1 | /* |
2 | * Copyright (c) 2000-2021 Apple Inc. All rights reserved. |
3 | * |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
5 | * |
6 | * This file contains Original Code and/or Modifications of Original Code |
7 | * as defined in and that are subject to the Apple Public Source License |
8 | * Version 2.0 (the 'License'). You may not use this file except in |
9 | * compliance with the License. The rights granted to you under the License |
10 | * may not be used to create, or enable the creation or redistribution of, |
11 | * unlawful or unlicensed copies of an Apple operating system, or to |
12 | * circumvent, violate, or enable the circumvention or violation of, any |
13 | * terms of an Apple operating system software license agreement. |
14 | * |
15 | * Please obtain a copy of the License at |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
17 | * |
18 | * The Original Code and all software distributed under the License are |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
23 | * Please see the License for the specific language governing rights and |
24 | * limitations under the License. |
25 | * |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
27 | */ |
28 | /* |
29 | * @OSF_COPYRIGHT@ |
30 | */ |
31 | /* |
32 | * Mach Operating System |
33 | * Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University |
34 | * All Rights Reserved. |
35 | * |
36 | * Permission to use, copy, modify and distribute this software and its |
37 | * documentation is hereby granted, provided that both the copyright |
38 | * notice and this permission notice appear in all copies of the |
39 | * software, derivative works or modified versions, and any portions |
40 | * thereof, and that both notices appear in supporting documentation. |
41 | * |
42 | * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" |
43 | * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR |
44 | * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. |
45 | * |
46 | * Carnegie Mellon requests users of this software to return to |
47 | * |
48 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU |
49 | * School of Computer Science |
50 | * Carnegie Mellon University |
51 | * Pittsburgh PA 15213-3890 |
52 | * |
53 | * any improvements or extensions that they make and grant Carnegie Mellon |
54 | * the rights to redistribute these changes. |
55 | */ |
56 | /* |
57 | */ |
58 | /* |
59 | * File: vm_fault.c |
60 | * Author: Avadis Tevanian, Jr., Michael Wayne Young |
61 | * |
62 | * Page fault handling module. |
63 | */ |
64 | |
65 | #include <libkern/OSAtomic.h> |
66 | |
67 | #include <mach/mach_types.h> |
68 | #include <mach/kern_return.h> |
69 | #include <mach/message.h> /* for error codes */ |
70 | #include <mach/vm_param.h> |
71 | #include <mach/vm_behavior.h> |
72 | #include <mach/memory_object.h> |
73 | /* For memory_object_data_{request,unlock} */ |
74 | #include <mach/sdt.h> |
75 | |
76 | #include <kern/kern_types.h> |
77 | #include <kern/host_statistics.h> |
78 | #include <kern/counter.h> |
79 | #include <kern/task.h> |
80 | #include <kern/thread.h> |
81 | #include <kern/sched_prim.h> |
82 | #include <kern/host.h> |
83 | #include <kern/mach_param.h> |
84 | #include <kern/macro_help.h> |
85 | #include <kern/zalloc_internal.h> |
86 | #include <kern/misc_protos.h> |
87 | #include <kern/policy_internal.h> |
88 | |
89 | #include <vm/vm_compressor.h> |
90 | #include <vm/vm_compressor_pager.h> |
91 | #include <vm/vm_fault.h> |
92 | #include <vm/vm_map.h> |
93 | #include <vm/vm_object.h> |
94 | #include <vm/vm_page.h> |
95 | #include <vm/vm_kern.h> |
96 | #include <vm/pmap.h> |
97 | #include <vm/vm_pageout.h> |
98 | #include <vm/vm_protos.h> |
99 | #include <vm/vm_external.h> |
100 | #include <vm/memory_object.h> |
101 | #include <vm/vm_purgeable_internal.h> /* Needed by some vm_page.h macros */ |
102 | #include <vm/vm_shared_region.h> |
103 | |
104 | #include <sys/codesign.h> |
105 | #include <sys/code_signing.h> |
106 | #include <sys/reason.h> |
107 | #include <sys/signalvar.h> |
108 | |
109 | #include <sys/kdebug_triage.h> |
110 | |
111 | #include <san/kasan.h> |
112 | #include <libkern/coreanalytics/coreanalytics.h> |
113 | |
114 | #define VM_FAULT_CLASSIFY 0 |
115 | |
116 | #define TRACEFAULTPAGE 0 /* (TEST/DEBUG) */ |
117 | |
118 | int vm_protect_privileged_from_untrusted = 1; |
119 | |
120 | unsigned int vm_object_pagein_throttle = 16; |
121 | |
122 | /* |
123 | * We apply a hard throttle to the demand zero rate of tasks that we believe are running out of control which |
124 | * kicks in when swap space runs out. 64-bit programs have massive address spaces and can leak enormous amounts |
125 | * of memory if they're buggy and can run the system completely out of swap space. If this happens, we |
126 | * impose a hard throttle on them to prevent them from taking the last bit of memory left. This helps |
127 | * keep the UI active so that the user has a chance to kill the offending task before the system |
128 | * completely hangs. |
129 | * |
130 | * The hard throttle is only applied when the system is nearly completely out of swap space and is only applied |
131 | * to tasks that appear to be bloated. When swap runs out, any task using more than vm_hard_throttle_threshold |
132 | * will be throttled. The throttling is done by giving the thread that's trying to demand zero a page a |
133 | * delay of HARD_THROTTLE_DELAY microseconds before being allowed to try the page fault again. |
134 | */ |
135 | |
136 | extern void throttle_lowpri_io(int); |
137 | |
138 | extern struct vnode *(memory_object_t); |
139 | |
140 | uint64_t vm_hard_throttle_threshold; |
141 | |
142 | #if DEBUG || DEVELOPMENT |
143 | static bool vmtc_panic_instead = false; |
144 | int panic_object_not_alive = 1; |
145 | #endif /* DEBUG || DEVELOPMENT */ |
146 | |
147 | OS_ALWAYS_INLINE |
148 | boolean_t |
149 | NEED_TO_HARD_THROTTLE_THIS_TASK(void) |
150 | { |
151 | return vm_wants_task_throttled(current_task()) || |
152 | ((vm_page_free_count < vm_page_throttle_limit || |
153 | HARD_THROTTLE_LIMIT_REACHED()) && |
154 | proc_get_effective_thread_policy(thread: current_thread(), TASK_POLICY_IO) >= THROTTLE_LEVEL_THROTTLED); |
155 | } |
156 | |
157 | #define HARD_THROTTLE_DELAY 10000 /* 10000 us == 10 ms */ |
158 | #define SOFT_THROTTLE_DELAY 200 /* 200 us == .2 ms */ |
159 | |
160 | #define VM_PAGE_CREATION_THROTTLE_PERIOD_SECS 6 |
161 | #define VM_PAGE_CREATION_THROTTLE_RATE_PER_SEC 20000 |
162 | |
163 | |
164 | #define VM_STAT_DECOMPRESSIONS() \ |
165 | MACRO_BEGIN \ |
166 | counter_inc(&vm_statistics_decompressions); \ |
167 | current_thread()->decompressions++; \ |
168 | MACRO_END |
169 | |
170 | boolean_t current_thread_aborted(void); |
171 | |
172 | /* Forward declarations of internal routines. */ |
173 | static kern_return_t vm_fault_wire_fast( |
174 | vm_map_t map, |
175 | vm_map_offset_t va, |
176 | vm_prot_t prot, |
177 | vm_tag_t wire_tag, |
178 | vm_map_entry_t entry, |
179 | pmap_t pmap, |
180 | vm_map_offset_t pmap_addr, |
181 | ppnum_t *physpage_p); |
182 | |
183 | static kern_return_t vm_fault_internal( |
184 | vm_map_t map, |
185 | vm_map_offset_t vaddr, |
186 | vm_prot_t caller_prot, |
187 | boolean_t change_wiring, |
188 | vm_tag_t wire_tag, |
189 | int interruptible, |
190 | pmap_t pmap, |
191 | vm_map_offset_t pmap_addr, |
192 | ppnum_t *physpage_p); |
193 | |
194 | static void vm_fault_copy_cleanup( |
195 | vm_page_t page, |
196 | vm_page_t top_page); |
197 | |
198 | static void vm_fault_copy_dst_cleanup( |
199 | vm_page_t page); |
200 | |
201 | #if VM_FAULT_CLASSIFY |
202 | extern void vm_fault_classify(vm_object_t object, |
203 | vm_object_offset_t offset, |
204 | vm_prot_t fault_type); |
205 | |
206 | extern void vm_fault_classify_init(void); |
207 | #endif |
208 | |
209 | unsigned long vm_pmap_enter_blocked = 0; |
210 | unsigned long vm_pmap_enter_retried = 0; |
211 | |
212 | unsigned long vm_cs_validates = 0; |
213 | unsigned long vm_cs_revalidates = 0; |
214 | unsigned long vm_cs_query_modified = 0; |
215 | unsigned long vm_cs_validated_dirtied = 0; |
216 | unsigned long vm_cs_bitmap_validated = 0; |
217 | |
218 | #if CODE_SIGNING_MONITOR |
219 | uint64_t vm_cs_defer_to_csm = 0; |
220 | uint64_t vm_cs_defer_to_csm_not = 0; |
221 | #endif /* CODE_SIGNING_MONITOR */ |
222 | |
223 | void vm_pre_fault(vm_map_offset_t, vm_prot_t); |
224 | |
225 | extern char *kdp_compressor_decompressed_page; |
226 | extern addr64_t kdp_compressor_decompressed_page_paddr; |
227 | extern ppnum_t kdp_compressor_decompressed_page_ppnum; |
228 | |
229 | struct vmrtfr { |
230 | int vmrtfr_maxi; |
231 | int vmrtfr_curi; |
232 | int64_t vmrtf_total; |
233 | vm_rtfault_record_t *vm_rtf_records; |
234 | } vmrtfrs; |
235 | #define VMRTF_DEFAULT_BUFSIZE (4096) |
236 | #define VMRTF_NUM_RECORDS_DEFAULT (VMRTF_DEFAULT_BUFSIZE / sizeof(vm_rtfault_record_t)) |
237 | TUNABLE(int, vmrtf_num_records, "vm_rtfault_records" , VMRTF_NUM_RECORDS_DEFAULT); |
238 | |
239 | static void vm_rtfrecord_lock(void); |
240 | static void vm_rtfrecord_unlock(void); |
241 | static void vm_record_rtfault(thread_t, uint64_t, vm_map_offset_t, int); |
242 | |
243 | extern lck_grp_t vm_page_lck_grp_bucket; |
244 | extern lck_attr_t vm_page_lck_attr; |
245 | LCK_SPIN_DECLARE_ATTR(vm_rtfr_slock, &vm_page_lck_grp_bucket, &vm_page_lck_attr); |
246 | |
247 | #if DEVELOPMENT || DEBUG |
248 | extern int madvise_free_debug; |
249 | extern int madvise_free_debug_sometimes; |
250 | #endif /* DEVELOPMENT || DEBUG */ |
251 | |
252 | extern int vm_pageout_protect_realtime; |
253 | |
254 | #if CONFIG_FREEZE |
255 | #endif /* CONFIG_FREEZE */ |
256 | |
257 | /* |
258 | * Routine: vm_fault_init |
259 | * Purpose: |
260 | * Initialize our private data structures. |
261 | */ |
262 | __startup_func |
263 | void |
264 | vm_fault_init(void) |
265 | { |
266 | int i, vm_compressor_temp; |
267 | boolean_t need_default_val = TRUE; |
268 | /* |
269 | * Choose a value for the hard throttle threshold based on the amount of ram. The threshold is |
270 | * computed as a percentage of available memory, and the percentage used is scaled inversely with |
271 | * the amount of memory. The percentage runs between 10% and 35%. We use 35% for small memory systems |
272 | * and reduce the value down to 10% for very large memory configurations. This helps give us a |
273 | * definition of a memory hog that makes more sense relative to the amount of ram in the machine. |
274 | * The formula here simply uses the number of gigabytes of ram to adjust the percentage. |
275 | */ |
276 | |
277 | vm_hard_throttle_threshold = sane_size * (35 - MIN((int)(sane_size / (1024 * 1024 * 1024)), 25)) / 100; |
278 | |
279 | /* |
280 | * Configure compressed pager behavior. A boot arg takes precedence over a device tree entry. |
281 | */ |
282 | |
283 | if (PE_parse_boot_argn(arg_string: "vm_compressor" , arg_ptr: &vm_compressor_temp, max_arg: sizeof(vm_compressor_temp))) { |
284 | for (i = 0; i < VM_PAGER_MAX_MODES; i++) { |
285 | if (((vm_compressor_temp & (1 << i)) == vm_compressor_temp)) { |
286 | need_default_val = FALSE; |
287 | vm_compressor_mode = vm_compressor_temp; |
288 | break; |
289 | } |
290 | } |
291 | if (need_default_val) { |
292 | printf(format: "Ignoring \"vm_compressor\" boot arg %d\n" , vm_compressor_temp); |
293 | } |
294 | } |
295 | #if CONFIG_FREEZE |
296 | if (need_default_val) { |
297 | if (osenvironment_is_diagnostics()) { |
298 | printf("osenvironment == \"diagnostics\". Setting \"vm_compressor_mode\" to in-core compressor only\n" ); |
299 | vm_compressor_mode = VM_PAGER_COMPRESSOR_NO_SWAP; |
300 | need_default_val = false; |
301 | } |
302 | } |
303 | #endif /* CONFIG_FREEZE */ |
304 | if (need_default_val) { |
305 | /* If no boot arg or incorrect boot arg, try device tree. */ |
306 | PE_get_default(property_name: "kern.vm_compressor" , property_ptr: &vm_compressor_mode, max_property: sizeof(vm_compressor_mode)); |
307 | } |
308 | printf(format: "\"vm_compressor_mode\" is %d\n" , vm_compressor_mode); |
309 | vm_config_init(); |
310 | |
311 | PE_parse_boot_argn(arg_string: "vm_protect_privileged_from_untrusted" , |
312 | arg_ptr: &vm_protect_privileged_from_untrusted, |
313 | max_arg: sizeof(vm_protect_privileged_from_untrusted)); |
314 | |
315 | #if DEBUG || DEVELOPMENT |
316 | (void)PE_parse_boot_argn("text_corruption_panic" , &vmtc_panic_instead, sizeof(vmtc_panic_instead)); |
317 | |
318 | if (kern_feature_override(KF_MADVISE_FREE_DEBUG_OVRD)) { |
319 | madvise_free_debug = 0; |
320 | madvise_free_debug_sometimes = 0; |
321 | } |
322 | |
323 | PE_parse_boot_argn("panic_object_not_alive" , &panic_object_not_alive, sizeof(panic_object_not_alive)); |
324 | #endif /* DEBUG || DEVELOPMENT */ |
325 | } |
326 | |
327 | __startup_func |
328 | static void |
329 | vm_rtfault_record_init(void) |
330 | { |
331 | size_t size; |
332 | |
333 | vmrtf_num_records = MAX(vmrtf_num_records, 1); |
334 | size = vmrtf_num_records * sizeof(vm_rtfault_record_t); |
335 | vmrtfrs.vm_rtf_records = zalloc_permanent_tag(size, |
336 | ZALIGN(vm_rtfault_record_t), VM_KERN_MEMORY_DIAG); |
337 | vmrtfrs.vmrtfr_maxi = vmrtf_num_records - 1; |
338 | } |
339 | STARTUP(ZALLOC, STARTUP_RANK_MIDDLE, vm_rtfault_record_init); |
340 | |
341 | /* |
342 | * Routine: vm_fault_cleanup |
343 | * Purpose: |
344 | * Clean up the result of vm_fault_page. |
345 | * Results: |
346 | * The paging reference for "object" is released. |
347 | * "object" is unlocked. |
348 | * If "top_page" is not null, "top_page" is |
349 | * freed and the paging reference for the object |
350 | * containing it is released. |
351 | * |
352 | * In/out conditions: |
353 | * "object" must be locked. |
354 | */ |
355 | void |
356 | vm_fault_cleanup( |
357 | vm_object_t object, |
358 | vm_page_t top_page) |
359 | { |
360 | vm_object_paging_end(object); |
361 | vm_object_unlock(object); |
362 | |
363 | if (top_page != VM_PAGE_NULL) { |
364 | object = VM_PAGE_OBJECT(top_page); |
365 | |
366 | vm_object_lock(object); |
367 | VM_PAGE_FREE(top_page); |
368 | vm_object_paging_end(object); |
369 | vm_object_unlock(object); |
370 | } |
371 | } |
372 | |
373 | #define ALIGNED(x) (((x) & (PAGE_SIZE_64 - 1)) == 0) |
374 | |
375 | |
376 | boolean_t vm_page_deactivate_behind = TRUE; |
377 | /* |
378 | * default sizes given VM_BEHAVIOR_DEFAULT reference behavior |
379 | */ |
380 | #define VM_DEFAULT_DEACTIVATE_BEHIND_WINDOW 128 |
381 | #define VM_DEFAULT_DEACTIVATE_BEHIND_CLUSTER 16 /* don't make this too big... */ |
382 | /* we use it to size an array on the stack */ |
383 | |
384 | int vm_default_behind = VM_DEFAULT_DEACTIVATE_BEHIND_WINDOW; |
385 | |
386 | #define MAX_SEQUENTIAL_RUN (1024 * 1024 * 1024) |
387 | |
388 | /* |
389 | * vm_page_is_sequential |
390 | * |
391 | * Determine if sequential access is in progress |
392 | * in accordance with the behavior specified. |
393 | * Update state to indicate current access pattern. |
394 | * |
395 | * object must have at least the shared lock held |
396 | */ |
397 | static |
398 | void |
399 | vm_fault_is_sequential( |
400 | vm_object_t object, |
401 | vm_object_offset_t offset, |
402 | vm_behavior_t behavior) |
403 | { |
404 | vm_object_offset_t last_alloc; |
405 | int sequential; |
406 | int orig_sequential; |
407 | |
408 | last_alloc = object->last_alloc; |
409 | sequential = object->sequential; |
410 | orig_sequential = sequential; |
411 | |
412 | offset = vm_object_trunc_page(offset); |
413 | if (offset == last_alloc && behavior != VM_BEHAVIOR_RANDOM) { |
414 | /* re-faulting in the same page: no change in behavior */ |
415 | return; |
416 | } |
417 | |
418 | switch (behavior) { |
419 | case VM_BEHAVIOR_RANDOM: |
420 | /* |
421 | * reset indicator of sequential behavior |
422 | */ |
423 | sequential = 0; |
424 | break; |
425 | |
426 | case VM_BEHAVIOR_SEQUENTIAL: |
427 | if (offset && last_alloc == offset - PAGE_SIZE_64) { |
428 | /* |
429 | * advance indicator of sequential behavior |
430 | */ |
431 | if (sequential < MAX_SEQUENTIAL_RUN) { |
432 | sequential += PAGE_SIZE; |
433 | } |
434 | } else { |
435 | /* |
436 | * reset indicator of sequential behavior |
437 | */ |
438 | sequential = 0; |
439 | } |
440 | break; |
441 | |
442 | case VM_BEHAVIOR_RSEQNTL: |
443 | if (last_alloc && last_alloc == offset + PAGE_SIZE_64) { |
444 | /* |
445 | * advance indicator of sequential behavior |
446 | */ |
447 | if (sequential > -MAX_SEQUENTIAL_RUN) { |
448 | sequential -= PAGE_SIZE; |
449 | } |
450 | } else { |
451 | /* |
452 | * reset indicator of sequential behavior |
453 | */ |
454 | sequential = 0; |
455 | } |
456 | break; |
457 | |
458 | case VM_BEHAVIOR_DEFAULT: |
459 | default: |
460 | if (offset && last_alloc == (offset - PAGE_SIZE_64)) { |
461 | /* |
462 | * advance indicator of sequential behavior |
463 | */ |
464 | if (sequential < 0) { |
465 | sequential = 0; |
466 | } |
467 | if (sequential < MAX_SEQUENTIAL_RUN) { |
468 | sequential += PAGE_SIZE; |
469 | } |
470 | } else if (last_alloc && last_alloc == (offset + PAGE_SIZE_64)) { |
471 | /* |
472 | * advance indicator of sequential behavior |
473 | */ |
474 | if (sequential > 0) { |
475 | sequential = 0; |
476 | } |
477 | if (sequential > -MAX_SEQUENTIAL_RUN) { |
478 | sequential -= PAGE_SIZE; |
479 | } |
480 | } else { |
481 | /* |
482 | * reset indicator of sequential behavior |
483 | */ |
484 | sequential = 0; |
485 | } |
486 | break; |
487 | } |
488 | if (sequential != orig_sequential) { |
489 | if (!OSCompareAndSwap(orig_sequential, sequential, (UInt32 *)&object->sequential)) { |
490 | /* |
491 | * if someone else has already updated object->sequential |
492 | * don't bother trying to update it or object->last_alloc |
493 | */ |
494 | return; |
495 | } |
496 | } |
497 | /* |
498 | * I'd like to do this with a OSCompareAndSwap64, but that |
499 | * doesn't exist for PPC... however, it shouldn't matter |
500 | * that much... last_alloc is maintained so that we can determine |
501 | * if a sequential access pattern is taking place... if only |
502 | * one thread is banging on this object, no problem with the unprotected |
503 | * update... if 2 or more threads are banging away, we run the risk of |
504 | * someone seeing a mangled update... however, in the face of multiple |
505 | * accesses, no sequential access pattern can develop anyway, so we |
506 | * haven't lost any real info. |
507 | */ |
508 | object->last_alloc = offset; |
509 | } |
510 | |
511 | #if DEVELOPMENT || DEBUG |
512 | uint64_t vm_page_deactivate_behind_count = 0; |
513 | #endif /* DEVELOPMENT || DEBUG */ |
514 | |
515 | /* |
516 | * vm_page_deactivate_behind |
517 | * |
518 | * Determine if sequential access is in progress |
519 | * in accordance with the behavior specified. If |
520 | * so, compute a potential page to deactivate and |
521 | * deactivate it. |
522 | * |
523 | * object must be locked. |
524 | * |
525 | * return TRUE if we actually deactivate a page |
526 | */ |
527 | static |
528 | boolean_t |
529 | vm_fault_deactivate_behind( |
530 | vm_object_t object, |
531 | vm_object_offset_t offset, |
532 | vm_behavior_t behavior) |
533 | { |
534 | int n; |
535 | int pages_in_run = 0; |
536 | int max_pages_in_run = 0; |
537 | int sequential_run; |
538 | int sequential_behavior = VM_BEHAVIOR_SEQUENTIAL; |
539 | vm_object_offset_t run_offset = 0; |
540 | vm_object_offset_t pg_offset = 0; |
541 | vm_page_t m; |
542 | vm_page_t page_run[VM_DEFAULT_DEACTIVATE_BEHIND_CLUSTER]; |
543 | |
544 | pages_in_run = 0; |
545 | #if TRACEFAULTPAGE |
546 | dbgTrace(0xBEEF0018, (unsigned int) object, (unsigned int) vm_fault_deactivate_behind); /* (TEST/DEBUG) */ |
547 | #endif |
548 | if (is_kernel_object(object) || vm_page_deactivate_behind == FALSE || (vm_object_trunc_page(offset) != offset)) { |
549 | /* |
550 | * Do not deactivate pages from the kernel object: they |
551 | * are not intended to become pageable. |
552 | * or we've disabled the deactivate behind mechanism |
553 | * or we are dealing with an offset that is not aligned to |
554 | * the system's PAGE_SIZE because in that case we will |
555 | * handle the deactivation on the aligned offset and, thus, |
556 | * the full PAGE_SIZE page once. This helps us avoid the redundant |
557 | * deactivates and the extra faults. |
558 | */ |
559 | return FALSE; |
560 | } |
561 | if ((sequential_run = object->sequential)) { |
562 | if (sequential_run < 0) { |
563 | sequential_behavior = VM_BEHAVIOR_RSEQNTL; |
564 | sequential_run = 0 - sequential_run; |
565 | } else { |
566 | sequential_behavior = VM_BEHAVIOR_SEQUENTIAL; |
567 | } |
568 | } |
569 | switch (behavior) { |
570 | case VM_BEHAVIOR_RANDOM: |
571 | break; |
572 | case VM_BEHAVIOR_SEQUENTIAL: |
573 | if (sequential_run >= (int)PAGE_SIZE) { |
574 | run_offset = 0 - PAGE_SIZE_64; |
575 | max_pages_in_run = 1; |
576 | } |
577 | break; |
578 | case VM_BEHAVIOR_RSEQNTL: |
579 | if (sequential_run >= (int)PAGE_SIZE) { |
580 | run_offset = PAGE_SIZE_64; |
581 | max_pages_in_run = 1; |
582 | } |
583 | break; |
584 | case VM_BEHAVIOR_DEFAULT: |
585 | default: |
586 | { vm_object_offset_t behind = vm_default_behind * PAGE_SIZE_64; |
587 | |
588 | /* |
589 | * determine if the run of sequential accesss has been |
590 | * long enough on an object with default access behavior |
591 | * to consider it for deactivation |
592 | */ |
593 | if ((uint64_t)sequential_run >= behind && (sequential_run % (VM_DEFAULT_DEACTIVATE_BEHIND_CLUSTER * PAGE_SIZE)) == 0) { |
594 | /* |
595 | * the comparisons between offset and behind are done |
596 | * in this kind of odd fashion in order to prevent wrap around |
597 | * at the end points |
598 | */ |
599 | if (sequential_behavior == VM_BEHAVIOR_SEQUENTIAL) { |
600 | if (offset >= behind) { |
601 | run_offset = 0 - behind; |
602 | pg_offset = PAGE_SIZE_64; |
603 | max_pages_in_run = VM_DEFAULT_DEACTIVATE_BEHIND_CLUSTER; |
604 | } |
605 | } else { |
606 | if (offset < -behind) { |
607 | run_offset = behind; |
608 | pg_offset = 0 - PAGE_SIZE_64; |
609 | max_pages_in_run = VM_DEFAULT_DEACTIVATE_BEHIND_CLUSTER; |
610 | } |
611 | } |
612 | } |
613 | break;} |
614 | } |
615 | for (n = 0; n < max_pages_in_run; n++) { |
616 | m = vm_page_lookup(object, offset: offset + run_offset + (n * pg_offset)); |
617 | |
618 | if (m && !m->vmp_laundry && !m->vmp_busy && !m->vmp_no_cache && (m->vmp_q_state != VM_PAGE_ON_THROTTLED_Q) && !m->vmp_fictitious && !m->vmp_absent) { |
619 | page_run[pages_in_run++] = m; |
620 | |
621 | /* |
622 | * by not passing in a pmap_flush_context we will forgo any TLB flushing, local or otherwise... |
623 | * |
624 | * a TLB flush isn't really needed here since at worst we'll miss the reference bit being |
625 | * updated in the PTE if a remote processor still has this mapping cached in its TLB when the |
626 | * new reference happens. If no futher references happen on the page after that remote TLB flushes |
627 | * we'll see a clean, non-referenced page when it eventually gets pulled out of the inactive queue |
628 | * by pageout_scan, which is just fine since the last reference would have happened quite far |
629 | * in the past (TLB caches don't hang around for very long), and of course could just as easily |
630 | * have happened before we did the deactivate_behind. |
631 | */ |
632 | pmap_clear_refmod_options(pn: VM_PAGE_GET_PHYS_PAGE(m), VM_MEM_REFERENCED, PMAP_OPTIONS_NOFLUSH, (void *)NULL); |
633 | } |
634 | } |
635 | if (pages_in_run) { |
636 | vm_page_lockspin_queues(); |
637 | |
638 | for (n = 0; n < pages_in_run; n++) { |
639 | m = page_run[n]; |
640 | |
641 | vm_page_deactivate_internal(page: m, FALSE); |
642 | |
643 | #if DEVELOPMENT || DEBUG |
644 | vm_page_deactivate_behind_count++; |
645 | #endif /* DEVELOPMENT || DEBUG */ |
646 | |
647 | #if TRACEFAULTPAGE |
648 | dbgTrace(0xBEEF0019, (unsigned int) object, (unsigned int) m); /* (TEST/DEBUG) */ |
649 | #endif |
650 | } |
651 | vm_page_unlock_queues(); |
652 | |
653 | return TRUE; |
654 | } |
655 | return FALSE; |
656 | } |
657 | |
658 | |
659 | #if (DEVELOPMENT || DEBUG) |
660 | uint32_t vm_page_creation_throttled_hard = 0; |
661 | uint32_t vm_page_creation_throttled_soft = 0; |
662 | uint64_t vm_page_creation_throttle_avoided = 0; |
663 | #endif /* DEVELOPMENT || DEBUG */ |
664 | |
665 | static int |
666 | vm_page_throttled(boolean_t page_kept) |
667 | { |
668 | clock_sec_t elapsed_sec; |
669 | clock_sec_t tv_sec; |
670 | clock_usec_t tv_usec; |
671 | task_t curtask = current_task_early(); |
672 | |
673 | thread_t thread = current_thread(); |
674 | |
675 | if (thread->options & TH_OPT_VMPRIV) { |
676 | return 0; |
677 | } |
678 | |
679 | if (curtask && !curtask->active) { |
680 | return 0; |
681 | } |
682 | |
683 | if (thread->t_page_creation_throttled) { |
684 | thread->t_page_creation_throttled = 0; |
685 | |
686 | if (page_kept == FALSE) { |
687 | goto no_throttle; |
688 | } |
689 | } |
690 | if (NEED_TO_HARD_THROTTLE_THIS_TASK()) { |
691 | #if (DEVELOPMENT || DEBUG) |
692 | thread->t_page_creation_throttled_hard++; |
693 | OSAddAtomic(1, &vm_page_creation_throttled_hard); |
694 | #endif /* DEVELOPMENT || DEBUG */ |
695 | return HARD_THROTTLE_DELAY; |
696 | } |
697 | |
698 | if ((vm_page_free_count < vm_page_throttle_limit || (VM_CONFIG_COMPRESSOR_IS_PRESENT && SWAPPER_NEEDS_TO_UNTHROTTLE())) && |
699 | thread->t_page_creation_count > (VM_PAGE_CREATION_THROTTLE_PERIOD_SECS * VM_PAGE_CREATION_THROTTLE_RATE_PER_SEC)) { |
700 | if (vm_page_free_wanted == 0 && vm_page_free_wanted_privileged == 0) { |
701 | #if (DEVELOPMENT || DEBUG) |
702 | OSAddAtomic64(1, &vm_page_creation_throttle_avoided); |
703 | #endif |
704 | goto no_throttle; |
705 | } |
706 | clock_get_system_microtime(secs: &tv_sec, microsecs: &tv_usec); |
707 | |
708 | elapsed_sec = tv_sec - thread->t_page_creation_time; |
709 | |
710 | if (elapsed_sec <= VM_PAGE_CREATION_THROTTLE_PERIOD_SECS || |
711 | (thread->t_page_creation_count / elapsed_sec) >= VM_PAGE_CREATION_THROTTLE_RATE_PER_SEC) { |
712 | if (elapsed_sec >= (3 * VM_PAGE_CREATION_THROTTLE_PERIOD_SECS)) { |
713 | /* |
714 | * we'll reset our stats to give a well behaved app |
715 | * that was unlucky enough to accumulate a bunch of pages |
716 | * over a long period of time a chance to get out of |
717 | * the throttled state... we reset the counter and timestamp |
718 | * so that if it stays under the rate limit for the next second |
719 | * it will be back in our good graces... if it exceeds it, it |
720 | * will remain in the throttled state |
721 | */ |
722 | thread->t_page_creation_time = tv_sec; |
723 | thread->t_page_creation_count = VM_PAGE_CREATION_THROTTLE_RATE_PER_SEC * (VM_PAGE_CREATION_THROTTLE_PERIOD_SECS - 1); |
724 | } |
725 | VM_PAGEOUT_DEBUG(vm_page_throttle_count, 1); |
726 | |
727 | thread->t_page_creation_throttled = 1; |
728 | |
729 | if (VM_CONFIG_COMPRESSOR_IS_PRESENT && HARD_THROTTLE_LIMIT_REACHED()) { |
730 | #if (DEVELOPMENT || DEBUG) |
731 | thread->t_page_creation_throttled_hard++; |
732 | OSAddAtomic(1, &vm_page_creation_throttled_hard); |
733 | #endif /* DEVELOPMENT || DEBUG */ |
734 | return HARD_THROTTLE_DELAY; |
735 | } else { |
736 | #if (DEVELOPMENT || DEBUG) |
737 | thread->t_page_creation_throttled_soft++; |
738 | OSAddAtomic(1, &vm_page_creation_throttled_soft); |
739 | #endif /* DEVELOPMENT || DEBUG */ |
740 | return SOFT_THROTTLE_DELAY; |
741 | } |
742 | } |
743 | thread->t_page_creation_time = tv_sec; |
744 | thread->t_page_creation_count = 0; |
745 | } |
746 | no_throttle: |
747 | thread->t_page_creation_count++; |
748 | |
749 | return 0; |
750 | } |
751 | |
752 | extern boolean_t vm_pageout_running; |
753 | static __attribute__((noinline, not_tail_called)) void |
754 | __VM_FAULT_THROTTLE_FOR_PAGEOUT_SCAN__( |
755 | int throttle_delay) |
756 | { |
757 | /* make sure vm_pageout_scan() gets to work while we're throttled */ |
758 | if (!vm_pageout_running) { |
759 | thread_wakeup((event_t)&vm_page_free_wanted); |
760 | } |
761 | delay(usec: throttle_delay); |
762 | } |
763 | |
764 | |
765 | /* |
766 | * check for various conditions that would |
767 | * prevent us from creating a ZF page... |
768 | * cleanup is based on being called from vm_fault_page |
769 | * |
770 | * object must be locked |
771 | * object == m->vmp_object |
772 | */ |
773 | static vm_fault_return_t |
774 | vm_fault_check(vm_object_t object, vm_page_t m, vm_page_t first_m, wait_interrupt_t interruptible_state, boolean_t page_throttle) |
775 | { |
776 | int throttle_delay; |
777 | |
778 | if (object->shadow_severed || |
779 | VM_OBJECT_PURGEABLE_FAULT_ERROR(object)) { |
780 | /* |
781 | * Either: |
782 | * 1. the shadow chain was severed, |
783 | * 2. the purgeable object is volatile or empty and is marked |
784 | * to fault on access while volatile. |
785 | * Just have to return an error at this point |
786 | */ |
787 | if (m != VM_PAGE_NULL) { |
788 | VM_PAGE_FREE(m); |
789 | } |
790 | vm_fault_cleanup(object, top_page: first_m); |
791 | |
792 | thread_interrupt_level(interruptible: interruptible_state); |
793 | |
794 | if (VM_OBJECT_PURGEABLE_FAULT_ERROR(object)) { |
795 | ktriage_record(thread_id: thread_tid(thread: current_thread()), KDBG_TRIAGE_EVENTID(KDBG_TRIAGE_SUBSYS_VM, KDBG_TRIAGE_RESERVED, KDBG_TRIAGE_VM_PURGEABLE_FAULT_ERROR), arg: 0 /* arg */); |
796 | } |
797 | |
798 | if (object->shadow_severed) { |
799 | ktriage_record(thread_id: thread_tid(thread: current_thread()), KDBG_TRIAGE_EVENTID(KDBG_TRIAGE_SUBSYS_VM, KDBG_TRIAGE_RESERVED, KDBG_TRIAGE_VM_OBJECT_SHADOW_SEVERED), arg: 0 /* arg */); |
800 | } |
801 | return VM_FAULT_MEMORY_ERROR; |
802 | } |
803 | if (page_throttle == TRUE) { |
804 | if ((throttle_delay = vm_page_throttled(FALSE))) { |
805 | /* |
806 | * we're throttling zero-fills... |
807 | * treat this as if we couldn't grab a page |
808 | */ |
809 | if (m != VM_PAGE_NULL) { |
810 | VM_PAGE_FREE(m); |
811 | } |
812 | vm_fault_cleanup(object, top_page: first_m); |
813 | |
814 | VM_DEBUG_EVENT(vmf_check_zfdelay, VMF_CHECK_ZFDELAY, DBG_FUNC_NONE, throttle_delay, 0, 0, 0); |
815 | |
816 | __VM_FAULT_THROTTLE_FOR_PAGEOUT_SCAN__(throttle_delay); |
817 | |
818 | if (current_thread_aborted()) { |
819 | thread_interrupt_level(interruptible: interruptible_state); |
820 | ktriage_record(thread_id: thread_tid(thread: current_thread()), KDBG_TRIAGE_EVENTID(KDBG_TRIAGE_SUBSYS_VM, KDBG_TRIAGE_RESERVED, KDBG_TRIAGE_VM_FAULT_INTERRUPTED), arg: 0 /* arg */); |
821 | return VM_FAULT_INTERRUPTED; |
822 | } |
823 | thread_interrupt_level(interruptible: interruptible_state); |
824 | |
825 | return VM_FAULT_MEMORY_SHORTAGE; |
826 | } |
827 | } |
828 | return VM_FAULT_SUCCESS; |
829 | } |
830 | |
831 | /* |
832 | * Clear the code signing bits on the given page_t |
833 | */ |
834 | static void |
835 | vm_fault_cs_clear(vm_page_t m) |
836 | { |
837 | m->vmp_cs_validated = VMP_CS_ALL_FALSE; |
838 | m->vmp_cs_tainted = VMP_CS_ALL_FALSE; |
839 | m->vmp_cs_nx = VMP_CS_ALL_FALSE; |
840 | } |
841 | |
842 | /* |
843 | * Enqueues the given page on the throttled queue. |
844 | * The caller must hold the vm_page_queue_lock and it will be held on return. |
845 | */ |
846 | static void |
847 | vm_fault_enqueue_throttled_locked(vm_page_t m) |
848 | { |
849 | LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED); |
850 | assert(!VM_PAGE_WIRED(m)); |
851 | |
852 | /* |
853 | * can't be on the pageout queue since we don't |
854 | * have a pager to try and clean to |
855 | */ |
856 | vm_page_queues_remove(mem: m, TRUE); |
857 | vm_page_check_pageable_safe(page: m); |
858 | vm_page_queue_enter(&vm_page_queue_throttled, m, vmp_pageq); |
859 | m->vmp_q_state = VM_PAGE_ON_THROTTLED_Q; |
860 | vm_page_throttled_count++; |
861 | } |
862 | |
863 | /* |
864 | * do the work to zero fill a page and |
865 | * inject it into the correct paging queue |
866 | * |
867 | * m->vmp_object must be locked |
868 | * page queue lock must NOT be held |
869 | */ |
870 | static int |
871 | vm_fault_zero_page(vm_page_t m, boolean_t no_zero_fill) |
872 | { |
873 | int my_fault = DBG_ZERO_FILL_FAULT; |
874 | vm_object_t object; |
875 | |
876 | object = VM_PAGE_OBJECT(m); |
877 | |
878 | /* |
879 | * This is is a zero-fill page fault... |
880 | * |
881 | * Checking the page lock is a waste of |
882 | * time; this page was absent, so |
883 | * it can't be page locked by a pager. |
884 | * |
885 | * we also consider it undefined |
886 | * with respect to instruction |
887 | * execution. i.e. it is the responsibility |
888 | * of higher layers to call for an instruction |
889 | * sync after changing the contents and before |
890 | * sending a program into this area. We |
891 | * choose this approach for performance |
892 | */ |
893 | vm_fault_cs_clear(m); |
894 | m->vmp_pmapped = TRUE; |
895 | |
896 | if (no_zero_fill == TRUE) { |
897 | my_fault = DBG_NZF_PAGE_FAULT; |
898 | |
899 | if (m->vmp_absent && m->vmp_busy) { |
900 | return my_fault; |
901 | } |
902 | } else { |
903 | vm_page_zero_fill(page: m); |
904 | |
905 | counter_inc(&vm_statistics_zero_fill_count); |
906 | DTRACE_VM2(zfod, int, 1, (uint64_t *), NULL); |
907 | } |
908 | assert(!m->vmp_laundry); |
909 | assert(!is_kernel_object(object)); |
910 | //assert(m->vmp_pageq.next == 0 && m->vmp_pageq.prev == 0); |
911 | if (!VM_DYNAMIC_PAGING_ENABLED() && |
912 | (object->purgable == VM_PURGABLE_DENY || |
913 | object->purgable == VM_PURGABLE_NONVOLATILE || |
914 | object->purgable == VM_PURGABLE_VOLATILE)) { |
915 | vm_page_lockspin_queues(); |
916 | if (!VM_DYNAMIC_PAGING_ENABLED()) { |
917 | vm_fault_enqueue_throttled_locked(m); |
918 | } |
919 | vm_page_unlock_queues(); |
920 | } |
921 | return my_fault; |
922 | } |
923 | |
924 | |
925 | /* |
926 | * Routine: vm_fault_page |
927 | * Purpose: |
928 | * Find the resident page for the virtual memory |
929 | * specified by the given virtual memory object |
930 | * and offset. |
931 | * Additional arguments: |
932 | * The required permissions for the page is given |
933 | * in "fault_type". Desired permissions are included |
934 | * in "protection". |
935 | * fault_info is passed along to determine pagein cluster |
936 | * limits... it contains the expected reference pattern, |
937 | * cluster size if available, etc... |
938 | * |
939 | * If the desired page is known to be resident (for |
940 | * example, because it was previously wired down), asserting |
941 | * the "unwiring" parameter will speed the search. |
942 | * |
943 | * If the operation can be interrupted (by thread_abort |
944 | * or thread_terminate), then the "interruptible" |
945 | * parameter should be asserted. |
946 | * |
947 | * Results: |
948 | * The page containing the proper data is returned |
949 | * in "result_page". |
950 | * |
951 | * In/out conditions: |
952 | * The source object must be locked and referenced, |
953 | * and must donate one paging reference. The reference |
954 | * is not affected. The paging reference and lock are |
955 | * consumed. |
956 | * |
957 | * If the call succeeds, the object in which "result_page" |
958 | * resides is left locked and holding a paging reference. |
959 | * If this is not the original object, a busy page in the |
960 | * original object is returned in "top_page", to prevent other |
961 | * callers from pursuing this same data, along with a paging |
962 | * reference for the original object. The "top_page" should |
963 | * be destroyed when this guarantee is no longer required. |
964 | * The "result_page" is also left busy. It is not removed |
965 | * from the pageout queues. |
966 | * Special Case: |
967 | * A return value of VM_FAULT_SUCCESS_NO_PAGE means that the |
968 | * fault succeeded but there's no VM page (i.e. the VM object |
969 | * does not actually hold VM pages, but device memory or |
970 | * large pages). The object is still locked and we still hold a |
971 | * paging_in_progress reference. |
972 | */ |
973 | unsigned int vm_fault_page_blocked_access = 0; |
974 | unsigned int vm_fault_page_forced_retry = 0; |
975 | |
976 | vm_fault_return_t |
977 | vm_fault_page( |
978 | /* Arguments: */ |
979 | vm_object_t first_object, /* Object to begin search */ |
980 | vm_object_offset_t first_offset, /* Offset into object */ |
981 | vm_prot_t fault_type, /* What access is requested */ |
982 | boolean_t must_be_resident,/* Must page be resident? */ |
983 | boolean_t caller_lookup, /* caller looked up page */ |
984 | /* Modifies in place: */ |
985 | vm_prot_t *protection, /* Protection for mapping */ |
986 | vm_page_t *result_page, /* Page found, if successful */ |
987 | /* Returns: */ |
988 | vm_page_t *top_page, /* Page in top object, if |
989 | * not result_page. */ |
990 | int *type_of_fault, /* if non-null, fill in with type of fault |
991 | * COW, zero-fill, etc... returned in trace point */ |
992 | /* More arguments: */ |
993 | kern_return_t *error_code, /* code if page is in error */ |
994 | boolean_t no_zero_fill, /* don't zero fill absent pages */ |
995 | vm_object_fault_info_t fault_info) |
996 | { |
997 | vm_page_t m; |
998 | vm_object_t object; |
999 | vm_object_offset_t offset; |
1000 | vm_page_t first_m; |
1001 | vm_object_t next_object; |
1002 | vm_object_t copy_object; |
1003 | boolean_t look_for_page; |
1004 | boolean_t force_fault_retry = FALSE; |
1005 | vm_prot_t access_required = fault_type; |
1006 | vm_prot_t wants_copy_flag; |
1007 | kern_return_t wait_result; |
1008 | wait_interrupt_t interruptible_state; |
1009 | boolean_t data_already_requested = FALSE; |
1010 | vm_behavior_t orig_behavior; |
1011 | vm_size_t orig_cluster_size; |
1012 | vm_fault_return_t error; |
1013 | int my_fault; |
1014 | uint32_t try_failed_count; |
1015 | int interruptible; /* how may fault be interrupted? */ |
1016 | int external_state = VM_EXTERNAL_STATE_UNKNOWN; |
1017 | memory_object_t ; |
1018 | vm_fault_return_t retval; |
1019 | int grab_options; |
1020 | bool clear_absent_on_error = false; |
1021 | |
1022 | /* |
1023 | * MUST_ASK_PAGER() evaluates to TRUE if the page specified by object/offset is |
1024 | * marked as paged out in the compressor pager or the pager doesn't exist. |
1025 | * Note also that if the pager for an internal object |
1026 | * has not been created, the pager is not invoked regardless of the value |
1027 | * of MUST_ASK_PAGER(). |
1028 | * |
1029 | * PAGED_OUT() evaluates to TRUE if the page specified by the object/offset |
1030 | * is marked as paged out in the compressor pager. |
1031 | * PAGED_OUT() is used to determine if a page has already been pushed |
1032 | * into a copy object in order to avoid a redundant page out operation. |
1033 | */ |
1034 | #define (o, f, s) \ |
1035 | ((s = VM_COMPRESSOR_PAGER_STATE_GET((o), (f))) != VM_EXTERNAL_STATE_ABSENT) |
1036 | |
1037 | #define PAGED_OUT(o, f) \ |
1038 | (VM_COMPRESSOR_PAGER_STATE_GET((o), (f)) == VM_EXTERNAL_STATE_EXISTS) |
1039 | |
1040 | /* |
1041 | * Recovery actions |
1042 | */ |
1043 | #define RELEASE_PAGE(m) \ |
1044 | MACRO_BEGIN \ |
1045 | PAGE_WAKEUP_DONE(m); \ |
1046 | if ( !VM_PAGE_PAGEABLE(m)) { \ |
1047 | vm_page_lockspin_queues(); \ |
1048 | if (clear_absent_on_error && m->vmp_absent) {\ |
1049 | vm_page_zero_fill(m); \ |
1050 | counter_inc(&vm_statistics_zero_fill_count);\ |
1051 | DTRACE_VM2(zfod, int, 1, (uint64_t *), NULL);\ |
1052 | m->vmp_absent = false; \ |
1053 | } \ |
1054 | if ( !VM_PAGE_PAGEABLE(m)) { \ |
1055 | if (VM_CONFIG_COMPRESSOR_IS_ACTIVE) \ |
1056 | vm_page_deactivate(m); \ |
1057 | else \ |
1058 | vm_page_activate(m); \ |
1059 | } \ |
1060 | vm_page_unlock_queues(); \ |
1061 | } \ |
1062 | clear_absent_on_error = false; \ |
1063 | MACRO_END |
1064 | |
1065 | #if TRACEFAULTPAGE |
1066 | dbgTrace(0xBEEF0002, (unsigned int) first_object, (unsigned int) first_offset); /* (TEST/DEBUG) */ |
1067 | #endif |
1068 | |
1069 | interruptible = fault_info->interruptible; |
1070 | interruptible_state = thread_interrupt_level(interruptible); |
1071 | |
1072 | /* |
1073 | * INVARIANTS (through entire routine): |
1074 | * |
1075 | * 1) At all times, we must either have the object |
1076 | * lock or a busy page in some object to prevent |
1077 | * some other thread from trying to bring in |
1078 | * the same page. |
1079 | * |
1080 | * Note that we cannot hold any locks during the |
1081 | * pager access or when waiting for memory, so |
1082 | * we use a busy page then. |
1083 | * |
1084 | * 2) To prevent another thread from racing us down the |
1085 | * shadow chain and entering a new page in the top |
1086 | * object before we do, we must keep a busy page in |
1087 | * the top object while following the shadow chain. |
1088 | * |
1089 | * 3) We must increment paging_in_progress on any object |
1090 | * for which we have a busy page before dropping |
1091 | * the object lock |
1092 | * |
1093 | * 4) We leave busy pages on the pageout queues. |
1094 | * If the pageout daemon comes across a busy page, |
1095 | * it will remove the page from the pageout queues. |
1096 | */ |
1097 | |
1098 | object = first_object; |
1099 | offset = first_offset; |
1100 | first_m = VM_PAGE_NULL; |
1101 | access_required = fault_type; |
1102 | |
1103 | /* |
1104 | * default type of fault |
1105 | */ |
1106 | my_fault = DBG_CACHE_HIT_FAULT; |
1107 | thread_pri_floor_t token; |
1108 | bool drop_floor = false; |
1109 | |
1110 | while (TRUE) { |
1111 | #if TRACEFAULTPAGE |
1112 | dbgTrace(0xBEEF0003, (unsigned int) 0, (unsigned int) 0); /* (TEST/DEBUG) */ |
1113 | #endif |
1114 | |
1115 | grab_options = 0; |
1116 | #if CONFIG_SECLUDED_MEMORY |
1117 | if (object->can_grab_secluded) { |
1118 | grab_options |= VM_PAGE_GRAB_SECLUDED; |
1119 | } |
1120 | #endif /* CONFIG_SECLUDED_MEMORY */ |
1121 | |
1122 | if (!object->alive) { |
1123 | /* |
1124 | * object is no longer valid |
1125 | * clean up and return error |
1126 | */ |
1127 | #if DEVELOPMENT || DEBUG |
1128 | printf("FBDP rdar://93769854 %s:%d object %p internal %d pager %p (%s) copy %p shadow %p alive %d terminating %d named %d ref %d shadow_severed %d\n" , __FUNCTION__, __LINE__, object, object->internal, object->pager, object->pager ? object->pager->mo_pager_ops->memory_object_pager_name : "?" , object->vo_copy, object->shadow, object->alive, object->terminating, object->named, object->ref_count, object->shadow_severed); |
1129 | if (panic_object_not_alive) { |
1130 | panic("FBDP rdar://93769854 %s:%d object %p internal %d pager %p (%s) copy %p shadow %p alive %d terminating %d named %d ref %d shadow_severed %d\n" , __FUNCTION__, __LINE__, object, object->internal, object->pager, object->pager ? object->pager->mo_pager_ops->memory_object_pager_name : "?" , object->vo_copy, object->shadow, object->alive, object->terminating, object->named, object->ref_count, object->shadow_severed); |
1131 | } |
1132 | #endif /* DEVELOPMENT || DEBUG */ |
1133 | vm_fault_cleanup(object, top_page: first_m); |
1134 | thread_interrupt_level(interruptible: interruptible_state); |
1135 | |
1136 | ktriage_record(thread_id: thread_tid(thread: current_thread()), KDBG_TRIAGE_EVENTID(KDBG_TRIAGE_SUBSYS_VM, KDBG_TRIAGE_RESERVED, KDBG_TRIAGE_VM_OBJECT_NOT_ALIVE), arg: 0 /* arg */); |
1137 | return VM_FAULT_MEMORY_ERROR; |
1138 | } |
1139 | |
1140 | if (!object->pager_created && object->phys_contiguous) { |
1141 | /* |
1142 | * A physically-contiguous object without a pager: |
1143 | * must be a "large page" object. We do not deal |
1144 | * with VM pages for this object. |
1145 | */ |
1146 | caller_lookup = FALSE; |
1147 | m = VM_PAGE_NULL; |
1148 | goto phys_contig_object; |
1149 | } |
1150 | |
1151 | if (object->blocked_access) { |
1152 | /* |
1153 | * Access to this VM object has been blocked. |
1154 | * Replace our "paging_in_progress" reference with |
1155 | * a "activity_in_progress" reference and wait for |
1156 | * access to be unblocked. |
1157 | */ |
1158 | caller_lookup = FALSE; /* no longer valid after sleep */ |
1159 | vm_object_activity_begin(object); |
1160 | vm_object_paging_end(object); |
1161 | while (object->blocked_access) { |
1162 | vm_object_sleep(object, |
1163 | VM_OBJECT_EVENT_UNBLOCKED, |
1164 | THREAD_UNINT); |
1165 | } |
1166 | vm_fault_page_blocked_access++; |
1167 | vm_object_paging_begin(object); |
1168 | vm_object_activity_end(object); |
1169 | } |
1170 | |
1171 | /* |
1172 | * See whether the page at 'offset' is resident |
1173 | */ |
1174 | if (caller_lookup == TRUE) { |
1175 | /* |
1176 | * The caller has already looked up the page |
1177 | * and gave us the result in "result_page". |
1178 | * We can use this for the first lookup but |
1179 | * it loses its validity as soon as we unlock |
1180 | * the object. |
1181 | */ |
1182 | m = *result_page; |
1183 | caller_lookup = FALSE; /* no longer valid after that */ |
1184 | } else { |
1185 | m = vm_page_lookup(object, vm_object_trunc_page(offset)); |
1186 | } |
1187 | #if TRACEFAULTPAGE |
1188 | dbgTrace(0xBEEF0004, (unsigned int) m, (unsigned int) object); /* (TEST/DEBUG) */ |
1189 | #endif |
1190 | if (m != VM_PAGE_NULL) { |
1191 | if (m->vmp_busy) { |
1192 | /* |
1193 | * The page is being brought in, |
1194 | * wait for it and then retry. |
1195 | */ |
1196 | #if TRACEFAULTPAGE |
1197 | dbgTrace(0xBEEF0005, (unsigned int) m, (unsigned int) 0); /* (TEST/DEBUG) */ |
1198 | #endif |
1199 | wait_result = PAGE_SLEEP(object, m, interruptible); |
1200 | |
1201 | if (wait_result != THREAD_AWAKENED) { |
1202 | vm_fault_cleanup(object, top_page: first_m); |
1203 | thread_interrupt_level(interruptible: interruptible_state); |
1204 | |
1205 | if (wait_result == THREAD_RESTART) { |
1206 | return VM_FAULT_RETRY; |
1207 | } else { |
1208 | ktriage_record(thread_id: thread_tid(thread: current_thread()), KDBG_TRIAGE_EVENTID(KDBG_TRIAGE_SUBSYS_VM, KDBG_TRIAGE_RESERVED, KDBG_TRIAGE_VM_BUSYPAGE_WAIT_INTERRUPTED), arg: 0 /* arg */); |
1209 | return VM_FAULT_INTERRUPTED; |
1210 | } |
1211 | } |
1212 | continue; |
1213 | } |
1214 | if (m->vmp_laundry) { |
1215 | m->vmp_free_when_done = FALSE; |
1216 | |
1217 | if (!m->vmp_cleaning) { |
1218 | vm_pageout_steal_laundry(page: m, FALSE); |
1219 | } |
1220 | } |
1221 | vm_object_lock_assert_exclusive(VM_PAGE_OBJECT(m)); |
1222 | if (VM_PAGE_GET_PHYS_PAGE(m) == vm_page_guard_addr) { |
1223 | /* |
1224 | * Guard page: off limits ! |
1225 | */ |
1226 | if (fault_type == VM_PROT_NONE) { |
1227 | /* |
1228 | * The fault is not requesting any |
1229 | * access to the guard page, so it must |
1230 | * be just to wire or unwire it. |
1231 | * Let's pretend it succeeded... |
1232 | */ |
1233 | m->vmp_busy = TRUE; |
1234 | *result_page = m; |
1235 | assert(first_m == VM_PAGE_NULL); |
1236 | *top_page = first_m; |
1237 | if (type_of_fault) { |
1238 | *type_of_fault = DBG_GUARD_FAULT; |
1239 | } |
1240 | thread_interrupt_level(interruptible: interruptible_state); |
1241 | return VM_FAULT_SUCCESS; |
1242 | } else { |
1243 | /* |
1244 | * The fault requests access to the |
1245 | * guard page: let's deny that ! |
1246 | */ |
1247 | vm_fault_cleanup(object, top_page: first_m); |
1248 | thread_interrupt_level(interruptible: interruptible_state); |
1249 | ktriage_record(thread_id: thread_tid(thread: current_thread()), KDBG_TRIAGE_EVENTID(KDBG_TRIAGE_SUBSYS_VM, KDBG_TRIAGE_RESERVED, KDBG_TRIAGE_VM_GUARDPAGE_FAULT), arg: 0 /* arg */); |
1250 | return VM_FAULT_MEMORY_ERROR; |
1251 | } |
1252 | } |
1253 | |
1254 | |
1255 | if (m->vmp_error) { |
1256 | /* |
1257 | * The page is in error, give up now. |
1258 | */ |
1259 | #if TRACEFAULTPAGE |
1260 | dbgTrace(0xBEEF0006, (unsigned int) m, (unsigned int) error_code); /* (TEST/DEBUG) */ |
1261 | #endif |
1262 | if (error_code) { |
1263 | *error_code = KERN_MEMORY_ERROR; |
1264 | } |
1265 | VM_PAGE_FREE(m); |
1266 | |
1267 | vm_fault_cleanup(object, top_page: first_m); |
1268 | thread_interrupt_level(interruptible: interruptible_state); |
1269 | |
1270 | ktriage_record(thread_id: thread_tid(thread: current_thread()), KDBG_TRIAGE_EVENTID(KDBG_TRIAGE_SUBSYS_VM, KDBG_TRIAGE_RESERVED, KDBG_TRIAGE_VM_PAGE_HAS_ERROR), arg: 0 /* arg */); |
1271 | return VM_FAULT_MEMORY_ERROR; |
1272 | } |
1273 | if (m->vmp_restart) { |
1274 | /* |
1275 | * The pager wants us to restart |
1276 | * at the top of the chain, |
1277 | * typically because it has moved the |
1278 | * page to another pager, then do so. |
1279 | */ |
1280 | #if TRACEFAULTPAGE |
1281 | dbgTrace(0xBEEF0007, (unsigned int) m, (unsigned int) 0); /* (TEST/DEBUG) */ |
1282 | #endif |
1283 | VM_PAGE_FREE(m); |
1284 | |
1285 | vm_fault_cleanup(object, top_page: first_m); |
1286 | thread_interrupt_level(interruptible: interruptible_state); |
1287 | |
1288 | ktriage_record(thread_id: thread_tid(thread: current_thread()), KDBG_TRIAGE_EVENTID(KDBG_TRIAGE_SUBSYS_VM, KDBG_TRIAGE_RESERVED, KDBG_TRIAGE_VM_PAGE_HAS_RESTART), arg: 0 /* arg */); |
1289 | return VM_FAULT_RETRY; |
1290 | } |
1291 | if (m->vmp_absent) { |
1292 | /* |
1293 | * The page isn't busy, but is absent, |
1294 | * therefore it's deemed "unavailable". |
1295 | * |
1296 | * Remove the non-existent page (unless it's |
1297 | * in the top object) and move on down to the |
1298 | * next object (if there is one). |
1299 | */ |
1300 | #if TRACEFAULTPAGE |
1301 | dbgTrace(0xBEEF0008, (unsigned int) m, (unsigned int) object->shadow); /* (TEST/DEBUG) */ |
1302 | #endif |
1303 | next_object = object->shadow; |
1304 | |
1305 | if (next_object == VM_OBJECT_NULL) { |
1306 | /* |
1307 | * Absent page at bottom of shadow |
1308 | * chain; zero fill the page we left |
1309 | * busy in the first object, and free |
1310 | * the absent page. |
1311 | */ |
1312 | assert(!must_be_resident); |
1313 | |
1314 | /* |
1315 | * check for any conditions that prevent |
1316 | * us from creating a new zero-fill page |
1317 | * vm_fault_check will do all of the |
1318 | * fault cleanup in the case of an error condition |
1319 | * including resetting the thread_interrupt_level |
1320 | */ |
1321 | error = vm_fault_check(object, m, first_m, interruptible_state, page_throttle: (type_of_fault == NULL) ? TRUE : FALSE); |
1322 | |
1323 | if (error != VM_FAULT_SUCCESS) { |
1324 | return error; |
1325 | } |
1326 | |
1327 | if (object != first_object) { |
1328 | /* |
1329 | * free the absent page we just found |
1330 | */ |
1331 | VM_PAGE_FREE(m); |
1332 | |
1333 | /* |
1334 | * drop reference and lock on current object |
1335 | */ |
1336 | vm_object_paging_end(object); |
1337 | vm_object_unlock(object); |
1338 | |
1339 | /* |
1340 | * grab the original page we |
1341 | * 'soldered' in place and |
1342 | * retake lock on 'first_object' |
1343 | */ |
1344 | m = first_m; |
1345 | first_m = VM_PAGE_NULL; |
1346 | |
1347 | object = first_object; |
1348 | offset = first_offset; |
1349 | |
1350 | vm_object_lock(object); |
1351 | } else { |
1352 | /* |
1353 | * we're going to use the absent page we just found |
1354 | * so convert it to a 'busy' page |
1355 | */ |
1356 | m->vmp_absent = FALSE; |
1357 | m->vmp_busy = TRUE; |
1358 | } |
1359 | if (fault_info->mark_zf_absent && no_zero_fill == TRUE) { |
1360 | m->vmp_absent = TRUE; |
1361 | clear_absent_on_error = true; |
1362 | } |
1363 | /* |
1364 | * zero-fill the page and put it on |
1365 | * the correct paging queue |
1366 | */ |
1367 | my_fault = vm_fault_zero_page(m, no_zero_fill); |
1368 | |
1369 | break; |
1370 | } else { |
1371 | if (must_be_resident) { |
1372 | vm_object_paging_end(object); |
1373 | } else if (object != first_object) { |
1374 | vm_object_paging_end(object); |
1375 | VM_PAGE_FREE(m); |
1376 | } else { |
1377 | first_m = m; |
1378 | m->vmp_absent = FALSE; |
1379 | m->vmp_busy = TRUE; |
1380 | |
1381 | vm_page_lockspin_queues(); |
1382 | vm_page_queues_remove(mem: m, FALSE); |
1383 | vm_page_unlock_queues(); |
1384 | } |
1385 | |
1386 | offset += object->vo_shadow_offset; |
1387 | fault_info->lo_offset += object->vo_shadow_offset; |
1388 | fault_info->hi_offset += object->vo_shadow_offset; |
1389 | access_required = VM_PROT_READ; |
1390 | |
1391 | vm_object_lock(next_object); |
1392 | vm_object_unlock(object); |
1393 | object = next_object; |
1394 | vm_object_paging_begin(object); |
1395 | |
1396 | /* |
1397 | * reset to default type of fault |
1398 | */ |
1399 | my_fault = DBG_CACHE_HIT_FAULT; |
1400 | |
1401 | continue; |
1402 | } |
1403 | } |
1404 | if ((m->vmp_cleaning) |
1405 | && ((object != first_object) || (object->vo_copy != VM_OBJECT_NULL)) |
1406 | && (fault_type & VM_PROT_WRITE)) { |
1407 | /* |
1408 | * This is a copy-on-write fault that will |
1409 | * cause us to revoke access to this page, but |
1410 | * this page is in the process of being cleaned |
1411 | * in a clustered pageout. We must wait until |
1412 | * the cleaning operation completes before |
1413 | * revoking access to the original page, |
1414 | * otherwise we might attempt to remove a |
1415 | * wired mapping. |
1416 | */ |
1417 | #if TRACEFAULTPAGE |
1418 | dbgTrace(0xBEEF0009, (unsigned int) m, (unsigned int) offset); /* (TEST/DEBUG) */ |
1419 | #endif |
1420 | /* |
1421 | * take an extra ref so that object won't die |
1422 | */ |
1423 | vm_object_reference_locked(object); |
1424 | |
1425 | vm_fault_cleanup(object, top_page: first_m); |
1426 | |
1427 | vm_object_lock(object); |
1428 | assert(object->ref_count > 0); |
1429 | |
1430 | m = vm_page_lookup(object, vm_object_trunc_page(offset)); |
1431 | |
1432 | if (m != VM_PAGE_NULL && m->vmp_cleaning) { |
1433 | PAGE_ASSERT_WAIT(m, interruptible); |
1434 | |
1435 | vm_object_unlock(object); |
1436 | wait_result = thread_block(THREAD_CONTINUE_NULL); |
1437 | vm_object_deallocate(object); |
1438 | |
1439 | goto backoff; |
1440 | } else { |
1441 | vm_object_unlock(object); |
1442 | |
1443 | vm_object_deallocate(object); |
1444 | thread_interrupt_level(interruptible: interruptible_state); |
1445 | |
1446 | return VM_FAULT_RETRY; |
1447 | } |
1448 | } |
1449 | if (type_of_fault == NULL && (m->vmp_q_state == VM_PAGE_ON_SPECULATIVE_Q) && |
1450 | !(fault_info != NULL && fault_info->stealth)) { |
1451 | /* |
1452 | * If we were passed a non-NULL pointer for |
1453 | * "type_of_fault", than we came from |
1454 | * vm_fault... we'll let it deal with |
1455 | * this condition, since it |
1456 | * needs to see m->vmp_speculative to correctly |
1457 | * account the pageins, otherwise... |
1458 | * take it off the speculative queue, we'll |
1459 | * let the caller of vm_fault_page deal |
1460 | * with getting it onto the correct queue |
1461 | * |
1462 | * If the caller specified in fault_info that |
1463 | * it wants a "stealth" fault, we also leave |
1464 | * the page in the speculative queue. |
1465 | */ |
1466 | vm_page_lockspin_queues(); |
1467 | if (m->vmp_q_state == VM_PAGE_ON_SPECULATIVE_Q) { |
1468 | vm_page_queues_remove(mem: m, FALSE); |
1469 | } |
1470 | vm_page_unlock_queues(); |
1471 | } |
1472 | assert(object == VM_PAGE_OBJECT(m)); |
1473 | |
1474 | if (object->code_signed) { |
1475 | /* |
1476 | * CODE SIGNING: |
1477 | * We just paged in a page from a signed |
1478 | * memory object but we don't need to |
1479 | * validate it now. We'll validate it if |
1480 | * when it gets mapped into a user address |
1481 | * space for the first time or when the page |
1482 | * gets copied to another object as a result |
1483 | * of a copy-on-write. |
1484 | */ |
1485 | } |
1486 | |
1487 | /* |
1488 | * We mark the page busy and leave it on |
1489 | * the pageout queues. If the pageout |
1490 | * deamon comes across it, then it will |
1491 | * remove the page from the queue, but not the object |
1492 | */ |
1493 | #if TRACEFAULTPAGE |
1494 | dbgTrace(0xBEEF000B, (unsigned int) m, (unsigned int) 0); /* (TEST/DEBUG) */ |
1495 | #endif |
1496 | assert(!m->vmp_busy); |
1497 | assert(!m->vmp_absent); |
1498 | |
1499 | m->vmp_busy = TRUE; |
1500 | break; |
1501 | } |
1502 | |
1503 | /* |
1504 | * we get here when there is no page present in the object at |
1505 | * the offset we're interested in... we'll allocate a page |
1506 | * at this point if the pager associated with |
1507 | * this object can provide the data or we're the top object... |
1508 | * object is locked; m == NULL |
1509 | */ |
1510 | |
1511 | if (must_be_resident) { |
1512 | if (fault_type == VM_PROT_NONE && |
1513 | is_kernel_object(object)) { |
1514 | /* |
1515 | * We've been called from vm_fault_unwire() |
1516 | * while removing a map entry that was allocated |
1517 | * with KMA_KOBJECT and KMA_VAONLY. This page |
1518 | * is not present and there's nothing more to |
1519 | * do here (nothing to unwire). |
1520 | */ |
1521 | vm_fault_cleanup(object, top_page: first_m); |
1522 | thread_interrupt_level(interruptible: interruptible_state); |
1523 | |
1524 | return VM_FAULT_MEMORY_ERROR; |
1525 | } |
1526 | |
1527 | goto dont_look_for_page; |
1528 | } |
1529 | |
1530 | /* Don't expect to fault pages into the kernel object. */ |
1531 | assert(!is_kernel_object(object)); |
1532 | |
1533 | look_for_page = (object->pager_created && (MUST_ASK_PAGER(object, offset, external_state) == TRUE)); |
1534 | |
1535 | #if TRACEFAULTPAGE |
1536 | dbgTrace(0xBEEF000C, (unsigned int) look_for_page, (unsigned int) object); /* (TEST/DEBUG) */ |
1537 | #endif |
1538 | if (!look_for_page && object == first_object && !object->phys_contiguous) { |
1539 | /* |
1540 | * Allocate a new page for this object/offset pair as a placeholder |
1541 | */ |
1542 | m = vm_page_grab_options(flags: grab_options); |
1543 | #if TRACEFAULTPAGE |
1544 | dbgTrace(0xBEEF000D, (unsigned int) m, (unsigned int) object); /* (TEST/DEBUG) */ |
1545 | #endif |
1546 | if (m == VM_PAGE_NULL) { |
1547 | vm_fault_cleanup(object, top_page: first_m); |
1548 | thread_interrupt_level(interruptible: interruptible_state); |
1549 | |
1550 | return VM_FAULT_MEMORY_SHORTAGE; |
1551 | } |
1552 | |
1553 | if (fault_info && fault_info->batch_pmap_op == TRUE) { |
1554 | vm_page_insert_internal(page: m, object, |
1555 | vm_object_trunc_page(offset), |
1556 | VM_KERN_MEMORY_NONE, FALSE, TRUE, TRUE, FALSE, NULL); |
1557 | } else { |
1558 | vm_page_insert(page: m, object, vm_object_trunc_page(offset)); |
1559 | } |
1560 | } |
1561 | if (look_for_page) { |
1562 | kern_return_t rc; |
1563 | int my_fault_type; |
1564 | |
1565 | /* |
1566 | * If the memory manager is not ready, we |
1567 | * cannot make requests. |
1568 | */ |
1569 | if (!object->pager_ready) { |
1570 | #if TRACEFAULTPAGE |
1571 | dbgTrace(0xBEEF000E, (unsigned int) 0, (unsigned int) 0); /* (TEST/DEBUG) */ |
1572 | #endif |
1573 | if (m != VM_PAGE_NULL) { |
1574 | VM_PAGE_FREE(m); |
1575 | } |
1576 | |
1577 | /* |
1578 | * take an extra ref so object won't die |
1579 | */ |
1580 | vm_object_reference_locked(object); |
1581 | vm_fault_cleanup(object, top_page: first_m); |
1582 | |
1583 | vm_object_lock(object); |
1584 | assert(object->ref_count > 0); |
1585 | |
1586 | if (!object->pager_ready) { |
1587 | wait_result = vm_object_assert_wait(object, VM_OBJECT_EVENT_PAGER_READY, interruptible); |
1588 | |
1589 | vm_object_unlock(object); |
1590 | if (wait_result == THREAD_WAITING) { |
1591 | wait_result = thread_block(THREAD_CONTINUE_NULL); |
1592 | } |
1593 | vm_object_deallocate(object); |
1594 | |
1595 | goto backoff; |
1596 | } else { |
1597 | vm_object_unlock(object); |
1598 | vm_object_deallocate(object); |
1599 | thread_interrupt_level(interruptible: interruptible_state); |
1600 | |
1601 | return VM_FAULT_RETRY; |
1602 | } |
1603 | } |
1604 | if (!object->internal && !object->phys_contiguous && object->paging_in_progress > vm_object_pagein_throttle) { |
1605 | /* |
1606 | * If there are too many outstanding page |
1607 | * requests pending on this external object, we |
1608 | * wait for them to be resolved now. |
1609 | */ |
1610 | #if TRACEFAULTPAGE |
1611 | dbgTrace(0xBEEF0010, (unsigned int) m, (unsigned int) 0); /* (TEST/DEBUG) */ |
1612 | #endif |
1613 | if (m != VM_PAGE_NULL) { |
1614 | VM_PAGE_FREE(m); |
1615 | } |
1616 | /* |
1617 | * take an extra ref so object won't die |
1618 | */ |
1619 | vm_object_reference_locked(object); |
1620 | |
1621 | vm_fault_cleanup(object, top_page: first_m); |
1622 | |
1623 | vm_object_lock(object); |
1624 | assert(object->ref_count > 0); |
1625 | |
1626 | if (object->paging_in_progress >= vm_object_pagein_throttle) { |
1627 | vm_object_assert_wait(object, VM_OBJECT_EVENT_PAGING_ONLY_IN_PROGRESS, interruptible); |
1628 | |
1629 | vm_object_unlock(object); |
1630 | wait_result = thread_block(THREAD_CONTINUE_NULL); |
1631 | vm_object_deallocate(object); |
1632 | |
1633 | goto backoff; |
1634 | } else { |
1635 | vm_object_unlock(object); |
1636 | vm_object_deallocate(object); |
1637 | thread_interrupt_level(interruptible: interruptible_state); |
1638 | |
1639 | return VM_FAULT_RETRY; |
1640 | } |
1641 | } |
1642 | if (object->internal) { |
1643 | int compressed_count_delta; |
1644 | |
1645 | assert(VM_CONFIG_COMPRESSOR_IS_PRESENT); |
1646 | |
1647 | if (m == VM_PAGE_NULL) { |
1648 | /* |
1649 | * Allocate a new page for this object/offset pair as a placeholder |
1650 | */ |
1651 | m = vm_page_grab_options(flags: grab_options); |
1652 | #if TRACEFAULTPAGE |
1653 | dbgTrace(0xBEEF000D, (unsigned int) m, (unsigned int) object); /* (TEST/DEBUG) */ |
1654 | #endif |
1655 | if (m == VM_PAGE_NULL) { |
1656 | vm_fault_cleanup(object, top_page: first_m); |
1657 | thread_interrupt_level(interruptible: interruptible_state); |
1658 | |
1659 | return VM_FAULT_MEMORY_SHORTAGE; |
1660 | } |
1661 | |
1662 | m->vmp_absent = TRUE; |
1663 | if (fault_info && fault_info->batch_pmap_op == TRUE) { |
1664 | vm_page_insert_internal(page: m, object, vm_object_trunc_page(offset), VM_KERN_MEMORY_NONE, FALSE, TRUE, TRUE, FALSE, NULL); |
1665 | } else { |
1666 | vm_page_insert(page: m, object, vm_object_trunc_page(offset)); |
1667 | } |
1668 | } |
1669 | assert(m->vmp_busy); |
1670 | |
1671 | m->vmp_absent = TRUE; |
1672 | pager = object->pager; |
1673 | |
1674 | assert(object->paging_in_progress > 0); |
1675 | vm_object_unlock(object); |
1676 | |
1677 | rc = vm_compressor_pager_get( |
1678 | mem_obj: pager, |
1679 | offset: offset + object->paging_offset, |
1680 | ppnum: VM_PAGE_GET_PHYS_PAGE(m), |
1681 | my_fault_type: &my_fault_type, |
1682 | flags: 0, |
1683 | compressed_count_delta_p: &compressed_count_delta); |
1684 | |
1685 | if (type_of_fault == NULL) { |
1686 | int throttle_delay; |
1687 | |
1688 | /* |
1689 | * we weren't called from vm_fault, so we |
1690 | * need to apply page creation throttling |
1691 | * do it before we re-acquire any locks |
1692 | */ |
1693 | if (my_fault_type == DBG_COMPRESSOR_FAULT) { |
1694 | if ((throttle_delay = vm_page_throttled(TRUE))) { |
1695 | VM_DEBUG_EVENT(vmf_compressordelay, VMF_COMPRESSORDELAY, DBG_FUNC_NONE, throttle_delay, 0, 1, 0); |
1696 | __VM_FAULT_THROTTLE_FOR_PAGEOUT_SCAN__(throttle_delay); |
1697 | } |
1698 | } |
1699 | } |
1700 | vm_object_lock(object); |
1701 | assert(object->paging_in_progress > 0); |
1702 | |
1703 | vm_compressor_pager_count( |
1704 | mem_obj: pager, |
1705 | compressed_count_delta, |
1706 | FALSE, /* shared_lock */ |
1707 | object); |
1708 | |
1709 | switch (rc) { |
1710 | case KERN_SUCCESS: |
1711 | m->vmp_absent = FALSE; |
1712 | m->vmp_dirty = TRUE; |
1713 | if ((object->wimg_bits & |
1714 | VM_WIMG_MASK) != |
1715 | VM_WIMG_USE_DEFAULT) { |
1716 | /* |
1717 | * If the page is not cacheable, |
1718 | * we can't let its contents |
1719 | * linger in the data cache |
1720 | * after the decompression. |
1721 | */ |
1722 | pmap_sync_page_attributes_phys( |
1723 | pa: VM_PAGE_GET_PHYS_PAGE(m)); |
1724 | } else { |
1725 | m->vmp_written_by_kernel = TRUE; |
1726 | } |
1727 | #if CONFIG_TRACK_UNMODIFIED_ANON_PAGES |
1728 | if ((fault_type & VM_PROT_WRITE) == 0) { |
1729 | vm_object_lock_assert_exclusive(object); |
1730 | vm_page_lockspin_queues(); |
1731 | m->vmp_unmodified_ro = true; |
1732 | vm_page_unlock_queues(); |
1733 | os_atomic_inc(&compressor_ro_uncompressed, relaxed); |
1734 | *protection &= ~VM_PROT_WRITE; |
1735 | } |
1736 | #endif /* CONFIG_TRACK_UNMODIFIED_ANON_PAGES */ |
1737 | |
1738 | /* |
1739 | * If the object is purgeable, its |
1740 | * owner's purgeable ledgers have been |
1741 | * updated in vm_page_insert() but the |
1742 | * page was also accounted for in a |
1743 | * "compressed purgeable" ledger, so |
1744 | * update that now. |
1745 | */ |
1746 | if (((object->purgable != |
1747 | VM_PURGABLE_DENY) || |
1748 | object->vo_ledger_tag) && |
1749 | (object->vo_owner != |
1750 | NULL)) { |
1751 | /* |
1752 | * One less compressed |
1753 | * purgeable/tagged page. |
1754 | */ |
1755 | if (compressed_count_delta) { |
1756 | vm_object_owner_compressed_update( |
1757 | object, |
1758 | delta: -1); |
1759 | } |
1760 | } |
1761 | |
1762 | break; |
1763 | case KERN_MEMORY_FAILURE: |
1764 | m->vmp_unusual = TRUE; |
1765 | m->vmp_error = TRUE; |
1766 | m->vmp_absent = FALSE; |
1767 | break; |
1768 | case KERN_MEMORY_ERROR: |
1769 | assert(m->vmp_absent); |
1770 | break; |
1771 | default: |
1772 | panic("vm_fault_page(): unexpected " |
1773 | "error %d from " |
1774 | "vm_compressor_pager_get()\n" , |
1775 | rc); |
1776 | } |
1777 | PAGE_WAKEUP_DONE(m); |
1778 | |
1779 | rc = KERN_SUCCESS; |
1780 | goto data_requested; |
1781 | } |
1782 | my_fault_type = DBG_PAGEIN_FAULT; |
1783 | |
1784 | if (m != VM_PAGE_NULL) { |
1785 | VM_PAGE_FREE(m); |
1786 | m = VM_PAGE_NULL; |
1787 | } |
1788 | |
1789 | #if TRACEFAULTPAGE |
1790 | dbgTrace(0xBEEF0012, (unsigned int) object, (unsigned int) 0); /* (TEST/DEBUG) */ |
1791 | #endif |
1792 | |
1793 | /* |
1794 | * It's possible someone called vm_object_destroy while we weren't |
1795 | * holding the object lock. If that has happened, then bail out |
1796 | * here. |
1797 | */ |
1798 | |
1799 | pager = object->pager; |
1800 | |
1801 | if (pager == MEMORY_OBJECT_NULL) { |
1802 | vm_fault_cleanup(object, top_page: first_m); |
1803 | thread_interrupt_level(interruptible: interruptible_state); |
1804 | |
1805 | static const enum vm_subsys_error_codes object_destroy_errors[VM_OBJECT_DESTROY_MAX + 1] = { |
1806 | [VM_OBJECT_DESTROY_UNKNOWN_REASON] = KDBG_TRIAGE_VM_OBJECT_NO_PAGER, |
1807 | [VM_OBJECT_DESTROY_FORCED_UNMOUNT] = KDBG_TRIAGE_VM_OBJECT_NO_PAGER_FORCED_UNMOUNT, |
1808 | [VM_OBJECT_DESTROY_UNGRAFT] = KDBG_TRIAGE_VM_OBJECT_NO_PAGER_UNGRAFT, |
1809 | }; |
1810 | enum vm_subsys_error_codes kdbg_code = object_destroy_errors[(vm_object_destroy_reason_t)object->no_pager_reason]; |
1811 | ktriage_record(thread_id: thread_tid(thread: current_thread()), KDBG_TRIAGE_EVENTID(KDBG_TRIAGE_SUBSYS_VM, KDBG_TRIAGE_RESERVED, kdbg_code), arg: 0 /* arg */); |
1812 | return VM_FAULT_MEMORY_ERROR; |
1813 | } |
1814 | |
1815 | /* |
1816 | * We have an absent page in place for the faulting offset, |
1817 | * so we can release the object lock. |
1818 | */ |
1819 | |
1820 | if (object->object_is_shared_cache) { |
1821 | token = thread_priority_floor_start(); |
1822 | /* |
1823 | * A non-native shared cache object might |
1824 | * be getting set up in parallel with this |
1825 | * fault and so we can't assume that this |
1826 | * check will be valid after we drop the |
1827 | * object lock below. |
1828 | */ |
1829 | drop_floor = true; |
1830 | } |
1831 | |
1832 | vm_object_unlock(object); |
1833 | |
1834 | /* |
1835 | * If this object uses a copy_call strategy, |
1836 | * and we are interested in a copy of this object |
1837 | * (having gotten here only by following a |
1838 | * shadow chain), then tell the memory manager |
1839 | * via a flag added to the desired_access |
1840 | * parameter, so that it can detect a race |
1841 | * between our walking down the shadow chain |
1842 | * and its pushing pages up into a copy of |
1843 | * the object that it manages. |
1844 | */ |
1845 | if (object->copy_strategy == MEMORY_OBJECT_COPY_CALL && object != first_object) { |
1846 | wants_copy_flag = VM_PROT_WANTS_COPY; |
1847 | } else { |
1848 | wants_copy_flag = VM_PROT_NONE; |
1849 | } |
1850 | |
1851 | if (object->vo_copy == first_object) { |
1852 | /* |
1853 | * if we issue the memory_object_data_request in |
1854 | * this state, we are subject to a deadlock with |
1855 | * the underlying filesystem if it is trying to |
1856 | * shrink the file resulting in a push of pages |
1857 | * into the copy object... that push will stall |
1858 | * on the placeholder page, and if the pushing thread |
1859 | * is holding a lock that is required on the pagein |
1860 | * path (such as a truncate lock), we'll deadlock... |
1861 | * to avoid this potential deadlock, we throw away |
1862 | * our placeholder page before calling memory_object_data_request |
1863 | * and force this thread to retry the vm_fault_page after |
1864 | * we have issued the I/O. the second time through this path |
1865 | * we will find the page already in the cache (presumably still |
1866 | * busy waiting for the I/O to complete) and then complete |
1867 | * the fault w/o having to go through memory_object_data_request again |
1868 | */ |
1869 | assert(first_m != VM_PAGE_NULL); |
1870 | assert(VM_PAGE_OBJECT(first_m) == first_object); |
1871 | |
1872 | vm_object_lock(first_object); |
1873 | VM_PAGE_FREE(first_m); |
1874 | vm_object_paging_end(first_object); |
1875 | vm_object_unlock(first_object); |
1876 | |
1877 | first_m = VM_PAGE_NULL; |
1878 | force_fault_retry = TRUE; |
1879 | |
1880 | vm_fault_page_forced_retry++; |
1881 | } |
1882 | |
1883 | if (data_already_requested == TRUE) { |
1884 | orig_behavior = fault_info->behavior; |
1885 | orig_cluster_size = fault_info->cluster_size; |
1886 | |
1887 | fault_info->behavior = VM_BEHAVIOR_RANDOM; |
1888 | fault_info->cluster_size = PAGE_SIZE; |
1889 | } |
1890 | /* |
1891 | * Call the memory manager to retrieve the data. |
1892 | */ |
1893 | rc = memory_object_data_request( |
1894 | memory_object: pager, |
1895 | vm_object_trunc_page(offset) + object->paging_offset, |
1896 | PAGE_SIZE, |
1897 | desired_access: access_required | wants_copy_flag, |
1898 | fault_info: (memory_object_fault_info_t)fault_info); |
1899 | |
1900 | if (data_already_requested == TRUE) { |
1901 | fault_info->behavior = orig_behavior; |
1902 | fault_info->cluster_size = orig_cluster_size; |
1903 | } else { |
1904 | data_already_requested = TRUE; |
1905 | } |
1906 | |
1907 | DTRACE_VM2(maj_fault, int, 1, (uint64_t *), NULL); |
1908 | #if TRACEFAULTPAGE |
1909 | dbgTrace(0xBEEF0013, (unsigned int) object, (unsigned int) rc); /* (TEST/DEBUG) */ |
1910 | #endif |
1911 | vm_object_lock(object); |
1912 | |
1913 | if (drop_floor && object->object_is_shared_cache) { |
1914 | thread_priority_floor_end(token: &token); |
1915 | drop_floor = false; |
1916 | } |
1917 | |
1918 | data_requested: |
1919 | if (rc != KERN_SUCCESS) { |
1920 | vm_fault_cleanup(object, top_page: first_m); |
1921 | thread_interrupt_level(interruptible: interruptible_state); |
1922 | |
1923 | ktriage_record(thread_id: thread_tid(thread: current_thread()), KDBG_TRIAGE_EVENTID(KDBG_TRIAGE_SUBSYS_VM, KDBG_TRIAGE_RESERVED, KDBG_TRIAGE_VM_NO_DATA), arg: 0 /* arg */); |
1924 | |
1925 | return (rc == MACH_SEND_INTERRUPTED) ? |
1926 | VM_FAULT_INTERRUPTED : |
1927 | VM_FAULT_MEMORY_ERROR; |
1928 | } else { |
1929 | clock_sec_t tv_sec; |
1930 | clock_usec_t tv_usec; |
1931 | |
1932 | if (my_fault_type == DBG_PAGEIN_FAULT) { |
1933 | clock_get_system_microtime(secs: &tv_sec, microsecs: &tv_usec); |
1934 | current_thread()->t_page_creation_time = tv_sec; |
1935 | current_thread()->t_page_creation_count = 0; |
1936 | } |
1937 | } |
1938 | if ((interruptible != THREAD_UNINT) && (current_thread()->sched_flags & TH_SFLAG_ABORT)) { |
1939 | vm_fault_cleanup(object, top_page: first_m); |
1940 | thread_interrupt_level(interruptible: interruptible_state); |
1941 | |
1942 | ktriage_record(thread_id: thread_tid(thread: current_thread()), KDBG_TRIAGE_EVENTID(KDBG_TRIAGE_SUBSYS_VM, KDBG_TRIAGE_RESERVED, KDBG_TRIAGE_VM_FAULT_INTERRUPTED), arg: 0 /* arg */); |
1943 | return VM_FAULT_INTERRUPTED; |
1944 | } |
1945 | if (force_fault_retry == TRUE) { |
1946 | vm_fault_cleanup(object, top_page: first_m); |
1947 | thread_interrupt_level(interruptible: interruptible_state); |
1948 | |
1949 | return VM_FAULT_RETRY; |
1950 | } |
1951 | if (m == VM_PAGE_NULL && object->phys_contiguous) { |
1952 | /* |
1953 | * No page here means that the object we |
1954 | * initially looked up was "physically |
1955 | * contiguous" (i.e. device memory). However, |
1956 | * with Virtual VRAM, the object might not |
1957 | * be backed by that device memory anymore, |
1958 | * so we're done here only if the object is |
1959 | * still "phys_contiguous". |
1960 | * Otherwise, if the object is no longer |
1961 | * "phys_contiguous", we need to retry the |
1962 | * page fault against the object's new backing |
1963 | * store (different memory object). |
1964 | */ |
1965 | phys_contig_object: |
1966 | assert(object->copy_strategy == MEMORY_OBJECT_COPY_NONE); |
1967 | assert(object == first_object); |
1968 | goto done; |
1969 | } |
1970 | /* |
1971 | * potentially a pagein fault |
1972 | * if we make it through the state checks |
1973 | * above, than we'll count it as such |
1974 | */ |
1975 | my_fault = my_fault_type; |
1976 | |
1977 | /* |
1978 | * Retry with same object/offset, since new data may |
1979 | * be in a different page (i.e., m is meaningless at |
1980 | * this point). |
1981 | */ |
1982 | continue; |
1983 | } |
1984 | dont_look_for_page: |
1985 | /* |
1986 | * We get here if the object has no pager, or an existence map |
1987 | * exists and indicates the page isn't present on the pager |
1988 | * or we're unwiring a page. If a pager exists, but there |
1989 | * is no existence map, then the m->vmp_absent case above handles |
1990 | * the ZF case when the pager can't provide the page |
1991 | */ |
1992 | #if TRACEFAULTPAGE |
1993 | dbgTrace(0xBEEF0014, (unsigned int) object, (unsigned int) m); /* (TEST/DEBUG) */ |
1994 | #endif |
1995 | if (object == first_object) { |
1996 | first_m = m; |
1997 | } else { |
1998 | assert(m == VM_PAGE_NULL); |
1999 | } |
2000 | |
2001 | next_object = object->shadow; |
2002 | |
2003 | if (next_object == VM_OBJECT_NULL) { |
2004 | /* |
2005 | * we've hit the bottom of the shadown chain, |
2006 | * fill the page in the top object with zeros. |
2007 | */ |
2008 | assert(!must_be_resident); |
2009 | |
2010 | if (object != first_object) { |
2011 | vm_object_paging_end(object); |
2012 | vm_object_unlock(object); |
2013 | |
2014 | object = first_object; |
2015 | offset = first_offset; |
2016 | vm_object_lock(object); |
2017 | } |
2018 | m = first_m; |
2019 | assert(VM_PAGE_OBJECT(m) == object); |
2020 | first_m = VM_PAGE_NULL; |
2021 | |
2022 | /* |
2023 | * check for any conditions that prevent |
2024 | * us from creating a new zero-fill page |
2025 | * vm_fault_check will do all of the |
2026 | * fault cleanup in the case of an error condition |
2027 | * including resetting the thread_interrupt_level |
2028 | */ |
2029 | error = vm_fault_check(object, m, first_m, interruptible_state, page_throttle: (type_of_fault == NULL) ? TRUE : FALSE); |
2030 | |
2031 | if (error != VM_FAULT_SUCCESS) { |
2032 | return error; |
2033 | } |
2034 | |
2035 | if (m == VM_PAGE_NULL) { |
2036 | m = vm_page_grab_options(flags: grab_options); |
2037 | |
2038 | if (m == VM_PAGE_NULL) { |
2039 | vm_fault_cleanup(object, VM_PAGE_NULL); |
2040 | thread_interrupt_level(interruptible: interruptible_state); |
2041 | |
2042 | return VM_FAULT_MEMORY_SHORTAGE; |
2043 | } |
2044 | vm_page_insert(page: m, object, vm_object_trunc_page(offset)); |
2045 | } |
2046 | if (fault_info->mark_zf_absent && no_zero_fill == TRUE) { |
2047 | m->vmp_absent = TRUE; |
2048 | clear_absent_on_error = true; |
2049 | } |
2050 | |
2051 | my_fault = vm_fault_zero_page(m, no_zero_fill); |
2052 | |
2053 | break; |
2054 | } else { |
2055 | /* |
2056 | * Move on to the next object. Lock the next |
2057 | * object before unlocking the current one. |
2058 | */ |
2059 | if ((object != first_object) || must_be_resident) { |
2060 | vm_object_paging_end(object); |
2061 | } |
2062 | |
2063 | offset += object->vo_shadow_offset; |
2064 | fault_info->lo_offset += object->vo_shadow_offset; |
2065 | fault_info->hi_offset += object->vo_shadow_offset; |
2066 | access_required = VM_PROT_READ; |
2067 | |
2068 | vm_object_lock(next_object); |
2069 | vm_object_unlock(object); |
2070 | |
2071 | object = next_object; |
2072 | vm_object_paging_begin(object); |
2073 | } |
2074 | } |
2075 | |
2076 | /* |
2077 | * PAGE HAS BEEN FOUND. |
2078 | * |
2079 | * This page (m) is: |
2080 | * busy, so that we can play with it; |
2081 | * not absent, so that nobody else will fill it; |
2082 | * possibly eligible for pageout; |
2083 | * |
2084 | * The top-level page (first_m) is: |
2085 | * VM_PAGE_NULL if the page was found in the |
2086 | * top-level object; |
2087 | * busy, not absent, and ineligible for pageout. |
2088 | * |
2089 | * The current object (object) is locked. A paging |
2090 | * reference is held for the current and top-level |
2091 | * objects. |
2092 | */ |
2093 | |
2094 | #if TRACEFAULTPAGE |
2095 | dbgTrace(0xBEEF0015, (unsigned int) object, (unsigned int) m); /* (TEST/DEBUG) */ |
2096 | #endif |
2097 | #if EXTRA_ASSERTIONS |
2098 | assert(m->vmp_busy && !m->vmp_absent); |
2099 | assert((first_m == VM_PAGE_NULL) || |
2100 | (first_m->vmp_busy && !first_m->vmp_absent && |
2101 | !first_m->vmp_active && !first_m->vmp_inactive && !first_m->vmp_secluded)); |
2102 | #endif /* EXTRA_ASSERTIONS */ |
2103 | |
2104 | /* |
2105 | * If the page is being written, but isn't |
2106 | * already owned by the top-level object, |
2107 | * we have to copy it into a new page owned |
2108 | * by the top-level object. |
2109 | */ |
2110 | if (object != first_object) { |
2111 | #if TRACEFAULTPAGE |
2112 | dbgTrace(0xBEEF0016, (unsigned int) object, (unsigned int) fault_type); /* (TEST/DEBUG) */ |
2113 | #endif |
2114 | if (fault_type & VM_PROT_WRITE) { |
2115 | vm_page_t copy_m; |
2116 | |
2117 | /* |
2118 | * We only really need to copy if we |
2119 | * want to write it. |
2120 | */ |
2121 | assert(!must_be_resident); |
2122 | |
2123 | /* |
2124 | * If we try to collapse first_object at this |
2125 | * point, we may deadlock when we try to get |
2126 | * the lock on an intermediate object (since we |
2127 | * have the bottom object locked). We can't |
2128 | * unlock the bottom object, because the page |
2129 | * we found may move (by collapse) if we do. |
2130 | * |
2131 | * Instead, we first copy the page. Then, when |
2132 | * we have no more use for the bottom object, |
2133 | * we unlock it and try to collapse. |
2134 | * |
2135 | * Note that we copy the page even if we didn't |
2136 | * need to... that's the breaks. |
2137 | */ |
2138 | |
2139 | /* |
2140 | * Allocate a page for the copy |
2141 | */ |
2142 | copy_m = vm_page_grab_options(flags: grab_options); |
2143 | |
2144 | if (copy_m == VM_PAGE_NULL) { |
2145 | RELEASE_PAGE(m); |
2146 | |
2147 | vm_fault_cleanup(object, top_page: first_m); |
2148 | thread_interrupt_level(interruptible: interruptible_state); |
2149 | |
2150 | return VM_FAULT_MEMORY_SHORTAGE; |
2151 | } |
2152 | |
2153 | vm_page_copy(src_page: m, dest_page: copy_m); |
2154 | |
2155 | /* |
2156 | * If another map is truly sharing this |
2157 | * page with us, we have to flush all |
2158 | * uses of the original page, since we |
2159 | * can't distinguish those which want the |
2160 | * original from those which need the |
2161 | * new copy. |
2162 | * |
2163 | * XXXO If we know that only one map has |
2164 | * access to this page, then we could |
2165 | * avoid the pmap_disconnect() call. |
2166 | */ |
2167 | if (m->vmp_pmapped) { |
2168 | pmap_disconnect(phys: VM_PAGE_GET_PHYS_PAGE(m)); |
2169 | } |
2170 | |
2171 | if (m->vmp_clustered) { |
2172 | VM_PAGE_COUNT_AS_PAGEIN(m); |
2173 | VM_PAGE_CONSUME_CLUSTERED(m); |
2174 | } |
2175 | assert(!m->vmp_cleaning); |
2176 | |
2177 | /* |
2178 | * We no longer need the old page or object. |
2179 | */ |
2180 | RELEASE_PAGE(m); |
2181 | |
2182 | /* |
2183 | * This check helps with marking the object as having a sequential pattern |
2184 | * Normally we'll miss doing this below because this fault is about COW to |
2185 | * the first_object i.e. bring page in from disk, push to object above but |
2186 | * don't update the file object's sequential pattern. |
2187 | */ |
2188 | if (object->internal == FALSE) { |
2189 | vm_fault_is_sequential(object, offset, behavior: fault_info->behavior); |
2190 | } |
2191 | |
2192 | vm_object_paging_end(object); |
2193 | vm_object_unlock(object); |
2194 | |
2195 | my_fault = DBG_COW_FAULT; |
2196 | counter_inc(&vm_statistics_cow_faults); |
2197 | DTRACE_VM2(cow_fault, int, 1, (uint64_t *), NULL); |
2198 | counter_inc(¤t_task()->cow_faults); |
2199 | |
2200 | object = first_object; |
2201 | offset = first_offset; |
2202 | |
2203 | vm_object_lock(object); |
2204 | /* |
2205 | * get rid of the place holder |
2206 | * page that we soldered in earlier |
2207 | */ |
2208 | VM_PAGE_FREE(first_m); |
2209 | first_m = VM_PAGE_NULL; |
2210 | |
2211 | /* |
2212 | * and replace it with the |
2213 | * page we just copied into |
2214 | */ |
2215 | assert(copy_m->vmp_busy); |
2216 | vm_page_insert(page: copy_m, object, vm_object_trunc_page(offset)); |
2217 | SET_PAGE_DIRTY(copy_m, TRUE); |
2218 | |
2219 | m = copy_m; |
2220 | /* |
2221 | * Now that we've gotten the copy out of the |
2222 | * way, let's try to collapse the top object. |
2223 | * But we have to play ugly games with |
2224 | * paging_in_progress to do that... |
2225 | */ |
2226 | vm_object_paging_end(object); |
2227 | vm_object_collapse(object, vm_object_trunc_page(offset), TRUE); |
2228 | vm_object_paging_begin(object); |
2229 | } else { |
2230 | *protection &= (~VM_PROT_WRITE); |
2231 | } |
2232 | } |
2233 | /* |
2234 | * Now check whether the page needs to be pushed into the |
2235 | * copy object. The use of asymmetric copy on write for |
2236 | * shared temporary objects means that we may do two copies to |
2237 | * satisfy the fault; one above to get the page from a |
2238 | * shadowed object, and one here to push it into the copy. |
2239 | */ |
2240 | try_failed_count = 0; |
2241 | |
2242 | while ((copy_object = first_object->vo_copy) != VM_OBJECT_NULL) { |
2243 | vm_object_offset_t copy_offset; |
2244 | vm_page_t copy_m; |
2245 | |
2246 | #if TRACEFAULTPAGE |
2247 | dbgTrace(0xBEEF0017, (unsigned int) copy_object, (unsigned int) fault_type); /* (TEST/DEBUG) */ |
2248 | #endif |
2249 | /* |
2250 | * If the page is being written, but hasn't been |
2251 | * copied to the copy-object, we have to copy it there. |
2252 | */ |
2253 | if ((fault_type & VM_PROT_WRITE) == 0) { |
2254 | *protection &= ~VM_PROT_WRITE; |
2255 | break; |
2256 | } |
2257 | |
2258 | /* |
2259 | * If the page was guaranteed to be resident, |
2260 | * we must have already performed the copy. |
2261 | */ |
2262 | if (must_be_resident) { |
2263 | break; |
2264 | } |
2265 | |
2266 | /* |
2267 | * Try to get the lock on the copy_object. |
2268 | */ |
2269 | if (!vm_object_lock_try(copy_object)) { |
2270 | vm_object_unlock(object); |
2271 | try_failed_count++; |
2272 | |
2273 | mutex_pause(try_failed_count); /* wait a bit */ |
2274 | vm_object_lock(object); |
2275 | |
2276 | continue; |
2277 | } |
2278 | try_failed_count = 0; |
2279 | |
2280 | /* |
2281 | * Make another reference to the copy-object, |
2282 | * to keep it from disappearing during the |
2283 | * copy. |
2284 | */ |
2285 | vm_object_reference_locked(copy_object); |
2286 | |
2287 | /* |
2288 | * Does the page exist in the copy? |
2289 | */ |
2290 | copy_offset = first_offset - copy_object->vo_shadow_offset; |
2291 | copy_offset = vm_object_trunc_page(copy_offset); |
2292 | |
2293 | if (copy_object->vo_size <= copy_offset) { |
2294 | /* |
2295 | * Copy object doesn't cover this page -- do nothing. |
2296 | */ |
2297 | ; |
2298 | } else if ((copy_m = vm_page_lookup(object: copy_object, offset: copy_offset)) != VM_PAGE_NULL) { |
2299 | /* |
2300 | * Page currently exists in the copy object |
2301 | */ |
2302 | if (copy_m->vmp_busy) { |
2303 | /* |
2304 | * If the page is being brought |
2305 | * in, wait for it and then retry. |
2306 | */ |
2307 | RELEASE_PAGE(m); |
2308 | |
2309 | /* |
2310 | * take an extra ref so object won't die |
2311 | */ |
2312 | vm_object_reference_locked(copy_object); |
2313 | vm_object_unlock(copy_object); |
2314 | vm_fault_cleanup(object, top_page: first_m); |
2315 | |
2316 | vm_object_lock(copy_object); |
2317 | assert(copy_object->ref_count > 0); |
2318 | vm_object_lock_assert_exclusive(copy_object); |
2319 | copy_object->ref_count--; |
2320 | assert(copy_object->ref_count > 0); |
2321 | copy_m = vm_page_lookup(object: copy_object, offset: copy_offset); |
2322 | |
2323 | if (copy_m != VM_PAGE_NULL && copy_m->vmp_busy) { |
2324 | PAGE_ASSERT_WAIT(copy_m, interruptible); |
2325 | |
2326 | vm_object_unlock(copy_object); |
2327 | wait_result = thread_block(THREAD_CONTINUE_NULL); |
2328 | vm_object_deallocate(object: copy_object); |
2329 | |
2330 | goto backoff; |
2331 | } else { |
2332 | vm_object_unlock(copy_object); |
2333 | vm_object_deallocate(object: copy_object); |
2334 | thread_interrupt_level(interruptible: interruptible_state); |
2335 | |
2336 | return VM_FAULT_RETRY; |
2337 | } |
2338 | } |
2339 | } else if (!PAGED_OUT(copy_object, copy_offset)) { |
2340 | /* |
2341 | * If PAGED_OUT is TRUE, then the page used to exist |
2342 | * in the copy-object, and has already been paged out. |
2343 | * We don't need to repeat this. If PAGED_OUT is |
2344 | * FALSE, then either we don't know (!pager_created, |
2345 | * for example) or it hasn't been paged out. |
2346 | * (VM_EXTERNAL_STATE_UNKNOWN||VM_EXTERNAL_STATE_ABSENT) |
2347 | * We must copy the page to the copy object. |
2348 | * |
2349 | * Allocate a page for the copy |
2350 | */ |
2351 | copy_m = vm_page_alloc(object: copy_object, offset: copy_offset); |
2352 | |
2353 | if (copy_m == VM_PAGE_NULL) { |
2354 | RELEASE_PAGE(m); |
2355 | |
2356 | vm_object_lock_assert_exclusive(copy_object); |
2357 | copy_object->ref_count--; |
2358 | assert(copy_object->ref_count > 0); |
2359 | |
2360 | vm_object_unlock(copy_object); |
2361 | vm_fault_cleanup(object, top_page: first_m); |
2362 | thread_interrupt_level(interruptible: interruptible_state); |
2363 | |
2364 | return VM_FAULT_MEMORY_SHORTAGE; |
2365 | } |
2366 | /* |
2367 | * Must copy page into copy-object. |
2368 | */ |
2369 | vm_page_copy(src_page: m, dest_page: copy_m); |
2370 | |
2371 | /* |
2372 | * If the old page was in use by any users |
2373 | * of the copy-object, it must be removed |
2374 | * from all pmaps. (We can't know which |
2375 | * pmaps use it.) |
2376 | */ |
2377 | if (m->vmp_pmapped) { |
2378 | pmap_disconnect(phys: VM_PAGE_GET_PHYS_PAGE(m)); |
2379 | } |
2380 | |
2381 | if (m->vmp_clustered) { |
2382 | VM_PAGE_COUNT_AS_PAGEIN(m); |
2383 | VM_PAGE_CONSUME_CLUSTERED(m); |
2384 | } |
2385 | /* |
2386 | * If there's a pager, then immediately |
2387 | * page out this page, using the "initialize" |
2388 | * option. Else, we use the copy. |
2389 | */ |
2390 | if ((!copy_object->pager_ready) |
2391 | || VM_COMPRESSOR_PAGER_STATE_GET(copy_object, copy_offset) == VM_EXTERNAL_STATE_ABSENT |
2392 | ) { |
2393 | vm_page_lockspin_queues(); |
2394 | assert(!m->vmp_cleaning); |
2395 | vm_page_activate(page: copy_m); |
2396 | vm_page_unlock_queues(); |
2397 | |
2398 | SET_PAGE_DIRTY(copy_m, TRUE); |
2399 | PAGE_WAKEUP_DONE(copy_m); |
2400 | } else { |
2401 | assert(copy_m->vmp_busy == TRUE); |
2402 | assert(!m->vmp_cleaning); |
2403 | |
2404 | /* |
2405 | * dirty is protected by the object lock |
2406 | */ |
2407 | SET_PAGE_DIRTY(copy_m, TRUE); |
2408 | |
2409 | /* |
2410 | * The page is already ready for pageout: |
2411 | * not on pageout queues and busy. |
2412 | * Unlock everything except the |
2413 | * copy_object itself. |
2414 | */ |
2415 | vm_object_unlock(object); |
2416 | |
2417 | /* |
2418 | * Write the page to the copy-object, |
2419 | * flushing it from the kernel. |
2420 | */ |
2421 | vm_pageout_initialize_page(m: copy_m); |
2422 | |
2423 | /* |
2424 | * Since the pageout may have |
2425 | * temporarily dropped the |
2426 | * copy_object's lock, we |
2427 | * check whether we'll have |
2428 | * to deallocate the hard way. |
2429 | */ |
2430 | if ((copy_object->shadow != object) || (copy_object->ref_count == 1)) { |
2431 | vm_object_unlock(copy_object); |
2432 | vm_object_deallocate(object: copy_object); |
2433 | vm_object_lock(object); |
2434 | |
2435 | continue; |
2436 | } |
2437 | /* |
2438 | * Pick back up the old object's |
2439 | * lock. [It is safe to do so, |
2440 | * since it must be deeper in the |
2441 | * object tree.] |
2442 | */ |
2443 | vm_object_lock(object); |
2444 | } |
2445 | |
2446 | /* |
2447 | * Because we're pushing a page upward |
2448 | * in the object tree, we must restart |
2449 | * any faults that are waiting here. |
2450 | * [Note that this is an expansion of |
2451 | * PAGE_WAKEUP that uses the THREAD_RESTART |
2452 | * wait result]. Can't turn off the page's |
2453 | * busy bit because we're not done with it. |
2454 | */ |
2455 | if (m->vmp_wanted) { |
2456 | m->vmp_wanted = FALSE; |
2457 | thread_wakeup_with_result((event_t) m, THREAD_RESTART); |
2458 | } |
2459 | } |
2460 | /* |
2461 | * The reference count on copy_object must be |
2462 | * at least 2: one for our extra reference, |
2463 | * and at least one from the outside world |
2464 | * (we checked that when we last locked |
2465 | * copy_object). |
2466 | */ |
2467 | vm_object_lock_assert_exclusive(copy_object); |
2468 | copy_object->ref_count--; |
2469 | assert(copy_object->ref_count > 0); |
2470 | |
2471 | vm_object_unlock(copy_object); |
2472 | |
2473 | break; |
2474 | } |
2475 | |
2476 | done: |
2477 | *result_page = m; |
2478 | *top_page = first_m; |
2479 | |
2480 | if (m != VM_PAGE_NULL) { |
2481 | assert(VM_PAGE_OBJECT(m) == object); |
2482 | |
2483 | retval = VM_FAULT_SUCCESS; |
2484 | |
2485 | if (my_fault == DBG_PAGEIN_FAULT) { |
2486 | VM_PAGE_COUNT_AS_PAGEIN(m); |
2487 | |
2488 | if (object->internal) { |
2489 | my_fault = DBG_PAGEIND_FAULT; |
2490 | } else { |
2491 | my_fault = DBG_PAGEINV_FAULT; |
2492 | } |
2493 | |
2494 | /* |
2495 | * evaluate access pattern and update state |
2496 | * vm_fault_deactivate_behind depends on the |
2497 | * state being up to date |
2498 | */ |
2499 | vm_fault_is_sequential(object, offset, behavior: fault_info->behavior); |
2500 | vm_fault_deactivate_behind(object, offset, behavior: fault_info->behavior); |
2501 | } else if (type_of_fault == NULL && my_fault == DBG_CACHE_HIT_FAULT) { |
2502 | /* |
2503 | * we weren't called from vm_fault, so handle the |
2504 | * accounting here for hits in the cache |
2505 | */ |
2506 | if (m->vmp_clustered) { |
2507 | VM_PAGE_COUNT_AS_PAGEIN(m); |
2508 | VM_PAGE_CONSUME_CLUSTERED(m); |
2509 | } |
2510 | vm_fault_is_sequential(object, offset, behavior: fault_info->behavior); |
2511 | vm_fault_deactivate_behind(object, offset, behavior: fault_info->behavior); |
2512 | } else if (my_fault == DBG_COMPRESSOR_FAULT || my_fault == DBG_COMPRESSOR_SWAPIN_FAULT) { |
2513 | VM_STAT_DECOMPRESSIONS(); |
2514 | } |
2515 | if (type_of_fault) { |
2516 | *type_of_fault = my_fault; |
2517 | } |
2518 | } else { |
2519 | ktriage_record(thread_id: thread_tid(thread: current_thread()), KDBG_TRIAGE_EVENTID(KDBG_TRIAGE_SUBSYS_VM, KDBG_TRIAGE_RESERVED, KDBG_TRIAGE_VM_SUCCESS_NO_PAGE), arg: 0 /* arg */); |
2520 | retval = VM_FAULT_SUCCESS_NO_VM_PAGE; |
2521 | assert(first_m == VM_PAGE_NULL); |
2522 | assert(object == first_object); |
2523 | } |
2524 | |
2525 | thread_interrupt_level(interruptible: interruptible_state); |
2526 | |
2527 | #if TRACEFAULTPAGE |
2528 | dbgTrace(0xBEEF001A, (unsigned int) VM_FAULT_SUCCESS, 0); /* (TEST/DEBUG) */ |
2529 | #endif |
2530 | return retval; |
2531 | |
2532 | backoff: |
2533 | thread_interrupt_level(interruptible: interruptible_state); |
2534 | |
2535 | if (wait_result == THREAD_INTERRUPTED) { |
2536 | ktriage_record(thread_id: thread_tid(thread: current_thread()), KDBG_TRIAGE_EVENTID(KDBG_TRIAGE_SUBSYS_VM, KDBG_TRIAGE_RESERVED, KDBG_TRIAGE_VM_FAULT_INTERRUPTED), arg: 0 /* arg */); |
2537 | return VM_FAULT_INTERRUPTED; |
2538 | } |
2539 | return VM_FAULT_RETRY; |
2540 | |
2541 | #undef RELEASE_PAGE |
2542 | } |
2543 | |
2544 | #if MACH_ASSERT && (XNU_PLATFORM_WatchOS || __x86_64__) |
2545 | #define PANIC_ON_CS_KILLED_DEFAULT true |
2546 | #else |
2547 | #define PANIC_ON_CS_KILLED_DEFAULT false |
2548 | #endif |
2549 | static TUNABLE(bool, panic_on_cs_killed, "panic_on_cs_killed" , |
2550 | PANIC_ON_CS_KILLED_DEFAULT); |
2551 | |
2552 | extern int proc_selfpid(void); |
2553 | extern char *proc_name_address(struct proc *p); |
2554 | extern char *proc_best_name(struct proc *); |
2555 | unsigned long cs_enter_tainted_rejected = 0; |
2556 | unsigned long cs_enter_tainted_accepted = 0; |
2557 | |
2558 | /* |
2559 | * CODE SIGNING: |
2560 | * When soft faulting a page, we have to validate the page if: |
2561 | * 1. the page is being mapped in user space |
2562 | * 2. the page hasn't already been found to be "tainted" |
2563 | * 3. the page belongs to a code-signed object |
2564 | * 4. the page has not been validated yet or has been mapped for write. |
2565 | */ |
2566 | static bool |
2567 | vm_fault_cs_need_validation( |
2568 | pmap_t pmap, |
2569 | vm_page_t page, |
2570 | vm_object_t page_obj, |
2571 | vm_map_size_t fault_page_size, |
2572 | vm_map_offset_t fault_phys_offset) |
2573 | { |
2574 | if (pmap == kernel_pmap) { |
2575 | /* 1 - not user space */ |
2576 | return false; |
2577 | } |
2578 | if (!page_obj->code_signed) { |
2579 | /* 3 - page does not belong to a code-signed object */ |
2580 | return false; |
2581 | } |
2582 | if (fault_page_size == PAGE_SIZE) { |
2583 | /* looking at the whole page */ |
2584 | assertf(fault_phys_offset == 0, |
2585 | "fault_page_size 0x%llx fault_phys_offset 0x%llx\n" , |
2586 | (uint64_t)fault_page_size, |
2587 | (uint64_t)fault_phys_offset); |
2588 | if (page->vmp_cs_tainted == VMP_CS_ALL_TRUE) { |
2589 | /* 2 - page is all tainted */ |
2590 | return false; |
2591 | } |
2592 | if (page->vmp_cs_validated == VMP_CS_ALL_TRUE && |
2593 | !page->vmp_wpmapped) { |
2594 | /* 4 - already fully validated and never mapped writable */ |
2595 | return false; |
2596 | } |
2597 | } else { |
2598 | /* looking at a specific sub-page */ |
2599 | if (VMP_CS_TAINTED(p: page, fault_page_size, fault_phys_offset)) { |
2600 | /* 2 - sub-page was already marked as tainted */ |
2601 | return false; |
2602 | } |
2603 | if (VMP_CS_VALIDATED(p: page, fault_page_size, fault_phys_offset) && |
2604 | !page->vmp_wpmapped) { |
2605 | /* 4 - already validated and never mapped writable */ |
2606 | return false; |
2607 | } |
2608 | } |
2609 | /* page needs to be validated */ |
2610 | return true; |
2611 | } |
2612 | |
2613 | |
2614 | static bool |
2615 | vm_fault_cs_page_immutable( |
2616 | vm_page_t m, |
2617 | vm_map_size_t fault_page_size, |
2618 | vm_map_offset_t fault_phys_offset, |
2619 | vm_prot_t prot __unused) |
2620 | { |
2621 | if (VMP_CS_VALIDATED(p: m, fault_page_size, fault_phys_offset) |
2622 | /*&& ((prot) & VM_PROT_EXECUTE)*/) { |
2623 | return true; |
2624 | } |
2625 | return false; |
2626 | } |
2627 | |
2628 | static bool |
2629 | vm_fault_cs_page_nx( |
2630 | vm_page_t m, |
2631 | vm_map_size_t fault_page_size, |
2632 | vm_map_offset_t fault_phys_offset) |
2633 | { |
2634 | return VMP_CS_NX(p: m, fault_page_size, fault_phys_offset); |
2635 | } |
2636 | |
2637 | /* |
2638 | * Check if the page being entered into the pmap violates code signing. |
2639 | */ |
2640 | static kern_return_t |
2641 | vm_fault_cs_check_violation( |
2642 | bool cs_bypass, |
2643 | vm_object_t object, |
2644 | vm_page_t m, |
2645 | pmap_t pmap, |
2646 | vm_prot_t prot, |
2647 | vm_prot_t caller_prot, |
2648 | vm_map_size_t fault_page_size, |
2649 | vm_map_offset_t fault_phys_offset, |
2650 | vm_object_fault_info_t fault_info, |
2651 | bool map_is_switched, |
2652 | bool map_is_switch_protected, |
2653 | bool *cs_violation) |
2654 | { |
2655 | #if !CODE_SIGNING_MONITOR |
2656 | #pragma unused(caller_prot) |
2657 | #pragma unused(fault_info) |
2658 | #endif /* !CODE_SIGNING_MONITOR */ |
2659 | |
2660 | int cs_enforcement_enabled; |
2661 | if (!cs_bypass && |
2662 | vm_fault_cs_need_validation(pmap, page: m, page_obj: object, |
2663 | fault_page_size, fault_phys_offset)) { |
2664 | vm_object_lock_assert_exclusive(object); |
2665 | |
2666 | if (VMP_CS_VALIDATED(p: m, fault_page_size, fault_phys_offset)) { |
2667 | vm_cs_revalidates++; |
2668 | } |
2669 | |
2670 | /* VM map is locked, so 1 ref will remain on VM object - |
2671 | * so no harm if vm_page_validate_cs drops the object lock */ |
2672 | |
2673 | #if CODE_SIGNING_MONITOR |
2674 | if (fault_info->csm_associated && |
2675 | csm_enabled() && |
2676 | !VMP_CS_VALIDATED(m, fault_page_size, fault_phys_offset) && |
2677 | !VMP_CS_TAINTED(m, fault_page_size, fault_phys_offset) && |
2678 | !VMP_CS_NX(m, fault_page_size, fault_phys_offset) && |
2679 | (prot & VM_PROT_EXECUTE) && |
2680 | (caller_prot & VM_PROT_EXECUTE)) { |
2681 | /* |
2682 | * When we have a code signing monitor, the monitor will evaluate the code signature |
2683 | * for any executable page mapping. No need for the VM to also validate the page. |
2684 | * In the code signing monitor we trust :) |
2685 | */ |
2686 | vm_cs_defer_to_csm++; |
2687 | } else { |
2688 | vm_cs_defer_to_csm_not++; |
2689 | vm_page_validate_cs(m, fault_page_size, fault_phys_offset); |
2690 | } |
2691 | #else /* CODE_SIGNING_MONITOR */ |
2692 | vm_page_validate_cs(page: m, fault_page_size, fault_phys_offset); |
2693 | #endif /* CODE_SIGNING_MONITOR */ |
2694 | } |
2695 | |
2696 | /* If the map is switched, and is switch-protected, we must protect |
2697 | * some pages from being write-faulted: immutable pages because by |
2698 | * definition they may not be written, and executable pages because that |
2699 | * would provide a way to inject unsigned code. |
2700 | * If the page is immutable, we can simply return. However, we can't |
2701 | * immediately determine whether a page is executable anywhere. But, |
2702 | * we can disconnect it everywhere and remove the executable protection |
2703 | * from the current map. We do that below right before we do the |
2704 | * PMAP_ENTER. |
2705 | */ |
2706 | if (pmap == kernel_pmap) { |
2707 | /* kernel fault: cs_enforcement does not apply */ |
2708 | cs_enforcement_enabled = 0; |
2709 | } else { |
2710 | cs_enforcement_enabled = pmap_get_vm_map_cs_enforced(pmap); |
2711 | } |
2712 | |
2713 | if (cs_enforcement_enabled && map_is_switched && |
2714 | map_is_switch_protected && |
2715 | vm_fault_cs_page_immutable(m, fault_page_size, fault_phys_offset, prot) && |
2716 | (prot & VM_PROT_WRITE)) { |
2717 | ktriage_record(thread_id: thread_tid(thread: current_thread()), KDBG_TRIAGE_EVENTID(KDBG_TRIAGE_SUBSYS_VM, KDBG_TRIAGE_RESERVED, KDBG_TRIAGE_VM_FAILED_IMMUTABLE_PAGE_WRITE), arg: 0 /* arg */); |
2718 | return KERN_CODESIGN_ERROR; |
2719 | } |
2720 | |
2721 | if (cs_enforcement_enabled && |
2722 | vm_fault_cs_page_nx(m, fault_page_size, fault_phys_offset) && |
2723 | (prot & VM_PROT_EXECUTE)) { |
2724 | if (cs_debug) { |
2725 | printf(format: "page marked to be NX, not letting it be mapped EXEC\n" ); |
2726 | } |
2727 | ktriage_record(thread_id: thread_tid(thread: current_thread()), KDBG_TRIAGE_EVENTID(KDBG_TRIAGE_SUBSYS_VM, KDBG_TRIAGE_RESERVED, KDBG_TRIAGE_VM_FAILED_NX_PAGE_EXEC_MAPPING), arg: 0 /* arg */); |
2728 | return KERN_CODESIGN_ERROR; |
2729 | } |
2730 | |
2731 | /* A page could be tainted, or pose a risk of being tainted later. |
2732 | * Check whether the receiving process wants it, and make it feel |
2733 | * the consequences (that hapens in cs_invalid_page()). |
2734 | * For CS Enforcement, two other conditions will |
2735 | * cause that page to be tainted as well: |
2736 | * - pmapping an unsigned page executable - this means unsigned code; |
2737 | * - writeable mapping of a validated page - the content of that page |
2738 | * can be changed without the kernel noticing, therefore unsigned |
2739 | * code can be created |
2740 | */ |
2741 | if (cs_bypass) { |
2742 | /* code-signing is bypassed */ |
2743 | *cs_violation = FALSE; |
2744 | } else if (VMP_CS_TAINTED(p: m, fault_page_size, fault_phys_offset)) { |
2745 | /* tainted page */ |
2746 | *cs_violation = TRUE; |
2747 | } else if (!cs_enforcement_enabled) { |
2748 | /* no further code-signing enforcement */ |
2749 | *cs_violation = FALSE; |
2750 | } else if (vm_fault_cs_page_immutable(m, fault_page_size, fault_phys_offset, prot) && |
2751 | ((prot & VM_PROT_WRITE) || |
2752 | m->vmp_wpmapped)) { |
2753 | /* |
2754 | * The page should be immutable, but is in danger of being |
2755 | * modified. |
2756 | * This is the case where we want policy from the code |
2757 | * directory - is the page immutable or not? For now we have |
2758 | * to assume that code pages will be immutable, data pages not. |
2759 | * We'll assume a page is a code page if it has a code directory |
2760 | * and we fault for execution. |
2761 | * That is good enough since if we faulted the code page for |
2762 | * writing in another map before, it is wpmapped; if we fault |
2763 | * it for writing in this map later it will also be faulted for |
2764 | * executing at the same time; and if we fault for writing in |
2765 | * another map later, we will disconnect it from this pmap so |
2766 | * we'll notice the change. |
2767 | */ |
2768 | *cs_violation = TRUE; |
2769 | } else if (!VMP_CS_VALIDATED(p: m, fault_page_size, fault_phys_offset) && |
2770 | (prot & VM_PROT_EXECUTE) |
2771 | #if CODE_SIGNING_MONITOR |
2772 | /* |
2773 | * Executable pages will be validated by the code signing monitor. If the |
2774 | * code signing monitor is turned off, then this is a code-signing violation. |
2775 | */ |
2776 | && !csm_enabled() |
2777 | #endif /* CODE_SIGNING_MONITOR */ |
2778 | ) { |
2779 | *cs_violation = TRUE; |
2780 | } else { |
2781 | *cs_violation = FALSE; |
2782 | } |
2783 | return KERN_SUCCESS; |
2784 | } |
2785 | |
2786 | /* |
2787 | * Handles a code signing violation by either rejecting the page or forcing a disconnect. |
2788 | * @param must_disconnect This value will be set to true if the caller must disconnect |
2789 | * this page. |
2790 | * @return If this function does not return KERN_SUCCESS, the caller must abort the page fault. |
2791 | */ |
2792 | static kern_return_t |
2793 | vm_fault_cs_handle_violation( |
2794 | vm_object_t object, |
2795 | vm_page_t m, |
2796 | pmap_t pmap, |
2797 | vm_prot_t prot, |
2798 | vm_map_offset_t vaddr, |
2799 | vm_map_size_t fault_page_size, |
2800 | vm_map_offset_t fault_phys_offset, |
2801 | bool map_is_switched, |
2802 | bool map_is_switch_protected, |
2803 | bool *must_disconnect) |
2804 | { |
2805 | #if !MACH_ASSERT |
2806 | #pragma unused(pmap) |
2807 | #pragma unused(map_is_switch_protected) |
2808 | #endif /* !MACH_ASSERT */ |
2809 | /* |
2810 | * We will have a tainted page. Have to handle the special case |
2811 | * of a switched map now. If the map is not switched, standard |
2812 | * procedure applies - call cs_invalid_page(). |
2813 | * If the map is switched, the real owner is invalid already. |
2814 | * There is no point in invalidating the switching process since |
2815 | * it will not be executing from the map. So we don't call |
2816 | * cs_invalid_page() in that case. |
2817 | */ |
2818 | boolean_t reject_page, cs_killed; |
2819 | kern_return_t kr; |
2820 | if (map_is_switched) { |
2821 | assert(pmap == vm_map_pmap(current_thread()->map)); |
2822 | assert(!(prot & VM_PROT_WRITE) || (map_is_switch_protected == FALSE)); |
2823 | reject_page = FALSE; |
2824 | } else { |
2825 | if (cs_debug > 5) { |
2826 | printf(format: "vm_fault: signed: %s validate: %s tainted: %s wpmapped: %s prot: 0x%x\n" , |
2827 | object->code_signed ? "yes" : "no" , |
2828 | VMP_CS_VALIDATED(p: m, fault_page_size, fault_phys_offset) ? "yes" : "no" , |
2829 | VMP_CS_TAINTED(p: m, fault_page_size, fault_phys_offset) ? "yes" : "no" , |
2830 | m->vmp_wpmapped ? "yes" : "no" , |
2831 | (int)prot); |
2832 | } |
2833 | reject_page = cs_invalid_page(vaddr: (addr64_t) vaddr, cs_killed: &cs_killed); |
2834 | } |
2835 | |
2836 | if (reject_page) { |
2837 | /* reject the invalid page: abort the page fault */ |
2838 | int pid; |
2839 | const char *procname; |
2840 | task_t task; |
2841 | vm_object_t file_object, shadow; |
2842 | vm_object_offset_t file_offset; |
2843 | char *pathname, *filename; |
2844 | vm_size_t pathname_len, filename_len; |
2845 | boolean_t truncated_path; |
2846 | #define __PATH_MAX 1024 |
2847 | struct timespec mtime, cs_mtime; |
2848 | int shadow_depth; |
2849 | os_reason_t codesigning_exit_reason = OS_REASON_NULL; |
2850 | |
2851 | kr = KERN_CODESIGN_ERROR; |
2852 | cs_enter_tainted_rejected++; |
2853 | |
2854 | /* get process name and pid */ |
2855 | procname = "?" ; |
2856 | task = current_task(); |
2857 | pid = proc_selfpid(); |
2858 | if (get_bsdtask_info(task) != NULL) { |
2859 | procname = proc_name_address(p: get_bsdtask_info(task)); |
2860 | } |
2861 | |
2862 | /* get file's VM object */ |
2863 | file_object = object; |
2864 | file_offset = m->vmp_offset; |
2865 | for (shadow = file_object->shadow, |
2866 | shadow_depth = 0; |
2867 | shadow != VM_OBJECT_NULL; |
2868 | shadow = file_object->shadow, |
2869 | shadow_depth++) { |
2870 | vm_object_lock_shared(shadow); |
2871 | if (file_object != object) { |
2872 | vm_object_unlock(file_object); |
2873 | } |
2874 | file_offset += file_object->vo_shadow_offset; |
2875 | file_object = shadow; |
2876 | } |
2877 | |
2878 | mtime.tv_sec = 0; |
2879 | mtime.tv_nsec = 0; |
2880 | cs_mtime.tv_sec = 0; |
2881 | cs_mtime.tv_nsec = 0; |
2882 | |
2883 | /* get file's pathname and/or filename */ |
2884 | pathname = NULL; |
2885 | filename = NULL; |
2886 | pathname_len = 0; |
2887 | filename_len = 0; |
2888 | truncated_path = FALSE; |
2889 | /* no pager -> no file -> no pathname, use "<nil>" in that case */ |
2890 | if (file_object->pager != NULL) { |
2891 | pathname = kalloc_data(__PATH_MAX * 2, Z_WAITOK); |
2892 | if (pathname) { |
2893 | pathname[0] = '\0'; |
2894 | pathname_len = __PATH_MAX; |
2895 | filename = pathname + pathname_len; |
2896 | filename_len = __PATH_MAX; |
2897 | |
2898 | if (vnode_pager_get_object_name(mem_obj: file_object->pager, |
2899 | pathname, |
2900 | pathname_len, |
2901 | filename, |
2902 | filename_len, |
2903 | truncated_path_p: &truncated_path) == KERN_SUCCESS) { |
2904 | /* safety first... */ |
2905 | pathname[__PATH_MAX - 1] = '\0'; |
2906 | filename[__PATH_MAX - 1] = '\0'; |
2907 | |
2908 | vnode_pager_get_object_mtime(mem_obj: file_object->pager, |
2909 | mtime: &mtime, |
2910 | cs_mtime: &cs_mtime); |
2911 | } else { |
2912 | kfree_data(pathname, __PATH_MAX * 2); |
2913 | pathname = NULL; |
2914 | filename = NULL; |
2915 | pathname_len = 0; |
2916 | filename_len = 0; |
2917 | truncated_path = FALSE; |
2918 | } |
2919 | } |
2920 | } |
2921 | printf(format: "CODE SIGNING: process %d[%s]: " |
2922 | "rejecting invalid page at address 0x%llx " |
2923 | "from offset 0x%llx in file \"%s%s%s\" " |
2924 | "(cs_mtime:%lu.%ld %s mtime:%lu.%ld) " |
2925 | "(signed:%d validated:%d tainted:%d nx:%d " |
2926 | "wpmapped:%d dirty:%d depth:%d)\n" , |
2927 | pid, procname, (addr64_t) vaddr, |
2928 | file_offset, |
2929 | (pathname ? pathname : "<nil>" ), |
2930 | (truncated_path ? "/.../" : "" ), |
2931 | (truncated_path ? filename : "" ), |
2932 | cs_mtime.tv_sec, cs_mtime.tv_nsec, |
2933 | ((cs_mtime.tv_sec == mtime.tv_sec && |
2934 | cs_mtime.tv_nsec == mtime.tv_nsec) |
2935 | ? "==" |
2936 | : "!=" ), |
2937 | mtime.tv_sec, mtime.tv_nsec, |
2938 | object->code_signed, |
2939 | VMP_CS_VALIDATED(p: m, fault_page_size, fault_phys_offset), |
2940 | VMP_CS_TAINTED(p: m, fault_page_size, fault_phys_offset), |
2941 | VMP_CS_NX(p: m, fault_page_size, fault_phys_offset), |
2942 | m->vmp_wpmapped, |
2943 | m->vmp_dirty, |
2944 | shadow_depth); |
2945 | |
2946 | /* |
2947 | * We currently only generate an exit reason if cs_invalid_page directly killed a process. If cs_invalid_page |
2948 | * did not kill the process (more the case on desktop), vm_fault_enter will not satisfy the fault and whether the |
2949 | * process dies is dependent on whether there is a signal handler registered for SIGSEGV and how that handler |
2950 | * will deal with the segmentation fault. |
2951 | */ |
2952 | if (cs_killed) { |
2953 | KDBG(BSDDBG_CODE(DBG_BSD_PROC, BSD_PROC_EXITREASON_CREATE) | DBG_FUNC_NONE, |
2954 | pid, OS_REASON_CODESIGNING, CODESIGNING_EXIT_REASON_INVALID_PAGE); |
2955 | |
2956 | codesigning_exit_reason = os_reason_create(OS_REASON_CODESIGNING, CODESIGNING_EXIT_REASON_INVALID_PAGE); |
2957 | if (codesigning_exit_reason == NULL) { |
2958 | printf(format: "vm_fault_enter: failed to allocate codesigning exit reason\n" ); |
2959 | } else { |
2960 | mach_vm_address_t data_addr = 0; |
2961 | struct codesigning_exit_reason_info *ceri = NULL; |
2962 | uint32_t reason_buffer_size_estimate = kcdata_estimate_required_buffer_size(num_items: 1, payload_size: sizeof(*ceri)); |
2963 | |
2964 | if (os_reason_alloc_buffer_noblock(cur_reason: codesigning_exit_reason, osr_bufsize: reason_buffer_size_estimate)) { |
2965 | printf(format: "vm_fault_enter: failed to allocate buffer for codesigning exit reason\n" ); |
2966 | } else { |
2967 | if (KERN_SUCCESS == kcdata_get_memory_addr(data: &codesigning_exit_reason->osr_kcd_descriptor, |
2968 | EXIT_REASON_CODESIGNING_INFO, size: sizeof(*ceri), user_addr: &data_addr)) { |
2969 | ceri = (struct codesigning_exit_reason_info *)data_addr; |
2970 | static_assert(__PATH_MAX == sizeof(ceri->ceri_pathname)); |
2971 | |
2972 | ceri->ceri_virt_addr = vaddr; |
2973 | ceri->ceri_file_offset = file_offset; |
2974 | if (pathname) { |
2975 | strncpy((char *)&ceri->ceri_pathname, pathname, sizeof(ceri->ceri_pathname)); |
2976 | } else { |
2977 | ceri->ceri_pathname[0] = '\0'; |
2978 | } |
2979 | if (filename) { |
2980 | strncpy((char *)&ceri->ceri_filename, filename, sizeof(ceri->ceri_filename)); |
2981 | } else { |
2982 | ceri->ceri_filename[0] = '\0'; |
2983 | } |
2984 | ceri->ceri_path_truncated = (truncated_path ? 1 : 0); |
2985 | ceri->ceri_codesig_modtime_secs = cs_mtime.tv_sec; |
2986 | ceri->ceri_codesig_modtime_nsecs = cs_mtime.tv_nsec; |
2987 | ceri->ceri_page_modtime_secs = mtime.tv_sec; |
2988 | ceri->ceri_page_modtime_nsecs = mtime.tv_nsec; |
2989 | ceri->ceri_object_codesigned = (object->code_signed); |
2990 | ceri->ceri_page_codesig_validated = VMP_CS_VALIDATED(p: m, fault_page_size, fault_phys_offset); |
2991 | ceri->ceri_page_codesig_tainted = VMP_CS_TAINTED(p: m, fault_page_size, fault_phys_offset); |
2992 | ceri->ceri_page_codesig_nx = VMP_CS_NX(p: m, fault_page_size, fault_phys_offset); |
2993 | ceri->ceri_page_wpmapped = (m->vmp_wpmapped); |
2994 | ceri->ceri_page_slid = 0; |
2995 | ceri->ceri_page_dirty = (m->vmp_dirty); |
2996 | ceri->ceri_page_shadow_depth = shadow_depth; |
2997 | } else { |
2998 | #if DEBUG || DEVELOPMENT |
2999 | panic("vm_fault_enter: failed to allocate kcdata for codesigning exit reason" ); |
3000 | #else |
3001 | printf(format: "vm_fault_enter: failed to allocate kcdata for codesigning exit reason\n" ); |
3002 | #endif /* DEBUG || DEVELOPMENT */ |
3003 | /* Free the buffer */ |
3004 | os_reason_alloc_buffer_noblock(cur_reason: codesigning_exit_reason, osr_bufsize: 0); |
3005 | } |
3006 | } |
3007 | } |
3008 | |
3009 | set_thread_exit_reason(th: current_thread(), reason: codesigning_exit_reason, FALSE); |
3010 | } |
3011 | if (panic_on_cs_killed && |
3012 | object->object_is_shared_cache) { |
3013 | char *tainted_contents; |
3014 | vm_map_offset_t src_vaddr; |
3015 | src_vaddr = (vm_map_offset_t) phystokv(pa: (pmap_paddr_t)VM_PAGE_GET_PHYS_PAGE(m) << PAGE_SHIFT); |
3016 | tainted_contents = kalloc_data(PAGE_SIZE, Z_WAITOK); |
3017 | bcopy(src: (const char *)src_vaddr, dst: tainted_contents, PAGE_SIZE); |
3018 | printf(format: "CODE SIGNING: tainted page %p phys 0x%x phystokv 0x%llx copied to %p\n" , m, VM_PAGE_GET_PHYS_PAGE(m), (uint64_t)src_vaddr, tainted_contents); |
3019 | panic("CODE SIGNING: process %d[%s]: " |
3020 | "rejecting invalid page (phys#0x%x) at address 0x%llx " |
3021 | "from offset 0x%llx in file \"%s%s%s\" " |
3022 | "(cs_mtime:%lu.%ld %s mtime:%lu.%ld) " |
3023 | "(signed:%d validated:%d tainted:%d nx:%d" |
3024 | "wpmapped:%d dirty:%d depth:%d)\n" , |
3025 | pid, procname, |
3026 | VM_PAGE_GET_PHYS_PAGE(m), |
3027 | (addr64_t) vaddr, |
3028 | file_offset, |
3029 | (pathname ? pathname : "<nil>" ), |
3030 | (truncated_path ? "/.../" : "" ), |
3031 | (truncated_path ? filename : "" ), |
3032 | cs_mtime.tv_sec, cs_mtime.tv_nsec, |
3033 | ((cs_mtime.tv_sec == mtime.tv_sec && |
3034 | cs_mtime.tv_nsec == mtime.tv_nsec) |
3035 | ? "==" |
3036 | : "!=" ), |
3037 | mtime.tv_sec, mtime.tv_nsec, |
3038 | object->code_signed, |
3039 | VMP_CS_VALIDATED(m, fault_page_size, fault_phys_offset), |
3040 | VMP_CS_TAINTED(m, fault_page_size, fault_phys_offset), |
3041 | VMP_CS_NX(m, fault_page_size, fault_phys_offset), |
3042 | m->vmp_wpmapped, |
3043 | m->vmp_dirty, |
3044 | shadow_depth); |
3045 | } |
3046 | |
3047 | if (file_object != object) { |
3048 | vm_object_unlock(file_object); |
3049 | } |
3050 | if (pathname_len != 0) { |
3051 | kfree_data(pathname, __PATH_MAX * 2); |
3052 | pathname = NULL; |
3053 | filename = NULL; |
3054 | } |
3055 | } else { |
3056 | /* proceed with the invalid page */ |
3057 | kr = KERN_SUCCESS; |
3058 | if (!VMP_CS_VALIDATED(p: m, fault_page_size, fault_phys_offset) && |
3059 | !object->code_signed) { |
3060 | /* |
3061 | * This page has not been (fully) validated but |
3062 | * does not belong to a code-signed object |
3063 | * so it should not be forcefully considered |
3064 | * as tainted. |
3065 | * We're just concerned about it here because |
3066 | * we've been asked to "execute" it but that |
3067 | * does not mean that it should cause other |
3068 | * accesses to fail. |
3069 | * This happens when a debugger sets a |
3070 | * breakpoint and we then execute code in |
3071 | * that page. Marking the page as "tainted" |
3072 | * would cause any inspection tool ("leaks", |
3073 | * "vmmap", "CrashReporter", ...) to get killed |
3074 | * due to code-signing violation on that page, |
3075 | * even though they're just reading it and not |
3076 | * executing from it. |
3077 | */ |
3078 | } else { |
3079 | /* |
3080 | * Page might have been tainted before or not; |
3081 | * now it definitively is. If the page wasn't |
3082 | * tainted, we must disconnect it from all |
3083 | * pmaps later, to force existing mappings |
3084 | * through that code path for re-consideration |
3085 | * of the validity of that page. |
3086 | */ |
3087 | if (!VMP_CS_TAINTED(p: m, fault_page_size, fault_phys_offset)) { |
3088 | *must_disconnect = TRUE; |
3089 | VMP_CS_SET_TAINTED(p: m, fault_page_size, fault_phys_offset, TRUE); |
3090 | } |
3091 | } |
3092 | cs_enter_tainted_accepted++; |
3093 | } |
3094 | if (kr != KERN_SUCCESS) { |
3095 | if (cs_debug) { |
3096 | printf(format: "CODESIGNING: vm_fault_enter(0x%llx): " |
3097 | "*** INVALID PAGE ***\n" , |
3098 | (long long)vaddr); |
3099 | } |
3100 | #if !SECURE_KERNEL |
3101 | if (cs_enforcement_panic) { |
3102 | panic("CODESIGNING: panicking on invalid page" ); |
3103 | } |
3104 | #endif |
3105 | } |
3106 | return kr; |
3107 | } |
3108 | |
3109 | /* |
3110 | * Check that the code signature is valid for the given page being inserted into |
3111 | * the pmap. |
3112 | * |
3113 | * @param must_disconnect This value will be set to true if the caller must disconnect |
3114 | * this page. |
3115 | * @return If this function does not return KERN_SUCCESS, the caller must abort the page fault. |
3116 | */ |
3117 | static kern_return_t |
3118 | vm_fault_validate_cs( |
3119 | bool cs_bypass, |
3120 | vm_object_t object, |
3121 | vm_page_t m, |
3122 | pmap_t pmap, |
3123 | vm_map_offset_t vaddr, |
3124 | vm_prot_t prot, |
3125 | vm_prot_t caller_prot, |
3126 | vm_map_size_t fault_page_size, |
3127 | vm_map_offset_t fault_phys_offset, |
3128 | vm_object_fault_info_t fault_info, |
3129 | bool *must_disconnect) |
3130 | { |
3131 | bool map_is_switched, map_is_switch_protected, cs_violation; |
3132 | kern_return_t kr; |
3133 | /* Validate code signature if necessary. */ |
3134 | map_is_switched = ((pmap != vm_map_pmap(current_task()->map)) && |
3135 | (pmap == vm_map_pmap(current_thread()->map))); |
3136 | map_is_switch_protected = current_thread()->map->switch_protect; |
3137 | kr = vm_fault_cs_check_violation(cs_bypass, object, m, pmap, |
3138 | prot, caller_prot, fault_page_size, fault_phys_offset, fault_info, |
3139 | map_is_switched, map_is_switch_protected, cs_violation: &cs_violation); |
3140 | if (kr != KERN_SUCCESS) { |
3141 | return kr; |
3142 | } |
3143 | if (cs_violation) { |
3144 | kr = vm_fault_cs_handle_violation(object, m, pmap, prot, vaddr, |
3145 | fault_page_size, fault_phys_offset, |
3146 | map_is_switched, map_is_switch_protected, must_disconnect); |
3147 | } |
3148 | return kr; |
3149 | } |
3150 | |
3151 | /* |
3152 | * Enqueue the page on the appropriate paging queue. |
3153 | */ |
3154 | static void |
3155 | vm_fault_enqueue_page( |
3156 | vm_object_t object, |
3157 | vm_page_t m, |
3158 | bool wired, |
3159 | bool change_wiring, |
3160 | vm_tag_t wire_tag, |
3161 | bool no_cache, |
3162 | int *type_of_fault, |
3163 | kern_return_t kr) |
3164 | { |
3165 | assert((m->vmp_q_state == VM_PAGE_USED_BY_COMPRESSOR) || object != compressor_object); |
3166 | boolean_t page_queues_locked = FALSE; |
3167 | boolean_t previously_pmapped = m->vmp_pmapped; |
3168 | #define __VM_PAGE_LOCKSPIN_QUEUES_IF_NEEDED() \ |
3169 | MACRO_BEGIN \ |
3170 | if (! page_queues_locked) { \ |
3171 | page_queues_locked = TRUE; \ |
3172 | vm_page_lockspin_queues(); \ |
3173 | } \ |
3174 | MACRO_END |
3175 | #define __VM_PAGE_UNLOCK_QUEUES_IF_NEEDED() \ |
3176 | MACRO_BEGIN \ |
3177 | if (page_queues_locked) { \ |
3178 | page_queues_locked = FALSE; \ |
3179 | vm_page_unlock_queues(); \ |
3180 | } \ |
3181 | MACRO_END |
3182 | |
3183 | vm_page_update_special_state(mem: m); |
3184 | if (m->vmp_q_state == VM_PAGE_USED_BY_COMPRESSOR) { |
3185 | /* |
3186 | * Compressor pages are neither wired |
3187 | * nor pageable and should never change. |
3188 | */ |
3189 | assert(object == compressor_object); |
3190 | } else if (change_wiring) { |
3191 | __VM_PAGE_LOCKSPIN_QUEUES_IF_NEEDED(); |
3192 | |
3193 | if (wired) { |
3194 | if (kr == KERN_SUCCESS) { |
3195 | vm_page_wire(page: m, tag: wire_tag, TRUE); |
3196 | } |
3197 | } else { |
3198 | vm_page_unwire(page: m, TRUE); |
3199 | } |
3200 | /* we keep the page queues lock, if we need it later */ |
3201 | } else { |
3202 | if (object->internal == TRUE) { |
3203 | /* |
3204 | * don't allow anonymous pages on |
3205 | * the speculative queues |
3206 | */ |
3207 | no_cache = FALSE; |
3208 | } |
3209 | if (kr != KERN_SUCCESS) { |
3210 | __VM_PAGE_LOCKSPIN_QUEUES_IF_NEEDED(); |
3211 | vm_page_deactivate(page: m); |
3212 | /* we keep the page queues lock, if we need it later */ |
3213 | } else if (((m->vmp_q_state == VM_PAGE_NOT_ON_Q) || |
3214 | (m->vmp_q_state == VM_PAGE_ON_SPECULATIVE_Q) || |
3215 | (m->vmp_q_state == VM_PAGE_ON_INACTIVE_CLEANED_Q) || |
3216 | ((m->vmp_q_state != VM_PAGE_ON_THROTTLED_Q) && no_cache)) && |
3217 | !VM_PAGE_WIRED(m)) { |
3218 | if (vm_page_local_q && |
3219 | (*type_of_fault == DBG_COW_FAULT || |
3220 | *type_of_fault == DBG_ZERO_FILL_FAULT)) { |
3221 | struct vpl *lq; |
3222 | uint32_t lid; |
3223 | |
3224 | assert(m->vmp_q_state == VM_PAGE_NOT_ON_Q); |
3225 | |
3226 | __VM_PAGE_UNLOCK_QUEUES_IF_NEEDED(); |
3227 | vm_object_lock_assert_exclusive(object); |
3228 | |
3229 | /* |
3230 | * we got a local queue to stuff this |
3231 | * new page on... |
3232 | * its safe to manipulate local and |
3233 | * local_id at this point since we're |
3234 | * behind an exclusive object lock and |
3235 | * the page is not on any global queue. |
3236 | * |
3237 | * we'll use the current cpu number to |
3238 | * select the queue note that we don't |
3239 | * need to disable preemption... we're |
3240 | * going to be behind the local queue's |
3241 | * lock to do the real work |
3242 | */ |
3243 | lid = cpu_number(); |
3244 | |
3245 | lq = zpercpu_get_cpu(vm_page_local_q, lid); |
3246 | |
3247 | VPL_LOCK(&lq->vpl_lock); |
3248 | |
3249 | vm_page_check_pageable_safe(page: m); |
3250 | vm_page_queue_enter(&lq->vpl_queue, m, vmp_pageq); |
3251 | m->vmp_q_state = VM_PAGE_ON_ACTIVE_LOCAL_Q; |
3252 | m->vmp_local_id = lid; |
3253 | lq->vpl_count++; |
3254 | |
3255 | if (object->internal) { |
3256 | lq->vpl_internal_count++; |
3257 | } else { |
3258 | lq->vpl_external_count++; |
3259 | } |
3260 | |
3261 | VPL_UNLOCK(&lq->vpl_lock); |
3262 | |
3263 | if (lq->vpl_count > vm_page_local_q_soft_limit) { |
3264 | /* |
3265 | * we're beyond the soft limit |
3266 | * for the local queue |
3267 | * vm_page_reactivate_local will |
3268 | * 'try' to take the global page |
3269 | * queue lock... if it can't |
3270 | * that's ok... we'll let the |
3271 | * queue continue to grow up |
3272 | * to the hard limit... at that |
3273 | * point we'll wait for the |
3274 | * lock... once we've got the |
3275 | * lock, we'll transfer all of |
3276 | * the pages from the local |
3277 | * queue to the global active |
3278 | * queue |
3279 | */ |
3280 | vm_page_reactivate_local(lid, FALSE, FALSE); |
3281 | } |
3282 | } else { |
3283 | __VM_PAGE_LOCKSPIN_QUEUES_IF_NEEDED(); |
3284 | |
3285 | /* |
3286 | * test again now that we hold the |
3287 | * page queue lock |
3288 | */ |
3289 | if (!VM_PAGE_WIRED(m)) { |
3290 | if (m->vmp_q_state == VM_PAGE_ON_INACTIVE_CLEANED_Q) { |
3291 | vm_page_queues_remove(mem: m, FALSE); |
3292 | |
3293 | VM_PAGEOUT_DEBUG(vm_pageout_cleaned_reactivated, 1); |
3294 | VM_PAGEOUT_DEBUG(vm_pageout_cleaned_fault_reactivated, 1); |
3295 | } |
3296 | |
3297 | if (!VM_PAGE_ACTIVE_OR_INACTIVE(m) || |
3298 | no_cache) { |
3299 | /* |
3300 | * If this is a no_cache mapping |
3301 | * and the page has never been |
3302 | * mapped before or was |
3303 | * previously a no_cache page, |
3304 | * then we want to leave pages |
3305 | * in the speculative state so |
3306 | * that they can be readily |
3307 | * recycled if free memory runs |
3308 | * low. Otherwise the page is |
3309 | * activated as normal. |
3310 | */ |
3311 | |
3312 | if (no_cache && |
3313 | (!previously_pmapped || |
3314 | m->vmp_no_cache)) { |
3315 | m->vmp_no_cache = TRUE; |
3316 | |
3317 | if (m->vmp_q_state != VM_PAGE_ON_SPECULATIVE_Q) { |
3318 | vm_page_speculate(page: m, FALSE); |
3319 | } |
3320 | } else if (!VM_PAGE_ACTIVE_OR_INACTIVE(m)) { |
3321 | vm_page_activate(page: m); |
3322 | } |
3323 | } |
3324 | } |
3325 | /* we keep the page queues lock, if we need it later */ |
3326 | } |
3327 | } |
3328 | } |
3329 | /* we're done with the page queues lock, if we ever took it */ |
3330 | __VM_PAGE_UNLOCK_QUEUES_IF_NEEDED(); |
3331 | } |
3332 | |
3333 | /* |
3334 | * Sets the pmmpped, xpmapped, and wpmapped bits on the vm_page_t and updates accounting. |
3335 | * @return true if the page needs to be sync'ed via pmap_sync-page_data_physo |
3336 | * before being inserted into the pmap. |
3337 | */ |
3338 | static bool |
3339 | vm_fault_enter_set_mapped( |
3340 | vm_object_t object, |
3341 | vm_page_t m, |
3342 | vm_prot_t prot, |
3343 | vm_prot_t fault_type) |
3344 | { |
3345 | bool page_needs_sync = false; |
3346 | /* |
3347 | * NOTE: we may only hold the vm_object lock SHARED |
3348 | * at this point, so we need the phys_page lock to |
3349 | * properly serialize updating the pmapped and |
3350 | * xpmapped bits |
3351 | */ |
3352 | if ((prot & VM_PROT_EXECUTE) && !m->vmp_xpmapped) { |
3353 | ppnum_t phys_page = VM_PAGE_GET_PHYS_PAGE(m); |
3354 | |
3355 | pmap_lock_phys_page(pn: phys_page); |
3356 | m->vmp_pmapped = TRUE; |
3357 | |
3358 | if (!m->vmp_xpmapped) { |
3359 | m->vmp_xpmapped = TRUE; |
3360 | |
3361 | pmap_unlock_phys_page(pn: phys_page); |
3362 | |
3363 | if (!object->internal) { |
3364 | OSAddAtomic(1, &vm_page_xpmapped_external_count); |
3365 | } |
3366 | |
3367 | #if defined(__arm64__) |
3368 | page_needs_sync = true; |
3369 | #else |
3370 | if (object->internal && |
3371 | object->pager != NULL) { |
3372 | /* |
3373 | * This page could have been |
3374 | * uncompressed by the |
3375 | * compressor pager and its |
3376 | * contents might be only in |
3377 | * the data cache. |
3378 | * Since it's being mapped for |
3379 | * "execute" for the fist time, |
3380 | * make sure the icache is in |
3381 | * sync. |
3382 | */ |
3383 | assert(VM_CONFIG_COMPRESSOR_IS_PRESENT); |
3384 | page_needs_sync = true; |
3385 | } |
3386 | #endif |
3387 | } else { |
3388 | pmap_unlock_phys_page(pn: phys_page); |
3389 | } |
3390 | } else { |
3391 | if (m->vmp_pmapped == FALSE) { |
3392 | ppnum_t phys_page = VM_PAGE_GET_PHYS_PAGE(m); |
3393 | |
3394 | pmap_lock_phys_page(pn: phys_page); |
3395 | m->vmp_pmapped = TRUE; |
3396 | pmap_unlock_phys_page(pn: phys_page); |
3397 | } |
3398 | } |
3399 | |
3400 | if (fault_type & VM_PROT_WRITE) { |
3401 | if (m->vmp_wpmapped == FALSE) { |
3402 | vm_object_lock_assert_exclusive(object); |
3403 | if (!object->internal && object->pager) { |
3404 | task_update_logical_writes(task: current_task(), PAGE_SIZE, TASK_WRITE_DEFERRED, vp: vnode_pager_lookup_vnode(object->pager)); |
3405 | } |
3406 | m->vmp_wpmapped = TRUE; |
3407 | } |
3408 | } |
3409 | return page_needs_sync; |
3410 | } |
3411 | |
3412 | /* |
3413 | * wrapper for pmap_enter_options() |
3414 | */ |
3415 | static kern_return_t |
3416 | pmap_enter_options_check( |
3417 | pmap_t pmap, |
3418 | vm_map_address_t virtual_address, |
3419 | vm_map_offset_t fault_phys_offset, |
3420 | vm_page_t page, |
3421 | vm_prot_t protection, |
3422 | vm_prot_t fault_type, |
3423 | unsigned int flags, |
3424 | boolean_t wired, |
3425 | unsigned int options) |
3426 | { |
3427 | int = 0; |
3428 | vm_object_t obj; |
3429 | |
3430 | if (page->vmp_error) { |
3431 | return KERN_MEMORY_FAILURE; |
3432 | } |
3433 | obj = VM_PAGE_OBJECT(page); |
3434 | if (obj->internal) { |
3435 | extra_options |= PMAP_OPTIONS_INTERNAL; |
3436 | } |
3437 | if (page->vmp_reusable || obj->all_reusable) { |
3438 | extra_options |= PMAP_OPTIONS_REUSABLE; |
3439 | } |
3440 | return pmap_enter_options_addr(pmap, |
3441 | v: virtual_address, |
3442 | pa: (pmap_paddr_t)ptoa(VM_PAGE_GET_PHYS_PAGE(page)) + fault_phys_offset, |
3443 | prot: protection, |
3444 | fault_type, |
3445 | flags, |
3446 | wired, |
3447 | options: options | extra_options, |
3448 | NULL, |
3449 | mapping_type: PMAP_MAPPING_TYPE_INFER); |
3450 | } |
3451 | |
3452 | /* |
3453 | * Try to enter the given page into the pmap. |
3454 | * Will retry without execute permission if the code signing monitor is enabled and |
3455 | * we encounter a codesigning failure on a non-execute fault. |
3456 | */ |
3457 | static kern_return_t |
3458 | vm_fault_attempt_pmap_enter( |
3459 | pmap_t pmap, |
3460 | vm_map_offset_t vaddr, |
3461 | vm_map_size_t fault_page_size, |
3462 | vm_map_offset_t fault_phys_offset, |
3463 | vm_page_t m, |
3464 | vm_prot_t *prot, |
3465 | vm_prot_t caller_prot, |
3466 | vm_prot_t fault_type, |
3467 | bool wired, |
3468 | int pmap_options) |
3469 | { |
3470 | #if !CODE_SIGNING_MONITOR |
3471 | #pragma unused(caller_prot) |
3472 | #endif /* !CODE_SIGNING_MONITOR */ |
3473 | |
3474 | kern_return_t kr; |
3475 | if (fault_page_size != PAGE_SIZE) { |
3476 | DEBUG4K_FAULT("pmap %p va 0x%llx pa 0x%llx (0x%llx+0x%llx) prot 0x%x fault_type 0x%x\n" , pmap, (uint64_t)vaddr, (uint64_t)((((pmap_paddr_t)VM_PAGE_GET_PHYS_PAGE(m)) << PAGE_SHIFT) + fault_phys_offset), (uint64_t)(((pmap_paddr_t)VM_PAGE_GET_PHYS_PAGE(m)) << PAGE_SHIFT), (uint64_t)fault_phys_offset, *prot, fault_type); |
3477 | assertf((!(fault_phys_offset & FOURK_PAGE_MASK) && |
3478 | fault_phys_offset < PAGE_SIZE), |
3479 | "0x%llx\n" , (uint64_t)fault_phys_offset); |
3480 | } else { |
3481 | assertf(fault_phys_offset == 0, |
3482 | "0x%llx\n" , (uint64_t)fault_phys_offset); |
3483 | } |
3484 | |
3485 | kr = pmap_enter_options_check(pmap, virtual_address: vaddr, |
3486 | fault_phys_offset, |
3487 | page: m, protection: *prot, fault_type, flags: 0, |
3488 | wired, |
3489 | options: pmap_options); |
3490 | |
3491 | #if CODE_SIGNING_MONITOR |
3492 | /* |
3493 | * Retry without execute permission if we encountered a codesigning |
3494 | * failure on a non-execute fault. This allows applications which |
3495 | * don't actually need to execute code to still map it for read access. |
3496 | */ |
3497 | if (kr == KERN_CODESIGN_ERROR && |
3498 | csm_enabled() && |
3499 | (*prot & VM_PROT_EXECUTE) && |
3500 | !(caller_prot & VM_PROT_EXECUTE)) { |
3501 | *prot &= ~VM_PROT_EXECUTE; |
3502 | kr = pmap_enter_options_check(pmap, vaddr, |
3503 | fault_phys_offset, |
3504 | m, *prot, fault_type, 0, |
3505 | wired, |
3506 | pmap_options); |
3507 | } |
3508 | #endif /* CODE_SIGNING_MONITOR */ |
3509 | |
3510 | return kr; |
3511 | } |
3512 | |
3513 | /* |
3514 | * Enter the given page into the pmap. |
3515 | * The map must be locked shared. |
3516 | * The vm object must NOT be locked. |
3517 | * |
3518 | * @param need_retry if not null, avoid making a (potentially) blocking call into |
3519 | * the pmap layer. When such a call would be necessary, return true in this boolean instead. |
3520 | */ |
3521 | static kern_return_t |
3522 | vm_fault_pmap_enter( |
3523 | pmap_t pmap, |
3524 | vm_map_offset_t vaddr, |
3525 | vm_map_size_t fault_page_size, |
3526 | vm_map_offset_t fault_phys_offset, |
3527 | vm_page_t m, |
3528 | vm_prot_t *prot, |
3529 | vm_prot_t caller_prot, |
3530 | vm_prot_t fault_type, |
3531 | bool wired, |
3532 | int pmap_options, |
3533 | boolean_t *need_retry) |
3534 | { |
3535 | kern_return_t kr; |
3536 | if (need_retry != NULL) { |
3537 | /* |
3538 | * Although we don't hold a lock on this object, we hold a lock |
3539 | * on the top object in the chain. To prevent a deadlock, we |
3540 | * can't allow the pmap layer to block. |
3541 | */ |
3542 | pmap_options |= PMAP_OPTIONS_NOWAIT; |
3543 | } |
3544 | kr = vm_fault_attempt_pmap_enter(pmap, vaddr, |
3545 | fault_page_size, fault_phys_offset, |
3546 | m, prot, caller_prot, fault_type, wired, pmap_options); |
3547 | if (kr == KERN_RESOURCE_SHORTAGE) { |
3548 | if (need_retry) { |
3549 | /* |
3550 | * There's nothing we can do here since we hold the |
3551 | * lock on the top object in the chain. The caller |
3552 | * will need to deal with this by dropping that lock and retrying. |
3553 | */ |
3554 | *need_retry = TRUE; |
3555 | vm_pmap_enter_retried++; |
3556 | } |
3557 | } |
3558 | return kr; |
3559 | } |
3560 | |
3561 | /* |
3562 | * Enter the given page into the pmap. |
3563 | * The vm map must be locked shared. |
3564 | * The vm object must be locked exclusive, unless this is a soft fault. |
3565 | * For a soft fault, the object must be locked shared or exclusive. |
3566 | * |
3567 | * @param need_retry if not null, avoid making a (potentially) blocking call into |
3568 | * the pmap layer. When such a call would be necessary, return true in this boolean instead. |
3569 | */ |
3570 | static kern_return_t |
3571 | vm_fault_pmap_enter_with_object_lock( |
3572 | vm_object_t object, |
3573 | pmap_t pmap, |
3574 | vm_map_offset_t vaddr, |
3575 | vm_map_size_t fault_page_size, |
3576 | vm_map_offset_t fault_phys_offset, |
3577 | vm_page_t m, |
3578 | vm_prot_t *prot, |
3579 | vm_prot_t caller_prot, |
3580 | vm_prot_t fault_type, |
3581 | bool wired, |
3582 | int pmap_options, |
3583 | boolean_t *need_retry, |
3584 | uint8_t *object_lock_type) |
3585 | { |
3586 | kern_return_t kr; |
3587 | /* |
3588 | * Prevent a deadlock by not |
3589 | * holding the object lock if we need to wait for a page in |
3590 | * pmap_enter() - <rdar://problem/7138958> |
3591 | */ |
3592 | kr = vm_fault_attempt_pmap_enter(pmap, vaddr, |
3593 | fault_page_size, fault_phys_offset, |
3594 | m, prot, caller_prot, fault_type, wired, pmap_options: pmap_options | PMAP_OPTIONS_NOWAIT); |
3595 | #if __x86_64__ |
3596 | if (kr == KERN_INVALID_ARGUMENT && |
3597 | pmap == PMAP_NULL && |
3598 | wired) { |
3599 | /* |
3600 | * Wiring a page in a pmap-less VM map: |
3601 | * VMware's "vmmon" kernel extension does this |
3602 | * to grab pages. |
3603 | * Let it proceed even though the PMAP_ENTER() failed. |
3604 | */ |
3605 | kr = KERN_SUCCESS; |
3606 | } |
3607 | #endif /* __x86_64__ */ |
3608 | |
3609 | if (kr == KERN_RESOURCE_SHORTAGE) { |
3610 | if (need_retry) { |
3611 | /* |
3612 | * this will be non-null in the case where we hold the lock |
3613 | * on the top-object in this chain... we can't just drop |
3614 | * the lock on the object we're inserting the page into |
3615 | * and recall the PMAP_ENTER since we can still cause |
3616 | * a deadlock if one of the critical paths tries to |
3617 | * acquire the lock on the top-object and we're blocked |
3618 | * in PMAP_ENTER waiting for memory... our only recourse |
3619 | * is to deal with it at a higher level where we can |
3620 | * drop both locks. |
3621 | */ |
3622 | *need_retry = TRUE; |
3623 | vm_pmap_enter_retried++; |
3624 | goto done; |
3625 | } |
3626 | /* |
3627 | * The nonblocking version of pmap_enter did not succeed. |
3628 | * and we don't need to drop other locks and retry |
3629 | * at the level above us, so |
3630 | * use the blocking version instead. Requires marking |
3631 | * the page busy and unlocking the object |
3632 | */ |
3633 | boolean_t was_busy = m->vmp_busy; |
3634 | |
3635 | vm_object_lock_assert_exclusive(object); |
3636 | |
3637 | m->vmp_busy = TRUE; |
3638 | vm_object_unlock(object); |
3639 | |
3640 | kr = pmap_enter_options_check(pmap, virtual_address: vaddr, |
3641 | fault_phys_offset, |
3642 | page: m, protection: *prot, fault_type, |
3643 | flags: 0, wired, |
3644 | options: pmap_options); |
3645 | |
3646 | assert(VM_PAGE_OBJECT(m) == object); |
3647 | |
3648 | /* Take the object lock again. */ |
3649 | vm_object_lock(object); |
3650 | |
3651 | /* If the page was busy, someone else will wake it up. |
3652 | * Otherwise, we have to do it now. */ |
3653 | assert(m->vmp_busy); |
3654 | if (!was_busy) { |
3655 | PAGE_WAKEUP_DONE(m); |
3656 | } |
3657 | vm_pmap_enter_blocked++; |
3658 | } |
3659 | |
3660 | #if CONFIG_TRACK_UNMODIFIED_ANON_PAGES |
3661 | if ((*prot & VM_PROT_WRITE) && m->vmp_unmodified_ro) { |
3662 | if (*object_lock_type == OBJECT_LOCK_SHARED) { |
3663 | boolean_t was_busy = m->vmp_busy; |
3664 | m->vmp_busy = TRUE; |
3665 | |
3666 | *object_lock_type = OBJECT_LOCK_EXCLUSIVE; |
3667 | |
3668 | if (vm_object_lock_upgrade(object) == FALSE) { |
3669 | vm_object_lock(object); |
3670 | } |
3671 | |
3672 | if (!was_busy) { |
3673 | PAGE_WAKEUP_DONE(m); |
3674 | } |
3675 | } |
3676 | vm_object_lock_assert_exclusive(object); |
3677 | vm_page_lockspin_queues(); |
3678 | m->vmp_unmodified_ro = false; |
3679 | vm_page_unlock_queues(); |
3680 | os_atomic_dec(&compressor_ro_uncompressed, relaxed); |
3681 | |
3682 | VM_COMPRESSOR_PAGER_STATE_CLR(VM_PAGE_OBJECT(m), m->vmp_offset); |
3683 | } |
3684 | #else /* CONFIG_TRACK_UNMODIFIED_ANON_PAGES */ |
3685 | #pragma unused(object_lock_type) |
3686 | #endif /* CONFIG_TRACK_UNMODIFIED_ANON_PAGES */ |
3687 | |
3688 | done: |
3689 | return kr; |
3690 | } |
3691 | |
3692 | /* |
3693 | * Prepare to enter a page into the pmap by checking CS, protection bits, |
3694 | * and setting mapped bits on the page_t. |
3695 | * Does not modify the page's paging queue. |
3696 | * |
3697 | * page queue lock must NOT be held |
3698 | * m->vmp_object must be locked |
3699 | * |
3700 | * NOTE: m->vmp_object could be locked "shared" only if we are called |
3701 | * from vm_fault() as part of a soft fault. |
3702 | */ |
3703 | static kern_return_t |
3704 | vm_fault_enter_prepare( |
3705 | vm_page_t m, |
3706 | pmap_t pmap, |
3707 | vm_map_offset_t vaddr, |
3708 | vm_prot_t *prot, |
3709 | vm_prot_t caller_prot, |
3710 | vm_map_size_t fault_page_size, |
3711 | vm_map_offset_t fault_phys_offset, |
3712 | boolean_t change_wiring, |
3713 | vm_prot_t fault_type, |
3714 | vm_object_fault_info_t fault_info, |
3715 | int *type_of_fault, |
3716 | bool *page_needs_data_sync) |
3717 | { |
3718 | kern_return_t kr; |
3719 | bool is_tainted = false; |
3720 | vm_object_t object; |
3721 | boolean_t cs_bypass = fault_info->cs_bypass; |
3722 | |
3723 | object = VM_PAGE_OBJECT(m); |
3724 | |
3725 | vm_object_lock_assert_held(object); |
3726 | |
3727 | #if KASAN |
3728 | if (pmap == kernel_pmap) { |
3729 | kasan_notify_address(vaddr, PAGE_SIZE); |
3730 | } |
3731 | #endif |
3732 | |
3733 | #if CODE_SIGNING_MONITOR |
3734 | if (csm_address_space_exempt(pmap) == KERN_SUCCESS) { |
3735 | cs_bypass = TRUE; |
3736 | } |
3737 | #endif |
3738 | |
3739 | LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_NOTOWNED); |
3740 | |
3741 | if (*type_of_fault == DBG_ZERO_FILL_FAULT) { |
3742 | vm_object_lock_assert_exclusive(object); |
3743 | } else if ((fault_type & VM_PROT_WRITE) == 0 && |
3744 | !change_wiring && |
3745 | (!m->vmp_wpmapped |
3746 | #if VM_OBJECT_ACCESS_TRACKING |
3747 | || object->access_tracking |
3748 | #endif /* VM_OBJECT_ACCESS_TRACKING */ |
3749 | )) { |
3750 | /* |
3751 | * This is not a "write" fault, so we |
3752 | * might not have taken the object lock |
3753 | * exclusively and we might not be able |
3754 | * to update the "wpmapped" bit in |
3755 | * vm_fault_enter(). |
3756 | * Let's just grant read access to |
3757 | * the page for now and we'll |
3758 | * soft-fault again if we need write |
3759 | * access later... |
3760 | */ |
3761 | |
3762 | /* This had better not be a JIT page. */ |
3763 | if (pmap_has_prot_policy(pmap, translated_allow_execute: fault_info->pmap_options & PMAP_OPTIONS_TRANSLATED_ALLOW_EXECUTE, prot: *prot)) { |
3764 | /* |
3765 | * This pmap enforces extra constraints for this set of |
3766 | * protections, so we can't modify them. |
3767 | */ |
3768 | if (!cs_bypass) { |
3769 | panic("%s: pmap %p vaddr 0x%llx prot 0x%x options 0x%x !cs_bypass" , |
3770 | __FUNCTION__, pmap, (uint64_t)vaddr, |
3771 | *prot, fault_info->pmap_options); |
3772 | } |
3773 | } else { |
3774 | *prot &= ~VM_PROT_WRITE; |
3775 | } |
3776 | } |
3777 | if (m->vmp_pmapped == FALSE) { |
3778 | if (m->vmp_clustered) { |
3779 | if (*type_of_fault == DBG_CACHE_HIT_FAULT) { |
3780 | /* |
3781 | * found it in the cache, but this |
3782 | * is the first fault-in of the page (m->vmp_pmapped == FALSE) |
3783 | * so it must have come in as part of |
3784 | * a cluster... account 1 pagein against it |
3785 | */ |
3786 | if (object->internal) { |
3787 | *type_of_fault = DBG_PAGEIND_FAULT; |
3788 | } else { |
3789 | *type_of_fault = DBG_PAGEINV_FAULT; |
3790 | } |
3791 | |
3792 | VM_PAGE_COUNT_AS_PAGEIN(m); |
3793 | } |
3794 | VM_PAGE_CONSUME_CLUSTERED(m); |
3795 | } |
3796 | } |
3797 | |
3798 | if (*type_of_fault != DBG_COW_FAULT) { |
3799 | DTRACE_VM2(as_fault, int, 1, (uint64_t *), NULL); |
3800 | |
3801 | if (pmap == kernel_pmap) { |
3802 | DTRACE_VM2(kernel_asflt, int, 1, (uint64_t *), NULL); |
3803 | } |
3804 | } |
3805 | |
3806 | kr = vm_fault_validate_cs(cs_bypass, object, m, pmap, vaddr, |
3807 | prot: *prot, caller_prot, fault_page_size, fault_phys_offset, |
3808 | fault_info, must_disconnect: &is_tainted); |
3809 | if (kr == KERN_SUCCESS) { |
3810 | /* |
3811 | * We either have a good page, or a tainted page that has been accepted by the process. |
3812 | * In both cases the page will be entered into the pmap. |
3813 | */ |
3814 | *page_needs_data_sync = vm_fault_enter_set_mapped(object, m, prot: *prot, fault_type); |
3815 | if ((fault_type & VM_PROT_WRITE) && is_tainted) { |
3816 | /* |
3817 | * This page is tainted but we're inserting it anyways. |
3818 | * Since it's writeable, we need to disconnect it from other pmaps |
3819 | * now so those processes can take note. |
3820 | */ |
3821 | |
3822 | /* |
3823 | * We can only get here |
3824 | * because of the CSE logic |
3825 | */ |
3826 | assert(pmap_get_vm_map_cs_enforced(pmap)); |
3827 | pmap_disconnect(phys: VM_PAGE_GET_PHYS_PAGE(m)); |
3828 | /* |
3829 | * If we are faulting for a write, we can clear |
3830 | * the execute bit - that will ensure the page is |
3831 | * checked again before being executable, which |
3832 | * protects against a map switch. |
3833 | * This only happens the first time the page |
3834 | * gets tainted, so we won't get stuck here |
3835 | * to make an already writeable page executable. |
3836 | */ |
3837 | if (!cs_bypass) { |
3838 | if (pmap_has_prot_policy(pmap, translated_allow_execute: fault_info->pmap_options & PMAP_OPTIONS_TRANSLATED_ALLOW_EXECUTE, prot: *prot)) { |
3839 | /* |
3840 | * This pmap enforces extra constraints |
3841 | * for this set of protections, so we |
3842 | * can't change the protections. |
3843 | */ |
3844 | panic("%s: pmap %p vaddr 0x%llx prot 0x%x options 0x%x" , |
3845 | __FUNCTION__, pmap, |
3846 | (uint64_t)vaddr, *prot, |
3847 | fault_info->pmap_options); |
3848 | } |
3849 | *prot &= ~VM_PROT_EXECUTE; |
3850 | } |
3851 | } |
3852 | assert(VM_PAGE_OBJECT(m) == object); |
3853 | |
3854 | #if VM_OBJECT_ACCESS_TRACKING |
3855 | if (object->access_tracking) { |
3856 | DTRACE_VM2(access_tracking, vm_map_offset_t, vaddr, int, fault_type); |
3857 | if (fault_type & VM_PROT_WRITE) { |
3858 | object->access_tracking_writes++; |
3859 | vm_object_access_tracking_writes++; |
3860 | } else { |
3861 | object->access_tracking_reads++; |
3862 | vm_object_access_tracking_reads++; |
3863 | } |
3864 | } |
3865 | #endif /* VM_OBJECT_ACCESS_TRACKING */ |
3866 | } |
3867 | |
3868 | return kr; |
3869 | } |
3870 | |
3871 | /* |
3872 | * page queue lock must NOT be held |
3873 | * m->vmp_object must be locked |
3874 | * |
3875 | * NOTE: m->vmp_object could be locked "shared" only if we are called |
3876 | * from vm_fault() as part of a soft fault. If so, we must be |
3877 | * careful not to modify the VM object in any way that is not |
3878 | * legal under a shared lock... |
3879 | */ |
3880 | kern_return_t |
3881 | vm_fault_enter( |
3882 | vm_page_t m, |
3883 | pmap_t pmap, |
3884 | vm_map_offset_t vaddr, |
3885 | vm_map_size_t fault_page_size, |
3886 | vm_map_offset_t fault_phys_offset, |
3887 | vm_prot_t prot, |
3888 | vm_prot_t caller_prot, |
3889 | boolean_t wired, |
3890 | boolean_t change_wiring, |
3891 | vm_tag_t wire_tag, |
3892 | vm_object_fault_info_t fault_info, |
3893 | boolean_t *need_retry, |
3894 | int *type_of_fault, |
3895 | uint8_t *object_lock_type) |
3896 | { |
3897 | kern_return_t kr; |
3898 | vm_object_t object; |
3899 | bool page_needs_data_sync; |
3900 | vm_prot_t fault_type; |
3901 | int pmap_options = fault_info->pmap_options; |
3902 | |
3903 | if (VM_PAGE_GET_PHYS_PAGE(m) == vm_page_guard_addr) { |
3904 | assert(m->vmp_fictitious); |
3905 | return KERN_SUCCESS; |
3906 | } |
3907 | |
3908 | fault_type = change_wiring ? VM_PROT_NONE : caller_prot; |
3909 | |
3910 | assertf(VM_PAGE_OBJECT(m) != VM_OBJECT_NULL, "m=%p" , m); |
3911 | kr = vm_fault_enter_prepare(m, pmap, vaddr, prot: &prot, caller_prot, |
3912 | fault_page_size, fault_phys_offset, change_wiring, fault_type, |
3913 | fault_info, type_of_fault, page_needs_data_sync: &page_needs_data_sync); |
3914 | object = VM_PAGE_OBJECT(m); |
3915 | |
3916 | vm_fault_enqueue_page(object, m, wired, change_wiring, wire_tag, no_cache: fault_info->no_cache, type_of_fault, kr); |
3917 | |
3918 | if (kr == KERN_SUCCESS) { |
3919 | if (page_needs_data_sync) { |
3920 | pmap_sync_page_data_phys(pa: VM_PAGE_GET_PHYS_PAGE(m)); |
3921 | } |
3922 | |
3923 | if (fault_info->fi_xnu_user_debug && !object->code_signed) { |
3924 | pmap_options |= PMAP_OPTIONS_XNU_USER_DEBUG; |
3925 | } |
3926 | |
3927 | |
3928 | kr = vm_fault_pmap_enter_with_object_lock(object, pmap, vaddr, |
3929 | fault_page_size, fault_phys_offset, m, |
3930 | prot: &prot, caller_prot, fault_type, wired, pmap_options, need_retry, object_lock_type); |
3931 | } |
3932 | |
3933 | return kr; |
3934 | } |
3935 | |
3936 | void |
3937 | vm_pre_fault(vm_map_offset_t vaddr, vm_prot_t prot) |
3938 | { |
3939 | if (pmap_find_phys(current_map()->pmap, va: vaddr) == 0) { |
3940 | vm_fault(current_map(), /* map */ |
3941 | vaddr, /* vaddr */ |
3942 | fault_type: prot, /* fault_type */ |
3943 | FALSE, /* change_wiring */ |
3944 | VM_KERN_MEMORY_NONE, /* tag - not wiring */ |
3945 | THREAD_UNINT, /* interruptible */ |
3946 | NULL, /* caller_pmap */ |
3947 | pmap_addr: 0 /* caller_pmap_addr */); |
3948 | } |
3949 | } |
3950 | |
3951 | |
3952 | /* |
3953 | * Routine: vm_fault |
3954 | * Purpose: |
3955 | * Handle page faults, including pseudo-faults |
3956 | * used to change the wiring status of pages. |
3957 | * Returns: |
3958 | * Explicit continuations have been removed. |
3959 | * Implementation: |
3960 | * vm_fault and vm_fault_page save mucho state |
3961 | * in the moral equivalent of a closure. The state |
3962 | * structure is allocated when first entering vm_fault |
3963 | * and deallocated when leaving vm_fault. |
3964 | */ |
3965 | |
3966 | extern uint64_t get_current_unique_pid(void); |
3967 | |
3968 | unsigned long vm_fault_collapse_total = 0; |
3969 | unsigned long vm_fault_collapse_skipped = 0; |
3970 | |
3971 | |
3972 | kern_return_t |
3973 | vm_fault_external( |
3974 | vm_map_t map, |
3975 | vm_map_offset_t vaddr, |
3976 | vm_prot_t fault_type, |
3977 | boolean_t change_wiring, |
3978 | int interruptible, |
3979 | pmap_t caller_pmap, |
3980 | vm_map_offset_t caller_pmap_addr) |
3981 | { |
3982 | return vm_fault_internal(map, vaddr, caller_prot: fault_type, change_wiring, |
3983 | wire_tag: change_wiring ? vm_tag_bt() : VM_KERN_MEMORY_NONE, |
3984 | interruptible, pmap: caller_pmap, pmap_addr: caller_pmap_addr, |
3985 | NULL); |
3986 | } |
3987 | |
3988 | kern_return_t |
3989 | vm_fault( |
3990 | vm_map_t map, |
3991 | vm_map_offset_t vaddr, |
3992 | vm_prot_t fault_type, |
3993 | boolean_t change_wiring, |
3994 | vm_tag_t wire_tag, /* if wiring must pass tag != VM_KERN_MEMORY_NONE */ |
3995 | int interruptible, |
3996 | pmap_t caller_pmap, |
3997 | vm_map_offset_t caller_pmap_addr) |
3998 | { |
3999 | return vm_fault_internal(map, vaddr, caller_prot: fault_type, change_wiring, wire_tag, |
4000 | interruptible, pmap: caller_pmap, pmap_addr: caller_pmap_addr, |
4001 | NULL); |
4002 | } |
4003 | |
4004 | static boolean_t |
4005 | current_proc_is_privileged(void) |
4006 | { |
4007 | return csproc_get_platform_binary(current_proc()); |
4008 | } |
4009 | |
4010 | uint64_t vm_copied_on_read = 0; |
4011 | |
4012 | /* |
4013 | * Cleanup after a vm_fault_enter. |
4014 | * At this point, the fault should either have failed (kr != KERN_SUCCESS) |
4015 | * or the page should be in the pmap and on the correct paging queue. |
4016 | * |
4017 | * Precondition: |
4018 | * map must be locked shared. |
4019 | * m_object must be locked. |
4020 | * If top_object != VM_OBJECT_NULL, it must be locked. |
4021 | * real_map must be locked. |
4022 | * |
4023 | * Postcondition: |
4024 | * map will be unlocked |
4025 | * m_object will be unlocked |
4026 | * top_object will be unlocked |
4027 | * If real_map != map, it will be unlocked |
4028 | */ |
4029 | static void |
4030 | vm_fault_complete( |
4031 | vm_map_t map, |
4032 | vm_map_t real_map, |
4033 | vm_object_t object, |
4034 | vm_object_t m_object, |
4035 | vm_page_t m, |
4036 | vm_map_offset_t offset, |
4037 | vm_map_offset_t trace_real_vaddr, |
4038 | vm_object_fault_info_t fault_info, |
4039 | vm_prot_t caller_prot, |
4040 | #if CONFIG_DTRACE |
4041 | vm_map_offset_t real_vaddr, |
4042 | #else |
4043 | __unused vm_map_offset_t real_vaddr, |
4044 | #endif /* CONFIG_DTRACE */ |
4045 | int type_of_fault, |
4046 | boolean_t need_retry, |
4047 | kern_return_t kr, |
4048 | ppnum_t *physpage_p, |
4049 | vm_prot_t prot, |
4050 | vm_object_t top_object, |
4051 | boolean_t need_collapse, |
4052 | vm_map_offset_t cur_offset, |
4053 | vm_prot_t fault_type, |
4054 | vm_object_t *written_on_object, |
4055 | memory_object_t *, |
4056 | vm_object_offset_t *written_on_offset) |
4057 | { |
4058 | int event_code = 0; |
4059 | vm_map_lock_assert_shared(map); |
4060 | vm_object_lock_assert_held(m_object); |
4061 | if (top_object != VM_OBJECT_NULL) { |
4062 | vm_object_lock_assert_held(top_object); |
4063 | } |
4064 | vm_map_lock_assert_held(real_map); |
4065 | |
4066 | if (m_object->internal) { |
4067 | event_code = (MACHDBG_CODE(DBG_MACH_WORKINGSET, VM_REAL_FAULT_ADDR_INTERNAL)); |
4068 | } else if (m_object->object_is_shared_cache) { |
4069 | event_code = (MACHDBG_CODE(DBG_MACH_WORKINGSET, VM_REAL_FAULT_ADDR_SHAREDCACHE)); |
4070 | } else { |
4071 | event_code = (MACHDBG_CODE(DBG_MACH_WORKINGSET, VM_REAL_FAULT_ADDR_EXTERNAL)); |
4072 | } |
4073 | KDBG_RELEASE(event_code | DBG_FUNC_NONE, trace_real_vaddr, (fault_info->user_tag << 16) | (caller_prot << 8) | type_of_fault, m->vmp_offset, get_current_unique_pid()); |
4074 | if (need_retry == FALSE) { |
4075 | KDBG_FILTERED(MACHDBG_CODE(DBG_MACH_WORKINGSET, VM_REAL_FAULT_FAST), get_current_unique_pid()); |
4076 | } |
4077 | DTRACE_VM6(real_fault, vm_map_offset_t, real_vaddr, vm_map_offset_t, m->vmp_offset, int, event_code, int, caller_prot, int, type_of_fault, int, fault_info->user_tag); |
4078 | if (kr == KERN_SUCCESS && |
4079 | physpage_p != NULL) { |
4080 | /* for vm_map_wire_and_extract() */ |
4081 | *physpage_p = VM_PAGE_GET_PHYS_PAGE(m); |
4082 | if (prot & VM_PROT_WRITE) { |
4083 | vm_object_lock_assert_exclusive(m_object); |
4084 | m->vmp_dirty = TRUE; |
4085 | } |
4086 | } |
4087 | |
4088 | if (top_object != VM_OBJECT_NULL) { |
4089 | /* |
4090 | * It's safe to drop the top object |
4091 | * now that we've done our |
4092 | * vm_fault_enter(). Any other fault |
4093 | * in progress for that virtual |
4094 | * address will either find our page |
4095 | * and translation or put in a new page |
4096 | * and translation. |
4097 | */ |
4098 | vm_object_unlock(top_object); |
4099 | top_object = VM_OBJECT_NULL; |
4100 | } |
4101 | |
4102 | if (need_collapse == TRUE) { |
4103 | vm_object_collapse(object, vm_object_trunc_page(offset), TRUE); |
4104 | } |
4105 | |
4106 | if (need_retry == FALSE && |
4107 | (type_of_fault == DBG_PAGEIND_FAULT || type_of_fault == DBG_PAGEINV_FAULT || type_of_fault == DBG_CACHE_HIT_FAULT)) { |
4108 | /* |
4109 | * evaluate access pattern and update state |
4110 | * vm_fault_deactivate_behind depends on the |
4111 | * state being up to date |
4112 | */ |
4113 | vm_fault_is_sequential(object: m_object, offset: cur_offset, behavior: fault_info->behavior); |
4114 | |
4115 | vm_fault_deactivate_behind(object: m_object, offset: cur_offset, behavior: fault_info->behavior); |
4116 | } |
4117 | /* |
4118 | * That's it, clean up and return. |
4119 | */ |
4120 | if (m->vmp_busy) { |
4121 | vm_object_lock_assert_exclusive(m_object); |
4122 | PAGE_WAKEUP_DONE(m); |
4123 | } |
4124 | |
4125 | if (need_retry == FALSE && !m_object->internal && (fault_type & VM_PROT_WRITE)) { |
4126 | vm_object_paging_begin(m_object); |
4127 | |
4128 | assert(*written_on_object == VM_OBJECT_NULL); |
4129 | *written_on_object = m_object; |
4130 | *written_on_pager = m_object->pager; |
4131 | *written_on_offset = m_object->paging_offset + m->vmp_offset; |
4132 | } |
4133 | vm_object_unlock(object); |
4134 | |
4135 | vm_map_unlock_read(map); |
4136 | if (real_map != map) { |
4137 | vm_map_unlock(real_map); |
4138 | } |
4139 | } |
4140 | |
4141 | static inline int |
4142 | vm_fault_type_for_tracing(boolean_t need_copy_on_read, int type_of_fault) |
4143 | { |
4144 | if (need_copy_on_read && type_of_fault == DBG_COW_FAULT) { |
4145 | return DBG_COR_FAULT; |
4146 | } |
4147 | return type_of_fault; |
4148 | } |
4149 | |
4150 | uint64_t vm_fault_resilient_media_initiate = 0; |
4151 | uint64_t vm_fault_resilient_media_retry = 0; |
4152 | uint64_t vm_fault_resilient_media_proceed = 0; |
4153 | uint64_t vm_fault_resilient_media_release = 0; |
4154 | uint64_t vm_fault_resilient_media_abort1 = 0; |
4155 | uint64_t vm_fault_resilient_media_abort2 = 0; |
4156 | |
4157 | #if MACH_ASSERT |
4158 | int vm_fault_resilient_media_inject_error1_rate = 0; |
4159 | int vm_fault_resilient_media_inject_error1 = 0; |
4160 | int vm_fault_resilient_media_inject_error2_rate = 0; |
4161 | int vm_fault_resilient_media_inject_error2 = 0; |
4162 | int vm_fault_resilient_media_inject_error3_rate = 0; |
4163 | int vm_fault_resilient_media_inject_error3 = 0; |
4164 | #endif /* MACH_ASSERT */ |
4165 | |
4166 | kern_return_t |
4167 | vm_fault_internal( |
4168 | vm_map_t map, |
4169 | vm_map_offset_t vaddr, |
4170 | vm_prot_t caller_prot, |
4171 | boolean_t change_wiring, |
4172 | vm_tag_t wire_tag, /* if wiring must pass tag != VM_KERN_MEMORY_NONE */ |
4173 | int interruptible, |
4174 | pmap_t caller_pmap, |
4175 | vm_map_offset_t caller_pmap_addr, |
4176 | ppnum_t *physpage_p) |
4177 | { |
4178 | vm_map_version_t version; /* Map version for verificiation */ |
4179 | boolean_t wired; /* Should mapping be wired down? */ |
4180 | vm_object_t object; /* Top-level object */ |
4181 | vm_object_offset_t offset; /* Top-level offset */ |
4182 | vm_prot_t prot; /* Protection for mapping */ |
4183 | vm_object_t old_copy_object; /* Saved copy object */ |
4184 | uint32_t old_copy_version; |
4185 | vm_page_t result_page; /* Result of vm_fault_page */ |
4186 | vm_page_t top_page; /* Placeholder page */ |
4187 | kern_return_t kr; |
4188 | |
4189 | vm_page_t m; /* Fast access to result_page */ |
4190 | kern_return_t error_code; |
4191 | vm_object_t cur_object; |
4192 | vm_object_t m_object = NULL; |
4193 | vm_object_offset_t cur_offset; |
4194 | vm_page_t cur_m; |
4195 | vm_object_t new_object; |
4196 | int type_of_fault; |
4197 | pmap_t pmap; |
4198 | wait_interrupt_t interruptible_state; |
4199 | vm_map_t real_map = map; |
4200 | vm_map_t original_map = map; |
4201 | bool object_locks_dropped = FALSE; |
4202 | vm_prot_t fault_type; |
4203 | vm_prot_t original_fault_type; |
4204 | struct vm_object_fault_info fault_info = {}; |
4205 | bool need_collapse = FALSE; |
4206 | boolean_t need_retry = FALSE; |
4207 | boolean_t *need_retry_ptr = NULL; |
4208 | uint8_t object_lock_type = 0; |
4209 | uint8_t cur_object_lock_type; |
4210 | vm_object_t top_object = VM_OBJECT_NULL; |
4211 | vm_object_t written_on_object = VM_OBJECT_NULL; |
4212 | memory_object_t = NULL; |
4213 | vm_object_offset_t written_on_offset = 0; |
4214 | int throttle_delay; |
4215 | int compressed_count_delta; |
4216 | uint8_t grab_options; |
4217 | bool need_copy; |
4218 | bool need_copy_on_read; |
4219 | vm_map_offset_t trace_vaddr; |
4220 | vm_map_offset_t trace_real_vaddr; |
4221 | vm_map_size_t fault_page_size; |
4222 | vm_map_size_t fault_page_mask; |
4223 | int fault_page_shift; |
4224 | vm_map_offset_t fault_phys_offset; |
4225 | vm_map_offset_t real_vaddr; |
4226 | bool resilient_media_retry = false; |
4227 | bool resilient_media_ref_transfer = false; |
4228 | vm_object_t resilient_media_object = VM_OBJECT_NULL; |
4229 | vm_object_offset_t resilient_media_offset = (vm_object_offset_t)-1; |
4230 | bool page_needs_data_sync = false; |
4231 | /* |
4232 | * Was the VM object contended when vm_map_lookup_and_lock_object locked it? |
4233 | * If so, the zero fill path will drop the lock |
4234 | * NB: Ideally we would always drop the lock rather than rely on |
4235 | * this heuristic, but vm_object_unlock currently takes > 30 cycles. |
4236 | */ |
4237 | bool object_is_contended = false; |
4238 | |
4239 | |
4240 | real_vaddr = vaddr; |
4241 | trace_real_vaddr = vaddr; |
4242 | |
4243 | /* |
4244 | * Some (kernel) submaps are marked with "should never fault". |
4245 | * |
4246 | * We do this for two reasons: |
4247 | * - PGZ which is inside the zone map range can't go down the normal |
4248 | * lookup path (vm_map_lookup_entry() would panic). |
4249 | * |
4250 | * - we want for guard pages to not have to use fictitious pages at all |
4251 | * to prevent from ZFOD pages to be made. |
4252 | * |
4253 | * We also want capture the fault address easily so that the zone |
4254 | * allocator might present an enhanced panic log. |
4255 | */ |
4256 | if (map->never_faults || (pgz_owned(vaddr) && map->pmap == kernel_pmap)) { |
4257 | assert(map->pmap == kernel_pmap); |
4258 | return KERN_INVALID_ADDRESS; |
4259 | } |
4260 | |
4261 | if (VM_MAP_PAGE_SIZE(original_map) < PAGE_SIZE) { |
4262 | fault_phys_offset = (vm_map_offset_t)-1; |
4263 | fault_page_size = VM_MAP_PAGE_SIZE(original_map); |
4264 | fault_page_mask = VM_MAP_PAGE_MASK(original_map); |
4265 | fault_page_shift = VM_MAP_PAGE_SHIFT(map: original_map); |
4266 | if (fault_page_size < PAGE_SIZE) { |
4267 | DEBUG4K_FAULT("map %p vaddr 0x%llx caller_prot 0x%x\n" , map, (uint64_t)trace_real_vaddr, caller_prot); |
4268 | vaddr = vm_map_trunc_page(vaddr, fault_page_mask); |
4269 | } |
4270 | } else { |
4271 | fault_phys_offset = 0; |
4272 | fault_page_size = PAGE_SIZE; |
4273 | fault_page_mask = PAGE_MASK; |
4274 | fault_page_shift = PAGE_SHIFT; |
4275 | vaddr = vm_map_trunc_page(vaddr, PAGE_MASK); |
4276 | } |
4277 | |
4278 | if (map == kernel_map) { |
4279 | trace_vaddr = VM_KERNEL_ADDRHIDE(vaddr); |
4280 | trace_real_vaddr = VM_KERNEL_ADDRHIDE(trace_real_vaddr); |
4281 | } else { |
4282 | trace_vaddr = vaddr; |
4283 | } |
4284 | |
4285 | KDBG_RELEASE( |
4286 | (MACHDBG_CODE(DBG_MACH_VM, 2)) | DBG_FUNC_START, |
4287 | ((uint64_t)trace_vaddr >> 32), |
4288 | trace_vaddr, |
4289 | (map == kernel_map)); |
4290 | |
4291 | if (get_preemption_level() != 0) { |
4292 | KDBG_RELEASE( |
4293 | (MACHDBG_CODE(DBG_MACH_VM, 2)) | DBG_FUNC_END, |
4294 | ((uint64_t)trace_vaddr >> 32), |
4295 | trace_vaddr, |
4296 | KERN_FAILURE); |
4297 | |
4298 | ktriage_record(thread_id: thread_tid(thread: current_thread()), KDBG_TRIAGE_EVENTID(KDBG_TRIAGE_SUBSYS_VM, KDBG_TRIAGE_RESERVED, KDBG_TRIAGE_VM_NONZERO_PREEMPTION_LEVEL), arg: 0 /* arg */); |
4299 | return KERN_FAILURE; |
4300 | } |
4301 | |
4302 | thread_t cthread = current_thread(); |
4303 | bool rtfault = (cthread->sched_mode == TH_MODE_REALTIME); |
4304 | uint64_t fstart = 0; |
4305 | |
4306 | if (rtfault) { |
4307 | fstart = mach_continuous_time(); |
4308 | } |
4309 | |
4310 | interruptible_state = thread_interrupt_level(interruptible); |
4311 | |
4312 | fault_type = (change_wiring ? VM_PROT_NONE : caller_prot); |
4313 | |
4314 | counter_inc(&vm_statistics_faults); |
4315 | counter_inc(¤t_task()->faults); |
4316 | original_fault_type = fault_type; |
4317 | |
4318 | need_copy = FALSE; |
4319 | if (fault_type & VM_PROT_WRITE) { |
4320 | need_copy = TRUE; |
4321 | } |
4322 | |
4323 | if (need_copy || change_wiring) { |
4324 | object_lock_type = OBJECT_LOCK_EXCLUSIVE; |
4325 | } else { |
4326 | object_lock_type = OBJECT_LOCK_SHARED; |
4327 | } |
4328 | |
4329 | cur_object_lock_type = OBJECT_LOCK_SHARED; |
4330 | |
4331 | if ((map == kernel_map) && (caller_prot & VM_PROT_WRITE)) { |
4332 | if (compressor_map) { |
4333 | if ((vaddr >= vm_map_min(compressor_map)) && (vaddr < vm_map_max(compressor_map))) { |
4334 | panic("Write fault on compressor map, va: %p type: %u bounds: %p->%p" , (void *) vaddr, caller_prot, (void *) vm_map_min(compressor_map), (void *) vm_map_max(compressor_map)); |
4335 | } |
4336 | } |
4337 | } |
4338 | RetryFault: |
4339 | assert(written_on_object == VM_OBJECT_NULL); |
4340 | |
4341 | /* |
4342 | * assume we will hit a page in the cache |
4343 | * otherwise, explicitly override with |
4344 | * the real fault type once we determine it |
4345 | */ |
4346 | type_of_fault = DBG_CACHE_HIT_FAULT; |
4347 | |
4348 | /* |
4349 | * Find the backing store object and offset into |
4350 | * it to begin the search. |
4351 | */ |
4352 | fault_type = original_fault_type; |
4353 | map = original_map; |
4354 | vm_map_lock_read(map); |
4355 | |
4356 | if (resilient_media_retry) { |
4357 | /* |
4358 | * If we have to insert a fake zero-filled page to hide |
4359 | * a media failure to provide the real page, we need to |
4360 | * resolve any pending copy-on-write on this mapping. |
4361 | * VM_PROT_COPY tells vm_map_lookup_and_lock_object() to deal |
4362 | * with that even if this is not a "write" fault. |
4363 | */ |
4364 | need_copy = TRUE; |
4365 | object_lock_type = OBJECT_LOCK_EXCLUSIVE; |
4366 | vm_fault_resilient_media_retry++; |
4367 | } |
4368 | |
4369 | kr = vm_map_lookup_and_lock_object(var_map: &map, vaddr, |
4370 | fault_type: (fault_type | (need_copy ? VM_PROT_COPY : 0)), |
4371 | object_lock_type, out_version: &version, |
4372 | object: &object, offset: &offset, out_prot: &prot, wired: &wired, |
4373 | fault_info: &fault_info, |
4374 | real_map: &real_map, |
4375 | contended: &object_is_contended); |
4376 | object_is_contended = false; /* avoid unsafe optimization */ |
4377 | |
4378 | if (kr != KERN_SUCCESS) { |
4379 | vm_map_unlock_read(map); |
4380 | /* |
4381 | * This can be seen in a crash report if indeed the |
4382 | * thread is crashing due to an invalid access in a non-existent |
4383 | * range. |
4384 | * Turning this OFF for now because it is noisy and not always fatal |
4385 | * eg prefaulting. |
4386 | * |
4387 | * if (kr == KERN_INVALID_ADDRESS) { |
4388 | * ktriage_record(thread_tid(current_thread()), KDBG_TRIAGE_EVENTID(KDBG_TRIAGE_SUBSYS_VM, KDBG_TRIAGE_RESERVED, KDBG_TRIAGE_VM_ADDRESS_NOT_FOUND), 0); |
4389 | * } |
4390 | */ |
4391 | goto done; |
4392 | } |
4393 | |
4394 | |
4395 | pmap = real_map->pmap; |
4396 | fault_info.interruptible = interruptible; |
4397 | fault_info.stealth = FALSE; |
4398 | fault_info.io_sync = FALSE; |
4399 | fault_info.mark_zf_absent = FALSE; |
4400 | fault_info.batch_pmap_op = FALSE; |
4401 | |
4402 | if (resilient_media_retry) { |
4403 | /* |
4404 | * We're retrying this fault after having detected a media |
4405 | * failure from a "resilient_media" mapping. |
4406 | * Check that the mapping is still pointing at the object |
4407 | * that just failed to provide a page. |
4408 | */ |
4409 | assert(resilient_media_object != VM_OBJECT_NULL); |
4410 | assert(resilient_media_offset != (vm_object_offset_t)-1); |
4411 | if ((object != VM_OBJECT_NULL && |
4412 | object == resilient_media_object && |
4413 | offset == resilient_media_offset && |
4414 | fault_info.resilient_media) |
4415 | #if MACH_ASSERT |
4416 | && (vm_fault_resilient_media_inject_error1_rate == 0 || |
4417 | (++vm_fault_resilient_media_inject_error1 % vm_fault_resilient_media_inject_error1_rate) != 0) |
4418 | #endif /* MACH_ASSERT */ |
4419 | ) { |
4420 | /* |
4421 | * This mapping still points at the same object |
4422 | * and is still "resilient_media": proceed in |
4423 | * "recovery-from-media-failure" mode, where we'll |
4424 | * insert a zero-filled page in the top object. |
4425 | */ |
4426 | // printf("RESILIENT_MEDIA %s:%d recovering for object %p offset 0x%llx\n", __FUNCTION__, __LINE__, object, offset); |
4427 | vm_fault_resilient_media_proceed++; |
4428 | } else { |
4429 | /* not recovering: reset state and retry fault */ |
4430 | // printf("RESILIENT_MEDIA %s:%d no recovery resilient %d object %p/%p offset 0x%llx/0x%llx\n", __FUNCTION__, __LINE__, fault_info.resilient_media, object, resilient_media_object, offset, resilient_media_offset); |
4431 | vm_object_unlock(object); |
4432 | if (real_map != map) { |
4433 | vm_map_unlock(real_map); |
4434 | } |
4435 | vm_map_unlock_read(map); |
4436 | /* release our extra reference on failed object */ |
4437 | // printf("FBDP %s:%d resilient_media_object %p deallocate\n", __FUNCTION__, __LINE__, resilient_media_object); |
4438 | vm_object_deallocate(object: resilient_media_object); |
4439 | resilient_media_object = VM_OBJECT_NULL; |
4440 | resilient_media_offset = (vm_object_offset_t)-1; |
4441 | resilient_media_retry = false; |
4442 | vm_fault_resilient_media_abort1++; |
4443 | goto RetryFault; |
4444 | } |
4445 | } else { |
4446 | assert(resilient_media_object == VM_OBJECT_NULL); |
4447 | resilient_media_offset = (vm_object_offset_t)-1; |
4448 | } |
4449 | |
4450 | /* |
4451 | * If the page is wired, we must fault for the current protection |
4452 | * value, to avoid further faults. |
4453 | */ |
4454 | if (wired) { |
4455 | fault_type = prot | VM_PROT_WRITE; |
4456 | } |
4457 | if (wired || need_copy) { |
4458 | /* |
4459 | * since we're treating this fault as a 'write' |
4460 | * we must hold the top object lock exclusively |
4461 | */ |
4462 | if (object_lock_type == OBJECT_LOCK_SHARED) { |
4463 | object_lock_type = OBJECT_LOCK_EXCLUSIVE; |
4464 | |
4465 | if (vm_object_lock_upgrade(object) == FALSE) { |
4466 | /* |
4467 | * couldn't upgrade, so explictly |
4468 | * take the lock exclusively |
4469 | */ |
4470 | vm_object_lock(object); |
4471 | } |
4472 | } |
4473 | } |
4474 | |
4475 | #if VM_FAULT_CLASSIFY |
4476 | /* |
4477 | * Temporary data gathering code |
4478 | */ |
4479 | vm_fault_classify(object, offset, fault_type); |
4480 | #endif |
4481 | /* |
4482 | * Fast fault code. The basic idea is to do as much as |
4483 | * possible while holding the map lock and object locks. |
4484 | * Busy pages are not used until the object lock has to |
4485 | * be dropped to do something (copy, zero fill, pmap enter). |
4486 | * Similarly, paging references aren't acquired until that |
4487 | * point, and object references aren't used. |
4488 | * |
4489 | * If we can figure out what to do |
4490 | * (zero fill, copy on write, pmap enter) while holding |
4491 | * the locks, then it gets done. Otherwise, we give up, |
4492 | * and use the original fault path (which doesn't hold |
4493 | * the map lock, and relies on busy pages). |
4494 | * The give up cases include: |
4495 | * - Have to talk to pager. |
4496 | * - Page is busy, absent or in error. |
4497 | * - Pager has locked out desired access. |
4498 | * - Fault needs to be restarted. |
4499 | * - Have to push page into copy object. |
4500 | * |
4501 | * The code is an infinite loop that moves one level down |
4502 | * the shadow chain each time. cur_object and cur_offset |
4503 | * refer to the current object being examined. object and offset |
4504 | * are the original object from the map. The loop is at the |
4505 | * top level if and only if object and cur_object are the same. |
4506 | * |
4507 | * Invariants: Map lock is held throughout. Lock is held on |
4508 | * original object and cur_object (if different) when |
4509 | * continuing or exiting loop. |
4510 | * |
4511 | */ |
4512 | |
4513 | #if defined(__arm64__) |
4514 | /* |
4515 | * Fail if reading an execute-only page in a |
4516 | * pmap that enforces execute-only protection. |
4517 | */ |
4518 | if (fault_type == VM_PROT_READ && |
4519 | (prot & VM_PROT_EXECUTE) && |
4520 | !(prot & VM_PROT_READ) && |
4521 | pmap_enforces_execute_only(pmap)) { |
4522 | vm_object_unlock(object); |
4523 | vm_map_unlock_read(map); |
4524 | if (real_map != map) { |
4525 | vm_map_unlock(real_map); |
4526 | } |
4527 | kr = KERN_PROTECTION_FAILURE; |
4528 | goto done; |
4529 | } |
4530 | #endif |
4531 | |
4532 | fault_phys_offset = (vm_map_offset_t)offset - vm_map_trunc_page((vm_map_offset_t)offset, PAGE_MASK); |
4533 | |
4534 | /* |
4535 | * If this page is to be inserted in a copy delay object |
4536 | * for writing, and if the object has a copy, then the |
4537 | * copy delay strategy is implemented in the slow fault page. |
4538 | */ |
4539 | if ((object->copy_strategy == MEMORY_OBJECT_COPY_DELAY || |
4540 | object->copy_strategy == MEMORY_OBJECT_COPY_DELAY_FORK) && |
4541 | object->vo_copy != VM_OBJECT_NULL && (fault_type & VM_PROT_WRITE)) { |
4542 | goto handle_copy_delay; |
4543 | } |
4544 | |
4545 | cur_object = object; |
4546 | cur_offset = offset; |
4547 | |
4548 | grab_options = 0; |
4549 | #if CONFIG_SECLUDED_MEMORY |
4550 | if (object->can_grab_secluded) { |
4551 | grab_options |= VM_PAGE_GRAB_SECLUDED; |
4552 | } |
4553 | #endif /* CONFIG_SECLUDED_MEMORY */ |
4554 | |
4555 | while (TRUE) { |
4556 | if (!cur_object->pager_created && |
4557 | cur_object->phys_contiguous) { /* superpage */ |
4558 | break; |
4559 | } |
4560 | |
4561 | if (cur_object->blocked_access) { |
4562 | /* |
4563 | * Access to this VM object has been blocked. |
4564 | * Let the slow path handle it. |
4565 | */ |
4566 | break; |
4567 | } |
4568 | |
4569 | m = vm_page_lookup(object: cur_object, vm_object_trunc_page(cur_offset)); |
4570 | m_object = NULL; |
4571 | |
4572 | if (m != VM_PAGE_NULL) { |
4573 | m_object = cur_object; |
4574 | |
4575 | if (m->vmp_busy) { |
4576 | wait_result_t result; |
4577 | |
4578 | /* |
4579 | * in order to do the PAGE_ASSERT_WAIT, we must |
4580 | * have object that 'm' belongs to locked exclusively |
4581 | */ |
4582 | if (object != cur_object) { |
4583 | if (cur_object_lock_type == OBJECT_LOCK_SHARED) { |
4584 | cur_object_lock_type = OBJECT_LOCK_EXCLUSIVE; |
4585 | |
4586 | if (vm_object_lock_upgrade(cur_object) == FALSE) { |
4587 | /* |
4588 | * couldn't upgrade so go do a full retry |
4589 | * immediately since we can no longer be |
4590 | * certain about cur_object (since we |
4591 | * don't hold a reference on it)... |
4592 | * first drop the top object lock |
4593 | */ |
4594 | vm_object_unlock(object); |
4595 | |
4596 | vm_map_unlock_read(map); |
4597 | if (real_map != map) { |
4598 | vm_map_unlock(real_map); |
4599 | } |
4600 | |
4601 | goto RetryFault; |
4602 | } |
4603 | } |
4604 | } else if (object_lock_type == OBJECT_LOCK_SHARED) { |
4605 | object_lock_type = OBJECT_LOCK_EXCLUSIVE; |
4606 | |
4607 | if (vm_object_lock_upgrade(object) == FALSE) { |
4608 | /* |
4609 | * couldn't upgrade, so explictly take the lock |
4610 | * exclusively and go relookup the page since we |
4611 | * will have dropped the object lock and |
4612 | * a different thread could have inserted |
4613 | * a page at this offset |
4614 | * no need for a full retry since we're |
4615 | * at the top level of the object chain |
4616 | */ |
4617 | vm_object_lock(object); |
4618 | |
4619 | continue; |
4620 | } |
4621 | } |
4622 | if ((m->vmp_q_state == VM_PAGE_ON_PAGEOUT_Q) && m_object->internal) { |
4623 | /* |
4624 | * m->vmp_busy == TRUE and the object is locked exclusively |
4625 | * if m->pageout_queue == TRUE after we acquire the |
4626 | * queues lock, we are guaranteed that it is stable on |
4627 | * the pageout queue and therefore reclaimable |
4628 | * |
4629 | * NOTE: this is only true for the internal pageout queue |
4630 | * in the compressor world |
4631 | */ |
4632 | assert(VM_CONFIG_COMPRESSOR_IS_PRESENT); |
4633 | |
4634 | vm_page_lock_queues(); |
4635 | |
4636 | if (m->vmp_q_state == VM_PAGE_ON_PAGEOUT_Q) { |
4637 | vm_pageout_throttle_up(page: m); |
4638 | vm_page_unlock_queues(); |
4639 | |
4640 | PAGE_WAKEUP_DONE(m); |
4641 | goto reclaimed_from_pageout; |
4642 | } |
4643 | vm_page_unlock_queues(); |
4644 | } |
4645 | if (object != cur_object) { |
4646 | vm_object_unlock(object); |
4647 | } |
4648 | |
4649 | vm_map_unlock_read(map); |
4650 | if (real_map != map) { |
4651 | vm_map_unlock(real_map); |
4652 | } |
4653 | |
4654 | result = PAGE_ASSERT_WAIT(m, interruptible); |
4655 | |
4656 | vm_object_unlock(cur_object); |
4657 | |
4658 | if (result == THREAD_WAITING) { |
4659 | result = thread_block(THREAD_CONTINUE_NULL); |
4660 | } |
4661 | if (result == THREAD_AWAKENED || result == THREAD_RESTART) { |
4662 | goto RetryFault; |
4663 | } |
4664 | |
4665 | ktriage_record(thread_id: thread_tid(thread: current_thread()), KDBG_TRIAGE_EVENTID(KDBG_TRIAGE_SUBSYS_VM, KDBG_TRIAGE_RESERVED, KDBG_TRIAGE_VM_BUSYPAGE_WAIT_INTERRUPTED), arg: 0 /* arg */); |
4666 | kr = KERN_ABORTED; |
4667 | goto done; |
4668 | } |
4669 | reclaimed_from_pageout: |
4670 | if (m->vmp_laundry) { |
4671 | if (object != cur_object) { |
4672 | if (cur_object_lock_type == OBJECT_LOCK_SHARED) { |
4673 | cur_object_lock_type = OBJECT_LOCK_EXCLUSIVE; |
4674 | |
4675 | vm_object_unlock(object); |
4676 | vm_object_unlock(cur_object); |
4677 | |
4678 | vm_map_unlock_read(map); |
4679 | if (real_map != map) { |
4680 | vm_map_unlock(real_map); |
4681 | } |
4682 | |
4683 | goto RetryFault; |
4684 | } |
4685 | } else if (object_lock_type == OBJECT_LOCK_SHARED) { |
4686 | object_lock_type = OBJECT_LOCK_EXCLUSIVE; |
4687 | |
4688 | if (vm_object_lock_upgrade(object) == FALSE) { |
4689 | /* |
4690 | * couldn't upgrade, so explictly take the lock |
4691 | * exclusively and go relookup the page since we |
4692 | * will have dropped the object lock and |
4693 | * a different thread could have inserted |
4694 | * a page at this offset |
4695 | * no need for a full retry since we're |
4696 | * at the top level of the object chain |
4697 | */ |
4698 | vm_object_lock(object); |
4699 | |
4700 | continue; |
4701 | } |
4702 | } |
4703 | vm_object_lock_assert_exclusive(VM_PAGE_OBJECT(m)); |
4704 | vm_pageout_steal_laundry(page: m, FALSE); |
4705 | } |
4706 | |
4707 | |
4708 | if (VM_PAGE_GET_PHYS_PAGE(m) == vm_page_guard_addr) { |
4709 | /* |
4710 | * Guard page: let the slow path deal with it |
4711 | */ |
4712 | break; |
4713 | } |
4714 | if (m->vmp_unusual && (m->vmp_error || m->vmp_restart || m->vmp_private || m->vmp_absent)) { |
4715 | /* |
4716 | * Unusual case... let the slow path deal with it |
4717 | */ |
4718 | break; |
4719 | } |
4720 | if (VM_OBJECT_PURGEABLE_FAULT_ERROR(m_object)) { |
4721 | if (object != cur_object) { |
4722 | vm_object_unlock(object); |
4723 | } |
4724 | vm_map_unlock_read(map); |
4725 | if (real_map != map) { |
4726 | vm_map_unlock(real_map); |
4727 | } |
4728 | vm_object_unlock(cur_object); |
4729 | ktriage_record(thread_id: thread_tid(thread: current_thread()), KDBG_TRIAGE_EVENTID(KDBG_TRIAGE_SUBSYS_VM, KDBG_TRIAGE_RESERVED, KDBG_TRIAGE_VM_PURGEABLE_FAULT_ERROR), arg: 0 /* arg */); |
4730 | kr = KERN_MEMORY_ERROR; |
4731 | goto done; |
4732 | } |
4733 | assert(m_object == VM_PAGE_OBJECT(m)); |
4734 | |
4735 | if (vm_fault_cs_need_validation(pmap: map->pmap, page: m, page_obj: m_object, |
4736 | PAGE_SIZE, fault_phys_offset: 0) || |
4737 | (physpage_p != NULL && (prot & VM_PROT_WRITE))) { |
4738 | upgrade_lock_and_retry: |
4739 | /* |
4740 | * We might need to validate this page |
4741 | * against its code signature, so we |
4742 | * want to hold the VM object exclusively. |
4743 | */ |
4744 | if (object != cur_object) { |
4745 | if (cur_object_lock_type == OBJECT_LOCK_SHARED) { |
4746 | vm_object_unlock(object); |
4747 | vm_object_unlock(cur_object); |
4748 | |
4749 | cur_object_lock_type = OBJECT_LOCK_EXCLUSIVE; |
4750 | |
4751 | vm_map_unlock_read(map); |
4752 | if (real_map != map) { |
4753 | vm_map_unlock(real_map); |
4754 | } |
4755 | |
4756 | goto RetryFault; |
4757 | } |
4758 | } else if (object_lock_type == OBJECT_LOCK_SHARED) { |
4759 | object_lock_type = OBJECT_LOCK_EXCLUSIVE; |
4760 | |
4761 | if (vm_object_lock_upgrade(object) == FALSE) { |
4762 | /* |
4763 | * couldn't upgrade, so explictly take the lock |
4764 | * exclusively and go relookup the page since we |
4765 | * will have dropped the object lock and |
4766 | * a different thread could have inserted |
4767 | * a page at this offset |
4768 | * no need for a full retry since we're |
4769 | * at the top level of the object chain |
4770 | */ |
4771 | vm_object_lock(object); |
4772 | |
4773 | continue; |
4774 | } |
4775 | } |
4776 | } |
4777 | /* |
4778 | * Two cases of map in faults: |
4779 | * - At top level w/o copy object. |
4780 | * - Read fault anywhere. |
4781 | * --> must disallow write. |
4782 | */ |
4783 | |
4784 | if (object == cur_object && object->vo_copy == VM_OBJECT_NULL) { |
4785 | #if CONFIG_TRACK_UNMODIFIED_ANON_PAGES |
4786 | if ((fault_type & VM_PROT_WRITE) && m->vmp_unmodified_ro) { |
4787 | assert(cur_object == VM_PAGE_OBJECT(m)); |
4788 | assert(cur_object->internal); |
4789 | vm_object_lock_assert_exclusive(cur_object); |
4790 | vm_page_lockspin_queues(); |
4791 | m->vmp_unmodified_ro = false; |
4792 | vm_page_unlock_queues(); |
4793 | os_atomic_dec(&compressor_ro_uncompressed, relaxed); |
4794 | VM_COMPRESSOR_PAGER_STATE_CLR(cur_object, m->vmp_offset); |
4795 | } |
4796 | #endif /* CONFIG_TRACK_UNMODIFIED_ANON_PAGES */ |
4797 | goto FastPmapEnter; |
4798 | } |
4799 | |
4800 | if (!need_copy && |
4801 | !fault_info.no_copy_on_read && |
4802 | cur_object != object && |
4803 | !cur_object->internal && |
4804 | !cur_object->pager_trusted && |
4805 | vm_protect_privileged_from_untrusted && |
4806 | !cur_object->code_signed && |
4807 | current_proc_is_privileged()) { |
4808 | /* |
4809 | * We're faulting on a page in "object" and |
4810 | * went down the shadow chain to "cur_object" |
4811 | * to find out that "cur_object"'s pager |
4812 | * is not "trusted", i.e. we can not trust it |
4813 | * to always return the same contents. |
4814 | * Since the target is a "privileged" process, |
4815 | * let's treat this as a copy-on-read fault, as |
4816 | * if it was a copy-on-write fault. |
4817 | * Once "object" gets a copy of this page, it |
4818 | * won't have to rely on "cur_object" to |
4819 | * provide the contents again. |
4820 | * |
4821 | * This is done by setting "need_copy" and |
4822 | * retrying the fault from the top with the |
4823 | * appropriate locking. |
4824 | * |
4825 | * Special case: if the mapping is executable |
4826 | * and the untrusted object is code-signed and |
4827 | * the process is "cs_enforced", we do not |
4828 | * copy-on-read because that would break |
4829 | * code-signing enforcement expectations (an |
4830 | * executable page must belong to a code-signed |
4831 | * object) and we can rely on code-signing |
4832 | * to re-validate the page if it gets evicted |
4833 | * and paged back in. |
4834 | */ |
4835 | // printf("COPY-ON-READ %s:%d map %p va 0x%llx page %p object %p offset 0x%llx UNTRUSTED: need copy-on-read!\n", __FUNCTION__, __LINE__, map, (uint64_t)vaddr, m, VM_PAGE_OBJECT(m), m->vmp_offset); |
4836 | vm_copied_on_read++; |
4837 | need_copy = TRUE; |
4838 | |
4839 | vm_object_unlock(object); |
4840 | vm_object_unlock(cur_object); |
4841 | object_lock_type = OBJECT_LOCK_EXCLUSIVE; |
4842 | vm_map_unlock_read(map); |
4843 | if (real_map != map) { |
4844 | vm_map_unlock(real_map); |
4845 | } |
4846 | goto RetryFault; |
4847 | } |
4848 | |
4849 | if (!(fault_type & VM_PROT_WRITE) && !need_copy) { |
4850 | if (pmap_has_prot_policy(pmap, translated_allow_execute: fault_info.pmap_options & PMAP_OPTIONS_TRANSLATED_ALLOW_EXECUTE, prot)) { |
4851 | /* |
4852 | * For a protection that the pmap cares |
4853 | * about, we must hand over the full |
4854 | * set of protections (so that the pmap |
4855 | * layer can apply any desired policy). |
4856 | * This means that cs_bypass must be |
4857 | * set, as this can force us to pass |
4858 | * RWX. |
4859 | */ |
4860 | if (!fault_info.cs_bypass) { |
4861 | panic("%s: pmap %p vaddr 0x%llx prot 0x%x options 0x%x" , |
4862 | __FUNCTION__, pmap, |
4863 | (uint64_t)vaddr, prot, |
4864 | fault_info.pmap_options); |
4865 | } |
4866 | } else { |
4867 | prot &= ~VM_PROT_WRITE; |
4868 | } |
4869 | |
4870 | if (object != cur_object) { |
4871 | /* |
4872 | * We still need to hold the top object |
4873 | * lock here to prevent a race between |
4874 | * a read fault (taking only "shared" |
4875 | * locks) and a write fault (taking |
4876 | * an "exclusive" lock on the top |
4877 | * object. |
4878 | * Otherwise, as soon as we release the |
4879 | * top lock, the write fault could |
4880 | * proceed and actually complete before |
4881 | * the read fault, and the copied page's |
4882 | * translation could then be overwritten |
4883 | * by the read fault's translation for |
4884 | * the original page. |
4885 | * |
4886 | * Let's just record what the top object |
4887 | * is and we'll release it later. |
4888 | */ |
4889 | top_object = object; |
4890 | |
4891 | /* |
4892 | * switch to the object that has the new page |
4893 | */ |
4894 | object = cur_object; |
4895 | object_lock_type = cur_object_lock_type; |
4896 | } |
4897 | FastPmapEnter: |
4898 | assert(m_object == VM_PAGE_OBJECT(m)); |
4899 | |
4900 | /* |
4901 | * prepare for the pmap_enter... |
4902 | * object and map are both locked |
4903 | * m contains valid data |
4904 | * object == m->vmp_object |
4905 | * cur_object == NULL or it's been unlocked |
4906 | * no paging references on either object or cur_object |
4907 | */ |
4908 | if (top_object != VM_OBJECT_NULL || object_lock_type != OBJECT_LOCK_EXCLUSIVE) { |
4909 | need_retry_ptr = &need_retry; |
4910 | } else { |
4911 | need_retry_ptr = NULL; |
4912 | } |
4913 | |
4914 | if (fault_page_size < PAGE_SIZE) { |
4915 | DEBUG4K_FAULT("map %p original %p pmap %p va 0x%llx caller pmap %p va 0x%llx pa 0x%llx (0x%llx+0x%llx) prot 0x%x caller_prot 0x%x\n" , map, original_map, pmap, (uint64_t)vaddr, caller_pmap, (uint64_t)caller_pmap_addr, (uint64_t)((((pmap_paddr_t)VM_PAGE_GET_PHYS_PAGE(m)) << PAGE_SHIFT) + fault_phys_offset), (uint64_t)(((pmap_paddr_t)VM_PAGE_GET_PHYS_PAGE(m)) << PAGE_SHIFT), (uint64_t)fault_phys_offset, prot, caller_prot); |
4916 | assertf((!(fault_phys_offset & FOURK_PAGE_MASK) && |
4917 | fault_phys_offset < PAGE_SIZE), |
4918 | "0x%llx\n" , (uint64_t)fault_phys_offset); |
4919 | } else { |
4920 | assertf(fault_phys_offset == 0, |
4921 | "0x%llx\n" , (uint64_t)fault_phys_offset); |
4922 | } |
4923 | |
4924 | if (__improbable(rtfault && |
4925 | !m->vmp_realtime && |
4926 | vm_pageout_protect_realtime)) { |
4927 | vm_page_lock_queues(); |
4928 | if (!m->vmp_realtime) { |
4929 | m->vmp_realtime = true; |
4930 | vm_page_realtime_count++; |
4931 | } |
4932 | vm_page_unlock_queues(); |
4933 | } |
4934 | assertf(VM_PAGE_OBJECT(m) == m_object, "m=%p m_object=%p object=%p" , m, m_object, object); |
4935 | assert(VM_PAGE_OBJECT(m) != VM_OBJECT_NULL); |
4936 | if (caller_pmap) { |
4937 | kr = vm_fault_enter(m, |
4938 | pmap: caller_pmap, |
4939 | vaddr: caller_pmap_addr, |
4940 | fault_page_size, |
4941 | fault_phys_offset, |
4942 | prot, |
4943 | caller_prot, |
4944 | wired, |
4945 | change_wiring, |
4946 | wire_tag, |
4947 | fault_info: &fault_info, |
4948 | need_retry: need_retry_ptr, |
4949 | type_of_fault: &type_of_fault, |
4950 | object_lock_type: &object_lock_type); |
4951 | } else { |
4952 | kr = vm_fault_enter(m, |
4953 | pmap, |
4954 | vaddr, |
4955 | fault_page_size, |
4956 | fault_phys_offset, |
4957 | prot, |
4958 | caller_prot, |
4959 | wired, |
4960 | change_wiring, |
4961 | wire_tag, |
4962 | fault_info: &fault_info, |
4963 | need_retry: need_retry_ptr, |
4964 | type_of_fault: &type_of_fault, |
4965 | object_lock_type: &object_lock_type); |
4966 | } |
4967 | |
4968 | vm_fault_complete( |
4969 | map, |
4970 | real_map, |
4971 | object, |
4972 | m_object, |
4973 | m, |
4974 | offset, |
4975 | trace_real_vaddr, |
4976 | fault_info: &fault_info, |
4977 | caller_prot, |
4978 | real_vaddr, |
4979 | type_of_fault: vm_fault_type_for_tracing(need_copy_on_read, type_of_fault), |
4980 | need_retry, |
4981 | kr, |
4982 | physpage_p, |
4983 | prot, |
4984 | top_object, |
4985 | need_collapse, |
4986 | cur_offset, |
4987 | fault_type, |
4988 | written_on_object: &written_on_object, |
4989 | written_on_pager: &written_on_pager, |
4990 | written_on_offset: &written_on_offset); |
4991 | top_object = VM_OBJECT_NULL; |
4992 | if (need_retry == TRUE) { |
4993 | /* |
4994 | * vm_fault_enter couldn't complete the PMAP_ENTER... |
4995 | * at this point we don't hold any locks so it's safe |
4996 | * to ask the pmap layer to expand the page table to |
4997 | * accommodate this mapping... once expanded, we'll |
4998 | * re-drive the fault which should result in vm_fault_enter |
4999 | * being able to successfully enter the mapping this time around |
5000 | */ |
5001 | (void)pmap_enter_options( |
5002 | pmap, v: vaddr, pn: 0, prot: 0, fault_type: 0, flags: 0, wired: 0, |
5003 | PMAP_OPTIONS_NOENTER, NULL, mapping_type: PMAP_MAPPING_TYPE_INFER); |
5004 | |
5005 | need_retry = FALSE; |
5006 | goto RetryFault; |
5007 | } |
5008 | goto done; |
5009 | } |
5010 | /* |
5011 | * COPY ON WRITE FAULT |
5012 | */ |
5013 | assert(object_lock_type == OBJECT_LOCK_EXCLUSIVE); |
5014 | |
5015 | /* |
5016 | * If objects match, then |
5017 | * object->vo_copy must not be NULL (else control |
5018 | * would be in previous code block), and we |
5019 | * have a potential push into the copy object |
5020 | * with which we can't cope with here. |
5021 | */ |
5022 | if (cur_object == object) { |
5023 | /* |
5024 | * must take the slow path to |
5025 | * deal with the copy push |
5026 | */ |
5027 | break; |
5028 | } |
5029 | |
5030 | /* |
5031 | * This is now a shadow based copy on write |
5032 | * fault -- it requires a copy up the shadow |
5033 | * chain. |
5034 | */ |
5035 | assert(m_object == VM_PAGE_OBJECT(m)); |
5036 | |
5037 | if ((cur_object_lock_type == OBJECT_LOCK_SHARED) && |
5038 | vm_fault_cs_need_validation(NULL, page: m, page_obj: m_object, |
5039 | PAGE_SIZE, fault_phys_offset: 0)) { |
5040 | goto upgrade_lock_and_retry; |
5041 | } |
5042 | |
5043 | #if MACH_ASSERT |
5044 | if (resilient_media_retry && |
5045 | vm_fault_resilient_media_inject_error2_rate != 0 && |
5046 | (++vm_fault_resilient_media_inject_error2 % vm_fault_resilient_media_inject_error2_rate) == 0) { |
5047 | /* inject an error */ |
5048 | cur_m = m; |
5049 | m = VM_PAGE_NULL; |
5050 | m_object = VM_OBJECT_NULL; |
5051 | break; |
5052 | } |
5053 | #endif /* MACH_ASSERT */ |
5054 | /* |
5055 | * Allocate a page in the original top level |
5056 | * object. Give up if allocate fails. Also |
5057 | * need to remember current page, as it's the |
5058 | * source of the copy. |
5059 | * |
5060 | * at this point we hold locks on both |
5061 | * object and cur_object... no need to take |
5062 | * paging refs or mark pages BUSY since |
5063 | * we don't drop either object lock until |
5064 | * the page has been copied and inserted |
5065 | */ |
5066 | cur_m = m; |
5067 | m = vm_page_grab_options(flags: grab_options); |
5068 | m_object = NULL; |
5069 | |
5070 | if (m == VM_PAGE_NULL) { |
5071 | /* |
5072 | * no free page currently available... |
5073 | * must take the slow path |
5074 | */ |
5075 | break; |
5076 | } |
5077 | |
5078 | /* |
5079 | * Now do the copy. Mark the source page busy... |
5080 | * |
5081 | * NOTE: This code holds the map lock across |
5082 | * the page copy. |
5083 | */ |
5084 | vm_page_copy(src_page: cur_m, dest_page: m); |
5085 | vm_page_insert(page: m, object, vm_object_trunc_page(offset)); |
5086 | if (VM_MAP_PAGE_MASK(map) != PAGE_MASK) { |
5087 | DEBUG4K_FAULT("map %p vaddr 0x%llx page %p [%p 0x%llx] copied to %p [%p 0x%llx]\n" , map, (uint64_t)vaddr, cur_m, VM_PAGE_OBJECT(cur_m), cur_m->vmp_offset, m, VM_PAGE_OBJECT(m), m->vmp_offset); |
5088 | } |
5089 | m_object = object; |
5090 | SET_PAGE_DIRTY(m, FALSE); |
5091 | |
5092 | /* |
5093 | * Now cope with the source page and object |
5094 | */ |
5095 | if (object->ref_count > 1 && cur_m->vmp_pmapped) { |
5096 | pmap_disconnect(phys: VM_PAGE_GET_PHYS_PAGE(m: cur_m)); |
5097 | } else if (VM_MAP_PAGE_SIZE(map) < PAGE_SIZE) { |
5098 | /* |
5099 | * We've copied the full 16K page but we're |
5100 | * about to call vm_fault_enter() only for |
5101 | * the 4K chunk we're faulting on. The other |
5102 | * three 4K chunks in that page could still |
5103 | * be pmapped in this pmap. |
5104 | * Since the VM object layer thinks that the |
5105 | * entire page has been dealt with and the |
5106 | * original page might no longer be needed, |
5107 | * it might collapse/bypass the original VM |
5108 | * object and free its pages, which would be |
5109 | * bad (and would trigger pmap_verify_free() |
5110 | * assertions) if the other 4K chunks are still |
5111 | * pmapped. |
5112 | */ |
5113 | /* |
5114 | * XXX FBDP TODO4K: to be revisisted |
5115 | * Technically, we need to pmap_disconnect() |
5116 | * only the target pmap's mappings for the 4K |
5117 | * chunks of this 16K VM page. If other pmaps |
5118 | * have PTEs on these chunks, that means that |
5119 | * the associated VM map must have a reference |
5120 | * on the VM object, so no need to worry about |
5121 | * those. |
5122 | * pmap_protect() for each 4K chunk would be |
5123 | * better but we'd have to check which chunks |
5124 | * are actually mapped before and after this |
5125 | * one. |
5126 | * A full-blown pmap_disconnect() is easier |
5127 | * for now but not efficient. |
5128 | */ |
5129 | DEBUG4K_FAULT("pmap_disconnect() page %p object %p offset 0x%llx phys 0x%x\n" , cur_m, VM_PAGE_OBJECT(cur_m), cur_m->vmp_offset, VM_PAGE_GET_PHYS_PAGE(cur_m)); |
5130 | pmap_disconnect(phys: VM_PAGE_GET_PHYS_PAGE(m: cur_m)); |
5131 | } |
5132 | |
5133 | if (cur_m->vmp_clustered) { |
5134 | VM_PAGE_COUNT_AS_PAGEIN(cur_m); |
5135 | VM_PAGE_CONSUME_CLUSTERED(cur_m); |
5136 | vm_fault_is_sequential(object: cur_object, offset: cur_offset, behavior: fault_info.behavior); |
5137 | } |
5138 | need_collapse = TRUE; |
5139 | |
5140 | if (!cur_object->internal && |
5141 | cur_object->copy_strategy == MEMORY_OBJECT_COPY_DELAY) { |
5142 | /* |
5143 | * The object from which we've just |
5144 | * copied a page is most probably backed |
5145 | * by a vnode. We don't want to waste too |
5146 | * much time trying to collapse the VM objects |
5147 | * and create a bottleneck when several tasks |
5148 | * map the same file. |
5149 | */ |
5150 | if (cur_object->vo_copy == object) { |
5151 | /* |
5152 | * Shared mapping or no COW yet. |
5153 | * We can never collapse a copy |
5154 | * object into its backing object. |
5155 | */ |
5156 | need_collapse = FALSE; |
5157 | } else if (cur_object->vo_copy == object->shadow && |
5158 | object->shadow->resident_page_count == 0) { |
5159 | /* |
5160 | * Shared mapping after a COW occurred. |
5161 | */ |
5162 | need_collapse = FALSE; |
5163 | } |
5164 | } |
5165 | vm_object_unlock(cur_object); |
5166 | |
5167 | if (need_collapse == FALSE) { |
5168 | vm_fault_collapse_skipped++; |
5169 | } |
5170 | vm_fault_collapse_total++; |
5171 | |
5172 | type_of_fault = DBG_COW_FAULT; |
5173 | counter_inc(&vm_statistics_cow_faults); |
5174 | DTRACE_VM2(cow_fault, int, 1, (uint64_t *), NULL); |
5175 | counter_inc(¤t_task()->cow_faults); |
5176 | |
5177 | goto FastPmapEnter; |
5178 | } else { |
5179 | /* |
5180 | * No page at cur_object, cur_offset... m == NULL |
5181 | */ |
5182 | if (cur_object->pager_created) { |
5183 | vm_external_state_t compressor_external_state = VM_EXTERNAL_STATE_UNKNOWN; |
5184 | |
5185 | if (MUST_ASK_PAGER(cur_object, cur_offset, compressor_external_state) == TRUE) { |
5186 | int my_fault_type; |
5187 | vm_compressor_options_t c_flags = C_DONT_BLOCK; |
5188 | bool insert_cur_object = FALSE; |
5189 | |
5190 | /* |
5191 | * May have to talk to a pager... |
5192 | * if so, take the slow path by |
5193 | * doing a 'break' from the while (TRUE) loop |
5194 | * |
5195 | * external_state will only be set to VM_EXTERNAL_STATE_EXISTS |
5196 | * if the compressor is active and the page exists there |
5197 | */ |
5198 | if (compressor_external_state != VM_EXTERNAL_STATE_EXISTS) { |
5199 | break; |
5200 | } |
5201 | |
5202 | if (map == kernel_map || real_map == kernel_map) { |
5203 | /* |
5204 | * can't call into the compressor with the kernel_map |
5205 | * lock held, since the compressor may try to operate |
5206 | * on the kernel map in order to return an empty c_segment |
5207 | */ |
5208 | break; |
5209 | } |
5210 | if (object != cur_object) { |
5211 | if (fault_type & VM_PROT_WRITE) { |
5212 | c_flags |= C_KEEP; |
5213 | } else { |
5214 | insert_cur_object = TRUE; |
5215 | } |
5216 | } |
5217 | if (insert_cur_object == TRUE) { |
5218 | if (cur_object_lock_type == OBJECT_LOCK_SHARED) { |
5219 | cur_object_lock_type = OBJECT_LOCK_EXCLUSIVE; |
5220 | |
5221 | if (vm_object_lock_upgrade(cur_object) == FALSE) { |
5222 | /* |
5223 | * couldn't upgrade so go do a full retry |
5224 | * immediately since we can no longer be |
5225 | * certain about cur_object (since we |
5226 | * don't hold a reference on it)... |
5227 | * first drop the top object lock |
5228 | */ |
5229 | vm_object_unlock(object); |
5230 | |
5231 | vm_map_unlock_read(map); |
5232 | if (real_map != map) { |
5233 | vm_map_unlock(real_map); |
5234 | } |
5235 | |
5236 | goto RetryFault; |
5237 | } |
5238 | } |
5239 | } else if (object_lock_type == OBJECT_LOCK_SHARED) { |
5240 | object_lock_type = OBJECT_LOCK_EXCLUSIVE; |
5241 | |
5242 | if (object != cur_object) { |
5243 | /* |
5244 | * we can't go for the upgrade on the top |
5245 | * lock since the upgrade may block waiting |
5246 | * for readers to drain... since we hold |
5247 | * cur_object locked at this point, waiting |
5248 | * for the readers to drain would represent |
5249 | * a lock order inversion since the lock order |
5250 | * for objects is the reference order in the |
5251 | * shadown chain |
5252 | */ |
5253 | vm_object_unlock(object); |
5254 | vm_object_unlock(cur_object); |
5255 | |
5256 | vm_map_unlock_read(map); |
5257 | if (real_map != map) { |
5258 | vm_map_unlock(real_map); |
5259 | } |
5260 | |
5261 | goto RetryFault; |
5262 | } |
5263 | if (vm_object_lock_upgrade(object) == FALSE) { |
5264 | /* |
5265 | * couldn't upgrade, so explictly take the lock |
5266 | * exclusively and go relookup the page since we |
5267 | * will have dropped the object lock and |
5268 | * a different thread could have inserted |
5269 | * a page at this offset |
5270 | * no need for a full retry since we're |
5271 | * at the top level of the object chain |
5272 | */ |
5273 | vm_object_lock(object); |
5274 | |
5275 | continue; |
5276 | } |
5277 | } |
5278 | m = vm_page_grab_options(flags: grab_options); |
5279 | m_object = NULL; |
5280 | |
5281 | if (m == VM_PAGE_NULL) { |
5282 | /* |
5283 | * no free page currently available... |
5284 | * must take the slow path |
5285 | */ |
5286 | break; |
5287 | } |
5288 | |
5289 | /* |
5290 | * The object is and remains locked |
5291 | * so no need to take a |
5292 | * "paging_in_progress" reference. |
5293 | */ |
5294 | bool shared_lock; |
5295 | if ((object == cur_object && |
5296 | object_lock_type == OBJECT_LOCK_EXCLUSIVE) || |
5297 | (object != cur_object && |
5298 | cur_object_lock_type == OBJECT_LOCK_EXCLUSIVE)) { |
5299 | shared_lock = FALSE; |
5300 | } else { |
5301 | shared_lock = TRUE; |
5302 | } |
5303 | |
5304 | kr = vm_compressor_pager_get( |
5305 | mem_obj: cur_object->pager, |
5306 | offset: (vm_object_trunc_page(cur_offset) |
5307 | + cur_object->paging_offset), |
5308 | ppnum: VM_PAGE_GET_PHYS_PAGE(m), |
5309 | my_fault_type: &my_fault_type, |
5310 | flags: c_flags, |
5311 | compressed_count_delta_p: &compressed_count_delta); |
5312 | |
5313 | vm_compressor_pager_count( |
5314 | mem_obj: cur_object->pager, |
5315 | compressed_count_delta, |
5316 | shared_lock, |
5317 | object: cur_object); |
5318 | |
5319 | if (kr != KERN_SUCCESS) { |
5320 | vm_page_release(page: m, FALSE); |
5321 | m = VM_PAGE_NULL; |
5322 | } |
5323 | /* |
5324 | * If vm_compressor_pager_get() returns |
5325 | * KERN_MEMORY_FAILURE, then the |
5326 | * compressed data is permanently lost, |
5327 | * so return this error immediately. |
5328 | */ |
5329 | if (kr == KERN_MEMORY_FAILURE) { |
5330 | if (object != cur_object) { |
5331 | vm_object_unlock(cur_object); |
5332 | } |
5333 | vm_object_unlock(object); |
5334 | vm_map_unlock_read(map); |
5335 | if (real_map != map) { |
5336 | vm_map_unlock(real_map); |
5337 | } |
5338 | |
5339 | goto done; |
5340 | } else if (kr != KERN_SUCCESS) { |
5341 | break; |
5342 | } |
5343 | m->vmp_dirty = TRUE; |
5344 | #if CONFIG_TRACK_UNMODIFIED_ANON_PAGES |
5345 | if ((fault_type & VM_PROT_WRITE) == 0) { |
5346 | prot &= ~VM_PROT_WRITE; |
5347 | /* |
5348 | * The page, m, has yet to be inserted |
5349 | * into an object. So we are fine with |
5350 | * the object/cur_object lock being held |
5351 | * shared. |
5352 | */ |
5353 | vm_page_lockspin_queues(); |
5354 | m->vmp_unmodified_ro = true; |
5355 | vm_page_unlock_queues(); |
5356 | os_atomic_inc(&compressor_ro_uncompressed, relaxed); |
5357 | } |
5358 | #endif /* CONFIG_TRACK_UNMODIFIED_ANON_PAGES */ |
5359 | |
5360 | /* |
5361 | * If the object is purgeable, its |
5362 | * owner's purgeable ledgers will be |
5363 | * updated in vm_page_insert() but the |
5364 | * page was also accounted for in a |
5365 | * "compressed purgeable" ledger, so |
5366 | * update that now. |
5367 | */ |
5368 | if (object != cur_object && |
5369 | !insert_cur_object) { |
5370 | /* |
5371 | * We're not going to insert |
5372 | * the decompressed page into |
5373 | * the object it came from. |
5374 | * |
5375 | * We're dealing with a |
5376 | * copy-on-write fault on |
5377 | * "object". |
5378 | * We're going to decompress |
5379 | * the page directly into the |
5380 | * target "object" while |
5381 | * keepin the compressed |
5382 | * page for "cur_object", so |
5383 | * no ledger update in that |
5384 | * case. |
5385 | */ |
5386 | } else if (((cur_object->purgable == |
5387 | VM_PURGABLE_DENY) && |
5388 | (!cur_object->vo_ledger_tag)) || |
5389 | (cur_object->vo_owner == |
5390 | NULL)) { |
5391 | /* |
5392 | * "cur_object" is not purgeable |
5393 | * and is not ledger-taged, or |
5394 | * there's no owner for it, |
5395 | * so no owner's ledgers to |
5396 | * update. |
5397 | */ |
5398 | } else { |
5399 | /* |
5400 | * One less compressed |
5401 | * purgeable/tagged page for |
5402 | * cur_object's owner. |
5403 | */ |
5404 | if (compressed_count_delta) { |
5405 | vm_object_owner_compressed_update( |
5406 | object: cur_object, |
5407 | delta: -1); |
5408 | } |
5409 | } |
5410 | |
5411 | if (insert_cur_object) { |
5412 | vm_page_insert(page: m, object: cur_object, vm_object_trunc_page(cur_offset)); |
5413 | m_object = cur_object; |
5414 | } else { |
5415 | vm_page_insert(page: m, object, vm_object_trunc_page(offset)); |
5416 | m_object = object; |
5417 | } |
5418 | |
5419 | if ((m_object->wimg_bits & VM_WIMG_MASK) != VM_WIMG_USE_DEFAULT) { |
5420 | /* |
5421 | * If the page is not cacheable, |
5422 | * we can't let its contents |
5423 | * linger in the data cache |
5424 | * after the decompression. |
5425 | */ |
5426 | pmap_sync_page_attributes_phys(pa: VM_PAGE_GET_PHYS_PAGE(m)); |
5427 | } |
5428 | |
5429 | type_of_fault = my_fault_type; |
5430 | |
5431 | VM_STAT_DECOMPRESSIONS(); |
5432 | |
5433 | if (cur_object != object) { |
5434 | if (insert_cur_object) { |
5435 | top_object = object; |
5436 | /* |
5437 | * switch to the object that has the new page |
5438 | */ |
5439 | object = cur_object; |
5440 | object_lock_type = cur_object_lock_type; |
5441 | } else { |
5442 | vm_object_unlock(cur_object); |
5443 | cur_object = object; |
5444 | } |
5445 | } |
5446 | goto FastPmapEnter; |
5447 | } |
5448 | /* |
5449 | * existence map present and indicates |
5450 | * that the pager doesn't have this page |
5451 | */ |
5452 | } |
5453 | if (cur_object->shadow == VM_OBJECT_NULL || |
5454 | resilient_media_retry) { |
5455 | /* |
5456 | * Zero fill fault. Page gets |
5457 | * inserted into the original object. |
5458 | */ |
5459 | if (cur_object->shadow_severed || |
5460 | VM_OBJECT_PURGEABLE_FAULT_ERROR(cur_object) || |
5461 | cur_object == compressor_object || |
5462 | is_kernel_object(cur_object)) { |
5463 | if (object != cur_object) { |
5464 | vm_object_unlock(cur_object); |
5465 | } |
5466 | vm_object_unlock(object); |
5467 | |
5468 | vm_map_unlock_read(map); |
5469 | if (real_map != map) { |
5470 | vm_map_unlock(real_map); |
5471 | } |
5472 | if (VM_OBJECT_PURGEABLE_FAULT_ERROR(cur_object)) { |
5473 | ktriage_record(thread_id: thread_tid(thread: current_thread()), KDBG_TRIAGE_EVENTID(KDBG_TRIAGE_SUBSYS_VM, KDBG_TRIAGE_RESERVED, KDBG_TRIAGE_VM_PURGEABLE_FAULT_ERROR), arg: 0 /* arg */); |
5474 | } |
5475 | |
5476 | if (cur_object->shadow_severed) { |
5477 | ktriage_record(thread_id: thread_tid(thread: current_thread()), KDBG_TRIAGE_EVENTID(KDBG_TRIAGE_SUBSYS_VM, KDBG_TRIAGE_RESERVED, KDBG_TRIAGE_VM_OBJECT_SHADOW_SEVERED), arg: 0 /* arg */); |
5478 | } |
5479 | |
5480 | kr = KERN_MEMORY_ERROR; |
5481 | goto done; |
5482 | } |
5483 | if (cur_object != object) { |
5484 | vm_object_unlock(cur_object); |
5485 | |
5486 | cur_object = object; |
5487 | } |
5488 | if (object_lock_type == OBJECT_LOCK_SHARED) { |
5489 | object_lock_type = OBJECT_LOCK_EXCLUSIVE; |
5490 | |
5491 | if (vm_object_lock_upgrade(object) == FALSE) { |
5492 | /* |
5493 | * couldn't upgrade so do a full retry on the fault |
5494 | * since we dropped the object lock which |
5495 | * could allow another thread to insert |
5496 | * a page at this offset |
5497 | */ |
5498 | vm_map_unlock_read(map); |
5499 | if (real_map != map) { |
5500 | vm_map_unlock(real_map); |
5501 | } |
5502 | |
5503 | goto RetryFault; |
5504 | } |
5505 | } |
5506 | if (!object->internal) { |
5507 | panic("%s:%d should not zero-fill page at offset 0x%llx in external object %p" , __FUNCTION__, __LINE__, (uint64_t)offset, object); |
5508 | } |
5509 | #if MACH_ASSERT |
5510 | if (resilient_media_retry && |
5511 | vm_fault_resilient_media_inject_error3_rate != 0 && |
5512 | (++vm_fault_resilient_media_inject_error3 % vm_fault_resilient_media_inject_error3_rate) == 0) { |
5513 | /* inject an error */ |
5514 | m_object = NULL; |
5515 | break; |
5516 | } |
5517 | #endif /* MACH_ASSERT */ |
5518 | m = vm_page_alloc(object, vm_object_trunc_page(offset)); |
5519 | m_object = NULL; |
5520 | |
5521 | if (m == VM_PAGE_NULL) { |
5522 | /* |
5523 | * no free page currently available... |
5524 | * must take the slow path |
5525 | */ |
5526 | break; |
5527 | } |
5528 | m_object = object; |
5529 | |
5530 | if ((prot & VM_PROT_WRITE) && |
5531 | !(fault_type & VM_PROT_WRITE) && |
5532 | object->vo_copy != VM_OBJECT_NULL) { |
5533 | /* |
5534 | * This is not a write fault and |
5535 | * we might have a copy-on-write |
5536 | * obligation to honor (copy object or |
5537 | * "needs_copy" map entry), so do not |
5538 | * give write access yet. |
5539 | * We'll need to catch the first write |
5540 | * to resolve the copy-on-write by |
5541 | * pushing this page to a copy object |
5542 | * or making a shadow object. |
5543 | */ |
5544 | if (pmap_has_prot_policy(pmap, translated_allow_execute: fault_info.pmap_options & PMAP_OPTIONS_TRANSLATED_ALLOW_EXECUTE, prot)) { |
5545 | /* |
5546 | * This pmap enforces extra |
5547 | * constraints for this set of |
5548 | * protections, so we can't |
5549 | * change the protections. |
5550 | * We would expect code-signing |
5551 | * to be bypassed in this case. |
5552 | */ |
5553 | if (!fault_info.cs_bypass) { |
5554 | panic("%s: pmap %p vaddr 0x%llx prot 0x%x options 0x%x" , |
5555 | __FUNCTION__, |
5556 | pmap, |
5557 | (uint64_t)vaddr, |
5558 | prot, |
5559 | fault_info.pmap_options); |
5560 | } |
5561 | } else { |
5562 | prot &= ~VM_PROT_WRITE; |
5563 | } |
5564 | } |
5565 | assertf(!((fault_type & VM_PROT_WRITE) && object->vo_copy), |
5566 | "map %p va 0x%llx wrong path for write fault (fault_type 0x%x) on object %p with copy %p\n" , |
5567 | map, (uint64_t)vaddr, fault_type, object, object->vo_copy); |
5568 | |
5569 | vm_object_t saved_copy_object; |
5570 | uint32_t saved_copy_version; |
5571 | saved_copy_object = object->vo_copy; |
5572 | saved_copy_version = object->vo_copy_version; |
5573 | |
5574 | /* |
5575 | * Zeroing the page and entering into it into the pmap |
5576 | * represents a significant amount of the zero fill fault handler's work. |
5577 | * |
5578 | * To improve fault scalability, we'll drop the object lock, if it appears contended, |
5579 | * now that we've inserted the page into the vm object. |
5580 | * Before dropping the lock, we need to check protection bits and set the |
5581 | * mapped bits on the page. Then we can mark the page busy, drop the lock, |
5582 | * zero it, and do the pmap enter. We'll need to reacquire the lock |
5583 | * to clear the busy bit and wake up any waiters. |
5584 | */ |
5585 | vm_fault_cs_clear(m); |
5586 | m->vmp_pmapped = TRUE; |
5587 | if (map->no_zero_fill) { |
5588 | type_of_fault = DBG_NZF_PAGE_FAULT; |
5589 | } else { |
5590 | type_of_fault = DBG_ZERO_FILL_FAULT; |
5591 | } |
5592 | { |
5593 | pmap_t destination_pmap; |
5594 | vm_map_offset_t destination_pmap_vaddr; |
5595 | vm_prot_t enter_fault_type; |
5596 | if (caller_pmap) { |
5597 | destination_pmap = caller_pmap; |
5598 | destination_pmap_vaddr = caller_pmap_addr; |
5599 | } else { |
5600 | destination_pmap = pmap; |
5601 | destination_pmap_vaddr = vaddr; |
5602 | } |
5603 | if (change_wiring) { |
5604 | enter_fault_type = VM_PROT_NONE; |
5605 | } else { |
5606 | enter_fault_type = caller_prot; |
5607 | } |
5608 | assertf(VM_PAGE_OBJECT(m) == object, "m=%p object=%p" , m, object); |
5609 | kr = vm_fault_enter_prepare(m, |
5610 | pmap: destination_pmap, |
5611 | vaddr: destination_pmap_vaddr, |
5612 | prot: &prot, |
5613 | caller_prot, |
5614 | fault_page_size, |
5615 | fault_phys_offset, |
5616 | change_wiring, |
5617 | fault_type: enter_fault_type, |
5618 | fault_info: &fault_info, |
5619 | type_of_fault: &type_of_fault, |
5620 | page_needs_data_sync: &page_needs_data_sync); |
5621 | if (kr != KERN_SUCCESS) { |
5622 | goto zero_fill_cleanup; |
5623 | } |
5624 | |
5625 | if (object_is_contended) { |
5626 | /* |
5627 | * At this point the page is in the vm object, but not on a paging queue. |
5628 | * Since it's accessible to another thread but its contents are invalid |
5629 | * (it hasn't been zeroed) mark it busy before dropping the object lock. |
5630 | */ |
5631 | m->vmp_busy = TRUE; |
5632 | vm_object_paging_begin(object); /* keep object alive */ |
5633 | vm_object_unlock(object); |
5634 | } |
5635 | if (type_of_fault == DBG_ZERO_FILL_FAULT) { |
5636 | /* |
5637 | * Now zero fill page... |
5638 | * the page is probably going to |
5639 | * be written soon, so don't bother |
5640 | * to clear the modified bit |
5641 | * |
5642 | * NOTE: This code holds the map |
5643 | * lock across the zero fill. |
5644 | */ |
5645 | vm_page_zero_fill(page: m); |
5646 | counter_inc(&vm_statistics_zero_fill_count); |
5647 | DTRACE_VM2(zfod, int, 1, (uint64_t *), NULL); |
5648 | } |
5649 | |
5650 | if (object_is_contended) { |
5651 | /* |
5652 | * It's not safe to do the pmap_enter() without holding |
5653 | * the object lock because its "vo_copy" could change. |
5654 | */ |
5655 | object_is_contended = false; /* get out of that code path */ |
5656 | |
5657 | vm_object_lock(object); |
5658 | vm_object_paging_end(object); |
5659 | if (object->vo_copy != saved_copy_object || |
5660 | object->vo_copy_version != saved_copy_version) { |
5661 | /* |
5662 | * The COPY_DELAY copy-on-write situation for |
5663 | * this VM object has changed while it was |
5664 | * unlocked, so do not grant write access to |
5665 | * this page. |
5666 | * The write access will fault again and we'll |
5667 | * resolve the copy-on-write then. |
5668 | */ |
5669 | if (pmap_has_prot_policy(pmap, |
5670 | translated_allow_execute: fault_info.pmap_options & PMAP_OPTIONS_TRANSLATED_ALLOW_EXECUTE, |
5671 | prot)) { |
5672 | /* we should not do CoW on pmap_has_prot_policy mappings */ |
5673 | panic("%s: map %p va 0x%llx obj %p,%u saved %p,%u: unexpected CoW" , |
5674 | __FUNCTION__, |
5675 | map, (uint64_t)vaddr, |
5676 | object, object->vo_copy_version, |
5677 | saved_copy_object, saved_copy_version); |
5678 | } else { |
5679 | /* the pmap layer is OK with changing the PTE's prot */ |
5680 | prot &= ~VM_PROT_WRITE; |
5681 | } |
5682 | } |
5683 | } |
5684 | |
5685 | if (page_needs_data_sync) { |
5686 | pmap_sync_page_data_phys(pa: VM_PAGE_GET_PHYS_PAGE(m)); |
5687 | } |
5688 | |
5689 | if (top_object != VM_OBJECT_NULL) { |
5690 | need_retry_ptr = &need_retry; |
5691 | } else { |
5692 | need_retry_ptr = NULL; |
5693 | } |
5694 | if (fault_info.fi_xnu_user_debug && |
5695 | !object->code_signed) { |
5696 | fault_info.pmap_options |= PMAP_OPTIONS_XNU_USER_DEBUG; |
5697 | } |
5698 | if (object_is_contended) { |
5699 | panic("object_is_contended" ); |
5700 | kr = vm_fault_pmap_enter(pmap: destination_pmap, vaddr: destination_pmap_vaddr, |
5701 | fault_page_size, fault_phys_offset, |
5702 | m, prot: &prot, caller_prot, fault_type: enter_fault_type, wired, |
5703 | pmap_options: fault_info.pmap_options, need_retry: need_retry_ptr); |
5704 | vm_object_lock(object); |
5705 | assertf(!((prot & VM_PROT_WRITE) && object->vo_copy), |
5706 | "prot 0x%x object %p copy %p\n" , |
5707 | prot, object, object->vo_copy); |
5708 | } else { |
5709 | kr = vm_fault_pmap_enter_with_object_lock(object, pmap: destination_pmap, vaddr: destination_pmap_vaddr, |
5710 | fault_page_size, fault_phys_offset, |
5711 | m, prot: &prot, caller_prot, fault_type: enter_fault_type, wired, |
5712 | pmap_options: fault_info.pmap_options, need_retry: need_retry_ptr, object_lock_type: &object_lock_type); |
5713 | } |
5714 | } |
5715 | zero_fill_cleanup: |
5716 | if (!VM_DYNAMIC_PAGING_ENABLED() && |
5717 | (object->purgable == VM_PURGABLE_DENY || |
5718 | object->purgable == VM_PURGABLE_NONVOLATILE || |
5719 | object->purgable == VM_PURGABLE_VOLATILE)) { |
5720 | vm_page_lockspin_queues(); |
5721 | if (!VM_DYNAMIC_PAGING_ENABLED()) { |
5722 | vm_fault_enqueue_throttled_locked(m); |
5723 | } |
5724 | vm_page_unlock_queues(); |
5725 | } |
5726 | vm_fault_enqueue_page(object, m, wired, change_wiring, wire_tag, no_cache: fault_info.no_cache, type_of_fault: &type_of_fault, kr); |
5727 | |
5728 | if (__improbable(rtfault && |
5729 | !m->vmp_realtime && |
5730 | vm_pageout_protect_realtime)) { |
5731 | vm_page_lock_queues(); |
5732 | if (!m->vmp_realtime) { |
5733 | m->vmp_realtime = true; |
5734 | vm_page_realtime_count++; |
5735 | } |
5736 | vm_page_unlock_queues(); |
5737 | } |
5738 | vm_fault_complete( |
5739 | map, |
5740 | real_map, |
5741 | object, |
5742 | m_object, |
5743 | m, |
5744 | offset, |
5745 | trace_real_vaddr, |
5746 | fault_info: &fault_info, |
5747 | caller_prot, |
5748 | real_vaddr, |
5749 | type_of_fault, |
5750 | need_retry, |
5751 | kr, |
5752 | physpage_p, |
5753 | prot, |
5754 | top_object, |
5755 | need_collapse, |
5756 | cur_offset, |
5757 | fault_type, |
5758 | written_on_object: &written_on_object, |
5759 | written_on_pager: &written_on_pager, |
5760 | written_on_offset: &written_on_offset); |
5761 | top_object = VM_OBJECT_NULL; |
5762 | if (need_retry == TRUE) { |
5763 | /* |
5764 | * vm_fault_enter couldn't complete the PMAP_ENTER... |
5765 | * at this point we don't hold any locks so it's safe |
5766 | * to ask the pmap layer to expand the page table to |
5767 | * accommodate this mapping... once expanded, we'll |
5768 | * re-drive the fault which should result in vm_fault_enter |
5769 | * being able to successfully enter the mapping this time around |
5770 | */ |
5771 | (void)pmap_enter_options( |
5772 | pmap, v: vaddr, pn: 0, prot: 0, fault_type: 0, flags: 0, wired: 0, |
5773 | PMAP_OPTIONS_NOENTER, NULL, mapping_type: PMAP_MAPPING_TYPE_INFER); |
5774 | |
5775 | need_retry = FALSE; |
5776 | goto RetryFault; |
5777 | } |
5778 | goto done; |
5779 | } |
5780 | /* |
5781 | * On to the next level in the shadow chain |
5782 | */ |
5783 | cur_offset += cur_object->vo_shadow_offset; |
5784 | new_object = cur_object->shadow; |
5785 | fault_phys_offset = cur_offset - vm_object_trunc_page(cur_offset); |
5786 | |
5787 | /* |
5788 | * take the new_object's lock with the indicated state |
5789 | */ |
5790 | if (cur_object_lock_type == OBJECT_LOCK_SHARED) { |
5791 | vm_object_lock_shared(new_object); |
5792 | } else { |
5793 | vm_object_lock(new_object); |
5794 | } |
5795 | |
5796 | if (cur_object != object) { |
5797 | vm_object_unlock(cur_object); |
5798 | } |
5799 | |
5800 | cur_object = new_object; |
5801 | |
5802 | continue; |
5803 | } |
5804 | } |
5805 | /* |
5806 | * Cleanup from fast fault failure. Drop any object |
5807 | * lock other than original and drop map lock. |
5808 | */ |
5809 | if (object != cur_object) { |
5810 | vm_object_unlock(cur_object); |
5811 | } |
5812 | |
5813 | /* |
5814 | * must own the object lock exclusively at this point |
5815 | */ |
5816 | if (object_lock_type == OBJECT_LOCK_SHARED) { |
5817 | object_lock_type = OBJECT_LOCK_EXCLUSIVE; |
5818 | |
5819 | if (vm_object_lock_upgrade(object) == FALSE) { |
5820 | /* |
5821 | * couldn't upgrade, so explictly |
5822 | * take the lock exclusively |
5823 | * no need to retry the fault at this |
5824 | * point since "vm_fault_page" will |
5825 | * completely re-evaluate the state |
5826 | */ |
5827 | vm_object_lock(object); |
5828 | } |
5829 | } |
5830 | |
5831 | handle_copy_delay: |
5832 | vm_map_unlock_read(map); |
5833 | if (real_map != map) { |
5834 | vm_map_unlock(real_map); |
5835 | } |
5836 | |
5837 | if (__improbable(object == compressor_object || |
5838 | is_kernel_object(object))) { |
5839 | /* |
5840 | * These objects are explicitly managed and populated by the |
5841 | * kernel. The virtual ranges backed by these objects should |
5842 | * either have wired pages or "holes" that are not supposed to |
5843 | * be accessed at all until they get explicitly populated. |
5844 | * We should never have to resolve a fault on a mapping backed |
5845 | * by one of these VM objects and providing a zero-filled page |
5846 | * would be wrong here, so let's fail the fault and let the |
5847 | * caller crash or recover. |
5848 | */ |
5849 | vm_object_unlock(object); |
5850 | kr = KERN_MEMORY_ERROR; |
5851 | goto done; |
5852 | } |
5853 | |
5854 | resilient_media_ref_transfer = false; |
5855 | if (resilient_media_retry) { |
5856 | /* |
5857 | * We could get here if we failed to get a free page |
5858 | * to zero-fill and had to take the slow path again. |
5859 | * Reset our "recovery-from-failed-media" state. |
5860 | */ |
5861 | assert(resilient_media_object != VM_OBJECT_NULL); |
5862 | assert(resilient_media_offset != (vm_object_offset_t)-1); |
5863 | /* release our extra reference on failed object */ |
5864 | // printf("FBDP %s:%d resilient_media_object %p deallocate\n", __FUNCTION__, __LINE__, resilient_media_object); |
5865 | if (object == resilient_media_object) { |
5866 | /* |
5867 | * We're holding "object"'s lock, so we can't release |
5868 | * our extra reference at this point. |
5869 | * We need an extra reference on "object" anyway |
5870 | * (see below), so let's just transfer this reference. |
5871 | */ |
5872 | resilient_media_ref_transfer = true; |
5873 | } else { |
5874 | vm_object_deallocate(object: resilient_media_object); |
5875 | } |
5876 | resilient_media_object = VM_OBJECT_NULL; |
5877 | resilient_media_offset = (vm_object_offset_t)-1; |
5878 | resilient_media_retry = false; |
5879 | vm_fault_resilient_media_abort2++; |
5880 | } |
5881 | |
5882 | /* |
5883 | * Make a reference to this object to |
5884 | * prevent its disposal while we are messing with |
5885 | * it. Once we have the reference, the map is free |
5886 | * to be diddled. Since objects reference their |
5887 | * shadows (and copies), they will stay around as well. |
5888 | */ |
5889 | if (resilient_media_ref_transfer) { |
5890 | /* we already have an extra reference on this object */ |
5891 | resilient_media_ref_transfer = false; |
5892 | } else { |
5893 | vm_object_reference_locked(object); |
5894 | } |
5895 | vm_object_paging_begin(object); |
5896 | |
5897 | set_thread_pagein_error(cthread, 0); |
5898 | error_code = 0; |
5899 | |
5900 | result_page = VM_PAGE_NULL; |
5901 | kr = vm_fault_page(first_object: object, first_offset: offset, fault_type, |
5902 | must_be_resident: (change_wiring && !wired), |
5903 | FALSE, /* page not looked up */ |
5904 | protection: &prot, result_page: &result_page, top_page: &top_page, |
5905 | type_of_fault: &type_of_fault, |
5906 | error_code: &error_code, no_zero_fill: map->no_zero_fill, |
5907 | fault_info: &fault_info); |
5908 | |
5909 | /* |
5910 | * if kr != VM_FAULT_SUCCESS, then the paging reference |
5911 | * has been dropped and the object unlocked... the ref_count |
5912 | * is still held |
5913 | * |
5914 | * if kr == VM_FAULT_SUCCESS, then the paging reference |
5915 | * is still held along with the ref_count on the original object |
5916 | * |
5917 | * the object is returned locked with a paging reference |
5918 | * |
5919 | * if top_page != NULL, then it's BUSY and the |
5920 | * object it belongs to has a paging reference |
5921 | * but is returned unlocked |
5922 | */ |
5923 | if (kr != VM_FAULT_SUCCESS && |
5924 | kr != VM_FAULT_SUCCESS_NO_VM_PAGE) { |
5925 | if (kr == VM_FAULT_MEMORY_ERROR && |
5926 | fault_info.resilient_media) { |
5927 | assertf(object->internal, "object %p" , object); |
5928 | /* |
5929 | * This fault failed but the mapping was |
5930 | * "media resilient", so we'll retry the fault in |
5931 | * recovery mode to get a zero-filled page in the |
5932 | * top object. |
5933 | * Keep the reference on the failing object so |
5934 | * that we can check that the mapping is still |
5935 | * pointing to it when we retry the fault. |
5936 | */ |
5937 | // printf("RESILIENT_MEDIA %s:%d: object %p offset 0x%llx recover from media error 0x%x kr 0x%x top_page %p result_page %p\n", __FUNCTION__, __LINE__, object, offset, error_code, kr, top_page, result_page); |
5938 | assert(!resilient_media_retry); /* no double retry */ |
5939 | assert(resilient_media_object == VM_OBJECT_NULL); |
5940 | assert(resilient_media_offset == (vm_object_offset_t)-1); |
5941 | resilient_media_retry = true; |
5942 | resilient_media_object = object; |
5943 | resilient_media_offset = offset; |
5944 | // printf("FBDP %s:%d resilient_media_object %p offset 0x%llx kept reference\n", __FUNCTION__, __LINE__, resilient_media_object, resilient_mmedia_offset); |
5945 | vm_fault_resilient_media_initiate++; |
5946 | goto RetryFault; |
5947 | } else { |
5948 | /* |
5949 | * we didn't succeed, lose the object reference |
5950 | * immediately. |
5951 | */ |
5952 | vm_object_deallocate(object); |
5953 | object = VM_OBJECT_NULL; /* no longer valid */ |
5954 | } |
5955 | |
5956 | /* |
5957 | * See why we failed, and take corrective action. |
5958 | */ |
5959 | switch (kr) { |
5960 | case VM_FAULT_MEMORY_SHORTAGE: |
5961 | if (vm_page_wait(interruptible: (change_wiring) ? |
5962 | THREAD_UNINT : |
5963 | THREAD_ABORTSAFE)) { |
5964 | goto RetryFault; |
5965 | } |
5966 | ktriage_record(thread_id: thread_tid(thread: current_thread()), KDBG_TRIAGE_EVENTID(KDBG_TRIAGE_SUBSYS_VM, KDBG_TRIAGE_RESERVED, KDBG_TRIAGE_VM_FAULT_MEMORY_SHORTAGE), arg: 0 /* arg */); |
5967 | OS_FALLTHROUGH; |
5968 | case VM_FAULT_INTERRUPTED: |
5969 | ktriage_record(thread_id: thread_tid(thread: current_thread()), KDBG_TRIAGE_EVENTID(KDBG_TRIAGE_SUBSYS_VM, KDBG_TRIAGE_RESERVED, KDBG_TRIAGE_VM_FAULT_INTERRUPTED), arg: 0 /* arg */); |
5970 | kr = KERN_ABORTED; |
5971 | goto done; |
5972 | case VM_FAULT_RETRY: |
5973 | goto RetryFault; |
5974 | case VM_FAULT_MEMORY_ERROR: |
5975 | if (error_code) { |
5976 | kr = error_code; |
5977 | } else { |
5978 | kr = KERN_MEMORY_ERROR; |
5979 | } |
5980 | goto done; |
5981 | default: |
5982 | panic("vm_fault: unexpected error 0x%x from " |
5983 | "vm_fault_page()\n" , kr); |
5984 | } |
5985 | } |
5986 | m = result_page; |
5987 | m_object = NULL; |
5988 | |
5989 | if (m != VM_PAGE_NULL) { |
5990 | m_object = VM_PAGE_OBJECT(m); |
5991 | assert((change_wiring && !wired) ? |
5992 | (top_page == VM_PAGE_NULL) : |
5993 | ((top_page == VM_PAGE_NULL) == (m_object == object))); |
5994 | } |
5995 | |
5996 | /* |
5997 | * What to do with the resulting page from vm_fault_page |
5998 | * if it doesn't get entered into the physical map: |
5999 | */ |
6000 | #define RELEASE_PAGE(m) \ |
6001 | MACRO_BEGIN \ |
6002 | PAGE_WAKEUP_DONE(m); \ |
6003 | if ( !VM_PAGE_PAGEABLE(m)) { \ |
6004 | vm_page_lockspin_queues(); \ |
6005 | if ( !VM_PAGE_PAGEABLE(m)) \ |
6006 | vm_page_activate(m); \ |
6007 | vm_page_unlock_queues(); \ |
6008 | } \ |
6009 | MACRO_END |
6010 | |
6011 | |
6012 | object_locks_dropped = FALSE; |
6013 | /* |
6014 | * We must verify that the maps have not changed |
6015 | * since our last lookup. vm_map_verify() needs the |
6016 | * map lock (shared) but we are holding object locks. |
6017 | * So we do a try_lock() first and, if that fails, we |
6018 | * drop the object locks and go in for the map lock again. |
6019 | */ |
6020 | if (m != VM_PAGE_NULL) { |
6021 | old_copy_object = m_object->vo_copy; |
6022 | old_copy_version = m_object->vo_copy_version; |
6023 | } else { |
6024 | old_copy_object = VM_OBJECT_NULL; |
6025 | old_copy_version = 0; |
6026 | } |
6027 | if (!vm_map_try_lock_read(map: original_map)) { |
6028 | if (m != VM_PAGE_NULL) { |
6029 | vm_object_unlock(m_object); |
6030 | } else { |
6031 | vm_object_unlock(object); |
6032 | } |
6033 | |
6034 | object_locks_dropped = TRUE; |
6035 | |
6036 | vm_map_lock_read(original_map); |
6037 | } |
6038 | |
6039 | if ((map != original_map) || !vm_map_verify(map, version: &version)) { |
6040 | if (object_locks_dropped == FALSE) { |
6041 | if (m != VM_PAGE_NULL) { |
6042 | vm_object_unlock(m_object); |
6043 | } else { |
6044 | vm_object_unlock(object); |
6045 | } |
6046 | |
6047 | object_locks_dropped = TRUE; |
6048 | } |
6049 | |
6050 | /* |
6051 | * no object locks are held at this point |
6052 | */ |
6053 | vm_object_t retry_object; |
6054 | vm_object_offset_t retry_offset; |
6055 | vm_prot_t retry_prot; |
6056 | |
6057 | /* |
6058 | * To avoid trying to write_lock the map while another |
6059 | * thread has it read_locked (in vm_map_pageable), we |
6060 | * do not try for write permission. If the page is |
6061 | * still writable, we will get write permission. If it |
6062 | * is not, or has been marked needs_copy, we enter the |
6063 | * mapping without write permission, and will merely |
6064 | * take another fault. |
6065 | */ |
6066 | map = original_map; |
6067 | |
6068 | kr = vm_map_lookup_and_lock_object(var_map: &map, vaddr, |
6069 | fault_type: fault_type & ~VM_PROT_WRITE, |
6070 | OBJECT_LOCK_EXCLUSIVE, out_version: &version, |
6071 | object: &retry_object, offset: &retry_offset, out_prot: &retry_prot, |
6072 | wired: &wired, |
6073 | fault_info: &fault_info, |
6074 | real_map: &real_map, |
6075 | NULL); |
6076 | pmap = real_map->pmap; |
6077 | |
6078 | if (kr != KERN_SUCCESS) { |
6079 | vm_map_unlock_read(map); |
6080 | |
6081 | if (m != VM_PAGE_NULL) { |
6082 | assert(VM_PAGE_OBJECT(m) == m_object); |
6083 | |
6084 | /* |
6085 | * retake the lock so that |
6086 | * we can drop the paging reference |
6087 | * in vm_fault_cleanup and do the |
6088 | * PAGE_WAKEUP_DONE in RELEASE_PAGE |
6089 | */ |
6090 | vm_object_lock(m_object); |
6091 | |
6092 | RELEASE_PAGE(m); |
6093 | |
6094 | vm_fault_cleanup(object: m_object, top_page); |
6095 | } else { |
6096 | /* |
6097 | * retake the lock so that |
6098 | * we can drop the paging reference |
6099 | * in vm_fault_cleanup |
6100 | */ |
6101 | vm_object_lock(object); |
6102 | |
6103 | vm_fault_cleanup(object, top_page); |
6104 | } |
6105 | vm_object_deallocate(object); |
6106 | |
6107 | if (kr == KERN_INVALID_ADDRESS) { |
6108 | ktriage_record(thread_id: thread_tid(thread: current_thread()), KDBG_TRIAGE_EVENTID(KDBG_TRIAGE_SUBSYS_VM, KDBG_TRIAGE_RESERVED, KDBG_TRIAGE_VM_ADDRESS_NOT_FOUND), arg: 0 /* arg */); |
6109 | } |
6110 | goto done; |
6111 | } |
6112 | vm_object_unlock(retry_object); |
6113 | |
6114 | if ((retry_object != object) || (retry_offset != offset)) { |
6115 | vm_map_unlock_read(map); |
6116 | if (real_map != map) { |
6117 | vm_map_unlock(real_map); |
6118 | } |
6119 | |
6120 | if (m != VM_PAGE_NULL) { |
6121 | assert(VM_PAGE_OBJECT(m) == m_object); |
6122 | |
6123 | /* |
6124 | * retake the lock so that |
6125 | * we can drop the paging reference |
6126 | * in vm_fault_cleanup and do the |
6127 | * PAGE_WAKEUP_DONE in RELEASE_PAGE |
6128 | */ |
6129 | vm_object_lock(m_object); |
6130 | |
6131 | RELEASE_PAGE(m); |
6132 | |
6133 | vm_fault_cleanup(object: m_object, top_page); |
6134 | } else { |
6135 | /* |
6136 | * retake the lock so that |
6137 | * we can drop the paging reference |
6138 | * in vm_fault_cleanup |
6139 | */ |
6140 | vm_object_lock(object); |
6141 | |
6142 | vm_fault_cleanup(object, top_page); |
6143 | } |
6144 | vm_object_deallocate(object); |
6145 | |
6146 | goto RetryFault; |
6147 | } |
6148 | /* |
6149 | * Check whether the protection has changed or the object |
6150 | * has been copied while we left the map unlocked. |
6151 | */ |
6152 | if (pmap_has_prot_policy(pmap, translated_allow_execute: fault_info.pmap_options & PMAP_OPTIONS_TRANSLATED_ALLOW_EXECUTE, prot: retry_prot)) { |
6153 | /* If the pmap layer cares, pass the full set. */ |
6154 | prot = retry_prot; |
6155 | } else { |
6156 | prot &= retry_prot; |
6157 | } |
6158 | } |
6159 | |
6160 | if (object_locks_dropped == TRUE) { |
6161 | if (m != VM_PAGE_NULL) { |
6162 | assertf(VM_PAGE_OBJECT(m) == m_object, "m=%p m_object=%p" , m, m_object); |
6163 | assert(VM_PAGE_OBJECT(m) != VM_OBJECT_NULL); |
6164 | vm_object_lock(m_object); |
6165 | } else { |
6166 | vm_object_lock(object); |
6167 | } |
6168 | |
6169 | object_locks_dropped = FALSE; |
6170 | } |
6171 | |
6172 | if ((prot & VM_PROT_WRITE) && |
6173 | m != VM_PAGE_NULL && |
6174 | (m_object->vo_copy != old_copy_object || |
6175 | m_object->vo_copy_version != old_copy_version)) { |
6176 | /* |
6177 | * The copy object changed while the top-level object |
6178 | * was unlocked, so take away write permission. |
6179 | */ |
6180 | if (pmap_has_prot_policy(pmap, translated_allow_execute: fault_info.pmap_options & PMAP_OPTIONS_TRANSLATED_ALLOW_EXECUTE, prot)) { |
6181 | /* |
6182 | * This pmap enforces extra constraints for this set |
6183 | * of protections, so we can't change the protections. |
6184 | * This mapping should have been setup to avoid |
6185 | * copy-on-write since that requires removing write |
6186 | * access. |
6187 | */ |
6188 | panic("%s: pmap %p vaddr 0x%llx prot 0x%x options 0x%x m%p obj %p copyobj %p" , |
6189 | __FUNCTION__, pmap, (uint64_t)vaddr, prot, |
6190 | fault_info.pmap_options, |
6191 | m, m_object, m_object->vo_copy); |
6192 | } |
6193 | prot &= ~VM_PROT_WRITE; |
6194 | } |
6195 | |
6196 | if (!need_copy && |
6197 | !fault_info.no_copy_on_read && |
6198 | m != VM_PAGE_NULL && |
6199 | VM_PAGE_OBJECT(m) != object && |
6200 | !VM_PAGE_OBJECT(m)->pager_trusted && |
6201 | vm_protect_privileged_from_untrusted && |
6202 | !VM_PAGE_OBJECT(m)->code_signed && |
6203 | current_proc_is_privileged()) { |
6204 | /* |
6205 | * We found the page we want in an "untrusted" VM object |
6206 | * down the shadow chain. Since the target is "privileged" |
6207 | * we want to perform a copy-on-read of that page, so that the |
6208 | * mapped object gets a stable copy and does not have to |
6209 | * rely on the "untrusted" object to provide the same |
6210 | * contents if the page gets reclaimed and has to be paged |
6211 | * in again later on. |
6212 | * |
6213 | * Special case: if the mapping is executable and the untrusted |
6214 | * object is code-signed and the process is "cs_enforced", we |
6215 | * do not copy-on-read because that would break code-signing |
6216 | * enforcement expectations (an executable page must belong |
6217 | * to a code-signed object) and we can rely on code-signing |
6218 | * to re-validate the page if it gets evicted and paged back in. |
6219 | */ |
6220 | // printf("COPY-ON-READ %s:%d map %p vaddr 0x%llx obj %p offset 0x%llx found page %p (obj %p offset 0x%llx) UNTRUSTED -> need copy-on-read\n", __FUNCTION__, __LINE__, map, (uint64_t)vaddr, object, offset, m, VM_PAGE_OBJECT(m), m->vmp_offset); |
6221 | vm_copied_on_read++; |
6222 | need_copy_on_read = TRUE; |
6223 | need_copy = TRUE; |
6224 | } else { |
6225 | need_copy_on_read = FALSE; |
6226 | } |
6227 | |
6228 | /* |
6229 | * If we want to wire down this page, but no longer have |
6230 | * adequate permissions, we must start all over. |
6231 | * If we decided to copy-on-read, we must also start all over. |
6232 | */ |
6233 | if ((wired && (fault_type != (prot | VM_PROT_WRITE))) || |
6234 | need_copy_on_read) { |
6235 | vm_map_unlock_read(map); |
6236 | if (real_map != map) { |
6237 | vm_map_unlock(real_map); |
6238 | } |
6239 | |
6240 | if (m != VM_PAGE_NULL) { |
6241 | assert(VM_PAGE_OBJECT(m) == m_object); |
6242 | |
6243 | RELEASE_PAGE(m); |
6244 | |
6245 | vm_fault_cleanup(object: m_object, top_page); |
6246 | } else { |
6247 | vm_fault_cleanup(object, top_page); |
6248 | } |
6249 | |
6250 | vm_object_deallocate(object); |
6251 | |
6252 | goto RetryFault; |
6253 | } |
6254 | if (m != VM_PAGE_NULL) { |
6255 | /* |
6256 | * Put this page into the physical map. |
6257 | * We had to do the unlock above because pmap_enter |
6258 | * may cause other faults. The page may be on |
6259 | * the pageout queues. If the pageout daemon comes |
6260 | * across the page, it will remove it from the queues. |
6261 | */ |
6262 | if (fault_page_size < PAGE_SIZE) { |
6263 | DEBUG4K_FAULT("map %p original %p pmap %p va 0x%llx pa 0x%llx(0x%llx+0x%llx) prot 0x%x caller_prot 0x%x\n" , map, original_map, pmap, (uint64_t)vaddr, (uint64_t)((((pmap_paddr_t)VM_PAGE_GET_PHYS_PAGE(m)) << PAGE_SHIFT) + fault_phys_offset), (uint64_t)(((pmap_paddr_t)VM_PAGE_GET_PHYS_PAGE(m)) << PAGE_SHIFT), (uint64_t)fault_phys_offset, prot, caller_prot); |
6264 | assertf((!(fault_phys_offset & FOURK_PAGE_MASK) && |
6265 | fault_phys_offset < PAGE_SIZE), |
6266 | "0x%llx\n" , (uint64_t)fault_phys_offset); |
6267 | } else { |
6268 | assertf(fault_phys_offset == 0, |
6269 | "0x%llx\n" , (uint64_t)fault_phys_offset); |
6270 | } |
6271 | assertf(VM_PAGE_OBJECT(m) == m_object, "m=%p m_object=%p" , m, m_object); |
6272 | assert(VM_PAGE_OBJECT(m) != VM_OBJECT_NULL); |
6273 | if (caller_pmap) { |
6274 | kr = vm_fault_enter(m, |
6275 | pmap: caller_pmap, |
6276 | vaddr: caller_pmap_addr, |
6277 | fault_page_size, |
6278 | fault_phys_offset, |
6279 | prot, |
6280 | caller_prot, |
6281 | wired, |
6282 | change_wiring, |
6283 | wire_tag, |
6284 | fault_info: &fault_info, |
6285 | NULL, |
6286 | type_of_fault: &type_of_fault, |
6287 | object_lock_type: &object_lock_type); |
6288 | } else { |
6289 | kr = vm_fault_enter(m, |
6290 | pmap, |
6291 | vaddr, |
6292 | fault_page_size, |
6293 | fault_phys_offset, |
6294 | prot, |
6295 | caller_prot, |
6296 | wired, |
6297 | change_wiring, |
6298 | wire_tag, |
6299 | fault_info: &fault_info, |
6300 | NULL, |
6301 | type_of_fault: &type_of_fault, |
6302 | object_lock_type: &object_lock_type); |
6303 | } |
6304 | assert(VM_PAGE_OBJECT(m) == m_object); |
6305 | |
6306 | { |
6307 | int event_code = 0; |
6308 | |
6309 | if (m_object->internal) { |
6310 | event_code = (MACHDBG_CODE(DBG_MACH_WORKINGSET, VM_REAL_FAULT_ADDR_INTERNAL)); |
6311 | } else if (m_object->object_is_shared_cache) { |
6312 | event_code = (MACHDBG_CODE(DBG_MACH_WORKINGSET, VM_REAL_FAULT_ADDR_SHAREDCACHE)); |
6313 | } else { |
6314 | event_code = (MACHDBG_CODE(DBG_MACH_WORKINGSET, VM_REAL_FAULT_ADDR_EXTERNAL)); |
6315 | } |
6316 | |
6317 | KDBG_RELEASE(event_code | DBG_FUNC_NONE, trace_real_vaddr, (fault_info.user_tag << 16) | (caller_prot << 8) | vm_fault_type_for_tracing(need_copy_on_read, type_of_fault), m->vmp_offset, get_current_unique_pid()); |
6318 | KDBG_FILTERED(MACHDBG_CODE(DBG_MACH_WORKINGSET, VM_REAL_FAULT_SLOW), get_current_unique_pid()); |
6319 | |
6320 | DTRACE_VM6(real_fault, vm_map_offset_t, real_vaddr, vm_map_offset_t, m->vmp_offset, int, event_code, int, caller_prot, int, type_of_fault, int, fault_info.user_tag); |
6321 | } |
6322 | if (kr != KERN_SUCCESS) { |
6323 | /* abort this page fault */ |
6324 | vm_map_unlock_read(map); |
6325 | if (real_map != map) { |
6326 | vm_map_unlock(real_map); |
6327 | } |
6328 | PAGE_WAKEUP_DONE(m); |
6329 | vm_fault_cleanup(object: m_object, top_page); |
6330 | vm_object_deallocate(object); |
6331 | goto done; |
6332 | } |
6333 | if (physpage_p != NULL) { |
6334 | /* for vm_map_wire_and_extract() */ |
6335 | *physpage_p = VM_PAGE_GET_PHYS_PAGE(m); |
6336 | if (prot & VM_PROT_WRITE) { |
6337 | vm_object_lock_assert_exclusive(m_object); |
6338 | m->vmp_dirty = TRUE; |
6339 | } |
6340 | } |
6341 | } else { |
6342 | vm_map_entry_t entry; |
6343 | vm_map_offset_t laddr; |
6344 | vm_map_offset_t ldelta, hdelta; |
6345 | |
6346 | /* |
6347 | * do a pmap block mapping from the physical address |
6348 | * in the object |
6349 | */ |
6350 | |
6351 | if (real_map != map) { |
6352 | vm_map_unlock(real_map); |
6353 | } |
6354 | |
6355 | if (original_map != map) { |
6356 | vm_map_unlock_read(map); |
6357 | vm_map_lock_read(original_map); |
6358 | map = original_map; |
6359 | } |
6360 | real_map = map; |
6361 | |
6362 | laddr = vaddr; |
6363 | hdelta = ldelta = (vm_map_offset_t)0xFFFFFFFFFFFFF000ULL; |
6364 | |
6365 | while (vm_map_lookup_entry(map, address: laddr, entry: &entry)) { |
6366 | if (ldelta > (laddr - entry->vme_start)) { |
6367 | ldelta = laddr - entry->vme_start; |
6368 | } |
6369 | if (hdelta > (entry->vme_end - laddr)) { |
6370 | hdelta = entry->vme_end - laddr; |
6371 | } |
6372 | if (entry->is_sub_map) { |
6373 | laddr = ((laddr - entry->vme_start) |
6374 | + VME_OFFSET(entry)); |
6375 | vm_map_lock_read(VME_SUBMAP(entry)); |
6376 | |
6377 | if (map != real_map) { |
6378 | vm_map_unlock_read(map); |
6379 | } |
6380 | if (entry->use_pmap) { |
6381 | vm_map_unlock_read(real_map); |
6382 | real_map = VME_SUBMAP(entry); |
6383 | } |
6384 | map = VME_SUBMAP(entry); |
6385 | } else { |
6386 | break; |
6387 | } |
6388 | } |
6389 | |
6390 | if (vm_map_lookup_entry(map, address: laddr, entry: &entry) && |
6391 | (!entry->is_sub_map) && |
6392 | (object != VM_OBJECT_NULL) && |
6393 | (VME_OBJECT(entry) == object)) { |
6394 | uint16_t superpage; |
6395 | |
6396 | if (!object->pager_created && |
6397 | object->phys_contiguous && |
6398 | VME_OFFSET(entry) == 0 && |
6399 | (entry->vme_end - entry->vme_start == object->vo_size) && |
6400 | VM_MAP_PAGE_ALIGNED(entry->vme_start, (object->vo_size - 1))) { |
6401 | superpage = VM_MEM_SUPERPAGE; |
6402 | } else { |
6403 | superpage = 0; |
6404 | } |
6405 | |
6406 | if (superpage && physpage_p) { |
6407 | /* for vm_map_wire_and_extract() */ |
6408 | *physpage_p = (ppnum_t) |
6409 | ((((vm_map_offset_t) |
6410 | object->vo_shadow_offset) |
6411 | + VME_OFFSET(entry) |
6412 | + (laddr - entry->vme_start)) |
6413 | >> PAGE_SHIFT); |
6414 | } |
6415 | |
6416 | if (caller_pmap) { |
6417 | /* |
6418 | * Set up a block mapped area |
6419 | */ |
6420 | assert((uint32_t)((ldelta + hdelta) >> fault_page_shift) == ((ldelta + hdelta) >> fault_page_shift)); |
6421 | kr = pmap_map_block_addr(pmap: caller_pmap, |
6422 | va: (addr64_t)(caller_pmap_addr - ldelta), |
6423 | pa: (pmap_paddr_t)(((vm_map_offset_t) (object->vo_shadow_offset)) + |
6424 | VME_OFFSET(entry) + (laddr - entry->vme_start) - ldelta), |
6425 | size: (uint32_t)((ldelta + hdelta) >> fault_page_shift), prot, |
6426 | attr: (VM_WIMG_MASK & (int)object->wimg_bits) | superpage, flags: 0); |
6427 | |
6428 | if (kr != KERN_SUCCESS) { |
6429 | goto cleanup; |
6430 | } |
6431 | } else { |
6432 | /* |
6433 | * Set up a block mapped area |
6434 | */ |
6435 | assert((uint32_t)((ldelta + hdelta) >> fault_page_shift) == ((ldelta + hdelta) >> fault_page_shift)); |
6436 | kr = pmap_map_block_addr(pmap: real_map->pmap, |
6437 | va: (addr64_t)(vaddr - ldelta), |
6438 | pa: (pmap_paddr_t)(((vm_map_offset_t)(object->vo_shadow_offset)) + |
6439 | VME_OFFSET(entry) + (laddr - entry->vme_start) - ldelta), |
6440 | size: (uint32_t)((ldelta + hdelta) >> fault_page_shift), prot, |
6441 | attr: (VM_WIMG_MASK & (int)object->wimg_bits) | superpage, flags: 0); |
6442 | |
6443 | if (kr != KERN_SUCCESS) { |
6444 | goto cleanup; |
6445 | } |
6446 | } |
6447 | } |
6448 | } |
6449 | |
6450 | /* |
6451 | * Success |
6452 | */ |
6453 | kr = KERN_SUCCESS; |
6454 | |
6455 | /* |
6456 | * TODO: could most of the done cases just use cleanup? |
6457 | */ |
6458 | cleanup: |
6459 | /* |
6460 | * Unlock everything, and return |
6461 | */ |
6462 | vm_map_unlock_read(map); |
6463 | if (real_map != map) { |
6464 | vm_map_unlock(real_map); |
6465 | } |
6466 | |
6467 | if (m != VM_PAGE_NULL) { |
6468 | if (__improbable(rtfault && |
6469 | !m->vmp_realtime && |
6470 | vm_pageout_protect_realtime)) { |
6471 | vm_page_lock_queues(); |
6472 | if (!m->vmp_realtime) { |
6473 | m->vmp_realtime = true; |
6474 | vm_page_realtime_count++; |
6475 | } |
6476 | vm_page_unlock_queues(); |
6477 | } |
6478 | assert(VM_PAGE_OBJECT(m) == m_object); |
6479 | |
6480 | if (!m_object->internal && (fault_type & VM_PROT_WRITE)) { |
6481 | vm_object_paging_begin(m_object); |
6482 | |
6483 | assert(written_on_object == VM_OBJECT_NULL); |
6484 | written_on_object = m_object; |
6485 | written_on_pager = m_object->pager; |
6486 | written_on_offset = m_object->paging_offset + m->vmp_offset; |
6487 | } |
6488 | PAGE_WAKEUP_DONE(m); |
6489 | |
6490 | vm_fault_cleanup(object: m_object, top_page); |
6491 | } else { |
6492 | vm_fault_cleanup(object, top_page); |
6493 | } |
6494 | |
6495 | vm_object_deallocate(object); |
6496 | |
6497 | #undef RELEASE_PAGE |
6498 | |
6499 | done: |
6500 | thread_interrupt_level(interruptible: interruptible_state); |
6501 | |
6502 | if (resilient_media_object != VM_OBJECT_NULL) { |
6503 | assert(resilient_media_retry); |
6504 | assert(resilient_media_offset != (vm_object_offset_t)-1); |
6505 | /* release extra reference on failed object */ |
6506 | // printf("FBDP %s:%d resilient_media_object %p deallocate\n", __FUNCTION__, __LINE__, resilient_media_object); |
6507 | vm_object_deallocate(object: resilient_media_object); |
6508 | resilient_media_object = VM_OBJECT_NULL; |
6509 | resilient_media_offset = (vm_object_offset_t)-1; |
6510 | resilient_media_retry = false; |
6511 | vm_fault_resilient_media_release++; |
6512 | } |
6513 | assert(!resilient_media_retry); |
6514 | |
6515 | /* |
6516 | * Only I/O throttle on faults which cause a pagein/swapin. |
6517 | */ |
6518 | if ((type_of_fault == DBG_PAGEIND_FAULT) || (type_of_fault == DBG_PAGEINV_FAULT) || (type_of_fault == DBG_COMPRESSOR_SWAPIN_FAULT)) { |
6519 | throttle_lowpri_io(1); |
6520 | } else { |
6521 | if (kr == KERN_SUCCESS && type_of_fault != DBG_CACHE_HIT_FAULT && type_of_fault != DBG_GUARD_FAULT) { |
6522 | if ((throttle_delay = vm_page_throttled(TRUE))) { |
6523 | if (vm_debug_events) { |
6524 | if (type_of_fault == DBG_COMPRESSOR_FAULT) { |
6525 | VM_DEBUG_EVENT(vmf_compressordelay, VMF_COMPRESSORDELAY, DBG_FUNC_NONE, throttle_delay, 0, 0, 0); |
6526 | } else if (type_of_fault == DBG_COW_FAULT) { |
6527 | VM_DEBUG_EVENT(vmf_cowdelay, VMF_COWDELAY, DBG_FUNC_NONE, throttle_delay, 0, 0, 0); |
6528 | } else { |
6529 | VM_DEBUG_EVENT(vmf_zfdelay, VMF_ZFDELAY, DBG_FUNC_NONE, throttle_delay, 0, 0, 0); |
6530 | } |
6531 | } |
6532 | __VM_FAULT_THROTTLE_FOR_PAGEOUT_SCAN__(throttle_delay); |
6533 | } |
6534 | } |
6535 | } |
6536 | |
6537 | if (written_on_object) { |
6538 | vnode_pager_dirtied(written_on_pager, written_on_offset, written_on_offset + PAGE_SIZE_64); |
6539 | |
6540 | vm_object_lock(written_on_object); |
6541 | vm_object_paging_end(written_on_object); |
6542 | vm_object_unlock(written_on_object); |
6543 | |
6544 | written_on_object = VM_OBJECT_NULL; |
6545 | } |
6546 | |
6547 | if (rtfault) { |
6548 | vm_record_rtfault(cthread, fstart, trace_vaddr, type_of_fault); |
6549 | } |
6550 | |
6551 | KDBG_RELEASE( |
6552 | (MACHDBG_CODE(DBG_MACH_VM, 2)) | DBG_FUNC_END, |
6553 | ((uint64_t)trace_vaddr >> 32), |
6554 | trace_vaddr, |
6555 | kr, |
6556 | vm_fault_type_for_tracing(need_copy_on_read, type_of_fault)); |
6557 | |
6558 | if (fault_page_size < PAGE_SIZE && kr != KERN_SUCCESS) { |
6559 | DEBUG4K_FAULT("map %p original %p vaddr 0x%llx -> 0x%x\n" , map, original_map, (uint64_t)trace_real_vaddr, kr); |
6560 | } |
6561 | |
6562 | return kr; |
6563 | } |
6564 | |
6565 | /* |
6566 | * vm_fault_wire: |
6567 | * |
6568 | * Wire down a range of virtual addresses in a map. |
6569 | */ |
6570 | kern_return_t |
6571 | vm_fault_wire( |
6572 | vm_map_t map, |
6573 | vm_map_entry_t entry, |
6574 | vm_prot_t prot, |
6575 | vm_tag_t wire_tag, |
6576 | pmap_t pmap, |
6577 | vm_map_offset_t pmap_addr, |
6578 | ppnum_t *physpage_p) |
6579 | { |
6580 | vm_map_offset_t va; |
6581 | vm_map_offset_t end_addr = entry->vme_end; |
6582 | kern_return_t rc; |
6583 | vm_map_size_t effective_page_size; |
6584 | |
6585 | assert(entry->in_transition); |
6586 | |
6587 | if (!entry->is_sub_map && |
6588 | VME_OBJECT(entry) != VM_OBJECT_NULL && |
6589 | VME_OBJECT(entry)->phys_contiguous) { |
6590 | return KERN_SUCCESS; |
6591 | } |
6592 | |
6593 | /* |
6594 | * Inform the physical mapping system that the |
6595 | * range of addresses may not fault, so that |
6596 | * page tables and such can be locked down as well. |
6597 | */ |
6598 | |
6599 | pmap_pageable(pmap, pmap_addr, |
6600 | pmap_addr + (end_addr - entry->vme_start), FALSE); |
6601 | |
6602 | /* |
6603 | * We simulate a fault to get the page and enter it |
6604 | * in the physical map. |
6605 | */ |
6606 | |
6607 | effective_page_size = MIN(VM_MAP_PAGE_SIZE(map), PAGE_SIZE); |
6608 | for (va = entry->vme_start; |
6609 | va < end_addr; |
6610 | va += effective_page_size) { |
6611 | rc = vm_fault_wire_fast(map, va, prot, wire_tag, entry, pmap, |
6612 | pmap_addr: pmap_addr + (va - entry->vme_start), |
6613 | physpage_p); |
6614 | if (rc != KERN_SUCCESS) { |
6615 | rc = vm_fault_internal(map, vaddr: va, caller_prot: prot, TRUE, wire_tag, |
6616 | interruptible: ((pmap == kernel_pmap) |
6617 | ? THREAD_UNINT |
6618 | : THREAD_ABORTSAFE), |
6619 | caller_pmap: pmap, |
6620 | caller_pmap_addr: (pmap_addr + |
6621 | (va - entry->vme_start)), |
6622 | physpage_p); |
6623 | DTRACE_VM2(softlock, int, 1, (uint64_t *), NULL); |
6624 | } |
6625 | |
6626 | if (rc != KERN_SUCCESS) { |
6627 | struct vm_map_entry tmp_entry = *entry; |
6628 | |
6629 | /* unwire wired pages */ |
6630 | tmp_entry.vme_end = va; |
6631 | vm_fault_unwire(map, entry: &tmp_entry, FALSE, |
6632 | pmap, pmap_addr, end_addr: tmp_entry.vme_end); |
6633 | |
6634 | return rc; |
6635 | } |
6636 | } |
6637 | return KERN_SUCCESS; |
6638 | } |
6639 | |
6640 | /* |
6641 | * vm_fault_unwire: |
6642 | * |
6643 | * Unwire a range of virtual addresses in a map. |
6644 | */ |
6645 | void |
6646 | vm_fault_unwire( |
6647 | vm_map_t map, |
6648 | vm_map_entry_t entry, |
6649 | boolean_t deallocate, |
6650 | pmap_t pmap, |
6651 | vm_map_offset_t pmap_addr, |
6652 | vm_map_offset_t end_addr) |
6653 | { |
6654 | vm_map_offset_t va; |
6655 | vm_object_t object; |
6656 | struct vm_object_fault_info fault_info = {}; |
6657 | unsigned int unwired_pages; |
6658 | vm_map_size_t effective_page_size; |
6659 | |
6660 | object = (entry->is_sub_map) ? VM_OBJECT_NULL : VME_OBJECT(entry); |
6661 | |
6662 | /* |
6663 | * If it's marked phys_contiguous, then vm_fault_wire() didn't actually |
6664 | * do anything since such memory is wired by default. So we don't have |
6665 | * anything to undo here. |
6666 | */ |
6667 | |
6668 | if (object != VM_OBJECT_NULL && object->phys_contiguous) { |
6669 | return; |
6670 | } |
6671 | |
6672 | fault_info.interruptible = THREAD_UNINT; |
6673 | fault_info.behavior = entry->behavior; |
6674 | fault_info.user_tag = VME_ALIAS(entry); |
6675 | if (entry->iokit_acct || |
6676 | (!entry->is_sub_map && !entry->use_pmap)) { |
6677 | fault_info.pmap_options |= PMAP_OPTIONS_ALT_ACCT; |
6678 | } |
6679 | fault_info.lo_offset = VME_OFFSET(entry); |
6680 | fault_info.hi_offset = (entry->vme_end - entry->vme_start) + VME_OFFSET(entry); |
6681 | fault_info.no_cache = entry->no_cache; |
6682 | fault_info.stealth = TRUE; |
6683 | if (entry->vme_xnu_user_debug) { |
6684 | /* |
6685 | * Modified code-signed executable region: wired pages must |
6686 | * have been copied, so they should be XNU_USER_DEBUG rather |
6687 | * than XNU_USER_EXEC. |
6688 | */ |
6689 | fault_info.pmap_options |= PMAP_OPTIONS_XNU_USER_DEBUG; |
6690 | } |
6691 | |
6692 | unwired_pages = 0; |
6693 | |
6694 | /* |
6695 | * Since the pages are wired down, we must be able to |
6696 | * get their mappings from the physical map system. |
6697 | */ |
6698 | |
6699 | effective_page_size = MIN(VM_MAP_PAGE_SIZE(map), PAGE_SIZE); |
6700 | for (va = entry->vme_start; |
6701 | va < end_addr; |
6702 | va += effective_page_size) { |
6703 | if (object == VM_OBJECT_NULL) { |
6704 | if (pmap) { |
6705 | pmap_change_wiring(pmap, |
6706 | va: pmap_addr + (va - entry->vme_start), FALSE); |
6707 | } |
6708 | (void) vm_fault(map, vaddr: va, VM_PROT_NONE, |
6709 | TRUE, VM_KERN_MEMORY_NONE, THREAD_UNINT, caller_pmap: pmap, caller_pmap_addr: pmap_addr); |
6710 | } else { |
6711 | vm_prot_t prot; |
6712 | vm_page_t result_page; |
6713 | vm_page_t top_page; |
6714 | vm_object_t result_object; |
6715 | vm_fault_return_t result; |
6716 | |
6717 | /* cap cluster size at maximum UPL size */ |
6718 | upl_size_t cluster_size; |
6719 | if (os_sub_overflow(end_addr, va, &cluster_size)) { |
6720 | cluster_size = 0 - (upl_size_t)PAGE_SIZE; |
6721 | } |
6722 | fault_info.cluster_size = cluster_size; |
6723 | |
6724 | do { |
6725 | prot = VM_PROT_NONE; |
6726 | |
6727 | vm_object_lock(object); |
6728 | vm_object_paging_begin(object); |
6729 | result_page = VM_PAGE_NULL; |
6730 | result = vm_fault_page( |
6731 | first_object: object, |
6732 | first_offset: (VME_OFFSET(entry) + |
6733 | (va - entry->vme_start)), |
6734 | VM_PROT_NONE, TRUE, |
6735 | FALSE, /* page not looked up */ |
6736 | protection: &prot, result_page: &result_page, top_page: &top_page, |
6737 | type_of_fault: (int *)0, |
6738 | NULL, no_zero_fill: map->no_zero_fill, |
6739 | fault_info: &fault_info); |
6740 | } while (result == VM_FAULT_RETRY); |
6741 | |
6742 | /* |
6743 | * If this was a mapping to a file on a device that has been forcibly |
6744 | * unmounted, then we won't get a page back from vm_fault_page(). Just |
6745 | * move on to the next one in case the remaining pages are mapped from |
6746 | * different objects. During a forced unmount, the object is terminated |
6747 | * so the alive flag will be false if this happens. A forced unmount will |
6748 | * will occur when an external disk is unplugged before the user does an |
6749 | * eject, so we don't want to panic in that situation. |
6750 | */ |
6751 | |
6752 | if (result == VM_FAULT_MEMORY_ERROR) { |
6753 | if (!object->alive) { |
6754 | continue; |
6755 | } |
6756 | if (!object->internal && object->pager == NULL) { |
6757 | continue; |
6758 | } |
6759 | } |
6760 | |
6761 | if (result == VM_FAULT_MEMORY_ERROR && |
6762 | is_kernel_object(object)) { |
6763 | /* |
6764 | * This must have been allocated with |
6765 | * KMA_KOBJECT and KMA_VAONLY and there's |
6766 | * no physical page at this offset. |
6767 | * We're done (no page to free). |
6768 | */ |
6769 | assert(deallocate); |
6770 | continue; |
6771 | } |
6772 | |
6773 | if (result != VM_FAULT_SUCCESS) { |
6774 | panic("vm_fault_unwire: failure" ); |
6775 | } |
6776 | |
6777 | result_object = VM_PAGE_OBJECT(result_page); |
6778 | |
6779 | if (deallocate) { |
6780 | assert(VM_PAGE_GET_PHYS_PAGE(result_page) != |
6781 | vm_page_fictitious_addr); |
6782 | pmap_disconnect(phys: VM_PAGE_GET_PHYS_PAGE(m: result_page)); |
6783 | if (VM_PAGE_WIRED(result_page)) { |
6784 | unwired_pages++; |
6785 | } |
6786 | VM_PAGE_FREE(result_page); |
6787 | } else { |
6788 | if ((pmap) && (VM_PAGE_GET_PHYS_PAGE(m: result_page) != vm_page_guard_addr)) { |
6789 | pmap_change_wiring(pmap, |
6790 | va: pmap_addr + (va - entry->vme_start), FALSE); |
6791 | } |
6792 | |
6793 | |
6794 | if (VM_PAGE_WIRED(result_page)) { |
6795 | vm_page_lockspin_queues(); |
6796 | vm_page_unwire(page: result_page, TRUE); |
6797 | vm_page_unlock_queues(); |
6798 | unwired_pages++; |
6799 | } |
6800 | if (entry->zero_wired_pages) { |
6801 | pmap_zero_page(pn: VM_PAGE_GET_PHYS_PAGE(m: result_page)); |
6802 | entry->zero_wired_pages = FALSE; |
6803 | } |
6804 | |
6805 | PAGE_WAKEUP_DONE(result_page); |
6806 | } |
6807 | vm_fault_cleanup(object: result_object, top_page); |
6808 | } |
6809 | } |
6810 | |
6811 | /* |
6812 | * Inform the physical mapping system that the range |
6813 | * of addresses may fault, so that page tables and |
6814 | * such may be unwired themselves. |
6815 | */ |
6816 | |
6817 | pmap_pageable(pmap, pmap_addr, |
6818 | pmap_addr + (end_addr - entry->vme_start), TRUE); |
6819 | |
6820 | if (is_kernel_object(object)) { |
6821 | /* |
6822 | * Would like to make user_tag in vm_object_fault_info |
6823 | * vm_tag_t (unsigned short) but user_tag derives its value from |
6824 | * VME_ALIAS(entry) at a few places and VME_ALIAS, in turn, casts |
6825 | * to an _unsigned int_ which is used by non-fault_info paths throughout the |
6826 | * code at many places. |
6827 | * |
6828 | * So, for now, an explicit truncation to unsigned short (vm_tag_t). |
6829 | */ |
6830 | assertf((fault_info.user_tag & VME_ALIAS_MASK) == fault_info.user_tag, |
6831 | "VM Tag truncated from 0x%x to 0x%x\n" , fault_info.user_tag, (fault_info.user_tag & VME_ALIAS_MASK)); |
6832 | vm_tag_update_size(tag: (vm_tag_t) fault_info.user_tag, size: -ptoa_64(unwired_pages), NULL); |
6833 | } |
6834 | } |
6835 | |
6836 | /* |
6837 | * vm_fault_wire_fast: |
6838 | * |
6839 | * Handle common case of a wire down page fault at the given address. |
6840 | * If successful, the page is inserted into the associated physical map. |
6841 | * The map entry is passed in to avoid the overhead of a map lookup. |
6842 | * |
6843 | * NOTE: the given address should be truncated to the |
6844 | * proper page address. |
6845 | * |
6846 | * KERN_SUCCESS is returned if the page fault is handled; otherwise, |
6847 | * a standard error specifying why the fault is fatal is returned. |
6848 | * |
6849 | * The map in question must be referenced, and remains so. |
6850 | * Caller has a read lock on the map. |
6851 | * |
6852 | * This is a stripped version of vm_fault() for wiring pages. Anything |
6853 | * other than the common case will return KERN_FAILURE, and the caller |
6854 | * is expected to call vm_fault(). |
6855 | */ |
6856 | static kern_return_t |
6857 | vm_fault_wire_fast( |
6858 | __unused vm_map_t map, |
6859 | vm_map_offset_t va, |
6860 | __unused vm_prot_t caller_prot, |
6861 | vm_tag_t wire_tag, |
6862 | vm_map_entry_t entry, |
6863 | pmap_t pmap, |
6864 | vm_map_offset_t pmap_addr, |
6865 | ppnum_t *physpage_p) |
6866 | { |
6867 | vm_object_t object; |
6868 | vm_object_offset_t offset; |
6869 | vm_page_t m; |
6870 | vm_prot_t prot; |
6871 | thread_t thread = current_thread(); |
6872 | int type_of_fault; |
6873 | kern_return_t kr; |
6874 | vm_map_size_t fault_page_size; |
6875 | vm_map_offset_t fault_phys_offset; |
6876 | struct vm_object_fault_info fault_info = {}; |
6877 | uint8_t object_lock_type = 0; |
6878 | |
6879 | counter_inc(&vm_statistics_faults); |
6880 | |
6881 | if (thread != THREAD_NULL) { |
6882 | counter_inc(&get_threadtask(thread)->faults); |
6883 | } |
6884 | |
6885 | /* |
6886 | * Recovery actions |
6887 | */ |
6888 | |
6889 | #undef RELEASE_PAGE |
6890 | #define RELEASE_PAGE(m) { \ |
6891 | PAGE_WAKEUP_DONE(m); \ |
6892 | vm_page_lockspin_queues(); \ |
6893 | vm_page_unwire(m, TRUE); \ |
6894 | vm_page_unlock_queues(); \ |
6895 | } |
6896 | |
6897 | |
6898 | #undef UNLOCK_THINGS |
6899 | #define UNLOCK_THINGS { \ |
6900 | vm_object_paging_end(object); \ |
6901 | vm_object_unlock(object); \ |
6902 | } |
6903 | |
6904 | #undef UNLOCK_AND_DEALLOCATE |
6905 | #define UNLOCK_AND_DEALLOCATE { \ |
6906 | UNLOCK_THINGS; \ |
6907 | vm_object_deallocate(object); \ |
6908 | } |
6909 | /* |
6910 | * Give up and have caller do things the hard way. |
6911 | */ |
6912 | |
6913 | #define GIVE_UP { \ |
6914 | UNLOCK_AND_DEALLOCATE; \ |
6915 | return(KERN_FAILURE); \ |
6916 | } |
6917 | |
6918 | |
6919 | /* |
6920 | * If this entry is not directly to a vm_object, bail out. |
6921 | */ |
6922 | if (entry->is_sub_map) { |
6923 | assert(physpage_p == NULL); |
6924 | return KERN_FAILURE; |
6925 | } |
6926 | |
6927 | /* |
6928 | * Find the backing store object and offset into it. |
6929 | */ |
6930 | |
6931 | object = VME_OBJECT(entry); |
6932 | offset = (va - entry->vme_start) + VME_OFFSET(entry); |
6933 | prot = entry->protection; |
6934 | |
6935 | /* |
6936 | * Make a reference to this object to prevent its |
6937 | * disposal while we are messing with it. |
6938 | */ |
6939 | |
6940 | object_lock_type = OBJECT_LOCK_EXCLUSIVE; |
6941 | vm_object_lock(object); |
6942 | vm_object_reference_locked(object); |
6943 | vm_object_paging_begin(object); |
6944 | |
6945 | /* |
6946 | * INVARIANTS (through entire routine): |
6947 | * |
6948 | * 1) At all times, we must either have the object |
6949 | * lock or a busy page in some object to prevent |
6950 | * some other thread from trying to bring in |
6951 | * the same page. |
6952 | * |
6953 | * 2) Once we have a busy page, we must remove it from |
6954 | * the pageout queues, so that the pageout daemon |
6955 | * will not grab it away. |
6956 | * |
6957 | */ |
6958 | |
6959 | /* |
6960 | * Look for page in top-level object. If it's not there or |
6961 | * there's something going on, give up. |
6962 | */ |
6963 | m = vm_page_lookup(object, vm_object_trunc_page(offset)); |
6964 | if ((m == VM_PAGE_NULL) || (m->vmp_busy) || |
6965 | (m->vmp_unusual && (m->vmp_error || m->vmp_restart || m->vmp_absent))) { |
6966 | GIVE_UP; |
6967 | } |
6968 | if (m->vmp_fictitious && |
6969 | VM_PAGE_GET_PHYS_PAGE(m) == vm_page_guard_addr) { |
6970 | /* |
6971 | * Guard pages are fictitious pages and are never |
6972 | * entered into a pmap, so let's say it's been wired... |
6973 | */ |
6974 | kr = KERN_SUCCESS; |
6975 | goto done; |
6976 | } |
6977 | |
6978 | /* |
6979 | * Wire the page down now. All bail outs beyond this |
6980 | * point must unwire the page. |
6981 | */ |
6982 | |
6983 | vm_page_lockspin_queues(); |
6984 | vm_page_wire(page: m, tag: wire_tag, TRUE); |
6985 | vm_page_unlock_queues(); |
6986 | |
6987 | /* |
6988 | * Mark page busy for other threads. |
6989 | */ |
6990 | assert(!m->vmp_busy); |
6991 | m->vmp_busy = TRUE; |
6992 | assert(!m->vmp_absent); |
6993 | |
6994 | /* |
6995 | * Give up if the page is being written and there's a copy object |
6996 | */ |
6997 | if ((object->vo_copy != VM_OBJECT_NULL) && (prot & VM_PROT_WRITE)) { |
6998 | RELEASE_PAGE(m); |
6999 | GIVE_UP; |
7000 | } |
7001 | |
7002 | fault_info.user_tag = VME_ALIAS(entry); |
7003 | fault_info.pmap_options = 0; |
7004 | if (entry->iokit_acct || |
7005 | (!entry->is_sub_map && !entry->use_pmap)) { |
7006 | fault_info.pmap_options |= PMAP_OPTIONS_ALT_ACCT; |
7007 | } |
7008 | if (entry->vme_xnu_user_debug) { |
7009 | /* |
7010 | * Modified code-signed executable region: wiring will |
7011 | * copy the pages, so they should be XNU_USER_DEBUG rather |
7012 | * than XNU_USER_EXEC. |
7013 | */ |
7014 | fault_info.pmap_options |= PMAP_OPTIONS_XNU_USER_DEBUG; |
7015 | } |
7016 | |
7017 | fault_page_size = MIN(VM_MAP_PAGE_SIZE(map), PAGE_SIZE); |
7018 | fault_phys_offset = offset - vm_object_trunc_page(offset); |
7019 | |
7020 | /* |
7021 | * Put this page into the physical map. |
7022 | */ |
7023 | type_of_fault = DBG_CACHE_HIT_FAULT; |
7024 | assertf(VM_PAGE_OBJECT(m) == object, "m=%p object=%p" , m, object); |
7025 | assert(VM_PAGE_OBJECT(m) != VM_OBJECT_NULL); |
7026 | kr = vm_fault_enter(m, |
7027 | pmap, |
7028 | vaddr: pmap_addr, |
7029 | fault_page_size, |
7030 | fault_phys_offset, |
7031 | prot, |
7032 | caller_prot: prot, |
7033 | TRUE, /* wired */ |
7034 | FALSE, /* change_wiring */ |
7035 | wire_tag, |
7036 | fault_info: &fault_info, |
7037 | NULL, |
7038 | type_of_fault: &type_of_fault, |
7039 | object_lock_type: &object_lock_type); /* Exclusive lock mode. Will remain unchanged.*/ |
7040 | if (kr != KERN_SUCCESS) { |
7041 | RELEASE_PAGE(m); |
7042 | GIVE_UP; |
7043 | } |
7044 | |
7045 | done: |
7046 | /* |
7047 | * Unlock everything, and return |
7048 | */ |
7049 | |
7050 | if (physpage_p) { |
7051 | /* for vm_map_wire_and_extract() */ |
7052 | if (kr == KERN_SUCCESS) { |
7053 | assert(object == VM_PAGE_OBJECT(m)); |
7054 | *physpage_p = VM_PAGE_GET_PHYS_PAGE(m); |
7055 | if (prot & VM_PROT_WRITE) { |
7056 | vm_object_lock_assert_exclusive(object); |
7057 | m->vmp_dirty = TRUE; |
7058 | } |
7059 | } else { |
7060 | *physpage_p = 0; |
7061 | } |
7062 | } |
7063 | |
7064 | PAGE_WAKEUP_DONE(m); |
7065 | UNLOCK_AND_DEALLOCATE; |
7066 | |
7067 | return kr; |
7068 | } |
7069 | |
7070 | /* |
7071 | * Routine: vm_fault_copy_cleanup |
7072 | * Purpose: |
7073 | * Release a page used by vm_fault_copy. |
7074 | */ |
7075 | |
7076 | static void |
7077 | vm_fault_copy_cleanup( |
7078 | vm_page_t page, |
7079 | vm_page_t top_page) |
7080 | { |
7081 | vm_object_t object = VM_PAGE_OBJECT(page); |
7082 | |
7083 | vm_object_lock(object); |
7084 | PAGE_WAKEUP_DONE(page); |
7085 | if (!VM_PAGE_PAGEABLE(page)) { |
7086 | vm_page_lockspin_queues(); |
7087 | if (!VM_PAGE_PAGEABLE(page)) { |
7088 | vm_page_activate(page); |
7089 | } |
7090 | vm_page_unlock_queues(); |
7091 | } |
7092 | vm_fault_cleanup(object, top_page); |
7093 | } |
7094 | |
7095 | static void |
7096 | vm_fault_copy_dst_cleanup( |
7097 | vm_page_t page) |
7098 | { |
7099 | vm_object_t object; |
7100 | |
7101 | if (page != VM_PAGE_NULL) { |
7102 | object = VM_PAGE_OBJECT(page); |
7103 | vm_object_lock(object); |
7104 | vm_page_lockspin_queues(); |
7105 | vm_page_unwire(page, TRUE); |
7106 | vm_page_unlock_queues(); |
7107 | vm_object_paging_end(object); |
7108 | vm_object_unlock(object); |
7109 | } |
7110 | } |
7111 | |
7112 | /* |
7113 | * Routine: vm_fault_copy |
7114 | * |
7115 | * Purpose: |
7116 | * Copy pages from one virtual memory object to another -- |
7117 | * neither the source nor destination pages need be resident. |
7118 | * |
7119 | * Before actually copying a page, the version associated with |
7120 | * the destination address map wil be verified. |
7121 | * |
7122 | * In/out conditions: |
7123 | * The caller must hold a reference, but not a lock, to |
7124 | * each of the source and destination objects and to the |
7125 | * destination map. |
7126 | * |
7127 | * Results: |
7128 | * Returns KERN_SUCCESS if no errors were encountered in |
7129 | * reading or writing the data. Returns KERN_INTERRUPTED if |
7130 | * the operation was interrupted (only possible if the |
7131 | * "interruptible" argument is asserted). Other return values |
7132 | * indicate a permanent error in copying the data. |
7133 | * |
7134 | * The actual amount of data copied will be returned in the |
7135 | * "copy_size" argument. In the event that the destination map |
7136 | * verification failed, this amount may be less than the amount |
7137 | * requested. |
7138 | */ |
7139 | kern_return_t |
7140 | vm_fault_copy( |
7141 | vm_object_t src_object, |
7142 | vm_object_offset_t src_offset, |
7143 | vm_map_size_t *copy_size, /* INOUT */ |
7144 | vm_object_t dst_object, |
7145 | vm_object_offset_t dst_offset, |
7146 | vm_map_t dst_map, |
7147 | vm_map_version_t *dst_version, |
7148 | int interruptible) |
7149 | { |
7150 | vm_page_t result_page; |
7151 | |
7152 | vm_page_t src_page; |
7153 | vm_page_t src_top_page; |
7154 | vm_prot_t src_prot; |
7155 | |
7156 | vm_page_t dst_page; |
7157 | vm_page_t dst_top_page; |
7158 | vm_prot_t dst_prot; |
7159 | |
7160 | vm_map_size_t amount_left; |
7161 | vm_object_t old_copy_object; |
7162 | uint32_t old_copy_version; |
7163 | vm_object_t result_page_object = NULL; |
7164 | kern_return_t error = 0; |
7165 | vm_fault_return_t result; |
7166 | |
7167 | vm_map_size_t part_size; |
7168 | struct vm_object_fault_info fault_info_src = {}; |
7169 | struct vm_object_fault_info fault_info_dst = {}; |
7170 | |
7171 | /* |
7172 | * In order not to confuse the clustered pageins, align |
7173 | * the different offsets on a page boundary. |
7174 | */ |
7175 | |
7176 | #define RETURN(x) \ |
7177 | MACRO_BEGIN \ |
7178 | *copy_size -= amount_left; \ |
7179 | MACRO_RETURN(x); \ |
7180 | MACRO_END |
7181 | |
7182 | amount_left = *copy_size; |
7183 | |
7184 | fault_info_src.interruptible = interruptible; |
7185 | fault_info_src.behavior = VM_BEHAVIOR_SEQUENTIAL; |
7186 | fault_info_src.lo_offset = vm_object_trunc_page(src_offset); |
7187 | fault_info_src.hi_offset = fault_info_src.lo_offset + amount_left; |
7188 | fault_info_src.stealth = TRUE; |
7189 | |
7190 | fault_info_dst.interruptible = interruptible; |
7191 | fault_info_dst.behavior = VM_BEHAVIOR_SEQUENTIAL; |
7192 | fault_info_dst.lo_offset = vm_object_trunc_page(dst_offset); |
7193 | fault_info_dst.hi_offset = fault_info_dst.lo_offset + amount_left; |
7194 | fault_info_dst.stealth = TRUE; |
7195 | |
7196 | do { /* while (amount_left > 0) */ |
7197 | /* |
7198 | * There may be a deadlock if both source and destination |
7199 | * pages are the same. To avoid this deadlock, the copy must |
7200 | * start by getting the destination page in order to apply |
7201 | * COW semantics if any. |
7202 | */ |
7203 | |
7204 | RetryDestinationFault:; |
7205 | |
7206 | dst_prot = VM_PROT_WRITE | VM_PROT_READ; |
7207 | |
7208 | vm_object_lock(dst_object); |
7209 | vm_object_paging_begin(dst_object); |
7210 | |
7211 | /* cap cluster size at maximum UPL size */ |
7212 | upl_size_t cluster_size; |
7213 | if (os_convert_overflow(amount_left, &cluster_size)) { |
7214 | cluster_size = 0 - (upl_size_t)PAGE_SIZE; |
7215 | } |
7216 | fault_info_dst.cluster_size = cluster_size; |
7217 | |
7218 | dst_page = VM_PAGE_NULL; |
7219 | result = vm_fault_page(first_object: dst_object, |
7220 | vm_object_trunc_page(dst_offset), |
7221 | VM_PROT_WRITE | VM_PROT_READ, |
7222 | FALSE, |
7223 | FALSE, /* page not looked up */ |
7224 | protection: &dst_prot, result_page: &dst_page, top_page: &dst_top_page, |
7225 | type_of_fault: (int *)0, |
7226 | error_code: &error, |
7227 | no_zero_fill: dst_map->no_zero_fill, |
7228 | fault_info: &fault_info_dst); |
7229 | switch (result) { |
7230 | case VM_FAULT_SUCCESS: |
7231 | break; |
7232 | case VM_FAULT_RETRY: |
7233 | goto RetryDestinationFault; |
7234 | case VM_FAULT_MEMORY_SHORTAGE: |
7235 | if (vm_page_wait(interruptible)) { |
7236 | goto RetryDestinationFault; |
7237 | } |
7238 | ktriage_record(thread_id: thread_tid(thread: current_thread()), KDBG_TRIAGE_EVENTID(KDBG_TRIAGE_SUBSYS_VM, KDBG_TRIAGE_RESERVED, KDBG_TRIAGE_VM_FAULT_COPY_MEMORY_SHORTAGE), arg: 0 /* arg */); |
7239 | OS_FALLTHROUGH; |
7240 | case VM_FAULT_INTERRUPTED: |
7241 | RETURN(MACH_SEND_INTERRUPTED); |
7242 | case VM_FAULT_SUCCESS_NO_VM_PAGE: |
7243 | /* success but no VM page: fail the copy */ |
7244 | vm_object_paging_end(dst_object); |
7245 | vm_object_unlock(dst_object); |
7246 | OS_FALLTHROUGH; |
7247 | case VM_FAULT_MEMORY_ERROR: |
7248 | if (error) { |
7249 | return error; |
7250 | } else { |
7251 | return KERN_MEMORY_ERROR; |
7252 | } |
7253 | default: |
7254 | panic("vm_fault_copy: unexpected error 0x%x from " |
7255 | "vm_fault_page()\n" , result); |
7256 | } |
7257 | assert((dst_prot & VM_PROT_WRITE) != VM_PROT_NONE); |
7258 | |
7259 | assert(dst_object == VM_PAGE_OBJECT(dst_page)); |
7260 | old_copy_object = dst_object->vo_copy; |
7261 | old_copy_version = dst_object->vo_copy_version; |
7262 | |
7263 | /* |
7264 | * There exists the possiblity that the source and |
7265 | * destination page are the same. But we can't |
7266 | * easily determine that now. If they are the |
7267 | * same, the call to vm_fault_page() for the |
7268 | * destination page will deadlock. To prevent this we |
7269 | * wire the page so we can drop busy without having |
7270 | * the page daemon steal the page. We clean up the |
7271 | * top page but keep the paging reference on the object |
7272 | * holding the dest page so it doesn't go away. |
7273 | */ |
7274 | |
7275 | vm_page_lockspin_queues(); |
7276 | vm_page_wire(page: dst_page, VM_KERN_MEMORY_OSFMK, TRUE); |
7277 | vm_page_unlock_queues(); |
7278 | PAGE_WAKEUP_DONE(dst_page); |
7279 | vm_object_unlock(dst_object); |
7280 | |
7281 | if (dst_top_page != VM_PAGE_NULL) { |
7282 | vm_object_lock(dst_object); |
7283 | VM_PAGE_FREE(dst_top_page); |
7284 | vm_object_paging_end(dst_object); |
7285 | vm_object_unlock(dst_object); |
7286 | } |
7287 | |
7288 | RetrySourceFault:; |
7289 | |
7290 | if (src_object == VM_OBJECT_NULL) { |
7291 | /* |
7292 | * No source object. We will just |
7293 | * zero-fill the page in dst_object. |
7294 | */ |
7295 | src_page = VM_PAGE_NULL; |
7296 | result_page = VM_PAGE_NULL; |
7297 | } else { |
7298 | vm_object_lock(src_object); |
7299 | src_page = vm_page_lookup(object: src_object, |
7300 | vm_object_trunc_page(src_offset)); |
7301 | if (src_page == dst_page) { |
7302 | src_prot = dst_prot; |
7303 | result_page = VM_PAGE_NULL; |
7304 | } else { |
7305 | src_prot = VM_PROT_READ; |
7306 | vm_object_paging_begin(src_object); |
7307 | |
7308 | /* cap cluster size at maximum UPL size */ |
7309 | if (os_convert_overflow(amount_left, &cluster_size)) { |
7310 | cluster_size = 0 - (upl_size_t)PAGE_SIZE; |
7311 | } |
7312 | fault_info_src.cluster_size = cluster_size; |
7313 | |
7314 | result_page = VM_PAGE_NULL; |
7315 | result = vm_fault_page( |
7316 | first_object: src_object, |
7317 | vm_object_trunc_page(src_offset), |
7318 | VM_PROT_READ, FALSE, |
7319 | FALSE, /* page not looked up */ |
7320 | protection: &src_prot, |
7321 | result_page: &result_page, top_page: &src_top_page, |
7322 | type_of_fault: (int *)0, error_code: &error, FALSE, |
7323 | fault_info: &fault_info_src); |
7324 | |
7325 | switch (result) { |
7326 | case VM_FAULT_SUCCESS: |
7327 | break; |
7328 | case VM_FAULT_RETRY: |
7329 | goto RetrySourceFault; |
7330 | case VM_FAULT_MEMORY_SHORTAGE: |
7331 | if (vm_page_wait(interruptible)) { |
7332 | goto RetrySourceFault; |
7333 | } |
7334 | OS_FALLTHROUGH; |
7335 | case VM_FAULT_INTERRUPTED: |
7336 | vm_fault_copy_dst_cleanup(page: dst_page); |
7337 | RETURN(MACH_SEND_INTERRUPTED); |
7338 | case VM_FAULT_SUCCESS_NO_VM_PAGE: |
7339 | /* success but no VM page: fail */ |
7340 | vm_object_paging_end(src_object); |
7341 | vm_object_unlock(src_object); |
7342 | OS_FALLTHROUGH; |
7343 | case VM_FAULT_MEMORY_ERROR: |
7344 | vm_fault_copy_dst_cleanup(page: dst_page); |
7345 | if (error) { |
7346 | return error; |
7347 | } else { |
7348 | return KERN_MEMORY_ERROR; |
7349 | } |
7350 | default: |
7351 | panic("vm_fault_copy(2): unexpected " |
7352 | "error 0x%x from " |
7353 | "vm_fault_page()\n" , result); |
7354 | } |
7355 | |
7356 | result_page_object = VM_PAGE_OBJECT(result_page); |
7357 | assert((src_top_page == VM_PAGE_NULL) == |
7358 | (result_page_object == src_object)); |
7359 | } |
7360 | assert((src_prot & VM_PROT_READ) != VM_PROT_NONE); |
7361 | vm_object_unlock(result_page_object); |
7362 | } |
7363 | |
7364 | vm_map_lock_read(dst_map); |
7365 | |
7366 | if (!vm_map_verify(map: dst_map, version: dst_version)) { |
7367 | vm_map_unlock_read(dst_map); |
7368 | if (result_page != VM_PAGE_NULL && src_page != dst_page) { |
7369 | vm_fault_copy_cleanup(page: result_page, top_page: src_top_page); |
7370 | } |
7371 | vm_fault_copy_dst_cleanup(page: dst_page); |
7372 | break; |
7373 | } |
7374 | assert(dst_object == VM_PAGE_OBJECT(dst_page)); |
7375 | |
7376 | vm_object_lock(dst_object); |
7377 | |
7378 | if ((dst_object->vo_copy != old_copy_object || |
7379 | dst_object->vo_copy_version != old_copy_version)) { |
7380 | vm_object_unlock(dst_object); |
7381 | vm_map_unlock_read(dst_map); |
7382 | if (result_page != VM_PAGE_NULL && src_page != dst_page) { |
7383 | vm_fault_copy_cleanup(page: result_page, top_page: src_top_page); |
7384 | } |
7385 | vm_fault_copy_dst_cleanup(page: dst_page); |
7386 | break; |
7387 | } |
7388 | vm_object_unlock(dst_object); |
7389 | |
7390 | /* |
7391 | * Copy the page, and note that it is dirty |
7392 | * immediately. |
7393 | */ |
7394 | |
7395 | if (!page_aligned(src_offset) || |
7396 | !page_aligned(dst_offset) || |
7397 | !page_aligned(amount_left)) { |
7398 | vm_object_offset_t src_po, |
7399 | dst_po; |
7400 | |
7401 | src_po = src_offset - vm_object_trunc_page(src_offset); |
7402 | dst_po = dst_offset - vm_object_trunc_page(dst_offset); |
7403 | |
7404 | if (dst_po > src_po) { |
7405 | part_size = PAGE_SIZE - dst_po; |
7406 | } else { |
7407 | part_size = PAGE_SIZE - src_po; |
7408 | } |
7409 | if (part_size > (amount_left)) { |
7410 | part_size = amount_left; |
7411 | } |
7412 | |
7413 | if (result_page == VM_PAGE_NULL) { |
7414 | assert((vm_offset_t) dst_po == dst_po); |
7415 | assert((vm_size_t) part_size == part_size); |
7416 | vm_page_part_zero_fill(m: dst_page, |
7417 | m_pa: (vm_offset_t) dst_po, |
7418 | len: (vm_size_t) part_size); |
7419 | } else { |
7420 | assert((vm_offset_t) src_po == src_po); |
7421 | assert((vm_offset_t) dst_po == dst_po); |
7422 | assert((vm_size_t) part_size == part_size); |
7423 | vm_page_part_copy(src_m: result_page, |
7424 | src_pa: (vm_offset_t) src_po, |
7425 | dst_m: dst_page, |
7426 | dst_pa: (vm_offset_t) dst_po, |
7427 | len: (vm_size_t)part_size); |
7428 | if (!dst_page->vmp_dirty) { |
7429 | vm_object_lock(dst_object); |
7430 | SET_PAGE_DIRTY(dst_page, TRUE); |
7431 | vm_object_unlock(dst_object); |
7432 | } |
7433 | } |
7434 | } else { |
7435 | part_size = PAGE_SIZE; |
7436 | |
7437 | if (result_page == VM_PAGE_NULL) { |
7438 | vm_page_zero_fill(page: dst_page); |
7439 | } else { |
7440 | vm_object_lock(result_page_object); |
7441 | vm_page_copy(src_page: result_page, dest_page: dst_page); |
7442 | vm_object_unlock(result_page_object); |
7443 | |
7444 | if (!dst_page->vmp_dirty) { |
7445 | vm_object_lock(dst_object); |
7446 | SET_PAGE_DIRTY(dst_page, TRUE); |
7447 | vm_object_unlock(dst_object); |
7448 | } |
7449 | } |
7450 | } |
7451 | |
7452 | /* |
7453 | * Unlock everything, and return |
7454 | */ |
7455 | |
7456 | vm_map_unlock_read(dst_map); |
7457 | |
7458 | if (result_page != VM_PAGE_NULL && src_page != dst_page) { |
7459 | vm_fault_copy_cleanup(page: result_page, top_page: src_top_page); |
7460 | } |
7461 | vm_fault_copy_dst_cleanup(page: dst_page); |
7462 | |
7463 | amount_left -= part_size; |
7464 | src_offset += part_size; |
7465 | dst_offset += part_size; |
7466 | } while (amount_left > 0); |
7467 | |
7468 | RETURN(KERN_SUCCESS); |
7469 | #undef RETURN |
7470 | |
7471 | /*NOTREACHED*/ |
7472 | } |
7473 | |
7474 | #if VM_FAULT_CLASSIFY |
7475 | /* |
7476 | * Temporary statistics gathering support. |
7477 | */ |
7478 | |
7479 | /* |
7480 | * Statistics arrays: |
7481 | */ |
7482 | #define VM_FAULT_TYPES_MAX 5 |
7483 | #define VM_FAULT_LEVEL_MAX 8 |
7484 | |
7485 | int vm_fault_stats[VM_FAULT_TYPES_MAX][VM_FAULT_LEVEL_MAX]; |
7486 | |
7487 | #define VM_FAULT_TYPE_ZERO_FILL 0 |
7488 | #define VM_FAULT_TYPE_MAP_IN 1 |
7489 | #define VM_FAULT_TYPE_PAGER 2 |
7490 | #define VM_FAULT_TYPE_COPY 3 |
7491 | #define VM_FAULT_TYPE_OTHER 4 |
7492 | |
7493 | |
7494 | void |
7495 | vm_fault_classify(vm_object_t object, |
7496 | vm_object_offset_t offset, |
7497 | vm_prot_t fault_type) |
7498 | { |
7499 | int type, level = 0; |
7500 | vm_page_t m; |
7501 | |
7502 | while (TRUE) { |
7503 | m = vm_page_lookup(object, offset); |
7504 | if (m != VM_PAGE_NULL) { |
7505 | if (m->vmp_busy || m->vmp_error || m->vmp_restart || m->vmp_absent) { |
7506 | type = VM_FAULT_TYPE_OTHER; |
7507 | break; |
7508 | } |
7509 | if (((fault_type & VM_PROT_WRITE) == 0) || |
7510 | ((level == 0) && object->vo_copy == VM_OBJECT_NULL)) { |
7511 | type = VM_FAULT_TYPE_MAP_IN; |
7512 | break; |
7513 | } |
7514 | type = VM_FAULT_TYPE_COPY; |
7515 | break; |
7516 | } else { |
7517 | if (object->pager_created) { |
7518 | type = VM_FAULT_TYPE_PAGER; |
7519 | break; |
7520 | } |
7521 | if (object->shadow == VM_OBJECT_NULL) { |
7522 | type = VM_FAULT_TYPE_ZERO_FILL; |
7523 | break; |
7524 | } |
7525 | |
7526 | offset += object->vo_shadow_offset; |
7527 | object = object->shadow; |
7528 | level++; |
7529 | continue; |
7530 | } |
7531 | } |
7532 | |
7533 | if (level > VM_FAULT_LEVEL_MAX) { |
7534 | level = VM_FAULT_LEVEL_MAX; |
7535 | } |
7536 | |
7537 | vm_fault_stats[type][level] += 1; |
7538 | |
7539 | return; |
7540 | } |
7541 | |
7542 | /* cleanup routine to call from debugger */ |
7543 | |
7544 | void |
7545 | vm_fault_classify_init(void) |
7546 | { |
7547 | int type, level; |
7548 | |
7549 | for (type = 0; type < VM_FAULT_TYPES_MAX; type++) { |
7550 | for (level = 0; level < VM_FAULT_LEVEL_MAX; level++) { |
7551 | vm_fault_stats[type][level] = 0; |
7552 | } |
7553 | } |
7554 | |
7555 | return; |
7556 | } |
7557 | #endif /* VM_FAULT_CLASSIFY */ |
7558 | |
7559 | vm_offset_t |
7560 | kdp_lightweight_fault(vm_map_t map, vm_offset_t cur_target_addr) |
7561 | { |
7562 | vm_map_entry_t entry; |
7563 | vm_object_t object; |
7564 | vm_offset_t object_offset; |
7565 | vm_page_t m; |
7566 | int compressor_external_state, compressed_count_delta; |
7567 | vm_compressor_options_t compressor_flags = (C_DONT_BLOCK | C_KEEP | C_KDP); |
7568 | int my_fault_type = VM_PROT_READ; |
7569 | kern_return_t kr; |
7570 | int effective_page_mask, effective_page_size; |
7571 | |
7572 | if (VM_MAP_PAGE_SHIFT(map) < PAGE_SHIFT) { |
7573 | effective_page_mask = VM_MAP_PAGE_MASK(map); |
7574 | effective_page_size = VM_MAP_PAGE_SIZE(map); |
7575 | } else { |
7576 | effective_page_mask = PAGE_MASK; |
7577 | effective_page_size = PAGE_SIZE; |
7578 | } |
7579 | |
7580 | if (not_in_kdp) { |
7581 | panic("kdp_lightweight_fault called from outside of debugger context" ); |
7582 | } |
7583 | |
7584 | assert(map != VM_MAP_NULL); |
7585 | |
7586 | assert((cur_target_addr & effective_page_mask) == 0); |
7587 | if ((cur_target_addr & effective_page_mask) != 0) { |
7588 | return 0; |
7589 | } |
7590 | |
7591 | if (kdp_lck_rw_lock_is_acquired_exclusive(lck: &map->lock)) { |
7592 | return 0; |
7593 | } |
7594 | |
7595 | if (!vm_map_lookup_entry(map, address: cur_target_addr, entry: &entry)) { |
7596 | return 0; |
7597 | } |
7598 | |
7599 | if (entry->is_sub_map) { |
7600 | return 0; |
7601 | } |
7602 | |
7603 | object = VME_OBJECT(entry); |
7604 | if (object == VM_OBJECT_NULL) { |
7605 | return 0; |
7606 | } |
7607 | |
7608 | object_offset = cur_target_addr - entry->vme_start + VME_OFFSET(entry); |
7609 | |
7610 | while (TRUE) { |
7611 | if (kdp_lck_rw_lock_is_acquired_exclusive(lck: &object->Lock)) { |
7612 | return 0; |
7613 | } |
7614 | |
7615 | if (object->pager_created && (object->paging_in_progress || |
7616 | object->activity_in_progress)) { |
7617 | return 0; |
7618 | } |
7619 | |
7620 | m = kdp_vm_page_lookup(object, vm_object_trunc_page(object_offset)); |
7621 | |
7622 | if (m != VM_PAGE_NULL) { |
7623 | if ((object->wimg_bits & VM_WIMG_MASK) != VM_WIMG_DEFAULT) { |
7624 | return 0; |
7625 | } |
7626 | |
7627 | if (m->vmp_laundry || m->vmp_busy || m->vmp_free_when_done || m->vmp_absent || VMP_ERROR_GET(m) || m->vmp_cleaning || |
7628 | m->vmp_overwriting || m->vmp_restart || m->vmp_unusual) { |
7629 | return 0; |
7630 | } |
7631 | |
7632 | assert(!m->vmp_private); |
7633 | if (m->vmp_private) { |
7634 | return 0; |
7635 | } |
7636 | |
7637 | assert(!m->vmp_fictitious); |
7638 | if (m->vmp_fictitious) { |
7639 | return 0; |
7640 | } |
7641 | |
7642 | assert(m->vmp_q_state != VM_PAGE_USED_BY_COMPRESSOR); |
7643 | if (m->vmp_q_state == VM_PAGE_USED_BY_COMPRESSOR) { |
7644 | return 0; |
7645 | } |
7646 | |
7647 | return ptoa(VM_PAGE_GET_PHYS_PAGE(m)); |
7648 | } |
7649 | |
7650 | compressor_external_state = VM_EXTERNAL_STATE_UNKNOWN; |
7651 | |
7652 | if (object->pager_created && MUST_ASK_PAGER(object, object_offset, compressor_external_state)) { |
7653 | if (compressor_external_state == VM_EXTERNAL_STATE_EXISTS) { |
7654 | kr = vm_compressor_pager_get(mem_obj: object->pager, |
7655 | vm_object_trunc_page(object_offset + object->paging_offset), |
7656 | ppnum: kdp_compressor_decompressed_page_ppnum, my_fault_type: &my_fault_type, |
7657 | flags: compressor_flags, compressed_count_delta_p: &compressed_count_delta); |
7658 | if (kr == KERN_SUCCESS) { |
7659 | return kdp_compressor_decompressed_page_paddr; |
7660 | } else { |
7661 | return 0; |
7662 | } |
7663 | } |
7664 | } |
7665 | |
7666 | if (object->shadow == VM_OBJECT_NULL) { |
7667 | return 0; |
7668 | } |
7669 | |
7670 | object_offset += object->vo_shadow_offset; |
7671 | object = object->shadow; |
7672 | } |
7673 | } |
7674 | |
7675 | /* |
7676 | * vm_page_validate_cs_fast(): |
7677 | * Performs a few quick checks to determine if the page's code signature |
7678 | * really needs to be fully validated. It could: |
7679 | * 1. have been modified (i.e. automatically tainted), |
7680 | * 2. have already been validated, |
7681 | * 3. have already been found to be tainted, |
7682 | * 4. no longer have a backing store. |
7683 | * Returns FALSE if the page needs to be fully validated. |
7684 | */ |
7685 | static boolean_t |
7686 | vm_page_validate_cs_fast( |
7687 | vm_page_t page, |
7688 | vm_map_size_t fault_page_size, |
7689 | vm_map_offset_t fault_phys_offset) |
7690 | { |
7691 | vm_object_t object; |
7692 | |
7693 | object = VM_PAGE_OBJECT(page); |
7694 | vm_object_lock_assert_held(object); |
7695 | |
7696 | if (page->vmp_wpmapped && |
7697 | !VMP_CS_TAINTED(p: page, fault_page_size, fault_phys_offset)) { |
7698 | /* |
7699 | * This page was mapped for "write" access sometime in the |
7700 | * past and could still be modifiable in the future. |
7701 | * Consider it tainted. |
7702 | * [ If the page was already found to be "tainted", no |
7703 | * need to re-validate. ] |
7704 | */ |
7705 | vm_object_lock_assert_exclusive(object); |
7706 | VMP_CS_SET_VALIDATED(p: page, fault_page_size, fault_phys_offset, TRUE); |
7707 | VMP_CS_SET_TAINTED(p: page, fault_page_size, fault_phys_offset, TRUE); |
7708 | if (cs_debug) { |
7709 | printf(format: "CODESIGNING: %s: " |
7710 | "page %p obj %p off 0x%llx " |
7711 | "was modified\n" , |
7712 | __FUNCTION__, |
7713 | page, object, page->vmp_offset); |
7714 | } |
7715 | vm_cs_validated_dirtied++; |
7716 | } |
7717 | |
7718 | if (VMP_CS_VALIDATED(p: page, fault_page_size, fault_phys_offset) || |
7719 | VMP_CS_TAINTED(p: page, fault_page_size, fault_phys_offset)) { |
7720 | return TRUE; |
7721 | } |
7722 | vm_object_lock_assert_exclusive(object); |
7723 | |
7724 | #if CHECK_CS_VALIDATION_BITMAP |
7725 | kern_return_t kr; |
7726 | |
7727 | kr = vnode_pager_cs_check_validation_bitmap( |
7728 | object->pager, |
7729 | page->vmp_offset + object->paging_offset, |
7730 | CS_BITMAP_CHECK); |
7731 | if (kr == KERN_SUCCESS) { |
7732 | page->vmp_cs_validated = VMP_CS_ALL_TRUE; |
7733 | page->vmp_cs_tainted = VMP_CS_ALL_FALSE; |
7734 | vm_cs_bitmap_validated++; |
7735 | return TRUE; |
7736 | } |
7737 | #endif /* CHECK_CS_VALIDATION_BITMAP */ |
7738 | |
7739 | if (!object->alive || object->terminating || object->pager == NULL) { |
7740 | /* |
7741 | * The object is terminating and we don't have its pager |
7742 | * so we can't validate the data... |
7743 | */ |
7744 | return TRUE; |
7745 | } |
7746 | |
7747 | /* we need to really validate this page */ |
7748 | vm_object_lock_assert_exclusive(object); |
7749 | return FALSE; |
7750 | } |
7751 | |
7752 | void |
7753 | vm_page_validate_cs_mapped_slow( |
7754 | vm_page_t page, |
7755 | const void *kaddr) |
7756 | { |
7757 | vm_object_t object; |
7758 | memory_object_offset_t mo_offset; |
7759 | memory_object_t ; |
7760 | struct vnode *vnode; |
7761 | int validated, tainted, nx; |
7762 | |
7763 | assert(page->vmp_busy); |
7764 | object = VM_PAGE_OBJECT(page); |
7765 | vm_object_lock_assert_exclusive(object); |
7766 | |
7767 | vm_cs_validates++; |
7768 | |
7769 | /* |
7770 | * Since we get here to validate a page that was brought in by |
7771 | * the pager, we know that this pager is all setup and ready |
7772 | * by now. |
7773 | */ |
7774 | assert(object->code_signed); |
7775 | assert(!object->internal); |
7776 | assert(object->pager != NULL); |
7777 | assert(object->pager_ready); |
7778 | |
7779 | pager = object->pager; |
7780 | assert(object->paging_in_progress); |
7781 | vnode = vnode_pager_lookup_vnode(pager); |
7782 | mo_offset = page->vmp_offset + object->paging_offset; |
7783 | |
7784 | /* verify the SHA1 hash for this page */ |
7785 | validated = 0; |
7786 | tainted = 0; |
7787 | nx = 0; |
7788 | cs_validate_page(vp: vnode, |
7789 | pager, |
7790 | offset: mo_offset, |
7791 | data: (const void *)((const char *)kaddr), |
7792 | validated_p: &validated, |
7793 | tainted_p: &tainted, |
7794 | nx_p: &nx); |
7795 | |
7796 | page->vmp_cs_validated |= validated; |
7797 | page->vmp_cs_tainted |= tainted; |
7798 | page->vmp_cs_nx |= nx; |
7799 | |
7800 | #if CHECK_CS_VALIDATION_BITMAP |
7801 | if (page->vmp_cs_validated == VMP_CS_ALL_TRUE && |
7802 | page->vmp_cs_tainted == VMP_CS_ALL_FALSE) { |
7803 | vnode_pager_cs_check_validation_bitmap(object->pager, |
7804 | mo_offset, |
7805 | CS_BITMAP_SET); |
7806 | } |
7807 | #endif /* CHECK_CS_VALIDATION_BITMAP */ |
7808 | } |
7809 | |
7810 | void |
7811 | vm_page_validate_cs_mapped( |
7812 | vm_page_t page, |
7813 | vm_map_size_t fault_page_size, |
7814 | vm_map_offset_t fault_phys_offset, |
7815 | const void *kaddr) |
7816 | { |
7817 | if (!vm_page_validate_cs_fast(page, fault_page_size, fault_phys_offset)) { |
7818 | vm_page_validate_cs_mapped_slow(page, kaddr); |
7819 | } |
7820 | } |
7821 | |
7822 | static void |
7823 | vm_page_map_and_validate_cs( |
7824 | vm_object_t object, |
7825 | vm_page_t page) |
7826 | { |
7827 | vm_object_offset_t offset; |
7828 | vm_map_offset_t koffset; |
7829 | vm_map_size_t ksize; |
7830 | vm_offset_t kaddr; |
7831 | kern_return_t kr; |
7832 | boolean_t busy_page; |
7833 | boolean_t need_unmap; |
7834 | |
7835 | vm_object_lock_assert_exclusive(object); |
7836 | |
7837 | assert(object->code_signed); |
7838 | offset = page->vmp_offset; |
7839 | |
7840 | busy_page = page->vmp_busy; |
7841 | if (!busy_page) { |
7842 | /* keep page busy while we map (and unlock) the VM object */ |
7843 | page->vmp_busy = TRUE; |
7844 | } |
7845 | |
7846 | /* |
7847 | * Take a paging reference on the VM object |
7848 | * to protect it from collapse or bypass, |
7849 | * and keep it from disappearing too. |
7850 | */ |
7851 | vm_object_paging_begin(object); |
7852 | |
7853 | /* map the page in the kernel address space */ |
7854 | ksize = PAGE_SIZE_64; |
7855 | koffset = 0; |
7856 | need_unmap = FALSE; |
7857 | kr = vm_paging_map_object(page, |
7858 | object, |
7859 | offset, |
7860 | VM_PROT_READ, |
7861 | FALSE, /* can't unlock object ! */ |
7862 | size: &ksize, |
7863 | address: &koffset, |
7864 | need_unmap: &need_unmap); |
7865 | if (kr != KERN_SUCCESS) { |
7866 | panic("%s: could not map page: 0x%x" , __FUNCTION__, kr); |
7867 | } |
7868 | kaddr = CAST_DOWN(vm_offset_t, koffset); |
7869 | |
7870 | /* validate the mapped page */ |
7871 | vm_page_validate_cs_mapped_slow(page, kaddr: (const void *) kaddr); |
7872 | |
7873 | assert(page->vmp_busy); |
7874 | assert(object == VM_PAGE_OBJECT(page)); |
7875 | vm_object_lock_assert_exclusive(object); |
7876 | |
7877 | if (!busy_page) { |
7878 | PAGE_WAKEUP_DONE(page); |
7879 | } |
7880 | if (need_unmap) { |
7881 | /* unmap the map from the kernel address space */ |
7882 | vm_paging_unmap_object(object, start: koffset, end: koffset + ksize); |
7883 | koffset = 0; |
7884 | ksize = 0; |
7885 | kaddr = 0; |
7886 | } |
7887 | vm_object_paging_end(object); |
7888 | } |
7889 | |
7890 | void |
7891 | vm_page_validate_cs( |
7892 | vm_page_t page, |
7893 | vm_map_size_t fault_page_size, |
7894 | vm_map_offset_t fault_phys_offset) |
7895 | { |
7896 | vm_object_t object; |
7897 | |
7898 | object = VM_PAGE_OBJECT(page); |
7899 | vm_object_lock_assert_held(object); |
7900 | |
7901 | if (vm_page_validate_cs_fast(page, fault_page_size, fault_phys_offset)) { |
7902 | return; |
7903 | } |
7904 | vm_page_map_and_validate_cs(object, page); |
7905 | } |
7906 | |
7907 | void |
7908 | vm_page_validate_cs_mapped_chunk( |
7909 | vm_page_t page, |
7910 | const void *kaddr, |
7911 | vm_offset_t chunk_offset, |
7912 | vm_size_t chunk_size, |
7913 | boolean_t *validated_p, |
7914 | unsigned *tainted_p) |
7915 | { |
7916 | vm_object_t object; |
7917 | vm_object_offset_t offset, offset_in_page; |
7918 | memory_object_t ; |
7919 | struct vnode *vnode; |
7920 | boolean_t validated; |
7921 | unsigned tainted; |
7922 | |
7923 | *validated_p = FALSE; |
7924 | *tainted_p = 0; |
7925 | |
7926 | assert(page->vmp_busy); |
7927 | object = VM_PAGE_OBJECT(page); |
7928 | vm_object_lock_assert_exclusive(object); |
7929 | |
7930 | assert(object->code_signed); |
7931 | offset = page->vmp_offset; |
7932 | |
7933 | if (!object->alive || object->terminating || object->pager == NULL) { |
7934 | /* |
7935 | * The object is terminating and we don't have its pager |
7936 | * so we can't validate the data... |
7937 | */ |
7938 | return; |
7939 | } |
7940 | /* |
7941 | * Since we get here to validate a page that was brought in by |
7942 | * the pager, we know that this pager is all setup and ready |
7943 | * by now. |
7944 | */ |
7945 | assert(!object->internal); |
7946 | assert(object->pager != NULL); |
7947 | assert(object->pager_ready); |
7948 | |
7949 | pager = object->pager; |
7950 | assert(object->paging_in_progress); |
7951 | vnode = vnode_pager_lookup_vnode(pager); |
7952 | |
7953 | /* verify the signature for this chunk */ |
7954 | offset_in_page = chunk_offset; |
7955 | assert(offset_in_page < PAGE_SIZE); |
7956 | |
7957 | tainted = 0; |
7958 | validated = cs_validate_range(vp: vnode, |
7959 | pager, |
7960 | offset: (object->paging_offset + |
7961 | offset + |
7962 | offset_in_page), |
7963 | data: (const void *)((const char *)kaddr |
7964 | + offset_in_page), |
7965 | size: chunk_size, |
7966 | result: &tainted); |
7967 | if (validated) { |
7968 | *validated_p = TRUE; |
7969 | } |
7970 | if (tainted) { |
7971 | *tainted_p = tainted; |
7972 | } |
7973 | } |
7974 | |
7975 | static void |
7976 | vm_rtfrecord_lock(void) |
7977 | { |
7978 | lck_spin_lock(lck: &vm_rtfr_slock); |
7979 | } |
7980 | |
7981 | static void |
7982 | vm_rtfrecord_unlock(void) |
7983 | { |
7984 | lck_spin_unlock(lck: &vm_rtfr_slock); |
7985 | } |
7986 | |
7987 | unsigned int |
7988 | vmrtfaultinfo_bufsz(void) |
7989 | { |
7990 | return vmrtf_num_records * sizeof(vm_rtfault_record_t); |
7991 | } |
7992 | |
7993 | #include <kern/backtrace.h> |
7994 | |
7995 | __attribute__((noinline)) |
7996 | static void |
7997 | vm_record_rtfault(thread_t cthread, uint64_t fstart, vm_map_offset_t fault_vaddr, int type_of_fault) |
7998 | { |
7999 | uint64_t fend = mach_continuous_time(); |
8000 | |
8001 | uint64_t cfpc = 0; |
8002 | uint64_t ctid = cthread->thread_id; |
8003 | uint64_t cupid = get_current_unique_pid(); |
8004 | |
8005 | uintptr_t bpc = 0; |
8006 | errno_t btr = 0; |
8007 | |
8008 | /* |
8009 | * Capture a single-frame backtrace. This extracts just the program |
8010 | * counter at the point of the fault, and should not use copyin to get |
8011 | * Rosetta save state. |
8012 | */ |
8013 | struct backtrace_control ctl = { |
8014 | .btc_user_thread = cthread, |
8015 | .btc_user_copy = backtrace_user_copy_error, |
8016 | }; |
8017 | unsigned int bfrs = backtrace_user(bt: &bpc, btlen: 1U, ctl: &ctl, NULL); |
8018 | if ((btr == 0) && (bfrs > 0)) { |
8019 | cfpc = bpc; |
8020 | } |
8021 | |
8022 | assert((fstart != 0) && fend >= fstart); |
8023 | vm_rtfrecord_lock(); |
8024 | assert(vmrtfrs.vmrtfr_curi <= vmrtfrs.vmrtfr_maxi); |
8025 | |
8026 | vmrtfrs.vmrtf_total++; |
8027 | vm_rtfault_record_t *cvmr = &vmrtfrs.vm_rtf_records[vmrtfrs.vmrtfr_curi++]; |
8028 | |
8029 | cvmr->rtfabstime = fstart; |
8030 | cvmr->rtfduration = fend - fstart; |
8031 | cvmr->rtfaddr = fault_vaddr; |
8032 | cvmr->rtfpc = cfpc; |
8033 | cvmr->rtftype = type_of_fault; |
8034 | cvmr->rtfupid = cupid; |
8035 | cvmr->rtftid = ctid; |
8036 | |
8037 | if (vmrtfrs.vmrtfr_curi > vmrtfrs.vmrtfr_maxi) { |
8038 | vmrtfrs.vmrtfr_curi = 0; |
8039 | } |
8040 | |
8041 | vm_rtfrecord_unlock(); |
8042 | } |
8043 | |
8044 | int |
8045 | (uint64_t cupid, __unused boolean_t isroot, unsigned long vrecordsz, void *vrecords, unsigned long *vmrtfrv) |
8046 | { |
8047 | vm_rtfault_record_t *cvmrd = vrecords; |
8048 | size_t residue = vrecordsz; |
8049 | size_t = 0; |
8050 | boolean_t early_exit = FALSE; |
8051 | |
8052 | vm_rtfrecord_lock(); |
8053 | |
8054 | for (int vmfi = 0; vmfi <= vmrtfrs.vmrtfr_maxi; vmfi++) { |
8055 | if (residue < sizeof(vm_rtfault_record_t)) { |
8056 | early_exit = TRUE; |
8057 | break; |
8058 | } |
8059 | |
8060 | if (vmrtfrs.vm_rtf_records[vmfi].rtfupid != cupid) { |
8061 | #if DEVELOPMENT || DEBUG |
8062 | if (isroot == FALSE) { |
8063 | continue; |
8064 | } |
8065 | #else |
8066 | continue; |
8067 | #endif /* DEVDEBUG */ |
8068 | } |
8069 | |
8070 | *cvmrd = vmrtfrs.vm_rtf_records[vmfi]; |
8071 | cvmrd++; |
8072 | residue -= sizeof(vm_rtfault_record_t); |
8073 | numextracted++; |
8074 | } |
8075 | |
8076 | vm_rtfrecord_unlock(); |
8077 | |
8078 | *vmrtfrv = numextracted; |
8079 | return early_exit; |
8080 | } |
8081 | |
8082 | /* |
8083 | * Only allow one diagnosis to be in flight at a time, to avoid |
8084 | * creating too much additional memory usage. |
8085 | */ |
8086 | static volatile uint_t vmtc_diagnosing; |
8087 | unsigned int vmtc_total = 0; |
8088 | |
8089 | /* |
8090 | * Type used to update telemetry for the diagnosis counts. |
8091 | */ |
8092 | CA_EVENT(vmtc_telemetry, |
8093 | CA_INT, vmtc_num_byte, /* number of corrupt bytes found */ |
8094 | CA_BOOL, vmtc_undiagnosed, /* undiagnosed because more than 1 at a time */ |
8095 | CA_BOOL, vmtc_not_eligible, /* the page didn't qualify */ |
8096 | CA_BOOL, vmtc_copyin_fail, /* unable to copy in the page */ |
8097 | CA_BOOL, vmtc_not_found, /* no corruption found even though CS failed */ |
8098 | CA_BOOL, vmtc_one_bit_flip, /* single bit flip */ |
8099 | CA_BOOL, vmtc_testing); /* caused on purpose by testing */ |
8100 | |
8101 | #if DEVELOPMENT || DEBUG |
8102 | /* |
8103 | * Buffers used to compare before/after page contents. |
8104 | * Stashed to aid when debugging crashes. |
8105 | */ |
8106 | static size_t vmtc_last_buffer_size = 0; |
8107 | static uint64_t *vmtc_last_before_buffer = NULL; |
8108 | static uint64_t *vmtc_last_after_buffer = NULL; |
8109 | |
8110 | /* |
8111 | * Needed to record corruptions due to testing. |
8112 | */ |
8113 | static uintptr_t corruption_test_va = 0; |
8114 | #endif /* DEVELOPMENT || DEBUG */ |
8115 | |
8116 | /* |
8117 | * Stash a copy of data from a possibly corrupt page. |
8118 | */ |
8119 | static uint64_t * |
8120 | vmtc_get_page_data( |
8121 | vm_map_offset_t code_addr, |
8122 | vm_page_t page) |
8123 | { |
8124 | uint64_t *buffer = NULL; |
8125 | addr64_t buffer_paddr; |
8126 | addr64_t page_paddr; |
8127 | extern void bcopy_phys(addr64_t from, addr64_t to, vm_size_t bytes); |
8128 | uint_t size = MIN(vm_map_page_size(current_map()), PAGE_SIZE); |
8129 | |
8130 | /* |
8131 | * Need an aligned buffer to do a physical copy. |
8132 | */ |
8133 | if (kernel_memory_allocate(map: kernel_map, addrp: (vm_offset_t *)&buffer, |
8134 | size, mask: size - 1, flags: KMA_KOBJECT, VM_KERN_MEMORY_DIAG) != KERN_SUCCESS) { |
8135 | return NULL; |
8136 | } |
8137 | buffer_paddr = kvtophys(va: (vm_offset_t)buffer); |
8138 | page_paddr = ptoa(VM_PAGE_GET_PHYS_PAGE(page)); |
8139 | |
8140 | /* adjust the page start address if we need only 4K of a 16K page */ |
8141 | if (size < PAGE_SIZE) { |
8142 | uint_t subpage_start = ((code_addr & (PAGE_SIZE - 1)) & ~(size - 1)); |
8143 | page_paddr += subpage_start; |
8144 | } |
8145 | |
8146 | bcopy_phys(from: page_paddr, to: buffer_paddr, bytes: size); |
8147 | return buffer; |
8148 | } |
8149 | |
8150 | /* |
8151 | * Set things up so we can diagnose a potential text page corruption. |
8152 | */ |
8153 | static uint64_t * |
8154 | vmtc_text_page_diagnose_setup( |
8155 | vm_map_offset_t code_addr, |
8156 | vm_page_t page, |
8157 | CA_EVENT_TYPE(vmtc_telemetry) *event) |
8158 | { |
8159 | uint64_t *buffer = NULL; |
8160 | |
8161 | /* |
8162 | * If another is being diagnosed, skip this one. |
8163 | */ |
8164 | if (!OSCompareAndSwap(0, 1, &vmtc_diagnosing)) { |
8165 | event->vmtc_undiagnosed = true; |
8166 | return NULL; |
8167 | } |
8168 | |
8169 | /* |
8170 | * Get the contents of the corrupt page. |
8171 | */ |
8172 | buffer = vmtc_get_page_data(code_addr, page); |
8173 | if (buffer == NULL) { |
8174 | event->vmtc_copyin_fail = true; |
8175 | if (!OSCompareAndSwap(1, 0, &vmtc_diagnosing)) { |
8176 | panic("Bad compare and swap in setup!" ); |
8177 | } |
8178 | return NULL; |
8179 | } |
8180 | return buffer; |
8181 | } |
8182 | |
8183 | /* |
8184 | * Diagnose the text page by comparing its contents with |
8185 | * the one we've previously saved. |
8186 | */ |
8187 | static void |
8188 | vmtc_text_page_diagnose( |
8189 | vm_map_offset_t code_addr, |
8190 | uint64_t *old_code_buffer, |
8191 | CA_EVENT_TYPE(vmtc_telemetry) *event) |
8192 | { |
8193 | uint64_t *new_code_buffer; |
8194 | size_t size = MIN(vm_map_page_size(current_map()), PAGE_SIZE); |
8195 | uint_t count = (uint_t)size / sizeof(uint64_t); |
8196 | uint_t diff_count = 0; |
8197 | bool bit_flip = false; |
8198 | uint_t b; |
8199 | uint64_t *new; |
8200 | uint64_t *old; |
8201 | |
8202 | new_code_buffer = kalloc_data(size, Z_WAITOK); |
8203 | assert(new_code_buffer != NULL); |
8204 | if (copyin((user_addr_t)vm_map_trunc_page(code_addr, size - 1), new_code_buffer, size) != 0) { |
8205 | /* copyin error, so undo things */ |
8206 | event->vmtc_copyin_fail = true; |
8207 | goto done; |
8208 | } |
8209 | |
8210 | new = new_code_buffer; |
8211 | old = old_code_buffer; |
8212 | for (; count-- > 0; ++new, ++old) { |
8213 | if (*new == *old) { |
8214 | continue; |
8215 | } |
8216 | |
8217 | /* |
8218 | * On first diff, check for a single bit flip |
8219 | */ |
8220 | if (diff_count == 0) { |
8221 | uint64_t x = (*new ^ *old); |
8222 | assert(x != 0); |
8223 | if ((x & (x - 1)) == 0) { |
8224 | bit_flip = true; |
8225 | ++diff_count; |
8226 | continue; |
8227 | } |
8228 | } |
8229 | |
8230 | /* |
8231 | * count up the number of different bytes. |
8232 | */ |
8233 | for (b = 0; b < sizeof(uint64_t); ++b) { |
8234 | char *n = (char *)new; |
8235 | char *o = (char *)old; |
8236 | if (n[b] != o[b]) { |
8237 | ++diff_count; |
8238 | } |
8239 | } |
8240 | } |
8241 | |
8242 | if (diff_count > 1) { |
8243 | bit_flip = false; |
8244 | } |
8245 | |
8246 | if (diff_count == 0) { |
8247 | event->vmtc_not_found = true; |
8248 | } else { |
8249 | event->vmtc_num_byte = diff_count; |
8250 | } |
8251 | if (bit_flip) { |
8252 | event->vmtc_one_bit_flip = true; |
8253 | } |
8254 | |
8255 | done: |
8256 | /* |
8257 | * Free up the code copy buffers, but save the last |
8258 | * set on development / debug kernels in case they |
8259 | * can provide evidence for debugging memory stomps. |
8260 | */ |
8261 | #if DEVELOPMENT || DEBUG |
8262 | if (vmtc_last_before_buffer != NULL) { |
8263 | kmem_free(kernel_map, (vm_offset_t)vmtc_last_before_buffer, vmtc_last_buffer_size); |
8264 | } |
8265 | if (vmtc_last_after_buffer != NULL) { |
8266 | kfree_data(vmtc_last_after_buffer, vmtc_last_buffer_size); |
8267 | } |
8268 | vmtc_last_before_buffer = old_code_buffer; |
8269 | vmtc_last_after_buffer = new_code_buffer; |
8270 | vmtc_last_buffer_size = size; |
8271 | #else /* DEVELOPMENT || DEBUG */ |
8272 | kfree_data(new_code_buffer, size); |
8273 | kmem_free(map: kernel_map, addr: (vm_offset_t)old_code_buffer, size); |
8274 | #endif /* DEVELOPMENT || DEBUG */ |
8275 | |
8276 | /* |
8277 | * We're finished, so clear the diagnosing flag. |
8278 | */ |
8279 | if (!OSCompareAndSwap(1, 0, &vmtc_diagnosing)) { |
8280 | panic("Bad compare and swap in diagnose!" ); |
8281 | } |
8282 | } |
8283 | |
8284 | /* |
8285 | * For the given map, virt address, find the object, offset, and page. |
8286 | * This has to lookup the map entry, verify protections, walk any shadow chains. |
8287 | * If found, returns with the object locked. |
8288 | */ |
8289 | static kern_return_t |
8290 | vmtc_revalidate_lookup( |
8291 | vm_map_t map, |
8292 | vm_map_offset_t vaddr, |
8293 | vm_object_t *ret_object, |
8294 | vm_object_offset_t *ret_offset, |
8295 | vm_page_t *ret_page, |
8296 | vm_prot_t *ret_prot) |
8297 | { |
8298 | vm_object_t object; |
8299 | vm_object_offset_t offset; |
8300 | vm_page_t page; |
8301 | kern_return_t kr = KERN_SUCCESS; |
8302 | uint8_t object_lock_type = OBJECT_LOCK_EXCLUSIVE; |
8303 | vm_map_version_t version; |
8304 | boolean_t wired; |
8305 | struct vm_object_fault_info fault_info = {}; |
8306 | vm_map_t real_map = NULL; |
8307 | vm_prot_t prot; |
8308 | vm_object_t shadow; |
8309 | |
8310 | /* |
8311 | * Find the object/offset for the given location/map. |
8312 | * Note this returns with the object locked. |
8313 | */ |
8314 | restart: |
8315 | vm_map_lock_read(map); |
8316 | object = VM_OBJECT_NULL; /* in case we come around the restart path */ |
8317 | kr = vm_map_lookup_and_lock_object(var_map: &map, vaddr, VM_PROT_READ, |
8318 | object_lock_type, out_version: &version, object: &object, offset: &offset, out_prot: &prot, wired: &wired, |
8319 | fault_info: &fault_info, real_map: &real_map, NULL); |
8320 | vm_map_unlock_read(map); |
8321 | if (real_map != NULL && real_map != map) { |
8322 | vm_map_unlock(real_map); |
8323 | } |
8324 | |
8325 | /* |
8326 | * If there's no page here, fail. |
8327 | */ |
8328 | if (kr != KERN_SUCCESS || object == NULL) { |
8329 | kr = KERN_FAILURE; |
8330 | goto done; |
8331 | } |
8332 | |
8333 | /* |
8334 | * Chase down any shadow chains to find the actual page. |
8335 | */ |
8336 | for (;;) { |
8337 | /* |
8338 | * See if the page is on the current object. |
8339 | */ |
8340 | page = vm_page_lookup(object, vm_object_trunc_page(offset)); |
8341 | if (page != NULL) { |
8342 | /* restart the lookup */ |
8343 | if (page->vmp_restart) { |
8344 | vm_object_unlock(object); |
8345 | goto restart; |
8346 | } |
8347 | |
8348 | /* |
8349 | * If this page is busy, we need to wait for it. |
8350 | */ |
8351 | if (page->vmp_busy) { |
8352 | PAGE_SLEEP(object, page, TRUE); |
8353 | vm_object_unlock(object); |
8354 | goto restart; |
8355 | } |
8356 | break; |
8357 | } |
8358 | |
8359 | /* |
8360 | * If the object doesn't have the page and |
8361 | * has no shadow, then we can quit. |
8362 | */ |
8363 | shadow = object->shadow; |
8364 | if (shadow == NULL) { |
8365 | kr = KERN_FAILURE; |
8366 | goto done; |
8367 | } |
8368 | |
8369 | /* |
8370 | * Move to the next object |
8371 | */ |
8372 | offset += object->vo_shadow_offset; |
8373 | vm_object_lock(shadow); |
8374 | vm_object_unlock(object); |
8375 | object = shadow; |
8376 | shadow = VM_OBJECT_NULL; |
8377 | } |
8378 | *ret_object = object; |
8379 | *ret_offset = vm_object_trunc_page(offset); |
8380 | *ret_page = page; |
8381 | *ret_prot = prot; |
8382 | |
8383 | done: |
8384 | if (kr != KERN_SUCCESS && object != NULL) { |
8385 | vm_object_unlock(object); |
8386 | } |
8387 | return kr; |
8388 | } |
8389 | |
8390 | /* |
8391 | * Check if a page is wired, needs extra locking. |
8392 | */ |
8393 | static bool |
8394 | is_page_wired(vm_page_t page) |
8395 | { |
8396 | bool result; |
8397 | vm_page_lock_queues(); |
8398 | result = VM_PAGE_WIRED(page); |
8399 | vm_page_unlock_queues(); |
8400 | return result; |
8401 | } |
8402 | |
8403 | /* |
8404 | * A fatal process error has occurred in the given task. |
8405 | * Recheck the code signing of the text page at the given |
8406 | * address to check for a text page corruption. |
8407 | * |
8408 | * Returns KERN_FAILURE if a page was found to be corrupt |
8409 | * by failing to match its code signature. KERN_SUCCESS |
8410 | * means the page is either valid or we don't have the |
8411 | * information to say it's corrupt. |
8412 | */ |
8413 | kern_return_t |
8414 | revalidate_text_page(task_t task, vm_map_offset_t code_addr) |
8415 | { |
8416 | kern_return_t kr; |
8417 | vm_map_t map; |
8418 | vm_object_t object = NULL; |
8419 | vm_object_offset_t offset; |
8420 | vm_page_t page = NULL; |
8421 | struct vnode *vnode; |
8422 | uint64_t *diagnose_buffer = NULL; |
8423 | CA_EVENT_TYPE(vmtc_telemetry) * event = NULL; |
8424 | ca_event_t ca_event = NULL; |
8425 | vm_prot_t prot; |
8426 | |
8427 | map = task->map; |
8428 | if (task->map == NULL) { |
8429 | return KERN_SUCCESS; |
8430 | } |
8431 | |
8432 | kr = vmtc_revalidate_lookup(map, vaddr: code_addr, ret_object: &object, ret_offset: &offset, ret_page: &page, ret_prot: &prot); |
8433 | if (kr != KERN_SUCCESS) { |
8434 | goto done; |
8435 | } |
8436 | |
8437 | /* |
8438 | * The page must be executable. |
8439 | */ |
8440 | if (!(prot & VM_PROT_EXECUTE)) { |
8441 | goto done; |
8442 | } |
8443 | |
8444 | /* |
8445 | * The object needs to have a pager. |
8446 | */ |
8447 | if (object->pager == NULL) { |
8448 | goto done; |
8449 | } |
8450 | |
8451 | /* |
8452 | * Needs to be a vnode backed page to have a signature. |
8453 | */ |
8454 | vnode = vnode_pager_lookup_vnode(object->pager); |
8455 | if (vnode == NULL) { |
8456 | goto done; |
8457 | } |
8458 | |
8459 | /* |
8460 | * Object checks to see if we should proceed. |
8461 | */ |
8462 | if (!object->code_signed || /* no code signature to check */ |
8463 | object->internal || /* internal objects aren't signed */ |
8464 | object->terminating || /* the object and its pages are already going away */ |
8465 | !object->pager_ready) { /* this should happen, but check shouldn't hurt */ |
8466 | goto done; |
8467 | } |
8468 | |
8469 | |
8470 | /* |
8471 | * Check the code signature of the page in question. |
8472 | */ |
8473 | vm_page_map_and_validate_cs(object, page); |
8474 | |
8475 | /* |
8476 | * At this point: |
8477 | * vmp_cs_validated |= validated (set if a code signature exists) |
8478 | * vmp_cs_tainted |= tainted (set if code signature violation) |
8479 | * vmp_cs_nx |= nx; ?? |
8480 | * |
8481 | * if vmp_pmapped then have to pmap_disconnect.. |
8482 | * other flags to check on object or page? |
8483 | */ |
8484 | if (page->vmp_cs_tainted != VMP_CS_ALL_FALSE) { |
8485 | #if DEBUG || DEVELOPMENT |
8486 | /* |
8487 | * On development builds, a boot-arg can be used to cause |
8488 | * a panic, instead of a quiet repair. |
8489 | */ |
8490 | if (vmtc_panic_instead) { |
8491 | panic("Text page corruption detected: vm_page_t 0x%llx" , (long long)(uintptr_t)page); |
8492 | } |
8493 | #endif /* DEBUG || DEVELOPMENT */ |
8494 | |
8495 | /* |
8496 | * We're going to invalidate this page. Grab a copy of it for comparison. |
8497 | */ |
8498 | ca_event = CA_EVENT_ALLOCATE(vmtc_telemetry); |
8499 | event = ca_event->data; |
8500 | diagnose_buffer = vmtc_text_page_diagnose_setup(code_addr, page, event); |
8501 | |
8502 | /* |
8503 | * Invalidate, i.e. toss, the corrupted page. |
8504 | */ |
8505 | if (!page->vmp_cleaning && |
8506 | !page->vmp_laundry && |
8507 | !page->vmp_fictitious && |
8508 | !page->vmp_precious && |
8509 | !page->vmp_absent && |
8510 | !VMP_ERROR_GET(page) && |
8511 | !page->vmp_dirty && |
8512 | !is_page_wired(page)) { |
8513 | if (page->vmp_pmapped) { |
8514 | int refmod = pmap_disconnect(phys: VM_PAGE_GET_PHYS_PAGE(m: page)); |
8515 | if (refmod & VM_MEM_MODIFIED) { |
8516 | SET_PAGE_DIRTY(page, FALSE); |
8517 | } |
8518 | if (refmod & VM_MEM_REFERENCED) { |
8519 | page->vmp_reference = TRUE; |
8520 | } |
8521 | } |
8522 | /* If the page seems intentionally modified, don't trash it. */ |
8523 | if (!page->vmp_dirty) { |
8524 | VM_PAGE_FREE(page); |
8525 | } else { |
8526 | event->vmtc_not_eligible = true; |
8527 | } |
8528 | } else { |
8529 | event->vmtc_not_eligible = true; |
8530 | } |
8531 | vm_object_unlock(object); |
8532 | object = VM_OBJECT_NULL; |
8533 | |
8534 | /* |
8535 | * Now try to diagnose the type of failure by faulting |
8536 | * in a new copy and diff'ing it with what we saved. |
8537 | */ |
8538 | if (diagnose_buffer != NULL) { |
8539 | vmtc_text_page_diagnose(code_addr, old_code_buffer: diagnose_buffer, event); |
8540 | } |
8541 | #if DEBUG || DEVELOPMENT |
8542 | if (corruption_test_va != 0) { |
8543 | corruption_test_va = 0; |
8544 | event->vmtc_testing = true; |
8545 | } |
8546 | #endif /* DEBUG || DEVELOPMENT */ |
8547 | ktriage_record(thread_id: thread_tid(thread: current_thread()), |
8548 | KDBG_TRIAGE_EVENTID(KDBG_TRIAGE_SUBSYS_VM, KDBG_TRIAGE_RESERVED, KDBG_TRIAGE_VM_TEXT_CORRUPTION), |
8549 | arg: 0 /* arg */); |
8550 | CA_EVENT_SEND(ca_event); |
8551 | printf(format: "Text page corruption detected for pid %d\n" , proc_selfpid()); |
8552 | ++vmtc_total; |
8553 | return KERN_FAILURE; /* failure means we definitely found a corrupt page */ |
8554 | } |
8555 | done: |
8556 | if (object != NULL) { |
8557 | vm_object_unlock(object); |
8558 | } |
8559 | return KERN_SUCCESS; |
8560 | } |
8561 | |
8562 | #if DEBUG || DEVELOPMENT |
8563 | /* |
8564 | * For implementing unit tests - ask the pmap to corrupt a text page. |
8565 | * We have to find the page, to get the physical address, then invoke |
8566 | * the pmap. |
8567 | */ |
8568 | extern kern_return_t vm_corrupt_text_addr(uintptr_t); |
8569 | |
8570 | kern_return_t |
8571 | vm_corrupt_text_addr(uintptr_t va) |
8572 | { |
8573 | task_t task = current_task(); |
8574 | vm_map_t map; |
8575 | kern_return_t kr = KERN_SUCCESS; |
8576 | vm_object_t object = VM_OBJECT_NULL; |
8577 | vm_object_offset_t offset; |
8578 | vm_page_t page = NULL; |
8579 | pmap_paddr_t pa; |
8580 | vm_prot_t prot; |
8581 | |
8582 | map = task->map; |
8583 | if (task->map == NULL) { |
8584 | printf("corrupt_text_addr: no map\n" ); |
8585 | return KERN_FAILURE; |
8586 | } |
8587 | |
8588 | kr = vmtc_revalidate_lookup(map, (vm_map_offset_t)va, &object, &offset, &page, &prot); |
8589 | if (kr != KERN_SUCCESS) { |
8590 | printf("corrupt_text_addr: page lookup failed\n" ); |
8591 | return kr; |
8592 | } |
8593 | if (!(prot & VM_PROT_EXECUTE)) { |
8594 | printf("corrupt_text_addr: page not executable\n" ); |
8595 | return KERN_FAILURE; |
8596 | } |
8597 | |
8598 | /* get the physical address to use */ |
8599 | pa = ptoa(VM_PAGE_GET_PHYS_PAGE(page)) + (va - vm_object_trunc_page(va)); |
8600 | |
8601 | /* |
8602 | * Check we have something we can work with. |
8603 | * Due to racing with pageout as we enter the sysctl, |
8604 | * it's theoretically possible to have the page disappear, just |
8605 | * before the lookup. |
8606 | * |
8607 | * That's highly likely to happen often. I've filed a radar 72857482 |
8608 | * to bubble up the error here to the sysctl result and have the |
8609 | * test not FAIL in that case. |
8610 | */ |
8611 | if (page->vmp_busy) { |
8612 | printf("corrupt_text_addr: vmp_busy\n" ); |
8613 | kr = KERN_FAILURE; |
8614 | } |
8615 | if (page->vmp_cleaning) { |
8616 | printf("corrupt_text_addr: vmp_cleaning\n" ); |
8617 | kr = KERN_FAILURE; |
8618 | } |
8619 | if (page->vmp_laundry) { |
8620 | printf("corrupt_text_addr: vmp_cleaning\n" ); |
8621 | kr = KERN_FAILURE; |
8622 | } |
8623 | if (page->vmp_fictitious) { |
8624 | printf("corrupt_text_addr: vmp_fictitious\n" ); |
8625 | kr = KERN_FAILURE; |
8626 | } |
8627 | if (page->vmp_precious) { |
8628 | printf("corrupt_text_addr: vmp_precious\n" ); |
8629 | kr = KERN_FAILURE; |
8630 | } |
8631 | if (page->vmp_absent) { |
8632 | printf("corrupt_text_addr: vmp_absent\n" ); |
8633 | kr = KERN_FAILURE; |
8634 | } |
8635 | if (VMP_ERROR_GET(page)) { |
8636 | printf("corrupt_text_addr: vmp_error\n" ); |
8637 | kr = KERN_FAILURE; |
8638 | } |
8639 | if (page->vmp_dirty) { |
8640 | printf("corrupt_text_addr: vmp_dirty\n" ); |
8641 | kr = KERN_FAILURE; |
8642 | } |
8643 | if (is_page_wired(page)) { |
8644 | printf("corrupt_text_addr: wired\n" ); |
8645 | kr = KERN_FAILURE; |
8646 | } |
8647 | if (!page->vmp_pmapped) { |
8648 | printf("corrupt_text_addr: !vmp_pmapped\n" ); |
8649 | kr = KERN_FAILURE; |
8650 | } |
8651 | |
8652 | if (kr == KERN_SUCCESS) { |
8653 | printf("corrupt_text_addr: using physaddr 0x%llx\n" , (long long)pa); |
8654 | kr = pmap_test_text_corruption(pa); |
8655 | if (kr != KERN_SUCCESS) { |
8656 | printf("corrupt_text_addr: pmap error %d\n" , kr); |
8657 | } else { |
8658 | corruption_test_va = va; |
8659 | } |
8660 | } else { |
8661 | printf("corrupt_text_addr: object %p\n" , object); |
8662 | printf("corrupt_text_addr: offset 0x%llx\n" , (uint64_t)offset); |
8663 | printf("corrupt_text_addr: va 0x%llx\n" , (uint64_t)va); |
8664 | printf("corrupt_text_addr: vm_object_trunc_page(va) 0x%llx\n" , (uint64_t)vm_object_trunc_page(va)); |
8665 | printf("corrupt_text_addr: vm_page_t %p\n" , page); |
8666 | printf("corrupt_text_addr: ptoa(PHYS_PAGE) 0x%llx\n" , (uint64_t)ptoa(VM_PAGE_GET_PHYS_PAGE(page))); |
8667 | printf("corrupt_text_addr: using physaddr 0x%llx\n" , (uint64_t)pa); |
8668 | } |
8669 | |
8670 | if (object != VM_OBJECT_NULL) { |
8671 | vm_object_unlock(object); |
8672 | } |
8673 | return kr; |
8674 | } |
8675 | |
8676 | #endif /* DEBUG || DEVELOPMENT */ |
8677 | |