| 1 | /* |
| 2 | * Copyright (c) 2019-2020 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * @APPLE_LICENSE_HEADER_START@ |
| 5 | * |
| 6 | * This file contains Original Code and/or Modifications of Original Code |
| 7 | * as defined in and that are subject to the Apple Public Source License |
| 8 | * Version 2.0 (the 'License'). You may not use this file except in |
| 9 | * compliance with the License. Please obtain a copy of the License at |
| 10 | * http://www.opensource.apple.com/apsl/ and read it before using this |
| 11 | * file. |
| 12 | * |
| 13 | * The Original Code and all software distributed under the License are |
| 14 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 15 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 16 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 17 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| 18 | * Please see the License for the specific language governing rights and |
| 19 | * limitations under the License. |
| 20 | * |
| 21 | * @APPLE_LICENSE_HEADER_END@ |
| 22 | */ |
| 23 | |
| 24 | #include <kern/sched_prim.h> |
| 25 | #include <kern/ledger.h> |
| 26 | #include <kern/policy_internal.h> |
| 27 | |
| 28 | #include <libkern/OSDebug.h> |
| 29 | |
| 30 | #include <mach/mach_types.h> |
| 31 | |
| 32 | #include <machine/limits.h> |
| 33 | |
| 34 | #include <os/hash.h> |
| 35 | |
| 36 | #include <vm/vm_compressor_pager.h> |
| 37 | #include <vm/vm_kern.h> /* kmem_alloc */ |
| 38 | #include <vm/vm_page.h> |
| 39 | #include <vm/vm_pageout.h> |
| 40 | #include <vm/vm_protos.h> |
| 41 | #include <vm/vm_purgeable_internal.h> |
| 42 | |
| 43 | #include <sys/kdebug.h> |
| 44 | |
| 45 | /* |
| 46 | * LOCK ORDERING for task-owned purgeable objects |
| 47 | * |
| 48 | * Whenever we need to hold multiple locks while adding to, removing from, |
| 49 | * or scanning a task's task_objq list of VM objects it owns, locks should |
| 50 | * be taken in this order: |
| 51 | * |
| 52 | * VM object ==> vm_purgeable_queue_lock ==> owner_task->task_objq_lock |
| 53 | * |
| 54 | * If one needs to acquire the VM object lock after any of the other 2 locks, |
| 55 | * one needs to use vm_object_lock_try() and, if that fails, release the |
| 56 | * other locks and retake them all in the correct order. |
| 57 | */ |
| 58 | |
| 59 | extern vm_pressure_level_t memorystatus_vm_pressure_level; |
| 60 | |
| 61 | struct token { |
| 62 | token_cnt_t count; |
| 63 | token_idx_t prev; |
| 64 | token_idx_t next; |
| 65 | }; |
| 66 | |
| 67 | struct token *tokens; |
| 68 | token_idx_t token_q_max_cnt = 0; |
| 69 | vm_size_t token_q_cur_size = 0; |
| 70 | |
| 71 | token_idx_t token_free_idx = 0; /* head of free queue */ |
| 72 | token_idx_t token_init_idx = 1; /* token 0 is reserved!! */ |
| 73 | int32_t token_new_pagecount = 0; /* count of pages that will |
| 74 | * be added onto token queue */ |
| 75 | |
| 76 | int available_for_purge = 0; /* increase when ripe token |
| 77 | * added, decrease when ripe |
| 78 | * token removed. |
| 79 | * protected by page_queue_lock |
| 80 | */ |
| 81 | |
| 82 | static int token_q_allocating = 0; /* flag for singlethreading |
| 83 | * allocator */ |
| 84 | |
| 85 | struct purgeable_q purgeable_queues[PURGEABLE_Q_TYPE_MAX]; |
| 86 | queue_head_t purgeable_nonvolatile_queue; |
| 87 | int purgeable_nonvolatile_count; |
| 88 | |
| 89 | decl_lck_mtx_data(, vm_purgeable_queue_lock); |
| 90 | |
| 91 | static token_idx_t vm_purgeable_token_remove_first(purgeable_q_t queue); |
| 92 | |
| 93 | static void vm_purgeable_stats_helper(vm_purgeable_stat_t *stat, purgeable_q_t queue, int group, task_t target_task); |
| 94 | |
| 95 | |
| 96 | #if MACH_ASSERT |
| 97 | static void |
| 98 | vm_purgeable_token_check_queue(purgeable_q_t queue) |
| 99 | { |
| 100 | int token_cnt = 0, page_cnt = 0; |
| 101 | token_idx_t token = queue->token_q_head; |
| 102 | token_idx_t unripe = 0; |
| 103 | int our_inactive_count; |
| 104 | |
| 105 | |
| 106 | #if DEVELOPMENT |
| 107 | static int lightweight_check = 0; |
| 108 | |
| 109 | /* |
| 110 | * Due to performance impact, perform this check less frequently on DEVELOPMENT kernels. |
| 111 | * Checking the queue scales linearly with its length, so we compensate by |
| 112 | * by performing this check less frequently as the queue grows. |
| 113 | */ |
| 114 | if (lightweight_check++ < (100 + queue->debug_count_tokens / 512)) { |
| 115 | return; |
| 116 | } |
| 117 | |
| 118 | lightweight_check = 0; |
| 119 | #endif |
| 120 | |
| 121 | while (token) { |
| 122 | if (tokens[token].count != 0) { |
| 123 | assert(queue->token_q_unripe); |
| 124 | if (unripe == 0) { |
| 125 | assert(token == queue->token_q_unripe); |
| 126 | unripe = token; |
| 127 | } |
| 128 | page_cnt += tokens[token].count; |
| 129 | } |
| 130 | if (tokens[token].next == 0) { |
| 131 | assert(queue->token_q_tail == token); |
| 132 | } |
| 133 | |
| 134 | token_cnt++; |
| 135 | token = tokens[token].next; |
| 136 | } |
| 137 | |
| 138 | if (unripe) { |
| 139 | assert(queue->token_q_unripe == unripe); |
| 140 | } |
| 141 | assert(token_cnt == queue->debug_count_tokens); |
| 142 | |
| 143 | /* obsolete queue doesn't maintain token counts */ |
| 144 | if (queue->type != PURGEABLE_Q_TYPE_OBSOLETE) { |
| 145 | our_inactive_count = page_cnt + queue->new_pages + token_new_pagecount; |
| 146 | assert(our_inactive_count >= 0); |
| 147 | assert((uint32_t) our_inactive_count == vm_page_inactive_count - vm_page_cleaned_count); |
| 148 | } |
| 149 | } |
| 150 | #endif |
| 151 | |
| 152 | /* |
| 153 | * Add a token. Allocate token queue memory if necessary. |
| 154 | * Call with page queue locked. |
| 155 | */ |
| 156 | kern_return_t |
| 157 | vm_purgeable_token_add(purgeable_q_t queue) |
| 158 | { |
| 159 | LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED); |
| 160 | |
| 161 | /* new token */ |
| 162 | token_idx_t token; |
| 163 | enum purgeable_q_type i; |
| 164 | |
| 165 | find_available_token: |
| 166 | |
| 167 | if (token_free_idx) { /* unused tokens available */ |
| 168 | token = token_free_idx; |
| 169 | token_free_idx = tokens[token_free_idx].next; |
| 170 | } else if (token_init_idx < token_q_max_cnt) { /* lazy token array init */ |
| 171 | token = token_init_idx; |
| 172 | token_init_idx++; |
| 173 | } else { /* allocate more memory */ |
| 174 | /* Wait if another thread is inside the memory alloc section */ |
| 175 | while (token_q_allocating) { |
| 176 | wait_result_t res = lck_mtx_sleep(lck: &vm_page_queue_lock, |
| 177 | lck_sleep_action: LCK_SLEEP_DEFAULT, |
| 178 | event: (event_t)&token_q_allocating, |
| 179 | THREAD_UNINT); |
| 180 | if (res != THREAD_AWAKENED) { |
| 181 | return KERN_ABORTED; |
| 182 | } |
| 183 | } |
| 184 | |
| 185 | /* Check whether memory is still maxed out */ |
| 186 | if (token_init_idx < token_q_max_cnt) { |
| 187 | goto find_available_token; |
| 188 | } |
| 189 | |
| 190 | /* Still no memory. Allocate some. */ |
| 191 | token_q_allocating = 1; |
| 192 | |
| 193 | /* Drop page queue lock so we can allocate */ |
| 194 | vm_page_unlock_queues(); |
| 195 | |
| 196 | vm_size_t alloc_size = token_q_cur_size + PAGE_SIZE; |
| 197 | kmem_return_t kmr = { }; |
| 198 | kmem_guard_t guard = { |
| 199 | .kmg_atomic = true, |
| 200 | .kmg_tag = VM_KERN_MEMORY_OSFMK, |
| 201 | .kmg_context = os_hash_kernel_pointer(pointer: &tokens), |
| 202 | }; |
| 203 | |
| 204 | if (alloc_size <= TOKEN_COUNT_MAX * sizeof(struct token)) { |
| 205 | kmr = kmem_realloc_guard(map: kernel_map, |
| 206 | oldaddr: (vm_offset_t)tokens, oldsize: token_q_cur_size, newsize: alloc_size, |
| 207 | flags: KMR_ZERO | KMR_DATA, guard); |
| 208 | } |
| 209 | |
| 210 | vm_page_lock_queues(); |
| 211 | |
| 212 | if (kmr.kmr_ptr == NULL) { |
| 213 | /* Unblock waiting threads */ |
| 214 | token_q_allocating = 0; |
| 215 | thread_wakeup((event_t)&token_q_allocating); |
| 216 | return KERN_RESOURCE_SHORTAGE; |
| 217 | } |
| 218 | |
| 219 | /* If we get here, we allocated new memory. Update pointers and |
| 220 | * dealloc old range */ |
| 221 | struct token *old_tokens = tokens; |
| 222 | vm_size_t old_token_q_cur_size = token_q_cur_size; |
| 223 | |
| 224 | tokens = kmr.kmr_ptr; |
| 225 | token_q_cur_size = alloc_size; |
| 226 | token_q_max_cnt = (token_idx_t) (token_q_cur_size / |
| 227 | sizeof(struct token)); |
| 228 | assert(token_init_idx < token_q_max_cnt); /* We must have a free token now */ |
| 229 | |
| 230 | /* kmem_realloc_guard() might leave the old region mapped. */ |
| 231 | if (kmem_realloc_should_free(oldaddr: (vm_offset_t)old_tokens, kmr)) { |
| 232 | vm_page_unlock_queues(); |
| 233 | kmem_free_guard(map: kernel_map, addr: (vm_offset_t)old_tokens, |
| 234 | size: old_token_q_cur_size, flags: KMF_NONE, guard); |
| 235 | vm_page_lock_queues(); |
| 236 | } |
| 237 | |
| 238 | /* Unblock waiting threads */ |
| 239 | token_q_allocating = 0; |
| 240 | thread_wakeup((event_t)&token_q_allocating); |
| 241 | |
| 242 | goto find_available_token; |
| 243 | } |
| 244 | |
| 245 | assert(token); |
| 246 | |
| 247 | /* |
| 248 | * the new pagecount we got need to be applied to all queues except |
| 249 | * obsolete |
| 250 | */ |
| 251 | for (i = PURGEABLE_Q_TYPE_FIFO; i < PURGEABLE_Q_TYPE_MAX; i++) { |
| 252 | int64_t pages = purgeable_queues[i].new_pages += token_new_pagecount; |
| 253 | assert(pages >= 0); |
| 254 | assert(pages <= TOKEN_COUNT_MAX); |
| 255 | purgeable_queues[i].new_pages = (int32_t) pages; |
| 256 | assert(purgeable_queues[i].new_pages == pages); |
| 257 | } |
| 258 | token_new_pagecount = 0; |
| 259 | |
| 260 | /* set token counter value */ |
| 261 | if (queue->type != PURGEABLE_Q_TYPE_OBSOLETE) { |
| 262 | tokens[token].count = queue->new_pages; |
| 263 | } else { |
| 264 | tokens[token].count = 0; /* all obsolete items are |
| 265 | * ripe immediately */ |
| 266 | } |
| 267 | queue->new_pages = 0; |
| 268 | |
| 269 | /* put token on token counter list */ |
| 270 | tokens[token].next = 0; |
| 271 | if (queue->token_q_tail == 0) { |
| 272 | assert(queue->token_q_head == 0 && queue->token_q_unripe == 0); |
| 273 | queue->token_q_head = token; |
| 274 | tokens[token].prev = 0; |
| 275 | } else { |
| 276 | tokens[queue->token_q_tail].next = token; |
| 277 | tokens[token].prev = queue->token_q_tail; |
| 278 | } |
| 279 | if (queue->token_q_unripe == 0) { /* only ripe tokens (token |
| 280 | * count == 0) in queue */ |
| 281 | if (tokens[token].count > 0) { |
| 282 | queue->token_q_unripe = token; /* first unripe token */ |
| 283 | } else { |
| 284 | available_for_purge++; /* added a ripe token? |
| 285 | * increase available count */ |
| 286 | } |
| 287 | } |
| 288 | queue->token_q_tail = token; |
| 289 | |
| 290 | #if MACH_ASSERT |
| 291 | queue->debug_count_tokens++; |
| 292 | /* Check both queues, since we modified the new_pages count on each */ |
| 293 | vm_purgeable_token_check_queue(&purgeable_queues[PURGEABLE_Q_TYPE_FIFO]); |
| 294 | vm_purgeable_token_check_queue(&purgeable_queues[PURGEABLE_Q_TYPE_LIFO]); |
| 295 | |
| 296 | KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, TOKEN_ADD)), |
| 297 | queue->type, |
| 298 | tokens[token].count, /* num pages on token |
| 299 | * (last token) */ |
| 300 | queue->debug_count_tokens, |
| 301 | 0, |
| 302 | 0); |
| 303 | #endif |
| 304 | |
| 305 | return KERN_SUCCESS; |
| 306 | } |
| 307 | |
| 308 | /* |
| 309 | * Remove first token from queue and return its index. Add its count to the |
| 310 | * count of the next token. |
| 311 | * Call with page queue locked. |
| 312 | */ |
| 313 | static token_idx_t |
| 314 | vm_purgeable_token_remove_first(purgeable_q_t queue) |
| 315 | { |
| 316 | LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED); |
| 317 | |
| 318 | token_idx_t token; |
| 319 | token = queue->token_q_head; |
| 320 | |
| 321 | assert(token); |
| 322 | |
| 323 | if (token) { |
| 324 | assert(queue->token_q_tail); |
| 325 | if (queue->token_q_head == queue->token_q_unripe) { |
| 326 | /* no ripe tokens... must move unripe pointer */ |
| 327 | queue->token_q_unripe = tokens[token].next; |
| 328 | } else { |
| 329 | /* we're removing a ripe token. decrease count */ |
| 330 | available_for_purge--; |
| 331 | assert(available_for_purge >= 0); |
| 332 | } |
| 333 | |
| 334 | if (queue->token_q_tail == queue->token_q_head) { |
| 335 | assert(tokens[token].next == 0); |
| 336 | } |
| 337 | |
| 338 | queue->token_q_head = tokens[token].next; |
| 339 | if (queue->token_q_head) { |
| 340 | tokens[queue->token_q_head].count += tokens[token].count; |
| 341 | tokens[queue->token_q_head].prev = 0; |
| 342 | } else { |
| 343 | /* currently no other tokens in the queue */ |
| 344 | /* |
| 345 | * the page count must be added to the next newly |
| 346 | * created token |
| 347 | */ |
| 348 | queue->new_pages += tokens[token].count; |
| 349 | /* if head is zero, tail is too */ |
| 350 | queue->token_q_tail = 0; |
| 351 | } |
| 352 | |
| 353 | #if MACH_ASSERT |
| 354 | queue->debug_count_tokens--; |
| 355 | vm_purgeable_token_check_queue(queue); |
| 356 | |
| 357 | KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, TOKEN_DELETE)), |
| 358 | queue->type, |
| 359 | tokens[queue->token_q_head].count, /* num pages on new |
| 360 | * first token */ |
| 361 | token_new_pagecount, /* num pages waiting for |
| 362 | * next token */ |
| 363 | available_for_purge, |
| 364 | 0); |
| 365 | #endif |
| 366 | } |
| 367 | return token; |
| 368 | } |
| 369 | |
| 370 | static token_idx_t |
| 371 | vm_purgeable_token_remove_last(purgeable_q_t queue) |
| 372 | { |
| 373 | LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED); |
| 374 | |
| 375 | token_idx_t token; |
| 376 | token = queue->token_q_tail; |
| 377 | |
| 378 | assert(token); |
| 379 | |
| 380 | if (token) { |
| 381 | assert(queue->token_q_head); |
| 382 | |
| 383 | if (queue->token_q_tail == queue->token_q_head) { |
| 384 | assert(tokens[token].next == 0); |
| 385 | } |
| 386 | |
| 387 | if (queue->token_q_unripe == 0) { |
| 388 | /* we're removing a ripe token. decrease count */ |
| 389 | available_for_purge--; |
| 390 | assert(available_for_purge >= 0); |
| 391 | } else if (queue->token_q_unripe == token) { |
| 392 | /* we're removing the only unripe token */ |
| 393 | queue->token_q_unripe = 0; |
| 394 | } |
| 395 | |
| 396 | if (token == queue->token_q_head) { |
| 397 | /* token is the last one in the queue */ |
| 398 | queue->token_q_head = 0; |
| 399 | queue->token_q_tail = 0; |
| 400 | } else { |
| 401 | token_idx_t new_tail; |
| 402 | |
| 403 | new_tail = tokens[token].prev; |
| 404 | |
| 405 | assert(new_tail); |
| 406 | assert(tokens[new_tail].next == token); |
| 407 | |
| 408 | queue->token_q_tail = new_tail; |
| 409 | tokens[new_tail].next = 0; |
| 410 | } |
| 411 | |
| 412 | queue->new_pages += tokens[token].count; |
| 413 | |
| 414 | #if MACH_ASSERT |
| 415 | queue->debug_count_tokens--; |
| 416 | vm_purgeable_token_check_queue(queue); |
| 417 | |
| 418 | KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, TOKEN_DELETE)), |
| 419 | queue->type, |
| 420 | tokens[queue->token_q_head].count, /* num pages on new |
| 421 | * first token */ |
| 422 | token_new_pagecount, /* num pages waiting for |
| 423 | * next token */ |
| 424 | available_for_purge, |
| 425 | 0); |
| 426 | #endif |
| 427 | } |
| 428 | return token; |
| 429 | } |
| 430 | |
| 431 | /* |
| 432 | * Delete first token from queue. Return token to token queue. |
| 433 | * Call with page queue locked. |
| 434 | */ |
| 435 | void |
| 436 | vm_purgeable_token_delete_first(purgeable_q_t queue) |
| 437 | { |
| 438 | LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED); |
| 439 | token_idx_t token = vm_purgeable_token_remove_first(queue); |
| 440 | |
| 441 | if (token) { |
| 442 | /* stick removed token on free queue */ |
| 443 | tokens[token].next = token_free_idx; |
| 444 | tokens[token].prev = 0; |
| 445 | token_free_idx = token; |
| 446 | } |
| 447 | } |
| 448 | |
| 449 | void |
| 450 | vm_purgeable_token_delete_last(purgeable_q_t queue) |
| 451 | { |
| 452 | LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED); |
| 453 | token_idx_t token = vm_purgeable_token_remove_last(queue); |
| 454 | |
| 455 | if (token) { |
| 456 | /* stick removed token on free queue */ |
| 457 | tokens[token].next = token_free_idx; |
| 458 | tokens[token].prev = 0; |
| 459 | token_free_idx = token; |
| 460 | } |
| 461 | } |
| 462 | |
| 463 | |
| 464 | /* Call with page queue locked. */ |
| 465 | void |
| 466 | vm_purgeable_q_advance_all() |
| 467 | { |
| 468 | LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED); |
| 469 | |
| 470 | /* check queue counters - if they get really large, scale them back. |
| 471 | * They tend to get that large when there is no purgeable queue action */ |
| 472 | int i; |
| 473 | if (token_new_pagecount > (TOKEN_NEW_PAGECOUNT_MAX >> 1)) { /* a system idling years might get there */ |
| 474 | for (i = PURGEABLE_Q_TYPE_FIFO; i < PURGEABLE_Q_TYPE_MAX; i++) { |
| 475 | int64_t pages = purgeable_queues[i].new_pages += token_new_pagecount; |
| 476 | assert(pages >= 0); |
| 477 | assert(pages <= TOKEN_COUNT_MAX); |
| 478 | purgeable_queues[i].new_pages = (int32_t) pages; |
| 479 | assert(purgeable_queues[i].new_pages == pages); |
| 480 | } |
| 481 | token_new_pagecount = 0; |
| 482 | } |
| 483 | |
| 484 | /* |
| 485 | * Decrement token counters. A token counter can be zero, this means the |
| 486 | * object is ripe to be purged. It is not purged immediately, because that |
| 487 | * could cause several objects to be purged even if purging one would satisfy |
| 488 | * the memory needs. Instead, the pageout thread purges one after the other |
| 489 | * by calling vm_purgeable_object_purge_one and then rechecking the memory |
| 490 | * balance. |
| 491 | * |
| 492 | * No need to advance obsolete queue - all items are ripe there, |
| 493 | * always |
| 494 | */ |
| 495 | for (i = PURGEABLE_Q_TYPE_FIFO; i < PURGEABLE_Q_TYPE_MAX; i++) { |
| 496 | purgeable_q_t queue = &purgeable_queues[i]; |
| 497 | uint32_t num_pages = 1; |
| 498 | |
| 499 | /* Iterate over tokens as long as there are unripe tokens. */ |
| 500 | while (queue->token_q_unripe) { |
| 501 | if (tokens[queue->token_q_unripe].count && num_pages) { |
| 502 | tokens[queue->token_q_unripe].count -= 1; |
| 503 | num_pages -= 1; |
| 504 | } |
| 505 | |
| 506 | if (tokens[queue->token_q_unripe].count == 0) { |
| 507 | queue->token_q_unripe = tokens[queue->token_q_unripe].next; |
| 508 | available_for_purge++; |
| 509 | KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, TOKEN_RIPEN)), |
| 510 | queue->type, |
| 511 | tokens[queue->token_q_head].count, /* num pages on new |
| 512 | * first token */ |
| 513 | 0, |
| 514 | available_for_purge, |
| 515 | 0); |
| 516 | continue; /* One token ripened. Make sure to |
| 517 | * check the next. */ |
| 518 | } |
| 519 | if (num_pages == 0) { |
| 520 | break; /* Current token not ripe and no more pages. |
| 521 | * Work done. */ |
| 522 | } |
| 523 | } |
| 524 | |
| 525 | /* |
| 526 | * if there are no unripe tokens in the queue, decrement the |
| 527 | * new_pages counter instead new_pages can be negative, but must be |
| 528 | * canceled out by token_new_pagecount -- since inactive queue as a |
| 529 | * whole always contains a nonnegative number of pages |
| 530 | */ |
| 531 | if (!queue->token_q_unripe) { |
| 532 | queue->new_pages -= num_pages; |
| 533 | assert((int32_t) token_new_pagecount + queue->new_pages >= 0); |
| 534 | } |
| 535 | #if MACH_ASSERT |
| 536 | vm_purgeable_token_check_queue(queue); |
| 537 | #endif |
| 538 | } |
| 539 | } |
| 540 | |
| 541 | /* |
| 542 | * grab any ripe object and purge it obsolete queue first. then, go through |
| 543 | * each volatile group. Select a queue with a ripe token. |
| 544 | * Start with first group (0) |
| 545 | * 1. Look at queue. Is there an object? |
| 546 | * Yes - purge it. Remove token. |
| 547 | * No - check other queue. Is there an object? |
| 548 | * No - increment group, then go to (1) |
| 549 | * Yes - purge it. Remove token. If there is no ripe token, remove ripe |
| 550 | * token from other queue and migrate unripe token from this |
| 551 | * queue to other queue. |
| 552 | * Call with page queue locked. |
| 553 | */ |
| 554 | static void |
| 555 | vm_purgeable_token_remove_ripe(purgeable_q_t queue) |
| 556 | { |
| 557 | LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED); |
| 558 | assert(queue->token_q_head && tokens[queue->token_q_head].count == 0); |
| 559 | /* return token to free list. advance token list. */ |
| 560 | token_idx_t new_head = tokens[queue->token_q_head].next; |
| 561 | tokens[queue->token_q_head].next = token_free_idx; |
| 562 | tokens[queue->token_q_head].prev = 0; |
| 563 | token_free_idx = queue->token_q_head; |
| 564 | queue->token_q_head = new_head; |
| 565 | tokens[new_head].prev = 0; |
| 566 | if (new_head == 0) { |
| 567 | queue->token_q_tail = 0; |
| 568 | } |
| 569 | |
| 570 | #if MACH_ASSERT |
| 571 | queue->debug_count_tokens--; |
| 572 | vm_purgeable_token_check_queue(queue); |
| 573 | #endif |
| 574 | |
| 575 | available_for_purge--; |
| 576 | assert(available_for_purge >= 0); |
| 577 | } |
| 578 | |
| 579 | /* |
| 580 | * Delete a ripe token from the given queue. If there are no ripe tokens on |
| 581 | * that queue, delete a ripe token from queue2, and migrate an unripe token |
| 582 | * from queue to queue2 |
| 583 | * Call with page queue locked. |
| 584 | */ |
| 585 | static void |
| 586 | vm_purgeable_token_choose_and_delete_ripe(purgeable_q_t queue, purgeable_q_t queue2) |
| 587 | { |
| 588 | LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED); |
| 589 | assert(queue->token_q_head); |
| 590 | |
| 591 | if (tokens[queue->token_q_head].count == 0) { |
| 592 | /* This queue has a ripe token. Remove. */ |
| 593 | vm_purgeable_token_remove_ripe(queue); |
| 594 | } else { |
| 595 | assert(queue2); |
| 596 | /* |
| 597 | * queue2 must have a ripe token. Remove, and migrate one |
| 598 | * from queue to queue2. |
| 599 | */ |
| 600 | vm_purgeable_token_remove_ripe(queue: queue2); |
| 601 | /* migrate unripe token */ |
| 602 | token_idx_t token; |
| 603 | token_cnt_t count; |
| 604 | |
| 605 | /* remove token from queue1 */ |
| 606 | assert(queue->token_q_unripe == queue->token_q_head); /* queue1 had no unripe |
| 607 | * tokens, remember? */ |
| 608 | token = vm_purgeable_token_remove_first(queue); |
| 609 | assert(token); |
| 610 | |
| 611 | count = tokens[token].count; |
| 612 | |
| 613 | /* migrate to queue2 */ |
| 614 | /* go to migration target loc */ |
| 615 | |
| 616 | token_idx_t token_to_insert_before = queue2->token_q_head, token_to_insert_after; |
| 617 | |
| 618 | while (token_to_insert_before != 0 && count > tokens[token_to_insert_before].count) { |
| 619 | count -= tokens[token_to_insert_before].count; |
| 620 | token_to_insert_before = tokens[token_to_insert_before].next; |
| 621 | } |
| 622 | |
| 623 | /* token_to_insert_before is now set correctly */ |
| 624 | |
| 625 | /* should the inserted token become the first unripe token? */ |
| 626 | if ((token_to_insert_before == queue2->token_q_unripe) || (queue2->token_q_unripe == 0)) { |
| 627 | queue2->token_q_unripe = token; /* if so, must update unripe pointer */ |
| 628 | } |
| 629 | /* |
| 630 | * insert token. |
| 631 | * if inserting at end, reduce new_pages by that value; |
| 632 | * otherwise, reduce counter of next token |
| 633 | */ |
| 634 | |
| 635 | tokens[token].count = count; |
| 636 | |
| 637 | if (token_to_insert_before != 0) { |
| 638 | token_to_insert_after = tokens[token_to_insert_before].prev; |
| 639 | |
| 640 | tokens[token].next = token_to_insert_before; |
| 641 | tokens[token_to_insert_before].prev = token; |
| 642 | |
| 643 | assert(tokens[token_to_insert_before].count >= count); |
| 644 | tokens[token_to_insert_before].count -= count; |
| 645 | } else { |
| 646 | /* if we ran off the end of the list, the token to insert after is the tail */ |
| 647 | token_to_insert_after = queue2->token_q_tail; |
| 648 | |
| 649 | tokens[token].next = 0; |
| 650 | queue2->token_q_tail = token; |
| 651 | |
| 652 | assert(queue2->new_pages >= (int32_t) count); |
| 653 | queue2->new_pages -= count; |
| 654 | } |
| 655 | |
| 656 | if (token_to_insert_after != 0) { |
| 657 | tokens[token].prev = token_to_insert_after; |
| 658 | tokens[token_to_insert_after].next = token; |
| 659 | } else { |
| 660 | /* is this case possible? */ |
| 661 | tokens[token].prev = 0; |
| 662 | queue2->token_q_head = token; |
| 663 | } |
| 664 | |
| 665 | #if MACH_ASSERT |
| 666 | queue2->debug_count_tokens++; |
| 667 | vm_purgeable_token_check_queue(queue2); |
| 668 | #endif |
| 669 | } |
| 670 | } |
| 671 | |
| 672 | /* Find an object that can be locked. Returns locked object. */ |
| 673 | /* Call with purgeable queue locked. */ |
| 674 | static vm_object_t |
| 675 | vm_purgeable_object_find_and_lock( |
| 676 | purgeable_q_t queue, |
| 677 | int group, |
| 678 | boolean_t pick_ripe) |
| 679 | { |
| 680 | vm_object_t object, best_object; |
| 681 | int object_task_importance; |
| 682 | int best_object_task_importance; |
| 683 | int best_object_skipped; |
| 684 | int num_objects_skipped; |
| 685 | int try_lock_failed = 0; |
| 686 | int try_lock_succeeded = 0; |
| 687 | task_t owner; |
| 688 | |
| 689 | best_object = VM_OBJECT_NULL; |
| 690 | best_object_task_importance = INT_MAX; |
| 691 | |
| 692 | LCK_MTX_ASSERT(&vm_purgeable_queue_lock, LCK_MTX_ASSERT_OWNED); |
| 693 | /* |
| 694 | * Usually we would pick the first element from a queue. However, we |
| 695 | * might not be able to get a lock on it, in which case we try the |
| 696 | * remaining elements in order. |
| 697 | */ |
| 698 | |
| 699 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, (MACHDBG_CODE(DBG_MACH_VM, OBJECT_PURGE_LOOP) | DBG_FUNC_START), |
| 700 | pick_ripe, |
| 701 | group, |
| 702 | VM_KERNEL_UNSLIDE_OR_PERM(queue), |
| 703 | 0, |
| 704 | 0); |
| 705 | |
| 706 | num_objects_skipped = 0; |
| 707 | for (object = (vm_object_t) queue_first(&queue->objq[group]); |
| 708 | !queue_end(&queue->objq[group], (queue_entry_t) object); |
| 709 | object = (vm_object_t) queue_next(&object->objq), |
| 710 | num_objects_skipped++) { |
| 711 | /* |
| 712 | * To prevent us looping for an excessively long time, choose |
| 713 | * the best object we've seen after looking at PURGEABLE_LOOP_MAX elements. |
| 714 | * If we haven't seen an eligible object after PURGEABLE_LOOP_MAX elements, |
| 715 | * we keep going until we find the first eligible object. |
| 716 | */ |
| 717 | if ((num_objects_skipped >= PURGEABLE_LOOP_MAX) && (best_object != NULL)) { |
| 718 | break; |
| 719 | } |
| 720 | |
| 721 | if (pick_ripe && |
| 722 | !object->purgeable_when_ripe) { |
| 723 | /* we want an object that has a ripe token */ |
| 724 | continue; |
| 725 | } |
| 726 | |
| 727 | object_task_importance = 0; |
| 728 | |
| 729 | /* |
| 730 | * We don't want to use VM_OBJECT_OWNER() here: we want to |
| 731 | * distinguish kernel-owned and disowned objects. |
| 732 | * Disowned objects have no owner and will have no importance... |
| 733 | */ |
| 734 | owner = object->vo_owner; |
| 735 | if (owner != NULL && owner != VM_OBJECT_OWNER_DISOWNED) { |
| 736 | #if !XNU_TARGET_OS_OSX |
| 737 | #if CONFIG_JETSAM |
| 738 | object_task_importance = proc_get_memstat_priority((struct proc *)get_bsdtask_info(owner), TRUE); |
| 739 | #endif /* CONFIG_JETSAM */ |
| 740 | #else /* !XNU_TARGET_OS_OSX */ |
| 741 | object_task_importance = task_importance_estimate(task: owner); |
| 742 | #endif /* !XNU_TARGET_OS_OSX */ |
| 743 | } |
| 744 | |
| 745 | if (object_task_importance < best_object_task_importance) { |
| 746 | if (vm_object_lock_try(object)) { |
| 747 | try_lock_succeeded++; |
| 748 | if (best_object != VM_OBJECT_NULL) { |
| 749 | /* forget about previous best object */ |
| 750 | vm_object_unlock(best_object); |
| 751 | } |
| 752 | best_object = object; |
| 753 | best_object_task_importance = object_task_importance; |
| 754 | best_object_skipped = num_objects_skipped; |
| 755 | if (best_object_task_importance == 0) { |
| 756 | /* can't get any better: stop looking */ |
| 757 | break; |
| 758 | } |
| 759 | } else { |
| 760 | try_lock_failed++; |
| 761 | } |
| 762 | } |
| 763 | } |
| 764 | |
| 765 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, (MACHDBG_CODE(DBG_MACH_VM, OBJECT_PURGE_LOOP) | DBG_FUNC_END), |
| 766 | num_objects_skipped, /* considered objects */ |
| 767 | try_lock_failed, |
| 768 | try_lock_succeeded, |
| 769 | VM_KERNEL_UNSLIDE_OR_PERM(best_object), |
| 770 | ((best_object == NULL) ? 0 : best_object->resident_page_count)); |
| 771 | |
| 772 | object = best_object; |
| 773 | |
| 774 | if (object == VM_OBJECT_NULL) { |
| 775 | return VM_OBJECT_NULL; |
| 776 | } |
| 777 | |
| 778 | /* Locked. Great. We'll take it. Remove and return. */ |
| 779 | // printf("FOUND PURGEABLE object %p skipped %d\n", object, num_objects_skipped); |
| 780 | |
| 781 | vm_object_lock_assert_exclusive(object); |
| 782 | |
| 783 | queue_remove(&queue->objq[group], object, |
| 784 | vm_object_t, objq); |
| 785 | object->objq.next = NULL; |
| 786 | object->objq.prev = NULL; |
| 787 | object->purgeable_queue_type = PURGEABLE_Q_TYPE_MAX; |
| 788 | object->purgeable_queue_group = 0; |
| 789 | /* one less volatile object for this object's owner */ |
| 790 | vm_purgeable_volatile_owner_update(VM_OBJECT_OWNER(object), delta: -1); |
| 791 | |
| 792 | #if DEBUG |
| 793 | object->vo_purgeable_volatilizer = NULL; |
| 794 | #endif /* DEBUG */ |
| 795 | |
| 796 | /* keep queue of non-volatile objects */ |
| 797 | queue_enter(&purgeable_nonvolatile_queue, object, |
| 798 | vm_object_t, objq); |
| 799 | assert(purgeable_nonvolatile_count >= 0); |
| 800 | purgeable_nonvolatile_count++; |
| 801 | assert(purgeable_nonvolatile_count > 0); |
| 802 | /* one more nonvolatile object for this object's owner */ |
| 803 | vm_purgeable_nonvolatile_owner_update(VM_OBJECT_OWNER(object), delta: +1); |
| 804 | |
| 805 | #if MACH_ASSERT |
| 806 | queue->debug_count_objects--; |
| 807 | #endif |
| 808 | return object; |
| 809 | } |
| 810 | |
| 811 | /* Can be called without holding locks */ |
| 812 | void |
| 813 | vm_purgeable_object_purge_all(void) |
| 814 | { |
| 815 | enum purgeable_q_type i; |
| 816 | int group; |
| 817 | vm_object_t object; |
| 818 | unsigned int purged_count; |
| 819 | uint32_t collisions; |
| 820 | |
| 821 | purged_count = 0; |
| 822 | collisions = 0; |
| 823 | |
| 824 | restart: |
| 825 | lck_mtx_lock(lck: &vm_purgeable_queue_lock); |
| 826 | /* Cycle through all queues */ |
| 827 | for (i = PURGEABLE_Q_TYPE_OBSOLETE; i < PURGEABLE_Q_TYPE_MAX; i++) { |
| 828 | purgeable_q_t queue; |
| 829 | |
| 830 | queue = &purgeable_queues[i]; |
| 831 | |
| 832 | /* |
| 833 | * Look through all groups, starting from the lowest. If |
| 834 | * we find an object in that group, try to lock it (this can |
| 835 | * fail). If locking is successful, we can drop the queue |
| 836 | * lock, remove a token and then purge the object. |
| 837 | */ |
| 838 | for (group = 0; group < NUM_VOLATILE_GROUPS; group++) { |
| 839 | while (!queue_empty(&queue->objq[group])) { |
| 840 | object = vm_purgeable_object_find_and_lock(queue, group, FALSE); |
| 841 | if (object == VM_OBJECT_NULL) { |
| 842 | lck_mtx_unlock(lck: &vm_purgeable_queue_lock); |
| 843 | mutex_pause(collisions++); |
| 844 | goto restart; |
| 845 | } |
| 846 | |
| 847 | lck_mtx_unlock(lck: &vm_purgeable_queue_lock); |
| 848 | |
| 849 | /* Lock the page queue here so we don't hold it |
| 850 | * over the whole, legthy operation */ |
| 851 | if (object->purgeable_when_ripe) { |
| 852 | vm_page_lock_queues(); |
| 853 | vm_purgeable_token_remove_first(queue); |
| 854 | vm_page_unlock_queues(); |
| 855 | } |
| 856 | |
| 857 | (void) vm_object_purge(object, flags: 0); |
| 858 | assert(object->purgable == VM_PURGABLE_EMPTY); |
| 859 | /* no change in purgeable accounting */ |
| 860 | |
| 861 | vm_object_unlock(object); |
| 862 | purged_count++; |
| 863 | goto restart; |
| 864 | } |
| 865 | assert(queue->debug_count_objects >= 0); |
| 866 | } |
| 867 | } |
| 868 | KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, OBJECT_PURGE_ALL)), |
| 869 | purged_count, /* # of purged objects */ |
| 870 | 0, |
| 871 | available_for_purge, |
| 872 | 0, |
| 873 | 0); |
| 874 | lck_mtx_unlock(lck: &vm_purgeable_queue_lock); |
| 875 | return; |
| 876 | } |
| 877 | |
| 878 | boolean_t |
| 879 | vm_purgeable_object_purge_one_unlocked( |
| 880 | int force_purge_below_group) |
| 881 | { |
| 882 | boolean_t retval; |
| 883 | |
| 884 | vm_page_lock_queues(); |
| 885 | retval = vm_purgeable_object_purge_one(force_purge_below_group, flags: 0); |
| 886 | vm_page_unlock_queues(); |
| 887 | |
| 888 | return retval; |
| 889 | } |
| 890 | |
| 891 | boolean_t |
| 892 | vm_purgeable_object_purge_one( |
| 893 | int force_purge_below_group, |
| 894 | int flags) |
| 895 | { |
| 896 | enum purgeable_q_type i; |
| 897 | int group; |
| 898 | vm_object_t object = 0; |
| 899 | purgeable_q_t queue, queue2; |
| 900 | boolean_t forced_purge; |
| 901 | unsigned int resident_page_count; |
| 902 | |
| 903 | |
| 904 | KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, OBJECT_PURGE)) | DBG_FUNC_START, |
| 905 | force_purge_below_group, flags, 0, 0, 0); |
| 906 | |
| 907 | /* Need the page queue lock since we'll be changing the token queue. */ |
| 908 | LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED); |
| 909 | lck_mtx_lock(lck: &vm_purgeable_queue_lock); |
| 910 | |
| 911 | /* Cycle through all queues */ |
| 912 | for (i = PURGEABLE_Q_TYPE_OBSOLETE; i < PURGEABLE_Q_TYPE_MAX; i++) { |
| 913 | queue = &purgeable_queues[i]; |
| 914 | |
| 915 | if (force_purge_below_group == 0) { |
| 916 | /* |
| 917 | * Are there any ripe tokens on this queue? If yes, |
| 918 | * we'll find an object to purge there |
| 919 | */ |
| 920 | if (!queue->token_q_head) { |
| 921 | /* no token: look at next purgeable queue */ |
| 922 | continue; |
| 923 | } |
| 924 | |
| 925 | if (tokens[queue->token_q_head].count != 0) { |
| 926 | /* no ripe token: next queue */ |
| 927 | continue; |
| 928 | } |
| 929 | } |
| 930 | |
| 931 | /* |
| 932 | * Now look through all groups, starting from the lowest. If |
| 933 | * we find an object in that group, try to lock it (this can |
| 934 | * fail). If locking is successful, we can drop the queue |
| 935 | * lock, remove a token and then purge the object. |
| 936 | */ |
| 937 | for (group = 0; group < NUM_VOLATILE_GROUPS; group++) { |
| 938 | if (!queue->token_q_head || |
| 939 | tokens[queue->token_q_head].count != 0) { |
| 940 | /* no tokens or no ripe tokens */ |
| 941 | |
| 942 | if (group >= force_purge_below_group) { |
| 943 | /* no more groups to force-purge */ |
| 944 | break; |
| 945 | } |
| 946 | |
| 947 | /* |
| 948 | * Try and purge an object in this group |
| 949 | * even though no tokens are ripe. |
| 950 | */ |
| 951 | if (!queue_empty(&queue->objq[group]) && |
| 952 | (object = vm_purgeable_object_find_and_lock(queue, group, FALSE))) { |
| 953 | lck_mtx_unlock(lck: &vm_purgeable_queue_lock); |
| 954 | if (object->purgeable_when_ripe) { |
| 955 | vm_purgeable_token_delete_first(queue); |
| 956 | } |
| 957 | forced_purge = TRUE; |
| 958 | goto purge_now; |
| 959 | } |
| 960 | |
| 961 | /* nothing to purge in this group: next group */ |
| 962 | continue; |
| 963 | } |
| 964 | if (!queue_empty(&queue->objq[group]) && |
| 965 | (object = vm_purgeable_object_find_and_lock(queue, group, TRUE))) { |
| 966 | lck_mtx_unlock(lck: &vm_purgeable_queue_lock); |
| 967 | if (object->purgeable_when_ripe) { |
| 968 | vm_purgeable_token_choose_and_delete_ripe(queue, queue2: 0); |
| 969 | } |
| 970 | forced_purge = FALSE; |
| 971 | goto purge_now; |
| 972 | } |
| 973 | if (i != PURGEABLE_Q_TYPE_OBSOLETE) { |
| 974 | /* This is the token migration case, and it works between |
| 975 | * FIFO and LIFO only */ |
| 976 | queue2 = &purgeable_queues[i != PURGEABLE_Q_TYPE_FIFO ? |
| 977 | PURGEABLE_Q_TYPE_FIFO : |
| 978 | PURGEABLE_Q_TYPE_LIFO]; |
| 979 | |
| 980 | if (!queue_empty(&queue2->objq[group]) && |
| 981 | (object = vm_purgeable_object_find_and_lock(queue: queue2, group, TRUE))) { |
| 982 | lck_mtx_unlock(lck: &vm_purgeable_queue_lock); |
| 983 | if (object->purgeable_when_ripe) { |
| 984 | vm_purgeable_token_choose_and_delete_ripe(queue: queue2, queue2: queue); |
| 985 | } |
| 986 | forced_purge = FALSE; |
| 987 | goto purge_now; |
| 988 | } |
| 989 | } |
| 990 | assert(queue->debug_count_objects >= 0); |
| 991 | } |
| 992 | } |
| 993 | /* |
| 994 | * because we have to do a try_lock on the objects which could fail, |
| 995 | * we could end up with no object to purge at this time, even though |
| 996 | * we have objects in a purgeable state |
| 997 | */ |
| 998 | lck_mtx_unlock(lck: &vm_purgeable_queue_lock); |
| 999 | |
| 1000 | KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, OBJECT_PURGE)) | DBG_FUNC_END, |
| 1001 | 0, 0, available_for_purge, 0, 0); |
| 1002 | |
| 1003 | return FALSE; |
| 1004 | |
| 1005 | purge_now: |
| 1006 | |
| 1007 | assert(object); |
| 1008 | vm_page_unlock_queues(); /* Unlock for call to vm_object_purge() */ |
| 1009 | // printf("%sPURGING object %p task %p importance %d queue %d group %d force_purge_below_group %d memorystatus_vm_pressure_level %d\n", forced_purge ? "FORCED " : "", object, object->vo_owner, task_importance_estimate(object->vo_owner), i, group, force_purge_below_group, memorystatus_vm_pressure_level); |
| 1010 | resident_page_count = object->resident_page_count; |
| 1011 | (void) vm_object_purge(object, flags); |
| 1012 | assert(object->purgable == VM_PURGABLE_EMPTY); |
| 1013 | /* no change in purgeable accounting */ |
| 1014 | vm_object_unlock(object); |
| 1015 | vm_page_lock_queues(); |
| 1016 | |
| 1017 | vm_pageout_vminfo.vm_pageout_pages_purged += resident_page_count; |
| 1018 | |
| 1019 | KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, OBJECT_PURGE)) | DBG_FUNC_END, |
| 1020 | VM_KERNEL_UNSLIDE_OR_PERM(object), /* purged object */ |
| 1021 | resident_page_count, |
| 1022 | available_for_purge, |
| 1023 | 0, |
| 1024 | 0); |
| 1025 | |
| 1026 | return TRUE; |
| 1027 | } |
| 1028 | |
| 1029 | /* Called with object lock held */ |
| 1030 | void |
| 1031 | vm_purgeable_object_add(vm_object_t object, purgeable_q_t queue, int group) |
| 1032 | { |
| 1033 | vm_object_lock_assert_exclusive(object); |
| 1034 | lck_mtx_lock(lck: &vm_purgeable_queue_lock); |
| 1035 | |
| 1036 | assert(object->objq.next != NULL); |
| 1037 | assert(object->objq.prev != NULL); |
| 1038 | queue_remove(&purgeable_nonvolatile_queue, object, |
| 1039 | vm_object_t, objq); |
| 1040 | object->objq.next = NULL; |
| 1041 | object->objq.prev = NULL; |
| 1042 | assert(purgeable_nonvolatile_count > 0); |
| 1043 | purgeable_nonvolatile_count--; |
| 1044 | assert(purgeable_nonvolatile_count >= 0); |
| 1045 | /* one less nonvolatile object for this object's owner */ |
| 1046 | vm_purgeable_nonvolatile_owner_update(VM_OBJECT_OWNER(object), delta: -1); |
| 1047 | |
| 1048 | if (queue->type == PURGEABLE_Q_TYPE_OBSOLETE) { |
| 1049 | group = 0; |
| 1050 | } |
| 1051 | |
| 1052 | if (queue->type != PURGEABLE_Q_TYPE_LIFO) { /* fifo and obsolete are |
| 1053 | * fifo-queued */ |
| 1054 | queue_enter(&queue->objq[group], object, vm_object_t, objq); /* last to die */ |
| 1055 | } else { |
| 1056 | queue_enter_first(&queue->objq[group], object, vm_object_t, objq); /* first to die */ |
| 1057 | } |
| 1058 | /* one more volatile object for this object's owner */ |
| 1059 | vm_purgeable_volatile_owner_update(VM_OBJECT_OWNER(object), delta: +1); |
| 1060 | |
| 1061 | object->purgeable_queue_type = queue->type; |
| 1062 | object->purgeable_queue_group = group; |
| 1063 | |
| 1064 | #if DEBUG |
| 1065 | assert(object->vo_purgeable_volatilizer == NULL); |
| 1066 | object->vo_purgeable_volatilizer = current_task(); |
| 1067 | OSBacktrace(&object->purgeable_volatilizer_bt[0], |
| 1068 | ARRAY_COUNT(object->purgeable_volatilizer_bt)); |
| 1069 | #endif /* DEBUG */ |
| 1070 | |
| 1071 | #if MACH_ASSERT |
| 1072 | queue->debug_count_objects++; |
| 1073 | KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, OBJECT_ADD)), |
| 1074 | 0, |
| 1075 | tokens[queue->token_q_head].count, |
| 1076 | queue->type, |
| 1077 | group, |
| 1078 | 0); |
| 1079 | #endif |
| 1080 | |
| 1081 | lck_mtx_unlock(lck: &vm_purgeable_queue_lock); |
| 1082 | } |
| 1083 | |
| 1084 | /* Look for object. If found, remove from purgeable queue. */ |
| 1085 | /* Called with object lock held */ |
| 1086 | purgeable_q_t |
| 1087 | vm_purgeable_object_remove(vm_object_t object) |
| 1088 | { |
| 1089 | int group; |
| 1090 | enum purgeable_q_type type; |
| 1091 | purgeable_q_t queue; |
| 1092 | |
| 1093 | vm_object_lock_assert_exclusive(object); |
| 1094 | |
| 1095 | type = object->purgeable_queue_type; |
| 1096 | group = object->purgeable_queue_group; |
| 1097 | |
| 1098 | if (type == PURGEABLE_Q_TYPE_MAX) { |
| 1099 | if (object->objq.prev || object->objq.next) { |
| 1100 | panic("unmarked object on purgeable q" ); |
| 1101 | } |
| 1102 | |
| 1103 | return NULL; |
| 1104 | } else if (!(object->objq.prev && object->objq.next)) { |
| 1105 | panic("marked object not on purgeable q" ); |
| 1106 | } |
| 1107 | |
| 1108 | lck_mtx_lock(lck: &vm_purgeable_queue_lock); |
| 1109 | |
| 1110 | queue = &purgeable_queues[type]; |
| 1111 | |
| 1112 | queue_remove(&queue->objq[group], object, vm_object_t, objq); |
| 1113 | object->objq.next = NULL; |
| 1114 | object->objq.prev = NULL; |
| 1115 | /* one less volatile object for this object's owner */ |
| 1116 | vm_purgeable_volatile_owner_update(VM_OBJECT_OWNER(object), delta: -1); |
| 1117 | #if DEBUG |
| 1118 | object->vo_purgeable_volatilizer = NULL; |
| 1119 | #endif /* DEBUG */ |
| 1120 | /* keep queue of non-volatile objects */ |
| 1121 | if (object->alive && !object->terminating) { |
| 1122 | queue_enter(&purgeable_nonvolatile_queue, object, |
| 1123 | vm_object_t, objq); |
| 1124 | assert(purgeable_nonvolatile_count >= 0); |
| 1125 | purgeable_nonvolatile_count++; |
| 1126 | assert(purgeable_nonvolatile_count > 0); |
| 1127 | /* one more nonvolatile object for this object's owner */ |
| 1128 | vm_purgeable_nonvolatile_owner_update(VM_OBJECT_OWNER(object), delta: +1); |
| 1129 | } |
| 1130 | |
| 1131 | #if MACH_ASSERT |
| 1132 | queue->debug_count_objects--; |
| 1133 | KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, OBJECT_REMOVE)), |
| 1134 | 0, |
| 1135 | tokens[queue->token_q_head].count, |
| 1136 | queue->type, |
| 1137 | group, |
| 1138 | 0); |
| 1139 | #endif |
| 1140 | |
| 1141 | lck_mtx_unlock(lck: &vm_purgeable_queue_lock); |
| 1142 | |
| 1143 | object->purgeable_queue_type = PURGEABLE_Q_TYPE_MAX; |
| 1144 | object->purgeable_queue_group = 0; |
| 1145 | |
| 1146 | vm_object_lock_assert_exclusive(object); |
| 1147 | |
| 1148 | return &purgeable_queues[type]; |
| 1149 | } |
| 1150 | |
| 1151 | void |
| 1152 | vm_purgeable_stats_helper(vm_purgeable_stat_t *stat, purgeable_q_t queue, int group, task_t target_task) |
| 1153 | { |
| 1154 | LCK_MTX_ASSERT(&vm_purgeable_queue_lock, LCK_MTX_ASSERT_OWNED); |
| 1155 | |
| 1156 | stat->count = stat->size = 0; |
| 1157 | vm_object_t object; |
| 1158 | for (object = (vm_object_t) queue_first(&queue->objq[group]); |
| 1159 | !queue_end(&queue->objq[group], (queue_entry_t) object); |
| 1160 | object = (vm_object_t) queue_next(&object->objq)) { |
| 1161 | if (!target_task || VM_OBJECT_OWNER(object) == target_task) { |
| 1162 | stat->count++; |
| 1163 | stat->size += (object->resident_page_count * PAGE_SIZE); |
| 1164 | } |
| 1165 | } |
| 1166 | return; |
| 1167 | } |
| 1168 | |
| 1169 | void |
| 1170 | vm_purgeable_stats(vm_purgeable_info_t info, task_t target_task) |
| 1171 | { |
| 1172 | purgeable_q_t queue; |
| 1173 | int group; |
| 1174 | |
| 1175 | lck_mtx_lock(lck: &vm_purgeable_queue_lock); |
| 1176 | |
| 1177 | /* Populate fifo_data */ |
| 1178 | queue = &purgeable_queues[PURGEABLE_Q_TYPE_FIFO]; |
| 1179 | for (group = 0; group < NUM_VOLATILE_GROUPS; group++) { |
| 1180 | vm_purgeable_stats_helper(stat: &(info->fifo_data[group]), queue, group, target_task); |
| 1181 | } |
| 1182 | |
| 1183 | /* Populate lifo_data */ |
| 1184 | queue = &purgeable_queues[PURGEABLE_Q_TYPE_LIFO]; |
| 1185 | for (group = 0; group < NUM_VOLATILE_GROUPS; group++) { |
| 1186 | vm_purgeable_stats_helper(stat: &(info->lifo_data[group]), queue, group, target_task); |
| 1187 | } |
| 1188 | |
| 1189 | /* Populate obsolete data */ |
| 1190 | queue = &purgeable_queues[PURGEABLE_Q_TYPE_OBSOLETE]; |
| 1191 | vm_purgeable_stats_helper(stat: &(info->obsolete_data), queue, group: 0, target_task); |
| 1192 | |
| 1193 | lck_mtx_unlock(lck: &vm_purgeable_queue_lock); |
| 1194 | return; |
| 1195 | } |
| 1196 | |
| 1197 | #if DEVELOPMENT || DEBUG |
| 1198 | static void |
| 1199 | vm_purgeable_account_volatile_queue( |
| 1200 | purgeable_q_t queue, |
| 1201 | int group, |
| 1202 | task_t task, |
| 1203 | pvm_account_info_t acnt_info) |
| 1204 | { |
| 1205 | vm_object_t object; |
| 1206 | uint64_t compressed_count; |
| 1207 | |
| 1208 | for (object = (vm_object_t) queue_first(&queue->objq[group]); |
| 1209 | !queue_end(&queue->objq[group], (queue_entry_t) object); |
| 1210 | object = (vm_object_t) queue_next(&object->objq)) { |
| 1211 | if (VM_OBJECT_OWNER(object) == task) { |
| 1212 | compressed_count = vm_compressor_pager_get_count(object->pager); |
| 1213 | acnt_info->pvm_volatile_compressed_count += compressed_count; |
| 1214 | acnt_info->pvm_volatile_count += (object->resident_page_count - object->wired_page_count); |
| 1215 | acnt_info->pvm_nonvolatile_count += object->wired_page_count; |
| 1216 | } |
| 1217 | } |
| 1218 | } |
| 1219 | |
| 1220 | /* |
| 1221 | * Walks the purgeable object queues and calculates the usage |
| 1222 | * associated with the objects for the given task. |
| 1223 | */ |
| 1224 | kern_return_t |
| 1225 | vm_purgeable_account( |
| 1226 | task_t task, |
| 1227 | pvm_account_info_t acnt_info) |
| 1228 | { |
| 1229 | queue_head_t *nonvolatile_q; |
| 1230 | vm_object_t object; |
| 1231 | int group; |
| 1232 | int state; |
| 1233 | uint64_t compressed_count; |
| 1234 | purgeable_q_t volatile_q; |
| 1235 | |
| 1236 | |
| 1237 | if ((task == NULL) || (acnt_info == NULL)) { |
| 1238 | return KERN_INVALID_ARGUMENT; |
| 1239 | } |
| 1240 | |
| 1241 | acnt_info->pvm_volatile_count = 0; |
| 1242 | acnt_info->pvm_volatile_compressed_count = 0; |
| 1243 | acnt_info->pvm_nonvolatile_count = 0; |
| 1244 | acnt_info->pvm_nonvolatile_compressed_count = 0; |
| 1245 | |
| 1246 | lck_mtx_lock(&vm_purgeable_queue_lock); |
| 1247 | |
| 1248 | nonvolatile_q = &purgeable_nonvolatile_queue; |
| 1249 | for (object = (vm_object_t) queue_first(nonvolatile_q); |
| 1250 | !queue_end(nonvolatile_q, (queue_entry_t) object); |
| 1251 | object = (vm_object_t) queue_next(&object->objq)) { |
| 1252 | if (VM_OBJECT_OWNER(object) == task) { |
| 1253 | state = object->purgable; |
| 1254 | compressed_count = vm_compressor_pager_get_count(object->pager); |
| 1255 | if (state == VM_PURGABLE_EMPTY) { |
| 1256 | acnt_info->pvm_volatile_count += (object->resident_page_count - object->wired_page_count); |
| 1257 | acnt_info->pvm_volatile_compressed_count += compressed_count; |
| 1258 | } else { |
| 1259 | acnt_info->pvm_nonvolatile_count += (object->resident_page_count - object->wired_page_count); |
| 1260 | acnt_info->pvm_nonvolatile_compressed_count += compressed_count; |
| 1261 | } |
| 1262 | acnt_info->pvm_nonvolatile_count += object->wired_page_count; |
| 1263 | } |
| 1264 | } |
| 1265 | |
| 1266 | volatile_q = &purgeable_queues[PURGEABLE_Q_TYPE_OBSOLETE]; |
| 1267 | vm_purgeable_account_volatile_queue(volatile_q, 0, task, acnt_info); |
| 1268 | |
| 1269 | volatile_q = &purgeable_queues[PURGEABLE_Q_TYPE_FIFO]; |
| 1270 | for (group = 0; group < NUM_VOLATILE_GROUPS; group++) { |
| 1271 | vm_purgeable_account_volatile_queue(volatile_q, group, task, acnt_info); |
| 1272 | } |
| 1273 | |
| 1274 | volatile_q = &purgeable_queues[PURGEABLE_Q_TYPE_LIFO]; |
| 1275 | for (group = 0; group < NUM_VOLATILE_GROUPS; group++) { |
| 1276 | vm_purgeable_account_volatile_queue(volatile_q, group, task, acnt_info); |
| 1277 | } |
| 1278 | lck_mtx_unlock(&vm_purgeable_queue_lock); |
| 1279 | |
| 1280 | acnt_info->pvm_volatile_count = (acnt_info->pvm_volatile_count * PAGE_SIZE); |
| 1281 | acnt_info->pvm_volatile_compressed_count = (acnt_info->pvm_volatile_compressed_count * PAGE_SIZE); |
| 1282 | acnt_info->pvm_nonvolatile_count = (acnt_info->pvm_nonvolatile_count * PAGE_SIZE); |
| 1283 | acnt_info->pvm_nonvolatile_compressed_count = (acnt_info->pvm_nonvolatile_compressed_count * PAGE_SIZE); |
| 1284 | |
| 1285 | return KERN_SUCCESS; |
| 1286 | } |
| 1287 | #endif /* DEVELOPMENT || DEBUG */ |
| 1288 | |
| 1289 | static uint64_t |
| 1290 | vm_purgeable_queue_purge_task_owned( |
| 1291 | purgeable_q_t queue, |
| 1292 | int group, |
| 1293 | task_t task) |
| 1294 | { |
| 1295 | vm_object_t object = VM_OBJECT_NULL; |
| 1296 | int collisions = 0; |
| 1297 | uint64_t num_pages_purged = 0; |
| 1298 | |
| 1299 | num_pages_purged = 0; |
| 1300 | collisions = 0; |
| 1301 | |
| 1302 | look_again: |
| 1303 | lck_mtx_lock(lck: &vm_purgeable_queue_lock); |
| 1304 | |
| 1305 | for (object = (vm_object_t) queue_first(&queue->objq[group]); |
| 1306 | !queue_end(&queue->objq[group], (queue_entry_t) object); |
| 1307 | object = (vm_object_t) queue_next(&object->objq)) { |
| 1308 | if (object->vo_owner != task) { |
| 1309 | continue; |
| 1310 | } |
| 1311 | |
| 1312 | /* found an object: try and grab it */ |
| 1313 | if (!vm_object_lock_try(object)) { |
| 1314 | lck_mtx_unlock(lck: &vm_purgeable_queue_lock); |
| 1315 | mutex_pause(collisions++); |
| 1316 | goto look_again; |
| 1317 | } |
| 1318 | /* got it ! */ |
| 1319 | |
| 1320 | collisions = 0; |
| 1321 | |
| 1322 | /* remove object from purgeable queue */ |
| 1323 | queue_remove(&queue->objq[group], object, |
| 1324 | vm_object_t, objq); |
| 1325 | object->objq.next = NULL; |
| 1326 | object->objq.prev = NULL; |
| 1327 | object->purgeable_queue_type = PURGEABLE_Q_TYPE_MAX; |
| 1328 | object->purgeable_queue_group = 0; |
| 1329 | /* one less volatile object for this object's owner */ |
| 1330 | assert(object->vo_owner == task); |
| 1331 | vm_purgeable_volatile_owner_update(owner: task, delta: -1); |
| 1332 | |
| 1333 | #if DEBUG |
| 1334 | object->vo_purgeable_volatilizer = NULL; |
| 1335 | #endif /* DEBUG */ |
| 1336 | queue_enter(&purgeable_nonvolatile_queue, object, |
| 1337 | vm_object_t, objq); |
| 1338 | assert(purgeable_nonvolatile_count >= 0); |
| 1339 | purgeable_nonvolatile_count++; |
| 1340 | assert(purgeable_nonvolatile_count > 0); |
| 1341 | /* one more nonvolatile object for this object's owner */ |
| 1342 | assert(object->vo_owner == task); |
| 1343 | vm_purgeable_nonvolatile_owner_update(owner: task, delta: +1); |
| 1344 | |
| 1345 | /* unlock purgeable queues */ |
| 1346 | lck_mtx_unlock(lck: &vm_purgeable_queue_lock); |
| 1347 | |
| 1348 | if (object->purgeable_when_ripe) { |
| 1349 | /* remove a token */ |
| 1350 | vm_page_lock_queues(); |
| 1351 | vm_purgeable_token_remove_first(queue); |
| 1352 | vm_page_unlock_queues(); |
| 1353 | } |
| 1354 | |
| 1355 | /* purge the object */ |
| 1356 | num_pages_purged += vm_object_purge(object, flags: 0); |
| 1357 | |
| 1358 | assert(object->purgable == VM_PURGABLE_EMPTY); |
| 1359 | /* no change for purgeable accounting */ |
| 1360 | vm_object_unlock(object); |
| 1361 | |
| 1362 | /* we unlocked the purgeable queues, so start over */ |
| 1363 | goto look_again; |
| 1364 | } |
| 1365 | |
| 1366 | lck_mtx_unlock(lck: &vm_purgeable_queue_lock); |
| 1367 | |
| 1368 | return num_pages_purged; |
| 1369 | } |
| 1370 | |
| 1371 | uint64_t |
| 1372 | vm_purgeable_purge_task_owned( |
| 1373 | task_t task) |
| 1374 | { |
| 1375 | purgeable_q_t queue = NULL; |
| 1376 | int group = 0; |
| 1377 | uint64_t num_pages_purged = 0; |
| 1378 | |
| 1379 | num_pages_purged = 0; |
| 1380 | |
| 1381 | queue = &purgeable_queues[PURGEABLE_Q_TYPE_OBSOLETE]; |
| 1382 | num_pages_purged += vm_purgeable_queue_purge_task_owned(queue, |
| 1383 | group: 0, |
| 1384 | task); |
| 1385 | |
| 1386 | queue = &purgeable_queues[PURGEABLE_Q_TYPE_FIFO]; |
| 1387 | for (group = 0; group < NUM_VOLATILE_GROUPS; group++) { |
| 1388 | num_pages_purged += vm_purgeable_queue_purge_task_owned(queue, |
| 1389 | group, |
| 1390 | task); |
| 1391 | } |
| 1392 | |
| 1393 | queue = &purgeable_queues[PURGEABLE_Q_TYPE_LIFO]; |
| 1394 | for (group = 0; group < NUM_VOLATILE_GROUPS; group++) { |
| 1395 | num_pages_purged += vm_purgeable_queue_purge_task_owned(queue, |
| 1396 | group, |
| 1397 | task); |
| 1398 | } |
| 1399 | |
| 1400 | return num_pages_purged; |
| 1401 | } |
| 1402 | |
| 1403 | void |
| 1404 | vm_purgeable_nonvolatile_enqueue( |
| 1405 | vm_object_t object, |
| 1406 | task_t owner) |
| 1407 | { |
| 1408 | int ledger_flags; |
| 1409 | kern_return_t kr; |
| 1410 | |
| 1411 | vm_object_lock_assert_exclusive(object); |
| 1412 | |
| 1413 | assert(object->purgable == VM_PURGABLE_NONVOLATILE); |
| 1414 | assert(object->vo_owner == NULL); |
| 1415 | |
| 1416 | lck_mtx_lock(lck: &vm_purgeable_queue_lock); |
| 1417 | |
| 1418 | if (owner != NULL && |
| 1419 | owner->task_objects_disowning) { |
| 1420 | /* task is exiting and no longer tracking purgeable objects */ |
| 1421 | owner = VM_OBJECT_OWNER_DISOWNED; |
| 1422 | } |
| 1423 | if (owner == NULL) { |
| 1424 | owner = kernel_task; |
| 1425 | } |
| 1426 | #if DEBUG |
| 1427 | OSBacktrace(&object->purgeable_owner_bt[0], |
| 1428 | ARRAY_COUNT(object->purgeable_owner_bt)); |
| 1429 | object->vo_purgeable_volatilizer = NULL; |
| 1430 | #endif /* DEBUG */ |
| 1431 | |
| 1432 | ledger_flags = 0; |
| 1433 | if (object->vo_no_footprint) { |
| 1434 | ledger_flags |= VM_LEDGER_FLAG_NO_FOOTPRINT; |
| 1435 | } |
| 1436 | kr = vm_object_ownership_change(object, |
| 1437 | new_ledger_tag: object->vo_ledger_tag, /* tag unchanged */ |
| 1438 | new_owner: owner, |
| 1439 | new_ledger_flags: ledger_flags, |
| 1440 | FALSE); /* task_objq_locked */ |
| 1441 | assert(kr == KERN_SUCCESS); |
| 1442 | |
| 1443 | assert(object->objq.next == NULL); |
| 1444 | assert(object->objq.prev == NULL); |
| 1445 | |
| 1446 | queue_enter(&purgeable_nonvolatile_queue, object, |
| 1447 | vm_object_t, objq); |
| 1448 | assert(purgeable_nonvolatile_count >= 0); |
| 1449 | purgeable_nonvolatile_count++; |
| 1450 | assert(purgeable_nonvolatile_count > 0); |
| 1451 | lck_mtx_unlock(lck: &vm_purgeable_queue_lock); |
| 1452 | |
| 1453 | vm_object_lock_assert_exclusive(object); |
| 1454 | } |
| 1455 | |
| 1456 | void |
| 1457 | vm_purgeable_nonvolatile_dequeue( |
| 1458 | vm_object_t object) |
| 1459 | { |
| 1460 | task_t owner; |
| 1461 | kern_return_t kr; |
| 1462 | |
| 1463 | vm_object_lock_assert_exclusive(object); |
| 1464 | |
| 1465 | owner = VM_OBJECT_OWNER(object); |
| 1466 | #if DEBUG |
| 1467 | assert(object->vo_purgeable_volatilizer == NULL); |
| 1468 | #endif /* DEBUG */ |
| 1469 | if (owner != NULL) { |
| 1470 | /* |
| 1471 | * Update the owner's ledger to stop accounting |
| 1472 | * for this object. |
| 1473 | */ |
| 1474 | /* transfer ownership to the kernel */ |
| 1475 | assert(VM_OBJECT_OWNER(object) != kernel_task); |
| 1476 | kr = vm_object_ownership_change( |
| 1477 | object, |
| 1478 | new_ledger_tag: object->vo_ledger_tag, /* unchanged */ |
| 1479 | VM_OBJECT_OWNER_DISOWNED, /* new owner */ |
| 1480 | new_ledger_flags: 0, /* ledger_flags */ |
| 1481 | FALSE); /* old_owner->task_objq locked */ |
| 1482 | assert(kr == KERN_SUCCESS); |
| 1483 | assert(object->vo_owner == VM_OBJECT_OWNER_DISOWNED); |
| 1484 | } |
| 1485 | |
| 1486 | lck_mtx_lock(lck: &vm_purgeable_queue_lock); |
| 1487 | assert(object->objq.next != NULL); |
| 1488 | assert(object->objq.prev != NULL); |
| 1489 | queue_remove(&purgeable_nonvolatile_queue, object, |
| 1490 | vm_object_t, objq); |
| 1491 | object->objq.next = NULL; |
| 1492 | object->objq.prev = NULL; |
| 1493 | assert(purgeable_nonvolatile_count > 0); |
| 1494 | purgeable_nonvolatile_count--; |
| 1495 | assert(purgeable_nonvolatile_count >= 0); |
| 1496 | lck_mtx_unlock(lck: &vm_purgeable_queue_lock); |
| 1497 | |
| 1498 | vm_object_lock_assert_exclusive(object); |
| 1499 | } |
| 1500 | |
| 1501 | void |
| 1502 | vm_purgeable_accounting( |
| 1503 | vm_object_t object, |
| 1504 | vm_purgable_t old_state) |
| 1505 | { |
| 1506 | task_t owner; |
| 1507 | int resident_page_count; |
| 1508 | int wired_page_count; |
| 1509 | int compressed_page_count; |
| 1510 | int ledger_idx_volatile; |
| 1511 | int ledger_idx_nonvolatile; |
| 1512 | int ledger_idx_volatile_compressed; |
| 1513 | int ledger_idx_nonvolatile_compressed; |
| 1514 | boolean_t ; |
| 1515 | |
| 1516 | vm_object_lock_assert_exclusive(object); |
| 1517 | assert(object->purgable != VM_PURGABLE_DENY); |
| 1518 | |
| 1519 | owner = VM_OBJECT_OWNER(object); |
| 1520 | if (owner == NULL || |
| 1521 | object->purgable == VM_PURGABLE_DENY) { |
| 1522 | return; |
| 1523 | } |
| 1524 | |
| 1525 | vm_object_ledger_tag_ledgers(object, |
| 1526 | ledger_idx_volatile: &ledger_idx_volatile, |
| 1527 | ledger_idx_nonvolatile: &ledger_idx_nonvolatile, |
| 1528 | ledger_idx_volatile_compressed: &ledger_idx_volatile_compressed, |
| 1529 | ledger_idx_nonvolatile_compressed: &ledger_idx_nonvolatile_compressed, |
| 1530 | do_footprint: &do_footprint); |
| 1531 | |
| 1532 | resident_page_count = object->resident_page_count; |
| 1533 | wired_page_count = object->wired_page_count; |
| 1534 | if (VM_CONFIG_COMPRESSOR_IS_PRESENT && |
| 1535 | object->pager != NULL) { |
| 1536 | compressed_page_count = |
| 1537 | vm_compressor_pager_get_count(mem_obj: object->pager); |
| 1538 | } else { |
| 1539 | compressed_page_count = 0; |
| 1540 | } |
| 1541 | |
| 1542 | if (old_state == VM_PURGABLE_VOLATILE || |
| 1543 | old_state == VM_PURGABLE_EMPTY) { |
| 1544 | /* less volatile bytes in ledger */ |
| 1545 | ledger_debit(ledger: owner->ledger, |
| 1546 | entry: ledger_idx_volatile, |
| 1547 | ptoa_64(resident_page_count - wired_page_count)); |
| 1548 | /* less compressed volatile bytes in ledger */ |
| 1549 | ledger_debit(ledger: owner->ledger, |
| 1550 | entry: ledger_idx_volatile_compressed, |
| 1551 | ptoa_64(compressed_page_count)); |
| 1552 | |
| 1553 | /* more non-volatile bytes in ledger */ |
| 1554 | ledger_credit(ledger: owner->ledger, |
| 1555 | entry: ledger_idx_nonvolatile, |
| 1556 | ptoa_64(resident_page_count - wired_page_count)); |
| 1557 | /* more compressed non-volatile bytes in ledger */ |
| 1558 | ledger_credit(ledger: owner->ledger, |
| 1559 | entry: ledger_idx_nonvolatile_compressed, |
| 1560 | ptoa_64(compressed_page_count)); |
| 1561 | if (do_footprint) { |
| 1562 | /* more footprint */ |
| 1563 | ledger_credit(ledger: owner->ledger, |
| 1564 | entry: task_ledgers.phys_footprint, |
| 1565 | ptoa_64(resident_page_count |
| 1566 | + compressed_page_count |
| 1567 | - wired_page_count)); |
| 1568 | } |
| 1569 | } else if (old_state == VM_PURGABLE_NONVOLATILE) { |
| 1570 | /* less non-volatile bytes in ledger */ |
| 1571 | ledger_debit(ledger: owner->ledger, |
| 1572 | entry: ledger_idx_nonvolatile, |
| 1573 | ptoa_64(resident_page_count - wired_page_count)); |
| 1574 | /* less compressed non-volatile bytes in ledger */ |
| 1575 | ledger_debit(ledger: owner->ledger, |
| 1576 | entry: ledger_idx_nonvolatile_compressed, |
| 1577 | ptoa_64(compressed_page_count)); |
| 1578 | if (do_footprint) { |
| 1579 | /* less footprint */ |
| 1580 | ledger_debit(ledger: owner->ledger, |
| 1581 | entry: task_ledgers.phys_footprint, |
| 1582 | ptoa_64(resident_page_count |
| 1583 | + compressed_page_count |
| 1584 | - wired_page_count)); |
| 1585 | } |
| 1586 | |
| 1587 | /* more volatile bytes in ledger */ |
| 1588 | ledger_credit(ledger: owner->ledger, |
| 1589 | entry: ledger_idx_volatile, |
| 1590 | ptoa_64(resident_page_count - wired_page_count)); |
| 1591 | /* more compressed volatile bytes in ledger */ |
| 1592 | ledger_credit(ledger: owner->ledger, |
| 1593 | entry: ledger_idx_volatile_compressed, |
| 1594 | ptoa_64(compressed_page_count)); |
| 1595 | } else { |
| 1596 | panic("vm_purgeable_accounting(%p): " |
| 1597 | "unexpected old_state=%d\n" , |
| 1598 | object, old_state); |
| 1599 | } |
| 1600 | |
| 1601 | vm_object_lock_assert_exclusive(object); |
| 1602 | } |
| 1603 | |
| 1604 | void |
| 1605 | vm_purgeable_nonvolatile_owner_update( |
| 1606 | task_t owner, |
| 1607 | int delta) |
| 1608 | { |
| 1609 | if (owner == NULL || delta == 0) { |
| 1610 | return; |
| 1611 | } |
| 1612 | |
| 1613 | if (delta > 0) { |
| 1614 | assert(owner->task_nonvolatile_objects >= 0); |
| 1615 | OSAddAtomic(delta, &owner->task_nonvolatile_objects); |
| 1616 | assert(owner->task_nonvolatile_objects > 0); |
| 1617 | } else { |
| 1618 | assert(owner->task_nonvolatile_objects > delta); |
| 1619 | OSAddAtomic(delta, &owner->task_nonvolatile_objects); |
| 1620 | assert(owner->task_nonvolatile_objects >= 0); |
| 1621 | } |
| 1622 | } |
| 1623 | |
| 1624 | void |
| 1625 | vm_purgeable_volatile_owner_update( |
| 1626 | task_t owner, |
| 1627 | int delta) |
| 1628 | { |
| 1629 | if (owner == NULL || delta == 0) { |
| 1630 | return; |
| 1631 | } |
| 1632 | |
| 1633 | if (delta > 0) { |
| 1634 | assert(owner->task_volatile_objects >= 0); |
| 1635 | OSAddAtomic(delta, &owner->task_volatile_objects); |
| 1636 | assert(owner->task_volatile_objects > 0); |
| 1637 | } else { |
| 1638 | assert(owner->task_volatile_objects > delta); |
| 1639 | OSAddAtomic(delta, &owner->task_volatile_objects); |
| 1640 | assert(owner->task_volatile_objects >= 0); |
| 1641 | } |
| 1642 | } |
| 1643 | |
| 1644 | void |
| 1645 | vm_object_owner_compressed_update( |
| 1646 | vm_object_t object, |
| 1647 | int delta) |
| 1648 | { |
| 1649 | task_t owner; |
| 1650 | int ledger_idx_volatile; |
| 1651 | int ledger_idx_nonvolatile; |
| 1652 | int ledger_idx_volatile_compressed; |
| 1653 | int ledger_idx_nonvolatile_compressed; |
| 1654 | boolean_t ; |
| 1655 | |
| 1656 | vm_object_lock_assert_exclusive(object); |
| 1657 | |
| 1658 | owner = VM_OBJECT_OWNER(object); |
| 1659 | |
| 1660 | if (delta == 0 || |
| 1661 | !object->internal || |
| 1662 | (object->purgable == VM_PURGABLE_DENY && |
| 1663 | !object->vo_ledger_tag) || |
| 1664 | owner == NULL) { |
| 1665 | /* not an owned purgeable (or tagged) VM object: nothing to update */ |
| 1666 | return; |
| 1667 | } |
| 1668 | |
| 1669 | vm_object_ledger_tag_ledgers(object, |
| 1670 | ledger_idx_volatile: &ledger_idx_volatile, |
| 1671 | ledger_idx_nonvolatile: &ledger_idx_nonvolatile, |
| 1672 | ledger_idx_volatile_compressed: &ledger_idx_volatile_compressed, |
| 1673 | ledger_idx_nonvolatile_compressed: &ledger_idx_nonvolatile_compressed, |
| 1674 | do_footprint: &do_footprint); |
| 1675 | switch (object->purgable) { |
| 1676 | case VM_PURGABLE_DENY: |
| 1677 | /* not purgeable: must be ledger-tagged */ |
| 1678 | assert(object->vo_ledger_tag != VM_LEDGER_TAG_NONE); |
| 1679 | OS_FALLTHROUGH; |
| 1680 | case VM_PURGABLE_NONVOLATILE: |
| 1681 | if (delta > 0) { |
| 1682 | ledger_credit(ledger: owner->ledger, |
| 1683 | entry: ledger_idx_nonvolatile_compressed, |
| 1684 | ptoa_64(delta)); |
| 1685 | if (do_footprint) { |
| 1686 | ledger_credit(ledger: owner->ledger, |
| 1687 | entry: task_ledgers.phys_footprint, |
| 1688 | ptoa_64(delta)); |
| 1689 | } |
| 1690 | } else { |
| 1691 | ledger_debit(ledger: owner->ledger, |
| 1692 | entry: ledger_idx_nonvolatile_compressed, |
| 1693 | ptoa_64(-delta)); |
| 1694 | if (do_footprint) { |
| 1695 | ledger_debit(ledger: owner->ledger, |
| 1696 | entry: task_ledgers.phys_footprint, |
| 1697 | ptoa_64(-delta)); |
| 1698 | } |
| 1699 | } |
| 1700 | break; |
| 1701 | case VM_PURGABLE_VOLATILE: |
| 1702 | case VM_PURGABLE_EMPTY: |
| 1703 | if (delta > 0) { |
| 1704 | ledger_credit(ledger: owner->ledger, |
| 1705 | entry: ledger_idx_volatile_compressed, |
| 1706 | ptoa_64(delta)); |
| 1707 | } else { |
| 1708 | ledger_debit(ledger: owner->ledger, |
| 1709 | entry: ledger_idx_volatile_compressed, |
| 1710 | ptoa_64(-delta)); |
| 1711 | } |
| 1712 | break; |
| 1713 | default: |
| 1714 | panic("vm_purgeable_compressed_update(): " |
| 1715 | "unexpected purgable %d for object %p\n" , |
| 1716 | object->purgable, object); |
| 1717 | } |
| 1718 | } |
| 1719 | |