| 1 | /* |
| 2 | * Copyright (c) 2000-2020 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
| 5 | * |
| 6 | * This file contains Original Code and/or Modifications of Original Code |
| 7 | * as defined in and that are subject to the Apple Public Source License |
| 8 | * Version 2.0 (the 'License'). You may not use this file except in |
| 9 | * compliance with the License. The rights granted to you under the License |
| 10 | * may not be used to create, or enable the creation or redistribution of, |
| 11 | * unlawful or unlicensed copies of an Apple operating system, or to |
| 12 | * circumvent, violate, or enable the circumvention or violation of, any |
| 13 | * terms of an Apple operating system software license agreement. |
| 14 | * |
| 15 | * Please obtain a copy of the License at |
| 16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
| 17 | * |
| 18 | * The Original Code and all software distributed under the License are |
| 19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| 23 | * Please see the License for the specific language governing rights and |
| 24 | * limitations under the License. |
| 25 | * |
| 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
| 27 | */ |
| 28 | /* |
| 29 | * @OSF_COPYRIGHT@ |
| 30 | */ |
| 31 | /* |
| 32 | * Mach Operating System |
| 33 | * Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University |
| 34 | * All Rights Reserved. |
| 35 | * |
| 36 | * Permission to use, copy, modify and distribute this software and its |
| 37 | * documentation is hereby granted, provided that both the copyright |
| 38 | * notice and this permission notice appear in all copies of the |
| 39 | * software, derivative works or modified versions, and any portions |
| 40 | * thereof, and that both notices appear in supporting documentation. |
| 41 | * |
| 42 | * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" |
| 43 | * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR |
| 44 | * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. |
| 45 | * |
| 46 | * Carnegie Mellon requests users of this software to return to |
| 47 | * |
| 48 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU |
| 49 | * School of Computer Science |
| 50 | * Carnegie Mellon University |
| 51 | * Pittsburgh PA 15213-3890 |
| 52 | * |
| 53 | * any improvements or extensions that they make and grant Carnegie Mellon |
| 54 | * the rights to redistribute these changes. |
| 55 | */ |
| 56 | /* |
| 57 | */ |
| 58 | /* |
| 59 | * File: vm/vm_pageout.c |
| 60 | * Author: Avadis Tevanian, Jr., Michael Wayne Young |
| 61 | * Date: 1985 |
| 62 | * |
| 63 | * The proverbial page-out daemon. |
| 64 | */ |
| 65 | |
| 66 | #include <stdint.h> |
| 67 | #include <ptrauth.h> |
| 68 | |
| 69 | #include <debug.h> |
| 70 | |
| 71 | #include <mach/mach_types.h> |
| 72 | #include <mach/memory_object.h> |
| 73 | #include <mach/mach_host_server.h> |
| 74 | #include <mach/upl.h> |
| 75 | #include <mach/vm_map.h> |
| 76 | #include <mach/vm_param.h> |
| 77 | #include <mach/vm_statistics.h> |
| 78 | #include <mach/sdt.h> |
| 79 | |
| 80 | #include <kern/kern_types.h> |
| 81 | #include <kern/counter.h> |
| 82 | #include <kern/host_statistics.h> |
| 83 | #include <kern/machine.h> |
| 84 | #include <kern/misc_protos.h> |
| 85 | #include <kern/sched.h> |
| 86 | #include <kern/thread.h> |
| 87 | #include <kern/kalloc.h> |
| 88 | #include <kern/zalloc_internal.h> |
| 89 | #include <kern/policy_internal.h> |
| 90 | #include <kern/thread_group.h> |
| 91 | |
| 92 | #include <os/log.h> |
| 93 | |
| 94 | #include <sys/kdebug_triage.h> |
| 95 | |
| 96 | #include <machine/vm_tuning.h> |
| 97 | #include <machine/commpage.h> |
| 98 | |
| 99 | #include <vm/pmap.h> |
| 100 | #include <vm/vm_compressor_pager.h> |
| 101 | #include <vm/vm_fault.h> |
| 102 | #include <vm/vm_map_internal.h> |
| 103 | #include <vm/vm_object.h> |
| 104 | #include <vm/vm_page.h> |
| 105 | #include <vm/vm_pageout.h> |
| 106 | #include <vm/vm_protos.h> /* must be last */ |
| 107 | #include <vm/memory_object.h> |
| 108 | #include <vm/vm_purgeable_internal.h> |
| 109 | #include <vm/vm_shared_region.h> |
| 110 | #include <vm/vm_compressor.h> |
| 111 | |
| 112 | #include <san/kasan.h> |
| 113 | |
| 114 | #if CONFIG_PHANTOM_CACHE |
| 115 | #include <vm/vm_phantom_cache.h> |
| 116 | #endif |
| 117 | |
| 118 | #if UPL_DEBUG |
| 119 | #include <libkern/OSDebug.h> |
| 120 | #endif |
| 121 | |
| 122 | extern int cs_debug; |
| 123 | |
| 124 | #if CONFIG_MBUF_MCACHE |
| 125 | extern void mbuf_drain(boolean_t); |
| 126 | #endif /* CONFIG_MBUF_MCACHE */ |
| 127 | |
| 128 | #if VM_PRESSURE_EVENTS |
| 129 | #if CONFIG_JETSAM |
| 130 | extern unsigned int memorystatus_available_pages; |
| 131 | extern unsigned int memorystatus_available_pages_pressure; |
| 132 | extern unsigned int memorystatus_available_pages_critical; |
| 133 | #else /* CONFIG_JETSAM */ |
| 134 | extern uint64_t memorystatus_available_pages; |
| 135 | extern uint64_t memorystatus_available_pages_pressure; |
| 136 | extern uint64_t memorystatus_available_pages_critical; |
| 137 | #endif /* CONFIG_JETSAM */ |
| 138 | |
| 139 | extern unsigned int memorystatus_frozen_count; |
| 140 | extern unsigned int memorystatus_suspended_count; |
| 141 | extern vm_pressure_level_t memorystatus_vm_pressure_level; |
| 142 | |
| 143 | extern lck_mtx_t memorystatus_jetsam_fg_band_lock; |
| 144 | extern uint32_t memorystatus_jetsam_fg_band_waiters; |
| 145 | |
| 146 | void vm_pressure_response(void); |
| 147 | extern void consider_vm_pressure_events(void); |
| 148 | |
| 149 | #define MEMORYSTATUS_SUSPENDED_THRESHOLD 4 |
| 150 | #endif /* VM_PRESSURE_EVENTS */ |
| 151 | |
| 152 | SECURITY_READ_ONLY_LATE(thread_t) vm_pageout_scan_thread; |
| 153 | SECURITY_READ_ONLY_LATE(thread_t) vm_pageout_gc_thread; |
| 154 | #if CONFIG_VPS_DYNAMIC_PRIO |
| 155 | TUNABLE(bool, vps_dynamic_priority_enabled, "vps_dynamic_priority_enabled" , false); |
| 156 | #else |
| 157 | const bool vps_dynamic_priority_enabled = false; |
| 158 | #endif |
| 159 | boolean_t vps_yield_for_pgqlockwaiters = TRUE; |
| 160 | |
| 161 | #ifndef VM_PAGEOUT_BURST_INACTIVE_THROTTLE /* maximum iterations of the inactive queue w/o stealing/cleaning a page */ |
| 162 | #if !XNU_TARGET_OS_OSX |
| 163 | #define VM_PAGEOUT_BURST_INACTIVE_THROTTLE 1024 |
| 164 | #else /* !XNU_TARGET_OS_OSX */ |
| 165 | #define VM_PAGEOUT_BURST_INACTIVE_THROTTLE 4096 |
| 166 | #endif /* !XNU_TARGET_OS_OSX */ |
| 167 | #endif |
| 168 | |
| 169 | #ifndef VM_PAGEOUT_DEADLOCK_RELIEF |
| 170 | #define VM_PAGEOUT_DEADLOCK_RELIEF 100 /* number of pages to move to break deadlock */ |
| 171 | #endif |
| 172 | |
| 173 | #ifndef VM_PAGE_LAUNDRY_MAX |
| 174 | #define VM_PAGE_LAUNDRY_MAX 128UL /* maximum pageouts on a given pageout queue */ |
| 175 | #endif /* VM_PAGEOUT_LAUNDRY_MAX */ |
| 176 | |
| 177 | #ifndef VM_PAGEOUT_BURST_WAIT |
| 178 | #define VM_PAGEOUT_BURST_WAIT 1 /* milliseconds */ |
| 179 | #endif /* VM_PAGEOUT_BURST_WAIT */ |
| 180 | |
| 181 | #ifndef VM_PAGEOUT_EMPTY_WAIT |
| 182 | #define VM_PAGEOUT_EMPTY_WAIT 50 /* milliseconds */ |
| 183 | #endif /* VM_PAGEOUT_EMPTY_WAIT */ |
| 184 | |
| 185 | #ifndef VM_PAGEOUT_DEADLOCK_WAIT |
| 186 | #define VM_PAGEOUT_DEADLOCK_WAIT 100 /* milliseconds */ |
| 187 | #endif /* VM_PAGEOUT_DEADLOCK_WAIT */ |
| 188 | |
| 189 | #ifndef VM_PAGEOUT_IDLE_WAIT |
| 190 | #define VM_PAGEOUT_IDLE_WAIT 10 /* milliseconds */ |
| 191 | #endif /* VM_PAGEOUT_IDLE_WAIT */ |
| 192 | |
| 193 | #ifndef VM_PAGEOUT_SWAP_WAIT |
| 194 | #define VM_PAGEOUT_SWAP_WAIT 10 /* milliseconds */ |
| 195 | #endif /* VM_PAGEOUT_SWAP_WAIT */ |
| 196 | |
| 197 | |
| 198 | #ifndef VM_PAGE_SPECULATIVE_TARGET |
| 199 | #define VM_PAGE_SPECULATIVE_TARGET(total) ((total) * 1 / (100 / vm_pageout_state.vm_page_speculative_percentage)) |
| 200 | #endif /* VM_PAGE_SPECULATIVE_TARGET */ |
| 201 | |
| 202 | |
| 203 | /* |
| 204 | * To obtain a reasonable LRU approximation, the inactive queue |
| 205 | * needs to be large enough to give pages on it a chance to be |
| 206 | * referenced a second time. This macro defines the fraction |
| 207 | * of active+inactive pages that should be inactive. |
| 208 | * The pageout daemon uses it to update vm_page_inactive_target. |
| 209 | * |
| 210 | * If vm_page_free_count falls below vm_page_free_target and |
| 211 | * vm_page_inactive_count is below vm_page_inactive_target, |
| 212 | * then the pageout daemon starts running. |
| 213 | */ |
| 214 | |
| 215 | #ifndef VM_PAGE_INACTIVE_TARGET |
| 216 | #define VM_PAGE_INACTIVE_TARGET(avail) ((avail) * 1 / 2) |
| 217 | #endif /* VM_PAGE_INACTIVE_TARGET */ |
| 218 | |
| 219 | /* |
| 220 | * Once the pageout daemon starts running, it keeps going |
| 221 | * until vm_page_free_count meets or exceeds vm_page_free_target. |
| 222 | */ |
| 223 | |
| 224 | #ifndef VM_PAGE_FREE_TARGET |
| 225 | #if !XNU_TARGET_OS_OSX |
| 226 | #define VM_PAGE_FREE_TARGET(free) (15 + (free) / 100) |
| 227 | #else /* !XNU_TARGET_OS_OSX */ |
| 228 | #define VM_PAGE_FREE_TARGET(free) (15 + (free) / 80) |
| 229 | #endif /* !XNU_TARGET_OS_OSX */ |
| 230 | #endif /* VM_PAGE_FREE_TARGET */ |
| 231 | |
| 232 | |
| 233 | /* |
| 234 | * The pageout daemon always starts running once vm_page_free_count |
| 235 | * falls below vm_page_free_min. |
| 236 | */ |
| 237 | |
| 238 | #ifndef VM_PAGE_FREE_MIN |
| 239 | #if !XNU_TARGET_OS_OSX |
| 240 | #define VM_PAGE_FREE_MIN(free) (10 + (free) / 200) |
| 241 | #else /* !XNU_TARGET_OS_OSX */ |
| 242 | #define VM_PAGE_FREE_MIN(free) (10 + (free) / 100) |
| 243 | #endif /* !XNU_TARGET_OS_OSX */ |
| 244 | #endif /* VM_PAGE_FREE_MIN */ |
| 245 | |
| 246 | #if !XNU_TARGET_OS_OSX |
| 247 | #define VM_PAGE_FREE_RESERVED_LIMIT 100 |
| 248 | #define VM_PAGE_FREE_MIN_LIMIT 1500 |
| 249 | #define VM_PAGE_FREE_TARGET_LIMIT 2000 |
| 250 | #else /* !XNU_TARGET_OS_OSX */ |
| 251 | #define VM_PAGE_FREE_RESERVED_LIMIT 1700 |
| 252 | #define VM_PAGE_FREE_MIN_LIMIT 3500 |
| 253 | #define VM_PAGE_FREE_TARGET_LIMIT 4000 |
| 254 | #endif /* !XNU_TARGET_OS_OSX */ |
| 255 | |
| 256 | /* |
| 257 | * When vm_page_free_count falls below vm_page_free_reserved, |
| 258 | * only vm-privileged threads can allocate pages. vm-privilege |
| 259 | * allows the pageout daemon and default pager (and any other |
| 260 | * associated threads needed for default pageout) to continue |
| 261 | * operation by dipping into the reserved pool of pages. |
| 262 | */ |
| 263 | |
| 264 | #ifndef VM_PAGE_FREE_RESERVED |
| 265 | #define VM_PAGE_FREE_RESERVED(n) \ |
| 266 | ((unsigned) (6 * VM_PAGE_LAUNDRY_MAX) + (n)) |
| 267 | #endif /* VM_PAGE_FREE_RESERVED */ |
| 268 | |
| 269 | /* |
| 270 | * When we dequeue pages from the inactive list, they are |
| 271 | * reactivated (ie, put back on the active queue) if referenced. |
| 272 | * However, it is possible to starve the free list if other |
| 273 | * processors are referencing pages faster than we can turn off |
| 274 | * the referenced bit. So we limit the number of reactivations |
| 275 | * we will make per call of vm_pageout_scan(). |
| 276 | */ |
| 277 | #define VM_PAGE_REACTIVATE_LIMIT_MAX 20000 |
| 278 | |
| 279 | #ifndef VM_PAGE_REACTIVATE_LIMIT |
| 280 | #if !XNU_TARGET_OS_OSX |
| 281 | #define VM_PAGE_REACTIVATE_LIMIT(avail) (VM_PAGE_INACTIVE_TARGET(avail) / 2) |
| 282 | #else /* !XNU_TARGET_OS_OSX */ |
| 283 | #define VM_PAGE_REACTIVATE_LIMIT(avail) (MAX((avail) * 1 / 20,VM_PAGE_REACTIVATE_LIMIT_MAX)) |
| 284 | #endif /* !XNU_TARGET_OS_OSX */ |
| 285 | #endif /* VM_PAGE_REACTIVATE_LIMIT */ |
| 286 | #define VM_PAGEOUT_INACTIVE_FORCE_RECLAIM 1000 |
| 287 | |
| 288 | int vm_pageout_protect_realtime = true; |
| 289 | |
| 290 | extern boolean_t hibernate_cleaning_in_progress; |
| 291 | |
| 292 | struct pgo_iothread_state pgo_iothread_internal_state[MAX_COMPRESSOR_THREAD_COUNT]; |
| 293 | struct pgo_iothread_state pgo_iothread_external_state; |
| 294 | |
| 295 | #if VM_PRESSURE_EVENTS |
| 296 | void vm_pressure_thread(void); |
| 297 | |
| 298 | boolean_t VM_PRESSURE_NORMAL_TO_WARNING(void); |
| 299 | boolean_t VM_PRESSURE_WARNING_TO_CRITICAL(void); |
| 300 | |
| 301 | boolean_t VM_PRESSURE_WARNING_TO_NORMAL(void); |
| 302 | boolean_t VM_PRESSURE_CRITICAL_TO_WARNING(void); |
| 303 | #endif |
| 304 | |
| 305 | static void vm_pageout_iothread_external(struct pgo_iothread_state *, wait_result_t); |
| 306 | static void vm_pageout_iothread_internal(struct pgo_iothread_state *, wait_result_t); |
| 307 | static void vm_pageout_adjust_eq_iothrottle(struct pgo_iothread_state *, boolean_t); |
| 308 | |
| 309 | extern void vm_pageout_continue(void); |
| 310 | extern void vm_pageout_scan(void); |
| 311 | |
| 312 | boolean_t vm_pageout_running = FALSE; |
| 313 | |
| 314 | uint32_t vm_page_upl_tainted = 0; |
| 315 | uint32_t vm_page_iopl_tainted = 0; |
| 316 | |
| 317 | #if XNU_TARGET_OS_OSX |
| 318 | static boolean_t vm_pageout_waiter = FALSE; |
| 319 | #endif /* XNU_TARGET_OS_OSX */ |
| 320 | |
| 321 | |
| 322 | #if DEVELOPMENT || DEBUG |
| 323 | struct vm_pageout_debug vm_pageout_debug; |
| 324 | #endif |
| 325 | struct vm_pageout_vminfo vm_pageout_vminfo; |
| 326 | struct vm_pageout_state vm_pageout_state; |
| 327 | struct vm_config vm_config; |
| 328 | |
| 329 | struct vm_pageout_queue vm_pageout_queue_internal VM_PAGE_PACKED_ALIGNED; |
| 330 | struct vm_pageout_queue vm_pageout_queue_external VM_PAGE_PACKED_ALIGNED; |
| 331 | #if DEVELOPMENT || DEBUG |
| 332 | struct vm_pageout_queue vm_pageout_queue_benchmark VM_PAGE_PACKED_ALIGNED; |
| 333 | #endif /* DEVELOPMENT || DEBUG */ |
| 334 | |
| 335 | int vm_upl_wait_for_pages = 0; |
| 336 | vm_object_t vm_pageout_scan_wants_object = VM_OBJECT_NULL; |
| 337 | |
| 338 | boolean_t(*volatile consider_buffer_cache_collect)(int) = NULL; |
| 339 | |
| 340 | int vm_debug_events = 0; |
| 341 | |
| 342 | LCK_GRP_DECLARE(vm_pageout_lck_grp, "vm_pageout" ); |
| 343 | |
| 344 | #if CONFIG_MEMORYSTATUS |
| 345 | extern void memorystatus_kill_on_vps_starvation(void); |
| 346 | |
| 347 | uint32_t vm_pageout_memorystatus_fb_factor_nr = 5; |
| 348 | uint32_t vm_pageout_memorystatus_fb_factor_dr = 2; |
| 349 | |
| 350 | #endif |
| 351 | |
| 352 | #if __AMP__ |
| 353 | |
| 354 | |
| 355 | /* |
| 356 | * Bind compressor threads to e-cores unless there are multiple non-e clusters |
| 357 | */ |
| 358 | #if (MAX_CPU_CLUSTERS > 2) |
| 359 | #define VM_COMPRESSOR_EBOUND_DEFAULT false |
| 360 | #else |
| 361 | #define VM_COMPRESSOR_EBOUND_DEFAULT true |
| 362 | #endif |
| 363 | |
| 364 | TUNABLE(bool, vm_compressor_ebound, "vmcomp_ecluster" , VM_COMPRESSOR_EBOUND_DEFAULT); |
| 365 | int vm_pgo_pbound = 0; |
| 366 | extern void thread_bind_cluster_type(thread_t, char, bool); |
| 367 | |
| 368 | #endif /* __AMP__ */ |
| 369 | |
| 370 | |
| 371 | /* |
| 372 | * Routine: vm_pageout_object_terminate |
| 373 | * Purpose: |
| 374 | * Destroy the pageout_object, and perform all of the |
| 375 | * required cleanup actions. |
| 376 | * |
| 377 | * In/Out conditions: |
| 378 | * The object must be locked, and will be returned locked. |
| 379 | */ |
| 380 | void |
| 381 | vm_pageout_object_terminate( |
| 382 | vm_object_t object) |
| 383 | { |
| 384 | vm_object_t shadow_object; |
| 385 | |
| 386 | /* |
| 387 | * Deal with the deallocation (last reference) of a pageout object |
| 388 | * (used for cleaning-in-place) by dropping the paging references/ |
| 389 | * freeing pages in the original object. |
| 390 | */ |
| 391 | |
| 392 | assert(object->pageout); |
| 393 | shadow_object = object->shadow; |
| 394 | vm_object_lock(shadow_object); |
| 395 | |
| 396 | while (!vm_page_queue_empty(&object->memq)) { |
| 397 | vm_page_t p, m; |
| 398 | vm_object_offset_t offset; |
| 399 | |
| 400 | p = (vm_page_t) vm_page_queue_first(&object->memq); |
| 401 | |
| 402 | assert(p->vmp_private); |
| 403 | assert(p->vmp_free_when_done); |
| 404 | p->vmp_free_when_done = FALSE; |
| 405 | assert(!p->vmp_cleaning); |
| 406 | assert(!p->vmp_laundry); |
| 407 | |
| 408 | offset = p->vmp_offset; |
| 409 | VM_PAGE_FREE(p); |
| 410 | p = VM_PAGE_NULL; |
| 411 | |
| 412 | m = vm_page_lookup(object: shadow_object, |
| 413 | offset: offset + object->vo_shadow_offset); |
| 414 | |
| 415 | if (m == VM_PAGE_NULL) { |
| 416 | continue; |
| 417 | } |
| 418 | |
| 419 | assert((m->vmp_dirty) || (m->vmp_precious) || |
| 420 | (m->vmp_busy && m->vmp_cleaning)); |
| 421 | |
| 422 | /* |
| 423 | * Handle the trusted pager throttle. |
| 424 | * Also decrement the burst throttle (if external). |
| 425 | */ |
| 426 | vm_page_lock_queues(); |
| 427 | if (m->vmp_q_state == VM_PAGE_ON_PAGEOUT_Q) { |
| 428 | vm_pageout_throttle_up(page: m); |
| 429 | } |
| 430 | |
| 431 | /* |
| 432 | * Handle the "target" page(s). These pages are to be freed if |
| 433 | * successfully cleaned. Target pages are always busy, and are |
| 434 | * wired exactly once. The initial target pages are not mapped, |
| 435 | * (so cannot be referenced or modified) but converted target |
| 436 | * pages may have been modified between the selection as an |
| 437 | * adjacent page and conversion to a target. |
| 438 | */ |
| 439 | if (m->vmp_free_when_done) { |
| 440 | assert(m->vmp_busy); |
| 441 | assert(m->vmp_q_state == VM_PAGE_IS_WIRED); |
| 442 | assert(m->vmp_wire_count == 1); |
| 443 | m->vmp_cleaning = FALSE; |
| 444 | m->vmp_free_when_done = FALSE; |
| 445 | /* |
| 446 | * Revoke all access to the page. Since the object is |
| 447 | * locked, and the page is busy, this prevents the page |
| 448 | * from being dirtied after the pmap_disconnect() call |
| 449 | * returns. |
| 450 | * |
| 451 | * Since the page is left "dirty" but "not modifed", we |
| 452 | * can detect whether the page was redirtied during |
| 453 | * pageout by checking the modify state. |
| 454 | */ |
| 455 | if (pmap_disconnect(phys: VM_PAGE_GET_PHYS_PAGE(m)) & VM_MEM_MODIFIED) { |
| 456 | SET_PAGE_DIRTY(m, FALSE); |
| 457 | } else { |
| 458 | m->vmp_dirty = FALSE; |
| 459 | } |
| 460 | |
| 461 | if (m->vmp_dirty) { |
| 462 | vm_page_unwire(page: m, TRUE); /* reactivates */ |
| 463 | counter_inc(&vm_statistics_reactivations); |
| 464 | PAGE_WAKEUP_DONE(m); |
| 465 | } else { |
| 466 | vm_page_free(page: m); /* clears busy, etc. */ |
| 467 | } |
| 468 | vm_page_unlock_queues(); |
| 469 | continue; |
| 470 | } |
| 471 | /* |
| 472 | * Handle the "adjacent" pages. These pages were cleaned in |
| 473 | * place, and should be left alone. |
| 474 | * If prep_pin_count is nonzero, then someone is using the |
| 475 | * page, so make it active. |
| 476 | */ |
| 477 | if ((m->vmp_q_state == VM_PAGE_NOT_ON_Q) && !m->vmp_private) { |
| 478 | if (m->vmp_reference) { |
| 479 | vm_page_activate(page: m); |
| 480 | } else { |
| 481 | vm_page_deactivate(page: m); |
| 482 | } |
| 483 | } |
| 484 | if (m->vmp_overwriting) { |
| 485 | /* |
| 486 | * the (COPY_OUT_FROM == FALSE) request_page_list case |
| 487 | */ |
| 488 | if (m->vmp_busy) { |
| 489 | /* |
| 490 | * We do not re-set m->vmp_dirty ! |
| 491 | * The page was busy so no extraneous activity |
| 492 | * could have occurred. COPY_INTO is a read into the |
| 493 | * new pages. CLEAN_IN_PLACE does actually write |
| 494 | * out the pages but handling outside of this code |
| 495 | * will take care of resetting dirty. We clear the |
| 496 | * modify however for the Programmed I/O case. |
| 497 | */ |
| 498 | pmap_clear_modify(pn: VM_PAGE_GET_PHYS_PAGE(m)); |
| 499 | |
| 500 | m->vmp_busy = FALSE; |
| 501 | m->vmp_absent = FALSE; |
| 502 | } else { |
| 503 | /* |
| 504 | * alternate (COPY_OUT_FROM == FALSE) request_page_list case |
| 505 | * Occurs when the original page was wired |
| 506 | * at the time of the list request |
| 507 | */ |
| 508 | assert(VM_PAGE_WIRED(m)); |
| 509 | vm_page_unwire(page: m, TRUE); /* reactivates */ |
| 510 | } |
| 511 | m->vmp_overwriting = FALSE; |
| 512 | } else { |
| 513 | m->vmp_dirty = FALSE; |
| 514 | } |
| 515 | m->vmp_cleaning = FALSE; |
| 516 | |
| 517 | /* |
| 518 | * Wakeup any thread waiting for the page to be un-cleaning. |
| 519 | */ |
| 520 | PAGE_WAKEUP(m); |
| 521 | vm_page_unlock_queues(); |
| 522 | } |
| 523 | /* |
| 524 | * Account for the paging reference taken in vm_paging_object_allocate. |
| 525 | */ |
| 526 | vm_object_activity_end(shadow_object); |
| 527 | vm_object_unlock(shadow_object); |
| 528 | |
| 529 | assert(object->ref_count == 0); |
| 530 | assert(object->paging_in_progress == 0); |
| 531 | assert(object->activity_in_progress == 0); |
| 532 | assert(object->resident_page_count == 0); |
| 533 | return; |
| 534 | } |
| 535 | |
| 536 | /* |
| 537 | * Routine: vm_pageclean_setup |
| 538 | * |
| 539 | * Purpose: setup a page to be cleaned (made non-dirty), but not |
| 540 | * necessarily flushed from the VM page cache. |
| 541 | * This is accomplished by cleaning in place. |
| 542 | * |
| 543 | * The page must not be busy, and new_object |
| 544 | * must be locked. |
| 545 | * |
| 546 | */ |
| 547 | static void |
| 548 | vm_pageclean_setup( |
| 549 | vm_page_t m, |
| 550 | vm_page_t new_m, |
| 551 | vm_object_t new_object, |
| 552 | vm_object_offset_t new_offset) |
| 553 | { |
| 554 | assert(!m->vmp_busy); |
| 555 | #if 0 |
| 556 | assert(!m->vmp_cleaning); |
| 557 | #endif |
| 558 | |
| 559 | pmap_clear_modify(pn: VM_PAGE_GET_PHYS_PAGE(m)); |
| 560 | |
| 561 | /* |
| 562 | * Mark original page as cleaning in place. |
| 563 | */ |
| 564 | m->vmp_cleaning = TRUE; |
| 565 | SET_PAGE_DIRTY(m, FALSE); |
| 566 | m->vmp_precious = FALSE; |
| 567 | |
| 568 | /* |
| 569 | * Convert the fictitious page to a private shadow of |
| 570 | * the real page. |
| 571 | */ |
| 572 | assert(new_m->vmp_fictitious); |
| 573 | assert(VM_PAGE_GET_PHYS_PAGE(new_m) == vm_page_fictitious_addr); |
| 574 | new_m->vmp_fictitious = FALSE; |
| 575 | new_m->vmp_private = TRUE; |
| 576 | new_m->vmp_free_when_done = TRUE; |
| 577 | VM_PAGE_SET_PHYS_PAGE(new_m, VM_PAGE_GET_PHYS_PAGE(m)); |
| 578 | |
| 579 | vm_page_lockspin_queues(); |
| 580 | vm_page_wire(page: new_m, VM_KERN_MEMORY_NONE, TRUE); |
| 581 | vm_page_unlock_queues(); |
| 582 | |
| 583 | vm_page_insert_wired(page: new_m, object: new_object, offset: new_offset, VM_KERN_MEMORY_NONE); |
| 584 | assert(!new_m->vmp_wanted); |
| 585 | new_m->vmp_busy = FALSE; |
| 586 | } |
| 587 | |
| 588 | /* |
| 589 | * Routine: vm_pageout_initialize_page |
| 590 | * Purpose: |
| 591 | * Causes the specified page to be initialized in |
| 592 | * the appropriate memory object. This routine is used to push |
| 593 | * pages into a copy-object when they are modified in the |
| 594 | * permanent object. |
| 595 | * |
| 596 | * The page is moved to a temporary object and paged out. |
| 597 | * |
| 598 | * In/out conditions: |
| 599 | * The page in question must not be on any pageout queues. |
| 600 | * The object to which it belongs must be locked. |
| 601 | * The page must be busy, but not hold a paging reference. |
| 602 | * |
| 603 | * Implementation: |
| 604 | * Move this page to a completely new object. |
| 605 | */ |
| 606 | void |
| 607 | vm_pageout_initialize_page( |
| 608 | vm_page_t m) |
| 609 | { |
| 610 | vm_object_t object; |
| 611 | vm_object_offset_t paging_offset; |
| 612 | memory_object_t ; |
| 613 | |
| 614 | assert(VM_CONFIG_COMPRESSOR_IS_PRESENT); |
| 615 | |
| 616 | object = VM_PAGE_OBJECT(m); |
| 617 | |
| 618 | assert(m->vmp_busy); |
| 619 | assert(object->internal); |
| 620 | |
| 621 | /* |
| 622 | * Verify that we really want to clean this page |
| 623 | */ |
| 624 | assert(!m->vmp_absent); |
| 625 | assert(m->vmp_dirty); |
| 626 | |
| 627 | /* |
| 628 | * Create a paging reference to let us play with the object. |
| 629 | */ |
| 630 | paging_offset = m->vmp_offset + object->paging_offset; |
| 631 | |
| 632 | if (m->vmp_absent || VMP_ERROR_GET(m) || m->vmp_restart || (!m->vmp_dirty && !m->vmp_precious)) { |
| 633 | panic("reservation without pageout?" ); /* alan */ |
| 634 | |
| 635 | VM_PAGE_FREE(m); |
| 636 | vm_object_unlock(object); |
| 637 | |
| 638 | return; |
| 639 | } |
| 640 | |
| 641 | /* |
| 642 | * If there's no pager, then we can't clean the page. This should |
| 643 | * never happen since this should be a copy object and therefore not |
| 644 | * an external object, so the pager should always be there. |
| 645 | */ |
| 646 | |
| 647 | pager = object->pager; |
| 648 | |
| 649 | if (pager == MEMORY_OBJECT_NULL) { |
| 650 | panic("missing pager for copy object" ); |
| 651 | |
| 652 | VM_PAGE_FREE(m); |
| 653 | return; |
| 654 | } |
| 655 | |
| 656 | /* |
| 657 | * set the page for future call to vm_fault_list_request |
| 658 | */ |
| 659 | pmap_clear_modify(pn: VM_PAGE_GET_PHYS_PAGE(m)); |
| 660 | SET_PAGE_DIRTY(m, FALSE); |
| 661 | |
| 662 | /* |
| 663 | * keep the object from collapsing or terminating |
| 664 | */ |
| 665 | vm_object_paging_begin(object); |
| 666 | vm_object_unlock(object); |
| 667 | |
| 668 | /* |
| 669 | * Write the data to its pager. |
| 670 | * Note that the data is passed by naming the new object, |
| 671 | * not a virtual address; the pager interface has been |
| 672 | * manipulated to use the "internal memory" data type. |
| 673 | * [The object reference from its allocation is donated |
| 674 | * to the eventual recipient.] |
| 675 | */ |
| 676 | memory_object_data_initialize(memory_object: pager, offset: paging_offset, PAGE_SIZE); |
| 677 | |
| 678 | vm_object_lock(object); |
| 679 | vm_object_paging_end(object); |
| 680 | } |
| 681 | |
| 682 | |
| 683 | /* |
| 684 | * vm_pageout_cluster: |
| 685 | * |
| 686 | * Given a page, queue it to the appropriate I/O thread, |
| 687 | * which will page it out and attempt to clean adjacent pages |
| 688 | * in the same operation. |
| 689 | * |
| 690 | * The object and queues must be locked. We will take a |
| 691 | * paging reference to prevent deallocation or collapse when we |
| 692 | * release the object lock back at the call site. The I/O thread |
| 693 | * is responsible for consuming this reference |
| 694 | * |
| 695 | * The page must not be on any pageout queue. |
| 696 | */ |
| 697 | #if DEVELOPMENT || DEBUG |
| 698 | vmct_stats_t vmct_stats; |
| 699 | |
| 700 | int32_t vmct_active = 0; |
| 701 | uint64_t vm_compressor_epoch_start = 0; |
| 702 | uint64_t vm_compressor_epoch_stop = 0; |
| 703 | |
| 704 | typedef enum vmct_state_t { |
| 705 | VMCT_IDLE, |
| 706 | VMCT_AWAKENED, |
| 707 | VMCT_ACTIVE, |
| 708 | } vmct_state_t; |
| 709 | vmct_state_t vmct_state[MAX_COMPRESSOR_THREAD_COUNT]; |
| 710 | #endif |
| 711 | |
| 712 | |
| 713 | |
| 714 | static void |
| 715 | vm_pageout_cluster_to_queue(vm_page_t m, struct vm_pageout_queue *q) |
| 716 | { |
| 717 | vm_object_t object = VM_PAGE_OBJECT(m); |
| 718 | |
| 719 | VM_PAGE_CHECK(m); |
| 720 | LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED); |
| 721 | vm_object_lock_assert_exclusive(object); |
| 722 | |
| 723 | /* |
| 724 | * Make sure it's OK to page this out. |
| 725 | */ |
| 726 | assert((m->vmp_dirty || m->vmp_precious) && (!VM_PAGE_WIRED(m))); |
| 727 | assert(!m->vmp_cleaning && !m->vmp_laundry); |
| 728 | assert(m->vmp_q_state == VM_PAGE_NOT_ON_Q); |
| 729 | |
| 730 | /* |
| 731 | * protect the object from collapse or termination |
| 732 | */ |
| 733 | vm_object_activity_begin(object); |
| 734 | |
| 735 | |
| 736 | /* |
| 737 | * pgo_laundry count is tied to the laundry bit |
| 738 | */ |
| 739 | m->vmp_laundry = TRUE; |
| 740 | q->pgo_laundry++; |
| 741 | |
| 742 | m->vmp_q_state = VM_PAGE_ON_PAGEOUT_Q; |
| 743 | vm_page_queue_enter(&q->pgo_pending, m, vmp_pageq); |
| 744 | |
| 745 | // the benchmark queue will be woken up independently by the benchmark itself |
| 746 | if ( |
| 747 | object->internal == TRUE |
| 748 | #if DEVELOPMENT || DEBUG |
| 749 | && q != &vm_pageout_queue_benchmark |
| 750 | #endif |
| 751 | ) { |
| 752 | assert(VM_CONFIG_COMPRESSOR_IS_PRESENT); |
| 753 | m->vmp_busy = TRUE; |
| 754 | // Wake up the first compressor thread. It will wake subsequent threads if necessary. |
| 755 | sched_cond_signal(cond: &pgo_iothread_internal_state[0].pgo_wakeup, thread: pgo_iothread_internal_state[0].pgo_iothread); |
| 756 | } else { |
| 757 | sched_cond_signal(cond: &pgo_iothread_external_state.pgo_wakeup, thread: pgo_iothread_external_state.pgo_iothread); |
| 758 | } |
| 759 | VM_PAGE_CHECK(m); |
| 760 | } |
| 761 | |
| 762 | void |
| 763 | vm_pageout_cluster(vm_page_t m) |
| 764 | { |
| 765 | struct vm_pageout_queue *q; |
| 766 | vm_object_t object = VM_PAGE_OBJECT(m); |
| 767 | if (object->internal) { |
| 768 | q = &vm_pageout_queue_internal; |
| 769 | } else { |
| 770 | q = &vm_pageout_queue_external; |
| 771 | } |
| 772 | vm_pageout_cluster_to_queue(m, q); |
| 773 | } |
| 774 | |
| 775 | |
| 776 | /* |
| 777 | * A page is back from laundry or we are stealing it back from |
| 778 | * the laundering state. See if there are some pages waiting to |
| 779 | * go to laundry and if we can let some of them go now. |
| 780 | * |
| 781 | * Object and page queues must be locked. |
| 782 | */ |
| 783 | void |
| 784 | vm_pageout_throttle_up( |
| 785 | vm_page_t m) |
| 786 | { |
| 787 | struct vm_pageout_queue *q; |
| 788 | vm_object_t m_object; |
| 789 | |
| 790 | m_object = VM_PAGE_OBJECT(m); |
| 791 | |
| 792 | assert(m_object != VM_OBJECT_NULL); |
| 793 | assert(!is_kernel_object(m_object)); |
| 794 | |
| 795 | LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED); |
| 796 | vm_object_lock_assert_exclusive(m_object); |
| 797 | |
| 798 | if (m_object->internal == TRUE) { |
| 799 | q = &vm_pageout_queue_internal; |
| 800 | } else { |
| 801 | q = &vm_pageout_queue_external; |
| 802 | } |
| 803 | |
| 804 | if (m->vmp_q_state == VM_PAGE_ON_PAGEOUT_Q) { |
| 805 | vm_page_queue_remove(&q->pgo_pending, m, vmp_pageq); |
| 806 | m->vmp_q_state = VM_PAGE_NOT_ON_Q; |
| 807 | |
| 808 | VM_PAGE_ZERO_PAGEQ_ENTRY(m); |
| 809 | |
| 810 | vm_object_activity_end(m_object); |
| 811 | |
| 812 | VM_PAGEOUT_DEBUG(vm_page_steal_pageout_page, 1); |
| 813 | } |
| 814 | if (m->vmp_laundry == TRUE) { |
| 815 | m->vmp_laundry = FALSE; |
| 816 | q->pgo_laundry--; |
| 817 | |
| 818 | if (q->pgo_throttled == TRUE) { |
| 819 | q->pgo_throttled = FALSE; |
| 820 | thread_wakeup((event_t) &q->pgo_laundry); |
| 821 | } |
| 822 | if (q->pgo_draining == TRUE && q->pgo_laundry == 0) { |
| 823 | q->pgo_draining = FALSE; |
| 824 | thread_wakeup((event_t) (&q->pgo_laundry + 1)); |
| 825 | } |
| 826 | VM_PAGEOUT_DEBUG(vm_pageout_throttle_up_count, 1); |
| 827 | } |
| 828 | } |
| 829 | |
| 830 | |
| 831 | static void |
| 832 | vm_pageout_throttle_up_batch( |
| 833 | struct vm_pageout_queue *q, |
| 834 | int batch_cnt) |
| 835 | { |
| 836 | LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED); |
| 837 | |
| 838 | VM_PAGEOUT_DEBUG(vm_pageout_throttle_up_count, batch_cnt); |
| 839 | |
| 840 | q->pgo_laundry -= batch_cnt; |
| 841 | |
| 842 | if (q->pgo_throttled == TRUE) { |
| 843 | q->pgo_throttled = FALSE; |
| 844 | thread_wakeup((event_t) &q->pgo_laundry); |
| 845 | } |
| 846 | if (q->pgo_draining == TRUE && q->pgo_laundry == 0) { |
| 847 | q->pgo_draining = FALSE; |
| 848 | thread_wakeup((event_t) (&q->pgo_laundry + 1)); |
| 849 | } |
| 850 | } |
| 851 | |
| 852 | |
| 853 | |
| 854 | /* |
| 855 | * VM memory pressure monitoring. |
| 856 | * |
| 857 | * vm_pageout_scan() keeps track of the number of pages it considers and |
| 858 | * reclaims, in the currently active vm_pageout_stat[vm_pageout_stat_now]. |
| 859 | * |
| 860 | * compute_memory_pressure() is called every second from compute_averages() |
| 861 | * and moves "vm_pageout_stat_now" forward, to start accumulating the number |
| 862 | * of recalimed pages in a new vm_pageout_stat[] bucket. |
| 863 | * |
| 864 | * mach_vm_pressure_monitor() collects past statistics about memory pressure. |
| 865 | * The caller provides the number of seconds ("nsecs") worth of statistics |
| 866 | * it wants, up to 30 seconds. |
| 867 | * It computes the number of pages reclaimed in the past "nsecs" seconds and |
| 868 | * also returns the number of pages the system still needs to reclaim at this |
| 869 | * moment in time. |
| 870 | */ |
| 871 | #if DEVELOPMENT || DEBUG |
| 872 | #define VM_PAGEOUT_STAT_SIZE (30 * 8) + 1 |
| 873 | #else |
| 874 | #define VM_PAGEOUT_STAT_SIZE (1 * 8) + 1 |
| 875 | #endif |
| 876 | struct vm_pageout_stat { |
| 877 | unsigned long vm_page_active_count; |
| 878 | unsigned long vm_page_speculative_count; |
| 879 | unsigned long vm_page_inactive_count; |
| 880 | unsigned long vm_page_anonymous_count; |
| 881 | |
| 882 | unsigned long vm_page_free_count; |
| 883 | unsigned long vm_page_wire_count; |
| 884 | unsigned long vm_page_compressor_count; |
| 885 | |
| 886 | unsigned long vm_page_pages_compressed; |
| 887 | unsigned long vm_page_pageable_internal_count; |
| 888 | unsigned long vm_page_pageable_external_count; |
| 889 | unsigned long vm_page_xpmapped_external_count; |
| 890 | |
| 891 | unsigned int pages_grabbed; |
| 892 | unsigned int pages_freed; |
| 893 | |
| 894 | unsigned int pages_compressed; |
| 895 | unsigned int pages_grabbed_by_compressor; |
| 896 | unsigned int failed_compressions; |
| 897 | |
| 898 | unsigned int pages_evicted; |
| 899 | unsigned int pages_purged; |
| 900 | |
| 901 | unsigned int considered; |
| 902 | unsigned int considered_bq_internal; |
| 903 | unsigned int considered_bq_external; |
| 904 | |
| 905 | unsigned int skipped_external; |
| 906 | unsigned int skipped_internal; |
| 907 | unsigned int filecache_min_reactivations; |
| 908 | |
| 909 | unsigned int freed_speculative; |
| 910 | unsigned int freed_cleaned; |
| 911 | unsigned int freed_internal; |
| 912 | unsigned int freed_external; |
| 913 | |
| 914 | unsigned int cleaned_dirty_external; |
| 915 | unsigned int cleaned_dirty_internal; |
| 916 | |
| 917 | unsigned int inactive_referenced; |
| 918 | unsigned int inactive_nolock; |
| 919 | unsigned int reactivation_limit_exceeded; |
| 920 | unsigned int forced_inactive_reclaim; |
| 921 | |
| 922 | unsigned int throttled_internal_q; |
| 923 | unsigned int throttled_external_q; |
| 924 | |
| 925 | unsigned int phantom_ghosts_found; |
| 926 | unsigned int phantom_ghosts_added; |
| 927 | |
| 928 | unsigned int vm_page_realtime_count; |
| 929 | unsigned int forcereclaimed_sharedcache; |
| 930 | unsigned int forcereclaimed_realtime; |
| 931 | unsigned int protected_sharedcache; |
| 932 | unsigned int protected_realtime; |
| 933 | } vm_pageout_stats[VM_PAGEOUT_STAT_SIZE]; |
| 934 | |
| 935 | unsigned int vm_pageout_stat_now = 0; |
| 936 | |
| 937 | #define VM_PAGEOUT_STAT_BEFORE(i) \ |
| 938 | (((i) == 0) ? VM_PAGEOUT_STAT_SIZE - 1 : (i) - 1) |
| 939 | #define VM_PAGEOUT_STAT_AFTER(i) \ |
| 940 | (((i) == VM_PAGEOUT_STAT_SIZE - 1) ? 0 : (i) + 1) |
| 941 | |
| 942 | #if VM_PAGE_BUCKETS_CHECK |
| 943 | int vm_page_buckets_check_interval = 80; /* in eighths of a second */ |
| 944 | #endif /* VM_PAGE_BUCKETS_CHECK */ |
| 945 | |
| 946 | |
| 947 | void |
| 948 | record_memory_pressure(void); |
| 949 | void |
| 950 | record_memory_pressure(void) |
| 951 | { |
| 952 | unsigned int vm_pageout_next; |
| 953 | |
| 954 | #if VM_PAGE_BUCKETS_CHECK |
| 955 | /* check the consistency of VM page buckets at regular interval */ |
| 956 | static int counter = 0; |
| 957 | if ((++counter % vm_page_buckets_check_interval) == 0) { |
| 958 | vm_page_buckets_check(); |
| 959 | } |
| 960 | #endif /* VM_PAGE_BUCKETS_CHECK */ |
| 961 | |
| 962 | vm_pageout_state.vm_memory_pressure = |
| 963 | vm_pageout_stats[VM_PAGEOUT_STAT_BEFORE(vm_pageout_stat_now)].freed_speculative + |
| 964 | vm_pageout_stats[VM_PAGEOUT_STAT_BEFORE(vm_pageout_stat_now)].freed_cleaned + |
| 965 | vm_pageout_stats[VM_PAGEOUT_STAT_BEFORE(vm_pageout_stat_now)].freed_internal + |
| 966 | vm_pageout_stats[VM_PAGEOUT_STAT_BEFORE(vm_pageout_stat_now)].freed_external; |
| 967 | |
| 968 | commpage_set_memory_pressure(pressure: (unsigned int)vm_pageout_state.vm_memory_pressure ); |
| 969 | |
| 970 | /* move "now" forward */ |
| 971 | vm_pageout_next = VM_PAGEOUT_STAT_AFTER(vm_pageout_stat_now); |
| 972 | |
| 973 | bzero(s: &vm_pageout_stats[vm_pageout_next], n: sizeof(struct vm_pageout_stat)); |
| 974 | |
| 975 | vm_pageout_stat_now = vm_pageout_next; |
| 976 | } |
| 977 | |
| 978 | |
| 979 | /* |
| 980 | * IMPORTANT |
| 981 | * mach_vm_ctl_page_free_wanted() is called indirectly, via |
| 982 | * mach_vm_pressure_monitor(), when taking a stackshot. Therefore, |
| 983 | * it must be safe in the restricted stackshot context. Locks and/or |
| 984 | * blocking are not allowable. |
| 985 | */ |
| 986 | unsigned int |
| 987 | mach_vm_ctl_page_free_wanted(void) |
| 988 | { |
| 989 | unsigned int page_free_target, page_free_count, page_free_wanted; |
| 990 | |
| 991 | page_free_target = vm_page_free_target; |
| 992 | page_free_count = vm_page_free_count; |
| 993 | if (page_free_target > page_free_count) { |
| 994 | page_free_wanted = page_free_target - page_free_count; |
| 995 | } else { |
| 996 | page_free_wanted = 0; |
| 997 | } |
| 998 | |
| 999 | return page_free_wanted; |
| 1000 | } |
| 1001 | |
| 1002 | |
| 1003 | /* |
| 1004 | * IMPORTANT: |
| 1005 | * mach_vm_pressure_monitor() is called when taking a stackshot, with |
| 1006 | * wait_for_pressure FALSE, so that code path must remain safe in the |
| 1007 | * restricted stackshot context. No blocking or locks are allowable. |
| 1008 | * on that code path. |
| 1009 | */ |
| 1010 | |
| 1011 | kern_return_t |
| 1012 | mach_vm_pressure_monitor( |
| 1013 | boolean_t wait_for_pressure, |
| 1014 | unsigned int nsecs_monitored, |
| 1015 | unsigned int *pages_reclaimed_p, |
| 1016 | unsigned int *pages_wanted_p) |
| 1017 | { |
| 1018 | wait_result_t wr; |
| 1019 | unsigned int vm_pageout_then, vm_pageout_now; |
| 1020 | unsigned int pages_reclaimed; |
| 1021 | unsigned int units_of_monitor; |
| 1022 | |
| 1023 | units_of_monitor = 8 * nsecs_monitored; |
| 1024 | /* |
| 1025 | * We don't take the vm_page_queue_lock here because we don't want |
| 1026 | * vm_pressure_monitor() to get in the way of the vm_pageout_scan() |
| 1027 | * thread when it's trying to reclaim memory. We don't need fully |
| 1028 | * accurate monitoring anyway... |
| 1029 | */ |
| 1030 | |
| 1031 | if (wait_for_pressure) { |
| 1032 | /* wait until there's memory pressure */ |
| 1033 | while (vm_page_free_count >= vm_page_free_target) { |
| 1034 | wr = assert_wait(event: (event_t) &vm_page_free_wanted, |
| 1035 | THREAD_INTERRUPTIBLE); |
| 1036 | if (wr == THREAD_WAITING) { |
| 1037 | wr = thread_block(THREAD_CONTINUE_NULL); |
| 1038 | } |
| 1039 | if (wr == THREAD_INTERRUPTED) { |
| 1040 | return KERN_ABORTED; |
| 1041 | } |
| 1042 | if (wr == THREAD_AWAKENED) { |
| 1043 | /* |
| 1044 | * The memory pressure might have already |
| 1045 | * been relieved but let's not block again |
| 1046 | * and let's report that there was memory |
| 1047 | * pressure at some point. |
| 1048 | */ |
| 1049 | break; |
| 1050 | } |
| 1051 | } |
| 1052 | } |
| 1053 | |
| 1054 | /* provide the number of pages the system wants to reclaim */ |
| 1055 | if (pages_wanted_p != NULL) { |
| 1056 | *pages_wanted_p = mach_vm_ctl_page_free_wanted(); |
| 1057 | } |
| 1058 | |
| 1059 | if (pages_reclaimed_p == NULL) { |
| 1060 | return KERN_SUCCESS; |
| 1061 | } |
| 1062 | |
| 1063 | /* provide number of pages reclaimed in the last "nsecs_monitored" */ |
| 1064 | vm_pageout_now = vm_pageout_stat_now; |
| 1065 | pages_reclaimed = 0; |
| 1066 | for (vm_pageout_then = |
| 1067 | VM_PAGEOUT_STAT_BEFORE(vm_pageout_now); |
| 1068 | vm_pageout_then != vm_pageout_now && |
| 1069 | units_of_monitor-- != 0; |
| 1070 | vm_pageout_then = |
| 1071 | VM_PAGEOUT_STAT_BEFORE(vm_pageout_then)) { |
| 1072 | pages_reclaimed += vm_pageout_stats[vm_pageout_then].freed_speculative; |
| 1073 | pages_reclaimed += vm_pageout_stats[vm_pageout_then].freed_cleaned; |
| 1074 | pages_reclaimed += vm_pageout_stats[vm_pageout_then].freed_internal; |
| 1075 | pages_reclaimed += vm_pageout_stats[vm_pageout_then].freed_external; |
| 1076 | } |
| 1077 | *pages_reclaimed_p = pages_reclaimed; |
| 1078 | |
| 1079 | return KERN_SUCCESS; |
| 1080 | } |
| 1081 | |
| 1082 | |
| 1083 | |
| 1084 | #if DEVELOPMENT || DEBUG |
| 1085 | |
| 1086 | static void |
| 1087 | vm_pageout_disconnect_all_pages_in_queue(vm_page_queue_head_t *, int); |
| 1088 | |
| 1089 | /* |
| 1090 | * condition variable used to make sure there is |
| 1091 | * only a single sweep going on at a time |
| 1092 | */ |
| 1093 | bool vm_pageout_disconnect_all_pages_active = false; |
| 1094 | |
| 1095 | void |
| 1096 | vm_pageout_disconnect_all_pages() |
| 1097 | { |
| 1098 | vm_page_lock_queues(); |
| 1099 | |
| 1100 | if (vm_pageout_disconnect_all_pages_active) { |
| 1101 | vm_page_unlock_queues(); |
| 1102 | return; |
| 1103 | } |
| 1104 | vm_pageout_disconnect_all_pages_active = true; |
| 1105 | |
| 1106 | vm_pageout_disconnect_all_pages_in_queue(&vm_page_queue_throttled, |
| 1107 | vm_page_throttled_count); |
| 1108 | vm_pageout_disconnect_all_pages_in_queue(&vm_page_queue_anonymous, |
| 1109 | vm_page_anonymous_count); |
| 1110 | vm_pageout_disconnect_all_pages_in_queue(&vm_page_queue_inactive, |
| 1111 | (vm_page_inactive_count - vm_page_anonymous_count)); |
| 1112 | vm_pageout_disconnect_all_pages_in_queue(&vm_page_queue_active, |
| 1113 | vm_page_active_count); |
| 1114 | #ifdef CONFIG_SECLUDED_MEMORY |
| 1115 | vm_pageout_disconnect_all_pages_in_queue(&vm_page_queue_secluded, |
| 1116 | vm_page_secluded_count); |
| 1117 | #endif /* CONFIG_SECLUDED_MEMORY */ |
| 1118 | vm_page_unlock_queues(); |
| 1119 | |
| 1120 | vm_pageout_disconnect_all_pages_active = false; |
| 1121 | } |
| 1122 | |
| 1123 | /* NB: assumes the page_queues lock is held on entry, returns with page queue lock held */ |
| 1124 | void |
| 1125 | vm_pageout_disconnect_all_pages_in_queue(vm_page_queue_head_t *q, int qcount) |
| 1126 | { |
| 1127 | vm_page_t m; |
| 1128 | vm_object_t t_object = NULL; |
| 1129 | vm_object_t l_object = NULL; |
| 1130 | vm_object_t m_object = NULL; |
| 1131 | int delayed_unlock = 0; |
| 1132 | int try_failed_count = 0; |
| 1133 | int disconnected_count = 0; |
| 1134 | int paused_count = 0; |
| 1135 | int object_locked_count = 0; |
| 1136 | |
| 1137 | KDBG((MACHDBG_CODE(DBG_MACH_WORKINGSET, VM_DISCONNECT_ALL_PAGE_MAPPINGS) | |
| 1138 | DBG_FUNC_START), |
| 1139 | q, qcount); |
| 1140 | |
| 1141 | while (qcount && !vm_page_queue_empty(q)) { |
| 1142 | LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED); |
| 1143 | |
| 1144 | m = (vm_page_t) vm_page_queue_first(q); |
| 1145 | m_object = VM_PAGE_OBJECT(m); |
| 1146 | |
| 1147 | /* |
| 1148 | * check to see if we currently are working |
| 1149 | * with the same object... if so, we've |
| 1150 | * already got the lock |
| 1151 | */ |
| 1152 | if (m_object != l_object) { |
| 1153 | /* |
| 1154 | * the object associated with candidate page is |
| 1155 | * different from the one we were just working |
| 1156 | * with... dump the lock if we still own it |
| 1157 | */ |
| 1158 | if (l_object != NULL) { |
| 1159 | vm_object_unlock(l_object); |
| 1160 | l_object = NULL; |
| 1161 | } |
| 1162 | if (m_object != t_object) { |
| 1163 | try_failed_count = 0; |
| 1164 | } |
| 1165 | |
| 1166 | /* |
| 1167 | * Try to lock object; since we've alread got the |
| 1168 | * page queues lock, we can only 'try' for this one. |
| 1169 | * if the 'try' fails, we need to do a mutex_pause |
| 1170 | * to allow the owner of the object lock a chance to |
| 1171 | * run... |
| 1172 | */ |
| 1173 | if (!vm_object_lock_try_scan(m_object)) { |
| 1174 | if (try_failed_count > 20) { |
| 1175 | goto reenter_pg_on_q; |
| 1176 | } |
| 1177 | vm_page_unlock_queues(); |
| 1178 | mutex_pause(try_failed_count++); |
| 1179 | vm_page_lock_queues(); |
| 1180 | delayed_unlock = 0; |
| 1181 | |
| 1182 | paused_count++; |
| 1183 | |
| 1184 | t_object = m_object; |
| 1185 | continue; |
| 1186 | } |
| 1187 | object_locked_count++; |
| 1188 | |
| 1189 | l_object = m_object; |
| 1190 | } |
| 1191 | if (!m_object->alive || m->vmp_cleaning || m->vmp_laundry || |
| 1192 | m->vmp_busy || m->vmp_absent || VMP_ERROR_GET(m) || |
| 1193 | m->vmp_free_when_done) { |
| 1194 | /* |
| 1195 | * put it back on the head of its queue |
| 1196 | */ |
| 1197 | goto reenter_pg_on_q; |
| 1198 | } |
| 1199 | if (m->vmp_pmapped == TRUE) { |
| 1200 | pmap_disconnect(VM_PAGE_GET_PHYS_PAGE(m)); |
| 1201 | |
| 1202 | disconnected_count++; |
| 1203 | } |
| 1204 | reenter_pg_on_q: |
| 1205 | vm_page_queue_remove(q, m, vmp_pageq); |
| 1206 | vm_page_queue_enter(q, m, vmp_pageq); |
| 1207 | |
| 1208 | qcount--; |
| 1209 | try_failed_count = 0; |
| 1210 | |
| 1211 | if (delayed_unlock++ > 128) { |
| 1212 | if (l_object != NULL) { |
| 1213 | vm_object_unlock(l_object); |
| 1214 | l_object = NULL; |
| 1215 | } |
| 1216 | lck_mtx_yield(&vm_page_queue_lock); |
| 1217 | delayed_unlock = 0; |
| 1218 | } |
| 1219 | } |
| 1220 | if (l_object != NULL) { |
| 1221 | vm_object_unlock(l_object); |
| 1222 | l_object = NULL; |
| 1223 | } |
| 1224 | |
| 1225 | KDBG((MACHDBG_CODE(DBG_MACH_WORKINGSET, VM_DISCONNECT_ALL_PAGE_MAPPINGS) | |
| 1226 | DBG_FUNC_END), |
| 1227 | q, disconnected_count, object_locked_count, paused_count); |
| 1228 | } |
| 1229 | |
| 1230 | extern char* proc_best_name(struct proc* proc); |
| 1231 | |
| 1232 | int |
| 1233 | vm_toggle_task_selfdonate_pages(task_t task) |
| 1234 | { |
| 1235 | int state = 0; |
| 1236 | if (vm_page_donate_mode == VM_PAGE_DONATE_DISABLED) { |
| 1237 | printf("VM Donation mode is OFF on the system\n" ); |
| 1238 | return state; |
| 1239 | } |
| 1240 | if (task != kernel_task) { |
| 1241 | task_lock(task); |
| 1242 | if (!task->donates_own_pages) { |
| 1243 | printf("SELF DONATE for %s ON\n" , proc_best_name(get_bsdtask_info(task))); |
| 1244 | task->donates_own_pages = true; |
| 1245 | state = 1; |
| 1246 | } else if (task->donates_own_pages) { |
| 1247 | printf("SELF DONATE for %s OFF\n" , proc_best_name(get_bsdtask_info(task))); |
| 1248 | task->donates_own_pages = false; |
| 1249 | state = 0; |
| 1250 | } |
| 1251 | task_unlock(task); |
| 1252 | } |
| 1253 | return state; |
| 1254 | } |
| 1255 | #endif /* DEVELOPMENT || DEBUG */ |
| 1256 | |
| 1257 | void |
| 1258 | vm_task_set_selfdonate_pages(task_t task, bool donate) |
| 1259 | { |
| 1260 | assert(vm_page_donate_mode != VM_PAGE_DONATE_DISABLED); |
| 1261 | assert(task != kernel_task); |
| 1262 | |
| 1263 | task_lock(task); |
| 1264 | task->donates_own_pages = donate; |
| 1265 | task_unlock(task); |
| 1266 | } |
| 1267 | |
| 1268 | |
| 1269 | |
| 1270 | static size_t |
| 1271 | vm_pageout_page_queue(vm_page_queue_head_t *, size_t, bool); |
| 1272 | |
| 1273 | /* |
| 1274 | * condition variable used to make sure there is |
| 1275 | * only a single sweep going on at a time |
| 1276 | */ |
| 1277 | boolean_t vm_pageout_anonymous_pages_active = FALSE; |
| 1278 | |
| 1279 | |
| 1280 | void |
| 1281 | vm_pageout_anonymous_pages() |
| 1282 | { |
| 1283 | if (VM_CONFIG_COMPRESSOR_IS_PRESENT) { |
| 1284 | vm_page_lock_queues(); |
| 1285 | |
| 1286 | if (vm_pageout_anonymous_pages_active == TRUE) { |
| 1287 | vm_page_unlock_queues(); |
| 1288 | return; |
| 1289 | } |
| 1290 | vm_pageout_anonymous_pages_active = TRUE; |
| 1291 | vm_page_unlock_queues(); |
| 1292 | |
| 1293 | vm_pageout_page_queue(&vm_page_queue_throttled, vm_page_throttled_count, false); |
| 1294 | vm_pageout_page_queue(&vm_page_queue_anonymous, vm_page_anonymous_count, false); |
| 1295 | vm_pageout_page_queue(&vm_page_queue_active, vm_page_active_count, false); |
| 1296 | |
| 1297 | if (VM_CONFIG_SWAP_IS_PRESENT) { |
| 1298 | vm_consider_swapping(); |
| 1299 | } |
| 1300 | |
| 1301 | vm_page_lock_queues(); |
| 1302 | vm_pageout_anonymous_pages_active = FALSE; |
| 1303 | vm_page_unlock_queues(); |
| 1304 | } |
| 1305 | } |
| 1306 | |
| 1307 | |
| 1308 | size_t |
| 1309 | vm_pageout_page_queue(vm_page_queue_head_t *q, size_t qcount, bool perf_test) |
| 1310 | { |
| 1311 | vm_page_t m; |
| 1312 | vm_object_t t_object = NULL; |
| 1313 | vm_object_t l_object = NULL; |
| 1314 | vm_object_t m_object = NULL; |
| 1315 | int delayed_unlock = 0; |
| 1316 | int try_failed_count = 0; |
| 1317 | int refmod_state; |
| 1318 | int pmap_options; |
| 1319 | struct vm_pageout_queue *iq; |
| 1320 | ppnum_t phys_page; |
| 1321 | size_t pages_moved = 0; |
| 1322 | |
| 1323 | |
| 1324 | iq = &vm_pageout_queue_internal; |
| 1325 | |
| 1326 | vm_page_lock_queues(); |
| 1327 | |
| 1328 | #if DEVELOPMENT || DEBUG |
| 1329 | if (perf_test) { |
| 1330 | iq = &vm_pageout_queue_benchmark; |
| 1331 | // ensure the benchmark queue isn't throttled |
| 1332 | iq->pgo_maxlaundry = (unsigned int) qcount; |
| 1333 | } |
| 1334 | #endif /* DEVELOPMENT ||DEBUG */ |
| 1335 | |
| 1336 | while (qcount && !vm_page_queue_empty(q)) { |
| 1337 | LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED); |
| 1338 | |
| 1339 | if (VM_PAGE_Q_THROTTLED(iq)) { |
| 1340 | if (l_object != NULL) { |
| 1341 | vm_object_unlock(l_object); |
| 1342 | l_object = NULL; |
| 1343 | } |
| 1344 | iq->pgo_draining = TRUE; |
| 1345 | |
| 1346 | assert_wait(event: (event_t) (&iq->pgo_laundry + 1), THREAD_INTERRUPTIBLE); |
| 1347 | vm_page_unlock_queues(); |
| 1348 | |
| 1349 | thread_block(THREAD_CONTINUE_NULL); |
| 1350 | |
| 1351 | vm_page_lock_queues(); |
| 1352 | delayed_unlock = 0; |
| 1353 | continue; |
| 1354 | } |
| 1355 | m = (vm_page_t) vm_page_queue_first(q); |
| 1356 | m_object = VM_PAGE_OBJECT(m); |
| 1357 | |
| 1358 | /* |
| 1359 | * check to see if we currently are working |
| 1360 | * with the same object... if so, we've |
| 1361 | * already got the lock |
| 1362 | */ |
| 1363 | if (m_object != l_object) { |
| 1364 | if (!m_object->internal) { |
| 1365 | goto reenter_pg_on_q; |
| 1366 | } |
| 1367 | |
| 1368 | /* |
| 1369 | * the object associated with candidate page is |
| 1370 | * different from the one we were just working |
| 1371 | * with... dump the lock if we still own it |
| 1372 | */ |
| 1373 | if (l_object != NULL) { |
| 1374 | vm_object_unlock(l_object); |
| 1375 | l_object = NULL; |
| 1376 | } |
| 1377 | if (m_object != t_object) { |
| 1378 | try_failed_count = 0; |
| 1379 | } |
| 1380 | |
| 1381 | /* |
| 1382 | * Try to lock object; since we've alread got the |
| 1383 | * page queues lock, we can only 'try' for this one. |
| 1384 | * if the 'try' fails, we need to do a mutex_pause |
| 1385 | * to allow the owner of the object lock a chance to |
| 1386 | * run... |
| 1387 | */ |
| 1388 | if (!vm_object_lock_try_scan(m_object)) { |
| 1389 | if (try_failed_count > 20) { |
| 1390 | goto reenter_pg_on_q; |
| 1391 | } |
| 1392 | vm_page_unlock_queues(); |
| 1393 | mutex_pause(try_failed_count++); |
| 1394 | vm_page_lock_queues(); |
| 1395 | delayed_unlock = 0; |
| 1396 | |
| 1397 | t_object = m_object; |
| 1398 | continue; |
| 1399 | } |
| 1400 | l_object = m_object; |
| 1401 | } |
| 1402 | if (!m_object->alive || m->vmp_cleaning || m->vmp_laundry || m->vmp_busy || m->vmp_absent || VMP_ERROR_GET(m) || m->vmp_free_when_done) { |
| 1403 | /* |
| 1404 | * page is not to be cleaned |
| 1405 | * put it back on the head of its queue |
| 1406 | */ |
| 1407 | goto reenter_pg_on_q; |
| 1408 | } |
| 1409 | phys_page = VM_PAGE_GET_PHYS_PAGE(m); |
| 1410 | |
| 1411 | if (m->vmp_reference == FALSE && m->vmp_pmapped == TRUE) { |
| 1412 | refmod_state = pmap_get_refmod(pn: phys_page); |
| 1413 | |
| 1414 | if (refmod_state & VM_MEM_REFERENCED) { |
| 1415 | m->vmp_reference = TRUE; |
| 1416 | } |
| 1417 | if (refmod_state & VM_MEM_MODIFIED) { |
| 1418 | SET_PAGE_DIRTY(m, FALSE); |
| 1419 | } |
| 1420 | } |
| 1421 | if (m->vmp_reference == TRUE) { |
| 1422 | m->vmp_reference = FALSE; |
| 1423 | pmap_clear_refmod_options(pn: phys_page, VM_MEM_REFERENCED, PMAP_OPTIONS_NOFLUSH, (void *)NULL); |
| 1424 | goto reenter_pg_on_q; |
| 1425 | } |
| 1426 | if (m->vmp_pmapped == TRUE) { |
| 1427 | if (m->vmp_dirty || m->vmp_precious) { |
| 1428 | pmap_options = PMAP_OPTIONS_COMPRESSOR; |
| 1429 | } else { |
| 1430 | pmap_options = PMAP_OPTIONS_COMPRESSOR_IFF_MODIFIED; |
| 1431 | } |
| 1432 | refmod_state = pmap_disconnect_options(phys: phys_page, options: pmap_options, NULL); |
| 1433 | if (refmod_state & VM_MEM_MODIFIED) { |
| 1434 | SET_PAGE_DIRTY(m, FALSE); |
| 1435 | } |
| 1436 | } |
| 1437 | |
| 1438 | if (!m->vmp_dirty && !m->vmp_precious) { |
| 1439 | vm_page_unlock_queues(); |
| 1440 | VM_PAGE_FREE(m); |
| 1441 | vm_page_lock_queues(); |
| 1442 | delayed_unlock = 0; |
| 1443 | |
| 1444 | goto next_pg; |
| 1445 | } |
| 1446 | if (!m_object->pager_initialized || m_object->pager == MEMORY_OBJECT_NULL) { |
| 1447 | if (!m_object->pager_initialized) { |
| 1448 | vm_page_unlock_queues(); |
| 1449 | |
| 1450 | vm_object_collapse(object: m_object, offset: (vm_object_offset_t) 0, TRUE); |
| 1451 | |
| 1452 | if (!m_object->pager_initialized) { |
| 1453 | vm_object_compressor_pager_create(object: m_object); |
| 1454 | } |
| 1455 | |
| 1456 | vm_page_lock_queues(); |
| 1457 | delayed_unlock = 0; |
| 1458 | } |
| 1459 | if (!m_object->pager_initialized || m_object->pager == MEMORY_OBJECT_NULL) { |
| 1460 | goto reenter_pg_on_q; |
| 1461 | } |
| 1462 | /* |
| 1463 | * vm_object_compressor_pager_create will drop the object lock |
| 1464 | * which means 'm' may no longer be valid to use |
| 1465 | */ |
| 1466 | continue; |
| 1467 | } |
| 1468 | |
| 1469 | if (!perf_test) { |
| 1470 | /* |
| 1471 | * we've already factored out pages in the laundry which |
| 1472 | * means this page can't be on the pageout queue so it's |
| 1473 | * safe to do the vm_page_queues_remove |
| 1474 | */ |
| 1475 | bool donate = (m->vmp_on_specialq == VM_PAGE_SPECIAL_Q_DONATE); |
| 1476 | vm_page_queues_remove(mem: m, TRUE); |
| 1477 | if (donate) { |
| 1478 | /* |
| 1479 | * The compressor needs to see this bit to know |
| 1480 | * where this page needs to land. Also if stolen, |
| 1481 | * this bit helps put the page back in the right |
| 1482 | * special queue where it belongs. |
| 1483 | */ |
| 1484 | m->vmp_on_specialq = VM_PAGE_SPECIAL_Q_DONATE; |
| 1485 | } |
| 1486 | } else { |
| 1487 | vm_page_queue_remove(q, m, vmp_pageq); |
| 1488 | } |
| 1489 | |
| 1490 | LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED); |
| 1491 | |
| 1492 | vm_pageout_cluster_to_queue(m, q: iq); |
| 1493 | |
| 1494 | pages_moved++; |
| 1495 | goto next_pg; |
| 1496 | |
| 1497 | reenter_pg_on_q: |
| 1498 | vm_page_queue_remove(q, m, vmp_pageq); |
| 1499 | vm_page_queue_enter(q, m, vmp_pageq); |
| 1500 | next_pg: |
| 1501 | qcount--; |
| 1502 | try_failed_count = 0; |
| 1503 | |
| 1504 | if (delayed_unlock++ > 128) { |
| 1505 | if (l_object != NULL) { |
| 1506 | vm_object_unlock(l_object); |
| 1507 | l_object = NULL; |
| 1508 | } |
| 1509 | lck_mtx_yield(lck: &vm_page_queue_lock); |
| 1510 | delayed_unlock = 0; |
| 1511 | } |
| 1512 | } |
| 1513 | if (l_object != NULL) { |
| 1514 | vm_object_unlock(l_object); |
| 1515 | l_object = NULL; |
| 1516 | } |
| 1517 | vm_page_unlock_queues(); |
| 1518 | return pages_moved; |
| 1519 | } |
| 1520 | |
| 1521 | |
| 1522 | |
| 1523 | /* |
| 1524 | * function in BSD to apply I/O throttle to the pageout thread |
| 1525 | */ |
| 1526 | extern void vm_pageout_io_throttle(void); |
| 1527 | |
| 1528 | #define VM_PAGEOUT_SCAN_HANDLE_REUSABLE_PAGE(m, obj) \ |
| 1529 | MACRO_BEGIN \ |
| 1530 | /* \ |
| 1531 | * If a "reusable" page somehow made it back into \ |
| 1532 | * the active queue, it's been re-used and is not \ |
| 1533 | * quite re-usable. \ |
| 1534 | * If the VM object was "all_reusable", consider it \ |
| 1535 | * as "all re-used" instead of converting it to \ |
| 1536 | * "partially re-used", which could be expensive. \ |
| 1537 | */ \ |
| 1538 | assert(VM_PAGE_OBJECT((m)) == (obj)); \ |
| 1539 | if ((m)->vmp_reusable || \ |
| 1540 | (obj)->all_reusable) { \ |
| 1541 | vm_object_reuse_pages((obj), \ |
| 1542 | (m)->vmp_offset, \ |
| 1543 | (m)->vmp_offset + PAGE_SIZE_64, \ |
| 1544 | FALSE); \ |
| 1545 | } \ |
| 1546 | MACRO_END |
| 1547 | |
| 1548 | |
| 1549 | #define VM_PAGEOUT_DELAYED_UNLOCK_LIMIT 64 |
| 1550 | #define VM_PAGEOUT_DELAYED_UNLOCK_LIMIT_MAX 1024 |
| 1551 | |
| 1552 | #define FCS_IDLE 0 |
| 1553 | #define FCS_DELAYED 1 |
| 1554 | #define FCS_DEADLOCK_DETECTED 2 |
| 1555 | |
| 1556 | struct flow_control { |
| 1557 | int state; |
| 1558 | mach_timespec_t ts; |
| 1559 | }; |
| 1560 | |
| 1561 | |
| 1562 | uint64_t vm_pageout_rejected_bq_internal = 0; |
| 1563 | uint64_t vm_pageout_rejected_bq_external = 0; |
| 1564 | uint64_t vm_pageout_skipped_bq_internal = 0; |
| 1565 | uint64_t vm_pageout_skipped_bq_external = 0; |
| 1566 | |
| 1567 | #define ANONS_GRABBED_LIMIT 2 |
| 1568 | |
| 1569 | |
| 1570 | #if 0 |
| 1571 | static void vm_pageout_delayed_unlock(int *, int *, vm_page_t *); |
| 1572 | #endif |
| 1573 | static void vm_pageout_prepare_to_block(vm_object_t *, int *, vm_page_t *, int *, int); |
| 1574 | |
| 1575 | #define VM_PAGEOUT_PB_NO_ACTION 0 |
| 1576 | #define VM_PAGEOUT_PB_CONSIDER_WAKING_COMPACTOR_SWAPPER 1 |
| 1577 | #define VM_PAGEOUT_PB_THREAD_YIELD 2 |
| 1578 | |
| 1579 | |
| 1580 | #if 0 |
| 1581 | static void |
| 1582 | vm_pageout_delayed_unlock(int *delayed_unlock, int *local_freed, vm_page_t *local_freeq) |
| 1583 | { |
| 1584 | if (*local_freeq) { |
| 1585 | vm_page_unlock_queues(); |
| 1586 | |
| 1587 | VM_DEBUG_CONSTANT_EVENT( |
| 1588 | vm_pageout_freelist, VM_PAGEOUT_FREELIST, DBG_FUNC_START, |
| 1589 | vm_page_free_count, 0, 0, 1); |
| 1590 | |
| 1591 | vm_page_free_list(*local_freeq, TRUE); |
| 1592 | |
| 1593 | VM_DEBUG_CONSTANT_EVENT(vm_pageout_freelist, VM_PAGEOUT_FREELIST, DBG_FUNC_END, |
| 1594 | vm_page_free_count, *local_freed, 0, 1); |
| 1595 | |
| 1596 | *local_freeq = NULL; |
| 1597 | *local_freed = 0; |
| 1598 | |
| 1599 | vm_page_lock_queues(); |
| 1600 | } else { |
| 1601 | lck_mtx_yield(&vm_page_queue_lock); |
| 1602 | } |
| 1603 | *delayed_unlock = 1; |
| 1604 | } |
| 1605 | #endif |
| 1606 | |
| 1607 | |
| 1608 | static void |
| 1609 | vm_pageout_prepare_to_block(vm_object_t *object, int *delayed_unlock, |
| 1610 | vm_page_t *local_freeq, int *local_freed, int action) |
| 1611 | { |
| 1612 | vm_page_unlock_queues(); |
| 1613 | |
| 1614 | if (*object != NULL) { |
| 1615 | vm_object_unlock(*object); |
| 1616 | *object = NULL; |
| 1617 | } |
| 1618 | if (*local_freeq) { |
| 1619 | vm_page_free_list(mem: *local_freeq, TRUE); |
| 1620 | |
| 1621 | *local_freeq = NULL; |
| 1622 | *local_freed = 0; |
| 1623 | } |
| 1624 | *delayed_unlock = 1; |
| 1625 | |
| 1626 | switch (action) { |
| 1627 | case VM_PAGEOUT_PB_CONSIDER_WAKING_COMPACTOR_SWAPPER: |
| 1628 | vm_consider_waking_compactor_swapper(); |
| 1629 | break; |
| 1630 | case VM_PAGEOUT_PB_THREAD_YIELD: |
| 1631 | thread_yield_internal(interval: 1); |
| 1632 | break; |
| 1633 | case VM_PAGEOUT_PB_NO_ACTION: |
| 1634 | default: |
| 1635 | break; |
| 1636 | } |
| 1637 | vm_page_lock_queues(); |
| 1638 | } |
| 1639 | |
| 1640 | |
| 1641 | static struct vm_pageout_vminfo last; |
| 1642 | |
| 1643 | uint64_t last_vm_page_pages_grabbed = 0; |
| 1644 | |
| 1645 | extern uint32_t c_segment_pages_compressed; |
| 1646 | |
| 1647 | extern uint64_t ; |
| 1648 | extern struct memory_object_pager_ops ; |
| 1649 | |
| 1650 | void |
| 1651 | update_vm_info(void) |
| 1652 | { |
| 1653 | unsigned long tmp; |
| 1654 | uint64_t tmp64; |
| 1655 | |
| 1656 | vm_pageout_stats[vm_pageout_stat_now].vm_page_active_count = vm_page_active_count; |
| 1657 | vm_pageout_stats[vm_pageout_stat_now].vm_page_speculative_count = vm_page_speculative_count; |
| 1658 | vm_pageout_stats[vm_pageout_stat_now].vm_page_inactive_count = vm_page_inactive_count; |
| 1659 | vm_pageout_stats[vm_pageout_stat_now].vm_page_anonymous_count = vm_page_anonymous_count; |
| 1660 | |
| 1661 | vm_pageout_stats[vm_pageout_stat_now].vm_page_free_count = vm_page_free_count; |
| 1662 | vm_pageout_stats[vm_pageout_stat_now].vm_page_wire_count = vm_page_wire_count; |
| 1663 | vm_pageout_stats[vm_pageout_stat_now].vm_page_compressor_count = VM_PAGE_COMPRESSOR_COUNT; |
| 1664 | |
| 1665 | vm_pageout_stats[vm_pageout_stat_now].vm_page_pages_compressed = c_segment_pages_compressed; |
| 1666 | vm_pageout_stats[vm_pageout_stat_now].vm_page_pageable_internal_count = vm_page_pageable_internal_count; |
| 1667 | vm_pageout_stats[vm_pageout_stat_now].vm_page_pageable_external_count = vm_page_pageable_external_count; |
| 1668 | vm_pageout_stats[vm_pageout_stat_now].vm_page_xpmapped_external_count = vm_page_xpmapped_external_count; |
| 1669 | vm_pageout_stats[vm_pageout_stat_now].vm_page_realtime_count = vm_page_realtime_count; |
| 1670 | |
| 1671 | tmp = vm_pageout_vminfo.vm_pageout_considered_page; |
| 1672 | vm_pageout_stats[vm_pageout_stat_now].considered = (unsigned int)(tmp - last.vm_pageout_considered_page); |
| 1673 | last.vm_pageout_considered_page = tmp; |
| 1674 | |
| 1675 | tmp64 = vm_pageout_vminfo.vm_pageout_compressions; |
| 1676 | vm_pageout_stats[vm_pageout_stat_now].pages_compressed = (unsigned int)(tmp64 - last.vm_pageout_compressions); |
| 1677 | last.vm_pageout_compressions = tmp64; |
| 1678 | |
| 1679 | tmp = vm_pageout_vminfo.vm_compressor_failed; |
| 1680 | vm_pageout_stats[vm_pageout_stat_now].failed_compressions = (unsigned int)(tmp - last.vm_compressor_failed); |
| 1681 | last.vm_compressor_failed = tmp; |
| 1682 | |
| 1683 | tmp64 = vm_pageout_vminfo.vm_compressor_pages_grabbed; |
| 1684 | vm_pageout_stats[vm_pageout_stat_now].pages_grabbed_by_compressor = (unsigned int)(tmp64 - last.vm_compressor_pages_grabbed); |
| 1685 | last.vm_compressor_pages_grabbed = tmp64; |
| 1686 | |
| 1687 | tmp = vm_pageout_vminfo.vm_phantom_cache_found_ghost; |
| 1688 | vm_pageout_stats[vm_pageout_stat_now].phantom_ghosts_found = (unsigned int)(tmp - last.vm_phantom_cache_found_ghost); |
| 1689 | last.vm_phantom_cache_found_ghost = tmp; |
| 1690 | |
| 1691 | tmp = vm_pageout_vminfo.vm_phantom_cache_added_ghost; |
| 1692 | vm_pageout_stats[vm_pageout_stat_now].phantom_ghosts_added = (unsigned int)(tmp - last.vm_phantom_cache_added_ghost); |
| 1693 | last.vm_phantom_cache_added_ghost = tmp; |
| 1694 | |
| 1695 | tmp64 = counter_load(&vm_page_grab_count); |
| 1696 | vm_pageout_stats[vm_pageout_stat_now].pages_grabbed = (unsigned int)(tmp64 - last_vm_page_pages_grabbed); |
| 1697 | last_vm_page_pages_grabbed = tmp64; |
| 1698 | |
| 1699 | tmp = vm_pageout_vminfo.vm_page_pages_freed; |
| 1700 | vm_pageout_stats[vm_pageout_stat_now].pages_freed = (unsigned int)(tmp - last.vm_page_pages_freed); |
| 1701 | last.vm_page_pages_freed = tmp; |
| 1702 | |
| 1703 | if (vm_pageout_stats[vm_pageout_stat_now].considered) { |
| 1704 | tmp = vm_pageout_vminfo.vm_pageout_pages_evicted; |
| 1705 | vm_pageout_stats[vm_pageout_stat_now].pages_evicted = (unsigned int)(tmp - last.vm_pageout_pages_evicted); |
| 1706 | last.vm_pageout_pages_evicted = tmp; |
| 1707 | |
| 1708 | tmp = vm_pageout_vminfo.vm_pageout_pages_purged; |
| 1709 | vm_pageout_stats[vm_pageout_stat_now].pages_purged = (unsigned int)(tmp - last.vm_pageout_pages_purged); |
| 1710 | last.vm_pageout_pages_purged = tmp; |
| 1711 | |
| 1712 | tmp = vm_pageout_vminfo.vm_pageout_freed_speculative; |
| 1713 | vm_pageout_stats[vm_pageout_stat_now].freed_speculative = (unsigned int)(tmp - last.vm_pageout_freed_speculative); |
| 1714 | last.vm_pageout_freed_speculative = tmp; |
| 1715 | |
| 1716 | tmp = vm_pageout_vminfo.vm_pageout_freed_external; |
| 1717 | vm_pageout_stats[vm_pageout_stat_now].freed_external = (unsigned int)(tmp - last.vm_pageout_freed_external); |
| 1718 | last.vm_pageout_freed_external = tmp; |
| 1719 | |
| 1720 | tmp = vm_pageout_vminfo.vm_pageout_inactive_referenced; |
| 1721 | vm_pageout_stats[vm_pageout_stat_now].inactive_referenced = (unsigned int)(tmp - last.vm_pageout_inactive_referenced); |
| 1722 | last.vm_pageout_inactive_referenced = tmp; |
| 1723 | |
| 1724 | tmp = vm_pageout_vminfo.vm_pageout_scan_inactive_throttled_external; |
| 1725 | vm_pageout_stats[vm_pageout_stat_now].throttled_external_q = (unsigned int)(tmp - last.vm_pageout_scan_inactive_throttled_external); |
| 1726 | last.vm_pageout_scan_inactive_throttled_external = tmp; |
| 1727 | |
| 1728 | tmp = vm_pageout_vminfo.vm_pageout_inactive_dirty_external; |
| 1729 | vm_pageout_stats[vm_pageout_stat_now].cleaned_dirty_external = (unsigned int)(tmp - last.vm_pageout_inactive_dirty_external); |
| 1730 | last.vm_pageout_inactive_dirty_external = tmp; |
| 1731 | |
| 1732 | tmp = vm_pageout_vminfo.vm_pageout_freed_cleaned; |
| 1733 | vm_pageout_stats[vm_pageout_stat_now].freed_cleaned = (unsigned int)(tmp - last.vm_pageout_freed_cleaned); |
| 1734 | last.vm_pageout_freed_cleaned = tmp; |
| 1735 | |
| 1736 | tmp = vm_pageout_vminfo.vm_pageout_inactive_nolock; |
| 1737 | vm_pageout_stats[vm_pageout_stat_now].inactive_nolock = (unsigned int)(tmp - last.vm_pageout_inactive_nolock); |
| 1738 | last.vm_pageout_inactive_nolock = tmp; |
| 1739 | |
| 1740 | tmp = vm_pageout_vminfo.vm_pageout_scan_inactive_throttled_internal; |
| 1741 | vm_pageout_stats[vm_pageout_stat_now].throttled_internal_q = (unsigned int)(tmp - last.vm_pageout_scan_inactive_throttled_internal); |
| 1742 | last.vm_pageout_scan_inactive_throttled_internal = tmp; |
| 1743 | |
| 1744 | tmp = vm_pageout_vminfo.vm_pageout_skipped_external; |
| 1745 | vm_pageout_stats[vm_pageout_stat_now].skipped_external = (unsigned int)(tmp - last.vm_pageout_skipped_external); |
| 1746 | last.vm_pageout_skipped_external = tmp; |
| 1747 | |
| 1748 | tmp = vm_pageout_vminfo.vm_pageout_skipped_internal; |
| 1749 | vm_pageout_stats[vm_pageout_stat_now].skipped_internal = (unsigned int)(tmp - last.vm_pageout_skipped_internal); |
| 1750 | last.vm_pageout_skipped_internal = tmp; |
| 1751 | |
| 1752 | tmp = vm_pageout_vminfo.vm_pageout_reactivation_limit_exceeded; |
| 1753 | vm_pageout_stats[vm_pageout_stat_now].reactivation_limit_exceeded = (unsigned int)(tmp - last.vm_pageout_reactivation_limit_exceeded); |
| 1754 | last.vm_pageout_reactivation_limit_exceeded = tmp; |
| 1755 | |
| 1756 | tmp = vm_pageout_vminfo.vm_pageout_inactive_force_reclaim; |
| 1757 | vm_pageout_stats[vm_pageout_stat_now].forced_inactive_reclaim = (unsigned int)(tmp - last.vm_pageout_inactive_force_reclaim); |
| 1758 | last.vm_pageout_inactive_force_reclaim = tmp; |
| 1759 | |
| 1760 | tmp = vm_pageout_vminfo.vm_pageout_freed_internal; |
| 1761 | vm_pageout_stats[vm_pageout_stat_now].freed_internal = (unsigned int)(tmp - last.vm_pageout_freed_internal); |
| 1762 | last.vm_pageout_freed_internal = tmp; |
| 1763 | |
| 1764 | tmp = vm_pageout_vminfo.vm_pageout_considered_bq_internal; |
| 1765 | vm_pageout_stats[vm_pageout_stat_now].considered_bq_internal = (unsigned int)(tmp - last.vm_pageout_considered_bq_internal); |
| 1766 | last.vm_pageout_considered_bq_internal = tmp; |
| 1767 | |
| 1768 | tmp = vm_pageout_vminfo.vm_pageout_considered_bq_external; |
| 1769 | vm_pageout_stats[vm_pageout_stat_now].considered_bq_external = (unsigned int)(tmp - last.vm_pageout_considered_bq_external); |
| 1770 | last.vm_pageout_considered_bq_external = tmp; |
| 1771 | |
| 1772 | tmp = vm_pageout_vminfo.vm_pageout_filecache_min_reactivated; |
| 1773 | vm_pageout_stats[vm_pageout_stat_now].filecache_min_reactivations = (unsigned int)(tmp - last.vm_pageout_filecache_min_reactivated); |
| 1774 | last.vm_pageout_filecache_min_reactivated = tmp; |
| 1775 | |
| 1776 | tmp = vm_pageout_vminfo.vm_pageout_inactive_dirty_internal; |
| 1777 | vm_pageout_stats[vm_pageout_stat_now].cleaned_dirty_internal = (unsigned int)(tmp - last.vm_pageout_inactive_dirty_internal); |
| 1778 | last.vm_pageout_inactive_dirty_internal = tmp; |
| 1779 | |
| 1780 | tmp = vm_pageout_vminfo.vm_pageout_forcereclaimed_sharedcache; |
| 1781 | vm_pageout_stats[vm_pageout_stat_now].forcereclaimed_sharedcache = (unsigned int)(tmp - last.vm_pageout_forcereclaimed_sharedcache); |
| 1782 | last.vm_pageout_forcereclaimed_sharedcache = tmp; |
| 1783 | |
| 1784 | tmp = vm_pageout_vminfo.vm_pageout_forcereclaimed_realtime; |
| 1785 | vm_pageout_stats[vm_pageout_stat_now].forcereclaimed_realtime = (unsigned int)(tmp - last.vm_pageout_forcereclaimed_realtime); |
| 1786 | last.vm_pageout_forcereclaimed_realtime = tmp; |
| 1787 | |
| 1788 | tmp = vm_pageout_vminfo.vm_pageout_protected_sharedcache; |
| 1789 | vm_pageout_stats[vm_pageout_stat_now].protected_sharedcache = (unsigned int)(tmp - last.vm_pageout_protected_sharedcache); |
| 1790 | last.vm_pageout_protected_sharedcache = tmp; |
| 1791 | |
| 1792 | tmp = vm_pageout_vminfo.vm_pageout_protected_realtime; |
| 1793 | vm_pageout_stats[vm_pageout_stat_now].protected_realtime = (unsigned int)(tmp - last.vm_pageout_protected_realtime); |
| 1794 | last.vm_pageout_protected_realtime = tmp; |
| 1795 | } |
| 1796 | |
| 1797 | KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, VM_INFO1)) | DBG_FUNC_NONE, |
| 1798 | vm_pageout_stats[vm_pageout_stat_now].vm_page_active_count, |
| 1799 | vm_pageout_stats[vm_pageout_stat_now].vm_page_speculative_count, |
| 1800 | vm_pageout_stats[vm_pageout_stat_now].vm_page_inactive_count, |
| 1801 | vm_pageout_stats[vm_pageout_stat_now].vm_page_anonymous_count, |
| 1802 | 0); |
| 1803 | |
| 1804 | KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, VM_INFO2)) | DBG_FUNC_NONE, |
| 1805 | vm_pageout_stats[vm_pageout_stat_now].vm_page_free_count, |
| 1806 | vm_pageout_stats[vm_pageout_stat_now].vm_page_wire_count, |
| 1807 | vm_pageout_stats[vm_pageout_stat_now].vm_page_compressor_count, |
| 1808 | 0, |
| 1809 | 0); |
| 1810 | |
| 1811 | KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, VM_INFO3)) | DBG_FUNC_NONE, |
| 1812 | vm_pageout_stats[vm_pageout_stat_now].vm_page_pages_compressed, |
| 1813 | vm_pageout_stats[vm_pageout_stat_now].vm_page_pageable_internal_count, |
| 1814 | vm_pageout_stats[vm_pageout_stat_now].vm_page_pageable_external_count, |
| 1815 | vm_pageout_stats[vm_pageout_stat_now].vm_page_xpmapped_external_count, |
| 1816 | 0); |
| 1817 | |
| 1818 | if (vm_pageout_stats[vm_pageout_stat_now].considered || |
| 1819 | vm_pageout_stats[vm_pageout_stat_now].pages_compressed || |
| 1820 | vm_pageout_stats[vm_pageout_stat_now].failed_compressions) { |
| 1821 | KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, VM_INFO4)) | DBG_FUNC_NONE, |
| 1822 | vm_pageout_stats[vm_pageout_stat_now].considered, |
| 1823 | vm_pageout_stats[vm_pageout_stat_now].freed_speculative, |
| 1824 | vm_pageout_stats[vm_pageout_stat_now].freed_external, |
| 1825 | vm_pageout_stats[vm_pageout_stat_now].inactive_referenced, |
| 1826 | 0); |
| 1827 | |
| 1828 | KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, VM_INFO5)) | DBG_FUNC_NONE, |
| 1829 | vm_pageout_stats[vm_pageout_stat_now].throttled_external_q, |
| 1830 | vm_pageout_stats[vm_pageout_stat_now].cleaned_dirty_external, |
| 1831 | vm_pageout_stats[vm_pageout_stat_now].freed_cleaned, |
| 1832 | vm_pageout_stats[vm_pageout_stat_now].inactive_nolock, |
| 1833 | 0); |
| 1834 | |
| 1835 | KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, VM_INFO6)) | DBG_FUNC_NONE, |
| 1836 | vm_pageout_stats[vm_pageout_stat_now].throttled_internal_q, |
| 1837 | vm_pageout_stats[vm_pageout_stat_now].pages_compressed, |
| 1838 | vm_pageout_stats[vm_pageout_stat_now].pages_grabbed_by_compressor, |
| 1839 | vm_pageout_stats[vm_pageout_stat_now].skipped_external, |
| 1840 | 0); |
| 1841 | |
| 1842 | KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, VM_INFO7)) | DBG_FUNC_NONE, |
| 1843 | vm_pageout_stats[vm_pageout_stat_now].reactivation_limit_exceeded, |
| 1844 | vm_pageout_stats[vm_pageout_stat_now].forced_inactive_reclaim, |
| 1845 | vm_pageout_stats[vm_pageout_stat_now].failed_compressions, |
| 1846 | vm_pageout_stats[vm_pageout_stat_now].freed_internal, |
| 1847 | 0); |
| 1848 | |
| 1849 | KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, VM_INFO8)) | DBG_FUNC_NONE, |
| 1850 | vm_pageout_stats[vm_pageout_stat_now].considered_bq_internal, |
| 1851 | vm_pageout_stats[vm_pageout_stat_now].considered_bq_external, |
| 1852 | vm_pageout_stats[vm_pageout_stat_now].filecache_min_reactivations, |
| 1853 | vm_pageout_stats[vm_pageout_stat_now].cleaned_dirty_internal, |
| 1854 | 0); |
| 1855 | |
| 1856 | KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, VM_INFO10)) | DBG_FUNC_NONE, |
| 1857 | vm_pageout_stats[vm_pageout_stat_now].forcereclaimed_sharedcache, |
| 1858 | vm_pageout_stats[vm_pageout_stat_now].forcereclaimed_realtime, |
| 1859 | vm_pageout_stats[vm_pageout_stat_now].protected_sharedcache, |
| 1860 | vm_pageout_stats[vm_pageout_stat_now].protected_realtime, |
| 1861 | 0); |
| 1862 | } |
| 1863 | KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, VM_INFO9)) | DBG_FUNC_NONE, |
| 1864 | vm_pageout_stats[vm_pageout_stat_now].pages_grabbed, |
| 1865 | vm_pageout_stats[vm_pageout_stat_now].pages_freed, |
| 1866 | vm_pageout_stats[vm_pageout_stat_now].phantom_ghosts_found, |
| 1867 | vm_pageout_stats[vm_pageout_stat_now].phantom_ghosts_added, |
| 1868 | 0); |
| 1869 | |
| 1870 | record_memory_pressure(); |
| 1871 | } |
| 1872 | |
| 1873 | extern boolean_t hibernation_vmqueues_inspection; |
| 1874 | |
| 1875 | /* |
| 1876 | * Return values for functions called by vm_pageout_scan |
| 1877 | * that control its flow. |
| 1878 | * |
| 1879 | * PROCEED -- vm_pageout_scan will keep making forward progress. |
| 1880 | * DONE_RETURN -- page demand satisfied, work is done -> vm_pageout_scan returns. |
| 1881 | * NEXT_ITERATION -- restart the 'for' loop in vm_pageout_scan aka continue. |
| 1882 | */ |
| 1883 | |
| 1884 | #define VM_PAGEOUT_SCAN_PROCEED (0) |
| 1885 | #define VM_PAGEOUT_SCAN_DONE_RETURN (1) |
| 1886 | #define VM_PAGEOUT_SCAN_NEXT_ITERATION (2) |
| 1887 | |
| 1888 | /* |
| 1889 | * This function is called only from vm_pageout_scan and |
| 1890 | * it moves overflow secluded pages (one-at-a-time) to the |
| 1891 | * batched 'local' free Q or active Q. |
| 1892 | */ |
| 1893 | static void |
| 1894 | vps_deal_with_secluded_page_overflow(vm_page_t *local_freeq, int *local_freed) |
| 1895 | { |
| 1896 | #if CONFIG_SECLUDED_MEMORY |
| 1897 | /* |
| 1898 | * Deal with secluded_q overflow. |
| 1899 | */ |
| 1900 | if (vm_page_secluded_count > vm_page_secluded_target) { |
| 1901 | vm_page_t secluded_page; |
| 1902 | |
| 1903 | /* |
| 1904 | * SECLUDED_AGING_BEFORE_ACTIVE: |
| 1905 | * Excess secluded pages go to the active queue and |
| 1906 | * will later go to the inactive queue. |
| 1907 | */ |
| 1908 | assert((vm_page_secluded_count_free + |
| 1909 | vm_page_secluded_count_inuse) == |
| 1910 | vm_page_secluded_count); |
| 1911 | secluded_page = (vm_page_t)vm_page_queue_first(&vm_page_queue_secluded); |
| 1912 | assert(secluded_page->vmp_q_state == VM_PAGE_ON_SECLUDED_Q); |
| 1913 | |
| 1914 | vm_page_queues_remove(secluded_page, FALSE); |
| 1915 | assert(!secluded_page->vmp_fictitious); |
| 1916 | assert(!VM_PAGE_WIRED(secluded_page)); |
| 1917 | |
| 1918 | if (secluded_page->vmp_object == 0) { |
| 1919 | /* transfer to free queue */ |
| 1920 | assert(secluded_page->vmp_busy); |
| 1921 | secluded_page->vmp_snext = *local_freeq; |
| 1922 | *local_freeq = secluded_page; |
| 1923 | *local_freed += 1; |
| 1924 | } else { |
| 1925 | /* transfer to head of active queue */ |
| 1926 | vm_page_enqueue_active(secluded_page, FALSE); |
| 1927 | secluded_page = VM_PAGE_NULL; |
| 1928 | } |
| 1929 | } |
| 1930 | #else /* CONFIG_SECLUDED_MEMORY */ |
| 1931 | |
| 1932 | #pragma unused(local_freeq) |
| 1933 | #pragma unused(local_freed) |
| 1934 | |
| 1935 | return; |
| 1936 | |
| 1937 | #endif /* CONFIG_SECLUDED_MEMORY */ |
| 1938 | } |
| 1939 | |
| 1940 | /* |
| 1941 | * This function is called only from vm_pageout_scan and |
| 1942 | * it initializes the loop targets for vm_pageout_scan(). |
| 1943 | */ |
| 1944 | static void |
| 1945 | vps_init_page_targets(void) |
| 1946 | { |
| 1947 | /* |
| 1948 | * LD TODO: Other page targets should be calculated here too. |
| 1949 | */ |
| 1950 | vm_page_anonymous_min = vm_page_inactive_target / 20; |
| 1951 | |
| 1952 | if (vm_pageout_state.vm_page_speculative_percentage > 50) { |
| 1953 | vm_pageout_state.vm_page_speculative_percentage = 50; |
| 1954 | } else if (vm_pageout_state.vm_page_speculative_percentage <= 0) { |
| 1955 | vm_pageout_state.vm_page_speculative_percentage = 1; |
| 1956 | } |
| 1957 | |
| 1958 | vm_pageout_state.vm_page_speculative_target = VM_PAGE_SPECULATIVE_TARGET(vm_page_active_count + |
| 1959 | vm_page_inactive_count); |
| 1960 | } |
| 1961 | |
| 1962 | /* |
| 1963 | * This function is called only from vm_pageout_scan and |
| 1964 | * it purges a single VM object at-a-time and will either |
| 1965 | * make vm_pageout_scan() restart the loop or keeping moving forward. |
| 1966 | */ |
| 1967 | static int |
| 1968 | vps_purge_object() |
| 1969 | { |
| 1970 | int force_purge; |
| 1971 | |
| 1972 | assert(available_for_purge >= 0); |
| 1973 | force_purge = 0; /* no force-purging */ |
| 1974 | |
| 1975 | #if VM_PRESSURE_EVENTS |
| 1976 | vm_pressure_level_t pressure_level; |
| 1977 | |
| 1978 | pressure_level = memorystatus_vm_pressure_level; |
| 1979 | |
| 1980 | if (pressure_level > kVMPressureNormal) { |
| 1981 | if (pressure_level >= kVMPressureCritical) { |
| 1982 | force_purge = vm_pageout_state.memorystatus_purge_on_critical; |
| 1983 | } else if (pressure_level >= kVMPressureUrgent) { |
| 1984 | force_purge = vm_pageout_state.memorystatus_purge_on_urgent; |
| 1985 | } else if (pressure_level >= kVMPressureWarning) { |
| 1986 | force_purge = vm_pageout_state.memorystatus_purge_on_warning; |
| 1987 | } |
| 1988 | } |
| 1989 | #endif /* VM_PRESSURE_EVENTS */ |
| 1990 | |
| 1991 | if (available_for_purge || force_purge) { |
| 1992 | memoryshot(VM_PAGEOUT_PURGEONE, DBG_FUNC_START); |
| 1993 | |
| 1994 | VM_DEBUG_EVENT(vm_pageout_purgeone, VM_PAGEOUT_PURGEONE, DBG_FUNC_START, vm_page_free_count, 0, 0, 0); |
| 1995 | if (vm_purgeable_object_purge_one(force_purge_below_group: force_purge, flags: C_DONT_BLOCK)) { |
| 1996 | VM_PAGEOUT_DEBUG(vm_pageout_purged_objects, 1); |
| 1997 | VM_DEBUG_EVENT(vm_pageout_purgeone, VM_PAGEOUT_PURGEONE, DBG_FUNC_END, vm_page_free_count, 0, 0, 0); |
| 1998 | memoryshot(VM_PAGEOUT_PURGEONE, DBG_FUNC_END); |
| 1999 | |
| 2000 | return VM_PAGEOUT_SCAN_NEXT_ITERATION; |
| 2001 | } |
| 2002 | VM_DEBUG_EVENT(vm_pageout_purgeone, VM_PAGEOUT_PURGEONE, DBG_FUNC_END, 0, 0, 0, -1); |
| 2003 | memoryshot(VM_PAGEOUT_PURGEONE, DBG_FUNC_END); |
| 2004 | } |
| 2005 | |
| 2006 | return VM_PAGEOUT_SCAN_PROCEED; |
| 2007 | } |
| 2008 | |
| 2009 | /* |
| 2010 | * This function is called only from vm_pageout_scan and |
| 2011 | * it will try to age the next speculative Q if the oldest |
| 2012 | * one is empty. |
| 2013 | */ |
| 2014 | static int |
| 2015 | vps_age_speculative_queue(boolean_t force_speculative_aging) |
| 2016 | { |
| 2017 | #define DELAY_SPECULATIVE_AGE 1000 |
| 2018 | |
| 2019 | /* |
| 2020 | * try to pull pages from the aging bins... |
| 2021 | * see vm_page.h for an explanation of how |
| 2022 | * this mechanism works |
| 2023 | */ |
| 2024 | boolean_t can_steal = FALSE; |
| 2025 | int num_scanned_queues; |
| 2026 | static int delay_speculative_age = 0; /* depends the # of times we go through the main pageout_scan loop.*/ |
| 2027 | mach_timespec_t ts; |
| 2028 | struct vm_speculative_age_q *aq; |
| 2029 | struct vm_speculative_age_q *sq; |
| 2030 | |
| 2031 | sq = &vm_page_queue_speculative[VM_PAGE_SPECULATIVE_AGED_Q]; |
| 2032 | |
| 2033 | aq = &vm_page_queue_speculative[speculative_steal_index]; |
| 2034 | |
| 2035 | num_scanned_queues = 0; |
| 2036 | while (vm_page_queue_empty(&aq->age_q) && |
| 2037 | num_scanned_queues++ != VM_PAGE_MAX_SPECULATIVE_AGE_Q) { |
| 2038 | speculative_steal_index++; |
| 2039 | |
| 2040 | if (speculative_steal_index > VM_PAGE_MAX_SPECULATIVE_AGE_Q) { |
| 2041 | speculative_steal_index = VM_PAGE_MIN_SPECULATIVE_AGE_Q; |
| 2042 | } |
| 2043 | |
| 2044 | aq = &vm_page_queue_speculative[speculative_steal_index]; |
| 2045 | } |
| 2046 | |
| 2047 | if (num_scanned_queues == VM_PAGE_MAX_SPECULATIVE_AGE_Q + 1) { |
| 2048 | /* |
| 2049 | * XXX We've scanned all the speculative |
| 2050 | * queues but still haven't found one |
| 2051 | * that is not empty, even though |
| 2052 | * vm_page_speculative_count is not 0. |
| 2053 | */ |
| 2054 | if (!vm_page_queue_empty(&sq->age_q)) { |
| 2055 | return VM_PAGEOUT_SCAN_NEXT_ITERATION; |
| 2056 | } |
| 2057 | #if DEVELOPMENT || DEBUG |
| 2058 | panic("vm_pageout_scan: vm_page_speculative_count=%d but queues are empty" , vm_page_speculative_count); |
| 2059 | #endif |
| 2060 | /* readjust... */ |
| 2061 | vm_page_speculative_count = 0; |
| 2062 | /* ... and continue */ |
| 2063 | return VM_PAGEOUT_SCAN_NEXT_ITERATION; |
| 2064 | } |
| 2065 | |
| 2066 | if (vm_page_speculative_count > vm_pageout_state.vm_page_speculative_target || force_speculative_aging == TRUE) { |
| 2067 | can_steal = TRUE; |
| 2068 | } else { |
| 2069 | if (!delay_speculative_age) { |
| 2070 | mach_timespec_t ts_fully_aged; |
| 2071 | |
| 2072 | ts_fully_aged.tv_sec = (VM_PAGE_MAX_SPECULATIVE_AGE_Q * vm_pageout_state.vm_page_speculative_q_age_ms) / 1000; |
| 2073 | ts_fully_aged.tv_nsec = ((VM_PAGE_MAX_SPECULATIVE_AGE_Q * vm_pageout_state.vm_page_speculative_q_age_ms) % 1000) |
| 2074 | * 1000 * NSEC_PER_USEC; |
| 2075 | |
| 2076 | ADD_MACH_TIMESPEC(&ts_fully_aged, &aq->age_ts); |
| 2077 | |
| 2078 | clock_sec_t sec; |
| 2079 | clock_nsec_t nsec; |
| 2080 | clock_get_system_nanotime(secs: &sec, nanosecs: &nsec); |
| 2081 | ts.tv_sec = (unsigned int) sec; |
| 2082 | ts.tv_nsec = nsec; |
| 2083 | |
| 2084 | if (CMP_MACH_TIMESPEC(&ts, &ts_fully_aged) >= 0) { |
| 2085 | can_steal = TRUE; |
| 2086 | } else { |
| 2087 | delay_speculative_age++; |
| 2088 | } |
| 2089 | } else { |
| 2090 | delay_speculative_age++; |
| 2091 | if (delay_speculative_age == DELAY_SPECULATIVE_AGE) { |
| 2092 | delay_speculative_age = 0; |
| 2093 | } |
| 2094 | } |
| 2095 | } |
| 2096 | if (can_steal == TRUE) { |
| 2097 | vm_page_speculate_ageit(aq); |
| 2098 | } |
| 2099 | |
| 2100 | return VM_PAGEOUT_SCAN_PROCEED; |
| 2101 | } |
| 2102 | |
| 2103 | /* |
| 2104 | * This function is called only from vm_pageout_scan and |
| 2105 | * it evicts a single VM object from the cache. |
| 2106 | */ |
| 2107 | static int inline |
| 2108 | vps_object_cache_evict(vm_object_t *object_to_unlock) |
| 2109 | { |
| 2110 | static int cache_evict_throttle = 0; |
| 2111 | struct vm_speculative_age_q *sq; |
| 2112 | |
| 2113 | sq = &vm_page_queue_speculative[VM_PAGE_SPECULATIVE_AGED_Q]; |
| 2114 | |
| 2115 | if (vm_page_queue_empty(&sq->age_q) && cache_evict_throttle == 0) { |
| 2116 | int pages_evicted; |
| 2117 | |
| 2118 | if (*object_to_unlock != NULL) { |
| 2119 | vm_object_unlock(*object_to_unlock); |
| 2120 | *object_to_unlock = NULL; |
| 2121 | } |
| 2122 | KERNEL_DEBUG_CONSTANT(0x13001ec | DBG_FUNC_START, 0, 0, 0, 0, 0); |
| 2123 | |
| 2124 | pages_evicted = vm_object_cache_evict(100, 10); |
| 2125 | |
| 2126 | KERNEL_DEBUG_CONSTANT(0x13001ec | DBG_FUNC_END, pages_evicted, 0, 0, 0, 0); |
| 2127 | |
| 2128 | if (pages_evicted) { |
| 2129 | vm_pageout_vminfo.vm_pageout_pages_evicted += pages_evicted; |
| 2130 | |
| 2131 | VM_DEBUG_EVENT(vm_pageout_cache_evict, VM_PAGEOUT_CACHE_EVICT, DBG_FUNC_NONE, |
| 2132 | vm_page_free_count, pages_evicted, vm_pageout_vminfo.vm_pageout_pages_evicted, 0); |
| 2133 | memoryshot(VM_PAGEOUT_CACHE_EVICT, DBG_FUNC_NONE); |
| 2134 | |
| 2135 | /* |
| 2136 | * we just freed up to 100 pages, |
| 2137 | * so go back to the top of the main loop |
| 2138 | * and re-evaulate the memory situation |
| 2139 | */ |
| 2140 | return VM_PAGEOUT_SCAN_NEXT_ITERATION; |
| 2141 | } else { |
| 2142 | cache_evict_throttle = 1000; |
| 2143 | } |
| 2144 | } |
| 2145 | if (cache_evict_throttle) { |
| 2146 | cache_evict_throttle--; |
| 2147 | } |
| 2148 | |
| 2149 | return VM_PAGEOUT_SCAN_PROCEED; |
| 2150 | } |
| 2151 | |
| 2152 | |
| 2153 | /* |
| 2154 | * This function is called only from vm_pageout_scan and |
| 2155 | * it calculates the filecache min. that needs to be maintained |
| 2156 | * as we start to steal pages. |
| 2157 | */ |
| 2158 | static void |
| 2159 | vps_calculate_filecache_min(void) |
| 2160 | { |
| 2161 | int divisor = vm_pageout_state.vm_page_filecache_min_divisor; |
| 2162 | |
| 2163 | #if CONFIG_JETSAM |
| 2164 | /* |
| 2165 | * don't let the filecache_min fall below 15% of available memory |
| 2166 | * on systems with an active compressor that isn't nearing its |
| 2167 | * limits w/r to accepting new data |
| 2168 | * |
| 2169 | * on systems w/o the compressor/swapper, the filecache is always |
| 2170 | * a very large percentage of the AVAILABLE_NON_COMPRESSED_MEMORY |
| 2171 | * since most (if not all) of the anonymous pages are in the |
| 2172 | * throttled queue (which isn't counted as available) which |
| 2173 | * effectively disables this filter |
| 2174 | */ |
| 2175 | if (vm_compressor_low_on_space() || divisor == 0) { |
| 2176 | vm_pageout_state.vm_page_filecache_min = 0; |
| 2177 | } else { |
| 2178 | vm_pageout_state.vm_page_filecache_min = |
| 2179 | ((AVAILABLE_NON_COMPRESSED_MEMORY) * 10) / divisor; |
| 2180 | } |
| 2181 | #else |
| 2182 | if (vm_compressor_out_of_space() || divisor == 0) { |
| 2183 | vm_pageout_state.vm_page_filecache_min = 0; |
| 2184 | } else { |
| 2185 | /* |
| 2186 | * don't let the filecache_min fall below the specified critical level |
| 2187 | */ |
| 2188 | vm_pageout_state.vm_page_filecache_min = |
| 2189 | ((AVAILABLE_NON_COMPRESSED_MEMORY) * 10) / divisor; |
| 2190 | } |
| 2191 | #endif |
| 2192 | if (vm_page_free_count < (vm_page_free_reserved / 4)) { |
| 2193 | vm_pageout_state.vm_page_filecache_min = 0; |
| 2194 | } |
| 2195 | } |
| 2196 | |
| 2197 | /* |
| 2198 | * This function is called only from vm_pageout_scan and |
| 2199 | * it updates the flow control time to detect if VM pageoutscan |
| 2200 | * isn't making progress. |
| 2201 | */ |
| 2202 | static void |
| 2203 | vps_flow_control_reset_deadlock_timer(struct flow_control *flow_control) |
| 2204 | { |
| 2205 | mach_timespec_t ts; |
| 2206 | clock_sec_t sec; |
| 2207 | clock_nsec_t nsec; |
| 2208 | |
| 2209 | ts.tv_sec = vm_pageout_state.vm_pageout_deadlock_wait / 1000; |
| 2210 | ts.tv_nsec = (vm_pageout_state.vm_pageout_deadlock_wait % 1000) * 1000 * NSEC_PER_USEC; |
| 2211 | clock_get_system_nanotime(secs: &sec, nanosecs: &nsec); |
| 2212 | flow_control->ts.tv_sec = (unsigned int) sec; |
| 2213 | flow_control->ts.tv_nsec = nsec; |
| 2214 | ADD_MACH_TIMESPEC(&flow_control->ts, &ts); |
| 2215 | |
| 2216 | flow_control->state = FCS_DELAYED; |
| 2217 | |
| 2218 | vm_pageout_vminfo.vm_pageout_scan_inactive_throttled_internal++; |
| 2219 | } |
| 2220 | |
| 2221 | /* |
| 2222 | * This function is called only from vm_pageout_scan and |
| 2223 | * it is the flow control logic of VM pageout scan which |
| 2224 | * controls if it should block and for how long. |
| 2225 | * Any blocking of vm_pageout_scan happens ONLY in this function. |
| 2226 | */ |
| 2227 | static int |
| 2228 | vps_flow_control(struct flow_control *flow_control, int *anons_grabbed, vm_object_t *object, int *delayed_unlock, |
| 2229 | vm_page_t *local_freeq, int *local_freed, int *vm_pageout_deadlock_target, unsigned int inactive_burst_count) |
| 2230 | { |
| 2231 | boolean_t exceeded_burst_throttle = FALSE; |
| 2232 | unsigned int msecs = 0; |
| 2233 | uint32_t inactive_external_count; |
| 2234 | mach_timespec_t ts; |
| 2235 | struct vm_pageout_queue *iq; |
| 2236 | struct vm_pageout_queue *eq; |
| 2237 | struct vm_speculative_age_q *sq; |
| 2238 | |
| 2239 | iq = &vm_pageout_queue_internal; |
| 2240 | eq = &vm_pageout_queue_external; |
| 2241 | sq = &vm_page_queue_speculative[VM_PAGE_SPECULATIVE_AGED_Q]; |
| 2242 | |
| 2243 | /* |
| 2244 | * Sometimes we have to pause: |
| 2245 | * 1) No inactive pages - nothing to do. |
| 2246 | * 2) Loop control - no acceptable pages found on the inactive queue |
| 2247 | * within the last vm_pageout_burst_inactive_throttle iterations |
| 2248 | * 3) Flow control - default pageout queue is full |
| 2249 | */ |
| 2250 | if (vm_page_queue_empty(&vm_page_queue_inactive) && |
| 2251 | vm_page_queue_empty(&vm_page_queue_anonymous) && |
| 2252 | vm_page_queue_empty(&vm_page_queue_cleaned) && |
| 2253 | vm_page_queue_empty(&sq->age_q)) { |
| 2254 | VM_PAGEOUT_DEBUG(vm_pageout_scan_empty_throttle, 1); |
| 2255 | msecs = vm_pageout_state.vm_pageout_empty_wait; |
| 2256 | } else if (inactive_burst_count >= |
| 2257 | MIN(vm_pageout_state.vm_pageout_burst_inactive_throttle, |
| 2258 | (vm_page_inactive_count + |
| 2259 | vm_page_speculative_count))) { |
| 2260 | VM_PAGEOUT_DEBUG(vm_pageout_scan_burst_throttle, 1); |
| 2261 | msecs = vm_pageout_state.vm_pageout_burst_wait; |
| 2262 | |
| 2263 | exceeded_burst_throttle = TRUE; |
| 2264 | } else if (VM_PAGE_Q_THROTTLED(iq) && |
| 2265 | VM_DYNAMIC_PAGING_ENABLED()) { |
| 2266 | clock_sec_t sec; |
| 2267 | clock_nsec_t nsec; |
| 2268 | |
| 2269 | switch (flow_control->state) { |
| 2270 | case FCS_IDLE: |
| 2271 | if ((vm_page_free_count + *local_freed) < vm_page_free_target && |
| 2272 | vm_pageout_state.vm_restricted_to_single_processor == FALSE) { |
| 2273 | /* |
| 2274 | * since the compressor is running independently of vm_pageout_scan |
| 2275 | * let's not wait for it just yet... as long as we have a healthy supply |
| 2276 | * of filecache pages to work with, let's keep stealing those. |
| 2277 | */ |
| 2278 | inactive_external_count = vm_page_inactive_count - vm_page_anonymous_count; |
| 2279 | |
| 2280 | if (vm_page_pageable_external_count > vm_pageout_state.vm_page_filecache_min && |
| 2281 | (inactive_external_count >= VM_PAGE_INACTIVE_TARGET(vm_page_pageable_external_count))) { |
| 2282 | *anons_grabbed = ANONS_GRABBED_LIMIT; |
| 2283 | VM_PAGEOUT_DEBUG(vm_pageout_scan_throttle_deferred, 1); |
| 2284 | return VM_PAGEOUT_SCAN_PROCEED; |
| 2285 | } |
| 2286 | } |
| 2287 | |
| 2288 | vps_flow_control_reset_deadlock_timer(flow_control); |
| 2289 | msecs = vm_pageout_state.vm_pageout_deadlock_wait; |
| 2290 | |
| 2291 | break; |
| 2292 | |
| 2293 | case FCS_DELAYED: |
| 2294 | clock_get_system_nanotime(secs: &sec, nanosecs: &nsec); |
| 2295 | ts.tv_sec = (unsigned int) sec; |
| 2296 | ts.tv_nsec = nsec; |
| 2297 | |
| 2298 | if (CMP_MACH_TIMESPEC(&ts, &flow_control->ts) >= 0) { |
| 2299 | /* |
| 2300 | * the pageout thread for the default pager is potentially |
| 2301 | * deadlocked since the |
| 2302 | * default pager queue has been throttled for more than the |
| 2303 | * allowable time... we need to move some clean pages or dirty |
| 2304 | * pages belonging to the external pagers if they aren't throttled |
| 2305 | * vm_page_free_wanted represents the number of threads currently |
| 2306 | * blocked waiting for pages... we'll move one page for each of |
| 2307 | * these plus a fixed amount to break the logjam... once we're done |
| 2308 | * moving this number of pages, we'll re-enter the FSC_DELAYED state |
| 2309 | * with a new timeout target since we have no way of knowing |
| 2310 | * whether we've broken the deadlock except through observation |
| 2311 | * of the queue associated with the default pager... we need to |
| 2312 | * stop moving pages and allow the system to run to see what |
| 2313 | * state it settles into. |
| 2314 | */ |
| 2315 | |
| 2316 | *vm_pageout_deadlock_target = vm_pageout_state.vm_pageout_deadlock_relief + |
| 2317 | vm_page_free_wanted + vm_page_free_wanted_privileged; |
| 2318 | VM_PAGEOUT_DEBUG(vm_pageout_scan_deadlock_detected, 1); |
| 2319 | flow_control->state = FCS_DEADLOCK_DETECTED; |
| 2320 | thread_wakeup(VM_PAGEOUT_GC_EVENT); |
| 2321 | return VM_PAGEOUT_SCAN_PROCEED; |
| 2322 | } |
| 2323 | /* |
| 2324 | * just resniff instead of trying |
| 2325 | * to compute a new delay time... we're going to be |
| 2326 | * awakened immediately upon a laundry completion, |
| 2327 | * so we won't wait any longer than necessary |
| 2328 | */ |
| 2329 | msecs = vm_pageout_state.vm_pageout_idle_wait; |
| 2330 | break; |
| 2331 | |
| 2332 | case FCS_DEADLOCK_DETECTED: |
| 2333 | if (*vm_pageout_deadlock_target) { |
| 2334 | return VM_PAGEOUT_SCAN_PROCEED; |
| 2335 | } |
| 2336 | |
| 2337 | vps_flow_control_reset_deadlock_timer(flow_control); |
| 2338 | msecs = vm_pageout_state.vm_pageout_deadlock_wait; |
| 2339 | |
| 2340 | break; |
| 2341 | } |
| 2342 | } else { |
| 2343 | /* |
| 2344 | * No need to pause... |
| 2345 | */ |
| 2346 | return VM_PAGEOUT_SCAN_PROCEED; |
| 2347 | } |
| 2348 | |
| 2349 | vm_pageout_scan_wants_object = VM_OBJECT_NULL; |
| 2350 | |
| 2351 | vm_pageout_prepare_to_block(object, delayed_unlock, local_freeq, local_freed, |
| 2352 | VM_PAGEOUT_PB_CONSIDER_WAKING_COMPACTOR_SWAPPER); |
| 2353 | |
| 2354 | if (vm_page_free_count >= vm_page_free_target) { |
| 2355 | /* |
| 2356 | * we're here because |
| 2357 | * 1) someone else freed up some pages while we had |
| 2358 | * the queues unlocked above |
| 2359 | * and we've hit one of the 3 conditions that |
| 2360 | * cause us to pause the pageout scan thread |
| 2361 | * |
| 2362 | * since we already have enough free pages, |
| 2363 | * let's avoid stalling and return normally |
| 2364 | * |
| 2365 | * before we return, make sure the pageout I/O threads |
| 2366 | * are running throttled in case there are still requests |
| 2367 | * in the laundry... since we have enough free pages |
| 2368 | * we don't need the laundry to be cleaned in a timely |
| 2369 | * fashion... so let's avoid interfering with foreground |
| 2370 | * activity |
| 2371 | * |
| 2372 | * we don't want to hold vm_page_queue_free_lock when |
| 2373 | * calling vm_pageout_adjust_eq_iothrottle (since it |
| 2374 | * may cause other locks to be taken), we do the intitial |
| 2375 | * check outside of the lock. Once we take the lock, |
| 2376 | * we recheck the condition since it may have changed. |
| 2377 | * if it has, no problem, we will make the threads |
| 2378 | * non-throttled before actually blocking |
| 2379 | */ |
| 2380 | vm_pageout_adjust_eq_iothrottle(&pgo_iothread_external_state, TRUE); |
| 2381 | } |
| 2382 | vm_free_page_lock(); |
| 2383 | |
| 2384 | if (vm_page_free_count >= vm_page_free_target && |
| 2385 | (vm_page_free_wanted == 0) && (vm_page_free_wanted_privileged == 0)) { |
| 2386 | return VM_PAGEOUT_SCAN_DONE_RETURN; |
| 2387 | } |
| 2388 | vm_free_page_unlock(); |
| 2389 | |
| 2390 | if ((vm_page_free_count + vm_page_cleaned_count) < vm_page_free_target) { |
| 2391 | /* |
| 2392 | * we're most likely about to block due to one of |
| 2393 | * the 3 conditions that cause vm_pageout_scan to |
| 2394 | * not be able to make forward progress w/r |
| 2395 | * to providing new pages to the free queue, |
| 2396 | * so unthrottle the I/O threads in case we |
| 2397 | * have laundry to be cleaned... it needs |
| 2398 | * to be completed ASAP. |
| 2399 | * |
| 2400 | * even if we don't block, we want the io threads |
| 2401 | * running unthrottled since the sum of free + |
| 2402 | * clean pages is still under our free target |
| 2403 | */ |
| 2404 | vm_pageout_adjust_eq_iothrottle(&pgo_iothread_external_state, FALSE); |
| 2405 | } |
| 2406 | if (vm_page_cleaned_count > 0 && exceeded_burst_throttle == FALSE) { |
| 2407 | /* |
| 2408 | * if we get here we're below our free target and |
| 2409 | * we're stalling due to a full laundry queue or |
| 2410 | * we don't have any inactive pages other then |
| 2411 | * those in the clean queue... |
| 2412 | * however, we have pages on the clean queue that |
| 2413 | * can be moved to the free queue, so let's not |
| 2414 | * stall the pageout scan |
| 2415 | */ |
| 2416 | flow_control->state = FCS_IDLE; |
| 2417 | return VM_PAGEOUT_SCAN_PROCEED; |
| 2418 | } |
| 2419 | if (flow_control->state == FCS_DELAYED && !VM_PAGE_Q_THROTTLED(iq)) { |
| 2420 | flow_control->state = FCS_IDLE; |
| 2421 | return VM_PAGEOUT_SCAN_PROCEED; |
| 2422 | } |
| 2423 | |
| 2424 | VM_CHECK_MEMORYSTATUS; |
| 2425 | |
| 2426 | if (flow_control->state != FCS_IDLE) { |
| 2427 | VM_PAGEOUT_DEBUG(vm_pageout_scan_throttle, 1); |
| 2428 | } |
| 2429 | |
| 2430 | iq->pgo_throttled = TRUE; |
| 2431 | assert_wait_timeout(event: (event_t) &iq->pgo_laundry, THREAD_INTERRUPTIBLE, interval: msecs, scale_factor: 1000 * NSEC_PER_USEC); |
| 2432 | |
| 2433 | vm_page_unlock_queues(); |
| 2434 | |
| 2435 | assert(vm_pageout_scan_wants_object == VM_OBJECT_NULL); |
| 2436 | |
| 2437 | VM_DEBUG_EVENT(vm_pageout_thread_block, VM_PAGEOUT_THREAD_BLOCK, DBG_FUNC_START, |
| 2438 | iq->pgo_laundry, iq->pgo_maxlaundry, msecs, 0); |
| 2439 | memoryshot(VM_PAGEOUT_THREAD_BLOCK, DBG_FUNC_START); |
| 2440 | |
| 2441 | thread_block(THREAD_CONTINUE_NULL); |
| 2442 | |
| 2443 | VM_DEBUG_EVENT(vm_pageout_thread_block, VM_PAGEOUT_THREAD_BLOCK, DBG_FUNC_END, |
| 2444 | iq->pgo_laundry, iq->pgo_maxlaundry, msecs, 0); |
| 2445 | memoryshot(VM_PAGEOUT_THREAD_BLOCK, DBG_FUNC_END); |
| 2446 | |
| 2447 | vm_page_lock_queues(); |
| 2448 | |
| 2449 | iq->pgo_throttled = FALSE; |
| 2450 | |
| 2451 | vps_init_page_targets(); |
| 2452 | |
| 2453 | return VM_PAGEOUT_SCAN_NEXT_ITERATION; |
| 2454 | } |
| 2455 | |
| 2456 | extern boolean_t vm_darkwake_mode; |
| 2457 | /* |
| 2458 | * This function is called only from vm_pageout_scan and |
| 2459 | * it will find and return the most appropriate page to be |
| 2460 | * reclaimed. |
| 2461 | */ |
| 2462 | static int |
| 2463 | vps_choose_victim_page(vm_page_t *victim_page, int *anons_grabbed, boolean_t *grab_anonymous, boolean_t force_anonymous, |
| 2464 | boolean_t *is_page_from_bg_q, unsigned int *reactivated_this_call) |
| 2465 | { |
| 2466 | vm_page_t m = NULL; |
| 2467 | vm_object_t m_object = VM_OBJECT_NULL; |
| 2468 | uint32_t inactive_external_count; |
| 2469 | struct vm_speculative_age_q *sq; |
| 2470 | struct vm_pageout_queue *iq; |
| 2471 | int retval = VM_PAGEOUT_SCAN_PROCEED; |
| 2472 | |
| 2473 | sq = &vm_page_queue_speculative[VM_PAGE_SPECULATIVE_AGED_Q]; |
| 2474 | iq = &vm_pageout_queue_internal; |
| 2475 | |
| 2476 | *is_page_from_bg_q = FALSE; |
| 2477 | |
| 2478 | m = NULL; |
| 2479 | m_object = VM_OBJECT_NULL; |
| 2480 | |
| 2481 | if (VM_DYNAMIC_PAGING_ENABLED()) { |
| 2482 | assert(vm_page_throttled_count == 0); |
| 2483 | assert(vm_page_queue_empty(&vm_page_queue_throttled)); |
| 2484 | } |
| 2485 | |
| 2486 | /* |
| 2487 | * Try for a clean-queue inactive page. |
| 2488 | * These are pages that vm_pageout_scan tried to steal earlier, but |
| 2489 | * were dirty and had to be cleaned. Pick them up now that they are clean. |
| 2490 | */ |
| 2491 | if (!vm_page_queue_empty(&vm_page_queue_cleaned)) { |
| 2492 | m = (vm_page_t) vm_page_queue_first(&vm_page_queue_cleaned); |
| 2493 | |
| 2494 | assert(m->vmp_q_state == VM_PAGE_ON_INACTIVE_CLEANED_Q); |
| 2495 | |
| 2496 | goto found_page; |
| 2497 | } |
| 2498 | |
| 2499 | /* |
| 2500 | * The next most eligible pages are ones we paged in speculatively, |
| 2501 | * but which have not yet been touched and have been aged out. |
| 2502 | */ |
| 2503 | if (!vm_page_queue_empty(&sq->age_q)) { |
| 2504 | m = (vm_page_t) vm_page_queue_first(&sq->age_q); |
| 2505 | |
| 2506 | assert(m->vmp_q_state == VM_PAGE_ON_SPECULATIVE_Q); |
| 2507 | |
| 2508 | if (!m->vmp_dirty || force_anonymous == FALSE) { |
| 2509 | goto found_page; |
| 2510 | } else { |
| 2511 | m = NULL; |
| 2512 | } |
| 2513 | } |
| 2514 | |
| 2515 | #if !CONFIG_JETSAM |
| 2516 | if (vm_page_donate_mode != VM_PAGE_DONATE_DISABLED) { |
| 2517 | if (vm_page_donate_queue_ripe && !vm_page_queue_empty(&vm_page_queue_donate)) { |
| 2518 | m = (vm_page_t) vm_page_queue_first(&vm_page_queue_donate); |
| 2519 | assert(m->vmp_on_specialq == VM_PAGE_SPECIAL_Q_DONATE); |
| 2520 | goto found_page; |
| 2521 | } |
| 2522 | } |
| 2523 | #endif /* !CONFIG_JETSAM */ |
| 2524 | |
| 2525 | if (vm_page_background_mode != VM_PAGE_BG_DISABLED && (vm_page_background_count > vm_page_background_target)) { |
| 2526 | vm_object_t bg_m_object = NULL; |
| 2527 | |
| 2528 | m = (vm_page_t) vm_page_queue_first(&vm_page_queue_background); |
| 2529 | |
| 2530 | bg_m_object = VM_PAGE_OBJECT(m); |
| 2531 | |
| 2532 | if (!VM_PAGE_PAGEABLE(m) || (vm_darkwake_mode && m->vmp_busy)) { |
| 2533 | /* |
| 2534 | * This page is on the background queue |
| 2535 | * but not on a pageable queue OR is busy during |
| 2536 | * darkwake mode when the target is artificially lowered. |
| 2537 | * If it is busy during darkwake mode, and we don't skip it, |
| 2538 | * we will just swing back around and try again with the same |
| 2539 | * queue and might hit the same page or its neighbor in a |
| 2540 | * similar state. Both of these are transient states and will |
| 2541 | * get resolved, but, at this point let's ignore this page. |
| 2542 | */ |
| 2543 | if (vm_darkwake_mode && m->vmp_busy) { |
| 2544 | if (bg_m_object->internal) { |
| 2545 | vm_pageout_skipped_bq_internal++; |
| 2546 | } else { |
| 2547 | vm_pageout_skipped_bq_external++; |
| 2548 | } |
| 2549 | } |
| 2550 | } else if (force_anonymous == FALSE || bg_m_object->internal) { |
| 2551 | if (bg_m_object->internal && |
| 2552 | (VM_PAGE_Q_THROTTLED(iq) || |
| 2553 | vm_compressor_out_of_space() == TRUE || |
| 2554 | vm_page_free_count < (vm_page_free_reserved / 4))) { |
| 2555 | vm_pageout_skipped_bq_internal++; |
| 2556 | } else { |
| 2557 | *is_page_from_bg_q = TRUE; |
| 2558 | |
| 2559 | if (bg_m_object->internal) { |
| 2560 | vm_pageout_vminfo.vm_pageout_considered_bq_internal++; |
| 2561 | } else { |
| 2562 | vm_pageout_vminfo.vm_pageout_considered_bq_external++; |
| 2563 | } |
| 2564 | goto found_page; |
| 2565 | } |
| 2566 | } |
| 2567 | } |
| 2568 | |
| 2569 | inactive_external_count = vm_page_inactive_count - vm_page_anonymous_count; |
| 2570 | |
| 2571 | if ((vm_page_pageable_external_count < vm_pageout_state.vm_page_filecache_min || force_anonymous == TRUE) || |
| 2572 | (inactive_external_count < VM_PAGE_INACTIVE_TARGET(vm_page_pageable_external_count))) { |
| 2573 | *grab_anonymous = TRUE; |
| 2574 | *anons_grabbed = 0; |
| 2575 | |
| 2576 | if (VM_CONFIG_SWAP_IS_ACTIVE) { |
| 2577 | vm_pageout_vminfo.vm_pageout_skipped_external++; |
| 2578 | } else { |
| 2579 | if (vm_page_free_count < (COMPRESSOR_FREE_RESERVED_LIMIT * 2)) { |
| 2580 | /* |
| 2581 | * No swap and we are in dangerously low levels of free memory. |
| 2582 | * If we keep going ahead with anonymous pages, we are going to run into a situation |
| 2583 | * where the compressor will be stuck waiting for free pages (if it isn't already). |
| 2584 | * |
| 2585 | * So, pick a file backed page... |
| 2586 | */ |
| 2587 | *grab_anonymous = FALSE; |
| 2588 | *anons_grabbed = ANONS_GRABBED_LIMIT; |
| 2589 | vm_pageout_vminfo.vm_pageout_skipped_internal++; |
| 2590 | } |
| 2591 | } |
| 2592 | goto want_anonymous; |
| 2593 | } |
| 2594 | *grab_anonymous = (vm_page_anonymous_count > vm_page_anonymous_min); |
| 2595 | |
| 2596 | #if CONFIG_JETSAM |
| 2597 | /* If the file-backed pool has accumulated |
| 2598 | * significantly more pages than the jetsam |
| 2599 | * threshold, prefer to reclaim those |
| 2600 | * inline to minimise compute overhead of reclaiming |
| 2601 | * anonymous pages. |
| 2602 | * This calculation does not account for the CPU local |
| 2603 | * external page queues, as those are expected to be |
| 2604 | * much smaller relative to the global pools. |
| 2605 | */ |
| 2606 | |
| 2607 | struct vm_pageout_queue *eq = &vm_pageout_queue_external; |
| 2608 | |
| 2609 | if (*grab_anonymous == TRUE && !VM_PAGE_Q_THROTTLED(eq)) { |
| 2610 | if (vm_page_pageable_external_count > |
| 2611 | vm_pageout_state.vm_page_filecache_min) { |
| 2612 | if ((vm_page_pageable_external_count * |
| 2613 | vm_pageout_memorystatus_fb_factor_dr) > |
| 2614 | (memorystatus_available_pages_critical * |
| 2615 | vm_pageout_memorystatus_fb_factor_nr)) { |
| 2616 | *grab_anonymous = FALSE; |
| 2617 | |
| 2618 | VM_PAGEOUT_DEBUG(vm_grab_anon_overrides, 1); |
| 2619 | } |
| 2620 | } |
| 2621 | if (*grab_anonymous) { |
| 2622 | VM_PAGEOUT_DEBUG(vm_grab_anon_nops, 1); |
| 2623 | } |
| 2624 | } |
| 2625 | #endif /* CONFIG_JETSAM */ |
| 2626 | |
| 2627 | want_anonymous: |
| 2628 | if (*grab_anonymous == FALSE || *anons_grabbed >= ANONS_GRABBED_LIMIT || vm_page_queue_empty(&vm_page_queue_anonymous)) { |
| 2629 | if (!vm_page_queue_empty(&vm_page_queue_inactive)) { |
| 2630 | m = (vm_page_t) vm_page_queue_first(&vm_page_queue_inactive); |
| 2631 | |
| 2632 | assert(m->vmp_q_state == VM_PAGE_ON_INACTIVE_EXTERNAL_Q); |
| 2633 | *anons_grabbed = 0; |
| 2634 | |
| 2635 | if (vm_page_pageable_external_count < vm_pageout_state.vm_page_filecache_min) { |
| 2636 | if (!vm_page_queue_empty(&vm_page_queue_anonymous)) { |
| 2637 | if ((++(*reactivated_this_call) % 100)) { |
| 2638 | vm_pageout_vminfo.vm_pageout_filecache_min_reactivated++; |
| 2639 | |
| 2640 | vm_page_activate(page: m); |
| 2641 | counter_inc(&vm_statistics_reactivations); |
| 2642 | #if DEVELOPMENT || DEBUG |
| 2643 | if (*is_page_from_bg_q == TRUE) { |
| 2644 | if (m_object->internal) { |
| 2645 | vm_pageout_rejected_bq_internal++; |
| 2646 | } else { |
| 2647 | vm_pageout_rejected_bq_external++; |
| 2648 | } |
| 2649 | } |
| 2650 | #endif /* DEVELOPMENT || DEBUG */ |
| 2651 | vm_pageout_state.vm_pageout_inactive_used++; |
| 2652 | |
| 2653 | m = NULL; |
| 2654 | retval = VM_PAGEOUT_SCAN_NEXT_ITERATION; |
| 2655 | |
| 2656 | goto found_page; |
| 2657 | } |
| 2658 | |
| 2659 | /* |
| 2660 | * steal 1 of the file backed pages even if |
| 2661 | * we are under the limit that has been set |
| 2662 | * for a healthy filecache |
| 2663 | */ |
| 2664 | } |
| 2665 | } |
| 2666 | goto found_page; |
| 2667 | } |
| 2668 | } |
| 2669 | if (!vm_page_queue_empty(&vm_page_queue_anonymous)) { |
| 2670 | m = (vm_page_t) vm_page_queue_first(&vm_page_queue_anonymous); |
| 2671 | |
| 2672 | assert(m->vmp_q_state == VM_PAGE_ON_INACTIVE_INTERNAL_Q); |
| 2673 | *anons_grabbed += 1; |
| 2674 | |
| 2675 | goto found_page; |
| 2676 | } |
| 2677 | |
| 2678 | m = NULL; |
| 2679 | |
| 2680 | found_page: |
| 2681 | *victim_page = m; |
| 2682 | |
| 2683 | return retval; |
| 2684 | } |
| 2685 | |
| 2686 | /* |
| 2687 | * This function is called only from vm_pageout_scan and |
| 2688 | * it will put a page back on the active/inactive queue |
| 2689 | * if we can't reclaim it for some reason. |
| 2690 | */ |
| 2691 | static void |
| 2692 | vps_requeue_page(vm_page_t m, int page_prev_q_state, __unused boolean_t page_from_bg_q) |
| 2693 | { |
| 2694 | if (page_prev_q_state == VM_PAGE_ON_SPECULATIVE_Q) { |
| 2695 | vm_page_enqueue_inactive(mem: m, FALSE); |
| 2696 | } else { |
| 2697 | vm_page_activate(page: m); |
| 2698 | } |
| 2699 | |
| 2700 | #if DEVELOPMENT || DEBUG |
| 2701 | vm_object_t m_object = VM_PAGE_OBJECT(m); |
| 2702 | |
| 2703 | if (page_from_bg_q == TRUE) { |
| 2704 | if (m_object->internal) { |
| 2705 | vm_pageout_rejected_bq_internal++; |
| 2706 | } else { |
| 2707 | vm_pageout_rejected_bq_external++; |
| 2708 | } |
| 2709 | } |
| 2710 | #endif /* DEVELOPMENT || DEBUG */ |
| 2711 | } |
| 2712 | |
| 2713 | /* |
| 2714 | * This function is called only from vm_pageout_scan and |
| 2715 | * it will try to grab the victim page's VM object (m_object) |
| 2716 | * which differs from the previous victim page's object (object). |
| 2717 | */ |
| 2718 | static int |
| 2719 | vps_switch_object(vm_page_t m, vm_object_t m_object, vm_object_t *object, int page_prev_q_state, boolean_t avoid_anon_pages, boolean_t page_from_bg_q) |
| 2720 | { |
| 2721 | struct vm_speculative_age_q *sq; |
| 2722 | |
| 2723 | sq = &vm_page_queue_speculative[VM_PAGE_SPECULATIVE_AGED_Q]; |
| 2724 | |
| 2725 | /* |
| 2726 | * the object associated with candidate page is |
| 2727 | * different from the one we were just working |
| 2728 | * with... dump the lock if we still own it |
| 2729 | */ |
| 2730 | if (*object != NULL) { |
| 2731 | vm_object_unlock(*object); |
| 2732 | *object = NULL; |
| 2733 | } |
| 2734 | /* |
| 2735 | * Try to lock object; since we've alread got the |
| 2736 | * page queues lock, we can only 'try' for this one. |
| 2737 | * if the 'try' fails, we need to do a mutex_pause |
| 2738 | * to allow the owner of the object lock a chance to |
| 2739 | * run... otherwise, we're likely to trip over this |
| 2740 | * object in the same state as we work our way through |
| 2741 | * the queue... clumps of pages associated with the same |
| 2742 | * object are fairly typical on the inactive and active queues |
| 2743 | */ |
| 2744 | if (!vm_object_lock_try_scan(m_object)) { |
| 2745 | vm_page_t m_want = NULL; |
| 2746 | |
| 2747 | vm_pageout_vminfo.vm_pageout_inactive_nolock++; |
| 2748 | |
| 2749 | if (page_prev_q_state == VM_PAGE_ON_INACTIVE_CLEANED_Q) { |
| 2750 | VM_PAGEOUT_DEBUG(vm_pageout_cleaned_nolock, 1); |
| 2751 | } |
| 2752 | |
| 2753 | pmap_clear_reference(pn: VM_PAGE_GET_PHYS_PAGE(m)); |
| 2754 | |
| 2755 | m->vmp_reference = FALSE; |
| 2756 | |
| 2757 | if (!m_object->object_is_shared_cache) { |
| 2758 | /* |
| 2759 | * don't apply this optimization if this is the shared cache |
| 2760 | * object, it's too easy to get rid of very hot and important |
| 2761 | * pages... |
| 2762 | * m->vmp_object must be stable since we hold the page queues lock... |
| 2763 | * we can update the scan_collisions field sans the object lock |
| 2764 | * since it is a separate field and this is the only spot that does |
| 2765 | * a read-modify-write operation and it is never executed concurrently... |
| 2766 | * we can asynchronously set this field to 0 when creating a UPL, so it |
| 2767 | * is possible for the value to be a bit non-determistic, but that's ok |
| 2768 | * since it's only used as a hint |
| 2769 | */ |
| 2770 | m_object->scan_collisions = 1; |
| 2771 | } |
| 2772 | if (page_from_bg_q) { |
| 2773 | m_want = (vm_page_t) vm_page_queue_first(&vm_page_queue_background); |
| 2774 | } else if (!vm_page_queue_empty(&vm_page_queue_cleaned)) { |
| 2775 | m_want = (vm_page_t) vm_page_queue_first(&vm_page_queue_cleaned); |
| 2776 | } else if (!vm_page_queue_empty(&sq->age_q)) { |
| 2777 | m_want = (vm_page_t) vm_page_queue_first(&sq->age_q); |
| 2778 | } else if ((avoid_anon_pages || vm_page_queue_empty(&vm_page_queue_anonymous)) && |
| 2779 | !vm_page_queue_empty(&vm_page_queue_inactive)) { |
| 2780 | m_want = (vm_page_t) vm_page_queue_first(&vm_page_queue_inactive); |
| 2781 | } else if (!vm_page_queue_empty(&vm_page_queue_anonymous)) { |
| 2782 | m_want = (vm_page_t) vm_page_queue_first(&vm_page_queue_anonymous); |
| 2783 | } |
| 2784 | |
| 2785 | /* |
| 2786 | * this is the next object we're going to be interested in |
| 2787 | * try to make sure its available after the mutex_pause |
| 2788 | * returns control |
| 2789 | */ |
| 2790 | if (m_want) { |
| 2791 | vm_pageout_scan_wants_object = VM_PAGE_OBJECT(m_want); |
| 2792 | } |
| 2793 | |
| 2794 | vps_requeue_page(m, page_prev_q_state, page_from_bg_q); |
| 2795 | |
| 2796 | return VM_PAGEOUT_SCAN_NEXT_ITERATION; |
| 2797 | } else { |
| 2798 | *object = m_object; |
| 2799 | vm_pageout_scan_wants_object = VM_OBJECT_NULL; |
| 2800 | } |
| 2801 | |
| 2802 | return VM_PAGEOUT_SCAN_PROCEED; |
| 2803 | } |
| 2804 | |
| 2805 | /* |
| 2806 | * This function is called only from vm_pageout_scan and |
| 2807 | * it notices that pageout scan may be rendered ineffective |
| 2808 | * due to a FS deadlock and will jetsam a process if possible. |
| 2809 | * If jetsam isn't supported, it'll move the page to the active |
| 2810 | * queue to try and get some different pages pushed onwards so |
| 2811 | * we can try to get out of this scenario. |
| 2812 | */ |
| 2813 | static void |
| 2814 | vps_deal_with_throttled_queues(vm_page_t m, vm_object_t *object, uint32_t *vm_pageout_inactive_external_forced_reactivate_limit, |
| 2815 | boolean_t *force_anonymous, __unused boolean_t is_page_from_bg_q) |
| 2816 | { |
| 2817 | struct vm_pageout_queue *eq; |
| 2818 | vm_object_t cur_object = VM_OBJECT_NULL; |
| 2819 | |
| 2820 | cur_object = *object; |
| 2821 | |
| 2822 | eq = &vm_pageout_queue_external; |
| 2823 | |
| 2824 | if (cur_object->internal == FALSE) { |
| 2825 | /* |
| 2826 | * we need to break up the following potential deadlock case... |
| 2827 | * a) The external pageout thread is stuck on the truncate lock for a file that is being extended i.e. written. |
| 2828 | * b) The thread doing the writing is waiting for pages while holding the truncate lock |
| 2829 | * c) Most of the pages in the inactive queue belong to this file. |
| 2830 | * |
| 2831 | * we are potentially in this deadlock because... |
| 2832 | * a) the external pageout queue is throttled |
| 2833 | * b) we're done with the active queue and moved on to the inactive queue |
| 2834 | * c) we've got a dirty external page |
| 2835 | * |
| 2836 | * since we don't know the reason for the external pageout queue being throttled we |
| 2837 | * must suspect that we are deadlocked, so move the current page onto the active queue |
| 2838 | * in an effort to cause a page from the active queue to 'age' to the inactive queue |
| 2839 | * |
| 2840 | * if we don't have jetsam configured (i.e. we have a dynamic pager), set |
| 2841 | * 'force_anonymous' to TRUE to cause us to grab a page from the cleaned/anonymous |
| 2842 | * pool the next time we select a victim page... if we can make enough new free pages, |
| 2843 | * the deadlock will break, the external pageout queue will empty and it will no longer |
| 2844 | * be throttled |
| 2845 | * |
| 2846 | * if we have jetsam configured, keep a count of the pages reactivated this way so |
| 2847 | * that we can try to find clean pages in the active/inactive queues before |
| 2848 | * deciding to jetsam a process |
| 2849 | */ |
| 2850 | vm_pageout_vminfo.vm_pageout_scan_inactive_throttled_external++; |
| 2851 | |
| 2852 | vm_page_check_pageable_safe(page: m); |
| 2853 | assert(m->vmp_q_state == VM_PAGE_NOT_ON_Q); |
| 2854 | vm_page_queue_enter(&vm_page_queue_active, m, vmp_pageq); |
| 2855 | m->vmp_q_state = VM_PAGE_ON_ACTIVE_Q; |
| 2856 | vm_page_active_count++; |
| 2857 | vm_page_pageable_external_count++; |
| 2858 | |
| 2859 | vm_pageout_adjust_eq_iothrottle(&pgo_iothread_external_state, FALSE); |
| 2860 | |
| 2861 | #if CONFIG_MEMORYSTATUS && CONFIG_JETSAM |
| 2862 | |
| 2863 | #pragma unused(force_anonymous) |
| 2864 | |
| 2865 | *vm_pageout_inactive_external_forced_reactivate_limit -= 1; |
| 2866 | |
| 2867 | if (*vm_pageout_inactive_external_forced_reactivate_limit <= 0) { |
| 2868 | *vm_pageout_inactive_external_forced_reactivate_limit = vm_page_active_count + vm_page_inactive_count; |
| 2869 | /* |
| 2870 | * Possible deadlock scenario so request jetsam action |
| 2871 | */ |
| 2872 | memorystatus_kill_on_vps_starvation(); |
| 2873 | VM_DEBUG_CONSTANT_EVENT(vm_pageout_jetsam, VM_PAGEOUT_JETSAM, DBG_FUNC_NONE, |
| 2874 | vm_page_active_count, vm_page_inactive_count, vm_page_free_count, vm_page_free_count); |
| 2875 | } |
| 2876 | #else /* CONFIG_MEMORYSTATUS && CONFIG_JETSAM */ |
| 2877 | |
| 2878 | #pragma unused(vm_pageout_inactive_external_forced_reactivate_limit) |
| 2879 | |
| 2880 | *force_anonymous = TRUE; |
| 2881 | #endif /* CONFIG_MEMORYSTATUS && CONFIG_JETSAM */ |
| 2882 | } else { |
| 2883 | vm_page_activate(page: m); |
| 2884 | counter_inc(&vm_statistics_reactivations); |
| 2885 | |
| 2886 | #if DEVELOPMENT || DEBUG |
| 2887 | if (is_page_from_bg_q == TRUE) { |
| 2888 | if (cur_object->internal) { |
| 2889 | vm_pageout_rejected_bq_internal++; |
| 2890 | } else { |
| 2891 | vm_pageout_rejected_bq_external++; |
| 2892 | } |
| 2893 | } |
| 2894 | #endif /* DEVELOPMENT || DEBUG */ |
| 2895 | |
| 2896 | vm_pageout_state.vm_pageout_inactive_used++; |
| 2897 | } |
| 2898 | } |
| 2899 | |
| 2900 | |
| 2901 | void |
| 2902 | vm_page_balance_inactive(int max_to_move) |
| 2903 | { |
| 2904 | vm_page_t m; |
| 2905 | |
| 2906 | LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED); |
| 2907 | |
| 2908 | if (hibernation_vmqueues_inspection || hibernate_cleaning_in_progress) { |
| 2909 | /* |
| 2910 | * It is likely that the hibernation code path is |
| 2911 | * dealing with these very queues as we are about |
| 2912 | * to move pages around in/from them and completely |
| 2913 | * change the linkage of the pages. |
| 2914 | * |
| 2915 | * And so we skip the rebalancing of these queues. |
| 2916 | */ |
| 2917 | return; |
| 2918 | } |
| 2919 | vm_page_inactive_target = VM_PAGE_INACTIVE_TARGET(vm_page_active_count + |
| 2920 | vm_page_inactive_count + |
| 2921 | vm_page_speculative_count); |
| 2922 | |
| 2923 | while (max_to_move-- && (vm_page_inactive_count + vm_page_speculative_count) < vm_page_inactive_target) { |
| 2924 | VM_PAGEOUT_DEBUG(vm_pageout_balanced, 1); |
| 2925 | |
| 2926 | m = (vm_page_t) vm_page_queue_first(&vm_page_queue_active); |
| 2927 | |
| 2928 | assert(m->vmp_q_state == VM_PAGE_ON_ACTIVE_Q); |
| 2929 | assert(!m->vmp_laundry); |
| 2930 | assert(!is_kernel_object(VM_PAGE_OBJECT(m))); |
| 2931 | assert(VM_PAGE_GET_PHYS_PAGE(m) != vm_page_guard_addr); |
| 2932 | |
| 2933 | DTRACE_VM2(scan, int, 1, (uint64_t *), NULL); |
| 2934 | |
| 2935 | /* |
| 2936 | * by not passing in a pmap_flush_context we will forgo any TLB flushing, local or otherwise... |
| 2937 | * |
| 2938 | * a TLB flush isn't really needed here since at worst we'll miss the reference bit being |
| 2939 | * updated in the PTE if a remote processor still has this mapping cached in its TLB when the |
| 2940 | * new reference happens. If no futher references happen on the page after that remote TLB flushes |
| 2941 | * we'll see a clean, non-referenced page when it eventually gets pulled out of the inactive queue |
| 2942 | * by pageout_scan, which is just fine since the last reference would have happened quite far |
| 2943 | * in the past (TLB caches don't hang around for very long), and of course could just as easily |
| 2944 | * have happened before we moved the page |
| 2945 | */ |
| 2946 | if (m->vmp_pmapped == TRUE) { |
| 2947 | /* |
| 2948 | * We might be holding the page queue lock as a |
| 2949 | * spin lock and clearing the "referenced" bit could |
| 2950 | * take a while if there are lots of mappings of |
| 2951 | * that page, so make sure we acquire the lock as |
| 2952 | * as mutex to avoid a spinlock timeout. |
| 2953 | */ |
| 2954 | vm_page_lockconvert_queues(); |
| 2955 | pmap_clear_refmod_options(pn: VM_PAGE_GET_PHYS_PAGE(m), VM_MEM_REFERENCED, PMAP_OPTIONS_NOFLUSH, (void *)NULL); |
| 2956 | } |
| 2957 | |
| 2958 | /* |
| 2959 | * The page might be absent or busy, |
| 2960 | * but vm_page_deactivate can handle that. |
| 2961 | * FALSE indicates that we don't want a H/W clear reference |
| 2962 | */ |
| 2963 | vm_page_deactivate_internal(page: m, FALSE); |
| 2964 | } |
| 2965 | } |
| 2966 | |
| 2967 | /* |
| 2968 | * vm_pageout_scan does the dirty work for the pageout daemon. |
| 2969 | * It returns with both vm_page_queue_free_lock and vm_page_queue_lock |
| 2970 | * held and vm_page_free_wanted == 0. |
| 2971 | */ |
| 2972 | void |
| 2973 | vm_pageout_scan(void) |
| 2974 | { |
| 2975 | unsigned int loop_count = 0; |
| 2976 | unsigned int inactive_burst_count = 0; |
| 2977 | unsigned int reactivated_this_call; |
| 2978 | unsigned int reactivate_limit; |
| 2979 | vm_page_t local_freeq = NULL; |
| 2980 | int local_freed = 0; |
| 2981 | int delayed_unlock; |
| 2982 | int delayed_unlock_limit = 0; |
| 2983 | int refmod_state = 0; |
| 2984 | int vm_pageout_deadlock_target = 0; |
| 2985 | struct vm_pageout_queue *iq; |
| 2986 | struct vm_pageout_queue *eq; |
| 2987 | struct vm_speculative_age_q *sq; |
| 2988 | struct flow_control flow_control = { .state = 0, .ts = { .tv_sec = 0, .tv_nsec = 0 } }; |
| 2989 | boolean_t inactive_throttled = FALSE; |
| 2990 | vm_object_t object = NULL; |
| 2991 | uint32_t inactive_reclaim_run; |
| 2992 | boolean_t grab_anonymous = FALSE; |
| 2993 | boolean_t force_anonymous = FALSE; |
| 2994 | boolean_t force_speculative_aging = FALSE; |
| 2995 | int anons_grabbed = 0; |
| 2996 | int page_prev_q_state = 0; |
| 2997 | boolean_t page_from_bg_q = FALSE; |
| 2998 | uint32_t vm_pageout_inactive_external_forced_reactivate_limit = 0; |
| 2999 | vm_object_t m_object = VM_OBJECT_NULL; |
| 3000 | int retval = 0; |
| 3001 | boolean_t lock_yield_check = FALSE; |
| 3002 | |
| 3003 | |
| 3004 | VM_DEBUG_CONSTANT_EVENT(vm_pageout_scan, VM_PAGEOUT_SCAN, DBG_FUNC_START, |
| 3005 | vm_pageout_vminfo.vm_pageout_freed_speculative, |
| 3006 | vm_pageout_state.vm_pageout_inactive_clean, |
| 3007 | vm_pageout_vminfo.vm_pageout_inactive_dirty_internal, |
| 3008 | vm_pageout_vminfo.vm_pageout_inactive_dirty_external); |
| 3009 | |
| 3010 | flow_control.state = FCS_IDLE; |
| 3011 | iq = &vm_pageout_queue_internal; |
| 3012 | eq = &vm_pageout_queue_external; |
| 3013 | sq = &vm_page_queue_speculative[VM_PAGE_SPECULATIVE_AGED_Q]; |
| 3014 | |
| 3015 | /* Ask the pmap layer to return any pages it no longer needs. */ |
| 3016 | pmap_release_pages_fast(); |
| 3017 | |
| 3018 | vm_page_lock_queues(); |
| 3019 | |
| 3020 | delayed_unlock = 1; |
| 3021 | |
| 3022 | /* |
| 3023 | * Calculate the max number of referenced pages on the inactive |
| 3024 | * queue that we will reactivate. |
| 3025 | */ |
| 3026 | reactivated_this_call = 0; |
| 3027 | reactivate_limit = VM_PAGE_REACTIVATE_LIMIT(vm_page_active_count + |
| 3028 | vm_page_inactive_count); |
| 3029 | inactive_reclaim_run = 0; |
| 3030 | |
| 3031 | vm_pageout_inactive_external_forced_reactivate_limit = vm_page_active_count + vm_page_inactive_count; |
| 3032 | |
| 3033 | /* |
| 3034 | * We must limit the rate at which we send pages to the pagers |
| 3035 | * so that we don't tie up too many pages in the I/O queues. |
| 3036 | * We implement a throttling mechanism using the laundry count |
| 3037 | * to limit the number of pages outstanding to the default |
| 3038 | * and external pagers. We can bypass the throttles and look |
| 3039 | * for clean pages if the pageout queues don't drain in a timely |
| 3040 | * fashion since this may indicate that the pageout paths are |
| 3041 | * stalled waiting for memory, which only we can provide. |
| 3042 | */ |
| 3043 | |
| 3044 | vps_init_page_targets(); |
| 3045 | assert(object == NULL); |
| 3046 | assert(delayed_unlock != 0); |
| 3047 | |
| 3048 | for (;;) { |
| 3049 | vm_page_t m; |
| 3050 | |
| 3051 | DTRACE_VM2(rev, int, 1, (uint64_t *), NULL); |
| 3052 | |
| 3053 | if (lock_yield_check) { |
| 3054 | lock_yield_check = FALSE; |
| 3055 | |
| 3056 | if (delayed_unlock++ > delayed_unlock_limit) { |
| 3057 | vm_pageout_prepare_to_block(object: &object, delayed_unlock: &delayed_unlock, local_freeq: &local_freeq, local_freed: &local_freed, |
| 3058 | VM_PAGEOUT_PB_CONSIDER_WAKING_COMPACTOR_SWAPPER); |
| 3059 | } else if (vm_pageout_scan_wants_object) { |
| 3060 | vm_page_unlock_queues(); |
| 3061 | mutex_pause(0); |
| 3062 | vm_page_lock_queues(); |
| 3063 | } else if (vps_yield_for_pgqlockwaiters && lck_mtx_yield(lck: &vm_page_queue_lock)) { |
| 3064 | VM_PAGEOUT_DEBUG(vm_pageout_yield_for_free_pages, 1); |
| 3065 | } |
| 3066 | } |
| 3067 | |
| 3068 | if (vm_upl_wait_for_pages < 0) { |
| 3069 | vm_upl_wait_for_pages = 0; |
| 3070 | } |
| 3071 | |
| 3072 | delayed_unlock_limit = VM_PAGEOUT_DELAYED_UNLOCK_LIMIT + vm_upl_wait_for_pages; |
| 3073 | |
| 3074 | if (delayed_unlock_limit > VM_PAGEOUT_DELAYED_UNLOCK_LIMIT_MAX) { |
| 3075 | delayed_unlock_limit = VM_PAGEOUT_DELAYED_UNLOCK_LIMIT_MAX; |
| 3076 | } |
| 3077 | |
| 3078 | vps_deal_with_secluded_page_overflow(local_freeq: &local_freeq, local_freed: &local_freed); |
| 3079 | |
| 3080 | assert(delayed_unlock); |
| 3081 | |
| 3082 | /* |
| 3083 | * maintain our balance |
| 3084 | */ |
| 3085 | vm_page_balance_inactive(max_to_move: 1); |
| 3086 | |
| 3087 | |
| 3088 | /********************************************************************** |
| 3089 | * above this point we're playing with the active and secluded queues |
| 3090 | * below this point we're playing with the throttling mechanisms |
| 3091 | * and the inactive queue |
| 3092 | **********************************************************************/ |
| 3093 | |
| 3094 | if (vm_page_free_count + local_freed >= vm_page_free_target) { |
| 3095 | vm_pageout_scan_wants_object = VM_OBJECT_NULL; |
| 3096 | |
| 3097 | vm_pageout_prepare_to_block(object: &object, delayed_unlock: &delayed_unlock, local_freeq: &local_freeq, local_freed: &local_freed, |
| 3098 | VM_PAGEOUT_PB_CONSIDER_WAKING_COMPACTOR_SWAPPER); |
| 3099 | /* |
| 3100 | * make sure the pageout I/O threads are running |
| 3101 | * throttled in case there are still requests |
| 3102 | * in the laundry... since we have met our targets |
| 3103 | * we don't need the laundry to be cleaned in a timely |
| 3104 | * fashion... so let's avoid interfering with foreground |
| 3105 | * activity |
| 3106 | */ |
| 3107 | vm_pageout_adjust_eq_iothrottle(&pgo_iothread_external_state, TRUE); |
| 3108 | |
| 3109 | vm_free_page_lock(); |
| 3110 | |
| 3111 | if ((vm_page_free_count >= vm_page_free_target) && |
| 3112 | (vm_page_free_wanted == 0) && (vm_page_free_wanted_privileged == 0)) { |
| 3113 | /* |
| 3114 | * done - we have met our target *and* |
| 3115 | * there is no one waiting for a page. |
| 3116 | */ |
| 3117 | return_from_scan: |
| 3118 | assert(vm_pageout_scan_wants_object == VM_OBJECT_NULL); |
| 3119 | |
| 3120 | VM_DEBUG_CONSTANT_EVENT(vm_pageout_scan, VM_PAGEOUT_SCAN, DBG_FUNC_NONE, |
| 3121 | vm_pageout_state.vm_pageout_inactive, |
| 3122 | vm_pageout_state.vm_pageout_inactive_used, 0, 0); |
| 3123 | VM_DEBUG_CONSTANT_EVENT(vm_pageout_scan, VM_PAGEOUT_SCAN, DBG_FUNC_END, |
| 3124 | vm_pageout_vminfo.vm_pageout_freed_speculative, |
| 3125 | vm_pageout_state.vm_pageout_inactive_clean, |
| 3126 | vm_pageout_vminfo.vm_pageout_inactive_dirty_internal, |
| 3127 | vm_pageout_vminfo.vm_pageout_inactive_dirty_external); |
| 3128 | |
| 3129 | return; |
| 3130 | } |
| 3131 | vm_free_page_unlock(); |
| 3132 | } |
| 3133 | |
| 3134 | /* |
| 3135 | * Before anything, we check if we have any ripe volatile |
| 3136 | * objects around. If so, try to purge the first object. |
| 3137 | * If the purge fails, fall through to reclaim a page instead. |
| 3138 | * If the purge succeeds, go back to the top and reevalute |
| 3139 | * the new memory situation. |
| 3140 | */ |
| 3141 | retval = vps_purge_object(); |
| 3142 | |
| 3143 | if (retval == VM_PAGEOUT_SCAN_NEXT_ITERATION) { |
| 3144 | /* |
| 3145 | * Success |
| 3146 | */ |
| 3147 | if (object != NULL) { |
| 3148 | vm_object_unlock(object); |
| 3149 | object = NULL; |
| 3150 | } |
| 3151 | |
| 3152 | lock_yield_check = FALSE; |
| 3153 | continue; |
| 3154 | } |
| 3155 | |
| 3156 | /* |
| 3157 | * If our 'aged' queue is empty and we have some speculative pages |
| 3158 | * in the other queues, let's go through and see if we need to age |
| 3159 | * them. |
| 3160 | * |
| 3161 | * If we succeeded in aging a speculative Q or just that everything |
| 3162 | * looks normal w.r.t queue age and queue counts, we keep going onward. |
| 3163 | * |
| 3164 | * If, for some reason, we seem to have a mismatch between the spec. |
| 3165 | * page count and the page queues, we reset those variables and |
| 3166 | * restart the loop (LD TODO: Track this better?). |
| 3167 | */ |
| 3168 | if (vm_page_queue_empty(&sq->age_q) && vm_page_speculative_count) { |
| 3169 | retval = vps_age_speculative_queue(force_speculative_aging); |
| 3170 | |
| 3171 | if (retval == VM_PAGEOUT_SCAN_NEXT_ITERATION) { |
| 3172 | lock_yield_check = FALSE; |
| 3173 | continue; |
| 3174 | } |
| 3175 | } |
| 3176 | force_speculative_aging = FALSE; |
| 3177 | |
| 3178 | /* |
| 3179 | * Check to see if we need to evict objects from the cache. |
| 3180 | * |
| 3181 | * Note: 'object' here doesn't have anything to do with |
| 3182 | * the eviction part. We just need to make sure we have dropped |
| 3183 | * any object lock we might be holding if we need to go down |
| 3184 | * into the eviction logic. |
| 3185 | */ |
| 3186 | retval = vps_object_cache_evict(object_to_unlock: &object); |
| 3187 | |
| 3188 | if (retval == VM_PAGEOUT_SCAN_NEXT_ITERATION) { |
| 3189 | lock_yield_check = FALSE; |
| 3190 | continue; |
| 3191 | } |
| 3192 | |
| 3193 | |
| 3194 | /* |
| 3195 | * Calculate our filecache_min that will affect the loop |
| 3196 | * going forward. |
| 3197 | */ |
| 3198 | vps_calculate_filecache_min(); |
| 3199 | |
| 3200 | /* |
| 3201 | * LD TODO: Use a structure to hold all state variables for a single |
| 3202 | * vm_pageout_scan iteration and pass that structure to this function instead. |
| 3203 | */ |
| 3204 | retval = vps_flow_control(flow_control: &flow_control, anons_grabbed: &anons_grabbed, object: &object, |
| 3205 | delayed_unlock: &delayed_unlock, local_freeq: &local_freeq, local_freed: &local_freed, |
| 3206 | vm_pageout_deadlock_target: &vm_pageout_deadlock_target, inactive_burst_count); |
| 3207 | |
| 3208 | if (retval == VM_PAGEOUT_SCAN_NEXT_ITERATION) { |
| 3209 | if (loop_count >= vm_page_inactive_count) { |
| 3210 | loop_count = 0; |
| 3211 | } |
| 3212 | |
| 3213 | inactive_burst_count = 0; |
| 3214 | |
| 3215 | assert(object == NULL); |
| 3216 | assert(delayed_unlock != 0); |
| 3217 | |
| 3218 | lock_yield_check = FALSE; |
| 3219 | continue; |
| 3220 | } else if (retval == VM_PAGEOUT_SCAN_DONE_RETURN) { |
| 3221 | goto return_from_scan; |
| 3222 | } |
| 3223 | |
| 3224 | flow_control.state = FCS_IDLE; |
| 3225 | |
| 3226 | vm_pageout_inactive_external_forced_reactivate_limit = MIN((vm_page_active_count + vm_page_inactive_count), |
| 3227 | vm_pageout_inactive_external_forced_reactivate_limit); |
| 3228 | loop_count++; |
| 3229 | inactive_burst_count++; |
| 3230 | vm_pageout_state.vm_pageout_inactive++; |
| 3231 | |
| 3232 | /* |
| 3233 | * Choose a victim. |
| 3234 | */ |
| 3235 | |
| 3236 | m = NULL; |
| 3237 | retval = vps_choose_victim_page(victim_page: &m, anons_grabbed: &anons_grabbed, grab_anonymous: &grab_anonymous, force_anonymous, is_page_from_bg_q: &page_from_bg_q, reactivated_this_call: &reactivated_this_call); |
| 3238 | |
| 3239 | if (m == NULL) { |
| 3240 | if (retval == VM_PAGEOUT_SCAN_NEXT_ITERATION) { |
| 3241 | inactive_burst_count = 0; |
| 3242 | |
| 3243 | if (page_prev_q_state == VM_PAGE_ON_INACTIVE_CLEANED_Q) { |
| 3244 | VM_PAGEOUT_DEBUG(vm_pageout_cleaned_reactivated, 1); |
| 3245 | } |
| 3246 | |
| 3247 | lock_yield_check = TRUE; |
| 3248 | continue; |
| 3249 | } |
| 3250 | |
| 3251 | /* |
| 3252 | * if we've gotten here, we have no victim page. |
| 3253 | * check to see if we've not finished balancing the queues |
| 3254 | * or we have a page on the aged speculative queue that we |
| 3255 | * skipped due to force_anonymous == TRUE.. or we have |
| 3256 | * speculative pages that we can prematurely age... if |
| 3257 | * one of these cases we'll keep going, else panic |
| 3258 | */ |
| 3259 | force_anonymous = FALSE; |
| 3260 | VM_PAGEOUT_DEBUG(vm_pageout_no_victim, 1); |
| 3261 | |
| 3262 | if (!vm_page_queue_empty(&sq->age_q)) { |
| 3263 | lock_yield_check = TRUE; |
| 3264 | continue; |
| 3265 | } |
| 3266 | |
| 3267 | if (vm_page_speculative_count) { |
| 3268 | force_speculative_aging = TRUE; |
| 3269 | lock_yield_check = TRUE; |
| 3270 | continue; |
| 3271 | } |
| 3272 | panic("vm_pageout: no victim" ); |
| 3273 | |
| 3274 | /* NOTREACHED */ |
| 3275 | } |
| 3276 | |
| 3277 | assert(VM_PAGE_PAGEABLE(m)); |
| 3278 | m_object = VM_PAGE_OBJECT(m); |
| 3279 | force_anonymous = FALSE; |
| 3280 | |
| 3281 | page_prev_q_state = m->vmp_q_state; |
| 3282 | /* |
| 3283 | * we just found this page on one of our queues... |
| 3284 | * it can't also be on the pageout queue, so safe |
| 3285 | * to call vm_page_queues_remove |
| 3286 | */ |
| 3287 | bool donate = (m->vmp_on_specialq == VM_PAGE_SPECIAL_Q_DONATE); |
| 3288 | vm_page_queues_remove(mem: m, TRUE); |
| 3289 | if (donate) { |
| 3290 | /* |
| 3291 | * The compressor needs to see this bit to know |
| 3292 | * where this page needs to land. Also if stolen, |
| 3293 | * this bit helps put the page back in the right |
| 3294 | * special queue where it belongs. |
| 3295 | */ |
| 3296 | m->vmp_on_specialq = VM_PAGE_SPECIAL_Q_DONATE; |
| 3297 | } |
| 3298 | |
| 3299 | assert(!m->vmp_laundry); |
| 3300 | assert(!m->vmp_private); |
| 3301 | assert(!m->vmp_fictitious); |
| 3302 | assert(!is_kernel_object(m_object)); |
| 3303 | assert(VM_PAGE_GET_PHYS_PAGE(m) != vm_page_guard_addr); |
| 3304 | |
| 3305 | vm_pageout_vminfo.vm_pageout_considered_page++; |
| 3306 | |
| 3307 | DTRACE_VM2(scan, int, 1, (uint64_t *), NULL); |
| 3308 | |
| 3309 | /* |
| 3310 | * check to see if we currently are working |
| 3311 | * with the same object... if so, we've |
| 3312 | * already got the lock |
| 3313 | */ |
| 3314 | if (m_object != object) { |
| 3315 | boolean_t avoid_anon_pages = (grab_anonymous == FALSE || anons_grabbed >= ANONS_GRABBED_LIMIT); |
| 3316 | |
| 3317 | /* |
| 3318 | * vps_switch_object() will always drop the 'object' lock first |
| 3319 | * and then try to acquire the 'm_object' lock. So 'object' has to point to |
| 3320 | * either 'm_object' or NULL. |
| 3321 | */ |
| 3322 | retval = vps_switch_object(m, m_object, object: &object, page_prev_q_state, avoid_anon_pages, page_from_bg_q); |
| 3323 | |
| 3324 | if (retval == VM_PAGEOUT_SCAN_NEXT_ITERATION) { |
| 3325 | lock_yield_check = TRUE; |
| 3326 | continue; |
| 3327 | } |
| 3328 | } |
| 3329 | assert(m_object == object); |
| 3330 | assert(VM_PAGE_OBJECT(m) == m_object); |
| 3331 | |
| 3332 | if (m->vmp_busy) { |
| 3333 | /* |
| 3334 | * Somebody is already playing with this page. |
| 3335 | * Put it back on the appropriate queue |
| 3336 | * |
| 3337 | */ |
| 3338 | VM_PAGEOUT_DEBUG(vm_pageout_inactive_busy, 1); |
| 3339 | |
| 3340 | if (page_prev_q_state == VM_PAGE_ON_INACTIVE_CLEANED_Q) { |
| 3341 | VM_PAGEOUT_DEBUG(vm_pageout_cleaned_busy, 1); |
| 3342 | } |
| 3343 | |
| 3344 | vps_requeue_page(m, page_prev_q_state, page_from_bg_q); |
| 3345 | |
| 3346 | lock_yield_check = TRUE; |
| 3347 | continue; |
| 3348 | } |
| 3349 | |
| 3350 | /* |
| 3351 | * if (m->vmp_cleaning && !m->vmp_free_when_done) |
| 3352 | * If already cleaning this page in place |
| 3353 | * just leave if off the paging queues. |
| 3354 | * We can leave the page mapped, and upl_commit_range |
| 3355 | * will put it on the clean queue. |
| 3356 | * |
| 3357 | * if (m->vmp_free_when_done && !m->vmp_cleaning) |
| 3358 | * an msync INVALIDATE is in progress... |
| 3359 | * this page has been marked for destruction |
| 3360 | * after it has been cleaned, |
| 3361 | * but not yet gathered into a UPL |
| 3362 | * where 'cleaning' will be set... |
| 3363 | * just leave it off the paging queues |
| 3364 | * |
| 3365 | * if (m->vmp_free_when_done && m->vmp_clenaing) |
| 3366 | * an msync INVALIDATE is in progress |
| 3367 | * and the UPL has already gathered this page... |
| 3368 | * just leave it off the paging queues |
| 3369 | */ |
| 3370 | if (m->vmp_free_when_done || m->vmp_cleaning) { |
| 3371 | lock_yield_check = TRUE; |
| 3372 | continue; |
| 3373 | } |
| 3374 | |
| 3375 | |
| 3376 | /* |
| 3377 | * If it's absent, in error or the object is no longer alive, |
| 3378 | * we can reclaim the page... in the no longer alive case, |
| 3379 | * there are 2 states the page can be in that preclude us |
| 3380 | * from reclaiming it - busy or cleaning - that we've already |
| 3381 | * dealt with |
| 3382 | */ |
| 3383 | if (m->vmp_absent || VMP_ERROR_GET(m) || !object->alive || |
| 3384 | (!object->internal && object->pager == MEMORY_OBJECT_NULL)) { |
| 3385 | if (m->vmp_absent) { |
| 3386 | VM_PAGEOUT_DEBUG(vm_pageout_inactive_absent, 1); |
| 3387 | } else if (!object->alive || |
| 3388 | (!object->internal && |
| 3389 | object->pager == MEMORY_OBJECT_NULL)) { |
| 3390 | VM_PAGEOUT_DEBUG(vm_pageout_inactive_notalive, 1); |
| 3391 | } else { |
| 3392 | VM_PAGEOUT_DEBUG(vm_pageout_inactive_error, 1); |
| 3393 | } |
| 3394 | reclaim_page: |
| 3395 | if (vm_pageout_deadlock_target) { |
| 3396 | VM_PAGEOUT_DEBUG(vm_pageout_scan_inactive_throttle_success, 1); |
| 3397 | vm_pageout_deadlock_target--; |
| 3398 | } |
| 3399 | |
| 3400 | DTRACE_VM2(dfree, int, 1, (uint64_t *), NULL); |
| 3401 | |
| 3402 | if (object->internal) { |
| 3403 | DTRACE_VM2(anonfree, int, 1, (uint64_t *), NULL); |
| 3404 | } else { |
| 3405 | DTRACE_VM2(fsfree, int, 1, (uint64_t *), NULL); |
| 3406 | } |
| 3407 | assert(!m->vmp_cleaning); |
| 3408 | assert(!m->vmp_laundry); |
| 3409 | |
| 3410 | if (!object->internal && |
| 3411 | object->pager != NULL && |
| 3412 | object->pager->mo_pager_ops == &shared_region_pager_ops) { |
| 3413 | shared_region_pager_reclaimed++; |
| 3414 | } |
| 3415 | |
| 3416 | m->vmp_busy = TRUE; |
| 3417 | |
| 3418 | /* |
| 3419 | * remove page from object here since we're already |
| 3420 | * behind the object lock... defer the rest of the work |
| 3421 | * we'd normally do in vm_page_free_prepare_object |
| 3422 | * until 'vm_page_free_list' is called |
| 3423 | */ |
| 3424 | if (m->vmp_tabled) { |
| 3425 | vm_page_remove(page: m, TRUE); |
| 3426 | } |
| 3427 | |
| 3428 | assert(m->vmp_pageq.next == 0 && m->vmp_pageq.prev == 0); |
| 3429 | m->vmp_snext = local_freeq; |
| 3430 | local_freeq = m; |
| 3431 | local_freed++; |
| 3432 | |
| 3433 | if (page_prev_q_state == VM_PAGE_ON_SPECULATIVE_Q) { |
| 3434 | vm_pageout_vminfo.vm_pageout_freed_speculative++; |
| 3435 | } else if (page_prev_q_state == VM_PAGE_ON_INACTIVE_CLEANED_Q) { |
| 3436 | vm_pageout_vminfo.vm_pageout_freed_cleaned++; |
| 3437 | } else if (page_prev_q_state == VM_PAGE_ON_INACTIVE_INTERNAL_Q) { |
| 3438 | vm_pageout_vminfo.vm_pageout_freed_internal++; |
| 3439 | } else { |
| 3440 | vm_pageout_vminfo.vm_pageout_freed_external++; |
| 3441 | } |
| 3442 | |
| 3443 | inactive_burst_count = 0; |
| 3444 | |
| 3445 | lock_yield_check = TRUE; |
| 3446 | continue; |
| 3447 | } |
| 3448 | if (object->vo_copy == VM_OBJECT_NULL) { |
| 3449 | /* |
| 3450 | * No one else can have any interest in this page. |
| 3451 | * If this is an empty purgable object, the page can be |
| 3452 | * reclaimed even if dirty. |
| 3453 | * If the page belongs to a volatile purgable object, we |
| 3454 | * reactivate it if the compressor isn't active. |
| 3455 | */ |
| 3456 | if (object->purgable == VM_PURGABLE_EMPTY) { |
| 3457 | if (m->vmp_pmapped == TRUE) { |
| 3458 | /* unmap the page */ |
| 3459 | refmod_state = pmap_disconnect(phys: VM_PAGE_GET_PHYS_PAGE(m)); |
| 3460 | if (refmod_state & VM_MEM_MODIFIED) { |
| 3461 | SET_PAGE_DIRTY(m, FALSE); |
| 3462 | } |
| 3463 | } |
| 3464 | if (m->vmp_dirty || m->vmp_precious) { |
| 3465 | /* we saved the cost of cleaning this page ! */ |
| 3466 | vm_page_purged_count++; |
| 3467 | } |
| 3468 | goto reclaim_page; |
| 3469 | } |
| 3470 | |
| 3471 | if (VM_CONFIG_COMPRESSOR_IS_ACTIVE) { |
| 3472 | /* |
| 3473 | * With the VM compressor, the cost of |
| 3474 | * reclaiming a page is much lower (no I/O), |
| 3475 | * so if we find a "volatile" page, it's better |
| 3476 | * to let it get compressed rather than letting |
| 3477 | * it occupy a full page until it gets purged. |
| 3478 | * So no need to check for "volatile" here. |
| 3479 | */ |
| 3480 | } else if (object->purgable == VM_PURGABLE_VOLATILE) { |
| 3481 | /* |
| 3482 | * Avoid cleaning a "volatile" page which might |
| 3483 | * be purged soon. |
| 3484 | */ |
| 3485 | |
| 3486 | /* if it's wired, we can't put it on our queue */ |
| 3487 | assert(!VM_PAGE_WIRED(m)); |
| 3488 | |
| 3489 | /* just stick it back on! */ |
| 3490 | reactivated_this_call++; |
| 3491 | |
| 3492 | if (page_prev_q_state == VM_PAGE_ON_INACTIVE_CLEANED_Q) { |
| 3493 | VM_PAGEOUT_DEBUG(vm_pageout_cleaned_volatile_reactivated, 1); |
| 3494 | } |
| 3495 | |
| 3496 | goto reactivate_page; |
| 3497 | } |
| 3498 | } |
| 3499 | /* |
| 3500 | * If it's being used, reactivate. |
| 3501 | * (Fictitious pages are either busy or absent.) |
| 3502 | * First, update the reference and dirty bits |
| 3503 | * to make sure the page is unreferenced. |
| 3504 | */ |
| 3505 | refmod_state = -1; |
| 3506 | |
| 3507 | if (m->vmp_reference == FALSE && m->vmp_pmapped == TRUE) { |
| 3508 | refmod_state = pmap_get_refmod(pn: VM_PAGE_GET_PHYS_PAGE(m)); |
| 3509 | |
| 3510 | if (refmod_state & VM_MEM_REFERENCED) { |
| 3511 | m->vmp_reference = TRUE; |
| 3512 | } |
| 3513 | if (refmod_state & VM_MEM_MODIFIED) { |
| 3514 | SET_PAGE_DIRTY(m, FALSE); |
| 3515 | } |
| 3516 | } |
| 3517 | |
| 3518 | if (m->vmp_reference || m->vmp_dirty) { |
| 3519 | /* deal with a rogue "reusable" page */ |
| 3520 | VM_PAGEOUT_SCAN_HANDLE_REUSABLE_PAGE(m, m_object); |
| 3521 | } |
| 3522 | |
| 3523 | if (vm_pageout_state.vm_page_xpmapped_min_divisor == 0) { |
| 3524 | vm_pageout_state.vm_page_xpmapped_min = 0; |
| 3525 | } else { |
| 3526 | vm_pageout_state.vm_page_xpmapped_min = (vm_page_external_count * 10) / vm_pageout_state.vm_page_xpmapped_min_divisor; |
| 3527 | } |
| 3528 | |
| 3529 | if (!m->vmp_no_cache && |
| 3530 | page_from_bg_q == FALSE && |
| 3531 | (m->vmp_reference || (m->vmp_xpmapped && !object->internal && |
| 3532 | (vm_page_xpmapped_external_count < vm_pageout_state.vm_page_xpmapped_min)))) { |
| 3533 | /* |
| 3534 | * The page we pulled off the inactive list has |
| 3535 | * been referenced. It is possible for other |
| 3536 | * processors to be touching pages faster than we |
| 3537 | * can clear the referenced bit and traverse the |
| 3538 | * inactive queue, so we limit the number of |
| 3539 | * reactivations. |
| 3540 | */ |
| 3541 | if (++reactivated_this_call >= reactivate_limit && |
| 3542 | !object->object_is_shared_cache && |
| 3543 | !((m->vmp_realtime || |
| 3544 | object->for_realtime) && |
| 3545 | vm_pageout_protect_realtime)) { |
| 3546 | vm_pageout_vminfo.vm_pageout_reactivation_limit_exceeded++; |
| 3547 | } else if (++inactive_reclaim_run >= VM_PAGEOUT_INACTIVE_FORCE_RECLAIM) { |
| 3548 | vm_pageout_vminfo.vm_pageout_inactive_force_reclaim++; |
| 3549 | if (object->object_is_shared_cache) { |
| 3550 | vm_pageout_vminfo.vm_pageout_forcereclaimed_sharedcache++; |
| 3551 | } else if (m->vmp_realtime || |
| 3552 | object->for_realtime) { |
| 3553 | vm_pageout_vminfo.vm_pageout_forcereclaimed_realtime++; |
| 3554 | } |
| 3555 | } else { |
| 3556 | uint32_t isinuse; |
| 3557 | |
| 3558 | if (reactivated_this_call >= reactivate_limit) { |
| 3559 | if (object->object_is_shared_cache) { |
| 3560 | vm_pageout_vminfo.vm_pageout_protected_sharedcache++; |
| 3561 | } else if ((m->vmp_realtime || |
| 3562 | object->for_realtime) && |
| 3563 | vm_pageout_protect_realtime) { |
| 3564 | vm_pageout_vminfo.vm_pageout_protected_realtime++; |
| 3565 | } |
| 3566 | } |
| 3567 | if (page_prev_q_state == VM_PAGE_ON_INACTIVE_CLEANED_Q) { |
| 3568 | VM_PAGEOUT_DEBUG(vm_pageout_cleaned_reference_reactivated, 1); |
| 3569 | } |
| 3570 | |
| 3571 | vm_pageout_vminfo.vm_pageout_inactive_referenced++; |
| 3572 | reactivate_page: |
| 3573 | if (!object->internal && object->pager != MEMORY_OBJECT_NULL && |
| 3574 | vnode_pager_get_isinuse(object->pager, &isinuse) == KERN_SUCCESS && !isinuse) { |
| 3575 | /* |
| 3576 | * no explict mappings of this object exist |
| 3577 | * and it's not open via the filesystem |
| 3578 | */ |
| 3579 | vm_page_deactivate(page: m); |
| 3580 | VM_PAGEOUT_DEBUG(vm_pageout_inactive_deactivated, 1); |
| 3581 | } else { |
| 3582 | /* |
| 3583 | * The page was/is being used, so put back on active list. |
| 3584 | */ |
| 3585 | vm_page_activate(page: m); |
| 3586 | counter_inc(&vm_statistics_reactivations); |
| 3587 | inactive_burst_count = 0; |
| 3588 | } |
| 3589 | #if DEVELOPMENT || DEBUG |
| 3590 | if (page_from_bg_q == TRUE) { |
| 3591 | if (m_object->internal) { |
| 3592 | vm_pageout_rejected_bq_internal++; |
| 3593 | } else { |
| 3594 | vm_pageout_rejected_bq_external++; |
| 3595 | } |
| 3596 | } |
| 3597 | #endif /* DEVELOPMENT || DEBUG */ |
| 3598 | |
| 3599 | if (page_prev_q_state == VM_PAGE_ON_INACTIVE_CLEANED_Q) { |
| 3600 | VM_PAGEOUT_DEBUG(vm_pageout_cleaned_reactivated, 1); |
| 3601 | } |
| 3602 | vm_pageout_state.vm_pageout_inactive_used++; |
| 3603 | |
| 3604 | lock_yield_check = TRUE; |
| 3605 | continue; |
| 3606 | } |
| 3607 | /* |
| 3608 | * Make sure we call pmap_get_refmod() if it |
| 3609 | * wasn't already called just above, to update |
| 3610 | * the dirty bit. |
| 3611 | */ |
| 3612 | if ((refmod_state == -1) && !m->vmp_dirty && m->vmp_pmapped) { |
| 3613 | refmod_state = pmap_get_refmod(pn: VM_PAGE_GET_PHYS_PAGE(m)); |
| 3614 | if (refmod_state & VM_MEM_MODIFIED) { |
| 3615 | SET_PAGE_DIRTY(m, FALSE); |
| 3616 | } |
| 3617 | } |
| 3618 | } |
| 3619 | |
| 3620 | /* |
| 3621 | * we've got a candidate page to steal... |
| 3622 | * |
| 3623 | * m->vmp_dirty is up to date courtesy of the |
| 3624 | * preceding check for m->vmp_reference... if |
| 3625 | * we get here, then m->vmp_reference had to be |
| 3626 | * FALSE (or possibly "reactivate_limit" was |
| 3627 | * exceeded), but in either case we called |
| 3628 | * pmap_get_refmod() and updated both |
| 3629 | * m->vmp_reference and m->vmp_dirty |
| 3630 | * |
| 3631 | * if it's dirty or precious we need to |
| 3632 | * see if the target queue is throtttled |
| 3633 | * it if is, we need to skip over it by moving it back |
| 3634 | * to the end of the inactive queue |
| 3635 | */ |
| 3636 | |
| 3637 | inactive_throttled = FALSE; |
| 3638 | |
| 3639 | if (m->vmp_dirty || m->vmp_precious) { |
| 3640 | if (object->internal) { |
| 3641 | if (VM_PAGE_Q_THROTTLED(iq)) { |
| 3642 | inactive_throttled = TRUE; |
| 3643 | } |
| 3644 | } else if (VM_PAGE_Q_THROTTLED(eq)) { |
| 3645 | inactive_throttled = TRUE; |
| 3646 | } |
| 3647 | } |
| 3648 | throttle_inactive: |
| 3649 | if (!VM_DYNAMIC_PAGING_ENABLED() && |
| 3650 | object->internal && m->vmp_dirty && |
| 3651 | (object->purgable == VM_PURGABLE_DENY || |
| 3652 | object->purgable == VM_PURGABLE_NONVOLATILE || |
| 3653 | object->purgable == VM_PURGABLE_VOLATILE)) { |
| 3654 | vm_page_check_pageable_safe(page: m); |
| 3655 | assert(m->vmp_q_state == VM_PAGE_NOT_ON_Q); |
| 3656 | vm_page_queue_enter(&vm_page_queue_throttled, m, vmp_pageq); |
| 3657 | m->vmp_q_state = VM_PAGE_ON_THROTTLED_Q; |
| 3658 | vm_page_throttled_count++; |
| 3659 | |
| 3660 | VM_PAGEOUT_DEBUG(vm_pageout_scan_reclaimed_throttled, 1); |
| 3661 | |
| 3662 | inactive_burst_count = 0; |
| 3663 | |
| 3664 | lock_yield_check = TRUE; |
| 3665 | continue; |
| 3666 | } |
| 3667 | if (inactive_throttled == TRUE) { |
| 3668 | vps_deal_with_throttled_queues(m, object: &object, vm_pageout_inactive_external_forced_reactivate_limit: &vm_pageout_inactive_external_forced_reactivate_limit, |
| 3669 | force_anonymous: &force_anonymous, is_page_from_bg_q: page_from_bg_q); |
| 3670 | |
| 3671 | inactive_burst_count = 0; |
| 3672 | |
| 3673 | if (page_prev_q_state == VM_PAGE_ON_INACTIVE_CLEANED_Q) { |
| 3674 | VM_PAGEOUT_DEBUG(vm_pageout_cleaned_reactivated, 1); |
| 3675 | } |
| 3676 | |
| 3677 | lock_yield_check = TRUE; |
| 3678 | continue; |
| 3679 | } |
| 3680 | |
| 3681 | /* |
| 3682 | * we've got a page that we can steal... |
| 3683 | * eliminate all mappings and make sure |
| 3684 | * we have the up-to-date modified state |
| 3685 | * |
| 3686 | * if we need to do a pmap_disconnect then we |
| 3687 | * need to re-evaluate m->vmp_dirty since the pmap_disconnect |
| 3688 | * provides the true state atomically... the |
| 3689 | * page was still mapped up to the pmap_disconnect |
| 3690 | * and may have been dirtied at the last microsecond |
| 3691 | * |
| 3692 | * Note that if 'pmapped' is FALSE then the page is not |
| 3693 | * and has not been in any map, so there is no point calling |
| 3694 | * pmap_disconnect(). m->vmp_dirty could have been set in anticipation |
| 3695 | * of likely usage of the page. |
| 3696 | */ |
| 3697 | if (m->vmp_pmapped == TRUE) { |
| 3698 | int pmap_options; |
| 3699 | |
| 3700 | /* |
| 3701 | * Don't count this page as going into the compressor |
| 3702 | * if any of these are true: |
| 3703 | * 1) compressed pager isn't enabled |
| 3704 | * 2) Freezer enabled device with compressed pager |
| 3705 | * backend (exclusive use) i.e. most of the VM system |
| 3706 | * (including vm_pageout_scan) has no knowledge of |
| 3707 | * the compressor |
| 3708 | * 3) This page belongs to a file and hence will not be |
| 3709 | * sent into the compressor |
| 3710 | */ |
| 3711 | if (!VM_CONFIG_COMPRESSOR_IS_ACTIVE || |
| 3712 | object->internal == FALSE) { |
| 3713 | pmap_options = 0; |
| 3714 | } else if (m->vmp_dirty || m->vmp_precious) { |
| 3715 | /* |
| 3716 | * VM knows that this page is dirty (or |
| 3717 | * precious) and needs to be compressed |
| 3718 | * rather than freed. |
| 3719 | * Tell the pmap layer to count this page |
| 3720 | * as "compressed". |
| 3721 | */ |
| 3722 | pmap_options = PMAP_OPTIONS_COMPRESSOR; |
| 3723 | } else { |
| 3724 | /* |
| 3725 | * VM does not know if the page needs to |
| 3726 | * be preserved but the pmap layer might tell |
| 3727 | * us if any mapping has "modified" it. |
| 3728 | * Let's the pmap layer to count this page |
| 3729 | * as compressed if and only if it has been |
| 3730 | * modified. |
| 3731 | */ |
| 3732 | pmap_options = |
| 3733 | PMAP_OPTIONS_COMPRESSOR_IFF_MODIFIED; |
| 3734 | } |
| 3735 | refmod_state = pmap_disconnect_options(phys: VM_PAGE_GET_PHYS_PAGE(m), |
| 3736 | options: pmap_options, |
| 3737 | NULL); |
| 3738 | if (refmod_state & VM_MEM_MODIFIED) { |
| 3739 | SET_PAGE_DIRTY(m, FALSE); |
| 3740 | } |
| 3741 | } |
| 3742 | |
| 3743 | /* |
| 3744 | * reset our count of pages that have been reclaimed |
| 3745 | * since the last page was 'stolen' |
| 3746 | */ |
| 3747 | inactive_reclaim_run = 0; |
| 3748 | |
| 3749 | /* |
| 3750 | * If it's clean and not precious, we can free the page. |
| 3751 | */ |
| 3752 | if (!m->vmp_dirty && !m->vmp_precious) { |
| 3753 | vm_pageout_state.vm_pageout_inactive_clean++; |
| 3754 | |
| 3755 | /* |
| 3756 | * OK, at this point we have found a page we are going to free. |
| 3757 | */ |
| 3758 | #if CONFIG_PHANTOM_CACHE |
| 3759 | if (!object->internal) { |
| 3760 | vm_phantom_cache_add_ghost(m); |
| 3761 | } |
| 3762 | #endif |
| 3763 | goto reclaim_page; |
| 3764 | } |
| 3765 | |
| 3766 | /* |
| 3767 | * The page may have been dirtied since the last check |
| 3768 | * for a throttled target queue (which may have been skipped |
| 3769 | * if the page was clean then). With the dirty page |
| 3770 | * disconnected here, we can make one final check. |
| 3771 | */ |
| 3772 | if (object->internal) { |
| 3773 | if (VM_PAGE_Q_THROTTLED(iq)) { |
| 3774 | inactive_throttled = TRUE; |
| 3775 | } |
| 3776 | } else if (VM_PAGE_Q_THROTTLED(eq)) { |
| 3777 | inactive_throttled = TRUE; |
| 3778 | } |
| 3779 | |
| 3780 | if (inactive_throttled == TRUE) { |
| 3781 | goto throttle_inactive; |
| 3782 | } |
| 3783 | |
| 3784 | #if VM_PRESSURE_EVENTS |
| 3785 | #if CONFIG_JETSAM |
| 3786 | |
| 3787 | /* |
| 3788 | * If Jetsam is enabled, then the sending |
| 3789 | * of memory pressure notifications is handled |
| 3790 | * from the same thread that takes care of high-water |
| 3791 | * and other jetsams i.e. the memorystatus_thread. |
| 3792 | */ |
| 3793 | |
| 3794 | #else /* CONFIG_JETSAM */ |
| 3795 | |
| 3796 | vm_pressure_response(); |
| 3797 | |
| 3798 | #endif /* CONFIG_JETSAM */ |
| 3799 | #endif /* VM_PRESSURE_EVENTS */ |
| 3800 | |
| 3801 | if (page_prev_q_state == VM_PAGE_ON_SPECULATIVE_Q) { |
| 3802 | VM_PAGEOUT_DEBUG(vm_pageout_speculative_dirty, 1); |
| 3803 | } |
| 3804 | |
| 3805 | if (object->internal) { |
| 3806 | vm_pageout_vminfo.vm_pageout_inactive_dirty_internal++; |
| 3807 | } else { |
| 3808 | vm_pageout_vminfo.vm_pageout_inactive_dirty_external++; |
| 3809 | } |
| 3810 | |
| 3811 | /* |
| 3812 | * internal pages will go to the compressor... |
| 3813 | * external pages will go to the appropriate pager to be cleaned |
| 3814 | * and upon completion will end up on 'vm_page_queue_cleaned' which |
| 3815 | * is a preferred queue to steal from |
| 3816 | */ |
| 3817 | vm_pageout_cluster(m); |
| 3818 | inactive_burst_count = 0; |
| 3819 | |
| 3820 | /* |
| 3821 | * back to top of pageout scan loop |
| 3822 | */ |
| 3823 | } |
| 3824 | } |
| 3825 | |
| 3826 | |
| 3827 | void |
| 3828 | vm_page_free_reserve( |
| 3829 | int pages) |
| 3830 | { |
| 3831 | int free_after_reserve; |
| 3832 | |
| 3833 | if (VM_CONFIG_COMPRESSOR_IS_PRESENT) { |
| 3834 | if ((vm_page_free_reserved + pages + COMPRESSOR_FREE_RESERVED_LIMIT) >= (VM_PAGE_FREE_RESERVED_LIMIT + COMPRESSOR_FREE_RESERVED_LIMIT)) { |
| 3835 | vm_page_free_reserved = VM_PAGE_FREE_RESERVED_LIMIT + COMPRESSOR_FREE_RESERVED_LIMIT; |
| 3836 | } else { |
| 3837 | vm_page_free_reserved += (pages + COMPRESSOR_FREE_RESERVED_LIMIT); |
| 3838 | } |
| 3839 | } else { |
| 3840 | if ((vm_page_free_reserved + pages) >= VM_PAGE_FREE_RESERVED_LIMIT) { |
| 3841 | vm_page_free_reserved = VM_PAGE_FREE_RESERVED_LIMIT; |
| 3842 | } else { |
| 3843 | vm_page_free_reserved += pages; |
| 3844 | } |
| 3845 | } |
| 3846 | free_after_reserve = vm_pageout_state.vm_page_free_count_init - vm_page_free_reserved; |
| 3847 | |
| 3848 | vm_page_free_min = vm_page_free_reserved + |
| 3849 | VM_PAGE_FREE_MIN(free_after_reserve); |
| 3850 | |
| 3851 | if (vm_page_free_min > VM_PAGE_FREE_MIN_LIMIT) { |
| 3852 | vm_page_free_min = VM_PAGE_FREE_MIN_LIMIT; |
| 3853 | } |
| 3854 | |
| 3855 | vm_page_free_target = vm_page_free_reserved + |
| 3856 | VM_PAGE_FREE_TARGET(free_after_reserve); |
| 3857 | |
| 3858 | if (vm_page_free_target > VM_PAGE_FREE_TARGET_LIMIT) { |
| 3859 | vm_page_free_target = VM_PAGE_FREE_TARGET_LIMIT; |
| 3860 | } |
| 3861 | |
| 3862 | if (vm_page_free_target < vm_page_free_min + 5) { |
| 3863 | vm_page_free_target = vm_page_free_min + 5; |
| 3864 | } |
| 3865 | |
| 3866 | vm_page_throttle_limit = vm_page_free_target - (vm_page_free_target / 2); |
| 3867 | } |
| 3868 | |
| 3869 | /* |
| 3870 | * vm_pageout is the high level pageout daemon. |
| 3871 | */ |
| 3872 | |
| 3873 | void |
| 3874 | vm_pageout_continue(void) |
| 3875 | { |
| 3876 | DTRACE_VM2(pgrrun, int, 1, (uint64_t *), NULL); |
| 3877 | VM_PAGEOUT_DEBUG(vm_pageout_scan_event_counter, 1); |
| 3878 | |
| 3879 | vm_free_page_lock(); |
| 3880 | vm_pageout_running = TRUE; |
| 3881 | vm_free_page_unlock(); |
| 3882 | |
| 3883 | vm_pageout_scan(); |
| 3884 | /* |
| 3885 | * we hold both the vm_page_queue_free_lock |
| 3886 | * and the vm_page_queues_lock at this point |
| 3887 | */ |
| 3888 | assert(vm_page_free_wanted == 0); |
| 3889 | assert(vm_page_free_wanted_privileged == 0); |
| 3890 | assert_wait(event: (event_t) &vm_page_free_wanted, THREAD_UNINT); |
| 3891 | |
| 3892 | vm_pageout_running = FALSE; |
| 3893 | #if XNU_TARGET_OS_OSX |
| 3894 | if (vm_pageout_waiter) { |
| 3895 | vm_pageout_waiter = FALSE; |
| 3896 | thread_wakeup((event_t)&vm_pageout_waiter); |
| 3897 | } |
| 3898 | #endif /* XNU_TARGET_OS_OSX */ |
| 3899 | |
| 3900 | vm_free_page_unlock(); |
| 3901 | vm_page_unlock_queues(); |
| 3902 | |
| 3903 | thread_block(continuation: (thread_continue_t)vm_pageout_continue); |
| 3904 | /*NOTREACHED*/ |
| 3905 | } |
| 3906 | |
| 3907 | #if XNU_TARGET_OS_OSX |
| 3908 | kern_return_t |
| 3909 | vm_pageout_wait(uint64_t deadline) |
| 3910 | { |
| 3911 | kern_return_t kr; |
| 3912 | |
| 3913 | vm_free_page_lock(); |
| 3914 | for (kr = KERN_SUCCESS; vm_pageout_running && (KERN_SUCCESS == kr);) { |
| 3915 | vm_pageout_waiter = TRUE; |
| 3916 | if (THREAD_AWAKENED != lck_mtx_sleep_deadline( |
| 3917 | lck: &vm_page_queue_free_lock, lck_sleep_action: LCK_SLEEP_DEFAULT, |
| 3918 | event: (event_t) &vm_pageout_waiter, THREAD_UNINT, deadline)) { |
| 3919 | kr = KERN_OPERATION_TIMED_OUT; |
| 3920 | } |
| 3921 | } |
| 3922 | vm_free_page_unlock(); |
| 3923 | |
| 3924 | return kr; |
| 3925 | } |
| 3926 | #endif /* XNU_TARGET_OS_OSX */ |
| 3927 | |
| 3928 | OS_NORETURN |
| 3929 | static void |
| 3930 | vm_pageout_iothread_external_continue(struct pgo_iothread_state *ethr, __unused wait_result_t w) |
| 3931 | { |
| 3932 | vm_page_t m = NULL; |
| 3933 | vm_object_t object; |
| 3934 | vm_object_offset_t offset; |
| 3935 | memory_object_t ; |
| 3936 | struct vm_pageout_queue *q = ethr->q; |
| 3937 | |
| 3938 | /* On systems with a compressor, the external IO thread clears its |
| 3939 | * VM privileged bit to accommodate large allocations (e.g. bulk UPL |
| 3940 | * creation) |
| 3941 | */ |
| 3942 | if (VM_CONFIG_COMPRESSOR_IS_PRESENT) { |
| 3943 | current_thread()->options &= ~TH_OPT_VMPRIV; |
| 3944 | } |
| 3945 | |
| 3946 | sched_cond_ack(cond: &(ethr->pgo_wakeup)); |
| 3947 | |
| 3948 | while (true) { |
| 3949 | vm_page_lockspin_queues(); |
| 3950 | |
| 3951 | while (!vm_page_queue_empty(&q->pgo_pending)) { |
| 3952 | q->pgo_busy = TRUE; |
| 3953 | vm_page_queue_remove_first(&q->pgo_pending, m, vmp_pageq); |
| 3954 | |
| 3955 | assert(m->vmp_q_state == VM_PAGE_ON_PAGEOUT_Q); |
| 3956 | VM_PAGE_CHECK(m); |
| 3957 | /* |
| 3958 | * grab a snapshot of the object and offset this |
| 3959 | * page is tabled in so that we can relookup this |
| 3960 | * page after we've taken the object lock - these |
| 3961 | * fields are stable while we hold the page queues lock |
| 3962 | * but as soon as we drop it, there is nothing to keep |
| 3963 | * this page in this object... we hold an activity_in_progress |
| 3964 | * on this object which will keep it from terminating |
| 3965 | */ |
| 3966 | object = VM_PAGE_OBJECT(m); |
| 3967 | offset = m->vmp_offset; |
| 3968 | |
| 3969 | m->vmp_q_state = VM_PAGE_NOT_ON_Q; |
| 3970 | VM_PAGE_ZERO_PAGEQ_ENTRY(m); |
| 3971 | |
| 3972 | vm_page_unlock_queues(); |
| 3973 | |
| 3974 | vm_object_lock(object); |
| 3975 | |
| 3976 | m = vm_page_lookup(object, offset); |
| 3977 | |
| 3978 | if (m == NULL || m->vmp_busy || m->vmp_cleaning || |
| 3979 | !m->vmp_laundry || (m->vmp_q_state != VM_PAGE_NOT_ON_Q)) { |
| 3980 | /* |
| 3981 | * it's either the same page that someone else has |
| 3982 | * started cleaning (or it's finished cleaning or |
| 3983 | * been put back on the pageout queue), or |
| 3984 | * the page has been freed or we have found a |
| 3985 | * new page at this offset... in all of these cases |
| 3986 | * we merely need to release the activity_in_progress |
| 3987 | * we took when we put the page on the pageout queue |
| 3988 | */ |
| 3989 | vm_object_activity_end(object); |
| 3990 | vm_object_unlock(object); |
| 3991 | |
| 3992 | vm_page_lockspin_queues(); |
| 3993 | continue; |
| 3994 | } |
| 3995 | pager = object->pager; |
| 3996 | |
| 3997 | if (pager == MEMORY_OBJECT_NULL) { |
| 3998 | /* |
| 3999 | * This pager has been destroyed by either |
| 4000 | * memory_object_destroy or vm_object_destroy, and |
| 4001 | * so there is nowhere for the page to go. |
| 4002 | */ |
| 4003 | if (m->vmp_free_when_done) { |
| 4004 | /* |
| 4005 | * Just free the page... VM_PAGE_FREE takes |
| 4006 | * care of cleaning up all the state... |
| 4007 | * including doing the vm_pageout_throttle_up |
| 4008 | */ |
| 4009 | VM_PAGE_FREE(m); |
| 4010 | } else { |
| 4011 | vm_page_lockspin_queues(); |
| 4012 | |
| 4013 | vm_pageout_throttle_up(m); |
| 4014 | vm_page_activate(page: m); |
| 4015 | |
| 4016 | vm_page_unlock_queues(); |
| 4017 | |
| 4018 | /* |
| 4019 | * And we are done with it. |
| 4020 | */ |
| 4021 | } |
| 4022 | vm_object_activity_end(object); |
| 4023 | vm_object_unlock(object); |
| 4024 | |
| 4025 | vm_page_lockspin_queues(); |
| 4026 | continue; |
| 4027 | } |
| 4028 | #if 0 |
| 4029 | /* |
| 4030 | * we don't hold the page queue lock |
| 4031 | * so this check isn't safe to make |
| 4032 | */ |
| 4033 | VM_PAGE_CHECK(m); |
| 4034 | #endif |
| 4035 | /* |
| 4036 | * give back the activity_in_progress reference we |
| 4037 | * took when we queued up this page and replace it |
| 4038 | * it with a paging_in_progress reference that will |
| 4039 | * also hold the paging offset from changing and |
| 4040 | * prevent the object from terminating |
| 4041 | */ |
| 4042 | vm_object_activity_end(object); |
| 4043 | vm_object_paging_begin(object); |
| 4044 | vm_object_unlock(object); |
| 4045 | |
| 4046 | /* |
| 4047 | * Send the data to the pager. |
| 4048 | * any pageout clustering happens there |
| 4049 | */ |
| 4050 | memory_object_data_return(memory_object: pager, |
| 4051 | offset: m->vmp_offset + object->paging_offset, |
| 4052 | PAGE_SIZE, |
| 4053 | NULL, |
| 4054 | NULL, |
| 4055 | FALSE, |
| 4056 | FALSE, |
| 4057 | upl_flags: 0); |
| 4058 | |
| 4059 | vm_object_lock(object); |
| 4060 | vm_object_paging_end(object); |
| 4061 | vm_object_unlock(object); |
| 4062 | |
| 4063 | vm_pageout_io_throttle(); |
| 4064 | |
| 4065 | vm_page_lockspin_queues(); |
| 4066 | } |
| 4067 | q->pgo_busy = FALSE; |
| 4068 | |
| 4069 | vm_page_unlock_queues(); |
| 4070 | sched_cond_wait_parameter(cond: &(ethr->pgo_wakeup), THREAD_UNINT, continuation: (thread_continue_t)vm_pageout_iothread_external_continue, parameter: ethr); |
| 4071 | } |
| 4072 | /*NOTREACHED*/ |
| 4073 | } |
| 4074 | |
| 4075 | |
| 4076 | #define MAX_FREE_BATCH 32 |
| 4077 | uint32_t vm_compressor_time_thread; /* Set via sysctl to record time accrued by |
| 4078 | * this thread. |
| 4079 | */ |
| 4080 | |
| 4081 | |
| 4082 | OS_NORETURN |
| 4083 | static void |
| 4084 | vm_pageout_iothread_internal_continue(struct pgo_iothread_state *cq, __unused wait_result_t w) |
| 4085 | { |
| 4086 | struct vm_pageout_queue *q; |
| 4087 | vm_page_t m = NULL; |
| 4088 | boolean_t pgo_draining; |
| 4089 | vm_page_t local_q; |
| 4090 | int local_cnt; |
| 4091 | vm_page_t local_freeq = NULL; |
| 4092 | int local_freed = 0; |
| 4093 | int local_batch_size; |
| 4094 | #if DEVELOPMENT || DEBUG |
| 4095 | int ncomps = 0; |
| 4096 | boolean_t marked_active = FALSE; |
| 4097 | int num_pages_processed = 0; |
| 4098 | #endif |
| 4099 | void *chead = NULL; |
| 4100 | |
| 4101 | KERNEL_DEBUG(0xe040000c | DBG_FUNC_END, 0, 0, 0, 0, 0); |
| 4102 | |
| 4103 | sched_cond_ack(cond: &(cq->pgo_wakeup)); |
| 4104 | |
| 4105 | q = cq->q; |
| 4106 | |
| 4107 | while (true) { |
| 4108 | #if DEVELOPMENT || DEBUG |
| 4109 | bool benchmark_accounting = false; |
| 4110 | /* |
| 4111 | * If we're running the compressor perf test, only process the benchmark pages. |
| 4112 | * We'll get back to our regular queue once the benchmark is done |
| 4113 | */ |
| 4114 | if (compressor_running_perf_test) { |
| 4115 | q = cq->benchmark_q; |
| 4116 | if (!vm_page_queue_empty(&q->pgo_pending)) { |
| 4117 | benchmark_accounting = true; |
| 4118 | } else { |
| 4119 | q = cq->q; |
| 4120 | benchmark_accounting = false; |
| 4121 | } |
| 4122 | } |
| 4123 | #endif /* DEVELOPMENT || DEBUG */ |
| 4124 | |
| 4125 | #if __AMP__ |
| 4126 | if (vm_compressor_ebound && (vm_pageout_state.vm_compressor_thread_count > 1)) { |
| 4127 | local_batch_size = (q->pgo_maxlaundry >> 3); |
| 4128 | local_batch_size = MAX(local_batch_size, 16); |
| 4129 | } else { |
| 4130 | local_batch_size = q->pgo_maxlaundry / (vm_pageout_state.vm_compressor_thread_count * 2); |
| 4131 | } |
| 4132 | #else |
| 4133 | local_batch_size = q->pgo_maxlaundry / (vm_pageout_state.vm_compressor_thread_count * 2); |
| 4134 | #endif |
| 4135 | |
| 4136 | #if RECORD_THE_COMPRESSED_DATA |
| 4137 | if (q->pgo_laundry) { |
| 4138 | c_compressed_record_init(); |
| 4139 | } |
| 4140 | #endif |
| 4141 | while (true) { |
| 4142 | int pages_left_on_q = 0; |
| 4143 | |
| 4144 | local_cnt = 0; |
| 4145 | local_q = NULL; |
| 4146 | |
| 4147 | KERNEL_DEBUG(0xe0400014 | DBG_FUNC_START, 0, 0, 0, 0, 0); |
| 4148 | |
| 4149 | vm_page_lock_queues(); |
| 4150 | #if DEVELOPMENT || DEBUG |
| 4151 | if (marked_active == FALSE) { |
| 4152 | vmct_active++; |
| 4153 | vmct_state[cq->id] = VMCT_ACTIVE; |
| 4154 | marked_active = TRUE; |
| 4155 | if (vmct_active == 1) { |
| 4156 | vm_compressor_epoch_start = mach_absolute_time(); |
| 4157 | } |
| 4158 | } |
| 4159 | #endif |
| 4160 | KERNEL_DEBUG(0xe0400014 | DBG_FUNC_END, 0, 0, 0, 0, 0); |
| 4161 | |
| 4162 | KERNEL_DEBUG(0xe0400018 | DBG_FUNC_START, q->pgo_laundry, 0, 0, 0, 0); |
| 4163 | |
| 4164 | while (!vm_page_queue_empty(&q->pgo_pending) && local_cnt < local_batch_size) { |
| 4165 | vm_page_queue_remove_first(&q->pgo_pending, m, vmp_pageq); |
| 4166 | assert(m->vmp_q_state == VM_PAGE_ON_PAGEOUT_Q); |
| 4167 | VM_PAGE_CHECK(m); |
| 4168 | |
| 4169 | m->vmp_q_state = VM_PAGE_NOT_ON_Q; |
| 4170 | VM_PAGE_ZERO_PAGEQ_ENTRY(m); |
| 4171 | m->vmp_laundry = FALSE; |
| 4172 | |
| 4173 | m->vmp_snext = local_q; |
| 4174 | local_q = m; |
| 4175 | local_cnt++; |
| 4176 | } |
| 4177 | if (local_q == NULL) { |
| 4178 | break; |
| 4179 | } |
| 4180 | |
| 4181 | q->pgo_busy = TRUE; |
| 4182 | |
| 4183 | if ((pgo_draining = q->pgo_draining) == FALSE) { |
| 4184 | vm_pageout_throttle_up_batch(q, batch_cnt: local_cnt); |
| 4185 | pages_left_on_q = q->pgo_laundry; |
| 4186 | } else { |
| 4187 | pages_left_on_q = q->pgo_laundry - local_cnt; |
| 4188 | } |
| 4189 | |
| 4190 | vm_page_unlock_queues(); |
| 4191 | |
| 4192 | #if !RECORD_THE_COMPRESSED_DATA |
| 4193 | if (pages_left_on_q >= local_batch_size && cq->id < (vm_pageout_state.vm_compressor_thread_count - 1)) { |
| 4194 | // wake up the next compressor thread |
| 4195 | sched_cond_signal(cond: &pgo_iothread_internal_state[cq->id + 1].pgo_wakeup, |
| 4196 | thread: pgo_iothread_internal_state[cq->id + 1].pgo_iothread); |
| 4197 | } |
| 4198 | #endif |
| 4199 | KERNEL_DEBUG(0xe0400018 | DBG_FUNC_END, q->pgo_laundry, 0, 0, 0, 0); |
| 4200 | |
| 4201 | while (local_q) { |
| 4202 | KERNEL_DEBUG(0xe0400024 | DBG_FUNC_START, local_cnt, 0, 0, 0, 0); |
| 4203 | |
| 4204 | m = local_q; |
| 4205 | local_q = m->vmp_snext; |
| 4206 | m->vmp_snext = NULL; |
| 4207 | |
| 4208 | /* |
| 4209 | * Technically we need the pageq locks to manipulate this field. |
| 4210 | * However, this page has been removed from all queues and is only |
| 4211 | * known to this compressor thread dealing with this local queue. |
| 4212 | * |
| 4213 | * TODO LIONEL: Add a second localq that is the early localq and |
| 4214 | * put special pages like this one on that queue in the block above |
| 4215 | * under the pageq lock to avoid this 'works but not clean' logic. |
| 4216 | */ |
| 4217 | void *donate_queue_head; |
| 4218 | #if XNU_TARGET_OS_OSX |
| 4219 | donate_queue_head = &cq->current_early_swapout_chead; |
| 4220 | #else /* XNU_TARGET_OS_OSX */ |
| 4221 | donate_queue_head = &cq->current_late_swapout_chead; |
| 4222 | #endif /* XNU_TARGET_OS_OSX */ |
| 4223 | if (m->vmp_on_specialq == VM_PAGE_SPECIAL_Q_DONATE) { |
| 4224 | m->vmp_on_specialq = VM_PAGE_SPECIAL_Q_EMPTY; |
| 4225 | chead = donate_queue_head; |
| 4226 | } else { |
| 4227 | chead = &cq->current_regular_swapout_chead; |
| 4228 | } |
| 4229 | |
| 4230 | if (vm_pageout_compress_page(chead, cq->scratch_buf, m) == KERN_SUCCESS) { |
| 4231 | #if DEVELOPMENT || DEBUG |
| 4232 | ncomps++; |
| 4233 | #endif |
| 4234 | KERNEL_DEBUG(0xe0400024 | DBG_FUNC_END, local_cnt, 0, 0, 0, 0); |
| 4235 | |
| 4236 | m->vmp_snext = local_freeq; |
| 4237 | local_freeq = m; |
| 4238 | local_freed++; |
| 4239 | |
| 4240 | if (local_freed >= MAX_FREE_BATCH) { |
| 4241 | OSAddAtomic64(local_freed, &vm_pageout_vminfo.vm_pageout_compressions); |
| 4242 | |
| 4243 | vm_page_free_list(mem: local_freeq, TRUE); |
| 4244 | |
| 4245 | local_freeq = NULL; |
| 4246 | local_freed = 0; |
| 4247 | } |
| 4248 | } |
| 4249 | #if DEVELOPMENT || DEBUG |
| 4250 | num_pages_processed++; |
| 4251 | #endif /* DEVELOPMENT || DEBUG */ |
| 4252 | #if !CONFIG_JETSAM |
| 4253 | while (vm_page_free_count < COMPRESSOR_FREE_RESERVED_LIMIT) { |
| 4254 | kern_return_t wait_result; |
| 4255 | int need_wakeup = 0; |
| 4256 | |
| 4257 | if (local_freeq) { |
| 4258 | OSAddAtomic64(local_freed, &vm_pageout_vminfo.vm_pageout_compressions); |
| 4259 | |
| 4260 | vm_page_free_list(mem: local_freeq, TRUE); |
| 4261 | local_freeq = NULL; |
| 4262 | local_freed = 0; |
| 4263 | |
| 4264 | continue; |
| 4265 | } |
| 4266 | vm_free_page_lock_spin(); |
| 4267 | |
| 4268 | if (vm_page_free_count < COMPRESSOR_FREE_RESERVED_LIMIT) { |
| 4269 | if (vm_page_free_wanted_privileged++ == 0) { |
| 4270 | need_wakeup = 1; |
| 4271 | } |
| 4272 | wait_result = assert_wait(event: (event_t)&vm_page_free_wanted_privileged, THREAD_UNINT); |
| 4273 | |
| 4274 | vm_free_page_unlock(); |
| 4275 | |
| 4276 | if (need_wakeup) { |
| 4277 | thread_wakeup((event_t)&vm_page_free_wanted); |
| 4278 | } |
| 4279 | |
| 4280 | if (wait_result == THREAD_WAITING) { |
| 4281 | thread_block(THREAD_CONTINUE_NULL); |
| 4282 | } |
| 4283 | } else { |
| 4284 | vm_free_page_unlock(); |
| 4285 | } |
| 4286 | } |
| 4287 | #endif |
| 4288 | } |
| 4289 | if (local_freeq) { |
| 4290 | OSAddAtomic64(local_freed, &vm_pageout_vminfo.vm_pageout_compressions); |
| 4291 | |
| 4292 | vm_page_free_list(mem: local_freeq, TRUE); |
| 4293 | local_freeq = NULL; |
| 4294 | local_freed = 0; |
| 4295 | } |
| 4296 | if (pgo_draining == TRUE) { |
| 4297 | vm_page_lockspin_queues(); |
| 4298 | vm_pageout_throttle_up_batch(q, batch_cnt: local_cnt); |
| 4299 | vm_page_unlock_queues(); |
| 4300 | } |
| 4301 | } |
| 4302 | KERNEL_DEBUG(0xe040000c | DBG_FUNC_START, 0, 0, 0, 0, 0); |
| 4303 | |
| 4304 | /* |
| 4305 | * queue lock is held and our q is empty |
| 4306 | */ |
| 4307 | q->pgo_busy = FALSE; |
| 4308 | #if DEVELOPMENT || DEBUG |
| 4309 | if (marked_active == TRUE) { |
| 4310 | vmct_active--; |
| 4311 | vmct_state[cq->id] = VMCT_IDLE; |
| 4312 | |
| 4313 | if (vmct_active == 0) { |
| 4314 | vm_compressor_epoch_stop = mach_absolute_time(); |
| 4315 | assertf(vm_compressor_epoch_stop >= vm_compressor_epoch_start, |
| 4316 | "Compressor epoch non-monotonic: 0x%llx -> 0x%llx" , |
| 4317 | vm_compressor_epoch_start, vm_compressor_epoch_stop); |
| 4318 | /* This interval includes intervals where one or more |
| 4319 | * compressor threads were pre-empted |
| 4320 | */ |
| 4321 | vmct_stats.vmct_cthreads_total += vm_compressor_epoch_stop - vm_compressor_epoch_start; |
| 4322 | } |
| 4323 | } |
| 4324 | if (compressor_running_perf_test && benchmark_accounting) { |
| 4325 | /* |
| 4326 | * We could turn ON compressor_running_perf_test while still processing |
| 4327 | * regular non-benchmark pages. We shouldn't count them here else we |
| 4328 | * could overshoot. We might also still be populating that benchmark Q |
| 4329 | * and be under pressure. So we will go back to the regular queues. And |
| 4330 | * benchmark accounting will be off for that case too. |
| 4331 | */ |
| 4332 | compressor_perf_test_pages_processed += num_pages_processed; |
| 4333 | thread_wakeup(&compressor_perf_test_pages_processed); |
| 4334 | } |
| 4335 | #endif |
| 4336 | vm_page_unlock_queues(); |
| 4337 | #if DEVELOPMENT || DEBUG |
| 4338 | if (__improbable(vm_compressor_time_thread)) { |
| 4339 | vmct_stats.vmct_runtimes[cq->id] = thread_get_runtime_self(); |
| 4340 | vmct_stats.vmct_pages[cq->id] += ncomps; |
| 4341 | vmct_stats.vmct_iterations[cq->id]++; |
| 4342 | if (ncomps > vmct_stats.vmct_maxpages[cq->id]) { |
| 4343 | vmct_stats.vmct_maxpages[cq->id] = ncomps; |
| 4344 | } |
| 4345 | if (ncomps < vmct_stats.vmct_minpages[cq->id]) { |
| 4346 | vmct_stats.vmct_minpages[cq->id] = ncomps; |
| 4347 | } |
| 4348 | } |
| 4349 | #endif |
| 4350 | |
| 4351 | KERNEL_DEBUG(0xe0400018 | DBG_FUNC_END, 0, 0, 0, 0, 0); |
| 4352 | #if DEVELOPMENT || DEBUG |
| 4353 | if (compressor_running_perf_test && benchmark_accounting) { |
| 4354 | /* |
| 4355 | * We've been exclusively compressing pages from the benchmark queue, |
| 4356 | * do 1 pass over the internal queue before blocking. |
| 4357 | */ |
| 4358 | continue; |
| 4359 | } |
| 4360 | #endif |
| 4361 | |
| 4362 | sched_cond_wait_parameter(cond: &(cq->pgo_wakeup), THREAD_UNINT, continuation: (thread_continue_t)vm_pageout_iothread_internal_continue, parameter: (void *) cq); |
| 4363 | } |
| 4364 | /*NOTREACHED*/ |
| 4365 | } |
| 4366 | |
| 4367 | |
| 4368 | kern_return_t |
| 4369 | vm_pageout_compress_page(void **current_chead, char *scratch_buf, vm_page_t m) |
| 4370 | { |
| 4371 | vm_object_t object; |
| 4372 | memory_object_t ; |
| 4373 | int compressed_count_delta; |
| 4374 | kern_return_t retval; |
| 4375 | |
| 4376 | object = VM_PAGE_OBJECT(m); |
| 4377 | |
| 4378 | assert(!m->vmp_free_when_done); |
| 4379 | assert(!m->vmp_laundry); |
| 4380 | |
| 4381 | pager = object->pager; |
| 4382 | |
| 4383 | if (!object->pager_initialized || pager == MEMORY_OBJECT_NULL) { |
| 4384 | KERNEL_DEBUG(0xe0400010 | DBG_FUNC_START, object, pager, 0, 0, 0); |
| 4385 | |
| 4386 | vm_object_lock(object); |
| 4387 | |
| 4388 | /* |
| 4389 | * If there is no memory object for the page, create |
| 4390 | * one and hand it to the compression pager. |
| 4391 | */ |
| 4392 | |
| 4393 | if (!object->pager_initialized) { |
| 4394 | vm_object_collapse(object, offset: (vm_object_offset_t) 0, TRUE); |
| 4395 | } |
| 4396 | if (!object->pager_initialized) { |
| 4397 | vm_object_compressor_pager_create(object); |
| 4398 | } |
| 4399 | |
| 4400 | pager = object->pager; |
| 4401 | |
| 4402 | if (!object->pager_initialized || pager == MEMORY_OBJECT_NULL) { |
| 4403 | /* |
| 4404 | * Still no pager for the object, |
| 4405 | * or the pager has been destroyed. |
| 4406 | * Reactivate the page. |
| 4407 | * |
| 4408 | * Should only happen if there is no |
| 4409 | * compression pager |
| 4410 | */ |
| 4411 | PAGE_WAKEUP_DONE(m); |
| 4412 | |
| 4413 | vm_page_lockspin_queues(); |
| 4414 | vm_page_activate(page: m); |
| 4415 | VM_PAGEOUT_DEBUG(vm_pageout_dirty_no_pager, 1); |
| 4416 | vm_page_unlock_queues(); |
| 4417 | |
| 4418 | /* |
| 4419 | * And we are done with it. |
| 4420 | */ |
| 4421 | vm_object_activity_end(object); |
| 4422 | vm_object_unlock(object); |
| 4423 | |
| 4424 | return KERN_FAILURE; |
| 4425 | } |
| 4426 | vm_object_unlock(object); |
| 4427 | |
| 4428 | KERNEL_DEBUG(0xe0400010 | DBG_FUNC_END, object, pager, 0, 0, 0); |
| 4429 | } |
| 4430 | assert(object->pager_initialized && pager != MEMORY_OBJECT_NULL); |
| 4431 | assert(object->activity_in_progress > 0); |
| 4432 | |
| 4433 | #if CONFIG_TRACK_UNMODIFIED_ANON_PAGES |
| 4434 | if (m->vmp_unmodified_ro == true) { |
| 4435 | os_atomic_inc(&compressor_ro_uncompressed_total_returned, relaxed); |
| 4436 | } |
| 4437 | #endif /* CONFIG_TRACK_UNMODIFIED_ANON_PAGES */ |
| 4438 | |
| 4439 | retval = vm_compressor_pager_put( |
| 4440 | mem_obj: pager, |
| 4441 | offset: m->vmp_offset + object->paging_offset, |
| 4442 | ppnum: VM_PAGE_GET_PHYS_PAGE(m), |
| 4443 | #if CONFIG_TRACK_UNMODIFIED_ANON_PAGES |
| 4444 | m->vmp_unmodified_ro, |
| 4445 | #else /* CONFIG_TRACK_UNMODIFIED_ANON_PAGES */ |
| 4446 | false, |
| 4447 | #endif /* CONFIG_TRACK_UNMODIFIED_ANON_PAGES */ |
| 4448 | current_chead, |
| 4449 | scratch_buf, |
| 4450 | compressed_count_delta_p: &compressed_count_delta); |
| 4451 | |
| 4452 | vm_object_lock(object); |
| 4453 | |
| 4454 | assert(object->activity_in_progress > 0); |
| 4455 | assert(VM_PAGE_OBJECT(m) == object); |
| 4456 | assert( !VM_PAGE_WIRED(m)); |
| 4457 | |
| 4458 | vm_compressor_pager_count(mem_obj: pager, |
| 4459 | compressed_count_delta, |
| 4460 | FALSE, /* shared_lock */ |
| 4461 | object); |
| 4462 | |
| 4463 | if (retval == KERN_SUCCESS) { |
| 4464 | /* |
| 4465 | * If the object is purgeable, its owner's |
| 4466 | * purgeable ledgers will be updated in |
| 4467 | * vm_page_remove() but the page still |
| 4468 | * contributes to the owner's memory footprint, |
| 4469 | * so account for it as such. |
| 4470 | */ |
| 4471 | if ((object->purgable != VM_PURGABLE_DENY || |
| 4472 | object->vo_ledger_tag) && |
| 4473 | object->vo_owner != NULL) { |
| 4474 | /* one more compressed purgeable/tagged page */ |
| 4475 | vm_object_owner_compressed_update(object, |
| 4476 | delta: compressed_count_delta); |
| 4477 | } |
| 4478 | counter_inc(&vm_statistics_compressions); |
| 4479 | |
| 4480 | if (m->vmp_tabled) { |
| 4481 | vm_page_remove(page: m, TRUE); |
| 4482 | } |
| 4483 | } else { |
| 4484 | PAGE_WAKEUP_DONE(m); |
| 4485 | |
| 4486 | vm_page_lockspin_queues(); |
| 4487 | |
| 4488 | vm_page_activate(page: m); |
| 4489 | vm_pageout_vminfo.vm_compressor_failed++; |
| 4490 | |
| 4491 | vm_page_unlock_queues(); |
| 4492 | } |
| 4493 | vm_object_activity_end(object); |
| 4494 | vm_object_unlock(object); |
| 4495 | |
| 4496 | return retval; |
| 4497 | } |
| 4498 | |
| 4499 | |
| 4500 | static void |
| 4501 | vm_pageout_adjust_eq_iothrottle(struct pgo_iothread_state *ethr, boolean_t req_lowpriority) |
| 4502 | { |
| 4503 | uint32_t policy; |
| 4504 | |
| 4505 | if (hibernate_cleaning_in_progress == TRUE) { |
| 4506 | req_lowpriority = FALSE; |
| 4507 | } |
| 4508 | |
| 4509 | if (ethr->q->pgo_inited == TRUE && ethr->q->pgo_lowpriority != req_lowpriority) { |
| 4510 | vm_page_unlock_queues(); |
| 4511 | |
| 4512 | if (req_lowpriority == TRUE) { |
| 4513 | policy = THROTTLE_LEVEL_PAGEOUT_THROTTLED; |
| 4514 | DTRACE_VM(laundrythrottle); |
| 4515 | } else { |
| 4516 | policy = THROTTLE_LEVEL_PAGEOUT_UNTHROTTLED; |
| 4517 | DTRACE_VM(laundryunthrottle); |
| 4518 | } |
| 4519 | proc_set_thread_policy(thread: ethr->pgo_iothread, |
| 4520 | TASK_POLICY_EXTERNAL, TASK_POLICY_IO, value: policy); |
| 4521 | |
| 4522 | vm_page_lock_queues(); |
| 4523 | ethr->q->pgo_lowpriority = req_lowpriority; |
| 4524 | } |
| 4525 | } |
| 4526 | |
| 4527 | OS_NORETURN |
| 4528 | static void |
| 4529 | vm_pageout_iothread_external(struct pgo_iothread_state *ethr, __unused wait_result_t w) |
| 4530 | { |
| 4531 | thread_t self = current_thread(); |
| 4532 | |
| 4533 | self->options |= TH_OPT_VMPRIV; |
| 4534 | |
| 4535 | DTRACE_VM2(laundrythrottle, int, 1, (uint64_t *), NULL); |
| 4536 | |
| 4537 | proc_set_thread_policy(thread: self, TASK_POLICY_EXTERNAL, |
| 4538 | TASK_POLICY_IO, THROTTLE_LEVEL_PAGEOUT_THROTTLED); |
| 4539 | |
| 4540 | vm_page_lock_queues(); |
| 4541 | |
| 4542 | vm_pageout_queue_external.pgo_lowpriority = TRUE; |
| 4543 | vm_pageout_queue_external.pgo_inited = TRUE; |
| 4544 | |
| 4545 | vm_page_unlock_queues(); |
| 4546 | |
| 4547 | #if CONFIG_THREAD_GROUPS |
| 4548 | thread_group_vm_add(); |
| 4549 | #endif /* CONFIG_THREAD_GROUPS */ |
| 4550 | |
| 4551 | vm_pageout_iothread_external_continue(ethr, w: 0); |
| 4552 | /*NOTREACHED*/ |
| 4553 | } |
| 4554 | |
| 4555 | |
| 4556 | OS_NORETURN |
| 4557 | static void |
| 4558 | vm_pageout_iothread_internal(struct pgo_iothread_state *cthr, __unused wait_result_t w) |
| 4559 | { |
| 4560 | thread_t self = current_thread(); |
| 4561 | |
| 4562 | self->options |= TH_OPT_VMPRIV; |
| 4563 | |
| 4564 | vm_page_lock_queues(); |
| 4565 | |
| 4566 | vm_pageout_queue_internal.pgo_lowpriority = TRUE; |
| 4567 | vm_pageout_queue_internal.pgo_inited = TRUE; |
| 4568 | |
| 4569 | #if DEVELOPMENT || DEBUG |
| 4570 | vm_pageout_queue_benchmark.pgo_lowpriority = vm_pageout_queue_internal.pgo_lowpriority; |
| 4571 | vm_pageout_queue_benchmark.pgo_inited = vm_pageout_queue_internal.pgo_inited; |
| 4572 | vm_pageout_queue_benchmark.pgo_busy = FALSE; |
| 4573 | #endif /* DEVELOPMENT || DEBUG */ |
| 4574 | |
| 4575 | vm_page_unlock_queues(); |
| 4576 | |
| 4577 | if (vm_pageout_state.vm_restricted_to_single_processor == TRUE) { |
| 4578 | thread_vm_bind_group_add(); |
| 4579 | } |
| 4580 | |
| 4581 | #if CONFIG_THREAD_GROUPS |
| 4582 | thread_group_vm_add(); |
| 4583 | #endif /* CONFIG_THREAD_GROUPS */ |
| 4584 | |
| 4585 | #if __AMP__ |
| 4586 | if (vm_compressor_ebound) { |
| 4587 | /* |
| 4588 | * Use the soft bound option for vm_compressor to allow it to run on |
| 4589 | * P-cores if E-cluster is unavailable. |
| 4590 | */ |
| 4591 | thread_bind_cluster_type(self, 'E', true); |
| 4592 | } |
| 4593 | #endif /* __AMP__ */ |
| 4594 | |
| 4595 | thread_set_thread_name(th: current_thread(), name: "VM_compressor" ); |
| 4596 | #if DEVELOPMENT || DEBUG |
| 4597 | vmct_stats.vmct_minpages[cthr->id] = INT32_MAX; |
| 4598 | #endif |
| 4599 | vm_pageout_iothread_internal_continue(cq: cthr, w: 0); |
| 4600 | |
| 4601 | /*NOTREACHED*/ |
| 4602 | } |
| 4603 | |
| 4604 | kern_return_t |
| 4605 | vm_set_buffer_cleanup_callout(boolean_t (*func)(int)) |
| 4606 | { |
| 4607 | if (OSCompareAndSwapPtr(NULL, ptrauth_nop_cast(void *, func), (void * volatile *) &consider_buffer_cache_collect)) { |
| 4608 | return KERN_SUCCESS; |
| 4609 | } else { |
| 4610 | return KERN_FAILURE; /* Already set */ |
| 4611 | } |
| 4612 | } |
| 4613 | |
| 4614 | extern boolean_t memorystatus_manual_testing_on; |
| 4615 | extern unsigned int memorystatus_level; |
| 4616 | |
| 4617 | |
| 4618 | #if VM_PRESSURE_EVENTS |
| 4619 | |
| 4620 | boolean_t vm_pressure_events_enabled = FALSE; |
| 4621 | |
| 4622 | extern uint64_t next_warning_notification_sent_at_ts; |
| 4623 | extern uint64_t next_critical_notification_sent_at_ts; |
| 4624 | |
| 4625 | #define PRESSURE_LEVEL_STUCK_THRESHOLD_MINS (30) /* 30 minutes. */ |
| 4626 | |
| 4627 | /* |
| 4628 | * The last time there was change in pressure level OR we forced a check |
| 4629 | * because the system is stuck in a non-normal pressure level. |
| 4630 | */ |
| 4631 | uint64_t vm_pressure_last_level_transition_abs = 0; |
| 4632 | |
| 4633 | /* |
| 4634 | * This is how the long the system waits 'stuck' in an unchanged non-normal pressure |
| 4635 | * level before resending out notifications for that level again. |
| 4636 | */ |
| 4637 | int vm_pressure_level_transition_threshold = PRESSURE_LEVEL_STUCK_THRESHOLD_MINS; |
| 4638 | |
| 4639 | void |
| 4640 | vm_pressure_response(void) |
| 4641 | { |
| 4642 | vm_pressure_level_t old_level = kVMPressureNormal; |
| 4643 | int new_level = -1; |
| 4644 | unsigned int total_pages; |
| 4645 | uint64_t available_memory = 0; |
| 4646 | uint64_t curr_ts, abs_time_since_level_transition, time_in_ns; |
| 4647 | bool force_check = false; |
| 4648 | int time_in_mins; |
| 4649 | |
| 4650 | |
| 4651 | if (vm_pressure_events_enabled == FALSE) { |
| 4652 | return; |
| 4653 | } |
| 4654 | |
| 4655 | #if !XNU_TARGET_OS_OSX |
| 4656 | |
| 4657 | available_memory = (uint64_t) memorystatus_available_pages; |
| 4658 | |
| 4659 | #else /* !XNU_TARGET_OS_OSX */ |
| 4660 | |
| 4661 | available_memory = (uint64_t) AVAILABLE_NON_COMPRESSED_MEMORY; |
| 4662 | memorystatus_available_pages = (uint64_t) AVAILABLE_NON_COMPRESSED_MEMORY; |
| 4663 | |
| 4664 | #endif /* !XNU_TARGET_OS_OSX */ |
| 4665 | |
| 4666 | total_pages = (unsigned int) atop_64(max_mem); |
| 4667 | #if CONFIG_SECLUDED_MEMORY |
| 4668 | total_pages -= vm_page_secluded_count; |
| 4669 | #endif /* CONFIG_SECLUDED_MEMORY */ |
| 4670 | memorystatus_level = (unsigned int) ((available_memory * 100) / total_pages); |
| 4671 | |
| 4672 | if (memorystatus_manual_testing_on) { |
| 4673 | return; |
| 4674 | } |
| 4675 | |
| 4676 | curr_ts = mach_absolute_time(); |
| 4677 | abs_time_since_level_transition = curr_ts - vm_pressure_last_level_transition_abs; |
| 4678 | |
| 4679 | absolutetime_to_nanoseconds(abstime: abs_time_since_level_transition, result: &time_in_ns); |
| 4680 | time_in_mins = (int) ((time_in_ns / NSEC_PER_SEC) / 60); |
| 4681 | force_check = (time_in_mins >= vm_pressure_level_transition_threshold); |
| 4682 | |
| 4683 | old_level = memorystatus_vm_pressure_level; |
| 4684 | |
| 4685 | switch (memorystatus_vm_pressure_level) { |
| 4686 | case kVMPressureNormal: |
| 4687 | { |
| 4688 | if (VM_PRESSURE_WARNING_TO_CRITICAL()) { |
| 4689 | new_level = kVMPressureCritical; |
| 4690 | } else if (VM_PRESSURE_NORMAL_TO_WARNING()) { |
| 4691 | new_level = kVMPressureWarning; |
| 4692 | } |
| 4693 | break; |
| 4694 | } |
| 4695 | |
| 4696 | case kVMPressureWarning: |
| 4697 | case kVMPressureUrgent: |
| 4698 | { |
| 4699 | if (VM_PRESSURE_WARNING_TO_NORMAL()) { |
| 4700 | new_level = kVMPressureNormal; |
| 4701 | } else if (VM_PRESSURE_WARNING_TO_CRITICAL()) { |
| 4702 | new_level = kVMPressureCritical; |
| 4703 | } else if (force_check) { |
| 4704 | new_level = kVMPressureWarning; |
| 4705 | next_warning_notification_sent_at_ts = curr_ts; |
| 4706 | } |
| 4707 | break; |
| 4708 | } |
| 4709 | |
| 4710 | case kVMPressureCritical: |
| 4711 | { |
| 4712 | if (VM_PRESSURE_WARNING_TO_NORMAL()) { |
| 4713 | new_level = kVMPressureNormal; |
| 4714 | } else if (VM_PRESSURE_CRITICAL_TO_WARNING()) { |
| 4715 | new_level = kVMPressureWarning; |
| 4716 | } else if (force_check) { |
| 4717 | new_level = kVMPressureCritical; |
| 4718 | next_critical_notification_sent_at_ts = curr_ts; |
| 4719 | } |
| 4720 | break; |
| 4721 | } |
| 4722 | |
| 4723 | default: |
| 4724 | return; |
| 4725 | } |
| 4726 | |
| 4727 | if (new_level != -1 || force_check) { |
| 4728 | if (new_level != -1) { |
| 4729 | memorystatus_vm_pressure_level = (vm_pressure_level_t) new_level; |
| 4730 | |
| 4731 | if (new_level != (int) old_level) { |
| 4732 | VM_DEBUG_CONSTANT_EVENT(vm_pressure_level_change, VM_PRESSURE_LEVEL_CHANGE, DBG_FUNC_NONE, |
| 4733 | new_level, old_level, 0, 0); |
| 4734 | } |
| 4735 | } else { |
| 4736 | VM_DEBUG_CONSTANT_EVENT(vm_pressure_level_change, VM_PRESSURE_LEVEL_CHANGE, DBG_FUNC_NONE, |
| 4737 | new_level, old_level, force_check, 0); |
| 4738 | } |
| 4739 | |
| 4740 | if (hibernation_vmqueues_inspection || hibernate_cleaning_in_progress) { |
| 4741 | /* |
| 4742 | * We don't want to schedule a wakeup while hibernation is in progress |
| 4743 | * because that could collide with checks for non-monotonicity in the scheduler. |
| 4744 | * We do however do all the updates to memorystatus_vm_pressure_level because |
| 4745 | * we _might_ want to use that for decisions regarding which pages or how |
| 4746 | * many pages we want to dump in hibernation. |
| 4747 | */ |
| 4748 | return; |
| 4749 | } |
| 4750 | |
| 4751 | if ((memorystatus_vm_pressure_level != kVMPressureNormal) || (old_level != memorystatus_vm_pressure_level) || force_check) { |
| 4752 | if (vm_pageout_state.vm_pressure_thread_running == FALSE) { |
| 4753 | thread_wakeup(&vm_pressure_thread); |
| 4754 | } |
| 4755 | |
| 4756 | if (old_level != memorystatus_vm_pressure_level) { |
| 4757 | thread_wakeup(&vm_pageout_state.vm_pressure_changed); |
| 4758 | } |
| 4759 | vm_pressure_last_level_transition_abs = curr_ts; /* renew the window of observation for a stuck pressure level */ |
| 4760 | } |
| 4761 | } |
| 4762 | } |
| 4763 | #endif /* VM_PRESSURE_EVENTS */ |
| 4764 | |
| 4765 | |
| 4766 | /** |
| 4767 | * Called by a kernel thread to ask if a number of pages may be wired. |
| 4768 | */ |
| 4769 | kern_return_t |
| 4770 | mach_vm_wire_level_monitor(int64_t requested_pages) |
| 4771 | { |
| 4772 | if (requested_pages <= 0) { |
| 4773 | return KERN_INVALID_ARGUMENT; |
| 4774 | } |
| 4775 | |
| 4776 | const int64_t max_wire_pages = atop_64(vm_global_user_wire_limit); |
| 4777 | /** |
| 4778 | * Available pages can be negative in the case where more system memory is |
| 4779 | * wired than the threshold, so we must use a signed integer. |
| 4780 | */ |
| 4781 | const int64_t available_pages = max_wire_pages - vm_page_wire_count; |
| 4782 | |
| 4783 | if (requested_pages > available_pages) { |
| 4784 | return KERN_RESOURCE_SHORTAGE; |
| 4785 | } |
| 4786 | return KERN_SUCCESS; |
| 4787 | } |
| 4788 | |
| 4789 | /* |
| 4790 | * Function called by a kernel thread to either get the current pressure level or |
| 4791 | * wait until memory pressure changes from a given level. |
| 4792 | */ |
| 4793 | kern_return_t |
| 4794 | mach_vm_pressure_level_monitor(__unused boolean_t wait_for_pressure, __unused unsigned int *pressure_level) |
| 4795 | { |
| 4796 | #if !VM_PRESSURE_EVENTS |
| 4797 | |
| 4798 | return KERN_FAILURE; |
| 4799 | |
| 4800 | #else /* VM_PRESSURE_EVENTS */ |
| 4801 | |
| 4802 | wait_result_t wr = 0; |
| 4803 | vm_pressure_level_t old_level = memorystatus_vm_pressure_level; |
| 4804 | |
| 4805 | if (pressure_level == NULL) { |
| 4806 | return KERN_INVALID_ARGUMENT; |
| 4807 | } |
| 4808 | |
| 4809 | if (*pressure_level == kVMPressureJetsam) { |
| 4810 | if (!wait_for_pressure) { |
| 4811 | return KERN_INVALID_ARGUMENT; |
| 4812 | } |
| 4813 | |
| 4814 | lck_mtx_lock(lck: &memorystatus_jetsam_fg_band_lock); |
| 4815 | wr = assert_wait(event: (event_t)&memorystatus_jetsam_fg_band_waiters, |
| 4816 | THREAD_INTERRUPTIBLE); |
| 4817 | if (wr == THREAD_WAITING) { |
| 4818 | ++memorystatus_jetsam_fg_band_waiters; |
| 4819 | lck_mtx_unlock(lck: &memorystatus_jetsam_fg_band_lock); |
| 4820 | wr = thread_block(THREAD_CONTINUE_NULL); |
| 4821 | } else { |
| 4822 | lck_mtx_unlock(lck: &memorystatus_jetsam_fg_band_lock); |
| 4823 | } |
| 4824 | if (wr != THREAD_AWAKENED) { |
| 4825 | return KERN_ABORTED; |
| 4826 | } |
| 4827 | *pressure_level = kVMPressureJetsam; |
| 4828 | return KERN_SUCCESS; |
| 4829 | } |
| 4830 | |
| 4831 | if (wait_for_pressure == TRUE) { |
| 4832 | while (old_level == *pressure_level) { |
| 4833 | wr = assert_wait(event: (event_t) &vm_pageout_state.vm_pressure_changed, |
| 4834 | THREAD_INTERRUPTIBLE); |
| 4835 | if (wr == THREAD_WAITING) { |
| 4836 | wr = thread_block(THREAD_CONTINUE_NULL); |
| 4837 | } |
| 4838 | if (wr == THREAD_INTERRUPTED) { |
| 4839 | return KERN_ABORTED; |
| 4840 | } |
| 4841 | |
| 4842 | if (wr == THREAD_AWAKENED) { |
| 4843 | old_level = memorystatus_vm_pressure_level; |
| 4844 | } |
| 4845 | } |
| 4846 | } |
| 4847 | |
| 4848 | *pressure_level = old_level; |
| 4849 | return KERN_SUCCESS; |
| 4850 | #endif /* VM_PRESSURE_EVENTS */ |
| 4851 | } |
| 4852 | |
| 4853 | #if VM_PRESSURE_EVENTS |
| 4854 | void |
| 4855 | vm_pressure_thread(void) |
| 4856 | { |
| 4857 | static boolean_t thread_initialized = FALSE; |
| 4858 | |
| 4859 | if (thread_initialized == TRUE) { |
| 4860 | vm_pageout_state.vm_pressure_thread_running = TRUE; |
| 4861 | consider_vm_pressure_events(); |
| 4862 | vm_pageout_state.vm_pressure_thread_running = FALSE; |
| 4863 | } |
| 4864 | |
| 4865 | #if CONFIG_THREAD_GROUPS |
| 4866 | thread_group_vm_add(); |
| 4867 | #endif /* CONFIG_THREAD_GROUPS */ |
| 4868 | |
| 4869 | thread_set_thread_name(th: current_thread(), name: "VM_pressure" ); |
| 4870 | thread_initialized = TRUE; |
| 4871 | assert_wait(event: (event_t) &vm_pressure_thread, THREAD_UNINT); |
| 4872 | thread_block(continuation: (thread_continue_t)vm_pressure_thread); |
| 4873 | } |
| 4874 | #endif /* VM_PRESSURE_EVENTS */ |
| 4875 | |
| 4876 | |
| 4877 | /* |
| 4878 | * called once per-second via "compute_averages" |
| 4879 | */ |
| 4880 | void |
| 4881 | compute_pageout_gc_throttle(__unused void *arg) |
| 4882 | { |
| 4883 | if (vm_pageout_vminfo.vm_pageout_considered_page != vm_pageout_state.vm_pageout_considered_page_last) { |
| 4884 | vm_pageout_state.vm_pageout_considered_page_last = vm_pageout_vminfo.vm_pageout_considered_page; |
| 4885 | |
| 4886 | thread_wakeup(VM_PAGEOUT_GC_EVENT); |
| 4887 | } |
| 4888 | } |
| 4889 | |
| 4890 | /* |
| 4891 | * vm_pageout_garbage_collect can also be called when the zone allocator needs |
| 4892 | * to call zone_gc on a different thread in order to trigger zone-map-exhaustion |
| 4893 | * jetsams. We need to check if the zone map size is above its jetsam limit to |
| 4894 | * decide if this was indeed the case. |
| 4895 | * |
| 4896 | * We need to do this on a different thread because of the following reasons: |
| 4897 | * |
| 4898 | * 1. In the case of synchronous jetsams, the leaking process can try to jetsam |
| 4899 | * itself causing the system to hang. We perform synchronous jetsams if we're |
| 4900 | * leaking in the VM map entries zone, so the leaking process could be doing a |
| 4901 | * zalloc for a VM map entry while holding its vm_map lock, when it decides to |
| 4902 | * jetsam itself. We also need the vm_map lock on the process termination path, |
| 4903 | * which would now lead the dying process to deadlock against itself. |
| 4904 | * |
| 4905 | * 2. The jetsam path might need to allocate zone memory itself. We could try |
| 4906 | * using the non-blocking variant of zalloc for this path, but we can still |
| 4907 | * end up trying to do a kmem_alloc when the zone maps are almost full. |
| 4908 | */ |
| 4909 | __dead2 |
| 4910 | void |
| 4911 | vm_pageout_garbage_collect(void *step, wait_result_t wr __unused) |
| 4912 | { |
| 4913 | assert(step == VM_PAGEOUT_GC_INIT || step == VM_PAGEOUT_GC_COLLECT); |
| 4914 | |
| 4915 | if (step == VM_PAGEOUT_GC_INIT) { |
| 4916 | /* first time being called is not about GC */ |
| 4917 | #if CONFIG_THREAD_GROUPS |
| 4918 | thread_group_vm_add(); |
| 4919 | #endif /* CONFIG_THREAD_GROUPS */ |
| 4920 | } else if (zone_map_nearing_exhaustion()) { |
| 4921 | /* |
| 4922 | * Woken up by the zone allocator for zone-map-exhaustion jetsams. |
| 4923 | * |
| 4924 | * Bail out after calling zone_gc (which triggers the |
| 4925 | * zone-map-exhaustion jetsams). If we fall through, the subsequent |
| 4926 | * operations that clear out a bunch of caches might allocate zone |
| 4927 | * memory themselves (for eg. vm_map operations would need VM map |
| 4928 | * entries). Since the zone map is almost full at this point, we |
| 4929 | * could end up with a panic. We just need to quickly jetsam a |
| 4930 | * process and exit here. |
| 4931 | * |
| 4932 | * It could so happen that we were woken up to relieve memory |
| 4933 | * pressure and the zone map also happened to be near its limit at |
| 4934 | * the time, in which case we'll skip out early. But that should be |
| 4935 | * ok; if memory pressure persists, the thread will simply be woken |
| 4936 | * up again. |
| 4937 | */ |
| 4938 | zone_gc(level: ZONE_GC_JETSAM); |
| 4939 | } else { |
| 4940 | /* Woken up by vm_pageout_scan or compute_pageout_gc_throttle. */ |
| 4941 | boolean_t buf_large_zfree = FALSE; |
| 4942 | boolean_t first_try = TRUE; |
| 4943 | |
| 4944 | stack_collect(); |
| 4945 | |
| 4946 | consider_machine_collect(); |
| 4947 | #if CONFIG_MBUF_MCACHE |
| 4948 | mbuf_drain(FALSE); |
| 4949 | #endif /* CONFIG_MBUF_MCACHE */ |
| 4950 | |
| 4951 | do { |
| 4952 | if (consider_buffer_cache_collect != NULL) { |
| 4953 | buf_large_zfree = (*consider_buffer_cache_collect)(0); |
| 4954 | } |
| 4955 | if (first_try == TRUE || buf_large_zfree == TRUE) { |
| 4956 | /* |
| 4957 | * zone_gc should be last, because the other operations |
| 4958 | * might return memory to zones. |
| 4959 | */ |
| 4960 | zone_gc(level: ZONE_GC_TRIM); |
| 4961 | } |
| 4962 | first_try = FALSE; |
| 4963 | } while (buf_large_zfree == TRUE && vm_page_free_count < vm_page_free_target); |
| 4964 | |
| 4965 | consider_machine_adjust(); |
| 4966 | } |
| 4967 | |
| 4968 | assert_wait(VM_PAGEOUT_GC_EVENT, THREAD_UNINT); |
| 4969 | |
| 4970 | thread_block_parameter(continuation: vm_pageout_garbage_collect, VM_PAGEOUT_GC_COLLECT); |
| 4971 | __builtin_unreachable(); |
| 4972 | } |
| 4973 | |
| 4974 | |
| 4975 | #if VM_PAGE_BUCKETS_CHECK |
| 4976 | #if VM_PAGE_FAKE_BUCKETS |
| 4977 | extern vm_map_offset_t vm_page_fake_buckets_start, vm_page_fake_buckets_end; |
| 4978 | #endif /* VM_PAGE_FAKE_BUCKETS */ |
| 4979 | #endif /* VM_PAGE_BUCKETS_CHECK */ |
| 4980 | |
| 4981 | |
| 4982 | |
| 4983 | void |
| 4984 | vm_set_restrictions(unsigned int num_cpus) |
| 4985 | { |
| 4986 | int vm_restricted_to_single_processor = 0; |
| 4987 | |
| 4988 | if (PE_parse_boot_argn(arg_string: "vm_restricted_to_single_processor" , arg_ptr: &vm_restricted_to_single_processor, max_arg: sizeof(vm_restricted_to_single_processor))) { |
| 4989 | kprintf(fmt: "Overriding vm_restricted_to_single_processor to %d\n" , vm_restricted_to_single_processor); |
| 4990 | vm_pageout_state.vm_restricted_to_single_processor = (vm_restricted_to_single_processor ? TRUE : FALSE); |
| 4991 | } else { |
| 4992 | assert(num_cpus > 0); |
| 4993 | |
| 4994 | if (num_cpus <= 3) { |
| 4995 | /* |
| 4996 | * on systems with a limited number of CPUS, bind the |
| 4997 | * 4 major threads that can free memory and that tend to use |
| 4998 | * a fair bit of CPU under pressured conditions to a single processor. |
| 4999 | * This insures that these threads don't hog all of the available CPUs |
| 5000 | * (important for camera launch), while allowing them to run independently |
| 5001 | * w/r to locks... the 4 threads are |
| 5002 | * vm_pageout_scan, vm_pageout_iothread_internal (compressor), |
| 5003 | * vm_compressor_swap_trigger_thread (minor and major compactions), |
| 5004 | * memorystatus_thread (jetsams). |
| 5005 | * |
| 5006 | * the first time the thread is run, it is responsible for checking the |
| 5007 | * state of vm_restricted_to_single_processor, and if TRUE it calls |
| 5008 | * thread_bind_master... someday this should be replaced with a group |
| 5009 | * scheduling mechanism and KPI. |
| 5010 | */ |
| 5011 | vm_pageout_state.vm_restricted_to_single_processor = TRUE; |
| 5012 | } else { |
| 5013 | vm_pageout_state.vm_restricted_to_single_processor = FALSE; |
| 5014 | } |
| 5015 | } |
| 5016 | } |
| 5017 | |
| 5018 | /* |
| 5019 | * Set up vm_config based on the vm_compressor_mode. |
| 5020 | * Must run BEFORE the pageout thread starts up. |
| 5021 | */ |
| 5022 | __startup_func |
| 5023 | void |
| 5024 | vm_config_init(void) |
| 5025 | { |
| 5026 | bzero(s: &vm_config, n: sizeof(vm_config)); |
| 5027 | |
| 5028 | switch (vm_compressor_mode) { |
| 5029 | case VM_PAGER_DEFAULT: |
| 5030 | printf(format: "mapping deprecated VM_PAGER_DEFAULT to VM_PAGER_COMPRESSOR_WITH_SWAP\n" ); |
| 5031 | OS_FALLTHROUGH; |
| 5032 | |
| 5033 | case VM_PAGER_COMPRESSOR_WITH_SWAP: |
| 5034 | vm_config.compressor_is_present = TRUE; |
| 5035 | vm_config.swap_is_present = TRUE; |
| 5036 | vm_config.compressor_is_active = TRUE; |
| 5037 | vm_config.swap_is_active = TRUE; |
| 5038 | break; |
| 5039 | |
| 5040 | case VM_PAGER_COMPRESSOR_NO_SWAP: |
| 5041 | vm_config.compressor_is_present = TRUE; |
| 5042 | vm_config.swap_is_present = TRUE; |
| 5043 | vm_config.compressor_is_active = TRUE; |
| 5044 | break; |
| 5045 | |
| 5046 | case VM_PAGER_FREEZER_DEFAULT: |
| 5047 | printf(format: "mapping deprecated VM_PAGER_FREEZER_DEFAULT to VM_PAGER_FREEZER_COMPRESSOR_NO_SWAP\n" ); |
| 5048 | OS_FALLTHROUGH; |
| 5049 | |
| 5050 | case VM_PAGER_FREEZER_COMPRESSOR_NO_SWAP: |
| 5051 | vm_config.compressor_is_present = TRUE; |
| 5052 | vm_config.swap_is_present = TRUE; |
| 5053 | break; |
| 5054 | |
| 5055 | case VM_PAGER_COMPRESSOR_NO_SWAP_PLUS_FREEZER_COMPRESSOR_WITH_SWAP: |
| 5056 | vm_config.compressor_is_present = TRUE; |
| 5057 | vm_config.swap_is_present = TRUE; |
| 5058 | vm_config.compressor_is_active = TRUE; |
| 5059 | vm_config.freezer_swap_is_active = TRUE; |
| 5060 | break; |
| 5061 | |
| 5062 | case VM_PAGER_NOT_CONFIGURED: |
| 5063 | break; |
| 5064 | |
| 5065 | default: |
| 5066 | printf(format: "unknown compressor mode - %x\n" , vm_compressor_mode); |
| 5067 | break; |
| 5068 | } |
| 5069 | } |
| 5070 | |
| 5071 | __startup_func |
| 5072 | static void |
| 5073 | vm_pageout_create_gc_thread(void) |
| 5074 | { |
| 5075 | thread_t thread; |
| 5076 | |
| 5077 | if (kernel_thread_create(continuation: vm_pageout_garbage_collect, |
| 5078 | VM_PAGEOUT_GC_INIT, BASEPRI_DEFAULT, new_thread: &thread) != KERN_SUCCESS) { |
| 5079 | panic("vm_pageout_garbage_collect: create failed" ); |
| 5080 | } |
| 5081 | thread_set_thread_name(th: thread, name: "VM_pageout_garbage_collect" ); |
| 5082 | if (thread->reserved_stack == 0) { |
| 5083 | assert(thread->kernel_stack); |
| 5084 | thread->reserved_stack = thread->kernel_stack; |
| 5085 | } |
| 5086 | |
| 5087 | /* thread is started in vm_pageout() */ |
| 5088 | vm_pageout_gc_thread = thread; |
| 5089 | } |
| 5090 | STARTUP(EARLY_BOOT, STARTUP_RANK_MIDDLE, vm_pageout_create_gc_thread); |
| 5091 | |
| 5092 | void |
| 5093 | vm_pageout(void) |
| 5094 | { |
| 5095 | thread_t self = current_thread(); |
| 5096 | thread_t thread; |
| 5097 | kern_return_t result; |
| 5098 | spl_t s; |
| 5099 | |
| 5100 | /* |
| 5101 | * Set thread privileges. |
| 5102 | */ |
| 5103 | s = splsched(); |
| 5104 | |
| 5105 | #if CONFIG_VPS_DYNAMIC_PRIO |
| 5106 | if (vps_dynamic_priority_enabled) { |
| 5107 | sched_set_kernel_thread_priority(self, MAXPRI_THROTTLE); |
| 5108 | thread_set_eager_preempt(self); |
| 5109 | } else { |
| 5110 | sched_set_kernel_thread_priority(self, BASEPRI_VM); |
| 5111 | } |
| 5112 | #else /* CONFIG_VPS_DYNAMIC_PRIO */ |
| 5113 | sched_set_kernel_thread_priority(thread: self, BASEPRI_VM); |
| 5114 | #endif /* CONFIG_VPS_DYNAMIC_PRIO */ |
| 5115 | |
| 5116 | thread_lock(self); |
| 5117 | self->options |= TH_OPT_VMPRIV; |
| 5118 | thread_unlock(self); |
| 5119 | |
| 5120 | if (!self->reserved_stack) { |
| 5121 | self->reserved_stack = self->kernel_stack; |
| 5122 | } |
| 5123 | |
| 5124 | if (vm_pageout_state.vm_restricted_to_single_processor == TRUE && |
| 5125 | !vps_dynamic_priority_enabled) { |
| 5126 | thread_vm_bind_group_add(); |
| 5127 | } |
| 5128 | |
| 5129 | |
| 5130 | #if CONFIG_THREAD_GROUPS |
| 5131 | thread_group_vm_add(); |
| 5132 | #endif /* CONFIG_THREAD_GROUPS */ |
| 5133 | |
| 5134 | #if __AMP__ |
| 5135 | PE_parse_boot_argn("vmpgo_pcluster" , &vm_pgo_pbound, sizeof(vm_pgo_pbound)); |
| 5136 | if (vm_pgo_pbound) { |
| 5137 | /* |
| 5138 | * Use the soft bound option for vm pageout to allow it to run on |
| 5139 | * E-cores if P-cluster is unavailable. |
| 5140 | */ |
| 5141 | thread_bind_cluster_type(self, 'P', true); |
| 5142 | } |
| 5143 | #endif /* __AMP__ */ |
| 5144 | |
| 5145 | PE_parse_boot_argn(arg_string: "vmpgo_protect_realtime" , |
| 5146 | arg_ptr: &vm_pageout_protect_realtime, |
| 5147 | max_arg: sizeof(vm_pageout_protect_realtime)); |
| 5148 | splx(s); |
| 5149 | |
| 5150 | thread_set_thread_name(th: current_thread(), name: "VM_pageout_scan" ); |
| 5151 | |
| 5152 | /* |
| 5153 | * Initialize some paging parameters. |
| 5154 | */ |
| 5155 | |
| 5156 | vm_pageout_state.vm_pressure_thread_running = FALSE; |
| 5157 | vm_pageout_state.vm_pressure_changed = FALSE; |
| 5158 | vm_pageout_state.memorystatus_purge_on_warning = 2; |
| 5159 | vm_pageout_state.memorystatus_purge_on_urgent = 5; |
| 5160 | vm_pageout_state.memorystatus_purge_on_critical = 8; |
| 5161 | vm_pageout_state.vm_page_speculative_q_age_ms = VM_PAGE_SPECULATIVE_Q_AGE_MS; |
| 5162 | vm_pageout_state.vm_page_speculative_percentage = 5; |
| 5163 | vm_pageout_state.vm_page_speculative_target = 0; |
| 5164 | |
| 5165 | vm_pageout_state.vm_pageout_swap_wait = 0; |
| 5166 | vm_pageout_state.vm_pageout_idle_wait = 0; |
| 5167 | vm_pageout_state.vm_pageout_empty_wait = 0; |
| 5168 | vm_pageout_state.vm_pageout_burst_wait = 0; |
| 5169 | vm_pageout_state.vm_pageout_deadlock_wait = 0; |
| 5170 | vm_pageout_state.vm_pageout_deadlock_relief = 0; |
| 5171 | vm_pageout_state.vm_pageout_burst_inactive_throttle = 0; |
| 5172 | |
| 5173 | vm_pageout_state.vm_pageout_inactive = 0; |
| 5174 | vm_pageout_state.vm_pageout_inactive_used = 0; |
| 5175 | vm_pageout_state.vm_pageout_inactive_clean = 0; |
| 5176 | |
| 5177 | vm_pageout_state.vm_memory_pressure = 0; |
| 5178 | vm_pageout_state.vm_page_filecache_min = 0; |
| 5179 | #if CONFIG_JETSAM |
| 5180 | vm_pageout_state.vm_page_filecache_min_divisor = 70; |
| 5181 | vm_pageout_state.vm_page_xpmapped_min_divisor = 40; |
| 5182 | #else |
| 5183 | vm_pageout_state.vm_page_filecache_min_divisor = 27; |
| 5184 | vm_pageout_state.vm_page_xpmapped_min_divisor = 36; |
| 5185 | #endif |
| 5186 | vm_pageout_state.vm_page_free_count_init = vm_page_free_count; |
| 5187 | |
| 5188 | vm_pageout_state.vm_pageout_considered_page_last = 0; |
| 5189 | |
| 5190 | if (vm_pageout_state.vm_pageout_swap_wait == 0) { |
| 5191 | vm_pageout_state.vm_pageout_swap_wait = VM_PAGEOUT_SWAP_WAIT; |
| 5192 | } |
| 5193 | |
| 5194 | if (vm_pageout_state.vm_pageout_idle_wait == 0) { |
| 5195 | vm_pageout_state.vm_pageout_idle_wait = VM_PAGEOUT_IDLE_WAIT; |
| 5196 | } |
| 5197 | |
| 5198 | if (vm_pageout_state.vm_pageout_burst_wait == 0) { |
| 5199 | vm_pageout_state.vm_pageout_burst_wait = VM_PAGEOUT_BURST_WAIT; |
| 5200 | } |
| 5201 | |
| 5202 | if (vm_pageout_state.vm_pageout_empty_wait == 0) { |
| 5203 | vm_pageout_state.vm_pageout_empty_wait = VM_PAGEOUT_EMPTY_WAIT; |
| 5204 | } |
| 5205 | |
| 5206 | if (vm_pageout_state.vm_pageout_deadlock_wait == 0) { |
| 5207 | vm_pageout_state.vm_pageout_deadlock_wait = VM_PAGEOUT_DEADLOCK_WAIT; |
| 5208 | } |
| 5209 | |
| 5210 | if (vm_pageout_state.vm_pageout_deadlock_relief == 0) { |
| 5211 | vm_pageout_state.vm_pageout_deadlock_relief = VM_PAGEOUT_DEADLOCK_RELIEF; |
| 5212 | } |
| 5213 | |
| 5214 | if (vm_pageout_state.vm_pageout_burst_inactive_throttle == 0) { |
| 5215 | vm_pageout_state.vm_pageout_burst_inactive_throttle = VM_PAGEOUT_BURST_INACTIVE_THROTTLE; |
| 5216 | } |
| 5217 | /* |
| 5218 | * even if we've already called vm_page_free_reserve |
| 5219 | * call it again here to insure that the targets are |
| 5220 | * accurately calculated (it uses vm_page_free_count_init) |
| 5221 | * calling it with an arg of 0 will not change the reserve |
| 5222 | * but will re-calculate free_min and free_target |
| 5223 | */ |
| 5224 | if (vm_page_free_reserved < VM_PAGE_FREE_RESERVED(processor_count)) { |
| 5225 | vm_page_free_reserve(pages: (VM_PAGE_FREE_RESERVED(processor_count)) - vm_page_free_reserved); |
| 5226 | } else { |
| 5227 | vm_page_free_reserve(pages: 0); |
| 5228 | } |
| 5229 | |
| 5230 | bzero(s: &vm_pageout_queue_external, n: sizeof(struct vm_pageout_queue)); |
| 5231 | bzero(s: &vm_pageout_queue_internal, n: sizeof(struct vm_pageout_queue)); |
| 5232 | |
| 5233 | vm_page_queue_init(&vm_pageout_queue_external.pgo_pending); |
| 5234 | vm_pageout_queue_external.pgo_maxlaundry = VM_PAGE_LAUNDRY_MAX; |
| 5235 | |
| 5236 | vm_page_queue_init(&vm_pageout_queue_internal.pgo_pending); |
| 5237 | |
| 5238 | #if DEVELOPMENT || DEBUG |
| 5239 | bzero(&vm_pageout_queue_benchmark, sizeof(struct vm_pageout_queue)); |
| 5240 | vm_page_queue_init(&vm_pageout_queue_benchmark.pgo_pending); |
| 5241 | #endif /* DEVELOPMENT || DEBUG */ |
| 5242 | |
| 5243 | |
| 5244 | /* internal pageout thread started when default pager registered first time */ |
| 5245 | /* external pageout and garbage collection threads started here */ |
| 5246 | struct pgo_iothread_state *ethr = &pgo_iothread_external_state; |
| 5247 | ethr->id = 0; |
| 5248 | ethr->q = &vm_pageout_queue_external; |
| 5249 | ethr->current_early_swapout_chead = NULL; |
| 5250 | ethr->current_regular_swapout_chead = NULL; |
| 5251 | ethr->current_late_swapout_chead = NULL; |
| 5252 | ethr->scratch_buf = NULL; |
| 5253 | #if DEVELOPMENT || DEBUG |
| 5254 | ethr->benchmark_q = NULL; |
| 5255 | #endif /* DEVELOPMENT || DEBUG */ |
| 5256 | sched_cond_init(cond: &(ethr->pgo_wakeup)); |
| 5257 | |
| 5258 | result = kernel_thread_start_priority(continuation: (thread_continue_t)vm_pageout_iothread_external, |
| 5259 | parameter: (void *)ethr, BASEPRI_VM, |
| 5260 | new_thread: &(ethr->pgo_iothread)); |
| 5261 | if (result != KERN_SUCCESS) { |
| 5262 | panic("vm_pageout: Unable to create external thread (%d)\n" , result); |
| 5263 | } |
| 5264 | thread_set_thread_name(th: ethr->pgo_iothread, name: "VM_pageout_external_iothread" ); |
| 5265 | |
| 5266 | thread_mtx_lock(thread: vm_pageout_gc_thread ); |
| 5267 | thread_start(thread: vm_pageout_gc_thread ); |
| 5268 | thread_mtx_unlock(thread: vm_pageout_gc_thread); |
| 5269 | |
| 5270 | #if VM_PRESSURE_EVENTS |
| 5271 | result = kernel_thread_start_priority(continuation: (thread_continue_t)vm_pressure_thread, NULL, |
| 5272 | BASEPRI_DEFAULT, |
| 5273 | new_thread: &thread); |
| 5274 | |
| 5275 | if (result != KERN_SUCCESS) { |
| 5276 | panic("vm_pressure_thread: create failed" ); |
| 5277 | } |
| 5278 | |
| 5279 | thread_deallocate(thread); |
| 5280 | #endif |
| 5281 | |
| 5282 | vm_object_reaper_init(); |
| 5283 | |
| 5284 | |
| 5285 | if (VM_CONFIG_COMPRESSOR_IS_PRESENT) { |
| 5286 | vm_compressor_init(); |
| 5287 | } |
| 5288 | |
| 5289 | #if VM_PRESSURE_EVENTS |
| 5290 | vm_pressure_events_enabled = TRUE; |
| 5291 | #endif /* VM_PRESSURE_EVENTS */ |
| 5292 | |
| 5293 | #if CONFIG_PHANTOM_CACHE |
| 5294 | vm_phantom_cache_init(); |
| 5295 | #endif |
| 5296 | #if VM_PAGE_BUCKETS_CHECK |
| 5297 | #if VM_PAGE_FAKE_BUCKETS |
| 5298 | printf("**** DEBUG: protecting fake buckets [0x%llx:0x%llx]\n" , |
| 5299 | (uint64_t) vm_page_fake_buckets_start, |
| 5300 | (uint64_t) vm_page_fake_buckets_end); |
| 5301 | pmap_protect(kernel_pmap, |
| 5302 | vm_page_fake_buckets_start, |
| 5303 | vm_page_fake_buckets_end, |
| 5304 | VM_PROT_READ); |
| 5305 | // *(char *) vm_page_fake_buckets_start = 'x'; /* panic! */ |
| 5306 | #endif /* VM_PAGE_FAKE_BUCKETS */ |
| 5307 | #endif /* VM_PAGE_BUCKETS_CHECK */ |
| 5308 | |
| 5309 | #if VM_OBJECT_TRACKING |
| 5310 | vm_object_tracking_init(); |
| 5311 | #endif /* VM_OBJECT_TRACKING */ |
| 5312 | |
| 5313 | #if __arm64__ |
| 5314 | // vm_tests(); |
| 5315 | #endif /* __arm64__ */ |
| 5316 | |
| 5317 | vm_pageout_continue(); |
| 5318 | |
| 5319 | /* |
| 5320 | * Unreached code! |
| 5321 | * |
| 5322 | * The vm_pageout_continue() call above never returns, so the code below is never |
| 5323 | * executed. We take advantage of this to declare several DTrace VM related probe |
| 5324 | * points that our kernel doesn't have an analog for. These are probe points that |
| 5325 | * exist in Solaris and are in the DTrace documentation, so people may have written |
| 5326 | * scripts that use them. Declaring the probe points here means their scripts will |
| 5327 | * compile and execute which we want for portability of the scripts, but since this |
| 5328 | * section of code is never reached, the probe points will simply never fire. Yes, |
| 5329 | * this is basically a hack. The problem is the DTrace probe points were chosen with |
| 5330 | * Solaris specific VM events in mind, not portability to different VM implementations. |
| 5331 | */ |
| 5332 | |
| 5333 | DTRACE_VM2(execfree, int, 1, (uint64_t *), NULL); |
| 5334 | DTRACE_VM2(execpgin, int, 1, (uint64_t *), NULL); |
| 5335 | DTRACE_VM2(execpgout, int, 1, (uint64_t *), NULL); |
| 5336 | DTRACE_VM2(pgswapin, int, 1, (uint64_t *), NULL); |
| 5337 | DTRACE_VM2(pgswapout, int, 1, (uint64_t *), NULL); |
| 5338 | DTRACE_VM2(swapin, int, 1, (uint64_t *), NULL); |
| 5339 | DTRACE_VM2(swapout, int, 1, (uint64_t *), NULL); |
| 5340 | /*NOTREACHED*/ |
| 5341 | } |
| 5342 | |
| 5343 | |
| 5344 | |
| 5345 | kern_return_t |
| 5346 | vm_pageout_internal_start(void) |
| 5347 | { |
| 5348 | kern_return_t result = KERN_SUCCESS; |
| 5349 | host_basic_info_data_t hinfo; |
| 5350 | vm_offset_t buf, bufsize; |
| 5351 | |
| 5352 | assert(VM_CONFIG_COMPRESSOR_IS_PRESENT); |
| 5353 | |
| 5354 | mach_msg_type_number_t count = HOST_BASIC_INFO_COUNT; |
| 5355 | #define BSD_HOST 1 |
| 5356 | host_info(host: (host_t)BSD_HOST, HOST_BASIC_INFO, host_info_out: (host_info_t)&hinfo, host_info_outCnt: &count); |
| 5357 | |
| 5358 | assert(hinfo.max_cpus > 0); |
| 5359 | |
| 5360 | #if !XNU_TARGET_OS_OSX |
| 5361 | vm_pageout_state.vm_compressor_thread_count = 1; |
| 5362 | #else /* !XNU_TARGET_OS_OSX */ |
| 5363 | if (hinfo.max_cpus > 4) { |
| 5364 | vm_pageout_state.vm_compressor_thread_count = 2; |
| 5365 | } else { |
| 5366 | vm_pageout_state.vm_compressor_thread_count = 1; |
| 5367 | } |
| 5368 | #endif /* !XNU_TARGET_OS_OSX */ |
| 5369 | #if __AMP__ |
| 5370 | if (vm_compressor_ebound) { |
| 5371 | vm_pageout_state.vm_compressor_thread_count = 2; |
| 5372 | } |
| 5373 | #endif |
| 5374 | PE_parse_boot_argn(arg_string: "vmcomp_threads" , arg_ptr: &vm_pageout_state.vm_compressor_thread_count, |
| 5375 | max_arg: sizeof(vm_pageout_state.vm_compressor_thread_count)); |
| 5376 | |
| 5377 | if (vm_pageout_state.vm_compressor_thread_count >= hinfo.max_cpus) { |
| 5378 | vm_pageout_state.vm_compressor_thread_count = hinfo.max_cpus - 1; |
| 5379 | } |
| 5380 | if (vm_pageout_state.vm_compressor_thread_count <= 0) { |
| 5381 | vm_pageout_state.vm_compressor_thread_count = 1; |
| 5382 | } else if (vm_pageout_state.vm_compressor_thread_count > MAX_COMPRESSOR_THREAD_COUNT) { |
| 5383 | vm_pageout_state.vm_compressor_thread_count = MAX_COMPRESSOR_THREAD_COUNT; |
| 5384 | } |
| 5385 | |
| 5386 | vm_pageout_queue_internal.pgo_maxlaundry = |
| 5387 | (vm_pageout_state.vm_compressor_thread_count * 4) * VM_PAGE_LAUNDRY_MAX; |
| 5388 | |
| 5389 | PE_parse_boot_argn(arg_string: "vmpgoi_maxlaundry" , |
| 5390 | arg_ptr: &vm_pageout_queue_internal.pgo_maxlaundry, |
| 5391 | max_arg: sizeof(vm_pageout_queue_internal.pgo_maxlaundry)); |
| 5392 | |
| 5393 | #if DEVELOPMENT || DEBUG |
| 5394 | // Note: this will be modified at enqueue-time such that the benchmark queue is never throttled |
| 5395 | vm_pageout_queue_benchmark.pgo_maxlaundry = vm_pageout_queue_internal.pgo_maxlaundry; |
| 5396 | #endif /* DEVELOPMENT || DEBUG */ |
| 5397 | |
| 5398 | bufsize = COMPRESSOR_SCRATCH_BUF_SIZE; |
| 5399 | |
| 5400 | kmem_alloc(map: kernel_map, addrp: &buf, |
| 5401 | size: bufsize * vm_pageout_state.vm_compressor_thread_count, |
| 5402 | flags: KMA_DATA | KMA_NOFAIL | KMA_KOBJECT | KMA_PERMANENT, |
| 5403 | VM_KERN_MEMORY_COMPRESSOR); |
| 5404 | |
| 5405 | for (int i = 0; i < vm_pageout_state.vm_compressor_thread_count; i++) { |
| 5406 | struct pgo_iothread_state *iq = &pgo_iothread_internal_state[i]; |
| 5407 | iq->id = i; |
| 5408 | iq->q = &vm_pageout_queue_internal; |
| 5409 | iq->current_early_swapout_chead = NULL; |
| 5410 | iq->current_regular_swapout_chead = NULL; |
| 5411 | iq->current_late_swapout_chead = NULL; |
| 5412 | iq->scratch_buf = (char *)(buf + i * bufsize); |
| 5413 | #if DEVELOPMENT || DEBUG |
| 5414 | iq->benchmark_q = &vm_pageout_queue_benchmark; |
| 5415 | #endif /* DEVELOPMENT || DEBUG */ |
| 5416 | sched_cond_init(cond: &(iq->pgo_wakeup)); |
| 5417 | result = kernel_thread_start_priority(continuation: (thread_continue_t)vm_pageout_iothread_internal, |
| 5418 | parameter: (void *)iq, BASEPRI_VM, |
| 5419 | new_thread: &(iq->pgo_iothread)); |
| 5420 | |
| 5421 | if (result != KERN_SUCCESS) { |
| 5422 | panic("vm_pageout: Unable to create compressor thread no. %d (%d)\n" , i, result); |
| 5423 | } |
| 5424 | } |
| 5425 | return result; |
| 5426 | } |
| 5427 | |
| 5428 | #if CONFIG_IOSCHED |
| 5429 | /* |
| 5430 | * To support I/O Expedite for compressed files we mark the upls with special flags. |
| 5431 | * The way decmpfs works is that we create a big upl which marks all the pages needed to |
| 5432 | * represent the compressed file as busy. We tag this upl with the flag UPL_DECMP_REQ. Decmpfs |
| 5433 | * then issues smaller I/Os for compressed I/Os, deflates them and puts the data into the pages |
| 5434 | * being held in the big original UPL. We mark each of these smaller UPLs with the flag |
| 5435 | * UPL_DECMP_REAL_IO. Any outstanding real I/O UPL is tracked by the big req upl using the |
| 5436 | * decmp_io_upl field (in the upl structure). This link is protected in the forward direction |
| 5437 | * by the req upl lock (the reverse link doesnt need synch. since we never inspect this link |
| 5438 | * unless the real I/O upl is being destroyed). |
| 5439 | */ |
| 5440 | |
| 5441 | |
| 5442 | static void |
| 5443 | upl_set_decmp_info(upl_t upl, upl_t src_upl) |
| 5444 | { |
| 5445 | assert((src_upl->flags & UPL_DECMP_REQ) != 0); |
| 5446 | |
| 5447 | upl_lock(src_upl); |
| 5448 | if (src_upl->decmp_io_upl) { |
| 5449 | /* |
| 5450 | * If there is already an alive real I/O UPL, ignore this new UPL. |
| 5451 | * This case should rarely happen and even if it does, it just means |
| 5452 | * that we might issue a spurious expedite which the driver is expected |
| 5453 | * to handle. |
| 5454 | */ |
| 5455 | upl_unlock(src_upl); |
| 5456 | return; |
| 5457 | } |
| 5458 | src_upl->decmp_io_upl = (void *)upl; |
| 5459 | src_upl->ref_count++; |
| 5460 | |
| 5461 | upl->flags |= UPL_DECMP_REAL_IO; |
| 5462 | upl->decmp_io_upl = (void *)src_upl; |
| 5463 | upl_unlock(src_upl); |
| 5464 | } |
| 5465 | #endif /* CONFIG_IOSCHED */ |
| 5466 | |
| 5467 | #if UPL_DEBUG |
| 5468 | int upl_debug_enabled = 1; |
| 5469 | #else |
| 5470 | int upl_debug_enabled = 0; |
| 5471 | #endif |
| 5472 | |
| 5473 | static upl_t |
| 5474 | upl_create(int type, int flags, upl_size_t size) |
| 5475 | { |
| 5476 | uint32_t pages = (uint32_t)atop(round_page_32(size)); |
| 5477 | upl_t upl; |
| 5478 | |
| 5479 | assert(page_aligned(size)); |
| 5480 | |
| 5481 | /* |
| 5482 | * FIXME: this code assumes the allocation always succeeds, |
| 5483 | * however `pages` can be up to MAX_UPL_SIZE. |
| 5484 | * |
| 5485 | * The allocation size is above 32k (resp. 128k) |
| 5486 | * on 16k pages (resp. 4k), which kalloc might fail |
| 5487 | * to allocate. |
| 5488 | */ |
| 5489 | upl = kalloc_type(struct upl, struct upl_page_info, |
| 5490 | (type & UPL_CREATE_INTERNAL) ? pages : 0, Z_WAITOK | Z_ZERO); |
| 5491 | if (type & UPL_CREATE_INTERNAL) { |
| 5492 | flags |= UPL_INTERNAL; |
| 5493 | } |
| 5494 | |
| 5495 | if (type & UPL_CREATE_LITE) { |
| 5496 | flags |= UPL_LITE; |
| 5497 | if (pages) { |
| 5498 | upl->lite_list = bitmap_alloc(nbits: pages); |
| 5499 | } |
| 5500 | } |
| 5501 | |
| 5502 | upl->flags = flags; |
| 5503 | upl->ref_count = 1; |
| 5504 | upl_lock_init(upl); |
| 5505 | #if CONFIG_IOSCHED |
| 5506 | if (type & UPL_CREATE_IO_TRACKING) { |
| 5507 | upl->upl_priority = proc_get_effective_thread_policy(thread: current_thread(), TASK_POLICY_IO); |
| 5508 | } |
| 5509 | |
| 5510 | if ((type & UPL_CREATE_INTERNAL) && (type & UPL_CREATE_EXPEDITE_SUP)) { |
| 5511 | /* Only support expedite on internal UPLs */ |
| 5512 | thread_t curthread = current_thread(); |
| 5513 | upl->upl_reprio_info = kalloc_data(sizeof(uint64_t) * pages, |
| 5514 | Z_WAITOK | Z_ZERO); |
| 5515 | upl->flags |= UPL_EXPEDITE_SUPPORTED; |
| 5516 | if (curthread->decmp_upl != NULL) { |
| 5517 | upl_set_decmp_info(upl, src_upl: curthread->decmp_upl); |
| 5518 | } |
| 5519 | } |
| 5520 | #endif |
| 5521 | #if CONFIG_IOSCHED || UPL_DEBUG |
| 5522 | if ((type & UPL_CREATE_IO_TRACKING) || upl_debug_enabled) { |
| 5523 | upl->upl_creator = current_thread(); |
| 5524 | upl->flags |= UPL_TRACKED_BY_OBJECT; |
| 5525 | } |
| 5526 | #endif |
| 5527 | |
| 5528 | #if UPL_DEBUG |
| 5529 | upl->uple_create_btref = btref_get(__builtin_frame_address(0), 0); |
| 5530 | #endif /* UPL_DEBUG */ |
| 5531 | |
| 5532 | return upl; |
| 5533 | } |
| 5534 | |
| 5535 | static void |
| 5536 | upl_destroy(upl_t upl) |
| 5537 | { |
| 5538 | uint32_t pages; |
| 5539 | |
| 5540 | // DEBUG4K_UPL("upl %p (u_offset 0x%llx u_size 0x%llx) object %p\n", upl, (uint64_t)upl->u_offset, (uint64_t)upl->u_size, upl->map_object); |
| 5541 | |
| 5542 | if (upl->ext_ref_count) { |
| 5543 | panic("upl(%p) ext_ref_count" , upl); |
| 5544 | } |
| 5545 | |
| 5546 | #if CONFIG_IOSCHED |
| 5547 | if ((upl->flags & UPL_DECMP_REAL_IO) && upl->decmp_io_upl) { |
| 5548 | upl_t src_upl; |
| 5549 | src_upl = upl->decmp_io_upl; |
| 5550 | assert((src_upl->flags & UPL_DECMP_REQ) != 0); |
| 5551 | upl_lock(src_upl); |
| 5552 | src_upl->decmp_io_upl = NULL; |
| 5553 | upl_unlock(src_upl); |
| 5554 | upl_deallocate(upl: src_upl); |
| 5555 | } |
| 5556 | #endif /* CONFIG_IOSCHED */ |
| 5557 | |
| 5558 | #if CONFIG_IOSCHED || UPL_DEBUG |
| 5559 | if (((upl->flags & UPL_TRACKED_BY_OBJECT) || upl_debug_enabled) && |
| 5560 | !(upl->flags & UPL_VECTOR)) { |
| 5561 | vm_object_t object; |
| 5562 | |
| 5563 | if (upl->flags & UPL_SHADOWED) { |
| 5564 | object = upl->map_object->shadow; |
| 5565 | } else { |
| 5566 | object = upl->map_object; |
| 5567 | } |
| 5568 | |
| 5569 | vm_object_lock(object); |
| 5570 | queue_remove(&object->uplq, upl, upl_t, uplq); |
| 5571 | vm_object_activity_end(object); |
| 5572 | vm_object_collapse(object, offset: 0, TRUE); |
| 5573 | vm_object_unlock(object); |
| 5574 | } |
| 5575 | #endif |
| 5576 | /* |
| 5577 | * drop a reference on the map_object whether or |
| 5578 | * not a pageout object is inserted |
| 5579 | */ |
| 5580 | if (upl->flags & UPL_SHADOWED) { |
| 5581 | vm_object_deallocate(object: upl->map_object); |
| 5582 | } |
| 5583 | |
| 5584 | if (upl->flags & UPL_DEVICE_MEMORY) { |
| 5585 | pages = 1; |
| 5586 | } else { |
| 5587 | pages = (uint32_t)atop(upl_adjusted_size(upl, PAGE_MASK)); |
| 5588 | } |
| 5589 | |
| 5590 | upl_lock_destroy(upl); |
| 5591 | |
| 5592 | #if CONFIG_IOSCHED |
| 5593 | if (upl->flags & UPL_EXPEDITE_SUPPORTED) { |
| 5594 | kfree_data(upl->upl_reprio_info, sizeof(uint64_t) * pages); |
| 5595 | } |
| 5596 | #endif |
| 5597 | |
| 5598 | #if UPL_DEBUG |
| 5599 | for (int i = 0; i < upl->upl_commit_index; i++) { |
| 5600 | btref_put(upl->upl_commit_records[i].c_btref); |
| 5601 | } |
| 5602 | btref_put(upl->uple_create_btref); |
| 5603 | #endif /* UPL_DEBUG */ |
| 5604 | |
| 5605 | if ((upl->flags & UPL_LITE) && pages) { |
| 5606 | bitmap_free(map: upl->lite_list, nbits: pages); |
| 5607 | } |
| 5608 | kfree_type(struct upl, struct upl_page_info, |
| 5609 | (upl->flags & UPL_INTERNAL) ? pages : 0, upl); |
| 5610 | } |
| 5611 | |
| 5612 | void |
| 5613 | upl_deallocate(upl_t upl) |
| 5614 | { |
| 5615 | upl_lock(upl); |
| 5616 | |
| 5617 | if (--upl->ref_count == 0) { |
| 5618 | if (vector_upl_is_valid(upl)) { |
| 5619 | vector_upl_deallocate(upl); |
| 5620 | } |
| 5621 | upl_unlock(upl); |
| 5622 | |
| 5623 | if (upl->upl_iodone) { |
| 5624 | upl_callout_iodone(upl); |
| 5625 | } |
| 5626 | |
| 5627 | upl_destroy(upl); |
| 5628 | } else { |
| 5629 | upl_unlock(upl); |
| 5630 | } |
| 5631 | } |
| 5632 | |
| 5633 | #if CONFIG_IOSCHED |
| 5634 | void |
| 5635 | upl_mark_decmp(upl_t upl) |
| 5636 | { |
| 5637 | if (upl->flags & UPL_TRACKED_BY_OBJECT) { |
| 5638 | upl->flags |= UPL_DECMP_REQ; |
| 5639 | upl->upl_creator->decmp_upl = (void *)upl; |
| 5640 | } |
| 5641 | } |
| 5642 | |
| 5643 | void |
| 5644 | upl_unmark_decmp(upl_t upl) |
| 5645 | { |
| 5646 | if (upl && (upl->flags & UPL_DECMP_REQ)) { |
| 5647 | upl->upl_creator->decmp_upl = NULL; |
| 5648 | } |
| 5649 | } |
| 5650 | |
| 5651 | #endif /* CONFIG_IOSCHED */ |
| 5652 | |
| 5653 | #define VM_PAGE_Q_BACKING_UP(q) \ |
| 5654 | ((q)->pgo_laundry >= (((q)->pgo_maxlaundry * 8) / 10)) |
| 5655 | |
| 5656 | boolean_t must_throttle_writes(void); |
| 5657 | |
| 5658 | boolean_t |
| 5659 | must_throttle_writes() |
| 5660 | { |
| 5661 | if (VM_PAGE_Q_BACKING_UP(&vm_pageout_queue_external) && |
| 5662 | vm_page_pageable_external_count > (AVAILABLE_NON_COMPRESSED_MEMORY * 6) / 10) { |
| 5663 | return TRUE; |
| 5664 | } |
| 5665 | |
| 5666 | return FALSE; |
| 5667 | } |
| 5668 | |
| 5669 | int vm_page_delayed_work_ctx_needed = 0; |
| 5670 | KALLOC_TYPE_DEFINE(dw_ctx_zone, struct vm_page_delayed_work_ctx, KT_PRIV_ACCT); |
| 5671 | |
| 5672 | __startup_func |
| 5673 | static void |
| 5674 | vm_page_delayed_work_init_ctx(void) |
| 5675 | { |
| 5676 | uint16_t min_delayed_work_ctx_allocated = 16; |
| 5677 | |
| 5678 | /* |
| 5679 | * try really hard to always keep NCPU elements around in the zone |
| 5680 | * in order for the UPL code to almost always get an element. |
| 5681 | */ |
| 5682 | if (min_delayed_work_ctx_allocated < zpercpu_count()) { |
| 5683 | min_delayed_work_ctx_allocated = (uint16_t)zpercpu_count(); |
| 5684 | } |
| 5685 | |
| 5686 | zone_raise_reserve(zone_or_view: dw_ctx_zone, min_elements: min_delayed_work_ctx_allocated); |
| 5687 | } |
| 5688 | STARTUP(ZALLOC, STARTUP_RANK_LAST, vm_page_delayed_work_init_ctx); |
| 5689 | |
| 5690 | struct vm_page_delayed_work* |
| 5691 | vm_page_delayed_work_get_ctx(void) |
| 5692 | { |
| 5693 | struct vm_page_delayed_work_ctx * dw_ctx = NULL; |
| 5694 | |
| 5695 | dw_ctx = zalloc_flags(dw_ctx_zone, Z_ZERO | Z_NOWAIT); |
| 5696 | |
| 5697 | if (__probable(dw_ctx)) { |
| 5698 | dw_ctx->delayed_owner = current_thread(); |
| 5699 | } else { |
| 5700 | vm_page_delayed_work_ctx_needed++; |
| 5701 | } |
| 5702 | return dw_ctx ? dw_ctx->dwp : NULL; |
| 5703 | } |
| 5704 | |
| 5705 | void |
| 5706 | vm_page_delayed_work_finish_ctx(struct vm_page_delayed_work* dwp) |
| 5707 | { |
| 5708 | struct vm_page_delayed_work_ctx *ldw_ctx; |
| 5709 | |
| 5710 | ldw_ctx = (struct vm_page_delayed_work_ctx *)dwp; |
| 5711 | ldw_ctx->delayed_owner = NULL; |
| 5712 | |
| 5713 | zfree(dw_ctx_zone, ldw_ctx); |
| 5714 | } |
| 5715 | |
| 5716 | /* |
| 5717 | * Routine: vm_object_upl_request |
| 5718 | * Purpose: |
| 5719 | * Cause the population of a portion of a vm_object. |
| 5720 | * Depending on the nature of the request, the pages |
| 5721 | * returned may be contain valid data or be uninitialized. |
| 5722 | * A page list structure, listing the physical pages |
| 5723 | * will be returned upon request. |
| 5724 | * This function is called by the file system or any other |
| 5725 | * supplier of backing store to a pager. |
| 5726 | * IMPORTANT NOTE: The caller must still respect the relationship |
| 5727 | * between the vm_object and its backing memory object. The |
| 5728 | * caller MUST NOT substitute changes in the backing file |
| 5729 | * without first doing a memory_object_lock_request on the |
| 5730 | * target range unless it is know that the pages are not |
| 5731 | * shared with another entity at the pager level. |
| 5732 | * Copy_in_to: |
| 5733 | * if a page list structure is present |
| 5734 | * return the mapped physical pages, where a |
| 5735 | * page is not present, return a non-initialized |
| 5736 | * one. If the no_sync bit is turned on, don't |
| 5737 | * call the pager unlock to synchronize with other |
| 5738 | * possible copies of the page. Leave pages busy |
| 5739 | * in the original object, if a page list structure |
| 5740 | * was specified. When a commit of the page list |
| 5741 | * pages is done, the dirty bit will be set for each one. |
| 5742 | * Copy_out_from: |
| 5743 | * If a page list structure is present, return |
| 5744 | * all mapped pages. Where a page does not exist |
| 5745 | * map a zero filled one. Leave pages busy in |
| 5746 | * the original object. If a page list structure |
| 5747 | * is not specified, this call is a no-op. |
| 5748 | * |
| 5749 | * Note: access of default pager objects has a rather interesting |
| 5750 | * twist. The caller of this routine, presumably the file system |
| 5751 | * page cache handling code, will never actually make a request |
| 5752 | * against a default pager backed object. Only the default |
| 5753 | * pager will make requests on backing store related vm_objects |
| 5754 | * In this way the default pager can maintain the relationship |
| 5755 | * between backing store files (abstract memory objects) and |
| 5756 | * the vm_objects (cache objects), they support. |
| 5757 | * |
| 5758 | */ |
| 5759 | |
| 5760 | __private_extern__ kern_return_t |
| 5761 | vm_object_upl_request( |
| 5762 | vm_object_t object, |
| 5763 | vm_object_offset_t offset, |
| 5764 | upl_size_t size, |
| 5765 | upl_t *upl_ptr, |
| 5766 | upl_page_info_array_t user_page_list, |
| 5767 | unsigned int *page_list_count, |
| 5768 | upl_control_flags_t cntrl_flags, |
| 5769 | vm_tag_t tag) |
| 5770 | { |
| 5771 | vm_page_t dst_page = VM_PAGE_NULL; |
| 5772 | vm_object_offset_t dst_offset; |
| 5773 | upl_size_t xfer_size; |
| 5774 | unsigned int size_in_pages; |
| 5775 | boolean_t dirty; |
| 5776 | boolean_t hw_dirty; |
| 5777 | upl_t upl = NULL; |
| 5778 | unsigned int entry; |
| 5779 | vm_page_t alias_page = NULL; |
| 5780 | int refmod_state = 0; |
| 5781 | vm_object_t last_copy_object; |
| 5782 | uint32_t last_copy_version; |
| 5783 | struct vm_page_delayed_work dw_array; |
| 5784 | struct vm_page_delayed_work *dwp, *dwp_start; |
| 5785 | bool dwp_finish_ctx = TRUE; |
| 5786 | int dw_count; |
| 5787 | int dw_limit; |
| 5788 | int io_tracking_flag = 0; |
| 5789 | int grab_options; |
| 5790 | int page_grab_count = 0; |
| 5791 | ppnum_t phys_page; |
| 5792 | pmap_flush_context pmap_flush_context_storage; |
| 5793 | boolean_t pmap_flushes_delayed = FALSE; |
| 5794 | #if DEVELOPMENT || DEBUG |
| 5795 | task_t task = current_task(); |
| 5796 | #endif /* DEVELOPMENT || DEBUG */ |
| 5797 | |
| 5798 | dwp_start = dwp = NULL; |
| 5799 | |
| 5800 | if (cntrl_flags & ~UPL_VALID_FLAGS) { |
| 5801 | /* |
| 5802 | * For forward compatibility's sake, |
| 5803 | * reject any unknown flag. |
| 5804 | */ |
| 5805 | return KERN_INVALID_VALUE; |
| 5806 | } |
| 5807 | if ((!object->internal) && (object->paging_offset != 0)) { |
| 5808 | panic("vm_object_upl_request: external object with non-zero paging offset" ); |
| 5809 | } |
| 5810 | if (object->phys_contiguous) { |
| 5811 | panic("vm_object_upl_request: contiguous object specified" ); |
| 5812 | } |
| 5813 | |
| 5814 | assertf(page_aligned(offset) && page_aligned(size), |
| 5815 | "offset 0x%llx size 0x%x" , |
| 5816 | offset, size); |
| 5817 | |
| 5818 | VM_DEBUG_CONSTANT_EVENT(vm_object_upl_request, VM_UPL_REQUEST, DBG_FUNC_START, size, cntrl_flags, 0, 0); |
| 5819 | |
| 5820 | dw_count = 0; |
| 5821 | dw_limit = DELAYED_WORK_LIMIT(DEFAULT_DELAYED_WORK_LIMIT); |
| 5822 | dwp_start = vm_page_delayed_work_get_ctx(); |
| 5823 | if (dwp_start == NULL) { |
| 5824 | dwp_start = &dw_array; |
| 5825 | dw_limit = 1; |
| 5826 | dwp_finish_ctx = FALSE; |
| 5827 | } |
| 5828 | |
| 5829 | dwp = dwp_start; |
| 5830 | |
| 5831 | if (size > MAX_UPL_SIZE_BYTES) { |
| 5832 | size = MAX_UPL_SIZE_BYTES; |
| 5833 | } |
| 5834 | |
| 5835 | if ((cntrl_flags & UPL_SET_INTERNAL) && page_list_count != NULL) { |
| 5836 | *page_list_count = MAX_UPL_SIZE_BYTES >> PAGE_SHIFT; |
| 5837 | } |
| 5838 | |
| 5839 | #if CONFIG_IOSCHED || UPL_DEBUG |
| 5840 | if (object->io_tracking || upl_debug_enabled) { |
| 5841 | io_tracking_flag |= UPL_CREATE_IO_TRACKING; |
| 5842 | } |
| 5843 | #endif |
| 5844 | #if CONFIG_IOSCHED |
| 5845 | if (object->io_tracking) { |
| 5846 | io_tracking_flag |= UPL_CREATE_EXPEDITE_SUP; |
| 5847 | } |
| 5848 | #endif |
| 5849 | |
| 5850 | if (cntrl_flags & UPL_SET_INTERNAL) { |
| 5851 | if (cntrl_flags & UPL_SET_LITE) { |
| 5852 | upl = upl_create(UPL_CREATE_INTERNAL | UPL_CREATE_LITE | io_tracking_flag, flags: 0, size); |
| 5853 | } else { |
| 5854 | upl = upl_create(UPL_CREATE_INTERNAL | io_tracking_flag, flags: 0, size); |
| 5855 | } |
| 5856 | user_page_list = size ? upl->page_list : NULL; |
| 5857 | } else { |
| 5858 | if (cntrl_flags & UPL_SET_LITE) { |
| 5859 | upl = upl_create(UPL_CREATE_EXTERNAL | UPL_CREATE_LITE | io_tracking_flag, flags: 0, size); |
| 5860 | } else { |
| 5861 | upl = upl_create(UPL_CREATE_EXTERNAL | io_tracking_flag, flags: 0, size); |
| 5862 | } |
| 5863 | } |
| 5864 | *upl_ptr = upl; |
| 5865 | |
| 5866 | if (user_page_list) { |
| 5867 | user_page_list[0].device = FALSE; |
| 5868 | } |
| 5869 | |
| 5870 | if (cntrl_flags & UPL_SET_LITE) { |
| 5871 | upl->map_object = object; |
| 5872 | } else { |
| 5873 | upl->map_object = vm_object_allocate(size); |
| 5874 | vm_object_lock(upl->map_object); |
| 5875 | /* |
| 5876 | * No neeed to lock the new object: nobody else knows |
| 5877 | * about it yet, so it's all ours so far. |
| 5878 | */ |
| 5879 | upl->map_object->shadow = object; |
| 5880 | VM_OBJECT_SET_PAGEOUT(object: upl->map_object, TRUE); |
| 5881 | VM_OBJECT_SET_CAN_PERSIST(object: upl->map_object, FALSE); |
| 5882 | upl->map_object->copy_strategy = MEMORY_OBJECT_COPY_NONE; |
| 5883 | upl->map_object->vo_shadow_offset = offset; |
| 5884 | upl->map_object->wimg_bits = object->wimg_bits; |
| 5885 | assertf(page_aligned(upl->map_object->vo_shadow_offset), |
| 5886 | "object %p shadow_offset 0x%llx" , |
| 5887 | upl->map_object, upl->map_object->vo_shadow_offset); |
| 5888 | vm_object_unlock(upl->map_object); |
| 5889 | |
| 5890 | alias_page = vm_page_grab_fictitious(TRUE); |
| 5891 | |
| 5892 | upl->flags |= UPL_SHADOWED; |
| 5893 | } |
| 5894 | if (cntrl_flags & UPL_FOR_PAGEOUT) { |
| 5895 | upl->flags |= UPL_PAGEOUT; |
| 5896 | } |
| 5897 | |
| 5898 | vm_object_lock(object); |
| 5899 | vm_object_activity_begin(object); |
| 5900 | |
| 5901 | grab_options = 0; |
| 5902 | #if CONFIG_SECLUDED_MEMORY |
| 5903 | if (object->can_grab_secluded) { |
| 5904 | grab_options |= VM_PAGE_GRAB_SECLUDED; |
| 5905 | } |
| 5906 | #endif /* CONFIG_SECLUDED_MEMORY */ |
| 5907 | |
| 5908 | /* |
| 5909 | * we can lock in the paging_offset once paging_in_progress is set |
| 5910 | */ |
| 5911 | upl->u_size = size; |
| 5912 | upl->u_offset = offset + object->paging_offset; |
| 5913 | |
| 5914 | #if CONFIG_IOSCHED || UPL_DEBUG |
| 5915 | if (object->io_tracking || upl_debug_enabled) { |
| 5916 | vm_object_activity_begin(object); |
| 5917 | queue_enter(&object->uplq, upl, upl_t, uplq); |
| 5918 | } |
| 5919 | #endif |
| 5920 | if ((cntrl_flags & UPL_WILL_MODIFY) && object->vo_copy != VM_OBJECT_NULL) { |
| 5921 | /* |
| 5922 | * Honor copy-on-write obligations |
| 5923 | * |
| 5924 | * The caller is gathering these pages and |
| 5925 | * might modify their contents. We need to |
| 5926 | * make sure that the copy object has its own |
| 5927 | * private copies of these pages before we let |
| 5928 | * the caller modify them. |
| 5929 | */ |
| 5930 | vm_object_update(object, |
| 5931 | offset, |
| 5932 | size, |
| 5933 | NULL, |
| 5934 | NULL, |
| 5935 | FALSE, /* should_return */ |
| 5936 | MEMORY_OBJECT_COPY_SYNC, |
| 5937 | VM_PROT_NO_CHANGE); |
| 5938 | |
| 5939 | VM_PAGEOUT_DEBUG(upl_cow, 1); |
| 5940 | VM_PAGEOUT_DEBUG(upl_cow_pages, (size >> PAGE_SHIFT)); |
| 5941 | } |
| 5942 | /* |
| 5943 | * remember which copy object we synchronized with |
| 5944 | */ |
| 5945 | last_copy_object = object->vo_copy; |
| 5946 | last_copy_version = object->vo_copy_version; |
| 5947 | entry = 0; |
| 5948 | |
| 5949 | xfer_size = size; |
| 5950 | dst_offset = offset; |
| 5951 | size_in_pages = size / PAGE_SIZE; |
| 5952 | |
| 5953 | if (vm_page_free_count > (vm_page_free_target + size_in_pages) || |
| 5954 | object->resident_page_count < ((MAX_UPL_SIZE_BYTES * 2) >> PAGE_SHIFT)) { |
| 5955 | object->scan_collisions = 0; |
| 5956 | } |
| 5957 | |
| 5958 | if ((cntrl_flags & UPL_WILL_MODIFY) && must_throttle_writes() == TRUE) { |
| 5959 | boolean_t isSSD = FALSE; |
| 5960 | |
| 5961 | #if !XNU_TARGET_OS_OSX |
| 5962 | isSSD = TRUE; |
| 5963 | #else /* !XNU_TARGET_OS_OSX */ |
| 5964 | vnode_pager_get_isSSD(object->pager, &isSSD); |
| 5965 | #endif /* !XNU_TARGET_OS_OSX */ |
| 5966 | vm_object_unlock(object); |
| 5967 | |
| 5968 | OSAddAtomic(size_in_pages, &vm_upl_wait_for_pages); |
| 5969 | |
| 5970 | if (isSSD == TRUE) { |
| 5971 | delay(usec: 1000 * size_in_pages); |
| 5972 | } else { |
| 5973 | delay(usec: 5000 * size_in_pages); |
| 5974 | } |
| 5975 | OSAddAtomic(-size_in_pages, &vm_upl_wait_for_pages); |
| 5976 | |
| 5977 | vm_object_lock(object); |
| 5978 | } |
| 5979 | |
| 5980 | while (xfer_size) { |
| 5981 | dwp->dw_mask = 0; |
| 5982 | |
| 5983 | if ((alias_page == NULL) && !(cntrl_flags & UPL_SET_LITE)) { |
| 5984 | vm_object_unlock(object); |
| 5985 | alias_page = vm_page_grab_fictitious(TRUE); |
| 5986 | vm_object_lock(object); |
| 5987 | } |
| 5988 | if (cntrl_flags & UPL_COPYOUT_FROM) { |
| 5989 | upl->flags |= UPL_PAGE_SYNC_DONE; |
| 5990 | |
| 5991 | if (((dst_page = vm_page_lookup(object, offset: dst_offset)) == VM_PAGE_NULL) || |
| 5992 | dst_page->vmp_fictitious || |
| 5993 | dst_page->vmp_absent || |
| 5994 | VMP_ERROR_GET(dst_page) || |
| 5995 | dst_page->vmp_cleaning || |
| 5996 | (VM_PAGE_WIRED(dst_page))) { |
| 5997 | if (user_page_list) { |
| 5998 | user_page_list[entry].phys_addr = 0; |
| 5999 | } |
| 6000 | |
| 6001 | goto try_next_page; |
| 6002 | } |
| 6003 | phys_page = VM_PAGE_GET_PHYS_PAGE(m: dst_page); |
| 6004 | |
| 6005 | /* |
| 6006 | * grab this up front... |
| 6007 | * a high percentange of the time we're going to |
| 6008 | * need the hardware modification state a bit later |
| 6009 | * anyway... so we can eliminate an extra call into |
| 6010 | * the pmap layer by grabbing it here and recording it |
| 6011 | */ |
| 6012 | if (dst_page->vmp_pmapped) { |
| 6013 | refmod_state = pmap_get_refmod(pn: phys_page); |
| 6014 | } else { |
| 6015 | refmod_state = 0; |
| 6016 | } |
| 6017 | |
| 6018 | if ((refmod_state & VM_MEM_REFERENCED) && VM_PAGE_INACTIVE(dst_page)) { |
| 6019 | /* |
| 6020 | * page is on inactive list and referenced... |
| 6021 | * reactivate it now... this gets it out of the |
| 6022 | * way of vm_pageout_scan which would have to |
| 6023 | * reactivate it upon tripping over it |
| 6024 | */ |
| 6025 | dwp->dw_mask |= DW_vm_page_activate; |
| 6026 | } |
| 6027 | if (cntrl_flags & UPL_RET_ONLY_DIRTY) { |
| 6028 | /* |
| 6029 | * we're only asking for DIRTY pages to be returned |
| 6030 | */ |
| 6031 | if (dst_page->vmp_laundry || !(cntrl_flags & UPL_FOR_PAGEOUT)) { |
| 6032 | /* |
| 6033 | * if we were the page stolen by vm_pageout_scan to be |
| 6034 | * cleaned (as opposed to a buddy being clustered in |
| 6035 | * or this request is not being driven by a PAGEOUT cluster |
| 6036 | * then we only need to check for the page being dirty or |
| 6037 | * precious to decide whether to return it |
| 6038 | */ |
| 6039 | if (dst_page->vmp_dirty || dst_page->vmp_precious || (refmod_state & VM_MEM_MODIFIED)) { |
| 6040 | goto check_busy; |
| 6041 | } |
| 6042 | goto dont_return; |
| 6043 | } |
| 6044 | /* |
| 6045 | * this is a request for a PAGEOUT cluster and this page |
| 6046 | * is merely along for the ride as a 'buddy'... not only |
| 6047 | * does it have to be dirty to be returned, but it also |
| 6048 | * can't have been referenced recently... |
| 6049 | */ |
| 6050 | if ((hibernate_cleaning_in_progress == TRUE || |
| 6051 | (!((refmod_state & VM_MEM_REFERENCED) || dst_page->vmp_reference) || |
| 6052 | (dst_page->vmp_q_state == VM_PAGE_ON_THROTTLED_Q))) && |
| 6053 | ((refmod_state & VM_MEM_MODIFIED) || dst_page->vmp_dirty || dst_page->vmp_precious)) { |
| 6054 | goto check_busy; |
| 6055 | } |
| 6056 | dont_return: |
| 6057 | /* |
| 6058 | * if we reach here, we're not to return |
| 6059 | * the page... go on to the next one |
| 6060 | */ |
| 6061 | if (dst_page->vmp_laundry == TRUE) { |
| 6062 | /* |
| 6063 | * if we get here, the page is not 'cleaning' (filtered out above). |
| 6064 | * since it has been referenced, remove it from the laundry |
| 6065 | * so we don't pay the cost of an I/O to clean a page |
| 6066 | * we're just going to take back |
| 6067 | */ |
| 6068 | vm_page_lockspin_queues(); |
| 6069 | |
| 6070 | vm_pageout_steal_laundry(page: dst_page, TRUE); |
| 6071 | vm_page_activate(page: dst_page); |
| 6072 | |
| 6073 | vm_page_unlock_queues(); |
| 6074 | } |
| 6075 | if (user_page_list) { |
| 6076 | user_page_list[entry].phys_addr = 0; |
| 6077 | } |
| 6078 | |
| 6079 | goto try_next_page; |
| 6080 | } |
| 6081 | check_busy: |
| 6082 | if (dst_page->vmp_busy) { |
| 6083 | if (cntrl_flags & UPL_NOBLOCK) { |
| 6084 | if (user_page_list) { |
| 6085 | user_page_list[entry].phys_addr = 0; |
| 6086 | } |
| 6087 | dwp->dw_mask = 0; |
| 6088 | |
| 6089 | goto try_next_page; |
| 6090 | } |
| 6091 | /* |
| 6092 | * someone else is playing with the |
| 6093 | * page. We will have to wait. |
| 6094 | */ |
| 6095 | PAGE_SLEEP(object, dst_page, THREAD_UNINT); |
| 6096 | |
| 6097 | continue; |
| 6098 | } |
| 6099 | if (dst_page->vmp_q_state == VM_PAGE_ON_PAGEOUT_Q) { |
| 6100 | vm_page_lockspin_queues(); |
| 6101 | |
| 6102 | if (dst_page->vmp_q_state == VM_PAGE_ON_PAGEOUT_Q) { |
| 6103 | /* |
| 6104 | * we've buddied up a page for a clustered pageout |
| 6105 | * that has already been moved to the pageout |
| 6106 | * queue by pageout_scan... we need to remove |
| 6107 | * it from the queue and drop the laundry count |
| 6108 | * on that queue |
| 6109 | */ |
| 6110 | vm_pageout_throttle_up(m: dst_page); |
| 6111 | } |
| 6112 | vm_page_unlock_queues(); |
| 6113 | } |
| 6114 | hw_dirty = refmod_state & VM_MEM_MODIFIED; |
| 6115 | dirty = hw_dirty ? TRUE : dst_page->vmp_dirty; |
| 6116 | |
| 6117 | if (phys_page > upl->highest_page) { |
| 6118 | upl->highest_page = phys_page; |
| 6119 | } |
| 6120 | |
| 6121 | assert(!pmap_is_noencrypt(phys_page)); |
| 6122 | |
| 6123 | if (cntrl_flags & UPL_SET_LITE) { |
| 6124 | unsigned int pg_num; |
| 6125 | |
| 6126 | pg_num = (unsigned int) ((dst_offset - offset) / PAGE_SIZE); |
| 6127 | assert(pg_num == (dst_offset - offset) / PAGE_SIZE); |
| 6128 | bitmap_set(map: upl->lite_list, n: pg_num); |
| 6129 | |
| 6130 | if (hw_dirty) { |
| 6131 | if (pmap_flushes_delayed == FALSE) { |
| 6132 | pmap_flush_context_init(&pmap_flush_context_storage); |
| 6133 | pmap_flushes_delayed = TRUE; |
| 6134 | } |
| 6135 | pmap_clear_refmod_options(pn: phys_page, |
| 6136 | VM_MEM_MODIFIED, |
| 6137 | PMAP_OPTIONS_NOFLUSH | PMAP_OPTIONS_CLEAR_WRITE, |
| 6138 | &pmap_flush_context_storage); |
| 6139 | } |
| 6140 | |
| 6141 | /* |
| 6142 | * Mark original page as cleaning |
| 6143 | * in place. |
| 6144 | */ |
| 6145 | dst_page->vmp_cleaning = TRUE; |
| 6146 | dst_page->vmp_precious = FALSE; |
| 6147 | } else { |
| 6148 | /* |
| 6149 | * use pageclean setup, it is more |
| 6150 | * convenient even for the pageout |
| 6151 | * cases here |
| 6152 | */ |
| 6153 | vm_object_lock(upl->map_object); |
| 6154 | vm_pageclean_setup(m: dst_page, new_m: alias_page, new_object: upl->map_object, new_offset: size - xfer_size); |
| 6155 | vm_object_unlock(upl->map_object); |
| 6156 | |
| 6157 | alias_page->vmp_absent = FALSE; |
| 6158 | alias_page = NULL; |
| 6159 | } |
| 6160 | if (dirty) { |
| 6161 | SET_PAGE_DIRTY(dst_page, FALSE); |
| 6162 | } else { |
| 6163 | dst_page->vmp_dirty = FALSE; |
| 6164 | } |
| 6165 | |
| 6166 | if (!dirty) { |
| 6167 | dst_page->vmp_precious = TRUE; |
| 6168 | } |
| 6169 | |
| 6170 | if (!(cntrl_flags & UPL_CLEAN_IN_PLACE)) { |
| 6171 | if (!VM_PAGE_WIRED(dst_page)) { |
| 6172 | dst_page->vmp_free_when_done = TRUE; |
| 6173 | } |
| 6174 | } |
| 6175 | } else { |
| 6176 | if ((cntrl_flags & UPL_WILL_MODIFY) && |
| 6177 | (object->vo_copy != last_copy_object || |
| 6178 | object->vo_copy_version != last_copy_version)) { |
| 6179 | /* |
| 6180 | * Honor copy-on-write obligations |
| 6181 | * |
| 6182 | * The copy object has changed since we |
| 6183 | * last synchronized for copy-on-write. |
| 6184 | * Another copy object might have been |
| 6185 | * inserted while we released the object's |
| 6186 | * lock. Since someone could have seen the |
| 6187 | * original contents of the remaining pages |
| 6188 | * through that new object, we have to |
| 6189 | * synchronize with it again for the remaining |
| 6190 | * pages only. The previous pages are "busy" |
| 6191 | * so they can not be seen through the new |
| 6192 | * mapping. The new mapping will see our |
| 6193 | * upcoming changes for those previous pages, |
| 6194 | * but that's OK since they couldn't see what |
| 6195 | * was there before. It's just a race anyway |
| 6196 | * and there's no guarantee of consistency or |
| 6197 | * atomicity. We just don't want new mappings |
| 6198 | * to see both the *before* and *after* pages. |
| 6199 | */ |
| 6200 | if (object->vo_copy != VM_OBJECT_NULL) { |
| 6201 | vm_object_update( |
| 6202 | object, |
| 6203 | offset: dst_offset,/* current offset */ |
| 6204 | size: xfer_size, /* remaining size */ |
| 6205 | NULL, |
| 6206 | NULL, |
| 6207 | FALSE, /* should_return */ |
| 6208 | MEMORY_OBJECT_COPY_SYNC, |
| 6209 | VM_PROT_NO_CHANGE); |
| 6210 | |
| 6211 | VM_PAGEOUT_DEBUG(upl_cow_again, 1); |
| 6212 | VM_PAGEOUT_DEBUG(upl_cow_again_pages, (xfer_size >> PAGE_SHIFT)); |
| 6213 | } |
| 6214 | /* |
| 6215 | * remember the copy object we synced with |
| 6216 | */ |
| 6217 | last_copy_object = object->vo_copy; |
| 6218 | last_copy_version = object->vo_copy_version; |
| 6219 | } |
| 6220 | dst_page = vm_page_lookup(object, offset: dst_offset); |
| 6221 | |
| 6222 | if (dst_page != VM_PAGE_NULL) { |
| 6223 | if ((cntrl_flags & UPL_RET_ONLY_ABSENT)) { |
| 6224 | /* |
| 6225 | * skip over pages already present in the cache |
| 6226 | */ |
| 6227 | if (user_page_list) { |
| 6228 | user_page_list[entry].phys_addr = 0; |
| 6229 | } |
| 6230 | |
| 6231 | goto try_next_page; |
| 6232 | } |
| 6233 | if (dst_page->vmp_fictitious) { |
| 6234 | panic("need corner case for fictitious page" ); |
| 6235 | } |
| 6236 | |
| 6237 | if (dst_page->vmp_busy || dst_page->vmp_cleaning) { |
| 6238 | /* |
| 6239 | * someone else is playing with the |
| 6240 | * page. We will have to wait. |
| 6241 | */ |
| 6242 | PAGE_SLEEP(object, dst_page, THREAD_UNINT); |
| 6243 | |
| 6244 | continue; |
| 6245 | } |
| 6246 | if (dst_page->vmp_laundry) { |
| 6247 | vm_pageout_steal_laundry(page: dst_page, FALSE); |
| 6248 | } |
| 6249 | } else { |
| 6250 | if (object->private) { |
| 6251 | /* |
| 6252 | * This is a nasty wrinkle for users |
| 6253 | * of upl who encounter device or |
| 6254 | * private memory however, it is |
| 6255 | * unavoidable, only a fault can |
| 6256 | * resolve the actual backing |
| 6257 | * physical page by asking the |
| 6258 | * backing device. |
| 6259 | */ |
| 6260 | if (user_page_list) { |
| 6261 | user_page_list[entry].phys_addr = 0; |
| 6262 | } |
| 6263 | |
| 6264 | goto try_next_page; |
| 6265 | } |
| 6266 | if (object->scan_collisions) { |
| 6267 | /* |
| 6268 | * the pageout_scan thread is trying to steal |
| 6269 | * pages from this object, but has run into our |
| 6270 | * lock... grab 2 pages from the head of the object... |
| 6271 | * the first is freed on behalf of pageout_scan, the |
| 6272 | * 2nd is for our own use... we use vm_object_page_grab |
| 6273 | * in both cases to avoid taking pages from the free |
| 6274 | * list since we are under memory pressure and our |
| 6275 | * lock on this object is getting in the way of |
| 6276 | * relieving it |
| 6277 | */ |
| 6278 | dst_page = vm_object_page_grab(object); |
| 6279 | |
| 6280 | if (dst_page != VM_PAGE_NULL) { |
| 6281 | vm_page_release(page: dst_page, |
| 6282 | FALSE); |
| 6283 | } |
| 6284 | |
| 6285 | dst_page = vm_object_page_grab(object); |
| 6286 | } |
| 6287 | if (dst_page == VM_PAGE_NULL) { |
| 6288 | /* |
| 6289 | * need to allocate a page |
| 6290 | */ |
| 6291 | dst_page = vm_page_grab_options(flags: grab_options); |
| 6292 | if (dst_page != VM_PAGE_NULL) { |
| 6293 | page_grab_count++; |
| 6294 | } |
| 6295 | } |
| 6296 | if (dst_page == VM_PAGE_NULL) { |
| 6297 | if ((cntrl_flags & (UPL_RET_ONLY_ABSENT | UPL_NOBLOCK)) == (UPL_RET_ONLY_ABSENT | UPL_NOBLOCK)) { |
| 6298 | /* |
| 6299 | * we don't want to stall waiting for pages to come onto the free list |
| 6300 | * while we're already holding absent pages in this UPL |
| 6301 | * the caller will deal with the empty slots |
| 6302 | */ |
| 6303 | if (user_page_list) { |
| 6304 | user_page_list[entry].phys_addr = 0; |
| 6305 | } |
| 6306 | |
| 6307 | goto try_next_page; |
| 6308 | } |
| 6309 | /* |
| 6310 | * no pages available... wait |
| 6311 | * then try again for the same |
| 6312 | * offset... |
| 6313 | */ |
| 6314 | vm_object_unlock(object); |
| 6315 | |
| 6316 | OSAddAtomic(size_in_pages, &vm_upl_wait_for_pages); |
| 6317 | |
| 6318 | VM_DEBUG_EVENT(vm_upl_page_wait, VM_UPL_PAGE_WAIT, DBG_FUNC_START, vm_upl_wait_for_pages, 0, 0, 0); |
| 6319 | |
| 6320 | VM_PAGE_WAIT(); |
| 6321 | OSAddAtomic(-size_in_pages, &vm_upl_wait_for_pages); |
| 6322 | |
| 6323 | VM_DEBUG_EVENT(vm_upl_page_wait, VM_UPL_PAGE_WAIT, DBG_FUNC_END, vm_upl_wait_for_pages, 0, 0, 0); |
| 6324 | |
| 6325 | vm_object_lock(object); |
| 6326 | |
| 6327 | continue; |
| 6328 | } |
| 6329 | vm_page_insert(page: dst_page, object, offset: dst_offset); |
| 6330 | |
| 6331 | dst_page->vmp_absent = TRUE; |
| 6332 | dst_page->vmp_busy = FALSE; |
| 6333 | |
| 6334 | if (cntrl_flags & UPL_RET_ONLY_ABSENT) { |
| 6335 | /* |
| 6336 | * if UPL_RET_ONLY_ABSENT was specified, |
| 6337 | * than we're definitely setting up a |
| 6338 | * upl for a clustered read/pagein |
| 6339 | * operation... mark the pages as clustered |
| 6340 | * so upl_commit_range can put them on the |
| 6341 | * speculative list |
| 6342 | */ |
| 6343 | dst_page->vmp_clustered = TRUE; |
| 6344 | |
| 6345 | if (!(cntrl_flags & UPL_FILE_IO)) { |
| 6346 | counter_inc(&vm_statistics_pageins); |
| 6347 | } |
| 6348 | } |
| 6349 | } |
| 6350 | phys_page = VM_PAGE_GET_PHYS_PAGE(m: dst_page); |
| 6351 | |
| 6352 | dst_page->vmp_overwriting = TRUE; |
| 6353 | |
| 6354 | if (dst_page->vmp_pmapped) { |
| 6355 | if (!(cntrl_flags & UPL_FILE_IO)) { |
| 6356 | /* |
| 6357 | * eliminate all mappings from the |
| 6358 | * original object and its prodigy |
| 6359 | */ |
| 6360 | refmod_state = pmap_disconnect(phys: phys_page); |
| 6361 | } else { |
| 6362 | refmod_state = pmap_get_refmod(pn: phys_page); |
| 6363 | } |
| 6364 | } else { |
| 6365 | refmod_state = 0; |
| 6366 | } |
| 6367 | |
| 6368 | hw_dirty = refmod_state & VM_MEM_MODIFIED; |
| 6369 | dirty = hw_dirty ? TRUE : dst_page->vmp_dirty; |
| 6370 | |
| 6371 | if (cntrl_flags & UPL_SET_LITE) { |
| 6372 | unsigned int pg_num; |
| 6373 | |
| 6374 | pg_num = (unsigned int) ((dst_offset - offset) / PAGE_SIZE); |
| 6375 | assert(pg_num == (dst_offset - offset) / PAGE_SIZE); |
| 6376 | bitmap_set(map: upl->lite_list, n: pg_num); |
| 6377 | |
| 6378 | if (hw_dirty) { |
| 6379 | pmap_clear_modify(pn: phys_page); |
| 6380 | } |
| 6381 | |
| 6382 | /* |
| 6383 | * Mark original page as cleaning |
| 6384 | * in place. |
| 6385 | */ |
| 6386 | dst_page->vmp_cleaning = TRUE; |
| 6387 | dst_page->vmp_precious = FALSE; |
| 6388 | } else { |
| 6389 | /* |
| 6390 | * use pageclean setup, it is more |
| 6391 | * convenient even for the pageout |
| 6392 | * cases here |
| 6393 | */ |
| 6394 | vm_object_lock(upl->map_object); |
| 6395 | vm_pageclean_setup(m: dst_page, new_m: alias_page, new_object: upl->map_object, new_offset: size - xfer_size); |
| 6396 | vm_object_unlock(upl->map_object); |
| 6397 | |
| 6398 | alias_page->vmp_absent = FALSE; |
| 6399 | alias_page = NULL; |
| 6400 | } |
| 6401 | |
| 6402 | if (cntrl_flags & UPL_REQUEST_SET_DIRTY) { |
| 6403 | upl->flags &= ~UPL_CLEAR_DIRTY; |
| 6404 | upl->flags |= UPL_SET_DIRTY; |
| 6405 | dirty = TRUE; |
| 6406 | /* |
| 6407 | * Page belonging to a code-signed object is about to |
| 6408 | * be written. Mark it tainted and disconnect it from |
| 6409 | * all pmaps so processes have to fault it back in and |
| 6410 | * deal with the tainted bit. |
| 6411 | */ |
| 6412 | if (object->code_signed && dst_page->vmp_cs_tainted != VMP_CS_ALL_TRUE) { |
| 6413 | dst_page->vmp_cs_tainted = VMP_CS_ALL_TRUE; |
| 6414 | vm_page_upl_tainted++; |
| 6415 | if (dst_page->vmp_pmapped) { |
| 6416 | refmod_state = pmap_disconnect(phys: VM_PAGE_GET_PHYS_PAGE(m: dst_page)); |
| 6417 | if (refmod_state & VM_MEM_REFERENCED) { |
| 6418 | dst_page->vmp_reference = TRUE; |
| 6419 | } |
| 6420 | } |
| 6421 | } |
| 6422 | } else if (cntrl_flags & UPL_CLEAN_IN_PLACE) { |
| 6423 | /* |
| 6424 | * clean in place for read implies |
| 6425 | * that a write will be done on all |
| 6426 | * the pages that are dirty before |
| 6427 | * a upl commit is done. The caller |
| 6428 | * is obligated to preserve the |
| 6429 | * contents of all pages marked dirty |
| 6430 | */ |
| 6431 | upl->flags |= UPL_CLEAR_DIRTY; |
| 6432 | } |
| 6433 | dst_page->vmp_dirty = dirty; |
| 6434 | |
| 6435 | if (!dirty) { |
| 6436 | dst_page->vmp_precious = TRUE; |
| 6437 | } |
| 6438 | |
| 6439 | if (!VM_PAGE_WIRED(dst_page)) { |
| 6440 | /* |
| 6441 | * deny access to the target page while |
| 6442 | * it is being worked on |
| 6443 | */ |
| 6444 | dst_page->vmp_busy = TRUE; |
| 6445 | } else { |
| 6446 | dwp->dw_mask |= DW_vm_page_wire; |
| 6447 | } |
| 6448 | |
| 6449 | /* |
| 6450 | * We might be about to satisfy a fault which has been |
| 6451 | * requested. So no need for the "restart" bit. |
| 6452 | */ |
| 6453 | dst_page->vmp_restart = FALSE; |
| 6454 | if (!dst_page->vmp_absent && !(cntrl_flags & UPL_WILL_MODIFY)) { |
| 6455 | /* |
| 6456 | * expect the page to be used |
| 6457 | */ |
| 6458 | dwp->dw_mask |= DW_set_reference; |
| 6459 | } |
| 6460 | if (cntrl_flags & UPL_PRECIOUS) { |
| 6461 | if (object->internal) { |
| 6462 | SET_PAGE_DIRTY(dst_page, FALSE); |
| 6463 | dst_page->vmp_precious = FALSE; |
| 6464 | } else { |
| 6465 | dst_page->vmp_precious = TRUE; |
| 6466 | } |
| 6467 | } else { |
| 6468 | dst_page->vmp_precious = FALSE; |
| 6469 | } |
| 6470 | } |
| 6471 | if (dst_page->vmp_busy) { |
| 6472 | upl->flags |= UPL_HAS_BUSY; |
| 6473 | } |
| 6474 | |
| 6475 | if (phys_page > upl->highest_page) { |
| 6476 | upl->highest_page = phys_page; |
| 6477 | } |
| 6478 | assert(!pmap_is_noencrypt(phys_page)); |
| 6479 | if (user_page_list) { |
| 6480 | user_page_list[entry].phys_addr = phys_page; |
| 6481 | user_page_list[entry].free_when_done = dst_page->vmp_free_when_done; |
| 6482 | user_page_list[entry].absent = dst_page->vmp_absent; |
| 6483 | user_page_list[entry].dirty = dst_page->vmp_dirty; |
| 6484 | user_page_list[entry].precious = dst_page->vmp_precious; |
| 6485 | user_page_list[entry].device = FALSE; |
| 6486 | user_page_list[entry].needed = FALSE; |
| 6487 | if (dst_page->vmp_clustered == TRUE) { |
| 6488 | user_page_list[entry].speculative = (dst_page->vmp_q_state == VM_PAGE_ON_SPECULATIVE_Q) ? TRUE : FALSE; |
| 6489 | } else { |
| 6490 | user_page_list[entry].speculative = FALSE; |
| 6491 | } |
| 6492 | user_page_list[entry].cs_validated = dst_page->vmp_cs_validated; |
| 6493 | user_page_list[entry].cs_tainted = dst_page->vmp_cs_tainted; |
| 6494 | user_page_list[entry].cs_nx = dst_page->vmp_cs_nx; |
| 6495 | user_page_list[entry].mark = FALSE; |
| 6496 | } |
| 6497 | /* |
| 6498 | * if UPL_RET_ONLY_ABSENT is set, then |
| 6499 | * we are working with a fresh page and we've |
| 6500 | * just set the clustered flag on it to |
| 6501 | * indicate that it was drug in as part of a |
| 6502 | * speculative cluster... so leave it alone |
| 6503 | */ |
| 6504 | if (!(cntrl_flags & UPL_RET_ONLY_ABSENT)) { |
| 6505 | /* |
| 6506 | * someone is explicitly grabbing this page... |
| 6507 | * update clustered and speculative state |
| 6508 | * |
| 6509 | */ |
| 6510 | if (dst_page->vmp_clustered) { |
| 6511 | VM_PAGE_CONSUME_CLUSTERED(dst_page); |
| 6512 | } |
| 6513 | } |
| 6514 | try_next_page: |
| 6515 | if (dwp->dw_mask) { |
| 6516 | if (dwp->dw_mask & DW_vm_page_activate) { |
| 6517 | counter_inc(&vm_statistics_reactivations); |
| 6518 | } |
| 6519 | |
| 6520 | VM_PAGE_ADD_DELAYED_WORK(dwp, dst_page, dw_count); |
| 6521 | |
| 6522 | if (dw_count >= dw_limit) { |
| 6523 | vm_page_do_delayed_work(object, tag, dwp: dwp_start, dw_count); |
| 6524 | |
| 6525 | dwp = dwp_start; |
| 6526 | dw_count = 0; |
| 6527 | } |
| 6528 | } |
| 6529 | entry++; |
| 6530 | dst_offset += PAGE_SIZE_64; |
| 6531 | xfer_size -= PAGE_SIZE; |
| 6532 | } |
| 6533 | if (dw_count) { |
| 6534 | vm_page_do_delayed_work(object, tag, dwp: dwp_start, dw_count); |
| 6535 | dwp = dwp_start; |
| 6536 | dw_count = 0; |
| 6537 | } |
| 6538 | |
| 6539 | if (alias_page != NULL) { |
| 6540 | VM_PAGE_FREE(alias_page); |
| 6541 | } |
| 6542 | if (pmap_flushes_delayed == TRUE) { |
| 6543 | pmap_flush(&pmap_flush_context_storage); |
| 6544 | } |
| 6545 | |
| 6546 | if (page_list_count != NULL) { |
| 6547 | if (upl->flags & UPL_INTERNAL) { |
| 6548 | *page_list_count = 0; |
| 6549 | } else if (*page_list_count > entry) { |
| 6550 | *page_list_count = entry; |
| 6551 | } |
| 6552 | } |
| 6553 | #if UPL_DEBUG |
| 6554 | upl->upl_state = 1; |
| 6555 | #endif |
| 6556 | vm_object_unlock(object); |
| 6557 | |
| 6558 | VM_DEBUG_CONSTANT_EVENT(vm_object_upl_request, VM_UPL_REQUEST, DBG_FUNC_END, page_grab_count, 0, 0, 0); |
| 6559 | #if DEVELOPMENT || DEBUG |
| 6560 | if (task != NULL) { |
| 6561 | ledger_credit(task->ledger, task_ledgers.pages_grabbed_upl, page_grab_count); |
| 6562 | } |
| 6563 | #endif /* DEVELOPMENT || DEBUG */ |
| 6564 | |
| 6565 | if (dwp_start && dwp_finish_ctx) { |
| 6566 | vm_page_delayed_work_finish_ctx(dwp: dwp_start); |
| 6567 | dwp_start = dwp = NULL; |
| 6568 | } |
| 6569 | |
| 6570 | return KERN_SUCCESS; |
| 6571 | } |
| 6572 | |
| 6573 | /* |
| 6574 | * Routine: vm_object_super_upl_request |
| 6575 | * Purpose: |
| 6576 | * Cause the population of a portion of a vm_object |
| 6577 | * in much the same way as memory_object_upl_request. |
| 6578 | * Depending on the nature of the request, the pages |
| 6579 | * returned may be contain valid data or be uninitialized. |
| 6580 | * However, the region may be expanded up to the super |
| 6581 | * cluster size provided. |
| 6582 | */ |
| 6583 | |
| 6584 | __private_extern__ kern_return_t |
| 6585 | vm_object_super_upl_request( |
| 6586 | vm_object_t object, |
| 6587 | vm_object_offset_t offset, |
| 6588 | upl_size_t size, |
| 6589 | upl_size_t super_cluster, |
| 6590 | upl_t *upl, |
| 6591 | upl_page_info_t *user_page_list, |
| 6592 | unsigned int *page_list_count, |
| 6593 | upl_control_flags_t cntrl_flags, |
| 6594 | vm_tag_t tag) |
| 6595 | { |
| 6596 | if (object->paging_offset > offset || ((cntrl_flags & UPL_VECTOR) == UPL_VECTOR)) { |
| 6597 | return KERN_FAILURE; |
| 6598 | } |
| 6599 | |
| 6600 | assert(object->paging_in_progress); |
| 6601 | offset = offset - object->paging_offset; |
| 6602 | |
| 6603 | if (super_cluster > size) { |
| 6604 | vm_object_offset_t base_offset; |
| 6605 | upl_size_t super_size; |
| 6606 | vm_object_size_t super_size_64; |
| 6607 | |
| 6608 | base_offset = (offset & ~((vm_object_offset_t) super_cluster - 1)); |
| 6609 | super_size = (offset + size) > (base_offset + super_cluster) ? super_cluster << 1 : super_cluster; |
| 6610 | super_size_64 = ((base_offset + super_size) > object->vo_size) ? (object->vo_size - base_offset) : super_size; |
| 6611 | super_size = (upl_size_t) super_size_64; |
| 6612 | assert(super_size == super_size_64); |
| 6613 | |
| 6614 | if (offset > (base_offset + super_size)) { |
| 6615 | panic("vm_object_super_upl_request: Missed target pageout" |
| 6616 | " %#llx,%#llx, %#x, %#x, %#x, %#llx\n" , |
| 6617 | offset, base_offset, super_size, super_cluster, |
| 6618 | size, object->paging_offset); |
| 6619 | } |
| 6620 | /* |
| 6621 | * apparently there is a case where the vm requests a |
| 6622 | * page to be written out who's offset is beyond the |
| 6623 | * object size |
| 6624 | */ |
| 6625 | if ((offset + size) > (base_offset + super_size)) { |
| 6626 | super_size_64 = (offset + size) - base_offset; |
| 6627 | super_size = (upl_size_t) super_size_64; |
| 6628 | assert(super_size == super_size_64); |
| 6629 | } |
| 6630 | |
| 6631 | offset = base_offset; |
| 6632 | size = super_size; |
| 6633 | } |
| 6634 | return vm_object_upl_request(object, offset, size, upl_ptr: upl, user_page_list, page_list_count, cntrl_flags, tag); |
| 6635 | } |
| 6636 | |
| 6637 | int cs_executable_create_upl = 0; |
| 6638 | extern int proc_selfpid(void); |
| 6639 | extern char *proc_name_address(void *p); |
| 6640 | |
| 6641 | kern_return_t |
| 6642 | vm_map_create_upl( |
| 6643 | vm_map_t map, |
| 6644 | vm_map_address_t offset, |
| 6645 | upl_size_t *upl_size, |
| 6646 | upl_t *upl, |
| 6647 | upl_page_info_array_t page_list, |
| 6648 | unsigned int *count, |
| 6649 | upl_control_flags_t *flags, |
| 6650 | vm_tag_t tag) |
| 6651 | { |
| 6652 | vm_map_entry_t entry; |
| 6653 | upl_control_flags_t caller_flags; |
| 6654 | int force_data_sync; |
| 6655 | int sync_cow_data; |
| 6656 | vm_object_t local_object; |
| 6657 | vm_map_offset_t local_offset; |
| 6658 | vm_map_offset_t local_start; |
| 6659 | kern_return_t ret; |
| 6660 | vm_map_address_t original_offset; |
| 6661 | vm_map_size_t original_size, adjusted_size; |
| 6662 | vm_map_offset_t local_entry_start; |
| 6663 | vm_object_offset_t local_entry_offset; |
| 6664 | vm_object_offset_t offset_in_mapped_page; |
| 6665 | boolean_t release_map = FALSE; |
| 6666 | |
| 6667 | |
| 6668 | start_with_map: |
| 6669 | |
| 6670 | original_offset = offset; |
| 6671 | original_size = *upl_size; |
| 6672 | adjusted_size = original_size; |
| 6673 | |
| 6674 | caller_flags = *flags; |
| 6675 | |
| 6676 | if (caller_flags & ~UPL_VALID_FLAGS) { |
| 6677 | /* |
| 6678 | * For forward compatibility's sake, |
| 6679 | * reject any unknown flag. |
| 6680 | */ |
| 6681 | ret = KERN_INVALID_VALUE; |
| 6682 | goto done; |
| 6683 | } |
| 6684 | force_data_sync = (caller_flags & UPL_FORCE_DATA_SYNC); |
| 6685 | sync_cow_data = !(caller_flags & UPL_COPYOUT_FROM); |
| 6686 | |
| 6687 | if (upl == NULL) { |
| 6688 | ret = KERN_INVALID_ARGUMENT; |
| 6689 | goto done; |
| 6690 | } |
| 6691 | |
| 6692 | REDISCOVER_ENTRY: |
| 6693 | vm_map_lock_read(map); |
| 6694 | |
| 6695 | if (!vm_map_lookup_entry(map, address: offset, entry: &entry)) { |
| 6696 | vm_map_unlock_read(map); |
| 6697 | ret = KERN_FAILURE; |
| 6698 | goto done; |
| 6699 | } |
| 6700 | |
| 6701 | local_entry_start = entry->vme_start; |
| 6702 | local_entry_offset = VME_OFFSET(entry); |
| 6703 | |
| 6704 | if (VM_MAP_PAGE_SHIFT(map) < PAGE_SHIFT) { |
| 6705 | DEBUG4K_UPL("map %p (%d) offset 0x%llx size 0x%x flags 0x%llx\n" , map, VM_MAP_PAGE_SHIFT(map), (uint64_t)offset, *upl_size, *flags); |
| 6706 | } |
| 6707 | |
| 6708 | if (entry->vme_end - original_offset < adjusted_size) { |
| 6709 | adjusted_size = entry->vme_end - original_offset; |
| 6710 | assert(adjusted_size > 0); |
| 6711 | *upl_size = (upl_size_t) adjusted_size; |
| 6712 | assert(*upl_size == adjusted_size); |
| 6713 | } |
| 6714 | |
| 6715 | if (caller_flags & UPL_QUERY_OBJECT_TYPE) { |
| 6716 | *flags = 0; |
| 6717 | |
| 6718 | if (!entry->is_sub_map && |
| 6719 | VME_OBJECT(entry) != VM_OBJECT_NULL) { |
| 6720 | if (VME_OBJECT(entry)->private) { |
| 6721 | *flags = UPL_DEV_MEMORY; |
| 6722 | } |
| 6723 | |
| 6724 | if (VME_OBJECT(entry)->phys_contiguous) { |
| 6725 | *flags |= UPL_PHYS_CONTIG; |
| 6726 | } |
| 6727 | } |
| 6728 | vm_map_unlock_read(map); |
| 6729 | ret = KERN_SUCCESS; |
| 6730 | goto done; |
| 6731 | } |
| 6732 | |
| 6733 | offset_in_mapped_page = 0; |
| 6734 | if (VM_MAP_PAGE_SIZE(map) < PAGE_SIZE) { |
| 6735 | offset = vm_map_trunc_page(original_offset, VM_MAP_PAGE_MASK(map)); |
| 6736 | *upl_size = (upl_size_t) |
| 6737 | (vm_map_round_page(original_offset + adjusted_size, |
| 6738 | VM_MAP_PAGE_MASK(map)) |
| 6739 | - offset); |
| 6740 | |
| 6741 | offset_in_mapped_page = original_offset - offset; |
| 6742 | assert(offset_in_mapped_page < VM_MAP_PAGE_SIZE(map)); |
| 6743 | |
| 6744 | DEBUG4K_UPL("map %p (%d) offset 0x%llx size 0x%llx flags 0x%llx -> offset 0x%llx adjusted_size 0x%llx *upl_size 0x%x offset_in_mapped_page 0x%llx\n" , map, VM_MAP_PAGE_SHIFT(map), (uint64_t)original_offset, (uint64_t)original_size, *flags, (uint64_t)offset, (uint64_t)adjusted_size, *upl_size, offset_in_mapped_page); |
| 6745 | } |
| 6746 | |
| 6747 | if (!entry->is_sub_map) { |
| 6748 | if (VME_OBJECT(entry) == VM_OBJECT_NULL || |
| 6749 | !VME_OBJECT(entry)->phys_contiguous) { |
| 6750 | if (*upl_size > MAX_UPL_SIZE_BYTES) { |
| 6751 | *upl_size = MAX_UPL_SIZE_BYTES; |
| 6752 | } |
| 6753 | } |
| 6754 | |
| 6755 | /* |
| 6756 | * Create an object if necessary. |
| 6757 | */ |
| 6758 | if (VME_OBJECT(entry) == VM_OBJECT_NULL) { |
| 6759 | if (vm_map_lock_read_to_write(map)) { |
| 6760 | goto REDISCOVER_ENTRY; |
| 6761 | } |
| 6762 | |
| 6763 | VME_OBJECT_SET(entry, |
| 6764 | object: vm_object_allocate(size: (vm_size_t) |
| 6765 | vm_object_round_page((entry->vme_end - entry->vme_start))), |
| 6766 | false, context: 0); |
| 6767 | VME_OFFSET_SET(entry, offset: 0); |
| 6768 | assert(entry->use_pmap); |
| 6769 | |
| 6770 | vm_map_lock_write_to_read(map); |
| 6771 | } |
| 6772 | |
| 6773 | if (!(caller_flags & UPL_COPYOUT_FROM) && |
| 6774 | !(entry->protection & VM_PROT_WRITE)) { |
| 6775 | vm_map_unlock_read(map); |
| 6776 | ret = KERN_PROTECTION_FAILURE; |
| 6777 | goto done; |
| 6778 | } |
| 6779 | } |
| 6780 | |
| 6781 | #if !XNU_TARGET_OS_OSX |
| 6782 | if (map->pmap != kernel_pmap && |
| 6783 | (caller_flags & UPL_COPYOUT_FROM) && |
| 6784 | (entry->protection & VM_PROT_EXECUTE) && |
| 6785 | !(entry->protection & VM_PROT_WRITE)) { |
| 6786 | vm_offset_t kaddr; |
| 6787 | vm_size_t ksize; |
| 6788 | |
| 6789 | /* |
| 6790 | * We're about to create a read-only UPL backed by |
| 6791 | * memory from an executable mapping. |
| 6792 | * Wiring the pages would result in the pages being copied |
| 6793 | * (due to the "MAP_PRIVATE" mapping) and no longer |
| 6794 | * code-signed, so no longer eligible for execution. |
| 6795 | * Instead, let's copy the data into a kernel buffer and |
| 6796 | * create the UPL from this kernel buffer. |
| 6797 | * The kernel buffer is then freed, leaving the UPL holding |
| 6798 | * the last reference on the VM object, so the memory will |
| 6799 | * be released when the UPL is committed. |
| 6800 | */ |
| 6801 | |
| 6802 | vm_map_unlock_read(map); |
| 6803 | entry = VM_MAP_ENTRY_NULL; |
| 6804 | /* allocate kernel buffer */ |
| 6805 | ksize = round_page(*upl_size); |
| 6806 | kaddr = 0; |
| 6807 | ret = kmem_alloc(kernel_map, &kaddr, ksize, |
| 6808 | KMA_PAGEABLE | KMA_DATA, tag); |
| 6809 | if (ret == KERN_SUCCESS) { |
| 6810 | /* copyin the user data */ |
| 6811 | ret = copyinmap(map, offset, (void *)kaddr, *upl_size); |
| 6812 | } |
| 6813 | if (ret == KERN_SUCCESS) { |
| 6814 | if (ksize > *upl_size) { |
| 6815 | /* zero out the extra space in kernel buffer */ |
| 6816 | memset((void *)(kaddr + *upl_size), |
| 6817 | 0, |
| 6818 | ksize - *upl_size); |
| 6819 | } |
| 6820 | /* create the UPL from the kernel buffer */ |
| 6821 | vm_object_offset_t offset_in_object; |
| 6822 | vm_object_offset_t offset_in_object_page; |
| 6823 | |
| 6824 | offset_in_object = offset - local_entry_start + local_entry_offset; |
| 6825 | offset_in_object_page = offset_in_object - vm_object_trunc_page(offset_in_object); |
| 6826 | assert(offset_in_object_page < PAGE_SIZE); |
| 6827 | assert(offset_in_object_page + offset_in_mapped_page < PAGE_SIZE); |
| 6828 | *upl_size -= offset_in_object_page + offset_in_mapped_page; |
| 6829 | ret = vm_map_create_upl(kernel_map, |
| 6830 | (vm_map_address_t)(kaddr + offset_in_object_page + offset_in_mapped_page), |
| 6831 | upl_size, upl, page_list, count, flags, tag); |
| 6832 | } |
| 6833 | if (kaddr != 0) { |
| 6834 | /* free the kernel buffer */ |
| 6835 | kmem_free(kernel_map, kaddr, ksize); |
| 6836 | kaddr = 0; |
| 6837 | ksize = 0; |
| 6838 | } |
| 6839 | #if DEVELOPMENT || DEBUG |
| 6840 | DTRACE_VM4(create_upl_from_executable, |
| 6841 | vm_map_t, map, |
| 6842 | vm_map_address_t, offset, |
| 6843 | upl_size_t, *upl_size, |
| 6844 | kern_return_t, ret); |
| 6845 | #endif /* DEVELOPMENT || DEBUG */ |
| 6846 | goto done; |
| 6847 | } |
| 6848 | #endif /* !XNU_TARGET_OS_OSX */ |
| 6849 | |
| 6850 | if (!entry->is_sub_map) { |
| 6851 | local_object = VME_OBJECT(entry); |
| 6852 | assert(local_object != VM_OBJECT_NULL); |
| 6853 | } |
| 6854 | |
| 6855 | if (!entry->is_sub_map && |
| 6856 | !entry->needs_copy && |
| 6857 | *upl_size != 0 && |
| 6858 | local_object->vo_size > *upl_size && /* partial UPL */ |
| 6859 | entry->wired_count == 0 && /* No COW for entries that are wired */ |
| 6860 | (map->pmap != kernel_pmap) && /* alias checks */ |
| 6861 | (vm_map_entry_should_cow_for_true_share(entry) /* case 1 */ |
| 6862 | || |
| 6863 | ( /* case 2 */ |
| 6864 | local_object->internal && |
| 6865 | (local_object->copy_strategy == MEMORY_OBJECT_COPY_SYMMETRIC) && |
| 6866 | local_object->ref_count > 1))) { |
| 6867 | vm_prot_t prot; |
| 6868 | |
| 6869 | /* |
| 6870 | * Case 1: |
| 6871 | * Set up the targeted range for copy-on-write to avoid |
| 6872 | * applying true_share/copy_delay to the entire object. |
| 6873 | * |
| 6874 | * Case 2: |
| 6875 | * This map entry covers only part of an internal |
| 6876 | * object. There could be other map entries covering |
| 6877 | * other areas of this object and some of these map |
| 6878 | * entries could be marked as "needs_copy", which |
| 6879 | * assumes that the object is COPY_SYMMETRIC. |
| 6880 | * To avoid marking this object as COPY_DELAY and |
| 6881 | * "true_share", let's shadow it and mark the new |
| 6882 | * (smaller) object as "true_share" and COPY_DELAY. |
| 6883 | */ |
| 6884 | |
| 6885 | if (vm_map_lock_read_to_write(map)) { |
| 6886 | goto REDISCOVER_ENTRY; |
| 6887 | } |
| 6888 | vm_map_lock_assert_exclusive(map); |
| 6889 | assert(VME_OBJECT(entry) == local_object); |
| 6890 | |
| 6891 | vm_map_clip_start(map, |
| 6892 | entry, |
| 6893 | vm_map_trunc_page(offset, |
| 6894 | VM_MAP_PAGE_MASK(map))); |
| 6895 | vm_map_clip_end(map, |
| 6896 | entry, |
| 6897 | vm_map_round_page(offset + *upl_size, |
| 6898 | VM_MAP_PAGE_MASK(map))); |
| 6899 | if ((entry->vme_end - offset) < *upl_size) { |
| 6900 | *upl_size = (upl_size_t) (entry->vme_end - offset); |
| 6901 | assert(*upl_size == entry->vme_end - offset); |
| 6902 | } |
| 6903 | |
| 6904 | prot = entry->protection & ~VM_PROT_WRITE; |
| 6905 | if (override_nx(map, VME_ALIAS(entry)) && prot) { |
| 6906 | prot |= VM_PROT_EXECUTE; |
| 6907 | } |
| 6908 | vm_object_pmap_protect(object: local_object, |
| 6909 | offset: VME_OFFSET(entry), |
| 6910 | size: entry->vme_end - entry->vme_start, |
| 6911 | pmap: ((entry->is_shared || |
| 6912 | map->mapped_in_other_pmaps) |
| 6913 | ? PMAP_NULL |
| 6914 | : map->pmap), |
| 6915 | VM_MAP_PAGE_SIZE(map), |
| 6916 | pmap_start: entry->vme_start, |
| 6917 | prot); |
| 6918 | |
| 6919 | assert(entry->wired_count == 0); |
| 6920 | |
| 6921 | /* |
| 6922 | * Lock the VM object and re-check its status: if it's mapped |
| 6923 | * in another address space, we could still be racing with |
| 6924 | * another thread holding that other VM map exclusively. |
| 6925 | */ |
| 6926 | vm_object_lock(local_object); |
| 6927 | if (local_object->true_share) { |
| 6928 | /* object is already in proper state: no COW needed */ |
| 6929 | assert(local_object->copy_strategy != |
| 6930 | MEMORY_OBJECT_COPY_SYMMETRIC); |
| 6931 | } else { |
| 6932 | /* not true_share: ask for copy-on-write below */ |
| 6933 | assert(local_object->copy_strategy == |
| 6934 | MEMORY_OBJECT_COPY_SYMMETRIC); |
| 6935 | entry->needs_copy = TRUE; |
| 6936 | } |
| 6937 | vm_object_unlock(local_object); |
| 6938 | |
| 6939 | vm_map_lock_write_to_read(map); |
| 6940 | } |
| 6941 | |
| 6942 | if (entry->needs_copy) { |
| 6943 | /* |
| 6944 | * Honor copy-on-write for COPY_SYMMETRIC |
| 6945 | * strategy. |
| 6946 | */ |
| 6947 | vm_map_t local_map; |
| 6948 | vm_object_t object; |
| 6949 | vm_object_offset_t new_offset; |
| 6950 | vm_prot_t prot; |
| 6951 | boolean_t wired; |
| 6952 | vm_map_version_t version; |
| 6953 | vm_map_t real_map; |
| 6954 | vm_prot_t fault_type; |
| 6955 | |
| 6956 | local_map = map; |
| 6957 | |
| 6958 | if (caller_flags & UPL_COPYOUT_FROM) { |
| 6959 | fault_type = VM_PROT_READ | VM_PROT_COPY; |
| 6960 | vm_counters.create_upl_extra_cow++; |
| 6961 | vm_counters.create_upl_extra_cow_pages += |
| 6962 | (entry->vme_end - entry->vme_start) / PAGE_SIZE; |
| 6963 | } else { |
| 6964 | fault_type = VM_PROT_WRITE; |
| 6965 | } |
| 6966 | if (vm_map_lookup_and_lock_object(var_map: &local_map, |
| 6967 | vaddr: offset, fault_type, |
| 6968 | OBJECT_LOCK_EXCLUSIVE, |
| 6969 | out_version: &version, object: &object, |
| 6970 | offset: &new_offset, out_prot: &prot, wired: &wired, |
| 6971 | NULL, |
| 6972 | real_map: &real_map, NULL) != KERN_SUCCESS) { |
| 6973 | if (fault_type == VM_PROT_WRITE) { |
| 6974 | vm_counters.create_upl_lookup_failure_write++; |
| 6975 | } else { |
| 6976 | vm_counters.create_upl_lookup_failure_copy++; |
| 6977 | } |
| 6978 | vm_map_unlock_read(local_map); |
| 6979 | ret = KERN_FAILURE; |
| 6980 | goto done; |
| 6981 | } |
| 6982 | if (real_map != local_map) { |
| 6983 | vm_map_unlock(real_map); |
| 6984 | } |
| 6985 | vm_map_unlock_read(local_map); |
| 6986 | |
| 6987 | vm_object_unlock(object); |
| 6988 | |
| 6989 | goto REDISCOVER_ENTRY; |
| 6990 | } |
| 6991 | |
| 6992 | if (entry->is_sub_map) { |
| 6993 | vm_map_t submap; |
| 6994 | |
| 6995 | submap = VME_SUBMAP(entry); |
| 6996 | local_start = entry->vme_start; |
| 6997 | local_offset = (vm_map_offset_t)VME_OFFSET(entry); |
| 6998 | |
| 6999 | vm_map_reference(map: submap); |
| 7000 | vm_map_unlock_read(map); |
| 7001 | |
| 7002 | DEBUG4K_UPL("map %p offset 0x%llx (0x%llx) size 0x%x (adjusted 0x%llx original 0x%llx) offset_in_mapped_page 0x%llx submap %p\n" , map, (uint64_t)offset, (uint64_t)original_offset, *upl_size, (uint64_t)adjusted_size, (uint64_t)original_size, offset_in_mapped_page, submap); |
| 7003 | offset += offset_in_mapped_page; |
| 7004 | *upl_size -= offset_in_mapped_page; |
| 7005 | |
| 7006 | if (release_map) { |
| 7007 | vm_map_deallocate(map); |
| 7008 | } |
| 7009 | map = submap; |
| 7010 | release_map = TRUE; |
| 7011 | offset = local_offset + (offset - local_start); |
| 7012 | goto start_with_map; |
| 7013 | } |
| 7014 | |
| 7015 | if (sync_cow_data && |
| 7016 | (VME_OBJECT(entry)->shadow || |
| 7017 | VME_OBJECT(entry)->vo_copy)) { |
| 7018 | local_object = VME_OBJECT(entry); |
| 7019 | local_start = entry->vme_start; |
| 7020 | local_offset = (vm_map_offset_t)VME_OFFSET(entry); |
| 7021 | |
| 7022 | vm_object_reference(local_object); |
| 7023 | vm_map_unlock_read(map); |
| 7024 | |
| 7025 | if (local_object->shadow && local_object->vo_copy) { |
| 7026 | vm_object_lock_request(object: local_object->shadow, |
| 7027 | offset: ((vm_object_offset_t) |
| 7028 | ((offset - local_start) + |
| 7029 | local_offset) + |
| 7030 | local_object->vo_shadow_offset), |
| 7031 | size: *upl_size, FALSE, |
| 7032 | MEMORY_OBJECT_DATA_SYNC, |
| 7033 | VM_PROT_NO_CHANGE); |
| 7034 | } |
| 7035 | sync_cow_data = FALSE; |
| 7036 | vm_object_deallocate(object: local_object); |
| 7037 | |
| 7038 | goto REDISCOVER_ENTRY; |
| 7039 | } |
| 7040 | if (force_data_sync) { |
| 7041 | local_object = VME_OBJECT(entry); |
| 7042 | local_start = entry->vme_start; |
| 7043 | local_offset = (vm_map_offset_t)VME_OFFSET(entry); |
| 7044 | |
| 7045 | vm_object_reference(local_object); |
| 7046 | vm_map_unlock_read(map); |
| 7047 | |
| 7048 | vm_object_lock_request(object: local_object, |
| 7049 | offset: ((vm_object_offset_t) |
| 7050 | ((offset - local_start) + |
| 7051 | local_offset)), |
| 7052 | size: (vm_object_size_t)*upl_size, |
| 7053 | FALSE, |
| 7054 | MEMORY_OBJECT_DATA_SYNC, |
| 7055 | VM_PROT_NO_CHANGE); |
| 7056 | |
| 7057 | force_data_sync = FALSE; |
| 7058 | vm_object_deallocate(object: local_object); |
| 7059 | |
| 7060 | goto REDISCOVER_ENTRY; |
| 7061 | } |
| 7062 | if (VME_OBJECT(entry)->private) { |
| 7063 | *flags = UPL_DEV_MEMORY; |
| 7064 | } else { |
| 7065 | *flags = 0; |
| 7066 | } |
| 7067 | |
| 7068 | if (VME_OBJECT(entry)->phys_contiguous) { |
| 7069 | *flags |= UPL_PHYS_CONTIG; |
| 7070 | } |
| 7071 | |
| 7072 | local_object = VME_OBJECT(entry); |
| 7073 | local_offset = (vm_map_offset_t)VME_OFFSET(entry); |
| 7074 | local_start = entry->vme_start; |
| 7075 | |
| 7076 | /* |
| 7077 | * Wiring will copy the pages to the shadow object. |
| 7078 | * The shadow object will not be code-signed so |
| 7079 | * attempting to execute code from these copied pages |
| 7080 | * would trigger a code-signing violation. |
| 7081 | */ |
| 7082 | if (entry->protection & VM_PROT_EXECUTE) { |
| 7083 | #if MACH_ASSERT |
| 7084 | printf("pid %d[%s] create_upl out of executable range from " |
| 7085 | "0x%llx to 0x%llx: side effects may include " |
| 7086 | "code-signing violations later on\n" , |
| 7087 | proc_selfpid(), |
| 7088 | (get_bsdtask_info(current_task()) |
| 7089 | ? proc_name_address(get_bsdtask_info(current_task())) |
| 7090 | : "?" ), |
| 7091 | (uint64_t) entry->vme_start, |
| 7092 | (uint64_t) entry->vme_end); |
| 7093 | #endif /* MACH_ASSERT */ |
| 7094 | DTRACE_VM2(cs_executable_create_upl, |
| 7095 | uint64_t, (uint64_t)entry->vme_start, |
| 7096 | uint64_t, (uint64_t)entry->vme_end); |
| 7097 | cs_executable_create_upl++; |
| 7098 | } |
| 7099 | |
| 7100 | vm_object_lock(local_object); |
| 7101 | |
| 7102 | /* |
| 7103 | * Ensure that this object is "true_share" and "copy_delay" now, |
| 7104 | * while we're still holding the VM map lock. After we unlock the map, |
| 7105 | * anything could happen to that mapping, including some copy-on-write |
| 7106 | * activity. We need to make sure that the IOPL will point at the |
| 7107 | * same memory as the mapping. |
| 7108 | */ |
| 7109 | if (local_object->true_share) { |
| 7110 | assert(local_object->copy_strategy != |
| 7111 | MEMORY_OBJECT_COPY_SYMMETRIC); |
| 7112 | } else if (!is_kernel_object(local_object) && |
| 7113 | local_object != compressor_object && |
| 7114 | !local_object->phys_contiguous) { |
| 7115 | #if VM_OBJECT_TRACKING_OP_TRUESHARE |
| 7116 | if (!local_object->true_share && |
| 7117 | vm_object_tracking_btlog) { |
| 7118 | btlog_record(vm_object_tracking_btlog, local_object, |
| 7119 | VM_OBJECT_TRACKING_OP_TRUESHARE, |
| 7120 | btref_get(__builtin_frame_address(0), 0)); |
| 7121 | } |
| 7122 | #endif /* VM_OBJECT_TRACKING_OP_TRUESHARE */ |
| 7123 | VM_OBJECT_SET_TRUE_SHARE(object: local_object, TRUE); |
| 7124 | if (local_object->copy_strategy == |
| 7125 | MEMORY_OBJECT_COPY_SYMMETRIC) { |
| 7126 | local_object->copy_strategy = MEMORY_OBJECT_COPY_DELAY; |
| 7127 | } |
| 7128 | } |
| 7129 | |
| 7130 | vm_object_reference_locked(local_object); |
| 7131 | vm_object_unlock(local_object); |
| 7132 | |
| 7133 | vm_map_unlock_read(map); |
| 7134 | |
| 7135 | offset += offset_in_mapped_page; |
| 7136 | assert(*upl_size > offset_in_mapped_page); |
| 7137 | *upl_size -= offset_in_mapped_page; |
| 7138 | |
| 7139 | ret = vm_object_iopl_request(object: local_object, |
| 7140 | offset: ((vm_object_offset_t) |
| 7141 | ((offset - local_start) + local_offset)), |
| 7142 | size: *upl_size, |
| 7143 | upl_ptr: upl, |
| 7144 | user_page_list: page_list, |
| 7145 | page_list_count: count, |
| 7146 | cntrl_flags: caller_flags, |
| 7147 | tag); |
| 7148 | vm_object_deallocate(object: local_object); |
| 7149 | |
| 7150 | done: |
| 7151 | if (release_map) { |
| 7152 | vm_map_deallocate(map); |
| 7153 | } |
| 7154 | |
| 7155 | return ret; |
| 7156 | } |
| 7157 | |
| 7158 | /* |
| 7159 | * Internal routine to enter a UPL into a VM map. |
| 7160 | * |
| 7161 | * JMM - This should just be doable through the standard |
| 7162 | * vm_map_enter() API. |
| 7163 | */ |
| 7164 | kern_return_t |
| 7165 | vm_map_enter_upl_range( |
| 7166 | vm_map_t map, |
| 7167 | upl_t upl, |
| 7168 | vm_object_offset_t offset_to_map, |
| 7169 | upl_size_t size_to_map, |
| 7170 | vm_prot_t prot_to_map, |
| 7171 | vm_map_offset_t *dst_addr) |
| 7172 | { |
| 7173 | vm_map_size_t size; |
| 7174 | vm_object_offset_t offset; |
| 7175 | vm_map_offset_t addr; |
| 7176 | vm_page_t m; |
| 7177 | kern_return_t kr; |
| 7178 | int isVectorUPL = 0, curr_upl = 0; |
| 7179 | upl_t vector_upl = NULL; |
| 7180 | mach_vm_offset_t vector_upl_dst_addr = 0; |
| 7181 | vm_map_t vector_upl_submap = NULL; |
| 7182 | upl_offset_t subupl_offset = 0; |
| 7183 | upl_size_t subupl_size = 0; |
| 7184 | |
| 7185 | if (upl == UPL_NULL) { |
| 7186 | return KERN_INVALID_ARGUMENT; |
| 7187 | } |
| 7188 | |
| 7189 | DEBUG4K_UPL("map %p upl %p flags 0x%x object %p offset 0x%llx (uploff: 0x%llx) size 0x%x (uplsz: 0x%x) \n" , map, upl, upl->flags, upl->map_object, offset_to_map, upl->u_offset, size_to_map, upl->u_size); |
| 7190 | assert(map == kernel_map); |
| 7191 | |
| 7192 | if ((isVectorUPL = vector_upl_is_valid(upl))) { |
| 7193 | int mapped = 0, valid_upls = 0; |
| 7194 | vector_upl = upl; |
| 7195 | |
| 7196 | upl_lock(vector_upl); |
| 7197 | for (curr_upl = 0; curr_upl < vector_upl_max_upls(upl: vector_upl); curr_upl++) { |
| 7198 | upl = vector_upl_subupl_byindex(vector_upl, curr_upl ); |
| 7199 | if (upl == NULL) { |
| 7200 | continue; |
| 7201 | } |
| 7202 | valid_upls++; |
| 7203 | if (UPL_PAGE_LIST_MAPPED & upl->flags) { |
| 7204 | mapped++; |
| 7205 | } |
| 7206 | } |
| 7207 | |
| 7208 | if (mapped) { |
| 7209 | if (mapped != valid_upls) { |
| 7210 | panic("Only %d of the %d sub-upls within the Vector UPL are alread mapped" , mapped, valid_upls); |
| 7211 | } else { |
| 7212 | upl_unlock(vector_upl); |
| 7213 | return KERN_FAILURE; |
| 7214 | } |
| 7215 | } |
| 7216 | |
| 7217 | if (VM_MAP_PAGE_MASK(map) < PAGE_MASK) { |
| 7218 | panic("TODO4K: vector UPL not implemented" ); |
| 7219 | } |
| 7220 | |
| 7221 | vector_upl_submap = kmem_suballoc(parent: map, addr: &vector_upl_dst_addr, |
| 7222 | size: vector_upl->u_size, vmc_options: VM_MAP_CREATE_DEFAULT, |
| 7223 | VM_FLAGS_ANYWHERE, flags: KMS_NOFAIL | KMS_DATA, |
| 7224 | VM_KERN_MEMORY_NONE).kmr_submap; |
| 7225 | map = vector_upl_submap; |
| 7226 | vector_upl_set_submap(vector_upl, vector_upl_submap, vector_upl_dst_addr); |
| 7227 | curr_upl = 0; |
| 7228 | } else { |
| 7229 | upl_lock(upl); |
| 7230 | } |
| 7231 | |
| 7232 | process_upl_to_enter: |
| 7233 | if (isVectorUPL) { |
| 7234 | if (curr_upl == vector_upl_max_upls(upl: vector_upl)) { |
| 7235 | *dst_addr = vector_upl_dst_addr; |
| 7236 | upl_unlock(vector_upl); |
| 7237 | return KERN_SUCCESS; |
| 7238 | } |
| 7239 | upl = vector_upl_subupl_byindex(vector_upl, curr_upl++ ); |
| 7240 | if (upl == NULL) { |
| 7241 | goto process_upl_to_enter; |
| 7242 | } |
| 7243 | |
| 7244 | vector_upl_get_iostate(vector_upl, upl, &subupl_offset, &subupl_size); |
| 7245 | *dst_addr = (vm_map_offset_t)(vector_upl_dst_addr + (vm_map_offset_t)subupl_offset); |
| 7246 | } else { |
| 7247 | /* |
| 7248 | * check to see if already mapped |
| 7249 | */ |
| 7250 | if (UPL_PAGE_LIST_MAPPED & upl->flags) { |
| 7251 | upl_unlock(upl); |
| 7252 | return KERN_FAILURE; |
| 7253 | } |
| 7254 | } |
| 7255 | |
| 7256 | if ((!(upl->flags & UPL_SHADOWED)) && |
| 7257 | ((upl->flags & UPL_HAS_BUSY) || |
| 7258 | !((upl->flags & (UPL_DEVICE_MEMORY | UPL_IO_WIRE)) || (upl->map_object->phys_contiguous)))) { |
| 7259 | vm_object_t object; |
| 7260 | vm_page_t alias_page; |
| 7261 | vm_object_offset_t new_offset; |
| 7262 | unsigned int pg_num; |
| 7263 | |
| 7264 | size = upl_adjusted_size(upl, VM_MAP_PAGE_MASK(map)); |
| 7265 | object = upl->map_object; |
| 7266 | upl->map_object = vm_object_allocate(vm_object_round_page(size)); |
| 7267 | |
| 7268 | vm_object_lock(upl->map_object); |
| 7269 | |
| 7270 | upl->map_object->shadow = object; |
| 7271 | VM_OBJECT_SET_PAGEOUT(object: upl->map_object, TRUE); |
| 7272 | VM_OBJECT_SET_CAN_PERSIST(object: upl->map_object, FALSE); |
| 7273 | upl->map_object->copy_strategy = MEMORY_OBJECT_COPY_NONE; |
| 7274 | upl->map_object->vo_shadow_offset = upl_adjusted_offset(upl, PAGE_MASK) - object->paging_offset; |
| 7275 | assertf(page_aligned(upl->map_object->vo_shadow_offset), |
| 7276 | "object %p shadow_offset 0x%llx" , |
| 7277 | upl->map_object, |
| 7278 | (uint64_t)upl->map_object->vo_shadow_offset); |
| 7279 | upl->map_object->wimg_bits = object->wimg_bits; |
| 7280 | offset = upl->map_object->vo_shadow_offset; |
| 7281 | new_offset = 0; |
| 7282 | |
| 7283 | upl->flags |= UPL_SHADOWED; |
| 7284 | |
| 7285 | while (size) { |
| 7286 | pg_num = (unsigned int) (new_offset / PAGE_SIZE); |
| 7287 | assert(pg_num == new_offset / PAGE_SIZE); |
| 7288 | |
| 7289 | if (bitmap_test(map: upl->lite_list, n: pg_num)) { |
| 7290 | alias_page = vm_page_grab_fictitious(TRUE); |
| 7291 | |
| 7292 | vm_object_lock(object); |
| 7293 | |
| 7294 | m = vm_page_lookup(object, offset); |
| 7295 | if (m == VM_PAGE_NULL) { |
| 7296 | panic("vm_upl_map: page missing" ); |
| 7297 | } |
| 7298 | |
| 7299 | /* |
| 7300 | * Convert the fictitious page to a private |
| 7301 | * shadow of the real page. |
| 7302 | */ |
| 7303 | assert(alias_page->vmp_fictitious); |
| 7304 | alias_page->vmp_fictitious = FALSE; |
| 7305 | alias_page->vmp_private = TRUE; |
| 7306 | alias_page->vmp_free_when_done = TRUE; |
| 7307 | /* |
| 7308 | * since m is a page in the upl it must |
| 7309 | * already be wired or BUSY, so it's |
| 7310 | * safe to assign the underlying physical |
| 7311 | * page to the alias |
| 7312 | */ |
| 7313 | VM_PAGE_SET_PHYS_PAGE(alias_page, VM_PAGE_GET_PHYS_PAGE(m)); |
| 7314 | |
| 7315 | vm_object_unlock(object); |
| 7316 | |
| 7317 | vm_page_lockspin_queues(); |
| 7318 | vm_page_wire(page: alias_page, VM_KERN_MEMORY_NONE, TRUE); |
| 7319 | vm_page_unlock_queues(); |
| 7320 | |
| 7321 | vm_page_insert_wired(page: alias_page, object: upl->map_object, offset: new_offset, VM_KERN_MEMORY_NONE); |
| 7322 | |
| 7323 | assert(!alias_page->vmp_wanted); |
| 7324 | alias_page->vmp_busy = FALSE; |
| 7325 | alias_page->vmp_absent = FALSE; |
| 7326 | } |
| 7327 | size -= PAGE_SIZE; |
| 7328 | offset += PAGE_SIZE_64; |
| 7329 | new_offset += PAGE_SIZE_64; |
| 7330 | } |
| 7331 | vm_object_unlock(upl->map_object); |
| 7332 | } |
| 7333 | if (upl->flags & UPL_SHADOWED) { |
| 7334 | if (isVectorUPL) { |
| 7335 | offset = 0; |
| 7336 | } else { |
| 7337 | offset = offset_to_map; |
| 7338 | } |
| 7339 | } else { |
| 7340 | offset = upl_adjusted_offset(upl, VM_MAP_PAGE_MASK(map)) - upl->map_object->paging_offset; |
| 7341 | if (!isVectorUPL) { |
| 7342 | offset += offset_to_map; |
| 7343 | } |
| 7344 | } |
| 7345 | |
| 7346 | if (isVectorUPL) { |
| 7347 | size = upl_adjusted_size(upl, VM_MAP_PAGE_MASK(map)); |
| 7348 | } else { |
| 7349 | size = MIN(upl_adjusted_size(upl, VM_MAP_PAGE_MASK(map)), size_to_map); |
| 7350 | } |
| 7351 | |
| 7352 | vm_object_reference(upl->map_object); |
| 7353 | |
| 7354 | if (!isVectorUPL) { |
| 7355 | *dst_addr = 0; |
| 7356 | /* |
| 7357 | * NEED A UPL_MAP ALIAS |
| 7358 | */ |
| 7359 | kr = vm_map_enter(map, address: dst_addr, size: (vm_map_size_t)size, mask: (vm_map_offset_t) 0, |
| 7360 | VM_MAP_KERNEL_FLAGS_DATA_ANYWHERE(.vm_tag = VM_KERN_MEMORY_OSFMK), |
| 7361 | object: upl->map_object, offset, FALSE, |
| 7362 | cur_protection: prot_to_map, VM_PROT_ALL, VM_INHERIT_DEFAULT); |
| 7363 | |
| 7364 | if (kr != KERN_SUCCESS) { |
| 7365 | vm_object_deallocate(object: upl->map_object); |
| 7366 | upl_unlock(upl); |
| 7367 | return kr; |
| 7368 | } |
| 7369 | } else { |
| 7370 | kr = vm_map_enter(map, address: dst_addr, size: (vm_map_size_t)size, mask: (vm_map_offset_t) 0, |
| 7371 | VM_MAP_KERNEL_FLAGS_FIXED(.vm_tag = VM_KERN_MEMORY_OSFMK), |
| 7372 | object: upl->map_object, offset, FALSE, |
| 7373 | cur_protection: prot_to_map, VM_PROT_ALL, VM_INHERIT_DEFAULT); |
| 7374 | if (kr) { |
| 7375 | panic("vm_map_enter failed for a Vector UPL" ); |
| 7376 | } |
| 7377 | } |
| 7378 | upl->u_mapped_size = (upl_size_t) size; /* When we allow multiple submappings of the UPL */ |
| 7379 | /* this will have to be an increment rather than */ |
| 7380 | /* an assignment. */ |
| 7381 | vm_object_lock(upl->map_object); |
| 7382 | |
| 7383 | for (addr = *dst_addr; size > 0; size -= PAGE_SIZE, addr += PAGE_SIZE) { |
| 7384 | m = vm_page_lookup(object: upl->map_object, offset); |
| 7385 | |
| 7386 | if (m) { |
| 7387 | m->vmp_pmapped = TRUE; |
| 7388 | |
| 7389 | /* |
| 7390 | * CODE SIGNING ENFORCEMENT: page has been wpmapped, |
| 7391 | * but only in kernel space. If this was on a user map, |
| 7392 | * we'd have to set the wpmapped bit. |
| 7393 | */ |
| 7394 | /* m->vmp_wpmapped = TRUE; */ |
| 7395 | assert(map->pmap == kernel_pmap); |
| 7396 | |
| 7397 | kr = pmap_enter_check(pmap: map->pmap, virtual_address: addr, page: m, protection: prot_to_map, VM_PROT_NONE, flags: 0, TRUE); |
| 7398 | |
| 7399 | assert(kr == KERN_SUCCESS); |
| 7400 | #if KASAN |
| 7401 | kasan_notify_address(addr, PAGE_SIZE_64); |
| 7402 | #endif |
| 7403 | } |
| 7404 | offset += PAGE_SIZE_64; |
| 7405 | } |
| 7406 | vm_object_unlock(upl->map_object); |
| 7407 | |
| 7408 | /* |
| 7409 | * hold a reference for the mapping |
| 7410 | */ |
| 7411 | upl->ref_count++; |
| 7412 | upl->flags |= UPL_PAGE_LIST_MAPPED; |
| 7413 | upl->kaddr = (vm_offset_t) *dst_addr; |
| 7414 | assert(upl->kaddr == *dst_addr); |
| 7415 | |
| 7416 | if (isVectorUPL) { |
| 7417 | goto process_upl_to_enter; |
| 7418 | } |
| 7419 | |
| 7420 | if (!isVectorUPL) { |
| 7421 | vm_map_offset_t addr_adjustment; |
| 7422 | |
| 7423 | addr_adjustment = (vm_map_offset_t)(upl->u_offset - upl_adjusted_offset(upl, VM_MAP_PAGE_MASK(map))); |
| 7424 | if (addr_adjustment) { |
| 7425 | assert(VM_MAP_PAGE_MASK(map) != PAGE_MASK); |
| 7426 | DEBUG4K_UPL("dst_addr 0x%llx (+ 0x%llx) -> 0x%llx\n" , (uint64_t)*dst_addr, (uint64_t)addr_adjustment, (uint64_t)(*dst_addr + addr_adjustment)); |
| 7427 | *dst_addr += addr_adjustment; |
| 7428 | } |
| 7429 | } |
| 7430 | |
| 7431 | upl_unlock(upl); |
| 7432 | |
| 7433 | return KERN_SUCCESS; |
| 7434 | } |
| 7435 | |
| 7436 | kern_return_t |
| 7437 | vm_map_enter_upl( |
| 7438 | vm_map_t map, |
| 7439 | upl_t upl, |
| 7440 | vm_map_offset_t *dst_addr) |
| 7441 | { |
| 7442 | upl_size_t upl_size = upl_adjusted_size(upl, VM_MAP_PAGE_MASK(map)); |
| 7443 | return vm_map_enter_upl_range(map, upl, offset_to_map: 0, size_to_map: upl_size, VM_PROT_DEFAULT, dst_addr); |
| 7444 | } |
| 7445 | |
| 7446 | /* |
| 7447 | * Internal routine to remove a UPL mapping from a VM map. |
| 7448 | * |
| 7449 | * XXX - This should just be doable through a standard |
| 7450 | * vm_map_remove() operation. Otherwise, implicit clean-up |
| 7451 | * of the target map won't be able to correctly remove |
| 7452 | * these (and release the reference on the UPL). Having |
| 7453 | * to do this means we can't map these into user-space |
| 7454 | * maps yet. |
| 7455 | */ |
| 7456 | kern_return_t |
| 7457 | vm_map_remove_upl_range( |
| 7458 | vm_map_t map, |
| 7459 | upl_t upl, |
| 7460 | __unused vm_object_offset_t offset_to_unmap, |
| 7461 | __unused upl_size_t size_to_unmap) |
| 7462 | { |
| 7463 | vm_address_t addr; |
| 7464 | upl_size_t size; |
| 7465 | int isVectorUPL = 0, curr_upl = 0; |
| 7466 | upl_t vector_upl = NULL; |
| 7467 | |
| 7468 | if (upl == UPL_NULL) { |
| 7469 | return KERN_INVALID_ARGUMENT; |
| 7470 | } |
| 7471 | |
| 7472 | if ((isVectorUPL = vector_upl_is_valid(upl))) { |
| 7473 | int unmapped = 0, valid_upls = 0; |
| 7474 | vector_upl = upl; |
| 7475 | upl_lock(vector_upl); |
| 7476 | for (curr_upl = 0; curr_upl < vector_upl_max_upls(upl: vector_upl); curr_upl++) { |
| 7477 | upl = vector_upl_subupl_byindex(vector_upl, curr_upl ); |
| 7478 | if (upl == NULL) { |
| 7479 | continue; |
| 7480 | } |
| 7481 | valid_upls++; |
| 7482 | if (!(UPL_PAGE_LIST_MAPPED & upl->flags)) { |
| 7483 | unmapped++; |
| 7484 | } |
| 7485 | } |
| 7486 | |
| 7487 | if (unmapped) { |
| 7488 | if (unmapped != valid_upls) { |
| 7489 | panic("%d of the %d sub-upls within the Vector UPL is/are not mapped" , unmapped, valid_upls); |
| 7490 | } else { |
| 7491 | upl_unlock(vector_upl); |
| 7492 | return KERN_FAILURE; |
| 7493 | } |
| 7494 | } |
| 7495 | curr_upl = 0; |
| 7496 | } else { |
| 7497 | upl_lock(upl); |
| 7498 | } |
| 7499 | |
| 7500 | process_upl_to_remove: |
| 7501 | if (isVectorUPL) { |
| 7502 | if (curr_upl == vector_upl_max_upls(upl: vector_upl)) { |
| 7503 | vm_map_t v_upl_submap; |
| 7504 | vm_offset_t v_upl_submap_dst_addr; |
| 7505 | vector_upl_get_submap(vector_upl, &v_upl_submap, &v_upl_submap_dst_addr); |
| 7506 | |
| 7507 | kmem_free_guard(map, addr: v_upl_submap_dst_addr, |
| 7508 | size: vector_upl->u_size, flags: KMF_NONE, KMEM_GUARD_SUBMAP); |
| 7509 | vm_map_deallocate(map: v_upl_submap); |
| 7510 | upl_unlock(vector_upl); |
| 7511 | return KERN_SUCCESS; |
| 7512 | } |
| 7513 | |
| 7514 | upl = vector_upl_subupl_byindex(vector_upl, curr_upl++ ); |
| 7515 | if (upl == NULL) { |
| 7516 | goto process_upl_to_remove; |
| 7517 | } |
| 7518 | } |
| 7519 | |
| 7520 | if (upl->flags & UPL_PAGE_LIST_MAPPED) { |
| 7521 | addr = upl->kaddr; |
| 7522 | size = upl->u_mapped_size; |
| 7523 | |
| 7524 | assert(upl->ref_count > 1); |
| 7525 | upl->ref_count--; /* removing mapping ref */ |
| 7526 | |
| 7527 | upl->flags &= ~UPL_PAGE_LIST_MAPPED; |
| 7528 | upl->kaddr = (vm_offset_t) 0; |
| 7529 | upl->u_mapped_size = 0; |
| 7530 | |
| 7531 | if (isVectorUPL) { |
| 7532 | /* |
| 7533 | * If it's a Vectored UPL, we'll be removing the entire |
| 7534 | * submap anyways, so no need to remove individual UPL |
| 7535 | * element mappings from within the submap |
| 7536 | */ |
| 7537 | goto process_upl_to_remove; |
| 7538 | } |
| 7539 | |
| 7540 | upl_unlock(upl); |
| 7541 | |
| 7542 | vm_map_remove(map, |
| 7543 | vm_map_trunc_page(addr, VM_MAP_PAGE_MASK(map)), |
| 7544 | vm_map_round_page(addr + size, VM_MAP_PAGE_MASK(map))); |
| 7545 | return KERN_SUCCESS; |
| 7546 | } |
| 7547 | upl_unlock(upl); |
| 7548 | |
| 7549 | return KERN_FAILURE; |
| 7550 | } |
| 7551 | |
| 7552 | kern_return_t |
| 7553 | vm_map_remove_upl( |
| 7554 | vm_map_t map, |
| 7555 | upl_t upl) |
| 7556 | { |
| 7557 | upl_size_t upl_size = upl_adjusted_size(upl, VM_MAP_PAGE_MASK(map)); |
| 7558 | return vm_map_remove_upl_range(map, upl, offset_to_unmap: 0, size_to_unmap: upl_size); |
| 7559 | } |
| 7560 | |
| 7561 | kern_return_t |
| 7562 | upl_commit_range( |
| 7563 | upl_t upl, |
| 7564 | upl_offset_t offset, |
| 7565 | upl_size_t size, |
| 7566 | int flags, |
| 7567 | upl_page_info_t *page_list, |
| 7568 | mach_msg_type_number_t count, |
| 7569 | boolean_t *empty) |
| 7570 | { |
| 7571 | upl_size_t xfer_size, subupl_size; |
| 7572 | vm_object_t shadow_object; |
| 7573 | vm_object_t object; |
| 7574 | vm_object_t m_object; |
| 7575 | vm_object_offset_t target_offset; |
| 7576 | upl_offset_t subupl_offset = offset; |
| 7577 | int entry; |
| 7578 | int occupied; |
| 7579 | int clear_refmod = 0; |
| 7580 | int pgpgout_count = 0; |
| 7581 | struct vm_page_delayed_work dw_array; |
| 7582 | struct vm_page_delayed_work *dwp, *dwp_start; |
| 7583 | bool dwp_finish_ctx = TRUE; |
| 7584 | int dw_count; |
| 7585 | int dw_limit; |
| 7586 | int isVectorUPL = 0; |
| 7587 | upl_t vector_upl = NULL; |
| 7588 | boolean_t should_be_throttled = FALSE; |
| 7589 | |
| 7590 | vm_page_t nxt_page = VM_PAGE_NULL; |
| 7591 | int fast_path_possible = 0; |
| 7592 | int fast_path_full_commit = 0; |
| 7593 | int throttle_page = 0; |
| 7594 | int unwired_count = 0; |
| 7595 | int local_queue_count = 0; |
| 7596 | vm_page_t first_local, last_local; |
| 7597 | vm_object_offset_t obj_start, obj_end, obj_offset; |
| 7598 | kern_return_t kr = KERN_SUCCESS; |
| 7599 | |
| 7600 | // DEBUG4K_UPL("upl %p (u_offset 0x%llx u_size 0x%llx) object %p offset 0x%llx size 0x%llx flags 0x%x\n", upl, (uint64_t)upl->u_offset, (uint64_t)upl->u_size, upl->map_object, (uint64_t)offset, (uint64_t)size, flags); |
| 7601 | |
| 7602 | dwp_start = dwp = NULL; |
| 7603 | |
| 7604 | subupl_size = size; |
| 7605 | *empty = FALSE; |
| 7606 | |
| 7607 | if (upl == UPL_NULL) { |
| 7608 | return KERN_INVALID_ARGUMENT; |
| 7609 | } |
| 7610 | |
| 7611 | dw_count = 0; |
| 7612 | dw_limit = DELAYED_WORK_LIMIT(DEFAULT_DELAYED_WORK_LIMIT); |
| 7613 | dwp_start = vm_page_delayed_work_get_ctx(); |
| 7614 | if (dwp_start == NULL) { |
| 7615 | dwp_start = &dw_array; |
| 7616 | dw_limit = 1; |
| 7617 | dwp_finish_ctx = FALSE; |
| 7618 | } |
| 7619 | |
| 7620 | dwp = dwp_start; |
| 7621 | |
| 7622 | if (count == 0) { |
| 7623 | page_list = NULL; |
| 7624 | } |
| 7625 | |
| 7626 | if ((isVectorUPL = vector_upl_is_valid(upl))) { |
| 7627 | vector_upl = upl; |
| 7628 | upl_lock(vector_upl); |
| 7629 | } else { |
| 7630 | upl_lock(upl); |
| 7631 | } |
| 7632 | |
| 7633 | process_upl_to_commit: |
| 7634 | |
| 7635 | if (isVectorUPL) { |
| 7636 | size = subupl_size; |
| 7637 | offset = subupl_offset; |
| 7638 | if (size == 0) { |
| 7639 | upl_unlock(vector_upl); |
| 7640 | kr = KERN_SUCCESS; |
| 7641 | goto done; |
| 7642 | } |
| 7643 | upl = vector_upl_subupl_byoffset(vector_upl, &offset, &size); |
| 7644 | if (upl == NULL) { |
| 7645 | upl_unlock(vector_upl); |
| 7646 | kr = KERN_FAILURE; |
| 7647 | goto done; |
| 7648 | } |
| 7649 | page_list = upl->page_list; |
| 7650 | subupl_size -= size; |
| 7651 | subupl_offset += size; |
| 7652 | } |
| 7653 | |
| 7654 | #if UPL_DEBUG |
| 7655 | if (upl->upl_commit_index < UPL_DEBUG_COMMIT_RECORDS) { |
| 7656 | upl->upl_commit_records[upl->upl_commit_index].c_btref = btref_get(__builtin_frame_address(0), 0); |
| 7657 | upl->upl_commit_records[upl->upl_commit_index].c_beg = offset; |
| 7658 | upl->upl_commit_records[upl->upl_commit_index].c_end = (offset + size); |
| 7659 | |
| 7660 | upl->upl_commit_index++; |
| 7661 | } |
| 7662 | #endif |
| 7663 | if (upl->flags & UPL_DEVICE_MEMORY) { |
| 7664 | xfer_size = 0; |
| 7665 | } else if ((offset + size) <= upl_adjusted_size(upl, PAGE_MASK)) { |
| 7666 | xfer_size = size; |
| 7667 | } else { |
| 7668 | if (!isVectorUPL) { |
| 7669 | upl_unlock(upl); |
| 7670 | } else { |
| 7671 | upl_unlock(vector_upl); |
| 7672 | } |
| 7673 | DEBUG4K_ERROR("upl %p (u_offset 0x%llx u_size 0x%x) offset 0x%x size 0x%x\n" , upl, upl->u_offset, upl->u_size, offset, size); |
| 7674 | kr = KERN_FAILURE; |
| 7675 | goto done; |
| 7676 | } |
| 7677 | if (upl->flags & UPL_SET_DIRTY) { |
| 7678 | flags |= UPL_COMMIT_SET_DIRTY; |
| 7679 | } |
| 7680 | if (upl->flags & UPL_CLEAR_DIRTY) { |
| 7681 | flags |= UPL_COMMIT_CLEAR_DIRTY; |
| 7682 | } |
| 7683 | |
| 7684 | object = upl->map_object; |
| 7685 | |
| 7686 | if (upl->flags & UPL_SHADOWED) { |
| 7687 | vm_object_lock(object); |
| 7688 | shadow_object = object->shadow; |
| 7689 | } else { |
| 7690 | shadow_object = object; |
| 7691 | } |
| 7692 | entry = offset / PAGE_SIZE; |
| 7693 | target_offset = (vm_object_offset_t)offset; |
| 7694 | |
| 7695 | if (upl->flags & UPL_KERNEL_OBJECT) { |
| 7696 | vm_object_lock_shared(shadow_object); |
| 7697 | } else { |
| 7698 | vm_object_lock(shadow_object); |
| 7699 | } |
| 7700 | |
| 7701 | VM_OBJECT_WIRED_PAGE_UPDATE_START(shadow_object); |
| 7702 | |
| 7703 | if (upl->flags & UPL_ACCESS_BLOCKED) { |
| 7704 | assert(shadow_object->blocked_access); |
| 7705 | shadow_object->blocked_access = FALSE; |
| 7706 | vm_object_wakeup(object, VM_OBJECT_EVENT_UNBLOCKED); |
| 7707 | } |
| 7708 | |
| 7709 | if (shadow_object->code_signed) { |
| 7710 | /* |
| 7711 | * CODE SIGNING: |
| 7712 | * If the object is code-signed, do not let this UPL tell |
| 7713 | * us if the pages are valid or not. Let the pages be |
| 7714 | * validated by VM the normal way (when they get mapped or |
| 7715 | * copied). |
| 7716 | */ |
| 7717 | flags &= ~UPL_COMMIT_CS_VALIDATED; |
| 7718 | } |
| 7719 | if (!page_list) { |
| 7720 | /* |
| 7721 | * No page list to get the code-signing info from !? |
| 7722 | */ |
| 7723 | flags &= ~UPL_COMMIT_CS_VALIDATED; |
| 7724 | } |
| 7725 | if (!VM_DYNAMIC_PAGING_ENABLED() && shadow_object->internal) { |
| 7726 | should_be_throttled = TRUE; |
| 7727 | } |
| 7728 | |
| 7729 | if ((upl->flags & UPL_IO_WIRE) && |
| 7730 | !(flags & UPL_COMMIT_FREE_ABSENT) && |
| 7731 | !isVectorUPL && |
| 7732 | shadow_object->purgable != VM_PURGABLE_VOLATILE && |
| 7733 | shadow_object->purgable != VM_PURGABLE_EMPTY) { |
| 7734 | if (!vm_page_queue_empty(&shadow_object->memq)) { |
| 7735 | if (shadow_object->internal && size == shadow_object->vo_size) { |
| 7736 | nxt_page = (vm_page_t)vm_page_queue_first(&shadow_object->memq); |
| 7737 | fast_path_full_commit = 1; |
| 7738 | } |
| 7739 | fast_path_possible = 1; |
| 7740 | |
| 7741 | if (!VM_DYNAMIC_PAGING_ENABLED() && shadow_object->internal && |
| 7742 | (shadow_object->purgable == VM_PURGABLE_DENY || |
| 7743 | shadow_object->purgable == VM_PURGABLE_NONVOLATILE || |
| 7744 | shadow_object->purgable == VM_PURGABLE_VOLATILE)) { |
| 7745 | throttle_page = 1; |
| 7746 | } |
| 7747 | } |
| 7748 | } |
| 7749 | first_local = VM_PAGE_NULL; |
| 7750 | last_local = VM_PAGE_NULL; |
| 7751 | |
| 7752 | obj_start = target_offset + upl->u_offset - shadow_object->paging_offset; |
| 7753 | obj_end = obj_start + xfer_size; |
| 7754 | obj_start = vm_object_trunc_page(obj_start); |
| 7755 | obj_end = vm_object_round_page(obj_end); |
| 7756 | for (obj_offset = obj_start; |
| 7757 | obj_offset < obj_end; |
| 7758 | obj_offset += PAGE_SIZE) { |
| 7759 | vm_page_t t, m; |
| 7760 | |
| 7761 | dwp->dw_mask = 0; |
| 7762 | clear_refmod = 0; |
| 7763 | |
| 7764 | m = VM_PAGE_NULL; |
| 7765 | |
| 7766 | if (upl->flags & UPL_LITE) { |
| 7767 | unsigned int pg_num; |
| 7768 | |
| 7769 | if (nxt_page != VM_PAGE_NULL) { |
| 7770 | m = nxt_page; |
| 7771 | nxt_page = (vm_page_t)vm_page_queue_next(&nxt_page->vmp_listq); |
| 7772 | target_offset = m->vmp_offset; |
| 7773 | } |
| 7774 | pg_num = (unsigned int) (target_offset / PAGE_SIZE); |
| 7775 | assert(pg_num == target_offset / PAGE_SIZE); |
| 7776 | |
| 7777 | if (bitmap_test(map: upl->lite_list, n: pg_num)) { |
| 7778 | bitmap_clear(map: upl->lite_list, n: pg_num); |
| 7779 | |
| 7780 | if (!(upl->flags & UPL_KERNEL_OBJECT) && m == VM_PAGE_NULL) { |
| 7781 | m = vm_page_lookup(object: shadow_object, offset: obj_offset); |
| 7782 | } |
| 7783 | } else { |
| 7784 | m = NULL; |
| 7785 | } |
| 7786 | } |
| 7787 | if (upl->flags & UPL_SHADOWED) { |
| 7788 | if ((t = vm_page_lookup(object, offset: target_offset)) != VM_PAGE_NULL) { |
| 7789 | t->vmp_free_when_done = FALSE; |
| 7790 | |
| 7791 | VM_PAGE_FREE(t); |
| 7792 | |
| 7793 | if (!(upl->flags & UPL_KERNEL_OBJECT) && m == VM_PAGE_NULL) { |
| 7794 | m = vm_page_lookup(object: shadow_object, offset: target_offset + object->vo_shadow_offset); |
| 7795 | } |
| 7796 | } |
| 7797 | } |
| 7798 | if (m == VM_PAGE_NULL) { |
| 7799 | goto commit_next_page; |
| 7800 | } |
| 7801 | |
| 7802 | m_object = VM_PAGE_OBJECT(m); |
| 7803 | |
| 7804 | if (m->vmp_q_state == VM_PAGE_USED_BY_COMPRESSOR) { |
| 7805 | assert(m->vmp_busy); |
| 7806 | |
| 7807 | dwp->dw_mask |= (DW_clear_busy | DW_PAGE_WAKEUP); |
| 7808 | goto commit_next_page; |
| 7809 | } |
| 7810 | |
| 7811 | if (flags & UPL_COMMIT_CS_VALIDATED) { |
| 7812 | /* |
| 7813 | * CODE SIGNING: |
| 7814 | * Set the code signing bits according to |
| 7815 | * what the UPL says they should be. |
| 7816 | */ |
| 7817 | m->vmp_cs_validated |= page_list[entry].cs_validated; |
| 7818 | m->vmp_cs_tainted |= page_list[entry].cs_tainted; |
| 7819 | m->vmp_cs_nx |= page_list[entry].cs_nx; |
| 7820 | } |
| 7821 | if (flags & UPL_COMMIT_WRITTEN_BY_KERNEL) { |
| 7822 | m->vmp_written_by_kernel = TRUE; |
| 7823 | } |
| 7824 | |
| 7825 | if (upl->flags & UPL_IO_WIRE) { |
| 7826 | if (page_list) { |
| 7827 | page_list[entry].phys_addr = 0; |
| 7828 | } |
| 7829 | |
| 7830 | if (flags & UPL_COMMIT_SET_DIRTY) { |
| 7831 | SET_PAGE_DIRTY(m, FALSE); |
| 7832 | } else if (flags & UPL_COMMIT_CLEAR_DIRTY) { |
| 7833 | m->vmp_dirty = FALSE; |
| 7834 | |
| 7835 | if (!(flags & UPL_COMMIT_CS_VALIDATED) && |
| 7836 | m->vmp_cs_validated && |
| 7837 | m->vmp_cs_tainted != VMP_CS_ALL_TRUE) { |
| 7838 | /* |
| 7839 | * CODE SIGNING: |
| 7840 | * This page is no longer dirty |
| 7841 | * but could have been modified, |
| 7842 | * so it will need to be |
| 7843 | * re-validated. |
| 7844 | */ |
| 7845 | m->vmp_cs_validated = VMP_CS_ALL_FALSE; |
| 7846 | |
| 7847 | VM_PAGEOUT_DEBUG(vm_cs_validated_resets, 1); |
| 7848 | |
| 7849 | pmap_disconnect(phys: VM_PAGE_GET_PHYS_PAGE(m)); |
| 7850 | } |
| 7851 | clear_refmod |= VM_MEM_MODIFIED; |
| 7852 | } |
| 7853 | if (upl->flags & UPL_ACCESS_BLOCKED) { |
| 7854 | /* |
| 7855 | * We blocked access to the pages in this UPL. |
| 7856 | * Clear the "busy" bit and wake up any waiter |
| 7857 | * for this page. |
| 7858 | */ |
| 7859 | dwp->dw_mask |= (DW_clear_busy | DW_PAGE_WAKEUP); |
| 7860 | } |
| 7861 | if (fast_path_possible) { |
| 7862 | assert(m_object->purgable != VM_PURGABLE_EMPTY); |
| 7863 | assert(m_object->purgable != VM_PURGABLE_VOLATILE); |
| 7864 | if (m->vmp_absent) { |
| 7865 | assert(m->vmp_q_state == VM_PAGE_NOT_ON_Q); |
| 7866 | assert(m->vmp_wire_count == 0); |
| 7867 | assert(m->vmp_busy); |
| 7868 | |
| 7869 | m->vmp_absent = FALSE; |
| 7870 | dwp->dw_mask |= (DW_clear_busy | DW_PAGE_WAKEUP); |
| 7871 | } else { |
| 7872 | if (m->vmp_wire_count == 0) { |
| 7873 | panic("wire_count == 0, m = %p, obj = %p" , m, shadow_object); |
| 7874 | } |
| 7875 | assert(m->vmp_q_state == VM_PAGE_IS_WIRED); |
| 7876 | |
| 7877 | /* |
| 7878 | * XXX FBDP need to update some other |
| 7879 | * counters here (purgeable_wired_count) |
| 7880 | * (ledgers), ... |
| 7881 | */ |
| 7882 | assert(m->vmp_wire_count > 0); |
| 7883 | m->vmp_wire_count--; |
| 7884 | |
| 7885 | if (m->vmp_wire_count == 0) { |
| 7886 | m->vmp_q_state = VM_PAGE_NOT_ON_Q; |
| 7887 | unwired_count++; |
| 7888 | } |
| 7889 | } |
| 7890 | if (m->vmp_wire_count == 0) { |
| 7891 | assert(m->vmp_pageq.next == 0 && m->vmp_pageq.prev == 0); |
| 7892 | |
| 7893 | if (last_local == VM_PAGE_NULL) { |
| 7894 | assert(first_local == VM_PAGE_NULL); |
| 7895 | |
| 7896 | last_local = m; |
| 7897 | first_local = m; |
| 7898 | } else { |
| 7899 | assert(first_local != VM_PAGE_NULL); |
| 7900 | |
| 7901 | m->vmp_pageq.next = VM_PAGE_CONVERT_TO_QUEUE_ENTRY(first_local); |
| 7902 | first_local->vmp_pageq.prev = VM_PAGE_CONVERT_TO_QUEUE_ENTRY(m); |
| 7903 | first_local = m; |
| 7904 | } |
| 7905 | local_queue_count++; |
| 7906 | |
| 7907 | if (throttle_page) { |
| 7908 | m->vmp_q_state = VM_PAGE_ON_THROTTLED_Q; |
| 7909 | } else { |
| 7910 | if (flags & UPL_COMMIT_INACTIVATE) { |
| 7911 | if (shadow_object->internal) { |
| 7912 | m->vmp_q_state = VM_PAGE_ON_INACTIVE_INTERNAL_Q; |
| 7913 | } else { |
| 7914 | m->vmp_q_state = VM_PAGE_ON_INACTIVE_EXTERNAL_Q; |
| 7915 | } |
| 7916 | } else { |
| 7917 | m->vmp_q_state = VM_PAGE_ON_ACTIVE_Q; |
| 7918 | } |
| 7919 | } |
| 7920 | } |
| 7921 | } else { |
| 7922 | if (flags & UPL_COMMIT_INACTIVATE) { |
| 7923 | dwp->dw_mask |= DW_vm_page_deactivate_internal; |
| 7924 | clear_refmod |= VM_MEM_REFERENCED; |
| 7925 | } |
| 7926 | if (m->vmp_absent) { |
| 7927 | if (flags & UPL_COMMIT_FREE_ABSENT) { |
| 7928 | dwp->dw_mask |= DW_vm_page_free; |
| 7929 | } else { |
| 7930 | m->vmp_absent = FALSE; |
| 7931 | dwp->dw_mask |= (DW_clear_busy | DW_PAGE_WAKEUP); |
| 7932 | |
| 7933 | if (!(dwp->dw_mask & DW_vm_page_deactivate_internal)) { |
| 7934 | dwp->dw_mask |= DW_vm_page_activate; |
| 7935 | } |
| 7936 | } |
| 7937 | } else { |
| 7938 | dwp->dw_mask |= DW_vm_page_unwire; |
| 7939 | } |
| 7940 | } |
| 7941 | goto commit_next_page; |
| 7942 | } |
| 7943 | assert(m->vmp_q_state != VM_PAGE_USED_BY_COMPRESSOR); |
| 7944 | |
| 7945 | if (page_list) { |
| 7946 | page_list[entry].phys_addr = 0; |
| 7947 | } |
| 7948 | |
| 7949 | /* |
| 7950 | * make sure to clear the hardware |
| 7951 | * modify or reference bits before |
| 7952 | * releasing the BUSY bit on this page |
| 7953 | * otherwise we risk losing a legitimate |
| 7954 | * change of state |
| 7955 | */ |
| 7956 | if (flags & UPL_COMMIT_CLEAR_DIRTY) { |
| 7957 | m->vmp_dirty = FALSE; |
| 7958 | |
| 7959 | clear_refmod |= VM_MEM_MODIFIED; |
| 7960 | } |
| 7961 | if (m->vmp_laundry) { |
| 7962 | dwp->dw_mask |= DW_vm_pageout_throttle_up; |
| 7963 | } |
| 7964 | |
| 7965 | if (VM_PAGE_WIRED(m)) { |
| 7966 | m->vmp_free_when_done = FALSE; |
| 7967 | } |
| 7968 | |
| 7969 | if (!(flags & UPL_COMMIT_CS_VALIDATED) && |
| 7970 | m->vmp_cs_validated && |
| 7971 | m->vmp_cs_tainted != VMP_CS_ALL_TRUE) { |
| 7972 | /* |
| 7973 | * CODE SIGNING: |
| 7974 | * This page is no longer dirty |
| 7975 | * but could have been modified, |
| 7976 | * so it will need to be |
| 7977 | * re-validated. |
| 7978 | */ |
| 7979 | m->vmp_cs_validated = VMP_CS_ALL_FALSE; |
| 7980 | |
| 7981 | VM_PAGEOUT_DEBUG(vm_cs_validated_resets, 1); |
| 7982 | |
| 7983 | pmap_disconnect(phys: VM_PAGE_GET_PHYS_PAGE(m)); |
| 7984 | } |
| 7985 | if (m->vmp_overwriting) { |
| 7986 | /* |
| 7987 | * the (COPY_OUT_FROM == FALSE) request_page_list case |
| 7988 | */ |
| 7989 | if (m->vmp_busy) { |
| 7990 | #if CONFIG_PHANTOM_CACHE |
| 7991 | if (m->vmp_absent && !m_object->internal) { |
| 7992 | dwp->dw_mask |= DW_vm_phantom_cache_update; |
| 7993 | } |
| 7994 | #endif |
| 7995 | m->vmp_absent = FALSE; |
| 7996 | |
| 7997 | dwp->dw_mask |= DW_clear_busy; |
| 7998 | } else { |
| 7999 | /* |
| 8000 | * alternate (COPY_OUT_FROM == FALSE) page_list case |
| 8001 | * Occurs when the original page was wired |
| 8002 | * at the time of the list request |
| 8003 | */ |
| 8004 | assert(VM_PAGE_WIRED(m)); |
| 8005 | |
| 8006 | dwp->dw_mask |= DW_vm_page_unwire; /* reactivates */ |
| 8007 | } |
| 8008 | m->vmp_overwriting = FALSE; |
| 8009 | } |
| 8010 | m->vmp_cleaning = FALSE; |
| 8011 | |
| 8012 | if (m->vmp_free_when_done) { |
| 8013 | /* |
| 8014 | * With the clean queue enabled, UPL_PAGEOUT should |
| 8015 | * no longer set the pageout bit. Its pages now go |
| 8016 | * to the clean queue. |
| 8017 | * |
| 8018 | * We don't use the cleaned Q anymore and so this |
| 8019 | * assert isn't correct. The code for the clean Q |
| 8020 | * still exists and might be used in the future. If we |
| 8021 | * go back to the cleaned Q, we will re-enable this |
| 8022 | * assert. |
| 8023 | * |
| 8024 | * assert(!(upl->flags & UPL_PAGEOUT)); |
| 8025 | */ |
| 8026 | assert(!m_object->internal); |
| 8027 | |
| 8028 | m->vmp_free_when_done = FALSE; |
| 8029 | |
| 8030 | if ((flags & UPL_COMMIT_SET_DIRTY) || |
| 8031 | (m->vmp_pmapped && (pmap_disconnect(phys: VM_PAGE_GET_PHYS_PAGE(m)) & VM_MEM_MODIFIED))) { |
| 8032 | /* |
| 8033 | * page was re-dirtied after we started |
| 8034 | * the pageout... reactivate it since |
| 8035 | * we don't know whether the on-disk |
| 8036 | * copy matches what is now in memory |
| 8037 | */ |
| 8038 | SET_PAGE_DIRTY(m, FALSE); |
| 8039 | |
| 8040 | dwp->dw_mask |= DW_vm_page_activate | DW_PAGE_WAKEUP; |
| 8041 | |
| 8042 | if (upl->flags & UPL_PAGEOUT) { |
| 8043 | counter_inc(&vm_statistics_reactivations); |
| 8044 | DTRACE_VM2(pgrec, int, 1, (uint64_t *), NULL); |
| 8045 | } |
| 8046 | } else if (m->vmp_busy && !(upl->flags & UPL_HAS_BUSY)) { |
| 8047 | /* |
| 8048 | * Someone else might still be handling this |
| 8049 | * page (vm_fault() for example), so let's not |
| 8050 | * free it or "un-busy" it! |
| 8051 | * Put that page in the "speculative" queue |
| 8052 | * for now (since we would otherwise have freed |
| 8053 | * it) and let whoever is keeping the page |
| 8054 | * "busy" move it if needed when they're done |
| 8055 | * with it. |
| 8056 | */ |
| 8057 | dwp->dw_mask |= DW_vm_page_speculate; |
| 8058 | } else { |
| 8059 | /* |
| 8060 | * page has been successfully cleaned |
| 8061 | * go ahead and free it for other use |
| 8062 | */ |
| 8063 | if (m_object->internal) { |
| 8064 | DTRACE_VM2(anonpgout, int, 1, (uint64_t *), NULL); |
| 8065 | } else { |
| 8066 | DTRACE_VM2(fspgout, int, 1, (uint64_t *), NULL); |
| 8067 | } |
| 8068 | m->vmp_dirty = FALSE; |
| 8069 | if (!(upl->flags & UPL_HAS_BUSY)) { |
| 8070 | assert(!m->vmp_busy); |
| 8071 | } |
| 8072 | m->vmp_busy = TRUE; |
| 8073 | |
| 8074 | dwp->dw_mask |= DW_vm_page_free; |
| 8075 | } |
| 8076 | goto commit_next_page; |
| 8077 | } |
| 8078 | /* |
| 8079 | * It is a part of the semantic of COPYOUT_FROM |
| 8080 | * UPLs that a commit implies cache sync |
| 8081 | * between the vm page and the backing store |
| 8082 | * this can be used to strip the precious bit |
| 8083 | * as well as clean |
| 8084 | */ |
| 8085 | if ((upl->flags & UPL_PAGE_SYNC_DONE) || (flags & UPL_COMMIT_CLEAR_PRECIOUS)) { |
| 8086 | m->vmp_precious = FALSE; |
| 8087 | } |
| 8088 | |
| 8089 | if (flags & UPL_COMMIT_SET_DIRTY) { |
| 8090 | SET_PAGE_DIRTY(m, FALSE); |
| 8091 | } else { |
| 8092 | m->vmp_dirty = FALSE; |
| 8093 | } |
| 8094 | |
| 8095 | /* with the clean queue on, move *all* cleaned pages to the clean queue */ |
| 8096 | if (hibernate_cleaning_in_progress == FALSE && !m->vmp_dirty && (upl->flags & UPL_PAGEOUT)) { |
| 8097 | pgpgout_count++; |
| 8098 | |
| 8099 | counter_inc(&vm_statistics_pageouts); |
| 8100 | DTRACE_VM2(pgout, int, 1, (uint64_t *), NULL); |
| 8101 | |
| 8102 | dwp->dw_mask |= DW_enqueue_cleaned; |
| 8103 | } else if (should_be_throttled == TRUE && (m->vmp_q_state == VM_PAGE_NOT_ON_Q)) { |
| 8104 | /* |
| 8105 | * page coming back in from being 'frozen'... |
| 8106 | * it was dirty before it was frozen, so keep it so |
| 8107 | * the vm_page_activate will notice that it really belongs |
| 8108 | * on the throttle queue and put it there |
| 8109 | */ |
| 8110 | SET_PAGE_DIRTY(m, FALSE); |
| 8111 | dwp->dw_mask |= DW_vm_page_activate; |
| 8112 | } else { |
| 8113 | if ((flags & UPL_COMMIT_INACTIVATE) && !m->vmp_clustered && (m->vmp_q_state != VM_PAGE_ON_SPECULATIVE_Q)) { |
| 8114 | dwp->dw_mask |= DW_vm_page_deactivate_internal; |
| 8115 | clear_refmod |= VM_MEM_REFERENCED; |
| 8116 | } else if (!VM_PAGE_PAGEABLE(m)) { |
| 8117 | if (m->vmp_clustered || (flags & UPL_COMMIT_SPECULATE)) { |
| 8118 | dwp->dw_mask |= DW_vm_page_speculate; |
| 8119 | } else if (m->vmp_reference) { |
| 8120 | dwp->dw_mask |= DW_vm_page_activate; |
| 8121 | } else { |
| 8122 | dwp->dw_mask |= DW_vm_page_deactivate_internal; |
| 8123 | clear_refmod |= VM_MEM_REFERENCED; |
| 8124 | } |
| 8125 | } |
| 8126 | } |
| 8127 | if (upl->flags & UPL_ACCESS_BLOCKED) { |
| 8128 | /* |
| 8129 | * We blocked access to the pages in this URL. |
| 8130 | * Clear the "busy" bit on this page before we |
| 8131 | * wake up any waiter. |
| 8132 | */ |
| 8133 | dwp->dw_mask |= DW_clear_busy; |
| 8134 | } |
| 8135 | /* |
| 8136 | * Wakeup any thread waiting for the page to be un-cleaning. |
| 8137 | */ |
| 8138 | dwp->dw_mask |= DW_PAGE_WAKEUP; |
| 8139 | |
| 8140 | commit_next_page: |
| 8141 | if (clear_refmod) { |
| 8142 | pmap_clear_refmod(pn: VM_PAGE_GET_PHYS_PAGE(m), mask: clear_refmod); |
| 8143 | } |
| 8144 | |
| 8145 | target_offset += PAGE_SIZE_64; |
| 8146 | xfer_size -= PAGE_SIZE; |
| 8147 | entry++; |
| 8148 | |
| 8149 | if (dwp->dw_mask) { |
| 8150 | if (dwp->dw_mask & ~(DW_clear_busy | DW_PAGE_WAKEUP)) { |
| 8151 | VM_PAGE_ADD_DELAYED_WORK(dwp, m, dw_count); |
| 8152 | |
| 8153 | if (dw_count >= dw_limit) { |
| 8154 | vm_page_do_delayed_work(object: shadow_object, VM_KERN_MEMORY_NONE, dwp: dwp_start, dw_count); |
| 8155 | |
| 8156 | dwp = dwp_start; |
| 8157 | dw_count = 0; |
| 8158 | } |
| 8159 | } else { |
| 8160 | if (dwp->dw_mask & DW_clear_busy) { |
| 8161 | m->vmp_busy = FALSE; |
| 8162 | } |
| 8163 | |
| 8164 | if (dwp->dw_mask & DW_PAGE_WAKEUP) { |
| 8165 | PAGE_WAKEUP(m); |
| 8166 | } |
| 8167 | } |
| 8168 | } |
| 8169 | } |
| 8170 | if (dw_count) { |
| 8171 | vm_page_do_delayed_work(object: shadow_object, VM_KERN_MEMORY_NONE, dwp: dwp_start, dw_count); |
| 8172 | dwp = dwp_start; |
| 8173 | dw_count = 0; |
| 8174 | } |
| 8175 | |
| 8176 | if (fast_path_possible) { |
| 8177 | assert(shadow_object->purgable != VM_PURGABLE_VOLATILE); |
| 8178 | assert(shadow_object->purgable != VM_PURGABLE_EMPTY); |
| 8179 | |
| 8180 | if (local_queue_count || unwired_count) { |
| 8181 | if (local_queue_count) { |
| 8182 | vm_page_t first_target; |
| 8183 | vm_page_queue_head_t *target_queue; |
| 8184 | |
| 8185 | if (throttle_page) { |
| 8186 | target_queue = &vm_page_queue_throttled; |
| 8187 | } else { |
| 8188 | if (flags & UPL_COMMIT_INACTIVATE) { |
| 8189 | if (shadow_object->internal) { |
| 8190 | target_queue = &vm_page_queue_anonymous; |
| 8191 | } else { |
| 8192 | target_queue = &vm_page_queue_inactive; |
| 8193 | } |
| 8194 | } else { |
| 8195 | target_queue = &vm_page_queue_active; |
| 8196 | } |
| 8197 | } |
| 8198 | /* |
| 8199 | * Transfer the entire local queue to a regular LRU page queues. |
| 8200 | */ |
| 8201 | vm_page_lockspin_queues(); |
| 8202 | |
| 8203 | first_target = (vm_page_t) vm_page_queue_first(target_queue); |
| 8204 | |
| 8205 | if (vm_page_queue_empty(target_queue)) { |
| 8206 | target_queue->prev = VM_PAGE_CONVERT_TO_QUEUE_ENTRY(last_local); |
| 8207 | } else { |
| 8208 | first_target->vmp_pageq.prev = VM_PAGE_CONVERT_TO_QUEUE_ENTRY(last_local); |
| 8209 | } |
| 8210 | |
| 8211 | target_queue->next = VM_PAGE_CONVERT_TO_QUEUE_ENTRY(first_local); |
| 8212 | first_local->vmp_pageq.prev = VM_PAGE_CONVERT_TO_QUEUE_ENTRY(target_queue); |
| 8213 | last_local->vmp_pageq.next = VM_PAGE_CONVERT_TO_QUEUE_ENTRY(first_target); |
| 8214 | |
| 8215 | /* |
| 8216 | * Adjust the global page counts. |
| 8217 | */ |
| 8218 | if (throttle_page) { |
| 8219 | vm_page_throttled_count += local_queue_count; |
| 8220 | } else { |
| 8221 | if (flags & UPL_COMMIT_INACTIVATE) { |
| 8222 | if (shadow_object->internal) { |
| 8223 | vm_page_anonymous_count += local_queue_count; |
| 8224 | } |
| 8225 | vm_page_inactive_count += local_queue_count; |
| 8226 | |
| 8227 | token_new_pagecount += local_queue_count; |
| 8228 | } else { |
| 8229 | vm_page_active_count += local_queue_count; |
| 8230 | } |
| 8231 | |
| 8232 | if (shadow_object->internal) { |
| 8233 | vm_page_pageable_internal_count += local_queue_count; |
| 8234 | } else { |
| 8235 | vm_page_pageable_external_count += local_queue_count; |
| 8236 | } |
| 8237 | } |
| 8238 | } else { |
| 8239 | vm_page_lockspin_queues(); |
| 8240 | } |
| 8241 | if (unwired_count) { |
| 8242 | vm_page_wire_count -= unwired_count; |
| 8243 | VM_CHECK_MEMORYSTATUS; |
| 8244 | } |
| 8245 | vm_page_unlock_queues(); |
| 8246 | |
| 8247 | VM_OBJECT_WIRED_PAGE_COUNT(shadow_object, -unwired_count); |
| 8248 | } |
| 8249 | } |
| 8250 | |
| 8251 | if (upl->flags & UPL_DEVICE_MEMORY) { |
| 8252 | occupied = 0; |
| 8253 | } else if (upl->flags & UPL_LITE) { |
| 8254 | uint32_t pages = (uint32_t)atop(upl_adjusted_size(upl, PAGE_MASK)); |
| 8255 | |
| 8256 | occupied = !fast_path_full_commit && |
| 8257 | !bitmap_is_empty(map: upl->lite_list, nbits: pages); |
| 8258 | } else { |
| 8259 | occupied = !vm_page_queue_empty(&upl->map_object->memq); |
| 8260 | } |
| 8261 | if (occupied == 0) { |
| 8262 | /* |
| 8263 | * If this UPL element belongs to a Vector UPL and is |
| 8264 | * empty, then this is the right function to deallocate |
| 8265 | * it. So go ahead set the *empty variable. The flag |
| 8266 | * UPL_COMMIT_NOTIFY_EMPTY, from the caller's point of view |
| 8267 | * should be considered relevant for the Vector UPL and not |
| 8268 | * the internal UPLs. |
| 8269 | */ |
| 8270 | if ((upl->flags & UPL_COMMIT_NOTIFY_EMPTY) || isVectorUPL) { |
| 8271 | *empty = TRUE; |
| 8272 | } |
| 8273 | |
| 8274 | if (object == shadow_object && !(upl->flags & UPL_KERNEL_OBJECT)) { |
| 8275 | /* |
| 8276 | * this is not a paging object |
| 8277 | * so we need to drop the paging reference |
| 8278 | * that was taken when we created the UPL |
| 8279 | * against this object |
| 8280 | */ |
| 8281 | vm_object_activity_end(shadow_object); |
| 8282 | vm_object_collapse(object: shadow_object, offset: 0, TRUE); |
| 8283 | } else { |
| 8284 | /* |
| 8285 | * we dontated the paging reference to |
| 8286 | * the map object... vm_pageout_object_terminate |
| 8287 | * will drop this reference |
| 8288 | */ |
| 8289 | } |
| 8290 | } |
| 8291 | VM_OBJECT_WIRED_PAGE_UPDATE_END(shadow_object, shadow_object->wire_tag); |
| 8292 | vm_object_unlock(shadow_object); |
| 8293 | if (object != shadow_object) { |
| 8294 | vm_object_unlock(object); |
| 8295 | } |
| 8296 | |
| 8297 | if (!isVectorUPL) { |
| 8298 | upl_unlock(upl); |
| 8299 | } else { |
| 8300 | /* |
| 8301 | * If we completed our operations on an UPL that is |
| 8302 | * part of a Vectored UPL and if empty is TRUE, then |
| 8303 | * we should go ahead and deallocate this UPL element. |
| 8304 | * Then we check if this was the last of the UPL elements |
| 8305 | * within that Vectored UPL. If so, set empty to TRUE |
| 8306 | * so that in ubc_upl_commit_range or ubc_upl_commit, we |
| 8307 | * can go ahead and deallocate the Vector UPL too. |
| 8308 | */ |
| 8309 | if (*empty == TRUE) { |
| 8310 | *empty = vector_upl_set_subupl(vector_upl, upl, 0); |
| 8311 | upl_deallocate(upl); |
| 8312 | } |
| 8313 | goto process_upl_to_commit; |
| 8314 | } |
| 8315 | if (pgpgout_count) { |
| 8316 | DTRACE_VM2(pgpgout, int, pgpgout_count, (uint64_t *), NULL); |
| 8317 | } |
| 8318 | |
| 8319 | kr = KERN_SUCCESS; |
| 8320 | done: |
| 8321 | if (dwp_start && dwp_finish_ctx) { |
| 8322 | vm_page_delayed_work_finish_ctx(dwp: dwp_start); |
| 8323 | dwp_start = dwp = NULL; |
| 8324 | } |
| 8325 | |
| 8326 | return kr; |
| 8327 | } |
| 8328 | |
| 8329 | kern_return_t |
| 8330 | upl_abort_range( |
| 8331 | upl_t upl, |
| 8332 | upl_offset_t offset, |
| 8333 | upl_size_t size, |
| 8334 | int error, |
| 8335 | boolean_t *empty) |
| 8336 | { |
| 8337 | upl_size_t xfer_size, subupl_size; |
| 8338 | vm_object_t shadow_object; |
| 8339 | vm_object_t object; |
| 8340 | vm_object_offset_t target_offset; |
| 8341 | upl_offset_t subupl_offset = offset; |
| 8342 | int occupied; |
| 8343 | struct vm_page_delayed_work dw_array; |
| 8344 | struct vm_page_delayed_work *dwp, *dwp_start; |
| 8345 | bool dwp_finish_ctx = TRUE; |
| 8346 | int dw_count; |
| 8347 | int dw_limit; |
| 8348 | int isVectorUPL = 0; |
| 8349 | upl_t vector_upl = NULL; |
| 8350 | vm_object_offset_t obj_start, obj_end, obj_offset; |
| 8351 | kern_return_t kr = KERN_SUCCESS; |
| 8352 | |
| 8353 | // DEBUG4K_UPL("upl %p (u_offset 0x%llx u_size 0x%llx) object %p offset 0x%llx size 0x%llx error 0x%x\n", upl, (uint64_t)upl->u_offset, (uint64_t)upl->u_size, upl->map_object, (uint64_t)offset, (uint64_t)size, error); |
| 8354 | |
| 8355 | dwp_start = dwp = NULL; |
| 8356 | |
| 8357 | subupl_size = size; |
| 8358 | *empty = FALSE; |
| 8359 | |
| 8360 | if (upl == UPL_NULL) { |
| 8361 | return KERN_INVALID_ARGUMENT; |
| 8362 | } |
| 8363 | |
| 8364 | if ((upl->flags & UPL_IO_WIRE) && !(error & UPL_ABORT_DUMP_PAGES)) { |
| 8365 | return upl_commit_range(upl, offset, size, UPL_COMMIT_FREE_ABSENT, NULL, count: 0, empty); |
| 8366 | } |
| 8367 | |
| 8368 | dw_count = 0; |
| 8369 | dw_limit = DELAYED_WORK_LIMIT(DEFAULT_DELAYED_WORK_LIMIT); |
| 8370 | dwp_start = vm_page_delayed_work_get_ctx(); |
| 8371 | if (dwp_start == NULL) { |
| 8372 | dwp_start = &dw_array; |
| 8373 | dw_limit = 1; |
| 8374 | dwp_finish_ctx = FALSE; |
| 8375 | } |
| 8376 | |
| 8377 | dwp = dwp_start; |
| 8378 | |
| 8379 | if ((isVectorUPL = vector_upl_is_valid(upl))) { |
| 8380 | vector_upl = upl; |
| 8381 | upl_lock(vector_upl); |
| 8382 | } else { |
| 8383 | upl_lock(upl); |
| 8384 | } |
| 8385 | |
| 8386 | process_upl_to_abort: |
| 8387 | if (isVectorUPL) { |
| 8388 | size = subupl_size; |
| 8389 | offset = subupl_offset; |
| 8390 | if (size == 0) { |
| 8391 | upl_unlock(vector_upl); |
| 8392 | kr = KERN_SUCCESS; |
| 8393 | goto done; |
| 8394 | } |
| 8395 | upl = vector_upl_subupl_byoffset(vector_upl, &offset, &size); |
| 8396 | if (upl == NULL) { |
| 8397 | upl_unlock(vector_upl); |
| 8398 | kr = KERN_FAILURE; |
| 8399 | goto done; |
| 8400 | } |
| 8401 | subupl_size -= size; |
| 8402 | subupl_offset += size; |
| 8403 | } |
| 8404 | |
| 8405 | *empty = FALSE; |
| 8406 | |
| 8407 | #if UPL_DEBUG |
| 8408 | if (upl->upl_commit_index < UPL_DEBUG_COMMIT_RECORDS) { |
| 8409 | upl->upl_commit_records[upl->upl_commit_index].c_btref = btref_get(__builtin_frame_address(0), 0); |
| 8410 | upl->upl_commit_records[upl->upl_commit_index].c_beg = offset; |
| 8411 | upl->upl_commit_records[upl->upl_commit_index].c_end = (offset + size); |
| 8412 | upl->upl_commit_records[upl->upl_commit_index].c_aborted = 1; |
| 8413 | |
| 8414 | upl->upl_commit_index++; |
| 8415 | } |
| 8416 | #endif |
| 8417 | if (upl->flags & UPL_DEVICE_MEMORY) { |
| 8418 | xfer_size = 0; |
| 8419 | } else if ((offset + size) <= upl_adjusted_size(upl, PAGE_MASK)) { |
| 8420 | xfer_size = size; |
| 8421 | } else { |
| 8422 | if (!isVectorUPL) { |
| 8423 | upl_unlock(upl); |
| 8424 | } else { |
| 8425 | upl_unlock(vector_upl); |
| 8426 | } |
| 8427 | DEBUG4K_ERROR("upl %p (u_offset 0x%llx u_size 0x%x) offset 0x%x size 0x%x\n" , upl, upl->u_offset, upl->u_size, offset, size); |
| 8428 | kr = KERN_FAILURE; |
| 8429 | goto done; |
| 8430 | } |
| 8431 | object = upl->map_object; |
| 8432 | |
| 8433 | if (upl->flags & UPL_SHADOWED) { |
| 8434 | vm_object_lock(object); |
| 8435 | shadow_object = object->shadow; |
| 8436 | } else { |
| 8437 | shadow_object = object; |
| 8438 | } |
| 8439 | |
| 8440 | target_offset = (vm_object_offset_t)offset; |
| 8441 | |
| 8442 | if (upl->flags & UPL_KERNEL_OBJECT) { |
| 8443 | vm_object_lock_shared(shadow_object); |
| 8444 | } else { |
| 8445 | vm_object_lock(shadow_object); |
| 8446 | } |
| 8447 | |
| 8448 | if (upl->flags & UPL_ACCESS_BLOCKED) { |
| 8449 | assert(shadow_object->blocked_access); |
| 8450 | shadow_object->blocked_access = FALSE; |
| 8451 | vm_object_wakeup(object, VM_OBJECT_EVENT_UNBLOCKED); |
| 8452 | } |
| 8453 | |
| 8454 | if ((error & UPL_ABORT_DUMP_PAGES) && (upl->flags & UPL_KERNEL_OBJECT)) { |
| 8455 | panic("upl_abort_range: kernel_object being DUMPED" ); |
| 8456 | } |
| 8457 | |
| 8458 | obj_start = target_offset + upl->u_offset - shadow_object->paging_offset; |
| 8459 | obj_end = obj_start + xfer_size; |
| 8460 | obj_start = vm_object_trunc_page(obj_start); |
| 8461 | obj_end = vm_object_round_page(obj_end); |
| 8462 | for (obj_offset = obj_start; |
| 8463 | obj_offset < obj_end; |
| 8464 | obj_offset += PAGE_SIZE) { |
| 8465 | vm_page_t t, m; |
| 8466 | unsigned int pg_num; |
| 8467 | boolean_t needed; |
| 8468 | |
| 8469 | pg_num = (unsigned int) (target_offset / PAGE_SIZE); |
| 8470 | assert(pg_num == target_offset / PAGE_SIZE); |
| 8471 | |
| 8472 | needed = FALSE; |
| 8473 | |
| 8474 | if (upl->flags & UPL_INTERNAL) { |
| 8475 | needed = upl->page_list[pg_num].needed; |
| 8476 | } |
| 8477 | |
| 8478 | dwp->dw_mask = 0; |
| 8479 | m = VM_PAGE_NULL; |
| 8480 | |
| 8481 | if (upl->flags & UPL_LITE) { |
| 8482 | if (bitmap_test(map: upl->lite_list, n: pg_num)) { |
| 8483 | bitmap_clear(map: upl->lite_list, n: pg_num); |
| 8484 | |
| 8485 | if (!(upl->flags & UPL_KERNEL_OBJECT)) { |
| 8486 | m = vm_page_lookup(object: shadow_object, offset: obj_offset); |
| 8487 | } |
| 8488 | } |
| 8489 | } |
| 8490 | if (upl->flags & UPL_SHADOWED) { |
| 8491 | if ((t = vm_page_lookup(object, offset: target_offset)) != VM_PAGE_NULL) { |
| 8492 | t->vmp_free_when_done = FALSE; |
| 8493 | |
| 8494 | VM_PAGE_FREE(t); |
| 8495 | |
| 8496 | if (m == VM_PAGE_NULL) { |
| 8497 | m = vm_page_lookup(object: shadow_object, offset: target_offset + object->vo_shadow_offset); |
| 8498 | } |
| 8499 | } |
| 8500 | } |
| 8501 | if ((upl->flags & UPL_KERNEL_OBJECT)) { |
| 8502 | goto abort_next_page; |
| 8503 | } |
| 8504 | |
| 8505 | if (m != VM_PAGE_NULL) { |
| 8506 | assert(m->vmp_q_state != VM_PAGE_USED_BY_COMPRESSOR); |
| 8507 | |
| 8508 | if (m->vmp_absent) { |
| 8509 | boolean_t must_free = TRUE; |
| 8510 | |
| 8511 | /* |
| 8512 | * COPYOUT = FALSE case |
| 8513 | * check for error conditions which must |
| 8514 | * be passed back to the pages customer |
| 8515 | */ |
| 8516 | if (error & UPL_ABORT_RESTART) { |
| 8517 | m->vmp_restart = TRUE; |
| 8518 | m->vmp_absent = FALSE; |
| 8519 | m->vmp_unusual = TRUE; |
| 8520 | must_free = FALSE; |
| 8521 | } else if (error & UPL_ABORT_UNAVAILABLE) { |
| 8522 | m->vmp_restart = FALSE; |
| 8523 | m->vmp_unusual = TRUE; |
| 8524 | must_free = FALSE; |
| 8525 | } else if (error & UPL_ABORT_ERROR) { |
| 8526 | m->vmp_restart = FALSE; |
| 8527 | m->vmp_absent = FALSE; |
| 8528 | m->vmp_error = TRUE; |
| 8529 | m->vmp_unusual = TRUE; |
| 8530 | must_free = FALSE; |
| 8531 | } |
| 8532 | if (m->vmp_clustered && needed == FALSE) { |
| 8533 | /* |
| 8534 | * This page was a part of a speculative |
| 8535 | * read-ahead initiated by the kernel |
| 8536 | * itself. No one is expecting this |
| 8537 | * page and no one will clean up its |
| 8538 | * error state if it ever becomes valid |
| 8539 | * in the future. |
| 8540 | * We have to free it here. |
| 8541 | */ |
| 8542 | must_free = TRUE; |
| 8543 | } |
| 8544 | m->vmp_cleaning = FALSE; |
| 8545 | |
| 8546 | if (m->vmp_overwriting && !m->vmp_busy) { |
| 8547 | /* |
| 8548 | * this shouldn't happen since |
| 8549 | * this is an 'absent' page, but |
| 8550 | * it doesn't hurt to check for |
| 8551 | * the 'alternate' method of |
| 8552 | * stabilizing the page... |
| 8553 | * we will mark 'busy' to be cleared |
| 8554 | * in the following code which will |
| 8555 | * take care of the primary stabilzation |
| 8556 | * method (i.e. setting 'busy' to TRUE) |
| 8557 | */ |
| 8558 | dwp->dw_mask |= DW_vm_page_unwire; |
| 8559 | } |
| 8560 | m->vmp_overwriting = FALSE; |
| 8561 | |
| 8562 | dwp->dw_mask |= (DW_clear_busy | DW_PAGE_WAKEUP); |
| 8563 | |
| 8564 | if (must_free == TRUE) { |
| 8565 | dwp->dw_mask |= DW_vm_page_free; |
| 8566 | } else { |
| 8567 | dwp->dw_mask |= DW_vm_page_activate; |
| 8568 | } |
| 8569 | } else { |
| 8570 | /* |
| 8571 | * Handle the trusted pager throttle. |
| 8572 | */ |
| 8573 | if (m->vmp_laundry) { |
| 8574 | dwp->dw_mask |= DW_vm_pageout_throttle_up; |
| 8575 | } |
| 8576 | |
| 8577 | if (upl->flags & UPL_ACCESS_BLOCKED) { |
| 8578 | /* |
| 8579 | * We blocked access to the pages in this UPL. |
| 8580 | * Clear the "busy" bit and wake up any waiter |
| 8581 | * for this page. |
| 8582 | */ |
| 8583 | dwp->dw_mask |= DW_clear_busy; |
| 8584 | } |
| 8585 | if (m->vmp_overwriting) { |
| 8586 | if (m->vmp_busy) { |
| 8587 | dwp->dw_mask |= DW_clear_busy; |
| 8588 | } else { |
| 8589 | /* |
| 8590 | * deal with the 'alternate' method |
| 8591 | * of stabilizing the page... |
| 8592 | * we will either free the page |
| 8593 | * or mark 'busy' to be cleared |
| 8594 | * in the following code which will |
| 8595 | * take care of the primary stabilzation |
| 8596 | * method (i.e. setting 'busy' to TRUE) |
| 8597 | */ |
| 8598 | dwp->dw_mask |= DW_vm_page_unwire; |
| 8599 | } |
| 8600 | m->vmp_overwriting = FALSE; |
| 8601 | } |
| 8602 | m->vmp_free_when_done = FALSE; |
| 8603 | m->vmp_cleaning = FALSE; |
| 8604 | |
| 8605 | if (error & UPL_ABORT_DUMP_PAGES) { |
| 8606 | pmap_disconnect(phys: VM_PAGE_GET_PHYS_PAGE(m)); |
| 8607 | |
| 8608 | dwp->dw_mask |= DW_vm_page_free; |
| 8609 | } else { |
| 8610 | if (!(dwp->dw_mask & DW_vm_page_unwire)) { |
| 8611 | if (error & UPL_ABORT_REFERENCE) { |
| 8612 | /* |
| 8613 | * we've been told to explictly |
| 8614 | * reference this page... for |
| 8615 | * file I/O, this is done by |
| 8616 | * implementing an LRU on the inactive q |
| 8617 | */ |
| 8618 | dwp->dw_mask |= DW_vm_page_lru; |
| 8619 | } else if (!VM_PAGE_PAGEABLE(m)) { |
| 8620 | dwp->dw_mask |= DW_vm_page_deactivate_internal; |
| 8621 | } |
| 8622 | } |
| 8623 | dwp->dw_mask |= DW_PAGE_WAKEUP; |
| 8624 | } |
| 8625 | } |
| 8626 | } |
| 8627 | abort_next_page: |
| 8628 | target_offset += PAGE_SIZE_64; |
| 8629 | xfer_size -= PAGE_SIZE; |
| 8630 | |
| 8631 | if (dwp->dw_mask) { |
| 8632 | if (dwp->dw_mask & ~(DW_clear_busy | DW_PAGE_WAKEUP)) { |
| 8633 | VM_PAGE_ADD_DELAYED_WORK(dwp, m, dw_count); |
| 8634 | |
| 8635 | if (dw_count >= dw_limit) { |
| 8636 | vm_page_do_delayed_work(object: shadow_object, VM_KERN_MEMORY_NONE, dwp: dwp_start, dw_count); |
| 8637 | |
| 8638 | dwp = dwp_start; |
| 8639 | dw_count = 0; |
| 8640 | } |
| 8641 | } else { |
| 8642 | if (dwp->dw_mask & DW_clear_busy) { |
| 8643 | m->vmp_busy = FALSE; |
| 8644 | } |
| 8645 | |
| 8646 | if (dwp->dw_mask & DW_PAGE_WAKEUP) { |
| 8647 | PAGE_WAKEUP(m); |
| 8648 | } |
| 8649 | } |
| 8650 | } |
| 8651 | } |
| 8652 | if (dw_count) { |
| 8653 | vm_page_do_delayed_work(object: shadow_object, VM_KERN_MEMORY_NONE, dwp: dwp_start, dw_count); |
| 8654 | dwp = dwp_start; |
| 8655 | dw_count = 0; |
| 8656 | } |
| 8657 | |
| 8658 | if (upl->flags & UPL_DEVICE_MEMORY) { |
| 8659 | occupied = 0; |
| 8660 | } else if (upl->flags & UPL_LITE) { |
| 8661 | uint32_t pages = (uint32_t)atop(upl_adjusted_size(upl, PAGE_MASK)); |
| 8662 | |
| 8663 | occupied = !bitmap_is_empty(map: upl->lite_list, nbits: pages); |
| 8664 | } else { |
| 8665 | occupied = !vm_page_queue_empty(&upl->map_object->memq); |
| 8666 | } |
| 8667 | if (occupied == 0) { |
| 8668 | /* |
| 8669 | * If this UPL element belongs to a Vector UPL and is |
| 8670 | * empty, then this is the right function to deallocate |
| 8671 | * it. So go ahead set the *empty variable. The flag |
| 8672 | * UPL_COMMIT_NOTIFY_EMPTY, from the caller's point of view |
| 8673 | * should be considered relevant for the Vector UPL and |
| 8674 | * not the internal UPLs. |
| 8675 | */ |
| 8676 | if ((upl->flags & UPL_COMMIT_NOTIFY_EMPTY) || isVectorUPL) { |
| 8677 | *empty = TRUE; |
| 8678 | } |
| 8679 | |
| 8680 | if (object == shadow_object && !(upl->flags & UPL_KERNEL_OBJECT)) { |
| 8681 | /* |
| 8682 | * this is not a paging object |
| 8683 | * so we need to drop the paging reference |
| 8684 | * that was taken when we created the UPL |
| 8685 | * against this object |
| 8686 | */ |
| 8687 | vm_object_activity_end(shadow_object); |
| 8688 | vm_object_collapse(object: shadow_object, offset: 0, TRUE); |
| 8689 | } else { |
| 8690 | /* |
| 8691 | * we dontated the paging reference to |
| 8692 | * the map object... vm_pageout_object_terminate |
| 8693 | * will drop this reference |
| 8694 | */ |
| 8695 | } |
| 8696 | } |
| 8697 | vm_object_unlock(shadow_object); |
| 8698 | if (object != shadow_object) { |
| 8699 | vm_object_unlock(object); |
| 8700 | } |
| 8701 | |
| 8702 | if (!isVectorUPL) { |
| 8703 | upl_unlock(upl); |
| 8704 | } else { |
| 8705 | /* |
| 8706 | * If we completed our operations on an UPL that is |
| 8707 | * part of a Vectored UPL and if empty is TRUE, then |
| 8708 | * we should go ahead and deallocate this UPL element. |
| 8709 | * Then we check if this was the last of the UPL elements |
| 8710 | * within that Vectored UPL. If so, set empty to TRUE |
| 8711 | * so that in ubc_upl_abort_range or ubc_upl_abort, we |
| 8712 | * can go ahead and deallocate the Vector UPL too. |
| 8713 | */ |
| 8714 | if (*empty == TRUE) { |
| 8715 | *empty = vector_upl_set_subupl(vector_upl, upl, 0); |
| 8716 | upl_deallocate(upl); |
| 8717 | } |
| 8718 | goto process_upl_to_abort; |
| 8719 | } |
| 8720 | |
| 8721 | kr = KERN_SUCCESS; |
| 8722 | |
| 8723 | done: |
| 8724 | if (dwp_start && dwp_finish_ctx) { |
| 8725 | vm_page_delayed_work_finish_ctx(dwp: dwp_start); |
| 8726 | dwp_start = dwp = NULL; |
| 8727 | } |
| 8728 | |
| 8729 | return kr; |
| 8730 | } |
| 8731 | |
| 8732 | |
| 8733 | kern_return_t |
| 8734 | upl_abort( |
| 8735 | upl_t upl, |
| 8736 | int error) |
| 8737 | { |
| 8738 | boolean_t empty; |
| 8739 | |
| 8740 | if (upl == UPL_NULL) { |
| 8741 | return KERN_INVALID_ARGUMENT; |
| 8742 | } |
| 8743 | |
| 8744 | return upl_abort_range(upl, offset: 0, size: upl->u_size, error, empty: &empty); |
| 8745 | } |
| 8746 | |
| 8747 | |
| 8748 | /* an option on commit should be wire */ |
| 8749 | kern_return_t |
| 8750 | upl_commit( |
| 8751 | upl_t upl, |
| 8752 | upl_page_info_t *page_list, |
| 8753 | mach_msg_type_number_t count) |
| 8754 | { |
| 8755 | boolean_t empty; |
| 8756 | |
| 8757 | if (upl == UPL_NULL) { |
| 8758 | return KERN_INVALID_ARGUMENT; |
| 8759 | } |
| 8760 | |
| 8761 | return upl_commit_range(upl, offset: 0, size: upl->u_size, flags: 0, |
| 8762 | page_list, count, empty: &empty); |
| 8763 | } |
| 8764 | |
| 8765 | |
| 8766 | void |
| 8767 | iopl_valid_data( |
| 8768 | upl_t upl, |
| 8769 | vm_tag_t tag) |
| 8770 | { |
| 8771 | vm_object_t object; |
| 8772 | vm_offset_t offset; |
| 8773 | vm_page_t m, nxt_page = VM_PAGE_NULL; |
| 8774 | upl_size_t size; |
| 8775 | int wired_count = 0; |
| 8776 | |
| 8777 | if (upl == NULL) { |
| 8778 | panic("iopl_valid_data: NULL upl" ); |
| 8779 | } |
| 8780 | if (vector_upl_is_valid(upl)) { |
| 8781 | panic("iopl_valid_data: vector upl" ); |
| 8782 | } |
| 8783 | if ((upl->flags & (UPL_DEVICE_MEMORY | UPL_SHADOWED | UPL_ACCESS_BLOCKED | UPL_IO_WIRE | UPL_INTERNAL)) != UPL_IO_WIRE) { |
| 8784 | panic("iopl_valid_data: unsupported upl, flags = %x" , upl->flags); |
| 8785 | } |
| 8786 | |
| 8787 | object = upl->map_object; |
| 8788 | |
| 8789 | if (is_kernel_object(object) || object == compressor_object) { |
| 8790 | panic("iopl_valid_data: object == kernel or compressor" ); |
| 8791 | } |
| 8792 | |
| 8793 | if (object->purgable == VM_PURGABLE_VOLATILE || |
| 8794 | object->purgable == VM_PURGABLE_EMPTY) { |
| 8795 | panic("iopl_valid_data: object %p purgable %d" , |
| 8796 | object, object->purgable); |
| 8797 | } |
| 8798 | |
| 8799 | size = upl_adjusted_size(upl, PAGE_MASK); |
| 8800 | |
| 8801 | vm_object_lock(object); |
| 8802 | VM_OBJECT_WIRED_PAGE_UPDATE_START(object); |
| 8803 | |
| 8804 | bool whole_object; |
| 8805 | |
| 8806 | if (object->vo_size == size && object->resident_page_count == (size / PAGE_SIZE)) { |
| 8807 | nxt_page = (vm_page_t)vm_page_queue_first(&object->memq); |
| 8808 | whole_object = true; |
| 8809 | } else { |
| 8810 | offset = (vm_offset_t)(upl_adjusted_offset(upl, PAGE_MASK) - object->paging_offset); |
| 8811 | whole_object = false; |
| 8812 | } |
| 8813 | |
| 8814 | while (size) { |
| 8815 | if (whole_object) { |
| 8816 | if (nxt_page != VM_PAGE_NULL) { |
| 8817 | m = nxt_page; |
| 8818 | nxt_page = (vm_page_t)vm_page_queue_next(&nxt_page->vmp_listq); |
| 8819 | } |
| 8820 | } else { |
| 8821 | m = vm_page_lookup(object, offset); |
| 8822 | offset += PAGE_SIZE; |
| 8823 | |
| 8824 | if (m == VM_PAGE_NULL) { |
| 8825 | panic("iopl_valid_data: missing expected page at offset %lx" , (long)offset); |
| 8826 | } |
| 8827 | } |
| 8828 | if (m->vmp_busy) { |
| 8829 | if (!m->vmp_absent) { |
| 8830 | panic("iopl_valid_data: busy page w/o absent" ); |
| 8831 | } |
| 8832 | |
| 8833 | if (m->vmp_pageq.next || m->vmp_pageq.prev) { |
| 8834 | panic("iopl_valid_data: busy+absent page on page queue" ); |
| 8835 | } |
| 8836 | if (m->vmp_reusable) { |
| 8837 | panic("iopl_valid_data: %p is reusable" , m); |
| 8838 | } |
| 8839 | |
| 8840 | m->vmp_absent = FALSE; |
| 8841 | m->vmp_dirty = TRUE; |
| 8842 | assert(m->vmp_q_state == VM_PAGE_NOT_ON_Q); |
| 8843 | assert(m->vmp_wire_count == 0); |
| 8844 | m->vmp_wire_count++; |
| 8845 | assert(m->vmp_wire_count); |
| 8846 | if (m->vmp_wire_count == 1) { |
| 8847 | m->vmp_q_state = VM_PAGE_IS_WIRED; |
| 8848 | wired_count++; |
| 8849 | } else { |
| 8850 | panic("iopl_valid_data: %p already wired" , m); |
| 8851 | } |
| 8852 | |
| 8853 | PAGE_WAKEUP_DONE(m); |
| 8854 | } |
| 8855 | size -= PAGE_SIZE; |
| 8856 | } |
| 8857 | if (wired_count) { |
| 8858 | VM_OBJECT_WIRED_PAGE_COUNT(object, wired_count); |
| 8859 | assert(object->resident_page_count >= object->wired_page_count); |
| 8860 | |
| 8861 | /* no need to adjust purgeable accounting for this object: */ |
| 8862 | assert(object->purgable != VM_PURGABLE_VOLATILE); |
| 8863 | assert(object->purgable != VM_PURGABLE_EMPTY); |
| 8864 | |
| 8865 | vm_page_lockspin_queues(); |
| 8866 | vm_page_wire_count += wired_count; |
| 8867 | vm_page_unlock_queues(); |
| 8868 | } |
| 8869 | VM_OBJECT_WIRED_PAGE_UPDATE_END(object, tag); |
| 8870 | vm_object_unlock(object); |
| 8871 | } |
| 8872 | |
| 8873 | |
| 8874 | void |
| 8875 | vm_object_set_pmap_cache_attr( |
| 8876 | vm_object_t object, |
| 8877 | upl_page_info_array_t user_page_list, |
| 8878 | unsigned int num_pages, |
| 8879 | boolean_t batch_pmap_op) |
| 8880 | { |
| 8881 | unsigned int cache_attr = 0; |
| 8882 | |
| 8883 | cache_attr = object->wimg_bits & VM_WIMG_MASK; |
| 8884 | assert(user_page_list); |
| 8885 | if (cache_attr != VM_WIMG_USE_DEFAULT) { |
| 8886 | PMAP_BATCH_SET_CACHE_ATTR(object, user_page_list, cache_attr, num_pages, batch_pmap_op); |
| 8887 | } |
| 8888 | } |
| 8889 | |
| 8890 | |
| 8891 | static bool |
| 8892 | vm_object_iopl_wire_full( |
| 8893 | vm_object_t object, |
| 8894 | upl_t upl, |
| 8895 | upl_page_info_array_t user_page_list, |
| 8896 | upl_control_flags_t cntrl_flags, |
| 8897 | vm_tag_t tag) |
| 8898 | { |
| 8899 | vm_page_t dst_page; |
| 8900 | unsigned int entry; |
| 8901 | int page_count; |
| 8902 | int delayed_unlock = 0; |
| 8903 | boolean_t retval = TRUE; |
| 8904 | ppnum_t phys_page; |
| 8905 | |
| 8906 | vm_object_lock_assert_exclusive(object); |
| 8907 | assert(object->purgable != VM_PURGABLE_VOLATILE); |
| 8908 | assert(object->purgable != VM_PURGABLE_EMPTY); |
| 8909 | assert(object->pager == NULL); |
| 8910 | assert(object->vo_copy == NULL); |
| 8911 | assert(object->shadow == NULL); |
| 8912 | |
| 8913 | page_count = object->resident_page_count; |
| 8914 | dst_page = (vm_page_t)vm_page_queue_first(&object->memq); |
| 8915 | |
| 8916 | vm_page_lock_queues(); |
| 8917 | |
| 8918 | while (page_count--) { |
| 8919 | if (dst_page->vmp_busy || |
| 8920 | dst_page->vmp_fictitious || |
| 8921 | dst_page->vmp_absent || |
| 8922 | VMP_ERROR_GET(dst_page) || |
| 8923 | dst_page->vmp_cleaning || |
| 8924 | dst_page->vmp_restart || |
| 8925 | dst_page->vmp_laundry) { |
| 8926 | retval = FALSE; |
| 8927 | goto done; |
| 8928 | } |
| 8929 | if ((cntrl_flags & UPL_REQUEST_FORCE_COHERENCY) && dst_page->vmp_written_by_kernel == TRUE) { |
| 8930 | retval = FALSE; |
| 8931 | goto done; |
| 8932 | } |
| 8933 | dst_page->vmp_reference = TRUE; |
| 8934 | |
| 8935 | vm_page_wire(page: dst_page, tag, FALSE); |
| 8936 | |
| 8937 | if (!(cntrl_flags & UPL_COPYOUT_FROM)) { |
| 8938 | SET_PAGE_DIRTY(dst_page, FALSE); |
| 8939 | } |
| 8940 | entry = (unsigned int)(dst_page->vmp_offset / PAGE_SIZE); |
| 8941 | assert(entry >= 0 && entry < object->resident_page_count); |
| 8942 | bitmap_set(map: upl->lite_list, n: entry); |
| 8943 | |
| 8944 | phys_page = VM_PAGE_GET_PHYS_PAGE(m: dst_page); |
| 8945 | |
| 8946 | if (phys_page > upl->highest_page) { |
| 8947 | upl->highest_page = phys_page; |
| 8948 | } |
| 8949 | |
| 8950 | if (user_page_list) { |
| 8951 | user_page_list[entry].phys_addr = phys_page; |
| 8952 | user_page_list[entry].absent = dst_page->vmp_absent; |
| 8953 | user_page_list[entry].dirty = dst_page->vmp_dirty; |
| 8954 | user_page_list[entry].free_when_done = dst_page->vmp_free_when_done; |
| 8955 | user_page_list[entry].precious = dst_page->vmp_precious; |
| 8956 | user_page_list[entry].device = FALSE; |
| 8957 | user_page_list[entry].speculative = FALSE; |
| 8958 | user_page_list[entry].cs_validated = FALSE; |
| 8959 | user_page_list[entry].cs_tainted = FALSE; |
| 8960 | user_page_list[entry].cs_nx = FALSE; |
| 8961 | user_page_list[entry].needed = FALSE; |
| 8962 | user_page_list[entry].mark = FALSE; |
| 8963 | } |
| 8964 | if (delayed_unlock++ > 256) { |
| 8965 | delayed_unlock = 0; |
| 8966 | lck_mtx_yield(lck: &vm_page_queue_lock); |
| 8967 | |
| 8968 | VM_CHECK_MEMORYSTATUS; |
| 8969 | } |
| 8970 | dst_page = (vm_page_t)vm_page_queue_next(&dst_page->vmp_listq); |
| 8971 | } |
| 8972 | done: |
| 8973 | vm_page_unlock_queues(); |
| 8974 | |
| 8975 | VM_CHECK_MEMORYSTATUS; |
| 8976 | |
| 8977 | return retval; |
| 8978 | } |
| 8979 | |
| 8980 | |
| 8981 | static kern_return_t |
| 8982 | vm_object_iopl_wire_empty( |
| 8983 | vm_object_t object, |
| 8984 | upl_t upl, |
| 8985 | upl_page_info_array_t user_page_list, |
| 8986 | upl_control_flags_t cntrl_flags, |
| 8987 | vm_tag_t tag, |
| 8988 | vm_object_offset_t *dst_offset, |
| 8989 | int page_count, |
| 8990 | int *page_grab_count) |
| 8991 | { |
| 8992 | vm_page_t dst_page; |
| 8993 | boolean_t no_zero_fill = FALSE; |
| 8994 | int interruptible; |
| 8995 | int pages_wired = 0; |
| 8996 | int pages_inserted = 0; |
| 8997 | int entry = 0; |
| 8998 | uint64_t delayed_ledger_update = 0; |
| 8999 | kern_return_t ret = KERN_SUCCESS; |
| 9000 | int grab_options; |
| 9001 | ppnum_t phys_page; |
| 9002 | |
| 9003 | vm_object_lock_assert_exclusive(object); |
| 9004 | assert(object->purgable != VM_PURGABLE_VOLATILE); |
| 9005 | assert(object->purgable != VM_PURGABLE_EMPTY); |
| 9006 | assert(object->pager == NULL); |
| 9007 | assert(object->vo_copy == NULL); |
| 9008 | assert(object->shadow == NULL); |
| 9009 | |
| 9010 | if (cntrl_flags & UPL_SET_INTERRUPTIBLE) { |
| 9011 | interruptible = THREAD_ABORTSAFE; |
| 9012 | } else { |
| 9013 | interruptible = THREAD_UNINT; |
| 9014 | } |
| 9015 | |
| 9016 | if (cntrl_flags & (UPL_NOZEROFILL | UPL_NOZEROFILLIO)) { |
| 9017 | no_zero_fill = TRUE; |
| 9018 | } |
| 9019 | |
| 9020 | grab_options = 0; |
| 9021 | #if CONFIG_SECLUDED_MEMORY |
| 9022 | if (object->can_grab_secluded) { |
| 9023 | grab_options |= VM_PAGE_GRAB_SECLUDED; |
| 9024 | } |
| 9025 | #endif /* CONFIG_SECLUDED_MEMORY */ |
| 9026 | |
| 9027 | while (page_count--) { |
| 9028 | while ((dst_page = vm_page_grab_options(flags: grab_options)) |
| 9029 | == VM_PAGE_NULL) { |
| 9030 | OSAddAtomic(page_count, &vm_upl_wait_for_pages); |
| 9031 | |
| 9032 | VM_DEBUG_EVENT(vm_iopl_page_wait, VM_IOPL_PAGE_WAIT, DBG_FUNC_START, vm_upl_wait_for_pages, 0, 0, 0); |
| 9033 | |
| 9034 | if (vm_page_wait(interruptible) == FALSE) { |
| 9035 | /* |
| 9036 | * interrupted case |
| 9037 | */ |
| 9038 | OSAddAtomic(-page_count, &vm_upl_wait_for_pages); |
| 9039 | |
| 9040 | VM_DEBUG_EVENT(vm_iopl_page_wait, VM_IOPL_PAGE_WAIT, DBG_FUNC_END, vm_upl_wait_for_pages, 0, 0, -1); |
| 9041 | |
| 9042 | ret = MACH_SEND_INTERRUPTED; |
| 9043 | goto done; |
| 9044 | } |
| 9045 | OSAddAtomic(-page_count, &vm_upl_wait_for_pages); |
| 9046 | |
| 9047 | VM_DEBUG_EVENT(vm_iopl_page_wait, VM_IOPL_PAGE_WAIT, DBG_FUNC_END, vm_upl_wait_for_pages, 0, 0, 0); |
| 9048 | } |
| 9049 | if (no_zero_fill == FALSE) { |
| 9050 | vm_page_zero_fill(page: dst_page); |
| 9051 | } else { |
| 9052 | dst_page->vmp_absent = TRUE; |
| 9053 | } |
| 9054 | |
| 9055 | dst_page->vmp_reference = TRUE; |
| 9056 | |
| 9057 | if (!(cntrl_flags & UPL_COPYOUT_FROM)) { |
| 9058 | SET_PAGE_DIRTY(dst_page, FALSE); |
| 9059 | } |
| 9060 | if (dst_page->vmp_absent == FALSE) { |
| 9061 | assert(dst_page->vmp_q_state == VM_PAGE_NOT_ON_Q); |
| 9062 | assert(dst_page->vmp_wire_count == 0); |
| 9063 | dst_page->vmp_wire_count++; |
| 9064 | dst_page->vmp_q_state = VM_PAGE_IS_WIRED; |
| 9065 | assert(dst_page->vmp_wire_count); |
| 9066 | pages_wired++; |
| 9067 | PAGE_WAKEUP_DONE(dst_page); |
| 9068 | } |
| 9069 | pages_inserted++; |
| 9070 | |
| 9071 | vm_page_insert_internal(page: dst_page, object, offset: *dst_offset, tag, FALSE, TRUE, TRUE, TRUE, delayed_ledger_update: &delayed_ledger_update); |
| 9072 | |
| 9073 | bitmap_set(map: upl->lite_list, n: entry); |
| 9074 | |
| 9075 | phys_page = VM_PAGE_GET_PHYS_PAGE(m: dst_page); |
| 9076 | |
| 9077 | if (phys_page > upl->highest_page) { |
| 9078 | upl->highest_page = phys_page; |
| 9079 | } |
| 9080 | |
| 9081 | if (user_page_list) { |
| 9082 | user_page_list[entry].phys_addr = phys_page; |
| 9083 | user_page_list[entry].absent = dst_page->vmp_absent; |
| 9084 | user_page_list[entry].dirty = dst_page->vmp_dirty; |
| 9085 | user_page_list[entry].free_when_done = FALSE; |
| 9086 | user_page_list[entry].precious = FALSE; |
| 9087 | user_page_list[entry].device = FALSE; |
| 9088 | user_page_list[entry].speculative = FALSE; |
| 9089 | user_page_list[entry].cs_validated = FALSE; |
| 9090 | user_page_list[entry].cs_tainted = FALSE; |
| 9091 | user_page_list[entry].cs_nx = FALSE; |
| 9092 | user_page_list[entry].needed = FALSE; |
| 9093 | user_page_list[entry].mark = FALSE; |
| 9094 | } |
| 9095 | entry++; |
| 9096 | *dst_offset += PAGE_SIZE_64; |
| 9097 | } |
| 9098 | done: |
| 9099 | if (pages_wired) { |
| 9100 | vm_page_lockspin_queues(); |
| 9101 | vm_page_wire_count += pages_wired; |
| 9102 | vm_page_unlock_queues(); |
| 9103 | } |
| 9104 | if (pages_inserted) { |
| 9105 | if (object->internal) { |
| 9106 | OSAddAtomic(pages_inserted, &vm_page_internal_count); |
| 9107 | } else { |
| 9108 | OSAddAtomic(pages_inserted, &vm_page_external_count); |
| 9109 | } |
| 9110 | } |
| 9111 | if (delayed_ledger_update) { |
| 9112 | task_t owner; |
| 9113 | int ledger_idx_volatile; |
| 9114 | int ledger_idx_nonvolatile; |
| 9115 | int ledger_idx_volatile_compressed; |
| 9116 | int ledger_idx_nonvolatile_compressed; |
| 9117 | boolean_t ; |
| 9118 | |
| 9119 | owner = VM_OBJECT_OWNER(object); |
| 9120 | assert(owner); |
| 9121 | |
| 9122 | vm_object_ledger_tag_ledgers(object, |
| 9123 | ledger_idx_volatile: &ledger_idx_volatile, |
| 9124 | ledger_idx_nonvolatile: &ledger_idx_nonvolatile, |
| 9125 | ledger_idx_volatile_compressed: &ledger_idx_volatile_compressed, |
| 9126 | ledger_idx_nonvolatile_compressed: &ledger_idx_nonvolatile_compressed, |
| 9127 | do_footprint: &do_footprint); |
| 9128 | |
| 9129 | /* more non-volatile bytes */ |
| 9130 | ledger_credit(ledger: owner->ledger, |
| 9131 | entry: ledger_idx_nonvolatile, |
| 9132 | amount: delayed_ledger_update); |
| 9133 | if (do_footprint) { |
| 9134 | /* more footprint */ |
| 9135 | ledger_credit(ledger: owner->ledger, |
| 9136 | entry: task_ledgers.phys_footprint, |
| 9137 | amount: delayed_ledger_update); |
| 9138 | } |
| 9139 | } |
| 9140 | |
| 9141 | assert(page_grab_count); |
| 9142 | *page_grab_count = pages_inserted; |
| 9143 | |
| 9144 | return ret; |
| 9145 | } |
| 9146 | |
| 9147 | |
| 9148 | |
| 9149 | kern_return_t |
| 9150 | vm_object_iopl_request( |
| 9151 | vm_object_t object, |
| 9152 | vm_object_offset_t offset, |
| 9153 | upl_size_t size, |
| 9154 | upl_t *upl_ptr, |
| 9155 | upl_page_info_array_t user_page_list, |
| 9156 | unsigned int *page_list_count, |
| 9157 | upl_control_flags_t cntrl_flags, |
| 9158 | vm_tag_t tag) |
| 9159 | { |
| 9160 | vm_page_t dst_page; |
| 9161 | vm_object_offset_t dst_offset; |
| 9162 | upl_size_t xfer_size; |
| 9163 | upl_t upl = NULL; |
| 9164 | unsigned int entry; |
| 9165 | int no_zero_fill = FALSE; |
| 9166 | unsigned int size_in_pages; |
| 9167 | int page_grab_count = 0; |
| 9168 | u_int32_t psize; |
| 9169 | kern_return_t ret; |
| 9170 | vm_prot_t prot; |
| 9171 | struct vm_object_fault_info fault_info = {}; |
| 9172 | struct vm_page_delayed_work dw_array; |
| 9173 | struct vm_page_delayed_work *dwp, *dwp_start; |
| 9174 | bool dwp_finish_ctx = TRUE; |
| 9175 | int dw_count; |
| 9176 | int dw_limit; |
| 9177 | int dw_index; |
| 9178 | boolean_t caller_lookup; |
| 9179 | int io_tracking_flag = 0; |
| 9180 | int interruptible; |
| 9181 | ppnum_t phys_page; |
| 9182 | |
| 9183 | boolean_t set_cache_attr_needed = FALSE; |
| 9184 | boolean_t free_wired_pages = FALSE; |
| 9185 | boolean_t fast_path_empty_req = FALSE; |
| 9186 | boolean_t fast_path_full_req = FALSE; |
| 9187 | |
| 9188 | #if DEVELOPMENT || DEBUG |
| 9189 | task_t task = current_task(); |
| 9190 | #endif /* DEVELOPMENT || DEBUG */ |
| 9191 | |
| 9192 | dwp_start = dwp = NULL; |
| 9193 | |
| 9194 | vm_object_offset_t original_offset = offset; |
| 9195 | upl_size_t original_size = size; |
| 9196 | |
| 9197 | // DEBUG4K_UPL("object %p offset 0x%llx size 0x%llx cntrl_flags 0x%llx\n", object, (uint64_t)offset, (uint64_t)size, cntrl_flags); |
| 9198 | |
| 9199 | size = (upl_size_t)(vm_object_round_page(offset + size) - vm_object_trunc_page(offset)); |
| 9200 | offset = vm_object_trunc_page(offset); |
| 9201 | if (size != original_size || offset != original_offset) { |
| 9202 | DEBUG4K_IOKIT("flags 0x%llx object %p offset 0x%llx size 0x%x -> offset 0x%llx size 0x%x\n" , cntrl_flags, object, original_offset, original_size, offset, size); |
| 9203 | } |
| 9204 | |
| 9205 | if (cntrl_flags & ~UPL_VALID_FLAGS) { |
| 9206 | /* |
| 9207 | * For forward compatibility's sake, |
| 9208 | * reject any unknown flag. |
| 9209 | */ |
| 9210 | return KERN_INVALID_VALUE; |
| 9211 | } |
| 9212 | if (vm_lopage_needed == FALSE) { |
| 9213 | cntrl_flags &= ~UPL_NEED_32BIT_ADDR; |
| 9214 | } |
| 9215 | |
| 9216 | if (cntrl_flags & UPL_NEED_32BIT_ADDR) { |
| 9217 | if ((cntrl_flags & (UPL_SET_IO_WIRE | UPL_SET_LITE)) != (UPL_SET_IO_WIRE | UPL_SET_LITE)) { |
| 9218 | return KERN_INVALID_VALUE; |
| 9219 | } |
| 9220 | |
| 9221 | if (object->phys_contiguous) { |
| 9222 | if ((offset + object->vo_shadow_offset) >= (vm_object_offset_t)max_valid_dma_address) { |
| 9223 | return KERN_INVALID_ADDRESS; |
| 9224 | } |
| 9225 | |
| 9226 | if (((offset + object->vo_shadow_offset) + size) >= (vm_object_offset_t)max_valid_dma_address) { |
| 9227 | return KERN_INVALID_ADDRESS; |
| 9228 | } |
| 9229 | } |
| 9230 | } |
| 9231 | if (cntrl_flags & (UPL_NOZEROFILL | UPL_NOZEROFILLIO)) { |
| 9232 | no_zero_fill = TRUE; |
| 9233 | } |
| 9234 | |
| 9235 | if (cntrl_flags & UPL_COPYOUT_FROM) { |
| 9236 | prot = VM_PROT_READ; |
| 9237 | } else { |
| 9238 | prot = VM_PROT_READ | VM_PROT_WRITE; |
| 9239 | } |
| 9240 | |
| 9241 | if ((!object->internal) && (object->paging_offset != 0)) { |
| 9242 | panic("vm_object_iopl_request: external object with non-zero paging offset" ); |
| 9243 | } |
| 9244 | |
| 9245 | |
| 9246 | VM_DEBUG_CONSTANT_EVENT(vm_object_iopl_request, VM_IOPL_REQUEST, DBG_FUNC_START, size, cntrl_flags, prot, 0); |
| 9247 | |
| 9248 | #if CONFIG_IOSCHED || UPL_DEBUG |
| 9249 | if ((object->io_tracking && !is_kernel_object(object)) || upl_debug_enabled) { |
| 9250 | io_tracking_flag |= UPL_CREATE_IO_TRACKING; |
| 9251 | } |
| 9252 | #endif |
| 9253 | |
| 9254 | #if CONFIG_IOSCHED |
| 9255 | if (object->io_tracking) { |
| 9256 | /* Check if we're dealing with the kernel object. We do not support expedite on kernel object UPLs */ |
| 9257 | if (!is_kernel_object(object)) { |
| 9258 | io_tracking_flag |= UPL_CREATE_EXPEDITE_SUP; |
| 9259 | } |
| 9260 | } |
| 9261 | #endif |
| 9262 | |
| 9263 | if (object->phys_contiguous) { |
| 9264 | psize = PAGE_SIZE; |
| 9265 | } else { |
| 9266 | psize = size; |
| 9267 | |
| 9268 | dw_count = 0; |
| 9269 | dw_limit = DELAYED_WORK_LIMIT(DEFAULT_DELAYED_WORK_LIMIT); |
| 9270 | dwp_start = vm_page_delayed_work_get_ctx(); |
| 9271 | if (dwp_start == NULL) { |
| 9272 | dwp_start = &dw_array; |
| 9273 | dw_limit = 1; |
| 9274 | dwp_finish_ctx = FALSE; |
| 9275 | } |
| 9276 | |
| 9277 | dwp = dwp_start; |
| 9278 | } |
| 9279 | |
| 9280 | if (cntrl_flags & UPL_SET_INTERNAL) { |
| 9281 | upl = upl_create(UPL_CREATE_INTERNAL | UPL_CREATE_LITE | io_tracking_flag, UPL_IO_WIRE, size: psize); |
| 9282 | user_page_list = size ? upl->page_list : NULL; |
| 9283 | } else { |
| 9284 | upl = upl_create(UPL_CREATE_LITE | io_tracking_flag, UPL_IO_WIRE, size: psize); |
| 9285 | } |
| 9286 | if (user_page_list) { |
| 9287 | user_page_list[0].device = FALSE; |
| 9288 | } |
| 9289 | *upl_ptr = upl; |
| 9290 | |
| 9291 | if (cntrl_flags & UPL_NOZEROFILLIO) { |
| 9292 | DTRACE_VM4(upl_nozerofillio, |
| 9293 | vm_object_t, object, |
| 9294 | vm_object_offset_t, offset, |
| 9295 | upl_size_t, size, |
| 9296 | upl_t, upl); |
| 9297 | } |
| 9298 | |
| 9299 | upl->map_object = object; |
| 9300 | upl->u_offset = original_offset; |
| 9301 | upl->u_size = original_size; |
| 9302 | |
| 9303 | size_in_pages = size / PAGE_SIZE; |
| 9304 | |
| 9305 | if (is_kernel_object(object) && |
| 9306 | !(cntrl_flags & (UPL_NEED_32BIT_ADDR | UPL_BLOCK_ACCESS))) { |
| 9307 | upl->flags |= UPL_KERNEL_OBJECT; |
| 9308 | #if UPL_DEBUG |
| 9309 | vm_object_lock(object); |
| 9310 | #else |
| 9311 | vm_object_lock_shared(object); |
| 9312 | #endif |
| 9313 | } else { |
| 9314 | vm_object_lock(object); |
| 9315 | vm_object_activity_begin(object); |
| 9316 | } |
| 9317 | /* |
| 9318 | * paging in progress also protects the paging_offset |
| 9319 | */ |
| 9320 | upl->u_offset = original_offset + object->paging_offset; |
| 9321 | |
| 9322 | if (cntrl_flags & UPL_BLOCK_ACCESS) { |
| 9323 | /* |
| 9324 | * The user requested that access to the pages in this UPL |
| 9325 | * be blocked until the UPL is commited or aborted. |
| 9326 | */ |
| 9327 | upl->flags |= UPL_ACCESS_BLOCKED; |
| 9328 | } |
| 9329 | |
| 9330 | #if CONFIG_IOSCHED || UPL_DEBUG |
| 9331 | if ((upl->flags & UPL_TRACKED_BY_OBJECT) || upl_debug_enabled) { |
| 9332 | vm_object_activity_begin(object); |
| 9333 | queue_enter(&object->uplq, upl, upl_t, uplq); |
| 9334 | } |
| 9335 | #endif |
| 9336 | |
| 9337 | if (object->phys_contiguous) { |
| 9338 | if (upl->flags & UPL_ACCESS_BLOCKED) { |
| 9339 | assert(!object->blocked_access); |
| 9340 | object->blocked_access = TRUE; |
| 9341 | } |
| 9342 | |
| 9343 | vm_object_unlock(object); |
| 9344 | |
| 9345 | /* |
| 9346 | * don't need any shadow mappings for this one |
| 9347 | * since it is already I/O memory |
| 9348 | */ |
| 9349 | upl->flags |= UPL_DEVICE_MEMORY; |
| 9350 | |
| 9351 | upl->highest_page = (ppnum_t) ((offset + object->vo_shadow_offset + size - 1) >> PAGE_SHIFT); |
| 9352 | |
| 9353 | if (user_page_list) { |
| 9354 | user_page_list[0].phys_addr = (ppnum_t) ((offset + object->vo_shadow_offset) >> PAGE_SHIFT); |
| 9355 | user_page_list[0].device = TRUE; |
| 9356 | } |
| 9357 | if (page_list_count != NULL) { |
| 9358 | if (upl->flags & UPL_INTERNAL) { |
| 9359 | *page_list_count = 0; |
| 9360 | } else { |
| 9361 | *page_list_count = 1; |
| 9362 | } |
| 9363 | } |
| 9364 | |
| 9365 | VM_DEBUG_CONSTANT_EVENT(vm_object_iopl_request, VM_IOPL_REQUEST, DBG_FUNC_END, page_grab_count, KERN_SUCCESS, 0, 0); |
| 9366 | #if DEVELOPMENT || DEBUG |
| 9367 | if (task != NULL) { |
| 9368 | ledger_credit(task->ledger, task_ledgers.pages_grabbed_iopl, page_grab_count); |
| 9369 | } |
| 9370 | #endif /* DEVELOPMENT || DEBUG */ |
| 9371 | return KERN_SUCCESS; |
| 9372 | } |
| 9373 | if (!is_kernel_object(object) && object != compressor_object) { |
| 9374 | /* |
| 9375 | * Protect user space from future COW operations |
| 9376 | */ |
| 9377 | #if VM_OBJECT_TRACKING_OP_TRUESHARE |
| 9378 | if (!object->true_share && |
| 9379 | vm_object_tracking_btlog) { |
| 9380 | btlog_record(vm_object_tracking_btlog, object, |
| 9381 | VM_OBJECT_TRACKING_OP_TRUESHARE, |
| 9382 | btref_get(__builtin_frame_address(0), 0)); |
| 9383 | } |
| 9384 | #endif /* VM_OBJECT_TRACKING_OP_TRUESHARE */ |
| 9385 | |
| 9386 | vm_object_lock_assert_exclusive(object); |
| 9387 | VM_OBJECT_SET_TRUE_SHARE(object, TRUE); |
| 9388 | |
| 9389 | if (object->copy_strategy == MEMORY_OBJECT_COPY_SYMMETRIC) { |
| 9390 | object->copy_strategy = MEMORY_OBJECT_COPY_DELAY; |
| 9391 | } |
| 9392 | } |
| 9393 | |
| 9394 | if (!(cntrl_flags & UPL_COPYOUT_FROM) && |
| 9395 | object->vo_copy != VM_OBJECT_NULL) { |
| 9396 | /* |
| 9397 | * Honor copy-on-write obligations |
| 9398 | * |
| 9399 | * The caller is gathering these pages and |
| 9400 | * might modify their contents. We need to |
| 9401 | * make sure that the copy object has its own |
| 9402 | * private copies of these pages before we let |
| 9403 | * the caller modify them. |
| 9404 | * |
| 9405 | * NOTE: someone else could map the original object |
| 9406 | * after we've done this copy-on-write here, and they |
| 9407 | * could then see an inconsistent picture of the memory |
| 9408 | * while it's being modified via the UPL. To prevent this, |
| 9409 | * we would have to block access to these pages until the |
| 9410 | * UPL is released. We could use the UPL_BLOCK_ACCESS |
| 9411 | * code path for that... |
| 9412 | */ |
| 9413 | vm_object_update(object, |
| 9414 | offset, |
| 9415 | size, |
| 9416 | NULL, |
| 9417 | NULL, |
| 9418 | FALSE, /* should_return */ |
| 9419 | MEMORY_OBJECT_COPY_SYNC, |
| 9420 | VM_PROT_NO_CHANGE); |
| 9421 | VM_PAGEOUT_DEBUG(iopl_cow, 1); |
| 9422 | VM_PAGEOUT_DEBUG(iopl_cow_pages, (size >> PAGE_SHIFT)); |
| 9423 | } |
| 9424 | if (!(cntrl_flags & (UPL_NEED_32BIT_ADDR | UPL_BLOCK_ACCESS)) && |
| 9425 | object->purgable != VM_PURGABLE_VOLATILE && |
| 9426 | object->purgable != VM_PURGABLE_EMPTY && |
| 9427 | object->vo_copy == NULL && |
| 9428 | size == object->vo_size && |
| 9429 | offset == 0 && |
| 9430 | object->shadow == NULL && |
| 9431 | object->pager == NULL) { |
| 9432 | if (object->resident_page_count == size_in_pages) { |
| 9433 | assert(object != compressor_object); |
| 9434 | assert(!is_kernel_object(object)); |
| 9435 | fast_path_full_req = TRUE; |
| 9436 | } else if (object->resident_page_count == 0) { |
| 9437 | assert(object != compressor_object); |
| 9438 | assert(!is_kernel_object(object)); |
| 9439 | fast_path_empty_req = TRUE; |
| 9440 | set_cache_attr_needed = TRUE; |
| 9441 | } |
| 9442 | } |
| 9443 | |
| 9444 | if (cntrl_flags & UPL_SET_INTERRUPTIBLE) { |
| 9445 | interruptible = THREAD_ABORTSAFE; |
| 9446 | } else { |
| 9447 | interruptible = THREAD_UNINT; |
| 9448 | } |
| 9449 | |
| 9450 | entry = 0; |
| 9451 | |
| 9452 | xfer_size = size; |
| 9453 | dst_offset = offset; |
| 9454 | |
| 9455 | if (fast_path_full_req) { |
| 9456 | if (vm_object_iopl_wire_full(object, upl, user_page_list, cntrl_flags, tag) == TRUE) { |
| 9457 | goto finish; |
| 9458 | } |
| 9459 | /* |
| 9460 | * we couldn't complete the processing of this request on the fast path |
| 9461 | * so fall through to the slow path and finish up |
| 9462 | */ |
| 9463 | } else if (fast_path_empty_req) { |
| 9464 | if (cntrl_flags & UPL_REQUEST_NO_FAULT) { |
| 9465 | ret = KERN_MEMORY_ERROR; |
| 9466 | goto return_err; |
| 9467 | } |
| 9468 | ret = vm_object_iopl_wire_empty(object, upl, user_page_list, |
| 9469 | cntrl_flags, tag, dst_offset: &dst_offset, page_count: size_in_pages, page_grab_count: &page_grab_count); |
| 9470 | |
| 9471 | if (ret) { |
| 9472 | free_wired_pages = TRUE; |
| 9473 | goto return_err; |
| 9474 | } |
| 9475 | goto finish; |
| 9476 | } |
| 9477 | |
| 9478 | fault_info.behavior = VM_BEHAVIOR_SEQUENTIAL; |
| 9479 | fault_info.lo_offset = offset; |
| 9480 | fault_info.hi_offset = offset + xfer_size; |
| 9481 | fault_info.mark_zf_absent = TRUE; |
| 9482 | fault_info.interruptible = interruptible; |
| 9483 | fault_info.batch_pmap_op = TRUE; |
| 9484 | |
| 9485 | while (xfer_size) { |
| 9486 | vm_fault_return_t result; |
| 9487 | |
| 9488 | dwp->dw_mask = 0; |
| 9489 | |
| 9490 | if (fast_path_full_req) { |
| 9491 | /* |
| 9492 | * if we get here, it means that we ran into a page |
| 9493 | * state we couldn't handle in the fast path and |
| 9494 | * bailed out to the slow path... since the order |
| 9495 | * we look at pages is different between the 2 paths, |
| 9496 | * the following check is needed to determine whether |
| 9497 | * this page was already processed in the fast path |
| 9498 | */ |
| 9499 | if (bitmap_test(map: upl->lite_list, n: entry)) { |
| 9500 | goto skip_page; |
| 9501 | } |
| 9502 | } |
| 9503 | dst_page = vm_page_lookup(object, offset: dst_offset); |
| 9504 | |
| 9505 | if (dst_page == VM_PAGE_NULL || |
| 9506 | dst_page->vmp_busy || |
| 9507 | VMP_ERROR_GET(dst_page) || |
| 9508 | dst_page->vmp_restart || |
| 9509 | dst_page->vmp_absent || |
| 9510 | dst_page->vmp_fictitious) { |
| 9511 | if (is_kernel_object(object)) { |
| 9512 | panic("vm_object_iopl_request: missing/bad page in kernel object" ); |
| 9513 | } |
| 9514 | if (object == compressor_object) { |
| 9515 | panic("vm_object_iopl_request: missing/bad page in compressor object" ); |
| 9516 | } |
| 9517 | |
| 9518 | if (cntrl_flags & UPL_REQUEST_NO_FAULT) { |
| 9519 | ret = KERN_MEMORY_ERROR; |
| 9520 | goto return_err; |
| 9521 | } |
| 9522 | set_cache_attr_needed = TRUE; |
| 9523 | |
| 9524 | /* |
| 9525 | * We just looked up the page and the result remains valid |
| 9526 | * until the object lock is release, so send it to |
| 9527 | * vm_fault_page() (as "dst_page"), to avoid having to |
| 9528 | * look it up again there. |
| 9529 | */ |
| 9530 | caller_lookup = TRUE; |
| 9531 | |
| 9532 | do { |
| 9533 | vm_page_t top_page; |
| 9534 | kern_return_t error_code; |
| 9535 | |
| 9536 | fault_info.cluster_size = xfer_size; |
| 9537 | |
| 9538 | vm_object_paging_begin(object); |
| 9539 | |
| 9540 | result = vm_fault_page(first_object: object, first_offset: dst_offset, |
| 9541 | fault_type: prot | VM_PROT_WRITE, FALSE, |
| 9542 | caller_lookup, |
| 9543 | protection: &prot, result_page: &dst_page, top_page: &top_page, |
| 9544 | type_of_fault: (int *)0, |
| 9545 | error_code: &error_code, no_zero_fill, |
| 9546 | fault_info: &fault_info); |
| 9547 | |
| 9548 | /* our lookup is no longer valid at this point */ |
| 9549 | caller_lookup = FALSE; |
| 9550 | |
| 9551 | switch (result) { |
| 9552 | case VM_FAULT_SUCCESS: |
| 9553 | page_grab_count++; |
| 9554 | |
| 9555 | if (!dst_page->vmp_absent) { |
| 9556 | PAGE_WAKEUP_DONE(dst_page); |
| 9557 | } else { |
| 9558 | /* |
| 9559 | * we only get back an absent page if we |
| 9560 | * requested that it not be zero-filled |
| 9561 | * because we are about to fill it via I/O |
| 9562 | * |
| 9563 | * absent pages should be left BUSY |
| 9564 | * to prevent them from being faulted |
| 9565 | * into an address space before we've |
| 9566 | * had a chance to complete the I/O on |
| 9567 | * them since they may contain info that |
| 9568 | * shouldn't be seen by the faulting task |
| 9569 | */ |
| 9570 | } |
| 9571 | /* |
| 9572 | * Release paging references and |
| 9573 | * top-level placeholder page, if any. |
| 9574 | */ |
| 9575 | if (top_page != VM_PAGE_NULL) { |
| 9576 | vm_object_t local_object; |
| 9577 | |
| 9578 | local_object = VM_PAGE_OBJECT(top_page); |
| 9579 | |
| 9580 | /* |
| 9581 | * comparing 2 packed pointers |
| 9582 | */ |
| 9583 | if (top_page->vmp_object != dst_page->vmp_object) { |
| 9584 | vm_object_lock(local_object); |
| 9585 | VM_PAGE_FREE(top_page); |
| 9586 | vm_object_paging_end(local_object); |
| 9587 | vm_object_unlock(local_object); |
| 9588 | } else { |
| 9589 | VM_PAGE_FREE(top_page); |
| 9590 | vm_object_paging_end(local_object); |
| 9591 | } |
| 9592 | } |
| 9593 | vm_object_paging_end(object); |
| 9594 | break; |
| 9595 | |
| 9596 | case VM_FAULT_RETRY: |
| 9597 | vm_object_lock(object); |
| 9598 | break; |
| 9599 | |
| 9600 | case VM_FAULT_MEMORY_SHORTAGE: |
| 9601 | OSAddAtomic((size_in_pages - entry), &vm_upl_wait_for_pages); |
| 9602 | |
| 9603 | VM_DEBUG_EVENT(vm_iopl_page_wait, VM_IOPL_PAGE_WAIT, DBG_FUNC_START, vm_upl_wait_for_pages, 0, 0, 0); |
| 9604 | |
| 9605 | if (vm_page_wait(interruptible)) { |
| 9606 | OSAddAtomic(-(size_in_pages - entry), &vm_upl_wait_for_pages); |
| 9607 | |
| 9608 | VM_DEBUG_EVENT(vm_iopl_page_wait, VM_IOPL_PAGE_WAIT, DBG_FUNC_END, vm_upl_wait_for_pages, 0, 0, 0); |
| 9609 | vm_object_lock(object); |
| 9610 | |
| 9611 | break; |
| 9612 | } |
| 9613 | OSAddAtomic(-(size_in_pages - entry), &vm_upl_wait_for_pages); |
| 9614 | |
| 9615 | VM_DEBUG_EVENT(vm_iopl_page_wait, VM_IOPL_PAGE_WAIT, DBG_FUNC_END, vm_upl_wait_for_pages, 0, 0, -1); |
| 9616 | ktriage_record(thread_id: thread_tid(thread: current_thread()), KDBG_TRIAGE_EVENTID(KDBG_TRIAGE_SUBSYS_VM, KDBG_TRIAGE_RESERVED, KDBG_TRIAGE_VM_FAULT_OBJIOPLREQ_MEMORY_SHORTAGE), arg: 0 /* arg */); |
| 9617 | OS_FALLTHROUGH; |
| 9618 | |
| 9619 | case VM_FAULT_INTERRUPTED: |
| 9620 | error_code = MACH_SEND_INTERRUPTED; |
| 9621 | OS_FALLTHROUGH; |
| 9622 | case VM_FAULT_MEMORY_ERROR: |
| 9623 | memory_error: |
| 9624 | ret = (error_code ? error_code: KERN_MEMORY_ERROR); |
| 9625 | |
| 9626 | vm_object_lock(object); |
| 9627 | goto return_err; |
| 9628 | |
| 9629 | case VM_FAULT_SUCCESS_NO_VM_PAGE: |
| 9630 | /* success but no page: fail */ |
| 9631 | vm_object_paging_end(object); |
| 9632 | vm_object_unlock(object); |
| 9633 | goto memory_error; |
| 9634 | |
| 9635 | default: |
| 9636 | panic("vm_object_iopl_request: unexpected error" |
| 9637 | " 0x%x from vm_fault_page()\n" , result); |
| 9638 | } |
| 9639 | } while (result != VM_FAULT_SUCCESS); |
| 9640 | } |
| 9641 | phys_page = VM_PAGE_GET_PHYS_PAGE(m: dst_page); |
| 9642 | |
| 9643 | if (upl->flags & UPL_KERNEL_OBJECT) { |
| 9644 | goto record_phys_addr; |
| 9645 | } |
| 9646 | |
| 9647 | if (dst_page->vmp_q_state == VM_PAGE_USED_BY_COMPRESSOR) { |
| 9648 | dst_page->vmp_busy = TRUE; |
| 9649 | goto record_phys_addr; |
| 9650 | } |
| 9651 | |
| 9652 | if (dst_page->vmp_cleaning) { |
| 9653 | /* |
| 9654 | * Someone else is cleaning this page in place. |
| 9655 | * In theory, we should be able to proceed and use this |
| 9656 | * page but they'll probably end up clearing the "busy" |
| 9657 | * bit on it in upl_commit_range() but they didn't set |
| 9658 | * it, so they would clear our "busy" bit and open |
| 9659 | * us to race conditions. |
| 9660 | * We'd better wait for the cleaning to complete and |
| 9661 | * then try again. |
| 9662 | */ |
| 9663 | VM_PAGEOUT_DEBUG(vm_object_iopl_request_sleep_for_cleaning, 1); |
| 9664 | PAGE_SLEEP(object, dst_page, THREAD_UNINT); |
| 9665 | continue; |
| 9666 | } |
| 9667 | if (dst_page->vmp_laundry) { |
| 9668 | vm_pageout_steal_laundry(page: dst_page, FALSE); |
| 9669 | } |
| 9670 | |
| 9671 | if ((cntrl_flags & UPL_NEED_32BIT_ADDR) && |
| 9672 | phys_page >= (max_valid_dma_address >> PAGE_SHIFT)) { |
| 9673 | vm_page_t low_page; |
| 9674 | int refmod; |
| 9675 | |
| 9676 | /* |
| 9677 | * support devices that can't DMA above 32 bits |
| 9678 | * by substituting pages from a pool of low address |
| 9679 | * memory for any pages we find above the 4G mark |
| 9680 | * can't substitute if the page is already wired because |
| 9681 | * we don't know whether that physical address has been |
| 9682 | * handed out to some other 64 bit capable DMA device to use |
| 9683 | */ |
| 9684 | if (VM_PAGE_WIRED(dst_page)) { |
| 9685 | ret = KERN_PROTECTION_FAILURE; |
| 9686 | goto return_err; |
| 9687 | } |
| 9688 | low_page = vm_page_grablo(); |
| 9689 | |
| 9690 | if (low_page == VM_PAGE_NULL) { |
| 9691 | ret = KERN_RESOURCE_SHORTAGE; |
| 9692 | goto return_err; |
| 9693 | } |
| 9694 | /* |
| 9695 | * from here until the vm_page_replace completes |
| 9696 | * we musn't drop the object lock... we don't |
| 9697 | * want anyone refaulting this page in and using |
| 9698 | * it after we disconnect it... we want the fault |
| 9699 | * to find the new page being substituted. |
| 9700 | */ |
| 9701 | if (dst_page->vmp_pmapped) { |
| 9702 | refmod = pmap_disconnect(phys: phys_page); |
| 9703 | } else { |
| 9704 | refmod = 0; |
| 9705 | } |
| 9706 | |
| 9707 | if (!dst_page->vmp_absent) { |
| 9708 | vm_page_copy(src_page: dst_page, dest_page: low_page); |
| 9709 | } |
| 9710 | |
| 9711 | low_page->vmp_reference = dst_page->vmp_reference; |
| 9712 | low_page->vmp_dirty = dst_page->vmp_dirty; |
| 9713 | low_page->vmp_absent = dst_page->vmp_absent; |
| 9714 | |
| 9715 | if (refmod & VM_MEM_REFERENCED) { |
| 9716 | low_page->vmp_reference = TRUE; |
| 9717 | } |
| 9718 | if (refmod & VM_MEM_MODIFIED) { |
| 9719 | SET_PAGE_DIRTY(low_page, FALSE); |
| 9720 | } |
| 9721 | |
| 9722 | vm_page_replace(mem: low_page, object, offset: dst_offset); |
| 9723 | |
| 9724 | dst_page = low_page; |
| 9725 | /* |
| 9726 | * vm_page_grablo returned the page marked |
| 9727 | * BUSY... we don't need a PAGE_WAKEUP_DONE |
| 9728 | * here, because we've never dropped the object lock |
| 9729 | */ |
| 9730 | if (!dst_page->vmp_absent) { |
| 9731 | dst_page->vmp_busy = FALSE; |
| 9732 | } |
| 9733 | |
| 9734 | phys_page = VM_PAGE_GET_PHYS_PAGE(m: dst_page); |
| 9735 | } |
| 9736 | if (!dst_page->vmp_busy) { |
| 9737 | dwp->dw_mask |= DW_vm_page_wire; |
| 9738 | } |
| 9739 | |
| 9740 | if (cntrl_flags & UPL_BLOCK_ACCESS) { |
| 9741 | /* |
| 9742 | * Mark the page "busy" to block any future page fault |
| 9743 | * on this page in addition to wiring it. |
| 9744 | * We'll also remove the mapping |
| 9745 | * of all these pages before leaving this routine. |
| 9746 | */ |
| 9747 | assert(!dst_page->vmp_fictitious); |
| 9748 | dst_page->vmp_busy = TRUE; |
| 9749 | } |
| 9750 | /* |
| 9751 | * expect the page to be used |
| 9752 | * page queues lock must be held to set 'reference' |
| 9753 | */ |
| 9754 | dwp->dw_mask |= DW_set_reference; |
| 9755 | |
| 9756 | if (!(cntrl_flags & UPL_COPYOUT_FROM)) { |
| 9757 | SET_PAGE_DIRTY(dst_page, TRUE); |
| 9758 | /* |
| 9759 | * Page belonging to a code-signed object is about to |
| 9760 | * be written. Mark it tainted and disconnect it from |
| 9761 | * all pmaps so processes have to fault it back in and |
| 9762 | * deal with the tainted bit. |
| 9763 | */ |
| 9764 | if (object->code_signed && dst_page->vmp_cs_tainted != VMP_CS_ALL_TRUE) { |
| 9765 | dst_page->vmp_cs_tainted = VMP_CS_ALL_TRUE; |
| 9766 | vm_page_iopl_tainted++; |
| 9767 | if (dst_page->vmp_pmapped) { |
| 9768 | int refmod = pmap_disconnect(phys: VM_PAGE_GET_PHYS_PAGE(m: dst_page)); |
| 9769 | if (refmod & VM_MEM_REFERENCED) { |
| 9770 | dst_page->vmp_reference = TRUE; |
| 9771 | } |
| 9772 | } |
| 9773 | } |
| 9774 | } |
| 9775 | if ((cntrl_flags & UPL_REQUEST_FORCE_COHERENCY) && dst_page->vmp_written_by_kernel == TRUE) { |
| 9776 | pmap_sync_page_attributes_phys(pa: phys_page); |
| 9777 | dst_page->vmp_written_by_kernel = FALSE; |
| 9778 | } |
| 9779 | |
| 9780 | record_phys_addr: |
| 9781 | if (dst_page->vmp_busy) { |
| 9782 | upl->flags |= UPL_HAS_BUSY; |
| 9783 | } |
| 9784 | |
| 9785 | bitmap_set(map: upl->lite_list, n: entry); |
| 9786 | |
| 9787 | if (phys_page > upl->highest_page) { |
| 9788 | upl->highest_page = phys_page; |
| 9789 | } |
| 9790 | |
| 9791 | if (user_page_list) { |
| 9792 | user_page_list[entry].phys_addr = phys_page; |
| 9793 | user_page_list[entry].free_when_done = dst_page->vmp_free_when_done; |
| 9794 | user_page_list[entry].absent = dst_page->vmp_absent; |
| 9795 | user_page_list[entry].dirty = dst_page->vmp_dirty; |
| 9796 | user_page_list[entry].precious = dst_page->vmp_precious; |
| 9797 | user_page_list[entry].device = FALSE; |
| 9798 | user_page_list[entry].needed = FALSE; |
| 9799 | if (dst_page->vmp_clustered == TRUE) { |
| 9800 | user_page_list[entry].speculative = (dst_page->vmp_q_state == VM_PAGE_ON_SPECULATIVE_Q) ? TRUE : FALSE; |
| 9801 | } else { |
| 9802 | user_page_list[entry].speculative = FALSE; |
| 9803 | } |
| 9804 | user_page_list[entry].cs_validated = dst_page->vmp_cs_validated; |
| 9805 | user_page_list[entry].cs_tainted = dst_page->vmp_cs_tainted; |
| 9806 | user_page_list[entry].cs_nx = dst_page->vmp_cs_nx; |
| 9807 | user_page_list[entry].mark = FALSE; |
| 9808 | } |
| 9809 | if (!is_kernel_object(object) && object != compressor_object) { |
| 9810 | /* |
| 9811 | * someone is explicitly grabbing this page... |
| 9812 | * update clustered and speculative state |
| 9813 | * |
| 9814 | */ |
| 9815 | if (dst_page->vmp_clustered) { |
| 9816 | VM_PAGE_CONSUME_CLUSTERED(dst_page); |
| 9817 | } |
| 9818 | } |
| 9819 | skip_page: |
| 9820 | entry++; |
| 9821 | dst_offset += PAGE_SIZE_64; |
| 9822 | xfer_size -= PAGE_SIZE; |
| 9823 | |
| 9824 | if (dwp->dw_mask) { |
| 9825 | VM_PAGE_ADD_DELAYED_WORK(dwp, dst_page, dw_count); |
| 9826 | |
| 9827 | if (dw_count >= dw_limit) { |
| 9828 | vm_page_do_delayed_work(object, tag, dwp: dwp_start, dw_count); |
| 9829 | |
| 9830 | dwp = dwp_start; |
| 9831 | dw_count = 0; |
| 9832 | } |
| 9833 | } |
| 9834 | } |
| 9835 | assert(entry == size_in_pages); |
| 9836 | |
| 9837 | if (dw_count) { |
| 9838 | vm_page_do_delayed_work(object, tag, dwp: dwp_start, dw_count); |
| 9839 | dwp = dwp_start; |
| 9840 | dw_count = 0; |
| 9841 | } |
| 9842 | finish: |
| 9843 | if (user_page_list && set_cache_attr_needed == TRUE) { |
| 9844 | vm_object_set_pmap_cache_attr(object, user_page_list, num_pages: size_in_pages, TRUE); |
| 9845 | } |
| 9846 | |
| 9847 | if (page_list_count != NULL) { |
| 9848 | if (upl->flags & UPL_INTERNAL) { |
| 9849 | *page_list_count = 0; |
| 9850 | } else if (*page_list_count > size_in_pages) { |
| 9851 | *page_list_count = size_in_pages; |
| 9852 | } |
| 9853 | } |
| 9854 | vm_object_unlock(object); |
| 9855 | |
| 9856 | if (cntrl_flags & UPL_BLOCK_ACCESS) { |
| 9857 | /* |
| 9858 | * We've marked all the pages "busy" so that future |
| 9859 | * page faults will block. |
| 9860 | * Now remove the mapping for these pages, so that they |
| 9861 | * can't be accessed without causing a page fault. |
| 9862 | */ |
| 9863 | vm_object_pmap_protect(object, offset, size: (vm_object_size_t)size, |
| 9864 | PMAP_NULL, |
| 9865 | PAGE_SIZE, |
| 9866 | pmap_start: 0, VM_PROT_NONE); |
| 9867 | assert(!object->blocked_access); |
| 9868 | object->blocked_access = TRUE; |
| 9869 | } |
| 9870 | |
| 9871 | VM_DEBUG_CONSTANT_EVENT(vm_object_iopl_request, VM_IOPL_REQUEST, DBG_FUNC_END, page_grab_count, KERN_SUCCESS, 0, 0); |
| 9872 | #if DEVELOPMENT || DEBUG |
| 9873 | if (task != NULL) { |
| 9874 | ledger_credit(task->ledger, task_ledgers.pages_grabbed_iopl, page_grab_count); |
| 9875 | } |
| 9876 | #endif /* DEVELOPMENT || DEBUG */ |
| 9877 | |
| 9878 | if (dwp_start && dwp_finish_ctx) { |
| 9879 | vm_page_delayed_work_finish_ctx(dwp: dwp_start); |
| 9880 | dwp_start = dwp = NULL; |
| 9881 | } |
| 9882 | |
| 9883 | return KERN_SUCCESS; |
| 9884 | |
| 9885 | return_err: |
| 9886 | dw_index = 0; |
| 9887 | |
| 9888 | for (; offset < dst_offset; offset += PAGE_SIZE) { |
| 9889 | boolean_t need_unwire; |
| 9890 | |
| 9891 | dst_page = vm_page_lookup(object, offset); |
| 9892 | |
| 9893 | if (dst_page == VM_PAGE_NULL) { |
| 9894 | panic("vm_object_iopl_request: Wired page missing." ); |
| 9895 | } |
| 9896 | |
| 9897 | /* |
| 9898 | * if we've already processed this page in an earlier |
| 9899 | * dw_do_work, we need to undo the wiring... we will |
| 9900 | * leave the dirty and reference bits on if they |
| 9901 | * were set, since we don't have a good way of knowing |
| 9902 | * what the previous state was and we won't get here |
| 9903 | * under any normal circumstances... we will always |
| 9904 | * clear BUSY and wakeup any waiters via vm_page_free |
| 9905 | * or PAGE_WAKEUP_DONE |
| 9906 | */ |
| 9907 | need_unwire = TRUE; |
| 9908 | |
| 9909 | if (dw_count) { |
| 9910 | if ((dwp_start)[dw_index].dw_m == dst_page) { |
| 9911 | /* |
| 9912 | * still in the deferred work list |
| 9913 | * which means we haven't yet called |
| 9914 | * vm_page_wire on this page |
| 9915 | */ |
| 9916 | need_unwire = FALSE; |
| 9917 | |
| 9918 | dw_index++; |
| 9919 | dw_count--; |
| 9920 | } |
| 9921 | } |
| 9922 | vm_page_lock_queues(); |
| 9923 | |
| 9924 | if (dst_page->vmp_absent || free_wired_pages == TRUE) { |
| 9925 | vm_page_free(page: dst_page); |
| 9926 | |
| 9927 | need_unwire = FALSE; |
| 9928 | } else { |
| 9929 | if (need_unwire == TRUE) { |
| 9930 | vm_page_unwire(page: dst_page, TRUE); |
| 9931 | } |
| 9932 | |
| 9933 | PAGE_WAKEUP_DONE(dst_page); |
| 9934 | } |
| 9935 | vm_page_unlock_queues(); |
| 9936 | |
| 9937 | if (need_unwire == TRUE) { |
| 9938 | counter_inc(&vm_statistics_reactivations); |
| 9939 | } |
| 9940 | } |
| 9941 | #if UPL_DEBUG |
| 9942 | upl->upl_state = 2; |
| 9943 | #endif |
| 9944 | if (!(upl->flags & UPL_KERNEL_OBJECT)) { |
| 9945 | vm_object_activity_end(object); |
| 9946 | vm_object_collapse(object, offset: 0, TRUE); |
| 9947 | } |
| 9948 | vm_object_unlock(object); |
| 9949 | upl_destroy(upl); |
| 9950 | |
| 9951 | VM_DEBUG_CONSTANT_EVENT(vm_object_iopl_request, VM_IOPL_REQUEST, DBG_FUNC_END, page_grab_count, ret, 0, 0); |
| 9952 | #if DEVELOPMENT || DEBUG |
| 9953 | if (task != NULL) { |
| 9954 | ledger_credit(task->ledger, task_ledgers.pages_grabbed_iopl, page_grab_count); |
| 9955 | } |
| 9956 | #endif /* DEVELOPMENT || DEBUG */ |
| 9957 | |
| 9958 | if (dwp_start && dwp_finish_ctx) { |
| 9959 | vm_page_delayed_work_finish_ctx(dwp: dwp_start); |
| 9960 | dwp_start = dwp = NULL; |
| 9961 | } |
| 9962 | return ret; |
| 9963 | } |
| 9964 | |
| 9965 | kern_return_t |
| 9966 | upl_transpose( |
| 9967 | upl_t upl1, |
| 9968 | upl_t upl2) |
| 9969 | { |
| 9970 | kern_return_t retval; |
| 9971 | boolean_t upls_locked; |
| 9972 | vm_object_t object1, object2; |
| 9973 | |
| 9974 | /* LD: Should mapped UPLs be eligible for a transpose? */ |
| 9975 | if (upl1 == UPL_NULL || upl2 == UPL_NULL || upl1 == upl2 || ((upl1->flags & UPL_VECTOR) == UPL_VECTOR) || ((upl2->flags & UPL_VECTOR) == UPL_VECTOR)) { |
| 9976 | return KERN_INVALID_ARGUMENT; |
| 9977 | } |
| 9978 | |
| 9979 | upls_locked = FALSE; |
| 9980 | |
| 9981 | /* |
| 9982 | * Since we need to lock both UPLs at the same time, |
| 9983 | * avoid deadlocks by always taking locks in the same order. |
| 9984 | */ |
| 9985 | if (upl1 < upl2) { |
| 9986 | upl_lock(upl1); |
| 9987 | upl_lock(upl2); |
| 9988 | } else { |
| 9989 | upl_lock(upl2); |
| 9990 | upl_lock(upl1); |
| 9991 | } |
| 9992 | upls_locked = TRUE; /* the UPLs will need to be unlocked */ |
| 9993 | |
| 9994 | object1 = upl1->map_object; |
| 9995 | object2 = upl2->map_object; |
| 9996 | |
| 9997 | if (upl1->u_offset != 0 || upl2->u_offset != 0 || |
| 9998 | upl1->u_size != upl2->u_size) { |
| 9999 | /* |
| 10000 | * We deal only with full objects, not subsets. |
| 10001 | * That's because we exchange the entire backing store info |
| 10002 | * for the objects: pager, resident pages, etc... We can't do |
| 10003 | * only part of it. |
| 10004 | */ |
| 10005 | retval = KERN_INVALID_VALUE; |
| 10006 | goto done; |
| 10007 | } |
| 10008 | |
| 10009 | /* |
| 10010 | * Tranpose the VM objects' backing store. |
| 10011 | */ |
| 10012 | retval = vm_object_transpose(object1, object2, |
| 10013 | transpose_size: upl_adjusted_size(upl: upl1, PAGE_MASK)); |
| 10014 | |
| 10015 | if (retval == KERN_SUCCESS) { |
| 10016 | /* |
| 10017 | * Make each UPL point to the correct VM object, i.e. the |
| 10018 | * object holding the pages that the UPL refers to... |
| 10019 | */ |
| 10020 | #if CONFIG_IOSCHED || UPL_DEBUG |
| 10021 | if ((upl1->flags & UPL_TRACKED_BY_OBJECT) || (upl2->flags & UPL_TRACKED_BY_OBJECT)) { |
| 10022 | vm_object_lock(object1); |
| 10023 | vm_object_lock(object2); |
| 10024 | } |
| 10025 | if ((upl1->flags & UPL_TRACKED_BY_OBJECT) || upl_debug_enabled) { |
| 10026 | queue_remove(&object1->uplq, upl1, upl_t, uplq); |
| 10027 | } |
| 10028 | if ((upl2->flags & UPL_TRACKED_BY_OBJECT) || upl_debug_enabled) { |
| 10029 | queue_remove(&object2->uplq, upl2, upl_t, uplq); |
| 10030 | } |
| 10031 | #endif |
| 10032 | upl1->map_object = object2; |
| 10033 | upl2->map_object = object1; |
| 10034 | |
| 10035 | #if CONFIG_IOSCHED || UPL_DEBUG |
| 10036 | if ((upl1->flags & UPL_TRACKED_BY_OBJECT) || upl_debug_enabled) { |
| 10037 | queue_enter(&object2->uplq, upl1, upl_t, uplq); |
| 10038 | } |
| 10039 | if ((upl2->flags & UPL_TRACKED_BY_OBJECT) || upl_debug_enabled) { |
| 10040 | queue_enter(&object1->uplq, upl2, upl_t, uplq); |
| 10041 | } |
| 10042 | if ((upl1->flags & UPL_TRACKED_BY_OBJECT) || (upl2->flags & UPL_TRACKED_BY_OBJECT)) { |
| 10043 | vm_object_unlock(object2); |
| 10044 | vm_object_unlock(object1); |
| 10045 | } |
| 10046 | #endif |
| 10047 | } |
| 10048 | |
| 10049 | done: |
| 10050 | /* |
| 10051 | * Cleanup. |
| 10052 | */ |
| 10053 | if (upls_locked) { |
| 10054 | upl_unlock(upl1); |
| 10055 | upl_unlock(upl2); |
| 10056 | upls_locked = FALSE; |
| 10057 | } |
| 10058 | |
| 10059 | return retval; |
| 10060 | } |
| 10061 | |
| 10062 | void |
| 10063 | upl_range_needed( |
| 10064 | upl_t upl, |
| 10065 | int index, |
| 10066 | int count) |
| 10067 | { |
| 10068 | int size_in_pages; |
| 10069 | |
| 10070 | if (!(upl->flags & UPL_INTERNAL) || count <= 0) { |
| 10071 | return; |
| 10072 | } |
| 10073 | |
| 10074 | size_in_pages = upl_adjusted_size(upl, PAGE_MASK) / PAGE_SIZE; |
| 10075 | |
| 10076 | while (count-- && index < size_in_pages) { |
| 10077 | upl->page_list[index++].needed = TRUE; |
| 10078 | } |
| 10079 | } |
| 10080 | |
| 10081 | |
| 10082 | /* |
| 10083 | * Reserve of virtual addresses in the kernel address space. |
| 10084 | * We need to map the physical pages in the kernel, so that we |
| 10085 | * can call the code-signing or slide routines with a kernel |
| 10086 | * virtual address. We keep this pool of pre-allocated kernel |
| 10087 | * virtual addresses so that we don't have to scan the kernel's |
| 10088 | * virtaul address space each time we need to work with |
| 10089 | * a physical page. |
| 10090 | */ |
| 10091 | SIMPLE_LOCK_DECLARE(vm_paging_lock, 0); |
| 10092 | #define VM_PAGING_NUM_PAGES 64 |
| 10093 | SECURITY_READ_ONLY_LATE(vm_offset_t) vm_paging_base_address = 0; |
| 10094 | bool vm_paging_page_inuse[VM_PAGING_NUM_PAGES] = { FALSE, }; |
| 10095 | int vm_paging_max_index = 0; |
| 10096 | int vm_paging_page_waiter = 0; |
| 10097 | int vm_paging_page_waiter_total = 0; |
| 10098 | |
| 10099 | unsigned long vm_paging_no_kernel_page = 0; |
| 10100 | unsigned long vm_paging_objects_mapped = 0; |
| 10101 | unsigned long vm_paging_pages_mapped = 0; |
| 10102 | unsigned long vm_paging_objects_mapped_slow = 0; |
| 10103 | unsigned long vm_paging_pages_mapped_slow = 0; |
| 10104 | |
| 10105 | __startup_func |
| 10106 | static void |
| 10107 | vm_paging_map_init(void) |
| 10108 | { |
| 10109 | kmem_alloc(map: kernel_map, addrp: &vm_paging_base_address, |
| 10110 | ptoa(VM_PAGING_NUM_PAGES), |
| 10111 | flags: KMA_DATA | KMA_NOFAIL | KMA_KOBJECT | KMA_PERMANENT | KMA_PAGEABLE, |
| 10112 | VM_KERN_MEMORY_NONE); |
| 10113 | } |
| 10114 | STARTUP(ZALLOC, STARTUP_RANK_LAST, vm_paging_map_init); |
| 10115 | |
| 10116 | /* |
| 10117 | * vm_paging_map_object: |
| 10118 | * Maps part of a VM object's pages in the kernel |
| 10119 | * virtual address space, using the pre-allocated |
| 10120 | * kernel virtual addresses, if possible. |
| 10121 | * Context: |
| 10122 | * The VM object is locked. This lock will get |
| 10123 | * dropped and re-acquired though, so the caller |
| 10124 | * must make sure the VM object is kept alive |
| 10125 | * (by holding a VM map that has a reference |
| 10126 | * on it, for example, or taking an extra reference). |
| 10127 | * The page should also be kept busy to prevent |
| 10128 | * it from being reclaimed. |
| 10129 | */ |
| 10130 | kern_return_t |
| 10131 | vm_paging_map_object( |
| 10132 | vm_page_t page, |
| 10133 | vm_object_t object, |
| 10134 | vm_object_offset_t offset, |
| 10135 | vm_prot_t protection, |
| 10136 | boolean_t can_unlock_object, |
| 10137 | vm_map_size_t *size, /* IN/OUT */ |
| 10138 | vm_map_offset_t *address, /* OUT */ |
| 10139 | boolean_t *need_unmap) /* OUT */ |
| 10140 | { |
| 10141 | kern_return_t kr; |
| 10142 | vm_map_offset_t page_map_offset; |
| 10143 | vm_map_size_t map_size; |
| 10144 | vm_object_offset_t object_offset; |
| 10145 | int i; |
| 10146 | |
| 10147 | if (page != VM_PAGE_NULL && *size == PAGE_SIZE) { |
| 10148 | /* use permanent 1-to-1 kernel mapping of physical memory ? */ |
| 10149 | *address = (vm_map_offset_t) |
| 10150 | phystokv(pa: (pmap_paddr_t)VM_PAGE_GET_PHYS_PAGE(m: page) << PAGE_SHIFT); |
| 10151 | *need_unmap = FALSE; |
| 10152 | return KERN_SUCCESS; |
| 10153 | |
| 10154 | assert(page->vmp_busy); |
| 10155 | /* |
| 10156 | * Use one of the pre-allocated kernel virtual addresses |
| 10157 | * and just enter the VM page in the kernel address space |
| 10158 | * at that virtual address. |
| 10159 | */ |
| 10160 | simple_lock(&vm_paging_lock, &vm_pageout_lck_grp); |
| 10161 | |
| 10162 | /* |
| 10163 | * Try and find an available kernel virtual address |
| 10164 | * from our pre-allocated pool. |
| 10165 | */ |
| 10166 | page_map_offset = 0; |
| 10167 | for (;;) { |
| 10168 | for (i = 0; i < VM_PAGING_NUM_PAGES; i++) { |
| 10169 | if (vm_paging_page_inuse[i] == FALSE) { |
| 10170 | page_map_offset = |
| 10171 | vm_paging_base_address + |
| 10172 | (i * PAGE_SIZE); |
| 10173 | break; |
| 10174 | } |
| 10175 | } |
| 10176 | if (page_map_offset != 0) { |
| 10177 | /* found a space to map our page ! */ |
| 10178 | break; |
| 10179 | } |
| 10180 | |
| 10181 | if (can_unlock_object) { |
| 10182 | /* |
| 10183 | * If we can afford to unlock the VM object, |
| 10184 | * let's take the slow path now... |
| 10185 | */ |
| 10186 | break; |
| 10187 | } |
| 10188 | /* |
| 10189 | * We can't afford to unlock the VM object, so |
| 10190 | * let's wait for a space to become available... |
| 10191 | */ |
| 10192 | vm_paging_page_waiter_total++; |
| 10193 | vm_paging_page_waiter++; |
| 10194 | kr = assert_wait(event: (event_t)&vm_paging_page_waiter, THREAD_UNINT); |
| 10195 | if (kr == THREAD_WAITING) { |
| 10196 | simple_unlock(&vm_paging_lock); |
| 10197 | kr = thread_block(THREAD_CONTINUE_NULL); |
| 10198 | simple_lock(&vm_paging_lock, &vm_pageout_lck_grp); |
| 10199 | } |
| 10200 | vm_paging_page_waiter--; |
| 10201 | /* ... and try again */ |
| 10202 | } |
| 10203 | |
| 10204 | if (page_map_offset != 0) { |
| 10205 | /* |
| 10206 | * We found a kernel virtual address; |
| 10207 | * map the physical page to that virtual address. |
| 10208 | */ |
| 10209 | if (i > vm_paging_max_index) { |
| 10210 | vm_paging_max_index = i; |
| 10211 | } |
| 10212 | vm_paging_page_inuse[i] = TRUE; |
| 10213 | simple_unlock(&vm_paging_lock); |
| 10214 | |
| 10215 | page->vmp_pmapped = TRUE; |
| 10216 | |
| 10217 | /* |
| 10218 | * Keep the VM object locked over the PMAP_ENTER |
| 10219 | * and the actual use of the page by the kernel, |
| 10220 | * or this pmap mapping might get undone by a |
| 10221 | * vm_object_pmap_protect() call... |
| 10222 | */ |
| 10223 | kr = pmap_enter_check(pmap: kernel_pmap, |
| 10224 | virtual_address: page_map_offset, |
| 10225 | page, |
| 10226 | protection, |
| 10227 | VM_PROT_NONE, |
| 10228 | flags: 0, |
| 10229 | TRUE); |
| 10230 | assert(kr == KERN_SUCCESS); |
| 10231 | vm_paging_objects_mapped++; |
| 10232 | vm_paging_pages_mapped++; |
| 10233 | *address = page_map_offset; |
| 10234 | *need_unmap = TRUE; |
| 10235 | |
| 10236 | #if KASAN |
| 10237 | kasan_notify_address(page_map_offset, PAGE_SIZE); |
| 10238 | #endif |
| 10239 | |
| 10240 | /* all done and mapped, ready to use ! */ |
| 10241 | return KERN_SUCCESS; |
| 10242 | } |
| 10243 | |
| 10244 | /* |
| 10245 | * We ran out of pre-allocated kernel virtual |
| 10246 | * addresses. Just map the page in the kernel |
| 10247 | * the slow and regular way. |
| 10248 | */ |
| 10249 | vm_paging_no_kernel_page++; |
| 10250 | simple_unlock(&vm_paging_lock); |
| 10251 | } |
| 10252 | |
| 10253 | if (!can_unlock_object) { |
| 10254 | *address = 0; |
| 10255 | *size = 0; |
| 10256 | *need_unmap = FALSE; |
| 10257 | return KERN_NOT_SUPPORTED; |
| 10258 | } |
| 10259 | |
| 10260 | object_offset = vm_object_trunc_page(offset); |
| 10261 | map_size = vm_map_round_page(*size, |
| 10262 | VM_MAP_PAGE_MASK(kernel_map)); |
| 10263 | |
| 10264 | /* |
| 10265 | * Try and map the required range of the object |
| 10266 | * in the kernel_map. Given that allocation is |
| 10267 | * for pageable memory, it shouldn't contain |
| 10268 | * pointers and is mapped into the data range. |
| 10269 | */ |
| 10270 | |
| 10271 | vm_object_reference_locked(object); /* for the map entry */ |
| 10272 | vm_object_unlock(object); |
| 10273 | |
| 10274 | kr = vm_map_enter(map: kernel_map, |
| 10275 | address, |
| 10276 | size: map_size, |
| 10277 | mask: 0, |
| 10278 | VM_MAP_KERNEL_FLAGS_DATA_ANYWHERE(), |
| 10279 | object, |
| 10280 | offset: object_offset, |
| 10281 | FALSE, |
| 10282 | cur_protection: protection, |
| 10283 | VM_PROT_ALL, |
| 10284 | VM_INHERIT_NONE); |
| 10285 | if (kr != KERN_SUCCESS) { |
| 10286 | *address = 0; |
| 10287 | *size = 0; |
| 10288 | *need_unmap = FALSE; |
| 10289 | vm_object_deallocate(object); /* for the map entry */ |
| 10290 | vm_object_lock(object); |
| 10291 | return kr; |
| 10292 | } |
| 10293 | |
| 10294 | *size = map_size; |
| 10295 | |
| 10296 | /* |
| 10297 | * Enter the mapped pages in the page table now. |
| 10298 | */ |
| 10299 | vm_object_lock(object); |
| 10300 | /* |
| 10301 | * VM object must be kept locked from before PMAP_ENTER() |
| 10302 | * until after the kernel is done accessing the page(s). |
| 10303 | * Otherwise, the pmap mappings in the kernel could be |
| 10304 | * undone by a call to vm_object_pmap_protect(). |
| 10305 | */ |
| 10306 | |
| 10307 | for (page_map_offset = 0; |
| 10308 | map_size != 0; |
| 10309 | map_size -= PAGE_SIZE_64, page_map_offset += PAGE_SIZE_64) { |
| 10310 | page = vm_page_lookup(object, offset: offset + page_map_offset); |
| 10311 | if (page == VM_PAGE_NULL) { |
| 10312 | printf(format: "vm_paging_map_object: no page !?" ); |
| 10313 | vm_object_unlock(object); |
| 10314 | vm_map_remove(map: kernel_map, start: *address, end: *size); |
| 10315 | *address = 0; |
| 10316 | *size = 0; |
| 10317 | *need_unmap = FALSE; |
| 10318 | vm_object_lock(object); |
| 10319 | return KERN_MEMORY_ERROR; |
| 10320 | } |
| 10321 | page->vmp_pmapped = TRUE; |
| 10322 | |
| 10323 | kr = pmap_enter_check(pmap: kernel_pmap, |
| 10324 | virtual_address: *address + page_map_offset, |
| 10325 | page, |
| 10326 | protection, |
| 10327 | VM_PROT_NONE, |
| 10328 | flags: 0, |
| 10329 | TRUE); |
| 10330 | assert(kr == KERN_SUCCESS); |
| 10331 | #if KASAN |
| 10332 | kasan_notify_address(*address + page_map_offset, PAGE_SIZE); |
| 10333 | #endif |
| 10334 | } |
| 10335 | |
| 10336 | vm_paging_objects_mapped_slow++; |
| 10337 | vm_paging_pages_mapped_slow += (unsigned long) (map_size / PAGE_SIZE_64); |
| 10338 | |
| 10339 | *need_unmap = TRUE; |
| 10340 | |
| 10341 | return KERN_SUCCESS; |
| 10342 | } |
| 10343 | |
| 10344 | /* |
| 10345 | * vm_paging_unmap_object: |
| 10346 | * Unmaps part of a VM object's pages from the kernel |
| 10347 | * virtual address space. |
| 10348 | * Context: |
| 10349 | * The VM object is locked. This lock will get |
| 10350 | * dropped and re-acquired though. |
| 10351 | */ |
| 10352 | void |
| 10353 | vm_paging_unmap_object( |
| 10354 | vm_object_t object, |
| 10355 | vm_map_offset_t start, |
| 10356 | vm_map_offset_t end) |
| 10357 | { |
| 10358 | int i; |
| 10359 | |
| 10360 | if ((vm_paging_base_address == 0) || |
| 10361 | (start < vm_paging_base_address) || |
| 10362 | (end > (vm_paging_base_address |
| 10363 | + (VM_PAGING_NUM_PAGES * PAGE_SIZE)))) { |
| 10364 | /* |
| 10365 | * We didn't use our pre-allocated pool of |
| 10366 | * kernel virtual address. Deallocate the |
| 10367 | * virtual memory. |
| 10368 | */ |
| 10369 | if (object != VM_OBJECT_NULL) { |
| 10370 | vm_object_unlock(object); |
| 10371 | } |
| 10372 | vm_map_remove(map: kernel_map, start, end); |
| 10373 | if (object != VM_OBJECT_NULL) { |
| 10374 | vm_object_lock(object); |
| 10375 | } |
| 10376 | } else { |
| 10377 | /* |
| 10378 | * We used a kernel virtual address from our |
| 10379 | * pre-allocated pool. Put it back in the pool |
| 10380 | * for next time. |
| 10381 | */ |
| 10382 | assert(end - start == PAGE_SIZE); |
| 10383 | i = (int) ((start - vm_paging_base_address) >> PAGE_SHIFT); |
| 10384 | assert(i >= 0 && i < VM_PAGING_NUM_PAGES); |
| 10385 | |
| 10386 | /* undo the pmap mapping */ |
| 10387 | pmap_remove(map: kernel_pmap, s: start, e: end); |
| 10388 | |
| 10389 | simple_lock(&vm_paging_lock, &vm_pageout_lck_grp); |
| 10390 | vm_paging_page_inuse[i] = FALSE; |
| 10391 | if (vm_paging_page_waiter) { |
| 10392 | thread_wakeup(&vm_paging_page_waiter); |
| 10393 | } |
| 10394 | simple_unlock(&vm_paging_lock); |
| 10395 | } |
| 10396 | } |
| 10397 | |
| 10398 | |
| 10399 | /* |
| 10400 | * page->vmp_object must be locked |
| 10401 | */ |
| 10402 | void |
| 10403 | vm_pageout_steal_laundry(vm_page_t page, boolean_t queues_locked) |
| 10404 | { |
| 10405 | if (!queues_locked) { |
| 10406 | vm_page_lockspin_queues(); |
| 10407 | } |
| 10408 | |
| 10409 | page->vmp_free_when_done = FALSE; |
| 10410 | /* |
| 10411 | * need to drop the laundry count... |
| 10412 | * we may also need to remove it |
| 10413 | * from the I/O paging queue... |
| 10414 | * vm_pageout_throttle_up handles both cases |
| 10415 | * |
| 10416 | * the laundry and pageout_queue flags are cleared... |
| 10417 | */ |
| 10418 | vm_pageout_throttle_up(m: page); |
| 10419 | |
| 10420 | if (!queues_locked) { |
| 10421 | vm_page_unlock_queues(); |
| 10422 | } |
| 10423 | } |
| 10424 | |
| 10425 | #define VECTOR_UPL_ELEMENTS_UPPER_LIMIT 64 |
| 10426 | |
| 10427 | upl_t |
| 10428 | vector_upl_create(vm_offset_t upl_offset, uint32_t max_upls) |
| 10429 | { |
| 10430 | int i = 0; |
| 10431 | upl_t upl; |
| 10432 | |
| 10433 | assert(max_upls > 0); |
| 10434 | if (max_upls == 0) { |
| 10435 | return NULL; |
| 10436 | } |
| 10437 | |
| 10438 | if (max_upls > VECTOR_UPL_ELEMENTS_UPPER_LIMIT) { |
| 10439 | max_upls = VECTOR_UPL_ELEMENTS_UPPER_LIMIT; |
| 10440 | } |
| 10441 | vector_upl_t vector_upl = kalloc_type(struct _vector_upl, typeof(vector_upl->upls[0]), max_upls, Z_WAITOK | Z_NOFAIL); |
| 10442 | |
| 10443 | upl = upl_create(type: 0, UPL_VECTOR, size: 0); |
| 10444 | upl->vector_upl = vector_upl; |
| 10445 | upl->u_offset = upl_offset; |
| 10446 | vector_upl->size = 0; |
| 10447 | vector_upl->offset = upl_offset; |
| 10448 | vector_upl->invalid_upls = 0; |
| 10449 | vector_upl->num_upls = 0; |
| 10450 | vector_upl->pagelist = NULL; |
| 10451 | vector_upl->max_upls = max_upls; |
| 10452 | |
| 10453 | for (i = 0; i < max_upls; i++) { |
| 10454 | vector_upl->upls[i].iostate.size = 0; |
| 10455 | vector_upl->upls[i].iostate.offset = 0; |
| 10456 | } |
| 10457 | return upl; |
| 10458 | } |
| 10459 | |
| 10460 | uint32_t |
| 10461 | vector_upl_max_upls(const upl_t upl) |
| 10462 | { |
| 10463 | if (!vector_upl_is_valid(upl)) { |
| 10464 | return 0; |
| 10465 | } |
| 10466 | return ((vector_upl_t)(upl->vector_upl))->max_upls; |
| 10467 | } |
| 10468 | |
| 10469 | void |
| 10470 | vector_upl_deallocate(upl_t upl) |
| 10471 | { |
| 10472 | vector_upl_t vector_upl = upl->vector_upl; |
| 10473 | |
| 10474 | assert(vector_upl_is_valid(upl)); |
| 10475 | |
| 10476 | if (vector_upl->invalid_upls != vector_upl->num_upls) { |
| 10477 | panic("Deallocating non-empty Vectored UPL" ); |
| 10478 | } |
| 10479 | uint32_t max_upls = vector_upl->max_upls; |
| 10480 | kfree_type(struct upl_page_info, atop(vector_upl->size), vector_upl->pagelist); |
| 10481 | kfree_type(struct _vector_upl, typeof(vector_upl->upls[0]), max_upls, vector_upl); |
| 10482 | upl->vector_upl = NULL; |
| 10483 | } |
| 10484 | |
| 10485 | boolean_t |
| 10486 | vector_upl_is_valid(upl_t upl) |
| 10487 | { |
| 10488 | return upl && (upl->flags & UPL_VECTOR) && upl->vector_upl; |
| 10489 | } |
| 10490 | |
| 10491 | boolean_t |
| 10492 | vector_upl_set_subupl(upl_t upl, upl_t subupl, uint32_t io_size) |
| 10493 | { |
| 10494 | if (vector_upl_is_valid(upl)) { |
| 10495 | vector_upl_t vector_upl = upl->vector_upl; |
| 10496 | |
| 10497 | if (vector_upl) { |
| 10498 | if (subupl) { |
| 10499 | if (io_size) { |
| 10500 | if (io_size < PAGE_SIZE) { |
| 10501 | io_size = PAGE_SIZE; |
| 10502 | } |
| 10503 | subupl->vector_upl = (void*)vector_upl; |
| 10504 | vector_upl->upls[vector_upl->num_upls++].elem = subupl; |
| 10505 | vector_upl->size += io_size; |
| 10506 | upl->u_size += io_size; |
| 10507 | } else { |
| 10508 | uint32_t i = 0, invalid_upls = 0; |
| 10509 | for (i = 0; i < vector_upl->num_upls; i++) { |
| 10510 | if (vector_upl->upls[i].elem == subupl) { |
| 10511 | break; |
| 10512 | } |
| 10513 | } |
| 10514 | if (i == vector_upl->num_upls) { |
| 10515 | panic("Trying to remove sub-upl when none exists" ); |
| 10516 | } |
| 10517 | |
| 10518 | vector_upl->upls[i].elem = NULL; |
| 10519 | invalid_upls = os_atomic_inc(&(vector_upl)->invalid_upls, |
| 10520 | relaxed); |
| 10521 | if (invalid_upls == vector_upl->num_upls) { |
| 10522 | return TRUE; |
| 10523 | } else { |
| 10524 | return FALSE; |
| 10525 | } |
| 10526 | } |
| 10527 | } else { |
| 10528 | panic("vector_upl_set_subupl was passed a NULL upl element" ); |
| 10529 | } |
| 10530 | } else { |
| 10531 | panic("vector_upl_set_subupl was passed a non-vectored upl" ); |
| 10532 | } |
| 10533 | } else { |
| 10534 | panic("vector_upl_set_subupl was passed a NULL upl" ); |
| 10535 | } |
| 10536 | |
| 10537 | return FALSE; |
| 10538 | } |
| 10539 | |
| 10540 | void |
| 10541 | vector_upl_set_pagelist(upl_t upl) |
| 10542 | { |
| 10543 | if (vector_upl_is_valid(upl)) { |
| 10544 | uint32_t i = 0; |
| 10545 | vector_upl_t vector_upl = upl->vector_upl; |
| 10546 | |
| 10547 | if (vector_upl) { |
| 10548 | vm_offset_t pagelist_size = 0, cur_upl_pagelist_size = 0; |
| 10549 | |
| 10550 | vector_upl->pagelist = kalloc_type(struct upl_page_info, |
| 10551 | atop(vector_upl->size), Z_WAITOK); |
| 10552 | |
| 10553 | for (i = 0; i < vector_upl->num_upls; i++) { |
| 10554 | cur_upl_pagelist_size = sizeof(struct upl_page_info) * upl_adjusted_size(upl: vector_upl->upls[i].elem, PAGE_MASK) / PAGE_SIZE; |
| 10555 | bcopy(src: vector_upl->upls[i].elem->page_list, dst: (char*)vector_upl->pagelist + pagelist_size, n: cur_upl_pagelist_size); |
| 10556 | pagelist_size += cur_upl_pagelist_size; |
| 10557 | if (vector_upl->upls[i].elem->highest_page > upl->highest_page) { |
| 10558 | upl->highest_page = vector_upl->upls[i].elem->highest_page; |
| 10559 | } |
| 10560 | } |
| 10561 | assert( pagelist_size == (sizeof(struct upl_page_info) * (vector_upl->size / PAGE_SIZE))); |
| 10562 | } else { |
| 10563 | panic("vector_upl_set_pagelist was passed a non-vectored upl" ); |
| 10564 | } |
| 10565 | } else { |
| 10566 | panic("vector_upl_set_pagelist was passed a NULL upl" ); |
| 10567 | } |
| 10568 | } |
| 10569 | |
| 10570 | upl_t |
| 10571 | vector_upl_subupl_byindex(upl_t upl, uint32_t index) |
| 10572 | { |
| 10573 | if (vector_upl_is_valid(upl)) { |
| 10574 | vector_upl_t vector_upl = upl->vector_upl; |
| 10575 | if (vector_upl) { |
| 10576 | if (index < vector_upl->num_upls) { |
| 10577 | return vector_upl->upls[index].elem; |
| 10578 | } |
| 10579 | } else { |
| 10580 | panic("vector_upl_subupl_byindex was passed a non-vectored upl" ); |
| 10581 | } |
| 10582 | } |
| 10583 | return NULL; |
| 10584 | } |
| 10585 | |
| 10586 | upl_t |
| 10587 | vector_upl_subupl_byoffset(upl_t upl, upl_offset_t *upl_offset, upl_size_t *upl_size) |
| 10588 | { |
| 10589 | if (vector_upl_is_valid(upl)) { |
| 10590 | uint32_t i = 0; |
| 10591 | vector_upl_t vector_upl = upl->vector_upl; |
| 10592 | |
| 10593 | if (vector_upl) { |
| 10594 | upl_t subupl = NULL; |
| 10595 | vector_upl_iostates_t subupl_state; |
| 10596 | |
| 10597 | for (i = 0; i < vector_upl->num_upls; i++) { |
| 10598 | subupl = vector_upl->upls[i].elem; |
| 10599 | subupl_state = vector_upl->upls[i].iostate; |
| 10600 | if (*upl_offset <= (subupl_state.offset + subupl_state.size - 1)) { |
| 10601 | /* We could have been passed an offset/size pair that belongs |
| 10602 | * to an UPL element that has already been committed/aborted. |
| 10603 | * If so, return NULL. |
| 10604 | */ |
| 10605 | if (subupl == NULL) { |
| 10606 | return NULL; |
| 10607 | } |
| 10608 | if ((subupl_state.offset + subupl_state.size) < (*upl_offset + *upl_size)) { |
| 10609 | *upl_size = (subupl_state.offset + subupl_state.size) - *upl_offset; |
| 10610 | if (*upl_size > subupl_state.size) { |
| 10611 | *upl_size = subupl_state.size; |
| 10612 | } |
| 10613 | } |
| 10614 | if (*upl_offset >= subupl_state.offset) { |
| 10615 | *upl_offset -= subupl_state.offset; |
| 10616 | } else if (i) { |
| 10617 | panic("Vector UPL offset miscalculation" ); |
| 10618 | } |
| 10619 | return subupl; |
| 10620 | } |
| 10621 | } |
| 10622 | } else { |
| 10623 | panic("vector_upl_subupl_byoffset was passed a non-vectored UPL" ); |
| 10624 | } |
| 10625 | } |
| 10626 | return NULL; |
| 10627 | } |
| 10628 | |
| 10629 | void |
| 10630 | vector_upl_get_submap(upl_t upl, vm_map_t *v_upl_submap, vm_offset_t *submap_dst_addr) |
| 10631 | { |
| 10632 | *v_upl_submap = NULL; |
| 10633 | |
| 10634 | if (vector_upl_is_valid(upl)) { |
| 10635 | vector_upl_t vector_upl = upl->vector_upl; |
| 10636 | if (vector_upl) { |
| 10637 | *v_upl_submap = vector_upl->submap; |
| 10638 | *submap_dst_addr = vector_upl->submap_dst_addr; |
| 10639 | } else { |
| 10640 | panic("vector_upl_get_submap was passed a non-vectored UPL" ); |
| 10641 | } |
| 10642 | } else { |
| 10643 | panic("vector_upl_get_submap was passed a null UPL" ); |
| 10644 | } |
| 10645 | } |
| 10646 | |
| 10647 | void |
| 10648 | vector_upl_set_submap(upl_t upl, vm_map_t submap, vm_offset_t submap_dst_addr) |
| 10649 | { |
| 10650 | if (vector_upl_is_valid(upl)) { |
| 10651 | vector_upl_t vector_upl = upl->vector_upl; |
| 10652 | if (vector_upl) { |
| 10653 | vector_upl->submap = submap; |
| 10654 | vector_upl->submap_dst_addr = submap_dst_addr; |
| 10655 | } else { |
| 10656 | panic("vector_upl_get_submap was passed a non-vectored UPL" ); |
| 10657 | } |
| 10658 | } else { |
| 10659 | panic("vector_upl_get_submap was passed a NULL UPL" ); |
| 10660 | } |
| 10661 | } |
| 10662 | |
| 10663 | void |
| 10664 | vector_upl_set_iostate(upl_t upl, upl_t subupl, upl_offset_t offset, upl_size_t size) |
| 10665 | { |
| 10666 | if (vector_upl_is_valid(upl)) { |
| 10667 | uint32_t i = 0; |
| 10668 | vector_upl_t vector_upl = upl->vector_upl; |
| 10669 | |
| 10670 | if (vector_upl) { |
| 10671 | for (i = 0; i < vector_upl->num_upls; i++) { |
| 10672 | if (vector_upl->upls[i].elem == subupl) { |
| 10673 | break; |
| 10674 | } |
| 10675 | } |
| 10676 | |
| 10677 | if (i == vector_upl->num_upls) { |
| 10678 | panic("setting sub-upl iostate when none exists" ); |
| 10679 | } |
| 10680 | |
| 10681 | vector_upl->upls[i].iostate.offset = offset; |
| 10682 | if (size < PAGE_SIZE) { |
| 10683 | size = PAGE_SIZE; |
| 10684 | } |
| 10685 | vector_upl->upls[i].iostate.size = size; |
| 10686 | } else { |
| 10687 | panic("vector_upl_set_iostate was passed a non-vectored UPL" ); |
| 10688 | } |
| 10689 | } else { |
| 10690 | panic("vector_upl_set_iostate was passed a NULL UPL" ); |
| 10691 | } |
| 10692 | } |
| 10693 | |
| 10694 | void |
| 10695 | vector_upl_get_iostate(upl_t upl, upl_t subupl, upl_offset_t *offset, upl_size_t *size) |
| 10696 | { |
| 10697 | if (vector_upl_is_valid(upl)) { |
| 10698 | uint32_t i = 0; |
| 10699 | vector_upl_t vector_upl = upl->vector_upl; |
| 10700 | |
| 10701 | if (vector_upl) { |
| 10702 | for (i = 0; i < vector_upl->num_upls; i++) { |
| 10703 | if (vector_upl->upls[i].elem == subupl) { |
| 10704 | break; |
| 10705 | } |
| 10706 | } |
| 10707 | |
| 10708 | if (i == vector_upl->num_upls) { |
| 10709 | panic("getting sub-upl iostate when none exists" ); |
| 10710 | } |
| 10711 | |
| 10712 | *offset = vector_upl->upls[i].iostate.offset; |
| 10713 | *size = vector_upl->upls[i].iostate.size; |
| 10714 | } else { |
| 10715 | panic("vector_upl_get_iostate was passed a non-vectored UPL" ); |
| 10716 | } |
| 10717 | } else { |
| 10718 | panic("vector_upl_get_iostate was passed a NULL UPL" ); |
| 10719 | } |
| 10720 | } |
| 10721 | |
| 10722 | void |
| 10723 | vector_upl_get_iostate_byindex(upl_t upl, uint32_t index, upl_offset_t *offset, upl_size_t *size) |
| 10724 | { |
| 10725 | if (vector_upl_is_valid(upl)) { |
| 10726 | vector_upl_t vector_upl = upl->vector_upl; |
| 10727 | if (vector_upl) { |
| 10728 | if (index < vector_upl->num_upls) { |
| 10729 | *offset = vector_upl->upls[index].iostate.offset; |
| 10730 | *size = vector_upl->upls[index].iostate.size; |
| 10731 | } else { |
| 10732 | *offset = *size = 0; |
| 10733 | } |
| 10734 | } else { |
| 10735 | panic("vector_upl_get_iostate_byindex was passed a non-vectored UPL" ); |
| 10736 | } |
| 10737 | } else { |
| 10738 | panic("vector_upl_get_iostate_byindex was passed a NULL UPL" ); |
| 10739 | } |
| 10740 | } |
| 10741 | |
| 10742 | void * |
| 10743 | upl_get_internal_vectorupl(upl_t upl) |
| 10744 | { |
| 10745 | return upl->vector_upl; |
| 10746 | } |
| 10747 | |
| 10748 | upl_page_info_t * |
| 10749 | upl_get_internal_vectorupl_pagelist(upl_t upl) |
| 10750 | { |
| 10751 | return upl->vector_upl->pagelist; |
| 10752 | } |
| 10753 | |
| 10754 | upl_page_info_t * |
| 10755 | upl_get_internal_page_list(upl_t upl) |
| 10756 | { |
| 10757 | return upl->vector_upl ? upl->vector_upl->pagelist : upl->page_list; |
| 10758 | } |
| 10759 | |
| 10760 | void |
| 10761 | upl_clear_dirty( |
| 10762 | upl_t upl, |
| 10763 | boolean_t value) |
| 10764 | { |
| 10765 | if (value) { |
| 10766 | upl->flags |= UPL_CLEAR_DIRTY; |
| 10767 | } else { |
| 10768 | upl->flags &= ~UPL_CLEAR_DIRTY; |
| 10769 | } |
| 10770 | } |
| 10771 | |
| 10772 | void |
| 10773 | upl_set_referenced( |
| 10774 | upl_t upl, |
| 10775 | boolean_t value) |
| 10776 | { |
| 10777 | upl_lock(upl); |
| 10778 | if (value) { |
| 10779 | upl->ext_ref_count++; |
| 10780 | } else { |
| 10781 | if (!upl->ext_ref_count) { |
| 10782 | panic("upl_set_referenced not %p" , upl); |
| 10783 | } |
| 10784 | upl->ext_ref_count--; |
| 10785 | } |
| 10786 | upl_unlock(upl); |
| 10787 | } |
| 10788 | |
| 10789 | #if CONFIG_IOSCHED |
| 10790 | void |
| 10791 | upl_set_blkno( |
| 10792 | upl_t upl, |
| 10793 | vm_offset_t upl_offset, |
| 10794 | int io_size, |
| 10795 | int64_t blkno) |
| 10796 | { |
| 10797 | int i, j; |
| 10798 | if ((upl->flags & UPL_EXPEDITE_SUPPORTED) == 0) { |
| 10799 | return; |
| 10800 | } |
| 10801 | |
| 10802 | assert(upl->upl_reprio_info != 0); |
| 10803 | for (i = (int)(upl_offset / PAGE_SIZE), j = 0; j < io_size; i++, j += PAGE_SIZE) { |
| 10804 | UPL_SET_REPRIO_INFO(upl, i, blkno, io_size); |
| 10805 | } |
| 10806 | } |
| 10807 | #endif |
| 10808 | |
| 10809 | void inline |
| 10810 | memoryshot(unsigned int event, unsigned int control) |
| 10811 | { |
| 10812 | if (vm_debug_events) { |
| 10813 | KERNEL_DEBUG_CONSTANT1((MACHDBG_CODE(DBG_MACH_VM_PRESSURE, event)) | control, |
| 10814 | vm_page_active_count, vm_page_inactive_count, |
| 10815 | vm_page_free_count, vm_page_speculative_count, |
| 10816 | vm_page_throttled_count); |
| 10817 | } else { |
| 10818 | (void) event; |
| 10819 | (void) control; |
| 10820 | } |
| 10821 | } |
| 10822 | |
| 10823 | #ifdef MACH_BSD |
| 10824 | |
| 10825 | boolean_t |
| 10826 | upl_device_page(upl_page_info_t *upl) |
| 10827 | { |
| 10828 | return UPL_DEVICE_PAGE(upl); |
| 10829 | } |
| 10830 | boolean_t |
| 10831 | upl_page_present(upl_page_info_t *upl, int index) |
| 10832 | { |
| 10833 | return UPL_PAGE_PRESENT(upl, index); |
| 10834 | } |
| 10835 | boolean_t |
| 10836 | upl_speculative_page(upl_page_info_t *upl, int index) |
| 10837 | { |
| 10838 | return UPL_SPECULATIVE_PAGE(upl, index); |
| 10839 | } |
| 10840 | boolean_t |
| 10841 | upl_dirty_page(upl_page_info_t *upl, int index) |
| 10842 | { |
| 10843 | return UPL_DIRTY_PAGE(upl, index); |
| 10844 | } |
| 10845 | boolean_t |
| 10846 | upl_valid_page(upl_page_info_t *upl, int index) |
| 10847 | { |
| 10848 | return UPL_VALID_PAGE(upl, index); |
| 10849 | } |
| 10850 | ppnum_t |
| 10851 | upl_phys_page(upl_page_info_t *upl, int index) |
| 10852 | { |
| 10853 | return UPL_PHYS_PAGE(upl, index); |
| 10854 | } |
| 10855 | |
| 10856 | void |
| 10857 | upl_page_set_mark(upl_page_info_t *upl, int index, boolean_t v) |
| 10858 | { |
| 10859 | upl[index].mark = v; |
| 10860 | } |
| 10861 | |
| 10862 | boolean_t |
| 10863 | upl_page_get_mark(upl_page_info_t *upl, int index) |
| 10864 | { |
| 10865 | return upl[index].mark; |
| 10866 | } |
| 10867 | |
| 10868 | void |
| 10869 | vm_countdirtypages(void) |
| 10870 | { |
| 10871 | vm_page_t m; |
| 10872 | int dpages; |
| 10873 | int pgopages; |
| 10874 | int precpages; |
| 10875 | |
| 10876 | |
| 10877 | dpages = 0; |
| 10878 | pgopages = 0; |
| 10879 | precpages = 0; |
| 10880 | |
| 10881 | vm_page_lock_queues(); |
| 10882 | m = (vm_page_t) vm_page_queue_first(&vm_page_queue_inactive); |
| 10883 | do { |
| 10884 | if (m == (vm_page_t)0) { |
| 10885 | break; |
| 10886 | } |
| 10887 | |
| 10888 | if (m->vmp_dirty) { |
| 10889 | dpages++; |
| 10890 | } |
| 10891 | if (m->vmp_free_when_done) { |
| 10892 | pgopages++; |
| 10893 | } |
| 10894 | if (m->vmp_precious) { |
| 10895 | precpages++; |
| 10896 | } |
| 10897 | |
| 10898 | assert(!is_kernel_object(VM_PAGE_OBJECT(m))); |
| 10899 | m = (vm_page_t) vm_page_queue_next(&m->vmp_pageq); |
| 10900 | if (m == (vm_page_t)0) { |
| 10901 | break; |
| 10902 | } |
| 10903 | } while (!vm_page_queue_end(&vm_page_queue_inactive, (vm_page_queue_entry_t) m)); |
| 10904 | vm_page_unlock_queues(); |
| 10905 | |
| 10906 | vm_page_lock_queues(); |
| 10907 | m = (vm_page_t) vm_page_queue_first(&vm_page_queue_throttled); |
| 10908 | do { |
| 10909 | if (m == (vm_page_t)0) { |
| 10910 | break; |
| 10911 | } |
| 10912 | |
| 10913 | dpages++; |
| 10914 | assert(m->vmp_dirty); |
| 10915 | assert(!m->vmp_free_when_done); |
| 10916 | assert(!is_kernel_object(VM_PAGE_OBJECT(m))); |
| 10917 | m = (vm_page_t) vm_page_queue_next(&m->vmp_pageq); |
| 10918 | if (m == (vm_page_t)0) { |
| 10919 | break; |
| 10920 | } |
| 10921 | } while (!vm_page_queue_end(&vm_page_queue_throttled, (vm_page_queue_entry_t) m)); |
| 10922 | vm_page_unlock_queues(); |
| 10923 | |
| 10924 | vm_page_lock_queues(); |
| 10925 | m = (vm_page_t) vm_page_queue_first(&vm_page_queue_anonymous); |
| 10926 | do { |
| 10927 | if (m == (vm_page_t)0) { |
| 10928 | break; |
| 10929 | } |
| 10930 | |
| 10931 | if (m->vmp_dirty) { |
| 10932 | dpages++; |
| 10933 | } |
| 10934 | if (m->vmp_free_when_done) { |
| 10935 | pgopages++; |
| 10936 | } |
| 10937 | if (m->vmp_precious) { |
| 10938 | precpages++; |
| 10939 | } |
| 10940 | |
| 10941 | assert(!is_kernel_object(VM_PAGE_OBJECT(m))); |
| 10942 | m = (vm_page_t) vm_page_queue_next(&m->vmp_pageq); |
| 10943 | if (m == (vm_page_t)0) { |
| 10944 | break; |
| 10945 | } |
| 10946 | } while (!vm_page_queue_end(&vm_page_queue_anonymous, (vm_page_queue_entry_t) m)); |
| 10947 | vm_page_unlock_queues(); |
| 10948 | |
| 10949 | printf(format: "IN Q: %d : %d : %d\n" , dpages, pgopages, precpages); |
| 10950 | |
| 10951 | dpages = 0; |
| 10952 | pgopages = 0; |
| 10953 | precpages = 0; |
| 10954 | |
| 10955 | vm_page_lock_queues(); |
| 10956 | m = (vm_page_t) vm_page_queue_first(&vm_page_queue_active); |
| 10957 | |
| 10958 | do { |
| 10959 | if (m == (vm_page_t)0) { |
| 10960 | break; |
| 10961 | } |
| 10962 | if (m->vmp_dirty) { |
| 10963 | dpages++; |
| 10964 | } |
| 10965 | if (m->vmp_free_when_done) { |
| 10966 | pgopages++; |
| 10967 | } |
| 10968 | if (m->vmp_precious) { |
| 10969 | precpages++; |
| 10970 | } |
| 10971 | |
| 10972 | assert(!is_kernel_object(VM_PAGE_OBJECT(m))); |
| 10973 | m = (vm_page_t) vm_page_queue_next(&m->vmp_pageq); |
| 10974 | if (m == (vm_page_t)0) { |
| 10975 | break; |
| 10976 | } |
| 10977 | } while (!vm_page_queue_end(&vm_page_queue_active, (vm_page_queue_entry_t) m)); |
| 10978 | vm_page_unlock_queues(); |
| 10979 | |
| 10980 | printf(format: "AC Q: %d : %d : %d\n" , dpages, pgopages, precpages); |
| 10981 | } |
| 10982 | #endif /* MACH_BSD */ |
| 10983 | |
| 10984 | |
| 10985 | #if CONFIG_IOSCHED |
| 10986 | int |
| 10987 | upl_get_cached_tier(upl_t upl) |
| 10988 | { |
| 10989 | assert(upl); |
| 10990 | if (upl->flags & UPL_TRACKED_BY_OBJECT) { |
| 10991 | return upl->upl_priority; |
| 10992 | } |
| 10993 | return -1; |
| 10994 | } |
| 10995 | #endif /* CONFIG_IOSCHED */ |
| 10996 | |
| 10997 | |
| 10998 | void |
| 10999 | upl_callout_iodone(upl_t upl) |
| 11000 | { |
| 11001 | struct upl_io_completion *upl_ctx = upl->upl_iodone; |
| 11002 | |
| 11003 | if (upl_ctx) { |
| 11004 | void (*iodone_func)(void *, int) = upl_ctx->io_done; |
| 11005 | |
| 11006 | assert(upl_ctx->io_done); |
| 11007 | |
| 11008 | (*iodone_func)(upl_ctx->io_context, upl_ctx->io_error); |
| 11009 | } |
| 11010 | } |
| 11011 | |
| 11012 | void |
| 11013 | upl_set_iodone(upl_t upl, void *upl_iodone) |
| 11014 | { |
| 11015 | upl->upl_iodone = (struct upl_io_completion *)upl_iodone; |
| 11016 | } |
| 11017 | |
| 11018 | void |
| 11019 | upl_set_iodone_error(upl_t upl, int error) |
| 11020 | { |
| 11021 | struct upl_io_completion *upl_ctx = upl->upl_iodone; |
| 11022 | |
| 11023 | if (upl_ctx) { |
| 11024 | upl_ctx->io_error = error; |
| 11025 | } |
| 11026 | } |
| 11027 | |
| 11028 | |
| 11029 | ppnum_t |
| 11030 | upl_get_highest_page( |
| 11031 | upl_t upl) |
| 11032 | { |
| 11033 | return upl->highest_page; |
| 11034 | } |
| 11035 | |
| 11036 | upl_size_t |
| 11037 | upl_get_size( |
| 11038 | upl_t upl) |
| 11039 | { |
| 11040 | return upl_adjusted_size(upl, PAGE_MASK); |
| 11041 | } |
| 11042 | |
| 11043 | upl_size_t |
| 11044 | upl_adjusted_size( |
| 11045 | upl_t upl, |
| 11046 | vm_map_offset_t pgmask) |
| 11047 | { |
| 11048 | vm_object_offset_t start_offset, end_offset; |
| 11049 | |
| 11050 | start_offset = trunc_page_mask_64(upl->u_offset, pgmask); |
| 11051 | end_offset = round_page_mask_64(upl->u_offset + upl->u_size, pgmask); |
| 11052 | |
| 11053 | return (upl_size_t)(end_offset - start_offset); |
| 11054 | } |
| 11055 | |
| 11056 | vm_object_offset_t |
| 11057 | upl_adjusted_offset( |
| 11058 | upl_t upl, |
| 11059 | vm_map_offset_t pgmask) |
| 11060 | { |
| 11061 | return trunc_page_mask_64(upl->u_offset, pgmask); |
| 11062 | } |
| 11063 | |
| 11064 | vm_object_offset_t |
| 11065 | upl_get_data_offset( |
| 11066 | upl_t upl) |
| 11067 | { |
| 11068 | return upl->u_offset - upl_adjusted_offset(upl, PAGE_MASK); |
| 11069 | } |
| 11070 | |
| 11071 | upl_t |
| 11072 | upl_associated_upl(upl_t upl) |
| 11073 | { |
| 11074 | return upl->associated_upl; |
| 11075 | } |
| 11076 | |
| 11077 | void |
| 11078 | upl_set_associated_upl(upl_t upl, upl_t associated_upl) |
| 11079 | { |
| 11080 | upl->associated_upl = associated_upl; |
| 11081 | } |
| 11082 | |
| 11083 | struct vnode * |
| 11084 | upl_lookup_vnode(upl_t upl) |
| 11085 | { |
| 11086 | if (!upl->map_object->internal) { |
| 11087 | return vnode_pager_lookup_vnode(upl->map_object->pager); |
| 11088 | } else { |
| 11089 | return NULL; |
| 11090 | } |
| 11091 | } |
| 11092 | |
| 11093 | #if UPL_DEBUG |
| 11094 | kern_return_t |
| 11095 | upl_ubc_alias_set(upl_t upl, uintptr_t alias1, uintptr_t alias2) |
| 11096 | { |
| 11097 | upl->ubc_alias1 = alias1; |
| 11098 | upl->ubc_alias2 = alias2; |
| 11099 | return KERN_SUCCESS; |
| 11100 | } |
| 11101 | int |
| 11102 | upl_ubc_alias_get(upl_t upl, uintptr_t * al, uintptr_t * al2) |
| 11103 | { |
| 11104 | if (al) { |
| 11105 | *al = upl->ubc_alias1; |
| 11106 | } |
| 11107 | if (al2) { |
| 11108 | *al2 = upl->ubc_alias2; |
| 11109 | } |
| 11110 | return KERN_SUCCESS; |
| 11111 | } |
| 11112 | #endif /* UPL_DEBUG */ |
| 11113 | |
| 11114 | #if VM_PRESSURE_EVENTS |
| 11115 | /* |
| 11116 | * Upward trajectory. |
| 11117 | */ |
| 11118 | extern boolean_t vm_compressor_low_on_space(void); |
| 11119 | |
| 11120 | boolean_t |
| 11121 | VM_PRESSURE_NORMAL_TO_WARNING(void) |
| 11122 | { |
| 11123 | if (!VM_CONFIG_COMPRESSOR_IS_ACTIVE) { |
| 11124 | /* Available pages below our threshold */ |
| 11125 | if (memorystatus_available_pages < memorystatus_available_pages_pressure) { |
| 11126 | /* No frozen processes to kill */ |
| 11127 | if (memorystatus_frozen_count == 0) { |
| 11128 | /* Not enough suspended processes available. */ |
| 11129 | if (memorystatus_suspended_count < MEMORYSTATUS_SUSPENDED_THRESHOLD) { |
| 11130 | return TRUE; |
| 11131 | } |
| 11132 | } |
| 11133 | } |
| 11134 | return FALSE; |
| 11135 | } else { |
| 11136 | return (AVAILABLE_NON_COMPRESSED_MEMORY < VM_PAGE_COMPRESSOR_COMPACT_THRESHOLD) ? 1 : 0; |
| 11137 | } |
| 11138 | } |
| 11139 | |
| 11140 | boolean_t |
| 11141 | VM_PRESSURE_WARNING_TO_CRITICAL(void) |
| 11142 | { |
| 11143 | if (!VM_CONFIG_COMPRESSOR_IS_ACTIVE) { |
| 11144 | /* Available pages below our threshold */ |
| 11145 | if (memorystatus_available_pages < memorystatus_available_pages_critical) { |
| 11146 | return TRUE; |
| 11147 | } |
| 11148 | return FALSE; |
| 11149 | } else { |
| 11150 | return vm_compressor_low_on_space() || (AVAILABLE_NON_COMPRESSED_MEMORY < ((12 * VM_PAGE_COMPRESSOR_SWAP_UNTHROTTLE_THRESHOLD) / 10)) ? 1 : 0; |
| 11151 | } |
| 11152 | } |
| 11153 | |
| 11154 | /* |
| 11155 | * Downward trajectory. |
| 11156 | */ |
| 11157 | boolean_t |
| 11158 | VM_PRESSURE_WARNING_TO_NORMAL(void) |
| 11159 | { |
| 11160 | if (!VM_CONFIG_COMPRESSOR_IS_ACTIVE) { |
| 11161 | /* Available pages above our threshold */ |
| 11162 | unsigned int target_threshold = (unsigned int) (memorystatus_available_pages_pressure + ((15 * memorystatus_available_pages_pressure) / 100)); |
| 11163 | if (memorystatus_available_pages > target_threshold) { |
| 11164 | return TRUE; |
| 11165 | } |
| 11166 | return FALSE; |
| 11167 | } else { |
| 11168 | return (AVAILABLE_NON_COMPRESSED_MEMORY > ((12 * VM_PAGE_COMPRESSOR_COMPACT_THRESHOLD) / 10)) ? 1 : 0; |
| 11169 | } |
| 11170 | } |
| 11171 | |
| 11172 | boolean_t |
| 11173 | VM_PRESSURE_CRITICAL_TO_WARNING(void) |
| 11174 | { |
| 11175 | if (!VM_CONFIG_COMPRESSOR_IS_ACTIVE) { |
| 11176 | /* Available pages above our threshold */ |
| 11177 | unsigned int target_threshold = (unsigned int)(memorystatus_available_pages_critical + ((15 * memorystatus_available_pages_critical) / 100)); |
| 11178 | if (memorystatus_available_pages > target_threshold) { |
| 11179 | return TRUE; |
| 11180 | } |
| 11181 | return FALSE; |
| 11182 | } else { |
| 11183 | return (AVAILABLE_NON_COMPRESSED_MEMORY > ((14 * VM_PAGE_COMPRESSOR_SWAP_UNTHROTTLE_THRESHOLD) / 10)) ? 1 : 0; |
| 11184 | } |
| 11185 | } |
| 11186 | #endif /* VM_PRESSURE_EVENTS */ |
| 11187 | |
| 11188 | #if DEVELOPMENT || DEBUG |
| 11189 | bool compressor_running_perf_test; |
| 11190 | uint64_t compressor_perf_test_pages_processed; |
| 11191 | |
| 11192 | kern_return_t |
| 11193 | run_compressor_perf_test( |
| 11194 | user_addr_t buf, |
| 11195 | size_t buffer_size, |
| 11196 | uint64_t *time, |
| 11197 | uint64_t *bytes_compressed, |
| 11198 | uint64_t *compressor_growth); |
| 11199 | |
| 11200 | static kern_return_t |
| 11201 | move_pages_to_queue( |
| 11202 | vm_map_t map, |
| 11203 | user_addr_t start_addr, |
| 11204 | size_t buffer_size, |
| 11205 | vm_page_queue_head_t *queue, |
| 11206 | size_t *pages_moved) |
| 11207 | { |
| 11208 | kern_return_t err = KERN_SUCCESS; |
| 11209 | vm_map_entry_t curr_entry = VM_MAP_ENTRY_NULL; |
| 11210 | boolean_t addr_in_map = FALSE; |
| 11211 | user_addr_t end_addr = USER_ADDR_NULL, curr_addr = USER_ADDR_NULL; |
| 11212 | vm_object_t curr_object = VM_OBJECT_NULL; |
| 11213 | *pages_moved = 0; |
| 11214 | |
| 11215 | |
| 11216 | if (VM_MAP_PAGE_SIZE(map) != PAGE_SIZE_64) { |
| 11217 | /* |
| 11218 | * We don't currently support benchmarking maps with a different page size |
| 11219 | * than the kernel. |
| 11220 | */ |
| 11221 | return KERN_INVALID_ARGUMENT; |
| 11222 | } |
| 11223 | |
| 11224 | if (os_add_overflow(start_addr, buffer_size, &end_addr)) { |
| 11225 | return KERN_INVALID_ARGUMENT; |
| 11226 | } |
| 11227 | |
| 11228 | vm_map_lock_read(map); |
| 11229 | curr_addr = vm_map_trunc_page_mask(start_addr, VM_MAP_PAGE_MASK(map)); |
| 11230 | end_addr = vm_map_round_page_mask(start_addr + buffer_size, VM_MAP_PAGE_MASK(map)); |
| 11231 | |
| 11232 | |
| 11233 | while (curr_addr < end_addr) { |
| 11234 | addr_in_map = vm_map_lookup_entry(map, curr_addr, &curr_entry); |
| 11235 | if (!addr_in_map) { |
| 11236 | err = KERN_INVALID_ARGUMENT; |
| 11237 | break; |
| 11238 | } |
| 11239 | curr_object = VME_OBJECT(curr_entry); |
| 11240 | if (curr_object) { |
| 11241 | vm_object_lock(curr_object); |
| 11242 | /* We really only want anonymous memory that's in the top level map and object here. */ |
| 11243 | if (curr_entry->is_sub_map || curr_entry->wired_count != 0 || |
| 11244 | curr_object->shadow != VM_OBJECT_NULL || !curr_object->internal) { |
| 11245 | err = KERN_INVALID_ARGUMENT; |
| 11246 | vm_object_unlock(curr_object); |
| 11247 | break; |
| 11248 | } |
| 11249 | vm_map_offset_t start_offset = (curr_addr - curr_entry->vme_start) + VME_OFFSET(curr_entry); |
| 11250 | vm_map_offset_t end_offset = MIN(curr_entry->vme_end, end_addr) - |
| 11251 | (curr_entry->vme_start + VME_OFFSET(curr_entry)); |
| 11252 | vm_map_offset_t curr_offset = start_offset; |
| 11253 | vm_page_t curr_page; |
| 11254 | while (curr_offset < end_offset) { |
| 11255 | curr_page = vm_page_lookup(curr_object, vm_object_trunc_page(curr_offset)); |
| 11256 | if (curr_page != VM_PAGE_NULL) { |
| 11257 | vm_page_lock_queues(); |
| 11258 | if (curr_page->vmp_laundry) { |
| 11259 | vm_pageout_steal_laundry(curr_page, TRUE); |
| 11260 | } |
| 11261 | /* |
| 11262 | * we've already factored out pages in the laundry which |
| 11263 | * means this page can't be on the pageout queue so it's |
| 11264 | * safe to do the vm_page_queues_remove |
| 11265 | */ |
| 11266 | bool donate = (curr_page->vmp_on_specialq == VM_PAGE_SPECIAL_Q_DONATE); |
| 11267 | vm_page_queues_remove(curr_page, TRUE); |
| 11268 | if (donate) { |
| 11269 | /* |
| 11270 | * The compressor needs to see this bit to know |
| 11271 | * where this page needs to land. Also if stolen, |
| 11272 | * this bit helps put the page back in the right |
| 11273 | * special queue where it belongs. |
| 11274 | */ |
| 11275 | curr_page->vmp_on_specialq = VM_PAGE_SPECIAL_Q_DONATE; |
| 11276 | } |
| 11277 | // Clear the referenced bit so we ensure this gets paged out |
| 11278 | curr_page->vmp_reference = false; |
| 11279 | if (curr_page->vmp_pmapped) { |
| 11280 | pmap_clear_refmod_options(VM_PAGE_GET_PHYS_PAGE(curr_page), |
| 11281 | VM_MEM_REFERENCED, PMAP_OPTIONS_NOFLUSH, (void*)NULL); |
| 11282 | } |
| 11283 | vm_page_queue_enter(queue, curr_page, vmp_pageq); |
| 11284 | vm_page_unlock_queues(); |
| 11285 | *pages_moved += 1; |
| 11286 | } |
| 11287 | curr_offset += PAGE_SIZE_64; |
| 11288 | curr_addr += PAGE_SIZE_64; |
| 11289 | } |
| 11290 | } |
| 11291 | vm_object_unlock(curr_object); |
| 11292 | } |
| 11293 | vm_map_unlock_read(map); |
| 11294 | return err; |
| 11295 | } |
| 11296 | |
| 11297 | /* |
| 11298 | * Local queue for processing benchmark pages. |
| 11299 | * Can't be allocated on the stack because the pointer has to |
| 11300 | * be packable. |
| 11301 | */ |
| 11302 | vm_page_queue_head_t compressor_perf_test_queue VM_PAGE_PACKED_ALIGNED; |
| 11303 | kern_return_t |
| 11304 | run_compressor_perf_test( |
| 11305 | user_addr_t buf, |
| 11306 | size_t buffer_size, |
| 11307 | uint64_t *time, |
| 11308 | uint64_t *bytes_compressed, |
| 11309 | uint64_t *compressor_growth) |
| 11310 | { |
| 11311 | kern_return_t err = KERN_SUCCESS; |
| 11312 | if (!VM_CONFIG_COMPRESSOR_IS_ACTIVE) { |
| 11313 | return KERN_NOT_SUPPORTED; |
| 11314 | } |
| 11315 | if (current_task() == kernel_task) { |
| 11316 | return KERN_INVALID_ARGUMENT; |
| 11317 | } |
| 11318 | vm_page_lock_queues(); |
| 11319 | if (compressor_running_perf_test) { |
| 11320 | /* Only run one instance of the benchmark at a time. */ |
| 11321 | vm_page_unlock_queues(); |
| 11322 | return KERN_RESOURCE_SHORTAGE; |
| 11323 | } |
| 11324 | vm_page_unlock_queues(); |
| 11325 | size_t page_count = 0; |
| 11326 | vm_map_t map; |
| 11327 | vm_page_t p, next; |
| 11328 | uint64_t compressor_perf_test_start = 0, compressor_perf_test_end = 0; |
| 11329 | uint64_t compressed_bytes_start = 0, compressed_bytes_end = 0; |
| 11330 | *bytes_compressed = *compressor_growth = 0; |
| 11331 | |
| 11332 | vm_page_queue_init(&compressor_perf_test_queue); |
| 11333 | map = current_task()->map; |
| 11334 | err = move_pages_to_queue(map, buf, buffer_size, &compressor_perf_test_queue, &page_count); |
| 11335 | if (err != KERN_SUCCESS) { |
| 11336 | goto out; |
| 11337 | } |
| 11338 | |
| 11339 | vm_page_lock_queues(); |
| 11340 | compressor_running_perf_test = true; |
| 11341 | compressor_perf_test_pages_processed = 0; |
| 11342 | /* |
| 11343 | * At this point the compressor threads should only process the benchmark queue |
| 11344 | * so we can look at the difference in c_segment_compressed_bytes while the perf test is running |
| 11345 | * to determine how many compressed bytes we ended up using. |
| 11346 | */ |
| 11347 | compressed_bytes_start = c_segment_compressed_bytes; |
| 11348 | vm_page_unlock_queues(); |
| 11349 | |
| 11350 | page_count = vm_pageout_page_queue(&compressor_perf_test_queue, page_count, true); |
| 11351 | |
| 11352 | vm_page_lock_queues(); |
| 11353 | compressor_perf_test_start = mach_absolute_time(); |
| 11354 | |
| 11355 | // Wake up the compressor thread(s) |
| 11356 | sched_cond_signal(&pgo_iothread_internal_state[0].pgo_wakeup, |
| 11357 | pgo_iothread_internal_state[0].pgo_iothread); |
| 11358 | |
| 11359 | /* |
| 11360 | * Depending on when this test is run we could overshoot or be right on the mark |
| 11361 | * with our page_count. So the comparison is of the _less than_ variety. |
| 11362 | */ |
| 11363 | while (compressor_perf_test_pages_processed < page_count) { |
| 11364 | assert_wait((event_t) &compressor_perf_test_pages_processed, THREAD_UNINT); |
| 11365 | vm_page_unlock_queues(); |
| 11366 | thread_block(THREAD_CONTINUE_NULL); |
| 11367 | vm_page_lock_queues(); |
| 11368 | } |
| 11369 | compressor_perf_test_end = mach_absolute_time(); |
| 11370 | compressed_bytes_end = c_segment_compressed_bytes; |
| 11371 | vm_page_unlock_queues(); |
| 11372 | |
| 11373 | |
| 11374 | out: |
| 11375 | /* |
| 11376 | * If we errored out above, then we could still have some pages |
| 11377 | * on the local queue. Make sure to put them back on the active queue before |
| 11378 | * returning so they're not orphaned. |
| 11379 | */ |
| 11380 | vm_page_lock_queues(); |
| 11381 | absolutetime_to_nanoseconds(compressor_perf_test_end - compressor_perf_test_start, time); |
| 11382 | p = (vm_page_t) vm_page_queue_first(&compressor_perf_test_queue); |
| 11383 | while (p && !vm_page_queue_end(&compressor_perf_test_queue, (vm_page_queue_entry_t)p)) { |
| 11384 | next = (vm_page_t)VM_PAGE_UNPACK_PTR(p->vmp_pageq.next); |
| 11385 | |
| 11386 | vm_page_enqueue_active(p, FALSE); |
| 11387 | p = next; |
| 11388 | } |
| 11389 | |
| 11390 | compressor_running_perf_test = false; |
| 11391 | vm_page_unlock_queues(); |
| 11392 | if (err == KERN_SUCCESS) { |
| 11393 | *bytes_compressed = page_count * PAGE_SIZE_64; |
| 11394 | *compressor_growth = compressed_bytes_end - compressed_bytes_start; |
| 11395 | } |
| 11396 | |
| 11397 | /* |
| 11398 | * pageout_scan will consider waking the compactor swapper |
| 11399 | * before it blocks. Do the same thing here before we return |
| 11400 | * to ensure that back to back benchmark runs can't overly fragment the |
| 11401 | * compressor pool. |
| 11402 | */ |
| 11403 | vm_consider_waking_compactor_swapper(); |
| 11404 | return err; |
| 11405 | } |
| 11406 | #endif /* DEVELOPMENT || DEBUG */ |
| 11407 | |