| 1 | /* |
| 2 | * Copyright (c) 2000-2020 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
| 5 | * |
| 6 | * This file contains Original Code and/or Modifications of Original Code |
| 7 | * as defined in and that are subject to the Apple Public Source License |
| 8 | * Version 2.0 (the 'License'). You may not use this file except in |
| 9 | * compliance with the License. The rights granted to you under the License |
| 10 | * may not be used to create, or enable the creation or redistribution of, |
| 11 | * unlawful or unlicensed copies of an Apple operating system, or to |
| 12 | * circumvent, violate, or enable the circumvention or violation of, any |
| 13 | * terms of an Apple operating system software license agreement. |
| 14 | * |
| 15 | * Please obtain a copy of the License at |
| 16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
| 17 | * |
| 18 | * The Original Code and all software distributed under the License are |
| 19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| 23 | * Please see the License for the specific language governing rights and |
| 24 | * limitations under the License. |
| 25 | * |
| 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
| 27 | */ |
| 28 | /* |
| 29 | * @OSF_COPYRIGHT@ |
| 30 | */ |
| 31 | /* |
| 32 | * Mach Operating System |
| 33 | * Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University |
| 34 | * All Rights Reserved. |
| 35 | * |
| 36 | * Permission to use, copy, modify and distribute this software and its |
| 37 | * documentation is hereby granted, provided that both the copyright |
| 38 | * notice and this permission notice appear in all copies of the |
| 39 | * software, derivative works or modified versions, and any portions |
| 40 | * thereof, and that both notices appear in supporting documentation. |
| 41 | * |
| 42 | * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" |
| 43 | * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR |
| 44 | * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. |
| 45 | * |
| 46 | * Carnegie Mellon requests users of this software to return to |
| 47 | * |
| 48 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU |
| 49 | * School of Computer Science |
| 50 | * Carnegie Mellon University |
| 51 | * Pittsburgh PA 15213-3890 |
| 52 | * |
| 53 | * any improvements or extensions that they make and grant Carnegie Mellon |
| 54 | * the rights to redistribute these changes. |
| 55 | */ |
| 56 | /* |
| 57 | */ |
| 58 | /* |
| 59 | * File: vm/vm_kern.c |
| 60 | * Author: Avadis Tevanian, Jr., Michael Wayne Young |
| 61 | * Date: 1985 |
| 62 | * |
| 63 | * Kernel memory management. |
| 64 | */ |
| 65 | |
| 66 | #include <mach/kern_return.h> |
| 67 | #include <mach/vm_param.h> |
| 68 | #include <kern/assert.h> |
| 69 | #include <kern/thread.h> |
| 70 | #include <vm/vm_kern.h> |
| 71 | #include <vm/vm_map_internal.h> |
| 72 | #include <vm/vm_object.h> |
| 73 | #include <vm/vm_page.h> |
| 74 | #include <vm/vm_compressor.h> |
| 75 | #include <vm/vm_pageout.h> |
| 76 | #include <vm/vm_init.h> |
| 77 | #include <vm/vm_fault.h> |
| 78 | #include <vm/vm_memtag.h> |
| 79 | #include <kern/misc_protos.h> |
| 80 | #include <vm/cpm.h> |
| 81 | #include <kern/ledger.h> |
| 82 | #include <kern/bits.h> |
| 83 | #include <kern/startup.h> |
| 84 | |
| 85 | #include <string.h> |
| 86 | |
| 87 | #include <libkern/OSDebug.h> |
| 88 | #include <libkern/crypto/sha2.h> |
| 89 | #include <libkern/section_keywords.h> |
| 90 | #include <sys/kdebug.h> |
| 91 | #include <sys/kdebug_triage.h> |
| 92 | |
| 93 | #include <san/kasan.h> |
| 94 | #include <kern/kext_alloc.h> |
| 95 | #include <kern/backtrace.h> |
| 96 | #include <os/hash.h> |
| 97 | #include <kern/zalloc_internal.h> |
| 98 | #include <libkern/crypto/rand.h> |
| 99 | |
| 100 | /* |
| 101 | * Variables exported by this module. |
| 102 | */ |
| 103 | |
| 104 | SECURITY_READ_ONLY_LATE(vm_map_t) kernel_map; |
| 105 | SECURITY_READ_ONLY_LATE(struct mach_vm_range) kmem_ranges[KMEM_RANGE_COUNT]; |
| 106 | SECURITY_READ_ONLY_LATE(struct mach_vm_range) kmem_large_ranges[KMEM_RANGE_COUNT]; |
| 107 | |
| 108 | static TUNABLE(uint32_t, kmem_ptr_ranges, "kmem_ptr_ranges" , |
| 109 | KMEM_RANGE_ID_NUM_PTR); |
| 110 | #define KMEM_GOBJ_THRESHOLD (32ULL << 20) |
| 111 | #if DEBUG || DEVELOPMENT |
| 112 | #define KMEM_OUTLIER_LOG_SIZE (16ULL << 10) |
| 113 | #define KMEM_OUTLIER_SIZE 0 |
| 114 | #define KMEM_OUTLIER_ALIGN 1 |
| 115 | btlog_t kmem_outlier_log; |
| 116 | #endif /* DEBUG || DEVELOPMENT */ |
| 117 | |
| 118 | __startup_data static vm_map_size_t data_range_size; |
| 119 | __startup_data static vm_map_size_t ptr_range_size; |
| 120 | __startup_data static vm_map_size_t sprayqtn_range_size; |
| 121 | |
| 122 | #pragma mark helpers |
| 123 | |
| 124 | __attribute__((overloadable)) |
| 125 | __header_always_inline kmem_flags_t |
| 126 | ANYF(kma_flags_t flags) |
| 127 | { |
| 128 | return (kmem_flags_t)flags; |
| 129 | } |
| 130 | |
| 131 | __attribute__((overloadable)) |
| 132 | __header_always_inline kmem_flags_t |
| 133 | ANYF(kmr_flags_t flags) |
| 134 | { |
| 135 | return (kmem_flags_t)flags; |
| 136 | } |
| 137 | |
| 138 | __attribute__((overloadable)) |
| 139 | __header_always_inline kmem_flags_t |
| 140 | ANYF(kmf_flags_t flags) |
| 141 | { |
| 142 | return (kmem_flags_t)flags; |
| 143 | } |
| 144 | |
| 145 | __abortlike |
| 146 | static void |
| 147 | __kmem_invalid_size_panic( |
| 148 | vm_map_t map, |
| 149 | vm_size_t size, |
| 150 | uint32_t flags) |
| 151 | { |
| 152 | panic("kmem(map=%p, flags=0x%x): invalid size %zd" , |
| 153 | map, flags, (size_t)size); |
| 154 | } |
| 155 | |
| 156 | __abortlike |
| 157 | static void |
| 158 | __kmem_invalid_arguments_panic( |
| 159 | const char *what, |
| 160 | vm_map_t map, |
| 161 | vm_address_t address, |
| 162 | vm_size_t size, |
| 163 | uint32_t flags) |
| 164 | { |
| 165 | panic("kmem_%s(map=%p, addr=%p, size=%zd, flags=0x%x): " |
| 166 | "invalid arguments passed" , |
| 167 | what, map, (void *)address, (size_t)size, flags); |
| 168 | } |
| 169 | |
| 170 | __abortlike |
| 171 | static void |
| 172 | __kmem_failed_panic( |
| 173 | vm_map_t map, |
| 174 | vm_size_t size, |
| 175 | uint32_t flags, |
| 176 | kern_return_t kr, |
| 177 | const char *what) |
| 178 | { |
| 179 | panic("kmem_%s(%p, %zd, 0x%x): failed with %d" , |
| 180 | what, map, (size_t)size, flags, kr); |
| 181 | } |
| 182 | |
| 183 | __abortlike |
| 184 | static void |
| 185 | __kmem_entry_not_found_panic( |
| 186 | vm_map_t map, |
| 187 | vm_offset_t addr) |
| 188 | { |
| 189 | panic("kmem(map=%p) no entry found at %p" , map, (void *)addr); |
| 190 | } |
| 191 | |
| 192 | static inline vm_object_t |
| 193 | __kmem_object(kmem_flags_t flags) |
| 194 | { |
| 195 | if (flags & KMEM_COMPRESSOR) { |
| 196 | if (flags & KMEM_KOBJECT) { |
| 197 | panic("both KMEM_KOBJECT and KMEM_COMPRESSOR specified" ); |
| 198 | } |
| 199 | return compressor_object; |
| 200 | } |
| 201 | if (!(flags & KMEM_KOBJECT)) { |
| 202 | panic("KMEM_KOBJECT or KMEM_COMPRESSOR is required" ); |
| 203 | } |
| 204 | return kernel_object_default; |
| 205 | } |
| 206 | |
| 207 | static inline pmap_mapping_type_t |
| 208 | __kmem_mapping_type(kmem_flags_t flags) |
| 209 | { |
| 210 | if (flags & (KMEM_DATA | KMEM_COMPRESSOR)) { |
| 211 | return PMAP_MAPPING_TYPE_DEFAULT; |
| 212 | } else { |
| 213 | return PMAP_MAPPING_TYPE_RESTRICTED; |
| 214 | } |
| 215 | } |
| 216 | |
| 217 | static inline vm_size_t |
| 218 | __kmem_guard_left(kmem_flags_t flags) |
| 219 | { |
| 220 | return (flags & KMEM_GUARD_FIRST) ? PAGE_SIZE : 0; |
| 221 | } |
| 222 | |
| 223 | static inline vm_size_t |
| 224 | __kmem_guard_right(kmem_flags_t flags) |
| 225 | { |
| 226 | return (flags & KMEM_GUARD_LAST) ? PAGE_SIZE : 0; |
| 227 | } |
| 228 | |
| 229 | static inline vm_size_t |
| 230 | __kmem_guard_size(kmem_flags_t flags) |
| 231 | { |
| 232 | return __kmem_guard_left(flags) + __kmem_guard_right(flags); |
| 233 | } |
| 234 | |
| 235 | __pure2 |
| 236 | static inline vm_size_t |
| 237 | __kmem_entry_orig_size(vm_map_entry_t entry) |
| 238 | { |
| 239 | vm_object_t object = VME_OBJECT(entry); |
| 240 | |
| 241 | if (entry->vme_kernel_object) { |
| 242 | return entry->vme_end - entry->vme_start - |
| 243 | entry->vme_object_or_delta; |
| 244 | } else { |
| 245 | return object->vo_size - object->vo_size_delta; |
| 246 | } |
| 247 | } |
| 248 | |
| 249 | |
| 250 | #pragma mark kmem range methods |
| 251 | |
| 252 | #if __arm64__ |
| 253 | // <rdar://problem/48304934> arm64 doesn't use ldp when I'd expect it to |
| 254 | #define mach_vm_range_load(r, r_min, r_max) \ |
| 255 | asm("ldp %[rmin], %[rmax], [%[range]]" \ |
| 256 | : [rmin] "=r"(r_min), [rmax] "=r"(r_max) \ |
| 257 | : [range] "r"(r), "m"((r)->min_address), "m"((r)->max_address)) |
| 258 | #else |
| 259 | #define mach_vm_range_load(r, rmin, rmax) \ |
| 260 | ({ rmin = (r)->min_address; rmax = (r)->max_address; }) |
| 261 | #endif |
| 262 | |
| 263 | __abortlike |
| 264 | static void |
| 265 | __mach_vm_range_overflow( |
| 266 | mach_vm_offset_t addr, |
| 267 | mach_vm_offset_t size) |
| 268 | { |
| 269 | panic("invalid vm range: [0x%llx, 0x%llx + 0x%llx) wraps around" , |
| 270 | addr, addr, size); |
| 271 | } |
| 272 | |
| 273 | __abortlike |
| 274 | static void |
| 275 | __mach_vm_range_invalid( |
| 276 | mach_vm_offset_t min_address, |
| 277 | mach_vm_offset_t max_address) |
| 278 | { |
| 279 | panic("invalid vm range: [0x%llx, 0x%llx) wraps around" , |
| 280 | min_address, max_address); |
| 281 | } |
| 282 | |
| 283 | __header_always_inline mach_vm_size_t |
| 284 | mach_vm_range_size(const struct mach_vm_range *r) |
| 285 | { |
| 286 | mach_vm_offset_t rmin, rmax; |
| 287 | |
| 288 | mach_vm_range_load(r, rmin, rmax); |
| 289 | return rmax - rmin; |
| 290 | } |
| 291 | |
| 292 | __attribute__((overloadable)) |
| 293 | __header_always_inline bool |
| 294 | mach_vm_range_contains(const struct mach_vm_range *r, mach_vm_offset_t addr) |
| 295 | { |
| 296 | mach_vm_offset_t rmin, rmax; |
| 297 | |
| 298 | #if CONFIG_KERNEL_TAGGING |
| 299 | if (VM_KERNEL_ADDRESS(addr)) { |
| 300 | addr = vm_memtag_canonicalize_address(addr); |
| 301 | } |
| 302 | #endif /* CONFIG_KERNEL_TAGGING */ |
| 303 | |
| 304 | /* |
| 305 | * The `&` is not a typo: we really expect the check to pass, |
| 306 | * so encourage the compiler to eagerly load and test without branches |
| 307 | */ |
| 308 | mach_vm_range_load(r, rmin, rmax); |
| 309 | return (addr >= rmin) & (addr < rmax); |
| 310 | } |
| 311 | |
| 312 | __attribute__((overloadable)) |
| 313 | __header_always_inline bool |
| 314 | mach_vm_range_contains( |
| 315 | const struct mach_vm_range *r, |
| 316 | mach_vm_offset_t addr, |
| 317 | mach_vm_offset_t size) |
| 318 | { |
| 319 | mach_vm_offset_t rmin, rmax; |
| 320 | |
| 321 | #if CONFIG_KERNEL_TAGGING |
| 322 | if (VM_KERNEL_ADDRESS(addr)) { |
| 323 | addr = vm_memtag_canonicalize_address(addr); |
| 324 | } |
| 325 | #endif /* CONFIG_KERNEL_TAGGING */ |
| 326 | |
| 327 | /* |
| 328 | * The `&` is not a typo: we really expect the check to pass, |
| 329 | * so encourage the compiler to eagerly load and test without branches |
| 330 | */ |
| 331 | mach_vm_range_load(r, rmin, rmax); |
| 332 | return (addr >= rmin) & (addr + size >= rmin) & (addr + size <= rmax); |
| 333 | } |
| 334 | |
| 335 | __attribute__((overloadable)) |
| 336 | __header_always_inline bool |
| 337 | mach_vm_range_intersects( |
| 338 | const struct mach_vm_range *r1, |
| 339 | const struct mach_vm_range *r2) |
| 340 | { |
| 341 | mach_vm_offset_t r1_min, r1_max; |
| 342 | mach_vm_offset_t r2_min, r2_max; |
| 343 | |
| 344 | mach_vm_range_load(r1, r1_min, r1_max); |
| 345 | r2_min = r2->min_address; |
| 346 | r2_max = r2->max_address; |
| 347 | |
| 348 | if (r1_min > r1_max) { |
| 349 | __mach_vm_range_invalid(min_address: r1_min, max_address: r1_max); |
| 350 | } |
| 351 | |
| 352 | if (r2_min > r2_max) { |
| 353 | __mach_vm_range_invalid(min_address: r2_min, max_address: r2_max); |
| 354 | } |
| 355 | |
| 356 | return r1_max > r2_min && r1_min < r2_max; |
| 357 | } |
| 358 | |
| 359 | __attribute__((overloadable)) |
| 360 | __header_always_inline bool |
| 361 | mach_vm_range_intersects( |
| 362 | const struct mach_vm_range *r1, |
| 363 | mach_vm_offset_t addr, |
| 364 | mach_vm_offset_t size) |
| 365 | { |
| 366 | struct mach_vm_range r2; |
| 367 | |
| 368 | addr = VM_KERNEL_STRIP_UPTR(addr); |
| 369 | r2.min_address = addr; |
| 370 | if (os_add_overflow(addr, size, &r2.max_address)) { |
| 371 | __mach_vm_range_overflow(addr, size); |
| 372 | } |
| 373 | |
| 374 | return mach_vm_range_intersects(r1, r2: &r2); |
| 375 | } |
| 376 | |
| 377 | bool |
| 378 | kmem_range_id_contains( |
| 379 | kmem_range_id_t range_id, |
| 380 | vm_map_offset_t addr, |
| 381 | vm_map_size_t size) |
| 382 | { |
| 383 | return mach_vm_range_contains(r: &kmem_ranges[range_id], addr, size); |
| 384 | } |
| 385 | |
| 386 | __abortlike |
| 387 | static void |
| 388 | kmem_range_invalid_panic( |
| 389 | kmem_range_id_t range_id, |
| 390 | vm_map_offset_t addr, |
| 391 | vm_map_size_t size) |
| 392 | { |
| 393 | const struct mach_vm_range *r = &kmem_ranges[range_id]; |
| 394 | mach_vm_offset_t rmin, rmax; |
| 395 | |
| 396 | mach_vm_range_load(r, rmin, rmax); |
| 397 | if (addr + size < rmin) { |
| 398 | panic("addr %p + size %llu overflows %p" , (void *)addr, size, |
| 399 | (void *)(addr + size)); |
| 400 | } |
| 401 | panic("addr %p + size %llu doesnt fit in one range (id: %u min: %p max: %p)" , |
| 402 | (void *)addr, size, range_id, (void *)rmin, (void *)rmax); |
| 403 | } |
| 404 | |
| 405 | /* |
| 406 | * Return whether the entire allocation is contained in the given range |
| 407 | */ |
| 408 | static bool |
| 409 | kmem_range_contains_fully( |
| 410 | kmem_range_id_t range_id, |
| 411 | vm_map_offset_t addr, |
| 412 | vm_map_size_t size) |
| 413 | { |
| 414 | const struct mach_vm_range *r = &kmem_ranges[range_id]; |
| 415 | mach_vm_offset_t rmin, rmax; |
| 416 | bool result = false; |
| 417 | |
| 418 | if (VM_KERNEL_ADDRESS(addr)) { |
| 419 | addr = vm_memtag_canonicalize_address(addr); |
| 420 | } |
| 421 | |
| 422 | /* |
| 423 | * The `&` is not a typo: we really expect the check to pass, |
| 424 | * so encourage the compiler to eagerly load and test without branches |
| 425 | */ |
| 426 | mach_vm_range_load(r, rmin, rmax); |
| 427 | result = (addr >= rmin) & (addr < rmax); |
| 428 | if (__improbable(result |
| 429 | && ((addr + size < rmin) || (addr + size > rmax)))) { |
| 430 | kmem_range_invalid_panic(range_id, addr, size); |
| 431 | } |
| 432 | return result; |
| 433 | } |
| 434 | |
| 435 | vm_map_size_t |
| 436 | kmem_range_id_size(kmem_range_id_t range_id) |
| 437 | { |
| 438 | return mach_vm_range_size(r: &kmem_ranges[range_id]); |
| 439 | } |
| 440 | |
| 441 | kmem_range_id_t |
| 442 | kmem_addr_get_range(vm_map_offset_t addr, vm_map_size_t size) |
| 443 | { |
| 444 | kmem_range_id_t range_id = KMEM_RANGE_ID_FIRST; |
| 445 | |
| 446 | for (; range_id < KMEM_RANGE_COUNT; range_id++) { |
| 447 | if (kmem_range_contains_fully(range_id, addr, size)) { |
| 448 | return range_id; |
| 449 | } |
| 450 | } |
| 451 | return KMEM_RANGE_ID_NONE; |
| 452 | } |
| 453 | |
| 454 | bool |
| 455 | kmem_is_ptr_range(vm_map_range_id_t range_id) |
| 456 | { |
| 457 | return (range_id >= KMEM_RANGE_ID_FIRST) && |
| 458 | (range_id <= KMEM_RANGE_ID_NUM_PTR); |
| 459 | } |
| 460 | |
| 461 | __abortlike |
| 462 | static void |
| 463 | kmem_range_invalid_for_overwrite(vm_map_offset_t addr) |
| 464 | { |
| 465 | panic("Can't overwrite mappings (addr: %p) in kmem ptr ranges" , |
| 466 | (void *)addr); |
| 467 | } |
| 468 | |
| 469 | mach_vm_range_t |
| 470 | kmem_validate_range_for_overwrite( |
| 471 | vm_map_offset_t addr, |
| 472 | vm_map_size_t size) |
| 473 | { |
| 474 | vm_map_range_id_t range_id = kmem_addr_get_range(addr, size); |
| 475 | |
| 476 | if (kmem_is_ptr_range(range_id)) { |
| 477 | kmem_range_invalid_for_overwrite(addr); |
| 478 | } |
| 479 | |
| 480 | return &kmem_ranges[range_id]; |
| 481 | } |
| 482 | |
| 483 | |
| 484 | #pragma mark entry parameters |
| 485 | |
| 486 | |
| 487 | __abortlike |
| 488 | static void |
| 489 | __kmem_entry_validate_panic( |
| 490 | vm_map_t map, |
| 491 | vm_map_entry_t entry, |
| 492 | vm_offset_t addr, |
| 493 | vm_size_t size, |
| 494 | uint32_t flags, |
| 495 | kmem_guard_t guard) |
| 496 | { |
| 497 | const char *what = "???" ; |
| 498 | |
| 499 | if (entry->vme_atomic != guard.kmg_atomic) { |
| 500 | what = "atomicity" ; |
| 501 | } else if (entry->is_sub_map != guard.kmg_submap) { |
| 502 | what = "objectness" ; |
| 503 | } else if (addr != entry->vme_start) { |
| 504 | what = "left bound" ; |
| 505 | } else if ((flags & KMF_GUESS_SIZE) == 0 && addr + size != entry->vme_end) { |
| 506 | what = "right bound" ; |
| 507 | } else if (guard.kmg_context != entry->vme_context) { |
| 508 | what = "guard" ; |
| 509 | } |
| 510 | |
| 511 | panic("kmem(map=%p, addr=%p, size=%zd, flags=0x%x): " |
| 512 | "entry:%p %s mismatch guard(0x%08x)" , |
| 513 | map, (void *)addr, size, flags, entry, |
| 514 | what, guard.kmg_context); |
| 515 | } |
| 516 | |
| 517 | static bool |
| 518 | __kmem_entry_validate_guard( |
| 519 | vm_map_entry_t entry, |
| 520 | vm_offset_t addr, |
| 521 | vm_size_t size, |
| 522 | kmem_flags_t flags, |
| 523 | kmem_guard_t guard) |
| 524 | { |
| 525 | if (entry->vme_atomic != guard.kmg_atomic) { |
| 526 | return false; |
| 527 | } |
| 528 | |
| 529 | if (!guard.kmg_atomic) { |
| 530 | return true; |
| 531 | } |
| 532 | |
| 533 | if (entry->is_sub_map != guard.kmg_submap) { |
| 534 | return false; |
| 535 | } |
| 536 | |
| 537 | if (addr != entry->vme_start) { |
| 538 | return false; |
| 539 | } |
| 540 | |
| 541 | if ((flags & KMEM_GUESS_SIZE) == 0 && addr + size != entry->vme_end) { |
| 542 | return false; |
| 543 | } |
| 544 | |
| 545 | if (!guard.kmg_submap && guard.kmg_context != entry->vme_context) { |
| 546 | return false; |
| 547 | } |
| 548 | |
| 549 | return true; |
| 550 | } |
| 551 | |
| 552 | void |
| 553 | kmem_entry_validate_guard( |
| 554 | vm_map_t map, |
| 555 | vm_map_entry_t entry, |
| 556 | vm_offset_t addr, |
| 557 | vm_size_t size, |
| 558 | kmem_guard_t guard) |
| 559 | { |
| 560 | if (!__kmem_entry_validate_guard(entry, addr, size, flags: KMEM_NONE, guard)) { |
| 561 | __kmem_entry_validate_panic(map, entry, addr, size, flags: KMEM_NONE, guard); |
| 562 | } |
| 563 | } |
| 564 | |
| 565 | __abortlike |
| 566 | static void |
| 567 | __kmem_entry_validate_object_panic( |
| 568 | vm_map_t map, |
| 569 | vm_map_entry_t entry, |
| 570 | kmem_flags_t flags) |
| 571 | { |
| 572 | const char *what; |
| 573 | const char *verb; |
| 574 | |
| 575 | if (entry->is_sub_map) { |
| 576 | panic("kmem(map=%p) entry %p is a submap" , map, entry); |
| 577 | } |
| 578 | |
| 579 | if (flags & KMEM_KOBJECT) { |
| 580 | what = "kernel" ; |
| 581 | verb = "isn't" ; |
| 582 | } else if (flags & KMEM_COMPRESSOR) { |
| 583 | what = "compressor" ; |
| 584 | verb = "isn't" ; |
| 585 | } else if (entry->vme_kernel_object) { |
| 586 | what = "kernel" ; |
| 587 | verb = "is unexpectedly" ; |
| 588 | } else { |
| 589 | what = "compressor" ; |
| 590 | verb = "is unexpectedly" ; |
| 591 | } |
| 592 | |
| 593 | panic("kmem(map=%p, flags=0x%x): entry %p %s for the %s object" , |
| 594 | map, flags, entry, verb, what); |
| 595 | } |
| 596 | |
| 597 | static bool |
| 598 | __kmem_entry_validate_object( |
| 599 | vm_map_entry_t entry, |
| 600 | kmem_flags_t flags) |
| 601 | { |
| 602 | if (entry->is_sub_map) { |
| 603 | return false; |
| 604 | } |
| 605 | if ((bool)(flags & KMEM_KOBJECT) != entry->vme_kernel_object) { |
| 606 | return false; |
| 607 | } |
| 608 | |
| 609 | return (bool)(flags & KMEM_COMPRESSOR) == |
| 610 | (VME_OBJECT(entry) == compressor_object); |
| 611 | } |
| 612 | |
| 613 | vm_size_t |
| 614 | kmem_size_guard( |
| 615 | vm_map_t map, |
| 616 | vm_offset_t addr, |
| 617 | kmem_guard_t guard) |
| 618 | { |
| 619 | kmem_flags_t flags = KMEM_GUESS_SIZE; |
| 620 | vm_map_entry_t entry; |
| 621 | vm_size_t size; |
| 622 | |
| 623 | vm_map_lock_read(map); |
| 624 | |
| 625 | #if KASAN_CLASSIC |
| 626 | addr -= PAGE_SIZE; |
| 627 | #endif /* KASAN_CLASSIC */ |
| 628 | addr = vm_memtag_canonicalize_address(addr); |
| 629 | |
| 630 | if (!vm_map_lookup_entry(map, address: addr, entry: &entry)) { |
| 631 | __kmem_entry_not_found_panic(map, addr); |
| 632 | } |
| 633 | |
| 634 | if (!__kmem_entry_validate_guard(entry, addr, size: 0, flags, guard)) { |
| 635 | __kmem_entry_validate_panic(map, entry, addr, size: 0, flags, guard); |
| 636 | } |
| 637 | |
| 638 | size = __kmem_entry_orig_size(entry); |
| 639 | |
| 640 | vm_map_unlock_read(map); |
| 641 | |
| 642 | return size; |
| 643 | } |
| 644 | |
| 645 | static inline uint16_t |
| 646 | kmem_hash_backtrace( |
| 647 | void *fp) |
| 648 | { |
| 649 | uint64_t bt_count; |
| 650 | uintptr_t bt[8] = {}; |
| 651 | |
| 652 | struct backtrace_control ctl = { |
| 653 | .btc_frame_addr = (uintptr_t)fp, |
| 654 | }; |
| 655 | |
| 656 | bt_count = backtrace(bt, btlen: sizeof(bt) / sizeof(bt[0]), ctl: &ctl, NULL); |
| 657 | return (uint16_t) os_hash_jenkins(data: bt, length: bt_count * sizeof(bt[0])); |
| 658 | } |
| 659 | |
| 660 | static_assert(KMEM_RANGE_ID_DATA - 1 <= KMEM_RANGE_MASK, |
| 661 | "Insufficient bits to represent ptr ranges" ); |
| 662 | |
| 663 | kmem_range_id_t |
| 664 | kmem_adjust_range_id( |
| 665 | uint32_t hash) |
| 666 | { |
| 667 | return (kmem_range_id_t) (KMEM_RANGE_ID_PTR_0 + |
| 668 | (hash & KMEM_RANGE_MASK) % kmem_ptr_ranges); |
| 669 | } |
| 670 | |
| 671 | static bool |
| 672 | kmem_use_sprayqtn( |
| 673 | kma_flags_t kma_flags, |
| 674 | vm_map_size_t map_size, |
| 675 | vm_offset_t mask) |
| 676 | { |
| 677 | /* |
| 678 | * Pointer allocations that are above the guard objects threshold or have |
| 679 | * leading guard pages with non standard alignment requests are redirected |
| 680 | * to the sprayqtn range. |
| 681 | */ |
| 682 | #if DEBUG || DEVELOPMENT |
| 683 | btref_get_flags_t flags = (kma_flags & KMA_NOPAGEWAIT) ? |
| 684 | BTREF_GET_NOWAIT : 0; |
| 685 | |
| 686 | if ((kma_flags & KMA_SPRAYQTN) == 0) { |
| 687 | if (map_size > KMEM_GOBJ_THRESHOLD) { |
| 688 | btlog_record(kmem_outlier_log, (void *)map_size, KMEM_OUTLIER_SIZE, |
| 689 | btref_get(__builtin_frame_address(0), flags)); |
| 690 | } else if ((kma_flags & KMA_GUARD_FIRST) && (mask > PAGE_MASK)) { |
| 691 | btlog_record(kmem_outlier_log, (void *)mask, KMEM_OUTLIER_ALIGN, |
| 692 | btref_get(__builtin_frame_address(0), flags)); |
| 693 | } |
| 694 | } |
| 695 | #endif /* DEBUG || DEVELOPMENT */ |
| 696 | |
| 697 | return (kma_flags & KMA_SPRAYQTN) || |
| 698 | (map_size > KMEM_GOBJ_THRESHOLD) || |
| 699 | ((kma_flags & KMA_GUARD_FIRST) && (mask > PAGE_MASK)); |
| 700 | } |
| 701 | |
| 702 | static void |
| 703 | kmem_apply_security_policy( |
| 704 | vm_map_t map, |
| 705 | kma_flags_t kma_flags, |
| 706 | kmem_guard_t guard, |
| 707 | vm_map_size_t map_size, |
| 708 | vm_offset_t mask, |
| 709 | vm_map_kernel_flags_t *vmk_flags, |
| 710 | bool assert_dir __unused) |
| 711 | { |
| 712 | kmem_range_id_t range_id; |
| 713 | bool from_right; |
| 714 | uint16_t type_hash = guard.kmg_type_hash; |
| 715 | |
| 716 | if (startup_phase < STARTUP_SUB_KMEM || map != kernel_map) { |
| 717 | return; |
| 718 | } |
| 719 | |
| 720 | /* |
| 721 | * A non-zero type-hash must be passed by krealloc_type |
| 722 | */ |
| 723 | #if (DEBUG || DEVELOPMENT) |
| 724 | if (assert_dir && !(kma_flags & KMA_DATA)) { |
| 725 | assert(type_hash != 0); |
| 726 | } |
| 727 | #endif |
| 728 | |
| 729 | if (kma_flags & KMA_DATA) { |
| 730 | range_id = KMEM_RANGE_ID_DATA; |
| 731 | /* |
| 732 | * As an optimization in KMA_DATA to avoid fragmentation, |
| 733 | * allocate static carveouts at the end of the DATA range. |
| 734 | */ |
| 735 | from_right = (bool)(kma_flags & KMA_PERMANENT); |
| 736 | } else if (kmem_use_sprayqtn(kma_flags, map_size, mask)) { |
| 737 | range_id = KMEM_RANGE_ID_SPRAYQTN; |
| 738 | from_right = (bool)(kma_flags & KMA_PERMANENT); |
| 739 | } else if (type_hash) { |
| 740 | range_id = (kmem_range_id_t)(type_hash & KMEM_RANGE_MASK); |
| 741 | from_right = type_hash & KMEM_DIRECTION_MASK; |
| 742 | } else { |
| 743 | /* |
| 744 | * Range id needs to correspond to one of the PTR ranges |
| 745 | */ |
| 746 | type_hash = (uint16_t) kmem_hash_backtrace(fp: __builtin_frame_address(0)); |
| 747 | range_id = kmem_adjust_range_id(hash: type_hash); |
| 748 | from_right = type_hash & KMEM_DIRECTION_MASK; |
| 749 | } |
| 750 | |
| 751 | vmk_flags->vmkf_range_id = range_id; |
| 752 | vmk_flags->vmkf_last_free = from_right; |
| 753 | } |
| 754 | |
| 755 | #pragma mark allocation |
| 756 | |
| 757 | static kmem_return_t |
| 758 | kmem_alloc_guard_internal( |
| 759 | vm_map_t map, |
| 760 | vm_size_t size, |
| 761 | vm_offset_t mask, |
| 762 | kma_flags_t flags, |
| 763 | kmem_guard_t guard, |
| 764 | kern_return_t (^alloc_pages)(vm_size_t, kma_flags_t, vm_page_t *)) |
| 765 | { |
| 766 | vm_object_t object; |
| 767 | vm_offset_t delta = 0; |
| 768 | vm_map_entry_t entry = NULL; |
| 769 | vm_map_offset_t map_addr, fill_start; |
| 770 | vm_map_size_t map_size, fill_size; |
| 771 | vm_page_t guard_left = VM_PAGE_NULL; |
| 772 | vm_page_t guard_right = VM_PAGE_NULL; |
| 773 | vm_page_t wired_page_list = VM_PAGE_NULL; |
| 774 | vm_map_kernel_flags_t vmk_flags = VM_MAP_KERNEL_FLAGS_ANYWHERE(); |
| 775 | bool skip_guards; |
| 776 | kmem_return_t kmr = { }; |
| 777 | |
| 778 | assert(kernel_map && map->pmap == kernel_pmap); |
| 779 | |
| 780 | #if DEBUG || DEVELOPMENT |
| 781 | VM_DEBUG_CONSTANT_EVENT(vm_kern_request, VM_KERN_REQUEST, DBG_FUNC_START, |
| 782 | size, 0, 0, 0); |
| 783 | #endif |
| 784 | |
| 785 | if (size == 0 || |
| 786 | (size >> VM_KERNEL_POINTER_SIGNIFICANT_BITS) || |
| 787 | (size < __kmem_guard_size(flags: ANYF(flags)))) { |
| 788 | __kmem_invalid_size_panic(map, size, flags); |
| 789 | } |
| 790 | |
| 791 | /* |
| 792 | * limit the size of a single extent of wired memory |
| 793 | * to try and limit the damage to the system if |
| 794 | * too many pages get wired down |
| 795 | * limit raised to 2GB with 128GB max physical limit, |
| 796 | * but scaled by installed memory above this |
| 797 | * |
| 798 | * Note: kmem_alloc_contig_guard() is immune to this check. |
| 799 | */ |
| 800 | if (__improbable(!(flags & (KMA_VAONLY | KMA_PAGEABLE)) && |
| 801 | alloc_pages == NULL && |
| 802 | size > MAX(1ULL << 31, sane_size / 64))) { |
| 803 | kmr.kmr_return = KERN_RESOURCE_SHORTAGE; |
| 804 | goto out_error; |
| 805 | } |
| 806 | |
| 807 | /* |
| 808 | * Guard pages: |
| 809 | * |
| 810 | * Guard pages are implemented as fictitious pages. |
| 811 | * |
| 812 | * However, some maps, and some objects are known |
| 813 | * to manage their memory explicitly, and do not need |
| 814 | * those to be materialized, which saves memory. |
| 815 | * |
| 816 | * By placing guard pages on either end of a stack, |
| 817 | * they can help detect cases where a thread walks |
| 818 | * off either end of its stack. |
| 819 | * |
| 820 | * They are allocated and set up here and attempts |
| 821 | * to access those pages are trapped in vm_fault_page(). |
| 822 | * |
| 823 | * The map_size we were passed may include extra space for |
| 824 | * guard pages. fill_size represents the actual size to populate. |
| 825 | * Similarly, fill_start indicates where the actual pages |
| 826 | * will begin in the range. |
| 827 | */ |
| 828 | |
| 829 | map_size = round_page(x: size); |
| 830 | fill_start = 0; |
| 831 | fill_size = map_size - __kmem_guard_size(flags: ANYF(flags)); |
| 832 | |
| 833 | #if KASAN_CLASSIC |
| 834 | if (flags & KMA_KASAN_GUARD) { |
| 835 | assert((flags & (KMA_GUARD_FIRST | KMA_GUARD_LAST)) == 0); |
| 836 | flags |= KMA_GUARD_FIRST | KMEM_GUARD_LAST; |
| 837 | delta = ptoa(2); |
| 838 | map_size += delta; |
| 839 | } |
| 840 | #else |
| 841 | (void)delta; |
| 842 | #endif /* KASAN_CLASSIC */ |
| 843 | |
| 844 | skip_guards = (flags & (KMA_KOBJECT | KMA_COMPRESSOR)) || |
| 845 | map->never_faults; |
| 846 | |
| 847 | if (flags & KMA_GUARD_FIRST) { |
| 848 | vmk_flags.vmkf_guard_before = true; |
| 849 | fill_start += PAGE_SIZE; |
| 850 | } |
| 851 | if ((flags & KMA_GUARD_FIRST) && !skip_guards) { |
| 852 | guard_left = vm_page_grab_guard(canwait: (flags & KMA_NOPAGEWAIT) == 0); |
| 853 | if (__improbable(guard_left == VM_PAGE_NULL)) { |
| 854 | kmr.kmr_return = KERN_RESOURCE_SHORTAGE; |
| 855 | goto out_error; |
| 856 | } |
| 857 | } |
| 858 | if ((flags & KMA_GUARD_LAST) && !skip_guards) { |
| 859 | guard_right = vm_page_grab_guard(canwait: (flags & KMA_NOPAGEWAIT) == 0); |
| 860 | if (__improbable(guard_right == VM_PAGE_NULL)) { |
| 861 | kmr.kmr_return = KERN_RESOURCE_SHORTAGE; |
| 862 | goto out_error; |
| 863 | } |
| 864 | } |
| 865 | |
| 866 | if (!(flags & (KMA_VAONLY | KMA_PAGEABLE))) { |
| 867 | if (alloc_pages) { |
| 868 | kmr.kmr_return = alloc_pages(fill_size, flags, |
| 869 | &wired_page_list); |
| 870 | } else { |
| 871 | kmr.kmr_return = vm_page_alloc_list(atop(fill_size), flags, |
| 872 | list: &wired_page_list); |
| 873 | } |
| 874 | if (__improbable(kmr.kmr_return != KERN_SUCCESS)) { |
| 875 | goto out_error; |
| 876 | } |
| 877 | } |
| 878 | |
| 879 | /* |
| 880 | * Allocate a new object (if necessary). We must do this before |
| 881 | * locking the map, or risk deadlock with the default pager. |
| 882 | */ |
| 883 | if (flags & KMA_KOBJECT) { |
| 884 | object = kernel_object_default; |
| 885 | vm_object_reference(object); |
| 886 | } else if (flags & KMA_COMPRESSOR) { |
| 887 | object = compressor_object; |
| 888 | vm_object_reference(object); |
| 889 | } else { |
| 890 | object = vm_object_allocate(size: map_size); |
| 891 | vm_object_lock(object); |
| 892 | vm_object_set_size(object, outer_size: map_size, inner_size: size); |
| 893 | /* stabilize the object to prevent shadowing */ |
| 894 | object->copy_strategy = MEMORY_OBJECT_COPY_DELAY; |
| 895 | VM_OBJECT_SET_TRUE_SHARE(object, TRUE); |
| 896 | vm_object_unlock(object); |
| 897 | } |
| 898 | |
| 899 | if (flags & KMA_LAST_FREE) { |
| 900 | vmk_flags.vmkf_last_free = true; |
| 901 | } |
| 902 | if (flags & KMA_PERMANENT) { |
| 903 | vmk_flags.vmf_permanent = true; |
| 904 | } |
| 905 | kmem_apply_security_policy(map, kma_flags: flags, guard, map_size, mask, vmk_flags: &vmk_flags, |
| 906 | false); |
| 907 | |
| 908 | kmr.kmr_return = vm_map_find_space(map, hint_addr: 0, size: map_size, mask, |
| 909 | vmk_flags, o_entry: &entry); |
| 910 | if (__improbable(KERN_SUCCESS != kmr.kmr_return)) { |
| 911 | vm_object_deallocate(object); |
| 912 | goto out_error; |
| 913 | } |
| 914 | |
| 915 | map_addr = entry->vme_start; |
| 916 | VME_OBJECT_SET(entry, object, atomic: guard.kmg_atomic, context: guard.kmg_context); |
| 917 | VME_ALIAS_SET(entry, alias: guard.kmg_tag); |
| 918 | if (flags & (KMA_KOBJECT | KMA_COMPRESSOR)) { |
| 919 | VME_OFFSET_SET(entry, offset: map_addr); |
| 920 | } |
| 921 | |
| 922 | #if KASAN |
| 923 | if ((flags & KMA_KOBJECT) && guard.kmg_atomic) { |
| 924 | entry->vme_object_or_delta = (-size & PAGE_MASK) + delta; |
| 925 | } |
| 926 | #endif /* KASAN */ |
| 927 | |
| 928 | if (!(flags & (KMA_COMPRESSOR | KMA_PAGEABLE))) { |
| 929 | entry->wired_count = 1; |
| 930 | vme_btref_consider_and_set(entry, fp: __builtin_frame_address(0)); |
| 931 | } |
| 932 | |
| 933 | if (guard_left || guard_right || wired_page_list) { |
| 934 | vm_object_offset_t offset = 0ull; |
| 935 | |
| 936 | vm_object_lock(object); |
| 937 | vm_map_unlock(map); |
| 938 | |
| 939 | if (flags & (KMA_KOBJECT | KMA_COMPRESSOR)) { |
| 940 | offset = map_addr; |
| 941 | } |
| 942 | |
| 943 | if (guard_left) { |
| 944 | vm_page_insert(page: guard_left, object, offset); |
| 945 | guard_left->vmp_busy = FALSE; |
| 946 | guard_left = VM_PAGE_NULL; |
| 947 | } |
| 948 | |
| 949 | if (guard_right) { |
| 950 | vm_page_insert(page: guard_right, object, |
| 951 | offset: offset + fill_start + fill_size); |
| 952 | guard_right->vmp_busy = FALSE; |
| 953 | guard_right = VM_PAGE_NULL; |
| 954 | } |
| 955 | |
| 956 | if (wired_page_list) { |
| 957 | kernel_memory_populate_object_and_unlock(object, |
| 958 | addr: map_addr + fill_start, offset: offset + fill_start, size: fill_size, |
| 959 | page_list: wired_page_list, flags, tag: guard.kmg_tag, VM_PROT_DEFAULT, |
| 960 | mapping_type: __kmem_mapping_type(flags: ANYF(flags))); |
| 961 | } else { |
| 962 | vm_object_unlock(object); |
| 963 | } |
| 964 | } else { |
| 965 | vm_map_unlock(map); |
| 966 | } |
| 967 | |
| 968 | /* |
| 969 | * now that the pages are wired, we no longer have to fear coalesce |
| 970 | */ |
| 971 | if (flags & (KMA_KOBJECT | KMA_COMPRESSOR)) { |
| 972 | vm_map_simplify(map, start: map_addr); |
| 973 | } |
| 974 | |
| 975 | #if DEBUG || DEVELOPMENT |
| 976 | VM_DEBUG_CONSTANT_EVENT(vm_kern_request, VM_KERN_REQUEST, DBG_FUNC_END, |
| 977 | atop(fill_size), 0, 0, 0); |
| 978 | #endif /* DEBUG || DEVELOPMENT */ |
| 979 | kmr.kmr_address = CAST_DOWN(vm_offset_t, map_addr); |
| 980 | |
| 981 | #if KASAN |
| 982 | if (flags & (KMA_KASAN_GUARD | KMA_PAGEABLE)) { |
| 983 | /* |
| 984 | * We need to allow the range for pageable memory, |
| 985 | * or faulting will not be allowed. |
| 986 | */ |
| 987 | kasan_notify_address(map_addr, map_size); |
| 988 | } |
| 989 | #endif /* KASAN */ |
| 990 | #if KASAN_CLASSIC |
| 991 | if (flags & KMA_KASAN_GUARD) { |
| 992 | kmr.kmr_address += PAGE_SIZE; |
| 993 | kasan_alloc_large(kmr.kmr_address, size); |
| 994 | } |
| 995 | #endif /* KASAN_CLASSIC */ |
| 996 | #if CONFIG_KERNEL_TAGGING |
| 997 | if (!(flags & KMA_VAONLY) && (flags & KMA_TAG)) { |
| 998 | kmr.kmr_address = vm_memtag_assign_tag(kmr.kmr_address, size); |
| 999 | vm_memtag_set_tag((vm_offset_t)kmr.kmr_address, size); |
| 1000 | #if KASAN_TBI |
| 1001 | kasan_tbi_retag_unused_space((vm_offset_t)kmr.kmr_address, map_size, size); |
| 1002 | #endif /* KASAN_TBI */ |
| 1003 | } |
| 1004 | #endif /* CONFIG_KERNEL_TAGGING */ |
| 1005 | return kmr; |
| 1006 | |
| 1007 | out_error: |
| 1008 | if (flags & KMA_NOFAIL) { |
| 1009 | __kmem_failed_panic(map, size, flags, kr: kmr.kmr_return, what: "alloc" ); |
| 1010 | } |
| 1011 | if (guard_left) { |
| 1012 | guard_left->vmp_snext = wired_page_list; |
| 1013 | wired_page_list = guard_left; |
| 1014 | } |
| 1015 | if (guard_right) { |
| 1016 | guard_right->vmp_snext = wired_page_list; |
| 1017 | wired_page_list = guard_right; |
| 1018 | } |
| 1019 | if (wired_page_list) { |
| 1020 | vm_page_free_list(mem: wired_page_list, FALSE); |
| 1021 | } |
| 1022 | |
| 1023 | #if DEBUG || DEVELOPMENT |
| 1024 | VM_DEBUG_CONSTANT_EVENT(vm_kern_request, VM_KERN_REQUEST, DBG_FUNC_END, |
| 1025 | 0, 0, 0, 0); |
| 1026 | #endif /* DEBUG || DEVELOPMENT */ |
| 1027 | |
| 1028 | return kmr; |
| 1029 | } |
| 1030 | |
| 1031 | kmem_return_t |
| 1032 | kmem_alloc_guard( |
| 1033 | vm_map_t map, |
| 1034 | vm_size_t size, |
| 1035 | vm_offset_t mask, |
| 1036 | kma_flags_t flags, |
| 1037 | kmem_guard_t guard) |
| 1038 | { |
| 1039 | return kmem_alloc_guard_internal(map, size, mask, flags, guard, NULL); |
| 1040 | } |
| 1041 | |
| 1042 | kmem_return_t |
| 1043 | kmem_alloc_contig_guard( |
| 1044 | vm_map_t map, |
| 1045 | vm_size_t size, |
| 1046 | vm_offset_t mask, |
| 1047 | ppnum_t max_pnum, |
| 1048 | ppnum_t pnum_mask, |
| 1049 | kma_flags_t flags, |
| 1050 | kmem_guard_t guard) |
| 1051 | { |
| 1052 | __auto_type alloc_pages = ^(vm_size_t fill_size, kma_flags_t kma_flags, vm_page_t *pages) { |
| 1053 | return cpm_allocate(size: fill_size, list: pages, max_pnum, pnum_mask, FALSE, flags: kma_flags); |
| 1054 | }; |
| 1055 | |
| 1056 | return kmem_alloc_guard_internal(map, size, mask, flags, guard, alloc_pages); |
| 1057 | } |
| 1058 | |
| 1059 | kmem_return_t |
| 1060 | kmem_suballoc( |
| 1061 | vm_map_t parent, |
| 1062 | mach_vm_offset_t *addr, |
| 1063 | vm_size_t size, |
| 1064 | vm_map_create_options_t vmc_options, |
| 1065 | int vm_flags, |
| 1066 | kms_flags_t flags, |
| 1067 | vm_tag_t tag) |
| 1068 | { |
| 1069 | vm_map_kernel_flags_t vmk_flags = VM_MAP_KERNEL_FLAGS_NONE; |
| 1070 | vm_map_offset_t map_addr = 0; |
| 1071 | kmem_return_t kmr = { }; |
| 1072 | vm_map_t map; |
| 1073 | |
| 1074 | assert(page_aligned(size)); |
| 1075 | assert(parent->pmap == kernel_pmap); |
| 1076 | |
| 1077 | vm_map_kernel_flags_set_vmflags(vmk_flags: &vmk_flags, vm_flags, vm_tag: tag); |
| 1078 | |
| 1079 | if (parent == kernel_map) { |
| 1080 | assert(vmk_flags.vmf_overwrite || (flags & KMS_DATA)); |
| 1081 | } |
| 1082 | |
| 1083 | if (vmk_flags.vmf_fixed) { |
| 1084 | map_addr = trunc_page(*addr); |
| 1085 | } |
| 1086 | |
| 1087 | pmap_reference(vm_map_pmap(parent)); |
| 1088 | map = vm_map_create_options(vm_map_pmap(parent), min_off: 0, max_off: size, options: vmc_options); |
| 1089 | |
| 1090 | /* |
| 1091 | * 1. vm_map_enter() will consume one ref on success. |
| 1092 | * |
| 1093 | * 2. make the entry atomic as kernel submaps should never be split. |
| 1094 | * |
| 1095 | * 3. instruct vm_map_enter() that it is a fresh submap |
| 1096 | * that needs to be taught its bounds as it inserted. |
| 1097 | */ |
| 1098 | vm_map_reference(map); |
| 1099 | |
| 1100 | vmk_flags.vmkf_submap = true; |
| 1101 | if ((flags & KMS_DATA) == 0) { |
| 1102 | /* FIXME: IOKit submaps get fragmented and can't be atomic */ |
| 1103 | vmk_flags.vmkf_submap_atomic = true; |
| 1104 | } |
| 1105 | vmk_flags.vmkf_submap_adjust = true; |
| 1106 | if (flags & KMS_LAST_FREE) { |
| 1107 | vmk_flags.vmkf_last_free = true; |
| 1108 | } |
| 1109 | if (flags & KMS_PERMANENT) { |
| 1110 | vmk_flags.vmf_permanent = true; |
| 1111 | } |
| 1112 | if (flags & KMS_DATA) { |
| 1113 | vmk_flags.vmkf_range_id = KMEM_RANGE_ID_DATA; |
| 1114 | } |
| 1115 | |
| 1116 | kmr.kmr_return = vm_map_enter(map: parent, address: &map_addr, size, mask: 0, |
| 1117 | vmk_flags, object: (vm_object_t)map, offset: 0, FALSE, |
| 1118 | VM_PROT_DEFAULT, VM_PROT_ALL, VM_INHERIT_DEFAULT); |
| 1119 | |
| 1120 | if (kmr.kmr_return != KERN_SUCCESS) { |
| 1121 | if (flags & KMS_NOFAIL) { |
| 1122 | panic("kmem_suballoc(map=%p, size=%zd) failed with %d" , |
| 1123 | parent, size, kmr.kmr_return); |
| 1124 | } |
| 1125 | assert(os_ref_get_count_raw(&map->map_refcnt) == 2); |
| 1126 | vm_map_deallocate(map); |
| 1127 | vm_map_deallocate(map); /* also removes ref to pmap */ |
| 1128 | return kmr; |
| 1129 | } |
| 1130 | |
| 1131 | /* |
| 1132 | * For kmem_suballocs that register a claim and are assigned a range, ensure |
| 1133 | * that the exact same range is returned. |
| 1134 | */ |
| 1135 | if (*addr != 0 && parent == kernel_map && |
| 1136 | startup_phase > STARTUP_SUB_KMEM) { |
| 1137 | assert(CAST_DOWN(vm_offset_t, map_addr) == *addr); |
| 1138 | } else { |
| 1139 | *addr = map_addr; |
| 1140 | } |
| 1141 | |
| 1142 | kmr.kmr_submap = map; |
| 1143 | return kmr; |
| 1144 | } |
| 1145 | |
| 1146 | /* |
| 1147 | * kmem_alloc: |
| 1148 | * |
| 1149 | * Allocate wired-down memory in the kernel's address map |
| 1150 | * or a submap. The memory is not zero-filled. |
| 1151 | */ |
| 1152 | |
| 1153 | __exported kern_return_t |
| 1154 | kmem_alloc_external( |
| 1155 | vm_map_t map, |
| 1156 | vm_offset_t *addrp, |
| 1157 | vm_size_t size); |
| 1158 | kern_return_t |
| 1159 | kmem_alloc_external( |
| 1160 | vm_map_t map, |
| 1161 | vm_offset_t *addrp, |
| 1162 | vm_size_t size) |
| 1163 | { |
| 1164 | if (size && (size >> VM_KERNEL_POINTER_SIGNIFICANT_BITS) == 0) { |
| 1165 | return kmem_alloc(map, addrp, size, flags: KMA_NONE, tag: vm_tag_bt()); |
| 1166 | } |
| 1167 | /* Maintain ABI compatibility: invalid sizes used to be allowed */ |
| 1168 | return size ? KERN_NO_SPACE: KERN_INVALID_ARGUMENT; |
| 1169 | } |
| 1170 | |
| 1171 | |
| 1172 | /* |
| 1173 | * kmem_alloc_kobject: |
| 1174 | * |
| 1175 | * Allocate wired-down memory in the kernel's address map |
| 1176 | * or a submap. The memory is not zero-filled. |
| 1177 | * |
| 1178 | * The memory is allocated in the kernel_object. |
| 1179 | * It may not be copied with vm_map_copy, and |
| 1180 | * it may not be reallocated with kmem_realloc. |
| 1181 | */ |
| 1182 | |
| 1183 | __exported kern_return_t |
| 1184 | kmem_alloc_kobject_external( |
| 1185 | vm_map_t map, |
| 1186 | vm_offset_t *addrp, |
| 1187 | vm_size_t size); |
| 1188 | kern_return_t |
| 1189 | kmem_alloc_kobject_external( |
| 1190 | vm_map_t map, |
| 1191 | vm_offset_t *addrp, |
| 1192 | vm_size_t size) |
| 1193 | { |
| 1194 | if (size && (size >> VM_KERNEL_POINTER_SIGNIFICANT_BITS) == 0) { |
| 1195 | return kmem_alloc(map, addrp, size, flags: KMA_KOBJECT, tag: vm_tag_bt()); |
| 1196 | } |
| 1197 | /* Maintain ABI compatibility: invalid sizes used to be allowed */ |
| 1198 | return size ? KERN_NO_SPACE: KERN_INVALID_ARGUMENT; |
| 1199 | } |
| 1200 | |
| 1201 | /* |
| 1202 | * kmem_alloc_pageable: |
| 1203 | * |
| 1204 | * Allocate pageable memory in the kernel's address map. |
| 1205 | */ |
| 1206 | |
| 1207 | __exported kern_return_t |
| 1208 | kmem_alloc_pageable_external( |
| 1209 | vm_map_t map, |
| 1210 | vm_offset_t *addrp, |
| 1211 | vm_size_t size); |
| 1212 | kern_return_t |
| 1213 | kmem_alloc_pageable_external( |
| 1214 | vm_map_t map, |
| 1215 | vm_offset_t *addrp, |
| 1216 | vm_size_t size) |
| 1217 | { |
| 1218 | if (size && (size >> VM_KERNEL_POINTER_SIGNIFICANT_BITS) == 0) { |
| 1219 | return kmem_alloc(map, addrp, size, flags: KMA_PAGEABLE | KMA_DATA, tag: vm_tag_bt()); |
| 1220 | } |
| 1221 | /* Maintain ABI compatibility: invalid sizes used to be allowed */ |
| 1222 | return size ? KERN_NO_SPACE: KERN_INVALID_ARGUMENT; |
| 1223 | } |
| 1224 | |
| 1225 | |
| 1226 | #pragma mark population |
| 1227 | |
| 1228 | static void |
| 1229 | kernel_memory_populate_pmap_enter( |
| 1230 | vm_object_t object, |
| 1231 | vm_address_t addr, |
| 1232 | vm_object_offset_t offset, |
| 1233 | vm_page_t mem, |
| 1234 | vm_prot_t prot, |
| 1235 | int pe_flags, |
| 1236 | pmap_mapping_type_t mapping_type) |
| 1237 | { |
| 1238 | kern_return_t pe_result; |
| 1239 | int pe_options; |
| 1240 | |
| 1241 | if (VMP_ERROR_GET(mem)) { |
| 1242 | panic("VM page %p should not have an error" , mem); |
| 1243 | } |
| 1244 | |
| 1245 | pe_options = PMAP_OPTIONS_NOWAIT; |
| 1246 | if (object->internal) { |
| 1247 | pe_options |= PMAP_OPTIONS_INTERNAL; |
| 1248 | } |
| 1249 | if (mem->vmp_reusable || object->all_reusable) { |
| 1250 | pe_options |= PMAP_OPTIONS_REUSABLE; |
| 1251 | } |
| 1252 | |
| 1253 | pe_result = pmap_enter_options(pmap: kernel_pmap, v: addr + offset, |
| 1254 | pn: VM_PAGE_GET_PHYS_PAGE(m: mem), prot, VM_PROT_NONE, |
| 1255 | flags: pe_flags, /* wired */ TRUE, options: pe_options, NULL, mapping_type); |
| 1256 | |
| 1257 | if (pe_result == KERN_RESOURCE_SHORTAGE) { |
| 1258 | vm_object_unlock(object); |
| 1259 | |
| 1260 | pe_options &= ~PMAP_OPTIONS_NOWAIT; |
| 1261 | |
| 1262 | pe_result = pmap_enter_options(pmap: kernel_pmap, v: addr + offset, |
| 1263 | pn: VM_PAGE_GET_PHYS_PAGE(m: mem), prot, VM_PROT_NONE, |
| 1264 | flags: pe_flags, /* wired */ TRUE, options: pe_options, NULL, mapping_type); |
| 1265 | |
| 1266 | vm_object_lock(object); |
| 1267 | } |
| 1268 | |
| 1269 | assert(pe_result == KERN_SUCCESS); |
| 1270 | } |
| 1271 | |
| 1272 | void |
| 1273 | kernel_memory_populate_object_and_unlock( |
| 1274 | vm_object_t object, /* must be locked */ |
| 1275 | vm_address_t addr, |
| 1276 | vm_offset_t offset, |
| 1277 | vm_size_t size, |
| 1278 | vm_page_t page_list, |
| 1279 | kma_flags_t flags, |
| 1280 | vm_tag_t tag, |
| 1281 | vm_prot_t prot, |
| 1282 | pmap_mapping_type_t mapping_type) |
| 1283 | { |
| 1284 | vm_page_t mem; |
| 1285 | int pe_flags; |
| 1286 | bool gobbled_list = page_list && page_list->vmp_gobbled; |
| 1287 | |
| 1288 | assert(((flags & KMA_KOBJECT) != 0) == (is_kernel_object(object) != 0)); |
| 1289 | assert3u((bool)(flags & KMA_COMPRESSOR), ==, object == compressor_object); |
| 1290 | if (flags & (KMA_KOBJECT | KMA_COMPRESSOR)) { |
| 1291 | assert3u(offset, ==, addr); |
| 1292 | } else { |
| 1293 | /* |
| 1294 | * kernel_memory_populate_pmap_enter() might drop the object |
| 1295 | * lock, and the caller might not own a reference anymore |
| 1296 | * and rely on holding the vm object lock for liveness. |
| 1297 | */ |
| 1298 | vm_object_reference_locked(object); |
| 1299 | } |
| 1300 | |
| 1301 | if (flags & KMA_KSTACK) { |
| 1302 | pe_flags = VM_MEM_STACK; |
| 1303 | } else { |
| 1304 | pe_flags = 0; |
| 1305 | } |
| 1306 | |
| 1307 | |
| 1308 | for (vm_object_offset_t pg_offset = 0; |
| 1309 | pg_offset < size; |
| 1310 | pg_offset += PAGE_SIZE_64) { |
| 1311 | if (page_list == NULL) { |
| 1312 | panic("%s: page_list too short" , __func__); |
| 1313 | } |
| 1314 | |
| 1315 | mem = page_list; |
| 1316 | page_list = mem->vmp_snext; |
| 1317 | mem->vmp_snext = NULL; |
| 1318 | |
| 1319 | assert(mem->vmp_wire_count == 0); |
| 1320 | assert(mem->vmp_q_state == VM_PAGE_NOT_ON_Q); |
| 1321 | assert(!mem->vmp_fictitious && !mem->vmp_private); |
| 1322 | |
| 1323 | if (flags & KMA_COMPRESSOR) { |
| 1324 | mem->vmp_q_state = VM_PAGE_USED_BY_COMPRESSOR; |
| 1325 | /* |
| 1326 | * Background processes doing I/O accounting can call |
| 1327 | * into NVME driver to do some work which results in |
| 1328 | * an allocation here and so we want to make sure |
| 1329 | * that the pages used by compressor, regardless of |
| 1330 | * process context, are never on the special Q. |
| 1331 | */ |
| 1332 | mem->vmp_on_specialq = VM_PAGE_SPECIAL_Q_EMPTY; |
| 1333 | |
| 1334 | vm_page_insert(page: mem, object, offset: offset + pg_offset); |
| 1335 | } else { |
| 1336 | mem->vmp_q_state = VM_PAGE_IS_WIRED; |
| 1337 | mem->vmp_wire_count = 1; |
| 1338 | |
| 1339 | vm_page_insert_wired(page: mem, object, offset: offset + pg_offset, tag); |
| 1340 | } |
| 1341 | |
| 1342 | mem->vmp_gobbled = false; |
| 1343 | mem->vmp_busy = false; |
| 1344 | mem->vmp_pmapped = true; |
| 1345 | mem->vmp_wpmapped = true; |
| 1346 | |
| 1347 | /* |
| 1348 | * Manual PMAP_ENTER_OPTIONS() with shortcuts |
| 1349 | * for the kernel and compressor objects. |
| 1350 | */ |
| 1351 | kernel_memory_populate_pmap_enter(object, addr, offset: pg_offset, |
| 1352 | mem, prot, pe_flags, mapping_type); |
| 1353 | |
| 1354 | if (flags & KMA_NOENCRYPT) { |
| 1355 | pmap_set_noencrypt(pn: VM_PAGE_GET_PHYS_PAGE(m: mem)); |
| 1356 | } |
| 1357 | } |
| 1358 | |
| 1359 | if (page_list) { |
| 1360 | panic("%s: page_list too long" , __func__); |
| 1361 | } |
| 1362 | |
| 1363 | vm_object_unlock(object); |
| 1364 | if ((flags & (KMA_KOBJECT | KMA_COMPRESSOR)) == 0) { |
| 1365 | vm_object_deallocate(object); |
| 1366 | } |
| 1367 | |
| 1368 | /* |
| 1369 | * Update the accounting: |
| 1370 | * - the compressor "wired" pages don't really count as wired |
| 1371 | * - kmem_alloc_contig_guard() gives gobbled pages, |
| 1372 | * which already count as wired but need to be ungobbled. |
| 1373 | */ |
| 1374 | if (gobbled_list) { |
| 1375 | vm_page_lockspin_queues(); |
| 1376 | if (flags & KMA_COMPRESSOR) { |
| 1377 | vm_page_wire_count -= atop(size); |
| 1378 | } |
| 1379 | vm_page_gobble_count -= atop(size); |
| 1380 | vm_page_unlock_queues(); |
| 1381 | } else if ((flags & KMA_COMPRESSOR) == 0) { |
| 1382 | vm_page_lockspin_queues(); |
| 1383 | vm_page_wire_count += atop(size); |
| 1384 | vm_page_unlock_queues(); |
| 1385 | } |
| 1386 | |
| 1387 | if (flags & KMA_KOBJECT) { |
| 1388 | /* vm_page_insert_wired() handles regular objects already */ |
| 1389 | vm_tag_update_size(tag, size, NULL); |
| 1390 | } |
| 1391 | |
| 1392 | #if KASAN |
| 1393 | if (flags & KMA_COMPRESSOR) { |
| 1394 | kasan_notify_address_nopoison(addr, size); |
| 1395 | } else { |
| 1396 | kasan_notify_address(addr, size); |
| 1397 | } |
| 1398 | #endif /* KASAN */ |
| 1399 | } |
| 1400 | |
| 1401 | |
| 1402 | kern_return_t |
| 1403 | kernel_memory_populate( |
| 1404 | vm_offset_t addr, |
| 1405 | vm_size_t size, |
| 1406 | kma_flags_t flags, |
| 1407 | vm_tag_t tag) |
| 1408 | { |
| 1409 | kern_return_t kr = KERN_SUCCESS; |
| 1410 | vm_page_t page_list = NULL; |
| 1411 | vm_size_t page_count = atop_64(size); |
| 1412 | vm_object_t object = __kmem_object(flags: ANYF(flags)); |
| 1413 | |
| 1414 | #if DEBUG || DEVELOPMENT |
| 1415 | VM_DEBUG_CONSTANT_EVENT(vm_kern_request, VM_KERN_REQUEST, DBG_FUNC_START, |
| 1416 | size, 0, 0, 0); |
| 1417 | #endif /* DEBUG || DEVELOPMENT */ |
| 1418 | |
| 1419 | kr = vm_page_alloc_list(page_count, flags, list: &page_list); |
| 1420 | if (kr == KERN_SUCCESS) { |
| 1421 | vm_object_lock(object); |
| 1422 | kernel_memory_populate_object_and_unlock(object, addr, |
| 1423 | offset: addr, size, page_list, flags, tag, VM_PROT_DEFAULT, |
| 1424 | mapping_type: __kmem_mapping_type(flags: ANYF(flags))); |
| 1425 | } |
| 1426 | |
| 1427 | #if DEBUG || DEVELOPMENT |
| 1428 | VM_DEBUG_CONSTANT_EVENT(vm_kern_request, VM_KERN_REQUEST, DBG_FUNC_END, |
| 1429 | page_count, 0, 0, 0); |
| 1430 | #endif /* DEBUG || DEVELOPMENT */ |
| 1431 | return kr; |
| 1432 | } |
| 1433 | |
| 1434 | void |
| 1435 | kernel_memory_depopulate( |
| 1436 | vm_offset_t addr, |
| 1437 | vm_size_t size, |
| 1438 | kma_flags_t flags, |
| 1439 | vm_tag_t tag) |
| 1440 | { |
| 1441 | vm_object_t object = __kmem_object(flags: ANYF(flags)); |
| 1442 | vm_object_offset_t offset = addr; |
| 1443 | vm_page_t mem; |
| 1444 | vm_page_t local_freeq = NULL; |
| 1445 | unsigned int pages_unwired = 0; |
| 1446 | |
| 1447 | vm_object_lock(object); |
| 1448 | |
| 1449 | pmap_protect(map: kernel_pmap, s: offset, e: offset + size, VM_PROT_NONE); |
| 1450 | |
| 1451 | for (vm_object_offset_t pg_offset = 0; |
| 1452 | pg_offset < size; |
| 1453 | pg_offset += PAGE_SIZE_64) { |
| 1454 | mem = vm_page_lookup(object, offset: offset + pg_offset); |
| 1455 | |
| 1456 | assert(mem); |
| 1457 | |
| 1458 | if (flags & KMA_COMPRESSOR) { |
| 1459 | assert(mem->vmp_q_state == VM_PAGE_USED_BY_COMPRESSOR); |
| 1460 | } else { |
| 1461 | assert(mem->vmp_q_state == VM_PAGE_IS_WIRED); |
| 1462 | pmap_disconnect(phys: VM_PAGE_GET_PHYS_PAGE(m: mem)); |
| 1463 | pages_unwired++; |
| 1464 | } |
| 1465 | |
| 1466 | mem->vmp_busy = TRUE; |
| 1467 | |
| 1468 | assert(mem->vmp_tabled); |
| 1469 | vm_page_remove(page: mem, TRUE); |
| 1470 | assert(mem->vmp_busy); |
| 1471 | |
| 1472 | assert(mem->vmp_pageq.next == 0 && mem->vmp_pageq.prev == 0); |
| 1473 | |
| 1474 | mem->vmp_q_state = VM_PAGE_NOT_ON_Q; |
| 1475 | mem->vmp_snext = local_freeq; |
| 1476 | local_freeq = mem; |
| 1477 | } |
| 1478 | |
| 1479 | vm_object_unlock(object); |
| 1480 | |
| 1481 | vm_page_free_list(mem: local_freeq, TRUE); |
| 1482 | |
| 1483 | if (!(flags & KMA_COMPRESSOR)) { |
| 1484 | vm_page_lockspin_queues(); |
| 1485 | vm_page_wire_count -= pages_unwired; |
| 1486 | vm_page_unlock_queues(); |
| 1487 | } |
| 1488 | |
| 1489 | if (flags & KMA_KOBJECT) { |
| 1490 | /* vm_page_remove() handles regular objects already */ |
| 1491 | vm_tag_update_size(tag, size: -ptoa_64(pages_unwired), NULL); |
| 1492 | } |
| 1493 | } |
| 1494 | |
| 1495 | #pragma mark reallocation |
| 1496 | |
| 1497 | __abortlike |
| 1498 | static void |
| 1499 | __kmem_realloc_invalid_object_size_panic( |
| 1500 | vm_map_t map, |
| 1501 | vm_address_t address, |
| 1502 | vm_size_t size, |
| 1503 | vm_map_entry_t entry) |
| 1504 | { |
| 1505 | vm_object_t object = VME_OBJECT(entry); |
| 1506 | vm_size_t objsize = __kmem_entry_orig_size(entry); |
| 1507 | |
| 1508 | panic("kmem_realloc(map=%p, addr=%p, size=%zd, entry=%p): " |
| 1509 | "object %p has unexpected size %ld" , |
| 1510 | map, (void *)address, (size_t)size, entry, object, objsize); |
| 1511 | } |
| 1512 | |
| 1513 | __abortlike |
| 1514 | static void |
| 1515 | ( |
| 1516 | vm_map_t map, |
| 1517 | vm_address_t address, |
| 1518 | vm_size_t size, |
| 1519 | vm_map_entry_t entry) |
| 1520 | { |
| 1521 | vm_object_t object = VME_OBJECT(entry); |
| 1522 | memory_object_t = object->pager; |
| 1523 | bool = object->pager_created; |
| 1524 | bool = object->pager_initialized; |
| 1525 | bool = object->pager_ready; |
| 1526 | |
| 1527 | panic("kmem_realloc(map=%p, addr=%p, size=%zd, entry=%p): " |
| 1528 | "object %p has unexpected pager %p (%d,%d,%d)" , |
| 1529 | map, (void *)address, (size_t)size, entry, object, |
| 1530 | pager, pager_created, pager_initialized, pager_ready); |
| 1531 | } |
| 1532 | |
| 1533 | static kmem_return_t |
| 1534 | kmem_realloc_shrink_guard( |
| 1535 | vm_map_t map, |
| 1536 | vm_offset_t req_oldaddr, |
| 1537 | vm_size_t req_oldsize, |
| 1538 | vm_size_t req_newsize, |
| 1539 | kmr_flags_t flags, |
| 1540 | kmem_guard_t guard, |
| 1541 | vm_map_entry_t entry) |
| 1542 | { |
| 1543 | vmr_flags_t vmr_flags = VM_MAP_REMOVE_KUNWIRE; |
| 1544 | vm_object_t object; |
| 1545 | vm_offset_t delta = 0; |
| 1546 | kmem_return_t kmr; |
| 1547 | bool was_atomic; |
| 1548 | vm_size_t oldsize = round_page(x: req_oldsize); |
| 1549 | vm_size_t newsize = round_page(x: req_newsize); |
| 1550 | vm_address_t oldaddr = req_oldaddr; |
| 1551 | |
| 1552 | #if KASAN_CLASSIC |
| 1553 | if (flags & KMR_KASAN_GUARD) { |
| 1554 | assert((flags & (KMR_GUARD_FIRST | KMR_GUARD_LAST)) == 0); |
| 1555 | flags |= KMR_GUARD_FIRST | KMR_GUARD_LAST; |
| 1556 | oldaddr -= PAGE_SIZE; |
| 1557 | delta = ptoa(2); |
| 1558 | oldsize += delta; |
| 1559 | newsize += delta; |
| 1560 | } |
| 1561 | #endif /* KASAN_CLASSIC */ |
| 1562 | |
| 1563 | if (flags & KMR_TAG) { |
| 1564 | oldaddr = vm_memtag_canonicalize_address(req_oldaddr); |
| 1565 | } |
| 1566 | |
| 1567 | vm_map_lock_assert_exclusive(map); |
| 1568 | |
| 1569 | if ((flags & KMR_KOBJECT) == 0) { |
| 1570 | object = VME_OBJECT(entry); |
| 1571 | vm_object_reference(object); |
| 1572 | } |
| 1573 | |
| 1574 | /* |
| 1575 | * Shrinking an atomic entry starts with splitting it, |
| 1576 | * and removing the second half. |
| 1577 | */ |
| 1578 | was_atomic = entry->vme_atomic; |
| 1579 | entry->vme_atomic = false; |
| 1580 | vm_map_clip_end(map, entry, endaddr: entry->vme_start + newsize); |
| 1581 | entry->vme_atomic = was_atomic; |
| 1582 | |
| 1583 | #if KASAN |
| 1584 | if (entry->vme_kernel_object && was_atomic) { |
| 1585 | entry->vme_object_or_delta = (-req_newsize & PAGE_MASK) + delta; |
| 1586 | } |
| 1587 | #if KASAN_CLASSIC |
| 1588 | if (flags & KMR_KASAN_GUARD) { |
| 1589 | kasan_poison_range(oldaddr + newsize, oldsize - newsize, |
| 1590 | ASAN_VALID); |
| 1591 | } |
| 1592 | #endif |
| 1593 | #if KASAN_TBI |
| 1594 | if (flags & KMR_TAG) { |
| 1595 | kasan_tbi_mark_free_space(req_oldaddr + newsize, oldsize - newsize); |
| 1596 | } |
| 1597 | #endif /* KASAN_TBI */ |
| 1598 | #endif /* KASAN */ |
| 1599 | (void)vm_map_remove_and_unlock(map, |
| 1600 | start: oldaddr + newsize, end: oldaddr + oldsize, |
| 1601 | flags: vmr_flags, KMEM_GUARD_NONE); |
| 1602 | |
| 1603 | |
| 1604 | /* |
| 1605 | * Lastly, if there are guard pages, deal with them. |
| 1606 | * |
| 1607 | * The kernel object just needs to depopulate, |
| 1608 | * regular objects require freeing the last page |
| 1609 | * and replacing it with a guard. |
| 1610 | */ |
| 1611 | if (flags & KMR_KOBJECT) { |
| 1612 | if (flags & KMR_GUARD_LAST) { |
| 1613 | kernel_memory_depopulate(addr: oldaddr + newsize - PAGE_SIZE, |
| 1614 | PAGE_SIZE, flags: KMA_KOBJECT, tag: guard.kmg_tag); |
| 1615 | } |
| 1616 | } else { |
| 1617 | vm_page_t guard_right = VM_PAGE_NULL; |
| 1618 | vm_offset_t remove_start = newsize; |
| 1619 | |
| 1620 | if (flags & KMR_GUARD_LAST) { |
| 1621 | if (!map->never_faults) { |
| 1622 | guard_right = vm_page_grab_guard(true); |
| 1623 | } |
| 1624 | remove_start -= PAGE_SIZE; |
| 1625 | } |
| 1626 | |
| 1627 | vm_object_lock(object); |
| 1628 | |
| 1629 | if (object->vo_size != oldsize) { |
| 1630 | __kmem_realloc_invalid_object_size_panic(map, |
| 1631 | address: req_oldaddr, size: req_oldsize + delta, entry); |
| 1632 | } |
| 1633 | vm_object_set_size(object, outer_size: newsize, inner_size: req_newsize); |
| 1634 | |
| 1635 | vm_object_page_remove(object, start: remove_start, end: oldsize); |
| 1636 | |
| 1637 | if (guard_right) { |
| 1638 | vm_page_insert(page: guard_right, object, offset: newsize - PAGE_SIZE); |
| 1639 | guard_right->vmp_busy = false; |
| 1640 | } |
| 1641 | vm_object_unlock(object); |
| 1642 | vm_object_deallocate(object); |
| 1643 | } |
| 1644 | |
| 1645 | kmr.kmr_address = req_oldaddr; |
| 1646 | kmr.kmr_return = 0; |
| 1647 | #if KASAN_CLASSIC |
| 1648 | if (flags & KMA_KASAN_GUARD) { |
| 1649 | kasan_alloc_large(kmr.kmr_address, req_newsize); |
| 1650 | } |
| 1651 | #endif /* KASAN_CLASSIC */ |
| 1652 | #if KASAN_TBI |
| 1653 | if ((flags & KMR_TAG) && (flags & KMR_FREEOLD)) { |
| 1654 | kmr.kmr_address = vm_memtag_assign_tag(kmr.kmr_address, req_newsize); |
| 1655 | vm_memtag_set_tag(kmr.kmr_address, req_newsize); |
| 1656 | kasan_tbi_retag_unused_space(kmr.kmr_address, newsize, req_newsize); |
| 1657 | } |
| 1658 | #endif /* KASAN_TBI */ |
| 1659 | |
| 1660 | return kmr; |
| 1661 | } |
| 1662 | |
| 1663 | kmem_return_t |
| 1664 | kmem_realloc_guard( |
| 1665 | vm_map_t map, |
| 1666 | vm_offset_t req_oldaddr, |
| 1667 | vm_size_t req_oldsize, |
| 1668 | vm_size_t req_newsize, |
| 1669 | kmr_flags_t flags, |
| 1670 | kmem_guard_t guard) |
| 1671 | { |
| 1672 | vm_object_t object; |
| 1673 | vm_size_t oldsize; |
| 1674 | vm_size_t newsize; |
| 1675 | vm_offset_t delta = 0; |
| 1676 | vm_map_offset_t oldaddr; |
| 1677 | vm_map_offset_t newaddr; |
| 1678 | vm_object_offset_t newoffs; |
| 1679 | vm_map_entry_t oldentry; |
| 1680 | vm_map_entry_t newentry; |
| 1681 | vm_page_t page_list = NULL; |
| 1682 | bool needs_wakeup = false; |
| 1683 | kmem_return_t kmr = { }; |
| 1684 | unsigned int last_timestamp; |
| 1685 | vm_map_kernel_flags_t vmk_flags = { |
| 1686 | .vmkf_last_free = (bool)(flags & KMR_LAST_FREE), |
| 1687 | }; |
| 1688 | |
| 1689 | assert(KMEM_REALLOC_FLAGS_VALID(flags)); |
| 1690 | if (!guard.kmg_atomic && (flags & (KMR_DATA | KMR_KOBJECT)) != KMR_DATA) { |
| 1691 | __kmem_invalid_arguments_panic(what: "realloc" , map, address: req_oldaddr, |
| 1692 | size: req_oldsize, flags); |
| 1693 | } |
| 1694 | |
| 1695 | if (req_oldaddr == 0ul) { |
| 1696 | return kmem_alloc_guard(map, size: req_newsize, mask: 0, flags: (kma_flags_t)flags, guard); |
| 1697 | } |
| 1698 | |
| 1699 | if (req_newsize == 0ul) { |
| 1700 | kmem_free_guard(map, addr: req_oldaddr, size: req_oldsize, |
| 1701 | flags: (kmf_flags_t)flags, guard); |
| 1702 | return kmr; |
| 1703 | } |
| 1704 | |
| 1705 | if (req_newsize >> VM_KERNEL_POINTER_SIGNIFICANT_BITS) { |
| 1706 | __kmem_invalid_size_panic(map, size: req_newsize, flags); |
| 1707 | } |
| 1708 | if (req_newsize < __kmem_guard_size(flags: ANYF(flags))) { |
| 1709 | __kmem_invalid_size_panic(map, size: req_newsize, flags); |
| 1710 | } |
| 1711 | |
| 1712 | oldsize = round_page(x: req_oldsize); |
| 1713 | newsize = round_page(x: req_newsize); |
| 1714 | oldaddr = req_oldaddr; |
| 1715 | #if KASAN_CLASSIC |
| 1716 | if (flags & KMR_KASAN_GUARD) { |
| 1717 | flags |= KMR_GUARD_FIRST | KMR_GUARD_LAST; |
| 1718 | oldaddr -= PAGE_SIZE; |
| 1719 | delta = ptoa(2); |
| 1720 | oldsize += delta; |
| 1721 | newsize += delta; |
| 1722 | } |
| 1723 | #endif /* KASAN_CLASSIC */ |
| 1724 | #if CONFIG_KERNEL_TAGGING |
| 1725 | if (flags & KMR_TAG) { |
| 1726 | vm_memtag_verify_tag(req_oldaddr); |
| 1727 | oldaddr = vm_memtag_canonicalize_address(req_oldaddr); |
| 1728 | } |
| 1729 | #endif /* CONFIG_KERNEL_TAGGING */ |
| 1730 | |
| 1731 | #if !KASAN |
| 1732 | /* |
| 1733 | * If not on a KASAN variant and no difference in requested size, |
| 1734 | * just return. |
| 1735 | * |
| 1736 | * Otherwise we want to validate the size and re-tag for KASAN_TBI. |
| 1737 | */ |
| 1738 | if (oldsize == newsize) { |
| 1739 | kmr.kmr_address = req_oldaddr; |
| 1740 | return kmr; |
| 1741 | } |
| 1742 | #endif /* !KASAN */ |
| 1743 | |
| 1744 | /* |
| 1745 | * If we're growing the allocation, |
| 1746 | * then reserve the pages we'll need, |
| 1747 | * and find a spot for its new place. |
| 1748 | */ |
| 1749 | if (oldsize < newsize) { |
| 1750 | #if DEBUG || DEVELOPMENT |
| 1751 | VM_DEBUG_CONSTANT_EVENT(vm_kern_request, |
| 1752 | VM_KERN_REQUEST, DBG_FUNC_START, |
| 1753 | newsize - oldsize, 0, 0, 0); |
| 1754 | #endif /* DEBUG || DEVELOPMENT */ |
| 1755 | kmr.kmr_return = vm_page_alloc_list(atop(newsize - oldsize), |
| 1756 | flags: (kma_flags_t)flags, list: &page_list); |
| 1757 | if (kmr.kmr_return == KERN_SUCCESS) { |
| 1758 | kmem_apply_security_policy(map, kma_flags: (kma_flags_t)flags, guard, |
| 1759 | map_size: newsize, mask: 0, vmk_flags: &vmk_flags, true); |
| 1760 | kmr.kmr_return = vm_map_find_space(map, hint_addr: 0, size: newsize, mask: 0, |
| 1761 | vmk_flags, o_entry: &newentry); |
| 1762 | } |
| 1763 | if (__improbable(kmr.kmr_return != KERN_SUCCESS)) { |
| 1764 | if (flags & KMR_REALLOCF) { |
| 1765 | kmem_free_guard(map, addr: req_oldaddr, size: req_oldsize, |
| 1766 | flags: KMF_NONE, guard); |
| 1767 | } |
| 1768 | if (page_list) { |
| 1769 | vm_page_free_list(mem: page_list, FALSE); |
| 1770 | } |
| 1771 | #if DEBUG || DEVELOPMENT |
| 1772 | VM_DEBUG_CONSTANT_EVENT(vm_kern_request, |
| 1773 | VM_KERN_REQUEST, DBG_FUNC_END, |
| 1774 | 0, 0, 0, 0); |
| 1775 | #endif /* DEBUG || DEVELOPMENT */ |
| 1776 | return kmr; |
| 1777 | } |
| 1778 | |
| 1779 | /* map is locked */ |
| 1780 | } else { |
| 1781 | vm_map_lock(map); |
| 1782 | } |
| 1783 | |
| 1784 | |
| 1785 | /* |
| 1786 | * Locate the entry: |
| 1787 | * - wait for it to quiesce. |
| 1788 | * - validate its guard, |
| 1789 | * - learn its correct tag, |
| 1790 | */ |
| 1791 | again: |
| 1792 | if (!vm_map_lookup_entry(map, address: oldaddr, entry: &oldentry)) { |
| 1793 | __kmem_entry_not_found_panic(map, addr: req_oldaddr); |
| 1794 | } |
| 1795 | if ((flags & KMR_KOBJECT) && oldentry->in_transition) { |
| 1796 | oldentry->needs_wakeup = true; |
| 1797 | vm_map_entry_wait(map, THREAD_UNINT); |
| 1798 | goto again; |
| 1799 | } |
| 1800 | kmem_entry_validate_guard(map, entry: oldentry, addr: oldaddr, size: oldsize, guard); |
| 1801 | if (!__kmem_entry_validate_object(entry: oldentry, flags: ANYF(flags))) { |
| 1802 | __kmem_entry_validate_object_panic(map, entry: oldentry, flags: ANYF(flags)); |
| 1803 | } |
| 1804 | /* |
| 1805 | * TODO: We should validate for non atomic entries that the range |
| 1806 | * we are acting on is what we expect here. |
| 1807 | */ |
| 1808 | #if KASAN |
| 1809 | if (__kmem_entry_orig_size(oldentry) != req_oldsize) { |
| 1810 | __kmem_realloc_invalid_object_size_panic(map, |
| 1811 | req_oldaddr, req_oldsize + delta, oldentry); |
| 1812 | } |
| 1813 | |
| 1814 | if (oldsize == newsize) { |
| 1815 | kmr.kmr_address = req_oldaddr; |
| 1816 | if (oldentry->vme_kernel_object) { |
| 1817 | oldentry->vme_object_or_delta = delta + |
| 1818 | (-req_newsize & PAGE_MASK); |
| 1819 | } else { |
| 1820 | object = VME_OBJECT(oldentry); |
| 1821 | vm_object_lock(object); |
| 1822 | vm_object_set_size(object, newsize, req_newsize); |
| 1823 | vm_object_unlock(object); |
| 1824 | } |
| 1825 | vm_map_unlock(map); |
| 1826 | |
| 1827 | #if KASAN_CLASSIC |
| 1828 | if (flags & KMA_KASAN_GUARD) { |
| 1829 | kasan_alloc_large(kmr.kmr_address, req_newsize); |
| 1830 | } |
| 1831 | #endif /* KASAN_CLASSIC */ |
| 1832 | #if KASAN_TBI |
| 1833 | if ((flags & KMR_TAG) && (flags & KMR_FREEOLD)) { |
| 1834 | kmr.kmr_address = vm_memtag_assign_tag(kmr.kmr_address, req_newsize); |
| 1835 | vm_memtag_set_tag(kmr.kmr_address, req_newsize); |
| 1836 | kasan_tbi_retag_unused_space(kmr.kmr_address, newsize, req_newsize); |
| 1837 | } |
| 1838 | #endif /* KASAN_TBI */ |
| 1839 | return kmr; |
| 1840 | } |
| 1841 | #endif /* KASAN */ |
| 1842 | |
| 1843 | guard.kmg_tag = VME_ALIAS(oldentry); |
| 1844 | |
| 1845 | if (newsize < oldsize) { |
| 1846 | return kmem_realloc_shrink_guard(map, req_oldaddr, |
| 1847 | req_oldsize, req_newsize, flags, guard, entry: oldentry); |
| 1848 | } |
| 1849 | |
| 1850 | |
| 1851 | /* |
| 1852 | * We are growing the entry |
| 1853 | * |
| 1854 | * For regular objects we use the object `vo_size` updates |
| 1855 | * as a guarantee that no 2 kmem_realloc() can happen |
| 1856 | * concurrently (by doing it before the map is unlocked. |
| 1857 | * |
| 1858 | * For the kernel object, prevent the entry from being |
| 1859 | * reallocated or changed by marking it "in_transition". |
| 1860 | */ |
| 1861 | |
| 1862 | object = VME_OBJECT(oldentry); |
| 1863 | vm_object_lock(object); |
| 1864 | vm_object_reference_locked(object); |
| 1865 | |
| 1866 | newaddr = newentry->vme_start; |
| 1867 | newoffs = oldsize; |
| 1868 | |
| 1869 | VME_OBJECT_SET(entry: newentry, object, atomic: guard.kmg_atomic, context: guard.kmg_context); |
| 1870 | VME_ALIAS_SET(entry: newentry, alias: guard.kmg_tag); |
| 1871 | if (flags & KMR_KOBJECT) { |
| 1872 | oldentry->in_transition = true; |
| 1873 | VME_OFFSET_SET(entry: newentry, offset: newaddr); |
| 1874 | newentry->wired_count = 1; |
| 1875 | vme_btref_consider_and_set(entry: newentry, fp: __builtin_frame_address(0)); |
| 1876 | newoffs = newaddr + oldsize; |
| 1877 | } else { |
| 1878 | if (object->pager_created || object->pager) { |
| 1879 | /* |
| 1880 | * We can't "realloc/grow" the pager, so pageable |
| 1881 | * allocations should not go through this path. |
| 1882 | */ |
| 1883 | __kmem_realloc_invalid_pager_panic(map, |
| 1884 | address: req_oldaddr, size: req_oldsize + delta, entry: oldentry); |
| 1885 | } |
| 1886 | if (object->vo_size != oldsize) { |
| 1887 | __kmem_realloc_invalid_object_size_panic(map, |
| 1888 | address: req_oldaddr, size: req_oldsize + delta, entry: oldentry); |
| 1889 | } |
| 1890 | vm_object_set_size(object, outer_size: newsize, inner_size: req_newsize); |
| 1891 | } |
| 1892 | |
| 1893 | last_timestamp = map->timestamp; |
| 1894 | vm_map_unlock(map); |
| 1895 | |
| 1896 | |
| 1897 | /* |
| 1898 | * Now proceed with the population of pages. |
| 1899 | * |
| 1900 | * Kernel objects can use the kmem population helpers. |
| 1901 | * |
| 1902 | * Regular objects will insert pages manually, |
| 1903 | * then wire the memory into the new range. |
| 1904 | */ |
| 1905 | |
| 1906 | vm_size_t guard_right_size = __kmem_guard_right(flags: ANYF(flags)); |
| 1907 | |
| 1908 | if (flags & KMR_KOBJECT) { |
| 1909 | pmap_mapping_type_t mapping_type = __kmem_mapping_type(flags: ANYF(flags)); |
| 1910 | |
| 1911 | pmap_protect(map: kernel_pmap, |
| 1912 | s: oldaddr, e: oldaddr + oldsize - guard_right_size, |
| 1913 | VM_PROT_NONE); |
| 1914 | |
| 1915 | for (vm_object_offset_t offset = 0; |
| 1916 | offset < oldsize - guard_right_size; |
| 1917 | offset += PAGE_SIZE_64) { |
| 1918 | vm_page_t mem; |
| 1919 | |
| 1920 | mem = vm_page_lookup(object, offset: oldaddr + offset); |
| 1921 | if (mem == VM_PAGE_NULL) { |
| 1922 | continue; |
| 1923 | } |
| 1924 | |
| 1925 | pmap_disconnect(phys: VM_PAGE_GET_PHYS_PAGE(m: mem)); |
| 1926 | |
| 1927 | mem->vmp_busy = true; |
| 1928 | vm_page_remove(page: mem, true); |
| 1929 | vm_page_insert_wired(page: mem, object, offset: newaddr + offset, |
| 1930 | tag: guard.kmg_tag); |
| 1931 | mem->vmp_busy = false; |
| 1932 | |
| 1933 | kernel_memory_populate_pmap_enter(object, addr: newaddr, |
| 1934 | offset, mem, VM_PROT_DEFAULT, pe_flags: 0, mapping_type); |
| 1935 | } |
| 1936 | |
| 1937 | kernel_memory_populate_object_and_unlock(object, |
| 1938 | addr: newaddr + oldsize - guard_right_size, |
| 1939 | offset: newoffs - guard_right_size, |
| 1940 | size: newsize - oldsize, |
| 1941 | page_list, flags: (kma_flags_t)flags, |
| 1942 | tag: guard.kmg_tag, VM_PROT_DEFAULT, mapping_type); |
| 1943 | } else { |
| 1944 | vm_page_t guard_right = VM_PAGE_NULL; |
| 1945 | |
| 1946 | /* |
| 1947 | * Note: we are borrowing the new entry reference |
| 1948 | * on the object for the duration of this code, |
| 1949 | * which works because we keep the object locked |
| 1950 | * throughout. |
| 1951 | */ |
| 1952 | if ((flags & KMR_GUARD_LAST) && !map->never_faults) { |
| 1953 | guard_right = vm_page_lookup(object, offset: oldsize - PAGE_SIZE); |
| 1954 | assert(guard_right->vmp_fictitious); |
| 1955 | guard_right->vmp_busy = true; |
| 1956 | vm_page_remove(page: guard_right, true); |
| 1957 | } |
| 1958 | |
| 1959 | if (flags & KMR_FREEOLD) { |
| 1960 | /* |
| 1961 | * Freeing the old mapping will make |
| 1962 | * the old pages become pageable until |
| 1963 | * the new mapping makes them wired again. |
| 1964 | * Let's take an extra "wire_count" to |
| 1965 | * prevent any accidental "page out". |
| 1966 | * We'll have to undo that after wiring |
| 1967 | * the new mapping. |
| 1968 | */ |
| 1969 | vm_object_reference_locked(object); /* keep object alive */ |
| 1970 | for (vm_object_offset_t offset = 0; |
| 1971 | offset < oldsize - guard_right_size; |
| 1972 | offset += PAGE_SIZE_64) { |
| 1973 | vm_page_t mem; |
| 1974 | |
| 1975 | mem = vm_page_lookup(object, offset); |
| 1976 | assert(mem != VM_PAGE_NULL); |
| 1977 | assertf(!VM_PAGE_PAGEABLE(mem), |
| 1978 | "mem %p qstate %d" , |
| 1979 | mem, mem->vmp_q_state); |
| 1980 | if (VM_PAGE_GET_PHYS_PAGE(m: mem) == vm_page_guard_addr) { |
| 1981 | /* guard pages are not wired */ |
| 1982 | } else { |
| 1983 | assertf(VM_PAGE_WIRED(mem), |
| 1984 | "mem %p qstate %d wirecount %d" , |
| 1985 | mem, |
| 1986 | mem->vmp_q_state, |
| 1987 | mem->vmp_wire_count); |
| 1988 | assertf(mem->vmp_wire_count >= 1, |
| 1989 | "mem %p wirecount %d" , |
| 1990 | mem, mem->vmp_wire_count); |
| 1991 | mem->vmp_wire_count++; |
| 1992 | } |
| 1993 | } |
| 1994 | } |
| 1995 | |
| 1996 | for (vm_object_offset_t offset = oldsize - guard_right_size; |
| 1997 | offset < newsize - guard_right_size; |
| 1998 | offset += PAGE_SIZE_64) { |
| 1999 | vm_page_t mem = page_list; |
| 2000 | |
| 2001 | page_list = mem->vmp_snext; |
| 2002 | mem->vmp_snext = VM_PAGE_NULL; |
| 2003 | assert(mem->vmp_q_state == VM_PAGE_NOT_ON_Q); |
| 2004 | assert(!VM_PAGE_PAGEABLE(mem)); |
| 2005 | |
| 2006 | vm_page_insert(page: mem, object, offset); |
| 2007 | mem->vmp_busy = false; |
| 2008 | } |
| 2009 | |
| 2010 | if (guard_right) { |
| 2011 | vm_page_insert(page: guard_right, object, offset: newsize - PAGE_SIZE); |
| 2012 | guard_right->vmp_busy = false; |
| 2013 | } |
| 2014 | |
| 2015 | vm_object_unlock(object); |
| 2016 | } |
| 2017 | |
| 2018 | /* |
| 2019 | * Mark the entry as idle again, |
| 2020 | * and honor KMR_FREEOLD if needed. |
| 2021 | */ |
| 2022 | |
| 2023 | vm_map_lock(map); |
| 2024 | if (last_timestamp + 1 != map->timestamp && |
| 2025 | !vm_map_lookup_entry(map, address: oldaddr, entry: &oldentry)) { |
| 2026 | __kmem_entry_not_found_panic(map, addr: req_oldaddr); |
| 2027 | } |
| 2028 | |
| 2029 | if (flags & KMR_KOBJECT) { |
| 2030 | assert(oldentry->in_transition); |
| 2031 | oldentry->in_transition = false; |
| 2032 | if (oldentry->needs_wakeup) { |
| 2033 | needs_wakeup = true; |
| 2034 | oldentry->needs_wakeup = false; |
| 2035 | } |
| 2036 | } |
| 2037 | |
| 2038 | if (flags & KMR_FREEOLD) { |
| 2039 | vmr_flags_t vmr_flags = VM_MAP_REMOVE_KUNWIRE; |
| 2040 | |
| 2041 | #if KASAN_CLASSIC |
| 2042 | if (flags & KMR_KASAN_GUARD) { |
| 2043 | kasan_poison_range(oldaddr, oldsize, ASAN_VALID); |
| 2044 | } |
| 2045 | #endif |
| 2046 | #if KASAN_TBI |
| 2047 | if (flags & KMR_TAG) { |
| 2048 | kasan_tbi_mark_free_space(req_oldaddr, oldsize); |
| 2049 | } |
| 2050 | #endif /* KASAN_TBI */ |
| 2051 | if (flags & KMR_GUARD_LAST) { |
| 2052 | vmr_flags |= VM_MAP_REMOVE_NOKUNWIRE_LAST; |
| 2053 | } |
| 2054 | (void)vm_map_remove_and_unlock(map, |
| 2055 | start: oldaddr, end: oldaddr + oldsize, |
| 2056 | flags: vmr_flags, guard); |
| 2057 | } else { |
| 2058 | vm_map_unlock(map); |
| 2059 | } |
| 2060 | |
| 2061 | if ((flags & KMR_KOBJECT) == 0) { |
| 2062 | kern_return_t kr; |
| 2063 | /* |
| 2064 | * This must happen _after_ we do the KMR_FREEOLD, |
| 2065 | * because wiring the pages will call into the pmap, |
| 2066 | * and if the pages are typed XNU_KERNEL_RESTRICTED, |
| 2067 | * this would cause a second mapping of the page and panic. |
| 2068 | */ |
| 2069 | kr = vm_map_wire_kernel(map, start: newaddr, end: newaddr + newsize, |
| 2070 | VM_PROT_DEFAULT, tag: guard.kmg_tag, FALSE); |
| 2071 | assert(kr == KERN_SUCCESS); |
| 2072 | |
| 2073 | if (flags & KMR_FREEOLD) { |
| 2074 | /* |
| 2075 | * Undo the extra "wiring" we made above |
| 2076 | * and release the extra reference we took |
| 2077 | * on the object. |
| 2078 | */ |
| 2079 | vm_object_lock(object); |
| 2080 | for (vm_object_offset_t offset = 0; |
| 2081 | offset < oldsize - guard_right_size; |
| 2082 | offset += PAGE_SIZE_64) { |
| 2083 | vm_page_t mem; |
| 2084 | |
| 2085 | mem = vm_page_lookup(object, offset); |
| 2086 | assert(mem != VM_PAGE_NULL); |
| 2087 | assertf(!VM_PAGE_PAGEABLE(mem), |
| 2088 | "mem %p qstate %d" , |
| 2089 | mem, mem->vmp_q_state); |
| 2090 | if (VM_PAGE_GET_PHYS_PAGE(m: mem) == vm_page_guard_addr) { |
| 2091 | /* guard pages are not wired */ |
| 2092 | } else { |
| 2093 | assertf(VM_PAGE_WIRED(mem), |
| 2094 | "mem %p qstate %d wirecount %d" , |
| 2095 | mem, |
| 2096 | mem->vmp_q_state, |
| 2097 | mem->vmp_wire_count); |
| 2098 | assertf(mem->vmp_wire_count >= 2, |
| 2099 | "mem %p wirecount %d" , |
| 2100 | mem, mem->vmp_wire_count); |
| 2101 | mem->vmp_wire_count--; |
| 2102 | assert(VM_PAGE_WIRED(mem)); |
| 2103 | assert(mem->vmp_wire_count >= 1); |
| 2104 | } |
| 2105 | } |
| 2106 | vm_object_unlock(object); |
| 2107 | vm_object_deallocate(object); /* release extra ref */ |
| 2108 | } |
| 2109 | } |
| 2110 | |
| 2111 | if (needs_wakeup) { |
| 2112 | vm_map_entry_wakeup(map); |
| 2113 | } |
| 2114 | |
| 2115 | #if DEBUG || DEVELOPMENT |
| 2116 | VM_DEBUG_CONSTANT_EVENT(vm_kern_request, VM_KERN_REQUEST, DBG_FUNC_END, |
| 2117 | atop(newsize - oldsize), 0, 0, 0); |
| 2118 | #endif /* DEBUG || DEVELOPMENT */ |
| 2119 | kmr.kmr_address = newaddr; |
| 2120 | |
| 2121 | #if KASAN |
| 2122 | kasan_notify_address(kmr.kmr_address, newsize); |
| 2123 | #endif /* KASAN */ |
| 2124 | #if KASAN_CLASSIC |
| 2125 | if (flags & KMR_KASAN_GUARD) { |
| 2126 | kmr.kmr_address += PAGE_SIZE; |
| 2127 | kasan_alloc_large(kmr.kmr_address, req_newsize); |
| 2128 | } |
| 2129 | #endif /* KASAN_CLASSIC */ |
| 2130 | #if KASAN_TBI |
| 2131 | if (flags & KMR_TAG) { |
| 2132 | kmr.kmr_address = vm_memtag_assign_tag(kmr.kmr_address, req_newsize); |
| 2133 | vm_memtag_set_tag(kmr.kmr_address, req_newsize); |
| 2134 | kasan_tbi_retag_unused_space(kmr.kmr_address, newsize, req_newsize); |
| 2135 | } |
| 2136 | #endif /* KASAN_TBI */ |
| 2137 | |
| 2138 | return kmr; |
| 2139 | } |
| 2140 | |
| 2141 | |
| 2142 | #pragma mark free |
| 2143 | |
| 2144 | #if KASAN |
| 2145 | |
| 2146 | __abortlike |
| 2147 | static void |
| 2148 | __kmem_free_invalid_object_size_panic( |
| 2149 | vm_map_t map, |
| 2150 | vm_address_t address, |
| 2151 | vm_size_t size, |
| 2152 | vm_map_entry_t entry) |
| 2153 | { |
| 2154 | vm_object_t object = VME_OBJECT(entry); |
| 2155 | vm_size_t objsize = __kmem_entry_orig_size(entry); |
| 2156 | |
| 2157 | panic("kmem_free(map=%p, addr=%p, size=%zd, entry=%p): " |
| 2158 | "object %p has unexpected size %ld" , |
| 2159 | map, (void *)address, (size_t)size, entry, object, objsize); |
| 2160 | } |
| 2161 | |
| 2162 | #endif /* KASAN */ |
| 2163 | |
| 2164 | vm_size_t |
| 2165 | kmem_free_guard( |
| 2166 | vm_map_t map, |
| 2167 | vm_offset_t req_addr, |
| 2168 | vm_size_t req_size, |
| 2169 | kmf_flags_t flags, |
| 2170 | kmem_guard_t guard) |
| 2171 | { |
| 2172 | vmr_flags_t vmr_flags = VM_MAP_REMOVE_KUNWIRE; |
| 2173 | vm_address_t addr = req_addr; |
| 2174 | vm_offset_t delta = 0; |
| 2175 | vm_size_t size; |
| 2176 | #if KASAN |
| 2177 | vm_map_entry_t entry; |
| 2178 | #endif /* KASAN */ |
| 2179 | |
| 2180 | assert(map->pmap == kernel_pmap); |
| 2181 | |
| 2182 | #if KASAN_CLASSIC |
| 2183 | if (flags & KMF_KASAN_GUARD) { |
| 2184 | addr -= PAGE_SIZE; |
| 2185 | delta = ptoa(2); |
| 2186 | } |
| 2187 | #endif /* KASAN_CLASSIC */ |
| 2188 | #if CONFIG_KERNEL_TAGGING |
| 2189 | if (flags & KMF_TAG) { |
| 2190 | vm_memtag_verify_tag(req_addr); |
| 2191 | addr = vm_memtag_canonicalize_address(req_addr); |
| 2192 | } |
| 2193 | #endif /* CONFIG_KERNEL_TAGGING */ |
| 2194 | |
| 2195 | if (flags & KMF_GUESS_SIZE) { |
| 2196 | vmr_flags |= VM_MAP_REMOVE_GUESS_SIZE; |
| 2197 | size = PAGE_SIZE; |
| 2198 | } else if (req_size == 0) { |
| 2199 | __kmem_invalid_size_panic(map, size: req_size, flags); |
| 2200 | } else { |
| 2201 | size = round_page(x: req_size) + delta; |
| 2202 | } |
| 2203 | |
| 2204 | vm_map_lock(map); |
| 2205 | |
| 2206 | #if KASAN |
| 2207 | if (!vm_map_lookup_entry(map, addr, &entry)) { |
| 2208 | __kmem_entry_not_found_panic(map, req_addr); |
| 2209 | } |
| 2210 | if (flags & KMF_GUESS_SIZE) { |
| 2211 | vmr_flags &= ~VM_MAP_REMOVE_GUESS_SIZE; |
| 2212 | req_size = __kmem_entry_orig_size(entry); |
| 2213 | size = round_page(req_size + delta); |
| 2214 | } else if (guard.kmg_atomic && entry->vme_kernel_object && |
| 2215 | __kmem_entry_orig_size(entry) != req_size) { |
| 2216 | /* |
| 2217 | * We can't make a strict check for regular |
| 2218 | * VM objects because it could be: |
| 2219 | * |
| 2220 | * - the kmem_guard_free() of a kmem_realloc_guard() without |
| 2221 | * KMR_FREEOLD, and in that case the object size won't match. |
| 2222 | * |
| 2223 | * - a submap, in which case there is no "orig size". |
| 2224 | */ |
| 2225 | __kmem_free_invalid_object_size_panic(map, |
| 2226 | req_addr, req_size + delta, entry); |
| 2227 | } |
| 2228 | #endif /* KASAN */ |
| 2229 | #if KASAN_CLASSIC |
| 2230 | if (flags & KMR_KASAN_GUARD) { |
| 2231 | kasan_poison_range(addr, size, ASAN_VALID); |
| 2232 | } |
| 2233 | #endif |
| 2234 | #if KASAN_TBI |
| 2235 | if (flags & KMF_TAG) { |
| 2236 | kasan_tbi_mark_free_space(req_addr, size); |
| 2237 | } |
| 2238 | #endif /* KASAN_TBI */ |
| 2239 | |
| 2240 | /* |
| 2241 | * vm_map_remove_and_unlock is called with VM_MAP_REMOVE_KUNWIRE, which |
| 2242 | * unwires the kernel mapping. The page won't be mapped any longer so |
| 2243 | * there is no extra step that is required for memory tagging to "clear" |
| 2244 | * it -- the page will be later laundered when reused. |
| 2245 | */ |
| 2246 | return vm_map_remove_and_unlock(map, start: addr, end: addr + size, |
| 2247 | flags: vmr_flags, guard).kmr_size - delta; |
| 2248 | } |
| 2249 | |
| 2250 | __exported void |
| 2251 | kmem_free_external( |
| 2252 | vm_map_t map, |
| 2253 | vm_offset_t addr, |
| 2254 | vm_size_t size); |
| 2255 | void |
| 2256 | kmem_free_external( |
| 2257 | vm_map_t map, |
| 2258 | vm_offset_t addr, |
| 2259 | vm_size_t size) |
| 2260 | { |
| 2261 | if (size) { |
| 2262 | kmem_free(map, trunc_page(addr), size); |
| 2263 | #if MACH_ASSERT |
| 2264 | } else { |
| 2265 | printf("kmem_free(map=%p, addr=%p) called with size=0, lr: %p\n" , |
| 2266 | map, (void *)addr, __builtin_return_address(0)); |
| 2267 | #endif |
| 2268 | } |
| 2269 | } |
| 2270 | |
| 2271 | #pragma mark kmem metadata |
| 2272 | |
| 2273 | /* |
| 2274 | * Guard objects for kmem pointer allocation: |
| 2275 | * |
| 2276 | * Guard objects introduce size slabs to kmem pointer allocations that are |
| 2277 | * allocated in chunks of n * sizeclass. When an allocation of a specific |
| 2278 | * sizeclass is requested a random slot from [0, n) is returned. |
| 2279 | * Allocations are returned from that chunk until m slots are left. The |
| 2280 | * remaining m slots are referred to as guard objects. They don't get |
| 2281 | * allocated and the chunk is now considered full. When an allocation is |
| 2282 | * freed to the chunk 1 slot is now available from m + 1 for the next |
| 2283 | * allocation of that sizeclass. |
| 2284 | * |
| 2285 | * Guard objects are intended to make exploitation of use after frees harder |
| 2286 | * as allocations that are freed can no longer be reliable reallocated. |
| 2287 | * They also make exploitation of OOBs harder as overflowing out of an |
| 2288 | * allocation can no longer be safe even with sufficient spraying. |
| 2289 | */ |
| 2290 | |
| 2291 | #define KMEM_META_PRIMARY UINT8_MAX |
| 2292 | #define KMEM_META_START (UINT8_MAX - 1) |
| 2293 | #define KMEM_META_FREE (UINT8_MAX - 2) |
| 2294 | #if __ARM_16K_PG__ |
| 2295 | #define KMEM_MIN_SIZE PAGE_SIZE |
| 2296 | #define KMEM_CHUNK_SIZE_MIN (KMEM_MIN_SIZE * 16) |
| 2297 | #else /* __ARM_16K_PG__ */ |
| 2298 | /* |
| 2299 | * PAGE_SIZE isn't a compile time constant on some arm64 devices. Those |
| 2300 | * devices use 4k page size when their RAM is <= 1GB and 16k otherwise. |
| 2301 | * Therefore populate sizeclasses from 4k for those devices. |
| 2302 | */ |
| 2303 | #define KMEM_MIN_SIZE (4 * 1024) |
| 2304 | #define KMEM_CHUNK_SIZE_MIN (KMEM_MIN_SIZE * 32) |
| 2305 | #endif /* __ARM_16K_PG__ */ |
| 2306 | #define KMEM_MAX_SIZE (32ULL << 20) |
| 2307 | #define KMEM_START_IDX (kmem_log2down(KMEM_MIN_SIZE)) |
| 2308 | #define KMEM_LAST_IDX (kmem_log2down(KMEM_MAX_SIZE)) |
| 2309 | #define KMEM_NUM_SIZECLASS (KMEM_LAST_IDX - KMEM_START_IDX + 1) |
| 2310 | #define KMEM_FRONTS (KMEM_RANGE_ID_NUM_PTR * 2) |
| 2311 | #define KMEM_NUM_GUARDS 2 |
| 2312 | |
| 2313 | struct kmem_page_meta { |
| 2314 | union { |
| 2315 | /* |
| 2316 | * On primary allocated chunk with KMEM_META_PRIMARY marker |
| 2317 | */ |
| 2318 | uint32_t km_bitmap; |
| 2319 | /* |
| 2320 | * On start and end of free chunk with KMEM_META_FREE marker |
| 2321 | */ |
| 2322 | uint32_t km_free_chunks; |
| 2323 | }; |
| 2324 | /* |
| 2325 | * KMEM_META_PRIMARY: Start meta of allocated chunk |
| 2326 | * KMEM_META_FREE : Start and end meta of free chunk |
| 2327 | * KMEM_META_START : Meta region start and end |
| 2328 | */ |
| 2329 | uint8_t km_page_marker; |
| 2330 | uint8_t km_sizeclass; |
| 2331 | union { |
| 2332 | /* |
| 2333 | * On primary allocated chunk with KMEM_META_PRIMARY marker |
| 2334 | */ |
| 2335 | uint16_t km_chunk_len; |
| 2336 | /* |
| 2337 | * On secondary allocated chunks |
| 2338 | */ |
| 2339 | uint16_t km_page_idx; |
| 2340 | }; |
| 2341 | LIST_ENTRY(kmem_page_meta) km_link; |
| 2342 | } kmem_page_meta_t; |
| 2343 | |
| 2344 | typedef LIST_HEAD(kmem_list_head, kmem_page_meta) kmem_list_head_t; |
| 2345 | struct kmem_sizeclass { |
| 2346 | vm_map_size_t ks_size; |
| 2347 | uint32_t ks_num_chunk; |
| 2348 | uint32_t ks_num_elem; |
| 2349 | crypto_random_ctx_t __zpercpu ks_rng_ctx; |
| 2350 | kmem_list_head_t ks_allfree_head[KMEM_FRONTS]; |
| 2351 | kmem_list_head_t ks_partial_head[KMEM_FRONTS]; |
| 2352 | kmem_list_head_t ks_full_head[KMEM_FRONTS]; |
| 2353 | }; |
| 2354 | |
| 2355 | static struct kmem_sizeclass kmem_size_array[KMEM_NUM_SIZECLASS]; |
| 2356 | |
| 2357 | /* |
| 2358 | * Locks to synchronize metadata population |
| 2359 | */ |
| 2360 | static LCK_GRP_DECLARE(kmem_locks_grp, "kmem_locks" ); |
| 2361 | static LCK_MTX_DECLARE(kmem_meta_region_lck, &kmem_locks_grp); |
| 2362 | #define kmem_meta_lock() lck_mtx_lock(&kmem_meta_region_lck) |
| 2363 | #define kmem_meta_unlock() lck_mtx_unlock(&kmem_meta_region_lck) |
| 2364 | |
| 2365 | static SECURITY_READ_ONLY_LATE(struct mach_vm_range) |
| 2366 | kmem_meta_range[KMEM_RANGE_ID_NUM_PTR + 1]; |
| 2367 | static SECURITY_READ_ONLY_LATE(struct kmem_page_meta *) |
| 2368 | kmem_meta_base[KMEM_RANGE_ID_NUM_PTR + 1]; |
| 2369 | /* |
| 2370 | * Keeps track of metadata high water mark for each front |
| 2371 | */ |
| 2372 | static struct kmem_page_meta *kmem_meta_hwm[KMEM_FRONTS]; |
| 2373 | static SECURITY_READ_ONLY_LATE(vm_map_t) |
| 2374 | kmem_meta_map[KMEM_RANGE_ID_NUM_PTR + 1]; |
| 2375 | static vm_map_size_t kmem_meta_size; |
| 2376 | |
| 2377 | static uint32_t |
| 2378 | kmem_get_front( |
| 2379 | kmem_range_id_t range_id, |
| 2380 | bool from_right) |
| 2381 | { |
| 2382 | assert((range_id >= KMEM_RANGE_ID_FIRST) && |
| 2383 | (range_id <= KMEM_RANGE_ID_NUM_PTR)); |
| 2384 | return (range_id - KMEM_RANGE_ID_FIRST) * 2 + from_right; |
| 2385 | } |
| 2386 | |
| 2387 | static inline uint32_t |
| 2388 | kmem_slot_idx_to_bit( |
| 2389 | uint32_t slot_idx, |
| 2390 | uint32_t size_idx __unused) |
| 2391 | { |
| 2392 | assert(slot_idx < kmem_size_array[size_idx].ks_num_elem); |
| 2393 | return 1ull << slot_idx; |
| 2394 | } |
| 2395 | |
| 2396 | static uint32_t |
| 2397 | kmem_get_idx_from_size(vm_map_size_t size) |
| 2398 | { |
| 2399 | assert(size >= KMEM_MIN_SIZE && size <= KMEM_MAX_SIZE); |
| 2400 | return kmem_log2down(size - 1) - KMEM_START_IDX + 1; |
| 2401 | } |
| 2402 | |
| 2403 | __abortlike |
| 2404 | static void |
| 2405 | kmem_invalid_size_idx(uint32_t idx) |
| 2406 | { |
| 2407 | panic("Invalid sizeclass idx %u" , idx); |
| 2408 | } |
| 2409 | |
| 2410 | static vm_map_size_t |
| 2411 | kmem_get_size_from_idx(uint32_t idx) |
| 2412 | { |
| 2413 | if (__improbable(idx >= KMEM_NUM_SIZECLASS)) { |
| 2414 | kmem_invalid_size_idx(idx); |
| 2415 | } |
| 2416 | return 1ul << (idx + KMEM_START_IDX); |
| 2417 | } |
| 2418 | |
| 2419 | static inline uint16_t |
| 2420 | kmem_get_page_idx(struct kmem_page_meta *meta) |
| 2421 | { |
| 2422 | uint8_t page_marker = meta->km_page_marker; |
| 2423 | |
| 2424 | return (page_marker == KMEM_META_PRIMARY) ? 0 : meta->km_page_idx; |
| 2425 | } |
| 2426 | |
| 2427 | __abortlike |
| 2428 | static void |
| 2429 | kmem_invalid_chunk_len(struct kmem_page_meta *meta) |
| 2430 | { |
| 2431 | panic("Reading free chunks for meta %p where marker != KMEM_META_PRIMARY" , |
| 2432 | meta); |
| 2433 | } |
| 2434 | |
| 2435 | static inline uint16_t |
| 2436 | kmem_get_chunk_len(struct kmem_page_meta *meta) |
| 2437 | { |
| 2438 | if (__improbable(meta->km_page_marker != KMEM_META_PRIMARY)) { |
| 2439 | kmem_invalid_chunk_len(meta); |
| 2440 | } |
| 2441 | |
| 2442 | return meta->km_chunk_len; |
| 2443 | } |
| 2444 | |
| 2445 | __abortlike |
| 2446 | static void |
| 2447 | kmem_invalid_free_chunk_len(struct kmem_page_meta *meta) |
| 2448 | { |
| 2449 | panic("Reading free chunks for meta %p where marker != KMEM_META_FREE" , |
| 2450 | meta); |
| 2451 | } |
| 2452 | |
| 2453 | static inline uint32_t |
| 2454 | kmem_get_free_chunk_len(struct kmem_page_meta *meta) |
| 2455 | { |
| 2456 | if (__improbable(meta->km_page_marker != KMEM_META_FREE)) { |
| 2457 | kmem_invalid_free_chunk_len(meta); |
| 2458 | } |
| 2459 | |
| 2460 | return meta->km_free_chunks; |
| 2461 | } |
| 2462 | |
| 2463 | /* |
| 2464 | * Return the metadata corresponding to the specified address |
| 2465 | */ |
| 2466 | static struct kmem_page_meta * |
| 2467 | kmem_addr_to_meta( |
| 2468 | vm_map_offset_t addr, |
| 2469 | vm_map_range_id_t range_id, |
| 2470 | vm_map_offset_t *range_start, |
| 2471 | uint64_t *meta_idx) |
| 2472 | { |
| 2473 | struct kmem_page_meta *meta_base = kmem_meta_base[range_id]; |
| 2474 | |
| 2475 | *range_start = kmem_ranges[range_id].min_address; |
| 2476 | *meta_idx = (addr - *range_start) / KMEM_CHUNK_SIZE_MIN; |
| 2477 | return &meta_base[*meta_idx]; |
| 2478 | } |
| 2479 | |
| 2480 | /* |
| 2481 | * Return the metadata start of the chunk that the address belongs to |
| 2482 | */ |
| 2483 | static struct kmem_page_meta * |
| 2484 | kmem_addr_to_meta_start( |
| 2485 | vm_address_t addr, |
| 2486 | vm_map_range_id_t range_id, |
| 2487 | vm_map_offset_t *chunk_start) |
| 2488 | { |
| 2489 | vm_map_offset_t range_start; |
| 2490 | uint64_t meta_idx; |
| 2491 | struct kmem_page_meta *meta; |
| 2492 | |
| 2493 | meta = kmem_addr_to_meta(addr, range_id, range_start: &range_start, meta_idx: &meta_idx); |
| 2494 | meta_idx -= kmem_get_page_idx(meta); |
| 2495 | meta -= kmem_get_page_idx(meta); |
| 2496 | assert(meta->km_page_marker == KMEM_META_PRIMARY); |
| 2497 | *chunk_start = range_start + (meta_idx * KMEM_CHUNK_SIZE_MIN); |
| 2498 | return meta; |
| 2499 | } |
| 2500 | |
| 2501 | __startup_func |
| 2502 | static void |
| 2503 | kmem_init_meta_front( |
| 2504 | struct kmem_page_meta *meta, |
| 2505 | kmem_range_id_t range_id, |
| 2506 | bool from_right) |
| 2507 | { |
| 2508 | kernel_memory_populate(trunc_page((vm_map_offset_t) meta), PAGE_SIZE, |
| 2509 | flags: KMA_KOBJECT | KMA_ZERO | KMA_NOFAIL, VM_KERN_MEMORY_OSFMK); |
| 2510 | meta->km_page_marker = KMEM_META_START; |
| 2511 | if (!from_right) { |
| 2512 | meta++; |
| 2513 | kmem_meta_base[range_id] = meta; |
| 2514 | } |
| 2515 | kmem_meta_hwm[kmem_get_front(range_id, from_right)] = meta; |
| 2516 | } |
| 2517 | |
| 2518 | __startup_func |
| 2519 | static void |
| 2520 | kmem_metadata_init(void) |
| 2521 | { |
| 2522 | for (kmem_range_id_t i = KMEM_RANGE_ID_FIRST; i <= kmem_ptr_ranges; i++) { |
| 2523 | vm_map_offset_t addr = kmem_meta_range[i].min_address; |
| 2524 | struct kmem_page_meta *meta; |
| 2525 | uint64_t meta_idx; |
| 2526 | |
| 2527 | vm_map_will_allocate_early_map(map_owner: &kmem_meta_map[i]); |
| 2528 | kmem_meta_map[i] = kmem_suballoc(parent: kernel_map, addr: &addr, size: kmem_meta_size, |
| 2529 | vmc_options: VM_MAP_CREATE_NEVER_FAULTS | VM_MAP_CREATE_DISABLE_HOLELIST, |
| 2530 | VM_FLAGS_FIXED | VM_FLAGS_OVERWRITE, flags: KMS_PERMANENT | KMS_NOFAIL, |
| 2531 | VM_KERN_MEMORY_OSFMK).kmr_submap; |
| 2532 | |
| 2533 | kmem_meta_range[i].min_address = addr; |
| 2534 | kmem_meta_range[i].max_address = addr + kmem_meta_size; |
| 2535 | |
| 2536 | meta = (struct kmem_page_meta *) kmem_meta_range[i].min_address; |
| 2537 | kmem_init_meta_front(meta, range_id: i, from_right: 0); |
| 2538 | |
| 2539 | meta = kmem_addr_to_meta(addr: kmem_ranges[i].max_address, range_id: i, range_start: &addr, |
| 2540 | meta_idx: &meta_idx); |
| 2541 | kmem_init_meta_front(meta, range_id: i, from_right: 1); |
| 2542 | } |
| 2543 | } |
| 2544 | |
| 2545 | __startup_func |
| 2546 | static void |
| 2547 | kmem_init_front_head( |
| 2548 | struct kmem_sizeclass *ks, |
| 2549 | uint32_t front) |
| 2550 | { |
| 2551 | LIST_INIT(&ks->ks_allfree_head[front]); |
| 2552 | LIST_INIT(&ks->ks_partial_head[front]); |
| 2553 | LIST_INIT(&ks->ks_full_head[front]); |
| 2554 | } |
| 2555 | |
| 2556 | __startup_func |
| 2557 | static void |
| 2558 | kmem_sizeclass_init(void) |
| 2559 | { |
| 2560 | for (uint32_t i = 0; i < KMEM_NUM_SIZECLASS; i++) { |
| 2561 | struct kmem_sizeclass *ks = &kmem_size_array[i]; |
| 2562 | kmem_range_id_t range_id = KMEM_RANGE_ID_FIRST; |
| 2563 | |
| 2564 | ks->ks_size = kmem_get_size_from_idx(idx: i); |
| 2565 | ks->ks_num_chunk = roundup(8 * ks->ks_size, KMEM_CHUNK_SIZE_MIN) / |
| 2566 | KMEM_CHUNK_SIZE_MIN; |
| 2567 | ks->ks_num_elem = (ks->ks_num_chunk * KMEM_CHUNK_SIZE_MIN) / ks->ks_size; |
| 2568 | assert(ks->ks_num_elem <= |
| 2569 | (sizeof(((struct kmem_page_meta *)0)->km_bitmap) * 8)); |
| 2570 | for (; range_id <= KMEM_RANGE_ID_NUM_PTR; range_id++) { |
| 2571 | kmem_init_front_head(ks, front: kmem_get_front(range_id, from_right: 0)); |
| 2572 | kmem_init_front_head(ks, front: kmem_get_front(range_id, from_right: 1)); |
| 2573 | } |
| 2574 | } |
| 2575 | } |
| 2576 | |
| 2577 | /* |
| 2578 | * This is done during EARLY_BOOT as it needs the corecrypto module to be |
| 2579 | * set up. |
| 2580 | */ |
| 2581 | __startup_func |
| 2582 | static void |
| 2583 | kmem_crypto_init(void) |
| 2584 | { |
| 2585 | vm_size_t ctx_size = crypto_random_kmem_ctx_size(); |
| 2586 | |
| 2587 | for (uint32_t i = 0; i < KMEM_NUM_SIZECLASS; i++) { |
| 2588 | struct kmem_sizeclass *ks = &kmem_size_array[i]; |
| 2589 | |
| 2590 | ks->ks_rng_ctx = zalloc_percpu_permanent(size: ctx_size, ZALIGN_PTR); |
| 2591 | zpercpu_foreach(ctx, ks->ks_rng_ctx) { |
| 2592 | crypto_random_kmem_init(ctx); |
| 2593 | } |
| 2594 | } |
| 2595 | } |
| 2596 | STARTUP(EARLY_BOOT, STARTUP_RANK_MIDDLE, kmem_crypto_init); |
| 2597 | |
| 2598 | __abortlike |
| 2599 | static void |
| 2600 | kmem_validate_slot_panic( |
| 2601 | vm_map_offset_t addr, |
| 2602 | struct kmem_page_meta *meta, |
| 2603 | uint32_t slot_idx, |
| 2604 | uint32_t size_idx) |
| 2605 | { |
| 2606 | if (meta->km_page_marker != KMEM_META_PRIMARY) { |
| 2607 | panic("Metadata (%p) for addr (%p) not primary" , meta, (void *)addr); |
| 2608 | } |
| 2609 | if (meta->km_sizeclass != size_idx) { |
| 2610 | panic("Metadata's (%p) sizeclass (%u != %u) changed during deletion" , |
| 2611 | meta, meta->km_sizeclass, size_idx); |
| 2612 | } |
| 2613 | panic("Double free detected: Slot (%u) in meta (%p) for addr %p marked free" , |
| 2614 | slot_idx, meta, (void *)addr); |
| 2615 | } |
| 2616 | |
| 2617 | __abortlike |
| 2618 | static void |
| 2619 | kmem_invalid_slot_for_addr( |
| 2620 | mach_vm_range_t slot, |
| 2621 | vm_map_offset_t start, |
| 2622 | vm_map_offset_t end) |
| 2623 | { |
| 2624 | panic("Invalid kmem ptr slot [%p:%p] for allocation [%p:%p]" , |
| 2625 | (void *)slot->min_address, (void *)slot->max_address, |
| 2626 | (void *)start, (void *)end); |
| 2627 | } |
| 2628 | |
| 2629 | void |
| 2630 | kmem_validate_slot( |
| 2631 | vm_map_offset_t addr, |
| 2632 | struct kmem_page_meta *meta, |
| 2633 | uint32_t size_idx, |
| 2634 | uint32_t slot_idx) |
| 2635 | { |
| 2636 | if ((meta->km_page_marker != KMEM_META_PRIMARY) || |
| 2637 | (meta->km_sizeclass != size_idx) || |
| 2638 | ((meta->km_bitmap & kmem_slot_idx_to_bit(slot_idx, size_idx)) != 0)) { |
| 2639 | kmem_validate_slot_panic(addr, meta, slot_idx: size_idx, size_idx: slot_idx); |
| 2640 | } |
| 2641 | } |
| 2642 | |
| 2643 | static void |
| 2644 | kmem_validate_slot_initial( |
| 2645 | mach_vm_range_t slot, |
| 2646 | vm_map_offset_t start, |
| 2647 | vm_map_offset_t end, |
| 2648 | struct kmem_page_meta *meta, |
| 2649 | uint32_t size_idx, |
| 2650 | uint32_t slot_idx) |
| 2651 | { |
| 2652 | if ((slot->min_address == 0) || (slot->max_address == 0) || |
| 2653 | (start < slot->min_address) || (start >= slot->max_address) || |
| 2654 | (end > slot->max_address)) { |
| 2655 | kmem_invalid_slot_for_addr(slot, start, end); |
| 2656 | } |
| 2657 | |
| 2658 | kmem_validate_slot(addr: start, meta, size_idx, slot_idx); |
| 2659 | } |
| 2660 | |
| 2661 | uint32_t |
| 2662 | kmem_addr_get_slot_idx( |
| 2663 | vm_map_offset_t start, |
| 2664 | vm_map_offset_t end, |
| 2665 | vm_map_range_id_t range_id, |
| 2666 | struct kmem_page_meta **meta, |
| 2667 | uint32_t *size_idx, |
| 2668 | mach_vm_range_t slot) |
| 2669 | { |
| 2670 | vm_map_offset_t chunk_start; |
| 2671 | vm_map_size_t slot_size; |
| 2672 | uint32_t slot_idx; |
| 2673 | |
| 2674 | *meta = kmem_addr_to_meta_start(addr: start, range_id, chunk_start: &chunk_start); |
| 2675 | *size_idx = (*meta)->km_sizeclass; |
| 2676 | slot_size = kmem_get_size_from_idx(idx: *size_idx); |
| 2677 | slot_idx = (start - chunk_start) / slot_size; |
| 2678 | slot->min_address = chunk_start + slot_idx * slot_size; |
| 2679 | slot->max_address = slot->min_address + slot_size; |
| 2680 | |
| 2681 | kmem_validate_slot_initial(slot, start, end, meta: *meta, size_idx: *size_idx, slot_idx); |
| 2682 | |
| 2683 | return slot_idx; |
| 2684 | } |
| 2685 | |
| 2686 | static bool |
| 2687 | kmem_populate_needed(vm_offset_t from, vm_offset_t to) |
| 2688 | { |
| 2689 | #if KASAN |
| 2690 | #pragma unused(from, to) |
| 2691 | return true; |
| 2692 | #else |
| 2693 | vm_offset_t page_addr = trunc_page(from); |
| 2694 | |
| 2695 | for (; page_addr < to; page_addr += PAGE_SIZE) { |
| 2696 | /* |
| 2697 | * This can race with another thread doing a populate on the same metadata |
| 2698 | * page, where we see an updated pmap but unmapped KASan shadow, causing a |
| 2699 | * fault in the shadow when we first access the metadata page. Avoid this |
| 2700 | * by always synchronizing on the kmem_meta_lock with KASan. |
| 2701 | */ |
| 2702 | if (!pmap_find_phys(map: kernel_pmap, va: page_addr)) { |
| 2703 | return true; |
| 2704 | } |
| 2705 | } |
| 2706 | |
| 2707 | return false; |
| 2708 | #endif /* !KASAN */ |
| 2709 | } |
| 2710 | |
| 2711 | static void |
| 2712 | kmem_populate_meta_locked(vm_offset_t from, vm_offset_t to) |
| 2713 | { |
| 2714 | vm_offset_t page_addr = trunc_page(from); |
| 2715 | |
| 2716 | vm_map_unlock(kernel_map); |
| 2717 | |
| 2718 | for (; page_addr < to; page_addr += PAGE_SIZE) { |
| 2719 | for (;;) { |
| 2720 | kern_return_t ret = KERN_SUCCESS; |
| 2721 | |
| 2722 | /* |
| 2723 | * All updates to kmem metadata are done under the kmem_meta_lock |
| 2724 | */ |
| 2725 | kmem_meta_lock(); |
| 2726 | if (0 == pmap_find_phys(map: kernel_pmap, va: page_addr)) { |
| 2727 | ret = kernel_memory_populate(addr: page_addr, |
| 2728 | PAGE_SIZE, flags: KMA_NOPAGEWAIT | KMA_KOBJECT | KMA_ZERO, |
| 2729 | VM_KERN_MEMORY_OSFMK); |
| 2730 | } |
| 2731 | kmem_meta_unlock(); |
| 2732 | |
| 2733 | if (ret == KERN_SUCCESS) { |
| 2734 | break; |
| 2735 | } |
| 2736 | |
| 2737 | /* |
| 2738 | * We can't pass KMA_NOPAGEWAIT under a global lock as it leads |
| 2739 | * to bad system deadlocks, so if the allocation failed, |
| 2740 | * we need to do the VM_PAGE_WAIT() outside of the lock. |
| 2741 | */ |
| 2742 | VM_PAGE_WAIT(); |
| 2743 | } |
| 2744 | } |
| 2745 | |
| 2746 | vm_map_lock(kernel_map); |
| 2747 | } |
| 2748 | |
| 2749 | __abortlike |
| 2750 | static void |
| 2751 | kmem_invalid_meta_panic( |
| 2752 | struct kmem_page_meta *meta, |
| 2753 | uint32_t slot_idx, |
| 2754 | struct kmem_sizeclass sizeclass) |
| 2755 | { |
| 2756 | uint32_t size_idx = kmem_get_idx_from_size(size: sizeclass.ks_size); |
| 2757 | |
| 2758 | if (slot_idx >= sizeclass.ks_num_elem) { |
| 2759 | panic("Invalid slot idx %u [0:%u] for meta %p" , slot_idx, |
| 2760 | sizeclass.ks_num_elem, meta); |
| 2761 | } |
| 2762 | if (meta->km_sizeclass != size_idx) { |
| 2763 | panic("Invalid size_idx (%u != %u) in meta %p" , size_idx, |
| 2764 | meta->km_sizeclass, meta); |
| 2765 | } |
| 2766 | panic("page_marker %u not primary in meta %p" , meta->km_page_marker, meta); |
| 2767 | } |
| 2768 | |
| 2769 | __abortlike |
| 2770 | static void |
| 2771 | kmem_slot_has_entry_panic( |
| 2772 | vm_map_entry_t entry, |
| 2773 | vm_map_offset_t addr) |
| 2774 | { |
| 2775 | panic("Entry (%p) already exists for addr (%p) being returned" , |
| 2776 | entry, (void *)addr); |
| 2777 | } |
| 2778 | |
| 2779 | __abortlike |
| 2780 | static void |
| 2781 | kmem_slot_not_found( |
| 2782 | struct kmem_page_meta *meta, |
| 2783 | uint32_t slot_idx) |
| 2784 | { |
| 2785 | panic("%uth free slot not found for meta %p bitmap %u" , slot_idx, meta, |
| 2786 | meta->km_bitmap); |
| 2787 | } |
| 2788 | |
| 2789 | /* |
| 2790 | * Returns a 16bit random number between 0 and |
| 2791 | * upper_limit (inclusive) |
| 2792 | */ |
| 2793 | __startup_func |
| 2794 | uint16_t |
| 2795 | kmem_get_random16( |
| 2796 | uint16_t upper_limit) |
| 2797 | { |
| 2798 | static uint64_t random_entropy; |
| 2799 | assert(upper_limit < UINT16_MAX); |
| 2800 | if (random_entropy == 0) { |
| 2801 | random_entropy = early_random(); |
| 2802 | } |
| 2803 | uint32_t result = random_entropy & UINT32_MAX; |
| 2804 | random_entropy >>= 32; |
| 2805 | return (uint16_t)(result % (upper_limit + 1)); |
| 2806 | } |
| 2807 | |
| 2808 | static uint32_t |
| 2809 | kmem_get_nth_free_slot( |
| 2810 | struct kmem_page_meta *meta, |
| 2811 | uint32_t n, |
| 2812 | uint32_t bitmap) |
| 2813 | { |
| 2814 | uint32_t zeros_seen = 0, ones_seen = 0; |
| 2815 | |
| 2816 | while (bitmap) { |
| 2817 | uint32_t count = __builtin_ctz(bitmap); |
| 2818 | |
| 2819 | zeros_seen += count; |
| 2820 | bitmap >>= count; |
| 2821 | if (__probable(~bitmap)) { |
| 2822 | count = __builtin_ctz(~bitmap); |
| 2823 | } else { |
| 2824 | count = 32; |
| 2825 | } |
| 2826 | if (count + ones_seen > n) { |
| 2827 | return zeros_seen + n; |
| 2828 | } |
| 2829 | ones_seen += count; |
| 2830 | bitmap >>= count; |
| 2831 | } |
| 2832 | |
| 2833 | kmem_slot_not_found(meta, slot_idx: n); |
| 2834 | } |
| 2835 | |
| 2836 | |
| 2837 | static uint32_t |
| 2838 | kmem_get_next_slot( |
| 2839 | struct kmem_page_meta *meta, |
| 2840 | struct kmem_sizeclass sizeclass, |
| 2841 | uint32_t bitmap) |
| 2842 | { |
| 2843 | uint32_t num_slots = __builtin_popcount(bitmap); |
| 2844 | uint64_t slot_idx = 0; |
| 2845 | |
| 2846 | assert(num_slots > 0); |
| 2847 | if (__improbable(startup_phase < STARTUP_SUB_EARLY_BOOT)) { |
| 2848 | /* |
| 2849 | * Use early random prior to early boot as the ks_rng_ctx requires |
| 2850 | * the corecrypto module to be setup before it is initialized and |
| 2851 | * used. |
| 2852 | * |
| 2853 | * num_slots can't be 0 as we take this path when we have more than |
| 2854 | * one slot left. |
| 2855 | */ |
| 2856 | slot_idx = kmem_get_random16(upper_limit: (uint16_t)num_slots - 1); |
| 2857 | } else { |
| 2858 | crypto_random_uniform(zpercpu_get(sizeclass.ks_rng_ctx), bound: num_slots, |
| 2859 | random: &slot_idx); |
| 2860 | } |
| 2861 | |
| 2862 | return kmem_get_nth_free_slot(meta, n: slot_idx, bitmap); |
| 2863 | } |
| 2864 | |
| 2865 | /* |
| 2866 | * Returns an unallocated slot from the given metadata |
| 2867 | */ |
| 2868 | static vm_map_offset_t |
| 2869 | kmem_get_addr_from_meta( |
| 2870 | struct kmem_page_meta *meta, |
| 2871 | vm_map_range_id_t range_id, |
| 2872 | struct kmem_sizeclass sizeclass, |
| 2873 | vm_map_entry_t *entry) |
| 2874 | { |
| 2875 | vm_map_offset_t addr; |
| 2876 | vm_map_size_t size = sizeclass.ks_size; |
| 2877 | uint32_t size_idx = kmem_get_idx_from_size(size); |
| 2878 | uint64_t meta_idx = meta - kmem_meta_base[range_id]; |
| 2879 | mach_vm_offset_t range_start = kmem_ranges[range_id].min_address; |
| 2880 | uint32_t slot_bit; |
| 2881 | uint32_t slot_idx = kmem_get_next_slot(meta, sizeclass, bitmap: meta->km_bitmap); |
| 2882 | |
| 2883 | if ((slot_idx >= sizeclass.ks_num_elem) || |
| 2884 | (meta->km_sizeclass != size_idx) || |
| 2885 | (meta->km_page_marker != KMEM_META_PRIMARY)) { |
| 2886 | kmem_invalid_meta_panic(meta, slot_idx, sizeclass); |
| 2887 | } |
| 2888 | |
| 2889 | slot_bit = kmem_slot_idx_to_bit(slot_idx, size_idx); |
| 2890 | meta->km_bitmap &= ~slot_bit; |
| 2891 | |
| 2892 | addr = range_start + (meta_idx * KMEM_CHUNK_SIZE_MIN) + (slot_idx * size); |
| 2893 | assert(kmem_range_contains_fully(range_id, addr, size)); |
| 2894 | if (vm_map_lookup_entry(map: kernel_map, address: addr, entry)) { |
| 2895 | kmem_slot_has_entry_panic(entry: *entry, addr); |
| 2896 | } |
| 2897 | if ((*entry != vm_map_to_entry(kernel_map)) && |
| 2898 | ((*entry)->vme_next != vm_map_to_entry(kernel_map)) && |
| 2899 | ((*entry)->vme_next->vme_start < (addr + size))) { |
| 2900 | kmem_slot_has_entry_panic(entry: *entry, addr); |
| 2901 | } |
| 2902 | return addr; |
| 2903 | } |
| 2904 | |
| 2905 | __abortlike |
| 2906 | static void |
| 2907 | kmem_range_out_of_va( |
| 2908 | kmem_range_id_t range_id, |
| 2909 | uint32_t num_chunks) |
| 2910 | { |
| 2911 | panic("No more VA to allocate %u chunks in range %u" , num_chunks, range_id); |
| 2912 | } |
| 2913 | |
| 2914 | static void |
| 2915 | kmem_init_allocated_chunk( |
| 2916 | struct kmem_page_meta *meta, |
| 2917 | struct kmem_sizeclass sizeclass, |
| 2918 | uint32_t size_idx) |
| 2919 | { |
| 2920 | uint32_t meta_num = sizeclass.ks_num_chunk; |
| 2921 | uint32_t num_elem = sizeclass.ks_num_elem; |
| 2922 | |
| 2923 | meta->km_bitmap = (1ull << num_elem) - 1; |
| 2924 | meta->km_chunk_len = (uint16_t)meta_num; |
| 2925 | assert(LIST_NEXT(meta, km_link) == NULL); |
| 2926 | assert(meta->km_link.le_prev == NULL); |
| 2927 | meta->km_sizeclass = (uint8_t)size_idx; |
| 2928 | meta->km_page_marker = KMEM_META_PRIMARY; |
| 2929 | meta++; |
| 2930 | for (uint32_t i = 1; i < meta_num; i++) { |
| 2931 | meta->km_page_idx = (uint16_t)i; |
| 2932 | meta->km_sizeclass = (uint8_t)size_idx; |
| 2933 | meta->km_page_marker = 0; |
| 2934 | meta->km_bitmap = 0; |
| 2935 | meta++; |
| 2936 | } |
| 2937 | } |
| 2938 | |
| 2939 | static uint32_t |
| 2940 | kmem_get_additional_meta( |
| 2941 | struct kmem_page_meta *meta, |
| 2942 | uint32_t meta_req, |
| 2943 | bool from_right, |
| 2944 | struct kmem_page_meta **adj_free_meta) |
| 2945 | { |
| 2946 | struct kmem_page_meta *meta_prev = from_right ? meta : (meta - 1); |
| 2947 | |
| 2948 | if (meta_prev->km_page_marker == KMEM_META_FREE) { |
| 2949 | uint32_t chunk_len = kmem_get_free_chunk_len(meta: meta_prev); |
| 2950 | |
| 2951 | *adj_free_meta = from_right ? meta_prev : (meta_prev - chunk_len + 1); |
| 2952 | meta_req -= chunk_len; |
| 2953 | } else { |
| 2954 | *adj_free_meta = NULL; |
| 2955 | } |
| 2956 | |
| 2957 | return meta_req; |
| 2958 | } |
| 2959 | |
| 2960 | |
| 2961 | static struct kmem_page_meta * |
| 2962 | kmem_get_new_chunk( |
| 2963 | vm_map_range_id_t range_id, |
| 2964 | bool from_right, |
| 2965 | uint32_t size_idx) |
| 2966 | { |
| 2967 | struct kmem_sizeclass sizeclass = kmem_size_array[size_idx]; |
| 2968 | struct kmem_page_meta *start, *end, *meta_update; |
| 2969 | struct kmem_page_meta *adj_free_meta = NULL; |
| 2970 | uint32_t meta_req = sizeclass.ks_num_chunk; |
| 2971 | |
| 2972 | for (;;) { |
| 2973 | struct kmem_page_meta *metaf = kmem_meta_hwm[kmem_get_front(range_id, from_right: 0)]; |
| 2974 | struct kmem_page_meta *metab = kmem_meta_hwm[kmem_get_front(range_id, from_right: 1)]; |
| 2975 | struct kmem_page_meta *meta; |
| 2976 | vm_offset_t start_addr, end_addr; |
| 2977 | uint32_t meta_num; |
| 2978 | |
| 2979 | meta = from_right ? metab : metaf; |
| 2980 | meta_num = kmem_get_additional_meta(meta, meta_req, from_right, |
| 2981 | adj_free_meta: &adj_free_meta); |
| 2982 | |
| 2983 | if (metaf + meta_num >= metab) { |
| 2984 | kmem_range_out_of_va(range_id, num_chunks: meta_num); |
| 2985 | } |
| 2986 | |
| 2987 | start = from_right ? (metab - meta_num) : metaf; |
| 2988 | end = from_right ? metab : (metaf + meta_num); |
| 2989 | |
| 2990 | start_addr = (vm_offset_t)start; |
| 2991 | end_addr = (vm_offset_t)end; |
| 2992 | |
| 2993 | /* |
| 2994 | * If the new high watermark stays on the same page, |
| 2995 | * no need to populate and drop the lock. |
| 2996 | */ |
| 2997 | if (!page_aligned(from_right ? end_addr : start_addr) && |
| 2998 | trunc_page(start_addr) == trunc_page(end_addr - 1)) { |
| 2999 | break; |
| 3000 | } |
| 3001 | if (!kmem_populate_needed(from: start_addr, to: end_addr)) { |
| 3002 | break; |
| 3003 | } |
| 3004 | |
| 3005 | kmem_populate_meta_locked(from: start_addr, to: end_addr); |
| 3006 | |
| 3007 | /* |
| 3008 | * Since we dropped the lock, reassess conditions still hold: |
| 3009 | * - the HWM we are changing must not have moved |
| 3010 | * - the other HWM must not intersect with ours |
| 3011 | * - in case of coalescing, the adjacent free meta must still |
| 3012 | * be free and of the same size. |
| 3013 | * |
| 3014 | * If we failed to grow, reevaluate whether freelists have |
| 3015 | * entries now by returning NULL. |
| 3016 | */ |
| 3017 | metaf = kmem_meta_hwm[kmem_get_front(range_id, from_right: 0)]; |
| 3018 | metab = kmem_meta_hwm[kmem_get_front(range_id, from_right: 1)]; |
| 3019 | if (meta != (from_right ? metab : metaf)) { |
| 3020 | return NULL; |
| 3021 | } |
| 3022 | if (metaf + meta_num >= metab) { |
| 3023 | kmem_range_out_of_va(range_id, num_chunks: meta_num); |
| 3024 | } |
| 3025 | if (adj_free_meta) { |
| 3026 | if (adj_free_meta->km_page_marker != KMEM_META_FREE || |
| 3027 | kmem_get_free_chunk_len(meta: adj_free_meta) != |
| 3028 | meta_req - meta_num) { |
| 3029 | return NULL; |
| 3030 | } |
| 3031 | } |
| 3032 | |
| 3033 | break; |
| 3034 | } |
| 3035 | |
| 3036 | /* |
| 3037 | * If there is an adjacent free chunk remove it from free list |
| 3038 | */ |
| 3039 | if (adj_free_meta) { |
| 3040 | LIST_REMOVE(adj_free_meta, km_link); |
| 3041 | LIST_NEXT(adj_free_meta, km_link) = NULL; |
| 3042 | adj_free_meta->km_link.le_prev = NULL; |
| 3043 | } |
| 3044 | |
| 3045 | /* |
| 3046 | * Update hwm |
| 3047 | */ |
| 3048 | meta_update = from_right ? start : end; |
| 3049 | kmem_meta_hwm[kmem_get_front(range_id, from_right)] = meta_update; |
| 3050 | |
| 3051 | /* |
| 3052 | * Initialize metadata |
| 3053 | */ |
| 3054 | start = from_right ? start : (end - meta_req); |
| 3055 | kmem_init_allocated_chunk(meta: start, sizeclass, size_idx); |
| 3056 | |
| 3057 | return start; |
| 3058 | } |
| 3059 | |
| 3060 | static void |
| 3061 | kmem_requeue_meta( |
| 3062 | struct kmem_page_meta *meta, |
| 3063 | struct kmem_list_head *head) |
| 3064 | { |
| 3065 | LIST_REMOVE(meta, km_link); |
| 3066 | LIST_INSERT_HEAD(head, meta, km_link); |
| 3067 | } |
| 3068 | |
| 3069 | /* |
| 3070 | * Return corresponding sizeclass to stash free chunks in |
| 3071 | */ |
| 3072 | __abortlike |
| 3073 | static void |
| 3074 | kmem_invalid_chunk_num(uint32_t chunks) |
| 3075 | { |
| 3076 | panic("Invalid number of chunks %u\n" , chunks); |
| 3077 | } |
| 3078 | |
| 3079 | static uint32_t |
| 3080 | kmem_get_size_idx_for_chunks(uint32_t chunks) |
| 3081 | { |
| 3082 | for (uint32_t i = KMEM_NUM_SIZECLASS - 1; i > 0; i--) { |
| 3083 | if (chunks >= kmem_size_array[i].ks_num_chunk) { |
| 3084 | return i; |
| 3085 | } |
| 3086 | } |
| 3087 | kmem_invalid_chunk_num(chunks); |
| 3088 | } |
| 3089 | |
| 3090 | static void |
| 3091 | kmem_clear_meta_range(struct kmem_page_meta *meta, uint32_t count) |
| 3092 | { |
| 3093 | bzero(s: meta, n: count * sizeof(struct kmem_page_meta)); |
| 3094 | } |
| 3095 | |
| 3096 | static void |
| 3097 | kmem_check_meta_range_is_clear(struct kmem_page_meta *meta, uint32_t count) |
| 3098 | { |
| 3099 | #if MACH_ASSERT |
| 3100 | size_t size = count * sizeof(struct kmem_page_meta); |
| 3101 | |
| 3102 | assert(memcmp_zero_ptr_aligned(meta, size) == 0); |
| 3103 | #else |
| 3104 | #pragma unused(meta, count) |
| 3105 | #endif |
| 3106 | } |
| 3107 | |
| 3108 | /*! |
| 3109 | * @function kmem_init_free_chunk() |
| 3110 | * |
| 3111 | * @discussion |
| 3112 | * This function prepares a range of chunks to be put on a free list. |
| 3113 | * The first and last metadata might be dirty, but the "inner" ones |
| 3114 | * must be zero filled by the caller prior to calling this function. |
| 3115 | */ |
| 3116 | static void |
| 3117 | kmem_init_free_chunk( |
| 3118 | struct kmem_page_meta *meta, |
| 3119 | uint32_t num_chunks, |
| 3120 | uint32_t front) |
| 3121 | { |
| 3122 | struct kmem_sizeclass *sizeclass; |
| 3123 | uint32_t size_idx = kmem_get_size_idx_for_chunks(chunks: num_chunks); |
| 3124 | |
| 3125 | if (num_chunks > 2) { |
| 3126 | kmem_check_meta_range_is_clear(meta: meta + 1, count: num_chunks - 2); |
| 3127 | } |
| 3128 | |
| 3129 | meta[0] = (struct kmem_page_meta){ |
| 3130 | .km_free_chunks = num_chunks, |
| 3131 | .km_page_marker = KMEM_META_FREE, |
| 3132 | .km_sizeclass = (uint8_t)size_idx, |
| 3133 | }; |
| 3134 | if (num_chunks > 1) { |
| 3135 | meta[num_chunks - 1] = (struct kmem_page_meta){ |
| 3136 | .km_free_chunks = num_chunks, |
| 3137 | .km_page_marker = KMEM_META_FREE, |
| 3138 | .km_sizeclass = (uint8_t)size_idx, |
| 3139 | }; |
| 3140 | } |
| 3141 | |
| 3142 | sizeclass = &kmem_size_array[size_idx]; |
| 3143 | LIST_INSERT_HEAD(&sizeclass->ks_allfree_head[front], meta, km_link); |
| 3144 | } |
| 3145 | |
| 3146 | static struct kmem_page_meta * |
| 3147 | kmem_get_free_chunk_from_list( |
| 3148 | struct kmem_sizeclass *org_sizeclass, |
| 3149 | uint32_t size_idx, |
| 3150 | uint32_t front) |
| 3151 | { |
| 3152 | struct kmem_sizeclass *sizeclass; |
| 3153 | uint32_t num_chunks = org_sizeclass->ks_num_chunk; |
| 3154 | struct kmem_page_meta *meta; |
| 3155 | uint32_t idx = size_idx; |
| 3156 | |
| 3157 | while (idx < KMEM_NUM_SIZECLASS) { |
| 3158 | sizeclass = &kmem_size_array[idx]; |
| 3159 | meta = LIST_FIRST(&sizeclass->ks_allfree_head[front]); |
| 3160 | if (meta) { |
| 3161 | break; |
| 3162 | } |
| 3163 | idx++; |
| 3164 | } |
| 3165 | |
| 3166 | /* |
| 3167 | * Trim if larger in size |
| 3168 | */ |
| 3169 | if (meta) { |
| 3170 | uint32_t num_chunks_free = kmem_get_free_chunk_len(meta); |
| 3171 | |
| 3172 | assert(meta->km_page_marker == KMEM_META_FREE); |
| 3173 | LIST_REMOVE(meta, km_link); |
| 3174 | LIST_NEXT(meta, km_link) = NULL; |
| 3175 | meta->km_link.le_prev = NULL; |
| 3176 | if (num_chunks_free > num_chunks) { |
| 3177 | num_chunks_free -= num_chunks; |
| 3178 | kmem_init_free_chunk(meta: meta + num_chunks, num_chunks: num_chunks_free, front); |
| 3179 | } |
| 3180 | |
| 3181 | kmem_init_allocated_chunk(meta, sizeclass: *org_sizeclass, size_idx); |
| 3182 | } |
| 3183 | |
| 3184 | return meta; |
| 3185 | } |
| 3186 | |
| 3187 | kern_return_t |
| 3188 | kmem_locate_space( |
| 3189 | vm_map_size_t size, |
| 3190 | vm_map_range_id_t range_id, |
| 3191 | bool from_right, |
| 3192 | vm_map_offset_t *start_inout, |
| 3193 | vm_map_entry_t *entry_out) |
| 3194 | { |
| 3195 | vm_map_entry_t entry; |
| 3196 | uint32_t size_idx = kmem_get_idx_from_size(size); |
| 3197 | uint32_t front = kmem_get_front(range_id, from_right); |
| 3198 | struct kmem_sizeclass *sizeclass = &kmem_size_array[size_idx]; |
| 3199 | struct kmem_page_meta *meta; |
| 3200 | |
| 3201 | assert(size <= sizeclass->ks_size); |
| 3202 | again: |
| 3203 | if ((meta = LIST_FIRST(&sizeclass->ks_partial_head[front])) != NULL) { |
| 3204 | *start_inout = kmem_get_addr_from_meta(meta, range_id, sizeclass: *sizeclass, entry: &entry); |
| 3205 | /* |
| 3206 | * Requeue to full if necessary |
| 3207 | */ |
| 3208 | assert(meta->km_page_marker == KMEM_META_PRIMARY); |
| 3209 | if (__builtin_popcount(meta->km_bitmap) == KMEM_NUM_GUARDS) { |
| 3210 | kmem_requeue_meta(meta, head: &sizeclass->ks_full_head[front]); |
| 3211 | } |
| 3212 | } else if ((meta = kmem_get_free_chunk_from_list(org_sizeclass: sizeclass, size_idx, |
| 3213 | front)) != NULL) { |
| 3214 | *start_inout = kmem_get_addr_from_meta(meta, range_id, sizeclass: *sizeclass, entry: &entry); |
| 3215 | /* |
| 3216 | * Queue to partial |
| 3217 | */ |
| 3218 | assert(meta->km_page_marker == KMEM_META_PRIMARY); |
| 3219 | assert(__builtin_popcount(meta->km_bitmap) > KMEM_NUM_GUARDS); |
| 3220 | LIST_INSERT_HEAD(&sizeclass->ks_partial_head[front], meta, km_link); |
| 3221 | } else { |
| 3222 | meta = kmem_get_new_chunk(range_id, from_right, size_idx); |
| 3223 | if (meta == NULL) { |
| 3224 | goto again; |
| 3225 | } |
| 3226 | *start_inout = kmem_get_addr_from_meta(meta, range_id, sizeclass: *sizeclass, entry: &entry); |
| 3227 | assert(meta->km_page_marker == KMEM_META_PRIMARY); |
| 3228 | LIST_INSERT_HEAD(&sizeclass->ks_partial_head[front], meta, km_link); |
| 3229 | } |
| 3230 | |
| 3231 | if (entry_out) { |
| 3232 | *entry_out = entry; |
| 3233 | } |
| 3234 | |
| 3235 | return KERN_SUCCESS; |
| 3236 | } |
| 3237 | |
| 3238 | /* |
| 3239 | * Determine whether the given metadata was allocated from the right |
| 3240 | */ |
| 3241 | static bool |
| 3242 | kmem_meta_is_from_right( |
| 3243 | kmem_range_id_t range_id, |
| 3244 | struct kmem_page_meta *meta) |
| 3245 | { |
| 3246 | struct kmem_page_meta *metaf = kmem_meta_hwm[kmem_get_front(range_id, from_right: 0)]; |
| 3247 | #if DEBUG || DEVELOPMENT |
| 3248 | struct kmem_page_meta *metab = kmem_meta_hwm[kmem_get_front(range_id, 1)]; |
| 3249 | #endif |
| 3250 | struct kmem_page_meta *meta_base = kmem_meta_base[range_id]; |
| 3251 | struct kmem_page_meta *meta_end; |
| 3252 | |
| 3253 | meta_end = (struct kmem_page_meta *)kmem_meta_range[range_id].max_address; |
| 3254 | |
| 3255 | if ((meta >= meta_base) && (meta < metaf)) { |
| 3256 | return false; |
| 3257 | } |
| 3258 | |
| 3259 | assert(meta >= metab && meta < meta_end); |
| 3260 | return true; |
| 3261 | } |
| 3262 | |
| 3263 | static void |
| 3264 | kmem_free_chunk( |
| 3265 | kmem_range_id_t range_id, |
| 3266 | struct kmem_page_meta *meta, |
| 3267 | bool from_right) |
| 3268 | { |
| 3269 | struct kmem_page_meta *meta_coalesce = meta - 1; |
| 3270 | struct kmem_page_meta *meta_start = meta; |
| 3271 | uint32_t num_chunks = kmem_get_chunk_len(meta); |
| 3272 | uint32_t add_chunks; |
| 3273 | struct kmem_page_meta *meta_end = meta + num_chunks; |
| 3274 | struct kmem_page_meta *meta_hwm_l, *meta_hwm_r; |
| 3275 | uint32_t front = kmem_get_front(range_id, from_right); |
| 3276 | |
| 3277 | meta_hwm_l = kmem_meta_hwm[kmem_get_front(range_id, from_right: 0)]; |
| 3278 | meta_hwm_r = kmem_meta_hwm[kmem_get_front(range_id, from_right: 1)]; |
| 3279 | |
| 3280 | LIST_REMOVE(meta, km_link); |
| 3281 | kmem_clear_meta_range(meta, count: num_chunks); |
| 3282 | |
| 3283 | /* |
| 3284 | * Coalesce left |
| 3285 | */ |
| 3286 | if (((from_right && (meta_coalesce >= meta_hwm_r)) || !from_right) && |
| 3287 | (meta_coalesce->km_page_marker == KMEM_META_FREE)) { |
| 3288 | meta_start = meta_coalesce - kmem_get_free_chunk_len(meta: meta_coalesce) + 1; |
| 3289 | add_chunks = kmem_get_free_chunk_len(meta: meta_start); |
| 3290 | num_chunks += add_chunks; |
| 3291 | LIST_REMOVE(meta_start, km_link); |
| 3292 | kmem_clear_meta_range(meta: meta_start + add_chunks - 1, count: 1); |
| 3293 | } |
| 3294 | |
| 3295 | /* |
| 3296 | * Coalesce right |
| 3297 | */ |
| 3298 | if (((!from_right && (meta_end < meta_hwm_l)) || from_right) && |
| 3299 | (meta_end->km_page_marker == KMEM_META_FREE)) { |
| 3300 | add_chunks = kmem_get_free_chunk_len(meta: meta_end); |
| 3301 | LIST_REMOVE(meta_end, km_link); |
| 3302 | kmem_clear_meta_range(meta: meta_end, count: 1); |
| 3303 | meta_end = meta_end + add_chunks; |
| 3304 | num_chunks += add_chunks; |
| 3305 | } |
| 3306 | |
| 3307 | kmem_init_free_chunk(meta: meta_start, num_chunks, front); |
| 3308 | } |
| 3309 | |
| 3310 | static void |
| 3311 | kmem_free_slot( |
| 3312 | kmem_range_id_t range_id, |
| 3313 | mach_vm_range_t slot) |
| 3314 | { |
| 3315 | struct kmem_page_meta *meta; |
| 3316 | vm_map_offset_t chunk_start; |
| 3317 | uint32_t size_idx, chunk_elem, slot_idx, num_elem; |
| 3318 | struct kmem_sizeclass *sizeclass; |
| 3319 | vm_map_size_t slot_size; |
| 3320 | |
| 3321 | meta = kmem_addr_to_meta_start(addr: slot->min_address, range_id, chunk_start: &chunk_start); |
| 3322 | size_idx = meta->km_sizeclass; |
| 3323 | slot_size = kmem_get_size_from_idx(idx: size_idx); |
| 3324 | slot_idx = (slot->min_address - chunk_start) / slot_size; |
| 3325 | assert((meta->km_bitmap & kmem_slot_idx_to_bit(slot_idx, size_idx)) == 0); |
| 3326 | meta->km_bitmap |= kmem_slot_idx_to_bit(slot_idx, size_idx); |
| 3327 | |
| 3328 | sizeclass = &kmem_size_array[size_idx]; |
| 3329 | chunk_elem = sizeclass->ks_num_elem; |
| 3330 | num_elem = __builtin_popcount(meta->km_bitmap); |
| 3331 | |
| 3332 | if (num_elem == chunk_elem) { |
| 3333 | /* |
| 3334 | * If entire chunk empty add to emtpy list |
| 3335 | */ |
| 3336 | bool from_right = kmem_meta_is_from_right(range_id, meta); |
| 3337 | |
| 3338 | kmem_free_chunk(range_id, meta, from_right); |
| 3339 | } else if (num_elem == KMEM_NUM_GUARDS + 1) { |
| 3340 | /* |
| 3341 | * If we freed to full chunk move it to partial |
| 3342 | */ |
| 3343 | uint32_t front = kmem_get_front(range_id, |
| 3344 | from_right: kmem_meta_is_from_right(range_id, meta)); |
| 3345 | |
| 3346 | kmem_requeue_meta(meta, head: &sizeclass->ks_partial_head[front]); |
| 3347 | } |
| 3348 | } |
| 3349 | |
| 3350 | void |
| 3351 | kmem_free_space( |
| 3352 | vm_map_offset_t start, |
| 3353 | vm_map_offset_t end, |
| 3354 | vm_map_range_id_t range_id, |
| 3355 | mach_vm_range_t slot) |
| 3356 | { |
| 3357 | bool entry_present = false; |
| 3358 | vm_map_entry_t prev_entry; |
| 3359 | vm_map_entry_t next_entry; |
| 3360 | |
| 3361 | if ((slot->min_address == start) && (slot->max_address == end)) { |
| 3362 | /* |
| 3363 | * Entire slot is being freed at once |
| 3364 | */ |
| 3365 | return kmem_free_slot(range_id, slot); |
| 3366 | } |
| 3367 | |
| 3368 | entry_present = vm_map_lookup_entry(map: kernel_map, address: start, entry: &prev_entry); |
| 3369 | assert(!entry_present); |
| 3370 | next_entry = prev_entry->vme_next; |
| 3371 | |
| 3372 | if (((prev_entry == vm_map_to_entry(kernel_map) || |
| 3373 | prev_entry->vme_end <= slot->min_address)) && |
| 3374 | (next_entry == vm_map_to_entry(kernel_map) || |
| 3375 | (next_entry->vme_start >= slot->max_address))) { |
| 3376 | /* |
| 3377 | * Free entire slot |
| 3378 | */ |
| 3379 | kmem_free_slot(range_id, slot); |
| 3380 | } |
| 3381 | } |
| 3382 | |
| 3383 | #pragma mark kmem init |
| 3384 | |
| 3385 | /* |
| 3386 | * The default percentage of memory that can be mlocked is scaled based on the total |
| 3387 | * amount of memory in the system. These percentages are caclulated |
| 3388 | * offline and stored in this table. We index this table by |
| 3389 | * log2(max_mem) - VM_USER_WIREABLE_MIN_CONFIG. We clamp this index in the range |
| 3390 | * [0, sizeof(wire_limit_percents) / sizeof(vm_map_size_t)) |
| 3391 | * |
| 3392 | * Note that these values were picked for mac. |
| 3393 | * If we ever have very large memory config arm devices, we may want to revisit |
| 3394 | * since the kernel overhead is smaller there due to the larger page size. |
| 3395 | */ |
| 3396 | |
| 3397 | /* Start scaling iff we're managing > 2^32 = 4GB of RAM. */ |
| 3398 | #define VM_USER_WIREABLE_MIN_CONFIG 32 |
| 3399 | #if CONFIG_JETSAM |
| 3400 | /* Systems with jetsam can wire a bit more b/c the system can relieve wired |
| 3401 | * pressure. |
| 3402 | */ |
| 3403 | static vm_map_size_t wire_limit_percents[] = |
| 3404 | { 80, 80, 80, 80, 82, 85, 88, 91, 94, 97}; |
| 3405 | #else |
| 3406 | static vm_map_size_t wire_limit_percents[] = |
| 3407 | { 70, 73, 76, 79, 82, 85, 88, 91, 94, 97}; |
| 3408 | #endif /* CONFIG_JETSAM */ |
| 3409 | |
| 3410 | /* |
| 3411 | * Sets the default global user wire limit which limits the amount of |
| 3412 | * memory that can be locked via mlock() based on the above algorithm.. |
| 3413 | * This can be overridden via a sysctl. |
| 3414 | */ |
| 3415 | static void |
| 3416 | kmem_set_user_wire_limits(void) |
| 3417 | { |
| 3418 | uint64_t available_mem_log; |
| 3419 | uint64_t max_wire_percent; |
| 3420 | size_t wire_limit_percents_length = sizeof(wire_limit_percents) / |
| 3421 | sizeof(vm_map_size_t); |
| 3422 | vm_map_size_t limit; |
| 3423 | uint64_t config_memsize = max_mem; |
| 3424 | #if defined(XNU_TARGET_OS_OSX) |
| 3425 | config_memsize = max_mem_actual; |
| 3426 | #endif /* defined(XNU_TARGET_OS_OSX) */ |
| 3427 | |
| 3428 | available_mem_log = bit_floor(n: config_memsize); |
| 3429 | |
| 3430 | if (available_mem_log < VM_USER_WIREABLE_MIN_CONFIG) { |
| 3431 | available_mem_log = 0; |
| 3432 | } else { |
| 3433 | available_mem_log -= VM_USER_WIREABLE_MIN_CONFIG; |
| 3434 | } |
| 3435 | if (available_mem_log >= wire_limit_percents_length) { |
| 3436 | available_mem_log = wire_limit_percents_length - 1; |
| 3437 | } |
| 3438 | max_wire_percent = wire_limit_percents[available_mem_log]; |
| 3439 | |
| 3440 | limit = config_memsize * max_wire_percent / 100; |
| 3441 | /* Cap the number of non lockable bytes at VM_NOT_USER_WIREABLE_MAX */ |
| 3442 | if (config_memsize - limit > VM_NOT_USER_WIREABLE_MAX) { |
| 3443 | limit = config_memsize - VM_NOT_USER_WIREABLE_MAX; |
| 3444 | } |
| 3445 | |
| 3446 | vm_global_user_wire_limit = limit; |
| 3447 | /* the default per task limit is the same as the global limit */ |
| 3448 | vm_per_task_user_wire_limit = limit; |
| 3449 | vm_add_wire_count_over_global_limit = 0; |
| 3450 | vm_add_wire_count_over_user_limit = 0; |
| 3451 | } |
| 3452 | |
| 3453 | #define KMEM_MAX_CLAIMS 50 |
| 3454 | __startup_data |
| 3455 | struct kmem_range_startup_spec kmem_claims[KMEM_MAX_CLAIMS] = {}; |
| 3456 | __startup_data |
| 3457 | uint32_t kmem_claim_count = 0; |
| 3458 | |
| 3459 | __startup_func |
| 3460 | void |
| 3461 | kmem_range_startup_init( |
| 3462 | struct kmem_range_startup_spec *sp) |
| 3463 | { |
| 3464 | assert(kmem_claim_count < KMEM_MAX_CLAIMS - KMEM_RANGE_COUNT); |
| 3465 | if (sp->kc_calculate_sz) { |
| 3466 | sp->kc_size = (sp->kc_calculate_sz)(); |
| 3467 | } |
| 3468 | if (sp->kc_size) { |
| 3469 | kmem_claims[kmem_claim_count] = *sp; |
| 3470 | kmem_claim_count++; |
| 3471 | } |
| 3472 | } |
| 3473 | |
| 3474 | static vm_offset_t |
| 3475 | kmem_fuzz_start(void) |
| 3476 | { |
| 3477 | vm_offset_t kmapoff_kaddr = 0; |
| 3478 | uint32_t kmapoff_pgcnt = (early_random() & 0x1ff) + 1; /* 9 bits */ |
| 3479 | vm_map_size_t kmapoff_size = ptoa(kmapoff_pgcnt); |
| 3480 | |
| 3481 | kmem_alloc(map: kernel_map, addrp: &kmapoff_kaddr, size: kmapoff_size, |
| 3482 | flags: KMA_NOFAIL | KMA_KOBJECT | KMA_PERMANENT | KMA_VAONLY, |
| 3483 | VM_KERN_MEMORY_OSFMK); |
| 3484 | return kmapoff_kaddr + kmapoff_size; |
| 3485 | } |
| 3486 | |
| 3487 | /* |
| 3488 | * Generate a randomly shuffled array of indices from 0 to count - 1 |
| 3489 | */ |
| 3490 | __startup_func |
| 3491 | void |
| 3492 | kmem_shuffle( |
| 3493 | uint16_t *shuffle_buf, |
| 3494 | uint16_t count) |
| 3495 | { |
| 3496 | for (uint16_t i = 0; i < count; i++) { |
| 3497 | uint16_t j = kmem_get_random16(upper_limit: i); |
| 3498 | if (j != i) { |
| 3499 | shuffle_buf[i] = shuffle_buf[j]; |
| 3500 | } |
| 3501 | shuffle_buf[j] = i; |
| 3502 | } |
| 3503 | } |
| 3504 | |
| 3505 | __startup_func |
| 3506 | static void |
| 3507 | kmem_shuffle_claims(void) |
| 3508 | { |
| 3509 | uint16_t shuffle_buf[KMEM_MAX_CLAIMS] = {}; |
| 3510 | uint16_t limit = (uint16_t)kmem_claim_count; |
| 3511 | |
| 3512 | kmem_shuffle(shuffle_buf: &shuffle_buf[0], count: limit); |
| 3513 | for (uint16_t i = 0; i < limit; i++) { |
| 3514 | struct kmem_range_startup_spec tmp = kmem_claims[i]; |
| 3515 | kmem_claims[i] = kmem_claims[shuffle_buf[i]]; |
| 3516 | kmem_claims[shuffle_buf[i]] = tmp; |
| 3517 | } |
| 3518 | } |
| 3519 | |
| 3520 | __startup_func |
| 3521 | static void |
| 3522 | kmem_readjust_ranges( |
| 3523 | uint32_t cur_idx) |
| 3524 | { |
| 3525 | assert(cur_idx != 0); |
| 3526 | uint32_t j = cur_idx - 1, random; |
| 3527 | struct kmem_range_startup_spec sp = kmem_claims[cur_idx]; |
| 3528 | struct mach_vm_range *sp_range = sp.kc_range; |
| 3529 | |
| 3530 | /* |
| 3531 | * Find max index where restriction is met |
| 3532 | */ |
| 3533 | for (; j > 0; j--) { |
| 3534 | struct kmem_range_startup_spec spj = kmem_claims[j]; |
| 3535 | vm_map_offset_t max_start = spj.kc_range->min_address; |
| 3536 | if (spj.kc_flags & KC_NO_MOVE) { |
| 3537 | panic("kmem_range_init: Can't scramble with multiple constraints" ); |
| 3538 | } |
| 3539 | if (max_start <= sp_range->min_address) { |
| 3540 | break; |
| 3541 | } |
| 3542 | } |
| 3543 | |
| 3544 | /* |
| 3545 | * Pick a random index from 0 to max index and shift claims to the right |
| 3546 | * to make room for restricted claim |
| 3547 | */ |
| 3548 | random = kmem_get_random16(upper_limit: (uint16_t)j); |
| 3549 | assert(random <= j); |
| 3550 | |
| 3551 | sp_range->min_address = kmem_claims[random].kc_range->min_address; |
| 3552 | sp_range->max_address = sp_range->min_address + sp.kc_size; |
| 3553 | |
| 3554 | for (j = cur_idx - 1; j >= random && j != UINT32_MAX; j--) { |
| 3555 | struct kmem_range_startup_spec spj = kmem_claims[j]; |
| 3556 | struct mach_vm_range *range = spj.kc_range; |
| 3557 | range->min_address += sp.kc_size; |
| 3558 | range->max_address += sp.kc_size; |
| 3559 | kmem_claims[j + 1] = spj; |
| 3560 | } |
| 3561 | |
| 3562 | sp.kc_flags = KC_NO_MOVE; |
| 3563 | kmem_claims[random] = sp; |
| 3564 | } |
| 3565 | |
| 3566 | __startup_func |
| 3567 | static vm_map_size_t |
| 3568 | kmem_add_ptr_claims(void) |
| 3569 | { |
| 3570 | uint64_t kmem_meta_num, kmem_ptr_chunks; |
| 3571 | vm_map_size_t org_ptr_range_size = ptr_range_size; |
| 3572 | |
| 3573 | ptr_range_size -= PAGE_SIZE; |
| 3574 | ptr_range_size *= KMEM_CHUNK_SIZE_MIN; |
| 3575 | ptr_range_size /= (KMEM_CHUNK_SIZE_MIN + sizeof(struct kmem_page_meta)); |
| 3576 | |
| 3577 | kmem_ptr_chunks = ptr_range_size / KMEM_CHUNK_SIZE_MIN; |
| 3578 | ptr_range_size = kmem_ptr_chunks * KMEM_CHUNK_SIZE_MIN; |
| 3579 | |
| 3580 | kmem_meta_num = kmem_ptr_chunks + 2; |
| 3581 | kmem_meta_size = round_page(x: kmem_meta_num * sizeof(struct kmem_page_meta)); |
| 3582 | |
| 3583 | assert(kmem_meta_size + ptr_range_size <= org_ptr_range_size); |
| 3584 | /* |
| 3585 | * Add claims for kmem's ranges |
| 3586 | */ |
| 3587 | for (uint32_t i = 0; i < kmem_ptr_ranges; i++) { |
| 3588 | struct kmem_range_startup_spec kmem_spec = { |
| 3589 | .kc_name = "kmem_ptr_range" , |
| 3590 | .kc_range = &kmem_ranges[KMEM_RANGE_ID_PTR_0 + i], |
| 3591 | .kc_size = ptr_range_size, |
| 3592 | .kc_flags = KC_NO_ENTRY, |
| 3593 | }; |
| 3594 | kmem_claims[kmem_claim_count++] = kmem_spec; |
| 3595 | |
| 3596 | struct kmem_range_startup_spec kmem_meta_spec = { |
| 3597 | .kc_name = "kmem_ptr_range_meta" , |
| 3598 | .kc_range = &kmem_meta_range[KMEM_RANGE_ID_PTR_0 + i], |
| 3599 | .kc_size = kmem_meta_size, |
| 3600 | .kc_flags = KC_NONE, |
| 3601 | }; |
| 3602 | kmem_claims[kmem_claim_count++] = kmem_meta_spec; |
| 3603 | } |
| 3604 | return (org_ptr_range_size - ptr_range_size - kmem_meta_size) * |
| 3605 | kmem_ptr_ranges; |
| 3606 | } |
| 3607 | |
| 3608 | __startup_func |
| 3609 | static void |
| 3610 | (void) |
| 3611 | { |
| 3612 | vm_map_size_t largest_free_size = 0, total_claims = 0; |
| 3613 | |
| 3614 | vm_map_sizes(map: kernel_map, NULL, NULL, plargest_free: &largest_free_size); |
| 3615 | largest_free_size = trunc_page(largest_free_size); |
| 3616 | |
| 3617 | /* |
| 3618 | * kasan and configs w/o *TRR need to have just one ptr range due to |
| 3619 | * resource constraints. |
| 3620 | */ |
| 3621 | #if !ZSECURITY_CONFIG(KERNEL_PTR_SPLIT) |
| 3622 | kmem_ptr_ranges = 1; |
| 3623 | #endif |
| 3624 | /* |
| 3625 | * Determine size of data and pointer kmem_ranges |
| 3626 | */ |
| 3627 | for (uint32_t i = 0; i < kmem_claim_count; i++) { |
| 3628 | total_claims += kmem_claims[i].kc_size; |
| 3629 | } |
| 3630 | assert((total_claims & PAGE_MASK) == 0); |
| 3631 | largest_free_size -= total_claims; |
| 3632 | |
| 3633 | /* |
| 3634 | * Use half the total available VA for all pointer allocations (this |
| 3635 | * includes the kmem_sprayqtn range). Given that we have 4 total |
| 3636 | * ranges divide the available VA by 8. |
| 3637 | */ |
| 3638 | ptr_range_size = largest_free_size / ((kmem_ptr_ranges + 1) * 2); |
| 3639 | sprayqtn_range_size = ptr_range_size; |
| 3640 | |
| 3641 | if (sprayqtn_range_size > (sane_size / 2)) { |
| 3642 | sprayqtn_range_size = sane_size / 2; |
| 3643 | } |
| 3644 | |
| 3645 | ptr_range_size = round_page(x: ptr_range_size); |
| 3646 | sprayqtn_range_size = round_page(x: sprayqtn_range_size); |
| 3647 | |
| 3648 | |
| 3649 | data_range_size = largest_free_size |
| 3650 | - (ptr_range_size * kmem_ptr_ranges) |
| 3651 | - sprayqtn_range_size; |
| 3652 | |
| 3653 | /* |
| 3654 | * Add claims for kmem's ranges |
| 3655 | */ |
| 3656 | data_range_size += kmem_add_ptr_claims(); |
| 3657 | assert(data_range_size + sprayqtn_range_size + |
| 3658 | ((ptr_range_size + kmem_meta_size) * kmem_ptr_ranges) <= |
| 3659 | largest_free_size); |
| 3660 | |
| 3661 | struct kmem_range_startup_spec kmem_spec_sprayqtn = { |
| 3662 | .kc_name = "kmem_sprayqtn_range" , |
| 3663 | .kc_range = &kmem_ranges[KMEM_RANGE_ID_SPRAYQTN], |
| 3664 | .kc_size = sprayqtn_range_size, |
| 3665 | .kc_flags = KC_NO_ENTRY, |
| 3666 | }; |
| 3667 | kmem_claims[kmem_claim_count++] = kmem_spec_sprayqtn; |
| 3668 | |
| 3669 | struct kmem_range_startup_spec kmem_spec_data = { |
| 3670 | .kc_name = "kmem_data_range" , |
| 3671 | .kc_range = &kmem_ranges[KMEM_RANGE_ID_DATA], |
| 3672 | .kc_size = data_range_size, |
| 3673 | .kc_flags = KC_NO_ENTRY, |
| 3674 | }; |
| 3675 | kmem_claims[kmem_claim_count++] = kmem_spec_data; |
| 3676 | } |
| 3677 | |
| 3678 | __startup_func |
| 3679 | static void |
| 3680 | kmem_scramble_ranges(void) |
| 3681 | { |
| 3682 | vm_map_offset_t start = 0; |
| 3683 | |
| 3684 | /* |
| 3685 | * Initiatize KMEM_RANGE_ID_NONE range to use the entire map so that |
| 3686 | * the vm can find the requested ranges. |
| 3687 | */ |
| 3688 | kmem_ranges[KMEM_RANGE_ID_NONE].min_address = MAX(kernel_map->min_offset, |
| 3689 | VM_MAP_PAGE_SIZE(kernel_map)); |
| 3690 | kmem_ranges[KMEM_RANGE_ID_NONE].max_address = kernel_map->max_offset; |
| 3691 | |
| 3692 | /* |
| 3693 | * Allocating the g_kext_map prior to randomizing the remaining submaps as |
| 3694 | * this map is 2G in size and starts at the end of kernel_text on x86. It |
| 3695 | * could overflow into the heap. |
| 3696 | */ |
| 3697 | kext_alloc_init(); |
| 3698 | |
| 3699 | /* |
| 3700 | * Eat a random amount of kernel_map to fuzz subsequent heap, zone and |
| 3701 | * stack addresses. (With a 4K page and 9 bits of randomness, this |
| 3702 | * eats about 2M of VA from the map) |
| 3703 | * |
| 3704 | * Note that we always need to slide by at least one page because the VM |
| 3705 | * pointer packing schemes using KERNEL_PMAP_HEAP_RANGE_START as a base |
| 3706 | * do not admit this address to be part of any zone submap. |
| 3707 | */ |
| 3708 | start = kmem_fuzz_start(); |
| 3709 | |
| 3710 | /* |
| 3711 | * Add claims for ptr and data kmem_ranges |
| 3712 | */ |
| 3713 | kmem_add_extra_claims(); |
| 3714 | |
| 3715 | /* |
| 3716 | * Shuffle registered claims |
| 3717 | */ |
| 3718 | assert(kmem_claim_count < UINT16_MAX); |
| 3719 | kmem_shuffle_claims(); |
| 3720 | |
| 3721 | /* |
| 3722 | * Apply restrictions and determine range for each claim |
| 3723 | */ |
| 3724 | for (uint32_t i = 0; i < kmem_claim_count; i++) { |
| 3725 | vm_map_offset_t end = 0; |
| 3726 | struct kmem_range_startup_spec sp = kmem_claims[i]; |
| 3727 | struct mach_vm_range *sp_range = sp.kc_range; |
| 3728 | if (vm_map_locate_space(map: kernel_map, size: sp.kc_size, mask: 0, |
| 3729 | VM_MAP_KERNEL_FLAGS_ANYWHERE(), start_inout: &start, NULL) != KERN_SUCCESS) { |
| 3730 | panic("kmem_range_init: vm_map_locate_space failing for claim %s" , |
| 3731 | sp.kc_name); |
| 3732 | } |
| 3733 | |
| 3734 | end = start + sp.kc_size; |
| 3735 | /* |
| 3736 | * Re-adjust ranges if restriction not met |
| 3737 | */ |
| 3738 | if (sp_range->min_address && start > sp_range->min_address) { |
| 3739 | kmem_readjust_ranges(cur_idx: i); |
| 3740 | } else { |
| 3741 | sp_range->min_address = start; |
| 3742 | sp_range->max_address = end; |
| 3743 | } |
| 3744 | start = end; |
| 3745 | } |
| 3746 | |
| 3747 | /* |
| 3748 | * We have settled on the ranges, now create temporary entries for the |
| 3749 | * claims |
| 3750 | */ |
| 3751 | for (uint32_t i = 0; i < kmem_claim_count; i++) { |
| 3752 | struct kmem_range_startup_spec sp = kmem_claims[i]; |
| 3753 | vm_map_entry_t entry = NULL; |
| 3754 | if (sp.kc_flags & KC_NO_ENTRY) { |
| 3755 | continue; |
| 3756 | } |
| 3757 | if (vm_map_find_space(map: kernel_map, hint_addr: sp.kc_range->min_address, size: sp.kc_size, mask: 0, |
| 3758 | VM_MAP_KERNEL_FLAGS_ANYWHERE(), o_entry: &entry) != KERN_SUCCESS) { |
| 3759 | panic("kmem_range_init: vm_map_find_space failing for claim %s" , |
| 3760 | sp.kc_name); |
| 3761 | } |
| 3762 | vm_object_reference(kernel_object_default); |
| 3763 | VME_OBJECT_SET(entry, object: kernel_object_default, false, context: 0); |
| 3764 | VME_OFFSET_SET(entry, offset: entry->vme_start); |
| 3765 | vm_map_unlock(kernel_map); |
| 3766 | } |
| 3767 | /* |
| 3768 | * Now that we are done assigning all the ranges, reset |
| 3769 | * kmem_ranges[KMEM_RANGE_ID_NONE] |
| 3770 | */ |
| 3771 | kmem_ranges[KMEM_RANGE_ID_NONE] = (struct mach_vm_range) {}; |
| 3772 | |
| 3773 | #if DEBUG || DEVELOPMENT |
| 3774 | for (uint32_t i = 0; i < kmem_claim_count; i++) { |
| 3775 | struct kmem_range_startup_spec sp = kmem_claims[i]; |
| 3776 | |
| 3777 | printf("%-24s: %p - %p (%u%c)\n" , sp.kc_name, |
| 3778 | (void *)sp.kc_range->min_address, |
| 3779 | (void *)sp.kc_range->max_address, |
| 3780 | mach_vm_size_pretty(sp.kc_size), |
| 3781 | mach_vm_size_unit(sp.kc_size)); |
| 3782 | } |
| 3783 | #endif /* DEBUG || DEVELOPMENT */ |
| 3784 | } |
| 3785 | |
| 3786 | __startup_func |
| 3787 | static void |
| 3788 | kmem_range_init(void) |
| 3789 | { |
| 3790 | vm_size_t range_adjustment; |
| 3791 | |
| 3792 | kmem_scramble_ranges(); |
| 3793 | |
| 3794 | range_adjustment = sprayqtn_range_size >> 3; |
| 3795 | kmem_large_ranges[KMEM_RANGE_ID_SPRAYQTN].min_address = |
| 3796 | kmem_ranges[KMEM_RANGE_ID_SPRAYQTN].min_address + range_adjustment; |
| 3797 | kmem_large_ranges[KMEM_RANGE_ID_SPRAYQTN].max_address = |
| 3798 | kmem_ranges[KMEM_RANGE_ID_SPRAYQTN].max_address; |
| 3799 | |
| 3800 | range_adjustment = data_range_size >> 3; |
| 3801 | kmem_large_ranges[KMEM_RANGE_ID_DATA].min_address = |
| 3802 | kmem_ranges[KMEM_RANGE_ID_DATA].min_address + range_adjustment; |
| 3803 | kmem_large_ranges[KMEM_RANGE_ID_DATA].max_address = |
| 3804 | kmem_ranges[KMEM_RANGE_ID_DATA].max_address; |
| 3805 | |
| 3806 | pmap_init(); |
| 3807 | kmem_metadata_init(); |
| 3808 | kmem_sizeclass_init(); |
| 3809 | |
| 3810 | #if DEBUG || DEVELOPMENT |
| 3811 | for (kmem_range_id_t i = 1; i < KMEM_RANGE_COUNT; i++) { |
| 3812 | vm_size_t range_size = mach_vm_range_size(&kmem_large_ranges[i]); |
| 3813 | printf("kmem_large_ranges[%d] : %p - %p (%u%c)\n" , i, |
| 3814 | (void *)kmem_large_ranges[i].min_address, |
| 3815 | (void *)kmem_large_ranges[i].max_address, |
| 3816 | mach_vm_size_pretty(range_size), |
| 3817 | mach_vm_size_unit(range_size)); |
| 3818 | } |
| 3819 | #endif |
| 3820 | } |
| 3821 | STARTUP(KMEM, STARTUP_RANK_THIRD, kmem_range_init); |
| 3822 | |
| 3823 | #if DEBUG || DEVELOPMENT |
| 3824 | __startup_func |
| 3825 | static void |
| 3826 | kmem_log_init(void) |
| 3827 | { |
| 3828 | /* |
| 3829 | * Log can only be created after the the kmem subsystem is initialized as |
| 3830 | * btlog creation uses kmem |
| 3831 | */ |
| 3832 | kmem_outlier_log = btlog_create(BTLOG_LOG, KMEM_OUTLIER_LOG_SIZE, 0); |
| 3833 | } |
| 3834 | STARTUP(ZALLOC, STARTUP_RANK_FIRST, kmem_log_init); |
| 3835 | |
| 3836 | kmem_gobj_stats |
| 3837 | kmem_get_gobj_stats(void) |
| 3838 | { |
| 3839 | kmem_gobj_stats stats = {}; |
| 3840 | |
| 3841 | vm_map_lock(kernel_map); |
| 3842 | for (uint8_t i = 0; i < kmem_ptr_ranges; i++) { |
| 3843 | kmem_range_id_t range_id = KMEM_RANGE_ID_FIRST + i; |
| 3844 | struct mach_vm_range range = kmem_ranges[range_id]; |
| 3845 | struct kmem_page_meta *meta = kmem_meta_hwm[kmem_get_front(range_id, 0)]; |
| 3846 | struct kmem_page_meta *meta_end; |
| 3847 | uint64_t meta_idx = meta - kmem_meta_base[range_id]; |
| 3848 | vm_map_size_t used = 0, va = 0, meta_sz = 0, pte_sz = 0; |
| 3849 | vm_map_offset_t addr; |
| 3850 | vm_map_entry_t entry; |
| 3851 | |
| 3852 | /* |
| 3853 | * Left front |
| 3854 | */ |
| 3855 | va = (meta_idx * KMEM_CHUNK_SIZE_MIN); |
| 3856 | meta_sz = round_page(meta_idx * sizeof(struct kmem_page_meta)); |
| 3857 | |
| 3858 | /* |
| 3859 | * Right front |
| 3860 | */ |
| 3861 | meta = kmem_meta_hwm[kmem_get_front(range_id, 1)]; |
| 3862 | meta_end = kmem_addr_to_meta(range.max_address, range_id, &addr, |
| 3863 | &meta_idx); |
| 3864 | meta_idx = meta_end - meta; |
| 3865 | meta_sz += round_page(meta_idx * sizeof(struct kmem_page_meta)); |
| 3866 | va += (meta_idx * KMEM_CHUNK_SIZE_MIN); |
| 3867 | |
| 3868 | /* |
| 3869 | * Compute VA allocated in entire range |
| 3870 | */ |
| 3871 | if (vm_map_lookup_entry(kernel_map, range.min_address, &entry) == false) { |
| 3872 | entry = entry->vme_next; |
| 3873 | } |
| 3874 | while (entry != vm_map_to_entry(kernel_map) && |
| 3875 | entry->vme_start < range.max_address) { |
| 3876 | used += (entry->vme_end - entry->vme_start); |
| 3877 | entry = entry->vme_next; |
| 3878 | } |
| 3879 | |
| 3880 | pte_sz = round_page(atop(va - used) * 8); |
| 3881 | |
| 3882 | stats.total_used += used; |
| 3883 | stats.total_va += va; |
| 3884 | stats.pte_sz += pte_sz; |
| 3885 | stats.meta_sz += meta_sz; |
| 3886 | } |
| 3887 | vm_map_unlock(kernel_map); |
| 3888 | |
| 3889 | return stats; |
| 3890 | } |
| 3891 | |
| 3892 | #endif /* DEBUG || DEVELOPMENT */ |
| 3893 | |
| 3894 | /* |
| 3895 | * kmem_init: |
| 3896 | * |
| 3897 | * Initialize the kernel's virtual memory map, taking |
| 3898 | * into account all memory allocated up to this time. |
| 3899 | */ |
| 3900 | __startup_func |
| 3901 | void |
| 3902 | kmem_init( |
| 3903 | vm_offset_t start, |
| 3904 | vm_offset_t end) |
| 3905 | { |
| 3906 | vm_map_offset_t map_start; |
| 3907 | vm_map_offset_t map_end; |
| 3908 | |
| 3909 | map_start = vm_map_trunc_page(start, |
| 3910 | VM_MAP_PAGE_MASK(kernel_map)); |
| 3911 | map_end = vm_map_round_page(end, |
| 3912 | VM_MAP_PAGE_MASK(kernel_map)); |
| 3913 | |
| 3914 | vm_map_will_allocate_early_map(map_owner: &kernel_map); |
| 3915 | #if defined(__arm64__) |
| 3916 | kernel_map = vm_map_create_options(pmap_kernel(), |
| 3917 | VM_MIN_KERNEL_AND_KEXT_ADDRESS, |
| 3918 | VM_MAX_KERNEL_ADDRESS, |
| 3919 | options: VM_MAP_CREATE_DEFAULT); |
| 3920 | /* |
| 3921 | * Reserve virtual memory allocated up to this time. |
| 3922 | */ |
| 3923 | { |
| 3924 | unsigned int region_select = 0; |
| 3925 | vm_map_offset_t region_start; |
| 3926 | vm_map_size_t region_size; |
| 3927 | vm_map_offset_t map_addr; |
| 3928 | kern_return_t kr; |
| 3929 | |
| 3930 | while (pmap_virtual_region(region_select, startp: ®ion_start, size: ®ion_size)) { |
| 3931 | map_addr = region_start; |
| 3932 | kr = vm_map_enter(map: kernel_map, address: &map_addr, |
| 3933 | vm_map_round_page(region_size, |
| 3934 | VM_MAP_PAGE_MASK(kernel_map)), |
| 3935 | mask: (vm_map_offset_t) 0, |
| 3936 | VM_MAP_KERNEL_FLAGS_FIXED_PERMANENT(.vmkf_no_pmap_check = true), |
| 3937 | VM_OBJECT_NULL, |
| 3938 | offset: (vm_object_offset_t) 0, FALSE, VM_PROT_NONE, VM_PROT_NONE, |
| 3939 | VM_INHERIT_DEFAULT); |
| 3940 | |
| 3941 | if (kr != KERN_SUCCESS) { |
| 3942 | panic("kmem_init(0x%llx,0x%llx): vm_map_enter(0x%llx,0x%llx) error 0x%x" , |
| 3943 | (uint64_t) start, (uint64_t) end, (uint64_t) region_start, |
| 3944 | (uint64_t) region_size, kr); |
| 3945 | } |
| 3946 | |
| 3947 | region_select++; |
| 3948 | } |
| 3949 | } |
| 3950 | #else |
| 3951 | kernel_map = vm_map_create_options(pmap_kernel(), |
| 3952 | VM_MIN_KERNEL_AND_KEXT_ADDRESS, map_end, |
| 3953 | VM_MAP_CREATE_DEFAULT); |
| 3954 | /* |
| 3955 | * Reserve virtual memory allocated up to this time. |
| 3956 | */ |
| 3957 | if (start != VM_MIN_KERNEL_AND_KEXT_ADDRESS) { |
| 3958 | vm_map_offset_t map_addr; |
| 3959 | kern_return_t kr; |
| 3960 | |
| 3961 | map_addr = VM_MIN_KERNEL_AND_KEXT_ADDRESS; |
| 3962 | kr = vm_map_enter(kernel_map, |
| 3963 | &map_addr, |
| 3964 | (vm_map_size_t)(map_start - VM_MIN_KERNEL_AND_KEXT_ADDRESS), |
| 3965 | (vm_map_offset_t) 0, |
| 3966 | VM_MAP_KERNEL_FLAGS_FIXED(.vmkf_no_pmap_check = true), |
| 3967 | VM_OBJECT_NULL, |
| 3968 | (vm_object_offset_t) 0, FALSE, |
| 3969 | VM_PROT_NONE, VM_PROT_NONE, |
| 3970 | VM_INHERIT_DEFAULT); |
| 3971 | |
| 3972 | if (kr != KERN_SUCCESS) { |
| 3973 | panic("kmem_init(0x%llx,0x%llx): vm_map_enter(0x%llx,0x%llx) error 0x%x" , |
| 3974 | (uint64_t) start, (uint64_t) end, |
| 3975 | (uint64_t) VM_MIN_KERNEL_AND_KEXT_ADDRESS, |
| 3976 | (uint64_t) (map_start - VM_MIN_KERNEL_AND_KEXT_ADDRESS), |
| 3977 | kr); |
| 3978 | } |
| 3979 | } |
| 3980 | #endif |
| 3981 | |
| 3982 | kmem_set_user_wire_limits(); |
| 3983 | } |
| 3984 | |
| 3985 | |
| 3986 | #pragma mark map copyio |
| 3987 | |
| 3988 | /* |
| 3989 | * Routine: copyinmap |
| 3990 | * Purpose: |
| 3991 | * Like copyin, except that fromaddr is an address |
| 3992 | * in the specified VM map. This implementation |
| 3993 | * is incomplete; it handles the current user map |
| 3994 | * and the kernel map/submaps. |
| 3995 | */ |
| 3996 | kern_return_t |
| 3997 | copyinmap( |
| 3998 | vm_map_t map, |
| 3999 | vm_map_offset_t fromaddr, |
| 4000 | void *todata, |
| 4001 | vm_size_t length) |
| 4002 | { |
| 4003 | kern_return_t kr = KERN_SUCCESS; |
| 4004 | vm_map_t oldmap; |
| 4005 | |
| 4006 | if (vm_map_pmap(map) == pmap_kernel()) { |
| 4007 | /* assume a correct copy */ |
| 4008 | memcpy(dst: todata, CAST_DOWN(void *, fromaddr), n: length); |
| 4009 | } else if (current_map() == map) { |
| 4010 | if (copyin(fromaddr, todata, length) != 0) { |
| 4011 | kr = KERN_INVALID_ADDRESS; |
| 4012 | } |
| 4013 | } else { |
| 4014 | vm_map_reference(map); |
| 4015 | oldmap = vm_map_switch(map); |
| 4016 | if (copyin(fromaddr, todata, length) != 0) { |
| 4017 | kr = KERN_INVALID_ADDRESS; |
| 4018 | } |
| 4019 | vm_map_switch(map: oldmap); |
| 4020 | vm_map_deallocate(map); |
| 4021 | } |
| 4022 | return kr; |
| 4023 | } |
| 4024 | |
| 4025 | /* |
| 4026 | * Routine: copyoutmap |
| 4027 | * Purpose: |
| 4028 | * Like copyout, except that toaddr is an address |
| 4029 | * in the specified VM map. |
| 4030 | */ |
| 4031 | kern_return_t |
| 4032 | copyoutmap( |
| 4033 | vm_map_t map, |
| 4034 | void *fromdata, |
| 4035 | vm_map_address_t toaddr, |
| 4036 | vm_size_t length) |
| 4037 | { |
| 4038 | kern_return_t kr = KERN_SUCCESS; |
| 4039 | vm_map_t oldmap; |
| 4040 | |
| 4041 | if (vm_map_pmap(map) == pmap_kernel()) { |
| 4042 | /* assume a correct copy */ |
| 4043 | memcpy(CAST_DOWN(void *, toaddr), src: fromdata, n: length); |
| 4044 | } else if (current_map() == map) { |
| 4045 | if (copyout(fromdata, toaddr, length) != 0) { |
| 4046 | ktriage_record(thread_id: thread_tid(thread: current_thread()), KDBG_TRIAGE_EVENTID(KDBG_TRIAGE_SUBSYS_VM, KDBG_TRIAGE_RESERVED, KDBG_TRIAGE_VM_COPYOUTMAP_SAMEMAP_ERROR), KERN_INVALID_ADDRESS /* arg */); |
| 4047 | kr = KERN_INVALID_ADDRESS; |
| 4048 | } |
| 4049 | } else { |
| 4050 | vm_map_reference(map); |
| 4051 | oldmap = vm_map_switch(map); |
| 4052 | if (copyout(fromdata, toaddr, length) != 0) { |
| 4053 | ktriage_record(thread_id: thread_tid(thread: current_thread()), KDBG_TRIAGE_EVENTID(KDBG_TRIAGE_SUBSYS_VM, KDBG_TRIAGE_RESERVED, KDBG_TRIAGE_VM_COPYOUTMAP_DIFFERENTMAP_ERROR), KERN_INVALID_ADDRESS /* arg */); |
| 4054 | kr = KERN_INVALID_ADDRESS; |
| 4055 | } |
| 4056 | vm_map_switch(map: oldmap); |
| 4057 | vm_map_deallocate(map); |
| 4058 | } |
| 4059 | return kr; |
| 4060 | } |
| 4061 | |
| 4062 | /* |
| 4063 | * Routine: copyoutmap_atomic{32, 64} |
| 4064 | * Purpose: |
| 4065 | * Like copyoutmap, except that the operation is atomic. |
| 4066 | * Takes in value rather than *fromdata pointer. |
| 4067 | */ |
| 4068 | kern_return_t |
| 4069 | copyoutmap_atomic32( |
| 4070 | vm_map_t map, |
| 4071 | uint32_t value, |
| 4072 | vm_map_address_t toaddr) |
| 4073 | { |
| 4074 | kern_return_t kr = KERN_SUCCESS; |
| 4075 | vm_map_t oldmap; |
| 4076 | |
| 4077 | if (vm_map_pmap(map) == pmap_kernel()) { |
| 4078 | /* assume a correct toaddr */ |
| 4079 | *(uint32_t *)toaddr = value; |
| 4080 | } else if (current_map() == map) { |
| 4081 | if (copyout_atomic32(u32: value, user_addr: toaddr) != 0) { |
| 4082 | kr = KERN_INVALID_ADDRESS; |
| 4083 | } |
| 4084 | } else { |
| 4085 | vm_map_reference(map); |
| 4086 | oldmap = vm_map_switch(map); |
| 4087 | if (copyout_atomic32(u32: value, user_addr: toaddr) != 0) { |
| 4088 | kr = KERN_INVALID_ADDRESS; |
| 4089 | } |
| 4090 | vm_map_switch(map: oldmap); |
| 4091 | vm_map_deallocate(map); |
| 4092 | } |
| 4093 | return kr; |
| 4094 | } |
| 4095 | |
| 4096 | kern_return_t |
| 4097 | copyoutmap_atomic64( |
| 4098 | vm_map_t map, |
| 4099 | uint64_t value, |
| 4100 | vm_map_address_t toaddr) |
| 4101 | { |
| 4102 | kern_return_t kr = KERN_SUCCESS; |
| 4103 | vm_map_t oldmap; |
| 4104 | |
| 4105 | if (vm_map_pmap(map) == pmap_kernel()) { |
| 4106 | /* assume a correct toaddr */ |
| 4107 | *(uint64_t *)toaddr = value; |
| 4108 | } else if (current_map() == map) { |
| 4109 | if (copyout_atomic64(u64: value, user_addr: toaddr) != 0) { |
| 4110 | kr = KERN_INVALID_ADDRESS; |
| 4111 | } |
| 4112 | } else { |
| 4113 | vm_map_reference(map); |
| 4114 | oldmap = vm_map_switch(map); |
| 4115 | if (copyout_atomic64(u64: value, user_addr: toaddr) != 0) { |
| 4116 | kr = KERN_INVALID_ADDRESS; |
| 4117 | } |
| 4118 | vm_map_switch(map: oldmap); |
| 4119 | vm_map_deallocate(map); |
| 4120 | } |
| 4121 | return kr; |
| 4122 | } |
| 4123 | |
| 4124 | |
| 4125 | #pragma mark pointer obfuscation / packing |
| 4126 | |
| 4127 | /* |
| 4128 | * |
| 4129 | * The following two functions are to be used when exposing kernel |
| 4130 | * addresses to userspace via any of the various debug or info |
| 4131 | * facilities that exist. These are basically the same as VM_KERNEL_ADDRPERM() |
| 4132 | * and VM_KERNEL_UNSLIDE_OR_PERM() except they use a different random seed and |
| 4133 | * are exported to KEXTs. |
| 4134 | * |
| 4135 | * NOTE: USE THE MACRO VERSIONS OF THESE FUNCTIONS (in vm_param.h) FROM WITHIN THE KERNEL |
| 4136 | */ |
| 4137 | |
| 4138 | vm_offset_t |
| 4139 | vm_kernel_addrhash_internal(vm_offset_t addr, uint64_t salt) |
| 4140 | { |
| 4141 | assert(salt != 0); |
| 4142 | |
| 4143 | if (addr == 0) { |
| 4144 | return 0ul; |
| 4145 | } |
| 4146 | |
| 4147 | if (VM_KERNEL_IS_SLID(addr)) { |
| 4148 | return VM_KERNEL_UNSLIDE(addr); |
| 4149 | } |
| 4150 | |
| 4151 | vm_offset_t sha_digest[SHA256_DIGEST_LENGTH / sizeof(vm_offset_t)]; |
| 4152 | SHA256_CTX sha_ctx; |
| 4153 | |
| 4154 | SHA256_Init(ctx: &sha_ctx); |
| 4155 | SHA256_Update(ctx: &sha_ctx, data: &salt, len: sizeof(salt)); |
| 4156 | SHA256_Update(ctx: &sha_ctx, data: &addr, len: sizeof(addr)); |
| 4157 | SHA256_Final(digest: sha_digest, ctx: &sha_ctx); |
| 4158 | |
| 4159 | return sha_digest[0]; |
| 4160 | } |
| 4161 | |
| 4162 | __exported vm_offset_t |
| 4163 | vm_kernel_addrhash_external(vm_offset_t addr); |
| 4164 | vm_offset_t |
| 4165 | vm_kernel_addrhash_external(vm_offset_t addr) |
| 4166 | { |
| 4167 | return vm_kernel_addrhash_internal(addr, salt: vm_kernel_addrhash_salt_ext); |
| 4168 | } |
| 4169 | |
| 4170 | void |
| 4171 | vm_kernel_addrhide( |
| 4172 | vm_offset_t addr, |
| 4173 | vm_offset_t *hide_addr) |
| 4174 | { |
| 4175 | *hide_addr = VM_KERNEL_ADDRHIDE(addr); |
| 4176 | } |
| 4177 | |
| 4178 | /* |
| 4179 | * vm_kernel_addrperm_external: |
| 4180 | * vm_kernel_unslide_or_perm_external: |
| 4181 | * |
| 4182 | * Use these macros when exposing an address to userspace that could come from |
| 4183 | * either kernel text/data *or* the heap. |
| 4184 | */ |
| 4185 | void |
| 4186 | vm_kernel_addrperm_external( |
| 4187 | vm_offset_t addr, |
| 4188 | vm_offset_t *perm_addr) |
| 4189 | { |
| 4190 | if (VM_KERNEL_IS_SLID(addr)) { |
| 4191 | *perm_addr = VM_KERNEL_UNSLIDE(addr); |
| 4192 | } else if (VM_KERNEL_ADDRESS(addr)) { |
| 4193 | *perm_addr = addr + vm_kernel_addrperm_ext; |
| 4194 | } else { |
| 4195 | *perm_addr = addr; |
| 4196 | } |
| 4197 | } |
| 4198 | |
| 4199 | void |
| 4200 | vm_kernel_unslide_or_perm_external( |
| 4201 | vm_offset_t addr, |
| 4202 | vm_offset_t *up_addr) |
| 4203 | { |
| 4204 | vm_kernel_addrperm_external(addr, perm_addr: up_addr); |
| 4205 | } |
| 4206 | |
| 4207 | void |
| 4208 | vm_packing_pointer_invalid(vm_offset_t ptr, vm_packing_params_t params) |
| 4209 | { |
| 4210 | if (ptr & ((1ul << params.vmpp_shift) - 1)) { |
| 4211 | panic("pointer %p can't be packed: low %d bits aren't 0" , |
| 4212 | (void *)ptr, params.vmpp_shift); |
| 4213 | } else if (ptr <= params.vmpp_base) { |
| 4214 | panic("pointer %p can't be packed: below base %p" , |
| 4215 | (void *)ptr, (void *)params.vmpp_base); |
| 4216 | } else { |
| 4217 | panic("pointer %p can't be packed: maximum encodable pointer is %p" , |
| 4218 | (void *)ptr, (void *)vm_packing_max_packable(params)); |
| 4219 | } |
| 4220 | } |
| 4221 | |
| 4222 | void |
| 4223 | vm_packing_verify_range( |
| 4224 | const char *subsystem, |
| 4225 | vm_offset_t min_address, |
| 4226 | vm_offset_t max_address, |
| 4227 | vm_packing_params_t params) |
| 4228 | { |
| 4229 | if (min_address > max_address) { |
| 4230 | panic("%s: %s range invalid min:%p > max:%p" , |
| 4231 | __func__, subsystem, (void *)min_address, (void *)max_address); |
| 4232 | } |
| 4233 | |
| 4234 | if (!params.vmpp_base_relative) { |
| 4235 | return; |
| 4236 | } |
| 4237 | |
| 4238 | if (min_address <= params.vmpp_base) { |
| 4239 | panic("%s: %s range invalid min:%p <= base:%p" , |
| 4240 | __func__, subsystem, (void *)min_address, (void *)params.vmpp_base); |
| 4241 | } |
| 4242 | |
| 4243 | if (max_address > vm_packing_max_packable(params)) { |
| 4244 | panic("%s: %s range invalid max:%p >= max packable:%p" , |
| 4245 | __func__, subsystem, (void *)max_address, |
| 4246 | (void *)vm_packing_max_packable(params)); |
| 4247 | } |
| 4248 | } |
| 4249 | |
| 4250 | #pragma mark tests |
| 4251 | #if DEBUG || DEVELOPMENT |
| 4252 | #include <sys/errno.h> |
| 4253 | |
| 4254 | static void |
| 4255 | kmem_test_for_entry( |
| 4256 | vm_map_t map, |
| 4257 | vm_offset_t addr, |
| 4258 | void (^block)(vm_map_entry_t)) |
| 4259 | { |
| 4260 | vm_map_entry_t entry; |
| 4261 | |
| 4262 | vm_map_lock(map); |
| 4263 | block(vm_map_lookup_entry(map, addr, &entry) ? entry : NULL); |
| 4264 | vm_map_unlock(map); |
| 4265 | } |
| 4266 | |
| 4267 | #define kmem_test_assert_map(map, pg, entries) ({ \ |
| 4268 | assert3u((map)->size, ==, ptoa(pg)); \ |
| 4269 | assert3u((map)->hdr.nentries, ==, entries); \ |
| 4270 | }) |
| 4271 | |
| 4272 | static bool |
| 4273 | can_write_at(vm_offset_t offs, uint32_t page) |
| 4274 | { |
| 4275 | static const int zero; |
| 4276 | |
| 4277 | return verify_write(&zero, (void *)(offs + ptoa(page) + 128), 1) == 0; |
| 4278 | } |
| 4279 | #define assert_writeable(offs, page) \ |
| 4280 | assertf(can_write_at(offs, page), \ |
| 4281 | "can write at %p + ptoa(%d)", (void *)offs, page) |
| 4282 | |
| 4283 | #define assert_faults(offs, page) \ |
| 4284 | assertf(!can_write_at(offs, page), \ |
| 4285 | "can write at %p + ptoa(%d)", (void *)offs, page) |
| 4286 | |
| 4287 | #define peek(offs, page) \ |
| 4288 | (*(uint32_t *)((offs) + ptoa(page))) |
| 4289 | |
| 4290 | #define poke(offs, page, v) \ |
| 4291 | (*(uint32_t *)((offs) + ptoa(page)) = (v)) |
| 4292 | |
| 4293 | __attribute__((noinline)) |
| 4294 | static void |
| 4295 | kmem_alloc_basic_test(vm_map_t map) |
| 4296 | { |
| 4297 | kmem_guard_t guard = { |
| 4298 | .kmg_tag = VM_KERN_MEMORY_DIAG, |
| 4299 | }; |
| 4300 | vm_offset_t addr; |
| 4301 | |
| 4302 | /* |
| 4303 | * Test wired basics: |
| 4304 | * - KMA_KOBJECT |
| 4305 | * - KMA_GUARD_FIRST, KMA_GUARD_LAST |
| 4306 | * - allocation alignment |
| 4307 | */ |
| 4308 | addr = kmem_alloc_guard(map, ptoa(10), ptoa(2) - 1, |
| 4309 | KMA_KOBJECT | KMA_GUARD_FIRST | KMA_GUARD_LAST, guard).kmr_address; |
| 4310 | assertf(addr != 0ull, "kma(%p, 10p, 0, KO | GF | GL)" , map); |
| 4311 | assert3u((addr + PAGE_SIZE) % ptoa(2), ==, 0); |
| 4312 | kmem_test_assert_map(map, 10, 1); |
| 4313 | |
| 4314 | kmem_test_for_entry(map, addr, ^(vm_map_entry_t e){ |
| 4315 | assertf(e, "unable to find address %p in map %p" , (void *)addr, map); |
| 4316 | assert(e->vme_kernel_object); |
| 4317 | assert(!e->vme_atomic); |
| 4318 | assert3u(e->vme_start, <=, addr); |
| 4319 | assert3u(addr + ptoa(10), <=, e->vme_end); |
| 4320 | }); |
| 4321 | |
| 4322 | assert_faults(addr, 0); |
| 4323 | for (int i = 1; i < 9; i++) { |
| 4324 | assert_writeable(addr, i); |
| 4325 | } |
| 4326 | assert_faults(addr, 9); |
| 4327 | |
| 4328 | kmem_free(map, addr, ptoa(10)); |
| 4329 | kmem_test_assert_map(map, 0, 0); |
| 4330 | |
| 4331 | /* |
| 4332 | * Test pageable basics. |
| 4333 | */ |
| 4334 | addr = kmem_alloc_guard(map, ptoa(10), 0, |
| 4335 | KMA_PAGEABLE, guard).kmr_address; |
| 4336 | assertf(addr != 0ull, "kma(%p, 10p, 0, KO | PG)" , map); |
| 4337 | kmem_test_assert_map(map, 10, 1); |
| 4338 | |
| 4339 | for (int i = 0; i < 9; i++) { |
| 4340 | assert_faults(addr, i); |
| 4341 | poke(addr, i, 42); |
| 4342 | assert_writeable(addr, i); |
| 4343 | } |
| 4344 | |
| 4345 | kmem_free(map, addr, ptoa(10)); |
| 4346 | kmem_test_assert_map(map, 0, 0); |
| 4347 | } |
| 4348 | |
| 4349 | __attribute__((noinline)) |
| 4350 | static void |
| 4351 | kmem_realloc_basic_test(vm_map_t map, kmr_flags_t kind) |
| 4352 | { |
| 4353 | kmem_guard_t guard = { |
| 4354 | .kmg_atomic = !(kind & KMR_DATA), |
| 4355 | .kmg_tag = VM_KERN_MEMORY_DIAG, |
| 4356 | .kmg_context = 0xefface, |
| 4357 | }; |
| 4358 | vm_offset_t addr, newaddr; |
| 4359 | const int N = 10; |
| 4360 | |
| 4361 | /* |
| 4362 | * This isn't something kmem_realloc_guard() _needs_ to do, |
| 4363 | * we could conceive an implementation where it grows in place |
| 4364 | * if there's space after it. |
| 4365 | * |
| 4366 | * However, this is what the implementation does today. |
| 4367 | */ |
| 4368 | bool realloc_growth_changes_address = true; |
| 4369 | bool GL = (kind & KMR_GUARD_LAST); |
| 4370 | |
| 4371 | /* |
| 4372 | * Initial N page allocation |
| 4373 | */ |
| 4374 | addr = kmem_alloc_guard(map, ptoa(N), 0, |
| 4375 | (kind & (KMA_KOBJECT | KMA_GUARD_LAST | KMA_DATA)) | KMA_ZERO, |
| 4376 | guard).kmr_address; |
| 4377 | assert3u(addr, !=, 0); |
| 4378 | kmem_test_assert_map(map, N, 1); |
| 4379 | for (int pg = 0; pg < N - GL; pg++) { |
| 4380 | poke(addr, pg, 42 + pg); |
| 4381 | } |
| 4382 | for (int pg = N - GL; pg < N; pg++) { |
| 4383 | assert_faults(addr, pg); |
| 4384 | } |
| 4385 | |
| 4386 | |
| 4387 | /* |
| 4388 | * Grow to N + 3 pages |
| 4389 | */ |
| 4390 | newaddr = kmem_realloc_guard(map, addr, ptoa(N), ptoa(N + 3), |
| 4391 | kind | KMR_ZERO, guard).kmr_address; |
| 4392 | assert3u(newaddr, !=, 0); |
| 4393 | if (realloc_growth_changes_address) { |
| 4394 | assert3u(addr, !=, newaddr); |
| 4395 | } |
| 4396 | if ((kind & KMR_FREEOLD) || (addr == newaddr)) { |
| 4397 | kmem_test_assert_map(map, N + 3, 1); |
| 4398 | } else { |
| 4399 | kmem_test_assert_map(map, 2 * N + 3, 2); |
| 4400 | } |
| 4401 | for (int pg = 0; pg < N - GL; pg++) { |
| 4402 | assert3u(peek(newaddr, pg), ==, 42 + pg); |
| 4403 | } |
| 4404 | if ((kind & KMR_FREEOLD) == 0) { |
| 4405 | for (int pg = 0; pg < N - GL; pg++) { |
| 4406 | assert3u(peek(addr, pg), ==, 42 + pg); |
| 4407 | } |
| 4408 | /* check for tru-share */ |
| 4409 | poke(addr + 16, 0, 1234); |
| 4410 | assert3u(peek(newaddr + 16, 0), ==, 1234); |
| 4411 | kmem_free_guard(map, addr, ptoa(N), KMF_NONE, guard); |
| 4412 | kmem_test_assert_map(map, N + 3, 1); |
| 4413 | } |
| 4414 | if (addr != newaddr) { |
| 4415 | for (int pg = 0; pg < N - GL; pg++) { |
| 4416 | assert_faults(addr, pg); |
| 4417 | } |
| 4418 | } |
| 4419 | for (int pg = N - GL; pg < N + 3 - GL; pg++) { |
| 4420 | assert3u(peek(newaddr, pg), ==, 0); |
| 4421 | } |
| 4422 | for (int pg = N + 3 - GL; pg < N + 3; pg++) { |
| 4423 | assert_faults(newaddr, pg); |
| 4424 | } |
| 4425 | addr = newaddr; |
| 4426 | |
| 4427 | |
| 4428 | /* |
| 4429 | * Shrink to N - 2 pages |
| 4430 | */ |
| 4431 | newaddr = kmem_realloc_guard(map, addr, ptoa(N + 3), ptoa(N - 2), |
| 4432 | kind | KMR_ZERO, guard).kmr_address; |
| 4433 | assert3u(map->size, ==, ptoa(N - 2)); |
| 4434 | assert3u(newaddr, ==, addr); |
| 4435 | kmem_test_assert_map(map, N - 2, 1); |
| 4436 | |
| 4437 | for (int pg = 0; pg < N - 2 - GL; pg++) { |
| 4438 | assert3u(peek(addr, pg), ==, 42 + pg); |
| 4439 | } |
| 4440 | for (int pg = N - 2 - GL; pg < N + 3; pg++) { |
| 4441 | assert_faults(addr, pg); |
| 4442 | } |
| 4443 | |
| 4444 | kmem_free_guard(map, addr, ptoa(N - 2), KMF_NONE, guard); |
| 4445 | kmem_test_assert_map(map, 0, 0); |
| 4446 | } |
| 4447 | |
| 4448 | static int |
| 4449 | kmem_basic_test(__unused int64_t in, int64_t *out) |
| 4450 | { |
| 4451 | mach_vm_offset_t addr; |
| 4452 | vm_map_t map; |
| 4453 | |
| 4454 | printf("%s: test running\n" , __func__); |
| 4455 | |
| 4456 | map = kmem_suballoc(kernel_map, &addr, 64U << 20, |
| 4457 | VM_MAP_CREATE_DEFAULT, VM_FLAGS_ANYWHERE, |
| 4458 | KMS_NOFAIL | KMS_DATA, VM_KERN_MEMORY_DIAG).kmr_submap; |
| 4459 | |
| 4460 | printf("%s: kmem_alloc ...\n" , __func__); |
| 4461 | kmem_alloc_basic_test(map); |
| 4462 | printf("%s: PASS\n" , __func__); |
| 4463 | |
| 4464 | printf("%s: kmem_realloc (KMR_KOBJECT | KMR_FREEOLD) ...\n" , __func__); |
| 4465 | kmem_realloc_basic_test(map, KMR_KOBJECT | KMR_FREEOLD); |
| 4466 | printf("%s: PASS\n" , __func__); |
| 4467 | |
| 4468 | printf("%s: kmem_realloc (KMR_FREEOLD) ...\n" , __func__); |
| 4469 | kmem_realloc_basic_test(map, KMR_FREEOLD); |
| 4470 | printf("%s: PASS\n" , __func__); |
| 4471 | |
| 4472 | printf("%s: kmem_realloc (KMR_KOBJECT | KMR_FREEOLD | KMR_GUARD_FIRST) ...\n" , __func__); |
| 4473 | kmem_realloc_basic_test(map, KMR_KOBJECT | KMR_FREEOLD | KMR_GUARD_FIRST); |
| 4474 | printf("%s: PASS\n" , __func__); |
| 4475 | |
| 4476 | printf("%s: kmem_realloc (KMR_KOBJECT | KMR_FREEOLD | KMR_GUARD_LAST) ...\n" , __func__); |
| 4477 | kmem_realloc_basic_test(map, KMR_KOBJECT | KMR_FREEOLD | KMR_GUARD_LAST); |
| 4478 | printf("%s: PASS\n" , __func__); |
| 4479 | |
| 4480 | printf("%s: kmem_realloc (KMR_KOBJECT | KMR_FREEOLD | KMR_GUARD_FIRST | KMR_GUARD_LAST) ...\n" , __func__); |
| 4481 | kmem_realloc_basic_test(map, KMR_KOBJECT | KMR_FREEOLD | KMR_GUARD_FIRST | KMR_GUARD_LAST); |
| 4482 | printf("%s: PASS\n" , __func__); |
| 4483 | |
| 4484 | printf("%s: kmem_realloc (KMR_FREEOLD | KMR_GUARD_FIRST) ...\n" , __func__); |
| 4485 | kmem_realloc_basic_test(map, KMR_FREEOLD | KMR_GUARD_FIRST); |
| 4486 | printf("%s: PASS\n" , __func__); |
| 4487 | |
| 4488 | printf("%s: kmem_realloc (KMR_FREEOLD | KMR_GUARD_LAST) ...\n" , __func__); |
| 4489 | kmem_realloc_basic_test(map, KMR_FREEOLD | KMR_GUARD_LAST); |
| 4490 | printf("%s: PASS\n" , __func__); |
| 4491 | |
| 4492 | printf("%s: kmem_realloc (KMR_FREEOLD | KMR_GUARD_FIRST | KMR_GUARD_LAST) ...\n" , __func__); |
| 4493 | kmem_realloc_basic_test(map, KMR_FREEOLD | KMR_GUARD_FIRST | KMR_GUARD_LAST); |
| 4494 | printf("%s: PASS\n" , __func__); |
| 4495 | |
| 4496 | /* using KMR_DATA signals to test the non atomic realloc path */ |
| 4497 | printf("%s: kmem_realloc (KMR_DATA | KMR_FREEOLD) ...\n" , __func__); |
| 4498 | kmem_realloc_basic_test(map, KMR_DATA | KMR_FREEOLD); |
| 4499 | printf("%s: PASS\n" , __func__); |
| 4500 | |
| 4501 | printf("%s: kmem_realloc (KMR_DATA) ...\n" , __func__); |
| 4502 | kmem_realloc_basic_test(map, KMR_DATA); |
| 4503 | printf("%s: PASS\n" , __func__); |
| 4504 | |
| 4505 | kmem_free_guard(kernel_map, addr, 64U << 20, KMF_NONE, KMEM_GUARD_SUBMAP); |
| 4506 | vm_map_deallocate(map); |
| 4507 | |
| 4508 | printf("%s: test passed\n" , __func__); |
| 4509 | *out = 1; |
| 4510 | return 0; |
| 4511 | } |
| 4512 | SYSCTL_TEST_REGISTER(kmem_basic, kmem_basic_test); |
| 4513 | |
| 4514 | static void |
| 4515 | kmem_test_get_size_idx_for_chunks(uint32_t chunks) |
| 4516 | { |
| 4517 | uint32_t idx = kmem_get_size_idx_for_chunks(chunks); |
| 4518 | |
| 4519 | assert(chunks >= kmem_size_array[idx].ks_num_chunk); |
| 4520 | } |
| 4521 | |
| 4522 | __attribute__((noinline)) |
| 4523 | static void |
| 4524 | kmem_test_get_size_idx_for_all_chunks() |
| 4525 | { |
| 4526 | for (uint32_t i = 0; i < KMEM_NUM_SIZECLASS; i++) { |
| 4527 | uint32_t chunks = kmem_size_array[i].ks_num_chunk; |
| 4528 | |
| 4529 | if (chunks != 1) { |
| 4530 | kmem_test_get_size_idx_for_chunks(chunks - 1); |
| 4531 | } |
| 4532 | kmem_test_get_size_idx_for_chunks(chunks); |
| 4533 | kmem_test_get_size_idx_for_chunks(chunks + 1); |
| 4534 | } |
| 4535 | } |
| 4536 | |
| 4537 | static int |
| 4538 | kmem_guard_obj_test(__unused int64_t in, int64_t *out) |
| 4539 | { |
| 4540 | printf("%s: test running\n" , __func__); |
| 4541 | |
| 4542 | printf("%s: kmem_get_size_idx_for_chunks\n" , __func__); |
| 4543 | kmem_test_get_size_idx_for_all_chunks(); |
| 4544 | printf("%s: PASS\n" , __func__); |
| 4545 | |
| 4546 | printf("%s: test passed\n" , __func__); |
| 4547 | *out = 1; |
| 4548 | return 0; |
| 4549 | } |
| 4550 | SYSCTL_TEST_REGISTER(kmem_guard_obj, kmem_guard_obj_test); |
| 4551 | #endif /* DEBUG || DEVELOPMENT */ |
| 4552 | |