1 | /* |
2 | * Copyright (c) 2000-2021 Apple Inc. All rights reserved. |
3 | * |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
5 | * |
6 | * This file contains Original Code and/or Modifications of Original Code |
7 | * as defined in and that are subject to the Apple Public Source License |
8 | * Version 2.0 (the 'License'). You may not use this file except in |
9 | * compliance with the License. The rights granted to you under the License |
10 | * may not be used to create, or enable the creation or redistribution of, |
11 | * unlawful or unlicensed copies of an Apple operating system, or to |
12 | * circumvent, violate, or enable the circumvention or violation of, any |
13 | * terms of an Apple operating system software license agreement. |
14 | * |
15 | * Please obtain a copy of the License at |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
17 | * |
18 | * The Original Code and all software distributed under the License are |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
23 | * Please see the License for the specific language governing rights and |
24 | * limitations under the License. |
25 | * |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
27 | */ |
28 | /* |
29 | * @OSF_COPYRIGHT@ |
30 | */ |
31 | /* |
32 | * Mach Operating System |
33 | * Copyright (c) 1991,1990,1989,1988 Carnegie Mellon University |
34 | * All Rights Reserved. |
35 | * |
36 | * Permission to use, copy, modify and distribute this software and its |
37 | * documentation is hereby granted, provided that both the copyright |
38 | * notice and this permission notice appear in all copies of the |
39 | * software, derivative works or modified versions, and any portions |
40 | * thereof, and that both notices appear in supporting documentation. |
41 | * |
42 | * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" |
43 | * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR |
44 | * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. |
45 | * |
46 | * Carnegie Mellon requests users of this software to return to |
47 | * |
48 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU |
49 | * School of Computer Science |
50 | * Carnegie Mellon University |
51 | * Pittsburgh PA 15213-3890 |
52 | * |
53 | * any improvements or extensions that they make and grant Carnegie Mellon |
54 | * the rights to redistribute these changes. |
55 | */ |
56 | /* |
57 | */ |
58 | /* |
59 | * File: vm/vm_user.c |
60 | * Author: Avadis Tevanian, Jr., Michael Wayne Young |
61 | * |
62 | * User-exported virtual memory functions. |
63 | */ |
64 | |
65 | /* |
66 | * There are three implementations of the "XXX_allocate" functionality in |
67 | * the kernel: mach_vm_allocate (for any task on the platform), vm_allocate |
68 | * (for a task with the same address space size, especially the current task), |
69 | * and vm32_vm_allocate (for the specific case of a 32-bit task). vm_allocate |
70 | * in the kernel should only be used on the kernel_task. vm32_vm_allocate only |
71 | * makes sense on platforms where a user task can either be 32 or 64, or the kernel |
72 | * task can be 32 or 64. mach_vm_allocate makes sense everywhere, and is preferred |
73 | * for new code. |
74 | * |
75 | * The entrypoints into the kernel are more complex. All platforms support a |
76 | * mach_vm_allocate-style API (subsystem 4800) which operates with the largest |
77 | * size types for the platform. On platforms that only support U32/K32, |
78 | * subsystem 4800 is all you need. On platforms that support both U32 and U64, |
79 | * subsystem 3800 is used disambiguate the size of parameters, and they will |
80 | * always be 32-bit and call into the vm32_vm_allocate APIs. On non-U32/K32 platforms, |
81 | * the MIG glue should never call into vm_allocate directly, because the calling |
82 | * task and kernel_task are unlikely to use the same size parameters |
83 | * |
84 | * New VM call implementations should be added here and to mach_vm.defs |
85 | * (subsystem 4800), and use mach_vm_* "wide" types. |
86 | */ |
87 | |
88 | #include <debug.h> |
89 | |
90 | #include <vm_cpm.h> |
91 | #include <mach/boolean.h> |
92 | #include <mach/kern_return.h> |
93 | #include <mach/mach_types.h> /* to get vm_address_t */ |
94 | #include <mach/memory_object.h> |
95 | #include <mach/std_types.h> /* to get pointer_t */ |
96 | #include <mach/upl.h> |
97 | #include <mach/vm_attributes.h> |
98 | #include <mach/vm_param.h> |
99 | #include <mach/vm_statistics.h> |
100 | #include <mach/mach_syscalls.h> |
101 | #include <mach/sdt.h> |
102 | |
103 | #include <mach/host_priv_server.h> |
104 | #include <mach/mach_vm_server.h> |
105 | #include <mach/memory_entry_server.h> |
106 | #include <mach/vm_map_server.h> |
107 | |
108 | #include <kern/host.h> |
109 | #include <kern/kalloc.h> |
110 | #include <kern/task.h> |
111 | #include <kern/misc_protos.h> |
112 | #include <vm/vm_fault.h> |
113 | #include <vm/vm_map_internal.h> |
114 | #include <vm/vm_object.h> |
115 | #include <vm/vm_page.h> |
116 | #include <vm/memory_object.h> |
117 | #include <vm/vm_pageout.h> |
118 | #include <vm/vm_protos.h> |
119 | #include <vm/vm_purgeable_internal.h> |
120 | #if CONFIG_DEFERRED_RECLAIM |
121 | #include <vm/vm_reclaim_internal.h> |
122 | #endif /* CONFIG_DEFERRED_RECLAIM */ |
123 | #include <vm/vm_init.h> |
124 | |
125 | #include <san/kasan.h> |
126 | |
127 | #include <libkern/OSDebug.h> |
128 | #include <IOKit/IOBSD.h> |
129 | #include <sys/kdebug_triage.h> |
130 | |
131 | #if VM_CPM |
132 | #include <vm/cpm.h> |
133 | #endif /* VM_CPM */ |
134 | |
135 | static void mach_memory_entry_no_senders(ipc_port_t, mach_port_mscount_t); |
136 | |
137 | __attribute__((always_inline)) |
138 | int |
139 | vm_map_kernel_flags_vmflags(vm_map_kernel_flags_t vmk_flags) |
140 | { |
141 | int flags = vmk_flags.__vm_flags & VM_FLAGS_ANY_MASK; |
142 | |
143 | /* in vmk flags the meaning of fixed/anywhere is inverted */ |
144 | return flags ^ (VM_FLAGS_FIXED | VM_FLAGS_ANYWHERE); |
145 | } |
146 | |
147 | __attribute__((always_inline, overloadable)) |
148 | void |
149 | vm_map_kernel_flags_set_vmflags( |
150 | vm_map_kernel_flags_t *vmk_flags, |
151 | int vm_flags, |
152 | vm_tag_t vm_tag) |
153 | { |
154 | vm_flags ^= (VM_FLAGS_FIXED | VM_FLAGS_ANYWHERE); |
155 | vmk_flags->__vm_flags &= ~VM_FLAGS_ANY_MASK; |
156 | vmk_flags->__vm_flags |= (vm_flags & VM_FLAGS_ANY_MASK); |
157 | vmk_flags->vm_tag = vm_tag; |
158 | } |
159 | |
160 | __attribute__((always_inline, overloadable)) |
161 | void |
162 | vm_map_kernel_flags_set_vmflags( |
163 | vm_map_kernel_flags_t *vmk_flags, |
164 | int vm_flags_and_tag) |
165 | { |
166 | vm_flags_and_tag ^= (VM_FLAGS_FIXED | VM_FLAGS_ANYWHERE); |
167 | vmk_flags->__vm_flags &= ~VM_FLAGS_ANY_MASK; |
168 | vmk_flags->__vm_flags |= (vm_flags_and_tag & VM_FLAGS_ANY_MASK); |
169 | VM_GET_FLAGS_ALIAS(vm_flags_and_tag, vmk_flags->vm_tag); |
170 | } |
171 | |
172 | __attribute__((always_inline)) |
173 | void |
174 | vm_map_kernel_flags_and_vmflags( |
175 | vm_map_kernel_flags_t *vmk_flags, |
176 | int vm_flags_mask) |
177 | { |
178 | /* this function doesn't handle the inverted FIXED/ANYWHERE */ |
179 | assert(vm_flags_mask & VM_FLAGS_ANYWHERE); |
180 | vmk_flags->__vm_flags &= vm_flags_mask; |
181 | } |
182 | |
183 | bool |
184 | vm_map_kernel_flags_check_vmflags( |
185 | vm_map_kernel_flags_t vmk_flags, |
186 | int vm_flags_mask) |
187 | { |
188 | int vmflags = vmk_flags.__vm_flags & VM_FLAGS_ANY_MASK; |
189 | |
190 | /* Note: up to 16 still has good calling conventions */ |
191 | static_assert(sizeof(vm_map_kernel_flags_t) == 8); |
192 | |
193 | #if DEBUG || DEVELOPMENT |
194 | /* |
195 | * All of this compiles to nothing if all checks pass. |
196 | */ |
197 | #define check(field, value) ({ \ |
198 | vm_map_kernel_flags_t fl = VM_MAP_KERNEL_FLAGS_NONE; \ |
199 | fl.__vm_flags = (value); \ |
200 | fl.field = 0; \ |
201 | assert(fl.__vm_flags == 0); \ |
202 | }) |
203 | |
204 | /* bits 0-7 */ |
205 | check(vmf_fixed, VM_FLAGS_ANYWHERE); // kind of a lie this is inverted |
206 | check(vmf_purgeable, VM_FLAGS_PURGABLE); |
207 | check(vmf_4gb_chunk, VM_FLAGS_4GB_CHUNK); |
208 | check(vmf_random_addr, VM_FLAGS_RANDOM_ADDR); |
209 | check(vmf_no_cache, VM_FLAGS_NO_CACHE); |
210 | check(vmf_resilient_codesign, VM_FLAGS_RESILIENT_CODESIGN); |
211 | check(vmf_resilient_media, VM_FLAGS_RESILIENT_MEDIA); |
212 | check(vmf_permanent, VM_FLAGS_PERMANENT); |
213 | |
214 | /* bits 8-15 */ |
215 | check(vmf_tpro, VM_FLAGS_TPRO); |
216 | check(vmf_overwrite, VM_FLAGS_OVERWRITE); |
217 | |
218 | /* bits 16-23 */ |
219 | check(vmf_superpage_size, VM_FLAGS_SUPERPAGE_MASK); |
220 | check(vmf_return_data_addr, VM_FLAGS_RETURN_DATA_ADDR); |
221 | check(vmf_return_4k_data_addr, VM_FLAGS_RETURN_4K_DATA_ADDR); |
222 | |
223 | { |
224 | vm_map_kernel_flags_t fl = VM_MAP_KERNEL_FLAGS_NONE; |
225 | |
226 | /* check user tags will never clip */ |
227 | fl.vm_tag = VM_MEMORY_COUNT - 1; |
228 | assert(fl.vm_tag == VM_MEMORY_COUNT - 1); |
229 | |
230 | /* check kernel tags will never clip */ |
231 | fl.vm_tag = VM_MAX_TAG_VALUE - 1; |
232 | assert(fl.vm_tag == VM_MAX_TAG_VALUE - 1); |
233 | } |
234 | |
235 | |
236 | #undef check |
237 | #endif /* DEBUG || DEVELOPMENT */ |
238 | |
239 | return (vmflags & ~vm_flags_mask) == 0; |
240 | } |
241 | |
242 | kern_return_t |
243 | vm_purgable_control( |
244 | vm_map_t map, |
245 | vm_offset_t address, |
246 | vm_purgable_t control, |
247 | int *state); |
248 | |
249 | kern_return_t |
250 | mach_vm_purgable_control( |
251 | vm_map_t map, |
252 | mach_vm_offset_t address, |
253 | vm_purgable_t control, |
254 | int *state); |
255 | |
256 | kern_return_t |
257 | mach_memory_entry_ownership( |
258 | ipc_port_t entry_port, |
259 | task_t owner, |
260 | int ledger_tag, |
261 | int ledger_flags); |
262 | |
263 | IPC_KOBJECT_DEFINE(IKOT_NAMED_ENTRY, |
264 | .iko_op_stable = true, |
265 | .iko_op_no_senders = mach_memory_entry_no_senders); |
266 | |
267 | /* |
268 | * mach_vm_allocate allocates "zero fill" memory in the specfied |
269 | * map. |
270 | */ |
271 | kern_return_t |
272 | mach_vm_allocate_external( |
273 | vm_map_t map, |
274 | mach_vm_offset_t *addr, |
275 | mach_vm_size_t size, |
276 | int flags) |
277 | { |
278 | vm_tag_t tag; |
279 | |
280 | VM_GET_FLAGS_ALIAS(flags, tag); |
281 | return mach_vm_allocate_kernel(map, addr, size, flags, tag); |
282 | } |
283 | |
284 | kern_return_t |
285 | mach_vm_allocate_kernel( |
286 | vm_map_t map, |
287 | mach_vm_offset_t *addr, |
288 | mach_vm_size_t size, |
289 | int flags, |
290 | vm_tag_t tag) |
291 | { |
292 | vm_map_offset_t map_addr; |
293 | vm_map_size_t map_size; |
294 | kern_return_t result; |
295 | vm_map_kernel_flags_t vmk_flags = VM_MAP_KERNEL_FLAGS_NONE; |
296 | |
297 | /* filter out any kernel-only flags */ |
298 | if (flags & ~VM_FLAGS_USER_ALLOCATE) { |
299 | ktriage_record(thread_id: thread_tid(thread: current_thread()), KDBG_TRIAGE_EVENTID(KDBG_TRIAGE_SUBSYS_VM, KDBG_TRIAGE_RESERVED, KDBG_TRIAGE_VM_ALLOCATE_KERNEL_BADFLAGS_ERROR), KERN_INVALID_ARGUMENT /* arg */); |
300 | return KERN_INVALID_ARGUMENT; |
301 | } |
302 | |
303 | vm_map_kernel_flags_set_vmflags(vmk_flags: &vmk_flags, vm_flags: flags, vm_tag: tag); |
304 | |
305 | if (map == VM_MAP_NULL) { |
306 | ktriage_record(thread_id: thread_tid(thread: current_thread()), KDBG_TRIAGE_EVENTID(KDBG_TRIAGE_SUBSYS_VM, KDBG_TRIAGE_RESERVED, KDBG_TRIAGE_VM_ALLOCATE_KERNEL_BADMAP_ERROR), KERN_INVALID_ARGUMENT /* arg */); |
307 | return KERN_INVALID_ARGUMENT; |
308 | } |
309 | if (size == 0) { |
310 | *addr = 0; |
311 | return KERN_SUCCESS; |
312 | } |
313 | |
314 | if (vmk_flags.vmf_fixed) { |
315 | map_addr = vm_map_trunc_page(*addr, VM_MAP_PAGE_MASK(map)); |
316 | } else { |
317 | map_addr = 0; |
318 | } |
319 | map_size = vm_map_round_page(size, |
320 | VM_MAP_PAGE_MASK(map)); |
321 | if (map_size == 0) { |
322 | ktriage_record(thread_id: thread_tid(thread: current_thread()), KDBG_TRIAGE_EVENTID(KDBG_TRIAGE_SUBSYS_VM, KDBG_TRIAGE_RESERVED, KDBG_TRIAGE_VM_ALLOCATE_KERNEL_BADSIZE_ERROR), KERN_INVALID_ARGUMENT /* arg */); |
323 | return KERN_INVALID_ARGUMENT; |
324 | } |
325 | |
326 | vm_map_kernel_flags_update_range_id(flags: &vmk_flags, map); |
327 | |
328 | result = vm_map_enter( |
329 | map, |
330 | address: &map_addr, |
331 | size: map_size, |
332 | mask: (vm_map_offset_t)0, |
333 | vmk_flags, |
334 | VM_OBJECT_NULL, |
335 | offset: (vm_object_offset_t)0, |
336 | FALSE, |
337 | VM_PROT_DEFAULT, |
338 | VM_PROT_ALL, |
339 | VM_INHERIT_DEFAULT); |
340 | |
341 | #if KASAN |
342 | if (result == KERN_SUCCESS && map->pmap == kernel_pmap) { |
343 | kasan_notify_address(map_addr, map_size); |
344 | } |
345 | #endif |
346 | if (result != KERN_SUCCESS) { |
347 | ktriage_record(thread_id: thread_tid(thread: current_thread()), KDBG_TRIAGE_EVENTID(KDBG_TRIAGE_SUBSYS_VM, KDBG_TRIAGE_RESERVED, KDBG_TRIAGE_VM_ALLOCATE_KERNEL_VMMAPENTER_ERROR), arg: result /* arg */); |
348 | } |
349 | *addr = map_addr; |
350 | return result; |
351 | } |
352 | |
353 | /* |
354 | * vm_allocate |
355 | * Legacy routine that allocates "zero fill" memory in the specfied |
356 | * map (which is limited to the same size as the kernel). |
357 | */ |
358 | kern_return_t |
359 | vm_allocate_external( |
360 | vm_map_t map, |
361 | vm_offset_t *addr, |
362 | vm_size_t size, |
363 | int flags) |
364 | { |
365 | vm_map_kernel_flags_t vmk_flags = VM_MAP_KERNEL_FLAGS_NONE; |
366 | vm_map_offset_t map_addr; |
367 | vm_map_size_t map_size; |
368 | kern_return_t result; |
369 | |
370 | /* filter out any kernel-only flags */ |
371 | if (flags & ~VM_FLAGS_USER_ALLOCATE) { |
372 | return KERN_INVALID_ARGUMENT; |
373 | } |
374 | |
375 | vm_map_kernel_flags_set_vmflags(vmk_flags: &vmk_flags, vm_flags_and_tag: flags); |
376 | |
377 | if (map == VM_MAP_NULL) { |
378 | return KERN_INVALID_ARGUMENT; |
379 | } |
380 | if (size == 0) { |
381 | *addr = 0; |
382 | return KERN_SUCCESS; |
383 | } |
384 | |
385 | if (vmk_flags.vmf_fixed) { |
386 | map_addr = vm_map_trunc_page(*addr, VM_MAP_PAGE_MASK(map)); |
387 | } else { |
388 | map_addr = 0; |
389 | } |
390 | map_size = vm_map_round_page(size, |
391 | VM_MAP_PAGE_MASK(map)); |
392 | if (map_size == 0) { |
393 | return KERN_INVALID_ARGUMENT; |
394 | } |
395 | |
396 | vm_map_kernel_flags_update_range_id(flags: &vmk_flags, map); |
397 | |
398 | result = vm_map_enter( |
399 | map, |
400 | address: &map_addr, |
401 | size: map_size, |
402 | mask: (vm_map_offset_t)0, |
403 | vmk_flags, |
404 | VM_OBJECT_NULL, |
405 | offset: (vm_object_offset_t)0, |
406 | FALSE, |
407 | VM_PROT_DEFAULT, |
408 | VM_PROT_ALL, |
409 | VM_INHERIT_DEFAULT); |
410 | |
411 | #if KASAN |
412 | if (result == KERN_SUCCESS && map->pmap == kernel_pmap) { |
413 | kasan_notify_address(map_addr, map_size); |
414 | } |
415 | #endif |
416 | |
417 | *addr = CAST_DOWN(vm_offset_t, map_addr); |
418 | return result; |
419 | } |
420 | |
421 | /* |
422 | * mach_vm_deallocate - |
423 | * deallocates the specified range of addresses in the |
424 | * specified address map. |
425 | */ |
426 | kern_return_t |
427 | mach_vm_deallocate( |
428 | vm_map_t map, |
429 | mach_vm_offset_t start, |
430 | mach_vm_size_t size) |
431 | { |
432 | if ((map == VM_MAP_NULL) || (start + size < start)) { |
433 | return KERN_INVALID_ARGUMENT; |
434 | } |
435 | |
436 | if (size == (mach_vm_offset_t) 0) { |
437 | return KERN_SUCCESS; |
438 | } |
439 | |
440 | return vm_map_remove_guard(map, |
441 | vm_map_trunc_page(start, |
442 | VM_MAP_PAGE_MASK(map)), |
443 | vm_map_round_page(start + size, |
444 | VM_MAP_PAGE_MASK(map)), |
445 | flags: VM_MAP_REMOVE_NO_FLAGS, |
446 | KMEM_GUARD_NONE).kmr_return; |
447 | } |
448 | |
449 | /* |
450 | * vm_deallocate - |
451 | * deallocates the specified range of addresses in the |
452 | * specified address map (limited to addresses the same |
453 | * size as the kernel). |
454 | */ |
455 | kern_return_t |
456 | vm_deallocate( |
457 | vm_map_t map, |
458 | vm_offset_t start, |
459 | vm_size_t size) |
460 | { |
461 | if ((map == VM_MAP_NULL) || (start + size < start)) { |
462 | return KERN_INVALID_ARGUMENT; |
463 | } |
464 | |
465 | if (size == (vm_offset_t) 0) { |
466 | return KERN_SUCCESS; |
467 | } |
468 | |
469 | return vm_map_remove_guard(map, |
470 | vm_map_trunc_page(start, |
471 | VM_MAP_PAGE_MASK(map)), |
472 | vm_map_round_page(start + size, |
473 | VM_MAP_PAGE_MASK(map)), |
474 | flags: VM_MAP_REMOVE_NO_FLAGS, |
475 | KMEM_GUARD_NONE).kmr_return; |
476 | } |
477 | |
478 | /* |
479 | * mach_vm_inherit - |
480 | * Sets the inheritance of the specified range in the |
481 | * specified map. |
482 | */ |
483 | kern_return_t |
484 | mach_vm_inherit( |
485 | vm_map_t map, |
486 | mach_vm_offset_t start, |
487 | mach_vm_size_t size, |
488 | vm_inherit_t new_inheritance) |
489 | { |
490 | if ((map == VM_MAP_NULL) || (start + size < start) || |
491 | (new_inheritance > VM_INHERIT_LAST_VALID)) { |
492 | return KERN_INVALID_ARGUMENT; |
493 | } |
494 | |
495 | if (size == 0) { |
496 | return KERN_SUCCESS; |
497 | } |
498 | |
499 | return vm_map_inherit(map, |
500 | vm_map_trunc_page(start, |
501 | VM_MAP_PAGE_MASK(map)), |
502 | vm_map_round_page(start + size, |
503 | VM_MAP_PAGE_MASK(map)), |
504 | new_inheritance); |
505 | } |
506 | |
507 | /* |
508 | * vm_inherit - |
509 | * Sets the inheritance of the specified range in the |
510 | * specified map (range limited to addresses |
511 | */ |
512 | kern_return_t |
513 | vm_inherit( |
514 | vm_map_t map, |
515 | vm_offset_t start, |
516 | vm_size_t size, |
517 | vm_inherit_t new_inheritance) |
518 | { |
519 | if ((map == VM_MAP_NULL) || (start + size < start) || |
520 | (new_inheritance > VM_INHERIT_LAST_VALID)) { |
521 | return KERN_INVALID_ARGUMENT; |
522 | } |
523 | |
524 | if (size == 0) { |
525 | return KERN_SUCCESS; |
526 | } |
527 | |
528 | return vm_map_inherit(map, |
529 | vm_map_trunc_page(start, |
530 | VM_MAP_PAGE_MASK(map)), |
531 | vm_map_round_page(start + size, |
532 | VM_MAP_PAGE_MASK(map)), |
533 | new_inheritance); |
534 | } |
535 | |
536 | /* |
537 | * mach_vm_protect - |
538 | * Sets the protection of the specified range in the |
539 | * specified map. |
540 | */ |
541 | |
542 | kern_return_t |
543 | mach_vm_protect( |
544 | vm_map_t map, |
545 | mach_vm_offset_t start, |
546 | mach_vm_size_t size, |
547 | boolean_t set_maximum, |
548 | vm_prot_t new_protection) |
549 | { |
550 | if ((map == VM_MAP_NULL) || (start + size < start) || |
551 | (new_protection & ~(VM_PROT_ALL | VM_PROT_COPY))) { |
552 | return KERN_INVALID_ARGUMENT; |
553 | } |
554 | |
555 | if (size == 0) { |
556 | return KERN_SUCCESS; |
557 | } |
558 | |
559 | return vm_map_protect(map, |
560 | vm_map_trunc_page(start, |
561 | VM_MAP_PAGE_MASK(map)), |
562 | vm_map_round_page(start + size, |
563 | VM_MAP_PAGE_MASK(map)), |
564 | new_prot: new_protection, |
565 | set_max: set_maximum); |
566 | } |
567 | |
568 | /* |
569 | * vm_protect - |
570 | * Sets the protection of the specified range in the |
571 | * specified map. Addressability of the range limited |
572 | * to the same size as the kernel. |
573 | */ |
574 | |
575 | kern_return_t |
576 | vm_protect( |
577 | vm_map_t map, |
578 | vm_offset_t start, |
579 | vm_size_t size, |
580 | boolean_t set_maximum, |
581 | vm_prot_t new_protection) |
582 | { |
583 | if ((map == VM_MAP_NULL) || (start + size < start) || |
584 | (new_protection & ~VM_VALID_VMPROTECT_FLAGS) |
585 | #if defined(__x86_64__) |
586 | || ((new_protection & VM_PROT_UEXEC) && !pmap_supported_feature(map->pmap, PMAP_FEAT_UEXEC)) |
587 | #endif |
588 | ) { |
589 | return KERN_INVALID_ARGUMENT; |
590 | } |
591 | |
592 | if (size == 0) { |
593 | return KERN_SUCCESS; |
594 | } |
595 | |
596 | return vm_map_protect(map, |
597 | vm_map_trunc_page(start, |
598 | VM_MAP_PAGE_MASK(map)), |
599 | vm_map_round_page(start + size, |
600 | VM_MAP_PAGE_MASK(map)), |
601 | new_prot: new_protection, |
602 | set_max: set_maximum); |
603 | } |
604 | |
605 | /* |
606 | * mach_vm_machine_attributes - |
607 | * Handle machine-specific attributes for a mapping, such |
608 | * as cachability, migrability, etc. |
609 | */ |
610 | kern_return_t |
611 | mach_vm_machine_attribute( |
612 | vm_map_t map, |
613 | mach_vm_address_t addr, |
614 | mach_vm_size_t size, |
615 | vm_machine_attribute_t attribute, |
616 | vm_machine_attribute_val_t* value) /* IN/OUT */ |
617 | { |
618 | if ((map == VM_MAP_NULL) || (addr + size < addr)) { |
619 | return KERN_INVALID_ARGUMENT; |
620 | } |
621 | |
622 | if (size == 0) { |
623 | return KERN_SUCCESS; |
624 | } |
625 | |
626 | return vm_map_machine_attribute( |
627 | map, |
628 | vm_map_trunc_page(addr, |
629 | VM_MAP_PAGE_MASK(map)), |
630 | vm_map_round_page(addr + size, |
631 | VM_MAP_PAGE_MASK(map)), |
632 | attribute, |
633 | value); |
634 | } |
635 | |
636 | /* |
637 | * vm_machine_attribute - |
638 | * Handle machine-specific attributes for a mapping, such |
639 | * as cachability, migrability, etc. Limited addressability |
640 | * (same range limits as for the native kernel map). |
641 | */ |
642 | kern_return_t |
643 | vm_machine_attribute( |
644 | vm_map_t map, |
645 | vm_address_t addr, |
646 | vm_size_t size, |
647 | vm_machine_attribute_t attribute, |
648 | vm_machine_attribute_val_t* value) /* IN/OUT */ |
649 | { |
650 | if ((map == VM_MAP_NULL) || (addr + size < addr)) { |
651 | return KERN_INVALID_ARGUMENT; |
652 | } |
653 | |
654 | if (size == 0) { |
655 | return KERN_SUCCESS; |
656 | } |
657 | |
658 | return vm_map_machine_attribute( |
659 | map, |
660 | vm_map_trunc_page(addr, |
661 | VM_MAP_PAGE_MASK(map)), |
662 | vm_map_round_page(addr + size, |
663 | VM_MAP_PAGE_MASK(map)), |
664 | attribute, |
665 | value); |
666 | } |
667 | |
668 | /* |
669 | * mach_vm_read - |
670 | * Read/copy a range from one address space and return it to the caller. |
671 | * |
672 | * It is assumed that the address for the returned memory is selected by |
673 | * the IPC implementation as part of receiving the reply to this call. |
674 | * If IPC isn't used, the caller must deal with the vm_map_copy_t object |
675 | * that gets returned. |
676 | * |
677 | * JMM - because of mach_msg_type_number_t, this call is limited to a |
678 | * single 4GB region at this time. |
679 | * |
680 | */ |
681 | kern_return_t |
682 | mach_vm_read( |
683 | vm_map_t map, |
684 | mach_vm_address_t addr, |
685 | mach_vm_size_t size, |
686 | pointer_t *data, |
687 | mach_msg_type_number_t *data_size) |
688 | { |
689 | kern_return_t error; |
690 | vm_map_copy_t ipc_address; |
691 | |
692 | if (map == VM_MAP_NULL) { |
693 | return KERN_INVALID_ARGUMENT; |
694 | } |
695 | |
696 | if ((mach_msg_type_number_t) size != size) { |
697 | return KERN_INVALID_ARGUMENT; |
698 | } |
699 | |
700 | error = vm_map_copyin(src_map: map, |
701 | src_addr: (vm_map_address_t)addr, |
702 | len: (vm_map_size_t)size, |
703 | FALSE, /* src_destroy */ |
704 | copy_result: &ipc_address); |
705 | |
706 | if (KERN_SUCCESS == error) { |
707 | *data = (pointer_t) ipc_address; |
708 | *data_size = (mach_msg_type_number_t) size; |
709 | assert(*data_size == size); |
710 | } |
711 | return error; |
712 | } |
713 | |
714 | /* |
715 | * vm_read - |
716 | * Read/copy a range from one address space and return it to the caller. |
717 | * Limited addressability (same range limits as for the native kernel map). |
718 | * |
719 | * It is assumed that the address for the returned memory is selected by |
720 | * the IPC implementation as part of receiving the reply to this call. |
721 | * If IPC isn't used, the caller must deal with the vm_map_copy_t object |
722 | * that gets returned. |
723 | */ |
724 | kern_return_t |
725 | vm_read( |
726 | vm_map_t map, |
727 | vm_address_t addr, |
728 | vm_size_t size, |
729 | pointer_t *data, |
730 | mach_msg_type_number_t *data_size) |
731 | { |
732 | kern_return_t error; |
733 | vm_map_copy_t ipc_address; |
734 | |
735 | if (map == VM_MAP_NULL) { |
736 | return KERN_INVALID_ARGUMENT; |
737 | } |
738 | |
739 | mach_msg_type_number_t dsize; |
740 | if (os_convert_overflow(size, &dsize)) { |
741 | /* |
742 | * The kernel could handle a 64-bit "size" value, but |
743 | * it could not return the size of the data in "*data_size" |
744 | * without overflowing. |
745 | * Let's reject this "size" as invalid. |
746 | */ |
747 | return KERN_INVALID_ARGUMENT; |
748 | } |
749 | |
750 | error = vm_map_copyin(src_map: map, |
751 | src_addr: (vm_map_address_t)addr, |
752 | len: (vm_map_size_t)size, |
753 | FALSE, /* src_destroy */ |
754 | copy_result: &ipc_address); |
755 | |
756 | if (KERN_SUCCESS == error) { |
757 | *data = (pointer_t) ipc_address; |
758 | *data_size = dsize; |
759 | assert(*data_size == size); |
760 | } |
761 | return error; |
762 | } |
763 | |
764 | /* |
765 | * mach_vm_read_list - |
766 | * Read/copy a list of address ranges from specified map. |
767 | * |
768 | * MIG does not know how to deal with a returned array of |
769 | * vm_map_copy_t structures, so we have to do the copyout |
770 | * manually here. |
771 | */ |
772 | kern_return_t |
773 | mach_vm_read_list( |
774 | vm_map_t map, |
775 | mach_vm_read_entry_t data_list, |
776 | natural_t count) |
777 | { |
778 | mach_msg_type_number_t i; |
779 | kern_return_t error; |
780 | vm_map_copy_t copy; |
781 | |
782 | if (map == VM_MAP_NULL || |
783 | count > VM_MAP_ENTRY_MAX) { |
784 | return KERN_INVALID_ARGUMENT; |
785 | } |
786 | |
787 | error = KERN_SUCCESS; |
788 | for (i = 0; i < count; i++) { |
789 | vm_map_address_t map_addr; |
790 | vm_map_size_t map_size; |
791 | |
792 | map_addr = (vm_map_address_t)(data_list[i].address); |
793 | map_size = (vm_map_size_t)(data_list[i].size); |
794 | |
795 | if (map_size != 0) { |
796 | error = vm_map_copyin(src_map: map, |
797 | src_addr: map_addr, |
798 | len: map_size, |
799 | FALSE, /* src_destroy */ |
800 | copy_result: ©); |
801 | if (KERN_SUCCESS == error) { |
802 | error = vm_map_copyout( |
803 | dst_map: current_task()->map, |
804 | dst_addr: &map_addr, |
805 | copy); |
806 | if (KERN_SUCCESS == error) { |
807 | data_list[i].address = map_addr; |
808 | continue; |
809 | } |
810 | vm_map_copy_discard(copy); |
811 | } |
812 | } |
813 | data_list[i].address = (mach_vm_address_t)0; |
814 | data_list[i].size = (mach_vm_size_t)0; |
815 | } |
816 | return error; |
817 | } |
818 | |
819 | /* |
820 | * vm_read_list - |
821 | * Read/copy a list of address ranges from specified map. |
822 | * |
823 | * MIG does not know how to deal with a returned array of |
824 | * vm_map_copy_t structures, so we have to do the copyout |
825 | * manually here. |
826 | * |
827 | * The source and destination ranges are limited to those |
828 | * that can be described with a vm_address_t (i.e. same |
829 | * size map as the kernel). |
830 | * |
831 | * JMM - If the result of the copyout is an address range |
832 | * that cannot be described with a vm_address_t (i.e. the |
833 | * caller had a larger address space but used this call |
834 | * anyway), it will result in a truncated address being |
835 | * returned (and a likely confused caller). |
836 | */ |
837 | |
838 | kern_return_t |
839 | vm_read_list( |
840 | vm_map_t map, |
841 | vm_read_entry_t data_list, |
842 | natural_t count) |
843 | { |
844 | mach_msg_type_number_t i; |
845 | kern_return_t error; |
846 | vm_map_copy_t copy; |
847 | |
848 | if (map == VM_MAP_NULL || |
849 | count > VM_MAP_ENTRY_MAX) { |
850 | return KERN_INVALID_ARGUMENT; |
851 | } |
852 | |
853 | error = KERN_SUCCESS; |
854 | for (i = 0; i < count; i++) { |
855 | vm_map_address_t map_addr; |
856 | vm_map_size_t map_size; |
857 | |
858 | map_addr = (vm_map_address_t)(data_list[i].address); |
859 | map_size = (vm_map_size_t)(data_list[i].size); |
860 | |
861 | if (map_size != 0) { |
862 | error = vm_map_copyin(src_map: map, |
863 | src_addr: map_addr, |
864 | len: map_size, |
865 | FALSE, /* src_destroy */ |
866 | copy_result: ©); |
867 | if (KERN_SUCCESS == error) { |
868 | error = vm_map_copyout(dst_map: current_task()->map, |
869 | dst_addr: &map_addr, |
870 | copy); |
871 | if (KERN_SUCCESS == error) { |
872 | data_list[i].address = |
873 | CAST_DOWN(vm_offset_t, map_addr); |
874 | continue; |
875 | } |
876 | vm_map_copy_discard(copy); |
877 | } |
878 | } |
879 | data_list[i].address = (mach_vm_address_t)0; |
880 | data_list[i].size = (mach_vm_size_t)0; |
881 | } |
882 | return error; |
883 | } |
884 | |
885 | /* |
886 | * mach_vm_read_overwrite - |
887 | * Overwrite a range of the current map with data from the specified |
888 | * map/address range. |
889 | * |
890 | * In making an assumption that the current thread is local, it is |
891 | * no longer cluster-safe without a fully supportive local proxy |
892 | * thread/task (but we don't support cluster's anymore so this is moot). |
893 | */ |
894 | |
895 | kern_return_t |
896 | mach_vm_read_overwrite( |
897 | vm_map_t map, |
898 | mach_vm_address_t address, |
899 | mach_vm_size_t size, |
900 | mach_vm_address_t data, |
901 | mach_vm_size_t *data_size) |
902 | { |
903 | kern_return_t error; |
904 | vm_map_copy_t copy; |
905 | |
906 | if (map == VM_MAP_NULL) { |
907 | return KERN_INVALID_ARGUMENT; |
908 | } |
909 | |
910 | error = vm_map_copyin(src_map: map, src_addr: (vm_map_address_t)address, |
911 | len: (vm_map_size_t)size, FALSE, copy_result: ©); |
912 | |
913 | if (KERN_SUCCESS == error) { |
914 | if (copy) { |
915 | assertf(copy->size == (vm_map_size_t) size, "Req size: 0x%llx, Copy size: 0x%llx\n" , (uint64_t) size, (uint64_t) copy->size); |
916 | } |
917 | |
918 | error = vm_map_copy_overwrite(dst_map: current_thread()->map, |
919 | dst_addr: (vm_map_address_t)data, |
920 | copy, copy_size: (vm_map_size_t) size, FALSE); |
921 | if (KERN_SUCCESS == error) { |
922 | *data_size = size; |
923 | return error; |
924 | } |
925 | vm_map_copy_discard(copy); |
926 | } |
927 | return error; |
928 | } |
929 | |
930 | /* |
931 | * vm_read_overwrite - |
932 | * Overwrite a range of the current map with data from the specified |
933 | * map/address range. |
934 | * |
935 | * This routine adds the additional limitation that the source and |
936 | * destination ranges must be describable with vm_address_t values |
937 | * (i.e. the same size address spaces as the kernel, or at least the |
938 | * the ranges are in that first portion of the respective address |
939 | * spaces). |
940 | */ |
941 | |
942 | kern_return_t |
943 | vm_read_overwrite( |
944 | vm_map_t map, |
945 | vm_address_t address, |
946 | vm_size_t size, |
947 | vm_address_t data, |
948 | vm_size_t *data_size) |
949 | { |
950 | kern_return_t error; |
951 | vm_map_copy_t copy; |
952 | |
953 | if (map == VM_MAP_NULL) { |
954 | return KERN_INVALID_ARGUMENT; |
955 | } |
956 | |
957 | error = vm_map_copyin(src_map: map, src_addr: (vm_map_address_t)address, |
958 | len: (vm_map_size_t)size, FALSE, copy_result: ©); |
959 | |
960 | if (KERN_SUCCESS == error) { |
961 | if (copy) { |
962 | assertf(copy->size == (vm_map_size_t) size, "Req size: 0x%llx, Copy size: 0x%llx\n" , (uint64_t) size, (uint64_t) copy->size); |
963 | } |
964 | |
965 | error = vm_map_copy_overwrite(dst_map: current_thread()->map, |
966 | dst_addr: (vm_map_address_t)data, |
967 | copy, copy_size: (vm_map_size_t) size, FALSE); |
968 | if (KERN_SUCCESS == error) { |
969 | *data_size = size; |
970 | return error; |
971 | } |
972 | vm_map_copy_discard(copy); |
973 | } |
974 | return error; |
975 | } |
976 | |
977 | |
978 | /* |
979 | * mach_vm_write - |
980 | * Overwrite the specified address range with the data provided |
981 | * (from the current map). |
982 | */ |
983 | kern_return_t |
984 | mach_vm_write( |
985 | vm_map_t map, |
986 | mach_vm_address_t address, |
987 | pointer_t data, |
988 | mach_msg_type_number_t size) |
989 | { |
990 | if (map == VM_MAP_NULL) { |
991 | return KERN_INVALID_ARGUMENT; |
992 | } |
993 | |
994 | return vm_map_copy_overwrite(dst_map: map, dst_addr: (vm_map_address_t)address, |
995 | copy: (vm_map_copy_t) data, copy_size: size, FALSE /* interruptible XXX */); |
996 | } |
997 | |
998 | /* |
999 | * vm_write - |
1000 | * Overwrite the specified address range with the data provided |
1001 | * (from the current map). |
1002 | * |
1003 | * The addressability of the range of addresses to overwrite is |
1004 | * limited bu the use of a vm_address_t (same size as kernel map). |
1005 | * Either the target map is also small, or the range is in the |
1006 | * low addresses within it. |
1007 | */ |
1008 | kern_return_t |
1009 | vm_write( |
1010 | vm_map_t map, |
1011 | vm_address_t address, |
1012 | pointer_t data, |
1013 | mach_msg_type_number_t size) |
1014 | { |
1015 | if (map == VM_MAP_NULL) { |
1016 | return KERN_INVALID_ARGUMENT; |
1017 | } |
1018 | |
1019 | return vm_map_copy_overwrite(dst_map: map, dst_addr: (vm_map_address_t)address, |
1020 | copy: (vm_map_copy_t) data, copy_size: size, FALSE /* interruptible XXX */); |
1021 | } |
1022 | |
1023 | /* |
1024 | * mach_vm_copy - |
1025 | * Overwrite one range of the specified map with the contents of |
1026 | * another range within that same map (i.e. both address ranges |
1027 | * are "over there"). |
1028 | */ |
1029 | kern_return_t |
1030 | mach_vm_copy( |
1031 | vm_map_t map, |
1032 | mach_vm_address_t source_address, |
1033 | mach_vm_size_t size, |
1034 | mach_vm_address_t dest_address) |
1035 | { |
1036 | vm_map_copy_t copy; |
1037 | kern_return_t kr; |
1038 | |
1039 | if (map == VM_MAP_NULL) { |
1040 | return KERN_INVALID_ARGUMENT; |
1041 | } |
1042 | |
1043 | kr = vm_map_copyin(src_map: map, src_addr: (vm_map_address_t)source_address, |
1044 | len: (vm_map_size_t)size, FALSE, copy_result: ©); |
1045 | |
1046 | if (KERN_SUCCESS == kr) { |
1047 | if (copy) { |
1048 | assertf(copy->size == (vm_map_size_t) size, "Req size: 0x%llx, Copy size: 0x%llx\n" , (uint64_t) size, (uint64_t) copy->size); |
1049 | } |
1050 | |
1051 | kr = vm_map_copy_overwrite(dst_map: map, |
1052 | dst_addr: (vm_map_address_t)dest_address, |
1053 | copy, copy_size: (vm_map_size_t) size, FALSE /* interruptible XXX */); |
1054 | |
1055 | if (KERN_SUCCESS != kr) { |
1056 | vm_map_copy_discard(copy); |
1057 | } |
1058 | } |
1059 | return kr; |
1060 | } |
1061 | |
1062 | kern_return_t |
1063 | vm_copy( |
1064 | vm_map_t map, |
1065 | vm_address_t source_address, |
1066 | vm_size_t size, |
1067 | vm_address_t dest_address) |
1068 | { |
1069 | vm_map_copy_t copy; |
1070 | kern_return_t kr; |
1071 | |
1072 | if (map == VM_MAP_NULL) { |
1073 | return KERN_INVALID_ARGUMENT; |
1074 | } |
1075 | |
1076 | kr = vm_map_copyin(src_map: map, src_addr: (vm_map_address_t)source_address, |
1077 | len: (vm_map_size_t)size, FALSE, copy_result: ©); |
1078 | |
1079 | if (KERN_SUCCESS == kr) { |
1080 | if (copy) { |
1081 | assertf(copy->size == (vm_map_size_t) size, "Req size: 0x%llx, Copy size: 0x%llx\n" , (uint64_t) size, (uint64_t) copy->size); |
1082 | } |
1083 | |
1084 | kr = vm_map_copy_overwrite(dst_map: map, |
1085 | dst_addr: (vm_map_address_t)dest_address, |
1086 | copy, copy_size: (vm_map_size_t) size, FALSE /* interruptible XXX */); |
1087 | |
1088 | if (KERN_SUCCESS != kr) { |
1089 | vm_map_copy_discard(copy); |
1090 | } |
1091 | } |
1092 | return kr; |
1093 | } |
1094 | |
1095 | /* |
1096 | * mach_vm_map - |
1097 | * Map some range of an object into an address space. |
1098 | * |
1099 | * The object can be one of several types of objects: |
1100 | * NULL - anonymous memory |
1101 | * a named entry - a range within another address space |
1102 | * or a range within a memory object |
1103 | * a whole memory object |
1104 | * |
1105 | */ |
1106 | kern_return_t |
1107 | mach_vm_map_external( |
1108 | vm_map_t target_map, |
1109 | mach_vm_offset_t *address, |
1110 | mach_vm_size_t initial_size, |
1111 | mach_vm_offset_t mask, |
1112 | int flags, |
1113 | ipc_port_t port, |
1114 | vm_object_offset_t offset, |
1115 | boolean_t copy, |
1116 | vm_prot_t cur_protection, |
1117 | vm_prot_t max_protection, |
1118 | vm_inherit_t inheritance) |
1119 | { |
1120 | vm_map_kernel_flags_t vmk_flags = VM_MAP_KERNEL_FLAGS_NONE; |
1121 | |
1122 | /* filter out any kernel-only flags */ |
1123 | if (flags & ~VM_FLAGS_USER_MAP) { |
1124 | return KERN_INVALID_ARGUMENT; |
1125 | } |
1126 | |
1127 | vm_map_kernel_flags_set_vmflags(vmk_flags: &vmk_flags, vm_flags_and_tag: flags); |
1128 | /* range_id is set by mach_vm_map_kernel */ |
1129 | return mach_vm_map_kernel(target_map, address, initial_size, mask, |
1130 | vmk_flags, port, offset, copy, |
1131 | cur_protection, max_protection, |
1132 | inheritance); |
1133 | } |
1134 | |
1135 | kern_return_t |
1136 | mach_vm_map_kernel( |
1137 | vm_map_t target_map, |
1138 | mach_vm_offset_t *address, |
1139 | mach_vm_size_t initial_size, |
1140 | mach_vm_offset_t mask, |
1141 | vm_map_kernel_flags_t vmk_flags, |
1142 | ipc_port_t port, |
1143 | vm_object_offset_t offset, |
1144 | boolean_t copy, |
1145 | vm_prot_t cur_protection, |
1146 | vm_prot_t max_protection, |
1147 | vm_inherit_t inheritance) |
1148 | { |
1149 | kern_return_t kr; |
1150 | vm_map_offset_t vmmaddr; |
1151 | |
1152 | vmmaddr = (vm_map_offset_t) *address; |
1153 | |
1154 | /* filter out any kernel-only flags */ |
1155 | if (!vm_map_kernel_flags_check_vmflags(vmk_flags, VM_FLAGS_USER_MAP)) { |
1156 | return KERN_INVALID_ARGUMENT; |
1157 | } |
1158 | |
1159 | /* range_id is set by vm_map_enter_mem_object */ |
1160 | kr = vm_map_enter_mem_object(map: target_map, |
1161 | address: &vmmaddr, |
1162 | size: initial_size, |
1163 | mask, |
1164 | vmk_flags, |
1165 | port, |
1166 | offset, |
1167 | needs_copy: copy, |
1168 | cur_protection, |
1169 | max_protection, |
1170 | inheritance); |
1171 | |
1172 | #if KASAN |
1173 | if (kr == KERN_SUCCESS && target_map->pmap == kernel_pmap) { |
1174 | kasan_notify_address(vmmaddr, initial_size); |
1175 | } |
1176 | #endif |
1177 | |
1178 | *address = vmmaddr; |
1179 | return kr; |
1180 | } |
1181 | |
1182 | |
1183 | /* legacy interface */ |
1184 | __attribute__((always_inline)) |
1185 | kern_return_t |
1186 | vm_map_64_external( |
1187 | vm_map_t target_map, |
1188 | vm_offset_t *address, |
1189 | vm_size_t size, |
1190 | vm_offset_t mask, |
1191 | int flags, |
1192 | ipc_port_t port, |
1193 | vm_object_offset_t offset, |
1194 | boolean_t copy, |
1195 | vm_prot_t cur_protection, |
1196 | vm_prot_t max_protection, |
1197 | vm_inherit_t inheritance) |
1198 | { |
1199 | static_assert(sizeof(vm_offset_t) == sizeof(mach_vm_offset_t)); |
1200 | |
1201 | return mach_vm_map_external(target_map, address: (mach_vm_offset_t *)address, |
1202 | initial_size: size, mask, flags, port, offset, copy, |
1203 | cur_protection, max_protection, inheritance); |
1204 | } |
1205 | |
1206 | /* temporary, until world build */ |
1207 | __attribute__((always_inline)) |
1208 | kern_return_t |
1209 | vm_map_external( |
1210 | vm_map_t target_map, |
1211 | vm_offset_t *address, |
1212 | vm_size_t size, |
1213 | vm_offset_t mask, |
1214 | int flags, |
1215 | ipc_port_t port, |
1216 | vm_offset_t offset, |
1217 | boolean_t copy, |
1218 | vm_prot_t cur_protection, |
1219 | vm_prot_t max_protection, |
1220 | vm_inherit_t inheritance) |
1221 | { |
1222 | static_assert(sizeof(vm_offset_t) == sizeof(mach_vm_offset_t)); |
1223 | |
1224 | return mach_vm_map_external(target_map, address: (mach_vm_offset_t *)address, |
1225 | initial_size: size, mask, flags, port, offset, copy, |
1226 | cur_protection, max_protection, inheritance); |
1227 | } |
1228 | |
1229 | /* |
1230 | * mach_vm_remap_new - |
1231 | * Behaves like mach_vm_remap, except that VM_FLAGS_RETURN_DATA_ADDR is always set |
1232 | * and {cur,max}_protection are in/out. |
1233 | */ |
1234 | kern_return_t |
1235 | mach_vm_remap_new_external( |
1236 | vm_map_t target_map, |
1237 | mach_vm_offset_t *address, |
1238 | mach_vm_size_t size, |
1239 | mach_vm_offset_t mask, |
1240 | int flags, |
1241 | mach_port_t src_tport, |
1242 | mach_vm_offset_t memory_address, |
1243 | boolean_t copy, |
1244 | vm_prot_t *cur_protection, /* IN/OUT */ |
1245 | vm_prot_t *max_protection, /* IN/OUT */ |
1246 | vm_inherit_t inheritance) |
1247 | { |
1248 | vm_map_kernel_flags_t vmk_flags = VM_MAP_KERNEL_FLAGS_NONE; |
1249 | vm_map_t src_map; |
1250 | kern_return_t kr; |
1251 | |
1252 | /* filter out any kernel-only flags */ |
1253 | if (flags & ~VM_FLAGS_USER_REMAP) { |
1254 | return KERN_INVALID_ARGUMENT; |
1255 | } |
1256 | |
1257 | vm_map_kernel_flags_set_vmflags(vmk_flags: &vmk_flags, |
1258 | vm_flags_and_tag: flags | VM_FLAGS_RETURN_DATA_ADDR); |
1259 | |
1260 | if (target_map == VM_MAP_NULL) { |
1261 | return KERN_INVALID_ARGUMENT; |
1262 | } |
1263 | |
1264 | if ((*cur_protection & ~VM_PROT_ALL) || |
1265 | (*max_protection & ~VM_PROT_ALL) || |
1266 | (*cur_protection & *max_protection) != *cur_protection) { |
1267 | return KERN_INVALID_ARGUMENT; |
1268 | } |
1269 | if ((*max_protection & (VM_PROT_WRITE | VM_PROT_EXECUTE)) == |
1270 | (VM_PROT_WRITE | VM_PROT_EXECUTE)) { |
1271 | /* |
1272 | * XXX FBDP TODO |
1273 | * enforce target's "wx" policies |
1274 | */ |
1275 | return KERN_PROTECTION_FAILURE; |
1276 | } |
1277 | |
1278 | if (copy || *max_protection == VM_PROT_READ || *max_protection == VM_PROT_NONE) { |
1279 | src_map = convert_port_to_map_read(port: src_tport); |
1280 | } else { |
1281 | src_map = convert_port_to_map(port: src_tport); |
1282 | } |
1283 | |
1284 | if (src_map == VM_MAP_NULL) { |
1285 | return KERN_INVALID_ARGUMENT; |
1286 | } |
1287 | |
1288 | static_assert(sizeof(mach_vm_offset_t) == sizeof(vm_map_address_t)); |
1289 | |
1290 | /* range_id is set by vm_map_remap */ |
1291 | kr = vm_map_remap(target_map, |
1292 | address, |
1293 | size, |
1294 | mask, |
1295 | vmk_flags, |
1296 | src_map, |
1297 | memory_address, |
1298 | copy, |
1299 | cur_protection, /* IN/OUT */ |
1300 | max_protection, /* IN/OUT */ |
1301 | inheritance); |
1302 | |
1303 | vm_map_deallocate(map: src_map); |
1304 | |
1305 | if (kr == KERN_SUCCESS) { |
1306 | ipc_port_release_send(port: src_tport); /* consume on success */ |
1307 | } |
1308 | return kr; |
1309 | } |
1310 | |
1311 | /* |
1312 | * mach_vm_remap - |
1313 | * Remap a range of memory from one task into another, |
1314 | * to another address range within the same task, or |
1315 | * over top of itself (with altered permissions and/or |
1316 | * as an in-place copy of itself). |
1317 | */ |
1318 | kern_return_t |
1319 | mach_vm_remap_external( |
1320 | vm_map_t target_map, |
1321 | mach_vm_offset_t *address, |
1322 | mach_vm_size_t size, |
1323 | mach_vm_offset_t mask, |
1324 | int flags, |
1325 | vm_map_t src_map, |
1326 | mach_vm_offset_t memory_address, |
1327 | boolean_t copy, |
1328 | vm_prot_t *cur_protection, /* OUT */ |
1329 | vm_prot_t *max_protection, /* OUT */ |
1330 | vm_inherit_t inheritance) |
1331 | { |
1332 | vm_tag_t tag; |
1333 | VM_GET_FLAGS_ALIAS(flags, tag); |
1334 | |
1335 | return mach_vm_remap_kernel(target_map, address, size, mask, flags, tag, src_map, memory_address, |
1336 | copy, cur_protection, max_protection, inheritance); |
1337 | } |
1338 | |
1339 | static kern_return_t |
1340 | mach_vm_remap_kernel_helper( |
1341 | vm_map_t target_map, |
1342 | mach_vm_offset_t *address, |
1343 | mach_vm_size_t size, |
1344 | mach_vm_offset_t mask, |
1345 | int flags, |
1346 | vm_tag_t tag, |
1347 | vm_map_t src_map, |
1348 | mach_vm_offset_t memory_address, |
1349 | boolean_t copy, |
1350 | vm_prot_t *cur_protection, /* IN/OUT */ |
1351 | vm_prot_t *max_protection, /* IN/OUT */ |
1352 | vm_inherit_t inheritance) |
1353 | { |
1354 | vm_map_kernel_flags_t vmk_flags = VM_MAP_KERNEL_FLAGS_NONE; |
1355 | kern_return_t kr; |
1356 | |
1357 | if (VM_MAP_NULL == target_map || VM_MAP_NULL == src_map) { |
1358 | return KERN_INVALID_ARGUMENT; |
1359 | } |
1360 | |
1361 | /* filter out any kernel-only flags */ |
1362 | if (flags & ~VM_FLAGS_USER_REMAP) { |
1363 | return KERN_INVALID_ARGUMENT; |
1364 | } |
1365 | |
1366 | vm_map_kernel_flags_set_vmflags(vmk_flags: &vmk_flags, vm_flags: flags, vm_tag: tag); |
1367 | |
1368 | static_assert(sizeof(mach_vm_offset_t) == sizeof(vm_map_address_t)); |
1369 | |
1370 | /* range_id is set by vm_map_remap */ |
1371 | kr = vm_map_remap(target_map, |
1372 | address, |
1373 | size, |
1374 | mask, |
1375 | vmk_flags, |
1376 | src_map, |
1377 | memory_address, |
1378 | copy, |
1379 | cur_protection, /* IN/OUT */ |
1380 | max_protection, /* IN/OUT */ |
1381 | inheritance); |
1382 | |
1383 | #if KASAN |
1384 | if (kr == KERN_SUCCESS && target_map->pmap == kernel_pmap) { |
1385 | kasan_notify_address(*address, size); |
1386 | } |
1387 | #endif |
1388 | return kr; |
1389 | } |
1390 | |
1391 | kern_return_t |
1392 | mach_vm_remap_kernel( |
1393 | vm_map_t target_map, |
1394 | mach_vm_offset_t *address, |
1395 | mach_vm_size_t size, |
1396 | mach_vm_offset_t mask, |
1397 | int flags, |
1398 | vm_tag_t tag, |
1399 | vm_map_t src_map, |
1400 | mach_vm_offset_t memory_address, |
1401 | boolean_t copy, |
1402 | vm_prot_t *cur_protection, /* OUT */ |
1403 | vm_prot_t *max_protection, /* OUT */ |
1404 | vm_inherit_t inheritance) |
1405 | { |
1406 | *cur_protection = VM_PROT_NONE; |
1407 | *max_protection = VM_PROT_NONE; |
1408 | |
1409 | return mach_vm_remap_kernel_helper(target_map, |
1410 | address, |
1411 | size, |
1412 | mask, |
1413 | flags, |
1414 | tag, |
1415 | src_map, |
1416 | memory_address, |
1417 | copy, |
1418 | cur_protection, |
1419 | max_protection, |
1420 | inheritance); |
1421 | } |
1422 | |
1423 | kern_return_t |
1424 | mach_vm_remap_new_kernel( |
1425 | vm_map_t target_map, |
1426 | mach_vm_offset_t *address, |
1427 | mach_vm_size_t size, |
1428 | mach_vm_offset_t mask, |
1429 | int flags, |
1430 | vm_tag_t tag, |
1431 | vm_map_t src_map, |
1432 | mach_vm_offset_t memory_address, |
1433 | boolean_t copy, |
1434 | vm_prot_t *cur_protection, /* IN/OUT */ |
1435 | vm_prot_t *max_protection, /* IN/OUT */ |
1436 | vm_inherit_t inheritance) |
1437 | { |
1438 | if ((*cur_protection & ~VM_PROT_ALL) || |
1439 | (*max_protection & ~VM_PROT_ALL) || |
1440 | (*cur_protection & *max_protection) != *cur_protection) { |
1441 | return KERN_INVALID_ARGUMENT; |
1442 | } |
1443 | |
1444 | flags |= VM_FLAGS_RETURN_DATA_ADDR; |
1445 | |
1446 | return mach_vm_remap_kernel_helper(target_map, |
1447 | address, |
1448 | size, |
1449 | mask, |
1450 | flags, |
1451 | tag, |
1452 | src_map, |
1453 | memory_address, |
1454 | copy, |
1455 | cur_protection, |
1456 | max_protection, |
1457 | inheritance); |
1458 | } |
1459 | |
1460 | /* |
1461 | * vm_remap_new - |
1462 | * Behaves like vm_remap, except that VM_FLAGS_RETURN_DATA_ADDR is always set |
1463 | * and {cur,max}_protection are in/out. |
1464 | */ |
1465 | kern_return_t |
1466 | vm_remap_new_external( |
1467 | vm_map_t target_map, |
1468 | vm_offset_t *address, |
1469 | vm_size_t size, |
1470 | vm_offset_t mask, |
1471 | int flags, |
1472 | mach_port_t src_tport, |
1473 | vm_offset_t memory_address, |
1474 | boolean_t copy, |
1475 | vm_prot_t *cur_protection, /* IN/OUT */ |
1476 | vm_prot_t *max_protection, /* IN/OUT */ |
1477 | vm_inherit_t inheritance) |
1478 | { |
1479 | static_assert(sizeof(vm_map_offset_t) == sizeof(vm_offset_t)); |
1480 | |
1481 | return mach_vm_remap_new_external(target_map, |
1482 | address: (vm_map_offset_t *)address, |
1483 | size, |
1484 | mask, |
1485 | flags, |
1486 | src_tport, |
1487 | memory_address, |
1488 | copy, |
1489 | cur_protection, /* IN/OUT */ |
1490 | max_protection, /* IN/OUT */ |
1491 | inheritance); |
1492 | } |
1493 | |
1494 | /* |
1495 | * vm_remap - |
1496 | * Remap a range of memory from one task into another, |
1497 | * to another address range within the same task, or |
1498 | * over top of itself (with altered permissions and/or |
1499 | * as an in-place copy of itself). |
1500 | * |
1501 | * The addressability of the source and target address |
1502 | * range is limited by the size of vm_address_t (in the |
1503 | * kernel context). |
1504 | */ |
1505 | kern_return_t |
1506 | vm_remap_external( |
1507 | vm_map_t target_map, |
1508 | vm_offset_t *address, |
1509 | vm_size_t size, |
1510 | vm_offset_t mask, |
1511 | int flags, |
1512 | vm_map_t src_map, |
1513 | vm_offset_t memory_address, |
1514 | boolean_t copy, |
1515 | vm_prot_t *cur_protection, /* OUT */ |
1516 | vm_prot_t *max_protection, /* OUT */ |
1517 | vm_inherit_t inheritance) |
1518 | { |
1519 | static_assert(sizeof(vm_offset_t) == sizeof(mach_vm_offset_t)); |
1520 | |
1521 | return mach_vm_remap_external(target_map, address: (mach_vm_offset_t *)address, |
1522 | size, mask, flags, src_map, memory_address, copy, |
1523 | cur_protection, max_protection, inheritance); |
1524 | } |
1525 | |
1526 | /* |
1527 | * NOTE: these routine (and this file) will no longer require mach_host_server.h |
1528 | * when mach_vm_wire and vm_wire are changed to use ledgers. |
1529 | */ |
1530 | #include <mach/mach_host_server.h> |
1531 | /* |
1532 | * mach_vm_wire |
1533 | * Specify that the range of the virtual address space |
1534 | * of the target task must not cause page faults for |
1535 | * the indicated accesses. |
1536 | * |
1537 | * [ To unwire the pages, specify VM_PROT_NONE. ] |
1538 | */ |
1539 | kern_return_t |
1540 | mach_vm_wire_external( |
1541 | host_priv_t host_priv, |
1542 | vm_map_t map, |
1543 | mach_vm_offset_t start, |
1544 | mach_vm_size_t size, |
1545 | vm_prot_t access) |
1546 | { |
1547 | if (host_priv == HOST_PRIV_NULL) { |
1548 | return KERN_INVALID_HOST; |
1549 | } |
1550 | |
1551 | return mach_vm_wire_kernel(map, start, size, access, VM_KERN_MEMORY_MLOCK); |
1552 | } |
1553 | |
1554 | kern_return_t |
1555 | mach_vm_wire_kernel( |
1556 | vm_map_t map, |
1557 | mach_vm_offset_t start, |
1558 | mach_vm_size_t size, |
1559 | vm_prot_t access, |
1560 | vm_tag_t tag) |
1561 | { |
1562 | kern_return_t rc; |
1563 | |
1564 | if (map == VM_MAP_NULL) { |
1565 | return KERN_INVALID_TASK; |
1566 | } |
1567 | |
1568 | if (access & ~VM_PROT_ALL || (start + size < start)) { |
1569 | return KERN_INVALID_ARGUMENT; |
1570 | } |
1571 | |
1572 | if (access != VM_PROT_NONE) { |
1573 | rc = vm_map_wire_kernel(map, |
1574 | vm_map_trunc_page(start, |
1575 | VM_MAP_PAGE_MASK(map)), |
1576 | vm_map_round_page(start + size, |
1577 | VM_MAP_PAGE_MASK(map)), |
1578 | access_type: access, tag, |
1579 | TRUE); |
1580 | } else { |
1581 | rc = vm_map_unwire(map, |
1582 | vm_map_trunc_page(start, |
1583 | VM_MAP_PAGE_MASK(map)), |
1584 | vm_map_round_page(start + size, |
1585 | VM_MAP_PAGE_MASK(map)), |
1586 | TRUE); |
1587 | } |
1588 | return rc; |
1589 | } |
1590 | |
1591 | /* |
1592 | * vm_wire - |
1593 | * Specify that the range of the virtual address space |
1594 | * of the target task must not cause page faults for |
1595 | * the indicated accesses. |
1596 | * |
1597 | * [ To unwire the pages, specify VM_PROT_NONE. ] |
1598 | */ |
1599 | kern_return_t |
1600 | vm_wire( |
1601 | host_priv_t host_priv, |
1602 | vm_map_t map, |
1603 | vm_offset_t start, |
1604 | vm_size_t size, |
1605 | vm_prot_t access) |
1606 | { |
1607 | kern_return_t rc; |
1608 | |
1609 | if (host_priv == HOST_PRIV_NULL) { |
1610 | return KERN_INVALID_HOST; |
1611 | } |
1612 | |
1613 | if (map == VM_MAP_NULL) { |
1614 | return KERN_INVALID_TASK; |
1615 | } |
1616 | |
1617 | if ((access & ~VM_PROT_ALL) || (start + size < start)) { |
1618 | return KERN_INVALID_ARGUMENT; |
1619 | } |
1620 | |
1621 | if (size == 0) { |
1622 | rc = KERN_SUCCESS; |
1623 | } else if (access != VM_PROT_NONE) { |
1624 | rc = vm_map_wire_kernel(map, |
1625 | vm_map_trunc_page(start, |
1626 | VM_MAP_PAGE_MASK(map)), |
1627 | vm_map_round_page(start + size, |
1628 | VM_MAP_PAGE_MASK(map)), |
1629 | access_type: access, VM_KERN_MEMORY_OSFMK, |
1630 | TRUE); |
1631 | } else { |
1632 | rc = vm_map_unwire(map, |
1633 | vm_map_trunc_page(start, |
1634 | VM_MAP_PAGE_MASK(map)), |
1635 | vm_map_round_page(start + size, |
1636 | VM_MAP_PAGE_MASK(map)), |
1637 | TRUE); |
1638 | } |
1639 | return rc; |
1640 | } |
1641 | |
1642 | /* |
1643 | * vm_msync |
1644 | * |
1645 | * Synchronises the memory range specified with its backing store |
1646 | * image by either flushing or cleaning the contents to the appropriate |
1647 | * memory manager. |
1648 | * |
1649 | * interpretation of sync_flags |
1650 | * VM_SYNC_INVALIDATE - discard pages, only return precious |
1651 | * pages to manager. |
1652 | * |
1653 | * VM_SYNC_INVALIDATE & (VM_SYNC_SYNCHRONOUS | VM_SYNC_ASYNCHRONOUS) |
1654 | * - discard pages, write dirty or precious |
1655 | * pages back to memory manager. |
1656 | * |
1657 | * VM_SYNC_SYNCHRONOUS | VM_SYNC_ASYNCHRONOUS |
1658 | * - write dirty or precious pages back to |
1659 | * the memory manager. |
1660 | * |
1661 | * VM_SYNC_CONTIGUOUS - does everything normally, but if there |
1662 | * is a hole in the region, and we would |
1663 | * have returned KERN_SUCCESS, return |
1664 | * KERN_INVALID_ADDRESS instead. |
1665 | * |
1666 | * RETURNS |
1667 | * KERN_INVALID_TASK Bad task parameter |
1668 | * KERN_INVALID_ARGUMENT both sync and async were specified. |
1669 | * KERN_SUCCESS The usual. |
1670 | * KERN_INVALID_ADDRESS There was a hole in the region. |
1671 | */ |
1672 | |
1673 | kern_return_t |
1674 | mach_vm_msync( |
1675 | vm_map_t map, |
1676 | mach_vm_address_t address, |
1677 | mach_vm_size_t size, |
1678 | vm_sync_t sync_flags) |
1679 | { |
1680 | if (map == VM_MAP_NULL) { |
1681 | return KERN_INVALID_TASK; |
1682 | } |
1683 | |
1684 | return vm_map_msync(map, address: (vm_map_address_t)address, |
1685 | size: (vm_map_size_t)size, sync_flags); |
1686 | } |
1687 | |
1688 | /* |
1689 | * vm_msync |
1690 | * |
1691 | * Synchronises the memory range specified with its backing store |
1692 | * image by either flushing or cleaning the contents to the appropriate |
1693 | * memory manager. |
1694 | * |
1695 | * interpretation of sync_flags |
1696 | * VM_SYNC_INVALIDATE - discard pages, only return precious |
1697 | * pages to manager. |
1698 | * |
1699 | * VM_SYNC_INVALIDATE & (VM_SYNC_SYNCHRONOUS | VM_SYNC_ASYNCHRONOUS) |
1700 | * - discard pages, write dirty or precious |
1701 | * pages back to memory manager. |
1702 | * |
1703 | * VM_SYNC_SYNCHRONOUS | VM_SYNC_ASYNCHRONOUS |
1704 | * - write dirty or precious pages back to |
1705 | * the memory manager. |
1706 | * |
1707 | * VM_SYNC_CONTIGUOUS - does everything normally, but if there |
1708 | * is a hole in the region, and we would |
1709 | * have returned KERN_SUCCESS, return |
1710 | * KERN_INVALID_ADDRESS instead. |
1711 | * |
1712 | * The addressability of the range is limited to that which can |
1713 | * be described by a vm_address_t. |
1714 | * |
1715 | * RETURNS |
1716 | * KERN_INVALID_TASK Bad task parameter |
1717 | * KERN_INVALID_ARGUMENT both sync and async were specified. |
1718 | * KERN_SUCCESS The usual. |
1719 | * KERN_INVALID_ADDRESS There was a hole in the region. |
1720 | */ |
1721 | |
1722 | kern_return_t |
1723 | vm_msync( |
1724 | vm_map_t map, |
1725 | vm_address_t address, |
1726 | vm_size_t size, |
1727 | vm_sync_t sync_flags) |
1728 | { |
1729 | if (map == VM_MAP_NULL) { |
1730 | return KERN_INVALID_TASK; |
1731 | } |
1732 | |
1733 | return vm_map_msync(map, address: (vm_map_address_t)address, |
1734 | size: (vm_map_size_t)size, sync_flags); |
1735 | } |
1736 | |
1737 | |
1738 | int |
1739 | vm_toggle_entry_reuse(int toggle, int *old_value) |
1740 | { |
1741 | vm_map_t map = current_map(); |
1742 | |
1743 | assert(!map->is_nested_map); |
1744 | if (toggle == VM_TOGGLE_GETVALUE && old_value != NULL) { |
1745 | *old_value = map->disable_vmentry_reuse; |
1746 | } else if (toggle == VM_TOGGLE_SET) { |
1747 | vm_map_entry_t map_to_entry; |
1748 | |
1749 | vm_map_lock(map); |
1750 | vm_map_disable_hole_optimization(map); |
1751 | map->disable_vmentry_reuse = TRUE; |
1752 | __IGNORE_WCASTALIGN(map_to_entry = vm_map_to_entry(map)); |
1753 | if (map->first_free == map_to_entry) { |
1754 | map->highest_entry_end = vm_map_min(map); |
1755 | } else { |
1756 | map->highest_entry_end = map->first_free->vme_end; |
1757 | } |
1758 | vm_map_unlock(map); |
1759 | } else if (toggle == VM_TOGGLE_CLEAR) { |
1760 | vm_map_lock(map); |
1761 | map->disable_vmentry_reuse = FALSE; |
1762 | vm_map_unlock(map); |
1763 | } else { |
1764 | return KERN_INVALID_ARGUMENT; |
1765 | } |
1766 | |
1767 | return KERN_SUCCESS; |
1768 | } |
1769 | |
1770 | /* |
1771 | * mach_vm_behavior_set |
1772 | * |
1773 | * Sets the paging behavior attribute for the specified range |
1774 | * in the specified map. |
1775 | * |
1776 | * This routine will fail with KERN_INVALID_ADDRESS if any address |
1777 | * in [start,start+size) is not a valid allocated memory region. |
1778 | */ |
1779 | kern_return_t |
1780 | mach_vm_behavior_set( |
1781 | vm_map_t map, |
1782 | mach_vm_offset_t start, |
1783 | mach_vm_size_t size, |
1784 | vm_behavior_t new_behavior) |
1785 | { |
1786 | vm_map_offset_t align_mask; |
1787 | |
1788 | if ((map == VM_MAP_NULL) || (start + size < start)) { |
1789 | return KERN_INVALID_ARGUMENT; |
1790 | } |
1791 | |
1792 | if (size == 0) { |
1793 | return KERN_SUCCESS; |
1794 | } |
1795 | |
1796 | switch (new_behavior) { |
1797 | case VM_BEHAVIOR_REUSABLE: |
1798 | case VM_BEHAVIOR_REUSE: |
1799 | case VM_BEHAVIOR_CAN_REUSE: |
1800 | case VM_BEHAVIOR_ZERO: |
1801 | /* |
1802 | * Align to the hardware page size, to allow |
1803 | * malloc() to maximize the amount of re-usability, |
1804 | * even on systems with larger software page size. |
1805 | */ |
1806 | align_mask = PAGE_MASK; |
1807 | break; |
1808 | default: |
1809 | align_mask = VM_MAP_PAGE_MASK(map); |
1810 | break; |
1811 | } |
1812 | |
1813 | return vm_map_behavior_set(map, |
1814 | vm_map_trunc_page(start, align_mask), |
1815 | vm_map_round_page(start + size, align_mask), |
1816 | new_behavior); |
1817 | } |
1818 | |
1819 | /* |
1820 | * vm_behavior_set |
1821 | * |
1822 | * Sets the paging behavior attribute for the specified range |
1823 | * in the specified map. |
1824 | * |
1825 | * This routine will fail with KERN_INVALID_ADDRESS if any address |
1826 | * in [start,start+size) is not a valid allocated memory region. |
1827 | * |
1828 | * This routine is potentially limited in addressibility by the |
1829 | * use of vm_offset_t (if the map provided is larger than the |
1830 | * kernel's). |
1831 | */ |
1832 | kern_return_t |
1833 | vm_behavior_set( |
1834 | vm_map_t map, |
1835 | vm_offset_t start, |
1836 | vm_size_t size, |
1837 | vm_behavior_t new_behavior) |
1838 | { |
1839 | if (start + size < start) { |
1840 | return KERN_INVALID_ARGUMENT; |
1841 | } |
1842 | |
1843 | return mach_vm_behavior_set(map, |
1844 | start: (mach_vm_offset_t) start, |
1845 | size: (mach_vm_size_t) size, |
1846 | new_behavior); |
1847 | } |
1848 | |
1849 | /* |
1850 | * mach_vm_region: |
1851 | * |
1852 | * User call to obtain information about a region in |
1853 | * a task's address map. Currently, only one flavor is |
1854 | * supported. |
1855 | * |
1856 | * XXX The reserved and behavior fields cannot be filled |
1857 | * in until the vm merge from the IK is completed, and |
1858 | * vm_reserve is implemented. |
1859 | * |
1860 | * XXX Dependency: syscall_vm_region() also supports only one flavor. |
1861 | */ |
1862 | |
1863 | kern_return_t |
1864 | mach_vm_region( |
1865 | vm_map_t map, |
1866 | mach_vm_offset_t *address, /* IN/OUT */ |
1867 | mach_vm_size_t *size, /* OUT */ |
1868 | vm_region_flavor_t flavor, /* IN */ |
1869 | vm_region_info_t info, /* OUT */ |
1870 | mach_msg_type_number_t *count, /* IN/OUT */ |
1871 | mach_port_t *object_name) /* OUT */ |
1872 | { |
1873 | vm_map_offset_t map_addr; |
1874 | vm_map_size_t map_size; |
1875 | kern_return_t kr; |
1876 | |
1877 | if (VM_MAP_NULL == map) { |
1878 | return KERN_INVALID_ARGUMENT; |
1879 | } |
1880 | |
1881 | map_addr = (vm_map_offset_t)*address; |
1882 | map_size = (vm_map_size_t)*size; |
1883 | |
1884 | /* legacy conversion */ |
1885 | if (VM_REGION_BASIC_INFO == flavor) { |
1886 | flavor = VM_REGION_BASIC_INFO_64; |
1887 | } |
1888 | |
1889 | kr = vm_map_region(map, |
1890 | address: &map_addr, size: &map_size, |
1891 | flavor, info, count, |
1892 | object_name); |
1893 | |
1894 | *address = map_addr; |
1895 | *size = map_size; |
1896 | return kr; |
1897 | } |
1898 | |
1899 | /* |
1900 | * vm_region_64 and vm_region: |
1901 | * |
1902 | * User call to obtain information about a region in |
1903 | * a task's address map. Currently, only one flavor is |
1904 | * supported. |
1905 | * |
1906 | * XXX The reserved and behavior fields cannot be filled |
1907 | * in until the vm merge from the IK is completed, and |
1908 | * vm_reserve is implemented. |
1909 | * |
1910 | * XXX Dependency: syscall_vm_region() also supports only one flavor. |
1911 | */ |
1912 | |
1913 | kern_return_t |
1914 | vm_region_64( |
1915 | vm_map_t map, |
1916 | vm_offset_t *address, /* IN/OUT */ |
1917 | vm_size_t *size, /* OUT */ |
1918 | vm_region_flavor_t flavor, /* IN */ |
1919 | vm_region_info_t info, /* OUT */ |
1920 | mach_msg_type_number_t *count, /* IN/OUT */ |
1921 | mach_port_t *object_name) /* OUT */ |
1922 | { |
1923 | vm_map_offset_t map_addr; |
1924 | vm_map_size_t map_size; |
1925 | kern_return_t kr; |
1926 | |
1927 | if (VM_MAP_NULL == map) { |
1928 | return KERN_INVALID_ARGUMENT; |
1929 | } |
1930 | |
1931 | map_addr = (vm_map_offset_t)*address; |
1932 | map_size = (vm_map_size_t)*size; |
1933 | |
1934 | /* legacy conversion */ |
1935 | if (VM_REGION_BASIC_INFO == flavor) { |
1936 | flavor = VM_REGION_BASIC_INFO_64; |
1937 | } |
1938 | |
1939 | kr = vm_map_region(map, |
1940 | address: &map_addr, size: &map_size, |
1941 | flavor, info, count, |
1942 | object_name); |
1943 | |
1944 | *address = CAST_DOWN(vm_offset_t, map_addr); |
1945 | *size = CAST_DOWN(vm_size_t, map_size); |
1946 | |
1947 | if (KERN_SUCCESS == kr && map_addr + map_size > VM_MAX_ADDRESS) { |
1948 | return KERN_INVALID_ADDRESS; |
1949 | } |
1950 | return kr; |
1951 | } |
1952 | |
1953 | kern_return_t |
1954 | vm_region( |
1955 | vm_map_t map, |
1956 | vm_address_t *address, /* IN/OUT */ |
1957 | vm_size_t *size, /* OUT */ |
1958 | vm_region_flavor_t flavor, /* IN */ |
1959 | vm_region_info_t info, /* OUT */ |
1960 | mach_msg_type_number_t *count, /* IN/OUT */ |
1961 | mach_port_t *object_name) /* OUT */ |
1962 | { |
1963 | vm_map_address_t map_addr; |
1964 | vm_map_size_t map_size; |
1965 | kern_return_t kr; |
1966 | |
1967 | if (VM_MAP_NULL == map) { |
1968 | return KERN_INVALID_ARGUMENT; |
1969 | } |
1970 | |
1971 | map_addr = (vm_map_address_t)*address; |
1972 | map_size = (vm_map_size_t)*size; |
1973 | |
1974 | kr = vm_map_region(map, |
1975 | address: &map_addr, size: &map_size, |
1976 | flavor, info, count, |
1977 | object_name); |
1978 | |
1979 | *address = CAST_DOWN(vm_address_t, map_addr); |
1980 | *size = CAST_DOWN(vm_size_t, map_size); |
1981 | |
1982 | if (KERN_SUCCESS == kr && map_addr + map_size > VM_MAX_ADDRESS) { |
1983 | return KERN_INVALID_ADDRESS; |
1984 | } |
1985 | return kr; |
1986 | } |
1987 | |
1988 | /* |
1989 | * vm_region_recurse: A form of vm_region which follows the |
1990 | * submaps in a target map |
1991 | * |
1992 | */ |
1993 | kern_return_t |
1994 | mach_vm_region_recurse( |
1995 | vm_map_t map, |
1996 | mach_vm_address_t *address, |
1997 | mach_vm_size_t *size, |
1998 | uint32_t *depth, |
1999 | vm_region_recurse_info_t info, |
2000 | mach_msg_type_number_t *infoCnt) |
2001 | { |
2002 | vm_map_address_t map_addr; |
2003 | vm_map_size_t map_size; |
2004 | kern_return_t kr; |
2005 | |
2006 | if (VM_MAP_NULL == map) { |
2007 | return KERN_INVALID_ARGUMENT; |
2008 | } |
2009 | |
2010 | map_addr = (vm_map_address_t)*address; |
2011 | map_size = (vm_map_size_t)*size; |
2012 | |
2013 | kr = vm_map_region_recurse_64( |
2014 | map, |
2015 | address: &map_addr, |
2016 | size: &map_size, |
2017 | nesting_depth: depth, |
2018 | info: (vm_region_submap_info_64_t)info, |
2019 | count: infoCnt); |
2020 | |
2021 | *address = map_addr; |
2022 | *size = map_size; |
2023 | return kr; |
2024 | } |
2025 | |
2026 | /* |
2027 | * vm_region_recurse: A form of vm_region which follows the |
2028 | * submaps in a target map |
2029 | * |
2030 | */ |
2031 | kern_return_t |
2032 | vm_region_recurse_64( |
2033 | vm_map_t map, |
2034 | vm_address_t *address, |
2035 | vm_size_t *size, |
2036 | uint32_t *depth, |
2037 | vm_region_recurse_info_64_t info, |
2038 | mach_msg_type_number_t *infoCnt) |
2039 | { |
2040 | vm_map_address_t map_addr; |
2041 | vm_map_size_t map_size; |
2042 | kern_return_t kr; |
2043 | |
2044 | if (VM_MAP_NULL == map) { |
2045 | return KERN_INVALID_ARGUMENT; |
2046 | } |
2047 | |
2048 | map_addr = (vm_map_address_t)*address; |
2049 | map_size = (vm_map_size_t)*size; |
2050 | |
2051 | kr = vm_map_region_recurse_64( |
2052 | map, |
2053 | address: &map_addr, |
2054 | size: &map_size, |
2055 | nesting_depth: depth, |
2056 | info: (vm_region_submap_info_64_t)info, |
2057 | count: infoCnt); |
2058 | |
2059 | *address = CAST_DOWN(vm_address_t, map_addr); |
2060 | *size = CAST_DOWN(vm_size_t, map_size); |
2061 | |
2062 | if (KERN_SUCCESS == kr && map_addr + map_size > VM_MAX_ADDRESS) { |
2063 | return KERN_INVALID_ADDRESS; |
2064 | } |
2065 | return kr; |
2066 | } |
2067 | |
2068 | kern_return_t |
2069 | vm_region_recurse( |
2070 | vm_map_t map, |
2071 | vm_offset_t *address, /* IN/OUT */ |
2072 | vm_size_t *size, /* OUT */ |
2073 | natural_t *depth, /* IN/OUT */ |
2074 | vm_region_recurse_info_t info32, /* IN/OUT */ |
2075 | mach_msg_type_number_t *infoCnt) /* IN/OUT */ |
2076 | { |
2077 | vm_region_submap_info_data_64_t info64; |
2078 | vm_region_submap_info_t info; |
2079 | vm_map_address_t map_addr; |
2080 | vm_map_size_t map_size; |
2081 | kern_return_t kr; |
2082 | |
2083 | if (VM_MAP_NULL == map || *infoCnt < VM_REGION_SUBMAP_INFO_COUNT) { |
2084 | return KERN_INVALID_ARGUMENT; |
2085 | } |
2086 | |
2087 | |
2088 | map_addr = (vm_map_address_t)*address; |
2089 | map_size = (vm_map_size_t)*size; |
2090 | info = (vm_region_submap_info_t)info32; |
2091 | *infoCnt = VM_REGION_SUBMAP_INFO_COUNT_64; |
2092 | |
2093 | kr = vm_map_region_recurse_64(map, address: &map_addr, size: &map_size, |
2094 | nesting_depth: depth, info: &info64, count: infoCnt); |
2095 | |
2096 | info->protection = info64.protection; |
2097 | info->max_protection = info64.max_protection; |
2098 | info->inheritance = info64.inheritance; |
2099 | info->offset = (uint32_t)info64.offset; /* trouble-maker */ |
2100 | info->user_tag = info64.user_tag; |
2101 | info->pages_resident = info64.pages_resident; |
2102 | info->pages_shared_now_private = info64.pages_shared_now_private; |
2103 | info->pages_swapped_out = info64.pages_swapped_out; |
2104 | info->pages_dirtied = info64.pages_dirtied; |
2105 | info->ref_count = info64.ref_count; |
2106 | info->shadow_depth = info64.shadow_depth; |
2107 | info->external_pager = info64.external_pager; |
2108 | info->share_mode = info64.share_mode; |
2109 | info->is_submap = info64.is_submap; |
2110 | info->behavior = info64.behavior; |
2111 | info->object_id = info64.object_id; |
2112 | info->user_wired_count = info64.user_wired_count; |
2113 | |
2114 | *address = CAST_DOWN(vm_address_t, map_addr); |
2115 | *size = CAST_DOWN(vm_size_t, map_size); |
2116 | *infoCnt = VM_REGION_SUBMAP_INFO_COUNT; |
2117 | |
2118 | if (KERN_SUCCESS == kr && map_addr + map_size > VM_MAX_ADDRESS) { |
2119 | return KERN_INVALID_ADDRESS; |
2120 | } |
2121 | return kr; |
2122 | } |
2123 | |
2124 | kern_return_t |
2125 | mach_vm_purgable_control( |
2126 | vm_map_t map, |
2127 | mach_vm_offset_t address, |
2128 | vm_purgable_t control, |
2129 | int *state) |
2130 | { |
2131 | if (VM_MAP_NULL == map) { |
2132 | return KERN_INVALID_ARGUMENT; |
2133 | } |
2134 | |
2135 | if (control == VM_PURGABLE_SET_STATE_FROM_KERNEL) { |
2136 | /* not allowed from user-space */ |
2137 | return KERN_INVALID_ARGUMENT; |
2138 | } |
2139 | |
2140 | return vm_map_purgable_control(map, |
2141 | vm_map_trunc_page(address, VM_MAP_PAGE_MASK(map)), |
2142 | control, |
2143 | state); |
2144 | } |
2145 | |
2146 | kern_return_t |
2147 | mach_vm_purgable_control_external( |
2148 | mach_port_t target_tport, |
2149 | mach_vm_offset_t address, |
2150 | vm_purgable_t control, |
2151 | int *state) |
2152 | { |
2153 | vm_map_t map; |
2154 | kern_return_t kr; |
2155 | |
2156 | if (control == VM_PURGABLE_GET_STATE) { |
2157 | map = convert_port_to_map_read(port: target_tport); |
2158 | } else { |
2159 | map = convert_port_to_map(port: target_tport); |
2160 | } |
2161 | |
2162 | kr = mach_vm_purgable_control(map, address, control, state); |
2163 | vm_map_deallocate(map); |
2164 | |
2165 | return kr; |
2166 | } |
2167 | |
2168 | kern_return_t |
2169 | vm_purgable_control( |
2170 | vm_map_t map, |
2171 | vm_offset_t address, |
2172 | vm_purgable_t control, |
2173 | int *state) |
2174 | { |
2175 | if (VM_MAP_NULL == map) { |
2176 | return KERN_INVALID_ARGUMENT; |
2177 | } |
2178 | |
2179 | if (control == VM_PURGABLE_SET_STATE_FROM_KERNEL) { |
2180 | /* not allowed from user-space */ |
2181 | return KERN_INVALID_ARGUMENT; |
2182 | } |
2183 | |
2184 | return vm_map_purgable_control(map, |
2185 | vm_map_trunc_page(address, VM_MAP_PAGE_MASK(map)), |
2186 | control, |
2187 | state); |
2188 | } |
2189 | |
2190 | kern_return_t |
2191 | vm_purgable_control_external( |
2192 | mach_port_t target_tport, |
2193 | vm_offset_t address, |
2194 | vm_purgable_t control, |
2195 | int *state) |
2196 | { |
2197 | vm_map_t map; |
2198 | kern_return_t kr; |
2199 | |
2200 | if (control == VM_PURGABLE_GET_STATE) { |
2201 | map = convert_port_to_map_read(port: target_tport); |
2202 | } else { |
2203 | map = convert_port_to_map(port: target_tport); |
2204 | } |
2205 | |
2206 | kr = vm_purgable_control(map, address, control, state); |
2207 | vm_map_deallocate(map); |
2208 | |
2209 | return kr; |
2210 | } |
2211 | |
2212 | |
2213 | /* |
2214 | * Ordinarily, the right to allocate CPM is restricted |
2215 | * to privileged applications (those that can gain access |
2216 | * to the host priv port). Set this variable to zero if |
2217 | * you want to let any application allocate CPM. |
2218 | */ |
2219 | unsigned int vm_allocate_cpm_privileged = 0; |
2220 | |
2221 | /* |
2222 | * Allocate memory in the specified map, with the caveat that |
2223 | * the memory is physically contiguous. This call may fail |
2224 | * if the system can't find sufficient contiguous memory. |
2225 | * This call may cause or lead to heart-stopping amounts of |
2226 | * paging activity. |
2227 | * |
2228 | * Memory obtained from this call should be freed in the |
2229 | * normal way, viz., via vm_deallocate. |
2230 | */ |
2231 | kern_return_t |
2232 | vm_allocate_cpm( |
2233 | host_priv_t host_priv, |
2234 | vm_map_t map, |
2235 | vm_address_t *addr, |
2236 | vm_size_t size, |
2237 | int flags) |
2238 | { |
2239 | vm_map_address_t map_addr; |
2240 | vm_map_size_t map_size; |
2241 | kern_return_t kr; |
2242 | vm_map_kernel_flags_t vmk_flags = VM_MAP_KERNEL_FLAGS_NONE; |
2243 | |
2244 | if (vm_allocate_cpm_privileged && HOST_PRIV_NULL == host_priv) { |
2245 | return KERN_INVALID_HOST; |
2246 | } |
2247 | |
2248 | if (VM_MAP_NULL == map) { |
2249 | return KERN_INVALID_ARGUMENT; |
2250 | } |
2251 | |
2252 | map_addr = (vm_map_address_t)*addr; |
2253 | map_size = (vm_map_size_t)size; |
2254 | |
2255 | vm_map_kernel_flags_set_vmflags(vmk_flags: &vmk_flags, vm_flags_and_tag: flags); |
2256 | vm_map_kernel_flags_update_range_id(flags: &vmk_flags, map); |
2257 | |
2258 | kr = vm_map_enter_cpm(map, addr: &map_addr, size: map_size, vmk_flags); |
2259 | |
2260 | *addr = CAST_DOWN(vm_address_t, map_addr); |
2261 | return kr; |
2262 | } |
2263 | |
2264 | |
2265 | kern_return_t |
2266 | mach_vm_page_query( |
2267 | vm_map_t map, |
2268 | mach_vm_offset_t offset, |
2269 | int *disposition, |
2270 | int *ref_count) |
2271 | { |
2272 | if (VM_MAP_NULL == map) { |
2273 | return KERN_INVALID_ARGUMENT; |
2274 | } |
2275 | |
2276 | return vm_map_page_query_internal( |
2277 | map, |
2278 | vm_map_trunc_page(offset, PAGE_MASK), |
2279 | disposition, ref_count); |
2280 | } |
2281 | |
2282 | kern_return_t |
2283 | vm_map_page_query( |
2284 | vm_map_t map, |
2285 | vm_offset_t offset, |
2286 | int *disposition, |
2287 | int *ref_count) |
2288 | { |
2289 | if (VM_MAP_NULL == map) { |
2290 | return KERN_INVALID_ARGUMENT; |
2291 | } |
2292 | |
2293 | return vm_map_page_query_internal( |
2294 | map, |
2295 | vm_map_trunc_page(offset, PAGE_MASK), |
2296 | disposition, ref_count); |
2297 | } |
2298 | |
2299 | kern_return_t |
2300 | mach_vm_page_range_query( |
2301 | vm_map_t map, |
2302 | mach_vm_offset_t address, |
2303 | mach_vm_size_t size, |
2304 | mach_vm_address_t dispositions_addr, |
2305 | mach_vm_size_t *dispositions_count) |
2306 | { |
2307 | kern_return_t kr = KERN_SUCCESS; |
2308 | int num_pages = 0, i = 0; |
2309 | mach_vm_size_t curr_sz = 0, copy_sz = 0; |
2310 | mach_vm_size_t disp_buf_req_size = 0, disp_buf_total_size = 0; |
2311 | mach_msg_type_number_t count = 0; |
2312 | |
2313 | void *info = NULL; |
2314 | void *local_disp = NULL; |
2315 | vm_map_size_t info_size = 0, local_disp_size = 0; |
2316 | mach_vm_offset_t start = 0, end = 0; |
2317 | int effective_page_shift, effective_page_size, effective_page_mask; |
2318 | |
2319 | if (map == VM_MAP_NULL || dispositions_count == NULL) { |
2320 | return KERN_INVALID_ARGUMENT; |
2321 | } |
2322 | |
2323 | effective_page_shift = vm_self_region_page_shift_safely(target_map: map); |
2324 | if (effective_page_shift == -1) { |
2325 | return KERN_INVALID_ARGUMENT; |
2326 | } |
2327 | effective_page_size = (1 << effective_page_shift); |
2328 | effective_page_mask = effective_page_size - 1; |
2329 | |
2330 | if (os_mul_overflow(*dispositions_count, sizeof(int), &disp_buf_req_size)) { |
2331 | return KERN_INVALID_ARGUMENT; |
2332 | } |
2333 | |
2334 | start = vm_map_trunc_page(address, effective_page_mask); |
2335 | end = vm_map_round_page(address + size, effective_page_mask); |
2336 | |
2337 | if (end < start) { |
2338 | return KERN_INVALID_ARGUMENT; |
2339 | } |
2340 | |
2341 | if ((end - start) < size) { |
2342 | /* |
2343 | * Aligned size is less than unaligned size. |
2344 | */ |
2345 | return KERN_INVALID_ARGUMENT; |
2346 | } |
2347 | |
2348 | if (disp_buf_req_size == 0 || (end == start)) { |
2349 | return KERN_SUCCESS; |
2350 | } |
2351 | |
2352 | /* |
2353 | * For large requests, we will go through them |
2354 | * MAX_PAGE_RANGE_QUERY chunk at a time. |
2355 | */ |
2356 | |
2357 | curr_sz = MIN(end - start, MAX_PAGE_RANGE_QUERY); |
2358 | num_pages = (int) (curr_sz >> effective_page_shift); |
2359 | |
2360 | info_size = num_pages * sizeof(vm_page_info_basic_data_t); |
2361 | info = kalloc_data(info_size, Z_WAITOK); |
2362 | |
2363 | local_disp_size = num_pages * sizeof(int); |
2364 | local_disp = kalloc_data(local_disp_size, Z_WAITOK); |
2365 | |
2366 | if (info == NULL || local_disp == NULL) { |
2367 | kr = KERN_RESOURCE_SHORTAGE; |
2368 | goto out; |
2369 | } |
2370 | |
2371 | while (size) { |
2372 | count = VM_PAGE_INFO_BASIC_COUNT; |
2373 | kr = vm_map_page_range_info_internal( |
2374 | map, |
2375 | start_offset: start, |
2376 | vm_map_round_page(start + curr_sz, effective_page_mask), |
2377 | effective_page_shift, |
2378 | VM_PAGE_INFO_BASIC, |
2379 | info: (vm_page_info_t) info, |
2380 | count: &count); |
2381 | |
2382 | assert(kr == KERN_SUCCESS); |
2383 | |
2384 | for (i = 0; i < num_pages; i++) { |
2385 | ((int*)local_disp)[i] = ((vm_page_info_basic_t)info)[i].disposition; |
2386 | } |
2387 | |
2388 | copy_sz = MIN(disp_buf_req_size, num_pages * sizeof(int) /* an int per page */); |
2389 | kr = copyout(local_disp, (mach_vm_address_t)dispositions_addr, copy_sz); |
2390 | |
2391 | start += curr_sz; |
2392 | disp_buf_req_size -= copy_sz; |
2393 | disp_buf_total_size += copy_sz; |
2394 | |
2395 | if (kr != 0) { |
2396 | break; |
2397 | } |
2398 | |
2399 | if ((disp_buf_req_size == 0) || (curr_sz >= size)) { |
2400 | /* |
2401 | * We might have inspected the full range OR |
2402 | * more than it esp. if the user passed in |
2403 | * non-page aligned start/size and/or if we |
2404 | * descended into a submap. We are done here. |
2405 | */ |
2406 | |
2407 | size = 0; |
2408 | } else { |
2409 | dispositions_addr += copy_sz; |
2410 | |
2411 | size -= curr_sz; |
2412 | |
2413 | curr_sz = MIN(vm_map_round_page(size, effective_page_mask), MAX_PAGE_RANGE_QUERY); |
2414 | num_pages = (int)(curr_sz >> effective_page_shift); |
2415 | } |
2416 | } |
2417 | |
2418 | *dispositions_count = disp_buf_total_size / sizeof(int); |
2419 | |
2420 | out: |
2421 | kfree_data(local_disp, local_disp_size); |
2422 | kfree_data(info, info_size); |
2423 | return kr; |
2424 | } |
2425 | |
2426 | kern_return_t |
2427 | mach_vm_page_info( |
2428 | vm_map_t map, |
2429 | mach_vm_address_t address, |
2430 | vm_page_info_flavor_t flavor, |
2431 | vm_page_info_t info, |
2432 | mach_msg_type_number_t *count) |
2433 | { |
2434 | kern_return_t kr; |
2435 | |
2436 | if (map == VM_MAP_NULL) { |
2437 | return KERN_INVALID_ARGUMENT; |
2438 | } |
2439 | |
2440 | kr = vm_map_page_info(map, offset: address, flavor, info, count); |
2441 | return kr; |
2442 | } |
2443 | |
2444 | /* map a (whole) upl into an address space */ |
2445 | kern_return_t |
2446 | vm_upl_map( |
2447 | vm_map_t map, |
2448 | upl_t upl, |
2449 | vm_address_t *dst_addr) |
2450 | { |
2451 | vm_map_offset_t map_addr; |
2452 | kern_return_t kr; |
2453 | |
2454 | if (VM_MAP_NULL == map) { |
2455 | return KERN_INVALID_ARGUMENT; |
2456 | } |
2457 | |
2458 | kr = vm_map_enter_upl(map, upl, dst_addr: &map_addr); |
2459 | *dst_addr = CAST_DOWN(vm_address_t, map_addr); |
2460 | return kr; |
2461 | } |
2462 | |
2463 | kern_return_t |
2464 | vm_upl_unmap( |
2465 | vm_map_t map, |
2466 | upl_t upl) |
2467 | { |
2468 | if (VM_MAP_NULL == map) { |
2469 | return KERN_INVALID_ARGUMENT; |
2470 | } |
2471 | |
2472 | return vm_map_remove_upl(map, upl); |
2473 | } |
2474 | |
2475 | /* map a part of a upl into an address space with requested protection. */ |
2476 | kern_return_t |
2477 | vm_upl_map_range( |
2478 | vm_map_t map, |
2479 | upl_t upl, |
2480 | vm_offset_t offset_to_map, |
2481 | vm_size_t size_to_map, |
2482 | vm_prot_t prot_to_map, |
2483 | vm_address_t *dst_addr) |
2484 | { |
2485 | vm_map_offset_t map_addr, aligned_offset_to_map, adjusted_offset; |
2486 | kern_return_t kr; |
2487 | |
2488 | if (VM_MAP_NULL == map) { |
2489 | return KERN_INVALID_ARGUMENT; |
2490 | } |
2491 | aligned_offset_to_map = VM_MAP_TRUNC_PAGE(offset_to_map, VM_MAP_PAGE_MASK(map)); |
2492 | adjusted_offset = offset_to_map - aligned_offset_to_map; |
2493 | size_to_map = VM_MAP_ROUND_PAGE(size_to_map + adjusted_offset, VM_MAP_PAGE_MASK(map)); |
2494 | |
2495 | kr = vm_map_enter_upl_range(map, upl, offset: aligned_offset_to_map, size: size_to_map, prot: prot_to_map, dst_addr: &map_addr); |
2496 | *dst_addr = CAST_DOWN(vm_address_t, (map_addr + adjusted_offset)); |
2497 | return kr; |
2498 | } |
2499 | |
2500 | /* unmap a part of a upl that was mapped in the address space. */ |
2501 | kern_return_t |
2502 | vm_upl_unmap_range( |
2503 | vm_map_t map, |
2504 | upl_t upl, |
2505 | vm_offset_t offset_to_unmap, |
2506 | vm_size_t size_to_unmap) |
2507 | { |
2508 | vm_map_offset_t aligned_offset_to_unmap, page_offset; |
2509 | |
2510 | if (VM_MAP_NULL == map) { |
2511 | return KERN_INVALID_ARGUMENT; |
2512 | } |
2513 | |
2514 | aligned_offset_to_unmap = VM_MAP_TRUNC_PAGE(offset_to_unmap, VM_MAP_PAGE_MASK(map)); |
2515 | page_offset = offset_to_unmap - aligned_offset_to_unmap; |
2516 | size_to_unmap = VM_MAP_ROUND_PAGE(size_to_unmap + page_offset, VM_MAP_PAGE_MASK(map)); |
2517 | |
2518 | return vm_map_remove_upl_range(map, upl, offset: aligned_offset_to_unmap, size: size_to_unmap); |
2519 | } |
2520 | |
2521 | /* Retrieve a upl for an object underlying an address range in a map */ |
2522 | |
2523 | kern_return_t |
2524 | vm_map_get_upl( |
2525 | vm_map_t map, |
2526 | vm_map_offset_t map_offset, |
2527 | upl_size_t *upl_size, |
2528 | upl_t *upl, |
2529 | upl_page_info_array_t page_list, |
2530 | unsigned int *count, |
2531 | upl_control_flags_t *flags, |
2532 | vm_tag_t tag, |
2533 | int force_data_sync) |
2534 | { |
2535 | upl_control_flags_t map_flags; |
2536 | kern_return_t kr; |
2537 | |
2538 | if (VM_MAP_NULL == map) { |
2539 | return KERN_INVALID_ARGUMENT; |
2540 | } |
2541 | |
2542 | map_flags = *flags & ~UPL_NOZEROFILL; |
2543 | if (force_data_sync) { |
2544 | map_flags |= UPL_FORCE_DATA_SYNC; |
2545 | } |
2546 | |
2547 | kr = vm_map_create_upl(map, |
2548 | offset: map_offset, |
2549 | upl_size, |
2550 | upl, |
2551 | page_list, |
2552 | count, |
2553 | flags: &map_flags, |
2554 | tag); |
2555 | |
2556 | *flags = (map_flags & ~UPL_FORCE_DATA_SYNC); |
2557 | return kr; |
2558 | } |
2559 | |
2560 | /* |
2561 | * mach_make_memory_entry_64 |
2562 | * |
2563 | * Think of it as a two-stage vm_remap() operation. First |
2564 | * you get a handle. Second, you get map that handle in |
2565 | * somewhere else. Rather than doing it all at once (and |
2566 | * without needing access to the other whole map). |
2567 | */ |
2568 | kern_return_t |
2569 | mach_make_memory_entry_64( |
2570 | vm_map_t target_map, |
2571 | memory_object_size_t *size, |
2572 | memory_object_offset_t offset, |
2573 | vm_prot_t permission, |
2574 | ipc_port_t *object_handle, |
2575 | ipc_port_t parent_handle) |
2576 | { |
2577 | vm_named_entry_kernel_flags_t vmne_kflags; |
2578 | |
2579 | if ((permission & MAP_MEM_FLAGS_MASK) & ~MAP_MEM_FLAGS_USER) { |
2580 | /* |
2581 | * Unknown flag: reject for forward compatibility. |
2582 | */ |
2583 | return KERN_INVALID_VALUE; |
2584 | } |
2585 | |
2586 | vmne_kflags = VM_NAMED_ENTRY_KERNEL_FLAGS_NONE; |
2587 | if (permission & MAP_MEM_LEDGER_TAGGED) { |
2588 | vmne_kflags.vmnekf_ledger_tag = VM_LEDGER_TAG_DEFAULT; |
2589 | } |
2590 | return mach_make_memory_entry_internal(target_map, |
2591 | size, |
2592 | offset, |
2593 | permission, |
2594 | vmne_kflags, |
2595 | object_handle, |
2596 | parent_handle); |
2597 | } |
2598 | |
2599 | kern_return_t |
2600 | mach_make_memory_entry_internal( |
2601 | vm_map_t target_map, |
2602 | memory_object_size_t *size, |
2603 | memory_object_offset_t offset, |
2604 | vm_prot_t permission, |
2605 | vm_named_entry_kernel_flags_t vmne_kflags, |
2606 | ipc_port_t *object_handle, |
2607 | ipc_port_t parent_handle) |
2608 | { |
2609 | vm_named_entry_t parent_entry; |
2610 | vm_named_entry_t user_entry; |
2611 | kern_return_t kr = KERN_SUCCESS; |
2612 | vm_object_t object; |
2613 | vm_map_size_t map_size; |
2614 | vm_map_offset_t map_start, map_end; |
2615 | vm_map_offset_t tmp; |
2616 | |
2617 | /* |
2618 | * Stash the offset in the page for use by vm_map_enter_mem_object() |
2619 | * in the VM_FLAGS_RETURN_DATA_ADDR/MAP_MEM_USE_DATA_ADDR case. |
2620 | */ |
2621 | vm_object_offset_t offset_in_page; |
2622 | |
2623 | unsigned int access; |
2624 | vm_prot_t protections; |
2625 | vm_prot_t original_protections, mask_protections; |
2626 | unsigned int wimg_mode; |
2627 | boolean_t use_data_addr; |
2628 | boolean_t use_4K_compat; |
2629 | |
2630 | DEBUG4K_MEMENTRY("map %p offset 0x%llx size 0x%llx prot 0x%x\n" , target_map, offset, *size, permission); |
2631 | |
2632 | user_entry = NULL; |
2633 | |
2634 | if ((permission & MAP_MEM_FLAGS_MASK) & ~MAP_MEM_FLAGS_ALL) { |
2635 | /* |
2636 | * Unknown flag: reject for forward compatibility. |
2637 | */ |
2638 | DEBUG4K_MEMENTRY("map %p offset 0x%llx size 0x%llx prot 0x%x -> entry %p kr 0x%x\n" , target_map, offset, *size, permission, user_entry, KERN_INVALID_VALUE); |
2639 | return KERN_INVALID_VALUE; |
2640 | } |
2641 | |
2642 | parent_entry = mach_memory_entry_from_port(port: parent_handle); |
2643 | if (parent_entry && parent_entry->is_copy) { |
2644 | DEBUG4K_MEMENTRY("map %p offset 0x%llx size 0x%llx prot 0x%x -> entry %p kr 0x%x\n" , target_map, offset, *size, permission, user_entry, KERN_INVALID_ARGUMENT); |
2645 | return KERN_INVALID_ARGUMENT; |
2646 | } |
2647 | |
2648 | if (target_map == NULL || target_map->pmap == kernel_pmap) { |
2649 | offset = pgz_decode(offset, *size); |
2650 | } |
2651 | |
2652 | if (__improbable(vm_map_range_overflows(target_map, offset, *size))) { |
2653 | return KERN_INVALID_ARGUMENT; |
2654 | } |
2655 | |
2656 | original_protections = permission & VM_PROT_ALL; |
2657 | protections = original_protections; |
2658 | mask_protections = permission & VM_PROT_IS_MASK; |
2659 | access = GET_MAP_MEM(permission); |
2660 | use_data_addr = ((permission & MAP_MEM_USE_DATA_ADDR) != 0); |
2661 | use_4K_compat = ((permission & MAP_MEM_4K_DATA_ADDR) != 0); |
2662 | |
2663 | user_entry = NULL; |
2664 | |
2665 | map_start = vm_map_trunc_page(offset, VM_MAP_PAGE_MASK(target_map)); |
2666 | |
2667 | if (permission & MAP_MEM_ONLY) { |
2668 | boolean_t parent_is_object; |
2669 | |
2670 | if (__improbable(os_add_overflow(offset, *size, &map_end))) { |
2671 | return KERN_INVALID_ARGUMENT; |
2672 | } |
2673 | map_end = vm_map_round_page(offset + *size, VM_MAP_PAGE_MASK(target_map)); |
2674 | if (__improbable(map_end == 0 && *size != 0)) { |
2675 | return KERN_INVALID_ARGUMENT; |
2676 | } |
2677 | map_size = map_end - map_start; |
2678 | |
2679 | if (use_data_addr || use_4K_compat || parent_entry == NULL) { |
2680 | DEBUG4K_MEMENTRY("map %p offset 0x%llx size 0x%llx prot 0x%x -> entry %p kr 0x%x\n" , target_map, offset, *size, permission, user_entry, KERN_INVALID_ARGUMENT); |
2681 | return KERN_INVALID_ARGUMENT; |
2682 | } |
2683 | |
2684 | parent_is_object = parent_entry->is_object; |
2685 | if (!parent_is_object) { |
2686 | DEBUG4K_MEMENTRY("map %p offset 0x%llx size 0x%llx prot 0x%x -> entry %p kr 0x%x\n" , target_map, offset, *size, permission, user_entry, KERN_INVALID_ARGUMENT); |
2687 | return KERN_INVALID_ARGUMENT; |
2688 | } |
2689 | object = vm_named_entry_to_vm_object(named_entry: parent_entry); |
2690 | if (parent_is_object && object != VM_OBJECT_NULL) { |
2691 | wimg_mode = object->wimg_bits; |
2692 | } else { |
2693 | wimg_mode = VM_WIMG_USE_DEFAULT; |
2694 | } |
2695 | if ((access != parent_entry->access) && |
2696 | !(parent_entry->protection & VM_PROT_WRITE)) { |
2697 | DEBUG4K_MEMENTRY("map %p offset 0x%llx size 0x%llx prot 0x%x -> entry %p kr 0x%x\n" , target_map, offset, *size, permission, user_entry, KERN_INVALID_RIGHT); |
2698 | return KERN_INVALID_RIGHT; |
2699 | } |
2700 | vm_prot_to_wimg(prot: access, wimg: &wimg_mode); |
2701 | if (access != MAP_MEM_NOOP) { |
2702 | parent_entry->access = access; |
2703 | } |
2704 | if (parent_is_object && object && |
2705 | (access != MAP_MEM_NOOP) && |
2706 | (!(object->nophyscache))) { |
2707 | if (object->wimg_bits != wimg_mode) { |
2708 | vm_object_lock(object); |
2709 | vm_object_change_wimg_mode(object, wimg_mode); |
2710 | vm_object_unlock(object); |
2711 | } |
2712 | } |
2713 | if (object_handle) { |
2714 | *object_handle = IP_NULL; |
2715 | } |
2716 | DEBUG4K_MEMENTRY("map %p offset 0x%llx size 0x%llx prot 0x%x -> entry %p kr 0x%x\n" , target_map, offset, *size, permission, user_entry, KERN_SUCCESS); |
2717 | return KERN_SUCCESS; |
2718 | } else if (permission & MAP_MEM_NAMED_CREATE) { |
2719 | int ledger_flags = 0; |
2720 | task_t owner; |
2721 | bool fully_owned = false; |
2722 | |
2723 | if (__improbable(os_add_overflow(offset, *size, &map_end))) { |
2724 | return KERN_INVALID_ARGUMENT; |
2725 | } |
2726 | map_end = vm_map_round_page(map_end, VM_MAP_PAGE_MASK(target_map)); |
2727 | map_size = map_end - map_start; |
2728 | if (__improbable(map_size == 0)) { |
2729 | *size = 0; |
2730 | *object_handle = IPC_PORT_NULL; |
2731 | return KERN_SUCCESS; |
2732 | } |
2733 | if (__improbable(map_end == 0)) { |
2734 | return KERN_INVALID_ARGUMENT; |
2735 | } |
2736 | |
2737 | if (use_data_addr || use_4K_compat) { |
2738 | DEBUG4K_MEMENTRY("map %p offset 0x%llx size 0x%llx prot 0x%x -> entry %p kr 0x%x\n" , target_map, offset, *size, permission, user_entry, KERN_INVALID_ARGUMENT); |
2739 | return KERN_INVALID_ARGUMENT; |
2740 | } |
2741 | |
2742 | /* |
2743 | * Force the creation of the VM object now. |
2744 | */ |
2745 | #if __LP64__ |
2746 | if (map_size > ANON_MAX_SIZE) { |
2747 | kr = KERN_FAILURE; |
2748 | goto make_mem_done; |
2749 | } |
2750 | #endif /* __LP64__ */ |
2751 | |
2752 | object = vm_object_allocate(size: map_size); |
2753 | assert(object != VM_OBJECT_NULL); |
2754 | vm_object_lock(object); |
2755 | |
2756 | /* |
2757 | * XXX |
2758 | * We use this path when we want to make sure that |
2759 | * nobody messes with the object (coalesce, for |
2760 | * example) before we map it. |
2761 | * We might want to use these objects for transposition via |
2762 | * vm_object_transpose() too, so we don't want any copy or |
2763 | * shadow objects either... |
2764 | */ |
2765 | object->copy_strategy = MEMORY_OBJECT_COPY_NONE; |
2766 | VM_OBJECT_SET_TRUE_SHARE(object, TRUE); |
2767 | |
2768 | owner = current_task(); |
2769 | if ((permission & MAP_MEM_PURGABLE) || |
2770 | vmne_kflags.vmnekf_ledger_tag) { |
2771 | assert(object->vo_owner == NULL); |
2772 | assert(object->resident_page_count == 0); |
2773 | assert(object->wired_page_count == 0); |
2774 | assert(owner != TASK_NULL); |
2775 | if (vmne_kflags.vmnekf_ledger_no_footprint) { |
2776 | ledger_flags |= VM_LEDGER_FLAG_NO_FOOTPRINT; |
2777 | object->vo_no_footprint = TRUE; |
2778 | } |
2779 | if (permission & MAP_MEM_PURGABLE) { |
2780 | if (!(permission & VM_PROT_WRITE)) { |
2781 | /* if we can't write, we can't purge */ |
2782 | vm_object_unlock(object); |
2783 | vm_object_deallocate(object); |
2784 | kr = KERN_INVALID_ARGUMENT; |
2785 | goto make_mem_done; |
2786 | } |
2787 | VM_OBJECT_SET_PURGABLE(object, VM_PURGABLE_NONVOLATILE); |
2788 | if (permission & MAP_MEM_PURGABLE_KERNEL_ONLY) { |
2789 | VM_OBJECT_SET_PURGEABLE_ONLY_BY_KERNEL(object, TRUE); |
2790 | } |
2791 | #if __arm64__ |
2792 | if (owner->task_legacy_footprint) { |
2793 | /* |
2794 | * For ios11, we failed to account for |
2795 | * this memory. Keep doing that for |
2796 | * legacy apps (built before ios12), |
2797 | * for backwards compatibility's sake... |
2798 | */ |
2799 | owner = kernel_task; |
2800 | } |
2801 | #endif /* __arm64__ */ |
2802 | vm_purgeable_nonvolatile_enqueue(object, task: owner); |
2803 | /* all memory in this named entry is "owned" */ |
2804 | fully_owned = true; |
2805 | } |
2806 | } |
2807 | |
2808 | if (vmne_kflags.vmnekf_ledger_tag) { |
2809 | /* |
2810 | * Bill this object to the current task's |
2811 | * ledgers for the given tag. |
2812 | */ |
2813 | if (vmne_kflags.vmnekf_ledger_no_footprint) { |
2814 | ledger_flags |= VM_LEDGER_FLAG_NO_FOOTPRINT; |
2815 | } |
2816 | object->vo_ledger_tag = vmne_kflags.vmnekf_ledger_tag; |
2817 | kr = vm_object_ownership_change( |
2818 | object, |
2819 | new_ledger_tag: vmne_kflags.vmnekf_ledger_tag, |
2820 | new_owner: owner, /* new owner */ |
2821 | new_ledger_flags: ledger_flags, |
2822 | FALSE); /* task_objq locked? */ |
2823 | if (kr != KERN_SUCCESS) { |
2824 | vm_object_unlock(object); |
2825 | vm_object_deallocate(object); |
2826 | goto make_mem_done; |
2827 | } |
2828 | /* all memory in this named entry is "owned" */ |
2829 | fully_owned = true; |
2830 | } |
2831 | |
2832 | #if CONFIG_SECLUDED_MEMORY |
2833 | if (secluded_for_iokit && /* global boot-arg */ |
2834 | ((permission & MAP_MEM_GRAB_SECLUDED))) { |
2835 | object->can_grab_secluded = TRUE; |
2836 | assert(!object->eligible_for_secluded); |
2837 | } |
2838 | #endif /* CONFIG_SECLUDED_MEMORY */ |
2839 | |
2840 | /* |
2841 | * The VM object is brand new and nobody else knows about it, |
2842 | * so we don't need to lock it. |
2843 | */ |
2844 | |
2845 | wimg_mode = object->wimg_bits; |
2846 | vm_prot_to_wimg(prot: access, wimg: &wimg_mode); |
2847 | if (access != MAP_MEM_NOOP) { |
2848 | object->wimg_bits = wimg_mode; |
2849 | } |
2850 | |
2851 | vm_object_unlock(object); |
2852 | |
2853 | /* the object has no pages, so no WIMG bits to update here */ |
2854 | |
2855 | user_entry = mach_memory_entry_allocate(user_handle_p: object_handle); |
2856 | vm_named_entry_associate_vm_object( |
2857 | named_entry: user_entry, |
2858 | object, |
2859 | offset: 0, |
2860 | size: map_size, |
2861 | prot: (protections & VM_PROT_ALL)); |
2862 | user_entry->internal = TRUE; |
2863 | user_entry->is_sub_map = FALSE; |
2864 | user_entry->offset = 0; |
2865 | user_entry->data_offset = 0; |
2866 | user_entry->protection = protections; |
2867 | user_entry->access = access; |
2868 | user_entry->size = map_size; |
2869 | user_entry->is_fully_owned = fully_owned; |
2870 | |
2871 | /* user_object pager and internal fields are not used */ |
2872 | /* when the object field is filled in. */ |
2873 | |
2874 | *size = CAST_DOWN(vm_size_t, (user_entry->size - |
2875 | user_entry->data_offset)); |
2876 | DEBUG4K_MEMENTRY("map %p offset 0x%llx size 0x%llx prot 0x%x -> entry %p kr 0x%x\n" , target_map, offset, *size, permission, user_entry, KERN_SUCCESS); |
2877 | return KERN_SUCCESS; |
2878 | } |
2879 | |
2880 | if (permission & MAP_MEM_VM_COPY) { |
2881 | vm_map_copy_t copy; |
2882 | |
2883 | if (target_map == VM_MAP_NULL) { |
2884 | DEBUG4K_MEMENTRY("map %p offset 0x%llx size 0x%llx prot 0x%x -> entry %p kr 0x%x\n" , target_map, offset, *size, permission, user_entry, KERN_INVALID_TASK); |
2885 | return KERN_INVALID_TASK; |
2886 | } |
2887 | |
2888 | if (__improbable(os_add_overflow(offset, *size, &map_end))) { |
2889 | return KERN_INVALID_ARGUMENT; |
2890 | } |
2891 | map_end = vm_map_round_page(map_end, VM_MAP_PAGE_MASK(target_map)); |
2892 | map_size = map_end - map_start; |
2893 | if (__improbable(map_size == 0)) { |
2894 | DEBUG4K_MEMENTRY("map %p offset 0x%llx size 0x%llx prot 0x%x -> entry %p kr 0x%x\n" , target_map, offset, *size, permission, user_entry, KERN_INVALID_ARGUMENT); |
2895 | return KERN_INVALID_ARGUMENT; |
2896 | } |
2897 | if (__improbable(map_end == 0)) { |
2898 | return KERN_INVALID_ARGUMENT; |
2899 | } |
2900 | |
2901 | if (use_data_addr || use_4K_compat) { |
2902 | offset_in_page = offset - map_start; |
2903 | if (use_4K_compat) { |
2904 | offset_in_page &= ~((signed)(0xFFF)); |
2905 | } |
2906 | } else { |
2907 | offset_in_page = 0; |
2908 | } |
2909 | |
2910 | kr = vm_map_copyin_internal(src_map: target_map, |
2911 | src_addr: map_start, |
2912 | len: map_size, |
2913 | VM_MAP_COPYIN_ENTRY_LIST, |
2914 | copy_result: ©); |
2915 | if (kr != KERN_SUCCESS) { |
2916 | DEBUG4K_MEMENTRY("map %p offset 0x%llx size 0x%llx prot 0x%x -> entry %p kr 0x%x\n" , target_map, offset, *size, permission, user_entry, kr); |
2917 | return kr; |
2918 | } |
2919 | assert(copy != VM_MAP_COPY_NULL); |
2920 | |
2921 | user_entry = mach_memory_entry_allocate(user_handle_p: object_handle); |
2922 | user_entry->backing.copy = copy; |
2923 | user_entry->internal = FALSE; |
2924 | user_entry->is_sub_map = FALSE; |
2925 | user_entry->is_copy = TRUE; |
2926 | user_entry->offset = 0; |
2927 | user_entry->protection = protections; |
2928 | user_entry->size = map_size; |
2929 | user_entry->data_offset = offset_in_page; |
2930 | |
2931 | /* is all memory in this named entry "owned"? */ |
2932 | vm_map_entry_t entry; |
2933 | user_entry->is_fully_owned = TRUE; |
2934 | for (entry = vm_map_copy_first_entry(copy); |
2935 | entry != vm_map_copy_to_entry(copy); |
2936 | entry = entry->vme_next) { |
2937 | if (entry->is_sub_map || |
2938 | VME_OBJECT(entry) == VM_OBJECT_NULL || |
2939 | VM_OBJECT_OWNER(VME_OBJECT(entry)) == TASK_NULL) { |
2940 | /* this memory is not "owned" */ |
2941 | user_entry->is_fully_owned = FALSE; |
2942 | break; |
2943 | } |
2944 | } |
2945 | |
2946 | *size = CAST_DOWN(vm_size_t, (user_entry->size - |
2947 | user_entry->data_offset)); |
2948 | DEBUG4K_MEMENTRY("map %p offset 0x%llx size 0x%llx prot 0x%x -> entry %p kr 0x%x\n" , target_map, offset, *size, permission, user_entry, KERN_SUCCESS); |
2949 | return KERN_SUCCESS; |
2950 | } |
2951 | |
2952 | if ((permission & MAP_MEM_VM_SHARE) |
2953 | || parent_entry == NULL |
2954 | || (permission & MAP_MEM_NAMED_REUSE)) { |
2955 | vm_map_copy_t copy; |
2956 | vm_prot_t cur_prot, max_prot; |
2957 | vm_map_kernel_flags_t vmk_flags; |
2958 | vm_map_entry_t parent_copy_entry; |
2959 | |
2960 | if (target_map == VM_MAP_NULL) { |
2961 | DEBUG4K_MEMENTRY("map %p offset 0x%llx size 0x%llx prot 0x%x -> entry %p kr 0x%x\n" , target_map, offset, *size, permission, user_entry, KERN_INVALID_TASK); |
2962 | return KERN_INVALID_TASK; |
2963 | } |
2964 | |
2965 | if (__improbable(os_add_overflow(offset, *size, &map_end))) { |
2966 | return KERN_INVALID_ARGUMENT; |
2967 | } |
2968 | map_end = vm_map_round_page(map_end, VM_MAP_PAGE_MASK(target_map)); |
2969 | map_size = map_end - map_start; |
2970 | if (__improbable(map_size == 0)) { |
2971 | DEBUG4K_MEMENTRY("map %p offset 0x%llx size 0x%llx prot 0x%x -> entry %p kr 0x%x\n" , target_map, offset, *size, permission, user_entry, KERN_INVALID_ARGUMENT); |
2972 | return KERN_INVALID_ARGUMENT; |
2973 | } |
2974 | if (__improbable(map_end == 0)) { |
2975 | /* rounding overflow */ |
2976 | return KERN_INVALID_ARGUMENT; |
2977 | } |
2978 | |
2979 | vmk_flags = VM_MAP_KERNEL_FLAGS_NONE; |
2980 | vmk_flags.vmkf_range_id = KMEM_RANGE_ID_DATA; |
2981 | parent_copy_entry = VM_MAP_ENTRY_NULL; |
2982 | if (!(permission & MAP_MEM_VM_SHARE)) { |
2983 | vm_map_t tmp_map, real_map; |
2984 | vm_map_version_t version; |
2985 | vm_object_t tmp_object; |
2986 | vm_object_offset_t obj_off; |
2987 | vm_prot_t prot; |
2988 | boolean_t wired; |
2989 | bool contended; |
2990 | |
2991 | /* resolve any pending submap copy-on-write... */ |
2992 | if (protections & VM_PROT_WRITE) { |
2993 | tmp_map = target_map; |
2994 | vm_map_lock_read(tmp_map); |
2995 | kr = vm_map_lookup_and_lock_object(var_map: &tmp_map, |
2996 | vaddr: map_start, |
2997 | fault_type: protections | mask_protections, |
2998 | OBJECT_LOCK_EXCLUSIVE, |
2999 | out_version: &version, |
3000 | object: &tmp_object, |
3001 | offset: &obj_off, |
3002 | out_prot: &prot, |
3003 | wired: &wired, |
3004 | NULL, /* fault_info */ |
3005 | real_map: &real_map, |
3006 | contended: &contended); |
3007 | if (kr != KERN_SUCCESS) { |
3008 | vm_map_unlock_read(tmp_map); |
3009 | } else { |
3010 | vm_object_unlock(tmp_object); |
3011 | vm_map_unlock_read(tmp_map); |
3012 | if (real_map != tmp_map) { |
3013 | vm_map_unlock_read(real_map); |
3014 | } |
3015 | } |
3016 | } |
3017 | /* ... and carry on */ |
3018 | |
3019 | /* stop extracting if VM object changes */ |
3020 | vmk_flags.vmkf_copy_single_object = TRUE; |
3021 | if ((permission & MAP_MEM_NAMED_REUSE) && |
3022 | parent_entry != NULL && |
3023 | parent_entry->is_object) { |
3024 | vm_map_copy_t parent_copy; |
3025 | parent_copy = parent_entry->backing.copy; |
3026 | /* |
3027 | * Assert that the vm_map_copy is coming from the right |
3028 | * zone and hasn't been forged |
3029 | */ |
3030 | vm_map_copy_require(copy: parent_copy); |
3031 | assert(parent_copy->cpy_hdr.nentries == 1); |
3032 | parent_copy_entry = vm_map_copy_first_entry(parent_copy); |
3033 | assert(!parent_copy_entry->is_sub_map); |
3034 | } |
3035 | } |
3036 | |
3037 | if (use_data_addr || use_4K_compat) { |
3038 | offset_in_page = offset - map_start; |
3039 | if (use_4K_compat) { |
3040 | offset_in_page &= ~((signed)(0xFFF)); |
3041 | } |
3042 | } else { |
3043 | offset_in_page = 0; |
3044 | } |
3045 | |
3046 | if (mask_protections) { |
3047 | /* |
3048 | * caller is asking for whichever proctections are |
3049 | * available: no required protections. |
3050 | */ |
3051 | cur_prot = VM_PROT_NONE; |
3052 | max_prot = VM_PROT_NONE; |
3053 | } else { |
3054 | /* |
3055 | * Caller wants a memory entry with "protections". |
3056 | * Make sure we extract only memory that matches that. |
3057 | */ |
3058 | cur_prot = protections; |
3059 | max_prot = protections; |
3060 | } |
3061 | if (target_map->pmap == kernel_pmap) { |
3062 | /* |
3063 | * Get "reserved" map entries to avoid deadlocking |
3064 | * on the kernel map or a kernel submap if we |
3065 | * run out of VM map entries and need to refill that |
3066 | * zone. |
3067 | */ |
3068 | vmk_flags.vmkf_copy_pageable = FALSE; |
3069 | } else { |
3070 | vmk_flags.vmkf_copy_pageable = TRUE; |
3071 | } |
3072 | vmk_flags.vmkf_copy_same_map = FALSE; |
3073 | assert(map_size != 0); |
3074 | kr = vm_map_copy_extract(src_map: target_map, |
3075 | src_addr: map_start, |
3076 | len: map_size, |
3077 | FALSE, /* copy */ |
3078 | copy_result: ©, |
3079 | cur_prot: &cur_prot, |
3080 | max_prot: &max_prot, |
3081 | VM_INHERIT_SHARE, |
3082 | vmk_flags); |
3083 | if (kr != KERN_SUCCESS) { |
3084 | DEBUG4K_MEMENTRY("map %p offset 0x%llx size 0x%llx prot 0x%x -> entry %p kr 0x%x\n" , target_map, offset, *size, permission, user_entry, kr); |
3085 | if (VM_MAP_PAGE_SHIFT(map: target_map) < PAGE_SHIFT) { |
3086 | // panic("DEBUG4K %s:%d kr 0x%x", __FUNCTION__, __LINE__, kr); |
3087 | } |
3088 | return kr; |
3089 | } |
3090 | assert(copy != VM_MAP_COPY_NULL); |
3091 | |
3092 | if (mask_protections) { |
3093 | /* |
3094 | * We just want as much of "original_protections" |
3095 | * as we can get out of the actual "cur_prot". |
3096 | */ |
3097 | protections &= cur_prot; |
3098 | if (protections == VM_PROT_NONE) { |
3099 | /* no access at all: fail */ |
3100 | DEBUG4K_MEMENTRY("map %p offset 0x%llx size 0x%llx prot 0x%x -> entry %p kr 0x%x\n" , target_map, offset, *size, permission, user_entry, KERN_PROTECTION_FAILURE); |
3101 | if (VM_MAP_PAGE_SHIFT(map: target_map) < PAGE_SHIFT) { |
3102 | // panic("DEBUG4K %s:%d kr 0x%x", __FUNCTION__, __LINE__, kr); |
3103 | } |
3104 | vm_map_copy_discard(copy); |
3105 | return KERN_PROTECTION_FAILURE; |
3106 | } |
3107 | } else { |
3108 | /* |
3109 | * We want exactly "original_protections" |
3110 | * out of "cur_prot". |
3111 | */ |
3112 | assert((cur_prot & protections) == protections); |
3113 | assert((max_prot & protections) == protections); |
3114 | /* XXX FBDP TODO: no longer needed? */ |
3115 | if ((cur_prot & protections) != protections) { |
3116 | if (VM_MAP_PAGE_SHIFT(map: target_map) < PAGE_SHIFT) { |
3117 | // panic("DEBUG4K %s:%d kr 0x%x", __FUNCTION__, __LINE__, KERN_PROTECTION_FAILURE); |
3118 | } |
3119 | vm_map_copy_discard(copy); |
3120 | DEBUG4K_MEMENTRY("map %p offset 0x%llx size 0x%llx prot 0x%x -> entry %p kr 0x%x\n" , target_map, offset, *size, permission, user_entry, KERN_PROTECTION_FAILURE); |
3121 | return KERN_PROTECTION_FAILURE; |
3122 | } |
3123 | } |
3124 | |
3125 | if (!(permission & MAP_MEM_VM_SHARE)) { |
3126 | vm_map_entry_t copy_entry; |
3127 | |
3128 | /* limit size to what's actually covered by "copy" */ |
3129 | assert(copy->cpy_hdr.nentries == 1); |
3130 | copy_entry = vm_map_copy_first_entry(copy); |
3131 | map_size = copy_entry->vme_end - copy_entry->vme_start; |
3132 | |
3133 | if ((permission & MAP_MEM_NAMED_REUSE) && |
3134 | parent_copy_entry != VM_MAP_ENTRY_NULL && |
3135 | VME_OBJECT(copy_entry) == VME_OBJECT(parent_copy_entry) && |
3136 | VME_OFFSET(entry: copy_entry) == VME_OFFSET(entry: parent_copy_entry) && |
3137 | parent_entry->offset == 0 && |
3138 | parent_entry->size == map_size && |
3139 | (parent_entry->data_offset == offset_in_page)) { |
3140 | /* we have a match: re-use "parent_entry" */ |
3141 | |
3142 | /* release our new "copy" */ |
3143 | vm_map_copy_discard(copy); |
3144 | /* get extra send right on handle */ |
3145 | parent_handle = ipc_port_copy_send_any(port: parent_handle); |
3146 | |
3147 | *size = CAST_DOWN(vm_size_t, |
3148 | (parent_entry->size - |
3149 | parent_entry->data_offset)); |
3150 | *object_handle = parent_handle; |
3151 | DEBUG4K_MEMENTRY("map %p offset 0x%llx size 0x%llx prot 0x%x -> entry %p kr 0x%x\n" , target_map, offset, *size, permission, user_entry, KERN_SUCCESS); |
3152 | return KERN_SUCCESS; |
3153 | } |
3154 | |
3155 | /* no match: we need to create a new entry */ |
3156 | object = VME_OBJECT(copy_entry); |
3157 | vm_object_lock(object); |
3158 | wimg_mode = object->wimg_bits; |
3159 | if (!(object->nophyscache)) { |
3160 | vm_prot_to_wimg(prot: access, wimg: &wimg_mode); |
3161 | } |
3162 | if (object->wimg_bits != wimg_mode) { |
3163 | vm_object_change_wimg_mode(object, wimg_mode); |
3164 | } |
3165 | vm_object_unlock(object); |
3166 | } |
3167 | |
3168 | user_entry = mach_memory_entry_allocate(user_handle_p: object_handle); |
3169 | user_entry->backing.copy = copy; |
3170 | user_entry->is_sub_map = FALSE; |
3171 | user_entry->is_object = FALSE; |
3172 | user_entry->internal = FALSE; |
3173 | user_entry->protection = protections; |
3174 | user_entry->size = map_size; |
3175 | user_entry->data_offset = offset_in_page; |
3176 | |
3177 | if (permission & MAP_MEM_VM_SHARE) { |
3178 | vm_map_entry_t copy_entry; |
3179 | |
3180 | user_entry->is_copy = TRUE; |
3181 | user_entry->offset = 0; |
3182 | |
3183 | /* is all memory in this named entry "owned"? */ |
3184 | user_entry->is_fully_owned = TRUE; |
3185 | for (copy_entry = vm_map_copy_first_entry(copy); |
3186 | copy_entry != vm_map_copy_to_entry(copy); |
3187 | copy_entry = copy_entry->vme_next) { |
3188 | if (copy_entry->is_sub_map || |
3189 | VM_OBJECT_OWNER(VME_OBJECT(copy_entry)) == TASK_NULL) { |
3190 | /* this memory is not "owned" */ |
3191 | user_entry->is_fully_owned = FALSE; |
3192 | break; |
3193 | } |
3194 | } |
3195 | } else { |
3196 | user_entry->is_object = TRUE; |
3197 | user_entry->internal = object->internal; |
3198 | user_entry->offset = VME_OFFSET(vm_map_copy_first_entry(copy)); |
3199 | user_entry->access = GET_MAP_MEM(permission); |
3200 | /* is all memory in this named entry "owned"? */ |
3201 | if (VM_OBJECT_OWNER(vm_named_entry_to_vm_object(user_entry)) != TASK_NULL) { |
3202 | user_entry->is_fully_owned = TRUE; |
3203 | } |
3204 | } |
3205 | |
3206 | *size = CAST_DOWN(vm_size_t, (user_entry->size - |
3207 | user_entry->data_offset)); |
3208 | DEBUG4K_MEMENTRY("map %p offset 0x%llx size 0x%llx prot 0x%x -> entry %p kr 0x%x\n" , target_map, offset, *size, permission, user_entry, KERN_SUCCESS); |
3209 | return KERN_SUCCESS; |
3210 | } |
3211 | |
3212 | /* The new object will be based on an existing named object */ |
3213 | if (parent_entry == NULL) { |
3214 | kr = KERN_INVALID_ARGUMENT; |
3215 | goto make_mem_done; |
3216 | } |
3217 | |
3218 | if (parent_entry->is_copy) { |
3219 | panic("parent_entry %p is_copy not supported" , parent_entry); |
3220 | kr = KERN_INVALID_ARGUMENT; |
3221 | goto make_mem_done; |
3222 | } |
3223 | |
3224 | if (use_data_addr || use_4K_compat) { |
3225 | /* |
3226 | * submaps and pagers should only be accessible from within |
3227 | * the kernel, which shouldn't use the data address flag, so can fail here. |
3228 | */ |
3229 | if (parent_entry->is_sub_map) { |
3230 | panic("Shouldn't be using data address with a parent entry that is a submap." ); |
3231 | } |
3232 | /* |
3233 | * Account for offset to data in parent entry and |
3234 | * compute our own offset to data. |
3235 | */ |
3236 | if (__improbable(os_add3_overflow(offset, *size, parent_entry->data_offset, &map_size))) { |
3237 | kr = KERN_INVALID_ARGUMENT; |
3238 | goto make_mem_done; |
3239 | } |
3240 | if (map_size > parent_entry->size) { |
3241 | kr = KERN_INVALID_ARGUMENT; |
3242 | goto make_mem_done; |
3243 | } |
3244 | |
3245 | if (__improbable(os_add_overflow(offset, parent_entry->data_offset, &map_start))) { |
3246 | kr = KERN_INVALID_ARGUMENT; |
3247 | goto make_mem_done; |
3248 | } |
3249 | map_start = vm_map_trunc_page(map_start, PAGE_MASK); |
3250 | offset_in_page = (offset + parent_entry->data_offset) - map_start; |
3251 | if (use_4K_compat) { |
3252 | offset_in_page &= ~((signed)(0xFFF)); |
3253 | } |
3254 | if (__improbable(os_add3_overflow(offset, parent_entry->data_offset, *size, &map_end))) { |
3255 | kr = KERN_INVALID_ARGUMENT; |
3256 | goto make_mem_done; |
3257 | } |
3258 | map_end = vm_map_round_page(map_end, PAGE_MASK); |
3259 | if (__improbable(map_end == 0 && *size != 0)) { |
3260 | /* rounding overflow */ |
3261 | kr = KERN_INVALID_ARGUMENT; |
3262 | goto make_mem_done; |
3263 | } |
3264 | map_size = map_end - map_start; |
3265 | } else { |
3266 | if (__improbable(os_add_overflow(offset, *size, &map_end))) { |
3267 | kr = KERN_INVALID_ARGUMENT; |
3268 | goto make_mem_done; |
3269 | } |
3270 | map_end = vm_map_round_page(map_end, PAGE_MASK); |
3271 | if (__improbable(map_end == 0 && *size != 0)) { |
3272 | kr = KERN_INVALID_ARGUMENT; |
3273 | goto make_mem_done; |
3274 | } |
3275 | map_size = map_end - map_start; |
3276 | offset_in_page = 0; |
3277 | |
3278 | if (__improbable(os_add_overflow(offset, map_size, &tmp))) { |
3279 | kr = KERN_INVALID_ARGUMENT; |
3280 | goto make_mem_done; |
3281 | } |
3282 | if ((offset + map_size) > parent_entry->size) { |
3283 | kr = KERN_INVALID_ARGUMENT; |
3284 | goto make_mem_done; |
3285 | } |
3286 | } |
3287 | |
3288 | if (mask_protections) { |
3289 | /* |
3290 | * The caller asked us to use the "protections" as |
3291 | * a mask, so restrict "protections" to what this |
3292 | * mapping actually allows. |
3293 | */ |
3294 | protections &= parent_entry->protection; |
3295 | } |
3296 | if ((protections & parent_entry->protection) != protections) { |
3297 | kr = KERN_PROTECTION_FAILURE; |
3298 | goto make_mem_done; |
3299 | } |
3300 | |
3301 | if (__improbable(os_add_overflow(parent_entry->offset, map_start, &tmp))) { |
3302 | kr = KERN_INVALID_ARGUMENT; |
3303 | goto make_mem_done; |
3304 | } |
3305 | user_entry = mach_memory_entry_allocate(user_handle_p: object_handle); |
3306 | user_entry->size = map_size; |
3307 | user_entry->offset = parent_entry->offset + map_start; |
3308 | user_entry->data_offset = offset_in_page; |
3309 | user_entry->is_sub_map = parent_entry->is_sub_map; |
3310 | user_entry->is_copy = parent_entry->is_copy; |
3311 | user_entry->protection = protections; |
3312 | |
3313 | if (access != MAP_MEM_NOOP) { |
3314 | user_entry->access = access; |
3315 | } |
3316 | |
3317 | if (parent_entry->is_sub_map) { |
3318 | vm_map_t map = parent_entry->backing.map; |
3319 | vm_map_reference(map); |
3320 | user_entry->backing.map = map; |
3321 | } else { |
3322 | object = vm_named_entry_to_vm_object(named_entry: parent_entry); |
3323 | assert(object != VM_OBJECT_NULL); |
3324 | assert(object->copy_strategy != MEMORY_OBJECT_COPY_SYMMETRIC); |
3325 | vm_named_entry_associate_vm_object( |
3326 | named_entry: user_entry, |
3327 | object, |
3328 | offset: user_entry->offset, |
3329 | size: user_entry->size, |
3330 | prot: (user_entry->protection & VM_PROT_ALL)); |
3331 | assert(user_entry->is_object); |
3332 | /* we now point to this object, hold on */ |
3333 | vm_object_lock(object); |
3334 | vm_object_reference_locked(object); |
3335 | #if VM_OBJECT_TRACKING_OP_TRUESHARE |
3336 | if (!object->true_share && |
3337 | vm_object_tracking_btlog) { |
3338 | btlog_record(vm_object_tracking_btlog, object, |
3339 | VM_OBJECT_TRACKING_OP_TRUESHARE, |
3340 | btref_get(__builtin_frame_address(0), 0)); |
3341 | } |
3342 | #endif /* VM_OBJECT_TRACKING_OP_TRUESHARE */ |
3343 | |
3344 | VM_OBJECT_SET_TRUE_SHARE(object, TRUE); |
3345 | if (object->copy_strategy == MEMORY_OBJECT_COPY_SYMMETRIC) { |
3346 | object->copy_strategy = MEMORY_OBJECT_COPY_DELAY; |
3347 | } |
3348 | vm_object_unlock(object); |
3349 | } |
3350 | *size = CAST_DOWN(vm_size_t, (user_entry->size - |
3351 | user_entry->data_offset)); |
3352 | DEBUG4K_MEMENTRY("map %p offset 0x%llx size 0x%llx prot 0x%x -> entry %p kr 0x%x\n" , target_map, offset, *size, permission, user_entry, KERN_SUCCESS); |
3353 | return KERN_SUCCESS; |
3354 | |
3355 | make_mem_done: |
3356 | DEBUG4K_MEMENTRY("map %p offset 0x%llx size 0x%llx prot 0x%x -> entry %p kr 0x%x\n" , target_map, offset, *size, permission, user_entry, kr); |
3357 | return kr; |
3358 | } |
3359 | |
3360 | kern_return_t |
3361 | _mach_make_memory_entry( |
3362 | vm_map_t target_map, |
3363 | memory_object_size_t *size, |
3364 | memory_object_offset_t offset, |
3365 | vm_prot_t permission, |
3366 | ipc_port_t *object_handle, |
3367 | ipc_port_t parent_entry) |
3368 | { |
3369 | memory_object_size_t mo_size; |
3370 | kern_return_t kr; |
3371 | |
3372 | mo_size = (memory_object_size_t)*size; |
3373 | kr = mach_make_memory_entry_64(target_map, size: &mo_size, |
3374 | offset: (memory_object_offset_t)offset, permission, object_handle, |
3375 | parent_handle: parent_entry); |
3376 | *size = mo_size; |
3377 | return kr; |
3378 | } |
3379 | |
3380 | kern_return_t |
3381 | mach_make_memory_entry( |
3382 | vm_map_t target_map, |
3383 | vm_size_t *size, |
3384 | vm_offset_t offset, |
3385 | vm_prot_t permission, |
3386 | ipc_port_t *object_handle, |
3387 | ipc_port_t parent_entry) |
3388 | { |
3389 | memory_object_size_t mo_size; |
3390 | kern_return_t kr; |
3391 | |
3392 | mo_size = (memory_object_size_t)*size; |
3393 | kr = mach_make_memory_entry_64(target_map, size: &mo_size, |
3394 | offset: (memory_object_offset_t)offset, permission, object_handle, |
3395 | parent_handle: parent_entry); |
3396 | *size = CAST_DOWN(vm_size_t, mo_size); |
3397 | return kr; |
3398 | } |
3399 | |
3400 | /* |
3401 | * task_wire |
3402 | * |
3403 | * Set or clear the map's wiring_required flag. This flag, if set, |
3404 | * will cause all future virtual memory allocation to allocate |
3405 | * user wired memory. Unwiring pages wired down as a result of |
3406 | * this routine is done with the vm_wire interface. |
3407 | */ |
3408 | kern_return_t |
3409 | task_wire( |
3410 | vm_map_t map, |
3411 | boolean_t must_wire __unused) |
3412 | { |
3413 | if (map == VM_MAP_NULL) { |
3414 | return KERN_INVALID_ARGUMENT; |
3415 | } |
3416 | |
3417 | return KERN_NOT_SUPPORTED; |
3418 | } |
3419 | |
3420 | kern_return_t |
3421 | vm_map_exec_lockdown( |
3422 | vm_map_t map) |
3423 | { |
3424 | if (map == VM_MAP_NULL) { |
3425 | return KERN_INVALID_ARGUMENT; |
3426 | } |
3427 | |
3428 | vm_map_lock(map); |
3429 | map->map_disallow_new_exec = TRUE; |
3430 | vm_map_unlock(map); |
3431 | |
3432 | return KERN_SUCCESS; |
3433 | } |
3434 | |
3435 | __private_extern__ vm_named_entry_t |
3436 | mach_memory_entry_allocate(ipc_port_t *user_handle_p) |
3437 | { |
3438 | vm_named_entry_t user_entry; |
3439 | |
3440 | user_entry = kalloc_type(struct vm_named_entry, |
3441 | Z_WAITOK | Z_ZERO | Z_NOFAIL); |
3442 | named_entry_lock_init(user_entry); |
3443 | |
3444 | *user_handle_p = ipc_kobject_alloc_port(kobject: (ipc_kobject_t)user_entry, |
3445 | type: IKOT_NAMED_ENTRY, |
3446 | options: IPC_KOBJECT_ALLOC_MAKE_SEND | IPC_KOBJECT_ALLOC_NSREQUEST); |
3447 | |
3448 | #if VM_NAMED_ENTRY_DEBUG |
3449 | /* backtrace at allocation time, for debugging only */ |
3450 | user_entry->named_entry_bt = btref_get(__builtin_frame_address(0), 0); |
3451 | #endif /* VM_NAMED_ENTRY_DEBUG */ |
3452 | return user_entry; |
3453 | } |
3454 | |
3455 | /* |
3456 | * mach_memory_object_memory_entry_64 |
3457 | * |
3458 | * Create a named entry backed by the provided pager. |
3459 | * |
3460 | */ |
3461 | kern_return_t |
3462 | mach_memory_object_memory_entry_64( |
3463 | host_t host, |
3464 | boolean_t internal, |
3465 | vm_object_offset_t size, |
3466 | vm_prot_t permission, |
3467 | memory_object_t , |
3468 | ipc_port_t *entry_handle) |
3469 | { |
3470 | vm_named_entry_t user_entry; |
3471 | ipc_port_t user_handle; |
3472 | vm_object_t object; |
3473 | |
3474 | if (host == HOST_NULL) { |
3475 | return KERN_INVALID_HOST; |
3476 | } |
3477 | |
3478 | size = vm_object_round_page(size); |
3479 | |
3480 | if (pager == MEMORY_OBJECT_NULL && internal) { |
3481 | object = vm_object_allocate(size); |
3482 | if (object->copy_strategy == MEMORY_OBJECT_COPY_SYMMETRIC) { |
3483 | object->copy_strategy = MEMORY_OBJECT_COPY_DELAY; |
3484 | } |
3485 | } else { |
3486 | object = memory_object_to_vm_object(mem_obj: pager); |
3487 | if (object != VM_OBJECT_NULL) { |
3488 | vm_object_reference(object); |
3489 | } |
3490 | } |
3491 | if (object == VM_OBJECT_NULL) { |
3492 | return KERN_INVALID_ARGUMENT; |
3493 | } |
3494 | |
3495 | user_entry = mach_memory_entry_allocate(user_handle_p: &user_handle); |
3496 | user_entry->size = size; |
3497 | user_entry->offset = 0; |
3498 | user_entry->protection = permission & VM_PROT_ALL; |
3499 | user_entry->access = GET_MAP_MEM(permission); |
3500 | user_entry->is_sub_map = FALSE; |
3501 | |
3502 | vm_named_entry_associate_vm_object(named_entry: user_entry, object, offset: 0, size, |
3503 | prot: (user_entry->protection & VM_PROT_ALL)); |
3504 | user_entry->internal = object->internal; |
3505 | assert(object->internal == internal); |
3506 | if (VM_OBJECT_OWNER(object) != TASK_NULL) { |
3507 | /* all memory in this entry is "owned" */ |
3508 | user_entry->is_fully_owned = TRUE; |
3509 | } |
3510 | |
3511 | *entry_handle = user_handle; |
3512 | return KERN_SUCCESS; |
3513 | } |
3514 | |
3515 | kern_return_t |
3516 | mach_memory_object_memory_entry( |
3517 | host_t host, |
3518 | boolean_t internal, |
3519 | vm_size_t size, |
3520 | vm_prot_t permission, |
3521 | memory_object_t , |
3522 | ipc_port_t *entry_handle) |
3523 | { |
3524 | return mach_memory_object_memory_entry_64( host, internal, |
3525 | size: (vm_object_offset_t)size, permission, pager, entry_handle); |
3526 | } |
3527 | |
3528 | |
3529 | kern_return_t |
3530 | mach_memory_entry_purgable_control( |
3531 | ipc_port_t entry_port, |
3532 | vm_purgable_t control, |
3533 | int *state) |
3534 | { |
3535 | if (control == VM_PURGABLE_SET_STATE_FROM_KERNEL) { |
3536 | /* not allowed from user-space */ |
3537 | return KERN_INVALID_ARGUMENT; |
3538 | } |
3539 | |
3540 | return memory_entry_purgeable_control_internal(entry_port, control, state); |
3541 | } |
3542 | |
3543 | kern_return_t |
3544 | memory_entry_purgeable_control_internal( |
3545 | ipc_port_t entry_port, |
3546 | vm_purgable_t control, |
3547 | int *state) |
3548 | { |
3549 | kern_return_t kr; |
3550 | vm_named_entry_t mem_entry; |
3551 | vm_object_t object; |
3552 | |
3553 | mem_entry = mach_memory_entry_from_port(port: entry_port); |
3554 | if (mem_entry == NULL) { |
3555 | return KERN_INVALID_ARGUMENT; |
3556 | } |
3557 | |
3558 | if (control != VM_PURGABLE_SET_STATE && |
3559 | control != VM_PURGABLE_GET_STATE && |
3560 | control != VM_PURGABLE_SET_STATE_FROM_KERNEL) { |
3561 | return KERN_INVALID_ARGUMENT; |
3562 | } |
3563 | |
3564 | if ((control == VM_PURGABLE_SET_STATE || |
3565 | control == VM_PURGABLE_SET_STATE_FROM_KERNEL) && |
3566 | (((*state & ~(VM_PURGABLE_ALL_MASKS)) != 0) || |
3567 | ((*state & VM_PURGABLE_STATE_MASK) > VM_PURGABLE_STATE_MASK))) { |
3568 | return KERN_INVALID_ARGUMENT; |
3569 | } |
3570 | |
3571 | named_entry_lock(mem_entry); |
3572 | |
3573 | if (mem_entry->is_sub_map || |
3574 | mem_entry->is_copy) { |
3575 | named_entry_unlock(mem_entry); |
3576 | return KERN_INVALID_ARGUMENT; |
3577 | } |
3578 | |
3579 | assert(mem_entry->is_object); |
3580 | object = vm_named_entry_to_vm_object(named_entry: mem_entry); |
3581 | if (object == VM_OBJECT_NULL) { |
3582 | named_entry_unlock(mem_entry); |
3583 | return KERN_INVALID_ARGUMENT; |
3584 | } |
3585 | |
3586 | vm_object_lock(object); |
3587 | |
3588 | /* check that named entry covers entire object ? */ |
3589 | if (mem_entry->offset != 0 || object->vo_size != mem_entry->size) { |
3590 | vm_object_unlock(object); |
3591 | named_entry_unlock(mem_entry); |
3592 | return KERN_INVALID_ARGUMENT; |
3593 | } |
3594 | |
3595 | named_entry_unlock(mem_entry); |
3596 | |
3597 | kr = vm_object_purgable_control(object, control, state); |
3598 | |
3599 | vm_object_unlock(object); |
3600 | |
3601 | return kr; |
3602 | } |
3603 | |
3604 | kern_return_t |
3605 | mach_memory_entry_access_tracking( |
3606 | ipc_port_t entry_port, |
3607 | int *access_tracking, |
3608 | uint32_t *access_tracking_reads, |
3609 | uint32_t *access_tracking_writes) |
3610 | { |
3611 | return memory_entry_access_tracking_internal(entry_port, |
3612 | access_tracking, |
3613 | access_tracking_reads, |
3614 | access_tracking_writes); |
3615 | } |
3616 | |
3617 | kern_return_t |
3618 | memory_entry_access_tracking_internal( |
3619 | ipc_port_t entry_port, |
3620 | int *access_tracking, |
3621 | uint32_t *access_tracking_reads, |
3622 | uint32_t *access_tracking_writes) |
3623 | { |
3624 | vm_named_entry_t mem_entry; |
3625 | vm_object_t object; |
3626 | kern_return_t kr; |
3627 | |
3628 | mem_entry = mach_memory_entry_from_port(port: entry_port); |
3629 | if (mem_entry == NULL) { |
3630 | return KERN_INVALID_ARGUMENT; |
3631 | } |
3632 | |
3633 | named_entry_lock(mem_entry); |
3634 | |
3635 | if (mem_entry->is_sub_map || |
3636 | mem_entry->is_copy) { |
3637 | named_entry_unlock(mem_entry); |
3638 | return KERN_INVALID_ARGUMENT; |
3639 | } |
3640 | |
3641 | assert(mem_entry->is_object); |
3642 | object = vm_named_entry_to_vm_object(named_entry: mem_entry); |
3643 | if (object == VM_OBJECT_NULL) { |
3644 | named_entry_unlock(mem_entry); |
3645 | return KERN_INVALID_ARGUMENT; |
3646 | } |
3647 | |
3648 | #if VM_OBJECT_ACCESS_TRACKING |
3649 | vm_object_access_tracking(object, |
3650 | access_tracking, |
3651 | access_tracking_reads, |
3652 | access_tracking_writes); |
3653 | kr = KERN_SUCCESS; |
3654 | #else /* VM_OBJECT_ACCESS_TRACKING */ |
3655 | (void) access_tracking; |
3656 | (void) access_tracking_reads; |
3657 | (void) access_tracking_writes; |
3658 | kr = KERN_NOT_SUPPORTED; |
3659 | #endif /* VM_OBJECT_ACCESS_TRACKING */ |
3660 | |
3661 | named_entry_unlock(mem_entry); |
3662 | |
3663 | return kr; |
3664 | } |
3665 | |
3666 | #if DEVELOPMENT || DEBUG |
3667 | /* For dtrace probe in mach_memory_entry_ownership */ |
3668 | extern int proc_selfpid(void); |
3669 | extern char *proc_name_address(void *p); |
3670 | #endif /* DEVELOPMENT || DEBUG */ |
3671 | |
3672 | /* Kernel call only, MIG uses *_from_user() below */ |
3673 | kern_return_t |
3674 | mach_memory_entry_ownership( |
3675 | ipc_port_t entry_port, |
3676 | task_t owner, |
3677 | int ledger_tag, |
3678 | int ledger_flags) |
3679 | { |
3680 | task_t cur_task; |
3681 | kern_return_t kr; |
3682 | vm_named_entry_t mem_entry; |
3683 | vm_object_t object; |
3684 | |
3685 | cur_task = current_task(); |
3686 | if (cur_task != kernel_task && |
3687 | ((owner != cur_task && owner != TASK_NULL) || |
3688 | (ledger_flags & VM_LEDGER_FLAG_NO_FOOTPRINT) || |
3689 | (ledger_flags & VM_LEDGER_FLAG_NO_FOOTPRINT_FOR_DEBUG) || |
3690 | ledger_tag == VM_LEDGER_TAG_NETWORK)) { |
3691 | bool transfer_ok = false; |
3692 | |
3693 | /* |
3694 | * An entitlement is required to: |
3695 | * + tranfer memory ownership to someone else, |
3696 | * + request that the memory not count against the footprint, |
3697 | * + tag as "network" (since that implies "no footprint") |
3698 | * |
3699 | * Exception: task with task_no_footprint_for_debug == 1 on internal build |
3700 | */ |
3701 | if (!cur_task->task_can_transfer_memory_ownership && |
3702 | IOCurrentTaskHasEntitlement(entitlement: "com.apple.private.memory.ownership_transfer" )) { |
3703 | cur_task->task_can_transfer_memory_ownership = TRUE; |
3704 | } |
3705 | if (cur_task->task_can_transfer_memory_ownership) { |
3706 | /* we're allowed to transfer ownership to any task */ |
3707 | transfer_ok = true; |
3708 | } |
3709 | #if DEVELOPMENT || DEBUG |
3710 | if (!transfer_ok && |
3711 | ledger_tag == VM_LEDGER_TAG_DEFAULT && |
3712 | (ledger_flags & VM_LEDGER_FLAG_NO_FOOTPRINT_FOR_DEBUG) && |
3713 | cur_task->task_no_footprint_for_debug) { |
3714 | int to_panic = 0; |
3715 | static bool init_bootarg = false; |
3716 | |
3717 | /* |
3718 | * Allow performance tools running on internal builds to hide memory usage from phys_footprint even |
3719 | * WITHOUT an entitlement. This can be enabled by per task sysctl vm.task_no_footprint_for_debug=1 |
3720 | * with the ledger tag VM_LEDGER_TAG_DEFAULT and flag VM_LEDGER_FLAG_NO_FOOTPRINT_FOR_DEBUG. |
3721 | * |
3722 | * If the boot-arg "panic_on_no_footprint_for_debug" is set, the kernel will |
3723 | * panic here in order to detect any abuse of this feature, which is intended solely for |
3724 | * memory debugging purpose. |
3725 | */ |
3726 | if (!init_bootarg) { |
3727 | PE_parse_boot_argn("panic_on_no_footprint_for_debug" , &to_panic, sizeof(to_panic)); |
3728 | init_bootarg = true; |
3729 | } |
3730 | if (to_panic) { |
3731 | panic("%s: panic_on_no_footprint_for_debug is triggered by pid %d procname %s" , __func__, proc_selfpid(), get_bsdtask_info(cur_task)? proc_name_address(get_bsdtask_info(cur_task)) : "?" ); |
3732 | } |
3733 | |
3734 | /* |
3735 | * Flushing out user space processes using this interface: |
3736 | * $ dtrace -n 'task_no_footprint_for_debug {printf("%d[%s]\n", pid, execname); stack(); ustack();}' |
3737 | */ |
3738 | DTRACE_VM(task_no_footprint_for_debug); |
3739 | transfer_ok = true; |
3740 | } |
3741 | #endif /* DEVELOPMENT || DEBUG */ |
3742 | if (!transfer_ok) { |
3743 | #define TRANSFER_ENTITLEMENT_MAX_LENGTH 1024 /* XXX ? */ |
3744 | const char *our_id, *their_id; |
3745 | our_id = IOTaskGetEntitlement(task: current_task(), entitlement: "com.apple.developer.memory.transfer-send" ); |
3746 | their_id = IOTaskGetEntitlement(task: owner, entitlement: "com.apple.developer.memory.transfer-accept" ); |
3747 | if (our_id && their_id && |
3748 | !strncmp(s1: our_id, s2: their_id, TRANSFER_ENTITLEMENT_MAX_LENGTH)) { |
3749 | /* allow transfer between tasks that have matching entitlements */ |
3750 | if (strnlen(s: our_id, TRANSFER_ENTITLEMENT_MAX_LENGTH) < TRANSFER_ENTITLEMENT_MAX_LENGTH && |
3751 | strnlen(s: their_id, TRANSFER_ENTITLEMENT_MAX_LENGTH) < TRANSFER_ENTITLEMENT_MAX_LENGTH) { |
3752 | transfer_ok = true; |
3753 | } else { |
3754 | /* complain about entitlement(s) being too long... */ |
3755 | assertf((strlen(our_id) <= TRANSFER_ENTITLEMENT_MAX_LENGTH && |
3756 | strlen(their_id) <= TRANSFER_ENTITLEMENT_MAX_LENGTH), |
3757 | "our_id:%lu their_id:%lu" , |
3758 | strlen(our_id), strlen(their_id)); |
3759 | } |
3760 | } |
3761 | } |
3762 | if (!transfer_ok) { |
3763 | /* transfer denied */ |
3764 | return KERN_NO_ACCESS; |
3765 | } |
3766 | |
3767 | if (ledger_flags & VM_LEDGER_FLAG_NO_FOOTPRINT_FOR_DEBUG) { |
3768 | /* |
3769 | * We've made it past the checks above, so we either |
3770 | * have the entitlement or the sysctl. |
3771 | * Convert to VM_LEDGER_FLAG_NO_FOOTPRINT. |
3772 | */ |
3773 | ledger_flags &= ~VM_LEDGER_FLAG_NO_FOOTPRINT_FOR_DEBUG; |
3774 | ledger_flags |= VM_LEDGER_FLAG_NO_FOOTPRINT; |
3775 | } |
3776 | } |
3777 | |
3778 | if (ledger_flags & ~VM_LEDGER_FLAGS) { |
3779 | return KERN_INVALID_ARGUMENT; |
3780 | } |
3781 | if (ledger_tag == VM_LEDGER_TAG_UNCHANGED) { |
3782 | /* leave "ledger_tag" unchanged */ |
3783 | } else if (ledger_tag < 0 || |
3784 | ledger_tag > VM_LEDGER_TAG_MAX) { |
3785 | return KERN_INVALID_ARGUMENT; |
3786 | } |
3787 | if (owner == TASK_NULL) { |
3788 | /* leave "owner" unchanged */ |
3789 | owner = VM_OBJECT_OWNER_UNCHANGED; |
3790 | } |
3791 | |
3792 | mem_entry = mach_memory_entry_from_port(port: entry_port); |
3793 | if (mem_entry == NULL) { |
3794 | return KERN_INVALID_ARGUMENT; |
3795 | } |
3796 | |
3797 | named_entry_lock(mem_entry); |
3798 | |
3799 | if (mem_entry->is_sub_map || |
3800 | !mem_entry->is_fully_owned) { |
3801 | named_entry_unlock(mem_entry); |
3802 | return KERN_INVALID_ARGUMENT; |
3803 | } |
3804 | |
3805 | if (mem_entry->is_object) { |
3806 | object = vm_named_entry_to_vm_object(named_entry: mem_entry); |
3807 | if (object == VM_OBJECT_NULL) { |
3808 | named_entry_unlock(mem_entry); |
3809 | return KERN_INVALID_ARGUMENT; |
3810 | } |
3811 | vm_object_lock(object); |
3812 | /* check that named entry covers entire object ? */ |
3813 | if (mem_entry->offset != 0 || object->vo_size != mem_entry->size) { |
3814 | vm_object_unlock(object); |
3815 | named_entry_unlock(mem_entry); |
3816 | return KERN_INVALID_ARGUMENT; |
3817 | } |
3818 | named_entry_unlock(mem_entry); |
3819 | kr = vm_object_ownership_change(object, |
3820 | new_ledger_tag: ledger_tag, |
3821 | new_owner: owner, |
3822 | new_ledger_flags: ledger_flags, |
3823 | FALSE); /* task_objq_locked */ |
3824 | vm_object_unlock(object); |
3825 | } else if (mem_entry->is_copy) { |
3826 | vm_map_copy_t copy; |
3827 | vm_map_entry_t entry; |
3828 | |
3829 | copy = mem_entry->backing.copy; |
3830 | named_entry_unlock(mem_entry); |
3831 | for (entry = vm_map_copy_first_entry(copy); |
3832 | entry != vm_map_copy_to_entry(copy); |
3833 | entry = entry->vme_next) { |
3834 | object = VME_OBJECT(entry); |
3835 | if (entry->is_sub_map || |
3836 | object == VM_OBJECT_NULL) { |
3837 | kr = KERN_INVALID_ARGUMENT; |
3838 | break; |
3839 | } |
3840 | vm_object_lock(object); |
3841 | if (VME_OFFSET(entry) != 0 || |
3842 | entry->vme_end - entry->vme_start != object->vo_size) { |
3843 | vm_object_unlock(object); |
3844 | kr = KERN_INVALID_ARGUMENT; |
3845 | break; |
3846 | } |
3847 | kr = vm_object_ownership_change(object, |
3848 | new_ledger_tag: ledger_tag, |
3849 | new_owner: owner, |
3850 | new_ledger_flags: ledger_flags, |
3851 | FALSE); /* task_objq_locked */ |
3852 | vm_object_unlock(object); |
3853 | if (kr != KERN_SUCCESS) { |
3854 | kr = KERN_INVALID_ARGUMENT; |
3855 | break; |
3856 | } |
3857 | } |
3858 | } else { |
3859 | named_entry_unlock(mem_entry); |
3860 | return KERN_INVALID_ARGUMENT; |
3861 | } |
3862 | |
3863 | return kr; |
3864 | } |
3865 | |
3866 | /* MIG call from userspace */ |
3867 | kern_return_t |
3868 | mach_memory_entry_ownership_from_user( |
3869 | ipc_port_t entry_port, |
3870 | mach_port_t owner_port, |
3871 | int ledger_tag, |
3872 | int ledger_flags) |
3873 | { |
3874 | task_t owner = TASK_NULL; |
3875 | kern_return_t kr; |
3876 | |
3877 | if (IP_VALID(owner_port)) { |
3878 | if (ip_kotype(owner_port) == IKOT_TASK_ID_TOKEN) { |
3879 | task_id_token_t token = convert_port_to_task_id_token(port: owner_port); |
3880 | (void)task_identity_token_get_task_grp(token, taskp: &owner, grp: TASK_GRP_MIG); |
3881 | task_id_token_release(token); |
3882 | /* token ref released */ |
3883 | } else { |
3884 | owner = convert_port_to_task_mig(port: owner_port); |
3885 | } |
3886 | } |
3887 | /* hold task ref on owner (Nullable) */ |
3888 | |
3889 | if (owner && task_is_a_corpse(task: owner)) { |
3890 | /* identity token can represent a corpse, disallow it */ |
3891 | task_deallocate_mig(owner); |
3892 | owner = TASK_NULL; |
3893 | } |
3894 | |
3895 | /* mach_memory_entry_ownership() will handle TASK_NULL owner */ |
3896 | kr = mach_memory_entry_ownership(entry_port, owner, /* Nullable */ |
3897 | ledger_tag, ledger_flags); |
3898 | |
3899 | if (owner) { |
3900 | task_deallocate_mig(owner); |
3901 | } |
3902 | |
3903 | if (kr == KERN_SUCCESS) { |
3904 | /* MIG rule, consume port right on success */ |
3905 | ipc_port_release_send(port: owner_port); |
3906 | } |
3907 | return kr; |
3908 | } |
3909 | |
3910 | kern_return_t |
3911 | mach_memory_entry_get_page_counts( |
3912 | ipc_port_t entry_port, |
3913 | unsigned int *resident_page_count, |
3914 | unsigned int *dirty_page_count) |
3915 | { |
3916 | kern_return_t kr; |
3917 | vm_named_entry_t mem_entry; |
3918 | vm_object_t object; |
3919 | vm_object_offset_t offset; |
3920 | vm_object_size_t size; |
3921 | |
3922 | mem_entry = mach_memory_entry_from_port(port: entry_port); |
3923 | if (mem_entry == NULL) { |
3924 | return KERN_INVALID_ARGUMENT; |
3925 | } |
3926 | |
3927 | named_entry_lock(mem_entry); |
3928 | |
3929 | if (mem_entry->is_sub_map || |
3930 | mem_entry->is_copy) { |
3931 | named_entry_unlock(mem_entry); |
3932 | return KERN_INVALID_ARGUMENT; |
3933 | } |
3934 | |
3935 | assert(mem_entry->is_object); |
3936 | object = vm_named_entry_to_vm_object(named_entry: mem_entry); |
3937 | if (object == VM_OBJECT_NULL) { |
3938 | named_entry_unlock(mem_entry); |
3939 | return KERN_INVALID_ARGUMENT; |
3940 | } |
3941 | |
3942 | vm_object_lock(object); |
3943 | |
3944 | offset = mem_entry->offset; |
3945 | size = mem_entry->size; |
3946 | size = vm_object_round_page(offset + size) - vm_object_trunc_page(offset); |
3947 | offset = vm_object_trunc_page(offset); |
3948 | |
3949 | named_entry_unlock(mem_entry); |
3950 | |
3951 | kr = vm_object_get_page_counts(object, offset, size, resident_page_count, dirty_page_count); |
3952 | |
3953 | vm_object_unlock(object); |
3954 | |
3955 | return kr; |
3956 | } |
3957 | |
3958 | kern_return_t |
3959 | mach_memory_entry_phys_page_offset( |
3960 | ipc_port_t entry_port, |
3961 | vm_object_offset_t *offset_p) |
3962 | { |
3963 | vm_named_entry_t mem_entry; |
3964 | vm_object_t object; |
3965 | vm_object_offset_t offset; |
3966 | vm_object_offset_t data_offset; |
3967 | |
3968 | mem_entry = mach_memory_entry_from_port(port: entry_port); |
3969 | if (mem_entry == NULL) { |
3970 | return KERN_INVALID_ARGUMENT; |
3971 | } |
3972 | |
3973 | named_entry_lock(mem_entry); |
3974 | |
3975 | if (mem_entry->is_sub_map || |
3976 | mem_entry->is_copy) { |
3977 | named_entry_unlock(mem_entry); |
3978 | return KERN_INVALID_ARGUMENT; |
3979 | } |
3980 | |
3981 | assert(mem_entry->is_object); |
3982 | object = vm_named_entry_to_vm_object(named_entry: mem_entry); |
3983 | if (object == VM_OBJECT_NULL) { |
3984 | named_entry_unlock(mem_entry); |
3985 | return KERN_INVALID_ARGUMENT; |
3986 | } |
3987 | |
3988 | offset = mem_entry->offset; |
3989 | data_offset = mem_entry->data_offset; |
3990 | |
3991 | named_entry_unlock(mem_entry); |
3992 | |
3993 | *offset_p = offset - vm_object_trunc_page(offset) + data_offset; |
3994 | return KERN_SUCCESS; |
3995 | } |
3996 | |
3997 | kern_return_t |
3998 | mach_memory_entry_map_size( |
3999 | ipc_port_t entry_port, |
4000 | vm_map_t map, |
4001 | memory_object_offset_t offset, |
4002 | memory_object_offset_t size, |
4003 | mach_vm_size_t *map_size) |
4004 | { |
4005 | vm_named_entry_t mem_entry; |
4006 | vm_object_t object; |
4007 | vm_object_offset_t object_offset_start, object_offset_end; |
4008 | vm_map_copy_t copy_map, target_copy_map; |
4009 | vm_map_offset_t overmap_start, overmap_end, trimmed_start; |
4010 | kern_return_t kr; |
4011 | |
4012 | mem_entry = mach_memory_entry_from_port(port: entry_port); |
4013 | if (mem_entry == NULL) { |
4014 | return KERN_INVALID_ARGUMENT; |
4015 | } |
4016 | |
4017 | named_entry_lock(mem_entry); |
4018 | |
4019 | if (mem_entry->is_sub_map) { |
4020 | named_entry_unlock(mem_entry); |
4021 | return KERN_INVALID_ARGUMENT; |
4022 | } |
4023 | |
4024 | if (mem_entry->is_object) { |
4025 | object = vm_named_entry_to_vm_object(named_entry: mem_entry); |
4026 | if (object == VM_OBJECT_NULL) { |
4027 | named_entry_unlock(mem_entry); |
4028 | return KERN_INVALID_ARGUMENT; |
4029 | } |
4030 | |
4031 | object_offset_start = mem_entry->offset; |
4032 | object_offset_start += mem_entry->data_offset; |
4033 | object_offset_start += offset; |
4034 | object_offset_end = object_offset_start + size; |
4035 | object_offset_start = vm_map_trunc_page(object_offset_start, |
4036 | VM_MAP_PAGE_MASK(map)); |
4037 | object_offset_end = vm_map_round_page(object_offset_end, |
4038 | VM_MAP_PAGE_MASK(map)); |
4039 | |
4040 | named_entry_unlock(mem_entry); |
4041 | |
4042 | *map_size = object_offset_end - object_offset_start; |
4043 | return KERN_SUCCESS; |
4044 | } |
4045 | |
4046 | if (!mem_entry->is_copy) { |
4047 | panic("unsupported type of mem_entry %p" , mem_entry); |
4048 | } |
4049 | |
4050 | assert(mem_entry->is_copy); |
4051 | if (VM_MAP_COPY_PAGE_MASK(mem_entry->backing.copy) == VM_MAP_PAGE_MASK(map)) { |
4052 | *map_size = vm_map_round_page(mem_entry->offset + mem_entry->data_offset + offset + size, VM_MAP_PAGE_MASK(map)) - vm_map_trunc_page(mem_entry->offset + mem_entry->data_offset + offset, VM_MAP_PAGE_MASK(map)); |
4053 | DEBUG4K_SHARE("map %p (%d) mem_entry %p offset 0x%llx + 0x%llx + 0x%llx size 0x%llx -> map_size 0x%llx\n" , map, VM_MAP_PAGE_MASK(map), mem_entry, mem_entry->offset, mem_entry->data_offset, offset, size, *map_size); |
4054 | named_entry_unlock(mem_entry); |
4055 | return KERN_SUCCESS; |
4056 | } |
4057 | |
4058 | DEBUG4K_SHARE("mem_entry %p copy %p (%d) map %p (%d) offset 0x%llx size 0x%llx\n" , mem_entry, mem_entry->backing.copy, VM_MAP_COPY_PAGE_SHIFT(mem_entry->backing.copy), map, VM_MAP_PAGE_SHIFT(map), offset, size); |
4059 | copy_map = mem_entry->backing.copy; |
4060 | target_copy_map = VM_MAP_COPY_NULL; |
4061 | DEBUG4K_ADJUST("adjusting...\n" ); |
4062 | kr = vm_map_copy_adjust_to_target(copy_map, |
4063 | offset: mem_entry->data_offset + offset, |
4064 | size, |
4065 | target_map: map, |
4066 | FALSE, |
4067 | target_copy_map_p: &target_copy_map, |
4068 | overmap_start_p: &overmap_start, |
4069 | overmap_end_p: &overmap_end, |
4070 | trimmed_start_p: &trimmed_start); |
4071 | if (kr == KERN_SUCCESS) { |
4072 | if (target_copy_map->size != copy_map->size) { |
4073 | DEBUG4K_ADJUST("copy %p (%d) map %p (%d) offset 0x%llx size 0x%llx overmap_start 0x%llx overmap_end 0x%llx trimmed_start 0x%llx map_size 0x%llx -> 0x%llx\n" , copy_map, VM_MAP_COPY_PAGE_SHIFT(copy_map), map, VM_MAP_PAGE_SHIFT(map), (uint64_t)offset, (uint64_t)size, (uint64_t)overmap_start, (uint64_t)overmap_end, (uint64_t)trimmed_start, (uint64_t)copy_map->size, (uint64_t)target_copy_map->size); |
4074 | } |
4075 | *map_size = target_copy_map->size; |
4076 | if (target_copy_map != copy_map) { |
4077 | vm_map_copy_discard(copy: target_copy_map); |
4078 | } |
4079 | target_copy_map = VM_MAP_COPY_NULL; |
4080 | } |
4081 | named_entry_unlock(mem_entry); |
4082 | return kr; |
4083 | } |
4084 | |
4085 | /* |
4086 | * mach_memory_entry_port_release: |
4087 | * |
4088 | * Release a send right on a named entry port. This is the correct |
4089 | * way to destroy a named entry. When the last right on the port is |
4090 | * released, mach_memory_entry_no_senders() willl be called. |
4091 | */ |
4092 | void |
4093 | mach_memory_entry_port_release( |
4094 | ipc_port_t port) |
4095 | { |
4096 | assert(ip_kotype(port) == IKOT_NAMED_ENTRY); |
4097 | ipc_port_release_send(port); |
4098 | } |
4099 | |
4100 | vm_named_entry_t |
4101 | mach_memory_entry_from_port(ipc_port_t port) |
4102 | { |
4103 | if (IP_VALID(port)) { |
4104 | return ipc_kobject_get_stable(port, type: IKOT_NAMED_ENTRY); |
4105 | } |
4106 | return NULL; |
4107 | } |
4108 | |
4109 | /* |
4110 | * mach_memory_entry_no_senders: |
4111 | * |
4112 | * Destroys the memory entry associated with a mach port. |
4113 | * Memory entries have the exact same lifetime as their owning port. |
4114 | * |
4115 | * Releasing a memory entry is done by calling |
4116 | * mach_memory_entry_port_release() on its owning port. |
4117 | */ |
4118 | static void |
4119 | mach_memory_entry_no_senders(ipc_port_t port, mach_port_mscount_t mscount) |
4120 | { |
4121 | vm_named_entry_t named_entry; |
4122 | |
4123 | named_entry = ipc_kobject_dealloc_port(port, mscount, type: IKOT_NAMED_ENTRY); |
4124 | |
4125 | if (named_entry->is_sub_map) { |
4126 | vm_map_deallocate(map: named_entry->backing.map); |
4127 | } else if (named_entry->is_copy) { |
4128 | vm_map_copy_discard(copy: named_entry->backing.copy); |
4129 | } else if (named_entry->is_object) { |
4130 | assert(named_entry->backing.copy->cpy_hdr.nentries == 1); |
4131 | vm_map_copy_discard(copy: named_entry->backing.copy); |
4132 | } else { |
4133 | assert(named_entry->backing.copy == VM_MAP_COPY_NULL); |
4134 | } |
4135 | |
4136 | #if VM_NAMED_ENTRY_DEBUG |
4137 | btref_put(named_entry->named_entry_bt); |
4138 | #endif /* VM_NAMED_ENTRY_DEBUG */ |
4139 | |
4140 | named_entry_lock_destroy(named_entry); |
4141 | kfree_type(struct vm_named_entry, named_entry); |
4142 | } |
4143 | |
4144 | /* Allow manipulation of individual page state. This is actually part of */ |
4145 | /* the UPL regimen but takes place on the memory entry rather than on a UPL */ |
4146 | |
4147 | kern_return_t |
4148 | mach_memory_entry_page_op( |
4149 | ipc_port_t entry_port, |
4150 | vm_object_offset_t offset, |
4151 | int ops, |
4152 | ppnum_t *phys_entry, |
4153 | int *flags) |
4154 | { |
4155 | vm_named_entry_t mem_entry; |
4156 | vm_object_t object; |
4157 | kern_return_t kr; |
4158 | |
4159 | mem_entry = mach_memory_entry_from_port(port: entry_port); |
4160 | if (mem_entry == NULL) { |
4161 | return KERN_INVALID_ARGUMENT; |
4162 | } |
4163 | |
4164 | named_entry_lock(mem_entry); |
4165 | |
4166 | if (mem_entry->is_sub_map || |
4167 | mem_entry->is_copy) { |
4168 | named_entry_unlock(mem_entry); |
4169 | return KERN_INVALID_ARGUMENT; |
4170 | } |
4171 | |
4172 | assert(mem_entry->is_object); |
4173 | object = vm_named_entry_to_vm_object(named_entry: mem_entry); |
4174 | if (object == VM_OBJECT_NULL) { |
4175 | named_entry_unlock(mem_entry); |
4176 | return KERN_INVALID_ARGUMENT; |
4177 | } |
4178 | |
4179 | vm_object_reference(object); |
4180 | named_entry_unlock(mem_entry); |
4181 | |
4182 | kr = vm_object_page_op(object, offset, ops, phys_entry, flags); |
4183 | |
4184 | vm_object_deallocate(object); |
4185 | |
4186 | return kr; |
4187 | } |
4188 | |
4189 | /* |
4190 | * mach_memory_entry_range_op offers performance enhancement over |
4191 | * mach_memory_entry_page_op for page_op functions which do not require page |
4192 | * level state to be returned from the call. Page_op was created to provide |
4193 | * a low-cost alternative to page manipulation via UPLs when only a single |
4194 | * page was involved. The range_op call establishes the ability in the _op |
4195 | * family of functions to work on multiple pages where the lack of page level |
4196 | * state handling allows the caller to avoid the overhead of the upl structures. |
4197 | */ |
4198 | |
4199 | kern_return_t |
4200 | mach_memory_entry_range_op( |
4201 | ipc_port_t entry_port, |
4202 | vm_object_offset_t offset_beg, |
4203 | vm_object_offset_t offset_end, |
4204 | int ops, |
4205 | int *range) |
4206 | { |
4207 | vm_named_entry_t mem_entry; |
4208 | vm_object_t object; |
4209 | kern_return_t kr; |
4210 | |
4211 | mem_entry = mach_memory_entry_from_port(port: entry_port); |
4212 | if (mem_entry == NULL) { |
4213 | return KERN_INVALID_ARGUMENT; |
4214 | } |
4215 | |
4216 | named_entry_lock(mem_entry); |
4217 | |
4218 | if (mem_entry->is_sub_map || |
4219 | mem_entry->is_copy) { |
4220 | named_entry_unlock(mem_entry); |
4221 | return KERN_INVALID_ARGUMENT; |
4222 | } |
4223 | |
4224 | assert(mem_entry->is_object); |
4225 | object = vm_named_entry_to_vm_object(named_entry: mem_entry); |
4226 | if (object == VM_OBJECT_NULL) { |
4227 | named_entry_unlock(mem_entry); |
4228 | return KERN_INVALID_ARGUMENT; |
4229 | } |
4230 | |
4231 | vm_object_reference(object); |
4232 | named_entry_unlock(mem_entry); |
4233 | |
4234 | kr = vm_object_range_op(object, |
4235 | offset_beg, |
4236 | offset_end, |
4237 | ops, |
4238 | range: (uint32_t *) range); |
4239 | |
4240 | vm_object_deallocate(object); |
4241 | |
4242 | return kr; |
4243 | } |
4244 | |
4245 | /* ******* Temporary Internal calls to UPL for BSD ***** */ |
4246 | |
4247 | extern int kernel_upl_map( |
4248 | vm_map_t map, |
4249 | upl_t upl, |
4250 | vm_offset_t *dst_addr); |
4251 | |
4252 | extern int kernel_upl_unmap( |
4253 | vm_map_t map, |
4254 | upl_t upl); |
4255 | |
4256 | extern int kernel_upl_commit( |
4257 | upl_t upl, |
4258 | upl_page_info_t *pl, |
4259 | mach_msg_type_number_t count); |
4260 | |
4261 | extern int kernel_upl_commit_range( |
4262 | upl_t upl, |
4263 | upl_offset_t offset, |
4264 | upl_size_t size, |
4265 | int flags, |
4266 | upl_page_info_array_t pl, |
4267 | mach_msg_type_number_t count); |
4268 | |
4269 | extern int kernel_upl_abort( |
4270 | upl_t upl, |
4271 | int abort_type); |
4272 | |
4273 | extern int kernel_upl_abort_range( |
4274 | upl_t upl, |
4275 | upl_offset_t offset, |
4276 | upl_size_t size, |
4277 | int abort_flags); |
4278 | |
4279 | |
4280 | kern_return_t |
4281 | kernel_upl_map( |
4282 | vm_map_t map, |
4283 | upl_t upl, |
4284 | vm_offset_t *dst_addr) |
4285 | { |
4286 | return vm_upl_map(map, upl, dst_addr); |
4287 | } |
4288 | |
4289 | |
4290 | kern_return_t |
4291 | kernel_upl_unmap( |
4292 | vm_map_t map, |
4293 | upl_t upl) |
4294 | { |
4295 | return vm_upl_unmap(map, upl); |
4296 | } |
4297 | |
4298 | kern_return_t |
4299 | kernel_upl_commit( |
4300 | upl_t upl, |
4301 | upl_page_info_t *pl, |
4302 | mach_msg_type_number_t count) |
4303 | { |
4304 | kern_return_t kr; |
4305 | |
4306 | kr = upl_commit(upl_object: upl, page_list: pl, page_listCnt: count); |
4307 | upl_deallocate(upl); |
4308 | return kr; |
4309 | } |
4310 | |
4311 | |
4312 | kern_return_t |
4313 | kernel_upl_commit_range( |
4314 | upl_t upl, |
4315 | upl_offset_t offset, |
4316 | upl_size_t size, |
4317 | int flags, |
4318 | upl_page_info_array_t pl, |
4319 | mach_msg_type_number_t count) |
4320 | { |
4321 | boolean_t finished = FALSE; |
4322 | kern_return_t kr; |
4323 | |
4324 | if (flags & UPL_COMMIT_FREE_ON_EMPTY) { |
4325 | flags |= UPL_COMMIT_NOTIFY_EMPTY; |
4326 | } |
4327 | |
4328 | if (flags & UPL_COMMIT_KERNEL_ONLY_FLAGS) { |
4329 | return KERN_INVALID_ARGUMENT; |
4330 | } |
4331 | |
4332 | kr = upl_commit_range(upl_object: upl, offset, size, cntrl_flags: flags, page_list: pl, page_listCnt: count, empty: &finished); |
4333 | |
4334 | if ((flags & UPL_COMMIT_NOTIFY_EMPTY) && finished) { |
4335 | upl_deallocate(upl); |
4336 | } |
4337 | |
4338 | return kr; |
4339 | } |
4340 | |
4341 | kern_return_t |
4342 | kernel_upl_abort_range( |
4343 | upl_t upl, |
4344 | upl_offset_t offset, |
4345 | upl_size_t size, |
4346 | int abort_flags) |
4347 | { |
4348 | kern_return_t kr; |
4349 | boolean_t finished = FALSE; |
4350 | |
4351 | if (abort_flags & UPL_COMMIT_FREE_ON_EMPTY) { |
4352 | abort_flags |= UPL_COMMIT_NOTIFY_EMPTY; |
4353 | } |
4354 | |
4355 | kr = upl_abort_range(upl_object: upl, offset, size, abort_cond: abort_flags, empty: &finished); |
4356 | |
4357 | if ((abort_flags & UPL_COMMIT_FREE_ON_EMPTY) && finished) { |
4358 | upl_deallocate(upl); |
4359 | } |
4360 | |
4361 | return kr; |
4362 | } |
4363 | |
4364 | kern_return_t |
4365 | kernel_upl_abort( |
4366 | upl_t upl, |
4367 | int abort_type) |
4368 | { |
4369 | kern_return_t kr; |
4370 | |
4371 | kr = upl_abort(upl_object: upl, abort_cond: abort_type); |
4372 | upl_deallocate(upl); |
4373 | return kr; |
4374 | } |
4375 | |
4376 | /* |
4377 | * Now a kernel-private interface (for BootCache |
4378 | * use only). Need a cleaner way to create an |
4379 | * empty vm_map() and return a handle to it. |
4380 | */ |
4381 | |
4382 | kern_return_t |
4383 | vm_region_object_create( |
4384 | vm_map_t target_map, |
4385 | vm_size_t size, |
4386 | ipc_port_t *object_handle) |
4387 | { |
4388 | vm_named_entry_t user_entry; |
4389 | vm_map_t new_map; |
4390 | |
4391 | user_entry = mach_memory_entry_allocate(user_handle_p: object_handle); |
4392 | |
4393 | /* Create a named object based on a submap of specified size */ |
4394 | |
4395 | new_map = vm_map_create_options(PMAP_NULL, VM_MAP_MIN_ADDRESS, |
4396 | vm_map_round_page(size, VM_MAP_PAGE_MASK(target_map)), |
4397 | options: VM_MAP_CREATE_PAGEABLE); |
4398 | vm_map_set_page_shift(map: new_map, pageshift: VM_MAP_PAGE_SHIFT(map: target_map)); |
4399 | |
4400 | user_entry->backing.map = new_map; |
4401 | user_entry->internal = TRUE; |
4402 | user_entry->is_sub_map = TRUE; |
4403 | user_entry->offset = 0; |
4404 | user_entry->protection = VM_PROT_ALL; |
4405 | user_entry->size = size; |
4406 | |
4407 | return KERN_SUCCESS; |
4408 | } |
4409 | |
4410 | ppnum_t vm_map_get_phys_page( /* forward */ |
4411 | vm_map_t map, |
4412 | vm_offset_t offset); |
4413 | |
4414 | ppnum_t |
4415 | vm_map_get_phys_page( |
4416 | vm_map_t map, |
4417 | vm_offset_t addr) |
4418 | { |
4419 | vm_object_offset_t offset; |
4420 | vm_object_t object; |
4421 | vm_map_offset_t map_offset; |
4422 | vm_map_entry_t entry; |
4423 | ppnum_t phys_page = 0; |
4424 | |
4425 | map_offset = vm_map_trunc_page(addr, PAGE_MASK); |
4426 | |
4427 | vm_map_lock(map); |
4428 | while (vm_map_lookup_entry(map, address: map_offset, entry: &entry)) { |
4429 | if (entry->is_sub_map) { |
4430 | vm_map_t old_map; |
4431 | vm_map_lock(VME_SUBMAP(entry)); |
4432 | old_map = map; |
4433 | map = VME_SUBMAP(entry); |
4434 | map_offset = (VME_OFFSET(entry) + |
4435 | (map_offset - entry->vme_start)); |
4436 | vm_map_unlock(old_map); |
4437 | continue; |
4438 | } |
4439 | if (VME_OBJECT(entry) == VM_OBJECT_NULL) { |
4440 | vm_map_unlock(map); |
4441 | return (ppnum_t) 0; |
4442 | } |
4443 | if (VME_OBJECT(entry)->phys_contiguous) { |
4444 | /* These are not standard pageable memory mappings */ |
4445 | /* If they are not present in the object they will */ |
4446 | /* have to be picked up from the pager through the */ |
4447 | /* fault mechanism. */ |
4448 | if (VME_OBJECT(entry)->vo_shadow_offset == 0) { |
4449 | /* need to call vm_fault */ |
4450 | vm_map_unlock(map); |
4451 | vm_fault(map, vaddr: map_offset, VM_PROT_NONE, |
4452 | FALSE /* change_wiring */, VM_KERN_MEMORY_NONE, |
4453 | THREAD_UNINT, NULL, pmap_addr: 0); |
4454 | vm_map_lock(map); |
4455 | continue; |
4456 | } |
4457 | offset = (VME_OFFSET(entry) + |
4458 | (map_offset - entry->vme_start)); |
4459 | phys_page = (ppnum_t) |
4460 | ((VME_OBJECT(entry)->vo_shadow_offset |
4461 | + offset) >> PAGE_SHIFT); |
4462 | break; |
4463 | } |
4464 | offset = (VME_OFFSET(entry) + (map_offset - entry->vme_start)); |
4465 | object = VME_OBJECT(entry); |
4466 | vm_object_lock(object); |
4467 | while (TRUE) { |
4468 | vm_page_t dst_page = vm_page_lookup(object, offset); |
4469 | if (dst_page == VM_PAGE_NULL) { |
4470 | if (object->shadow) { |
4471 | vm_object_t old_object; |
4472 | vm_object_lock(object->shadow); |
4473 | old_object = object; |
4474 | offset = offset + object->vo_shadow_offset; |
4475 | object = object->shadow; |
4476 | vm_object_unlock(old_object); |
4477 | } else { |
4478 | vm_object_unlock(object); |
4479 | break; |
4480 | } |
4481 | } else { |
4482 | phys_page = (ppnum_t)(VM_PAGE_GET_PHYS_PAGE(m: dst_page)); |
4483 | vm_object_unlock(object); |
4484 | break; |
4485 | } |
4486 | } |
4487 | break; |
4488 | } |
4489 | |
4490 | vm_map_unlock(map); |
4491 | return phys_page; |
4492 | } |
4493 | |
4494 | kern_return_t |
4495 | mach_vm_deferred_reclamation_buffer_init( |
4496 | task_t task, |
4497 | mach_vm_offset_t address, |
4498 | mach_vm_size_t size) |
4499 | { |
4500 | #if CONFIG_DEFERRED_RECLAIM |
4501 | return vm_deferred_reclamation_buffer_init_internal(task, address, size); |
4502 | #else |
4503 | (void) task; |
4504 | (void) address; |
4505 | (void) size; |
4506 | (void) indices; |
4507 | return KERN_NOT_SUPPORTED; |
4508 | #endif /* CONFIG_DEFERRED_RECLAIM */ |
4509 | } |
4510 | |
4511 | kern_return_t |
4512 | mach_vm_deferred_reclamation_buffer_synchronize( |
4513 | task_t task, |
4514 | mach_vm_size_t num_entries_to_reclaim) |
4515 | { |
4516 | #if CONFIG_DEFERRED_RECLAIM |
4517 | return vm_deferred_reclamation_buffer_synchronize_internal(task, max_entries_to_reclaim: num_entries_to_reclaim); |
4518 | #else |
4519 | (void) task; |
4520 | (void) num_entries_to_reclaim; |
4521 | return KERN_NOT_SUPPORTED; |
4522 | #endif /* CONFIG_DEFERRED_RECLAIM */ |
4523 | } |
4524 | |
4525 | kern_return_t |
4526 | mach_vm_deferred_reclamation_buffer_update_reclaimable_bytes(task_t task, mach_vm_size_t reclaimable_bytes) |
4527 | { |
4528 | #if CONFIG_DEFERRED_RECLAIM |
4529 | return vm_deferred_reclamation_buffer_update_reclaimable_bytes_internal(task, reclaimable_bytes); |
4530 | #else |
4531 | (void) task; |
4532 | (void) reclaimable_bytes; |
4533 | return KERN_NOT_SUPPORTED; |
4534 | #endif /* CONFIG_DEFERRED_RECLAIM */ |
4535 | } |
4536 | |
4537 | #if 0 |
4538 | kern_return_t kernel_object_iopl_request( /* forward */ |
4539 | vm_named_entry_t named_entry, |
4540 | memory_object_offset_t offset, |
4541 | upl_size_t *upl_size, |
4542 | upl_t *upl_ptr, |
4543 | upl_page_info_array_t user_page_list, |
4544 | unsigned int *page_list_count, |
4545 | int *flags); |
4546 | |
4547 | kern_return_t |
4548 | kernel_object_iopl_request( |
4549 | vm_named_entry_t named_entry, |
4550 | memory_object_offset_t offset, |
4551 | upl_size_t *upl_size, |
4552 | upl_t *upl_ptr, |
4553 | upl_page_info_array_t user_page_list, |
4554 | unsigned int *page_list_count, |
4555 | int *flags) |
4556 | { |
4557 | vm_object_t object; |
4558 | kern_return_t ret; |
4559 | |
4560 | int caller_flags; |
4561 | |
4562 | caller_flags = *flags; |
4563 | |
4564 | if (caller_flags & ~UPL_VALID_FLAGS) { |
4565 | /* |
4566 | * For forward compatibility's sake, |
4567 | * reject any unknown flag. |
4568 | */ |
4569 | return KERN_INVALID_VALUE; |
4570 | } |
4571 | |
4572 | /* a few checks to make sure user is obeying rules */ |
4573 | if (*upl_size == 0) { |
4574 | if (offset >= named_entry->size) { |
4575 | return KERN_INVALID_RIGHT; |
4576 | } |
4577 | *upl_size = (upl_size_t) (named_entry->size - offset); |
4578 | if (*upl_size != named_entry->size - offset) { |
4579 | return KERN_INVALID_ARGUMENT; |
4580 | } |
4581 | } |
4582 | if (caller_flags & UPL_COPYOUT_FROM) { |
4583 | if ((named_entry->protection & VM_PROT_READ) |
4584 | != VM_PROT_READ) { |
4585 | return KERN_INVALID_RIGHT; |
4586 | } |
4587 | } else { |
4588 | if ((named_entry->protection & |
4589 | (VM_PROT_READ | VM_PROT_WRITE)) |
4590 | != (VM_PROT_READ | VM_PROT_WRITE)) { |
4591 | return KERN_INVALID_RIGHT; |
4592 | } |
4593 | } |
4594 | if (named_entry->size < (offset + *upl_size)) { |
4595 | return KERN_INVALID_ARGUMENT; |
4596 | } |
4597 | |
4598 | /* the callers parameter offset is defined to be the */ |
4599 | /* offset from beginning of named entry offset in object */ |
4600 | offset = offset + named_entry->offset; |
4601 | |
4602 | if (named_entry->is_sub_map || |
4603 | named_entry->is_copy) { |
4604 | return KERN_INVALID_ARGUMENT; |
4605 | } |
4606 | |
4607 | named_entry_lock(named_entry); |
4608 | |
4609 | /* This is the case where we are going to operate */ |
4610 | /* on an already known object. If the object is */ |
4611 | /* not ready it is internal. An external */ |
4612 | /* object cannot be mapped until it is ready */ |
4613 | /* we can therefore avoid the ready check */ |
4614 | /* in this case. */ |
4615 | assert(named_entry->is_object); |
4616 | object = vm_named_entry_to_vm_object(named_entry); |
4617 | vm_object_reference(object); |
4618 | named_entry_unlock(named_entry); |
4619 | |
4620 | if (!object->private) { |
4621 | if (*upl_size > MAX_UPL_TRANSFER_BYTES) { |
4622 | *upl_size = MAX_UPL_TRANSFER_BYTES; |
4623 | } |
4624 | if (object->phys_contiguous) { |
4625 | *flags = UPL_PHYS_CONTIG; |
4626 | } else { |
4627 | *flags = 0; |
4628 | } |
4629 | } else { |
4630 | *flags = UPL_DEV_MEMORY | UPL_PHYS_CONTIG; |
4631 | } |
4632 | |
4633 | ret = vm_object_iopl_request(object, |
4634 | offset, |
4635 | *upl_size, |
4636 | upl_ptr, |
4637 | user_page_list, |
4638 | page_list_count, |
4639 | (upl_control_flags_t)(unsigned int)caller_flags); |
4640 | vm_object_deallocate(object); |
4641 | return ret; |
4642 | } |
4643 | #endif |
4644 | |
4645 | /* |
4646 | * These symbols are looked up at runtime by vmware, VirtualBox, |
4647 | * despite not being exported in the symbol sets. |
4648 | */ |
4649 | |
4650 | #if defined(__x86_64__) |
4651 | |
4652 | kern_return_t |
4653 | mach_vm_map( |
4654 | vm_map_t target_map, |
4655 | mach_vm_offset_t *address, |
4656 | mach_vm_size_t initial_size, |
4657 | mach_vm_offset_t mask, |
4658 | int flags, |
4659 | ipc_port_t port, |
4660 | vm_object_offset_t offset, |
4661 | boolean_t copy, |
4662 | vm_prot_t cur_protection, |
4663 | vm_prot_t max_protection, |
4664 | vm_inherit_t inheritance); |
4665 | |
4666 | kern_return_t |
4667 | mach_vm_remap( |
4668 | vm_map_t target_map, |
4669 | mach_vm_offset_t *address, |
4670 | mach_vm_size_t size, |
4671 | mach_vm_offset_t mask, |
4672 | int flags, |
4673 | vm_map_t src_map, |
4674 | mach_vm_offset_t memory_address, |
4675 | boolean_t copy, |
4676 | vm_prot_t *cur_protection, |
4677 | vm_prot_t *max_protection, |
4678 | vm_inherit_t inheritance); |
4679 | |
4680 | kern_return_t |
4681 | mach_vm_map( |
4682 | vm_map_t target_map, |
4683 | mach_vm_offset_t *address, |
4684 | mach_vm_size_t initial_size, |
4685 | mach_vm_offset_t mask, |
4686 | int flags, |
4687 | ipc_port_t port, |
4688 | vm_object_offset_t offset, |
4689 | boolean_t copy, |
4690 | vm_prot_t cur_protection, |
4691 | vm_prot_t max_protection, |
4692 | vm_inherit_t inheritance) |
4693 | { |
4694 | return mach_vm_map_external(target_map, address, initial_size, mask, flags, port, |
4695 | offset, copy, cur_protection, max_protection, inheritance); |
4696 | } |
4697 | |
4698 | kern_return_t |
4699 | mach_vm_remap( |
4700 | vm_map_t target_map, |
4701 | mach_vm_offset_t *address, |
4702 | mach_vm_size_t size, |
4703 | mach_vm_offset_t mask, |
4704 | int flags, |
4705 | vm_map_t src_map, |
4706 | mach_vm_offset_t memory_address, |
4707 | boolean_t copy, |
4708 | vm_prot_t *cur_protection, /* OUT */ |
4709 | vm_prot_t *max_protection, /* OUT */ |
4710 | vm_inherit_t inheritance) |
4711 | { |
4712 | return mach_vm_remap_external(target_map, address, size, mask, flags, src_map, memory_address, |
4713 | copy, cur_protection, max_protection, inheritance); |
4714 | } |
4715 | |
4716 | kern_return_t |
4717 | vm_map( |
4718 | vm_map_t target_map, |
4719 | vm_offset_t *address, |
4720 | vm_size_t size, |
4721 | vm_offset_t mask, |
4722 | int flags, |
4723 | ipc_port_t port, |
4724 | vm_offset_t offset, |
4725 | boolean_t copy, |
4726 | vm_prot_t cur_protection, |
4727 | vm_prot_t max_protection, |
4728 | vm_inherit_t inheritance); |
4729 | |
4730 | kern_return_t |
4731 | vm_map( |
4732 | vm_map_t target_map, |
4733 | vm_offset_t *address, |
4734 | vm_size_t size, |
4735 | vm_offset_t mask, |
4736 | int flags, |
4737 | ipc_port_t port, |
4738 | vm_offset_t offset, |
4739 | boolean_t copy, |
4740 | vm_prot_t cur_protection, |
4741 | vm_prot_t max_protection, |
4742 | vm_inherit_t inheritance) |
4743 | { |
4744 | static_assert(sizeof(vm_offset_t) == sizeof(mach_vm_offset_t)); |
4745 | |
4746 | return mach_vm_map(target_map, (mach_vm_offset_t *)address, |
4747 | size, mask, flags, port, offset, copy, |
4748 | cur_protection, max_protection, inheritance); |
4749 | } |
4750 | |
4751 | #endif /* __x86_64__ */ |
4752 | |