| 1 | /* |
| 2 | * Copyright (c) 2000-2021 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
| 5 | * |
| 6 | * This file contains Original Code and/or Modifications of Original Code |
| 7 | * as defined in and that are subject to the Apple Public Source License |
| 8 | * Version 2.0 (the 'License'). You may not use this file except in |
| 9 | * compliance with the License. The rights granted to you under the License |
| 10 | * may not be used to create, or enable the creation or redistribution of, |
| 11 | * unlawful or unlicensed copies of an Apple operating system, or to |
| 12 | * circumvent, violate, or enable the circumvention or violation of, any |
| 13 | * terms of an Apple operating system software license agreement. |
| 14 | * |
| 15 | * Please obtain a copy of the License at |
| 16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
| 17 | * |
| 18 | * The Original Code and all software distributed under the License are |
| 19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| 23 | * Please see the License for the specific language governing rights and |
| 24 | * limitations under the License. |
| 25 | * |
| 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
| 27 | */ |
| 28 | /* |
| 29 | * @OSF_COPYRIGHT@ |
| 30 | */ |
| 31 | /* |
| 32 | * Mach Operating System |
| 33 | * Copyright (c) 1991,1990,1989,1988 Carnegie Mellon University |
| 34 | * All Rights Reserved. |
| 35 | * |
| 36 | * Permission to use, copy, modify and distribute this software and its |
| 37 | * documentation is hereby granted, provided that both the copyright |
| 38 | * notice and this permission notice appear in all copies of the |
| 39 | * software, derivative works or modified versions, and any portions |
| 40 | * thereof, and that both notices appear in supporting documentation. |
| 41 | * |
| 42 | * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" |
| 43 | * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR |
| 44 | * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. |
| 45 | * |
| 46 | * Carnegie Mellon requests users of this software to return to |
| 47 | * |
| 48 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU |
| 49 | * School of Computer Science |
| 50 | * Carnegie Mellon University |
| 51 | * Pittsburgh PA 15213-3890 |
| 52 | * |
| 53 | * any improvements or extensions that they make and grant Carnegie Mellon |
| 54 | * the rights to redistribute these changes. |
| 55 | */ |
| 56 | /* |
| 57 | */ |
| 58 | /* |
| 59 | * File: vm/vm_user.c |
| 60 | * Author: Avadis Tevanian, Jr., Michael Wayne Young |
| 61 | * |
| 62 | * User-exported virtual memory functions. |
| 63 | */ |
| 64 | |
| 65 | /* |
| 66 | * There are three implementations of the "XXX_allocate" functionality in |
| 67 | * the kernel: mach_vm_allocate (for any task on the platform), vm_allocate |
| 68 | * (for a task with the same address space size, especially the current task), |
| 69 | * and vm32_vm_allocate (for the specific case of a 32-bit task). vm_allocate |
| 70 | * in the kernel should only be used on the kernel_task. vm32_vm_allocate only |
| 71 | * makes sense on platforms where a user task can either be 32 or 64, or the kernel |
| 72 | * task can be 32 or 64. mach_vm_allocate makes sense everywhere, and is preferred |
| 73 | * for new code. |
| 74 | * |
| 75 | * The entrypoints into the kernel are more complex. All platforms support a |
| 76 | * mach_vm_allocate-style API (subsystem 4800) which operates with the largest |
| 77 | * size types for the platform. On platforms that only support U32/K32, |
| 78 | * subsystem 4800 is all you need. On platforms that support both U32 and U64, |
| 79 | * subsystem 3800 is used disambiguate the size of parameters, and they will |
| 80 | * always be 32-bit and call into the vm32_vm_allocate APIs. On non-U32/K32 platforms, |
| 81 | * the MIG glue should never call into vm_allocate directly, because the calling |
| 82 | * task and kernel_task are unlikely to use the same size parameters |
| 83 | * |
| 84 | * New VM call implementations should be added here and to mach_vm.defs |
| 85 | * (subsystem 4800), and use mach_vm_* "wide" types. |
| 86 | */ |
| 87 | |
| 88 | #include <debug.h> |
| 89 | |
| 90 | #include <vm_cpm.h> |
| 91 | #include <mach/boolean.h> |
| 92 | #include <mach/kern_return.h> |
| 93 | #include <mach/mach_types.h> /* to get vm_address_t */ |
| 94 | #include <mach/memory_object.h> |
| 95 | #include <mach/std_types.h> /* to get pointer_t */ |
| 96 | #include <mach/upl.h> |
| 97 | #include <mach/vm_attributes.h> |
| 98 | #include <mach/vm_param.h> |
| 99 | #include <mach/vm_statistics.h> |
| 100 | #include <mach/mach_syscalls.h> |
| 101 | #include <mach/sdt.h> |
| 102 | |
| 103 | #include <mach/host_priv_server.h> |
| 104 | #include <mach/mach_vm_server.h> |
| 105 | #include <mach/memory_entry_server.h> |
| 106 | #include <mach/vm_map_server.h> |
| 107 | |
| 108 | #include <kern/host.h> |
| 109 | #include <kern/kalloc.h> |
| 110 | #include <kern/task.h> |
| 111 | #include <kern/misc_protos.h> |
| 112 | #include <vm/vm_fault.h> |
| 113 | #include <vm/vm_map_internal.h> |
| 114 | #include <vm/vm_object.h> |
| 115 | #include <vm/vm_page.h> |
| 116 | #include <vm/memory_object.h> |
| 117 | #include <vm/vm_pageout.h> |
| 118 | #include <vm/vm_protos.h> |
| 119 | #include <vm/vm_purgeable_internal.h> |
| 120 | #if CONFIG_DEFERRED_RECLAIM |
| 121 | #include <vm/vm_reclaim_internal.h> |
| 122 | #endif /* CONFIG_DEFERRED_RECLAIM */ |
| 123 | #include <vm/vm_init.h> |
| 124 | |
| 125 | #include <san/kasan.h> |
| 126 | |
| 127 | #include <libkern/OSDebug.h> |
| 128 | #include <IOKit/IOBSD.h> |
| 129 | #include <sys/kdebug_triage.h> |
| 130 | |
| 131 | #if VM_CPM |
| 132 | #include <vm/cpm.h> |
| 133 | #endif /* VM_CPM */ |
| 134 | |
| 135 | static void mach_memory_entry_no_senders(ipc_port_t, mach_port_mscount_t); |
| 136 | |
| 137 | __attribute__((always_inline)) |
| 138 | int |
| 139 | vm_map_kernel_flags_vmflags(vm_map_kernel_flags_t vmk_flags) |
| 140 | { |
| 141 | int flags = vmk_flags.__vm_flags & VM_FLAGS_ANY_MASK; |
| 142 | |
| 143 | /* in vmk flags the meaning of fixed/anywhere is inverted */ |
| 144 | return flags ^ (VM_FLAGS_FIXED | VM_FLAGS_ANYWHERE); |
| 145 | } |
| 146 | |
| 147 | __attribute__((always_inline, overloadable)) |
| 148 | void |
| 149 | vm_map_kernel_flags_set_vmflags( |
| 150 | vm_map_kernel_flags_t *vmk_flags, |
| 151 | int vm_flags, |
| 152 | vm_tag_t vm_tag) |
| 153 | { |
| 154 | vm_flags ^= (VM_FLAGS_FIXED | VM_FLAGS_ANYWHERE); |
| 155 | vmk_flags->__vm_flags &= ~VM_FLAGS_ANY_MASK; |
| 156 | vmk_flags->__vm_flags |= (vm_flags & VM_FLAGS_ANY_MASK); |
| 157 | vmk_flags->vm_tag = vm_tag; |
| 158 | } |
| 159 | |
| 160 | __attribute__((always_inline, overloadable)) |
| 161 | void |
| 162 | vm_map_kernel_flags_set_vmflags( |
| 163 | vm_map_kernel_flags_t *vmk_flags, |
| 164 | int vm_flags_and_tag) |
| 165 | { |
| 166 | vm_flags_and_tag ^= (VM_FLAGS_FIXED | VM_FLAGS_ANYWHERE); |
| 167 | vmk_flags->__vm_flags &= ~VM_FLAGS_ANY_MASK; |
| 168 | vmk_flags->__vm_flags |= (vm_flags_and_tag & VM_FLAGS_ANY_MASK); |
| 169 | VM_GET_FLAGS_ALIAS(vm_flags_and_tag, vmk_flags->vm_tag); |
| 170 | } |
| 171 | |
| 172 | __attribute__((always_inline)) |
| 173 | void |
| 174 | vm_map_kernel_flags_and_vmflags( |
| 175 | vm_map_kernel_flags_t *vmk_flags, |
| 176 | int vm_flags_mask) |
| 177 | { |
| 178 | /* this function doesn't handle the inverted FIXED/ANYWHERE */ |
| 179 | assert(vm_flags_mask & VM_FLAGS_ANYWHERE); |
| 180 | vmk_flags->__vm_flags &= vm_flags_mask; |
| 181 | } |
| 182 | |
| 183 | bool |
| 184 | vm_map_kernel_flags_check_vmflags( |
| 185 | vm_map_kernel_flags_t vmk_flags, |
| 186 | int vm_flags_mask) |
| 187 | { |
| 188 | int vmflags = vmk_flags.__vm_flags & VM_FLAGS_ANY_MASK; |
| 189 | |
| 190 | /* Note: up to 16 still has good calling conventions */ |
| 191 | static_assert(sizeof(vm_map_kernel_flags_t) == 8); |
| 192 | |
| 193 | #if DEBUG || DEVELOPMENT |
| 194 | /* |
| 195 | * All of this compiles to nothing if all checks pass. |
| 196 | */ |
| 197 | #define check(field, value) ({ \ |
| 198 | vm_map_kernel_flags_t fl = VM_MAP_KERNEL_FLAGS_NONE; \ |
| 199 | fl.__vm_flags = (value); \ |
| 200 | fl.field = 0; \ |
| 201 | assert(fl.__vm_flags == 0); \ |
| 202 | }) |
| 203 | |
| 204 | /* bits 0-7 */ |
| 205 | check(vmf_fixed, VM_FLAGS_ANYWHERE); // kind of a lie this is inverted |
| 206 | check(vmf_purgeable, VM_FLAGS_PURGABLE); |
| 207 | check(vmf_4gb_chunk, VM_FLAGS_4GB_CHUNK); |
| 208 | check(vmf_random_addr, VM_FLAGS_RANDOM_ADDR); |
| 209 | check(vmf_no_cache, VM_FLAGS_NO_CACHE); |
| 210 | check(vmf_resilient_codesign, VM_FLAGS_RESILIENT_CODESIGN); |
| 211 | check(vmf_resilient_media, VM_FLAGS_RESILIENT_MEDIA); |
| 212 | check(vmf_permanent, VM_FLAGS_PERMANENT); |
| 213 | |
| 214 | /* bits 8-15 */ |
| 215 | check(vmf_tpro, VM_FLAGS_TPRO); |
| 216 | check(vmf_overwrite, VM_FLAGS_OVERWRITE); |
| 217 | |
| 218 | /* bits 16-23 */ |
| 219 | check(vmf_superpage_size, VM_FLAGS_SUPERPAGE_MASK); |
| 220 | check(vmf_return_data_addr, VM_FLAGS_RETURN_DATA_ADDR); |
| 221 | check(vmf_return_4k_data_addr, VM_FLAGS_RETURN_4K_DATA_ADDR); |
| 222 | |
| 223 | { |
| 224 | vm_map_kernel_flags_t fl = VM_MAP_KERNEL_FLAGS_NONE; |
| 225 | |
| 226 | /* check user tags will never clip */ |
| 227 | fl.vm_tag = VM_MEMORY_COUNT - 1; |
| 228 | assert(fl.vm_tag == VM_MEMORY_COUNT - 1); |
| 229 | |
| 230 | /* check kernel tags will never clip */ |
| 231 | fl.vm_tag = VM_MAX_TAG_VALUE - 1; |
| 232 | assert(fl.vm_tag == VM_MAX_TAG_VALUE - 1); |
| 233 | } |
| 234 | |
| 235 | |
| 236 | #undef check |
| 237 | #endif /* DEBUG || DEVELOPMENT */ |
| 238 | |
| 239 | return (vmflags & ~vm_flags_mask) == 0; |
| 240 | } |
| 241 | |
| 242 | kern_return_t |
| 243 | vm_purgable_control( |
| 244 | vm_map_t map, |
| 245 | vm_offset_t address, |
| 246 | vm_purgable_t control, |
| 247 | int *state); |
| 248 | |
| 249 | kern_return_t |
| 250 | mach_vm_purgable_control( |
| 251 | vm_map_t map, |
| 252 | mach_vm_offset_t address, |
| 253 | vm_purgable_t control, |
| 254 | int *state); |
| 255 | |
| 256 | kern_return_t |
| 257 | mach_memory_entry_ownership( |
| 258 | ipc_port_t entry_port, |
| 259 | task_t owner, |
| 260 | int ledger_tag, |
| 261 | int ledger_flags); |
| 262 | |
| 263 | IPC_KOBJECT_DEFINE(IKOT_NAMED_ENTRY, |
| 264 | .iko_op_stable = true, |
| 265 | .iko_op_no_senders = mach_memory_entry_no_senders); |
| 266 | |
| 267 | /* |
| 268 | * mach_vm_allocate allocates "zero fill" memory in the specfied |
| 269 | * map. |
| 270 | */ |
| 271 | kern_return_t |
| 272 | mach_vm_allocate_external( |
| 273 | vm_map_t map, |
| 274 | mach_vm_offset_t *addr, |
| 275 | mach_vm_size_t size, |
| 276 | int flags) |
| 277 | { |
| 278 | vm_tag_t tag; |
| 279 | |
| 280 | VM_GET_FLAGS_ALIAS(flags, tag); |
| 281 | return mach_vm_allocate_kernel(map, addr, size, flags, tag); |
| 282 | } |
| 283 | |
| 284 | kern_return_t |
| 285 | mach_vm_allocate_kernel( |
| 286 | vm_map_t map, |
| 287 | mach_vm_offset_t *addr, |
| 288 | mach_vm_size_t size, |
| 289 | int flags, |
| 290 | vm_tag_t tag) |
| 291 | { |
| 292 | vm_map_offset_t map_addr; |
| 293 | vm_map_size_t map_size; |
| 294 | kern_return_t result; |
| 295 | vm_map_kernel_flags_t vmk_flags = VM_MAP_KERNEL_FLAGS_NONE; |
| 296 | |
| 297 | /* filter out any kernel-only flags */ |
| 298 | if (flags & ~VM_FLAGS_USER_ALLOCATE) { |
| 299 | ktriage_record(thread_id: thread_tid(thread: current_thread()), KDBG_TRIAGE_EVENTID(KDBG_TRIAGE_SUBSYS_VM, KDBG_TRIAGE_RESERVED, KDBG_TRIAGE_VM_ALLOCATE_KERNEL_BADFLAGS_ERROR), KERN_INVALID_ARGUMENT /* arg */); |
| 300 | return KERN_INVALID_ARGUMENT; |
| 301 | } |
| 302 | |
| 303 | vm_map_kernel_flags_set_vmflags(vmk_flags: &vmk_flags, vm_flags: flags, vm_tag: tag); |
| 304 | |
| 305 | if (map == VM_MAP_NULL) { |
| 306 | ktriage_record(thread_id: thread_tid(thread: current_thread()), KDBG_TRIAGE_EVENTID(KDBG_TRIAGE_SUBSYS_VM, KDBG_TRIAGE_RESERVED, KDBG_TRIAGE_VM_ALLOCATE_KERNEL_BADMAP_ERROR), KERN_INVALID_ARGUMENT /* arg */); |
| 307 | return KERN_INVALID_ARGUMENT; |
| 308 | } |
| 309 | if (size == 0) { |
| 310 | *addr = 0; |
| 311 | return KERN_SUCCESS; |
| 312 | } |
| 313 | |
| 314 | if (vmk_flags.vmf_fixed) { |
| 315 | map_addr = vm_map_trunc_page(*addr, VM_MAP_PAGE_MASK(map)); |
| 316 | } else { |
| 317 | map_addr = 0; |
| 318 | } |
| 319 | map_size = vm_map_round_page(size, |
| 320 | VM_MAP_PAGE_MASK(map)); |
| 321 | if (map_size == 0) { |
| 322 | ktriage_record(thread_id: thread_tid(thread: current_thread()), KDBG_TRIAGE_EVENTID(KDBG_TRIAGE_SUBSYS_VM, KDBG_TRIAGE_RESERVED, KDBG_TRIAGE_VM_ALLOCATE_KERNEL_BADSIZE_ERROR), KERN_INVALID_ARGUMENT /* arg */); |
| 323 | return KERN_INVALID_ARGUMENT; |
| 324 | } |
| 325 | |
| 326 | vm_map_kernel_flags_update_range_id(flags: &vmk_flags, map); |
| 327 | |
| 328 | result = vm_map_enter( |
| 329 | map, |
| 330 | address: &map_addr, |
| 331 | size: map_size, |
| 332 | mask: (vm_map_offset_t)0, |
| 333 | vmk_flags, |
| 334 | VM_OBJECT_NULL, |
| 335 | offset: (vm_object_offset_t)0, |
| 336 | FALSE, |
| 337 | VM_PROT_DEFAULT, |
| 338 | VM_PROT_ALL, |
| 339 | VM_INHERIT_DEFAULT); |
| 340 | |
| 341 | #if KASAN |
| 342 | if (result == KERN_SUCCESS && map->pmap == kernel_pmap) { |
| 343 | kasan_notify_address(map_addr, map_size); |
| 344 | } |
| 345 | #endif |
| 346 | if (result != KERN_SUCCESS) { |
| 347 | ktriage_record(thread_id: thread_tid(thread: current_thread()), KDBG_TRIAGE_EVENTID(KDBG_TRIAGE_SUBSYS_VM, KDBG_TRIAGE_RESERVED, KDBG_TRIAGE_VM_ALLOCATE_KERNEL_VMMAPENTER_ERROR), arg: result /* arg */); |
| 348 | } |
| 349 | *addr = map_addr; |
| 350 | return result; |
| 351 | } |
| 352 | |
| 353 | /* |
| 354 | * vm_allocate |
| 355 | * Legacy routine that allocates "zero fill" memory in the specfied |
| 356 | * map (which is limited to the same size as the kernel). |
| 357 | */ |
| 358 | kern_return_t |
| 359 | vm_allocate_external( |
| 360 | vm_map_t map, |
| 361 | vm_offset_t *addr, |
| 362 | vm_size_t size, |
| 363 | int flags) |
| 364 | { |
| 365 | vm_map_kernel_flags_t vmk_flags = VM_MAP_KERNEL_FLAGS_NONE; |
| 366 | vm_map_offset_t map_addr; |
| 367 | vm_map_size_t map_size; |
| 368 | kern_return_t result; |
| 369 | |
| 370 | /* filter out any kernel-only flags */ |
| 371 | if (flags & ~VM_FLAGS_USER_ALLOCATE) { |
| 372 | return KERN_INVALID_ARGUMENT; |
| 373 | } |
| 374 | |
| 375 | vm_map_kernel_flags_set_vmflags(vmk_flags: &vmk_flags, vm_flags_and_tag: flags); |
| 376 | |
| 377 | if (map == VM_MAP_NULL) { |
| 378 | return KERN_INVALID_ARGUMENT; |
| 379 | } |
| 380 | if (size == 0) { |
| 381 | *addr = 0; |
| 382 | return KERN_SUCCESS; |
| 383 | } |
| 384 | |
| 385 | if (vmk_flags.vmf_fixed) { |
| 386 | map_addr = vm_map_trunc_page(*addr, VM_MAP_PAGE_MASK(map)); |
| 387 | } else { |
| 388 | map_addr = 0; |
| 389 | } |
| 390 | map_size = vm_map_round_page(size, |
| 391 | VM_MAP_PAGE_MASK(map)); |
| 392 | if (map_size == 0) { |
| 393 | return KERN_INVALID_ARGUMENT; |
| 394 | } |
| 395 | |
| 396 | vm_map_kernel_flags_update_range_id(flags: &vmk_flags, map); |
| 397 | |
| 398 | result = vm_map_enter( |
| 399 | map, |
| 400 | address: &map_addr, |
| 401 | size: map_size, |
| 402 | mask: (vm_map_offset_t)0, |
| 403 | vmk_flags, |
| 404 | VM_OBJECT_NULL, |
| 405 | offset: (vm_object_offset_t)0, |
| 406 | FALSE, |
| 407 | VM_PROT_DEFAULT, |
| 408 | VM_PROT_ALL, |
| 409 | VM_INHERIT_DEFAULT); |
| 410 | |
| 411 | #if KASAN |
| 412 | if (result == KERN_SUCCESS && map->pmap == kernel_pmap) { |
| 413 | kasan_notify_address(map_addr, map_size); |
| 414 | } |
| 415 | #endif |
| 416 | |
| 417 | *addr = CAST_DOWN(vm_offset_t, map_addr); |
| 418 | return result; |
| 419 | } |
| 420 | |
| 421 | /* |
| 422 | * mach_vm_deallocate - |
| 423 | * deallocates the specified range of addresses in the |
| 424 | * specified address map. |
| 425 | */ |
| 426 | kern_return_t |
| 427 | mach_vm_deallocate( |
| 428 | vm_map_t map, |
| 429 | mach_vm_offset_t start, |
| 430 | mach_vm_size_t size) |
| 431 | { |
| 432 | if ((map == VM_MAP_NULL) || (start + size < start)) { |
| 433 | return KERN_INVALID_ARGUMENT; |
| 434 | } |
| 435 | |
| 436 | if (size == (mach_vm_offset_t) 0) { |
| 437 | return KERN_SUCCESS; |
| 438 | } |
| 439 | |
| 440 | return vm_map_remove_guard(map, |
| 441 | vm_map_trunc_page(start, |
| 442 | VM_MAP_PAGE_MASK(map)), |
| 443 | vm_map_round_page(start + size, |
| 444 | VM_MAP_PAGE_MASK(map)), |
| 445 | flags: VM_MAP_REMOVE_NO_FLAGS, |
| 446 | KMEM_GUARD_NONE).kmr_return; |
| 447 | } |
| 448 | |
| 449 | /* |
| 450 | * vm_deallocate - |
| 451 | * deallocates the specified range of addresses in the |
| 452 | * specified address map (limited to addresses the same |
| 453 | * size as the kernel). |
| 454 | */ |
| 455 | kern_return_t |
| 456 | vm_deallocate( |
| 457 | vm_map_t map, |
| 458 | vm_offset_t start, |
| 459 | vm_size_t size) |
| 460 | { |
| 461 | if ((map == VM_MAP_NULL) || (start + size < start)) { |
| 462 | return KERN_INVALID_ARGUMENT; |
| 463 | } |
| 464 | |
| 465 | if (size == (vm_offset_t) 0) { |
| 466 | return KERN_SUCCESS; |
| 467 | } |
| 468 | |
| 469 | return vm_map_remove_guard(map, |
| 470 | vm_map_trunc_page(start, |
| 471 | VM_MAP_PAGE_MASK(map)), |
| 472 | vm_map_round_page(start + size, |
| 473 | VM_MAP_PAGE_MASK(map)), |
| 474 | flags: VM_MAP_REMOVE_NO_FLAGS, |
| 475 | KMEM_GUARD_NONE).kmr_return; |
| 476 | } |
| 477 | |
| 478 | /* |
| 479 | * mach_vm_inherit - |
| 480 | * Sets the inheritance of the specified range in the |
| 481 | * specified map. |
| 482 | */ |
| 483 | kern_return_t |
| 484 | mach_vm_inherit( |
| 485 | vm_map_t map, |
| 486 | mach_vm_offset_t start, |
| 487 | mach_vm_size_t size, |
| 488 | vm_inherit_t new_inheritance) |
| 489 | { |
| 490 | if ((map == VM_MAP_NULL) || (start + size < start) || |
| 491 | (new_inheritance > VM_INHERIT_LAST_VALID)) { |
| 492 | return KERN_INVALID_ARGUMENT; |
| 493 | } |
| 494 | |
| 495 | if (size == 0) { |
| 496 | return KERN_SUCCESS; |
| 497 | } |
| 498 | |
| 499 | return vm_map_inherit(map, |
| 500 | vm_map_trunc_page(start, |
| 501 | VM_MAP_PAGE_MASK(map)), |
| 502 | vm_map_round_page(start + size, |
| 503 | VM_MAP_PAGE_MASK(map)), |
| 504 | new_inheritance); |
| 505 | } |
| 506 | |
| 507 | /* |
| 508 | * vm_inherit - |
| 509 | * Sets the inheritance of the specified range in the |
| 510 | * specified map (range limited to addresses |
| 511 | */ |
| 512 | kern_return_t |
| 513 | vm_inherit( |
| 514 | vm_map_t map, |
| 515 | vm_offset_t start, |
| 516 | vm_size_t size, |
| 517 | vm_inherit_t new_inheritance) |
| 518 | { |
| 519 | if ((map == VM_MAP_NULL) || (start + size < start) || |
| 520 | (new_inheritance > VM_INHERIT_LAST_VALID)) { |
| 521 | return KERN_INVALID_ARGUMENT; |
| 522 | } |
| 523 | |
| 524 | if (size == 0) { |
| 525 | return KERN_SUCCESS; |
| 526 | } |
| 527 | |
| 528 | return vm_map_inherit(map, |
| 529 | vm_map_trunc_page(start, |
| 530 | VM_MAP_PAGE_MASK(map)), |
| 531 | vm_map_round_page(start + size, |
| 532 | VM_MAP_PAGE_MASK(map)), |
| 533 | new_inheritance); |
| 534 | } |
| 535 | |
| 536 | /* |
| 537 | * mach_vm_protect - |
| 538 | * Sets the protection of the specified range in the |
| 539 | * specified map. |
| 540 | */ |
| 541 | |
| 542 | kern_return_t |
| 543 | mach_vm_protect( |
| 544 | vm_map_t map, |
| 545 | mach_vm_offset_t start, |
| 546 | mach_vm_size_t size, |
| 547 | boolean_t set_maximum, |
| 548 | vm_prot_t new_protection) |
| 549 | { |
| 550 | if ((map == VM_MAP_NULL) || (start + size < start) || |
| 551 | (new_protection & ~(VM_PROT_ALL | VM_PROT_COPY))) { |
| 552 | return KERN_INVALID_ARGUMENT; |
| 553 | } |
| 554 | |
| 555 | if (size == 0) { |
| 556 | return KERN_SUCCESS; |
| 557 | } |
| 558 | |
| 559 | return vm_map_protect(map, |
| 560 | vm_map_trunc_page(start, |
| 561 | VM_MAP_PAGE_MASK(map)), |
| 562 | vm_map_round_page(start + size, |
| 563 | VM_MAP_PAGE_MASK(map)), |
| 564 | new_prot: new_protection, |
| 565 | set_max: set_maximum); |
| 566 | } |
| 567 | |
| 568 | /* |
| 569 | * vm_protect - |
| 570 | * Sets the protection of the specified range in the |
| 571 | * specified map. Addressability of the range limited |
| 572 | * to the same size as the kernel. |
| 573 | */ |
| 574 | |
| 575 | kern_return_t |
| 576 | vm_protect( |
| 577 | vm_map_t map, |
| 578 | vm_offset_t start, |
| 579 | vm_size_t size, |
| 580 | boolean_t set_maximum, |
| 581 | vm_prot_t new_protection) |
| 582 | { |
| 583 | if ((map == VM_MAP_NULL) || (start + size < start) || |
| 584 | (new_protection & ~VM_VALID_VMPROTECT_FLAGS) |
| 585 | #if defined(__x86_64__) |
| 586 | || ((new_protection & VM_PROT_UEXEC) && !pmap_supported_feature(map->pmap, PMAP_FEAT_UEXEC)) |
| 587 | #endif |
| 588 | ) { |
| 589 | return KERN_INVALID_ARGUMENT; |
| 590 | } |
| 591 | |
| 592 | if (size == 0) { |
| 593 | return KERN_SUCCESS; |
| 594 | } |
| 595 | |
| 596 | return vm_map_protect(map, |
| 597 | vm_map_trunc_page(start, |
| 598 | VM_MAP_PAGE_MASK(map)), |
| 599 | vm_map_round_page(start + size, |
| 600 | VM_MAP_PAGE_MASK(map)), |
| 601 | new_prot: new_protection, |
| 602 | set_max: set_maximum); |
| 603 | } |
| 604 | |
| 605 | /* |
| 606 | * mach_vm_machine_attributes - |
| 607 | * Handle machine-specific attributes for a mapping, such |
| 608 | * as cachability, migrability, etc. |
| 609 | */ |
| 610 | kern_return_t |
| 611 | mach_vm_machine_attribute( |
| 612 | vm_map_t map, |
| 613 | mach_vm_address_t addr, |
| 614 | mach_vm_size_t size, |
| 615 | vm_machine_attribute_t attribute, |
| 616 | vm_machine_attribute_val_t* value) /* IN/OUT */ |
| 617 | { |
| 618 | if ((map == VM_MAP_NULL) || (addr + size < addr)) { |
| 619 | return KERN_INVALID_ARGUMENT; |
| 620 | } |
| 621 | |
| 622 | if (size == 0) { |
| 623 | return KERN_SUCCESS; |
| 624 | } |
| 625 | |
| 626 | return vm_map_machine_attribute( |
| 627 | map, |
| 628 | vm_map_trunc_page(addr, |
| 629 | VM_MAP_PAGE_MASK(map)), |
| 630 | vm_map_round_page(addr + size, |
| 631 | VM_MAP_PAGE_MASK(map)), |
| 632 | attribute, |
| 633 | value); |
| 634 | } |
| 635 | |
| 636 | /* |
| 637 | * vm_machine_attribute - |
| 638 | * Handle machine-specific attributes for a mapping, such |
| 639 | * as cachability, migrability, etc. Limited addressability |
| 640 | * (same range limits as for the native kernel map). |
| 641 | */ |
| 642 | kern_return_t |
| 643 | vm_machine_attribute( |
| 644 | vm_map_t map, |
| 645 | vm_address_t addr, |
| 646 | vm_size_t size, |
| 647 | vm_machine_attribute_t attribute, |
| 648 | vm_machine_attribute_val_t* value) /* IN/OUT */ |
| 649 | { |
| 650 | if ((map == VM_MAP_NULL) || (addr + size < addr)) { |
| 651 | return KERN_INVALID_ARGUMENT; |
| 652 | } |
| 653 | |
| 654 | if (size == 0) { |
| 655 | return KERN_SUCCESS; |
| 656 | } |
| 657 | |
| 658 | return vm_map_machine_attribute( |
| 659 | map, |
| 660 | vm_map_trunc_page(addr, |
| 661 | VM_MAP_PAGE_MASK(map)), |
| 662 | vm_map_round_page(addr + size, |
| 663 | VM_MAP_PAGE_MASK(map)), |
| 664 | attribute, |
| 665 | value); |
| 666 | } |
| 667 | |
| 668 | /* |
| 669 | * mach_vm_read - |
| 670 | * Read/copy a range from one address space and return it to the caller. |
| 671 | * |
| 672 | * It is assumed that the address for the returned memory is selected by |
| 673 | * the IPC implementation as part of receiving the reply to this call. |
| 674 | * If IPC isn't used, the caller must deal with the vm_map_copy_t object |
| 675 | * that gets returned. |
| 676 | * |
| 677 | * JMM - because of mach_msg_type_number_t, this call is limited to a |
| 678 | * single 4GB region at this time. |
| 679 | * |
| 680 | */ |
| 681 | kern_return_t |
| 682 | mach_vm_read( |
| 683 | vm_map_t map, |
| 684 | mach_vm_address_t addr, |
| 685 | mach_vm_size_t size, |
| 686 | pointer_t *data, |
| 687 | mach_msg_type_number_t *data_size) |
| 688 | { |
| 689 | kern_return_t error; |
| 690 | vm_map_copy_t ipc_address; |
| 691 | |
| 692 | if (map == VM_MAP_NULL) { |
| 693 | return KERN_INVALID_ARGUMENT; |
| 694 | } |
| 695 | |
| 696 | if ((mach_msg_type_number_t) size != size) { |
| 697 | return KERN_INVALID_ARGUMENT; |
| 698 | } |
| 699 | |
| 700 | error = vm_map_copyin(src_map: map, |
| 701 | src_addr: (vm_map_address_t)addr, |
| 702 | len: (vm_map_size_t)size, |
| 703 | FALSE, /* src_destroy */ |
| 704 | copy_result: &ipc_address); |
| 705 | |
| 706 | if (KERN_SUCCESS == error) { |
| 707 | *data = (pointer_t) ipc_address; |
| 708 | *data_size = (mach_msg_type_number_t) size; |
| 709 | assert(*data_size == size); |
| 710 | } |
| 711 | return error; |
| 712 | } |
| 713 | |
| 714 | /* |
| 715 | * vm_read - |
| 716 | * Read/copy a range from one address space and return it to the caller. |
| 717 | * Limited addressability (same range limits as for the native kernel map). |
| 718 | * |
| 719 | * It is assumed that the address for the returned memory is selected by |
| 720 | * the IPC implementation as part of receiving the reply to this call. |
| 721 | * If IPC isn't used, the caller must deal with the vm_map_copy_t object |
| 722 | * that gets returned. |
| 723 | */ |
| 724 | kern_return_t |
| 725 | vm_read( |
| 726 | vm_map_t map, |
| 727 | vm_address_t addr, |
| 728 | vm_size_t size, |
| 729 | pointer_t *data, |
| 730 | mach_msg_type_number_t *data_size) |
| 731 | { |
| 732 | kern_return_t error; |
| 733 | vm_map_copy_t ipc_address; |
| 734 | |
| 735 | if (map == VM_MAP_NULL) { |
| 736 | return KERN_INVALID_ARGUMENT; |
| 737 | } |
| 738 | |
| 739 | mach_msg_type_number_t dsize; |
| 740 | if (os_convert_overflow(size, &dsize)) { |
| 741 | /* |
| 742 | * The kernel could handle a 64-bit "size" value, but |
| 743 | * it could not return the size of the data in "*data_size" |
| 744 | * without overflowing. |
| 745 | * Let's reject this "size" as invalid. |
| 746 | */ |
| 747 | return KERN_INVALID_ARGUMENT; |
| 748 | } |
| 749 | |
| 750 | error = vm_map_copyin(src_map: map, |
| 751 | src_addr: (vm_map_address_t)addr, |
| 752 | len: (vm_map_size_t)size, |
| 753 | FALSE, /* src_destroy */ |
| 754 | copy_result: &ipc_address); |
| 755 | |
| 756 | if (KERN_SUCCESS == error) { |
| 757 | *data = (pointer_t) ipc_address; |
| 758 | *data_size = dsize; |
| 759 | assert(*data_size == size); |
| 760 | } |
| 761 | return error; |
| 762 | } |
| 763 | |
| 764 | /* |
| 765 | * mach_vm_read_list - |
| 766 | * Read/copy a list of address ranges from specified map. |
| 767 | * |
| 768 | * MIG does not know how to deal with a returned array of |
| 769 | * vm_map_copy_t structures, so we have to do the copyout |
| 770 | * manually here. |
| 771 | */ |
| 772 | kern_return_t |
| 773 | mach_vm_read_list( |
| 774 | vm_map_t map, |
| 775 | mach_vm_read_entry_t data_list, |
| 776 | natural_t count) |
| 777 | { |
| 778 | mach_msg_type_number_t i; |
| 779 | kern_return_t error; |
| 780 | vm_map_copy_t copy; |
| 781 | |
| 782 | if (map == VM_MAP_NULL || |
| 783 | count > VM_MAP_ENTRY_MAX) { |
| 784 | return KERN_INVALID_ARGUMENT; |
| 785 | } |
| 786 | |
| 787 | error = KERN_SUCCESS; |
| 788 | for (i = 0; i < count; i++) { |
| 789 | vm_map_address_t map_addr; |
| 790 | vm_map_size_t map_size; |
| 791 | |
| 792 | map_addr = (vm_map_address_t)(data_list[i].address); |
| 793 | map_size = (vm_map_size_t)(data_list[i].size); |
| 794 | |
| 795 | if (map_size != 0) { |
| 796 | error = vm_map_copyin(src_map: map, |
| 797 | src_addr: map_addr, |
| 798 | len: map_size, |
| 799 | FALSE, /* src_destroy */ |
| 800 | copy_result: ©); |
| 801 | if (KERN_SUCCESS == error) { |
| 802 | error = vm_map_copyout( |
| 803 | dst_map: current_task()->map, |
| 804 | dst_addr: &map_addr, |
| 805 | copy); |
| 806 | if (KERN_SUCCESS == error) { |
| 807 | data_list[i].address = map_addr; |
| 808 | continue; |
| 809 | } |
| 810 | vm_map_copy_discard(copy); |
| 811 | } |
| 812 | } |
| 813 | data_list[i].address = (mach_vm_address_t)0; |
| 814 | data_list[i].size = (mach_vm_size_t)0; |
| 815 | } |
| 816 | return error; |
| 817 | } |
| 818 | |
| 819 | /* |
| 820 | * vm_read_list - |
| 821 | * Read/copy a list of address ranges from specified map. |
| 822 | * |
| 823 | * MIG does not know how to deal with a returned array of |
| 824 | * vm_map_copy_t structures, so we have to do the copyout |
| 825 | * manually here. |
| 826 | * |
| 827 | * The source and destination ranges are limited to those |
| 828 | * that can be described with a vm_address_t (i.e. same |
| 829 | * size map as the kernel). |
| 830 | * |
| 831 | * JMM - If the result of the copyout is an address range |
| 832 | * that cannot be described with a vm_address_t (i.e. the |
| 833 | * caller had a larger address space but used this call |
| 834 | * anyway), it will result in a truncated address being |
| 835 | * returned (and a likely confused caller). |
| 836 | */ |
| 837 | |
| 838 | kern_return_t |
| 839 | vm_read_list( |
| 840 | vm_map_t map, |
| 841 | vm_read_entry_t data_list, |
| 842 | natural_t count) |
| 843 | { |
| 844 | mach_msg_type_number_t i; |
| 845 | kern_return_t error; |
| 846 | vm_map_copy_t copy; |
| 847 | |
| 848 | if (map == VM_MAP_NULL || |
| 849 | count > VM_MAP_ENTRY_MAX) { |
| 850 | return KERN_INVALID_ARGUMENT; |
| 851 | } |
| 852 | |
| 853 | error = KERN_SUCCESS; |
| 854 | for (i = 0; i < count; i++) { |
| 855 | vm_map_address_t map_addr; |
| 856 | vm_map_size_t map_size; |
| 857 | |
| 858 | map_addr = (vm_map_address_t)(data_list[i].address); |
| 859 | map_size = (vm_map_size_t)(data_list[i].size); |
| 860 | |
| 861 | if (map_size != 0) { |
| 862 | error = vm_map_copyin(src_map: map, |
| 863 | src_addr: map_addr, |
| 864 | len: map_size, |
| 865 | FALSE, /* src_destroy */ |
| 866 | copy_result: ©); |
| 867 | if (KERN_SUCCESS == error) { |
| 868 | error = vm_map_copyout(dst_map: current_task()->map, |
| 869 | dst_addr: &map_addr, |
| 870 | copy); |
| 871 | if (KERN_SUCCESS == error) { |
| 872 | data_list[i].address = |
| 873 | CAST_DOWN(vm_offset_t, map_addr); |
| 874 | continue; |
| 875 | } |
| 876 | vm_map_copy_discard(copy); |
| 877 | } |
| 878 | } |
| 879 | data_list[i].address = (mach_vm_address_t)0; |
| 880 | data_list[i].size = (mach_vm_size_t)0; |
| 881 | } |
| 882 | return error; |
| 883 | } |
| 884 | |
| 885 | /* |
| 886 | * mach_vm_read_overwrite - |
| 887 | * Overwrite a range of the current map with data from the specified |
| 888 | * map/address range. |
| 889 | * |
| 890 | * In making an assumption that the current thread is local, it is |
| 891 | * no longer cluster-safe without a fully supportive local proxy |
| 892 | * thread/task (but we don't support cluster's anymore so this is moot). |
| 893 | */ |
| 894 | |
| 895 | kern_return_t |
| 896 | mach_vm_read_overwrite( |
| 897 | vm_map_t map, |
| 898 | mach_vm_address_t address, |
| 899 | mach_vm_size_t size, |
| 900 | mach_vm_address_t data, |
| 901 | mach_vm_size_t *data_size) |
| 902 | { |
| 903 | kern_return_t error; |
| 904 | vm_map_copy_t copy; |
| 905 | |
| 906 | if (map == VM_MAP_NULL) { |
| 907 | return KERN_INVALID_ARGUMENT; |
| 908 | } |
| 909 | |
| 910 | error = vm_map_copyin(src_map: map, src_addr: (vm_map_address_t)address, |
| 911 | len: (vm_map_size_t)size, FALSE, copy_result: ©); |
| 912 | |
| 913 | if (KERN_SUCCESS == error) { |
| 914 | if (copy) { |
| 915 | assertf(copy->size == (vm_map_size_t) size, "Req size: 0x%llx, Copy size: 0x%llx\n" , (uint64_t) size, (uint64_t) copy->size); |
| 916 | } |
| 917 | |
| 918 | error = vm_map_copy_overwrite(dst_map: current_thread()->map, |
| 919 | dst_addr: (vm_map_address_t)data, |
| 920 | copy, copy_size: (vm_map_size_t) size, FALSE); |
| 921 | if (KERN_SUCCESS == error) { |
| 922 | *data_size = size; |
| 923 | return error; |
| 924 | } |
| 925 | vm_map_copy_discard(copy); |
| 926 | } |
| 927 | return error; |
| 928 | } |
| 929 | |
| 930 | /* |
| 931 | * vm_read_overwrite - |
| 932 | * Overwrite a range of the current map with data from the specified |
| 933 | * map/address range. |
| 934 | * |
| 935 | * This routine adds the additional limitation that the source and |
| 936 | * destination ranges must be describable with vm_address_t values |
| 937 | * (i.e. the same size address spaces as the kernel, or at least the |
| 938 | * the ranges are in that first portion of the respective address |
| 939 | * spaces). |
| 940 | */ |
| 941 | |
| 942 | kern_return_t |
| 943 | vm_read_overwrite( |
| 944 | vm_map_t map, |
| 945 | vm_address_t address, |
| 946 | vm_size_t size, |
| 947 | vm_address_t data, |
| 948 | vm_size_t *data_size) |
| 949 | { |
| 950 | kern_return_t error; |
| 951 | vm_map_copy_t copy; |
| 952 | |
| 953 | if (map == VM_MAP_NULL) { |
| 954 | return KERN_INVALID_ARGUMENT; |
| 955 | } |
| 956 | |
| 957 | error = vm_map_copyin(src_map: map, src_addr: (vm_map_address_t)address, |
| 958 | len: (vm_map_size_t)size, FALSE, copy_result: ©); |
| 959 | |
| 960 | if (KERN_SUCCESS == error) { |
| 961 | if (copy) { |
| 962 | assertf(copy->size == (vm_map_size_t) size, "Req size: 0x%llx, Copy size: 0x%llx\n" , (uint64_t) size, (uint64_t) copy->size); |
| 963 | } |
| 964 | |
| 965 | error = vm_map_copy_overwrite(dst_map: current_thread()->map, |
| 966 | dst_addr: (vm_map_address_t)data, |
| 967 | copy, copy_size: (vm_map_size_t) size, FALSE); |
| 968 | if (KERN_SUCCESS == error) { |
| 969 | *data_size = size; |
| 970 | return error; |
| 971 | } |
| 972 | vm_map_copy_discard(copy); |
| 973 | } |
| 974 | return error; |
| 975 | } |
| 976 | |
| 977 | |
| 978 | /* |
| 979 | * mach_vm_write - |
| 980 | * Overwrite the specified address range with the data provided |
| 981 | * (from the current map). |
| 982 | */ |
| 983 | kern_return_t |
| 984 | mach_vm_write( |
| 985 | vm_map_t map, |
| 986 | mach_vm_address_t address, |
| 987 | pointer_t data, |
| 988 | mach_msg_type_number_t size) |
| 989 | { |
| 990 | if (map == VM_MAP_NULL) { |
| 991 | return KERN_INVALID_ARGUMENT; |
| 992 | } |
| 993 | |
| 994 | return vm_map_copy_overwrite(dst_map: map, dst_addr: (vm_map_address_t)address, |
| 995 | copy: (vm_map_copy_t) data, copy_size: size, FALSE /* interruptible XXX */); |
| 996 | } |
| 997 | |
| 998 | /* |
| 999 | * vm_write - |
| 1000 | * Overwrite the specified address range with the data provided |
| 1001 | * (from the current map). |
| 1002 | * |
| 1003 | * The addressability of the range of addresses to overwrite is |
| 1004 | * limited bu the use of a vm_address_t (same size as kernel map). |
| 1005 | * Either the target map is also small, or the range is in the |
| 1006 | * low addresses within it. |
| 1007 | */ |
| 1008 | kern_return_t |
| 1009 | vm_write( |
| 1010 | vm_map_t map, |
| 1011 | vm_address_t address, |
| 1012 | pointer_t data, |
| 1013 | mach_msg_type_number_t size) |
| 1014 | { |
| 1015 | if (map == VM_MAP_NULL) { |
| 1016 | return KERN_INVALID_ARGUMENT; |
| 1017 | } |
| 1018 | |
| 1019 | return vm_map_copy_overwrite(dst_map: map, dst_addr: (vm_map_address_t)address, |
| 1020 | copy: (vm_map_copy_t) data, copy_size: size, FALSE /* interruptible XXX */); |
| 1021 | } |
| 1022 | |
| 1023 | /* |
| 1024 | * mach_vm_copy - |
| 1025 | * Overwrite one range of the specified map with the contents of |
| 1026 | * another range within that same map (i.e. both address ranges |
| 1027 | * are "over there"). |
| 1028 | */ |
| 1029 | kern_return_t |
| 1030 | mach_vm_copy( |
| 1031 | vm_map_t map, |
| 1032 | mach_vm_address_t source_address, |
| 1033 | mach_vm_size_t size, |
| 1034 | mach_vm_address_t dest_address) |
| 1035 | { |
| 1036 | vm_map_copy_t copy; |
| 1037 | kern_return_t kr; |
| 1038 | |
| 1039 | if (map == VM_MAP_NULL) { |
| 1040 | return KERN_INVALID_ARGUMENT; |
| 1041 | } |
| 1042 | |
| 1043 | kr = vm_map_copyin(src_map: map, src_addr: (vm_map_address_t)source_address, |
| 1044 | len: (vm_map_size_t)size, FALSE, copy_result: ©); |
| 1045 | |
| 1046 | if (KERN_SUCCESS == kr) { |
| 1047 | if (copy) { |
| 1048 | assertf(copy->size == (vm_map_size_t) size, "Req size: 0x%llx, Copy size: 0x%llx\n" , (uint64_t) size, (uint64_t) copy->size); |
| 1049 | } |
| 1050 | |
| 1051 | kr = vm_map_copy_overwrite(dst_map: map, |
| 1052 | dst_addr: (vm_map_address_t)dest_address, |
| 1053 | copy, copy_size: (vm_map_size_t) size, FALSE /* interruptible XXX */); |
| 1054 | |
| 1055 | if (KERN_SUCCESS != kr) { |
| 1056 | vm_map_copy_discard(copy); |
| 1057 | } |
| 1058 | } |
| 1059 | return kr; |
| 1060 | } |
| 1061 | |
| 1062 | kern_return_t |
| 1063 | vm_copy( |
| 1064 | vm_map_t map, |
| 1065 | vm_address_t source_address, |
| 1066 | vm_size_t size, |
| 1067 | vm_address_t dest_address) |
| 1068 | { |
| 1069 | vm_map_copy_t copy; |
| 1070 | kern_return_t kr; |
| 1071 | |
| 1072 | if (map == VM_MAP_NULL) { |
| 1073 | return KERN_INVALID_ARGUMENT; |
| 1074 | } |
| 1075 | |
| 1076 | kr = vm_map_copyin(src_map: map, src_addr: (vm_map_address_t)source_address, |
| 1077 | len: (vm_map_size_t)size, FALSE, copy_result: ©); |
| 1078 | |
| 1079 | if (KERN_SUCCESS == kr) { |
| 1080 | if (copy) { |
| 1081 | assertf(copy->size == (vm_map_size_t) size, "Req size: 0x%llx, Copy size: 0x%llx\n" , (uint64_t) size, (uint64_t) copy->size); |
| 1082 | } |
| 1083 | |
| 1084 | kr = vm_map_copy_overwrite(dst_map: map, |
| 1085 | dst_addr: (vm_map_address_t)dest_address, |
| 1086 | copy, copy_size: (vm_map_size_t) size, FALSE /* interruptible XXX */); |
| 1087 | |
| 1088 | if (KERN_SUCCESS != kr) { |
| 1089 | vm_map_copy_discard(copy); |
| 1090 | } |
| 1091 | } |
| 1092 | return kr; |
| 1093 | } |
| 1094 | |
| 1095 | /* |
| 1096 | * mach_vm_map - |
| 1097 | * Map some range of an object into an address space. |
| 1098 | * |
| 1099 | * The object can be one of several types of objects: |
| 1100 | * NULL - anonymous memory |
| 1101 | * a named entry - a range within another address space |
| 1102 | * or a range within a memory object |
| 1103 | * a whole memory object |
| 1104 | * |
| 1105 | */ |
| 1106 | kern_return_t |
| 1107 | mach_vm_map_external( |
| 1108 | vm_map_t target_map, |
| 1109 | mach_vm_offset_t *address, |
| 1110 | mach_vm_size_t initial_size, |
| 1111 | mach_vm_offset_t mask, |
| 1112 | int flags, |
| 1113 | ipc_port_t port, |
| 1114 | vm_object_offset_t offset, |
| 1115 | boolean_t copy, |
| 1116 | vm_prot_t cur_protection, |
| 1117 | vm_prot_t max_protection, |
| 1118 | vm_inherit_t inheritance) |
| 1119 | { |
| 1120 | vm_map_kernel_flags_t vmk_flags = VM_MAP_KERNEL_FLAGS_NONE; |
| 1121 | |
| 1122 | /* filter out any kernel-only flags */ |
| 1123 | if (flags & ~VM_FLAGS_USER_MAP) { |
| 1124 | return KERN_INVALID_ARGUMENT; |
| 1125 | } |
| 1126 | |
| 1127 | vm_map_kernel_flags_set_vmflags(vmk_flags: &vmk_flags, vm_flags_and_tag: flags); |
| 1128 | /* range_id is set by mach_vm_map_kernel */ |
| 1129 | return mach_vm_map_kernel(target_map, address, initial_size, mask, |
| 1130 | vmk_flags, port, offset, copy, |
| 1131 | cur_protection, max_protection, |
| 1132 | inheritance); |
| 1133 | } |
| 1134 | |
| 1135 | kern_return_t |
| 1136 | mach_vm_map_kernel( |
| 1137 | vm_map_t target_map, |
| 1138 | mach_vm_offset_t *address, |
| 1139 | mach_vm_size_t initial_size, |
| 1140 | mach_vm_offset_t mask, |
| 1141 | vm_map_kernel_flags_t vmk_flags, |
| 1142 | ipc_port_t port, |
| 1143 | vm_object_offset_t offset, |
| 1144 | boolean_t copy, |
| 1145 | vm_prot_t cur_protection, |
| 1146 | vm_prot_t max_protection, |
| 1147 | vm_inherit_t inheritance) |
| 1148 | { |
| 1149 | kern_return_t kr; |
| 1150 | vm_map_offset_t vmmaddr; |
| 1151 | |
| 1152 | vmmaddr = (vm_map_offset_t) *address; |
| 1153 | |
| 1154 | /* filter out any kernel-only flags */ |
| 1155 | if (!vm_map_kernel_flags_check_vmflags(vmk_flags, VM_FLAGS_USER_MAP)) { |
| 1156 | return KERN_INVALID_ARGUMENT; |
| 1157 | } |
| 1158 | |
| 1159 | /* range_id is set by vm_map_enter_mem_object */ |
| 1160 | kr = vm_map_enter_mem_object(map: target_map, |
| 1161 | address: &vmmaddr, |
| 1162 | size: initial_size, |
| 1163 | mask, |
| 1164 | vmk_flags, |
| 1165 | port, |
| 1166 | offset, |
| 1167 | needs_copy: copy, |
| 1168 | cur_protection, |
| 1169 | max_protection, |
| 1170 | inheritance); |
| 1171 | |
| 1172 | #if KASAN |
| 1173 | if (kr == KERN_SUCCESS && target_map->pmap == kernel_pmap) { |
| 1174 | kasan_notify_address(vmmaddr, initial_size); |
| 1175 | } |
| 1176 | #endif |
| 1177 | |
| 1178 | *address = vmmaddr; |
| 1179 | return kr; |
| 1180 | } |
| 1181 | |
| 1182 | |
| 1183 | /* legacy interface */ |
| 1184 | __attribute__((always_inline)) |
| 1185 | kern_return_t |
| 1186 | vm_map_64_external( |
| 1187 | vm_map_t target_map, |
| 1188 | vm_offset_t *address, |
| 1189 | vm_size_t size, |
| 1190 | vm_offset_t mask, |
| 1191 | int flags, |
| 1192 | ipc_port_t port, |
| 1193 | vm_object_offset_t offset, |
| 1194 | boolean_t copy, |
| 1195 | vm_prot_t cur_protection, |
| 1196 | vm_prot_t max_protection, |
| 1197 | vm_inherit_t inheritance) |
| 1198 | { |
| 1199 | static_assert(sizeof(vm_offset_t) == sizeof(mach_vm_offset_t)); |
| 1200 | |
| 1201 | return mach_vm_map_external(target_map, address: (mach_vm_offset_t *)address, |
| 1202 | initial_size: size, mask, flags, port, offset, copy, |
| 1203 | cur_protection, max_protection, inheritance); |
| 1204 | } |
| 1205 | |
| 1206 | /* temporary, until world build */ |
| 1207 | __attribute__((always_inline)) |
| 1208 | kern_return_t |
| 1209 | vm_map_external( |
| 1210 | vm_map_t target_map, |
| 1211 | vm_offset_t *address, |
| 1212 | vm_size_t size, |
| 1213 | vm_offset_t mask, |
| 1214 | int flags, |
| 1215 | ipc_port_t port, |
| 1216 | vm_offset_t offset, |
| 1217 | boolean_t copy, |
| 1218 | vm_prot_t cur_protection, |
| 1219 | vm_prot_t max_protection, |
| 1220 | vm_inherit_t inheritance) |
| 1221 | { |
| 1222 | static_assert(sizeof(vm_offset_t) == sizeof(mach_vm_offset_t)); |
| 1223 | |
| 1224 | return mach_vm_map_external(target_map, address: (mach_vm_offset_t *)address, |
| 1225 | initial_size: size, mask, flags, port, offset, copy, |
| 1226 | cur_protection, max_protection, inheritance); |
| 1227 | } |
| 1228 | |
| 1229 | /* |
| 1230 | * mach_vm_remap_new - |
| 1231 | * Behaves like mach_vm_remap, except that VM_FLAGS_RETURN_DATA_ADDR is always set |
| 1232 | * and {cur,max}_protection are in/out. |
| 1233 | */ |
| 1234 | kern_return_t |
| 1235 | mach_vm_remap_new_external( |
| 1236 | vm_map_t target_map, |
| 1237 | mach_vm_offset_t *address, |
| 1238 | mach_vm_size_t size, |
| 1239 | mach_vm_offset_t mask, |
| 1240 | int flags, |
| 1241 | mach_port_t src_tport, |
| 1242 | mach_vm_offset_t memory_address, |
| 1243 | boolean_t copy, |
| 1244 | vm_prot_t *cur_protection, /* IN/OUT */ |
| 1245 | vm_prot_t *max_protection, /* IN/OUT */ |
| 1246 | vm_inherit_t inheritance) |
| 1247 | { |
| 1248 | vm_map_kernel_flags_t vmk_flags = VM_MAP_KERNEL_FLAGS_NONE; |
| 1249 | vm_map_t src_map; |
| 1250 | kern_return_t kr; |
| 1251 | |
| 1252 | /* filter out any kernel-only flags */ |
| 1253 | if (flags & ~VM_FLAGS_USER_REMAP) { |
| 1254 | return KERN_INVALID_ARGUMENT; |
| 1255 | } |
| 1256 | |
| 1257 | vm_map_kernel_flags_set_vmflags(vmk_flags: &vmk_flags, |
| 1258 | vm_flags_and_tag: flags | VM_FLAGS_RETURN_DATA_ADDR); |
| 1259 | |
| 1260 | if (target_map == VM_MAP_NULL) { |
| 1261 | return KERN_INVALID_ARGUMENT; |
| 1262 | } |
| 1263 | |
| 1264 | if ((*cur_protection & ~VM_PROT_ALL) || |
| 1265 | (*max_protection & ~VM_PROT_ALL) || |
| 1266 | (*cur_protection & *max_protection) != *cur_protection) { |
| 1267 | return KERN_INVALID_ARGUMENT; |
| 1268 | } |
| 1269 | if ((*max_protection & (VM_PROT_WRITE | VM_PROT_EXECUTE)) == |
| 1270 | (VM_PROT_WRITE | VM_PROT_EXECUTE)) { |
| 1271 | /* |
| 1272 | * XXX FBDP TODO |
| 1273 | * enforce target's "wx" policies |
| 1274 | */ |
| 1275 | return KERN_PROTECTION_FAILURE; |
| 1276 | } |
| 1277 | |
| 1278 | if (copy || *max_protection == VM_PROT_READ || *max_protection == VM_PROT_NONE) { |
| 1279 | src_map = convert_port_to_map_read(port: src_tport); |
| 1280 | } else { |
| 1281 | src_map = convert_port_to_map(port: src_tport); |
| 1282 | } |
| 1283 | |
| 1284 | if (src_map == VM_MAP_NULL) { |
| 1285 | return KERN_INVALID_ARGUMENT; |
| 1286 | } |
| 1287 | |
| 1288 | static_assert(sizeof(mach_vm_offset_t) == sizeof(vm_map_address_t)); |
| 1289 | |
| 1290 | /* range_id is set by vm_map_remap */ |
| 1291 | kr = vm_map_remap(target_map, |
| 1292 | address, |
| 1293 | size, |
| 1294 | mask, |
| 1295 | vmk_flags, |
| 1296 | src_map, |
| 1297 | memory_address, |
| 1298 | copy, |
| 1299 | cur_protection, /* IN/OUT */ |
| 1300 | max_protection, /* IN/OUT */ |
| 1301 | inheritance); |
| 1302 | |
| 1303 | vm_map_deallocate(map: src_map); |
| 1304 | |
| 1305 | if (kr == KERN_SUCCESS) { |
| 1306 | ipc_port_release_send(port: src_tport); /* consume on success */ |
| 1307 | } |
| 1308 | return kr; |
| 1309 | } |
| 1310 | |
| 1311 | /* |
| 1312 | * mach_vm_remap - |
| 1313 | * Remap a range of memory from one task into another, |
| 1314 | * to another address range within the same task, or |
| 1315 | * over top of itself (with altered permissions and/or |
| 1316 | * as an in-place copy of itself). |
| 1317 | */ |
| 1318 | kern_return_t |
| 1319 | mach_vm_remap_external( |
| 1320 | vm_map_t target_map, |
| 1321 | mach_vm_offset_t *address, |
| 1322 | mach_vm_size_t size, |
| 1323 | mach_vm_offset_t mask, |
| 1324 | int flags, |
| 1325 | vm_map_t src_map, |
| 1326 | mach_vm_offset_t memory_address, |
| 1327 | boolean_t copy, |
| 1328 | vm_prot_t *cur_protection, /* OUT */ |
| 1329 | vm_prot_t *max_protection, /* OUT */ |
| 1330 | vm_inherit_t inheritance) |
| 1331 | { |
| 1332 | vm_tag_t tag; |
| 1333 | VM_GET_FLAGS_ALIAS(flags, tag); |
| 1334 | |
| 1335 | return mach_vm_remap_kernel(target_map, address, size, mask, flags, tag, src_map, memory_address, |
| 1336 | copy, cur_protection, max_protection, inheritance); |
| 1337 | } |
| 1338 | |
| 1339 | static kern_return_t |
| 1340 | mach_vm_remap_kernel_helper( |
| 1341 | vm_map_t target_map, |
| 1342 | mach_vm_offset_t *address, |
| 1343 | mach_vm_size_t size, |
| 1344 | mach_vm_offset_t mask, |
| 1345 | int flags, |
| 1346 | vm_tag_t tag, |
| 1347 | vm_map_t src_map, |
| 1348 | mach_vm_offset_t memory_address, |
| 1349 | boolean_t copy, |
| 1350 | vm_prot_t *cur_protection, /* IN/OUT */ |
| 1351 | vm_prot_t *max_protection, /* IN/OUT */ |
| 1352 | vm_inherit_t inheritance) |
| 1353 | { |
| 1354 | vm_map_kernel_flags_t vmk_flags = VM_MAP_KERNEL_FLAGS_NONE; |
| 1355 | kern_return_t kr; |
| 1356 | |
| 1357 | if (VM_MAP_NULL == target_map || VM_MAP_NULL == src_map) { |
| 1358 | return KERN_INVALID_ARGUMENT; |
| 1359 | } |
| 1360 | |
| 1361 | /* filter out any kernel-only flags */ |
| 1362 | if (flags & ~VM_FLAGS_USER_REMAP) { |
| 1363 | return KERN_INVALID_ARGUMENT; |
| 1364 | } |
| 1365 | |
| 1366 | vm_map_kernel_flags_set_vmflags(vmk_flags: &vmk_flags, vm_flags: flags, vm_tag: tag); |
| 1367 | |
| 1368 | static_assert(sizeof(mach_vm_offset_t) == sizeof(vm_map_address_t)); |
| 1369 | |
| 1370 | /* range_id is set by vm_map_remap */ |
| 1371 | kr = vm_map_remap(target_map, |
| 1372 | address, |
| 1373 | size, |
| 1374 | mask, |
| 1375 | vmk_flags, |
| 1376 | src_map, |
| 1377 | memory_address, |
| 1378 | copy, |
| 1379 | cur_protection, /* IN/OUT */ |
| 1380 | max_protection, /* IN/OUT */ |
| 1381 | inheritance); |
| 1382 | |
| 1383 | #if KASAN |
| 1384 | if (kr == KERN_SUCCESS && target_map->pmap == kernel_pmap) { |
| 1385 | kasan_notify_address(*address, size); |
| 1386 | } |
| 1387 | #endif |
| 1388 | return kr; |
| 1389 | } |
| 1390 | |
| 1391 | kern_return_t |
| 1392 | mach_vm_remap_kernel( |
| 1393 | vm_map_t target_map, |
| 1394 | mach_vm_offset_t *address, |
| 1395 | mach_vm_size_t size, |
| 1396 | mach_vm_offset_t mask, |
| 1397 | int flags, |
| 1398 | vm_tag_t tag, |
| 1399 | vm_map_t src_map, |
| 1400 | mach_vm_offset_t memory_address, |
| 1401 | boolean_t copy, |
| 1402 | vm_prot_t *cur_protection, /* OUT */ |
| 1403 | vm_prot_t *max_protection, /* OUT */ |
| 1404 | vm_inherit_t inheritance) |
| 1405 | { |
| 1406 | *cur_protection = VM_PROT_NONE; |
| 1407 | *max_protection = VM_PROT_NONE; |
| 1408 | |
| 1409 | return mach_vm_remap_kernel_helper(target_map, |
| 1410 | address, |
| 1411 | size, |
| 1412 | mask, |
| 1413 | flags, |
| 1414 | tag, |
| 1415 | src_map, |
| 1416 | memory_address, |
| 1417 | copy, |
| 1418 | cur_protection, |
| 1419 | max_protection, |
| 1420 | inheritance); |
| 1421 | } |
| 1422 | |
| 1423 | kern_return_t |
| 1424 | mach_vm_remap_new_kernel( |
| 1425 | vm_map_t target_map, |
| 1426 | mach_vm_offset_t *address, |
| 1427 | mach_vm_size_t size, |
| 1428 | mach_vm_offset_t mask, |
| 1429 | int flags, |
| 1430 | vm_tag_t tag, |
| 1431 | vm_map_t src_map, |
| 1432 | mach_vm_offset_t memory_address, |
| 1433 | boolean_t copy, |
| 1434 | vm_prot_t *cur_protection, /* IN/OUT */ |
| 1435 | vm_prot_t *max_protection, /* IN/OUT */ |
| 1436 | vm_inherit_t inheritance) |
| 1437 | { |
| 1438 | if ((*cur_protection & ~VM_PROT_ALL) || |
| 1439 | (*max_protection & ~VM_PROT_ALL) || |
| 1440 | (*cur_protection & *max_protection) != *cur_protection) { |
| 1441 | return KERN_INVALID_ARGUMENT; |
| 1442 | } |
| 1443 | |
| 1444 | flags |= VM_FLAGS_RETURN_DATA_ADDR; |
| 1445 | |
| 1446 | return mach_vm_remap_kernel_helper(target_map, |
| 1447 | address, |
| 1448 | size, |
| 1449 | mask, |
| 1450 | flags, |
| 1451 | tag, |
| 1452 | src_map, |
| 1453 | memory_address, |
| 1454 | copy, |
| 1455 | cur_protection, |
| 1456 | max_protection, |
| 1457 | inheritance); |
| 1458 | } |
| 1459 | |
| 1460 | /* |
| 1461 | * vm_remap_new - |
| 1462 | * Behaves like vm_remap, except that VM_FLAGS_RETURN_DATA_ADDR is always set |
| 1463 | * and {cur,max}_protection are in/out. |
| 1464 | */ |
| 1465 | kern_return_t |
| 1466 | vm_remap_new_external( |
| 1467 | vm_map_t target_map, |
| 1468 | vm_offset_t *address, |
| 1469 | vm_size_t size, |
| 1470 | vm_offset_t mask, |
| 1471 | int flags, |
| 1472 | mach_port_t src_tport, |
| 1473 | vm_offset_t memory_address, |
| 1474 | boolean_t copy, |
| 1475 | vm_prot_t *cur_protection, /* IN/OUT */ |
| 1476 | vm_prot_t *max_protection, /* IN/OUT */ |
| 1477 | vm_inherit_t inheritance) |
| 1478 | { |
| 1479 | static_assert(sizeof(vm_map_offset_t) == sizeof(vm_offset_t)); |
| 1480 | |
| 1481 | return mach_vm_remap_new_external(target_map, |
| 1482 | address: (vm_map_offset_t *)address, |
| 1483 | size, |
| 1484 | mask, |
| 1485 | flags, |
| 1486 | src_tport, |
| 1487 | memory_address, |
| 1488 | copy, |
| 1489 | cur_protection, /* IN/OUT */ |
| 1490 | max_protection, /* IN/OUT */ |
| 1491 | inheritance); |
| 1492 | } |
| 1493 | |
| 1494 | /* |
| 1495 | * vm_remap - |
| 1496 | * Remap a range of memory from one task into another, |
| 1497 | * to another address range within the same task, or |
| 1498 | * over top of itself (with altered permissions and/or |
| 1499 | * as an in-place copy of itself). |
| 1500 | * |
| 1501 | * The addressability of the source and target address |
| 1502 | * range is limited by the size of vm_address_t (in the |
| 1503 | * kernel context). |
| 1504 | */ |
| 1505 | kern_return_t |
| 1506 | vm_remap_external( |
| 1507 | vm_map_t target_map, |
| 1508 | vm_offset_t *address, |
| 1509 | vm_size_t size, |
| 1510 | vm_offset_t mask, |
| 1511 | int flags, |
| 1512 | vm_map_t src_map, |
| 1513 | vm_offset_t memory_address, |
| 1514 | boolean_t copy, |
| 1515 | vm_prot_t *cur_protection, /* OUT */ |
| 1516 | vm_prot_t *max_protection, /* OUT */ |
| 1517 | vm_inherit_t inheritance) |
| 1518 | { |
| 1519 | static_assert(sizeof(vm_offset_t) == sizeof(mach_vm_offset_t)); |
| 1520 | |
| 1521 | return mach_vm_remap_external(target_map, address: (mach_vm_offset_t *)address, |
| 1522 | size, mask, flags, src_map, memory_address, copy, |
| 1523 | cur_protection, max_protection, inheritance); |
| 1524 | } |
| 1525 | |
| 1526 | /* |
| 1527 | * NOTE: these routine (and this file) will no longer require mach_host_server.h |
| 1528 | * when mach_vm_wire and vm_wire are changed to use ledgers. |
| 1529 | */ |
| 1530 | #include <mach/mach_host_server.h> |
| 1531 | /* |
| 1532 | * mach_vm_wire |
| 1533 | * Specify that the range of the virtual address space |
| 1534 | * of the target task must not cause page faults for |
| 1535 | * the indicated accesses. |
| 1536 | * |
| 1537 | * [ To unwire the pages, specify VM_PROT_NONE. ] |
| 1538 | */ |
| 1539 | kern_return_t |
| 1540 | mach_vm_wire_external( |
| 1541 | host_priv_t host_priv, |
| 1542 | vm_map_t map, |
| 1543 | mach_vm_offset_t start, |
| 1544 | mach_vm_size_t size, |
| 1545 | vm_prot_t access) |
| 1546 | { |
| 1547 | if (host_priv == HOST_PRIV_NULL) { |
| 1548 | return KERN_INVALID_HOST; |
| 1549 | } |
| 1550 | |
| 1551 | return mach_vm_wire_kernel(map, start, size, access, VM_KERN_MEMORY_MLOCK); |
| 1552 | } |
| 1553 | |
| 1554 | kern_return_t |
| 1555 | mach_vm_wire_kernel( |
| 1556 | vm_map_t map, |
| 1557 | mach_vm_offset_t start, |
| 1558 | mach_vm_size_t size, |
| 1559 | vm_prot_t access, |
| 1560 | vm_tag_t tag) |
| 1561 | { |
| 1562 | kern_return_t rc; |
| 1563 | |
| 1564 | if (map == VM_MAP_NULL) { |
| 1565 | return KERN_INVALID_TASK; |
| 1566 | } |
| 1567 | |
| 1568 | if (access & ~VM_PROT_ALL || (start + size < start)) { |
| 1569 | return KERN_INVALID_ARGUMENT; |
| 1570 | } |
| 1571 | |
| 1572 | if (access != VM_PROT_NONE) { |
| 1573 | rc = vm_map_wire_kernel(map, |
| 1574 | vm_map_trunc_page(start, |
| 1575 | VM_MAP_PAGE_MASK(map)), |
| 1576 | vm_map_round_page(start + size, |
| 1577 | VM_MAP_PAGE_MASK(map)), |
| 1578 | access_type: access, tag, |
| 1579 | TRUE); |
| 1580 | } else { |
| 1581 | rc = vm_map_unwire(map, |
| 1582 | vm_map_trunc_page(start, |
| 1583 | VM_MAP_PAGE_MASK(map)), |
| 1584 | vm_map_round_page(start + size, |
| 1585 | VM_MAP_PAGE_MASK(map)), |
| 1586 | TRUE); |
| 1587 | } |
| 1588 | return rc; |
| 1589 | } |
| 1590 | |
| 1591 | /* |
| 1592 | * vm_wire - |
| 1593 | * Specify that the range of the virtual address space |
| 1594 | * of the target task must not cause page faults for |
| 1595 | * the indicated accesses. |
| 1596 | * |
| 1597 | * [ To unwire the pages, specify VM_PROT_NONE. ] |
| 1598 | */ |
| 1599 | kern_return_t |
| 1600 | vm_wire( |
| 1601 | host_priv_t host_priv, |
| 1602 | vm_map_t map, |
| 1603 | vm_offset_t start, |
| 1604 | vm_size_t size, |
| 1605 | vm_prot_t access) |
| 1606 | { |
| 1607 | kern_return_t rc; |
| 1608 | |
| 1609 | if (host_priv == HOST_PRIV_NULL) { |
| 1610 | return KERN_INVALID_HOST; |
| 1611 | } |
| 1612 | |
| 1613 | if (map == VM_MAP_NULL) { |
| 1614 | return KERN_INVALID_TASK; |
| 1615 | } |
| 1616 | |
| 1617 | if ((access & ~VM_PROT_ALL) || (start + size < start)) { |
| 1618 | return KERN_INVALID_ARGUMENT; |
| 1619 | } |
| 1620 | |
| 1621 | if (size == 0) { |
| 1622 | rc = KERN_SUCCESS; |
| 1623 | } else if (access != VM_PROT_NONE) { |
| 1624 | rc = vm_map_wire_kernel(map, |
| 1625 | vm_map_trunc_page(start, |
| 1626 | VM_MAP_PAGE_MASK(map)), |
| 1627 | vm_map_round_page(start + size, |
| 1628 | VM_MAP_PAGE_MASK(map)), |
| 1629 | access_type: access, VM_KERN_MEMORY_OSFMK, |
| 1630 | TRUE); |
| 1631 | } else { |
| 1632 | rc = vm_map_unwire(map, |
| 1633 | vm_map_trunc_page(start, |
| 1634 | VM_MAP_PAGE_MASK(map)), |
| 1635 | vm_map_round_page(start + size, |
| 1636 | VM_MAP_PAGE_MASK(map)), |
| 1637 | TRUE); |
| 1638 | } |
| 1639 | return rc; |
| 1640 | } |
| 1641 | |
| 1642 | /* |
| 1643 | * vm_msync |
| 1644 | * |
| 1645 | * Synchronises the memory range specified with its backing store |
| 1646 | * image by either flushing or cleaning the contents to the appropriate |
| 1647 | * memory manager. |
| 1648 | * |
| 1649 | * interpretation of sync_flags |
| 1650 | * VM_SYNC_INVALIDATE - discard pages, only return precious |
| 1651 | * pages to manager. |
| 1652 | * |
| 1653 | * VM_SYNC_INVALIDATE & (VM_SYNC_SYNCHRONOUS | VM_SYNC_ASYNCHRONOUS) |
| 1654 | * - discard pages, write dirty or precious |
| 1655 | * pages back to memory manager. |
| 1656 | * |
| 1657 | * VM_SYNC_SYNCHRONOUS | VM_SYNC_ASYNCHRONOUS |
| 1658 | * - write dirty or precious pages back to |
| 1659 | * the memory manager. |
| 1660 | * |
| 1661 | * VM_SYNC_CONTIGUOUS - does everything normally, but if there |
| 1662 | * is a hole in the region, and we would |
| 1663 | * have returned KERN_SUCCESS, return |
| 1664 | * KERN_INVALID_ADDRESS instead. |
| 1665 | * |
| 1666 | * RETURNS |
| 1667 | * KERN_INVALID_TASK Bad task parameter |
| 1668 | * KERN_INVALID_ARGUMENT both sync and async were specified. |
| 1669 | * KERN_SUCCESS The usual. |
| 1670 | * KERN_INVALID_ADDRESS There was a hole in the region. |
| 1671 | */ |
| 1672 | |
| 1673 | kern_return_t |
| 1674 | mach_vm_msync( |
| 1675 | vm_map_t map, |
| 1676 | mach_vm_address_t address, |
| 1677 | mach_vm_size_t size, |
| 1678 | vm_sync_t sync_flags) |
| 1679 | { |
| 1680 | if (map == VM_MAP_NULL) { |
| 1681 | return KERN_INVALID_TASK; |
| 1682 | } |
| 1683 | |
| 1684 | return vm_map_msync(map, address: (vm_map_address_t)address, |
| 1685 | size: (vm_map_size_t)size, sync_flags); |
| 1686 | } |
| 1687 | |
| 1688 | /* |
| 1689 | * vm_msync |
| 1690 | * |
| 1691 | * Synchronises the memory range specified with its backing store |
| 1692 | * image by either flushing or cleaning the contents to the appropriate |
| 1693 | * memory manager. |
| 1694 | * |
| 1695 | * interpretation of sync_flags |
| 1696 | * VM_SYNC_INVALIDATE - discard pages, only return precious |
| 1697 | * pages to manager. |
| 1698 | * |
| 1699 | * VM_SYNC_INVALIDATE & (VM_SYNC_SYNCHRONOUS | VM_SYNC_ASYNCHRONOUS) |
| 1700 | * - discard pages, write dirty or precious |
| 1701 | * pages back to memory manager. |
| 1702 | * |
| 1703 | * VM_SYNC_SYNCHRONOUS | VM_SYNC_ASYNCHRONOUS |
| 1704 | * - write dirty or precious pages back to |
| 1705 | * the memory manager. |
| 1706 | * |
| 1707 | * VM_SYNC_CONTIGUOUS - does everything normally, but if there |
| 1708 | * is a hole in the region, and we would |
| 1709 | * have returned KERN_SUCCESS, return |
| 1710 | * KERN_INVALID_ADDRESS instead. |
| 1711 | * |
| 1712 | * The addressability of the range is limited to that which can |
| 1713 | * be described by a vm_address_t. |
| 1714 | * |
| 1715 | * RETURNS |
| 1716 | * KERN_INVALID_TASK Bad task parameter |
| 1717 | * KERN_INVALID_ARGUMENT both sync and async were specified. |
| 1718 | * KERN_SUCCESS The usual. |
| 1719 | * KERN_INVALID_ADDRESS There was a hole in the region. |
| 1720 | */ |
| 1721 | |
| 1722 | kern_return_t |
| 1723 | vm_msync( |
| 1724 | vm_map_t map, |
| 1725 | vm_address_t address, |
| 1726 | vm_size_t size, |
| 1727 | vm_sync_t sync_flags) |
| 1728 | { |
| 1729 | if (map == VM_MAP_NULL) { |
| 1730 | return KERN_INVALID_TASK; |
| 1731 | } |
| 1732 | |
| 1733 | return vm_map_msync(map, address: (vm_map_address_t)address, |
| 1734 | size: (vm_map_size_t)size, sync_flags); |
| 1735 | } |
| 1736 | |
| 1737 | |
| 1738 | int |
| 1739 | vm_toggle_entry_reuse(int toggle, int *old_value) |
| 1740 | { |
| 1741 | vm_map_t map = current_map(); |
| 1742 | |
| 1743 | assert(!map->is_nested_map); |
| 1744 | if (toggle == VM_TOGGLE_GETVALUE && old_value != NULL) { |
| 1745 | *old_value = map->disable_vmentry_reuse; |
| 1746 | } else if (toggle == VM_TOGGLE_SET) { |
| 1747 | vm_map_entry_t map_to_entry; |
| 1748 | |
| 1749 | vm_map_lock(map); |
| 1750 | vm_map_disable_hole_optimization(map); |
| 1751 | map->disable_vmentry_reuse = TRUE; |
| 1752 | __IGNORE_WCASTALIGN(map_to_entry = vm_map_to_entry(map)); |
| 1753 | if (map->first_free == map_to_entry) { |
| 1754 | map->highest_entry_end = vm_map_min(map); |
| 1755 | } else { |
| 1756 | map->highest_entry_end = map->first_free->vme_end; |
| 1757 | } |
| 1758 | vm_map_unlock(map); |
| 1759 | } else if (toggle == VM_TOGGLE_CLEAR) { |
| 1760 | vm_map_lock(map); |
| 1761 | map->disable_vmentry_reuse = FALSE; |
| 1762 | vm_map_unlock(map); |
| 1763 | } else { |
| 1764 | return KERN_INVALID_ARGUMENT; |
| 1765 | } |
| 1766 | |
| 1767 | return KERN_SUCCESS; |
| 1768 | } |
| 1769 | |
| 1770 | /* |
| 1771 | * mach_vm_behavior_set |
| 1772 | * |
| 1773 | * Sets the paging behavior attribute for the specified range |
| 1774 | * in the specified map. |
| 1775 | * |
| 1776 | * This routine will fail with KERN_INVALID_ADDRESS if any address |
| 1777 | * in [start,start+size) is not a valid allocated memory region. |
| 1778 | */ |
| 1779 | kern_return_t |
| 1780 | mach_vm_behavior_set( |
| 1781 | vm_map_t map, |
| 1782 | mach_vm_offset_t start, |
| 1783 | mach_vm_size_t size, |
| 1784 | vm_behavior_t new_behavior) |
| 1785 | { |
| 1786 | vm_map_offset_t align_mask; |
| 1787 | |
| 1788 | if ((map == VM_MAP_NULL) || (start + size < start)) { |
| 1789 | return KERN_INVALID_ARGUMENT; |
| 1790 | } |
| 1791 | |
| 1792 | if (size == 0) { |
| 1793 | return KERN_SUCCESS; |
| 1794 | } |
| 1795 | |
| 1796 | switch (new_behavior) { |
| 1797 | case VM_BEHAVIOR_REUSABLE: |
| 1798 | case VM_BEHAVIOR_REUSE: |
| 1799 | case VM_BEHAVIOR_CAN_REUSE: |
| 1800 | case VM_BEHAVIOR_ZERO: |
| 1801 | /* |
| 1802 | * Align to the hardware page size, to allow |
| 1803 | * malloc() to maximize the amount of re-usability, |
| 1804 | * even on systems with larger software page size. |
| 1805 | */ |
| 1806 | align_mask = PAGE_MASK; |
| 1807 | break; |
| 1808 | default: |
| 1809 | align_mask = VM_MAP_PAGE_MASK(map); |
| 1810 | break; |
| 1811 | } |
| 1812 | |
| 1813 | return vm_map_behavior_set(map, |
| 1814 | vm_map_trunc_page(start, align_mask), |
| 1815 | vm_map_round_page(start + size, align_mask), |
| 1816 | new_behavior); |
| 1817 | } |
| 1818 | |
| 1819 | /* |
| 1820 | * vm_behavior_set |
| 1821 | * |
| 1822 | * Sets the paging behavior attribute for the specified range |
| 1823 | * in the specified map. |
| 1824 | * |
| 1825 | * This routine will fail with KERN_INVALID_ADDRESS if any address |
| 1826 | * in [start,start+size) is not a valid allocated memory region. |
| 1827 | * |
| 1828 | * This routine is potentially limited in addressibility by the |
| 1829 | * use of vm_offset_t (if the map provided is larger than the |
| 1830 | * kernel's). |
| 1831 | */ |
| 1832 | kern_return_t |
| 1833 | vm_behavior_set( |
| 1834 | vm_map_t map, |
| 1835 | vm_offset_t start, |
| 1836 | vm_size_t size, |
| 1837 | vm_behavior_t new_behavior) |
| 1838 | { |
| 1839 | if (start + size < start) { |
| 1840 | return KERN_INVALID_ARGUMENT; |
| 1841 | } |
| 1842 | |
| 1843 | return mach_vm_behavior_set(map, |
| 1844 | start: (mach_vm_offset_t) start, |
| 1845 | size: (mach_vm_size_t) size, |
| 1846 | new_behavior); |
| 1847 | } |
| 1848 | |
| 1849 | /* |
| 1850 | * mach_vm_region: |
| 1851 | * |
| 1852 | * User call to obtain information about a region in |
| 1853 | * a task's address map. Currently, only one flavor is |
| 1854 | * supported. |
| 1855 | * |
| 1856 | * XXX The reserved and behavior fields cannot be filled |
| 1857 | * in until the vm merge from the IK is completed, and |
| 1858 | * vm_reserve is implemented. |
| 1859 | * |
| 1860 | * XXX Dependency: syscall_vm_region() also supports only one flavor. |
| 1861 | */ |
| 1862 | |
| 1863 | kern_return_t |
| 1864 | mach_vm_region( |
| 1865 | vm_map_t map, |
| 1866 | mach_vm_offset_t *address, /* IN/OUT */ |
| 1867 | mach_vm_size_t *size, /* OUT */ |
| 1868 | vm_region_flavor_t flavor, /* IN */ |
| 1869 | vm_region_info_t info, /* OUT */ |
| 1870 | mach_msg_type_number_t *count, /* IN/OUT */ |
| 1871 | mach_port_t *object_name) /* OUT */ |
| 1872 | { |
| 1873 | vm_map_offset_t map_addr; |
| 1874 | vm_map_size_t map_size; |
| 1875 | kern_return_t kr; |
| 1876 | |
| 1877 | if (VM_MAP_NULL == map) { |
| 1878 | return KERN_INVALID_ARGUMENT; |
| 1879 | } |
| 1880 | |
| 1881 | map_addr = (vm_map_offset_t)*address; |
| 1882 | map_size = (vm_map_size_t)*size; |
| 1883 | |
| 1884 | /* legacy conversion */ |
| 1885 | if (VM_REGION_BASIC_INFO == flavor) { |
| 1886 | flavor = VM_REGION_BASIC_INFO_64; |
| 1887 | } |
| 1888 | |
| 1889 | kr = vm_map_region(map, |
| 1890 | address: &map_addr, size: &map_size, |
| 1891 | flavor, info, count, |
| 1892 | object_name); |
| 1893 | |
| 1894 | *address = map_addr; |
| 1895 | *size = map_size; |
| 1896 | return kr; |
| 1897 | } |
| 1898 | |
| 1899 | /* |
| 1900 | * vm_region_64 and vm_region: |
| 1901 | * |
| 1902 | * User call to obtain information about a region in |
| 1903 | * a task's address map. Currently, only one flavor is |
| 1904 | * supported. |
| 1905 | * |
| 1906 | * XXX The reserved and behavior fields cannot be filled |
| 1907 | * in until the vm merge from the IK is completed, and |
| 1908 | * vm_reserve is implemented. |
| 1909 | * |
| 1910 | * XXX Dependency: syscall_vm_region() also supports only one flavor. |
| 1911 | */ |
| 1912 | |
| 1913 | kern_return_t |
| 1914 | vm_region_64( |
| 1915 | vm_map_t map, |
| 1916 | vm_offset_t *address, /* IN/OUT */ |
| 1917 | vm_size_t *size, /* OUT */ |
| 1918 | vm_region_flavor_t flavor, /* IN */ |
| 1919 | vm_region_info_t info, /* OUT */ |
| 1920 | mach_msg_type_number_t *count, /* IN/OUT */ |
| 1921 | mach_port_t *object_name) /* OUT */ |
| 1922 | { |
| 1923 | vm_map_offset_t map_addr; |
| 1924 | vm_map_size_t map_size; |
| 1925 | kern_return_t kr; |
| 1926 | |
| 1927 | if (VM_MAP_NULL == map) { |
| 1928 | return KERN_INVALID_ARGUMENT; |
| 1929 | } |
| 1930 | |
| 1931 | map_addr = (vm_map_offset_t)*address; |
| 1932 | map_size = (vm_map_size_t)*size; |
| 1933 | |
| 1934 | /* legacy conversion */ |
| 1935 | if (VM_REGION_BASIC_INFO == flavor) { |
| 1936 | flavor = VM_REGION_BASIC_INFO_64; |
| 1937 | } |
| 1938 | |
| 1939 | kr = vm_map_region(map, |
| 1940 | address: &map_addr, size: &map_size, |
| 1941 | flavor, info, count, |
| 1942 | object_name); |
| 1943 | |
| 1944 | *address = CAST_DOWN(vm_offset_t, map_addr); |
| 1945 | *size = CAST_DOWN(vm_size_t, map_size); |
| 1946 | |
| 1947 | if (KERN_SUCCESS == kr && map_addr + map_size > VM_MAX_ADDRESS) { |
| 1948 | return KERN_INVALID_ADDRESS; |
| 1949 | } |
| 1950 | return kr; |
| 1951 | } |
| 1952 | |
| 1953 | kern_return_t |
| 1954 | vm_region( |
| 1955 | vm_map_t map, |
| 1956 | vm_address_t *address, /* IN/OUT */ |
| 1957 | vm_size_t *size, /* OUT */ |
| 1958 | vm_region_flavor_t flavor, /* IN */ |
| 1959 | vm_region_info_t info, /* OUT */ |
| 1960 | mach_msg_type_number_t *count, /* IN/OUT */ |
| 1961 | mach_port_t *object_name) /* OUT */ |
| 1962 | { |
| 1963 | vm_map_address_t map_addr; |
| 1964 | vm_map_size_t map_size; |
| 1965 | kern_return_t kr; |
| 1966 | |
| 1967 | if (VM_MAP_NULL == map) { |
| 1968 | return KERN_INVALID_ARGUMENT; |
| 1969 | } |
| 1970 | |
| 1971 | map_addr = (vm_map_address_t)*address; |
| 1972 | map_size = (vm_map_size_t)*size; |
| 1973 | |
| 1974 | kr = vm_map_region(map, |
| 1975 | address: &map_addr, size: &map_size, |
| 1976 | flavor, info, count, |
| 1977 | object_name); |
| 1978 | |
| 1979 | *address = CAST_DOWN(vm_address_t, map_addr); |
| 1980 | *size = CAST_DOWN(vm_size_t, map_size); |
| 1981 | |
| 1982 | if (KERN_SUCCESS == kr && map_addr + map_size > VM_MAX_ADDRESS) { |
| 1983 | return KERN_INVALID_ADDRESS; |
| 1984 | } |
| 1985 | return kr; |
| 1986 | } |
| 1987 | |
| 1988 | /* |
| 1989 | * vm_region_recurse: A form of vm_region which follows the |
| 1990 | * submaps in a target map |
| 1991 | * |
| 1992 | */ |
| 1993 | kern_return_t |
| 1994 | mach_vm_region_recurse( |
| 1995 | vm_map_t map, |
| 1996 | mach_vm_address_t *address, |
| 1997 | mach_vm_size_t *size, |
| 1998 | uint32_t *depth, |
| 1999 | vm_region_recurse_info_t info, |
| 2000 | mach_msg_type_number_t *infoCnt) |
| 2001 | { |
| 2002 | vm_map_address_t map_addr; |
| 2003 | vm_map_size_t map_size; |
| 2004 | kern_return_t kr; |
| 2005 | |
| 2006 | if (VM_MAP_NULL == map) { |
| 2007 | return KERN_INVALID_ARGUMENT; |
| 2008 | } |
| 2009 | |
| 2010 | map_addr = (vm_map_address_t)*address; |
| 2011 | map_size = (vm_map_size_t)*size; |
| 2012 | |
| 2013 | kr = vm_map_region_recurse_64( |
| 2014 | map, |
| 2015 | address: &map_addr, |
| 2016 | size: &map_size, |
| 2017 | nesting_depth: depth, |
| 2018 | info: (vm_region_submap_info_64_t)info, |
| 2019 | count: infoCnt); |
| 2020 | |
| 2021 | *address = map_addr; |
| 2022 | *size = map_size; |
| 2023 | return kr; |
| 2024 | } |
| 2025 | |
| 2026 | /* |
| 2027 | * vm_region_recurse: A form of vm_region which follows the |
| 2028 | * submaps in a target map |
| 2029 | * |
| 2030 | */ |
| 2031 | kern_return_t |
| 2032 | vm_region_recurse_64( |
| 2033 | vm_map_t map, |
| 2034 | vm_address_t *address, |
| 2035 | vm_size_t *size, |
| 2036 | uint32_t *depth, |
| 2037 | vm_region_recurse_info_64_t info, |
| 2038 | mach_msg_type_number_t *infoCnt) |
| 2039 | { |
| 2040 | vm_map_address_t map_addr; |
| 2041 | vm_map_size_t map_size; |
| 2042 | kern_return_t kr; |
| 2043 | |
| 2044 | if (VM_MAP_NULL == map) { |
| 2045 | return KERN_INVALID_ARGUMENT; |
| 2046 | } |
| 2047 | |
| 2048 | map_addr = (vm_map_address_t)*address; |
| 2049 | map_size = (vm_map_size_t)*size; |
| 2050 | |
| 2051 | kr = vm_map_region_recurse_64( |
| 2052 | map, |
| 2053 | address: &map_addr, |
| 2054 | size: &map_size, |
| 2055 | nesting_depth: depth, |
| 2056 | info: (vm_region_submap_info_64_t)info, |
| 2057 | count: infoCnt); |
| 2058 | |
| 2059 | *address = CAST_DOWN(vm_address_t, map_addr); |
| 2060 | *size = CAST_DOWN(vm_size_t, map_size); |
| 2061 | |
| 2062 | if (KERN_SUCCESS == kr && map_addr + map_size > VM_MAX_ADDRESS) { |
| 2063 | return KERN_INVALID_ADDRESS; |
| 2064 | } |
| 2065 | return kr; |
| 2066 | } |
| 2067 | |
| 2068 | kern_return_t |
| 2069 | vm_region_recurse( |
| 2070 | vm_map_t map, |
| 2071 | vm_offset_t *address, /* IN/OUT */ |
| 2072 | vm_size_t *size, /* OUT */ |
| 2073 | natural_t *depth, /* IN/OUT */ |
| 2074 | vm_region_recurse_info_t info32, /* IN/OUT */ |
| 2075 | mach_msg_type_number_t *infoCnt) /* IN/OUT */ |
| 2076 | { |
| 2077 | vm_region_submap_info_data_64_t info64; |
| 2078 | vm_region_submap_info_t info; |
| 2079 | vm_map_address_t map_addr; |
| 2080 | vm_map_size_t map_size; |
| 2081 | kern_return_t kr; |
| 2082 | |
| 2083 | if (VM_MAP_NULL == map || *infoCnt < VM_REGION_SUBMAP_INFO_COUNT) { |
| 2084 | return KERN_INVALID_ARGUMENT; |
| 2085 | } |
| 2086 | |
| 2087 | |
| 2088 | map_addr = (vm_map_address_t)*address; |
| 2089 | map_size = (vm_map_size_t)*size; |
| 2090 | info = (vm_region_submap_info_t)info32; |
| 2091 | *infoCnt = VM_REGION_SUBMAP_INFO_COUNT_64; |
| 2092 | |
| 2093 | kr = vm_map_region_recurse_64(map, address: &map_addr, size: &map_size, |
| 2094 | nesting_depth: depth, info: &info64, count: infoCnt); |
| 2095 | |
| 2096 | info->protection = info64.protection; |
| 2097 | info->max_protection = info64.max_protection; |
| 2098 | info->inheritance = info64.inheritance; |
| 2099 | info->offset = (uint32_t)info64.offset; /* trouble-maker */ |
| 2100 | info->user_tag = info64.user_tag; |
| 2101 | info->pages_resident = info64.pages_resident; |
| 2102 | info->pages_shared_now_private = info64.pages_shared_now_private; |
| 2103 | info->pages_swapped_out = info64.pages_swapped_out; |
| 2104 | info->pages_dirtied = info64.pages_dirtied; |
| 2105 | info->ref_count = info64.ref_count; |
| 2106 | info->shadow_depth = info64.shadow_depth; |
| 2107 | info->external_pager = info64.external_pager; |
| 2108 | info->share_mode = info64.share_mode; |
| 2109 | info->is_submap = info64.is_submap; |
| 2110 | info->behavior = info64.behavior; |
| 2111 | info->object_id = info64.object_id; |
| 2112 | info->user_wired_count = info64.user_wired_count; |
| 2113 | |
| 2114 | *address = CAST_DOWN(vm_address_t, map_addr); |
| 2115 | *size = CAST_DOWN(vm_size_t, map_size); |
| 2116 | *infoCnt = VM_REGION_SUBMAP_INFO_COUNT; |
| 2117 | |
| 2118 | if (KERN_SUCCESS == kr && map_addr + map_size > VM_MAX_ADDRESS) { |
| 2119 | return KERN_INVALID_ADDRESS; |
| 2120 | } |
| 2121 | return kr; |
| 2122 | } |
| 2123 | |
| 2124 | kern_return_t |
| 2125 | mach_vm_purgable_control( |
| 2126 | vm_map_t map, |
| 2127 | mach_vm_offset_t address, |
| 2128 | vm_purgable_t control, |
| 2129 | int *state) |
| 2130 | { |
| 2131 | if (VM_MAP_NULL == map) { |
| 2132 | return KERN_INVALID_ARGUMENT; |
| 2133 | } |
| 2134 | |
| 2135 | if (control == VM_PURGABLE_SET_STATE_FROM_KERNEL) { |
| 2136 | /* not allowed from user-space */ |
| 2137 | return KERN_INVALID_ARGUMENT; |
| 2138 | } |
| 2139 | |
| 2140 | return vm_map_purgable_control(map, |
| 2141 | vm_map_trunc_page(address, VM_MAP_PAGE_MASK(map)), |
| 2142 | control, |
| 2143 | state); |
| 2144 | } |
| 2145 | |
| 2146 | kern_return_t |
| 2147 | mach_vm_purgable_control_external( |
| 2148 | mach_port_t target_tport, |
| 2149 | mach_vm_offset_t address, |
| 2150 | vm_purgable_t control, |
| 2151 | int *state) |
| 2152 | { |
| 2153 | vm_map_t map; |
| 2154 | kern_return_t kr; |
| 2155 | |
| 2156 | if (control == VM_PURGABLE_GET_STATE) { |
| 2157 | map = convert_port_to_map_read(port: target_tport); |
| 2158 | } else { |
| 2159 | map = convert_port_to_map(port: target_tport); |
| 2160 | } |
| 2161 | |
| 2162 | kr = mach_vm_purgable_control(map, address, control, state); |
| 2163 | vm_map_deallocate(map); |
| 2164 | |
| 2165 | return kr; |
| 2166 | } |
| 2167 | |
| 2168 | kern_return_t |
| 2169 | vm_purgable_control( |
| 2170 | vm_map_t map, |
| 2171 | vm_offset_t address, |
| 2172 | vm_purgable_t control, |
| 2173 | int *state) |
| 2174 | { |
| 2175 | if (VM_MAP_NULL == map) { |
| 2176 | return KERN_INVALID_ARGUMENT; |
| 2177 | } |
| 2178 | |
| 2179 | if (control == VM_PURGABLE_SET_STATE_FROM_KERNEL) { |
| 2180 | /* not allowed from user-space */ |
| 2181 | return KERN_INVALID_ARGUMENT; |
| 2182 | } |
| 2183 | |
| 2184 | return vm_map_purgable_control(map, |
| 2185 | vm_map_trunc_page(address, VM_MAP_PAGE_MASK(map)), |
| 2186 | control, |
| 2187 | state); |
| 2188 | } |
| 2189 | |
| 2190 | kern_return_t |
| 2191 | vm_purgable_control_external( |
| 2192 | mach_port_t target_tport, |
| 2193 | vm_offset_t address, |
| 2194 | vm_purgable_t control, |
| 2195 | int *state) |
| 2196 | { |
| 2197 | vm_map_t map; |
| 2198 | kern_return_t kr; |
| 2199 | |
| 2200 | if (control == VM_PURGABLE_GET_STATE) { |
| 2201 | map = convert_port_to_map_read(port: target_tport); |
| 2202 | } else { |
| 2203 | map = convert_port_to_map(port: target_tport); |
| 2204 | } |
| 2205 | |
| 2206 | kr = vm_purgable_control(map, address, control, state); |
| 2207 | vm_map_deallocate(map); |
| 2208 | |
| 2209 | return kr; |
| 2210 | } |
| 2211 | |
| 2212 | |
| 2213 | /* |
| 2214 | * Ordinarily, the right to allocate CPM is restricted |
| 2215 | * to privileged applications (those that can gain access |
| 2216 | * to the host priv port). Set this variable to zero if |
| 2217 | * you want to let any application allocate CPM. |
| 2218 | */ |
| 2219 | unsigned int vm_allocate_cpm_privileged = 0; |
| 2220 | |
| 2221 | /* |
| 2222 | * Allocate memory in the specified map, with the caveat that |
| 2223 | * the memory is physically contiguous. This call may fail |
| 2224 | * if the system can't find sufficient contiguous memory. |
| 2225 | * This call may cause or lead to heart-stopping amounts of |
| 2226 | * paging activity. |
| 2227 | * |
| 2228 | * Memory obtained from this call should be freed in the |
| 2229 | * normal way, viz., via vm_deallocate. |
| 2230 | */ |
| 2231 | kern_return_t |
| 2232 | vm_allocate_cpm( |
| 2233 | host_priv_t host_priv, |
| 2234 | vm_map_t map, |
| 2235 | vm_address_t *addr, |
| 2236 | vm_size_t size, |
| 2237 | int flags) |
| 2238 | { |
| 2239 | vm_map_address_t map_addr; |
| 2240 | vm_map_size_t map_size; |
| 2241 | kern_return_t kr; |
| 2242 | vm_map_kernel_flags_t vmk_flags = VM_MAP_KERNEL_FLAGS_NONE; |
| 2243 | |
| 2244 | if (vm_allocate_cpm_privileged && HOST_PRIV_NULL == host_priv) { |
| 2245 | return KERN_INVALID_HOST; |
| 2246 | } |
| 2247 | |
| 2248 | if (VM_MAP_NULL == map) { |
| 2249 | return KERN_INVALID_ARGUMENT; |
| 2250 | } |
| 2251 | |
| 2252 | map_addr = (vm_map_address_t)*addr; |
| 2253 | map_size = (vm_map_size_t)size; |
| 2254 | |
| 2255 | vm_map_kernel_flags_set_vmflags(vmk_flags: &vmk_flags, vm_flags_and_tag: flags); |
| 2256 | vm_map_kernel_flags_update_range_id(flags: &vmk_flags, map); |
| 2257 | |
| 2258 | kr = vm_map_enter_cpm(map, addr: &map_addr, size: map_size, vmk_flags); |
| 2259 | |
| 2260 | *addr = CAST_DOWN(vm_address_t, map_addr); |
| 2261 | return kr; |
| 2262 | } |
| 2263 | |
| 2264 | |
| 2265 | kern_return_t |
| 2266 | mach_vm_page_query( |
| 2267 | vm_map_t map, |
| 2268 | mach_vm_offset_t offset, |
| 2269 | int *disposition, |
| 2270 | int *ref_count) |
| 2271 | { |
| 2272 | if (VM_MAP_NULL == map) { |
| 2273 | return KERN_INVALID_ARGUMENT; |
| 2274 | } |
| 2275 | |
| 2276 | return vm_map_page_query_internal( |
| 2277 | map, |
| 2278 | vm_map_trunc_page(offset, PAGE_MASK), |
| 2279 | disposition, ref_count); |
| 2280 | } |
| 2281 | |
| 2282 | kern_return_t |
| 2283 | vm_map_page_query( |
| 2284 | vm_map_t map, |
| 2285 | vm_offset_t offset, |
| 2286 | int *disposition, |
| 2287 | int *ref_count) |
| 2288 | { |
| 2289 | if (VM_MAP_NULL == map) { |
| 2290 | return KERN_INVALID_ARGUMENT; |
| 2291 | } |
| 2292 | |
| 2293 | return vm_map_page_query_internal( |
| 2294 | map, |
| 2295 | vm_map_trunc_page(offset, PAGE_MASK), |
| 2296 | disposition, ref_count); |
| 2297 | } |
| 2298 | |
| 2299 | kern_return_t |
| 2300 | mach_vm_page_range_query( |
| 2301 | vm_map_t map, |
| 2302 | mach_vm_offset_t address, |
| 2303 | mach_vm_size_t size, |
| 2304 | mach_vm_address_t dispositions_addr, |
| 2305 | mach_vm_size_t *dispositions_count) |
| 2306 | { |
| 2307 | kern_return_t kr = KERN_SUCCESS; |
| 2308 | int num_pages = 0, i = 0; |
| 2309 | mach_vm_size_t curr_sz = 0, copy_sz = 0; |
| 2310 | mach_vm_size_t disp_buf_req_size = 0, disp_buf_total_size = 0; |
| 2311 | mach_msg_type_number_t count = 0; |
| 2312 | |
| 2313 | void *info = NULL; |
| 2314 | void *local_disp = NULL; |
| 2315 | vm_map_size_t info_size = 0, local_disp_size = 0; |
| 2316 | mach_vm_offset_t start = 0, end = 0; |
| 2317 | int effective_page_shift, effective_page_size, effective_page_mask; |
| 2318 | |
| 2319 | if (map == VM_MAP_NULL || dispositions_count == NULL) { |
| 2320 | return KERN_INVALID_ARGUMENT; |
| 2321 | } |
| 2322 | |
| 2323 | effective_page_shift = vm_self_region_page_shift_safely(target_map: map); |
| 2324 | if (effective_page_shift == -1) { |
| 2325 | return KERN_INVALID_ARGUMENT; |
| 2326 | } |
| 2327 | effective_page_size = (1 << effective_page_shift); |
| 2328 | effective_page_mask = effective_page_size - 1; |
| 2329 | |
| 2330 | if (os_mul_overflow(*dispositions_count, sizeof(int), &disp_buf_req_size)) { |
| 2331 | return KERN_INVALID_ARGUMENT; |
| 2332 | } |
| 2333 | |
| 2334 | start = vm_map_trunc_page(address, effective_page_mask); |
| 2335 | end = vm_map_round_page(address + size, effective_page_mask); |
| 2336 | |
| 2337 | if (end < start) { |
| 2338 | return KERN_INVALID_ARGUMENT; |
| 2339 | } |
| 2340 | |
| 2341 | if ((end - start) < size) { |
| 2342 | /* |
| 2343 | * Aligned size is less than unaligned size. |
| 2344 | */ |
| 2345 | return KERN_INVALID_ARGUMENT; |
| 2346 | } |
| 2347 | |
| 2348 | if (disp_buf_req_size == 0 || (end == start)) { |
| 2349 | return KERN_SUCCESS; |
| 2350 | } |
| 2351 | |
| 2352 | /* |
| 2353 | * For large requests, we will go through them |
| 2354 | * MAX_PAGE_RANGE_QUERY chunk at a time. |
| 2355 | */ |
| 2356 | |
| 2357 | curr_sz = MIN(end - start, MAX_PAGE_RANGE_QUERY); |
| 2358 | num_pages = (int) (curr_sz >> effective_page_shift); |
| 2359 | |
| 2360 | info_size = num_pages * sizeof(vm_page_info_basic_data_t); |
| 2361 | info = kalloc_data(info_size, Z_WAITOK); |
| 2362 | |
| 2363 | local_disp_size = num_pages * sizeof(int); |
| 2364 | local_disp = kalloc_data(local_disp_size, Z_WAITOK); |
| 2365 | |
| 2366 | if (info == NULL || local_disp == NULL) { |
| 2367 | kr = KERN_RESOURCE_SHORTAGE; |
| 2368 | goto out; |
| 2369 | } |
| 2370 | |
| 2371 | while (size) { |
| 2372 | count = VM_PAGE_INFO_BASIC_COUNT; |
| 2373 | kr = vm_map_page_range_info_internal( |
| 2374 | map, |
| 2375 | start_offset: start, |
| 2376 | vm_map_round_page(start + curr_sz, effective_page_mask), |
| 2377 | effective_page_shift, |
| 2378 | VM_PAGE_INFO_BASIC, |
| 2379 | info: (vm_page_info_t) info, |
| 2380 | count: &count); |
| 2381 | |
| 2382 | assert(kr == KERN_SUCCESS); |
| 2383 | |
| 2384 | for (i = 0; i < num_pages; i++) { |
| 2385 | ((int*)local_disp)[i] = ((vm_page_info_basic_t)info)[i].disposition; |
| 2386 | } |
| 2387 | |
| 2388 | copy_sz = MIN(disp_buf_req_size, num_pages * sizeof(int) /* an int per page */); |
| 2389 | kr = copyout(local_disp, (mach_vm_address_t)dispositions_addr, copy_sz); |
| 2390 | |
| 2391 | start += curr_sz; |
| 2392 | disp_buf_req_size -= copy_sz; |
| 2393 | disp_buf_total_size += copy_sz; |
| 2394 | |
| 2395 | if (kr != 0) { |
| 2396 | break; |
| 2397 | } |
| 2398 | |
| 2399 | if ((disp_buf_req_size == 0) || (curr_sz >= size)) { |
| 2400 | /* |
| 2401 | * We might have inspected the full range OR |
| 2402 | * more than it esp. if the user passed in |
| 2403 | * non-page aligned start/size and/or if we |
| 2404 | * descended into a submap. We are done here. |
| 2405 | */ |
| 2406 | |
| 2407 | size = 0; |
| 2408 | } else { |
| 2409 | dispositions_addr += copy_sz; |
| 2410 | |
| 2411 | size -= curr_sz; |
| 2412 | |
| 2413 | curr_sz = MIN(vm_map_round_page(size, effective_page_mask), MAX_PAGE_RANGE_QUERY); |
| 2414 | num_pages = (int)(curr_sz >> effective_page_shift); |
| 2415 | } |
| 2416 | } |
| 2417 | |
| 2418 | *dispositions_count = disp_buf_total_size / sizeof(int); |
| 2419 | |
| 2420 | out: |
| 2421 | kfree_data(local_disp, local_disp_size); |
| 2422 | kfree_data(info, info_size); |
| 2423 | return kr; |
| 2424 | } |
| 2425 | |
| 2426 | kern_return_t |
| 2427 | mach_vm_page_info( |
| 2428 | vm_map_t map, |
| 2429 | mach_vm_address_t address, |
| 2430 | vm_page_info_flavor_t flavor, |
| 2431 | vm_page_info_t info, |
| 2432 | mach_msg_type_number_t *count) |
| 2433 | { |
| 2434 | kern_return_t kr; |
| 2435 | |
| 2436 | if (map == VM_MAP_NULL) { |
| 2437 | return KERN_INVALID_ARGUMENT; |
| 2438 | } |
| 2439 | |
| 2440 | kr = vm_map_page_info(map, offset: address, flavor, info, count); |
| 2441 | return kr; |
| 2442 | } |
| 2443 | |
| 2444 | /* map a (whole) upl into an address space */ |
| 2445 | kern_return_t |
| 2446 | vm_upl_map( |
| 2447 | vm_map_t map, |
| 2448 | upl_t upl, |
| 2449 | vm_address_t *dst_addr) |
| 2450 | { |
| 2451 | vm_map_offset_t map_addr; |
| 2452 | kern_return_t kr; |
| 2453 | |
| 2454 | if (VM_MAP_NULL == map) { |
| 2455 | return KERN_INVALID_ARGUMENT; |
| 2456 | } |
| 2457 | |
| 2458 | kr = vm_map_enter_upl(map, upl, dst_addr: &map_addr); |
| 2459 | *dst_addr = CAST_DOWN(vm_address_t, map_addr); |
| 2460 | return kr; |
| 2461 | } |
| 2462 | |
| 2463 | kern_return_t |
| 2464 | vm_upl_unmap( |
| 2465 | vm_map_t map, |
| 2466 | upl_t upl) |
| 2467 | { |
| 2468 | if (VM_MAP_NULL == map) { |
| 2469 | return KERN_INVALID_ARGUMENT; |
| 2470 | } |
| 2471 | |
| 2472 | return vm_map_remove_upl(map, upl); |
| 2473 | } |
| 2474 | |
| 2475 | /* map a part of a upl into an address space with requested protection. */ |
| 2476 | kern_return_t |
| 2477 | vm_upl_map_range( |
| 2478 | vm_map_t map, |
| 2479 | upl_t upl, |
| 2480 | vm_offset_t offset_to_map, |
| 2481 | vm_size_t size_to_map, |
| 2482 | vm_prot_t prot_to_map, |
| 2483 | vm_address_t *dst_addr) |
| 2484 | { |
| 2485 | vm_map_offset_t map_addr, aligned_offset_to_map, adjusted_offset; |
| 2486 | kern_return_t kr; |
| 2487 | |
| 2488 | if (VM_MAP_NULL == map) { |
| 2489 | return KERN_INVALID_ARGUMENT; |
| 2490 | } |
| 2491 | aligned_offset_to_map = VM_MAP_TRUNC_PAGE(offset_to_map, VM_MAP_PAGE_MASK(map)); |
| 2492 | adjusted_offset = offset_to_map - aligned_offset_to_map; |
| 2493 | size_to_map = VM_MAP_ROUND_PAGE(size_to_map + adjusted_offset, VM_MAP_PAGE_MASK(map)); |
| 2494 | |
| 2495 | kr = vm_map_enter_upl_range(map, upl, offset: aligned_offset_to_map, size: size_to_map, prot: prot_to_map, dst_addr: &map_addr); |
| 2496 | *dst_addr = CAST_DOWN(vm_address_t, (map_addr + adjusted_offset)); |
| 2497 | return kr; |
| 2498 | } |
| 2499 | |
| 2500 | /* unmap a part of a upl that was mapped in the address space. */ |
| 2501 | kern_return_t |
| 2502 | vm_upl_unmap_range( |
| 2503 | vm_map_t map, |
| 2504 | upl_t upl, |
| 2505 | vm_offset_t offset_to_unmap, |
| 2506 | vm_size_t size_to_unmap) |
| 2507 | { |
| 2508 | vm_map_offset_t aligned_offset_to_unmap, page_offset; |
| 2509 | |
| 2510 | if (VM_MAP_NULL == map) { |
| 2511 | return KERN_INVALID_ARGUMENT; |
| 2512 | } |
| 2513 | |
| 2514 | aligned_offset_to_unmap = VM_MAP_TRUNC_PAGE(offset_to_unmap, VM_MAP_PAGE_MASK(map)); |
| 2515 | page_offset = offset_to_unmap - aligned_offset_to_unmap; |
| 2516 | size_to_unmap = VM_MAP_ROUND_PAGE(size_to_unmap + page_offset, VM_MAP_PAGE_MASK(map)); |
| 2517 | |
| 2518 | return vm_map_remove_upl_range(map, upl, offset: aligned_offset_to_unmap, size: size_to_unmap); |
| 2519 | } |
| 2520 | |
| 2521 | /* Retrieve a upl for an object underlying an address range in a map */ |
| 2522 | |
| 2523 | kern_return_t |
| 2524 | vm_map_get_upl( |
| 2525 | vm_map_t map, |
| 2526 | vm_map_offset_t map_offset, |
| 2527 | upl_size_t *upl_size, |
| 2528 | upl_t *upl, |
| 2529 | upl_page_info_array_t page_list, |
| 2530 | unsigned int *count, |
| 2531 | upl_control_flags_t *flags, |
| 2532 | vm_tag_t tag, |
| 2533 | int force_data_sync) |
| 2534 | { |
| 2535 | upl_control_flags_t map_flags; |
| 2536 | kern_return_t kr; |
| 2537 | |
| 2538 | if (VM_MAP_NULL == map) { |
| 2539 | return KERN_INVALID_ARGUMENT; |
| 2540 | } |
| 2541 | |
| 2542 | map_flags = *flags & ~UPL_NOZEROFILL; |
| 2543 | if (force_data_sync) { |
| 2544 | map_flags |= UPL_FORCE_DATA_SYNC; |
| 2545 | } |
| 2546 | |
| 2547 | kr = vm_map_create_upl(map, |
| 2548 | offset: map_offset, |
| 2549 | upl_size, |
| 2550 | upl, |
| 2551 | page_list, |
| 2552 | count, |
| 2553 | flags: &map_flags, |
| 2554 | tag); |
| 2555 | |
| 2556 | *flags = (map_flags & ~UPL_FORCE_DATA_SYNC); |
| 2557 | return kr; |
| 2558 | } |
| 2559 | |
| 2560 | /* |
| 2561 | * mach_make_memory_entry_64 |
| 2562 | * |
| 2563 | * Think of it as a two-stage vm_remap() operation. First |
| 2564 | * you get a handle. Second, you get map that handle in |
| 2565 | * somewhere else. Rather than doing it all at once (and |
| 2566 | * without needing access to the other whole map). |
| 2567 | */ |
| 2568 | kern_return_t |
| 2569 | mach_make_memory_entry_64( |
| 2570 | vm_map_t target_map, |
| 2571 | memory_object_size_t *size, |
| 2572 | memory_object_offset_t offset, |
| 2573 | vm_prot_t permission, |
| 2574 | ipc_port_t *object_handle, |
| 2575 | ipc_port_t parent_handle) |
| 2576 | { |
| 2577 | vm_named_entry_kernel_flags_t vmne_kflags; |
| 2578 | |
| 2579 | if ((permission & MAP_MEM_FLAGS_MASK) & ~MAP_MEM_FLAGS_USER) { |
| 2580 | /* |
| 2581 | * Unknown flag: reject for forward compatibility. |
| 2582 | */ |
| 2583 | return KERN_INVALID_VALUE; |
| 2584 | } |
| 2585 | |
| 2586 | vmne_kflags = VM_NAMED_ENTRY_KERNEL_FLAGS_NONE; |
| 2587 | if (permission & MAP_MEM_LEDGER_TAGGED) { |
| 2588 | vmne_kflags.vmnekf_ledger_tag = VM_LEDGER_TAG_DEFAULT; |
| 2589 | } |
| 2590 | return mach_make_memory_entry_internal(target_map, |
| 2591 | size, |
| 2592 | offset, |
| 2593 | permission, |
| 2594 | vmne_kflags, |
| 2595 | object_handle, |
| 2596 | parent_handle); |
| 2597 | } |
| 2598 | |
| 2599 | kern_return_t |
| 2600 | mach_make_memory_entry_internal( |
| 2601 | vm_map_t target_map, |
| 2602 | memory_object_size_t *size, |
| 2603 | memory_object_offset_t offset, |
| 2604 | vm_prot_t permission, |
| 2605 | vm_named_entry_kernel_flags_t vmne_kflags, |
| 2606 | ipc_port_t *object_handle, |
| 2607 | ipc_port_t parent_handle) |
| 2608 | { |
| 2609 | vm_named_entry_t parent_entry; |
| 2610 | vm_named_entry_t user_entry; |
| 2611 | kern_return_t kr = KERN_SUCCESS; |
| 2612 | vm_object_t object; |
| 2613 | vm_map_size_t map_size; |
| 2614 | vm_map_offset_t map_start, map_end; |
| 2615 | vm_map_offset_t tmp; |
| 2616 | |
| 2617 | /* |
| 2618 | * Stash the offset in the page for use by vm_map_enter_mem_object() |
| 2619 | * in the VM_FLAGS_RETURN_DATA_ADDR/MAP_MEM_USE_DATA_ADDR case. |
| 2620 | */ |
| 2621 | vm_object_offset_t offset_in_page; |
| 2622 | |
| 2623 | unsigned int access; |
| 2624 | vm_prot_t protections; |
| 2625 | vm_prot_t original_protections, mask_protections; |
| 2626 | unsigned int wimg_mode; |
| 2627 | boolean_t use_data_addr; |
| 2628 | boolean_t use_4K_compat; |
| 2629 | |
| 2630 | DEBUG4K_MEMENTRY("map %p offset 0x%llx size 0x%llx prot 0x%x\n" , target_map, offset, *size, permission); |
| 2631 | |
| 2632 | user_entry = NULL; |
| 2633 | |
| 2634 | if ((permission & MAP_MEM_FLAGS_MASK) & ~MAP_MEM_FLAGS_ALL) { |
| 2635 | /* |
| 2636 | * Unknown flag: reject for forward compatibility. |
| 2637 | */ |
| 2638 | DEBUG4K_MEMENTRY("map %p offset 0x%llx size 0x%llx prot 0x%x -> entry %p kr 0x%x\n" , target_map, offset, *size, permission, user_entry, KERN_INVALID_VALUE); |
| 2639 | return KERN_INVALID_VALUE; |
| 2640 | } |
| 2641 | |
| 2642 | parent_entry = mach_memory_entry_from_port(port: parent_handle); |
| 2643 | if (parent_entry && parent_entry->is_copy) { |
| 2644 | DEBUG4K_MEMENTRY("map %p offset 0x%llx size 0x%llx prot 0x%x -> entry %p kr 0x%x\n" , target_map, offset, *size, permission, user_entry, KERN_INVALID_ARGUMENT); |
| 2645 | return KERN_INVALID_ARGUMENT; |
| 2646 | } |
| 2647 | |
| 2648 | if (target_map == NULL || target_map->pmap == kernel_pmap) { |
| 2649 | offset = pgz_decode(offset, *size); |
| 2650 | } |
| 2651 | |
| 2652 | if (__improbable(vm_map_range_overflows(target_map, offset, *size))) { |
| 2653 | return KERN_INVALID_ARGUMENT; |
| 2654 | } |
| 2655 | |
| 2656 | original_protections = permission & VM_PROT_ALL; |
| 2657 | protections = original_protections; |
| 2658 | mask_protections = permission & VM_PROT_IS_MASK; |
| 2659 | access = GET_MAP_MEM(permission); |
| 2660 | use_data_addr = ((permission & MAP_MEM_USE_DATA_ADDR) != 0); |
| 2661 | use_4K_compat = ((permission & MAP_MEM_4K_DATA_ADDR) != 0); |
| 2662 | |
| 2663 | user_entry = NULL; |
| 2664 | |
| 2665 | map_start = vm_map_trunc_page(offset, VM_MAP_PAGE_MASK(target_map)); |
| 2666 | |
| 2667 | if (permission & MAP_MEM_ONLY) { |
| 2668 | boolean_t parent_is_object; |
| 2669 | |
| 2670 | if (__improbable(os_add_overflow(offset, *size, &map_end))) { |
| 2671 | return KERN_INVALID_ARGUMENT; |
| 2672 | } |
| 2673 | map_end = vm_map_round_page(offset + *size, VM_MAP_PAGE_MASK(target_map)); |
| 2674 | if (__improbable(map_end == 0 && *size != 0)) { |
| 2675 | return KERN_INVALID_ARGUMENT; |
| 2676 | } |
| 2677 | map_size = map_end - map_start; |
| 2678 | |
| 2679 | if (use_data_addr || use_4K_compat || parent_entry == NULL) { |
| 2680 | DEBUG4K_MEMENTRY("map %p offset 0x%llx size 0x%llx prot 0x%x -> entry %p kr 0x%x\n" , target_map, offset, *size, permission, user_entry, KERN_INVALID_ARGUMENT); |
| 2681 | return KERN_INVALID_ARGUMENT; |
| 2682 | } |
| 2683 | |
| 2684 | parent_is_object = parent_entry->is_object; |
| 2685 | if (!parent_is_object) { |
| 2686 | DEBUG4K_MEMENTRY("map %p offset 0x%llx size 0x%llx prot 0x%x -> entry %p kr 0x%x\n" , target_map, offset, *size, permission, user_entry, KERN_INVALID_ARGUMENT); |
| 2687 | return KERN_INVALID_ARGUMENT; |
| 2688 | } |
| 2689 | object = vm_named_entry_to_vm_object(named_entry: parent_entry); |
| 2690 | if (parent_is_object && object != VM_OBJECT_NULL) { |
| 2691 | wimg_mode = object->wimg_bits; |
| 2692 | } else { |
| 2693 | wimg_mode = VM_WIMG_USE_DEFAULT; |
| 2694 | } |
| 2695 | if ((access != parent_entry->access) && |
| 2696 | !(parent_entry->protection & VM_PROT_WRITE)) { |
| 2697 | DEBUG4K_MEMENTRY("map %p offset 0x%llx size 0x%llx prot 0x%x -> entry %p kr 0x%x\n" , target_map, offset, *size, permission, user_entry, KERN_INVALID_RIGHT); |
| 2698 | return KERN_INVALID_RIGHT; |
| 2699 | } |
| 2700 | vm_prot_to_wimg(prot: access, wimg: &wimg_mode); |
| 2701 | if (access != MAP_MEM_NOOP) { |
| 2702 | parent_entry->access = access; |
| 2703 | } |
| 2704 | if (parent_is_object && object && |
| 2705 | (access != MAP_MEM_NOOP) && |
| 2706 | (!(object->nophyscache))) { |
| 2707 | if (object->wimg_bits != wimg_mode) { |
| 2708 | vm_object_lock(object); |
| 2709 | vm_object_change_wimg_mode(object, wimg_mode); |
| 2710 | vm_object_unlock(object); |
| 2711 | } |
| 2712 | } |
| 2713 | if (object_handle) { |
| 2714 | *object_handle = IP_NULL; |
| 2715 | } |
| 2716 | DEBUG4K_MEMENTRY("map %p offset 0x%llx size 0x%llx prot 0x%x -> entry %p kr 0x%x\n" , target_map, offset, *size, permission, user_entry, KERN_SUCCESS); |
| 2717 | return KERN_SUCCESS; |
| 2718 | } else if (permission & MAP_MEM_NAMED_CREATE) { |
| 2719 | int ledger_flags = 0; |
| 2720 | task_t owner; |
| 2721 | bool fully_owned = false; |
| 2722 | |
| 2723 | if (__improbable(os_add_overflow(offset, *size, &map_end))) { |
| 2724 | return KERN_INVALID_ARGUMENT; |
| 2725 | } |
| 2726 | map_end = vm_map_round_page(map_end, VM_MAP_PAGE_MASK(target_map)); |
| 2727 | map_size = map_end - map_start; |
| 2728 | if (__improbable(map_size == 0)) { |
| 2729 | *size = 0; |
| 2730 | *object_handle = IPC_PORT_NULL; |
| 2731 | return KERN_SUCCESS; |
| 2732 | } |
| 2733 | if (__improbable(map_end == 0)) { |
| 2734 | return KERN_INVALID_ARGUMENT; |
| 2735 | } |
| 2736 | |
| 2737 | if (use_data_addr || use_4K_compat) { |
| 2738 | DEBUG4K_MEMENTRY("map %p offset 0x%llx size 0x%llx prot 0x%x -> entry %p kr 0x%x\n" , target_map, offset, *size, permission, user_entry, KERN_INVALID_ARGUMENT); |
| 2739 | return KERN_INVALID_ARGUMENT; |
| 2740 | } |
| 2741 | |
| 2742 | /* |
| 2743 | * Force the creation of the VM object now. |
| 2744 | */ |
| 2745 | #if __LP64__ |
| 2746 | if (map_size > ANON_MAX_SIZE) { |
| 2747 | kr = KERN_FAILURE; |
| 2748 | goto make_mem_done; |
| 2749 | } |
| 2750 | #endif /* __LP64__ */ |
| 2751 | |
| 2752 | object = vm_object_allocate(size: map_size); |
| 2753 | assert(object != VM_OBJECT_NULL); |
| 2754 | vm_object_lock(object); |
| 2755 | |
| 2756 | /* |
| 2757 | * XXX |
| 2758 | * We use this path when we want to make sure that |
| 2759 | * nobody messes with the object (coalesce, for |
| 2760 | * example) before we map it. |
| 2761 | * We might want to use these objects for transposition via |
| 2762 | * vm_object_transpose() too, so we don't want any copy or |
| 2763 | * shadow objects either... |
| 2764 | */ |
| 2765 | object->copy_strategy = MEMORY_OBJECT_COPY_NONE; |
| 2766 | VM_OBJECT_SET_TRUE_SHARE(object, TRUE); |
| 2767 | |
| 2768 | owner = current_task(); |
| 2769 | if ((permission & MAP_MEM_PURGABLE) || |
| 2770 | vmne_kflags.vmnekf_ledger_tag) { |
| 2771 | assert(object->vo_owner == NULL); |
| 2772 | assert(object->resident_page_count == 0); |
| 2773 | assert(object->wired_page_count == 0); |
| 2774 | assert(owner != TASK_NULL); |
| 2775 | if (vmne_kflags.vmnekf_ledger_no_footprint) { |
| 2776 | ledger_flags |= VM_LEDGER_FLAG_NO_FOOTPRINT; |
| 2777 | object->vo_no_footprint = TRUE; |
| 2778 | } |
| 2779 | if (permission & MAP_MEM_PURGABLE) { |
| 2780 | if (!(permission & VM_PROT_WRITE)) { |
| 2781 | /* if we can't write, we can't purge */ |
| 2782 | vm_object_unlock(object); |
| 2783 | vm_object_deallocate(object); |
| 2784 | kr = KERN_INVALID_ARGUMENT; |
| 2785 | goto make_mem_done; |
| 2786 | } |
| 2787 | VM_OBJECT_SET_PURGABLE(object, VM_PURGABLE_NONVOLATILE); |
| 2788 | if (permission & MAP_MEM_PURGABLE_KERNEL_ONLY) { |
| 2789 | VM_OBJECT_SET_PURGEABLE_ONLY_BY_KERNEL(object, TRUE); |
| 2790 | } |
| 2791 | #if __arm64__ |
| 2792 | if (owner->task_legacy_footprint) { |
| 2793 | /* |
| 2794 | * For ios11, we failed to account for |
| 2795 | * this memory. Keep doing that for |
| 2796 | * legacy apps (built before ios12), |
| 2797 | * for backwards compatibility's sake... |
| 2798 | */ |
| 2799 | owner = kernel_task; |
| 2800 | } |
| 2801 | #endif /* __arm64__ */ |
| 2802 | vm_purgeable_nonvolatile_enqueue(object, task: owner); |
| 2803 | /* all memory in this named entry is "owned" */ |
| 2804 | fully_owned = true; |
| 2805 | } |
| 2806 | } |
| 2807 | |
| 2808 | if (vmne_kflags.vmnekf_ledger_tag) { |
| 2809 | /* |
| 2810 | * Bill this object to the current task's |
| 2811 | * ledgers for the given tag. |
| 2812 | */ |
| 2813 | if (vmne_kflags.vmnekf_ledger_no_footprint) { |
| 2814 | ledger_flags |= VM_LEDGER_FLAG_NO_FOOTPRINT; |
| 2815 | } |
| 2816 | object->vo_ledger_tag = vmne_kflags.vmnekf_ledger_tag; |
| 2817 | kr = vm_object_ownership_change( |
| 2818 | object, |
| 2819 | new_ledger_tag: vmne_kflags.vmnekf_ledger_tag, |
| 2820 | new_owner: owner, /* new owner */ |
| 2821 | new_ledger_flags: ledger_flags, |
| 2822 | FALSE); /* task_objq locked? */ |
| 2823 | if (kr != KERN_SUCCESS) { |
| 2824 | vm_object_unlock(object); |
| 2825 | vm_object_deallocate(object); |
| 2826 | goto make_mem_done; |
| 2827 | } |
| 2828 | /* all memory in this named entry is "owned" */ |
| 2829 | fully_owned = true; |
| 2830 | } |
| 2831 | |
| 2832 | #if CONFIG_SECLUDED_MEMORY |
| 2833 | if (secluded_for_iokit && /* global boot-arg */ |
| 2834 | ((permission & MAP_MEM_GRAB_SECLUDED))) { |
| 2835 | object->can_grab_secluded = TRUE; |
| 2836 | assert(!object->eligible_for_secluded); |
| 2837 | } |
| 2838 | #endif /* CONFIG_SECLUDED_MEMORY */ |
| 2839 | |
| 2840 | /* |
| 2841 | * The VM object is brand new and nobody else knows about it, |
| 2842 | * so we don't need to lock it. |
| 2843 | */ |
| 2844 | |
| 2845 | wimg_mode = object->wimg_bits; |
| 2846 | vm_prot_to_wimg(prot: access, wimg: &wimg_mode); |
| 2847 | if (access != MAP_MEM_NOOP) { |
| 2848 | object->wimg_bits = wimg_mode; |
| 2849 | } |
| 2850 | |
| 2851 | vm_object_unlock(object); |
| 2852 | |
| 2853 | /* the object has no pages, so no WIMG bits to update here */ |
| 2854 | |
| 2855 | user_entry = mach_memory_entry_allocate(user_handle_p: object_handle); |
| 2856 | vm_named_entry_associate_vm_object( |
| 2857 | named_entry: user_entry, |
| 2858 | object, |
| 2859 | offset: 0, |
| 2860 | size: map_size, |
| 2861 | prot: (protections & VM_PROT_ALL)); |
| 2862 | user_entry->internal = TRUE; |
| 2863 | user_entry->is_sub_map = FALSE; |
| 2864 | user_entry->offset = 0; |
| 2865 | user_entry->data_offset = 0; |
| 2866 | user_entry->protection = protections; |
| 2867 | user_entry->access = access; |
| 2868 | user_entry->size = map_size; |
| 2869 | user_entry->is_fully_owned = fully_owned; |
| 2870 | |
| 2871 | /* user_object pager and internal fields are not used */ |
| 2872 | /* when the object field is filled in. */ |
| 2873 | |
| 2874 | *size = CAST_DOWN(vm_size_t, (user_entry->size - |
| 2875 | user_entry->data_offset)); |
| 2876 | DEBUG4K_MEMENTRY("map %p offset 0x%llx size 0x%llx prot 0x%x -> entry %p kr 0x%x\n" , target_map, offset, *size, permission, user_entry, KERN_SUCCESS); |
| 2877 | return KERN_SUCCESS; |
| 2878 | } |
| 2879 | |
| 2880 | if (permission & MAP_MEM_VM_COPY) { |
| 2881 | vm_map_copy_t copy; |
| 2882 | |
| 2883 | if (target_map == VM_MAP_NULL) { |
| 2884 | DEBUG4K_MEMENTRY("map %p offset 0x%llx size 0x%llx prot 0x%x -> entry %p kr 0x%x\n" , target_map, offset, *size, permission, user_entry, KERN_INVALID_TASK); |
| 2885 | return KERN_INVALID_TASK; |
| 2886 | } |
| 2887 | |
| 2888 | if (__improbable(os_add_overflow(offset, *size, &map_end))) { |
| 2889 | return KERN_INVALID_ARGUMENT; |
| 2890 | } |
| 2891 | map_end = vm_map_round_page(map_end, VM_MAP_PAGE_MASK(target_map)); |
| 2892 | map_size = map_end - map_start; |
| 2893 | if (__improbable(map_size == 0)) { |
| 2894 | DEBUG4K_MEMENTRY("map %p offset 0x%llx size 0x%llx prot 0x%x -> entry %p kr 0x%x\n" , target_map, offset, *size, permission, user_entry, KERN_INVALID_ARGUMENT); |
| 2895 | return KERN_INVALID_ARGUMENT; |
| 2896 | } |
| 2897 | if (__improbable(map_end == 0)) { |
| 2898 | return KERN_INVALID_ARGUMENT; |
| 2899 | } |
| 2900 | |
| 2901 | if (use_data_addr || use_4K_compat) { |
| 2902 | offset_in_page = offset - map_start; |
| 2903 | if (use_4K_compat) { |
| 2904 | offset_in_page &= ~((signed)(0xFFF)); |
| 2905 | } |
| 2906 | } else { |
| 2907 | offset_in_page = 0; |
| 2908 | } |
| 2909 | |
| 2910 | kr = vm_map_copyin_internal(src_map: target_map, |
| 2911 | src_addr: map_start, |
| 2912 | len: map_size, |
| 2913 | VM_MAP_COPYIN_ENTRY_LIST, |
| 2914 | copy_result: ©); |
| 2915 | if (kr != KERN_SUCCESS) { |
| 2916 | DEBUG4K_MEMENTRY("map %p offset 0x%llx size 0x%llx prot 0x%x -> entry %p kr 0x%x\n" , target_map, offset, *size, permission, user_entry, kr); |
| 2917 | return kr; |
| 2918 | } |
| 2919 | assert(copy != VM_MAP_COPY_NULL); |
| 2920 | |
| 2921 | user_entry = mach_memory_entry_allocate(user_handle_p: object_handle); |
| 2922 | user_entry->backing.copy = copy; |
| 2923 | user_entry->internal = FALSE; |
| 2924 | user_entry->is_sub_map = FALSE; |
| 2925 | user_entry->is_copy = TRUE; |
| 2926 | user_entry->offset = 0; |
| 2927 | user_entry->protection = protections; |
| 2928 | user_entry->size = map_size; |
| 2929 | user_entry->data_offset = offset_in_page; |
| 2930 | |
| 2931 | /* is all memory in this named entry "owned"? */ |
| 2932 | vm_map_entry_t entry; |
| 2933 | user_entry->is_fully_owned = TRUE; |
| 2934 | for (entry = vm_map_copy_first_entry(copy); |
| 2935 | entry != vm_map_copy_to_entry(copy); |
| 2936 | entry = entry->vme_next) { |
| 2937 | if (entry->is_sub_map || |
| 2938 | VME_OBJECT(entry) == VM_OBJECT_NULL || |
| 2939 | VM_OBJECT_OWNER(VME_OBJECT(entry)) == TASK_NULL) { |
| 2940 | /* this memory is not "owned" */ |
| 2941 | user_entry->is_fully_owned = FALSE; |
| 2942 | break; |
| 2943 | } |
| 2944 | } |
| 2945 | |
| 2946 | *size = CAST_DOWN(vm_size_t, (user_entry->size - |
| 2947 | user_entry->data_offset)); |
| 2948 | DEBUG4K_MEMENTRY("map %p offset 0x%llx size 0x%llx prot 0x%x -> entry %p kr 0x%x\n" , target_map, offset, *size, permission, user_entry, KERN_SUCCESS); |
| 2949 | return KERN_SUCCESS; |
| 2950 | } |
| 2951 | |
| 2952 | if ((permission & MAP_MEM_VM_SHARE) |
| 2953 | || parent_entry == NULL |
| 2954 | || (permission & MAP_MEM_NAMED_REUSE)) { |
| 2955 | vm_map_copy_t copy; |
| 2956 | vm_prot_t cur_prot, max_prot; |
| 2957 | vm_map_kernel_flags_t vmk_flags; |
| 2958 | vm_map_entry_t parent_copy_entry; |
| 2959 | |
| 2960 | if (target_map == VM_MAP_NULL) { |
| 2961 | DEBUG4K_MEMENTRY("map %p offset 0x%llx size 0x%llx prot 0x%x -> entry %p kr 0x%x\n" , target_map, offset, *size, permission, user_entry, KERN_INVALID_TASK); |
| 2962 | return KERN_INVALID_TASK; |
| 2963 | } |
| 2964 | |
| 2965 | if (__improbable(os_add_overflow(offset, *size, &map_end))) { |
| 2966 | return KERN_INVALID_ARGUMENT; |
| 2967 | } |
| 2968 | map_end = vm_map_round_page(map_end, VM_MAP_PAGE_MASK(target_map)); |
| 2969 | map_size = map_end - map_start; |
| 2970 | if (__improbable(map_size == 0)) { |
| 2971 | DEBUG4K_MEMENTRY("map %p offset 0x%llx size 0x%llx prot 0x%x -> entry %p kr 0x%x\n" , target_map, offset, *size, permission, user_entry, KERN_INVALID_ARGUMENT); |
| 2972 | return KERN_INVALID_ARGUMENT; |
| 2973 | } |
| 2974 | if (__improbable(map_end == 0)) { |
| 2975 | /* rounding overflow */ |
| 2976 | return KERN_INVALID_ARGUMENT; |
| 2977 | } |
| 2978 | |
| 2979 | vmk_flags = VM_MAP_KERNEL_FLAGS_NONE; |
| 2980 | vmk_flags.vmkf_range_id = KMEM_RANGE_ID_DATA; |
| 2981 | parent_copy_entry = VM_MAP_ENTRY_NULL; |
| 2982 | if (!(permission & MAP_MEM_VM_SHARE)) { |
| 2983 | vm_map_t tmp_map, real_map; |
| 2984 | vm_map_version_t version; |
| 2985 | vm_object_t tmp_object; |
| 2986 | vm_object_offset_t obj_off; |
| 2987 | vm_prot_t prot; |
| 2988 | boolean_t wired; |
| 2989 | bool contended; |
| 2990 | |
| 2991 | /* resolve any pending submap copy-on-write... */ |
| 2992 | if (protections & VM_PROT_WRITE) { |
| 2993 | tmp_map = target_map; |
| 2994 | vm_map_lock_read(tmp_map); |
| 2995 | kr = vm_map_lookup_and_lock_object(var_map: &tmp_map, |
| 2996 | vaddr: map_start, |
| 2997 | fault_type: protections | mask_protections, |
| 2998 | OBJECT_LOCK_EXCLUSIVE, |
| 2999 | out_version: &version, |
| 3000 | object: &tmp_object, |
| 3001 | offset: &obj_off, |
| 3002 | out_prot: &prot, |
| 3003 | wired: &wired, |
| 3004 | NULL, /* fault_info */ |
| 3005 | real_map: &real_map, |
| 3006 | contended: &contended); |
| 3007 | if (kr != KERN_SUCCESS) { |
| 3008 | vm_map_unlock_read(tmp_map); |
| 3009 | } else { |
| 3010 | vm_object_unlock(tmp_object); |
| 3011 | vm_map_unlock_read(tmp_map); |
| 3012 | if (real_map != tmp_map) { |
| 3013 | vm_map_unlock_read(real_map); |
| 3014 | } |
| 3015 | } |
| 3016 | } |
| 3017 | /* ... and carry on */ |
| 3018 | |
| 3019 | /* stop extracting if VM object changes */ |
| 3020 | vmk_flags.vmkf_copy_single_object = TRUE; |
| 3021 | if ((permission & MAP_MEM_NAMED_REUSE) && |
| 3022 | parent_entry != NULL && |
| 3023 | parent_entry->is_object) { |
| 3024 | vm_map_copy_t parent_copy; |
| 3025 | parent_copy = parent_entry->backing.copy; |
| 3026 | /* |
| 3027 | * Assert that the vm_map_copy is coming from the right |
| 3028 | * zone and hasn't been forged |
| 3029 | */ |
| 3030 | vm_map_copy_require(copy: parent_copy); |
| 3031 | assert(parent_copy->cpy_hdr.nentries == 1); |
| 3032 | parent_copy_entry = vm_map_copy_first_entry(parent_copy); |
| 3033 | assert(!parent_copy_entry->is_sub_map); |
| 3034 | } |
| 3035 | } |
| 3036 | |
| 3037 | if (use_data_addr || use_4K_compat) { |
| 3038 | offset_in_page = offset - map_start; |
| 3039 | if (use_4K_compat) { |
| 3040 | offset_in_page &= ~((signed)(0xFFF)); |
| 3041 | } |
| 3042 | } else { |
| 3043 | offset_in_page = 0; |
| 3044 | } |
| 3045 | |
| 3046 | if (mask_protections) { |
| 3047 | /* |
| 3048 | * caller is asking for whichever proctections are |
| 3049 | * available: no required protections. |
| 3050 | */ |
| 3051 | cur_prot = VM_PROT_NONE; |
| 3052 | max_prot = VM_PROT_NONE; |
| 3053 | } else { |
| 3054 | /* |
| 3055 | * Caller wants a memory entry with "protections". |
| 3056 | * Make sure we extract only memory that matches that. |
| 3057 | */ |
| 3058 | cur_prot = protections; |
| 3059 | max_prot = protections; |
| 3060 | } |
| 3061 | if (target_map->pmap == kernel_pmap) { |
| 3062 | /* |
| 3063 | * Get "reserved" map entries to avoid deadlocking |
| 3064 | * on the kernel map or a kernel submap if we |
| 3065 | * run out of VM map entries and need to refill that |
| 3066 | * zone. |
| 3067 | */ |
| 3068 | vmk_flags.vmkf_copy_pageable = FALSE; |
| 3069 | } else { |
| 3070 | vmk_flags.vmkf_copy_pageable = TRUE; |
| 3071 | } |
| 3072 | vmk_flags.vmkf_copy_same_map = FALSE; |
| 3073 | assert(map_size != 0); |
| 3074 | kr = vm_map_copy_extract(src_map: target_map, |
| 3075 | src_addr: map_start, |
| 3076 | len: map_size, |
| 3077 | FALSE, /* copy */ |
| 3078 | copy_result: ©, |
| 3079 | cur_prot: &cur_prot, |
| 3080 | max_prot: &max_prot, |
| 3081 | VM_INHERIT_SHARE, |
| 3082 | vmk_flags); |
| 3083 | if (kr != KERN_SUCCESS) { |
| 3084 | DEBUG4K_MEMENTRY("map %p offset 0x%llx size 0x%llx prot 0x%x -> entry %p kr 0x%x\n" , target_map, offset, *size, permission, user_entry, kr); |
| 3085 | if (VM_MAP_PAGE_SHIFT(map: target_map) < PAGE_SHIFT) { |
| 3086 | // panic("DEBUG4K %s:%d kr 0x%x", __FUNCTION__, __LINE__, kr); |
| 3087 | } |
| 3088 | return kr; |
| 3089 | } |
| 3090 | assert(copy != VM_MAP_COPY_NULL); |
| 3091 | |
| 3092 | if (mask_protections) { |
| 3093 | /* |
| 3094 | * We just want as much of "original_protections" |
| 3095 | * as we can get out of the actual "cur_prot". |
| 3096 | */ |
| 3097 | protections &= cur_prot; |
| 3098 | if (protections == VM_PROT_NONE) { |
| 3099 | /* no access at all: fail */ |
| 3100 | DEBUG4K_MEMENTRY("map %p offset 0x%llx size 0x%llx prot 0x%x -> entry %p kr 0x%x\n" , target_map, offset, *size, permission, user_entry, KERN_PROTECTION_FAILURE); |
| 3101 | if (VM_MAP_PAGE_SHIFT(map: target_map) < PAGE_SHIFT) { |
| 3102 | // panic("DEBUG4K %s:%d kr 0x%x", __FUNCTION__, __LINE__, kr); |
| 3103 | } |
| 3104 | vm_map_copy_discard(copy); |
| 3105 | return KERN_PROTECTION_FAILURE; |
| 3106 | } |
| 3107 | } else { |
| 3108 | /* |
| 3109 | * We want exactly "original_protections" |
| 3110 | * out of "cur_prot". |
| 3111 | */ |
| 3112 | assert((cur_prot & protections) == protections); |
| 3113 | assert((max_prot & protections) == protections); |
| 3114 | /* XXX FBDP TODO: no longer needed? */ |
| 3115 | if ((cur_prot & protections) != protections) { |
| 3116 | if (VM_MAP_PAGE_SHIFT(map: target_map) < PAGE_SHIFT) { |
| 3117 | // panic("DEBUG4K %s:%d kr 0x%x", __FUNCTION__, __LINE__, KERN_PROTECTION_FAILURE); |
| 3118 | } |
| 3119 | vm_map_copy_discard(copy); |
| 3120 | DEBUG4K_MEMENTRY("map %p offset 0x%llx size 0x%llx prot 0x%x -> entry %p kr 0x%x\n" , target_map, offset, *size, permission, user_entry, KERN_PROTECTION_FAILURE); |
| 3121 | return KERN_PROTECTION_FAILURE; |
| 3122 | } |
| 3123 | } |
| 3124 | |
| 3125 | if (!(permission & MAP_MEM_VM_SHARE)) { |
| 3126 | vm_map_entry_t copy_entry; |
| 3127 | |
| 3128 | /* limit size to what's actually covered by "copy" */ |
| 3129 | assert(copy->cpy_hdr.nentries == 1); |
| 3130 | copy_entry = vm_map_copy_first_entry(copy); |
| 3131 | map_size = copy_entry->vme_end - copy_entry->vme_start; |
| 3132 | |
| 3133 | if ((permission & MAP_MEM_NAMED_REUSE) && |
| 3134 | parent_copy_entry != VM_MAP_ENTRY_NULL && |
| 3135 | VME_OBJECT(copy_entry) == VME_OBJECT(parent_copy_entry) && |
| 3136 | VME_OFFSET(entry: copy_entry) == VME_OFFSET(entry: parent_copy_entry) && |
| 3137 | parent_entry->offset == 0 && |
| 3138 | parent_entry->size == map_size && |
| 3139 | (parent_entry->data_offset == offset_in_page)) { |
| 3140 | /* we have a match: re-use "parent_entry" */ |
| 3141 | |
| 3142 | /* release our new "copy" */ |
| 3143 | vm_map_copy_discard(copy); |
| 3144 | /* get extra send right on handle */ |
| 3145 | parent_handle = ipc_port_copy_send_any(port: parent_handle); |
| 3146 | |
| 3147 | *size = CAST_DOWN(vm_size_t, |
| 3148 | (parent_entry->size - |
| 3149 | parent_entry->data_offset)); |
| 3150 | *object_handle = parent_handle; |
| 3151 | DEBUG4K_MEMENTRY("map %p offset 0x%llx size 0x%llx prot 0x%x -> entry %p kr 0x%x\n" , target_map, offset, *size, permission, user_entry, KERN_SUCCESS); |
| 3152 | return KERN_SUCCESS; |
| 3153 | } |
| 3154 | |
| 3155 | /* no match: we need to create a new entry */ |
| 3156 | object = VME_OBJECT(copy_entry); |
| 3157 | vm_object_lock(object); |
| 3158 | wimg_mode = object->wimg_bits; |
| 3159 | if (!(object->nophyscache)) { |
| 3160 | vm_prot_to_wimg(prot: access, wimg: &wimg_mode); |
| 3161 | } |
| 3162 | if (object->wimg_bits != wimg_mode) { |
| 3163 | vm_object_change_wimg_mode(object, wimg_mode); |
| 3164 | } |
| 3165 | vm_object_unlock(object); |
| 3166 | } |
| 3167 | |
| 3168 | user_entry = mach_memory_entry_allocate(user_handle_p: object_handle); |
| 3169 | user_entry->backing.copy = copy; |
| 3170 | user_entry->is_sub_map = FALSE; |
| 3171 | user_entry->is_object = FALSE; |
| 3172 | user_entry->internal = FALSE; |
| 3173 | user_entry->protection = protections; |
| 3174 | user_entry->size = map_size; |
| 3175 | user_entry->data_offset = offset_in_page; |
| 3176 | |
| 3177 | if (permission & MAP_MEM_VM_SHARE) { |
| 3178 | vm_map_entry_t copy_entry; |
| 3179 | |
| 3180 | user_entry->is_copy = TRUE; |
| 3181 | user_entry->offset = 0; |
| 3182 | |
| 3183 | /* is all memory in this named entry "owned"? */ |
| 3184 | user_entry->is_fully_owned = TRUE; |
| 3185 | for (copy_entry = vm_map_copy_first_entry(copy); |
| 3186 | copy_entry != vm_map_copy_to_entry(copy); |
| 3187 | copy_entry = copy_entry->vme_next) { |
| 3188 | if (copy_entry->is_sub_map || |
| 3189 | VM_OBJECT_OWNER(VME_OBJECT(copy_entry)) == TASK_NULL) { |
| 3190 | /* this memory is not "owned" */ |
| 3191 | user_entry->is_fully_owned = FALSE; |
| 3192 | break; |
| 3193 | } |
| 3194 | } |
| 3195 | } else { |
| 3196 | user_entry->is_object = TRUE; |
| 3197 | user_entry->internal = object->internal; |
| 3198 | user_entry->offset = VME_OFFSET(vm_map_copy_first_entry(copy)); |
| 3199 | user_entry->access = GET_MAP_MEM(permission); |
| 3200 | /* is all memory in this named entry "owned"? */ |
| 3201 | if (VM_OBJECT_OWNER(vm_named_entry_to_vm_object(user_entry)) != TASK_NULL) { |
| 3202 | user_entry->is_fully_owned = TRUE; |
| 3203 | } |
| 3204 | } |
| 3205 | |
| 3206 | *size = CAST_DOWN(vm_size_t, (user_entry->size - |
| 3207 | user_entry->data_offset)); |
| 3208 | DEBUG4K_MEMENTRY("map %p offset 0x%llx size 0x%llx prot 0x%x -> entry %p kr 0x%x\n" , target_map, offset, *size, permission, user_entry, KERN_SUCCESS); |
| 3209 | return KERN_SUCCESS; |
| 3210 | } |
| 3211 | |
| 3212 | /* The new object will be based on an existing named object */ |
| 3213 | if (parent_entry == NULL) { |
| 3214 | kr = KERN_INVALID_ARGUMENT; |
| 3215 | goto make_mem_done; |
| 3216 | } |
| 3217 | |
| 3218 | if (parent_entry->is_copy) { |
| 3219 | panic("parent_entry %p is_copy not supported" , parent_entry); |
| 3220 | kr = KERN_INVALID_ARGUMENT; |
| 3221 | goto make_mem_done; |
| 3222 | } |
| 3223 | |
| 3224 | if (use_data_addr || use_4K_compat) { |
| 3225 | /* |
| 3226 | * submaps and pagers should only be accessible from within |
| 3227 | * the kernel, which shouldn't use the data address flag, so can fail here. |
| 3228 | */ |
| 3229 | if (parent_entry->is_sub_map) { |
| 3230 | panic("Shouldn't be using data address with a parent entry that is a submap." ); |
| 3231 | } |
| 3232 | /* |
| 3233 | * Account for offset to data in parent entry and |
| 3234 | * compute our own offset to data. |
| 3235 | */ |
| 3236 | if (__improbable(os_add3_overflow(offset, *size, parent_entry->data_offset, &map_size))) { |
| 3237 | kr = KERN_INVALID_ARGUMENT; |
| 3238 | goto make_mem_done; |
| 3239 | } |
| 3240 | if (map_size > parent_entry->size) { |
| 3241 | kr = KERN_INVALID_ARGUMENT; |
| 3242 | goto make_mem_done; |
| 3243 | } |
| 3244 | |
| 3245 | if (__improbable(os_add_overflow(offset, parent_entry->data_offset, &map_start))) { |
| 3246 | kr = KERN_INVALID_ARGUMENT; |
| 3247 | goto make_mem_done; |
| 3248 | } |
| 3249 | map_start = vm_map_trunc_page(map_start, PAGE_MASK); |
| 3250 | offset_in_page = (offset + parent_entry->data_offset) - map_start; |
| 3251 | if (use_4K_compat) { |
| 3252 | offset_in_page &= ~((signed)(0xFFF)); |
| 3253 | } |
| 3254 | if (__improbable(os_add3_overflow(offset, parent_entry->data_offset, *size, &map_end))) { |
| 3255 | kr = KERN_INVALID_ARGUMENT; |
| 3256 | goto make_mem_done; |
| 3257 | } |
| 3258 | map_end = vm_map_round_page(map_end, PAGE_MASK); |
| 3259 | if (__improbable(map_end == 0 && *size != 0)) { |
| 3260 | /* rounding overflow */ |
| 3261 | kr = KERN_INVALID_ARGUMENT; |
| 3262 | goto make_mem_done; |
| 3263 | } |
| 3264 | map_size = map_end - map_start; |
| 3265 | } else { |
| 3266 | if (__improbable(os_add_overflow(offset, *size, &map_end))) { |
| 3267 | kr = KERN_INVALID_ARGUMENT; |
| 3268 | goto make_mem_done; |
| 3269 | } |
| 3270 | map_end = vm_map_round_page(map_end, PAGE_MASK); |
| 3271 | if (__improbable(map_end == 0 && *size != 0)) { |
| 3272 | kr = KERN_INVALID_ARGUMENT; |
| 3273 | goto make_mem_done; |
| 3274 | } |
| 3275 | map_size = map_end - map_start; |
| 3276 | offset_in_page = 0; |
| 3277 | |
| 3278 | if (__improbable(os_add_overflow(offset, map_size, &tmp))) { |
| 3279 | kr = KERN_INVALID_ARGUMENT; |
| 3280 | goto make_mem_done; |
| 3281 | } |
| 3282 | if ((offset + map_size) > parent_entry->size) { |
| 3283 | kr = KERN_INVALID_ARGUMENT; |
| 3284 | goto make_mem_done; |
| 3285 | } |
| 3286 | } |
| 3287 | |
| 3288 | if (mask_protections) { |
| 3289 | /* |
| 3290 | * The caller asked us to use the "protections" as |
| 3291 | * a mask, so restrict "protections" to what this |
| 3292 | * mapping actually allows. |
| 3293 | */ |
| 3294 | protections &= parent_entry->protection; |
| 3295 | } |
| 3296 | if ((protections & parent_entry->protection) != protections) { |
| 3297 | kr = KERN_PROTECTION_FAILURE; |
| 3298 | goto make_mem_done; |
| 3299 | } |
| 3300 | |
| 3301 | if (__improbable(os_add_overflow(parent_entry->offset, map_start, &tmp))) { |
| 3302 | kr = KERN_INVALID_ARGUMENT; |
| 3303 | goto make_mem_done; |
| 3304 | } |
| 3305 | user_entry = mach_memory_entry_allocate(user_handle_p: object_handle); |
| 3306 | user_entry->size = map_size; |
| 3307 | user_entry->offset = parent_entry->offset + map_start; |
| 3308 | user_entry->data_offset = offset_in_page; |
| 3309 | user_entry->is_sub_map = parent_entry->is_sub_map; |
| 3310 | user_entry->is_copy = parent_entry->is_copy; |
| 3311 | user_entry->protection = protections; |
| 3312 | |
| 3313 | if (access != MAP_MEM_NOOP) { |
| 3314 | user_entry->access = access; |
| 3315 | } |
| 3316 | |
| 3317 | if (parent_entry->is_sub_map) { |
| 3318 | vm_map_t map = parent_entry->backing.map; |
| 3319 | vm_map_reference(map); |
| 3320 | user_entry->backing.map = map; |
| 3321 | } else { |
| 3322 | object = vm_named_entry_to_vm_object(named_entry: parent_entry); |
| 3323 | assert(object != VM_OBJECT_NULL); |
| 3324 | assert(object->copy_strategy != MEMORY_OBJECT_COPY_SYMMETRIC); |
| 3325 | vm_named_entry_associate_vm_object( |
| 3326 | named_entry: user_entry, |
| 3327 | object, |
| 3328 | offset: user_entry->offset, |
| 3329 | size: user_entry->size, |
| 3330 | prot: (user_entry->protection & VM_PROT_ALL)); |
| 3331 | assert(user_entry->is_object); |
| 3332 | /* we now point to this object, hold on */ |
| 3333 | vm_object_lock(object); |
| 3334 | vm_object_reference_locked(object); |
| 3335 | #if VM_OBJECT_TRACKING_OP_TRUESHARE |
| 3336 | if (!object->true_share && |
| 3337 | vm_object_tracking_btlog) { |
| 3338 | btlog_record(vm_object_tracking_btlog, object, |
| 3339 | VM_OBJECT_TRACKING_OP_TRUESHARE, |
| 3340 | btref_get(__builtin_frame_address(0), 0)); |
| 3341 | } |
| 3342 | #endif /* VM_OBJECT_TRACKING_OP_TRUESHARE */ |
| 3343 | |
| 3344 | VM_OBJECT_SET_TRUE_SHARE(object, TRUE); |
| 3345 | if (object->copy_strategy == MEMORY_OBJECT_COPY_SYMMETRIC) { |
| 3346 | object->copy_strategy = MEMORY_OBJECT_COPY_DELAY; |
| 3347 | } |
| 3348 | vm_object_unlock(object); |
| 3349 | } |
| 3350 | *size = CAST_DOWN(vm_size_t, (user_entry->size - |
| 3351 | user_entry->data_offset)); |
| 3352 | DEBUG4K_MEMENTRY("map %p offset 0x%llx size 0x%llx prot 0x%x -> entry %p kr 0x%x\n" , target_map, offset, *size, permission, user_entry, KERN_SUCCESS); |
| 3353 | return KERN_SUCCESS; |
| 3354 | |
| 3355 | make_mem_done: |
| 3356 | DEBUG4K_MEMENTRY("map %p offset 0x%llx size 0x%llx prot 0x%x -> entry %p kr 0x%x\n" , target_map, offset, *size, permission, user_entry, kr); |
| 3357 | return kr; |
| 3358 | } |
| 3359 | |
| 3360 | kern_return_t |
| 3361 | _mach_make_memory_entry( |
| 3362 | vm_map_t target_map, |
| 3363 | memory_object_size_t *size, |
| 3364 | memory_object_offset_t offset, |
| 3365 | vm_prot_t permission, |
| 3366 | ipc_port_t *object_handle, |
| 3367 | ipc_port_t parent_entry) |
| 3368 | { |
| 3369 | memory_object_size_t mo_size; |
| 3370 | kern_return_t kr; |
| 3371 | |
| 3372 | mo_size = (memory_object_size_t)*size; |
| 3373 | kr = mach_make_memory_entry_64(target_map, size: &mo_size, |
| 3374 | offset: (memory_object_offset_t)offset, permission, object_handle, |
| 3375 | parent_handle: parent_entry); |
| 3376 | *size = mo_size; |
| 3377 | return kr; |
| 3378 | } |
| 3379 | |
| 3380 | kern_return_t |
| 3381 | mach_make_memory_entry( |
| 3382 | vm_map_t target_map, |
| 3383 | vm_size_t *size, |
| 3384 | vm_offset_t offset, |
| 3385 | vm_prot_t permission, |
| 3386 | ipc_port_t *object_handle, |
| 3387 | ipc_port_t parent_entry) |
| 3388 | { |
| 3389 | memory_object_size_t mo_size; |
| 3390 | kern_return_t kr; |
| 3391 | |
| 3392 | mo_size = (memory_object_size_t)*size; |
| 3393 | kr = mach_make_memory_entry_64(target_map, size: &mo_size, |
| 3394 | offset: (memory_object_offset_t)offset, permission, object_handle, |
| 3395 | parent_handle: parent_entry); |
| 3396 | *size = CAST_DOWN(vm_size_t, mo_size); |
| 3397 | return kr; |
| 3398 | } |
| 3399 | |
| 3400 | /* |
| 3401 | * task_wire |
| 3402 | * |
| 3403 | * Set or clear the map's wiring_required flag. This flag, if set, |
| 3404 | * will cause all future virtual memory allocation to allocate |
| 3405 | * user wired memory. Unwiring pages wired down as a result of |
| 3406 | * this routine is done with the vm_wire interface. |
| 3407 | */ |
| 3408 | kern_return_t |
| 3409 | task_wire( |
| 3410 | vm_map_t map, |
| 3411 | boolean_t must_wire __unused) |
| 3412 | { |
| 3413 | if (map == VM_MAP_NULL) { |
| 3414 | return KERN_INVALID_ARGUMENT; |
| 3415 | } |
| 3416 | |
| 3417 | return KERN_NOT_SUPPORTED; |
| 3418 | } |
| 3419 | |
| 3420 | kern_return_t |
| 3421 | vm_map_exec_lockdown( |
| 3422 | vm_map_t map) |
| 3423 | { |
| 3424 | if (map == VM_MAP_NULL) { |
| 3425 | return KERN_INVALID_ARGUMENT; |
| 3426 | } |
| 3427 | |
| 3428 | vm_map_lock(map); |
| 3429 | map->map_disallow_new_exec = TRUE; |
| 3430 | vm_map_unlock(map); |
| 3431 | |
| 3432 | return KERN_SUCCESS; |
| 3433 | } |
| 3434 | |
| 3435 | __private_extern__ vm_named_entry_t |
| 3436 | mach_memory_entry_allocate(ipc_port_t *user_handle_p) |
| 3437 | { |
| 3438 | vm_named_entry_t user_entry; |
| 3439 | |
| 3440 | user_entry = kalloc_type(struct vm_named_entry, |
| 3441 | Z_WAITOK | Z_ZERO | Z_NOFAIL); |
| 3442 | named_entry_lock_init(user_entry); |
| 3443 | |
| 3444 | *user_handle_p = ipc_kobject_alloc_port(kobject: (ipc_kobject_t)user_entry, |
| 3445 | type: IKOT_NAMED_ENTRY, |
| 3446 | options: IPC_KOBJECT_ALLOC_MAKE_SEND | IPC_KOBJECT_ALLOC_NSREQUEST); |
| 3447 | |
| 3448 | #if VM_NAMED_ENTRY_DEBUG |
| 3449 | /* backtrace at allocation time, for debugging only */ |
| 3450 | user_entry->named_entry_bt = btref_get(__builtin_frame_address(0), 0); |
| 3451 | #endif /* VM_NAMED_ENTRY_DEBUG */ |
| 3452 | return user_entry; |
| 3453 | } |
| 3454 | |
| 3455 | /* |
| 3456 | * mach_memory_object_memory_entry_64 |
| 3457 | * |
| 3458 | * Create a named entry backed by the provided pager. |
| 3459 | * |
| 3460 | */ |
| 3461 | kern_return_t |
| 3462 | mach_memory_object_memory_entry_64( |
| 3463 | host_t host, |
| 3464 | boolean_t internal, |
| 3465 | vm_object_offset_t size, |
| 3466 | vm_prot_t permission, |
| 3467 | memory_object_t , |
| 3468 | ipc_port_t *entry_handle) |
| 3469 | { |
| 3470 | vm_named_entry_t user_entry; |
| 3471 | ipc_port_t user_handle; |
| 3472 | vm_object_t object; |
| 3473 | |
| 3474 | if (host == HOST_NULL) { |
| 3475 | return KERN_INVALID_HOST; |
| 3476 | } |
| 3477 | |
| 3478 | size = vm_object_round_page(size); |
| 3479 | |
| 3480 | if (pager == MEMORY_OBJECT_NULL && internal) { |
| 3481 | object = vm_object_allocate(size); |
| 3482 | if (object->copy_strategy == MEMORY_OBJECT_COPY_SYMMETRIC) { |
| 3483 | object->copy_strategy = MEMORY_OBJECT_COPY_DELAY; |
| 3484 | } |
| 3485 | } else { |
| 3486 | object = memory_object_to_vm_object(mem_obj: pager); |
| 3487 | if (object != VM_OBJECT_NULL) { |
| 3488 | vm_object_reference(object); |
| 3489 | } |
| 3490 | } |
| 3491 | if (object == VM_OBJECT_NULL) { |
| 3492 | return KERN_INVALID_ARGUMENT; |
| 3493 | } |
| 3494 | |
| 3495 | user_entry = mach_memory_entry_allocate(user_handle_p: &user_handle); |
| 3496 | user_entry->size = size; |
| 3497 | user_entry->offset = 0; |
| 3498 | user_entry->protection = permission & VM_PROT_ALL; |
| 3499 | user_entry->access = GET_MAP_MEM(permission); |
| 3500 | user_entry->is_sub_map = FALSE; |
| 3501 | |
| 3502 | vm_named_entry_associate_vm_object(named_entry: user_entry, object, offset: 0, size, |
| 3503 | prot: (user_entry->protection & VM_PROT_ALL)); |
| 3504 | user_entry->internal = object->internal; |
| 3505 | assert(object->internal == internal); |
| 3506 | if (VM_OBJECT_OWNER(object) != TASK_NULL) { |
| 3507 | /* all memory in this entry is "owned" */ |
| 3508 | user_entry->is_fully_owned = TRUE; |
| 3509 | } |
| 3510 | |
| 3511 | *entry_handle = user_handle; |
| 3512 | return KERN_SUCCESS; |
| 3513 | } |
| 3514 | |
| 3515 | kern_return_t |
| 3516 | mach_memory_object_memory_entry( |
| 3517 | host_t host, |
| 3518 | boolean_t internal, |
| 3519 | vm_size_t size, |
| 3520 | vm_prot_t permission, |
| 3521 | memory_object_t , |
| 3522 | ipc_port_t *entry_handle) |
| 3523 | { |
| 3524 | return mach_memory_object_memory_entry_64( host, internal, |
| 3525 | size: (vm_object_offset_t)size, permission, pager, entry_handle); |
| 3526 | } |
| 3527 | |
| 3528 | |
| 3529 | kern_return_t |
| 3530 | mach_memory_entry_purgable_control( |
| 3531 | ipc_port_t entry_port, |
| 3532 | vm_purgable_t control, |
| 3533 | int *state) |
| 3534 | { |
| 3535 | if (control == VM_PURGABLE_SET_STATE_FROM_KERNEL) { |
| 3536 | /* not allowed from user-space */ |
| 3537 | return KERN_INVALID_ARGUMENT; |
| 3538 | } |
| 3539 | |
| 3540 | return memory_entry_purgeable_control_internal(entry_port, control, state); |
| 3541 | } |
| 3542 | |
| 3543 | kern_return_t |
| 3544 | memory_entry_purgeable_control_internal( |
| 3545 | ipc_port_t entry_port, |
| 3546 | vm_purgable_t control, |
| 3547 | int *state) |
| 3548 | { |
| 3549 | kern_return_t kr; |
| 3550 | vm_named_entry_t mem_entry; |
| 3551 | vm_object_t object; |
| 3552 | |
| 3553 | mem_entry = mach_memory_entry_from_port(port: entry_port); |
| 3554 | if (mem_entry == NULL) { |
| 3555 | return KERN_INVALID_ARGUMENT; |
| 3556 | } |
| 3557 | |
| 3558 | if (control != VM_PURGABLE_SET_STATE && |
| 3559 | control != VM_PURGABLE_GET_STATE && |
| 3560 | control != VM_PURGABLE_SET_STATE_FROM_KERNEL) { |
| 3561 | return KERN_INVALID_ARGUMENT; |
| 3562 | } |
| 3563 | |
| 3564 | if ((control == VM_PURGABLE_SET_STATE || |
| 3565 | control == VM_PURGABLE_SET_STATE_FROM_KERNEL) && |
| 3566 | (((*state & ~(VM_PURGABLE_ALL_MASKS)) != 0) || |
| 3567 | ((*state & VM_PURGABLE_STATE_MASK) > VM_PURGABLE_STATE_MASK))) { |
| 3568 | return KERN_INVALID_ARGUMENT; |
| 3569 | } |
| 3570 | |
| 3571 | named_entry_lock(mem_entry); |
| 3572 | |
| 3573 | if (mem_entry->is_sub_map || |
| 3574 | mem_entry->is_copy) { |
| 3575 | named_entry_unlock(mem_entry); |
| 3576 | return KERN_INVALID_ARGUMENT; |
| 3577 | } |
| 3578 | |
| 3579 | assert(mem_entry->is_object); |
| 3580 | object = vm_named_entry_to_vm_object(named_entry: mem_entry); |
| 3581 | if (object == VM_OBJECT_NULL) { |
| 3582 | named_entry_unlock(mem_entry); |
| 3583 | return KERN_INVALID_ARGUMENT; |
| 3584 | } |
| 3585 | |
| 3586 | vm_object_lock(object); |
| 3587 | |
| 3588 | /* check that named entry covers entire object ? */ |
| 3589 | if (mem_entry->offset != 0 || object->vo_size != mem_entry->size) { |
| 3590 | vm_object_unlock(object); |
| 3591 | named_entry_unlock(mem_entry); |
| 3592 | return KERN_INVALID_ARGUMENT; |
| 3593 | } |
| 3594 | |
| 3595 | named_entry_unlock(mem_entry); |
| 3596 | |
| 3597 | kr = vm_object_purgable_control(object, control, state); |
| 3598 | |
| 3599 | vm_object_unlock(object); |
| 3600 | |
| 3601 | return kr; |
| 3602 | } |
| 3603 | |
| 3604 | kern_return_t |
| 3605 | mach_memory_entry_access_tracking( |
| 3606 | ipc_port_t entry_port, |
| 3607 | int *access_tracking, |
| 3608 | uint32_t *access_tracking_reads, |
| 3609 | uint32_t *access_tracking_writes) |
| 3610 | { |
| 3611 | return memory_entry_access_tracking_internal(entry_port, |
| 3612 | access_tracking, |
| 3613 | access_tracking_reads, |
| 3614 | access_tracking_writes); |
| 3615 | } |
| 3616 | |
| 3617 | kern_return_t |
| 3618 | memory_entry_access_tracking_internal( |
| 3619 | ipc_port_t entry_port, |
| 3620 | int *access_tracking, |
| 3621 | uint32_t *access_tracking_reads, |
| 3622 | uint32_t *access_tracking_writes) |
| 3623 | { |
| 3624 | vm_named_entry_t mem_entry; |
| 3625 | vm_object_t object; |
| 3626 | kern_return_t kr; |
| 3627 | |
| 3628 | mem_entry = mach_memory_entry_from_port(port: entry_port); |
| 3629 | if (mem_entry == NULL) { |
| 3630 | return KERN_INVALID_ARGUMENT; |
| 3631 | } |
| 3632 | |
| 3633 | named_entry_lock(mem_entry); |
| 3634 | |
| 3635 | if (mem_entry->is_sub_map || |
| 3636 | mem_entry->is_copy) { |
| 3637 | named_entry_unlock(mem_entry); |
| 3638 | return KERN_INVALID_ARGUMENT; |
| 3639 | } |
| 3640 | |
| 3641 | assert(mem_entry->is_object); |
| 3642 | object = vm_named_entry_to_vm_object(named_entry: mem_entry); |
| 3643 | if (object == VM_OBJECT_NULL) { |
| 3644 | named_entry_unlock(mem_entry); |
| 3645 | return KERN_INVALID_ARGUMENT; |
| 3646 | } |
| 3647 | |
| 3648 | #if VM_OBJECT_ACCESS_TRACKING |
| 3649 | vm_object_access_tracking(object, |
| 3650 | access_tracking, |
| 3651 | access_tracking_reads, |
| 3652 | access_tracking_writes); |
| 3653 | kr = KERN_SUCCESS; |
| 3654 | #else /* VM_OBJECT_ACCESS_TRACKING */ |
| 3655 | (void) access_tracking; |
| 3656 | (void) access_tracking_reads; |
| 3657 | (void) access_tracking_writes; |
| 3658 | kr = KERN_NOT_SUPPORTED; |
| 3659 | #endif /* VM_OBJECT_ACCESS_TRACKING */ |
| 3660 | |
| 3661 | named_entry_unlock(mem_entry); |
| 3662 | |
| 3663 | return kr; |
| 3664 | } |
| 3665 | |
| 3666 | #if DEVELOPMENT || DEBUG |
| 3667 | /* For dtrace probe in mach_memory_entry_ownership */ |
| 3668 | extern int proc_selfpid(void); |
| 3669 | extern char *proc_name_address(void *p); |
| 3670 | #endif /* DEVELOPMENT || DEBUG */ |
| 3671 | |
| 3672 | /* Kernel call only, MIG uses *_from_user() below */ |
| 3673 | kern_return_t |
| 3674 | mach_memory_entry_ownership( |
| 3675 | ipc_port_t entry_port, |
| 3676 | task_t owner, |
| 3677 | int ledger_tag, |
| 3678 | int ledger_flags) |
| 3679 | { |
| 3680 | task_t cur_task; |
| 3681 | kern_return_t kr; |
| 3682 | vm_named_entry_t mem_entry; |
| 3683 | vm_object_t object; |
| 3684 | |
| 3685 | cur_task = current_task(); |
| 3686 | if (cur_task != kernel_task && |
| 3687 | ((owner != cur_task && owner != TASK_NULL) || |
| 3688 | (ledger_flags & VM_LEDGER_FLAG_NO_FOOTPRINT) || |
| 3689 | (ledger_flags & VM_LEDGER_FLAG_NO_FOOTPRINT_FOR_DEBUG) || |
| 3690 | ledger_tag == VM_LEDGER_TAG_NETWORK)) { |
| 3691 | bool transfer_ok = false; |
| 3692 | |
| 3693 | /* |
| 3694 | * An entitlement is required to: |
| 3695 | * + tranfer memory ownership to someone else, |
| 3696 | * + request that the memory not count against the footprint, |
| 3697 | * + tag as "network" (since that implies "no footprint") |
| 3698 | * |
| 3699 | * Exception: task with task_no_footprint_for_debug == 1 on internal build |
| 3700 | */ |
| 3701 | if (!cur_task->task_can_transfer_memory_ownership && |
| 3702 | IOCurrentTaskHasEntitlement(entitlement: "com.apple.private.memory.ownership_transfer" )) { |
| 3703 | cur_task->task_can_transfer_memory_ownership = TRUE; |
| 3704 | } |
| 3705 | if (cur_task->task_can_transfer_memory_ownership) { |
| 3706 | /* we're allowed to transfer ownership to any task */ |
| 3707 | transfer_ok = true; |
| 3708 | } |
| 3709 | #if DEVELOPMENT || DEBUG |
| 3710 | if (!transfer_ok && |
| 3711 | ledger_tag == VM_LEDGER_TAG_DEFAULT && |
| 3712 | (ledger_flags & VM_LEDGER_FLAG_NO_FOOTPRINT_FOR_DEBUG) && |
| 3713 | cur_task->task_no_footprint_for_debug) { |
| 3714 | int to_panic = 0; |
| 3715 | static bool init_bootarg = false; |
| 3716 | |
| 3717 | /* |
| 3718 | * Allow performance tools running on internal builds to hide memory usage from phys_footprint even |
| 3719 | * WITHOUT an entitlement. This can be enabled by per task sysctl vm.task_no_footprint_for_debug=1 |
| 3720 | * with the ledger tag VM_LEDGER_TAG_DEFAULT and flag VM_LEDGER_FLAG_NO_FOOTPRINT_FOR_DEBUG. |
| 3721 | * |
| 3722 | * If the boot-arg "panic_on_no_footprint_for_debug" is set, the kernel will |
| 3723 | * panic here in order to detect any abuse of this feature, which is intended solely for |
| 3724 | * memory debugging purpose. |
| 3725 | */ |
| 3726 | if (!init_bootarg) { |
| 3727 | PE_parse_boot_argn("panic_on_no_footprint_for_debug" , &to_panic, sizeof(to_panic)); |
| 3728 | init_bootarg = true; |
| 3729 | } |
| 3730 | if (to_panic) { |
| 3731 | panic("%s: panic_on_no_footprint_for_debug is triggered by pid %d procname %s" , __func__, proc_selfpid(), get_bsdtask_info(cur_task)? proc_name_address(get_bsdtask_info(cur_task)) : "?" ); |
| 3732 | } |
| 3733 | |
| 3734 | /* |
| 3735 | * Flushing out user space processes using this interface: |
| 3736 | * $ dtrace -n 'task_no_footprint_for_debug {printf("%d[%s]\n", pid, execname); stack(); ustack();}' |
| 3737 | */ |
| 3738 | DTRACE_VM(task_no_footprint_for_debug); |
| 3739 | transfer_ok = true; |
| 3740 | } |
| 3741 | #endif /* DEVELOPMENT || DEBUG */ |
| 3742 | if (!transfer_ok) { |
| 3743 | #define TRANSFER_ENTITLEMENT_MAX_LENGTH 1024 /* XXX ? */ |
| 3744 | const char *our_id, *their_id; |
| 3745 | our_id = IOTaskGetEntitlement(task: current_task(), entitlement: "com.apple.developer.memory.transfer-send" ); |
| 3746 | their_id = IOTaskGetEntitlement(task: owner, entitlement: "com.apple.developer.memory.transfer-accept" ); |
| 3747 | if (our_id && their_id && |
| 3748 | !strncmp(s1: our_id, s2: their_id, TRANSFER_ENTITLEMENT_MAX_LENGTH)) { |
| 3749 | /* allow transfer between tasks that have matching entitlements */ |
| 3750 | if (strnlen(s: our_id, TRANSFER_ENTITLEMENT_MAX_LENGTH) < TRANSFER_ENTITLEMENT_MAX_LENGTH && |
| 3751 | strnlen(s: their_id, TRANSFER_ENTITLEMENT_MAX_LENGTH) < TRANSFER_ENTITLEMENT_MAX_LENGTH) { |
| 3752 | transfer_ok = true; |
| 3753 | } else { |
| 3754 | /* complain about entitlement(s) being too long... */ |
| 3755 | assertf((strlen(our_id) <= TRANSFER_ENTITLEMENT_MAX_LENGTH && |
| 3756 | strlen(their_id) <= TRANSFER_ENTITLEMENT_MAX_LENGTH), |
| 3757 | "our_id:%lu their_id:%lu" , |
| 3758 | strlen(our_id), strlen(their_id)); |
| 3759 | } |
| 3760 | } |
| 3761 | } |
| 3762 | if (!transfer_ok) { |
| 3763 | /* transfer denied */ |
| 3764 | return KERN_NO_ACCESS; |
| 3765 | } |
| 3766 | |
| 3767 | if (ledger_flags & VM_LEDGER_FLAG_NO_FOOTPRINT_FOR_DEBUG) { |
| 3768 | /* |
| 3769 | * We've made it past the checks above, so we either |
| 3770 | * have the entitlement or the sysctl. |
| 3771 | * Convert to VM_LEDGER_FLAG_NO_FOOTPRINT. |
| 3772 | */ |
| 3773 | ledger_flags &= ~VM_LEDGER_FLAG_NO_FOOTPRINT_FOR_DEBUG; |
| 3774 | ledger_flags |= VM_LEDGER_FLAG_NO_FOOTPRINT; |
| 3775 | } |
| 3776 | } |
| 3777 | |
| 3778 | if (ledger_flags & ~VM_LEDGER_FLAGS) { |
| 3779 | return KERN_INVALID_ARGUMENT; |
| 3780 | } |
| 3781 | if (ledger_tag == VM_LEDGER_TAG_UNCHANGED) { |
| 3782 | /* leave "ledger_tag" unchanged */ |
| 3783 | } else if (ledger_tag < 0 || |
| 3784 | ledger_tag > VM_LEDGER_TAG_MAX) { |
| 3785 | return KERN_INVALID_ARGUMENT; |
| 3786 | } |
| 3787 | if (owner == TASK_NULL) { |
| 3788 | /* leave "owner" unchanged */ |
| 3789 | owner = VM_OBJECT_OWNER_UNCHANGED; |
| 3790 | } |
| 3791 | |
| 3792 | mem_entry = mach_memory_entry_from_port(port: entry_port); |
| 3793 | if (mem_entry == NULL) { |
| 3794 | return KERN_INVALID_ARGUMENT; |
| 3795 | } |
| 3796 | |
| 3797 | named_entry_lock(mem_entry); |
| 3798 | |
| 3799 | if (mem_entry->is_sub_map || |
| 3800 | !mem_entry->is_fully_owned) { |
| 3801 | named_entry_unlock(mem_entry); |
| 3802 | return KERN_INVALID_ARGUMENT; |
| 3803 | } |
| 3804 | |
| 3805 | if (mem_entry->is_object) { |
| 3806 | object = vm_named_entry_to_vm_object(named_entry: mem_entry); |
| 3807 | if (object == VM_OBJECT_NULL) { |
| 3808 | named_entry_unlock(mem_entry); |
| 3809 | return KERN_INVALID_ARGUMENT; |
| 3810 | } |
| 3811 | vm_object_lock(object); |
| 3812 | /* check that named entry covers entire object ? */ |
| 3813 | if (mem_entry->offset != 0 || object->vo_size != mem_entry->size) { |
| 3814 | vm_object_unlock(object); |
| 3815 | named_entry_unlock(mem_entry); |
| 3816 | return KERN_INVALID_ARGUMENT; |
| 3817 | } |
| 3818 | named_entry_unlock(mem_entry); |
| 3819 | kr = vm_object_ownership_change(object, |
| 3820 | new_ledger_tag: ledger_tag, |
| 3821 | new_owner: owner, |
| 3822 | new_ledger_flags: ledger_flags, |
| 3823 | FALSE); /* task_objq_locked */ |
| 3824 | vm_object_unlock(object); |
| 3825 | } else if (mem_entry->is_copy) { |
| 3826 | vm_map_copy_t copy; |
| 3827 | vm_map_entry_t entry; |
| 3828 | |
| 3829 | copy = mem_entry->backing.copy; |
| 3830 | named_entry_unlock(mem_entry); |
| 3831 | for (entry = vm_map_copy_first_entry(copy); |
| 3832 | entry != vm_map_copy_to_entry(copy); |
| 3833 | entry = entry->vme_next) { |
| 3834 | object = VME_OBJECT(entry); |
| 3835 | if (entry->is_sub_map || |
| 3836 | object == VM_OBJECT_NULL) { |
| 3837 | kr = KERN_INVALID_ARGUMENT; |
| 3838 | break; |
| 3839 | } |
| 3840 | vm_object_lock(object); |
| 3841 | if (VME_OFFSET(entry) != 0 || |
| 3842 | entry->vme_end - entry->vme_start != object->vo_size) { |
| 3843 | vm_object_unlock(object); |
| 3844 | kr = KERN_INVALID_ARGUMENT; |
| 3845 | break; |
| 3846 | } |
| 3847 | kr = vm_object_ownership_change(object, |
| 3848 | new_ledger_tag: ledger_tag, |
| 3849 | new_owner: owner, |
| 3850 | new_ledger_flags: ledger_flags, |
| 3851 | FALSE); /* task_objq_locked */ |
| 3852 | vm_object_unlock(object); |
| 3853 | if (kr != KERN_SUCCESS) { |
| 3854 | kr = KERN_INVALID_ARGUMENT; |
| 3855 | break; |
| 3856 | } |
| 3857 | } |
| 3858 | } else { |
| 3859 | named_entry_unlock(mem_entry); |
| 3860 | return KERN_INVALID_ARGUMENT; |
| 3861 | } |
| 3862 | |
| 3863 | return kr; |
| 3864 | } |
| 3865 | |
| 3866 | /* MIG call from userspace */ |
| 3867 | kern_return_t |
| 3868 | mach_memory_entry_ownership_from_user( |
| 3869 | ipc_port_t entry_port, |
| 3870 | mach_port_t owner_port, |
| 3871 | int ledger_tag, |
| 3872 | int ledger_flags) |
| 3873 | { |
| 3874 | task_t owner = TASK_NULL; |
| 3875 | kern_return_t kr; |
| 3876 | |
| 3877 | if (IP_VALID(owner_port)) { |
| 3878 | if (ip_kotype(owner_port) == IKOT_TASK_ID_TOKEN) { |
| 3879 | task_id_token_t token = convert_port_to_task_id_token(port: owner_port); |
| 3880 | (void)task_identity_token_get_task_grp(token, taskp: &owner, grp: TASK_GRP_MIG); |
| 3881 | task_id_token_release(token); |
| 3882 | /* token ref released */ |
| 3883 | } else { |
| 3884 | owner = convert_port_to_task_mig(port: owner_port); |
| 3885 | } |
| 3886 | } |
| 3887 | /* hold task ref on owner (Nullable) */ |
| 3888 | |
| 3889 | if (owner && task_is_a_corpse(task: owner)) { |
| 3890 | /* identity token can represent a corpse, disallow it */ |
| 3891 | task_deallocate_mig(owner); |
| 3892 | owner = TASK_NULL; |
| 3893 | } |
| 3894 | |
| 3895 | /* mach_memory_entry_ownership() will handle TASK_NULL owner */ |
| 3896 | kr = mach_memory_entry_ownership(entry_port, owner, /* Nullable */ |
| 3897 | ledger_tag, ledger_flags); |
| 3898 | |
| 3899 | if (owner) { |
| 3900 | task_deallocate_mig(owner); |
| 3901 | } |
| 3902 | |
| 3903 | if (kr == KERN_SUCCESS) { |
| 3904 | /* MIG rule, consume port right on success */ |
| 3905 | ipc_port_release_send(port: owner_port); |
| 3906 | } |
| 3907 | return kr; |
| 3908 | } |
| 3909 | |
| 3910 | kern_return_t |
| 3911 | mach_memory_entry_get_page_counts( |
| 3912 | ipc_port_t entry_port, |
| 3913 | unsigned int *resident_page_count, |
| 3914 | unsigned int *dirty_page_count) |
| 3915 | { |
| 3916 | kern_return_t kr; |
| 3917 | vm_named_entry_t mem_entry; |
| 3918 | vm_object_t object; |
| 3919 | vm_object_offset_t offset; |
| 3920 | vm_object_size_t size; |
| 3921 | |
| 3922 | mem_entry = mach_memory_entry_from_port(port: entry_port); |
| 3923 | if (mem_entry == NULL) { |
| 3924 | return KERN_INVALID_ARGUMENT; |
| 3925 | } |
| 3926 | |
| 3927 | named_entry_lock(mem_entry); |
| 3928 | |
| 3929 | if (mem_entry->is_sub_map || |
| 3930 | mem_entry->is_copy) { |
| 3931 | named_entry_unlock(mem_entry); |
| 3932 | return KERN_INVALID_ARGUMENT; |
| 3933 | } |
| 3934 | |
| 3935 | assert(mem_entry->is_object); |
| 3936 | object = vm_named_entry_to_vm_object(named_entry: mem_entry); |
| 3937 | if (object == VM_OBJECT_NULL) { |
| 3938 | named_entry_unlock(mem_entry); |
| 3939 | return KERN_INVALID_ARGUMENT; |
| 3940 | } |
| 3941 | |
| 3942 | vm_object_lock(object); |
| 3943 | |
| 3944 | offset = mem_entry->offset; |
| 3945 | size = mem_entry->size; |
| 3946 | size = vm_object_round_page(offset + size) - vm_object_trunc_page(offset); |
| 3947 | offset = vm_object_trunc_page(offset); |
| 3948 | |
| 3949 | named_entry_unlock(mem_entry); |
| 3950 | |
| 3951 | kr = vm_object_get_page_counts(object, offset, size, resident_page_count, dirty_page_count); |
| 3952 | |
| 3953 | vm_object_unlock(object); |
| 3954 | |
| 3955 | return kr; |
| 3956 | } |
| 3957 | |
| 3958 | kern_return_t |
| 3959 | mach_memory_entry_phys_page_offset( |
| 3960 | ipc_port_t entry_port, |
| 3961 | vm_object_offset_t *offset_p) |
| 3962 | { |
| 3963 | vm_named_entry_t mem_entry; |
| 3964 | vm_object_t object; |
| 3965 | vm_object_offset_t offset; |
| 3966 | vm_object_offset_t data_offset; |
| 3967 | |
| 3968 | mem_entry = mach_memory_entry_from_port(port: entry_port); |
| 3969 | if (mem_entry == NULL) { |
| 3970 | return KERN_INVALID_ARGUMENT; |
| 3971 | } |
| 3972 | |
| 3973 | named_entry_lock(mem_entry); |
| 3974 | |
| 3975 | if (mem_entry->is_sub_map || |
| 3976 | mem_entry->is_copy) { |
| 3977 | named_entry_unlock(mem_entry); |
| 3978 | return KERN_INVALID_ARGUMENT; |
| 3979 | } |
| 3980 | |
| 3981 | assert(mem_entry->is_object); |
| 3982 | object = vm_named_entry_to_vm_object(named_entry: mem_entry); |
| 3983 | if (object == VM_OBJECT_NULL) { |
| 3984 | named_entry_unlock(mem_entry); |
| 3985 | return KERN_INVALID_ARGUMENT; |
| 3986 | } |
| 3987 | |
| 3988 | offset = mem_entry->offset; |
| 3989 | data_offset = mem_entry->data_offset; |
| 3990 | |
| 3991 | named_entry_unlock(mem_entry); |
| 3992 | |
| 3993 | *offset_p = offset - vm_object_trunc_page(offset) + data_offset; |
| 3994 | return KERN_SUCCESS; |
| 3995 | } |
| 3996 | |
| 3997 | kern_return_t |
| 3998 | mach_memory_entry_map_size( |
| 3999 | ipc_port_t entry_port, |
| 4000 | vm_map_t map, |
| 4001 | memory_object_offset_t offset, |
| 4002 | memory_object_offset_t size, |
| 4003 | mach_vm_size_t *map_size) |
| 4004 | { |
| 4005 | vm_named_entry_t mem_entry; |
| 4006 | vm_object_t object; |
| 4007 | vm_object_offset_t object_offset_start, object_offset_end; |
| 4008 | vm_map_copy_t copy_map, target_copy_map; |
| 4009 | vm_map_offset_t overmap_start, overmap_end, trimmed_start; |
| 4010 | kern_return_t kr; |
| 4011 | |
| 4012 | mem_entry = mach_memory_entry_from_port(port: entry_port); |
| 4013 | if (mem_entry == NULL) { |
| 4014 | return KERN_INVALID_ARGUMENT; |
| 4015 | } |
| 4016 | |
| 4017 | named_entry_lock(mem_entry); |
| 4018 | |
| 4019 | if (mem_entry->is_sub_map) { |
| 4020 | named_entry_unlock(mem_entry); |
| 4021 | return KERN_INVALID_ARGUMENT; |
| 4022 | } |
| 4023 | |
| 4024 | if (mem_entry->is_object) { |
| 4025 | object = vm_named_entry_to_vm_object(named_entry: mem_entry); |
| 4026 | if (object == VM_OBJECT_NULL) { |
| 4027 | named_entry_unlock(mem_entry); |
| 4028 | return KERN_INVALID_ARGUMENT; |
| 4029 | } |
| 4030 | |
| 4031 | object_offset_start = mem_entry->offset; |
| 4032 | object_offset_start += mem_entry->data_offset; |
| 4033 | object_offset_start += offset; |
| 4034 | object_offset_end = object_offset_start + size; |
| 4035 | object_offset_start = vm_map_trunc_page(object_offset_start, |
| 4036 | VM_MAP_PAGE_MASK(map)); |
| 4037 | object_offset_end = vm_map_round_page(object_offset_end, |
| 4038 | VM_MAP_PAGE_MASK(map)); |
| 4039 | |
| 4040 | named_entry_unlock(mem_entry); |
| 4041 | |
| 4042 | *map_size = object_offset_end - object_offset_start; |
| 4043 | return KERN_SUCCESS; |
| 4044 | } |
| 4045 | |
| 4046 | if (!mem_entry->is_copy) { |
| 4047 | panic("unsupported type of mem_entry %p" , mem_entry); |
| 4048 | } |
| 4049 | |
| 4050 | assert(mem_entry->is_copy); |
| 4051 | if (VM_MAP_COPY_PAGE_MASK(mem_entry->backing.copy) == VM_MAP_PAGE_MASK(map)) { |
| 4052 | *map_size = vm_map_round_page(mem_entry->offset + mem_entry->data_offset + offset + size, VM_MAP_PAGE_MASK(map)) - vm_map_trunc_page(mem_entry->offset + mem_entry->data_offset + offset, VM_MAP_PAGE_MASK(map)); |
| 4053 | DEBUG4K_SHARE("map %p (%d) mem_entry %p offset 0x%llx + 0x%llx + 0x%llx size 0x%llx -> map_size 0x%llx\n" , map, VM_MAP_PAGE_MASK(map), mem_entry, mem_entry->offset, mem_entry->data_offset, offset, size, *map_size); |
| 4054 | named_entry_unlock(mem_entry); |
| 4055 | return KERN_SUCCESS; |
| 4056 | } |
| 4057 | |
| 4058 | DEBUG4K_SHARE("mem_entry %p copy %p (%d) map %p (%d) offset 0x%llx size 0x%llx\n" , mem_entry, mem_entry->backing.copy, VM_MAP_COPY_PAGE_SHIFT(mem_entry->backing.copy), map, VM_MAP_PAGE_SHIFT(map), offset, size); |
| 4059 | copy_map = mem_entry->backing.copy; |
| 4060 | target_copy_map = VM_MAP_COPY_NULL; |
| 4061 | DEBUG4K_ADJUST("adjusting...\n" ); |
| 4062 | kr = vm_map_copy_adjust_to_target(copy_map, |
| 4063 | offset: mem_entry->data_offset + offset, |
| 4064 | size, |
| 4065 | target_map: map, |
| 4066 | FALSE, |
| 4067 | target_copy_map_p: &target_copy_map, |
| 4068 | overmap_start_p: &overmap_start, |
| 4069 | overmap_end_p: &overmap_end, |
| 4070 | trimmed_start_p: &trimmed_start); |
| 4071 | if (kr == KERN_SUCCESS) { |
| 4072 | if (target_copy_map->size != copy_map->size) { |
| 4073 | DEBUG4K_ADJUST("copy %p (%d) map %p (%d) offset 0x%llx size 0x%llx overmap_start 0x%llx overmap_end 0x%llx trimmed_start 0x%llx map_size 0x%llx -> 0x%llx\n" , copy_map, VM_MAP_COPY_PAGE_SHIFT(copy_map), map, VM_MAP_PAGE_SHIFT(map), (uint64_t)offset, (uint64_t)size, (uint64_t)overmap_start, (uint64_t)overmap_end, (uint64_t)trimmed_start, (uint64_t)copy_map->size, (uint64_t)target_copy_map->size); |
| 4074 | } |
| 4075 | *map_size = target_copy_map->size; |
| 4076 | if (target_copy_map != copy_map) { |
| 4077 | vm_map_copy_discard(copy: target_copy_map); |
| 4078 | } |
| 4079 | target_copy_map = VM_MAP_COPY_NULL; |
| 4080 | } |
| 4081 | named_entry_unlock(mem_entry); |
| 4082 | return kr; |
| 4083 | } |
| 4084 | |
| 4085 | /* |
| 4086 | * mach_memory_entry_port_release: |
| 4087 | * |
| 4088 | * Release a send right on a named entry port. This is the correct |
| 4089 | * way to destroy a named entry. When the last right on the port is |
| 4090 | * released, mach_memory_entry_no_senders() willl be called. |
| 4091 | */ |
| 4092 | void |
| 4093 | mach_memory_entry_port_release( |
| 4094 | ipc_port_t port) |
| 4095 | { |
| 4096 | assert(ip_kotype(port) == IKOT_NAMED_ENTRY); |
| 4097 | ipc_port_release_send(port); |
| 4098 | } |
| 4099 | |
| 4100 | vm_named_entry_t |
| 4101 | mach_memory_entry_from_port(ipc_port_t port) |
| 4102 | { |
| 4103 | if (IP_VALID(port)) { |
| 4104 | return ipc_kobject_get_stable(port, type: IKOT_NAMED_ENTRY); |
| 4105 | } |
| 4106 | return NULL; |
| 4107 | } |
| 4108 | |
| 4109 | /* |
| 4110 | * mach_memory_entry_no_senders: |
| 4111 | * |
| 4112 | * Destroys the memory entry associated with a mach port. |
| 4113 | * Memory entries have the exact same lifetime as their owning port. |
| 4114 | * |
| 4115 | * Releasing a memory entry is done by calling |
| 4116 | * mach_memory_entry_port_release() on its owning port. |
| 4117 | */ |
| 4118 | static void |
| 4119 | mach_memory_entry_no_senders(ipc_port_t port, mach_port_mscount_t mscount) |
| 4120 | { |
| 4121 | vm_named_entry_t named_entry; |
| 4122 | |
| 4123 | named_entry = ipc_kobject_dealloc_port(port, mscount, type: IKOT_NAMED_ENTRY); |
| 4124 | |
| 4125 | if (named_entry->is_sub_map) { |
| 4126 | vm_map_deallocate(map: named_entry->backing.map); |
| 4127 | } else if (named_entry->is_copy) { |
| 4128 | vm_map_copy_discard(copy: named_entry->backing.copy); |
| 4129 | } else if (named_entry->is_object) { |
| 4130 | assert(named_entry->backing.copy->cpy_hdr.nentries == 1); |
| 4131 | vm_map_copy_discard(copy: named_entry->backing.copy); |
| 4132 | } else { |
| 4133 | assert(named_entry->backing.copy == VM_MAP_COPY_NULL); |
| 4134 | } |
| 4135 | |
| 4136 | #if VM_NAMED_ENTRY_DEBUG |
| 4137 | btref_put(named_entry->named_entry_bt); |
| 4138 | #endif /* VM_NAMED_ENTRY_DEBUG */ |
| 4139 | |
| 4140 | named_entry_lock_destroy(named_entry); |
| 4141 | kfree_type(struct vm_named_entry, named_entry); |
| 4142 | } |
| 4143 | |
| 4144 | /* Allow manipulation of individual page state. This is actually part of */ |
| 4145 | /* the UPL regimen but takes place on the memory entry rather than on a UPL */ |
| 4146 | |
| 4147 | kern_return_t |
| 4148 | mach_memory_entry_page_op( |
| 4149 | ipc_port_t entry_port, |
| 4150 | vm_object_offset_t offset, |
| 4151 | int ops, |
| 4152 | ppnum_t *phys_entry, |
| 4153 | int *flags) |
| 4154 | { |
| 4155 | vm_named_entry_t mem_entry; |
| 4156 | vm_object_t object; |
| 4157 | kern_return_t kr; |
| 4158 | |
| 4159 | mem_entry = mach_memory_entry_from_port(port: entry_port); |
| 4160 | if (mem_entry == NULL) { |
| 4161 | return KERN_INVALID_ARGUMENT; |
| 4162 | } |
| 4163 | |
| 4164 | named_entry_lock(mem_entry); |
| 4165 | |
| 4166 | if (mem_entry->is_sub_map || |
| 4167 | mem_entry->is_copy) { |
| 4168 | named_entry_unlock(mem_entry); |
| 4169 | return KERN_INVALID_ARGUMENT; |
| 4170 | } |
| 4171 | |
| 4172 | assert(mem_entry->is_object); |
| 4173 | object = vm_named_entry_to_vm_object(named_entry: mem_entry); |
| 4174 | if (object == VM_OBJECT_NULL) { |
| 4175 | named_entry_unlock(mem_entry); |
| 4176 | return KERN_INVALID_ARGUMENT; |
| 4177 | } |
| 4178 | |
| 4179 | vm_object_reference(object); |
| 4180 | named_entry_unlock(mem_entry); |
| 4181 | |
| 4182 | kr = vm_object_page_op(object, offset, ops, phys_entry, flags); |
| 4183 | |
| 4184 | vm_object_deallocate(object); |
| 4185 | |
| 4186 | return kr; |
| 4187 | } |
| 4188 | |
| 4189 | /* |
| 4190 | * mach_memory_entry_range_op offers performance enhancement over |
| 4191 | * mach_memory_entry_page_op for page_op functions which do not require page |
| 4192 | * level state to be returned from the call. Page_op was created to provide |
| 4193 | * a low-cost alternative to page manipulation via UPLs when only a single |
| 4194 | * page was involved. The range_op call establishes the ability in the _op |
| 4195 | * family of functions to work on multiple pages where the lack of page level |
| 4196 | * state handling allows the caller to avoid the overhead of the upl structures. |
| 4197 | */ |
| 4198 | |
| 4199 | kern_return_t |
| 4200 | mach_memory_entry_range_op( |
| 4201 | ipc_port_t entry_port, |
| 4202 | vm_object_offset_t offset_beg, |
| 4203 | vm_object_offset_t offset_end, |
| 4204 | int ops, |
| 4205 | int *range) |
| 4206 | { |
| 4207 | vm_named_entry_t mem_entry; |
| 4208 | vm_object_t object; |
| 4209 | kern_return_t kr; |
| 4210 | |
| 4211 | mem_entry = mach_memory_entry_from_port(port: entry_port); |
| 4212 | if (mem_entry == NULL) { |
| 4213 | return KERN_INVALID_ARGUMENT; |
| 4214 | } |
| 4215 | |
| 4216 | named_entry_lock(mem_entry); |
| 4217 | |
| 4218 | if (mem_entry->is_sub_map || |
| 4219 | mem_entry->is_copy) { |
| 4220 | named_entry_unlock(mem_entry); |
| 4221 | return KERN_INVALID_ARGUMENT; |
| 4222 | } |
| 4223 | |
| 4224 | assert(mem_entry->is_object); |
| 4225 | object = vm_named_entry_to_vm_object(named_entry: mem_entry); |
| 4226 | if (object == VM_OBJECT_NULL) { |
| 4227 | named_entry_unlock(mem_entry); |
| 4228 | return KERN_INVALID_ARGUMENT; |
| 4229 | } |
| 4230 | |
| 4231 | vm_object_reference(object); |
| 4232 | named_entry_unlock(mem_entry); |
| 4233 | |
| 4234 | kr = vm_object_range_op(object, |
| 4235 | offset_beg, |
| 4236 | offset_end, |
| 4237 | ops, |
| 4238 | range: (uint32_t *) range); |
| 4239 | |
| 4240 | vm_object_deallocate(object); |
| 4241 | |
| 4242 | return kr; |
| 4243 | } |
| 4244 | |
| 4245 | /* ******* Temporary Internal calls to UPL for BSD ***** */ |
| 4246 | |
| 4247 | extern int kernel_upl_map( |
| 4248 | vm_map_t map, |
| 4249 | upl_t upl, |
| 4250 | vm_offset_t *dst_addr); |
| 4251 | |
| 4252 | extern int kernel_upl_unmap( |
| 4253 | vm_map_t map, |
| 4254 | upl_t upl); |
| 4255 | |
| 4256 | extern int kernel_upl_commit( |
| 4257 | upl_t upl, |
| 4258 | upl_page_info_t *pl, |
| 4259 | mach_msg_type_number_t count); |
| 4260 | |
| 4261 | extern int kernel_upl_commit_range( |
| 4262 | upl_t upl, |
| 4263 | upl_offset_t offset, |
| 4264 | upl_size_t size, |
| 4265 | int flags, |
| 4266 | upl_page_info_array_t pl, |
| 4267 | mach_msg_type_number_t count); |
| 4268 | |
| 4269 | extern int kernel_upl_abort( |
| 4270 | upl_t upl, |
| 4271 | int abort_type); |
| 4272 | |
| 4273 | extern int kernel_upl_abort_range( |
| 4274 | upl_t upl, |
| 4275 | upl_offset_t offset, |
| 4276 | upl_size_t size, |
| 4277 | int abort_flags); |
| 4278 | |
| 4279 | |
| 4280 | kern_return_t |
| 4281 | kernel_upl_map( |
| 4282 | vm_map_t map, |
| 4283 | upl_t upl, |
| 4284 | vm_offset_t *dst_addr) |
| 4285 | { |
| 4286 | return vm_upl_map(map, upl, dst_addr); |
| 4287 | } |
| 4288 | |
| 4289 | |
| 4290 | kern_return_t |
| 4291 | kernel_upl_unmap( |
| 4292 | vm_map_t map, |
| 4293 | upl_t upl) |
| 4294 | { |
| 4295 | return vm_upl_unmap(map, upl); |
| 4296 | } |
| 4297 | |
| 4298 | kern_return_t |
| 4299 | kernel_upl_commit( |
| 4300 | upl_t upl, |
| 4301 | upl_page_info_t *pl, |
| 4302 | mach_msg_type_number_t count) |
| 4303 | { |
| 4304 | kern_return_t kr; |
| 4305 | |
| 4306 | kr = upl_commit(upl_object: upl, page_list: pl, page_listCnt: count); |
| 4307 | upl_deallocate(upl); |
| 4308 | return kr; |
| 4309 | } |
| 4310 | |
| 4311 | |
| 4312 | kern_return_t |
| 4313 | kernel_upl_commit_range( |
| 4314 | upl_t upl, |
| 4315 | upl_offset_t offset, |
| 4316 | upl_size_t size, |
| 4317 | int flags, |
| 4318 | upl_page_info_array_t pl, |
| 4319 | mach_msg_type_number_t count) |
| 4320 | { |
| 4321 | boolean_t finished = FALSE; |
| 4322 | kern_return_t kr; |
| 4323 | |
| 4324 | if (flags & UPL_COMMIT_FREE_ON_EMPTY) { |
| 4325 | flags |= UPL_COMMIT_NOTIFY_EMPTY; |
| 4326 | } |
| 4327 | |
| 4328 | if (flags & UPL_COMMIT_KERNEL_ONLY_FLAGS) { |
| 4329 | return KERN_INVALID_ARGUMENT; |
| 4330 | } |
| 4331 | |
| 4332 | kr = upl_commit_range(upl_object: upl, offset, size, cntrl_flags: flags, page_list: pl, page_listCnt: count, empty: &finished); |
| 4333 | |
| 4334 | if ((flags & UPL_COMMIT_NOTIFY_EMPTY) && finished) { |
| 4335 | upl_deallocate(upl); |
| 4336 | } |
| 4337 | |
| 4338 | return kr; |
| 4339 | } |
| 4340 | |
| 4341 | kern_return_t |
| 4342 | kernel_upl_abort_range( |
| 4343 | upl_t upl, |
| 4344 | upl_offset_t offset, |
| 4345 | upl_size_t size, |
| 4346 | int abort_flags) |
| 4347 | { |
| 4348 | kern_return_t kr; |
| 4349 | boolean_t finished = FALSE; |
| 4350 | |
| 4351 | if (abort_flags & UPL_COMMIT_FREE_ON_EMPTY) { |
| 4352 | abort_flags |= UPL_COMMIT_NOTIFY_EMPTY; |
| 4353 | } |
| 4354 | |
| 4355 | kr = upl_abort_range(upl_object: upl, offset, size, abort_cond: abort_flags, empty: &finished); |
| 4356 | |
| 4357 | if ((abort_flags & UPL_COMMIT_FREE_ON_EMPTY) && finished) { |
| 4358 | upl_deallocate(upl); |
| 4359 | } |
| 4360 | |
| 4361 | return kr; |
| 4362 | } |
| 4363 | |
| 4364 | kern_return_t |
| 4365 | kernel_upl_abort( |
| 4366 | upl_t upl, |
| 4367 | int abort_type) |
| 4368 | { |
| 4369 | kern_return_t kr; |
| 4370 | |
| 4371 | kr = upl_abort(upl_object: upl, abort_cond: abort_type); |
| 4372 | upl_deallocate(upl); |
| 4373 | return kr; |
| 4374 | } |
| 4375 | |
| 4376 | /* |
| 4377 | * Now a kernel-private interface (for BootCache |
| 4378 | * use only). Need a cleaner way to create an |
| 4379 | * empty vm_map() and return a handle to it. |
| 4380 | */ |
| 4381 | |
| 4382 | kern_return_t |
| 4383 | vm_region_object_create( |
| 4384 | vm_map_t target_map, |
| 4385 | vm_size_t size, |
| 4386 | ipc_port_t *object_handle) |
| 4387 | { |
| 4388 | vm_named_entry_t user_entry; |
| 4389 | vm_map_t new_map; |
| 4390 | |
| 4391 | user_entry = mach_memory_entry_allocate(user_handle_p: object_handle); |
| 4392 | |
| 4393 | /* Create a named object based on a submap of specified size */ |
| 4394 | |
| 4395 | new_map = vm_map_create_options(PMAP_NULL, VM_MAP_MIN_ADDRESS, |
| 4396 | vm_map_round_page(size, VM_MAP_PAGE_MASK(target_map)), |
| 4397 | options: VM_MAP_CREATE_PAGEABLE); |
| 4398 | vm_map_set_page_shift(map: new_map, pageshift: VM_MAP_PAGE_SHIFT(map: target_map)); |
| 4399 | |
| 4400 | user_entry->backing.map = new_map; |
| 4401 | user_entry->internal = TRUE; |
| 4402 | user_entry->is_sub_map = TRUE; |
| 4403 | user_entry->offset = 0; |
| 4404 | user_entry->protection = VM_PROT_ALL; |
| 4405 | user_entry->size = size; |
| 4406 | |
| 4407 | return KERN_SUCCESS; |
| 4408 | } |
| 4409 | |
| 4410 | ppnum_t vm_map_get_phys_page( /* forward */ |
| 4411 | vm_map_t map, |
| 4412 | vm_offset_t offset); |
| 4413 | |
| 4414 | ppnum_t |
| 4415 | vm_map_get_phys_page( |
| 4416 | vm_map_t map, |
| 4417 | vm_offset_t addr) |
| 4418 | { |
| 4419 | vm_object_offset_t offset; |
| 4420 | vm_object_t object; |
| 4421 | vm_map_offset_t map_offset; |
| 4422 | vm_map_entry_t entry; |
| 4423 | ppnum_t phys_page = 0; |
| 4424 | |
| 4425 | map_offset = vm_map_trunc_page(addr, PAGE_MASK); |
| 4426 | |
| 4427 | vm_map_lock(map); |
| 4428 | while (vm_map_lookup_entry(map, address: map_offset, entry: &entry)) { |
| 4429 | if (entry->is_sub_map) { |
| 4430 | vm_map_t old_map; |
| 4431 | vm_map_lock(VME_SUBMAP(entry)); |
| 4432 | old_map = map; |
| 4433 | map = VME_SUBMAP(entry); |
| 4434 | map_offset = (VME_OFFSET(entry) + |
| 4435 | (map_offset - entry->vme_start)); |
| 4436 | vm_map_unlock(old_map); |
| 4437 | continue; |
| 4438 | } |
| 4439 | if (VME_OBJECT(entry) == VM_OBJECT_NULL) { |
| 4440 | vm_map_unlock(map); |
| 4441 | return (ppnum_t) 0; |
| 4442 | } |
| 4443 | if (VME_OBJECT(entry)->phys_contiguous) { |
| 4444 | /* These are not standard pageable memory mappings */ |
| 4445 | /* If they are not present in the object they will */ |
| 4446 | /* have to be picked up from the pager through the */ |
| 4447 | /* fault mechanism. */ |
| 4448 | if (VME_OBJECT(entry)->vo_shadow_offset == 0) { |
| 4449 | /* need to call vm_fault */ |
| 4450 | vm_map_unlock(map); |
| 4451 | vm_fault(map, vaddr: map_offset, VM_PROT_NONE, |
| 4452 | FALSE /* change_wiring */, VM_KERN_MEMORY_NONE, |
| 4453 | THREAD_UNINT, NULL, pmap_addr: 0); |
| 4454 | vm_map_lock(map); |
| 4455 | continue; |
| 4456 | } |
| 4457 | offset = (VME_OFFSET(entry) + |
| 4458 | (map_offset - entry->vme_start)); |
| 4459 | phys_page = (ppnum_t) |
| 4460 | ((VME_OBJECT(entry)->vo_shadow_offset |
| 4461 | + offset) >> PAGE_SHIFT); |
| 4462 | break; |
| 4463 | } |
| 4464 | offset = (VME_OFFSET(entry) + (map_offset - entry->vme_start)); |
| 4465 | object = VME_OBJECT(entry); |
| 4466 | vm_object_lock(object); |
| 4467 | while (TRUE) { |
| 4468 | vm_page_t dst_page = vm_page_lookup(object, offset); |
| 4469 | if (dst_page == VM_PAGE_NULL) { |
| 4470 | if (object->shadow) { |
| 4471 | vm_object_t old_object; |
| 4472 | vm_object_lock(object->shadow); |
| 4473 | old_object = object; |
| 4474 | offset = offset + object->vo_shadow_offset; |
| 4475 | object = object->shadow; |
| 4476 | vm_object_unlock(old_object); |
| 4477 | } else { |
| 4478 | vm_object_unlock(object); |
| 4479 | break; |
| 4480 | } |
| 4481 | } else { |
| 4482 | phys_page = (ppnum_t)(VM_PAGE_GET_PHYS_PAGE(m: dst_page)); |
| 4483 | vm_object_unlock(object); |
| 4484 | break; |
| 4485 | } |
| 4486 | } |
| 4487 | break; |
| 4488 | } |
| 4489 | |
| 4490 | vm_map_unlock(map); |
| 4491 | return phys_page; |
| 4492 | } |
| 4493 | |
| 4494 | kern_return_t |
| 4495 | mach_vm_deferred_reclamation_buffer_init( |
| 4496 | task_t task, |
| 4497 | mach_vm_offset_t address, |
| 4498 | mach_vm_size_t size) |
| 4499 | { |
| 4500 | #if CONFIG_DEFERRED_RECLAIM |
| 4501 | return vm_deferred_reclamation_buffer_init_internal(task, address, size); |
| 4502 | #else |
| 4503 | (void) task; |
| 4504 | (void) address; |
| 4505 | (void) size; |
| 4506 | (void) indices; |
| 4507 | return KERN_NOT_SUPPORTED; |
| 4508 | #endif /* CONFIG_DEFERRED_RECLAIM */ |
| 4509 | } |
| 4510 | |
| 4511 | kern_return_t |
| 4512 | mach_vm_deferred_reclamation_buffer_synchronize( |
| 4513 | task_t task, |
| 4514 | mach_vm_size_t num_entries_to_reclaim) |
| 4515 | { |
| 4516 | #if CONFIG_DEFERRED_RECLAIM |
| 4517 | return vm_deferred_reclamation_buffer_synchronize_internal(task, max_entries_to_reclaim: num_entries_to_reclaim); |
| 4518 | #else |
| 4519 | (void) task; |
| 4520 | (void) num_entries_to_reclaim; |
| 4521 | return KERN_NOT_SUPPORTED; |
| 4522 | #endif /* CONFIG_DEFERRED_RECLAIM */ |
| 4523 | } |
| 4524 | |
| 4525 | kern_return_t |
| 4526 | mach_vm_deferred_reclamation_buffer_update_reclaimable_bytes(task_t task, mach_vm_size_t reclaimable_bytes) |
| 4527 | { |
| 4528 | #if CONFIG_DEFERRED_RECLAIM |
| 4529 | return vm_deferred_reclamation_buffer_update_reclaimable_bytes_internal(task, reclaimable_bytes); |
| 4530 | #else |
| 4531 | (void) task; |
| 4532 | (void) reclaimable_bytes; |
| 4533 | return KERN_NOT_SUPPORTED; |
| 4534 | #endif /* CONFIG_DEFERRED_RECLAIM */ |
| 4535 | } |
| 4536 | |
| 4537 | #if 0 |
| 4538 | kern_return_t kernel_object_iopl_request( /* forward */ |
| 4539 | vm_named_entry_t named_entry, |
| 4540 | memory_object_offset_t offset, |
| 4541 | upl_size_t *upl_size, |
| 4542 | upl_t *upl_ptr, |
| 4543 | upl_page_info_array_t user_page_list, |
| 4544 | unsigned int *page_list_count, |
| 4545 | int *flags); |
| 4546 | |
| 4547 | kern_return_t |
| 4548 | kernel_object_iopl_request( |
| 4549 | vm_named_entry_t named_entry, |
| 4550 | memory_object_offset_t offset, |
| 4551 | upl_size_t *upl_size, |
| 4552 | upl_t *upl_ptr, |
| 4553 | upl_page_info_array_t user_page_list, |
| 4554 | unsigned int *page_list_count, |
| 4555 | int *flags) |
| 4556 | { |
| 4557 | vm_object_t object; |
| 4558 | kern_return_t ret; |
| 4559 | |
| 4560 | int caller_flags; |
| 4561 | |
| 4562 | caller_flags = *flags; |
| 4563 | |
| 4564 | if (caller_flags & ~UPL_VALID_FLAGS) { |
| 4565 | /* |
| 4566 | * For forward compatibility's sake, |
| 4567 | * reject any unknown flag. |
| 4568 | */ |
| 4569 | return KERN_INVALID_VALUE; |
| 4570 | } |
| 4571 | |
| 4572 | /* a few checks to make sure user is obeying rules */ |
| 4573 | if (*upl_size == 0) { |
| 4574 | if (offset >= named_entry->size) { |
| 4575 | return KERN_INVALID_RIGHT; |
| 4576 | } |
| 4577 | *upl_size = (upl_size_t) (named_entry->size - offset); |
| 4578 | if (*upl_size != named_entry->size - offset) { |
| 4579 | return KERN_INVALID_ARGUMENT; |
| 4580 | } |
| 4581 | } |
| 4582 | if (caller_flags & UPL_COPYOUT_FROM) { |
| 4583 | if ((named_entry->protection & VM_PROT_READ) |
| 4584 | != VM_PROT_READ) { |
| 4585 | return KERN_INVALID_RIGHT; |
| 4586 | } |
| 4587 | } else { |
| 4588 | if ((named_entry->protection & |
| 4589 | (VM_PROT_READ | VM_PROT_WRITE)) |
| 4590 | != (VM_PROT_READ | VM_PROT_WRITE)) { |
| 4591 | return KERN_INVALID_RIGHT; |
| 4592 | } |
| 4593 | } |
| 4594 | if (named_entry->size < (offset + *upl_size)) { |
| 4595 | return KERN_INVALID_ARGUMENT; |
| 4596 | } |
| 4597 | |
| 4598 | /* the callers parameter offset is defined to be the */ |
| 4599 | /* offset from beginning of named entry offset in object */ |
| 4600 | offset = offset + named_entry->offset; |
| 4601 | |
| 4602 | if (named_entry->is_sub_map || |
| 4603 | named_entry->is_copy) { |
| 4604 | return KERN_INVALID_ARGUMENT; |
| 4605 | } |
| 4606 | |
| 4607 | named_entry_lock(named_entry); |
| 4608 | |
| 4609 | /* This is the case where we are going to operate */ |
| 4610 | /* on an already known object. If the object is */ |
| 4611 | /* not ready it is internal. An external */ |
| 4612 | /* object cannot be mapped until it is ready */ |
| 4613 | /* we can therefore avoid the ready check */ |
| 4614 | /* in this case. */ |
| 4615 | assert(named_entry->is_object); |
| 4616 | object = vm_named_entry_to_vm_object(named_entry); |
| 4617 | vm_object_reference(object); |
| 4618 | named_entry_unlock(named_entry); |
| 4619 | |
| 4620 | if (!object->private) { |
| 4621 | if (*upl_size > MAX_UPL_TRANSFER_BYTES) { |
| 4622 | *upl_size = MAX_UPL_TRANSFER_BYTES; |
| 4623 | } |
| 4624 | if (object->phys_contiguous) { |
| 4625 | *flags = UPL_PHYS_CONTIG; |
| 4626 | } else { |
| 4627 | *flags = 0; |
| 4628 | } |
| 4629 | } else { |
| 4630 | *flags = UPL_DEV_MEMORY | UPL_PHYS_CONTIG; |
| 4631 | } |
| 4632 | |
| 4633 | ret = vm_object_iopl_request(object, |
| 4634 | offset, |
| 4635 | *upl_size, |
| 4636 | upl_ptr, |
| 4637 | user_page_list, |
| 4638 | page_list_count, |
| 4639 | (upl_control_flags_t)(unsigned int)caller_flags); |
| 4640 | vm_object_deallocate(object); |
| 4641 | return ret; |
| 4642 | } |
| 4643 | #endif |
| 4644 | |
| 4645 | /* |
| 4646 | * These symbols are looked up at runtime by vmware, VirtualBox, |
| 4647 | * despite not being exported in the symbol sets. |
| 4648 | */ |
| 4649 | |
| 4650 | #if defined(__x86_64__) |
| 4651 | |
| 4652 | kern_return_t |
| 4653 | mach_vm_map( |
| 4654 | vm_map_t target_map, |
| 4655 | mach_vm_offset_t *address, |
| 4656 | mach_vm_size_t initial_size, |
| 4657 | mach_vm_offset_t mask, |
| 4658 | int flags, |
| 4659 | ipc_port_t port, |
| 4660 | vm_object_offset_t offset, |
| 4661 | boolean_t copy, |
| 4662 | vm_prot_t cur_protection, |
| 4663 | vm_prot_t max_protection, |
| 4664 | vm_inherit_t inheritance); |
| 4665 | |
| 4666 | kern_return_t |
| 4667 | mach_vm_remap( |
| 4668 | vm_map_t target_map, |
| 4669 | mach_vm_offset_t *address, |
| 4670 | mach_vm_size_t size, |
| 4671 | mach_vm_offset_t mask, |
| 4672 | int flags, |
| 4673 | vm_map_t src_map, |
| 4674 | mach_vm_offset_t memory_address, |
| 4675 | boolean_t copy, |
| 4676 | vm_prot_t *cur_protection, |
| 4677 | vm_prot_t *max_protection, |
| 4678 | vm_inherit_t inheritance); |
| 4679 | |
| 4680 | kern_return_t |
| 4681 | mach_vm_map( |
| 4682 | vm_map_t target_map, |
| 4683 | mach_vm_offset_t *address, |
| 4684 | mach_vm_size_t initial_size, |
| 4685 | mach_vm_offset_t mask, |
| 4686 | int flags, |
| 4687 | ipc_port_t port, |
| 4688 | vm_object_offset_t offset, |
| 4689 | boolean_t copy, |
| 4690 | vm_prot_t cur_protection, |
| 4691 | vm_prot_t max_protection, |
| 4692 | vm_inherit_t inheritance) |
| 4693 | { |
| 4694 | return mach_vm_map_external(target_map, address, initial_size, mask, flags, port, |
| 4695 | offset, copy, cur_protection, max_protection, inheritance); |
| 4696 | } |
| 4697 | |
| 4698 | kern_return_t |
| 4699 | mach_vm_remap( |
| 4700 | vm_map_t target_map, |
| 4701 | mach_vm_offset_t *address, |
| 4702 | mach_vm_size_t size, |
| 4703 | mach_vm_offset_t mask, |
| 4704 | int flags, |
| 4705 | vm_map_t src_map, |
| 4706 | mach_vm_offset_t memory_address, |
| 4707 | boolean_t copy, |
| 4708 | vm_prot_t *cur_protection, /* OUT */ |
| 4709 | vm_prot_t *max_protection, /* OUT */ |
| 4710 | vm_inherit_t inheritance) |
| 4711 | { |
| 4712 | return mach_vm_remap_external(target_map, address, size, mask, flags, src_map, memory_address, |
| 4713 | copy, cur_protection, max_protection, inheritance); |
| 4714 | } |
| 4715 | |
| 4716 | kern_return_t |
| 4717 | vm_map( |
| 4718 | vm_map_t target_map, |
| 4719 | vm_offset_t *address, |
| 4720 | vm_size_t size, |
| 4721 | vm_offset_t mask, |
| 4722 | int flags, |
| 4723 | ipc_port_t port, |
| 4724 | vm_offset_t offset, |
| 4725 | boolean_t copy, |
| 4726 | vm_prot_t cur_protection, |
| 4727 | vm_prot_t max_protection, |
| 4728 | vm_inherit_t inheritance); |
| 4729 | |
| 4730 | kern_return_t |
| 4731 | vm_map( |
| 4732 | vm_map_t target_map, |
| 4733 | vm_offset_t *address, |
| 4734 | vm_size_t size, |
| 4735 | vm_offset_t mask, |
| 4736 | int flags, |
| 4737 | ipc_port_t port, |
| 4738 | vm_offset_t offset, |
| 4739 | boolean_t copy, |
| 4740 | vm_prot_t cur_protection, |
| 4741 | vm_prot_t max_protection, |
| 4742 | vm_inherit_t inheritance) |
| 4743 | { |
| 4744 | static_assert(sizeof(vm_offset_t) == sizeof(mach_vm_offset_t)); |
| 4745 | |
| 4746 | return mach_vm_map(target_map, (mach_vm_offset_t *)address, |
| 4747 | size, mask, flags, port, offset, copy, |
| 4748 | cur_protection, max_protection, inheritance); |
| 4749 | } |
| 4750 | |
| 4751 | #endif /* __x86_64__ */ |
| 4752 | |