| 1 | /* |
| 2 | * Copyright (c) 2014-2020 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
| 5 | * |
| 6 | * This file contains Original Code and/or Modifications of Original Code |
| 7 | * as defined in and that are subject to the Apple Public Source License |
| 8 | * Version 2.0 (the 'License'). You may not use this file except in |
| 9 | * compliance with the License. The rights granted to you under the License |
| 10 | * may not be used to create, or enable the creation or redistribution of, |
| 11 | * unlawful or unlicensed copies of an Apple operating system, or to |
| 12 | * circumvent, violate, or enable the circumvention or violation of, any |
| 13 | * terms of an Apple operating system software license agreement. |
| 14 | * |
| 15 | * Please obtain a copy of the License at |
| 16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
| 17 | * |
| 18 | * The Original Code and all software distributed under the License are |
| 19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| 23 | * Please see the License for the specific language governing rights and |
| 24 | * limitations under the License. |
| 25 | * |
| 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
| 27 | */ |
| 28 | |
| 29 | #include <sys/errno.h> |
| 30 | |
| 31 | #include <mach/mach_types.h> |
| 32 | #include <mach/mach_traps.h> |
| 33 | #include <mach/host_priv.h> |
| 34 | #include <mach/kern_return.h> |
| 35 | #include <mach/memory_object_control.h> |
| 36 | #include <mach/memory_object_types.h> |
| 37 | #include <mach/port.h> |
| 38 | #include <mach/policy.h> |
| 39 | #include <mach/upl.h> |
| 40 | #include <mach/thread_act.h> |
| 41 | #include <mach/mach_vm.h> |
| 42 | |
| 43 | #include <kern/host.h> |
| 44 | #include <kern/kalloc.h> |
| 45 | #include <kern/page_decrypt.h> |
| 46 | #include <kern/queue.h> |
| 47 | #include <kern/thread.h> |
| 48 | #include <kern/ipc_kobject.h> |
| 49 | |
| 50 | #include <sys/kdebug_triage.h> |
| 51 | |
| 52 | #include <ipc/ipc_port.h> |
| 53 | #include <ipc/ipc_space.h> |
| 54 | |
| 55 | #include <vm/vm_fault.h> |
| 56 | #include <vm/vm_map.h> |
| 57 | #include <vm/vm_pageout.h> |
| 58 | #include <vm/memory_object.h> |
| 59 | #include <vm/vm_pageout.h> |
| 60 | #include <vm/vm_protos.h> |
| 61 | #include <vm/vm_kern.h> |
| 62 | |
| 63 | |
| 64 | /* |
| 65 | * 4K MEMORY PAGER |
| 66 | * |
| 67 | * This external memory manager (EMM) handles memory mappings that are |
| 68 | * 4K-aligned but not page-aligned and can therefore not be mapped directly. |
| 69 | * |
| 70 | * It mostly handles page-in requests (from memory_object_data_request()) by |
| 71 | * getting the data needed to fill in each 4K-chunk. That can require |
| 72 | * getting data from one or two pages from its backing VM object |
| 73 | * (a file or a "apple-protected" pager backed by an encrypted file), and |
| 74 | * copies the data to another page so that it is aligned as expected by |
| 75 | * the mapping. |
| 76 | * |
| 77 | * Returned pages can never be dirtied and must always be mapped copy-on-write, |
| 78 | * so the memory manager does not need to handle page-out requests (from |
| 79 | * memory_object_data_return()). |
| 80 | * |
| 81 | */ |
| 82 | |
| 83 | /* forward declarations */ |
| 84 | void fourk_pager_reference(memory_object_t mem_obj); |
| 85 | void fourk_pager_deallocate(memory_object_t mem_obj); |
| 86 | kern_return_t fourk_pager_init(memory_object_t mem_obj, |
| 87 | memory_object_control_t control, |
| 88 | memory_object_cluster_size_t pg_size); |
| 89 | kern_return_t fourk_pager_terminate(memory_object_t mem_obj); |
| 90 | kern_return_t fourk_pager_data_request(memory_object_t mem_obj, |
| 91 | memory_object_offset_t offset, |
| 92 | memory_object_cluster_size_t length, |
| 93 | vm_prot_t protection_required, |
| 94 | memory_object_fault_info_t fault_info); |
| 95 | kern_return_t fourk_pager_data_return(memory_object_t mem_obj, |
| 96 | memory_object_offset_t offset, |
| 97 | memory_object_cluster_size_t data_cnt, |
| 98 | memory_object_offset_t *resid_offset, |
| 99 | int *io_error, |
| 100 | boolean_t dirty, |
| 101 | boolean_t kernel_copy, |
| 102 | int upl_flags); |
| 103 | kern_return_t fourk_pager_data_initialize(memory_object_t mem_obj, |
| 104 | memory_object_offset_t offset, |
| 105 | memory_object_cluster_size_t data_cnt); |
| 106 | kern_return_t fourk_pager_map(memory_object_t mem_obj, |
| 107 | vm_prot_t prot); |
| 108 | kern_return_t fourk_pager_last_unmap(memory_object_t mem_obj); |
| 109 | |
| 110 | /* |
| 111 | * Vector of VM operations for this EMM. |
| 112 | * These routines are invoked by VM via the memory_object_*() interfaces. |
| 113 | */ |
| 114 | const struct memory_object_pager_ops = { |
| 115 | .memory_object_reference = fourk_pager_reference, |
| 116 | .memory_object_deallocate = fourk_pager_deallocate, |
| 117 | .memory_object_init = fourk_pager_init, |
| 118 | .memory_object_terminate = fourk_pager_terminate, |
| 119 | .memory_object_data_request = fourk_pager_data_request, |
| 120 | .memory_object_data_return = fourk_pager_data_return, |
| 121 | .memory_object_data_initialize = fourk_pager_data_initialize, |
| 122 | .memory_object_map = fourk_pager_map, |
| 123 | .memory_object_last_unmap = fourk_pager_last_unmap, |
| 124 | .memory_object_backing_object = NULL, |
| 125 | .memory_object_pager_name = "fourk_pager" |
| 126 | }; |
| 127 | |
| 128 | /* |
| 129 | * The "fourk_pager" describes a memory object backed by |
| 130 | * the "4K" EMM. |
| 131 | */ |
| 132 | #define 4 /* 16K / 4K */ |
| 133 | typedef struct { |
| 134 | vm_object_t ; |
| 135 | vm_object_offset_t ; |
| 136 | } *; |
| 137 | typedef struct { |
| 138 | /* mandatory generic header */ |
| 139 | struct memory_object ; |
| 140 | |
| 141 | /* pager-specific data */ |
| 142 | queue_chain_t ; /* next & prev pagers */ |
| 143 | #if MEMORY_OBJECT_HAS_REFCOUNT |
| 144 | #define fourk_pgr_hdr_ref fourk_pgr_hdr.mo_ref |
| 145 | #else |
| 146 | os_ref_atomic_t fourk_pgr_hdr_ref; |
| 147 | #endif |
| 148 | bool ; /* is this pager ready ? */ |
| 149 | bool ; /* is this mem_obj mapped ? */ |
| 150 | struct fourk_pager_backing [FOURK_PAGER_SLOTS]; /* backing for each |
| 151 | * 4K-chunk */ |
| 152 | } *; |
| 153 | #define ((fourk_pager_t) NULL) |
| 154 | |
| 155 | /* |
| 156 | * List of memory objects managed by this EMM. |
| 157 | * The list is protected by the "fourk_pager_lock" lock. |
| 158 | */ |
| 159 | int = 0; /* number of pagers */ |
| 160 | int = 0; /* number of unmapped pagers */ |
| 161 | queue_head_t = QUEUE_HEAD_INITIALIZER(fourk_pager_queue); |
| 162 | LCK_GRP_DECLARE(, "4K-pager" ); |
| 163 | LCK_MTX_DECLARE(, &fourk_pager_lck_grp); |
| 164 | |
| 165 | /* |
| 166 | * Maximum number of unmapped pagers we're willing to keep around. |
| 167 | */ |
| 168 | int = 0; |
| 169 | |
| 170 | /* |
| 171 | * Statistics & counters. |
| 172 | */ |
| 173 | int = 0; |
| 174 | int = 0; |
| 175 | int = 0; |
| 176 | int = 0; |
| 177 | |
| 178 | /* internal prototypes */ |
| 179 | fourk_pager_t fourk_pager_lookup(memory_object_t mem_obj); |
| 180 | void fourk_pager_dequeue(fourk_pager_t ); |
| 181 | void fourk_pager_deallocate_internal(fourk_pager_t , |
| 182 | boolean_t locked); |
| 183 | void fourk_pager_terminate_internal(fourk_pager_t ); |
| 184 | void fourk_pager_trim(void); |
| 185 | |
| 186 | |
| 187 | #if DEBUG |
| 188 | int fourk_pagerdebug = 0; |
| 189 | #define PAGER_ALL 0xffffffff |
| 190 | #define PAGER_INIT 0x00000001 |
| 191 | #define PAGER_PAGEIN 0x00000002 |
| 192 | |
| 193 | #define PAGER_DEBUG(LEVEL, A) \ |
| 194 | MACRO_BEGIN \ |
| 195 | if ((fourk_pagerdebug & LEVEL)==LEVEL) { \ |
| 196 | printf A; \ |
| 197 | } \ |
| 198 | MACRO_END |
| 199 | #else |
| 200 | #define (LEVEL, A) |
| 201 | #endif |
| 202 | |
| 203 | |
| 204 | /* |
| 205 | * fourk_pager_init() |
| 206 | * |
| 207 | * Initialize the memory object and makes it ready to be used and mapped. |
| 208 | */ |
| 209 | kern_return_t |
| 210 | ( |
| 211 | memory_object_t mem_obj, |
| 212 | memory_object_control_t control, |
| 213 | #if !DEBUG |
| 214 | __unused |
| 215 | #endif |
| 216 | memory_object_cluster_size_t pg_size) |
| 217 | { |
| 218 | fourk_pager_t ; |
| 219 | kern_return_t kr; |
| 220 | memory_object_attr_info_data_t attributes; |
| 221 | |
| 222 | PAGER_DEBUG(PAGER_ALL, |
| 223 | ("fourk_pager_init: %p, %p, %x\n" , |
| 224 | mem_obj, control, pg_size)); |
| 225 | |
| 226 | if (control == MEMORY_OBJECT_CONTROL_NULL) { |
| 227 | return KERN_INVALID_ARGUMENT; |
| 228 | } |
| 229 | |
| 230 | pager = fourk_pager_lookup(mem_obj); |
| 231 | |
| 232 | memory_object_control_reference(control); |
| 233 | |
| 234 | pager->fourk_pgr_hdr.mo_control = control; |
| 235 | |
| 236 | attributes.copy_strategy = MEMORY_OBJECT_COPY_DELAY; |
| 237 | /* attributes.cluster_size = (1 << (CLUSTER_SHIFT + PAGE_SHIFT));*/ |
| 238 | attributes.cluster_size = (1 << (PAGE_SHIFT)); |
| 239 | attributes.may_cache_object = FALSE; |
| 240 | attributes.temporary = TRUE; |
| 241 | |
| 242 | kr = memory_object_change_attributes( |
| 243 | memory_control: control, |
| 244 | MEMORY_OBJECT_ATTRIBUTE_INFO, |
| 245 | attributes: (memory_object_info_t) &attributes, |
| 246 | MEMORY_OBJECT_ATTR_INFO_COUNT); |
| 247 | if (kr != KERN_SUCCESS) { |
| 248 | panic("fourk_pager_init: " |
| 249 | "memory_object_change_attributes() failed" ); |
| 250 | } |
| 251 | |
| 252 | #if CONFIG_SECLUDED_MEMORY |
| 253 | if (secluded_for_filecache) { |
| 254 | memory_object_mark_eligible_for_secluded(control, TRUE); |
| 255 | } |
| 256 | #endif /* CONFIG_SECLUDED_MEMORY */ |
| 257 | |
| 258 | return KERN_SUCCESS; |
| 259 | } |
| 260 | |
| 261 | /* |
| 262 | * fourk_pager_data_return() |
| 263 | * |
| 264 | * Handles page-out requests from VM. This should never happen since |
| 265 | * the pages provided by this EMM are not supposed to be dirty or dirtied |
| 266 | * and VM should simply discard the contents and reclaim the pages if it |
| 267 | * needs to. |
| 268 | */ |
| 269 | kern_return_t |
| 270 | ( |
| 271 | __unused memory_object_t mem_obj, |
| 272 | __unused memory_object_offset_t offset, |
| 273 | __unused memory_object_cluster_size_t data_cnt, |
| 274 | __unused memory_object_offset_t *resid_offset, |
| 275 | __unused int *io_error, |
| 276 | __unused boolean_t dirty, |
| 277 | __unused boolean_t kernel_copy, |
| 278 | __unused int upl_flags) |
| 279 | { |
| 280 | panic("fourk_pager_data_return: should never get called" ); |
| 281 | return KERN_FAILURE; |
| 282 | } |
| 283 | |
| 284 | kern_return_t |
| 285 | ( |
| 286 | __unused memory_object_t mem_obj, |
| 287 | __unused memory_object_offset_t offset, |
| 288 | __unused memory_object_cluster_size_t data_cnt) |
| 289 | { |
| 290 | panic("fourk_pager_data_initialize: should never get called" ); |
| 291 | return KERN_FAILURE; |
| 292 | } |
| 293 | |
| 294 | /* |
| 295 | * fourk_pager_reference() |
| 296 | * |
| 297 | * Get a reference on this memory object. |
| 298 | * For external usage only. Assumes that the initial reference count is not 0, |
| 299 | * i.e one should not "revive" a dead pager this way. |
| 300 | */ |
| 301 | void |
| 302 | ( |
| 303 | memory_object_t mem_obj) |
| 304 | { |
| 305 | fourk_pager_t ; |
| 306 | |
| 307 | pager = fourk_pager_lookup(mem_obj); |
| 308 | |
| 309 | lck_mtx_lock(lck: &fourk_pager_lock); |
| 310 | os_ref_retain_locked_raw(&pager->fourk_pgr_hdr_ref, NULL); |
| 311 | lck_mtx_unlock(lck: &fourk_pager_lock); |
| 312 | } |
| 313 | |
| 314 | |
| 315 | /* |
| 316 | * fourk_pager_dequeue: |
| 317 | * |
| 318 | * Removes a pager from the list of pagers. |
| 319 | * |
| 320 | * The caller must hold "fourk_pager_lock". |
| 321 | */ |
| 322 | void |
| 323 | ( |
| 324 | fourk_pager_t ) |
| 325 | { |
| 326 | assert(!pager->is_mapped); |
| 327 | |
| 328 | queue_remove(&fourk_pager_queue, |
| 329 | pager, |
| 330 | fourk_pager_t, |
| 331 | pager_queue); |
| 332 | pager->pager_queue.next = NULL; |
| 333 | pager->pager_queue.prev = NULL; |
| 334 | |
| 335 | fourk_pager_count--; |
| 336 | } |
| 337 | |
| 338 | /* |
| 339 | * fourk_pager_terminate_internal: |
| 340 | * |
| 341 | * Trigger the asynchronous termination of the memory object associated |
| 342 | * with this pager. |
| 343 | * When the memory object is terminated, there will be one more call |
| 344 | * to memory_object_deallocate() (i.e. fourk_pager_deallocate()) |
| 345 | * to finish the clean up. |
| 346 | * |
| 347 | * "fourk_pager_lock" should not be held by the caller. |
| 348 | * We don't need the lock because the pager has already been removed from |
| 349 | * the pagers' list and is now ours exclusively. |
| 350 | */ |
| 351 | void |
| 352 | ( |
| 353 | fourk_pager_t ) |
| 354 | { |
| 355 | int i; |
| 356 | |
| 357 | assert(pager->is_ready); |
| 358 | assert(!pager->is_mapped); |
| 359 | |
| 360 | for (i = 0; i < FOURK_PAGER_SLOTS; i++) { |
| 361 | if (pager->slots[i].backing_object != VM_OBJECT_NULL && |
| 362 | pager->slots[i].backing_object != (vm_object_t) -1) { |
| 363 | vm_object_deallocate(object: pager->slots[i].backing_object); |
| 364 | pager->slots[i].backing_object = (vm_object_t) -1; |
| 365 | pager->slots[i].backing_offset = (vm_object_offset_t) -1; |
| 366 | } |
| 367 | } |
| 368 | |
| 369 | /* trigger the destruction of the memory object */ |
| 370 | memory_object_destroy(memory_control: pager->fourk_pgr_hdr.mo_control, reason: 0); |
| 371 | } |
| 372 | |
| 373 | /* |
| 374 | * fourk_pager_deallocate_internal() |
| 375 | * |
| 376 | * Release a reference on this pager and free it when the last |
| 377 | * reference goes away. |
| 378 | * Can be called with fourk_pager_lock held or not but always returns |
| 379 | * with it unlocked. |
| 380 | */ |
| 381 | void |
| 382 | ( |
| 383 | fourk_pager_t , |
| 384 | boolean_t locked) |
| 385 | { |
| 386 | boolean_t needs_trimming; |
| 387 | int count_unmapped; |
| 388 | os_ref_count_t ref_count; |
| 389 | |
| 390 | if (!locked) { |
| 391 | lck_mtx_lock(lck: &fourk_pager_lock); |
| 392 | } |
| 393 | |
| 394 | count_unmapped = (fourk_pager_count - |
| 395 | fourk_pager_count_mapped); |
| 396 | if (count_unmapped > fourk_pager_cache_limit) { |
| 397 | /* we have too many unmapped pagers: trim some */ |
| 398 | needs_trimming = TRUE; |
| 399 | } else { |
| 400 | needs_trimming = FALSE; |
| 401 | } |
| 402 | |
| 403 | /* drop a reference on this pager */ |
| 404 | ref_count = os_ref_release_locked_raw(&pager->fourk_pgr_hdr_ref, NULL); |
| 405 | |
| 406 | if (ref_count == 1) { |
| 407 | /* |
| 408 | * Only the "named" reference is left, which means that |
| 409 | * no one is really holding on to this pager anymore. |
| 410 | * Terminate it. |
| 411 | */ |
| 412 | fourk_pager_dequeue(pager); |
| 413 | /* the pager is all ours: no need for the lock now */ |
| 414 | lck_mtx_unlock(lck: &fourk_pager_lock); |
| 415 | fourk_pager_terminate_internal(pager); |
| 416 | } else if (ref_count == 0) { |
| 417 | /* |
| 418 | * Dropped the existence reference; the memory object has |
| 419 | * been terminated. Do some final cleanup and release the |
| 420 | * pager structure. |
| 421 | */ |
| 422 | lck_mtx_unlock(lck: &fourk_pager_lock); |
| 423 | if (pager->fourk_pgr_hdr.mo_control != MEMORY_OBJECT_CONTROL_NULL) { |
| 424 | memory_object_control_deallocate(control: pager->fourk_pgr_hdr.mo_control); |
| 425 | pager->fourk_pgr_hdr.mo_control = MEMORY_OBJECT_CONTROL_NULL; |
| 426 | } |
| 427 | kfree_type(struct fourk_pager, pager); |
| 428 | pager = FOURK_PAGER_NULL; |
| 429 | } else { |
| 430 | /* there are still plenty of references: keep going... */ |
| 431 | lck_mtx_unlock(lck: &fourk_pager_lock); |
| 432 | } |
| 433 | |
| 434 | if (needs_trimming) { |
| 435 | fourk_pager_trim(); |
| 436 | } |
| 437 | /* caution: lock is not held on return... */ |
| 438 | } |
| 439 | |
| 440 | /* |
| 441 | * fourk_pager_deallocate() |
| 442 | * |
| 443 | * Release a reference on this pager and free it when the last |
| 444 | * reference goes away. |
| 445 | */ |
| 446 | void |
| 447 | ( |
| 448 | memory_object_t mem_obj) |
| 449 | { |
| 450 | fourk_pager_t ; |
| 451 | |
| 452 | PAGER_DEBUG(PAGER_ALL, ("fourk_pager_deallocate: %p\n" , mem_obj)); |
| 453 | pager = fourk_pager_lookup(mem_obj); |
| 454 | fourk_pager_deallocate_internal(pager, FALSE); |
| 455 | } |
| 456 | |
| 457 | /* |
| 458 | * |
| 459 | */ |
| 460 | kern_return_t |
| 461 | ( |
| 462 | #if !DEBUG |
| 463 | __unused |
| 464 | #endif |
| 465 | memory_object_t mem_obj) |
| 466 | { |
| 467 | PAGER_DEBUG(PAGER_ALL, ("fourk_pager_terminate: %p\n" , mem_obj)); |
| 468 | |
| 469 | return KERN_SUCCESS; |
| 470 | } |
| 471 | |
| 472 | /* |
| 473 | * fourk_pager_map() |
| 474 | * |
| 475 | * This allows VM to let us, the EMM, know that this memory object |
| 476 | * is currently mapped one or more times. This is called by VM each time |
| 477 | * the memory object gets mapped and we take one extra reference on the |
| 478 | * memory object to account for all its mappings. |
| 479 | */ |
| 480 | kern_return_t |
| 481 | ( |
| 482 | memory_object_t mem_obj, |
| 483 | __unused vm_prot_t prot) |
| 484 | { |
| 485 | fourk_pager_t ; |
| 486 | |
| 487 | PAGER_DEBUG(PAGER_ALL, ("fourk_pager_map: %p\n" , mem_obj)); |
| 488 | |
| 489 | pager = fourk_pager_lookup(mem_obj); |
| 490 | |
| 491 | lck_mtx_lock(lck: &fourk_pager_lock); |
| 492 | assert(pager->is_ready); |
| 493 | assert(os_ref_get_count_raw(&pager->fourk_pgr_hdr_ref) > 0); /* pager is alive */ |
| 494 | if (pager->is_mapped == FALSE) { |
| 495 | /* |
| 496 | * First mapping of this pager: take an extra reference |
| 497 | * that will remain until all the mappings of this pager |
| 498 | * are removed. |
| 499 | */ |
| 500 | pager->is_mapped = TRUE; |
| 501 | os_ref_retain_locked_raw(&pager->fourk_pgr_hdr_ref, NULL); |
| 502 | fourk_pager_count_mapped++; |
| 503 | } |
| 504 | lck_mtx_unlock(lck: &fourk_pager_lock); |
| 505 | |
| 506 | return KERN_SUCCESS; |
| 507 | } |
| 508 | |
| 509 | /* |
| 510 | * fourk_pager_last_unmap() |
| 511 | * |
| 512 | * This is called by VM when this memory object is no longer mapped anywhere. |
| 513 | */ |
| 514 | kern_return_t |
| 515 | ( |
| 516 | memory_object_t mem_obj) |
| 517 | { |
| 518 | fourk_pager_t ; |
| 519 | int count_unmapped; |
| 520 | |
| 521 | PAGER_DEBUG(PAGER_ALL, |
| 522 | ("fourk_pager_last_unmap: %p\n" , mem_obj)); |
| 523 | |
| 524 | pager = fourk_pager_lookup(mem_obj); |
| 525 | |
| 526 | lck_mtx_lock(lck: &fourk_pager_lock); |
| 527 | if (pager->is_mapped) { |
| 528 | /* |
| 529 | * All the mappings are gone, so let go of the one extra |
| 530 | * reference that represents all the mappings of this pager. |
| 531 | */ |
| 532 | fourk_pager_count_mapped--; |
| 533 | count_unmapped = (fourk_pager_count - |
| 534 | fourk_pager_count_mapped); |
| 535 | if (count_unmapped > fourk_pager_count_unmapped_max) { |
| 536 | fourk_pager_count_unmapped_max = count_unmapped; |
| 537 | } |
| 538 | pager->is_mapped = FALSE; |
| 539 | fourk_pager_deallocate_internal(pager, TRUE); |
| 540 | /* caution: deallocate_internal() released the lock ! */ |
| 541 | } else { |
| 542 | lck_mtx_unlock(lck: &fourk_pager_lock); |
| 543 | } |
| 544 | |
| 545 | return KERN_SUCCESS; |
| 546 | } |
| 547 | |
| 548 | |
| 549 | /* |
| 550 | * |
| 551 | */ |
| 552 | fourk_pager_t |
| 553 | ( |
| 554 | memory_object_t mem_obj) |
| 555 | { |
| 556 | fourk_pager_t ; |
| 557 | |
| 558 | assert(mem_obj->mo_pager_ops == &fourk_pager_ops); |
| 559 | pager = (fourk_pager_t) mem_obj; |
| 560 | assert(os_ref_get_count_raw(&pager->fourk_pgr_hdr_ref) > 0); |
| 561 | return pager; |
| 562 | } |
| 563 | |
| 564 | void |
| 565 | (void) |
| 566 | { |
| 567 | fourk_pager_t , ; |
| 568 | queue_head_t trim_queue; |
| 569 | int num_trim; |
| 570 | int count_unmapped; |
| 571 | |
| 572 | lck_mtx_lock(lck: &fourk_pager_lock); |
| 573 | |
| 574 | /* |
| 575 | * We have too many pagers, try and trim some unused ones, |
| 576 | * starting with the oldest pager at the end of the queue. |
| 577 | */ |
| 578 | queue_init(&trim_queue); |
| 579 | num_trim = 0; |
| 580 | |
| 581 | for (pager = (fourk_pager_t) |
| 582 | queue_last(&fourk_pager_queue); |
| 583 | !queue_end(&fourk_pager_queue, |
| 584 | (queue_entry_t) pager); |
| 585 | pager = prev_pager) { |
| 586 | /* get prev elt before we dequeue */ |
| 587 | prev_pager = (fourk_pager_t) |
| 588 | queue_prev(&pager->pager_queue); |
| 589 | |
| 590 | if (os_ref_get_count_raw(rc: &pager->fourk_pgr_hdr_ref) == 2 && |
| 591 | pager->is_ready && |
| 592 | !pager->is_mapped) { |
| 593 | /* this pager can be trimmed */ |
| 594 | num_trim++; |
| 595 | /* remove this pager from the main list ... */ |
| 596 | fourk_pager_dequeue(pager); |
| 597 | /* ... and add it to our trim queue */ |
| 598 | queue_enter_first(&trim_queue, |
| 599 | pager, |
| 600 | fourk_pager_t, |
| 601 | pager_queue); |
| 602 | |
| 603 | count_unmapped = (fourk_pager_count - |
| 604 | fourk_pager_count_mapped); |
| 605 | if (count_unmapped <= fourk_pager_cache_limit) { |
| 606 | /* we have enough pagers to trim */ |
| 607 | break; |
| 608 | } |
| 609 | } |
| 610 | } |
| 611 | if (num_trim > fourk_pager_num_trim_max) { |
| 612 | fourk_pager_num_trim_max = num_trim; |
| 613 | } |
| 614 | fourk_pager_num_trim_total += num_trim; |
| 615 | |
| 616 | lck_mtx_unlock(lck: &fourk_pager_lock); |
| 617 | |
| 618 | /* terminate the trimmed pagers */ |
| 619 | while (!queue_empty(&trim_queue)) { |
| 620 | queue_remove_first(&trim_queue, |
| 621 | pager, |
| 622 | fourk_pager_t, |
| 623 | pager_queue); |
| 624 | pager->pager_queue.next = NULL; |
| 625 | pager->pager_queue.prev = NULL; |
| 626 | assert(os_ref_get_count_raw(&pager->fourk_pgr_hdr_ref) == 2); |
| 627 | /* |
| 628 | * We can't call deallocate_internal() because the pager |
| 629 | * has already been dequeued, but we still need to remove |
| 630 | * a reference. |
| 631 | */ |
| 632 | (void)os_ref_release_locked_raw(&pager->fourk_pgr_hdr_ref, NULL); |
| 633 | fourk_pager_terminate_internal(pager); |
| 634 | } |
| 635 | } |
| 636 | |
| 637 | |
| 638 | |
| 639 | |
| 640 | |
| 641 | |
| 642 | vm_object_t |
| 643 | ( |
| 644 | memory_object_t mem_obj) |
| 645 | { |
| 646 | fourk_pager_t ; |
| 647 | vm_object_t object; |
| 648 | |
| 649 | pager = fourk_pager_lookup(mem_obj); |
| 650 | if (pager == NULL) { |
| 651 | return VM_OBJECT_NULL; |
| 652 | } |
| 653 | |
| 654 | assert(os_ref_get_count_raw(&pager->fourk_pgr_hdr_ref) > 0); |
| 655 | assert(pager->fourk_pgr_hdr.mo_control != MEMORY_OBJECT_CONTROL_NULL); |
| 656 | object = memory_object_control_to_vm_object(control: pager->fourk_pgr_hdr.mo_control); |
| 657 | assert(object != VM_OBJECT_NULL); |
| 658 | return object; |
| 659 | } |
| 660 | |
| 661 | memory_object_t |
| 662 | (void) |
| 663 | { |
| 664 | fourk_pager_t ; |
| 665 | memory_object_control_t control; |
| 666 | kern_return_t kr; |
| 667 | int i; |
| 668 | |
| 669 | #if 00 |
| 670 | if (PAGE_SIZE_64 == FOURK_PAGE_SIZE) { |
| 671 | panic("fourk_pager_create: page size is 4K !?" ); |
| 672 | } |
| 673 | #endif |
| 674 | |
| 675 | pager = kalloc_type(struct fourk_pager, Z_WAITOK | Z_ZERO | Z_NOFAIL); |
| 676 | |
| 677 | /* |
| 678 | * The vm_map call takes both named entry ports and raw memory |
| 679 | * objects in the same parameter. We need to make sure that |
| 680 | * vm_map does not see this object as a named entry port. So, |
| 681 | * we reserve the first word in the object for a fake ip_kotype |
| 682 | * setting - that will tell vm_map to use it as a memory object. |
| 683 | */ |
| 684 | pager->fourk_pgr_hdr.mo_ikot = IKOT_MEMORY_OBJECT; |
| 685 | pager->fourk_pgr_hdr.mo_pager_ops = &fourk_pager_ops; |
| 686 | pager->fourk_pgr_hdr.mo_control = MEMORY_OBJECT_CONTROL_NULL; |
| 687 | |
| 688 | os_ref_init_count_raw(&pager->fourk_pgr_hdr_ref, NULL, 2); /* existence + setup reference */ |
| 689 | pager->is_ready = FALSE; /* not ready until it has a "name" */ |
| 690 | pager->is_mapped = FALSE; |
| 691 | |
| 692 | for (i = 0; i < FOURK_PAGER_SLOTS; i++) { |
| 693 | pager->slots[i].backing_object = (vm_object_t) -1; |
| 694 | pager->slots[i].backing_offset = (vm_object_offset_t) -1; |
| 695 | } |
| 696 | |
| 697 | lck_mtx_lock(lck: &fourk_pager_lock); |
| 698 | |
| 699 | /* enter new pager at the head of our list of pagers */ |
| 700 | queue_enter_first(&fourk_pager_queue, |
| 701 | pager, |
| 702 | fourk_pager_t, |
| 703 | pager_queue); |
| 704 | fourk_pager_count++; |
| 705 | if (fourk_pager_count > fourk_pager_count_max) { |
| 706 | fourk_pager_count_max = fourk_pager_count; |
| 707 | } |
| 708 | lck_mtx_unlock(lck: &fourk_pager_lock); |
| 709 | |
| 710 | kr = memory_object_create_named(pager: (memory_object_t) pager, |
| 711 | size: 0, |
| 712 | control: &control); |
| 713 | assert(kr == KERN_SUCCESS); |
| 714 | |
| 715 | memory_object_mark_trusted(control); |
| 716 | |
| 717 | lck_mtx_lock(lck: &fourk_pager_lock); |
| 718 | /* the new pager is now ready to be used */ |
| 719 | pager->is_ready = TRUE; |
| 720 | lck_mtx_unlock(lck: &fourk_pager_lock); |
| 721 | |
| 722 | /* wakeup anyone waiting for this pager to be ready */ |
| 723 | thread_wakeup(&pager->is_ready); |
| 724 | |
| 725 | return (memory_object_t) pager; |
| 726 | } |
| 727 | |
| 728 | /* |
| 729 | * fourk_pager_data_request() |
| 730 | * |
| 731 | * Handles page-in requests from VM. |
| 732 | */ |
| 733 | int = 0; |
| 734 | kern_return_t |
| 735 | ( |
| 736 | memory_object_t mem_obj, |
| 737 | memory_object_offset_t offset, |
| 738 | memory_object_cluster_size_t length, |
| 739 | #if !DEBUG |
| 740 | __unused |
| 741 | #endif |
| 742 | vm_prot_t protection_required, |
| 743 | memory_object_fault_info_t mo_fault_info) |
| 744 | { |
| 745 | fourk_pager_t ; |
| 746 | memory_object_control_t mo_control; |
| 747 | upl_t upl; |
| 748 | int upl_flags; |
| 749 | upl_size_t upl_size; |
| 750 | upl_page_info_t *upl_pl; |
| 751 | unsigned int pl_count; |
| 752 | vm_object_t dst_object; |
| 753 | kern_return_t kr, retval; |
| 754 | vm_offset_t kernel_mapping; |
| 755 | vm_offset_t src_vaddr, dst_vaddr; |
| 756 | vm_offset_t cur_offset; |
| 757 | int sub_page; |
| 758 | int sub_page_idx, sub_page_cnt; |
| 759 | |
| 760 | pager = fourk_pager_lookup(mem_obj); |
| 761 | assert(pager->is_ready); |
| 762 | assert(os_ref_get_count_raw(&pager->fourk_pgr_hdr_ref) > 1); /* pager is alive and mapped */ |
| 763 | |
| 764 | PAGER_DEBUG(PAGER_PAGEIN, ("fourk_pager_data_request: %p, %llx, %x, %x, pager %p\n" , mem_obj, offset, length, protection_required, pager)); |
| 765 | |
| 766 | retval = KERN_SUCCESS; |
| 767 | kernel_mapping = 0; |
| 768 | |
| 769 | offset = memory_object_trunc_page(offset); |
| 770 | |
| 771 | /* |
| 772 | * Gather in a UPL all the VM pages requested by VM. |
| 773 | */ |
| 774 | mo_control = pager->fourk_pgr_hdr.mo_control; |
| 775 | |
| 776 | upl_size = length; |
| 777 | upl_flags = |
| 778 | UPL_RET_ONLY_ABSENT | |
| 779 | UPL_SET_LITE | |
| 780 | UPL_NO_SYNC | |
| 781 | UPL_CLEAN_IN_PLACE | /* triggers UPL_CLEAR_DIRTY */ |
| 782 | UPL_SET_INTERNAL; |
| 783 | pl_count = 0; |
| 784 | kr = memory_object_upl_request(memory_control: mo_control, |
| 785 | offset, size: upl_size, |
| 786 | upl: &upl, NULL, NULL, cntrl_flags: upl_flags, VM_KERN_MEMORY_NONE); |
| 787 | if (kr != KERN_SUCCESS) { |
| 788 | retval = kr; |
| 789 | goto done; |
| 790 | } |
| 791 | dst_object = memory_object_control_to_vm_object(control: mo_control); |
| 792 | assert(dst_object != VM_OBJECT_NULL); |
| 793 | |
| 794 | #if __x86_64__ || __arm64__ |
| 795 | /* use the 1-to-1 mapping of physical memory */ |
| 796 | #else /* __x86_64__ || __arm64__ */ |
| 797 | /* |
| 798 | * Reserve 2 virtual pages in the kernel address space to map the |
| 799 | * source and destination physical pages when it's their turn to |
| 800 | * be processed. |
| 801 | */ |
| 802 | |
| 803 | kr = kmem_alloc(kernel_map, &kernel_mapping, ptoa(2), |
| 804 | KMA_DATA | KMA_KOBJECT | KMA_PAGEABLE, VM_KERN_MEMORY_NONE); |
| 805 | if (kr != KERN_SUCCESS) { |
| 806 | retval = kr; |
| 807 | goto done; |
| 808 | } |
| 809 | src_vaddr = kernel_mapping; |
| 810 | dst_vaddr = kernel_mapping + PAGE_SIZE; |
| 811 | #endif /* __x86_64__ || __arm64__ */ |
| 812 | |
| 813 | /* |
| 814 | * Fill in the contents of the pages requested by VM. |
| 815 | */ |
| 816 | upl_pl = UPL_GET_INTERNAL_PAGE_LIST(upl); |
| 817 | pl_count = length / PAGE_SIZE; |
| 818 | for (cur_offset = 0; |
| 819 | retval == KERN_SUCCESS && cur_offset < length; |
| 820 | cur_offset += PAGE_SIZE) { |
| 821 | ppnum_t dst_pnum; |
| 822 | int num_subpg_signed, num_subpg_validated; |
| 823 | int num_subpg_tainted, num_subpg_nx; |
| 824 | |
| 825 | if (!upl_page_present(upl: upl_pl, index: (int)(cur_offset / PAGE_SIZE))) { |
| 826 | /* this page is not in the UPL: skip it */ |
| 827 | continue; |
| 828 | } |
| 829 | |
| 830 | /* |
| 831 | * Establish an explicit pmap mapping of the destination |
| 832 | * physical page. |
| 833 | * We can't do a regular VM mapping because the VM page |
| 834 | * is "busy". |
| 835 | */ |
| 836 | dst_pnum = (ppnum_t) |
| 837 | upl_phys_page(upl: upl_pl, index: (int)(cur_offset / PAGE_SIZE)); |
| 838 | assert(dst_pnum != 0); |
| 839 | dst_vaddr = (vm_map_offset_t) |
| 840 | phystokv(pa: (pmap_paddr_t)dst_pnum << PAGE_SHIFT); |
| 841 | |
| 842 | /* retrieve appropriate data for each 4K-page in this page */ |
| 843 | if (PAGE_SHIFT == FOURK_PAGE_SHIFT && |
| 844 | page_shift_user32 == SIXTEENK_PAGE_SHIFT) { |
| 845 | /* |
| 846 | * Find the slot for the requested 4KB page in |
| 847 | * the 16K page... |
| 848 | */ |
| 849 | assert(PAGE_SHIFT == FOURK_PAGE_SHIFT); |
| 850 | assert(page_shift_user32 == SIXTEENK_PAGE_SHIFT); |
| 851 | sub_page_idx = ((offset & SIXTEENK_PAGE_MASK) / |
| 852 | PAGE_SIZE); |
| 853 | /* |
| 854 | * ... and provide only that one 4KB page. |
| 855 | */ |
| 856 | sub_page_cnt = 1; |
| 857 | } else { |
| 858 | /* |
| 859 | * Iterate over all slots, i.e. retrieve all four 4KB |
| 860 | * pages in the requested 16KB page. |
| 861 | */ |
| 862 | assert(PAGE_SHIFT == SIXTEENK_PAGE_SHIFT); |
| 863 | sub_page_idx = 0; |
| 864 | sub_page_cnt = FOURK_PAGER_SLOTS; |
| 865 | } |
| 866 | |
| 867 | num_subpg_signed = 0; |
| 868 | num_subpg_validated = 0; |
| 869 | num_subpg_tainted = 0; |
| 870 | num_subpg_nx = 0; |
| 871 | |
| 872 | /* retrieve appropriate data for each 4K-page in this page */ |
| 873 | for (sub_page = sub_page_idx; |
| 874 | sub_page < sub_page_idx + sub_page_cnt; |
| 875 | sub_page++) { |
| 876 | vm_object_t src_object; |
| 877 | memory_object_offset_t src_offset; |
| 878 | vm_offset_t offset_in_src_page; |
| 879 | kern_return_t error_code; |
| 880 | vm_object_t src_page_object; |
| 881 | vm_page_t src_page; |
| 882 | vm_page_t top_page; |
| 883 | vm_prot_t prot; |
| 884 | int interruptible; |
| 885 | struct vm_object_fault_info fault_info; |
| 886 | boolean_t subpg_validated; |
| 887 | unsigned subpg_tainted; |
| 888 | |
| 889 | |
| 890 | if (offset < SIXTEENK_PAGE_SIZE) { |
| 891 | /* |
| 892 | * The 1st 16K-page can cover multiple |
| 893 | * sub-mappings, as described in the |
| 894 | * pager->slots[] array. |
| 895 | */ |
| 896 | src_object = |
| 897 | pager->slots[sub_page].backing_object; |
| 898 | src_offset = |
| 899 | pager->slots[sub_page].backing_offset; |
| 900 | } else { |
| 901 | fourk_pager_backing_t slot; |
| 902 | |
| 903 | /* |
| 904 | * Beyond the 1st 16K-page in the pager is |
| 905 | * an extension of the last "sub page" in |
| 906 | * the pager->slots[] array. |
| 907 | */ |
| 908 | slot = &pager->slots[FOURK_PAGER_SLOTS - 1]; |
| 909 | src_object = slot->backing_object; |
| 910 | src_offset = slot->backing_offset; |
| 911 | src_offset += FOURK_PAGE_SIZE; |
| 912 | src_offset += |
| 913 | (vm_map_trunc_page(offset, |
| 914 | SIXTEENK_PAGE_MASK) |
| 915 | - SIXTEENK_PAGE_SIZE); |
| 916 | src_offset += sub_page * FOURK_PAGE_SIZE; |
| 917 | } |
| 918 | offset_in_src_page = src_offset & PAGE_MASK_64; |
| 919 | src_offset = vm_object_trunc_page(src_offset); |
| 920 | |
| 921 | if (src_object == VM_OBJECT_NULL || |
| 922 | src_object == (vm_object_t) -1) { |
| 923 | /* zero-fill */ |
| 924 | bzero(s: (char *)(dst_vaddr + |
| 925 | ((sub_page - sub_page_idx) |
| 926 | * FOURK_PAGE_SIZE)), |
| 927 | FOURK_PAGE_SIZE); |
| 928 | if (fourk_pager_data_request_debug) { |
| 929 | printf(format: "fourk_pager_data_request" |
| 930 | "(%p,0x%llx+0x%lx+0x%04x): " |
| 931 | "ZERO\n" , |
| 932 | pager, |
| 933 | offset, |
| 934 | cur_offset, |
| 935 | ((sub_page - sub_page_idx) |
| 936 | * FOURK_PAGE_SIZE)); |
| 937 | } |
| 938 | continue; |
| 939 | } |
| 940 | |
| 941 | /* fault in the source page from src_object */ |
| 942 | retry_src_fault: |
| 943 | src_page = VM_PAGE_NULL; |
| 944 | top_page = VM_PAGE_NULL; |
| 945 | fault_info = *((struct vm_object_fault_info *) |
| 946 | (uintptr_t)mo_fault_info); |
| 947 | fault_info.stealth = TRUE; |
| 948 | fault_info.io_sync = FALSE; |
| 949 | fault_info.mark_zf_absent = FALSE; |
| 950 | fault_info.batch_pmap_op = FALSE; |
| 951 | interruptible = fault_info.interruptible; |
| 952 | prot = VM_PROT_READ; |
| 953 | error_code = 0; |
| 954 | |
| 955 | vm_object_lock(src_object); |
| 956 | vm_object_paging_begin(src_object); |
| 957 | kr = vm_fault_page(first_object: src_object, |
| 958 | first_offset: src_offset, |
| 959 | VM_PROT_READ, |
| 960 | FALSE, |
| 961 | FALSE, /* src_page not looked up */ |
| 962 | protection: &prot, |
| 963 | result_page: &src_page, |
| 964 | top_page: &top_page, |
| 965 | NULL, |
| 966 | error_code: &error_code, |
| 967 | FALSE, |
| 968 | fault_info: &fault_info); |
| 969 | switch (kr) { |
| 970 | case VM_FAULT_SUCCESS: |
| 971 | break; |
| 972 | case VM_FAULT_RETRY: |
| 973 | goto retry_src_fault; |
| 974 | case VM_FAULT_MEMORY_SHORTAGE: |
| 975 | if (vm_page_wait(interruptible)) { |
| 976 | goto retry_src_fault; |
| 977 | } |
| 978 | ktriage_record(thread_id: thread_tid(thread: current_thread()), KDBG_TRIAGE_EVENTID(KDBG_TRIAGE_SUBSYS_FOURK_PAGER, KDBG_TRIAGE_RESERVED, KDBG_TRIAGE_FOURK_PAGER_MEMORY_SHORTAGE), arg: 0 /* arg */); |
| 979 | OS_FALLTHROUGH; |
| 980 | case VM_FAULT_INTERRUPTED: |
| 981 | retval = MACH_SEND_INTERRUPTED; |
| 982 | goto src_fault_done; |
| 983 | case VM_FAULT_SUCCESS_NO_VM_PAGE: |
| 984 | /* success but no VM page: fail */ |
| 985 | vm_object_paging_end(src_object); |
| 986 | vm_object_unlock(src_object); |
| 987 | OS_FALLTHROUGH; |
| 988 | case VM_FAULT_MEMORY_ERROR: |
| 989 | /* the page is not there! */ |
| 990 | if (error_code) { |
| 991 | retval = error_code; |
| 992 | } else { |
| 993 | retval = KERN_MEMORY_ERROR; |
| 994 | } |
| 995 | goto src_fault_done; |
| 996 | default: |
| 997 | panic("fourk_pager_data_request: " |
| 998 | "vm_fault_page() unexpected error 0x%x\n" , |
| 999 | kr); |
| 1000 | } |
| 1001 | assert(src_page != VM_PAGE_NULL); |
| 1002 | assert(src_page->vmp_busy); |
| 1003 | |
| 1004 | src_page_object = VM_PAGE_OBJECT(src_page); |
| 1005 | |
| 1006 | if ((!VM_PAGE_PAGEABLE(src_page)) && |
| 1007 | !VM_PAGE_WIRED(src_page)) { |
| 1008 | vm_page_lockspin_queues(); |
| 1009 | if ((!VM_PAGE_PAGEABLE(src_page)) && |
| 1010 | !VM_PAGE_WIRED(src_page)) { |
| 1011 | vm_page_deactivate(page: src_page); |
| 1012 | } |
| 1013 | vm_page_unlock_queues(); |
| 1014 | } |
| 1015 | |
| 1016 | src_vaddr = (vm_map_offset_t) |
| 1017 | phystokv(pa: (pmap_paddr_t)VM_PAGE_GET_PHYS_PAGE(m: src_page) |
| 1018 | << PAGE_SHIFT); |
| 1019 | |
| 1020 | /* |
| 1021 | * Validate the 4K page we want from |
| 1022 | * this source page... |
| 1023 | */ |
| 1024 | subpg_validated = FALSE; |
| 1025 | subpg_tainted = 0; |
| 1026 | if (src_page_object->code_signed) { |
| 1027 | vm_page_validate_cs_mapped_chunk( |
| 1028 | page: src_page, |
| 1029 | kaddr: (const void *) src_vaddr, |
| 1030 | chunk_offset: offset_in_src_page, |
| 1031 | FOURK_PAGE_SIZE, |
| 1032 | validated: &subpg_validated, |
| 1033 | tainted: &subpg_tainted); |
| 1034 | num_subpg_signed++; |
| 1035 | if (subpg_validated) { |
| 1036 | num_subpg_validated++; |
| 1037 | } |
| 1038 | if (subpg_tainted & CS_VALIDATE_TAINTED) { |
| 1039 | num_subpg_tainted++; |
| 1040 | } |
| 1041 | if (subpg_tainted & CS_VALIDATE_NX) { |
| 1042 | /* subpg should not be executable */ |
| 1043 | if (sub_page_cnt > 1) { |
| 1044 | /* |
| 1045 | * The destination page has |
| 1046 | * more than 1 subpage and its |
| 1047 | * other subpages might need |
| 1048 | * EXEC, so we do not propagate |
| 1049 | * CS_VALIDATE_NX to the |
| 1050 | * destination page... |
| 1051 | */ |
| 1052 | } else { |
| 1053 | num_subpg_nx++; |
| 1054 | } |
| 1055 | } |
| 1056 | } |
| 1057 | |
| 1058 | /* |
| 1059 | * Copy the relevant portion of the source page |
| 1060 | * into the appropriate part of the destination page. |
| 1061 | */ |
| 1062 | bcopy(src: (const char *)(src_vaddr + offset_in_src_page), |
| 1063 | dst: (char *)(dst_vaddr + |
| 1064 | ((sub_page - sub_page_idx) * |
| 1065 | FOURK_PAGE_SIZE)), |
| 1066 | FOURK_PAGE_SIZE); |
| 1067 | if (fourk_pager_data_request_debug) { |
| 1068 | printf(format: "fourk_data_request" |
| 1069 | "(%p,0x%llx+0x%lx+0x%04x): " |
| 1070 | "backed by [%p:0x%llx]: " |
| 1071 | "[0x%016llx 0x%016llx] " |
| 1072 | "code_signed=%d " |
| 1073 | "cs_valid=%d cs_tainted=%d cs_nx=%d\n" , |
| 1074 | pager, |
| 1075 | offset, cur_offset, |
| 1076 | (sub_page - sub_page_idx) * FOURK_PAGE_SIZE, |
| 1077 | src_page_object, |
| 1078 | src_page->vmp_offset + offset_in_src_page, |
| 1079 | *(uint64_t *)(dst_vaddr + |
| 1080 | ((sub_page - sub_page_idx) * |
| 1081 | FOURK_PAGE_SIZE)), |
| 1082 | *(uint64_t *)(dst_vaddr + |
| 1083 | ((sub_page - sub_page_idx) * |
| 1084 | FOURK_PAGE_SIZE) + |
| 1085 | 8), |
| 1086 | src_page_object->code_signed, |
| 1087 | subpg_validated, |
| 1088 | !!(subpg_tainted & CS_VALIDATE_TAINTED), |
| 1089 | !!(subpg_tainted & CS_VALIDATE_NX)); |
| 1090 | } |
| 1091 | |
| 1092 | #if __x86_64__ || __arm64__ |
| 1093 | /* we used the 1-to-1 mapping of physical memory */ |
| 1094 | src_vaddr = 0; |
| 1095 | #else /* __x86_64__ || __arm64__ */ |
| 1096 | /* |
| 1097 | * Remove the pmap mapping of the source page |
| 1098 | * in the kernel. |
| 1099 | */ |
| 1100 | pmap_remove(kernel_pmap, |
| 1101 | (addr64_t) src_vaddr, |
| 1102 | (addr64_t) src_vaddr + PAGE_SIZE_64); |
| 1103 | #endif /* __x86_64__ || __arm64__ */ |
| 1104 | |
| 1105 | src_fault_done: |
| 1106 | /* |
| 1107 | * Cleanup the result of vm_fault_page(). |
| 1108 | */ |
| 1109 | if (src_page) { |
| 1110 | assert(VM_PAGE_OBJECT(src_page) == src_page_object); |
| 1111 | |
| 1112 | PAGE_WAKEUP_DONE(src_page); |
| 1113 | src_page = VM_PAGE_NULL; |
| 1114 | vm_object_paging_end(src_page_object); |
| 1115 | vm_object_unlock(src_page_object); |
| 1116 | if (top_page) { |
| 1117 | vm_object_t top_object; |
| 1118 | |
| 1119 | top_object = VM_PAGE_OBJECT(top_page); |
| 1120 | vm_object_lock(top_object); |
| 1121 | VM_PAGE_FREE(top_page); |
| 1122 | top_page = VM_PAGE_NULL; |
| 1123 | vm_object_paging_end(top_object); |
| 1124 | vm_object_unlock(top_object); |
| 1125 | } |
| 1126 | } |
| 1127 | } |
| 1128 | if (num_subpg_signed > 0) { |
| 1129 | /* some code-signing involved with this 16K page */ |
| 1130 | if (num_subpg_tainted > 0) { |
| 1131 | /* a tainted subpage taints entire 16K page */ |
| 1132 | UPL_SET_CS_TAINTED(upl_pl, |
| 1133 | cur_offset / PAGE_SIZE, |
| 1134 | VMP_CS_ALL_TRUE); |
| 1135 | /* also mark as "validated" for consisteny */ |
| 1136 | UPL_SET_CS_VALIDATED(upl_pl, |
| 1137 | cur_offset / PAGE_SIZE, |
| 1138 | VMP_CS_ALL_TRUE); |
| 1139 | } else if (num_subpg_validated == num_subpg_signed) { |
| 1140 | /* |
| 1141 | * All the code-signed 4K subpages of this |
| 1142 | * 16K page are validated: our 16K page is |
| 1143 | * considered validated. |
| 1144 | */ |
| 1145 | UPL_SET_CS_VALIDATED(upl_pl, |
| 1146 | cur_offset / PAGE_SIZE, |
| 1147 | VMP_CS_ALL_TRUE); |
| 1148 | } |
| 1149 | if (num_subpg_nx > 0) { |
| 1150 | UPL_SET_CS_NX(upl_pl, |
| 1151 | cur_offset / PAGE_SIZE, |
| 1152 | VMP_CS_ALL_TRUE); |
| 1153 | } |
| 1154 | } |
| 1155 | } |
| 1156 | |
| 1157 | done: |
| 1158 | if (upl != NULL) { |
| 1159 | /* clean up the UPL */ |
| 1160 | |
| 1161 | /* |
| 1162 | * The pages are currently dirty because we've just been |
| 1163 | * writing on them, but as far as we're concerned, they're |
| 1164 | * clean since they contain their "original" contents as |
| 1165 | * provided by us, the pager. |
| 1166 | * Tell the UPL to mark them "clean". |
| 1167 | */ |
| 1168 | upl_clear_dirty(upl, TRUE); |
| 1169 | |
| 1170 | /* abort or commit the UPL */ |
| 1171 | if (retval != KERN_SUCCESS) { |
| 1172 | upl_abort(upl_object: upl, abort_cond: 0); |
| 1173 | if (retval == KERN_ABORTED) { |
| 1174 | wait_result_t wait_result; |
| 1175 | |
| 1176 | /* |
| 1177 | * We aborted the fault and did not provide |
| 1178 | * any contents for the requested pages but |
| 1179 | * the pages themselves are not invalid, so |
| 1180 | * let's return success and let the caller |
| 1181 | * retry the fault, in case it might succeed |
| 1182 | * later (when the decryption code is up and |
| 1183 | * running in the kernel, for example). |
| 1184 | */ |
| 1185 | retval = KERN_SUCCESS; |
| 1186 | /* |
| 1187 | * Wait a little bit first to avoid using |
| 1188 | * too much CPU time retrying and failing |
| 1189 | * the same fault over and over again. |
| 1190 | */ |
| 1191 | wait_result = assert_wait_timeout( |
| 1192 | event: (event_t) fourk_pager_data_request, |
| 1193 | THREAD_UNINT, |
| 1194 | interval: 10000, /* 10ms */ |
| 1195 | NSEC_PER_USEC); |
| 1196 | assert(wait_result == THREAD_WAITING); |
| 1197 | wait_result = thread_block(THREAD_CONTINUE_NULL); |
| 1198 | assert(wait_result == THREAD_TIMED_OUT); |
| 1199 | } |
| 1200 | } else { |
| 1201 | boolean_t empty; |
| 1202 | assertf(page_aligned(upl->u_offset) && page_aligned(upl->u_size), |
| 1203 | "upl %p offset 0x%llx size 0x%x" , |
| 1204 | upl, upl->u_offset, upl->u_size); |
| 1205 | upl_commit_range(upl_object: upl, offset: 0, size: upl->u_size, |
| 1206 | UPL_COMMIT_CS_VALIDATED | UPL_COMMIT_WRITTEN_BY_KERNEL, |
| 1207 | page_list: upl_pl, page_listCnt: pl_count, empty: &empty); |
| 1208 | } |
| 1209 | |
| 1210 | /* and deallocate the UPL */ |
| 1211 | upl_deallocate(upl); |
| 1212 | upl = NULL; |
| 1213 | } |
| 1214 | if (kernel_mapping != 0) { |
| 1215 | /* clean up the mapping of the source and destination pages */ |
| 1216 | kmem_free(map: kernel_map, addr: kernel_mapping, ptoa(2)); |
| 1217 | kernel_mapping = 0; |
| 1218 | src_vaddr = 0; |
| 1219 | dst_vaddr = 0; |
| 1220 | } |
| 1221 | |
| 1222 | return retval; |
| 1223 | } |
| 1224 | |
| 1225 | |
| 1226 | |
| 1227 | kern_return_t |
| 1228 | ( |
| 1229 | memory_object_t mem_obj, |
| 1230 | boolean_t overwrite, |
| 1231 | int index, |
| 1232 | vm_object_t new_backing_object, |
| 1233 | vm_object_offset_t new_backing_offset, |
| 1234 | vm_object_t *old_backing_object, |
| 1235 | vm_object_offset_t *old_backing_offset) |
| 1236 | { |
| 1237 | fourk_pager_t ; |
| 1238 | |
| 1239 | pager = fourk_pager_lookup(mem_obj); |
| 1240 | if (pager == NULL) { |
| 1241 | return KERN_INVALID_ARGUMENT; |
| 1242 | } |
| 1243 | |
| 1244 | assert(os_ref_get_count_raw(&pager->fourk_pgr_hdr_ref) > 0); |
| 1245 | assert(pager->fourk_pgr_hdr.mo_control != MEMORY_OBJECT_CONTROL_NULL); |
| 1246 | |
| 1247 | if (index < 0 || index > FOURK_PAGER_SLOTS) { |
| 1248 | return KERN_INVALID_ARGUMENT; |
| 1249 | } |
| 1250 | |
| 1251 | if (!overwrite && |
| 1252 | (pager->slots[index].backing_object != (vm_object_t) -1 || |
| 1253 | pager->slots[index].backing_offset != (vm_object_offset_t) -1)) { |
| 1254 | return KERN_INVALID_ADDRESS; |
| 1255 | } |
| 1256 | |
| 1257 | *old_backing_object = pager->slots[index].backing_object; |
| 1258 | *old_backing_offset = pager->slots[index].backing_offset; |
| 1259 | |
| 1260 | pager->slots[index].backing_object = new_backing_object; |
| 1261 | pager->slots[index].backing_offset = new_backing_offset; |
| 1262 | |
| 1263 | return KERN_SUCCESS; |
| 1264 | } |
| 1265 | |