 | if (r1 >= nregs) |
| 9785 | err += efunc(pc, "invalid register %u\n" , r1); |
| 9786 | if (r2 != 0) |
| 9787 | err += efunc(pc, "non-zero reserved bits\n" ); |
| 9788 | if (rd >= nregs) |
| 9789 | err += efunc(pc, "invalid register %u\n" , rd); |
| 9790 | if (rd == 0) |
| 9791 | err += efunc(pc, "cannot write to %%r0\n" ); |
| 9792 | break; |
| 9793 | case DIF_OP_ULDSB: |
| 9794 | case DIF_OP_ULDSH: |
| 9795 | case DIF_OP_ULDSW: |
| 9796 | case DIF_OP_ULDUB: |
| 9797 | case DIF_OP_ULDUH: |
| 9798 | case DIF_OP_ULDUW: |
| 9799 | case DIF_OP_ULDX: |
| 9800 | if (r1 >= nregs) |
| 9801 | err += efunc(pc, "invalid register %u\n" , r1); |
| 9802 | if (r2 != 0) |
| 9803 | err += efunc(pc, "non-zero reserved bits\n" ); |
| 9804 | if (rd >= nregs) |
| 9805 | err += efunc(pc, "invalid register %u\n" , rd); |
| 9806 | if (rd == 0) |
| 9807 | err += efunc(pc, "cannot write to %%r0\n" ); |
| 9808 | break; |
| 9809 | case DIF_OP_STB: |
| 9810 | case DIF_OP_STH: |
| 9811 | case DIF_OP_STW: |
| 9812 | case DIF_OP_STX: |
| 9813 | if (r1 >= nregs) |
| 9814 | err += efunc(pc, "invalid register %u\n" , r1); |
| 9815 | if (r2 != 0) |
| 9816 | err += efunc(pc, "non-zero reserved bits\n" ); |
| 9817 | if (rd >= nregs) |
| 9818 | err += efunc(pc, "invalid register %u\n" , rd); |
| 9819 | if (rd == 0) |
| 9820 | err += efunc(pc, "cannot write to 0 address\n" ); |
| 9821 | break; |
| 9822 | case DIF_OP_CMP: |
| 9823 | case DIF_OP_SCMP: |
| 9824 | if (r1 >= nregs) |
| 9825 | err += efunc(pc, "invalid register %u\n" , r1); |
| 9826 | if (r2 >= nregs) |
| 9827 | err += efunc(pc, "invalid register %u\n" , r2); |
| 9828 | if (rd != 0) |
| 9829 | err += efunc(pc, "non-zero reserved bits\n" ); |
| 9830 | break; |
| 9831 | case DIF_OP_TST: |
| 9832 | if (r1 >= nregs) |
| 9833 | err += efunc(pc, "invalid register %u\n" , r1); |
| 9834 | if (r2 != 0 || rd != 0) |
| 9835 | err += efunc(pc, "non-zero reserved bits\n" ); |
| 9836 | break; |
| 9837 | case DIF_OP_BA: |
| 9838 | case DIF_OP_BE: |
| 9839 | case DIF_OP_BNE: |
| 9840 | case DIF_OP_BG: |
| 9841 | case DIF_OP_BGU: |
| 9842 | case DIF_OP_BGE: |
| 9843 | case DIF_OP_BGEU: |
| 9844 | case DIF_OP_BL: |
| 9845 | case DIF_OP_BLU: |
| 9846 | case DIF_OP_BLE: |
| 9847 | case DIF_OP_BLEU: |
| 9848 | if (label >= dp->dtdo_len) { |
| 9849 | err += efunc(pc, "invalid branch target %u\n" , |
| 9850 | label); |
| 9851 | } |
| 9852 | if (label <= pc) { |
| 9853 | err += efunc(pc, "backward branch to %u\n" , |
| 9854 | label); |
| 9855 | } |
| 9856 | break; |
| 9857 | case DIF_OP_RET: |
| 9858 | if (r1 != 0 || r2 != 0) |
| 9859 | err += efunc(pc, "non-zero reserved bits\n" ); |
| 9860 | if (rd >= nregs) |
| 9861 | err += efunc(pc, "invalid register %u\n" , rd); |
| 9862 | break; |
| 9863 | case DIF_OP_NOP: |
| 9864 | case DIF_OP_POPTS: |
| 9865 | case DIF_OP_FLUSHTS: |
| 9866 | if (r1 != 0 || r2 != 0 || rd != 0) |
| 9867 | err += efunc(pc, "non-zero reserved bits\n" ); |
| 9868 | break; |
| 9869 | case DIF_OP_SETX: |
| 9870 | if (DIF_INSTR_INTEGER(instr) >= dp->dtdo_intlen) { |
| 9871 | err += efunc(pc, "invalid integer ref %u\n" , |
| 9872 | DIF_INSTR_INTEGER(instr)); |
| 9873 | } |
| 9874 | if (rd >= nregs) |
| 9875 | err += efunc(pc, "invalid register %u\n" , rd); |
| 9876 | if (rd == 0) |
| 9877 | err += efunc(pc, "cannot write to %%r0\n" ); |
| 9878 | break; |
| 9879 | case DIF_OP_SETS: |
| 9880 | if (DIF_INSTR_STRING(instr) >= dp->dtdo_strlen) { |
| 9881 | err += efunc(pc, "invalid string ref %u\n" , |
| 9882 | DIF_INSTR_STRING(instr)); |
| 9883 | } |
| 9884 | if (rd >= nregs) |
| 9885 | err += efunc(pc, "invalid register %u\n" , rd); |
| 9886 | if (rd == 0) |
| 9887 | err += efunc(pc, "cannot write to %%r0\n" ); |
| 9888 | break; |
| 9889 | case DIF_OP_LDGA: |
| 9890 | case DIF_OP_LDTA: |
| 9891 | if (r1 > DIF_VAR_ARRAY_MAX) |
| 9892 | err += efunc(pc, "invalid array %u\n" , r1); |
| 9893 | if (r2 >= nregs) |
| 9894 | err += efunc(pc, "invalid register %u\n" , r2); |
| 9895 | if (rd >= nregs) |
| 9896 | err += efunc(pc, "invalid register %u\n" , rd); |
| 9897 | if (rd == 0) |
| 9898 | err += efunc(pc, "cannot write to %%r0\n" ); |
| 9899 | break; |
| 9900 | case DIF_OP_LDGS: |
| 9901 | case DIF_OP_LDTS: |
| 9902 | case DIF_OP_LDLS: |
| 9903 | case DIF_OP_LDGAA: |
| 9904 | case DIF_OP_LDTAA: |
| 9905 | if (v < DIF_VAR_OTHER_MIN || v > DIF_VAR_OTHER_MAX) |
| 9906 | err += efunc(pc, "invalid variable %u\n" , v); |
| 9907 | if (rd >= nregs) |
| 9908 | err += efunc(pc, "invalid register %u\n" , rd); |
| 9909 | if (rd == 0) |
| 9910 | err += efunc(pc, "cannot write to %%r0\n" ); |
| 9911 | break; |
| 9912 | case DIF_OP_STGS: |
| 9913 | case DIF_OP_STTS: |
| 9914 | case DIF_OP_STLS: |
| 9915 | case DIF_OP_STGAA: |
| 9916 | case DIF_OP_STTAA: |
| 9917 | if (v < DIF_VAR_OTHER_UBASE || v > DIF_VAR_OTHER_MAX) |
| 9918 | err += efunc(pc, "invalid variable %u\n" , v); |
| 9919 | if (rs >= nregs) |
| 9920 | err += efunc(pc, "invalid register %u\n" , rd); |
| 9921 | break; |
| 9922 | case DIF_OP_CALL: |
| 9923 | if (subr > DIF_SUBR_MAX && |
| 9924 | !(subr >= DIF_SUBR_APPLE_MIN && subr <= DIF_SUBR_APPLE_MAX)) |
| 9925 | err += efunc(pc, "invalid subr %u\n" , subr); |
| 9926 | if (rd >= nregs) |
| 9927 | err += efunc(pc, "invalid register %u\n" , rd); |
| 9928 | if (rd == 0) |
| 9929 | err += efunc(pc, "cannot write to %%r0\n" ); |
| 9930 | |
| 9931 | switch (subr) { |
| 9932 | case DIF_SUBR_COPYOUT: |
| 9933 | case DIF_SUBR_COPYOUTSTR: |
| 9934 | case DIF_SUBR_KDEBUG_TRACE: |
| 9935 | case DIF_SUBR_KDEBUG_TRACE_STRING: |
| 9936 | case DIF_SUBR_PHYSMEM_READ: |
| 9937 | case DIF_SUBR_PHYSMEM_WRITE: |
| 9938 | case DIF_SUBR_LIVEDUMP: |
| 9939 | dp->dtdo_destructive = 1; |
| 9940 | break; |
| 9941 | default: |
| 9942 | break; |
| 9943 | } |
| 9944 | break; |
| 9945 | case DIF_OP_PUSHTR: |
| 9946 | if (type != DIF_TYPE_STRING && type != DIF_TYPE_CTF) |
| 9947 | err += efunc(pc, "invalid ref type %u\n" , type); |
| 9948 | if (r2 >= nregs) |
| 9949 | err += efunc(pc, "invalid register %u\n" , r2); |
| 9950 | if (rs >= nregs) |
| 9951 | err += efunc(pc, "invalid register %u\n" , rs); |
| 9952 | break; |
| 9953 | case DIF_OP_PUSHTV: |
| 9954 | if (type != DIF_TYPE_CTF) |
| 9955 | err += efunc(pc, "invalid val type %u\n" , type); |
| 9956 | if (r2 >= nregs) |
| 9957 | err += efunc(pc, "invalid register %u\n" , r2); |
| 9958 | if (rs >= nregs) |
| 9959 | err += efunc(pc, "invalid register %u\n" , rs); |
| 9960 | break; |
| 9961 | case DIF_OP_STRIP: |
| 9962 | if (r1 >= nregs) |
| 9963 | err += efunc(pc, "invalid register %u\n" , r1); |
| 9964 | if (!dtrace_is_valid_ptrauth_key(r2)) |
| 9965 | err += efunc(pc, "invalid key\n" ); |
| 9966 | if (rd >= nregs) |
| 9967 | err += efunc(pc, "invalid register %u\n" , rd); |
| 9968 | if (rd == 0) |
| 9969 | err += efunc(pc, "cannot write to %%r0\n" ); |
| 9970 | break; |
| 9971 | default: |
| 9972 | err += efunc(pc, "invalid opcode %u\n" , |
| 9973 | DIF_INSTR_OP(instr)); |
| 9974 | } |
| 9975 | } |
| 9976 | |
| 9977 | if (dp->dtdo_len != 0 && |
| 9978 | DIF_INSTR_OP(dp->dtdo_buf[dp->dtdo_len - 1]) != DIF_OP_RET) { |
| 9979 | err += efunc(dp->dtdo_len - 1, |
| 9980 | "expected 'ret' as last DIF instruction\n" ); |
| 9981 | } |
| 9982 | |
| 9983 | if (!(dp->dtdo_rtype.dtdt_flags & (DIF_TF_BYREF | DIF_TF_BYUREF))) { |
| 9984 | /* |
| 9985 | * If we're not returning by reference, the size must be either |
| 9986 | * 0 or the size of one of the base types. |
| 9987 | */ |
| 9988 | switch (dp->dtdo_rtype.dtdt_size) { |
| 9989 | case 0: |
| 9990 | case sizeof (uint8_t): |
| 9991 | case sizeof (uint16_t): |
| 9992 | case sizeof (uint32_t): |
| 9993 | case sizeof (uint64_t): |
| 9994 | break; |
| 9995 | |
| 9996 | default: |
| 9997 | err += efunc(dp->dtdo_len - 1, "bad return size\n" ); |
| 9998 | } |
| 9999 | } |
| 10000 | |
| 10001 | for (i = 0; i < dp->dtdo_varlen && err == 0; i++) { |
| 10002 | dtrace_difv_t *v = &dp->dtdo_vartab[i], *existing = NULL; |
| 10003 | dtrace_diftype_t *vt, *et; |
| 10004 | uint_t id; |
| 10005 | int ndx; |
| 10006 | |
| 10007 | if (v->dtdv_scope != DIFV_SCOPE_GLOBAL && |
| 10008 | v->dtdv_scope != DIFV_SCOPE_THREAD && |
| 10009 | v->dtdv_scope != DIFV_SCOPE_LOCAL) { |
| 10010 | err += efunc(i, "unrecognized variable scope %d\n" , |
| 10011 | v->dtdv_scope); |
| 10012 | break; |
| 10013 | } |
| 10014 | |
| 10015 | if (v->dtdv_kind != DIFV_KIND_ARRAY && |
| 10016 | v->dtdv_kind != DIFV_KIND_SCALAR) { |
| 10017 | err += efunc(i, "unrecognized variable type %d\n" , |
| 10018 | v->dtdv_kind); |
| 10019 | break; |
| 10020 | } |
| 10021 | |
| 10022 | if ((id = v->dtdv_id) > DIF_VARIABLE_MAX) { |
| 10023 | err += efunc(i, "%d exceeds variable id limit\n" , id); |
| 10024 | break; |
| 10025 | } |
| 10026 | |
| 10027 | if (id < DIF_VAR_OTHER_UBASE) |
| 10028 | continue; |
| 10029 | |
| 10030 | /* |
| 10031 | * For user-defined variables, we need to check that this |
| 10032 | * definition is identical to any previous definition that we |
| 10033 | * encountered. |
| 10034 | */ |
| 10035 | ndx = id - DIF_VAR_OTHER_UBASE; |
| 10036 | |
| 10037 | switch (v->dtdv_scope) { |
| 10038 | case DIFV_SCOPE_GLOBAL: |
| 10039 | if (maxglobal == -1 || ndx > maxglobal) |
| 10040 | maxglobal = ndx; |
| 10041 | |
| 10042 | if (ndx < vstate->dtvs_nglobals) { |
| 10043 | dtrace_statvar_t *svar; |
| 10044 | |
| 10045 | if ((svar = vstate->dtvs_globals[ndx]) != NULL) |
| 10046 | existing = &svar->dtsv_var; |
| 10047 | } |
| 10048 | |
| 10049 | break; |
| 10050 | |
| 10051 | case DIFV_SCOPE_THREAD: |
| 10052 | if (maxtlocal == -1 || ndx > maxtlocal) |
| 10053 | maxtlocal = ndx; |
| 10054 | |
| 10055 | if (ndx < vstate->dtvs_ntlocals) |
| 10056 | existing = &vstate->dtvs_tlocals[ndx]; |
| 10057 | break; |
| 10058 | |
| 10059 | case DIFV_SCOPE_LOCAL: |
| 10060 | if (maxlocal == -1 || ndx > maxlocal) |
| 10061 | maxlocal = ndx; |
| 10062 | if (ndx < vstate->dtvs_nlocals) { |
| 10063 | dtrace_statvar_t *svar; |
| 10064 | |
| 10065 | if ((svar = vstate->dtvs_locals[ndx]) != NULL) |
| 10066 | existing = &svar->dtsv_var; |
| 10067 | } |
| 10068 | |
| 10069 | break; |
| 10070 | } |
| 10071 | |
| 10072 | vt = &v->dtdv_type; |
| 10073 | |
| 10074 | if (vt->dtdt_flags & DIF_TF_BYREF) { |
| 10075 | if (vt->dtdt_size == 0) { |
| 10076 | err += efunc(i, "zero-sized variable\n" ); |
| 10077 | break; |
| 10078 | } |
| 10079 | |
| 10080 | if ((v->dtdv_scope == DIFV_SCOPE_GLOBAL || |
| 10081 | v->dtdv_scope == DIFV_SCOPE_LOCAL) && |
| 10082 | vt->dtdt_size > dtrace_statvar_maxsize) { |
| 10083 | err += efunc(i, "oversized by-ref static\n" ); |
| 10084 | break; |
| 10085 | } |
| 10086 | } |
| 10087 | |
| 10088 | if (existing == NULL || existing->dtdv_id == 0) |
| 10089 | continue; |
| 10090 | |
| 10091 | ASSERT(existing->dtdv_id == v->dtdv_id); |
| 10092 | ASSERT(existing->dtdv_scope == v->dtdv_scope); |
| 10093 | |
| 10094 | if (existing->dtdv_kind != v->dtdv_kind) |
| 10095 | err += efunc(i, "%d changed variable kind\n" , id); |
| 10096 | |
| 10097 | et = &existing->dtdv_type; |
| 10098 | |
| 10099 | if (vt->dtdt_flags != et->dtdt_flags) { |
| 10100 | err += efunc(i, "%d changed variable type flags\n" , id); |
| 10101 | break; |
| 10102 | } |
| 10103 | |
| 10104 | if (vt->dtdt_size != 0 && vt->dtdt_size != et->dtdt_size) { |
| 10105 | err += efunc(i, "%d changed variable type size\n" , id); |
| 10106 | break; |
| 10107 | } |
| 10108 | } |
| 10109 | |
| 10110 | for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) { |
| 10111 | dif_instr_t instr = dp->dtdo_buf[pc]; |
| 10112 | |
| 10113 | uint_t v = DIF_INSTR_VAR(instr); |
| 10114 | uint_t op = DIF_INSTR_OP(instr); |
| 10115 | |
| 10116 | switch (op) { |
| 10117 | case DIF_OP_LDGS: |
| 10118 | case DIF_OP_LDGAA: |
| 10119 | case DIF_OP_STGS: |
| 10120 | case DIF_OP_STGAA: |
| 10121 | if (v > (uint_t)(DIF_VAR_OTHER_UBASE + maxglobal)) |
| 10122 | err += efunc(pc, "invalid variable %u\n" , v); |
| 10123 | break; |
| 10124 | case DIF_OP_LDTS: |
| 10125 | case DIF_OP_LDTAA: |
| 10126 | case DIF_OP_STTS: |
| 10127 | case DIF_OP_STTAA: |
| 10128 | if (v > (uint_t)(DIF_VAR_OTHER_UBASE + maxtlocal)) |
| 10129 | err += efunc(pc, "invalid variable %u\n" , v); |
| 10130 | break; |
| 10131 | case DIF_OP_LDLS: |
| 10132 | case DIF_OP_STLS: |
| 10133 | if (v > (uint_t)(DIF_VAR_OTHER_UBASE + maxlocal)) |
| 10134 | err += efunc(pc, "invalid variable %u\n" , v); |
| 10135 | break; |
| 10136 | default: |
| 10137 | break; |
| 10138 | } |
| 10139 | } |
| 10140 | |
| 10141 | return (err); |
| 10142 | } |
| 10143 | |
| 10144 | /* |
| 10145 | * Validate a DTrace DIF object that it is to be used as a helper. Helpers |
| 10146 | * are much more constrained than normal DIFOs. Specifically, they may |
| 10147 | * not: |
| 10148 | * |
| 10149 | * 1. Make calls to subroutines other than copyin(), copyinstr() or |
| 10150 | * miscellaneous string routines |
| 10151 | * 2. Access DTrace variables other than the args[] array, and the |
| 10152 | * curthread, pid, ppid, tid, execname, zonename, uid and gid variables. |
| 10153 | * 3. Have thread-local variables. |
| 10154 | * 4. Have dynamic variables. |
| 10155 | */ |
| 10156 | static int |
| 10157 | dtrace_difo_validate_helper(dtrace_difo_t *dp) |
| 10158 | { |
| 10159 | int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err; |
| 10160 | int err = 0; |
| 10161 | uint_t pc; |
| 10162 | |
| 10163 | for (pc = 0; pc < dp->dtdo_len; pc++) { |
| 10164 | dif_instr_t instr = dp->dtdo_buf[pc]; |
| 10165 | |
| 10166 | uint_t v = DIF_INSTR_VAR(instr); |
| 10167 | uint_t subr = DIF_INSTR_SUBR(instr); |
| 10168 | uint_t op = DIF_INSTR_OP(instr); |
| 10169 | |
| 10170 | switch (op) { |
| 10171 | case DIF_OP_OR: |
| 10172 | case DIF_OP_XOR: |
| 10173 | case DIF_OP_AND: |
| 10174 | case DIF_OP_SLL: |
| 10175 | case DIF_OP_SRL: |
| 10176 | case DIF_OP_SRA: |
| 10177 | case DIF_OP_SUB: |
| 10178 | case DIF_OP_ADD: |
| 10179 | case DIF_OP_MUL: |
| 10180 | case DIF_OP_SDIV: |
| 10181 | case DIF_OP_UDIV: |
| 10182 | case DIF_OP_SREM: |
| 10183 | case DIF_OP_UREM: |
| 10184 | case DIF_OP_COPYS: |
| 10185 | case DIF_OP_NOT: |
| 10186 | case DIF_OP_MOV: |
| 10187 | case DIF_OP_RLDSB: |
| 10188 | case DIF_OP_RLDSH: |
| 10189 | case DIF_OP_RLDSW: |
| 10190 | case DIF_OP_RLDUB: |
| 10191 | case DIF_OP_RLDUH: |
| 10192 | case DIF_OP_RLDUW: |
| 10193 | case DIF_OP_RLDX: |
| 10194 | case DIF_OP_ULDSB: |
| 10195 | case DIF_OP_ULDSH: |
| 10196 | case DIF_OP_ULDSW: |
| 10197 | case DIF_OP_ULDUB: |
| 10198 | case DIF_OP_ULDUH: |
| 10199 | case DIF_OP_ULDUW: |
| 10200 | case DIF_OP_ULDX: |
| 10201 | case DIF_OP_STB: |
| 10202 | case DIF_OP_STH: |
| 10203 | case DIF_OP_STW: |
| 10204 | case DIF_OP_STX: |
| 10205 | case DIF_OP_ALLOCS: |
| 10206 | case DIF_OP_CMP: |
| 10207 | case DIF_OP_SCMP: |
| 10208 | case DIF_OP_TST: |
| 10209 | case DIF_OP_BA: |
| 10210 | case DIF_OP_BE: |
| 10211 | case DIF_OP_BNE: |
| 10212 | case DIF_OP_BG: |
| 10213 | case DIF_OP_BGU: |
| 10214 | case DIF_OP_BGE: |
| 10215 | case DIF_OP_BGEU: |
| 10216 | case DIF_OP_BL: |
| 10217 | case DIF_OP_BLU: |
| 10218 | case DIF_OP_BLE: |
| 10219 | case DIF_OP_BLEU: |
| 10220 | case DIF_OP_RET: |
| 10221 | case DIF_OP_NOP: |
| 10222 | case DIF_OP_POPTS: |
| 10223 | case DIF_OP_FLUSHTS: |
| 10224 | case DIF_OP_SETX: |
| 10225 | case DIF_OP_SETS: |
| 10226 | case DIF_OP_LDGA: |
| 10227 | case DIF_OP_LDLS: |
| 10228 | case DIF_OP_STGS: |
| 10229 | case DIF_OP_STLS: |
| 10230 | case DIF_OP_PUSHTR: |
| 10231 | case DIF_OP_PUSHTV: |
| 10232 | break; |
| 10233 | |
| 10234 | case DIF_OP_LDGS: |
| 10235 | if (v >= DIF_VAR_OTHER_UBASE) |
| 10236 | break; |
| 10237 | |
| 10238 | if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) |
| 10239 | break; |
| 10240 | |
| 10241 | if (v == DIF_VAR_CURTHREAD || v == DIF_VAR_PID || |
| 10242 | v == DIF_VAR_PPID || v == DIF_VAR_TID || |
| 10243 | v == DIF_VAR_EXECNAME || v == DIF_VAR_ZONENAME || |
| 10244 | v == DIF_VAR_UID || v == DIF_VAR_GID) |
| 10245 | break; |
| 10246 | |
| 10247 | err += efunc(pc, "illegal variable %u\n" , v); |
| 10248 | break; |
| 10249 | |
| 10250 | case DIF_OP_LDTA: |
| 10251 | case DIF_OP_LDTS: |
| 10252 | case DIF_OP_LDGAA: |
| 10253 | case DIF_OP_LDTAA: |
| 10254 | err += efunc(pc, "illegal dynamic variable load\n" ); |
| 10255 | break; |
| 10256 | |
| 10257 | case DIF_OP_STTS: |
| 10258 | case DIF_OP_STGAA: |
| 10259 | case DIF_OP_STTAA: |
| 10260 | err += efunc(pc, "illegal dynamic variable store\n" ); |
| 10261 | break; |
| 10262 | |
| 10263 | case DIF_OP_CALL: |
| 10264 | switch (subr) { |
| 10265 | case DIF_SUBR_ALLOCA: |
| 10266 | case DIF_SUBR_BCOPY: |
| 10267 | case DIF_SUBR_COPYIN: |
| 10268 | case DIF_SUBR_COPYINTO: |
| 10269 | case DIF_SUBR_COPYINSTR: |
| 10270 | case DIF_SUBR_HTONS: |
| 10271 | case DIF_SUBR_HTONL: |
| 10272 | case DIF_SUBR_HTONLL: |
| 10273 | case DIF_SUBR_INDEX: |
| 10274 | case DIF_SUBR_INET_NTOA: |
| 10275 | case DIF_SUBR_INET_NTOA6: |
| 10276 | case DIF_SUBR_INET_NTOP: |
| 10277 | case DIF_SUBR_JSON: |
| 10278 | case DIF_SUBR_LLTOSTR: |
| 10279 | case DIF_SUBR_NTOHS: |
| 10280 | case DIF_SUBR_NTOHL: |
| 10281 | case DIF_SUBR_NTOHLL: |
| 10282 | case DIF_SUBR_RINDEX: |
| 10283 | case DIF_SUBR_STRCHR: |
| 10284 | case DIF_SUBR_STRTOLL: |
| 10285 | case DIF_SUBR_STRJOIN: |
| 10286 | case DIF_SUBR_STRRCHR: |
| 10287 | case DIF_SUBR_STRSTR: |
| 10288 | break; |
| 10289 | default: |
| 10290 | err += efunc(pc, "invalid subr %u\n" , subr); |
| 10291 | } |
| 10292 | break; |
| 10293 | |
| 10294 | default: |
| 10295 | err += efunc(pc, "invalid opcode %u\n" , |
| 10296 | DIF_INSTR_OP(instr)); |
| 10297 | } |
| 10298 | } |
| 10299 | |
| 10300 | return (err); |
| 10301 | } |
| 10302 | |
| 10303 | /* |
| 10304 | * Returns 1 if the expression in the DIF object can be cached on a per-thread |
| 10305 | * basis; 0 if not. |
| 10306 | */ |
| 10307 | static int |
| 10308 | dtrace_difo_cacheable(dtrace_difo_t *dp) |
| 10309 | { |
| 10310 | uint_t i; |
| 10311 | |
| 10312 | if (dp == NULL) |
| 10313 | return (0); |
| 10314 | |
| 10315 | for (i = 0; i < dp->dtdo_varlen; i++) { |
| 10316 | dtrace_difv_t *v = &dp->dtdo_vartab[i]; |
| 10317 | |
| 10318 | if (v->dtdv_scope != DIFV_SCOPE_GLOBAL) |
| 10319 | continue; |
| 10320 | |
| 10321 | switch (v->dtdv_id) { |
| 10322 | case DIF_VAR_CURTHREAD: |
| 10323 | case DIF_VAR_PID: |
| 10324 | case DIF_VAR_TID: |
| 10325 | case DIF_VAR_EXECNAME: |
| 10326 | case DIF_VAR_ZONENAME: |
| 10327 | break; |
| 10328 | |
| 10329 | default: |
| 10330 | return (0); |
| 10331 | } |
| 10332 | } |
| 10333 | |
| 10334 | /* |
| 10335 | * This DIF object may be cacheable. Now we need to look for any |
| 10336 | * array loading instructions, any memory loading instructions, or |
| 10337 | * any stores to thread-local variables. |
| 10338 | */ |
| 10339 | for (i = 0; i < dp->dtdo_len; i++) { |
| 10340 | uint_t op = DIF_INSTR_OP(dp->dtdo_buf[i]); |
| 10341 | |
| 10342 | if ((op >= DIF_OP_LDSB && op <= DIF_OP_LDX) || |
| 10343 | (op >= DIF_OP_ULDSB && op <= DIF_OP_ULDX) || |
| 10344 | (op >= DIF_OP_RLDSB && op <= DIF_OP_RLDX) || |
| 10345 | op == DIF_OP_LDGA || op == DIF_OP_STTS) |
| 10346 | return (0); |
| 10347 | } |
| 10348 | |
| 10349 | return (1); |
| 10350 | } |
| 10351 | |
| 10352 | static void |
| 10353 | dtrace_difo_hold(dtrace_difo_t *dp) |
| 10354 | { |
| 10355 | uint_t i; |
| 10356 | |
| 10357 | LCK_MTX_ASSERT(&dtrace_lock, LCK_MTX_ASSERT_OWNED); |
| 10358 | |
| 10359 | dp->dtdo_refcnt++; |
| 10360 | ASSERT(dp->dtdo_refcnt != 0); |
| 10361 | |
| 10362 | /* |
| 10363 | * We need to check this DIF object for references to the variable |
| 10364 | * DIF_VAR_VTIMESTAMP. |
| 10365 | */ |
| 10366 | for (i = 0; i < dp->dtdo_varlen; i++) { |
| 10367 | dtrace_difv_t *v = &dp->dtdo_vartab[i]; |
| 10368 | |
| 10369 | if (v->dtdv_id != DIF_VAR_VTIMESTAMP) |
| 10370 | continue; |
| 10371 | |
| 10372 | if (dtrace_vtime_references++ == 0) |
| 10373 | dtrace_vtime_enable(); |
| 10374 | } |
| 10375 | } |
| 10376 | |
| 10377 | /* |
| 10378 | * This routine calculates the dynamic variable chunksize for a given DIF |
| 10379 | * object. The calculation is not fool-proof, and can probably be tricked by |
| 10380 | * malicious DIF -- but it works for all compiler-generated DIF. Because this |
| 10381 | * calculation is likely imperfect, dtrace_dynvar() is able to gracefully fail |
| 10382 | * if a dynamic variable size exceeds the chunksize. |
| 10383 | */ |
| 10384 | static void |
| 10385 | dtrace_difo_chunksize(dtrace_difo_t *dp, dtrace_vstate_t *vstate) |
| 10386 | { |
| 10387 | uint64_t sval = 0; |
| 10388 | dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */ |
| 10389 | const dif_instr_t *text = dp->dtdo_buf; |
| 10390 | uint_t pc, srd = 0; |
| 10391 | uint_t ttop = 0; |
| 10392 | size_t size, ksize; |
| 10393 | uint_t id, i; |
| 10394 | |
| 10395 | for (pc = 0; pc < dp->dtdo_len; pc++) { |
| 10396 | dif_instr_t instr = text[pc]; |
| 10397 | uint_t op = DIF_INSTR_OP(instr); |
| 10398 | uint_t rd = DIF_INSTR_RD(instr); |
| 10399 | uint_t r1 = DIF_INSTR_R1(instr); |
| 10400 | uint_t nkeys = 0; |
| 10401 | uchar_t scope; |
| 10402 | |
| 10403 | dtrace_key_t *key = tupregs; |
| 10404 | |
| 10405 | switch (op) { |
| 10406 | case DIF_OP_SETX: |
| 10407 | sval = dp->dtdo_inttab[DIF_INSTR_INTEGER(instr)]; |
| 10408 | srd = rd; |
| 10409 | continue; |
| 10410 | |
| 10411 | case DIF_OP_STTS: |
| 10412 | key = &tupregs[DIF_DTR_NREGS]; |
| 10413 | key[0].dttk_size = 0; |
| 10414 | key[1].dttk_size = 0; |
| 10415 | nkeys = 2; |
| 10416 | scope = DIFV_SCOPE_THREAD; |
| 10417 | break; |
| 10418 | |
| 10419 | case DIF_OP_STGAA: |
| 10420 | case DIF_OP_STTAA: |
| 10421 | nkeys = ttop; |
| 10422 | |
| 10423 | if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) |
| 10424 | key[nkeys++].dttk_size = 0; |
| 10425 | |
| 10426 | key[nkeys++].dttk_size = 0; |
| 10427 | |
| 10428 | if (op == DIF_OP_STTAA) { |
| 10429 | scope = DIFV_SCOPE_THREAD; |
| 10430 | } else { |
| 10431 | scope = DIFV_SCOPE_GLOBAL; |
| 10432 | } |
| 10433 | |
| 10434 | break; |
| 10435 | |
| 10436 | case DIF_OP_PUSHTR: |
| 10437 | if (ttop == DIF_DTR_NREGS) |
| 10438 | return; |
| 10439 | |
| 10440 | if ((srd == 0 || sval == 0) && r1 == DIF_TYPE_STRING) { |
| 10441 | /* |
| 10442 | * If the register for the size of the "pushtr" |
| 10443 | * is %r0 (or the value is 0) and the type is |
| 10444 | * a string, we'll use the system-wide default |
| 10445 | * string size. |
| 10446 | */ |
| 10447 | tupregs[ttop++].dttk_size = |
| 10448 | dtrace_strsize_default; |
| 10449 | } else { |
| 10450 | if (srd == 0) |
| 10451 | return; |
| 10452 | |
| 10453 | if (sval > LONG_MAX) |
| 10454 | return; |
| 10455 | |
| 10456 | tupregs[ttop++].dttk_size = sval; |
| 10457 | } |
| 10458 | |
| 10459 | break; |
| 10460 | |
| 10461 | case DIF_OP_PUSHTV: |
| 10462 | if (ttop == DIF_DTR_NREGS) |
| 10463 | return; |
| 10464 | |
| 10465 | tupregs[ttop++].dttk_size = 0; |
| 10466 | break; |
| 10467 | |
| 10468 | case DIF_OP_FLUSHTS: |
| 10469 | ttop = 0; |
| 10470 | break; |
| 10471 | |
| 10472 | case DIF_OP_POPTS: |
| 10473 | if (ttop != 0) |
| 10474 | ttop--; |
| 10475 | break; |
| 10476 | } |
| 10477 | |
| 10478 | sval = 0; |
| 10479 | srd = 0; |
| 10480 | |
| 10481 | if (nkeys == 0) |
| 10482 | continue; |
| 10483 | |
| 10484 | /* |
| 10485 | * We have a dynamic variable allocation; calculate its size. |
| 10486 | */ |
| 10487 | for (ksize = 0, i = 0; i < nkeys; i++) |
| 10488 | ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t)); |
| 10489 | |
| 10490 | size = sizeof (dtrace_dynvar_t); |
| 10491 | size += sizeof (dtrace_key_t) * (nkeys - 1); |
| 10492 | size += ksize; |
| 10493 | |
| 10494 | /* |
| 10495 | * Now we need to determine the size of the stored data. |
| 10496 | */ |
| 10497 | id = DIF_INSTR_VAR(instr); |
| 10498 | |
| 10499 | for (i = 0; i < dp->dtdo_varlen; i++) { |
| 10500 | dtrace_difv_t *v = &dp->dtdo_vartab[i]; |
| 10501 | |
| 10502 | if (v->dtdv_id == id && v->dtdv_scope == scope) { |
| 10503 | size += v->dtdv_type.dtdt_size; |
| 10504 | break; |
| 10505 | } |
| 10506 | } |
| 10507 | |
| 10508 | if (i == dp->dtdo_varlen) |
| 10509 | return; |
| 10510 | |
| 10511 | /* |
| 10512 | * We have the size. If this is larger than the chunk size |
| 10513 | * for our dynamic variable state, reset the chunk size. |
| 10514 | */ |
| 10515 | size = P2ROUNDUP(size, sizeof (uint64_t)); |
| 10516 | |
| 10517 | /* |
| 10518 | * Before setting the chunk size, check that we're not going |
| 10519 | * to set it to a negative value... |
| 10520 | */ |
| 10521 | if (size > LONG_MAX) |
| 10522 | return; |
| 10523 | |
| 10524 | /* |
| 10525 | * ...and make certain that we didn't badly overflow. |
| 10526 | */ |
| 10527 | if (size < ksize || size < sizeof (dtrace_dynvar_t)) |
| 10528 | return; |
| 10529 | |
| 10530 | if (size > vstate->dtvs_dynvars.dtds_chunksize) |
| 10531 | vstate->dtvs_dynvars.dtds_chunksize = size; |
| 10532 | } |
| 10533 | } |
| 10534 | |
| 10535 | static void |
| 10536 | dtrace_difo_init(dtrace_difo_t *dp, dtrace_vstate_t *vstate) |
| 10537 | { |
| 10538 | int oldsvars, osz, nsz, otlocals, ntlocals; |
| 10539 | uint_t i, id; |
| 10540 | |
| 10541 | LCK_MTX_ASSERT(&dtrace_lock, LCK_MTX_ASSERT_OWNED); |
| 10542 | ASSERT(dp->dtdo_buf != NULL && dp->dtdo_len != 0); |
| 10543 | |
| 10544 | for (i = 0; i < dp->dtdo_varlen; i++) { |
| 10545 | dtrace_difv_t *v = &dp->dtdo_vartab[i]; |
| 10546 | dtrace_statvar_t *svar; |
| 10547 | dtrace_statvar_t ***svarp = NULL; |
| 10548 | size_t dsize = 0; |
| 10549 | uint8_t scope = v->dtdv_scope; |
| 10550 | int *np = (int *)NULL; |
| 10551 | |
| 10552 | if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE) |
| 10553 | continue; |
| 10554 | |
| 10555 | id -= DIF_VAR_OTHER_UBASE; |
| 10556 | |
| 10557 | switch (scope) { |
| 10558 | case DIFV_SCOPE_THREAD: |
| 10559 | while (id >= (uint_t)(otlocals = vstate->dtvs_ntlocals)) { |
| 10560 | dtrace_difv_t *tlocals; |
| 10561 | |
| 10562 | if ((ntlocals = (otlocals << 1)) == 0) |
| 10563 | ntlocals = 1; |
| 10564 | |
| 10565 | osz = otlocals * sizeof (dtrace_difv_t); |
| 10566 | nsz = ntlocals * sizeof (dtrace_difv_t); |
| 10567 | |
| 10568 | tlocals = kmem_zalloc(nsz, KM_SLEEP); |
| 10569 | |
| 10570 | if (osz != 0) { |
| 10571 | bcopy(src: vstate->dtvs_tlocals, |
| 10572 | dst: tlocals, n: osz); |
| 10573 | kmem_free(vstate->dtvs_tlocals, osz); |
| 10574 | } |
| 10575 | |
| 10576 | vstate->dtvs_tlocals = tlocals; |
| 10577 | vstate->dtvs_ntlocals = ntlocals; |
| 10578 | } |
| 10579 | |
| 10580 | vstate->dtvs_tlocals[id] = *v; |
| 10581 | continue; |
| 10582 | |
| 10583 | case DIFV_SCOPE_LOCAL: |
| 10584 | np = &vstate->dtvs_nlocals; |
| 10585 | svarp = &vstate->dtvs_locals; |
| 10586 | |
| 10587 | if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) |
| 10588 | dsize = (int)NCPU * (v->dtdv_type.dtdt_size + |
| 10589 | sizeof (uint64_t)); |
| 10590 | else |
| 10591 | dsize = (int)NCPU * sizeof (uint64_t); |
| 10592 | |
| 10593 | break; |
| 10594 | |
| 10595 | case DIFV_SCOPE_GLOBAL: |
| 10596 | np = &vstate->dtvs_nglobals; |
| 10597 | svarp = &vstate->dtvs_globals; |
| 10598 | |
| 10599 | if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) |
| 10600 | dsize = v->dtdv_type.dtdt_size + |
| 10601 | sizeof (uint64_t); |
| 10602 | |
| 10603 | break; |
| 10604 | |
| 10605 | default: |
| 10606 | ASSERT(0); |
| 10607 | } |
| 10608 | |
| 10609 | while (id >= (uint_t)(oldsvars = *np)) { |
| 10610 | dtrace_statvar_t **statics; |
| 10611 | int newsvars, oldsize, newsize; |
| 10612 | |
| 10613 | if ((newsvars = (oldsvars << 1)) == 0) |
| 10614 | newsvars = 1; |
| 10615 | |
| 10616 | oldsize = oldsvars * sizeof (dtrace_statvar_t *); |
| 10617 | newsize = newsvars * sizeof (dtrace_statvar_t *); |
| 10618 | |
| 10619 | statics = kmem_zalloc(newsize, KM_SLEEP); |
| 10620 | |
| 10621 | if (oldsize != 0) { |
| 10622 | bcopy(src: *svarp, dst: statics, n: oldsize); |
| 10623 | kmem_free(*svarp, oldsize); |
| 10624 | } |
| 10625 | |
| 10626 | *svarp = statics; |
| 10627 | *np = newsvars; |
| 10628 | } |
| 10629 | |
| 10630 | if ((svar = (*svarp)[id]) == NULL) { |
| 10631 | svar = kmem_zalloc(sizeof (dtrace_statvar_t), KM_SLEEP); |
| 10632 | svar->dtsv_var = *v; |
| 10633 | |
| 10634 | if ((svar->dtsv_size = dsize) != 0) { |
| 10635 | svar->dtsv_data = (uint64_t)(uintptr_t) |
| 10636 | kmem_zalloc(dsize, KM_SLEEP); |
| 10637 | } |
| 10638 | |
| 10639 | (*svarp)[id] = svar; |
| 10640 | } |
| 10641 | |
| 10642 | svar->dtsv_refcnt++; |
| 10643 | } |
| 10644 | |
| 10645 | dtrace_difo_chunksize(dp, vstate); |
| 10646 | dtrace_difo_hold(dp); |
| 10647 | } |
| 10648 | |
| 10649 | static dtrace_difo_t * |
| 10650 | dtrace_difo_duplicate(dtrace_difo_t *dp, dtrace_vstate_t *vstate) |
| 10651 | { |
| 10652 | dtrace_difo_t *new; |
| 10653 | size_t sz; |
| 10654 | |
| 10655 | ASSERT(dp->dtdo_buf != NULL); |
| 10656 | ASSERT(dp->dtdo_refcnt != 0); |
| 10657 | |
| 10658 | new = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP); |
| 10659 | |
| 10660 | ASSERT(dp->dtdo_buf != NULL); |
| 10661 | sz = dp->dtdo_len * sizeof (dif_instr_t); |
| 10662 | new->dtdo_buf = kmem_alloc(sz, KM_SLEEP); |
| 10663 | bcopy(src: dp->dtdo_buf, dst: new->dtdo_buf, n: sz); |
| 10664 | new->dtdo_len = dp->dtdo_len; |
| 10665 | |
| 10666 | if (dp->dtdo_strtab != NULL) { |
| 10667 | ASSERT(dp->dtdo_strlen != 0); |
| 10668 | new->dtdo_strtab = kmem_alloc(dp->dtdo_strlen, KM_SLEEP); |
| 10669 | bcopy(src: dp->dtdo_strtab, dst: new->dtdo_strtab, n: dp->dtdo_strlen); |
| 10670 | new->dtdo_strlen = dp->dtdo_strlen; |
| 10671 | } |
| 10672 | |
| 10673 | if (dp->dtdo_inttab != NULL) { |
| 10674 | ASSERT(dp->dtdo_intlen != 0); |
| 10675 | sz = dp->dtdo_intlen * sizeof (uint64_t); |
| 10676 | new->dtdo_inttab = kmem_alloc(sz, KM_SLEEP); |
| 10677 | bcopy(src: dp->dtdo_inttab, dst: new->dtdo_inttab, n: sz); |
| 10678 | new->dtdo_intlen = dp->dtdo_intlen; |
| 10679 | } |
| 10680 | |
| 10681 | if (dp->dtdo_vartab != NULL) { |
| 10682 | ASSERT(dp->dtdo_varlen != 0); |
| 10683 | sz = dp->dtdo_varlen * sizeof (dtrace_difv_t); |
| 10684 | new->dtdo_vartab = kmem_alloc(sz, KM_SLEEP); |
| 10685 | bcopy(src: dp->dtdo_vartab, dst: new->dtdo_vartab, n: sz); |
| 10686 | new->dtdo_varlen = dp->dtdo_varlen; |
| 10687 | } |
| 10688 | |
| 10689 | dtrace_difo_init(dp: new, vstate); |
| 10690 | return (new); |
| 10691 | } |
| 10692 | |
| 10693 | static void |
| 10694 | dtrace_difo_destroy(dtrace_difo_t *dp, dtrace_vstate_t *vstate) |
| 10695 | { |
| 10696 | uint_t i; |
| 10697 | |
| 10698 | ASSERT(dp->dtdo_refcnt == 0); |
| 10699 | |
| 10700 | for (i = 0; i < dp->dtdo_varlen; i++) { |
| 10701 | dtrace_difv_t *v = &dp->dtdo_vartab[i]; |
| 10702 | dtrace_statvar_t *svar; |
| 10703 | dtrace_statvar_t **svarp = NULL; |
| 10704 | uint_t id; |
| 10705 | uint8_t scope = v->dtdv_scope; |
| 10706 | int *np = NULL; |
| 10707 | |
| 10708 | switch (scope) { |
| 10709 | case DIFV_SCOPE_THREAD: |
| 10710 | continue; |
| 10711 | |
| 10712 | case DIFV_SCOPE_LOCAL: |
| 10713 | np = &vstate->dtvs_nlocals; |
| 10714 | svarp = vstate->dtvs_locals; |
| 10715 | break; |
| 10716 | |
| 10717 | case DIFV_SCOPE_GLOBAL: |
| 10718 | np = &vstate->dtvs_nglobals; |
| 10719 | svarp = vstate->dtvs_globals; |
| 10720 | break; |
| 10721 | |
| 10722 | default: |
| 10723 | ASSERT(0); |
| 10724 | } |
| 10725 | |
| 10726 | if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE) |
| 10727 | continue; |
| 10728 | |
| 10729 | id -= DIF_VAR_OTHER_UBASE; |
| 10730 | |
| 10731 | ASSERT(id < (uint_t)*np); |
| 10732 | |
| 10733 | svar = svarp[id]; |
| 10734 | ASSERT(svar != NULL); |
| 10735 | ASSERT(svar->dtsv_refcnt > 0); |
| 10736 | |
| 10737 | if (--svar->dtsv_refcnt > 0) |
| 10738 | continue; |
| 10739 | |
| 10740 | if (svar->dtsv_size != 0) { |
| 10741 | ASSERT(svar->dtsv_data != 0); |
| 10742 | kmem_free((void *)(uintptr_t)svar->dtsv_data, |
| 10743 | svar->dtsv_size); |
| 10744 | } |
| 10745 | |
| 10746 | kmem_free(svar, sizeof (dtrace_statvar_t)); |
| 10747 | svarp[id] = NULL; |
| 10748 | } |
| 10749 | |
| 10750 | kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t)); |
| 10751 | kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t)); |
| 10752 | kmem_free(dp->dtdo_strtab, dp->dtdo_strlen); |
| 10753 | kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t)); |
| 10754 | |
| 10755 | kmem_free(dp, sizeof (dtrace_difo_t)); |
| 10756 | } |
| 10757 | |
| 10758 | static void |
| 10759 | dtrace_difo_release(dtrace_difo_t *dp, dtrace_vstate_t *vstate) |
| 10760 | { |
| 10761 | uint_t i; |
| 10762 | |
| 10763 | LCK_MTX_ASSERT(&dtrace_lock, LCK_MTX_ASSERT_OWNED); |
| 10764 | ASSERT(dp->dtdo_refcnt != 0); |
| 10765 | |
| 10766 | for (i = 0; i < dp->dtdo_varlen; i++) { |
| 10767 | dtrace_difv_t *v = &dp->dtdo_vartab[i]; |
| 10768 | |
| 10769 | if (v->dtdv_id != DIF_VAR_VTIMESTAMP) |
| 10770 | continue; |
| 10771 | |
| 10772 | ASSERT(dtrace_vtime_references > 0); |
| 10773 | if (--dtrace_vtime_references == 0) |
| 10774 | dtrace_vtime_disable(); |
| 10775 | } |
| 10776 | |
| 10777 | if (--dp->dtdo_refcnt == 0) |
| 10778 | dtrace_difo_destroy(dp, vstate); |
| 10779 | } |
| 10780 | |
| 10781 | /* |
| 10782 | * DTrace Format Functions |
| 10783 | */ |
| 10784 | |
| 10785 | static dtrace_format_t* |
| 10786 | dtrace_format_new(char *str) |
| 10787 | { |
| 10788 | dtrace_format_t *fmt = NULL; |
| 10789 | size_t bufsize = strlen(s: str) + 1; |
| 10790 | |
| 10791 | fmt = kmem_zalloc(sizeof(*fmt) + bufsize, KM_SLEEP); |
| 10792 | |
| 10793 | fmt->dtf_refcount = 1; |
| 10794 | (void) strlcpy(dst: fmt->dtf_str, src: str, n: bufsize); |
| 10795 | |
| 10796 | return fmt; |
| 10797 | } |
| 10798 | |
| 10799 | static uint16_t |
| 10800 | dtrace_format_add(dtrace_state_t *state, char *str) |
| 10801 | { |
| 10802 | dtrace_format_t **new; |
| 10803 | uint16_t ndx; |
| 10804 | |
| 10805 | for (ndx = 0; ndx < state->dts_nformats; ndx++) { |
| 10806 | if (state->dts_formats[ndx] == NULL) { |
| 10807 | state->dts_formats[ndx] = dtrace_format_new(str); |
| 10808 | return (ndx + 1); |
| 10809 | } |
| 10810 | else if (strcmp(s1: state->dts_formats[ndx]->dtf_str, s2: str) == 0) { |
| 10811 | VERIFY(state->dts_formats[ndx]->dtf_refcount < UINT64_MAX); |
| 10812 | state->dts_formats[ndx]->dtf_refcount++; |
| 10813 | return (ndx + 1); |
| 10814 | } |
| 10815 | } |
| 10816 | |
| 10817 | if (state->dts_nformats == USHRT_MAX) { |
| 10818 | /* |
| 10819 | * This is only likely if a denial-of-service attack is being |
| 10820 | * attempted. As such, it's okay to fail silently here. |
| 10821 | */ |
| 10822 | return (0); |
| 10823 | } |
| 10824 | |
| 10825 | /* |
| 10826 | * For simplicity, we always resize the formats array to be exactly the |
| 10827 | * number of formats. |
| 10828 | */ |
| 10829 | ndx = state->dts_nformats++; |
| 10830 | new = kmem_alloc((ndx + 1) * sizeof (*state->dts_formats), KM_SLEEP); |
| 10831 | |
| 10832 | if (state->dts_formats != NULL) { |
| 10833 | ASSERT(ndx != 0); |
| 10834 | bcopy(src: state->dts_formats, dst: new, n: ndx * sizeof (*state->dts_formats)); |
| 10835 | kmem_free(state->dts_formats, ndx * sizeof (*state->dts_formats)); |
| 10836 | } |
| 10837 | |
| 10838 | state->dts_formats = new; |
| 10839 | state->dts_formats[ndx] = dtrace_format_new(str); |
| 10840 | |
| 10841 | return (ndx + 1); |
| 10842 | } |
| 10843 | |
| 10844 | static void |
| 10845 | dtrace_format_remove(dtrace_state_t *state, uint16_t format) |
| 10846 | { |
| 10847 | dtrace_format_t *fmt; |
| 10848 | |
| 10849 | ASSERT(state->dts_formats != NULL); |
| 10850 | ASSERT(format <= state->dts_nformats); |
| 10851 | |
| 10852 | fmt = state->dts_formats[format - 1]; |
| 10853 | |
| 10854 | ASSERT(fmt != NULL); |
| 10855 | VERIFY(fmt->dtf_refcount > 0); |
| 10856 | |
| 10857 | fmt->dtf_refcount--; |
| 10858 | |
| 10859 | if (fmt->dtf_refcount == 0) { |
| 10860 | kmem_free(fmt, DTRACE_FORMAT_SIZE(fmt)); |
| 10861 | state->dts_formats[format - 1] = NULL; |
| 10862 | } |
| 10863 | } |
| 10864 | |
| 10865 | static void |
| 10866 | dtrace_format_destroy(dtrace_state_t *state) |
| 10867 | { |
| 10868 | int i; |
| 10869 | |
| 10870 | if (state->dts_nformats == 0) { |
| 10871 | ASSERT(state->dts_formats == NULL); |
| 10872 | return; |
| 10873 | } |
| 10874 | |
| 10875 | ASSERT(state->dts_formats != NULL); |
| 10876 | |
| 10877 | for (i = 0; i < state->dts_nformats; i++) { |
| 10878 | dtrace_format_t *fmt = state->dts_formats[i]; |
| 10879 | |
| 10880 | if (fmt == NULL) |
| 10881 | continue; |
| 10882 | |
| 10883 | kmem_free(fmt, DTRACE_FORMAT_SIZE(fmt)); |
| 10884 | } |
| 10885 | |
| 10886 | kmem_free(state->dts_formats, state->dts_nformats * sizeof (*state->dts_formats)); |
| 10887 | state->dts_nformats = 0; |
| 10888 | state->dts_formats = NULL; |
| 10889 | } |
| 10890 | |
| 10891 | /* |
| 10892 | * DTrace Predicate Functions |
| 10893 | */ |
| 10894 | static dtrace_predicate_t * |
| 10895 | dtrace_predicate_create(dtrace_difo_t *dp) |
| 10896 | { |
| 10897 | dtrace_predicate_t *pred; |
| 10898 | |
| 10899 | LCK_MTX_ASSERT(&dtrace_lock, LCK_MTX_ASSERT_OWNED); |
| 10900 | ASSERT(dp->dtdo_refcnt != 0); |
| 10901 | |
| 10902 | pred = kmem_zalloc(sizeof (dtrace_predicate_t), KM_SLEEP); |
| 10903 | pred->dtp_difo = dp; |
| 10904 | pred->dtp_refcnt = 1; |
| 10905 | |
| 10906 | if (!dtrace_difo_cacheable(dp)) |
| 10907 | return (pred); |
| 10908 | |
| 10909 | if (dtrace_predcache_id == DTRACE_CACHEIDNONE) { |
| 10910 | /* |
| 10911 | * This is only theoretically possible -- we have had 2^32 |
| 10912 | * cacheable predicates on this machine. We cannot allow any |
| 10913 | * more predicates to become cacheable: as unlikely as it is, |
| 10914 | * there may be a thread caching a (now stale) predicate cache |
| 10915 | * ID. (N.B.: the temptation is being successfully resisted to |
| 10916 | * have this cmn_err() "Holy shit -- we executed this code!") |
| 10917 | */ |
| 10918 | return (pred); |
| 10919 | } |
| 10920 | |
| 10921 | pred->dtp_cacheid = dtrace_predcache_id++; |
| 10922 | |
| 10923 | return (pred); |
| 10924 | } |
| 10925 | |
| 10926 | static void |
| 10927 | dtrace_predicate_hold(dtrace_predicate_t *pred) |
| 10928 | { |
| 10929 | LCK_MTX_ASSERT(&dtrace_lock, LCK_MTX_ASSERT_OWNED); |
| 10930 | ASSERT(pred->dtp_difo != NULL && pred->dtp_difo->dtdo_refcnt != 0); |
| 10931 | ASSERT(pred->dtp_refcnt > 0); |
| 10932 | |
| 10933 | pred->dtp_refcnt++; |
| 10934 | } |
| 10935 | |
| 10936 | static void |
| 10937 | dtrace_predicate_release(dtrace_predicate_t *pred, dtrace_vstate_t *vstate) |
| 10938 | { |
| 10939 | dtrace_difo_t *dp = pred->dtp_difo; |
| 10940 | #pragma unused(dp) /* __APPLE__ */ |
| 10941 | |
| 10942 | LCK_MTX_ASSERT(&dtrace_lock, LCK_MTX_ASSERT_OWNED); |
| 10943 | ASSERT(dp != NULL && dp->dtdo_refcnt != 0); |
| 10944 | ASSERT(pred->dtp_refcnt > 0); |
| 10945 | |
| 10946 | if (--pred->dtp_refcnt == 0) { |
| 10947 | dtrace_difo_release(dp: pred->dtp_difo, vstate); |
| 10948 | kmem_free(pred, sizeof (dtrace_predicate_t)); |
| 10949 | } |
| 10950 | } |
| 10951 | |
| 10952 | /* |
| 10953 | * DTrace Action Description Functions |
| 10954 | */ |
| 10955 | static dtrace_actdesc_t * |
| 10956 | dtrace_actdesc_create(dtrace_actkind_t kind, uint32_t ntuple, |
| 10957 | uint64_t uarg, uint64_t arg) |
| 10958 | { |
| 10959 | dtrace_actdesc_t *act; |
| 10960 | |
| 10961 | ASSERT(!DTRACEACT_ISPRINTFLIKE(kind) || (arg != 0 && |
| 10962 | arg >= KERNELBASE) || (arg == 0 && kind == DTRACEACT_PRINTA)); |
| 10963 | |
| 10964 | act = kmem_zalloc(sizeof (dtrace_actdesc_t), KM_SLEEP); |
| 10965 | act->dtad_kind = kind; |
| 10966 | act->dtad_ntuple = ntuple; |
| 10967 | act->dtad_uarg = uarg; |
| 10968 | act->dtad_arg = arg; |
| 10969 | act->dtad_refcnt = 1; |
| 10970 | |
| 10971 | return (act); |
| 10972 | } |
| 10973 | |
| 10974 | static void |
| 10975 | dtrace_actdesc_hold(dtrace_actdesc_t *act) |
| 10976 | { |
| 10977 | ASSERT(act->dtad_refcnt >= 1); |
| 10978 | act->dtad_refcnt++; |
| 10979 | } |
| 10980 | |
| 10981 | static void |
| 10982 | dtrace_actdesc_release(dtrace_actdesc_t *act, dtrace_vstate_t *vstate) |
| 10983 | { |
| 10984 | dtrace_actkind_t kind = act->dtad_kind; |
| 10985 | dtrace_difo_t *dp; |
| 10986 | |
| 10987 | ASSERT(act->dtad_refcnt >= 1); |
| 10988 | |
| 10989 | if (--act->dtad_refcnt != 0) |
| 10990 | return; |
| 10991 | |
| 10992 | if ((dp = act->dtad_difo) != NULL) |
| 10993 | dtrace_difo_release(dp, vstate); |
| 10994 | |
| 10995 | if (DTRACEACT_ISPRINTFLIKE(kind)) { |
| 10996 | char *str = (char *)(uintptr_t)act->dtad_arg; |
| 10997 | |
| 10998 | ASSERT((str != NULL && (uintptr_t)str >= KERNELBASE) || |
| 10999 | (str == NULL && act->dtad_kind == DTRACEACT_PRINTA)); |
| 11000 | |
| 11001 | if (str != NULL) |
| 11002 | kmem_free(str, strlen(s: str) + 1); |
| 11003 | } |
| 11004 | |
| 11005 | kmem_free(act, sizeof (dtrace_actdesc_t)); |
| 11006 | } |
| 11007 | |
| 11008 | /* |
| 11009 | * DTrace ECB Functions |
| 11010 | */ |
| 11011 | static dtrace_ecb_t * |
| 11012 | dtrace_ecb_add(dtrace_state_t *state, dtrace_probe_t *probe) |
| 11013 | { |
| 11014 | dtrace_ecb_t *ecb; |
| 11015 | dtrace_epid_t epid; |
| 11016 | |
| 11017 | LCK_MTX_ASSERT(&dtrace_lock, LCK_MTX_ASSERT_OWNED); |
| 11018 | |
| 11019 | ecb = kmem_zalloc(sizeof (dtrace_ecb_t), KM_SLEEP); |
| 11020 | ecb->dte_predicate = NULL; |
| 11021 | ecb->dte_probe = probe; |
| 11022 | |
| 11023 | /* |
| 11024 | * The default size is the size of the default action: recording |
| 11025 | * the header. |
| 11026 | */ |
| 11027 | ecb->dte_size = ecb->dte_needed = sizeof (dtrace_rechdr_t); |
| 11028 | ecb->dte_alignment = sizeof (dtrace_epid_t); |
| 11029 | |
| 11030 | epid = state->dts_epid++; |
| 11031 | |
| 11032 | if (epid - 1 >= (dtrace_epid_t)state->dts_necbs) { |
| 11033 | dtrace_ecb_t **oecbs = state->dts_ecbs, **ecbs; |
| 11034 | int necbs = state->dts_necbs << 1; |
| 11035 | |
| 11036 | ASSERT(epid == (dtrace_epid_t)state->dts_necbs + 1); |
| 11037 | |
| 11038 | if (necbs == 0) { |
| 11039 | ASSERT(oecbs == NULL); |
| 11040 | necbs = 1; |
| 11041 | } |
| 11042 | |
| 11043 | ecbs = kmem_zalloc(necbs * sizeof (*ecbs), KM_SLEEP); |
| 11044 | |
| 11045 | if (oecbs != NULL) |
| 11046 | bcopy(src: oecbs, dst: ecbs, n: state->dts_necbs * sizeof (*ecbs)); |
| 11047 | |
| 11048 | dtrace_membar_producer(); |
| 11049 | state->dts_ecbs = ecbs; |
| 11050 | |
| 11051 | if (oecbs != NULL) { |
| 11052 | /* |
| 11053 | * If this state is active, we must dtrace_sync() |
| 11054 | * before we can free the old dts_ecbs array: we're |
| 11055 | * coming in hot, and there may be active ring |
| 11056 | * buffer processing (which indexes into the dts_ecbs |
| 11057 | * array) on another CPU. |
| 11058 | */ |
| 11059 | if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) |
| 11060 | dtrace_sync(); |
| 11061 | |
| 11062 | kmem_free(oecbs, state->dts_necbs * sizeof (*ecbs)); |
| 11063 | } |
| 11064 | |
| 11065 | dtrace_membar_producer(); |
| 11066 | state->dts_necbs = necbs; |
| 11067 | } |
| 11068 | |
| 11069 | ecb->dte_state = state; |
| 11070 | |
| 11071 | ASSERT(state->dts_ecbs[epid - 1] == NULL); |
| 11072 | dtrace_membar_producer(); |
| 11073 | state->dts_ecbs[(ecb->dte_epid = epid) - 1] = ecb; |
| 11074 | |
| 11075 | return (ecb); |
| 11076 | } |
| 11077 | |
| 11078 | static int |
| 11079 | dtrace_ecb_enable(dtrace_ecb_t *ecb) |
| 11080 | { |
| 11081 | dtrace_probe_t *probe = ecb->dte_probe; |
| 11082 | |
| 11083 | LCK_MTX_ASSERT(&cpu_lock, LCK_MTX_ASSERT_OWNED); |
| 11084 | LCK_MTX_ASSERT(&dtrace_lock, LCK_MTX_ASSERT_OWNED); |
| 11085 | ASSERT(ecb->dte_next == NULL); |
| 11086 | |
| 11087 | if (probe == NULL) { |
| 11088 | /* |
| 11089 | * This is the NULL probe -- there's nothing to do. |
| 11090 | */ |
| 11091 | return(0); |
| 11092 | } |
| 11093 | |
| 11094 | probe->dtpr_provider->dtpv_ecb_count++; |
| 11095 | if (probe->dtpr_ecb == NULL) { |
| 11096 | dtrace_provider_t *prov = probe->dtpr_provider; |
| 11097 | |
| 11098 | /* |
| 11099 | * We're the first ECB on this probe. |
| 11100 | */ |
| 11101 | probe->dtpr_ecb = probe->dtpr_ecb_last = ecb; |
| 11102 | |
| 11103 | if (ecb->dte_predicate != NULL) |
| 11104 | probe->dtpr_predcache = ecb->dte_predicate->dtp_cacheid; |
| 11105 | |
| 11106 | return (prov->dtpv_pops.dtps_enable(prov->dtpv_arg, |
| 11107 | probe->dtpr_id, probe->dtpr_arg)); |
| 11108 | } else { |
| 11109 | /* |
| 11110 | * This probe is already active. Swing the last pointer to |
| 11111 | * point to the new ECB, and issue a dtrace_sync() to assure |
| 11112 | * that all CPUs have seen the change. |
| 11113 | */ |
| 11114 | ASSERT(probe->dtpr_ecb_last != NULL); |
| 11115 | probe->dtpr_ecb_last->dte_next = ecb; |
| 11116 | probe->dtpr_ecb_last = ecb; |
| 11117 | probe->dtpr_predcache = 0; |
| 11118 | |
| 11119 | dtrace_sync(); |
| 11120 | return(0); |
| 11121 | } |
| 11122 | } |
| 11123 | |
| 11124 | static int |
| 11125 | dtrace_ecb_resize(dtrace_ecb_t *ecb) |
| 11126 | { |
| 11127 | dtrace_action_t *act; |
| 11128 | uint32_t curneeded = UINT32_MAX; |
| 11129 | uint32_t aggbase = UINT32_MAX; |
| 11130 | |
| 11131 | /* |
| 11132 | * If we record anything, we always record the dtrace_rechdr_t. (And |
| 11133 | * we always record it first.) |
| 11134 | */ |
| 11135 | ecb->dte_size = sizeof (dtrace_rechdr_t); |
| 11136 | ecb->dte_alignment = sizeof (dtrace_epid_t); |
| 11137 | |
| 11138 | for (act = ecb->dte_action; act != NULL; act = act->dta_next) { |
| 11139 | dtrace_recdesc_t *rec = &act->dta_rec; |
| 11140 | ASSERT(rec->dtrd_size > 0 || rec->dtrd_alignment == 1); |
| 11141 | |
| 11142 | ecb->dte_alignment = MAX(ecb->dte_alignment, rec->dtrd_alignment); |
| 11143 | |
| 11144 | if (DTRACEACT_ISAGG(act->dta_kind)) { |
| 11145 | dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act; |
| 11146 | |
| 11147 | ASSERT(rec->dtrd_size != 0); |
| 11148 | ASSERT(agg->dtag_first != NULL); |
| 11149 | ASSERT(act->dta_prev->dta_intuple); |
| 11150 | ASSERT(aggbase != UINT32_MAX); |
| 11151 | ASSERT(curneeded != UINT32_MAX); |
| 11152 | |
| 11153 | agg->dtag_base = aggbase; |
| 11154 | curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment); |
| 11155 | rec->dtrd_offset = curneeded; |
| 11156 | if (curneeded + rec->dtrd_size < curneeded) |
| 11157 | return (EINVAL); |
| 11158 | curneeded += rec->dtrd_size; |
| 11159 | ecb->dte_needed = MAX(ecb->dte_needed, curneeded); |
| 11160 | |
| 11161 | aggbase = UINT32_MAX; |
| 11162 | curneeded = UINT32_MAX; |
| 11163 | } else if (act->dta_intuple) { |
| 11164 | if (curneeded == UINT32_MAX) { |
| 11165 | /* |
| 11166 | * This is the first record in a tuple. Align |
| 11167 | * curneeded to be at offset 4 in an 8-byte |
| 11168 | * aligned block. |
| 11169 | */ |
| 11170 | ASSERT(act->dta_prev == NULL || !act->dta_prev->dta_intuple); |
| 11171 | ASSERT(aggbase == UINT32_MAX); |
| 11172 | |
| 11173 | curneeded = P2PHASEUP(ecb->dte_size, |
| 11174 | sizeof (uint64_t), sizeof (dtrace_aggid_t)); |
| 11175 | |
| 11176 | aggbase = curneeded - sizeof (dtrace_aggid_t); |
| 11177 | ASSERT(IS_P2ALIGNED(aggbase, |
| 11178 | sizeof (uint64_t))); |
| 11179 | } |
| 11180 | |
| 11181 | curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment); |
| 11182 | rec->dtrd_offset = curneeded; |
| 11183 | curneeded += rec->dtrd_size; |
| 11184 | if (curneeded + rec->dtrd_size < curneeded) |
| 11185 | return (EINVAL); |
| 11186 | } else { |
| 11187 | /* tuples must be followed by an aggregation */ |
| 11188 | ASSERT(act->dta_prev == NULL || !act->dta_prev->dta_intuple); |
| 11189 | ecb->dte_size = P2ROUNDUP(ecb->dte_size, rec->dtrd_alignment); |
| 11190 | rec->dtrd_offset = ecb->dte_size; |
| 11191 | if (ecb->dte_size + rec->dtrd_size < ecb->dte_size) |
| 11192 | return (EINVAL); |
| 11193 | ecb->dte_size += rec->dtrd_size; |
| 11194 | ecb->dte_needed = MAX(ecb->dte_needed, ecb->dte_size); |
| 11195 | } |
| 11196 | } |
| 11197 | |
| 11198 | if ((act = ecb->dte_action) != NULL && |
| 11199 | !(act->dta_kind == DTRACEACT_SPECULATE && act->dta_next == NULL) && |
| 11200 | ecb->dte_size == sizeof (dtrace_rechdr_t)) { |
| 11201 | /* |
| 11202 | * If the size is still sizeof (dtrace_rechdr_t), then all |
| 11203 | * actions store no data; set the size to 0. |
| 11204 | */ |
| 11205 | ecb->dte_size = 0; |
| 11206 | } |
| 11207 | |
| 11208 | ecb->dte_size = P2ROUNDUP(ecb->dte_size, sizeof (dtrace_epid_t)); |
| 11209 | ecb->dte_needed = P2ROUNDUP(ecb->dte_needed, (sizeof (dtrace_epid_t))); |
| 11210 | ecb->dte_state->dts_needed = MAX(ecb->dte_state->dts_needed, ecb->dte_needed); |
| 11211 | return (0); |
| 11212 | } |
| 11213 | |
| 11214 | static dtrace_action_t * |
| 11215 | dtrace_ecb_aggregation_create(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc) |
| 11216 | { |
| 11217 | dtrace_aggregation_t *agg; |
| 11218 | size_t size = sizeof (uint64_t); |
| 11219 | int ntuple = desc->dtad_ntuple; |
| 11220 | dtrace_action_t *act; |
| 11221 | dtrace_recdesc_t *frec; |
| 11222 | dtrace_aggid_t aggid; |
| 11223 | dtrace_state_t *state = ecb->dte_state; |
| 11224 | |
| 11225 | agg = kmem_zalloc(sizeof (dtrace_aggregation_t), KM_SLEEP); |
| 11226 | agg->dtag_ecb = ecb; |
| 11227 | |
| 11228 | ASSERT(DTRACEACT_ISAGG(desc->dtad_kind)); |
| 11229 | |
| 11230 | switch (desc->dtad_kind) { |
| 11231 | case DTRACEAGG_MIN: |
| 11232 | agg->dtag_initial = INT64_MAX; |
| 11233 | agg->dtag_aggregate = dtrace_aggregate_min; |
| 11234 | break; |
| 11235 | |
| 11236 | case DTRACEAGG_MAX: |
| 11237 | agg->dtag_initial = INT64_MIN; |
| 11238 | agg->dtag_aggregate = dtrace_aggregate_max; |
| 11239 | break; |
| 11240 | |
| 11241 | case DTRACEAGG_COUNT: |
| 11242 | agg->dtag_aggregate = dtrace_aggregate_count; |
| 11243 | break; |
| 11244 | |
| 11245 | case DTRACEAGG_QUANTIZE: |
| 11246 | agg->dtag_aggregate = dtrace_aggregate_quantize; |
| 11247 | size = (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) * |
| 11248 | sizeof (uint64_t); |
| 11249 | break; |
| 11250 | |
| 11251 | case DTRACEAGG_LQUANTIZE: { |
| 11252 | uint16_t step = DTRACE_LQUANTIZE_STEP(desc->dtad_arg); |
| 11253 | uint16_t levels = DTRACE_LQUANTIZE_LEVELS(desc->dtad_arg); |
| 11254 | |
| 11255 | agg->dtag_initial = desc->dtad_arg; |
| 11256 | agg->dtag_aggregate = dtrace_aggregate_lquantize; |
| 11257 | |
| 11258 | if (step == 0 || levels == 0) |
| 11259 | goto err; |
| 11260 | |
| 11261 | size = levels * sizeof (uint64_t) + 3 * sizeof (uint64_t); |
| 11262 | break; |
| 11263 | } |
| 11264 | |
| 11265 | case DTRACEAGG_LLQUANTIZE: { |
| 11266 | uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(desc->dtad_arg); |
| 11267 | uint16_t low = DTRACE_LLQUANTIZE_LOW(desc->dtad_arg); |
| 11268 | uint16_t high = DTRACE_LLQUANTIZE_HIGH(desc->dtad_arg); |
| 11269 | uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(desc->dtad_arg); |
| 11270 | int64_t v; |
| 11271 | |
| 11272 | agg->dtag_initial = desc->dtad_arg; |
| 11273 | agg->dtag_aggregate = dtrace_aggregate_llquantize; |
| 11274 | |
| 11275 | if (factor < 2 || low >= high || nsteps < factor) |
| 11276 | goto err; |
| 11277 | |
| 11278 | /* |
| 11279 | * Now check that the number of steps evenly divides a power |
| 11280 | * of the factor. (This assures both integer bucket size and |
| 11281 | * linearity within each magnitude.) |
| 11282 | */ |
| 11283 | for (v = factor; v < nsteps; v *= factor) |
| 11284 | continue; |
| 11285 | |
| 11286 | if ((v % nsteps) || (nsteps % factor)) |
| 11287 | goto err; |
| 11288 | |
| 11289 | size = (dtrace_aggregate_llquantize_bucket(factor, low, high, nsteps, INT64_MAX) + 2) * sizeof (uint64_t); |
| 11290 | break; |
| 11291 | } |
| 11292 | |
| 11293 | case DTRACEAGG_AVG: |
| 11294 | agg->dtag_aggregate = dtrace_aggregate_avg; |
| 11295 | size = sizeof (uint64_t) * 2; |
| 11296 | break; |
| 11297 | |
| 11298 | case DTRACEAGG_STDDEV: |
| 11299 | agg->dtag_aggregate = dtrace_aggregate_stddev; |
| 11300 | size = sizeof (uint64_t) * 4; |
| 11301 | break; |
| 11302 | |
| 11303 | case DTRACEAGG_SUM: |
| 11304 | agg->dtag_aggregate = dtrace_aggregate_sum; |
| 11305 | break; |
| 11306 | |
| 11307 | default: |
| 11308 | goto err; |
| 11309 | } |
| 11310 | |
| 11311 | agg->dtag_action.dta_rec.dtrd_size = size; |
| 11312 | |
| 11313 | if (ntuple == 0) |
| 11314 | goto err; |
| 11315 | |
| 11316 | /* |
| 11317 | * We must make sure that we have enough actions for the n-tuple. |
| 11318 | */ |
| 11319 | for (act = ecb->dte_action_last; act != NULL; act = act->dta_prev) { |
| 11320 | if (DTRACEACT_ISAGG(act->dta_kind)) |
| 11321 | break; |
| 11322 | |
| 11323 | if (--ntuple == 0) { |
| 11324 | /* |
| 11325 | * This is the action with which our n-tuple begins. |
| 11326 | */ |
| 11327 | agg->dtag_first = act; |
| 11328 | goto success; |
| 11329 | } |
| 11330 | } |
| 11331 | |
| 11332 | /* |
| 11333 | * This n-tuple is short by ntuple elements. Return failure. |
| 11334 | */ |
| 11335 | ASSERT(ntuple != 0); |
| 11336 | err: |
| 11337 | kmem_free(agg, sizeof (dtrace_aggregation_t)); |
| 11338 | return (NULL); |
| 11339 | |
| 11340 | success: |
| 11341 | /* |
| 11342 | * If the last action in the tuple has a size of zero, it's actually |
| 11343 | * an expression argument for the aggregating action. |
| 11344 | */ |
| 11345 | ASSERT(ecb->dte_action_last != NULL); |
| 11346 | act = ecb->dte_action_last; |
| 11347 | |
| 11348 | if (act->dta_kind == DTRACEACT_DIFEXPR) { |
| 11349 | ASSERT(act->dta_difo != NULL); |
| 11350 | |
| 11351 | if (act->dta_difo->dtdo_rtype.dtdt_size == 0) |
| 11352 | agg->dtag_hasarg = 1; |
| 11353 | } |
| 11354 | |
| 11355 | /* |
| 11356 | * We need to allocate an id for this aggregation. |
| 11357 | */ |
| 11358 | aggid = (dtrace_aggid_t)(uintptr_t)vmem_alloc(state->dts_aggid_arena, 1, |
| 11359 | VM_BESTFIT | VM_SLEEP); |
| 11360 | |
| 11361 | if (aggid - 1 >= (dtrace_aggid_t)state->dts_naggregations) { |
| 11362 | dtrace_aggregation_t **oaggs = state->dts_aggregations; |
| 11363 | dtrace_aggregation_t **aggs; |
| 11364 | int naggs = state->dts_naggregations << 1; |
| 11365 | int onaggs = state->dts_naggregations; |
| 11366 | |
| 11367 | ASSERT(aggid == (dtrace_aggid_t)state->dts_naggregations + 1); |
| 11368 | |
| 11369 | if (naggs == 0) { |
| 11370 | ASSERT(oaggs == NULL); |
| 11371 | naggs = 1; |
| 11372 | } |
| 11373 | |
| 11374 | aggs = kmem_zalloc(naggs * sizeof (*aggs), KM_SLEEP); |
| 11375 | |
| 11376 | if (oaggs != NULL) { |
| 11377 | bcopy(src: oaggs, dst: aggs, n: onaggs * sizeof (*aggs)); |
| 11378 | kmem_free(oaggs, onaggs * sizeof (*aggs)); |
| 11379 | } |
| 11380 | |
| 11381 | state->dts_aggregations = aggs; |
| 11382 | state->dts_naggregations = naggs; |
| 11383 | } |
| 11384 | |
| 11385 | ASSERT(state->dts_aggregations[aggid - 1] == NULL); |
| 11386 | state->dts_aggregations[(agg->dtag_id = aggid) - 1] = agg; |
| 11387 | |
| 11388 | frec = &agg->dtag_first->dta_rec; |
| 11389 | if (frec->dtrd_alignment < sizeof (dtrace_aggid_t)) |
| 11390 | frec->dtrd_alignment = sizeof (dtrace_aggid_t); |
| 11391 | |
| 11392 | for (act = agg->dtag_first; act != NULL; act = act->dta_next) { |
| 11393 | ASSERT(!act->dta_intuple); |
| 11394 | act->dta_intuple = 1; |
| 11395 | } |
| 11396 | |
| 11397 | return (&agg->dtag_action); |
| 11398 | } |
| 11399 | |
| 11400 | static void |
| 11401 | dtrace_ecb_aggregation_destroy(dtrace_ecb_t *ecb, dtrace_action_t *act) |
| 11402 | { |
| 11403 | dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act; |
| 11404 | dtrace_state_t *state = ecb->dte_state; |
| 11405 | dtrace_aggid_t aggid = agg->dtag_id; |
| 11406 | |
| 11407 | ASSERT(DTRACEACT_ISAGG(act->dta_kind)); |
| 11408 | vmem_free(vmp: state->dts_aggid_arena, vaddr: (void *)(uintptr_t)aggid, size: 1); |
| 11409 | |
| 11410 | ASSERT(state->dts_aggregations[aggid - 1] == agg); |
| 11411 | state->dts_aggregations[aggid - 1] = NULL; |
| 11412 | |
| 11413 | kmem_free(agg, sizeof (dtrace_aggregation_t)); |
| 11414 | } |
| 11415 | |
| 11416 | static int |
| 11417 | dtrace_ecb_action_add(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc) |
| 11418 | { |
| 11419 | dtrace_action_t *action, *last; |
| 11420 | dtrace_difo_t *dp = desc->dtad_difo; |
| 11421 | uint32_t size = 0, align = sizeof (uint8_t), mask; |
| 11422 | uint16_t format = 0; |
| 11423 | dtrace_recdesc_t *rec; |
| 11424 | dtrace_state_t *state = ecb->dte_state; |
| 11425 | dtrace_optval_t *opt = state->dts_options; |
| 11426 | dtrace_optval_t nframes=0, strsize; |
| 11427 | uint64_t arg = desc->dtad_arg; |
| 11428 | |
| 11429 | LCK_MTX_ASSERT(&dtrace_lock, LCK_MTX_ASSERT_OWNED); |
| 11430 | ASSERT(ecb->dte_action == NULL || ecb->dte_action->dta_refcnt == 1); |
| 11431 | |
| 11432 | if (DTRACEACT_ISAGG(desc->dtad_kind)) { |
| 11433 | /* |
| 11434 | * If this is an aggregating action, there must be neither |
| 11435 | * a speculate nor a commit on the action chain. |
| 11436 | */ |
| 11437 | dtrace_action_t *act; |
| 11438 | |
| 11439 | for (act = ecb->dte_action; act != NULL; act = act->dta_next) { |
| 11440 | if (act->dta_kind == DTRACEACT_COMMIT) |
| 11441 | return (EINVAL); |
| 11442 | |
| 11443 | if (act->dta_kind == DTRACEACT_SPECULATE) |
| 11444 | return (EINVAL); |
| 11445 | } |
| 11446 | |
| 11447 | action = dtrace_ecb_aggregation_create(ecb, desc); |
| 11448 | |
| 11449 | if (action == NULL) |
| 11450 | return (EINVAL); |
| 11451 | } else { |
| 11452 | if (DTRACEACT_ISDESTRUCTIVE(desc->dtad_kind) || |
| 11453 | (desc->dtad_kind == DTRACEACT_DIFEXPR && |
| 11454 | dp != NULL && dp->dtdo_destructive)) { |
| 11455 | state->dts_destructive = 1; |
| 11456 | } |
| 11457 | |
| 11458 | switch (desc->dtad_kind) { |
| 11459 | case DTRACEACT_PRINTF: |
| 11460 | case DTRACEACT_PRINTA: |
| 11461 | case DTRACEACT_SYSTEM: |
| 11462 | case DTRACEACT_FREOPEN: |
| 11463 | case DTRACEACT_DIFEXPR: |
| 11464 | /* |
| 11465 | * We know that our arg is a string -- turn it into a |
| 11466 | * format. |
| 11467 | */ |
| 11468 | if (arg == 0) { |
| 11469 | ASSERT(desc->dtad_kind == DTRACEACT_PRINTA || |
| 11470 | desc->dtad_kind == DTRACEACT_DIFEXPR); |
| 11471 | format = 0; |
| 11472 | } else { |
| 11473 | ASSERT(arg != 0); |
| 11474 | ASSERT(arg > KERNELBASE); |
| 11475 | format = dtrace_format_add(state, |
| 11476 | str: (char *)(uintptr_t)arg); |
| 11477 | } |
| 11478 | |
| 11479 | OS_FALLTHROUGH; |
| 11480 | case DTRACEACT_LIBACT: |
| 11481 | case DTRACEACT_TRACEMEM: |
| 11482 | case DTRACEACT_TRACEMEM_DYNSIZE: |
| 11483 | case DTRACEACT_APPLEBINARY: /* __APPLE__ */ |
| 11484 | if (dp == NULL) |
| 11485 | return (EINVAL); |
| 11486 | |
| 11487 | if ((size = dp->dtdo_rtype.dtdt_size) != 0) |
| 11488 | break; |
| 11489 | |
| 11490 | if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) { |
| 11491 | if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) |
| 11492 | return (EINVAL); |
| 11493 | |
| 11494 | size = opt[DTRACEOPT_STRSIZE]; |
| 11495 | } |
| 11496 | |
| 11497 | break; |
| 11498 | |
| 11499 | case DTRACEACT_STACK: |
| 11500 | if ((nframes = arg) == 0) { |
| 11501 | nframes = opt[DTRACEOPT_STACKFRAMES]; |
| 11502 | ASSERT(nframes > 0); |
| 11503 | arg = nframes; |
| 11504 | } |
| 11505 | |
| 11506 | size = nframes * sizeof (pc_t); |
| 11507 | break; |
| 11508 | |
| 11509 | case DTRACEACT_JSTACK: |
| 11510 | if ((strsize = DTRACE_USTACK_STRSIZE(arg)) == 0) |
| 11511 | strsize = opt[DTRACEOPT_JSTACKSTRSIZE]; |
| 11512 | |
| 11513 | if ((nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) |
| 11514 | nframes = opt[DTRACEOPT_JSTACKFRAMES]; |
| 11515 | |
| 11516 | arg = DTRACE_USTACK_ARG(nframes, strsize); |
| 11517 | |
| 11518 | OS_FALLTHROUGH; |
| 11519 | case DTRACEACT_USTACK: |
| 11520 | if (desc->dtad_kind != DTRACEACT_JSTACK && |
| 11521 | (nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) { |
| 11522 | strsize = DTRACE_USTACK_STRSIZE(arg); |
| 11523 | nframes = opt[DTRACEOPT_USTACKFRAMES]; |
| 11524 | ASSERT(nframes > 0); |
| 11525 | arg = DTRACE_USTACK_ARG(nframes, strsize); |
| 11526 | } |
| 11527 | |
| 11528 | /* |
| 11529 | * Save a slot for the pid. |
| 11530 | */ |
| 11531 | size = (nframes + 1) * sizeof (uint64_t); |
| 11532 | size += DTRACE_USTACK_STRSIZE(arg); |
| 11533 | size = P2ROUNDUP(size, (uint32_t)(sizeof (uintptr_t))); |
| 11534 | |
| 11535 | break; |
| 11536 | |
| 11537 | case DTRACEACT_SYM: |
| 11538 | case DTRACEACT_MOD: |
| 11539 | if (dp == NULL || ((size = dp->dtdo_rtype.dtdt_size) != |
| 11540 | sizeof (uint64_t)) || |
| 11541 | (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) |
| 11542 | return (EINVAL); |
| 11543 | break; |
| 11544 | |
| 11545 | case DTRACEACT_USYM: |
| 11546 | case DTRACEACT_UMOD: |
| 11547 | case DTRACEACT_UADDR: |
| 11548 | if (dp == NULL || |
| 11549 | (dp->dtdo_rtype.dtdt_size != sizeof (uint64_t)) || |
| 11550 | (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) |
| 11551 | return (EINVAL); |
| 11552 | |
| 11553 | /* |
| 11554 | * We have a slot for the pid, plus a slot for the |
| 11555 | * argument. To keep things simple (aligned with |
| 11556 | * bitness-neutral sizing), we store each as a 64-bit |
| 11557 | * quantity. |
| 11558 | */ |
| 11559 | size = 2 * sizeof (uint64_t); |
| 11560 | break; |
| 11561 | |
| 11562 | case DTRACEACT_STOP: |
| 11563 | case DTRACEACT_BREAKPOINT: |
| 11564 | case DTRACEACT_PANIC: |
| 11565 | break; |
| 11566 | |
| 11567 | case DTRACEACT_CHILL: |
| 11568 | case DTRACEACT_DISCARD: |
| 11569 | case DTRACEACT_RAISE: |
| 11570 | case DTRACEACT_PIDRESUME: /* __APPLE__ */ |
| 11571 | if (dp == NULL) |
| 11572 | return (EINVAL); |
| 11573 | break; |
| 11574 | |
| 11575 | case DTRACEACT_EXIT: |
| 11576 | if (dp == NULL || |
| 11577 | (size = dp->dtdo_rtype.dtdt_size) != sizeof (int) || |
| 11578 | (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) |
| 11579 | return (EINVAL); |
| 11580 | break; |
| 11581 | |
| 11582 | case DTRACEACT_SPECULATE: |
| 11583 | if (ecb->dte_size > sizeof (dtrace_rechdr_t)) |
| 11584 | return (EINVAL); |
| 11585 | |
| 11586 | if (dp == NULL) |
| 11587 | return (EINVAL); |
| 11588 | |
| 11589 | state->dts_speculates = 1; |
| 11590 | break; |
| 11591 | |
| 11592 | case DTRACEACT_COMMIT: { |
| 11593 | dtrace_action_t *act = ecb->dte_action; |
| 11594 | |
| 11595 | for (; act != NULL; act = act->dta_next) { |
| 11596 | if (act->dta_kind == DTRACEACT_COMMIT) |
| 11597 | return (EINVAL); |
| 11598 | } |
| 11599 | |
| 11600 | if (dp == NULL) |
| 11601 | return (EINVAL); |
| 11602 | break; |
| 11603 | } |
| 11604 | |
| 11605 | default: |
| 11606 | return (EINVAL); |
| 11607 | } |
| 11608 | |
| 11609 | if (size != 0 || desc->dtad_kind == DTRACEACT_SPECULATE) { |
| 11610 | /* |
| 11611 | * If this is a data-storing action or a speculate, |
| 11612 | * we must be sure that there isn't a commit on the |
| 11613 | * action chain. |
| 11614 | */ |
| 11615 | dtrace_action_t *act = ecb->dte_action; |
| 11616 | |
| 11617 | for (; act != NULL; act = act->dta_next) { |
| 11618 | if (act->dta_kind == DTRACEACT_COMMIT) |
| 11619 | return (EINVAL); |
| 11620 | } |
| 11621 | } |
| 11622 | |
| 11623 | action = kmem_zalloc(sizeof (dtrace_action_t), KM_SLEEP); |
| 11624 | action->dta_rec.dtrd_size = size; |
| 11625 | } |
| 11626 | |
| 11627 | action->dta_refcnt = 1; |
| 11628 | rec = &action->dta_rec; |
| 11629 | size = rec->dtrd_size; |
| 11630 | |
| 11631 | for (mask = sizeof (uint64_t) - 1; size != 0 && mask > 0; mask >>= 1) { |
| 11632 | if (!(size & mask)) { |
| 11633 | align = mask + 1; |
| 11634 | break; |
| 11635 | } |
| 11636 | } |
| 11637 | |
| 11638 | action->dta_kind = desc->dtad_kind; |
| 11639 | |
| 11640 | if ((action->dta_difo = dp) != NULL) |
| 11641 | dtrace_difo_hold(dp); |
| 11642 | |
| 11643 | rec->dtrd_action = action->dta_kind; |
| 11644 | rec->dtrd_arg = arg; |
| 11645 | rec->dtrd_uarg = desc->dtad_uarg; |
| 11646 | rec->dtrd_alignment = (uint16_t)align; |
| 11647 | rec->dtrd_format = format; |
| 11648 | |
| 11649 | if ((last = ecb->dte_action_last) != NULL) { |
| 11650 | ASSERT(ecb->dte_action != NULL); |
| 11651 | action->dta_prev = last; |
| 11652 | last->dta_next = action; |
| 11653 | } else { |
| 11654 | ASSERT(ecb->dte_action == NULL); |
| 11655 | ecb->dte_action = action; |
| 11656 | } |
| 11657 | |
| 11658 | ecb->dte_action_last = action; |
| 11659 | |
| 11660 | return (0); |
| 11661 | } |
| 11662 | |
| 11663 | static void |
| 11664 | dtrace_ecb_action_remove(dtrace_ecb_t *ecb) |
| 11665 | { |
| 11666 | dtrace_action_t *act = ecb->dte_action, *next; |
| 11667 | dtrace_vstate_t *vstate = &ecb->dte_state->dts_vstate; |
| 11668 | dtrace_difo_t *dp; |
| 11669 | uint16_t format; |
| 11670 | |
| 11671 | if (act != NULL && act->dta_refcnt > 1) { |
| 11672 | ASSERT(act->dta_next == NULL || act->dta_next->dta_refcnt == 1); |
| 11673 | act->dta_refcnt--; |
| 11674 | } else { |
| 11675 | for (; act != NULL; act = next) { |
| 11676 | next = act->dta_next; |
| 11677 | ASSERT(next != NULL || act == ecb->dte_action_last); |
| 11678 | ASSERT(act->dta_refcnt == 1); |
| 11679 | |
| 11680 | if ((format = act->dta_rec.dtrd_format) != 0) |
| 11681 | dtrace_format_remove(state: ecb->dte_state, format); |
| 11682 | |
| 11683 | if ((dp = act->dta_difo) != NULL) |
| 11684 | dtrace_difo_release(dp, vstate); |
| 11685 | |
| 11686 | if (DTRACEACT_ISAGG(act->dta_kind)) { |
| 11687 | dtrace_ecb_aggregation_destroy(ecb, act); |
| 11688 | } else { |
| 11689 | kmem_free(act, sizeof (dtrace_action_t)); |
| 11690 | } |
| 11691 | } |
| 11692 | } |
| 11693 | |
| 11694 | ecb->dte_action = NULL; |
| 11695 | ecb->dte_action_last = NULL; |
| 11696 | ecb->dte_size = 0; |
| 11697 | } |
| 11698 | |
| 11699 | static void |
| 11700 | dtrace_ecb_disable(dtrace_ecb_t *ecb) |
| 11701 | { |
| 11702 | /* |
| 11703 | * We disable the ECB by removing it from its probe. |
| 11704 | */ |
| 11705 | dtrace_ecb_t *pecb, *prev = NULL; |
| 11706 | dtrace_probe_t *probe = ecb->dte_probe; |
| 11707 | |
| 11708 | LCK_MTX_ASSERT(&dtrace_lock, LCK_MTX_ASSERT_OWNED); |
| 11709 | |
| 11710 | if (probe == NULL) { |
| 11711 | /* |
| 11712 | * This is the NULL probe; there is nothing to disable. |
| 11713 | */ |
| 11714 | return; |
| 11715 | } |
| 11716 | |
| 11717 | for (pecb = probe->dtpr_ecb; pecb != NULL; pecb = pecb->dte_next) { |
| 11718 | if (pecb == ecb) |
| 11719 | break; |
| 11720 | prev = pecb; |
| 11721 | } |
| 11722 | |
| 11723 | ASSERT(pecb != NULL); |
| 11724 | |
| 11725 | if (prev == NULL) { |
| 11726 | probe->dtpr_ecb = ecb->dte_next; |
| 11727 | } else { |
| 11728 | prev->dte_next = ecb->dte_next; |
| 11729 | } |
| 11730 | |
| 11731 | if (ecb == probe->dtpr_ecb_last) { |
| 11732 | ASSERT(ecb->dte_next == NULL); |
| 11733 | probe->dtpr_ecb_last = prev; |
| 11734 | } |
| 11735 | |
| 11736 | probe->dtpr_provider->dtpv_ecb_count--; |
| 11737 | /* |
| 11738 | * The ECB has been disconnected from the probe; now sync to assure |
| 11739 | * that all CPUs have seen the change before returning. |
| 11740 | */ |
| 11741 | dtrace_sync(); |
| 11742 | |
| 11743 | if (probe->dtpr_ecb == NULL) { |
| 11744 | /* |
| 11745 | * That was the last ECB on the probe; clear the predicate |
| 11746 | * cache ID for the probe, disable it and sync one more time |
| 11747 | * to assure that we'll never hit it again. |
| 11748 | */ |
| 11749 | dtrace_provider_t *prov = probe->dtpr_provider; |
| 11750 | |
| 11751 | ASSERT(ecb->dte_next == NULL); |
| 11752 | ASSERT(probe->dtpr_ecb_last == NULL); |
| 11753 | probe->dtpr_predcache = DTRACE_CACHEIDNONE; |
| 11754 | prov->dtpv_pops.dtps_disable(prov->dtpv_arg, |
| 11755 | probe->dtpr_id, probe->dtpr_arg); |
| 11756 | dtrace_sync(); |
| 11757 | } else { |
| 11758 | /* |
| 11759 | * There is at least one ECB remaining on the probe. If there |
| 11760 | * is _exactly_ one, set the probe's predicate cache ID to be |
| 11761 | * the predicate cache ID of the remaining ECB. |
| 11762 | */ |
| 11763 | ASSERT(probe->dtpr_ecb_last != NULL); |
| 11764 | ASSERT(probe->dtpr_predcache == DTRACE_CACHEIDNONE); |
| 11765 | |
| 11766 | if (probe->dtpr_ecb == probe->dtpr_ecb_last) { |
| 11767 | dtrace_predicate_t *p = probe->dtpr_ecb->dte_predicate; |
| 11768 | |
| 11769 | ASSERT(probe->dtpr_ecb->dte_next == NULL); |
| 11770 | |
| 11771 | if (p != NULL) |
| 11772 | probe->dtpr_predcache = p->dtp_cacheid; |
| 11773 | } |
| 11774 | |
| 11775 | ecb->dte_next = NULL; |
| 11776 | } |
| 11777 | } |
| 11778 | |
| 11779 | static void |
| 11780 | dtrace_ecb_destroy(dtrace_ecb_t *ecb) |
| 11781 | { |
| 11782 | dtrace_state_t *state = ecb->dte_state; |
| 11783 | dtrace_vstate_t *vstate = &state->dts_vstate; |
| 11784 | dtrace_predicate_t *pred; |
| 11785 | dtrace_epid_t epid = ecb->dte_epid; |
| 11786 | |
| 11787 | LCK_MTX_ASSERT(&dtrace_lock, LCK_MTX_ASSERT_OWNED); |
| 11788 | ASSERT(ecb->dte_next == NULL); |
| 11789 | ASSERT(ecb->dte_probe == NULL || ecb->dte_probe->dtpr_ecb != ecb); |
| 11790 | |
| 11791 | if ((pred = ecb->dte_predicate) != NULL) |
| 11792 | dtrace_predicate_release(pred, vstate); |
| 11793 | |
| 11794 | dtrace_ecb_action_remove(ecb); |
| 11795 | |
| 11796 | ASSERT(state->dts_ecbs[epid - 1] == ecb); |
| 11797 | state->dts_ecbs[epid - 1] = NULL; |
| 11798 | |
| 11799 | kmem_free(ecb, sizeof (dtrace_ecb_t)); |
| 11800 | } |
| 11801 | |
| 11802 | static dtrace_ecb_t * |
| 11803 | dtrace_ecb_create(dtrace_state_t *state, dtrace_probe_t *probe, |
| 11804 | dtrace_enabling_t *enab) |
| 11805 | { |
| 11806 | dtrace_ecb_t *ecb; |
| 11807 | dtrace_predicate_t *pred; |
| 11808 | dtrace_actdesc_t *act; |
| 11809 | dtrace_provider_t *prov; |
| 11810 | dtrace_ecbdesc_t *desc = enab->dten_current; |
| 11811 | |
| 11812 | LCK_MTX_ASSERT(&dtrace_lock, LCK_MTX_ASSERT_OWNED); |
| 11813 | ASSERT(state != NULL); |
| 11814 | |
| 11815 | ecb = dtrace_ecb_add(state, probe); |
| 11816 | ecb->dte_uarg = desc->dted_uarg; |
| 11817 | |
| 11818 | if ((pred = desc->dted_pred.dtpdd_predicate) != NULL) { |
| 11819 | dtrace_predicate_hold(pred); |
| 11820 | ecb->dte_predicate = pred; |
| 11821 | } |
| 11822 | |
| 11823 | if (probe != NULL) { |
| 11824 | /* |
| 11825 | * If the provider shows more leg than the consumer is old |
| 11826 | * enough to see, we need to enable the appropriate implicit |
| 11827 | * predicate bits to prevent the ecb from activating at |
| 11828 | * revealing times. |
| 11829 | * |
| 11830 | * Providers specifying DTRACE_PRIV_USER at register time |
| 11831 | * are stating that they need the /proc-style privilege |
| 11832 | * model to be enforced, and this is what DTRACE_COND_OWNER |
| 11833 | * and DTRACE_COND_ZONEOWNER will then do at probe time. |
| 11834 | */ |
| 11835 | prov = probe->dtpr_provider; |
| 11836 | if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLPROC) && |
| 11837 | (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER)) |
| 11838 | ecb->dte_cond |= DTRACE_COND_OWNER; |
| 11839 | |
| 11840 | if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLZONE) && |
| 11841 | (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER)) |
| 11842 | ecb->dte_cond |= DTRACE_COND_ZONEOWNER; |
| 11843 | |
| 11844 | /* |
| 11845 | * If the provider shows us kernel innards and the user |
| 11846 | * is lacking sufficient privilege, enable the |
| 11847 | * DTRACE_COND_USERMODE implicit predicate. |
| 11848 | */ |
| 11849 | if (!(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) && |
| 11850 | (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_KERNEL)) |
| 11851 | ecb->dte_cond |= DTRACE_COND_USERMODE; |
| 11852 | } |
| 11853 | |
| 11854 | if (dtrace_ecb_create_cache != NULL) { |
| 11855 | /* |
| 11856 | * If we have a cached ecb, we'll use its action list instead |
| 11857 | * of creating our own (saving both time and space). |
| 11858 | */ |
| 11859 | dtrace_ecb_t *cached = dtrace_ecb_create_cache; |
| 11860 | dtrace_action_t *act_if = cached->dte_action; |
| 11861 | |
| 11862 | if (act_if != NULL) { |
| 11863 | ASSERT(act_if->dta_refcnt > 0); |
| 11864 | act_if->dta_refcnt++; |
| 11865 | ecb->dte_action = act_if; |
| 11866 | ecb->dte_action_last = cached->dte_action_last; |
| 11867 | ecb->dte_needed = cached->dte_needed; |
| 11868 | ecb->dte_size = cached->dte_size; |
| 11869 | ecb->dte_alignment = cached->dte_alignment; |
| 11870 | } |
| 11871 | |
| 11872 | return (ecb); |
| 11873 | } |
| 11874 | |
| 11875 | for (act = desc->dted_action; act != NULL; act = act->dtad_next) { |
| 11876 | if ((enab->dten_error = dtrace_ecb_action_add(ecb, desc: act)) != 0) { |
| 11877 | dtrace_ecb_destroy(ecb); |
| 11878 | return (NULL); |
| 11879 | } |
| 11880 | } |
| 11881 | |
| 11882 | if ((enab->dten_error = dtrace_ecb_resize(ecb)) != 0) { |
| 11883 | dtrace_ecb_destroy(ecb); |
| 11884 | return (NULL); |
| 11885 | } |
| 11886 | |
| 11887 | return (dtrace_ecb_create_cache = ecb); |
| 11888 | } |
| 11889 | |
| 11890 | static int |
| 11891 | dtrace_ecb_create_enable(dtrace_probe_t *probe, void *arg1, void *arg2) |
| 11892 | { |
| 11893 | dtrace_ecb_t *ecb; |
| 11894 | dtrace_enabling_t *enab = arg1; |
| 11895 | dtrace_ecbdesc_t *ep = arg2; |
| 11896 | dtrace_state_t *state = enab->dten_vstate->dtvs_state; |
| 11897 | |
| 11898 | ASSERT(state != NULL); |
| 11899 | |
| 11900 | if (probe != NULL && ep != NULL && probe->dtpr_gen < ep->dted_probegen) { |
| 11901 | /* |
| 11902 | * This probe was created in a generation for which this |
| 11903 | * enabling has previously created ECBs; we don't want to |
| 11904 | * enable it again, so just kick out. |
| 11905 | */ |
| 11906 | return (DTRACE_MATCH_NEXT); |
| 11907 | } |
| 11908 | |
| 11909 | if ((ecb = dtrace_ecb_create(state, probe, enab)) == NULL) |
| 11910 | return (DTRACE_MATCH_DONE); |
| 11911 | |
| 11912 | if (dtrace_ecb_enable(ecb) < 0) |
| 11913 | return (DTRACE_MATCH_FAIL); |
| 11914 | |
| 11915 | return (DTRACE_MATCH_NEXT); |
| 11916 | } |
| 11917 | |
| 11918 | static dtrace_ecb_t * |
| 11919 | dtrace_epid2ecb(dtrace_state_t *state, dtrace_epid_t id) |
| 11920 | { |
| 11921 | dtrace_ecb_t *ecb; |
| 11922 | #pragma unused(ecb) /* __APPLE__ */ |
| 11923 | |
| 11924 | LCK_MTX_ASSERT(&dtrace_lock, LCK_MTX_ASSERT_OWNED); |
| 11925 | |
| 11926 | if (id == 0 || id > (dtrace_epid_t)state->dts_necbs) |
| 11927 | return (NULL); |
| 11928 | |
| 11929 | ASSERT(state->dts_necbs > 0 && state->dts_ecbs != NULL); |
| 11930 | ASSERT((ecb = state->dts_ecbs[id - 1]) == NULL || ecb->dte_epid == id); |
| 11931 | |
| 11932 | return (state->dts_ecbs[id - 1]); |
| 11933 | } |
| 11934 | |
| 11935 | static dtrace_aggregation_t * |
| 11936 | dtrace_aggid2agg(dtrace_state_t *state, dtrace_aggid_t id) |
| 11937 | { |
| 11938 | dtrace_aggregation_t *agg; |
| 11939 | #pragma unused(agg) /* __APPLE__ */ |
| 11940 | |
| 11941 | LCK_MTX_ASSERT(&dtrace_lock, LCK_MTX_ASSERT_OWNED); |
| 11942 | |
| 11943 | if (id == 0 || id > (dtrace_aggid_t)state->dts_naggregations) |
| 11944 | return (NULL); |
| 11945 | |
| 11946 | ASSERT(state->dts_naggregations > 0 && state->dts_aggregations != NULL); |
| 11947 | ASSERT((agg = state->dts_aggregations[id - 1]) == NULL || |
| 11948 | agg->dtag_id == id); |
| 11949 | |
| 11950 | return (state->dts_aggregations[id - 1]); |
| 11951 | } |
| 11952 | |
| 11953 | /* |
| 11954 | * DTrace Buffer Functions |
| 11955 | * |
| 11956 | * The following functions manipulate DTrace buffers. Most of these functions |
| 11957 | * are called in the context of establishing or processing consumer state; |
| 11958 | * exceptions are explicitly noted. |
| 11959 | */ |
| 11960 | |
| 11961 | /* |
| 11962 | * Note: called from cross call context. This function switches the two |
| 11963 | * buffers on a given CPU. The atomicity of this operation is assured by |
| 11964 | * disabling interrupts while the actual switch takes place; the disabling of |
| 11965 | * interrupts serializes the execution with any execution of dtrace_probe() on |
| 11966 | * the same CPU. |
| 11967 | */ |
| 11968 | static void |
| 11969 | dtrace_buffer_switch(dtrace_buffer_t *buf) |
| 11970 | { |
| 11971 | caddr_t tomax = buf->dtb_tomax; |
| 11972 | caddr_t xamot = buf->dtb_xamot; |
| 11973 | dtrace_icookie_t cookie; |
| 11974 | hrtime_t now; |
| 11975 | |
| 11976 | ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); |
| 11977 | ASSERT(!(buf->dtb_flags & DTRACEBUF_RING)); |
| 11978 | |
| 11979 | cookie = dtrace_interrupt_disable(); |
| 11980 | now = dtrace_gethrtime(); |
| 11981 | buf->dtb_tomax = xamot; |
| 11982 | buf->dtb_xamot = tomax; |
| 11983 | buf->dtb_xamot_drops = buf->dtb_drops; |
| 11984 | buf->dtb_xamot_offset = buf->dtb_offset; |
| 11985 | buf->dtb_xamot_errors = buf->dtb_errors; |
| 11986 | buf->dtb_xamot_flags = buf->dtb_flags; |
| 11987 | buf->dtb_offset = 0; |
| 11988 | buf->dtb_drops = 0; |
| 11989 | buf->dtb_errors = 0; |
| 11990 | buf->dtb_flags &= ~(DTRACEBUF_ERROR | DTRACEBUF_DROPPED); |
| 11991 | buf->dtb_interval = now - buf->dtb_switched; |
| 11992 | buf->dtb_switched = now; |
| 11993 | buf->dtb_cur_limit = buf->dtb_limit; |
| 11994 | |
| 11995 | dtrace_interrupt_enable(cookie); |
| 11996 | } |
| 11997 | |
| 11998 | /* |
| 11999 | * Note: called from cross call context. This function activates a buffer |
| 12000 | * on a CPU. As with dtrace_buffer_switch(), the atomicity of the operation |
| 12001 | * is guaranteed by the disabling of interrupts. |
| 12002 | */ |
| 12003 | static void |
| 12004 | dtrace_buffer_activate(dtrace_state_t *state) |
| 12005 | { |
| 12006 | dtrace_buffer_t *buf; |
| 12007 | dtrace_icookie_t cookie = dtrace_interrupt_disable(); |
| 12008 | |
| 12009 | buf = &state->dts_buffer[CPU->cpu_id]; |
| 12010 | |
| 12011 | if (buf->dtb_tomax != NULL) { |
| 12012 | /* |
| 12013 | * We might like to assert that the buffer is marked inactive, |
| 12014 | * but this isn't necessarily true: the buffer for the CPU |
| 12015 | * that processes the BEGIN probe has its buffer activated |
| 12016 | * manually. In this case, we take the (harmless) action |
| 12017 | * re-clearing the bit INACTIVE bit. |
| 12018 | */ |
| 12019 | buf->dtb_flags &= ~DTRACEBUF_INACTIVE; |
| 12020 | } |
| 12021 | |
| 12022 | dtrace_interrupt_enable(cookie); |
| 12023 | } |
| 12024 | |
| 12025 | static int |
| 12026 | dtrace_buffer_canalloc(size_t size) |
| 12027 | { |
| 12028 | if (size > (UINT64_MAX - dtrace_buffer_memory_inuse)) |
| 12029 | return (B_FALSE); |
| 12030 | if ((size + dtrace_buffer_memory_inuse) > dtrace_buffer_memory_maxsize) |
| 12031 | return (B_FALSE); |
| 12032 | |
| 12033 | return (B_TRUE); |
| 12034 | } |
| 12035 | |
| 12036 | static int |
| 12037 | dtrace_buffer_alloc(dtrace_buffer_t *bufs, size_t limit, size_t size, int flags, |
| 12038 | processorid_t cpu) |
| 12039 | { |
| 12040 | dtrace_cpu_t *cp; |
| 12041 | dtrace_buffer_t *buf; |
| 12042 | size_t size_before_alloc = dtrace_buffer_memory_inuse; |
| 12043 | |
| 12044 | LCK_MTX_ASSERT(&cpu_lock, LCK_MTX_ASSERT_OWNED); |
| 12045 | LCK_MTX_ASSERT(&dtrace_lock, LCK_MTX_ASSERT_OWNED); |
| 12046 | |
| 12047 | if (size > (size_t)dtrace_nonroot_maxsize && |
| 12048 | !PRIV_POLICY_CHOICE(CRED(), PRIV_ALL, B_FALSE)) |
| 12049 | return (EFBIG); |
| 12050 | |
| 12051 | cp = cpu_list; |
| 12052 | |
| 12053 | do { |
| 12054 | if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id) |
| 12055 | continue; |
| 12056 | |
| 12057 | buf = &bufs[cp->cpu_id]; |
| 12058 | |
| 12059 | /* |
| 12060 | * If there is already a buffer allocated for this CPU, it |
| 12061 | * is only possible that this is a DR event. In this case, |
| 12062 | * the buffer size must match our specified size. |
| 12063 | */ |
| 12064 | if (buf->dtb_tomax != NULL) { |
| 12065 | ASSERT(buf->dtb_size == size); |
| 12066 | continue; |
| 12067 | } |
| 12068 | |
| 12069 | ASSERT(buf->dtb_xamot == NULL); |
| 12070 | |
| 12071 | /* DTrace, please do not eat all the memory. */ |
| 12072 | if (dtrace_buffer_canalloc(size) == B_FALSE) |
| 12073 | goto err; |
| 12074 | if ((buf->dtb_tomax = kmem_zalloc(size, KM_NOSLEEP)) == NULL) |
| 12075 | goto err; |
| 12076 | dtrace_buffer_memory_inuse += size; |
| 12077 | |
| 12078 | /* Unsure that limit is always lower than size */ |
| 12079 | limit = limit == size ? limit - 1 : limit; |
| 12080 | buf->dtb_cur_limit = limit; |
| 12081 | buf->dtb_limit = limit; |
| 12082 | buf->dtb_size = size; |
| 12083 | buf->dtb_flags = flags; |
| 12084 | buf->dtb_offset = 0; |
| 12085 | buf->dtb_drops = 0; |
| 12086 | |
| 12087 | if (flags & DTRACEBUF_NOSWITCH) |
| 12088 | continue; |
| 12089 | |
| 12090 | /* DTrace, please do not eat all the memory. */ |
| 12091 | if (dtrace_buffer_canalloc(size) == B_FALSE) |
| 12092 | goto err; |
| 12093 | if ((buf->dtb_xamot = kmem_zalloc(size, KM_NOSLEEP)) == NULL) |
| 12094 | goto err; |
| 12095 | dtrace_buffer_memory_inuse += size; |
| 12096 | } while ((cp = cp->cpu_next) != cpu_list); |
| 12097 | |
| 12098 | ASSERT(dtrace_buffer_memory_inuse <= dtrace_buffer_memory_maxsize); |
| 12099 | |
| 12100 | return (0); |
| 12101 | |
| 12102 | err: |
| 12103 | cp = cpu_list; |
| 12104 | |
| 12105 | do { |
| 12106 | if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id) |
| 12107 | continue; |
| 12108 | |
| 12109 | buf = &bufs[cp->cpu_id]; |
| 12110 | |
| 12111 | if (buf->dtb_xamot != NULL) { |
| 12112 | ASSERT(buf->dtb_tomax != NULL); |
| 12113 | ASSERT(buf->dtb_size == size); |
| 12114 | kmem_free(buf->dtb_xamot, size); |
| 12115 | } |
| 12116 | |
| 12117 | if (buf->dtb_tomax != NULL) { |
| 12118 | ASSERT(buf->dtb_size == size); |
| 12119 | kmem_free(buf->dtb_tomax, size); |
| 12120 | } |
| 12121 | |
| 12122 | buf->dtb_tomax = NULL; |
| 12123 | buf->dtb_xamot = NULL; |
| 12124 | buf->dtb_size = 0; |
| 12125 | } while ((cp = cp->cpu_next) != cpu_list); |
| 12126 | |
| 12127 | /* Restore the size saved before allocating memory */ |
| 12128 | dtrace_buffer_memory_inuse = size_before_alloc; |
| 12129 | |
| 12130 | return (ENOMEM); |
| 12131 | } |
| 12132 | |
| 12133 | /* |
| 12134 | * Note: called from probe context. This function just increments the drop |
| 12135 | * count on a buffer. It has been made a function to allow for the |
| 12136 | * possibility of understanding the source of mysterious drop counts. (A |
| 12137 | * problem for which one may be particularly disappointed that DTrace cannot |
| 12138 | * be used to understand DTrace.) |
| 12139 | */ |
| 12140 | static void |
| 12141 | dtrace_buffer_drop(dtrace_buffer_t *buf) |
| 12142 | { |
| 12143 | buf->dtb_drops++; |
| 12144 | } |
| 12145 | |
| 12146 | /* |
| 12147 | * Note: called from probe context. This function is called to reserve space |
| 12148 | * in a buffer. If mstate is non-NULL, sets the scratch base and size in the |
| 12149 | * mstate. Returns the new offset in the buffer, or a negative value if an |
| 12150 | * error has occurred. |
| 12151 | */ |
| 12152 | static intptr_t |
| 12153 | dtrace_buffer_reserve(dtrace_buffer_t *buf, size_t needed, size_t align, |
| 12154 | dtrace_state_t *state, dtrace_mstate_t *mstate) |
| 12155 | { |
| 12156 | intptr_t offs = buf->dtb_offset, soffs; |
| 12157 | intptr_t woffs; |
| 12158 | caddr_t tomax; |
| 12159 | size_t total_off; |
| 12160 | |
| 12161 | if (buf->dtb_flags & DTRACEBUF_INACTIVE) |
| 12162 | return (-1); |
| 12163 | |
| 12164 | if ((tomax = buf->dtb_tomax) == NULL) { |
| 12165 | dtrace_buffer_drop(buf); |
| 12166 | return (-1); |
| 12167 | } |
| 12168 | |
| 12169 | if (!(buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL))) { |
| 12170 | while (offs & (align - 1)) { |
| 12171 | /* |
| 12172 | * Assert that our alignment is off by a number which |
| 12173 | * is itself sizeof (uint32_t) aligned. |
| 12174 | */ |
| 12175 | ASSERT(!((align - (offs & (align - 1))) & |
| 12176 | (sizeof (uint32_t) - 1))); |
| 12177 | DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE); |
| 12178 | offs += sizeof (uint32_t); |
| 12179 | } |
| 12180 | |
| 12181 | if ((uint64_t)(soffs = offs + needed) > buf->dtb_cur_limit) { |
| 12182 | if (buf->dtb_cur_limit == buf->dtb_limit) { |
| 12183 | buf->dtb_cur_limit = buf->dtb_size; |
| 12184 | |
| 12185 | os_atomic_inc(&state->dts_buf_over_limit, relaxed); |
| 12186 | /** |
| 12187 | * Set an AST on the current processor |
| 12188 | * so that we can wake up the process |
| 12189 | * outside of probe context, when we know |
| 12190 | * it is safe to do so |
| 12191 | */ |
| 12192 | minor_t minor = getminor(state->dts_dev); |
| 12193 | ASSERT(minor < 32); |
| 12194 | |
| 12195 | os_atomic_or(&dtrace_wake_clients, 1 << minor, relaxed); |
| 12196 | ast_dtrace_on(); |
| 12197 | } |
| 12198 | if ((uint64_t)soffs > buf->dtb_size) { |
| 12199 | dtrace_buffer_drop(buf); |
| 12200 | return (-1); |
| 12201 | } |
| 12202 | } |
| 12203 | |
| 12204 | if (mstate == NULL) |
| 12205 | return (offs); |
| 12206 | |
| 12207 | mstate->dtms_scratch_base = (uintptr_t)tomax + soffs; |
| 12208 | mstate->dtms_scratch_size = buf->dtb_size - soffs; |
| 12209 | mstate->dtms_scratch_ptr = mstate->dtms_scratch_base; |
| 12210 | |
| 12211 | return (offs); |
| 12212 | } |
| 12213 | |
| 12214 | if (buf->dtb_flags & DTRACEBUF_FILL) { |
| 12215 | if (state->dts_activity != DTRACE_ACTIVITY_COOLDOWN && |
| 12216 | (buf->dtb_flags & DTRACEBUF_FULL)) |
| 12217 | return (-1); |
| 12218 | goto out; |
| 12219 | } |
| 12220 | |
| 12221 | total_off = needed + (offs & (align - 1)); |
| 12222 | |
| 12223 | /* |
| 12224 | * For a ring buffer, life is quite a bit more complicated. Before |
| 12225 | * we can store any padding, we need to adjust our wrapping offset. |
| 12226 | * (If we've never before wrapped or we're not about to, no adjustment |
| 12227 | * is required.) |
| 12228 | */ |
| 12229 | if ((buf->dtb_flags & DTRACEBUF_WRAPPED) || |
| 12230 | offs + total_off > buf->dtb_size) { |
| 12231 | woffs = buf->dtb_xamot_offset; |
| 12232 | |
| 12233 | if (offs + total_off > buf->dtb_size) { |
| 12234 | /* |
| 12235 | * We can't fit in the end of the buffer. First, a |
| 12236 | * sanity check that we can fit in the buffer at all. |
| 12237 | */ |
| 12238 | if (total_off > buf->dtb_size) { |
| 12239 | dtrace_buffer_drop(buf); |
| 12240 | return (-1); |
| 12241 | } |
| 12242 | |
| 12243 | /* |
| 12244 | * We're going to be storing at the top of the buffer, |
| 12245 | * so now we need to deal with the wrapped offset. We |
| 12246 | * only reset our wrapped offset to 0 if it is |
| 12247 | * currently greater than the current offset. If it |
| 12248 | * is less than the current offset, it is because a |
| 12249 | * previous allocation induced a wrap -- but the |
| 12250 | * allocation didn't subsequently take the space due |
| 12251 | * to an error or false predicate evaluation. In this |
| 12252 | * case, we'll just leave the wrapped offset alone: if |
| 12253 | * the wrapped offset hasn't been advanced far enough |
| 12254 | * for this allocation, it will be adjusted in the |
| 12255 | * lower loop. |
| 12256 | */ |
| 12257 | if (buf->dtb_flags & DTRACEBUF_WRAPPED) { |
| 12258 | if (woffs >= offs) |
| 12259 | woffs = 0; |
| 12260 | } else { |
| 12261 | woffs = 0; |
| 12262 | } |
| 12263 | |
| 12264 | /* |
| 12265 | * Now we know that we're going to be storing to the |
| 12266 | * top of the buffer and that there is room for us |
| 12267 | * there. We need to clear the buffer from the current |
| 12268 | * offset to the end (there may be old gunk there). |
| 12269 | */ |
| 12270 | while ((uint64_t)offs < buf->dtb_size) |
| 12271 | tomax[offs++] = 0; |
| 12272 | |
| 12273 | /* |
| 12274 | * We need to set our offset to zero. And because we |
| 12275 | * are wrapping, we need to set the bit indicating as |
| 12276 | * much. We can also adjust our needed space back |
| 12277 | * down to the space required by the ECB -- we know |
| 12278 | * that the top of the buffer is aligned. |
| 12279 | */ |
| 12280 | offs = 0; |
| 12281 | total_off = needed; |
| 12282 | buf->dtb_flags |= DTRACEBUF_WRAPPED; |
| 12283 | } else { |
| 12284 | /* |
| 12285 | * There is room for us in the buffer, so we simply |
| 12286 | * need to check the wrapped offset. |
| 12287 | */ |
| 12288 | if (woffs < offs) { |
| 12289 | /* |
| 12290 | * The wrapped offset is less than the offset. |
| 12291 | * This can happen if we allocated buffer space |
| 12292 | * that induced a wrap, but then we didn't |
| 12293 | * subsequently take the space due to an error |
| 12294 | * or false predicate evaluation. This is |
| 12295 | * okay; we know that _this_ allocation isn't |
| 12296 | * going to induce a wrap. We still can't |
| 12297 | * reset the wrapped offset to be zero, |
| 12298 | * however: the space may have been trashed in |
| 12299 | * the previous failed probe attempt. But at |
| 12300 | * least the wrapped offset doesn't need to |
| 12301 | * be adjusted at all... |
| 12302 | */ |
| 12303 | goto out; |
| 12304 | } |
| 12305 | } |
| 12306 | |
| 12307 | while (offs + total_off > (size_t)woffs) { |
| 12308 | dtrace_epid_t epid = *(uint32_t *)(tomax + woffs); |
| 12309 | size_t size; |
| 12310 | |
| 12311 | if (epid == DTRACE_EPIDNONE) { |
| 12312 | size = sizeof (uint32_t); |
| 12313 | } else { |
| 12314 | ASSERT(epid <= (dtrace_epid_t)state->dts_necbs); |
| 12315 | ASSERT(state->dts_ecbs[epid - 1] != NULL); |
| 12316 | |
| 12317 | size = state->dts_ecbs[epid - 1]->dte_size; |
| 12318 | } |
| 12319 | |
| 12320 | ASSERT(woffs + size <= buf->dtb_size); |
| 12321 | ASSERT(size != 0); |
| 12322 | |
| 12323 | if (woffs + size == buf->dtb_size) { |
| 12324 | /* |
| 12325 | * We've reached the end of the buffer; we want |
| 12326 | * to set the wrapped offset to 0 and break |
| 12327 | * out. However, if the offs is 0, then we're |
| 12328 | * in a strange edge-condition: the amount of |
| 12329 | * space that we want to reserve plus the size |
| 12330 | * of the record that we're overwriting is |
| 12331 | * greater than the size of the buffer. This |
| 12332 | * is problematic because if we reserve the |
| 12333 | * space but subsequently don't consume it (due |
| 12334 | * to a failed predicate or error) the wrapped |
| 12335 | * offset will be 0 -- yet the EPID at offset 0 |
| 12336 | * will not be committed. This situation is |
| 12337 | * relatively easy to deal with: if we're in |
| 12338 | * this case, the buffer is indistinguishable |
| 12339 | * from one that hasn't wrapped; we need only |
| 12340 | * finish the job by clearing the wrapped bit, |
| 12341 | * explicitly setting the offset to be 0, and |
| 12342 | * zero'ing out the old data in the buffer. |
| 12343 | */ |
| 12344 | if (offs == 0) { |
| 12345 | buf->dtb_flags &= ~DTRACEBUF_WRAPPED; |
| 12346 | buf->dtb_offset = 0; |
| 12347 | woffs = total_off; |
| 12348 | |
| 12349 | while ((uint64_t)woffs < buf->dtb_size) |
| 12350 | tomax[woffs++] = 0; |
| 12351 | } |
| 12352 | |
| 12353 | woffs = 0; |
| 12354 | break; |
| 12355 | } |
| 12356 | |
| 12357 | woffs += size; |
| 12358 | } |
| 12359 | |
| 12360 | /* |
| 12361 | * We have a wrapped offset. It may be that the wrapped offset |
| 12362 | * has become zero -- that's okay. |
| 12363 | */ |
| 12364 | buf->dtb_xamot_offset = woffs; |
| 12365 | } |
| 12366 | |
| 12367 | out: |
| 12368 | /* |
| 12369 | * Now we can plow the buffer with any necessary padding. |
| 12370 | */ |
| 12371 | while (offs & (align - 1)) { |
| 12372 | /* |
| 12373 | * Assert that our alignment is off by a number which |
| 12374 | * is itself sizeof (uint32_t) aligned. |
| 12375 | */ |
| 12376 | ASSERT(!((align - (offs & (align - 1))) & |
| 12377 | (sizeof (uint32_t) - 1))); |
| 12378 | DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE); |
| 12379 | offs += sizeof (uint32_t); |
| 12380 | } |
| 12381 | |
| 12382 | if (buf->dtb_flags & DTRACEBUF_FILL) { |
| 12383 | if (offs + needed > buf->dtb_size - state->dts_reserve) { |
| 12384 | buf->dtb_flags |= DTRACEBUF_FULL; |
| 12385 | return (-1); |
| 12386 | } |
| 12387 | } |
| 12388 | |
| 12389 | if (mstate == NULL) |
| 12390 | return (offs); |
| 12391 | |
| 12392 | /* |
| 12393 | * For ring buffers and fill buffers, the scratch space is always |
| 12394 | * the inactive buffer. |
| 12395 | */ |
| 12396 | mstate->dtms_scratch_base = (uintptr_t)buf->dtb_xamot; |
| 12397 | mstate->dtms_scratch_size = buf->dtb_size; |
| 12398 | mstate->dtms_scratch_ptr = mstate->dtms_scratch_base; |
| 12399 | |
| 12400 | return (offs); |
| 12401 | } |
| 12402 | |
| 12403 | static void |
| 12404 | dtrace_buffer_polish(dtrace_buffer_t *buf) |
| 12405 | { |
| 12406 | ASSERT(buf->dtb_flags & DTRACEBUF_RING); |
| 12407 | LCK_MTX_ASSERT(&dtrace_lock, LCK_MTX_ASSERT_OWNED); |
| 12408 | |
| 12409 | if (!(buf->dtb_flags & DTRACEBUF_WRAPPED)) |
| 12410 | return; |
| 12411 | |
| 12412 | /* |
| 12413 | * We need to polish the ring buffer. There are three cases: |
| 12414 | * |
| 12415 | * - The first (and presumably most common) is that there is no gap |
| 12416 | * between the buffer offset and the wrapped offset. In this case, |
| 12417 | * there is nothing in the buffer that isn't valid data; we can |
| 12418 | * mark the buffer as polished and return. |
| 12419 | * |
| 12420 | * - The second (less common than the first but still more common |
| 12421 | * than the third) is that there is a gap between the buffer offset |
| 12422 | * and the wrapped offset, and the wrapped offset is larger than the |
| 12423 | * buffer offset. This can happen because of an alignment issue, or |
| 12424 | * can happen because of a call to dtrace_buffer_reserve() that |
| 12425 | * didn't subsequently consume the buffer space. In this case, |
| 12426 | * we need to zero the data from the buffer offset to the wrapped |
| 12427 | * offset. |
| 12428 | * |
| 12429 | * - The third (and least common) is that there is a gap between the |
| 12430 | * buffer offset and the wrapped offset, but the wrapped offset is |
| 12431 | * _less_ than the buffer offset. This can only happen because a |
| 12432 | * call to dtrace_buffer_reserve() induced a wrap, but the space |
| 12433 | * was not subsequently consumed. In this case, we need to zero the |
| 12434 | * space from the offset to the end of the buffer _and_ from the |
| 12435 | * top of the buffer to the wrapped offset. |
| 12436 | */ |
| 12437 | if (buf->dtb_offset < buf->dtb_xamot_offset) { |
| 12438 | bzero(s: buf->dtb_tomax + buf->dtb_offset, |
| 12439 | n: buf->dtb_xamot_offset - buf->dtb_offset); |
| 12440 | } |
| 12441 | |
| 12442 | if (buf->dtb_offset > buf->dtb_xamot_offset) { |
| 12443 | bzero(s: buf->dtb_tomax + buf->dtb_offset, |
| 12444 | n: buf->dtb_size - buf->dtb_offset); |
| 12445 | bzero(s: buf->dtb_tomax, n: buf->dtb_xamot_offset); |
| 12446 | } |
| 12447 | } |
| 12448 | |
| 12449 | static void |
| 12450 | dtrace_buffer_free(dtrace_buffer_t *bufs) |
| 12451 | { |
| 12452 | int i; |
| 12453 | |
| 12454 | for (i = 0; i < (int)NCPU; i++) { |
| 12455 | dtrace_buffer_t *buf = &bufs[i]; |
| 12456 | |
| 12457 | if (buf->dtb_tomax == NULL) { |
| 12458 | ASSERT(buf->dtb_xamot == NULL); |
| 12459 | ASSERT(buf->dtb_size == 0); |
| 12460 | continue; |
| 12461 | } |
| 12462 | |
| 12463 | if (buf->dtb_xamot != NULL) { |
| 12464 | ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); |
| 12465 | kmem_free(buf->dtb_xamot, buf->dtb_size); |
| 12466 | |
| 12467 | ASSERT(dtrace_buffer_memory_inuse >= buf->dtb_size); |
| 12468 | dtrace_buffer_memory_inuse -= buf->dtb_size; |
| 12469 | } |
| 12470 | |
| 12471 | kmem_free(buf->dtb_tomax, buf->dtb_size); |
| 12472 | ASSERT(dtrace_buffer_memory_inuse >= buf->dtb_size); |
| 12473 | dtrace_buffer_memory_inuse -= buf->dtb_size; |
| 12474 | |
| 12475 | buf->dtb_size = 0; |
| 12476 | buf->dtb_tomax = NULL; |
| 12477 | buf->dtb_xamot = NULL; |
| 12478 | } |
| 12479 | } |
| 12480 | |
| 12481 | /* |
| 12482 | * DTrace Enabling Functions |
| 12483 | */ |
| 12484 | static dtrace_enabling_t * |
| 12485 | dtrace_enabling_create(dtrace_vstate_t *vstate) |
| 12486 | { |
| 12487 | dtrace_enabling_t *enab; |
| 12488 | |
| 12489 | enab = kmem_zalloc(sizeof (dtrace_enabling_t), KM_SLEEP); |
| 12490 | enab->dten_vstate = vstate; |
| 12491 | |
| 12492 | return (enab); |
| 12493 | } |
| 12494 | |
| 12495 | static void |
| 12496 | dtrace_enabling_add(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb) |
| 12497 | { |
| 12498 | dtrace_ecbdesc_t **ndesc; |
| 12499 | size_t osize, nsize; |
| 12500 | |
| 12501 | /* |
| 12502 | * We can't add to enablings after we've enabled them, or after we've |
| 12503 | * retained them. |
| 12504 | */ |
| 12505 | ASSERT(enab->dten_probegen == 0); |
| 12506 | ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL); |
| 12507 | |
| 12508 | /* APPLE NOTE: this protects against gcc 4.0 botch on x86 */ |
| 12509 | if (ecb == NULL) return; |
| 12510 | |
| 12511 | if (enab->dten_ndesc < enab->dten_maxdesc) { |
| 12512 | enab->dten_desc[enab->dten_ndesc++] = ecb; |
| 12513 | return; |
| 12514 | } |
| 12515 | |
| 12516 | osize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *); |
| 12517 | |
| 12518 | if (enab->dten_maxdesc == 0) { |
| 12519 | enab->dten_maxdesc = 1; |
| 12520 | } else { |
| 12521 | enab->dten_maxdesc <<= 1; |
| 12522 | } |
| 12523 | |
| 12524 | ASSERT(enab->dten_ndesc < enab->dten_maxdesc); |
| 12525 | |
| 12526 | nsize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *); |
| 12527 | ndesc = kmem_zalloc(nsize, KM_SLEEP); |
| 12528 | bcopy(src: enab->dten_desc, dst: ndesc, n: osize); |
| 12529 | kmem_free(enab->dten_desc, osize); |
| 12530 | |
| 12531 | enab->dten_desc = ndesc; |
| 12532 | enab->dten_desc[enab->dten_ndesc++] = ecb; |
| 12533 | } |
| 12534 | |
| 12535 | static void |
| 12536 | dtrace_enabling_addlike(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb, |
| 12537 | dtrace_probedesc_t *pd) |
| 12538 | { |
| 12539 | dtrace_ecbdesc_t *new; |
| 12540 | dtrace_predicate_t *pred; |
| 12541 | dtrace_actdesc_t *act; |
| 12542 | |
| 12543 | /* |
| 12544 | * We're going to create a new ECB description that matches the |
| 12545 | * specified ECB in every way, but has the specified probe description. |
| 12546 | */ |
| 12547 | new = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP); |
| 12548 | |
| 12549 | if ((pred = ecb->dted_pred.dtpdd_predicate) != NULL) |
| 12550 | dtrace_predicate_hold(pred); |
| 12551 | |
| 12552 | for (act = ecb->dted_action; act != NULL; act = act->dtad_next) |
| 12553 | dtrace_actdesc_hold(act); |
| 12554 | |
| 12555 | new->dted_action = ecb->dted_action; |
| 12556 | new->dted_pred = ecb->dted_pred; |
| 12557 | new->dted_probe = *pd; |
| 12558 | new->dted_uarg = ecb->dted_uarg; |
| 12559 | |
| 12560 | dtrace_enabling_add(enab, ecb: new); |
| 12561 | } |
| 12562 | |
| 12563 | static void |
| 12564 | dtrace_enabling_dump(dtrace_enabling_t *enab) |
| 12565 | { |
| 12566 | int i; |
| 12567 | |
| 12568 | for (i = 0; i < enab->dten_ndesc; i++) { |
| 12569 | dtrace_probedesc_t *desc = &enab->dten_desc[i]->dted_probe; |
| 12570 | |
| 12571 | cmn_err(CE_NOTE, "enabling probe %d (%s:%s:%s:%s)" , i, |
| 12572 | desc->dtpd_provider, desc->dtpd_mod, |
| 12573 | desc->dtpd_func, desc->dtpd_name); |
| 12574 | } |
| 12575 | } |
| 12576 | |
| 12577 | static void |
| 12578 | dtrace_enabling_destroy(dtrace_enabling_t *enab) |
| 12579 | { |
| 12580 | int i; |
| 12581 | dtrace_ecbdesc_t *ep; |
| 12582 | dtrace_vstate_t *vstate = enab->dten_vstate; |
| 12583 | |
| 12584 | LCK_MTX_ASSERT(&dtrace_lock, LCK_MTX_ASSERT_OWNED); |
| 12585 | |
| 12586 | for (i = 0; i < enab->dten_ndesc; i++) { |
| 12587 | dtrace_actdesc_t *act, *next; |
| 12588 | dtrace_predicate_t *pred; |
| 12589 | |
| 12590 | ep = enab->dten_desc[i]; |
| 12591 | |
| 12592 | if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) |
| 12593 | dtrace_predicate_release(pred, vstate); |
| 12594 | |
| 12595 | for (act = ep->dted_action; act != NULL; act = next) { |
| 12596 | next = act->dtad_next; |
| 12597 | dtrace_actdesc_release(act, vstate); |
| 12598 | } |
| 12599 | |
| 12600 | kmem_free(ep, sizeof (dtrace_ecbdesc_t)); |
| 12601 | } |
| 12602 | |
| 12603 | kmem_free(enab->dten_desc, |
| 12604 | enab->dten_maxdesc * sizeof (dtrace_enabling_t *)); |
| 12605 | |
| 12606 | /* |
| 12607 | * If this was a retained enabling, decrement the dts_nretained count |
| 12608 | * and take it off of the dtrace_retained list. |
| 12609 | */ |
| 12610 | if (enab->dten_prev != NULL || enab->dten_next != NULL || |
| 12611 | dtrace_retained == enab) { |
| 12612 | ASSERT(enab->dten_vstate->dtvs_state != NULL); |
| 12613 | ASSERT(enab->dten_vstate->dtvs_state->dts_nretained > 0); |
| 12614 | enab->dten_vstate->dtvs_state->dts_nretained--; |
| 12615 | dtrace_retained_gen++; |
| 12616 | } |
| 12617 | |
| 12618 | if (enab->dten_prev == NULL) { |
| 12619 | if (dtrace_retained == enab) { |
| 12620 | dtrace_retained = enab->dten_next; |
| 12621 | |
| 12622 | if (dtrace_retained != NULL) |
| 12623 | dtrace_retained->dten_prev = NULL; |
| 12624 | } |
| 12625 | } else { |
| 12626 | ASSERT(enab != dtrace_retained); |
| 12627 | ASSERT(dtrace_retained != NULL); |
| 12628 | enab->dten_prev->dten_next = enab->dten_next; |
| 12629 | } |
| 12630 | |
| 12631 | if (enab->dten_next != NULL) { |
| 12632 | ASSERT(dtrace_retained != NULL); |
| 12633 | enab->dten_next->dten_prev = enab->dten_prev; |
| 12634 | } |
| 12635 | |
| 12636 | kmem_free(enab, sizeof (dtrace_enabling_t)); |
| 12637 | } |
| 12638 | |
| 12639 | static int |
| 12640 | dtrace_enabling_retain(dtrace_enabling_t *enab) |
| 12641 | { |
| 12642 | dtrace_state_t *state; |
| 12643 | |
| 12644 | LCK_MTX_ASSERT(&dtrace_lock, LCK_MTX_ASSERT_OWNED); |
| 12645 | ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL); |
| 12646 | ASSERT(enab->dten_vstate != NULL); |
| 12647 | |
| 12648 | state = enab->dten_vstate->dtvs_state; |
| 12649 | ASSERT(state != NULL); |
| 12650 | |
| 12651 | /* |
| 12652 | * We only allow each state to retain dtrace_retain_max enablings. |
| 12653 | */ |
| 12654 | if (state->dts_nretained >= dtrace_retain_max) |
| 12655 | return (ENOSPC); |
| 12656 | |
| 12657 | state->dts_nretained++; |
| 12658 | dtrace_retained_gen++; |
| 12659 | |
| 12660 | if (dtrace_retained == NULL) { |
| 12661 | dtrace_retained = enab; |
| 12662 | return (0); |
| 12663 | } |
| 12664 | |
| 12665 | enab->dten_next = dtrace_retained; |
| 12666 | dtrace_retained->dten_prev = enab; |
| 12667 | dtrace_retained = enab; |
| 12668 | |
| 12669 | return (0); |
| 12670 | } |
| 12671 | |
| 12672 | static int |
| 12673 | dtrace_enabling_replicate(dtrace_state_t *state, dtrace_probedesc_t *match, |
| 12674 | dtrace_probedesc_t *create) |
| 12675 | { |
| 12676 | dtrace_enabling_t *new, *enab; |
| 12677 | int found = 0, err = ENOENT; |
| 12678 | |
| 12679 | LCK_MTX_ASSERT(&dtrace_lock, LCK_MTX_ASSERT_OWNED); |
| 12680 | ASSERT(strlen(match->dtpd_provider) < DTRACE_PROVNAMELEN); |
| 12681 | ASSERT(strlen(match->dtpd_mod) < DTRACE_MODNAMELEN); |
| 12682 | ASSERT(strlen(match->dtpd_func) < DTRACE_FUNCNAMELEN); |
| 12683 | ASSERT(strlen(match->dtpd_name) < DTRACE_NAMELEN); |
| 12684 | |
| 12685 | new = dtrace_enabling_create(vstate: &state->dts_vstate); |
| 12686 | |
| 12687 | /* |
| 12688 | * Iterate over all retained enablings, looking for enablings that |
| 12689 | * match the specified state. |
| 12690 | */ |
| 12691 | for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { |
| 12692 | int i; |
| 12693 | |
| 12694 | /* |
| 12695 | * dtvs_state can only be NULL for helper enablings -- and |
| 12696 | * helper enablings can't be retained. |
| 12697 | */ |
| 12698 | ASSERT(enab->dten_vstate->dtvs_state != NULL); |
| 12699 | |
| 12700 | if (enab->dten_vstate->dtvs_state != state) |
| 12701 | continue; |
| 12702 | |
| 12703 | /* |
| 12704 | * Now iterate over each probe description; we're looking for |
| 12705 | * an exact match to the specified probe description. |
| 12706 | */ |
| 12707 | for (i = 0; i < enab->dten_ndesc; i++) { |
| 12708 | dtrace_ecbdesc_t *ep = enab->dten_desc[i]; |
| 12709 | dtrace_probedesc_t *pd = &ep->dted_probe; |
| 12710 | |
| 12711 | /* APPLE NOTE: Darwin employs size bounded string operation. */ |
| 12712 | if (strncmp(s1: pd->dtpd_provider, s2: match->dtpd_provider, DTRACE_PROVNAMELEN)) |
| 12713 | continue; |
| 12714 | |
| 12715 | if (strncmp(s1: pd->dtpd_mod, s2: match->dtpd_mod, DTRACE_MODNAMELEN)) |
| 12716 | continue; |
| 12717 | |
| 12718 | if (strncmp(s1: pd->dtpd_func, s2: match->dtpd_func, DTRACE_FUNCNAMELEN)) |
| 12719 | continue; |
| 12720 | |
| 12721 | if (strncmp(s1: pd->dtpd_name, s2: match->dtpd_name, DTRACE_NAMELEN)) |
| 12722 | continue; |
| 12723 | |
| 12724 | /* |
| 12725 | * We have a winning probe! Add it to our growing |
| 12726 | * enabling. |
| 12727 | */ |
| 12728 | found = 1; |
| 12729 | dtrace_enabling_addlike(enab: new, ecb: ep, pd: create); |
| 12730 | } |
| 12731 | } |
| 12732 | |
| 12733 | if (!found || (err = dtrace_enabling_retain(enab: new)) != 0) { |
| 12734 | dtrace_enabling_destroy(enab: new); |
| 12735 | return (err); |
| 12736 | } |
| 12737 | |
| 12738 | return (0); |
| 12739 | } |
| 12740 | |
| 12741 | static void |
| 12742 | dtrace_enabling_retract(dtrace_state_t *state) |
| 12743 | { |
| 12744 | dtrace_enabling_t *enab, *next; |
| 12745 | |
| 12746 | LCK_MTX_ASSERT(&dtrace_lock, LCK_MTX_ASSERT_OWNED); |
| 12747 | |
| 12748 | /* |
| 12749 | * Iterate over all retained enablings, destroy the enablings retained |
| 12750 | * for the specified state. |
| 12751 | */ |
| 12752 | for (enab = dtrace_retained; enab != NULL; enab = next) { |
| 12753 | next = enab->dten_next; |
| 12754 | |
| 12755 | /* |
| 12756 | * dtvs_state can only be NULL for helper enablings -- and |
| 12757 | * helper enablings can't be retained. |
| 12758 | */ |
| 12759 | ASSERT(enab->dten_vstate->dtvs_state != NULL); |
| 12760 | |
| 12761 | if (enab->dten_vstate->dtvs_state == state) { |
| 12762 | ASSERT(state->dts_nretained > 0); |
| 12763 | dtrace_enabling_destroy(enab); |
| 12764 | } |
| 12765 | } |
| 12766 | |
| 12767 | ASSERT(state->dts_nretained == 0); |
| 12768 | } |
| 12769 | |
| 12770 | static int |
| 12771 | dtrace_enabling_match(dtrace_enabling_t *enab, int *nmatched, dtrace_match_cond_t *cond) |
| 12772 | { |
| 12773 | int i = 0; |
| 12774 | int total_matched = 0, matched = 0; |
| 12775 | |
| 12776 | LCK_MTX_ASSERT(&cpu_lock, LCK_MTX_ASSERT_OWNED); |
| 12777 | LCK_MTX_ASSERT(&dtrace_lock, LCK_MTX_ASSERT_OWNED); |
| 12778 | |
| 12779 | for (i = 0; i < enab->dten_ndesc; i++) { |
| 12780 | dtrace_ecbdesc_t *ep = enab->dten_desc[i]; |
| 12781 | |
| 12782 | enab->dten_current = ep; |
| 12783 | enab->dten_error = 0; |
| 12784 | |
| 12785 | /** |
| 12786 | * Before doing a dtrace_probe_enable, which is really |
| 12787 | * expensive, check that this enabling matches the matching precondition |
| 12788 | * if we have one |
| 12789 | */ |
| 12790 | if (cond && (cond->dmc_func(&ep->dted_probe, cond->dmc_data) == 0)) { |
| 12791 | continue; |
| 12792 | } |
| 12793 | /* |
| 12794 | * If a provider failed to enable a probe then get out and |
| 12795 | * let the consumer know we failed. |
| 12796 | */ |
| 12797 | if ((matched = dtrace_probe_enable(desc: &ep->dted_probe, enab, ep)) < 0) |
| 12798 | return (EBUSY); |
| 12799 | |
| 12800 | total_matched += matched; |
| 12801 | |
| 12802 | if (enab->dten_error != 0) { |
| 12803 | /* |
| 12804 | * If we get an error half-way through enabling the |
| 12805 | * probes, we kick out -- perhaps with some number of |
| 12806 | * them enabled. Leaving enabled probes enabled may |
| 12807 | * be slightly confusing for user-level, but we expect |
| 12808 | * that no one will attempt to actually drive on in |
| 12809 | * the face of such errors. If this is an anonymous |
| 12810 | * enabling (indicated with a NULL nmatched pointer), |
| 12811 | * we cmn_err() a message. We aren't expecting to |
| 12812 | * get such an error -- such as it can exist at all, |
| 12813 | * it would be a result of corrupted DOF in the driver |
| 12814 | * properties. |
| 12815 | */ |
| 12816 | if (nmatched == NULL) { |
| 12817 | cmn_err(CE_WARN, "dtrace_enabling_match() " |
| 12818 | "error on %p: %d" , (void *)ep, |
| 12819 | enab->dten_error); |
| 12820 | } |
| 12821 | |
| 12822 | return (enab->dten_error); |
| 12823 | } |
| 12824 | |
| 12825 | ep->dted_probegen = dtrace_probegen; |
| 12826 | } |
| 12827 | |
| 12828 | if (nmatched != NULL) |
| 12829 | *nmatched = total_matched; |
| 12830 | |
| 12831 | return (0); |
| 12832 | } |
| 12833 | |
| 12834 | static void |
| 12835 | dtrace_enabling_matchall_with_cond(dtrace_match_cond_t *cond) |
| 12836 | { |
| 12837 | dtrace_enabling_t *enab; |
| 12838 | |
| 12839 | lck_mtx_lock(lck: &cpu_lock); |
| 12840 | lck_mtx_lock(lck: &dtrace_lock); |
| 12841 | |
| 12842 | /* |
| 12843 | * Iterate over all retained enablings to see if any probes match |
| 12844 | * against them. We only perform this operation on enablings for which |
| 12845 | * we have sufficient permissions by virtue of being in the global zone |
| 12846 | * or in the same zone as the DTrace client. Because we can be called |
| 12847 | * after dtrace_detach() has been called, we cannot assert that there |
| 12848 | * are retained enablings. We can safely load from dtrace_retained, |
| 12849 | * however: the taskq_destroy() at the end of dtrace_detach() will |
| 12850 | * block pending our completion. |
| 12851 | */ |
| 12852 | |
| 12853 | /* |
| 12854 | * Darwin doesn't do zones. |
| 12855 | * Behave as if always in "global" zone." |
| 12856 | */ |
| 12857 | for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { |
| 12858 | (void) dtrace_enabling_match(enab, NULL, cond); |
| 12859 | } |
| 12860 | |
| 12861 | lck_mtx_unlock(lck: &dtrace_lock); |
| 12862 | lck_mtx_unlock(lck: &cpu_lock); |
| 12863 | |
| 12864 | } |
| 12865 | |
| 12866 | static void |
| 12867 | dtrace_enabling_matchall(void) |
| 12868 | { |
| 12869 | dtrace_enabling_matchall_with_cond(NULL); |
| 12870 | } |
| 12871 | |
| 12872 | |
| 12873 | |
| 12874 | /* |
| 12875 | * If an enabling is to be enabled without having matched probes (that is, if |
| 12876 | * dtrace_state_go() is to be called on the underlying dtrace_state_t), the |
| 12877 | * enabling must be _primed_ by creating an ECB for every ECB description. |
| 12878 | * This must be done to assure that we know the number of speculations, the |
| 12879 | * number of aggregations, the minimum buffer size needed, etc. before we |
| 12880 | * transition out of DTRACE_ACTIVITY_INACTIVE. To do this without actually |
| 12881 | * enabling any probes, we create ECBs for every ECB decription, but with a |
| 12882 | * NULL probe -- which is exactly what this function does. |
| 12883 | */ |
| 12884 | static void |
| 12885 | dtrace_enabling_prime(dtrace_state_t *state) |
| 12886 | { |
| 12887 | dtrace_enabling_t *enab; |
| 12888 | int i; |
| 12889 | |
| 12890 | for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) { |
| 12891 | ASSERT(enab->dten_vstate->dtvs_state != NULL); |
| 12892 | |
| 12893 | if (enab->dten_vstate->dtvs_state != state) |
| 12894 | continue; |
| 12895 | |
| 12896 | /* |
| 12897 | * We don't want to prime an enabling more than once, lest |
| 12898 | * we allow a malicious user to induce resource exhaustion. |
| 12899 | * (The ECBs that result from priming an enabling aren't |
| 12900 | * leaked -- but they also aren't deallocated until the |
| 12901 | * consumer state is destroyed.) |
| 12902 | */ |
| 12903 | if (enab->dten_primed) |
| 12904 | continue; |
| 12905 | |
| 12906 | for (i = 0; i < enab->dten_ndesc; i++) { |
| 12907 | enab->dten_current = enab->dten_desc[i]; |
| 12908 | (void) dtrace_probe_enable(NULL, enab, NULL); |
| 12909 | } |
| 12910 | |
| 12911 | enab->dten_primed = 1; |
| 12912 | } |
| 12913 | } |
| 12914 | |
| 12915 | /* |
| 12916 | * Called to indicate that probes should be provided due to retained |
| 12917 | * enablings. This is implemented in terms of dtrace_probe_provide(), but it |
| 12918 | * must take an initial lap through the enabling calling the dtps_provide() |
| 12919 | * entry point explicitly to allow for autocreated probes. |
| 12920 | */ |
| 12921 | static void |
| 12922 | dtrace_enabling_provide(dtrace_provider_t *prv) |
| 12923 | { |
| 12924 | int i, all = 0; |
| 12925 | dtrace_probedesc_t desc; |
| 12926 | dtrace_genid_t gen; |
| 12927 | |
| 12928 | LCK_MTX_ASSERT(&dtrace_lock, LCK_MTX_ASSERT_OWNED); |
| 12929 | LCK_MTX_ASSERT(&dtrace_provider_lock, LCK_MTX_ASSERT_OWNED); |
| 12930 | |
| 12931 | if (prv == NULL) { |
| 12932 | all = 1; |
| 12933 | prv = dtrace_provider; |
| 12934 | } |
| 12935 | |
| 12936 | do { |
| 12937 | dtrace_enabling_t *enab; |
| 12938 | void *parg = prv->dtpv_arg; |
| 12939 | |
| 12940 | retry: |
| 12941 | gen = dtrace_retained_gen; |
| 12942 | for (enab = dtrace_retained; enab != NULL; |
| 12943 | enab = enab->dten_next) { |
| 12944 | for (i = 0; i < enab->dten_ndesc; i++) { |
| 12945 | desc = enab->dten_desc[i]->dted_probe; |
| 12946 | lck_mtx_unlock(lck: &dtrace_lock); |
| 12947 | prv->dtpv_pops.dtps_provide(parg, &desc); |
| 12948 | lck_mtx_lock(lck: &dtrace_lock); |
| 12949 | /* |
| 12950 | * Process the retained enablings again if |
| 12951 | * they have changed while we weren't holding |
| 12952 | * dtrace_lock. |
| 12953 | */ |
| 12954 | if (gen != dtrace_retained_gen) |
| 12955 | goto retry; |
| 12956 | } |
| 12957 | } |
| 12958 | } while (all && (prv = prv->dtpv_next) != NULL); |
| 12959 | |
| 12960 | lck_mtx_unlock(lck: &dtrace_lock); |
| 12961 | dtrace_probe_provide(NULL, prv: all ? NULL : prv); |
| 12962 | lck_mtx_lock(lck: &dtrace_lock); |
| 12963 | } |
| 12964 | |
| 12965 | /* |
| 12966 | * DTrace DOF Functions |
| 12967 | */ |
| 12968 | /*ARGSUSED*/ |
| 12969 | static void |
| 12970 | dtrace_dof_error(dof_hdr_t *dof, const char *str) |
| 12971 | { |
| 12972 | #pragma unused(dof) /* __APPLE__ */ |
| 12973 | if (dtrace_err_verbose) |
| 12974 | cmn_err(CE_WARN, "failed to process DOF: %s" , str); |
| 12975 | |
| 12976 | #ifdef DTRACE_ERRDEBUG |
| 12977 | dtrace_errdebug(str); |
| 12978 | #endif |
| 12979 | } |
| 12980 | |
| 12981 | /* |
| 12982 | * Create DOF out of a currently enabled state. Right now, we only create |
| 12983 | * DOF containing the run-time options -- but this could be expanded to create |
| 12984 | * complete DOF representing the enabled state. |
| 12985 | */ |
| 12986 | static dof_hdr_t * |
| 12987 | dtrace_dof_create(dtrace_state_t *state) |
| 12988 | { |
| 12989 | dof_hdr_t *dof; |
| 12990 | dof_sec_t *sec; |
| 12991 | dof_optdesc_t *opt; |
| 12992 | int i, len = sizeof (dof_hdr_t) + |
| 12993 | roundup(sizeof (dof_sec_t), sizeof (uint64_t)) + |
| 12994 | sizeof (dof_optdesc_t) * DTRACEOPT_MAX; |
| 12995 | |
| 12996 | LCK_MTX_ASSERT(&dtrace_lock, LCK_MTX_ASSERT_OWNED); |
| 12997 | |
| 12998 | dof = kmem_zalloc_aligned(len, 8, KM_SLEEP); |
| 12999 | dof->dofh_ident[DOF_ID_MAG0] = DOF_MAG_MAG0; |
| 13000 | dof->dofh_ident[DOF_ID_MAG1] = DOF_MAG_MAG1; |
| 13001 | dof->dofh_ident[DOF_ID_MAG2] = DOF_MAG_MAG2; |
| 13002 | dof->dofh_ident[DOF_ID_MAG3] = DOF_MAG_MAG3; |
| 13003 | |
| 13004 | dof->dofh_ident[DOF_ID_MODEL] = DOF_MODEL_NATIVE; |
| 13005 | dof->dofh_ident[DOF_ID_ENCODING] = DOF_ENCODE_NATIVE; |
| 13006 | dof->dofh_ident[DOF_ID_VERSION] = DOF_VERSION; |
| 13007 | dof->dofh_ident[DOF_ID_DIFVERS] = DIF_VERSION; |
| 13008 | dof->dofh_ident[DOF_ID_DIFIREG] = DIF_DIR_NREGS; |
| 13009 | dof->dofh_ident[DOF_ID_DIFTREG] = DIF_DTR_NREGS; |
| 13010 | |
| 13011 | dof->dofh_flags = 0; |
| 13012 | dof->dofh_hdrsize = sizeof (dof_hdr_t); |
| 13013 | dof->dofh_secsize = sizeof (dof_sec_t); |
| 13014 | dof->dofh_secnum = 1; /* only DOF_SECT_OPTDESC */ |
| 13015 | dof->dofh_secoff = sizeof (dof_hdr_t); |
| 13016 | dof->dofh_loadsz = len; |
| 13017 | dof->dofh_filesz = len; |
| 13018 | dof->dofh_pad = 0; |
| 13019 | |
| 13020 | /* |
| 13021 | * Fill in the option section header... |
| 13022 | */ |
| 13023 | sec = (dof_sec_t *)((uintptr_t)dof + sizeof (dof_hdr_t)); |
| 13024 | sec->dofs_type = DOF_SECT_OPTDESC; |
| 13025 | sec->dofs_align = sizeof (uint64_t); |
| 13026 | sec->dofs_flags = DOF_SECF_LOAD; |
| 13027 | sec->dofs_entsize = sizeof (dof_optdesc_t); |
| 13028 | |
| 13029 | opt = (dof_optdesc_t *)((uintptr_t)sec + |
| 13030 | roundup(sizeof (dof_sec_t), sizeof (uint64_t))); |
| 13031 | |
| 13032 | sec->dofs_offset = (uintptr_t)opt - (uintptr_t)dof; |
| 13033 | sec->dofs_size = sizeof (dof_optdesc_t) * DTRACEOPT_MAX; |
| 13034 | |
| 13035 | for (i = 0; i < DTRACEOPT_MAX; i++) { |
| 13036 | opt[i].dofo_option = i; |
| 13037 | opt[i].dofo_strtab = DOF_SECIDX_NONE; |
| 13038 | opt[i].dofo_value = state->dts_options[i]; |
| 13039 | } |
| 13040 | |
| 13041 | return (dof); |
| 13042 | } |
| 13043 | |
| 13044 | static dof_hdr_t * |
| 13045 | dtrace_dof_copyin(user_addr_t uarg, int *errp) |
| 13046 | { |
| 13047 | dof_hdr_t hdr, *dof; |
| 13048 | |
| 13049 | LCK_MTX_ASSERT(&dtrace_lock, LCK_MTX_ASSERT_NOTOWNED); |
| 13050 | |
| 13051 | /* |
| 13052 | * First, we're going to copyin() the sizeof (dof_hdr_t). |
| 13053 | */ |
| 13054 | if (copyin(uarg, &hdr, sizeof (hdr)) != 0) { |
| 13055 | dtrace_dof_error(NULL, str: "failed to copyin DOF header" ); |
| 13056 | *errp = EFAULT; |
| 13057 | return (NULL); |
| 13058 | } |
| 13059 | |
| 13060 | /* |
| 13061 | * Now we'll allocate the entire DOF and copy it in -- provided |
| 13062 | * that the length isn't outrageous. |
| 13063 | */ |
| 13064 | if (hdr.dofh_loadsz >= (uint64_t)dtrace_dof_maxsize) { |
| 13065 | dtrace_dof_error(dof: &hdr, str: "load size exceeds maximum" ); |
| 13066 | *errp = E2BIG; |
| 13067 | return (NULL); |
| 13068 | } |
| 13069 | |
| 13070 | if (hdr.dofh_loadsz < sizeof (hdr)) { |
| 13071 | dtrace_dof_error(dof: &hdr, str: "invalid load size" ); |
| 13072 | *errp = EINVAL; |
| 13073 | return (NULL); |
| 13074 | } |
| 13075 | |
| 13076 | dof = kmem_alloc_aligned(hdr.dofh_loadsz, 8, KM_SLEEP); |
| 13077 | |
| 13078 | if (copyin(uarg, dof, hdr.dofh_loadsz) != 0 || |
| 13079 | dof->dofh_loadsz != hdr.dofh_loadsz) { |
| 13080 | kmem_free_aligned(dof, hdr.dofh_loadsz); |
| 13081 | *errp = EFAULT; |
| 13082 | return (NULL); |
| 13083 | } |
| 13084 | |
| 13085 | return (dof); |
| 13086 | } |
| 13087 | |
| 13088 | static dof_hdr_t * |
| 13089 | dtrace_dof_copyin_from_proc(proc_t* p, user_addr_t uarg, int *errp) |
| 13090 | { |
| 13091 | dof_hdr_t hdr, *dof; |
| 13092 | |
| 13093 | LCK_MTX_ASSERT(&dtrace_lock, LCK_MTX_ASSERT_NOTOWNED); |
| 13094 | |
| 13095 | /* |
| 13096 | * First, we're going to copyin() the sizeof (dof_hdr_t). |
| 13097 | */ |
| 13098 | if (uread(p, buf: &hdr, len: sizeof(hdr), a: uarg) != KERN_SUCCESS) { |
| 13099 | dtrace_dof_error(NULL, str: "failed to copyin DOF header" ); |
| 13100 | *errp = EFAULT; |
| 13101 | return (NULL); |
| 13102 | } |
| 13103 | |
| 13104 | /* |
| 13105 | * Now we'll allocate the entire DOF and copy it in -- provided |
| 13106 | * that the length isn't outrageous. |
| 13107 | */ |
| 13108 | if (hdr.dofh_loadsz >= (uint64_t)dtrace_dof_maxsize) { |
| 13109 | dtrace_dof_error(dof: &hdr, str: "load size exceeds maximum" ); |
| 13110 | *errp = E2BIG; |
| 13111 | return (NULL); |
| 13112 | } |
| 13113 | |
| 13114 | if (hdr.dofh_loadsz < sizeof (hdr)) { |
| 13115 | dtrace_dof_error(dof: &hdr, str: "invalid load size" ); |
| 13116 | *errp = EINVAL; |
| 13117 | return (NULL); |
| 13118 | } |
| 13119 | |
| 13120 | dof = kmem_alloc_aligned(hdr.dofh_loadsz, 8, KM_SLEEP); |
| 13121 | |
| 13122 | if (uread(p, buf: dof, len: hdr.dofh_loadsz, a: uarg) != KERN_SUCCESS || |
| 13123 | dof->dofh_loadsz != hdr.dofh_loadsz) { |
| 13124 | kmem_free_aligned(dof, hdr.dofh_loadsz); |
| 13125 | *errp = EFAULT; |
| 13126 | return (NULL); |
| 13127 | } |
| 13128 | |
| 13129 | return (dof); |
| 13130 | } |
| 13131 | |
| 13132 | static void |
| 13133 | dtrace_dof_destroy(dof_hdr_t *dof) |
| 13134 | { |
| 13135 | kmem_free_aligned(dof, dof->dofh_loadsz); |
| 13136 | } |
| 13137 | |
| 13138 | static dof_hdr_t * |
| 13139 | dtrace_dof_property(const char *name) |
| 13140 | { |
| 13141 | unsigned int len = 0; |
| 13142 | dof_hdr_t *dof; |
| 13143 | |
| 13144 | if (dtrace_is_restricted() && !dtrace_are_restrictions_relaxed()) { |
| 13145 | return NULL; |
| 13146 | } |
| 13147 | |
| 13148 | if (!PEReadNVRAMProperty(symbol: name, NULL, len: &len)) { |
| 13149 | return NULL; |
| 13150 | } |
| 13151 | |
| 13152 | dof = kmem_alloc_aligned(len, 8, KM_SLEEP); |
| 13153 | |
| 13154 | if (!PEReadNVRAMProperty(symbol: name, value: dof, len: &len)) { |
| 13155 | dtrace_dof_destroy(dof); |
| 13156 | dtrace_dof_error(NULL, str: "unreadable DOF" ); |
| 13157 | return NULL; |
| 13158 | } |
| 13159 | |
| 13160 | if (len < sizeof (dof_hdr_t)) { |
| 13161 | dtrace_dof_destroy(dof); |
| 13162 | dtrace_dof_error(NULL, str: "truncated header" ); |
| 13163 | return (NULL); |
| 13164 | } |
| 13165 | |
| 13166 | if (len < dof->dofh_loadsz) { |
| 13167 | dtrace_dof_destroy(dof); |
| 13168 | dtrace_dof_error(NULL, str: "truncated DOF" ); |
| 13169 | return (NULL); |
| 13170 | } |
| 13171 | |
| 13172 | if (len != dof->dofh_loadsz) { |
| 13173 | dtrace_dof_destroy(dof); |
| 13174 | dtrace_dof_error(NULL, str: "invalid DOF size" ); |
| 13175 | return (NULL); |
| 13176 | } |
| 13177 | |
| 13178 | if (dof->dofh_loadsz >= (uint64_t)dtrace_dof_maxsize) { |
| 13179 | dtrace_dof_destroy(dof); |
| 13180 | dtrace_dof_error(NULL, str: "oversized DOF" ); |
| 13181 | return (NULL); |
| 13182 | } |
| 13183 | |
| 13184 | return (dof); |
| 13185 | } |
| 13186 | |
| 13187 | /* |
| 13188 | * Return the dof_sec_t pointer corresponding to a given section index. If the |
| 13189 | * index is not valid, dtrace_dof_error() is called and NULL is returned. If |
| 13190 | * a type other than DOF_SECT_NONE is specified, the header is checked against |
| 13191 | * this type and NULL is returned if the types do not match. |
| 13192 | */ |
| 13193 | static dof_sec_t * |
| 13194 | dtrace_dof_sect(dof_hdr_t *dof, uint32_t type, dof_secidx_t i) |
| 13195 | { |
| 13196 | dof_sec_t *sec = (dof_sec_t *)(uintptr_t) |
| 13197 | ((uintptr_t)dof + dof->dofh_secoff + i * dof->dofh_secsize); |
| 13198 | |
| 13199 | if (i >= dof->dofh_secnum) { |
| 13200 | dtrace_dof_error(dof, str: "referenced section index is invalid" ); |
| 13201 | return (NULL); |
| 13202 | } |
| 13203 | |
| 13204 | if (!(sec->dofs_flags & DOF_SECF_LOAD)) { |
| 13205 | dtrace_dof_error(dof, str: "referenced section is not loadable" ); |
| 13206 | return (NULL); |
| 13207 | } |
| 13208 | |
| 13209 | if (type != DOF_SECT_NONE && type != sec->dofs_type) { |
| 13210 | dtrace_dof_error(dof, str: "referenced section is the wrong type" ); |
| 13211 | return (NULL); |
| 13212 | } |
| 13213 | |
| 13214 | return (sec); |
| 13215 | } |
| 13216 | |
| 13217 | static dtrace_probedesc_t * |
| 13218 | dtrace_dof_probedesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_probedesc_t *desc) |
| 13219 | { |
| 13220 | dof_probedesc_t *probe; |
| 13221 | dof_sec_t *strtab; |
| 13222 | uintptr_t daddr = (uintptr_t)dof; |
| 13223 | uintptr_t str; |
| 13224 | size_t size; |
| 13225 | |
| 13226 | if (sec->dofs_type != DOF_SECT_PROBEDESC) { |
| 13227 | dtrace_dof_error(dof, str: "invalid probe section" ); |
| 13228 | return (NULL); |
| 13229 | } |
| 13230 | |
| 13231 | if (sec->dofs_align != sizeof (dof_secidx_t)) { |
| 13232 | dtrace_dof_error(dof, str: "bad alignment in probe description" ); |
| 13233 | return (NULL); |
| 13234 | } |
| 13235 | |
| 13236 | if (sec->dofs_offset + sizeof (dof_probedesc_t) > dof->dofh_loadsz) { |
| 13237 | dtrace_dof_error(dof, str: "truncated probe description" ); |
| 13238 | return (NULL); |
| 13239 | } |
| 13240 | |
| 13241 | probe = (dof_probedesc_t *)(uintptr_t)(daddr + sec->dofs_offset); |
| 13242 | strtab = dtrace_dof_sect(dof, DOF_SECT_STRTAB, i: probe->dofp_strtab); |
| 13243 | |
| 13244 | if (strtab == NULL) |
| 13245 | return (NULL); |
| 13246 | |
| 13247 | str = daddr + strtab->dofs_offset; |
| 13248 | size = strtab->dofs_size; |
| 13249 | |
| 13250 | if (probe->dofp_provider >= strtab->dofs_size) { |
| 13251 | dtrace_dof_error(dof, str: "corrupt probe provider" ); |
| 13252 | return (NULL); |
| 13253 | } |
| 13254 | |
| 13255 | (void) strncpy(desc->dtpd_provider, |
| 13256 | (char *)(str + probe->dofp_provider), |
| 13257 | MIN(DTRACE_PROVNAMELEN - 1, size - probe->dofp_provider)); |
| 13258 | |
| 13259 | /* APPLE NOTE: Darwin employs size bounded string operation. */ |
| 13260 | desc->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; |
| 13261 | |
| 13262 | if (probe->dofp_mod >= strtab->dofs_size) { |
| 13263 | dtrace_dof_error(dof, str: "corrupt probe module" ); |
| 13264 | return (NULL); |
| 13265 | } |
| 13266 | |
| 13267 | (void) strncpy(desc->dtpd_mod, (char *)(str + probe->dofp_mod), |
| 13268 | MIN(DTRACE_MODNAMELEN - 1, size - probe->dofp_mod)); |
| 13269 | |
| 13270 | /* APPLE NOTE: Darwin employs size bounded string operation. */ |
| 13271 | desc->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; |
| 13272 | |
| 13273 | if (probe->dofp_func >= strtab->dofs_size) { |
| 13274 | dtrace_dof_error(dof, str: "corrupt probe function" ); |
| 13275 | return (NULL); |
| 13276 | } |
| 13277 | |
| 13278 | (void) strncpy(desc->dtpd_func, (char *)(str + probe->dofp_func), |
| 13279 | MIN(DTRACE_FUNCNAMELEN - 1, size - probe->dofp_func)); |
| 13280 | |
| 13281 | /* APPLE NOTE: Darwin employs size bounded string operation. */ |
| 13282 | desc->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; |
| 13283 | |
| 13284 | if (probe->dofp_name >= strtab->dofs_size) { |
| 13285 | dtrace_dof_error(dof, str: "corrupt probe name" ); |
| 13286 | return (NULL); |
| 13287 | } |
| 13288 | |
| 13289 | (void) strncpy(desc->dtpd_name, (char *)(str + probe->dofp_name), |
| 13290 | MIN(DTRACE_NAMELEN - 1, size - probe->dofp_name)); |
| 13291 | |
| 13292 | /* APPLE NOTE: Darwin employs size bounded string operation. */ |
| 13293 | desc->dtpd_name[DTRACE_NAMELEN - 1] = '\0'; |
| 13294 | |
| 13295 | return (desc); |
| 13296 | } |
| 13297 | |
| 13298 | static dtrace_difo_t * |
| 13299 | dtrace_dof_difo(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, |
| 13300 | cred_t *cr) |
| 13301 | { |
| 13302 | dtrace_difo_t *dp; |
| 13303 | size_t ttl = 0; |
| 13304 | dof_difohdr_t *dofd; |
| 13305 | uintptr_t daddr = (uintptr_t)dof; |
| 13306 | size_t max_size = dtrace_difo_maxsize; |
| 13307 | uint_t i; |
| 13308 | int l, n; |
| 13309 | |
| 13310 | |
| 13311 | static const struct { |
| 13312 | int section; |
| 13313 | int bufoffs; |
| 13314 | int lenoffs; |
| 13315 | int entsize; |
| 13316 | int align; |
| 13317 | const char *msg; |
| 13318 | } difo[] = { |
| 13319 | { DOF_SECT_DIF, offsetof(dtrace_difo_t, dtdo_buf), |
| 13320 | offsetof(dtrace_difo_t, dtdo_len), .lenoffs: sizeof (dif_instr_t), |
| 13321 | .entsize: sizeof (dif_instr_t), .align: "multiple DIF sections" }, |
| 13322 | |
| 13323 | { DOF_SECT_INTTAB, offsetof(dtrace_difo_t, dtdo_inttab), |
| 13324 | offsetof(dtrace_difo_t, dtdo_intlen), .entsize: sizeof (uint64_t), |
| 13325 | .align: sizeof (uint64_t), .msg: "multiple integer tables" }, |
| 13326 | |
| 13327 | { DOF_SECT_STRTAB, offsetof(dtrace_difo_t, dtdo_strtab), |
| 13328 | offsetof(dtrace_difo_t, dtdo_strlen), .entsize: 0, |
| 13329 | .align: sizeof (char), .msg: "multiple string tables" }, |
| 13330 | |
| 13331 | { DOF_SECT_VARTAB, offsetof(dtrace_difo_t, dtdo_vartab), |
| 13332 | offsetof(dtrace_difo_t, dtdo_varlen), .entsize: sizeof (dtrace_difv_t), |
| 13333 | .align: sizeof (uint_t), .msg: "multiple variable tables" }, |
| 13334 | |
| 13335 | { DOF_SECT_NONE, .bufoffs: 0, .lenoffs: 0, .entsize: 0, .align: 0, NULL } |
| 13336 | }; |
| 13337 | |
| 13338 | if (sec->dofs_type != DOF_SECT_DIFOHDR) { |
| 13339 | dtrace_dof_error(dof, str: "invalid DIFO header section" ); |
| 13340 | return (NULL); |
| 13341 | } |
| 13342 | |
| 13343 | if (sec->dofs_align != sizeof (dof_secidx_t)) { |
| 13344 | dtrace_dof_error(dof, str: "bad alignment in DIFO header" ); |
| 13345 | return (NULL); |
| 13346 | } |
| 13347 | |
| 13348 | if (sec->dofs_size < sizeof (dof_difohdr_t) || |
| 13349 | sec->dofs_size % sizeof (dof_secidx_t)) { |
| 13350 | dtrace_dof_error(dof, str: "bad size in DIFO header" ); |
| 13351 | return (NULL); |
| 13352 | } |
| 13353 | |
| 13354 | dofd = (dof_difohdr_t *)(uintptr_t)(daddr + sec->dofs_offset); |
| 13355 | n = (sec->dofs_size - sizeof (*dofd)) / sizeof (dof_secidx_t) + 1; |
| 13356 | |
| 13357 | dp = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP); |
| 13358 | dp->dtdo_rtype = dofd->dofd_rtype; |
| 13359 | |
| 13360 | for (l = 0; l < n; l++) { |
| 13361 | dof_sec_t *subsec; |
| 13362 | void **bufp; |
| 13363 | uint32_t *lenp; |
| 13364 | |
| 13365 | if ((subsec = dtrace_dof_sect(dof, DOF_SECT_NONE, |
| 13366 | i: dofd->dofd_links[l])) == NULL) |
| 13367 | goto err; /* invalid section link */ |
| 13368 | |
| 13369 | if (ttl + subsec->dofs_size > max_size) { |
| 13370 | dtrace_dof_error(dof, str: "exceeds maximum size" ); |
| 13371 | goto err; |
| 13372 | } |
| 13373 | |
| 13374 | ttl += subsec->dofs_size; |
| 13375 | |
| 13376 | for (i = 0; difo[i].section != DOF_SECT_NONE; i++) { |
| 13377 | |
| 13378 | if (subsec->dofs_type != (uint32_t)difo[i].section) |
| 13379 | continue; |
| 13380 | |
| 13381 | if (!(subsec->dofs_flags & DOF_SECF_LOAD)) { |
| 13382 | dtrace_dof_error(dof, str: "section not loaded" ); |
| 13383 | goto err; |
| 13384 | } |
| 13385 | |
| 13386 | if (subsec->dofs_align != (uint32_t)difo[i].align) { |
| 13387 | dtrace_dof_error(dof, str: "bad alignment" ); |
| 13388 | goto err; |
| 13389 | } |
| 13390 | |
| 13391 | bufp = (void **)((uintptr_t)dp + difo[i].bufoffs); |
| 13392 | lenp = (uint32_t *)((uintptr_t)dp + difo[i].lenoffs); |
| 13393 | |
| 13394 | if (*bufp != NULL) { |
| 13395 | dtrace_dof_error(dof, str: difo[i].msg); |
| 13396 | goto err; |
| 13397 | } |
| 13398 | |
| 13399 | if ((uint32_t)difo[i].entsize != subsec->dofs_entsize) { |
| 13400 | dtrace_dof_error(dof, str: "entry size mismatch" ); |
| 13401 | goto err; |
| 13402 | } |
| 13403 | |
| 13404 | if (subsec->dofs_entsize != 0 && |
| 13405 | (subsec->dofs_size % subsec->dofs_entsize) != 0) { |
| 13406 | dtrace_dof_error(dof, str: "corrupt entry size" ); |
| 13407 | goto err; |
| 13408 | } |
| 13409 | |
| 13410 | *lenp = subsec->dofs_size; |
| 13411 | *bufp = kmem_alloc(subsec->dofs_size, KM_SLEEP); |
| 13412 | bcopy(src: (char *)(uintptr_t)(daddr + subsec->dofs_offset), |
| 13413 | dst: *bufp, n: subsec->dofs_size); |
| 13414 | |
| 13415 | if (subsec->dofs_entsize != 0) |
| 13416 | *lenp /= subsec->dofs_entsize; |
| 13417 | |
| 13418 | break; |
| 13419 | } |
| 13420 | |
| 13421 | /* |
| 13422 | * If we encounter a loadable DIFO sub-section that is not |
| 13423 | * known to us, assume this is a broken program and fail. |
| 13424 | */ |
| 13425 | if (difo[i].section == DOF_SECT_NONE && |
| 13426 | (subsec->dofs_flags & DOF_SECF_LOAD)) { |
| 13427 | dtrace_dof_error(dof, str: "unrecognized DIFO subsection" ); |
| 13428 | goto err; |
| 13429 | } |
| 13430 | } |
| 13431 | |
| 13432 | if (dp->dtdo_buf == NULL) { |
| 13433 | /* |
| 13434 | * We can't have a DIF object without DIF text. |
| 13435 | */ |
| 13436 | dtrace_dof_error(dof, str: "missing DIF text" ); |
| 13437 | goto err; |
| 13438 | } |
| 13439 | |
| 13440 | /* |
| 13441 | * Before we validate the DIF object, run through the variable table |
| 13442 | * looking for the strings -- if any of their size are under, we'll set |
| 13443 | * their size to be the system-wide default string size. Note that |
| 13444 | * this should _not_ happen if the "strsize" option has been set -- |
| 13445 | * in this case, the compiler should have set the size to reflect the |
| 13446 | * setting of the option. |
| 13447 | */ |
| 13448 | for (i = 0; i < dp->dtdo_varlen; i++) { |
| 13449 | dtrace_difv_t *v = &dp->dtdo_vartab[i]; |
| 13450 | dtrace_diftype_t *t = &v->dtdv_type; |
| 13451 | |
| 13452 | if (v->dtdv_id < DIF_VAR_OTHER_UBASE) |
| 13453 | continue; |
| 13454 | |
| 13455 | if (t->dtdt_kind == DIF_TYPE_STRING && t->dtdt_size == 0) |
| 13456 | t->dtdt_size = dtrace_strsize_default; |
| 13457 | } |
| 13458 | |
| 13459 | if (dtrace_difo_validate(dp, vstate, DIF_DIR_NREGS, cr) != 0) |
| 13460 | goto err; |
| 13461 | |
| 13462 | dtrace_difo_init(dp, vstate); |
| 13463 | return (dp); |
| 13464 | |
| 13465 | err: |
| 13466 | kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t)); |
| 13467 | kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t)); |
| 13468 | kmem_free(dp->dtdo_strtab, dp->dtdo_strlen); |
| 13469 | kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t)); |
| 13470 | |
| 13471 | kmem_free(dp, sizeof (dtrace_difo_t)); |
| 13472 | return (NULL); |
| 13473 | } |
| 13474 | |
| 13475 | static dtrace_predicate_t * |
| 13476 | dtrace_dof_predicate(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, |
| 13477 | cred_t *cr) |
| 13478 | { |
| 13479 | dtrace_difo_t *dp; |
| 13480 | |
| 13481 | if ((dp = dtrace_dof_difo(dof, sec, vstate, cr)) == NULL) |
| 13482 | return (NULL); |
| 13483 | |
| 13484 | return (dtrace_predicate_create(dp)); |
| 13485 | } |
| 13486 | |
| 13487 | static dtrace_actdesc_t * |
| 13488 | dtrace_dof_actdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, |
| 13489 | cred_t *cr) |
| 13490 | { |
| 13491 | dtrace_actdesc_t *act, *first = NULL, *last = NULL, *next; |
| 13492 | dof_actdesc_t *desc; |
| 13493 | dof_sec_t *difosec; |
| 13494 | size_t offs; |
| 13495 | uintptr_t daddr = (uintptr_t)dof; |
| 13496 | uint64_t arg; |
| 13497 | dtrace_actkind_t kind; |
| 13498 | |
| 13499 | if (sec->dofs_type != DOF_SECT_ACTDESC) { |
| 13500 | dtrace_dof_error(dof, str: "invalid action section" ); |
| 13501 | return (NULL); |
| 13502 | } |
| 13503 | |
| 13504 | if (sec->dofs_offset + sizeof (dof_actdesc_t) > dof->dofh_loadsz) { |
| 13505 | dtrace_dof_error(dof, str: "truncated action description" ); |
| 13506 | return (NULL); |
| 13507 | } |
| 13508 | |
| 13509 | if (sec->dofs_align != sizeof (uint64_t)) { |
| 13510 | dtrace_dof_error(dof, str: "bad alignment in action description" ); |
| 13511 | return (NULL); |
| 13512 | } |
| 13513 | |
| 13514 | if (sec->dofs_size < sec->dofs_entsize) { |
| 13515 | dtrace_dof_error(dof, str: "section entry size exceeds total size" ); |
| 13516 | return (NULL); |
| 13517 | } |
| 13518 | |
| 13519 | if (sec->dofs_entsize != sizeof (dof_actdesc_t)) { |
| 13520 | dtrace_dof_error(dof, str: "bad entry size in action description" ); |
| 13521 | return (NULL); |
| 13522 | } |
| 13523 | |
| 13524 | if (sec->dofs_size / sec->dofs_entsize > dtrace_actions_max) { |
| 13525 | dtrace_dof_error(dof, str: "actions exceed dtrace_actions_max" ); |
| 13526 | return (NULL); |
| 13527 | } |
| 13528 | |
| 13529 | for (offs = 0; offs < sec->dofs_size; offs += sec->dofs_entsize) { |
| 13530 | desc = (dof_actdesc_t *)(daddr + |
| 13531 | (uintptr_t)sec->dofs_offset + offs); |
| 13532 | kind = (dtrace_actkind_t)desc->dofa_kind; |
| 13533 | |
| 13534 | if ((DTRACEACT_ISPRINTFLIKE(kind) && |
| 13535 | (kind != DTRACEACT_PRINTA || desc->dofa_strtab != DOF_SECIDX_NONE)) || |
| 13536 | (kind == DTRACEACT_DIFEXPR && desc->dofa_strtab != DOF_SECIDX_NONE)) |
| 13537 | { |
| 13538 | dof_sec_t *strtab; |
| 13539 | char *str, *fmt; |
| 13540 | uint64_t i; |
| 13541 | |
| 13542 | /* |
| 13543 | * The argument to these actions is an index into the |
| 13544 | * DOF string table. For printf()-like actions, this |
| 13545 | * is the format string. For print(), this is the |
| 13546 | * CTF type of the expression result. |
| 13547 | */ |
| 13548 | if ((strtab = dtrace_dof_sect(dof, |
| 13549 | DOF_SECT_STRTAB, i: desc->dofa_strtab)) == NULL) |
| 13550 | goto err; |
| 13551 | |
| 13552 | str = (char *)((uintptr_t)dof + |
| 13553 | (uintptr_t)strtab->dofs_offset); |
| 13554 | |
| 13555 | for (i = desc->dofa_arg; i < strtab->dofs_size; i++) { |
| 13556 | if (str[i] == '\0') |
| 13557 | break; |
| 13558 | } |
| 13559 | |
| 13560 | if (i >= strtab->dofs_size) { |
| 13561 | dtrace_dof_error(dof, str: "bogus format string" ); |
| 13562 | goto err; |
| 13563 | } |
| 13564 | |
| 13565 | if (i == desc->dofa_arg) { |
| 13566 | dtrace_dof_error(dof, str: "empty format string" ); |
| 13567 | goto err; |
| 13568 | } |
| 13569 | |
| 13570 | i -= desc->dofa_arg; |
| 13571 | fmt = kmem_alloc(i + 1, KM_SLEEP); |
| 13572 | bcopy(src: &str[desc->dofa_arg], dst: fmt, n: i + 1); |
| 13573 | arg = (uint64_t)(uintptr_t)fmt; |
| 13574 | } else { |
| 13575 | if (kind == DTRACEACT_PRINTA) { |
| 13576 | ASSERT(desc->dofa_strtab == DOF_SECIDX_NONE); |
| 13577 | arg = 0; |
| 13578 | } else { |
| 13579 | arg = desc->dofa_arg; |
| 13580 | } |
| 13581 | } |
| 13582 | |
| 13583 | act = dtrace_actdesc_create(kind, ntuple: desc->dofa_ntuple, |
| 13584 | uarg: desc->dofa_uarg, arg); |
| 13585 | |
| 13586 | if (last != NULL) { |
| 13587 | last->dtad_next = act; |
| 13588 | } else { |
| 13589 | first = act; |
| 13590 | } |
| 13591 | |
| 13592 | last = act; |
| 13593 | |
| 13594 | if (desc->dofa_difo == DOF_SECIDX_NONE) |
| 13595 | continue; |
| 13596 | |
| 13597 | if ((difosec = dtrace_dof_sect(dof, |
| 13598 | DOF_SECT_DIFOHDR, i: desc->dofa_difo)) == NULL) |
| 13599 | goto err; |
| 13600 | |
| 13601 | act->dtad_difo = dtrace_dof_difo(dof, sec: difosec, vstate, cr); |
| 13602 | |
| 13603 | if (act->dtad_difo == NULL) |
| 13604 | goto err; |
| 13605 | } |
| 13606 | |
| 13607 | ASSERT(first != NULL); |
| 13608 | return (first); |
| 13609 | |
| 13610 | err: |
| 13611 | for (act = first; act != NULL; act = next) { |
| 13612 | next = act->dtad_next; |
| 13613 | dtrace_actdesc_release(act, vstate); |
| 13614 | } |
| 13615 | |
| 13616 | return (NULL); |
| 13617 | } |
| 13618 | |
| 13619 | static dtrace_ecbdesc_t * |
| 13620 | dtrace_dof_ecbdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate, |
| 13621 | cred_t *cr) |
| 13622 | { |
| 13623 | dtrace_ecbdesc_t *ep; |
| 13624 | dof_ecbdesc_t *ecb; |
| 13625 | dtrace_probedesc_t *desc; |
| 13626 | dtrace_predicate_t *pred = NULL; |
| 13627 | |
| 13628 | if (sec->dofs_size < sizeof (dof_ecbdesc_t)) { |
| 13629 | dtrace_dof_error(dof, str: "truncated ECB description" ); |
| 13630 | return (NULL); |
| 13631 | } |
| 13632 | |
| 13633 | if (sec->dofs_align != sizeof (uint64_t)) { |
| 13634 | dtrace_dof_error(dof, str: "bad alignment in ECB description" ); |
| 13635 | return (NULL); |
| 13636 | } |
| 13637 | |
| 13638 | ecb = (dof_ecbdesc_t *)((uintptr_t)dof + (uintptr_t)sec->dofs_offset); |
| 13639 | sec = dtrace_dof_sect(dof, DOF_SECT_PROBEDESC, i: ecb->dofe_probes); |
| 13640 | |
| 13641 | if (sec == NULL) |
| 13642 | return (NULL); |
| 13643 | |
| 13644 | ep = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP); |
| 13645 | ep->dted_uarg = ecb->dofe_uarg; |
| 13646 | desc = &ep->dted_probe; |
| 13647 | |
| 13648 | if (dtrace_dof_probedesc(dof, sec, desc) == NULL) |
| 13649 | goto err; |
| 13650 | |
| 13651 | if (ecb->dofe_pred != DOF_SECIDX_NONE) { |
| 13652 | if ((sec = dtrace_dof_sect(dof, |
| 13653 | DOF_SECT_DIFOHDR, i: ecb->dofe_pred)) == NULL) |
| 13654 | goto err; |
| 13655 | |
| 13656 | if ((pred = dtrace_dof_predicate(dof, sec, vstate, cr)) == NULL) |
| 13657 | goto err; |
| 13658 | |
| 13659 | ep->dted_pred.dtpdd_predicate = pred; |
| 13660 | } |
| 13661 | |
| 13662 | if (ecb->dofe_actions != DOF_SECIDX_NONE) { |
| 13663 | if ((sec = dtrace_dof_sect(dof, |
| 13664 | DOF_SECT_ACTDESC, i: ecb->dofe_actions)) == NULL) |
| 13665 | goto err; |
| 13666 | |
| 13667 | ep->dted_action = dtrace_dof_actdesc(dof, sec, vstate, cr); |
| 13668 | |
| 13669 | if (ep->dted_action == NULL) |
| 13670 | goto err; |
| 13671 | } |
| 13672 | |
| 13673 | return (ep); |
| 13674 | |
| 13675 | err: |
| 13676 | if (pred != NULL) |
| 13677 | dtrace_predicate_release(pred, vstate); |
| 13678 | kmem_free(ep, sizeof (dtrace_ecbdesc_t)); |
| 13679 | return (NULL); |
| 13680 | } |
| 13681 | |
| 13682 | /* |
| 13683 | * APPLE NOTE: dyld handles dof relocation. |
| 13684 | * Darwin does not need dtrace_dof_relocate() |
| 13685 | */ |
| 13686 | |
| 13687 | /* |
| 13688 | * The dof_hdr_t passed to dtrace_dof_slurp() should be a partially validated |
| 13689 | * header: it should be at the front of a memory region that is at least |
| 13690 | * sizeof (dof_hdr_t) in size -- and then at least dof_hdr.dofh_loadsz in |
| 13691 | * size. It need not be validated in any other way. |
| 13692 | */ |
| 13693 | static int |
| 13694 | dtrace_dof_slurp(dof_hdr_t *dof, dtrace_vstate_t *vstate, cred_t *cr, |
| 13695 | dtrace_enabling_t **enabp, uint64_t ubase, int noprobes) |
| 13696 | { |
| 13697 | #pragma unused(ubase) /* __APPLE__ */ |
| 13698 | uint64_t len = dof->dofh_loadsz, seclen; |
| 13699 | uintptr_t daddr = (uintptr_t)dof; |
| 13700 | dtrace_ecbdesc_t *ep; |
| 13701 | dtrace_enabling_t *enab; |
| 13702 | uint_t i; |
| 13703 | |
| 13704 | LCK_MTX_ASSERT(&dtrace_lock, LCK_MTX_ASSERT_OWNED); |
| 13705 | ASSERT(dof->dofh_loadsz >= sizeof (dof_hdr_t)); |
| 13706 | |
| 13707 | /* |
| 13708 | * Check the DOF header identification bytes. In addition to checking |
| 13709 | * valid settings, we also verify that unused bits/bytes are zeroed so |
| 13710 | * we can use them later without fear of regressing existing binaries. |
| 13711 | */ |
| 13712 | if (bcmp(s1: &dof->dofh_ident[DOF_ID_MAG0], |
| 13713 | DOF_MAG_STRING, DOF_MAG_STRLEN) != 0) { |
| 13714 | dtrace_dof_error(dof, str: "DOF magic string mismatch" ); |
| 13715 | return (-1); |
| 13716 | } |
| 13717 | |
| 13718 | if (dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_ILP32 && |
| 13719 | dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_LP64) { |
| 13720 | dtrace_dof_error(dof, str: "DOF has invalid data model" ); |
| 13721 | return (-1); |
| 13722 | } |
| 13723 | |
| 13724 | if (dof->dofh_ident[DOF_ID_ENCODING] != DOF_ENCODE_NATIVE) { |
| 13725 | dtrace_dof_error(dof, str: "DOF encoding mismatch" ); |
| 13726 | return (-1); |
| 13727 | } |
| 13728 | |
| 13729 | /* |
| 13730 | * APPLE NOTE: Darwin only supports DOF_VERSION_3 for now. |
| 13731 | */ |
| 13732 | if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_3) { |
| 13733 | dtrace_dof_error(dof, str: "DOF version mismatch" ); |
| 13734 | return (-1); |
| 13735 | } |
| 13736 | |
| 13737 | if (dof->dofh_ident[DOF_ID_DIFVERS] != DIF_VERSION_2) { |
| 13738 | dtrace_dof_error(dof, str: "DOF uses unsupported instruction set" ); |
| 13739 | return (-1); |
| 13740 | } |
| 13741 | |
| 13742 | if (dof->dofh_ident[DOF_ID_DIFIREG] > DIF_DIR_NREGS) { |
| 13743 | dtrace_dof_error(dof, str: "DOF uses too many integer registers" ); |
| 13744 | return (-1); |
| 13745 | } |
| 13746 | |
| 13747 | if (dof->dofh_ident[DOF_ID_DIFTREG] > DIF_DTR_NREGS) { |
| 13748 | dtrace_dof_error(dof, str: "DOF uses too many tuple registers" ); |
| 13749 | return (-1); |
| 13750 | } |
| 13751 | |
| 13752 | for (i = DOF_ID_PAD; i < DOF_ID_SIZE; i++) { |
| 13753 | if (dof->dofh_ident[i] != 0) { |
| 13754 | dtrace_dof_error(dof, str: "DOF has invalid ident byte set" ); |
| 13755 | return (-1); |
| 13756 | } |
| 13757 | } |
| 13758 | |
| 13759 | if (dof->dofh_flags & ~DOF_FL_VALID) { |
| 13760 | dtrace_dof_error(dof, str: "DOF has invalid flag bits set" ); |
| 13761 | return (-1); |
| 13762 | } |
| 13763 | |
| 13764 | if (dof->dofh_secsize < sizeof(dof_sec_t)) { |
| 13765 | dtrace_dof_error(dof, str: "invalid section header size" ); |
| 13766 | return (-1); |
| 13767 | } |
| 13768 | |
| 13769 | /* |
| 13770 | * Check that the section headers don't exceed the amount of DOF |
| 13771 | * data. Note that we cast the section size and number of sections |
| 13772 | * to uint64_t's to prevent possible overflow in the multiplication. |
| 13773 | */ |
| 13774 | seclen = (uint64_t)dof->dofh_secnum * (uint64_t)dof->dofh_secsize; |
| 13775 | |
| 13776 | if (dof->dofh_secoff > len || seclen > len || |
| 13777 | dof->dofh_secoff + seclen > len) { |
| 13778 | dtrace_dof_error(dof, str: "truncated section headers" ); |
| 13779 | return (-1); |
| 13780 | } |
| 13781 | |
| 13782 | if (!IS_P2ALIGNED(dof->dofh_secoff, sizeof (uint64_t))) { |
| 13783 | dtrace_dof_error(dof, str: "misaligned section headers" ); |
| 13784 | return (-1); |
| 13785 | } |
| 13786 | |
| 13787 | if (!IS_P2ALIGNED(dof->dofh_secsize, sizeof (uint64_t))) { |
| 13788 | dtrace_dof_error(dof, str: "misaligned section size" ); |
| 13789 | return (-1); |
| 13790 | } |
| 13791 | |
| 13792 | /* |
| 13793 | * Take an initial pass through the section headers to be sure that |
| 13794 | * the headers don't have stray offsets. If the 'noprobes' flag is |
| 13795 | * set, do not permit sections relating to providers, probes, or args. |
| 13796 | */ |
| 13797 | for (i = 0; i < dof->dofh_secnum; i++) { |
| 13798 | dof_sec_t *sec = (dof_sec_t *)(daddr + |
| 13799 | (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); |
| 13800 | |
| 13801 | if (noprobes) { |
| 13802 | switch (sec->dofs_type) { |
| 13803 | case DOF_SECT_PROVIDER: |
| 13804 | case DOF_SECT_PROBES: |
| 13805 | case DOF_SECT_PRARGS: |
| 13806 | case DOF_SECT_PROFFS: |
| 13807 | dtrace_dof_error(dof, str: "illegal sections " |
| 13808 | "for enabling" ); |
| 13809 | return (-1); |
| 13810 | } |
| 13811 | } |
| 13812 | |
| 13813 | if (sec->dofs_align & (sec->dofs_align - 1)) { |
| 13814 | dtrace_dof_error(dof, str: "bad section alignment" ); |
| 13815 | return (-1); |
| 13816 | } |
| 13817 | |
| 13818 | if (sec->dofs_offset & (sec->dofs_align - 1)) { |
| 13819 | dtrace_dof_error(dof, str: "misaligned section" ); |
| 13820 | return (-1); |
| 13821 | } |
| 13822 | |
| 13823 | if (sec->dofs_flags & DOF_SECF_LOAD) { |
| 13824 | len = dof->dofh_loadsz; |
| 13825 | } else { |
| 13826 | len = dof->dofh_filesz; |
| 13827 | } |
| 13828 | |
| 13829 | if (sec->dofs_offset > len || sec->dofs_size > len || |
| 13830 | sec->dofs_offset + sec->dofs_size > len) { |
| 13831 | dtrace_dof_error(dof, str: "corrupt section header" ); |
| 13832 | return (-1); |
| 13833 | } |
| 13834 | |
| 13835 | if (sec->dofs_type == DOF_SECT_STRTAB && *((char *)daddr + |
| 13836 | sec->dofs_offset + sec->dofs_size - 1) != '\0') { |
| 13837 | dtrace_dof_error(dof, str: "non-terminating string table" ); |
| 13838 | return (-1); |
| 13839 | } |
| 13840 | } |
| 13841 | |
| 13842 | /* |
| 13843 | * APPLE NOTE: We have no further relocation to perform. |
| 13844 | * All dof values are relative offsets. |
| 13845 | */ |
| 13846 | |
| 13847 | if ((enab = *enabp) == NULL) |
| 13848 | enab = *enabp = dtrace_enabling_create(vstate); |
| 13849 | |
| 13850 | for (i = 0; i < dof->dofh_secnum; i++) { |
| 13851 | dof_sec_t *sec = (dof_sec_t *)(daddr + |
| 13852 | (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); |
| 13853 | |
| 13854 | if (sec->dofs_type != DOF_SECT_ECBDESC) |
| 13855 | continue; |
| 13856 | |
| 13857 | /* |
| 13858 | * APPLE NOTE: Defend against gcc 4.0 botch on x86. |
| 13859 | * not all paths out of inlined dtrace_dof_ecbdesc |
| 13860 | * are checked for the NULL return value. |
| 13861 | * Check for NULL explicitly here. |
| 13862 | */ |
| 13863 | ep = dtrace_dof_ecbdesc(dof, sec, vstate, cr); |
| 13864 | if (ep == NULL) { |
| 13865 | dtrace_enabling_destroy(enab); |
| 13866 | *enabp = NULL; |
| 13867 | return (-1); |
| 13868 | } |
| 13869 | |
| 13870 | dtrace_enabling_add(enab, ecb: ep); |
| 13871 | } |
| 13872 | |
| 13873 | return (0); |
| 13874 | } |
| 13875 | |
| 13876 | /* |
| 13877 | * Process DOF for any options. This routine assumes that the DOF has been |
| 13878 | * at least processed by dtrace_dof_slurp(). |
| 13879 | */ |
| 13880 | static int |
| 13881 | dtrace_dof_options(dof_hdr_t *dof, dtrace_state_t *state) |
| 13882 | { |
| 13883 | uint_t i; |
| 13884 | int rval; |
| 13885 | uint32_t entsize; |
| 13886 | size_t offs; |
| 13887 | dof_optdesc_t *desc; |
| 13888 | |
| 13889 | for (i = 0; i < dof->dofh_secnum; i++) { |
| 13890 | dof_sec_t *sec = (dof_sec_t *)((uintptr_t)dof + |
| 13891 | (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize); |
| 13892 | |
| 13893 | if (sec->dofs_type != DOF_SECT_OPTDESC) |
| 13894 | continue; |
| 13895 | |
| 13896 | if (sec->dofs_align != sizeof (uint64_t)) { |
| 13897 | dtrace_dof_error(dof, str: "bad alignment in " |
| 13898 | "option description" ); |
| 13899 | return (EINVAL); |
| 13900 | } |
| 13901 | |
| 13902 | if ((entsize = sec->dofs_entsize) == 0) { |
| 13903 | dtrace_dof_error(dof, str: "zeroed option entry size" ); |
| 13904 | return (EINVAL); |
| 13905 | } |
| 13906 | |
| 13907 | if (entsize < sizeof (dof_optdesc_t)) { |
| 13908 | dtrace_dof_error(dof, str: "bad option entry size" ); |
| 13909 | return (EINVAL); |
| 13910 | } |
| 13911 | |
| 13912 | for (offs = 0; offs < sec->dofs_size; offs += entsize) { |
| 13913 | desc = (dof_optdesc_t *)((uintptr_t)dof + |
| 13914 | (uintptr_t)sec->dofs_offset + offs); |
| 13915 | |
| 13916 | if (desc->dofo_strtab != DOF_SECIDX_NONE) { |
| 13917 | dtrace_dof_error(dof, str: "non-zero option string" ); |
| 13918 | return (EINVAL); |
| 13919 | } |
| 13920 | |
| 13921 | if (desc->dofo_value == (uint64_t)DTRACEOPT_UNSET) { |
| 13922 | dtrace_dof_error(dof, str: "unset option" ); |
| 13923 | return (EINVAL); |
| 13924 | } |
| 13925 | |
| 13926 | if ((rval = dtrace_state_option(state, |
| 13927 | desc->dofo_option, desc->dofo_value)) != 0) { |
| 13928 | dtrace_dof_error(dof, str: "rejected option" ); |
| 13929 | return (rval); |
| 13930 | } |
| 13931 | } |
| 13932 | } |
| 13933 | |
| 13934 | return (0); |
| 13935 | } |
| 13936 | |
| 13937 | /* |
| 13938 | * DTrace Consumer State Functions |
| 13939 | */ |
| 13940 | static int |
| 13941 | dtrace_dstate_init(dtrace_dstate_t *dstate, size_t size) |
| 13942 | { |
| 13943 | size_t hashsize, maxper, min_size, chunksize = dstate->dtds_chunksize; |
| 13944 | void *base; |
| 13945 | uintptr_t limit; |
| 13946 | dtrace_dynvar_t *dvar, *next, *start; |
| 13947 | |
| 13948 | LCK_MTX_ASSERT(&dtrace_lock, LCK_MTX_ASSERT_OWNED); |
| 13949 | ASSERT(dstate->dtds_base == NULL && dstate->dtds_percpu == NULL); |
| 13950 | |
| 13951 | bzero(s: dstate, n: sizeof (dtrace_dstate_t)); |
| 13952 | |
| 13953 | if ((dstate->dtds_chunksize = chunksize) == 0) |
| 13954 | dstate->dtds_chunksize = DTRACE_DYNVAR_CHUNKSIZE; |
| 13955 | |
| 13956 | VERIFY(dstate->dtds_chunksize < (LONG_MAX - sizeof (dtrace_dynhash_t))); |
| 13957 | |
| 13958 | if (size < (min_size = dstate->dtds_chunksize + sizeof (dtrace_dynhash_t))) |
| 13959 | size = min_size; |
| 13960 | |
| 13961 | if ((base = kmem_zalloc(size, KM_NOSLEEP)) == NULL) |
| 13962 | return (ENOMEM); |
| 13963 | |
| 13964 | dstate->dtds_size = size; |
| 13965 | dstate->dtds_base = base; |
| 13966 | dstate->dtds_percpu = zalloc_percpu(dtrace_state_pcpu_zone, Z_WAITOK | Z_ZERO); |
| 13967 | |
| 13968 | hashsize = size / (dstate->dtds_chunksize + sizeof (dtrace_dynhash_t)); |
| 13969 | |
| 13970 | if (hashsize != 1 && (hashsize & 1)) |
| 13971 | hashsize--; |
| 13972 | |
| 13973 | dstate->dtds_hashsize = hashsize; |
| 13974 | dstate->dtds_hash = dstate->dtds_base; |
| 13975 | |
| 13976 | /* |
| 13977 | * Set all of our hash buckets to point to the single sink, and (if |
| 13978 | * it hasn't already been set), set the sink's hash value to be the |
| 13979 | * sink sentinel value. The sink is needed for dynamic variable |
| 13980 | * lookups to know that they have iterated over an entire, valid hash |
| 13981 | * chain. |
| 13982 | */ |
| 13983 | for (size_t i = 0; i < hashsize; i++) |
| 13984 | dstate->dtds_hash[i].dtdh_chain = &dtrace_dynhash_sink; |
| 13985 | |
| 13986 | if (dtrace_dynhash_sink.dtdv_hashval != DTRACE_DYNHASH_SINK) |
| 13987 | dtrace_dynhash_sink.dtdv_hashval = DTRACE_DYNHASH_SINK; |
| 13988 | |
| 13989 | /* |
| 13990 | * Determine number of active CPUs. Divide free list evenly among |
| 13991 | * active CPUs. |
| 13992 | */ |
| 13993 | start = (dtrace_dynvar_t *) |
| 13994 | ((uintptr_t)base + hashsize * sizeof (dtrace_dynhash_t)); |
| 13995 | limit = (uintptr_t)base + size; |
| 13996 | |
| 13997 | VERIFY((uintptr_t)start < limit); |
| 13998 | VERIFY((uintptr_t)start >= (uintptr_t)base); |
| 13999 | |
| 14000 | maxper = (limit - (uintptr_t)start) / (int)NCPU; |
| 14001 | maxper = (maxper / dstate->dtds_chunksize) * dstate->dtds_chunksize; |
| 14002 | |
| 14003 | zpercpu_foreach_cpu(i) { |
| 14004 | dtrace_dstate_percpu_t *dcpu = zpercpu_get_cpu(dstate->dtds_percpu, i); |
| 14005 | |
| 14006 | dcpu->dtdsc_free = dvar = start; |
| 14007 | |
| 14008 | /* |
| 14009 | * If we don't even have enough chunks to make it once through |
| 14010 | * NCPUs, we're just going to allocate everything to the first |
| 14011 | * CPU. And if we're on the last CPU, we're going to allocate |
| 14012 | * whatever is left over. In either case, we set the limit to |
| 14013 | * be the limit of the dynamic variable space. |
| 14014 | */ |
| 14015 | if (maxper == 0 || i == NCPU - 1) { |
| 14016 | limit = (uintptr_t)base + size; |
| 14017 | start = NULL; |
| 14018 | } else { |
| 14019 | limit = (uintptr_t)start + maxper; |
| 14020 | start = (dtrace_dynvar_t *)limit; |
| 14021 | } |
| 14022 | |
| 14023 | VERIFY(limit <= (uintptr_t)base + size); |
| 14024 | |
| 14025 | for (;;) { |
| 14026 | next = (dtrace_dynvar_t *)((uintptr_t)dvar + |
| 14027 | dstate->dtds_chunksize); |
| 14028 | |
| 14029 | if ((uintptr_t)next + dstate->dtds_chunksize >= limit) |
| 14030 | break; |
| 14031 | |
| 14032 | VERIFY((uintptr_t)dvar >= (uintptr_t)base && |
| 14033 | (uintptr_t)dvar <= (uintptr_t)base + size); |
| 14034 | dvar->dtdv_next = next; |
| 14035 | dvar = next; |
| 14036 | } |
| 14037 | |
| 14038 | if (maxper == 0) |
| 14039 | break; |
| 14040 | } |
| 14041 | |
| 14042 | return (0); |
| 14043 | } |
| 14044 | |
| 14045 | static void |
| 14046 | dtrace_dstate_fini(dtrace_dstate_t *dstate) |
| 14047 | { |
| 14048 | LCK_MTX_ASSERT(&cpu_lock, LCK_MTX_ASSERT_OWNED); |
| 14049 | |
| 14050 | if (dstate->dtds_base == NULL) |
| 14051 | return; |
| 14052 | |
| 14053 | kmem_free(dstate->dtds_base, dstate->dtds_size); |
| 14054 | zfree_percpu(zone_or_view: dtrace_state_pcpu_zone, addr: dstate->dtds_percpu); |
| 14055 | } |
| 14056 | |
| 14057 | static void |
| 14058 | dtrace_vstate_fini(dtrace_vstate_t *vstate) |
| 14059 | { |
| 14060 | /* |
| 14061 | * Logical XOR, where are you? |
| 14062 | */ |
| 14063 | ASSERT((vstate->dtvs_nglobals == 0) ^ (vstate->dtvs_globals != NULL)); |
| 14064 | |
| 14065 | if (vstate->dtvs_nglobals > 0) { |
| 14066 | kmem_free(vstate->dtvs_globals, vstate->dtvs_nglobals * |
| 14067 | sizeof (dtrace_statvar_t *)); |
| 14068 | } |
| 14069 | |
| 14070 | if (vstate->dtvs_ntlocals > 0) { |
| 14071 | kmem_free(vstate->dtvs_tlocals, vstate->dtvs_ntlocals * |
| 14072 | sizeof (dtrace_difv_t)); |
| 14073 | } |
| 14074 | |
| 14075 | ASSERT((vstate->dtvs_nlocals == 0) ^ (vstate->dtvs_locals != NULL)); |
| 14076 | |
| 14077 | if (vstate->dtvs_nlocals > 0) { |
| 14078 | kmem_free(vstate->dtvs_locals, vstate->dtvs_nlocals * |
| 14079 | sizeof (dtrace_statvar_t *)); |
| 14080 | } |
| 14081 | } |
| 14082 | |
| 14083 | static void |
| 14084 | dtrace_state_clean(dtrace_state_t *state) |
| 14085 | { |
| 14086 | if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) |
| 14087 | return; |
| 14088 | |
| 14089 | dtrace_dynvar_clean(dstate: &state->dts_vstate.dtvs_dynvars); |
| 14090 | dtrace_speculation_clean(state); |
| 14091 | } |
| 14092 | |
| 14093 | static void |
| 14094 | dtrace_state_deadman(dtrace_state_t *state) |
| 14095 | { |
| 14096 | hrtime_t now; |
| 14097 | |
| 14098 | dtrace_sync(); |
| 14099 | |
| 14100 | now = dtrace_gethrtime(); |
| 14101 | |
| 14102 | if (state != dtrace_anon.dta_state && |
| 14103 | now - state->dts_laststatus >= dtrace_deadman_user) |
| 14104 | return; |
| 14105 | |
| 14106 | /* |
| 14107 | * We must be sure that dts_alive never appears to be less than the |
| 14108 | * value upon entry to dtrace_state_deadman(), and because we lack a |
| 14109 | * dtrace_cas64(), we cannot store to it atomically. We thus instead |
| 14110 | * store INT64_MAX to it, followed by a memory barrier, followed by |
| 14111 | * the new value. This assures that dts_alive never appears to be |
| 14112 | * less than its true value, regardless of the order in which the |
| 14113 | * stores to the underlying storage are issued. |
| 14114 | */ |
| 14115 | state->dts_alive = INT64_MAX; |
| 14116 | dtrace_membar_producer(); |
| 14117 | state->dts_alive = now; |
| 14118 | } |
| 14119 | |
| 14120 | static int |
| 14121 | dtrace_state_create(dev_t *devp, cred_t *cr, dtrace_state_t **new_state) |
| 14122 | { |
| 14123 | minor_t minor; |
| 14124 | major_t major; |
| 14125 | char c[30]; |
| 14126 | dtrace_state_t *state; |
| 14127 | dtrace_optval_t *opt; |
| 14128 | int bufsize = (int)NCPU * sizeof (dtrace_buffer_t), i; |
| 14129 | unsigned int cpu_it; |
| 14130 | |
| 14131 | LCK_MTX_ASSERT(&dtrace_lock, LCK_MTX_ASSERT_OWNED); |
| 14132 | LCK_MTX_ASSERT(&cpu_lock, LCK_MTX_ASSERT_OWNED); |
| 14133 | |
| 14134 | /* Cause restart */ |
| 14135 | *new_state = NULL; |
| 14136 | |
| 14137 | if (devp != NULL) { |
| 14138 | minor = getminor(*devp); |
| 14139 | } |
| 14140 | else { |
| 14141 | minor = DTRACE_NCLIENTS - 1; |
| 14142 | } |
| 14143 | |
| 14144 | state = dtrace_state_allocate(minor); |
| 14145 | if (NULL == state) { |
| 14146 | printf("dtrace_open: couldn't acquire minor number %d. This usually means that too many DTrace clients are in use at the moment" , minor); |
| 14147 | return (ERESTART); /* can't reacquire */ |
| 14148 | } |
| 14149 | |
| 14150 | state->dts_epid = DTRACE_EPIDNONE + 1; |
| 14151 | |
| 14152 | (void) snprintf(c, count: sizeof (c), "dtrace_aggid_%d" , minor); |
| 14153 | state->dts_aggid_arena = vmem_create(c, (void *)1, INT32_MAX, 1, |
| 14154 | NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER); |
| 14155 | |
| 14156 | if (devp != NULL) { |
| 14157 | major = getemajor(*devp); |
| 14158 | } else { |
| 14159 | major = ddi_driver_major(dtrace_devi); |
| 14160 | } |
| 14161 | |
| 14162 | state->dts_dev = makedev(major, minor); |
| 14163 | |
| 14164 | if (devp != NULL) |
| 14165 | *devp = state->dts_dev; |
| 14166 | |
| 14167 | /* |
| 14168 | * We allocate NCPU buffers. On the one hand, this can be quite |
| 14169 | * a bit of memory per instance (nearly 36K on a Starcat). On the |
| 14170 | * other hand, it saves an additional memory reference in the probe |
| 14171 | * path. |
| 14172 | */ |
| 14173 | state->dts_buffer = kmem_zalloc(bufsize, KM_SLEEP); |
| 14174 | state->dts_aggbuffer = kmem_zalloc(bufsize, KM_SLEEP); |
| 14175 | state->dts_buf_over_limit = 0; |
| 14176 | |
| 14177 | /* |
| 14178 | * Allocate and initialise the per-process per-CPU random state. |
| 14179 | * SI_SUB_RANDOM < SI_SUB_DTRACE_ANON therefore entropy device is |
| 14180 | * assumed to be seeded at this point (if from Fortuna seed file). |
| 14181 | */ |
| 14182 | state->dts_rstate = kmem_zalloc(NCPU * sizeof(uint64_t*), KM_SLEEP); |
| 14183 | state->dts_rstate[0] = kmem_zalloc(2 * sizeof(uint64_t), KM_SLEEP); |
| 14184 | (void) read_random(buffer: state->dts_rstate[0], numBytes: 2 * sizeof(uint64_t)); |
| 14185 | for (cpu_it = 1; cpu_it < NCPU; cpu_it++) { |
| 14186 | state->dts_rstate[cpu_it] = kmem_zalloc(2 * sizeof(uint64_t), KM_SLEEP); |
| 14187 | /* |
| 14188 | * Each CPU is assigned a 2^64 period, non-overlapping |
| 14189 | * subsequence. |
| 14190 | */ |
| 14191 | dtrace_xoroshiro128_plus_jump(state->dts_rstate[cpu_it-1], |
| 14192 | state->dts_rstate[cpu_it]); |
| 14193 | } |
| 14194 | |
| 14195 | state->dts_cleaner = CYCLIC_NONE; |
| 14196 | state->dts_deadman = CYCLIC_NONE; |
| 14197 | state->dts_vstate.dtvs_state = state; |
| 14198 | |
| 14199 | for (i = 0; i < DTRACEOPT_MAX; i++) |
| 14200 | state->dts_options[i] = DTRACEOPT_UNSET; |
| 14201 | |
| 14202 | /* |
| 14203 | * Set the default options. |
| 14204 | */ |
| 14205 | opt = state->dts_options; |
| 14206 | opt[DTRACEOPT_BUFPOLICY] = DTRACEOPT_BUFPOLICY_SWITCH; |
| 14207 | opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_AUTO; |
| 14208 | opt[DTRACEOPT_NSPEC] = dtrace_nspec_default; |
| 14209 | opt[DTRACEOPT_SPECSIZE] = dtrace_specsize_default; |
| 14210 | opt[DTRACEOPT_CPU] = (dtrace_optval_t)DTRACE_CPUALL; |
| 14211 | opt[DTRACEOPT_STRSIZE] = dtrace_strsize_default; |
| 14212 | opt[DTRACEOPT_STACKFRAMES] = dtrace_stackframes_default; |
| 14213 | opt[DTRACEOPT_USTACKFRAMES] = dtrace_ustackframes_default; |
| 14214 | opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_default; |
| 14215 | opt[DTRACEOPT_AGGRATE] = dtrace_aggrate_default; |
| 14216 | opt[DTRACEOPT_SWITCHRATE] = dtrace_switchrate_default; |
| 14217 | opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_default; |
| 14218 | opt[DTRACEOPT_JSTACKFRAMES] = dtrace_jstackframes_default; |
| 14219 | opt[DTRACEOPT_JSTACKSTRSIZE] = dtrace_jstackstrsize_default; |
| 14220 | opt[DTRACEOPT_BUFLIMIT] = dtrace_buflimit_default; |
| 14221 | |
| 14222 | /* |
| 14223 | * Depending on the user credentials, we set flag bits which alter probe |
| 14224 | * visibility or the amount of destructiveness allowed. In the case of |
| 14225 | * actual anonymous tracing, or the possession of all privileges, all of |
| 14226 | * the normal checks are bypassed. |
| 14227 | */ |
| 14228 | #if defined(__APPLE__) |
| 14229 | if (cr != NULL) { |
| 14230 | kauth_cred_ref(cred: cr); |
| 14231 | state->dts_cred.dcr_cred = cr; |
| 14232 | } |
| 14233 | if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) { |
| 14234 | if (dtrace_is_restricted() && !dtrace_are_restrictions_relaxed()) { |
| 14235 | /* |
| 14236 | * Allow only proc credentials when DTrace is |
| 14237 | * restricted by the current security policy |
| 14238 | */ |
| 14239 | state->dts_cred.dcr_visible = DTRACE_CRV_ALLPROC; |
| 14240 | state->dts_cred.dcr_action = DTRACE_CRA_PROC | DTRACE_CRA_PROC_CONTROL | DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; |
| 14241 | } |
| 14242 | else { |
| 14243 | state->dts_cred.dcr_visible = DTRACE_CRV_ALL; |
| 14244 | state->dts_cred.dcr_action = DTRACE_CRA_ALL; |
| 14245 | } |
| 14246 | } |
| 14247 | |
| 14248 | #else |
| 14249 | if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) { |
| 14250 | state->dts_cred.dcr_visible = DTRACE_CRV_ALL; |
| 14251 | state->dts_cred.dcr_action = DTRACE_CRA_ALL; |
| 14252 | } |
| 14253 | else { |
| 14254 | /* |
| 14255 | * Set up the credentials for this instantiation. We take a |
| 14256 | * hold on the credential to prevent it from disappearing on |
| 14257 | * us; this in turn prevents the zone_t referenced by this |
| 14258 | * credential from disappearing. This means that we can |
| 14259 | * examine the credential and the zone from probe context. |
| 14260 | */ |
| 14261 | crhold(cr); |
| 14262 | state->dts_cred.dcr_cred = cr; |
| 14263 | |
| 14264 | /* |
| 14265 | * CRA_PROC means "we have *some* privilege for dtrace" and |
| 14266 | * unlocks the use of variables like pid, zonename, etc. |
| 14267 | */ |
| 14268 | if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE) || |
| 14269 | PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) { |
| 14270 | state->dts_cred.dcr_action |= DTRACE_CRA_PROC; |
| 14271 | } |
| 14272 | |
| 14273 | /* |
| 14274 | * dtrace_user allows use of syscall and profile providers. |
| 14275 | * If the user also has proc_owner and/or proc_zone, we |
| 14276 | * extend the scope to include additional visibility and |
| 14277 | * destructive power. |
| 14278 | */ |
| 14279 | if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) { |
| 14280 | if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) { |
| 14281 | state->dts_cred.dcr_visible |= |
| 14282 | DTRACE_CRV_ALLPROC; |
| 14283 | |
| 14284 | state->dts_cred.dcr_action |= |
| 14285 | DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; |
| 14286 | } |
| 14287 | |
| 14288 | if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) { |
| 14289 | state->dts_cred.dcr_visible |= |
| 14290 | DTRACE_CRV_ALLZONE; |
| 14291 | |
| 14292 | state->dts_cred.dcr_action |= |
| 14293 | DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; |
| 14294 | } |
| 14295 | |
| 14296 | /* |
| 14297 | * If we have all privs in whatever zone this is, |
| 14298 | * we can do destructive things to processes which |
| 14299 | * have altered credentials. |
| 14300 | * |
| 14301 | * APPLE NOTE: Darwin doesn't do zones. |
| 14302 | * Behave as if zone always has destructive privs. |
| 14303 | */ |
| 14304 | |
| 14305 | state->dts_cred.dcr_action |= |
| 14306 | DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG; |
| 14307 | } |
| 14308 | |
| 14309 | /* |
| 14310 | * Holding the dtrace_kernel privilege also implies that |
| 14311 | * the user has the dtrace_user privilege from a visibility |
| 14312 | * perspective. But without further privileges, some |
| 14313 | * destructive actions are not available. |
| 14314 | */ |
| 14315 | if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) { |
| 14316 | /* |
| 14317 | * Make all probes in all zones visible. However, |
| 14318 | * this doesn't mean that all actions become available |
| 14319 | * to all zones. |
| 14320 | */ |
| 14321 | state->dts_cred.dcr_visible |= DTRACE_CRV_KERNEL | |
| 14322 | DTRACE_CRV_ALLPROC | DTRACE_CRV_ALLZONE; |
| 14323 | |
| 14324 | state->dts_cred.dcr_action |= DTRACE_CRA_KERNEL | |
| 14325 | DTRACE_CRA_PROC; |
| 14326 | /* |
| 14327 | * Holding proc_owner means that destructive actions |
| 14328 | * for *this* zone are allowed. |
| 14329 | */ |
| 14330 | if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) |
| 14331 | state->dts_cred.dcr_action |= |
| 14332 | DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; |
| 14333 | |
| 14334 | /* |
| 14335 | * Holding proc_zone means that destructive actions |
| 14336 | * for this user/group ID in all zones is allowed. |
| 14337 | */ |
| 14338 | if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) |
| 14339 | state->dts_cred.dcr_action |= |
| 14340 | DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; |
| 14341 | |
| 14342 | /* |
| 14343 | * If we have all privs in whatever zone this is, |
| 14344 | * we can do destructive things to processes which |
| 14345 | * have altered credentials. |
| 14346 | * |
| 14347 | * APPLE NOTE: Darwin doesn't do zones. |
| 14348 | * Behave as if zone always has destructive privs. |
| 14349 | */ |
| 14350 | state->dts_cred.dcr_action |= |
| 14351 | DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG; |
| 14352 | } |
| 14353 | |
| 14354 | /* |
| 14355 | * Holding the dtrace_proc privilege gives control over fasttrap |
| 14356 | * and pid providers. We need to grant wider destructive |
| 14357 | * privileges in the event that the user has proc_owner and/or |
| 14358 | * proc_zone. |
| 14359 | */ |
| 14360 | if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) { |
| 14361 | if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) |
| 14362 | state->dts_cred.dcr_action |= |
| 14363 | DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER; |
| 14364 | |
| 14365 | if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) |
| 14366 | state->dts_cred.dcr_action |= |
| 14367 | DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE; |
| 14368 | } |
| 14369 | } |
| 14370 | #endif |
| 14371 | |
| 14372 | *new_state = state; |
| 14373 | return(0); /* Success */ |
| 14374 | } |
| 14375 | |
| 14376 | static int |
| 14377 | dtrace_state_buffer(dtrace_state_t *state, dtrace_buffer_t *buf, int which) |
| 14378 | { |
| 14379 | dtrace_optval_t *opt = state->dts_options, size; |
| 14380 | processorid_t cpu = 0; |
| 14381 | size_t limit = buf->dtb_size; |
| 14382 | int flags = 0, rval; |
| 14383 | |
| 14384 | LCK_MTX_ASSERT(&dtrace_lock, LCK_MTX_ASSERT_OWNED); |
| 14385 | LCK_MTX_ASSERT(&cpu_lock, LCK_MTX_ASSERT_OWNED); |
| 14386 | ASSERT(which < DTRACEOPT_MAX); |
| 14387 | ASSERT(state->dts_activity == DTRACE_ACTIVITY_INACTIVE || |
| 14388 | (state == dtrace_anon.dta_state && |
| 14389 | state->dts_activity == DTRACE_ACTIVITY_ACTIVE)); |
| 14390 | |
| 14391 | if (opt[which] == DTRACEOPT_UNSET || opt[which] == 0) |
| 14392 | return (0); |
| 14393 | |
| 14394 | if (opt[DTRACEOPT_CPU] != DTRACEOPT_UNSET) |
| 14395 | cpu = opt[DTRACEOPT_CPU]; |
| 14396 | |
| 14397 | if (which == DTRACEOPT_SPECSIZE) |
| 14398 | flags |= DTRACEBUF_NOSWITCH; |
| 14399 | |
| 14400 | if (which == DTRACEOPT_BUFSIZE) { |
| 14401 | if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_RING) |
| 14402 | flags |= DTRACEBUF_RING; |
| 14403 | |
| 14404 | if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_FILL) |
| 14405 | flags |= DTRACEBUF_FILL; |
| 14406 | |
| 14407 | if (state != dtrace_anon.dta_state || |
| 14408 | state->dts_activity != DTRACE_ACTIVITY_ACTIVE) |
| 14409 | flags |= DTRACEBUF_INACTIVE; |
| 14410 | } |
| 14411 | |
| 14412 | for (size = opt[which]; (size_t)size >= sizeof (uint64_t); size >>= 1) { |
| 14413 | /* |
| 14414 | * The size must be 8-byte aligned. If the size is not 8-byte |
| 14415 | * aligned, drop it down by the difference. |
| 14416 | */ |
| 14417 | if (size & (sizeof (uint64_t) - 1)) |
| 14418 | size -= size & (sizeof (uint64_t) - 1); |
| 14419 | |
| 14420 | if (size < state->dts_reserve) { |
| 14421 | /* |
| 14422 | * Buffers always must be large enough to accommodate |
| 14423 | * their prereserved space. We return E2BIG instead |
| 14424 | * of ENOMEM in this case to allow for user-level |
| 14425 | * software to differentiate the cases. |
| 14426 | */ |
| 14427 | return (E2BIG); |
| 14428 | } |
| 14429 | limit = opt[DTRACEOPT_BUFLIMIT] * size / 100; |
| 14430 | rval = dtrace_buffer_alloc(bufs: buf, limit, size, flags, cpu); |
| 14431 | |
| 14432 | if (rval != ENOMEM) { |
| 14433 | opt[which] = size; |
| 14434 | return (rval); |
| 14435 | } |
| 14436 | |
| 14437 | if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL) |
| 14438 | return (rval); |
| 14439 | } |
| 14440 | |
| 14441 | return (ENOMEM); |
| 14442 | } |
| 14443 | |
| 14444 | static int |
| 14445 | dtrace_state_buffers(dtrace_state_t *state) |
| 14446 | { |
| 14447 | dtrace_speculation_t *spec = state->dts_speculations; |
| 14448 | int rval, i; |
| 14449 | |
| 14450 | if ((rval = dtrace_state_buffer(state, buf: state->dts_buffer, |
| 14451 | DTRACEOPT_BUFSIZE)) != 0) |
| 14452 | return (rval); |
| 14453 | |
| 14454 | if ((rval = dtrace_state_buffer(state, buf: state->dts_aggbuffer, |
| 14455 | DTRACEOPT_AGGSIZE)) != 0) |
| 14456 | return (rval); |
| 14457 | |
| 14458 | for (i = 0; i < state->dts_nspeculations; i++) { |
| 14459 | if ((rval = dtrace_state_buffer(state, |
| 14460 | buf: spec[i].dtsp_buffer, DTRACEOPT_SPECSIZE)) != 0) |
| 14461 | return (rval); |
| 14462 | } |
| 14463 | |
| 14464 | return (0); |
| 14465 | } |
| 14466 | |
| 14467 | static void |
| 14468 | dtrace_state_prereserve(dtrace_state_t *state) |
| 14469 | { |
| 14470 | dtrace_ecb_t *ecb; |
| 14471 | dtrace_probe_t *probe; |
| 14472 | |
| 14473 | state->dts_reserve = 0; |
| 14474 | |
| 14475 | if (state->dts_options[DTRACEOPT_BUFPOLICY] != DTRACEOPT_BUFPOLICY_FILL) |
| 14476 | return; |
| 14477 | |
| 14478 | /* |
| 14479 | * If our buffer policy is a "fill" buffer policy, we need to set the |
| 14480 | * prereserved space to be the space required by the END probes. |
| 14481 | */ |
| 14482 | probe = dtrace_probes[dtrace_probeid_end - 1]; |
| 14483 | ASSERT(probe != NULL); |
| 14484 | |
| 14485 | for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) { |
| 14486 | if (ecb->dte_state != state) |
| 14487 | continue; |
| 14488 | |
| 14489 | state->dts_reserve += ecb->dte_needed + ecb->dte_alignment; |
| 14490 | } |
| 14491 | } |
| 14492 | |
| 14493 | static int |
| 14494 | dtrace_state_go(dtrace_state_t *state, processorid_t *cpu) |
| 14495 | { |
| 14496 | dtrace_optval_t *opt = state->dts_options, sz, nspec; |
| 14497 | dtrace_speculation_t *spec; |
| 14498 | dtrace_buffer_t *buf; |
| 14499 | cyc_handler_t hdlr; |
| 14500 | cyc_time_t when; |
| 14501 | int rval = 0, i, bufsize = (int)NCPU * sizeof (dtrace_buffer_t); |
| 14502 | dtrace_icookie_t cookie; |
| 14503 | |
| 14504 | lck_mtx_lock(lck: &cpu_lock); |
| 14505 | lck_mtx_lock(lck: &dtrace_lock); |
| 14506 | |
| 14507 | if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) { |
| 14508 | rval = EBUSY; |
| 14509 | goto out; |
| 14510 | } |
| 14511 | |
| 14512 | /* |
| 14513 | * Before we can perform any checks, we must prime all of the |
| 14514 | * retained enablings that correspond to this state. |
| 14515 | */ |
| 14516 | dtrace_enabling_prime(state); |
| 14517 | |
| 14518 | if (state->dts_destructive && !state->dts_cred.dcr_destructive) { |
| 14519 | rval = EACCES; |
| 14520 | goto out; |
| 14521 | } |
| 14522 | |
| 14523 | dtrace_state_prereserve(state); |
| 14524 | |
| 14525 | /* |
| 14526 | * Now we want to do is try to allocate our speculations. |
| 14527 | * We do not automatically resize the number of speculations; if |
| 14528 | * this fails, we will fail the operation. |
| 14529 | */ |
| 14530 | nspec = opt[DTRACEOPT_NSPEC]; |
| 14531 | ASSERT(nspec != DTRACEOPT_UNSET); |
| 14532 | |
| 14533 | if (nspec > INT_MAX) { |
| 14534 | rval = ENOMEM; |
| 14535 | goto out; |
| 14536 | } |
| 14537 | |
| 14538 | spec = kmem_zalloc(nspec * sizeof (dtrace_speculation_t), KM_NOSLEEP); |
| 14539 | |
| 14540 | if (spec == NULL) { |
| 14541 | rval = ENOMEM; |
| 14542 | goto out; |
| 14543 | } |
| 14544 | |
| 14545 | state->dts_speculations = spec; |
| 14546 | state->dts_nspeculations = (int)nspec; |
| 14547 | |
| 14548 | for (i = 0; i < nspec; i++) { |
| 14549 | if ((buf = kmem_zalloc(bufsize, KM_NOSLEEP)) == NULL) { |
| 14550 | rval = ENOMEM; |
| 14551 | goto err; |
| 14552 | } |
| 14553 | |
| 14554 | spec[i].dtsp_buffer = buf; |
| 14555 | } |
| 14556 | |
| 14557 | if (opt[DTRACEOPT_GRABANON] != DTRACEOPT_UNSET) { |
| 14558 | if (dtrace_anon.dta_state == NULL) { |
| 14559 | rval = ENOENT; |
| 14560 | goto out; |
| 14561 | } |
| 14562 | |
| 14563 | if (state->dts_necbs != 0) { |
| 14564 | rval = EALREADY; |
| 14565 | goto out; |
| 14566 | } |
| 14567 | |
| 14568 | state->dts_anon = dtrace_anon_grab(); |
| 14569 | ASSERT(state->dts_anon != NULL); |
| 14570 | state = state->dts_anon; |
| 14571 | |
| 14572 | /* |
| 14573 | * We want "grabanon" to be set in the grabbed state, so we'll |
| 14574 | * copy that option value from the grabbing state into the |
| 14575 | * grabbed state. |
| 14576 | */ |
| 14577 | state->dts_options[DTRACEOPT_GRABANON] = |
| 14578 | opt[DTRACEOPT_GRABANON]; |
| 14579 | |
| 14580 | *cpu = dtrace_anon.dta_beganon; |
| 14581 | |
| 14582 | /* |
| 14583 | * If the anonymous state is active (as it almost certainly |
| 14584 | * is if the anonymous enabling ultimately matched anything), |
| 14585 | * we don't allow any further option processing -- but we |
| 14586 | * don't return failure. |
| 14587 | */ |
| 14588 | if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) |
| 14589 | goto out; |
| 14590 | } |
| 14591 | |
| 14592 | if (opt[DTRACEOPT_AGGSIZE] != DTRACEOPT_UNSET && |
| 14593 | opt[DTRACEOPT_AGGSIZE] != 0) { |
| 14594 | if (state->dts_aggregations == NULL) { |
| 14595 | /* |
| 14596 | * We're not going to create an aggregation buffer |
| 14597 | * because we don't have any ECBs that contain |
| 14598 | * aggregations -- set this option to 0. |
| 14599 | */ |
| 14600 | opt[DTRACEOPT_AGGSIZE] = 0; |
| 14601 | } else { |
| 14602 | /* |
| 14603 | * If we have an aggregation buffer, we must also have |
| 14604 | * a buffer to use as scratch. |
| 14605 | */ |
| 14606 | if (opt[DTRACEOPT_BUFSIZE] == DTRACEOPT_UNSET || |
| 14607 | (size_t)opt[DTRACEOPT_BUFSIZE] < state->dts_needed) { |
| 14608 | opt[DTRACEOPT_BUFSIZE] = state->dts_needed; |
| 14609 | } |
| 14610 | } |
| 14611 | } |
| 14612 | |
| 14613 | if (opt[DTRACEOPT_SPECSIZE] != DTRACEOPT_UNSET && |
| 14614 | opt[DTRACEOPT_SPECSIZE] != 0) { |
| 14615 | if (!state->dts_speculates) { |
| 14616 | /* |
| 14617 | * We're not going to create speculation buffers |
| 14618 | * because we don't have any ECBs that actually |
| 14619 | * speculate -- set the speculation size to 0. |
| 14620 | */ |
| 14621 | opt[DTRACEOPT_SPECSIZE] = 0; |
| 14622 | } |
| 14623 | } |
| 14624 | |
| 14625 | /* |
| 14626 | * The bare minimum size for any buffer that we're actually going to |
| 14627 | * do anything to is sizeof (uint64_t). |
| 14628 | */ |
| 14629 | sz = sizeof (uint64_t); |
| 14630 | |
| 14631 | if ((state->dts_needed != 0 && opt[DTRACEOPT_BUFSIZE] < sz) || |
| 14632 | (state->dts_speculates && opt[DTRACEOPT_SPECSIZE] < sz) || |
| 14633 | (state->dts_aggregations != NULL && opt[DTRACEOPT_AGGSIZE] < sz)) { |
| 14634 | /* |
| 14635 | * A buffer size has been explicitly set to 0 (or to a size |
| 14636 | * that will be adjusted to 0) and we need the space -- we |
| 14637 | * need to return failure. We return ENOSPC to differentiate |
| 14638 | * it from failing to allocate a buffer due to failure to meet |
| 14639 | * the reserve (for which we return E2BIG). |
| 14640 | */ |
| 14641 | rval = ENOSPC; |
| 14642 | goto out; |
| 14643 | } |
| 14644 | |
| 14645 | if ((rval = dtrace_state_buffers(state)) != 0) |
| 14646 | goto err; |
| 14647 | |
| 14648 | if ((sz = opt[DTRACEOPT_DYNVARSIZE]) == DTRACEOPT_UNSET) |
| 14649 | sz = dtrace_dstate_defsize; |
| 14650 | |
| 14651 | do { |
| 14652 | rval = dtrace_dstate_init(dstate: &state->dts_vstate.dtvs_dynvars, size: sz); |
| 14653 | |
| 14654 | if (rval == 0) |
| 14655 | break; |
| 14656 | |
| 14657 | if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL) |
| 14658 | goto err; |
| 14659 | } while (sz >>= 1); |
| 14660 | |
| 14661 | opt[DTRACEOPT_DYNVARSIZE] = sz; |
| 14662 | |
| 14663 | if (rval != 0) |
| 14664 | goto err; |
| 14665 | |
| 14666 | if (opt[DTRACEOPT_STATUSRATE] > dtrace_statusrate_max) |
| 14667 | opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_max; |
| 14668 | |
| 14669 | if (opt[DTRACEOPT_CLEANRATE] == 0) |
| 14670 | opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max; |
| 14671 | |
| 14672 | if (opt[DTRACEOPT_CLEANRATE] < dtrace_cleanrate_min) |
| 14673 | opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_min; |
| 14674 | |
| 14675 | if (opt[DTRACEOPT_CLEANRATE] > dtrace_cleanrate_max) |
| 14676 | opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max; |
| 14677 | |
| 14678 | if (opt[DTRACEOPT_STRSIZE] > dtrace_strsize_max) |
| 14679 | opt[DTRACEOPT_STRSIZE] = dtrace_strsize_max; |
| 14680 | |
| 14681 | if (opt[DTRACEOPT_STRSIZE] < dtrace_strsize_min) |
| 14682 | opt[DTRACEOPT_STRSIZE] = dtrace_strsize_min; |
| 14683 | |
| 14684 | if (opt[DTRACEOPT_BUFLIMIT] > dtrace_buflimit_max) |
| 14685 | opt[DTRACEOPT_BUFLIMIT] = dtrace_buflimit_max; |
| 14686 | |
| 14687 | if (opt[DTRACEOPT_BUFLIMIT] < dtrace_buflimit_min) |
| 14688 | opt[DTRACEOPT_BUFLIMIT] = dtrace_buflimit_min; |
| 14689 | |
| 14690 | hdlr.cyh_func = (cyc_func_t)dtrace_state_clean; |
| 14691 | hdlr.cyh_arg = state; |
| 14692 | hdlr.cyh_level = CY_LOW_LEVEL; |
| 14693 | |
| 14694 | when.cyt_when = 0; |
| 14695 | when.cyt_interval = opt[DTRACEOPT_CLEANRATE]; |
| 14696 | |
| 14697 | state->dts_cleaner = cyclic_add(&hdlr, &when); |
| 14698 | |
| 14699 | hdlr.cyh_func = (cyc_func_t)dtrace_state_deadman; |
| 14700 | hdlr.cyh_arg = state; |
| 14701 | hdlr.cyh_level = CY_LOW_LEVEL; |
| 14702 | |
| 14703 | when.cyt_when = 0; |
| 14704 | when.cyt_interval = dtrace_deadman_interval; |
| 14705 | |
| 14706 | state->dts_alive = state->dts_laststatus = dtrace_gethrtime(); |
| 14707 | state->dts_deadman = cyclic_add(&hdlr, &when); |
| 14708 | |
| 14709 | state->dts_activity = DTRACE_ACTIVITY_WARMUP; |
| 14710 | |
| 14711 | /* |
| 14712 | * Now it's time to actually fire the BEGIN probe. We need to disable |
| 14713 | * interrupts here both to record the CPU on which we fired the BEGIN |
| 14714 | * probe (the data from this CPU will be processed first at user |
| 14715 | * level) and to manually activate the buffer for this CPU. |
| 14716 | */ |
| 14717 | cookie = dtrace_interrupt_disable(); |
| 14718 | *cpu = CPU->cpu_id; |
| 14719 | ASSERT(state->dts_buffer[*cpu].dtb_flags & DTRACEBUF_INACTIVE); |
| 14720 | state->dts_buffer[*cpu].dtb_flags &= ~DTRACEBUF_INACTIVE; |
| 14721 | |
| 14722 | dtrace_probe(id: dtrace_probeid_begin, |
| 14723 | arg0: (uint64_t)(uintptr_t)state, arg1: 0, arg2: 0, arg3: 0, arg4: 0); |
| 14724 | dtrace_interrupt_enable(cookie); |
| 14725 | /* |
| 14726 | * We may have had an exit action from a BEGIN probe; only change our |
| 14727 | * state to ACTIVE if we're still in WARMUP. |
| 14728 | */ |
| 14729 | ASSERT(state->dts_activity == DTRACE_ACTIVITY_WARMUP || |
| 14730 | state->dts_activity == DTRACE_ACTIVITY_DRAINING); |
| 14731 | |
| 14732 | if (state->dts_activity == DTRACE_ACTIVITY_WARMUP) |
| 14733 | state->dts_activity = DTRACE_ACTIVITY_ACTIVE; |
| 14734 | |
| 14735 | /* |
| 14736 | * Regardless of whether or not now we're in ACTIVE or DRAINING, we |
| 14737 | * want each CPU to transition its principal buffer out of the |
| 14738 | * INACTIVE state. Doing this assures that no CPU will suddenly begin |
| 14739 | * processing an ECB halfway down a probe's ECB chain; all CPUs will |
| 14740 | * atomically transition from processing none of a state's ECBs to |
| 14741 | * processing all of them. |
| 14742 | */ |
| 14743 | dtrace_xcall(DTRACE_CPUALL, |
| 14744 | (dtrace_xcall_t)dtrace_buffer_activate, state); |
| 14745 | goto out; |
| 14746 | |
| 14747 | err: |
| 14748 | dtrace_buffer_free(bufs: state->dts_buffer); |
| 14749 | dtrace_buffer_free(bufs: state->dts_aggbuffer); |
| 14750 | |
| 14751 | if ((nspec = state->dts_nspeculations) == 0) { |
| 14752 | ASSERT(state->dts_speculations == NULL); |
| 14753 | goto out; |
| 14754 | } |
| 14755 | |
| 14756 | spec = state->dts_speculations; |
| 14757 | ASSERT(spec != NULL); |
| 14758 | |
| 14759 | for (i = 0; i < state->dts_nspeculations; i++) { |
| 14760 | if ((buf = spec[i].dtsp_buffer) == NULL) |
| 14761 | break; |
| 14762 | |
| 14763 | dtrace_buffer_free(bufs: buf); |
| 14764 | kmem_free(buf, bufsize); |
| 14765 | } |
| 14766 | |
| 14767 | kmem_free(spec, nspec * sizeof (dtrace_speculation_t)); |
| 14768 | state->dts_nspeculations = 0; |
| 14769 | state->dts_speculations = NULL; |
| 14770 | |
| 14771 | out: |
| 14772 | lck_mtx_unlock(lck: &dtrace_lock); |
| 14773 | lck_mtx_unlock(lck: &cpu_lock); |
| 14774 | |
| 14775 | return (rval); |
| 14776 | } |
| 14777 | |
| 14778 | static int |
| 14779 | dtrace_state_stop(dtrace_state_t *state, processorid_t *cpu) |
| 14780 | { |
| 14781 | dtrace_icookie_t cookie; |
| 14782 | |
| 14783 | LCK_MTX_ASSERT(&dtrace_lock, LCK_MTX_ASSERT_OWNED); |
| 14784 | |
| 14785 | if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE && |
| 14786 | state->dts_activity != DTRACE_ACTIVITY_DRAINING) |
| 14787 | return (EINVAL); |
| 14788 | |
| 14789 | /* |
| 14790 | * We'll set the activity to DTRACE_ACTIVITY_DRAINING, and issue a sync |
| 14791 | * to be sure that every CPU has seen it. See below for the details |
| 14792 | * on why this is done. |
| 14793 | */ |
| 14794 | state->dts_activity = DTRACE_ACTIVITY_DRAINING; |
| 14795 | dtrace_sync(); |
| 14796 | |
| 14797 | /* |
| 14798 | * By this point, it is impossible for any CPU to be still processing |
| 14799 | * with DTRACE_ACTIVITY_ACTIVE. We can thus set our activity to |
| 14800 | * DTRACE_ACTIVITY_COOLDOWN and know that we're not racing with any |
| 14801 | * other CPU in dtrace_buffer_reserve(). This allows dtrace_probe() |
| 14802 | * and callees to know that the activity is DTRACE_ACTIVITY_COOLDOWN |
| 14803 | * iff we're in the END probe. |
| 14804 | */ |
| 14805 | state->dts_activity = DTRACE_ACTIVITY_COOLDOWN; |
| 14806 | dtrace_sync(); |
| 14807 | ASSERT(state->dts_activity == DTRACE_ACTIVITY_COOLDOWN); |
| 14808 | |
| 14809 | /* |
| 14810 | * Finally, we can release the reserve and call the END probe. We |
| 14811 | * disable interrupts across calling the END probe to allow us to |
| 14812 | * return the CPU on which we actually called the END probe. This |
| 14813 | * allows user-land to be sure that this CPU's principal buffer is |
| 14814 | * processed last. |
| 14815 | */ |
| 14816 | state->dts_reserve = 0; |
| 14817 | |
| 14818 | cookie = dtrace_interrupt_disable(); |
| 14819 | *cpu = CPU->cpu_id; |
| 14820 | dtrace_probe(id: dtrace_probeid_end, |
| 14821 | arg0: (uint64_t)(uintptr_t)state, arg1: 0, arg2: 0, arg3: 0, arg4: 0); |
| 14822 | dtrace_interrupt_enable(cookie); |
| 14823 | |
| 14824 | state->dts_activity = DTRACE_ACTIVITY_STOPPED; |
| 14825 | dtrace_sync(); |
| 14826 | |
| 14827 | return (0); |
| 14828 | } |
| 14829 | |
| 14830 | static int |
| 14831 | dtrace_state_option(dtrace_state_t *state, dtrace_optid_t option, |
| 14832 | dtrace_optval_t val) |
| 14833 | { |
| 14834 | LCK_MTX_ASSERT(&dtrace_lock, LCK_MTX_ASSERT_OWNED); |
| 14835 | |
| 14836 | if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) |
| 14837 | return (EBUSY); |
| 14838 | |
| 14839 | if (option >= DTRACEOPT_MAX) |
| 14840 | return (EINVAL); |
| 14841 | |
| 14842 | if (option != DTRACEOPT_CPU && val < 0) |
| 14843 | return (EINVAL); |
| 14844 | |
| 14845 | switch (option) { |
| 14846 | case DTRACEOPT_DESTRUCTIVE: |
| 14847 | if (dtrace_destructive_disallow) |
| 14848 | return (EACCES); |
| 14849 | |
| 14850 | state->dts_cred.dcr_destructive = 1; |
| 14851 | break; |
| 14852 | |
| 14853 | case DTRACEOPT_BUFSIZE: |
| 14854 | case DTRACEOPT_DYNVARSIZE: |
| 14855 | case DTRACEOPT_AGGSIZE: |
| 14856 | case DTRACEOPT_SPECSIZE: |
| 14857 | case DTRACEOPT_STRSIZE: |
| 14858 | if (val < 0) |
| 14859 | return (EINVAL); |
| 14860 | |
| 14861 | if (val >= LONG_MAX) { |
| 14862 | /* |
| 14863 | * If this is an otherwise negative value, set it to |
| 14864 | * the highest multiple of 128m less than LONG_MAX. |
| 14865 | * Technically, we're adjusting the size without |
| 14866 | * regard to the buffer resizing policy, but in fact, |
| 14867 | * this has no effect -- if we set the buffer size to |
| 14868 | * ~LONG_MAX and the buffer policy is ultimately set to |
| 14869 | * be "manual", the buffer allocation is guaranteed to |
| 14870 | * fail, if only because the allocation requires two |
| 14871 | * buffers. (We set the the size to the highest |
| 14872 | * multiple of 128m because it ensures that the size |
| 14873 | * will remain a multiple of a megabyte when |
| 14874 | * repeatedly halved -- all the way down to 15m.) |
| 14875 | */ |
| 14876 | val = LONG_MAX - (1 << 27) + 1; |
| 14877 | } |
| 14878 | } |
| 14879 | |
| 14880 | state->dts_options[option] = val; |
| 14881 | |
| 14882 | return (0); |
| 14883 | } |
| 14884 | |
| 14885 | static void |
| 14886 | dtrace_state_destroy(dtrace_state_t *state) |
| 14887 | { |
| 14888 | dtrace_ecb_t *ecb; |
| 14889 | dtrace_vstate_t *vstate = &state->dts_vstate; |
| 14890 | minor_t minor = getminor(state->dts_dev); |
| 14891 | int i, bufsize = (int)NCPU * sizeof (dtrace_buffer_t); |
| 14892 | dtrace_speculation_t *spec = state->dts_speculations; |
| 14893 | int nspec = state->dts_nspeculations; |
| 14894 | uint32_t match; |
| 14895 | |
| 14896 | LCK_MTX_ASSERT(&dtrace_lock, LCK_MTX_ASSERT_OWNED); |
| 14897 | LCK_MTX_ASSERT(&cpu_lock, LCK_MTX_ASSERT_OWNED); |
| 14898 | |
| 14899 | /* |
| 14900 | * First, retract any retained enablings for this state. |
| 14901 | */ |
| 14902 | dtrace_enabling_retract(state); |
| 14903 | ASSERT(state->dts_nretained == 0); |
| 14904 | |
| 14905 | if (state->dts_activity == DTRACE_ACTIVITY_ACTIVE || |
| 14906 | state->dts_activity == DTRACE_ACTIVITY_DRAINING) { |
| 14907 | /* |
| 14908 | * We have managed to come into dtrace_state_destroy() on a |
| 14909 | * hot enabling -- almost certainly because of a disorderly |
| 14910 | * shutdown of a consumer. (That is, a consumer that is |
| 14911 | * exiting without having called dtrace_stop().) In this case, |
| 14912 | * we're going to set our activity to be KILLED, and then |
| 14913 | * issue a sync to be sure that everyone is out of probe |
| 14914 | * context before we start blowing away ECBs. |
| 14915 | */ |
| 14916 | state->dts_activity = DTRACE_ACTIVITY_KILLED; |
| 14917 | dtrace_sync(); |
| 14918 | } |
| 14919 | |
| 14920 | /* |
| 14921 | * Release the credential hold we took in dtrace_state_create(). |
| 14922 | */ |
| 14923 | if (state->dts_cred.dcr_cred != NULL) |
| 14924 | kauth_cred_unref(&state->dts_cred.dcr_cred); |
| 14925 | |
| 14926 | /* |
| 14927 | * Now we can safely disable and destroy any enabled probes. Because |
| 14928 | * any DTRACE_PRIV_KERNEL probes may actually be slowing our progress |
| 14929 | * (especially if they're all enabled), we take two passes through the |
| 14930 | * ECBs: in the first, we disable just DTRACE_PRIV_KERNEL probes, and |
| 14931 | * in the second we disable whatever is left over. |
| 14932 | */ |
| 14933 | for (match = DTRACE_PRIV_KERNEL; ; match = 0) { |
| 14934 | for (i = 0; i < state->dts_necbs; i++) { |
| 14935 | if ((ecb = state->dts_ecbs[i]) == NULL) |
| 14936 | continue; |
| 14937 | |
| 14938 | if (match && ecb->dte_probe != NULL) { |
| 14939 | dtrace_probe_t *probe = ecb->dte_probe; |
| 14940 | dtrace_provider_t *prov = probe->dtpr_provider; |
| 14941 | |
| 14942 | if (!(prov->dtpv_priv.dtpp_flags & match)) |
| 14943 | continue; |
| 14944 | } |
| 14945 | |
| 14946 | dtrace_ecb_disable(ecb); |
| 14947 | dtrace_ecb_destroy(ecb); |
| 14948 | } |
| 14949 | |
| 14950 | if (!match) |
| 14951 | break; |
| 14952 | } |
| 14953 | |
| 14954 | /* |
| 14955 | * Before we free the buffers, perform one more sync to assure that |
| 14956 | * every CPU is out of probe context. |
| 14957 | */ |
| 14958 | dtrace_sync(); |
| 14959 | |
| 14960 | dtrace_buffer_free(bufs: state->dts_buffer); |
| 14961 | dtrace_buffer_free(bufs: state->dts_aggbuffer); |
| 14962 | |
| 14963 | for (i = 0; i < (int)NCPU; i++) { |
| 14964 | kmem_free(state->dts_rstate[i], 2 * sizeof(uint64_t)); |
| 14965 | } |
| 14966 | kmem_free(state->dts_rstate, NCPU * sizeof(uint64_t*)); |
| 14967 | |
| 14968 | for (i = 0; i < nspec; i++) |
| 14969 | dtrace_buffer_free(bufs: spec[i].dtsp_buffer); |
| 14970 | |
| 14971 | if (state->dts_cleaner != CYCLIC_NONE) |
| 14972 | cyclic_remove(state->dts_cleaner); |
| 14973 | |
| 14974 | if (state->dts_deadman != CYCLIC_NONE) |
| 14975 | cyclic_remove(state->dts_deadman); |
| 14976 | |
| 14977 | dtrace_dstate_fini(dstate: &vstate->dtvs_dynvars); |
| 14978 | dtrace_vstate_fini(vstate); |
| 14979 | kmem_free(state->dts_ecbs, state->dts_necbs * sizeof (dtrace_ecb_t *)); |
| 14980 | |
| 14981 | if (state->dts_aggregations != NULL) { |
| 14982 | #if DEBUG |
| 14983 | for (i = 0; i < state->dts_naggregations; i++) |
| 14984 | ASSERT(state->dts_aggregations[i] == NULL); |
| 14985 | #endif |
| 14986 | ASSERT(state->dts_naggregations > 0); |
| 14987 | kmem_free(state->dts_aggregations, |
| 14988 | state->dts_naggregations * sizeof (dtrace_aggregation_t *)); |
| 14989 | } |
| 14990 | |
| 14991 | kmem_free(state->dts_buffer, bufsize); |
| 14992 | kmem_free(state->dts_aggbuffer, bufsize); |
| 14993 | |
| 14994 | for (i = 0; i < nspec; i++) |
| 14995 | kmem_free(spec[i].dtsp_buffer, bufsize); |
| 14996 | |
| 14997 | kmem_free(spec, nspec * sizeof (dtrace_speculation_t)); |
| 14998 | |
| 14999 | dtrace_format_destroy(state); |
| 15000 | |
| 15001 | vmem_destroy(state->dts_aggid_arena); |
| 15002 | dtrace_state_free(minor); |
| 15003 | } |
| 15004 | |
| 15005 | /* |
| 15006 | * DTrace Anonymous Enabling Functions |
| 15007 | */ |
| 15008 | |
| 15009 | int |
| 15010 | dtrace_keep_kernel_symbols(void) |
| 15011 | { |
| 15012 | if (dtrace_is_restricted() && !dtrace_are_restrictions_relaxed()) { |
| 15013 | return 0; |
| 15014 | } |
| 15015 | |
| 15016 | if (dtrace_kernel_symbol_mode == DTRACE_KERNEL_SYMBOLS_ALWAYS_FROM_KERNEL) |
| 15017 | return 1; |
| 15018 | |
| 15019 | return 0; |
| 15020 | } |
| 15021 | |
| 15022 | static dtrace_state_t * |
| 15023 | dtrace_anon_grab(void) |
| 15024 | { |
| 15025 | dtrace_state_t *state; |
| 15026 | |
| 15027 | LCK_MTX_ASSERT(&dtrace_lock, LCK_MTX_ASSERT_OWNED); |
| 15028 | |
| 15029 | if ((state = dtrace_anon.dta_state) == NULL) { |
| 15030 | ASSERT(dtrace_anon.dta_enabling == NULL); |
| 15031 | return (NULL); |
| 15032 | } |
| 15033 | |
| 15034 | ASSERT(dtrace_anon.dta_enabling != NULL); |
| 15035 | ASSERT(dtrace_retained != NULL); |
| 15036 | |
| 15037 | dtrace_enabling_destroy(enab: dtrace_anon.dta_enabling); |
| 15038 | dtrace_anon.dta_enabling = NULL; |
| 15039 | dtrace_anon.dta_state = NULL; |
| 15040 | |
| 15041 | return (state); |
| 15042 | } |
| 15043 | |
| 15044 | static void |
| 15045 | dtrace_anon_property(void) |
| 15046 | { |
| 15047 | int i, rv; |
| 15048 | dtrace_state_t *state; |
| 15049 | dof_hdr_t *dof; |
| 15050 | char c[32]; /* enough for "dof-data-" + digits */ |
| 15051 | |
| 15052 | LCK_MTX_ASSERT(&dtrace_lock, LCK_MTX_ASSERT_OWNED); |
| 15053 | LCK_MTX_ASSERT(&cpu_lock, LCK_MTX_ASSERT_OWNED); |
| 15054 | |
| 15055 | for (i = 0; ; i++) { |
| 15056 | (void) snprintf(c, count: sizeof (c), "dof-data-%d" , i); |
| 15057 | |
| 15058 | dtrace_err_verbose = 1; |
| 15059 | |
| 15060 | if ((dof = dtrace_dof_property(name: c)) == NULL) { |
| 15061 | dtrace_err_verbose = 0; |
| 15062 | break; |
| 15063 | } |
| 15064 | |
| 15065 | #ifdef illumos |
| 15066 | /* |
| 15067 | * We want to create anonymous state, so we need to transition |
| 15068 | * the kernel debugger to indicate that DTrace is active. If |
| 15069 | * this fails (e.g. because the debugger has modified text in |
| 15070 | * some way), we won't continue with the processing. |
| 15071 | */ |
| 15072 | if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) { |
| 15073 | cmn_err(CE_NOTE, "kernel debugger active; anonymous " |
| 15074 | "enabling ignored." ); |
| 15075 | dtrace_dof_destroy(dof); |
| 15076 | break; |
| 15077 | } |
| 15078 | #endif |
| 15079 | |
| 15080 | /* |
| 15081 | * If we haven't allocated an anonymous state, we'll do so now. |
| 15082 | */ |
| 15083 | if ((state = dtrace_anon.dta_state) == NULL) { |
| 15084 | rv = dtrace_state_create(NULL, NULL, new_state: &state); |
| 15085 | dtrace_anon.dta_state = state; |
| 15086 | if (rv != 0 || state == NULL) { |
| 15087 | /* |
| 15088 | * This basically shouldn't happen: the only |
| 15089 | * failure mode from dtrace_state_create() is a |
| 15090 | * failure of ddi_soft_state_zalloc() that |
| 15091 | * itself should never happen. Still, the |
| 15092 | * interface allows for a failure mode, and |
| 15093 | * we want to fail as gracefully as possible: |
| 15094 | * we'll emit an error message and cease |
| 15095 | * processing anonymous state in this case. |
| 15096 | */ |
| 15097 | cmn_err(CE_WARN, "failed to create " |
| 15098 | "anonymous state" ); |
| 15099 | dtrace_dof_destroy(dof); |
| 15100 | break; |
| 15101 | } |
| 15102 | } |
| 15103 | |
| 15104 | rv = dtrace_dof_slurp(dof, vstate: &state->dts_vstate, CRED(), |
| 15105 | enabp: &dtrace_anon.dta_enabling, ubase: 0, noprobes: B_TRUE); |
| 15106 | |
| 15107 | if (rv == 0) |
| 15108 | rv = dtrace_dof_options(dof, state); |
| 15109 | |
| 15110 | dtrace_err_verbose = 0; |
| 15111 | dtrace_dof_destroy(dof); |
| 15112 | |
| 15113 | if (rv != 0) { |
| 15114 | /* |
| 15115 | * This is malformed DOF; chuck any anonymous state |
| 15116 | * that we created. |
| 15117 | */ |
| 15118 | ASSERT(dtrace_anon.dta_enabling == NULL); |
| 15119 | dtrace_state_destroy(state); |
| 15120 | dtrace_anon.dta_state = NULL; |
| 15121 | break; |
| 15122 | } |
| 15123 | |
| 15124 | ASSERT(dtrace_anon.dta_enabling != NULL); |
| 15125 | } |
| 15126 | |
| 15127 | if (dtrace_anon.dta_enabling != NULL) { |
| 15128 | int rval; |
| 15129 | |
| 15130 | /* |
| 15131 | * dtrace_enabling_retain() can only fail because we are |
| 15132 | * trying to retain more enablings than are allowed -- but |
| 15133 | * we only have one anonymous enabling, and we are guaranteed |
| 15134 | * to be allowed at least one retained enabling; we assert |
| 15135 | * that dtrace_enabling_retain() returns success. |
| 15136 | */ |
| 15137 | rval = dtrace_enabling_retain(enab: dtrace_anon.dta_enabling); |
| 15138 | ASSERT(rval == 0); |
| 15139 | |
| 15140 | dtrace_enabling_dump(enab: dtrace_anon.dta_enabling); |
| 15141 | } |
| 15142 | } |
| 15143 | |
| 15144 | /* |
| 15145 | * DTrace Helper Functions |
| 15146 | */ |
| 15147 | static void |
| 15148 | dtrace_helper_trace(dtrace_helper_action_t *helper, |
| 15149 | dtrace_mstate_t *mstate, dtrace_vstate_t *vstate, int where) |
| 15150 | { |
| 15151 | uint32_t size, next, nnext; |
| 15152 | int i; |
| 15153 | dtrace_helptrace_t *ent; |
| 15154 | uint16_t flags = cpu_core[CPU->cpu_id].cpuc_dtrace_flags; |
| 15155 | |
| 15156 | if (!dtrace_helptrace_enabled) |
| 15157 | return; |
| 15158 | |
| 15159 | ASSERT((uint32_t)vstate->dtvs_nlocals <= dtrace_helptrace_nlocals); |
| 15160 | |
| 15161 | /* |
| 15162 | * What would a tracing framework be without its own tracing |
| 15163 | * framework? (Well, a hell of a lot simpler, for starters...) |
| 15164 | */ |
| 15165 | size = sizeof (dtrace_helptrace_t) + dtrace_helptrace_nlocals * |
| 15166 | sizeof (uint64_t) - sizeof (uint64_t); |
| 15167 | |
| 15168 | /* |
| 15169 | * Iterate until we can allocate a slot in the trace buffer. |
| 15170 | */ |
| 15171 | do { |
| 15172 | next = dtrace_helptrace_next; |
| 15173 | |
| 15174 | if (next + size < dtrace_helptrace_bufsize) { |
| 15175 | nnext = next + size; |
| 15176 | } else { |
| 15177 | nnext = size; |
| 15178 | } |
| 15179 | } while (dtrace_cas32(&dtrace_helptrace_next, next, nnext) != next); |
| 15180 | |
| 15181 | /* |
| 15182 | * We have our slot; fill it in. |
| 15183 | */ |
| 15184 | if (nnext == size) |
| 15185 | next = 0; |
| 15186 | |
| 15187 | ent = (dtrace_helptrace_t *)&dtrace_helptrace_buffer[next]; |
| 15188 | ent->dtht_helper = helper; |
| 15189 | ent->dtht_where = where; |
| 15190 | ent->dtht_nlocals = vstate->dtvs_nlocals; |
| 15191 | |
| 15192 | ent->dtht_fltoffs = (mstate->dtms_present & DTRACE_MSTATE_FLTOFFS) ? |
| 15193 | mstate->dtms_fltoffs : -1; |
| 15194 | ent->dtht_fault = DTRACE_FLAGS2FLT(flags); |
| 15195 | ent->dtht_illval = cpu_core[CPU->cpu_id].cpuc_dtrace_illval; |
| 15196 | |
| 15197 | for (i = 0; i < vstate->dtvs_nlocals; i++) { |
| 15198 | dtrace_statvar_t *svar; |
| 15199 | |
| 15200 | if ((svar = vstate->dtvs_locals[i]) == NULL) |
| 15201 | continue; |
| 15202 | |
| 15203 | ASSERT(svar->dtsv_size >= (int)NCPU * sizeof (uint64_t)); |
| 15204 | ent->dtht_locals[i] = |
| 15205 | ((uint64_t *)(uintptr_t)svar->dtsv_data)[CPU->cpu_id]; |
| 15206 | } |
| 15207 | } |
| 15208 | |
| 15209 | __attribute__((noinline)) |
| 15210 | static uint64_t |
| 15211 | dtrace_helper(int which, dtrace_mstate_t *mstate, |
| 15212 | dtrace_state_t *state, uint64_t arg0, uint64_t arg1) |
| 15213 | { |
| 15214 | uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; |
| 15215 | uint64_t sarg0 = mstate->dtms_arg[0]; |
| 15216 | uint64_t sarg1 = mstate->dtms_arg[1]; |
| 15217 | uint64_t rval = 0; |
| 15218 | dtrace_helpers_t *helpers = curproc->p_dtrace_helpers; |
| 15219 | dtrace_helper_action_t *helper; |
| 15220 | dtrace_vstate_t *vstate; |
| 15221 | dtrace_difo_t *pred; |
| 15222 | int i, trace = dtrace_helptrace_enabled; |
| 15223 | |
| 15224 | ASSERT(which >= 0 && which < DTRACE_NHELPER_ACTIONS); |
| 15225 | |
| 15226 | if (helpers == NULL) |
| 15227 | return (0); |
| 15228 | |
| 15229 | if ((helper = helpers->dthps_actions[which]) == NULL) |
| 15230 | return (0); |
| 15231 | |
| 15232 | vstate = &helpers->dthps_vstate; |
| 15233 | mstate->dtms_arg[0] = arg0; |
| 15234 | mstate->dtms_arg[1] = arg1; |
| 15235 | |
| 15236 | /* |
| 15237 | * Now iterate over each helper. If its predicate evaluates to 'true', |
| 15238 | * we'll call the corresponding actions. Note that the below calls |
| 15239 | * to dtrace_dif_emulate() may set faults in machine state. This is |
| 15240 | * okay: our caller (the outer dtrace_dif_emulate()) will simply plow |
| 15241 | * the stored DIF offset with its own (which is the desired behavior). |
| 15242 | * Also, note the calls to dtrace_dif_emulate() may allocate scratch |
| 15243 | * from machine state; this is okay, too. |
| 15244 | */ |
| 15245 | for (; helper != NULL; helper = helper->dtha_next) { |
| 15246 | if ((pred = helper->dtha_predicate) != NULL) { |
| 15247 | if (trace) |
| 15248 | dtrace_helper_trace(helper, mstate, vstate, where: 0); |
| 15249 | |
| 15250 | if (!dtrace_dif_emulate(difo: pred, mstate, vstate, state)) |
| 15251 | goto next; |
| 15252 | |
| 15253 | if (*flags & CPU_DTRACE_FAULT) |
| 15254 | goto err; |
| 15255 | } |
| 15256 | |
| 15257 | for (i = 0; i < helper->dtha_nactions; i++) { |
| 15258 | if (trace) |
| 15259 | dtrace_helper_trace(helper, |
| 15260 | mstate, vstate, where: i + 1); |
| 15261 | |
| 15262 | rval = dtrace_dif_emulate(difo: helper->dtha_actions[i], |
| 15263 | mstate, vstate, state); |
| 15264 | |
| 15265 | if (*flags & CPU_DTRACE_FAULT) |
| 15266 | goto err; |
| 15267 | } |
| 15268 | |
| 15269 | next: |
| 15270 | if (trace) |
| 15271 | dtrace_helper_trace(helper, mstate, vstate, |
| 15272 | DTRACE_HELPTRACE_NEXT); |
| 15273 | } |
| 15274 | |
| 15275 | if (trace) |
| 15276 | dtrace_helper_trace(helper, mstate, vstate, |
| 15277 | DTRACE_HELPTRACE_DONE); |
| 15278 | |
| 15279 | /* |
| 15280 | * Restore the arg0 that we saved upon entry. |
| 15281 | */ |
| 15282 | mstate->dtms_arg[0] = sarg0; |
| 15283 | mstate->dtms_arg[1] = sarg1; |
| 15284 | |
| 15285 | return (rval); |
| 15286 | |
| 15287 | err: |
| 15288 | if (trace) |
| 15289 | dtrace_helper_trace(helper, mstate, vstate, |
| 15290 | DTRACE_HELPTRACE_ERR); |
| 15291 | |
| 15292 | /* |
| 15293 | * Restore the arg0 that we saved upon entry. |
| 15294 | */ |
| 15295 | mstate->dtms_arg[0] = sarg0; |
| 15296 | mstate->dtms_arg[1] = sarg1; |
| 15297 | |
| 15298 | return (0); |
| 15299 | } |
| 15300 | |
| 15301 | static void |
| 15302 | dtrace_helper_action_destroy(dtrace_helper_action_t *helper, |
| 15303 | dtrace_vstate_t *vstate) |
| 15304 | { |
| 15305 | int i; |
| 15306 | |
| 15307 | if (helper->dtha_predicate != NULL) |
| 15308 | dtrace_difo_release(dp: helper->dtha_predicate, vstate); |
| 15309 | |
| 15310 | for (i = 0; i < helper->dtha_nactions; i++) { |
| 15311 | ASSERT(helper->dtha_actions[i] != NULL); |
| 15312 | dtrace_difo_release(dp: helper->dtha_actions[i], vstate); |
| 15313 | } |
| 15314 | |
| 15315 | kmem_free(helper->dtha_actions, |
| 15316 | helper->dtha_nactions * sizeof (dtrace_difo_t *)); |
| 15317 | kmem_free(helper, sizeof (dtrace_helper_action_t)); |
| 15318 | } |
| 15319 | |
| 15320 | static int |
| 15321 | dtrace_helper_destroygen(proc_t* p, int gen) |
| 15322 | { |
| 15323 | dtrace_helpers_t *help = p->p_dtrace_helpers; |
| 15324 | dtrace_vstate_t *vstate; |
| 15325 | uint_t i; |
| 15326 | |
| 15327 | LCK_MTX_ASSERT(&dtrace_meta_lock, LCK_MTX_ASSERT_OWNED); |
| 15328 | LCK_MTX_ASSERT(&dtrace_lock, LCK_MTX_ASSERT_OWNED); |
| 15329 | |
| 15330 | if (help == NULL || gen > help->dthps_generation) |
| 15331 | return (EINVAL); |
| 15332 | |
| 15333 | vstate = &help->dthps_vstate; |
| 15334 | |
| 15335 | for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { |
| 15336 | dtrace_helper_action_t *last = NULL, *h, *next; |
| 15337 | |
| 15338 | for (h = help->dthps_actions[i]; h != NULL; h = next) { |
| 15339 | next = h->dtha_next; |
| 15340 | |
| 15341 | if (h->dtha_generation == gen) { |
| 15342 | if (last != NULL) { |
| 15343 | last->dtha_next = next; |
| 15344 | } else { |
| 15345 | help->dthps_actions[i] = next; |
| 15346 | } |
| 15347 | |
| 15348 | dtrace_helper_action_destroy(helper: h, vstate); |
| 15349 | } else { |
| 15350 | last = h; |
| 15351 | } |
| 15352 | } |
| 15353 | } |
| 15354 | |
| 15355 | /* |
| 15356 | * Interate until we've cleared out all helper providers with the |
| 15357 | * given generation number. |
| 15358 | */ |
| 15359 | for (;;) { |
| 15360 | dtrace_helper_provider_t *prov = NULL; |
| 15361 | |
| 15362 | /* |
| 15363 | * Look for a helper provider with the right generation. We |
| 15364 | * have to start back at the beginning of the list each time |
| 15365 | * because we drop dtrace_lock. It's unlikely that we'll make |
| 15366 | * more than two passes. |
| 15367 | */ |
| 15368 | for (i = 0; i < help->dthps_nprovs; i++) { |
| 15369 | prov = help->dthps_provs[i]; |
| 15370 | |
| 15371 | if (prov->dthp_generation == gen) |
| 15372 | break; |
| 15373 | } |
| 15374 | |
| 15375 | /* |
| 15376 | * If there were no matches, we're done. |
| 15377 | */ |
| 15378 | if (i == help->dthps_nprovs) |
| 15379 | break; |
| 15380 | |
| 15381 | /* |
| 15382 | * Move the last helper provider into this slot. |
| 15383 | */ |
| 15384 | help->dthps_nprovs--; |
| 15385 | help->dthps_provs[i] = help->dthps_provs[help->dthps_nprovs]; |
| 15386 | help->dthps_provs[help->dthps_nprovs] = NULL; |
| 15387 | |
| 15388 | lck_mtx_unlock(lck: &dtrace_lock); |
| 15389 | |
| 15390 | /* |
| 15391 | * If we have a meta provider, remove this helper provider. |
| 15392 | */ |
| 15393 | if (dtrace_meta_pid != NULL) { |
| 15394 | ASSERT(dtrace_deferred_pid == NULL); |
| 15395 | dtrace_helper_provider_remove(dhp: &prov->dthp_prov, |
| 15396 | p); |
| 15397 | } |
| 15398 | |
| 15399 | dtrace_helper_provider_destroy(prov); |
| 15400 | |
| 15401 | lck_mtx_lock(lck: &dtrace_lock); |
| 15402 | } |
| 15403 | |
| 15404 | return (0); |
| 15405 | } |
| 15406 | |
| 15407 | static int |
| 15408 | dtrace_helper_validate(dtrace_helper_action_t *helper) |
| 15409 | { |
| 15410 | int err = 0, i; |
| 15411 | dtrace_difo_t *dp; |
| 15412 | |
| 15413 | if ((dp = helper->dtha_predicate) != NULL) |
| 15414 | err += dtrace_difo_validate_helper(dp); |
| 15415 | |
| 15416 | for (i = 0; i < helper->dtha_nactions; i++) |
| 15417 | err += dtrace_difo_validate_helper(dp: helper->dtha_actions[i]); |
| 15418 | |
| 15419 | return (err == 0); |
| 15420 | } |
| 15421 | |
| 15422 | static int |
| 15423 | dtrace_helper_action_add(proc_t* p, int which, dtrace_ecbdesc_t *ep) |
| 15424 | { |
| 15425 | dtrace_helpers_t *help; |
| 15426 | dtrace_helper_action_t *helper, *last; |
| 15427 | dtrace_actdesc_t *act; |
| 15428 | dtrace_vstate_t *vstate; |
| 15429 | dtrace_predicate_t *pred; |
| 15430 | int count = 0, nactions = 0, i; |
| 15431 | |
| 15432 | if (which < 0 || which >= DTRACE_NHELPER_ACTIONS) |
| 15433 | return (EINVAL); |
| 15434 | |
| 15435 | help = p->p_dtrace_helpers; |
| 15436 | last = help->dthps_actions[which]; |
| 15437 | vstate = &help->dthps_vstate; |
| 15438 | |
| 15439 | for (count = 0; last != NULL; last = last->dtha_next) { |
| 15440 | count++; |
| 15441 | if (last->dtha_next == NULL) |
| 15442 | break; |
| 15443 | } |
| 15444 | |
| 15445 | /* |
| 15446 | * If we already have dtrace_helper_actions_max helper actions for this |
| 15447 | * helper action type, we'll refuse to add a new one. |
| 15448 | */ |
| 15449 | if (count >= dtrace_helper_actions_max) |
| 15450 | return (ENOSPC); |
| 15451 | |
| 15452 | helper = kmem_zalloc(sizeof (dtrace_helper_action_t), KM_SLEEP); |
| 15453 | helper->dtha_generation = help->dthps_generation; |
| 15454 | |
| 15455 | if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) { |
| 15456 | ASSERT(pred->dtp_difo != NULL); |
| 15457 | dtrace_difo_hold(dp: pred->dtp_difo); |
| 15458 | helper->dtha_predicate = pred->dtp_difo; |
| 15459 | } |
| 15460 | |
| 15461 | for (act = ep->dted_action; act != NULL; act = act->dtad_next) { |
| 15462 | if (act->dtad_kind != DTRACEACT_DIFEXPR) |
| 15463 | goto err; |
| 15464 | |
| 15465 | if (act->dtad_difo == NULL) |
| 15466 | goto err; |
| 15467 | |
| 15468 | nactions++; |
| 15469 | } |
| 15470 | |
| 15471 | helper->dtha_actions = kmem_zalloc(sizeof (dtrace_difo_t *) * |
| 15472 | (helper->dtha_nactions = nactions), KM_SLEEP); |
| 15473 | |
| 15474 | for (act = ep->dted_action, i = 0; act != NULL; act = act->dtad_next) { |
| 15475 | dtrace_difo_hold(dp: act->dtad_difo); |
| 15476 | helper->dtha_actions[i++] = act->dtad_difo; |
| 15477 | } |
| 15478 | |
| 15479 | if (!dtrace_helper_validate(helper)) |
| 15480 | goto err; |
| 15481 | |
| 15482 | if (last == NULL) { |
| 15483 | help->dthps_actions[which] = helper; |
| 15484 | } else { |
| 15485 | last->dtha_next = helper; |
| 15486 | } |
| 15487 | |
| 15488 | if ((uint32_t)vstate->dtvs_nlocals > dtrace_helptrace_nlocals) { |
| 15489 | dtrace_helptrace_nlocals = vstate->dtvs_nlocals; |
| 15490 | dtrace_helptrace_next = 0; |
| 15491 | } |
| 15492 | |
| 15493 | return (0); |
| 15494 | err: |
| 15495 | dtrace_helper_action_destroy(helper, vstate); |
| 15496 | return (EINVAL); |
| 15497 | } |
| 15498 | |
| 15499 | static void |
| 15500 | dtrace_helper_provider_register(proc_t *p, dtrace_helpers_t *help, |
| 15501 | dof_helper_t *dofhp) |
| 15502 | { |
| 15503 | LCK_MTX_ASSERT(&dtrace_meta_lock, LCK_MTX_ASSERT_OWNED); |
| 15504 | LCK_MTX_ASSERT(&dtrace_lock, LCK_MTX_ASSERT_NOTOWNED); |
| 15505 | |
| 15506 | lck_mtx_lock(lck: &dtrace_lock); |
| 15507 | |
| 15508 | if (!dtrace_attached() || dtrace_meta_pid == NULL) { |
| 15509 | /* |
| 15510 | * If the dtrace module is loaded but not attached, or if |
| 15511 | * there aren't isn't a meta provider registered to deal with |
| 15512 | * these provider descriptions, we need to postpone creating |
| 15513 | * the actual providers until later. |
| 15514 | */ |
| 15515 | |
| 15516 | if (help->dthps_next == NULL && help->dthps_prev == NULL && |
| 15517 | dtrace_deferred_pid != help) { |
| 15518 | help->dthps_deferred = 1; |
| 15519 | help->dthps_pid = proc_getpid(p); |
| 15520 | help->dthps_next = dtrace_deferred_pid; |
| 15521 | help->dthps_prev = NULL; |
| 15522 | if (dtrace_deferred_pid != NULL) |
| 15523 | dtrace_deferred_pid->dthps_prev = help; |
| 15524 | dtrace_deferred_pid = help; |
| 15525 | } |
| 15526 | |
| 15527 | lck_mtx_unlock(lck: &dtrace_lock); |
| 15528 | |
| 15529 | } else if (dofhp != NULL) { |
| 15530 | /* |
| 15531 | * If the dtrace module is loaded and we have a particular |
| 15532 | * helper provider description, pass that off to the |
| 15533 | * meta provider. |
| 15534 | */ |
| 15535 | |
| 15536 | lck_mtx_unlock(lck: &dtrace_lock); |
| 15537 | |
| 15538 | dtrace_helper_provide(dhp: dofhp, p); |
| 15539 | |
| 15540 | } else { |
| 15541 | /* |
| 15542 | * Otherwise, just pass all the helper provider descriptions |
| 15543 | * off to the meta provider. |
| 15544 | */ |
| 15545 | |
| 15546 | uint_t i; |
| 15547 | lck_mtx_unlock(lck: &dtrace_lock); |
| 15548 | |
| 15549 | for (i = 0; i < help->dthps_nprovs; i++) { |
| 15550 | dtrace_helper_provide(dhp: &help->dthps_provs[i]->dthp_prov, |
| 15551 | p); |
| 15552 | } |
| 15553 | } |
| 15554 | } |
| 15555 | |
| 15556 | static int |
| 15557 | dtrace_helper_provider_add(proc_t* p, dof_helper_t *dofhp, int gen) |
| 15558 | { |
| 15559 | dtrace_helpers_t *help; |
| 15560 | dtrace_helper_provider_t *hprov, **tmp_provs; |
| 15561 | uint_t tmp_maxprovs, i; |
| 15562 | |
| 15563 | LCK_MTX_ASSERT(&dtrace_lock, LCK_MTX_ASSERT_OWNED); |
| 15564 | help = p->p_dtrace_helpers; |
| 15565 | ASSERT(help != NULL); |
| 15566 | |
| 15567 | /* |
| 15568 | * If we already have dtrace_helper_providers_max helper providers, |
| 15569 | * we're refuse to add a new one. |
| 15570 | */ |
| 15571 | if (help->dthps_nprovs >= dtrace_helper_providers_max) |
| 15572 | return (ENOSPC); |
| 15573 | |
| 15574 | /* |
| 15575 | * Check to make sure this isn't a duplicate. |
| 15576 | */ |
| 15577 | for (i = 0; i < help->dthps_nprovs; i++) { |
| 15578 | if (dofhp->dofhp_addr == |
| 15579 | help->dthps_provs[i]->dthp_prov.dofhp_addr) |
| 15580 | return (EALREADY); |
| 15581 | } |
| 15582 | |
| 15583 | hprov = kmem_zalloc(sizeof (dtrace_helper_provider_t), KM_SLEEP); |
| 15584 | hprov->dthp_prov = *dofhp; |
| 15585 | hprov->dthp_ref = 1; |
| 15586 | hprov->dthp_generation = gen; |
| 15587 | |
| 15588 | /* |
| 15589 | * Allocate a bigger table for helper providers if it's already full. |
| 15590 | */ |
| 15591 | if (help->dthps_maxprovs == help->dthps_nprovs) { |
| 15592 | tmp_maxprovs = help->dthps_maxprovs; |
| 15593 | tmp_provs = help->dthps_provs; |
| 15594 | |
| 15595 | if (help->dthps_maxprovs == 0) |
| 15596 | help->dthps_maxprovs = 2; |
| 15597 | else |
| 15598 | help->dthps_maxprovs *= 2; |
| 15599 | if (help->dthps_maxprovs > dtrace_helper_providers_max) |
| 15600 | help->dthps_maxprovs = dtrace_helper_providers_max; |
| 15601 | |
| 15602 | ASSERT(tmp_maxprovs < help->dthps_maxprovs); |
| 15603 | |
| 15604 | help->dthps_provs = kmem_zalloc(help->dthps_maxprovs * |
| 15605 | sizeof (dtrace_helper_provider_t *), KM_SLEEP); |
| 15606 | |
| 15607 | if (tmp_provs != NULL) { |
| 15608 | bcopy(src: tmp_provs, dst: help->dthps_provs, n: tmp_maxprovs * |
| 15609 | sizeof (dtrace_helper_provider_t *)); |
| 15610 | kmem_free(tmp_provs, tmp_maxprovs * |
| 15611 | sizeof (dtrace_helper_provider_t *)); |
| 15612 | } |
| 15613 | } |
| 15614 | |
| 15615 | help->dthps_provs[help->dthps_nprovs] = hprov; |
| 15616 | help->dthps_nprovs++; |
| 15617 | |
| 15618 | return (0); |
| 15619 | } |
| 15620 | |
| 15621 | static void |
| 15622 | dtrace_helper_provider_destroy(dtrace_helper_provider_t *hprov) |
| 15623 | { |
| 15624 | lck_mtx_lock(lck: &dtrace_lock); |
| 15625 | |
| 15626 | if (--hprov->dthp_ref == 0) { |
| 15627 | dof_hdr_t *dof; |
| 15628 | lck_mtx_unlock(lck: &dtrace_lock); |
| 15629 | dof = (dof_hdr_t *)(uintptr_t)hprov->dthp_prov.dofhp_dof; |
| 15630 | dtrace_dof_destroy(dof); |
| 15631 | kmem_free(hprov, sizeof (dtrace_helper_provider_t)); |
| 15632 | } else { |
| 15633 | lck_mtx_unlock(lck: &dtrace_lock); |
| 15634 | } |
| 15635 | } |
| 15636 | |
| 15637 | static int |
| 15638 | dtrace_helper_provider_validate(dof_hdr_t *dof, dof_sec_t *sec) |
| 15639 | { |
| 15640 | uintptr_t daddr = (uintptr_t)dof; |
| 15641 | dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec; |
| 15642 | dof_provider_t *provider; |
| 15643 | dof_probe_t *probe; |
| 15644 | uint8_t *arg; |
| 15645 | char *strtab, *typestr; |
| 15646 | dof_stridx_t typeidx; |
| 15647 | size_t typesz; |
| 15648 | uint_t nprobes, j, k; |
| 15649 | |
| 15650 | ASSERT(sec->dofs_type == DOF_SECT_PROVIDER); |
| 15651 | |
| 15652 | if (sec->dofs_offset & (sizeof (uint_t) - 1)) { |
| 15653 | dtrace_dof_error(dof, str: "misaligned section offset" ); |
| 15654 | return (-1); |
| 15655 | } |
| 15656 | |
| 15657 | /* |
| 15658 | * The section needs to be large enough to contain the DOF provider |
| 15659 | * structure appropriate for the given version. |
| 15660 | */ |
| 15661 | if (sec->dofs_size < |
| 15662 | ((dof->dofh_ident[DOF_ID_VERSION] == DOF_VERSION_1) ? |
| 15663 | offsetof(dof_provider_t, dofpv_prenoffs) : |
| 15664 | sizeof (dof_provider_t))) { |
| 15665 | dtrace_dof_error(dof, str: "provider section too small" ); |
| 15666 | return (-1); |
| 15667 | } |
| 15668 | |
| 15669 | provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset); |
| 15670 | str_sec = dtrace_dof_sect(dof, DOF_SECT_STRTAB, i: provider->dofpv_strtab); |
| 15671 | prb_sec = dtrace_dof_sect(dof, DOF_SECT_PROBES, i: provider->dofpv_probes); |
| 15672 | arg_sec = dtrace_dof_sect(dof, DOF_SECT_PRARGS, i: provider->dofpv_prargs); |
| 15673 | off_sec = dtrace_dof_sect(dof, DOF_SECT_PROFFS, i: provider->dofpv_proffs); |
| 15674 | |
| 15675 | if (str_sec == NULL || prb_sec == NULL || |
| 15676 | arg_sec == NULL || off_sec == NULL) |
| 15677 | return (-1); |
| 15678 | |
| 15679 | enoff_sec = NULL; |
| 15680 | |
| 15681 | if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 && |
| 15682 | provider->dofpv_prenoffs != DOF_SECT_NONE && |
| 15683 | (enoff_sec = dtrace_dof_sect(dof, DOF_SECT_PRENOFFS, |
| 15684 | i: provider->dofpv_prenoffs)) == NULL) |
| 15685 | return (-1); |
| 15686 | |
| 15687 | strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset); |
| 15688 | |
| 15689 | if (provider->dofpv_name >= str_sec->dofs_size || |
| 15690 | strlen(s: strtab + provider->dofpv_name) >= DTRACE_PROVNAMELEN) { |
| 15691 | dtrace_dof_error(dof, str: "invalid provider name" ); |
| 15692 | return (-1); |
| 15693 | } |
| 15694 | |
| 15695 | if (prb_sec->dofs_entsize == 0 || |
| 15696 | prb_sec->dofs_entsize > prb_sec->dofs_size) { |
| 15697 | dtrace_dof_error(dof, str: "invalid entry size" ); |
| 15698 | return (-1); |
| 15699 | } |
| 15700 | |
| 15701 | if (prb_sec->dofs_entsize & (sizeof (uintptr_t) - 1)) { |
| 15702 | dtrace_dof_error(dof, str: "misaligned entry size" ); |
| 15703 | return (-1); |
| 15704 | } |
| 15705 | |
| 15706 | if (off_sec->dofs_entsize != sizeof (uint32_t)) { |
| 15707 | dtrace_dof_error(dof, str: "invalid entry size" ); |
| 15708 | return (-1); |
| 15709 | } |
| 15710 | |
| 15711 | if (off_sec->dofs_offset & (sizeof (uint32_t) - 1)) { |
| 15712 | dtrace_dof_error(dof, str: "misaligned section offset" ); |
| 15713 | return (-1); |
| 15714 | } |
| 15715 | |
| 15716 | if (arg_sec->dofs_entsize != sizeof (uint8_t)) { |
| 15717 | dtrace_dof_error(dof, str: "invalid entry size" ); |
| 15718 | return (-1); |
| 15719 | } |
| 15720 | |
| 15721 | arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset); |
| 15722 | |
| 15723 | nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize; |
| 15724 | |
| 15725 | /* |
| 15726 | * Take a pass through the probes to check for errors. |
| 15727 | */ |
| 15728 | for (j = 0; j < nprobes; j++) { |
| 15729 | probe = (dof_probe_t *)(uintptr_t)(daddr + |
| 15730 | prb_sec->dofs_offset + j * prb_sec->dofs_entsize); |
| 15731 | |
| 15732 | if (probe->dofpr_func >= str_sec->dofs_size) { |
| 15733 | dtrace_dof_error(dof, str: "invalid function name" ); |
| 15734 | return (-1); |
| 15735 | } |
| 15736 | |
| 15737 | if (strlen(s: strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) { |
| 15738 | dtrace_dof_error(dof, str: "function name too long" ); |
| 15739 | return (-1); |
| 15740 | } |
| 15741 | |
| 15742 | if (probe->dofpr_name >= str_sec->dofs_size || |
| 15743 | strlen(s: strtab + probe->dofpr_name) >= DTRACE_NAMELEN) { |
| 15744 | dtrace_dof_error(dof, str: "invalid probe name" ); |
| 15745 | return (-1); |
| 15746 | } |
| 15747 | |
| 15748 | /* |
| 15749 | * The offset count must not wrap the index, and the offsets |
| 15750 | * must also not overflow the section's data. |
| 15751 | */ |
| 15752 | if (probe->dofpr_offidx + probe->dofpr_noffs < |
| 15753 | probe->dofpr_offidx || |
| 15754 | (probe->dofpr_offidx + probe->dofpr_noffs) * |
| 15755 | off_sec->dofs_entsize > off_sec->dofs_size) { |
| 15756 | dtrace_dof_error(dof, str: "invalid probe offset" ); |
| 15757 | return (-1); |
| 15758 | } |
| 15759 | |
| 15760 | if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1) { |
| 15761 | /* |
| 15762 | * If there's no is-enabled offset section, make sure |
| 15763 | * there aren't any is-enabled offsets. Otherwise |
| 15764 | * perform the same checks as for probe offsets |
| 15765 | * (immediately above). |
| 15766 | */ |
| 15767 | if (enoff_sec == NULL) { |
| 15768 | if (probe->dofpr_enoffidx != 0 || |
| 15769 | probe->dofpr_nenoffs != 0) { |
| 15770 | dtrace_dof_error(dof, str: "is-enabled " |
| 15771 | "offsets with null section" ); |
| 15772 | return (-1); |
| 15773 | } |
| 15774 | } else if (probe->dofpr_enoffidx + |
| 15775 | probe->dofpr_nenoffs < probe->dofpr_enoffidx || |
| 15776 | (probe->dofpr_enoffidx + probe->dofpr_nenoffs) * |
| 15777 | enoff_sec->dofs_entsize > enoff_sec->dofs_size) { |
| 15778 | dtrace_dof_error(dof, str: "invalid is-enabled " |
| 15779 | "offset" ); |
| 15780 | return (-1); |
| 15781 | } |
| 15782 | |
| 15783 | if (probe->dofpr_noffs + probe->dofpr_nenoffs == 0) { |
| 15784 | dtrace_dof_error(dof, str: "zero probe and " |
| 15785 | "is-enabled offsets" ); |
| 15786 | return (-1); |
| 15787 | } |
| 15788 | } else if (probe->dofpr_noffs == 0) { |
| 15789 | dtrace_dof_error(dof, str: "zero probe offsets" ); |
| 15790 | return (-1); |
| 15791 | } |
| 15792 | |
| 15793 | if (probe->dofpr_argidx + probe->dofpr_xargc < |
| 15794 | probe->dofpr_argidx || |
| 15795 | (probe->dofpr_argidx + probe->dofpr_xargc) * |
| 15796 | arg_sec->dofs_entsize > arg_sec->dofs_size) { |
| 15797 | dtrace_dof_error(dof, str: "invalid args" ); |
| 15798 | return (-1); |
| 15799 | } |
| 15800 | |
| 15801 | typeidx = probe->dofpr_nargv; |
| 15802 | typestr = strtab + probe->dofpr_nargv; |
| 15803 | for (k = 0; k < probe->dofpr_nargc; k++) { |
| 15804 | if (typeidx >= str_sec->dofs_size) { |
| 15805 | dtrace_dof_error(dof, str: "bad " |
| 15806 | "native argument type" ); |
| 15807 | return (-1); |
| 15808 | } |
| 15809 | |
| 15810 | typesz = strlen(s: typestr) + 1; |
| 15811 | if (typesz > DTRACE_ARGTYPELEN) { |
| 15812 | dtrace_dof_error(dof, str: "native " |
| 15813 | "argument type too long" ); |
| 15814 | return (-1); |
| 15815 | } |
| 15816 | typeidx += typesz; |
| 15817 | typestr += typesz; |
| 15818 | } |
| 15819 | |
| 15820 | typeidx = probe->dofpr_xargv; |
| 15821 | typestr = strtab + probe->dofpr_xargv; |
| 15822 | for (k = 0; k < probe->dofpr_xargc; k++) { |
| 15823 | if (arg[probe->dofpr_argidx + k] > probe->dofpr_nargc) { |
| 15824 | dtrace_dof_error(dof, str: "bad " |
| 15825 | "native argument index" ); |
| 15826 | return (-1); |
| 15827 | } |
| 15828 | |
| 15829 | if (typeidx >= str_sec->dofs_size) { |
| 15830 | dtrace_dof_error(dof, str: "bad " |
| 15831 | "translated argument type" ); |
| 15832 | return (-1); |
| 15833 | } |
| 15834 | |
| 15835 | typesz = strlen(s: typestr) + 1; |
| 15836 | if (typesz > DTRACE_ARGTYPELEN) { |
| 15837 | dtrace_dof_error(dof, str: "translated argument " |
| 15838 | "type too long" ); |
| 15839 | return (-1); |
| 15840 | } |
| 15841 | |
| 15842 | typeidx += typesz; |
| 15843 | typestr += typesz; |
| 15844 | } |
| 15845 | } |
| 15846 | |
| 15847 | return (0); |
| 15848 | } |
| 15849 | |
| 15850 | static int |
| 15851 | dtrace_helper_slurp(proc_t* p, dof_hdr_t *dof, dof_helper_t *dhp) |
| 15852 | { |
| 15853 | dtrace_helpers_t *help; |
| 15854 | dtrace_vstate_t *vstate; |
| 15855 | dtrace_enabling_t *enab = NULL; |
| 15856 | int i, gen, rv, nhelpers = 0, nprovs = 0, destroy = 1; |
| 15857 | uintptr_t daddr = (uintptr_t)dof; |
| 15858 | |
| 15859 | LCK_MTX_ASSERT(&dtrace_meta_lock, LCK_MTX_ASSERT_OWNED); |
| 15860 | LCK_MTX_ASSERT(&dtrace_lock, LCK_MTX_ASSERT_OWNED); |
| 15861 | |
| 15862 | if ((help = p->p_dtrace_helpers) == NULL) |
| 15863 | help = dtrace_helpers_create(p); |
| 15864 | |
| 15865 | vstate = &help->dthps_vstate; |
| 15866 | |
| 15867 | if ((rv = dtrace_dof_slurp(dof, vstate, NULL, enabp: &enab, |
| 15868 | ubase: dhp != NULL ? dhp->dofhp_addr : 0, noprobes: B_FALSE)) != 0) { |
| 15869 | dtrace_dof_destroy(dof); |
| 15870 | return (rv); |
| 15871 | } |
| 15872 | |
| 15873 | /* |
| 15874 | * Look for helper providers and validate their descriptions. |
| 15875 | */ |
| 15876 | if (dhp != NULL) { |
| 15877 | for (i = 0; (uint32_t)i < dof->dofh_secnum; i++) { |
| 15878 | dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr + |
| 15879 | dof->dofh_secoff + i * dof->dofh_secsize); |
| 15880 | |
| 15881 | if (sec->dofs_type != DOF_SECT_PROVIDER) |
| 15882 | continue; |
| 15883 | |
| 15884 | if (dtrace_helper_provider_validate(dof, sec) != 0) { |
| 15885 | dtrace_enabling_destroy(enab); |
| 15886 | dtrace_dof_destroy(dof); |
| 15887 | return (-1); |
| 15888 | } |
| 15889 | |
| 15890 | nprovs++; |
| 15891 | } |
| 15892 | } |
| 15893 | |
| 15894 | /* |
| 15895 | * Now we need to walk through the ECB descriptions in the enabling. |
| 15896 | */ |
| 15897 | for (i = 0; i < enab->dten_ndesc; i++) { |
| 15898 | dtrace_ecbdesc_t *ep = enab->dten_desc[i]; |
| 15899 | dtrace_probedesc_t *desc = &ep->dted_probe; |
| 15900 | |
| 15901 | /* APPLE NOTE: Darwin employs size bounded string operation. */ |
| 15902 | if (!LIT_STRNEQL(desc->dtpd_provider, "dtrace" )) |
| 15903 | continue; |
| 15904 | |
| 15905 | if (!LIT_STRNEQL(desc->dtpd_mod, "helper" )) |
| 15906 | continue; |
| 15907 | |
| 15908 | if (!LIT_STRNEQL(desc->dtpd_func, "ustack" )) |
| 15909 | continue; |
| 15910 | |
| 15911 | if ((rv = dtrace_helper_action_add(p, DTRACE_HELPER_ACTION_USTACK, |
| 15912 | ep)) != 0) { |
| 15913 | /* |
| 15914 | * Adding this helper action failed -- we are now going |
| 15915 | * to rip out the entire generation and return failure. |
| 15916 | */ |
| 15917 | (void) dtrace_helper_destroygen(p, gen: help->dthps_generation); |
| 15918 | dtrace_enabling_destroy(enab); |
| 15919 | dtrace_dof_destroy(dof); |
| 15920 | return (-1); |
| 15921 | } |
| 15922 | |
| 15923 | nhelpers++; |
| 15924 | } |
| 15925 | |
| 15926 | if (nhelpers < enab->dten_ndesc) |
| 15927 | dtrace_dof_error(dof, str: "unmatched helpers" ); |
| 15928 | |
| 15929 | gen = help->dthps_generation++; |
| 15930 | dtrace_enabling_destroy(enab); |
| 15931 | |
| 15932 | if (dhp != NULL && nprovs > 0) { |
| 15933 | dhp->dofhp_dof = (uint64_t)(uintptr_t)dof; |
| 15934 | if (dtrace_helper_provider_add(p, dofhp: dhp, gen) == 0) { |
| 15935 | lck_mtx_unlock(lck: &dtrace_lock); |
| 15936 | dtrace_helper_provider_register(p, help, dofhp: dhp); |
| 15937 | lck_mtx_lock(lck: &dtrace_lock); |
| 15938 | |
| 15939 | destroy = 0; |
| 15940 | } |
| 15941 | } |
| 15942 | |
| 15943 | if (destroy) |
| 15944 | dtrace_dof_destroy(dof); |
| 15945 | |
| 15946 | return (gen); |
| 15947 | } |
| 15948 | |
| 15949 | /* |
| 15950 | * APPLE NOTE: DTrace lazy dof implementation |
| 15951 | * |
| 15952 | * DTrace user static probes (USDT probes) and helper actions are loaded |
| 15953 | * in a process by proccessing dof sections. The dof sections are passed |
| 15954 | * into the kernel by dyld, in a dof_ioctl_data_t block. It is rather |
| 15955 | * expensive to process dof for a process that will never use it. There |
| 15956 | * is a memory cost (allocating the providers/probes), and a cpu cost |
| 15957 | * (creating the providers/probes). |
| 15958 | * |
| 15959 | * To reduce this cost, we use "lazy dof". The normal proceedure for |
| 15960 | * dof processing is to copyin the dof(s) pointed to by the dof_ioctl_data_t |
| 15961 | * block, and invoke dof_slurp_helper() on them. When "lazy dof" is |
| 15962 | * used, each process retains the dof_ioctl_data_t block, instead of |
| 15963 | * copying in the data it points to. |
| 15964 | * |
| 15965 | * The dof_ioctl_data_t blocks are managed as if they were the actual |
| 15966 | * processed dof; on fork the block is copied to the child, on exec and |
| 15967 | * exit the block is freed. |
| 15968 | * |
| 15969 | * If the process loads library(s) containing additional dof, the |
| 15970 | * new dof_ioctl_data_t is merged with the existing block. |
| 15971 | * |
| 15972 | * There are a few catches that make this slightly more difficult. |
| 15973 | * When dyld registers dof_ioctl_data_t blocks, it expects a unique |
| 15974 | * identifier value for each dof in the block. In non-lazy dof terms, |
| 15975 | * this is the generation that dof was loaded in. If we hand back |
| 15976 | * a UID for a lazy dof, that same UID must be able to unload the |
| 15977 | * dof once it has become non-lazy. To meet this requirement, the |
| 15978 | * code that loads lazy dof requires that the UID's for dof(s) in |
| 15979 | * the lazy dof be sorted, and in ascending order. It is okay to skip |
| 15980 | * UID's, I.E., 1 -> 5 -> 6 is legal. |
| 15981 | * |
| 15982 | * Once a process has become non-lazy, it will stay non-lazy. All |
| 15983 | * future dof operations for that process will be non-lazy, even |
| 15984 | * if the dof mode transitions back to lazy. |
| 15985 | * |
| 15986 | * Always do lazy dof checks before non-lazy (I.E. In fork, exit, exec.). |
| 15987 | * That way if the lazy check fails due to transitioning to non-lazy, the |
| 15988 | * right thing is done with the newly faulted in dof. |
| 15989 | */ |
| 15990 | |
| 15991 | /* |
| 15992 | * This method is a bit squicky. It must handle: |
| 15993 | * |
| 15994 | * dof should not be lazy. |
| 15995 | * dof should have been handled lazily, but there was an error |
| 15996 | * dof was handled lazily, and needs to be freed. |
| 15997 | * dof was handled lazily, and must not be freed. |
| 15998 | * |
| 15999 | * |
| 16000 | * Returns EACCESS if dof should be handled non-lazily. |
| 16001 | * |
| 16002 | * KERN_SUCCESS and all other return codes indicate lazy handling of dof. |
| 16003 | * |
| 16004 | * If the dofs data is claimed by this method, dofs_claimed will be set. |
| 16005 | * Callers should not free claimed dofs. |
| 16006 | */ |
| 16007 | static int |
| 16008 | dtrace_lazy_dofs_add(proc_t *p, dof_ioctl_data_t* incoming_dofs, int *dofs_claimed) |
| 16009 | { |
| 16010 | ASSERT(p); |
| 16011 | ASSERT(incoming_dofs && incoming_dofs->dofiod_count > 0); |
| 16012 | |
| 16013 | int rval = 0; |
| 16014 | *dofs_claimed = 0; |
| 16015 | |
| 16016 | lck_rw_lock_shared(lck: &dtrace_dof_mode_lock); |
| 16017 | |
| 16018 | ASSERT(p->p_dtrace_lazy_dofs == NULL || p->p_dtrace_helpers == NULL); |
| 16019 | ASSERT(dtrace_dof_mode != DTRACE_DOF_MODE_NEVER); |
| 16020 | |
| 16021 | /* |
| 16022 | * Any existing helpers force non-lazy behavior. |
| 16023 | */ |
| 16024 | if (dtrace_dof_mode == DTRACE_DOF_MODE_LAZY_ON && (p->p_dtrace_helpers == NULL)) { |
| 16025 | dtrace_sprlock(p); |
| 16026 | |
| 16027 | dof_ioctl_data_t* existing_dofs = p->p_dtrace_lazy_dofs; |
| 16028 | unsigned int existing_dofs_count = (existing_dofs) ? existing_dofs->dofiod_count : 0; |
| 16029 | unsigned int i, merged_dofs_count = incoming_dofs->dofiod_count + existing_dofs_count; |
| 16030 | |
| 16031 | /* |
| 16032 | * Range check... |
| 16033 | */ |
| 16034 | if (merged_dofs_count == 0 || merged_dofs_count > 1024) { |
| 16035 | dtrace_dof_error(NULL, str: "lazy_dofs_add merged_dofs_count out of range" ); |
| 16036 | rval = EINVAL; |
| 16037 | goto unlock; |
| 16038 | } |
| 16039 | |
| 16040 | /* |
| 16041 | * Each dof being added must be assigned a unique generation. |
| 16042 | */ |
| 16043 | uint64_t generation = (existing_dofs) ? existing_dofs->dofiod_helpers[existing_dofs_count - 1].dofhp_dof + 1 : 1; |
| 16044 | for (i=0; i<incoming_dofs->dofiod_count; i++) { |
| 16045 | /* |
| 16046 | * We rely on these being the same so we can overwrite dofhp_dof and not lose info. |
| 16047 | */ |
| 16048 | ASSERT(incoming_dofs->dofiod_helpers[i].dofhp_dof == incoming_dofs->dofiod_helpers[i].dofhp_addr); |
| 16049 | incoming_dofs->dofiod_helpers[i].dofhp_dof = generation++; |
| 16050 | } |
| 16051 | |
| 16052 | |
| 16053 | if (existing_dofs) { |
| 16054 | /* |
| 16055 | * Merge the existing and incoming dofs |
| 16056 | */ |
| 16057 | size_t merged_dofs_size = DOF_IOCTL_DATA_T_SIZE(merged_dofs_count); |
| 16058 | dof_ioctl_data_t* merged_dofs = kmem_alloc(merged_dofs_size, KM_SLEEP); |
| 16059 | |
| 16060 | bcopy(src: &existing_dofs->dofiod_helpers[0], |
| 16061 | dst: &merged_dofs->dofiod_helpers[0], |
| 16062 | n: sizeof(dof_helper_t) * existing_dofs_count); |
| 16063 | bcopy(src: &incoming_dofs->dofiod_helpers[0], |
| 16064 | dst: &merged_dofs->dofiod_helpers[existing_dofs_count], |
| 16065 | n: sizeof(dof_helper_t) * incoming_dofs->dofiod_count); |
| 16066 | |
| 16067 | merged_dofs->dofiod_count = merged_dofs_count; |
| 16068 | |
| 16069 | kmem_free(existing_dofs, DOF_IOCTL_DATA_T_SIZE(existing_dofs_count)); |
| 16070 | |
| 16071 | p->p_dtrace_lazy_dofs = merged_dofs; |
| 16072 | } else { |
| 16073 | /* |
| 16074 | * Claim the incoming dofs |
| 16075 | */ |
| 16076 | *dofs_claimed = 1; |
| 16077 | p->p_dtrace_lazy_dofs = incoming_dofs; |
| 16078 | } |
| 16079 | |
| 16080 | #if DEBUG |
| 16081 | dof_ioctl_data_t* all_dofs = p->p_dtrace_lazy_dofs; |
| 16082 | for (i=0; i<all_dofs->dofiod_count-1; i++) { |
| 16083 | ASSERT(all_dofs->dofiod_helpers[i].dofhp_dof < all_dofs->dofiod_helpers[i+1].dofhp_dof); |
| 16084 | } |
| 16085 | #endif /* DEBUG */ |
| 16086 | |
| 16087 | unlock: |
| 16088 | dtrace_sprunlock(p); |
| 16089 | } else { |
| 16090 | rval = EACCES; |
| 16091 | } |
| 16092 | |
| 16093 | lck_rw_unlock_shared(lck: &dtrace_dof_mode_lock); |
| 16094 | |
| 16095 | return rval; |
| 16096 | } |
| 16097 | |
| 16098 | /* |
| 16099 | * Returns: |
| 16100 | * |
| 16101 | * EINVAL: lazy dof is enabled, but the requested generation was not found. |
| 16102 | * EACCES: This removal needs to be handled non-lazily. |
| 16103 | */ |
| 16104 | static int |
| 16105 | dtrace_lazy_dofs_remove(proc_t *p, int generation) |
| 16106 | { |
| 16107 | int rval = EINVAL; |
| 16108 | |
| 16109 | lck_rw_lock_shared(lck: &dtrace_dof_mode_lock); |
| 16110 | |
| 16111 | ASSERT(p->p_dtrace_lazy_dofs == NULL || p->p_dtrace_helpers == NULL); |
| 16112 | ASSERT(dtrace_dof_mode != DTRACE_DOF_MODE_NEVER); |
| 16113 | |
| 16114 | /* |
| 16115 | * Any existing helpers force non-lazy behavior. |
| 16116 | */ |
| 16117 | if (dtrace_dof_mode == DTRACE_DOF_MODE_LAZY_ON && (p->p_dtrace_helpers == NULL)) { |
| 16118 | dtrace_sprlock(p); |
| 16119 | |
| 16120 | dof_ioctl_data_t* existing_dofs = p->p_dtrace_lazy_dofs; |
| 16121 | |
| 16122 | if (existing_dofs) { |
| 16123 | int index, existing_dofs_count = existing_dofs->dofiod_count; |
| 16124 | for (index=0; index<existing_dofs_count; index++) { |
| 16125 | if ((int)existing_dofs->dofiod_helpers[index].dofhp_dof == generation) { |
| 16126 | dof_ioctl_data_t* removed_dofs = NULL; |
| 16127 | |
| 16128 | /* |
| 16129 | * If there is only 1 dof, we'll delete it and swap in NULL. |
| 16130 | */ |
| 16131 | if (existing_dofs_count > 1) { |
| 16132 | int removed_dofs_count = existing_dofs_count - 1; |
| 16133 | size_t removed_dofs_size = DOF_IOCTL_DATA_T_SIZE(removed_dofs_count); |
| 16134 | |
| 16135 | removed_dofs = kmem_alloc(removed_dofs_size, KM_SLEEP); |
| 16136 | removed_dofs->dofiod_count = removed_dofs_count; |
| 16137 | |
| 16138 | /* |
| 16139 | * copy the remaining data. |
| 16140 | */ |
| 16141 | if (index > 0) { |
| 16142 | bcopy(src: &existing_dofs->dofiod_helpers[0], |
| 16143 | dst: &removed_dofs->dofiod_helpers[0], |
| 16144 | n: index * sizeof(dof_helper_t)); |
| 16145 | } |
| 16146 | |
| 16147 | if (index < existing_dofs_count-1) { |
| 16148 | bcopy(src: &existing_dofs->dofiod_helpers[index+1], |
| 16149 | dst: &removed_dofs->dofiod_helpers[index], |
| 16150 | n: (existing_dofs_count - index - 1) * sizeof(dof_helper_t)); |
| 16151 | } |
| 16152 | } |
| 16153 | |
| 16154 | kmem_free(existing_dofs, DOF_IOCTL_DATA_T_SIZE(existing_dofs_count)); |
| 16155 | |
| 16156 | p->p_dtrace_lazy_dofs = removed_dofs; |
| 16157 | |
| 16158 | rval = KERN_SUCCESS; |
| 16159 | |
| 16160 | break; |
| 16161 | } |
| 16162 | } |
| 16163 | |
| 16164 | #if DEBUG |
| 16165 | dof_ioctl_data_t* all_dofs = p->p_dtrace_lazy_dofs; |
| 16166 | if (all_dofs) { |
| 16167 | unsigned int i; |
| 16168 | for (i=0; i<all_dofs->dofiod_count-1; i++) { |
| 16169 | ASSERT(all_dofs->dofiod_helpers[i].dofhp_dof < all_dofs->dofiod_helpers[i+1].dofhp_dof); |
| 16170 | } |
| 16171 | } |
| 16172 | #endif |
| 16173 | |
| 16174 | } |
| 16175 | dtrace_sprunlock(p); |
| 16176 | } else { |
| 16177 | rval = EACCES; |
| 16178 | } |
| 16179 | |
| 16180 | lck_rw_unlock_shared(lck: &dtrace_dof_mode_lock); |
| 16181 | |
| 16182 | return rval; |
| 16183 | } |
| 16184 | |
| 16185 | void |
| 16186 | dtrace_lazy_dofs_destroy(proc_t *p) |
| 16187 | { |
| 16188 | lck_rw_lock_shared(lck: &dtrace_dof_mode_lock); |
| 16189 | dtrace_sprlock(p); |
| 16190 | |
| 16191 | ASSERT(p->p_dtrace_lazy_dofs == NULL || p->p_dtrace_helpers == NULL); |
| 16192 | |
| 16193 | dof_ioctl_data_t* lazy_dofs = p->p_dtrace_lazy_dofs; |
| 16194 | p->p_dtrace_lazy_dofs = NULL; |
| 16195 | |
| 16196 | dtrace_sprunlock(p); |
| 16197 | lck_rw_unlock_shared(lck: &dtrace_dof_mode_lock); |
| 16198 | |
| 16199 | if (lazy_dofs) { |
| 16200 | kmem_free(lazy_dofs, DOF_IOCTL_DATA_T_SIZE(lazy_dofs->dofiod_count)); |
| 16201 | } |
| 16202 | } |
| 16203 | |
| 16204 | static int |
| 16205 | dtrace_lazy_dofs_proc_iterate_filter(proc_t *p, void* ignored) |
| 16206 | { |
| 16207 | #pragma unused(ignored) |
| 16208 | /* |
| 16209 | * Okay to NULL test without taking the sprlock. |
| 16210 | */ |
| 16211 | return p->p_dtrace_lazy_dofs != NULL; |
| 16212 | } |
| 16213 | |
| 16214 | static void |
| 16215 | dtrace_lazy_dofs_process(proc_t *p) { |
| 16216 | /* |
| 16217 | * It is possible this process may exit during our attempt to |
| 16218 | * fault in the dof. We could fix this by holding locks longer, |
| 16219 | * but the errors are benign. |
| 16220 | */ |
| 16221 | dtrace_sprlock(p); |
| 16222 | |
| 16223 | |
| 16224 | ASSERT(p->p_dtrace_lazy_dofs == NULL || p->p_dtrace_helpers == NULL); |
| 16225 | ASSERT(dtrace_dof_mode == DTRACE_DOF_MODE_LAZY_OFF); |
| 16226 | |
| 16227 | dof_ioctl_data_t* lazy_dofs = p->p_dtrace_lazy_dofs; |
| 16228 | p->p_dtrace_lazy_dofs = NULL; |
| 16229 | |
| 16230 | dtrace_sprunlock(p); |
| 16231 | lck_mtx_lock(lck: &dtrace_meta_lock); |
| 16232 | /* |
| 16233 | * Process each dof_helper_t |
| 16234 | */ |
| 16235 | if (lazy_dofs != NULL) { |
| 16236 | unsigned int i; |
| 16237 | int rval; |
| 16238 | |
| 16239 | for (i=0; i<lazy_dofs->dofiod_count; i++) { |
| 16240 | /* |
| 16241 | * When loading lazy dof, we depend on the generations being sorted in ascending order. |
| 16242 | */ |
| 16243 | ASSERT(i >= (lazy_dofs->dofiod_count - 1) || lazy_dofs->dofiod_helpers[i].dofhp_dof < lazy_dofs->dofiod_helpers[i+1].dofhp_dof); |
| 16244 | |
| 16245 | dof_helper_t *dhp = &lazy_dofs->dofiod_helpers[i]; |
| 16246 | |
| 16247 | /* |
| 16248 | * We stored the generation in dofhp_dof. Save it, and restore the original value. |
| 16249 | */ |
| 16250 | int generation = dhp->dofhp_dof; |
| 16251 | dhp->dofhp_dof = dhp->dofhp_addr; |
| 16252 | |
| 16253 | dof_hdr_t *dof = dtrace_dof_copyin_from_proc(p, uarg: dhp->dofhp_dof, errp: &rval); |
| 16254 | |
| 16255 | if (dof != NULL) { |
| 16256 | dtrace_helpers_t *help; |
| 16257 | |
| 16258 | lck_mtx_lock(lck: &dtrace_lock); |
| 16259 | |
| 16260 | /* |
| 16261 | * This must be done with the dtrace_lock held |
| 16262 | */ |
| 16263 | if ((help = p->p_dtrace_helpers) == NULL) |
| 16264 | help = dtrace_helpers_create(p); |
| 16265 | |
| 16266 | /* |
| 16267 | * If the generation value has been bumped, someone snuck in |
| 16268 | * when we released the dtrace lock. We have to dump this generation, |
| 16269 | * there is no safe way to load it. |
| 16270 | */ |
| 16271 | if (help->dthps_generation <= generation) { |
| 16272 | help->dthps_generation = generation; |
| 16273 | |
| 16274 | /* |
| 16275 | * dtrace_helper_slurp() takes responsibility for the dof -- |
| 16276 | * it may free it now or it may save it and free it later. |
| 16277 | */ |
| 16278 | if ((rval = dtrace_helper_slurp(p, dof, dhp)) != generation) { |
| 16279 | dtrace_dof_error(NULL, str: "returned value did not match expected generation" ); |
| 16280 | } |
| 16281 | } |
| 16282 | |
| 16283 | lck_mtx_unlock(lck: &dtrace_lock); |
| 16284 | } |
| 16285 | } |
| 16286 | lck_mtx_unlock(lck: &dtrace_meta_lock); |
| 16287 | kmem_free(lazy_dofs, DOF_IOCTL_DATA_T_SIZE(lazy_dofs->dofiod_count)); |
| 16288 | } else { |
| 16289 | lck_mtx_unlock(lck: &dtrace_meta_lock); |
| 16290 | } |
| 16291 | } |
| 16292 | |
| 16293 | static int |
| 16294 | dtrace_lazy_dofs_proc_iterate_doit(proc_t *p, void* ignored) |
| 16295 | { |
| 16296 | #pragma unused(ignored) |
| 16297 | |
| 16298 | dtrace_lazy_dofs_process(p); |
| 16299 | |
| 16300 | return PROC_RETURNED; |
| 16301 | } |
| 16302 | |
| 16303 | #define DTRACE_LAZY_DOFS_DUPLICATED 1 |
| 16304 | |
| 16305 | static int |
| 16306 | dtrace_lazy_dofs_duplicate(proc_t *parent, proc_t *child) |
| 16307 | { |
| 16308 | LCK_MTX_ASSERT(&dtrace_lock, LCK_MTX_ASSERT_NOTOWNED); |
| 16309 | LCK_MTX_ASSERT(&parent->p_dtrace_sprlock, LCK_MTX_ASSERT_NOTOWNED); |
| 16310 | LCK_MTX_ASSERT(&child->p_dtrace_sprlock, LCK_MTX_ASSERT_NOTOWNED); |
| 16311 | |
| 16312 | lck_rw_lock_shared(lck: &dtrace_dof_mode_lock); |
| 16313 | dtrace_sprlock(p: parent); |
| 16314 | |
| 16315 | /* |
| 16316 | * We need to make sure that the transition to lazy dofs -> helpers |
| 16317 | * was atomic for our parent |
| 16318 | */ |
| 16319 | ASSERT(parent->p_dtrace_lazy_dofs == NULL || parent->p_dtrace_helpers == NULL); |
| 16320 | /* |
| 16321 | * In theory we should hold the child sprlock, but this is safe... |
| 16322 | */ |
| 16323 | ASSERT(child->p_dtrace_lazy_dofs == NULL && child->p_dtrace_helpers == NULL); |
| 16324 | |
| 16325 | dof_ioctl_data_t* parent_dofs = parent->p_dtrace_lazy_dofs; |
| 16326 | dof_ioctl_data_t* child_dofs = NULL; |
| 16327 | if (parent_dofs) { |
| 16328 | size_t parent_dofs_size = DOF_IOCTL_DATA_T_SIZE(parent_dofs->dofiod_count); |
| 16329 | child_dofs = kmem_alloc(parent_dofs_size, KM_SLEEP); |
| 16330 | bcopy(src: parent_dofs, dst: child_dofs, n: parent_dofs_size); |
| 16331 | } |
| 16332 | |
| 16333 | dtrace_sprunlock(p: parent); |
| 16334 | |
| 16335 | if (child_dofs) { |
| 16336 | dtrace_sprlock(p: child); |
| 16337 | child->p_dtrace_lazy_dofs = child_dofs; |
| 16338 | dtrace_sprunlock(p: child); |
| 16339 | /** |
| 16340 | * We process the DOF at this point if the mode is set to |
| 16341 | * LAZY_OFF. This can happen if DTrace is still processing the |
| 16342 | * DOF of other process (which can happen because the |
| 16343 | * protected pager can have a huge latency) |
| 16344 | * but has not processed our parent yet |
| 16345 | */ |
| 16346 | if (dtrace_dof_mode == DTRACE_DOF_MODE_LAZY_OFF) { |
| 16347 | dtrace_lazy_dofs_process(p: child); |
| 16348 | } |
| 16349 | lck_rw_unlock_shared(lck: &dtrace_dof_mode_lock); |
| 16350 | |
| 16351 | return DTRACE_LAZY_DOFS_DUPLICATED; |
| 16352 | } |
| 16353 | lck_rw_unlock_shared(lck: &dtrace_dof_mode_lock); |
| 16354 | |
| 16355 | return 0; |
| 16356 | } |
| 16357 | |
| 16358 | static dtrace_helpers_t * |
| 16359 | dtrace_helpers_create(proc_t *p) |
| 16360 | { |
| 16361 | dtrace_helpers_t *help; |
| 16362 | |
| 16363 | LCK_MTX_ASSERT(&dtrace_lock, LCK_MTX_ASSERT_OWNED); |
| 16364 | ASSERT(p->p_dtrace_helpers == NULL); |
| 16365 | |
| 16366 | help = kmem_zalloc(sizeof (dtrace_helpers_t), KM_SLEEP); |
| 16367 | help->dthps_actions = kmem_zalloc(sizeof (dtrace_helper_action_t *) * |
| 16368 | DTRACE_NHELPER_ACTIONS, KM_SLEEP); |
| 16369 | |
| 16370 | p->p_dtrace_helpers = help; |
| 16371 | dtrace_helpers++; |
| 16372 | |
| 16373 | return (help); |
| 16374 | } |
| 16375 | |
| 16376 | static void |
| 16377 | dtrace_helpers_destroy(proc_t* p) |
| 16378 | { |
| 16379 | dtrace_helpers_t *help; |
| 16380 | dtrace_vstate_t *vstate; |
| 16381 | uint_t i; |
| 16382 | |
| 16383 | lck_mtx_lock(lck: &dtrace_meta_lock); |
| 16384 | lck_mtx_lock(lck: &dtrace_lock); |
| 16385 | |
| 16386 | ASSERT(p->p_dtrace_helpers != NULL); |
| 16387 | ASSERT(dtrace_helpers > 0); |
| 16388 | |
| 16389 | help = p->p_dtrace_helpers; |
| 16390 | vstate = &help->dthps_vstate; |
| 16391 | |
| 16392 | /* |
| 16393 | * We're now going to lose the help from this process. |
| 16394 | */ |
| 16395 | p->p_dtrace_helpers = NULL; |
| 16396 | dtrace_sync(); |
| 16397 | |
| 16398 | /* |
| 16399 | * Destory the helper actions. |
| 16400 | */ |
| 16401 | for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { |
| 16402 | dtrace_helper_action_t *h, *next; |
| 16403 | |
| 16404 | for (h = help->dthps_actions[i]; h != NULL; h = next) { |
| 16405 | next = h->dtha_next; |
| 16406 | dtrace_helper_action_destroy(helper: h, vstate); |
| 16407 | h = next; |
| 16408 | } |
| 16409 | } |
| 16410 | |
| 16411 | lck_mtx_unlock(lck: &dtrace_lock); |
| 16412 | |
| 16413 | /* |
| 16414 | * Destroy the helper providers. |
| 16415 | */ |
| 16416 | if (help->dthps_maxprovs > 0) { |
| 16417 | if (dtrace_meta_pid != NULL) { |
| 16418 | ASSERT(dtrace_deferred_pid == NULL); |
| 16419 | |
| 16420 | for (i = 0; i < help->dthps_nprovs; i++) { |
| 16421 | dtrace_helper_provider_remove( |
| 16422 | dhp: &help->dthps_provs[i]->dthp_prov, p); |
| 16423 | } |
| 16424 | } else { |
| 16425 | lck_mtx_lock(lck: &dtrace_lock); |
| 16426 | ASSERT(help->dthps_deferred == 0 || |
| 16427 | help->dthps_next != NULL || |
| 16428 | help->dthps_prev != NULL || |
| 16429 | help == dtrace_deferred_pid); |
| 16430 | |
| 16431 | /* |
| 16432 | * Remove the helper from the deferred list. |
| 16433 | */ |
| 16434 | if (help->dthps_next != NULL) |
| 16435 | help->dthps_next->dthps_prev = help->dthps_prev; |
| 16436 | if (help->dthps_prev != NULL) |
| 16437 | help->dthps_prev->dthps_next = help->dthps_next; |
| 16438 | if (dtrace_deferred_pid == help) { |
| 16439 | dtrace_deferred_pid = help->dthps_next; |
| 16440 | ASSERT(help->dthps_prev == NULL); |
| 16441 | } |
| 16442 | |
| 16443 | lck_mtx_unlock(lck: &dtrace_lock); |
| 16444 | } |
| 16445 | |
| 16446 | |
| 16447 | for (i = 0; i < help->dthps_nprovs; i++) { |
| 16448 | dtrace_helper_provider_destroy(hprov: help->dthps_provs[i]); |
| 16449 | } |
| 16450 | |
| 16451 | kmem_free(help->dthps_provs, help->dthps_maxprovs * |
| 16452 | sizeof (dtrace_helper_provider_t *)); |
| 16453 | } |
| 16454 | |
| 16455 | lck_mtx_lock(lck: &dtrace_lock); |
| 16456 | |
| 16457 | dtrace_vstate_fini(vstate: &help->dthps_vstate); |
| 16458 | kmem_free(help->dthps_actions, |
| 16459 | sizeof (dtrace_helper_action_t *) * DTRACE_NHELPER_ACTIONS); |
| 16460 | kmem_free(help, sizeof (dtrace_helpers_t)); |
| 16461 | |
| 16462 | --dtrace_helpers; |
| 16463 | lck_mtx_unlock(lck: &dtrace_lock); |
| 16464 | lck_mtx_unlock(lck: &dtrace_meta_lock); |
| 16465 | } |
| 16466 | |
| 16467 | static void |
| 16468 | dtrace_helpers_duplicate(proc_t *from, proc_t *to) |
| 16469 | { |
| 16470 | dtrace_helpers_t *help, *newhelp; |
| 16471 | dtrace_helper_action_t *helper, *new, *last; |
| 16472 | dtrace_difo_t *dp; |
| 16473 | dtrace_vstate_t *vstate; |
| 16474 | uint_t i; |
| 16475 | int j, sz, hasprovs = 0; |
| 16476 | |
| 16477 | lck_mtx_lock(lck: &dtrace_meta_lock); |
| 16478 | lck_mtx_lock(lck: &dtrace_lock); |
| 16479 | ASSERT(from->p_dtrace_helpers != NULL); |
| 16480 | ASSERT(dtrace_helpers > 0); |
| 16481 | |
| 16482 | help = from->p_dtrace_helpers; |
| 16483 | newhelp = dtrace_helpers_create(p: to); |
| 16484 | ASSERT(to->p_dtrace_helpers != NULL); |
| 16485 | |
| 16486 | newhelp->dthps_generation = help->dthps_generation; |
| 16487 | vstate = &newhelp->dthps_vstate; |
| 16488 | |
| 16489 | /* |
| 16490 | * Duplicate the helper actions. |
| 16491 | */ |
| 16492 | for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) { |
| 16493 | if ((helper = help->dthps_actions[i]) == NULL) |
| 16494 | continue; |
| 16495 | |
| 16496 | for (last = NULL; helper != NULL; helper = helper->dtha_next) { |
| 16497 | new = kmem_zalloc(sizeof (dtrace_helper_action_t), |
| 16498 | KM_SLEEP); |
| 16499 | new->dtha_generation = helper->dtha_generation; |
| 16500 | |
| 16501 | if ((dp = helper->dtha_predicate) != NULL) { |
| 16502 | dp = dtrace_difo_duplicate(dp, vstate); |
| 16503 | new->dtha_predicate = dp; |
| 16504 | } |
| 16505 | |
| 16506 | new->dtha_nactions = helper->dtha_nactions; |
| 16507 | sz = sizeof (dtrace_difo_t *) * new->dtha_nactions; |
| 16508 | new->dtha_actions = kmem_alloc(sz, KM_SLEEP); |
| 16509 | |
| 16510 | for (j = 0; j < new->dtha_nactions; j++) { |
| 16511 | dtrace_difo_t *dpj = helper->dtha_actions[j]; |
| 16512 | |
| 16513 | ASSERT(dpj != NULL); |
| 16514 | dpj = dtrace_difo_duplicate(dp: dpj, vstate); |
| 16515 | new->dtha_actions[j] = dpj; |
| 16516 | } |
| 16517 | |
| 16518 | if (last != NULL) { |
| 16519 | last->dtha_next = new; |
| 16520 | } else { |
| 16521 | newhelp->dthps_actions[i] = new; |
| 16522 | } |
| 16523 | |
| 16524 | last = new; |
| 16525 | } |
| 16526 | } |
| 16527 | |
| 16528 | /* |
| 16529 | * Duplicate the helper providers and register them with the |
| 16530 | * DTrace framework. |
| 16531 | */ |
| 16532 | if (help->dthps_nprovs > 0) { |
| 16533 | newhelp->dthps_nprovs = help->dthps_nprovs; |
| 16534 | newhelp->dthps_maxprovs = help->dthps_nprovs; |
| 16535 | newhelp->dthps_provs = kmem_alloc(newhelp->dthps_nprovs * |
| 16536 | sizeof (dtrace_helper_provider_t *), KM_SLEEP); |
| 16537 | for (i = 0; i < newhelp->dthps_nprovs; i++) { |
| 16538 | newhelp->dthps_provs[i] = help->dthps_provs[i]; |
| 16539 | newhelp->dthps_provs[i]->dthp_ref++; |
| 16540 | } |
| 16541 | |
| 16542 | hasprovs = 1; |
| 16543 | } |
| 16544 | |
| 16545 | lck_mtx_unlock(lck: &dtrace_lock); |
| 16546 | |
| 16547 | if (hasprovs) |
| 16548 | dtrace_helper_provider_register(p: to, help: newhelp, NULL); |
| 16549 | |
| 16550 | lck_mtx_unlock(lck: &dtrace_meta_lock); |
| 16551 | } |
| 16552 | |
| 16553 | /** |
| 16554 | * DTrace Process functions |
| 16555 | */ |
| 16556 | |
| 16557 | void |
| 16558 | dtrace_proc_fork(proc_t *parent_proc, proc_t *child_proc, int spawn) |
| 16559 | { |
| 16560 | /* |
| 16561 | * This code applies to new processes who are copying the task |
| 16562 | * and thread state and address spaces of their parent process. |
| 16563 | */ |
| 16564 | if (!spawn) { |
| 16565 | /* |
| 16566 | * APPLE NOTE: Solaris does a sprlock() and drops the |
| 16567 | * proc_lock here. We're cheating a bit and only taking |
| 16568 | * the p_dtrace_sprlock lock. A full sprlock would |
| 16569 | * task_suspend the parent. |
| 16570 | */ |
| 16571 | dtrace_sprlock(p: parent_proc); |
| 16572 | |
| 16573 | /* |
| 16574 | * Remove all DTrace tracepoints from the child process. We |
| 16575 | * need to do this _before_ duplicating USDT providers since |
| 16576 | * any associated probes may be immediately enabled. |
| 16577 | */ |
| 16578 | if (parent_proc->p_dtrace_count > 0) { |
| 16579 | dtrace_fasttrap_fork(parent_proc, child_proc); |
| 16580 | } |
| 16581 | |
| 16582 | dtrace_sprunlock(p: parent_proc); |
| 16583 | |
| 16584 | /* |
| 16585 | * Duplicate any lazy dof(s). This must be done while NOT |
| 16586 | * holding the parent sprlock! Lock ordering is |
| 16587 | * dtrace_dof_mode_lock, then sprlock. It is imperative we |
| 16588 | * always call dtrace_lazy_dofs_duplicate, rather than null |
| 16589 | * check and call if !NULL. If we NULL test, during lazy dof |
| 16590 | * faulting we can race with the faulting code and proceed |
| 16591 | * from here to beyond the helpers copy. The lazy dof |
| 16592 | * faulting will then fail to copy the helpers to the child |
| 16593 | * process. We return if we duplicated lazy dofs as a process |
| 16594 | * can only have one at the same time to avoid a race between |
| 16595 | * a dtrace client and dtrace_proc_fork where a process would |
| 16596 | * end up with both lazy dofs and helpers. |
| 16597 | */ |
| 16598 | if (dtrace_lazy_dofs_duplicate(parent: parent_proc, child: child_proc) == DTRACE_LAZY_DOFS_DUPLICATED) { |
| 16599 | return; |
| 16600 | } |
| 16601 | |
| 16602 | /* |
| 16603 | * Duplicate any helper actions and providers if they haven't |
| 16604 | * already. |
| 16605 | */ |
| 16606 | #if !defined(__APPLE__) |
| 16607 | /* |
| 16608 | * The SFORKING |
| 16609 | * we set above informs the code to enable USDT probes that |
| 16610 | * sprlock() may fail because the child is being forked. |
| 16611 | */ |
| 16612 | #endif |
| 16613 | /* |
| 16614 | * APPLE NOTE: As best I can tell, Apple's sprlock() equivalent |
| 16615 | * never fails to find the child. We do not set SFORKING. |
| 16616 | */ |
| 16617 | if (parent_proc->p_dtrace_helpers != NULL && dtrace_helpers_fork) { |
| 16618 | (*dtrace_helpers_fork)(parent_proc, child_proc); |
| 16619 | } |
| 16620 | } |
| 16621 | } |
| 16622 | |
| 16623 | void |
| 16624 | dtrace_proc_exec(proc_t *p) |
| 16625 | { |
| 16626 | /* |
| 16627 | * Invalidate any predicate evaluation already cached for this thread by DTrace. |
| 16628 | * That's because we've just stored to p_comm and DTrace refers to that when it |
| 16629 | * evaluates the "execname" special variable. uid and gid may have changed as well. |
| 16630 | */ |
| 16631 | dtrace_set_thread_predcache(current_thread(), 0); |
| 16632 | |
| 16633 | /* |
| 16634 | * Free any outstanding lazy dof entries. It is imperative we |
| 16635 | * always call dtrace_lazy_dofs_destroy, rather than null check |
| 16636 | * and call if !NULL. If we NULL test, during lazy dof faulting |
| 16637 | * we can race with the faulting code and proceed from here to |
| 16638 | * beyond the helpers cleanup. The lazy dof faulting will then |
| 16639 | * install new helpers which no longer belong to this process! |
| 16640 | */ |
| 16641 | dtrace_lazy_dofs_destroy(p); |
| 16642 | |
| 16643 | |
| 16644 | /* |
| 16645 | * Clean up any DTrace helpers for the process. |
| 16646 | */ |
| 16647 | if (p->p_dtrace_helpers != NULL && dtrace_helpers_cleanup) { |
| 16648 | (*dtrace_helpers_cleanup)(p); |
| 16649 | } |
| 16650 | |
| 16651 | /* |
| 16652 | * Cleanup the DTrace provider associated with this process. |
| 16653 | */ |
| 16654 | proc_lock(p); |
| 16655 | if (p->p_dtrace_probes && dtrace_fasttrap_exec_ptr) { |
| 16656 | (*dtrace_fasttrap_exec_ptr)(p); |
| 16657 | } |
| 16658 | proc_unlock(p); |
| 16659 | } |
| 16660 | |
| 16661 | void |
| 16662 | dtrace_proc_exit(proc_t *p) |
| 16663 | { |
| 16664 | /* |
| 16665 | * Free any outstanding lazy dof entries. It is imperative we |
| 16666 | * always call dtrace_lazy_dofs_destroy, rather than null check |
| 16667 | * and call if !NULL. If we NULL test, during lazy dof faulting |
| 16668 | * we can race with the faulting code and proceed from here to |
| 16669 | * beyond the helpers cleanup. The lazy dof faulting will then |
| 16670 | * install new helpers which will never be cleaned up, and leak. |
| 16671 | */ |
| 16672 | dtrace_lazy_dofs_destroy(p); |
| 16673 | |
| 16674 | /* |
| 16675 | * Clean up any DTrace helper actions or probes for the process. |
| 16676 | */ |
| 16677 | if (p->p_dtrace_helpers != NULL) { |
| 16678 | (*dtrace_helpers_cleanup)(p); |
| 16679 | } |
| 16680 | |
| 16681 | /* |
| 16682 | * Clean up any DTrace probes associated with this process. |
| 16683 | */ |
| 16684 | /* |
| 16685 | * APPLE NOTE: We release ptss pages/entries in dtrace_fasttrap_exit_ptr(), |
| 16686 | * call this after dtrace_helpers_cleanup() |
| 16687 | */ |
| 16688 | proc_lock(p); |
| 16689 | if (p->p_dtrace_probes && dtrace_fasttrap_exit_ptr) { |
| 16690 | (*dtrace_fasttrap_exit_ptr)(p); |
| 16691 | } |
| 16692 | proc_unlock(p); |
| 16693 | } |
| 16694 | |
| 16695 | /* |
| 16696 | * DTrace Hook Functions |
| 16697 | */ |
| 16698 | |
| 16699 | /* |
| 16700 | * APPLE NOTE: dtrace_modctl_* routines for kext support. |
| 16701 | * Used to manipulate the modctl list within dtrace xnu. |
| 16702 | */ |
| 16703 | |
| 16704 | modctl_t *dtrace_modctl_list; |
| 16705 | |
| 16706 | static void |
| 16707 | dtrace_modctl_add(struct modctl * newctl) |
| 16708 | { |
| 16709 | struct modctl *nextp, *prevp; |
| 16710 | |
| 16711 | ASSERT(newctl != NULL); |
| 16712 | LCK_MTX_ASSERT(&mod_lock, LCK_MTX_ASSERT_OWNED); |
| 16713 | |
| 16714 | // Insert new module at the front of the list, |
| 16715 | |
| 16716 | newctl->mod_next = dtrace_modctl_list; |
| 16717 | dtrace_modctl_list = newctl; |
| 16718 | |
| 16719 | /* |
| 16720 | * If a module exists with the same name, then that module |
| 16721 | * must have been unloaded with enabled probes. We will move |
| 16722 | * the unloaded module to the new module's stale chain and |
| 16723 | * then stop traversing the list. |
| 16724 | */ |
| 16725 | |
| 16726 | prevp = newctl; |
| 16727 | nextp = newctl->mod_next; |
| 16728 | |
| 16729 | while (nextp != NULL) { |
| 16730 | if (nextp->mod_loaded) { |
| 16731 | /* This is a loaded module. Keep traversing. */ |
| 16732 | prevp = nextp; |
| 16733 | nextp = nextp->mod_next; |
| 16734 | continue; |
| 16735 | } |
| 16736 | else { |
| 16737 | /* Found an unloaded module */ |
| 16738 | if (strncmp (s1: newctl->mod_modname, s2: nextp->mod_modname, KMOD_MAX_NAME)) { |
| 16739 | /* Names don't match. Keep traversing. */ |
| 16740 | prevp = nextp; |
| 16741 | nextp = nextp->mod_next; |
| 16742 | continue; |
| 16743 | } |
| 16744 | else { |
| 16745 | /* We found a stale entry, move it. We're done. */ |
| 16746 | prevp->mod_next = nextp->mod_next; |
| 16747 | newctl->mod_stale = nextp; |
| 16748 | nextp->mod_next = NULL; |
| 16749 | break; |
| 16750 | } |
| 16751 | } |
| 16752 | } |
| 16753 | } |
| 16754 | |
| 16755 | static modctl_t * |
| 16756 | dtrace_modctl_lookup(struct kmod_info * kmod) |
| 16757 | { |
| 16758 | LCK_MTX_ASSERT(&mod_lock, LCK_MTX_ASSERT_OWNED); |
| 16759 | |
| 16760 | struct modctl * ctl; |
| 16761 | |
| 16762 | for (ctl = dtrace_modctl_list; ctl; ctl=ctl->mod_next) { |
| 16763 | if (ctl->mod_id == kmod->id) |
| 16764 | return(ctl); |
| 16765 | } |
| 16766 | return (NULL); |
| 16767 | } |
| 16768 | |
| 16769 | /* |
| 16770 | * This routine is called from dtrace_module_unloaded(). |
| 16771 | * It removes a modctl structure and its stale chain |
| 16772 | * from the kext shadow list. |
| 16773 | */ |
| 16774 | static void |
| 16775 | dtrace_modctl_remove(struct modctl * ctl) |
| 16776 | { |
| 16777 | ASSERT(ctl != NULL); |
| 16778 | LCK_MTX_ASSERT(&mod_lock, LCK_MTX_ASSERT_OWNED); |
| 16779 | modctl_t *prevp, *nextp, *curp; |
| 16780 | |
| 16781 | // Remove stale chain first |
| 16782 | for (curp=ctl->mod_stale; curp != NULL; curp=nextp) { |
| 16783 | nextp = curp->mod_stale; |
| 16784 | /* There should NEVER be user symbols allocated at this point */ |
| 16785 | ASSERT(curp->mod_user_symbols == NULL); |
| 16786 | kmem_free(curp, sizeof(modctl_t)); |
| 16787 | } |
| 16788 | |
| 16789 | prevp = NULL; |
| 16790 | curp = dtrace_modctl_list; |
| 16791 | |
| 16792 | while (curp != ctl) { |
| 16793 | prevp = curp; |
| 16794 | curp = curp->mod_next; |
| 16795 | } |
| 16796 | |
| 16797 | if (prevp != NULL) { |
| 16798 | prevp->mod_next = ctl->mod_next; |
| 16799 | } |
| 16800 | else { |
| 16801 | dtrace_modctl_list = ctl->mod_next; |
| 16802 | } |
| 16803 | |
| 16804 | /* There should NEVER be user symbols allocated at this point */ |
| 16805 | ASSERT(ctl->mod_user_symbols == NULL); |
| 16806 | |
| 16807 | kmem_free (ctl, sizeof(modctl_t)); |
| 16808 | } |
| 16809 | |
| 16810 | /* |
| 16811 | * APPLE NOTE: The kext loader will call dtrace_module_loaded |
| 16812 | * when the kext is loaded in memory, but before calling the |
| 16813 | * kext's start routine. |
| 16814 | * |
| 16815 | * Return 0 on success |
| 16816 | * Return -1 on failure |
| 16817 | */ |
| 16818 | |
| 16819 | static int |
| 16820 | dtrace_module_loaded(struct kmod_info *kmod, uint32_t flag) |
| 16821 | { |
| 16822 | dtrace_provider_t *prv; |
| 16823 | |
| 16824 | /* |
| 16825 | * If kernel symbols have been disabled, return immediately |
| 16826 | * DTRACE_KERNEL_SYMBOLS_NEVER is a permanent mode, it is safe to test without holding locks |
| 16827 | */ |
| 16828 | if (dtrace_kernel_symbol_mode == DTRACE_KERNEL_SYMBOLS_NEVER) |
| 16829 | return 0; |
| 16830 | |
| 16831 | #if CONFIG_SPTM |
| 16832 | /* Opt-out the SPTM/TXM fake kexts from being loaded by DTrace. */ |
| 16833 | extern kmod_info_t g_sptm_kmod_info, g_txm_kmod_info; |
| 16834 | if ((kmod == &g_sptm_kmod_info) || (kmod == &g_txm_kmod_info)) { |
| 16835 | return 0; |
| 16836 | } |
| 16837 | #endif |
| 16838 | |
| 16839 | struct modctl *ctl = NULL; |
| 16840 | if (!kmod || kmod->address == 0 || kmod->size == 0) |
| 16841 | return(-1); |
| 16842 | |
| 16843 | lck_mtx_lock(lck: &dtrace_provider_lock); |
| 16844 | lck_mtx_lock(lck: &mod_lock); |
| 16845 | |
| 16846 | /* |
| 16847 | * Have we seen this kext before? |
| 16848 | */ |
| 16849 | |
| 16850 | ctl = dtrace_modctl_lookup(kmod); |
| 16851 | |
| 16852 | if (ctl != NULL) { |
| 16853 | /* bail... we already have this kext in the modctl list */ |
| 16854 | lck_mtx_unlock(lck: &mod_lock); |
| 16855 | lck_mtx_unlock(lck: &dtrace_provider_lock); |
| 16856 | if (dtrace_err_verbose) |
| 16857 | cmn_err(CE_WARN, "dtrace load module already exists '%s %u' is failing against '%s %u'" , kmod->name, (uint_t)kmod->id, ctl->mod_modname, ctl->mod_id); |
| 16858 | return(-1); |
| 16859 | } |
| 16860 | else { |
| 16861 | ctl = kmem_alloc(sizeof(struct modctl), KM_SLEEP); |
| 16862 | if (ctl == NULL) { |
| 16863 | if (dtrace_err_verbose) |
| 16864 | cmn_err(CE_WARN, "dtrace module load '%s %u' is failing " , kmod->name, (uint_t)kmod->id); |
| 16865 | lck_mtx_unlock(lck: &mod_lock); |
| 16866 | lck_mtx_unlock(lck: &dtrace_provider_lock); |
| 16867 | return (-1); |
| 16868 | } |
| 16869 | ctl->mod_next = NULL; |
| 16870 | ctl->mod_stale = NULL; |
| 16871 | strlcpy (dst: ctl->mod_modname, src: kmod->name, n: sizeof(ctl->mod_modname)); |
| 16872 | ctl->mod_loadcnt = kmod->id; |
| 16873 | ctl->mod_nenabled = 0; |
| 16874 | ctl->mod_address = kmod->address; |
| 16875 | ctl->mod_size = kmod->size; |
| 16876 | ctl->mod_id = kmod->id; |
| 16877 | ctl->mod_loaded = 1; |
| 16878 | ctl->mod_flags = 0; |
| 16879 | ctl->mod_user_symbols = NULL; |
| 16880 | ctl->mod_sdtprobecnt = 0; |
| 16881 | ctl->mod_sdtdesc = NULL; |
| 16882 | |
| 16883 | /* |
| 16884 | * Find the UUID for this module, if it has one |
| 16885 | */ |
| 16886 | kernel_mach_header_t* = (kernel_mach_header_t *)ctl->mod_address; |
| 16887 | struct load_command* load_cmd = (struct load_command *)&header[1]; |
| 16888 | uint32_t i; |
| 16889 | for (i = 0; i < header->ncmds; i++) { |
| 16890 | if (load_cmd->cmd == LC_UUID) { |
| 16891 | struct uuid_command* uuid_cmd = (struct uuid_command *)load_cmd; |
| 16892 | memcpy(dst: ctl->mod_uuid, src: uuid_cmd->uuid, n: sizeof(uuid_cmd->uuid)); |
| 16893 | ctl->mod_flags |= MODCTL_HAS_UUID; |
| 16894 | break; |
| 16895 | } |
| 16896 | load_cmd = (struct load_command *)((caddr_t)load_cmd + load_cmd->cmdsize); |
| 16897 | } |
| 16898 | |
| 16899 | if (ctl->mod_address == g_kernel_kmod_info.address) { |
| 16900 | ctl->mod_flags |= MODCTL_IS_MACH_KERNEL; |
| 16901 | memcpy(dst: dtrace_kerneluuid, src: ctl->mod_uuid, n: sizeof(dtrace_kerneluuid)); |
| 16902 | } |
| 16903 | /* |
| 16904 | * Static kexts have a UUID that is not used for symbolication, as all their |
| 16905 | * symbols are in kernel |
| 16906 | */ |
| 16907 | else if ((flag & KMOD_DTRACE_STATIC_KEXT) == KMOD_DTRACE_STATIC_KEXT) { |
| 16908 | memcpy(dst: ctl->mod_uuid, src: dtrace_kerneluuid, n: sizeof(dtrace_kerneluuid)); |
| 16909 | ctl->mod_flags |= MODCTL_IS_STATIC_KEXT; |
| 16910 | } |
| 16911 | } |
| 16912 | dtrace_modctl_add(newctl: ctl); |
| 16913 | |
| 16914 | /* |
| 16915 | * We must hold the dtrace_lock to safely test non permanent dtrace_fbt_symbol_mode(s) |
| 16916 | */ |
| 16917 | lck_mtx_lock(lck: &dtrace_lock); |
| 16918 | |
| 16919 | /* |
| 16920 | * DTrace must decide if it will instrument modules lazily via |
| 16921 | * userspace symbols (default mode), or instrument immediately via |
| 16922 | * kernel symbols (non-default mode) |
| 16923 | * |
| 16924 | * When in default/lazy mode, DTrace will only support modules |
| 16925 | * built with a valid UUID. |
| 16926 | * |
| 16927 | * Overriding the default can be done explicitly in one of |
| 16928 | * the following two ways. |
| 16929 | * |
| 16930 | * A module can force symbols from kernel space using the plist key, |
| 16931 | * OSBundleForceDTraceInit (see kmod.h). If this per kext state is set, |
| 16932 | * we fall through and instrument this module now. |
| 16933 | * |
| 16934 | * Or, the boot-arg, dtrace_kernel_symbol_mode, can be set to force symbols |
| 16935 | * from kernel space (see dtrace_impl.h). If this system state is set |
| 16936 | * to a non-userspace mode, we fall through and instrument the module now. |
| 16937 | */ |
| 16938 | |
| 16939 | if ((dtrace_kernel_symbol_mode == DTRACE_KERNEL_SYMBOLS_FROM_USERSPACE) && |
| 16940 | (!(flag & KMOD_DTRACE_FORCE_INIT))) |
| 16941 | { |
| 16942 | /* Load SDT section for module. Symbol related data will be handled lazily. */ |
| 16943 | sdt_load_machsect(ctl); |
| 16944 | |
| 16945 | /* We will instrument the module lazily -- this is the default */ |
| 16946 | lck_mtx_unlock(lck: &dtrace_lock); |
| 16947 | lck_mtx_unlock(lck: &mod_lock); |
| 16948 | lck_mtx_unlock(lck: &dtrace_provider_lock); |
| 16949 | return 0; |
| 16950 | } |
| 16951 | |
| 16952 | /* We will instrument the module immediately using kernel symbols */ |
| 16953 | if (!(flag & KMOD_DTRACE_NO_KERNEL_SYMS)) { |
| 16954 | ctl->mod_flags |= MODCTL_HAS_KERNEL_SYMBOLS; |
| 16955 | } |
| 16956 | |
| 16957 | /* Load SDT section for module. Symbol related data will be handled lazily. */ |
| 16958 | sdt_load_machsect(ctl); |
| 16959 | |
| 16960 | lck_mtx_unlock(lck: &dtrace_lock); |
| 16961 | |
| 16962 | /* |
| 16963 | * We're going to call each providers per-module provide operation |
| 16964 | * specifying only this module. |
| 16965 | */ |
| 16966 | for (prv = dtrace_provider; prv != NULL; prv = prv->dtpv_next) |
| 16967 | prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl); |
| 16968 | |
| 16969 | /* |
| 16970 | * APPLE NOTE: The contract with the kext loader is that once this function |
| 16971 | * has completed, it may delete kernel symbols at will. |
| 16972 | * We must set this while still holding the mod_lock. |
| 16973 | */ |
| 16974 | ctl->mod_flags &= ~MODCTL_HAS_KERNEL_SYMBOLS; |
| 16975 | |
| 16976 | lck_mtx_unlock(lck: &mod_lock); |
| 16977 | lck_mtx_unlock(lck: &dtrace_provider_lock); |
| 16978 | |
| 16979 | /* |
| 16980 | * If we have any retained enablings, we need to match against them. |
| 16981 | * Enabling probes requires that cpu_lock be held, and we cannot hold |
| 16982 | * cpu_lock here -- it is legal for cpu_lock to be held when loading a |
| 16983 | * module. (In particular, this happens when loading scheduling |
| 16984 | * classes.) So if we have any retained enablings, we need to dispatch |
| 16985 | * our task queue to do the match for us. |
| 16986 | */ |
| 16987 | lck_mtx_lock(lck: &dtrace_lock); |
| 16988 | |
| 16989 | if (dtrace_retained == NULL) { |
| 16990 | lck_mtx_unlock(lck: &dtrace_lock); |
| 16991 | return 0; |
| 16992 | } |
| 16993 | |
| 16994 | /* APPLE NOTE! |
| 16995 | * |
| 16996 | * The cpu_lock mentioned above is only held by dtrace code, Apple's xnu never actually |
| 16997 | * holds it for any reason. Thus the comment above is invalid, we can directly invoke |
| 16998 | * dtrace_enabling_matchall without jumping through all the hoops, and we can avoid |
| 16999 | * the delay call as well. |
| 17000 | */ |
| 17001 | lck_mtx_unlock(lck: &dtrace_lock); |
| 17002 | |
| 17003 | dtrace_enabling_matchall(); |
| 17004 | |
| 17005 | return 0; |
| 17006 | } |
| 17007 | |
| 17008 | /* |
| 17009 | * Return 0 on success |
| 17010 | * Return -1 on failure |
| 17011 | */ |
| 17012 | static int |
| 17013 | dtrace_module_unloaded(struct kmod_info *kmod) |
| 17014 | { |
| 17015 | dtrace_probe_t template, *probe, *first, *next; |
| 17016 | dtrace_provider_t *prov; |
| 17017 | struct modctl *ctl = NULL; |
| 17018 | struct modctl *syncctl = NULL; |
| 17019 | struct modctl *nextsyncctl = NULL; |
| 17020 | int syncmode = 0; |
| 17021 | |
| 17022 | lck_mtx_lock(lck: &dtrace_provider_lock); |
| 17023 | lck_mtx_lock(lck: &mod_lock); |
| 17024 | lck_mtx_lock(lck: &dtrace_lock); |
| 17025 | |
| 17026 | if (kmod == NULL) { |
| 17027 | syncmode = 1; |
| 17028 | } |
| 17029 | else { |
| 17030 | ctl = dtrace_modctl_lookup(kmod); |
| 17031 | if (ctl == NULL) |
| 17032 | { |
| 17033 | lck_mtx_unlock(lck: &dtrace_lock); |
| 17034 | lck_mtx_unlock(lck: &mod_lock); |
| 17035 | lck_mtx_unlock(lck: &dtrace_provider_lock); |
| 17036 | return (-1); |
| 17037 | } |
| 17038 | ctl->mod_loaded = 0; |
| 17039 | ctl->mod_address = 0; |
| 17040 | ctl->mod_size = 0; |
| 17041 | } |
| 17042 | |
| 17043 | if (dtrace_bymod == NULL) { |
| 17044 | /* |
| 17045 | * The DTrace module is loaded (obviously) but not attached; |
| 17046 | * we don't have any work to do. |
| 17047 | */ |
| 17048 | if (ctl != NULL) |
| 17049 | (void)dtrace_modctl_remove(ctl); |
| 17050 | lck_mtx_unlock(lck: &dtrace_lock); |
| 17051 | lck_mtx_unlock(lck: &mod_lock); |
| 17052 | lck_mtx_unlock(lck: &dtrace_provider_lock); |
| 17053 | return(0); |
| 17054 | } |
| 17055 | |
| 17056 | /* Syncmode set means we target and traverse entire modctl list. */ |
| 17057 | if (syncmode) |
| 17058 | nextsyncctl = dtrace_modctl_list; |
| 17059 | |
| 17060 | syncloop: |
| 17061 | if (syncmode) |
| 17062 | { |
| 17063 | /* find a stale modctl struct */ |
| 17064 | for (syncctl = nextsyncctl; syncctl != NULL; syncctl=syncctl->mod_next) { |
| 17065 | if (syncctl->mod_address == 0) |
| 17066 | break; |
| 17067 | } |
| 17068 | if (syncctl==NULL) |
| 17069 | { |
| 17070 | /* We have no more work to do */ |
| 17071 | lck_mtx_unlock(lck: &dtrace_lock); |
| 17072 | lck_mtx_unlock(lck: &mod_lock); |
| 17073 | lck_mtx_unlock(lck: &dtrace_provider_lock); |
| 17074 | return(0); |
| 17075 | } |
| 17076 | else { |
| 17077 | /* keep track of next syncctl in case this one is removed */ |
| 17078 | nextsyncctl = syncctl->mod_next; |
| 17079 | ctl = syncctl; |
| 17080 | } |
| 17081 | } |
| 17082 | |
| 17083 | template.dtpr_mod = ctl->mod_modname; |
| 17084 | |
| 17085 | for (probe = first = dtrace_hash_lookup(hash: dtrace_bymod, template: &template); |
| 17086 | probe != NULL; probe = probe->dtpr_nextmod) { |
| 17087 | if (probe->dtpr_ecb != NULL) { |
| 17088 | /* |
| 17089 | * This shouldn't _actually_ be possible -- we're |
| 17090 | * unloading a module that has an enabled probe in it. |
| 17091 | * (It's normally up to the provider to make sure that |
| 17092 | * this can't happen.) However, because dtps_enable() |
| 17093 | * doesn't have a failure mode, there can be an |
| 17094 | * enable/unload race. Upshot: we don't want to |
| 17095 | * assert, but we're not going to disable the |
| 17096 | * probe, either. |
| 17097 | */ |
| 17098 | |
| 17099 | |
| 17100 | if (syncmode) { |
| 17101 | /* We're syncing, let's look at next in list */ |
| 17102 | goto syncloop; |
| 17103 | } |
| 17104 | |
| 17105 | lck_mtx_unlock(lck: &dtrace_lock); |
| 17106 | lck_mtx_unlock(lck: &mod_lock); |
| 17107 | lck_mtx_unlock(lck: &dtrace_provider_lock); |
| 17108 | |
| 17109 | if (dtrace_err_verbose) { |
| 17110 | cmn_err(CE_WARN, "unloaded module '%s' had " |
| 17111 | "enabled probes" , ctl->mod_modname); |
| 17112 | } |
| 17113 | return(-1); |
| 17114 | } |
| 17115 | } |
| 17116 | |
| 17117 | probe = first; |
| 17118 | |
| 17119 | for (first = NULL; probe != NULL; probe = next) { |
| 17120 | ASSERT(dtrace_probes[probe->dtpr_id - 1] == probe); |
| 17121 | |
| 17122 | dtrace_probes[probe->dtpr_id - 1] = NULL; |
| 17123 | probe->dtpr_provider->dtpv_probe_count--; |
| 17124 | |
| 17125 | next = probe->dtpr_nextmod; |
| 17126 | dtrace_hash_remove(hash: dtrace_byprov, elm: probe); |
| 17127 | dtrace_hash_remove(hash: dtrace_bymod, elm: probe); |
| 17128 | dtrace_hash_remove(hash: dtrace_byfunc, elm: probe); |
| 17129 | dtrace_hash_remove(hash: dtrace_byname, elm: probe); |
| 17130 | |
| 17131 | if (first == NULL) { |
| 17132 | first = probe; |
| 17133 | probe->dtpr_nextmod = NULL; |
| 17134 | } else { |
| 17135 | probe->dtpr_nextmod = first; |
| 17136 | first = probe; |
| 17137 | } |
| 17138 | } |
| 17139 | |
| 17140 | /* |
| 17141 | * We've removed all of the module's probes from the hash chains and |
| 17142 | * from the probe array. Now issue a dtrace_sync() to be sure that |
| 17143 | * everyone has cleared out from any probe array processing. |
| 17144 | */ |
| 17145 | dtrace_sync(); |
| 17146 | |
| 17147 | for (probe = first; probe != NULL; probe = first) { |
| 17148 | first = probe->dtpr_nextmod; |
| 17149 | prov = probe->dtpr_provider; |
| 17150 | prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, probe->dtpr_id, |
| 17151 | probe->dtpr_arg); |
| 17152 | dtrace_strunref(str: probe->dtpr_mod); |
| 17153 | dtrace_strunref(str: probe->dtpr_func); |
| 17154 | dtrace_strunref(str: probe->dtpr_name); |
| 17155 | vmem_free(vmp: dtrace_arena, vaddr: (void *)(uintptr_t)probe->dtpr_id, size: 1); |
| 17156 | |
| 17157 | zfree(dtrace_probe_t_zone, probe); |
| 17158 | } |
| 17159 | |
| 17160 | dtrace_modctl_remove(ctl); |
| 17161 | |
| 17162 | if (syncmode) |
| 17163 | goto syncloop; |
| 17164 | |
| 17165 | lck_mtx_unlock(lck: &dtrace_lock); |
| 17166 | lck_mtx_unlock(lck: &mod_lock); |
| 17167 | lck_mtx_unlock(lck: &dtrace_provider_lock); |
| 17168 | |
| 17169 | return(0); |
| 17170 | } |
| 17171 | |
| 17172 | void |
| 17173 | dtrace_suspend(void) |
| 17174 | { |
| 17175 | dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_suspend)); |
| 17176 | } |
| 17177 | |
| 17178 | void |
| 17179 | dtrace_resume(void) |
| 17180 | { |
| 17181 | dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_resume)); |
| 17182 | } |
| 17183 | |
| 17184 | static int |
| 17185 | dtrace_cpu_setup(cpu_setup_t what, processorid_t cpu) |
| 17186 | { |
| 17187 | LCK_MTX_ASSERT(&cpu_lock, LCK_MTX_ASSERT_OWNED); |
| 17188 | lck_mtx_lock(lck: &dtrace_lock); |
| 17189 | |
| 17190 | switch (what) { |
| 17191 | case CPU_CONFIG: { |
| 17192 | dtrace_state_t *state; |
| 17193 | dtrace_optval_t *opt, rs, c; |
| 17194 | |
| 17195 | /* |
| 17196 | * For now, we only allocate a new buffer for anonymous state. |
| 17197 | */ |
| 17198 | if ((state = dtrace_anon.dta_state) == NULL) |
| 17199 | break; |
| 17200 | |
| 17201 | if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) |
| 17202 | break; |
| 17203 | |
| 17204 | opt = state->dts_options; |
| 17205 | c = opt[DTRACEOPT_CPU]; |
| 17206 | |
| 17207 | if (c != DTRACE_CPUALL && c != DTRACEOPT_UNSET && c != cpu) |
| 17208 | break; |
| 17209 | |
| 17210 | /* |
| 17211 | * Regardless of what the actual policy is, we're going to |
| 17212 | * temporarily set our resize policy to be manual. We're |
| 17213 | * also going to temporarily set our CPU option to denote |
| 17214 | * the newly configured CPU. |
| 17215 | */ |
| 17216 | rs = opt[DTRACEOPT_BUFRESIZE]; |
| 17217 | opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_MANUAL; |
| 17218 | opt[DTRACEOPT_CPU] = (dtrace_optval_t)cpu; |
| 17219 | |
| 17220 | (void) dtrace_state_buffers(state); |
| 17221 | |
| 17222 | opt[DTRACEOPT_BUFRESIZE] = rs; |
| 17223 | opt[DTRACEOPT_CPU] = c; |
| 17224 | |
| 17225 | break; |
| 17226 | } |
| 17227 | |
| 17228 | case CPU_UNCONFIG: |
| 17229 | /* |
| 17230 | * We don't free the buffer in the CPU_UNCONFIG case. (The |
| 17231 | * buffer will be freed when the consumer exits.) |
| 17232 | */ |
| 17233 | break; |
| 17234 | |
| 17235 | default: |
| 17236 | break; |
| 17237 | } |
| 17238 | |
| 17239 | lck_mtx_unlock(lck: &dtrace_lock); |
| 17240 | return (0); |
| 17241 | } |
| 17242 | |
| 17243 | static void |
| 17244 | dtrace_cpu_setup_initial(processorid_t cpu) |
| 17245 | { |
| 17246 | (void) dtrace_cpu_setup(what: CPU_CONFIG, cpu); |
| 17247 | } |
| 17248 | |
| 17249 | static void |
| 17250 | dtrace_toxrange_add(uintptr_t base, uintptr_t limit) |
| 17251 | { |
| 17252 | if (dtrace_toxranges >= dtrace_toxranges_max) { |
| 17253 | int osize, nsize; |
| 17254 | dtrace_toxrange_t *range; |
| 17255 | |
| 17256 | osize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t); |
| 17257 | |
| 17258 | if (osize == 0) { |
| 17259 | ASSERT(dtrace_toxrange == NULL); |
| 17260 | ASSERT(dtrace_toxranges_max == 0); |
| 17261 | dtrace_toxranges_max = 1; |
| 17262 | } else { |
| 17263 | dtrace_toxranges_max <<= 1; |
| 17264 | } |
| 17265 | |
| 17266 | nsize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t); |
| 17267 | range = kmem_zalloc(nsize, KM_SLEEP); |
| 17268 | |
| 17269 | if (dtrace_toxrange != NULL) { |
| 17270 | ASSERT(osize != 0); |
| 17271 | bcopy(src: dtrace_toxrange, dst: range, n: osize); |
| 17272 | kmem_free(dtrace_toxrange, osize); |
| 17273 | } |
| 17274 | |
| 17275 | dtrace_toxrange = range; |
| 17276 | } |
| 17277 | |
| 17278 | ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_base == 0); |
| 17279 | ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_limit == 0); |
| 17280 | |
| 17281 | dtrace_toxrange[dtrace_toxranges].dtt_base = base; |
| 17282 | dtrace_toxrange[dtrace_toxranges].dtt_limit = limit; |
| 17283 | dtrace_toxranges++; |
| 17284 | } |
| 17285 | |
| 17286 | /* |
| 17287 | * DTrace Driver Cookbook Functions |
| 17288 | */ |
| 17289 | /*ARGSUSED*/ |
| 17290 | static int |
| 17291 | dtrace_attach(dev_info_t *devi) |
| 17292 | { |
| 17293 | dtrace_provider_id_t id; |
| 17294 | dtrace_state_t *state = NULL; |
| 17295 | dtrace_enabling_t *enab; |
| 17296 | |
| 17297 | lck_mtx_lock(lck: &cpu_lock); |
| 17298 | lck_mtx_lock(lck: &dtrace_provider_lock); |
| 17299 | lck_mtx_lock(lck: &dtrace_lock); |
| 17300 | |
| 17301 | /* Darwin uses BSD cloning device driver to automagically obtain minor device number. */ |
| 17302 | dtrace_devi = devi; |
| 17303 | |
| 17304 | dtrace_modload = dtrace_module_loaded; |
| 17305 | dtrace_modunload = dtrace_module_unloaded; |
| 17306 | dtrace_cpu_init = dtrace_cpu_setup_initial; |
| 17307 | dtrace_helpers_cleanup = dtrace_helpers_destroy; |
| 17308 | dtrace_helpers_fork = dtrace_helpers_duplicate; |
| 17309 | dtrace_cpustart_init = dtrace_suspend; |
| 17310 | dtrace_cpustart_fini = dtrace_resume; |
| 17311 | dtrace_debugger_init = dtrace_suspend; |
| 17312 | dtrace_debugger_fini = dtrace_resume; |
| 17313 | |
| 17314 | register_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL); |
| 17315 | |
| 17316 | LCK_MTX_ASSERT(&cpu_lock, LCK_MTX_ASSERT_OWNED); |
| 17317 | |
| 17318 | dtrace_arena = vmem_create("dtrace" , (void *)1, INT32_MAX, 1, |
| 17319 | NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER); |
| 17320 | |
| 17321 | LCK_MTX_ASSERT(&cpu_lock, LCK_MTX_ASSERT_OWNED); |
| 17322 | |
| 17323 | dtrace_nprobes = dtrace_nprobes_default; |
| 17324 | dtrace_probes = kmem_zalloc(sizeof(dtrace_probe_t*) * dtrace_nprobes, |
| 17325 | KM_SLEEP); |
| 17326 | |
| 17327 | dtrace_byprov = dtrace_hash_create(func: dtrace_strkey_probe_provider, |
| 17328 | arg: 0, /* unused */ |
| 17329 | offsetof(dtrace_probe_t, dtpr_nextprov), |
| 17330 | offsetof(dtrace_probe_t, dtpr_prevprov)); |
| 17331 | |
| 17332 | dtrace_bymod = dtrace_hash_create(func: dtrace_strkey_deref_offset, |
| 17333 | offsetof(dtrace_probe_t, dtpr_mod), |
| 17334 | offsetof(dtrace_probe_t, dtpr_nextmod), |
| 17335 | offsetof(dtrace_probe_t, dtpr_prevmod)); |
| 17336 | |
| 17337 | dtrace_byfunc = dtrace_hash_create(func: dtrace_strkey_deref_offset, |
| 17338 | offsetof(dtrace_probe_t, dtpr_func), |
| 17339 | offsetof(dtrace_probe_t, dtpr_nextfunc), |
| 17340 | offsetof(dtrace_probe_t, dtpr_prevfunc)); |
| 17341 | |
| 17342 | dtrace_byname = dtrace_hash_create(func: dtrace_strkey_deref_offset, |
| 17343 | offsetof(dtrace_probe_t, dtpr_name), |
| 17344 | offsetof(dtrace_probe_t, dtpr_nextname), |
| 17345 | offsetof(dtrace_probe_t, dtpr_prevname)); |
| 17346 | |
| 17347 | if (dtrace_retain_max < 1) { |
| 17348 | cmn_err(CE_WARN, "illegal value (%lu) for dtrace_retain_max; " |
| 17349 | "setting to 1" , dtrace_retain_max); |
| 17350 | dtrace_retain_max = 1; |
| 17351 | } |
| 17352 | |
| 17353 | /* |
| 17354 | * Now discover our toxic ranges. |
| 17355 | */ |
| 17356 | dtrace_toxic_ranges(dtrace_toxrange_add); |
| 17357 | |
| 17358 | /* |
| 17359 | * Before we register ourselves as a provider to our own framework, |
| 17360 | * we would like to assert that dtrace_provider is NULL -- but that's |
| 17361 | * not true if we were loaded as a dependency of a DTrace provider. |
| 17362 | * Once we've registered, we can assert that dtrace_provider is our |
| 17363 | * pseudo provider. |
| 17364 | */ |
| 17365 | (void) dtrace_register(name: "dtrace" , pap: &dtrace_provider_attr, |
| 17366 | DTRACE_PRIV_NONE, cr: 0, pops: &dtrace_provider_ops, NULL, idp: &id); |
| 17367 | |
| 17368 | ASSERT(dtrace_provider != NULL); |
| 17369 | ASSERT((dtrace_provider_id_t)dtrace_provider == id); |
| 17370 | |
| 17371 | #if defined (__x86_64__) |
| 17372 | dtrace_probeid_begin = dtrace_probe_create((dtrace_provider_id_t) |
| 17373 | dtrace_provider, NULL, NULL, "BEGIN" , 1, NULL); |
| 17374 | dtrace_probeid_end = dtrace_probe_create((dtrace_provider_id_t) |
| 17375 | dtrace_provider, NULL, NULL, "END" , 0, NULL); |
| 17376 | dtrace_probeid_error = dtrace_probe_create((dtrace_provider_id_t) |
| 17377 | dtrace_provider, NULL, NULL, "ERROR" , 3, NULL); |
| 17378 | #elif defined(__arm64__) |
| 17379 | dtrace_probeid_begin = dtrace_probe_create(prov: (dtrace_provider_id_t) |
| 17380 | dtrace_provider, NULL, NULL, name: "BEGIN" , aframes: 2, NULL); |
| 17381 | dtrace_probeid_end = dtrace_probe_create(prov: (dtrace_provider_id_t) |
| 17382 | dtrace_provider, NULL, NULL, name: "END" , aframes: 1, NULL); |
| 17383 | dtrace_probeid_error = dtrace_probe_create(prov: (dtrace_provider_id_t) |
| 17384 | dtrace_provider, NULL, NULL, name: "ERROR" , aframes: 4, NULL); |
| 17385 | #else |
| 17386 | #error Unknown Architecture |
| 17387 | #endif |
| 17388 | |
| 17389 | dtrace_anon_property(); |
| 17390 | lck_mtx_unlock(lck: &cpu_lock); |
| 17391 | |
| 17392 | /* |
| 17393 | * If DTrace helper tracing is enabled, we need to allocate the |
| 17394 | * trace buffer and initialize the values. |
| 17395 | */ |
| 17396 | if (dtrace_helptrace_enabled) { |
| 17397 | ASSERT(dtrace_helptrace_buffer == NULL); |
| 17398 | dtrace_helptrace_buffer = |
| 17399 | kmem_zalloc(dtrace_helptrace_bufsize, KM_SLEEP); |
| 17400 | dtrace_helptrace_next = 0; |
| 17401 | } |
| 17402 | |
| 17403 | /* |
| 17404 | * If there are already providers, we must ask them to provide their |
| 17405 | * probes, and then match any anonymous enabling against them. Note |
| 17406 | * that there should be no other retained enablings at this time: |
| 17407 | * the only retained enablings at this time should be the anonymous |
| 17408 | * enabling. |
| 17409 | */ |
| 17410 | if (dtrace_anon.dta_enabling != NULL) { |
| 17411 | ASSERT(dtrace_retained == dtrace_anon.dta_enabling); |
| 17412 | |
| 17413 | /* |
| 17414 | * APPLE NOTE: if handling anonymous dof, switch symbol modes. |
| 17415 | */ |
| 17416 | if (dtrace_kernel_symbol_mode == DTRACE_KERNEL_SYMBOLS_FROM_USERSPACE) { |
| 17417 | dtrace_kernel_symbol_mode = DTRACE_KERNEL_SYMBOLS_FROM_KERNEL; |
| 17418 | } |
| 17419 | |
| 17420 | dtrace_enabling_provide(NULL); |
| 17421 | state = dtrace_anon.dta_state; |
| 17422 | |
| 17423 | /* |
| 17424 | * We couldn't hold cpu_lock across the above call to |
| 17425 | * dtrace_enabling_provide(), but we must hold it to actually |
| 17426 | * enable the probes. We have to drop all of our locks, pick |
| 17427 | * up cpu_lock, and regain our locks before matching the |
| 17428 | * retained anonymous enabling. |
| 17429 | */ |
| 17430 | lck_mtx_unlock(lck: &dtrace_lock); |
| 17431 | lck_mtx_unlock(lck: &dtrace_provider_lock); |
| 17432 | |
| 17433 | lck_mtx_lock(lck: &cpu_lock); |
| 17434 | lck_mtx_lock(lck: &dtrace_provider_lock); |
| 17435 | lck_mtx_lock(lck: &dtrace_lock); |
| 17436 | |
| 17437 | if ((enab = dtrace_anon.dta_enabling) != NULL) |
| 17438 | (void) dtrace_enabling_match(enab, NULL, NULL); |
| 17439 | |
| 17440 | lck_mtx_unlock(lck: &cpu_lock); |
| 17441 | } |
| 17442 | |
| 17443 | lck_mtx_unlock(lck: &dtrace_lock); |
| 17444 | lck_mtx_unlock(lck: &dtrace_provider_lock); |
| 17445 | |
| 17446 | if (state != NULL) { |
| 17447 | /* |
| 17448 | * If we created any anonymous state, set it going now. |
| 17449 | */ |
| 17450 | (void) dtrace_state_go(state, cpu: &dtrace_anon.dta_beganon); |
| 17451 | } |
| 17452 | |
| 17453 | return (DDI_SUCCESS); |
| 17454 | } |
| 17455 | |
| 17456 | /*ARGSUSED*/ |
| 17457 | static int |
| 17458 | dtrace_open(dev_t *devp, int flag, int otyp, cred_t *cred_p) |
| 17459 | { |
| 17460 | #pragma unused(flag, otyp) |
| 17461 | dtrace_state_t *state; |
| 17462 | uint32_t priv; |
| 17463 | uid_t uid; |
| 17464 | zoneid_t zoneid; |
| 17465 | int rv; |
| 17466 | |
| 17467 | if (minor(*devp) < 0 || minor(*devp) >= DTRACE_NCLIENTS) |
| 17468 | return (ENXIO); |
| 17469 | |
| 17470 | /* APPLE: Darwin puts Helper on its own major device. */ |
| 17471 | |
| 17472 | /* |
| 17473 | * If no DTRACE_PRIV_* bits are set in the credential, then the |
| 17474 | * caller lacks sufficient permission to do anything with DTrace. |
| 17475 | */ |
| 17476 | dtrace_cred2priv(cr: cred_p, privp: &priv, uidp: &uid, zoneidp: &zoneid); |
| 17477 | if (priv == DTRACE_PRIV_NONE) |
| 17478 | return (EACCES); |
| 17479 | |
| 17480 | /* |
| 17481 | * APPLE NOTE: We delay the initialization of fasttrap as late as possible. |
| 17482 | * It certainly can't be later than now! |
| 17483 | */ |
| 17484 | fasttrap_init(); |
| 17485 | |
| 17486 | /* |
| 17487 | * Ask all providers to provide all their probes. |
| 17488 | */ |
| 17489 | lck_mtx_lock(lck: &dtrace_provider_lock); |
| 17490 | dtrace_probe_provide(NULL, NULL); |
| 17491 | lck_mtx_unlock(lck: &dtrace_provider_lock); |
| 17492 | |
| 17493 | lck_mtx_lock(lck: &cpu_lock); |
| 17494 | lck_mtx_lock(lck: &dtrace_lock); |
| 17495 | dtrace_opens++; |
| 17496 | dtrace_membar_producer(); |
| 17497 | |
| 17498 | #ifdef illumos |
| 17499 | /* |
| 17500 | * If the kernel debugger is active (that is, if the kernel debugger |
| 17501 | * modified text in some way), we won't allow the open. |
| 17502 | */ |
| 17503 | if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) { |
| 17504 | dtrace_opens--; |
| 17505 | lck_mtx_unlock(&dtrace_lock); |
| 17506 | lck_mtx_unlock(&cpu_lock); |
| 17507 | return (EBUSY); |
| 17508 | } |
| 17509 | #endif |
| 17510 | |
| 17511 | rv = dtrace_state_create(devp, cr: cred_p, new_state: &state); |
| 17512 | lck_mtx_unlock(lck: &cpu_lock); |
| 17513 | |
| 17514 | if (rv != 0 || state == NULL) { |
| 17515 | if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL) { |
| 17516 | #ifdef illumos |
| 17517 | (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); |
| 17518 | #endif |
| 17519 | } |
| 17520 | lck_mtx_unlock(lck: &dtrace_lock); |
| 17521 | /* propagate EAGAIN or ERESTART */ |
| 17522 | return (rv); |
| 17523 | } |
| 17524 | |
| 17525 | lck_mtx_unlock(lck: &dtrace_lock); |
| 17526 | |
| 17527 | lck_rw_lock_exclusive(lck: &dtrace_dof_mode_lock); |
| 17528 | |
| 17529 | /* |
| 17530 | * If we are currently lazy, transition states. |
| 17531 | * |
| 17532 | * Unlike dtrace_close, we do not need to check the |
| 17533 | * value of dtrace_opens, as any positive value (and |
| 17534 | * we count as 1) means we transition states. |
| 17535 | */ |
| 17536 | if (dtrace_dof_mode == DTRACE_DOF_MODE_LAZY_ON) { |
| 17537 | dtrace_dof_mode = DTRACE_DOF_MODE_LAZY_OFF; |
| 17538 | /* |
| 17539 | * We do not need to hold the exclusive lock while processing |
| 17540 | * DOF on processes. We do need to make sure the mode does not get |
| 17541 | * changed to DTRACE_DOF_MODE_LAZY_ON during that stage though |
| 17542 | * (which should not happen anyway since it only happens in |
| 17543 | * dtrace_close). There is no way imcomplete USDT probes can be |
| 17544 | * activate by any DTrace clients here since they all have to |
| 17545 | * call dtrace_open and be blocked on dtrace_dof_mode_lock |
| 17546 | */ |
| 17547 | lck_rw_lock_exclusive_to_shared(lck: &dtrace_dof_mode_lock); |
| 17548 | /* |
| 17549 | * Iterate all existing processes and load lazy dofs. |
| 17550 | */ |
| 17551 | proc_iterate(PROC_ALLPROCLIST | PROC_NOWAITTRANS, |
| 17552 | callout: dtrace_lazy_dofs_proc_iterate_doit, |
| 17553 | NULL, |
| 17554 | filterfn: dtrace_lazy_dofs_proc_iterate_filter, |
| 17555 | NULL); |
| 17556 | |
| 17557 | lck_rw_unlock_shared(lck: &dtrace_dof_mode_lock); |
| 17558 | } |
| 17559 | else { |
| 17560 | lck_rw_unlock_exclusive(lck: &dtrace_dof_mode_lock); |
| 17561 | } |
| 17562 | |
| 17563 | |
| 17564 | /* |
| 17565 | * Update kernel symbol state. |
| 17566 | * |
| 17567 | * We must own the provider and dtrace locks. |
| 17568 | * |
| 17569 | * NOTE! It may appear there is a race by setting this value so late |
| 17570 | * after dtrace_probe_provide. However, any kext loaded after the |
| 17571 | * call to probe provide and before we set LAZY_OFF will be marked as |
| 17572 | * eligible for symbols from userspace. The same dtrace that is currently |
| 17573 | * calling dtrace_open() (this call!) will get a list of kexts needing |
| 17574 | * symbols and fill them in, thus closing the race window. |
| 17575 | * |
| 17576 | * We want to set this value only after it certain it will succeed, as |
| 17577 | * this significantly reduces the complexity of error exits. |
| 17578 | */ |
| 17579 | lck_mtx_lock(lck: &dtrace_lock); |
| 17580 | if (dtrace_kernel_symbol_mode == DTRACE_KERNEL_SYMBOLS_FROM_USERSPACE) { |
| 17581 | dtrace_kernel_symbol_mode = DTRACE_KERNEL_SYMBOLS_FROM_KERNEL; |
| 17582 | } |
| 17583 | lck_mtx_unlock(lck: &dtrace_lock); |
| 17584 | |
| 17585 | /* Suspend cluster powerdown while DTrace device is opened. */ |
| 17586 | suspend_cluster_powerdown(); |
| 17587 | return (0); |
| 17588 | } |
| 17589 | |
| 17590 | /*ARGSUSED*/ |
| 17591 | static int |
| 17592 | dtrace_close(dev_t dev, int flag, int otyp, cred_t *cred_p) |
| 17593 | { |
| 17594 | #pragma unused(flag, otyp, cred_p) /* __APPLE__ */ |
| 17595 | minor_t minor = getminor(dev); |
| 17596 | dtrace_state_t *state; |
| 17597 | |
| 17598 | /* APPLE NOTE: Darwin puts Helper on its own major device. */ |
| 17599 | state = dtrace_state_get(minor); |
| 17600 | |
| 17601 | lck_mtx_lock(lck: &cpu_lock); |
| 17602 | lck_mtx_lock(lck: &dtrace_lock); |
| 17603 | |
| 17604 | if (state->dts_anon) { |
| 17605 | /* |
| 17606 | * There is anonymous state. Destroy that first. |
| 17607 | */ |
| 17608 | ASSERT(dtrace_anon.dta_state == NULL); |
| 17609 | dtrace_state_destroy(state: state->dts_anon); |
| 17610 | } |
| 17611 | |
| 17612 | dtrace_state_destroy(state); |
| 17613 | ASSERT(dtrace_opens > 0); |
| 17614 | |
| 17615 | /* |
| 17616 | * Only relinquish control of the kernel debugger interface when there |
| 17617 | * are no consumers and no anonymous enablings. |
| 17618 | */ |
| 17619 | if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL) { |
| 17620 | #ifdef illumos |
| 17621 | (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); |
| 17622 | #endif |
| 17623 | } |
| 17624 | |
| 17625 | lck_mtx_unlock(lck: &dtrace_lock); |
| 17626 | lck_mtx_unlock(lck: &cpu_lock); |
| 17627 | |
| 17628 | /* |
| 17629 | * Lock ordering requires the dof mode lock be taken before |
| 17630 | * the dtrace_lock. |
| 17631 | */ |
| 17632 | lck_rw_lock_exclusive(lck: &dtrace_dof_mode_lock); |
| 17633 | lck_mtx_lock(lck: &dtrace_lock); |
| 17634 | |
| 17635 | if (dtrace_opens == 0) { |
| 17636 | /* |
| 17637 | * If we are currently lazy-off, and this is the last close, transition to |
| 17638 | * lazy state. |
| 17639 | */ |
| 17640 | if (dtrace_dof_mode == DTRACE_DOF_MODE_LAZY_OFF) { |
| 17641 | dtrace_dof_mode = DTRACE_DOF_MODE_LAZY_ON; |
| 17642 | } |
| 17643 | |
| 17644 | /* |
| 17645 | * If we are the last dtrace client, switch back to lazy (from userspace) symbols |
| 17646 | */ |
| 17647 | if (dtrace_kernel_symbol_mode == DTRACE_KERNEL_SYMBOLS_FROM_KERNEL) { |
| 17648 | dtrace_kernel_symbol_mode = DTRACE_KERNEL_SYMBOLS_FROM_USERSPACE; |
| 17649 | } |
| 17650 | } |
| 17651 | |
| 17652 | lck_mtx_unlock(lck: &dtrace_lock); |
| 17653 | lck_rw_unlock_exclusive(lck: &dtrace_dof_mode_lock); |
| 17654 | |
| 17655 | /* |
| 17656 | * Kext probes may be retained past the end of the kext's lifespan. The |
| 17657 | * probes are kept until the last reference to them has been removed. |
| 17658 | * Since closing an active dtrace context is likely to drop that last reference, |
| 17659 | * lets take a shot at cleaning out the orphaned probes now. |
| 17660 | */ |
| 17661 | dtrace_module_unloaded(NULL); |
| 17662 | |
| 17663 | /* State is gone so resume cluster powerdown. */ |
| 17664 | resume_cluster_powerdown(); |
| 17665 | return (0); |
| 17666 | } |
| 17667 | |
| 17668 | /*ARGSUSED*/ |
| 17669 | static int |
| 17670 | dtrace_ioctl_helper(u_long cmd, caddr_t arg, int *rv) |
| 17671 | { |
| 17672 | #pragma unused(rv) |
| 17673 | /* |
| 17674 | * Safe to check this outside the dof mode lock |
| 17675 | */ |
| 17676 | if (dtrace_dof_mode == DTRACE_DOF_MODE_NEVER) |
| 17677 | return KERN_SUCCESS; |
| 17678 | |
| 17679 | switch (cmd) { |
| 17680 | #if defined (__arm64__) |
| 17681 | case DTRACEHIOC_ADDDOF_U32: |
| 17682 | case DTRACEHIOC_ADDDOF_U64: |
| 17683 | #else |
| 17684 | case DTRACEHIOC_ADDDOF: |
| 17685 | #endif /* __arm64__*/ |
| 17686 | { |
| 17687 | dof_helper_t *dhp = NULL; |
| 17688 | size_t dof_ioctl_data_size; |
| 17689 | dof_ioctl_data_t* multi_dof; |
| 17690 | unsigned int i; |
| 17691 | int rval = 0; |
| 17692 | user_addr_t user_address = *(user_addr_t*)arg; |
| 17693 | uint64_t dof_count; |
| 17694 | int multi_dof_claimed = 0; |
| 17695 | proc_t* p = current_proc(); |
| 17696 | |
| 17697 | /* |
| 17698 | * If this is a restricted process and dtrace is restricted, |
| 17699 | * do not allow DOFs to be registered |
| 17700 | */ |
| 17701 | if (dtrace_is_restricted() && |
| 17702 | !dtrace_are_restrictions_relaxed() && |
| 17703 | !dtrace_can_attach_to_proc(current_proc())) { |
| 17704 | return (EACCES); |
| 17705 | } |
| 17706 | |
| 17707 | /* |
| 17708 | * Read the number of DOF sections being passed in. |
| 17709 | */ |
| 17710 | if (copyin(user_address + offsetof(dof_ioctl_data_t, dofiod_count), |
| 17711 | &dof_count, |
| 17712 | sizeof(dof_count))) { |
| 17713 | dtrace_dof_error(NULL, str: "failed to copyin dofiod_count" ); |
| 17714 | return (EFAULT); |
| 17715 | } |
| 17716 | |
| 17717 | /* |
| 17718 | * Range check the count. |
| 17719 | */ |
| 17720 | if (dof_count == 0 || dof_count > 1024) { |
| 17721 | dtrace_dof_error(NULL, str: "dofiod_count is not valid" ); |
| 17722 | return (EINVAL); |
| 17723 | } |
| 17724 | |
| 17725 | /* |
| 17726 | * Allocate a correctly sized structure and copyin the data. |
| 17727 | */ |
| 17728 | dof_ioctl_data_size = DOF_IOCTL_DATA_T_SIZE(dof_count); |
| 17729 | if ((multi_dof = kmem_alloc(dof_ioctl_data_size, KM_SLEEP)) == NULL) |
| 17730 | return (ENOMEM); |
| 17731 | |
| 17732 | /* NOTE! We can no longer exit this method via return */ |
| 17733 | if (copyin(user_address, multi_dof, dof_ioctl_data_size) != 0) { |
| 17734 | dtrace_dof_error(NULL, str: "failed copyin of dof_ioctl_data_t" ); |
| 17735 | rval = EFAULT; |
| 17736 | goto cleanup; |
| 17737 | } |
| 17738 | |
| 17739 | /* |
| 17740 | * Check that the count didn't change between the first copyin and the second. |
| 17741 | */ |
| 17742 | if (multi_dof->dofiod_count != dof_count) { |
| 17743 | rval = EINVAL; |
| 17744 | goto cleanup; |
| 17745 | } |
| 17746 | |
| 17747 | /* |
| 17748 | * Try to process lazily first. |
| 17749 | */ |
| 17750 | rval = dtrace_lazy_dofs_add(p, incoming_dofs: multi_dof, dofs_claimed: &multi_dof_claimed); |
| 17751 | |
| 17752 | /* |
| 17753 | * If rval is EACCES, we must be non-lazy. |
| 17754 | */ |
| 17755 | if (rval == EACCES) { |
| 17756 | rval = 0; |
| 17757 | /* |
| 17758 | * Process each dof_helper_t |
| 17759 | */ |
| 17760 | i = 0; |
| 17761 | do { |
| 17762 | dhp = &multi_dof->dofiod_helpers[i]; |
| 17763 | |
| 17764 | dof_hdr_t *dof = dtrace_dof_copyin(uarg: dhp->dofhp_dof, errp: &rval); |
| 17765 | |
| 17766 | if (dof != NULL) { |
| 17767 | lck_mtx_lock(lck: &dtrace_meta_lock); |
| 17768 | lck_mtx_lock(lck: &dtrace_lock); |
| 17769 | |
| 17770 | /* |
| 17771 | * dtrace_helper_slurp() takes responsibility for the dof -- |
| 17772 | * it may free it now or it may save it and free it later. |
| 17773 | */ |
| 17774 | if ((dhp->dofhp_dof = (uint64_t)dtrace_helper_slurp(p, dof, dhp)) == -1ULL) { |
| 17775 | rval = EINVAL; |
| 17776 | } |
| 17777 | |
| 17778 | lck_mtx_unlock(lck: &dtrace_lock); |
| 17779 | lck_mtx_unlock(lck: &dtrace_meta_lock); |
| 17780 | } |
| 17781 | } while (++i < multi_dof->dofiod_count && rval == 0); |
| 17782 | } |
| 17783 | |
| 17784 | /* |
| 17785 | * We need to copyout the multi_dof struct, because it contains |
| 17786 | * the generation (unique id) values needed to call DTRACEHIOC_REMOVE |
| 17787 | * |
| 17788 | * This could certainly be better optimized. |
| 17789 | */ |
| 17790 | if (copyout(multi_dof, user_address, dof_ioctl_data_size) != 0) { |
| 17791 | dtrace_dof_error(NULL, str: "failed copyout of dof_ioctl_data_t" ); |
| 17792 | /* Don't overwrite pre-existing error code */ |
| 17793 | if (rval == 0) rval = EFAULT; |
| 17794 | } |
| 17795 | |
| 17796 | cleanup: |
| 17797 | /* |
| 17798 | * If we had to allocate struct memory, free it. |
| 17799 | */ |
| 17800 | if (multi_dof != NULL && !multi_dof_claimed) { |
| 17801 | kmem_free(multi_dof, dof_ioctl_data_size); |
| 17802 | } |
| 17803 | |
| 17804 | return rval; |
| 17805 | } |
| 17806 | |
| 17807 | case DTRACEHIOC_REMOVE: { |
| 17808 | int generation = *(int*)arg; |
| 17809 | proc_t* p = current_proc(); |
| 17810 | |
| 17811 | /* |
| 17812 | * Try lazy first. |
| 17813 | */ |
| 17814 | int rval = dtrace_lazy_dofs_remove(p, generation); |
| 17815 | |
| 17816 | /* |
| 17817 | * EACCES means non-lazy |
| 17818 | */ |
| 17819 | if (rval == EACCES) { |
| 17820 | lck_mtx_lock(lck: &dtrace_meta_lock); |
| 17821 | lck_mtx_lock(lck: &dtrace_lock); |
| 17822 | rval = dtrace_helper_destroygen(p, gen: generation); |
| 17823 | lck_mtx_unlock(lck: &dtrace_lock); |
| 17824 | lck_mtx_unlock(lck: &dtrace_meta_lock); |
| 17825 | } |
| 17826 | |
| 17827 | return (rval); |
| 17828 | } |
| 17829 | |
| 17830 | default: |
| 17831 | break; |
| 17832 | } |
| 17833 | |
| 17834 | return ENOTTY; |
| 17835 | } |
| 17836 | |
| 17837 | /*ARGSUSED*/ |
| 17838 | static int |
| 17839 | dtrace_ioctl(dev_t dev, u_long cmd, user_addr_t arg, int md, cred_t *cr, int *rv) |
| 17840 | { |
| 17841 | #pragma unused(md) |
| 17842 | minor_t minor = getminor(dev); |
| 17843 | dtrace_state_t *state; |
| 17844 | int rval; |
| 17845 | |
| 17846 | /* Darwin puts Helper on its own major device. */ |
| 17847 | |
| 17848 | state = dtrace_state_get(minor); |
| 17849 | |
| 17850 | if (state->dts_anon) { |
| 17851 | ASSERT(dtrace_anon.dta_state == NULL); |
| 17852 | state = state->dts_anon; |
| 17853 | } |
| 17854 | |
| 17855 | switch (cmd) { |
| 17856 | case DTRACEIOC_PROVIDER: { |
| 17857 | dtrace_providerdesc_t pvd; |
| 17858 | dtrace_provider_t *pvp; |
| 17859 | |
| 17860 | if (copyin(arg, &pvd, sizeof (pvd)) != 0) |
| 17861 | return (EFAULT); |
| 17862 | |
| 17863 | pvd.dtvd_name[DTRACE_PROVNAMELEN - 1] = '\0'; |
| 17864 | lck_mtx_lock(lck: &dtrace_provider_lock); |
| 17865 | |
| 17866 | for (pvp = dtrace_provider; pvp != NULL; pvp = pvp->dtpv_next) { |
| 17867 | if (strncmp(s1: pvp->dtpv_name, s2: pvd.dtvd_name, DTRACE_PROVNAMELEN) == 0) |
| 17868 | break; |
| 17869 | } |
| 17870 | |
| 17871 | lck_mtx_unlock(lck: &dtrace_provider_lock); |
| 17872 | |
| 17873 | if (pvp == NULL) |
| 17874 | return (ESRCH); |
| 17875 | |
| 17876 | bcopy(src: &pvp->dtpv_priv, dst: &pvd.dtvd_priv, n: sizeof (dtrace_ppriv_t)); |
| 17877 | bcopy(src: &pvp->dtpv_attr, dst: &pvd.dtvd_attr, n: sizeof (dtrace_pattr_t)); |
| 17878 | if (copyout(&pvd, arg, sizeof (pvd)) != 0) |
| 17879 | return (EFAULT); |
| 17880 | |
| 17881 | return (0); |
| 17882 | } |
| 17883 | |
| 17884 | case DTRACEIOC_EPROBE: { |
| 17885 | dtrace_eprobedesc_t epdesc; |
| 17886 | dtrace_ecb_t *ecb; |
| 17887 | dtrace_action_t *act; |
| 17888 | void *buf; |
| 17889 | size_t size; |
| 17890 | uintptr_t dest; |
| 17891 | int nrecs; |
| 17892 | |
| 17893 | if (copyin(arg, &epdesc, sizeof (epdesc)) != 0) |
| 17894 | return (EFAULT); |
| 17895 | |
| 17896 | lck_mtx_lock(lck: &dtrace_lock); |
| 17897 | |
| 17898 | if ((ecb = dtrace_epid2ecb(state, id: epdesc.dtepd_epid)) == NULL) { |
| 17899 | lck_mtx_unlock(lck: &dtrace_lock); |
| 17900 | return (EINVAL); |
| 17901 | } |
| 17902 | |
| 17903 | if (ecb->dte_probe == NULL) { |
| 17904 | lck_mtx_unlock(lck: &dtrace_lock); |
| 17905 | return (EINVAL); |
| 17906 | } |
| 17907 | |
| 17908 | epdesc.dtepd_probeid = ecb->dte_probe->dtpr_id; |
| 17909 | epdesc.dtepd_uarg = ecb->dte_uarg; |
| 17910 | epdesc.dtepd_size = ecb->dte_size; |
| 17911 | |
| 17912 | nrecs = epdesc.dtepd_nrecs; |
| 17913 | epdesc.dtepd_nrecs = 0; |
| 17914 | for (act = ecb->dte_action; act != NULL; act = act->dta_next) { |
| 17915 | if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple) |
| 17916 | continue; |
| 17917 | |
| 17918 | epdesc.dtepd_nrecs++; |
| 17919 | } |
| 17920 | |
| 17921 | /* |
| 17922 | * Now that we have the size, we need to allocate a temporary |
| 17923 | * buffer in which to store the complete description. We need |
| 17924 | * the temporary buffer to be able to drop dtrace_lock() |
| 17925 | * across the copyout(), below. |
| 17926 | */ |
| 17927 | size = sizeof (dtrace_eprobedesc_t) + |
| 17928 | (epdesc.dtepd_nrecs * sizeof (dtrace_recdesc_t)); |
| 17929 | |
| 17930 | buf = kmem_alloc(size, KM_SLEEP); |
| 17931 | dest = (uintptr_t)buf; |
| 17932 | |
| 17933 | bcopy(src: &epdesc, dst: (void *)dest, n: sizeof (epdesc)); |
| 17934 | dest += offsetof(dtrace_eprobedesc_t, dtepd_rec[0]); |
| 17935 | |
| 17936 | for (act = ecb->dte_action; act != NULL; act = act->dta_next) { |
| 17937 | if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple) |
| 17938 | continue; |
| 17939 | |
| 17940 | if (nrecs-- == 0) |
| 17941 | break; |
| 17942 | |
| 17943 | bcopy(src: &act->dta_rec, dst: (void *)dest, |
| 17944 | n: sizeof (dtrace_recdesc_t)); |
| 17945 | dest += sizeof (dtrace_recdesc_t); |
| 17946 | } |
| 17947 | |
| 17948 | lck_mtx_unlock(lck: &dtrace_lock); |
| 17949 | |
| 17950 | if (copyout(buf, arg, dest - (uintptr_t)buf) != 0) { |
| 17951 | kmem_free(buf, size); |
| 17952 | return (EFAULT); |
| 17953 | } |
| 17954 | |
| 17955 | kmem_free(buf, size); |
| 17956 | return (0); |
| 17957 | } |
| 17958 | |
| 17959 | case DTRACEIOC_AGGDESC: { |
| 17960 | dtrace_aggdesc_t aggdesc; |
| 17961 | dtrace_action_t *act; |
| 17962 | dtrace_aggregation_t *agg; |
| 17963 | int nrecs; |
| 17964 | uint32_t offs; |
| 17965 | dtrace_recdesc_t *lrec; |
| 17966 | void *buf; |
| 17967 | size_t size; |
| 17968 | uintptr_t dest; |
| 17969 | |
| 17970 | if (copyin(arg, &aggdesc, sizeof (aggdesc)) != 0) |
| 17971 | return (EFAULT); |
| 17972 | |
| 17973 | lck_mtx_lock(lck: &dtrace_lock); |
| 17974 | |
| 17975 | if ((agg = dtrace_aggid2agg(state, id: aggdesc.dtagd_id)) == NULL) { |
| 17976 | lck_mtx_unlock(lck: &dtrace_lock); |
| 17977 | return (EINVAL); |
| 17978 | } |
| 17979 | |
| 17980 | aggdesc.dtagd_epid = agg->dtag_ecb->dte_epid; |
| 17981 | |
| 17982 | nrecs = aggdesc.dtagd_nrecs; |
| 17983 | aggdesc.dtagd_nrecs = 0; |
| 17984 | |
| 17985 | offs = agg->dtag_base; |
| 17986 | lrec = &agg->dtag_action.dta_rec; |
| 17987 | aggdesc.dtagd_size = lrec->dtrd_offset + lrec->dtrd_size - offs; |
| 17988 | |
| 17989 | for (act = agg->dtag_first; ; act = act->dta_next) { |
| 17990 | ASSERT(act->dta_intuple || |
| 17991 | DTRACEACT_ISAGG(act->dta_kind)); |
| 17992 | |
| 17993 | /* |
| 17994 | * If this action has a record size of zero, it |
| 17995 | * denotes an argument to the aggregating action. |
| 17996 | * Because the presence of this record doesn't (or |
| 17997 | * shouldn't) affect the way the data is interpreted, |
| 17998 | * we don't copy it out to save user-level the |
| 17999 | * confusion of dealing with a zero-length record. |
| 18000 | */ |
| 18001 | if (act->dta_rec.dtrd_size == 0) { |
| 18002 | ASSERT(agg->dtag_hasarg); |
| 18003 | continue; |
| 18004 | } |
| 18005 | |
| 18006 | aggdesc.dtagd_nrecs++; |
| 18007 | |
| 18008 | if (act == &agg->dtag_action) |
| 18009 | break; |
| 18010 | } |
| 18011 | |
| 18012 | /* |
| 18013 | * Now that we have the size, we need to allocate a temporary |
| 18014 | * buffer in which to store the complete description. We need |
| 18015 | * the temporary buffer to be able to drop dtrace_lock() |
| 18016 | * across the copyout(), below. |
| 18017 | */ |
| 18018 | size = sizeof (dtrace_aggdesc_t) + |
| 18019 | (aggdesc.dtagd_nrecs * sizeof (dtrace_recdesc_t)); |
| 18020 | |
| 18021 | buf = kmem_alloc(size, KM_SLEEP); |
| 18022 | dest = (uintptr_t)buf; |
| 18023 | |
| 18024 | bcopy(src: &aggdesc, dst: (void *)dest, n: sizeof (aggdesc)); |
| 18025 | dest += offsetof(dtrace_aggdesc_t, dtagd_rec[0]); |
| 18026 | |
| 18027 | for (act = agg->dtag_first; ; act = act->dta_next) { |
| 18028 | dtrace_recdesc_t rec = act->dta_rec; |
| 18029 | |
| 18030 | /* |
| 18031 | * See the comment in the above loop for why we pass |
| 18032 | * over zero-length records. |
| 18033 | */ |
| 18034 | if (rec.dtrd_size == 0) { |
| 18035 | ASSERT(agg->dtag_hasarg); |
| 18036 | continue; |
| 18037 | } |
| 18038 | |
| 18039 | if (nrecs-- == 0) |
| 18040 | break; |
| 18041 | |
| 18042 | rec.dtrd_offset -= offs; |
| 18043 | bcopy(src: &rec, dst: (void *)dest, n: sizeof (rec)); |
| 18044 | dest += sizeof (dtrace_recdesc_t); |
| 18045 | |
| 18046 | if (act == &agg->dtag_action) |
| 18047 | break; |
| 18048 | } |
| 18049 | |
| 18050 | lck_mtx_unlock(lck: &dtrace_lock); |
| 18051 | |
| 18052 | if (copyout(buf, arg, dest - (uintptr_t)buf) != 0) { |
| 18053 | kmem_free(buf, size); |
| 18054 | return (EFAULT); |
| 18055 | } |
| 18056 | |
| 18057 | kmem_free(buf, size); |
| 18058 | return (0); |
| 18059 | } |
| 18060 | |
| 18061 | case DTRACEIOC_ENABLE: { |
| 18062 | dof_hdr_t *dof; |
| 18063 | dtrace_enabling_t *enab = NULL; |
| 18064 | dtrace_vstate_t *vstate; |
| 18065 | int err = 0; |
| 18066 | |
| 18067 | *rv = 0; |
| 18068 | |
| 18069 | /* |
| 18070 | * If a NULL argument has been passed, we take this as our |
| 18071 | * cue to reevaluate our enablings. |
| 18072 | */ |
| 18073 | if (arg == 0) { |
| 18074 | dtrace_enabling_matchall(); |
| 18075 | |
| 18076 | return (0); |
| 18077 | } |
| 18078 | |
| 18079 | if ((dof = dtrace_dof_copyin(uarg: arg, errp: &rval)) == NULL) |
| 18080 | return (rval); |
| 18081 | |
| 18082 | lck_mtx_lock(lck: &cpu_lock); |
| 18083 | lck_mtx_lock(lck: &dtrace_lock); |
| 18084 | vstate = &state->dts_vstate; |
| 18085 | |
| 18086 | if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) { |
| 18087 | lck_mtx_unlock(lck: &dtrace_lock); |
| 18088 | lck_mtx_unlock(lck: &cpu_lock); |
| 18089 | dtrace_dof_destroy(dof); |
| 18090 | return (EBUSY); |
| 18091 | } |
| 18092 | |
| 18093 | if (dtrace_dof_slurp(dof, vstate, cr, enabp: &enab, ubase: 0, noprobes: B_TRUE) != 0) { |
| 18094 | lck_mtx_unlock(lck: &dtrace_lock); |
| 18095 | lck_mtx_unlock(lck: &cpu_lock); |
| 18096 | dtrace_dof_destroy(dof); |
| 18097 | return (EINVAL); |
| 18098 | } |
| 18099 | |
| 18100 | if ((rval = dtrace_dof_options(dof, state)) != 0) { |
| 18101 | dtrace_enabling_destroy(enab); |
| 18102 | lck_mtx_unlock(lck: &dtrace_lock); |
| 18103 | lck_mtx_unlock(lck: &cpu_lock); |
| 18104 | dtrace_dof_destroy(dof); |
| 18105 | return (rval); |
| 18106 | } |
| 18107 | |
| 18108 | if ((err = dtrace_enabling_match(enab, nmatched: rv, NULL)) == 0) { |
| 18109 | err = dtrace_enabling_retain(enab); |
| 18110 | } else { |
| 18111 | dtrace_enabling_destroy(enab); |
| 18112 | } |
| 18113 | |
| 18114 | lck_mtx_unlock(lck: &dtrace_lock); |
| 18115 | lck_mtx_unlock(lck: &cpu_lock); |
| 18116 | dtrace_dof_destroy(dof); |
| 18117 | |
| 18118 | return (err); |
| 18119 | } |
| 18120 | |
| 18121 | case DTRACEIOC_REPLICATE: { |
| 18122 | dtrace_repldesc_t desc; |
| 18123 | dtrace_probedesc_t *match = &desc.dtrpd_match; |
| 18124 | dtrace_probedesc_t *create = &desc.dtrpd_create; |
| 18125 | int err; |
| 18126 | |
| 18127 | if (copyin(arg, &desc, sizeof (desc)) != 0) |
| 18128 | return (EFAULT); |
| 18129 | |
| 18130 | match->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; |
| 18131 | match->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; |
| 18132 | match->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; |
| 18133 | match->dtpd_name[DTRACE_NAMELEN - 1] = '\0'; |
| 18134 | |
| 18135 | create->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; |
| 18136 | create->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; |
| 18137 | create->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; |
| 18138 | create->dtpd_name[DTRACE_NAMELEN - 1] = '\0'; |
| 18139 | |
| 18140 | lck_mtx_lock(lck: &dtrace_lock); |
| 18141 | err = dtrace_enabling_replicate(state, match, create); |
| 18142 | lck_mtx_unlock(lck: &dtrace_lock); |
| 18143 | |
| 18144 | return (err); |
| 18145 | } |
| 18146 | |
| 18147 | case DTRACEIOC_PROBEMATCH: |
| 18148 | case DTRACEIOC_PROBES: { |
| 18149 | dtrace_probe_t *probe = NULL; |
| 18150 | dtrace_probedesc_t desc; |
| 18151 | dtrace_probekey_t pkey; |
| 18152 | dtrace_id_t i; |
| 18153 | int m = 0; |
| 18154 | uint32_t priv; |
| 18155 | uid_t uid; |
| 18156 | zoneid_t zoneid; |
| 18157 | |
| 18158 | if (copyin(arg, &desc, sizeof (desc)) != 0) |
| 18159 | return (EFAULT); |
| 18160 | |
| 18161 | desc.dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0'; |
| 18162 | desc.dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0'; |
| 18163 | desc.dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0'; |
| 18164 | desc.dtpd_name[DTRACE_NAMELEN - 1] = '\0'; |
| 18165 | |
| 18166 | /* |
| 18167 | * Before we attempt to match this probe, we want to give |
| 18168 | * all providers the opportunity to provide it. |
| 18169 | */ |
| 18170 | if (desc.dtpd_id == DTRACE_IDNONE) { |
| 18171 | lck_mtx_lock(lck: &dtrace_provider_lock); |
| 18172 | dtrace_probe_provide(desc: &desc, NULL); |
| 18173 | lck_mtx_unlock(lck: &dtrace_provider_lock); |
| 18174 | desc.dtpd_id++; |
| 18175 | } |
| 18176 | |
| 18177 | dtrace_cred2priv(cr, privp: &priv, uidp: &uid, zoneidp: &zoneid); |
| 18178 | |
| 18179 | lck_mtx_lock(lck: &dtrace_lock); |
| 18180 | |
| 18181 | if (cmd == DTRACEIOC_PROBEMATCH) { |
| 18182 | dtrace_probekey(pdp: &desc, pkp: &pkey); |
| 18183 | pkey.dtpk_id = DTRACE_IDNONE; |
| 18184 | |
| 18185 | /* Quiet compiler warning */ |
| 18186 | for (i = desc.dtpd_id; i <= (dtrace_id_t)dtrace_nprobes; i++) { |
| 18187 | if ((probe = dtrace_probes[i - 1]) != NULL && |
| 18188 | (m = dtrace_match_probe(prp: probe, pkp: &pkey, |
| 18189 | priv, uid, zoneid)) != 0) |
| 18190 | break; |
| 18191 | } |
| 18192 | |
| 18193 | if (m < 0) { |
| 18194 | lck_mtx_unlock(lck: &dtrace_lock); |
| 18195 | return (EINVAL); |
| 18196 | } |
| 18197 | dtrace_probekey_release(pkp: &pkey); |
| 18198 | |
| 18199 | } else { |
| 18200 | /* Quiet compiler warning */ |
| 18201 | for (i = desc.dtpd_id; i <= (dtrace_id_t)dtrace_nprobes; i++) { |
| 18202 | if ((probe = dtrace_probes[i - 1]) != NULL && |
| 18203 | dtrace_match_priv(prp: probe, priv, uid, zoneid)) |
| 18204 | break; |
| 18205 | } |
| 18206 | } |
| 18207 | |
| 18208 | if (probe == NULL) { |
| 18209 | lck_mtx_unlock(lck: &dtrace_lock); |
| 18210 | return (ESRCH); |
| 18211 | } |
| 18212 | |
| 18213 | dtrace_probe_description(prp: probe, pdp: &desc); |
| 18214 | lck_mtx_unlock(lck: &dtrace_lock); |
| 18215 | |
| 18216 | if (copyout(&desc, arg, sizeof (desc)) != 0) |
| 18217 | return (EFAULT); |
| 18218 | |
| 18219 | return (0); |
| 18220 | } |
| 18221 | |
| 18222 | case DTRACEIOC_PROBEARG: { |
| 18223 | dtrace_argdesc_t desc; |
| 18224 | dtrace_probe_t *probe; |
| 18225 | dtrace_provider_t *prov; |
| 18226 | |
| 18227 | if (copyin(arg, &desc, sizeof (desc)) != 0) |
| 18228 | return (EFAULT); |
| 18229 | |
| 18230 | if (desc.dtargd_id == DTRACE_IDNONE) |
| 18231 | return (EINVAL); |
| 18232 | |
| 18233 | if (desc.dtargd_ndx == DTRACE_ARGNONE) |
| 18234 | return (EINVAL); |
| 18235 | |
| 18236 | lck_mtx_lock(lck: &dtrace_provider_lock); |
| 18237 | lck_mtx_lock(lck: &mod_lock); |
| 18238 | lck_mtx_lock(lck: &dtrace_lock); |
| 18239 | |
| 18240 | /* Quiet compiler warning */ |
| 18241 | if (desc.dtargd_id > (dtrace_id_t)dtrace_nprobes) { |
| 18242 | lck_mtx_unlock(lck: &dtrace_lock); |
| 18243 | lck_mtx_unlock(lck: &mod_lock); |
| 18244 | lck_mtx_unlock(lck: &dtrace_provider_lock); |
| 18245 | return (EINVAL); |
| 18246 | } |
| 18247 | |
| 18248 | if ((probe = dtrace_probes[desc.dtargd_id - 1]) == NULL) { |
| 18249 | lck_mtx_unlock(lck: &dtrace_lock); |
| 18250 | lck_mtx_unlock(lck: &mod_lock); |
| 18251 | lck_mtx_unlock(lck: &dtrace_provider_lock); |
| 18252 | return (EINVAL); |
| 18253 | } |
| 18254 | |
| 18255 | lck_mtx_unlock(lck: &dtrace_lock); |
| 18256 | |
| 18257 | prov = probe->dtpr_provider; |
| 18258 | |
| 18259 | if (prov->dtpv_pops.dtps_getargdesc == NULL) { |
| 18260 | /* |
| 18261 | * There isn't any typed information for this probe. |
| 18262 | * Set the argument number to DTRACE_ARGNONE. |
| 18263 | */ |
| 18264 | desc.dtargd_ndx = DTRACE_ARGNONE; |
| 18265 | } else { |
| 18266 | desc.dtargd_native[0] = '\0'; |
| 18267 | desc.dtargd_xlate[0] = '\0'; |
| 18268 | desc.dtargd_mapping = desc.dtargd_ndx; |
| 18269 | |
| 18270 | prov->dtpv_pops.dtps_getargdesc(prov->dtpv_arg, |
| 18271 | probe->dtpr_id, probe->dtpr_arg, &desc); |
| 18272 | } |
| 18273 | |
| 18274 | lck_mtx_unlock(lck: &mod_lock); |
| 18275 | lck_mtx_unlock(lck: &dtrace_provider_lock); |
| 18276 | |
| 18277 | if (copyout(&desc, arg, sizeof (desc)) != 0) |
| 18278 | return (EFAULT); |
| 18279 | |
| 18280 | return (0); |
| 18281 | } |
| 18282 | |
| 18283 | case DTRACEIOC_GO: { |
| 18284 | processorid_t cpuid; |
| 18285 | rval = dtrace_state_go(state, cpu: &cpuid); |
| 18286 | |
| 18287 | if (rval != 0) |
| 18288 | return (rval); |
| 18289 | |
| 18290 | if (copyout(&cpuid, arg, sizeof (cpuid)) != 0) |
| 18291 | return (EFAULT); |
| 18292 | |
| 18293 | return (0); |
| 18294 | } |
| 18295 | |
| 18296 | case DTRACEIOC_STOP: { |
| 18297 | processorid_t cpuid; |
| 18298 | |
| 18299 | lck_mtx_lock(lck: &dtrace_lock); |
| 18300 | rval = dtrace_state_stop(state, cpu: &cpuid); |
| 18301 | lck_mtx_unlock(lck: &dtrace_lock); |
| 18302 | |
| 18303 | if (rval != 0) |
| 18304 | return (rval); |
| 18305 | |
| 18306 | if (copyout(&cpuid, arg, sizeof (cpuid)) != 0) |
| 18307 | return (EFAULT); |
| 18308 | |
| 18309 | return (0); |
| 18310 | } |
| 18311 | |
| 18312 | case DTRACEIOC_DOFGET: { |
| 18313 | dof_hdr_t hdr, *dof; |
| 18314 | uint64_t len; |
| 18315 | |
| 18316 | if (copyin(arg, &hdr, sizeof (hdr)) != 0) |
| 18317 | return (EFAULT); |
| 18318 | |
| 18319 | lck_mtx_lock(lck: &dtrace_lock); |
| 18320 | dof = dtrace_dof_create(state); |
| 18321 | lck_mtx_unlock(lck: &dtrace_lock); |
| 18322 | |
| 18323 | len = MIN(hdr.dofh_loadsz, dof->dofh_loadsz); |
| 18324 | rval = copyout(dof, arg, len); |
| 18325 | dtrace_dof_destroy(dof); |
| 18326 | |
| 18327 | return (rval == 0 ? 0 : EFAULT); |
| 18328 | } |
| 18329 | |
| 18330 | case DTRACEIOC_SLEEP: { |
| 18331 | int64_t time; |
| 18332 | uint64_t abstime; |
| 18333 | uint64_t rvalue = DTRACE_WAKE_TIMEOUT; |
| 18334 | |
| 18335 | if (copyin(arg, &time, sizeof(time)) != 0) |
| 18336 | return (EFAULT); |
| 18337 | |
| 18338 | nanoseconds_to_absolutetime(nanoseconds: (uint64_t)time, result: &abstime); |
| 18339 | clock_absolutetime_interval_to_deadline(abstime, result: &abstime); |
| 18340 | |
| 18341 | if (assert_wait_deadline(event: state, THREAD_ABORTSAFE, deadline: abstime) == THREAD_WAITING) { |
| 18342 | if (state->dts_buf_over_limit > 0) { |
| 18343 | clear_wait(thread: current_thread(), THREAD_INTERRUPTED); |
| 18344 | rvalue = DTRACE_WAKE_BUF_LIMIT; |
| 18345 | } else { |
| 18346 | thread_block(THREAD_CONTINUE_NULL); |
| 18347 | if (state->dts_buf_over_limit > 0) { |
| 18348 | rvalue = DTRACE_WAKE_BUF_LIMIT; |
| 18349 | } |
| 18350 | } |
| 18351 | } |
| 18352 | |
| 18353 | if (copyout(&rvalue, arg, sizeof(rvalue)) != 0) |
| 18354 | return (EFAULT); |
| 18355 | |
| 18356 | return (0); |
| 18357 | } |
| 18358 | |
| 18359 | case DTRACEIOC_SIGNAL: { |
| 18360 | wakeup(chan: state); |
| 18361 | return (0); |
| 18362 | } |
| 18363 | |
| 18364 | case DTRACEIOC_AGGSNAP: |
| 18365 | case DTRACEIOC_BUFSNAP: { |
| 18366 | dtrace_bufdesc_t desc; |
| 18367 | caddr_t cached; |
| 18368 | boolean_t over_limit; |
| 18369 | dtrace_buffer_t *buf; |
| 18370 | |
| 18371 | if (copyin(arg, &desc, sizeof (desc)) != 0) |
| 18372 | return (EFAULT); |
| 18373 | |
| 18374 | if ((int)desc.dtbd_cpu < 0 || desc.dtbd_cpu >= NCPU) |
| 18375 | return (EINVAL); |
| 18376 | |
| 18377 | lck_mtx_lock(lck: &dtrace_lock); |
| 18378 | |
| 18379 | if (cmd == DTRACEIOC_BUFSNAP) { |
| 18380 | buf = &state->dts_buffer[desc.dtbd_cpu]; |
| 18381 | } else { |
| 18382 | buf = &state->dts_aggbuffer[desc.dtbd_cpu]; |
| 18383 | } |
| 18384 | |
| 18385 | if (buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL)) { |
| 18386 | size_t sz = buf->dtb_offset; |
| 18387 | |
| 18388 | if (state->dts_activity != DTRACE_ACTIVITY_STOPPED) { |
| 18389 | lck_mtx_unlock(lck: &dtrace_lock); |
| 18390 | return (EBUSY); |
| 18391 | } |
| 18392 | |
| 18393 | /* |
| 18394 | * If this buffer has already been consumed, we're |
| 18395 | * going to indicate that there's nothing left here |
| 18396 | * to consume. |
| 18397 | */ |
| 18398 | if (buf->dtb_flags & DTRACEBUF_CONSUMED) { |
| 18399 | lck_mtx_unlock(lck: &dtrace_lock); |
| 18400 | |
| 18401 | desc.dtbd_size = 0; |
| 18402 | desc.dtbd_drops = 0; |
| 18403 | desc.dtbd_errors = 0; |
| 18404 | desc.dtbd_oldest = 0; |
| 18405 | sz = sizeof (desc); |
| 18406 | |
| 18407 | if (copyout(&desc, arg, sz) != 0) |
| 18408 | return (EFAULT); |
| 18409 | |
| 18410 | return (0); |
| 18411 | } |
| 18412 | |
| 18413 | /* |
| 18414 | * If this is a ring buffer that has wrapped, we want |
| 18415 | * to copy the whole thing out. |
| 18416 | */ |
| 18417 | if (buf->dtb_flags & DTRACEBUF_WRAPPED) { |
| 18418 | dtrace_buffer_polish(buf); |
| 18419 | sz = buf->dtb_size; |
| 18420 | } |
| 18421 | |
| 18422 | if (copyout(buf->dtb_tomax, (user_addr_t)desc.dtbd_data, sz) != 0) { |
| 18423 | lck_mtx_unlock(lck: &dtrace_lock); |
| 18424 | return (EFAULT); |
| 18425 | } |
| 18426 | |
| 18427 | desc.dtbd_size = sz; |
| 18428 | desc.dtbd_drops = buf->dtb_drops; |
| 18429 | desc.dtbd_errors = buf->dtb_errors; |
| 18430 | desc.dtbd_oldest = buf->dtb_xamot_offset; |
| 18431 | desc.dtbd_timestamp = dtrace_gethrtime(); |
| 18432 | |
| 18433 | lck_mtx_unlock(lck: &dtrace_lock); |
| 18434 | |
| 18435 | if (copyout(&desc, arg, sizeof (desc)) != 0) |
| 18436 | return (EFAULT); |
| 18437 | |
| 18438 | buf->dtb_flags |= DTRACEBUF_CONSUMED; |
| 18439 | |
| 18440 | return (0); |
| 18441 | } |
| 18442 | |
| 18443 | if (buf->dtb_tomax == NULL) { |
| 18444 | ASSERT(buf->dtb_xamot == NULL); |
| 18445 | lck_mtx_unlock(lck: &dtrace_lock); |
| 18446 | return (ENOENT); |
| 18447 | } |
| 18448 | |
| 18449 | cached = buf->dtb_tomax; |
| 18450 | over_limit = buf->dtb_cur_limit == buf->dtb_size; |
| 18451 | |
| 18452 | ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH)); |
| 18453 | |
| 18454 | dtrace_xcall(desc.dtbd_cpu, |
| 18455 | (dtrace_xcall_t)dtrace_buffer_switch, buf); |
| 18456 | |
| 18457 | state->dts_errors += buf->dtb_xamot_errors; |
| 18458 | |
| 18459 | /* |
| 18460 | * If the buffers did not actually switch, then the cross call |
| 18461 | * did not take place -- presumably because the given CPU is |
| 18462 | * not in the ready set. If this is the case, we'll return |
| 18463 | * ENOENT. |
| 18464 | */ |
| 18465 | if (buf->dtb_tomax == cached) { |
| 18466 | ASSERT(buf->dtb_xamot != cached); |
| 18467 | lck_mtx_unlock(lck: &dtrace_lock); |
| 18468 | return (ENOENT); |
| 18469 | } |
| 18470 | |
| 18471 | ASSERT(cached == buf->dtb_xamot); |
| 18472 | /* |
| 18473 | * At this point we know the buffer have switched, so we |
| 18474 | * can decrement the over limit count if the buffer was over |
| 18475 | * its limit. The new buffer might already be over its limit |
| 18476 | * yet, but we don't care since we're guaranteed not to be |
| 18477 | * checking the buffer over limit count at this point. |
| 18478 | */ |
| 18479 | if (over_limit) { |
| 18480 | uint32_t old = os_atomic_dec_orig(&state->dts_buf_over_limit, relaxed); |
| 18481 | #pragma unused(old) |
| 18482 | |
| 18483 | /* |
| 18484 | * Verify that we didn't underflow the value |
| 18485 | */ |
| 18486 | ASSERT(old != 0); |
| 18487 | } |
| 18488 | |
| 18489 | /* |
| 18490 | * We have our snapshot; now copy it out. |
| 18491 | */ |
| 18492 | if (dtrace_buffer_copyout(buf->dtb_xamot, |
| 18493 | (user_addr_t)desc.dtbd_data, |
| 18494 | buf->dtb_xamot_offset) != 0) { |
| 18495 | lck_mtx_unlock(lck: &dtrace_lock); |
| 18496 | return (EFAULT); |
| 18497 | } |
| 18498 | |
| 18499 | desc.dtbd_size = buf->dtb_xamot_offset; |
| 18500 | desc.dtbd_drops = buf->dtb_xamot_drops; |
| 18501 | desc.dtbd_errors = buf->dtb_xamot_errors; |
| 18502 | desc.dtbd_oldest = 0; |
| 18503 | desc.dtbd_timestamp = buf->dtb_switched; |
| 18504 | |
| 18505 | lck_mtx_unlock(lck: &dtrace_lock); |
| 18506 | |
| 18507 | /* |
| 18508 | * Finally, copy out the buffer description. |
| 18509 | */ |
| 18510 | if (copyout(&desc, arg, sizeof (desc)) != 0) |
| 18511 | return (EFAULT); |
| 18512 | |
| 18513 | return (0); |
| 18514 | } |
| 18515 | |
| 18516 | case DTRACEIOC_CONF: { |
| 18517 | dtrace_conf_t conf; |
| 18518 | |
| 18519 | bzero(s: &conf, n: sizeof (conf)); |
| 18520 | conf.dtc_difversion = DIF_VERSION; |
| 18521 | conf.dtc_difintregs = DIF_DIR_NREGS; |
| 18522 | conf.dtc_diftupregs = DIF_DTR_NREGS; |
| 18523 | conf.dtc_ctfmodel = CTF_MODEL_NATIVE; |
| 18524 | |
| 18525 | if (copyout(&conf, arg, sizeof (conf)) != 0) |
| 18526 | return (EFAULT); |
| 18527 | |
| 18528 | return (0); |
| 18529 | } |
| 18530 | |
| 18531 | case DTRACEIOC_STATUS: { |
| 18532 | dtrace_status_t stat; |
| 18533 | dtrace_dstate_t *dstate; |
| 18534 | int j; |
| 18535 | uint64_t nerrs; |
| 18536 | |
| 18537 | /* |
| 18538 | * See the comment in dtrace_state_deadman() for the reason |
| 18539 | * for setting dts_laststatus to INT64_MAX before setting |
| 18540 | * it to the correct value. |
| 18541 | */ |
| 18542 | state->dts_laststatus = INT64_MAX; |
| 18543 | dtrace_membar_producer(); |
| 18544 | state->dts_laststatus = dtrace_gethrtime(); |
| 18545 | |
| 18546 | bzero(s: &stat, n: sizeof (stat)); |
| 18547 | |
| 18548 | lck_mtx_lock(lck: &dtrace_lock); |
| 18549 | |
| 18550 | if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) { |
| 18551 | lck_mtx_unlock(lck: &dtrace_lock); |
| 18552 | return (ENOENT); |
| 18553 | } |
| 18554 | |
| 18555 | if (state->dts_activity == DTRACE_ACTIVITY_DRAINING) |
| 18556 | stat.dtst_exiting = 1; |
| 18557 | |
| 18558 | nerrs = state->dts_errors; |
| 18559 | dstate = &state->dts_vstate.dtvs_dynvars; |
| 18560 | |
| 18561 | zpercpu_foreach_cpu(i) { |
| 18562 | dtrace_dstate_percpu_t *dcpu = zpercpu_get_cpu(dstate->dtds_percpu, i); |
| 18563 | |
| 18564 | stat.dtst_dyndrops += dcpu->dtdsc_drops; |
| 18565 | stat.dtst_dyndrops_dirty += dcpu->dtdsc_dirty_drops; |
| 18566 | stat.dtst_dyndrops_rinsing += dcpu->dtdsc_rinsing_drops; |
| 18567 | |
| 18568 | if (state->dts_buffer[i].dtb_flags & DTRACEBUF_FULL) |
| 18569 | stat.dtst_filled++; |
| 18570 | |
| 18571 | nerrs += state->dts_buffer[i].dtb_errors; |
| 18572 | |
| 18573 | for (j = 0; j < state->dts_nspeculations; j++) { |
| 18574 | dtrace_speculation_t *spec; |
| 18575 | dtrace_buffer_t *buf; |
| 18576 | |
| 18577 | spec = &state->dts_speculations[j]; |
| 18578 | buf = &spec->dtsp_buffer[i]; |
| 18579 | stat.dtst_specdrops += buf->dtb_xamot_drops; |
| 18580 | } |
| 18581 | } |
| 18582 | |
| 18583 | stat.dtst_specdrops_busy = state->dts_speculations_busy; |
| 18584 | stat.dtst_specdrops_unavail = state->dts_speculations_unavail; |
| 18585 | stat.dtst_stkstroverflows = state->dts_stkstroverflows; |
| 18586 | stat.dtst_dblerrors = state->dts_dblerrors; |
| 18587 | stat.dtst_killed = |
| 18588 | (state->dts_activity == DTRACE_ACTIVITY_KILLED); |
| 18589 | stat.dtst_errors = nerrs; |
| 18590 | |
| 18591 | lck_mtx_unlock(lck: &dtrace_lock); |
| 18592 | |
| 18593 | if (copyout(&stat, arg, sizeof (stat)) != 0) |
| 18594 | return (EFAULT); |
| 18595 | |
| 18596 | return (0); |
| 18597 | } |
| 18598 | |
| 18599 | case DTRACEIOC_FORMAT: { |
| 18600 | dtrace_fmtdesc_t fmt; |
| 18601 | char *str; |
| 18602 | int len; |
| 18603 | |
| 18604 | if (copyin(arg, &fmt, sizeof (fmt)) != 0) |
| 18605 | return (EFAULT); |
| 18606 | |
| 18607 | lck_mtx_lock(lck: &dtrace_lock); |
| 18608 | |
| 18609 | if (fmt.dtfd_format == 0 || |
| 18610 | fmt.dtfd_format > state->dts_nformats) { |
| 18611 | lck_mtx_unlock(lck: &dtrace_lock); |
| 18612 | return (EINVAL); |
| 18613 | } |
| 18614 | |
| 18615 | /* |
| 18616 | * Format strings are allocated contiguously and they are |
| 18617 | * never freed; if a format index is less than the number |
| 18618 | * of formats, we can assert that the format map is non-NULL |
| 18619 | * and that the format for the specified index is non-NULL. |
| 18620 | */ |
| 18621 | ASSERT(state->dts_formats != NULL); |
| 18622 | str = state->dts_formats[fmt.dtfd_format - 1]->dtf_str; |
| 18623 | ASSERT(str != NULL); |
| 18624 | |
| 18625 | len = strlen(s: str) + 1; |
| 18626 | |
| 18627 | if (len > fmt.dtfd_length) { |
| 18628 | fmt.dtfd_length = len; |
| 18629 | |
| 18630 | if (copyout(&fmt, arg, sizeof (fmt)) != 0) { |
| 18631 | lck_mtx_unlock(lck: &dtrace_lock); |
| 18632 | return (EINVAL); |
| 18633 | } |
| 18634 | } else { |
| 18635 | if (copyout(str, (user_addr_t)fmt.dtfd_string, len) != 0) { |
| 18636 | lck_mtx_unlock(lck: &dtrace_lock); |
| 18637 | return (EINVAL); |
| 18638 | } |
| 18639 | } |
| 18640 | |
| 18641 | lck_mtx_unlock(lck: &dtrace_lock); |
| 18642 | return (0); |
| 18643 | } |
| 18644 | |
| 18645 | case DTRACEIOC_MODUUIDSLIST: { |
| 18646 | size_t module_uuids_list_size; |
| 18647 | dtrace_module_uuids_list_t* uuids_list; |
| 18648 | uint64_t dtmul_count; |
| 18649 | |
| 18650 | /* |
| 18651 | * Security restrictions make this operation illegal, if this is enabled DTrace |
| 18652 | * must refuse to provide any fbt probes. |
| 18653 | */ |
| 18654 | if (dtrace_fbt_probes_restricted()) { |
| 18655 | cmn_err(CE_WARN, "security restrictions disallow DTRACEIOC_MODUUIDSLIST" ); |
| 18656 | return (EPERM); |
| 18657 | } |
| 18658 | |
| 18659 | /* |
| 18660 | * Fail if the kernel symbol mode makes this operation illegal. |
| 18661 | * Both NEVER & ALWAYS_FROM_KERNEL are permanent states, it is legal to check |
| 18662 | * for them without holding the dtrace_lock. |
| 18663 | */ |
| 18664 | if (dtrace_kernel_symbol_mode == DTRACE_KERNEL_SYMBOLS_NEVER || |
| 18665 | dtrace_kernel_symbol_mode == DTRACE_KERNEL_SYMBOLS_ALWAYS_FROM_KERNEL) { |
| 18666 | cmn_err(CE_WARN, "dtrace_kernel_symbol_mode of %u disallows DTRACEIOC_MODUUIDSLIST" , dtrace_kernel_symbol_mode); |
| 18667 | return (EPERM); |
| 18668 | } |
| 18669 | |
| 18670 | /* |
| 18671 | * Read the number of symbolsdesc structs being passed in. |
| 18672 | */ |
| 18673 | if (copyin(arg + offsetof(dtrace_module_uuids_list_t, dtmul_count), |
| 18674 | &dtmul_count, sizeof(dtmul_count)) != 0) { |
| 18675 | cmn_err(CE_WARN, "failed to copyin dtmul_count" ); |
| 18676 | return (EFAULT); |
| 18677 | } |
| 18678 | |
| 18679 | /* |
| 18680 | * Range check the count. More than 2k kexts is probably an error. |
| 18681 | */ |
| 18682 | if (dtmul_count > 2048) { |
| 18683 | cmn_err(CE_WARN, "dtmul_count is not valid" ); |
| 18684 | return (EINVAL); |
| 18685 | } |
| 18686 | |
| 18687 | /* |
| 18688 | * For all queries, we return EINVAL when the user specified |
| 18689 | * count does not match the actual number of modules we find |
| 18690 | * available. |
| 18691 | * |
| 18692 | * If the user specified count is zero, then this serves as a |
| 18693 | * simple query to count the available modules in need of symbols. |
| 18694 | */ |
| 18695 | |
| 18696 | rval = 0; |
| 18697 | |
| 18698 | if (dtmul_count == 0) |
| 18699 | { |
| 18700 | lck_mtx_lock(lck: &mod_lock); |
| 18701 | struct modctl* ctl = dtrace_modctl_list; |
| 18702 | while (ctl) { |
| 18703 | ASSERT(!MOD_HAS_USERSPACE_SYMBOLS(ctl)); |
| 18704 | if (!MOD_SYMBOLS_DONE(ctl) && !MOD_IS_STATIC_KEXT(ctl)) { |
| 18705 | dtmul_count++; |
| 18706 | rval = EINVAL; |
| 18707 | } |
| 18708 | ctl = ctl->mod_next; |
| 18709 | } |
| 18710 | lck_mtx_unlock(lck: &mod_lock); |
| 18711 | |
| 18712 | if (copyout(&dtmul_count, arg, sizeof (dtmul_count)) != 0) |
| 18713 | return (EFAULT); |
| 18714 | else |
| 18715 | return (rval); |
| 18716 | } |
| 18717 | |
| 18718 | /* |
| 18719 | * If we reach this point, then we have a request for full list data. |
| 18720 | * Allocate a correctly sized structure and copyin the data. |
| 18721 | */ |
| 18722 | module_uuids_list_size = DTRACE_MODULE_UUIDS_LIST_SIZE(dtmul_count); |
| 18723 | if ((uuids_list = kmem_alloc(module_uuids_list_size, KM_SLEEP)) == NULL) |
| 18724 | return (ENOMEM); |
| 18725 | |
| 18726 | /* NOTE! We can no longer exit this method via return */ |
| 18727 | if (copyin(arg, uuids_list, module_uuids_list_size) != 0) { |
| 18728 | cmn_err(CE_WARN, "failed copyin of dtrace_module_uuids_list_t" ); |
| 18729 | rval = EFAULT; |
| 18730 | goto moduuidslist_cleanup; |
| 18731 | } |
| 18732 | |
| 18733 | /* |
| 18734 | * Check that the count didn't change between the first copyin and the second. |
| 18735 | */ |
| 18736 | if (uuids_list->dtmul_count != dtmul_count) { |
| 18737 | rval = EINVAL; |
| 18738 | goto moduuidslist_cleanup; |
| 18739 | } |
| 18740 | |
| 18741 | /* |
| 18742 | * Build the list of UUID's that need symbols |
| 18743 | */ |
| 18744 | lck_mtx_lock(lck: &mod_lock); |
| 18745 | |
| 18746 | dtmul_count = 0; |
| 18747 | |
| 18748 | struct modctl* ctl = dtrace_modctl_list; |
| 18749 | while (ctl) { |
| 18750 | /* |
| 18751 | * We assume that userspace symbols will be "better" than kernel level symbols, |
| 18752 | * as userspace can search for dSYM(s) and symbol'd binaries. Even if kernel syms |
| 18753 | * are available, add user syms if the module might use them. |
| 18754 | */ |
| 18755 | ASSERT(!MOD_HAS_USERSPACE_SYMBOLS(ctl)); |
| 18756 | if (!MOD_SYMBOLS_DONE(ctl) && !MOD_IS_STATIC_KEXT(ctl)) { |
| 18757 | UUID* uuid = &uuids_list->dtmul_uuid[dtmul_count]; |
| 18758 | if (dtmul_count++ < uuids_list->dtmul_count) { |
| 18759 | memcpy(dst: uuid, src: ctl->mod_uuid, n: sizeof(UUID)); |
| 18760 | } |
| 18761 | } |
| 18762 | ctl = ctl->mod_next; |
| 18763 | } |
| 18764 | |
| 18765 | lck_mtx_unlock(lck: &mod_lock); |
| 18766 | |
| 18767 | if (uuids_list->dtmul_count < dtmul_count) |
| 18768 | rval = EINVAL; |
| 18769 | |
| 18770 | uuids_list->dtmul_count = dtmul_count; |
| 18771 | |
| 18772 | /* |
| 18773 | * Copyout the symbols list (or at least the count!) |
| 18774 | */ |
| 18775 | if (copyout(uuids_list, arg, module_uuids_list_size) != 0) { |
| 18776 | cmn_err(CE_WARN, "failed copyout of dtrace_symbolsdesc_list_t" ); |
| 18777 | rval = EFAULT; |
| 18778 | } |
| 18779 | |
| 18780 | moduuidslist_cleanup: |
| 18781 | /* |
| 18782 | * If we had to allocate struct memory, free it. |
| 18783 | */ |
| 18784 | if (uuids_list != NULL) { |
| 18785 | kmem_free(uuids_list, module_uuids_list_size); |
| 18786 | } |
| 18787 | |
| 18788 | return rval; |
| 18789 | } |
| 18790 | |
| 18791 | case DTRACEIOC_PROVMODSYMS: { |
| 18792 | size_t module_symbols_size; |
| 18793 | dtrace_module_symbols_t* module_symbols; |
| 18794 | uint64_t dtmodsyms_count; |
| 18795 | |
| 18796 | /* |
| 18797 | * Security restrictions make this operation illegal, if this is enabled DTrace |
| 18798 | * must refuse to provide any fbt probes. |
| 18799 | */ |
| 18800 | if (dtrace_fbt_probes_restricted()) { |
| 18801 | cmn_err(CE_WARN, "security restrictions disallow DTRACEIOC_MODUUIDSLIST" ); |
| 18802 | return (EPERM); |
| 18803 | } |
| 18804 | |
| 18805 | /* |
| 18806 | * Fail if the kernel symbol mode makes this operation illegal. |
| 18807 | * Both NEVER & ALWAYS_FROM_KERNEL are permanent states, it is legal to check |
| 18808 | * for them without holding the dtrace_lock. |
| 18809 | */ |
| 18810 | if (dtrace_kernel_symbol_mode == DTRACE_KERNEL_SYMBOLS_NEVER || |
| 18811 | dtrace_kernel_symbol_mode == DTRACE_KERNEL_SYMBOLS_ALWAYS_FROM_KERNEL) { |
| 18812 | cmn_err(CE_WARN, "dtrace_kernel_symbol_mode of %u disallows DTRACEIOC_PROVMODSYMS" , dtrace_kernel_symbol_mode); |
| 18813 | return (EPERM); |
| 18814 | } |
| 18815 | |
| 18816 | /* |
| 18817 | * Read the number of module symbols structs being passed in. |
| 18818 | */ |
| 18819 | if (copyin(arg + offsetof(dtrace_module_symbols_t, dtmodsyms_count), |
| 18820 | &dtmodsyms_count, sizeof(dtmodsyms_count)) != 0) { |
| 18821 | cmn_err(CE_WARN, "failed to copyin dtmodsyms_count" ); |
| 18822 | return (EFAULT); |
| 18823 | } |
| 18824 | |
| 18825 | /* Ensure that we have at least one symbol. */ |
| 18826 | if (dtmodsyms_count == 0) { |
| 18827 | cmn_err(CE_WARN, "Invalid dtmodsyms_count value" ); |
| 18828 | return (EINVAL); |
| 18829 | } |
| 18830 | |
| 18831 | /* Safely calculate size we need for copyin buffer. */ |
| 18832 | module_symbols_size = DTRACE_MODULE_SYMBOLS_SIZE(dtmodsyms_count); |
| 18833 | if (module_symbols_size == 0 || module_symbols_size > (size_t)dtrace_copy_maxsize()) { |
| 18834 | cmn_err(CE_WARN, "Invalid module_symbols_size %ld" , module_symbols_size); |
| 18835 | return (EINVAL); |
| 18836 | } |
| 18837 | |
| 18838 | if ((module_symbols = kmem_alloc(module_symbols_size, KM_SLEEP)) == NULL) |
| 18839 | return (ENOMEM); |
| 18840 | |
| 18841 | rval = 0; |
| 18842 | |
| 18843 | /* NOTE! We can no longer exit this method via return */ |
| 18844 | if (copyin(arg, module_symbols, module_symbols_size) != 0) { |
| 18845 | cmn_err(CE_WARN, "failed copyin of dtrace_module_symbols_t" ); |
| 18846 | rval = EFAULT; |
| 18847 | goto module_symbols_cleanup; |
| 18848 | } |
| 18849 | |
| 18850 | /* |
| 18851 | * Check that the count didn't change between the first copyin and the second. |
| 18852 | */ |
| 18853 | if (module_symbols->dtmodsyms_count != dtmodsyms_count) { |
| 18854 | rval = EINVAL; |
| 18855 | goto module_symbols_cleanup; |
| 18856 | } |
| 18857 | |
| 18858 | /* |
| 18859 | * Find the modctl to add symbols to. |
| 18860 | */ |
| 18861 | lck_mtx_lock(lck: &dtrace_provider_lock); |
| 18862 | lck_mtx_lock(lck: &mod_lock); |
| 18863 | |
| 18864 | struct modctl* ctl = dtrace_modctl_list; |
| 18865 | while (ctl) { |
| 18866 | ASSERT(!MOD_HAS_USERSPACE_SYMBOLS(ctl)); |
| 18867 | if (MOD_HAS_UUID(ctl) && !MOD_SYMBOLS_DONE(ctl) && memcmp(s1: module_symbols->dtmodsyms_uuid, s2: ctl->mod_uuid, n: sizeof(UUID)) == 0) { |
| 18868 | dtrace_provider_t *prv; |
| 18869 | ctl->mod_user_symbols = module_symbols; |
| 18870 | |
| 18871 | /* |
| 18872 | * We're going to call each providers per-module provide operation |
| 18873 | * specifying only this module. |
| 18874 | */ |
| 18875 | for (prv = dtrace_provider; prv != NULL; prv = prv->dtpv_next) |
| 18876 | prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl); |
| 18877 | /* |
| 18878 | * We gave every provider a chance to provide with the user syms, go ahead and clear them |
| 18879 | */ |
| 18880 | ctl->mod_user_symbols = NULL; /* MUST reset this to clear HAS_USERSPACE_SYMBOLS */ |
| 18881 | } |
| 18882 | ctl = ctl->mod_next; |
| 18883 | } |
| 18884 | |
| 18885 | lck_mtx_unlock(lck: &mod_lock); |
| 18886 | lck_mtx_unlock(lck: &dtrace_provider_lock); |
| 18887 | |
| 18888 | module_symbols_cleanup: |
| 18889 | /* |
| 18890 | * If we had to allocate struct memory, free it. |
| 18891 | */ |
| 18892 | if (module_symbols != NULL) { |
| 18893 | kmem_free(module_symbols, module_symbols_size); |
| 18894 | } |
| 18895 | |
| 18896 | return rval; |
| 18897 | } |
| 18898 | |
| 18899 | case DTRACEIOC_PROCWAITFOR: { |
| 18900 | dtrace_procdesc_t pdesc = { |
| 18901 | .p_name = {0}, |
| 18902 | .p_pid = -1 |
| 18903 | }; |
| 18904 | |
| 18905 | if ((rval = copyin(arg, &pdesc, sizeof(pdesc))) != 0) |
| 18906 | goto proc_waitfor_error; |
| 18907 | |
| 18908 | if ((rval = dtrace_proc_waitfor(&pdesc)) != 0) |
| 18909 | goto proc_waitfor_error; |
| 18910 | |
| 18911 | if ((rval = copyout(&pdesc, arg, sizeof(pdesc))) != 0) |
| 18912 | goto proc_waitfor_error; |
| 18913 | |
| 18914 | return 0; |
| 18915 | |
| 18916 | proc_waitfor_error: |
| 18917 | /* The process was suspended, revert this since the client will not do it. */ |
| 18918 | if (pdesc.p_pid != -1) { |
| 18919 | proc_t *proc = proc_find(pid: pdesc.p_pid); |
| 18920 | if (proc != PROC_NULL) { |
| 18921 | task_pidresume(task: proc_task(proc)); |
| 18922 | proc_rele(p: proc); |
| 18923 | } |
| 18924 | } |
| 18925 | |
| 18926 | return rval; |
| 18927 | } |
| 18928 | |
| 18929 | default: |
| 18930 | break; |
| 18931 | } |
| 18932 | |
| 18933 | return (ENOTTY); |
| 18934 | } |
| 18935 | |
| 18936 | /* |
| 18937 | * APPLE NOTE: dtrace_detach not implemented |
| 18938 | */ |
| 18939 | #if !defined(__APPLE__) |
| 18940 | /*ARGSUSED*/ |
| 18941 | static int |
| 18942 | dtrace_detach(dev_info_t *dip, ddi_detach_cmd_t cmd) |
| 18943 | { |
| 18944 | dtrace_state_t *state; |
| 18945 | |
| 18946 | switch (cmd) { |
| 18947 | case DDI_DETACH: |
| 18948 | break; |
| 18949 | |
| 18950 | case DDI_SUSPEND: |
| 18951 | return (DDI_SUCCESS); |
| 18952 | |
| 18953 | default: |
| 18954 | return (DDI_FAILURE); |
| 18955 | } |
| 18956 | |
| 18957 | lck_mtx_lock(&cpu_lock); |
| 18958 | lck_mtx_lock(&dtrace_provider_lock); |
| 18959 | lck_mtx_lock(&dtrace_lock); |
| 18960 | |
| 18961 | ASSERT(dtrace_opens == 0); |
| 18962 | |
| 18963 | if (dtrace_helpers > 0) { |
| 18964 | lck_mtx_unlock(&dtrace_lock); |
| 18965 | lck_mtx_unlock(&dtrace_provider_lock); |
| 18966 | lck_mtx_unlock(&cpu_lock); |
| 18967 | return (DDI_FAILURE); |
| 18968 | } |
| 18969 | |
| 18970 | if (dtrace_unregister((dtrace_provider_id_t)dtrace_provider) != 0) { |
| 18971 | lck_mtx_unlock(&dtrace_lock); |
| 18972 | lck_mtx_unlock(&dtrace_provider_lock); |
| 18973 | lck_mtx_unlock(&cpu_lock); |
| 18974 | return (DDI_FAILURE); |
| 18975 | } |
| 18976 | |
| 18977 | dtrace_provider = NULL; |
| 18978 | |
| 18979 | if ((state = dtrace_anon_grab()) != NULL) { |
| 18980 | /* |
| 18981 | * If there were ECBs on this state, the provider should |
| 18982 | * have not been allowed to detach; assert that there is |
| 18983 | * none. |
| 18984 | */ |
| 18985 | ASSERT(state->dts_necbs == 0); |
| 18986 | dtrace_state_destroy(state); |
| 18987 | |
| 18988 | /* |
| 18989 | * If we're being detached with anonymous state, we need to |
| 18990 | * indicate to the kernel debugger that DTrace is now inactive. |
| 18991 | */ |
| 18992 | (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE); |
| 18993 | } |
| 18994 | |
| 18995 | bzero(&dtrace_anon, sizeof (dtrace_anon_t)); |
| 18996 | unregister_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL); |
| 18997 | dtrace_cpu_init = NULL; |
| 18998 | dtrace_helpers_cleanup = NULL; |
| 18999 | dtrace_helpers_fork = NULL; |
| 19000 | dtrace_cpustart_init = NULL; |
| 19001 | dtrace_cpustart_fini = NULL; |
| 19002 | dtrace_debugger_init = NULL; |
| 19003 | dtrace_debugger_fini = NULL; |
| 19004 | dtrace_kreloc_init = NULL; |
| 19005 | dtrace_kreloc_fini = NULL; |
| 19006 | dtrace_modload = NULL; |
| 19007 | dtrace_modunload = NULL; |
| 19008 | |
| 19009 | lck_mtx_unlock(&cpu_lock); |
| 19010 | |
| 19011 | if (dtrace_helptrace_enabled) { |
| 19012 | kmem_free(dtrace_helptrace_buffer, dtrace_helptrace_bufsize); |
| 19013 | dtrace_helptrace_buffer = NULL; |
| 19014 | } |
| 19015 | |
| 19016 | kmem_free(dtrace_probes, dtrace_nprobes * sizeof (dtrace_probe_t *)); |
| 19017 | dtrace_probes = NULL; |
| 19018 | dtrace_nprobes = 0; |
| 19019 | |
| 19020 | dtrace_hash_destroy(dtrace_strings); |
| 19021 | dtrace_hash_destroy(dtrace_byprov); |
| 19022 | dtrace_hash_destroy(dtrace_bymod); |
| 19023 | dtrace_hash_destroy(dtrace_byfunc); |
| 19024 | dtrace_hash_destroy(dtrace_byname); |
| 19025 | dtrace_strings = NULL; |
| 19026 | dtrace_byprov = NULL; |
| 19027 | dtrace_bymod = NULL; |
| 19028 | dtrace_byfunc = NULL; |
| 19029 | dtrace_byname = NULL; |
| 19030 | |
| 19031 | kmem_cache_destroy(dtrace_state_cache); |
| 19032 | vmem_destroy(dtrace_arena); |
| 19033 | |
| 19034 | if (dtrace_toxrange != NULL) { |
| 19035 | kmem_free(dtrace_toxrange, |
| 19036 | dtrace_toxranges_max * sizeof (dtrace_toxrange_t)); |
| 19037 | dtrace_toxrange = NULL; |
| 19038 | dtrace_toxranges = 0; |
| 19039 | dtrace_toxranges_max = 0; |
| 19040 | } |
| 19041 | |
| 19042 | ddi_remove_minor_node(dtrace_devi, NULL); |
| 19043 | dtrace_devi = NULL; |
| 19044 | |
| 19045 | ddi_soft_state_fini(&dtrace_softstate); |
| 19046 | |
| 19047 | ASSERT(dtrace_vtime_references == 0); |
| 19048 | ASSERT(dtrace_opens == 0); |
| 19049 | ASSERT(dtrace_retained == NULL); |
| 19050 | |
| 19051 | lck_mtx_unlock(&dtrace_lock); |
| 19052 | lck_mtx_unlock(&dtrace_provider_lock); |
| 19053 | |
| 19054 | #ifdef illumos |
| 19055 | /* |
| 19056 | * We don't destroy the task queue until after we have dropped our |
| 19057 | * locks (taskq_destroy() may block on running tasks). To prevent |
| 19058 | * attempting to do work after we have effectively detached but before |
| 19059 | * the task queue has been destroyed, all tasks dispatched via the |
| 19060 | * task queue must check that DTrace is still attached before |
| 19061 | * performing any operation. |
| 19062 | */ |
| 19063 | taskq_destroy(dtrace_taskq); |
| 19064 | dtrace_taskq = NULL; |
| 19065 | #endif |
| 19066 | |
| 19067 | return (DDI_SUCCESS); |
| 19068 | } |
| 19069 | #endif /* __APPLE__ */ |
| 19070 | |
| 19071 | d_open_t _dtrace_open, helper_open; |
| 19072 | d_close_t _dtrace_close, helper_close; |
| 19073 | d_ioctl_t _dtrace_ioctl, helper_ioctl; |
| 19074 | |
| 19075 | int |
| 19076 | _dtrace_open(dev_t dev, int flags, int devtype, struct proc *p) |
| 19077 | { |
| 19078 | #pragma unused(p) |
| 19079 | dev_t locdev = dev; |
| 19080 | |
| 19081 | return dtrace_open( devp: &locdev, flag: flags, otyp: devtype, CRED()); |
| 19082 | } |
| 19083 | |
| 19084 | int |
| 19085 | helper_open(dev_t dev, int flags, int devtype, struct proc *p) |
| 19086 | { |
| 19087 | #pragma unused(dev,flags,devtype,p) |
| 19088 | return 0; |
| 19089 | } |
| 19090 | |
| 19091 | int |
| 19092 | _dtrace_close(dev_t dev, int flags, int devtype, struct proc *p) |
| 19093 | { |
| 19094 | #pragma unused(p) |
| 19095 | return dtrace_close( dev, flag: flags, otyp: devtype, CRED()); |
| 19096 | } |
| 19097 | |
| 19098 | int |
| 19099 | helper_close(dev_t dev, int flags, int devtype, struct proc *p) |
| 19100 | { |
| 19101 | #pragma unused(dev,flags,devtype,p) |
| 19102 | return 0; |
| 19103 | } |
| 19104 | |
| 19105 | int |
| 19106 | _dtrace_ioctl(dev_t dev, u_long cmd, caddr_t data, int fflag, struct proc *p) |
| 19107 | { |
| 19108 | #pragma unused(p) |
| 19109 | int err, rv = 0; |
| 19110 | user_addr_t uaddrp; |
| 19111 | |
| 19112 | if (proc_is64bit(p)) |
| 19113 | uaddrp = *(user_addr_t *)data; |
| 19114 | else |
| 19115 | uaddrp = (user_addr_t) *(uint32_t *)data; |
| 19116 | |
| 19117 | err = dtrace_ioctl(dev, cmd, arg: uaddrp, md: fflag, CRED(), rv: &rv); |
| 19118 | |
| 19119 | /* Darwin's BSD ioctls only return -1 or zero. Overload errno to mimic Solaris. 20 bits suffice. */ |
| 19120 | if (err != 0) { |
| 19121 | ASSERT( (err & 0xfffff000) == 0 ); |
| 19122 | return (err & 0xfff); /* ioctl will return -1 and will set errno to an error code < 4096 */ |
| 19123 | } else if (rv != 0) { |
| 19124 | ASSERT( (rv & 0xfff00000) == 0 ); |
| 19125 | return (((rv & 0xfffff) << 12)); /* ioctl will return -1 and will set errno to a value >= 4096 */ |
| 19126 | } else |
| 19127 | return 0; |
| 19128 | } |
| 19129 | |
| 19130 | int |
| 19131 | helper_ioctl(dev_t dev, u_long cmd, caddr_t data, int fflag, struct proc *p) |
| 19132 | { |
| 19133 | #pragma unused(dev,fflag,p) |
| 19134 | int err, rv = 0; |
| 19135 | |
| 19136 | err = dtrace_ioctl_helper(cmd, arg: data, rv: &rv); |
| 19137 | /* Darwin's BSD ioctls only return -1 or zero. Overload errno to mimic Solaris. 20 bits suffice. */ |
| 19138 | if (err != 0) { |
| 19139 | ASSERT( (err & 0xfffff000) == 0 ); |
| 19140 | return (err & 0xfff); /* ioctl will return -1 and will set errno to an error code < 4096 */ |
| 19141 | } else if (rv != 0) { |
| 19142 | ASSERT( (rv & 0xfff00000) == 0 ); |
| 19143 | return (((rv & 0xfffff) << 12)); /* ioctl will return -1 and will set errno to a value >= 4096 */ |
| 19144 | } else |
| 19145 | return 0; |
| 19146 | } |
| 19147 | |
| 19148 | #define HELPER_MAJOR -24 /* let the kernel pick the device number */ |
| 19149 | |
| 19150 | #define nulldevfp (void (*)(void))&nulldev |
| 19151 | |
| 19152 | const static struct cdevsw helper_cdevsw = |
| 19153 | { |
| 19154 | .d_open = helper_open, |
| 19155 | .d_close = helper_close, |
| 19156 | .d_read = eno_rdwrt, |
| 19157 | .d_write = eno_rdwrt, |
| 19158 | .d_ioctl = helper_ioctl, |
| 19159 | .d_stop = eno_stop, |
| 19160 | .d_reset = eno_reset, |
| 19161 | .d_select = eno_select, |
| 19162 | .d_mmap = eno_mmap, |
| 19163 | .d_strategy = eno_strat, |
| 19164 | .d_reserved_1 = eno_getc, |
| 19165 | .d_reserved_2 = eno_putc, |
| 19166 | }; |
| 19167 | |
| 19168 | static int helper_majdevno = 0; |
| 19169 | |
| 19170 | static int gDTraceInited = 0; |
| 19171 | |
| 19172 | void |
| 19173 | helper_init( void ) |
| 19174 | { |
| 19175 | /* |
| 19176 | * Once the "helper" is initialized, it can take ioctl calls that use locks |
| 19177 | * and zones initialized in dtrace_init. Make certain dtrace_init was called |
| 19178 | * before us. |
| 19179 | */ |
| 19180 | |
| 19181 | if (!gDTraceInited) { |
| 19182 | panic("helper_init before dtrace_init" ); |
| 19183 | } |
| 19184 | |
| 19185 | if (0 >= helper_majdevno) |
| 19186 | { |
| 19187 | helper_majdevno = cdevsw_add(HELPER_MAJOR, &helper_cdevsw); |
| 19188 | |
| 19189 | if (helper_majdevno < 0) { |
| 19190 | printf("helper_init: failed to allocate a major number!\n" ); |
| 19191 | return; |
| 19192 | } |
| 19193 | |
| 19194 | if (NULL == devfs_make_node( makedev(helper_majdevno, 0), DEVFS_CHAR, UID_ROOT, GID_WHEEL, perms: 0666, |
| 19195 | DTRACEMNR_HELPER )) { |
| 19196 | printf("dtrace_init: failed to devfs_make_node for helper!\n" ); |
| 19197 | return; |
| 19198 | } |
| 19199 | } else |
| 19200 | panic("helper_init: called twice!" ); |
| 19201 | } |
| 19202 | |
| 19203 | #undef HELPER_MAJOR |
| 19204 | |
| 19205 | static int |
| 19206 | dtrace_clone_func(dev_t dev, int action) |
| 19207 | { |
| 19208 | #pragma unused(dev) |
| 19209 | |
| 19210 | if (action == DEVFS_CLONE_ALLOC) { |
| 19211 | return dtrace_state_reserve(); |
| 19212 | } |
| 19213 | else if (action == DEVFS_CLONE_FREE) { |
| 19214 | return 0; |
| 19215 | } |
| 19216 | else return -1; |
| 19217 | } |
| 19218 | |
| 19219 | void dtrace_ast(void); |
| 19220 | |
| 19221 | void |
| 19222 | dtrace_ast(void) |
| 19223 | { |
| 19224 | int i; |
| 19225 | uint32_t clients = os_atomic_xchg(&dtrace_wake_clients, 0, relaxed); |
| 19226 | if (clients == 0) |
| 19227 | return; |
| 19228 | /** |
| 19229 | * We disable preemption here to be sure that we won't get |
| 19230 | * interrupted by a wakeup to a thread that is higher |
| 19231 | * priority than us, so that we do issue all wakeups |
| 19232 | */ |
| 19233 | disable_preemption(); |
| 19234 | for (i = 0; i < DTRACE_NCLIENTS; i++) { |
| 19235 | if (clients & (1 << i)) { |
| 19236 | dtrace_state_t *state = dtrace_state_get(minor: i); |
| 19237 | if (state) { |
| 19238 | wakeup(chan: state); |
| 19239 | } |
| 19240 | |
| 19241 | } |
| 19242 | } |
| 19243 | enable_preemption(); |
| 19244 | } |
| 19245 | |
| 19246 | |
| 19247 | #define DTRACE_MAJOR -24 /* let the kernel pick the device number */ |
| 19248 | |
| 19249 | static const struct cdevsw dtrace_cdevsw = |
| 19250 | { |
| 19251 | .d_open = _dtrace_open, |
| 19252 | .d_close = _dtrace_close, |
| 19253 | .d_read = eno_rdwrt, |
| 19254 | .d_write = eno_rdwrt, |
| 19255 | .d_ioctl = _dtrace_ioctl, |
| 19256 | .d_stop = eno_stop, |
| 19257 | .d_reset = eno_reset, |
| 19258 | .d_select = eno_select, |
| 19259 | .d_mmap = eno_mmap, |
| 19260 | .d_strategy = eno_strat, |
| 19261 | .d_reserved_1 = eno_getc, |
| 19262 | .d_reserved_2 = eno_putc, |
| 19263 | }; |
| 19264 | |
| 19265 | LCK_ATTR_DECLARE(dtrace_lck_attr, 0, 0); |
| 19266 | LCK_GRP_DECLARE(dtrace_lck_grp, "dtrace" ); |
| 19267 | |
| 19268 | static int gMajDevNo; |
| 19269 | |
| 19270 | void dtrace_early_init (void) |
| 19271 | { |
| 19272 | dtrace_restriction_policy_load(); |
| 19273 | |
| 19274 | /* |
| 19275 | * See dtrace_impl.h for a description of kernel symbol modes. |
| 19276 | * The default is to wait for symbols from userspace (lazy symbols). |
| 19277 | */ |
| 19278 | if (!PE_parse_boot_argn(arg_string: "dtrace_kernel_symbol_mode" , arg_ptr: &dtrace_kernel_symbol_mode, max_arg: sizeof (dtrace_kernel_symbol_mode))) { |
| 19279 | dtrace_kernel_symbol_mode = DTRACE_KERNEL_SYMBOLS_FROM_USERSPACE; |
| 19280 | } |
| 19281 | } |
| 19282 | |
| 19283 | void |
| 19284 | dtrace_init( void ) |
| 19285 | { |
| 19286 | if (0 == gDTraceInited) { |
| 19287 | unsigned int i, ncpu; |
| 19288 | size_t size = sizeof(dtrace_buffer_memory_maxsize); |
| 19289 | |
| 19290 | /* |
| 19291 | * Disable destructive actions when dtrace is running |
| 19292 | * in a restricted environment |
| 19293 | */ |
| 19294 | dtrace_destructive_disallow = dtrace_is_restricted() && |
| 19295 | !dtrace_are_restrictions_relaxed(); |
| 19296 | |
| 19297 | /* |
| 19298 | * DTrace allocates buffers based on the maximum number |
| 19299 | * of enabled cpus. This call avoids any race when finding |
| 19300 | * that count. |
| 19301 | */ |
| 19302 | ASSERT(dtrace_max_cpus == 0); |
| 19303 | ncpu = dtrace_max_cpus = ml_wait_max_cpus(); |
| 19304 | |
| 19305 | /* |
| 19306 | * Retrieve the size of the physical memory in order to define |
| 19307 | * the state buffer memory maximal size. If we cannot retrieve |
| 19308 | * this value, we'll consider that we have 1Gb of memory per CPU, that's |
| 19309 | * still better than raising a kernel panic. |
| 19310 | */ |
| 19311 | if (0 != kernel_sysctlbyname("hw.memsize" , &dtrace_buffer_memory_maxsize, |
| 19312 | &size, NULL, 0)) |
| 19313 | { |
| 19314 | dtrace_buffer_memory_maxsize = ncpu * 1024 * 1024 * 1024; |
| 19315 | printf("dtrace_init: failed to retrieve the hw.memsize, defaulted to %lld bytes\n" , |
| 19316 | dtrace_buffer_memory_maxsize); |
| 19317 | } |
| 19318 | |
| 19319 | /* |
| 19320 | * Finally, divide by three to prevent DTrace from eating too |
| 19321 | * much memory. |
| 19322 | */ |
| 19323 | dtrace_buffer_memory_maxsize /= 3; |
| 19324 | ASSERT(dtrace_buffer_memory_maxsize > 0); |
| 19325 | |
| 19326 | gMajDevNo = cdevsw_add(DTRACE_MAJOR, &dtrace_cdevsw); |
| 19327 | |
| 19328 | if (gMajDevNo < 0) { |
| 19329 | printf("dtrace_init: failed to allocate a major number!\n" ); |
| 19330 | gDTraceInited = 0; |
| 19331 | return; |
| 19332 | } |
| 19333 | |
| 19334 | if (NULL == devfs_make_node_clone( makedev(gMajDevNo, 0), DEVFS_CHAR, UID_ROOT, GID_WHEEL, perms: 0666, |
| 19335 | clone: dtrace_clone_func, DTRACEMNR_DTRACE )) { |
| 19336 | printf("dtrace_init: failed to devfs_make_node_clone for dtrace!\n" ); |
| 19337 | gDTraceInited = 0; |
| 19338 | return; |
| 19339 | } |
| 19340 | |
| 19341 | /* |
| 19342 | * The cpu_core structure consists of per-CPU state available in any context. |
| 19343 | * On some architectures, this may mean that the page(s) containing the |
| 19344 | * NCPU-sized array of cpu_core structures must be locked in the TLB -- it |
| 19345 | * is up to the platform to assure that this is performed properly. Note that |
| 19346 | * the structure is sized to avoid false sharing. |
| 19347 | */ |
| 19348 | |
| 19349 | dtrace_modctl_list = NULL; |
| 19350 | |
| 19351 | cpu_core = (cpu_core_t *)kmem_zalloc( ncpu * sizeof(cpu_core_t), KM_SLEEP ); |
| 19352 | for (i = 0; i < ncpu; ++i) { |
| 19353 | lck_mtx_init(lck: &cpu_core[i].cpuc_pid_lock, grp: &dtrace_lck_grp, attr: &dtrace_lck_attr); |
| 19354 | } |
| 19355 | |
| 19356 | cpu_list = (dtrace_cpu_t *)kmem_zalloc( ncpu * sizeof(dtrace_cpu_t), KM_SLEEP ); |
| 19357 | for (i = 0; i < ncpu; ++i) { |
| 19358 | cpu_list[i].cpu_id = (processorid_t)i; |
| 19359 | cpu_list[i].cpu_next = &(cpu_list[(i+1) % ncpu]); |
| 19360 | LIST_INIT(&cpu_list[i].cpu_cyc_list); |
| 19361 | lck_rw_init(lck: &cpu_list[i].cpu_ft_lock, grp: &dtrace_lck_grp, attr: &dtrace_lck_attr); |
| 19362 | } |
| 19363 | |
| 19364 | /* |
| 19365 | * Initialize the CPU offline/online hooks. |
| 19366 | */ |
| 19367 | dtrace_install_cpu_hooks(); |
| 19368 | |
| 19369 | lck_mtx_lock(lck: &cpu_lock); |
| 19370 | for (i = 0; i < ncpu; ++i) |
| 19371 | /* FIXME: track CPU configuration */ |
| 19372 | dtrace_cpu_setup_initial( cpu: (processorid_t)i ); /* In lieu of register_cpu_setup_func() callback */ |
| 19373 | lck_mtx_unlock(lck: &cpu_lock); |
| 19374 | |
| 19375 | (void)dtrace_abs_to_nano(0LL); /* Force once only call to clock_timebase_info (which can take a lock) */ |
| 19376 | |
| 19377 | dtrace_strings = dtrace_hash_create(func: dtrace_strkey_offset, |
| 19378 | offsetof(dtrace_string_t, dtst_str), |
| 19379 | offsetof(dtrace_string_t, dtst_next), |
| 19380 | offsetof(dtrace_string_t, dtst_prev)); |
| 19381 | |
| 19382 | /* |
| 19383 | * See dtrace_impl.h for a description of dof modes. |
| 19384 | * The default is lazy dof. |
| 19385 | * |
| 19386 | * FIXME: Warn if state is LAZY_OFF? It won't break anything, but |
| 19387 | * makes no sense... |
| 19388 | */ |
| 19389 | if (!PE_parse_boot_argn(arg_string: "dtrace_dof_mode" , arg_ptr: &dtrace_dof_mode, max_arg: sizeof (dtrace_dof_mode))) { |
| 19390 | #if defined(XNU_TARGET_OS_OSX) |
| 19391 | dtrace_dof_mode = DTRACE_DOF_MODE_LAZY_ON; |
| 19392 | #else |
| 19393 | dtrace_dof_mode = DTRACE_DOF_MODE_NEVER; |
| 19394 | #endif |
| 19395 | } |
| 19396 | |
| 19397 | /* |
| 19398 | * Sanity check of dof mode value. |
| 19399 | */ |
| 19400 | switch (dtrace_dof_mode) { |
| 19401 | case DTRACE_DOF_MODE_NEVER: |
| 19402 | case DTRACE_DOF_MODE_LAZY_ON: |
| 19403 | /* valid modes, but nothing else we need to do */ |
| 19404 | break; |
| 19405 | |
| 19406 | case DTRACE_DOF_MODE_LAZY_OFF: |
| 19407 | case DTRACE_DOF_MODE_NON_LAZY: |
| 19408 | /* Cannot wait for a dtrace_open to init fasttrap */ |
| 19409 | fasttrap_init(); |
| 19410 | break; |
| 19411 | |
| 19412 | default: |
| 19413 | /* Invalid, clamp to non lazy */ |
| 19414 | dtrace_dof_mode = DTRACE_DOF_MODE_NON_LAZY; |
| 19415 | fasttrap_init(); |
| 19416 | break; |
| 19417 | } |
| 19418 | |
| 19419 | #if CONFIG_DTRACE |
| 19420 | if (dtrace_dof_mode != DTRACE_DOF_MODE_NEVER) |
| 19421 | commpage_update_dof(true); |
| 19422 | #endif |
| 19423 | |
| 19424 | gDTraceInited = 1; |
| 19425 | |
| 19426 | } else |
| 19427 | panic("dtrace_init: called twice!" ); |
| 19428 | } |
| 19429 | |
| 19430 | void |
| 19431 | dtrace_postinit(void) |
| 19432 | { |
| 19433 | /* |
| 19434 | * Called from bsd_init after all provider's *_init() routines have been |
| 19435 | * run. That way, anonymous DOF enabled under dtrace_attach() is safe |
| 19436 | * to go. |
| 19437 | */ |
| 19438 | dtrace_attach( devi: (dev_info_t *)(uintptr_t)makedev(gMajDevNo, 0)); /* Punning a dev_t to a dev_info_t* */ |
| 19439 | |
| 19440 | /* |
| 19441 | * Add the mach_kernel to the module list for lazy processing |
| 19442 | */ |
| 19443 | struct kmod_info fake_kernel_kmod; |
| 19444 | memset(s: &fake_kernel_kmod, c: 0, n: sizeof(fake_kernel_kmod)); |
| 19445 | |
| 19446 | strlcpy(dst: fake_kernel_kmod.name, src: "mach_kernel" , n: sizeof(fake_kernel_kmod.name)); |
| 19447 | fake_kernel_kmod.id = 1; |
| 19448 | fake_kernel_kmod.address = g_kernel_kmod_info.address; |
| 19449 | fake_kernel_kmod.size = g_kernel_kmod_info.size; |
| 19450 | |
| 19451 | /* Ensure we don't try to touch symbols if they are gone. */ |
| 19452 | boolean_t keepsyms = false; |
| 19453 | PE_parse_boot_argn(arg_string: "keepsyms" , arg_ptr: &keepsyms, max_arg: sizeof(keepsyms)); |
| 19454 | |
| 19455 | if (dtrace_module_loaded(kmod: &fake_kernel_kmod, flag: (keepsyms) ? 0 : KMOD_DTRACE_NO_KERNEL_SYMS) != 0) { |
| 19456 | printf("dtrace_postinit: Could not register mach_kernel modctl\n" ); |
| 19457 | } |
| 19458 | |
| 19459 | (void)OSKextRegisterKextsWithDTrace(); |
| 19460 | } |
| 19461 | #undef DTRACE_MAJOR |
| 19462 | |
| 19463 | /* |
| 19464 | * Routines used to register interest in cpu's being added to or removed |
| 19465 | * from the system. |
| 19466 | */ |
| 19467 | void |
| 19468 | register_cpu_setup_func(cpu_setup_func_t *ignore1, void *ignore2) |
| 19469 | { |
| 19470 | #pragma unused(ignore1,ignore2) |
| 19471 | } |
| 19472 | |
| 19473 | void |
| 19474 | unregister_cpu_setup_func(cpu_setup_func_t *ignore1, void *ignore2) |
| 19475 | { |
| 19476 | #pragma unused(ignore1,ignore2) |
| 19477 | } |
| 19478 | |