| 1 | /* |
| 2 | * Copyright (c) 2008-2020 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
| 5 | * |
| 6 | * This file contains Original Code and/or Modifications of Original Code |
| 7 | * as defined in and that are subject to the Apple Public Source License |
| 8 | * Version 2.0 (the 'License'). You may not use this file except in |
| 9 | * compliance with the License. The rights granted to you under the License |
| 10 | * may not be used to create, or enable the creation or redistribution of, |
| 11 | * unlawful or unlicensed copies of an Apple operating system, or to |
| 12 | * circumvent, violate, or enable the circumvention or violation of, any |
| 13 | * terms of an Apple operating system software license agreement. |
| 14 | * |
| 15 | * Please obtain a copy of the License at |
| 16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
| 17 | * |
| 18 | * The Original Code and all software distributed under the License are |
| 19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| 23 | * Please see the License for the specific language governing rights and |
| 24 | * limitations under the License. |
| 25 | * |
| 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
| 27 | */ |
| 28 | |
| 29 | #include <mach/kern_return.h> |
| 30 | #include <mach/memory_object_control.h> |
| 31 | #include <mach/upl.h> |
| 32 | |
| 33 | #include <kern/ipc_kobject.h> |
| 34 | #include <kern/kalloc.h> |
| 35 | #include <kern/queue.h> |
| 36 | |
| 37 | #include <vm/memory_object.h> |
| 38 | #include <vm/vm_kern.h> |
| 39 | #include <vm/vm_map.h> |
| 40 | #include <vm/vm_pageout.h> |
| 41 | #include <vm/vm_protos.h> |
| 42 | |
| 43 | |
| 44 | /* |
| 45 | * APPLE SWAPFILE MEMORY PAGER |
| 46 | * |
| 47 | * This external memory manager (EMM) handles mappings of the swap files. |
| 48 | * Swap files are not regular files and are used solely to store contents of |
| 49 | * anonymous memory mappings while not resident in memory. |
| 50 | * There's no valid reason to map a swap file. This just puts extra burden |
| 51 | * on the system, is potentially a security issue and is not reliable since |
| 52 | * the contents can change at any time with pageout operations. |
| 53 | * Here are some of the issues with mapping a swap file. |
| 54 | * * PERFORMANCE: |
| 55 | * Each page in the swap file belong to an anonymous memory object. Mapping |
| 56 | * the swap file makes those pages also accessible via a vnode memory |
| 57 | * object and each page can now be resident twice. |
| 58 | * * SECURITY: |
| 59 | * Mapping a swap file allows access to other processes' memory. Swap files |
| 60 | * are only accessible by the "root" super-user, who can already access any |
| 61 | * process's memory, so this is not a real issue but if permissions on the |
| 62 | * swap file got changed, it could become one. |
| 63 | * Swap files are not "zero-filled" on creation, so until their contents are |
| 64 | * overwritten with pageout operations, they still contain whatever was on |
| 65 | * the disk blocks they were allocated. The "super-user" could see the |
| 66 | * contents of free blocks anyway, so this is not a new security issue but |
| 67 | * it may be perceive as one. |
| 68 | * |
| 69 | * We can't legitimately prevent a user process with appropriate privileges |
| 70 | * from mapping a swap file, but we can prevent it from accessing its actual |
| 71 | * contents. |
| 72 | * This pager mostly handles page-in request (from memory_object_data_request()) |
| 73 | * for swap file mappings and just returns bogus data. |
| 74 | * Pageouts are not handled, so mmap() has to make sure it does not allow |
| 75 | * writable (i.e. MAP_SHARED and PROT_WRITE) mappings of swap files. |
| 76 | */ |
| 77 | |
| 78 | /* forward declarations */ |
| 79 | void swapfile_pager_reference(memory_object_t mem_obj); |
| 80 | void swapfile_pager_deallocate(memory_object_t mem_obj); |
| 81 | kern_return_t swapfile_pager_init(memory_object_t mem_obj, |
| 82 | memory_object_control_t control, |
| 83 | memory_object_cluster_size_t pg_size); |
| 84 | kern_return_t swapfile_pager_terminate(memory_object_t mem_obj); |
| 85 | kern_return_t swapfile_pager_data_request(memory_object_t mem_obj, |
| 86 | memory_object_offset_t offset, |
| 87 | memory_object_cluster_size_t length, |
| 88 | vm_prot_t protection_required, |
| 89 | memory_object_fault_info_t fault_info); |
| 90 | kern_return_t swapfile_pager_data_return(memory_object_t mem_obj, |
| 91 | memory_object_offset_t offset, |
| 92 | memory_object_cluster_size_t data_cnt, |
| 93 | memory_object_offset_t *resid_offset, |
| 94 | int *io_error, |
| 95 | boolean_t dirty, |
| 96 | boolean_t kernel_copy, |
| 97 | int upl_flags); |
| 98 | kern_return_t swapfile_pager_data_initialize(memory_object_t mem_obj, |
| 99 | memory_object_offset_t offset, |
| 100 | memory_object_cluster_size_t data_cnt); |
| 101 | kern_return_t swapfile_pager_map(memory_object_t mem_obj, |
| 102 | vm_prot_t prot); |
| 103 | kern_return_t swapfile_pager_last_unmap(memory_object_t mem_obj); |
| 104 | |
| 105 | /* |
| 106 | * Vector of VM operations for this EMM. |
| 107 | * These routines are invoked by VM via the memory_object_*() interfaces. |
| 108 | */ |
| 109 | const struct memory_object_pager_ops = { |
| 110 | .memory_object_reference = swapfile_pager_reference, |
| 111 | .memory_object_deallocate = swapfile_pager_deallocate, |
| 112 | .memory_object_init = swapfile_pager_init, |
| 113 | .memory_object_terminate = swapfile_pager_terminate, |
| 114 | .memory_object_data_request = swapfile_pager_data_request, |
| 115 | .memory_object_data_return = swapfile_pager_data_return, |
| 116 | .memory_object_data_initialize = swapfile_pager_data_initialize, |
| 117 | .memory_object_map = swapfile_pager_map, |
| 118 | .memory_object_last_unmap = swapfile_pager_last_unmap, |
| 119 | .memory_object_backing_object = NULL, |
| 120 | .memory_object_pager_name = "swapfile pager" |
| 121 | }; |
| 122 | |
| 123 | /* |
| 124 | * The "swapfile_pager" describes a memory object backed by |
| 125 | * the "swapfile" EMM. |
| 126 | */ |
| 127 | typedef struct { |
| 128 | /* mandatory generic header */ |
| 129 | struct memory_object ; |
| 130 | |
| 131 | /* pager-specific data */ |
| 132 | queue_chain_t ; /* next & prev pagers */ |
| 133 | #if MEMORY_OBJECT_HAS_REFCOUNT |
| 134 | #define swp_pgr_hdr_ref swp_pgr_hdr.mo_ref |
| 135 | #else |
| 136 | os_ref_atomic_t swp_pgr_hdr_ref; /* reference count */ |
| 137 | #endif |
| 138 | bool ; /* is this pager ready ? */ |
| 139 | bool ; /* is this pager mapped ? */ |
| 140 | struct vnode *;/* the swapfile's vnode */ |
| 141 | } *; |
| 142 | #define ((swapfile_pager_t) NULL) |
| 143 | |
| 144 | /* |
| 145 | * List of memory objects managed by this EMM. |
| 146 | * The list is protected by the "swapfile_pager_lock" lock. |
| 147 | */ |
| 148 | int = 0; /* number of pagers */ |
| 149 | queue_head_t = QUEUE_HEAD_INITIALIZER(swapfile_pager_queue); |
| 150 | LCK_GRP_DECLARE(, "swapfile pager" ); |
| 151 | LCK_MTX_DECLARE(, &swapfile_pager_lck_grp); |
| 152 | |
| 153 | /* |
| 154 | * Statistics & counters. |
| 155 | */ |
| 156 | int = 0; |
| 157 | |
| 158 | /* internal prototypes */ |
| 159 | swapfile_pager_t swapfile_pager_create(struct vnode *vp); |
| 160 | swapfile_pager_t swapfile_pager_lookup(memory_object_t mem_obj); |
| 161 | void swapfile_pager_dequeue(swapfile_pager_t ); |
| 162 | void swapfile_pager_deallocate_internal(swapfile_pager_t , |
| 163 | boolean_t locked); |
| 164 | void swapfile_pager_terminate_internal(swapfile_pager_t ); |
| 165 | |
| 166 | |
| 167 | #if DEBUG |
| 168 | int swapfile_pagerdebug = 0; |
| 169 | #define PAGER_ALL 0xffffffff |
| 170 | #define PAGER_INIT 0x00000001 |
| 171 | #define PAGER_PAGEIN 0x00000002 |
| 172 | |
| 173 | #define PAGER_DEBUG(LEVEL, A) \ |
| 174 | MACRO_BEGIN \ |
| 175 | if ((swapfile_pagerdebug & LEVEL)==LEVEL) { \ |
| 176 | printf A; \ |
| 177 | } \ |
| 178 | MACRO_END |
| 179 | #else |
| 180 | #define (LEVEL, A) |
| 181 | #endif |
| 182 | |
| 183 | |
| 184 | /* |
| 185 | * swapfile_pager_init() |
| 186 | * |
| 187 | * Initialize the memory object and makes it ready to be used and mapped. |
| 188 | */ |
| 189 | kern_return_t |
| 190 | ( |
| 191 | memory_object_t mem_obj, |
| 192 | memory_object_control_t control, |
| 193 | #if !DEBUG |
| 194 | __unused |
| 195 | #endif |
| 196 | memory_object_cluster_size_t pg_size) |
| 197 | { |
| 198 | swapfile_pager_t ; |
| 199 | kern_return_t kr; |
| 200 | memory_object_attr_info_data_t attributes; |
| 201 | |
| 202 | PAGER_DEBUG(PAGER_ALL, |
| 203 | ("swapfile_pager_init: %p, %p, %x\n" , |
| 204 | mem_obj, control, pg_size)); |
| 205 | |
| 206 | if (control == MEMORY_OBJECT_CONTROL_NULL) { |
| 207 | return KERN_INVALID_ARGUMENT; |
| 208 | } |
| 209 | |
| 210 | pager = swapfile_pager_lookup(mem_obj); |
| 211 | |
| 212 | memory_object_control_reference(control); |
| 213 | |
| 214 | pager->swp_pgr_hdr.mo_control = control; |
| 215 | |
| 216 | attributes.copy_strategy = MEMORY_OBJECT_COPY_DELAY; |
| 217 | attributes.cluster_size = (1 << (PAGE_SHIFT)); |
| 218 | attributes.may_cache_object = FALSE; |
| 219 | attributes.temporary = TRUE; |
| 220 | |
| 221 | kr = memory_object_change_attributes( |
| 222 | memory_control: control, |
| 223 | MEMORY_OBJECT_ATTRIBUTE_INFO, |
| 224 | attributes: (memory_object_info_t) &attributes, |
| 225 | MEMORY_OBJECT_ATTR_INFO_COUNT); |
| 226 | if (kr != KERN_SUCCESS) { |
| 227 | panic("swapfile_pager_init: " |
| 228 | "memory_object_change_attributes() failed" ); |
| 229 | } |
| 230 | |
| 231 | return KERN_SUCCESS; |
| 232 | } |
| 233 | |
| 234 | /* |
| 235 | * swapfile_data_return() |
| 236 | * |
| 237 | * Handles page-out requests from VM. This should never happen since |
| 238 | * the pages provided by this EMM are not supposed to be dirty or dirtied |
| 239 | * and VM should simply discard the contents and reclaim the pages if it |
| 240 | * needs to. |
| 241 | */ |
| 242 | kern_return_t |
| 243 | ( |
| 244 | __unused memory_object_t mem_obj, |
| 245 | __unused memory_object_offset_t offset, |
| 246 | __unused memory_object_cluster_size_t data_cnt, |
| 247 | __unused memory_object_offset_t *resid_offset, |
| 248 | __unused int *io_error, |
| 249 | __unused boolean_t dirty, |
| 250 | __unused boolean_t kernel_copy, |
| 251 | __unused int upl_flags) |
| 252 | { |
| 253 | panic("swapfile_pager_data_return: should never get called" ); |
| 254 | return KERN_FAILURE; |
| 255 | } |
| 256 | |
| 257 | kern_return_t |
| 258 | ( |
| 259 | __unused memory_object_t mem_obj, |
| 260 | __unused memory_object_offset_t offset, |
| 261 | __unused memory_object_cluster_size_t data_cnt) |
| 262 | { |
| 263 | panic("swapfile_pager_data_initialize: should never get called" ); |
| 264 | return KERN_FAILURE; |
| 265 | } |
| 266 | |
| 267 | /* |
| 268 | * swapfile_pager_data_request() |
| 269 | * |
| 270 | * Handles page-in requests from VM. |
| 271 | */ |
| 272 | kern_return_t |
| 273 | ( |
| 274 | memory_object_t mem_obj, |
| 275 | memory_object_offset_t offset, |
| 276 | memory_object_cluster_size_t length, |
| 277 | #if !DEBUG |
| 278 | __unused |
| 279 | #endif |
| 280 | vm_prot_t protection_required, |
| 281 | __unused memory_object_fault_info_t mo_fault_info) |
| 282 | { |
| 283 | swapfile_pager_t ; |
| 284 | memory_object_control_t mo_control; |
| 285 | upl_t upl; |
| 286 | int upl_flags; |
| 287 | upl_size_t upl_size; |
| 288 | upl_page_info_t *upl_pl = NULL; |
| 289 | unsigned int pl_count; |
| 290 | vm_object_t dst_object; |
| 291 | kern_return_t kr, retval; |
| 292 | vm_offset_t kernel_mapping; |
| 293 | char *dst_ptr; |
| 294 | vm_offset_t cur_offset; |
| 295 | |
| 296 | PAGER_DEBUG(PAGER_ALL, ("swapfile_pager_data_request: %p, %llx, %x, %x\n" , mem_obj, offset, length, protection_required)); |
| 297 | |
| 298 | kernel_mapping = 0; |
| 299 | upl = NULL; |
| 300 | upl_pl = NULL; |
| 301 | |
| 302 | pager = swapfile_pager_lookup(mem_obj); |
| 303 | assert(pager->is_ready); |
| 304 | assert(os_ref_get_count_raw(&pager->swp_pgr_hdr_ref) > 1); /* pager is alive and mapped */ |
| 305 | |
| 306 | PAGER_DEBUG(PAGER_PAGEIN, ("swapfile_pager_data_request: %p, %llx, %x, %x, pager %p\n" , mem_obj, offset, length, protection_required, pager)); |
| 307 | |
| 308 | /* |
| 309 | * Gather in a UPL all the VM pages requested by VM. |
| 310 | */ |
| 311 | mo_control = pager->swp_pgr_hdr.mo_control; |
| 312 | |
| 313 | upl_size = length; |
| 314 | upl_flags = |
| 315 | UPL_RET_ONLY_ABSENT | |
| 316 | UPL_SET_LITE | |
| 317 | UPL_NO_SYNC | |
| 318 | UPL_CLEAN_IN_PLACE | /* triggers UPL_CLEAR_DIRTY */ |
| 319 | UPL_SET_INTERNAL; |
| 320 | pl_count = 0; |
| 321 | kr = memory_object_upl_request(memory_control: mo_control, |
| 322 | offset, size: upl_size, |
| 323 | upl: &upl, NULL, NULL, cntrl_flags: upl_flags, VM_KERN_MEMORY_OSFMK); |
| 324 | if (kr != KERN_SUCCESS) { |
| 325 | retval = kr; |
| 326 | goto done; |
| 327 | } |
| 328 | dst_object = memory_object_control_to_vm_object(control: mo_control); |
| 329 | assert(dst_object != VM_OBJECT_NULL); |
| 330 | |
| 331 | |
| 332 | /* |
| 333 | * Reserve a virtual page in the kernel address space to map each |
| 334 | * destination physical page when it's its turn to be processed. |
| 335 | */ |
| 336 | kr = kmem_alloc(map: kernel_map, addrp: &kernel_mapping, PAGE_SIZE, |
| 337 | flags: KMA_DATA | KMA_KOBJECT | KMA_PAGEABLE, VM_KERN_MEMORY_NONE); |
| 338 | if (kr != KERN_SUCCESS) { |
| 339 | retval = kr; |
| 340 | goto done; |
| 341 | } |
| 342 | dst_ptr = (char *)kernel_mapping; |
| 343 | |
| 344 | /* |
| 345 | * Fill in the contents of the pages requested by VM. |
| 346 | */ |
| 347 | upl_pl = UPL_GET_INTERNAL_PAGE_LIST(upl); |
| 348 | pl_count = length / PAGE_SIZE; |
| 349 | for (cur_offset = 0; cur_offset < length; cur_offset += PAGE_SIZE) { |
| 350 | ppnum_t dst_pnum; |
| 351 | |
| 352 | if (!upl_page_present(upl: upl_pl, index: (int)(cur_offset / PAGE_SIZE))) { |
| 353 | /* this page is not in the UPL: skip it */ |
| 354 | continue; |
| 355 | } |
| 356 | |
| 357 | /* |
| 358 | * Establish an explicit pmap mapping of the destination |
| 359 | * physical page. |
| 360 | * We can't do a regular VM mapping because the VM page |
| 361 | * is "busy". |
| 362 | */ |
| 363 | dst_pnum = (ppnum_t) |
| 364 | upl_phys_page(upl: upl_pl, index: (int)(cur_offset / PAGE_SIZE)); |
| 365 | assert(dst_pnum != 0); |
| 366 | retval = pmap_enter(pmap: kernel_pmap, |
| 367 | v: kernel_mapping, |
| 368 | pn: dst_pnum, |
| 369 | VM_PROT_READ | VM_PROT_WRITE, |
| 370 | VM_PROT_NONE, |
| 371 | flags: 0, |
| 372 | TRUE, |
| 373 | mapping_type: PMAP_MAPPING_TYPE_INFER); |
| 374 | |
| 375 | assert(retval == KERN_SUCCESS); |
| 376 | |
| 377 | if (retval != KERN_SUCCESS) { |
| 378 | goto done; |
| 379 | } |
| 380 | |
| 381 | memset(s: dst_ptr, c: '\0', PAGE_SIZE); |
| 382 | /* add an end-of-line to keep line counters happy */ |
| 383 | dst_ptr[PAGE_SIZE - 1] = '\n'; |
| 384 | |
| 385 | /* |
| 386 | * Remove the pmap mapping of the destination page |
| 387 | * in the kernel. |
| 388 | */ |
| 389 | pmap_remove(map: kernel_pmap, |
| 390 | s: (addr64_t) kernel_mapping, |
| 391 | e: (addr64_t) (kernel_mapping + PAGE_SIZE_64)); |
| 392 | } |
| 393 | |
| 394 | retval = KERN_SUCCESS; |
| 395 | done: |
| 396 | if (upl != NULL) { |
| 397 | /* clean up the UPL */ |
| 398 | |
| 399 | /* |
| 400 | * The pages are currently dirty because we've just been |
| 401 | * writing on them, but as far as we're concerned, they're |
| 402 | * clean since they contain their "original" contents as |
| 403 | * provided by us, the pager. |
| 404 | * Tell the UPL to mark them "clean". |
| 405 | */ |
| 406 | upl_clear_dirty(upl, TRUE); |
| 407 | |
| 408 | /* abort or commit the UPL */ |
| 409 | if (retval != KERN_SUCCESS) { |
| 410 | upl_abort(upl_object: upl, abort_cond: 0); |
| 411 | } else { |
| 412 | boolean_t empty; |
| 413 | assertf(page_aligned(upl->u_offset) && page_aligned(upl->u_size), |
| 414 | "upl %p offset 0x%llx size 0x%x" , |
| 415 | upl, upl->u_offset, upl->u_size); |
| 416 | upl_commit_range(upl_object: upl, offset: 0, size: upl->u_size, |
| 417 | UPL_COMMIT_CS_VALIDATED, |
| 418 | page_list: upl_pl, page_listCnt: pl_count, empty: &empty); |
| 419 | } |
| 420 | |
| 421 | /* and deallocate the UPL */ |
| 422 | upl_deallocate(upl); |
| 423 | upl = NULL; |
| 424 | } |
| 425 | |
| 426 | if (kernel_mapping != 0) { |
| 427 | /* clean up the mapping of the source and destination pages */ |
| 428 | kmem_free(map: kernel_map, addr: kernel_mapping, PAGE_SIZE); |
| 429 | kernel_mapping = 0; |
| 430 | } |
| 431 | |
| 432 | return retval; |
| 433 | } |
| 434 | |
| 435 | /* |
| 436 | * swapfile_pager_reference() |
| 437 | * |
| 438 | * Get a reference on this memory object. |
| 439 | * For external usage only. Assumes that the initial reference count is not 0, |
| 440 | * i.e one should not "revive" a dead pager this way. |
| 441 | */ |
| 442 | void |
| 443 | ( |
| 444 | memory_object_t mem_obj) |
| 445 | { |
| 446 | swapfile_pager_t ; |
| 447 | |
| 448 | pager = swapfile_pager_lookup(mem_obj); |
| 449 | |
| 450 | lck_mtx_lock(lck: &swapfile_pager_lock); |
| 451 | os_ref_retain_locked_raw(&pager->swp_pgr_hdr_ref, NULL); |
| 452 | lck_mtx_unlock(lck: &swapfile_pager_lock); |
| 453 | } |
| 454 | |
| 455 | |
| 456 | /* |
| 457 | * swapfile_pager_dequeue: |
| 458 | * |
| 459 | * Removes a pager from the list of pagers. |
| 460 | * |
| 461 | * The caller must hold "swapfile_pager_lock". |
| 462 | */ |
| 463 | void |
| 464 | ( |
| 465 | swapfile_pager_t ) |
| 466 | { |
| 467 | assert(!pager->is_mapped); |
| 468 | |
| 469 | queue_remove(&swapfile_pager_queue, |
| 470 | pager, |
| 471 | swapfile_pager_t, |
| 472 | pager_queue); |
| 473 | pager->pager_queue.next = NULL; |
| 474 | pager->pager_queue.prev = NULL; |
| 475 | |
| 476 | swapfile_pager_count--; |
| 477 | } |
| 478 | |
| 479 | /* |
| 480 | * swapfile_pager_terminate_internal: |
| 481 | * |
| 482 | * Trigger the asynchronous termination of the memory object associated |
| 483 | * with this pager. |
| 484 | * When the memory object is terminated, there will be one more call |
| 485 | * to memory_object_deallocate() (i.e. swapfile_pager_deallocate()) |
| 486 | * to finish the clean up. |
| 487 | * |
| 488 | * "swapfile_pager_lock" should not be held by the caller. |
| 489 | * We don't need the lock because the pager has already been removed from |
| 490 | * the pagers' list and is now ours exclusively. |
| 491 | */ |
| 492 | void |
| 493 | ( |
| 494 | swapfile_pager_t ) |
| 495 | { |
| 496 | assert(pager->is_ready); |
| 497 | assert(!pager->is_mapped); |
| 498 | |
| 499 | if (pager->swapfile_vnode != NULL) { |
| 500 | pager->swapfile_vnode = NULL; |
| 501 | } |
| 502 | |
| 503 | /* trigger the destruction of the memory object */ |
| 504 | memory_object_destroy(memory_control: pager->swp_pgr_hdr.mo_control, reason: VM_OBJECT_DESTROY_UNKNOWN_REASON); |
| 505 | } |
| 506 | |
| 507 | /* |
| 508 | * swapfile_pager_deallocate_internal() |
| 509 | * |
| 510 | * Release a reference on this pager and free it when the last |
| 511 | * reference goes away. |
| 512 | * Can be called with swapfile_pager_lock held or not but always returns |
| 513 | * with it unlocked. |
| 514 | */ |
| 515 | void |
| 516 | ( |
| 517 | swapfile_pager_t , |
| 518 | boolean_t locked) |
| 519 | { |
| 520 | os_ref_count_t ref_count; |
| 521 | |
| 522 | if (!locked) { |
| 523 | lck_mtx_lock(lck: &swapfile_pager_lock); |
| 524 | } |
| 525 | |
| 526 | /* drop a reference on this pager */ |
| 527 | ref_count = os_ref_release_locked_raw(&pager->swp_pgr_hdr_ref, NULL); |
| 528 | |
| 529 | if (ref_count == 1) { |
| 530 | /* |
| 531 | * Only the "named" reference is left, which means that |
| 532 | * no one is really holding on to this pager anymore. |
| 533 | * Terminate it. |
| 534 | */ |
| 535 | swapfile_pager_dequeue(pager); |
| 536 | /* the pager is all ours: no need for the lock now */ |
| 537 | lck_mtx_unlock(lck: &swapfile_pager_lock); |
| 538 | swapfile_pager_terminate_internal(pager); |
| 539 | } else if (ref_count == 0) { |
| 540 | /* |
| 541 | * Dropped the existence reference; the memory object has |
| 542 | * been terminated. Do some final cleanup and release the |
| 543 | * pager structure. |
| 544 | */ |
| 545 | lck_mtx_unlock(lck: &swapfile_pager_lock); |
| 546 | if (pager->swp_pgr_hdr.mo_control != MEMORY_OBJECT_CONTROL_NULL) { |
| 547 | memory_object_control_deallocate(control: pager->swp_pgr_hdr.mo_control); |
| 548 | pager->swp_pgr_hdr.mo_control = MEMORY_OBJECT_CONTROL_NULL; |
| 549 | } |
| 550 | kfree_type(struct swapfile_pager, pager); |
| 551 | pager = SWAPFILE_PAGER_NULL; |
| 552 | } else { |
| 553 | /* there are still plenty of references: keep going... */ |
| 554 | lck_mtx_unlock(lck: &swapfile_pager_lock); |
| 555 | } |
| 556 | |
| 557 | /* caution: lock is not held on return... */ |
| 558 | } |
| 559 | |
| 560 | /* |
| 561 | * swapfile_pager_deallocate() |
| 562 | * |
| 563 | * Release a reference on this pager and free it when the last |
| 564 | * reference goes away. |
| 565 | */ |
| 566 | void |
| 567 | ( |
| 568 | memory_object_t mem_obj) |
| 569 | { |
| 570 | swapfile_pager_t ; |
| 571 | |
| 572 | PAGER_DEBUG(PAGER_ALL, ("swapfile_pager_deallocate: %p\n" , mem_obj)); |
| 573 | pager = swapfile_pager_lookup(mem_obj); |
| 574 | swapfile_pager_deallocate_internal(pager, FALSE); |
| 575 | } |
| 576 | |
| 577 | /* |
| 578 | * |
| 579 | */ |
| 580 | kern_return_t |
| 581 | ( |
| 582 | #if !DEBUG |
| 583 | __unused |
| 584 | #endif |
| 585 | memory_object_t mem_obj) |
| 586 | { |
| 587 | PAGER_DEBUG(PAGER_ALL, ("swapfile_pager_terminate: %p\n" , mem_obj)); |
| 588 | |
| 589 | return KERN_SUCCESS; |
| 590 | } |
| 591 | |
| 592 | /* |
| 593 | * swapfile_pager_map() |
| 594 | * |
| 595 | * This allows VM to let us, the EMM, know that this memory object |
| 596 | * is currently mapped one or more times. This is called by VM each time |
| 597 | * the memory object gets mapped and we take one extra reference on the |
| 598 | * memory object to account for all its mappings. |
| 599 | */ |
| 600 | kern_return_t |
| 601 | ( |
| 602 | memory_object_t mem_obj, |
| 603 | __unused vm_prot_t prot) |
| 604 | { |
| 605 | swapfile_pager_t ; |
| 606 | |
| 607 | PAGER_DEBUG(PAGER_ALL, ("swapfile_pager_map: %p\n" , mem_obj)); |
| 608 | |
| 609 | pager = swapfile_pager_lookup(mem_obj); |
| 610 | |
| 611 | lck_mtx_lock(lck: &swapfile_pager_lock); |
| 612 | assert(pager->is_ready); |
| 613 | assert(os_ref_get_count_raw(&pager->swp_pgr_hdr_ref) > 0); /* pager is alive */ |
| 614 | if (pager->is_mapped == FALSE) { |
| 615 | /* |
| 616 | * First mapping of this pager: take an extra reference |
| 617 | * that will remain until all the mappings of this pager |
| 618 | * are removed. |
| 619 | */ |
| 620 | pager->is_mapped = TRUE; |
| 621 | os_ref_retain_locked_raw(&pager->swp_pgr_hdr_ref, NULL); |
| 622 | } |
| 623 | lck_mtx_unlock(lck: &swapfile_pager_lock); |
| 624 | |
| 625 | return KERN_SUCCESS; |
| 626 | } |
| 627 | |
| 628 | /* |
| 629 | * swapfile_pager_last_unmap() |
| 630 | * |
| 631 | * This is called by VM when this memory object is no longer mapped anywhere. |
| 632 | */ |
| 633 | kern_return_t |
| 634 | ( |
| 635 | memory_object_t mem_obj) |
| 636 | { |
| 637 | swapfile_pager_t ; |
| 638 | |
| 639 | PAGER_DEBUG(PAGER_ALL, |
| 640 | ("swapfile_pager_last_unmap: %p\n" , mem_obj)); |
| 641 | |
| 642 | pager = swapfile_pager_lookup(mem_obj); |
| 643 | |
| 644 | lck_mtx_lock(lck: &swapfile_pager_lock); |
| 645 | if (pager->is_mapped) { |
| 646 | /* |
| 647 | * All the mappings are gone, so let go of the one extra |
| 648 | * reference that represents all the mappings of this pager. |
| 649 | */ |
| 650 | pager->is_mapped = FALSE; |
| 651 | swapfile_pager_deallocate_internal(pager, TRUE); |
| 652 | /* caution: deallocate_internal() released the lock ! */ |
| 653 | } else { |
| 654 | lck_mtx_unlock(lck: &swapfile_pager_lock); |
| 655 | } |
| 656 | |
| 657 | return KERN_SUCCESS; |
| 658 | } |
| 659 | |
| 660 | |
| 661 | /* |
| 662 | * |
| 663 | */ |
| 664 | swapfile_pager_t |
| 665 | ( |
| 666 | memory_object_t mem_obj) |
| 667 | { |
| 668 | swapfile_pager_t ; |
| 669 | |
| 670 | assert(mem_obj->mo_pager_ops == &swapfile_pager_ops); |
| 671 | __IGNORE_WCASTALIGN(pager = (swapfile_pager_t) mem_obj); |
| 672 | assert(os_ref_get_count_raw(&pager->swp_pgr_hdr_ref) > 0); |
| 673 | return pager; |
| 674 | } |
| 675 | |
| 676 | swapfile_pager_t |
| 677 | ( |
| 678 | struct vnode *vp) |
| 679 | { |
| 680 | swapfile_pager_t , ; |
| 681 | memory_object_control_t control; |
| 682 | kern_return_t kr; |
| 683 | |
| 684 | pager = kalloc_type(struct swapfile_pager, Z_WAITOK | Z_NOFAIL); |
| 685 | |
| 686 | /* |
| 687 | * The vm_map call takes both named entry ports and raw memory |
| 688 | * objects in the same parameter. We need to make sure that |
| 689 | * vm_map does not see this object as a named entry port. So, |
| 690 | * we reserve the second word in the object for a fake ip_kotype |
| 691 | * setting - that will tell vm_map to use it as a memory object. |
| 692 | */ |
| 693 | pager->swp_pgr_hdr.mo_ikot = IKOT_MEMORY_OBJECT; |
| 694 | pager->swp_pgr_hdr.mo_pager_ops = &swapfile_pager_ops; |
| 695 | pager->swp_pgr_hdr.mo_control = MEMORY_OBJECT_CONTROL_NULL; |
| 696 | |
| 697 | pager->is_ready = FALSE;/* not ready until it has a "name" */ |
| 698 | os_ref_init_raw(&pager->swp_pgr_hdr_ref, NULL); /* setup reference */ |
| 699 | pager->is_mapped = FALSE; |
| 700 | pager->swapfile_vnode = vp; |
| 701 | |
| 702 | lck_mtx_lock(lck: &swapfile_pager_lock); |
| 703 | /* see if anyone raced us to create a pager for the same object */ |
| 704 | queue_iterate(&swapfile_pager_queue, |
| 705 | pager2, |
| 706 | swapfile_pager_t, |
| 707 | pager_queue) { |
| 708 | if (pager2->swapfile_vnode == vp) { |
| 709 | break; |
| 710 | } |
| 711 | } |
| 712 | if (!queue_end(&swapfile_pager_queue, |
| 713 | (queue_entry_t) pager2)) { |
| 714 | /* while we hold the lock, transfer our setup ref to winner */ |
| 715 | os_ref_retain_locked_raw(&pager2->swp_pgr_hdr_ref, NULL); |
| 716 | /* we lost the race, down with the loser... */ |
| 717 | lck_mtx_unlock(lck: &swapfile_pager_lock); |
| 718 | pager->swapfile_vnode = NULL; |
| 719 | kfree_type(struct swapfile_pager, pager); |
| 720 | /* ... and go with the winner */ |
| 721 | pager = pager2; |
| 722 | /* let the winner make sure the pager gets ready */ |
| 723 | return pager; |
| 724 | } |
| 725 | |
| 726 | /* enter new pager at the head of our list of pagers */ |
| 727 | queue_enter_first(&swapfile_pager_queue, |
| 728 | pager, |
| 729 | swapfile_pager_t, |
| 730 | pager_queue); |
| 731 | swapfile_pager_count++; |
| 732 | if (swapfile_pager_count > swapfile_pager_count_max) { |
| 733 | swapfile_pager_count_max = swapfile_pager_count; |
| 734 | } |
| 735 | lck_mtx_unlock(lck: &swapfile_pager_lock); |
| 736 | |
| 737 | kr = memory_object_create_named(pager: (memory_object_t) pager, |
| 738 | size: 0, |
| 739 | control: &control); |
| 740 | assert(kr == KERN_SUCCESS); |
| 741 | |
| 742 | memory_object_mark_trusted(control); |
| 743 | |
| 744 | lck_mtx_lock(lck: &swapfile_pager_lock); |
| 745 | /* the new pager is now ready to be used */ |
| 746 | pager->is_ready = TRUE; |
| 747 | lck_mtx_unlock(lck: &swapfile_pager_lock); |
| 748 | |
| 749 | /* wakeup anyone waiting for this pager to be ready */ |
| 750 | thread_wakeup(&pager->is_ready); |
| 751 | |
| 752 | return pager; |
| 753 | } |
| 754 | |
| 755 | /* |
| 756 | * swapfile_pager_setup() |
| 757 | * |
| 758 | * Provide the caller with a memory object backed by the provided |
| 759 | * "backing_object" VM object. If such a memory object already exists, |
| 760 | * re-use it, otherwise create a new memory object. |
| 761 | */ |
| 762 | memory_object_t |
| 763 | ( |
| 764 | struct vnode *vp) |
| 765 | { |
| 766 | swapfile_pager_t ; |
| 767 | |
| 768 | lck_mtx_lock(lck: &swapfile_pager_lock); |
| 769 | |
| 770 | queue_iterate(&swapfile_pager_queue, |
| 771 | pager, |
| 772 | swapfile_pager_t, |
| 773 | pager_queue) { |
| 774 | if (pager->swapfile_vnode == vp) { |
| 775 | break; |
| 776 | } |
| 777 | } |
| 778 | if (queue_end(&swapfile_pager_queue, |
| 779 | (queue_entry_t) pager)) { |
| 780 | /* no existing pager for this backing object */ |
| 781 | pager = SWAPFILE_PAGER_NULL; |
| 782 | } else { |
| 783 | /* make sure pager doesn't disappear */ |
| 784 | os_ref_retain_raw(&pager->swp_pgr_hdr_ref, NULL); |
| 785 | } |
| 786 | |
| 787 | lck_mtx_unlock(lck: &swapfile_pager_lock); |
| 788 | |
| 789 | if (pager == SWAPFILE_PAGER_NULL) { |
| 790 | pager = swapfile_pager_create(vp); |
| 791 | if (pager == SWAPFILE_PAGER_NULL) { |
| 792 | return MEMORY_OBJECT_NULL; |
| 793 | } |
| 794 | } |
| 795 | |
| 796 | lck_mtx_lock(lck: &swapfile_pager_lock); |
| 797 | while (!pager->is_ready) { |
| 798 | lck_mtx_sleep(lck: &swapfile_pager_lock, |
| 799 | lck_sleep_action: LCK_SLEEP_DEFAULT, |
| 800 | event: &pager->is_ready, |
| 801 | THREAD_UNINT); |
| 802 | } |
| 803 | lck_mtx_unlock(lck: &swapfile_pager_lock); |
| 804 | |
| 805 | return (memory_object_t) pager; |
| 806 | } |
| 807 | |
| 808 | memory_object_control_t |
| 809 | ( |
| 810 | memory_object_t mem_obj) |
| 811 | { |
| 812 | swapfile_pager_t ; |
| 813 | |
| 814 | if (mem_obj == MEMORY_OBJECT_NULL || |
| 815 | mem_obj->mo_pager_ops != &swapfile_pager_ops) { |
| 816 | return MEMORY_OBJECT_CONTROL_NULL; |
| 817 | } |
| 818 | pager = swapfile_pager_lookup(mem_obj); |
| 819 | return pager->swp_pgr_hdr.mo_control; |
| 820 | } |
| 821 | |