| 1 | /* |
| 2 | * Copyright (c) 2000-2020 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
| 5 | * |
| 6 | * This file contains Original Code and/or Modifications of Original Code |
| 7 | * as defined in and that are subject to the Apple Public Source License |
| 8 | * Version 2.0 (the 'License'). You may not use this file except in |
| 9 | * compliance with the License. The rights granted to you under the License |
| 10 | * may not be used to create, or enable the creation or redistribution of, |
| 11 | * unlawful or unlicensed copies of an Apple operating system, or to |
| 12 | * circumvent, violate, or enable the circumvention or violation of, any |
| 13 | * terms of an Apple operating system software license agreement. |
| 14 | * |
| 15 | * Please obtain a copy of the License at |
| 16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
| 17 | * |
| 18 | * The Original Code and all software distributed under the License are |
| 19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| 23 | * Please see the License for the specific language governing rights and |
| 24 | * limitations under the License. |
| 25 | * |
| 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
| 27 | */ |
| 28 | /* |
| 29 | * @OSF_COPYRIGHT@ |
| 30 | */ |
| 31 | /* |
| 32 | * Mach Operating System |
| 33 | * Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University |
| 34 | * All Rights Reserved. |
| 35 | * |
| 36 | * Permission to use, copy, modify and distribute this software and its |
| 37 | * documentation is hereby granted, provided that both the copyright |
| 38 | * notice and this permission notice appear in all copies of the |
| 39 | * software, derivative works or modified versions, and any portions |
| 40 | * thereof, and that both notices appear in supporting documentation. |
| 41 | * |
| 42 | * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" |
| 43 | * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR |
| 44 | * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. |
| 45 | * |
| 46 | * Carnegie Mellon requests users of this software to return to |
| 47 | * |
| 48 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU |
| 49 | * School of Computer Science |
| 50 | * Carnegie Mellon University |
| 51 | * Pittsburgh PA 15213-3890 |
| 52 | * |
| 53 | * any improvements or extensions that they make and grant Carnegie Mellon |
| 54 | * the rights to redistribute these changes. |
| 55 | */ |
| 56 | /* |
| 57 | */ |
| 58 | /* |
| 59 | * File: vm/vm_page.c |
| 60 | * Author: Avadis Tevanian, Jr., Michael Wayne Young |
| 61 | * |
| 62 | * Resident memory management module. |
| 63 | */ |
| 64 | |
| 65 | #include <debug.h> |
| 66 | #include <libkern/OSAtomic.h> |
| 67 | #include <libkern/OSDebug.h> |
| 68 | |
| 69 | #include <mach/clock_types.h> |
| 70 | #include <mach/vm_prot.h> |
| 71 | #include <mach/vm_statistics.h> |
| 72 | #include <mach/sdt.h> |
| 73 | #include <kern/counter.h> |
| 74 | #include <kern/host_statistics.h> |
| 75 | #include <kern/sched_prim.h> |
| 76 | #include <kern/policy_internal.h> |
| 77 | #include <kern/task.h> |
| 78 | #include <kern/thread.h> |
| 79 | #include <kern/kalloc.h> |
| 80 | #include <kern/zalloc_internal.h> |
| 81 | #include <kern/ledger.h> |
| 82 | #include <kern/ecc.h> |
| 83 | #include <vm/pmap.h> |
| 84 | #include <vm/vm_init.h> |
| 85 | #include <vm/vm_map.h> |
| 86 | #include <vm/vm_page.h> |
| 87 | #include <vm/vm_pageout.h> |
| 88 | #include <vm/vm_kern.h> /* kmem_alloc() */ |
| 89 | #include <kern/misc_protos.h> |
| 90 | #include <mach_debug/zone_info.h> |
| 91 | #include <vm/cpm.h> |
| 92 | #include <pexpert/pexpert.h> |
| 93 | #include <pexpert/device_tree.h> |
| 94 | #include <san/kasan.h> |
| 95 | #include <os/log.h> |
| 96 | |
| 97 | #include <vm/vm_protos.h> |
| 98 | #include <vm/memory_object.h> |
| 99 | #include <vm/vm_purgeable_internal.h> |
| 100 | #include <vm/vm_compressor.h> |
| 101 | #if defined (__x86_64__) |
| 102 | #include <i386/misc_protos.h> |
| 103 | #endif |
| 104 | |
| 105 | #if CONFIG_PHANTOM_CACHE |
| 106 | #include <vm/vm_phantom_cache.h> |
| 107 | #endif |
| 108 | |
| 109 | #if HIBERNATION |
| 110 | #include <IOKit/IOHibernatePrivate.h> |
| 111 | #include <machine/pal_hibernate.h> |
| 112 | #endif /* HIBERNATION */ |
| 113 | |
| 114 | #include <sys/kdebug.h> |
| 115 | |
| 116 | #if defined(HAS_APPLE_PAC) |
| 117 | #include <ptrauth.h> |
| 118 | #endif |
| 119 | #if defined(__arm64__) |
| 120 | #include <arm/cpu_internal.h> |
| 121 | #endif /* defined(__arm64__) */ |
| 122 | |
| 123 | #if MACH_ASSERT |
| 124 | |
| 125 | TUNABLE(bool, vm_check_refs_on_free, "vm_check_refs_on_free" , true); |
| 126 | #define ASSERT_PMAP_FREE(mem) pmap_assert_free(VM_PAGE_GET_PHYS_PAGE(mem)) |
| 127 | |
| 128 | #else /* MACH_ASSERT */ |
| 129 | |
| 130 | #define ASSERT_PMAP_FREE(mem) /* nothing */ |
| 131 | |
| 132 | #endif /* MACH_ASSERT */ |
| 133 | |
| 134 | extern boolean_t vm_pageout_running; |
| 135 | extern thread_t vm_pageout_scan_thread; |
| 136 | extern bool vps_dynamic_priority_enabled; |
| 137 | |
| 138 | char vm_page_inactive_states[VM_PAGE_Q_STATE_ARRAY_SIZE]; |
| 139 | char vm_page_pageable_states[VM_PAGE_Q_STATE_ARRAY_SIZE]; |
| 140 | char vm_page_non_speculative_pageable_states[VM_PAGE_Q_STATE_ARRAY_SIZE]; |
| 141 | char vm_page_active_or_inactive_states[VM_PAGE_Q_STATE_ARRAY_SIZE]; |
| 142 | |
| 143 | #if CONFIG_SECLUDED_MEMORY |
| 144 | struct vm_page_secluded_data vm_page_secluded; |
| 145 | #endif /* CONFIG_SECLUDED_MEMORY */ |
| 146 | |
| 147 | #if DEVELOPMENT || DEBUG |
| 148 | extern struct memory_object_pager_ops shared_region_pager_ops; |
| 149 | unsigned int shared_region_pagers_resident_count = 0; |
| 150 | unsigned int shared_region_pagers_resident_peak = 0; |
| 151 | #endif /* DEVELOPMENT || DEBUG */ |
| 152 | |
| 153 | |
| 154 | |
| 155 | int PERCPU_DATA(start_color); |
| 156 | vm_page_t PERCPU_DATA(free_pages); |
| 157 | boolean_t hibernate_cleaning_in_progress = FALSE; |
| 158 | |
| 159 | uint32_t vm_lopage_free_count = 0; |
| 160 | uint32_t vm_lopage_free_limit = 0; |
| 161 | uint32_t vm_lopage_lowater = 0; |
| 162 | boolean_t vm_lopage_refill = FALSE; |
| 163 | boolean_t vm_lopage_needed = FALSE; |
| 164 | |
| 165 | int speculative_age_index = 0; |
| 166 | int speculative_steal_index = 0; |
| 167 | struct vm_speculative_age_q vm_page_queue_speculative[VM_PAGE_MAX_SPECULATIVE_AGE_Q + 1]; |
| 168 | |
| 169 | boolean_t hibernation_vmqueues_inspection = FALSE; /* Tracks if the hibernation code is looking at the VM queues. |
| 170 | * Updated and checked behind the vm_page_queues_lock. */ |
| 171 | |
| 172 | static void vm_page_free_prepare(vm_page_t page); |
| 173 | static vm_page_t vm_page_grab_fictitious_common(ppnum_t, boolean_t); |
| 174 | |
| 175 | static void vm_tag_init(void); |
| 176 | |
| 177 | /* for debugging purposes */ |
| 178 | SECURITY_READ_ONLY_EARLY(uint32_t) vm_packed_from_vm_pages_array_mask = |
| 179 | VM_PAGE_PACKED_FROM_ARRAY; |
| 180 | SECURITY_READ_ONLY_EARLY(vm_packing_params_t) vm_page_packing_params = |
| 181 | VM_PACKING_PARAMS(VM_PAGE_PACKED_PTR); |
| 182 | |
| 183 | /* |
| 184 | * Associated with page of user-allocatable memory is a |
| 185 | * page structure. |
| 186 | */ |
| 187 | |
| 188 | /* |
| 189 | * These variables record the values returned by vm_page_bootstrap, |
| 190 | * for debugging purposes. The implementation of pmap_steal_memory |
| 191 | * and pmap_startup here also uses them internally. |
| 192 | */ |
| 193 | |
| 194 | vm_offset_t virtual_space_start; |
| 195 | vm_offset_t virtual_space_end; |
| 196 | uint32_t vm_page_pages; |
| 197 | |
| 198 | /* |
| 199 | * The vm_page_lookup() routine, which provides for fast |
| 200 | * (virtual memory object, offset) to page lookup, employs |
| 201 | * the following hash table. The vm_page_{insert,remove} |
| 202 | * routines install and remove associations in the table. |
| 203 | * [This table is often called the virtual-to-physical, |
| 204 | * or VP, table.] |
| 205 | */ |
| 206 | typedef struct { |
| 207 | vm_page_packed_t page_list; |
| 208 | #if MACH_PAGE_HASH_STATS |
| 209 | int cur_count; /* current count */ |
| 210 | int hi_count; /* high water mark */ |
| 211 | #endif /* MACH_PAGE_HASH_STATS */ |
| 212 | } vm_page_bucket_t; |
| 213 | |
| 214 | |
| 215 | #define BUCKETS_PER_LOCK 16 |
| 216 | |
| 217 | SECURITY_READ_ONLY_LATE(vm_page_bucket_t *) vm_page_buckets; /* Array of buckets */ |
| 218 | SECURITY_READ_ONLY_LATE(unsigned int) vm_page_bucket_count = 0; /* How big is array? */ |
| 219 | SECURITY_READ_ONLY_LATE(unsigned int) vm_page_hash_mask; /* Mask for hash function */ |
| 220 | SECURITY_READ_ONLY_LATE(unsigned int) vm_page_hash_shift; /* Shift for hash function */ |
| 221 | SECURITY_READ_ONLY_LATE(uint32_t) vm_page_bucket_hash; /* Basic bucket hash */ |
| 222 | SECURITY_READ_ONLY_LATE(unsigned int) vm_page_bucket_lock_count = 0; /* How big is array of locks? */ |
| 223 | |
| 224 | #ifndef VM_TAG_ACTIVE_UPDATE |
| 225 | #error VM_TAG_ACTIVE_UPDATE |
| 226 | #endif |
| 227 | #ifndef VM_TAG_SIZECLASSES |
| 228 | #error VM_TAG_SIZECLASSES |
| 229 | #endif |
| 230 | |
| 231 | /* for debugging */ |
| 232 | SECURITY_READ_ONLY_LATE(bool) vm_tag_active_update = VM_TAG_ACTIVE_UPDATE; |
| 233 | SECURITY_READ_ONLY_LATE(lck_spin_t *) vm_page_bucket_locks; |
| 234 | |
| 235 | vm_allocation_site_t vm_allocation_sites_static[VM_KERN_MEMORY_FIRST_DYNAMIC + 1]; |
| 236 | vm_allocation_site_t * vm_allocation_sites[VM_MAX_TAG_VALUE]; |
| 237 | #if VM_TAG_SIZECLASSES |
| 238 | static vm_allocation_zone_total_t **vm_allocation_zone_totals; |
| 239 | #endif /* VM_TAG_SIZECLASSES */ |
| 240 | |
| 241 | vm_tag_t vm_allocation_tag_highest; |
| 242 | |
| 243 | #if VM_PAGE_BUCKETS_CHECK |
| 244 | boolean_t vm_page_buckets_check_ready = FALSE; |
| 245 | #if VM_PAGE_FAKE_BUCKETS |
| 246 | vm_page_bucket_t *vm_page_fake_buckets; /* decoy buckets */ |
| 247 | vm_map_offset_t vm_page_fake_buckets_start, vm_page_fake_buckets_end; |
| 248 | #endif /* VM_PAGE_FAKE_BUCKETS */ |
| 249 | #endif /* VM_PAGE_BUCKETS_CHECK */ |
| 250 | |
| 251 | #if MACH_PAGE_HASH_STATS |
| 252 | /* This routine is only for debug. It is intended to be called by |
| 253 | * hand by a developer using a kernel debugger. This routine prints |
| 254 | * out vm_page_hash table statistics to the kernel debug console. |
| 255 | */ |
| 256 | void |
| 257 | hash_debug(void) |
| 258 | { |
| 259 | int i; |
| 260 | int numbuckets = 0; |
| 261 | int highsum = 0; |
| 262 | int maxdepth = 0; |
| 263 | |
| 264 | for (i = 0; i < vm_page_bucket_count; i++) { |
| 265 | if (vm_page_buckets[i].hi_count) { |
| 266 | numbuckets++; |
| 267 | highsum += vm_page_buckets[i].hi_count; |
| 268 | if (vm_page_buckets[i].hi_count > maxdepth) { |
| 269 | maxdepth = vm_page_buckets[i].hi_count; |
| 270 | } |
| 271 | } |
| 272 | } |
| 273 | printf("Total number of buckets: %d\n" , vm_page_bucket_count); |
| 274 | printf("Number used buckets: %d = %d%%\n" , |
| 275 | numbuckets, 100 * numbuckets / vm_page_bucket_count); |
| 276 | printf("Number unused buckets: %d = %d%%\n" , |
| 277 | vm_page_bucket_count - numbuckets, |
| 278 | 100 * (vm_page_bucket_count - numbuckets) / vm_page_bucket_count); |
| 279 | printf("Sum of bucket max depth: %d\n" , highsum); |
| 280 | printf("Average bucket depth: %d.%2d\n" , |
| 281 | highsum / vm_page_bucket_count, |
| 282 | highsum % vm_page_bucket_count); |
| 283 | printf("Maximum bucket depth: %d\n" , maxdepth); |
| 284 | } |
| 285 | #endif /* MACH_PAGE_HASH_STATS */ |
| 286 | |
| 287 | /* |
| 288 | * The virtual page size is currently implemented as a runtime |
| 289 | * variable, but is constant once initialized using vm_set_page_size. |
| 290 | * This initialization must be done in the machine-dependent |
| 291 | * bootstrap sequence, before calling other machine-independent |
| 292 | * initializations. |
| 293 | * |
| 294 | * All references to the virtual page size outside this |
| 295 | * module must use the PAGE_SIZE, PAGE_MASK and PAGE_SHIFT |
| 296 | * constants. |
| 297 | */ |
| 298 | #if defined(__arm64__) |
| 299 | vm_size_t page_size; |
| 300 | vm_size_t page_mask; |
| 301 | int page_shift; |
| 302 | #else |
| 303 | vm_size_t page_size = PAGE_SIZE; |
| 304 | vm_size_t page_mask = PAGE_MASK; |
| 305 | int page_shift = PAGE_SHIFT; |
| 306 | #endif |
| 307 | |
| 308 | SECURITY_READ_ONLY_LATE(vm_page_t) vm_pages = VM_PAGE_NULL; |
| 309 | SECURITY_READ_ONLY_LATE(vm_page_t) vm_page_array_beginning_addr; |
| 310 | vm_page_t vm_page_array_ending_addr; |
| 311 | |
| 312 | unsigned int vm_pages_count = 0; |
| 313 | |
| 314 | /* |
| 315 | * Resident pages that represent real memory |
| 316 | * are allocated from a set of free lists, |
| 317 | * one per color. |
| 318 | */ |
| 319 | unsigned int vm_colors; |
| 320 | unsigned int vm_color_mask; /* mask is == (vm_colors-1) */ |
| 321 | unsigned int vm_cache_geometry_colors = 0; /* set by hw dependent code during startup */ |
| 322 | unsigned int vm_free_magazine_refill_limit = 0; |
| 323 | |
| 324 | |
| 325 | struct vm_page_queue_free_head { |
| 326 | vm_page_queue_head_t qhead; |
| 327 | } VM_PAGE_PACKED_ALIGNED; |
| 328 | |
| 329 | struct vm_page_queue_free_head vm_page_queue_free[MAX_COLORS]; |
| 330 | |
| 331 | |
| 332 | unsigned int vm_page_free_wanted; |
| 333 | unsigned int vm_page_free_wanted_privileged; |
| 334 | #if CONFIG_SECLUDED_MEMORY |
| 335 | unsigned int vm_page_free_wanted_secluded; |
| 336 | #endif /* CONFIG_SECLUDED_MEMORY */ |
| 337 | unsigned int vm_page_free_count; |
| 338 | |
| 339 | unsigned int vm_page_realtime_count; |
| 340 | |
| 341 | /* |
| 342 | * Occasionally, the virtual memory system uses |
| 343 | * resident page structures that do not refer to |
| 344 | * real pages, for example to leave a page with |
| 345 | * important state information in the VP table. |
| 346 | * |
| 347 | * These page structures are allocated the way |
| 348 | * most other kernel structures are. |
| 349 | */ |
| 350 | SECURITY_READ_ONLY_LATE(zone_t) vm_page_zone; |
| 351 | vm_locks_array_t vm_page_locks; |
| 352 | |
| 353 | LCK_ATTR_DECLARE(vm_page_lck_attr, 0, 0); |
| 354 | LCK_GRP_DECLARE(vm_page_lck_grp_free, "vm_page_free" ); |
| 355 | LCK_GRP_DECLARE(vm_page_lck_grp_queue, "vm_page_queue" ); |
| 356 | LCK_GRP_DECLARE(vm_page_lck_grp_local, "vm_page_queue_local" ); |
| 357 | LCK_GRP_DECLARE(vm_page_lck_grp_purge, "vm_page_purge" ); |
| 358 | LCK_GRP_DECLARE(vm_page_lck_grp_alloc, "vm_page_alloc" ); |
| 359 | LCK_GRP_DECLARE(vm_page_lck_grp_bucket, "vm_page_bucket" ); |
| 360 | LCK_SPIN_DECLARE_ATTR(vm_objects_wired_lock, &vm_page_lck_grp_bucket, &vm_page_lck_attr); |
| 361 | LCK_TICKET_DECLARE(vm_allocation_sites_lock, &vm_page_lck_grp_bucket); |
| 362 | |
| 363 | unsigned int vm_page_local_q_soft_limit = 250; |
| 364 | unsigned int vm_page_local_q_hard_limit = 500; |
| 365 | struct vpl *__zpercpu vm_page_local_q; |
| 366 | |
| 367 | /* N.B. Guard and fictitious pages must not |
| 368 | * be assigned a zero phys_page value. |
| 369 | */ |
| 370 | /* |
| 371 | * Fictitious pages don't have a physical address, |
| 372 | * but we must initialize phys_page to something. |
| 373 | * For debugging, this should be a strange value |
| 374 | * that the pmap module can recognize in assertions. |
| 375 | */ |
| 376 | const ppnum_t vm_page_fictitious_addr = (ppnum_t) -1; |
| 377 | |
| 378 | /* |
| 379 | * Guard pages are not accessible so they don't |
| 380 | * need a physical address, but we need to enter |
| 381 | * one in the pmap. |
| 382 | * Let's make it recognizable and make sure that |
| 383 | * we don't use a real physical page with that |
| 384 | * physical address. |
| 385 | */ |
| 386 | const ppnum_t vm_page_guard_addr = (ppnum_t) -2; |
| 387 | |
| 388 | /* |
| 389 | * Resident page structures are also chained on |
| 390 | * queues that are used by the page replacement |
| 391 | * system (pageout daemon). These queues are |
| 392 | * defined here, but are shared by the pageout |
| 393 | * module. The inactive queue is broken into |
| 394 | * file backed and anonymous for convenience as the |
| 395 | * pageout daemon often assignes a higher |
| 396 | * importance to anonymous pages (less likely to pick) |
| 397 | */ |
| 398 | vm_page_queue_head_t vm_page_queue_active VM_PAGE_PACKED_ALIGNED; |
| 399 | vm_page_queue_head_t vm_page_queue_inactive VM_PAGE_PACKED_ALIGNED; |
| 400 | #if CONFIG_SECLUDED_MEMORY |
| 401 | vm_page_queue_head_t vm_page_queue_secluded VM_PAGE_PACKED_ALIGNED; |
| 402 | #endif /* CONFIG_SECLUDED_MEMORY */ |
| 403 | vm_page_queue_head_t vm_page_queue_anonymous VM_PAGE_PACKED_ALIGNED; /* inactive memory queue for anonymous pages */ |
| 404 | vm_page_queue_head_t vm_page_queue_throttled VM_PAGE_PACKED_ALIGNED; |
| 405 | |
| 406 | queue_head_t vm_objects_wired; |
| 407 | |
| 408 | void vm_update_darkwake_mode(boolean_t); |
| 409 | |
| 410 | vm_page_queue_head_t vm_page_queue_donate VM_PAGE_PACKED_ALIGNED; |
| 411 | uint32_t vm_page_donate_mode; |
| 412 | uint32_t vm_page_donate_target, vm_page_donate_target_high, vm_page_donate_target_low; |
| 413 | uint32_t vm_page_donate_count; |
| 414 | bool vm_page_donate_queue_ripe; |
| 415 | |
| 416 | |
| 417 | vm_page_queue_head_t vm_page_queue_background VM_PAGE_PACKED_ALIGNED; |
| 418 | uint32_t vm_page_background_target; |
| 419 | uint32_t vm_page_background_target_snapshot; |
| 420 | uint32_t vm_page_background_count; |
| 421 | uint64_t vm_page_background_promoted_count; |
| 422 | |
| 423 | uint32_t vm_page_background_internal_count; |
| 424 | uint32_t vm_page_background_external_count; |
| 425 | |
| 426 | uint32_t vm_page_background_mode; |
| 427 | uint32_t vm_page_background_exclude_external; |
| 428 | |
| 429 | unsigned int vm_page_active_count; |
| 430 | unsigned int vm_page_inactive_count; |
| 431 | unsigned int vm_page_kernelcache_count; |
| 432 | #if CONFIG_SECLUDED_MEMORY |
| 433 | unsigned int vm_page_secluded_count; |
| 434 | unsigned int vm_page_secluded_count_free; |
| 435 | unsigned int vm_page_secluded_count_inuse; |
| 436 | unsigned int vm_page_secluded_count_over_target; |
| 437 | #endif /* CONFIG_SECLUDED_MEMORY */ |
| 438 | unsigned int vm_page_anonymous_count; |
| 439 | unsigned int vm_page_throttled_count; |
| 440 | unsigned int vm_page_speculative_count; |
| 441 | |
| 442 | unsigned int vm_page_wire_count; |
| 443 | unsigned int vm_page_wire_count_on_boot = 0; |
| 444 | unsigned int vm_page_stolen_count = 0; |
| 445 | unsigned int vm_page_wire_count_initial; |
| 446 | unsigned int vm_page_gobble_count = 0; |
| 447 | unsigned int vm_page_kern_lpage_count = 0; |
| 448 | |
| 449 | uint64_t booter_size; /* external so it can be found in core dumps */ |
| 450 | |
| 451 | #define VM_PAGE_WIRE_COUNT_WARNING 0 |
| 452 | #define VM_PAGE_GOBBLE_COUNT_WARNING 0 |
| 453 | |
| 454 | unsigned int vm_page_purgeable_count = 0; /* # of pages purgeable now */ |
| 455 | unsigned int vm_page_purgeable_wired_count = 0; /* # of purgeable pages that are wired now */ |
| 456 | uint64_t vm_page_purged_count = 0; /* total count of purged pages */ |
| 457 | |
| 458 | unsigned int vm_page_xpmapped_external_count = 0; |
| 459 | unsigned int vm_page_external_count = 0; |
| 460 | unsigned int vm_page_internal_count = 0; |
| 461 | unsigned int vm_page_pageable_external_count = 0; |
| 462 | unsigned int vm_page_pageable_internal_count = 0; |
| 463 | |
| 464 | #if DEVELOPMENT || DEBUG |
| 465 | unsigned int vm_page_speculative_recreated = 0; |
| 466 | unsigned int vm_page_speculative_created = 0; |
| 467 | unsigned int vm_page_speculative_used = 0; |
| 468 | #endif |
| 469 | |
| 470 | vm_page_queue_head_t vm_page_queue_cleaned VM_PAGE_PACKED_ALIGNED; |
| 471 | |
| 472 | unsigned int vm_page_cleaned_count = 0; |
| 473 | |
| 474 | uint64_t max_valid_dma_address = 0xffffffffffffffffULL; |
| 475 | ppnum_t max_valid_low_ppnum = PPNUM_MAX; |
| 476 | |
| 477 | |
| 478 | /* |
| 479 | * Several page replacement parameters are also |
| 480 | * shared with this module, so that page allocation |
| 481 | * (done here in vm_page_alloc) can trigger the |
| 482 | * pageout daemon. |
| 483 | */ |
| 484 | unsigned int vm_page_free_target = 0; |
| 485 | unsigned int vm_page_free_min = 0; |
| 486 | unsigned int vm_page_throttle_limit = 0; |
| 487 | unsigned int vm_page_inactive_target = 0; |
| 488 | #if CONFIG_SECLUDED_MEMORY |
| 489 | unsigned int vm_page_secluded_target = 0; |
| 490 | #endif /* CONFIG_SECLUDED_MEMORY */ |
| 491 | unsigned int vm_page_anonymous_min = 0; |
| 492 | unsigned int vm_page_free_reserved = 0; |
| 493 | |
| 494 | |
| 495 | /* |
| 496 | * The VM system has a couple of heuristics for deciding |
| 497 | * that pages are "uninteresting" and should be placed |
| 498 | * on the inactive queue as likely candidates for replacement. |
| 499 | * These variables let the heuristics be controlled at run-time |
| 500 | * to make experimentation easier. |
| 501 | */ |
| 502 | |
| 503 | boolean_t vm_page_deactivate_hint = TRUE; |
| 504 | |
| 505 | struct vm_page_stats_reusable vm_page_stats_reusable; |
| 506 | |
| 507 | /* |
| 508 | * vm_set_page_size: |
| 509 | * |
| 510 | * Sets the page size, perhaps based upon the memory |
| 511 | * size. Must be called before any use of page-size |
| 512 | * dependent functions. |
| 513 | * |
| 514 | * Sets page_shift and page_mask from page_size. |
| 515 | */ |
| 516 | void |
| 517 | vm_set_page_size(void) |
| 518 | { |
| 519 | page_size = PAGE_SIZE; |
| 520 | page_mask = PAGE_MASK; |
| 521 | page_shift = PAGE_SHIFT; |
| 522 | |
| 523 | if ((page_mask & page_size) != 0) { |
| 524 | panic("vm_set_page_size: page size not a power of two" ); |
| 525 | } |
| 526 | |
| 527 | for (page_shift = 0;; page_shift++) { |
| 528 | if ((1U << page_shift) == page_size) { |
| 529 | break; |
| 530 | } |
| 531 | } |
| 532 | } |
| 533 | |
| 534 | #if defined (__x86_64__) |
| 535 | |
| 536 | #define MAX_CLUMP_SIZE 16 |
| 537 | #define DEFAULT_CLUMP_SIZE 4 |
| 538 | |
| 539 | unsigned int vm_clump_size, vm_clump_mask, vm_clump_shift, vm_clump_promote_threshold; |
| 540 | |
| 541 | #if DEVELOPMENT || DEBUG |
| 542 | unsigned long vm_clump_stats[MAX_CLUMP_SIZE + 1]; |
| 543 | unsigned long vm_clump_allocs, vm_clump_inserts, vm_clump_inrange, vm_clump_promotes; |
| 544 | |
| 545 | static inline void |
| 546 | vm_clump_update_stats(unsigned int c) |
| 547 | { |
| 548 | assert(c <= vm_clump_size); |
| 549 | if (c > 0 && c <= vm_clump_size) { |
| 550 | vm_clump_stats[c] += c; |
| 551 | } |
| 552 | vm_clump_allocs += c; |
| 553 | } |
| 554 | #endif /* if DEVELOPMENT || DEBUG */ |
| 555 | |
| 556 | /* Called once to setup the VM clump knobs */ |
| 557 | static void |
| 558 | vm_page_setup_clump( void ) |
| 559 | { |
| 560 | unsigned int override, n; |
| 561 | |
| 562 | vm_clump_size = DEFAULT_CLUMP_SIZE; |
| 563 | if (PE_parse_boot_argn("clump_size" , &override, sizeof(override))) { |
| 564 | vm_clump_size = override; |
| 565 | } |
| 566 | |
| 567 | if (vm_clump_size > MAX_CLUMP_SIZE) { |
| 568 | panic("vm_page_setup_clump:: clump_size is too large!" ); |
| 569 | } |
| 570 | if (vm_clump_size < 1) { |
| 571 | panic("vm_page_setup_clump:: clump_size must be >= 1" ); |
| 572 | } |
| 573 | if ((vm_clump_size & (vm_clump_size - 1)) != 0) { |
| 574 | panic("vm_page_setup_clump:: clump_size must be a power of 2" ); |
| 575 | } |
| 576 | |
| 577 | vm_clump_promote_threshold = vm_clump_size; |
| 578 | vm_clump_mask = vm_clump_size - 1; |
| 579 | for (vm_clump_shift = 0, n = vm_clump_size; n > 1; n >>= 1, vm_clump_shift++) { |
| 580 | ; |
| 581 | } |
| 582 | |
| 583 | #if DEVELOPMENT || DEBUG |
| 584 | bzero(vm_clump_stats, sizeof(vm_clump_stats)); |
| 585 | vm_clump_allocs = vm_clump_inserts = vm_clump_inrange = vm_clump_promotes = 0; |
| 586 | #endif /* if DEVELOPMENT || DEBUG */ |
| 587 | } |
| 588 | |
| 589 | #endif /* #if defined (__x86_64__) */ |
| 590 | |
| 591 | #define COLOR_GROUPS_TO_STEAL 4 |
| 592 | |
| 593 | /* Called once during statup, once the cache geometry is known. |
| 594 | */ |
| 595 | static void |
| 596 | vm_page_set_colors( void ) |
| 597 | { |
| 598 | unsigned int n, override; |
| 599 | |
| 600 | #if defined (__x86_64__) |
| 601 | /* adjust #colors because we need to color outside the clump boundary */ |
| 602 | vm_cache_geometry_colors >>= vm_clump_shift; |
| 603 | #endif |
| 604 | if (PE_parse_boot_argn(arg_string: "colors" , arg_ptr: &override, max_arg: sizeof(override))) { /* colors specified as a boot-arg? */ |
| 605 | n = override; |
| 606 | } else if (vm_cache_geometry_colors) { /* do we know what the cache geometry is? */ |
| 607 | n = vm_cache_geometry_colors; |
| 608 | } else { |
| 609 | n = DEFAULT_COLORS; /* use default if all else fails */ |
| 610 | } |
| 611 | if (n == 0) { |
| 612 | n = 1; |
| 613 | } |
| 614 | if (n > MAX_COLORS) { |
| 615 | n = MAX_COLORS; |
| 616 | } |
| 617 | |
| 618 | /* the count must be a power of 2 */ |
| 619 | if ((n & (n - 1)) != 0) { |
| 620 | n = DEFAULT_COLORS; /* use default if all else fails */ |
| 621 | } |
| 622 | vm_colors = n; |
| 623 | vm_color_mask = n - 1; |
| 624 | |
| 625 | vm_free_magazine_refill_limit = vm_colors * COLOR_GROUPS_TO_STEAL; |
| 626 | |
| 627 | #if defined (__x86_64__) |
| 628 | /* adjust for reduction in colors due to clumping and multiple cores */ |
| 629 | if (real_ncpus) { |
| 630 | vm_free_magazine_refill_limit *= (vm_clump_size * real_ncpus); |
| 631 | } |
| 632 | #endif |
| 633 | } |
| 634 | |
| 635 | /* |
| 636 | * During single threaded early boot we don't initialize all pages. |
| 637 | * This avoids some delay during boot. They'll be initialized and |
| 638 | * added to the free list as needed or after we are multithreaded by |
| 639 | * what becomes the pageout thread. |
| 640 | */ |
| 641 | static boolean_t fill = FALSE; |
| 642 | static unsigned int fillval; |
| 643 | uint_t vm_delayed_count = 0; /* when non-zero, indicates we may have more pages to init */ |
| 644 | ppnum_t delay_above_pnum = PPNUM_MAX; |
| 645 | |
| 646 | /* |
| 647 | * For x86 first 8 Gig initializes quickly and gives us lots of lowmem + mem above to start off with. |
| 648 | * If ARM ever uses delayed page initialization, this value may need to be quite different. |
| 649 | */ |
| 650 | #define DEFAULT_DELAY_ABOVE_PHYS_GB (8) |
| 651 | |
| 652 | /* |
| 653 | * When we have to dip into more delayed pages due to low memory, free up |
| 654 | * a large chunk to get things back to normal. This avoids contention on the |
| 655 | * delayed code allocating page by page. |
| 656 | */ |
| 657 | #define VM_DELAY_PAGE_CHUNK ((1024 * 1024 * 1024) / PAGE_SIZE) |
| 658 | |
| 659 | /* |
| 660 | * Get and initialize the next delayed page. |
| 661 | */ |
| 662 | static vm_page_t |
| 663 | vm_get_delayed_page(int grab_options) |
| 664 | { |
| 665 | vm_page_t p; |
| 666 | ppnum_t pnum; |
| 667 | |
| 668 | /* |
| 669 | * Get a new page if we have one. |
| 670 | */ |
| 671 | vm_free_page_lock(); |
| 672 | if (vm_delayed_count == 0) { |
| 673 | vm_free_page_unlock(); |
| 674 | return NULL; |
| 675 | } |
| 676 | |
| 677 | if (!pmap_next_page(pnum: &pnum)) { |
| 678 | vm_delayed_count = 0; |
| 679 | vm_free_page_unlock(); |
| 680 | return NULL; |
| 681 | } |
| 682 | |
| 683 | |
| 684 | assert(vm_delayed_count > 0); |
| 685 | --vm_delayed_count; |
| 686 | |
| 687 | #if defined(__x86_64__) |
| 688 | /* x86 cluster code requires increasing phys_page in vm_pages[] */ |
| 689 | if (vm_pages_count > 0) { |
| 690 | assert(pnum > vm_pages[vm_pages_count - 1].vmp_phys_page); |
| 691 | } |
| 692 | #endif |
| 693 | p = &vm_pages[vm_pages_count]; |
| 694 | assert(p < vm_page_array_ending_addr); |
| 695 | vm_page_init(page: p, phys_page: pnum, FALSE); |
| 696 | ++vm_pages_count; |
| 697 | ++vm_page_pages; |
| 698 | vm_free_page_unlock(); |
| 699 | |
| 700 | /* |
| 701 | * These pages were initially counted as wired, undo that now. |
| 702 | */ |
| 703 | if (grab_options & VM_PAGE_GRAB_Q_LOCK_HELD) { |
| 704 | LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED); |
| 705 | } else { |
| 706 | LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_NOTOWNED); |
| 707 | vm_page_lockspin_queues(); |
| 708 | } |
| 709 | --vm_page_wire_count; |
| 710 | --vm_page_wire_count_initial; |
| 711 | if (vm_page_wire_count_on_boot != 0) { |
| 712 | --vm_page_wire_count_on_boot; |
| 713 | } |
| 714 | if (!(grab_options & VM_PAGE_GRAB_Q_LOCK_HELD)) { |
| 715 | vm_page_unlock_queues(); |
| 716 | } |
| 717 | |
| 718 | |
| 719 | if (fill) { |
| 720 | fillPage(pa: pnum, fill: fillval); |
| 721 | } |
| 722 | return p; |
| 723 | } |
| 724 | |
| 725 | static void vm_page_module_init_delayed(void); |
| 726 | |
| 727 | /* |
| 728 | * Free all remaining delayed pages to the free lists. |
| 729 | */ |
| 730 | void |
| 731 | vm_free_delayed_pages(void) |
| 732 | { |
| 733 | vm_page_t p; |
| 734 | vm_page_t list = NULL; |
| 735 | uint_t cnt = 0; |
| 736 | vm_offset_t start_free_va; |
| 737 | int64_t free_size; |
| 738 | |
| 739 | while ((p = vm_get_delayed_page(VM_PAGE_GRAB_OPTIONS_NONE)) != NULL) { |
| 740 | if (vm_himemory_mode) { |
| 741 | vm_page_release(page: p, FALSE); |
| 742 | } else { |
| 743 | p->vmp_snext = list; |
| 744 | list = p; |
| 745 | } |
| 746 | ++cnt; |
| 747 | } |
| 748 | |
| 749 | /* |
| 750 | * Free the pages in reverse order if not himemory mode. |
| 751 | * Hence the low memory pages will be first on free lists. (LIFO) |
| 752 | */ |
| 753 | while (list != NULL) { |
| 754 | p = list; |
| 755 | list = p->vmp_snext; |
| 756 | p->vmp_snext = NULL; |
| 757 | vm_page_release(page: p, FALSE); |
| 758 | } |
| 759 | #if DEVELOPMENT || DEBUG |
| 760 | kprintf("vm_free_delayed_pages: initialized %d free pages\n" , cnt); |
| 761 | #endif |
| 762 | |
| 763 | /* |
| 764 | * Free up any unused full pages at the end of the vm_pages[] array |
| 765 | */ |
| 766 | start_free_va = round_page(x: (vm_offset_t)&vm_pages[vm_pages_count]); |
| 767 | |
| 768 | #if defined(__x86_64__) |
| 769 | /* |
| 770 | * Since x86 might have used large pages for vm_pages[], we can't |
| 771 | * free starting in the middle of a partially used large page. |
| 772 | */ |
| 773 | if (pmap_query_pagesize(kernel_pmap, start_free_va) == I386_LPGBYTES) { |
| 774 | start_free_va = ((start_free_va + I386_LPGMASK) & ~I386_LPGMASK); |
| 775 | } |
| 776 | #endif |
| 777 | if (start_free_va < (vm_offset_t)vm_page_array_ending_addr) { |
| 778 | free_size = trunc_page((vm_offset_t)vm_page_array_ending_addr - start_free_va); |
| 779 | if (free_size > 0) { |
| 780 | ml_static_mfree(start_free_va, (vm_offset_t)free_size); |
| 781 | vm_page_array_ending_addr = (void *)start_free_va; |
| 782 | |
| 783 | /* |
| 784 | * Note there's no locking here, as only this thread will ever change this value. |
| 785 | * The reader, vm_page_diagnose, doesn't grab any locks for the counts it looks at. |
| 786 | */ |
| 787 | vm_page_stolen_count -= (free_size >> PAGE_SHIFT); |
| 788 | |
| 789 | #if DEVELOPMENT || DEBUG |
| 790 | kprintf("Freeing final unused %ld bytes from vm_pages[] at 0x%lx\n" , |
| 791 | (long)free_size, (long)start_free_va); |
| 792 | #endif |
| 793 | } |
| 794 | } |
| 795 | |
| 796 | |
| 797 | /* |
| 798 | * now we can create the VM page array zone |
| 799 | */ |
| 800 | vm_page_module_init_delayed(); |
| 801 | } |
| 802 | |
| 803 | /* |
| 804 | * Try and free up enough delayed pages to match a contig memory allocation. |
| 805 | */ |
| 806 | static void |
| 807 | vm_free_delayed_pages_contig( |
| 808 | uint_t npages, |
| 809 | ppnum_t max_pnum, |
| 810 | ppnum_t pnum_mask) |
| 811 | { |
| 812 | vm_page_t p; |
| 813 | ppnum_t pnum; |
| 814 | uint_t cnt = 0; |
| 815 | |
| 816 | /* |
| 817 | * Treat 0 as the absolute max page number. |
| 818 | */ |
| 819 | if (max_pnum == 0) { |
| 820 | max_pnum = PPNUM_MAX; |
| 821 | } |
| 822 | |
| 823 | /* |
| 824 | * Free till we get a properly aligned start page |
| 825 | */ |
| 826 | for (;;) { |
| 827 | p = vm_get_delayed_page(VM_PAGE_GRAB_OPTIONS_NONE); |
| 828 | if (p == NULL) { |
| 829 | return; |
| 830 | } |
| 831 | pnum = VM_PAGE_GET_PHYS_PAGE(m: p); |
| 832 | vm_page_release(page: p, FALSE); |
| 833 | if (pnum >= max_pnum) { |
| 834 | return; |
| 835 | } |
| 836 | if ((pnum & pnum_mask) == 0) { |
| 837 | break; |
| 838 | } |
| 839 | } |
| 840 | |
| 841 | /* |
| 842 | * Having a healthy pool of free pages will help performance. We don't |
| 843 | * want to fall back to the delayed code for every page allocation. |
| 844 | */ |
| 845 | if (vm_page_free_count < VM_DELAY_PAGE_CHUNK) { |
| 846 | npages += VM_DELAY_PAGE_CHUNK; |
| 847 | } |
| 848 | |
| 849 | /* |
| 850 | * Now free up the pages |
| 851 | */ |
| 852 | for (cnt = 1; cnt < npages; ++cnt) { |
| 853 | p = vm_get_delayed_page(VM_PAGE_GRAB_OPTIONS_NONE); |
| 854 | if (p == NULL) { |
| 855 | return; |
| 856 | } |
| 857 | vm_page_release(page: p, FALSE); |
| 858 | } |
| 859 | } |
| 860 | |
| 861 | #define ROUNDUP_NEXTP2(X) (1U << (32 - __builtin_clz((X) - 1))) |
| 862 | |
| 863 | void |
| 864 | vm_page_init_local_q(unsigned int num_cpus) |
| 865 | { |
| 866 | struct vpl *t_local_q; |
| 867 | |
| 868 | /* |
| 869 | * no point in this for a uni-processor system |
| 870 | */ |
| 871 | if (num_cpus >= 2) { |
| 872 | ml_cpu_info_t cpu_info; |
| 873 | |
| 874 | /* |
| 875 | * Force the allocation alignment to a cacheline, |
| 876 | * because the `vpl` struct has a lock and will be taken |
| 877 | * cross CPU so we want to isolate the rest of the per-CPU |
| 878 | * data to avoid false sharing due to this lock being taken. |
| 879 | */ |
| 880 | |
| 881 | ml_cpu_get_info(ml_cpu_info: &cpu_info); |
| 882 | |
| 883 | t_local_q = zalloc_percpu_permanent(size: sizeof(struct vpl), |
| 884 | align_mask: cpu_info.cache_line_size - 1); |
| 885 | |
| 886 | zpercpu_foreach(lq, t_local_q) { |
| 887 | VPL_LOCK_INIT(lq, &vm_page_lck_grp_local, &vm_page_lck_attr); |
| 888 | vm_page_queue_init(&lq->vpl_queue); |
| 889 | } |
| 890 | |
| 891 | /* make the initialization visible to all cores */ |
| 892 | os_atomic_store(&vm_page_local_q, t_local_q, release); |
| 893 | } |
| 894 | } |
| 895 | |
| 896 | /* |
| 897 | * vm_init_before_launchd |
| 898 | * |
| 899 | * This should be called right before launchd is loaded. |
| 900 | */ |
| 901 | void |
| 902 | vm_init_before_launchd() |
| 903 | { |
| 904 | vm_page_lockspin_queues(); |
| 905 | vm_page_wire_count_on_boot = vm_page_wire_count; |
| 906 | vm_page_unlock_queues(); |
| 907 | } |
| 908 | |
| 909 | |
| 910 | /* |
| 911 | * vm_page_bootstrap: |
| 912 | * |
| 913 | * Initializes the resident memory module. |
| 914 | * |
| 915 | * Allocates memory for the page cells, and |
| 916 | * for the object/offset-to-page hash table headers. |
| 917 | * Each page cell is initialized and placed on the free list. |
| 918 | * Returns the range of available kernel virtual memory. |
| 919 | */ |
| 920 | __startup_func |
| 921 | void |
| 922 | vm_page_bootstrap( |
| 923 | vm_offset_t *startp, |
| 924 | vm_offset_t *endp) |
| 925 | { |
| 926 | unsigned int i; |
| 927 | unsigned int log1; |
| 928 | unsigned int log2; |
| 929 | unsigned int size; |
| 930 | |
| 931 | /* |
| 932 | * Initialize the page queues. |
| 933 | */ |
| 934 | |
| 935 | lck_mtx_init(lck: &vm_page_queue_free_lock, grp: &vm_page_lck_grp_free, attr: &vm_page_lck_attr); |
| 936 | lck_mtx_init(lck: &vm_page_queue_lock, grp: &vm_page_lck_grp_queue, attr: &vm_page_lck_attr); |
| 937 | lck_mtx_init(lck: &vm_purgeable_queue_lock, grp: &vm_page_lck_grp_purge, attr: &vm_page_lck_attr); |
| 938 | |
| 939 | for (i = 0; i < PURGEABLE_Q_TYPE_MAX; i++) { |
| 940 | int group; |
| 941 | |
| 942 | purgeable_queues[i].token_q_head = 0; |
| 943 | purgeable_queues[i].token_q_tail = 0; |
| 944 | for (group = 0; group < NUM_VOLATILE_GROUPS; group++) { |
| 945 | queue_init(&purgeable_queues[i].objq[group]); |
| 946 | } |
| 947 | |
| 948 | purgeable_queues[i].type = i; |
| 949 | purgeable_queues[i].new_pages = 0; |
| 950 | #if MACH_ASSERT |
| 951 | purgeable_queues[i].debug_count_tokens = 0; |
| 952 | purgeable_queues[i].debug_count_objects = 0; |
| 953 | #endif |
| 954 | } |
| 955 | ; |
| 956 | purgeable_nonvolatile_count = 0; |
| 957 | queue_init(&purgeable_nonvolatile_queue); |
| 958 | |
| 959 | for (i = 0; i < MAX_COLORS; i++) { |
| 960 | vm_page_queue_init(&vm_page_queue_free[i].qhead); |
| 961 | } |
| 962 | |
| 963 | vm_page_queue_init(&vm_lopage_queue_free); |
| 964 | vm_page_queue_init(&vm_page_queue_active); |
| 965 | vm_page_queue_init(&vm_page_queue_inactive); |
| 966 | #if CONFIG_SECLUDED_MEMORY |
| 967 | vm_page_queue_init(&vm_page_queue_secluded); |
| 968 | #endif /* CONFIG_SECLUDED_MEMORY */ |
| 969 | vm_page_queue_init(&vm_page_queue_cleaned); |
| 970 | vm_page_queue_init(&vm_page_queue_throttled); |
| 971 | vm_page_queue_init(&vm_page_queue_anonymous); |
| 972 | queue_init(&vm_objects_wired); |
| 973 | |
| 974 | for (i = 0; i <= VM_PAGE_MAX_SPECULATIVE_AGE_Q; i++) { |
| 975 | vm_page_queue_init(&vm_page_queue_speculative[i].age_q); |
| 976 | |
| 977 | vm_page_queue_speculative[i].age_ts.tv_sec = 0; |
| 978 | vm_page_queue_speculative[i].age_ts.tv_nsec = 0; |
| 979 | } |
| 980 | |
| 981 | vm_page_queue_init(&vm_page_queue_donate); |
| 982 | vm_page_queue_init(&vm_page_queue_background); |
| 983 | |
| 984 | vm_page_background_count = 0; |
| 985 | vm_page_background_internal_count = 0; |
| 986 | vm_page_background_external_count = 0; |
| 987 | vm_page_background_promoted_count = 0; |
| 988 | |
| 989 | vm_page_background_target = (unsigned int)(atop_64(max_mem) / 25); |
| 990 | |
| 991 | if (vm_page_background_target > VM_PAGE_BACKGROUND_TARGET_MAX) { |
| 992 | vm_page_background_target = VM_PAGE_BACKGROUND_TARGET_MAX; |
| 993 | } |
| 994 | |
| 995 | #if defined(__LP64__) |
| 996 | vm_page_background_mode = VM_PAGE_BG_ENABLED; |
| 997 | vm_page_donate_mode = VM_PAGE_DONATE_ENABLED; |
| 998 | #else |
| 999 | vm_page_background_mode = VM_PAGE_BG_DISABLED; |
| 1000 | vm_page_donate_mode = VM_PAGE_DONATE_DISABLED; |
| 1001 | #endif |
| 1002 | vm_page_background_exclude_external = 0; |
| 1003 | |
| 1004 | PE_parse_boot_argn(arg_string: "vm_page_bg_mode" , arg_ptr: &vm_page_background_mode, max_arg: sizeof(vm_page_background_mode)); |
| 1005 | PE_parse_boot_argn(arg_string: "vm_page_bg_exclude_external" , arg_ptr: &vm_page_background_exclude_external, max_arg: sizeof(vm_page_background_exclude_external)); |
| 1006 | PE_parse_boot_argn(arg_string: "vm_page_bg_target" , arg_ptr: &vm_page_background_target, max_arg: sizeof(vm_page_background_target)); |
| 1007 | |
| 1008 | if (vm_page_background_mode != VM_PAGE_BG_DISABLED && vm_page_background_mode != VM_PAGE_BG_ENABLED) { |
| 1009 | vm_page_background_mode = VM_PAGE_BG_DISABLED; |
| 1010 | } |
| 1011 | |
| 1012 | PE_parse_boot_argn(arg_string: "vm_page_donate_mode" , arg_ptr: &vm_page_donate_mode, max_arg: sizeof(vm_page_donate_mode)); |
| 1013 | if (vm_page_donate_mode != VM_PAGE_DONATE_DISABLED && vm_page_donate_mode != VM_PAGE_DONATE_ENABLED) { |
| 1014 | vm_page_donate_mode = VM_PAGE_DONATE_DISABLED; |
| 1015 | } |
| 1016 | |
| 1017 | vm_page_donate_target_high = VM_PAGE_DONATE_TARGET_HIGHWATER; |
| 1018 | vm_page_donate_target_low = VM_PAGE_DONATE_TARGET_LOWWATER; |
| 1019 | vm_page_donate_target = vm_page_donate_target_high; |
| 1020 | vm_page_donate_count = 0; |
| 1021 | |
| 1022 | vm_page_free_wanted = 0; |
| 1023 | vm_page_free_wanted_privileged = 0; |
| 1024 | #if CONFIG_SECLUDED_MEMORY |
| 1025 | vm_page_free_wanted_secluded = 0; |
| 1026 | #endif /* CONFIG_SECLUDED_MEMORY */ |
| 1027 | |
| 1028 | #if defined (__x86_64__) |
| 1029 | /* this must be called before vm_page_set_colors() */ |
| 1030 | vm_page_setup_clump(); |
| 1031 | #endif |
| 1032 | |
| 1033 | vm_page_set_colors(); |
| 1034 | |
| 1035 | bzero(s: vm_page_inactive_states, n: sizeof(vm_page_inactive_states)); |
| 1036 | vm_page_inactive_states[VM_PAGE_ON_INACTIVE_INTERNAL_Q] = 1; |
| 1037 | vm_page_inactive_states[VM_PAGE_ON_INACTIVE_EXTERNAL_Q] = 1; |
| 1038 | vm_page_inactive_states[VM_PAGE_ON_INACTIVE_CLEANED_Q] = 1; |
| 1039 | |
| 1040 | bzero(s: vm_page_pageable_states, n: sizeof(vm_page_pageable_states)); |
| 1041 | vm_page_pageable_states[VM_PAGE_ON_INACTIVE_INTERNAL_Q] = 1; |
| 1042 | vm_page_pageable_states[VM_PAGE_ON_INACTIVE_EXTERNAL_Q] = 1; |
| 1043 | vm_page_pageable_states[VM_PAGE_ON_INACTIVE_CLEANED_Q] = 1; |
| 1044 | vm_page_pageable_states[VM_PAGE_ON_ACTIVE_Q] = 1; |
| 1045 | vm_page_pageable_states[VM_PAGE_ON_SPECULATIVE_Q] = 1; |
| 1046 | vm_page_pageable_states[VM_PAGE_ON_THROTTLED_Q] = 1; |
| 1047 | #if CONFIG_SECLUDED_MEMORY |
| 1048 | vm_page_pageable_states[VM_PAGE_ON_SECLUDED_Q] = 1; |
| 1049 | #endif /* CONFIG_SECLUDED_MEMORY */ |
| 1050 | |
| 1051 | bzero(s: vm_page_non_speculative_pageable_states, n: sizeof(vm_page_non_speculative_pageable_states)); |
| 1052 | vm_page_non_speculative_pageable_states[VM_PAGE_ON_INACTIVE_INTERNAL_Q] = 1; |
| 1053 | vm_page_non_speculative_pageable_states[VM_PAGE_ON_INACTIVE_EXTERNAL_Q] = 1; |
| 1054 | vm_page_non_speculative_pageable_states[VM_PAGE_ON_INACTIVE_CLEANED_Q] = 1; |
| 1055 | vm_page_non_speculative_pageable_states[VM_PAGE_ON_ACTIVE_Q] = 1; |
| 1056 | vm_page_non_speculative_pageable_states[VM_PAGE_ON_THROTTLED_Q] = 1; |
| 1057 | #if CONFIG_SECLUDED_MEMORY |
| 1058 | vm_page_non_speculative_pageable_states[VM_PAGE_ON_SECLUDED_Q] = 1; |
| 1059 | #endif /* CONFIG_SECLUDED_MEMORY */ |
| 1060 | |
| 1061 | bzero(s: vm_page_active_or_inactive_states, n: sizeof(vm_page_active_or_inactive_states)); |
| 1062 | vm_page_active_or_inactive_states[VM_PAGE_ON_INACTIVE_INTERNAL_Q] = 1; |
| 1063 | vm_page_active_or_inactive_states[VM_PAGE_ON_INACTIVE_EXTERNAL_Q] = 1; |
| 1064 | vm_page_active_or_inactive_states[VM_PAGE_ON_INACTIVE_CLEANED_Q] = 1; |
| 1065 | vm_page_active_or_inactive_states[VM_PAGE_ON_ACTIVE_Q] = 1; |
| 1066 | #if CONFIG_SECLUDED_MEMORY |
| 1067 | vm_page_active_or_inactive_states[VM_PAGE_ON_SECLUDED_Q] = 1; |
| 1068 | #endif /* CONFIG_SECLUDED_MEMORY */ |
| 1069 | |
| 1070 | for (vm_tag_t t = 0; t < VM_KERN_MEMORY_FIRST_DYNAMIC; t++) { |
| 1071 | vm_allocation_sites_static[t].refcount = 2; |
| 1072 | vm_allocation_sites_static[t].tag = t; |
| 1073 | vm_allocation_sites[t] = &vm_allocation_sites_static[t]; |
| 1074 | } |
| 1075 | vm_allocation_sites_static[VM_KERN_MEMORY_FIRST_DYNAMIC].refcount = 2; |
| 1076 | vm_allocation_sites_static[VM_KERN_MEMORY_FIRST_DYNAMIC].tag = VM_KERN_MEMORY_ANY; |
| 1077 | vm_allocation_sites[VM_KERN_MEMORY_ANY] = &vm_allocation_sites_static[VM_KERN_MEMORY_FIRST_DYNAMIC]; |
| 1078 | |
| 1079 | /* |
| 1080 | * Steal memory for the map and zone subsystems. |
| 1081 | */ |
| 1082 | kernel_startup_initialize_upto(upto: STARTUP_SUB_PMAP_STEAL); |
| 1083 | |
| 1084 | /* |
| 1085 | * Allocate (and initialize) the virtual-to-physical |
| 1086 | * table hash buckets. |
| 1087 | * |
| 1088 | * The number of buckets should be a power of two to |
| 1089 | * get a good hash function. The following computation |
| 1090 | * chooses the first power of two that is greater |
| 1091 | * than the number of physical pages in the system. |
| 1092 | */ |
| 1093 | |
| 1094 | if (vm_page_bucket_count == 0) { |
| 1095 | unsigned int npages = pmap_free_pages(); |
| 1096 | |
| 1097 | vm_page_bucket_count = 1; |
| 1098 | while (vm_page_bucket_count < npages) { |
| 1099 | vm_page_bucket_count <<= 1; |
| 1100 | } |
| 1101 | } |
| 1102 | vm_page_bucket_lock_count = (vm_page_bucket_count + BUCKETS_PER_LOCK - 1) / BUCKETS_PER_LOCK; |
| 1103 | |
| 1104 | vm_page_hash_mask = vm_page_bucket_count - 1; |
| 1105 | |
| 1106 | /* |
| 1107 | * Calculate object shift value for hashing algorithm: |
| 1108 | * O = log2(sizeof(struct vm_object)) |
| 1109 | * B = log2(vm_page_bucket_count) |
| 1110 | * hash shifts the object left by |
| 1111 | * B/2 - O |
| 1112 | */ |
| 1113 | size = vm_page_bucket_count; |
| 1114 | for (log1 = 0; size > 1; log1++) { |
| 1115 | size /= 2; |
| 1116 | } |
| 1117 | size = sizeof(struct vm_object); |
| 1118 | for (log2 = 0; size > 1; log2++) { |
| 1119 | size /= 2; |
| 1120 | } |
| 1121 | vm_page_hash_shift = log1 / 2 - log2 + 1; |
| 1122 | |
| 1123 | vm_page_bucket_hash = 1 << ((log1 + 1) >> 1); /* Get (ceiling of sqrt of table size) */ |
| 1124 | vm_page_bucket_hash |= 1 << ((log1 + 1) >> 2); /* Get (ceiling of quadroot of table size) */ |
| 1125 | vm_page_bucket_hash |= 1; /* Set bit and add 1 - always must be 1 to insure unique series */ |
| 1126 | |
| 1127 | if (vm_page_hash_mask & vm_page_bucket_count) { |
| 1128 | printf(format: "vm_page_bootstrap: WARNING -- strange page hash\n" ); |
| 1129 | } |
| 1130 | |
| 1131 | #if VM_PAGE_BUCKETS_CHECK |
| 1132 | #if VM_PAGE_FAKE_BUCKETS |
| 1133 | /* |
| 1134 | * Allocate a decoy set of page buckets, to detect |
| 1135 | * any stomping there. |
| 1136 | */ |
| 1137 | vm_page_fake_buckets = (vm_page_bucket_t *) |
| 1138 | pmap_steal_memory(vm_page_bucket_count * |
| 1139 | sizeof(vm_page_bucket_t), 0); |
| 1140 | vm_page_fake_buckets_start = (vm_map_offset_t) vm_page_fake_buckets; |
| 1141 | vm_page_fake_buckets_end = |
| 1142 | vm_map_round_page((vm_page_fake_buckets_start + |
| 1143 | (vm_page_bucket_count * |
| 1144 | sizeof(vm_page_bucket_t))), |
| 1145 | PAGE_MASK); |
| 1146 | char *cp; |
| 1147 | for (cp = (char *)vm_page_fake_buckets_start; |
| 1148 | cp < (char *)vm_page_fake_buckets_end; |
| 1149 | cp++) { |
| 1150 | *cp = 0x5a; |
| 1151 | } |
| 1152 | #endif /* VM_PAGE_FAKE_BUCKETS */ |
| 1153 | #endif /* VM_PAGE_BUCKETS_CHECK */ |
| 1154 | |
| 1155 | kernel_debug_string_early(message: "vm_page_buckets" ); |
| 1156 | vm_page_buckets = (vm_page_bucket_t *) |
| 1157 | pmap_steal_memory(size: vm_page_bucket_count * |
| 1158 | sizeof(vm_page_bucket_t), alignment: 0); |
| 1159 | |
| 1160 | kernel_debug_string_early(message: "vm_page_bucket_locks" ); |
| 1161 | vm_page_bucket_locks = (lck_spin_t *) |
| 1162 | pmap_steal_memory(size: vm_page_bucket_lock_count * |
| 1163 | sizeof(lck_spin_t), alignment: 0); |
| 1164 | |
| 1165 | for (i = 0; i < vm_page_bucket_count; i++) { |
| 1166 | vm_page_bucket_t *bucket = &vm_page_buckets[i]; |
| 1167 | |
| 1168 | bucket->page_list = VM_PAGE_PACK_PTR(VM_PAGE_NULL); |
| 1169 | #if MACH_PAGE_HASH_STATS |
| 1170 | bucket->cur_count = 0; |
| 1171 | bucket->hi_count = 0; |
| 1172 | #endif /* MACH_PAGE_HASH_STATS */ |
| 1173 | } |
| 1174 | |
| 1175 | for (i = 0; i < vm_page_bucket_lock_count; i++) { |
| 1176 | lck_spin_init(lck: &vm_page_bucket_locks[i], grp: &vm_page_lck_grp_bucket, attr: &vm_page_lck_attr); |
| 1177 | } |
| 1178 | |
| 1179 | vm_tag_init(); |
| 1180 | |
| 1181 | #if VM_PAGE_BUCKETS_CHECK |
| 1182 | vm_page_buckets_check_ready = TRUE; |
| 1183 | #endif /* VM_PAGE_BUCKETS_CHECK */ |
| 1184 | |
| 1185 | /* |
| 1186 | * Machine-dependent code allocates the resident page table. |
| 1187 | * It uses vm_page_init to initialize the page frames. |
| 1188 | * The code also returns to us the virtual space available |
| 1189 | * to the kernel. We don't trust the pmap module |
| 1190 | * to get the alignment right. |
| 1191 | */ |
| 1192 | |
| 1193 | kernel_debug_string_early(message: "pmap_startup" ); |
| 1194 | pmap_startup(startp: &virtual_space_start, endp: &virtual_space_end); |
| 1195 | virtual_space_start = round_page(x: virtual_space_start); |
| 1196 | virtual_space_end = trunc_page(virtual_space_end); |
| 1197 | |
| 1198 | *startp = virtual_space_start; |
| 1199 | *endp = virtual_space_end; |
| 1200 | |
| 1201 | /* |
| 1202 | * Compute the initial "wire" count. |
| 1203 | * Up until now, the pages which have been set aside are not under |
| 1204 | * the VM system's control, so although they aren't explicitly |
| 1205 | * wired, they nonetheless can't be moved. At this moment, |
| 1206 | * all VM managed pages are "free", courtesy of pmap_startup. |
| 1207 | */ |
| 1208 | assert((unsigned int) atop_64(max_mem) == atop_64(max_mem)); |
| 1209 | vm_page_wire_count = ((unsigned int) atop_64(max_mem)) - |
| 1210 | vm_page_free_count - vm_lopage_free_count; |
| 1211 | #if CONFIG_SECLUDED_MEMORY |
| 1212 | vm_page_wire_count -= vm_page_secluded_count; |
| 1213 | #endif |
| 1214 | vm_page_wire_count_initial = vm_page_wire_count; |
| 1215 | |
| 1216 | /* capture this for later use */ |
| 1217 | booter_size = ml_get_booter_memory_size(); |
| 1218 | |
| 1219 | printf(format: "vm_page_bootstrap: %d free pages, %d wired pages, (up to %d of which are delayed free)\n" , |
| 1220 | vm_page_free_count, vm_page_wire_count, vm_delayed_count); |
| 1221 | |
| 1222 | kernel_debug_string_early(message: "vm_page_bootstrap complete" ); |
| 1223 | } |
| 1224 | |
| 1225 | #ifndef MACHINE_PAGES |
| 1226 | /* |
| 1227 | * This is the early boot time allocator for data structures needed to bootstrap the VM system. |
| 1228 | * On x86 it will allocate large pages if size is sufficiently large. We don't need to do this |
| 1229 | * on ARM yet, due to the combination of a large base page size and smaller RAM devices. |
| 1230 | */ |
| 1231 | static void * |
| 1232 | pmap_steal_memory_internal( |
| 1233 | vm_size_t size, |
| 1234 | vm_size_t alignment, |
| 1235 | boolean_t might_free, |
| 1236 | unsigned int flags, |
| 1237 | pmap_mapping_type_t mapping_type) |
| 1238 | { |
| 1239 | kern_return_t kr; |
| 1240 | vm_offset_t addr; |
| 1241 | vm_offset_t map_addr; |
| 1242 | ppnum_t phys_page; |
| 1243 | unsigned int pmap_flags; |
| 1244 | |
| 1245 | /* |
| 1246 | * Size needs to be aligned to word size. |
| 1247 | */ |
| 1248 | size = (size + sizeof(void *) - 1) & ~(sizeof(void *) - 1); |
| 1249 | |
| 1250 | /* |
| 1251 | * Alignment defaults to word size if not specified. |
| 1252 | */ |
| 1253 | if (alignment == 0) { |
| 1254 | alignment = sizeof(void*); |
| 1255 | } |
| 1256 | |
| 1257 | /* |
| 1258 | * Alignment must be no greater than a page and must be a power of two. |
| 1259 | */ |
| 1260 | assert(alignment <= PAGE_SIZE); |
| 1261 | assert((alignment & (alignment - 1)) == 0); |
| 1262 | |
| 1263 | /* |
| 1264 | * On the first call, get the initial values for virtual address space |
| 1265 | * and page align them. |
| 1266 | */ |
| 1267 | if (virtual_space_start == virtual_space_end) { |
| 1268 | pmap_virtual_space(virtual_start: &virtual_space_start, virtual_end: &virtual_space_end); |
| 1269 | virtual_space_start = round_page(x: virtual_space_start); |
| 1270 | virtual_space_end = trunc_page(virtual_space_end); |
| 1271 | |
| 1272 | #if defined(__x86_64__) |
| 1273 | /* |
| 1274 | * Release remaining unused section of preallocated KVA and the 4K page tables |
| 1275 | * that map it. This makes the VA available for large page mappings. |
| 1276 | */ |
| 1277 | Idle_PTs_release(virtual_space_start, virtual_space_end); |
| 1278 | #endif |
| 1279 | } |
| 1280 | |
| 1281 | /* |
| 1282 | * Allocate the virtual space for this request. On x86, we'll align to a large page |
| 1283 | * address if the size is big enough to back with at least 1 large page. |
| 1284 | */ |
| 1285 | #if defined(__x86_64__) |
| 1286 | if (size >= I386_LPGBYTES) { |
| 1287 | virtual_space_start = ((virtual_space_start + I386_LPGMASK) & ~I386_LPGMASK); |
| 1288 | } |
| 1289 | #endif |
| 1290 | virtual_space_start = (virtual_space_start + (alignment - 1)) & ~(alignment - 1); |
| 1291 | addr = virtual_space_start; |
| 1292 | virtual_space_start += size; |
| 1293 | |
| 1294 | //kprintf("pmap_steal_memory: %08lX - %08lX; size=%08lX\n", (long)addr, (long)virtual_space_start, (long)size); /* (TEST/DEBUG) */ |
| 1295 | |
| 1296 | /* |
| 1297 | * Allocate and map physical pages to back the new virtual space. |
| 1298 | */ |
| 1299 | map_addr = round_page(x: addr); |
| 1300 | while (map_addr < addr + size) { |
| 1301 | #if defined(__x86_64__) |
| 1302 | /* |
| 1303 | * Back with a large page if properly aligned on x86 |
| 1304 | */ |
| 1305 | if ((map_addr & I386_LPGMASK) == 0 && |
| 1306 | map_addr + I386_LPGBYTES <= addr + size && |
| 1307 | pmap_pre_expand_large(kernel_pmap, map_addr) == KERN_SUCCESS && |
| 1308 | pmap_next_page_large(&phys_page) == KERN_SUCCESS) { |
| 1309 | kr = pmap_enter(kernel_pmap, map_addr, phys_page, |
| 1310 | VM_PROT_READ | VM_PROT_WRITE, VM_PROT_NONE, |
| 1311 | VM_WIMG_USE_DEFAULT | VM_MEM_SUPERPAGE, FALSE, mapping_type); |
| 1312 | |
| 1313 | if (kr != KERN_SUCCESS) { |
| 1314 | panic("pmap_steal_memory: pmap_enter() large failed, new_addr=%#lx, phys_page=%u" , |
| 1315 | (unsigned long)map_addr, phys_page); |
| 1316 | } |
| 1317 | map_addr += I386_LPGBYTES; |
| 1318 | vm_page_wire_count += I386_LPGBYTES >> PAGE_SHIFT; |
| 1319 | vm_page_stolen_count += I386_LPGBYTES >> PAGE_SHIFT; |
| 1320 | vm_page_kern_lpage_count++; |
| 1321 | continue; |
| 1322 | } |
| 1323 | #endif |
| 1324 | |
| 1325 | if (!pmap_next_page_hi(pnum: &phys_page, might_free)) { |
| 1326 | panic("pmap_steal_memory() size: 0x%llx" , (uint64_t)size); |
| 1327 | } |
| 1328 | |
| 1329 | #if defined(__x86_64__) |
| 1330 | pmap_pre_expand(kernel_pmap, map_addr); |
| 1331 | #endif |
| 1332 | pmap_flags = flags ? flags : VM_WIMG_USE_DEFAULT; |
| 1333 | |
| 1334 | kr = pmap_enter(pmap: kernel_pmap, v: map_addr, pn: phys_page, |
| 1335 | VM_PROT_READ | VM_PROT_WRITE, VM_PROT_NONE, |
| 1336 | flags: pmap_flags, FALSE, mapping_type); |
| 1337 | |
| 1338 | if (kr != KERN_SUCCESS) { |
| 1339 | panic("pmap_steal_memory() pmap_enter failed, map_addr=%#lx, phys_page=%u" , |
| 1340 | (unsigned long)map_addr, phys_page); |
| 1341 | } |
| 1342 | map_addr += PAGE_SIZE; |
| 1343 | |
| 1344 | /* |
| 1345 | * Account for newly stolen memory |
| 1346 | */ |
| 1347 | vm_page_wire_count++; |
| 1348 | vm_page_stolen_count++; |
| 1349 | } |
| 1350 | |
| 1351 | #if defined(__x86_64__) |
| 1352 | /* |
| 1353 | * The call with might_free is currently the last use of pmap_steal_memory*(). |
| 1354 | * Notify the pmap layer to record which high pages were allocated so far. |
| 1355 | */ |
| 1356 | if (might_free) { |
| 1357 | pmap_hi_pages_done(); |
| 1358 | } |
| 1359 | #endif |
| 1360 | #if KASAN |
| 1361 | kasan_notify_address(round_page(addr), size); |
| 1362 | #endif |
| 1363 | return (void *) addr; |
| 1364 | } |
| 1365 | |
| 1366 | void * |
| 1367 | pmap_steal_memory( |
| 1368 | vm_size_t size, |
| 1369 | vm_size_t alignment) |
| 1370 | { |
| 1371 | return pmap_steal_memory_internal(size, alignment, FALSE, flags: 0, mapping_type: PMAP_MAPPING_TYPE_RESTRICTED); |
| 1372 | } |
| 1373 | |
| 1374 | void * |
| 1375 | pmap_steal_freeable_memory( |
| 1376 | vm_size_t size) |
| 1377 | { |
| 1378 | return pmap_steal_memory_internal(size, alignment: 0, TRUE, flags: 0, mapping_type: PMAP_MAPPING_TYPE_RESTRICTED); |
| 1379 | } |
| 1380 | |
| 1381 | void * |
| 1382 | pmap_steal_zone_memory( |
| 1383 | vm_size_t size, |
| 1384 | vm_size_t alignment) |
| 1385 | { |
| 1386 | unsigned int flags = 0; |
| 1387 | |
| 1388 | |
| 1389 | return pmap_steal_memory_internal(size, alignment, FALSE, flags, mapping_type: PMAP_MAPPING_TYPE_RESTRICTED); |
| 1390 | } |
| 1391 | |
| 1392 | |
| 1393 | #if CONFIG_SECLUDED_MEMORY |
| 1394 | /* boot-args to control secluded memory */ |
| 1395 | TUNABLE_DT(unsigned int, secluded_mem_mb, "/defaults" , "kern.secluded_mem_mb" , "secluded_mem_mb" , 0, TUNABLE_DT_NONE); |
| 1396 | /* IOKit can use secluded memory */ |
| 1397 | TUNABLE(bool, secluded_for_iokit, "secluded_for_iokit" , true); |
| 1398 | /* apps can use secluded memory */ |
| 1399 | TUNABLE(bool, secluded_for_apps, "secluded_for_apps" , true); |
| 1400 | /* filecache can use seclude memory */ |
| 1401 | TUNABLE(secluded_filecache_mode_t, secluded_for_filecache, "secluded_for_filecache" , SECLUDED_FILECACHE_RDONLY); |
| 1402 | uint64_t secluded_shutoff_trigger = 0; |
| 1403 | uint64_t secluded_shutoff_headroom = 150 * 1024 * 1024; /* original value from N56 */ |
| 1404 | #endif /* CONFIG_SECLUDED_MEMORY */ |
| 1405 | |
| 1406 | |
| 1407 | #if defined(__arm64__) |
| 1408 | extern void patch_low_glo_vm_page_info(void *, void *, uint32_t); |
| 1409 | unsigned int vm_first_phys_ppnum = 0; |
| 1410 | #endif |
| 1411 | |
| 1412 | void vm_page_release_startup(vm_page_t mem); |
| 1413 | void |
| 1414 | pmap_startup( |
| 1415 | vm_offset_t *startp, |
| 1416 | vm_offset_t *endp) |
| 1417 | { |
| 1418 | unsigned int i, npages; |
| 1419 | ppnum_t phys_page; |
| 1420 | uint64_t mem_sz; |
| 1421 | uint64_t start_ns; |
| 1422 | uint64_t now_ns; |
| 1423 | uint_t low_page_count = 0; |
| 1424 | |
| 1425 | #if defined(__LP64__) |
| 1426 | /* |
| 1427 | * make sure we are aligned on a 64 byte boundary |
| 1428 | * for VM_PAGE_PACK_PTR (it clips off the low-order |
| 1429 | * 6 bits of the pointer) |
| 1430 | */ |
| 1431 | if (virtual_space_start != virtual_space_end) { |
| 1432 | virtual_space_start = round_page(x: virtual_space_start); |
| 1433 | } |
| 1434 | #endif |
| 1435 | |
| 1436 | /* |
| 1437 | * We calculate how many page frames we will have |
| 1438 | * and then allocate the page structures in one chunk. |
| 1439 | * |
| 1440 | * Note that the calculation here doesn't take into account |
| 1441 | * the memory needed to map what's being allocated, i.e. the page |
| 1442 | * table entries. So the actual number of pages we get will be |
| 1443 | * less than this. To do someday: include that in the computation. |
| 1444 | * |
| 1445 | * Also for ARM, we don't use the count of free_pages, but rather the |
| 1446 | * range from last page to first page (ignore holes due to retired pages). |
| 1447 | */ |
| 1448 | #if defined(__arm64__) |
| 1449 | mem_sz = pmap_free_pages_span() * (uint64_t)PAGE_SIZE; |
| 1450 | #else /* defined(__arm64__) */ |
| 1451 | mem_sz = pmap_free_pages() * (uint64_t)PAGE_SIZE; |
| 1452 | #endif /* defined(__arm64__) */ |
| 1453 | mem_sz += round_page(x: virtual_space_start) - virtual_space_start; /* Account for any slop */ |
| 1454 | npages = (uint_t)(mem_sz / (PAGE_SIZE + sizeof(*vm_pages))); /* scaled to include the vm_page_ts */ |
| 1455 | |
| 1456 | |
| 1457 | vm_pages = (vm_page_t) pmap_steal_freeable_memory(size: npages * sizeof *vm_pages); |
| 1458 | |
| 1459 | /* |
| 1460 | * Check if we want to initialize pages to a known value |
| 1461 | */ |
| 1462 | if (PE_parse_boot_argn(arg_string: "fill" , arg_ptr: &fillval, max_arg: sizeof(fillval))) { |
| 1463 | fill = TRUE; |
| 1464 | } |
| 1465 | #if DEBUG |
| 1466 | /* This slows down booting the DEBUG kernel, particularly on |
| 1467 | * large memory systems, but is worthwhile in deterministically |
| 1468 | * trapping uninitialized memory usage. |
| 1469 | */ |
| 1470 | if (!fill) { |
| 1471 | fill = TRUE; |
| 1472 | fillval = 0xDEB8F177; |
| 1473 | } |
| 1474 | #endif |
| 1475 | if (fill) { |
| 1476 | kprintf(fmt: "Filling vm_pages with pattern: 0x%x\n" , fillval); |
| 1477 | } |
| 1478 | |
| 1479 | #if CONFIG_SECLUDED_MEMORY |
| 1480 | /* |
| 1481 | * Figure out how much secluded memory to have before we start |
| 1482 | * release pages to free lists. |
| 1483 | * The default, if specified nowhere else, is no secluded mem. |
| 1484 | */ |
| 1485 | vm_page_secluded_target = (unsigned int)atop_64(secluded_mem_mb * 1024ULL * 1024ULL); |
| 1486 | |
| 1487 | /* |
| 1488 | * Allow a really large app to effectively use secluded memory until it exits. |
| 1489 | */ |
| 1490 | if (vm_page_secluded_target != 0) { |
| 1491 | /* |
| 1492 | * Get an amount from boot-args, else use 1/2 of max_mem. |
| 1493 | * 1/2 max_mem was chosen from a Peace daemon tentpole test which |
| 1494 | * used munch to induce jetsam thrashing of false idle daemons on N56. |
| 1495 | */ |
| 1496 | int secluded_shutoff_mb; |
| 1497 | if (PE_parse_boot_argn("secluded_shutoff_mb" , &secluded_shutoff_mb, |
| 1498 | sizeof(secluded_shutoff_mb))) { |
| 1499 | secluded_shutoff_trigger = (uint64_t)secluded_shutoff_mb * 1024 * 1024; |
| 1500 | } else { |
| 1501 | secluded_shutoff_trigger = max_mem / 2; |
| 1502 | } |
| 1503 | |
| 1504 | /* ensure the headroom value is sensible and avoid underflows */ |
| 1505 | assert(secluded_shutoff_trigger == 0 || secluded_shutoff_trigger > secluded_shutoff_headroom); |
| 1506 | } |
| 1507 | |
| 1508 | #endif /* CONFIG_SECLUDED_MEMORY */ |
| 1509 | |
| 1510 | #if defined(__x86_64__) |
| 1511 | |
| 1512 | /* |
| 1513 | * Decide how much memory we delay freeing at boot time. |
| 1514 | */ |
| 1515 | uint32_t delay_above_gb; |
| 1516 | if (!PE_parse_boot_argn("delay_above_gb" , &delay_above_gb, sizeof(delay_above_gb))) { |
| 1517 | delay_above_gb = DEFAULT_DELAY_ABOVE_PHYS_GB; |
| 1518 | } |
| 1519 | |
| 1520 | if (delay_above_gb == 0) { |
| 1521 | delay_above_pnum = PPNUM_MAX; |
| 1522 | } else { |
| 1523 | delay_above_pnum = delay_above_gb * (1024 * 1024 * 1024 / PAGE_SIZE); |
| 1524 | } |
| 1525 | |
| 1526 | /* make sure we have sane breathing room: 1G above low memory */ |
| 1527 | if (delay_above_pnum <= max_valid_low_ppnum) { |
| 1528 | delay_above_pnum = max_valid_low_ppnum + ((1024 * 1024 * 1024) >> PAGE_SHIFT); |
| 1529 | } |
| 1530 | |
| 1531 | if (delay_above_pnum < PPNUM_MAX) { |
| 1532 | printf("pmap_startup() delaying init/free of page nums > 0x%x\n" , delay_above_pnum); |
| 1533 | } |
| 1534 | |
| 1535 | #endif /* defined(__x86_64__) */ |
| 1536 | |
| 1537 | /* |
| 1538 | * Initialize and release the page frames. |
| 1539 | */ |
| 1540 | kernel_debug_string_early(message: "page_frame_init" ); |
| 1541 | |
| 1542 | vm_page_array_beginning_addr = &vm_pages[0]; |
| 1543 | vm_page_array_ending_addr = &vm_pages[npages]; /* used by ptr packing/unpacking code */ |
| 1544 | #if VM_PAGE_PACKED_FROM_ARRAY |
| 1545 | if (npages >= VM_PAGE_PACKED_FROM_ARRAY) { |
| 1546 | panic("pmap_startup(): too many pages to support vm_page packing" ); |
| 1547 | } |
| 1548 | #endif |
| 1549 | |
| 1550 | vm_delayed_count = 0; |
| 1551 | |
| 1552 | absolutetime_to_nanoseconds(abstime: mach_absolute_time(), result: &start_ns); |
| 1553 | vm_pages_count = 0; |
| 1554 | for (i = 0; i < npages; i++) { |
| 1555 | /* Did we run out of pages? */ |
| 1556 | if (!pmap_next_page(pnum: &phys_page)) { |
| 1557 | break; |
| 1558 | } |
| 1559 | |
| 1560 | if (phys_page < max_valid_low_ppnum) { |
| 1561 | ++low_page_count; |
| 1562 | } |
| 1563 | |
| 1564 | /* Are we at high enough pages to delay the rest? */ |
| 1565 | if (low_page_count > vm_lopage_free_limit && phys_page > delay_above_pnum) { |
| 1566 | vm_delayed_count = pmap_free_pages(); |
| 1567 | break; |
| 1568 | } |
| 1569 | |
| 1570 | #if defined(__arm64__) |
| 1571 | if (i == 0) { |
| 1572 | vm_first_phys_ppnum = phys_page; |
| 1573 | patch_low_glo_vm_page_info((void *)vm_page_array_beginning_addr, |
| 1574 | (void *)vm_page_array_ending_addr, vm_first_phys_ppnum); |
| 1575 | } |
| 1576 | #endif /* defined(__arm64__) */ |
| 1577 | |
| 1578 | #if defined(__x86_64__) |
| 1579 | /* The x86 clump freeing code requires increasing ppn's to work correctly */ |
| 1580 | if (i > 0) { |
| 1581 | assert(phys_page > vm_pages[i - 1].vmp_phys_page); |
| 1582 | } |
| 1583 | #endif |
| 1584 | ++vm_pages_count; |
| 1585 | vm_page_init(page: &vm_pages[i], phys_page, FALSE); |
| 1586 | if (fill) { |
| 1587 | fillPage(pa: phys_page, fill: fillval); |
| 1588 | } |
| 1589 | if (vm_himemory_mode) { |
| 1590 | vm_page_release_startup(mem: &vm_pages[i]); |
| 1591 | } |
| 1592 | } |
| 1593 | vm_page_pages = vm_pages_count; /* used to report to user space */ |
| 1594 | |
| 1595 | if (!vm_himemory_mode) { |
| 1596 | do { |
| 1597 | if (!VMP_ERROR_GET(&vm_pages[--i])) { /* skip retired pages */ |
| 1598 | vm_page_release_startup(mem: &vm_pages[i]); |
| 1599 | } |
| 1600 | } while (i != 0); |
| 1601 | } |
| 1602 | |
| 1603 | absolutetime_to_nanoseconds(abstime: mach_absolute_time(), result: &now_ns); |
| 1604 | printf(format: "pmap_startup() init/release time: %lld microsec\n" , (now_ns - start_ns) / NSEC_PER_USEC); |
| 1605 | printf(format: "pmap_startup() delayed init/release of %d pages\n" , vm_delayed_count); |
| 1606 | |
| 1607 | #if defined(__LP64__) |
| 1608 | if ((vm_page_t)(VM_PAGE_UNPACK_PTR(VM_PAGE_PACK_PTR(&vm_pages[0]))) != &vm_pages[0]) { |
| 1609 | panic("VM_PAGE_PACK_PTR failed on &vm_pages[0] - %p" , (void *)&vm_pages[0]); |
| 1610 | } |
| 1611 | |
| 1612 | if ((vm_page_t)(VM_PAGE_UNPACK_PTR(VM_PAGE_PACK_PTR(&vm_pages[vm_pages_count - 1]))) != &vm_pages[vm_pages_count - 1]) { |
| 1613 | panic("VM_PAGE_PACK_PTR failed on &vm_pages[vm_pages_count-1] - %p" , (void *)&vm_pages[vm_pages_count - 1]); |
| 1614 | } |
| 1615 | #endif |
| 1616 | |
| 1617 | VM_CHECK_MEMORYSTATUS; |
| 1618 | |
| 1619 | /* |
| 1620 | * We have to re-align virtual_space_start, |
| 1621 | * because pmap_steal_memory has been using it. |
| 1622 | */ |
| 1623 | virtual_space_start = round_page(x: virtual_space_start); |
| 1624 | *startp = virtual_space_start; |
| 1625 | *endp = virtual_space_end; |
| 1626 | } |
| 1627 | #endif /* MACHINE_PAGES */ |
| 1628 | |
| 1629 | /* |
| 1630 | * Create the zone that represents the vm_pages[] array. Nothing ever allocates |
| 1631 | * or frees to this zone. It's just here for reporting purposes via zprint command. |
| 1632 | * This needs to be done after all initially delayed pages are put on the free lists. |
| 1633 | */ |
| 1634 | static void |
| 1635 | vm_page_module_init_delayed(void) |
| 1636 | { |
| 1637 | (void)zone_create_ext(name: "vm pages array" , size: sizeof(struct vm_page), |
| 1638 | flags: ZC_KASAN_NOREDZONE | ZC_KASAN_NOQUARANTINE, desired_zid: ZONE_ID_VM_PAGES, extra_setup: ^(zone_t z) { |
| 1639 | uint64_t vm_page_zone_pages, vm_page_array_zone_data_size; |
| 1640 | |
| 1641 | zone_set_exhaustible(zone: z, max_elements: 0, true); |
| 1642 | /* |
| 1643 | * Reflect size and usage information for vm_pages[]. |
| 1644 | */ |
| 1645 | |
| 1646 | z->z_elems_avail = (uint32_t)(vm_page_array_ending_addr - vm_pages); |
| 1647 | z->z_elems_free = z->z_elems_avail - vm_pages_count; |
| 1648 | zpercpu_get_cpu(z->z_stats, 0)->zs_mem_allocated = |
| 1649 | vm_pages_count * sizeof(struct vm_page); |
| 1650 | vm_page_array_zone_data_size = (uint64_t)vm_page_array_ending_addr - (uint64_t)vm_pages; |
| 1651 | vm_page_zone_pages = atop(round_page((vm_offset_t)vm_page_array_zone_data_size)); |
| 1652 | z->z_wired_cur += vm_page_zone_pages; |
| 1653 | z->z_wired_hwm = z->z_wired_cur; |
| 1654 | z->z_va_cur = z->z_wired_cur; |
| 1655 | /* since zone accounts for these, take them out of stolen */ |
| 1656 | VM_PAGE_MOVE_STOLEN(vm_page_zone_pages); |
| 1657 | }); |
| 1658 | } |
| 1659 | |
| 1660 | /* |
| 1661 | * Create the vm_pages zone. This is used for the vm_page structures for the pages |
| 1662 | * that are scavanged from other boot time usages by ml_static_mfree(). As such, |
| 1663 | * this needs to happen in early VM bootstrap. |
| 1664 | */ |
| 1665 | |
| 1666 | __startup_func |
| 1667 | static void |
| 1668 | vm_page_module_init(void) |
| 1669 | { |
| 1670 | vm_size_t vm_page_with_ppnum_size; |
| 1671 | |
| 1672 | /* |
| 1673 | * Since the pointers to elements in this zone will be packed, they |
| 1674 | * must have appropriate size. Not strictly what sizeof() reports. |
| 1675 | */ |
| 1676 | vm_page_with_ppnum_size = |
| 1677 | (sizeof(struct vm_page_with_ppnum) + (VM_PAGE_PACKED_PTR_ALIGNMENT - 1)) & |
| 1678 | ~(VM_PAGE_PACKED_PTR_ALIGNMENT - 1); |
| 1679 | |
| 1680 | vm_page_zone = zone_create_ext(name: "vm pages" , size: vm_page_with_ppnum_size, |
| 1681 | flags: ZC_ALIGNMENT_REQUIRED | ZC_VM | ZC_NOTBITAG, |
| 1682 | ZONE_ID_ANY, extra_setup: ^(zone_t z) { |
| 1683 | /* |
| 1684 | * The number "10" is a small number that is larger than the number |
| 1685 | * of fictitious pages that any single caller will attempt to allocate |
| 1686 | * without blocking. |
| 1687 | * |
| 1688 | * The largest such number at the moment is kmem_alloc() |
| 1689 | * when 2 guard pages are asked. 10 is simply a somewhat larger number, |
| 1690 | * taking into account the 50% hysteresis the zone allocator uses. |
| 1691 | * |
| 1692 | * Note: this works at all because the zone allocator |
| 1693 | * doesn't ever allocate fictitious pages. |
| 1694 | */ |
| 1695 | zone_raise_reserve(zone_or_view: z, min_elements: 10); |
| 1696 | }); |
| 1697 | } |
| 1698 | STARTUP(ZALLOC, STARTUP_RANK_SECOND, vm_page_module_init); |
| 1699 | |
| 1700 | /* |
| 1701 | * Routine: vm_page_create |
| 1702 | * Purpose: |
| 1703 | * After the VM system is up, machine-dependent code |
| 1704 | * may stumble across more physical memory. For example, |
| 1705 | * memory that it was reserving for a frame buffer. |
| 1706 | * vm_page_create turns this memory into available pages. |
| 1707 | */ |
| 1708 | |
| 1709 | void |
| 1710 | vm_page_create( |
| 1711 | ppnum_t start, |
| 1712 | ppnum_t end) |
| 1713 | { |
| 1714 | ppnum_t phys_page; |
| 1715 | vm_page_t m; |
| 1716 | |
| 1717 | for (phys_page = start; |
| 1718 | phys_page < end; |
| 1719 | phys_page++) { |
| 1720 | m = vm_page_grab_fictitious_common(phys_page, TRUE); |
| 1721 | m->vmp_fictitious = FALSE; |
| 1722 | pmap_clear_noencrypt(pn: phys_page); |
| 1723 | |
| 1724 | |
| 1725 | vm_free_page_lock(); |
| 1726 | vm_page_pages++; |
| 1727 | vm_free_page_unlock(); |
| 1728 | vm_page_release(page: m, FALSE); |
| 1729 | } |
| 1730 | } |
| 1731 | |
| 1732 | |
| 1733 | /* |
| 1734 | * vm_page_hash: |
| 1735 | * |
| 1736 | * Distributes the object/offset key pair among hash buckets. |
| 1737 | * |
| 1738 | * NOTE: The bucket count must be a power of 2 |
| 1739 | */ |
| 1740 | #define vm_page_hash(object, offset) (\ |
| 1741 | ( (natural_t)((uintptr_t)object * vm_page_bucket_hash) + ((uint32_t)atop_64(offset) ^ vm_page_bucket_hash))\ |
| 1742 | & vm_page_hash_mask) |
| 1743 | |
| 1744 | |
| 1745 | /* |
| 1746 | * vm_page_insert: [ internal use only ] |
| 1747 | * |
| 1748 | * Inserts the given mem entry into the object/object-page |
| 1749 | * table and object list. |
| 1750 | * |
| 1751 | * The object must be locked. |
| 1752 | */ |
| 1753 | void |
| 1754 | vm_page_insert( |
| 1755 | vm_page_t mem, |
| 1756 | vm_object_t object, |
| 1757 | vm_object_offset_t offset) |
| 1758 | { |
| 1759 | vm_page_insert_internal(page: mem, object, offset, VM_KERN_MEMORY_NONE, FALSE, TRUE, FALSE, FALSE, NULL); |
| 1760 | } |
| 1761 | |
| 1762 | void |
| 1763 | vm_page_insert_wired( |
| 1764 | vm_page_t mem, |
| 1765 | vm_object_t object, |
| 1766 | vm_object_offset_t offset, |
| 1767 | vm_tag_t tag) |
| 1768 | { |
| 1769 | vm_page_insert_internal(page: mem, object, offset, tag, FALSE, TRUE, FALSE, FALSE, NULL); |
| 1770 | } |
| 1771 | |
| 1772 | void |
| 1773 | vm_page_insert_internal( |
| 1774 | vm_page_t mem, |
| 1775 | vm_object_t object, |
| 1776 | vm_object_offset_t offset, |
| 1777 | vm_tag_t tag, |
| 1778 | boolean_t queues_lock_held, |
| 1779 | boolean_t insert_in_hash, |
| 1780 | boolean_t batch_pmap_op, |
| 1781 | boolean_t batch_accounting, |
| 1782 | uint64_t *delayed_ledger_update) |
| 1783 | { |
| 1784 | vm_page_bucket_t *bucket; |
| 1785 | lck_spin_t *bucket_lock; |
| 1786 | int hash_id; |
| 1787 | task_t owner; |
| 1788 | int ledger_idx_volatile; |
| 1789 | int ledger_idx_nonvolatile; |
| 1790 | int ledger_idx_volatile_compressed; |
| 1791 | int ledger_idx_nonvolatile_compressed; |
| 1792 | boolean_t ; |
| 1793 | |
| 1794 | #if 0 |
| 1795 | /* |
| 1796 | * we may not hold the page queue lock |
| 1797 | * so this check isn't safe to make |
| 1798 | */ |
| 1799 | VM_PAGE_CHECK(mem); |
| 1800 | #endif |
| 1801 | |
| 1802 | assertf(page_aligned(offset), "0x%llx\n" , offset); |
| 1803 | |
| 1804 | assert(!VM_PAGE_WIRED(mem) || mem->vmp_private || mem->vmp_fictitious || (tag != VM_KERN_MEMORY_NONE)); |
| 1805 | |
| 1806 | vm_object_lock_assert_exclusive(object); |
| 1807 | LCK_MTX_ASSERT(&vm_page_queue_lock, |
| 1808 | queues_lock_held ? LCK_MTX_ASSERT_OWNED |
| 1809 | : LCK_MTX_ASSERT_NOTOWNED); |
| 1810 | |
| 1811 | if (queues_lock_held == FALSE) { |
| 1812 | assert(!VM_PAGE_PAGEABLE(mem)); |
| 1813 | } |
| 1814 | |
| 1815 | if (insert_in_hash == TRUE) { |
| 1816 | #if DEBUG || VM_PAGE_BUCKETS_CHECK |
| 1817 | if (mem->vmp_tabled || mem->vmp_object) { |
| 1818 | panic("vm_page_insert: page %p for (obj=%p,off=0x%llx) " |
| 1819 | "already in (obj=%p,off=0x%llx)" , |
| 1820 | mem, object, offset, VM_PAGE_OBJECT(mem), mem->vmp_offset); |
| 1821 | } |
| 1822 | #endif |
| 1823 | if (object->internal && (offset >= object->vo_size)) { |
| 1824 | panic("vm_page_insert_internal: (page=%p,obj=%p,off=0x%llx,size=0x%llx) inserted at offset past object bounds" , |
| 1825 | mem, object, offset, object->vo_size); |
| 1826 | } |
| 1827 | |
| 1828 | assert(vm_page_lookup(object, offset) == VM_PAGE_NULL); |
| 1829 | |
| 1830 | /* |
| 1831 | * Record the object/offset pair in this page |
| 1832 | */ |
| 1833 | |
| 1834 | mem->vmp_object = VM_PAGE_PACK_OBJECT(object); |
| 1835 | mem->vmp_offset = offset; |
| 1836 | |
| 1837 | #if CONFIG_SECLUDED_MEMORY |
| 1838 | if (object->eligible_for_secluded) { |
| 1839 | vm_page_secluded.eligible_for_secluded++; |
| 1840 | } |
| 1841 | #endif /* CONFIG_SECLUDED_MEMORY */ |
| 1842 | |
| 1843 | /* |
| 1844 | * Insert it into the object_object/offset hash table |
| 1845 | */ |
| 1846 | hash_id = vm_page_hash(object, offset); |
| 1847 | bucket = &vm_page_buckets[hash_id]; |
| 1848 | bucket_lock = &vm_page_bucket_locks[hash_id / BUCKETS_PER_LOCK]; |
| 1849 | |
| 1850 | lck_spin_lock_grp(lck: bucket_lock, grp: &vm_page_lck_grp_bucket); |
| 1851 | |
| 1852 | mem->vmp_next_m = bucket->page_list; |
| 1853 | bucket->page_list = VM_PAGE_PACK_PTR(mem); |
| 1854 | assert(mem == (vm_page_t)(VM_PAGE_UNPACK_PTR(bucket->page_list))); |
| 1855 | |
| 1856 | #if MACH_PAGE_HASH_STATS |
| 1857 | if (++bucket->cur_count > bucket->hi_count) { |
| 1858 | bucket->hi_count = bucket->cur_count; |
| 1859 | } |
| 1860 | #endif /* MACH_PAGE_HASH_STATS */ |
| 1861 | mem->vmp_hashed = TRUE; |
| 1862 | lck_spin_unlock(lck: bucket_lock); |
| 1863 | } |
| 1864 | |
| 1865 | { |
| 1866 | unsigned int cache_attr; |
| 1867 | |
| 1868 | cache_attr = object->wimg_bits & VM_WIMG_MASK; |
| 1869 | |
| 1870 | if (cache_attr != VM_WIMG_USE_DEFAULT) { |
| 1871 | PMAP_SET_CACHE_ATTR(mem, object, cache_attr, batch_pmap_op); |
| 1872 | } |
| 1873 | } |
| 1874 | /* |
| 1875 | * Now link into the object's list of backed pages. |
| 1876 | */ |
| 1877 | vm_page_queue_enter(&object->memq, mem, vmp_listq); |
| 1878 | object->memq_hint = mem; |
| 1879 | mem->vmp_tabled = TRUE; |
| 1880 | |
| 1881 | /* |
| 1882 | * Show that the object has one more resident page. |
| 1883 | */ |
| 1884 | |
| 1885 | object->resident_page_count++; |
| 1886 | if (VM_PAGE_WIRED(mem)) { |
| 1887 | assert(mem->vmp_wire_count > 0); |
| 1888 | VM_OBJECT_WIRED_PAGE_UPDATE_START(object); |
| 1889 | VM_OBJECT_WIRED_PAGE_ADD(object, mem); |
| 1890 | VM_OBJECT_WIRED_PAGE_UPDATE_END(object, tag); |
| 1891 | } |
| 1892 | assert(object->resident_page_count >= object->wired_page_count); |
| 1893 | |
| 1894 | #if DEVELOPMENT || DEBUG |
| 1895 | if (object->object_is_shared_cache && |
| 1896 | object->pager != NULL && |
| 1897 | object->pager->mo_pager_ops == &shared_region_pager_ops) { |
| 1898 | int new, old; |
| 1899 | assert(!object->internal); |
| 1900 | new = OSAddAtomic(+1, &shared_region_pagers_resident_count); |
| 1901 | do { |
| 1902 | old = shared_region_pagers_resident_peak; |
| 1903 | } while (old < new && |
| 1904 | !OSCompareAndSwap(old, new, &shared_region_pagers_resident_peak)); |
| 1905 | } |
| 1906 | #endif /* DEVELOPMENT || DEBUG */ |
| 1907 | |
| 1908 | if (batch_accounting == FALSE) { |
| 1909 | if (object->internal) { |
| 1910 | OSAddAtomic(1, &vm_page_internal_count); |
| 1911 | } else { |
| 1912 | OSAddAtomic(1, &vm_page_external_count); |
| 1913 | } |
| 1914 | } |
| 1915 | |
| 1916 | /* |
| 1917 | * It wouldn't make sense to insert a "reusable" page in |
| 1918 | * an object (the page would have been marked "reusable" only |
| 1919 | * at the time of a madvise(MADV_FREE_REUSABLE) if it was already |
| 1920 | * in the object at that time). |
| 1921 | * But a page could be inserted in a "all_reusable" object, if |
| 1922 | * something faults it in (a vm_read() from another task or a |
| 1923 | * "use-after-free" issue in user space, for example). It can |
| 1924 | * also happen if we're relocating a page from that object to |
| 1925 | * a different physical page during a physically-contiguous |
| 1926 | * allocation. |
| 1927 | */ |
| 1928 | assert(!mem->vmp_reusable); |
| 1929 | if (object->all_reusable) { |
| 1930 | OSAddAtomic(+1, &vm_page_stats_reusable.reusable_count); |
| 1931 | } |
| 1932 | |
| 1933 | if (object->purgable == VM_PURGABLE_DENY && |
| 1934 | !object->vo_ledger_tag) { |
| 1935 | owner = TASK_NULL; |
| 1936 | } else { |
| 1937 | owner = VM_OBJECT_OWNER(object); |
| 1938 | vm_object_ledger_tag_ledgers(object, |
| 1939 | ledger_idx_volatile: &ledger_idx_volatile, |
| 1940 | ledger_idx_nonvolatile: &ledger_idx_nonvolatile, |
| 1941 | ledger_idx_volatile_compressed: &ledger_idx_volatile_compressed, |
| 1942 | ledger_idx_nonvolatile_compressed: &ledger_idx_nonvolatile_compressed, |
| 1943 | do_footprint: &do_footprint); |
| 1944 | } |
| 1945 | if (owner && |
| 1946 | (object->purgable == VM_PURGABLE_NONVOLATILE || |
| 1947 | object->purgable == VM_PURGABLE_DENY || |
| 1948 | VM_PAGE_WIRED(mem))) { |
| 1949 | if (delayed_ledger_update) { |
| 1950 | *delayed_ledger_update += PAGE_SIZE; |
| 1951 | } else { |
| 1952 | /* more non-volatile bytes */ |
| 1953 | ledger_credit(ledger: owner->ledger, |
| 1954 | entry: ledger_idx_nonvolatile, |
| 1955 | PAGE_SIZE); |
| 1956 | if (do_footprint) { |
| 1957 | /* more footprint */ |
| 1958 | ledger_credit(ledger: owner->ledger, |
| 1959 | entry: task_ledgers.phys_footprint, |
| 1960 | PAGE_SIZE); |
| 1961 | } |
| 1962 | } |
| 1963 | } else if (owner && |
| 1964 | (object->purgable == VM_PURGABLE_VOLATILE || |
| 1965 | object->purgable == VM_PURGABLE_EMPTY)) { |
| 1966 | assert(!VM_PAGE_WIRED(mem)); |
| 1967 | /* more volatile bytes */ |
| 1968 | ledger_credit(ledger: owner->ledger, |
| 1969 | entry: ledger_idx_volatile, |
| 1970 | PAGE_SIZE); |
| 1971 | } |
| 1972 | |
| 1973 | if (object->purgable == VM_PURGABLE_VOLATILE) { |
| 1974 | if (VM_PAGE_WIRED(mem)) { |
| 1975 | OSAddAtomic(+1, &vm_page_purgeable_wired_count); |
| 1976 | } else { |
| 1977 | OSAddAtomic(+1, &vm_page_purgeable_count); |
| 1978 | } |
| 1979 | } else if (object->purgable == VM_PURGABLE_EMPTY && |
| 1980 | mem->vmp_q_state == VM_PAGE_ON_THROTTLED_Q) { |
| 1981 | /* |
| 1982 | * This page belongs to a purged VM object but hasn't |
| 1983 | * been purged (because it was "busy"). |
| 1984 | * It's in the "throttled" queue and hence not |
| 1985 | * visible to vm_pageout_scan(). Move it to a pageable |
| 1986 | * queue, so that it can eventually be reclaimed, instead |
| 1987 | * of lingering in the "empty" object. |
| 1988 | */ |
| 1989 | if (queues_lock_held == FALSE) { |
| 1990 | vm_page_lockspin_queues(); |
| 1991 | } |
| 1992 | vm_page_deactivate(page: mem); |
| 1993 | if (queues_lock_held == FALSE) { |
| 1994 | vm_page_unlock_queues(); |
| 1995 | } |
| 1996 | } |
| 1997 | |
| 1998 | #if VM_OBJECT_TRACKING_OP_MODIFIED |
| 1999 | if (vm_object_tracking_btlog && |
| 2000 | object->internal && |
| 2001 | object->resident_page_count == 0 && |
| 2002 | object->pager == NULL && |
| 2003 | object->shadow != NULL && |
| 2004 | object->shadow->vo_copy == object) { |
| 2005 | btlog_record(vm_object_tracking_btlog, object, |
| 2006 | VM_OBJECT_TRACKING_OP_MODIFIED, |
| 2007 | btref_get(__builtin_frame_address(0), 0)); |
| 2008 | } |
| 2009 | #endif /* VM_OBJECT_TRACKING_OP_MODIFIED */ |
| 2010 | } |
| 2011 | |
| 2012 | /* |
| 2013 | * vm_page_replace: |
| 2014 | * |
| 2015 | * Exactly like vm_page_insert, except that we first |
| 2016 | * remove any existing page at the given offset in object. |
| 2017 | * |
| 2018 | * The object must be locked. |
| 2019 | */ |
| 2020 | void |
| 2021 | vm_page_replace( |
| 2022 | vm_page_t mem, |
| 2023 | vm_object_t object, |
| 2024 | vm_object_offset_t offset) |
| 2025 | { |
| 2026 | vm_page_bucket_t *bucket; |
| 2027 | vm_page_t found_m = VM_PAGE_NULL; |
| 2028 | lck_spin_t *bucket_lock; |
| 2029 | int hash_id; |
| 2030 | |
| 2031 | #if 0 |
| 2032 | /* |
| 2033 | * we don't hold the page queue lock |
| 2034 | * so this check isn't safe to make |
| 2035 | */ |
| 2036 | VM_PAGE_CHECK(mem); |
| 2037 | #endif |
| 2038 | vm_object_lock_assert_exclusive(object); |
| 2039 | #if DEBUG || VM_PAGE_BUCKETS_CHECK |
| 2040 | if (mem->vmp_tabled || mem->vmp_object) { |
| 2041 | panic("vm_page_replace: page %p for (obj=%p,off=0x%llx) " |
| 2042 | "already in (obj=%p,off=0x%llx)" , |
| 2043 | mem, object, offset, VM_PAGE_OBJECT(mem), mem->vmp_offset); |
| 2044 | } |
| 2045 | #endif |
| 2046 | LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_NOTOWNED); |
| 2047 | |
| 2048 | assert(!VM_PAGE_PAGEABLE(mem)); |
| 2049 | |
| 2050 | /* |
| 2051 | * Record the object/offset pair in this page |
| 2052 | */ |
| 2053 | mem->vmp_object = VM_PAGE_PACK_OBJECT(object); |
| 2054 | mem->vmp_offset = offset; |
| 2055 | |
| 2056 | /* |
| 2057 | * Insert it into the object_object/offset hash table, |
| 2058 | * replacing any page that might have been there. |
| 2059 | */ |
| 2060 | |
| 2061 | hash_id = vm_page_hash(object, offset); |
| 2062 | bucket = &vm_page_buckets[hash_id]; |
| 2063 | bucket_lock = &vm_page_bucket_locks[hash_id / BUCKETS_PER_LOCK]; |
| 2064 | |
| 2065 | lck_spin_lock_grp(lck: bucket_lock, grp: &vm_page_lck_grp_bucket); |
| 2066 | |
| 2067 | if (bucket->page_list) { |
| 2068 | vm_page_packed_t *mp = &bucket->page_list; |
| 2069 | vm_page_t m = (vm_page_t)(VM_PAGE_UNPACK_PTR(*mp)); |
| 2070 | |
| 2071 | do { |
| 2072 | /* |
| 2073 | * compare packed object pointers |
| 2074 | */ |
| 2075 | if (m->vmp_object == mem->vmp_object && m->vmp_offset == offset) { |
| 2076 | /* |
| 2077 | * Remove old page from hash list |
| 2078 | */ |
| 2079 | *mp = m->vmp_next_m; |
| 2080 | m->vmp_hashed = FALSE; |
| 2081 | m->vmp_next_m = VM_PAGE_PACK_PTR(NULL); |
| 2082 | |
| 2083 | found_m = m; |
| 2084 | break; |
| 2085 | } |
| 2086 | mp = &m->vmp_next_m; |
| 2087 | } while ((m = (vm_page_t)(VM_PAGE_UNPACK_PTR(*mp)))); |
| 2088 | |
| 2089 | mem->vmp_next_m = bucket->page_list; |
| 2090 | } else { |
| 2091 | mem->vmp_next_m = VM_PAGE_PACK_PTR(NULL); |
| 2092 | } |
| 2093 | /* |
| 2094 | * insert new page at head of hash list |
| 2095 | */ |
| 2096 | bucket->page_list = VM_PAGE_PACK_PTR(mem); |
| 2097 | mem->vmp_hashed = TRUE; |
| 2098 | |
| 2099 | lck_spin_unlock(lck: bucket_lock); |
| 2100 | |
| 2101 | if (found_m) { |
| 2102 | /* |
| 2103 | * there was already a page at the specified |
| 2104 | * offset for this object... remove it from |
| 2105 | * the object and free it back to the free list |
| 2106 | */ |
| 2107 | vm_page_free_unlocked(page: found_m, FALSE); |
| 2108 | } |
| 2109 | vm_page_insert_internal(mem, object, offset, VM_KERN_MEMORY_NONE, FALSE, FALSE, FALSE, FALSE, NULL); |
| 2110 | } |
| 2111 | |
| 2112 | /* |
| 2113 | * vm_page_remove: [ internal use only ] |
| 2114 | * |
| 2115 | * Removes the given mem entry from the object/offset-page |
| 2116 | * table and the object page list. |
| 2117 | * |
| 2118 | * The object must be locked. |
| 2119 | */ |
| 2120 | |
| 2121 | void |
| 2122 | vm_page_remove( |
| 2123 | vm_page_t mem, |
| 2124 | boolean_t remove_from_hash) |
| 2125 | { |
| 2126 | vm_page_bucket_t *bucket; |
| 2127 | vm_page_t this; |
| 2128 | lck_spin_t *bucket_lock; |
| 2129 | int hash_id; |
| 2130 | task_t owner; |
| 2131 | vm_object_t m_object; |
| 2132 | int ledger_idx_volatile; |
| 2133 | int ledger_idx_nonvolatile; |
| 2134 | int ledger_idx_volatile_compressed; |
| 2135 | int ledger_idx_nonvolatile_compressed; |
| 2136 | int ; |
| 2137 | |
| 2138 | m_object = VM_PAGE_OBJECT(mem); |
| 2139 | |
| 2140 | vm_object_lock_assert_exclusive(m_object); |
| 2141 | assert(mem->vmp_tabled); |
| 2142 | assert(!mem->vmp_cleaning); |
| 2143 | assert(!mem->vmp_laundry); |
| 2144 | |
| 2145 | if (VM_PAGE_PAGEABLE(mem)) { |
| 2146 | LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED); |
| 2147 | } |
| 2148 | #if 0 |
| 2149 | /* |
| 2150 | * we don't hold the page queue lock |
| 2151 | * so this check isn't safe to make |
| 2152 | */ |
| 2153 | VM_PAGE_CHECK(mem); |
| 2154 | #endif |
| 2155 | if (remove_from_hash == TRUE) { |
| 2156 | /* |
| 2157 | * Remove from the object_object/offset hash table |
| 2158 | */ |
| 2159 | hash_id = vm_page_hash(m_object, mem->vmp_offset); |
| 2160 | bucket = &vm_page_buckets[hash_id]; |
| 2161 | bucket_lock = &vm_page_bucket_locks[hash_id / BUCKETS_PER_LOCK]; |
| 2162 | |
| 2163 | lck_spin_lock_grp(lck: bucket_lock, grp: &vm_page_lck_grp_bucket); |
| 2164 | |
| 2165 | if ((this = (vm_page_t)(VM_PAGE_UNPACK_PTR(bucket->page_list))) == mem) { |
| 2166 | /* optimize for common case */ |
| 2167 | |
| 2168 | bucket->page_list = mem->vmp_next_m; |
| 2169 | } else { |
| 2170 | vm_page_packed_t *prev; |
| 2171 | |
| 2172 | for (prev = &this->vmp_next_m; |
| 2173 | (this = (vm_page_t)(VM_PAGE_UNPACK_PTR(*prev))) != mem; |
| 2174 | prev = &this->vmp_next_m) { |
| 2175 | continue; |
| 2176 | } |
| 2177 | *prev = this->vmp_next_m; |
| 2178 | } |
| 2179 | #if MACH_PAGE_HASH_STATS |
| 2180 | bucket->cur_count--; |
| 2181 | #endif /* MACH_PAGE_HASH_STATS */ |
| 2182 | mem->vmp_hashed = FALSE; |
| 2183 | this->vmp_next_m = VM_PAGE_PACK_PTR(NULL); |
| 2184 | lck_spin_unlock(lck: bucket_lock); |
| 2185 | } |
| 2186 | /* |
| 2187 | * Now remove from the object's list of backed pages. |
| 2188 | */ |
| 2189 | |
| 2190 | vm_page_remove_internal(page: mem); |
| 2191 | |
| 2192 | /* |
| 2193 | * And show that the object has one fewer resident |
| 2194 | * page. |
| 2195 | */ |
| 2196 | |
| 2197 | assert(m_object->resident_page_count > 0); |
| 2198 | m_object->resident_page_count--; |
| 2199 | |
| 2200 | #if DEVELOPMENT || DEBUG |
| 2201 | if (m_object->object_is_shared_cache && |
| 2202 | m_object->pager != NULL && |
| 2203 | m_object->pager->mo_pager_ops == &shared_region_pager_ops) { |
| 2204 | assert(!m_object->internal); |
| 2205 | OSAddAtomic(-1, &shared_region_pagers_resident_count); |
| 2206 | } |
| 2207 | #endif /* DEVELOPMENT || DEBUG */ |
| 2208 | |
| 2209 | if (m_object->internal) { |
| 2210 | #if DEBUG |
| 2211 | assert(vm_page_internal_count); |
| 2212 | #endif /* DEBUG */ |
| 2213 | |
| 2214 | OSAddAtomic(-1, &vm_page_internal_count); |
| 2215 | } else { |
| 2216 | assert(vm_page_external_count); |
| 2217 | OSAddAtomic(-1, &vm_page_external_count); |
| 2218 | |
| 2219 | if (mem->vmp_xpmapped) { |
| 2220 | assert(vm_page_xpmapped_external_count); |
| 2221 | OSAddAtomic(-1, &vm_page_xpmapped_external_count); |
| 2222 | } |
| 2223 | } |
| 2224 | if (!m_object->internal && |
| 2225 | m_object->cached_list.next && |
| 2226 | m_object->cached_list.prev) { |
| 2227 | if (m_object->resident_page_count == 0) { |
| 2228 | vm_object_cache_remove(m_object); |
| 2229 | } |
| 2230 | } |
| 2231 | |
| 2232 | if (VM_PAGE_WIRED(mem)) { |
| 2233 | assert(mem->vmp_wire_count > 0); |
| 2234 | VM_OBJECT_WIRED_PAGE_UPDATE_START(m_object); |
| 2235 | VM_OBJECT_WIRED_PAGE_REMOVE(m_object, mem); |
| 2236 | VM_OBJECT_WIRED_PAGE_UPDATE_END(m_object, m_object->wire_tag); |
| 2237 | } |
| 2238 | assert(m_object->resident_page_count >= |
| 2239 | m_object->wired_page_count); |
| 2240 | if (mem->vmp_reusable) { |
| 2241 | assert(m_object->reusable_page_count > 0); |
| 2242 | m_object->reusable_page_count--; |
| 2243 | assert(m_object->reusable_page_count <= |
| 2244 | m_object->resident_page_count); |
| 2245 | mem->vmp_reusable = FALSE; |
| 2246 | OSAddAtomic(-1, &vm_page_stats_reusable.reusable_count); |
| 2247 | vm_page_stats_reusable.reused_remove++; |
| 2248 | } else if (m_object->all_reusable) { |
| 2249 | OSAddAtomic(-1, &vm_page_stats_reusable.reusable_count); |
| 2250 | vm_page_stats_reusable.reused_remove++; |
| 2251 | } |
| 2252 | |
| 2253 | if (m_object->purgable == VM_PURGABLE_DENY && |
| 2254 | !m_object->vo_ledger_tag) { |
| 2255 | owner = TASK_NULL; |
| 2256 | } else { |
| 2257 | owner = VM_OBJECT_OWNER(m_object); |
| 2258 | vm_object_ledger_tag_ledgers(object: m_object, |
| 2259 | ledger_idx_volatile: &ledger_idx_volatile, |
| 2260 | ledger_idx_nonvolatile: &ledger_idx_nonvolatile, |
| 2261 | ledger_idx_volatile_compressed: &ledger_idx_volatile_compressed, |
| 2262 | ledger_idx_nonvolatile_compressed: &ledger_idx_nonvolatile_compressed, |
| 2263 | do_footprint: &do_footprint); |
| 2264 | } |
| 2265 | if (owner && |
| 2266 | (m_object->purgable == VM_PURGABLE_NONVOLATILE || |
| 2267 | m_object->purgable == VM_PURGABLE_DENY || |
| 2268 | VM_PAGE_WIRED(mem))) { |
| 2269 | /* less non-volatile bytes */ |
| 2270 | ledger_debit(ledger: owner->ledger, |
| 2271 | entry: ledger_idx_nonvolatile, |
| 2272 | PAGE_SIZE); |
| 2273 | if (do_footprint) { |
| 2274 | /* less footprint */ |
| 2275 | ledger_debit(ledger: owner->ledger, |
| 2276 | entry: task_ledgers.phys_footprint, |
| 2277 | PAGE_SIZE); |
| 2278 | } |
| 2279 | } else if (owner && |
| 2280 | (m_object->purgable == VM_PURGABLE_VOLATILE || |
| 2281 | m_object->purgable == VM_PURGABLE_EMPTY)) { |
| 2282 | assert(!VM_PAGE_WIRED(mem)); |
| 2283 | /* less volatile bytes */ |
| 2284 | ledger_debit(ledger: owner->ledger, |
| 2285 | entry: ledger_idx_volatile, |
| 2286 | PAGE_SIZE); |
| 2287 | } |
| 2288 | if (m_object->purgable == VM_PURGABLE_VOLATILE) { |
| 2289 | if (VM_PAGE_WIRED(mem)) { |
| 2290 | assert(vm_page_purgeable_wired_count > 0); |
| 2291 | OSAddAtomic(-1, &vm_page_purgeable_wired_count); |
| 2292 | } else { |
| 2293 | assert(vm_page_purgeable_count > 0); |
| 2294 | OSAddAtomic(-1, &vm_page_purgeable_count); |
| 2295 | } |
| 2296 | } |
| 2297 | |
| 2298 | if (m_object->set_cache_attr == TRUE) { |
| 2299 | pmap_set_cache_attributes(VM_PAGE_GET_PHYS_PAGE(m: mem), 0); |
| 2300 | } |
| 2301 | |
| 2302 | mem->vmp_tabled = FALSE; |
| 2303 | mem->vmp_object = 0; |
| 2304 | mem->vmp_offset = (vm_object_offset_t) -1; |
| 2305 | } |
| 2306 | |
| 2307 | |
| 2308 | /* |
| 2309 | * vm_page_lookup: |
| 2310 | * |
| 2311 | * Returns the page associated with the object/offset |
| 2312 | * pair specified; if none is found, VM_PAGE_NULL is returned. |
| 2313 | * |
| 2314 | * The object must be locked. No side effects. |
| 2315 | */ |
| 2316 | |
| 2317 | #define VM_PAGE_HASH_LOOKUP_THRESHOLD 10 |
| 2318 | |
| 2319 | #if DEBUG_VM_PAGE_LOOKUP |
| 2320 | |
| 2321 | struct { |
| 2322 | uint64_t vpl_total; |
| 2323 | uint64_t vpl_empty_obj; |
| 2324 | uint64_t vpl_bucket_NULL; |
| 2325 | uint64_t vpl_hit_hint; |
| 2326 | uint64_t vpl_hit_hint_next; |
| 2327 | uint64_t vpl_hit_hint_prev; |
| 2328 | uint64_t vpl_fast; |
| 2329 | uint64_t vpl_slow; |
| 2330 | uint64_t vpl_hit; |
| 2331 | uint64_t vpl_miss; |
| 2332 | |
| 2333 | uint64_t vpl_fast_elapsed; |
| 2334 | uint64_t vpl_slow_elapsed; |
| 2335 | } vm_page_lookup_stats __attribute__((aligned(8))); |
| 2336 | |
| 2337 | #endif |
| 2338 | |
| 2339 | #define KDP_VM_PAGE_WALK_MAX 1000 |
| 2340 | |
| 2341 | vm_page_t |
| 2342 | kdp_vm_page_lookup( |
| 2343 | vm_object_t object, |
| 2344 | vm_object_offset_t offset) |
| 2345 | { |
| 2346 | vm_page_t cur_page; |
| 2347 | int num_traversed = 0; |
| 2348 | |
| 2349 | if (not_in_kdp) { |
| 2350 | panic("panic: kdp_vm_page_lookup done outside of kernel debugger" ); |
| 2351 | } |
| 2352 | |
| 2353 | vm_page_queue_iterate(&object->memq, cur_page, vmp_listq) { |
| 2354 | if (cur_page->vmp_offset == offset) { |
| 2355 | return cur_page; |
| 2356 | } |
| 2357 | num_traversed++; |
| 2358 | |
| 2359 | if (num_traversed >= KDP_VM_PAGE_WALK_MAX) { |
| 2360 | return VM_PAGE_NULL; |
| 2361 | } |
| 2362 | } |
| 2363 | |
| 2364 | return VM_PAGE_NULL; |
| 2365 | } |
| 2366 | |
| 2367 | vm_page_t |
| 2368 | vm_page_lookup( |
| 2369 | vm_object_t object, |
| 2370 | vm_object_offset_t offset) |
| 2371 | { |
| 2372 | vm_page_t mem; |
| 2373 | vm_page_bucket_t *bucket; |
| 2374 | vm_page_queue_entry_t qe; |
| 2375 | lck_spin_t *bucket_lock = NULL; |
| 2376 | int hash_id; |
| 2377 | #if DEBUG_VM_PAGE_LOOKUP |
| 2378 | uint64_t start, elapsed; |
| 2379 | |
| 2380 | OSAddAtomic64(1, &vm_page_lookup_stats.vpl_total); |
| 2381 | #endif |
| 2382 | |
| 2383 | if (VM_KERNEL_ADDRESS(offset)) { |
| 2384 | offset = VM_KERNEL_STRIP_UPTR(offset); |
| 2385 | } |
| 2386 | |
| 2387 | vm_object_lock_assert_held(object); |
| 2388 | assertf(page_aligned(offset), "offset 0x%llx\n" , offset); |
| 2389 | |
| 2390 | if (object->resident_page_count == 0) { |
| 2391 | #if DEBUG_VM_PAGE_LOOKUP |
| 2392 | OSAddAtomic64(1, &vm_page_lookup_stats.vpl_empty_obj); |
| 2393 | #endif |
| 2394 | return VM_PAGE_NULL; |
| 2395 | } |
| 2396 | |
| 2397 | mem = object->memq_hint; |
| 2398 | |
| 2399 | if (mem != VM_PAGE_NULL) { |
| 2400 | assert(VM_PAGE_OBJECT(mem) == object); |
| 2401 | |
| 2402 | if (mem->vmp_offset == offset) { |
| 2403 | #if DEBUG_VM_PAGE_LOOKUP |
| 2404 | OSAddAtomic64(1, &vm_page_lookup_stats.vpl_hit_hint); |
| 2405 | #endif |
| 2406 | return mem; |
| 2407 | } |
| 2408 | qe = (vm_page_queue_entry_t)vm_page_queue_next(&mem->vmp_listq); |
| 2409 | |
| 2410 | if (!vm_page_queue_end(&object->memq, qe)) { |
| 2411 | vm_page_t next_page; |
| 2412 | |
| 2413 | next_page = (vm_page_t)((uintptr_t)qe); |
| 2414 | assert(VM_PAGE_OBJECT(next_page) == object); |
| 2415 | |
| 2416 | if (next_page->vmp_offset == offset) { |
| 2417 | object->memq_hint = next_page; /* new hint */ |
| 2418 | #if DEBUG_VM_PAGE_LOOKUP |
| 2419 | OSAddAtomic64(1, &vm_page_lookup_stats.vpl_hit_hint_next); |
| 2420 | #endif |
| 2421 | return next_page; |
| 2422 | } |
| 2423 | } |
| 2424 | qe = (vm_page_queue_entry_t)vm_page_queue_prev(&mem->vmp_listq); |
| 2425 | |
| 2426 | if (!vm_page_queue_end(&object->memq, qe)) { |
| 2427 | vm_page_t prev_page; |
| 2428 | |
| 2429 | prev_page = (vm_page_t)((uintptr_t)qe); |
| 2430 | assert(VM_PAGE_OBJECT(prev_page) == object); |
| 2431 | |
| 2432 | if (prev_page->vmp_offset == offset) { |
| 2433 | object->memq_hint = prev_page; /* new hint */ |
| 2434 | #if DEBUG_VM_PAGE_LOOKUP |
| 2435 | OSAddAtomic64(1, &vm_page_lookup_stats.vpl_hit_hint_prev); |
| 2436 | #endif |
| 2437 | return prev_page; |
| 2438 | } |
| 2439 | } |
| 2440 | } |
| 2441 | /* |
| 2442 | * Search the hash table for this object/offset pair |
| 2443 | */ |
| 2444 | hash_id = vm_page_hash(object, offset); |
| 2445 | bucket = &vm_page_buckets[hash_id]; |
| 2446 | |
| 2447 | /* |
| 2448 | * since we hold the object lock, we are guaranteed that no |
| 2449 | * new pages can be inserted into this object... this in turn |
| 2450 | * guarantess that the page we're looking for can't exist |
| 2451 | * if the bucket it hashes to is currently NULL even when looked |
| 2452 | * at outside the scope of the hash bucket lock... this is a |
| 2453 | * really cheap optimiztion to avoid taking the lock |
| 2454 | */ |
| 2455 | if (!bucket->page_list) { |
| 2456 | #if DEBUG_VM_PAGE_LOOKUP |
| 2457 | OSAddAtomic64(1, &vm_page_lookup_stats.vpl_bucket_NULL); |
| 2458 | #endif |
| 2459 | return VM_PAGE_NULL; |
| 2460 | } |
| 2461 | |
| 2462 | #if DEBUG_VM_PAGE_LOOKUP |
| 2463 | start = mach_absolute_time(); |
| 2464 | #endif |
| 2465 | if (object->resident_page_count <= VM_PAGE_HASH_LOOKUP_THRESHOLD) { |
| 2466 | /* |
| 2467 | * on average, it's roughly 3 times faster to run a short memq list |
| 2468 | * than to take the spin lock and go through the hash list |
| 2469 | */ |
| 2470 | mem = (vm_page_t)vm_page_queue_first(&object->memq); |
| 2471 | |
| 2472 | while (!vm_page_queue_end(&object->memq, (vm_page_queue_entry_t)mem)) { |
| 2473 | if (mem->vmp_offset == offset) { |
| 2474 | break; |
| 2475 | } |
| 2476 | |
| 2477 | mem = (vm_page_t)vm_page_queue_next(&mem->vmp_listq); |
| 2478 | } |
| 2479 | if (vm_page_queue_end(&object->memq, (vm_page_queue_entry_t)mem)) { |
| 2480 | mem = NULL; |
| 2481 | } |
| 2482 | } else { |
| 2483 | vm_page_object_t packed_object; |
| 2484 | |
| 2485 | packed_object = VM_PAGE_PACK_OBJECT(object); |
| 2486 | |
| 2487 | bucket_lock = &vm_page_bucket_locks[hash_id / BUCKETS_PER_LOCK]; |
| 2488 | |
| 2489 | lck_spin_lock_grp(lck: bucket_lock, grp: &vm_page_lck_grp_bucket); |
| 2490 | |
| 2491 | for (mem = (vm_page_t)(VM_PAGE_UNPACK_PTR(bucket->page_list)); |
| 2492 | mem != VM_PAGE_NULL; |
| 2493 | mem = (vm_page_t)(VM_PAGE_UNPACK_PTR(mem->vmp_next_m))) { |
| 2494 | #if 0 |
| 2495 | /* |
| 2496 | * we don't hold the page queue lock |
| 2497 | * so this check isn't safe to make |
| 2498 | */ |
| 2499 | VM_PAGE_CHECK(mem); |
| 2500 | #endif |
| 2501 | if ((mem->vmp_object == packed_object) && (mem->vmp_offset == offset)) { |
| 2502 | break; |
| 2503 | } |
| 2504 | } |
| 2505 | lck_spin_unlock(lck: bucket_lock); |
| 2506 | } |
| 2507 | |
| 2508 | #if DEBUG_VM_PAGE_LOOKUP |
| 2509 | elapsed = mach_absolute_time() - start; |
| 2510 | |
| 2511 | if (bucket_lock) { |
| 2512 | OSAddAtomic64(1, &vm_page_lookup_stats.vpl_slow); |
| 2513 | OSAddAtomic64(elapsed, &vm_page_lookup_stats.vpl_slow_elapsed); |
| 2514 | } else { |
| 2515 | OSAddAtomic64(1, &vm_page_lookup_stats.vpl_fast); |
| 2516 | OSAddAtomic64(elapsed, &vm_page_lookup_stats.vpl_fast_elapsed); |
| 2517 | } |
| 2518 | if (mem != VM_PAGE_NULL) { |
| 2519 | OSAddAtomic64(1, &vm_page_lookup_stats.vpl_hit); |
| 2520 | } else { |
| 2521 | OSAddAtomic64(1, &vm_page_lookup_stats.vpl_miss); |
| 2522 | } |
| 2523 | #endif |
| 2524 | if (mem != VM_PAGE_NULL) { |
| 2525 | assert(VM_PAGE_OBJECT(mem) == object); |
| 2526 | |
| 2527 | object->memq_hint = mem; |
| 2528 | } |
| 2529 | return mem; |
| 2530 | } |
| 2531 | |
| 2532 | |
| 2533 | /* |
| 2534 | * vm_page_rename: |
| 2535 | * |
| 2536 | * Move the given memory entry from its |
| 2537 | * current object to the specified target object/offset. |
| 2538 | * |
| 2539 | * The object must be locked. |
| 2540 | */ |
| 2541 | void |
| 2542 | vm_page_rename( |
| 2543 | vm_page_t mem, |
| 2544 | vm_object_t new_object, |
| 2545 | vm_object_offset_t new_offset) |
| 2546 | { |
| 2547 | boolean_t internal_to_external, external_to_internal; |
| 2548 | vm_tag_t tag; |
| 2549 | vm_object_t m_object; |
| 2550 | |
| 2551 | m_object = VM_PAGE_OBJECT(mem); |
| 2552 | |
| 2553 | assert(m_object != new_object); |
| 2554 | assert(m_object); |
| 2555 | |
| 2556 | /* |
| 2557 | * Changes to mem->vmp_object require the page lock because |
| 2558 | * the pageout daemon uses that lock to get the object. |
| 2559 | */ |
| 2560 | vm_page_lockspin_queues(); |
| 2561 | |
| 2562 | internal_to_external = FALSE; |
| 2563 | external_to_internal = FALSE; |
| 2564 | |
| 2565 | if (mem->vmp_q_state == VM_PAGE_ON_ACTIVE_LOCAL_Q) { |
| 2566 | /* |
| 2567 | * it's much easier to get the vm_page_pageable_xxx accounting correct |
| 2568 | * if we first move the page to the active queue... it's going to end |
| 2569 | * up there anyway, and we don't do vm_page_rename's frequently enough |
| 2570 | * for this to matter. |
| 2571 | */ |
| 2572 | vm_page_queues_remove(mem, FALSE); |
| 2573 | vm_page_activate(page: mem); |
| 2574 | } |
| 2575 | if (VM_PAGE_PAGEABLE(mem)) { |
| 2576 | if (m_object->internal && !new_object->internal) { |
| 2577 | internal_to_external = TRUE; |
| 2578 | } |
| 2579 | if (!m_object->internal && new_object->internal) { |
| 2580 | external_to_internal = TRUE; |
| 2581 | } |
| 2582 | } |
| 2583 | |
| 2584 | tag = m_object->wire_tag; |
| 2585 | vm_page_remove(mem, TRUE); |
| 2586 | vm_page_insert_internal(mem, object: new_object, offset: new_offset, tag, TRUE, TRUE, FALSE, FALSE, NULL); |
| 2587 | |
| 2588 | if (internal_to_external) { |
| 2589 | vm_page_pageable_internal_count--; |
| 2590 | vm_page_pageable_external_count++; |
| 2591 | } else if (external_to_internal) { |
| 2592 | vm_page_pageable_external_count--; |
| 2593 | vm_page_pageable_internal_count++; |
| 2594 | } |
| 2595 | |
| 2596 | vm_page_unlock_queues(); |
| 2597 | } |
| 2598 | |
| 2599 | /* |
| 2600 | * vm_page_init: |
| 2601 | * |
| 2602 | * Initialize the fields in a new page. |
| 2603 | * This takes a structure with random values and initializes it |
| 2604 | * so that it can be given to vm_page_release or vm_page_insert. |
| 2605 | */ |
| 2606 | void |
| 2607 | vm_page_init( |
| 2608 | vm_page_t mem, |
| 2609 | ppnum_t phys_page, |
| 2610 | boolean_t lopage) |
| 2611 | { |
| 2612 | uint_t i; |
| 2613 | uintptr_t *p; |
| 2614 | |
| 2615 | assert(phys_page); |
| 2616 | |
| 2617 | #if DEBUG |
| 2618 | if ((phys_page != vm_page_fictitious_addr) && (phys_page != vm_page_guard_addr)) { |
| 2619 | if (!(pmap_valid_page(phys_page))) { |
| 2620 | panic("vm_page_init: non-DRAM phys_page 0x%x" , phys_page); |
| 2621 | } |
| 2622 | } |
| 2623 | #endif /* DEBUG */ |
| 2624 | |
| 2625 | /* |
| 2626 | * Initialize the fields of the vm_page. If adding any new fields to vm_page, |
| 2627 | * try to use initial values which match 0. This minimizes the number of writes |
| 2628 | * needed for boot-time initialization. |
| 2629 | * |
| 2630 | * Kernel bzero() isn't an inline yet, so do it by hand for performance. |
| 2631 | */ |
| 2632 | assert(VM_PAGE_NOT_ON_Q == 0); |
| 2633 | assert(sizeof(*mem) % sizeof(uintptr_t) == 0); |
| 2634 | for (p = (uintptr_t *)(void *)mem, i = sizeof(*mem) / sizeof(uintptr_t); i != 0; --i) { |
| 2635 | *p++ = 0; |
| 2636 | } |
| 2637 | mem->vmp_offset = (vm_object_offset_t)-1; |
| 2638 | mem->vmp_busy = TRUE; |
| 2639 | mem->vmp_lopage = lopage; |
| 2640 | |
| 2641 | VM_PAGE_SET_PHYS_PAGE(mem, phys_page); |
| 2642 | #if 0 |
| 2643 | /* |
| 2644 | * we're leaving this turned off for now... currently pages |
| 2645 | * come off the free list and are either immediately dirtied/referenced |
| 2646 | * due to zero-fill or COW faults, or are used to read or write files... |
| 2647 | * in the file I/O case, the UPL mechanism takes care of clearing |
| 2648 | * the state of the HW ref/mod bits in a somewhat fragile way. |
| 2649 | * Since we may change the way this works in the future (to toughen it up), |
| 2650 | * I'm leaving this as a reminder of where these bits could get cleared |
| 2651 | */ |
| 2652 | |
| 2653 | /* |
| 2654 | * make sure both the h/w referenced and modified bits are |
| 2655 | * clear at this point... we are especially dependent on |
| 2656 | * not finding a 'stale' h/w modified in a number of spots |
| 2657 | * once this page goes back into use |
| 2658 | */ |
| 2659 | pmap_clear_refmod(phys_page, VM_MEM_MODIFIED | VM_MEM_REFERENCED); |
| 2660 | #endif |
| 2661 | } |
| 2662 | |
| 2663 | /* |
| 2664 | * vm_page_grab_fictitious: |
| 2665 | * |
| 2666 | * Remove a fictitious page from the free list. |
| 2667 | * Returns VM_PAGE_NULL if there are no free pages. |
| 2668 | */ |
| 2669 | |
| 2670 | static vm_page_t |
| 2671 | vm_page_grab_fictitious_common(ppnum_t phys_addr, boolean_t canwait) |
| 2672 | { |
| 2673 | vm_page_t m; |
| 2674 | |
| 2675 | m = zalloc_flags(vm_page_zone, canwait ? Z_WAITOK : Z_NOWAIT); |
| 2676 | if (m) { |
| 2677 | vm_page_init(mem: m, phys_page: phys_addr, FALSE); |
| 2678 | m->vmp_fictitious = TRUE; |
| 2679 | } |
| 2680 | return m; |
| 2681 | } |
| 2682 | |
| 2683 | vm_page_t |
| 2684 | vm_page_grab_fictitious(boolean_t canwait) |
| 2685 | { |
| 2686 | return vm_page_grab_fictitious_common(phys_addr: vm_page_fictitious_addr, canwait); |
| 2687 | } |
| 2688 | |
| 2689 | int vm_guard_count; |
| 2690 | |
| 2691 | |
| 2692 | vm_page_t |
| 2693 | vm_page_grab_guard(boolean_t canwait) |
| 2694 | { |
| 2695 | vm_page_t page; |
| 2696 | page = vm_page_grab_fictitious_common(phys_addr: vm_page_guard_addr, canwait); |
| 2697 | if (page) { |
| 2698 | OSAddAtomic(1, &vm_guard_count); |
| 2699 | } |
| 2700 | return page; |
| 2701 | } |
| 2702 | |
| 2703 | |
| 2704 | /* |
| 2705 | * vm_page_release_fictitious: |
| 2706 | * |
| 2707 | * Release a fictitious page to the zone pool |
| 2708 | */ |
| 2709 | void |
| 2710 | vm_page_release_fictitious( |
| 2711 | vm_page_t m) |
| 2712 | { |
| 2713 | assert((m->vmp_q_state == VM_PAGE_NOT_ON_Q) || (m->vmp_q_state == VM_PAGE_IS_WIRED)); |
| 2714 | assert(m->vmp_fictitious); |
| 2715 | assert(VM_PAGE_GET_PHYS_PAGE(m) == vm_page_fictitious_addr || |
| 2716 | VM_PAGE_GET_PHYS_PAGE(m) == vm_page_guard_addr); |
| 2717 | assert(!m->vmp_realtime); |
| 2718 | |
| 2719 | if (VM_PAGE_GET_PHYS_PAGE(m) == vm_page_guard_addr) { |
| 2720 | OSAddAtomic(-1, &vm_guard_count); |
| 2721 | } |
| 2722 | |
| 2723 | zfree(vm_page_zone, m); |
| 2724 | } |
| 2725 | |
| 2726 | /* |
| 2727 | * vm_pool_low(): |
| 2728 | * |
| 2729 | * Return true if it is not likely that a non-vm_privileged thread |
| 2730 | * can get memory without blocking. Advisory only, since the |
| 2731 | * situation may change under us. |
| 2732 | */ |
| 2733 | bool |
| 2734 | vm_pool_low(void) |
| 2735 | { |
| 2736 | /* No locking, at worst we will fib. */ |
| 2737 | return vm_page_free_count <= vm_page_free_reserved; |
| 2738 | } |
| 2739 | |
| 2740 | boolean_t vm_darkwake_mode = FALSE; |
| 2741 | |
| 2742 | /* |
| 2743 | * vm_update_darkwake_mode(): |
| 2744 | * |
| 2745 | * Tells the VM that the system is in / out of darkwake. |
| 2746 | * |
| 2747 | * Today, the VM only lowers/raises the background queue target |
| 2748 | * so as to favor consuming more/less background pages when |
| 2749 | * darwake is ON/OFF. |
| 2750 | * |
| 2751 | * We might need to do more things in the future. |
| 2752 | */ |
| 2753 | |
| 2754 | void |
| 2755 | vm_update_darkwake_mode(boolean_t darkwake_mode) |
| 2756 | { |
| 2757 | #if XNU_TARGET_OS_OSX && defined(__arm64__) |
| 2758 | #pragma unused(darkwake_mode) |
| 2759 | assert(vm_darkwake_mode == FALSE); |
| 2760 | /* |
| 2761 | * Darkwake mode isn't supported for AS macOS. |
| 2762 | */ |
| 2763 | return; |
| 2764 | #else /* XNU_TARGET_OS_OSX && __arm64__ */ |
| 2765 | LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_NOTOWNED); |
| 2766 | |
| 2767 | vm_page_lockspin_queues(); |
| 2768 | |
| 2769 | if (vm_darkwake_mode == darkwake_mode) { |
| 2770 | /* |
| 2771 | * No change. |
| 2772 | */ |
| 2773 | vm_page_unlock_queues(); |
| 2774 | return; |
| 2775 | } |
| 2776 | |
| 2777 | vm_darkwake_mode = darkwake_mode; |
| 2778 | |
| 2779 | if (vm_darkwake_mode == TRUE) { |
| 2780 | /* save background target to restore later */ |
| 2781 | vm_page_background_target_snapshot = vm_page_background_target; |
| 2782 | |
| 2783 | /* target is set to 0...no protection for background pages */ |
| 2784 | vm_page_background_target = 0; |
| 2785 | } else if (vm_darkwake_mode == FALSE) { |
| 2786 | if (vm_page_background_target_snapshot) { |
| 2787 | vm_page_background_target = vm_page_background_target_snapshot; |
| 2788 | } |
| 2789 | } |
| 2790 | vm_page_unlock_queues(); |
| 2791 | #endif |
| 2792 | } |
| 2793 | |
| 2794 | void |
| 2795 | vm_page_update_special_state(vm_page_t mem) |
| 2796 | { |
| 2797 | if (mem->vmp_q_state == VM_PAGE_USED_BY_COMPRESSOR || mem->vmp_on_specialq == VM_PAGE_SPECIAL_Q_EMPTY) { |
| 2798 | return; |
| 2799 | } |
| 2800 | |
| 2801 | int mode = mem->vmp_on_specialq; |
| 2802 | |
| 2803 | switch (mode) { |
| 2804 | case VM_PAGE_SPECIAL_Q_BG: |
| 2805 | { |
| 2806 | task_t my_task = current_task_early(); |
| 2807 | |
| 2808 | if (vm_page_background_mode == VM_PAGE_BG_DISABLED) { |
| 2809 | return; |
| 2810 | } |
| 2811 | |
| 2812 | if (my_task) { |
| 2813 | if (task_get_darkwake_mode(my_task)) { |
| 2814 | return; |
| 2815 | } |
| 2816 | } |
| 2817 | |
| 2818 | if (my_task) { |
| 2819 | if (proc_get_effective_task_policy(task: my_task, TASK_POLICY_DARWIN_BG)) { |
| 2820 | return; |
| 2821 | } |
| 2822 | } |
| 2823 | vm_page_lockspin_queues(); |
| 2824 | |
| 2825 | vm_page_background_promoted_count++; |
| 2826 | |
| 2827 | vm_page_remove_from_specialq(mem); |
| 2828 | mem->vmp_on_specialq = VM_PAGE_SPECIAL_Q_EMPTY; |
| 2829 | |
| 2830 | vm_page_unlock_queues(); |
| 2831 | break; |
| 2832 | } |
| 2833 | |
| 2834 | case VM_PAGE_SPECIAL_Q_DONATE: |
| 2835 | { |
| 2836 | task_t my_task = current_task_early(); |
| 2837 | |
| 2838 | if (vm_page_donate_mode == VM_PAGE_DONATE_DISABLED) { |
| 2839 | return; |
| 2840 | } |
| 2841 | |
| 2842 | if (my_task->donates_own_pages == false) { |
| 2843 | vm_page_lockspin_queues(); |
| 2844 | |
| 2845 | vm_page_remove_from_specialq(mem); |
| 2846 | mem->vmp_on_specialq = VM_PAGE_SPECIAL_Q_EMPTY; |
| 2847 | |
| 2848 | vm_page_unlock_queues(); |
| 2849 | } |
| 2850 | break; |
| 2851 | } |
| 2852 | |
| 2853 | default: |
| 2854 | { |
| 2855 | assert(VM_PAGE_UNPACK_PTR(mem->vmp_specialq.next) == (uintptr_t)NULL && |
| 2856 | VM_PAGE_UNPACK_PTR(mem->vmp_specialq.prev) == (uintptr_t)NULL); |
| 2857 | break; |
| 2858 | } |
| 2859 | } |
| 2860 | } |
| 2861 | |
| 2862 | |
| 2863 | void |
| 2864 | vm_page_assign_special_state(vm_page_t mem, int mode) |
| 2865 | { |
| 2866 | if (mem->vmp_q_state == VM_PAGE_USED_BY_COMPRESSOR) { |
| 2867 | return; |
| 2868 | } |
| 2869 | |
| 2870 | switch (mode) { |
| 2871 | case VM_PAGE_SPECIAL_Q_BG: |
| 2872 | { |
| 2873 | if (vm_page_background_mode == VM_PAGE_BG_DISABLED) { |
| 2874 | return; |
| 2875 | } |
| 2876 | |
| 2877 | task_t my_task = current_task_early(); |
| 2878 | |
| 2879 | if (my_task) { |
| 2880 | if (task_get_darkwake_mode(my_task)) { |
| 2881 | mem->vmp_on_specialq = VM_PAGE_SPECIAL_Q_BG; |
| 2882 | return; |
| 2883 | } |
| 2884 | } |
| 2885 | |
| 2886 | if (my_task) { |
| 2887 | mem->vmp_on_specialq = (proc_get_effective_task_policy(task: my_task, TASK_POLICY_DARWIN_BG) ? VM_PAGE_SPECIAL_Q_BG : VM_PAGE_SPECIAL_Q_EMPTY); |
| 2888 | } |
| 2889 | break; |
| 2890 | } |
| 2891 | |
| 2892 | case VM_PAGE_SPECIAL_Q_DONATE: |
| 2893 | { |
| 2894 | if (vm_page_donate_mode == VM_PAGE_DONATE_DISABLED) { |
| 2895 | return; |
| 2896 | } |
| 2897 | mem->vmp_on_specialq = VM_PAGE_SPECIAL_Q_DONATE; |
| 2898 | break; |
| 2899 | } |
| 2900 | |
| 2901 | default: |
| 2902 | break; |
| 2903 | } |
| 2904 | } |
| 2905 | |
| 2906 | |
| 2907 | void |
| 2908 | vm_page_remove_from_specialq( |
| 2909 | vm_page_t mem) |
| 2910 | { |
| 2911 | vm_object_t m_object; |
| 2912 | unsigned short mode; |
| 2913 | |
| 2914 | LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED); |
| 2915 | |
| 2916 | mode = mem->vmp_on_specialq; |
| 2917 | |
| 2918 | switch (mode) { |
| 2919 | case VM_PAGE_SPECIAL_Q_BG: |
| 2920 | { |
| 2921 | if (mem->vmp_specialq.next && mem->vmp_specialq.prev) { |
| 2922 | vm_page_queue_remove(&vm_page_queue_background, mem, vmp_specialq); |
| 2923 | |
| 2924 | mem->vmp_specialq.next = 0; |
| 2925 | mem->vmp_specialq.prev = 0; |
| 2926 | |
| 2927 | vm_page_background_count--; |
| 2928 | |
| 2929 | m_object = VM_PAGE_OBJECT(mem); |
| 2930 | |
| 2931 | if (m_object->internal) { |
| 2932 | vm_page_background_internal_count--; |
| 2933 | } else { |
| 2934 | vm_page_background_external_count--; |
| 2935 | } |
| 2936 | } |
| 2937 | break; |
| 2938 | } |
| 2939 | |
| 2940 | case VM_PAGE_SPECIAL_Q_DONATE: |
| 2941 | { |
| 2942 | if (mem->vmp_specialq.next && mem->vmp_specialq.prev) { |
| 2943 | vm_page_queue_remove((vm_page_queue_head_t*)&vm_page_queue_donate, mem, vmp_specialq); |
| 2944 | mem->vmp_specialq.next = 0; |
| 2945 | mem->vmp_specialq.prev = 0; |
| 2946 | vm_page_donate_count--; |
| 2947 | if (vm_page_donate_queue_ripe && (vm_page_donate_count < vm_page_donate_target)) { |
| 2948 | assert(vm_page_donate_target == vm_page_donate_target_low); |
| 2949 | vm_page_donate_target = vm_page_donate_target_high; |
| 2950 | vm_page_donate_queue_ripe = false; |
| 2951 | } |
| 2952 | } |
| 2953 | |
| 2954 | break; |
| 2955 | } |
| 2956 | |
| 2957 | default: |
| 2958 | { |
| 2959 | assert(VM_PAGE_UNPACK_PTR(mem->vmp_specialq.next) == (uintptr_t)NULL && |
| 2960 | VM_PAGE_UNPACK_PTR(mem->vmp_specialq.prev) == (uintptr_t)NULL); |
| 2961 | break; |
| 2962 | } |
| 2963 | } |
| 2964 | } |
| 2965 | |
| 2966 | |
| 2967 | void |
| 2968 | vm_page_add_to_specialq( |
| 2969 | vm_page_t mem, |
| 2970 | boolean_t first) |
| 2971 | { |
| 2972 | vm_object_t m_object; |
| 2973 | |
| 2974 | LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED); |
| 2975 | |
| 2976 | if (mem->vmp_specialq.next && mem->vmp_specialq.prev) { |
| 2977 | return; |
| 2978 | } |
| 2979 | |
| 2980 | int mode = mem->vmp_on_specialq; |
| 2981 | |
| 2982 | switch (mode) { |
| 2983 | case VM_PAGE_SPECIAL_Q_BG: |
| 2984 | { |
| 2985 | if (vm_page_background_mode == VM_PAGE_BG_DISABLED) { |
| 2986 | return; |
| 2987 | } |
| 2988 | |
| 2989 | m_object = VM_PAGE_OBJECT(mem); |
| 2990 | |
| 2991 | if (vm_page_background_exclude_external && !m_object->internal) { |
| 2992 | return; |
| 2993 | } |
| 2994 | |
| 2995 | if (first == TRUE) { |
| 2996 | vm_page_queue_enter_first(&vm_page_queue_background, mem, vmp_specialq); |
| 2997 | } else { |
| 2998 | vm_page_queue_enter(&vm_page_queue_background, mem, vmp_specialq); |
| 2999 | } |
| 3000 | mem->vmp_on_specialq = VM_PAGE_SPECIAL_Q_BG; |
| 3001 | |
| 3002 | vm_page_background_count++; |
| 3003 | |
| 3004 | if (m_object->internal) { |
| 3005 | vm_page_background_internal_count++; |
| 3006 | } else { |
| 3007 | vm_page_background_external_count++; |
| 3008 | } |
| 3009 | break; |
| 3010 | } |
| 3011 | |
| 3012 | case VM_PAGE_SPECIAL_Q_DONATE: |
| 3013 | { |
| 3014 | if (first == TRUE) { |
| 3015 | vm_page_queue_enter_first((vm_page_queue_head_t*)&vm_page_queue_donate, mem, vmp_specialq); |
| 3016 | } else { |
| 3017 | vm_page_queue_enter((vm_page_queue_head_t*)&vm_page_queue_donate, mem, vmp_specialq); |
| 3018 | } |
| 3019 | vm_page_donate_count++; |
| 3020 | if (!vm_page_donate_queue_ripe && (vm_page_donate_count > vm_page_donate_target)) { |
| 3021 | assert(vm_page_donate_target == vm_page_donate_target_high); |
| 3022 | vm_page_donate_target = vm_page_donate_target_low; |
| 3023 | vm_page_donate_queue_ripe = true; |
| 3024 | } |
| 3025 | mem->vmp_on_specialq = VM_PAGE_SPECIAL_Q_DONATE; |
| 3026 | break; |
| 3027 | } |
| 3028 | |
| 3029 | default: |
| 3030 | break; |
| 3031 | } |
| 3032 | } |
| 3033 | |
| 3034 | /* |
| 3035 | * This can be switched to FALSE to help debug drivers |
| 3036 | * that are having problems with memory > 4G. |
| 3037 | */ |
| 3038 | boolean_t vm_himemory_mode = TRUE; |
| 3039 | |
| 3040 | /* |
| 3041 | * this interface exists to support hardware controllers |
| 3042 | * incapable of generating DMAs with more than 32 bits |
| 3043 | * of address on platforms with physical memory > 4G... |
| 3044 | */ |
| 3045 | unsigned int vm_lopages_allocated_q = 0; |
| 3046 | unsigned int vm_lopages_allocated_cpm_success = 0; |
| 3047 | unsigned int vm_lopages_allocated_cpm_failed = 0; |
| 3048 | vm_page_queue_head_t vm_lopage_queue_free VM_PAGE_PACKED_ALIGNED; |
| 3049 | |
| 3050 | vm_page_t |
| 3051 | vm_page_grablo(void) |
| 3052 | { |
| 3053 | vm_page_t mem; |
| 3054 | |
| 3055 | if (vm_lopage_needed == FALSE) { |
| 3056 | return vm_page_grab(); |
| 3057 | } |
| 3058 | |
| 3059 | vm_free_page_lock_spin(); |
| 3060 | |
| 3061 | if (!vm_page_queue_empty(&vm_lopage_queue_free)) { |
| 3062 | vm_page_queue_remove_first(&vm_lopage_queue_free, mem, vmp_pageq); |
| 3063 | assert(vm_lopage_free_count); |
| 3064 | assert(mem->vmp_q_state == VM_PAGE_ON_FREE_LOPAGE_Q); |
| 3065 | mem->vmp_q_state = VM_PAGE_NOT_ON_Q; |
| 3066 | |
| 3067 | vm_lopage_free_count--; |
| 3068 | vm_lopages_allocated_q++; |
| 3069 | |
| 3070 | if (vm_lopage_free_count < vm_lopage_lowater) { |
| 3071 | vm_lopage_refill = TRUE; |
| 3072 | } |
| 3073 | |
| 3074 | vm_free_page_unlock(); |
| 3075 | |
| 3076 | if (current_task()->donates_own_pages) { |
| 3077 | vm_page_assign_special_state(mem, VM_PAGE_SPECIAL_Q_DONATE); |
| 3078 | } else { |
| 3079 | vm_page_assign_special_state(mem, VM_PAGE_SPECIAL_Q_BG); |
| 3080 | } |
| 3081 | } else { |
| 3082 | vm_free_page_unlock(); |
| 3083 | |
| 3084 | if (cpm_allocate(PAGE_SIZE, list: &mem, atop(PPNUM_MAX), pnum_mask: 0, FALSE, flags: KMA_LOMEM) != KERN_SUCCESS) { |
| 3085 | vm_free_page_lock_spin(); |
| 3086 | vm_lopages_allocated_cpm_failed++; |
| 3087 | vm_free_page_unlock(); |
| 3088 | |
| 3089 | return VM_PAGE_NULL; |
| 3090 | } |
| 3091 | assert(mem->vmp_q_state == VM_PAGE_NOT_ON_Q); |
| 3092 | |
| 3093 | mem->vmp_busy = TRUE; |
| 3094 | |
| 3095 | vm_page_lockspin_queues(); |
| 3096 | |
| 3097 | mem->vmp_gobbled = FALSE; |
| 3098 | vm_page_gobble_count--; |
| 3099 | vm_page_wire_count--; |
| 3100 | |
| 3101 | vm_lopages_allocated_cpm_success++; |
| 3102 | vm_page_unlock_queues(); |
| 3103 | } |
| 3104 | assert(mem->vmp_busy); |
| 3105 | assert(!mem->vmp_pmapped); |
| 3106 | assert(!mem->vmp_wpmapped); |
| 3107 | assert(!pmap_is_noencrypt(VM_PAGE_GET_PHYS_PAGE(mem))); |
| 3108 | |
| 3109 | VM_PAGE_ZERO_PAGEQ_ENTRY(mem); |
| 3110 | |
| 3111 | counter_inc(&vm_page_grab_count); |
| 3112 | VM_DEBUG_EVENT(vm_page_grab, VM_PAGE_GRAB, DBG_FUNC_NONE, 0, 1, 0, 0); |
| 3113 | |
| 3114 | return mem; |
| 3115 | } |
| 3116 | |
| 3117 | /* |
| 3118 | * vm_page_grab: |
| 3119 | * |
| 3120 | * first try to grab a page from the per-cpu free list... |
| 3121 | * this must be done while pre-emption is disabled... if |
| 3122 | * a page is available, we're done... |
| 3123 | * if no page is available, grab the vm_page_queue_free_lock |
| 3124 | * and see if current number of free pages would allow us |
| 3125 | * to grab at least 1... if not, return VM_PAGE_NULL as before... |
| 3126 | * if there are pages available, disable preemption and |
| 3127 | * recheck the state of the per-cpu free list... we could |
| 3128 | * have been preempted and moved to a different cpu, or |
| 3129 | * some other thread could have re-filled it... if still |
| 3130 | * empty, figure out how many pages we can steal from the |
| 3131 | * global free queue and move to the per-cpu queue... |
| 3132 | * return 1 of these pages when done... only wakeup the |
| 3133 | * pageout_scan thread if we moved pages from the global |
| 3134 | * list... no need for the wakeup if we've satisfied the |
| 3135 | * request from the per-cpu queue. |
| 3136 | */ |
| 3137 | |
| 3138 | #if CONFIG_SECLUDED_MEMORY |
| 3139 | vm_page_t vm_page_grab_secluded(void); |
| 3140 | #endif /* CONFIG_SECLUDED_MEMORY */ |
| 3141 | |
| 3142 | static inline void |
| 3143 | vm_page_grab_diags(void); |
| 3144 | |
| 3145 | /* |
| 3146 | * vm_page_validate_no_references: |
| 3147 | * |
| 3148 | * Make sure the physical page has no refcounts. |
| 3149 | * |
| 3150 | */ |
| 3151 | static inline void |
| 3152 | vm_page_validate_no_references( |
| 3153 | vm_page_t mem) |
| 3154 | { |
| 3155 | bool is_freed; |
| 3156 | |
| 3157 | if (mem->vmp_fictitious) { |
| 3158 | return; |
| 3159 | } |
| 3160 | |
| 3161 | pmap_paddr_t paddr = ptoa(VM_PAGE_GET_PHYS_PAGE(mem)); |
| 3162 | |
| 3163 | #if CONFIG_SPTM |
| 3164 | is_freed = pmap_is_page_free(paddr); |
| 3165 | #else |
| 3166 | is_freed = pmap_verify_free(pn: VM_PAGE_GET_PHYS_PAGE(m: mem)); |
| 3167 | #endif /* CONFIG_SPTM */ |
| 3168 | |
| 3169 | if (!is_freed) { |
| 3170 | /* |
| 3171 | * There is a redundancy here, but we are going to panic anyways, |
| 3172 | * and ASSERT_PMAP_FREE traces useful information. So, we keep this |
| 3173 | * behavior. |
| 3174 | */ |
| 3175 | ASSERT_PMAP_FREE(mem); |
| 3176 | panic("%s: page 0x%llx is referenced" , __func__, paddr); |
| 3177 | } |
| 3178 | } |
| 3179 | |
| 3180 | vm_page_t |
| 3181 | vm_page_grab(void) |
| 3182 | { |
| 3183 | return vm_page_grab_options(VM_PAGE_GRAB_OPTIONS_NONE); |
| 3184 | } |
| 3185 | |
| 3186 | #if HIBERNATION |
| 3187 | boolean_t hibernate_rebuild_needed = FALSE; |
| 3188 | #endif /* HIBERNATION */ |
| 3189 | |
| 3190 | vm_page_t |
| 3191 | vm_page_grab_options( |
| 3192 | int grab_options) |
| 3193 | { |
| 3194 | vm_page_t mem; |
| 3195 | |
| 3196 | restart: |
| 3197 | disable_preemption(); |
| 3198 | |
| 3199 | if ((mem = *PERCPU_GET(free_pages))) { |
| 3200 | assert(mem->vmp_q_state == VM_PAGE_ON_FREE_LOCAL_Q); |
| 3201 | |
| 3202 | #if HIBERNATION |
| 3203 | if (hibernate_rebuild_needed) { |
| 3204 | panic("%s:%d should not modify cpu->free_pages while hibernating" , __FUNCTION__, __LINE__); |
| 3205 | } |
| 3206 | #endif /* HIBERNATION */ |
| 3207 | |
| 3208 | vm_page_grab_diags(); |
| 3209 | |
| 3210 | vm_offset_t pcpu_base = current_percpu_base(); |
| 3211 | counter_inc_preemption_disabled(&vm_page_grab_count); |
| 3212 | *PERCPU_GET_WITH_BASE(pcpu_base, free_pages) = mem->vmp_snext; |
| 3213 | VM_DEBUG_EVENT(vm_page_grab, VM_PAGE_GRAB, DBG_FUNC_NONE, grab_options, 0, 0, 0); |
| 3214 | |
| 3215 | VM_PAGE_ZERO_PAGEQ_ENTRY(mem); |
| 3216 | mem->vmp_q_state = VM_PAGE_NOT_ON_Q; |
| 3217 | enable_preemption(); |
| 3218 | |
| 3219 | assert(mem->vmp_listq.next == 0 && mem->vmp_listq.prev == 0); |
| 3220 | assert(mem->vmp_tabled == FALSE); |
| 3221 | assert(mem->vmp_object == 0); |
| 3222 | assert(!mem->vmp_laundry); |
| 3223 | assert(mem->vmp_busy); |
| 3224 | assert(!mem->vmp_pmapped); |
| 3225 | assert(!mem->vmp_wpmapped); |
| 3226 | assert(!pmap_is_noencrypt(VM_PAGE_GET_PHYS_PAGE(mem))); |
| 3227 | assert(!mem->vmp_realtime); |
| 3228 | |
| 3229 | vm_page_validate_no_references(mem); |
| 3230 | |
| 3231 | task_t cur_task = current_task_early(); |
| 3232 | if (cur_task && cur_task != kernel_task) { |
| 3233 | if (cur_task->donates_own_pages) { |
| 3234 | vm_page_assign_special_state(mem, VM_PAGE_SPECIAL_Q_DONATE); |
| 3235 | } else { |
| 3236 | vm_page_assign_special_state(mem, VM_PAGE_SPECIAL_Q_BG); |
| 3237 | } |
| 3238 | } |
| 3239 | return mem; |
| 3240 | } |
| 3241 | enable_preemption(); |
| 3242 | |
| 3243 | |
| 3244 | /* |
| 3245 | * Optionally produce warnings if the wire or gobble |
| 3246 | * counts exceed some threshold. |
| 3247 | */ |
| 3248 | #if VM_PAGE_WIRE_COUNT_WARNING |
| 3249 | if (vm_page_wire_count >= VM_PAGE_WIRE_COUNT_WARNING) { |
| 3250 | printf("mk: vm_page_grab(): high wired page count of %d\n" , |
| 3251 | vm_page_wire_count); |
| 3252 | } |
| 3253 | #endif |
| 3254 | #if VM_PAGE_GOBBLE_COUNT_WARNING |
| 3255 | if (vm_page_gobble_count >= VM_PAGE_GOBBLE_COUNT_WARNING) { |
| 3256 | printf("mk: vm_page_grab(): high gobbled page count of %d\n" , |
| 3257 | vm_page_gobble_count); |
| 3258 | } |
| 3259 | #endif |
| 3260 | |
| 3261 | /* |
| 3262 | * If free count is low and we have delayed pages from early boot, |
| 3263 | * get one of those instead. |
| 3264 | */ |
| 3265 | if (__improbable(vm_delayed_count > 0 && |
| 3266 | vm_page_free_count <= vm_page_free_target && |
| 3267 | (mem = vm_get_delayed_page(grab_options)) != NULL)) { |
| 3268 | assert(!mem->vmp_realtime); |
| 3269 | return mem; |
| 3270 | } |
| 3271 | |
| 3272 | vm_free_page_lock_spin(); |
| 3273 | |
| 3274 | /* |
| 3275 | * Only let privileged threads (involved in pageout) |
| 3276 | * dip into the reserved pool. |
| 3277 | */ |
| 3278 | if ((vm_page_free_count < vm_page_free_reserved) && |
| 3279 | !(current_thread()->options & TH_OPT_VMPRIV)) { |
| 3280 | /* no page for us in the free queue... */ |
| 3281 | vm_free_page_unlock(); |
| 3282 | mem = VM_PAGE_NULL; |
| 3283 | |
| 3284 | #if CONFIG_SECLUDED_MEMORY |
| 3285 | /* ... but can we try and grab from the secluded queue? */ |
| 3286 | if (vm_page_secluded_count > 0 && |
| 3287 | ((grab_options & VM_PAGE_GRAB_SECLUDED) || |
| 3288 | task_can_use_secluded_mem(current_task(), TRUE))) { |
| 3289 | mem = vm_page_grab_secluded(); |
| 3290 | if (grab_options & VM_PAGE_GRAB_SECLUDED) { |
| 3291 | vm_page_secluded.grab_for_iokit++; |
| 3292 | if (mem) { |
| 3293 | vm_page_secluded.grab_for_iokit_success++; |
| 3294 | } |
| 3295 | } |
| 3296 | if (mem) { |
| 3297 | VM_CHECK_MEMORYSTATUS; |
| 3298 | |
| 3299 | vm_page_grab_diags(); |
| 3300 | counter_inc(&vm_page_grab_count); |
| 3301 | VM_DEBUG_EVENT(vm_page_grab, VM_PAGE_GRAB, DBG_FUNC_NONE, grab_options, 0, 0, 0); |
| 3302 | |
| 3303 | assert(!mem->vmp_realtime); |
| 3304 | return mem; |
| 3305 | } |
| 3306 | } |
| 3307 | #else /* CONFIG_SECLUDED_MEMORY */ |
| 3308 | (void) grab_options; |
| 3309 | #endif /* CONFIG_SECLUDED_MEMORY */ |
| 3310 | } else { |
| 3311 | vm_page_t head; |
| 3312 | vm_page_t tail; |
| 3313 | unsigned int pages_to_steal; |
| 3314 | unsigned int color; |
| 3315 | unsigned int clump_end, sub_count; |
| 3316 | |
| 3317 | while (vm_page_free_count == 0) { |
| 3318 | vm_free_page_unlock(); |
| 3319 | /* |
| 3320 | * must be a privileged thread to be |
| 3321 | * in this state since a non-privileged |
| 3322 | * thread would have bailed if we were |
| 3323 | * under the vm_page_free_reserved mark |
| 3324 | */ |
| 3325 | VM_PAGE_WAIT(); |
| 3326 | vm_free_page_lock_spin(); |
| 3327 | } |
| 3328 | |
| 3329 | /* |
| 3330 | * Need to repopulate the per-CPU free list from the global free list. |
| 3331 | * Note we don't do any processing of pending retirement pages here. |
| 3332 | * That'll happen in the code above when the page comes off the per-CPU list. |
| 3333 | */ |
| 3334 | disable_preemption(); |
| 3335 | |
| 3336 | /* |
| 3337 | * If we got preempted the cache might now have pages. |
| 3338 | */ |
| 3339 | if ((mem = *PERCPU_GET(free_pages))) { |
| 3340 | vm_free_page_unlock(); |
| 3341 | enable_preemption(); |
| 3342 | goto restart; |
| 3343 | } |
| 3344 | |
| 3345 | if (vm_page_free_count <= vm_page_free_reserved) { |
| 3346 | pages_to_steal = 1; |
| 3347 | } else { |
| 3348 | if (vm_free_magazine_refill_limit <= (vm_page_free_count - vm_page_free_reserved)) { |
| 3349 | pages_to_steal = vm_free_magazine_refill_limit; |
| 3350 | } else { |
| 3351 | pages_to_steal = (vm_page_free_count - vm_page_free_reserved); |
| 3352 | } |
| 3353 | } |
| 3354 | color = *PERCPU_GET(start_color); |
| 3355 | head = tail = NULL; |
| 3356 | |
| 3357 | vm_page_free_count -= pages_to_steal; |
| 3358 | clump_end = sub_count = 0; |
| 3359 | |
| 3360 | while (pages_to_steal--) { |
| 3361 | while (vm_page_queue_empty(&vm_page_queue_free[color].qhead)) { |
| 3362 | color = (color + 1) & vm_color_mask; |
| 3363 | } |
| 3364 | #if defined(__x86_64__) |
| 3365 | vm_page_queue_remove_first_with_clump(&vm_page_queue_free[color].qhead, |
| 3366 | mem, clump_end); |
| 3367 | #else |
| 3368 | vm_page_queue_remove_first(&vm_page_queue_free[color].qhead, |
| 3369 | mem, vmp_pageq); |
| 3370 | #endif |
| 3371 | |
| 3372 | assert(mem->vmp_q_state == VM_PAGE_ON_FREE_Q); |
| 3373 | |
| 3374 | VM_PAGE_ZERO_PAGEQ_ENTRY(mem); |
| 3375 | |
| 3376 | #if defined(__arm64__) |
| 3377 | color = (color + 1) & vm_color_mask; |
| 3378 | #else |
| 3379 | |
| 3380 | #if DEVELOPMENT || DEBUG |
| 3381 | |
| 3382 | sub_count++; |
| 3383 | if (clump_end) { |
| 3384 | vm_clump_update_stats(sub_count); |
| 3385 | sub_count = 0; |
| 3386 | color = (color + 1) & vm_color_mask; |
| 3387 | } |
| 3388 | #else |
| 3389 | if (clump_end) { |
| 3390 | color = (color + 1) & vm_color_mask; |
| 3391 | } |
| 3392 | |
| 3393 | #endif /* if DEVELOPMENT || DEBUG */ |
| 3394 | |
| 3395 | #endif /* if defined(__arm64__) */ |
| 3396 | |
| 3397 | if (head == NULL) { |
| 3398 | head = mem; |
| 3399 | } else { |
| 3400 | tail->vmp_snext = mem; |
| 3401 | } |
| 3402 | tail = mem; |
| 3403 | |
| 3404 | assert(mem->vmp_listq.next == 0 && mem->vmp_listq.prev == 0); |
| 3405 | assert(mem->vmp_tabled == FALSE); |
| 3406 | assert(mem->vmp_object == 0); |
| 3407 | assert(!mem->vmp_laundry); |
| 3408 | |
| 3409 | mem->vmp_q_state = VM_PAGE_ON_FREE_LOCAL_Q; |
| 3410 | |
| 3411 | assert(mem->vmp_busy); |
| 3412 | assert(!mem->vmp_pmapped); |
| 3413 | assert(!mem->vmp_wpmapped); |
| 3414 | assert(!pmap_is_noencrypt(VM_PAGE_GET_PHYS_PAGE(mem))); |
| 3415 | assert(!mem->vmp_realtime); |
| 3416 | |
| 3417 | vm_page_validate_no_references(mem); |
| 3418 | } |
| 3419 | #if defined (__x86_64__) && (DEVELOPMENT || DEBUG) |
| 3420 | vm_clump_update_stats(sub_count); |
| 3421 | #endif |
| 3422 | |
| 3423 | #if HIBERNATION |
| 3424 | if (hibernate_rebuild_needed) { |
| 3425 | panic("%s:%d should not modify cpu->free_pages while hibernating" , __FUNCTION__, __LINE__); |
| 3426 | } |
| 3427 | #endif /* HIBERNATION */ |
| 3428 | vm_offset_t pcpu_base = current_percpu_base(); |
| 3429 | *PERCPU_GET_WITH_BASE(pcpu_base, free_pages) = head; |
| 3430 | *PERCPU_GET_WITH_BASE(pcpu_base, start_color) = color; |
| 3431 | |
| 3432 | vm_free_page_unlock(); |
| 3433 | enable_preemption(); |
| 3434 | goto restart; |
| 3435 | } |
| 3436 | |
| 3437 | /* |
| 3438 | * Decide if we should poke the pageout daemon. |
| 3439 | * We do this if the free count is less than the low |
| 3440 | * water mark. VM Pageout Scan will keep running till |
| 3441 | * the free_count > free_target (& hence above free_min). |
| 3442 | * This wakeup is to catch the possibility of the counts |
| 3443 | * dropping between VM Pageout Scan parking and this check. |
| 3444 | * |
| 3445 | * We don't have the counts locked ... if they change a little, |
| 3446 | * it doesn't really matter. |
| 3447 | */ |
| 3448 | if (vm_page_free_count < vm_page_free_min) { |
| 3449 | vm_free_page_lock(); |
| 3450 | if (vm_pageout_running == FALSE) { |
| 3451 | vm_free_page_unlock(); |
| 3452 | thread_wakeup((event_t) &vm_page_free_wanted); |
| 3453 | } else { |
| 3454 | vm_free_page_unlock(); |
| 3455 | } |
| 3456 | } |
| 3457 | |
| 3458 | VM_CHECK_MEMORYSTATUS; |
| 3459 | |
| 3460 | if (mem) { |
| 3461 | assert(!mem->vmp_realtime); |
| 3462 | // dbgLog(VM_PAGE_GET_PHYS_PAGE(mem), vm_page_free_count, vm_page_wire_count, 4); /* (TEST/DEBUG) */ |
| 3463 | |
| 3464 | task_t cur_task = current_task_early(); |
| 3465 | if (cur_task && cur_task != kernel_task) { |
| 3466 | if (cur_task->donates_own_pages) { |
| 3467 | vm_page_assign_special_state(mem, VM_PAGE_SPECIAL_Q_DONATE); |
| 3468 | } else { |
| 3469 | vm_page_assign_special_state(mem, VM_PAGE_SPECIAL_Q_BG); |
| 3470 | } |
| 3471 | } |
| 3472 | } |
| 3473 | return mem; |
| 3474 | } |
| 3475 | |
| 3476 | #if CONFIG_SECLUDED_MEMORY |
| 3477 | vm_page_t |
| 3478 | vm_page_grab_secluded(void) |
| 3479 | { |
| 3480 | vm_page_t mem; |
| 3481 | vm_object_t object; |
| 3482 | int refmod_state; |
| 3483 | |
| 3484 | if (vm_page_secluded_count == 0) { |
| 3485 | /* no secluded pages to grab... */ |
| 3486 | return VM_PAGE_NULL; |
| 3487 | } |
| 3488 | |
| 3489 | /* secluded queue is protected by the VM page queue lock */ |
| 3490 | vm_page_lock_queues(); |
| 3491 | |
| 3492 | if (vm_page_secluded_count == 0) { |
| 3493 | /* no secluded pages to grab... */ |
| 3494 | vm_page_unlock_queues(); |
| 3495 | return VM_PAGE_NULL; |
| 3496 | } |
| 3497 | |
| 3498 | #if 00 |
| 3499 | /* can we grab from the secluded queue? */ |
| 3500 | if (vm_page_secluded_count > vm_page_secluded_target || |
| 3501 | (vm_page_secluded_count > 0 && |
| 3502 | task_can_use_secluded_mem(current_task(), TRUE))) { |
| 3503 | /* OK */ |
| 3504 | } else { |
| 3505 | /* can't grab from secluded queue... */ |
| 3506 | vm_page_unlock_queues(); |
| 3507 | return VM_PAGE_NULL; |
| 3508 | } |
| 3509 | #endif |
| 3510 | |
| 3511 | /* we can grab a page from secluded queue! */ |
| 3512 | assert((vm_page_secluded_count_free + |
| 3513 | vm_page_secluded_count_inuse) == |
| 3514 | vm_page_secluded_count); |
| 3515 | if (current_task()->task_can_use_secluded_mem) { |
| 3516 | assert(num_tasks_can_use_secluded_mem > 0); |
| 3517 | } |
| 3518 | assert(!vm_page_queue_empty(&vm_page_queue_secluded)); |
| 3519 | LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED); |
| 3520 | mem = (vm_page_t)vm_page_queue_first(&vm_page_queue_secluded); |
| 3521 | assert(mem->vmp_q_state == VM_PAGE_ON_SECLUDED_Q); |
| 3522 | vm_page_queues_remove(mem, TRUE); |
| 3523 | |
| 3524 | object = VM_PAGE_OBJECT(mem); |
| 3525 | |
| 3526 | assert(!mem->vmp_fictitious); |
| 3527 | assert(!VM_PAGE_WIRED(mem)); |
| 3528 | if (object == VM_OBJECT_NULL) { |
| 3529 | /* free for grab! */ |
| 3530 | vm_page_unlock_queues(); |
| 3531 | vm_page_secluded.grab_success_free++; |
| 3532 | |
| 3533 | assert(mem->vmp_busy); |
| 3534 | assert(mem->vmp_q_state == VM_PAGE_NOT_ON_Q); |
| 3535 | assert(VM_PAGE_OBJECT(mem) == VM_OBJECT_NULL); |
| 3536 | assert(mem->vmp_pageq.next == 0); |
| 3537 | assert(mem->vmp_pageq.prev == 0); |
| 3538 | assert(mem->vmp_listq.next == 0); |
| 3539 | assert(mem->vmp_listq.prev == 0); |
| 3540 | assert(mem->vmp_on_specialq == VM_PAGE_SPECIAL_Q_EMPTY); |
| 3541 | assert(mem->vmp_specialq.next == 0); |
| 3542 | assert(mem->vmp_specialq.prev == 0); |
| 3543 | return mem; |
| 3544 | } |
| 3545 | |
| 3546 | assert(!object->internal); |
| 3547 | // vm_page_pageable_external_count--; |
| 3548 | |
| 3549 | if (!vm_object_lock_try(object)) { |
| 3550 | // printf("SECLUDED: page %p: object %p locked\n", mem, object); |
| 3551 | vm_page_secluded.grab_failure_locked++; |
| 3552 | reactivate_secluded_page: |
| 3553 | vm_page_activate(mem); |
| 3554 | vm_page_unlock_queues(); |
| 3555 | return VM_PAGE_NULL; |
| 3556 | } |
| 3557 | if (mem->vmp_busy || |
| 3558 | mem->vmp_cleaning || |
| 3559 | mem->vmp_laundry) { |
| 3560 | /* can't steal page in this state... */ |
| 3561 | vm_object_unlock(object); |
| 3562 | vm_page_secluded.grab_failure_state++; |
| 3563 | goto reactivate_secluded_page; |
| 3564 | } |
| 3565 | if (mem->vmp_realtime) { |
| 3566 | /* don't steal pages used by realtime threads... */ |
| 3567 | vm_object_unlock(object); |
| 3568 | vm_page_secluded.grab_failure_realtime++; |
| 3569 | goto reactivate_secluded_page; |
| 3570 | } |
| 3571 | |
| 3572 | mem->vmp_busy = TRUE; |
| 3573 | refmod_state = pmap_disconnect(VM_PAGE_GET_PHYS_PAGE(mem)); |
| 3574 | if (refmod_state & VM_MEM_REFERENCED) { |
| 3575 | mem->vmp_reference = TRUE; |
| 3576 | } |
| 3577 | if (refmod_state & VM_MEM_MODIFIED) { |
| 3578 | SET_PAGE_DIRTY(mem, FALSE); |
| 3579 | } |
| 3580 | if (mem->vmp_dirty || mem->vmp_precious) { |
| 3581 | /* can't grab a dirty page; re-activate */ |
| 3582 | // printf("SECLUDED: dirty page %p\n", mem); |
| 3583 | PAGE_WAKEUP_DONE(mem); |
| 3584 | vm_page_secluded.grab_failure_dirty++; |
| 3585 | vm_object_unlock(object); |
| 3586 | goto reactivate_secluded_page; |
| 3587 | } |
| 3588 | if (mem->vmp_reference) { |
| 3589 | /* it's been used but we do need to grab a page... */ |
| 3590 | } |
| 3591 | |
| 3592 | vm_page_unlock_queues(); |
| 3593 | |
| 3594 | |
| 3595 | /* finish what vm_page_free() would have done... */ |
| 3596 | vm_page_free_prepare_object(mem, TRUE); |
| 3597 | vm_object_unlock(object); |
| 3598 | object = VM_OBJECT_NULL; |
| 3599 | |
| 3600 | vm_page_validate_no_references(mem); |
| 3601 | |
| 3602 | pmap_clear_noencrypt(VM_PAGE_GET_PHYS_PAGE(mem)); |
| 3603 | vm_page_secluded.grab_success_other++; |
| 3604 | |
| 3605 | assert(mem->vmp_busy); |
| 3606 | assert(mem->vmp_q_state == VM_PAGE_NOT_ON_Q); |
| 3607 | assert(VM_PAGE_OBJECT(mem) == VM_OBJECT_NULL); |
| 3608 | assert(mem->vmp_pageq.next == 0); |
| 3609 | assert(mem->vmp_pageq.prev == 0); |
| 3610 | assert(mem->vmp_listq.next == 0); |
| 3611 | assert(mem->vmp_listq.prev == 0); |
| 3612 | assert(mem->vmp_on_specialq == VM_PAGE_SPECIAL_Q_EMPTY); |
| 3613 | assert(mem->vmp_specialq.next == 0); |
| 3614 | assert(mem->vmp_specialq.prev == 0); |
| 3615 | |
| 3616 | return mem; |
| 3617 | } |
| 3618 | |
| 3619 | uint64_t |
| 3620 | vm_page_secluded_drain(void) |
| 3621 | { |
| 3622 | vm_page_t local_freeq; |
| 3623 | int local_freed; |
| 3624 | uint64_t num_reclaimed; |
| 3625 | unsigned int saved_secluded_count, saved_secluded_target; |
| 3626 | |
| 3627 | num_reclaimed = 0; |
| 3628 | local_freeq = NULL; |
| 3629 | local_freed = 0; |
| 3630 | |
| 3631 | vm_page_lock_queues(); |
| 3632 | |
| 3633 | saved_secluded_count = vm_page_secluded_count; |
| 3634 | saved_secluded_target = vm_page_secluded_target; |
| 3635 | vm_page_secluded_target = 0; |
| 3636 | VM_PAGE_SECLUDED_COUNT_OVER_TARGET_UPDATE(); |
| 3637 | while (vm_page_secluded_count) { |
| 3638 | vm_page_t secluded_page; |
| 3639 | |
| 3640 | assert((vm_page_secluded_count_free + |
| 3641 | vm_page_secluded_count_inuse) == |
| 3642 | vm_page_secluded_count); |
| 3643 | secluded_page = (vm_page_t)vm_page_queue_first(&vm_page_queue_secluded); |
| 3644 | assert(secluded_page->vmp_q_state == VM_PAGE_ON_SECLUDED_Q); |
| 3645 | |
| 3646 | vm_page_queues_remove(secluded_page, FALSE); |
| 3647 | assert(!secluded_page->vmp_fictitious); |
| 3648 | assert(!VM_PAGE_WIRED(secluded_page)); |
| 3649 | |
| 3650 | if (secluded_page->vmp_object == 0) { |
| 3651 | /* transfer to free queue */ |
| 3652 | assert(secluded_page->vmp_busy); |
| 3653 | secluded_page->vmp_snext = local_freeq; |
| 3654 | local_freeq = secluded_page; |
| 3655 | local_freed += 1; |
| 3656 | } else { |
| 3657 | /* transfer to head of active queue */ |
| 3658 | vm_page_enqueue_active(secluded_page, FALSE); |
| 3659 | secluded_page = VM_PAGE_NULL; |
| 3660 | } |
| 3661 | num_reclaimed++; |
| 3662 | } |
| 3663 | vm_page_secluded_target = saved_secluded_target; |
| 3664 | VM_PAGE_SECLUDED_COUNT_OVER_TARGET_UPDATE(); |
| 3665 | |
| 3666 | // printf("FBDP %s:%d secluded_count %d->%d, target %d, reclaimed %lld\n", __FUNCTION__, __LINE__, saved_secluded_count, vm_page_secluded_count, vm_page_secluded_target, num_reclaimed); |
| 3667 | |
| 3668 | vm_page_unlock_queues(); |
| 3669 | |
| 3670 | if (local_freed) { |
| 3671 | vm_page_free_list(local_freeq, TRUE); |
| 3672 | local_freeq = NULL; |
| 3673 | local_freed = 0; |
| 3674 | } |
| 3675 | |
| 3676 | return num_reclaimed; |
| 3677 | } |
| 3678 | #endif /* CONFIG_SECLUDED_MEMORY */ |
| 3679 | |
| 3680 | static inline void |
| 3681 | vm_page_grab_diags() |
| 3682 | { |
| 3683 | #if DEVELOPMENT || DEBUG |
| 3684 | task_t task = current_task_early(); |
| 3685 | if (task == NULL) { |
| 3686 | return; |
| 3687 | } |
| 3688 | |
| 3689 | ledger_credit(task->ledger, task_ledgers.pages_grabbed, 1); |
| 3690 | #endif /* DEVELOPMENT || DEBUG */ |
| 3691 | } |
| 3692 | |
| 3693 | /* |
| 3694 | * vm_page_release: |
| 3695 | * |
| 3696 | * Return a page to the free list. |
| 3697 | */ |
| 3698 | |
| 3699 | void |
| 3700 | vm_page_release( |
| 3701 | vm_page_t mem, |
| 3702 | boolean_t page_queues_locked) |
| 3703 | { |
| 3704 | unsigned int color; |
| 3705 | int need_wakeup = 0; |
| 3706 | int need_priv_wakeup = 0; |
| 3707 | #if CONFIG_SECLUDED_MEMORY |
| 3708 | int need_secluded_wakeup = 0; |
| 3709 | #endif /* CONFIG_SECLUDED_MEMORY */ |
| 3710 | event_t wakeup_event = NULL; |
| 3711 | |
| 3712 | if (page_queues_locked) { |
| 3713 | LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED); |
| 3714 | } else { |
| 3715 | LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_NOTOWNED); |
| 3716 | } |
| 3717 | |
| 3718 | assert(!mem->vmp_private && !mem->vmp_fictitious); |
| 3719 | |
| 3720 | #if MACH_ASSERT |
| 3721 | if (vm_check_refs_on_free) { |
| 3722 | vm_page_validate_no_references(mem); |
| 3723 | } |
| 3724 | #endif /* MACH_ASSERT */ |
| 3725 | |
| 3726 | // dbgLog(VM_PAGE_GET_PHYS_PAGE(mem), vm_page_free_count, vm_page_wire_count, 5); /* (TEST/DEBUG) */ |
| 3727 | |
| 3728 | pmap_clear_noencrypt(pn: VM_PAGE_GET_PHYS_PAGE(m: mem)); |
| 3729 | |
| 3730 | if (__improbable(mem->vmp_realtime)) { |
| 3731 | if (!page_queues_locked) { |
| 3732 | vm_page_lock_queues(); |
| 3733 | } |
| 3734 | if (mem->vmp_realtime) { |
| 3735 | mem->vmp_realtime = false; |
| 3736 | vm_page_realtime_count--; |
| 3737 | } |
| 3738 | if (!page_queues_locked) { |
| 3739 | vm_page_unlock_queues(); |
| 3740 | } |
| 3741 | } |
| 3742 | |
| 3743 | vm_free_page_lock_spin(); |
| 3744 | |
| 3745 | assert(mem->vmp_q_state == VM_PAGE_NOT_ON_Q); |
| 3746 | assert(mem->vmp_busy); |
| 3747 | assert(!mem->vmp_laundry); |
| 3748 | assert(mem->vmp_object == 0); |
| 3749 | assert(mem->vmp_pageq.next == 0 && mem->vmp_pageq.prev == 0); |
| 3750 | assert(mem->vmp_listq.next == 0 && mem->vmp_listq.prev == 0); |
| 3751 | assert(mem->vmp_specialq.next == 0 && mem->vmp_specialq.prev == 0); |
| 3752 | |
| 3753 | /* Clear any specialQ hints before releasing page to the free pool*/ |
| 3754 | mem->vmp_on_specialq = VM_PAGE_SPECIAL_Q_EMPTY; |
| 3755 | |
| 3756 | if ((mem->vmp_lopage == TRUE || vm_lopage_refill == TRUE) && |
| 3757 | vm_lopage_free_count < vm_lopage_free_limit && |
| 3758 | VM_PAGE_GET_PHYS_PAGE(m: mem) < max_valid_low_ppnum) { |
| 3759 | /* |
| 3760 | * this exists to support hardware controllers |
| 3761 | * incapable of generating DMAs with more than 32 bits |
| 3762 | * of address on platforms with physical memory > 4G... |
| 3763 | */ |
| 3764 | vm_page_queue_enter_first(&vm_lopage_queue_free, mem, vmp_pageq); |
| 3765 | vm_lopage_free_count++; |
| 3766 | |
| 3767 | if (vm_lopage_free_count >= vm_lopage_free_limit) { |
| 3768 | vm_lopage_refill = FALSE; |
| 3769 | } |
| 3770 | |
| 3771 | mem->vmp_q_state = VM_PAGE_ON_FREE_LOPAGE_Q; |
| 3772 | mem->vmp_lopage = TRUE; |
| 3773 | #if CONFIG_SECLUDED_MEMORY |
| 3774 | } else if (vm_page_free_count > vm_page_free_reserved && |
| 3775 | vm_page_secluded_count < vm_page_secluded_target && |
| 3776 | num_tasks_can_use_secluded_mem == 0) { |
| 3777 | /* |
| 3778 | * XXX FBDP TODO: also avoid refilling secluded queue |
| 3779 | * when some IOKit objects are already grabbing from it... |
| 3780 | */ |
| 3781 | if (!page_queues_locked) { |
| 3782 | if (!vm_page_trylock_queues()) { |
| 3783 | /* take locks in right order */ |
| 3784 | vm_free_page_unlock(); |
| 3785 | vm_page_lock_queues(); |
| 3786 | vm_free_page_lock_spin(); |
| 3787 | } |
| 3788 | } |
| 3789 | mem->vmp_lopage = FALSE; |
| 3790 | LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED); |
| 3791 | vm_page_queue_enter_first(&vm_page_queue_secluded, mem, vmp_pageq); |
| 3792 | mem->vmp_q_state = VM_PAGE_ON_SECLUDED_Q; |
| 3793 | vm_page_secluded_count++; |
| 3794 | VM_PAGE_SECLUDED_COUNT_OVER_TARGET_UPDATE(); |
| 3795 | vm_page_secluded_count_free++; |
| 3796 | if (!page_queues_locked) { |
| 3797 | vm_page_unlock_queues(); |
| 3798 | } |
| 3799 | LCK_MTX_ASSERT(&vm_page_queue_free_lock, LCK_MTX_ASSERT_OWNED); |
| 3800 | if (vm_page_free_wanted_secluded > 0) { |
| 3801 | vm_page_free_wanted_secluded--; |
| 3802 | need_secluded_wakeup = 1; |
| 3803 | } |
| 3804 | #endif /* CONFIG_SECLUDED_MEMORY */ |
| 3805 | } else { |
| 3806 | mem->vmp_lopage = FALSE; |
| 3807 | mem->vmp_q_state = VM_PAGE_ON_FREE_Q; |
| 3808 | |
| 3809 | color = VM_PAGE_GET_COLOR(mem); |
| 3810 | #if defined(__x86_64__) |
| 3811 | vm_page_queue_enter_clump(&vm_page_queue_free[color].qhead, mem); |
| 3812 | #else |
| 3813 | vm_page_queue_enter(&vm_page_queue_free[color].qhead, mem, vmp_pageq); |
| 3814 | #endif |
| 3815 | vm_page_free_count++; |
| 3816 | /* |
| 3817 | * Check if we should wake up someone waiting for page. |
| 3818 | * But don't bother waking them unless they can allocate. |
| 3819 | * |
| 3820 | * We wakeup only one thread, to prevent starvation. |
| 3821 | * Because the scheduling system handles wait queues FIFO, |
| 3822 | * if we wakeup all waiting threads, one greedy thread |
| 3823 | * can starve multiple niceguy threads. When the threads |
| 3824 | * all wakeup, the greedy threads runs first, grabs the page, |
| 3825 | * and waits for another page. It will be the first to run |
| 3826 | * when the next page is freed. |
| 3827 | * |
| 3828 | * However, there is a slight danger here. |
| 3829 | * The thread we wake might not use the free page. |
| 3830 | * Then the other threads could wait indefinitely |
| 3831 | * while the page goes unused. To forestall this, |
| 3832 | * the pageout daemon will keep making free pages |
| 3833 | * as long as vm_page_free_wanted is non-zero. |
| 3834 | */ |
| 3835 | |
| 3836 | assert(vm_page_free_count > 0); |
| 3837 | if (vm_page_free_wanted_privileged > 0) { |
| 3838 | vm_page_free_wanted_privileged--; |
| 3839 | need_priv_wakeup = 1; |
| 3840 | #if CONFIG_SECLUDED_MEMORY |
| 3841 | } else if (vm_page_free_wanted_secluded > 0 && |
| 3842 | vm_page_free_count > vm_page_free_reserved) { |
| 3843 | vm_page_free_wanted_secluded--; |
| 3844 | need_secluded_wakeup = 1; |
| 3845 | #endif /* CONFIG_SECLUDED_MEMORY */ |
| 3846 | } else if (vm_page_free_wanted > 0 && |
| 3847 | vm_page_free_count > vm_page_free_reserved) { |
| 3848 | vm_page_free_wanted--; |
| 3849 | need_wakeup = 1; |
| 3850 | } |
| 3851 | } |
| 3852 | vm_pageout_vminfo.vm_page_pages_freed++; |
| 3853 | |
| 3854 | vm_free_page_unlock(); |
| 3855 | |
| 3856 | VM_DEBUG_CONSTANT_EVENT(vm_page_release, VM_PAGE_RELEASE, DBG_FUNC_NONE, 1, 0, 0, 0); |
| 3857 | |
| 3858 | if (need_priv_wakeup) { |
| 3859 | wakeup_event = &vm_page_free_wanted_privileged; |
| 3860 | } |
| 3861 | #if CONFIG_SECLUDED_MEMORY |
| 3862 | else if (need_secluded_wakeup) { |
| 3863 | wakeup_event = &vm_page_free_wanted_secluded; |
| 3864 | } |
| 3865 | #endif /* CONFIG_SECLUDED_MEMORY */ |
| 3866 | else if (need_wakeup) { |
| 3867 | wakeup_event = &vm_page_free_count; |
| 3868 | } |
| 3869 | |
| 3870 | if (wakeup_event) { |
| 3871 | if (vps_dynamic_priority_enabled) { |
| 3872 | wakeup_one_with_inheritor(event: (event_t) wakeup_event, |
| 3873 | THREAD_AWAKENED, action: LCK_WAKE_DO_NOT_TRANSFER_PUSH, |
| 3874 | NULL); |
| 3875 | } else { |
| 3876 | thread_wakeup_one((event_t) wakeup_event); |
| 3877 | } |
| 3878 | } |
| 3879 | |
| 3880 | VM_CHECK_MEMORYSTATUS; |
| 3881 | } |
| 3882 | |
| 3883 | /* |
| 3884 | * This version of vm_page_release() is used only at startup |
| 3885 | * when we are single-threaded and pages are being released |
| 3886 | * for the first time. Hence, no locking or unnecessary checks are made. |
| 3887 | * Note: VM_CHECK_MEMORYSTATUS invoked by the caller. |
| 3888 | */ |
| 3889 | void |
| 3890 | vm_page_release_startup( |
| 3891 | vm_page_t mem) |
| 3892 | { |
| 3893 | vm_page_queue_t queue_free; |
| 3894 | |
| 3895 | if (vm_lopage_free_count < vm_lopage_free_limit && |
| 3896 | VM_PAGE_GET_PHYS_PAGE(m: mem) < max_valid_low_ppnum) { |
| 3897 | mem->vmp_lopage = TRUE; |
| 3898 | mem->vmp_q_state = VM_PAGE_ON_FREE_LOPAGE_Q; |
| 3899 | vm_lopage_free_count++; |
| 3900 | queue_free = &vm_lopage_queue_free; |
| 3901 | #if CONFIG_SECLUDED_MEMORY |
| 3902 | } else if (vm_page_secluded_count < vm_page_secluded_target) { |
| 3903 | mem->vmp_lopage = FALSE; |
| 3904 | mem->vmp_q_state = VM_PAGE_ON_SECLUDED_Q; |
| 3905 | vm_page_secluded_count++; |
| 3906 | VM_PAGE_SECLUDED_COUNT_OVER_TARGET_UPDATE(); |
| 3907 | vm_page_secluded_count_free++; |
| 3908 | queue_free = &vm_page_queue_secluded; |
| 3909 | #endif /* CONFIG_SECLUDED_MEMORY */ |
| 3910 | } else { |
| 3911 | mem->vmp_lopage = FALSE; |
| 3912 | mem->vmp_q_state = VM_PAGE_ON_FREE_Q; |
| 3913 | vm_page_free_count++; |
| 3914 | queue_free = &vm_page_queue_free[VM_PAGE_GET_COLOR(mem)].qhead; |
| 3915 | } |
| 3916 | if (mem->vmp_q_state == VM_PAGE_ON_FREE_Q) { |
| 3917 | #if defined(__x86_64__) |
| 3918 | vm_page_queue_enter_clump(queue_free, mem); |
| 3919 | #else |
| 3920 | vm_page_queue_enter(queue_free, mem, vmp_pageq); |
| 3921 | #endif |
| 3922 | } else { |
| 3923 | vm_page_queue_enter_first(queue_free, mem, vmp_pageq); |
| 3924 | } |
| 3925 | } |
| 3926 | |
| 3927 | /* |
| 3928 | * vm_page_wait: |
| 3929 | * |
| 3930 | * Wait for a page to become available. |
| 3931 | * If there are plenty of free pages, then we don't sleep. |
| 3932 | * |
| 3933 | * Returns: |
| 3934 | * TRUE: There may be another page, try again |
| 3935 | * FALSE: We were interrupted out of our wait, don't try again |
| 3936 | */ |
| 3937 | |
| 3938 | boolean_t |
| 3939 | vm_page_wait( |
| 3940 | int interruptible ) |
| 3941 | { |
| 3942 | /* |
| 3943 | * We can't use vm_page_free_reserved to make this |
| 3944 | * determination. Consider: some thread might |
| 3945 | * need to allocate two pages. The first allocation |
| 3946 | * succeeds, the second fails. After the first page is freed, |
| 3947 | * a call to vm_page_wait must really block. |
| 3948 | */ |
| 3949 | kern_return_t wait_result; |
| 3950 | int need_wakeup = 0; |
| 3951 | int is_privileged = current_thread()->options & TH_OPT_VMPRIV; |
| 3952 | event_t wait_event = NULL; |
| 3953 | |
| 3954 | vm_free_page_lock_spin(); |
| 3955 | |
| 3956 | if (is_privileged && vm_page_free_count) { |
| 3957 | vm_free_page_unlock(); |
| 3958 | return TRUE; |
| 3959 | } |
| 3960 | |
| 3961 | if (vm_page_free_count >= vm_page_free_target) { |
| 3962 | vm_free_page_unlock(); |
| 3963 | return TRUE; |
| 3964 | } |
| 3965 | |
| 3966 | if (is_privileged) { |
| 3967 | if (vm_page_free_wanted_privileged++ == 0) { |
| 3968 | need_wakeup = 1; |
| 3969 | } |
| 3970 | wait_event = (event_t)&vm_page_free_wanted_privileged; |
| 3971 | #if CONFIG_SECLUDED_MEMORY |
| 3972 | } else if (secluded_for_apps && |
| 3973 | task_can_use_secluded_mem(current_task(), FALSE)) { |
| 3974 | #if 00 |
| 3975 | /* XXX FBDP: need pageq lock for this... */ |
| 3976 | /* XXX FBDP: might wait even if pages available, */ |
| 3977 | /* XXX FBDP: hopefully not for too long... */ |
| 3978 | if (vm_page_secluded_count > 0) { |
| 3979 | vm_free_page_unlock(); |
| 3980 | return TRUE; |
| 3981 | } |
| 3982 | #endif |
| 3983 | if (vm_page_free_wanted_secluded++ == 0) { |
| 3984 | need_wakeup = 1; |
| 3985 | } |
| 3986 | wait_event = (event_t)&vm_page_free_wanted_secluded; |
| 3987 | #endif /* CONFIG_SECLUDED_MEMORY */ |
| 3988 | } else { |
| 3989 | if (vm_page_free_wanted++ == 0) { |
| 3990 | need_wakeup = 1; |
| 3991 | } |
| 3992 | wait_event = (event_t)&vm_page_free_count; |
| 3993 | } |
| 3994 | |
| 3995 | /* |
| 3996 | * We don't do a vm_pageout_scan wakeup if we already have |
| 3997 | * some waiters because vm_pageout_scan checks for waiters |
| 3998 | * before it returns and does so behind the vm_page_queue_free_lock, |
| 3999 | * which we own when we bump the waiter counts. |
| 4000 | */ |
| 4001 | |
| 4002 | if (vps_dynamic_priority_enabled) { |
| 4003 | /* |
| 4004 | * We are waking up vm_pageout_scan here. If it needs |
| 4005 | * the vm_page_queue_free_lock before we unlock it |
| 4006 | * we'll end up just blocking and incur an extra |
| 4007 | * context switch. Could be a perf. issue. |
| 4008 | */ |
| 4009 | |
| 4010 | if (need_wakeup) { |
| 4011 | thread_wakeup((event_t)&vm_page_free_wanted); |
| 4012 | } |
| 4013 | |
| 4014 | /* |
| 4015 | * LD: This event is going to get recorded every time because |
| 4016 | * we don't get back THREAD_WAITING from lck_mtx_sleep_with_inheritor. |
| 4017 | * We just block in that routine. |
| 4018 | */ |
| 4019 | VM_DEBUG_CONSTANT_EVENT(vm_page_wait_block, VM_PAGE_WAIT_BLOCK, DBG_FUNC_START, |
| 4020 | vm_page_free_wanted_privileged, |
| 4021 | vm_page_free_wanted, |
| 4022 | #if CONFIG_SECLUDED_MEMORY |
| 4023 | vm_page_free_wanted_secluded, |
| 4024 | #else /* CONFIG_SECLUDED_MEMORY */ |
| 4025 | 0, |
| 4026 | #endif /* CONFIG_SECLUDED_MEMORY */ |
| 4027 | 0); |
| 4028 | wait_result = lck_mtx_sleep_with_inheritor(lock: &vm_page_queue_free_lock, |
| 4029 | lck_sleep_action: LCK_SLEEP_UNLOCK, |
| 4030 | event: wait_event, |
| 4031 | inheritor: vm_pageout_scan_thread, |
| 4032 | interruptible, |
| 4033 | deadline: 0); |
| 4034 | } else { |
| 4035 | wait_result = assert_wait(event: wait_event, interruptible); |
| 4036 | |
| 4037 | vm_free_page_unlock(); |
| 4038 | |
| 4039 | if (need_wakeup) { |
| 4040 | thread_wakeup((event_t)&vm_page_free_wanted); |
| 4041 | } |
| 4042 | |
| 4043 | if (wait_result == THREAD_WAITING) { |
| 4044 | VM_DEBUG_CONSTANT_EVENT(vm_page_wait_block, VM_PAGE_WAIT_BLOCK, DBG_FUNC_START, |
| 4045 | vm_page_free_wanted_privileged, |
| 4046 | vm_page_free_wanted, |
| 4047 | #if CONFIG_SECLUDED_MEMORY |
| 4048 | vm_page_free_wanted_secluded, |
| 4049 | #else /* CONFIG_SECLUDED_MEMORY */ |
| 4050 | 0, |
| 4051 | #endif /* CONFIG_SECLUDED_MEMORY */ |
| 4052 | 0); |
| 4053 | wait_result = thread_block(THREAD_CONTINUE_NULL); |
| 4054 | VM_DEBUG_CONSTANT_EVENT(vm_page_wait_block, |
| 4055 | VM_PAGE_WAIT_BLOCK, DBG_FUNC_END, 0, 0, 0, 0); |
| 4056 | } |
| 4057 | } |
| 4058 | |
| 4059 | return (wait_result == THREAD_AWAKENED) || (wait_result == THREAD_NOT_WAITING); |
| 4060 | } |
| 4061 | |
| 4062 | /* |
| 4063 | * vm_page_alloc: |
| 4064 | * |
| 4065 | * Allocate and return a memory cell associated |
| 4066 | * with this VM object/offset pair. |
| 4067 | * |
| 4068 | * Object must be locked. |
| 4069 | */ |
| 4070 | |
| 4071 | vm_page_t |
| 4072 | vm_page_alloc( |
| 4073 | vm_object_t object, |
| 4074 | vm_object_offset_t offset) |
| 4075 | { |
| 4076 | vm_page_t mem; |
| 4077 | int grab_options; |
| 4078 | |
| 4079 | vm_object_lock_assert_exclusive(object); |
| 4080 | grab_options = 0; |
| 4081 | #if CONFIG_SECLUDED_MEMORY |
| 4082 | if (object->can_grab_secluded) { |
| 4083 | grab_options |= VM_PAGE_GRAB_SECLUDED; |
| 4084 | } |
| 4085 | #endif /* CONFIG_SECLUDED_MEMORY */ |
| 4086 | mem = vm_page_grab_options(grab_options); |
| 4087 | if (mem == VM_PAGE_NULL) { |
| 4088 | return VM_PAGE_NULL; |
| 4089 | } |
| 4090 | |
| 4091 | vm_page_insert(mem, object, offset); |
| 4092 | |
| 4093 | return mem; |
| 4094 | } |
| 4095 | |
| 4096 | /* |
| 4097 | * vm_page_free_prepare: |
| 4098 | * |
| 4099 | * Removes page from any queue it may be on |
| 4100 | * and disassociates it from its VM object. |
| 4101 | * |
| 4102 | * Object and page queues must be locked prior to entry. |
| 4103 | */ |
| 4104 | static void |
| 4105 | vm_page_free_prepare( |
| 4106 | vm_page_t mem) |
| 4107 | { |
| 4108 | #if CONFIG_SPTM |
| 4109 | /** |
| 4110 | * SPTM TODO: The pmap should retype frames automatically as mappings to them are |
| 4111 | * created and destroyed. In order to catch potential cases where this |
| 4112 | * does not happen, add an appropriate assert here. This code should be |
| 4113 | * executed on every frame that is about to be released to the VM. |
| 4114 | */ |
| 4115 | const sptm_paddr_t paddr = ((uint64_t)VM_PAGE_GET_PHYS_PAGE(mem)) << PAGE_SHIFT; |
| 4116 | __unused const sptm_frame_type_t frame_type = sptm_get_frame_type(paddr); |
| 4117 | |
| 4118 | assert(frame_type == XNU_DEFAULT); |
| 4119 | #endif /* CONFIG_SPTM */ |
| 4120 | |
| 4121 | vm_page_free_prepare_queues(page: mem); |
| 4122 | vm_page_free_prepare_object(page: mem, TRUE); |
| 4123 | } |
| 4124 | |
| 4125 | |
| 4126 | void |
| 4127 | vm_page_free_prepare_queues( |
| 4128 | vm_page_t mem) |
| 4129 | { |
| 4130 | vm_object_t m_object; |
| 4131 | |
| 4132 | VM_PAGE_CHECK(mem); |
| 4133 | |
| 4134 | assert(mem->vmp_q_state != VM_PAGE_ON_FREE_Q); |
| 4135 | assert(!mem->vmp_cleaning); |
| 4136 | m_object = VM_PAGE_OBJECT(mem); |
| 4137 | |
| 4138 | LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED); |
| 4139 | if (m_object) { |
| 4140 | vm_object_lock_assert_exclusive(m_object); |
| 4141 | } |
| 4142 | if (mem->vmp_laundry) { |
| 4143 | /* |
| 4144 | * We may have to free a page while it's being laundered |
| 4145 | * if we lost its pager (due to a forced unmount, for example). |
| 4146 | * We need to call vm_pageout_steal_laundry() before removing |
| 4147 | * the page from its VM object, so that we can remove it |
| 4148 | * from its pageout queue and adjust the laundry accounting |
| 4149 | */ |
| 4150 | vm_pageout_steal_laundry(page: mem, TRUE); |
| 4151 | } |
| 4152 | |
| 4153 | vm_page_queues_remove(mem, TRUE); |
| 4154 | |
| 4155 | if (__improbable(mem->vmp_realtime)) { |
| 4156 | mem->vmp_realtime = false; |
| 4157 | vm_page_realtime_count--; |
| 4158 | } |
| 4159 | |
| 4160 | if (VM_PAGE_WIRED(mem)) { |
| 4161 | assert(mem->vmp_wire_count > 0); |
| 4162 | |
| 4163 | if (m_object) { |
| 4164 | VM_OBJECT_WIRED_PAGE_UPDATE_START(m_object); |
| 4165 | VM_OBJECT_WIRED_PAGE_REMOVE(m_object, mem); |
| 4166 | VM_OBJECT_WIRED_PAGE_UPDATE_END(m_object, m_object->wire_tag); |
| 4167 | |
| 4168 | assert(m_object->resident_page_count >= |
| 4169 | m_object->wired_page_count); |
| 4170 | |
| 4171 | if (m_object->purgable == VM_PURGABLE_VOLATILE) { |
| 4172 | OSAddAtomic(+1, &vm_page_purgeable_count); |
| 4173 | assert(vm_page_purgeable_wired_count > 0); |
| 4174 | OSAddAtomic(-1, &vm_page_purgeable_wired_count); |
| 4175 | } |
| 4176 | if ((m_object->purgable == VM_PURGABLE_VOLATILE || |
| 4177 | m_object->purgable == VM_PURGABLE_EMPTY) && |
| 4178 | m_object->vo_owner != TASK_NULL) { |
| 4179 | task_t owner; |
| 4180 | int ledger_idx_volatile; |
| 4181 | int ledger_idx_nonvolatile; |
| 4182 | int ledger_idx_volatile_compressed; |
| 4183 | int ledger_idx_nonvolatile_compressed; |
| 4184 | boolean_t ; |
| 4185 | |
| 4186 | owner = VM_OBJECT_OWNER(m_object); |
| 4187 | vm_object_ledger_tag_ledgers( |
| 4188 | object: m_object, |
| 4189 | ledger_idx_volatile: &ledger_idx_volatile, |
| 4190 | ledger_idx_nonvolatile: &ledger_idx_nonvolatile, |
| 4191 | ledger_idx_volatile_compressed: &ledger_idx_volatile_compressed, |
| 4192 | ledger_idx_nonvolatile_compressed: &ledger_idx_nonvolatile_compressed, |
| 4193 | do_footprint: &do_footprint); |
| 4194 | /* |
| 4195 | * While wired, this page was accounted |
| 4196 | * as "non-volatile" but it should now |
| 4197 | * be accounted as "volatile". |
| 4198 | */ |
| 4199 | /* one less "non-volatile"... */ |
| 4200 | ledger_debit(ledger: owner->ledger, |
| 4201 | entry: ledger_idx_nonvolatile, |
| 4202 | PAGE_SIZE); |
| 4203 | if (do_footprint) { |
| 4204 | /* ... and "phys_footprint" */ |
| 4205 | ledger_debit(ledger: owner->ledger, |
| 4206 | entry: task_ledgers.phys_footprint, |
| 4207 | PAGE_SIZE); |
| 4208 | } |
| 4209 | /* one more "volatile" */ |
| 4210 | ledger_credit(ledger: owner->ledger, |
| 4211 | entry: ledger_idx_volatile, |
| 4212 | PAGE_SIZE); |
| 4213 | } |
| 4214 | } |
| 4215 | if (!mem->vmp_private && !mem->vmp_fictitious) { |
| 4216 | vm_page_wire_count--; |
| 4217 | } |
| 4218 | |
| 4219 | mem->vmp_q_state = VM_PAGE_NOT_ON_Q; |
| 4220 | mem->vmp_wire_count = 0; |
| 4221 | assert(!mem->vmp_gobbled); |
| 4222 | } else if (mem->vmp_gobbled) { |
| 4223 | if (!mem->vmp_private && !mem->vmp_fictitious) { |
| 4224 | vm_page_wire_count--; |
| 4225 | } |
| 4226 | vm_page_gobble_count--; |
| 4227 | } |
| 4228 | } |
| 4229 | |
| 4230 | |
| 4231 | void |
| 4232 | vm_page_free_prepare_object( |
| 4233 | vm_page_t mem, |
| 4234 | boolean_t remove_from_hash) |
| 4235 | { |
| 4236 | assert(!mem->vmp_realtime); |
| 4237 | if (mem->vmp_tabled) { |
| 4238 | vm_page_remove(mem, remove_from_hash); /* clears tabled, object, offset */ |
| 4239 | } |
| 4240 | PAGE_WAKEUP(mem); /* clears wanted */ |
| 4241 | |
| 4242 | if (mem->vmp_private) { |
| 4243 | mem->vmp_private = FALSE; |
| 4244 | mem->vmp_fictitious = TRUE; |
| 4245 | VM_PAGE_SET_PHYS_PAGE(mem, vm_page_fictitious_addr); |
| 4246 | } |
| 4247 | if (!mem->vmp_fictitious) { |
| 4248 | assert(mem->vmp_pageq.next == 0); |
| 4249 | assert(mem->vmp_pageq.prev == 0); |
| 4250 | assert(mem->vmp_listq.next == 0); |
| 4251 | assert(mem->vmp_listq.prev == 0); |
| 4252 | assert(mem->vmp_specialq.next == 0); |
| 4253 | assert(mem->vmp_specialq.prev == 0); |
| 4254 | assert(mem->vmp_next_m == 0); |
| 4255 | |
| 4256 | #if MACH_ASSERT |
| 4257 | if (vm_check_refs_on_free) { |
| 4258 | vm_page_validate_no_references(mem); |
| 4259 | } |
| 4260 | #endif /* MACH_ASSERT */ |
| 4261 | |
| 4262 | { |
| 4263 | vm_page_init(mem, phys_page: VM_PAGE_GET_PHYS_PAGE(m: mem), lopage: mem->vmp_lopage); |
| 4264 | } |
| 4265 | } |
| 4266 | } |
| 4267 | |
| 4268 | /* |
| 4269 | * vm_page_free: |
| 4270 | * |
| 4271 | * Returns the given page to the free list, |
| 4272 | * disassociating it with any VM object. |
| 4273 | * |
| 4274 | * Object and page queues must be locked prior to entry. |
| 4275 | */ |
| 4276 | void |
| 4277 | vm_page_free( |
| 4278 | vm_page_t mem) |
| 4279 | { |
| 4280 | vm_page_free_prepare(mem); |
| 4281 | |
| 4282 | if (mem->vmp_fictitious) { |
| 4283 | vm_page_release_fictitious(m: mem); |
| 4284 | } else { |
| 4285 | vm_page_release(mem, TRUE); /* page queues are locked */ |
| 4286 | } |
| 4287 | } |
| 4288 | |
| 4289 | |
| 4290 | void |
| 4291 | vm_page_free_unlocked( |
| 4292 | vm_page_t mem, |
| 4293 | boolean_t remove_from_hash) |
| 4294 | { |
| 4295 | vm_page_lockspin_queues(); |
| 4296 | vm_page_free_prepare_queues(mem); |
| 4297 | vm_page_unlock_queues(); |
| 4298 | |
| 4299 | vm_page_free_prepare_object(mem, remove_from_hash); |
| 4300 | |
| 4301 | if (mem->vmp_fictitious) { |
| 4302 | vm_page_release_fictitious(m: mem); |
| 4303 | } else { |
| 4304 | vm_page_release(mem, FALSE); /* page queues are not locked */ |
| 4305 | } |
| 4306 | } |
| 4307 | |
| 4308 | |
| 4309 | /* |
| 4310 | * Free a list of pages. The list can be up to several hundred pages, |
| 4311 | * as blocked up by vm_pageout_scan(). |
| 4312 | * The big win is not having to take the free list lock once |
| 4313 | * per page. |
| 4314 | * |
| 4315 | * The VM page queues lock (vm_page_queue_lock) should NOT be held. |
| 4316 | * The VM page free queues lock (vm_page_queue_free_lock) should NOT be held. |
| 4317 | */ |
| 4318 | void |
| 4319 | vm_page_free_list( |
| 4320 | vm_page_t freeq, |
| 4321 | boolean_t prepare_object) |
| 4322 | { |
| 4323 | vm_page_t mem; |
| 4324 | vm_page_t nxt; |
| 4325 | vm_page_t local_freeq; |
| 4326 | int pg_count; |
| 4327 | |
| 4328 | LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_NOTOWNED); |
| 4329 | LCK_MTX_ASSERT(&vm_page_queue_free_lock, LCK_MTX_ASSERT_NOTOWNED); |
| 4330 | |
| 4331 | while (freeq) { |
| 4332 | pg_count = 0; |
| 4333 | local_freeq = VM_PAGE_NULL; |
| 4334 | mem = freeq; |
| 4335 | |
| 4336 | /* |
| 4337 | * break up the processing into smaller chunks so |
| 4338 | * that we can 'pipeline' the pages onto the |
| 4339 | * free list w/o introducing too much |
| 4340 | * contention on the global free queue lock |
| 4341 | */ |
| 4342 | while (mem && pg_count < 64) { |
| 4343 | assert((mem->vmp_q_state == VM_PAGE_NOT_ON_Q) || |
| 4344 | (mem->vmp_q_state == VM_PAGE_IS_WIRED)); |
| 4345 | assert(mem->vmp_specialq.next == 0 && |
| 4346 | mem->vmp_specialq.prev == 0); |
| 4347 | /* |
| 4348 | * && |
| 4349 | * mem->vmp_on_specialq == VM_PAGE_SPECIAL_Q_EMPTY); |
| 4350 | */ |
| 4351 | nxt = mem->vmp_snext; |
| 4352 | mem->vmp_snext = NULL; |
| 4353 | assert(mem->vmp_pageq.prev == 0); |
| 4354 | |
| 4355 | #if MACH_ASSERT |
| 4356 | if (vm_check_refs_on_free) { |
| 4357 | if (!mem->vmp_fictitious && !mem->vmp_private) { |
| 4358 | vm_page_validate_no_references(mem); |
| 4359 | } |
| 4360 | } |
| 4361 | #endif /* MACH_ASSERT */ |
| 4362 | |
| 4363 | if (__improbable(mem->vmp_realtime)) { |
| 4364 | vm_page_lock_queues(); |
| 4365 | if (mem->vmp_realtime) { |
| 4366 | mem->vmp_realtime = false; |
| 4367 | vm_page_realtime_count--; |
| 4368 | } |
| 4369 | vm_page_unlock_queues(); |
| 4370 | } |
| 4371 | |
| 4372 | if (prepare_object == TRUE) { |
| 4373 | vm_page_free_prepare_object(mem, TRUE); |
| 4374 | } |
| 4375 | |
| 4376 | if (!mem->vmp_fictitious) { |
| 4377 | assert(mem->vmp_busy); |
| 4378 | |
| 4379 | if ((mem->vmp_lopage == TRUE || vm_lopage_refill == TRUE) && |
| 4380 | vm_lopage_free_count < vm_lopage_free_limit && |
| 4381 | VM_PAGE_GET_PHYS_PAGE(m: mem) < max_valid_low_ppnum) { |
| 4382 | vm_page_release(mem, FALSE); /* page queues are not locked */ |
| 4383 | #if CONFIG_SECLUDED_MEMORY |
| 4384 | } else if (vm_page_secluded_count < vm_page_secluded_target && |
| 4385 | num_tasks_can_use_secluded_mem == 0) { |
| 4386 | vm_page_release(mem, |
| 4387 | FALSE); /* page queues are not locked */ |
| 4388 | #endif /* CONFIG_SECLUDED_MEMORY */ |
| 4389 | } else { |
| 4390 | /* |
| 4391 | * IMPORTANT: we can't set the page "free" here |
| 4392 | * because that would make the page eligible for |
| 4393 | * a physically-contiguous allocation (see |
| 4394 | * vm_page_find_contiguous()) right away (we don't |
| 4395 | * hold the vm_page_queue_free lock). That would |
| 4396 | * cause trouble because the page is not actually |
| 4397 | * in the free queue yet... |
| 4398 | */ |
| 4399 | mem->vmp_snext = local_freeq; |
| 4400 | local_freeq = mem; |
| 4401 | pg_count++; |
| 4402 | |
| 4403 | pmap_clear_noencrypt(pn: VM_PAGE_GET_PHYS_PAGE(m: mem)); |
| 4404 | } |
| 4405 | } else { |
| 4406 | assert(VM_PAGE_GET_PHYS_PAGE(mem) == vm_page_fictitious_addr || |
| 4407 | VM_PAGE_GET_PHYS_PAGE(mem) == vm_page_guard_addr); |
| 4408 | vm_page_release_fictitious(m: mem); |
| 4409 | } |
| 4410 | mem = nxt; |
| 4411 | } |
| 4412 | freeq = mem; |
| 4413 | |
| 4414 | if ((mem = local_freeq)) { |
| 4415 | unsigned int avail_free_count; |
| 4416 | unsigned int need_wakeup = 0; |
| 4417 | unsigned int need_priv_wakeup = 0; |
| 4418 | #if CONFIG_SECLUDED_MEMORY |
| 4419 | unsigned int need_wakeup_secluded = 0; |
| 4420 | #endif /* CONFIG_SECLUDED_MEMORY */ |
| 4421 | event_t priv_wakeup_event, secluded_wakeup_event, normal_wakeup_event; |
| 4422 | boolean_t priv_wakeup_all, secluded_wakeup_all, normal_wakeup_all; |
| 4423 | |
| 4424 | vm_free_page_lock_spin(); |
| 4425 | |
| 4426 | while (mem) { |
| 4427 | int color; |
| 4428 | |
| 4429 | nxt = mem->vmp_snext; |
| 4430 | |
| 4431 | assert(mem->vmp_q_state == VM_PAGE_NOT_ON_Q); |
| 4432 | assert(mem->vmp_busy); |
| 4433 | assert(!mem->vmp_realtime); |
| 4434 | mem->vmp_lopage = FALSE; |
| 4435 | mem->vmp_q_state = VM_PAGE_ON_FREE_Q; |
| 4436 | |
| 4437 | color = VM_PAGE_GET_COLOR(mem); |
| 4438 | #if defined(__x86_64__) |
| 4439 | vm_page_queue_enter_clump(&vm_page_queue_free[color].qhead, mem); |
| 4440 | #else |
| 4441 | vm_page_queue_enter(&vm_page_queue_free[color].qhead, |
| 4442 | mem, vmp_pageq); |
| 4443 | #endif |
| 4444 | mem = nxt; |
| 4445 | } |
| 4446 | vm_pageout_vminfo.vm_page_pages_freed += pg_count; |
| 4447 | vm_page_free_count += pg_count; |
| 4448 | avail_free_count = vm_page_free_count; |
| 4449 | |
| 4450 | VM_DEBUG_CONSTANT_EVENT(vm_page_release, VM_PAGE_RELEASE, DBG_FUNC_NONE, pg_count, 0, 0, 0); |
| 4451 | |
| 4452 | if (vm_page_free_wanted_privileged > 0 && avail_free_count > 0) { |
| 4453 | if (avail_free_count < vm_page_free_wanted_privileged) { |
| 4454 | need_priv_wakeup = avail_free_count; |
| 4455 | vm_page_free_wanted_privileged -= avail_free_count; |
| 4456 | avail_free_count = 0; |
| 4457 | } else { |
| 4458 | need_priv_wakeup = vm_page_free_wanted_privileged; |
| 4459 | avail_free_count -= vm_page_free_wanted_privileged; |
| 4460 | vm_page_free_wanted_privileged = 0; |
| 4461 | } |
| 4462 | } |
| 4463 | #if CONFIG_SECLUDED_MEMORY |
| 4464 | if (vm_page_free_wanted_secluded > 0 && |
| 4465 | avail_free_count > vm_page_free_reserved) { |
| 4466 | unsigned int available_pages; |
| 4467 | available_pages = (avail_free_count - |
| 4468 | vm_page_free_reserved); |
| 4469 | if (available_pages < |
| 4470 | vm_page_free_wanted_secluded) { |
| 4471 | need_wakeup_secluded = available_pages; |
| 4472 | vm_page_free_wanted_secluded -= |
| 4473 | available_pages; |
| 4474 | avail_free_count -= available_pages; |
| 4475 | } else { |
| 4476 | need_wakeup_secluded = |
| 4477 | vm_page_free_wanted_secluded; |
| 4478 | avail_free_count -= |
| 4479 | vm_page_free_wanted_secluded; |
| 4480 | vm_page_free_wanted_secluded = 0; |
| 4481 | } |
| 4482 | } |
| 4483 | #endif /* CONFIG_SECLUDED_MEMORY */ |
| 4484 | if (vm_page_free_wanted > 0 && avail_free_count > vm_page_free_reserved) { |
| 4485 | unsigned int available_pages; |
| 4486 | |
| 4487 | available_pages = avail_free_count - vm_page_free_reserved; |
| 4488 | |
| 4489 | if (available_pages >= vm_page_free_wanted) { |
| 4490 | need_wakeup = vm_page_free_wanted; |
| 4491 | vm_page_free_wanted = 0; |
| 4492 | } else { |
| 4493 | need_wakeup = available_pages; |
| 4494 | vm_page_free_wanted -= available_pages; |
| 4495 | } |
| 4496 | } |
| 4497 | vm_free_page_unlock(); |
| 4498 | |
| 4499 | priv_wakeup_event = NULL; |
| 4500 | secluded_wakeup_event = NULL; |
| 4501 | normal_wakeup_event = NULL; |
| 4502 | |
| 4503 | priv_wakeup_all = FALSE; |
| 4504 | secluded_wakeup_all = FALSE; |
| 4505 | normal_wakeup_all = FALSE; |
| 4506 | |
| 4507 | |
| 4508 | if (need_priv_wakeup != 0) { |
| 4509 | /* |
| 4510 | * There shouldn't be that many VM-privileged threads, |
| 4511 | * so let's wake them all up, even if we don't quite |
| 4512 | * have enough pages to satisfy them all. |
| 4513 | */ |
| 4514 | priv_wakeup_event = (event_t)&vm_page_free_wanted_privileged; |
| 4515 | priv_wakeup_all = TRUE; |
| 4516 | } |
| 4517 | #if CONFIG_SECLUDED_MEMORY |
| 4518 | if (need_wakeup_secluded != 0 && |
| 4519 | vm_page_free_wanted_secluded == 0) { |
| 4520 | secluded_wakeup_event = (event_t)&vm_page_free_wanted_secluded; |
| 4521 | secluded_wakeup_all = TRUE; |
| 4522 | need_wakeup_secluded = 0; |
| 4523 | } else { |
| 4524 | secluded_wakeup_event = (event_t)&vm_page_free_wanted_secluded; |
| 4525 | } |
| 4526 | #endif /* CONFIG_SECLUDED_MEMORY */ |
| 4527 | if (need_wakeup != 0 && vm_page_free_wanted == 0) { |
| 4528 | /* |
| 4529 | * We don't expect to have any more waiters |
| 4530 | * after this, so let's wake them all up at |
| 4531 | * once. |
| 4532 | */ |
| 4533 | normal_wakeup_event = (event_t) &vm_page_free_count; |
| 4534 | normal_wakeup_all = TRUE; |
| 4535 | need_wakeup = 0; |
| 4536 | } else { |
| 4537 | normal_wakeup_event = (event_t) &vm_page_free_count; |
| 4538 | } |
| 4539 | |
| 4540 | if (priv_wakeup_event || |
| 4541 | #if CONFIG_SECLUDED_MEMORY |
| 4542 | secluded_wakeup_event || |
| 4543 | #endif /* CONFIG_SECLUDED_MEMORY */ |
| 4544 | normal_wakeup_event) { |
| 4545 | if (vps_dynamic_priority_enabled) { |
| 4546 | if (priv_wakeup_all == TRUE) { |
| 4547 | wakeup_all_with_inheritor(event: priv_wakeup_event, THREAD_AWAKENED); |
| 4548 | } |
| 4549 | |
| 4550 | #if CONFIG_SECLUDED_MEMORY |
| 4551 | if (secluded_wakeup_all == TRUE) { |
| 4552 | wakeup_all_with_inheritor(secluded_wakeup_event, THREAD_AWAKENED); |
| 4553 | } |
| 4554 | |
| 4555 | while (need_wakeup_secluded-- != 0) { |
| 4556 | /* |
| 4557 | * Wake up one waiter per page we just released. |
| 4558 | */ |
| 4559 | wakeup_one_with_inheritor(secluded_wakeup_event, |
| 4560 | THREAD_AWAKENED, LCK_WAKE_DO_NOT_TRANSFER_PUSH, NULL); |
| 4561 | } |
| 4562 | #endif /* CONFIG_SECLUDED_MEMORY */ |
| 4563 | |
| 4564 | if (normal_wakeup_all == TRUE) { |
| 4565 | wakeup_all_with_inheritor(event: normal_wakeup_event, THREAD_AWAKENED); |
| 4566 | } |
| 4567 | |
| 4568 | while (need_wakeup-- != 0) { |
| 4569 | /* |
| 4570 | * Wake up one waiter per page we just released. |
| 4571 | */ |
| 4572 | wakeup_one_with_inheritor(event: normal_wakeup_event, |
| 4573 | THREAD_AWAKENED, action: LCK_WAKE_DO_NOT_TRANSFER_PUSH, |
| 4574 | NULL); |
| 4575 | } |
| 4576 | } else { |
| 4577 | /* |
| 4578 | * Non-priority-aware wakeups. |
| 4579 | */ |
| 4580 | |
| 4581 | if (priv_wakeup_all == TRUE) { |
| 4582 | thread_wakeup(priv_wakeup_event); |
| 4583 | } |
| 4584 | |
| 4585 | #if CONFIG_SECLUDED_MEMORY |
| 4586 | if (secluded_wakeup_all == TRUE) { |
| 4587 | thread_wakeup(secluded_wakeup_event); |
| 4588 | } |
| 4589 | |
| 4590 | while (need_wakeup_secluded-- != 0) { |
| 4591 | /* |
| 4592 | * Wake up one waiter per page we just released. |
| 4593 | */ |
| 4594 | thread_wakeup_one(secluded_wakeup_event); |
| 4595 | } |
| 4596 | |
| 4597 | #endif /* CONFIG_SECLUDED_MEMORY */ |
| 4598 | if (normal_wakeup_all == TRUE) { |
| 4599 | thread_wakeup(normal_wakeup_event); |
| 4600 | } |
| 4601 | |
| 4602 | while (need_wakeup-- != 0) { |
| 4603 | /* |
| 4604 | * Wake up one waiter per page we just released. |
| 4605 | */ |
| 4606 | thread_wakeup_one(normal_wakeup_event); |
| 4607 | } |
| 4608 | } |
| 4609 | } |
| 4610 | |
| 4611 | VM_CHECK_MEMORYSTATUS; |
| 4612 | } |
| 4613 | } |
| 4614 | } |
| 4615 | |
| 4616 | |
| 4617 | /* |
| 4618 | * vm_page_wire: |
| 4619 | * |
| 4620 | * Mark this page as wired down by yet |
| 4621 | * another map, removing it from paging queues |
| 4622 | * as necessary. |
| 4623 | * |
| 4624 | * The page's object and the page queues must be locked. |
| 4625 | */ |
| 4626 | |
| 4627 | |
| 4628 | void |
| 4629 | vm_page_wire( |
| 4630 | vm_page_t mem, |
| 4631 | vm_tag_t tag, |
| 4632 | boolean_t check_memorystatus) |
| 4633 | { |
| 4634 | vm_object_t m_object; |
| 4635 | |
| 4636 | m_object = VM_PAGE_OBJECT(mem); |
| 4637 | |
| 4638 | // dbgLog(current_thread(), mem->vmp_offset, m_object, 1); /* (TEST/DEBUG) */ |
| 4639 | |
| 4640 | VM_PAGE_CHECK(mem); |
| 4641 | if (m_object) { |
| 4642 | vm_object_lock_assert_exclusive(m_object); |
| 4643 | } else { |
| 4644 | /* |
| 4645 | * In theory, the page should be in an object before it |
| 4646 | * gets wired, since we need to hold the object lock |
| 4647 | * to update some fields in the page structure. |
| 4648 | * However, some code (i386 pmap, for example) might want |
| 4649 | * to wire a page before it gets inserted into an object. |
| 4650 | * That's somewhat OK, as long as nobody else can get to |
| 4651 | * that page and update it at the same time. |
| 4652 | */ |
| 4653 | } |
| 4654 | LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED); |
| 4655 | if (!VM_PAGE_WIRED(mem)) { |
| 4656 | if (mem->vmp_laundry) { |
| 4657 | vm_pageout_steal_laundry(page: mem, TRUE); |
| 4658 | } |
| 4659 | |
| 4660 | vm_page_queues_remove(mem, TRUE); |
| 4661 | |
| 4662 | assert(mem->vmp_wire_count == 0); |
| 4663 | mem->vmp_q_state = VM_PAGE_IS_WIRED; |
| 4664 | |
| 4665 | #if CONFIG_TRACK_UNMODIFIED_ANON_PAGES |
| 4666 | if (mem->vmp_unmodified_ro == true) { |
| 4667 | /* Object and PageQ locks are held*/ |
| 4668 | mem->vmp_unmodified_ro = false; |
| 4669 | os_atomic_dec(&compressor_ro_uncompressed, relaxed); |
| 4670 | VM_COMPRESSOR_PAGER_STATE_CLR(VM_PAGE_OBJECT(mem), mem->vmp_offset); |
| 4671 | } |
| 4672 | #endif /* CONFIG_TRACK_UNMODIFIED_ANON_PAGES */ |
| 4673 | |
| 4674 | if (m_object) { |
| 4675 | VM_OBJECT_WIRED_PAGE_UPDATE_START(m_object); |
| 4676 | VM_OBJECT_WIRED_PAGE_ADD(m_object, mem); |
| 4677 | VM_OBJECT_WIRED_PAGE_UPDATE_END(m_object, tag); |
| 4678 | |
| 4679 | assert(m_object->resident_page_count >= |
| 4680 | m_object->wired_page_count); |
| 4681 | if (m_object->purgable == VM_PURGABLE_VOLATILE) { |
| 4682 | assert(vm_page_purgeable_count > 0); |
| 4683 | OSAddAtomic(-1, &vm_page_purgeable_count); |
| 4684 | OSAddAtomic(1, &vm_page_purgeable_wired_count); |
| 4685 | } |
| 4686 | if ((m_object->purgable == VM_PURGABLE_VOLATILE || |
| 4687 | m_object->purgable == VM_PURGABLE_EMPTY) && |
| 4688 | m_object->vo_owner != TASK_NULL) { |
| 4689 | task_t owner; |
| 4690 | int ledger_idx_volatile; |
| 4691 | int ledger_idx_nonvolatile; |
| 4692 | int ledger_idx_volatile_compressed; |
| 4693 | int ledger_idx_nonvolatile_compressed; |
| 4694 | boolean_t ; |
| 4695 | |
| 4696 | owner = VM_OBJECT_OWNER(m_object); |
| 4697 | vm_object_ledger_tag_ledgers( |
| 4698 | object: m_object, |
| 4699 | ledger_idx_volatile: &ledger_idx_volatile, |
| 4700 | ledger_idx_nonvolatile: &ledger_idx_nonvolatile, |
| 4701 | ledger_idx_volatile_compressed: &ledger_idx_volatile_compressed, |
| 4702 | ledger_idx_nonvolatile_compressed: &ledger_idx_nonvolatile_compressed, |
| 4703 | do_footprint: &do_footprint); |
| 4704 | /* less volatile bytes */ |
| 4705 | ledger_debit(ledger: owner->ledger, |
| 4706 | entry: ledger_idx_volatile, |
| 4707 | PAGE_SIZE); |
| 4708 | /* more not-quite-volatile bytes */ |
| 4709 | ledger_credit(ledger: owner->ledger, |
| 4710 | entry: ledger_idx_nonvolatile, |
| 4711 | PAGE_SIZE); |
| 4712 | if (do_footprint) { |
| 4713 | /* more footprint */ |
| 4714 | ledger_credit(ledger: owner->ledger, |
| 4715 | entry: task_ledgers.phys_footprint, |
| 4716 | PAGE_SIZE); |
| 4717 | } |
| 4718 | } |
| 4719 | if (m_object->all_reusable) { |
| 4720 | /* |
| 4721 | * Wired pages are not counted as "re-usable" |
| 4722 | * in "all_reusable" VM objects, so nothing |
| 4723 | * to do here. |
| 4724 | */ |
| 4725 | } else if (mem->vmp_reusable) { |
| 4726 | /* |
| 4727 | * This page is not "re-usable" when it's |
| 4728 | * wired, so adjust its state and the |
| 4729 | * accounting. |
| 4730 | */ |
| 4731 | vm_page_lockconvert_queues(); |
| 4732 | vm_object_reuse_pages(object: m_object, |
| 4733 | start_offset: mem->vmp_offset, |
| 4734 | end_offset: mem->vmp_offset + PAGE_SIZE_64, |
| 4735 | FALSE); |
| 4736 | } |
| 4737 | } |
| 4738 | assert(!mem->vmp_reusable); |
| 4739 | |
| 4740 | if (!mem->vmp_private && !mem->vmp_fictitious && !mem->vmp_gobbled) { |
| 4741 | vm_page_wire_count++; |
| 4742 | } |
| 4743 | if (mem->vmp_gobbled) { |
| 4744 | vm_page_gobble_count--; |
| 4745 | } |
| 4746 | mem->vmp_gobbled = FALSE; |
| 4747 | |
| 4748 | if (check_memorystatus == TRUE) { |
| 4749 | VM_CHECK_MEMORYSTATUS; |
| 4750 | } |
| 4751 | } |
| 4752 | assert(!mem->vmp_gobbled); |
| 4753 | assert(mem->vmp_q_state == VM_PAGE_IS_WIRED); |
| 4754 | mem->vmp_wire_count++; |
| 4755 | if (__improbable(mem->vmp_wire_count == 0)) { |
| 4756 | panic("vm_page_wire(%p): wire_count overflow" , mem); |
| 4757 | } |
| 4758 | VM_PAGE_CHECK(mem); |
| 4759 | } |
| 4760 | |
| 4761 | /* |
| 4762 | * vm_page_unwire: |
| 4763 | * |
| 4764 | * Release one wiring of this page, potentially |
| 4765 | * enabling it to be paged again. |
| 4766 | * |
| 4767 | * The page's object and the page queues must be locked. |
| 4768 | */ |
| 4769 | void |
| 4770 | vm_page_unwire( |
| 4771 | vm_page_t mem, |
| 4772 | boolean_t queueit) |
| 4773 | { |
| 4774 | vm_object_t m_object; |
| 4775 | |
| 4776 | m_object = VM_PAGE_OBJECT(mem); |
| 4777 | |
| 4778 | // dbgLog(current_thread(), mem->vmp_offset, m_object, 0); /* (TEST/DEBUG) */ |
| 4779 | |
| 4780 | VM_PAGE_CHECK(mem); |
| 4781 | assert(VM_PAGE_WIRED(mem)); |
| 4782 | assert(mem->vmp_wire_count > 0); |
| 4783 | assert(!mem->vmp_gobbled); |
| 4784 | assert(m_object != VM_OBJECT_NULL); |
| 4785 | vm_object_lock_assert_exclusive(m_object); |
| 4786 | LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED); |
| 4787 | if (--mem->vmp_wire_count == 0) { |
| 4788 | mem->vmp_q_state = VM_PAGE_NOT_ON_Q; |
| 4789 | |
| 4790 | VM_OBJECT_WIRED_PAGE_UPDATE_START(m_object); |
| 4791 | VM_OBJECT_WIRED_PAGE_REMOVE(m_object, mem); |
| 4792 | VM_OBJECT_WIRED_PAGE_UPDATE_END(m_object, m_object->wire_tag); |
| 4793 | if (!mem->vmp_private && !mem->vmp_fictitious) { |
| 4794 | vm_page_wire_count--; |
| 4795 | } |
| 4796 | |
| 4797 | assert(m_object->resident_page_count >= |
| 4798 | m_object->wired_page_count); |
| 4799 | if (m_object->purgable == VM_PURGABLE_VOLATILE) { |
| 4800 | OSAddAtomic(+1, &vm_page_purgeable_count); |
| 4801 | assert(vm_page_purgeable_wired_count > 0); |
| 4802 | OSAddAtomic(-1, &vm_page_purgeable_wired_count); |
| 4803 | } |
| 4804 | if ((m_object->purgable == VM_PURGABLE_VOLATILE || |
| 4805 | m_object->purgable == VM_PURGABLE_EMPTY) && |
| 4806 | m_object->vo_owner != TASK_NULL) { |
| 4807 | task_t owner; |
| 4808 | int ledger_idx_volatile; |
| 4809 | int ledger_idx_nonvolatile; |
| 4810 | int ledger_idx_volatile_compressed; |
| 4811 | int ledger_idx_nonvolatile_compressed; |
| 4812 | boolean_t ; |
| 4813 | |
| 4814 | owner = VM_OBJECT_OWNER(m_object); |
| 4815 | vm_object_ledger_tag_ledgers( |
| 4816 | object: m_object, |
| 4817 | ledger_idx_volatile: &ledger_idx_volatile, |
| 4818 | ledger_idx_nonvolatile: &ledger_idx_nonvolatile, |
| 4819 | ledger_idx_volatile_compressed: &ledger_idx_volatile_compressed, |
| 4820 | ledger_idx_nonvolatile_compressed: &ledger_idx_nonvolatile_compressed, |
| 4821 | do_footprint: &do_footprint); |
| 4822 | /* more volatile bytes */ |
| 4823 | ledger_credit(ledger: owner->ledger, |
| 4824 | entry: ledger_idx_volatile, |
| 4825 | PAGE_SIZE); |
| 4826 | /* less not-quite-volatile bytes */ |
| 4827 | ledger_debit(ledger: owner->ledger, |
| 4828 | entry: ledger_idx_nonvolatile, |
| 4829 | PAGE_SIZE); |
| 4830 | if (do_footprint) { |
| 4831 | /* less footprint */ |
| 4832 | ledger_debit(ledger: owner->ledger, |
| 4833 | entry: task_ledgers.phys_footprint, |
| 4834 | PAGE_SIZE); |
| 4835 | } |
| 4836 | } |
| 4837 | assert(!is_kernel_object(m_object)); |
| 4838 | assert(mem->vmp_pageq.next == 0 && mem->vmp_pageq.prev == 0); |
| 4839 | |
| 4840 | if (queueit == TRUE) { |
| 4841 | if (m_object->purgable == VM_PURGABLE_EMPTY) { |
| 4842 | vm_page_deactivate(page: mem); |
| 4843 | } else { |
| 4844 | vm_page_activate(page: mem); |
| 4845 | } |
| 4846 | } |
| 4847 | |
| 4848 | VM_CHECK_MEMORYSTATUS; |
| 4849 | } |
| 4850 | VM_PAGE_CHECK(mem); |
| 4851 | } |
| 4852 | |
| 4853 | /* |
| 4854 | * vm_page_deactivate: |
| 4855 | * |
| 4856 | * Returns the given page to the inactive list, |
| 4857 | * indicating that no physical maps have access |
| 4858 | * to this page. [Used by the physical mapping system.] |
| 4859 | * |
| 4860 | * The page queues must be locked. |
| 4861 | */ |
| 4862 | void |
| 4863 | vm_page_deactivate( |
| 4864 | vm_page_t m) |
| 4865 | { |
| 4866 | vm_page_deactivate_internal(page: m, TRUE); |
| 4867 | } |
| 4868 | |
| 4869 | |
| 4870 | void |
| 4871 | vm_page_deactivate_internal( |
| 4872 | vm_page_t m, |
| 4873 | boolean_t clear_hw_reference) |
| 4874 | { |
| 4875 | vm_object_t m_object; |
| 4876 | |
| 4877 | m_object = VM_PAGE_OBJECT(m); |
| 4878 | |
| 4879 | VM_PAGE_CHECK(m); |
| 4880 | assert(!is_kernel_object(m_object)); |
| 4881 | assert(VM_PAGE_GET_PHYS_PAGE(m) != vm_page_guard_addr); |
| 4882 | |
| 4883 | // dbgLog(VM_PAGE_GET_PHYS_PAGE(m), vm_page_free_count, vm_page_wire_count, 6); /* (TEST/DEBUG) */ |
| 4884 | LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED); |
| 4885 | /* |
| 4886 | * This page is no longer very interesting. If it was |
| 4887 | * interesting (active or inactive/referenced), then we |
| 4888 | * clear the reference bit and (re)enter it in the |
| 4889 | * inactive queue. Note wired pages should not have |
| 4890 | * their reference bit cleared. |
| 4891 | */ |
| 4892 | assert( !(m->vmp_absent && !m->vmp_unusual)); |
| 4893 | |
| 4894 | if (m->vmp_gobbled) { /* can this happen? */ |
| 4895 | assert( !VM_PAGE_WIRED(m)); |
| 4896 | |
| 4897 | if (!m->vmp_private && !m->vmp_fictitious) { |
| 4898 | vm_page_wire_count--; |
| 4899 | } |
| 4900 | vm_page_gobble_count--; |
| 4901 | m->vmp_gobbled = FALSE; |
| 4902 | } |
| 4903 | /* |
| 4904 | * if this page is currently on the pageout queue, we can't do the |
| 4905 | * vm_page_queues_remove (which doesn't handle the pageout queue case) |
| 4906 | * and we can't remove it manually since we would need the object lock |
| 4907 | * (which is not required here) to decrement the activity_in_progress |
| 4908 | * reference which is held on the object while the page is in the pageout queue... |
| 4909 | * just let the normal laundry processing proceed |
| 4910 | */ |
| 4911 | if (m->vmp_laundry || m->vmp_private || m->vmp_fictitious || |
| 4912 | (m->vmp_q_state == VM_PAGE_USED_BY_COMPRESSOR) || |
| 4913 | (m->vmp_q_state == VM_PAGE_ON_PAGEOUT_Q) || |
| 4914 | VM_PAGE_WIRED(m)) { |
| 4915 | return; |
| 4916 | } |
| 4917 | if (!m->vmp_absent && clear_hw_reference == TRUE) { |
| 4918 | vm_page_lockconvert_queues(); |
| 4919 | pmap_clear_reference(pn: VM_PAGE_GET_PHYS_PAGE(m)); |
| 4920 | } |
| 4921 | |
| 4922 | m->vmp_reference = FALSE; |
| 4923 | m->vmp_no_cache = FALSE; |
| 4924 | |
| 4925 | if (!VM_PAGE_INACTIVE(m)) { |
| 4926 | vm_page_queues_remove(mem: m, FALSE); |
| 4927 | |
| 4928 | if (!VM_DYNAMIC_PAGING_ENABLED() && |
| 4929 | m->vmp_dirty && m_object->internal && |
| 4930 | (m_object->purgable == VM_PURGABLE_DENY || |
| 4931 | m_object->purgable == VM_PURGABLE_NONVOLATILE || |
| 4932 | m_object->purgable == VM_PURGABLE_VOLATILE)) { |
| 4933 | vm_page_check_pageable_safe(page: m); |
| 4934 | vm_page_queue_enter(&vm_page_queue_throttled, m, vmp_pageq); |
| 4935 | m->vmp_q_state = VM_PAGE_ON_THROTTLED_Q; |
| 4936 | vm_page_throttled_count++; |
| 4937 | } else { |
| 4938 | if (m_object->named && m_object->ref_count == 1) { |
| 4939 | vm_page_speculate(page: m, FALSE); |
| 4940 | #if DEVELOPMENT || DEBUG |
| 4941 | vm_page_speculative_recreated++; |
| 4942 | #endif |
| 4943 | } else { |
| 4944 | vm_page_enqueue_inactive(mem: m, FALSE); |
| 4945 | } |
| 4946 | } |
| 4947 | } |
| 4948 | } |
| 4949 | |
| 4950 | /* |
| 4951 | * vm_page_enqueue_cleaned |
| 4952 | * |
| 4953 | * Put the page on the cleaned queue, mark it cleaned, etc. |
| 4954 | * Being on the cleaned queue (and having m->clean_queue set) |
| 4955 | * does ** NOT ** guarantee that the page is clean! |
| 4956 | * |
| 4957 | * Call with the queues lock held. |
| 4958 | */ |
| 4959 | |
| 4960 | void |
| 4961 | vm_page_enqueue_cleaned(vm_page_t m) |
| 4962 | { |
| 4963 | vm_object_t m_object; |
| 4964 | |
| 4965 | m_object = VM_PAGE_OBJECT(m); |
| 4966 | |
| 4967 | assert(VM_PAGE_GET_PHYS_PAGE(m) != vm_page_guard_addr); |
| 4968 | LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED); |
| 4969 | assert( !(m->vmp_absent && !m->vmp_unusual)); |
| 4970 | |
| 4971 | if (VM_PAGE_WIRED(m)) { |
| 4972 | return; |
| 4973 | } |
| 4974 | |
| 4975 | if (m->vmp_gobbled) { |
| 4976 | if (!m->vmp_private && !m->vmp_fictitious) { |
| 4977 | vm_page_wire_count--; |
| 4978 | } |
| 4979 | vm_page_gobble_count--; |
| 4980 | m->vmp_gobbled = FALSE; |
| 4981 | } |
| 4982 | /* |
| 4983 | * if this page is currently on the pageout queue, we can't do the |
| 4984 | * vm_page_queues_remove (which doesn't handle the pageout queue case) |
| 4985 | * and we can't remove it manually since we would need the object lock |
| 4986 | * (which is not required here) to decrement the activity_in_progress |
| 4987 | * reference which is held on the object while the page is in the pageout queue... |
| 4988 | * just let the normal laundry processing proceed |
| 4989 | */ |
| 4990 | if (m->vmp_laundry || m->vmp_private || m->vmp_fictitious || |
| 4991 | (m->vmp_q_state == VM_PAGE_ON_INACTIVE_CLEANED_Q) || |
| 4992 | (m->vmp_q_state == VM_PAGE_ON_PAGEOUT_Q)) { |
| 4993 | return; |
| 4994 | } |
| 4995 | vm_page_queues_remove(mem: m, FALSE); |
| 4996 | |
| 4997 | vm_page_check_pageable_safe(page: m); |
| 4998 | vm_page_queue_enter(&vm_page_queue_cleaned, m, vmp_pageq); |
| 4999 | m->vmp_q_state = VM_PAGE_ON_INACTIVE_CLEANED_Q; |
| 5000 | vm_page_cleaned_count++; |
| 5001 | |
| 5002 | vm_page_inactive_count++; |
| 5003 | if (m_object->internal) { |
| 5004 | vm_page_pageable_internal_count++; |
| 5005 | } else { |
| 5006 | vm_page_pageable_external_count++; |
| 5007 | } |
| 5008 | vm_page_add_to_specialq(mem: m, TRUE); |
| 5009 | VM_PAGEOUT_DEBUG(vm_pageout_enqueued_cleaned, 1); |
| 5010 | } |
| 5011 | |
| 5012 | /* |
| 5013 | * vm_page_activate: |
| 5014 | * |
| 5015 | * Put the specified page on the active list (if appropriate). |
| 5016 | * |
| 5017 | * The page queues must be locked. |
| 5018 | */ |
| 5019 | |
| 5020 | void |
| 5021 | vm_page_activate( |
| 5022 | vm_page_t m) |
| 5023 | { |
| 5024 | vm_object_t m_object; |
| 5025 | |
| 5026 | m_object = VM_PAGE_OBJECT(m); |
| 5027 | |
| 5028 | VM_PAGE_CHECK(m); |
| 5029 | #ifdef FIXME_4778297 |
| 5030 | assert(!is_kernel_object(m_object)); |
| 5031 | #endif |
| 5032 | assert(VM_PAGE_GET_PHYS_PAGE(m) != vm_page_guard_addr); |
| 5033 | LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED); |
| 5034 | assert( !(m->vmp_absent && !m->vmp_unusual)); |
| 5035 | |
| 5036 | if (m->vmp_gobbled) { |
| 5037 | assert( !VM_PAGE_WIRED(m)); |
| 5038 | if (!m->vmp_private && !m->vmp_fictitious) { |
| 5039 | vm_page_wire_count--; |
| 5040 | } |
| 5041 | vm_page_gobble_count--; |
| 5042 | m->vmp_gobbled = FALSE; |
| 5043 | } |
| 5044 | /* |
| 5045 | * if this page is currently on the pageout queue, we can't do the |
| 5046 | * vm_page_queues_remove (which doesn't handle the pageout queue case) |
| 5047 | * and we can't remove it manually since we would need the object lock |
| 5048 | * (which is not required here) to decrement the activity_in_progress |
| 5049 | * reference which is held on the object while the page is in the pageout queue... |
| 5050 | * just let the normal laundry processing proceed |
| 5051 | */ |
| 5052 | if (m->vmp_laundry || m->vmp_private || m->vmp_fictitious || |
| 5053 | (m->vmp_q_state == VM_PAGE_USED_BY_COMPRESSOR) || |
| 5054 | (m->vmp_q_state == VM_PAGE_ON_PAGEOUT_Q)) { |
| 5055 | return; |
| 5056 | } |
| 5057 | |
| 5058 | #if DEBUG |
| 5059 | if (m->vmp_q_state == VM_PAGE_ON_ACTIVE_Q) { |
| 5060 | panic("vm_page_activate: already active" ); |
| 5061 | } |
| 5062 | #endif |
| 5063 | |
| 5064 | if (m->vmp_q_state == VM_PAGE_ON_SPECULATIVE_Q) { |
| 5065 | DTRACE_VM2(pgrec, int, 1, (uint64_t *), NULL); |
| 5066 | DTRACE_VM2(pgfrec, int, 1, (uint64_t *), NULL); |
| 5067 | } |
| 5068 | |
| 5069 | /* |
| 5070 | * A freshly activated page should be promoted in the donation queue. |
| 5071 | * So we remove it here while preserving its hint and we will enqueue |
| 5072 | * it again in vm_page_enqueue_active. |
| 5073 | */ |
| 5074 | vm_page_queues_remove(mem: m, remove_from_specialq: ((m->vmp_on_specialq == VM_PAGE_SPECIAL_Q_DONATE) ? TRUE : FALSE)); |
| 5075 | |
| 5076 | if (!VM_PAGE_WIRED(m)) { |
| 5077 | vm_page_check_pageable_safe(page: m); |
| 5078 | if (!VM_DYNAMIC_PAGING_ENABLED() && |
| 5079 | m->vmp_dirty && m_object->internal && |
| 5080 | (m_object->purgable == VM_PURGABLE_DENY || |
| 5081 | m_object->purgable == VM_PURGABLE_NONVOLATILE || |
| 5082 | m_object->purgable == VM_PURGABLE_VOLATILE)) { |
| 5083 | vm_page_queue_enter(&vm_page_queue_throttled, m, vmp_pageq); |
| 5084 | m->vmp_q_state = VM_PAGE_ON_THROTTLED_Q; |
| 5085 | vm_page_throttled_count++; |
| 5086 | } else { |
| 5087 | #if CONFIG_SECLUDED_MEMORY |
| 5088 | if (secluded_for_filecache && |
| 5089 | vm_page_secluded_target != 0 && |
| 5090 | num_tasks_can_use_secluded_mem == 0 && |
| 5091 | m_object->eligible_for_secluded && |
| 5092 | !m->vmp_realtime) { |
| 5093 | vm_page_queue_enter(&vm_page_queue_secluded, m, vmp_pageq); |
| 5094 | m->vmp_q_state = VM_PAGE_ON_SECLUDED_Q; |
| 5095 | vm_page_secluded_count++; |
| 5096 | VM_PAGE_SECLUDED_COUNT_OVER_TARGET_UPDATE(); |
| 5097 | vm_page_secluded_count_inuse++; |
| 5098 | assert(!m_object->internal); |
| 5099 | // vm_page_pageable_external_count++; |
| 5100 | } else |
| 5101 | #endif /* CONFIG_SECLUDED_MEMORY */ |
| 5102 | vm_page_enqueue_active(mem: m, FALSE); |
| 5103 | } |
| 5104 | m->vmp_reference = TRUE; |
| 5105 | m->vmp_no_cache = FALSE; |
| 5106 | } |
| 5107 | VM_PAGE_CHECK(m); |
| 5108 | } |
| 5109 | |
| 5110 | |
| 5111 | /* |
| 5112 | * vm_page_speculate: |
| 5113 | * |
| 5114 | * Put the specified page on the speculative list (if appropriate). |
| 5115 | * |
| 5116 | * The page queues must be locked. |
| 5117 | */ |
| 5118 | void |
| 5119 | vm_page_speculate( |
| 5120 | vm_page_t m, |
| 5121 | boolean_t new) |
| 5122 | { |
| 5123 | struct vm_speculative_age_q *aq; |
| 5124 | vm_object_t m_object; |
| 5125 | |
| 5126 | m_object = VM_PAGE_OBJECT(m); |
| 5127 | |
| 5128 | VM_PAGE_CHECK(m); |
| 5129 | vm_page_check_pageable_safe(page: m); |
| 5130 | |
| 5131 | assert(VM_PAGE_GET_PHYS_PAGE(m) != vm_page_guard_addr); |
| 5132 | LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED); |
| 5133 | assert( !(m->vmp_absent && !m->vmp_unusual)); |
| 5134 | assert(m_object->internal == FALSE); |
| 5135 | |
| 5136 | /* |
| 5137 | * if this page is currently on the pageout queue, we can't do the |
| 5138 | * vm_page_queues_remove (which doesn't handle the pageout queue case) |
| 5139 | * and we can't remove it manually since we would need the object lock |
| 5140 | * (which is not required here) to decrement the activity_in_progress |
| 5141 | * reference which is held on the object while the page is in the pageout queue... |
| 5142 | * just let the normal laundry processing proceed |
| 5143 | */ |
| 5144 | if (m->vmp_laundry || m->vmp_private || m->vmp_fictitious || |
| 5145 | (m->vmp_q_state == VM_PAGE_USED_BY_COMPRESSOR) || |
| 5146 | (m->vmp_q_state == VM_PAGE_ON_PAGEOUT_Q)) { |
| 5147 | return; |
| 5148 | } |
| 5149 | |
| 5150 | vm_page_queues_remove(mem: m, FALSE); |
| 5151 | |
| 5152 | if (!VM_PAGE_WIRED(m)) { |
| 5153 | mach_timespec_t ts; |
| 5154 | clock_sec_t sec; |
| 5155 | clock_nsec_t nsec; |
| 5156 | |
| 5157 | clock_get_system_nanotime(secs: &sec, nanosecs: &nsec); |
| 5158 | ts.tv_sec = (unsigned int) sec; |
| 5159 | ts.tv_nsec = nsec; |
| 5160 | |
| 5161 | if (vm_page_speculative_count == 0) { |
| 5162 | speculative_age_index = VM_PAGE_MIN_SPECULATIVE_AGE_Q; |
| 5163 | speculative_steal_index = VM_PAGE_MIN_SPECULATIVE_AGE_Q; |
| 5164 | |
| 5165 | aq = &vm_page_queue_speculative[speculative_age_index]; |
| 5166 | |
| 5167 | /* |
| 5168 | * set the timer to begin a new group |
| 5169 | */ |
| 5170 | aq->age_ts.tv_sec = vm_pageout_state.vm_page_speculative_q_age_ms / 1000; |
| 5171 | aq->age_ts.tv_nsec = (vm_pageout_state.vm_page_speculative_q_age_ms % 1000) * 1000 * NSEC_PER_USEC; |
| 5172 | |
| 5173 | ADD_MACH_TIMESPEC(&aq->age_ts, &ts); |
| 5174 | } else { |
| 5175 | aq = &vm_page_queue_speculative[speculative_age_index]; |
| 5176 | |
| 5177 | if (CMP_MACH_TIMESPEC(&ts, &aq->age_ts) >= 0) { |
| 5178 | speculative_age_index++; |
| 5179 | |
| 5180 | if (speculative_age_index > VM_PAGE_MAX_SPECULATIVE_AGE_Q) { |
| 5181 | speculative_age_index = VM_PAGE_MIN_SPECULATIVE_AGE_Q; |
| 5182 | } |
| 5183 | if (speculative_age_index == speculative_steal_index) { |
| 5184 | speculative_steal_index = speculative_age_index + 1; |
| 5185 | |
| 5186 | if (speculative_steal_index > VM_PAGE_MAX_SPECULATIVE_AGE_Q) { |
| 5187 | speculative_steal_index = VM_PAGE_MIN_SPECULATIVE_AGE_Q; |
| 5188 | } |
| 5189 | } |
| 5190 | aq = &vm_page_queue_speculative[speculative_age_index]; |
| 5191 | |
| 5192 | if (!vm_page_queue_empty(&aq->age_q)) { |
| 5193 | vm_page_speculate_ageit(aq); |
| 5194 | } |
| 5195 | |
| 5196 | aq->age_ts.tv_sec = vm_pageout_state.vm_page_speculative_q_age_ms / 1000; |
| 5197 | aq->age_ts.tv_nsec = (vm_pageout_state.vm_page_speculative_q_age_ms % 1000) * 1000 * NSEC_PER_USEC; |
| 5198 | |
| 5199 | ADD_MACH_TIMESPEC(&aq->age_ts, &ts); |
| 5200 | } |
| 5201 | } |
| 5202 | vm_page_enqueue_tail(que: &aq->age_q, elt: &m->vmp_pageq); |
| 5203 | m->vmp_q_state = VM_PAGE_ON_SPECULATIVE_Q; |
| 5204 | vm_page_speculative_count++; |
| 5205 | vm_page_pageable_external_count++; |
| 5206 | |
| 5207 | if (new == TRUE) { |
| 5208 | vm_object_lock_assert_exclusive(m_object); |
| 5209 | |
| 5210 | m_object->pages_created++; |
| 5211 | #if DEVELOPMENT || DEBUG |
| 5212 | vm_page_speculative_created++; |
| 5213 | #endif |
| 5214 | } |
| 5215 | } |
| 5216 | VM_PAGE_CHECK(m); |
| 5217 | } |
| 5218 | |
| 5219 | |
| 5220 | /* |
| 5221 | * move pages from the specified aging bin to |
| 5222 | * the speculative bin that pageout_scan claims from |
| 5223 | * |
| 5224 | * The page queues must be locked. |
| 5225 | */ |
| 5226 | void |
| 5227 | vm_page_speculate_ageit(struct vm_speculative_age_q *aq) |
| 5228 | { |
| 5229 | struct vm_speculative_age_q *sq; |
| 5230 | vm_page_t t; |
| 5231 | |
| 5232 | sq = &vm_page_queue_speculative[VM_PAGE_SPECULATIVE_AGED_Q]; |
| 5233 | |
| 5234 | if (vm_page_queue_empty(&sq->age_q)) { |
| 5235 | sq->age_q.next = aq->age_q.next; |
| 5236 | sq->age_q.prev = aq->age_q.prev; |
| 5237 | |
| 5238 | t = (vm_page_t)VM_PAGE_UNPACK_PTR(sq->age_q.next); |
| 5239 | t->vmp_pageq.prev = VM_PAGE_PACK_PTR(&sq->age_q); |
| 5240 | |
| 5241 | t = (vm_page_t)VM_PAGE_UNPACK_PTR(sq->age_q.prev); |
| 5242 | t->vmp_pageq.next = VM_PAGE_PACK_PTR(&sq->age_q); |
| 5243 | } else { |
| 5244 | t = (vm_page_t)VM_PAGE_UNPACK_PTR(sq->age_q.prev); |
| 5245 | t->vmp_pageq.next = aq->age_q.next; |
| 5246 | |
| 5247 | t = (vm_page_t)VM_PAGE_UNPACK_PTR(aq->age_q.next); |
| 5248 | t->vmp_pageq.prev = sq->age_q.prev; |
| 5249 | |
| 5250 | t = (vm_page_t)VM_PAGE_UNPACK_PTR(aq->age_q.prev); |
| 5251 | t->vmp_pageq.next = VM_PAGE_PACK_PTR(&sq->age_q); |
| 5252 | |
| 5253 | sq->age_q.prev = aq->age_q.prev; |
| 5254 | } |
| 5255 | vm_page_queue_init(&aq->age_q); |
| 5256 | } |
| 5257 | |
| 5258 | |
| 5259 | void |
| 5260 | vm_page_lru( |
| 5261 | vm_page_t m) |
| 5262 | { |
| 5263 | VM_PAGE_CHECK(m); |
| 5264 | assert(!is_kernel_object(VM_PAGE_OBJECT(m))); |
| 5265 | assert(VM_PAGE_GET_PHYS_PAGE(m) != vm_page_guard_addr); |
| 5266 | |
| 5267 | LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED); |
| 5268 | |
| 5269 | if (m->vmp_q_state == VM_PAGE_ON_INACTIVE_EXTERNAL_Q) { |
| 5270 | /* |
| 5271 | * we don't need to do all the other work that |
| 5272 | * vm_page_queues_remove and vm_page_enqueue_inactive |
| 5273 | * bring along for the ride |
| 5274 | */ |
| 5275 | assert(!m->vmp_laundry); |
| 5276 | assert(!m->vmp_private); |
| 5277 | |
| 5278 | m->vmp_no_cache = FALSE; |
| 5279 | |
| 5280 | vm_page_queue_remove(&vm_page_queue_inactive, m, vmp_pageq); |
| 5281 | vm_page_queue_enter(&vm_page_queue_inactive, m, vmp_pageq); |
| 5282 | |
| 5283 | return; |
| 5284 | } |
| 5285 | /* |
| 5286 | * if this page is currently on the pageout queue, we can't do the |
| 5287 | * vm_page_queues_remove (which doesn't handle the pageout queue case) |
| 5288 | * and we can't remove it manually since we would need the object lock |
| 5289 | * (which is not required here) to decrement the activity_in_progress |
| 5290 | * reference which is held on the object while the page is in the pageout queue... |
| 5291 | * just let the normal laundry processing proceed |
| 5292 | */ |
| 5293 | if (m->vmp_laundry || m->vmp_private || |
| 5294 | (m->vmp_q_state == VM_PAGE_USED_BY_COMPRESSOR) || |
| 5295 | (m->vmp_q_state == VM_PAGE_ON_PAGEOUT_Q) || |
| 5296 | VM_PAGE_WIRED(m)) { |
| 5297 | return; |
| 5298 | } |
| 5299 | |
| 5300 | m->vmp_no_cache = FALSE; |
| 5301 | |
| 5302 | vm_page_queues_remove(mem: m, FALSE); |
| 5303 | |
| 5304 | vm_page_enqueue_inactive(mem: m, FALSE); |
| 5305 | } |
| 5306 | |
| 5307 | |
| 5308 | void |
| 5309 | vm_page_reactivate_all_throttled(void) |
| 5310 | { |
| 5311 | vm_page_t first_throttled, last_throttled; |
| 5312 | vm_page_t first_active; |
| 5313 | vm_page_t m; |
| 5314 | int ; |
| 5315 | int , ; |
| 5316 | vm_object_t m_object; |
| 5317 | |
| 5318 | if (!VM_DYNAMIC_PAGING_ENABLED()) { |
| 5319 | return; |
| 5320 | } |
| 5321 | |
| 5322 | extra_active_count = 0; |
| 5323 | extra_internal_count = 0; |
| 5324 | extra_external_count = 0; |
| 5325 | vm_page_lock_queues(); |
| 5326 | if (!vm_page_queue_empty(&vm_page_queue_throttled)) { |
| 5327 | /* |
| 5328 | * Switch "throttled" pages to "active". |
| 5329 | */ |
| 5330 | vm_page_queue_iterate(&vm_page_queue_throttled, m, vmp_pageq) { |
| 5331 | VM_PAGE_CHECK(m); |
| 5332 | assert(m->vmp_q_state == VM_PAGE_ON_THROTTLED_Q); |
| 5333 | |
| 5334 | m_object = VM_PAGE_OBJECT(m); |
| 5335 | |
| 5336 | extra_active_count++; |
| 5337 | if (m_object->internal) { |
| 5338 | extra_internal_count++; |
| 5339 | } else { |
| 5340 | extra_external_count++; |
| 5341 | } |
| 5342 | |
| 5343 | m->vmp_q_state = VM_PAGE_ON_ACTIVE_Q; |
| 5344 | VM_PAGE_CHECK(m); |
| 5345 | vm_page_add_to_specialq(mem: m, FALSE); |
| 5346 | } |
| 5347 | |
| 5348 | /* |
| 5349 | * Transfer the entire throttled queue to a regular LRU page queues. |
| 5350 | * We insert it at the head of the active queue, so that these pages |
| 5351 | * get re-evaluated by the LRU algorithm first, since they've been |
| 5352 | * completely out of it until now. |
| 5353 | */ |
| 5354 | first_throttled = (vm_page_t) vm_page_queue_first(&vm_page_queue_throttled); |
| 5355 | last_throttled = (vm_page_t) vm_page_queue_last(&vm_page_queue_throttled); |
| 5356 | first_active = (vm_page_t) vm_page_queue_first(&vm_page_queue_active); |
| 5357 | if (vm_page_queue_empty(&vm_page_queue_active)) { |
| 5358 | vm_page_queue_active.prev = VM_PAGE_CONVERT_TO_QUEUE_ENTRY(last_throttled); |
| 5359 | } else { |
| 5360 | first_active->vmp_pageq.prev = VM_PAGE_CONVERT_TO_QUEUE_ENTRY(last_throttled); |
| 5361 | } |
| 5362 | vm_page_queue_active.next = VM_PAGE_CONVERT_TO_QUEUE_ENTRY(first_throttled); |
| 5363 | first_throttled->vmp_pageq.prev = VM_PAGE_CONVERT_TO_QUEUE_ENTRY(&vm_page_queue_active); |
| 5364 | last_throttled->vmp_pageq.next = VM_PAGE_CONVERT_TO_QUEUE_ENTRY(first_active); |
| 5365 | |
| 5366 | #if DEBUG |
| 5367 | printf("reactivated %d throttled pages\n" , vm_page_throttled_count); |
| 5368 | #endif |
| 5369 | vm_page_queue_init(&vm_page_queue_throttled); |
| 5370 | /* |
| 5371 | * Adjust the global page counts. |
| 5372 | */ |
| 5373 | vm_page_active_count += extra_active_count; |
| 5374 | vm_page_pageable_internal_count += extra_internal_count; |
| 5375 | vm_page_pageable_external_count += extra_external_count; |
| 5376 | vm_page_throttled_count = 0; |
| 5377 | } |
| 5378 | assert(vm_page_throttled_count == 0); |
| 5379 | assert(vm_page_queue_empty(&vm_page_queue_throttled)); |
| 5380 | vm_page_unlock_queues(); |
| 5381 | } |
| 5382 | |
| 5383 | |
| 5384 | /* |
| 5385 | * move pages from the indicated local queue to the global active queue |
| 5386 | * its ok to fail if we're below the hard limit and force == FALSE |
| 5387 | * the nolocks == TRUE case is to allow this function to be run on |
| 5388 | * the hibernate path |
| 5389 | */ |
| 5390 | |
| 5391 | void |
| 5392 | vm_page_reactivate_local(uint32_t lid, boolean_t force, boolean_t nolocks) |
| 5393 | { |
| 5394 | struct vpl *lq; |
| 5395 | vm_page_t first_local, last_local; |
| 5396 | vm_page_t first_active; |
| 5397 | vm_page_t m; |
| 5398 | uint32_t count = 0; |
| 5399 | |
| 5400 | if (vm_page_local_q == NULL) { |
| 5401 | return; |
| 5402 | } |
| 5403 | |
| 5404 | lq = zpercpu_get_cpu(vm_page_local_q, lid); |
| 5405 | |
| 5406 | if (nolocks == FALSE) { |
| 5407 | if (lq->vpl_count < vm_page_local_q_hard_limit && force == FALSE) { |
| 5408 | if (!vm_page_trylockspin_queues()) { |
| 5409 | return; |
| 5410 | } |
| 5411 | } else { |
| 5412 | vm_page_lockspin_queues(); |
| 5413 | } |
| 5414 | |
| 5415 | VPL_LOCK(&lq->vpl_lock); |
| 5416 | } |
| 5417 | if (lq->vpl_count) { |
| 5418 | /* |
| 5419 | * Switch "local" pages to "active". |
| 5420 | */ |
| 5421 | assert(!vm_page_queue_empty(&lq->vpl_queue)); |
| 5422 | |
| 5423 | vm_page_queue_iterate(&lq->vpl_queue, m, vmp_pageq) { |
| 5424 | VM_PAGE_CHECK(m); |
| 5425 | vm_page_check_pageable_safe(page: m); |
| 5426 | assert(m->vmp_q_state == VM_PAGE_ON_ACTIVE_LOCAL_Q); |
| 5427 | assert(!m->vmp_fictitious); |
| 5428 | |
| 5429 | if (m->vmp_local_id != lid) { |
| 5430 | panic("vm_page_reactivate_local: found vm_page_t(%p) with wrong cpuid" , m); |
| 5431 | } |
| 5432 | |
| 5433 | m->vmp_local_id = 0; |
| 5434 | m->vmp_q_state = VM_PAGE_ON_ACTIVE_Q; |
| 5435 | VM_PAGE_CHECK(m); |
| 5436 | vm_page_add_to_specialq(mem: m, FALSE); |
| 5437 | count++; |
| 5438 | } |
| 5439 | if (count != lq->vpl_count) { |
| 5440 | panic("vm_page_reactivate_local: count = %d, vm_page_local_count = %d" , count, lq->vpl_count); |
| 5441 | } |
| 5442 | |
| 5443 | /* |
| 5444 | * Transfer the entire local queue to a regular LRU page queues. |
| 5445 | */ |
| 5446 | first_local = (vm_page_t) vm_page_queue_first(&lq->vpl_queue); |
| 5447 | last_local = (vm_page_t) vm_page_queue_last(&lq->vpl_queue); |
| 5448 | first_active = (vm_page_t) vm_page_queue_first(&vm_page_queue_active); |
| 5449 | |
| 5450 | if (vm_page_queue_empty(&vm_page_queue_active)) { |
| 5451 | vm_page_queue_active.prev = VM_PAGE_CONVERT_TO_QUEUE_ENTRY(last_local); |
| 5452 | } else { |
| 5453 | first_active->vmp_pageq.prev = VM_PAGE_CONVERT_TO_QUEUE_ENTRY(last_local); |
| 5454 | } |
| 5455 | vm_page_queue_active.next = VM_PAGE_CONVERT_TO_QUEUE_ENTRY(first_local); |
| 5456 | first_local->vmp_pageq.prev = VM_PAGE_CONVERT_TO_QUEUE_ENTRY(&vm_page_queue_active); |
| 5457 | last_local->vmp_pageq.next = VM_PAGE_CONVERT_TO_QUEUE_ENTRY(first_active); |
| 5458 | |
| 5459 | vm_page_queue_init(&lq->vpl_queue); |
| 5460 | /* |
| 5461 | * Adjust the global page counts. |
| 5462 | */ |
| 5463 | vm_page_active_count += lq->vpl_count; |
| 5464 | vm_page_pageable_internal_count += lq->vpl_internal_count; |
| 5465 | vm_page_pageable_external_count += lq->vpl_external_count; |
| 5466 | lq->vpl_count = 0; |
| 5467 | lq->vpl_internal_count = 0; |
| 5468 | lq->vpl_external_count = 0; |
| 5469 | } |
| 5470 | assert(vm_page_queue_empty(&lq->vpl_queue)); |
| 5471 | |
| 5472 | if (nolocks == FALSE) { |
| 5473 | VPL_UNLOCK(&lq->vpl_lock); |
| 5474 | |
| 5475 | vm_page_balance_inactive(max_to_move: count / 4); |
| 5476 | vm_page_unlock_queues(); |
| 5477 | } |
| 5478 | } |
| 5479 | |
| 5480 | /* |
| 5481 | * vm_page_part_zero_fill: |
| 5482 | * |
| 5483 | * Zero-fill a part of the page. |
| 5484 | */ |
| 5485 | #define PMAP_ZERO_PART_PAGE_IMPLEMENTED |
| 5486 | void |
| 5487 | vm_page_part_zero_fill( |
| 5488 | vm_page_t m, |
| 5489 | vm_offset_t m_pa, |
| 5490 | vm_size_t len) |
| 5491 | { |
| 5492 | #if 0 |
| 5493 | /* |
| 5494 | * we don't hold the page queue lock |
| 5495 | * so this check isn't safe to make |
| 5496 | */ |
| 5497 | VM_PAGE_CHECK(m); |
| 5498 | #endif |
| 5499 | |
| 5500 | #ifdef PMAP_ZERO_PART_PAGE_IMPLEMENTED |
| 5501 | pmap_zero_part_page(pn: VM_PAGE_GET_PHYS_PAGE(m), offset: m_pa, len); |
| 5502 | #else |
| 5503 | vm_page_t tmp; |
| 5504 | while (1) { |
| 5505 | tmp = vm_page_grab(); |
| 5506 | if (tmp == VM_PAGE_NULL) { |
| 5507 | vm_page_wait(THREAD_UNINT); |
| 5508 | continue; |
| 5509 | } |
| 5510 | break; |
| 5511 | } |
| 5512 | vm_page_zero_fill(tmp); |
| 5513 | if (m_pa != 0) { |
| 5514 | vm_page_part_copy(m, 0, tmp, 0, m_pa); |
| 5515 | } |
| 5516 | if ((m_pa + len) < PAGE_SIZE) { |
| 5517 | vm_page_part_copy(m, m_pa + len, tmp, |
| 5518 | m_pa + len, PAGE_SIZE - (m_pa + len)); |
| 5519 | } |
| 5520 | vm_page_copy(tmp, m); |
| 5521 | VM_PAGE_FREE(tmp); |
| 5522 | #endif |
| 5523 | } |
| 5524 | |
| 5525 | /* |
| 5526 | * vm_page_zero_fill: |
| 5527 | * |
| 5528 | * Zero-fill the specified page. |
| 5529 | */ |
| 5530 | void |
| 5531 | vm_page_zero_fill( |
| 5532 | vm_page_t m) |
| 5533 | { |
| 5534 | #if 0 |
| 5535 | /* |
| 5536 | * we don't hold the page queue lock |
| 5537 | * so this check isn't safe to make |
| 5538 | */ |
| 5539 | VM_PAGE_CHECK(m); |
| 5540 | #endif |
| 5541 | |
| 5542 | // dbgTrace(0xAEAEAEAE, VM_PAGE_GET_PHYS_PAGE(m), 0); /* (BRINGUP) */ |
| 5543 | pmap_zero_page(pn: VM_PAGE_GET_PHYS_PAGE(m)); |
| 5544 | } |
| 5545 | |
| 5546 | /* |
| 5547 | * vm_page_part_copy: |
| 5548 | * |
| 5549 | * copy part of one page to another |
| 5550 | */ |
| 5551 | |
| 5552 | void |
| 5553 | vm_page_part_copy( |
| 5554 | vm_page_t src_m, |
| 5555 | vm_offset_t src_pa, |
| 5556 | vm_page_t dst_m, |
| 5557 | vm_offset_t dst_pa, |
| 5558 | vm_size_t len) |
| 5559 | { |
| 5560 | #if 0 |
| 5561 | /* |
| 5562 | * we don't hold the page queue lock |
| 5563 | * so this check isn't safe to make |
| 5564 | */ |
| 5565 | VM_PAGE_CHECK(src_m); |
| 5566 | VM_PAGE_CHECK(dst_m); |
| 5567 | #endif |
| 5568 | pmap_copy_part_page(src: VM_PAGE_GET_PHYS_PAGE(m: src_m), src_offset: src_pa, |
| 5569 | dst: VM_PAGE_GET_PHYS_PAGE(m: dst_m), dst_offset: dst_pa, len); |
| 5570 | } |
| 5571 | |
| 5572 | /* |
| 5573 | * vm_page_copy: |
| 5574 | * |
| 5575 | * Copy one page to another |
| 5576 | */ |
| 5577 | |
| 5578 | int vm_page_copy_cs_validations = 0; |
| 5579 | int vm_page_copy_cs_tainted = 0; |
| 5580 | |
| 5581 | void |
| 5582 | vm_page_copy( |
| 5583 | vm_page_t src_m, |
| 5584 | vm_page_t dest_m) |
| 5585 | { |
| 5586 | vm_object_t src_m_object; |
| 5587 | |
| 5588 | src_m_object = VM_PAGE_OBJECT(src_m); |
| 5589 | |
| 5590 | #if 0 |
| 5591 | /* |
| 5592 | * we don't hold the page queue lock |
| 5593 | * so this check isn't safe to make |
| 5594 | */ |
| 5595 | VM_PAGE_CHECK(src_m); |
| 5596 | VM_PAGE_CHECK(dest_m); |
| 5597 | #endif |
| 5598 | vm_object_lock_assert_held(src_m_object); |
| 5599 | |
| 5600 | if (src_m_object != VM_OBJECT_NULL && |
| 5601 | src_m_object->code_signed) { |
| 5602 | /* |
| 5603 | * We're copying a page from a code-signed object. |
| 5604 | * Whoever ends up mapping the copy page might care about |
| 5605 | * the original page's integrity, so let's validate the |
| 5606 | * source page now. |
| 5607 | */ |
| 5608 | vm_page_copy_cs_validations++; |
| 5609 | vm_page_validate_cs(page: src_m, PAGE_SIZE, fault_phys_offset: 0); |
| 5610 | #if DEVELOPMENT || DEBUG |
| 5611 | DTRACE_VM4(codesigned_copy, |
| 5612 | vm_object_t, src_m_object, |
| 5613 | vm_object_offset_t, src_m->vmp_offset, |
| 5614 | int, src_m->vmp_cs_validated, |
| 5615 | int, src_m->vmp_cs_tainted); |
| 5616 | #endif /* DEVELOPMENT || DEBUG */ |
| 5617 | } |
| 5618 | |
| 5619 | /* |
| 5620 | * Propagate the cs_tainted bit to the copy page. Do not propagate |
| 5621 | * the cs_validated bit. |
| 5622 | */ |
| 5623 | dest_m->vmp_cs_tainted = src_m->vmp_cs_tainted; |
| 5624 | dest_m->vmp_cs_nx = src_m->vmp_cs_nx; |
| 5625 | if (dest_m->vmp_cs_tainted) { |
| 5626 | vm_page_copy_cs_tainted++; |
| 5627 | } |
| 5628 | dest_m->vmp_error = VMP_ERROR_GET(src_m); /* sliding src_m might have failed... */ |
| 5629 | pmap_copy_page(src: VM_PAGE_GET_PHYS_PAGE(m: src_m), dest: VM_PAGE_GET_PHYS_PAGE(m: dest_m)); |
| 5630 | } |
| 5631 | |
| 5632 | #if MACH_ASSERT |
| 5633 | static void |
| 5634 | _vm_page_print( |
| 5635 | vm_page_t p) |
| 5636 | { |
| 5637 | printf("vm_page %p: \n" , p); |
| 5638 | printf(" pageq: next=%p prev=%p\n" , |
| 5639 | (vm_page_t)VM_PAGE_UNPACK_PTR(p->vmp_pageq.next), |
| 5640 | (vm_page_t)VM_PAGE_UNPACK_PTR(p->vmp_pageq.prev)); |
| 5641 | printf(" listq: next=%p prev=%p\n" , |
| 5642 | (vm_page_t)(VM_PAGE_UNPACK_PTR(p->vmp_listq.next)), |
| 5643 | (vm_page_t)(VM_PAGE_UNPACK_PTR(p->vmp_listq.prev))); |
| 5644 | printf(" next=%p\n" , (vm_page_t)(VM_PAGE_UNPACK_PTR(p->vmp_next_m))); |
| 5645 | printf(" object=%p offset=0x%llx\n" , VM_PAGE_OBJECT(p), p->vmp_offset); |
| 5646 | printf(" wire_count=%u\n" , p->vmp_wire_count); |
| 5647 | printf(" q_state=%u\n" , p->vmp_q_state); |
| 5648 | |
| 5649 | printf(" %slaundry, %sref, %sgobbled, %sprivate\n" , |
| 5650 | (p->vmp_laundry ? "" : "!" ), |
| 5651 | (p->vmp_reference ? "" : "!" ), |
| 5652 | (p->vmp_gobbled ? "" : "!" ), |
| 5653 | (p->vmp_private ? "" : "!" )); |
| 5654 | printf(" %sbusy, %swanted, %stabled, %sfictitious, %spmapped, %swpmapped\n" , |
| 5655 | (p->vmp_busy ? "" : "!" ), |
| 5656 | (p->vmp_wanted ? "" : "!" ), |
| 5657 | (p->vmp_tabled ? "" : "!" ), |
| 5658 | (p->vmp_fictitious ? "" : "!" ), |
| 5659 | (p->vmp_pmapped ? "" : "!" ), |
| 5660 | (p->vmp_wpmapped ? "" : "!" )); |
| 5661 | printf(" %sfree_when_done, %sabsent, %serror, %sdirty, %scleaning, %sprecious, %sclustered\n" , |
| 5662 | (p->vmp_free_when_done ? "" : "!" ), |
| 5663 | (p->vmp_absent ? "" : "!" ), |
| 5664 | (VMP_ERROR_GET(p) ? "" : "!" ), |
| 5665 | (p->vmp_dirty ? "" : "!" ), |
| 5666 | (p->vmp_cleaning ? "" : "!" ), |
| 5667 | (p->vmp_precious ? "" : "!" ), |
| 5668 | (p->vmp_clustered ? "" : "!" )); |
| 5669 | printf(" %soverwriting, %srestart, %sunusual\n" , |
| 5670 | (p->vmp_overwriting ? "" : "!" ), |
| 5671 | (p->vmp_restart ? "" : "!" ), |
| 5672 | (p->vmp_unusual ? "" : "!" )); |
| 5673 | printf(" cs_validated=%d, cs_tainted=%d, cs_nx=%d, %sno_cache\n" , |
| 5674 | p->vmp_cs_validated, |
| 5675 | p->vmp_cs_tainted, |
| 5676 | p->vmp_cs_nx, |
| 5677 | (p->vmp_no_cache ? "" : "!" )); |
| 5678 | |
| 5679 | printf("phys_page=0x%x\n" , VM_PAGE_GET_PHYS_PAGE(p)); |
| 5680 | } |
| 5681 | |
| 5682 | /* |
| 5683 | * Check that the list of pages is ordered by |
| 5684 | * ascending physical address and has no holes. |
| 5685 | */ |
| 5686 | static int |
| 5687 | vm_page_verify_contiguous( |
| 5688 | vm_page_t pages, |
| 5689 | unsigned int npages) |
| 5690 | { |
| 5691 | vm_page_t m; |
| 5692 | unsigned int page_count; |
| 5693 | vm_offset_t prev_addr; |
| 5694 | |
| 5695 | prev_addr = VM_PAGE_GET_PHYS_PAGE(pages); |
| 5696 | page_count = 1; |
| 5697 | for (m = NEXT_PAGE(pages); m != VM_PAGE_NULL; m = NEXT_PAGE(m)) { |
| 5698 | if (VM_PAGE_GET_PHYS_PAGE(m) != prev_addr + 1) { |
| 5699 | printf("m %p prev_addr 0x%lx, current addr 0x%x\n" , |
| 5700 | m, (long)prev_addr, VM_PAGE_GET_PHYS_PAGE(m)); |
| 5701 | printf("pages %p page_count %d npages %d\n" , pages, page_count, npages); |
| 5702 | panic("vm_page_verify_contiguous: not contiguous!" ); |
| 5703 | } |
| 5704 | prev_addr = VM_PAGE_GET_PHYS_PAGE(m); |
| 5705 | ++page_count; |
| 5706 | } |
| 5707 | if (page_count != npages) { |
| 5708 | printf("pages %p actual count 0x%x but requested 0x%x\n" , |
| 5709 | pages, page_count, npages); |
| 5710 | panic("vm_page_verify_contiguous: count error" ); |
| 5711 | } |
| 5712 | return 1; |
| 5713 | } |
| 5714 | |
| 5715 | |
| 5716 | /* |
| 5717 | * Check the free lists for proper length etc. |
| 5718 | */ |
| 5719 | static boolean_t vm_page_verify_this_free_list_enabled = FALSE; |
| 5720 | static unsigned int |
| 5721 | vm_page_verify_free_list( |
| 5722 | vm_page_queue_head_t *vm_page_queue, |
| 5723 | unsigned int color, |
| 5724 | vm_page_t look_for_page, |
| 5725 | boolean_t expect_page) |
| 5726 | { |
| 5727 | unsigned int npages; |
| 5728 | vm_page_t m; |
| 5729 | vm_page_t prev_m; |
| 5730 | boolean_t found_page; |
| 5731 | |
| 5732 | if (!vm_page_verify_this_free_list_enabled) { |
| 5733 | return 0; |
| 5734 | } |
| 5735 | |
| 5736 | found_page = FALSE; |
| 5737 | npages = 0; |
| 5738 | prev_m = (vm_page_t)((uintptr_t)vm_page_queue); |
| 5739 | |
| 5740 | vm_page_queue_iterate(vm_page_queue, m, vmp_pageq) { |
| 5741 | if (m == look_for_page) { |
| 5742 | found_page = TRUE; |
| 5743 | } |
| 5744 | if ((vm_page_t)VM_PAGE_UNPACK_PTR(m->vmp_pageq.prev) != prev_m) { |
| 5745 | panic("vm_page_verify_free_list(color=%u, npages=%u): page %p corrupted prev ptr %p instead of %p" , |
| 5746 | color, npages, m, (vm_page_t)VM_PAGE_UNPACK_PTR(m->vmp_pageq.prev), prev_m); |
| 5747 | } |
| 5748 | if (!m->vmp_busy) { |
| 5749 | panic("vm_page_verify_free_list(color=%u, npages=%u): page %p not busy" , |
| 5750 | color, npages, m); |
| 5751 | } |
| 5752 | if (color != (unsigned int) -1) { |
| 5753 | if (VM_PAGE_GET_COLOR(m) != color) { |
| 5754 | panic("vm_page_verify_free_list(color=%u, npages=%u): page %p wrong color %u instead of %u" , |
| 5755 | color, npages, m, VM_PAGE_GET_COLOR(m), color); |
| 5756 | } |
| 5757 | if (m->vmp_q_state != VM_PAGE_ON_FREE_Q) { |
| 5758 | panic("vm_page_verify_free_list(color=%u, npages=%u): page %p - expecting q_state == VM_PAGE_ON_FREE_Q, found %d" , |
| 5759 | color, npages, m, m->vmp_q_state); |
| 5760 | } |
| 5761 | } else { |
| 5762 | if (m->vmp_q_state != VM_PAGE_ON_FREE_LOCAL_Q) { |
| 5763 | panic("vm_page_verify_free_list(npages=%u): local page %p - expecting q_state == VM_PAGE_ON_FREE_LOCAL_Q, found %d" , |
| 5764 | npages, m, m->vmp_q_state); |
| 5765 | } |
| 5766 | } |
| 5767 | ++npages; |
| 5768 | prev_m = m; |
| 5769 | } |
| 5770 | if (look_for_page != VM_PAGE_NULL) { |
| 5771 | unsigned int other_color; |
| 5772 | |
| 5773 | if (expect_page && !found_page) { |
| 5774 | printf("vm_page_verify_free_list(color=%u, npages=%u): page %p not found phys=%u\n" , |
| 5775 | color, npages, look_for_page, VM_PAGE_GET_PHYS_PAGE(look_for_page)); |
| 5776 | _vm_page_print(look_for_page); |
| 5777 | for (other_color = 0; |
| 5778 | other_color < vm_colors; |
| 5779 | other_color++) { |
| 5780 | if (other_color == color) { |
| 5781 | continue; |
| 5782 | } |
| 5783 | vm_page_verify_free_list(&vm_page_queue_free[other_color].qhead, |
| 5784 | other_color, look_for_page, FALSE); |
| 5785 | } |
| 5786 | if (color == (unsigned int) -1) { |
| 5787 | vm_page_verify_free_list(&vm_lopage_queue_free, |
| 5788 | (unsigned int) -1, look_for_page, FALSE); |
| 5789 | } |
| 5790 | panic("vm_page_verify_free_list(color=%u)" , color); |
| 5791 | } |
| 5792 | if (!expect_page && found_page) { |
| 5793 | printf("vm_page_verify_free_list(color=%u, npages=%u): page %p found phys=%u\n" , |
| 5794 | color, npages, look_for_page, VM_PAGE_GET_PHYS_PAGE(look_for_page)); |
| 5795 | } |
| 5796 | } |
| 5797 | return npages; |
| 5798 | } |
| 5799 | |
| 5800 | static boolean_t vm_page_verify_all_free_lists_enabled = FALSE; |
| 5801 | static void |
| 5802 | vm_page_verify_free_lists( void ) |
| 5803 | { |
| 5804 | unsigned int color, npages, nlopages; |
| 5805 | boolean_t toggle = TRUE; |
| 5806 | |
| 5807 | if (!vm_page_verify_all_free_lists_enabled) { |
| 5808 | return; |
| 5809 | } |
| 5810 | |
| 5811 | npages = 0; |
| 5812 | |
| 5813 | vm_free_page_lock(); |
| 5814 | |
| 5815 | if (vm_page_verify_this_free_list_enabled == TRUE) { |
| 5816 | /* |
| 5817 | * This variable has been set globally for extra checking of |
| 5818 | * each free list Q. Since we didn't set it, we don't own it |
| 5819 | * and we shouldn't toggle it. |
| 5820 | */ |
| 5821 | toggle = FALSE; |
| 5822 | } |
| 5823 | |
| 5824 | if (toggle == TRUE) { |
| 5825 | vm_page_verify_this_free_list_enabled = TRUE; |
| 5826 | } |
| 5827 | |
| 5828 | for (color = 0; color < vm_colors; color++) { |
| 5829 | npages += vm_page_verify_free_list(&vm_page_queue_free[color].qhead, |
| 5830 | color, VM_PAGE_NULL, FALSE); |
| 5831 | } |
| 5832 | nlopages = vm_page_verify_free_list(&vm_lopage_queue_free, |
| 5833 | (unsigned int) -1, |
| 5834 | VM_PAGE_NULL, FALSE); |
| 5835 | if (npages != vm_page_free_count || nlopages != vm_lopage_free_count) { |
| 5836 | panic("vm_page_verify_free_lists: " |
| 5837 | "npages %u free_count %d nlopages %u lo_free_count %u" , |
| 5838 | npages, vm_page_free_count, nlopages, vm_lopage_free_count); |
| 5839 | } |
| 5840 | |
| 5841 | if (toggle == TRUE) { |
| 5842 | vm_page_verify_this_free_list_enabled = FALSE; |
| 5843 | } |
| 5844 | |
| 5845 | vm_free_page_unlock(); |
| 5846 | } |
| 5847 | |
| 5848 | #endif /* MACH_ASSERT */ |
| 5849 | |
| 5850 | /* |
| 5851 | * wrapper for pmap_enter() |
| 5852 | */ |
| 5853 | kern_return_t |
| 5854 | pmap_enter_check( |
| 5855 | pmap_t pmap, |
| 5856 | vm_map_address_t virtual_address, |
| 5857 | vm_page_t page, |
| 5858 | vm_prot_t protection, |
| 5859 | vm_prot_t fault_type, |
| 5860 | unsigned int flags, |
| 5861 | boolean_t wired) |
| 5862 | { |
| 5863 | int options = 0; |
| 5864 | vm_object_t obj; |
| 5865 | |
| 5866 | if (VMP_ERROR_GET(page)) { |
| 5867 | return KERN_MEMORY_FAILURE; |
| 5868 | } |
| 5869 | obj = VM_PAGE_OBJECT(page); |
| 5870 | if (obj->internal) { |
| 5871 | options |= PMAP_OPTIONS_INTERNAL; |
| 5872 | } |
| 5873 | if (page->vmp_reusable || obj->all_reusable) { |
| 5874 | options |= PMAP_OPTIONS_REUSABLE; |
| 5875 | } |
| 5876 | return pmap_enter_options(pmap, |
| 5877 | v: virtual_address, |
| 5878 | pn: VM_PAGE_GET_PHYS_PAGE(m: page), |
| 5879 | prot: protection, |
| 5880 | fault_type, |
| 5881 | flags, |
| 5882 | wired, |
| 5883 | options, |
| 5884 | NULL, |
| 5885 | mapping_type: PMAP_MAPPING_TYPE_INFER); |
| 5886 | } |
| 5887 | |
| 5888 | |
| 5889 | extern boolean_t(*volatile consider_buffer_cache_collect)(int); |
| 5890 | |
| 5891 | /* |
| 5892 | * CONTIGUOUS PAGE ALLOCATION |
| 5893 | * |
| 5894 | * Find a region large enough to contain at least n pages |
| 5895 | * of contiguous physical memory. |
| 5896 | * |
| 5897 | * This is done by traversing the vm_page_t array in a linear fashion |
| 5898 | * we assume that the vm_page_t array has the avaiable physical pages in an |
| 5899 | * ordered, ascending list... this is currently true of all our implementations |
| 5900 | * and must remain so... there can be 'holes' in the array... we also can |
| 5901 | * no longer tolerate the vm_page_t's in the list being 'freed' and reclaimed |
| 5902 | * which use to happen via 'vm_page_convert'... that function was no longer |
| 5903 | * being called and was removed... |
| 5904 | * |
| 5905 | * The basic flow consists of stabilizing some of the interesting state of |
| 5906 | * a vm_page_t behind the vm_page_queue and vm_page_free locks... we start our |
| 5907 | * sweep at the beginning of the array looking for pages that meet our criterea |
| 5908 | * for a 'stealable' page... currently we are pretty conservative... if the page |
| 5909 | * meets this criterea and is physically contiguous to the previous page in the 'run' |
| 5910 | * we keep developing it. If we hit a page that doesn't fit, we reset our state |
| 5911 | * and start to develop a new run... if at this point we've already considered |
| 5912 | * at least MAX_CONSIDERED_BEFORE_YIELD pages, we'll drop the 2 locks we hold, |
| 5913 | * and mutex_pause (which will yield the processor), to keep the latency low w/r |
| 5914 | * to other threads trying to acquire free pages (or move pages from q to q), |
| 5915 | * and then continue from the spot we left off... we only make 1 pass through the |
| 5916 | * array. Once we have a 'run' that is long enough, we'll go into the loop which |
| 5917 | * which steals the pages from the queues they're currently on... pages on the free |
| 5918 | * queue can be stolen directly... pages that are on any of the other queues |
| 5919 | * must be removed from the object they are tabled on... this requires taking the |
| 5920 | * object lock... we do this as a 'try' to prevent deadlocks... if the 'try' fails |
| 5921 | * or if the state of the page behind the vm_object lock is no longer viable, we'll |
| 5922 | * dump the pages we've currently stolen back to the free list, and pick up our |
| 5923 | * scan from the point where we aborted the 'current' run. |
| 5924 | * |
| 5925 | * |
| 5926 | * Requirements: |
| 5927 | * - neither vm_page_queue nor vm_free_list lock can be held on entry |
| 5928 | * |
| 5929 | * Returns a pointer to a list of gobbled/wired pages or VM_PAGE_NULL. |
| 5930 | * |
| 5931 | * Algorithm: |
| 5932 | */ |
| 5933 | |
| 5934 | #define MAX_CONSIDERED_BEFORE_YIELD 1000 |
| 5935 | |
| 5936 | |
| 5937 | #define RESET_STATE_OF_RUN() \ |
| 5938 | MACRO_BEGIN \ |
| 5939 | prevcontaddr = -2; \ |
| 5940 | start_pnum = -1; \ |
| 5941 | free_considered = 0; \ |
| 5942 | substitute_needed = 0; \ |
| 5943 | npages = 0; \ |
| 5944 | MACRO_END |
| 5945 | |
| 5946 | /* |
| 5947 | * Can we steal in-use (i.e. not free) pages when searching for |
| 5948 | * physically-contiguous pages ? |
| 5949 | */ |
| 5950 | #define VM_PAGE_FIND_CONTIGUOUS_CAN_STEAL 1 |
| 5951 | |
| 5952 | static unsigned int vm_page_find_contiguous_last_idx = 0, vm_page_lomem_find_contiguous_last_idx = 0; |
| 5953 | #if DEBUG |
| 5954 | int vm_page_find_contig_debug = 0; |
| 5955 | #endif |
| 5956 | |
| 5957 | static vm_page_t |
| 5958 | vm_page_find_contiguous( |
| 5959 | unsigned int contig_pages, |
| 5960 | ppnum_t max_pnum, |
| 5961 | ppnum_t pnum_mask, |
| 5962 | boolean_t wire, |
| 5963 | int flags) |
| 5964 | { |
| 5965 | vm_page_t m = NULL; |
| 5966 | ppnum_t prevcontaddr = 0; |
| 5967 | ppnum_t start_pnum = 0; |
| 5968 | unsigned int npages = 0, considered = 0, scanned = 0; |
| 5969 | unsigned int page_idx = 0, start_idx = 0, last_idx = 0, orig_last_idx = 0; |
| 5970 | unsigned int idx_last_contig_page_found = 0; |
| 5971 | int free_considered = 0, free_available = 0; |
| 5972 | int substitute_needed = 0; |
| 5973 | int zone_gc_called = 0; |
| 5974 | boolean_t wrapped; |
| 5975 | kern_return_t kr; |
| 5976 | #if DEBUG |
| 5977 | clock_sec_t tv_start_sec = 0, tv_end_sec = 0; |
| 5978 | clock_usec_t tv_start_usec = 0, tv_end_usec = 0; |
| 5979 | #endif |
| 5980 | |
| 5981 | int yielded = 0; |
| 5982 | int dumped_run = 0; |
| 5983 | int stolen_pages = 0; |
| 5984 | int compressed_pages = 0; |
| 5985 | |
| 5986 | |
| 5987 | if (contig_pages == 0) { |
| 5988 | return VM_PAGE_NULL; |
| 5989 | } |
| 5990 | |
| 5991 | full_scan_again: |
| 5992 | |
| 5993 | #if MACH_ASSERT |
| 5994 | vm_page_verify_free_lists(); |
| 5995 | #endif |
| 5996 | #if DEBUG |
| 5997 | clock_get_system_microtime(&tv_start_sec, &tv_start_usec); |
| 5998 | #endif |
| 5999 | PAGE_REPLACEMENT_ALLOWED(TRUE); |
| 6000 | |
| 6001 | /* |
| 6002 | * If there are still delayed pages, try to free up some that match. |
| 6003 | */ |
| 6004 | if (__improbable(vm_delayed_count != 0 && contig_pages != 0)) { |
| 6005 | vm_free_delayed_pages_contig(npages: contig_pages, max_pnum, pnum_mask); |
| 6006 | } |
| 6007 | |
| 6008 | vm_page_lock_queues(); |
| 6009 | vm_free_page_lock(); |
| 6010 | |
| 6011 | RESET_STATE_OF_RUN(); |
| 6012 | |
| 6013 | scanned = 0; |
| 6014 | considered = 0; |
| 6015 | free_available = vm_page_free_count - vm_page_free_reserved; |
| 6016 | |
| 6017 | wrapped = FALSE; |
| 6018 | |
| 6019 | if (flags & KMA_LOMEM) { |
| 6020 | idx_last_contig_page_found = vm_page_lomem_find_contiguous_last_idx; |
| 6021 | } else { |
| 6022 | idx_last_contig_page_found = vm_page_find_contiguous_last_idx; |
| 6023 | } |
| 6024 | |
| 6025 | orig_last_idx = idx_last_contig_page_found; |
| 6026 | last_idx = orig_last_idx; |
| 6027 | |
| 6028 | for (page_idx = last_idx, start_idx = last_idx; |
| 6029 | npages < contig_pages && page_idx < vm_pages_count; |
| 6030 | page_idx++) { |
| 6031 | retry: |
| 6032 | if (wrapped && |
| 6033 | npages == 0 && |
| 6034 | page_idx >= orig_last_idx) { |
| 6035 | /* |
| 6036 | * We're back where we started and we haven't |
| 6037 | * found any suitable contiguous range. Let's |
| 6038 | * give up. |
| 6039 | */ |
| 6040 | break; |
| 6041 | } |
| 6042 | scanned++; |
| 6043 | m = &vm_pages[page_idx]; |
| 6044 | |
| 6045 | assert(!m->vmp_fictitious); |
| 6046 | assert(!m->vmp_private); |
| 6047 | |
| 6048 | if (max_pnum && VM_PAGE_GET_PHYS_PAGE(m) > max_pnum) { |
| 6049 | /* no more low pages... */ |
| 6050 | break; |
| 6051 | } |
| 6052 | if (!npages & ((VM_PAGE_GET_PHYS_PAGE(m) & pnum_mask) != 0)) { |
| 6053 | /* |
| 6054 | * not aligned |
| 6055 | */ |
| 6056 | RESET_STATE_OF_RUN(); |
| 6057 | } else if (VM_PAGE_WIRED(m) || m->vmp_gobbled || |
| 6058 | m->vmp_laundry || m->vmp_wanted || |
| 6059 | m->vmp_cleaning || m->vmp_overwriting || m->vmp_free_when_done) { |
| 6060 | /* |
| 6061 | * page is in a transient state |
| 6062 | * or a state we don't want to deal |
| 6063 | * with, so don't consider it which |
| 6064 | * means starting a new run |
| 6065 | */ |
| 6066 | RESET_STATE_OF_RUN(); |
| 6067 | } else if ((m->vmp_q_state == VM_PAGE_NOT_ON_Q) || |
| 6068 | (m->vmp_q_state == VM_PAGE_ON_FREE_LOCAL_Q) || |
| 6069 | (m->vmp_q_state == VM_PAGE_ON_FREE_LOPAGE_Q) || |
| 6070 | (m->vmp_q_state == VM_PAGE_ON_PAGEOUT_Q)) { |
| 6071 | /* |
| 6072 | * page needs to be on one of our queues (other then the pageout or special free queues) |
| 6073 | * or it needs to belong to the compressor pool (which is now indicated |
| 6074 | * by vmp_q_state == VM_PAGE_USED_BY_COMPRESSOR and falls out |
| 6075 | * from the check for VM_PAGE_NOT_ON_Q) |
| 6076 | * in order for it to be stable behind the |
| 6077 | * locks we hold at this point... |
| 6078 | * if not, don't consider it which |
| 6079 | * means starting a new run |
| 6080 | */ |
| 6081 | RESET_STATE_OF_RUN(); |
| 6082 | } else if ((m->vmp_q_state != VM_PAGE_ON_FREE_Q) && (!m->vmp_tabled || m->vmp_busy)) { |
| 6083 | /* |
| 6084 | * pages on the free list are always 'busy' |
| 6085 | * so we couldn't test for 'busy' in the check |
| 6086 | * for the transient states... pages that are |
| 6087 | * 'free' are never 'tabled', so we also couldn't |
| 6088 | * test for 'tabled'. So we check here to make |
| 6089 | * sure that a non-free page is not busy and is |
| 6090 | * tabled on an object... |
| 6091 | * if not, don't consider it which |
| 6092 | * means starting a new run |
| 6093 | */ |
| 6094 | RESET_STATE_OF_RUN(); |
| 6095 | } else { |
| 6096 | if (VM_PAGE_GET_PHYS_PAGE(m) != prevcontaddr + 1) { |
| 6097 | if ((VM_PAGE_GET_PHYS_PAGE(m) & pnum_mask) != 0) { |
| 6098 | RESET_STATE_OF_RUN(); |
| 6099 | goto did_consider; |
| 6100 | } else { |
| 6101 | npages = 1; |
| 6102 | start_idx = page_idx; |
| 6103 | start_pnum = VM_PAGE_GET_PHYS_PAGE(m); |
| 6104 | } |
| 6105 | } else { |
| 6106 | npages++; |
| 6107 | } |
| 6108 | prevcontaddr = VM_PAGE_GET_PHYS_PAGE(m); |
| 6109 | |
| 6110 | VM_PAGE_CHECK(m); |
| 6111 | if (m->vmp_q_state == VM_PAGE_ON_FREE_Q) { |
| 6112 | free_considered++; |
| 6113 | } else { |
| 6114 | /* |
| 6115 | * This page is not free. |
| 6116 | * If we can't steal used pages, |
| 6117 | * we have to give up this run |
| 6118 | * and keep looking. |
| 6119 | * Otherwise, we might need to |
| 6120 | * move the contents of this page |
| 6121 | * into a substitute page. |
| 6122 | */ |
| 6123 | #if VM_PAGE_FIND_CONTIGUOUS_CAN_STEAL |
| 6124 | if (m->vmp_pmapped || m->vmp_dirty || m->vmp_precious) { |
| 6125 | substitute_needed++; |
| 6126 | } |
| 6127 | #else |
| 6128 | RESET_STATE_OF_RUN(); |
| 6129 | #endif |
| 6130 | } |
| 6131 | |
| 6132 | if ((free_considered + substitute_needed) > free_available) { |
| 6133 | /* |
| 6134 | * if we let this run continue |
| 6135 | * we will end up dropping the vm_page_free_count |
| 6136 | * below the reserve limit... we need to abort |
| 6137 | * this run, but we can at least re-consider this |
| 6138 | * page... thus the jump back to 'retry' |
| 6139 | */ |
| 6140 | RESET_STATE_OF_RUN(); |
| 6141 | |
| 6142 | if (free_available && considered <= MAX_CONSIDERED_BEFORE_YIELD) { |
| 6143 | considered++; |
| 6144 | goto retry; |
| 6145 | } |
| 6146 | /* |
| 6147 | * free_available == 0 |
| 6148 | * so can't consider any free pages... if |
| 6149 | * we went to retry in this case, we'd |
| 6150 | * get stuck looking at the same page |
| 6151 | * w/o making any forward progress |
| 6152 | * we also want to take this path if we've already |
| 6153 | * reached our limit that controls the lock latency |
| 6154 | */ |
| 6155 | } |
| 6156 | } |
| 6157 | did_consider: |
| 6158 | if (considered > MAX_CONSIDERED_BEFORE_YIELD && npages <= 1) { |
| 6159 | PAGE_REPLACEMENT_ALLOWED(FALSE); |
| 6160 | |
| 6161 | vm_free_page_unlock(); |
| 6162 | vm_page_unlock_queues(); |
| 6163 | |
| 6164 | mutex_pause(0); |
| 6165 | |
| 6166 | PAGE_REPLACEMENT_ALLOWED(TRUE); |
| 6167 | |
| 6168 | vm_page_lock_queues(); |
| 6169 | vm_free_page_lock(); |
| 6170 | |
| 6171 | RESET_STATE_OF_RUN(); |
| 6172 | /* |
| 6173 | * reset our free page limit since we |
| 6174 | * dropped the lock protecting the vm_page_free_queue |
| 6175 | */ |
| 6176 | free_available = vm_page_free_count - vm_page_free_reserved; |
| 6177 | considered = 0; |
| 6178 | |
| 6179 | yielded++; |
| 6180 | |
| 6181 | goto retry; |
| 6182 | } |
| 6183 | considered++; |
| 6184 | } |
| 6185 | m = VM_PAGE_NULL; |
| 6186 | |
| 6187 | if (npages != contig_pages) { |
| 6188 | if (!wrapped) { |
| 6189 | /* |
| 6190 | * We didn't find a contiguous range but we didn't |
| 6191 | * start from the very first page. |
| 6192 | * Start again from the very first page. |
| 6193 | */ |
| 6194 | RESET_STATE_OF_RUN(); |
| 6195 | if (flags & KMA_LOMEM) { |
| 6196 | idx_last_contig_page_found = vm_page_lomem_find_contiguous_last_idx = 0; |
| 6197 | } else { |
| 6198 | idx_last_contig_page_found = vm_page_find_contiguous_last_idx = 0; |
| 6199 | } |
| 6200 | last_idx = 0; |
| 6201 | page_idx = last_idx; |
| 6202 | wrapped = TRUE; |
| 6203 | goto retry; |
| 6204 | } |
| 6205 | vm_free_page_unlock(); |
| 6206 | } else { |
| 6207 | vm_page_t m1; |
| 6208 | vm_page_t m2; |
| 6209 | unsigned int cur_idx; |
| 6210 | unsigned int tmp_start_idx; |
| 6211 | vm_object_t locked_object = VM_OBJECT_NULL; |
| 6212 | boolean_t abort_run = FALSE; |
| 6213 | |
| 6214 | assert(page_idx - start_idx == contig_pages); |
| 6215 | |
| 6216 | tmp_start_idx = start_idx; |
| 6217 | |
| 6218 | /* |
| 6219 | * first pass through to pull the free pages |
| 6220 | * off of the free queue so that in case we |
| 6221 | * need substitute pages, we won't grab any |
| 6222 | * of the free pages in the run... we'll clear |
| 6223 | * the 'free' bit in the 2nd pass, and even in |
| 6224 | * an abort_run case, we'll collect all of the |
| 6225 | * free pages in this run and return them to the free list |
| 6226 | */ |
| 6227 | while (start_idx < page_idx) { |
| 6228 | m1 = &vm_pages[start_idx++]; |
| 6229 | |
| 6230 | #if !VM_PAGE_FIND_CONTIGUOUS_CAN_STEAL |
| 6231 | assert(m1->vmp_q_state == VM_PAGE_ON_FREE_Q); |
| 6232 | #endif |
| 6233 | |
| 6234 | if (m1->vmp_q_state == VM_PAGE_ON_FREE_Q) { |
| 6235 | unsigned int color; |
| 6236 | |
| 6237 | color = VM_PAGE_GET_COLOR(m1); |
| 6238 | #if MACH_ASSERT |
| 6239 | vm_page_verify_free_list(&vm_page_queue_free[color].qhead, color, m1, TRUE); |
| 6240 | #endif |
| 6241 | vm_page_queue_remove(&vm_page_queue_free[color].qhead, m1, vmp_pageq); |
| 6242 | |
| 6243 | VM_PAGE_ZERO_PAGEQ_ENTRY(m1); |
| 6244 | #if MACH_ASSERT |
| 6245 | vm_page_verify_free_list(&vm_page_queue_free[color].qhead, color, VM_PAGE_NULL, FALSE); |
| 6246 | #endif |
| 6247 | /* |
| 6248 | * Clear the "free" bit so that this page |
| 6249 | * does not get considered for another |
| 6250 | * concurrent physically-contiguous allocation. |
| 6251 | */ |
| 6252 | m1->vmp_q_state = VM_PAGE_NOT_ON_Q; |
| 6253 | assert(m1->vmp_busy); |
| 6254 | |
| 6255 | vm_page_free_count--; |
| 6256 | } |
| 6257 | } |
| 6258 | if (flags & KMA_LOMEM) { |
| 6259 | vm_page_lomem_find_contiguous_last_idx = page_idx; |
| 6260 | } else { |
| 6261 | vm_page_find_contiguous_last_idx = page_idx; |
| 6262 | } |
| 6263 | |
| 6264 | /* |
| 6265 | * we can drop the free queue lock at this point since |
| 6266 | * we've pulled any 'free' candidates off of the list |
| 6267 | * we need it dropped so that we can do a vm_page_grab |
| 6268 | * when substituing for pmapped/dirty pages |
| 6269 | */ |
| 6270 | vm_free_page_unlock(); |
| 6271 | |
| 6272 | start_idx = tmp_start_idx; |
| 6273 | cur_idx = page_idx - 1; |
| 6274 | |
| 6275 | while (start_idx++ < page_idx) { |
| 6276 | /* |
| 6277 | * must go through the list from back to front |
| 6278 | * so that the page list is created in the |
| 6279 | * correct order - low -> high phys addresses |
| 6280 | */ |
| 6281 | m1 = &vm_pages[cur_idx--]; |
| 6282 | |
| 6283 | if (m1->vmp_object == 0) { |
| 6284 | /* |
| 6285 | * page has already been removed from |
| 6286 | * the free list in the 1st pass |
| 6287 | */ |
| 6288 | assert(m1->vmp_q_state == VM_PAGE_NOT_ON_Q); |
| 6289 | assert(m1->vmp_offset == (vm_object_offset_t) -1); |
| 6290 | assert(m1->vmp_busy); |
| 6291 | assert(!m1->vmp_wanted); |
| 6292 | assert(!m1->vmp_laundry); |
| 6293 | } else { |
| 6294 | vm_object_t object; |
| 6295 | int refmod; |
| 6296 | boolean_t disconnected, reusable; |
| 6297 | |
| 6298 | if (abort_run == TRUE) { |
| 6299 | continue; |
| 6300 | } |
| 6301 | |
| 6302 | assert(m1->vmp_q_state != VM_PAGE_NOT_ON_Q); |
| 6303 | |
| 6304 | object = VM_PAGE_OBJECT(m1); |
| 6305 | |
| 6306 | if (object != locked_object) { |
| 6307 | if (locked_object) { |
| 6308 | vm_object_unlock(locked_object); |
| 6309 | locked_object = VM_OBJECT_NULL; |
| 6310 | } |
| 6311 | if (vm_object_lock_try(object)) { |
| 6312 | locked_object = object; |
| 6313 | } |
| 6314 | } |
| 6315 | if (locked_object == VM_OBJECT_NULL || |
| 6316 | (VM_PAGE_WIRED(m1) || m1->vmp_gobbled || |
| 6317 | m1->vmp_laundry || m1->vmp_wanted || |
| 6318 | m1->vmp_cleaning || m1->vmp_overwriting || m1->vmp_free_when_done || m1->vmp_busy) || |
| 6319 | (m1->vmp_q_state == VM_PAGE_ON_PAGEOUT_Q)) { |
| 6320 | if (locked_object) { |
| 6321 | vm_object_unlock(locked_object); |
| 6322 | locked_object = VM_OBJECT_NULL; |
| 6323 | } |
| 6324 | tmp_start_idx = cur_idx; |
| 6325 | abort_run = TRUE; |
| 6326 | continue; |
| 6327 | } |
| 6328 | |
| 6329 | disconnected = FALSE; |
| 6330 | reusable = FALSE; |
| 6331 | |
| 6332 | if ((m1->vmp_reusable || |
| 6333 | object->all_reusable) && |
| 6334 | (m1->vmp_q_state == VM_PAGE_ON_INACTIVE_INTERNAL_Q) && |
| 6335 | !m1->vmp_dirty && |
| 6336 | !m1->vmp_reference) { |
| 6337 | /* reusable page... */ |
| 6338 | refmod = pmap_disconnect(phys: VM_PAGE_GET_PHYS_PAGE(m: m1)); |
| 6339 | disconnected = TRUE; |
| 6340 | if (refmod == 0) { |
| 6341 | /* |
| 6342 | * ... not reused: can steal |
| 6343 | * without relocating contents. |
| 6344 | */ |
| 6345 | reusable = TRUE; |
| 6346 | } |
| 6347 | } |
| 6348 | |
| 6349 | if ((m1->vmp_pmapped && |
| 6350 | !reusable) || |
| 6351 | m1->vmp_dirty || |
| 6352 | m1->vmp_precious) { |
| 6353 | vm_object_offset_t offset; |
| 6354 | |
| 6355 | m2 = vm_page_grab_options(VM_PAGE_GRAB_Q_LOCK_HELD); |
| 6356 | |
| 6357 | if (m2 == VM_PAGE_NULL) { |
| 6358 | if (locked_object) { |
| 6359 | vm_object_unlock(locked_object); |
| 6360 | locked_object = VM_OBJECT_NULL; |
| 6361 | } |
| 6362 | tmp_start_idx = cur_idx; |
| 6363 | abort_run = TRUE; |
| 6364 | continue; |
| 6365 | } |
| 6366 | if (!disconnected) { |
| 6367 | if (m1->vmp_pmapped) { |
| 6368 | refmod = pmap_disconnect(phys: VM_PAGE_GET_PHYS_PAGE(m: m1)); |
| 6369 | } else { |
| 6370 | refmod = 0; |
| 6371 | } |
| 6372 | } |
| 6373 | |
| 6374 | /* copy the page's contents */ |
| 6375 | pmap_copy_page(src: VM_PAGE_GET_PHYS_PAGE(m: m1), dest: VM_PAGE_GET_PHYS_PAGE(m: m2)); |
| 6376 | /* copy the page's state */ |
| 6377 | assert(!VM_PAGE_WIRED(m1)); |
| 6378 | assert(m1->vmp_q_state != VM_PAGE_ON_FREE_Q); |
| 6379 | assert(m1->vmp_q_state != VM_PAGE_ON_PAGEOUT_Q); |
| 6380 | assert(!m1->vmp_laundry); |
| 6381 | m2->vmp_reference = m1->vmp_reference; |
| 6382 | assert(!m1->vmp_gobbled); |
| 6383 | assert(!m1->vmp_private); |
| 6384 | m2->vmp_no_cache = m1->vmp_no_cache; |
| 6385 | m2->vmp_xpmapped = 0; |
| 6386 | assert(!m1->vmp_busy); |
| 6387 | assert(!m1->vmp_wanted); |
| 6388 | assert(!m1->vmp_fictitious); |
| 6389 | m2->vmp_pmapped = m1->vmp_pmapped; /* should flush cache ? */ |
| 6390 | m2->vmp_wpmapped = m1->vmp_wpmapped; |
| 6391 | assert(!m1->vmp_free_when_done); |
| 6392 | m2->vmp_absent = m1->vmp_absent; |
| 6393 | m2->vmp_error = VMP_ERROR_GET(m1); |
| 6394 | m2->vmp_dirty = m1->vmp_dirty; |
| 6395 | assert(!m1->vmp_cleaning); |
| 6396 | m2->vmp_precious = m1->vmp_precious; |
| 6397 | m2->vmp_clustered = m1->vmp_clustered; |
| 6398 | assert(!m1->vmp_overwriting); |
| 6399 | m2->vmp_restart = m1->vmp_restart; |
| 6400 | m2->vmp_unusual = m1->vmp_unusual; |
| 6401 | m2->vmp_cs_validated = m1->vmp_cs_validated; |
| 6402 | m2->vmp_cs_tainted = m1->vmp_cs_tainted; |
| 6403 | m2->vmp_cs_nx = m1->vmp_cs_nx; |
| 6404 | |
| 6405 | m2->vmp_realtime = m1->vmp_realtime; |
| 6406 | m1->vmp_realtime = false; |
| 6407 | |
| 6408 | /* |
| 6409 | * If m1 had really been reusable, |
| 6410 | * we would have just stolen it, so |
| 6411 | * let's not propagate it's "reusable" |
| 6412 | * bit and assert that m2 is not |
| 6413 | * marked as "reusable". |
| 6414 | */ |
| 6415 | // m2->vmp_reusable = m1->vmp_reusable; |
| 6416 | assert(!m2->vmp_reusable); |
| 6417 | |
| 6418 | // assert(!m1->vmp_lopage); |
| 6419 | |
| 6420 | if (m1->vmp_q_state == VM_PAGE_USED_BY_COMPRESSOR) { |
| 6421 | m2->vmp_q_state = VM_PAGE_USED_BY_COMPRESSOR; |
| 6422 | /* |
| 6423 | * We just grabbed m2 up above and so it isn't |
| 6424 | * going to be on any special Q as yet and so |
| 6425 | * we don't need to 'remove' it from the special |
| 6426 | * queues. Just resetting the state should be enough. |
| 6427 | */ |
| 6428 | m2->vmp_on_specialq = VM_PAGE_SPECIAL_Q_EMPTY; |
| 6429 | } |
| 6430 | |
| 6431 | /* |
| 6432 | * page may need to be flushed if |
| 6433 | * it is marshalled into a UPL |
| 6434 | * that is going to be used by a device |
| 6435 | * that doesn't support coherency |
| 6436 | */ |
| 6437 | m2->vmp_written_by_kernel = TRUE; |
| 6438 | |
| 6439 | /* |
| 6440 | * make sure we clear the ref/mod state |
| 6441 | * from the pmap layer... else we risk |
| 6442 | * inheriting state from the last time |
| 6443 | * this page was used... |
| 6444 | */ |
| 6445 | pmap_clear_refmod(pn: VM_PAGE_GET_PHYS_PAGE(m: m2), VM_MEM_MODIFIED | VM_MEM_REFERENCED); |
| 6446 | |
| 6447 | if (refmod & VM_MEM_REFERENCED) { |
| 6448 | m2->vmp_reference = TRUE; |
| 6449 | } |
| 6450 | if (refmod & VM_MEM_MODIFIED) { |
| 6451 | SET_PAGE_DIRTY(m2, TRUE); |
| 6452 | } |
| 6453 | offset = m1->vmp_offset; |
| 6454 | |
| 6455 | /* |
| 6456 | * completely cleans up the state |
| 6457 | * of the page so that it is ready |
| 6458 | * to be put onto the free list, or |
| 6459 | * for this purpose it looks like it |
| 6460 | * just came off of the free list |
| 6461 | */ |
| 6462 | vm_page_free_prepare(mem: m1); |
| 6463 | |
| 6464 | /* |
| 6465 | * now put the substitute page |
| 6466 | * on the object |
| 6467 | */ |
| 6468 | vm_page_insert_internal(mem: m2, object: locked_object, offset, VM_KERN_MEMORY_NONE, TRUE, TRUE, FALSE, FALSE, NULL); |
| 6469 | |
| 6470 | if (m2->vmp_q_state == VM_PAGE_USED_BY_COMPRESSOR) { |
| 6471 | m2->vmp_pmapped = TRUE; |
| 6472 | m2->vmp_wpmapped = TRUE; |
| 6473 | |
| 6474 | kr = pmap_enter_check(pmap: kernel_pmap, virtual_address: (vm_map_offset_t)m2->vmp_offset, page: m2, |
| 6475 | VM_PROT_READ | VM_PROT_WRITE, VM_PROT_NONE, flags: 0, TRUE); |
| 6476 | |
| 6477 | assert(kr == KERN_SUCCESS); |
| 6478 | |
| 6479 | compressed_pages++; |
| 6480 | } else { |
| 6481 | if (m2->vmp_reference) { |
| 6482 | vm_page_activate(m: m2); |
| 6483 | } else { |
| 6484 | vm_page_deactivate(m: m2); |
| 6485 | } |
| 6486 | } |
| 6487 | PAGE_WAKEUP_DONE(m2); |
| 6488 | } else { |
| 6489 | assert(m1->vmp_q_state != VM_PAGE_USED_BY_COMPRESSOR); |
| 6490 | |
| 6491 | /* |
| 6492 | * completely cleans up the state |
| 6493 | * of the page so that it is ready |
| 6494 | * to be put onto the free list, or |
| 6495 | * for this purpose it looks like it |
| 6496 | * just came off of the free list |
| 6497 | */ |
| 6498 | vm_page_free_prepare(mem: m1); |
| 6499 | } |
| 6500 | |
| 6501 | stolen_pages++; |
| 6502 | } |
| 6503 | if (m1->vmp_q_state != VM_PAGE_USED_BY_COMPRESSOR) { |
| 6504 | /* |
| 6505 | * The Q state is preserved on m1 because vm_page_queues_remove doesn't |
| 6506 | * change it for pages marked as used-by-compressor. |
| 6507 | */ |
| 6508 | vm_page_assign_special_state(mem: m1, VM_PAGE_SPECIAL_Q_BG); |
| 6509 | } |
| 6510 | VM_PAGE_ZERO_PAGEQ_ENTRY(m1); |
| 6511 | m1->vmp_snext = m; |
| 6512 | m = m1; |
| 6513 | } |
| 6514 | if (locked_object) { |
| 6515 | vm_object_unlock(locked_object); |
| 6516 | locked_object = VM_OBJECT_NULL; |
| 6517 | } |
| 6518 | |
| 6519 | if (abort_run == TRUE) { |
| 6520 | /* |
| 6521 | * want the index of the last |
| 6522 | * page in this run that was |
| 6523 | * successfully 'stolen', so back |
| 6524 | * it up 1 for the auto-decrement on use |
| 6525 | * and 1 more to bump back over this page |
| 6526 | */ |
| 6527 | page_idx = tmp_start_idx + 2; |
| 6528 | if (page_idx >= vm_pages_count) { |
| 6529 | if (wrapped) { |
| 6530 | if (m != VM_PAGE_NULL) { |
| 6531 | vm_page_unlock_queues(); |
| 6532 | vm_page_free_list(freeq: m, FALSE); |
| 6533 | vm_page_lock_queues(); |
| 6534 | m = VM_PAGE_NULL; |
| 6535 | } |
| 6536 | dumped_run++; |
| 6537 | goto done_scanning; |
| 6538 | } |
| 6539 | page_idx = last_idx = 0; |
| 6540 | wrapped = TRUE; |
| 6541 | } |
| 6542 | abort_run = FALSE; |
| 6543 | |
| 6544 | /* |
| 6545 | * We didn't find a contiguous range but we didn't |
| 6546 | * start from the very first page. |
| 6547 | * Start again from the very first page. |
| 6548 | */ |
| 6549 | RESET_STATE_OF_RUN(); |
| 6550 | |
| 6551 | if (flags & KMA_LOMEM) { |
| 6552 | idx_last_contig_page_found = vm_page_lomem_find_contiguous_last_idx = page_idx; |
| 6553 | } else { |
| 6554 | idx_last_contig_page_found = vm_page_find_contiguous_last_idx = page_idx; |
| 6555 | } |
| 6556 | |
| 6557 | last_idx = page_idx; |
| 6558 | |
| 6559 | if (m != VM_PAGE_NULL) { |
| 6560 | vm_page_unlock_queues(); |
| 6561 | vm_page_free_list(freeq: m, FALSE); |
| 6562 | vm_page_lock_queues(); |
| 6563 | m = VM_PAGE_NULL; |
| 6564 | } |
| 6565 | dumped_run++; |
| 6566 | |
| 6567 | vm_free_page_lock(); |
| 6568 | /* |
| 6569 | * reset our free page limit since we |
| 6570 | * dropped the lock protecting the vm_page_free_queue |
| 6571 | */ |
| 6572 | free_available = vm_page_free_count - vm_page_free_reserved; |
| 6573 | goto retry; |
| 6574 | } |
| 6575 | |
| 6576 | for (m1 = m; m1 != VM_PAGE_NULL; m1 = NEXT_PAGE(m1)) { |
| 6577 | assert(m1->vmp_q_state == VM_PAGE_NOT_ON_Q); |
| 6578 | assert(m1->vmp_wire_count == 0); |
| 6579 | |
| 6580 | if (wire == TRUE) { |
| 6581 | m1->vmp_wire_count++; |
| 6582 | m1->vmp_q_state = VM_PAGE_IS_WIRED; |
| 6583 | } else { |
| 6584 | m1->vmp_gobbled = TRUE; |
| 6585 | } |
| 6586 | } |
| 6587 | if (wire == FALSE) { |
| 6588 | vm_page_gobble_count += npages; |
| 6589 | } |
| 6590 | |
| 6591 | /* |
| 6592 | * gobbled pages are also counted as wired pages |
| 6593 | */ |
| 6594 | vm_page_wire_count += npages; |
| 6595 | |
| 6596 | assert(vm_page_verify_contiguous(m, npages)); |
| 6597 | } |
| 6598 | done_scanning: |
| 6599 | PAGE_REPLACEMENT_ALLOWED(FALSE); |
| 6600 | |
| 6601 | vm_page_unlock_queues(); |
| 6602 | |
| 6603 | #if DEBUG |
| 6604 | clock_get_system_microtime(&tv_end_sec, &tv_end_usec); |
| 6605 | |
| 6606 | tv_end_sec -= tv_start_sec; |
| 6607 | if (tv_end_usec < tv_start_usec) { |
| 6608 | tv_end_sec--; |
| 6609 | tv_end_usec += 1000000; |
| 6610 | } |
| 6611 | tv_end_usec -= tv_start_usec; |
| 6612 | if (tv_end_usec >= 1000000) { |
| 6613 | tv_end_sec++; |
| 6614 | tv_end_sec -= 1000000; |
| 6615 | } |
| 6616 | if (vm_page_find_contig_debug) { |
| 6617 | printf("%s(num=%d,low=%d): found %d pages at 0x%llx in %ld.%06ds... started at %d... scanned %d pages... yielded %d times... dumped run %d times... stole %d pages... stole %d compressed pages\n" , |
| 6618 | __func__, contig_pages, max_pnum, npages, (vm_object_offset_t)start_pnum << PAGE_SHIFT, |
| 6619 | (long)tv_end_sec, tv_end_usec, orig_last_idx, |
| 6620 | scanned, yielded, dumped_run, stolen_pages, compressed_pages); |
| 6621 | } |
| 6622 | |
| 6623 | #endif |
| 6624 | #if MACH_ASSERT |
| 6625 | vm_page_verify_free_lists(); |
| 6626 | #endif |
| 6627 | if (m == NULL && zone_gc_called < 2) { |
| 6628 | printf(format: "%s(num=%d,low=%d): found %d pages at 0x%llx...scanned %d pages... yielded %d times... dumped run %d times... stole %d pages... stole %d compressed pages... wired count is %d\n" , |
| 6629 | __func__, contig_pages, max_pnum, npages, (vm_object_offset_t)start_pnum << PAGE_SHIFT, |
| 6630 | scanned, yielded, dumped_run, stolen_pages, compressed_pages, vm_page_wire_count); |
| 6631 | |
| 6632 | if (consider_buffer_cache_collect != NULL) { |
| 6633 | (void)(*consider_buffer_cache_collect)(1); |
| 6634 | } |
| 6635 | |
| 6636 | zone_gc(level: zone_gc_called ? ZONE_GC_DRAIN : ZONE_GC_TRIM); |
| 6637 | |
| 6638 | zone_gc_called++; |
| 6639 | |
| 6640 | printf(format: "vm_page_find_contiguous: zone_gc called... wired count is %d\n" , vm_page_wire_count); |
| 6641 | goto full_scan_again; |
| 6642 | } |
| 6643 | |
| 6644 | return m; |
| 6645 | } |
| 6646 | |
| 6647 | /* |
| 6648 | * Allocate a list of contiguous, wired pages. |
| 6649 | */ |
| 6650 | kern_return_t |
| 6651 | cpm_allocate( |
| 6652 | vm_size_t size, |
| 6653 | vm_page_t *list, |
| 6654 | ppnum_t max_pnum, |
| 6655 | ppnum_t pnum_mask, |
| 6656 | boolean_t wire, |
| 6657 | int flags) |
| 6658 | { |
| 6659 | vm_page_t pages; |
| 6660 | unsigned int npages; |
| 6661 | |
| 6662 | if (size % PAGE_SIZE != 0) { |
| 6663 | return KERN_INVALID_ARGUMENT; |
| 6664 | } |
| 6665 | |
| 6666 | npages = (unsigned int) (size / PAGE_SIZE); |
| 6667 | if (npages != size / PAGE_SIZE) { |
| 6668 | /* 32-bit overflow */ |
| 6669 | return KERN_INVALID_ARGUMENT; |
| 6670 | } |
| 6671 | |
| 6672 | /* |
| 6673 | * Obtain a pointer to a subset of the free |
| 6674 | * list large enough to satisfy the request; |
| 6675 | * the region will be physically contiguous. |
| 6676 | */ |
| 6677 | pages = vm_page_find_contiguous(contig_pages: npages, max_pnum, pnum_mask, wire, flags); |
| 6678 | |
| 6679 | if (pages == VM_PAGE_NULL) { |
| 6680 | return KERN_NO_SPACE; |
| 6681 | } |
| 6682 | /* |
| 6683 | * determine need for wakeups |
| 6684 | */ |
| 6685 | if (vm_page_free_count < vm_page_free_min) { |
| 6686 | vm_free_page_lock(); |
| 6687 | if (vm_pageout_running == FALSE) { |
| 6688 | vm_free_page_unlock(); |
| 6689 | thread_wakeup((event_t) &vm_page_free_wanted); |
| 6690 | } else { |
| 6691 | vm_free_page_unlock(); |
| 6692 | } |
| 6693 | } |
| 6694 | |
| 6695 | VM_CHECK_MEMORYSTATUS; |
| 6696 | |
| 6697 | /* |
| 6698 | * The CPM pages should now be available and |
| 6699 | * ordered by ascending physical address. |
| 6700 | */ |
| 6701 | assert(vm_page_verify_contiguous(pages, npages)); |
| 6702 | |
| 6703 | if (flags & KMA_ZERO) { |
| 6704 | for (vm_page_t m = pages; m; m = NEXT_PAGE(m)) { |
| 6705 | vm_page_zero_fill(m); |
| 6706 | } |
| 6707 | } |
| 6708 | |
| 6709 | *list = pages; |
| 6710 | return KERN_SUCCESS; |
| 6711 | } |
| 6712 | |
| 6713 | |
| 6714 | unsigned int vm_max_delayed_work_limit = DEFAULT_DELAYED_WORK_LIMIT; |
| 6715 | |
| 6716 | /* |
| 6717 | * when working on a 'run' of pages, it is necessary to hold |
| 6718 | * the vm_page_queue_lock (a hot global lock) for certain operations |
| 6719 | * on the page... however, the majority of the work can be done |
| 6720 | * while merely holding the object lock... in fact there are certain |
| 6721 | * collections of pages that don't require any work brokered by the |
| 6722 | * vm_page_queue_lock... to mitigate the time spent behind the global |
| 6723 | * lock, go to a 2 pass algorithm... collect pages up to DELAYED_WORK_LIMIT |
| 6724 | * while doing all of the work that doesn't require the vm_page_queue_lock... |
| 6725 | * then call vm_page_do_delayed_work to acquire the vm_page_queue_lock and do the |
| 6726 | * necessary work for each page... we will grab the busy bit on the page |
| 6727 | * if it's not already held so that vm_page_do_delayed_work can drop the object lock |
| 6728 | * if it can't immediately take the vm_page_queue_lock in order to compete |
| 6729 | * for the locks in the same order that vm_pageout_scan takes them. |
| 6730 | * the operation names are modeled after the names of the routines that |
| 6731 | * need to be called in order to make the changes very obvious in the |
| 6732 | * original loop |
| 6733 | */ |
| 6734 | |
| 6735 | void |
| 6736 | vm_page_do_delayed_work( |
| 6737 | vm_object_t object, |
| 6738 | vm_tag_t tag, |
| 6739 | struct vm_page_delayed_work *dwp, |
| 6740 | int dw_count) |
| 6741 | { |
| 6742 | int j; |
| 6743 | vm_page_t m; |
| 6744 | vm_page_t local_free_q = VM_PAGE_NULL; |
| 6745 | |
| 6746 | /* |
| 6747 | * pageout_scan takes the vm_page_lock_queues first |
| 6748 | * then tries for the object lock... to avoid what |
| 6749 | * is effectively a lock inversion, we'll go to the |
| 6750 | * trouble of taking them in that same order... otherwise |
| 6751 | * if this object contains the majority of the pages resident |
| 6752 | * in the UBC (or a small set of large objects actively being |
| 6753 | * worked on contain the majority of the pages), we could |
| 6754 | * cause the pageout_scan thread to 'starve' in its attempt |
| 6755 | * to find pages to move to the free queue, since it has to |
| 6756 | * successfully acquire the object lock of any candidate page |
| 6757 | * before it can steal/clean it. |
| 6758 | */ |
| 6759 | if (!vm_page_trylock_queues()) { |
| 6760 | vm_object_unlock(object); |
| 6761 | |
| 6762 | /* |
| 6763 | * "Turnstile enabled vm_pageout_scan" can be runnable |
| 6764 | * for a very long time without getting on a core. |
| 6765 | * If this is a higher priority thread it could be |
| 6766 | * waiting here for a very long time respecting the fact |
| 6767 | * that pageout_scan would like its object after VPS does |
| 6768 | * a mutex_pause(0). |
| 6769 | * So we cap the number of yields in the vm_object_lock_avoid() |
| 6770 | * case to a single mutex_pause(0) which will give vm_pageout_scan |
| 6771 | * 10us to run and grab the object if needed. |
| 6772 | */ |
| 6773 | vm_page_lock_queues(); |
| 6774 | |
| 6775 | for (j = 0;; j++) { |
| 6776 | if ((!vm_object_lock_avoid(object) || |
| 6777 | (vps_dynamic_priority_enabled && (j > 0))) && |
| 6778 | _vm_object_lock_try(object)) { |
| 6779 | break; |
| 6780 | } |
| 6781 | vm_page_unlock_queues(); |
| 6782 | mutex_pause(j); |
| 6783 | vm_page_lock_queues(); |
| 6784 | } |
| 6785 | } |
| 6786 | for (j = 0; j < dw_count; j++, dwp++) { |
| 6787 | m = dwp->dw_m; |
| 6788 | |
| 6789 | if (dwp->dw_mask & DW_vm_pageout_throttle_up) { |
| 6790 | vm_pageout_throttle_up(page: m); |
| 6791 | } |
| 6792 | #if CONFIG_PHANTOM_CACHE |
| 6793 | if (dwp->dw_mask & DW_vm_phantom_cache_update) { |
| 6794 | vm_phantom_cache_update(m); |
| 6795 | } |
| 6796 | #endif |
| 6797 | if (dwp->dw_mask & DW_vm_page_wire) { |
| 6798 | vm_page_wire(mem: m, tag, FALSE); |
| 6799 | } else if (dwp->dw_mask & DW_vm_page_unwire) { |
| 6800 | boolean_t queueit; |
| 6801 | |
| 6802 | queueit = (dwp->dw_mask & (DW_vm_page_free | DW_vm_page_deactivate_internal)) ? FALSE : TRUE; |
| 6803 | |
| 6804 | vm_page_unwire(mem: m, queueit); |
| 6805 | } |
| 6806 | if (dwp->dw_mask & DW_vm_page_free) { |
| 6807 | vm_page_free_prepare_queues(mem: m); |
| 6808 | |
| 6809 | assert(m->vmp_pageq.next == 0 && m->vmp_pageq.prev == 0); |
| 6810 | /* |
| 6811 | * Add this page to our list of reclaimed pages, |
| 6812 | * to be freed later. |
| 6813 | */ |
| 6814 | m->vmp_snext = local_free_q; |
| 6815 | local_free_q = m; |
| 6816 | } else { |
| 6817 | if (dwp->dw_mask & DW_vm_page_deactivate_internal) { |
| 6818 | vm_page_deactivate_internal(m, FALSE); |
| 6819 | } else if (dwp->dw_mask & DW_vm_page_activate) { |
| 6820 | if (m->vmp_q_state != VM_PAGE_ON_ACTIVE_Q) { |
| 6821 | vm_page_activate(m); |
| 6822 | } |
| 6823 | } else if (dwp->dw_mask & DW_vm_page_speculate) { |
| 6824 | vm_page_speculate(m, TRUE); |
| 6825 | } else if (dwp->dw_mask & DW_enqueue_cleaned) { |
| 6826 | /* |
| 6827 | * if we didn't hold the object lock and did this, |
| 6828 | * we might disconnect the page, then someone might |
| 6829 | * soft fault it back in, then we would put it on the |
| 6830 | * cleaned queue, and so we would have a referenced (maybe even dirty) |
| 6831 | * page on that queue, which we don't want |
| 6832 | */ |
| 6833 | int refmod_state = pmap_disconnect(phys: VM_PAGE_GET_PHYS_PAGE(m)); |
| 6834 | |
| 6835 | if ((refmod_state & VM_MEM_REFERENCED)) { |
| 6836 | /* |
| 6837 | * this page has been touched since it got cleaned; let's activate it |
| 6838 | * if it hasn't already been |
| 6839 | */ |
| 6840 | VM_PAGEOUT_DEBUG(vm_pageout_enqueued_cleaned, 1); |
| 6841 | VM_PAGEOUT_DEBUG(vm_pageout_cleaned_reactivated, 1); |
| 6842 | |
| 6843 | if (m->vmp_q_state != VM_PAGE_ON_ACTIVE_Q) { |
| 6844 | vm_page_activate(m); |
| 6845 | } |
| 6846 | } else { |
| 6847 | m->vmp_reference = FALSE; |
| 6848 | vm_page_enqueue_cleaned(m); |
| 6849 | } |
| 6850 | } else if (dwp->dw_mask & DW_vm_page_lru) { |
| 6851 | vm_page_lru(m); |
| 6852 | } else if (dwp->dw_mask & DW_VM_PAGE_QUEUES_REMOVE) { |
| 6853 | if (m->vmp_q_state != VM_PAGE_ON_PAGEOUT_Q) { |
| 6854 | vm_page_queues_remove(mem: m, TRUE); |
| 6855 | } |
| 6856 | } |
| 6857 | if (dwp->dw_mask & DW_set_reference) { |
| 6858 | m->vmp_reference = TRUE; |
| 6859 | } else if (dwp->dw_mask & DW_clear_reference) { |
| 6860 | m->vmp_reference = FALSE; |
| 6861 | } |
| 6862 | |
| 6863 | if (dwp->dw_mask & DW_move_page) { |
| 6864 | if (m->vmp_q_state != VM_PAGE_ON_PAGEOUT_Q) { |
| 6865 | vm_page_queues_remove(mem: m, FALSE); |
| 6866 | |
| 6867 | assert(!is_kernel_object(VM_PAGE_OBJECT(m))); |
| 6868 | |
| 6869 | vm_page_enqueue_inactive(mem: m, FALSE); |
| 6870 | } |
| 6871 | } |
| 6872 | if (dwp->dw_mask & DW_clear_busy) { |
| 6873 | m->vmp_busy = FALSE; |
| 6874 | } |
| 6875 | |
| 6876 | if (dwp->dw_mask & DW_PAGE_WAKEUP) { |
| 6877 | PAGE_WAKEUP(m); |
| 6878 | } |
| 6879 | } |
| 6880 | } |
| 6881 | vm_page_unlock_queues(); |
| 6882 | |
| 6883 | if (local_free_q) { |
| 6884 | vm_page_free_list(freeq: local_free_q, TRUE); |
| 6885 | } |
| 6886 | |
| 6887 | VM_CHECK_MEMORYSTATUS; |
| 6888 | } |
| 6889 | |
| 6890 | __abortlike |
| 6891 | static void |
| 6892 | __vm_page_alloc_list_failed_panic( |
| 6893 | vm_size_t page_count, |
| 6894 | kma_flags_t flags, |
| 6895 | kern_return_t kr) |
| 6896 | { |
| 6897 | panic("vm_page_alloc_list(%zd, 0x%x) failed unexpectedly with %d" , |
| 6898 | (size_t)page_count, flags, kr); |
| 6899 | } |
| 6900 | |
| 6901 | kern_return_t |
| 6902 | vm_page_alloc_list( |
| 6903 | vm_size_t page_count, |
| 6904 | kma_flags_t flags, |
| 6905 | vm_page_t *list) |
| 6906 | { |
| 6907 | vm_page_t page_list = VM_PAGE_NULL; |
| 6908 | vm_page_t mem; |
| 6909 | kern_return_t kr = KERN_SUCCESS; |
| 6910 | int page_grab_count = 0; |
| 6911 | #if DEVELOPMENT || DEBUG |
| 6912 | task_t task; |
| 6913 | #endif /* DEVELOPMENT || DEBUG */ |
| 6914 | |
| 6915 | for (vm_size_t i = 0; i < page_count; i++) { |
| 6916 | for (;;) { |
| 6917 | if (flags & KMA_LOMEM) { |
| 6918 | mem = vm_page_grablo(); |
| 6919 | } else { |
| 6920 | mem = vm_page_grab(); |
| 6921 | } |
| 6922 | |
| 6923 | if (mem != VM_PAGE_NULL) { |
| 6924 | break; |
| 6925 | } |
| 6926 | |
| 6927 | if (flags & KMA_NOPAGEWAIT) { |
| 6928 | kr = KERN_RESOURCE_SHORTAGE; |
| 6929 | goto out; |
| 6930 | } |
| 6931 | if ((flags & KMA_LOMEM) && (vm_lopage_needed == TRUE)) { |
| 6932 | kr = KERN_RESOURCE_SHORTAGE; |
| 6933 | goto out; |
| 6934 | } |
| 6935 | |
| 6936 | /* VM privileged threads should have waited in vm_page_grab() and not get here. */ |
| 6937 | assert(!(current_thread()->options & TH_OPT_VMPRIV)); |
| 6938 | |
| 6939 | if ((flags & KMA_NOFAIL) == 0) { |
| 6940 | uint64_t unavailable = ptoa_64(vm_page_wire_count + vm_page_free_target); |
| 6941 | if (unavailable > max_mem || ptoa_64(page_count) > (max_mem - unavailable)) { |
| 6942 | kr = KERN_RESOURCE_SHORTAGE; |
| 6943 | goto out; |
| 6944 | } |
| 6945 | } |
| 6946 | VM_PAGE_WAIT(); |
| 6947 | } |
| 6948 | |
| 6949 | page_grab_count++; |
| 6950 | mem->vmp_snext = page_list; |
| 6951 | page_list = mem; |
| 6952 | } |
| 6953 | |
| 6954 | if ((KMA_ZERO | KMA_NOENCRYPT) & flags) { |
| 6955 | for (mem = page_list; mem; mem = mem->vmp_snext) { |
| 6956 | vm_page_zero_fill(m: mem); |
| 6957 | } |
| 6958 | } |
| 6959 | |
| 6960 | out: |
| 6961 | #if DEBUG || DEVELOPMENT |
| 6962 | task = current_task_early(); |
| 6963 | if (task != NULL) { |
| 6964 | ledger_credit(task->ledger, task_ledgers.pages_grabbed_kern, page_grab_count); |
| 6965 | } |
| 6966 | #endif |
| 6967 | |
| 6968 | if (kr == KERN_SUCCESS) { |
| 6969 | *list = page_list; |
| 6970 | } else if (flags & KMA_NOFAIL) { |
| 6971 | __vm_page_alloc_list_failed_panic(page_count, flags, kr); |
| 6972 | } else { |
| 6973 | vm_page_free_list(freeq: page_list, FALSE); |
| 6974 | } |
| 6975 | |
| 6976 | return kr; |
| 6977 | } |
| 6978 | |
| 6979 | void |
| 6980 | vm_page_set_offset(vm_page_t page, vm_object_offset_t offset) |
| 6981 | { |
| 6982 | page->vmp_offset = offset; |
| 6983 | } |
| 6984 | |
| 6985 | vm_page_t |
| 6986 | vm_page_get_next(vm_page_t page) |
| 6987 | { |
| 6988 | return page->vmp_snext; |
| 6989 | } |
| 6990 | |
| 6991 | vm_object_offset_t |
| 6992 | vm_page_get_offset(vm_page_t page) |
| 6993 | { |
| 6994 | return page->vmp_offset; |
| 6995 | } |
| 6996 | |
| 6997 | ppnum_t |
| 6998 | vm_page_get_phys_page(vm_page_t page) |
| 6999 | { |
| 7000 | return VM_PAGE_GET_PHYS_PAGE(m: page); |
| 7001 | } |
| 7002 | |
| 7003 | |
| 7004 | /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ |
| 7005 | |
| 7006 | #if HIBERNATION |
| 7007 | |
| 7008 | static vm_page_t hibernate_gobble_queue; |
| 7009 | |
| 7010 | static int hibernate_drain_pageout_queue(struct vm_pageout_queue *); |
| 7011 | static int hibernate_flush_dirty_pages(int); |
| 7012 | static int hibernate_flush_queue(vm_page_queue_head_t *, int); |
| 7013 | |
| 7014 | void hibernate_flush_wait(void); |
| 7015 | void hibernate_mark_in_progress(void); |
| 7016 | void hibernate_clear_in_progress(void); |
| 7017 | |
| 7018 | void hibernate_free_range(int, int); |
| 7019 | void hibernate_hash_insert_page(vm_page_t); |
| 7020 | uint32_t hibernate_mark_as_unneeded(addr64_t, addr64_t, hibernate_page_list_t *, hibernate_page_list_t *); |
| 7021 | uint32_t hibernate_teardown_vm_structs(hibernate_page_list_t *, hibernate_page_list_t *); |
| 7022 | ppnum_t hibernate_lookup_paddr(unsigned int); |
| 7023 | |
| 7024 | struct hibernate_statistics { |
| 7025 | int hibernate_considered; |
| 7026 | int hibernate_reentered_on_q; |
| 7027 | int hibernate_found_dirty; |
| 7028 | int hibernate_skipped_cleaning; |
| 7029 | int hibernate_skipped_transient; |
| 7030 | int hibernate_skipped_precious; |
| 7031 | int hibernate_skipped_external; |
| 7032 | int hibernate_queue_nolock; |
| 7033 | int hibernate_queue_paused; |
| 7034 | int hibernate_throttled; |
| 7035 | int hibernate_throttle_timeout; |
| 7036 | int hibernate_drained; |
| 7037 | int hibernate_drain_timeout; |
| 7038 | int cd_lock_failed; |
| 7039 | int cd_found_precious; |
| 7040 | int cd_found_wired; |
| 7041 | int cd_found_busy; |
| 7042 | int cd_found_unusual; |
| 7043 | int cd_found_cleaning; |
| 7044 | int cd_found_laundry; |
| 7045 | int cd_found_dirty; |
| 7046 | int cd_found_xpmapped; |
| 7047 | int cd_skipped_xpmapped; |
| 7048 | int cd_local_free; |
| 7049 | int cd_total_free; |
| 7050 | int cd_vm_page_wire_count; |
| 7051 | int cd_vm_struct_pages_unneeded; |
| 7052 | int cd_pages; |
| 7053 | int cd_discarded; |
| 7054 | int cd_count_wire; |
| 7055 | } hibernate_stats; |
| 7056 | |
| 7057 | |
| 7058 | /* |
| 7059 | * clamp the number of 'xpmapped' pages we'll sweep into the hibernation image |
| 7060 | * so that we don't overrun the estimated image size, which would |
| 7061 | * result in a hibernation failure. |
| 7062 | * |
| 7063 | * We use a size value instead of pages because we don't want to take up more space |
| 7064 | * on disk if the system has a 16K page size vs 4K. Also, we are not guaranteed |
| 7065 | * to have that additional space available. |
| 7066 | * |
| 7067 | * Since this was set at 40000 pages on X86 we are going to use 160MB as our |
| 7068 | * xpmapped size. |
| 7069 | */ |
| 7070 | #define HIBERNATE_XPMAPPED_LIMIT ((160 * 1024 * 1024ULL) / PAGE_SIZE) |
| 7071 | |
| 7072 | |
| 7073 | static int |
| 7074 | hibernate_drain_pageout_queue(struct vm_pageout_queue *q) |
| 7075 | { |
| 7076 | wait_result_t wait_result; |
| 7077 | |
| 7078 | vm_page_lock_queues(); |
| 7079 | |
| 7080 | while (!vm_page_queue_empty(&q->pgo_pending)) { |
| 7081 | q->pgo_draining = TRUE; |
| 7082 | |
| 7083 | assert_wait_timeout((event_t) (&q->pgo_laundry + 1), THREAD_INTERRUPTIBLE, 5000, 1000 * NSEC_PER_USEC); |
| 7084 | |
| 7085 | vm_page_unlock_queues(); |
| 7086 | |
| 7087 | wait_result = thread_block(THREAD_CONTINUE_NULL); |
| 7088 | |
| 7089 | if (wait_result == THREAD_TIMED_OUT && !vm_page_queue_empty(&q->pgo_pending)) { |
| 7090 | hibernate_stats.hibernate_drain_timeout++; |
| 7091 | |
| 7092 | if (q == &vm_pageout_queue_external) { |
| 7093 | return 0; |
| 7094 | } |
| 7095 | |
| 7096 | return 1; |
| 7097 | } |
| 7098 | vm_page_lock_queues(); |
| 7099 | |
| 7100 | hibernate_stats.hibernate_drained++; |
| 7101 | } |
| 7102 | vm_page_unlock_queues(); |
| 7103 | |
| 7104 | return 0; |
| 7105 | } |
| 7106 | |
| 7107 | |
| 7108 | boolean_t hibernate_skip_external = FALSE; |
| 7109 | |
| 7110 | static int |
| 7111 | hibernate_flush_queue(vm_page_queue_head_t *q, int qcount) |
| 7112 | { |
| 7113 | vm_page_t m; |
| 7114 | vm_object_t l_object = NULL; |
| 7115 | vm_object_t m_object = NULL; |
| 7116 | int refmod_state = 0; |
| 7117 | int try_failed_count = 0; |
| 7118 | int retval = 0; |
| 7119 | int current_run = 0; |
| 7120 | struct vm_pageout_queue *iq; |
| 7121 | struct vm_pageout_queue *eq; |
| 7122 | struct vm_pageout_queue *tq; |
| 7123 | |
| 7124 | KDBG(IOKDBG_CODE(DBG_HIBERNATE, 4) | DBG_FUNC_START, |
| 7125 | VM_KERNEL_UNSLIDE_OR_PERM(q), qcount); |
| 7126 | |
| 7127 | iq = &vm_pageout_queue_internal; |
| 7128 | eq = &vm_pageout_queue_external; |
| 7129 | |
| 7130 | vm_page_lock_queues(); |
| 7131 | |
| 7132 | while (qcount && !vm_page_queue_empty(q)) { |
| 7133 | if (current_run++ == 1000) { |
| 7134 | if (hibernate_should_abort()) { |
| 7135 | retval = 1; |
| 7136 | break; |
| 7137 | } |
| 7138 | current_run = 0; |
| 7139 | } |
| 7140 | |
| 7141 | m = (vm_page_t) vm_page_queue_first(q); |
| 7142 | m_object = VM_PAGE_OBJECT(m); |
| 7143 | |
| 7144 | /* |
| 7145 | * check to see if we currently are working |
| 7146 | * with the same object... if so, we've |
| 7147 | * already got the lock |
| 7148 | */ |
| 7149 | if (m_object != l_object) { |
| 7150 | /* |
| 7151 | * the object associated with candidate page is |
| 7152 | * different from the one we were just working |
| 7153 | * with... dump the lock if we still own it |
| 7154 | */ |
| 7155 | if (l_object != NULL) { |
| 7156 | vm_object_unlock(l_object); |
| 7157 | l_object = NULL; |
| 7158 | } |
| 7159 | /* |
| 7160 | * Try to lock object; since we've alread got the |
| 7161 | * page queues lock, we can only 'try' for this one. |
| 7162 | * if the 'try' fails, we need to do a mutex_pause |
| 7163 | * to allow the owner of the object lock a chance to |
| 7164 | * run... |
| 7165 | */ |
| 7166 | if (!vm_object_lock_try_scan(m_object)) { |
| 7167 | if (try_failed_count > 20) { |
| 7168 | hibernate_stats.hibernate_queue_nolock++; |
| 7169 | |
| 7170 | goto reenter_pg_on_q; |
| 7171 | } |
| 7172 | |
| 7173 | vm_page_unlock_queues(); |
| 7174 | mutex_pause(try_failed_count++); |
| 7175 | vm_page_lock_queues(); |
| 7176 | |
| 7177 | hibernate_stats.hibernate_queue_paused++; |
| 7178 | continue; |
| 7179 | } else { |
| 7180 | l_object = m_object; |
| 7181 | } |
| 7182 | } |
| 7183 | if (!m_object->alive || m->vmp_cleaning || m->vmp_laundry || m->vmp_busy || m->vmp_absent || VMP_ERROR_GET(m)) { |
| 7184 | /* |
| 7185 | * page is not to be cleaned |
| 7186 | * put it back on the head of its queue |
| 7187 | */ |
| 7188 | if (m->vmp_cleaning) { |
| 7189 | hibernate_stats.hibernate_skipped_cleaning++; |
| 7190 | } else { |
| 7191 | hibernate_stats.hibernate_skipped_transient++; |
| 7192 | } |
| 7193 | |
| 7194 | goto reenter_pg_on_q; |
| 7195 | } |
| 7196 | if (m_object->vo_copy == VM_OBJECT_NULL) { |
| 7197 | if (m_object->purgable == VM_PURGABLE_VOLATILE || m_object->purgable == VM_PURGABLE_EMPTY) { |
| 7198 | /* |
| 7199 | * let the normal hibernate image path |
| 7200 | * deal with these |
| 7201 | */ |
| 7202 | goto reenter_pg_on_q; |
| 7203 | } |
| 7204 | } |
| 7205 | if (!m->vmp_dirty && m->vmp_pmapped) { |
| 7206 | refmod_state = pmap_get_refmod(VM_PAGE_GET_PHYS_PAGE(m)); |
| 7207 | |
| 7208 | if ((refmod_state & VM_MEM_MODIFIED)) { |
| 7209 | SET_PAGE_DIRTY(m, FALSE); |
| 7210 | } |
| 7211 | } else { |
| 7212 | refmod_state = 0; |
| 7213 | } |
| 7214 | |
| 7215 | if (!m->vmp_dirty) { |
| 7216 | /* |
| 7217 | * page is not to be cleaned |
| 7218 | * put it back on the head of its queue |
| 7219 | */ |
| 7220 | if (m->vmp_precious) { |
| 7221 | hibernate_stats.hibernate_skipped_precious++; |
| 7222 | } |
| 7223 | |
| 7224 | goto reenter_pg_on_q; |
| 7225 | } |
| 7226 | |
| 7227 | if (hibernate_skip_external == TRUE && !m_object->internal) { |
| 7228 | hibernate_stats.hibernate_skipped_external++; |
| 7229 | |
| 7230 | goto reenter_pg_on_q; |
| 7231 | } |
| 7232 | tq = NULL; |
| 7233 | |
| 7234 | if (m_object->internal) { |
| 7235 | if (VM_PAGE_Q_THROTTLED(iq)) { |
| 7236 | tq = iq; |
| 7237 | } |
| 7238 | } else if (VM_PAGE_Q_THROTTLED(eq)) { |
| 7239 | tq = eq; |
| 7240 | } |
| 7241 | |
| 7242 | if (tq != NULL) { |
| 7243 | wait_result_t wait_result; |
| 7244 | int wait_count = 5; |
| 7245 | |
| 7246 | if (l_object != NULL) { |
| 7247 | vm_object_unlock(l_object); |
| 7248 | l_object = NULL; |
| 7249 | } |
| 7250 | |
| 7251 | while (retval == 0) { |
| 7252 | tq->pgo_throttled = TRUE; |
| 7253 | |
| 7254 | assert_wait_timeout((event_t) &tq->pgo_laundry, THREAD_INTERRUPTIBLE, 1000, 1000 * NSEC_PER_USEC); |
| 7255 | |
| 7256 | vm_page_unlock_queues(); |
| 7257 | |
| 7258 | wait_result = thread_block(THREAD_CONTINUE_NULL); |
| 7259 | |
| 7260 | vm_page_lock_queues(); |
| 7261 | |
| 7262 | if (wait_result != THREAD_TIMED_OUT) { |
| 7263 | break; |
| 7264 | } |
| 7265 | if (!VM_PAGE_Q_THROTTLED(tq)) { |
| 7266 | break; |
| 7267 | } |
| 7268 | |
| 7269 | if (hibernate_should_abort()) { |
| 7270 | retval = 1; |
| 7271 | } |
| 7272 | |
| 7273 | if (--wait_count == 0) { |
| 7274 | hibernate_stats.hibernate_throttle_timeout++; |
| 7275 | |
| 7276 | if (tq == eq) { |
| 7277 | hibernate_skip_external = TRUE; |
| 7278 | break; |
| 7279 | } |
| 7280 | retval = 1; |
| 7281 | } |
| 7282 | } |
| 7283 | if (retval) { |
| 7284 | break; |
| 7285 | } |
| 7286 | |
| 7287 | hibernate_stats.hibernate_throttled++; |
| 7288 | |
| 7289 | continue; |
| 7290 | } |
| 7291 | /* |
| 7292 | * we've already factored out pages in the laundry which |
| 7293 | * means this page can't be on the pageout queue so it's |
| 7294 | * safe to do the vm_page_queues_remove |
| 7295 | */ |
| 7296 | vm_page_queues_remove(m, TRUE); |
| 7297 | |
| 7298 | if (m_object->internal == TRUE) { |
| 7299 | pmap_disconnect_options(VM_PAGE_GET_PHYS_PAGE(m), PMAP_OPTIONS_COMPRESSOR, NULL); |
| 7300 | } |
| 7301 | |
| 7302 | vm_pageout_cluster(m); |
| 7303 | |
| 7304 | hibernate_stats.hibernate_found_dirty++; |
| 7305 | |
| 7306 | goto next_pg; |
| 7307 | |
| 7308 | reenter_pg_on_q: |
| 7309 | vm_page_queue_remove(q, m, vmp_pageq); |
| 7310 | vm_page_queue_enter(q, m, vmp_pageq); |
| 7311 | |
| 7312 | hibernate_stats.hibernate_reentered_on_q++; |
| 7313 | next_pg: |
| 7314 | hibernate_stats.hibernate_considered++; |
| 7315 | |
| 7316 | qcount--; |
| 7317 | try_failed_count = 0; |
| 7318 | } |
| 7319 | if (l_object != NULL) { |
| 7320 | vm_object_unlock(l_object); |
| 7321 | l_object = NULL; |
| 7322 | } |
| 7323 | |
| 7324 | vm_page_unlock_queues(); |
| 7325 | |
| 7326 | KERNEL_DEBUG_CONSTANT(IOKDBG_CODE(DBG_HIBERNATE, 4) | DBG_FUNC_END, hibernate_stats.hibernate_found_dirty, retval, 0, 0, 0); |
| 7327 | |
| 7328 | return retval; |
| 7329 | } |
| 7330 | |
| 7331 | |
| 7332 | static int |
| 7333 | hibernate_flush_dirty_pages(int pass) |
| 7334 | { |
| 7335 | struct vm_speculative_age_q *aq; |
| 7336 | uint32_t i; |
| 7337 | |
| 7338 | if (vm_page_local_q) { |
| 7339 | zpercpu_foreach_cpu(lid) { |
| 7340 | vm_page_reactivate_local(lid, TRUE, FALSE); |
| 7341 | } |
| 7342 | } |
| 7343 | |
| 7344 | for (i = 0; i <= VM_PAGE_MAX_SPECULATIVE_AGE_Q; i++) { |
| 7345 | int qcount; |
| 7346 | vm_page_t m; |
| 7347 | |
| 7348 | aq = &vm_page_queue_speculative[i]; |
| 7349 | |
| 7350 | if (vm_page_queue_empty(&aq->age_q)) { |
| 7351 | continue; |
| 7352 | } |
| 7353 | qcount = 0; |
| 7354 | |
| 7355 | vm_page_lockspin_queues(); |
| 7356 | |
| 7357 | vm_page_queue_iterate(&aq->age_q, m, vmp_pageq) { |
| 7358 | qcount++; |
| 7359 | } |
| 7360 | vm_page_unlock_queues(); |
| 7361 | |
| 7362 | if (qcount) { |
| 7363 | if (hibernate_flush_queue(&aq->age_q, qcount)) { |
| 7364 | return 1; |
| 7365 | } |
| 7366 | } |
| 7367 | } |
| 7368 | if (hibernate_flush_queue(&vm_page_queue_inactive, vm_page_inactive_count - vm_page_anonymous_count - vm_page_cleaned_count)) { |
| 7369 | return 1; |
| 7370 | } |
| 7371 | /* XXX FBDP TODO: flush secluded queue */ |
| 7372 | if (hibernate_flush_queue(&vm_page_queue_anonymous, vm_page_anonymous_count)) { |
| 7373 | return 1; |
| 7374 | } |
| 7375 | if (hibernate_flush_queue(&vm_page_queue_cleaned, vm_page_cleaned_count)) { |
| 7376 | return 1; |
| 7377 | } |
| 7378 | if (hibernate_drain_pageout_queue(&vm_pageout_queue_internal)) { |
| 7379 | return 1; |
| 7380 | } |
| 7381 | |
| 7382 | if (pass == 1) { |
| 7383 | vm_compressor_record_warmup_start(); |
| 7384 | } |
| 7385 | |
| 7386 | if (hibernate_flush_queue(&vm_page_queue_active, vm_page_active_count)) { |
| 7387 | if (pass == 1) { |
| 7388 | vm_compressor_record_warmup_end(); |
| 7389 | } |
| 7390 | return 1; |
| 7391 | } |
| 7392 | if (hibernate_drain_pageout_queue(&vm_pageout_queue_internal)) { |
| 7393 | if (pass == 1) { |
| 7394 | vm_compressor_record_warmup_end(); |
| 7395 | } |
| 7396 | return 1; |
| 7397 | } |
| 7398 | if (pass == 1) { |
| 7399 | vm_compressor_record_warmup_end(); |
| 7400 | } |
| 7401 | |
| 7402 | if (hibernate_skip_external == FALSE && hibernate_drain_pageout_queue(&vm_pageout_queue_external)) { |
| 7403 | return 1; |
| 7404 | } |
| 7405 | |
| 7406 | return 0; |
| 7407 | } |
| 7408 | |
| 7409 | |
| 7410 | void |
| 7411 | hibernate_reset_stats() |
| 7412 | { |
| 7413 | bzero(&hibernate_stats, sizeof(struct hibernate_statistics)); |
| 7414 | } |
| 7415 | |
| 7416 | |
| 7417 | int |
| 7418 | hibernate_flush_memory() |
| 7419 | { |
| 7420 | int retval; |
| 7421 | |
| 7422 | assert(VM_CONFIG_COMPRESSOR_IS_PRESENT); |
| 7423 | |
| 7424 | KERNEL_DEBUG_CONSTANT(IOKDBG_CODE(DBG_HIBERNATE, 3) | DBG_FUNC_START, vm_page_free_count, 0, 0, 0, 0); |
| 7425 | |
| 7426 | hibernate_cleaning_in_progress = TRUE; |
| 7427 | hibernate_skip_external = FALSE; |
| 7428 | |
| 7429 | if ((retval = hibernate_flush_dirty_pages(1)) == 0) { |
| 7430 | KERNEL_DEBUG_CONSTANT(IOKDBG_CODE(DBG_HIBERNATE, 10) | DBG_FUNC_START, VM_PAGE_COMPRESSOR_COUNT, 0, 0, 0, 0); |
| 7431 | |
| 7432 | vm_compressor_flush(); |
| 7433 | |
| 7434 | KERNEL_DEBUG_CONSTANT(IOKDBG_CODE(DBG_HIBERNATE, 10) | DBG_FUNC_END, VM_PAGE_COMPRESSOR_COUNT, 0, 0, 0, 0); |
| 7435 | |
| 7436 | if (consider_buffer_cache_collect != NULL) { |
| 7437 | unsigned int orig_wire_count; |
| 7438 | |
| 7439 | KERNEL_DEBUG_CONSTANT(IOKDBG_CODE(DBG_HIBERNATE, 7) | DBG_FUNC_START, 0, 0, 0, 0, 0); |
| 7440 | orig_wire_count = vm_page_wire_count; |
| 7441 | |
| 7442 | (void)(*consider_buffer_cache_collect)(1); |
| 7443 | zone_gc(ZONE_GC_DRAIN); |
| 7444 | |
| 7445 | HIBLOG("hibernate_flush_memory: buffer_cache_gc freed up %d wired pages\n" , orig_wire_count - vm_page_wire_count); |
| 7446 | |
| 7447 | KERNEL_DEBUG_CONSTANT(IOKDBG_CODE(DBG_HIBERNATE, 7) | DBG_FUNC_END, orig_wire_count - vm_page_wire_count, 0, 0, 0, 0); |
| 7448 | } |
| 7449 | } |
| 7450 | hibernate_cleaning_in_progress = FALSE; |
| 7451 | |
| 7452 | KERNEL_DEBUG_CONSTANT(IOKDBG_CODE(DBG_HIBERNATE, 3) | DBG_FUNC_END, vm_page_free_count, hibernate_stats.hibernate_found_dirty, retval, 0, 0); |
| 7453 | |
| 7454 | if (retval) { |
| 7455 | HIBLOG("hibernate_flush_memory() failed to finish - vm_page_compressor_count(%d)\n" , VM_PAGE_COMPRESSOR_COUNT); |
| 7456 | } |
| 7457 | |
| 7458 | |
| 7459 | HIBPRINT("hibernate_flush_memory() considered(%d) reentered_on_q(%d) found_dirty(%d)\n" , |
| 7460 | hibernate_stats.hibernate_considered, |
| 7461 | hibernate_stats.hibernate_reentered_on_q, |
| 7462 | hibernate_stats.hibernate_found_dirty); |
| 7463 | HIBPRINT(" skipped_cleaning(%d) skipped_transient(%d) skipped_precious(%d) skipped_external(%d) queue_nolock(%d)\n" , |
| 7464 | hibernate_stats.hibernate_skipped_cleaning, |
| 7465 | hibernate_stats.hibernate_skipped_transient, |
| 7466 | hibernate_stats.hibernate_skipped_precious, |
| 7467 | hibernate_stats.hibernate_skipped_external, |
| 7468 | hibernate_stats.hibernate_queue_nolock); |
| 7469 | HIBPRINT(" queue_paused(%d) throttled(%d) throttle_timeout(%d) drained(%d) drain_timeout(%d)\n" , |
| 7470 | hibernate_stats.hibernate_queue_paused, |
| 7471 | hibernate_stats.hibernate_throttled, |
| 7472 | hibernate_stats.hibernate_throttle_timeout, |
| 7473 | hibernate_stats.hibernate_drained, |
| 7474 | hibernate_stats.hibernate_drain_timeout); |
| 7475 | |
| 7476 | return retval; |
| 7477 | } |
| 7478 | |
| 7479 | |
| 7480 | static void |
| 7481 | hibernate_page_list_zero(hibernate_page_list_t *list) |
| 7482 | { |
| 7483 | uint32_t bank; |
| 7484 | hibernate_bitmap_t * bitmap; |
| 7485 | |
| 7486 | bitmap = &list->bank_bitmap[0]; |
| 7487 | for (bank = 0; bank < list->bank_count; bank++) { |
| 7488 | uint32_t last_bit; |
| 7489 | |
| 7490 | bzero((void *) &bitmap->bitmap[0], bitmap->bitmapwords << 2); |
| 7491 | // set out-of-bound bits at end of bitmap. |
| 7492 | last_bit = ((bitmap->last_page - bitmap->first_page + 1) & 31); |
| 7493 | if (last_bit) { |
| 7494 | bitmap->bitmap[bitmap->bitmapwords - 1] = (0xFFFFFFFF >> last_bit); |
| 7495 | } |
| 7496 | |
| 7497 | bitmap = (hibernate_bitmap_t *) &bitmap->bitmap[bitmap->bitmapwords]; |
| 7498 | } |
| 7499 | } |
| 7500 | |
| 7501 | void |
| 7502 | hibernate_free_gobble_pages(void) |
| 7503 | { |
| 7504 | vm_page_t m, next; |
| 7505 | uint32_t count = 0; |
| 7506 | |
| 7507 | m = (vm_page_t) hibernate_gobble_queue; |
| 7508 | while (m) { |
| 7509 | next = m->vmp_snext; |
| 7510 | vm_page_free(m); |
| 7511 | count++; |
| 7512 | m = next; |
| 7513 | } |
| 7514 | hibernate_gobble_queue = VM_PAGE_NULL; |
| 7515 | |
| 7516 | if (count) { |
| 7517 | HIBLOG("Freed %d pages\n" , count); |
| 7518 | } |
| 7519 | } |
| 7520 | |
| 7521 | static boolean_t |
| 7522 | hibernate_consider_discard(vm_page_t m, boolean_t preflight) |
| 7523 | { |
| 7524 | vm_object_t object = NULL; |
| 7525 | int refmod_state; |
| 7526 | boolean_t discard = FALSE; |
| 7527 | |
| 7528 | do{ |
| 7529 | if (m->vmp_private) { |
| 7530 | panic("hibernate_consider_discard: private" ); |
| 7531 | } |
| 7532 | |
| 7533 | object = VM_PAGE_OBJECT(m); |
| 7534 | |
| 7535 | if (!vm_object_lock_try(object)) { |
| 7536 | object = NULL; |
| 7537 | if (!preflight) { |
| 7538 | hibernate_stats.cd_lock_failed++; |
| 7539 | } |
| 7540 | break; |
| 7541 | } |
| 7542 | if (VM_PAGE_WIRED(m)) { |
| 7543 | if (!preflight) { |
| 7544 | hibernate_stats.cd_found_wired++; |
| 7545 | } |
| 7546 | break; |
| 7547 | } |
| 7548 | if (m->vmp_precious) { |
| 7549 | if (!preflight) { |
| 7550 | hibernate_stats.cd_found_precious++; |
| 7551 | } |
| 7552 | break; |
| 7553 | } |
| 7554 | if (m->vmp_busy || !object->alive) { |
| 7555 | /* |
| 7556 | * Somebody is playing with this page. |
| 7557 | */ |
| 7558 | if (!preflight) { |
| 7559 | hibernate_stats.cd_found_busy++; |
| 7560 | } |
| 7561 | break; |
| 7562 | } |
| 7563 | if (m->vmp_absent || m->vmp_unusual || VMP_ERROR_GET(m)) { |
| 7564 | /* |
| 7565 | * If it's unusual in anyway, ignore it |
| 7566 | */ |
| 7567 | if (!preflight) { |
| 7568 | hibernate_stats.cd_found_unusual++; |
| 7569 | } |
| 7570 | break; |
| 7571 | } |
| 7572 | if (m->vmp_cleaning) { |
| 7573 | if (!preflight) { |
| 7574 | hibernate_stats.cd_found_cleaning++; |
| 7575 | } |
| 7576 | break; |
| 7577 | } |
| 7578 | if (m->vmp_laundry) { |
| 7579 | if (!preflight) { |
| 7580 | hibernate_stats.cd_found_laundry++; |
| 7581 | } |
| 7582 | break; |
| 7583 | } |
| 7584 | if (!m->vmp_dirty) { |
| 7585 | refmod_state = pmap_get_refmod(VM_PAGE_GET_PHYS_PAGE(m)); |
| 7586 | |
| 7587 | if (refmod_state & VM_MEM_REFERENCED) { |
| 7588 | m->vmp_reference = TRUE; |
| 7589 | } |
| 7590 | if (refmod_state & VM_MEM_MODIFIED) { |
| 7591 | SET_PAGE_DIRTY(m, FALSE); |
| 7592 | } |
| 7593 | } |
| 7594 | |
| 7595 | /* |
| 7596 | * If it's clean or purgeable we can discard the page on wakeup. |
| 7597 | */ |
| 7598 | discard = (!m->vmp_dirty) |
| 7599 | || (VM_PURGABLE_VOLATILE == object->purgable) |
| 7600 | || (VM_PURGABLE_EMPTY == object->purgable); |
| 7601 | |
| 7602 | |
| 7603 | if (discard == FALSE) { |
| 7604 | if (!preflight) { |
| 7605 | hibernate_stats.cd_found_dirty++; |
| 7606 | } |
| 7607 | } else if (m->vmp_xpmapped && m->vmp_reference && !object->internal) { |
| 7608 | if (hibernate_stats.cd_found_xpmapped < HIBERNATE_XPMAPPED_LIMIT) { |
| 7609 | if (!preflight) { |
| 7610 | hibernate_stats.cd_found_xpmapped++; |
| 7611 | } |
| 7612 | discard = FALSE; |
| 7613 | } else { |
| 7614 | if (!preflight) { |
| 7615 | hibernate_stats.cd_skipped_xpmapped++; |
| 7616 | } |
| 7617 | } |
| 7618 | } |
| 7619 | }while (FALSE); |
| 7620 | |
| 7621 | if (object) { |
| 7622 | vm_object_unlock(object); |
| 7623 | } |
| 7624 | |
| 7625 | return discard; |
| 7626 | } |
| 7627 | |
| 7628 | |
| 7629 | static void |
| 7630 | hibernate_discard_page(vm_page_t m) |
| 7631 | { |
| 7632 | vm_object_t m_object; |
| 7633 | |
| 7634 | if (m->vmp_absent || m->vmp_unusual || VMP_ERROR_GET(m)) { |
| 7635 | /* |
| 7636 | * If it's unusual in anyway, ignore |
| 7637 | */ |
| 7638 | return; |
| 7639 | } |
| 7640 | |
| 7641 | m_object = VM_PAGE_OBJECT(m); |
| 7642 | |
| 7643 | #if MACH_ASSERT || DEBUG |
| 7644 | if (!vm_object_lock_try(m_object)) { |
| 7645 | panic("hibernate_discard_page(%p) !vm_object_lock_try" , m); |
| 7646 | } |
| 7647 | #else |
| 7648 | /* No need to lock page queue for token delete, hibernate_vm_unlock() |
| 7649 | * makes sure these locks are uncontended before sleep */ |
| 7650 | #endif /* MACH_ASSERT || DEBUG */ |
| 7651 | |
| 7652 | if (m->vmp_pmapped == TRUE) { |
| 7653 | __unused int refmod_state = pmap_disconnect(VM_PAGE_GET_PHYS_PAGE(m)); |
| 7654 | } |
| 7655 | |
| 7656 | if (m->vmp_laundry) { |
| 7657 | panic("hibernate_discard_page(%p) laundry" , m); |
| 7658 | } |
| 7659 | if (m->vmp_private) { |
| 7660 | panic("hibernate_discard_page(%p) private" , m); |
| 7661 | } |
| 7662 | if (m->vmp_fictitious) { |
| 7663 | panic("hibernate_discard_page(%p) fictitious" , m); |
| 7664 | } |
| 7665 | |
| 7666 | if (VM_PURGABLE_VOLATILE == m_object->purgable) { |
| 7667 | /* object should be on a queue */ |
| 7668 | assert((m_object->objq.next != NULL) && (m_object->objq.prev != NULL)); |
| 7669 | purgeable_q_t old_queue = vm_purgeable_object_remove(m_object); |
| 7670 | assert(old_queue); |
| 7671 | if (m_object->purgeable_when_ripe) { |
| 7672 | vm_purgeable_token_delete_first(old_queue); |
| 7673 | } |
| 7674 | vm_object_lock_assert_exclusive(m_object); |
| 7675 | VM_OBJECT_SET_PURGABLE(m_object, VM_PURGABLE_EMPTY); |
| 7676 | |
| 7677 | /* |
| 7678 | * Purgeable ledgers: pages of VOLATILE and EMPTY objects are |
| 7679 | * accounted in the "volatile" ledger, so no change here. |
| 7680 | * We have to update vm_page_purgeable_count, though, since we're |
| 7681 | * effectively purging this object. |
| 7682 | */ |
| 7683 | unsigned int delta; |
| 7684 | assert(m_object->resident_page_count >= m_object->wired_page_count); |
| 7685 | delta = (m_object->resident_page_count - m_object->wired_page_count); |
| 7686 | assert(vm_page_purgeable_count >= delta); |
| 7687 | assert(delta > 0); |
| 7688 | OSAddAtomic(-delta, (SInt32 *)&vm_page_purgeable_count); |
| 7689 | } |
| 7690 | |
| 7691 | vm_page_free(m); |
| 7692 | |
| 7693 | #if MACH_ASSERT || DEBUG |
| 7694 | vm_object_unlock(m_object); |
| 7695 | #endif /* MACH_ASSERT || DEBUG */ |
| 7696 | } |
| 7697 | |
| 7698 | /* |
| 7699 | * Grab locks for hibernate_page_list_setall() |
| 7700 | */ |
| 7701 | void |
| 7702 | hibernate_vm_lock_queues(void) |
| 7703 | { |
| 7704 | vm_object_lock(compressor_object); |
| 7705 | vm_page_lock_queues(); |
| 7706 | vm_free_page_lock(); |
| 7707 | lck_mtx_lock(&vm_purgeable_queue_lock); |
| 7708 | |
| 7709 | if (vm_page_local_q) { |
| 7710 | zpercpu_foreach(lq, vm_page_local_q) { |
| 7711 | VPL_LOCK(&lq->vpl_lock); |
| 7712 | } |
| 7713 | } |
| 7714 | } |
| 7715 | |
| 7716 | void |
| 7717 | hibernate_vm_unlock_queues(void) |
| 7718 | { |
| 7719 | if (vm_page_local_q) { |
| 7720 | zpercpu_foreach(lq, vm_page_local_q) { |
| 7721 | VPL_UNLOCK(&lq->vpl_lock); |
| 7722 | } |
| 7723 | } |
| 7724 | lck_mtx_unlock(&vm_purgeable_queue_lock); |
| 7725 | vm_free_page_unlock(); |
| 7726 | vm_page_unlock_queues(); |
| 7727 | vm_object_unlock(compressor_object); |
| 7728 | } |
| 7729 | |
| 7730 | /* |
| 7731 | * Bits zero in the bitmaps => page needs to be saved. All pages default to be saved, |
| 7732 | * pages known to VM to not need saving are subtracted. |
| 7733 | * Wired pages to be saved are present in page_list_wired, pageable in page_list. |
| 7734 | */ |
| 7735 | |
| 7736 | void |
| 7737 | hibernate_page_list_setall(hibernate_page_list_t * page_list, |
| 7738 | hibernate_page_list_t * page_list_wired, |
| 7739 | hibernate_page_list_t * page_list_pal, |
| 7740 | boolean_t preflight, |
| 7741 | boolean_t will_discard, |
| 7742 | uint32_t * pagesOut) |
| 7743 | { |
| 7744 | uint64_t start, end, nsec; |
| 7745 | vm_page_t m; |
| 7746 | vm_page_t next; |
| 7747 | uint32_t pages = page_list->page_count; |
| 7748 | uint32_t count_anonymous = 0, count_throttled = 0, count_compressor = 0; |
| 7749 | uint32_t count_inactive = 0, count_active = 0, count_speculative = 0, count_cleaned = 0; |
| 7750 | uint32_t count_wire = pages; |
| 7751 | uint32_t count_discard_active = 0; |
| 7752 | uint32_t count_discard_inactive = 0; |
| 7753 | uint32_t count_retired = 0; |
| 7754 | uint32_t count_discard_cleaned = 0; |
| 7755 | uint32_t count_discard_purgeable = 0; |
| 7756 | uint32_t count_discard_speculative = 0; |
| 7757 | uint32_t count_discard_vm_struct_pages = 0; |
| 7758 | uint32_t i; |
| 7759 | uint32_t bank; |
| 7760 | hibernate_bitmap_t * bitmap; |
| 7761 | hibernate_bitmap_t * bitmap_wired; |
| 7762 | boolean_t discard_all; |
| 7763 | boolean_t discard = FALSE; |
| 7764 | |
| 7765 | HIBLOG("hibernate_page_list_setall(preflight %d) start\n" , preflight); |
| 7766 | |
| 7767 | if (preflight) { |
| 7768 | page_list = NULL; |
| 7769 | page_list_wired = NULL; |
| 7770 | page_list_pal = NULL; |
| 7771 | discard_all = FALSE; |
| 7772 | } else { |
| 7773 | discard_all = will_discard; |
| 7774 | } |
| 7775 | |
| 7776 | #if MACH_ASSERT || DEBUG |
| 7777 | if (!preflight) { |
| 7778 | assert(hibernate_vm_locks_are_safe()); |
| 7779 | vm_page_lock_queues(); |
| 7780 | if (vm_page_local_q) { |
| 7781 | zpercpu_foreach(lq, vm_page_local_q) { |
| 7782 | VPL_LOCK(&lq->vpl_lock); |
| 7783 | } |
| 7784 | } |
| 7785 | } |
| 7786 | #endif /* MACH_ASSERT || DEBUG */ |
| 7787 | |
| 7788 | |
| 7789 | KERNEL_DEBUG_CONSTANT(IOKDBG_CODE(DBG_HIBERNATE, 8) | DBG_FUNC_START, count_wire, 0, 0, 0, 0); |
| 7790 | |
| 7791 | clock_get_uptime(&start); |
| 7792 | |
| 7793 | if (!preflight) { |
| 7794 | hibernate_page_list_zero(page_list); |
| 7795 | hibernate_page_list_zero(page_list_wired); |
| 7796 | hibernate_page_list_zero(page_list_pal); |
| 7797 | |
| 7798 | hibernate_stats.cd_vm_page_wire_count = vm_page_wire_count; |
| 7799 | hibernate_stats.cd_pages = pages; |
| 7800 | } |
| 7801 | |
| 7802 | if (vm_page_local_q) { |
| 7803 | zpercpu_foreach_cpu(lid) { |
| 7804 | vm_page_reactivate_local(lid, TRUE, !preflight); |
| 7805 | } |
| 7806 | } |
| 7807 | |
| 7808 | if (preflight) { |
| 7809 | vm_object_lock(compressor_object); |
| 7810 | vm_page_lock_queues(); |
| 7811 | vm_free_page_lock(); |
| 7812 | } |
| 7813 | |
| 7814 | LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED); |
| 7815 | |
| 7816 | hibernation_vmqueues_inspection = TRUE; |
| 7817 | |
| 7818 | m = (vm_page_t) hibernate_gobble_queue; |
| 7819 | while (m) { |
| 7820 | pages--; |
| 7821 | count_wire--; |
| 7822 | if (!preflight) { |
| 7823 | hibernate_page_bitset(page_list, TRUE, VM_PAGE_GET_PHYS_PAGE(m)); |
| 7824 | hibernate_page_bitset(page_list_wired, TRUE, VM_PAGE_GET_PHYS_PAGE(m)); |
| 7825 | } |
| 7826 | m = m->vmp_snext; |
| 7827 | } |
| 7828 | |
| 7829 | if (!preflight) { |
| 7830 | percpu_foreach(free_pages_head, free_pages) { |
| 7831 | for (m = *free_pages_head; m; m = m->vmp_snext) { |
| 7832 | assert(m->vmp_q_state == VM_PAGE_ON_FREE_LOCAL_Q); |
| 7833 | |
| 7834 | pages--; |
| 7835 | count_wire--; |
| 7836 | hibernate_page_bitset(page_list, TRUE, VM_PAGE_GET_PHYS_PAGE(m)); |
| 7837 | hibernate_page_bitset(page_list_wired, TRUE, VM_PAGE_GET_PHYS_PAGE(m)); |
| 7838 | |
| 7839 | hibernate_stats.cd_local_free++; |
| 7840 | hibernate_stats.cd_total_free++; |
| 7841 | } |
| 7842 | } |
| 7843 | } |
| 7844 | |
| 7845 | for (i = 0; i < vm_colors; i++) { |
| 7846 | vm_page_queue_iterate(&vm_page_queue_free[i].qhead, m, vmp_pageq) { |
| 7847 | assert(m->vmp_q_state == VM_PAGE_ON_FREE_Q); |
| 7848 | |
| 7849 | pages--; |
| 7850 | count_wire--; |
| 7851 | if (!preflight) { |
| 7852 | hibernate_page_bitset(page_list, TRUE, VM_PAGE_GET_PHYS_PAGE(m)); |
| 7853 | hibernate_page_bitset(page_list_wired, TRUE, VM_PAGE_GET_PHYS_PAGE(m)); |
| 7854 | |
| 7855 | hibernate_stats.cd_total_free++; |
| 7856 | } |
| 7857 | } |
| 7858 | } |
| 7859 | |
| 7860 | vm_page_queue_iterate(&vm_lopage_queue_free, m, vmp_pageq) { |
| 7861 | assert(m->vmp_q_state == VM_PAGE_ON_FREE_LOPAGE_Q); |
| 7862 | |
| 7863 | pages--; |
| 7864 | count_wire--; |
| 7865 | if (!preflight) { |
| 7866 | hibernate_page_bitset(page_list, TRUE, VM_PAGE_GET_PHYS_PAGE(m)); |
| 7867 | hibernate_page_bitset(page_list_wired, TRUE, VM_PAGE_GET_PHYS_PAGE(m)); |
| 7868 | |
| 7869 | hibernate_stats.cd_total_free++; |
| 7870 | } |
| 7871 | } |
| 7872 | |
| 7873 | m = (vm_page_t) vm_page_queue_first(&vm_page_queue_throttled); |
| 7874 | while (m && !vm_page_queue_end(&vm_page_queue_throttled, (vm_page_queue_entry_t)m)) { |
| 7875 | assert(m->vmp_q_state == VM_PAGE_ON_THROTTLED_Q); |
| 7876 | |
| 7877 | next = (vm_page_t)VM_PAGE_UNPACK_PTR(m->vmp_pageq.next); |
| 7878 | discard = FALSE; |
| 7879 | if ((kIOHibernateModeDiscardCleanInactive & gIOHibernateMode) |
| 7880 | && hibernate_consider_discard(m, preflight)) { |
| 7881 | if (!preflight) { |
| 7882 | hibernate_page_bitset(page_list, TRUE, VM_PAGE_GET_PHYS_PAGE(m)); |
| 7883 | } |
| 7884 | count_discard_inactive++; |
| 7885 | discard = discard_all; |
| 7886 | } else { |
| 7887 | count_throttled++; |
| 7888 | } |
| 7889 | count_wire--; |
| 7890 | if (!preflight) { |
| 7891 | hibernate_page_bitset(page_list_wired, TRUE, VM_PAGE_GET_PHYS_PAGE(m)); |
| 7892 | } |
| 7893 | |
| 7894 | if (discard) { |
| 7895 | hibernate_discard_page(m); |
| 7896 | } |
| 7897 | m = next; |
| 7898 | } |
| 7899 | |
| 7900 | m = (vm_page_t)vm_page_queue_first(&vm_page_queue_anonymous); |
| 7901 | while (m && !vm_page_queue_end(&vm_page_queue_anonymous, (vm_page_queue_entry_t)m)) { |
| 7902 | assert(m->vmp_q_state == VM_PAGE_ON_INACTIVE_INTERNAL_Q); |
| 7903 | |
| 7904 | next = (vm_page_t)VM_PAGE_UNPACK_PTR(m->vmp_pageq.next); |
| 7905 | discard = FALSE; |
| 7906 | if ((kIOHibernateModeDiscardCleanInactive & gIOHibernateMode) && |
| 7907 | hibernate_consider_discard(m, preflight)) { |
| 7908 | if (!preflight) { |
| 7909 | hibernate_page_bitset(page_list, TRUE, VM_PAGE_GET_PHYS_PAGE(m)); |
| 7910 | } |
| 7911 | if (m->vmp_dirty) { |
| 7912 | count_discard_purgeable++; |
| 7913 | } else { |
| 7914 | count_discard_inactive++; |
| 7915 | } |
| 7916 | discard = discard_all; |
| 7917 | } else { |
| 7918 | count_anonymous++; |
| 7919 | } |
| 7920 | count_wire--; |
| 7921 | if (!preflight) { |
| 7922 | hibernate_page_bitset(page_list_wired, TRUE, VM_PAGE_GET_PHYS_PAGE(m)); |
| 7923 | } |
| 7924 | if (discard) { |
| 7925 | hibernate_discard_page(m); |
| 7926 | } |
| 7927 | m = next; |
| 7928 | } |
| 7929 | |
| 7930 | m = (vm_page_t) vm_page_queue_first(&vm_page_queue_cleaned); |
| 7931 | while (m && !vm_page_queue_end(&vm_page_queue_cleaned, (vm_page_queue_entry_t)m)) { |
| 7932 | assert(m->vmp_q_state == VM_PAGE_ON_INACTIVE_CLEANED_Q); |
| 7933 | |
| 7934 | next = (vm_page_t)VM_PAGE_UNPACK_PTR(m->vmp_pageq.next); |
| 7935 | discard = FALSE; |
| 7936 | if ((kIOHibernateModeDiscardCleanInactive & gIOHibernateMode) && |
| 7937 | hibernate_consider_discard(m, preflight)) { |
| 7938 | if (!preflight) { |
| 7939 | hibernate_page_bitset(page_list, TRUE, VM_PAGE_GET_PHYS_PAGE(m)); |
| 7940 | } |
| 7941 | if (m->vmp_dirty) { |
| 7942 | count_discard_purgeable++; |
| 7943 | } else { |
| 7944 | count_discard_cleaned++; |
| 7945 | } |
| 7946 | discard = discard_all; |
| 7947 | } else { |
| 7948 | count_cleaned++; |
| 7949 | } |
| 7950 | count_wire--; |
| 7951 | if (!preflight) { |
| 7952 | hibernate_page_bitset(page_list_wired, TRUE, VM_PAGE_GET_PHYS_PAGE(m)); |
| 7953 | } |
| 7954 | if (discard) { |
| 7955 | hibernate_discard_page(m); |
| 7956 | } |
| 7957 | m = next; |
| 7958 | } |
| 7959 | |
| 7960 | m = (vm_page_t) vm_page_queue_first(&vm_page_queue_active); |
| 7961 | while (m && !vm_page_queue_end(&vm_page_queue_active, (vm_page_queue_entry_t)m)) { |
| 7962 | assert(m->vmp_q_state == VM_PAGE_ON_ACTIVE_Q); |
| 7963 | |
| 7964 | next = (vm_page_t)VM_PAGE_UNPACK_PTR(m->vmp_pageq.next); |
| 7965 | discard = FALSE; |
| 7966 | if ((kIOHibernateModeDiscardCleanActive & gIOHibernateMode) && |
| 7967 | hibernate_consider_discard(m, preflight)) { |
| 7968 | if (!preflight) { |
| 7969 | hibernate_page_bitset(page_list, TRUE, VM_PAGE_GET_PHYS_PAGE(m)); |
| 7970 | } |
| 7971 | if (m->vmp_dirty) { |
| 7972 | count_discard_purgeable++; |
| 7973 | } else { |
| 7974 | count_discard_active++; |
| 7975 | } |
| 7976 | discard = discard_all; |
| 7977 | } else { |
| 7978 | count_active++; |
| 7979 | } |
| 7980 | count_wire--; |
| 7981 | if (!preflight) { |
| 7982 | hibernate_page_bitset(page_list_wired, TRUE, VM_PAGE_GET_PHYS_PAGE(m)); |
| 7983 | } |
| 7984 | if (discard) { |
| 7985 | hibernate_discard_page(m); |
| 7986 | } |
| 7987 | m = next; |
| 7988 | } |
| 7989 | |
| 7990 | m = (vm_page_t) vm_page_queue_first(&vm_page_queue_inactive); |
| 7991 | while (m && !vm_page_queue_end(&vm_page_queue_inactive, (vm_page_queue_entry_t)m)) { |
| 7992 | assert(m->vmp_q_state == VM_PAGE_ON_INACTIVE_EXTERNAL_Q); |
| 7993 | |
| 7994 | next = (vm_page_t)VM_PAGE_UNPACK_PTR(m->vmp_pageq.next); |
| 7995 | discard = FALSE; |
| 7996 | if ((kIOHibernateModeDiscardCleanInactive & gIOHibernateMode) && |
| 7997 | hibernate_consider_discard(m, preflight)) { |
| 7998 | if (!preflight) { |
| 7999 | hibernate_page_bitset(page_list, TRUE, VM_PAGE_GET_PHYS_PAGE(m)); |
| 8000 | } |
| 8001 | if (m->vmp_dirty) { |
| 8002 | count_discard_purgeable++; |
| 8003 | } else { |
| 8004 | count_discard_inactive++; |
| 8005 | } |
| 8006 | discard = discard_all; |
| 8007 | } else { |
| 8008 | count_inactive++; |
| 8009 | } |
| 8010 | count_wire--; |
| 8011 | if (!preflight) { |
| 8012 | hibernate_page_bitset(page_list_wired, TRUE, VM_PAGE_GET_PHYS_PAGE(m)); |
| 8013 | } |
| 8014 | if (discard) { |
| 8015 | hibernate_discard_page(m); |
| 8016 | } |
| 8017 | m = next; |
| 8018 | } |
| 8019 | /* XXX FBDP TODO: secluded queue */ |
| 8020 | |
| 8021 | for (i = 0; i <= VM_PAGE_MAX_SPECULATIVE_AGE_Q; i++) { |
| 8022 | m = (vm_page_t) vm_page_queue_first(&vm_page_queue_speculative[i].age_q); |
| 8023 | while (m && !vm_page_queue_end(&vm_page_queue_speculative[i].age_q, (vm_page_queue_entry_t)m)) { |
| 8024 | assertf(m->vmp_q_state == VM_PAGE_ON_SPECULATIVE_Q, |
| 8025 | "Bad page: %p (0x%x:0x%x) on queue %d has state: %d (Discard: %d, Preflight: %d)" , |
| 8026 | m, m->vmp_pageq.next, m->vmp_pageq.prev, i, m->vmp_q_state, discard, preflight); |
| 8027 | |
| 8028 | next = (vm_page_t)VM_PAGE_UNPACK_PTR(m->vmp_pageq.next); |
| 8029 | discard = FALSE; |
| 8030 | if ((kIOHibernateModeDiscardCleanInactive & gIOHibernateMode) && |
| 8031 | hibernate_consider_discard(m, preflight)) { |
| 8032 | if (!preflight) { |
| 8033 | hibernate_page_bitset(page_list, TRUE, VM_PAGE_GET_PHYS_PAGE(m)); |
| 8034 | } |
| 8035 | count_discard_speculative++; |
| 8036 | discard = discard_all; |
| 8037 | } else { |
| 8038 | count_speculative++; |
| 8039 | } |
| 8040 | count_wire--; |
| 8041 | if (!preflight) { |
| 8042 | hibernate_page_bitset(page_list_wired, TRUE, VM_PAGE_GET_PHYS_PAGE(m)); |
| 8043 | } |
| 8044 | if (discard) { |
| 8045 | hibernate_discard_page(m); |
| 8046 | } |
| 8047 | m = next; |
| 8048 | } |
| 8049 | } |
| 8050 | |
| 8051 | vm_page_queue_iterate(&compressor_object->memq, m, vmp_listq) { |
| 8052 | assert(m->vmp_q_state == VM_PAGE_USED_BY_COMPRESSOR); |
| 8053 | |
| 8054 | count_compressor++; |
| 8055 | count_wire--; |
| 8056 | if (!preflight) { |
| 8057 | hibernate_page_bitset(page_list_wired, TRUE, VM_PAGE_GET_PHYS_PAGE(m)); |
| 8058 | } |
| 8059 | } |
| 8060 | |
| 8061 | |
| 8062 | if (preflight == FALSE && discard_all == TRUE) { |
| 8063 | KDBG(IOKDBG_CODE(DBG_HIBERNATE, 12) | DBG_FUNC_START); |
| 8064 | |
| 8065 | HIBLOG("hibernate_teardown started\n" ); |
| 8066 | count_discard_vm_struct_pages = hibernate_teardown_vm_structs(page_list, page_list_wired); |
| 8067 | HIBLOG("hibernate_teardown completed - discarded %d\n" , count_discard_vm_struct_pages); |
| 8068 | |
| 8069 | pages -= count_discard_vm_struct_pages; |
| 8070 | count_wire -= count_discard_vm_struct_pages; |
| 8071 | |
| 8072 | hibernate_stats.cd_vm_struct_pages_unneeded = count_discard_vm_struct_pages; |
| 8073 | |
| 8074 | KDBG(IOKDBG_CODE(DBG_HIBERNATE, 12) | DBG_FUNC_END); |
| 8075 | } |
| 8076 | |
| 8077 | if (!preflight) { |
| 8078 | // pull wired from hibernate_bitmap |
| 8079 | bitmap = &page_list->bank_bitmap[0]; |
| 8080 | bitmap_wired = &page_list_wired->bank_bitmap[0]; |
| 8081 | for (bank = 0; bank < page_list->bank_count; bank++) { |
| 8082 | for (i = 0; i < bitmap->bitmapwords; i++) { |
| 8083 | bitmap->bitmap[i] = bitmap->bitmap[i] | ~bitmap_wired->bitmap[i]; |
| 8084 | } |
| 8085 | bitmap = (hibernate_bitmap_t *)&bitmap->bitmap[bitmap->bitmapwords]; |
| 8086 | bitmap_wired = (hibernate_bitmap_t *) &bitmap_wired->bitmap[bitmap_wired->bitmapwords]; |
| 8087 | } |
| 8088 | } |
| 8089 | |
| 8090 | // machine dependent adjustments |
| 8091 | hibernate_page_list_setall_machine(page_list, page_list_wired, preflight, &pages); |
| 8092 | |
| 8093 | if (!preflight) { |
| 8094 | hibernate_stats.cd_count_wire = count_wire; |
| 8095 | hibernate_stats.cd_discarded = count_discard_active + count_discard_inactive + count_discard_purgeable + |
| 8096 | count_discard_speculative + count_discard_cleaned + count_discard_vm_struct_pages; |
| 8097 | } |
| 8098 | |
| 8099 | clock_get_uptime(&end); |
| 8100 | absolutetime_to_nanoseconds(end - start, &nsec); |
| 8101 | HIBLOG("hibernate_page_list_setall time: %qd ms\n" , nsec / 1000000ULL); |
| 8102 | |
| 8103 | HIBLOG("pages %d, wire %d, act %d, inact %d, cleaned %d spec %d, zf %d, throt %d, compr %d, xpmapped %d\n %s discard act %d inact %d purgeable %d spec %d cleaned %d retired %d\n" , |
| 8104 | pages, count_wire, count_active, count_inactive, count_cleaned, count_speculative, count_anonymous, count_throttled, count_compressor, hibernate_stats.cd_found_xpmapped, |
| 8105 | discard_all ? "did" : "could" , |
| 8106 | count_discard_active, count_discard_inactive, count_discard_purgeable, count_discard_speculative, count_discard_cleaned, count_retired); |
| 8107 | |
| 8108 | if (hibernate_stats.cd_skipped_xpmapped) { |
| 8109 | HIBLOG("WARNING: hibernate_page_list_setall skipped %d xpmapped pages\n" , hibernate_stats.cd_skipped_xpmapped); |
| 8110 | } |
| 8111 | |
| 8112 | *pagesOut = pages - count_discard_active - count_discard_inactive - count_discard_purgeable - count_discard_speculative - count_discard_cleaned - count_retired; |
| 8113 | |
| 8114 | if (preflight && will_discard) { |
| 8115 | *pagesOut -= count_compressor + count_throttled + count_anonymous + count_inactive + count_cleaned + count_speculative + count_active; |
| 8116 | /* |
| 8117 | * We try to keep max HIBERNATE_XPMAPPED_LIMIT pages around in the hibernation image |
| 8118 | * even if these are clean and so we need to size the hibernation image accordingly. |
| 8119 | * |
| 8120 | * NB: We have to assume all HIBERNATE_XPMAPPED_LIMIT pages might show up because 'dirty' |
| 8121 | * xpmapped pages aren't distinguishable from other 'dirty' pages in preflight. So we might |
| 8122 | * only see part of the xpmapped pages if we look at 'cd_found_xpmapped' which solely tracks |
| 8123 | * clean xpmapped pages. |
| 8124 | * |
| 8125 | * Since these pages are all cleaned by the time we are in the post-preflight phase, we might |
| 8126 | * see a much larger number in 'cd_found_xpmapped' now than we did in the preflight phase |
| 8127 | */ |
| 8128 | *pagesOut += HIBERNATE_XPMAPPED_LIMIT; |
| 8129 | } |
| 8130 | |
| 8131 | hibernation_vmqueues_inspection = FALSE; |
| 8132 | |
| 8133 | #if MACH_ASSERT || DEBUG |
| 8134 | if (!preflight) { |
| 8135 | if (vm_page_local_q) { |
| 8136 | zpercpu_foreach(lq, vm_page_local_q) { |
| 8137 | VPL_UNLOCK(&lq->vpl_lock); |
| 8138 | } |
| 8139 | } |
| 8140 | vm_page_unlock_queues(); |
| 8141 | } |
| 8142 | #endif /* MACH_ASSERT || DEBUG */ |
| 8143 | |
| 8144 | if (preflight) { |
| 8145 | vm_free_page_unlock(); |
| 8146 | vm_page_unlock_queues(); |
| 8147 | vm_object_unlock(compressor_object); |
| 8148 | } |
| 8149 | |
| 8150 | KERNEL_DEBUG_CONSTANT(IOKDBG_CODE(DBG_HIBERNATE, 8) | DBG_FUNC_END, count_wire, *pagesOut, 0, 0, 0); |
| 8151 | } |
| 8152 | |
| 8153 | void |
| 8154 | hibernate_page_list_discard(hibernate_page_list_t * page_list) |
| 8155 | { |
| 8156 | uint64_t start, end, nsec; |
| 8157 | vm_page_t m; |
| 8158 | vm_page_t next; |
| 8159 | uint32_t i; |
| 8160 | uint32_t count_discard_active = 0; |
| 8161 | uint32_t count_discard_inactive = 0; |
| 8162 | uint32_t count_discard_purgeable = 0; |
| 8163 | uint32_t count_discard_cleaned = 0; |
| 8164 | uint32_t count_discard_speculative = 0; |
| 8165 | |
| 8166 | |
| 8167 | #if MACH_ASSERT || DEBUG |
| 8168 | vm_page_lock_queues(); |
| 8169 | if (vm_page_local_q) { |
| 8170 | zpercpu_foreach(lq, vm_page_local_q) { |
| 8171 | VPL_LOCK(&lq->vpl_lock); |
| 8172 | } |
| 8173 | } |
| 8174 | #endif /* MACH_ASSERT || DEBUG */ |
| 8175 | |
| 8176 | clock_get_uptime(&start); |
| 8177 | |
| 8178 | m = (vm_page_t) vm_page_queue_first(&vm_page_queue_anonymous); |
| 8179 | while (m && !vm_page_queue_end(&vm_page_queue_anonymous, (vm_page_queue_entry_t)m)) { |
| 8180 | assert(m->vmp_q_state == VM_PAGE_ON_INACTIVE_INTERNAL_Q); |
| 8181 | |
| 8182 | next = (vm_page_t) VM_PAGE_UNPACK_PTR(m->vmp_pageq.next); |
| 8183 | if (hibernate_page_bittst(page_list, VM_PAGE_GET_PHYS_PAGE(m))) { |
| 8184 | if (m->vmp_dirty) { |
| 8185 | count_discard_purgeable++; |
| 8186 | } else { |
| 8187 | count_discard_inactive++; |
| 8188 | } |
| 8189 | hibernate_discard_page(m); |
| 8190 | } |
| 8191 | m = next; |
| 8192 | } |
| 8193 | |
| 8194 | for (i = 0; i <= VM_PAGE_MAX_SPECULATIVE_AGE_Q; i++) { |
| 8195 | m = (vm_page_t) vm_page_queue_first(&vm_page_queue_speculative[i].age_q); |
| 8196 | while (m && !vm_page_queue_end(&vm_page_queue_speculative[i].age_q, (vm_page_queue_entry_t)m)) { |
| 8197 | assert(m->vmp_q_state == VM_PAGE_ON_SPECULATIVE_Q); |
| 8198 | |
| 8199 | next = (vm_page_t) VM_PAGE_UNPACK_PTR(m->vmp_pageq.next); |
| 8200 | if (hibernate_page_bittst(page_list, VM_PAGE_GET_PHYS_PAGE(m))) { |
| 8201 | count_discard_speculative++; |
| 8202 | hibernate_discard_page(m); |
| 8203 | } |
| 8204 | m = next; |
| 8205 | } |
| 8206 | } |
| 8207 | |
| 8208 | m = (vm_page_t) vm_page_queue_first(&vm_page_queue_inactive); |
| 8209 | while (m && !vm_page_queue_end(&vm_page_queue_inactive, (vm_page_queue_entry_t)m)) { |
| 8210 | assert(m->vmp_q_state == VM_PAGE_ON_INACTIVE_EXTERNAL_Q); |
| 8211 | |
| 8212 | next = (vm_page_t) VM_PAGE_UNPACK_PTR(m->vmp_pageq.next); |
| 8213 | if (hibernate_page_bittst(page_list, VM_PAGE_GET_PHYS_PAGE(m))) { |
| 8214 | if (m->vmp_dirty) { |
| 8215 | count_discard_purgeable++; |
| 8216 | } else { |
| 8217 | count_discard_inactive++; |
| 8218 | } |
| 8219 | hibernate_discard_page(m); |
| 8220 | } |
| 8221 | m = next; |
| 8222 | } |
| 8223 | /* XXX FBDP TODO: secluded queue */ |
| 8224 | |
| 8225 | m = (vm_page_t) vm_page_queue_first(&vm_page_queue_active); |
| 8226 | while (m && !vm_page_queue_end(&vm_page_queue_active, (vm_page_queue_entry_t)m)) { |
| 8227 | assert(m->vmp_q_state == VM_PAGE_ON_ACTIVE_Q); |
| 8228 | |
| 8229 | next = (vm_page_t) VM_PAGE_UNPACK_PTR(m->vmp_pageq.next); |
| 8230 | if (hibernate_page_bittst(page_list, VM_PAGE_GET_PHYS_PAGE(m))) { |
| 8231 | if (m->vmp_dirty) { |
| 8232 | count_discard_purgeable++; |
| 8233 | } else { |
| 8234 | count_discard_active++; |
| 8235 | } |
| 8236 | hibernate_discard_page(m); |
| 8237 | } |
| 8238 | m = next; |
| 8239 | } |
| 8240 | |
| 8241 | m = (vm_page_t) vm_page_queue_first(&vm_page_queue_cleaned); |
| 8242 | while (m && !vm_page_queue_end(&vm_page_queue_cleaned, (vm_page_queue_entry_t)m)) { |
| 8243 | assert(m->vmp_q_state == VM_PAGE_ON_INACTIVE_CLEANED_Q); |
| 8244 | |
| 8245 | next = (vm_page_t) VM_PAGE_UNPACK_PTR(m->vmp_pageq.next); |
| 8246 | if (hibernate_page_bittst(page_list, VM_PAGE_GET_PHYS_PAGE(m))) { |
| 8247 | if (m->vmp_dirty) { |
| 8248 | count_discard_purgeable++; |
| 8249 | } else { |
| 8250 | count_discard_cleaned++; |
| 8251 | } |
| 8252 | hibernate_discard_page(m); |
| 8253 | } |
| 8254 | m = next; |
| 8255 | } |
| 8256 | |
| 8257 | #if MACH_ASSERT || DEBUG |
| 8258 | if (vm_page_local_q) { |
| 8259 | zpercpu_foreach(lq, vm_page_local_q) { |
| 8260 | VPL_UNLOCK(&lq->vpl_lock); |
| 8261 | } |
| 8262 | } |
| 8263 | vm_page_unlock_queues(); |
| 8264 | #endif /* MACH_ASSERT || DEBUG */ |
| 8265 | |
| 8266 | clock_get_uptime(&end); |
| 8267 | absolutetime_to_nanoseconds(end - start, &nsec); |
| 8268 | HIBLOG("hibernate_page_list_discard time: %qd ms, discarded act %d inact %d purgeable %d spec %d cleaned %d\n" , |
| 8269 | nsec / 1000000ULL, |
| 8270 | count_discard_active, count_discard_inactive, count_discard_purgeable, count_discard_speculative, count_discard_cleaned); |
| 8271 | } |
| 8272 | |
| 8273 | boolean_t hibernate_paddr_map_inited = FALSE; |
| 8274 | unsigned int hibernate_teardown_last_valid_compact_indx = -1; |
| 8275 | vm_page_t hibernate_rebuild_hash_list = NULL; |
| 8276 | |
| 8277 | unsigned int hibernate_teardown_found_tabled_pages = 0; |
| 8278 | unsigned int hibernate_teardown_found_created_pages = 0; |
| 8279 | unsigned int hibernate_teardown_found_free_pages = 0; |
| 8280 | unsigned int hibernate_teardown_vm_page_free_count; |
| 8281 | |
| 8282 | |
| 8283 | struct ppnum_mapping { |
| 8284 | struct ppnum_mapping *ppnm_next; |
| 8285 | ppnum_t ppnm_base_paddr; |
| 8286 | unsigned int ppnm_sindx; |
| 8287 | unsigned int ppnm_eindx; |
| 8288 | }; |
| 8289 | |
| 8290 | struct ppnum_mapping *ppnm_head; |
| 8291 | struct ppnum_mapping *ppnm_last_found = NULL; |
| 8292 | |
| 8293 | |
| 8294 | void |
| 8295 | hibernate_create_paddr_map(void) |
| 8296 | { |
| 8297 | unsigned int i; |
| 8298 | ppnum_t next_ppnum_in_run = 0; |
| 8299 | struct ppnum_mapping *ppnm = NULL; |
| 8300 | |
| 8301 | if (hibernate_paddr_map_inited == FALSE) { |
| 8302 | for (i = 0; i < vm_pages_count; i++) { |
| 8303 | if (ppnm) { |
| 8304 | ppnm->ppnm_eindx = i; |
| 8305 | } |
| 8306 | |
| 8307 | if (ppnm == NULL || VM_PAGE_GET_PHYS_PAGE(&vm_pages[i]) != next_ppnum_in_run) { |
| 8308 | ppnm = zalloc_permanent_type(struct ppnum_mapping); |
| 8309 | |
| 8310 | ppnm->ppnm_next = ppnm_head; |
| 8311 | ppnm_head = ppnm; |
| 8312 | |
| 8313 | ppnm->ppnm_sindx = i; |
| 8314 | ppnm->ppnm_base_paddr = VM_PAGE_GET_PHYS_PAGE(&vm_pages[i]); |
| 8315 | } |
| 8316 | next_ppnum_in_run = VM_PAGE_GET_PHYS_PAGE(&vm_pages[i]) + 1; |
| 8317 | } |
| 8318 | ppnm->ppnm_eindx = vm_pages_count; |
| 8319 | |
| 8320 | hibernate_paddr_map_inited = TRUE; |
| 8321 | } |
| 8322 | } |
| 8323 | |
| 8324 | ppnum_t |
| 8325 | hibernate_lookup_paddr(unsigned int indx) |
| 8326 | { |
| 8327 | struct ppnum_mapping *ppnm = NULL; |
| 8328 | |
| 8329 | ppnm = ppnm_last_found; |
| 8330 | |
| 8331 | if (ppnm) { |
| 8332 | if (indx >= ppnm->ppnm_sindx && indx < ppnm->ppnm_eindx) { |
| 8333 | goto done; |
| 8334 | } |
| 8335 | } |
| 8336 | for (ppnm = ppnm_head; ppnm; ppnm = ppnm->ppnm_next) { |
| 8337 | if (indx >= ppnm->ppnm_sindx && indx < ppnm->ppnm_eindx) { |
| 8338 | ppnm_last_found = ppnm; |
| 8339 | break; |
| 8340 | } |
| 8341 | } |
| 8342 | if (ppnm == NULL) { |
| 8343 | panic("hibernate_lookup_paddr of %d failed" , indx); |
| 8344 | } |
| 8345 | done: |
| 8346 | return ppnm->ppnm_base_paddr + (indx - ppnm->ppnm_sindx); |
| 8347 | } |
| 8348 | |
| 8349 | |
| 8350 | uint32_t |
| 8351 | hibernate_mark_as_unneeded(addr64_t saddr, addr64_t eaddr, hibernate_page_list_t *page_list, hibernate_page_list_t *page_list_wired) |
| 8352 | { |
| 8353 | addr64_t saddr_aligned; |
| 8354 | addr64_t eaddr_aligned; |
| 8355 | addr64_t addr; |
| 8356 | ppnum_t paddr; |
| 8357 | unsigned int mark_as_unneeded_pages = 0; |
| 8358 | |
| 8359 | saddr_aligned = (saddr + PAGE_MASK_64) & ~PAGE_MASK_64; |
| 8360 | eaddr_aligned = eaddr & ~PAGE_MASK_64; |
| 8361 | |
| 8362 | for (addr = saddr_aligned; addr < eaddr_aligned; addr += PAGE_SIZE_64) { |
| 8363 | paddr = pmap_find_phys(kernel_pmap, addr); |
| 8364 | |
| 8365 | assert(paddr); |
| 8366 | |
| 8367 | hibernate_page_bitset(page_list, TRUE, paddr); |
| 8368 | hibernate_page_bitset(page_list_wired, TRUE, paddr); |
| 8369 | |
| 8370 | mark_as_unneeded_pages++; |
| 8371 | } |
| 8372 | return mark_as_unneeded_pages; |
| 8373 | } |
| 8374 | |
| 8375 | |
| 8376 | void |
| 8377 | hibernate_hash_insert_page(vm_page_t mem) |
| 8378 | { |
| 8379 | vm_page_bucket_t *bucket; |
| 8380 | int hash_id; |
| 8381 | vm_object_t m_object; |
| 8382 | |
| 8383 | m_object = VM_PAGE_OBJECT(mem); |
| 8384 | |
| 8385 | assert(mem->vmp_hashed); |
| 8386 | assert(m_object); |
| 8387 | assert(mem->vmp_offset != (vm_object_offset_t) -1); |
| 8388 | |
| 8389 | /* |
| 8390 | * Insert it into the object_object/offset hash table |
| 8391 | */ |
| 8392 | hash_id = vm_page_hash(m_object, mem->vmp_offset); |
| 8393 | bucket = &vm_page_buckets[hash_id]; |
| 8394 | |
| 8395 | mem->vmp_next_m = bucket->page_list; |
| 8396 | bucket->page_list = VM_PAGE_PACK_PTR(mem); |
| 8397 | } |
| 8398 | |
| 8399 | |
| 8400 | void |
| 8401 | hibernate_free_range(int sindx, int eindx) |
| 8402 | { |
| 8403 | vm_page_t mem; |
| 8404 | unsigned int color; |
| 8405 | |
| 8406 | while (sindx < eindx) { |
| 8407 | mem = &vm_pages[sindx]; |
| 8408 | |
| 8409 | vm_page_init(mem, hibernate_lookup_paddr(sindx), FALSE); |
| 8410 | |
| 8411 | mem->vmp_lopage = FALSE; |
| 8412 | mem->vmp_q_state = VM_PAGE_ON_FREE_Q; |
| 8413 | |
| 8414 | color = VM_PAGE_GET_COLOR(mem); |
| 8415 | #if defined(__x86_64__) |
| 8416 | vm_page_queue_enter_clump(&vm_page_queue_free[color].qhead, mem); |
| 8417 | #else |
| 8418 | vm_page_queue_enter(&vm_page_queue_free[color].qhead, mem, vmp_pageq); |
| 8419 | #endif |
| 8420 | vm_page_free_count++; |
| 8421 | |
| 8422 | sindx++; |
| 8423 | } |
| 8424 | } |
| 8425 | |
| 8426 | void |
| 8427 | hibernate_rebuild_vm_structs(void) |
| 8428 | { |
| 8429 | int i, cindx, sindx, eindx; |
| 8430 | vm_page_t mem, tmem, mem_next; |
| 8431 | AbsoluteTime startTime, endTime; |
| 8432 | uint64_t nsec; |
| 8433 | |
| 8434 | if (hibernate_rebuild_needed == FALSE) { |
| 8435 | return; |
| 8436 | } |
| 8437 | |
| 8438 | KDBG(IOKDBG_CODE(DBG_HIBERNATE, 13) | DBG_FUNC_START); |
| 8439 | HIBLOG("hibernate_rebuild started\n" ); |
| 8440 | |
| 8441 | clock_get_uptime(&startTime); |
| 8442 | |
| 8443 | pal_hib_rebuild_pmap_structs(); |
| 8444 | |
| 8445 | bzero(&vm_page_buckets[0], vm_page_bucket_count * sizeof(vm_page_bucket_t)); |
| 8446 | eindx = vm_pages_count; |
| 8447 | |
| 8448 | /* |
| 8449 | * Mark all the vm_pages[] that have not been initialized yet as being |
| 8450 | * transient. This is needed to ensure that buddy page search is corrrect. |
| 8451 | * Without this random data in these vm_pages[] can trip the buddy search |
| 8452 | */ |
| 8453 | for (i = hibernate_teardown_last_valid_compact_indx + 1; i < eindx; ++i) { |
| 8454 | vm_pages[i].vmp_q_state = VM_PAGE_NOT_ON_Q; |
| 8455 | } |
| 8456 | |
| 8457 | for (cindx = hibernate_teardown_last_valid_compact_indx; cindx >= 0; cindx--) { |
| 8458 | mem = &vm_pages[cindx]; |
| 8459 | assert(mem->vmp_q_state != VM_PAGE_ON_FREE_Q); |
| 8460 | /* |
| 8461 | * hibernate_teardown_vm_structs leaves the location where |
| 8462 | * this vm_page_t must be located in "next". |
| 8463 | */ |
| 8464 | tmem = (vm_page_t)(VM_PAGE_UNPACK_PTR(mem->vmp_next_m)); |
| 8465 | mem->vmp_next_m = VM_PAGE_PACK_PTR(NULL); |
| 8466 | |
| 8467 | sindx = (int)(tmem - &vm_pages[0]); |
| 8468 | |
| 8469 | if (mem != tmem) { |
| 8470 | /* |
| 8471 | * this vm_page_t was moved by hibernate_teardown_vm_structs, |
| 8472 | * so move it back to its real location |
| 8473 | */ |
| 8474 | *tmem = *mem; |
| 8475 | mem = tmem; |
| 8476 | } |
| 8477 | if (mem->vmp_hashed) { |
| 8478 | hibernate_hash_insert_page(mem); |
| 8479 | } |
| 8480 | /* |
| 8481 | * the 'hole' between this vm_page_t and the previous |
| 8482 | * vm_page_t we moved needs to be initialized as |
| 8483 | * a range of free vm_page_t's |
| 8484 | */ |
| 8485 | hibernate_free_range(sindx + 1, eindx); |
| 8486 | |
| 8487 | eindx = sindx; |
| 8488 | } |
| 8489 | if (sindx) { |
| 8490 | hibernate_free_range(0, sindx); |
| 8491 | } |
| 8492 | |
| 8493 | assert(vm_page_free_count == hibernate_teardown_vm_page_free_count); |
| 8494 | |
| 8495 | /* |
| 8496 | * process the list of vm_page_t's that were entered in the hash, |
| 8497 | * but were not located in the vm_pages arrary... these are |
| 8498 | * vm_page_t's that were created on the fly (i.e. fictitious) |
| 8499 | */ |
| 8500 | for (mem = hibernate_rebuild_hash_list; mem; mem = mem_next) { |
| 8501 | mem_next = (vm_page_t)(VM_PAGE_UNPACK_PTR(mem->vmp_next_m)); |
| 8502 | |
| 8503 | mem->vmp_next_m = 0; |
| 8504 | hibernate_hash_insert_page(mem); |
| 8505 | } |
| 8506 | hibernate_rebuild_hash_list = NULL; |
| 8507 | |
| 8508 | clock_get_uptime(&endTime); |
| 8509 | SUB_ABSOLUTETIME(&endTime, &startTime); |
| 8510 | absolutetime_to_nanoseconds(endTime, &nsec); |
| 8511 | |
| 8512 | HIBLOG("hibernate_rebuild completed - took %qd msecs\n" , nsec / 1000000ULL); |
| 8513 | |
| 8514 | hibernate_rebuild_needed = FALSE; |
| 8515 | |
| 8516 | KDBG(IOKDBG_CODE(DBG_HIBERNATE, 13) | DBG_FUNC_END); |
| 8517 | } |
| 8518 | |
| 8519 | uint32_t |
| 8520 | hibernate_teardown_vm_structs(hibernate_page_list_t *page_list, hibernate_page_list_t *page_list_wired) |
| 8521 | { |
| 8522 | unsigned int i; |
| 8523 | unsigned int compact_target_indx; |
| 8524 | vm_page_t mem, mem_next; |
| 8525 | vm_page_bucket_t *bucket; |
| 8526 | unsigned int mark_as_unneeded_pages = 0; |
| 8527 | unsigned int unneeded_vm_page_bucket_pages = 0; |
| 8528 | unsigned int unneeded_vm_pages_pages = 0; |
| 8529 | unsigned int unneeded_pmap_pages = 0; |
| 8530 | addr64_t start_of_unneeded = 0; |
| 8531 | addr64_t end_of_unneeded = 0; |
| 8532 | |
| 8533 | |
| 8534 | if (hibernate_should_abort()) { |
| 8535 | return 0; |
| 8536 | } |
| 8537 | |
| 8538 | hibernate_rebuild_needed = TRUE; |
| 8539 | |
| 8540 | HIBLOG("hibernate_teardown: wired_pages %d, free_pages %d, active_pages %d, inactive_pages %d, speculative_pages %d, cleaned_pages %d, compressor_pages %d\n" , |
| 8541 | vm_page_wire_count, vm_page_free_count, vm_page_active_count, vm_page_inactive_count, vm_page_speculative_count, |
| 8542 | vm_page_cleaned_count, compressor_object->resident_page_count); |
| 8543 | |
| 8544 | for (i = 0; i < vm_page_bucket_count; i++) { |
| 8545 | bucket = &vm_page_buckets[i]; |
| 8546 | |
| 8547 | for (mem = (vm_page_t)(VM_PAGE_UNPACK_PTR(bucket->page_list)); mem != VM_PAGE_NULL; mem = mem_next) { |
| 8548 | assert(mem->vmp_hashed); |
| 8549 | |
| 8550 | mem_next = (vm_page_t)(VM_PAGE_UNPACK_PTR(mem->vmp_next_m)); |
| 8551 | |
| 8552 | if (mem < &vm_pages[0] || mem >= &vm_pages[vm_pages_count]) { |
| 8553 | mem->vmp_next_m = VM_PAGE_PACK_PTR(hibernate_rebuild_hash_list); |
| 8554 | hibernate_rebuild_hash_list = mem; |
| 8555 | } |
| 8556 | } |
| 8557 | } |
| 8558 | unneeded_vm_page_bucket_pages = hibernate_mark_as_unneeded((addr64_t)&vm_page_buckets[0], (addr64_t)&vm_page_buckets[vm_page_bucket_count], page_list, page_list_wired); |
| 8559 | mark_as_unneeded_pages += unneeded_vm_page_bucket_pages; |
| 8560 | |
| 8561 | hibernate_teardown_vm_page_free_count = vm_page_free_count; |
| 8562 | |
| 8563 | compact_target_indx = 0; |
| 8564 | |
| 8565 | for (i = 0; i < vm_pages_count; i++) { |
| 8566 | mem = &vm_pages[i]; |
| 8567 | |
| 8568 | if (mem->vmp_q_state == VM_PAGE_ON_FREE_Q) { |
| 8569 | unsigned int color; |
| 8570 | |
| 8571 | assert(mem->vmp_busy); |
| 8572 | assert(!mem->vmp_lopage); |
| 8573 | |
| 8574 | color = VM_PAGE_GET_COLOR(mem); |
| 8575 | |
| 8576 | vm_page_queue_remove(&vm_page_queue_free[color].qhead, mem, vmp_pageq); |
| 8577 | |
| 8578 | VM_PAGE_ZERO_PAGEQ_ENTRY(mem); |
| 8579 | |
| 8580 | vm_page_free_count--; |
| 8581 | |
| 8582 | hibernate_teardown_found_free_pages++; |
| 8583 | |
| 8584 | if (vm_pages[compact_target_indx].vmp_q_state != VM_PAGE_ON_FREE_Q) { |
| 8585 | compact_target_indx = i; |
| 8586 | } |
| 8587 | } else { |
| 8588 | /* |
| 8589 | * record this vm_page_t's original location |
| 8590 | * we need this even if it doesn't get moved |
| 8591 | * as an indicator to the rebuild function that |
| 8592 | * we don't have to move it |
| 8593 | */ |
| 8594 | mem->vmp_next_m = VM_PAGE_PACK_PTR(mem); |
| 8595 | |
| 8596 | if (vm_pages[compact_target_indx].vmp_q_state == VM_PAGE_ON_FREE_Q) { |
| 8597 | /* |
| 8598 | * we've got a hole to fill, so |
| 8599 | * move this vm_page_t to it's new home |
| 8600 | */ |
| 8601 | vm_pages[compact_target_indx] = *mem; |
| 8602 | mem->vmp_q_state = VM_PAGE_ON_FREE_Q; |
| 8603 | |
| 8604 | hibernate_teardown_last_valid_compact_indx = compact_target_indx; |
| 8605 | compact_target_indx++; |
| 8606 | } else { |
| 8607 | hibernate_teardown_last_valid_compact_indx = i; |
| 8608 | } |
| 8609 | } |
| 8610 | } |
| 8611 | unneeded_vm_pages_pages = hibernate_mark_as_unneeded((addr64_t)&vm_pages[hibernate_teardown_last_valid_compact_indx + 1], |
| 8612 | (addr64_t)&vm_pages[vm_pages_count - 1], page_list, page_list_wired); |
| 8613 | mark_as_unneeded_pages += unneeded_vm_pages_pages; |
| 8614 | |
| 8615 | pal_hib_teardown_pmap_structs(&start_of_unneeded, &end_of_unneeded); |
| 8616 | |
| 8617 | if (start_of_unneeded) { |
| 8618 | unneeded_pmap_pages = hibernate_mark_as_unneeded(start_of_unneeded, end_of_unneeded, page_list, page_list_wired); |
| 8619 | mark_as_unneeded_pages += unneeded_pmap_pages; |
| 8620 | } |
| 8621 | HIBLOG("hibernate_teardown: mark_as_unneeded_pages %d, %d, %d\n" , unneeded_vm_page_bucket_pages, unneeded_vm_pages_pages, unneeded_pmap_pages); |
| 8622 | |
| 8623 | return mark_as_unneeded_pages; |
| 8624 | } |
| 8625 | |
| 8626 | |
| 8627 | #endif /* HIBERNATION */ |
| 8628 | |
| 8629 | /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ |
| 8630 | |
| 8631 | #include <mach_vm_debug.h> |
| 8632 | #if MACH_VM_DEBUG |
| 8633 | |
| 8634 | #include <mach_debug/hash_info.h> |
| 8635 | #include <vm/vm_debug.h> |
| 8636 | |
| 8637 | /* |
| 8638 | * Routine: vm_page_info |
| 8639 | * Purpose: |
| 8640 | * Return information about the global VP table. |
| 8641 | * Fills the buffer with as much information as possible |
| 8642 | * and returns the desired size of the buffer. |
| 8643 | * Conditions: |
| 8644 | * Nothing locked. The caller should provide |
| 8645 | * possibly-pageable memory. |
| 8646 | */ |
| 8647 | |
| 8648 | unsigned int |
| 8649 | vm_page_info( |
| 8650 | hash_info_bucket_t *info, |
| 8651 | unsigned int count) |
| 8652 | { |
| 8653 | unsigned int i; |
| 8654 | lck_spin_t *bucket_lock; |
| 8655 | |
| 8656 | if (vm_page_bucket_count < count) { |
| 8657 | count = vm_page_bucket_count; |
| 8658 | } |
| 8659 | |
| 8660 | for (i = 0; i < count; i++) { |
| 8661 | vm_page_bucket_t *bucket = &vm_page_buckets[i]; |
| 8662 | unsigned int bucket_count = 0; |
| 8663 | vm_page_t m; |
| 8664 | |
| 8665 | bucket_lock = &vm_page_bucket_locks[i / BUCKETS_PER_LOCK]; |
| 8666 | lck_spin_lock_grp(bucket_lock, &vm_page_lck_grp_bucket); |
| 8667 | |
| 8668 | for (m = (vm_page_t)(VM_PAGE_UNPACK_PTR(bucket->page_list)); |
| 8669 | m != VM_PAGE_NULL; |
| 8670 | m = (vm_page_t)(VM_PAGE_UNPACK_PTR(m->vmp_next_m))) { |
| 8671 | bucket_count++; |
| 8672 | } |
| 8673 | |
| 8674 | lck_spin_unlock(bucket_lock); |
| 8675 | |
| 8676 | /* don't touch pageable memory while holding locks */ |
| 8677 | info[i].hib_count = bucket_count; |
| 8678 | } |
| 8679 | |
| 8680 | return vm_page_bucket_count; |
| 8681 | } |
| 8682 | #endif /* MACH_VM_DEBUG */ |
| 8683 | |
| 8684 | #if VM_PAGE_BUCKETS_CHECK |
| 8685 | void |
| 8686 | vm_page_buckets_check(void) |
| 8687 | { |
| 8688 | unsigned int i; |
| 8689 | vm_page_t p; |
| 8690 | unsigned int p_hash; |
| 8691 | vm_page_bucket_t *bucket; |
| 8692 | lck_spin_t *bucket_lock; |
| 8693 | |
| 8694 | if (!vm_page_buckets_check_ready) { |
| 8695 | return; |
| 8696 | } |
| 8697 | |
| 8698 | #if HIBERNATION |
| 8699 | if (hibernate_rebuild_needed || |
| 8700 | hibernate_rebuild_hash_list) { |
| 8701 | panic("BUCKET_CHECK: hibernation in progress: " |
| 8702 | "rebuild_needed=%d rebuild_hash_list=%p\n" , |
| 8703 | hibernate_rebuild_needed, |
| 8704 | hibernate_rebuild_hash_list); |
| 8705 | } |
| 8706 | #endif /* HIBERNATION */ |
| 8707 | |
| 8708 | #if VM_PAGE_FAKE_BUCKETS |
| 8709 | char *cp; |
| 8710 | for (cp = (char *) vm_page_fake_buckets_start; |
| 8711 | cp < (char *) vm_page_fake_buckets_end; |
| 8712 | cp++) { |
| 8713 | if (*cp != 0x5a) { |
| 8714 | panic("BUCKET_CHECK: corruption at %p in fake buckets " |
| 8715 | "[0x%llx:0x%llx]\n" , |
| 8716 | cp, |
| 8717 | (uint64_t) vm_page_fake_buckets_start, |
| 8718 | (uint64_t) vm_page_fake_buckets_end); |
| 8719 | } |
| 8720 | } |
| 8721 | #endif /* VM_PAGE_FAKE_BUCKETS */ |
| 8722 | |
| 8723 | for (i = 0; i < vm_page_bucket_count; i++) { |
| 8724 | vm_object_t p_object; |
| 8725 | |
| 8726 | bucket = &vm_page_buckets[i]; |
| 8727 | if (!bucket->page_list) { |
| 8728 | continue; |
| 8729 | } |
| 8730 | |
| 8731 | bucket_lock = &vm_page_bucket_locks[i / BUCKETS_PER_LOCK]; |
| 8732 | lck_spin_lock_grp(bucket_lock, &vm_page_lck_grp_bucket); |
| 8733 | p = (vm_page_t)(VM_PAGE_UNPACK_PTR(bucket->page_list)); |
| 8734 | |
| 8735 | while (p != VM_PAGE_NULL) { |
| 8736 | p_object = VM_PAGE_OBJECT(p); |
| 8737 | |
| 8738 | if (!p->vmp_hashed) { |
| 8739 | panic("BUCKET_CHECK: page %p (%p,0x%llx) " |
| 8740 | "hash %d in bucket %d at %p " |
| 8741 | "is not hashed\n" , |
| 8742 | p, p_object, p->vmp_offset, |
| 8743 | p_hash, i, bucket); |
| 8744 | } |
| 8745 | p_hash = vm_page_hash(p_object, p->vmp_offset); |
| 8746 | if (p_hash != i) { |
| 8747 | panic("BUCKET_CHECK: corruption in bucket %d " |
| 8748 | "at %p: page %p object %p offset 0x%llx " |
| 8749 | "hash %d\n" , |
| 8750 | i, bucket, p, p_object, p->vmp_offset, |
| 8751 | p_hash); |
| 8752 | } |
| 8753 | p = (vm_page_t)(VM_PAGE_UNPACK_PTR(p->vmp_next_m)); |
| 8754 | } |
| 8755 | lck_spin_unlock(bucket_lock); |
| 8756 | } |
| 8757 | |
| 8758 | // printf("BUCKET_CHECK: checked buckets\n"); |
| 8759 | } |
| 8760 | #endif /* VM_PAGE_BUCKETS_CHECK */ |
| 8761 | |
| 8762 | /* |
| 8763 | * 'vm_fault_enter' will place newly created pages (zero-fill and COW) onto the |
| 8764 | * local queues if they exist... its the only spot in the system where we add pages |
| 8765 | * to those queues... once on those queues, those pages can only move to one of the |
| 8766 | * global page queues or the free queues... they NEVER move from local q to local q. |
| 8767 | * the 'local' state is stable when vm_page_queues_remove is called since we're behind |
| 8768 | * the global vm_page_queue_lock at this point... we still need to take the local lock |
| 8769 | * in case this operation is being run on a different CPU then the local queue's identity, |
| 8770 | * but we don't have to worry about the page moving to a global queue or becoming wired |
| 8771 | * while we're grabbing the local lock since those operations would require the global |
| 8772 | * vm_page_queue_lock to be held, and we already own it. |
| 8773 | * |
| 8774 | * this is why its safe to utilze the wire_count field in the vm_page_t as the local_id... |
| 8775 | * 'wired' and local are ALWAYS mutually exclusive conditions. |
| 8776 | */ |
| 8777 | |
| 8778 | void |
| 8779 | vm_page_queues_remove(vm_page_t mem, boolean_t remove_from_specialq) |
| 8780 | { |
| 8781 | boolean_t was_pageable = TRUE; |
| 8782 | vm_object_t m_object; |
| 8783 | |
| 8784 | m_object = VM_PAGE_OBJECT(mem); |
| 8785 | |
| 8786 | LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED); |
| 8787 | |
| 8788 | if (mem->vmp_q_state == VM_PAGE_NOT_ON_Q) { |
| 8789 | assert(mem->vmp_pageq.next == 0 && mem->vmp_pageq.prev == 0); |
| 8790 | if (remove_from_specialq == TRUE) { |
| 8791 | vm_page_remove_from_specialq(mem); |
| 8792 | } |
| 8793 | /*if (mem->vmp_on_specialq != VM_PAGE_SPECIAL_Q_EMPTY) { |
| 8794 | * assert(mem->vmp_specialq.next != 0); |
| 8795 | * assert(mem->vmp_specialq.prev != 0); |
| 8796 | * } else {*/ |
| 8797 | if (mem->vmp_on_specialq == VM_PAGE_SPECIAL_Q_EMPTY) { |
| 8798 | assert(mem->vmp_specialq.next == 0); |
| 8799 | assert(mem->vmp_specialq.prev == 0); |
| 8800 | } |
| 8801 | return; |
| 8802 | } |
| 8803 | |
| 8804 | if (mem->vmp_q_state == VM_PAGE_USED_BY_COMPRESSOR) { |
| 8805 | assert(mem->vmp_pageq.next == 0 && mem->vmp_pageq.prev == 0); |
| 8806 | assert(mem->vmp_specialq.next == 0 && |
| 8807 | mem->vmp_specialq.prev == 0 && |
| 8808 | mem->vmp_on_specialq == VM_PAGE_SPECIAL_Q_EMPTY); |
| 8809 | return; |
| 8810 | } |
| 8811 | if (mem->vmp_q_state == VM_PAGE_IS_WIRED) { |
| 8812 | /* |
| 8813 | * might put these guys on a list for debugging purposes |
| 8814 | * if we do, we'll need to remove this assert |
| 8815 | */ |
| 8816 | assert(mem->vmp_pageq.next == 0 && mem->vmp_pageq.prev == 0); |
| 8817 | assert(mem->vmp_specialq.next == 0 && |
| 8818 | mem->vmp_specialq.prev == 0); |
| 8819 | /* |
| 8820 | * Recall that vmp_on_specialq also means a request to put |
| 8821 | * it on the special Q. So we don't want to reset that bit |
| 8822 | * just because a wiring request came in. We might want to |
| 8823 | * put it on the special queue post-unwiring. |
| 8824 | * |
| 8825 | * && |
| 8826 | * mem->vmp_on_specialq == VM_PAGE_SPECIAL_Q_EMPTY); |
| 8827 | */ |
| 8828 | return; |
| 8829 | } |
| 8830 | |
| 8831 | assert(m_object != compressor_object); |
| 8832 | assert(!is_kernel_object(m_object)); |
| 8833 | assert(!mem->vmp_fictitious); |
| 8834 | |
| 8835 | switch (mem->vmp_q_state) { |
| 8836 | case VM_PAGE_ON_ACTIVE_LOCAL_Q: |
| 8837 | { |
| 8838 | struct vpl *lq; |
| 8839 | |
| 8840 | lq = zpercpu_get_cpu(vm_page_local_q, mem->vmp_local_id); |
| 8841 | VPL_LOCK(&lq->vpl_lock); |
| 8842 | vm_page_queue_remove(&lq->vpl_queue, mem, vmp_pageq); |
| 8843 | mem->vmp_local_id = 0; |
| 8844 | lq->vpl_count--; |
| 8845 | if (m_object->internal) { |
| 8846 | lq->vpl_internal_count--; |
| 8847 | } else { |
| 8848 | lq->vpl_external_count--; |
| 8849 | } |
| 8850 | VPL_UNLOCK(&lq->vpl_lock); |
| 8851 | was_pageable = FALSE; |
| 8852 | break; |
| 8853 | } |
| 8854 | case VM_PAGE_ON_ACTIVE_Q: |
| 8855 | { |
| 8856 | vm_page_queue_remove(&vm_page_queue_active, mem, vmp_pageq); |
| 8857 | vm_page_active_count--; |
| 8858 | break; |
| 8859 | } |
| 8860 | |
| 8861 | case VM_PAGE_ON_INACTIVE_INTERNAL_Q: |
| 8862 | { |
| 8863 | assert(m_object->internal == TRUE); |
| 8864 | |
| 8865 | vm_page_inactive_count--; |
| 8866 | vm_page_queue_remove(&vm_page_queue_anonymous, mem, vmp_pageq); |
| 8867 | vm_page_anonymous_count--; |
| 8868 | |
| 8869 | vm_purgeable_q_advance_all(); |
| 8870 | vm_page_balance_inactive(max_to_move: 3); |
| 8871 | break; |
| 8872 | } |
| 8873 | |
| 8874 | case VM_PAGE_ON_INACTIVE_EXTERNAL_Q: |
| 8875 | { |
| 8876 | assert(m_object->internal == FALSE); |
| 8877 | |
| 8878 | vm_page_inactive_count--; |
| 8879 | vm_page_queue_remove(&vm_page_queue_inactive, mem, vmp_pageq); |
| 8880 | vm_purgeable_q_advance_all(); |
| 8881 | vm_page_balance_inactive(max_to_move: 3); |
| 8882 | break; |
| 8883 | } |
| 8884 | |
| 8885 | case VM_PAGE_ON_INACTIVE_CLEANED_Q: |
| 8886 | { |
| 8887 | assert(m_object->internal == FALSE); |
| 8888 | |
| 8889 | vm_page_inactive_count--; |
| 8890 | vm_page_queue_remove(&vm_page_queue_cleaned, mem, vmp_pageq); |
| 8891 | vm_page_cleaned_count--; |
| 8892 | vm_page_balance_inactive(max_to_move: 3); |
| 8893 | break; |
| 8894 | } |
| 8895 | |
| 8896 | case VM_PAGE_ON_THROTTLED_Q: |
| 8897 | { |
| 8898 | assert(m_object->internal == TRUE); |
| 8899 | |
| 8900 | vm_page_queue_remove(&vm_page_queue_throttled, mem, vmp_pageq); |
| 8901 | vm_page_throttled_count--; |
| 8902 | was_pageable = FALSE; |
| 8903 | break; |
| 8904 | } |
| 8905 | |
| 8906 | case VM_PAGE_ON_SPECULATIVE_Q: |
| 8907 | { |
| 8908 | assert(m_object->internal == FALSE); |
| 8909 | |
| 8910 | vm_page_remque(elt: &mem->vmp_pageq); |
| 8911 | vm_page_speculative_count--; |
| 8912 | vm_page_balance_inactive(max_to_move: 3); |
| 8913 | break; |
| 8914 | } |
| 8915 | |
| 8916 | #if CONFIG_SECLUDED_MEMORY |
| 8917 | case VM_PAGE_ON_SECLUDED_Q: |
| 8918 | { |
| 8919 | vm_page_queue_remove(&vm_page_queue_secluded, mem, vmp_pageq); |
| 8920 | vm_page_secluded_count--; |
| 8921 | VM_PAGE_SECLUDED_COUNT_OVER_TARGET_UPDATE(); |
| 8922 | if (m_object == VM_OBJECT_NULL) { |
| 8923 | vm_page_secluded_count_free--; |
| 8924 | was_pageable = FALSE; |
| 8925 | } else { |
| 8926 | assert(!m_object->internal); |
| 8927 | vm_page_secluded_count_inuse--; |
| 8928 | was_pageable = FALSE; |
| 8929 | // was_pageable = TRUE; |
| 8930 | } |
| 8931 | break; |
| 8932 | } |
| 8933 | #endif /* CONFIG_SECLUDED_MEMORY */ |
| 8934 | |
| 8935 | default: |
| 8936 | { |
| 8937 | /* |
| 8938 | * if (mem->vmp_q_state == VM_PAGE_ON_PAGEOUT_Q) |
| 8939 | * NOTE: vm_page_queues_remove does not deal with removing pages from the pageout queue... |
| 8940 | * the caller is responsible for determing if the page is on that queue, and if so, must |
| 8941 | * either first remove it (it needs both the page queues lock and the object lock to do |
| 8942 | * this via vm_pageout_steal_laundry), or avoid the call to vm_page_queues_remove |
| 8943 | * |
| 8944 | * we also don't expect to encounter VM_PAGE_ON_FREE_Q, VM_PAGE_ON_FREE_LOCAL_Q, VM_PAGE_ON_FREE_LOPAGE_Q |
| 8945 | * or any of the undefined states |
| 8946 | */ |
| 8947 | panic("vm_page_queues_remove - bad page q_state (%p, %d)" , mem, mem->vmp_q_state); |
| 8948 | break; |
| 8949 | } |
| 8950 | } |
| 8951 | VM_PAGE_ZERO_PAGEQ_ENTRY(mem); |
| 8952 | mem->vmp_q_state = VM_PAGE_NOT_ON_Q; |
| 8953 | |
| 8954 | if (remove_from_specialq == TRUE) { |
| 8955 | vm_page_remove_from_specialq(mem); |
| 8956 | } |
| 8957 | if (was_pageable) { |
| 8958 | if (m_object->internal) { |
| 8959 | vm_page_pageable_internal_count--; |
| 8960 | } else { |
| 8961 | vm_page_pageable_external_count--; |
| 8962 | } |
| 8963 | } |
| 8964 | } |
| 8965 | |
| 8966 | void |
| 8967 | vm_page_remove_internal(vm_page_t page) |
| 8968 | { |
| 8969 | vm_object_t __object = VM_PAGE_OBJECT(page); |
| 8970 | if (page == __object->memq_hint) { |
| 8971 | vm_page_t __new_hint; |
| 8972 | vm_page_queue_entry_t __qe; |
| 8973 | __qe = (vm_page_queue_entry_t)vm_page_queue_next(&page->vmp_listq); |
| 8974 | if (vm_page_queue_end(&__object->memq, __qe)) { |
| 8975 | __qe = (vm_page_queue_entry_t)vm_page_queue_prev(&page->vmp_listq); |
| 8976 | if (vm_page_queue_end(&__object->memq, __qe)) { |
| 8977 | __qe = NULL; |
| 8978 | } |
| 8979 | } |
| 8980 | __new_hint = (vm_page_t)((uintptr_t) __qe); |
| 8981 | __object->memq_hint = __new_hint; |
| 8982 | } |
| 8983 | vm_page_queue_remove(&__object->memq, page, vmp_listq); |
| 8984 | #if CONFIG_SECLUDED_MEMORY |
| 8985 | if (__object->eligible_for_secluded) { |
| 8986 | vm_page_secluded.eligible_for_secluded--; |
| 8987 | } |
| 8988 | #endif /* CONFIG_SECLUDED_MEMORY */ |
| 8989 | } |
| 8990 | |
| 8991 | void |
| 8992 | vm_page_enqueue_inactive(vm_page_t mem, boolean_t first) |
| 8993 | { |
| 8994 | vm_object_t m_object; |
| 8995 | |
| 8996 | m_object = VM_PAGE_OBJECT(mem); |
| 8997 | |
| 8998 | LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED); |
| 8999 | assert(!mem->vmp_fictitious); |
| 9000 | assert(!mem->vmp_laundry); |
| 9001 | assert(mem->vmp_q_state == VM_PAGE_NOT_ON_Q); |
| 9002 | vm_page_check_pageable_safe(page: mem); |
| 9003 | |
| 9004 | if (m_object->internal) { |
| 9005 | mem->vmp_q_state = VM_PAGE_ON_INACTIVE_INTERNAL_Q; |
| 9006 | |
| 9007 | if (first == TRUE) { |
| 9008 | vm_page_queue_enter_first(&vm_page_queue_anonymous, mem, vmp_pageq); |
| 9009 | } else { |
| 9010 | vm_page_queue_enter(&vm_page_queue_anonymous, mem, vmp_pageq); |
| 9011 | } |
| 9012 | |
| 9013 | vm_page_anonymous_count++; |
| 9014 | vm_page_pageable_internal_count++; |
| 9015 | } else { |
| 9016 | mem->vmp_q_state = VM_PAGE_ON_INACTIVE_EXTERNAL_Q; |
| 9017 | |
| 9018 | if (first == TRUE) { |
| 9019 | vm_page_queue_enter_first(&vm_page_queue_inactive, mem, vmp_pageq); |
| 9020 | } else { |
| 9021 | vm_page_queue_enter(&vm_page_queue_inactive, mem, vmp_pageq); |
| 9022 | } |
| 9023 | |
| 9024 | vm_page_pageable_external_count++; |
| 9025 | } |
| 9026 | vm_page_inactive_count++; |
| 9027 | token_new_pagecount++; |
| 9028 | |
| 9029 | vm_page_add_to_specialq(mem, FALSE); |
| 9030 | } |
| 9031 | |
| 9032 | void |
| 9033 | vm_page_enqueue_active(vm_page_t mem, boolean_t first) |
| 9034 | { |
| 9035 | vm_object_t m_object; |
| 9036 | |
| 9037 | m_object = VM_PAGE_OBJECT(mem); |
| 9038 | |
| 9039 | LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED); |
| 9040 | assert(!mem->vmp_fictitious); |
| 9041 | assert(!mem->vmp_laundry); |
| 9042 | assert(mem->vmp_q_state == VM_PAGE_NOT_ON_Q); |
| 9043 | vm_page_check_pageable_safe(page: mem); |
| 9044 | |
| 9045 | mem->vmp_q_state = VM_PAGE_ON_ACTIVE_Q; |
| 9046 | if (first == TRUE) { |
| 9047 | vm_page_queue_enter_first(&vm_page_queue_active, mem, vmp_pageq); |
| 9048 | } else { |
| 9049 | vm_page_queue_enter(&vm_page_queue_active, mem, vmp_pageq); |
| 9050 | } |
| 9051 | vm_page_active_count++; |
| 9052 | |
| 9053 | if (m_object->internal) { |
| 9054 | vm_page_pageable_internal_count++; |
| 9055 | } else { |
| 9056 | vm_page_pageable_external_count++; |
| 9057 | } |
| 9058 | |
| 9059 | vm_page_add_to_specialq(mem, FALSE); |
| 9060 | vm_page_balance_inactive(max_to_move: 3); |
| 9061 | } |
| 9062 | |
| 9063 | /* |
| 9064 | * Pages from special kernel objects shouldn't |
| 9065 | * be placed on pageable queues. |
| 9066 | */ |
| 9067 | void |
| 9068 | vm_page_check_pageable_safe(vm_page_t page) |
| 9069 | { |
| 9070 | vm_object_t page_object; |
| 9071 | |
| 9072 | page_object = VM_PAGE_OBJECT(page); |
| 9073 | |
| 9074 | if (is_kernel_object(page_object)) { |
| 9075 | panic("vm_page_check_pageable_safe: trying to add page" |
| 9076 | "from kernel object (%p) to pageable queue" , page_object); |
| 9077 | } |
| 9078 | |
| 9079 | if (page_object == compressor_object) { |
| 9080 | panic("vm_page_check_pageable_safe: trying to add page" |
| 9081 | "from compressor object (%p) to pageable queue" , compressor_object); |
| 9082 | } |
| 9083 | } |
| 9084 | |
| 9085 | /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * |
| 9086 | * wired page diagnose |
| 9087 | * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ |
| 9088 | |
| 9089 | #include <libkern/OSKextLibPrivate.h> |
| 9090 | |
| 9091 | #define KA_SIZE(namelen, subtotalscount) \ |
| 9092 | (sizeof(struct vm_allocation_site) + (namelen) + 1 + ((subtotalscount) * sizeof(struct vm_allocation_total))) |
| 9093 | |
| 9094 | #define KA_NAME(alloc) \ |
| 9095 | ((char *)(&(alloc)->subtotals[(alloc->subtotalscount)])) |
| 9096 | |
| 9097 | #define KA_NAME_LEN(alloc) \ |
| 9098 | (VM_TAG_NAME_LEN_MAX & (alloc->flags >> VM_TAG_NAME_LEN_SHIFT)) |
| 9099 | |
| 9100 | vm_tag_t |
| 9101 | vm_tag_bt(void) |
| 9102 | { |
| 9103 | uintptr_t* frameptr; |
| 9104 | uintptr_t* frameptr_next; |
| 9105 | uintptr_t retaddr; |
| 9106 | uintptr_t kstackb, kstackt; |
| 9107 | const vm_allocation_site_t * site; |
| 9108 | thread_t cthread; |
| 9109 | kern_allocation_name_t name; |
| 9110 | |
| 9111 | cthread = current_thread(); |
| 9112 | if (__improbable(cthread == NULL)) { |
| 9113 | return VM_KERN_MEMORY_OSFMK; |
| 9114 | } |
| 9115 | |
| 9116 | if ((name = thread_get_kernel_state(cthread)->allocation_name)) { |
| 9117 | if (!name->tag) { |
| 9118 | vm_tag_alloc(site: name); |
| 9119 | } |
| 9120 | return name->tag; |
| 9121 | } |
| 9122 | |
| 9123 | kstackb = cthread->kernel_stack; |
| 9124 | kstackt = kstackb + kernel_stack_size; |
| 9125 | |
| 9126 | /* Load stack frame pointer (EBP on x86) into frameptr */ |
| 9127 | frameptr = __builtin_frame_address(0); |
| 9128 | site = NULL; |
| 9129 | while (frameptr != NULL) { |
| 9130 | /* Verify thread stack bounds */ |
| 9131 | if (((uintptr_t)(frameptr + 2) > kstackt) || ((uintptr_t)frameptr < kstackb)) { |
| 9132 | break; |
| 9133 | } |
| 9134 | |
| 9135 | /* Next frame pointer is pointed to by the previous one */ |
| 9136 | frameptr_next = (uintptr_t*) *frameptr; |
| 9137 | #if defined(HAS_APPLE_PAC) |
| 9138 | frameptr_next = ptrauth_strip(frameptr_next, ptrauth_key_frame_pointer); |
| 9139 | #endif |
| 9140 | |
| 9141 | /* Pull return address from one spot above the frame pointer */ |
| 9142 | retaddr = *(frameptr + 1); |
| 9143 | |
| 9144 | #if defined(HAS_APPLE_PAC) |
| 9145 | retaddr = (uintptr_t) ptrauth_strip((void *)retaddr, ptrauth_key_return_address); |
| 9146 | #endif |
| 9147 | |
| 9148 | if (((retaddr < vm_kernel_builtinkmod_text_end) && (retaddr >= vm_kernel_builtinkmod_text)) |
| 9149 | || (retaddr < vm_kernel_stext) || (retaddr > vm_kernel_top)) { |
| 9150 | site = OSKextGetAllocationSiteForCaller(address: retaddr); |
| 9151 | break; |
| 9152 | } |
| 9153 | frameptr = frameptr_next; |
| 9154 | } |
| 9155 | |
| 9156 | return site ? site->tag : VM_KERN_MEMORY_NONE; |
| 9157 | } |
| 9158 | |
| 9159 | static uint64_t free_tag_bits[VM_MAX_TAG_VALUE / 64]; |
| 9160 | |
| 9161 | void |
| 9162 | vm_tag_alloc_locked(vm_allocation_site_t * site, vm_allocation_site_t ** releasesiteP) |
| 9163 | { |
| 9164 | vm_tag_t tag; |
| 9165 | uint64_t avail; |
| 9166 | uint32_t idx; |
| 9167 | vm_allocation_site_t * prev; |
| 9168 | |
| 9169 | if (site->tag) { |
| 9170 | return; |
| 9171 | } |
| 9172 | |
| 9173 | idx = 0; |
| 9174 | while (TRUE) { |
| 9175 | avail = free_tag_bits[idx]; |
| 9176 | if (avail) { |
| 9177 | tag = (vm_tag_t)__builtin_clzll(avail); |
| 9178 | avail &= ~(1ULL << (63 - tag)); |
| 9179 | free_tag_bits[idx] = avail; |
| 9180 | tag += (idx << 6); |
| 9181 | break; |
| 9182 | } |
| 9183 | idx++; |
| 9184 | if (idx >= ARRAY_COUNT(free_tag_bits)) { |
| 9185 | for (idx = 0; idx < ARRAY_COUNT(vm_allocation_sites); idx++) { |
| 9186 | prev = vm_allocation_sites[idx]; |
| 9187 | if (!prev) { |
| 9188 | continue; |
| 9189 | } |
| 9190 | if (!KA_NAME_LEN(prev)) { |
| 9191 | continue; |
| 9192 | } |
| 9193 | if (!prev->tag) { |
| 9194 | continue; |
| 9195 | } |
| 9196 | if (prev->total) { |
| 9197 | continue; |
| 9198 | } |
| 9199 | if (1 != prev->refcount) { |
| 9200 | continue; |
| 9201 | } |
| 9202 | |
| 9203 | assert(idx == prev->tag); |
| 9204 | tag = (vm_tag_t)idx; |
| 9205 | prev->tag = VM_KERN_MEMORY_NONE; |
| 9206 | *releasesiteP = prev; |
| 9207 | break; |
| 9208 | } |
| 9209 | if (idx >= ARRAY_COUNT(vm_allocation_sites)) { |
| 9210 | tag = VM_KERN_MEMORY_ANY; |
| 9211 | } |
| 9212 | break; |
| 9213 | } |
| 9214 | } |
| 9215 | site->tag = tag; |
| 9216 | |
| 9217 | OSAddAtomic16(amount: 1, address: &site->refcount); |
| 9218 | |
| 9219 | if (VM_KERN_MEMORY_ANY != tag) { |
| 9220 | vm_allocation_sites[tag] = site; |
| 9221 | } |
| 9222 | |
| 9223 | if (tag > vm_allocation_tag_highest) { |
| 9224 | vm_allocation_tag_highest = tag; |
| 9225 | } |
| 9226 | } |
| 9227 | |
| 9228 | static void |
| 9229 | vm_tag_free_locked(vm_tag_t tag) |
| 9230 | { |
| 9231 | uint64_t avail; |
| 9232 | uint32_t idx; |
| 9233 | uint64_t bit; |
| 9234 | |
| 9235 | if (VM_KERN_MEMORY_ANY == tag) { |
| 9236 | return; |
| 9237 | } |
| 9238 | |
| 9239 | idx = (tag >> 6); |
| 9240 | avail = free_tag_bits[idx]; |
| 9241 | tag &= 63; |
| 9242 | bit = (1ULL << (63 - tag)); |
| 9243 | assert(!(avail & bit)); |
| 9244 | free_tag_bits[idx] = (avail | bit); |
| 9245 | } |
| 9246 | |
| 9247 | static void |
| 9248 | vm_tag_init(void) |
| 9249 | { |
| 9250 | vm_tag_t tag; |
| 9251 | for (tag = VM_KERN_MEMORY_FIRST_DYNAMIC; tag < VM_KERN_MEMORY_ANY; tag++) { |
| 9252 | vm_tag_free_locked(tag); |
| 9253 | } |
| 9254 | |
| 9255 | for (tag = VM_KERN_MEMORY_ANY + 1; tag < VM_MAX_TAG_VALUE; tag++) { |
| 9256 | vm_tag_free_locked(tag); |
| 9257 | } |
| 9258 | } |
| 9259 | |
| 9260 | vm_tag_t |
| 9261 | vm_tag_alloc(vm_allocation_site_t * site) |
| 9262 | { |
| 9263 | vm_allocation_site_t * releasesite; |
| 9264 | |
| 9265 | if (!site->tag) { |
| 9266 | releasesite = NULL; |
| 9267 | lck_ticket_lock(tlock: &vm_allocation_sites_lock, grp: &vm_page_lck_grp_bucket); |
| 9268 | vm_tag_alloc_locked(site, releasesiteP: &releasesite); |
| 9269 | lck_ticket_unlock(tlock: &vm_allocation_sites_lock); |
| 9270 | if (releasesite) { |
| 9271 | kern_allocation_name_release(allocation: releasesite); |
| 9272 | } |
| 9273 | } |
| 9274 | |
| 9275 | return site->tag; |
| 9276 | } |
| 9277 | |
| 9278 | #if VM_BTLOG_TAGS |
| 9279 | #define VM_KERN_MEMORY_STR_MAX_LEN (32) |
| 9280 | TUNABLE_STR(vmtaglog, VM_KERN_MEMORY_STR_MAX_LEN, "vmtaglog" , "" ); |
| 9281 | #define VM_TAG_BTLOG_SIZE (16u << 10) |
| 9282 | |
| 9283 | btlog_t vmtaglog_btlog; |
| 9284 | vm_tag_t vmtaglog_tag; |
| 9285 | |
| 9286 | static void |
| 9287 | vm_tag_log(vm_object_t object, int64_t delta, void *fp) |
| 9288 | { |
| 9289 | if (is_kernel_object(object)) { |
| 9290 | /* kernel object backtraces are tracked in vm entries */ |
| 9291 | return; |
| 9292 | } |
| 9293 | if (delta > 0) { |
| 9294 | btref_t ref = btref_get(fp, BTREF_GET_NOWAIT); |
| 9295 | btlog_record(vmtaglog_btlog, object, 0, ref); |
| 9296 | } else if (object->wired_page_count == 0) { |
| 9297 | btlog_erase(vmtaglog_btlog, object); |
| 9298 | } |
| 9299 | } |
| 9300 | |
| 9301 | #ifndef ARRAY_SIZE |
| 9302 | #define ARRAY_SIZE(x) (sizeof(x) / sizeof(x[0])) |
| 9303 | #endif /* ARRAY_SIZE */ |
| 9304 | #define VM_KERN_MEMORY_ELEM(name) [VM_KERN_MEMORY_##name] = #name |
| 9305 | const char *vm_kern_memory_strs[] = { |
| 9306 | VM_KERN_MEMORY_ELEM(OSFMK), |
| 9307 | VM_KERN_MEMORY_ELEM(BSD), |
| 9308 | VM_KERN_MEMORY_ELEM(IOKIT), |
| 9309 | VM_KERN_MEMORY_ELEM(LIBKERN), |
| 9310 | VM_KERN_MEMORY_ELEM(OSKEXT), |
| 9311 | VM_KERN_MEMORY_ELEM(KEXT), |
| 9312 | VM_KERN_MEMORY_ELEM(IPC), |
| 9313 | VM_KERN_MEMORY_ELEM(STACK), |
| 9314 | VM_KERN_MEMORY_ELEM(CPU), |
| 9315 | VM_KERN_MEMORY_ELEM(PMAP), |
| 9316 | VM_KERN_MEMORY_ELEM(PTE), |
| 9317 | VM_KERN_MEMORY_ELEM(ZONE), |
| 9318 | VM_KERN_MEMORY_ELEM(KALLOC), |
| 9319 | VM_KERN_MEMORY_ELEM(COMPRESSOR), |
| 9320 | VM_KERN_MEMORY_ELEM(COMPRESSED_DATA), |
| 9321 | VM_KERN_MEMORY_ELEM(PHANTOM_CACHE), |
| 9322 | VM_KERN_MEMORY_ELEM(WAITQ), |
| 9323 | VM_KERN_MEMORY_ELEM(DIAG), |
| 9324 | VM_KERN_MEMORY_ELEM(LOG), |
| 9325 | VM_KERN_MEMORY_ELEM(FILE), |
| 9326 | VM_KERN_MEMORY_ELEM(MBUF), |
| 9327 | VM_KERN_MEMORY_ELEM(UBC), |
| 9328 | VM_KERN_MEMORY_ELEM(SECURITY), |
| 9329 | VM_KERN_MEMORY_ELEM(MLOCK), |
| 9330 | VM_KERN_MEMORY_ELEM(REASON), |
| 9331 | VM_KERN_MEMORY_ELEM(SKYWALK), |
| 9332 | VM_KERN_MEMORY_ELEM(LTABLE), |
| 9333 | VM_KERN_MEMORY_ELEM(HV), |
| 9334 | VM_KERN_MEMORY_ELEM(KALLOC_DATA), |
| 9335 | VM_KERN_MEMORY_ELEM(RETIRED), |
| 9336 | VM_KERN_MEMORY_ELEM(KALLOC_TYPE), |
| 9337 | VM_KERN_MEMORY_ELEM(TRIAGE), |
| 9338 | VM_KERN_MEMORY_ELEM(RECOUNT), |
| 9339 | }; |
| 9340 | |
| 9341 | static vm_tag_t |
| 9342 | vm_tag_str_to_idx(char tagstr[VM_KERN_MEMORY_STR_MAX_LEN]) |
| 9343 | { |
| 9344 | for (vm_tag_t i = VM_KERN_MEMORY_OSFMK; i < ARRAY_SIZE(vm_kern_memory_strs); i++) { |
| 9345 | if (!strncmp(vm_kern_memory_strs[i], tagstr, VM_KERN_MEMORY_STR_MAX_LEN)) { |
| 9346 | return i; |
| 9347 | } |
| 9348 | } |
| 9349 | |
| 9350 | printf("Unable to find vm tag %s for btlog\n" , tagstr); |
| 9351 | return VM_KERN_MEMORY_NONE; |
| 9352 | } |
| 9353 | |
| 9354 | __startup_func |
| 9355 | static void |
| 9356 | vm_btlog_init(void) |
| 9357 | { |
| 9358 | vmtaglog_tag = vm_tag_str_to_idx(vmtaglog); |
| 9359 | |
| 9360 | if (vmtaglog_tag != VM_KERN_MEMORY_NONE) { |
| 9361 | vmtaglog_btlog = btlog_create(BTLOG_HASH, VM_TAG_BTLOG_SIZE, 0); |
| 9362 | } |
| 9363 | } |
| 9364 | STARTUP(ZALLOC, STARTUP_RANK_FIRST, vm_btlog_init); |
| 9365 | #endif /* VM_BTLOG_TAGS */ |
| 9366 | |
| 9367 | void |
| 9368 | vm_tag_update_size(vm_tag_t tag, int64_t delta, vm_object_t object) |
| 9369 | { |
| 9370 | assert(VM_KERN_MEMORY_NONE != tag && tag < VM_MAX_TAG_VALUE); |
| 9371 | |
| 9372 | kern_allocation_update_size(allocation: vm_allocation_sites[tag], delta, object); |
| 9373 | } |
| 9374 | |
| 9375 | uint64_t |
| 9376 | vm_tag_get_size(vm_tag_t tag) |
| 9377 | { |
| 9378 | vm_allocation_site_t *allocation; |
| 9379 | |
| 9380 | assert(VM_KERN_MEMORY_NONE != tag && tag < VM_MAX_TAG_VALUE); |
| 9381 | |
| 9382 | allocation = vm_allocation_sites[tag]; |
| 9383 | return allocation ? os_atomic_load(&allocation->total, relaxed) : 0; |
| 9384 | } |
| 9385 | |
| 9386 | void |
| 9387 | kern_allocation_update_size(kern_allocation_name_t allocation, int64_t delta, __unused vm_object_t object) |
| 9388 | { |
| 9389 | uint64_t value; |
| 9390 | |
| 9391 | value = os_atomic_add(&allocation->total, delta, relaxed); |
| 9392 | if (delta < 0) { |
| 9393 | assertf(value + (uint64_t)-delta > value, |
| 9394 | "tag %d, site %p" , allocation->tag, allocation); |
| 9395 | } |
| 9396 | |
| 9397 | #if DEBUG || DEVELOPMENT |
| 9398 | if (value > allocation->peak) { |
| 9399 | os_atomic_max(&allocation->peak, value, relaxed); |
| 9400 | } |
| 9401 | #endif /* DEBUG || DEVELOPMENT */ |
| 9402 | |
| 9403 | if (value == (uint64_t)delta && !allocation->tag) { |
| 9404 | vm_tag_alloc(site: allocation); |
| 9405 | } |
| 9406 | |
| 9407 | #if VM_BTLOG_TAGS |
| 9408 | if (vmtaglog_tag && (allocation->tag == vmtaglog_tag) && object) { |
| 9409 | vm_tag_log(object, delta, __builtin_frame_address(0)); |
| 9410 | } |
| 9411 | #endif /* VM_BTLOG_TAGS */ |
| 9412 | } |
| 9413 | |
| 9414 | #if VM_TAG_SIZECLASSES |
| 9415 | |
| 9416 | void |
| 9417 | vm_allocation_zones_init(void) |
| 9418 | { |
| 9419 | vm_offset_t addr; |
| 9420 | vm_size_t size; |
| 9421 | |
| 9422 | const vm_tag_t early_tags[] = { |
| 9423 | VM_KERN_MEMORY_DIAG, |
| 9424 | VM_KERN_MEMORY_KALLOC, |
| 9425 | VM_KERN_MEMORY_KALLOC_DATA, |
| 9426 | VM_KERN_MEMORY_KALLOC_TYPE, |
| 9427 | VM_KERN_MEMORY_LIBKERN, |
| 9428 | VM_KERN_MEMORY_OSFMK, |
| 9429 | VM_KERN_MEMORY_RECOUNT, |
| 9430 | }; |
| 9431 | |
| 9432 | size = VM_MAX_TAG_VALUE * sizeof(vm_allocation_zone_total_t * *) |
| 9433 | + ARRAY_COUNT(early_tags) * VM_TAG_SIZECLASSES * sizeof(vm_allocation_zone_total_t); |
| 9434 | |
| 9435 | kmem_alloc(kernel_map, &addr, round_page(size), |
| 9436 | KMA_NOFAIL | KMA_KOBJECT | KMA_ZERO | KMA_PERMANENT, |
| 9437 | VM_KERN_MEMORY_DIAG); |
| 9438 | |
| 9439 | vm_allocation_zone_totals = (vm_allocation_zone_total_t **) addr; |
| 9440 | addr += VM_MAX_TAG_VALUE * sizeof(vm_allocation_zone_total_t * *); |
| 9441 | |
| 9442 | // prepopulate early tag ranges so allocations |
| 9443 | // in vm_tag_update_zone_size() and early boot won't recurse |
| 9444 | for (size_t i = 0; i < ARRAY_COUNT(early_tags); i++) { |
| 9445 | vm_allocation_zone_totals[early_tags[i]] = (vm_allocation_zone_total_t *)addr; |
| 9446 | addr += VM_TAG_SIZECLASSES * sizeof(vm_allocation_zone_total_t); |
| 9447 | } |
| 9448 | } |
| 9449 | |
| 9450 | __attribute__((noinline)) |
| 9451 | static vm_tag_t |
| 9452 | vm_tag_zone_stats_alloc(vm_tag_t tag, zalloc_flags_t flags) |
| 9453 | { |
| 9454 | vm_allocation_zone_total_t *stats; |
| 9455 | vm_size_t size = sizeof(*stats) * VM_TAG_SIZECLASSES; |
| 9456 | |
| 9457 | flags = Z_VM_TAG(Z_ZERO | flags, VM_KERN_MEMORY_DIAG); |
| 9458 | stats = kalloc_data(size, flags); |
| 9459 | if (!stats) { |
| 9460 | return VM_KERN_MEMORY_NONE; |
| 9461 | } |
| 9462 | if (!os_atomic_cmpxchg(&vm_allocation_zone_totals[tag], NULL, stats, release)) { |
| 9463 | kfree_data(stats, size); |
| 9464 | } |
| 9465 | return tag; |
| 9466 | } |
| 9467 | |
| 9468 | vm_tag_t |
| 9469 | vm_tag_will_update_zone(vm_tag_t tag, uint32_t zidx, uint32_t zflags) |
| 9470 | { |
| 9471 | assert(VM_KERN_MEMORY_NONE != tag); |
| 9472 | assert(tag < VM_MAX_TAG_VALUE); |
| 9473 | |
| 9474 | if (zidx >= VM_TAG_SIZECLASSES) { |
| 9475 | return VM_KERN_MEMORY_NONE; |
| 9476 | } |
| 9477 | |
| 9478 | if (__probable(vm_allocation_zone_totals[tag])) { |
| 9479 | return tag; |
| 9480 | } |
| 9481 | return vm_tag_zone_stats_alloc(tag, zflags); |
| 9482 | } |
| 9483 | |
| 9484 | void |
| 9485 | vm_tag_update_zone_size(vm_tag_t tag, uint32_t zidx, long delta) |
| 9486 | { |
| 9487 | vm_allocation_zone_total_t *stats; |
| 9488 | vm_size_t value; |
| 9489 | |
| 9490 | assert(VM_KERN_MEMORY_NONE != tag); |
| 9491 | assert(tag < VM_MAX_TAG_VALUE); |
| 9492 | |
| 9493 | if (zidx >= VM_TAG_SIZECLASSES) { |
| 9494 | return; |
| 9495 | } |
| 9496 | |
| 9497 | stats = vm_allocation_zone_totals[tag]; |
| 9498 | assert(stats); |
| 9499 | stats += zidx; |
| 9500 | |
| 9501 | value = os_atomic_add(&stats->vazt_total, delta, relaxed); |
| 9502 | if (delta < 0) { |
| 9503 | assertf((long)value >= 0, "zidx %d, tag %d, %p" , zidx, tag, stats); |
| 9504 | return; |
| 9505 | } else if (os_atomic_load(&stats->vazt_peak, relaxed) < value) { |
| 9506 | os_atomic_max(&stats->vazt_peak, value, relaxed); |
| 9507 | } |
| 9508 | } |
| 9509 | |
| 9510 | #endif /* VM_TAG_SIZECLASSES */ |
| 9511 | |
| 9512 | void |
| 9513 | kern_allocation_update_subtotal(kern_allocation_name_t allocation, uint32_t subtag, int64_t delta) |
| 9514 | { |
| 9515 | kern_allocation_name_t other; |
| 9516 | struct vm_allocation_total * total; |
| 9517 | uint32_t subidx; |
| 9518 | |
| 9519 | assert(VM_KERN_MEMORY_NONE != subtag); |
| 9520 | lck_ticket_lock(tlock: &vm_allocation_sites_lock, grp: &vm_page_lck_grp_bucket); |
| 9521 | for (subidx = 0; subidx < allocation->subtotalscount; subidx++) { |
| 9522 | total = &allocation->subtotals[subidx]; |
| 9523 | if (subtag == total->tag) { |
| 9524 | break; |
| 9525 | } |
| 9526 | } |
| 9527 | if (subidx >= allocation->subtotalscount) { |
| 9528 | for (subidx = 0; subidx < allocation->subtotalscount; subidx++) { |
| 9529 | total = &allocation->subtotals[subidx]; |
| 9530 | if ((VM_KERN_MEMORY_NONE == total->tag) |
| 9531 | || !total->total) { |
| 9532 | total->tag = (vm_tag_t)subtag; |
| 9533 | break; |
| 9534 | } |
| 9535 | } |
| 9536 | } |
| 9537 | assert(subidx < allocation->subtotalscount); |
| 9538 | if (subidx >= allocation->subtotalscount) { |
| 9539 | lck_ticket_unlock(tlock: &vm_allocation_sites_lock); |
| 9540 | return; |
| 9541 | } |
| 9542 | if (delta < 0) { |
| 9543 | assertf(total->total >= ((uint64_t)-delta), "name %p" , allocation); |
| 9544 | } |
| 9545 | OSAddAtomic64(delta, &total->total); |
| 9546 | lck_ticket_unlock(tlock: &vm_allocation_sites_lock); |
| 9547 | |
| 9548 | other = vm_allocation_sites[subtag]; |
| 9549 | assert(other); |
| 9550 | if (delta < 0) { |
| 9551 | assertf(other->mapped >= ((uint64_t)-delta), "other %p" , other); |
| 9552 | } |
| 9553 | OSAddAtomic64(delta, &other->mapped); |
| 9554 | } |
| 9555 | |
| 9556 | const char * |
| 9557 | kern_allocation_get_name(kern_allocation_name_t allocation) |
| 9558 | { |
| 9559 | return KA_NAME(allocation); |
| 9560 | } |
| 9561 | |
| 9562 | kern_allocation_name_t |
| 9563 | kern_allocation_name_allocate(const char * name, uint16_t subtotalscount) |
| 9564 | { |
| 9565 | kern_allocation_name_t allocation; |
| 9566 | uint16_t namelen; |
| 9567 | |
| 9568 | namelen = (uint16_t)strnlen(s: name, MACH_MEMORY_INFO_NAME_MAX_LEN - 1); |
| 9569 | |
| 9570 | allocation = kalloc_data(KA_SIZE(namelen, subtotalscount), Z_WAITOK | Z_ZERO); |
| 9571 | allocation->refcount = 1; |
| 9572 | allocation->subtotalscount = subtotalscount; |
| 9573 | allocation->flags = (uint16_t)(namelen << VM_TAG_NAME_LEN_SHIFT); |
| 9574 | strlcpy(KA_NAME(allocation), src: name, n: namelen + 1); |
| 9575 | |
| 9576 | vm_tag_alloc(site: allocation); |
| 9577 | return allocation; |
| 9578 | } |
| 9579 | |
| 9580 | void |
| 9581 | kern_allocation_name_release(kern_allocation_name_t allocation) |
| 9582 | { |
| 9583 | assert(allocation->refcount > 0); |
| 9584 | if (1 == OSAddAtomic16(amount: -1, address: &allocation->refcount)) { |
| 9585 | kfree_data(allocation, |
| 9586 | KA_SIZE(KA_NAME_LEN(allocation), allocation->subtotalscount)); |
| 9587 | } |
| 9588 | } |
| 9589 | |
| 9590 | vm_tag_t |
| 9591 | kern_allocation_name_get_vm_tag(kern_allocation_name_t allocation) |
| 9592 | { |
| 9593 | return vm_tag_alloc(site: allocation); |
| 9594 | } |
| 9595 | |
| 9596 | #if !VM_TAG_ACTIVE_UPDATE |
| 9597 | static void |
| 9598 | vm_page_count_object(mach_memory_info_t * info, unsigned int __unused num_info, vm_object_t object) |
| 9599 | { |
| 9600 | if (!object->wired_page_count) { |
| 9601 | return; |
| 9602 | } |
| 9603 | if (!is_kernel_object(object)) { |
| 9604 | assert(object->wire_tag < num_info); |
| 9605 | info[object->wire_tag].size += ptoa_64(object->wired_page_count); |
| 9606 | } |
| 9607 | } |
| 9608 | |
| 9609 | typedef void (*vm_page_iterate_proc)(mach_memory_info_t * info, |
| 9610 | unsigned int num_info, vm_object_t object); |
| 9611 | |
| 9612 | static void |
| 9613 | vm_page_iterate_purgeable_objects(mach_memory_info_t * info, unsigned int num_info, |
| 9614 | vm_page_iterate_proc proc, purgeable_q_t queue, |
| 9615 | int group) |
| 9616 | { |
| 9617 | vm_object_t object; |
| 9618 | |
| 9619 | for (object = (vm_object_t) queue_first(&queue->objq[group]); |
| 9620 | !queue_end(&queue->objq[group], (queue_entry_t) object); |
| 9621 | object = (vm_object_t) queue_next(&object->objq)) { |
| 9622 | proc(info, num_info, object); |
| 9623 | } |
| 9624 | } |
| 9625 | |
| 9626 | static void |
| 9627 | vm_page_iterate_objects(mach_memory_info_t * info, unsigned int num_info, |
| 9628 | vm_page_iterate_proc proc) |
| 9629 | { |
| 9630 | vm_object_t object; |
| 9631 | |
| 9632 | lck_spin_lock_grp(&vm_objects_wired_lock, &vm_page_lck_grp_bucket); |
| 9633 | queue_iterate(&vm_objects_wired, |
| 9634 | object, |
| 9635 | vm_object_t, |
| 9636 | wired_objq) |
| 9637 | { |
| 9638 | proc(info, num_info, object); |
| 9639 | } |
| 9640 | lck_spin_unlock(&vm_objects_wired_lock); |
| 9641 | } |
| 9642 | #endif /* ! VM_TAG_ACTIVE_UPDATE */ |
| 9643 | |
| 9644 | static uint64_t |
| 9645 | process_account(mach_memory_info_t * info, unsigned int num_info, |
| 9646 | uint64_t zones_collectable_bytes, boolean_t iterated, bool redact_info __unused) |
| 9647 | { |
| 9648 | size_t namelen; |
| 9649 | unsigned int idx, count, nextinfo; |
| 9650 | vm_allocation_site_t * site; |
| 9651 | lck_ticket_lock(tlock: &vm_allocation_sites_lock, grp: &vm_page_lck_grp_bucket); |
| 9652 | |
| 9653 | for (idx = 0; idx <= vm_allocation_tag_highest; idx++) { |
| 9654 | site = vm_allocation_sites[idx]; |
| 9655 | if (!site) { |
| 9656 | continue; |
| 9657 | } |
| 9658 | info[idx].mapped = site->mapped; |
| 9659 | info[idx].tag = site->tag; |
| 9660 | if (!iterated) { |
| 9661 | info[idx].size = site->total; |
| 9662 | #if DEBUG || DEVELOPMENT |
| 9663 | info[idx].peak = site->peak; |
| 9664 | #endif /* DEBUG || DEVELOPMENT */ |
| 9665 | } else { |
| 9666 | if (!site->subtotalscount && (site->total != info[idx].size)) { |
| 9667 | printf(format: "tag mismatch[%d] 0x%qx, iter 0x%qx\n" , idx, site->total, info[idx].size); |
| 9668 | info[idx].size = site->total; |
| 9669 | } |
| 9670 | } |
| 9671 | info[idx].flags |= VM_KERN_SITE_WIRED; |
| 9672 | if (idx < VM_KERN_MEMORY_FIRST_DYNAMIC) { |
| 9673 | info[idx].site = idx; |
| 9674 | info[idx].flags |= VM_KERN_SITE_TAG; |
| 9675 | if (VM_KERN_MEMORY_ZONE == idx) { |
| 9676 | info[idx].flags |= VM_KERN_SITE_HIDE; |
| 9677 | info[idx].flags &= ~VM_KERN_SITE_WIRED; |
| 9678 | info[idx].collectable_bytes = zones_collectable_bytes; |
| 9679 | } |
| 9680 | } else if ((namelen = (VM_TAG_NAME_LEN_MAX & (site->flags >> VM_TAG_NAME_LEN_SHIFT)))) { |
| 9681 | info[idx].site = 0; |
| 9682 | info[idx].flags |= VM_KERN_SITE_NAMED; |
| 9683 | if (namelen > sizeof(info[idx].name)) { |
| 9684 | namelen = sizeof(info[idx].name); |
| 9685 | } |
| 9686 | strncpy(&info[idx].name[0], KA_NAME(site), namelen); |
| 9687 | } else if (VM_TAG_KMOD & site->flags) { |
| 9688 | info[idx].site = OSKextGetKmodIDForSite(site, NULL, namelen: 0); |
| 9689 | info[idx].flags |= VM_KERN_SITE_KMOD; |
| 9690 | } else { |
| 9691 | info[idx].site = VM_KERNEL_UNSLIDE(site); |
| 9692 | info[idx].flags |= VM_KERN_SITE_KERNEL; |
| 9693 | } |
| 9694 | } |
| 9695 | |
| 9696 | nextinfo = (vm_allocation_tag_highest + 1); |
| 9697 | count = nextinfo; |
| 9698 | if (count >= num_info) { |
| 9699 | count = num_info; |
| 9700 | } |
| 9701 | |
| 9702 | for (idx = 0; idx < count; idx++) { |
| 9703 | site = vm_allocation_sites[idx]; |
| 9704 | if (!site) { |
| 9705 | continue; |
| 9706 | } |
| 9707 | #if VM_TAG_SIZECLASSES |
| 9708 | vm_allocation_zone_total_t * zone; |
| 9709 | unsigned int zidx; |
| 9710 | |
| 9711 | if (!redact_info |
| 9712 | && vm_allocation_zone_totals |
| 9713 | && (zone = vm_allocation_zone_totals[idx]) |
| 9714 | && (nextinfo < num_info)) { |
| 9715 | for (zidx = 0; zidx < VM_TAG_SIZECLASSES; zidx++) { |
| 9716 | if (!zone[zidx].vazt_peak) { |
| 9717 | continue; |
| 9718 | } |
| 9719 | info[nextinfo] = info[idx]; |
| 9720 | info[nextinfo].zone = zone_index_from_tag_index(zidx); |
| 9721 | info[nextinfo].flags &= ~VM_KERN_SITE_WIRED; |
| 9722 | info[nextinfo].flags |= VM_KERN_SITE_ZONE; |
| 9723 | info[nextinfo].flags |= VM_KERN_SITE_KALLOC; |
| 9724 | info[nextinfo].size = zone[zidx].vazt_total; |
| 9725 | info[nextinfo].peak = zone[zidx].vazt_peak; |
| 9726 | info[nextinfo].mapped = 0; |
| 9727 | nextinfo++; |
| 9728 | } |
| 9729 | } |
| 9730 | #endif /* VM_TAG_SIZECLASSES */ |
| 9731 | if (site->subtotalscount) { |
| 9732 | uint64_t mapped, mapcost, take; |
| 9733 | uint32_t sub; |
| 9734 | vm_tag_t alloctag; |
| 9735 | |
| 9736 | info[idx].size = site->total; |
| 9737 | mapped = info[idx].size; |
| 9738 | info[idx].mapped = mapped; |
| 9739 | mapcost = 0; |
| 9740 | for (sub = 0; sub < site->subtotalscount; sub++) { |
| 9741 | alloctag = site->subtotals[sub].tag; |
| 9742 | assert(alloctag < num_info); |
| 9743 | if (info[alloctag].name[0]) { |
| 9744 | continue; |
| 9745 | } |
| 9746 | take = site->subtotals[sub].total; |
| 9747 | if (take > info[alloctag].size) { |
| 9748 | take = info[alloctag].size; |
| 9749 | } |
| 9750 | if (take > mapped) { |
| 9751 | take = mapped; |
| 9752 | } |
| 9753 | info[alloctag].mapped -= take; |
| 9754 | info[alloctag].size -= take; |
| 9755 | mapped -= take; |
| 9756 | mapcost += take; |
| 9757 | } |
| 9758 | info[idx].size = mapcost; |
| 9759 | } |
| 9760 | } |
| 9761 | lck_ticket_unlock(tlock: &vm_allocation_sites_lock); |
| 9762 | |
| 9763 | return 0; |
| 9764 | } |
| 9765 | |
| 9766 | uint32_t |
| 9767 | vm_page_diagnose_estimate(void) |
| 9768 | { |
| 9769 | vm_allocation_site_t * site; |
| 9770 | uint32_t count = zone_view_count; |
| 9771 | uint32_t idx; |
| 9772 | |
| 9773 | lck_ticket_lock(tlock: &vm_allocation_sites_lock, grp: &vm_page_lck_grp_bucket); |
| 9774 | for (idx = 0; idx < VM_MAX_TAG_VALUE; idx++) { |
| 9775 | site = vm_allocation_sites[idx]; |
| 9776 | if (!site) { |
| 9777 | continue; |
| 9778 | } |
| 9779 | count++; |
| 9780 | #if VM_TAG_SIZECLASSES |
| 9781 | if (vm_allocation_zone_totals) { |
| 9782 | vm_allocation_zone_total_t * zone; |
| 9783 | zone = vm_allocation_zone_totals[idx]; |
| 9784 | if (!zone) { |
| 9785 | continue; |
| 9786 | } |
| 9787 | for (uint32_t zidx = 0; zidx < VM_TAG_SIZECLASSES; zidx++) { |
| 9788 | count += (zone[zidx].vazt_peak != 0); |
| 9789 | } |
| 9790 | } |
| 9791 | #endif |
| 9792 | } |
| 9793 | lck_ticket_unlock(tlock: &vm_allocation_sites_lock); |
| 9794 | |
| 9795 | /* some slop for new tags created */ |
| 9796 | count += 8; |
| 9797 | count += VM_KERN_COUNTER_COUNT; |
| 9798 | |
| 9799 | return count; |
| 9800 | } |
| 9801 | |
| 9802 | static void |
| 9803 | vm_page_diagnose_zone_stats(mach_memory_info_t *info, zone_stats_t zstats, |
| 9804 | bool percpu) |
| 9805 | { |
| 9806 | zpercpu_foreach(zs, zstats) { |
| 9807 | info->size += zs->zs_mem_allocated - zs->zs_mem_freed; |
| 9808 | } |
| 9809 | if (percpu) { |
| 9810 | info->size *= zpercpu_count(); |
| 9811 | } |
| 9812 | info->flags |= VM_KERN_SITE_NAMED | VM_KERN_SITE_ZONE_VIEW; |
| 9813 | } |
| 9814 | |
| 9815 | static void |
| 9816 | vm_page_add_info( |
| 9817 | mach_memory_info_t *info, |
| 9818 | zone_stats_t stats, |
| 9819 | bool per_cpu, |
| 9820 | const char *parent_heap_name, |
| 9821 | const char *parent_zone_name, |
| 9822 | const char *view_name) |
| 9823 | { |
| 9824 | vm_page_diagnose_zone_stats(info, zstats: stats, percpu: per_cpu); |
| 9825 | snprintf(info->name, sizeof(info->name), |
| 9826 | "%s%s[%s]" , parent_heap_name, parent_zone_name, view_name); |
| 9827 | } |
| 9828 | |
| 9829 | static void |
| 9830 | vm_page_diagnose_zone(mach_memory_info_t *info, zone_t z) |
| 9831 | { |
| 9832 | vm_page_add_info(info, stats: z->z_stats, per_cpu: z->z_percpu, parent_heap_name: zone_heap_name(zone: z), |
| 9833 | parent_zone_name: z->z_name, view_name: "raw" ); |
| 9834 | } |
| 9835 | |
| 9836 | static void |
| 9837 | vm_page_add_view( |
| 9838 | mach_memory_info_t *info, |
| 9839 | zone_stats_t stats, |
| 9840 | const char *parent_heap_name, |
| 9841 | const char *parent_zone_name, |
| 9842 | const char *view_name) |
| 9843 | { |
| 9844 | vm_page_add_info(info, stats, false, parent_heap_name, parent_zone_name, |
| 9845 | view_name); |
| 9846 | } |
| 9847 | |
| 9848 | static uint32_t |
| 9849 | vm_page_diagnose_heap_views( |
| 9850 | mach_memory_info_t *info, |
| 9851 | kalloc_heap_t kh, |
| 9852 | const char *parent_heap_name, |
| 9853 | const char *parent_zone_name) |
| 9854 | { |
| 9855 | uint32_t i = 0; |
| 9856 | |
| 9857 | while (kh) { |
| 9858 | vm_page_add_view(info: info + i, stats: kh->kh_stats, parent_heap_name, |
| 9859 | parent_zone_name, view_name: kh->kh_name); |
| 9860 | kh = kh->kh_views; |
| 9861 | i++; |
| 9862 | } |
| 9863 | return i; |
| 9864 | } |
| 9865 | |
| 9866 | static uint32_t |
| 9867 | vm_page_diagnose_heap(mach_memory_info_t *info, kalloc_heap_t kheap) |
| 9868 | { |
| 9869 | uint32_t i = 0; |
| 9870 | |
| 9871 | for (; i < KHEAP_NUM_ZONES; i++) { |
| 9872 | vm_page_diagnose_zone(info: info + i, z: zone_by_id(zid: kheap->kh_zstart + i)); |
| 9873 | } |
| 9874 | |
| 9875 | i += vm_page_diagnose_heap_views(info: info + i, kh: kheap->kh_views, parent_heap_name: kheap->kh_name, |
| 9876 | NULL); |
| 9877 | return i; |
| 9878 | } |
| 9879 | |
| 9880 | static int |
| 9881 | vm_page_diagnose_kt_heaps(mach_memory_info_t *info) |
| 9882 | { |
| 9883 | uint32_t idx = 0; |
| 9884 | vm_page_add_view(info: info + idx, stats: KHEAP_KT_VAR->kh_stats, parent_heap_name: KHEAP_KT_VAR->kh_name, |
| 9885 | parent_zone_name: "" , view_name: "raw" ); |
| 9886 | idx++; |
| 9887 | |
| 9888 | for (uint32_t i = 0; i < KT_VAR_MAX_HEAPS; i++) { |
| 9889 | struct kheap_info heap = kalloc_type_heap_array[i]; |
| 9890 | char heap_num_tmp[MAX_ZONE_NAME] = "" ; |
| 9891 | const char *heap_num; |
| 9892 | |
| 9893 | snprintf(&heap_num_tmp[0], MAX_ZONE_NAME, "%u" , i); |
| 9894 | heap_num = &heap_num_tmp[0]; |
| 9895 | |
| 9896 | for (kalloc_type_var_view_t ktv = heap.kt_views; ktv; |
| 9897 | ktv = (kalloc_type_var_view_t) ktv->kt_next) { |
| 9898 | if (ktv->kt_stats && ktv->kt_stats != KHEAP_KT_VAR->kh_stats) { |
| 9899 | vm_page_add_view(info: info + idx, stats: ktv->kt_stats, parent_heap_name: KHEAP_KT_VAR->kh_name, |
| 9900 | parent_zone_name: heap_num, view_name: ktv->kt_name); |
| 9901 | idx++; |
| 9902 | } |
| 9903 | } |
| 9904 | |
| 9905 | idx += vm_page_diagnose_heap_views(info: info + idx, kh: heap.kh_views, |
| 9906 | parent_heap_name: KHEAP_KT_VAR->kh_name, parent_zone_name: heap_num); |
| 9907 | } |
| 9908 | |
| 9909 | return idx; |
| 9910 | } |
| 9911 | |
| 9912 | kern_return_t |
| 9913 | vm_page_diagnose(mach_memory_info_t * info, unsigned int num_info, uint64_t zones_collectable_bytes, bool redact_info) |
| 9914 | { |
| 9915 | uint64_t wired_size; |
| 9916 | uint64_t wired_managed_size; |
| 9917 | uint64_t wired_reserved_size; |
| 9918 | boolean_t iterate; |
| 9919 | mach_memory_info_t * counts; |
| 9920 | uint32_t i; |
| 9921 | |
| 9922 | bzero(s: info, n: num_info * sizeof(mach_memory_info_t)); |
| 9923 | |
| 9924 | if (!vm_page_wire_count_initial) { |
| 9925 | return KERN_ABORTED; |
| 9926 | } |
| 9927 | |
| 9928 | #if !XNU_TARGET_OS_OSX |
| 9929 | wired_size = ptoa_64(vm_page_wire_count); |
| 9930 | wired_reserved_size = ptoa_64(vm_page_wire_count_initial - vm_page_stolen_count); |
| 9931 | #else /* !XNU_TARGET_OS_OSX */ |
| 9932 | wired_size = ptoa_64(vm_page_wire_count + vm_lopage_free_count + vm_page_throttled_count); |
| 9933 | wired_reserved_size = ptoa_64(vm_page_wire_count_initial - vm_page_stolen_count + vm_page_throttled_count); |
| 9934 | #endif /* !XNU_TARGET_OS_OSX */ |
| 9935 | wired_managed_size = ptoa_64(vm_page_wire_count - vm_page_wire_count_initial); |
| 9936 | |
| 9937 | wired_size += booter_size; |
| 9938 | |
| 9939 | assert(num_info >= VM_KERN_COUNTER_COUNT); |
| 9940 | num_info -= VM_KERN_COUNTER_COUNT; |
| 9941 | counts = &info[num_info]; |
| 9942 | |
| 9943 | #define SET_COUNT(xcount, xsize, xflags) \ |
| 9944 | counts[xcount].tag = VM_MAX_TAG_VALUE + xcount; \ |
| 9945 | counts[xcount].site = (xcount); \ |
| 9946 | counts[xcount].size = (xsize); \ |
| 9947 | counts[xcount].mapped = (xsize); \ |
| 9948 | counts[xcount].flags = VM_KERN_SITE_COUNTER | xflags; |
| 9949 | |
| 9950 | SET_COUNT(VM_KERN_COUNT_MANAGED, ptoa_64(vm_page_pages), 0); |
| 9951 | SET_COUNT(VM_KERN_COUNT_WIRED, wired_size, 0); |
| 9952 | SET_COUNT(VM_KERN_COUNT_WIRED_MANAGED, wired_managed_size, 0); |
| 9953 | SET_COUNT(VM_KERN_COUNT_RESERVED, wired_reserved_size, VM_KERN_SITE_WIRED); |
| 9954 | SET_COUNT(VM_KERN_COUNT_STOLEN, ptoa_64(vm_page_stolen_count), VM_KERN_SITE_WIRED); |
| 9955 | SET_COUNT(VM_KERN_COUNT_LOPAGE, ptoa_64(vm_lopage_free_count), VM_KERN_SITE_WIRED); |
| 9956 | SET_COUNT(VM_KERN_COUNT_WIRED_BOOT, ptoa_64(vm_page_wire_count_on_boot), 0); |
| 9957 | SET_COUNT(VM_KERN_COUNT_BOOT_STOLEN, booter_size, VM_KERN_SITE_WIRED); |
| 9958 | SET_COUNT(VM_KERN_COUNT_WIRED_STATIC_KERNELCACHE, ptoa_64(vm_page_kernelcache_count), 0); |
| 9959 | |
| 9960 | #define SET_MAP(xcount, xsize, xfree, xlargest) \ |
| 9961 | counts[xcount].site = (xcount); \ |
| 9962 | counts[xcount].size = (xsize); \ |
| 9963 | counts[xcount].mapped = (xsize); \ |
| 9964 | counts[xcount].free = (xfree); \ |
| 9965 | counts[xcount].largest = (xlargest); \ |
| 9966 | counts[xcount].flags = VM_KERN_SITE_COUNTER; |
| 9967 | |
| 9968 | vm_map_size_t map_size, map_free, map_largest; |
| 9969 | |
| 9970 | vm_map_sizes(map: kernel_map, psize: &map_size, pfree: &map_free, plargest_free: &map_largest); |
| 9971 | SET_MAP(VM_KERN_COUNT_MAP_KERNEL, map_size, map_free, map_largest); |
| 9972 | |
| 9973 | zone_map_sizes(psize: &map_size, pfree: &map_free, plargest_free: &map_largest); |
| 9974 | SET_MAP(VM_KERN_COUNT_MAP_ZONE, map_size, map_free, map_largest); |
| 9975 | |
| 9976 | assert(num_info >= zone_view_count); |
| 9977 | num_info -= zone_view_count; |
| 9978 | counts = &info[num_info]; |
| 9979 | i = 0; |
| 9980 | |
| 9981 | if (!redact_info) { |
| 9982 | if (KHEAP_DATA_BUFFERS->kh_heap_id == KHEAP_ID_DATA_BUFFERS) { |
| 9983 | i += vm_page_diagnose_heap(info: counts + i, kheap: KHEAP_DATA_BUFFERS); |
| 9984 | } |
| 9985 | if (KHEAP_KT_VAR->kh_heap_id == KHEAP_ID_KT_VAR) { |
| 9986 | i += vm_page_diagnose_kt_heaps(info: counts + i); |
| 9987 | } |
| 9988 | assert(i <= zone_view_count); |
| 9989 | |
| 9990 | zone_index_foreach(zidx) { |
| 9991 | zone_t z = &zone_array[zidx]; |
| 9992 | zone_security_flags_t zsflags = zone_security_array[zidx]; |
| 9993 | zone_view_t zv = z->z_views; |
| 9994 | |
| 9995 | if (zv == NULL) { |
| 9996 | continue; |
| 9997 | } |
| 9998 | |
| 9999 | zone_stats_t zv_stats_head = z->z_stats; |
| 10000 | bool has_raw_view = false; |
| 10001 | |
| 10002 | for (; zv; zv = zv->zv_next) { |
| 10003 | /* |
| 10004 | * kalloc_types that allocate from the same zone are linked |
| 10005 | * as views. Only print the ones that have their own stats. |
| 10006 | */ |
| 10007 | if (zv->zv_stats == zv_stats_head) { |
| 10008 | continue; |
| 10009 | } |
| 10010 | has_raw_view = true; |
| 10011 | vm_page_diagnose_zone_stats(info: counts + i, zstats: zv->zv_stats, |
| 10012 | percpu: z->z_percpu); |
| 10013 | snprintf(counts[i].name, sizeof(counts[i].name), "%s%s[%s]" , |
| 10014 | zone_heap_name(zone: z), z->z_name, zv->zv_name); |
| 10015 | i++; |
| 10016 | assert(i <= zone_view_count); |
| 10017 | } |
| 10018 | |
| 10019 | /* |
| 10020 | * Print raw views for non kalloc or kalloc_type zones |
| 10021 | */ |
| 10022 | bool kalloc_type = zsflags.z_kalloc_type; |
| 10023 | if ((zsflags.z_kheap_id == KHEAP_ID_NONE && !kalloc_type) || |
| 10024 | (kalloc_type && has_raw_view)) { |
| 10025 | vm_page_diagnose_zone(info: counts + i, z); |
| 10026 | i++; |
| 10027 | assert(i <= zone_view_count); |
| 10028 | } |
| 10029 | } |
| 10030 | } |
| 10031 | |
| 10032 | iterate = !VM_TAG_ACTIVE_UPDATE; |
| 10033 | if (iterate) { |
| 10034 | enum { kMaxKernelDepth = 1 }; |
| 10035 | vm_map_t maps[kMaxKernelDepth]; |
| 10036 | vm_map_entry_t entries[kMaxKernelDepth]; |
| 10037 | vm_map_t map; |
| 10038 | vm_map_entry_t entry; |
| 10039 | vm_object_offset_t offset; |
| 10040 | vm_page_t page; |
| 10041 | int stackIdx, count; |
| 10042 | |
| 10043 | #if !VM_TAG_ACTIVE_UPDATE |
| 10044 | vm_page_iterate_objects(info, num_info, &vm_page_count_object); |
| 10045 | #endif /* ! VM_TAG_ACTIVE_UPDATE */ |
| 10046 | |
| 10047 | map = kernel_map; |
| 10048 | stackIdx = 0; |
| 10049 | while (map) { |
| 10050 | vm_map_lock(map); |
| 10051 | for (entry = map->hdr.links.next; map; entry = entry->vme_next) { |
| 10052 | if (entry->is_sub_map) { |
| 10053 | assert(stackIdx < kMaxKernelDepth); |
| 10054 | maps[stackIdx] = map; |
| 10055 | entries[stackIdx] = entry; |
| 10056 | stackIdx++; |
| 10057 | map = VME_SUBMAP(entry); |
| 10058 | entry = NULL; |
| 10059 | break; |
| 10060 | } |
| 10061 | if (is_kernel_object(VME_OBJECT(entry))) { |
| 10062 | count = 0; |
| 10063 | vm_object_lock(VME_OBJECT(entry)); |
| 10064 | for (offset = entry->vme_start; offset < entry->vme_end; offset += page_size) { |
| 10065 | page = vm_page_lookup(VME_OBJECT(entry), offset); |
| 10066 | if (page && VM_PAGE_WIRED(page)) { |
| 10067 | count++; |
| 10068 | } |
| 10069 | } |
| 10070 | vm_object_unlock(VME_OBJECT(entry)); |
| 10071 | |
| 10072 | if (count) { |
| 10073 | assert(VME_ALIAS(entry) != VM_KERN_MEMORY_NONE); |
| 10074 | assert(VME_ALIAS(entry) < num_info); |
| 10075 | info[VME_ALIAS(entry)].size += ptoa_64(count); |
| 10076 | } |
| 10077 | } |
| 10078 | while (map && (entry == vm_map_last_entry(map))) { |
| 10079 | vm_map_unlock(map); |
| 10080 | if (!stackIdx) { |
| 10081 | map = NULL; |
| 10082 | } else { |
| 10083 | --stackIdx; |
| 10084 | map = maps[stackIdx]; |
| 10085 | entry = entries[stackIdx]; |
| 10086 | } |
| 10087 | } |
| 10088 | } |
| 10089 | } |
| 10090 | } |
| 10091 | |
| 10092 | process_account(info, num_info, zones_collectable_bytes, iterated: iterate, redact_info); |
| 10093 | |
| 10094 | return KERN_SUCCESS; |
| 10095 | } |
| 10096 | |
| 10097 | #if DEBUG || DEVELOPMENT |
| 10098 | |
| 10099 | kern_return_t |
| 10100 | vm_kern_allocation_info(uintptr_t addr, vm_size_t * size, vm_tag_t * tag, vm_size_t * zone_size) |
| 10101 | { |
| 10102 | kern_return_t ret; |
| 10103 | vm_size_t zsize; |
| 10104 | vm_map_t map; |
| 10105 | vm_map_entry_t entry; |
| 10106 | |
| 10107 | zsize = zone_element_info((void *) addr, tag); |
| 10108 | if (zsize) { |
| 10109 | *zone_size = *size = zsize; |
| 10110 | return KERN_SUCCESS; |
| 10111 | } |
| 10112 | |
| 10113 | *zone_size = 0; |
| 10114 | ret = KERN_INVALID_ADDRESS; |
| 10115 | for (map = kernel_map; map;) { |
| 10116 | vm_map_lock(map); |
| 10117 | if (!vm_map_lookup_entry_allow_pgz(map, addr, &entry)) { |
| 10118 | break; |
| 10119 | } |
| 10120 | if (entry->is_sub_map) { |
| 10121 | if (map != kernel_map) { |
| 10122 | break; |
| 10123 | } |
| 10124 | map = VME_SUBMAP(entry); |
| 10125 | continue; |
| 10126 | } |
| 10127 | if (entry->vme_start != addr) { |
| 10128 | break; |
| 10129 | } |
| 10130 | *tag = (vm_tag_t)VME_ALIAS(entry); |
| 10131 | *size = (entry->vme_end - addr); |
| 10132 | ret = KERN_SUCCESS; |
| 10133 | break; |
| 10134 | } |
| 10135 | if (map != kernel_map) { |
| 10136 | vm_map_unlock(map); |
| 10137 | } |
| 10138 | vm_map_unlock(kernel_map); |
| 10139 | |
| 10140 | return ret; |
| 10141 | } |
| 10142 | |
| 10143 | #endif /* DEBUG || DEVELOPMENT */ |
| 10144 | |
| 10145 | uint32_t |
| 10146 | vm_tag_get_kext(vm_tag_t tag, char * name, vm_size_t namelen) |
| 10147 | { |
| 10148 | vm_allocation_site_t * site; |
| 10149 | uint32_t kmodId; |
| 10150 | |
| 10151 | kmodId = 0; |
| 10152 | lck_ticket_lock(tlock: &vm_allocation_sites_lock, grp: &vm_page_lck_grp_bucket); |
| 10153 | if ((site = vm_allocation_sites[tag])) { |
| 10154 | if (VM_TAG_KMOD & site->flags) { |
| 10155 | kmodId = OSKextGetKmodIDForSite(site, name, namelen); |
| 10156 | } |
| 10157 | } |
| 10158 | lck_ticket_unlock(tlock: &vm_allocation_sites_lock); |
| 10159 | |
| 10160 | return kmodId; |
| 10161 | } |
| 10162 | |
| 10163 | |
| 10164 | #if CONFIG_SECLUDED_MEMORY |
| 10165 | /* |
| 10166 | * Note that there's no locking around other accesses to vm_page_secluded_target. |
| 10167 | * That should be OK, since these are the only place where it can be changed after |
| 10168 | * initialization. Other users (like vm_pageout) may see the wrong value briefly, |
| 10169 | * but will eventually get the correct value. This brief mismatch is OK as pageout |
| 10170 | * and page freeing will auto-adjust the vm_page_secluded_count to match the target |
| 10171 | * over time. |
| 10172 | */ |
| 10173 | unsigned int vm_page_secluded_suppress_cnt = 0; |
| 10174 | unsigned int vm_page_secluded_save_target; |
| 10175 | |
| 10176 | LCK_GRP_DECLARE(secluded_suppress_slock_grp, "secluded_suppress_slock" ); |
| 10177 | LCK_SPIN_DECLARE(secluded_suppress_slock, &secluded_suppress_slock_grp); |
| 10178 | |
| 10179 | void |
| 10180 | start_secluded_suppression(task_t task) |
| 10181 | { |
| 10182 | if (task->task_suppressed_secluded) { |
| 10183 | return; |
| 10184 | } |
| 10185 | lck_spin_lock(&secluded_suppress_slock); |
| 10186 | if (!task->task_suppressed_secluded && vm_page_secluded_suppress_cnt++ == 0) { |
| 10187 | task->task_suppressed_secluded = TRUE; |
| 10188 | vm_page_secluded_save_target = vm_page_secluded_target; |
| 10189 | vm_page_secluded_target = 0; |
| 10190 | VM_PAGE_SECLUDED_COUNT_OVER_TARGET_UPDATE(); |
| 10191 | } |
| 10192 | lck_spin_unlock(&secluded_suppress_slock); |
| 10193 | } |
| 10194 | |
| 10195 | void |
| 10196 | stop_secluded_suppression(task_t task) |
| 10197 | { |
| 10198 | lck_spin_lock(&secluded_suppress_slock); |
| 10199 | if (task->task_suppressed_secluded && --vm_page_secluded_suppress_cnt == 0) { |
| 10200 | task->task_suppressed_secluded = FALSE; |
| 10201 | vm_page_secluded_target = vm_page_secluded_save_target; |
| 10202 | VM_PAGE_SECLUDED_COUNT_OVER_TARGET_UPDATE(); |
| 10203 | } |
| 10204 | lck_spin_unlock(&secluded_suppress_slock); |
| 10205 | } |
| 10206 | |
| 10207 | #endif /* CONFIG_SECLUDED_MEMORY */ |
| 10208 | |
| 10209 | /* |
| 10210 | * Move the list of retired pages on the vm_page_queue_retired to |
| 10211 | * their final resting place on retired_pages_object. |
| 10212 | */ |
| 10213 | void |
| 10214 | vm_retire_boot_pages(void) |
| 10215 | { |
| 10216 | } |
| 10217 | |
| 10218 | /* |
| 10219 | * This holds the reported physical address if an ECC error leads to a panic. |
| 10220 | * SMC will store it in PMU SRAM under the 'sECC' key. |
| 10221 | */ |
| 10222 | uint64_t ecc_panic_physical_address = 0; |
| 10223 | |
| 10224 | |
| 10225 | boolean_t |
| 10226 | vm_page_created(vm_page_t page) |
| 10227 | { |
| 10228 | return (page < &vm_pages[0]) || (page >= &vm_pages[vm_pages_count]); |
| 10229 | } |
| 10230 | |