| 1 | /* |
| 2 | * Copyright (c) 2000-2020 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
| 5 | * |
| 6 | * This file contains Original Code and/or Modifications of Original Code |
| 7 | * as defined in and that are subject to the Apple Public Source License |
| 8 | * Version 2.0 (the 'License'). You may not use this file except in |
| 9 | * compliance with the License. The rights granted to you under the License |
| 10 | * may not be used to create, or enable the creation or redistribution of, |
| 11 | * unlawful or unlicensed copies of an Apple operating system, or to |
| 12 | * circumvent, violate, or enable the circumvention or violation of, any |
| 13 | * terms of an Apple operating system software license agreement. |
| 14 | * |
| 15 | * Please obtain a copy of the License at |
| 16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
| 17 | * |
| 18 | * The Original Code and all software distributed under the License are |
| 19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| 23 | * Please see the License for the specific language governing rights and |
| 24 | * limitations under the License. |
| 25 | * |
| 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
| 27 | */ |
| 28 | /* |
| 29 | * @OSF_COPYRIGHT@ |
| 30 | */ |
| 31 | /* |
| 32 | * Mach Operating System |
| 33 | * Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University |
| 34 | * All Rights Reserved. |
| 35 | * |
| 36 | * Permission to use, copy, modify and distribute this software and its |
| 37 | * documentation is hereby granted, provided that both the copyright |
| 38 | * notice and this permission notice appear in all copies of the |
| 39 | * software, derivative works or modified versions, and any portions |
| 40 | * thereof, and that both notices appear in supporting documentation. |
| 41 | * |
| 42 | * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" |
| 43 | * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR |
| 44 | * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. |
| 45 | * |
| 46 | * Carnegie Mellon requests users of this software to return to |
| 47 | * |
| 48 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU |
| 49 | * School of Computer Science |
| 50 | * Carnegie Mellon University |
| 51 | * Pittsburgh PA 15213-3890 |
| 52 | * |
| 53 | * any improvements or extensions that they make and grant Carnegie Mellon |
| 54 | * the rights to redistribute these changes. |
| 55 | */ |
| 56 | /* |
| 57 | */ |
| 58 | /* |
| 59 | * File: vm/vm_object.c |
| 60 | * Author: Avadis Tevanian, Jr., Michael Wayne Young |
| 61 | * |
| 62 | * Virtual memory object module. |
| 63 | */ |
| 64 | |
| 65 | #include <debug.h> |
| 66 | |
| 67 | #include <mach/mach_types.h> |
| 68 | #include <mach/memory_object.h> |
| 69 | #include <mach/vm_param.h> |
| 70 | |
| 71 | #include <mach/sdt.h> |
| 72 | |
| 73 | #include <ipc/ipc_types.h> |
| 74 | #include <ipc/ipc_port.h> |
| 75 | |
| 76 | #include <kern/kern_types.h> |
| 77 | #include <kern/assert.h> |
| 78 | #include <kern/queue.h> |
| 79 | #include <kern/kalloc.h> |
| 80 | #include <kern/zalloc.h> |
| 81 | #include <kern/host.h> |
| 82 | #include <kern/host_statistics.h> |
| 83 | #include <kern/processor.h> |
| 84 | #include <kern/misc_protos.h> |
| 85 | #include <kern/policy_internal.h> |
| 86 | |
| 87 | #include <sys/kdebug_triage.h> |
| 88 | |
| 89 | #include <vm/memory_object.h> |
| 90 | #include <vm/vm_compressor_pager.h> |
| 91 | #include <vm/vm_fault.h> |
| 92 | #include <vm/vm_map.h> |
| 93 | #include <vm/vm_object.h> |
| 94 | #include <vm/vm_page.h> |
| 95 | #include <vm/vm_pageout.h> |
| 96 | #include <vm/vm_protos.h> |
| 97 | #include <vm/vm_purgeable_internal.h> |
| 98 | |
| 99 | #include <vm/vm_compressor.h> |
| 100 | |
| 101 | #if CONFIG_PHANTOM_CACHE |
| 102 | #include <vm/vm_phantom_cache.h> |
| 103 | #endif |
| 104 | |
| 105 | #if VM_OBJECT_ACCESS_TRACKING |
| 106 | uint64_t vm_object_access_tracking_reads = 0; |
| 107 | uint64_t vm_object_access_tracking_writes = 0; |
| 108 | #endif /* VM_OBJECT_ACCESS_TRACKING */ |
| 109 | |
| 110 | boolean_t vm_object_collapse_compressor_allowed = TRUE; |
| 111 | |
| 112 | struct vm_counters vm_counters; |
| 113 | |
| 114 | #if DEVELOPMENT || DEBUG |
| 115 | extern struct memory_object_pager_ops shared_region_pager_ops; |
| 116 | extern unsigned int shared_region_pagers_resident_count; |
| 117 | extern unsigned int shared_region_pagers_resident_peak; |
| 118 | #endif /* DEVELOPMENT || DEBUG */ |
| 119 | |
| 120 | #if VM_OBJECT_TRACKING |
| 121 | btlog_t vm_object_tracking_btlog; |
| 122 | |
| 123 | void |
| 124 | vm_object_tracking_init(void) |
| 125 | { |
| 126 | int vm_object_tracking; |
| 127 | |
| 128 | vm_object_tracking = 1; |
| 129 | PE_parse_boot_argn("vm_object_tracking" , &vm_object_tracking, |
| 130 | sizeof(vm_object_tracking)); |
| 131 | |
| 132 | if (vm_object_tracking) { |
| 133 | vm_object_tracking_btlog = btlog_create(BTLOG_HASH, |
| 134 | VM_OBJECT_TRACKING_NUM_RECORDS); |
| 135 | assert(vm_object_tracking_btlog); |
| 136 | } |
| 137 | } |
| 138 | #endif /* VM_OBJECT_TRACKING */ |
| 139 | |
| 140 | /* |
| 141 | * Virtual memory objects maintain the actual data |
| 142 | * associated with allocated virtual memory. A given |
| 143 | * page of memory exists within exactly one object. |
| 144 | * |
| 145 | * An object is only deallocated when all "references" |
| 146 | * are given up. |
| 147 | * |
| 148 | * Associated with each object is a list of all resident |
| 149 | * memory pages belonging to that object; this list is |
| 150 | * maintained by the "vm_page" module, but locked by the object's |
| 151 | * lock. |
| 152 | * |
| 153 | * Each object also records the memory object reference |
| 154 | * that is used by the kernel to request and write |
| 155 | * back data (the memory object, field "pager"), etc... |
| 156 | * |
| 157 | * Virtual memory objects are allocated to provide |
| 158 | * zero-filled memory (vm_allocate) or map a user-defined |
| 159 | * memory object into a virtual address space (vm_map). |
| 160 | * |
| 161 | * Virtual memory objects that refer to a user-defined |
| 162 | * memory object are called "permanent", because all changes |
| 163 | * made in virtual memory are reflected back to the |
| 164 | * memory manager, which may then store it permanently. |
| 165 | * Other virtual memory objects are called "temporary", |
| 166 | * meaning that changes need be written back only when |
| 167 | * necessary to reclaim pages, and that storage associated |
| 168 | * with the object can be discarded once it is no longer |
| 169 | * mapped. |
| 170 | * |
| 171 | * A permanent memory object may be mapped into more |
| 172 | * than one virtual address space. Moreover, two threads |
| 173 | * may attempt to make the first mapping of a memory |
| 174 | * object concurrently. Only one thread is allowed to |
| 175 | * complete this mapping; all others wait for the |
| 176 | * "pager_initialized" field is asserted, indicating |
| 177 | * that the first thread has initialized all of the |
| 178 | * necessary fields in the virtual memory object structure. |
| 179 | * |
| 180 | * The kernel relies on a *default memory manager* to |
| 181 | * provide backing storage for the zero-filled virtual |
| 182 | * memory objects. The pager memory objects associated |
| 183 | * with these temporary virtual memory objects are only |
| 184 | * requested from the default memory manager when it |
| 185 | * becomes necessary. Virtual memory objects |
| 186 | * that depend on the default memory manager are called |
| 187 | * "internal". The "pager_created" field is provided to |
| 188 | * indicate whether these ports have ever been allocated. |
| 189 | * |
| 190 | * The kernel may also create virtual memory objects to |
| 191 | * hold changed pages after a copy-on-write operation. |
| 192 | * In this case, the virtual memory object (and its |
| 193 | * backing storage -- its memory object) only contain |
| 194 | * those pages that have been changed. The "shadow" |
| 195 | * field refers to the virtual memory object that contains |
| 196 | * the remainder of the contents. The "shadow_offset" |
| 197 | * field indicates where in the "shadow" these contents begin. |
| 198 | * The "copy" field refers to a virtual memory object |
| 199 | * to which changed pages must be copied before changing |
| 200 | * this object, in order to implement another form |
| 201 | * of copy-on-write optimization. |
| 202 | * |
| 203 | * The virtual memory object structure also records |
| 204 | * the attributes associated with its memory object. |
| 205 | * The "pager_ready", "can_persist" and "copy_strategy" |
| 206 | * fields represent those attributes. The "cached_list" |
| 207 | * field is used in the implementation of the persistence |
| 208 | * attribute. |
| 209 | * |
| 210 | * ZZZ Continue this comment. |
| 211 | */ |
| 212 | |
| 213 | /* Forward declarations for internal functions. */ |
| 214 | static kern_return_t vm_object_terminate( |
| 215 | vm_object_t object); |
| 216 | |
| 217 | static void vm_object_do_collapse( |
| 218 | vm_object_t object, |
| 219 | vm_object_t backing_object); |
| 220 | |
| 221 | static void vm_object_do_bypass( |
| 222 | vm_object_t object, |
| 223 | vm_object_t backing_object); |
| 224 | |
| 225 | static void vm_object_release_pager( |
| 226 | memory_object_t ); |
| 227 | |
| 228 | SECURITY_READ_ONLY_LATE(zone_t) vm_object_zone; /* vm backing store zone */ |
| 229 | |
| 230 | /* |
| 231 | * All wired-down kernel memory belongs to this memory object |
| 232 | * memory object (kernel_object) by default to avoid wasting data structures. |
| 233 | */ |
| 234 | static struct vm_object kernel_object_store VM_PAGE_PACKED_ALIGNED; |
| 235 | const vm_object_t kernel_object_default = &kernel_object_store; |
| 236 | |
| 237 | static struct vm_object compressor_object_store VM_PAGE_PACKED_ALIGNED; |
| 238 | const vm_object_t compressor_object = &compressor_object_store; |
| 239 | |
| 240 | /* |
| 241 | * This object holds all pages that have been retired due to errors like ECC. |
| 242 | * The system should never use the page or look at its contents. The offset |
| 243 | * in this object is the same as the page's physical address. |
| 244 | */ |
| 245 | static struct vm_object retired_pages_object_store VM_PAGE_PACKED_ALIGNED; |
| 246 | const vm_object_t retired_pages_object = &retired_pages_object_store; |
| 247 | |
| 248 | static struct vm_object exclaves_object_store VM_PAGE_PACKED_ALIGNED; |
| 249 | const vm_object_t exclaves_object = &exclaves_object_store; |
| 250 | |
| 251 | |
| 252 | /* |
| 253 | * Virtual memory objects are initialized from |
| 254 | * a template (see vm_object_allocate). |
| 255 | * |
| 256 | * When adding a new field to the virtual memory |
| 257 | * object structure, be sure to add initialization |
| 258 | * (see _vm_object_allocate()). |
| 259 | */ |
| 260 | static const struct vm_object vm_object_template = { |
| 261 | .memq.prev = 0, |
| 262 | .memq.next = 0, |
| 263 | /* |
| 264 | * The lock will be initialized for each allocated object in |
| 265 | * _vm_object_allocate(), so we don't need to initialize it in |
| 266 | * the vm_object_template. |
| 267 | */ |
| 268 | .vo_size = 0, |
| 269 | .memq_hint = VM_PAGE_NULL, |
| 270 | .ref_count = 1, |
| 271 | .resident_page_count = 0, |
| 272 | .wired_page_count = 0, |
| 273 | .reusable_page_count = 0, |
| 274 | .vo_copy = VM_OBJECT_NULL, |
| 275 | .vo_copy_version = 0, |
| 276 | .shadow = VM_OBJECT_NULL, |
| 277 | .vo_shadow_offset = (vm_object_offset_t) 0, |
| 278 | .pager = MEMORY_OBJECT_NULL, |
| 279 | .paging_offset = 0, |
| 280 | .pager_control = MEMORY_OBJECT_CONTROL_NULL, |
| 281 | .copy_strategy = MEMORY_OBJECT_COPY_SYMMETRIC, |
| 282 | .paging_in_progress = 0, |
| 283 | .vo_size_delta = 0, |
| 284 | .activity_in_progress = 0, |
| 285 | |
| 286 | /* Begin bitfields */ |
| 287 | .all_wanted = 0, /* all bits FALSE */ |
| 288 | .pager_created = FALSE, |
| 289 | .pager_initialized = FALSE, |
| 290 | .pager_ready = FALSE, |
| 291 | .pager_trusted = FALSE, |
| 292 | .can_persist = FALSE, |
| 293 | .internal = TRUE, |
| 294 | .private = FALSE, |
| 295 | .pageout = FALSE, |
| 296 | .alive = TRUE, |
| 297 | .purgable = VM_PURGABLE_DENY, |
| 298 | .purgeable_when_ripe = FALSE, |
| 299 | .purgeable_only_by_kernel = FALSE, |
| 300 | .shadowed = FALSE, |
| 301 | .true_share = FALSE, |
| 302 | .terminating = FALSE, |
| 303 | .named = FALSE, |
| 304 | .shadow_severed = FALSE, |
| 305 | .phys_contiguous = FALSE, |
| 306 | .nophyscache = FALSE, |
| 307 | /* End bitfields */ |
| 308 | |
| 309 | .cached_list.prev = NULL, |
| 310 | .cached_list.next = NULL, |
| 311 | |
| 312 | .last_alloc = (vm_object_offset_t) 0, |
| 313 | .sequential = (vm_object_offset_t) 0, |
| 314 | .pages_created = 0, |
| 315 | .pages_used = 0, |
| 316 | .scan_collisions = 0, |
| 317 | #if CONFIG_PHANTOM_CACHE |
| 318 | .phantom_object_id = 0, |
| 319 | #endif |
| 320 | .cow_hint = ~(vm_offset_t)0, |
| 321 | |
| 322 | /* cache bitfields */ |
| 323 | .wimg_bits = VM_WIMG_USE_DEFAULT, |
| 324 | .set_cache_attr = FALSE, |
| 325 | .object_is_shared_cache = FALSE, |
| 326 | .code_signed = FALSE, |
| 327 | .transposed = FALSE, |
| 328 | .mapping_in_progress = FALSE, |
| 329 | .phantom_isssd = FALSE, |
| 330 | .volatile_empty = FALSE, |
| 331 | .volatile_fault = FALSE, |
| 332 | .all_reusable = FALSE, |
| 333 | .blocked_access = FALSE, |
| 334 | .vo_ledger_tag = VM_LEDGER_TAG_NONE, |
| 335 | .vo_no_footprint = FALSE, |
| 336 | #if CONFIG_IOSCHED || UPL_DEBUG |
| 337 | .uplq.prev = NULL, |
| 338 | .uplq.next = NULL, |
| 339 | #endif /* UPL_DEBUG */ |
| 340 | #ifdef VM_PIP_DEBUG |
| 341 | .pip_holders = {0}, |
| 342 | #endif /* VM_PIP_DEBUG */ |
| 343 | |
| 344 | .objq.next = NULL, |
| 345 | .objq.prev = NULL, |
| 346 | .task_objq.next = NULL, |
| 347 | .task_objq.prev = NULL, |
| 348 | |
| 349 | .purgeable_queue_type = PURGEABLE_Q_TYPE_MAX, |
| 350 | .purgeable_queue_group = 0, |
| 351 | |
| 352 | .wire_tag = VM_KERN_MEMORY_NONE, |
| 353 | #if !VM_TAG_ACTIVE_UPDATE |
| 354 | .wired_objq.next = NULL, |
| 355 | .wired_objq.prev = NULL, |
| 356 | #endif /* ! VM_TAG_ACTIVE_UPDATE */ |
| 357 | |
| 358 | .io_tracking = FALSE, |
| 359 | |
| 360 | #if CONFIG_SECLUDED_MEMORY |
| 361 | .eligible_for_secluded = FALSE, |
| 362 | .can_grab_secluded = FALSE, |
| 363 | #else /* CONFIG_SECLUDED_MEMORY */ |
| 364 | .__object3_unused_bits = 0, |
| 365 | #endif /* CONFIG_SECLUDED_MEMORY */ |
| 366 | |
| 367 | .for_realtime = false, |
| 368 | .no_pager_reason = VM_OBJECT_DESTROY_UNKNOWN_REASON, |
| 369 | |
| 370 | #if VM_OBJECT_ACCESS_TRACKING |
| 371 | .access_tracking = FALSE, |
| 372 | .access_tracking_reads = 0, |
| 373 | .access_tracking_writes = 0, |
| 374 | #endif /* VM_OBJECT_ACCESS_TRACKING */ |
| 375 | |
| 376 | #if DEBUG |
| 377 | .purgeable_owner_bt = {0}, |
| 378 | .vo_purgeable_volatilizer = NULL, |
| 379 | .purgeable_volatilizer_bt = {0}, |
| 380 | #endif /* DEBUG */ |
| 381 | }; |
| 382 | |
| 383 | LCK_GRP_DECLARE(vm_object_lck_grp, "vm_object" ); |
| 384 | LCK_GRP_DECLARE(vm_object_cache_lck_grp, "vm_object_cache" ); |
| 385 | LCK_ATTR_DECLARE(vm_object_lck_attr, 0, 0); |
| 386 | LCK_ATTR_DECLARE(kernel_object_lck_attr, 0, LCK_ATTR_DEBUG); |
| 387 | LCK_ATTR_DECLARE(compressor_object_lck_attr, 0, LCK_ATTR_DEBUG); |
| 388 | |
| 389 | unsigned int vm_page_purged_wired = 0; |
| 390 | unsigned int vm_page_purged_busy = 0; |
| 391 | unsigned int vm_page_purged_others = 0; |
| 392 | |
| 393 | static queue_head_t vm_object_cached_list; |
| 394 | static uint32_t vm_object_cache_pages_freed = 0; |
| 395 | static uint32_t vm_object_cache_pages_moved = 0; |
| 396 | static uint32_t vm_object_cache_pages_skipped = 0; |
| 397 | static uint32_t vm_object_cache_adds = 0; |
| 398 | static uint32_t vm_object_cached_count = 0; |
| 399 | static LCK_MTX_DECLARE_ATTR(vm_object_cached_lock_data, |
| 400 | &vm_object_cache_lck_grp, &vm_object_lck_attr); |
| 401 | |
| 402 | static uint32_t vm_object_page_grab_failed = 0; |
| 403 | static uint32_t vm_object_page_grab_skipped = 0; |
| 404 | static uint32_t vm_object_page_grab_returned = 0; |
| 405 | static uint32_t vm_object_page_grab_pmapped = 0; |
| 406 | static uint32_t vm_object_page_grab_reactivations = 0; |
| 407 | |
| 408 | #define vm_object_cache_lock_spin() \ |
| 409 | lck_mtx_lock_spin(&vm_object_cached_lock_data) |
| 410 | #define vm_object_cache_unlock() \ |
| 411 | lck_mtx_unlock(&vm_object_cached_lock_data) |
| 412 | |
| 413 | static void vm_object_cache_remove_locked(vm_object_t); |
| 414 | |
| 415 | |
| 416 | static void vm_object_reap(vm_object_t object); |
| 417 | static void vm_object_reap_async(vm_object_t object); |
| 418 | static void vm_object_reaper_thread(void); |
| 419 | |
| 420 | static LCK_MTX_DECLARE_ATTR(vm_object_reaper_lock_data, |
| 421 | &vm_object_lck_grp, &vm_object_lck_attr); |
| 422 | |
| 423 | static queue_head_t vm_object_reaper_queue; /* protected by vm_object_reaper_lock() */ |
| 424 | unsigned int vm_object_reap_count = 0; |
| 425 | unsigned int vm_object_reap_count_async = 0; |
| 426 | |
| 427 | #define vm_object_reaper_lock() \ |
| 428 | lck_mtx_lock(&vm_object_reaper_lock_data) |
| 429 | #define vm_object_reaper_lock_spin() \ |
| 430 | lck_mtx_lock_spin(&vm_object_reaper_lock_data) |
| 431 | #define vm_object_reaper_unlock() \ |
| 432 | lck_mtx_unlock(&vm_object_reaper_lock_data) |
| 433 | |
| 434 | #if CONFIG_IOSCHED |
| 435 | /* I/O Re-prioritization request list */ |
| 436 | queue_head_t io_reprioritize_list = QUEUE_HEAD_INITIALIZER(io_reprioritize_list); |
| 437 | |
| 438 | LCK_SPIN_DECLARE_ATTR(io_reprioritize_list_lock, |
| 439 | &vm_object_lck_grp, &vm_object_lck_attr); |
| 440 | |
| 441 | #define IO_REPRIORITIZE_LIST_LOCK() \ |
| 442 | lck_spin_lock_grp(&io_reprioritize_list_lock, &vm_object_lck_grp) |
| 443 | #define IO_REPRIORITIZE_LIST_UNLOCK() \ |
| 444 | lck_spin_unlock(&io_reprioritize_list_lock) |
| 445 | |
| 446 | ZONE_DEFINE_TYPE(io_reprioritize_req_zone, "io_reprioritize_req" , |
| 447 | struct io_reprioritize_req, ZC_NONE); |
| 448 | |
| 449 | /* I/O Re-prioritization thread */ |
| 450 | int io_reprioritize_wakeup = 0; |
| 451 | static void io_reprioritize_thread(void *param __unused, wait_result_t wr __unused); |
| 452 | |
| 453 | #define IO_REPRIO_THREAD_WAKEUP() thread_wakeup((event_t)&io_reprioritize_wakeup) |
| 454 | #define IO_REPRIO_THREAD_CONTINUATION() \ |
| 455 | { \ |
| 456 | assert_wait(&io_reprioritize_wakeup, THREAD_UNINT); \ |
| 457 | thread_block(io_reprioritize_thread); \ |
| 458 | } |
| 459 | |
| 460 | void vm_page_request_reprioritize(vm_object_t, uint64_t, uint32_t, int); |
| 461 | void vm_page_handle_prio_inversion(vm_object_t, vm_page_t); |
| 462 | void vm_decmp_upl_reprioritize(upl_t, int); |
| 463 | #endif |
| 464 | |
| 465 | #if 0 |
| 466 | #undef KERNEL_DEBUG |
| 467 | #define KERNEL_DEBUG KERNEL_DEBUG_CONSTANT |
| 468 | #endif |
| 469 | |
| 470 | |
| 471 | void |
| 472 | vm_object_set_size( |
| 473 | vm_object_t object, |
| 474 | vm_object_size_t outer_size, |
| 475 | vm_object_size_t inner_size) |
| 476 | { |
| 477 | object->vo_size = vm_object_round_page(outer_size); |
| 478 | #if KASAN |
| 479 | assert(object->vo_size - inner_size <= USHRT_MAX); |
| 480 | object->vo_size_delta = (unsigned short)(object->vo_size - inner_size); |
| 481 | #else |
| 482 | (void)inner_size; |
| 483 | #endif |
| 484 | } |
| 485 | |
| 486 | |
| 487 | /* |
| 488 | * vm_object_allocate: |
| 489 | * |
| 490 | * Returns a new object with the given size. |
| 491 | */ |
| 492 | |
| 493 | __private_extern__ void |
| 494 | _vm_object_allocate( |
| 495 | vm_object_size_t size, |
| 496 | vm_object_t object) |
| 497 | { |
| 498 | *object = vm_object_template; |
| 499 | vm_page_queue_init(&object->memq); |
| 500 | #if UPL_DEBUG || CONFIG_IOSCHED |
| 501 | queue_init(&object->uplq); |
| 502 | #endif |
| 503 | vm_object_lock_init(object); |
| 504 | vm_object_set_size(object, outer_size: size, inner_size: size); |
| 505 | |
| 506 | #if VM_OBJECT_TRACKING_OP_CREATED |
| 507 | if (vm_object_tracking_btlog) { |
| 508 | btlog_record(vm_object_tracking_btlog, object, |
| 509 | VM_OBJECT_TRACKING_OP_CREATED, |
| 510 | btref_get(__builtin_frame_address(0), 0)); |
| 511 | } |
| 512 | #endif /* VM_OBJECT_TRACKING_OP_CREATED */ |
| 513 | } |
| 514 | |
| 515 | __private_extern__ vm_object_t |
| 516 | vm_object_allocate( |
| 517 | vm_object_size_t size) |
| 518 | { |
| 519 | vm_object_t object; |
| 520 | |
| 521 | object = zalloc_flags(vm_object_zone, Z_WAITOK | Z_NOFAIL); |
| 522 | _vm_object_allocate(size, object); |
| 523 | |
| 524 | return object; |
| 525 | } |
| 526 | |
| 527 | TUNABLE(bool, workaround_41447923, "workaround_41447923" , false); |
| 528 | |
| 529 | /* |
| 530 | * vm_object_bootstrap: |
| 531 | * |
| 532 | * Initialize the VM objects module. |
| 533 | */ |
| 534 | __startup_func |
| 535 | void |
| 536 | vm_object_bootstrap(void) |
| 537 | { |
| 538 | vm_size_t vm_object_size; |
| 539 | |
| 540 | assert(sizeof(mo_ipc_object_bits_t) == sizeof(ipc_object_bits_t)); |
| 541 | |
| 542 | vm_object_size = (sizeof(struct vm_object) + (VM_PAGE_PACKED_PTR_ALIGNMENT - 1)) & |
| 543 | ~(VM_PAGE_PACKED_PTR_ALIGNMENT - 1); |
| 544 | |
| 545 | vm_object_zone = zone_create(name: "vm objects" , size: vm_object_size, |
| 546 | flags: ZC_NOENCRYPT | ZC_ALIGNMENT_REQUIRED | ZC_VM | ZC_NOTBITAG); |
| 547 | |
| 548 | queue_init(&vm_object_cached_list); |
| 549 | |
| 550 | queue_init(&vm_object_reaper_queue); |
| 551 | |
| 552 | /* |
| 553 | * Initialize the "kernel object" |
| 554 | */ |
| 555 | |
| 556 | /* |
| 557 | * Note that in the following size specifications, we need to add 1 because |
| 558 | * VM_MAX_KERNEL_ADDRESS (vm_last_addr) is a maximum address, not a size. |
| 559 | */ |
| 560 | _vm_object_allocate(VM_MAX_KERNEL_ADDRESS + 1, object: kernel_object_default); |
| 561 | _vm_object_allocate(VM_MAX_KERNEL_ADDRESS + 1, object: compressor_object); |
| 562 | kernel_object_default->copy_strategy = MEMORY_OBJECT_COPY_NONE; |
| 563 | compressor_object->copy_strategy = MEMORY_OBJECT_COPY_NONE; |
| 564 | kernel_object_default->no_tag_update = TRUE; |
| 565 | |
| 566 | /* |
| 567 | * The object to hold retired VM pages. |
| 568 | */ |
| 569 | _vm_object_allocate(VM_MAX_KERNEL_ADDRESS + 1, object: retired_pages_object); |
| 570 | retired_pages_object->copy_strategy = MEMORY_OBJECT_COPY_NONE; |
| 571 | |
| 572 | /** |
| 573 | * The object to hold pages owned by exclaves. |
| 574 | */ |
| 575 | _vm_object_allocate(VM_MAX_KERNEL_ADDRESS + 1, object: exclaves_object); |
| 576 | exclaves_object->copy_strategy = MEMORY_OBJECT_COPY_NONE; |
| 577 | } |
| 578 | |
| 579 | #if CONFIG_IOSCHED |
| 580 | void |
| 581 | vm_io_reprioritize_init(void) |
| 582 | { |
| 583 | kern_return_t result; |
| 584 | thread_t thread = THREAD_NULL; |
| 585 | |
| 586 | result = kernel_thread_start_priority(continuation: io_reprioritize_thread, NULL, priority: 95 /* MAXPRI_KERNEL */, new_thread: &thread); |
| 587 | if (result == KERN_SUCCESS) { |
| 588 | thread_set_thread_name(th: thread, name: "VM_io_reprioritize_thread" ); |
| 589 | thread_deallocate(thread); |
| 590 | } else { |
| 591 | panic("Could not create io_reprioritize_thread" ); |
| 592 | } |
| 593 | } |
| 594 | #endif |
| 595 | |
| 596 | void |
| 597 | vm_object_reaper_init(void) |
| 598 | { |
| 599 | kern_return_t kr; |
| 600 | thread_t thread; |
| 601 | |
| 602 | kr = kernel_thread_start_priority( |
| 603 | continuation: (thread_continue_t) vm_object_reaper_thread, |
| 604 | NULL, |
| 605 | BASEPRI_VM, |
| 606 | new_thread: &thread); |
| 607 | if (kr != KERN_SUCCESS) { |
| 608 | panic("failed to launch vm_object_reaper_thread kr=0x%x" , kr); |
| 609 | } |
| 610 | thread_set_thread_name(th: thread, name: "VM_object_reaper_thread" ); |
| 611 | thread_deallocate(thread); |
| 612 | } |
| 613 | |
| 614 | |
| 615 | /* |
| 616 | * vm_object_deallocate: |
| 617 | * |
| 618 | * Release a reference to the specified object, |
| 619 | * gained either through a vm_object_allocate |
| 620 | * or a vm_object_reference call. When all references |
| 621 | * are gone, storage associated with this object |
| 622 | * may be relinquished. |
| 623 | * |
| 624 | * No object may be locked. |
| 625 | */ |
| 626 | unsigned long vm_object_deallocate_shared_successes = 0; |
| 627 | unsigned long vm_object_deallocate_shared_failures = 0; |
| 628 | unsigned long vm_object_deallocate_shared_swap_failures = 0; |
| 629 | |
| 630 | __private_extern__ void |
| 631 | vm_object_deallocate( |
| 632 | vm_object_t object) |
| 633 | { |
| 634 | vm_object_t shadow = VM_OBJECT_NULL; |
| 635 | |
| 636 | // if(object)dbgLog(object, object->ref_count, object->can_persist, 3); /* (TEST/DEBUG) */ |
| 637 | // else dbgLog(object, 0, 0, 3); /* (TEST/DEBUG) */ |
| 638 | |
| 639 | if (object == VM_OBJECT_NULL) { |
| 640 | return; |
| 641 | } |
| 642 | |
| 643 | if (is_kernel_object(object) || object == compressor_object || object == retired_pages_object) { |
| 644 | vm_object_lock_shared(object); |
| 645 | |
| 646 | OSAddAtomic(-1, &object->ref_count); |
| 647 | |
| 648 | if (object->ref_count == 0) { |
| 649 | if (is_kernel_object(object)) { |
| 650 | panic("vm_object_deallocate: losing a kernel_object" ); |
| 651 | } else if (object == retired_pages_object) { |
| 652 | panic("vm_object_deallocate: losing retired_pages_object" ); |
| 653 | } else { |
| 654 | panic("vm_object_deallocate: losing compressor_object" ); |
| 655 | } |
| 656 | } |
| 657 | vm_object_unlock(object); |
| 658 | return; |
| 659 | } |
| 660 | |
| 661 | if (object->ref_count == 2 && |
| 662 | object->named) { |
| 663 | /* |
| 664 | * This "named" object's reference count is about to |
| 665 | * drop from 2 to 1: |
| 666 | * we'll need to call memory_object_last_unmap(). |
| 667 | */ |
| 668 | } else if (object->ref_count == 2 && |
| 669 | object->internal && |
| 670 | object->shadow != VM_OBJECT_NULL) { |
| 671 | /* |
| 672 | * This internal object's reference count is about to |
| 673 | * drop from 2 to 1 and it has a shadow object: |
| 674 | * we'll want to try and collapse this object with its |
| 675 | * shadow. |
| 676 | */ |
| 677 | } else if (object->ref_count >= 2) { |
| 678 | UInt32 original_ref_count; |
| 679 | volatile UInt32 *ref_count_p; |
| 680 | Boolean atomic_swap; |
| 681 | |
| 682 | /* |
| 683 | * The object currently looks like it is not being |
| 684 | * kept alive solely by the reference we're about to release. |
| 685 | * Let's try and release our reference without taking |
| 686 | * all the locks we would need if we had to terminate the |
| 687 | * object (cache lock + exclusive object lock). |
| 688 | * Lock the object "shared" to make sure we don't race with |
| 689 | * anyone holding it "exclusive". |
| 690 | */ |
| 691 | vm_object_lock_shared(object); |
| 692 | ref_count_p = (volatile UInt32 *) &object->ref_count; |
| 693 | original_ref_count = object->ref_count; |
| 694 | /* |
| 695 | * Test again as "ref_count" could have changed. |
| 696 | * "named" shouldn't change. |
| 697 | */ |
| 698 | if (original_ref_count == 2 && |
| 699 | object->named) { |
| 700 | /* need to take slow path for m_o_last_unmap() */ |
| 701 | atomic_swap = FALSE; |
| 702 | } else if (original_ref_count == 2 && |
| 703 | object->internal && |
| 704 | object->shadow != VM_OBJECT_NULL) { |
| 705 | /* need to take slow path for vm_object_collapse() */ |
| 706 | atomic_swap = FALSE; |
| 707 | } else if (original_ref_count < 2) { |
| 708 | /* need to take slow path for vm_object_terminate() */ |
| 709 | atomic_swap = FALSE; |
| 710 | } else { |
| 711 | /* try an atomic update with the shared lock */ |
| 712 | atomic_swap = OSCompareAndSwap( |
| 713 | original_ref_count, |
| 714 | original_ref_count - 1, |
| 715 | (UInt32 *) &object->ref_count); |
| 716 | if (atomic_swap == FALSE) { |
| 717 | vm_object_deallocate_shared_swap_failures++; |
| 718 | /* fall back to the slow path... */ |
| 719 | } |
| 720 | } |
| 721 | |
| 722 | vm_object_unlock(object); |
| 723 | |
| 724 | if (atomic_swap) { |
| 725 | /* |
| 726 | * ref_count was updated atomically ! |
| 727 | */ |
| 728 | vm_object_deallocate_shared_successes++; |
| 729 | return; |
| 730 | } |
| 731 | |
| 732 | /* |
| 733 | * Someone else updated the ref_count at the same |
| 734 | * time and we lost the race. Fall back to the usual |
| 735 | * slow but safe path... |
| 736 | */ |
| 737 | vm_object_deallocate_shared_failures++; |
| 738 | } |
| 739 | |
| 740 | while (object != VM_OBJECT_NULL) { |
| 741 | vm_object_lock(object); |
| 742 | |
| 743 | assert(object->ref_count > 0); |
| 744 | |
| 745 | /* |
| 746 | * If the object has a named reference, and only |
| 747 | * that reference would remain, inform the pager |
| 748 | * about the last "mapping" reference going away. |
| 749 | */ |
| 750 | if ((object->ref_count == 2) && (object->named)) { |
| 751 | memory_object_t = object->pager; |
| 752 | |
| 753 | /* Notify the Pager that there are no */ |
| 754 | /* more mappers for this object */ |
| 755 | |
| 756 | if (pager != MEMORY_OBJECT_NULL) { |
| 757 | vm_object_mapping_wait(object, THREAD_UNINT); |
| 758 | vm_object_mapping_begin(object); |
| 759 | vm_object_unlock(object); |
| 760 | |
| 761 | memory_object_last_unmap(memory_object: pager); |
| 762 | |
| 763 | vm_object_lock(object); |
| 764 | vm_object_mapping_end(object); |
| 765 | } |
| 766 | assert(object->ref_count > 0); |
| 767 | } |
| 768 | |
| 769 | /* |
| 770 | * Lose the reference. If other references |
| 771 | * remain, then we are done, unless we need |
| 772 | * to retry a cache trim. |
| 773 | * If it is the last reference, then keep it |
| 774 | * until any pending initialization is completed. |
| 775 | */ |
| 776 | |
| 777 | /* if the object is terminating, it cannot go into */ |
| 778 | /* the cache and we obviously should not call */ |
| 779 | /* terminate again. */ |
| 780 | |
| 781 | if ((object->ref_count > 1) || object->terminating) { |
| 782 | vm_object_lock_assert_exclusive(object); |
| 783 | object->ref_count--; |
| 784 | |
| 785 | if (object->ref_count == 1 && |
| 786 | object->shadow != VM_OBJECT_NULL) { |
| 787 | /* |
| 788 | * There's only one reference left on this |
| 789 | * VM object. We can't tell if it's a valid |
| 790 | * one (from a mapping for example) or if this |
| 791 | * object is just part of a possibly stale and |
| 792 | * useless shadow chain. |
| 793 | * We would like to try and collapse it into |
| 794 | * its parent, but we don't have any pointers |
| 795 | * back to this parent object. |
| 796 | * But we can try and collapse this object with |
| 797 | * its own shadows, in case these are useless |
| 798 | * too... |
| 799 | * We can't bypass this object though, since we |
| 800 | * don't know if this last reference on it is |
| 801 | * meaningful or not. |
| 802 | */ |
| 803 | vm_object_collapse(object, offset: 0, FALSE); |
| 804 | } |
| 805 | vm_object_unlock(object); |
| 806 | return; |
| 807 | } |
| 808 | |
| 809 | /* |
| 810 | * We have to wait for initialization |
| 811 | * before destroying or caching the object. |
| 812 | */ |
| 813 | |
| 814 | if (object->pager_created && !object->pager_initialized) { |
| 815 | assert(!object->can_persist); |
| 816 | vm_object_assert_wait(object, |
| 817 | VM_OBJECT_EVENT_INITIALIZED, |
| 818 | THREAD_UNINT); |
| 819 | vm_object_unlock(object); |
| 820 | |
| 821 | thread_block(THREAD_CONTINUE_NULL); |
| 822 | continue; |
| 823 | } |
| 824 | |
| 825 | /* |
| 826 | * Terminate this object. If it had a shadow, |
| 827 | * then deallocate it; otherwise, if we need |
| 828 | * to retry a cache trim, do so now; otherwise, |
| 829 | * we are done. "pageout" objects have a shadow, |
| 830 | * but maintain a "paging reference" rather than |
| 831 | * a normal reference. |
| 832 | */ |
| 833 | shadow = object->pageout?VM_OBJECT_NULL:object->shadow; |
| 834 | |
| 835 | if (vm_object_terminate(object) != KERN_SUCCESS) { |
| 836 | return; |
| 837 | } |
| 838 | if (shadow != VM_OBJECT_NULL) { |
| 839 | object = shadow; |
| 840 | continue; |
| 841 | } |
| 842 | return; |
| 843 | } |
| 844 | } |
| 845 | |
| 846 | |
| 847 | |
| 848 | vm_page_t |
| 849 | vm_object_page_grab( |
| 850 | vm_object_t object) |
| 851 | { |
| 852 | vm_page_t p, next_p; |
| 853 | int p_limit = 0; |
| 854 | int p_skipped = 0; |
| 855 | |
| 856 | vm_object_lock_assert_exclusive(object); |
| 857 | |
| 858 | next_p = (vm_page_t)vm_page_queue_first(&object->memq); |
| 859 | p_limit = MIN(50, object->resident_page_count); |
| 860 | |
| 861 | while (!vm_page_queue_end(&object->memq, (vm_page_queue_entry_t)next_p) && --p_limit > 0) { |
| 862 | p = next_p; |
| 863 | next_p = (vm_page_t)vm_page_queue_next(&next_p->vmp_listq); |
| 864 | |
| 865 | if (VM_PAGE_WIRED(p) || p->vmp_busy || p->vmp_cleaning || p->vmp_laundry || p->vmp_fictitious) { |
| 866 | goto move_page_in_obj; |
| 867 | } |
| 868 | |
| 869 | if (p->vmp_pmapped || p->vmp_dirty || p->vmp_precious) { |
| 870 | vm_page_lockspin_queues(); |
| 871 | |
| 872 | if (p->vmp_pmapped) { |
| 873 | int refmod_state; |
| 874 | |
| 875 | vm_object_page_grab_pmapped++; |
| 876 | |
| 877 | if (p->vmp_reference == FALSE || p->vmp_dirty == FALSE) { |
| 878 | refmod_state = pmap_get_refmod(pn: VM_PAGE_GET_PHYS_PAGE(m: p)); |
| 879 | |
| 880 | if (refmod_state & VM_MEM_REFERENCED) { |
| 881 | p->vmp_reference = TRUE; |
| 882 | } |
| 883 | if (refmod_state & VM_MEM_MODIFIED) { |
| 884 | SET_PAGE_DIRTY(p, FALSE); |
| 885 | } |
| 886 | } |
| 887 | if (p->vmp_dirty == FALSE && p->vmp_precious == FALSE) { |
| 888 | vm_page_lockconvert_queues(); |
| 889 | refmod_state = pmap_disconnect(phys: VM_PAGE_GET_PHYS_PAGE(m: p)); |
| 890 | |
| 891 | if (refmod_state & VM_MEM_REFERENCED) { |
| 892 | p->vmp_reference = TRUE; |
| 893 | } |
| 894 | if (refmod_state & VM_MEM_MODIFIED) { |
| 895 | SET_PAGE_DIRTY(p, FALSE); |
| 896 | } |
| 897 | |
| 898 | if (p->vmp_dirty == FALSE) { |
| 899 | goto take_page; |
| 900 | } |
| 901 | } |
| 902 | } |
| 903 | if ((p->vmp_q_state != VM_PAGE_ON_ACTIVE_Q) && p->vmp_reference == TRUE) { |
| 904 | vm_page_activate(page: p); |
| 905 | |
| 906 | counter_inc(&vm_statistics_reactivations); |
| 907 | vm_object_page_grab_reactivations++; |
| 908 | } |
| 909 | vm_page_unlock_queues(); |
| 910 | move_page_in_obj: |
| 911 | vm_page_queue_remove(&object->memq, p, vmp_listq); |
| 912 | vm_page_queue_enter(&object->memq, p, vmp_listq); |
| 913 | |
| 914 | p_skipped++; |
| 915 | continue; |
| 916 | } |
| 917 | vm_page_lockspin_queues(); |
| 918 | take_page: |
| 919 | vm_page_free_prepare_queues(page: p); |
| 920 | vm_object_page_grab_returned++; |
| 921 | vm_object_page_grab_skipped += p_skipped; |
| 922 | |
| 923 | vm_page_unlock_queues(); |
| 924 | |
| 925 | vm_page_free_prepare_object(page: p, TRUE); |
| 926 | |
| 927 | return p; |
| 928 | } |
| 929 | vm_object_page_grab_skipped += p_skipped; |
| 930 | vm_object_page_grab_failed++; |
| 931 | |
| 932 | return NULL; |
| 933 | } |
| 934 | |
| 935 | |
| 936 | |
| 937 | #define EVICT_PREPARE_LIMIT 64 |
| 938 | #define EVICT_AGE 10 |
| 939 | |
| 940 | static clock_sec_t vm_object_cache_aging_ts = 0; |
| 941 | |
| 942 | static void |
| 943 | vm_object_cache_remove_locked( |
| 944 | vm_object_t object) |
| 945 | { |
| 946 | assert(object->purgable == VM_PURGABLE_DENY); |
| 947 | |
| 948 | queue_remove(&vm_object_cached_list, object, vm_object_t, cached_list); |
| 949 | object->cached_list.next = NULL; |
| 950 | object->cached_list.prev = NULL; |
| 951 | |
| 952 | vm_object_cached_count--; |
| 953 | } |
| 954 | |
| 955 | void |
| 956 | vm_object_cache_remove( |
| 957 | vm_object_t object) |
| 958 | { |
| 959 | vm_object_cache_lock_spin(); |
| 960 | |
| 961 | if (object->cached_list.next && |
| 962 | object->cached_list.prev) { |
| 963 | vm_object_cache_remove_locked(object); |
| 964 | } |
| 965 | |
| 966 | vm_object_cache_unlock(); |
| 967 | } |
| 968 | |
| 969 | void |
| 970 | vm_object_cache_add( |
| 971 | vm_object_t object) |
| 972 | { |
| 973 | clock_sec_t sec; |
| 974 | clock_nsec_t nsec; |
| 975 | |
| 976 | assert(object->purgable == VM_PURGABLE_DENY); |
| 977 | |
| 978 | if (object->resident_page_count == 0) { |
| 979 | return; |
| 980 | } |
| 981 | clock_get_system_nanotime(secs: &sec, nanosecs: &nsec); |
| 982 | |
| 983 | vm_object_cache_lock_spin(); |
| 984 | |
| 985 | if (object->cached_list.next == NULL && |
| 986 | object->cached_list.prev == NULL) { |
| 987 | queue_enter(&vm_object_cached_list, object, vm_object_t, cached_list); |
| 988 | object->vo_cache_ts = sec + EVICT_AGE; |
| 989 | object->vo_cache_pages_to_scan = object->resident_page_count; |
| 990 | |
| 991 | vm_object_cached_count++; |
| 992 | vm_object_cache_adds++; |
| 993 | } |
| 994 | vm_object_cache_unlock(); |
| 995 | } |
| 996 | |
| 997 | int |
| 998 | vm_object_cache_evict( |
| 999 | int num_to_evict, |
| 1000 | int max_objects_to_examine) |
| 1001 | { |
| 1002 | vm_object_t object = VM_OBJECT_NULL; |
| 1003 | vm_object_t next_obj = VM_OBJECT_NULL; |
| 1004 | vm_page_t local_free_q = VM_PAGE_NULL; |
| 1005 | vm_page_t p; |
| 1006 | vm_page_t next_p; |
| 1007 | int object_cnt = 0; |
| 1008 | vm_page_t ep_array[EVICT_PREPARE_LIMIT]; |
| 1009 | int ep_count; |
| 1010 | int ep_limit; |
| 1011 | int ep_index; |
| 1012 | int ep_freed = 0; |
| 1013 | int ep_moved = 0; |
| 1014 | uint32_t ep_skipped = 0; |
| 1015 | clock_sec_t sec; |
| 1016 | clock_nsec_t nsec; |
| 1017 | |
| 1018 | KERNEL_DEBUG(0x13001ec | DBG_FUNC_START, 0, 0, 0, 0, 0); |
| 1019 | /* |
| 1020 | * do a couple of quick checks to see if it's |
| 1021 | * worthwhile grabbing the lock |
| 1022 | */ |
| 1023 | if (queue_empty(&vm_object_cached_list)) { |
| 1024 | KERNEL_DEBUG(0x13001ec | DBG_FUNC_END, 0, 0, 0, 0, 0); |
| 1025 | return 0; |
| 1026 | } |
| 1027 | clock_get_system_nanotime(secs: &sec, nanosecs: &nsec); |
| 1028 | |
| 1029 | /* |
| 1030 | * the object on the head of the queue has not |
| 1031 | * yet sufficiently aged |
| 1032 | */ |
| 1033 | if (sec < vm_object_cache_aging_ts) { |
| 1034 | KERNEL_DEBUG(0x13001ec | DBG_FUNC_END, 0, 0, 0, 0, 0); |
| 1035 | return 0; |
| 1036 | } |
| 1037 | /* |
| 1038 | * don't need the queue lock to find |
| 1039 | * and lock an object on the cached list |
| 1040 | */ |
| 1041 | vm_page_unlock_queues(); |
| 1042 | |
| 1043 | vm_object_cache_lock_spin(); |
| 1044 | |
| 1045 | for (;;) { |
| 1046 | next_obj = (vm_object_t)queue_first(&vm_object_cached_list); |
| 1047 | |
| 1048 | while (!queue_end(&vm_object_cached_list, (queue_entry_t)next_obj) && object_cnt++ < max_objects_to_examine) { |
| 1049 | object = next_obj; |
| 1050 | next_obj = (vm_object_t)queue_next(&next_obj->cached_list); |
| 1051 | |
| 1052 | assert(object->purgable == VM_PURGABLE_DENY); |
| 1053 | |
| 1054 | if (sec < object->vo_cache_ts) { |
| 1055 | KERNEL_DEBUG(0x130020c, object, object->resident_page_count, object->vo_cache_ts, sec, 0); |
| 1056 | |
| 1057 | vm_object_cache_aging_ts = object->vo_cache_ts; |
| 1058 | object = VM_OBJECT_NULL; |
| 1059 | break; |
| 1060 | } |
| 1061 | if (!vm_object_lock_try_scan(object)) { |
| 1062 | /* |
| 1063 | * just skip over this guy for now... if we find |
| 1064 | * an object to steal pages from, we'll revist in a bit... |
| 1065 | * hopefully, the lock will have cleared |
| 1066 | */ |
| 1067 | KERNEL_DEBUG(0x13001f8, object, object->resident_page_count, 0, 0, 0); |
| 1068 | |
| 1069 | object = VM_OBJECT_NULL; |
| 1070 | continue; |
| 1071 | } |
| 1072 | if (vm_page_queue_empty(&object->memq) || object->vo_cache_pages_to_scan == 0) { |
| 1073 | /* |
| 1074 | * this case really shouldn't happen, but it's not fatal |
| 1075 | * so deal with it... if we don't remove the object from |
| 1076 | * the list, we'll never move past it. |
| 1077 | */ |
| 1078 | KERNEL_DEBUG(0x13001fc, object, object->resident_page_count, ep_freed, ep_moved, 0); |
| 1079 | |
| 1080 | vm_object_cache_remove_locked(object); |
| 1081 | vm_object_unlock(object); |
| 1082 | object = VM_OBJECT_NULL; |
| 1083 | continue; |
| 1084 | } |
| 1085 | /* |
| 1086 | * we have a locked object with pages... |
| 1087 | * time to start harvesting |
| 1088 | */ |
| 1089 | break; |
| 1090 | } |
| 1091 | vm_object_cache_unlock(); |
| 1092 | |
| 1093 | if (object == VM_OBJECT_NULL) { |
| 1094 | break; |
| 1095 | } |
| 1096 | |
| 1097 | /* |
| 1098 | * object is locked at this point and |
| 1099 | * has resident pages |
| 1100 | */ |
| 1101 | next_p = (vm_page_t)vm_page_queue_first(&object->memq); |
| 1102 | |
| 1103 | /* |
| 1104 | * break the page scan into 2 pieces to minimize the time spent |
| 1105 | * behind the page queue lock... |
| 1106 | * the list of pages on these unused objects is likely to be cold |
| 1107 | * w/r to the cpu cache which increases the time to scan the list |
| 1108 | * tenfold... and we may have a 'run' of pages we can't utilize that |
| 1109 | * needs to be skipped over... |
| 1110 | */ |
| 1111 | if ((ep_limit = num_to_evict - (ep_freed + ep_moved)) > EVICT_PREPARE_LIMIT) { |
| 1112 | ep_limit = EVICT_PREPARE_LIMIT; |
| 1113 | } |
| 1114 | ep_count = 0; |
| 1115 | |
| 1116 | while (!vm_page_queue_end(&object->memq, (vm_page_queue_entry_t)next_p) && object->vo_cache_pages_to_scan && ep_count < ep_limit) { |
| 1117 | p = next_p; |
| 1118 | next_p = (vm_page_t)vm_page_queue_next(&next_p->vmp_listq); |
| 1119 | |
| 1120 | object->vo_cache_pages_to_scan--; |
| 1121 | |
| 1122 | if (VM_PAGE_WIRED(p) || p->vmp_busy || p->vmp_cleaning || p->vmp_laundry) { |
| 1123 | vm_page_queue_remove(&object->memq, p, vmp_listq); |
| 1124 | vm_page_queue_enter(&object->memq, p, vmp_listq); |
| 1125 | |
| 1126 | ep_skipped++; |
| 1127 | continue; |
| 1128 | } |
| 1129 | if (p->vmp_wpmapped || p->vmp_dirty || p->vmp_precious) { |
| 1130 | vm_page_queue_remove(&object->memq, p, vmp_listq); |
| 1131 | vm_page_queue_enter(&object->memq, p, vmp_listq); |
| 1132 | |
| 1133 | pmap_clear_reference(pn: VM_PAGE_GET_PHYS_PAGE(m: p)); |
| 1134 | } |
| 1135 | ep_array[ep_count++] = p; |
| 1136 | } |
| 1137 | KERNEL_DEBUG(0x13001f4 | DBG_FUNC_START, object, object->resident_page_count, ep_freed, ep_moved, 0); |
| 1138 | |
| 1139 | vm_page_lockspin_queues(); |
| 1140 | |
| 1141 | for (ep_index = 0; ep_index < ep_count; ep_index++) { |
| 1142 | p = ep_array[ep_index]; |
| 1143 | |
| 1144 | if (p->vmp_wpmapped || p->vmp_dirty || p->vmp_precious) { |
| 1145 | p->vmp_reference = FALSE; |
| 1146 | p->vmp_no_cache = FALSE; |
| 1147 | |
| 1148 | /* |
| 1149 | * we've already filtered out pages that are in the laundry |
| 1150 | * so if we get here, this page can't be on the pageout queue |
| 1151 | */ |
| 1152 | vm_page_queues_remove(mem: p, FALSE); |
| 1153 | vm_page_enqueue_inactive(mem: p, TRUE); |
| 1154 | |
| 1155 | ep_moved++; |
| 1156 | } else { |
| 1157 | #if CONFIG_PHANTOM_CACHE |
| 1158 | vm_phantom_cache_add_ghost(p); |
| 1159 | #endif |
| 1160 | vm_page_free_prepare_queues(page: p); |
| 1161 | |
| 1162 | assert(p->vmp_pageq.next == 0 && p->vmp_pageq.prev == 0); |
| 1163 | /* |
| 1164 | * Add this page to our list of reclaimed pages, |
| 1165 | * to be freed later. |
| 1166 | */ |
| 1167 | p->vmp_snext = local_free_q; |
| 1168 | local_free_q = p; |
| 1169 | |
| 1170 | ep_freed++; |
| 1171 | } |
| 1172 | } |
| 1173 | vm_page_unlock_queues(); |
| 1174 | |
| 1175 | KERNEL_DEBUG(0x13001f4 | DBG_FUNC_END, object, object->resident_page_count, ep_freed, ep_moved, 0); |
| 1176 | |
| 1177 | if (local_free_q) { |
| 1178 | vm_page_free_list(mem: local_free_q, TRUE); |
| 1179 | local_free_q = VM_PAGE_NULL; |
| 1180 | } |
| 1181 | if (object->vo_cache_pages_to_scan == 0) { |
| 1182 | KERNEL_DEBUG(0x1300208, object, object->resident_page_count, ep_freed, ep_moved, 0); |
| 1183 | |
| 1184 | vm_object_cache_remove(object); |
| 1185 | |
| 1186 | KERNEL_DEBUG(0x13001fc, object, object->resident_page_count, ep_freed, ep_moved, 0); |
| 1187 | } |
| 1188 | /* |
| 1189 | * done with this object |
| 1190 | */ |
| 1191 | vm_object_unlock(object); |
| 1192 | object = VM_OBJECT_NULL; |
| 1193 | |
| 1194 | /* |
| 1195 | * at this point, we are not holding any locks |
| 1196 | */ |
| 1197 | if ((ep_freed + ep_moved) >= num_to_evict) { |
| 1198 | /* |
| 1199 | * we've reached our target for the |
| 1200 | * number of pages to evict |
| 1201 | */ |
| 1202 | break; |
| 1203 | } |
| 1204 | vm_object_cache_lock_spin(); |
| 1205 | } |
| 1206 | /* |
| 1207 | * put the page queues lock back to the caller's |
| 1208 | * idea of it |
| 1209 | */ |
| 1210 | vm_page_lock_queues(); |
| 1211 | |
| 1212 | vm_object_cache_pages_freed += ep_freed; |
| 1213 | vm_object_cache_pages_moved += ep_moved; |
| 1214 | vm_object_cache_pages_skipped += ep_skipped; |
| 1215 | |
| 1216 | KERNEL_DEBUG(0x13001ec | DBG_FUNC_END, ep_freed, 0, 0, 0, 0); |
| 1217 | return ep_freed; |
| 1218 | } |
| 1219 | |
| 1220 | /* |
| 1221 | * Routine: vm_object_terminate |
| 1222 | * Purpose: |
| 1223 | * Free all resources associated with a vm_object. |
| 1224 | * In/out conditions: |
| 1225 | * Upon entry, the object must be locked, |
| 1226 | * and the object must have exactly one reference. |
| 1227 | * |
| 1228 | * The shadow object reference is left alone. |
| 1229 | * |
| 1230 | * The object must be unlocked if its found that pages |
| 1231 | * must be flushed to a backing object. If someone |
| 1232 | * manages to map the object while it is being flushed |
| 1233 | * the object is returned unlocked and unchanged. Otherwise, |
| 1234 | * upon exit, the cache will be unlocked, and the |
| 1235 | * object will cease to exist. |
| 1236 | */ |
| 1237 | static kern_return_t |
| 1238 | vm_object_terminate( |
| 1239 | vm_object_t object) |
| 1240 | { |
| 1241 | vm_object_t shadow_object; |
| 1242 | |
| 1243 | vm_object_lock_assert_exclusive(object); |
| 1244 | |
| 1245 | if (!object->pageout && (!object->internal && object->can_persist) && |
| 1246 | (object->pager != NULL || object->shadow_severed)) { |
| 1247 | /* |
| 1248 | * Clear pager_trusted bit so that the pages get yanked |
| 1249 | * out of the object instead of cleaned in place. This |
| 1250 | * prevents a deadlock in XMM and makes more sense anyway. |
| 1251 | */ |
| 1252 | VM_OBJECT_SET_PAGER_TRUSTED(object, FALSE); |
| 1253 | |
| 1254 | vm_object_reap_pages(object, REAP_TERMINATE); |
| 1255 | } |
| 1256 | /* |
| 1257 | * Make sure the object isn't already being terminated |
| 1258 | */ |
| 1259 | if (object->terminating) { |
| 1260 | vm_object_lock_assert_exclusive(object); |
| 1261 | object->ref_count--; |
| 1262 | assert(object->ref_count > 0); |
| 1263 | vm_object_unlock(object); |
| 1264 | return KERN_FAILURE; |
| 1265 | } |
| 1266 | |
| 1267 | /* |
| 1268 | * Did somebody get a reference to the object while we were |
| 1269 | * cleaning it? |
| 1270 | */ |
| 1271 | if (object->ref_count != 1) { |
| 1272 | vm_object_lock_assert_exclusive(object); |
| 1273 | object->ref_count--; |
| 1274 | assert(object->ref_count > 0); |
| 1275 | vm_object_unlock(object); |
| 1276 | return KERN_FAILURE; |
| 1277 | } |
| 1278 | |
| 1279 | /* |
| 1280 | * Make sure no one can look us up now. |
| 1281 | */ |
| 1282 | |
| 1283 | VM_OBJECT_SET_TERMINATING(object, TRUE); |
| 1284 | VM_OBJECT_SET_ALIVE(object, FALSE); |
| 1285 | |
| 1286 | if (!object->internal && |
| 1287 | object->cached_list.next && |
| 1288 | object->cached_list.prev) { |
| 1289 | vm_object_cache_remove(object); |
| 1290 | } |
| 1291 | |
| 1292 | /* |
| 1293 | * Detach the object from its shadow if we are the shadow's |
| 1294 | * copy. The reference we hold on the shadow must be dropped |
| 1295 | * by our caller. |
| 1296 | */ |
| 1297 | if (((shadow_object = object->shadow) != VM_OBJECT_NULL) && |
| 1298 | !(object->pageout)) { |
| 1299 | vm_object_lock(shadow_object); |
| 1300 | if (shadow_object->vo_copy == object) { |
| 1301 | VM_OBJECT_COPY_SET(object: shadow_object, VM_OBJECT_NULL); |
| 1302 | } |
| 1303 | vm_object_unlock(shadow_object); |
| 1304 | } |
| 1305 | |
| 1306 | if (object->paging_in_progress != 0 || |
| 1307 | object->activity_in_progress != 0) { |
| 1308 | /* |
| 1309 | * There are still some paging_in_progress references |
| 1310 | * on this object, meaning that there are some paging |
| 1311 | * or other I/O operations in progress for this VM object. |
| 1312 | * Such operations take some paging_in_progress references |
| 1313 | * up front to ensure that the object doesn't go away, but |
| 1314 | * they may also need to acquire a reference on the VM object, |
| 1315 | * to map it in kernel space, for example. That means that |
| 1316 | * they may end up releasing the last reference on the VM |
| 1317 | * object, triggering its termination, while still holding |
| 1318 | * paging_in_progress references. Waiting for these |
| 1319 | * pending paging_in_progress references to go away here would |
| 1320 | * deadlock. |
| 1321 | * |
| 1322 | * To avoid deadlocking, we'll let the vm_object_reaper_thread |
| 1323 | * complete the VM object termination if it still holds |
| 1324 | * paging_in_progress references at this point. |
| 1325 | * |
| 1326 | * No new paging_in_progress should appear now that the |
| 1327 | * VM object is "terminating" and not "alive". |
| 1328 | */ |
| 1329 | vm_object_reap_async(object); |
| 1330 | vm_object_unlock(object); |
| 1331 | /* |
| 1332 | * Return KERN_FAILURE to let the caller know that we |
| 1333 | * haven't completed the termination and it can't drop this |
| 1334 | * object's reference on its shadow object yet. |
| 1335 | * The reaper thread will take care of that once it has |
| 1336 | * completed this object's termination. |
| 1337 | */ |
| 1338 | return KERN_FAILURE; |
| 1339 | } |
| 1340 | /* |
| 1341 | * complete the VM object termination |
| 1342 | */ |
| 1343 | vm_object_reap(object); |
| 1344 | object = VM_OBJECT_NULL; |
| 1345 | |
| 1346 | /* |
| 1347 | * the object lock was released by vm_object_reap() |
| 1348 | * |
| 1349 | * KERN_SUCCESS means that this object has been terminated |
| 1350 | * and no longer needs its shadow object but still holds a |
| 1351 | * reference on it. |
| 1352 | * The caller is responsible for dropping that reference. |
| 1353 | * We can't call vm_object_deallocate() here because that |
| 1354 | * would create a recursion. |
| 1355 | */ |
| 1356 | return KERN_SUCCESS; |
| 1357 | } |
| 1358 | |
| 1359 | |
| 1360 | /* |
| 1361 | * vm_object_reap(): |
| 1362 | * |
| 1363 | * Complete the termination of a VM object after it's been marked |
| 1364 | * as "terminating" and "!alive" by vm_object_terminate(). |
| 1365 | * |
| 1366 | * The VM object must be locked by caller. |
| 1367 | * The lock will be released on return and the VM object is no longer valid. |
| 1368 | */ |
| 1369 | |
| 1370 | void |
| 1371 | vm_object_reap( |
| 1372 | vm_object_t object) |
| 1373 | { |
| 1374 | memory_object_t ; |
| 1375 | |
| 1376 | vm_object_lock_assert_exclusive(object); |
| 1377 | assert(object->paging_in_progress == 0); |
| 1378 | assert(object->activity_in_progress == 0); |
| 1379 | |
| 1380 | vm_object_reap_count++; |
| 1381 | |
| 1382 | /* |
| 1383 | * Disown this purgeable object to cleanup its owner's purgeable |
| 1384 | * ledgers. We need to do this before disconnecting the object |
| 1385 | * from its pager, to properly account for compressed pages. |
| 1386 | */ |
| 1387 | if (object->internal && |
| 1388 | (object->purgable != VM_PURGABLE_DENY || |
| 1389 | object->vo_ledger_tag)) { |
| 1390 | int ledger_flags; |
| 1391 | kern_return_t kr; |
| 1392 | |
| 1393 | ledger_flags = 0; |
| 1394 | if (object->vo_no_footprint) { |
| 1395 | ledger_flags |= VM_LEDGER_FLAG_NO_FOOTPRINT; |
| 1396 | } |
| 1397 | assert(!object->alive); |
| 1398 | assert(object->terminating); |
| 1399 | kr = vm_object_ownership_change(object, |
| 1400 | new_ledger_tag: object->vo_ledger_tag, /* unchanged */ |
| 1401 | NULL, /* no owner */ |
| 1402 | new_ledger_flags: ledger_flags, |
| 1403 | FALSE); /* task_objq not locked */ |
| 1404 | assert(kr == KERN_SUCCESS); |
| 1405 | assert(object->vo_owner == NULL); |
| 1406 | } |
| 1407 | |
| 1408 | #if DEVELOPMENT || DEBUG |
| 1409 | if (object->object_is_shared_cache && |
| 1410 | object->pager != NULL && |
| 1411 | object->pager->mo_pager_ops == &shared_region_pager_ops) { |
| 1412 | OSAddAtomic(-object->resident_page_count, &shared_region_pagers_resident_count); |
| 1413 | } |
| 1414 | #endif /* DEVELOPMENT || DEBUG */ |
| 1415 | |
| 1416 | pager = object->pager; |
| 1417 | object->pager = MEMORY_OBJECT_NULL; |
| 1418 | |
| 1419 | if (pager != MEMORY_OBJECT_NULL) { |
| 1420 | memory_object_control_disable(control: &object->pager_control); |
| 1421 | } |
| 1422 | |
| 1423 | object->ref_count--; |
| 1424 | assert(object->ref_count == 0); |
| 1425 | |
| 1426 | /* |
| 1427 | * remove from purgeable queue if it's on |
| 1428 | */ |
| 1429 | if (object->internal) { |
| 1430 | assert(VM_OBJECT_OWNER(object) == TASK_NULL); |
| 1431 | |
| 1432 | VM_OBJECT_UNWIRED(object); |
| 1433 | |
| 1434 | if (object->purgable == VM_PURGABLE_DENY) { |
| 1435 | /* not purgeable: nothing to do */ |
| 1436 | } else if (object->purgable == VM_PURGABLE_VOLATILE) { |
| 1437 | purgeable_q_t queue; |
| 1438 | |
| 1439 | queue = vm_purgeable_object_remove(object); |
| 1440 | assert(queue); |
| 1441 | |
| 1442 | if (object->purgeable_when_ripe) { |
| 1443 | /* |
| 1444 | * Must take page lock for this - |
| 1445 | * using it to protect token queue |
| 1446 | */ |
| 1447 | vm_page_lock_queues(); |
| 1448 | vm_purgeable_token_delete_first(queue); |
| 1449 | |
| 1450 | assert(queue->debug_count_objects >= 0); |
| 1451 | vm_page_unlock_queues(); |
| 1452 | } |
| 1453 | |
| 1454 | /* |
| 1455 | * Update "vm_page_purgeable_count" in bulk and mark |
| 1456 | * object as VM_PURGABLE_EMPTY to avoid updating |
| 1457 | * "vm_page_purgeable_count" again in vm_page_remove() |
| 1458 | * when reaping the pages. |
| 1459 | */ |
| 1460 | unsigned int delta; |
| 1461 | assert(object->resident_page_count >= |
| 1462 | object->wired_page_count); |
| 1463 | delta = (object->resident_page_count - |
| 1464 | object->wired_page_count); |
| 1465 | if (delta != 0) { |
| 1466 | assert(vm_page_purgeable_count >= delta); |
| 1467 | OSAddAtomic(-delta, |
| 1468 | (SInt32 *)&vm_page_purgeable_count); |
| 1469 | } |
| 1470 | if (object->wired_page_count != 0) { |
| 1471 | assert(vm_page_purgeable_wired_count >= |
| 1472 | object->wired_page_count); |
| 1473 | OSAddAtomic(-object->wired_page_count, |
| 1474 | (SInt32 *)&vm_page_purgeable_wired_count); |
| 1475 | } |
| 1476 | VM_OBJECT_SET_PURGABLE(object, VM_PURGABLE_EMPTY); |
| 1477 | } else if (object->purgable == VM_PURGABLE_NONVOLATILE || |
| 1478 | object->purgable == VM_PURGABLE_EMPTY) { |
| 1479 | /* remove from nonvolatile queue */ |
| 1480 | vm_purgeable_nonvolatile_dequeue(object); |
| 1481 | } else { |
| 1482 | panic("object %p in unexpected purgeable state 0x%x" , |
| 1483 | object, object->purgable); |
| 1484 | } |
| 1485 | if (object->transposed && |
| 1486 | object->cached_list.next != NULL && |
| 1487 | object->cached_list.prev == NULL) { |
| 1488 | /* |
| 1489 | * object->cached_list.next "points" to the |
| 1490 | * object that was transposed with this object. |
| 1491 | */ |
| 1492 | } else { |
| 1493 | assert(object->cached_list.next == NULL); |
| 1494 | } |
| 1495 | assert(object->cached_list.prev == NULL); |
| 1496 | } |
| 1497 | |
| 1498 | if (object->pageout) { |
| 1499 | /* |
| 1500 | * free all remaining pages tabled on |
| 1501 | * this object |
| 1502 | * clean up it's shadow |
| 1503 | */ |
| 1504 | assert(object->shadow != VM_OBJECT_NULL); |
| 1505 | |
| 1506 | vm_pageout_object_terminate(object); |
| 1507 | } else if (object->resident_page_count) { |
| 1508 | /* |
| 1509 | * free all remaining pages tabled on |
| 1510 | * this object |
| 1511 | */ |
| 1512 | vm_object_reap_pages(object, REAP_REAP); |
| 1513 | } |
| 1514 | assert(vm_page_queue_empty(&object->memq)); |
| 1515 | assert(object->paging_in_progress == 0); |
| 1516 | assert(object->activity_in_progress == 0); |
| 1517 | assert(object->ref_count == 0); |
| 1518 | |
| 1519 | /* |
| 1520 | * If the pager has not already been released by |
| 1521 | * vm_object_destroy, we need to terminate it and |
| 1522 | * release our reference to it here. |
| 1523 | */ |
| 1524 | if (pager != MEMORY_OBJECT_NULL) { |
| 1525 | vm_object_unlock(object); |
| 1526 | vm_object_release_pager(pager); |
| 1527 | vm_object_lock(object); |
| 1528 | } |
| 1529 | |
| 1530 | /* kick off anyone waiting on terminating */ |
| 1531 | VM_OBJECT_SET_TERMINATING(object, FALSE); |
| 1532 | vm_object_paging_begin(object); |
| 1533 | vm_object_paging_end(object); |
| 1534 | vm_object_unlock(object); |
| 1535 | |
| 1536 | object->shadow = VM_OBJECT_NULL; |
| 1537 | |
| 1538 | #if VM_OBJECT_TRACKING |
| 1539 | if (vm_object_tracking_btlog) { |
| 1540 | btlog_erase(vm_object_tracking_btlog, object); |
| 1541 | } |
| 1542 | #endif /* VM_OBJECT_TRACKING */ |
| 1543 | |
| 1544 | vm_object_lock_destroy(object); |
| 1545 | /* |
| 1546 | * Free the space for the object. |
| 1547 | */ |
| 1548 | zfree(vm_object_zone, object); |
| 1549 | object = VM_OBJECT_NULL; |
| 1550 | } |
| 1551 | |
| 1552 | |
| 1553 | unsigned int vm_max_batch = 256; |
| 1554 | |
| 1555 | #define V_O_R_MAX_BATCH 128 |
| 1556 | |
| 1557 | #define BATCH_LIMIT(max) (vm_max_batch >= max ? max : vm_max_batch) |
| 1558 | |
| 1559 | |
| 1560 | #define VM_OBJ_REAP_FREELIST(_local_free_q, do_disconnect) \ |
| 1561 | MACRO_BEGIN \ |
| 1562 | if (_local_free_q) { \ |
| 1563 | if (do_disconnect) { \ |
| 1564 | vm_page_t m; \ |
| 1565 | for (m = _local_free_q; \ |
| 1566 | m != VM_PAGE_NULL; \ |
| 1567 | m = m->vmp_snext) { \ |
| 1568 | if (m->vmp_pmapped) { \ |
| 1569 | pmap_disconnect(VM_PAGE_GET_PHYS_PAGE(m)); \ |
| 1570 | } \ |
| 1571 | } \ |
| 1572 | } \ |
| 1573 | vm_page_free_list(_local_free_q, TRUE); \ |
| 1574 | _local_free_q = VM_PAGE_NULL; \ |
| 1575 | } \ |
| 1576 | MACRO_END |
| 1577 | |
| 1578 | |
| 1579 | void |
| 1580 | vm_object_reap_pages( |
| 1581 | vm_object_t object, |
| 1582 | int reap_type) |
| 1583 | { |
| 1584 | vm_page_t p; |
| 1585 | vm_page_t next; |
| 1586 | vm_page_t local_free_q = VM_PAGE_NULL; |
| 1587 | int loop_count; |
| 1588 | boolean_t disconnect_on_release; |
| 1589 | pmap_flush_context pmap_flush_context_storage; |
| 1590 | |
| 1591 | if (reap_type == REAP_DATA_FLUSH) { |
| 1592 | /* |
| 1593 | * We need to disconnect pages from all pmaps before |
| 1594 | * releasing them to the free list |
| 1595 | */ |
| 1596 | disconnect_on_release = TRUE; |
| 1597 | } else { |
| 1598 | /* |
| 1599 | * Either the caller has already disconnected the pages |
| 1600 | * from all pmaps, or we disconnect them here as we add |
| 1601 | * them to out local list of pages to be released. |
| 1602 | * No need to re-disconnect them when we release the pages |
| 1603 | * to the free list. |
| 1604 | */ |
| 1605 | disconnect_on_release = FALSE; |
| 1606 | } |
| 1607 | |
| 1608 | restart_after_sleep: |
| 1609 | if (vm_page_queue_empty(&object->memq)) { |
| 1610 | return; |
| 1611 | } |
| 1612 | loop_count = BATCH_LIMIT(V_O_R_MAX_BATCH); |
| 1613 | |
| 1614 | if (reap_type == REAP_PURGEABLE) { |
| 1615 | pmap_flush_context_init(&pmap_flush_context_storage); |
| 1616 | } |
| 1617 | |
| 1618 | vm_page_lock_queues(); |
| 1619 | |
| 1620 | next = (vm_page_t)vm_page_queue_first(&object->memq); |
| 1621 | |
| 1622 | while (!vm_page_queue_end(&object->memq, (vm_page_queue_entry_t)next)) { |
| 1623 | p = next; |
| 1624 | next = (vm_page_t)vm_page_queue_next(&next->vmp_listq); |
| 1625 | |
| 1626 | if (--loop_count == 0) { |
| 1627 | vm_page_unlock_queues(); |
| 1628 | |
| 1629 | if (local_free_q) { |
| 1630 | if (reap_type == REAP_PURGEABLE) { |
| 1631 | pmap_flush(&pmap_flush_context_storage); |
| 1632 | pmap_flush_context_init(&pmap_flush_context_storage); |
| 1633 | } |
| 1634 | /* |
| 1635 | * Free the pages we reclaimed so far |
| 1636 | * and take a little break to avoid |
| 1637 | * hogging the page queue lock too long |
| 1638 | */ |
| 1639 | VM_OBJ_REAP_FREELIST(local_free_q, |
| 1640 | disconnect_on_release); |
| 1641 | } else { |
| 1642 | mutex_pause(0); |
| 1643 | } |
| 1644 | |
| 1645 | loop_count = BATCH_LIMIT(V_O_R_MAX_BATCH); |
| 1646 | |
| 1647 | vm_page_lock_queues(); |
| 1648 | } |
| 1649 | if (reap_type == REAP_DATA_FLUSH || reap_type == REAP_TERMINATE) { |
| 1650 | if (p->vmp_busy || p->vmp_cleaning) { |
| 1651 | vm_page_unlock_queues(); |
| 1652 | /* |
| 1653 | * free the pages reclaimed so far |
| 1654 | */ |
| 1655 | VM_OBJ_REAP_FREELIST(local_free_q, |
| 1656 | disconnect_on_release); |
| 1657 | |
| 1658 | PAGE_SLEEP(object, p, THREAD_UNINT); |
| 1659 | |
| 1660 | goto restart_after_sleep; |
| 1661 | } |
| 1662 | if (p->vmp_laundry) { |
| 1663 | vm_pageout_steal_laundry(page: p, TRUE); |
| 1664 | } |
| 1665 | } |
| 1666 | switch (reap_type) { |
| 1667 | case REAP_DATA_FLUSH: |
| 1668 | if (VM_PAGE_WIRED(p)) { |
| 1669 | /* |
| 1670 | * this is an odd case... perhaps we should |
| 1671 | * zero-fill this page since we're conceptually |
| 1672 | * tossing its data at this point, but leaving |
| 1673 | * it on the object to honor the 'wire' contract |
| 1674 | */ |
| 1675 | continue; |
| 1676 | } |
| 1677 | break; |
| 1678 | |
| 1679 | case REAP_PURGEABLE: |
| 1680 | if (VM_PAGE_WIRED(p)) { |
| 1681 | /* |
| 1682 | * can't purge a wired page |
| 1683 | */ |
| 1684 | vm_page_purged_wired++; |
| 1685 | continue; |
| 1686 | } |
| 1687 | if (p->vmp_laundry && !p->vmp_busy && !p->vmp_cleaning) { |
| 1688 | vm_pageout_steal_laundry(page: p, TRUE); |
| 1689 | } |
| 1690 | |
| 1691 | if (p->vmp_cleaning || p->vmp_laundry || p->vmp_absent) { |
| 1692 | /* |
| 1693 | * page is being acted upon, |
| 1694 | * so don't mess with it |
| 1695 | */ |
| 1696 | vm_page_purged_others++; |
| 1697 | continue; |
| 1698 | } |
| 1699 | if (p->vmp_busy) { |
| 1700 | /* |
| 1701 | * We can't reclaim a busy page but we can |
| 1702 | * make it more likely to be paged (it's not wired) to make |
| 1703 | * sure that it gets considered by |
| 1704 | * vm_pageout_scan() later. |
| 1705 | */ |
| 1706 | if (VM_PAGE_PAGEABLE(p)) { |
| 1707 | vm_page_deactivate(page: p); |
| 1708 | } |
| 1709 | vm_page_purged_busy++; |
| 1710 | continue; |
| 1711 | } |
| 1712 | |
| 1713 | assert(!is_kernel_object(VM_PAGE_OBJECT(p))); |
| 1714 | |
| 1715 | /* |
| 1716 | * we can discard this page... |
| 1717 | */ |
| 1718 | if (p->vmp_pmapped == TRUE) { |
| 1719 | /* |
| 1720 | * unmap the page |
| 1721 | */ |
| 1722 | pmap_disconnect_options(phys: VM_PAGE_GET_PHYS_PAGE(m: p), PMAP_OPTIONS_NOFLUSH | PMAP_OPTIONS_NOREFMOD, arg: (void *)&pmap_flush_context_storage); |
| 1723 | } |
| 1724 | vm_page_purged_count++; |
| 1725 | |
| 1726 | break; |
| 1727 | |
| 1728 | case REAP_TERMINATE: |
| 1729 | if (p->vmp_absent || p->vmp_private) { |
| 1730 | /* |
| 1731 | * For private pages, VM_PAGE_FREE just |
| 1732 | * leaves the page structure around for |
| 1733 | * its owner to clean up. For absent |
| 1734 | * pages, the structure is returned to |
| 1735 | * the appropriate pool. |
| 1736 | */ |
| 1737 | break; |
| 1738 | } |
| 1739 | if (p->vmp_fictitious) { |
| 1740 | assert(VM_PAGE_GET_PHYS_PAGE(p) == vm_page_guard_addr); |
| 1741 | break; |
| 1742 | } |
| 1743 | if (!p->vmp_dirty && p->vmp_wpmapped) { |
| 1744 | p->vmp_dirty = pmap_is_modified(pn: VM_PAGE_GET_PHYS_PAGE(m: p)); |
| 1745 | } |
| 1746 | |
| 1747 | if ((p->vmp_dirty || p->vmp_precious) && !VMP_ERROR_GET(p) && object->alive) { |
| 1748 | assert(!object->internal); |
| 1749 | |
| 1750 | p->vmp_free_when_done = TRUE; |
| 1751 | |
| 1752 | if (!p->vmp_laundry) { |
| 1753 | vm_page_queues_remove(mem: p, TRUE); |
| 1754 | /* |
| 1755 | * flush page... page will be freed |
| 1756 | * upon completion of I/O |
| 1757 | */ |
| 1758 | vm_pageout_cluster(m: p); |
| 1759 | } |
| 1760 | vm_page_unlock_queues(); |
| 1761 | /* |
| 1762 | * free the pages reclaimed so far |
| 1763 | */ |
| 1764 | VM_OBJ_REAP_FREELIST(local_free_q, |
| 1765 | disconnect_on_release); |
| 1766 | |
| 1767 | vm_object_paging_wait(object, THREAD_UNINT); |
| 1768 | |
| 1769 | goto restart_after_sleep; |
| 1770 | } |
| 1771 | break; |
| 1772 | |
| 1773 | case REAP_REAP: |
| 1774 | break; |
| 1775 | } |
| 1776 | vm_page_free_prepare_queues(page: p); |
| 1777 | assert(p->vmp_pageq.next == 0 && p->vmp_pageq.prev == 0); |
| 1778 | /* |
| 1779 | * Add this page to our list of reclaimed pages, |
| 1780 | * to be freed later. |
| 1781 | */ |
| 1782 | p->vmp_snext = local_free_q; |
| 1783 | local_free_q = p; |
| 1784 | } |
| 1785 | vm_page_unlock_queues(); |
| 1786 | |
| 1787 | /* |
| 1788 | * Free the remaining reclaimed pages |
| 1789 | */ |
| 1790 | if (reap_type == REAP_PURGEABLE) { |
| 1791 | pmap_flush(&pmap_flush_context_storage); |
| 1792 | } |
| 1793 | |
| 1794 | VM_OBJ_REAP_FREELIST(local_free_q, |
| 1795 | disconnect_on_release); |
| 1796 | } |
| 1797 | |
| 1798 | |
| 1799 | void |
| 1800 | vm_object_reap_async( |
| 1801 | vm_object_t object) |
| 1802 | { |
| 1803 | vm_object_lock_assert_exclusive(object); |
| 1804 | |
| 1805 | vm_object_reaper_lock_spin(); |
| 1806 | |
| 1807 | vm_object_reap_count_async++; |
| 1808 | |
| 1809 | /* enqueue the VM object... */ |
| 1810 | queue_enter(&vm_object_reaper_queue, object, |
| 1811 | vm_object_t, cached_list); |
| 1812 | |
| 1813 | vm_object_reaper_unlock(); |
| 1814 | |
| 1815 | /* ... and wake up the reaper thread */ |
| 1816 | thread_wakeup((event_t) &vm_object_reaper_queue); |
| 1817 | } |
| 1818 | |
| 1819 | |
| 1820 | void |
| 1821 | vm_object_reaper_thread(void) |
| 1822 | { |
| 1823 | vm_object_t object, shadow_object; |
| 1824 | |
| 1825 | vm_object_reaper_lock_spin(); |
| 1826 | |
| 1827 | while (!queue_empty(&vm_object_reaper_queue)) { |
| 1828 | queue_remove_first(&vm_object_reaper_queue, |
| 1829 | object, |
| 1830 | vm_object_t, |
| 1831 | cached_list); |
| 1832 | |
| 1833 | vm_object_reaper_unlock(); |
| 1834 | vm_object_lock(object); |
| 1835 | |
| 1836 | assert(object->terminating); |
| 1837 | assert(!object->alive); |
| 1838 | |
| 1839 | /* |
| 1840 | * The pageout daemon might be playing with our pages. |
| 1841 | * Now that the object is dead, it won't touch any more |
| 1842 | * pages, but some pages might already be on their way out. |
| 1843 | * Hence, we wait until the active paging activities have |
| 1844 | * ceased before we break the association with the pager |
| 1845 | * itself. |
| 1846 | */ |
| 1847 | while (object->paging_in_progress != 0 || |
| 1848 | object->activity_in_progress != 0) { |
| 1849 | vm_object_wait(object, |
| 1850 | VM_OBJECT_EVENT_PAGING_IN_PROGRESS, |
| 1851 | THREAD_UNINT); |
| 1852 | vm_object_lock(object); |
| 1853 | } |
| 1854 | |
| 1855 | shadow_object = |
| 1856 | object->pageout ? VM_OBJECT_NULL : object->shadow; |
| 1857 | |
| 1858 | vm_object_reap(object); |
| 1859 | /* cache is unlocked and object is no longer valid */ |
| 1860 | object = VM_OBJECT_NULL; |
| 1861 | |
| 1862 | if (shadow_object != VM_OBJECT_NULL) { |
| 1863 | /* |
| 1864 | * Drop the reference "object" was holding on |
| 1865 | * its shadow object. |
| 1866 | */ |
| 1867 | vm_object_deallocate(object: shadow_object); |
| 1868 | shadow_object = VM_OBJECT_NULL; |
| 1869 | } |
| 1870 | vm_object_reaper_lock_spin(); |
| 1871 | } |
| 1872 | |
| 1873 | /* wait for more work... */ |
| 1874 | assert_wait(event: (event_t) &vm_object_reaper_queue, THREAD_UNINT); |
| 1875 | |
| 1876 | vm_object_reaper_unlock(); |
| 1877 | |
| 1878 | thread_block(continuation: (thread_continue_t) vm_object_reaper_thread); |
| 1879 | /*NOTREACHED*/ |
| 1880 | } |
| 1881 | |
| 1882 | /* |
| 1883 | * Routine: vm_object_release_pager |
| 1884 | * Purpose: Terminate the pager and, upon completion, |
| 1885 | * release our last reference to it. |
| 1886 | */ |
| 1887 | static void |
| 1888 | ( |
| 1889 | memory_object_t ) |
| 1890 | { |
| 1891 | /* |
| 1892 | * Terminate the pager. |
| 1893 | */ |
| 1894 | |
| 1895 | (void) memory_object_terminate(memory_object: pager); |
| 1896 | |
| 1897 | /* |
| 1898 | * Release reference to pager. |
| 1899 | */ |
| 1900 | memory_object_deallocate(object: pager); |
| 1901 | } |
| 1902 | |
| 1903 | /* |
| 1904 | * Routine: vm_object_destroy |
| 1905 | * Purpose: |
| 1906 | * Shut down a VM object, despite the |
| 1907 | * presence of address map (or other) references |
| 1908 | * to the vm_object. |
| 1909 | */ |
| 1910 | #if MACH_ASSERT |
| 1911 | extern uint32_t system_inshutdown; |
| 1912 | int fbdp_no_panic = 1; |
| 1913 | #endif /* MACH_ASSERT */ |
| 1914 | kern_return_t |
| 1915 | vm_object_destroy( |
| 1916 | vm_object_t object, |
| 1917 | vm_object_destroy_reason_t reason) |
| 1918 | { |
| 1919 | memory_object_t ; |
| 1920 | |
| 1921 | if (object == VM_OBJECT_NULL) { |
| 1922 | return KERN_SUCCESS; |
| 1923 | } |
| 1924 | |
| 1925 | /* |
| 1926 | * Remove the pager association immediately. |
| 1927 | * |
| 1928 | * This will prevent the memory manager from further |
| 1929 | * meddling. [If it wanted to flush data or make |
| 1930 | * other changes, it should have done so before performing |
| 1931 | * the destroy call.] |
| 1932 | */ |
| 1933 | |
| 1934 | vm_object_lock(object); |
| 1935 | |
| 1936 | #if FBDP_DEBUG_OBJECT_NO_PAGER |
| 1937 | static bool fbdp_no_panic_retrieved = false; |
| 1938 | if (!fbdp_no_panic_retrieved) { |
| 1939 | PE_parse_boot_argn("fbdp_no_panic4" , &fbdp_no_panic, sizeof(fbdp_no_panic)); |
| 1940 | fbdp_no_panic_retrieved = true; |
| 1941 | } |
| 1942 | |
| 1943 | bool forced_unmount = false; |
| 1944 | if (object->named && |
| 1945 | object->ref_count > 2 && |
| 1946 | object->pager != NULL && |
| 1947 | vnode_pager_get_forced_unmount(object->pager, &forced_unmount) == KERN_SUCCESS && |
| 1948 | forced_unmount == false) { |
| 1949 | if (!fbdp_no_panic) { |
| 1950 | panic("FBDP rdar://99829401 object %p refs %d pager %p (no forced unmount)\n" , object, object->ref_count, object->pager); |
| 1951 | } |
| 1952 | DTRACE_VM3(vm_object_destroy_no_forced_unmount, |
| 1953 | vm_object_t, object, |
| 1954 | int, object->ref_count, |
| 1955 | memory_object_t, object->pager); |
| 1956 | } |
| 1957 | |
| 1958 | if (object->fbdp_tracked) { |
| 1959 | if (object->ref_count > 2 && !system_inshutdown) { |
| 1960 | if (!fbdp_no_panic) { |
| 1961 | panic("FBDP/4 rdar://99829401 object %p refs %d pager %p (tracked)\n" , object, object->ref_count, object->pager); |
| 1962 | } |
| 1963 | } |
| 1964 | VM_OBJECT_SET_FBDP_TRACKED(object, false); |
| 1965 | } |
| 1966 | #endif /* FBDP_DEBUG_OBJECT_NO_PAGER */ |
| 1967 | |
| 1968 | if (reason != VM_OBJECT_DESTROY_UNKNOWN_REASON) { |
| 1969 | VM_OBJECT_SET_NO_PAGER_REASON(object, value: reason); |
| 1970 | } |
| 1971 | |
| 1972 | VM_OBJECT_SET_CAN_PERSIST(object, FALSE); |
| 1973 | VM_OBJECT_SET_NAMED(object, FALSE); |
| 1974 | #if 00 |
| 1975 | VM_OBJECT_SET_ALIVE(object, FALSE); |
| 1976 | #endif /* 00 */ |
| 1977 | |
| 1978 | #if DEVELOPMENT || DEBUG |
| 1979 | if (object->object_is_shared_cache && |
| 1980 | object->pager != NULL && |
| 1981 | object->pager->mo_pager_ops == &shared_region_pager_ops) { |
| 1982 | OSAddAtomic(-object->resident_page_count, &shared_region_pagers_resident_count); |
| 1983 | } |
| 1984 | #endif /* DEVELOPMENT || DEBUG */ |
| 1985 | |
| 1986 | old_pager = object->pager; |
| 1987 | object->pager = MEMORY_OBJECT_NULL; |
| 1988 | if (old_pager != MEMORY_OBJECT_NULL) { |
| 1989 | memory_object_control_disable(control: &object->pager_control); |
| 1990 | } |
| 1991 | |
| 1992 | /* |
| 1993 | * Wait for the existing paging activity (that got |
| 1994 | * through before we nulled out the pager) to subside. |
| 1995 | */ |
| 1996 | |
| 1997 | vm_object_paging_wait(object, THREAD_UNINT); |
| 1998 | vm_object_unlock(object); |
| 1999 | |
| 2000 | /* |
| 2001 | * Terminate the object now. |
| 2002 | */ |
| 2003 | if (old_pager != MEMORY_OBJECT_NULL) { |
| 2004 | vm_object_release_pager(pager: old_pager); |
| 2005 | |
| 2006 | /* |
| 2007 | * JMM - Release the caller's reference. This assumes the |
| 2008 | * caller had a reference to release, which is a big (but |
| 2009 | * currently valid) assumption if this is driven from the |
| 2010 | * vnode pager (it is holding a named reference when making |
| 2011 | * this call).. |
| 2012 | */ |
| 2013 | vm_object_deallocate(object); |
| 2014 | } |
| 2015 | return KERN_SUCCESS; |
| 2016 | } |
| 2017 | |
| 2018 | /* |
| 2019 | * The "chunk" macros are used by routines below when looking for pages to deactivate. These |
| 2020 | * exist because of the need to handle shadow chains. When deactivating pages, we only |
| 2021 | * want to deactive the ones at the top most level in the object chain. In order to do |
| 2022 | * this efficiently, the specified address range is divided up into "chunks" and we use |
| 2023 | * a bit map to keep track of which pages have already been processed as we descend down |
| 2024 | * the shadow chain. These chunk macros hide the details of the bit map implementation |
| 2025 | * as much as we can. |
| 2026 | * |
| 2027 | * For convenience, we use a 64-bit data type as the bit map, and therefore a chunk is |
| 2028 | * set to 64 pages. The bit map is indexed from the low-order end, so that the lowest |
| 2029 | * order bit represents page 0 in the current range and highest order bit represents |
| 2030 | * page 63. |
| 2031 | * |
| 2032 | * For further convenience, we also use negative logic for the page state in the bit map. |
| 2033 | * The bit is set to 1 to indicate it has not yet been seen, and to 0 to indicate it has |
| 2034 | * been processed. This way we can simply test the 64-bit long word to see if it's zero |
| 2035 | * to easily tell if the whole range has been processed. Therefore, the bit map starts |
| 2036 | * out with all the bits set. The macros below hide all these details from the caller. |
| 2037 | */ |
| 2038 | |
| 2039 | #define PAGES_IN_A_CHUNK 64 /* The number of pages in the chunk must */ |
| 2040 | /* be the same as the number of bits in */ |
| 2041 | /* the chunk_state_t type. We use 64 */ |
| 2042 | /* just for convenience. */ |
| 2043 | |
| 2044 | #define CHUNK_SIZE (PAGES_IN_A_CHUNK * PAGE_SIZE_64) /* Size of a chunk in bytes */ |
| 2045 | |
| 2046 | typedef uint64_t chunk_state_t; |
| 2047 | |
| 2048 | /* |
| 2049 | * The bit map uses negative logic, so we start out with all 64 bits set to indicate |
| 2050 | * that no pages have been processed yet. Also, if len is less than the full CHUNK_SIZE, |
| 2051 | * then we mark pages beyond the len as having been "processed" so that we don't waste time |
| 2052 | * looking at pages in that range. This can save us from unnecessarily chasing down the |
| 2053 | * shadow chain. |
| 2054 | */ |
| 2055 | |
| 2056 | #define CHUNK_INIT(c, len) \ |
| 2057 | MACRO_BEGIN \ |
| 2058 | uint64_t p; \ |
| 2059 | \ |
| 2060 | (c) = 0xffffffffffffffffLL; \ |
| 2061 | \ |
| 2062 | for (p = (len) / PAGE_SIZE_64; p < PAGES_IN_A_CHUNK; p++) \ |
| 2063 | MARK_PAGE_HANDLED(c, p); \ |
| 2064 | MACRO_END |
| 2065 | |
| 2066 | |
| 2067 | /* |
| 2068 | * Return true if all pages in the chunk have not yet been processed. |
| 2069 | */ |
| 2070 | |
| 2071 | #define CHUNK_NOT_COMPLETE(c) ((c) != 0) |
| 2072 | |
| 2073 | /* |
| 2074 | * Return true if the page at offset 'p' in the bit map has already been handled |
| 2075 | * while processing a higher level object in the shadow chain. |
| 2076 | */ |
| 2077 | |
| 2078 | #define PAGE_ALREADY_HANDLED(c, p) (((c) & (1ULL << (p))) == 0) |
| 2079 | |
| 2080 | /* |
| 2081 | * Mark the page at offset 'p' in the bit map as having been processed. |
| 2082 | */ |
| 2083 | |
| 2084 | #define MARK_PAGE_HANDLED(c, p) \ |
| 2085 | MACRO_BEGIN \ |
| 2086 | (c) = (c) & ~(1ULL << (p)); \ |
| 2087 | MACRO_END |
| 2088 | |
| 2089 | |
| 2090 | /* |
| 2091 | * Return true if the page at the given offset has been paged out. Object is |
| 2092 | * locked upon entry and returned locked. |
| 2093 | */ |
| 2094 | |
| 2095 | static boolean_t |
| 2096 | page_is_paged_out( |
| 2097 | vm_object_t object, |
| 2098 | vm_object_offset_t offset) |
| 2099 | { |
| 2100 | if (object->internal && |
| 2101 | object->alive && |
| 2102 | !object->terminating && |
| 2103 | object->pager_ready) { |
| 2104 | if (VM_COMPRESSOR_PAGER_STATE_GET(object, offset) |
| 2105 | == VM_EXTERNAL_STATE_EXISTS) { |
| 2106 | return TRUE; |
| 2107 | } |
| 2108 | } |
| 2109 | return FALSE; |
| 2110 | } |
| 2111 | |
| 2112 | |
| 2113 | |
| 2114 | /* |
| 2115 | * madvise_free_debug |
| 2116 | * |
| 2117 | * To help debug madvise(MADV_FREE*) mis-usage, this triggers a |
| 2118 | * zero-fill as soon as a page is affected by a madvise(MADV_FREE*), to |
| 2119 | * simulate the loss of the page's contents as if the page had been |
| 2120 | * reclaimed and then re-faulted. |
| 2121 | */ |
| 2122 | #if DEVELOPMENT || DEBUG |
| 2123 | int madvise_free_debug = 0; |
| 2124 | int madvise_free_debug_sometimes = 1; |
| 2125 | #else /* DEBUG */ |
| 2126 | int madvise_free_debug = 0; |
| 2127 | int madvise_free_debug_sometimes = 0; |
| 2128 | #endif /* DEBUG */ |
| 2129 | int madvise_free_counter = 0; |
| 2130 | |
| 2131 | __options_decl(deactivate_flags_t, uint32_t, { |
| 2132 | DEACTIVATE_KILL = 0x1, |
| 2133 | DEACTIVATE_REUSABLE = 0x2, |
| 2134 | DEACTIVATE_ALL_REUSABLE = 0x4, |
| 2135 | DEACTIVATE_CLEAR_REFMOD = 0x8, |
| 2136 | DEACTIVATE_REUSABLE_NO_WRITE = 0x10 |
| 2137 | }); |
| 2138 | |
| 2139 | /* |
| 2140 | * Deactivate the pages in the specified object and range. If kill_page is set, also discard any |
| 2141 | * page modified state from the pmap. Update the chunk_state as we go along. The caller must specify |
| 2142 | * a size that is less than or equal to the CHUNK_SIZE. |
| 2143 | */ |
| 2144 | |
| 2145 | static void |
| 2146 | deactivate_pages_in_object( |
| 2147 | vm_object_t object, |
| 2148 | vm_object_offset_t offset, |
| 2149 | vm_object_size_t size, |
| 2150 | deactivate_flags_t flags, |
| 2151 | chunk_state_t *chunk_state, |
| 2152 | pmap_flush_context *pfc, |
| 2153 | struct pmap *pmap, |
| 2154 | vm_map_offset_t pmap_offset) |
| 2155 | { |
| 2156 | vm_page_t m; |
| 2157 | int p; |
| 2158 | struct vm_page_delayed_work dw_array; |
| 2159 | struct vm_page_delayed_work *dwp, *dwp_start; |
| 2160 | bool dwp_finish_ctx = TRUE; |
| 2161 | int dw_count; |
| 2162 | int dw_limit; |
| 2163 | unsigned int reusable = 0; |
| 2164 | |
| 2165 | /* |
| 2166 | * Examine each page in the chunk. The variable 'p' is the page number relative to the start of the |
| 2167 | * chunk. Since this routine is called once for each level in the shadow chain, the chunk_state may |
| 2168 | * have pages marked as having been processed already. We stop the loop early if we find we've handled |
| 2169 | * all the pages in the chunk. |
| 2170 | */ |
| 2171 | |
| 2172 | dwp_start = dwp = NULL; |
| 2173 | dw_count = 0; |
| 2174 | dw_limit = DELAYED_WORK_LIMIT(DEFAULT_DELAYED_WORK_LIMIT); |
| 2175 | dwp_start = vm_page_delayed_work_get_ctx(); |
| 2176 | if (dwp_start == NULL) { |
| 2177 | dwp_start = &dw_array; |
| 2178 | dw_limit = 1; |
| 2179 | dwp_finish_ctx = FALSE; |
| 2180 | } |
| 2181 | |
| 2182 | dwp = dwp_start; |
| 2183 | |
| 2184 | for (p = 0; size && CHUNK_NOT_COMPLETE(*chunk_state); p++, size -= PAGE_SIZE_64, offset += PAGE_SIZE_64, pmap_offset += PAGE_SIZE_64) { |
| 2185 | /* |
| 2186 | * If this offset has already been found and handled in a higher level object, then don't |
| 2187 | * do anything with it in the current shadow object. |
| 2188 | */ |
| 2189 | |
| 2190 | if (PAGE_ALREADY_HANDLED(*chunk_state, p)) { |
| 2191 | continue; |
| 2192 | } |
| 2193 | |
| 2194 | /* |
| 2195 | * See if the page at this offset is around. First check to see if the page is resident, |
| 2196 | * then if not, check the existence map or with the pager. |
| 2197 | */ |
| 2198 | |
| 2199 | if ((m = vm_page_lookup(object, offset)) != VM_PAGE_NULL) { |
| 2200 | /* |
| 2201 | * We found a page we were looking for. Mark it as "handled" now in the chunk_state |
| 2202 | * so that we won't bother looking for a page at this offset again if there are more |
| 2203 | * shadow objects. Then deactivate the page. |
| 2204 | */ |
| 2205 | |
| 2206 | MARK_PAGE_HANDLED(*chunk_state, p); |
| 2207 | |
| 2208 | if ((!VM_PAGE_WIRED(m)) && (!m->vmp_private) && (!m->vmp_gobbled) && (!m->vmp_busy) && |
| 2209 | (!m->vmp_laundry) && (!m->vmp_cleaning) && !(m->vmp_free_when_done)) { |
| 2210 | int clear_refmod_mask; |
| 2211 | int pmap_options; |
| 2212 | dwp->dw_mask = 0; |
| 2213 | |
| 2214 | pmap_options = 0; |
| 2215 | clear_refmod_mask = VM_MEM_REFERENCED; |
| 2216 | dwp->dw_mask |= DW_clear_reference; |
| 2217 | |
| 2218 | if ((flags & DEACTIVATE_KILL) && (object->internal)) { |
| 2219 | if (!(flags & DEACTIVATE_REUSABLE_NO_WRITE) && |
| 2220 | (madvise_free_debug || |
| 2221 | (madvise_free_debug_sometimes && |
| 2222 | madvise_free_counter++ & 0x1))) { |
| 2223 | /* |
| 2224 | * zero-fill the page (or every |
| 2225 | * other page) now to simulate |
| 2226 | * it being reclaimed and |
| 2227 | * re-faulted. |
| 2228 | */ |
| 2229 | #if CONFIG_TRACK_UNMODIFIED_ANON_PAGES |
| 2230 | if (!m->vmp_unmodified_ro) { |
| 2231 | #else /* CONFIG_TRACK_UNMODIFIED_ANON_PAGES */ |
| 2232 | if (true) { |
| 2233 | #endif /* CONFIG_TRACK_UNMODIFIED_ANON_PAGES */ |
| 2234 | pmap_zero_page(pn: VM_PAGE_GET_PHYS_PAGE(m)); |
| 2235 | } |
| 2236 | } |
| 2237 | m->vmp_precious = FALSE; |
| 2238 | m->vmp_dirty = FALSE; |
| 2239 | |
| 2240 | clear_refmod_mask |= VM_MEM_MODIFIED; |
| 2241 | if (m->vmp_q_state == VM_PAGE_ON_THROTTLED_Q) { |
| 2242 | /* |
| 2243 | * This page is now clean and |
| 2244 | * reclaimable. Move it out |
| 2245 | * of the throttled queue, so |
| 2246 | * that vm_pageout_scan() can |
| 2247 | * find it. |
| 2248 | */ |
| 2249 | dwp->dw_mask |= DW_move_page; |
| 2250 | } |
| 2251 | |
| 2252 | #if 0 |
| 2253 | #if CONFIG_TRACK_UNMODIFIED_ANON_PAGES |
| 2254 | /* |
| 2255 | * COMMENT BLOCK ON WHY THIS SHOULDN'T BE DONE. |
| 2256 | * |
| 2257 | * Since we are about to do a VM_COMPRESSOR_PAGER_STATE_CLR |
| 2258 | * below for this page, which drops any existing compressor |
| 2259 | * storage of this page (eg side-effect of a CoW operation or |
| 2260 | * a collapse operation), it is tempting to think that we should |
| 2261 | * treat this page as if it was just decompressed (during which |
| 2262 | * we also drop existing compressor storage) and so start its life |
| 2263 | * out with vmp_unmodified_ro set to FALSE. |
| 2264 | * |
| 2265 | * However, we can't do that here because we could swing around |
| 2266 | * and re-access this page in a read-only fault. |
| 2267 | * Clearing this bit means we'll try to zero it up above |
| 2268 | * and fail. |
| 2269 | * |
| 2270 | * Note that clearing the bit is unnecessary regardless because |
| 2271 | * dirty state has been cleared. During the next soft fault, the |
| 2272 | * right state will be restored and things will progress just fine. |
| 2273 | */ |
| 2274 | if (m->vmp_unmodified_ro == true) { |
| 2275 | /* Need object and pageq locks for bit manipulation*/ |
| 2276 | m->vmp_unmodified_ro = false; |
| 2277 | os_atomic_dec(&compressor_ro_uncompressed); |
| 2278 | } |
| 2279 | #endif /* CONFIG_TRACK_UNMODIFIED_ANON_PAGES */ |
| 2280 | #endif /* 0 */ |
| 2281 | VM_COMPRESSOR_PAGER_STATE_CLR(object, offset); |
| 2282 | |
| 2283 | if ((flags & DEACTIVATE_REUSABLE) && !m->vmp_reusable) { |
| 2284 | assert(!(flags & DEACTIVATE_ALL_REUSABLE)); |
| 2285 | assert(!object->all_reusable); |
| 2286 | m->vmp_reusable = TRUE; |
| 2287 | object->reusable_page_count++; |
| 2288 | assert(object->resident_page_count >= object->reusable_page_count); |
| 2289 | reusable++; |
| 2290 | /* |
| 2291 | * Tell pmap this page is now |
| 2292 | * "reusable" (to update pmap |
| 2293 | * stats for all mappings). |
| 2294 | */ |
| 2295 | pmap_options |= PMAP_OPTIONS_SET_REUSABLE; |
| 2296 | } |
| 2297 | } |
| 2298 | if (flags & DEACTIVATE_CLEAR_REFMOD) { |
| 2299 | /* |
| 2300 | * The caller didn't clear the refmod bits in advance. |
| 2301 | * Clear them for this page now. |
| 2302 | */ |
| 2303 | pmap_options |= PMAP_OPTIONS_NOFLUSH; |
| 2304 | pmap_clear_refmod_options(pn: VM_PAGE_GET_PHYS_PAGE(m), |
| 2305 | mask: clear_refmod_mask, |
| 2306 | options: pmap_options, |
| 2307 | (void *)pfc); |
| 2308 | } |
| 2309 | |
| 2310 | if ((m->vmp_q_state != VM_PAGE_ON_THROTTLED_Q) && |
| 2311 | !(flags & (DEACTIVATE_REUSABLE | DEACTIVATE_ALL_REUSABLE))) { |
| 2312 | dwp->dw_mask |= DW_move_page; |
| 2313 | } |
| 2314 | |
| 2315 | if (dwp->dw_mask) { |
| 2316 | VM_PAGE_ADD_DELAYED_WORK(dwp, m, |
| 2317 | dw_count); |
| 2318 | } |
| 2319 | |
| 2320 | if (dw_count >= dw_limit) { |
| 2321 | if (reusable) { |
| 2322 | OSAddAtomic(reusable, |
| 2323 | &vm_page_stats_reusable.reusable_count); |
| 2324 | vm_page_stats_reusable.reusable += reusable; |
| 2325 | reusable = 0; |
| 2326 | } |
| 2327 | vm_page_do_delayed_work(object, VM_KERN_MEMORY_NONE, dwp: dwp_start, dw_count); |
| 2328 | |
| 2329 | dwp = dwp_start; |
| 2330 | dw_count = 0; |
| 2331 | } |
| 2332 | } |
| 2333 | } else { |
| 2334 | /* |
| 2335 | * The page at this offset isn't memory resident, check to see if it's |
| 2336 | * been paged out. If so, mark it as handled so we don't bother looking |
| 2337 | * for it in the shadow chain. |
| 2338 | */ |
| 2339 | |
| 2340 | if (page_is_paged_out(object, offset)) { |
| 2341 | MARK_PAGE_HANDLED(*chunk_state, p); |
| 2342 | |
| 2343 | /* |
| 2344 | * If we're killing a non-resident page, then clear the page in the existence |
| 2345 | * map so we don't bother paging it back in if it's touched again in the future. |
| 2346 | */ |
| 2347 | |
| 2348 | if ((flags & DEACTIVATE_KILL) && (object->internal)) { |
| 2349 | VM_COMPRESSOR_PAGER_STATE_CLR(object, offset); |
| 2350 | |
| 2351 | if (pmap != PMAP_NULL) { |
| 2352 | /* |
| 2353 | * Tell pmap that this page |
| 2354 | * is no longer mapped, to |
| 2355 | * adjust the footprint ledger |
| 2356 | * because this page is no |
| 2357 | * longer compressed. |
| 2358 | */ |
| 2359 | pmap_remove_options( |
| 2360 | map: pmap, |
| 2361 | s: pmap_offset, |
| 2362 | e: (pmap_offset + |
| 2363 | PAGE_SIZE), |
| 2364 | PMAP_OPTIONS_REMOVE); |
| 2365 | } |
| 2366 | } |
| 2367 | } |
| 2368 | } |
| 2369 | } |
| 2370 | |
| 2371 | if (reusable) { |
| 2372 | OSAddAtomic(reusable, &vm_page_stats_reusable.reusable_count); |
| 2373 | vm_page_stats_reusable.reusable += reusable; |
| 2374 | reusable = 0; |
| 2375 | } |
| 2376 | |
| 2377 | if (dw_count) { |
| 2378 | vm_page_do_delayed_work(object, VM_KERN_MEMORY_NONE, dwp: dwp_start, dw_count); |
| 2379 | dwp = dwp_start; |
| 2380 | dw_count = 0; |
| 2381 | } |
| 2382 | |
| 2383 | if (dwp_start && dwp_finish_ctx) { |
| 2384 | vm_page_delayed_work_finish_ctx(dwp: dwp_start); |
| 2385 | dwp_start = dwp = NULL; |
| 2386 | } |
| 2387 | } |
| 2388 | |
| 2389 | |
| 2390 | /* |
| 2391 | * Deactive a "chunk" of the given range of the object starting at offset. A "chunk" |
| 2392 | * will always be less than or equal to the given size. The total range is divided up |
| 2393 | * into chunks for efficiency and performance related to the locks and handling the shadow |
| 2394 | * chain. This routine returns how much of the given "size" it actually processed. It's |
| 2395 | * up to the caler to loop and keep calling this routine until the entire range they want |
| 2396 | * to process has been done. |
| 2397 | * Iff clear_refmod is true, pmap_clear_refmod_options is called for each physical page in this range. |
| 2398 | */ |
| 2399 | |
| 2400 | static vm_object_size_t |
| 2401 | deactivate_a_chunk( |
| 2402 | vm_object_t orig_object, |
| 2403 | vm_object_offset_t offset, |
| 2404 | vm_object_size_t size, |
| 2405 | deactivate_flags_t flags, |
| 2406 | pmap_flush_context *pfc, |
| 2407 | struct pmap *pmap, |
| 2408 | vm_map_offset_t pmap_offset) |
| 2409 | { |
| 2410 | vm_object_t object; |
| 2411 | vm_object_t tmp_object; |
| 2412 | vm_object_size_t length; |
| 2413 | chunk_state_t chunk_state; |
| 2414 | |
| 2415 | |
| 2416 | /* |
| 2417 | * Get set to do a chunk. We'll do up to CHUNK_SIZE, but no more than the |
| 2418 | * remaining size the caller asked for. |
| 2419 | */ |
| 2420 | |
| 2421 | length = MIN(size, CHUNK_SIZE); |
| 2422 | |
| 2423 | /* |
| 2424 | * The chunk_state keeps track of which pages we've already processed if there's |
| 2425 | * a shadow chain on this object. At this point, we haven't done anything with this |
| 2426 | * range of pages yet, so initialize the state to indicate no pages processed yet. |
| 2427 | */ |
| 2428 | |
| 2429 | CHUNK_INIT(chunk_state, length); |
| 2430 | object = orig_object; |
| 2431 | |
| 2432 | /* |
| 2433 | * Start at the top level object and iterate around the loop once for each object |
| 2434 | * in the shadow chain. We stop processing early if we've already found all the pages |
| 2435 | * in the range. Otherwise we stop when we run out of shadow objects. |
| 2436 | */ |
| 2437 | |
| 2438 | while (object && CHUNK_NOT_COMPLETE(chunk_state)) { |
| 2439 | vm_object_paging_begin(object); |
| 2440 | |
| 2441 | deactivate_pages_in_object(object, offset, size: length, flags, chunk_state: &chunk_state, pfc, pmap, pmap_offset); |
| 2442 | |
| 2443 | vm_object_paging_end(object); |
| 2444 | |
| 2445 | /* |
| 2446 | * We've finished with this object, see if there's a shadow object. If |
| 2447 | * there is, update the offset and lock the new object. We also turn off |
| 2448 | * kill_page at this point since we only kill pages in the top most object. |
| 2449 | */ |
| 2450 | |
| 2451 | tmp_object = object->shadow; |
| 2452 | |
| 2453 | if (tmp_object) { |
| 2454 | assert(!(flags & DEACTIVATE_KILL) || (flags & DEACTIVATE_CLEAR_REFMOD)); |
| 2455 | flags &= ~(DEACTIVATE_KILL | DEACTIVATE_REUSABLE | DEACTIVATE_ALL_REUSABLE); |
| 2456 | offset += object->vo_shadow_offset; |
| 2457 | vm_object_lock(tmp_object); |
| 2458 | } |
| 2459 | |
| 2460 | if (object != orig_object) { |
| 2461 | vm_object_unlock(object); |
| 2462 | } |
| 2463 | |
| 2464 | object = tmp_object; |
| 2465 | } |
| 2466 | |
| 2467 | if (object && object != orig_object) { |
| 2468 | vm_object_unlock(object); |
| 2469 | } |
| 2470 | |
| 2471 | return length; |
| 2472 | } |
| 2473 | |
| 2474 | |
| 2475 | |
| 2476 | /* |
| 2477 | * Move any resident pages in the specified range to the inactive queue. If kill_page is set, |
| 2478 | * we also clear the modified status of the page and "forget" any changes that have been made |
| 2479 | * to the page. |
| 2480 | */ |
| 2481 | |
| 2482 | __private_extern__ void |
| 2483 | vm_object_deactivate_pages( |
| 2484 | vm_object_t object, |
| 2485 | vm_object_offset_t offset, |
| 2486 | vm_object_size_t size, |
| 2487 | boolean_t kill_page, |
| 2488 | boolean_t reusable_page, |
| 2489 | boolean_t reusable_no_write, |
| 2490 | struct pmap *pmap, |
| 2491 | vm_map_offset_t pmap_offset) |
| 2492 | { |
| 2493 | vm_object_size_t length; |
| 2494 | boolean_t all_reusable; |
| 2495 | pmap_flush_context pmap_flush_context_storage; |
| 2496 | unsigned int pmap_clear_refmod_mask = VM_MEM_REFERENCED; |
| 2497 | unsigned int pmap_clear_refmod_options = 0; |
| 2498 | deactivate_flags_t flags = DEACTIVATE_CLEAR_REFMOD; |
| 2499 | bool refmod_cleared = false; |
| 2500 | if (kill_page) { |
| 2501 | flags |= DEACTIVATE_KILL; |
| 2502 | } |
| 2503 | if (reusable_page) { |
| 2504 | flags |= DEACTIVATE_REUSABLE; |
| 2505 | } |
| 2506 | if (reusable_no_write) { |
| 2507 | flags |= DEACTIVATE_REUSABLE_NO_WRITE; |
| 2508 | } |
| 2509 | |
| 2510 | /* |
| 2511 | * We break the range up into chunks and do one chunk at a time. This is for |
| 2512 | * efficiency and performance while handling the shadow chains and the locks. |
| 2513 | * The deactivate_a_chunk() function returns how much of the range it processed. |
| 2514 | * We keep calling this routine until the given size is exhausted. |
| 2515 | */ |
| 2516 | |
| 2517 | |
| 2518 | all_reusable = FALSE; |
| 2519 | #if 11 |
| 2520 | /* |
| 2521 | * For the sake of accurate "reusable" pmap stats, we need |
| 2522 | * to tell pmap about each page that is no longer "reusable", |
| 2523 | * so we can't do the "all_reusable" optimization. |
| 2524 | * |
| 2525 | * If we do go with the all_reusable optimization, we can't |
| 2526 | * return if size is 0 since we could have "all_reusable == TRUE" |
| 2527 | * In this case, we save the overhead of doing the pmap_flush_context |
| 2528 | * work. |
| 2529 | */ |
| 2530 | if (size == 0) { |
| 2531 | return; |
| 2532 | } |
| 2533 | #else |
| 2534 | if (reusable_page && |
| 2535 | object->internal && |
| 2536 | object->vo_size != 0 && |
| 2537 | object->vo_size == size && |
| 2538 | object->reusable_page_count == 0) { |
| 2539 | all_reusable = TRUE; |
| 2540 | reusable_page = FALSE; |
| 2541 | flags |= DEACTIVATE_ALL_REUSABLE; |
| 2542 | } |
| 2543 | #endif |
| 2544 | |
| 2545 | if ((reusable_page || all_reusable) && object->all_reusable) { |
| 2546 | /* This means MADV_FREE_REUSABLE has been called twice, which |
| 2547 | * is probably illegal. */ |
| 2548 | return; |
| 2549 | } |
| 2550 | |
| 2551 | |
| 2552 | pmap_flush_context_init(&pmap_flush_context_storage); |
| 2553 | |
| 2554 | /* |
| 2555 | * If we're deactivating multiple pages, try to perform one bulk pmap operation. |
| 2556 | * We can't do this if we're killing pages and there's a shadow chain as |
| 2557 | * we don't yet know which pages are in the top object (pages in shadow copies aren't |
| 2558 | * safe to kill). |
| 2559 | * And we can only do this on hardware that supports it. |
| 2560 | */ |
| 2561 | if (size > PAGE_SIZE && (!kill_page || !object->shadow)) { |
| 2562 | if (kill_page && object->internal) { |
| 2563 | pmap_clear_refmod_mask |= VM_MEM_MODIFIED; |
| 2564 | } |
| 2565 | if (reusable_page) { |
| 2566 | pmap_clear_refmod_options |= PMAP_OPTIONS_SET_REUSABLE; |
| 2567 | } |
| 2568 | |
| 2569 | refmod_cleared = pmap_clear_refmod_range_options(pmap, start: pmap_offset, end: pmap_offset + size, mask: pmap_clear_refmod_mask, options: pmap_clear_refmod_options); |
| 2570 | if (refmod_cleared) { |
| 2571 | // We were able to clear all the refmod bits. So deactivate_a_chunk doesn't need to do it. |
| 2572 | flags &= ~DEACTIVATE_CLEAR_REFMOD; |
| 2573 | } |
| 2574 | } |
| 2575 | |
| 2576 | while (size) { |
| 2577 | length = deactivate_a_chunk(orig_object: object, offset, size, flags, |
| 2578 | pfc: &pmap_flush_context_storage, pmap, pmap_offset); |
| 2579 | |
| 2580 | size -= length; |
| 2581 | offset += length; |
| 2582 | pmap_offset += length; |
| 2583 | } |
| 2584 | pmap_flush(&pmap_flush_context_storage); |
| 2585 | |
| 2586 | if (all_reusable) { |
| 2587 | if (!object->all_reusable) { |
| 2588 | unsigned int reusable; |
| 2589 | |
| 2590 | object->all_reusable = TRUE; |
| 2591 | assert(object->reusable_page_count == 0); |
| 2592 | /* update global stats */ |
| 2593 | reusable = object->resident_page_count; |
| 2594 | OSAddAtomic(reusable, |
| 2595 | &vm_page_stats_reusable.reusable_count); |
| 2596 | vm_page_stats_reusable.reusable += reusable; |
| 2597 | vm_page_stats_reusable.all_reusable_calls++; |
| 2598 | } |
| 2599 | } else if (reusable_page) { |
| 2600 | vm_page_stats_reusable.partial_reusable_calls++; |
| 2601 | } |
| 2602 | } |
| 2603 | |
| 2604 | void |
| 2605 | vm_object_reuse_pages( |
| 2606 | vm_object_t object, |
| 2607 | vm_object_offset_t start_offset, |
| 2608 | vm_object_offset_t end_offset, |
| 2609 | boolean_t allow_partial_reuse) |
| 2610 | { |
| 2611 | vm_object_offset_t cur_offset; |
| 2612 | vm_page_t m; |
| 2613 | unsigned int reused, reusable; |
| 2614 | |
| 2615 | #define VM_OBJECT_REUSE_PAGE(object, m, reused) \ |
| 2616 | MACRO_BEGIN \ |
| 2617 | if ((m) != VM_PAGE_NULL && \ |
| 2618 | (m)->vmp_reusable) { \ |
| 2619 | assert((object)->reusable_page_count <= \ |
| 2620 | (object)->resident_page_count); \ |
| 2621 | assert((object)->reusable_page_count > 0); \ |
| 2622 | (object)->reusable_page_count--; \ |
| 2623 | (m)->vmp_reusable = FALSE; \ |
| 2624 | (reused)++; \ |
| 2625 | /* \ |
| 2626 | * Tell pmap that this page is no longer \ |
| 2627 | * "reusable", to update the "reusable" stats \ |
| 2628 | * for all the pmaps that have mapped this \ |
| 2629 | * page. \ |
| 2630 | */ \ |
| 2631 | pmap_clear_refmod_options(VM_PAGE_GET_PHYS_PAGE((m)), \ |
| 2632 | 0, /* refmod */ \ |
| 2633 | (PMAP_OPTIONS_CLEAR_REUSABLE \ |
| 2634 | | PMAP_OPTIONS_NOFLUSH), \ |
| 2635 | NULL); \ |
| 2636 | } \ |
| 2637 | MACRO_END |
| 2638 | |
| 2639 | reused = 0; |
| 2640 | reusable = 0; |
| 2641 | |
| 2642 | vm_object_lock_assert_exclusive(object); |
| 2643 | |
| 2644 | if (object->all_reusable) { |
| 2645 | panic("object %p all_reusable: can't update pmap stats" , |
| 2646 | object); |
| 2647 | assert(object->reusable_page_count == 0); |
| 2648 | object->all_reusable = FALSE; |
| 2649 | if (end_offset - start_offset == object->vo_size || |
| 2650 | !allow_partial_reuse) { |
| 2651 | vm_page_stats_reusable.all_reuse_calls++; |
| 2652 | reused = object->resident_page_count; |
| 2653 | } else { |
| 2654 | vm_page_stats_reusable.partial_reuse_calls++; |
| 2655 | vm_page_queue_iterate(&object->memq, m, vmp_listq) { |
| 2656 | if (m->vmp_offset < start_offset || |
| 2657 | m->vmp_offset >= end_offset) { |
| 2658 | m->vmp_reusable = TRUE; |
| 2659 | object->reusable_page_count++; |
| 2660 | assert(object->resident_page_count >= object->reusable_page_count); |
| 2661 | continue; |
| 2662 | } else { |
| 2663 | assert(!m->vmp_reusable); |
| 2664 | reused++; |
| 2665 | } |
| 2666 | } |
| 2667 | } |
| 2668 | } else if (object->resident_page_count > |
| 2669 | ((end_offset - start_offset) >> PAGE_SHIFT)) { |
| 2670 | vm_page_stats_reusable.partial_reuse_calls++; |
| 2671 | for (cur_offset = start_offset; |
| 2672 | cur_offset < end_offset; |
| 2673 | cur_offset += PAGE_SIZE_64) { |
| 2674 | if (object->reusable_page_count == 0) { |
| 2675 | break; |
| 2676 | } |
| 2677 | m = vm_page_lookup(object, offset: cur_offset); |
| 2678 | VM_OBJECT_REUSE_PAGE(object, m, reused); |
| 2679 | } |
| 2680 | } else { |
| 2681 | vm_page_stats_reusable.partial_reuse_calls++; |
| 2682 | vm_page_queue_iterate(&object->memq, m, vmp_listq) { |
| 2683 | if (object->reusable_page_count == 0) { |
| 2684 | break; |
| 2685 | } |
| 2686 | if (m->vmp_offset < start_offset || |
| 2687 | m->vmp_offset >= end_offset) { |
| 2688 | continue; |
| 2689 | } |
| 2690 | VM_OBJECT_REUSE_PAGE(object, m, reused); |
| 2691 | } |
| 2692 | } |
| 2693 | |
| 2694 | /* update global stats */ |
| 2695 | OSAddAtomic(reusable - reused, &vm_page_stats_reusable.reusable_count); |
| 2696 | vm_page_stats_reusable.reused += reused; |
| 2697 | vm_page_stats_reusable.reusable += reusable; |
| 2698 | } |
| 2699 | |
| 2700 | /* |
| 2701 | * This function determines if the zero operation can be run on the |
| 2702 | * object. The checks on the entry have already been performed by |
| 2703 | * vm_map_zero_entry_preflight. |
| 2704 | */ |
| 2705 | static kern_return_t |
| 2706 | vm_object_zero_preflight( |
| 2707 | vm_object_t object, |
| 2708 | vm_object_offset_t start, |
| 2709 | vm_object_offset_t end) |
| 2710 | { |
| 2711 | /* |
| 2712 | * Zeroing is further restricted to anonymous memory. |
| 2713 | */ |
| 2714 | if (!object->internal) { |
| 2715 | return KERN_PROTECTION_FAILURE; |
| 2716 | } |
| 2717 | |
| 2718 | /* |
| 2719 | * Zeroing for copy on write isn't yet supported |
| 2720 | */ |
| 2721 | if (object->shadow != NULL || |
| 2722 | object->vo_copy != NULL) { |
| 2723 | return KERN_NO_ACCESS; |
| 2724 | } |
| 2725 | |
| 2726 | /* |
| 2727 | * Ensure the that bounds makes sense wrt the object |
| 2728 | */ |
| 2729 | if (end - start > object->vo_size) { |
| 2730 | return KERN_INVALID_ADDRESS; |
| 2731 | } |
| 2732 | |
| 2733 | return KERN_SUCCESS; |
| 2734 | } |
| 2735 | |
| 2736 | /* |
| 2737 | * This function looks up a page and waits if it is busy or being cleaned. |
| 2738 | * It returns false when the page found is busy and it needs to wait. Caller |
| 2739 | * of this function should restart the operation for the cur_offset when |
| 2740 | * this function returns false. |
| 2741 | */ |
| 2742 | static bool |
| 2743 | vm_object_lookup_page_wait_busy( |
| 2744 | vm_object_t object, |
| 2745 | vm_object_offset_t cur_offset, |
| 2746 | vm_page_t *page) |
| 2747 | { |
| 2748 | vm_page_t m; |
| 2749 | |
| 2750 | m = vm_page_lookup(object, offset: cur_offset); |
| 2751 | if ((m == VM_PAGE_NULL) || |
| 2752 | (!m->vmp_busy && !m->vmp_cleaning)) { |
| 2753 | *page = m; |
| 2754 | return true; |
| 2755 | } |
| 2756 | |
| 2757 | PAGE_SLEEP(object, m, THREAD_UNINT); |
| 2758 | return false; |
| 2759 | } |
| 2760 | |
| 2761 | static void |
| 2762 | vm_object_zero_page(vm_page_t m) |
| 2763 | { |
| 2764 | if (m != VM_PAGE_NULL) { |
| 2765 | ppnum_t phy_page_num = VM_PAGE_GET_PHYS_PAGE(m); |
| 2766 | |
| 2767 | /* |
| 2768 | * Skip fictitious guard pages |
| 2769 | */ |
| 2770 | if (m->vmp_fictitious) { |
| 2771 | assert(phy_page_num == vm_page_guard_addr); |
| 2772 | return; |
| 2773 | } |
| 2774 | pmap_zero_page(pn: phy_page_num); |
| 2775 | } |
| 2776 | } |
| 2777 | |
| 2778 | /* |
| 2779 | * This function iterates the range of pages specified in the object and |
| 2780 | * discards the ones that are compressed and zeroes the ones that are wired. |
| 2781 | * This function may drop the object lock while waiting for a page that is |
| 2782 | * busy and will restart the operation for the specific offset. |
| 2783 | */ |
| 2784 | kern_return_t |
| 2785 | vm_object_zero( |
| 2786 | vm_object_t object, |
| 2787 | vm_object_offset_t cur_offset, |
| 2788 | vm_object_offset_t end_offset) |
| 2789 | { |
| 2790 | kern_return_t ret; |
| 2791 | |
| 2792 | ret = vm_object_zero_preflight(object, start: cur_offset, end: end_offset); |
| 2793 | if (ret != KERN_SUCCESS) { |
| 2794 | return ret; |
| 2795 | } |
| 2796 | |
| 2797 | while (cur_offset < end_offset) { |
| 2798 | vm_page_t m; |
| 2799 | |
| 2800 | /* |
| 2801 | * If the compressor has the page then just discard it instead |
| 2802 | * of faulting it in and zeroing it else zero the page if it exists. If |
| 2803 | * we dropped the object lock during the lookup retry the lookup for the |
| 2804 | * cur_offset. |
| 2805 | */ |
| 2806 | if (page_is_paged_out(object, offset: cur_offset)) { |
| 2807 | VM_COMPRESSOR_PAGER_STATE_CLR(object, cur_offset); |
| 2808 | } else if (vm_object_lookup_page_wait_busy(object, cur_offset, page: &m)) { |
| 2809 | vm_object_zero_page(m); |
| 2810 | } else { |
| 2811 | /* |
| 2812 | * If we dropped the lock then relookup the cur_offset in the object |
| 2813 | */ |
| 2814 | ret = vm_object_zero_preflight(object, start: cur_offset, end: end_offset); |
| 2815 | if (ret != KERN_SUCCESS) { |
| 2816 | return ret; |
| 2817 | } |
| 2818 | continue; |
| 2819 | } |
| 2820 | cur_offset += PAGE_SIZE_64; |
| 2821 | /* |
| 2822 | * TODO: May need a vm_object_lock_yield_shared in this loop if it takes |
| 2823 | * too long, as holding the object lock for too long can stall pageout |
| 2824 | * scan (or other users of the object) |
| 2825 | */ |
| 2826 | } |
| 2827 | |
| 2828 | return KERN_SUCCESS; |
| 2829 | } |
| 2830 | |
| 2831 | /* |
| 2832 | * Routine: vm_object_pmap_protect |
| 2833 | * |
| 2834 | * Purpose: |
| 2835 | * Reduces the permission for all physical |
| 2836 | * pages in the specified object range. |
| 2837 | * |
| 2838 | * If removing write permission only, it is |
| 2839 | * sufficient to protect only the pages in |
| 2840 | * the top-level object; only those pages may |
| 2841 | * have write permission. |
| 2842 | * |
| 2843 | * If removing all access, we must follow the |
| 2844 | * shadow chain from the top-level object to |
| 2845 | * remove access to all pages in shadowed objects. |
| 2846 | * |
| 2847 | * The object must *not* be locked. The object must |
| 2848 | * be internal. |
| 2849 | * |
| 2850 | * If pmap is not NULL, this routine assumes that |
| 2851 | * the only mappings for the pages are in that |
| 2852 | * pmap. |
| 2853 | */ |
| 2854 | |
| 2855 | __private_extern__ void |
| 2856 | vm_object_pmap_protect( |
| 2857 | vm_object_t object, |
| 2858 | vm_object_offset_t offset, |
| 2859 | vm_object_size_t size, |
| 2860 | pmap_t pmap, |
| 2861 | vm_map_size_t pmap_page_size, |
| 2862 | vm_map_offset_t pmap_start, |
| 2863 | vm_prot_t prot) |
| 2864 | { |
| 2865 | vm_object_pmap_protect_options(object, offset, size, pmap, |
| 2866 | pmap_page_size, |
| 2867 | pmap_start, prot, options: 0); |
| 2868 | } |
| 2869 | |
| 2870 | __private_extern__ void |
| 2871 | vm_object_pmap_protect_options( |
| 2872 | vm_object_t object, |
| 2873 | vm_object_offset_t offset, |
| 2874 | vm_object_size_t size, |
| 2875 | pmap_t pmap, |
| 2876 | vm_map_size_t pmap_page_size, |
| 2877 | vm_map_offset_t pmap_start, |
| 2878 | vm_prot_t prot, |
| 2879 | int options) |
| 2880 | { |
| 2881 | pmap_flush_context pmap_flush_context_storage; |
| 2882 | boolean_t delayed_pmap_flush = FALSE; |
| 2883 | vm_object_offset_t offset_in_object; |
| 2884 | vm_object_size_t size_in_object; |
| 2885 | |
| 2886 | if (object == VM_OBJECT_NULL) { |
| 2887 | return; |
| 2888 | } |
| 2889 | if (pmap_page_size > PAGE_SIZE) { |
| 2890 | /* for 16K map on 4K device... */ |
| 2891 | pmap_page_size = PAGE_SIZE; |
| 2892 | } |
| 2893 | /* |
| 2894 | * If we decide to work on the object itself, extend the range to |
| 2895 | * cover a full number of native pages. |
| 2896 | */ |
| 2897 | size_in_object = vm_object_round_page(offset + size) - vm_object_trunc_page(offset); |
| 2898 | offset_in_object = vm_object_trunc_page(offset); |
| 2899 | /* |
| 2900 | * If we decide to work on the pmap, use the exact range specified, |
| 2901 | * so no rounding/truncating offset and size. They should already |
| 2902 | * be aligned to pmap_page_size. |
| 2903 | */ |
| 2904 | assertf(!(offset & (pmap_page_size - 1)) && !(size & (pmap_page_size - 1)), |
| 2905 | "offset 0x%llx size 0x%llx pmap_page_size 0x%llx" , |
| 2906 | offset, size, (uint64_t)pmap_page_size); |
| 2907 | |
| 2908 | vm_object_lock(object); |
| 2909 | |
| 2910 | if (object->phys_contiguous) { |
| 2911 | if (pmap != NULL) { |
| 2912 | vm_object_unlock(object); |
| 2913 | pmap_protect_options(map: pmap, |
| 2914 | s: pmap_start, |
| 2915 | e: pmap_start + size, |
| 2916 | prot, |
| 2917 | options: options & ~PMAP_OPTIONS_NOFLUSH, |
| 2918 | NULL); |
| 2919 | } else { |
| 2920 | vm_object_offset_t phys_start, phys_end, phys_addr; |
| 2921 | |
| 2922 | phys_start = object->vo_shadow_offset + offset_in_object; |
| 2923 | phys_end = phys_start + size_in_object; |
| 2924 | assert(phys_start <= phys_end); |
| 2925 | assert(phys_end <= object->vo_shadow_offset + object->vo_size); |
| 2926 | vm_object_unlock(object); |
| 2927 | |
| 2928 | pmap_flush_context_init(&pmap_flush_context_storage); |
| 2929 | delayed_pmap_flush = FALSE; |
| 2930 | |
| 2931 | for (phys_addr = phys_start; |
| 2932 | phys_addr < phys_end; |
| 2933 | phys_addr += PAGE_SIZE_64) { |
| 2934 | pmap_page_protect_options( |
| 2935 | phys: (ppnum_t) (phys_addr >> PAGE_SHIFT), |
| 2936 | prot, |
| 2937 | options: options | PMAP_OPTIONS_NOFLUSH, |
| 2938 | arg: (void *)&pmap_flush_context_storage); |
| 2939 | delayed_pmap_flush = TRUE; |
| 2940 | } |
| 2941 | if (delayed_pmap_flush == TRUE) { |
| 2942 | pmap_flush(&pmap_flush_context_storage); |
| 2943 | } |
| 2944 | } |
| 2945 | return; |
| 2946 | } |
| 2947 | |
| 2948 | assert(object->internal); |
| 2949 | |
| 2950 | while (TRUE) { |
| 2951 | if (ptoa_64(object->resident_page_count) > size_in_object / 2 && pmap != PMAP_NULL) { |
| 2952 | vm_object_unlock(object); |
| 2953 | if (pmap_page_size < PAGE_SIZE) { |
| 2954 | DEBUG4K_PMAP("pmap %p start 0x%llx end 0x%llx prot 0x%x: pmap_protect()\n" , pmap, (uint64_t)pmap_start, pmap_start + size, prot); |
| 2955 | } |
| 2956 | pmap_protect_options(map: pmap, s: pmap_start, e: pmap_start + size, prot, |
| 2957 | options: options & ~PMAP_OPTIONS_NOFLUSH, NULL); |
| 2958 | return; |
| 2959 | } |
| 2960 | |
| 2961 | if (pmap_page_size < PAGE_SIZE) { |
| 2962 | DEBUG4K_PMAP("pmap %p start 0x%llx end 0x%llx prot 0x%x: offset 0x%llx size 0x%llx object %p offset 0x%llx size 0x%llx\n" , pmap, (uint64_t)pmap_start, pmap_start + size, prot, offset, size, object, offset_in_object, size_in_object); |
| 2963 | } |
| 2964 | |
| 2965 | pmap_flush_context_init(&pmap_flush_context_storage); |
| 2966 | delayed_pmap_flush = FALSE; |
| 2967 | |
| 2968 | /* |
| 2969 | * if we are doing large ranges with respect to resident |
| 2970 | * page count then we should interate over pages otherwise |
| 2971 | * inverse page look-up will be faster |
| 2972 | */ |
| 2973 | if (ptoa_64(object->resident_page_count / 4) < size_in_object) { |
| 2974 | vm_page_t p; |
| 2975 | vm_object_offset_t end; |
| 2976 | |
| 2977 | end = offset_in_object + size_in_object; |
| 2978 | |
| 2979 | vm_page_queue_iterate(&object->memq, p, vmp_listq) { |
| 2980 | if (!p->vmp_fictitious && (offset_in_object <= p->vmp_offset) && (p->vmp_offset < end)) { |
| 2981 | vm_map_offset_t start; |
| 2982 | |
| 2983 | /* |
| 2984 | * XXX FBDP 4K: intentionally using "offset" here instead |
| 2985 | * of "offset_in_object", since "start" is a pmap address. |
| 2986 | */ |
| 2987 | start = pmap_start + p->vmp_offset - offset; |
| 2988 | |
| 2989 | if (pmap != PMAP_NULL) { |
| 2990 | vm_map_offset_t curr; |
| 2991 | for (curr = start; |
| 2992 | curr < start + PAGE_SIZE_64; |
| 2993 | curr += pmap_page_size) { |
| 2994 | if (curr < pmap_start) { |
| 2995 | continue; |
| 2996 | } |
| 2997 | if (curr >= pmap_start + size) { |
| 2998 | break; |
| 2999 | } |
| 3000 | pmap_protect_options( |
| 3001 | map: pmap, |
| 3002 | s: curr, |
| 3003 | e: curr + pmap_page_size, |
| 3004 | prot, |
| 3005 | options: options | PMAP_OPTIONS_NOFLUSH, |
| 3006 | arg: &pmap_flush_context_storage); |
| 3007 | } |
| 3008 | } else { |
| 3009 | pmap_page_protect_options( |
| 3010 | phys: VM_PAGE_GET_PHYS_PAGE(m: p), |
| 3011 | prot, |
| 3012 | options: options | PMAP_OPTIONS_NOFLUSH, |
| 3013 | arg: &pmap_flush_context_storage); |
| 3014 | } |
| 3015 | delayed_pmap_flush = TRUE; |
| 3016 | } |
| 3017 | } |
| 3018 | } else { |
| 3019 | vm_page_t p; |
| 3020 | vm_object_offset_t end; |
| 3021 | vm_object_offset_t target_off; |
| 3022 | |
| 3023 | end = offset_in_object + size_in_object; |
| 3024 | |
| 3025 | for (target_off = offset_in_object; |
| 3026 | target_off < end; target_off += PAGE_SIZE) { |
| 3027 | p = vm_page_lookup(object, offset: target_off); |
| 3028 | |
| 3029 | if (p != VM_PAGE_NULL) { |
| 3030 | vm_object_offset_t start; |
| 3031 | |
| 3032 | /* |
| 3033 | * XXX FBDP 4K: intentionally using "offset" here instead |
| 3034 | * of "offset_in_object", since "start" is a pmap address. |
| 3035 | */ |
| 3036 | start = pmap_start + (p->vmp_offset - offset); |
| 3037 | |
| 3038 | if (pmap != PMAP_NULL) { |
| 3039 | vm_map_offset_t curr; |
| 3040 | for (curr = start; |
| 3041 | curr < start + PAGE_SIZE; |
| 3042 | curr += pmap_page_size) { |
| 3043 | if (curr < pmap_start) { |
| 3044 | continue; |
| 3045 | } |
| 3046 | if (curr >= pmap_start + size) { |
| 3047 | break; |
| 3048 | } |
| 3049 | pmap_protect_options( |
| 3050 | map: pmap, |
| 3051 | s: curr, |
| 3052 | e: curr + pmap_page_size, |
| 3053 | prot, |
| 3054 | options: options | PMAP_OPTIONS_NOFLUSH, |
| 3055 | arg: &pmap_flush_context_storage); |
| 3056 | } |
| 3057 | } else { |
| 3058 | pmap_page_protect_options( |
| 3059 | phys: VM_PAGE_GET_PHYS_PAGE(m: p), |
| 3060 | prot, |
| 3061 | options: options | PMAP_OPTIONS_NOFLUSH, |
| 3062 | arg: &pmap_flush_context_storage); |
| 3063 | } |
| 3064 | delayed_pmap_flush = TRUE; |
| 3065 | } |
| 3066 | } |
| 3067 | } |
| 3068 | if (delayed_pmap_flush == TRUE) { |
| 3069 | pmap_flush(&pmap_flush_context_storage); |
| 3070 | } |
| 3071 | |
| 3072 | if (prot == VM_PROT_NONE) { |
| 3073 | /* |
| 3074 | * Must follow shadow chain to remove access |
| 3075 | * to pages in shadowed objects. |
| 3076 | */ |
| 3077 | vm_object_t next_object; |
| 3078 | |
| 3079 | next_object = object->shadow; |
| 3080 | if (next_object != VM_OBJECT_NULL) { |
| 3081 | offset_in_object += object->vo_shadow_offset; |
| 3082 | offset += object->vo_shadow_offset; |
| 3083 | vm_object_lock(next_object); |
| 3084 | vm_object_unlock(object); |
| 3085 | object = next_object; |
| 3086 | } else { |
| 3087 | /* |
| 3088 | * End of chain - we are done. |
| 3089 | */ |
| 3090 | break; |
| 3091 | } |
| 3092 | } else { |
| 3093 | /* |
| 3094 | * Pages in shadowed objects may never have |
| 3095 | * write permission - we may stop here. |
| 3096 | */ |
| 3097 | break; |
| 3098 | } |
| 3099 | } |
| 3100 | |
| 3101 | vm_object_unlock(object); |
| 3102 | } |
| 3103 | |
| 3104 | uint32_t vm_page_busy_absent_skipped = 0; |
| 3105 | |
| 3106 | /* |
| 3107 | * Routine: vm_object_copy_slowly |
| 3108 | * |
| 3109 | * Description: |
| 3110 | * Copy the specified range of the source |
| 3111 | * virtual memory object without using |
| 3112 | * protection-based optimizations (such |
| 3113 | * as copy-on-write). The pages in the |
| 3114 | * region are actually copied. |
| 3115 | * |
| 3116 | * In/out conditions: |
| 3117 | * The caller must hold a reference and a lock |
| 3118 | * for the source virtual memory object. The source |
| 3119 | * object will be returned *unlocked*. |
| 3120 | * |
| 3121 | * Results: |
| 3122 | * If the copy is completed successfully, KERN_SUCCESS is |
| 3123 | * returned. If the caller asserted the interruptible |
| 3124 | * argument, and an interruption occurred while waiting |
| 3125 | * for a user-generated event, MACH_SEND_INTERRUPTED is |
| 3126 | * returned. Other values may be returned to indicate |
| 3127 | * hard errors during the copy operation. |
| 3128 | * |
| 3129 | * A new virtual memory object is returned in a |
| 3130 | * parameter (_result_object). The contents of this |
| 3131 | * new object, starting at a zero offset, are a copy |
| 3132 | * of the source memory region. In the event of |
| 3133 | * an error, this parameter will contain the value |
| 3134 | * VM_OBJECT_NULL. |
| 3135 | */ |
| 3136 | __private_extern__ kern_return_t |
| 3137 | vm_object_copy_slowly( |
| 3138 | vm_object_t src_object, |
| 3139 | vm_object_offset_t src_offset, |
| 3140 | vm_object_size_t size, |
| 3141 | boolean_t interruptible, |
| 3142 | vm_object_t *_result_object) /* OUT */ |
| 3143 | { |
| 3144 | vm_object_t new_object; |
| 3145 | vm_object_offset_t new_offset; |
| 3146 | |
| 3147 | struct vm_object_fault_info fault_info = {}; |
| 3148 | |
| 3149 | if (size == 0) { |
| 3150 | vm_object_unlock(src_object); |
| 3151 | *_result_object = VM_OBJECT_NULL; |
| 3152 | return KERN_INVALID_ARGUMENT; |
| 3153 | } |
| 3154 | |
| 3155 | /* |
| 3156 | * Prevent destruction of the source object while we copy. |
| 3157 | */ |
| 3158 | |
| 3159 | vm_object_reference_locked(src_object); |
| 3160 | vm_object_unlock(src_object); |
| 3161 | |
| 3162 | /* |
| 3163 | * Create a new object to hold the copied pages. |
| 3164 | * A few notes: |
| 3165 | * We fill the new object starting at offset 0, |
| 3166 | * regardless of the input offset. |
| 3167 | * We don't bother to lock the new object within |
| 3168 | * this routine, since we have the only reference. |
| 3169 | */ |
| 3170 | |
| 3171 | size = vm_object_round_page(src_offset + size) - vm_object_trunc_page(src_offset); |
| 3172 | src_offset = vm_object_trunc_page(src_offset); |
| 3173 | new_object = vm_object_allocate(size); |
| 3174 | new_offset = 0; |
| 3175 | |
| 3176 | assert(size == trunc_page_64(size)); /* Will the loop terminate? */ |
| 3177 | |
| 3178 | fault_info.interruptible = interruptible; |
| 3179 | fault_info.behavior = VM_BEHAVIOR_SEQUENTIAL; |
| 3180 | fault_info.lo_offset = src_offset; |
| 3181 | fault_info.hi_offset = src_offset + size; |
| 3182 | fault_info.stealth = TRUE; |
| 3183 | |
| 3184 | for (; |
| 3185 | size != 0; |
| 3186 | src_offset += PAGE_SIZE_64, |
| 3187 | new_offset += PAGE_SIZE_64, size -= PAGE_SIZE_64 |
| 3188 | ) { |
| 3189 | vm_page_t new_page; |
| 3190 | vm_fault_return_t result; |
| 3191 | |
| 3192 | vm_object_lock(new_object); |
| 3193 | |
| 3194 | while ((new_page = vm_page_alloc(object: new_object, offset: new_offset)) |
| 3195 | == VM_PAGE_NULL) { |
| 3196 | vm_object_unlock(new_object); |
| 3197 | |
| 3198 | if (!vm_page_wait(interruptible)) { |
| 3199 | vm_object_deallocate(object: new_object); |
| 3200 | vm_object_deallocate(object: src_object); |
| 3201 | *_result_object = VM_OBJECT_NULL; |
| 3202 | return MACH_SEND_INTERRUPTED; |
| 3203 | } |
| 3204 | vm_object_lock(new_object); |
| 3205 | } |
| 3206 | vm_object_unlock(new_object); |
| 3207 | |
| 3208 | do { |
| 3209 | vm_prot_t prot = VM_PROT_READ; |
| 3210 | vm_page_t _result_page; |
| 3211 | vm_page_t top_page; |
| 3212 | vm_page_t result_page; |
| 3213 | kern_return_t error_code; |
| 3214 | vm_object_t result_page_object; |
| 3215 | |
| 3216 | |
| 3217 | vm_object_lock(src_object); |
| 3218 | |
| 3219 | if (src_object->internal && |
| 3220 | src_object->shadow == VM_OBJECT_NULL && |
| 3221 | (src_object->pager == NULL || |
| 3222 | (VM_COMPRESSOR_PAGER_STATE_GET(src_object, |
| 3223 | src_offset) == |
| 3224 | VM_EXTERNAL_STATE_ABSENT))) { |
| 3225 | boolean_t can_skip_page; |
| 3226 | |
| 3227 | _result_page = vm_page_lookup(object: src_object, |
| 3228 | offset: src_offset); |
| 3229 | if (_result_page == VM_PAGE_NULL) { |
| 3230 | /* |
| 3231 | * This page is neither resident nor |
| 3232 | * compressed and there's no shadow |
| 3233 | * object below "src_object", so this |
| 3234 | * page is really missing. |
| 3235 | * There's no need to zero-fill it just |
| 3236 | * to copy it: let's leave it missing |
| 3237 | * in "new_object" and get zero-filled |
| 3238 | * on demand. |
| 3239 | */ |
| 3240 | can_skip_page = TRUE; |
| 3241 | } else if (workaround_41447923 && |
| 3242 | src_object->pager == NULL && |
| 3243 | _result_page != VM_PAGE_NULL && |
| 3244 | _result_page->vmp_busy && |
| 3245 | _result_page->vmp_absent && |
| 3246 | src_object->purgable == VM_PURGABLE_DENY && |
| 3247 | !src_object->blocked_access) { |
| 3248 | /* |
| 3249 | * This page is "busy" and "absent" |
| 3250 | * but not because we're waiting for |
| 3251 | * it to be decompressed. It must |
| 3252 | * be because it's a "no zero fill" |
| 3253 | * page that is currently not |
| 3254 | * accessible until it gets overwritten |
| 3255 | * by a device driver. |
| 3256 | * Since its initial state would have |
| 3257 | * been "zero-filled", let's leave the |
| 3258 | * copy page missing and get zero-filled |
| 3259 | * on demand. |
| 3260 | */ |
| 3261 | assert(src_object->internal); |
| 3262 | assert(src_object->shadow == NULL); |
| 3263 | assert(src_object->pager == NULL); |
| 3264 | can_skip_page = TRUE; |
| 3265 | vm_page_busy_absent_skipped++; |
| 3266 | } else { |
| 3267 | can_skip_page = FALSE; |
| 3268 | } |
| 3269 | if (can_skip_page) { |
| 3270 | vm_object_unlock(src_object); |
| 3271 | /* free the unused "new_page"... */ |
| 3272 | vm_object_lock(new_object); |
| 3273 | VM_PAGE_FREE(new_page); |
| 3274 | new_page = VM_PAGE_NULL; |
| 3275 | vm_object_unlock(new_object); |
| 3276 | /* ...and go to next page in "src_object" */ |
| 3277 | result = VM_FAULT_SUCCESS; |
| 3278 | break; |
| 3279 | } |
| 3280 | } |
| 3281 | |
| 3282 | vm_object_paging_begin(src_object); |
| 3283 | |
| 3284 | /* cap size at maximum UPL size */ |
| 3285 | upl_size_t cluster_size; |
| 3286 | if (os_convert_overflow(size, &cluster_size)) { |
| 3287 | cluster_size = 0 - (upl_size_t)PAGE_SIZE; |
| 3288 | } |
| 3289 | fault_info.cluster_size = cluster_size; |
| 3290 | |
| 3291 | _result_page = VM_PAGE_NULL; |
| 3292 | result = vm_fault_page(first_object: src_object, first_offset: src_offset, |
| 3293 | VM_PROT_READ, FALSE, |
| 3294 | FALSE, /* page not looked up */ |
| 3295 | protection: &prot, result_page: &_result_page, top_page: &top_page, |
| 3296 | type_of_fault: (int *)0, |
| 3297 | error_code: &error_code, FALSE, fault_info: &fault_info); |
| 3298 | |
| 3299 | switch (result) { |
| 3300 | case VM_FAULT_SUCCESS: |
| 3301 | result_page = _result_page; |
| 3302 | result_page_object = VM_PAGE_OBJECT(result_page); |
| 3303 | |
| 3304 | /* |
| 3305 | * Copy the page to the new object. |
| 3306 | * |
| 3307 | * POLICY DECISION: |
| 3308 | * If result_page is clean, |
| 3309 | * we could steal it instead |
| 3310 | * of copying. |
| 3311 | */ |
| 3312 | |
| 3313 | vm_page_copy(src_page: result_page, dest_page: new_page); |
| 3314 | vm_object_unlock(result_page_object); |
| 3315 | |
| 3316 | /* |
| 3317 | * Let go of both pages (make them |
| 3318 | * not busy, perform wakeup, activate). |
| 3319 | */ |
| 3320 | vm_object_lock(new_object); |
| 3321 | SET_PAGE_DIRTY(new_page, FALSE); |
| 3322 | PAGE_WAKEUP_DONE(new_page); |
| 3323 | vm_object_unlock(new_object); |
| 3324 | |
| 3325 | vm_object_lock(result_page_object); |
| 3326 | PAGE_WAKEUP_DONE(result_page); |
| 3327 | |
| 3328 | vm_page_lockspin_queues(); |
| 3329 | if ((result_page->vmp_q_state == VM_PAGE_ON_SPECULATIVE_Q) || |
| 3330 | (result_page->vmp_q_state == VM_PAGE_NOT_ON_Q)) { |
| 3331 | vm_page_activate(page: result_page); |
| 3332 | } |
| 3333 | vm_page_activate(page: new_page); |
| 3334 | vm_page_unlock_queues(); |
| 3335 | |
| 3336 | /* |
| 3337 | * Release paging references and |
| 3338 | * top-level placeholder page, if any. |
| 3339 | */ |
| 3340 | |
| 3341 | vm_fault_cleanup(object: result_page_object, |
| 3342 | top_page); |
| 3343 | |
| 3344 | break; |
| 3345 | |
| 3346 | case VM_FAULT_RETRY: |
| 3347 | break; |
| 3348 | |
| 3349 | case VM_FAULT_MEMORY_SHORTAGE: |
| 3350 | if (vm_page_wait(interruptible)) { |
| 3351 | break; |
| 3352 | } |
| 3353 | ktriage_record(thread_id: thread_tid(thread: current_thread()), KDBG_TRIAGE_EVENTID(KDBG_TRIAGE_SUBSYS_VM, KDBG_TRIAGE_RESERVED, KDBG_TRIAGE_VM_FAULT_OBJCOPYSLOWLY_MEMORY_SHORTAGE), arg: 0 /* arg */); |
| 3354 | OS_FALLTHROUGH; |
| 3355 | |
| 3356 | case VM_FAULT_INTERRUPTED: |
| 3357 | vm_object_lock(new_object); |
| 3358 | VM_PAGE_FREE(new_page); |
| 3359 | vm_object_unlock(new_object); |
| 3360 | |
| 3361 | vm_object_deallocate(object: new_object); |
| 3362 | vm_object_deallocate(object: src_object); |
| 3363 | *_result_object = VM_OBJECT_NULL; |
| 3364 | return MACH_SEND_INTERRUPTED; |
| 3365 | |
| 3366 | case VM_FAULT_SUCCESS_NO_VM_PAGE: |
| 3367 | /* success but no VM page: fail */ |
| 3368 | vm_object_paging_end(src_object); |
| 3369 | vm_object_unlock(src_object); |
| 3370 | OS_FALLTHROUGH; |
| 3371 | case VM_FAULT_MEMORY_ERROR: |
| 3372 | /* |
| 3373 | * A policy choice: |
| 3374 | * (a) ignore pages that we can't |
| 3375 | * copy |
| 3376 | * (b) return the null object if |
| 3377 | * any page fails [chosen] |
| 3378 | */ |
| 3379 | |
| 3380 | vm_object_lock(new_object); |
| 3381 | VM_PAGE_FREE(new_page); |
| 3382 | vm_object_unlock(new_object); |
| 3383 | |
| 3384 | vm_object_deallocate(object: new_object); |
| 3385 | vm_object_deallocate(object: src_object); |
| 3386 | *_result_object = VM_OBJECT_NULL; |
| 3387 | return error_code ? error_code: |
| 3388 | KERN_MEMORY_ERROR; |
| 3389 | |
| 3390 | default: |
| 3391 | panic("vm_object_copy_slowly: unexpected error" |
| 3392 | " 0x%x from vm_fault_page()\n" , result); |
| 3393 | } |
| 3394 | } while (result != VM_FAULT_SUCCESS); |
| 3395 | } |
| 3396 | |
| 3397 | /* |
| 3398 | * Lose the extra reference, and return our object. |
| 3399 | */ |
| 3400 | vm_object_deallocate(object: src_object); |
| 3401 | *_result_object = new_object; |
| 3402 | return KERN_SUCCESS; |
| 3403 | } |
| 3404 | |
| 3405 | /* |
| 3406 | * Routine: vm_object_copy_quickly |
| 3407 | * |
| 3408 | * Purpose: |
| 3409 | * Copy the specified range of the source virtual |
| 3410 | * memory object, if it can be done without waiting |
| 3411 | * for user-generated events. |
| 3412 | * |
| 3413 | * Results: |
| 3414 | * If the copy is successful, the copy is returned in |
| 3415 | * the arguments; otherwise, the arguments are not |
| 3416 | * affected. |
| 3417 | * |
| 3418 | * In/out conditions: |
| 3419 | * The object should be unlocked on entry and exit. |
| 3420 | */ |
| 3421 | |
| 3422 | /*ARGSUSED*/ |
| 3423 | __private_extern__ boolean_t |
| 3424 | vm_object_copy_quickly( |
| 3425 | vm_object_t object, /* IN */ |
| 3426 | __unused vm_object_offset_t offset, /* IN */ |
| 3427 | __unused vm_object_size_t size, /* IN */ |
| 3428 | boolean_t *_src_needs_copy, /* OUT */ |
| 3429 | boolean_t *_dst_needs_copy) /* OUT */ |
| 3430 | { |
| 3431 | memory_object_copy_strategy_t copy_strategy; |
| 3432 | |
| 3433 | if (object == VM_OBJECT_NULL) { |
| 3434 | *_src_needs_copy = FALSE; |
| 3435 | *_dst_needs_copy = FALSE; |
| 3436 | return TRUE; |
| 3437 | } |
| 3438 | |
| 3439 | vm_object_lock(object); |
| 3440 | |
| 3441 | copy_strategy = object->copy_strategy; |
| 3442 | |
| 3443 | switch (copy_strategy) { |
| 3444 | case MEMORY_OBJECT_COPY_SYMMETRIC: |
| 3445 | |
| 3446 | /* |
| 3447 | * Symmetric copy strategy. |
| 3448 | * Make another reference to the object. |
| 3449 | * Leave object/offset unchanged. |
| 3450 | */ |
| 3451 | |
| 3452 | vm_object_reference_locked(object); |
| 3453 | VM_OBJECT_SET_SHADOWED(object, TRUE); |
| 3454 | vm_object_unlock(object); |
| 3455 | |
| 3456 | /* |
| 3457 | * Both source and destination must make |
| 3458 | * shadows, and the source must be made |
| 3459 | * read-only if not already. |
| 3460 | */ |
| 3461 | |
| 3462 | *_src_needs_copy = TRUE; |
| 3463 | *_dst_needs_copy = TRUE; |
| 3464 | |
| 3465 | break; |
| 3466 | |
| 3467 | case MEMORY_OBJECT_COPY_DELAY: |
| 3468 | vm_object_unlock(object); |
| 3469 | return FALSE; |
| 3470 | |
| 3471 | default: |
| 3472 | vm_object_unlock(object); |
| 3473 | return FALSE; |
| 3474 | } |
| 3475 | return TRUE; |
| 3476 | } |
| 3477 | |
| 3478 | static uint32_t copy_delayed_lock_collisions; |
| 3479 | static uint32_t copy_delayed_max_collisions; |
| 3480 | static uint32_t copy_delayed_lock_contention; |
| 3481 | static uint32_t copy_delayed_protect_iterate; |
| 3482 | |
| 3483 | /* |
| 3484 | * Routine: vm_object_copy_delayed [internal] |
| 3485 | * |
| 3486 | * Description: |
| 3487 | * Copy the specified virtual memory object, using |
| 3488 | * the asymmetric copy-on-write algorithm. |
| 3489 | * |
| 3490 | * In/out conditions: |
| 3491 | * The src_object must be locked on entry. It will be unlocked |
| 3492 | * on exit - so the caller must also hold a reference to it. |
| 3493 | * |
| 3494 | * This routine will not block waiting for user-generated |
| 3495 | * events. It is not interruptible. |
| 3496 | */ |
| 3497 | __private_extern__ vm_object_t |
| 3498 | vm_object_copy_delayed( |
| 3499 | vm_object_t src_object, |
| 3500 | vm_object_offset_t src_offset, |
| 3501 | vm_object_size_t size, |
| 3502 | boolean_t src_object_shared) |
| 3503 | { |
| 3504 | vm_object_t new_copy = VM_OBJECT_NULL; |
| 3505 | vm_object_t old_copy; |
| 3506 | vm_page_t p; |
| 3507 | vm_object_size_t copy_size = src_offset + size; |
| 3508 | pmap_flush_context pmap_flush_context_storage; |
| 3509 | boolean_t delayed_pmap_flush = FALSE; |
| 3510 | |
| 3511 | |
| 3512 | uint32_t collisions = 0; |
| 3513 | /* |
| 3514 | * The user-level memory manager wants to see all of the changes |
| 3515 | * to this object, but it has promised not to make any changes on |
| 3516 | * its own. |
| 3517 | * |
| 3518 | * Perform an asymmetric copy-on-write, as follows: |
| 3519 | * Create a new object, called a "copy object" to hold |
| 3520 | * pages modified by the new mapping (i.e., the copy, |
| 3521 | * not the original mapping). |
| 3522 | * Record the original object as the backing object for |
| 3523 | * the copy object. If the original mapping does not |
| 3524 | * change a page, it may be used read-only by the copy. |
| 3525 | * Record the copy object in the original object. |
| 3526 | * When the original mapping causes a page to be modified, |
| 3527 | * it must be copied to a new page that is "pushed" to |
| 3528 | * the copy object. |
| 3529 | * Mark the new mapping (the copy object) copy-on-write. |
| 3530 | * This makes the copy object itself read-only, allowing |
| 3531 | * it to be reused if the original mapping makes no |
| 3532 | * changes, and simplifying the synchronization required |
| 3533 | * in the "push" operation described above. |
| 3534 | * |
| 3535 | * The copy-on-write is said to be assymetric because the original |
| 3536 | * object is *not* marked copy-on-write. A copied page is pushed |
| 3537 | * to the copy object, regardless which party attempted to modify |
| 3538 | * the page. |
| 3539 | * |
| 3540 | * Repeated asymmetric copy operations may be done. If the |
| 3541 | * original object has not been changed since the last copy, its |
| 3542 | * copy object can be reused. Otherwise, a new copy object can be |
| 3543 | * inserted between the original object and its previous copy |
| 3544 | * object. Since any copy object is read-only, this cannot affect |
| 3545 | * affect the contents of the previous copy object. |
| 3546 | * |
| 3547 | * Note that a copy object is higher in the object tree than the |
| 3548 | * original object; therefore, use of the copy object recorded in |
| 3549 | * the original object must be done carefully, to avoid deadlock. |
| 3550 | */ |
| 3551 | |
| 3552 | copy_size = vm_object_round_page(copy_size); |
| 3553 | Retry: |
| 3554 | |
| 3555 | /* |
| 3556 | * Wait for paging in progress. |
| 3557 | */ |
| 3558 | if (!src_object->true_share && |
| 3559 | (src_object->paging_in_progress != 0 || |
| 3560 | src_object->activity_in_progress != 0)) { |
| 3561 | if (src_object_shared == TRUE) { |
| 3562 | vm_object_unlock(src_object); |
| 3563 | vm_object_lock(src_object); |
| 3564 | src_object_shared = FALSE; |
| 3565 | goto Retry; |
| 3566 | } |
| 3567 | vm_object_paging_wait(src_object, THREAD_UNINT); |
| 3568 | } |
| 3569 | /* |
| 3570 | * See whether we can reuse the result of a previous |
| 3571 | * copy operation. |
| 3572 | */ |
| 3573 | |
| 3574 | old_copy = src_object->vo_copy; |
| 3575 | if (old_copy != VM_OBJECT_NULL) { |
| 3576 | int lock_granted; |
| 3577 | |
| 3578 | /* |
| 3579 | * Try to get the locks (out of order) |
| 3580 | */ |
| 3581 | if (src_object_shared == TRUE) { |
| 3582 | lock_granted = vm_object_lock_try_shared(old_copy); |
| 3583 | } else { |
| 3584 | lock_granted = vm_object_lock_try(old_copy); |
| 3585 | } |
| 3586 | |
| 3587 | if (!lock_granted) { |
| 3588 | vm_object_unlock(src_object); |
| 3589 | |
| 3590 | if (collisions++ == 0) { |
| 3591 | copy_delayed_lock_contention++; |
| 3592 | } |
| 3593 | mutex_pause(collisions); |
| 3594 | |
| 3595 | /* Heisenberg Rules */ |
| 3596 | copy_delayed_lock_collisions++; |
| 3597 | |
| 3598 | if (collisions > copy_delayed_max_collisions) { |
| 3599 | copy_delayed_max_collisions = collisions; |
| 3600 | } |
| 3601 | |
| 3602 | if (src_object_shared == TRUE) { |
| 3603 | vm_object_lock_shared(src_object); |
| 3604 | } else { |
| 3605 | vm_object_lock(src_object); |
| 3606 | } |
| 3607 | |
| 3608 | goto Retry; |
| 3609 | } |
| 3610 | |
| 3611 | /* |
| 3612 | * Determine whether the old copy object has |
| 3613 | * been modified. |
| 3614 | */ |
| 3615 | |
| 3616 | if (old_copy->resident_page_count == 0 && |
| 3617 | !old_copy->pager_created) { |
| 3618 | /* |
| 3619 | * It has not been modified. |
| 3620 | * |
| 3621 | * Return another reference to |
| 3622 | * the existing copy-object if |
| 3623 | * we can safely grow it (if |
| 3624 | * needed). |
| 3625 | */ |
| 3626 | |
| 3627 | if (old_copy->vo_size < copy_size) { |
| 3628 | if (src_object_shared == TRUE) { |
| 3629 | vm_object_unlock(old_copy); |
| 3630 | vm_object_unlock(src_object); |
| 3631 | |
| 3632 | vm_object_lock(src_object); |
| 3633 | src_object_shared = FALSE; |
| 3634 | goto Retry; |
| 3635 | } |
| 3636 | /* |
| 3637 | * We can't perform a delayed copy if any of the |
| 3638 | * pages in the extended range are wired (because |
| 3639 | * we can't safely take write permission away from |
| 3640 | * wired pages). If the pages aren't wired, then |
| 3641 | * go ahead and protect them. |
| 3642 | */ |
| 3643 | copy_delayed_protect_iterate++; |
| 3644 | |
| 3645 | pmap_flush_context_init(&pmap_flush_context_storage); |
| 3646 | delayed_pmap_flush = FALSE; |
| 3647 | |
| 3648 | vm_page_queue_iterate(&src_object->memq, p, vmp_listq) { |
| 3649 | if (!p->vmp_fictitious && |
| 3650 | p->vmp_offset >= old_copy->vo_size && |
| 3651 | p->vmp_offset < copy_size) { |
| 3652 | if (VM_PAGE_WIRED(p)) { |
| 3653 | vm_object_unlock(old_copy); |
| 3654 | vm_object_unlock(src_object); |
| 3655 | |
| 3656 | if (new_copy != VM_OBJECT_NULL) { |
| 3657 | vm_object_unlock(new_copy); |
| 3658 | vm_object_deallocate(object: new_copy); |
| 3659 | } |
| 3660 | if (delayed_pmap_flush == TRUE) { |
| 3661 | pmap_flush(&pmap_flush_context_storage); |
| 3662 | } |
| 3663 | |
| 3664 | return VM_OBJECT_NULL; |
| 3665 | } else { |
| 3666 | pmap_page_protect_options(phys: VM_PAGE_GET_PHYS_PAGE(m: p), |
| 3667 | prot: (p->vmp_xpmapped ? (VM_PROT_READ | VM_PROT_EXECUTE) : VM_PROT_READ), |
| 3668 | PMAP_OPTIONS_NOFLUSH, arg: (void *)&pmap_flush_context_storage); |
| 3669 | delayed_pmap_flush = TRUE; |
| 3670 | } |
| 3671 | } |
| 3672 | } |
| 3673 | if (delayed_pmap_flush == TRUE) { |
| 3674 | pmap_flush(&pmap_flush_context_storage); |
| 3675 | } |
| 3676 | |
| 3677 | assertf(page_aligned(copy_size), |
| 3678 | "object %p size 0x%llx" , |
| 3679 | old_copy, (uint64_t)copy_size); |
| 3680 | old_copy->vo_size = copy_size; |
| 3681 | |
| 3682 | /* |
| 3683 | * src_object's "vo_copy" object now covers |
| 3684 | * a larger portion of src_object. |
| 3685 | * Increment src_object's "vo_copy_version" |
| 3686 | * to make any racing vm_fault() on |
| 3687 | * "src_object" re-check if it needs to honor |
| 3688 | * any new copy-on-write obligation. |
| 3689 | */ |
| 3690 | src_object->vo_copy_version++; |
| 3691 | } |
| 3692 | if (src_object_shared == TRUE) { |
| 3693 | vm_object_reference_shared(old_copy); |
| 3694 | } else { |
| 3695 | vm_object_reference_locked(old_copy); |
| 3696 | } |
| 3697 | vm_object_unlock(old_copy); |
| 3698 | vm_object_unlock(src_object); |
| 3699 | |
| 3700 | if (new_copy != VM_OBJECT_NULL) { |
| 3701 | vm_object_unlock(new_copy); |
| 3702 | vm_object_deallocate(object: new_copy); |
| 3703 | } |
| 3704 | return old_copy; |
| 3705 | } |
| 3706 | |
| 3707 | |
| 3708 | |
| 3709 | /* |
| 3710 | * Adjust the size argument so that the newly-created |
| 3711 | * copy object will be large enough to back either the |
| 3712 | * old copy object or the new mapping. |
| 3713 | */ |
| 3714 | if (old_copy->vo_size > copy_size) { |
| 3715 | copy_size = old_copy->vo_size; |
| 3716 | } |
| 3717 | |
| 3718 | if (new_copy == VM_OBJECT_NULL) { |
| 3719 | vm_object_unlock(old_copy); |
| 3720 | vm_object_unlock(src_object); |
| 3721 | new_copy = vm_object_allocate(size: copy_size); |
| 3722 | vm_object_lock(src_object); |
| 3723 | vm_object_lock(new_copy); |
| 3724 | |
| 3725 | src_object_shared = FALSE; |
| 3726 | goto Retry; |
| 3727 | } |
| 3728 | assertf(page_aligned(copy_size), |
| 3729 | "object %p size 0x%llx" , |
| 3730 | new_copy, (uint64_t)copy_size); |
| 3731 | new_copy->vo_size = copy_size; |
| 3732 | |
| 3733 | /* |
| 3734 | * The copy-object is always made large enough to |
| 3735 | * completely shadow the original object, since |
| 3736 | * it may have several users who want to shadow |
| 3737 | * the original object at different points. |
| 3738 | */ |
| 3739 | |
| 3740 | assert((old_copy->shadow == src_object) && |
| 3741 | (old_copy->vo_shadow_offset == (vm_object_offset_t) 0)); |
| 3742 | } else if (new_copy == VM_OBJECT_NULL) { |
| 3743 | vm_object_unlock(src_object); |
| 3744 | new_copy = vm_object_allocate(size: copy_size); |
| 3745 | vm_object_lock(src_object); |
| 3746 | vm_object_lock(new_copy); |
| 3747 | |
| 3748 | src_object_shared = FALSE; |
| 3749 | goto Retry; |
| 3750 | } |
| 3751 | |
| 3752 | /* |
| 3753 | * We now have the src object locked, and the new copy object |
| 3754 | * allocated and locked (and potentially the old copy locked). |
| 3755 | * Before we go any further, make sure we can still perform |
| 3756 | * a delayed copy, as the situation may have changed. |
| 3757 | * |
| 3758 | * Specifically, we can't perform a delayed copy if any of the |
| 3759 | * pages in the range are wired (because we can't safely take |
| 3760 | * write permission away from wired pages). If the pages aren't |
| 3761 | * wired, then go ahead and protect them. |
| 3762 | */ |
| 3763 | copy_delayed_protect_iterate++; |
| 3764 | |
| 3765 | pmap_flush_context_init(&pmap_flush_context_storage); |
| 3766 | delayed_pmap_flush = FALSE; |
| 3767 | |
| 3768 | vm_page_queue_iterate(&src_object->memq, p, vmp_listq) { |
| 3769 | if (!p->vmp_fictitious && p->vmp_offset < copy_size) { |
| 3770 | if (VM_PAGE_WIRED(p)) { |
| 3771 | if (old_copy) { |
| 3772 | vm_object_unlock(old_copy); |
| 3773 | } |
| 3774 | vm_object_unlock(src_object); |
| 3775 | vm_object_unlock(new_copy); |
| 3776 | vm_object_deallocate(object: new_copy); |
| 3777 | |
| 3778 | if (delayed_pmap_flush == TRUE) { |
| 3779 | pmap_flush(&pmap_flush_context_storage); |
| 3780 | } |
| 3781 | |
| 3782 | return VM_OBJECT_NULL; |
| 3783 | } else { |
| 3784 | pmap_page_protect_options(phys: VM_PAGE_GET_PHYS_PAGE(m: p), |
| 3785 | prot: (p->vmp_xpmapped ? (VM_PROT_READ | VM_PROT_EXECUTE) : VM_PROT_READ), |
| 3786 | PMAP_OPTIONS_NOFLUSH, arg: (void *)&pmap_flush_context_storage); |
| 3787 | delayed_pmap_flush = TRUE; |
| 3788 | } |
| 3789 | } |
| 3790 | } |
| 3791 | if (delayed_pmap_flush == TRUE) { |
| 3792 | pmap_flush(&pmap_flush_context_storage); |
| 3793 | } |
| 3794 | |
| 3795 | if (old_copy != VM_OBJECT_NULL) { |
| 3796 | /* |
| 3797 | * Make the old copy-object shadow the new one. |
| 3798 | * It will receive no more pages from the original |
| 3799 | * object. |
| 3800 | */ |
| 3801 | |
| 3802 | /* remove ref. from old_copy */ |
| 3803 | vm_object_lock_assert_exclusive(src_object); |
| 3804 | src_object->ref_count--; |
| 3805 | assert(src_object->ref_count > 0); |
| 3806 | vm_object_lock_assert_exclusive(old_copy); |
| 3807 | old_copy->shadow = new_copy; |
| 3808 | vm_object_lock_assert_exclusive(new_copy); |
| 3809 | assert(new_copy->ref_count > 0); |
| 3810 | new_copy->ref_count++; /* for old_copy->shadow ref. */ |
| 3811 | |
| 3812 | vm_object_unlock(old_copy); /* done with old_copy */ |
| 3813 | } |
| 3814 | |
| 3815 | /* |
| 3816 | * Point the new copy at the existing object. |
| 3817 | */ |
| 3818 | vm_object_lock_assert_exclusive(new_copy); |
| 3819 | new_copy->shadow = src_object; |
| 3820 | new_copy->vo_shadow_offset = 0; |
| 3821 | VM_OBJECT_SET_SHADOWED(object: new_copy, TRUE); /* caller must set needs_copy */ |
| 3822 | |
| 3823 | vm_object_lock_assert_exclusive(src_object); |
| 3824 | vm_object_reference_locked(src_object); |
| 3825 | VM_OBJECT_COPY_SET(object: src_object, copy: new_copy); |
| 3826 | vm_object_unlock(src_object); |
| 3827 | vm_object_unlock(new_copy); |
| 3828 | |
| 3829 | return new_copy; |
| 3830 | } |
| 3831 | |
| 3832 | /* |
| 3833 | * Routine: vm_object_copy_strategically |
| 3834 | * |
| 3835 | * Purpose: |
| 3836 | * Perform a copy according to the source object's |
| 3837 | * declared strategy. This operation may block, |
| 3838 | * and may be interrupted. |
| 3839 | */ |
| 3840 | __private_extern__ kern_return_t |
| 3841 | vm_object_copy_strategically( |
| 3842 | vm_object_t src_object, |
| 3843 | vm_object_offset_t src_offset, |
| 3844 | vm_object_size_t size, |
| 3845 | bool forking, |
| 3846 | vm_object_t *dst_object, /* OUT */ |
| 3847 | vm_object_offset_t *dst_offset, /* OUT */ |
| 3848 | boolean_t *dst_needs_copy) /* OUT */ |
| 3849 | { |
| 3850 | boolean_t result; |
| 3851 | boolean_t interruptible = THREAD_ABORTSAFE; /* XXX */ |
| 3852 | boolean_t object_lock_shared = FALSE; |
| 3853 | memory_object_copy_strategy_t copy_strategy; |
| 3854 | |
| 3855 | assert(src_object != VM_OBJECT_NULL); |
| 3856 | |
| 3857 | copy_strategy = src_object->copy_strategy; |
| 3858 | |
| 3859 | if (copy_strategy == MEMORY_OBJECT_COPY_DELAY) { |
| 3860 | vm_object_lock_shared(src_object); |
| 3861 | object_lock_shared = TRUE; |
| 3862 | } else { |
| 3863 | vm_object_lock(src_object); |
| 3864 | } |
| 3865 | |
| 3866 | /* |
| 3867 | * The copy strategy is only valid if the memory manager |
| 3868 | * is "ready". Internal objects are always ready. |
| 3869 | */ |
| 3870 | |
| 3871 | while (!src_object->internal && !src_object->pager_ready) { |
| 3872 | wait_result_t wait_result; |
| 3873 | |
| 3874 | if (object_lock_shared == TRUE) { |
| 3875 | vm_object_unlock(src_object); |
| 3876 | vm_object_lock(src_object); |
| 3877 | object_lock_shared = FALSE; |
| 3878 | continue; |
| 3879 | } |
| 3880 | wait_result = vm_object_sleep( object: src_object, |
| 3881 | VM_OBJECT_EVENT_PAGER_READY, |
| 3882 | interruptible); |
| 3883 | if (wait_result != THREAD_AWAKENED) { |
| 3884 | vm_object_unlock(src_object); |
| 3885 | *dst_object = VM_OBJECT_NULL; |
| 3886 | *dst_offset = 0; |
| 3887 | *dst_needs_copy = FALSE; |
| 3888 | return MACH_SEND_INTERRUPTED; |
| 3889 | } |
| 3890 | } |
| 3891 | |
| 3892 | /* |
| 3893 | * Use the appropriate copy strategy. |
| 3894 | */ |
| 3895 | |
| 3896 | if (copy_strategy == MEMORY_OBJECT_COPY_DELAY_FORK) { |
| 3897 | if (forking) { |
| 3898 | copy_strategy = MEMORY_OBJECT_COPY_DELAY; |
| 3899 | } else { |
| 3900 | copy_strategy = MEMORY_OBJECT_COPY_NONE; |
| 3901 | if (object_lock_shared) { |
| 3902 | vm_object_unlock(src_object); |
| 3903 | vm_object_lock(src_object); |
| 3904 | object_lock_shared = FALSE; |
| 3905 | } |
| 3906 | } |
| 3907 | } |
| 3908 | |
| 3909 | switch (copy_strategy) { |
| 3910 | case MEMORY_OBJECT_COPY_DELAY: |
| 3911 | *dst_object = vm_object_copy_delayed(src_object, |
| 3912 | src_offset, size, src_object_shared: object_lock_shared); |
| 3913 | if (*dst_object != VM_OBJECT_NULL) { |
| 3914 | *dst_offset = src_offset; |
| 3915 | *dst_needs_copy = TRUE; |
| 3916 | result = KERN_SUCCESS; |
| 3917 | break; |
| 3918 | } |
| 3919 | vm_object_lock(src_object); |
| 3920 | OS_FALLTHROUGH; /* fall thru when delayed copy not allowed */ |
| 3921 | |
| 3922 | case MEMORY_OBJECT_COPY_NONE: |
| 3923 | result = vm_object_copy_slowly(src_object, src_offset, size, |
| 3924 | interruptible, result_object: dst_object); |
| 3925 | if (result == KERN_SUCCESS) { |
| 3926 | *dst_offset = src_offset - vm_object_trunc_page(src_offset); |
| 3927 | *dst_needs_copy = FALSE; |
| 3928 | } |
| 3929 | break; |
| 3930 | |
| 3931 | case MEMORY_OBJECT_COPY_SYMMETRIC: |
| 3932 | vm_object_unlock(src_object); |
| 3933 | result = KERN_MEMORY_RESTART_COPY; |
| 3934 | break; |
| 3935 | |
| 3936 | default: |
| 3937 | panic("copy_strategically: bad strategy %d for object %p" , |
| 3938 | copy_strategy, src_object); |
| 3939 | result = KERN_INVALID_ARGUMENT; |
| 3940 | } |
| 3941 | return result; |
| 3942 | } |
| 3943 | |
| 3944 | /* |
| 3945 | * vm_object_shadow: |
| 3946 | * |
| 3947 | * Create a new object which is backed by the |
| 3948 | * specified existing object range. The source |
| 3949 | * object reference is deallocated. |
| 3950 | * |
| 3951 | * The new object and offset into that object |
| 3952 | * are returned in the source parameters. |
| 3953 | */ |
| 3954 | boolean_t vm_object_shadow_check = TRUE; |
| 3955 | uint64_t vm_object_shadow_forced = 0; |
| 3956 | uint64_t vm_object_shadow_skipped = 0; |
| 3957 | |
| 3958 | __private_extern__ boolean_t |
| 3959 | vm_object_shadow( |
| 3960 | vm_object_t *object, /* IN/OUT */ |
| 3961 | vm_object_offset_t *offset, /* IN/OUT */ |
| 3962 | vm_object_size_t length, |
| 3963 | boolean_t always_shadow) |
| 3964 | { |
| 3965 | vm_object_t source; |
| 3966 | vm_object_t result; |
| 3967 | |
| 3968 | source = *object; |
| 3969 | assert(source != VM_OBJECT_NULL); |
| 3970 | if (source == VM_OBJECT_NULL) { |
| 3971 | return FALSE; |
| 3972 | } |
| 3973 | |
| 3974 | assert(source->copy_strategy == MEMORY_OBJECT_COPY_SYMMETRIC); |
| 3975 | |
| 3976 | /* |
| 3977 | * Determine if we really need a shadow. |
| 3978 | * |
| 3979 | * If the source object is larger than what we are trying |
| 3980 | * to create, then force the shadow creation even if the |
| 3981 | * ref count is 1. This will allow us to [potentially] |
| 3982 | * collapse the underlying object away in the future |
| 3983 | * (freeing up the extra data it might contain and that |
| 3984 | * we don't need). |
| 3985 | */ |
| 3986 | |
| 3987 | assert(source->copy_strategy != MEMORY_OBJECT_COPY_NONE); /* Purgeable objects shouldn't have shadow objects. */ |
| 3988 | |
| 3989 | /* |
| 3990 | * The following optimization does not work in the context of submaps |
| 3991 | * (the shared region, in particular). |
| 3992 | * This object might have only 1 reference (in the submap) but that |
| 3993 | * submap can itself be mapped multiple times, so the object is |
| 3994 | * actually indirectly referenced more than once... |
| 3995 | * The caller can specify to "always_shadow" to bypass the optimization. |
| 3996 | */ |
| 3997 | if (vm_object_shadow_check && |
| 3998 | source->vo_size == length && |
| 3999 | source->ref_count == 1) { |
| 4000 | if (always_shadow) { |
| 4001 | vm_object_shadow_forced++; |
| 4002 | } else { |
| 4003 | /* |
| 4004 | * Lock the object and check again. |
| 4005 | * We also check to see if there's |
| 4006 | * a shadow or copy object involved. |
| 4007 | * We can't do that earlier because |
| 4008 | * without the object locked, there |
| 4009 | * could be a collapse and the chain |
| 4010 | * gets modified leaving us with an |
| 4011 | * invalid pointer. |
| 4012 | */ |
| 4013 | vm_object_lock(source); |
| 4014 | if (source->vo_size == length && |
| 4015 | source->ref_count == 1 && |
| 4016 | (source->shadow == VM_OBJECT_NULL || |
| 4017 | source->shadow->vo_copy == VM_OBJECT_NULL)) { |
| 4018 | VM_OBJECT_SET_SHADOWED(object: source, FALSE); |
| 4019 | vm_object_unlock(source); |
| 4020 | vm_object_shadow_skipped++; |
| 4021 | return FALSE; |
| 4022 | } |
| 4023 | /* things changed while we were locking "source"... */ |
| 4024 | vm_object_unlock(source); |
| 4025 | } |
| 4026 | } |
| 4027 | |
| 4028 | /* |
| 4029 | * *offset is the map entry's offset into the VM object and |
| 4030 | * is aligned to the map's page size. |
| 4031 | * VM objects need to be aligned to the system's page size. |
| 4032 | * Record the necessary adjustment and re-align the offset so |
| 4033 | * that result->vo_shadow_offset is properly page-aligned. |
| 4034 | */ |
| 4035 | vm_object_offset_t offset_adjustment; |
| 4036 | offset_adjustment = *offset - vm_object_trunc_page(*offset); |
| 4037 | length = vm_object_round_page(length + offset_adjustment); |
| 4038 | *offset = vm_object_trunc_page(*offset); |
| 4039 | |
| 4040 | /* |
| 4041 | * Allocate a new object with the given length |
| 4042 | */ |
| 4043 | |
| 4044 | if ((result = vm_object_allocate(size: length)) == VM_OBJECT_NULL) { |
| 4045 | panic("vm_object_shadow: no object for shadowing" ); |
| 4046 | } |
| 4047 | |
| 4048 | /* |
| 4049 | * The new object shadows the source object, adding |
| 4050 | * a reference to it. Our caller changes his reference |
| 4051 | * to point to the new object, removing a reference to |
| 4052 | * the source object. Net result: no change of reference |
| 4053 | * count. |
| 4054 | */ |
| 4055 | result->shadow = source; |
| 4056 | |
| 4057 | /* |
| 4058 | * Store the offset into the source object, |
| 4059 | * and fix up the offset into the new object. |
| 4060 | */ |
| 4061 | |
| 4062 | result->vo_shadow_offset = *offset; |
| 4063 | assertf(page_aligned(result->vo_shadow_offset), |
| 4064 | "result %p shadow offset 0x%llx" , |
| 4065 | result, result->vo_shadow_offset); |
| 4066 | |
| 4067 | /* |
| 4068 | * Return the new things |
| 4069 | */ |
| 4070 | |
| 4071 | *offset = 0; |
| 4072 | if (offset_adjustment) { |
| 4073 | /* |
| 4074 | * Make the map entry point to the equivalent offset |
| 4075 | * in the new object. |
| 4076 | */ |
| 4077 | DEBUG4K_COPY("adjusting offset @ %p from 0x%llx to 0x%llx for object %p length: 0x%llx\n" , offset, *offset, *offset + offset_adjustment, result, length); |
| 4078 | *offset += offset_adjustment; |
| 4079 | } |
| 4080 | *object = result; |
| 4081 | return TRUE; |
| 4082 | } |
| 4083 | |
| 4084 | /* |
| 4085 | * The relationship between vm_object structures and |
| 4086 | * the memory_object requires careful synchronization. |
| 4087 | * |
| 4088 | * All associations are created by memory_object_create_named |
| 4089 | * for external pagers and vm_object_compressor_pager_create for internal |
| 4090 | * objects as follows: |
| 4091 | * |
| 4092 | * pager: the memory_object itself, supplied by |
| 4093 | * the user requesting a mapping (or the kernel, |
| 4094 | * when initializing internal objects); the |
| 4095 | * kernel simulates holding send rights by keeping |
| 4096 | * a port reference; |
| 4097 | * |
| 4098 | * pager_request: |
| 4099 | * the memory object control port, |
| 4100 | * created by the kernel; the kernel holds |
| 4101 | * receive (and ownership) rights to this |
| 4102 | * port, but no other references. |
| 4103 | * |
| 4104 | * When initialization is complete, the "initialized" field |
| 4105 | * is asserted. Other mappings using a particular memory object, |
| 4106 | * and any references to the vm_object gained through the |
| 4107 | * port association must wait for this initialization to occur. |
| 4108 | * |
| 4109 | * In order to allow the memory manager to set attributes before |
| 4110 | * requests (notably virtual copy operations, but also data or |
| 4111 | * unlock requests) are made, a "ready" attribute is made available. |
| 4112 | * Only the memory manager may affect the value of this attribute. |
| 4113 | * Its value does not affect critical kernel functions, such as |
| 4114 | * internal object initialization or destruction. [Furthermore, |
| 4115 | * memory objects created by the kernel are assumed to be ready |
| 4116 | * immediately; the default memory manager need not explicitly |
| 4117 | * set the "ready" attribute.] |
| 4118 | * |
| 4119 | * [Both the "initialized" and "ready" attribute wait conditions |
| 4120 | * use the "pager" field as the wait event.] |
| 4121 | * |
| 4122 | * The port associations can be broken down by any of the |
| 4123 | * following routines: |
| 4124 | * vm_object_terminate: |
| 4125 | * No references to the vm_object remain, and |
| 4126 | * the object cannot (or will not) be cached. |
| 4127 | * This is the normal case, and is done even |
| 4128 | * though one of the other cases has already been |
| 4129 | * done. |
| 4130 | * memory_object_destroy: |
| 4131 | * The memory manager has requested that the |
| 4132 | * kernel relinquish references to the memory |
| 4133 | * object. [The memory manager may not want to |
| 4134 | * destroy the memory object, but may wish to |
| 4135 | * refuse or tear down existing memory mappings.] |
| 4136 | * |
| 4137 | * Each routine that breaks an association must break all of |
| 4138 | * them at once. At some later time, that routine must clear |
| 4139 | * the pager field and release the memory object references. |
| 4140 | * [Furthermore, each routine must cope with the simultaneous |
| 4141 | * or previous operations of the others.] |
| 4142 | * |
| 4143 | * Because the pager field may be cleared spontaneously, it |
| 4144 | * cannot be used to determine whether a memory object has |
| 4145 | * ever been associated with a particular vm_object. [This |
| 4146 | * knowledge is important to the shadow object mechanism.] |
| 4147 | * For this reason, an additional "created" attribute is |
| 4148 | * provided. |
| 4149 | * |
| 4150 | * During various paging operations, the pager reference found in the |
| 4151 | * vm_object must be valid. To prevent this from being released, |
| 4152 | * (other than being removed, i.e., made null), routines may use |
| 4153 | * the vm_object_paging_begin/end routines [actually, macros]. |
| 4154 | * The implementation uses the "paging_in_progress" and "wanted" fields. |
| 4155 | * [Operations that alter the validity of the pager values include the |
| 4156 | * termination routines and vm_object_collapse.] |
| 4157 | */ |
| 4158 | |
| 4159 | |
| 4160 | /* |
| 4161 | * Routine: vm_object_memory_object_associate |
| 4162 | * Purpose: |
| 4163 | * Associate a VM object to the given pager. |
| 4164 | * If a VM object is not provided, create one. |
| 4165 | * Initialize the pager. |
| 4166 | */ |
| 4167 | vm_object_t |
| 4168 | vm_object_memory_object_associate( |
| 4169 | memory_object_t , |
| 4170 | vm_object_t object, |
| 4171 | vm_object_size_t size, |
| 4172 | boolean_t named) |
| 4173 | { |
| 4174 | memory_object_control_t control; |
| 4175 | |
| 4176 | assert(pager != MEMORY_OBJECT_NULL); |
| 4177 | |
| 4178 | if (object != VM_OBJECT_NULL) { |
| 4179 | vm_object_lock(object); |
| 4180 | assert(object->internal); |
| 4181 | assert(object->pager_created); |
| 4182 | assert(!object->pager_initialized); |
| 4183 | assert(!object->pager_ready); |
| 4184 | assert(object->pager_trusted); |
| 4185 | } else { |
| 4186 | object = vm_object_allocate(size); |
| 4187 | assert(object != VM_OBJECT_NULL); |
| 4188 | vm_object_lock(object); |
| 4189 | VM_OBJECT_SET_INTERNAL(object, FALSE); |
| 4190 | VM_OBJECT_SET_PAGER_TRUSTED(object, FALSE); |
| 4191 | /* copy strategy invalid until set by memory manager */ |
| 4192 | object->copy_strategy = MEMORY_OBJECT_COPY_INVALID; |
| 4193 | } |
| 4194 | |
| 4195 | /* |
| 4196 | * Allocate request port. |
| 4197 | */ |
| 4198 | |
| 4199 | control = memory_object_control_allocate(object); |
| 4200 | assert(control != MEMORY_OBJECT_CONTROL_NULL); |
| 4201 | |
| 4202 | assert(!object->pager_ready); |
| 4203 | assert(!object->pager_initialized); |
| 4204 | assert(object->pager == NULL); |
| 4205 | assert(object->pager_control == NULL); |
| 4206 | |
| 4207 | /* |
| 4208 | * Copy the reference we were given. |
| 4209 | */ |
| 4210 | |
| 4211 | memory_object_reference(object: pager); |
| 4212 | VM_OBJECT_SET_PAGER_CREATED(object, TRUE); |
| 4213 | object->pager = pager; |
| 4214 | object->pager_control = control; |
| 4215 | VM_OBJECT_SET_PAGER_READY(object, FALSE); |
| 4216 | |
| 4217 | vm_object_unlock(object); |
| 4218 | |
| 4219 | /* |
| 4220 | * Let the pager know we're using it. |
| 4221 | */ |
| 4222 | |
| 4223 | (void) memory_object_init(memory_object: pager, |
| 4224 | memory_control: object->pager_control, |
| 4225 | PAGE_SIZE); |
| 4226 | |
| 4227 | vm_object_lock(object); |
| 4228 | if (named) { |
| 4229 | VM_OBJECT_SET_NAMED(object, TRUE); |
| 4230 | } |
| 4231 | if (object->internal) { |
| 4232 | VM_OBJECT_SET_PAGER_READY(object, TRUE); |
| 4233 | vm_object_wakeup(object, VM_OBJECT_EVENT_PAGER_READY); |
| 4234 | } |
| 4235 | |
| 4236 | VM_OBJECT_SET_PAGER_INITIALIZED(object, TRUE); |
| 4237 | vm_object_wakeup(object, VM_OBJECT_EVENT_INITIALIZED); |
| 4238 | |
| 4239 | vm_object_unlock(object); |
| 4240 | |
| 4241 | return object; |
| 4242 | } |
| 4243 | |
| 4244 | /* |
| 4245 | * Routine: vm_object_compressor_pager_create |
| 4246 | * Purpose: |
| 4247 | * Create a memory object for an internal object. |
| 4248 | * In/out conditions: |
| 4249 | * The object is locked on entry and exit; |
| 4250 | * it may be unlocked within this call. |
| 4251 | * Limitations: |
| 4252 | * Only one thread may be performing a |
| 4253 | * vm_object_compressor_pager_create on an object at |
| 4254 | * a time. Presumably, only the pageout |
| 4255 | * daemon will be using this routine. |
| 4256 | */ |
| 4257 | |
| 4258 | void |
| 4259 | ( |
| 4260 | vm_object_t object) |
| 4261 | { |
| 4262 | memory_object_t ; |
| 4263 | vm_object_t = VM_OBJECT_NULL; |
| 4264 | |
| 4265 | assert(!is_kernel_object(object)); |
| 4266 | |
| 4267 | /* |
| 4268 | * Prevent collapse or termination by holding a paging reference |
| 4269 | */ |
| 4270 | |
| 4271 | vm_object_paging_begin(object); |
| 4272 | if (object->pager_created) { |
| 4273 | /* |
| 4274 | * Someone else got to it first... |
| 4275 | * wait for them to finish initializing the ports |
| 4276 | */ |
| 4277 | while (!object->pager_initialized) { |
| 4278 | vm_object_sleep(object, |
| 4279 | VM_OBJECT_EVENT_INITIALIZED, |
| 4280 | THREAD_UNINT); |
| 4281 | } |
| 4282 | vm_object_paging_end(object); |
| 4283 | return; |
| 4284 | } |
| 4285 | |
| 4286 | if ((uint32_t) (object->vo_size / PAGE_SIZE) != |
| 4287 | (object->vo_size / PAGE_SIZE)) { |
| 4288 | #if DEVELOPMENT || DEBUG |
| 4289 | printf("vm_object_compressor_pager_create(%p): " |
| 4290 | "object size 0x%llx >= 0x%llx\n" , |
| 4291 | object, |
| 4292 | (uint64_t) object->vo_size, |
| 4293 | 0x0FFFFFFFFULL * PAGE_SIZE); |
| 4294 | #endif /* DEVELOPMENT || DEBUG */ |
| 4295 | vm_object_paging_end(object); |
| 4296 | return; |
| 4297 | } |
| 4298 | |
| 4299 | /* |
| 4300 | * Indicate that a memory object has been assigned |
| 4301 | * before dropping the lock, to prevent a race. |
| 4302 | */ |
| 4303 | |
| 4304 | VM_OBJECT_SET_PAGER_CREATED(object, TRUE); |
| 4305 | VM_OBJECT_SET_PAGER_TRUSTED(object, TRUE); |
| 4306 | object->paging_offset = 0; |
| 4307 | |
| 4308 | vm_object_unlock(object); |
| 4309 | |
| 4310 | /* |
| 4311 | * Create the [internal] pager, and associate it with this object. |
| 4312 | * |
| 4313 | * We make the association here so that vm_object_enter() |
| 4314 | * can look up the object to complete initializing it. No |
| 4315 | * user will ever map this object. |
| 4316 | */ |
| 4317 | { |
| 4318 | /* create our new memory object */ |
| 4319 | assert((uint32_t) (object->vo_size / PAGE_SIZE) == |
| 4320 | (object->vo_size / PAGE_SIZE)); |
| 4321 | (void) compressor_memory_object_create( |
| 4322 | (memory_object_size_t) object->vo_size, |
| 4323 | &pager); |
| 4324 | if (pager == NULL) { |
| 4325 | panic("vm_object_compressor_pager_create(): " |
| 4326 | "no pager for object %p size 0x%llx\n" , |
| 4327 | object, (uint64_t) object->vo_size); |
| 4328 | } |
| 4329 | } |
| 4330 | |
| 4331 | /* |
| 4332 | * A reference was returned by |
| 4333 | * memory_object_create(), and it is |
| 4334 | * copied by vm_object_memory_object_associate(). |
| 4335 | */ |
| 4336 | |
| 4337 | pager_object = vm_object_memory_object_associate(pager, |
| 4338 | object, |
| 4339 | size: object->vo_size, |
| 4340 | FALSE); |
| 4341 | if (pager_object != object) { |
| 4342 | panic("vm_object_compressor_pager_create: mismatch (pager: %p, pager_object: %p, orig_object: %p, orig_object size: 0x%llx)" , pager, pager_object, object, (uint64_t) object->vo_size); |
| 4343 | } |
| 4344 | |
| 4345 | /* |
| 4346 | * Drop the reference we were passed. |
| 4347 | */ |
| 4348 | memory_object_deallocate(object: pager); |
| 4349 | |
| 4350 | vm_object_lock(object); |
| 4351 | |
| 4352 | /* |
| 4353 | * Release the paging reference |
| 4354 | */ |
| 4355 | vm_object_paging_end(object); |
| 4356 | } |
| 4357 | |
| 4358 | /* |
| 4359 | * Global variables for vm_object_collapse(): |
| 4360 | * |
| 4361 | * Counts for normal collapses and bypasses. |
| 4362 | * Debugging variables, to watch or disable collapse. |
| 4363 | */ |
| 4364 | static long object_collapses = 0; |
| 4365 | static long object_bypasses = 0; |
| 4366 | |
| 4367 | static boolean_t vm_object_collapse_allowed = TRUE; |
| 4368 | static boolean_t vm_object_bypass_allowed = TRUE; |
| 4369 | |
| 4370 | void vm_object_do_collapse_compressor(vm_object_t object, |
| 4371 | vm_object_t backing_object); |
| 4372 | void |
| 4373 | vm_object_do_collapse_compressor( |
| 4374 | vm_object_t object, |
| 4375 | vm_object_t backing_object) |
| 4376 | { |
| 4377 | vm_object_offset_t new_offset, backing_offset; |
| 4378 | vm_object_size_t size; |
| 4379 | |
| 4380 | vm_counters.do_collapse_compressor++; |
| 4381 | |
| 4382 | vm_object_lock_assert_exclusive(object); |
| 4383 | vm_object_lock_assert_exclusive(backing_object); |
| 4384 | |
| 4385 | size = object->vo_size; |
| 4386 | |
| 4387 | /* |
| 4388 | * Move all compressed pages from backing_object |
| 4389 | * to the parent. |
| 4390 | */ |
| 4391 | |
| 4392 | for (backing_offset = object->vo_shadow_offset; |
| 4393 | backing_offset < object->vo_shadow_offset + object->vo_size; |
| 4394 | backing_offset += PAGE_SIZE) { |
| 4395 | memory_object_offset_t ; |
| 4396 | |
| 4397 | /* find the next compressed page at or after this offset */ |
| 4398 | backing_pager_offset = (backing_offset + |
| 4399 | backing_object->paging_offset); |
| 4400 | backing_pager_offset = vm_compressor_pager_next_compressed( |
| 4401 | mem_obj: backing_object->pager, |
| 4402 | offset: backing_pager_offset); |
| 4403 | if (backing_pager_offset == (memory_object_offset_t) -1) { |
| 4404 | /* no more compressed pages */ |
| 4405 | break; |
| 4406 | } |
| 4407 | backing_offset = (backing_pager_offset - |
| 4408 | backing_object->paging_offset); |
| 4409 | |
| 4410 | new_offset = backing_offset - object->vo_shadow_offset; |
| 4411 | |
| 4412 | if (new_offset >= object->vo_size) { |
| 4413 | /* we're out of the scope of "object": done */ |
| 4414 | break; |
| 4415 | } |
| 4416 | |
| 4417 | if ((vm_page_lookup(object, offset: new_offset) != VM_PAGE_NULL) || |
| 4418 | (vm_compressor_pager_state_get(mem_obj: object->pager, |
| 4419 | offset: (new_offset + |
| 4420 | object->paging_offset)) == |
| 4421 | VM_EXTERNAL_STATE_EXISTS)) { |
| 4422 | /* |
| 4423 | * This page already exists in object, resident or |
| 4424 | * compressed. |
| 4425 | * We don't need this compressed page in backing_object |
| 4426 | * and it will be reclaimed when we release |
| 4427 | * backing_object. |
| 4428 | */ |
| 4429 | continue; |
| 4430 | } |
| 4431 | |
| 4432 | /* |
| 4433 | * backing_object has this page in the VM compressor and |
| 4434 | * we need to transfer it to object. |
| 4435 | */ |
| 4436 | vm_counters.do_collapse_compressor_pages++; |
| 4437 | vm_compressor_pager_transfer( |
| 4438 | /* destination: */ |
| 4439 | dst_mem_obj: object->pager, |
| 4440 | dst_offset: (new_offset + object->paging_offset), |
| 4441 | /* source: */ |
| 4442 | src_mem_obj: backing_object->pager, |
| 4443 | src_offset: (backing_offset + backing_object->paging_offset)); |
| 4444 | } |
| 4445 | } |
| 4446 | |
| 4447 | /* |
| 4448 | * Routine: vm_object_do_collapse |
| 4449 | * Purpose: |
| 4450 | * Collapse an object with the object backing it. |
| 4451 | * Pages in the backing object are moved into the |
| 4452 | * parent, and the backing object is deallocated. |
| 4453 | * Conditions: |
| 4454 | * Both objects and the cache are locked; the page |
| 4455 | * queues are unlocked. |
| 4456 | * |
| 4457 | */ |
| 4458 | static void |
| 4459 | vm_object_do_collapse( |
| 4460 | vm_object_t object, |
| 4461 | vm_object_t backing_object) |
| 4462 | { |
| 4463 | vm_page_t p, pp; |
| 4464 | vm_object_offset_t new_offset, backing_offset; |
| 4465 | vm_object_size_t size; |
| 4466 | |
| 4467 | vm_object_lock_assert_exclusive(object); |
| 4468 | vm_object_lock_assert_exclusive(backing_object); |
| 4469 | |
| 4470 | assert(object->purgable == VM_PURGABLE_DENY); |
| 4471 | assert(backing_object->purgable == VM_PURGABLE_DENY); |
| 4472 | |
| 4473 | backing_offset = object->vo_shadow_offset; |
| 4474 | size = object->vo_size; |
| 4475 | |
| 4476 | /* |
| 4477 | * Move all in-memory pages from backing_object |
| 4478 | * to the parent. Pages that have been paged out |
| 4479 | * will be overwritten by any of the parent's |
| 4480 | * pages that shadow them. |
| 4481 | */ |
| 4482 | |
| 4483 | while (!vm_page_queue_empty(&backing_object->memq)) { |
| 4484 | p = (vm_page_t) vm_page_queue_first(&backing_object->memq); |
| 4485 | |
| 4486 | new_offset = (p->vmp_offset - backing_offset); |
| 4487 | |
| 4488 | assert(!p->vmp_busy || p->vmp_absent); |
| 4489 | |
| 4490 | /* |
| 4491 | * If the parent has a page here, or if |
| 4492 | * this page falls outside the parent, |
| 4493 | * dispose of it. |
| 4494 | * |
| 4495 | * Otherwise, move it as planned. |
| 4496 | */ |
| 4497 | |
| 4498 | if (p->vmp_offset < backing_offset || new_offset >= size) { |
| 4499 | VM_PAGE_FREE(p); |
| 4500 | } else { |
| 4501 | pp = vm_page_lookup(object, offset: new_offset); |
| 4502 | if (pp == VM_PAGE_NULL) { |
| 4503 | if (VM_COMPRESSOR_PAGER_STATE_GET(object, |
| 4504 | new_offset) |
| 4505 | == VM_EXTERNAL_STATE_EXISTS) { |
| 4506 | /* |
| 4507 | * Parent object has this page |
| 4508 | * in the VM compressor. |
| 4509 | * Throw away the backing |
| 4510 | * object's page. |
| 4511 | */ |
| 4512 | VM_PAGE_FREE(p); |
| 4513 | } else { |
| 4514 | /* |
| 4515 | * Parent now has no page. |
| 4516 | * Move the backing object's page |
| 4517 | * up. |
| 4518 | */ |
| 4519 | vm_page_rename(page: p, new_object: object, new_offset); |
| 4520 | } |
| 4521 | } else { |
| 4522 | assert(!pp->vmp_absent); |
| 4523 | |
| 4524 | /* |
| 4525 | * Parent object has a real page. |
| 4526 | * Throw away the backing object's |
| 4527 | * page. |
| 4528 | */ |
| 4529 | VM_PAGE_FREE(p); |
| 4530 | } |
| 4531 | } |
| 4532 | } |
| 4533 | |
| 4534 | if (vm_object_collapse_compressor_allowed && |
| 4535 | object->pager != MEMORY_OBJECT_NULL && |
| 4536 | backing_object->pager != MEMORY_OBJECT_NULL) { |
| 4537 | /* move compressed pages from backing_object to object */ |
| 4538 | vm_object_do_collapse_compressor(object, backing_object); |
| 4539 | } else if (backing_object->pager != MEMORY_OBJECT_NULL) { |
| 4540 | assert((!object->pager_created && |
| 4541 | (object->pager == MEMORY_OBJECT_NULL)) || |
| 4542 | (!backing_object->pager_created && |
| 4543 | (backing_object->pager == MEMORY_OBJECT_NULL))); |
| 4544 | /* |
| 4545 | * Move the pager from backing_object to object. |
| 4546 | * |
| 4547 | * XXX We're only using part of the paging space |
| 4548 | * for keeps now... we ought to discard the |
| 4549 | * unused portion. |
| 4550 | */ |
| 4551 | |
| 4552 | assert(!object->paging_in_progress); |
| 4553 | assert(!object->activity_in_progress); |
| 4554 | assert(!object->pager_created); |
| 4555 | assert(object->pager == NULL); |
| 4556 | object->pager = backing_object->pager; |
| 4557 | |
| 4558 | VM_OBJECT_SET_PAGER_CREATED(object, value: backing_object->pager_created); |
| 4559 | object->pager_control = backing_object->pager_control; |
| 4560 | VM_OBJECT_SET_PAGER_READY(object, value: backing_object->pager_ready); |
| 4561 | VM_OBJECT_SET_PAGER_INITIALIZED(object, value: backing_object->pager_initialized); |
| 4562 | object->paging_offset = |
| 4563 | backing_object->paging_offset + backing_offset; |
| 4564 | if (object->pager_control != MEMORY_OBJECT_CONTROL_NULL) { |
| 4565 | memory_object_control_collapse(control: &object->pager_control, |
| 4566 | object); |
| 4567 | } |
| 4568 | /* the backing_object has lost its pager: reset all fields */ |
| 4569 | VM_OBJECT_SET_PAGER_CREATED(object: backing_object, FALSE); |
| 4570 | backing_object->pager_control = NULL; |
| 4571 | VM_OBJECT_SET_PAGER_READY(object: backing_object, FALSE); |
| 4572 | backing_object->paging_offset = 0; |
| 4573 | backing_object->pager = NULL; |
| 4574 | } |
| 4575 | /* |
| 4576 | * Object now shadows whatever backing_object did. |
| 4577 | * Note that the reference to backing_object->shadow |
| 4578 | * moves from within backing_object to within object. |
| 4579 | */ |
| 4580 | |
| 4581 | assert(!object->phys_contiguous); |
| 4582 | assert(!backing_object->phys_contiguous); |
| 4583 | object->shadow = backing_object->shadow; |
| 4584 | if (object->shadow) { |
| 4585 | assertf(page_aligned(object->vo_shadow_offset), |
| 4586 | "object %p shadow_offset 0x%llx" , |
| 4587 | object, object->vo_shadow_offset); |
| 4588 | assertf(page_aligned(backing_object->vo_shadow_offset), |
| 4589 | "backing_object %p shadow_offset 0x%llx" , |
| 4590 | backing_object, backing_object->vo_shadow_offset); |
| 4591 | object->vo_shadow_offset += backing_object->vo_shadow_offset; |
| 4592 | /* "backing_object" gave its shadow to "object" */ |
| 4593 | backing_object->shadow = VM_OBJECT_NULL; |
| 4594 | backing_object->vo_shadow_offset = 0; |
| 4595 | } else { |
| 4596 | /* no shadow, therefore no shadow offset... */ |
| 4597 | object->vo_shadow_offset = 0; |
| 4598 | } |
| 4599 | assert((object->shadow == VM_OBJECT_NULL) || |
| 4600 | (object->shadow->vo_copy != backing_object)); |
| 4601 | |
| 4602 | /* |
| 4603 | * Discard backing_object. |
| 4604 | * |
| 4605 | * Since the backing object has no pages, no |
| 4606 | * pager left, and no object references within it, |
| 4607 | * all that is necessary is to dispose of it. |
| 4608 | */ |
| 4609 | object_collapses++; |
| 4610 | |
| 4611 | assert(backing_object->ref_count == 1); |
| 4612 | assert(backing_object->resident_page_count == 0); |
| 4613 | assert(backing_object->paging_in_progress == 0); |
| 4614 | assert(backing_object->activity_in_progress == 0); |
| 4615 | assert(backing_object->shadow == VM_OBJECT_NULL); |
| 4616 | assert(backing_object->vo_shadow_offset == 0); |
| 4617 | |
| 4618 | if (backing_object->pager != MEMORY_OBJECT_NULL) { |
| 4619 | /* ... unless it has a pager; need to terminate pager too */ |
| 4620 | vm_counters.do_collapse_terminate++; |
| 4621 | if (vm_object_terminate(object: backing_object) != KERN_SUCCESS) { |
| 4622 | vm_counters.do_collapse_terminate_failure++; |
| 4623 | } |
| 4624 | return; |
| 4625 | } |
| 4626 | |
| 4627 | assert(backing_object->pager == NULL); |
| 4628 | |
| 4629 | VM_OBJECT_SET_ALIVE(object: backing_object, FALSE); |
| 4630 | vm_object_unlock(backing_object); |
| 4631 | |
| 4632 | #if VM_OBJECT_TRACKING |
| 4633 | if (vm_object_tracking_btlog) { |
| 4634 | btlog_erase(vm_object_tracking_btlog, backing_object); |
| 4635 | } |
| 4636 | #endif /* VM_OBJECT_TRACKING */ |
| 4637 | |
| 4638 | vm_object_lock_destroy(backing_object); |
| 4639 | |
| 4640 | zfree(vm_object_zone, backing_object); |
| 4641 | } |
| 4642 | |
| 4643 | static void |
| 4644 | vm_object_do_bypass( |
| 4645 | vm_object_t object, |
| 4646 | vm_object_t backing_object) |
| 4647 | { |
| 4648 | /* |
| 4649 | * Make the parent shadow the next object |
| 4650 | * in the chain. |
| 4651 | */ |
| 4652 | |
| 4653 | vm_object_lock_assert_exclusive(object); |
| 4654 | vm_object_lock_assert_exclusive(backing_object); |
| 4655 | |
| 4656 | vm_object_reference(backing_object->shadow); |
| 4657 | |
| 4658 | assert(!object->phys_contiguous); |
| 4659 | assert(!backing_object->phys_contiguous); |
| 4660 | object->shadow = backing_object->shadow; |
| 4661 | if (object->shadow) { |
| 4662 | assertf(page_aligned(object->vo_shadow_offset), |
| 4663 | "object %p shadow_offset 0x%llx" , |
| 4664 | object, object->vo_shadow_offset); |
| 4665 | assertf(page_aligned(backing_object->vo_shadow_offset), |
| 4666 | "backing_object %p shadow_offset 0x%llx" , |
| 4667 | backing_object, backing_object->vo_shadow_offset); |
| 4668 | object->vo_shadow_offset += backing_object->vo_shadow_offset; |
| 4669 | } else { |
| 4670 | /* no shadow, therefore no shadow offset... */ |
| 4671 | object->vo_shadow_offset = 0; |
| 4672 | } |
| 4673 | |
| 4674 | /* |
| 4675 | * Backing object might have had a copy pointer |
| 4676 | * to us. If it did, clear it. |
| 4677 | */ |
| 4678 | if (backing_object->vo_copy == object) { |
| 4679 | VM_OBJECT_COPY_SET(object: backing_object, VM_OBJECT_NULL); |
| 4680 | } |
| 4681 | |
| 4682 | /* |
| 4683 | * Drop the reference count on backing_object. |
| 4684 | #if TASK_SWAPPER |
| 4685 | * Since its ref_count was at least 2, it |
| 4686 | * will not vanish; so we don't need to call |
| 4687 | * vm_object_deallocate. |
| 4688 | * [with a caveat for "named" objects] |
| 4689 | * |
| 4690 | * The res_count on the backing object is |
| 4691 | * conditionally decremented. It's possible |
| 4692 | * (via vm_pageout_scan) to get here with |
| 4693 | * a "swapped" object, which has a 0 res_count, |
| 4694 | * in which case, the backing object res_count |
| 4695 | * is already down by one. |
| 4696 | #else |
| 4697 | * Don't call vm_object_deallocate unless |
| 4698 | * ref_count drops to zero. |
| 4699 | * |
| 4700 | * The ref_count can drop to zero here if the |
| 4701 | * backing object could be bypassed but not |
| 4702 | * collapsed, such as when the backing object |
| 4703 | * is temporary and cachable. |
| 4704 | #endif |
| 4705 | */ |
| 4706 | if (backing_object->ref_count > 2 || |
| 4707 | (!backing_object->named && backing_object->ref_count > 1)) { |
| 4708 | vm_object_lock_assert_exclusive(backing_object); |
| 4709 | backing_object->ref_count--; |
| 4710 | vm_object_unlock(backing_object); |
| 4711 | } else { |
| 4712 | /* |
| 4713 | * Drop locks so that we can deallocate |
| 4714 | * the backing object. |
| 4715 | */ |
| 4716 | |
| 4717 | /* |
| 4718 | * vm_object_collapse (the caller of this function) is |
| 4719 | * now called from contexts that may not guarantee that a |
| 4720 | * valid reference is held on the object... w/o a valid |
| 4721 | * reference, it is unsafe and unwise (you will definitely |
| 4722 | * regret it) to unlock the object and then retake the lock |
| 4723 | * since the object may be terminated and recycled in between. |
| 4724 | * The "activity_in_progress" reference will keep the object |
| 4725 | * 'stable'. |
| 4726 | */ |
| 4727 | vm_object_activity_begin(object); |
| 4728 | vm_object_unlock(object); |
| 4729 | |
| 4730 | vm_object_unlock(backing_object); |
| 4731 | vm_object_deallocate(object: backing_object); |
| 4732 | |
| 4733 | /* |
| 4734 | * Relock object. We don't have to reverify |
| 4735 | * its state since vm_object_collapse will |
| 4736 | * do that for us as it starts at the |
| 4737 | * top of its loop. |
| 4738 | */ |
| 4739 | |
| 4740 | vm_object_lock(object); |
| 4741 | vm_object_activity_end(object); |
| 4742 | } |
| 4743 | |
| 4744 | object_bypasses++; |
| 4745 | } |
| 4746 | |
| 4747 | |
| 4748 | /* |
| 4749 | * vm_object_collapse: |
| 4750 | * |
| 4751 | * Perform an object collapse or an object bypass if appropriate. |
| 4752 | * The real work of collapsing and bypassing is performed in |
| 4753 | * the routines vm_object_do_collapse and vm_object_do_bypass. |
| 4754 | * |
| 4755 | * Requires that the object be locked and the page queues be unlocked. |
| 4756 | * |
| 4757 | */ |
| 4758 | static unsigned long vm_object_collapse_calls = 0; |
| 4759 | static unsigned long vm_object_collapse_objects = 0; |
| 4760 | static unsigned long vm_object_collapse_do_collapse = 0; |
| 4761 | static unsigned long vm_object_collapse_do_bypass = 0; |
| 4762 | |
| 4763 | __private_extern__ void |
| 4764 | vm_object_collapse( |
| 4765 | vm_object_t object, |
| 4766 | vm_object_offset_t hint_offset, |
| 4767 | boolean_t can_bypass) |
| 4768 | { |
| 4769 | vm_object_t backing_object; |
| 4770 | vm_object_size_t object_vcount, object_rcount; |
| 4771 | vm_object_t original_object; |
| 4772 | int object_lock_type; |
| 4773 | int backing_object_lock_type; |
| 4774 | |
| 4775 | vm_object_collapse_calls++; |
| 4776 | |
| 4777 | assertf(page_aligned(hint_offset), "hint_offset 0x%llx" , hint_offset); |
| 4778 | |
| 4779 | if (!vm_object_collapse_allowed && |
| 4780 | !(can_bypass && vm_object_bypass_allowed)) { |
| 4781 | return; |
| 4782 | } |
| 4783 | |
| 4784 | if (object == VM_OBJECT_NULL) { |
| 4785 | return; |
| 4786 | } |
| 4787 | |
| 4788 | original_object = object; |
| 4789 | |
| 4790 | /* |
| 4791 | * The top object was locked "exclusive" by the caller. |
| 4792 | * In the first pass, to determine if we can collapse the shadow chain, |
| 4793 | * take a "shared" lock on the shadow objects. If we can collapse, |
| 4794 | * we'll have to go down the chain again with exclusive locks. |
| 4795 | */ |
| 4796 | object_lock_type = OBJECT_LOCK_EXCLUSIVE; |
| 4797 | backing_object_lock_type = OBJECT_LOCK_SHARED; |
| 4798 | |
| 4799 | retry: |
| 4800 | object = original_object; |
| 4801 | vm_object_lock_assert_exclusive(object); |
| 4802 | |
| 4803 | while (TRUE) { |
| 4804 | vm_object_collapse_objects++; |
| 4805 | /* |
| 4806 | * Verify that the conditions are right for either |
| 4807 | * collapse or bypass: |
| 4808 | */ |
| 4809 | |
| 4810 | /* |
| 4811 | * There is a backing object, and |
| 4812 | */ |
| 4813 | |
| 4814 | backing_object = object->shadow; |
| 4815 | if (backing_object == VM_OBJECT_NULL) { |
| 4816 | if (object != original_object) { |
| 4817 | vm_object_unlock(object); |
| 4818 | } |
| 4819 | return; |
| 4820 | } |
| 4821 | if (backing_object_lock_type == OBJECT_LOCK_SHARED) { |
| 4822 | vm_object_lock_shared(backing_object); |
| 4823 | } else { |
| 4824 | vm_object_lock(backing_object); |
| 4825 | } |
| 4826 | |
| 4827 | /* |
| 4828 | * No pages in the object are currently |
| 4829 | * being paged out, and |
| 4830 | */ |
| 4831 | if (object->paging_in_progress != 0 || |
| 4832 | object->activity_in_progress != 0) { |
| 4833 | /* try and collapse the rest of the shadow chain */ |
| 4834 | if (object != original_object) { |
| 4835 | vm_object_unlock(object); |
| 4836 | } |
| 4837 | object = backing_object; |
| 4838 | object_lock_type = backing_object_lock_type; |
| 4839 | continue; |
| 4840 | } |
| 4841 | |
| 4842 | /* |
| 4843 | * ... |
| 4844 | * The backing object is not read_only, |
| 4845 | * and no pages in the backing object are |
| 4846 | * currently being paged out. |
| 4847 | * The backing object is internal. |
| 4848 | * |
| 4849 | */ |
| 4850 | |
| 4851 | if (!backing_object->internal || |
| 4852 | backing_object->paging_in_progress != 0 || |
| 4853 | backing_object->activity_in_progress != 0) { |
| 4854 | /* try and collapse the rest of the shadow chain */ |
| 4855 | if (object != original_object) { |
| 4856 | vm_object_unlock(object); |
| 4857 | } |
| 4858 | object = backing_object; |
| 4859 | object_lock_type = backing_object_lock_type; |
| 4860 | continue; |
| 4861 | } |
| 4862 | |
| 4863 | /* |
| 4864 | * Purgeable objects are not supposed to engage in |
| 4865 | * copy-on-write activities, so should not have |
| 4866 | * any shadow objects or be a shadow object to another |
| 4867 | * object. |
| 4868 | * Collapsing a purgeable object would require some |
| 4869 | * updates to the purgeable compressed ledgers. |
| 4870 | */ |
| 4871 | if (object->purgable != VM_PURGABLE_DENY || |
| 4872 | backing_object->purgable != VM_PURGABLE_DENY) { |
| 4873 | panic("vm_object_collapse() attempting to collapse " |
| 4874 | "purgeable object: %p(%d) %p(%d)\n" , |
| 4875 | object, object->purgable, |
| 4876 | backing_object, backing_object->purgable); |
| 4877 | /* try and collapse the rest of the shadow chain */ |
| 4878 | if (object != original_object) { |
| 4879 | vm_object_unlock(object); |
| 4880 | } |
| 4881 | object = backing_object; |
| 4882 | object_lock_type = backing_object_lock_type; |
| 4883 | continue; |
| 4884 | } |
| 4885 | |
| 4886 | /* |
| 4887 | * The backing object can't be a copy-object: |
| 4888 | * the shadow_offset for the copy-object must stay |
| 4889 | * as 0. Furthermore (for the 'we have all the |
| 4890 | * pages' case), if we bypass backing_object and |
| 4891 | * just shadow the next object in the chain, old |
| 4892 | * pages from that object would then have to be copied |
| 4893 | * BOTH into the (former) backing_object and into the |
| 4894 | * parent object. |
| 4895 | */ |
| 4896 | if (backing_object->shadow != VM_OBJECT_NULL && |
| 4897 | backing_object->shadow->vo_copy == backing_object) { |
| 4898 | /* try and collapse the rest of the shadow chain */ |
| 4899 | if (object != original_object) { |
| 4900 | vm_object_unlock(object); |
| 4901 | } |
| 4902 | object = backing_object; |
| 4903 | object_lock_type = backing_object_lock_type; |
| 4904 | continue; |
| 4905 | } |
| 4906 | |
| 4907 | /* |
| 4908 | * We can now try to either collapse the backing |
| 4909 | * object (if the parent is the only reference to |
| 4910 | * it) or (perhaps) remove the parent's reference |
| 4911 | * to it. |
| 4912 | * |
| 4913 | * If there is exactly one reference to the backing |
| 4914 | * object, we may be able to collapse it into the |
| 4915 | * parent. |
| 4916 | * |
| 4917 | * As long as one of the objects is still not known |
| 4918 | * to the pager, we can collapse them. |
| 4919 | */ |
| 4920 | if (backing_object->ref_count == 1 && |
| 4921 | (vm_object_collapse_compressor_allowed || |
| 4922 | !object->pager_created |
| 4923 | || (!backing_object->pager_created) |
| 4924 | ) && vm_object_collapse_allowed) { |
| 4925 | /* |
| 4926 | * We need the exclusive lock on the VM objects. |
| 4927 | */ |
| 4928 | if (backing_object_lock_type != OBJECT_LOCK_EXCLUSIVE) { |
| 4929 | /* |
| 4930 | * We have an object and its shadow locked |
| 4931 | * "shared". We can't just upgrade the locks |
| 4932 | * to "exclusive", as some other thread might |
| 4933 | * also have these objects locked "shared" and |
| 4934 | * attempt to upgrade one or the other to |
| 4935 | * "exclusive". The upgrades would block |
| 4936 | * forever waiting for the other "shared" locks |
| 4937 | * to get released. |
| 4938 | * So we have to release the locks and go |
| 4939 | * down the shadow chain again (since it could |
| 4940 | * have changed) with "exclusive" locking. |
| 4941 | */ |
| 4942 | vm_object_unlock(backing_object); |
| 4943 | if (object != original_object) { |
| 4944 | vm_object_unlock(object); |
| 4945 | } |
| 4946 | object_lock_type = OBJECT_LOCK_EXCLUSIVE; |
| 4947 | backing_object_lock_type = OBJECT_LOCK_EXCLUSIVE; |
| 4948 | goto retry; |
| 4949 | } |
| 4950 | |
| 4951 | /* |
| 4952 | * Collapse the object with its backing |
| 4953 | * object, and try again with the object's |
| 4954 | * new backing object. |
| 4955 | */ |
| 4956 | |
| 4957 | vm_object_do_collapse(object, backing_object); |
| 4958 | vm_object_collapse_do_collapse++; |
| 4959 | continue; |
| 4960 | } |
| 4961 | |
| 4962 | /* |
| 4963 | * Collapsing the backing object was not possible |
| 4964 | * or permitted, so let's try bypassing it. |
| 4965 | */ |
| 4966 | |
| 4967 | if (!(can_bypass && vm_object_bypass_allowed)) { |
| 4968 | /* try and collapse the rest of the shadow chain */ |
| 4969 | if (object != original_object) { |
| 4970 | vm_object_unlock(object); |
| 4971 | } |
| 4972 | object = backing_object; |
| 4973 | object_lock_type = backing_object_lock_type; |
| 4974 | continue; |
| 4975 | } |
| 4976 | |
| 4977 | |
| 4978 | /* |
| 4979 | * If the object doesn't have all its pages present, |
| 4980 | * we have to make sure no pages in the backing object |
| 4981 | * "show through" before bypassing it. |
| 4982 | */ |
| 4983 | object_vcount = object->vo_size >> PAGE_SHIFT; |
| 4984 | object_rcount = (vm_object_size_t)object->resident_page_count; |
| 4985 | |
| 4986 | if (object_rcount != object_vcount) { |
| 4987 | vm_object_offset_t offset; |
| 4988 | vm_object_offset_t backing_offset; |
| 4989 | vm_object_size_t backing_rcount, backing_vcount; |
| 4990 | |
| 4991 | /* |
| 4992 | * If the backing object has a pager but no pagemap, |
| 4993 | * then we cannot bypass it, because we don't know |
| 4994 | * what pages it has. |
| 4995 | */ |
| 4996 | if (backing_object->pager_created) { |
| 4997 | /* try and collapse the rest of the shadow chain */ |
| 4998 | if (object != original_object) { |
| 4999 | vm_object_unlock(object); |
| 5000 | } |
| 5001 | object = backing_object; |
| 5002 | object_lock_type = backing_object_lock_type; |
| 5003 | continue; |
| 5004 | } |
| 5005 | |
| 5006 | /* |
| 5007 | * If the object has a pager but no pagemap, |
| 5008 | * then we cannot bypass it, because we don't know |
| 5009 | * what pages it has. |
| 5010 | */ |
| 5011 | if (object->pager_created) { |
| 5012 | /* try and collapse the rest of the shadow chain */ |
| 5013 | if (object != original_object) { |
| 5014 | vm_object_unlock(object); |
| 5015 | } |
| 5016 | object = backing_object; |
| 5017 | object_lock_type = backing_object_lock_type; |
| 5018 | continue; |
| 5019 | } |
| 5020 | |
| 5021 | backing_offset = object->vo_shadow_offset; |
| 5022 | backing_vcount = backing_object->vo_size >> PAGE_SHIFT; |
| 5023 | backing_rcount = (vm_object_size_t)backing_object->resident_page_count; |
| 5024 | assert(backing_vcount >= object_vcount); |
| 5025 | |
| 5026 | if (backing_rcount > (backing_vcount - object_vcount) && |
| 5027 | backing_rcount - (backing_vcount - object_vcount) > object_rcount) { |
| 5028 | /* |
| 5029 | * we have enough pages in the backing object to guarantee that |
| 5030 | * at least 1 of them must be 'uncovered' by a resident page |
| 5031 | * in the object we're evaluating, so move on and |
| 5032 | * try to collapse the rest of the shadow chain |
| 5033 | */ |
| 5034 | if (object != original_object) { |
| 5035 | vm_object_unlock(object); |
| 5036 | } |
| 5037 | object = backing_object; |
| 5038 | object_lock_type = backing_object_lock_type; |
| 5039 | continue; |
| 5040 | } |
| 5041 | |
| 5042 | /* |
| 5043 | * If all of the pages in the backing object are |
| 5044 | * shadowed by the parent object, the parent |
| 5045 | * object no longer has to shadow the backing |
| 5046 | * object; it can shadow the next one in the |
| 5047 | * chain. |
| 5048 | * |
| 5049 | * If the backing object has existence info, |
| 5050 | * we must check examine its existence info |
| 5051 | * as well. |
| 5052 | * |
| 5053 | */ |
| 5054 | |
| 5055 | #define EXISTS_IN_OBJECT(obj, off, rc) \ |
| 5056 | ((VM_COMPRESSOR_PAGER_STATE_GET((obj), (off)) \ |
| 5057 | == VM_EXTERNAL_STATE_EXISTS) || \ |
| 5058 | ((rc) && vm_page_lookup((obj), (off)) != VM_PAGE_NULL && (rc)--)) |
| 5059 | |
| 5060 | /* |
| 5061 | * Check the hint location first |
| 5062 | * (since it is often the quickest way out of here). |
| 5063 | */ |
| 5064 | if (object->cow_hint != ~(vm_offset_t)0) { |
| 5065 | hint_offset = (vm_object_offset_t)object->cow_hint; |
| 5066 | } else { |
| 5067 | hint_offset = (hint_offset > 8 * PAGE_SIZE_64) ? |
| 5068 | (hint_offset - 8 * PAGE_SIZE_64) : 0; |
| 5069 | } |
| 5070 | |
| 5071 | if (EXISTS_IN_OBJECT(backing_object, hint_offset + |
| 5072 | backing_offset, backing_rcount) && |
| 5073 | !EXISTS_IN_OBJECT(object, hint_offset, object_rcount)) { |
| 5074 | /* dependency right at the hint */ |
| 5075 | object->cow_hint = (vm_offset_t) hint_offset; /* atomic */ |
| 5076 | /* try and collapse the rest of the shadow chain */ |
| 5077 | if (object != original_object) { |
| 5078 | vm_object_unlock(object); |
| 5079 | } |
| 5080 | object = backing_object; |
| 5081 | object_lock_type = backing_object_lock_type; |
| 5082 | continue; |
| 5083 | } |
| 5084 | |
| 5085 | /* |
| 5086 | * If the object's window onto the backing_object |
| 5087 | * is large compared to the number of resident |
| 5088 | * pages in the backing object, it makes sense to |
| 5089 | * walk the backing_object's resident pages first. |
| 5090 | * |
| 5091 | * NOTE: Pages may be in both the existence map and/or |
| 5092 | * resident, so if we don't find a dependency while |
| 5093 | * walking the backing object's resident page list |
| 5094 | * directly, and there is an existence map, we'll have |
| 5095 | * to run the offset based 2nd pass. Because we may |
| 5096 | * have to run both passes, we need to be careful |
| 5097 | * not to decrement 'rcount' in the 1st pass |
| 5098 | */ |
| 5099 | if (backing_rcount && backing_rcount < (object_vcount / 8)) { |
| 5100 | vm_object_size_t rc = object_rcount; |
| 5101 | vm_page_t p; |
| 5102 | |
| 5103 | backing_rcount = backing_object->resident_page_count; |
| 5104 | p = (vm_page_t)vm_page_queue_first(&backing_object->memq); |
| 5105 | do { |
| 5106 | offset = (p->vmp_offset - backing_offset); |
| 5107 | |
| 5108 | if (offset < object->vo_size && |
| 5109 | offset != hint_offset && |
| 5110 | !EXISTS_IN_OBJECT(object, offset, rc)) { |
| 5111 | /* found a dependency */ |
| 5112 | object->cow_hint = (vm_offset_t) offset; /* atomic */ |
| 5113 | |
| 5114 | break; |
| 5115 | } |
| 5116 | p = (vm_page_t) vm_page_queue_next(&p->vmp_listq); |
| 5117 | } while (--backing_rcount); |
| 5118 | if (backing_rcount != 0) { |
| 5119 | /* try and collapse the rest of the shadow chain */ |
| 5120 | if (object != original_object) { |
| 5121 | vm_object_unlock(object); |
| 5122 | } |
| 5123 | object = backing_object; |
| 5124 | object_lock_type = backing_object_lock_type; |
| 5125 | continue; |
| 5126 | } |
| 5127 | } |
| 5128 | |
| 5129 | /* |
| 5130 | * Walk through the offsets looking for pages in the |
| 5131 | * backing object that show through to the object. |
| 5132 | */ |
| 5133 | if (backing_rcount) { |
| 5134 | offset = hint_offset; |
| 5135 | |
| 5136 | while ((offset = |
| 5137 | (offset + PAGE_SIZE_64 < object->vo_size) ? |
| 5138 | (offset + PAGE_SIZE_64) : 0) != hint_offset) { |
| 5139 | if (EXISTS_IN_OBJECT(backing_object, offset + |
| 5140 | backing_offset, backing_rcount) && |
| 5141 | !EXISTS_IN_OBJECT(object, offset, object_rcount)) { |
| 5142 | /* found a dependency */ |
| 5143 | object->cow_hint = (vm_offset_t) offset; /* atomic */ |
| 5144 | break; |
| 5145 | } |
| 5146 | } |
| 5147 | if (offset != hint_offset) { |
| 5148 | /* try and collapse the rest of the shadow chain */ |
| 5149 | if (object != original_object) { |
| 5150 | vm_object_unlock(object); |
| 5151 | } |
| 5152 | object = backing_object; |
| 5153 | object_lock_type = backing_object_lock_type; |
| 5154 | continue; |
| 5155 | } |
| 5156 | } |
| 5157 | } |
| 5158 | |
| 5159 | /* |
| 5160 | * We need "exclusive" locks on the 2 VM objects. |
| 5161 | */ |
| 5162 | if (backing_object_lock_type != OBJECT_LOCK_EXCLUSIVE) { |
| 5163 | vm_object_unlock(backing_object); |
| 5164 | if (object != original_object) { |
| 5165 | vm_object_unlock(object); |
| 5166 | } |
| 5167 | object_lock_type = OBJECT_LOCK_EXCLUSIVE; |
| 5168 | backing_object_lock_type = OBJECT_LOCK_EXCLUSIVE; |
| 5169 | goto retry; |
| 5170 | } |
| 5171 | |
| 5172 | /* reset the offset hint for any objects deeper in the chain */ |
| 5173 | object->cow_hint = (vm_offset_t)0; |
| 5174 | |
| 5175 | /* |
| 5176 | * All interesting pages in the backing object |
| 5177 | * already live in the parent or its pager. |
| 5178 | * Thus we can bypass the backing object. |
| 5179 | */ |
| 5180 | |
| 5181 | vm_object_do_bypass(object, backing_object); |
| 5182 | vm_object_collapse_do_bypass++; |
| 5183 | |
| 5184 | /* |
| 5185 | * Try again with this object's new backing object. |
| 5186 | */ |
| 5187 | |
| 5188 | continue; |
| 5189 | } |
| 5190 | |
| 5191 | /* NOT REACHED */ |
| 5192 | /* |
| 5193 | * if (object != original_object) { |
| 5194 | * vm_object_unlock(object); |
| 5195 | * } |
| 5196 | */ |
| 5197 | } |
| 5198 | |
| 5199 | /* |
| 5200 | * Routine: vm_object_page_remove: [internal] |
| 5201 | * Purpose: |
| 5202 | * Removes all physical pages in the specified |
| 5203 | * object range from the object's list of pages. |
| 5204 | * |
| 5205 | * In/out conditions: |
| 5206 | * The object must be locked. |
| 5207 | * The object must not have paging_in_progress, usually |
| 5208 | * guaranteed by not having a pager. |
| 5209 | */ |
| 5210 | unsigned int vm_object_page_remove_lookup = 0; |
| 5211 | unsigned int vm_object_page_remove_iterate = 0; |
| 5212 | |
| 5213 | __private_extern__ void |
| 5214 | vm_object_page_remove( |
| 5215 | vm_object_t object, |
| 5216 | vm_object_offset_t start, |
| 5217 | vm_object_offset_t end) |
| 5218 | { |
| 5219 | vm_page_t p, next; |
| 5220 | |
| 5221 | /* |
| 5222 | * One and two page removals are most popular. |
| 5223 | * The factor of 16 here is somewhat arbitrary. |
| 5224 | * It balances vm_object_lookup vs iteration. |
| 5225 | */ |
| 5226 | |
| 5227 | if (atop_64(end - start) < (unsigned)object->resident_page_count / 16) { |
| 5228 | vm_object_page_remove_lookup++; |
| 5229 | |
| 5230 | for (; start < end; start += PAGE_SIZE_64) { |
| 5231 | p = vm_page_lookup(object, offset: start); |
| 5232 | if (p != VM_PAGE_NULL) { |
| 5233 | assert(!p->vmp_cleaning && !p->vmp_laundry); |
| 5234 | if (!p->vmp_fictitious && p->vmp_pmapped) { |
| 5235 | pmap_disconnect(phys: VM_PAGE_GET_PHYS_PAGE(m: p)); |
| 5236 | } |
| 5237 | VM_PAGE_FREE(p); |
| 5238 | } |
| 5239 | } |
| 5240 | } else { |
| 5241 | vm_object_page_remove_iterate++; |
| 5242 | |
| 5243 | p = (vm_page_t) vm_page_queue_first(&object->memq); |
| 5244 | while (!vm_page_queue_end(&object->memq, (vm_page_queue_entry_t) p)) { |
| 5245 | next = (vm_page_t) vm_page_queue_next(&p->vmp_listq); |
| 5246 | if ((start <= p->vmp_offset) && (p->vmp_offset < end)) { |
| 5247 | assert(!p->vmp_cleaning && !p->vmp_laundry); |
| 5248 | if (!p->vmp_fictitious && p->vmp_pmapped) { |
| 5249 | pmap_disconnect(phys: VM_PAGE_GET_PHYS_PAGE(m: p)); |
| 5250 | } |
| 5251 | VM_PAGE_FREE(p); |
| 5252 | } |
| 5253 | p = next; |
| 5254 | } |
| 5255 | } |
| 5256 | } |
| 5257 | |
| 5258 | |
| 5259 | /* |
| 5260 | * Routine: vm_object_coalesce |
| 5261 | * Function: Coalesces two objects backing up adjoining |
| 5262 | * regions of memory into a single object. |
| 5263 | * |
| 5264 | * returns TRUE if objects were combined. |
| 5265 | * |
| 5266 | * NOTE: Only works at the moment if the second object is NULL - |
| 5267 | * if it's not, which object do we lock first? |
| 5268 | * |
| 5269 | * Parameters: |
| 5270 | * prev_object First object to coalesce |
| 5271 | * prev_offset Offset into prev_object |
| 5272 | * next_object Second object into coalesce |
| 5273 | * next_offset Offset into next_object |
| 5274 | * |
| 5275 | * prev_size Size of reference to prev_object |
| 5276 | * next_size Size of reference to next_object |
| 5277 | * |
| 5278 | * Conditions: |
| 5279 | * The object(s) must *not* be locked. The map must be locked |
| 5280 | * to preserve the reference to the object(s). |
| 5281 | */ |
| 5282 | static int vm_object_coalesce_count = 0; |
| 5283 | |
| 5284 | __private_extern__ boolean_t |
| 5285 | vm_object_coalesce( |
| 5286 | vm_object_t prev_object, |
| 5287 | vm_object_t next_object, |
| 5288 | vm_object_offset_t prev_offset, |
| 5289 | __unused vm_object_offset_t next_offset, |
| 5290 | vm_object_size_t prev_size, |
| 5291 | vm_object_size_t next_size) |
| 5292 | { |
| 5293 | vm_object_size_t newsize; |
| 5294 | |
| 5295 | #ifdef lint |
| 5296 | next_offset++; |
| 5297 | #endif /* lint */ |
| 5298 | |
| 5299 | if (next_object != VM_OBJECT_NULL) { |
| 5300 | return FALSE; |
| 5301 | } |
| 5302 | |
| 5303 | if (prev_object == VM_OBJECT_NULL) { |
| 5304 | return TRUE; |
| 5305 | } |
| 5306 | |
| 5307 | vm_object_lock(prev_object); |
| 5308 | |
| 5309 | /* |
| 5310 | * Try to collapse the object first |
| 5311 | */ |
| 5312 | vm_object_collapse(object: prev_object, hint_offset: prev_offset, TRUE); |
| 5313 | |
| 5314 | /* |
| 5315 | * Can't coalesce if pages not mapped to |
| 5316 | * prev_entry may be in use any way: |
| 5317 | * . more than one reference |
| 5318 | * . paged out |
| 5319 | * . shadows another object |
| 5320 | * . has a copy elsewhere |
| 5321 | * . is purgeable |
| 5322 | * . paging references (pages might be in page-list) |
| 5323 | */ |
| 5324 | |
| 5325 | if ((prev_object->ref_count > 1) || |
| 5326 | prev_object->pager_created || |
| 5327 | prev_object->phys_contiguous || |
| 5328 | (prev_object->shadow != VM_OBJECT_NULL) || |
| 5329 | (prev_object->vo_copy != VM_OBJECT_NULL) || |
| 5330 | (prev_object->true_share != FALSE) || |
| 5331 | (prev_object->purgable != VM_PURGABLE_DENY) || |
| 5332 | (prev_object->paging_in_progress != 0) || |
| 5333 | (prev_object->activity_in_progress != 0)) { |
| 5334 | vm_object_unlock(prev_object); |
| 5335 | return FALSE; |
| 5336 | } |
| 5337 | /* newsize = prev_offset + prev_size + next_size; */ |
| 5338 | if (__improbable(os_add3_overflow(prev_offset, prev_size, next_size, |
| 5339 | &newsize))) { |
| 5340 | vm_object_unlock(prev_object); |
| 5341 | return FALSE; |
| 5342 | } |
| 5343 | |
| 5344 | vm_object_coalesce_count++; |
| 5345 | |
| 5346 | /* |
| 5347 | * Remove any pages that may still be in the object from |
| 5348 | * a previous deallocation. |
| 5349 | */ |
| 5350 | vm_object_page_remove(object: prev_object, |
| 5351 | start: prev_offset + prev_size, |
| 5352 | end: prev_offset + prev_size + next_size); |
| 5353 | |
| 5354 | /* |
| 5355 | * Extend the object if necessary. |
| 5356 | */ |
| 5357 | if (newsize > prev_object->vo_size) { |
| 5358 | assertf(page_aligned(newsize), |
| 5359 | "object %p size 0x%llx" , |
| 5360 | prev_object, (uint64_t)newsize); |
| 5361 | prev_object->vo_size = newsize; |
| 5362 | } |
| 5363 | |
| 5364 | vm_object_unlock(prev_object); |
| 5365 | return TRUE; |
| 5366 | } |
| 5367 | |
| 5368 | kern_return_t |
| 5369 | vm_object_populate_with_private( |
| 5370 | vm_object_t object, |
| 5371 | vm_object_offset_t offset, |
| 5372 | ppnum_t phys_page, |
| 5373 | vm_size_t size) |
| 5374 | { |
| 5375 | ppnum_t base_page; |
| 5376 | vm_object_offset_t base_offset; |
| 5377 | |
| 5378 | |
| 5379 | if (!object->private) { |
| 5380 | return KERN_FAILURE; |
| 5381 | } |
| 5382 | |
| 5383 | base_page = phys_page; |
| 5384 | |
| 5385 | vm_object_lock(object); |
| 5386 | |
| 5387 | if (!object->phys_contiguous) { |
| 5388 | vm_page_t m; |
| 5389 | |
| 5390 | if ((base_offset = trunc_page_64(offset)) != offset) { |
| 5391 | vm_object_unlock(object); |
| 5392 | return KERN_FAILURE; |
| 5393 | } |
| 5394 | base_offset += object->paging_offset; |
| 5395 | |
| 5396 | while (size) { |
| 5397 | m = vm_page_lookup(object, offset: base_offset); |
| 5398 | |
| 5399 | if (m != VM_PAGE_NULL) { |
| 5400 | if (m->vmp_fictitious) { |
| 5401 | if (VM_PAGE_GET_PHYS_PAGE(m) != vm_page_guard_addr) { |
| 5402 | vm_page_lockspin_queues(); |
| 5403 | m->vmp_private = TRUE; |
| 5404 | vm_page_unlock_queues(); |
| 5405 | |
| 5406 | m->vmp_fictitious = FALSE; |
| 5407 | VM_PAGE_SET_PHYS_PAGE(m, base_page); |
| 5408 | } |
| 5409 | } else if (VM_PAGE_GET_PHYS_PAGE(m) != base_page) { |
| 5410 | if (!m->vmp_private) { |
| 5411 | /* |
| 5412 | * we'd leak a real page... that can't be right |
| 5413 | */ |
| 5414 | panic("vm_object_populate_with_private - %p not private" , m); |
| 5415 | } |
| 5416 | if (m->vmp_pmapped) { |
| 5417 | /* |
| 5418 | * pmap call to clear old mapping |
| 5419 | */ |
| 5420 | pmap_disconnect(phys: VM_PAGE_GET_PHYS_PAGE(m)); |
| 5421 | } |
| 5422 | VM_PAGE_SET_PHYS_PAGE(m, base_page); |
| 5423 | } |
| 5424 | } else { |
| 5425 | m = vm_page_grab_fictitious(TRUE); |
| 5426 | |
| 5427 | /* |
| 5428 | * private normally requires lock_queues but since we |
| 5429 | * are initializing the page, its not necessary here |
| 5430 | */ |
| 5431 | m->vmp_private = TRUE; |
| 5432 | m->vmp_fictitious = FALSE; |
| 5433 | VM_PAGE_SET_PHYS_PAGE(m, base_page); |
| 5434 | m->vmp_unusual = TRUE; |
| 5435 | m->vmp_busy = FALSE; |
| 5436 | |
| 5437 | vm_page_insert(page: m, object, offset: base_offset); |
| 5438 | } |
| 5439 | base_page++; /* Go to the next physical page */ |
| 5440 | base_offset += PAGE_SIZE; |
| 5441 | size -= PAGE_SIZE; |
| 5442 | } |
| 5443 | } else { |
| 5444 | /* NOTE: we should check the original settings here */ |
| 5445 | /* if we have a size > zero a pmap call should be made */ |
| 5446 | /* to disable the range */ |
| 5447 | |
| 5448 | /* pmap_? */ |
| 5449 | |
| 5450 | /* shadows on contiguous memory are not allowed */ |
| 5451 | /* we therefore can use the offset field */ |
| 5452 | object->vo_shadow_offset = (vm_object_offset_t)phys_page << PAGE_SHIFT; |
| 5453 | assertf(page_aligned(size), |
| 5454 | "object %p size 0x%llx" , |
| 5455 | object, (uint64_t)size); |
| 5456 | object->vo_size = size; |
| 5457 | } |
| 5458 | vm_object_unlock(object); |
| 5459 | |
| 5460 | return KERN_SUCCESS; |
| 5461 | } |
| 5462 | |
| 5463 | |
| 5464 | kern_return_t |
| 5465 | memory_object_create_named( |
| 5466 | memory_object_t , |
| 5467 | memory_object_offset_t size, |
| 5468 | memory_object_control_t *control) |
| 5469 | { |
| 5470 | vm_object_t object; |
| 5471 | |
| 5472 | *control = MEMORY_OBJECT_CONTROL_NULL; |
| 5473 | if (pager == MEMORY_OBJECT_NULL) { |
| 5474 | return KERN_INVALID_ARGUMENT; |
| 5475 | } |
| 5476 | |
| 5477 | object = vm_object_memory_object_associate(pager, |
| 5478 | VM_OBJECT_NULL, |
| 5479 | size, |
| 5480 | TRUE); |
| 5481 | if (object == VM_OBJECT_NULL) { |
| 5482 | return KERN_INVALID_OBJECT; |
| 5483 | } |
| 5484 | |
| 5485 | /* wait for object (if any) to be ready */ |
| 5486 | if (object != VM_OBJECT_NULL) { |
| 5487 | vm_object_lock(object); |
| 5488 | VM_OBJECT_SET_NAMED(object, TRUE); |
| 5489 | while (!object->pager_ready) { |
| 5490 | vm_object_sleep(object, |
| 5491 | VM_OBJECT_EVENT_PAGER_READY, |
| 5492 | THREAD_UNINT); |
| 5493 | } |
| 5494 | *control = object->pager_control; |
| 5495 | vm_object_unlock(object); |
| 5496 | } |
| 5497 | return KERN_SUCCESS; |
| 5498 | } |
| 5499 | |
| 5500 | |
| 5501 | __private_extern__ kern_return_t |
| 5502 | vm_object_lock_request( |
| 5503 | vm_object_t object, |
| 5504 | vm_object_offset_t offset, |
| 5505 | vm_object_size_t size, |
| 5506 | memory_object_return_t should_return, |
| 5507 | int flags, |
| 5508 | vm_prot_t prot) |
| 5509 | { |
| 5510 | __unused boolean_t should_flush; |
| 5511 | |
| 5512 | should_flush = flags & MEMORY_OBJECT_DATA_FLUSH; |
| 5513 | |
| 5514 | /* |
| 5515 | * Check for bogus arguments. |
| 5516 | */ |
| 5517 | if (object == VM_OBJECT_NULL) { |
| 5518 | return KERN_INVALID_ARGUMENT; |
| 5519 | } |
| 5520 | |
| 5521 | if ((prot & ~VM_PROT_ALL) != 0 && prot != VM_PROT_NO_CHANGE) { |
| 5522 | return KERN_INVALID_ARGUMENT; |
| 5523 | } |
| 5524 | |
| 5525 | /* |
| 5526 | * XXX TODO4K |
| 5527 | * extend range for conservative operations (copy-on-write, sync, ...) |
| 5528 | * truncate range for destructive operations (purge, ...) |
| 5529 | */ |
| 5530 | size = vm_object_round_page(offset + size) - vm_object_trunc_page(offset); |
| 5531 | offset = vm_object_trunc_page(offset); |
| 5532 | |
| 5533 | /* |
| 5534 | * Lock the object, and acquire a paging reference to |
| 5535 | * prevent the memory_object reference from being released. |
| 5536 | */ |
| 5537 | vm_object_lock(object); |
| 5538 | vm_object_paging_begin(object); |
| 5539 | |
| 5540 | (void)vm_object_update(object, |
| 5541 | offset, size, NULL, NULL, should_return, flags, prot); |
| 5542 | |
| 5543 | vm_object_paging_end(object); |
| 5544 | vm_object_unlock(object); |
| 5545 | |
| 5546 | return KERN_SUCCESS; |
| 5547 | } |
| 5548 | |
| 5549 | /* |
| 5550 | * Empty a purgeable object by grabbing the physical pages assigned to it and |
| 5551 | * putting them on the free queue without writing them to backing store, etc. |
| 5552 | * When the pages are next touched they will be demand zero-fill pages. We |
| 5553 | * skip pages which are busy, being paged in/out, wired, etc. We do _not_ |
| 5554 | * skip referenced/dirty pages, pages on the active queue, etc. We're more |
| 5555 | * than happy to grab these since this is a purgeable object. We mark the |
| 5556 | * object as "empty" after reaping its pages. |
| 5557 | * |
| 5558 | * On entry the object must be locked and it must be |
| 5559 | * purgeable with no delayed copies pending. |
| 5560 | */ |
| 5561 | uint64_t |
| 5562 | vm_object_purge(vm_object_t object, int flags) |
| 5563 | { |
| 5564 | unsigned int object_page_count = 0, pgcount = 0; |
| 5565 | uint64_t total_purged_pgcount = 0; |
| 5566 | boolean_t skipped_object = FALSE; |
| 5567 | |
| 5568 | vm_object_lock_assert_exclusive(object); |
| 5569 | |
| 5570 | if (object->purgable == VM_PURGABLE_DENY) { |
| 5571 | return 0; |
| 5572 | } |
| 5573 | |
| 5574 | assert(object->vo_copy == VM_OBJECT_NULL); |
| 5575 | assert(object->copy_strategy == MEMORY_OBJECT_COPY_NONE); |
| 5576 | |
| 5577 | /* |
| 5578 | * We need to set the object's state to VM_PURGABLE_EMPTY *before* |
| 5579 | * reaping its pages. We update vm_page_purgeable_count in bulk |
| 5580 | * and we don't want vm_page_remove() to update it again for each |
| 5581 | * page we reap later. |
| 5582 | * |
| 5583 | * For the purgeable ledgers, pages from VOLATILE and EMPTY objects |
| 5584 | * are all accounted for in the "volatile" ledgers, so this does not |
| 5585 | * make any difference. |
| 5586 | * If we transitioned directly from NONVOLATILE to EMPTY, |
| 5587 | * vm_page_purgeable_count must have been updated when the object |
| 5588 | * was dequeued from its volatile queue and the purgeable ledgers |
| 5589 | * must have also been updated accordingly at that time (in |
| 5590 | * vm_object_purgable_control()). |
| 5591 | */ |
| 5592 | if (object->purgable == VM_PURGABLE_VOLATILE) { |
| 5593 | unsigned int delta; |
| 5594 | assert(object->resident_page_count >= |
| 5595 | object->wired_page_count); |
| 5596 | delta = (object->resident_page_count - |
| 5597 | object->wired_page_count); |
| 5598 | if (delta != 0) { |
| 5599 | assert(vm_page_purgeable_count >= |
| 5600 | delta); |
| 5601 | OSAddAtomic(-delta, |
| 5602 | (SInt32 *)&vm_page_purgeable_count); |
| 5603 | } |
| 5604 | if (object->wired_page_count != 0) { |
| 5605 | assert(vm_page_purgeable_wired_count >= |
| 5606 | object->wired_page_count); |
| 5607 | OSAddAtomic(-object->wired_page_count, |
| 5608 | (SInt32 *)&vm_page_purgeable_wired_count); |
| 5609 | } |
| 5610 | VM_OBJECT_SET_PURGABLE(object, VM_PURGABLE_EMPTY); |
| 5611 | } |
| 5612 | assert(object->purgable == VM_PURGABLE_EMPTY); |
| 5613 | |
| 5614 | object_page_count = object->resident_page_count; |
| 5615 | |
| 5616 | vm_object_reap_pages(object, REAP_PURGEABLE); |
| 5617 | |
| 5618 | if (object->resident_page_count >= object_page_count) { |
| 5619 | total_purged_pgcount = 0; |
| 5620 | } else { |
| 5621 | total_purged_pgcount = object_page_count - object->resident_page_count; |
| 5622 | } |
| 5623 | |
| 5624 | if (object->pager != NULL) { |
| 5625 | assert(VM_CONFIG_COMPRESSOR_IS_PRESENT); |
| 5626 | |
| 5627 | if (object->activity_in_progress == 0 && |
| 5628 | object->paging_in_progress == 0) { |
| 5629 | /* |
| 5630 | * Also reap any memory coming from this object |
| 5631 | * in the VM compressor. |
| 5632 | * |
| 5633 | * There are no operations in progress on the VM object |
| 5634 | * and no operation can start while we're holding the |
| 5635 | * VM object lock, so it's safe to reap the compressed |
| 5636 | * pages and update the page counts. |
| 5637 | */ |
| 5638 | pgcount = vm_compressor_pager_get_count(mem_obj: object->pager); |
| 5639 | if (pgcount) { |
| 5640 | pgcount = vm_compressor_pager_reap_pages(mem_obj: object->pager, flags); |
| 5641 | vm_compressor_pager_count(mem_obj: object->pager, |
| 5642 | compressed_count_delta: -pgcount, |
| 5643 | FALSE, /* shared */ |
| 5644 | object); |
| 5645 | vm_object_owner_compressed_update(object, |
| 5646 | delta: -pgcount); |
| 5647 | } |
| 5648 | if (!(flags & C_DONT_BLOCK)) { |
| 5649 | assert(vm_compressor_pager_get_count(object->pager) |
| 5650 | == 0); |
| 5651 | } |
| 5652 | } else { |
| 5653 | /* |
| 5654 | * There's some kind of paging activity in progress |
| 5655 | * for this object, which could result in a page |
| 5656 | * being compressed or decompressed, possibly while |
| 5657 | * the VM object is not locked, so it could race |
| 5658 | * with us. |
| 5659 | * |
| 5660 | * We can't really synchronize this without possibly |
| 5661 | * causing a deadlock when the compressor needs to |
| 5662 | * allocate or free memory while compressing or |
| 5663 | * decompressing a page from a purgeable object |
| 5664 | * mapped in the kernel_map... |
| 5665 | * |
| 5666 | * So let's not attempt to purge the compressor |
| 5667 | * pager if there's any kind of operation in |
| 5668 | * progress on the VM object. |
| 5669 | */ |
| 5670 | skipped_object = TRUE; |
| 5671 | } |
| 5672 | } |
| 5673 | |
| 5674 | vm_object_lock_assert_exclusive(object); |
| 5675 | |
| 5676 | total_purged_pgcount += pgcount; |
| 5677 | |
| 5678 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, (MACHDBG_CODE(DBG_MACH_VM, OBJECT_PURGE_ONE)), |
| 5679 | VM_KERNEL_UNSLIDE_OR_PERM(object), /* purged object */ |
| 5680 | object_page_count, |
| 5681 | total_purged_pgcount, |
| 5682 | skipped_object, |
| 5683 | 0); |
| 5684 | |
| 5685 | return total_purged_pgcount; |
| 5686 | } |
| 5687 | |
| 5688 | |
| 5689 | /* |
| 5690 | * vm_object_purgeable_control() allows the caller to control and investigate the |
| 5691 | * state of a purgeable object. A purgeable object is created via a call to |
| 5692 | * vm_allocate() with VM_FLAGS_PURGABLE specified. A purgeable object will |
| 5693 | * never be coalesced with any other object -- even other purgeable objects -- |
| 5694 | * and will thus always remain a distinct object. A purgeable object has |
| 5695 | * special semantics when its reference count is exactly 1. If its reference |
| 5696 | * count is greater than 1, then a purgeable object will behave like a normal |
| 5697 | * object and attempts to use this interface will result in an error return |
| 5698 | * of KERN_INVALID_ARGUMENT. |
| 5699 | * |
| 5700 | * A purgeable object may be put into a "volatile" state which will make the |
| 5701 | * object's pages elligable for being reclaimed without paging to backing |
| 5702 | * store if the system runs low on memory. If the pages in a volatile |
| 5703 | * purgeable object are reclaimed, the purgeable object is said to have been |
| 5704 | * "emptied." When a purgeable object is emptied the system will reclaim as |
| 5705 | * many pages from the object as it can in a convenient manner (pages already |
| 5706 | * en route to backing store or busy for other reasons are left as is). When |
| 5707 | * a purgeable object is made volatile, its pages will generally be reclaimed |
| 5708 | * before other pages in the application's working set. This semantic is |
| 5709 | * generally used by applications which can recreate the data in the object |
| 5710 | * faster than it can be paged in. One such example might be media assets |
| 5711 | * which can be reread from a much faster RAID volume. |
| 5712 | * |
| 5713 | * A purgeable object may be designated as "non-volatile" which means it will |
| 5714 | * behave like all other objects in the system with pages being written to and |
| 5715 | * read from backing store as needed to satisfy system memory needs. If the |
| 5716 | * object was emptied before the object was made non-volatile, that fact will |
| 5717 | * be returned as the old state of the purgeable object (see |
| 5718 | * VM_PURGABLE_SET_STATE below). In this case, any pages of the object which |
| 5719 | * were reclaimed as part of emptying the object will be refaulted in as |
| 5720 | * zero-fill on demand. It is up to the application to note that an object |
| 5721 | * was emptied and recreate the objects contents if necessary. When a |
| 5722 | * purgeable object is made non-volatile, its pages will generally not be paged |
| 5723 | * out to backing store in the immediate future. A purgeable object may also |
| 5724 | * be manually emptied. |
| 5725 | * |
| 5726 | * Finally, the current state (non-volatile, volatile, volatile & empty) of a |
| 5727 | * volatile purgeable object may be queried at any time. This information may |
| 5728 | * be used as a control input to let the application know when the system is |
| 5729 | * experiencing memory pressure and is reclaiming memory. |
| 5730 | * |
| 5731 | * The specified address may be any address within the purgeable object. If |
| 5732 | * the specified address does not represent any object in the target task's |
| 5733 | * virtual address space, then KERN_INVALID_ADDRESS will be returned. If the |
| 5734 | * object containing the specified address is not a purgeable object, then |
| 5735 | * KERN_INVALID_ARGUMENT will be returned. Otherwise, KERN_SUCCESS will be |
| 5736 | * returned. |
| 5737 | * |
| 5738 | * The control parameter may be any one of VM_PURGABLE_SET_STATE or |
| 5739 | * VM_PURGABLE_GET_STATE. For VM_PURGABLE_SET_STATE, the in/out parameter |
| 5740 | * state is used to set the new state of the purgeable object and return its |
| 5741 | * old state. For VM_PURGABLE_GET_STATE, the current state of the purgeable |
| 5742 | * object is returned in the parameter state. |
| 5743 | * |
| 5744 | * The in/out parameter state may be one of VM_PURGABLE_NONVOLATILE, |
| 5745 | * VM_PURGABLE_VOLATILE or VM_PURGABLE_EMPTY. These, respectively, represent |
| 5746 | * the non-volatile, volatile and volatile/empty states described above. |
| 5747 | * Setting the state of a purgeable object to VM_PURGABLE_EMPTY will |
| 5748 | * immediately reclaim as many pages in the object as can be conveniently |
| 5749 | * collected (some may have already been written to backing store or be |
| 5750 | * otherwise busy). |
| 5751 | * |
| 5752 | * The process of making a purgeable object non-volatile and determining its |
| 5753 | * previous state is atomic. Thus, if a purgeable object is made |
| 5754 | * VM_PURGABLE_NONVOLATILE and the old state is returned as |
| 5755 | * VM_PURGABLE_VOLATILE, then the purgeable object's previous contents are |
| 5756 | * completely intact and will remain so until the object is made volatile |
| 5757 | * again. If the old state is returned as VM_PURGABLE_EMPTY then the object |
| 5758 | * was reclaimed while it was in a volatile state and its previous contents |
| 5759 | * have been lost. |
| 5760 | */ |
| 5761 | /* |
| 5762 | * The object must be locked. |
| 5763 | */ |
| 5764 | kern_return_t |
| 5765 | vm_object_purgable_control( |
| 5766 | vm_object_t object, |
| 5767 | vm_purgable_t control, |
| 5768 | int *state) |
| 5769 | { |
| 5770 | int old_state; |
| 5771 | int new_state; |
| 5772 | |
| 5773 | if (object == VM_OBJECT_NULL) { |
| 5774 | /* |
| 5775 | * Object must already be present or it can't be purgeable. |
| 5776 | */ |
| 5777 | return KERN_INVALID_ARGUMENT; |
| 5778 | } |
| 5779 | |
| 5780 | vm_object_lock_assert_exclusive(object); |
| 5781 | |
| 5782 | /* |
| 5783 | * Get current state of the purgeable object. |
| 5784 | */ |
| 5785 | old_state = object->purgable; |
| 5786 | if (old_state == VM_PURGABLE_DENY) { |
| 5787 | return KERN_INVALID_ARGUMENT; |
| 5788 | } |
| 5789 | |
| 5790 | /* purgeable cant have delayed copies - now or in the future */ |
| 5791 | assert(object->vo_copy == VM_OBJECT_NULL); |
| 5792 | assert(object->copy_strategy == MEMORY_OBJECT_COPY_NONE); |
| 5793 | |
| 5794 | /* |
| 5795 | * Execute the desired operation. |
| 5796 | */ |
| 5797 | if (control == VM_PURGABLE_GET_STATE) { |
| 5798 | *state = old_state; |
| 5799 | return KERN_SUCCESS; |
| 5800 | } |
| 5801 | |
| 5802 | if (control == VM_PURGABLE_SET_STATE && |
| 5803 | object->purgeable_only_by_kernel) { |
| 5804 | return KERN_PROTECTION_FAILURE; |
| 5805 | } |
| 5806 | |
| 5807 | if (control != VM_PURGABLE_SET_STATE && |
| 5808 | control != VM_PURGABLE_SET_STATE_FROM_KERNEL) { |
| 5809 | return KERN_INVALID_ARGUMENT; |
| 5810 | } |
| 5811 | |
| 5812 | if ((*state) & VM_PURGABLE_DEBUG_EMPTY) { |
| 5813 | object->volatile_empty = TRUE; |
| 5814 | } |
| 5815 | if ((*state) & VM_PURGABLE_DEBUG_FAULT) { |
| 5816 | object->volatile_fault = TRUE; |
| 5817 | } |
| 5818 | |
| 5819 | new_state = *state & VM_PURGABLE_STATE_MASK; |
| 5820 | if (new_state == VM_PURGABLE_VOLATILE) { |
| 5821 | if (old_state == VM_PURGABLE_EMPTY) { |
| 5822 | /* what's been emptied must stay empty */ |
| 5823 | new_state = VM_PURGABLE_EMPTY; |
| 5824 | } |
| 5825 | if (object->volatile_empty) { |
| 5826 | /* debugging mode: go straight to empty */ |
| 5827 | new_state = VM_PURGABLE_EMPTY; |
| 5828 | } |
| 5829 | } |
| 5830 | |
| 5831 | switch (new_state) { |
| 5832 | case VM_PURGABLE_DENY: |
| 5833 | /* |
| 5834 | * Attempting to convert purgeable memory to non-purgeable: |
| 5835 | * not allowed. |
| 5836 | */ |
| 5837 | return KERN_INVALID_ARGUMENT; |
| 5838 | case VM_PURGABLE_NONVOLATILE: |
| 5839 | VM_OBJECT_SET_PURGABLE(object, value: new_state); |
| 5840 | |
| 5841 | if (old_state == VM_PURGABLE_VOLATILE) { |
| 5842 | unsigned int delta; |
| 5843 | |
| 5844 | assert(object->resident_page_count >= |
| 5845 | object->wired_page_count); |
| 5846 | delta = (object->resident_page_count - |
| 5847 | object->wired_page_count); |
| 5848 | |
| 5849 | assert(vm_page_purgeable_count >= delta); |
| 5850 | |
| 5851 | if (delta != 0) { |
| 5852 | OSAddAtomic(-delta, |
| 5853 | (SInt32 *)&vm_page_purgeable_count); |
| 5854 | } |
| 5855 | if (object->wired_page_count != 0) { |
| 5856 | assert(vm_page_purgeable_wired_count >= |
| 5857 | object->wired_page_count); |
| 5858 | OSAddAtomic(-object->wired_page_count, |
| 5859 | (SInt32 *)&vm_page_purgeable_wired_count); |
| 5860 | } |
| 5861 | |
| 5862 | vm_page_lock_queues(); |
| 5863 | |
| 5864 | /* object should be on a queue */ |
| 5865 | assert(object->objq.next != NULL && |
| 5866 | object->objq.prev != NULL); |
| 5867 | purgeable_q_t queue; |
| 5868 | |
| 5869 | /* |
| 5870 | * Move object from its volatile queue to the |
| 5871 | * non-volatile queue... |
| 5872 | */ |
| 5873 | queue = vm_purgeable_object_remove(object); |
| 5874 | assert(queue); |
| 5875 | |
| 5876 | if (object->purgeable_when_ripe) { |
| 5877 | vm_purgeable_token_delete_last(queue); |
| 5878 | } |
| 5879 | assert(queue->debug_count_objects >= 0); |
| 5880 | |
| 5881 | vm_page_unlock_queues(); |
| 5882 | } |
| 5883 | if (old_state == VM_PURGABLE_VOLATILE || |
| 5884 | old_state == VM_PURGABLE_EMPTY) { |
| 5885 | /* |
| 5886 | * Transfer the object's pages from the volatile to |
| 5887 | * non-volatile ledgers. |
| 5888 | */ |
| 5889 | vm_purgeable_accounting(object, VM_PURGABLE_VOLATILE); |
| 5890 | } |
| 5891 | |
| 5892 | break; |
| 5893 | |
| 5894 | case VM_PURGABLE_VOLATILE: |
| 5895 | if (object->volatile_fault) { |
| 5896 | vm_page_t p; |
| 5897 | int refmod; |
| 5898 | |
| 5899 | vm_page_queue_iterate(&object->memq, p, vmp_listq) { |
| 5900 | if (p->vmp_busy || |
| 5901 | VM_PAGE_WIRED(p) || |
| 5902 | p->vmp_fictitious) { |
| 5903 | continue; |
| 5904 | } |
| 5905 | refmod = pmap_disconnect(phys: VM_PAGE_GET_PHYS_PAGE(m: p)); |
| 5906 | if ((refmod & VM_MEM_MODIFIED) && |
| 5907 | !p->vmp_dirty) { |
| 5908 | SET_PAGE_DIRTY(p, FALSE); |
| 5909 | } |
| 5910 | } |
| 5911 | } |
| 5912 | |
| 5913 | assert(old_state != VM_PURGABLE_EMPTY); |
| 5914 | |
| 5915 | purgeable_q_t queue; |
| 5916 | |
| 5917 | /* find the correct queue */ |
| 5918 | if ((*state & VM_PURGABLE_ORDERING_MASK) == VM_PURGABLE_ORDERING_OBSOLETE) { |
| 5919 | queue = &purgeable_queues[PURGEABLE_Q_TYPE_OBSOLETE]; |
| 5920 | } else { |
| 5921 | if ((*state & VM_PURGABLE_BEHAVIOR_MASK) == VM_PURGABLE_BEHAVIOR_FIFO) { |
| 5922 | queue = &purgeable_queues[PURGEABLE_Q_TYPE_FIFO]; |
| 5923 | } else { |
| 5924 | queue = &purgeable_queues[PURGEABLE_Q_TYPE_LIFO]; |
| 5925 | } |
| 5926 | } |
| 5927 | |
| 5928 | if (old_state == VM_PURGABLE_NONVOLATILE || |
| 5929 | old_state == VM_PURGABLE_EMPTY) { |
| 5930 | unsigned int delta; |
| 5931 | |
| 5932 | if ((*state & VM_PURGABLE_NO_AGING_MASK) == |
| 5933 | VM_PURGABLE_NO_AGING) { |
| 5934 | VM_OBJECT_SET_PURGEABLE_WHEN_RIPE(object, FALSE); |
| 5935 | } else { |
| 5936 | VM_OBJECT_SET_PURGEABLE_WHEN_RIPE(object, TRUE); |
| 5937 | } |
| 5938 | |
| 5939 | if (object->purgeable_when_ripe) { |
| 5940 | kern_return_t result; |
| 5941 | |
| 5942 | /* try to add token... this can fail */ |
| 5943 | vm_page_lock_queues(); |
| 5944 | |
| 5945 | result = vm_purgeable_token_add(queue); |
| 5946 | if (result != KERN_SUCCESS) { |
| 5947 | vm_page_unlock_queues(); |
| 5948 | return result; |
| 5949 | } |
| 5950 | vm_page_unlock_queues(); |
| 5951 | } |
| 5952 | |
| 5953 | assert(object->resident_page_count >= |
| 5954 | object->wired_page_count); |
| 5955 | delta = (object->resident_page_count - |
| 5956 | object->wired_page_count); |
| 5957 | |
| 5958 | if (delta != 0) { |
| 5959 | OSAddAtomic(delta, |
| 5960 | &vm_page_purgeable_count); |
| 5961 | } |
| 5962 | if (object->wired_page_count != 0) { |
| 5963 | OSAddAtomic(object->wired_page_count, |
| 5964 | &vm_page_purgeable_wired_count); |
| 5965 | } |
| 5966 | |
| 5967 | VM_OBJECT_SET_PURGABLE(object, value: new_state); |
| 5968 | |
| 5969 | /* object should be on "non-volatile" queue */ |
| 5970 | assert(object->objq.next != NULL); |
| 5971 | assert(object->objq.prev != NULL); |
| 5972 | } else if (old_state == VM_PURGABLE_VOLATILE) { |
| 5973 | purgeable_q_t old_queue; |
| 5974 | boolean_t purgeable_when_ripe; |
| 5975 | |
| 5976 | /* |
| 5977 | * if reassigning priorities / purgeable groups, we don't change the |
| 5978 | * token queue. So moving priorities will not make pages stay around longer. |
| 5979 | * Reasoning is that the algorithm gives most priority to the most important |
| 5980 | * object. If a new token is added, the most important object' priority is boosted. |
| 5981 | * This biases the system already for purgeable queues that move a lot. |
| 5982 | * It doesn't seem more biasing is neccessary in this case, where no new object is added. |
| 5983 | */ |
| 5984 | assert(object->objq.next != NULL && object->objq.prev != NULL); /* object should be on a queue */ |
| 5985 | |
| 5986 | old_queue = vm_purgeable_object_remove(object); |
| 5987 | assert(old_queue); |
| 5988 | |
| 5989 | if ((*state & VM_PURGABLE_NO_AGING_MASK) == |
| 5990 | VM_PURGABLE_NO_AGING) { |
| 5991 | purgeable_when_ripe = FALSE; |
| 5992 | } else { |
| 5993 | purgeable_when_ripe = TRUE; |
| 5994 | } |
| 5995 | |
| 5996 | if (old_queue != queue || |
| 5997 | (purgeable_when_ripe != |
| 5998 | object->purgeable_when_ripe)) { |
| 5999 | kern_return_t result; |
| 6000 | |
| 6001 | /* Changing queue. Have to move token. */ |
| 6002 | vm_page_lock_queues(); |
| 6003 | if (object->purgeable_when_ripe) { |
| 6004 | vm_purgeable_token_delete_last(queue: old_queue); |
| 6005 | } |
| 6006 | VM_OBJECT_SET_PURGEABLE_WHEN_RIPE(object, value: purgeable_when_ripe); |
| 6007 | if (object->purgeable_when_ripe) { |
| 6008 | result = vm_purgeable_token_add(queue); |
| 6009 | assert(result == KERN_SUCCESS); /* this should never fail since we just freed a token */ |
| 6010 | } |
| 6011 | vm_page_unlock_queues(); |
| 6012 | } |
| 6013 | } |
| 6014 | ; |
| 6015 | vm_purgeable_object_add(object, queue, group: (*state & VM_VOLATILE_GROUP_MASK) >> VM_VOLATILE_GROUP_SHIFT ); |
| 6016 | if (old_state == VM_PURGABLE_NONVOLATILE) { |
| 6017 | vm_purgeable_accounting(object, |
| 6018 | VM_PURGABLE_NONVOLATILE); |
| 6019 | } |
| 6020 | |
| 6021 | assert(queue->debug_count_objects >= 0); |
| 6022 | |
| 6023 | break; |
| 6024 | |
| 6025 | |
| 6026 | case VM_PURGABLE_EMPTY: |
| 6027 | if (object->volatile_fault) { |
| 6028 | vm_page_t p; |
| 6029 | int refmod; |
| 6030 | |
| 6031 | vm_page_queue_iterate(&object->memq, p, vmp_listq) { |
| 6032 | if (p->vmp_busy || |
| 6033 | VM_PAGE_WIRED(p) || |
| 6034 | p->vmp_fictitious) { |
| 6035 | continue; |
| 6036 | } |
| 6037 | refmod = pmap_disconnect(phys: VM_PAGE_GET_PHYS_PAGE(m: p)); |
| 6038 | if ((refmod & VM_MEM_MODIFIED) && |
| 6039 | !p->vmp_dirty) { |
| 6040 | SET_PAGE_DIRTY(p, FALSE); |
| 6041 | } |
| 6042 | } |
| 6043 | } |
| 6044 | |
| 6045 | if (old_state == VM_PURGABLE_VOLATILE) { |
| 6046 | purgeable_q_t old_queue; |
| 6047 | |
| 6048 | /* object should be on a queue */ |
| 6049 | assert(object->objq.next != NULL && |
| 6050 | object->objq.prev != NULL); |
| 6051 | |
| 6052 | old_queue = vm_purgeable_object_remove(object); |
| 6053 | assert(old_queue); |
| 6054 | if (object->purgeable_when_ripe) { |
| 6055 | vm_page_lock_queues(); |
| 6056 | vm_purgeable_token_delete_first(queue: old_queue); |
| 6057 | vm_page_unlock_queues(); |
| 6058 | } |
| 6059 | } |
| 6060 | |
| 6061 | if (old_state == VM_PURGABLE_NONVOLATILE) { |
| 6062 | /* |
| 6063 | * This object's pages were previously accounted as |
| 6064 | * "non-volatile" and now need to be accounted as |
| 6065 | * "volatile". |
| 6066 | */ |
| 6067 | vm_purgeable_accounting(object, |
| 6068 | VM_PURGABLE_NONVOLATILE); |
| 6069 | /* |
| 6070 | * Set to VM_PURGABLE_EMPTY because the pages are no |
| 6071 | * longer accounted in the "non-volatile" ledger |
| 6072 | * and are also not accounted for in |
| 6073 | * "vm_page_purgeable_count". |
| 6074 | */ |
| 6075 | VM_OBJECT_SET_PURGABLE(object, VM_PURGABLE_EMPTY); |
| 6076 | } |
| 6077 | |
| 6078 | (void) vm_object_purge(object, flags: 0); |
| 6079 | assert(object->purgable == VM_PURGABLE_EMPTY); |
| 6080 | |
| 6081 | break; |
| 6082 | } |
| 6083 | |
| 6084 | *state = old_state; |
| 6085 | |
| 6086 | vm_object_lock_assert_exclusive(object); |
| 6087 | |
| 6088 | return KERN_SUCCESS; |
| 6089 | } |
| 6090 | |
| 6091 | kern_return_t |
| 6092 | vm_object_get_page_counts( |
| 6093 | vm_object_t object, |
| 6094 | vm_object_offset_t offset, |
| 6095 | vm_object_size_t size, |
| 6096 | unsigned int *resident_page_count, |
| 6097 | unsigned int *dirty_page_count) |
| 6098 | { |
| 6099 | kern_return_t kr = KERN_SUCCESS; |
| 6100 | boolean_t count_dirty_pages = FALSE; |
| 6101 | vm_page_t p = VM_PAGE_NULL; |
| 6102 | unsigned int local_resident_count = 0; |
| 6103 | unsigned int local_dirty_count = 0; |
| 6104 | vm_object_offset_t cur_offset = 0; |
| 6105 | vm_object_offset_t end_offset = 0; |
| 6106 | |
| 6107 | if (object == VM_OBJECT_NULL) { |
| 6108 | return KERN_INVALID_ARGUMENT; |
| 6109 | } |
| 6110 | |
| 6111 | |
| 6112 | cur_offset = offset; |
| 6113 | |
| 6114 | end_offset = offset + size; |
| 6115 | |
| 6116 | vm_object_lock_assert_exclusive(object); |
| 6117 | |
| 6118 | if (dirty_page_count != NULL) { |
| 6119 | count_dirty_pages = TRUE; |
| 6120 | } |
| 6121 | |
| 6122 | if (resident_page_count != NULL && count_dirty_pages == FALSE) { |
| 6123 | /* |
| 6124 | * Fast path when: |
| 6125 | * - we only want the resident page count, and, |
| 6126 | * - the entire object is exactly covered by the request. |
| 6127 | */ |
| 6128 | if (offset == 0 && (object->vo_size == size)) { |
| 6129 | *resident_page_count = object->resident_page_count; |
| 6130 | goto out; |
| 6131 | } |
| 6132 | } |
| 6133 | |
| 6134 | if (object->resident_page_count <= (size >> PAGE_SHIFT)) { |
| 6135 | vm_page_queue_iterate(&object->memq, p, vmp_listq) { |
| 6136 | if (p->vmp_offset >= cur_offset && p->vmp_offset < end_offset) { |
| 6137 | local_resident_count++; |
| 6138 | |
| 6139 | if (count_dirty_pages) { |
| 6140 | if (p->vmp_dirty || (p->vmp_wpmapped && pmap_is_modified(pn: VM_PAGE_GET_PHYS_PAGE(m: p)))) { |
| 6141 | local_dirty_count++; |
| 6142 | } |
| 6143 | } |
| 6144 | } |
| 6145 | } |
| 6146 | } else { |
| 6147 | for (cur_offset = offset; cur_offset < end_offset; cur_offset += PAGE_SIZE_64) { |
| 6148 | p = vm_page_lookup(object, offset: cur_offset); |
| 6149 | |
| 6150 | if (p != VM_PAGE_NULL) { |
| 6151 | local_resident_count++; |
| 6152 | |
| 6153 | if (count_dirty_pages) { |
| 6154 | if (p->vmp_dirty || (p->vmp_wpmapped && pmap_is_modified(pn: VM_PAGE_GET_PHYS_PAGE(m: p)))) { |
| 6155 | local_dirty_count++; |
| 6156 | } |
| 6157 | } |
| 6158 | } |
| 6159 | } |
| 6160 | } |
| 6161 | |
| 6162 | if (resident_page_count != NULL) { |
| 6163 | *resident_page_count = local_resident_count; |
| 6164 | } |
| 6165 | |
| 6166 | if (dirty_page_count != NULL) { |
| 6167 | *dirty_page_count = local_dirty_count; |
| 6168 | } |
| 6169 | |
| 6170 | out: |
| 6171 | return kr; |
| 6172 | } |
| 6173 | |
| 6174 | |
| 6175 | /* |
| 6176 | * vm_object_reference: |
| 6177 | * |
| 6178 | * Gets another reference to the given object. |
| 6179 | */ |
| 6180 | #ifdef vm_object_reference |
| 6181 | #undef vm_object_reference |
| 6182 | #endif |
| 6183 | __private_extern__ void |
| 6184 | vm_object_reference( |
| 6185 | vm_object_t object) |
| 6186 | { |
| 6187 | if (object == VM_OBJECT_NULL) { |
| 6188 | return; |
| 6189 | } |
| 6190 | |
| 6191 | vm_object_lock(object); |
| 6192 | assert(object->ref_count > 0); |
| 6193 | vm_object_reference_locked(object); |
| 6194 | vm_object_unlock(object); |
| 6195 | } |
| 6196 | |
| 6197 | /* |
| 6198 | * vm_object_transpose |
| 6199 | * |
| 6200 | * This routine takes two VM objects of the same size and exchanges |
| 6201 | * their backing store. |
| 6202 | * The objects should be "quiesced" via a UPL operation with UPL_SET_IO_WIRE |
| 6203 | * and UPL_BLOCK_ACCESS if they are referenced anywhere. |
| 6204 | * |
| 6205 | * The VM objects must not be locked by caller. |
| 6206 | */ |
| 6207 | unsigned int vm_object_transpose_count = 0; |
| 6208 | kern_return_t |
| 6209 | vm_object_transpose( |
| 6210 | vm_object_t object1, |
| 6211 | vm_object_t object2, |
| 6212 | vm_object_size_t transpose_size) |
| 6213 | { |
| 6214 | vm_object_t tmp_object; |
| 6215 | kern_return_t retval; |
| 6216 | boolean_t object1_locked, object2_locked; |
| 6217 | vm_page_t page; |
| 6218 | vm_object_offset_t page_offset; |
| 6219 | |
| 6220 | tmp_object = VM_OBJECT_NULL; |
| 6221 | object1_locked = FALSE; object2_locked = FALSE; |
| 6222 | |
| 6223 | if (object1 == object2 || |
| 6224 | object1 == VM_OBJECT_NULL || |
| 6225 | object2 == VM_OBJECT_NULL) { |
| 6226 | /* |
| 6227 | * If the 2 VM objects are the same, there's |
| 6228 | * no point in exchanging their backing store. |
| 6229 | */ |
| 6230 | retval = KERN_INVALID_VALUE; |
| 6231 | goto done; |
| 6232 | } |
| 6233 | |
| 6234 | /* |
| 6235 | * Since we need to lock both objects at the same time, |
| 6236 | * make sure we always lock them in the same order to |
| 6237 | * avoid deadlocks. |
| 6238 | */ |
| 6239 | if (object1 > object2) { |
| 6240 | tmp_object = object1; |
| 6241 | object1 = object2; |
| 6242 | object2 = tmp_object; |
| 6243 | } |
| 6244 | |
| 6245 | /* |
| 6246 | * Allocate a temporary VM object to hold object1's contents |
| 6247 | * while we copy object2 to object1. |
| 6248 | */ |
| 6249 | tmp_object = vm_object_allocate(size: transpose_size); |
| 6250 | vm_object_lock(tmp_object); |
| 6251 | VM_OBJECT_SET_CAN_PERSIST(object: tmp_object, FALSE); |
| 6252 | |
| 6253 | |
| 6254 | /* |
| 6255 | * Grab control of the 1st VM object. |
| 6256 | */ |
| 6257 | vm_object_lock(object1); |
| 6258 | object1_locked = TRUE; |
| 6259 | if (!object1->alive || object1->terminating || |
| 6260 | object1->vo_copy || object1->shadow || object1->shadowed || |
| 6261 | object1->purgable != VM_PURGABLE_DENY) { |
| 6262 | /* |
| 6263 | * We don't deal with copy or shadow objects (yet). |
| 6264 | */ |
| 6265 | retval = KERN_INVALID_VALUE; |
| 6266 | goto done; |
| 6267 | } |
| 6268 | /* |
| 6269 | * We're about to mess with the object's backing store and |
| 6270 | * taking a "paging_in_progress" reference wouldn't be enough |
| 6271 | * to prevent any paging activity on this object, so the caller should |
| 6272 | * have "quiesced" the objects beforehand, via a UPL operation with |
| 6273 | * UPL_SET_IO_WIRE (to make sure all the pages are there and wired) |
| 6274 | * and UPL_BLOCK_ACCESS (to mark the pages "busy"). |
| 6275 | * |
| 6276 | * Wait for any paging operation to complete (but only paging, not |
| 6277 | * other kind of activities not linked to the pager). After we're |
| 6278 | * statisfied that there's no more paging in progress, we keep the |
| 6279 | * object locked, to guarantee that no one tries to access its pager. |
| 6280 | */ |
| 6281 | vm_object_paging_only_wait(object1, THREAD_UNINT); |
| 6282 | |
| 6283 | /* |
| 6284 | * Same as above for the 2nd object... |
| 6285 | */ |
| 6286 | vm_object_lock(object2); |
| 6287 | object2_locked = TRUE; |
| 6288 | if (!object2->alive || object2->terminating || |
| 6289 | object2->vo_copy || object2->shadow || object2->shadowed || |
| 6290 | object2->purgable != VM_PURGABLE_DENY) { |
| 6291 | retval = KERN_INVALID_VALUE; |
| 6292 | goto done; |
| 6293 | } |
| 6294 | vm_object_paging_only_wait(object2, THREAD_UNINT); |
| 6295 | |
| 6296 | |
| 6297 | if (object1->vo_size != object2->vo_size || |
| 6298 | object1->vo_size != transpose_size) { |
| 6299 | /* |
| 6300 | * If the 2 objects don't have the same size, we can't |
| 6301 | * exchange their backing stores or one would overflow. |
| 6302 | * If their size doesn't match the caller's |
| 6303 | * "transpose_size", we can't do it either because the |
| 6304 | * transpose operation will affect the entire span of |
| 6305 | * the objects. |
| 6306 | */ |
| 6307 | retval = KERN_INVALID_VALUE; |
| 6308 | goto done; |
| 6309 | } |
| 6310 | |
| 6311 | |
| 6312 | /* |
| 6313 | * Transpose the lists of resident pages. |
| 6314 | * This also updates the resident_page_count and the memq_hint. |
| 6315 | */ |
| 6316 | if (object1->phys_contiguous || vm_page_queue_empty(&object1->memq)) { |
| 6317 | /* |
| 6318 | * No pages in object1, just transfer pages |
| 6319 | * from object2 to object1. No need to go through |
| 6320 | * an intermediate object. |
| 6321 | */ |
| 6322 | while (!vm_page_queue_empty(&object2->memq)) { |
| 6323 | page = (vm_page_t) vm_page_queue_first(&object2->memq); |
| 6324 | vm_page_rename(page, new_object: object1, new_offset: page->vmp_offset); |
| 6325 | } |
| 6326 | assert(vm_page_queue_empty(&object2->memq)); |
| 6327 | } else if (object2->phys_contiguous || vm_page_queue_empty(&object2->memq)) { |
| 6328 | /* |
| 6329 | * No pages in object2, just transfer pages |
| 6330 | * from object1 to object2. No need to go through |
| 6331 | * an intermediate object. |
| 6332 | */ |
| 6333 | while (!vm_page_queue_empty(&object1->memq)) { |
| 6334 | page = (vm_page_t) vm_page_queue_first(&object1->memq); |
| 6335 | vm_page_rename(page, new_object: object2, new_offset: page->vmp_offset); |
| 6336 | } |
| 6337 | assert(vm_page_queue_empty(&object1->memq)); |
| 6338 | } else { |
| 6339 | /* transfer object1's pages to tmp_object */ |
| 6340 | while (!vm_page_queue_empty(&object1->memq)) { |
| 6341 | page = (vm_page_t) vm_page_queue_first(&object1->memq); |
| 6342 | page_offset = page->vmp_offset; |
| 6343 | vm_page_remove(page, TRUE); |
| 6344 | page->vmp_offset = page_offset; |
| 6345 | vm_page_queue_enter(&tmp_object->memq, page, vmp_listq); |
| 6346 | } |
| 6347 | assert(vm_page_queue_empty(&object1->memq)); |
| 6348 | /* transfer object2's pages to object1 */ |
| 6349 | while (!vm_page_queue_empty(&object2->memq)) { |
| 6350 | page = (vm_page_t) vm_page_queue_first(&object2->memq); |
| 6351 | vm_page_rename(page, new_object: object1, new_offset: page->vmp_offset); |
| 6352 | } |
| 6353 | assert(vm_page_queue_empty(&object2->memq)); |
| 6354 | /* transfer tmp_object's pages to object2 */ |
| 6355 | while (!vm_page_queue_empty(&tmp_object->memq)) { |
| 6356 | page = (vm_page_t) vm_page_queue_first(&tmp_object->memq); |
| 6357 | vm_page_queue_remove(&tmp_object->memq, page, vmp_listq); |
| 6358 | vm_page_insert(page, object: object2, offset: page->vmp_offset); |
| 6359 | } |
| 6360 | assert(vm_page_queue_empty(&tmp_object->memq)); |
| 6361 | } |
| 6362 | |
| 6363 | #define __TRANSPOSE_FIELD(field) \ |
| 6364 | MACRO_BEGIN \ |
| 6365 | tmp_object->field = object1->field; \ |
| 6366 | object1->field = object2->field; \ |
| 6367 | object2->field = tmp_object->field; \ |
| 6368 | MACRO_END |
| 6369 | |
| 6370 | /* "Lock" refers to the object not its contents */ |
| 6371 | /* "size" should be identical */ |
| 6372 | assert(object1->vo_size == object2->vo_size); |
| 6373 | /* "memq_hint" was updated above when transposing pages */ |
| 6374 | /* "ref_count" refers to the object not its contents */ |
| 6375 | assert(object1->ref_count >= 1); |
| 6376 | assert(object2->ref_count >= 1); |
| 6377 | /* "resident_page_count" was updated above when transposing pages */ |
| 6378 | /* "wired_page_count" was updated above when transposing pages */ |
| 6379 | #if !VM_TAG_ACTIVE_UPDATE |
| 6380 | /* "wired_objq" was dealt with along with "wired_page_count" */ |
| 6381 | #endif /* ! VM_TAG_ACTIVE_UPDATE */ |
| 6382 | /* "reusable_page_count" was updated above when transposing pages */ |
| 6383 | /* there should be no "copy" */ |
| 6384 | assert(!object1->vo_copy); |
| 6385 | assert(!object2->vo_copy); |
| 6386 | /* there should be no "shadow" */ |
| 6387 | assert(!object1->shadow); |
| 6388 | assert(!object2->shadow); |
| 6389 | __TRANSPOSE_FIELD(vo_shadow_offset); /* used by phys_contiguous objects */ |
| 6390 | __TRANSPOSE_FIELD(pager); |
| 6391 | __TRANSPOSE_FIELD(paging_offset); |
| 6392 | __TRANSPOSE_FIELD(pager_control); |
| 6393 | /* update the memory_objects' pointers back to the VM objects */ |
| 6394 | if (object1->pager_control != MEMORY_OBJECT_CONTROL_NULL) { |
| 6395 | memory_object_control_collapse(control: &object1->pager_control, |
| 6396 | object: object1); |
| 6397 | } |
| 6398 | if (object2->pager_control != MEMORY_OBJECT_CONTROL_NULL) { |
| 6399 | memory_object_control_collapse(control: &object2->pager_control, |
| 6400 | object: object2); |
| 6401 | } |
| 6402 | __TRANSPOSE_FIELD(copy_strategy); |
| 6403 | /* "paging_in_progress" refers to the object not its contents */ |
| 6404 | assert(!object1->paging_in_progress); |
| 6405 | assert(!object2->paging_in_progress); |
| 6406 | assert(object1->activity_in_progress); |
| 6407 | assert(object2->activity_in_progress); |
| 6408 | /* "all_wanted" refers to the object not its contents */ |
| 6409 | __TRANSPOSE_FIELD(pager_created); |
| 6410 | __TRANSPOSE_FIELD(pager_initialized); |
| 6411 | __TRANSPOSE_FIELD(pager_ready); |
| 6412 | __TRANSPOSE_FIELD(pager_trusted); |
| 6413 | __TRANSPOSE_FIELD(can_persist); |
| 6414 | __TRANSPOSE_FIELD(internal); |
| 6415 | __TRANSPOSE_FIELD(private); |
| 6416 | __TRANSPOSE_FIELD(pageout); |
| 6417 | /* "alive" should be set */ |
| 6418 | assert(object1->alive); |
| 6419 | assert(object2->alive); |
| 6420 | /* "purgeable" should be non-purgeable */ |
| 6421 | assert(object1->purgable == VM_PURGABLE_DENY); |
| 6422 | assert(object2->purgable == VM_PURGABLE_DENY); |
| 6423 | /* "shadowed" refers to the the object not its contents */ |
| 6424 | __TRANSPOSE_FIELD(purgeable_when_ripe); |
| 6425 | __TRANSPOSE_FIELD(true_share); |
| 6426 | /* "terminating" should not be set */ |
| 6427 | assert(!object1->terminating); |
| 6428 | assert(!object2->terminating); |
| 6429 | /* transfer "named" reference if needed */ |
| 6430 | if (object1->named && !object2->named) { |
| 6431 | assert(object1->ref_count >= 2); |
| 6432 | assert(object2->ref_count >= 1); |
| 6433 | object1->ref_count--; |
| 6434 | object2->ref_count++; |
| 6435 | } else if (!object1->named && object2->named) { |
| 6436 | assert(object1->ref_count >= 1); |
| 6437 | assert(object2->ref_count >= 2); |
| 6438 | object1->ref_count++; |
| 6439 | object2->ref_count--; |
| 6440 | } |
| 6441 | __TRANSPOSE_FIELD(named); |
| 6442 | /* "shadow_severed" refers to the object not its contents */ |
| 6443 | __TRANSPOSE_FIELD(phys_contiguous); |
| 6444 | __TRANSPOSE_FIELD(nophyscache); |
| 6445 | __TRANSPOSE_FIELD(no_pager_reason); |
| 6446 | /* "cached_list.next" points to transposed object */ |
| 6447 | object1->cached_list.next = (queue_entry_t) object2; |
| 6448 | object2->cached_list.next = (queue_entry_t) object1; |
| 6449 | /* "cached_list.prev" should be NULL */ |
| 6450 | assert(object1->cached_list.prev == NULL); |
| 6451 | assert(object2->cached_list.prev == NULL); |
| 6452 | __TRANSPOSE_FIELD(last_alloc); |
| 6453 | __TRANSPOSE_FIELD(sequential); |
| 6454 | __TRANSPOSE_FIELD(pages_created); |
| 6455 | __TRANSPOSE_FIELD(pages_used); |
| 6456 | __TRANSPOSE_FIELD(scan_collisions); |
| 6457 | __TRANSPOSE_FIELD(cow_hint); |
| 6458 | __TRANSPOSE_FIELD(wimg_bits); |
| 6459 | __TRANSPOSE_FIELD(set_cache_attr); |
| 6460 | __TRANSPOSE_FIELD(code_signed); |
| 6461 | object1->transposed = TRUE; |
| 6462 | object2->transposed = TRUE; |
| 6463 | __TRANSPOSE_FIELD(mapping_in_progress); |
| 6464 | __TRANSPOSE_FIELD(volatile_empty); |
| 6465 | __TRANSPOSE_FIELD(volatile_fault); |
| 6466 | __TRANSPOSE_FIELD(all_reusable); |
| 6467 | assert(object1->blocked_access); |
| 6468 | assert(object2->blocked_access); |
| 6469 | __TRANSPOSE_FIELD(set_cache_attr); |
| 6470 | assert(!object1->object_is_shared_cache); |
| 6471 | assert(!object2->object_is_shared_cache); |
| 6472 | /* ignore purgeable_queue_type and purgeable_queue_group */ |
| 6473 | assert(!object1->io_tracking); |
| 6474 | assert(!object2->io_tracking); |
| 6475 | #if VM_OBJECT_ACCESS_TRACKING |
| 6476 | assert(!object1->access_tracking); |
| 6477 | assert(!object2->access_tracking); |
| 6478 | #endif /* VM_OBJECT_ACCESS_TRACKING */ |
| 6479 | __TRANSPOSE_FIELD(no_tag_update); |
| 6480 | #if CONFIG_SECLUDED_MEMORY |
| 6481 | assert(!object1->eligible_for_secluded); |
| 6482 | assert(!object2->eligible_for_secluded); |
| 6483 | assert(!object1->can_grab_secluded); |
| 6484 | assert(!object2->can_grab_secluded); |
| 6485 | #else /* CONFIG_SECLUDED_MEMORY */ |
| 6486 | assert(object1->__object3_unused_bits == 0); |
| 6487 | assert(object2->__object3_unused_bits == 0); |
| 6488 | #endif /* CONFIG_SECLUDED_MEMORY */ |
| 6489 | #if UPL_DEBUG |
| 6490 | /* "uplq" refers to the object not its contents (see upl_transpose()) */ |
| 6491 | #endif |
| 6492 | assert((object1->purgable == VM_PURGABLE_DENY) || (object1->objq.next == NULL)); |
| 6493 | assert((object1->purgable == VM_PURGABLE_DENY) || (object1->objq.prev == NULL)); |
| 6494 | assert((object2->purgable == VM_PURGABLE_DENY) || (object2->objq.next == NULL)); |
| 6495 | assert((object2->purgable == VM_PURGABLE_DENY) || (object2->objq.prev == NULL)); |
| 6496 | |
| 6497 | #undef __TRANSPOSE_FIELD |
| 6498 | |
| 6499 | retval = KERN_SUCCESS; |
| 6500 | |
| 6501 | done: |
| 6502 | /* |
| 6503 | * Cleanup. |
| 6504 | */ |
| 6505 | if (tmp_object != VM_OBJECT_NULL) { |
| 6506 | vm_object_unlock(tmp_object); |
| 6507 | /* |
| 6508 | * Re-initialize the temporary object to avoid |
| 6509 | * deallocating a real pager. |
| 6510 | */ |
| 6511 | _vm_object_allocate(size: transpose_size, object: tmp_object); |
| 6512 | vm_object_deallocate(object: tmp_object); |
| 6513 | tmp_object = VM_OBJECT_NULL; |
| 6514 | } |
| 6515 | |
| 6516 | if (object1_locked) { |
| 6517 | vm_object_unlock(object1); |
| 6518 | object1_locked = FALSE; |
| 6519 | } |
| 6520 | if (object2_locked) { |
| 6521 | vm_object_unlock(object2); |
| 6522 | object2_locked = FALSE; |
| 6523 | } |
| 6524 | |
| 6525 | vm_object_transpose_count++; |
| 6526 | |
| 6527 | return retval; |
| 6528 | } |
| 6529 | |
| 6530 | |
| 6531 | /* |
| 6532 | * vm_object_cluster_size |
| 6533 | * |
| 6534 | * Determine how big a cluster we should issue an I/O for... |
| 6535 | * |
| 6536 | * Inputs: *start == offset of page needed |
| 6537 | * *length == maximum cluster pager can handle |
| 6538 | * Outputs: *start == beginning offset of cluster |
| 6539 | * *length == length of cluster to try |
| 6540 | * |
| 6541 | * The original *start will be encompassed by the cluster |
| 6542 | * |
| 6543 | */ |
| 6544 | extern int speculative_reads_disabled; |
| 6545 | |
| 6546 | /* |
| 6547 | * Try to always keep these values an even multiple of PAGE_SIZE. We use these values |
| 6548 | * to derive min_ph_bytes and max_ph_bytes (IMP: bytes not # of pages) and expect those values to |
| 6549 | * always be page-aligned. The derivation could involve operations (e.g. division) |
| 6550 | * that could give us non-page-size aligned values if we start out with values that |
| 6551 | * are odd multiples of PAGE_SIZE. |
| 6552 | */ |
| 6553 | #if !XNU_TARGET_OS_OSX |
| 6554 | unsigned int preheat_max_bytes = (1024 * 512); |
| 6555 | #else /* !XNU_TARGET_OS_OSX */ |
| 6556 | unsigned int preheat_max_bytes = MAX_UPL_TRANSFER_BYTES; |
| 6557 | #endif /* !XNU_TARGET_OS_OSX */ |
| 6558 | unsigned int preheat_min_bytes = (1024 * 32); |
| 6559 | |
| 6560 | |
| 6561 | __private_extern__ void |
| 6562 | vm_object_cluster_size(vm_object_t object, vm_object_offset_t *start, |
| 6563 | vm_size_t *length, vm_object_fault_info_t fault_info, uint32_t *io_streaming) |
| 6564 | { |
| 6565 | vm_size_t pre_heat_size; |
| 6566 | vm_size_t tail_size; |
| 6567 | vm_size_t head_size; |
| 6568 | vm_size_t max_length; |
| 6569 | vm_size_t cluster_size; |
| 6570 | vm_object_offset_t object_size; |
| 6571 | vm_object_offset_t orig_start; |
| 6572 | vm_object_offset_t target_start; |
| 6573 | vm_object_offset_t offset; |
| 6574 | vm_behavior_t behavior; |
| 6575 | boolean_t look_behind = TRUE; |
| 6576 | boolean_t look_ahead = TRUE; |
| 6577 | boolean_t isSSD = FALSE; |
| 6578 | uint32_t throttle_limit; |
| 6579 | int sequential_run; |
| 6580 | int sequential_behavior = VM_BEHAVIOR_SEQUENTIAL; |
| 6581 | vm_size_t max_ph_size; |
| 6582 | vm_size_t min_ph_size; |
| 6583 | |
| 6584 | assert( !(*length & PAGE_MASK)); |
| 6585 | assert( !(*start & PAGE_MASK_64)); |
| 6586 | |
| 6587 | /* |
| 6588 | * remember maxiumum length of run requested |
| 6589 | */ |
| 6590 | max_length = *length; |
| 6591 | /* |
| 6592 | * we'll always return a cluster size of at least |
| 6593 | * 1 page, since the original fault must always |
| 6594 | * be processed |
| 6595 | */ |
| 6596 | *length = PAGE_SIZE; |
| 6597 | *io_streaming = 0; |
| 6598 | |
| 6599 | if (speculative_reads_disabled || fault_info == NULL) { |
| 6600 | /* |
| 6601 | * no cluster... just fault the page in |
| 6602 | */ |
| 6603 | return; |
| 6604 | } |
| 6605 | orig_start = *start; |
| 6606 | target_start = orig_start; |
| 6607 | cluster_size = round_page(x: fault_info->cluster_size); |
| 6608 | behavior = fault_info->behavior; |
| 6609 | |
| 6610 | vm_object_lock(object); |
| 6611 | |
| 6612 | if (object->pager == MEMORY_OBJECT_NULL) { |
| 6613 | goto out; /* pager is gone for this object, nothing more to do */ |
| 6614 | } |
| 6615 | vnode_pager_get_isSSD(object->pager, &isSSD); |
| 6616 | |
| 6617 | min_ph_size = round_page(x: preheat_min_bytes); |
| 6618 | max_ph_size = round_page(x: preheat_max_bytes); |
| 6619 | |
| 6620 | #if XNU_TARGET_OS_OSX |
| 6621 | if (isSSD) { |
| 6622 | min_ph_size /= 2; |
| 6623 | max_ph_size /= 8; |
| 6624 | |
| 6625 | if (min_ph_size & PAGE_MASK_64) { |
| 6626 | min_ph_size = trunc_page(min_ph_size); |
| 6627 | } |
| 6628 | |
| 6629 | if (max_ph_size & PAGE_MASK_64) { |
| 6630 | max_ph_size = trunc_page(max_ph_size); |
| 6631 | } |
| 6632 | } |
| 6633 | #endif /* XNU_TARGET_OS_OSX */ |
| 6634 | |
| 6635 | if (min_ph_size < PAGE_SIZE) { |
| 6636 | min_ph_size = PAGE_SIZE; |
| 6637 | } |
| 6638 | |
| 6639 | if (max_ph_size < PAGE_SIZE) { |
| 6640 | max_ph_size = PAGE_SIZE; |
| 6641 | } else if (max_ph_size > MAX_UPL_TRANSFER_BYTES) { |
| 6642 | max_ph_size = MAX_UPL_TRANSFER_BYTES; |
| 6643 | } |
| 6644 | |
| 6645 | if (max_length > max_ph_size) { |
| 6646 | max_length = max_ph_size; |
| 6647 | } |
| 6648 | |
| 6649 | if (max_length <= PAGE_SIZE) { |
| 6650 | goto out; |
| 6651 | } |
| 6652 | |
| 6653 | if (object->internal) { |
| 6654 | object_size = object->vo_size; |
| 6655 | } else { |
| 6656 | vnode_pager_get_object_size(object->pager, &object_size); |
| 6657 | } |
| 6658 | |
| 6659 | object_size = round_page_64(x: object_size); |
| 6660 | |
| 6661 | if (orig_start >= object_size) { |
| 6662 | /* |
| 6663 | * fault occurred beyond the EOF... |
| 6664 | * we need to punt w/o changing the |
| 6665 | * starting offset |
| 6666 | */ |
| 6667 | goto out; |
| 6668 | } |
| 6669 | if (object->pages_used > object->pages_created) { |
| 6670 | /* |
| 6671 | * must have wrapped our 32 bit counters |
| 6672 | * so reset |
| 6673 | */ |
| 6674 | object->pages_used = object->pages_created = 0; |
| 6675 | } |
| 6676 | if ((sequential_run = object->sequential)) { |
| 6677 | if (sequential_run < 0) { |
| 6678 | sequential_behavior = VM_BEHAVIOR_RSEQNTL; |
| 6679 | sequential_run = 0 - sequential_run; |
| 6680 | } else { |
| 6681 | sequential_behavior = VM_BEHAVIOR_SEQUENTIAL; |
| 6682 | } |
| 6683 | } |
| 6684 | switch (behavior) { |
| 6685 | default: |
| 6686 | behavior = VM_BEHAVIOR_DEFAULT; |
| 6687 | OS_FALLTHROUGH; |
| 6688 | |
| 6689 | case VM_BEHAVIOR_DEFAULT: |
| 6690 | if (object->internal && fault_info->user_tag == VM_MEMORY_STACK) { |
| 6691 | goto out; |
| 6692 | } |
| 6693 | |
| 6694 | if (sequential_run >= (3 * PAGE_SIZE)) { |
| 6695 | pre_heat_size = sequential_run + PAGE_SIZE; |
| 6696 | |
| 6697 | if (sequential_behavior == VM_BEHAVIOR_SEQUENTIAL) { |
| 6698 | look_behind = FALSE; |
| 6699 | } else { |
| 6700 | look_ahead = FALSE; |
| 6701 | } |
| 6702 | |
| 6703 | *io_streaming = 1; |
| 6704 | } else { |
| 6705 | if (object->pages_created < (20 * (min_ph_size >> PAGE_SHIFT))) { |
| 6706 | /* |
| 6707 | * prime the pump |
| 6708 | */ |
| 6709 | pre_heat_size = min_ph_size; |
| 6710 | } else { |
| 6711 | /* |
| 6712 | * Linear growth in PH size: The maximum size is max_length... |
| 6713 | * this cacluation will result in a size that is neither a |
| 6714 | * power of 2 nor a multiple of PAGE_SIZE... so round |
| 6715 | * it up to the nearest PAGE_SIZE boundary |
| 6716 | */ |
| 6717 | pre_heat_size = (max_length * (uint64_t)object->pages_used) / object->pages_created; |
| 6718 | |
| 6719 | if (pre_heat_size < min_ph_size) { |
| 6720 | pre_heat_size = min_ph_size; |
| 6721 | } else { |
| 6722 | pre_heat_size = round_page(x: pre_heat_size); |
| 6723 | } |
| 6724 | } |
| 6725 | } |
| 6726 | break; |
| 6727 | |
| 6728 | case VM_BEHAVIOR_RANDOM: |
| 6729 | if ((pre_heat_size = cluster_size) <= PAGE_SIZE) { |
| 6730 | goto out; |
| 6731 | } |
| 6732 | break; |
| 6733 | |
| 6734 | case VM_BEHAVIOR_SEQUENTIAL: |
| 6735 | if ((pre_heat_size = cluster_size) == 0) { |
| 6736 | pre_heat_size = sequential_run + PAGE_SIZE; |
| 6737 | } |
| 6738 | look_behind = FALSE; |
| 6739 | *io_streaming = 1; |
| 6740 | |
| 6741 | break; |
| 6742 | |
| 6743 | case VM_BEHAVIOR_RSEQNTL: |
| 6744 | if ((pre_heat_size = cluster_size) == 0) { |
| 6745 | pre_heat_size = sequential_run + PAGE_SIZE; |
| 6746 | } |
| 6747 | look_ahead = FALSE; |
| 6748 | *io_streaming = 1; |
| 6749 | |
| 6750 | break; |
| 6751 | } |
| 6752 | throttle_limit = (uint32_t) max_length; |
| 6753 | assert(throttle_limit == max_length); |
| 6754 | |
| 6755 | if (vnode_pager_get_throttle_io_limit(object->pager, &throttle_limit) == KERN_SUCCESS) { |
| 6756 | if (max_length > throttle_limit) { |
| 6757 | max_length = throttle_limit; |
| 6758 | } |
| 6759 | } |
| 6760 | if (pre_heat_size > max_length) { |
| 6761 | pre_heat_size = max_length; |
| 6762 | } |
| 6763 | |
| 6764 | if (behavior == VM_BEHAVIOR_DEFAULT && (pre_heat_size > min_ph_size)) { |
| 6765 | unsigned int consider_free = vm_page_free_count + vm_page_cleaned_count; |
| 6766 | |
| 6767 | if (consider_free < vm_page_throttle_limit) { |
| 6768 | pre_heat_size = trunc_page(pre_heat_size / 16); |
| 6769 | } else if (consider_free < vm_page_free_target) { |
| 6770 | pre_heat_size = trunc_page(pre_heat_size / 4); |
| 6771 | } |
| 6772 | |
| 6773 | if (pre_heat_size < min_ph_size) { |
| 6774 | pre_heat_size = min_ph_size; |
| 6775 | } |
| 6776 | } |
| 6777 | if (look_ahead == TRUE) { |
| 6778 | if (look_behind == TRUE) { |
| 6779 | /* |
| 6780 | * if we get here its due to a random access... |
| 6781 | * so we want to center the original fault address |
| 6782 | * within the cluster we will issue... make sure |
| 6783 | * to calculate 'head_size' as a multiple of PAGE_SIZE... |
| 6784 | * 'pre_heat_size' is a multiple of PAGE_SIZE but not |
| 6785 | * necessarily an even number of pages so we need to truncate |
| 6786 | * the result to a PAGE_SIZE boundary |
| 6787 | */ |
| 6788 | head_size = trunc_page(pre_heat_size / 2); |
| 6789 | |
| 6790 | if (target_start > head_size) { |
| 6791 | target_start -= head_size; |
| 6792 | } else { |
| 6793 | target_start = 0; |
| 6794 | } |
| 6795 | |
| 6796 | /* |
| 6797 | * 'target_start' at this point represents the beginning offset |
| 6798 | * of the cluster we are considering... 'orig_start' will be in |
| 6799 | * the center of this cluster if we didn't have to clip the start |
| 6800 | * due to running into the start of the file |
| 6801 | */ |
| 6802 | } |
| 6803 | if ((target_start + pre_heat_size) > object_size) { |
| 6804 | pre_heat_size = (vm_size_t)(round_page_64(x: object_size - target_start)); |
| 6805 | } |
| 6806 | /* |
| 6807 | * at this point caclulate the number of pages beyond the original fault |
| 6808 | * address that we want to consider... this is guaranteed not to extend beyond |
| 6809 | * the current EOF... |
| 6810 | */ |
| 6811 | assert((vm_size_t)(orig_start - target_start) == (orig_start - target_start)); |
| 6812 | tail_size = pre_heat_size - (vm_size_t)(orig_start - target_start) - PAGE_SIZE; |
| 6813 | } else { |
| 6814 | if (pre_heat_size > target_start) { |
| 6815 | /* |
| 6816 | * since pre_heat_size is always smaller then 2^32, |
| 6817 | * if it is larger then target_start (a 64 bit value) |
| 6818 | * it is safe to clip target_start to 32 bits |
| 6819 | */ |
| 6820 | pre_heat_size = (vm_size_t) target_start; |
| 6821 | } |
| 6822 | tail_size = 0; |
| 6823 | } |
| 6824 | assert( !(target_start & PAGE_MASK_64)); |
| 6825 | assert( !(pre_heat_size & PAGE_MASK_64)); |
| 6826 | |
| 6827 | if (pre_heat_size <= PAGE_SIZE) { |
| 6828 | goto out; |
| 6829 | } |
| 6830 | |
| 6831 | if (look_behind == TRUE) { |
| 6832 | /* |
| 6833 | * take a look at the pages before the original |
| 6834 | * faulting offset... recalculate this in case |
| 6835 | * we had to clip 'pre_heat_size' above to keep |
| 6836 | * from running past the EOF. |
| 6837 | */ |
| 6838 | head_size = pre_heat_size - tail_size - PAGE_SIZE; |
| 6839 | |
| 6840 | for (offset = orig_start - PAGE_SIZE_64; head_size; offset -= PAGE_SIZE_64, head_size -= PAGE_SIZE) { |
| 6841 | /* |
| 6842 | * don't poke below the lowest offset |
| 6843 | */ |
| 6844 | if (offset < fault_info->lo_offset) { |
| 6845 | break; |
| 6846 | } |
| 6847 | /* |
| 6848 | * for external objects or internal objects w/o a pager, |
| 6849 | * VM_COMPRESSOR_PAGER_STATE_GET will return VM_EXTERNAL_STATE_UNKNOWN |
| 6850 | */ |
| 6851 | if (VM_COMPRESSOR_PAGER_STATE_GET(object, offset) == VM_EXTERNAL_STATE_ABSENT) { |
| 6852 | break; |
| 6853 | } |
| 6854 | if (vm_page_lookup(object, offset) != VM_PAGE_NULL) { |
| 6855 | /* |
| 6856 | * don't bridge resident pages |
| 6857 | */ |
| 6858 | break; |
| 6859 | } |
| 6860 | *start = offset; |
| 6861 | *length += PAGE_SIZE; |
| 6862 | } |
| 6863 | } |
| 6864 | if (look_ahead == TRUE) { |
| 6865 | for (offset = orig_start + PAGE_SIZE_64; tail_size; offset += PAGE_SIZE_64, tail_size -= PAGE_SIZE) { |
| 6866 | /* |
| 6867 | * don't poke above the highest offset |
| 6868 | */ |
| 6869 | if (offset >= fault_info->hi_offset) { |
| 6870 | break; |
| 6871 | } |
| 6872 | assert(offset < object_size); |
| 6873 | |
| 6874 | /* |
| 6875 | * for external objects or internal objects w/o a pager, |
| 6876 | * VM_COMPRESSOR_PAGER_STATE_GET will return VM_EXTERNAL_STATE_UNKNOWN |
| 6877 | */ |
| 6878 | if (VM_COMPRESSOR_PAGER_STATE_GET(object, offset) == VM_EXTERNAL_STATE_ABSENT) { |
| 6879 | break; |
| 6880 | } |
| 6881 | if (vm_page_lookup(object, offset) != VM_PAGE_NULL) { |
| 6882 | /* |
| 6883 | * don't bridge resident pages |
| 6884 | */ |
| 6885 | break; |
| 6886 | } |
| 6887 | *length += PAGE_SIZE; |
| 6888 | } |
| 6889 | } |
| 6890 | out: |
| 6891 | if (*length > max_length) { |
| 6892 | *length = max_length; |
| 6893 | } |
| 6894 | |
| 6895 | vm_object_unlock(object); |
| 6896 | |
| 6897 | DTRACE_VM1(clustersize, vm_size_t, *length); |
| 6898 | } |
| 6899 | |
| 6900 | |
| 6901 | /* |
| 6902 | * Allow manipulation of individual page state. This is actually part of |
| 6903 | * the UPL regimen but takes place on the VM object rather than on a UPL |
| 6904 | */ |
| 6905 | |
| 6906 | kern_return_t |
| 6907 | vm_object_page_op( |
| 6908 | vm_object_t object, |
| 6909 | vm_object_offset_t offset, |
| 6910 | int ops, |
| 6911 | ppnum_t *phys_entry, |
| 6912 | int *flags) |
| 6913 | { |
| 6914 | vm_page_t dst_page; |
| 6915 | |
| 6916 | vm_object_lock(object); |
| 6917 | |
| 6918 | if (ops & UPL_POP_PHYSICAL) { |
| 6919 | if (object->phys_contiguous) { |
| 6920 | if (phys_entry) { |
| 6921 | *phys_entry = (ppnum_t) |
| 6922 | (object->vo_shadow_offset >> PAGE_SHIFT); |
| 6923 | } |
| 6924 | vm_object_unlock(object); |
| 6925 | return KERN_SUCCESS; |
| 6926 | } else { |
| 6927 | vm_object_unlock(object); |
| 6928 | return KERN_INVALID_OBJECT; |
| 6929 | } |
| 6930 | } |
| 6931 | if (object->phys_contiguous) { |
| 6932 | vm_object_unlock(object); |
| 6933 | return KERN_INVALID_OBJECT; |
| 6934 | } |
| 6935 | |
| 6936 | while (TRUE) { |
| 6937 | if ((dst_page = vm_page_lookup(object, offset)) == VM_PAGE_NULL) { |
| 6938 | vm_object_unlock(object); |
| 6939 | return KERN_FAILURE; |
| 6940 | } |
| 6941 | |
| 6942 | /* Sync up on getting the busy bit */ |
| 6943 | if ((dst_page->vmp_busy || dst_page->vmp_cleaning) && |
| 6944 | (((ops & UPL_POP_SET) && |
| 6945 | (ops & UPL_POP_BUSY)) || (ops & UPL_POP_DUMP))) { |
| 6946 | /* someone else is playing with the page, we will */ |
| 6947 | /* have to wait */ |
| 6948 | PAGE_SLEEP(object, dst_page, THREAD_UNINT); |
| 6949 | continue; |
| 6950 | } |
| 6951 | |
| 6952 | if (ops & UPL_POP_DUMP) { |
| 6953 | if (dst_page->vmp_pmapped == TRUE) { |
| 6954 | pmap_disconnect(phys: VM_PAGE_GET_PHYS_PAGE(m: dst_page)); |
| 6955 | } |
| 6956 | |
| 6957 | VM_PAGE_FREE(dst_page); |
| 6958 | break; |
| 6959 | } |
| 6960 | |
| 6961 | if (flags) { |
| 6962 | *flags = 0; |
| 6963 | |
| 6964 | /* Get the condition of flags before requested ops */ |
| 6965 | /* are undertaken */ |
| 6966 | |
| 6967 | if (dst_page->vmp_dirty) { |
| 6968 | *flags |= UPL_POP_DIRTY; |
| 6969 | } |
| 6970 | if (dst_page->vmp_free_when_done) { |
| 6971 | *flags |= UPL_POP_PAGEOUT; |
| 6972 | } |
| 6973 | if (dst_page->vmp_precious) { |
| 6974 | *flags |= UPL_POP_PRECIOUS; |
| 6975 | } |
| 6976 | if (dst_page->vmp_absent) { |
| 6977 | *flags |= UPL_POP_ABSENT; |
| 6978 | } |
| 6979 | if (dst_page->vmp_busy) { |
| 6980 | *flags |= UPL_POP_BUSY; |
| 6981 | } |
| 6982 | } |
| 6983 | |
| 6984 | /* The caller should have made a call either contingent with */ |
| 6985 | /* or prior to this call to set UPL_POP_BUSY */ |
| 6986 | if (ops & UPL_POP_SET) { |
| 6987 | /* The protection granted with this assert will */ |
| 6988 | /* not be complete. If the caller violates the */ |
| 6989 | /* convention and attempts to change page state */ |
| 6990 | /* without first setting busy we may not see it */ |
| 6991 | /* because the page may already be busy. However */ |
| 6992 | /* if such violations occur we will assert sooner */ |
| 6993 | /* or later. */ |
| 6994 | assert(dst_page->vmp_busy || (ops & UPL_POP_BUSY)); |
| 6995 | if (ops & UPL_POP_DIRTY) { |
| 6996 | SET_PAGE_DIRTY(dst_page, FALSE); |
| 6997 | } |
| 6998 | if (ops & UPL_POP_PAGEOUT) { |
| 6999 | dst_page->vmp_free_when_done = TRUE; |
| 7000 | } |
| 7001 | if (ops & UPL_POP_PRECIOUS) { |
| 7002 | dst_page->vmp_precious = TRUE; |
| 7003 | } |
| 7004 | if (ops & UPL_POP_ABSENT) { |
| 7005 | dst_page->vmp_absent = TRUE; |
| 7006 | } |
| 7007 | if (ops & UPL_POP_BUSY) { |
| 7008 | dst_page->vmp_busy = TRUE; |
| 7009 | } |
| 7010 | } |
| 7011 | |
| 7012 | if (ops & UPL_POP_CLR) { |
| 7013 | assert(dst_page->vmp_busy); |
| 7014 | if (ops & UPL_POP_DIRTY) { |
| 7015 | dst_page->vmp_dirty = FALSE; |
| 7016 | } |
| 7017 | if (ops & UPL_POP_PAGEOUT) { |
| 7018 | dst_page->vmp_free_when_done = FALSE; |
| 7019 | } |
| 7020 | if (ops & UPL_POP_PRECIOUS) { |
| 7021 | dst_page->vmp_precious = FALSE; |
| 7022 | } |
| 7023 | if (ops & UPL_POP_ABSENT) { |
| 7024 | dst_page->vmp_absent = FALSE; |
| 7025 | } |
| 7026 | if (ops & UPL_POP_BUSY) { |
| 7027 | dst_page->vmp_busy = FALSE; |
| 7028 | PAGE_WAKEUP(dst_page); |
| 7029 | } |
| 7030 | } |
| 7031 | if (phys_entry) { |
| 7032 | /* |
| 7033 | * The physical page number will remain valid |
| 7034 | * only if the page is kept busy. |
| 7035 | */ |
| 7036 | assert(dst_page->vmp_busy); |
| 7037 | *phys_entry = VM_PAGE_GET_PHYS_PAGE(m: dst_page); |
| 7038 | } |
| 7039 | |
| 7040 | break; |
| 7041 | } |
| 7042 | |
| 7043 | vm_object_unlock(object); |
| 7044 | return KERN_SUCCESS; |
| 7045 | } |
| 7046 | |
| 7047 | /* |
| 7048 | * vm_object_range_op offers performance enhancement over |
| 7049 | * vm_object_page_op for page_op functions which do not require page |
| 7050 | * level state to be returned from the call. Page_op was created to provide |
| 7051 | * a low-cost alternative to page manipulation via UPLs when only a single |
| 7052 | * page was involved. The range_op call establishes the ability in the _op |
| 7053 | * family of functions to work on multiple pages where the lack of page level |
| 7054 | * state handling allows the caller to avoid the overhead of the upl structures. |
| 7055 | */ |
| 7056 | |
| 7057 | kern_return_t |
| 7058 | vm_object_range_op( |
| 7059 | vm_object_t object, |
| 7060 | vm_object_offset_t offset_beg, |
| 7061 | vm_object_offset_t offset_end, |
| 7062 | int ops, |
| 7063 | uint32_t *range) |
| 7064 | { |
| 7065 | vm_object_offset_t offset; |
| 7066 | vm_page_t dst_page; |
| 7067 | |
| 7068 | if (offset_end - offset_beg > (uint32_t) -1) { |
| 7069 | /* range is too big and would overflow "*range" */ |
| 7070 | return KERN_INVALID_ARGUMENT; |
| 7071 | } |
| 7072 | if (object->resident_page_count == 0) { |
| 7073 | if (range) { |
| 7074 | if (ops & UPL_ROP_PRESENT) { |
| 7075 | *range = 0; |
| 7076 | } else { |
| 7077 | *range = (uint32_t) (offset_end - offset_beg); |
| 7078 | assert(*range == (offset_end - offset_beg)); |
| 7079 | } |
| 7080 | } |
| 7081 | return KERN_SUCCESS; |
| 7082 | } |
| 7083 | vm_object_lock(object); |
| 7084 | |
| 7085 | if (object->phys_contiguous) { |
| 7086 | vm_object_unlock(object); |
| 7087 | return KERN_INVALID_OBJECT; |
| 7088 | } |
| 7089 | |
| 7090 | offset = offset_beg & ~PAGE_MASK_64; |
| 7091 | |
| 7092 | while (offset < offset_end) { |
| 7093 | dst_page = vm_page_lookup(object, offset); |
| 7094 | if (dst_page != VM_PAGE_NULL) { |
| 7095 | if (ops & UPL_ROP_DUMP) { |
| 7096 | if (dst_page->vmp_busy || dst_page->vmp_cleaning) { |
| 7097 | /* |
| 7098 | * someone else is playing with the |
| 7099 | * page, we will have to wait |
| 7100 | */ |
| 7101 | PAGE_SLEEP(object, dst_page, THREAD_UNINT); |
| 7102 | /* |
| 7103 | * need to relook the page up since it's |
| 7104 | * state may have changed while we slept |
| 7105 | * it might even belong to a different object |
| 7106 | * at this point |
| 7107 | */ |
| 7108 | continue; |
| 7109 | } |
| 7110 | if (dst_page->vmp_laundry) { |
| 7111 | vm_pageout_steal_laundry(page: dst_page, FALSE); |
| 7112 | } |
| 7113 | |
| 7114 | if (dst_page->vmp_pmapped == TRUE) { |
| 7115 | pmap_disconnect(phys: VM_PAGE_GET_PHYS_PAGE(m: dst_page)); |
| 7116 | } |
| 7117 | |
| 7118 | VM_PAGE_FREE(dst_page); |
| 7119 | } else if ((ops & UPL_ROP_ABSENT) |
| 7120 | && (!dst_page->vmp_absent || dst_page->vmp_busy)) { |
| 7121 | break; |
| 7122 | } |
| 7123 | } else if (ops & UPL_ROP_PRESENT) { |
| 7124 | break; |
| 7125 | } |
| 7126 | |
| 7127 | offset += PAGE_SIZE; |
| 7128 | } |
| 7129 | vm_object_unlock(object); |
| 7130 | |
| 7131 | if (range) { |
| 7132 | if (offset > offset_end) { |
| 7133 | offset = offset_end; |
| 7134 | } |
| 7135 | if (offset > offset_beg) { |
| 7136 | *range = (uint32_t) (offset - offset_beg); |
| 7137 | assert(*range == (offset - offset_beg)); |
| 7138 | } else { |
| 7139 | *range = 0; |
| 7140 | } |
| 7141 | } |
| 7142 | return KERN_SUCCESS; |
| 7143 | } |
| 7144 | |
| 7145 | /* |
| 7146 | * Used to point a pager directly to a range of memory (when the pager may be associated |
| 7147 | * with a non-device vnode). Takes a virtual address, an offset, and a size. We currently |
| 7148 | * expect that the virtual address will denote the start of a range that is physically contiguous. |
| 7149 | */ |
| 7150 | kern_return_t |
| 7151 | ( |
| 7152 | memory_object_control_t object, |
| 7153 | memory_object_offset_t offset, |
| 7154 | addr64_t base_vaddr, |
| 7155 | vm_size_t size) |
| 7156 | { |
| 7157 | ppnum_t page_num; |
| 7158 | boolean_t clobbered_private; |
| 7159 | kern_return_t retval; |
| 7160 | vm_object_t ; |
| 7161 | |
| 7162 | page_num = pmap_find_phys(map: kernel_pmap, va: base_vaddr); |
| 7163 | |
| 7164 | if (!page_num) { |
| 7165 | retval = KERN_FAILURE; |
| 7166 | goto out; |
| 7167 | } |
| 7168 | |
| 7169 | pager_object = memory_object_control_to_vm_object(control: object); |
| 7170 | |
| 7171 | if (!pager_object) { |
| 7172 | retval = KERN_FAILURE; |
| 7173 | goto out; |
| 7174 | } |
| 7175 | |
| 7176 | clobbered_private = pager_object->private; |
| 7177 | if (pager_object->private != TRUE) { |
| 7178 | vm_object_lock(pager_object); |
| 7179 | VM_OBJECT_SET_PRIVATE(object: pager_object, TRUE); |
| 7180 | vm_object_unlock(pager_object); |
| 7181 | } |
| 7182 | retval = vm_object_populate_with_private(object: pager_object, offset, phys_page: page_num, size); |
| 7183 | |
| 7184 | if (retval != KERN_SUCCESS) { |
| 7185 | if (pager_object->private != clobbered_private) { |
| 7186 | vm_object_lock(pager_object); |
| 7187 | VM_OBJECT_SET_PRIVATE(object: pager_object, value: clobbered_private); |
| 7188 | vm_object_unlock(pager_object); |
| 7189 | } |
| 7190 | } |
| 7191 | |
| 7192 | out: |
| 7193 | return retval; |
| 7194 | } |
| 7195 | |
| 7196 | uint32_t scan_object_collision = 0; |
| 7197 | |
| 7198 | void |
| 7199 | vm_object_lock(vm_object_t object) |
| 7200 | { |
| 7201 | if (object == vm_pageout_scan_wants_object) { |
| 7202 | scan_object_collision++; |
| 7203 | mutex_pause(2); |
| 7204 | } |
| 7205 | DTRACE_VM(vm_object_lock_w); |
| 7206 | lck_rw_lock_exclusive(lck: &object->Lock); |
| 7207 | } |
| 7208 | |
| 7209 | boolean_t |
| 7210 | vm_object_lock_avoid(vm_object_t object) |
| 7211 | { |
| 7212 | if (object == vm_pageout_scan_wants_object) { |
| 7213 | scan_object_collision++; |
| 7214 | return TRUE; |
| 7215 | } |
| 7216 | return FALSE; |
| 7217 | } |
| 7218 | |
| 7219 | boolean_t |
| 7220 | _vm_object_lock_try(vm_object_t object) |
| 7221 | { |
| 7222 | boolean_t retval; |
| 7223 | |
| 7224 | retval = lck_rw_try_lock_exclusive(lck: &object->Lock); |
| 7225 | #if DEVELOPMENT || DEBUG |
| 7226 | if (retval == TRUE) { |
| 7227 | DTRACE_VM(vm_object_lock_w); |
| 7228 | } |
| 7229 | #endif |
| 7230 | return retval; |
| 7231 | } |
| 7232 | |
| 7233 | boolean_t |
| 7234 | vm_object_lock_try(vm_object_t object) |
| 7235 | { |
| 7236 | /* |
| 7237 | * Called from hibernate path so check before blocking. |
| 7238 | */ |
| 7239 | if (vm_object_lock_avoid(object) && ml_get_interrupts_enabled() && get_preemption_level() == 0) { |
| 7240 | mutex_pause(2); |
| 7241 | } |
| 7242 | return _vm_object_lock_try(object); |
| 7243 | } |
| 7244 | |
| 7245 | /* |
| 7246 | * Lock the object exclusive. |
| 7247 | * |
| 7248 | * Returns true iff the thread had to spin or block before |
| 7249 | * acquiring the lock. |
| 7250 | */ |
| 7251 | bool |
| 7252 | vm_object_lock_check_contended(vm_object_t object) |
| 7253 | { |
| 7254 | if (object == vm_pageout_scan_wants_object) { |
| 7255 | scan_object_collision++; |
| 7256 | mutex_pause(2); |
| 7257 | } |
| 7258 | DTRACE_VM(vm_object_lock_w); |
| 7259 | return lck_rw_lock_exclusive_check_contended(lck: &object->Lock); |
| 7260 | } |
| 7261 | |
| 7262 | void |
| 7263 | vm_object_lock_shared(vm_object_t object) |
| 7264 | { |
| 7265 | if (vm_object_lock_avoid(object)) { |
| 7266 | mutex_pause(2); |
| 7267 | } |
| 7268 | DTRACE_VM(vm_object_lock_r); |
| 7269 | lck_rw_lock_shared(lck: &object->Lock); |
| 7270 | } |
| 7271 | |
| 7272 | boolean_t |
| 7273 | vm_object_lock_yield_shared(vm_object_t object) |
| 7274 | { |
| 7275 | boolean_t retval = FALSE, force_yield = FALSE; |
| 7276 | |
| 7277 | vm_object_lock_assert_shared(object); |
| 7278 | |
| 7279 | force_yield = vm_object_lock_avoid(object); |
| 7280 | |
| 7281 | retval = lck_rw_lock_yield_shared(lck: &object->Lock, force_yield); |
| 7282 | if (retval) { |
| 7283 | DTRACE_VM(vm_object_lock_yield); |
| 7284 | } |
| 7285 | |
| 7286 | return retval; |
| 7287 | } |
| 7288 | |
| 7289 | boolean_t |
| 7290 | vm_object_lock_try_shared(vm_object_t object) |
| 7291 | { |
| 7292 | boolean_t retval; |
| 7293 | |
| 7294 | if (vm_object_lock_avoid(object)) { |
| 7295 | mutex_pause(2); |
| 7296 | } |
| 7297 | retval = lck_rw_try_lock_shared(lck: &object->Lock); |
| 7298 | if (retval) { |
| 7299 | DTRACE_VM(vm_object_lock_r); |
| 7300 | } |
| 7301 | return retval; |
| 7302 | } |
| 7303 | |
| 7304 | boolean_t |
| 7305 | vm_object_lock_upgrade(vm_object_t object) |
| 7306 | { |
| 7307 | boolean_t retval; |
| 7308 | |
| 7309 | retval = lck_rw_lock_shared_to_exclusive(lck: &object->Lock); |
| 7310 | #if DEVELOPMENT || DEBUG |
| 7311 | if (retval == TRUE) { |
| 7312 | DTRACE_VM(vm_object_lock_w); |
| 7313 | } |
| 7314 | #endif |
| 7315 | return retval; |
| 7316 | } |
| 7317 | |
| 7318 | void |
| 7319 | vm_object_unlock(vm_object_t object) |
| 7320 | { |
| 7321 | #if DEVELOPMENT || DEBUG |
| 7322 | DTRACE_VM(vm_object_unlock); |
| 7323 | #endif |
| 7324 | lck_rw_done(lck: &object->Lock); |
| 7325 | } |
| 7326 | |
| 7327 | |
| 7328 | unsigned int vm_object_change_wimg_mode_count = 0; |
| 7329 | |
| 7330 | /* |
| 7331 | * The object must be locked |
| 7332 | */ |
| 7333 | void |
| 7334 | vm_object_change_wimg_mode(vm_object_t object, unsigned int wimg_mode) |
| 7335 | { |
| 7336 | vm_page_t p; |
| 7337 | |
| 7338 | vm_object_lock_assert_exclusive(object); |
| 7339 | |
| 7340 | vm_object_paging_only_wait(object, THREAD_UNINT); |
| 7341 | |
| 7342 | vm_page_queue_iterate(&object->memq, p, vmp_listq) { |
| 7343 | if (!p->vmp_fictitious) { |
| 7344 | pmap_set_cache_attributes(VM_PAGE_GET_PHYS_PAGE(m: p), wimg_mode); |
| 7345 | } |
| 7346 | } |
| 7347 | if (wimg_mode == VM_WIMG_USE_DEFAULT) { |
| 7348 | object->set_cache_attr = FALSE; |
| 7349 | } else { |
| 7350 | object->set_cache_attr = TRUE; |
| 7351 | } |
| 7352 | |
| 7353 | object->wimg_bits = wimg_mode; |
| 7354 | |
| 7355 | vm_object_change_wimg_mode_count++; |
| 7356 | } |
| 7357 | |
| 7358 | #if CONFIG_FREEZE |
| 7359 | |
| 7360 | extern struct freezer_context freezer_context_global; |
| 7361 | |
| 7362 | /* |
| 7363 | * This routine does the "relocation" of previously |
| 7364 | * compressed pages belonging to this object that are |
| 7365 | * residing in a number of compressed segments into |
| 7366 | * a set of compressed segments dedicated to hold |
| 7367 | * compressed pages belonging to this object. |
| 7368 | */ |
| 7369 | |
| 7370 | extern AbsoluteTime c_freezer_last_yield_ts; |
| 7371 | |
| 7372 | #define MAX_FREE_BATCH 32 |
| 7373 | #define FREEZER_DUTY_CYCLE_ON_MS 5 |
| 7374 | #define FREEZER_DUTY_CYCLE_OFF_MS 5 |
| 7375 | |
| 7376 | static int c_freezer_should_yield(void); |
| 7377 | |
| 7378 | |
| 7379 | static int |
| 7380 | c_freezer_should_yield() |
| 7381 | { |
| 7382 | AbsoluteTime cur_time; |
| 7383 | uint64_t nsecs; |
| 7384 | |
| 7385 | assert(c_freezer_last_yield_ts); |
| 7386 | clock_get_uptime(&cur_time); |
| 7387 | |
| 7388 | SUB_ABSOLUTETIME(&cur_time, &c_freezer_last_yield_ts); |
| 7389 | absolutetime_to_nanoseconds(cur_time, &nsecs); |
| 7390 | |
| 7391 | if (nsecs > 1000 * 1000 * FREEZER_DUTY_CYCLE_ON_MS) { |
| 7392 | return 1; |
| 7393 | } |
| 7394 | return 0; |
| 7395 | } |
| 7396 | |
| 7397 | |
| 7398 | void |
| 7399 | vm_object_compressed_freezer_done() |
| 7400 | { |
| 7401 | vm_compressor_finished_filling( &(freezer_context_global.freezer_ctx_chead)); |
| 7402 | } |
| 7403 | |
| 7404 | |
| 7405 | uint32_t |
| 7406 | vm_object_compressed_freezer_pageout( |
| 7407 | vm_object_t object, uint32_t dirty_budget) |
| 7408 | { |
| 7409 | vm_page_t p; |
| 7410 | vm_page_t local_freeq = NULL; |
| 7411 | int local_freed = 0; |
| 7412 | kern_return_t retval = KERN_SUCCESS; |
| 7413 | int obj_resident_page_count_snapshot = 0; |
| 7414 | uint32_t paged_out_count = 0; |
| 7415 | |
| 7416 | assert(object != VM_OBJECT_NULL); |
| 7417 | assert(object->internal); |
| 7418 | |
| 7419 | vm_object_lock(object); |
| 7420 | |
| 7421 | if (!object->pager_initialized || object->pager == MEMORY_OBJECT_NULL) { |
| 7422 | if (!object->pager_initialized) { |
| 7423 | vm_object_collapse(object, (vm_object_offset_t) 0, TRUE); |
| 7424 | |
| 7425 | if (!object->pager_initialized) { |
| 7426 | vm_object_compressor_pager_create(object); |
| 7427 | } |
| 7428 | } |
| 7429 | |
| 7430 | if (!object->pager_initialized || object->pager == MEMORY_OBJECT_NULL) { |
| 7431 | vm_object_unlock(object); |
| 7432 | return paged_out_count; |
| 7433 | } |
| 7434 | } |
| 7435 | |
| 7436 | /* |
| 7437 | * We could be freezing a shared internal object that might |
| 7438 | * be part of some other thread's current VM operations. |
| 7439 | * We skip it if there's a paging-in-progress or activity-in-progress |
| 7440 | * because we could be here a long time with the map lock held. |
| 7441 | * |
| 7442 | * Note: We are holding the map locked while we wait. |
| 7443 | * This is fine in the freezer path because the task |
| 7444 | * is suspended and so this latency is acceptable. |
| 7445 | */ |
| 7446 | if (object->paging_in_progress || object->activity_in_progress) { |
| 7447 | vm_object_unlock(object); |
| 7448 | return paged_out_count; |
| 7449 | } |
| 7450 | |
| 7451 | if (VM_CONFIG_FREEZER_SWAP_IS_ACTIVE) { |
| 7452 | vm_object_offset_t curr_offset = 0; |
| 7453 | |
| 7454 | /* |
| 7455 | * Go through the object and make sure that any |
| 7456 | * previously compressed pages are relocated into |
| 7457 | * a compressed segment associated with our "freezer_chead". |
| 7458 | */ |
| 7459 | while (curr_offset < object->vo_size) { |
| 7460 | curr_offset = vm_compressor_pager_next_compressed(object->pager, curr_offset); |
| 7461 | |
| 7462 | if (curr_offset == (vm_object_offset_t) -1) { |
| 7463 | break; |
| 7464 | } |
| 7465 | |
| 7466 | retval = vm_compressor_pager_relocate(object->pager, curr_offset, &(freezer_context_global.freezer_ctx_chead)); |
| 7467 | |
| 7468 | if (retval != KERN_SUCCESS) { |
| 7469 | break; |
| 7470 | } |
| 7471 | |
| 7472 | curr_offset += PAGE_SIZE_64; |
| 7473 | } |
| 7474 | } |
| 7475 | |
| 7476 | /* |
| 7477 | * We can't hold the object lock while heading down into the compressed pager |
| 7478 | * layer because we might need the kernel map lock down there to allocate new |
| 7479 | * compressor data structures. And if this same object is mapped in the kernel |
| 7480 | * and there's a fault on it, then that thread will want the object lock while |
| 7481 | * holding the kernel map lock. |
| 7482 | * |
| 7483 | * Since we are going to drop/grab the object lock repeatedly, we must make sure |
| 7484 | * we won't be stuck in an infinite loop if the same page(s) keep getting |
| 7485 | * decompressed. So we grab a snapshot of the number of pages in the object and |
| 7486 | * we won't process any more than that number of pages. |
| 7487 | */ |
| 7488 | |
| 7489 | obj_resident_page_count_snapshot = object->resident_page_count; |
| 7490 | |
| 7491 | vm_object_activity_begin(object); |
| 7492 | |
| 7493 | while ((obj_resident_page_count_snapshot--) && !vm_page_queue_empty(&object->memq) && paged_out_count < dirty_budget) { |
| 7494 | p = (vm_page_t)vm_page_queue_first(&object->memq); |
| 7495 | |
| 7496 | KERNEL_DEBUG(0xe0430004 | DBG_FUNC_START, object, local_freed, 0, 0, 0); |
| 7497 | |
| 7498 | vm_page_lockspin_queues(); |
| 7499 | |
| 7500 | if (p->vmp_cleaning || p->vmp_fictitious || p->vmp_busy || p->vmp_absent || p->vmp_unusual || VMP_ERROR_GET(p) || VM_PAGE_WIRED(p)) { |
| 7501 | vm_page_unlock_queues(); |
| 7502 | |
| 7503 | KERNEL_DEBUG(0xe0430004 | DBG_FUNC_END, object, local_freed, 1, 0, 0); |
| 7504 | |
| 7505 | vm_page_queue_remove(&object->memq, p, vmp_listq); |
| 7506 | vm_page_queue_enter(&object->memq, p, vmp_listq); |
| 7507 | |
| 7508 | continue; |
| 7509 | } |
| 7510 | |
| 7511 | if (p->vmp_pmapped == TRUE) { |
| 7512 | int refmod_state, pmap_flags; |
| 7513 | |
| 7514 | if (p->vmp_dirty || p->vmp_precious) { |
| 7515 | pmap_flags = PMAP_OPTIONS_COMPRESSOR; |
| 7516 | } else { |
| 7517 | pmap_flags = PMAP_OPTIONS_COMPRESSOR_IFF_MODIFIED; |
| 7518 | } |
| 7519 | |
| 7520 | vm_page_lockconvert_queues(); |
| 7521 | refmod_state = pmap_disconnect_options(VM_PAGE_GET_PHYS_PAGE(p), pmap_flags, NULL); |
| 7522 | if (refmod_state & VM_MEM_MODIFIED) { |
| 7523 | SET_PAGE_DIRTY(p, FALSE); |
| 7524 | } |
| 7525 | } |
| 7526 | |
| 7527 | if (p->vmp_dirty == FALSE && p->vmp_precious == FALSE) { |
| 7528 | /* |
| 7529 | * Clean and non-precious page. |
| 7530 | */ |
| 7531 | vm_page_unlock_queues(); |
| 7532 | VM_PAGE_FREE(p); |
| 7533 | |
| 7534 | KERNEL_DEBUG(0xe0430004 | DBG_FUNC_END, object, local_freed, 2, 0, 0); |
| 7535 | continue; |
| 7536 | } |
| 7537 | |
| 7538 | if (p->vmp_laundry) { |
| 7539 | vm_pageout_steal_laundry(p, TRUE); |
| 7540 | } |
| 7541 | |
| 7542 | vm_page_queues_remove(p, TRUE); |
| 7543 | |
| 7544 | vm_page_unlock_queues(); |
| 7545 | |
| 7546 | |
| 7547 | /* |
| 7548 | * In case the compressor fails to compress this page, we need it at |
| 7549 | * the back of the object memq so that we don't keep trying to process it. |
| 7550 | * Make the move here while we have the object lock held. |
| 7551 | */ |
| 7552 | |
| 7553 | vm_page_queue_remove(&object->memq, p, vmp_listq); |
| 7554 | vm_page_queue_enter(&object->memq, p, vmp_listq); |
| 7555 | |
| 7556 | /* |
| 7557 | * Grab an activity_in_progress here for vm_pageout_compress_page() to consume. |
| 7558 | * |
| 7559 | * Mark the page busy so no one messes with it while we have the object lock dropped. |
| 7560 | */ |
| 7561 | p->vmp_busy = TRUE; |
| 7562 | |
| 7563 | vm_object_activity_begin(object); |
| 7564 | |
| 7565 | vm_object_unlock(object); |
| 7566 | |
| 7567 | if (vm_pageout_compress_page(&(freezer_context_global.freezer_ctx_chead), |
| 7568 | (freezer_context_global.freezer_ctx_compressor_scratch_buf), |
| 7569 | p) == KERN_SUCCESS) { |
| 7570 | /* |
| 7571 | * page has already been un-tabled from the object via 'vm_page_remove' |
| 7572 | */ |
| 7573 | p->vmp_snext = local_freeq; |
| 7574 | local_freeq = p; |
| 7575 | local_freed++; |
| 7576 | paged_out_count++; |
| 7577 | |
| 7578 | if (local_freed >= MAX_FREE_BATCH) { |
| 7579 | OSAddAtomic64(local_freed, &vm_pageout_vminfo.vm_pageout_compressions); |
| 7580 | |
| 7581 | vm_page_free_list(local_freeq, TRUE); |
| 7582 | |
| 7583 | local_freeq = NULL; |
| 7584 | local_freed = 0; |
| 7585 | } |
| 7586 | freezer_context_global.freezer_ctx_uncompressed_pages++; |
| 7587 | } |
| 7588 | KERNEL_DEBUG(0xe0430004 | DBG_FUNC_END, object, local_freed, 0, 0, 0); |
| 7589 | |
| 7590 | if (local_freed == 0 && c_freezer_should_yield()) { |
| 7591 | thread_yield_internal(FREEZER_DUTY_CYCLE_OFF_MS); |
| 7592 | clock_get_uptime(&c_freezer_last_yield_ts); |
| 7593 | } |
| 7594 | |
| 7595 | vm_object_lock(object); |
| 7596 | } |
| 7597 | |
| 7598 | if (local_freeq) { |
| 7599 | OSAddAtomic64(local_freed, &vm_pageout_vminfo.vm_pageout_compressions); |
| 7600 | |
| 7601 | vm_page_free_list(local_freeq, TRUE); |
| 7602 | |
| 7603 | local_freeq = NULL; |
| 7604 | local_freed = 0; |
| 7605 | } |
| 7606 | |
| 7607 | vm_object_activity_end(object); |
| 7608 | |
| 7609 | vm_object_unlock(object); |
| 7610 | |
| 7611 | if (c_freezer_should_yield()) { |
| 7612 | thread_yield_internal(FREEZER_DUTY_CYCLE_OFF_MS); |
| 7613 | clock_get_uptime(&c_freezer_last_yield_ts); |
| 7614 | } |
| 7615 | return paged_out_count; |
| 7616 | } |
| 7617 | |
| 7618 | #endif /* CONFIG_FREEZE */ |
| 7619 | |
| 7620 | |
| 7621 | void |
| 7622 | vm_object_pageout( |
| 7623 | vm_object_t object) |
| 7624 | { |
| 7625 | vm_page_t p, next; |
| 7626 | struct vm_pageout_queue *iq; |
| 7627 | |
| 7628 | if (!VM_CONFIG_COMPRESSOR_IS_PRESENT) { |
| 7629 | return; |
| 7630 | } |
| 7631 | |
| 7632 | iq = &vm_pageout_queue_internal; |
| 7633 | |
| 7634 | assert(object != VM_OBJECT_NULL ); |
| 7635 | |
| 7636 | vm_object_lock(object); |
| 7637 | |
| 7638 | if (!object->internal || |
| 7639 | object->terminating || |
| 7640 | !object->alive) { |
| 7641 | vm_object_unlock(object); |
| 7642 | return; |
| 7643 | } |
| 7644 | |
| 7645 | if (!object->pager_initialized || object->pager == MEMORY_OBJECT_NULL) { |
| 7646 | if (!object->pager_initialized) { |
| 7647 | vm_object_collapse(object, hint_offset: (vm_object_offset_t) 0, TRUE); |
| 7648 | |
| 7649 | if (!object->pager_initialized) { |
| 7650 | vm_object_compressor_pager_create(object); |
| 7651 | } |
| 7652 | } |
| 7653 | |
| 7654 | if (!object->pager_initialized || object->pager == MEMORY_OBJECT_NULL) { |
| 7655 | vm_object_unlock(object); |
| 7656 | return; |
| 7657 | } |
| 7658 | } |
| 7659 | |
| 7660 | ReScan: |
| 7661 | next = (vm_page_t)vm_page_queue_first(&object->memq); |
| 7662 | |
| 7663 | while (!vm_page_queue_end(&object->memq, (vm_page_queue_entry_t)next)) { |
| 7664 | p = next; |
| 7665 | next = (vm_page_t)vm_page_queue_next(&next->vmp_listq); |
| 7666 | |
| 7667 | assert(p->vmp_q_state != VM_PAGE_ON_FREE_Q); |
| 7668 | |
| 7669 | if ((p->vmp_q_state == VM_PAGE_ON_THROTTLED_Q) || |
| 7670 | p->vmp_cleaning || |
| 7671 | p->vmp_laundry || |
| 7672 | p->vmp_busy || |
| 7673 | p->vmp_absent || |
| 7674 | VMP_ERROR_GET(p) || |
| 7675 | p->vmp_fictitious || |
| 7676 | VM_PAGE_WIRED(p)) { |
| 7677 | /* |
| 7678 | * Page is already being cleaned or can't be cleaned. |
| 7679 | */ |
| 7680 | continue; |
| 7681 | } |
| 7682 | if (vm_compressor_low_on_space()) { |
| 7683 | break; |
| 7684 | } |
| 7685 | |
| 7686 | /* Throw to the pageout queue */ |
| 7687 | |
| 7688 | vm_page_lockspin_queues(); |
| 7689 | |
| 7690 | if (VM_PAGE_Q_THROTTLED(iq)) { |
| 7691 | iq->pgo_draining = TRUE; |
| 7692 | |
| 7693 | assert_wait(event: (event_t) (&iq->pgo_laundry + 1), |
| 7694 | THREAD_INTERRUPTIBLE); |
| 7695 | vm_page_unlock_queues(); |
| 7696 | vm_object_unlock(object); |
| 7697 | |
| 7698 | thread_block(THREAD_CONTINUE_NULL); |
| 7699 | |
| 7700 | vm_object_lock(object); |
| 7701 | goto ReScan; |
| 7702 | } |
| 7703 | |
| 7704 | assert(!p->vmp_fictitious); |
| 7705 | assert(!p->vmp_busy); |
| 7706 | assert(!p->vmp_absent); |
| 7707 | assert(!p->vmp_unusual); |
| 7708 | assert(!VMP_ERROR_GET(p)); /* XXX there's a window here where we could have an ECC error! */ |
| 7709 | assert(!VM_PAGE_WIRED(p)); |
| 7710 | assert(!p->vmp_cleaning); |
| 7711 | |
| 7712 | if (p->vmp_pmapped == TRUE) { |
| 7713 | int refmod_state; |
| 7714 | int pmap_options; |
| 7715 | |
| 7716 | /* |
| 7717 | * Tell pmap the page should be accounted |
| 7718 | * for as "compressed" if it's been modified. |
| 7719 | */ |
| 7720 | pmap_options = |
| 7721 | PMAP_OPTIONS_COMPRESSOR_IFF_MODIFIED; |
| 7722 | if (p->vmp_dirty || p->vmp_precious) { |
| 7723 | /* |
| 7724 | * We already know it's been modified, |
| 7725 | * so tell pmap to account for it |
| 7726 | * as "compressed". |
| 7727 | */ |
| 7728 | pmap_options = PMAP_OPTIONS_COMPRESSOR; |
| 7729 | } |
| 7730 | vm_page_lockconvert_queues(); |
| 7731 | refmod_state = pmap_disconnect_options(phys: VM_PAGE_GET_PHYS_PAGE(m: p), |
| 7732 | options: pmap_options, |
| 7733 | NULL); |
| 7734 | if (refmod_state & VM_MEM_MODIFIED) { |
| 7735 | SET_PAGE_DIRTY(p, FALSE); |
| 7736 | } |
| 7737 | } |
| 7738 | |
| 7739 | if (!p->vmp_dirty && !p->vmp_precious) { |
| 7740 | vm_page_unlock_queues(); |
| 7741 | VM_PAGE_FREE(p); |
| 7742 | continue; |
| 7743 | } |
| 7744 | vm_page_queues_remove(mem: p, TRUE); |
| 7745 | |
| 7746 | vm_pageout_cluster(m: p); |
| 7747 | |
| 7748 | vm_page_unlock_queues(); |
| 7749 | } |
| 7750 | vm_object_unlock(object); |
| 7751 | } |
| 7752 | |
| 7753 | |
| 7754 | #if CONFIG_IOSCHED |
| 7755 | void |
| 7756 | vm_page_request_reprioritize(vm_object_t o, uint64_t blkno, uint32_t len, int prio) |
| 7757 | { |
| 7758 | io_reprioritize_req_t req; |
| 7759 | struct vnode *devvp = NULL; |
| 7760 | |
| 7761 | if (vnode_pager_get_object_devvp(o->pager, (uintptr_t *)&devvp) != KERN_SUCCESS) { |
| 7762 | return; |
| 7763 | } |
| 7764 | |
| 7765 | /* |
| 7766 | * Create the request for I/O reprioritization. |
| 7767 | * We use the noblock variant of zalloc because we're holding the object |
| 7768 | * lock here and we could cause a deadlock in low memory conditions. |
| 7769 | */ |
| 7770 | req = (io_reprioritize_req_t)zalloc_noblock(zone: io_reprioritize_req_zone); |
| 7771 | if (req == NULL) { |
| 7772 | return; |
| 7773 | } |
| 7774 | req->blkno = blkno; |
| 7775 | req->len = len; |
| 7776 | req->priority = prio; |
| 7777 | req->devvp = devvp; |
| 7778 | |
| 7779 | /* Insert request into the reprioritization list */ |
| 7780 | IO_REPRIORITIZE_LIST_LOCK(); |
| 7781 | queue_enter(&io_reprioritize_list, req, io_reprioritize_req_t, io_reprioritize_list); |
| 7782 | IO_REPRIORITIZE_LIST_UNLOCK(); |
| 7783 | |
| 7784 | /* Wakeup reprioritize thread */ |
| 7785 | IO_REPRIO_THREAD_WAKEUP(); |
| 7786 | |
| 7787 | return; |
| 7788 | } |
| 7789 | |
| 7790 | void |
| 7791 | vm_decmp_upl_reprioritize(upl_t upl, int prio) |
| 7792 | { |
| 7793 | int offset; |
| 7794 | vm_object_t object; |
| 7795 | io_reprioritize_req_t req; |
| 7796 | struct vnode *devvp = NULL; |
| 7797 | uint64_t blkno; |
| 7798 | uint32_t len; |
| 7799 | upl_t io_upl; |
| 7800 | uint64_t *io_upl_reprio_info; |
| 7801 | int io_upl_size; |
| 7802 | |
| 7803 | if ((upl->flags & UPL_TRACKED_BY_OBJECT) == 0 || (upl->flags & UPL_EXPEDITE_SUPPORTED) == 0) { |
| 7804 | return; |
| 7805 | } |
| 7806 | |
| 7807 | /* |
| 7808 | * We dont want to perform any allocations with the upl lock held since that might |
| 7809 | * result in a deadlock. If the system is low on memory, the pageout thread would |
| 7810 | * try to pageout stuff and might wait on this lock. If we are waiting for the memory to |
| 7811 | * be freed up by the pageout thread, it would be a deadlock. |
| 7812 | */ |
| 7813 | |
| 7814 | |
| 7815 | /* First step is just to get the size of the upl to find out how big the reprio info is */ |
| 7816 | if (!upl_try_lock(upl)) { |
| 7817 | return; |
| 7818 | } |
| 7819 | |
| 7820 | if (upl->decmp_io_upl == NULL) { |
| 7821 | /* The real I/O upl was destroyed by the time we came in here. Nothing to do. */ |
| 7822 | upl_unlock(upl); |
| 7823 | return; |
| 7824 | } |
| 7825 | |
| 7826 | io_upl = upl->decmp_io_upl; |
| 7827 | assert((io_upl->flags & UPL_DECMP_REAL_IO) != 0); |
| 7828 | assertf(page_aligned(io_upl->u_offset) && page_aligned(io_upl->u_size), |
| 7829 | "upl %p offset 0x%llx size 0x%x\n" , |
| 7830 | io_upl, io_upl->u_offset, io_upl->u_size); |
| 7831 | io_upl_size = io_upl->u_size; |
| 7832 | upl_unlock(upl); |
| 7833 | |
| 7834 | /* Now perform the allocation */ |
| 7835 | io_upl_reprio_info = kalloc_data(sizeof(uint64_t) * atop(io_upl_size), Z_WAITOK); |
| 7836 | if (io_upl_reprio_info == NULL) { |
| 7837 | return; |
| 7838 | } |
| 7839 | |
| 7840 | /* Now again take the lock, recheck the state and grab out the required info */ |
| 7841 | if (!upl_try_lock(upl)) { |
| 7842 | goto out; |
| 7843 | } |
| 7844 | |
| 7845 | if (upl->decmp_io_upl == NULL || upl->decmp_io_upl != io_upl) { |
| 7846 | /* The real I/O upl was destroyed by the time we came in here. Nothing to do. */ |
| 7847 | upl_unlock(upl); |
| 7848 | goto out; |
| 7849 | } |
| 7850 | memcpy(dst: io_upl_reprio_info, src: io_upl->upl_reprio_info, |
| 7851 | n: sizeof(uint64_t) * atop(io_upl_size)); |
| 7852 | |
| 7853 | /* Get the VM object for this UPL */ |
| 7854 | if (io_upl->flags & UPL_SHADOWED) { |
| 7855 | object = io_upl->map_object->shadow; |
| 7856 | } else { |
| 7857 | object = io_upl->map_object; |
| 7858 | } |
| 7859 | |
| 7860 | /* Get the dev vnode ptr for this object */ |
| 7861 | if (!object || !object->pager || |
| 7862 | vnode_pager_get_object_devvp(object->pager, (uintptr_t *)&devvp) != KERN_SUCCESS) { |
| 7863 | upl_unlock(upl); |
| 7864 | goto out; |
| 7865 | } |
| 7866 | |
| 7867 | upl_unlock(upl); |
| 7868 | |
| 7869 | /* Now we have all the information needed to do the expedite */ |
| 7870 | |
| 7871 | offset = 0; |
| 7872 | while (offset < io_upl_size) { |
| 7873 | blkno = io_upl_reprio_info[atop(offset)] & UPL_REPRIO_INFO_MASK; |
| 7874 | len = (io_upl_reprio_info[atop(offset)] >> UPL_REPRIO_INFO_SHIFT) & UPL_REPRIO_INFO_MASK; |
| 7875 | |
| 7876 | /* |
| 7877 | * This implementation may cause some spurious expedites due to the |
| 7878 | * fact that we dont cleanup the blkno & len from the upl_reprio_info |
| 7879 | * even after the I/O is complete. |
| 7880 | */ |
| 7881 | |
| 7882 | if (blkno != 0 && len != 0) { |
| 7883 | /* Create the request for I/O reprioritization */ |
| 7884 | req = zalloc_flags(io_reprioritize_req_zone, |
| 7885 | Z_WAITOK | Z_NOFAIL); |
| 7886 | req->blkno = blkno; |
| 7887 | req->len = len; |
| 7888 | req->priority = prio; |
| 7889 | req->devvp = devvp; |
| 7890 | |
| 7891 | /* Insert request into the reprioritization list */ |
| 7892 | IO_REPRIORITIZE_LIST_LOCK(); |
| 7893 | queue_enter(&io_reprioritize_list, req, io_reprioritize_req_t, io_reprioritize_list); |
| 7894 | IO_REPRIORITIZE_LIST_UNLOCK(); |
| 7895 | |
| 7896 | offset += len; |
| 7897 | } else { |
| 7898 | offset += PAGE_SIZE; |
| 7899 | } |
| 7900 | } |
| 7901 | |
| 7902 | /* Wakeup reprioritize thread */ |
| 7903 | IO_REPRIO_THREAD_WAKEUP(); |
| 7904 | |
| 7905 | out: |
| 7906 | kfree_data(io_upl_reprio_info, sizeof(uint64_t) * atop(io_upl_size)); |
| 7907 | } |
| 7908 | |
| 7909 | void |
| 7910 | vm_page_handle_prio_inversion(vm_object_t o, vm_page_t m) |
| 7911 | { |
| 7912 | upl_t upl; |
| 7913 | upl_page_info_t *pl; |
| 7914 | unsigned int i, num_pages; |
| 7915 | int cur_tier; |
| 7916 | |
| 7917 | cur_tier = proc_get_effective_thread_policy(thread: current_thread(), TASK_POLICY_IO); |
| 7918 | |
| 7919 | /* |
| 7920 | * Scan through all UPLs associated with the object to find the |
| 7921 | * UPL containing the contended page. |
| 7922 | */ |
| 7923 | queue_iterate(&o->uplq, upl, upl_t, uplq) { |
| 7924 | if (((upl->flags & UPL_EXPEDITE_SUPPORTED) == 0) || upl->upl_priority <= cur_tier) { |
| 7925 | continue; |
| 7926 | } |
| 7927 | pl = UPL_GET_INTERNAL_PAGE_LIST(upl); |
| 7928 | assertf(page_aligned(upl->u_offset) && page_aligned(upl->u_size), |
| 7929 | "upl %p offset 0x%llx size 0x%x\n" , |
| 7930 | upl, upl->u_offset, upl->u_size); |
| 7931 | num_pages = (upl->u_size / PAGE_SIZE); |
| 7932 | |
| 7933 | /* |
| 7934 | * For each page in the UPL page list, see if it matches the contended |
| 7935 | * page and was issued as a low prio I/O. |
| 7936 | */ |
| 7937 | for (i = 0; i < num_pages; i++) { |
| 7938 | if (UPL_PAGE_PRESENT(pl, i) && VM_PAGE_GET_PHYS_PAGE(m) == pl[i].phys_addr) { |
| 7939 | if ((upl->flags & UPL_DECMP_REQ) && upl->decmp_io_upl) { |
| 7940 | KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, VM_PAGE_EXPEDITE)) | DBG_FUNC_NONE, VM_KERNEL_UNSLIDE_OR_PERM(upl->upl_creator), VM_KERNEL_UNSLIDE_OR_PERM(m), |
| 7941 | VM_KERNEL_UNSLIDE_OR_PERM(upl), upl->upl_priority, 0); |
| 7942 | vm_decmp_upl_reprioritize(upl, prio: cur_tier); |
| 7943 | break; |
| 7944 | } |
| 7945 | KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, VM_PAGE_EXPEDITE)) | DBG_FUNC_NONE, VM_KERNEL_UNSLIDE_OR_PERM(upl->upl_creator), VM_KERNEL_UNSLIDE_OR_PERM(m), |
| 7946 | upl->upl_reprio_info[i], upl->upl_priority, 0); |
| 7947 | if (UPL_REPRIO_INFO_BLKNO(upl, i) != 0 && UPL_REPRIO_INFO_LEN(upl, i) != 0) { |
| 7948 | vm_page_request_reprioritize(o, UPL_REPRIO_INFO_BLKNO(upl, i), UPL_REPRIO_INFO_LEN(upl, i), prio: cur_tier); |
| 7949 | } |
| 7950 | break; |
| 7951 | } |
| 7952 | } |
| 7953 | /* Check if we found any hits */ |
| 7954 | if (i != num_pages) { |
| 7955 | break; |
| 7956 | } |
| 7957 | } |
| 7958 | |
| 7959 | return; |
| 7960 | } |
| 7961 | |
| 7962 | wait_result_t |
| 7963 | vm_page_sleep(vm_object_t o, vm_page_t m, int interruptible) |
| 7964 | { |
| 7965 | wait_result_t ret; |
| 7966 | |
| 7967 | KERNEL_DEBUG((MACHDBG_CODE(DBG_MACH_VM, VM_PAGE_SLEEP)) | DBG_FUNC_START, o, m, 0, 0, 0); |
| 7968 | |
| 7969 | if (o->io_tracking && ((m->vmp_busy == TRUE) || (m->vmp_cleaning == TRUE) || VM_PAGE_WIRED(m))) { |
| 7970 | /* |
| 7971 | * Indicates page is busy due to an I/O. Issue a reprioritize request if necessary. |
| 7972 | */ |
| 7973 | vm_page_handle_prio_inversion(o, m); |
| 7974 | } |
| 7975 | m->vmp_wanted = TRUE; |
| 7976 | ret = thread_sleep_vm_object(object: o, event: m, interruptible); |
| 7977 | KERNEL_DEBUG((MACHDBG_CODE(DBG_MACH_VM, VM_PAGE_SLEEP)) | DBG_FUNC_END, o, m, 0, 0, 0); |
| 7978 | return ret; |
| 7979 | } |
| 7980 | |
| 7981 | static void |
| 7982 | io_reprioritize_thread(void *param __unused, wait_result_t wr __unused) |
| 7983 | { |
| 7984 | io_reprioritize_req_t req = NULL; |
| 7985 | |
| 7986 | while (1) { |
| 7987 | IO_REPRIORITIZE_LIST_LOCK(); |
| 7988 | if (queue_empty(&io_reprioritize_list)) { |
| 7989 | IO_REPRIORITIZE_LIST_UNLOCK(); |
| 7990 | break; |
| 7991 | } |
| 7992 | |
| 7993 | queue_remove_first(&io_reprioritize_list, req, io_reprioritize_req_t, io_reprioritize_list); |
| 7994 | IO_REPRIORITIZE_LIST_UNLOCK(); |
| 7995 | |
| 7996 | vnode_pager_issue_reprioritize_io(devvp: req->devvp, blkno: req->blkno, len: req->len, priority: req->priority); |
| 7997 | zfree(io_reprioritize_req_zone, req); |
| 7998 | } |
| 7999 | |
| 8000 | IO_REPRIO_THREAD_CONTINUATION(); |
| 8001 | } |
| 8002 | #endif |
| 8003 | |
| 8004 | #if VM_OBJECT_ACCESS_TRACKING |
| 8005 | void |
| 8006 | vm_object_access_tracking( |
| 8007 | vm_object_t object, |
| 8008 | int *access_tracking_p, |
| 8009 | uint32_t *access_tracking_reads_p, |
| 8010 | uint32_t *access_tracking_writes_p) |
| 8011 | { |
| 8012 | int access_tracking; |
| 8013 | |
| 8014 | access_tracking = !!*access_tracking_p; |
| 8015 | |
| 8016 | vm_object_lock(object); |
| 8017 | *access_tracking_p = object->access_tracking; |
| 8018 | if (access_tracking_reads_p) { |
| 8019 | *access_tracking_reads_p = object->access_tracking_reads; |
| 8020 | } |
| 8021 | if (access_tracking_writes_p) { |
| 8022 | *access_tracking_writes_p = object->access_tracking_writes; |
| 8023 | } |
| 8024 | object->access_tracking = access_tracking; |
| 8025 | object->access_tracking_reads = 0; |
| 8026 | object->access_tracking_writes = 0; |
| 8027 | vm_object_unlock(object); |
| 8028 | |
| 8029 | if (access_tracking) { |
| 8030 | vm_object_pmap_protect_options(object, |
| 8031 | 0, |
| 8032 | object->vo_size, |
| 8033 | PMAP_NULL, |
| 8034 | PAGE_SIZE, |
| 8035 | 0, |
| 8036 | VM_PROT_NONE, |
| 8037 | 0); |
| 8038 | } |
| 8039 | } |
| 8040 | #endif /* VM_OBJECT_ACCESS_TRACKING */ |
| 8041 | |
| 8042 | void |
| 8043 | vm_object_ledger_tag_ledgers( |
| 8044 | vm_object_t object, |
| 8045 | int *ledger_idx_volatile, |
| 8046 | int *ledger_idx_nonvolatile, |
| 8047 | int *ledger_idx_volatile_compressed, |
| 8048 | int *ledger_idx_nonvolatile_compressed, |
| 8049 | boolean_t *) |
| 8050 | { |
| 8051 | assert(object->shadow == VM_OBJECT_NULL); |
| 8052 | |
| 8053 | *do_footprint = !object->vo_no_footprint; |
| 8054 | |
| 8055 | switch (object->vo_ledger_tag) { |
| 8056 | case VM_LEDGER_TAG_NONE: |
| 8057 | /* |
| 8058 | * Regular purgeable memory: |
| 8059 | * counts in footprint only when nonvolatile. |
| 8060 | */ |
| 8061 | *do_footprint = TRUE; |
| 8062 | assert(object->purgable != VM_PURGABLE_DENY); |
| 8063 | *ledger_idx_volatile = task_ledgers.purgeable_volatile; |
| 8064 | *ledger_idx_nonvolatile = task_ledgers.purgeable_nonvolatile; |
| 8065 | *ledger_idx_volatile_compressed = task_ledgers.purgeable_volatile_compressed; |
| 8066 | *ledger_idx_nonvolatile_compressed = task_ledgers.purgeable_nonvolatile_compressed; |
| 8067 | break; |
| 8068 | case VM_LEDGER_TAG_DEFAULT: |
| 8069 | /* |
| 8070 | * "default" tagged memory: |
| 8071 | * counts in footprint only when nonvolatile and not marked |
| 8072 | * as "no_footprint". |
| 8073 | */ |
| 8074 | *ledger_idx_volatile = task_ledgers.tagged_nofootprint; |
| 8075 | *ledger_idx_volatile_compressed = task_ledgers.tagged_nofootprint_compressed; |
| 8076 | if (*do_footprint) { |
| 8077 | *ledger_idx_nonvolatile = task_ledgers.tagged_footprint; |
| 8078 | *ledger_idx_nonvolatile_compressed = task_ledgers.tagged_footprint_compressed; |
| 8079 | } else { |
| 8080 | *ledger_idx_nonvolatile = task_ledgers.tagged_nofootprint; |
| 8081 | *ledger_idx_nonvolatile_compressed = task_ledgers.tagged_nofootprint_compressed; |
| 8082 | } |
| 8083 | break; |
| 8084 | case VM_LEDGER_TAG_NETWORK: |
| 8085 | /* |
| 8086 | * "network" tagged memory: |
| 8087 | * never counts in footprint. |
| 8088 | */ |
| 8089 | *do_footprint = FALSE; |
| 8090 | *ledger_idx_volatile = task_ledgers.network_volatile; |
| 8091 | *ledger_idx_volatile_compressed = task_ledgers.network_volatile_compressed; |
| 8092 | *ledger_idx_nonvolatile = task_ledgers.network_nonvolatile; |
| 8093 | *ledger_idx_nonvolatile_compressed = task_ledgers.network_nonvolatile_compressed; |
| 8094 | break; |
| 8095 | case VM_LEDGER_TAG_MEDIA: |
| 8096 | /* |
| 8097 | * "media" tagged memory: |
| 8098 | * counts in footprint only when nonvolatile and not marked |
| 8099 | * as "no footprint". |
| 8100 | */ |
| 8101 | *ledger_idx_volatile = task_ledgers.media_nofootprint; |
| 8102 | *ledger_idx_volatile_compressed = task_ledgers.media_nofootprint_compressed; |
| 8103 | if (*do_footprint) { |
| 8104 | *ledger_idx_nonvolatile = task_ledgers.media_footprint; |
| 8105 | *ledger_idx_nonvolatile_compressed = task_ledgers.media_footprint_compressed; |
| 8106 | } else { |
| 8107 | *ledger_idx_nonvolatile = task_ledgers.media_nofootprint; |
| 8108 | *ledger_idx_nonvolatile_compressed = task_ledgers.media_nofootprint_compressed; |
| 8109 | } |
| 8110 | break; |
| 8111 | case VM_LEDGER_TAG_GRAPHICS: |
| 8112 | /* |
| 8113 | * "graphics" tagged memory: |
| 8114 | * counts in footprint only when nonvolatile and not marked |
| 8115 | * as "no footprint". |
| 8116 | */ |
| 8117 | *ledger_idx_volatile = task_ledgers.graphics_nofootprint; |
| 8118 | *ledger_idx_volatile_compressed = task_ledgers.graphics_nofootprint_compressed; |
| 8119 | if (*do_footprint) { |
| 8120 | *ledger_idx_nonvolatile = task_ledgers.graphics_footprint; |
| 8121 | *ledger_idx_nonvolatile_compressed = task_ledgers.graphics_footprint_compressed; |
| 8122 | } else { |
| 8123 | *ledger_idx_nonvolatile = task_ledgers.graphics_nofootprint; |
| 8124 | *ledger_idx_nonvolatile_compressed = task_ledgers.graphics_nofootprint_compressed; |
| 8125 | } |
| 8126 | break; |
| 8127 | case VM_LEDGER_TAG_NEURAL: |
| 8128 | /* |
| 8129 | * "neural" tagged memory: |
| 8130 | * counts in footprint only when nonvolatile and not marked |
| 8131 | * as "no footprint". |
| 8132 | */ |
| 8133 | *ledger_idx_volatile = task_ledgers.neural_nofootprint; |
| 8134 | *ledger_idx_volatile_compressed = task_ledgers.neural_nofootprint_compressed; |
| 8135 | if (*do_footprint) { |
| 8136 | *ledger_idx_nonvolatile = task_ledgers.neural_footprint; |
| 8137 | *ledger_idx_nonvolatile_compressed = task_ledgers.neural_footprint_compressed; |
| 8138 | } else { |
| 8139 | *ledger_idx_nonvolatile = task_ledgers.neural_nofootprint; |
| 8140 | *ledger_idx_nonvolatile_compressed = task_ledgers.neural_nofootprint_compressed; |
| 8141 | } |
| 8142 | break; |
| 8143 | default: |
| 8144 | panic("%s: object %p has unsupported ledger_tag %d" , |
| 8145 | __FUNCTION__, object, object->vo_ledger_tag); |
| 8146 | } |
| 8147 | } |
| 8148 | |
| 8149 | kern_return_t |
| 8150 | vm_object_ownership_change( |
| 8151 | vm_object_t object, |
| 8152 | int new_ledger_tag, |
| 8153 | task_t new_owner, |
| 8154 | int new_ledger_flags, |
| 8155 | boolean_t old_task_objq_locked) |
| 8156 | { |
| 8157 | int old_ledger_tag; |
| 8158 | task_t old_owner; |
| 8159 | int resident_count, wired_count; |
| 8160 | unsigned int compressed_count; |
| 8161 | int ledger_idx_volatile; |
| 8162 | int ledger_idx_nonvolatile; |
| 8163 | int ledger_idx_volatile_compressed; |
| 8164 | int ledger_idx_nonvolatile_compressed; |
| 8165 | int ledger_idx; |
| 8166 | int ledger_idx_compressed; |
| 8167 | boolean_t , , ; |
| 8168 | boolean_t new_task_objq_locked; |
| 8169 | |
| 8170 | vm_object_lock_assert_exclusive(object); |
| 8171 | |
| 8172 | if (!object->internal) { |
| 8173 | return KERN_INVALID_ARGUMENT; |
| 8174 | } |
| 8175 | if (new_owner == VM_OBJECT_OWNER_UNCHANGED) { |
| 8176 | /* leave owner unchanged */ |
| 8177 | new_owner = VM_OBJECT_OWNER(object); |
| 8178 | } |
| 8179 | if (new_ledger_tag == VM_LEDGER_TAG_UNCHANGED) { |
| 8180 | /* leave ledger_tag unchanged */ |
| 8181 | new_ledger_tag = object->vo_ledger_tag; |
| 8182 | } |
| 8183 | if (new_ledger_tag == VM_LEDGER_TAG_NONE && |
| 8184 | object->purgable == VM_PURGABLE_DENY) { |
| 8185 | /* non-purgeable memory must have a valid non-zero ledger tag */ |
| 8186 | return KERN_INVALID_ARGUMENT; |
| 8187 | } |
| 8188 | if (new_ledger_tag < 0 || |
| 8189 | new_ledger_tag > VM_LEDGER_TAG_MAX) { |
| 8190 | return KERN_INVALID_ARGUMENT; |
| 8191 | } |
| 8192 | if (new_ledger_flags & ~VM_LEDGER_FLAGS) { |
| 8193 | return KERN_INVALID_ARGUMENT; |
| 8194 | } |
| 8195 | if (object->vo_ledger_tag == VM_LEDGER_TAG_NONE && |
| 8196 | object->purgable == VM_PURGABLE_DENY) { |
| 8197 | /* |
| 8198 | * This VM object is neither ledger-tagged nor purgeable. |
| 8199 | * We can convert it to "ledger tag" ownership iff it |
| 8200 | * has not been used at all yet (no resident pages and |
| 8201 | * no pager) and it's going to be assigned to a valid task. |
| 8202 | */ |
| 8203 | if (object->resident_page_count != 0 || |
| 8204 | object->pager != NULL || |
| 8205 | object->pager_created || |
| 8206 | object->ref_count != 1 || |
| 8207 | object->vo_owner != TASK_NULL || |
| 8208 | object->copy_strategy != MEMORY_OBJECT_COPY_NONE || |
| 8209 | new_owner == TASK_NULL) { |
| 8210 | return KERN_FAILURE; |
| 8211 | } |
| 8212 | } |
| 8213 | |
| 8214 | if (new_ledger_flags & VM_LEDGER_FLAG_NO_FOOTPRINT) { |
| 8215 | new_no_footprint = TRUE; |
| 8216 | } else { |
| 8217 | new_no_footprint = FALSE; |
| 8218 | } |
| 8219 | #if __arm64__ |
| 8220 | if (!new_no_footprint && |
| 8221 | object->purgable != VM_PURGABLE_DENY && |
| 8222 | new_owner != TASK_NULL && |
| 8223 | new_owner != VM_OBJECT_OWNER_DISOWNED && |
| 8224 | new_owner->task_legacy_footprint) { |
| 8225 | /* |
| 8226 | * This task has been granted "legacy footprint" and should |
| 8227 | * not be charged for its IOKit purgeable memory. Since we |
| 8228 | * might now change the accounting of such memory to the |
| 8229 | * "graphics" ledger, for example, give it the "no footprint" |
| 8230 | * option. |
| 8231 | */ |
| 8232 | new_no_footprint = TRUE; |
| 8233 | } |
| 8234 | #endif /* __arm64__ */ |
| 8235 | assert(object->copy_strategy == MEMORY_OBJECT_COPY_NONE); |
| 8236 | assert(object->shadow == VM_OBJECT_NULL); |
| 8237 | assert(object->vo_copy == VM_OBJECT_NULL); |
| 8238 | |
| 8239 | old_ledger_tag = object->vo_ledger_tag; |
| 8240 | old_no_footprint = object->vo_no_footprint; |
| 8241 | old_owner = VM_OBJECT_OWNER(object); |
| 8242 | |
| 8243 | if (__improbable(vm_debug_events)) { |
| 8244 | DTRACE_VM8(object_ownership_change, |
| 8245 | vm_object_t, object, |
| 8246 | task_t, old_owner, |
| 8247 | int, old_ledger_tag, |
| 8248 | int, old_no_footprint, |
| 8249 | task_t, new_owner, |
| 8250 | int, new_ledger_tag, |
| 8251 | int, new_no_footprint, |
| 8252 | int, VM_OBJECT_ID(object)); |
| 8253 | } |
| 8254 | |
| 8255 | assert(object->internal); |
| 8256 | resident_count = object->resident_page_count - object->wired_page_count; |
| 8257 | wired_count = object->wired_page_count; |
| 8258 | compressed_count = vm_compressor_pager_get_count(mem_obj: object->pager); |
| 8259 | |
| 8260 | /* |
| 8261 | * Deal with the old owner and/or ledger tag, if needed. |
| 8262 | */ |
| 8263 | if (old_owner != TASK_NULL && |
| 8264 | ((old_owner != new_owner) /* new owner ... */ |
| 8265 | || /* ... or ... */ |
| 8266 | (old_no_footprint != new_no_footprint) /* new "no_footprint" */ |
| 8267 | || /* ... or ... */ |
| 8268 | old_ledger_tag != new_ledger_tag)) { /* ... new ledger */ |
| 8269 | /* |
| 8270 | * Take this object off of the old owner's ledgers. |
| 8271 | */ |
| 8272 | vm_object_ledger_tag_ledgers(object, |
| 8273 | ledger_idx_volatile: &ledger_idx_volatile, |
| 8274 | ledger_idx_nonvolatile: &ledger_idx_nonvolatile, |
| 8275 | ledger_idx_volatile_compressed: &ledger_idx_volatile_compressed, |
| 8276 | ledger_idx_nonvolatile_compressed: &ledger_idx_nonvolatile_compressed, |
| 8277 | do_footprint: &do_footprint); |
| 8278 | if (object->purgable == VM_PURGABLE_VOLATILE || |
| 8279 | object->purgable == VM_PURGABLE_EMPTY) { |
| 8280 | ledger_idx = ledger_idx_volatile; |
| 8281 | ledger_idx_compressed = ledger_idx_volatile_compressed; |
| 8282 | } else { |
| 8283 | ledger_idx = ledger_idx_nonvolatile; |
| 8284 | ledger_idx_compressed = ledger_idx_nonvolatile_compressed; |
| 8285 | } |
| 8286 | if (resident_count) { |
| 8287 | /* |
| 8288 | * Adjust the appropriate old owners's ledgers by the |
| 8289 | * number of resident pages. |
| 8290 | */ |
| 8291 | ledger_debit(ledger: old_owner->ledger, |
| 8292 | entry: ledger_idx, |
| 8293 | ptoa_64(resident_count)); |
| 8294 | /* adjust old owner's footprint */ |
| 8295 | if (do_footprint && |
| 8296 | object->purgable != VM_PURGABLE_VOLATILE && |
| 8297 | object->purgable != VM_PURGABLE_EMPTY) { |
| 8298 | ledger_debit(ledger: old_owner->ledger, |
| 8299 | entry: task_ledgers.phys_footprint, |
| 8300 | ptoa_64(resident_count)); |
| 8301 | } |
| 8302 | } |
| 8303 | if (wired_count) { |
| 8304 | /* wired pages are always nonvolatile */ |
| 8305 | ledger_debit(ledger: old_owner->ledger, |
| 8306 | entry: ledger_idx_nonvolatile, |
| 8307 | ptoa_64(wired_count)); |
| 8308 | if (do_footprint) { |
| 8309 | ledger_debit(ledger: old_owner->ledger, |
| 8310 | entry: task_ledgers.phys_footprint, |
| 8311 | ptoa_64(wired_count)); |
| 8312 | } |
| 8313 | } |
| 8314 | if (compressed_count) { |
| 8315 | /* |
| 8316 | * Adjust the appropriate old owner's ledgers |
| 8317 | * by the number of compressed pages. |
| 8318 | */ |
| 8319 | ledger_debit(ledger: old_owner->ledger, |
| 8320 | entry: ledger_idx_compressed, |
| 8321 | ptoa_64(compressed_count)); |
| 8322 | if (do_footprint && |
| 8323 | object->purgable != VM_PURGABLE_VOLATILE && |
| 8324 | object->purgable != VM_PURGABLE_EMPTY) { |
| 8325 | ledger_debit(ledger: old_owner->ledger, |
| 8326 | entry: task_ledgers.phys_footprint, |
| 8327 | ptoa_64(compressed_count)); |
| 8328 | } |
| 8329 | } |
| 8330 | if (old_owner != new_owner) { |
| 8331 | /* remove object from old_owner's list of owned objects */ |
| 8332 | DTRACE_VM2(object_owner_remove, |
| 8333 | vm_object_t, object, |
| 8334 | task_t, old_owner); |
| 8335 | if (!old_task_objq_locked) { |
| 8336 | task_objq_lock(old_owner); |
| 8337 | } |
| 8338 | old_owner->task_owned_objects--; |
| 8339 | queue_remove(&old_owner->task_objq, object, |
| 8340 | vm_object_t, task_objq); |
| 8341 | switch (object->purgable) { |
| 8342 | case VM_PURGABLE_NONVOLATILE: |
| 8343 | case VM_PURGABLE_EMPTY: |
| 8344 | vm_purgeable_nonvolatile_owner_update(owner: old_owner, |
| 8345 | delta: -1); |
| 8346 | break; |
| 8347 | case VM_PURGABLE_VOLATILE: |
| 8348 | vm_purgeable_volatile_owner_update(owner: old_owner, |
| 8349 | delta: -1); |
| 8350 | break; |
| 8351 | default: |
| 8352 | break; |
| 8353 | } |
| 8354 | if (!old_task_objq_locked) { |
| 8355 | task_objq_unlock(old_owner); |
| 8356 | } |
| 8357 | } |
| 8358 | } |
| 8359 | |
| 8360 | /* |
| 8361 | * Switch to new ledger tag and/or owner. |
| 8362 | */ |
| 8363 | |
| 8364 | new_task_objq_locked = FALSE; |
| 8365 | if (new_owner != old_owner && |
| 8366 | new_owner != TASK_NULL && |
| 8367 | new_owner != VM_OBJECT_OWNER_DISOWNED) { |
| 8368 | /* |
| 8369 | * If the new owner is not accepting new objects ("disowning"), |
| 8370 | * the object becomes "disowned" and will be added to |
| 8371 | * the kernel's task_objq. |
| 8372 | * |
| 8373 | * Check first without locking, to avoid blocking while the |
| 8374 | * task is disowning its objects. |
| 8375 | */ |
| 8376 | if (new_owner->task_objects_disowning) { |
| 8377 | new_owner = VM_OBJECT_OWNER_DISOWNED; |
| 8378 | } else { |
| 8379 | task_objq_lock(new_owner); |
| 8380 | /* check again now that we have the lock */ |
| 8381 | if (new_owner->task_objects_disowning) { |
| 8382 | new_owner = VM_OBJECT_OWNER_DISOWNED; |
| 8383 | task_objq_unlock(new_owner); |
| 8384 | } else { |
| 8385 | new_task_objq_locked = TRUE; |
| 8386 | } |
| 8387 | } |
| 8388 | } |
| 8389 | |
| 8390 | object->vo_ledger_tag = new_ledger_tag; |
| 8391 | object->vo_owner = new_owner; |
| 8392 | object->vo_no_footprint = new_no_footprint; |
| 8393 | |
| 8394 | if (new_owner == VM_OBJECT_OWNER_DISOWNED) { |
| 8395 | /* |
| 8396 | * Disowned objects are added to the kernel's task_objq but |
| 8397 | * are marked as owned by "VM_OBJECT_OWNER_DISOWNED" to |
| 8398 | * differentiate them from objects intentionally owned by |
| 8399 | * the kernel. |
| 8400 | */ |
| 8401 | assert(old_owner != kernel_task); |
| 8402 | new_owner = kernel_task; |
| 8403 | assert(!new_task_objq_locked); |
| 8404 | task_objq_lock(new_owner); |
| 8405 | new_task_objq_locked = TRUE; |
| 8406 | } |
| 8407 | |
| 8408 | /* |
| 8409 | * Deal with the new owner and/or ledger tag, if needed. |
| 8410 | */ |
| 8411 | if (new_owner != TASK_NULL && |
| 8412 | ((new_owner != old_owner) /* new owner ... */ |
| 8413 | || /* ... or ... */ |
| 8414 | (new_no_footprint != old_no_footprint) /* ... new "no_footprint" */ |
| 8415 | || /* ... or ... */ |
| 8416 | new_ledger_tag != old_ledger_tag)) { /* ... new ledger */ |
| 8417 | /* |
| 8418 | * Add this object to the new owner's ledgers. |
| 8419 | */ |
| 8420 | vm_object_ledger_tag_ledgers(object, |
| 8421 | ledger_idx_volatile: &ledger_idx_volatile, |
| 8422 | ledger_idx_nonvolatile: &ledger_idx_nonvolatile, |
| 8423 | ledger_idx_volatile_compressed: &ledger_idx_volatile_compressed, |
| 8424 | ledger_idx_nonvolatile_compressed: &ledger_idx_nonvolatile_compressed, |
| 8425 | do_footprint: &do_footprint); |
| 8426 | if (object->purgable == VM_PURGABLE_VOLATILE || |
| 8427 | object->purgable == VM_PURGABLE_EMPTY) { |
| 8428 | ledger_idx = ledger_idx_volatile; |
| 8429 | ledger_idx_compressed = ledger_idx_volatile_compressed; |
| 8430 | } else { |
| 8431 | ledger_idx = ledger_idx_nonvolatile; |
| 8432 | ledger_idx_compressed = ledger_idx_nonvolatile_compressed; |
| 8433 | } |
| 8434 | if (resident_count) { |
| 8435 | /* |
| 8436 | * Adjust the appropriate new owners's ledgers by the |
| 8437 | * number of resident pages. |
| 8438 | */ |
| 8439 | ledger_credit(ledger: new_owner->ledger, |
| 8440 | entry: ledger_idx, |
| 8441 | ptoa_64(resident_count)); |
| 8442 | /* adjust new owner's footprint */ |
| 8443 | if (do_footprint && |
| 8444 | object->purgable != VM_PURGABLE_VOLATILE && |
| 8445 | object->purgable != VM_PURGABLE_EMPTY) { |
| 8446 | ledger_credit(ledger: new_owner->ledger, |
| 8447 | entry: task_ledgers.phys_footprint, |
| 8448 | ptoa_64(resident_count)); |
| 8449 | } |
| 8450 | } |
| 8451 | if (wired_count) { |
| 8452 | /* wired pages are always nonvolatile */ |
| 8453 | ledger_credit(ledger: new_owner->ledger, |
| 8454 | entry: ledger_idx_nonvolatile, |
| 8455 | ptoa_64(wired_count)); |
| 8456 | if (do_footprint) { |
| 8457 | ledger_credit(ledger: new_owner->ledger, |
| 8458 | entry: task_ledgers.phys_footprint, |
| 8459 | ptoa_64(wired_count)); |
| 8460 | } |
| 8461 | } |
| 8462 | if (compressed_count) { |
| 8463 | /* |
| 8464 | * Adjust the new owner's ledgers by the number of |
| 8465 | * compressed pages. |
| 8466 | */ |
| 8467 | ledger_credit(ledger: new_owner->ledger, |
| 8468 | entry: ledger_idx_compressed, |
| 8469 | ptoa_64(compressed_count)); |
| 8470 | if (do_footprint && |
| 8471 | object->purgable != VM_PURGABLE_VOLATILE && |
| 8472 | object->purgable != VM_PURGABLE_EMPTY) { |
| 8473 | ledger_credit(ledger: new_owner->ledger, |
| 8474 | entry: task_ledgers.phys_footprint, |
| 8475 | ptoa_64(compressed_count)); |
| 8476 | } |
| 8477 | } |
| 8478 | if (new_owner != old_owner) { |
| 8479 | /* add object to new_owner's list of owned objects */ |
| 8480 | DTRACE_VM2(object_owner_add, |
| 8481 | vm_object_t, object, |
| 8482 | task_t, new_owner); |
| 8483 | assert(new_task_objq_locked); |
| 8484 | new_owner->task_owned_objects++; |
| 8485 | queue_enter(&new_owner->task_objq, object, |
| 8486 | vm_object_t, task_objq); |
| 8487 | switch (object->purgable) { |
| 8488 | case VM_PURGABLE_NONVOLATILE: |
| 8489 | case VM_PURGABLE_EMPTY: |
| 8490 | vm_purgeable_nonvolatile_owner_update(owner: new_owner, |
| 8491 | delta: +1); |
| 8492 | break; |
| 8493 | case VM_PURGABLE_VOLATILE: |
| 8494 | vm_purgeable_volatile_owner_update(owner: new_owner, |
| 8495 | delta: +1); |
| 8496 | break; |
| 8497 | default: |
| 8498 | break; |
| 8499 | } |
| 8500 | } |
| 8501 | } |
| 8502 | |
| 8503 | if (new_task_objq_locked) { |
| 8504 | task_objq_unlock(new_owner); |
| 8505 | } |
| 8506 | |
| 8507 | return KERN_SUCCESS; |
| 8508 | } |
| 8509 | |
| 8510 | void |
| 8511 | vm_owned_objects_disown( |
| 8512 | task_t task) |
| 8513 | { |
| 8514 | vm_object_t next_object; |
| 8515 | vm_object_t object; |
| 8516 | int collisions; |
| 8517 | kern_return_t kr; |
| 8518 | |
| 8519 | if (task == NULL) { |
| 8520 | return; |
| 8521 | } |
| 8522 | |
| 8523 | collisions = 0; |
| 8524 | |
| 8525 | again: |
| 8526 | if (task->task_objects_disowned) { |
| 8527 | /* task has already disowned its owned objects */ |
| 8528 | assert(task->task_volatile_objects == 0); |
| 8529 | assert(task->task_nonvolatile_objects == 0); |
| 8530 | assert(task->task_owned_objects == 0); |
| 8531 | return; |
| 8532 | } |
| 8533 | |
| 8534 | task_objq_lock(task); |
| 8535 | |
| 8536 | task->task_objects_disowning = TRUE; |
| 8537 | |
| 8538 | for (object = (vm_object_t) queue_first(&task->task_objq); |
| 8539 | !queue_end(&task->task_objq, (queue_entry_t) object); |
| 8540 | object = next_object) { |
| 8541 | if (task->task_nonvolatile_objects == 0 && |
| 8542 | task->task_volatile_objects == 0 && |
| 8543 | task->task_owned_objects == 0) { |
| 8544 | /* no more objects owned by "task" */ |
| 8545 | break; |
| 8546 | } |
| 8547 | |
| 8548 | next_object = (vm_object_t) queue_next(&object->task_objq); |
| 8549 | |
| 8550 | #if DEBUG |
| 8551 | assert(object->vo_purgeable_volatilizer == NULL); |
| 8552 | #endif /* DEBUG */ |
| 8553 | assert(object->vo_owner == task); |
| 8554 | if (!vm_object_lock_try(object)) { |
| 8555 | task_objq_unlock(task); |
| 8556 | mutex_pause(collisions++); |
| 8557 | goto again; |
| 8558 | } |
| 8559 | /* transfer ownership to the kernel */ |
| 8560 | assert(VM_OBJECT_OWNER(object) != kernel_task); |
| 8561 | kr = vm_object_ownership_change( |
| 8562 | object, |
| 8563 | new_ledger_tag: object->vo_ledger_tag, /* unchanged */ |
| 8564 | VM_OBJECT_OWNER_DISOWNED, /* new owner */ |
| 8565 | new_ledger_flags: 0, /* new_ledger_flags */ |
| 8566 | TRUE); /* old_owner->task_objq locked */ |
| 8567 | assert(kr == KERN_SUCCESS); |
| 8568 | assert(object->vo_owner == VM_OBJECT_OWNER_DISOWNED); |
| 8569 | vm_object_unlock(object); |
| 8570 | } |
| 8571 | |
| 8572 | if (__improbable(task->task_owned_objects != 0)) { |
| 8573 | panic("%s(%p): volatile=%d nonvolatile=%d owned=%d q=%p q_first=%p q_last=%p" , |
| 8574 | __FUNCTION__, |
| 8575 | task, |
| 8576 | task->task_volatile_objects, |
| 8577 | task->task_nonvolatile_objects, |
| 8578 | task->task_owned_objects, |
| 8579 | &task->task_objq, |
| 8580 | queue_first(&task->task_objq), |
| 8581 | queue_last(&task->task_objq)); |
| 8582 | } |
| 8583 | |
| 8584 | /* there shouldn't be any objects owned by task now */ |
| 8585 | assert(task->task_volatile_objects == 0); |
| 8586 | assert(task->task_nonvolatile_objects == 0); |
| 8587 | assert(task->task_owned_objects == 0); |
| 8588 | assert(task->task_objects_disowning); |
| 8589 | |
| 8590 | /* and we don't need to try and disown again */ |
| 8591 | task->task_objects_disowned = TRUE; |
| 8592 | |
| 8593 | task_objq_unlock(task); |
| 8594 | } |
| 8595 | |