| 1 | /* |
| 2 | * Copyright (c) 2000-2013 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
| 5 | * |
| 6 | * This file contains Original Code and/or Modifications of Original Code |
| 7 | * as defined in and that are subject to the Apple Public Source License |
| 8 | * Version 2.0 (the 'License'). You may not use this file except in |
| 9 | * compliance with the License. The rights granted to you under the License |
| 10 | * may not be used to create, or enable the creation or redistribution of, |
| 11 | * unlawful or unlicensed copies of an Apple operating system, or to |
| 12 | * circumvent, violate, or enable the circumvention or violation of, any |
| 13 | * terms of an Apple operating system software license agreement. |
| 14 | * |
| 15 | * Please obtain a copy of the License at |
| 16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
| 17 | * |
| 18 | * The Original Code and all software distributed under the License are |
| 19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| 23 | * Please see the License for the specific language governing rights and |
| 24 | * limitations under the License. |
| 25 | * |
| 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
| 27 | */ |
| 28 | |
| 29 | #include "vm_compressor_backing_store.h" |
| 30 | #include <vm/vm_pageout.h> |
| 31 | #include <vm/vm_protos.h> |
| 32 | |
| 33 | #include <IOKit/IOHibernatePrivate.h> |
| 34 | |
| 35 | #include <kern/policy_internal.h> |
| 36 | |
| 37 | LCK_GRP_DECLARE(vm_swap_data_lock_grp, "vm_swap_data" ); |
| 38 | LCK_MTX_DECLARE(vm_swap_data_lock, &vm_swap_data_lock_grp); |
| 39 | |
| 40 | #if defined(XNU_TARGET_OS_OSX) |
| 41 | /* |
| 42 | * launchd explicitly turns ON swap later during boot on macOS devices. |
| 43 | */ |
| 44 | boolean_t compressor_store_stop_compaction = TRUE; |
| 45 | #else |
| 46 | boolean_t compressor_store_stop_compaction = FALSE; |
| 47 | #endif |
| 48 | |
| 49 | boolean_t vm_swapfile_create_needed = FALSE; |
| 50 | boolean_t vm_swapfile_gc_needed = FALSE; |
| 51 | |
| 52 | int vm_swapper_throttle = -1; |
| 53 | uint64_t vm_swapout_thread_id; |
| 54 | |
| 55 | uint64_t vm_swap_put_failures = 0; /* Likely failed I/O. Data is still in memory. */ |
| 56 | uint64_t vm_swap_get_failures = 0; /* Fatal */ |
| 57 | uint64_t vm_swap_put_failures_no_swap_file = 0; /* Possibly not fatal because we might just need a new swapfile. */ |
| 58 | int vm_num_swap_files_config = 0; |
| 59 | int vm_num_swap_files = 0; |
| 60 | int vm_num_pinned_swap_files = 0; |
| 61 | uint64_t vm_swap_volume_capacity = 0; |
| 62 | int vm_swapout_thread_processed_segments = 0; |
| 63 | int vm_swapout_thread_awakened = 0; |
| 64 | bool vm_swapout_thread_running = FALSE; |
| 65 | _Atomic bool vm_swapout_wake_pending = false; |
| 66 | int vm_swapfile_create_thread_awakened = 0; |
| 67 | int vm_swapfile_create_thread_running = 0; |
| 68 | int vm_swapfile_gc_thread_awakened = 0; |
| 69 | int vm_swapfile_gc_thread_running = 0; |
| 70 | |
| 71 | int64_t vm_swappin_avail = 0; |
| 72 | boolean_t vm_swappin_enabled = FALSE; |
| 73 | unsigned int vm_swapfile_total_segs_alloced = 0; |
| 74 | unsigned int vm_swapfile_total_segs_alloced_max = 0; |
| 75 | unsigned int vm_swapfile_total_segs_used = 0; |
| 76 | unsigned int vm_swapfile_total_segs_used_max = 0; |
| 77 | |
| 78 | char swapfilename[MAX_SWAPFILENAME_LEN + 1] = SWAP_FILE_NAME; |
| 79 | |
| 80 | extern vm_map_t compressor_map; |
| 81 | extern uint32_t c_seg_bufsize, c_seg_allocsize, c_seg_off_limit; |
| 82 | |
| 83 | #define SWAP_READY 0x1 /* Swap file is ready to be used */ |
| 84 | #define SWAP_RECLAIM 0x2 /* Swap file is marked to be reclaimed */ |
| 85 | #define SWAP_WANTED 0x4 /* Swap file has waiters */ |
| 86 | #define SWAP_REUSE 0x8 /* Swap file is on the Q and has a name. Reuse after init-ing.*/ |
| 87 | #define SWAP_PINNED 0x10 /* Swap file is pinned (FusionDrive) */ |
| 88 | |
| 89 | |
| 90 | struct swapfile { |
| 91 | queue_head_t swp_queue; /* list of swap files */ |
| 92 | char *swp_path; /* saved pathname of swap file */ |
| 93 | struct vnode *swp_vp; /* backing vnode */ |
| 94 | uint64_t swp_size; /* size of this swap file */ |
| 95 | uint8_t *swp_bitmap; /* bitmap showing the alloced/freed slots in the swap file */ |
| 96 | unsigned int swp_pathlen; /* length of pathname */ |
| 97 | unsigned int swp_nsegs; /* #segments we can use */ |
| 98 | unsigned int swp_nseginuse; /* #segments in use */ |
| 99 | unsigned int swp_index; /* index of this swap file */ |
| 100 | unsigned int swp_flags; /* state of swap file */ |
| 101 | unsigned int swp_free_hint; /* offset of 1st free chunk */ |
| 102 | unsigned int swp_io_count; /* count of outstanding I/Os */ |
| 103 | c_segment_t *swp_csegs; /* back pointers to the c_segments. Used during swap reclaim. */ |
| 104 | |
| 105 | struct trim_list *swp_delayed_trim_list_head; |
| 106 | unsigned int swp_delayed_trim_count; |
| 107 | }; |
| 108 | |
| 109 | queue_head_t swf_global_queue; |
| 110 | boolean_t swp_trim_supported = FALSE; |
| 111 | |
| 112 | extern clock_sec_t dont_trim_until_ts; |
| 113 | clock_sec_t vm_swapfile_last_failed_to_create_ts = 0; |
| 114 | clock_sec_t vm_swapfile_last_successful_create_ts = 0; |
| 115 | int vm_swapfile_can_be_created = FALSE; |
| 116 | boolean_t delayed_trim_handling_in_progress = FALSE; |
| 117 | |
| 118 | boolean_t hibernate_in_progress_with_pinned_swap = FALSE; |
| 119 | |
| 120 | static void vm_swapout_thread_throttle_adjust(void); |
| 121 | static void vm_swap_free_now(struct swapfile *swf, uint64_t f_offset); |
| 122 | void vm_swapout_thread(void); |
| 123 | static void vm_swapfile_create_thread(void); |
| 124 | static void vm_swapfile_gc_thread(void); |
| 125 | static void vm_swap_defragment(void); |
| 126 | static void vm_swap_handle_delayed_trims(boolean_t); |
| 127 | static void vm_swap_do_delayed_trim(struct swapfile *); |
| 128 | static void vm_swap_wait_on_trim_handling_in_progress(void); |
| 129 | static void vm_swapout_finish(c_segment_t c_seg, uint64_t f_offset, uint32_t size, kern_return_t kr); |
| 130 | |
| 131 | extern int vnode_getwithref(struct vnode* vp); |
| 132 | |
| 133 | boolean_t vm_swap_force_defrag = FALSE, vm_swap_force_reclaim = FALSE; |
| 134 | |
| 135 | #if !XNU_TARGET_OS_OSX |
| 136 | |
| 137 | /* |
| 138 | * For CONFIG_FREEZE, we scale the c_segments_limit based on the |
| 139 | * number of swapfiles allowed. That increases wired memory overhead. |
| 140 | * So we want to keep the max swapfiles same on both DEV/RELEASE so |
| 141 | * that the memory overhead is similar for performance comparisons. |
| 142 | */ |
| 143 | #define VM_MAX_SWAP_FILE_NUM 5 |
| 144 | #if defined(__arm64__) && defined(ARM_LARGE_MEMORY) |
| 145 | #define VM_MAX_SWAP_FILE_SWAP_ENABLED_NUM (64ULL * (1ULL << 30) / MAX_SWAP_FILE_SIZE) |
| 146 | #define VM_MIN_SWAP_FILE_SWAP_ENABLED_NUM (16ULL * (1ULL << 30) / MAX_SWAP_FILE_SIZE) |
| 147 | #else /* defined(__arm64__) && defined(ARM_LARGE_MEMORY) */ |
| 148 | /* |
| 149 | * We reserve compressor pool VA at boot for the max # of swap files. If someone |
| 150 | * has enabled app swap but we're not an arm large memory device we can't hog |
| 151 | * all of the VA so we only go up to 4GB. |
| 152 | */ |
| 153 | #define VM_MAX_SWAP_FILE_SWAP_ENABLED_NUM (4ULL * (1ULL << 30) / MAX_SWAP_FILE_SIZE) |
| 154 | #define VM_MIN_SWAP_FILE_SWAP_ENABLED_NUM (4ULL * (1ULL << 30) / MAX_SWAP_FILE_SIZE) |
| 155 | #endif /* defined(__arm64__) && defined(ARM_LARGE_MEMORY) */ |
| 156 | #define VM_SWAP_MIN_VOLUME_CAPACITY (128ULL * (1ULL << 30)) |
| 157 | |
| 158 | #define VM_SWAPFILE_DELAYED_TRIM_MAX 4 |
| 159 | |
| 160 | #define VM_SWAP_SHOULD_DEFRAGMENT() (((vm_swap_force_defrag == TRUE) || (c_swappedout_sparse_count > (vm_swapfile_total_segs_used / 16))) ? 1 : 0) |
| 161 | #define VM_SWAP_SHOULD_PIN(_size) FALSE |
| 162 | #define VM_SWAP_SHOULD_CREATE(cur_ts) ((vm_num_swap_files < vm_num_swap_files_config) && ((vm_swapfile_total_segs_alloced - vm_swapfile_total_segs_used) < (unsigned int)vm_swapfile_hiwater_segs) && \ |
| 163 | ((cur_ts - vm_swapfile_last_failed_to_create_ts) > VM_SWAPFILE_DELAYED_CREATE) ? 1 : 0) |
| 164 | #define VM_SWAP_SHOULD_TRIM(swf) ((swf->swp_delayed_trim_count >= VM_SWAPFILE_DELAYED_TRIM_MAX) ? 1 : 0) |
| 165 | |
| 166 | #else /* !XNU_TARGET_OS_OSX */ |
| 167 | |
| 168 | #define VM_MAX_SWAP_FILE_NUM 100 |
| 169 | #define VM_SWAPFILE_DELAYED_TRIM_MAX 128 |
| 170 | |
| 171 | #define VM_SWAP_SHOULD_DEFRAGMENT() (((vm_swap_force_defrag == TRUE) || (c_swappedout_sparse_count > (vm_swapfile_total_segs_used / 4))) ? 1 : 0) |
| 172 | #define VM_SWAP_SHOULD_PIN(_size) (vm_swappin_avail > 0 && vm_swappin_avail >= (int64_t)(_size)) |
| 173 | #define VM_SWAP_SHOULD_CREATE(cur_ts) ((vm_num_swap_files < vm_num_swap_files_config) && ((vm_swapfile_total_segs_alloced - vm_swapfile_total_segs_used) < (unsigned int)vm_swapfile_hiwater_segs) && \ |
| 174 | ((cur_ts - vm_swapfile_last_failed_to_create_ts) > VM_SWAPFILE_DELAYED_CREATE) ? 1 : 0) |
| 175 | #define VM_SWAP_SHOULD_TRIM(swf) ((swf->swp_delayed_trim_count >= VM_SWAPFILE_DELAYED_TRIM_MAX) ? 1 : 0) |
| 176 | |
| 177 | #endif /* !XNU_TARGET_OS_OSX */ |
| 178 | |
| 179 | #define VM_SWAP_SHOULD_RECLAIM() (((vm_swap_force_reclaim == TRUE) || ((vm_swapfile_total_segs_alloced - vm_swapfile_total_segs_used) >= swapfile_reclaim_threshold_segs)) ? 1 : 0) |
| 180 | #define VM_SWAP_SHOULD_ABORT_RECLAIM() (((vm_swap_force_reclaim == FALSE) && ((vm_swapfile_total_segs_alloced - vm_swapfile_total_segs_used) <= swapfile_reclam_minimum_segs)) ? 1 : 0) |
| 181 | #define VM_SWAPFILE_DELAYED_CREATE 15 |
| 182 | |
| 183 | #define VM_SWAP_BUSY() (((c_early_swapout_count + c_regular_swapout_count + c_late_swapout_count) && (vm_swapper_throttle == THROTTLE_LEVEL_COMPRESSOR_TIER0)) ? 1 : 0) |
| 184 | |
| 185 | |
| 186 | #if CHECKSUM_THE_SWAP |
| 187 | extern unsigned int hash_string(char *cp, int len); |
| 188 | #endif |
| 189 | |
| 190 | #if RECORD_THE_COMPRESSED_DATA |
| 191 | boolean_t c_compressed_record_init_done = FALSE; |
| 192 | int c_compressed_record_write_error = 0; |
| 193 | struct vnode *c_compressed_record_vp = NULL; |
| 194 | uint64_t c_compressed_record_file_offset = 0; |
| 195 | void c_compressed_record_init(void); |
| 196 | void c_compressed_record_write(char *, int); |
| 197 | #endif |
| 198 | |
| 199 | extern void vm_pageout_io_throttle(void); |
| 200 | |
| 201 | static struct swapfile *vm_swapfile_for_handle(uint64_t); |
| 202 | |
| 203 | /* |
| 204 | * Called with the vm_swap_data_lock held. |
| 205 | */ |
| 206 | |
| 207 | static struct swapfile * |
| 208 | vm_swapfile_for_handle(uint64_t f_offset) |
| 209 | { |
| 210 | uint64_t file_offset = 0; |
| 211 | unsigned int swapfile_index = 0; |
| 212 | struct swapfile* swf = NULL; |
| 213 | |
| 214 | file_offset = (f_offset & SWAP_SLOT_MASK); |
| 215 | swapfile_index = (f_offset >> SWAP_DEVICE_SHIFT); |
| 216 | |
| 217 | swf = (struct swapfile*) queue_first(&swf_global_queue); |
| 218 | |
| 219 | while (queue_end(&swf_global_queue, (queue_entry_t)swf) == FALSE) { |
| 220 | if (swapfile_index == swf->swp_index) { |
| 221 | break; |
| 222 | } |
| 223 | |
| 224 | swf = (struct swapfile*) queue_next(&swf->swp_queue); |
| 225 | } |
| 226 | |
| 227 | if (queue_end(&swf_global_queue, (queue_entry_t) swf)) { |
| 228 | swf = NULL; |
| 229 | } |
| 230 | |
| 231 | return swf; |
| 232 | } |
| 233 | |
| 234 | #if ENCRYPTED_SWAP |
| 235 | |
| 236 | #include <libkern/crypto/aesxts.h> |
| 237 | |
| 238 | extern int cc_rand_generate(void *, size_t); /* from libkern/cyrpto/rand.h> */ |
| 239 | |
| 240 | boolean_t swap_crypt_initialized; |
| 241 | void swap_crypt_initialize(void); |
| 242 | |
| 243 | symmetric_xts xts_modectx; |
| 244 | uint32_t swap_crypt_key1[8]; /* big enough for a 256 bit random key */ |
| 245 | uint32_t swap_crypt_key2[8]; /* big enough for a 256 bit random key */ |
| 246 | |
| 247 | #if DEVELOPMENT || DEBUG |
| 248 | boolean_t swap_crypt_xts_tested = FALSE; |
| 249 | unsigned char swap_crypt_test_page_ref[4096] __attribute__((aligned(4096))); |
| 250 | unsigned char swap_crypt_test_page_encrypt[4096] __attribute__((aligned(4096))); |
| 251 | unsigned char swap_crypt_test_page_decrypt[4096] __attribute__((aligned(4096))); |
| 252 | #endif /* DEVELOPMENT || DEBUG */ |
| 253 | |
| 254 | unsigned long vm_page_encrypt_counter; |
| 255 | unsigned long vm_page_decrypt_counter; |
| 256 | |
| 257 | |
| 258 | void |
| 259 | swap_crypt_initialize(void) |
| 260 | { |
| 261 | uint8_t *enckey1, *enckey2; |
| 262 | int keylen1, keylen2; |
| 263 | int error; |
| 264 | |
| 265 | assert(swap_crypt_initialized == FALSE); |
| 266 | |
| 267 | keylen1 = sizeof(swap_crypt_key1); |
| 268 | enckey1 = (uint8_t *)&swap_crypt_key1; |
| 269 | keylen2 = sizeof(swap_crypt_key2); |
| 270 | enckey2 = (uint8_t *)&swap_crypt_key2; |
| 271 | |
| 272 | error = cc_rand_generate((void *)enckey1, keylen1); |
| 273 | assert(!error); |
| 274 | |
| 275 | error = cc_rand_generate((void *)enckey2, keylen2); |
| 276 | assert(!error); |
| 277 | |
| 278 | error = xts_start(cipher: 0, NULL, key1: enckey1, keylen: keylen1, key2: enckey2, tweaklen: keylen2, num_rounds: 0, options: 0, xts: &xts_modectx); |
| 279 | assert(!error); |
| 280 | |
| 281 | swap_crypt_initialized = TRUE; |
| 282 | |
| 283 | #if DEVELOPMENT || DEBUG |
| 284 | uint8_t *encptr; |
| 285 | uint8_t *decptr; |
| 286 | uint8_t *refptr; |
| 287 | uint8_t *iv; |
| 288 | uint64_t ivnum[2]; |
| 289 | int size = 0; |
| 290 | int i = 0; |
| 291 | int rc = 0; |
| 292 | |
| 293 | assert(swap_crypt_xts_tested == FALSE); |
| 294 | |
| 295 | /* |
| 296 | * Validate the encryption algorithms. |
| 297 | * |
| 298 | * First initialize the test data. |
| 299 | */ |
| 300 | for (i = 0; i < 4096; i++) { |
| 301 | swap_crypt_test_page_ref[i] = (char) i; |
| 302 | } |
| 303 | ivnum[0] = (uint64_t)0xaa; |
| 304 | ivnum[1] = 0; |
| 305 | iv = (uint8_t *)ivnum; |
| 306 | |
| 307 | refptr = (uint8_t *)swap_crypt_test_page_ref; |
| 308 | encptr = (uint8_t *)swap_crypt_test_page_encrypt; |
| 309 | decptr = (uint8_t *)swap_crypt_test_page_decrypt; |
| 310 | size = 4096; |
| 311 | |
| 312 | /* encrypt */ |
| 313 | rc = xts_encrypt(refptr, size, encptr, iv, &xts_modectx); |
| 314 | assert(!rc); |
| 315 | |
| 316 | /* compare result with original - should NOT match */ |
| 317 | for (i = 0; i < 4096; i++) { |
| 318 | if (swap_crypt_test_page_encrypt[i] != |
| 319 | swap_crypt_test_page_ref[i]) { |
| 320 | break; |
| 321 | } |
| 322 | } |
| 323 | assert(i != 4096); |
| 324 | |
| 325 | /* decrypt */ |
| 326 | rc = xts_decrypt(encptr, size, decptr, iv, &xts_modectx); |
| 327 | assert(!rc); |
| 328 | |
| 329 | /* compare result with original */ |
| 330 | for (i = 0; i < 4096; i++) { |
| 331 | if (swap_crypt_test_page_decrypt[i] != |
| 332 | swap_crypt_test_page_ref[i]) { |
| 333 | panic("encryption test failed" ); |
| 334 | } |
| 335 | } |
| 336 | /* encrypt in place */ |
| 337 | rc = xts_encrypt(decptr, size, decptr, iv, &xts_modectx); |
| 338 | assert(!rc); |
| 339 | |
| 340 | /* decrypt in place */ |
| 341 | rc = xts_decrypt(decptr, size, decptr, iv, &xts_modectx); |
| 342 | assert(!rc); |
| 343 | |
| 344 | for (i = 0; i < 4096; i++) { |
| 345 | if (swap_crypt_test_page_decrypt[i] != |
| 346 | swap_crypt_test_page_ref[i]) { |
| 347 | panic("in place encryption test failed" ); |
| 348 | } |
| 349 | } |
| 350 | swap_crypt_xts_tested = TRUE; |
| 351 | #endif /* DEVELOPMENT || DEBUG */ |
| 352 | } |
| 353 | |
| 354 | |
| 355 | void |
| 356 | vm_swap_encrypt(c_segment_t c_seg) |
| 357 | { |
| 358 | uint8_t *ptr; |
| 359 | uint8_t *iv; |
| 360 | uint64_t ivnum[2]; |
| 361 | int size = 0; |
| 362 | int rc = 0; |
| 363 | |
| 364 | if (swap_crypt_initialized == FALSE) { |
| 365 | swap_crypt_initialize(); |
| 366 | } |
| 367 | |
| 368 | #if DEVELOPMENT || DEBUG |
| 369 | C_SEG_MAKE_WRITEABLE(c_seg); |
| 370 | #endif |
| 371 | ptr = (uint8_t *)c_seg->c_store.c_buffer; |
| 372 | size = round_page_32(C_SEG_OFFSET_TO_BYTES(c_seg->c_populated_offset)); |
| 373 | |
| 374 | ivnum[0] = (uint64_t)c_seg; |
| 375 | ivnum[1] = 0; |
| 376 | iv = (uint8_t *)ivnum; |
| 377 | |
| 378 | rc = xts_encrypt(pt: ptr, ptlen: size, ct: ptr, tweak: iv, xts: &xts_modectx); |
| 379 | assert(!rc); |
| 380 | |
| 381 | vm_page_encrypt_counter += (size / PAGE_SIZE_64); |
| 382 | |
| 383 | #if DEVELOPMENT || DEBUG |
| 384 | C_SEG_WRITE_PROTECT(c_seg); |
| 385 | #endif |
| 386 | } |
| 387 | |
| 388 | void |
| 389 | vm_swap_decrypt(c_segment_t c_seg) |
| 390 | { |
| 391 | uint8_t *ptr; |
| 392 | uint8_t *iv; |
| 393 | uint64_t ivnum[2]; |
| 394 | int size = 0; |
| 395 | int rc = 0; |
| 396 | |
| 397 | assert(swap_crypt_initialized); |
| 398 | |
| 399 | #if DEVELOPMENT || DEBUG |
| 400 | C_SEG_MAKE_WRITEABLE(c_seg); |
| 401 | #endif |
| 402 | ptr = (uint8_t *)c_seg->c_store.c_buffer; |
| 403 | size = round_page_32(C_SEG_OFFSET_TO_BYTES(c_seg->c_populated_offset)); |
| 404 | |
| 405 | ivnum[0] = (uint64_t)c_seg; |
| 406 | ivnum[1] = 0; |
| 407 | iv = (uint8_t *)ivnum; |
| 408 | |
| 409 | rc = xts_decrypt(ct: ptr, ptlen: size, pt: ptr, tweak: iv, xts: &xts_modectx); |
| 410 | assert(!rc); |
| 411 | |
| 412 | vm_page_decrypt_counter += (size / PAGE_SIZE_64); |
| 413 | |
| 414 | #if DEVELOPMENT || DEBUG |
| 415 | C_SEG_WRITE_PROTECT(c_seg); |
| 416 | #endif |
| 417 | } |
| 418 | #endif /* ENCRYPTED_SWAP */ |
| 419 | |
| 420 | uint64_t compressed_swap_chunk_size, vm_swapfile_hiwater_segs, swapfile_reclaim_threshold_segs, swapfile_reclam_minimum_segs; |
| 421 | extern bool memorystatus_swap_all_apps; |
| 422 | |
| 423 | void |
| 424 | vm_compressor_swap_init_swap_file_limit(void) |
| 425 | { |
| 426 | vm_num_swap_files_config = VM_MAX_SWAP_FILE_NUM; |
| 427 | #if CONFIG_JETSAM |
| 428 | if (memorystatus_swap_all_apps) { |
| 429 | if (vm_swap_volume_capacity == 0) { |
| 430 | /* |
| 431 | * Early in boot we don't know the swap volume capacity. |
| 432 | * That's fine. Reserve space for the maximum config |
| 433 | * and we'll lower this later in boot once we have the capacity. |
| 434 | */ |
| 435 | vm_num_swap_files_config = VM_MAX_SWAP_FILE_SWAP_ENABLED_NUM; |
| 436 | } else { |
| 437 | static uint64_t kFixedPointFactor = 100; |
| 438 | /* |
| 439 | * Scale the max number of swap files linearly. |
| 440 | * But we can never go above VM_MAX_SWAP_FILE_SWAP_ENABLED_NUM. |
| 441 | */ |
| 442 | vm_num_swap_files_config = vm_swap_volume_capacity * kFixedPointFactor / VM_SWAP_MIN_VOLUME_CAPACITY |
| 443 | * VM_MIN_SWAP_FILE_SWAP_ENABLED_NUM / kFixedPointFactor; |
| 444 | vm_num_swap_files_config = MAX(vm_num_swap_files_config, VM_MIN_SWAP_FILE_SWAP_ENABLED_NUM); |
| 445 | vm_num_swap_files_config = MIN(vm_num_swap_files_config, VM_MAX_SWAP_FILE_SWAP_ENABLED_NUM); |
| 446 | } |
| 447 | } |
| 448 | #endif /* CONFIG_JETSAM */ |
| 449 | #if DEVELOPMENT || DEBUG |
| 450 | typeof(vm_num_swap_files_config) parsed_vm_max_num_swap_files = 0; |
| 451 | if (PE_parse_boot_argn("vm_max_num_swap_files" , &parsed_vm_max_num_swap_files, sizeof(parsed_vm_max_num_swap_files))) { |
| 452 | if (parsed_vm_max_num_swap_files > 0) { |
| 453 | vm_num_swap_files_config = parsed_vm_max_num_swap_files; |
| 454 | } else { |
| 455 | printf("WARNING: Ignoring vm_max_num_swap_files=%d boot-arg. Value must be > 0\n" , parsed_vm_max_num_swap_files); |
| 456 | } |
| 457 | } |
| 458 | #endif |
| 459 | printf(format: "Maximum number of VM swap files: %d\n" , vm_num_swap_files_config); |
| 460 | } |
| 461 | |
| 462 | int vm_swap_enabled = 0; |
| 463 | void |
| 464 | vm_compressor_swap_init(void) |
| 465 | { |
| 466 | thread_t thread = NULL; |
| 467 | |
| 468 | queue_init(&swf_global_queue); |
| 469 | |
| 470 | #if !XNU_TARGET_OS_OSX |
| 471 | /* |
| 472 | * dummy value until the swap file gets created |
| 473 | * when we drive the first c_segment_t to the |
| 474 | * swapout queue... at that time we will |
| 475 | * know the true size we have to work with |
| 476 | */ |
| 477 | c_overage_swapped_limit = 16; |
| 478 | #endif /* !XNU_TARGET_OS_OSX */ |
| 479 | |
| 480 | compressed_swap_chunk_size = c_seg_bufsize; |
| 481 | vm_swapfile_hiwater_segs = (MIN_SWAP_FILE_SIZE / compressed_swap_chunk_size); |
| 482 | swapfile_reclaim_threshold_segs = ((17 * (MAX_SWAP_FILE_SIZE / compressed_swap_chunk_size)) / 10); |
| 483 | swapfile_reclam_minimum_segs = ((13 * (MAX_SWAP_FILE_SIZE / compressed_swap_chunk_size)) / 10); |
| 484 | |
| 485 | if (kernel_thread_start_priority(continuation: (thread_continue_t)vm_swapout_thread, NULL, |
| 486 | BASEPRI_VM, new_thread: &thread) != KERN_SUCCESS) { |
| 487 | panic("vm_swapout_thread: create failed" ); |
| 488 | } |
| 489 | thread_set_thread_name(th: thread, name: "VM_swapout" ); |
| 490 | vm_swapout_thread_id = thread->thread_id; |
| 491 | thread_deallocate(thread); |
| 492 | |
| 493 | if (kernel_thread_start_priority(continuation: (thread_continue_t)vm_swapfile_create_thread, NULL, |
| 494 | BASEPRI_VM, new_thread: &thread) != KERN_SUCCESS) { |
| 495 | panic("vm_swapfile_create_thread: create failed" ); |
| 496 | } |
| 497 | thread_set_thread_name(th: thread, name: "VM_swapfile_create" ); |
| 498 | thread_deallocate(thread); |
| 499 | |
| 500 | if (kernel_thread_start_priority(continuation: (thread_continue_t)vm_swapfile_gc_thread, NULL, |
| 501 | BASEPRI_VM, new_thread: &thread) != KERN_SUCCESS) { |
| 502 | panic("vm_swapfile_gc_thread: create failed" ); |
| 503 | } |
| 504 | thread_set_thread_name(th: thread, name: "VM_swapfile_gc" ); |
| 505 | /* |
| 506 | * Swapfile garbage collection will need to allocate memory |
| 507 | * to complete its swap reclaim and in-memory compaction. |
| 508 | * So allow it to dip into the reserved VM page pool. |
| 509 | */ |
| 510 | thread_lock(thread); |
| 511 | thread->options |= TH_OPT_VMPRIV; |
| 512 | thread_unlock(thread); |
| 513 | thread_deallocate(thread); |
| 514 | proc_set_thread_policy_with_tid(task: kernel_task, tid: thread->thread_id, |
| 515 | TASK_POLICY_INTERNAL, TASK_POLICY_IO, THROTTLE_LEVEL_COMPRESSOR_TIER2); |
| 516 | proc_set_thread_policy_with_tid(task: kernel_task, tid: thread->thread_id, |
| 517 | TASK_POLICY_INTERNAL, TASK_POLICY_PASSIVE_IO, TASK_POLICY_ENABLE); |
| 518 | |
| 519 | vm_swap_enabled = 1; |
| 520 | printf(format: "VM Swap Subsystem is ON\n" ); |
| 521 | } |
| 522 | |
| 523 | |
| 524 | #if RECORD_THE_COMPRESSED_DATA |
| 525 | |
| 526 | void |
| 527 | c_compressed_record_init() |
| 528 | { |
| 529 | if (c_compressed_record_init_done == FALSE) { |
| 530 | vm_swapfile_open("/tmp/compressed_data" , &c_compressed_record_vp); |
| 531 | c_compressed_record_init_done = TRUE; |
| 532 | } |
| 533 | } |
| 534 | |
| 535 | void |
| 536 | c_compressed_record_write(char *buf, int size) |
| 537 | { |
| 538 | if (c_compressed_record_write_error == 0) { |
| 539 | c_compressed_record_write_error = vm_record_file_write(c_compressed_record_vp, c_compressed_record_file_offset, buf, size); |
| 540 | c_compressed_record_file_offset += size; |
| 541 | } |
| 542 | } |
| 543 | #endif |
| 544 | |
| 545 | |
| 546 | int compaction_swapper_inited = 0; |
| 547 | |
| 548 | void |
| 549 | vm_compaction_swapper_do_init(void) |
| 550 | { |
| 551 | struct vnode *vp; |
| 552 | char *pathname; |
| 553 | int namelen; |
| 554 | |
| 555 | if (compaction_swapper_inited) { |
| 556 | return; |
| 557 | } |
| 558 | |
| 559 | if (vm_compressor_mode != VM_PAGER_COMPRESSOR_WITH_SWAP) { |
| 560 | compaction_swapper_inited = 1; |
| 561 | return; |
| 562 | } |
| 563 | lck_mtx_lock(lck: &vm_swap_data_lock); |
| 564 | |
| 565 | if (!compaction_swapper_inited) { |
| 566 | namelen = (int)strlen(s: swapfilename) + SWAPFILENAME_INDEX_LEN + 1; |
| 567 | pathname = kalloc_data(namelen, Z_WAITOK | Z_ZERO); |
| 568 | snprintf(pathname, namelen, "%s%d" , swapfilename, 0); |
| 569 | |
| 570 | vm_swapfile_open(path: pathname, vp: &vp); |
| 571 | |
| 572 | if (vp) { |
| 573 | if (vnode_pager_isSSD(vp) == FALSE) { |
| 574 | /* |
| 575 | * swap files live on an HDD, so let's make sure to start swapping |
| 576 | * much earlier since we're not worried about SSD write-wear and |
| 577 | * we have so little write bandwidth to work with |
| 578 | * these values were derived expermentially by running the performance |
| 579 | * teams stock test for evaluating HDD performance against various |
| 580 | * combinations and looking and comparing overall results. |
| 581 | * Note that the > relationship between these 4 values must be maintained |
| 582 | */ |
| 583 | if (vm_compressor_minorcompact_threshold_divisor_overridden == 0) { |
| 584 | vm_compressor_minorcompact_threshold_divisor = 15; |
| 585 | } |
| 586 | if (vm_compressor_majorcompact_threshold_divisor_overridden == 0) { |
| 587 | vm_compressor_majorcompact_threshold_divisor = 18; |
| 588 | } |
| 589 | if (vm_compressor_unthrottle_threshold_divisor_overridden == 0) { |
| 590 | vm_compressor_unthrottle_threshold_divisor = 24; |
| 591 | } |
| 592 | if (vm_compressor_catchup_threshold_divisor_overridden == 0) { |
| 593 | vm_compressor_catchup_threshold_divisor = 30; |
| 594 | } |
| 595 | } |
| 596 | #if XNU_TARGET_OS_OSX |
| 597 | vnode_setswapmount(vp); |
| 598 | vm_swappin_avail = vnode_getswappin_avail(vp); |
| 599 | |
| 600 | if (vm_swappin_avail) { |
| 601 | vm_swappin_enabled = TRUE; |
| 602 | } |
| 603 | #endif /* XNU_TARGET_OS_OSX */ |
| 604 | vm_swapfile_close(path: (uint64_t)pathname, vp); |
| 605 | } |
| 606 | kfree_data(pathname, namelen); |
| 607 | |
| 608 | compaction_swapper_inited = 1; |
| 609 | } |
| 610 | lck_mtx_unlock(lck: &vm_swap_data_lock); |
| 611 | } |
| 612 | |
| 613 | |
| 614 | void |
| 615 | vm_swap_consider_defragmenting(int flags) |
| 616 | { |
| 617 | boolean_t force_defrag = (flags & VM_SWAP_FLAGS_FORCE_DEFRAG); |
| 618 | boolean_t force_reclaim = (flags & VM_SWAP_FLAGS_FORCE_RECLAIM); |
| 619 | |
| 620 | if (compressor_store_stop_compaction == FALSE && !VM_SWAP_BUSY() && |
| 621 | (force_defrag || force_reclaim || VM_SWAP_SHOULD_DEFRAGMENT() || VM_SWAP_SHOULD_RECLAIM())) { |
| 622 | if (!vm_swapfile_gc_thread_running || force_defrag || force_reclaim) { |
| 623 | lck_mtx_lock(lck: &vm_swap_data_lock); |
| 624 | |
| 625 | if (force_defrag) { |
| 626 | vm_swap_force_defrag = TRUE; |
| 627 | } |
| 628 | |
| 629 | if (force_reclaim) { |
| 630 | vm_swap_force_reclaim = TRUE; |
| 631 | } |
| 632 | |
| 633 | if (!vm_swapfile_gc_thread_running) { |
| 634 | thread_wakeup((event_t) &vm_swapfile_gc_needed); |
| 635 | } |
| 636 | |
| 637 | lck_mtx_unlock(lck: &vm_swap_data_lock); |
| 638 | } |
| 639 | } |
| 640 | } |
| 641 | |
| 642 | |
| 643 | int vm_swap_defragment_yielded = 0; |
| 644 | int vm_swap_defragment_swapin = 0; |
| 645 | int vm_swap_defragment_free = 0; |
| 646 | int vm_swap_defragment_busy = 0; |
| 647 | |
| 648 | #if CONFIG_FREEZE |
| 649 | extern int32_t c_segment_pages_compressed_incore; |
| 650 | extern int32_t c_segment_pages_compressed_incore_late_swapout; |
| 651 | extern uint32_t c_segment_pages_compressed_nearing_limit; |
| 652 | extern uint32_t c_segment_count; |
| 653 | extern uint32_t c_segments_nearing_limit; |
| 654 | |
| 655 | boolean_t memorystatus_kill_on_VM_compressor_space_shortage(boolean_t); |
| 656 | |
| 657 | extern bool freezer_incore_cseg_acct; |
| 658 | #endif /* CONFIG_FREEZE */ |
| 659 | |
| 660 | static void |
| 661 | vm_swap_defragment() |
| 662 | { |
| 663 | c_segment_t c_seg; |
| 664 | |
| 665 | /* |
| 666 | * have to grab the master lock w/o holding |
| 667 | * any locks in spin mode |
| 668 | */ |
| 669 | PAGE_REPLACEMENT_DISALLOWED(TRUE); |
| 670 | |
| 671 | lck_mtx_lock_spin_always(c_list_lock); |
| 672 | |
| 673 | while (!queue_empty(&c_swappedout_sparse_list_head)) { |
| 674 | if (compressor_store_stop_compaction == TRUE || VM_SWAP_BUSY()) { |
| 675 | vm_swap_defragment_yielded++; |
| 676 | break; |
| 677 | } |
| 678 | c_seg = (c_segment_t)queue_first(&c_swappedout_sparse_list_head); |
| 679 | |
| 680 | lck_mtx_lock_spin_always(lck: &c_seg->c_lock); |
| 681 | |
| 682 | assert(c_seg->c_state == C_ON_SWAPPEDOUTSPARSE_Q); |
| 683 | |
| 684 | if (c_seg->c_busy) { |
| 685 | lck_mtx_unlock_always(c_list_lock); |
| 686 | |
| 687 | PAGE_REPLACEMENT_DISALLOWED(FALSE); |
| 688 | /* |
| 689 | * c_seg_wait_on_busy consumes c_seg->c_lock |
| 690 | */ |
| 691 | c_seg_wait_on_busy(c_seg); |
| 692 | |
| 693 | PAGE_REPLACEMENT_DISALLOWED(TRUE); |
| 694 | |
| 695 | lck_mtx_lock_spin_always(c_list_lock); |
| 696 | |
| 697 | vm_swap_defragment_busy++; |
| 698 | continue; |
| 699 | } |
| 700 | if (c_seg->c_bytes_used == 0) { |
| 701 | /* |
| 702 | * c_seg_free_locked consumes the c_list_lock |
| 703 | * and c_seg->c_lock |
| 704 | */ |
| 705 | C_SEG_BUSY(c_seg); |
| 706 | c_seg_free_locked(c_seg); |
| 707 | |
| 708 | vm_swap_defragment_free++; |
| 709 | } else { |
| 710 | lck_mtx_unlock_always(c_list_lock); |
| 711 | |
| 712 | #if CONFIG_FREEZE |
| 713 | if (freezer_incore_cseg_acct) { |
| 714 | /* |
| 715 | * TODO(jason): These two are tricky because they're pre-emptive jetsams. |
| 716 | * The system is not unhealthy, but we know that it's about to become unhealthy once |
| 717 | * we do this swapin. |
| 718 | * So we're waking up the memorystatus thread to make space |
| 719 | * (hopefully) before this segment comes in. |
| 720 | * |
| 721 | * I think the compressor_backing_store needs to keep track of |
| 722 | * two new globals that will track the number of segments |
| 723 | * being swapped in due to defrag and the number of slots used |
| 724 | * in those segments. |
| 725 | * Then the health check below can be called from the memorystatus |
| 726 | * thread. |
| 727 | */ |
| 728 | if ((c_seg->c_slots_used + c_segment_pages_compressed_incore) >= c_segment_pages_compressed_nearing_limit) { |
| 729 | memorystatus_kill_on_VM_compressor_space_shortage(TRUE /* async */); |
| 730 | } |
| 731 | |
| 732 | uint32_t incore_seg_count = c_segment_count - c_swappedout_count - c_swappedout_sparse_count; |
| 733 | if ((incore_seg_count + 1) >= c_segments_nearing_limit) { |
| 734 | memorystatus_kill_on_VM_compressor_space_shortage(TRUE /* async */); |
| 735 | } |
| 736 | } |
| 737 | #endif /* CONFIG_FREEZE */ |
| 738 | if (c_seg_swapin(c_seg, TRUE, FALSE) == 0) { |
| 739 | lck_mtx_unlock_always(&c_seg->c_lock); |
| 740 | vmcs_stats.defrag_swapins += (round_page_32(C_SEG_OFFSET_TO_BYTES(c_seg->c_populated_offset))) >> PAGE_SHIFT; |
| 741 | } |
| 742 | |
| 743 | vm_swap_defragment_swapin++; |
| 744 | } |
| 745 | PAGE_REPLACEMENT_DISALLOWED(FALSE); |
| 746 | |
| 747 | vm_pageout_io_throttle(); |
| 748 | |
| 749 | /* |
| 750 | * because write waiters have privilege over readers, |
| 751 | * dropping and immediately retaking the master lock will |
| 752 | * still allow any thread waiting to acquire the |
| 753 | * master lock exclusively an opportunity to take it |
| 754 | */ |
| 755 | PAGE_REPLACEMENT_DISALLOWED(TRUE); |
| 756 | |
| 757 | lck_mtx_lock_spin_always(c_list_lock); |
| 758 | } |
| 759 | lck_mtx_unlock_always(c_list_lock); |
| 760 | |
| 761 | PAGE_REPLACEMENT_DISALLOWED(FALSE); |
| 762 | } |
| 763 | |
| 764 | |
| 765 | bool vm_swapfile_create_thread_inited = false; |
| 766 | static void |
| 767 | vm_swapfile_create_thread(void) |
| 768 | { |
| 769 | clock_sec_t sec; |
| 770 | clock_nsec_t nsec; |
| 771 | |
| 772 | if (!vm_swapfile_create_thread_inited) { |
| 773 | #if CONFIG_THREAD_GROUPS |
| 774 | thread_group_vm_add(); |
| 775 | #endif /* CONFIG_THREAD_GROUPS */ |
| 776 | current_thread()->options |= TH_OPT_VMPRIV; |
| 777 | vm_swapfile_create_thread_inited = true; |
| 778 | } |
| 779 | |
| 780 | vm_swapfile_create_thread_awakened++; |
| 781 | vm_swapfile_create_thread_running = 1; |
| 782 | |
| 783 | while (TRUE) { |
| 784 | /* |
| 785 | * walk through the list of swap files |
| 786 | * and do the delayed frees/trims for |
| 787 | * any swap file whose count of delayed |
| 788 | * frees is above the batch limit |
| 789 | */ |
| 790 | vm_swap_handle_delayed_trims(FALSE); |
| 791 | |
| 792 | lck_mtx_lock(lck: &vm_swap_data_lock); |
| 793 | |
| 794 | if (hibernate_in_progress_with_pinned_swap == TRUE) { |
| 795 | break; |
| 796 | } |
| 797 | |
| 798 | if (compressor_store_stop_compaction == TRUE) { |
| 799 | break; |
| 800 | } |
| 801 | |
| 802 | clock_get_system_nanotime(secs: &sec, nanosecs: &nsec); |
| 803 | |
| 804 | if (VM_SWAP_SHOULD_CREATE(sec) == 0) { |
| 805 | break; |
| 806 | } |
| 807 | |
| 808 | lck_mtx_unlock(lck: &vm_swap_data_lock); |
| 809 | |
| 810 | if (vm_swap_create_file() == FALSE) { |
| 811 | vm_swapfile_last_failed_to_create_ts = sec; |
| 812 | HIBLOG("vm_swap_create_file failed @ %lu secs\n" , (unsigned long)sec); |
| 813 | } else { |
| 814 | vm_swapfile_last_successful_create_ts = sec; |
| 815 | } |
| 816 | } |
| 817 | vm_swapfile_create_thread_running = 0; |
| 818 | |
| 819 | if (hibernate_in_progress_with_pinned_swap == TRUE) { |
| 820 | thread_wakeup((event_t)&hibernate_in_progress_with_pinned_swap); |
| 821 | } |
| 822 | |
| 823 | if (compressor_store_stop_compaction == TRUE) { |
| 824 | thread_wakeup((event_t)&compressor_store_stop_compaction); |
| 825 | } |
| 826 | |
| 827 | assert_wait(event: (event_t)&vm_swapfile_create_needed, THREAD_UNINT); |
| 828 | |
| 829 | lck_mtx_unlock(lck: &vm_swap_data_lock); |
| 830 | |
| 831 | thread_block(continuation: (thread_continue_t)vm_swapfile_create_thread); |
| 832 | |
| 833 | /* NOTREACHED */ |
| 834 | } |
| 835 | |
| 836 | |
| 837 | #if HIBERNATION |
| 838 | |
| 839 | kern_return_t |
| 840 | hibernate_pin_swap(boolean_t start) |
| 841 | { |
| 842 | vm_compaction_swapper_do_init(); |
| 843 | |
| 844 | if (start == FALSE) { |
| 845 | lck_mtx_lock(&vm_swap_data_lock); |
| 846 | hibernate_in_progress_with_pinned_swap = FALSE; |
| 847 | lck_mtx_unlock(&vm_swap_data_lock); |
| 848 | |
| 849 | return KERN_SUCCESS; |
| 850 | } |
| 851 | if (vm_swappin_enabled == FALSE) { |
| 852 | return KERN_SUCCESS; |
| 853 | } |
| 854 | |
| 855 | lck_mtx_lock(&vm_swap_data_lock); |
| 856 | |
| 857 | hibernate_in_progress_with_pinned_swap = TRUE; |
| 858 | |
| 859 | while (vm_swapfile_create_thread_running || vm_swapfile_gc_thread_running) { |
| 860 | assert_wait((event_t)&hibernate_in_progress_with_pinned_swap, THREAD_UNINT); |
| 861 | |
| 862 | lck_mtx_unlock(&vm_swap_data_lock); |
| 863 | |
| 864 | thread_block(THREAD_CONTINUE_NULL); |
| 865 | |
| 866 | lck_mtx_lock(&vm_swap_data_lock); |
| 867 | } |
| 868 | if (vm_num_swap_files > vm_num_pinned_swap_files) { |
| 869 | hibernate_in_progress_with_pinned_swap = FALSE; |
| 870 | lck_mtx_unlock(&vm_swap_data_lock); |
| 871 | |
| 872 | HIBLOG("hibernate_pin_swap failed - vm_num_swap_files = %d, vm_num_pinned_swap_files = %d\n" , |
| 873 | vm_num_swap_files, vm_num_pinned_swap_files); |
| 874 | return KERN_FAILURE; |
| 875 | } |
| 876 | lck_mtx_unlock(&vm_swap_data_lock); |
| 877 | |
| 878 | while (VM_SWAP_SHOULD_PIN(MAX_SWAP_FILE_SIZE)) { |
| 879 | if (vm_swap_create_file() == FALSE) { |
| 880 | break; |
| 881 | } |
| 882 | } |
| 883 | return KERN_SUCCESS; |
| 884 | } |
| 885 | #endif |
| 886 | bool vm_swapfile_gc_thread_inited = false; |
| 887 | static void |
| 888 | vm_swapfile_gc_thread(void) |
| 889 | { |
| 890 | boolean_t need_defragment; |
| 891 | boolean_t need_reclaim; |
| 892 | |
| 893 | if (!vm_swapfile_gc_thread_inited) { |
| 894 | #if CONFIG_THREAD_GROUPS |
| 895 | thread_group_vm_add(); |
| 896 | #endif /* CONFIG_THREAD_GROUPS */ |
| 897 | vm_swapfile_gc_thread_inited = true; |
| 898 | } |
| 899 | |
| 900 | vm_swapfile_gc_thread_awakened++; |
| 901 | vm_swapfile_gc_thread_running = 1; |
| 902 | |
| 903 | while (TRUE) { |
| 904 | lck_mtx_lock(lck: &vm_swap_data_lock); |
| 905 | |
| 906 | if (hibernate_in_progress_with_pinned_swap == TRUE) { |
| 907 | break; |
| 908 | } |
| 909 | |
| 910 | if (VM_SWAP_BUSY() || compressor_store_stop_compaction == TRUE) { |
| 911 | break; |
| 912 | } |
| 913 | |
| 914 | need_defragment = FALSE; |
| 915 | need_reclaim = FALSE; |
| 916 | |
| 917 | if (VM_SWAP_SHOULD_DEFRAGMENT()) { |
| 918 | need_defragment = TRUE; |
| 919 | } |
| 920 | |
| 921 | if (VM_SWAP_SHOULD_RECLAIM()) { |
| 922 | need_defragment = TRUE; |
| 923 | need_reclaim = TRUE; |
| 924 | } |
| 925 | if (need_defragment == FALSE && need_reclaim == FALSE) { |
| 926 | break; |
| 927 | } |
| 928 | |
| 929 | vm_swap_force_defrag = FALSE; |
| 930 | vm_swap_force_reclaim = FALSE; |
| 931 | |
| 932 | lck_mtx_unlock(lck: &vm_swap_data_lock); |
| 933 | |
| 934 | if (need_defragment == TRUE) { |
| 935 | vm_swap_defragment(); |
| 936 | } |
| 937 | if (need_reclaim == TRUE) { |
| 938 | vm_swap_reclaim(); |
| 939 | } |
| 940 | } |
| 941 | vm_swapfile_gc_thread_running = 0; |
| 942 | |
| 943 | if (hibernate_in_progress_with_pinned_swap == TRUE) { |
| 944 | thread_wakeup((event_t)&hibernate_in_progress_with_pinned_swap); |
| 945 | } |
| 946 | |
| 947 | if (compressor_store_stop_compaction == TRUE) { |
| 948 | thread_wakeup((event_t)&compressor_store_stop_compaction); |
| 949 | } |
| 950 | |
| 951 | assert_wait(event: (event_t)&vm_swapfile_gc_needed, THREAD_UNINT); |
| 952 | |
| 953 | lck_mtx_unlock(lck: &vm_swap_data_lock); |
| 954 | |
| 955 | thread_block(continuation: (thread_continue_t)vm_swapfile_gc_thread); |
| 956 | |
| 957 | /* NOTREACHED */ |
| 958 | } |
| 959 | |
| 960 | |
| 961 | |
| 962 | #define VM_SWAPOUT_LIMIT_T2P 4 |
| 963 | #define VM_SWAPOUT_LIMIT_T1P 4 |
| 964 | #define VM_SWAPOUT_LIMIT_T0P 6 |
| 965 | #define VM_SWAPOUT_LIMIT_T0 8 |
| 966 | #define VM_SWAPOUT_LIMIT_MAX 8 |
| 967 | |
| 968 | #define VM_SWAPOUT_START 0 |
| 969 | #define VM_SWAPOUT_T2_PASSIVE 1 |
| 970 | #define VM_SWAPOUT_T1_PASSIVE 2 |
| 971 | #define VM_SWAPOUT_T0_PASSIVE 3 |
| 972 | #define VM_SWAPOUT_T0 4 |
| 973 | |
| 974 | int vm_swapout_state = VM_SWAPOUT_START; |
| 975 | int vm_swapout_limit = 1; |
| 976 | |
| 977 | int vm_swapper_entered_T0 = 0; |
| 978 | int vm_swapper_entered_T0P = 0; |
| 979 | int vm_swapper_entered_T1P = 0; |
| 980 | int vm_swapper_entered_T2P = 0; |
| 981 | |
| 982 | |
| 983 | static void |
| 984 | vm_swapout_thread_throttle_adjust(void) |
| 985 | { |
| 986 | switch (vm_swapout_state) { |
| 987 | case VM_SWAPOUT_START: |
| 988 | |
| 989 | vm_swapper_throttle = THROTTLE_LEVEL_COMPRESSOR_TIER2; |
| 990 | vm_swapper_entered_T2P++; |
| 991 | |
| 992 | proc_set_thread_policy_with_tid(task: kernel_task, tid: vm_swapout_thread_id, |
| 993 | TASK_POLICY_INTERNAL, TASK_POLICY_IO, value: vm_swapper_throttle); |
| 994 | proc_set_thread_policy_with_tid(task: kernel_task, tid: vm_swapout_thread_id, |
| 995 | TASK_POLICY_INTERNAL, TASK_POLICY_PASSIVE_IO, TASK_POLICY_ENABLE); |
| 996 | vm_swapout_limit = VM_SWAPOUT_LIMIT_T2P; |
| 997 | vm_swapout_state = VM_SWAPOUT_T2_PASSIVE; |
| 998 | |
| 999 | break; |
| 1000 | |
| 1001 | case VM_SWAPOUT_T2_PASSIVE: |
| 1002 | |
| 1003 | if (SWAPPER_NEEDS_TO_UNTHROTTLE()) { |
| 1004 | vm_swapper_throttle = THROTTLE_LEVEL_COMPRESSOR_TIER0; |
| 1005 | vm_swapper_entered_T0P++; |
| 1006 | |
| 1007 | proc_set_thread_policy_with_tid(task: kernel_task, tid: vm_swapout_thread_id, |
| 1008 | TASK_POLICY_INTERNAL, TASK_POLICY_IO, value: vm_swapper_throttle); |
| 1009 | proc_set_thread_policy_with_tid(task: kernel_task, tid: vm_swapout_thread_id, |
| 1010 | TASK_POLICY_INTERNAL, TASK_POLICY_PASSIVE_IO, TASK_POLICY_ENABLE); |
| 1011 | vm_swapout_limit = VM_SWAPOUT_LIMIT_T0P; |
| 1012 | vm_swapout_state = VM_SWAPOUT_T0_PASSIVE; |
| 1013 | |
| 1014 | break; |
| 1015 | } |
| 1016 | if (swapout_target_age || hibernate_flushing == TRUE) { |
| 1017 | vm_swapper_throttle = THROTTLE_LEVEL_COMPRESSOR_TIER1; |
| 1018 | vm_swapper_entered_T1P++; |
| 1019 | |
| 1020 | proc_set_thread_policy_with_tid(task: kernel_task, tid: vm_swapout_thread_id, |
| 1021 | TASK_POLICY_INTERNAL, TASK_POLICY_IO, value: vm_swapper_throttle); |
| 1022 | proc_set_thread_policy_with_tid(task: kernel_task, tid: vm_swapout_thread_id, |
| 1023 | TASK_POLICY_INTERNAL, TASK_POLICY_PASSIVE_IO, TASK_POLICY_ENABLE); |
| 1024 | vm_swapout_limit = VM_SWAPOUT_LIMIT_T1P; |
| 1025 | vm_swapout_state = VM_SWAPOUT_T1_PASSIVE; |
| 1026 | } |
| 1027 | break; |
| 1028 | |
| 1029 | case VM_SWAPOUT_T1_PASSIVE: |
| 1030 | |
| 1031 | if (SWAPPER_NEEDS_TO_UNTHROTTLE()) { |
| 1032 | vm_swapper_throttle = THROTTLE_LEVEL_COMPRESSOR_TIER0; |
| 1033 | vm_swapper_entered_T0P++; |
| 1034 | |
| 1035 | proc_set_thread_policy_with_tid(task: kernel_task, tid: vm_swapout_thread_id, |
| 1036 | TASK_POLICY_INTERNAL, TASK_POLICY_IO, value: vm_swapper_throttle); |
| 1037 | proc_set_thread_policy_with_tid(task: kernel_task, tid: vm_swapout_thread_id, |
| 1038 | TASK_POLICY_INTERNAL, TASK_POLICY_PASSIVE_IO, TASK_POLICY_ENABLE); |
| 1039 | vm_swapout_limit = VM_SWAPOUT_LIMIT_T0P; |
| 1040 | vm_swapout_state = VM_SWAPOUT_T0_PASSIVE; |
| 1041 | |
| 1042 | break; |
| 1043 | } |
| 1044 | if (swapout_target_age == 0 && hibernate_flushing == FALSE) { |
| 1045 | vm_swapper_throttle = THROTTLE_LEVEL_COMPRESSOR_TIER2; |
| 1046 | vm_swapper_entered_T2P++; |
| 1047 | |
| 1048 | proc_set_thread_policy_with_tid(task: kernel_task, tid: vm_swapout_thread_id, |
| 1049 | TASK_POLICY_INTERNAL, TASK_POLICY_IO, value: vm_swapper_throttle); |
| 1050 | proc_set_thread_policy_with_tid(task: kernel_task, tid: vm_swapout_thread_id, |
| 1051 | TASK_POLICY_INTERNAL, TASK_POLICY_PASSIVE_IO, TASK_POLICY_ENABLE); |
| 1052 | vm_swapout_limit = VM_SWAPOUT_LIMIT_T2P; |
| 1053 | vm_swapout_state = VM_SWAPOUT_T2_PASSIVE; |
| 1054 | } |
| 1055 | break; |
| 1056 | |
| 1057 | case VM_SWAPOUT_T0_PASSIVE: |
| 1058 | |
| 1059 | if (SWAPPER_NEEDS_TO_RETHROTTLE()) { |
| 1060 | vm_swapper_throttle = THROTTLE_LEVEL_COMPRESSOR_TIER2; |
| 1061 | vm_swapper_entered_T2P++; |
| 1062 | |
| 1063 | proc_set_thread_policy_with_tid(task: kernel_task, tid: vm_swapout_thread_id, |
| 1064 | TASK_POLICY_INTERNAL, TASK_POLICY_IO, value: vm_swapper_throttle); |
| 1065 | proc_set_thread_policy_with_tid(task: kernel_task, tid: vm_swapout_thread_id, |
| 1066 | TASK_POLICY_INTERNAL, TASK_POLICY_PASSIVE_IO, TASK_POLICY_ENABLE); |
| 1067 | vm_swapout_limit = VM_SWAPOUT_LIMIT_T2P; |
| 1068 | vm_swapout_state = VM_SWAPOUT_T2_PASSIVE; |
| 1069 | |
| 1070 | break; |
| 1071 | } |
| 1072 | if (SWAPPER_NEEDS_TO_CATCHUP()) { |
| 1073 | vm_swapper_entered_T0++; |
| 1074 | |
| 1075 | proc_set_thread_policy_with_tid(task: kernel_task, tid: vm_swapout_thread_id, |
| 1076 | TASK_POLICY_INTERNAL, TASK_POLICY_PASSIVE_IO, TASK_POLICY_DISABLE); |
| 1077 | vm_swapout_limit = VM_SWAPOUT_LIMIT_T0; |
| 1078 | vm_swapout_state = VM_SWAPOUT_T0; |
| 1079 | } |
| 1080 | break; |
| 1081 | |
| 1082 | case VM_SWAPOUT_T0: |
| 1083 | |
| 1084 | if (SWAPPER_HAS_CAUGHTUP()) { |
| 1085 | vm_swapper_entered_T0P++; |
| 1086 | |
| 1087 | proc_set_thread_policy_with_tid(task: kernel_task, tid: vm_swapout_thread_id, |
| 1088 | TASK_POLICY_INTERNAL, TASK_POLICY_PASSIVE_IO, TASK_POLICY_ENABLE); |
| 1089 | vm_swapout_limit = VM_SWAPOUT_LIMIT_T0P; |
| 1090 | vm_swapout_state = VM_SWAPOUT_T0_PASSIVE; |
| 1091 | } |
| 1092 | break; |
| 1093 | } |
| 1094 | } |
| 1095 | |
| 1096 | int vm_swapout_found_empty = 0; |
| 1097 | |
| 1098 | struct swapout_io_completion vm_swapout_ctx[VM_SWAPOUT_LIMIT_MAX]; |
| 1099 | |
| 1100 | int vm_swapout_soc_busy = 0; |
| 1101 | int vm_swapout_soc_done = 0; |
| 1102 | |
| 1103 | |
| 1104 | static struct swapout_io_completion * |
| 1105 | vm_swapout_find_free_soc(void) |
| 1106 | { |
| 1107 | int i; |
| 1108 | |
| 1109 | for (i = 0; i < VM_SWAPOUT_LIMIT_MAX; i++) { |
| 1110 | if (vm_swapout_ctx[i].swp_io_busy == 0) { |
| 1111 | return &vm_swapout_ctx[i]; |
| 1112 | } |
| 1113 | } |
| 1114 | assert(vm_swapout_soc_busy == VM_SWAPOUT_LIMIT_MAX); |
| 1115 | |
| 1116 | return NULL; |
| 1117 | } |
| 1118 | |
| 1119 | static struct swapout_io_completion * |
| 1120 | vm_swapout_find_done_soc(void) |
| 1121 | { |
| 1122 | int i; |
| 1123 | |
| 1124 | if (vm_swapout_soc_done) { |
| 1125 | for (i = 0; i < VM_SWAPOUT_LIMIT_MAX; i++) { |
| 1126 | if (vm_swapout_ctx[i].swp_io_done) { |
| 1127 | return &vm_swapout_ctx[i]; |
| 1128 | } |
| 1129 | } |
| 1130 | } |
| 1131 | return NULL; |
| 1132 | } |
| 1133 | |
| 1134 | static void |
| 1135 | vm_swapout_complete_soc(struct swapout_io_completion *soc) |
| 1136 | { |
| 1137 | kern_return_t kr; |
| 1138 | |
| 1139 | if (soc->swp_io_error) { |
| 1140 | kr = KERN_FAILURE; |
| 1141 | } else { |
| 1142 | kr = KERN_SUCCESS; |
| 1143 | } |
| 1144 | |
| 1145 | lck_mtx_unlock_always(c_list_lock); |
| 1146 | |
| 1147 | vm_swap_put_finish(soc->swp_swf, &soc->swp_f_offset, soc->swp_io_error, TRUE /*drop iocount*/); |
| 1148 | vm_swapout_finish(c_seg: soc->swp_c_seg, f_offset: soc->swp_f_offset, size: soc->swp_c_size, kr); |
| 1149 | |
| 1150 | lck_mtx_lock_spin_always(c_list_lock); |
| 1151 | |
| 1152 | soc->swp_io_done = 0; |
| 1153 | soc->swp_io_busy = 0; |
| 1154 | |
| 1155 | vm_swapout_soc_busy--; |
| 1156 | vm_swapout_soc_done--; |
| 1157 | } |
| 1158 | |
| 1159 | bool vm_swapout_thread_inited = false; |
| 1160 | extern uint32_t c_donate_swapout_count; |
| 1161 | #if CONFIG_JETSAM |
| 1162 | bool memorystatus_swap_over_trigger(uint64_t adjustment_factor); |
| 1163 | /* |
| 1164 | * swapout_sleep_threshold sets the percentage of the swapout threshold at which |
| 1165 | * the swap thread will stop processing the swapout queue. |
| 1166 | * By default this is 90 which means we will swap until the |
| 1167 | * swapout queue size is at 90% of the threshold to wake the swap thread. |
| 1168 | * By definition the queue length must be >= 100% of the threshold when the. |
| 1169 | * swap thread is woken up. On development builds this can be adjusted with |
| 1170 | * the vm.swapout_sleep_threshold sysctl. |
| 1171 | */ |
| 1172 | uint32_t swapout_sleep_threshold = 90; |
| 1173 | #endif /* CONFIG_JETSAM */ |
| 1174 | static bool |
| 1175 | should_process_swapout_queue(const queue_head_t *swapout_list_head) |
| 1176 | { |
| 1177 | bool process_queue = !queue_empty(swapout_list_head) && |
| 1178 | vm_swapout_soc_busy < vm_swapout_limit && |
| 1179 | !compressor_store_stop_compaction; |
| 1180 | #if CONFIG_JETSAM |
| 1181 | if (memorystatus_swap_all_apps && swapout_list_head == &c_late_swapout_list_head) { |
| 1182 | process_queue = process_queue && memorystatus_swap_over_trigger(swapout_sleep_threshold); |
| 1183 | } |
| 1184 | #endif /* CONFIG_JETSAM */ |
| 1185 | return process_queue; |
| 1186 | } |
| 1187 | |
| 1188 | void |
| 1189 | vm_swapout_thread(void) |
| 1190 | { |
| 1191 | uint32_t size = 0; |
| 1192 | c_segment_t c_seg = NULL; |
| 1193 | kern_return_t kr = KERN_SUCCESS; |
| 1194 | struct swapout_io_completion *soc; |
| 1195 | queue_head_t *swapout_list_head; |
| 1196 | bool queues_empty = false; |
| 1197 | |
| 1198 | if (!vm_swapout_thread_inited) { |
| 1199 | #if CONFIG_THREAD_GROUPS |
| 1200 | thread_group_vm_add(); |
| 1201 | #endif /* CONFIG_THREAD_GROUPS */ |
| 1202 | current_thread()->options |= TH_OPT_VMPRIV; |
| 1203 | vm_swapout_thread_inited = true; |
| 1204 | } |
| 1205 | |
| 1206 | vm_swapout_thread_awakened++; |
| 1207 | |
| 1208 | lck_mtx_lock_spin_always(c_list_lock); |
| 1209 | |
| 1210 | swapout_list_head = &c_early_swapout_list_head; |
| 1211 | vm_swapout_thread_running = TRUE; |
| 1212 | os_atomic_store(&vm_swapout_wake_pending, false, relaxed); |
| 1213 | again: |
| 1214 | while (should_process_swapout_queue(swapout_list_head)) { |
| 1215 | c_seg = (c_segment_t)queue_first(swapout_list_head); |
| 1216 | |
| 1217 | lck_mtx_lock_spin_always(lck: &c_seg->c_lock); |
| 1218 | |
| 1219 | assert(c_seg->c_state == C_ON_SWAPOUT_Q); |
| 1220 | |
| 1221 | if (c_seg->c_busy) { |
| 1222 | lck_mtx_unlock_always(c_list_lock); |
| 1223 | |
| 1224 | c_seg_wait_on_busy(c_seg); |
| 1225 | |
| 1226 | lck_mtx_lock_spin_always(c_list_lock); |
| 1227 | |
| 1228 | continue; |
| 1229 | } |
| 1230 | vm_swapout_thread_processed_segments++; |
| 1231 | |
| 1232 | size = round_page_32(C_SEG_OFFSET_TO_BYTES(c_seg->c_populated_offset)); |
| 1233 | |
| 1234 | if (size == 0) { |
| 1235 | assert(c_seg->c_bytes_used == 0); |
| 1236 | |
| 1237 | /* |
| 1238 | * c_seg_free_locked will drop the c_list_lock and |
| 1239 | * the c_seg->c_lock. |
| 1240 | */ |
| 1241 | C_SEG_BUSY(c_seg); |
| 1242 | c_seg_free_locked(c_seg); |
| 1243 | c_seg = NULL; |
| 1244 | |
| 1245 | vm_swapout_found_empty++; |
| 1246 | goto c_seg_is_empty; |
| 1247 | } |
| 1248 | C_SEG_BUSY(c_seg); |
| 1249 | c_seg->c_busy_swapping = 1; |
| 1250 | |
| 1251 | c_seg_switch_state(c_seg, C_ON_SWAPIO_Q, FALSE); |
| 1252 | |
| 1253 | lck_mtx_unlock_always(c_list_lock); |
| 1254 | lck_mtx_unlock_always(&c_seg->c_lock); |
| 1255 | |
| 1256 | #if CHECKSUM_THE_SWAP |
| 1257 | c_seg->cseg_hash = hash_string((char *)c_seg->c_store.c_buffer, (int)size); |
| 1258 | c_seg->cseg_swap_size = size; |
| 1259 | #endif /* CHECKSUM_THE_SWAP */ |
| 1260 | |
| 1261 | #if ENCRYPTED_SWAP |
| 1262 | vm_swap_encrypt(c_seg); |
| 1263 | #endif /* ENCRYPTED_SWAP */ |
| 1264 | |
| 1265 | soc = vm_swapout_find_free_soc(); |
| 1266 | assert(soc); |
| 1267 | |
| 1268 | soc->swp_upl_ctx.io_context = (void *)soc; |
| 1269 | soc->swp_upl_ctx.io_done = (void *)vm_swapout_iodone; |
| 1270 | soc->swp_upl_ctx.io_error = 0; |
| 1271 | |
| 1272 | kr = vm_swap_put((vm_offset_t)c_seg->c_store.c_buffer, &soc->swp_f_offset, size, c_seg, soc); |
| 1273 | |
| 1274 | if (kr != KERN_SUCCESS) { |
| 1275 | if (soc->swp_io_done) { |
| 1276 | lck_mtx_lock_spin_always(c_list_lock); |
| 1277 | |
| 1278 | soc->swp_io_done = 0; |
| 1279 | vm_swapout_soc_done--; |
| 1280 | |
| 1281 | lck_mtx_unlock_always(c_list_lock); |
| 1282 | } |
| 1283 | vm_swapout_finish(c_seg, f_offset: soc->swp_f_offset, size, kr); |
| 1284 | } else { |
| 1285 | soc->swp_io_busy = 1; |
| 1286 | vm_swapout_soc_busy++; |
| 1287 | } |
| 1288 | |
| 1289 | c_seg_is_empty: |
| 1290 | if (!(c_early_swapout_count + c_regular_swapout_count + c_late_swapout_count)) { |
| 1291 | vm_swap_consider_defragmenting(VM_SWAP_FLAGS_NONE); |
| 1292 | } |
| 1293 | |
| 1294 | lck_mtx_lock_spin_always(c_list_lock); |
| 1295 | |
| 1296 | while ((soc = vm_swapout_find_done_soc())) { |
| 1297 | vm_swapout_complete_soc(soc); |
| 1298 | } |
| 1299 | lck_mtx_unlock_always(c_list_lock); |
| 1300 | |
| 1301 | vm_swapout_thread_throttle_adjust(); |
| 1302 | |
| 1303 | lck_mtx_lock_spin_always(c_list_lock); |
| 1304 | } |
| 1305 | while ((soc = vm_swapout_find_done_soc())) { |
| 1306 | vm_swapout_complete_soc(soc); |
| 1307 | } |
| 1308 | lck_mtx_unlock_always(c_list_lock); |
| 1309 | |
| 1310 | vm_pageout_io_throttle(); |
| 1311 | |
| 1312 | lck_mtx_lock_spin_always(c_list_lock); |
| 1313 | |
| 1314 | /* |
| 1315 | * Recheck if we have some c_segs to wakeup |
| 1316 | * post throttle. And, check to see if we |
| 1317 | * have any more swapouts needed. |
| 1318 | */ |
| 1319 | if (vm_swapout_soc_done) { |
| 1320 | goto again; |
| 1321 | } |
| 1322 | |
| 1323 | #if XNU_TARGET_OS_OSX |
| 1324 | queues_empty = queue_empty(&c_early_swapout_list_head) && queue_empty(&c_regular_swapout_list_head) && queue_empty(&c_late_swapout_list_head); |
| 1325 | #else /* XNU_TARGET_OS_OSX */ |
| 1326 | queues_empty = queue_empty(&c_early_swapout_list_head) && queue_empty(&c_late_swapout_list_head); |
| 1327 | #endif /* XNU_TARGET_OS_OSX */ |
| 1328 | |
| 1329 | if (!queues_empty) { |
| 1330 | swapout_list_head = NULL; |
| 1331 | if (!queue_empty(&c_early_swapout_list_head)) { |
| 1332 | swapout_list_head = &c_early_swapout_list_head; |
| 1333 | } else { |
| 1334 | #if XNU_TARGET_OS_OSX |
| 1335 | /* |
| 1336 | * On macOS we _always_ processs all swapout queues. |
| 1337 | */ |
| 1338 | if (!queue_empty(&c_regular_swapout_list_head)) { |
| 1339 | swapout_list_head = &c_regular_swapout_list_head; |
| 1340 | } else { |
| 1341 | swapout_list_head = &c_late_swapout_list_head; |
| 1342 | } |
| 1343 | #else /* XNU_TARGET_OS_OSX */ |
| 1344 | /* |
| 1345 | * On non-macOS swap-capable platforms, we might want to |
| 1346 | * processs just the early queue (Freezer) or process both |
| 1347 | * early and late queues (app swap). We processed the early |
| 1348 | * queue up above. The late Q will only be processed if the |
| 1349 | * checks in should_process_swapout_queue give the go-ahead. |
| 1350 | */ |
| 1351 | swapout_list_head = &c_late_swapout_list_head; |
| 1352 | #endif /* XNU_TARGET_OS_OSX */ |
| 1353 | } |
| 1354 | if (swapout_list_head && should_process_swapout_queue(swapout_list_head)) { |
| 1355 | goto again; |
| 1356 | } |
| 1357 | } |
| 1358 | |
| 1359 | assert_wait(event: (event_t)&vm_swapout_thread, THREAD_UNINT); |
| 1360 | |
| 1361 | vm_swapout_thread_running = FALSE; |
| 1362 | |
| 1363 | lck_mtx_unlock_always(c_list_lock); |
| 1364 | |
| 1365 | thread_block(continuation: (thread_continue_t)vm_swapout_thread); |
| 1366 | |
| 1367 | /* NOTREACHED */ |
| 1368 | } |
| 1369 | |
| 1370 | |
| 1371 | void |
| 1372 | vm_swapout_iodone(void *io_context, int error) |
| 1373 | { |
| 1374 | struct swapout_io_completion *soc; |
| 1375 | |
| 1376 | soc = (struct swapout_io_completion *)io_context; |
| 1377 | |
| 1378 | lck_mtx_lock_spin_always(c_list_lock); |
| 1379 | |
| 1380 | soc->swp_io_done = 1; |
| 1381 | soc->swp_io_error = error; |
| 1382 | vm_swapout_soc_done++; |
| 1383 | |
| 1384 | if (!vm_swapout_thread_running) { |
| 1385 | thread_wakeup((event_t)&vm_swapout_thread); |
| 1386 | } |
| 1387 | |
| 1388 | lck_mtx_unlock_always(c_list_lock); |
| 1389 | } |
| 1390 | |
| 1391 | |
| 1392 | static void |
| 1393 | vm_swapout_finish(c_segment_t c_seg, uint64_t f_offset, uint32_t size, kern_return_t kr) |
| 1394 | { |
| 1395 | PAGE_REPLACEMENT_DISALLOWED(TRUE); |
| 1396 | |
| 1397 | if (kr == KERN_SUCCESS) { |
| 1398 | kernel_memory_depopulate(addr: (vm_offset_t)c_seg->c_store.c_buffer, size, |
| 1399 | flags: KMA_COMPRESSOR, VM_KERN_MEMORY_COMPRESSOR); |
| 1400 | } |
| 1401 | #if ENCRYPTED_SWAP |
| 1402 | else { |
| 1403 | vm_swap_decrypt(c_seg); |
| 1404 | } |
| 1405 | #endif /* ENCRYPTED_SWAP */ |
| 1406 | lck_mtx_lock_spin_always(c_list_lock); |
| 1407 | lck_mtx_lock_spin_always(lck: &c_seg->c_lock); |
| 1408 | |
| 1409 | if (kr == KERN_SUCCESS) { |
| 1410 | int new_state = C_ON_SWAPPEDOUT_Q; |
| 1411 | boolean_t insert_head = FALSE; |
| 1412 | |
| 1413 | if (hibernate_flushing == TRUE) { |
| 1414 | if (c_seg->c_generation_id >= first_c_segment_to_warm_generation_id && |
| 1415 | c_seg->c_generation_id <= last_c_segment_to_warm_generation_id) { |
| 1416 | insert_head = TRUE; |
| 1417 | } |
| 1418 | } else if (C_SEG_ONDISK_IS_SPARSE(c_seg)) { |
| 1419 | new_state = C_ON_SWAPPEDOUTSPARSE_Q; |
| 1420 | } |
| 1421 | |
| 1422 | c_seg_switch_state(c_seg, new_state, insert_head); |
| 1423 | |
| 1424 | c_seg->c_store.c_swap_handle = f_offset; |
| 1425 | |
| 1426 | counter_add(&vm_statistics_swapouts, amount: size >> PAGE_SHIFT); |
| 1427 | |
| 1428 | c_seg->c_swappedin = false; |
| 1429 | |
| 1430 | if (c_seg->c_bytes_used) { |
| 1431 | OSAddAtomic64(-c_seg->c_bytes_used, &compressor_bytes_used); |
| 1432 | } |
| 1433 | |
| 1434 | #if CONFIG_FREEZE |
| 1435 | /* |
| 1436 | * Successful swapout. Decrement the in-core compressed pages count. |
| 1437 | */ |
| 1438 | OSAddAtomic(-(c_seg->c_slots_used), &c_segment_pages_compressed_incore); |
| 1439 | assertf(c_segment_pages_compressed_incore >= 0, "-ve incore count %p 0x%x" , c_seg, c_segment_pages_compressed_incore); |
| 1440 | if (c_seg->c_has_donated_pages) { |
| 1441 | OSAddAtomic(-(c_seg->c_slots_used), &c_segment_pages_compressed_incore_late_swapout); |
| 1442 | } |
| 1443 | #endif /* CONFIG_FREEZE */ |
| 1444 | } else { |
| 1445 | if (c_seg->c_overage_swap == TRUE) { |
| 1446 | c_seg->c_overage_swap = FALSE; |
| 1447 | c_overage_swapped_count--; |
| 1448 | } |
| 1449 | |
| 1450 | #if CONFIG_FREEZE |
| 1451 | if (c_seg->c_has_freezer_pages) { |
| 1452 | if (c_seg->c_task_owner) { |
| 1453 | c_seg_update_task_owner(c_seg, NULL); |
| 1454 | } |
| 1455 | /* |
| 1456 | * We failed to swapout a frozen cseg. We need |
| 1457 | * to put it back in the queues, specifically the |
| 1458 | * AGE_Q. So clear the donated bit otherwise it'll |
| 1459 | * land on the swapped_in Q. |
| 1460 | */ |
| 1461 | c_seg->c_has_donated_pages = 0; |
| 1462 | c_seg_switch_state(c_seg, C_ON_AGE_Q, FALSE); |
| 1463 | } else |
| 1464 | #endif /* CONFIG_FREEZE */ |
| 1465 | { |
| 1466 | if (c_seg->c_has_donated_pages) { |
| 1467 | c_seg_switch_state(c_seg, C_ON_SWAPPEDIN_Q, FALSE); |
| 1468 | } else { |
| 1469 | c_seg_switch_state(c_seg, C_ON_AGE_Q, FALSE); |
| 1470 | } |
| 1471 | } |
| 1472 | |
| 1473 | if (!c_seg->c_on_minorcompact_q && C_SEG_UNUSED_BYTES(c_seg) >= PAGE_SIZE) { |
| 1474 | c_seg_need_delayed_compaction(c_seg, TRUE); |
| 1475 | } |
| 1476 | } |
| 1477 | assert(c_seg->c_busy_swapping); |
| 1478 | assert(c_seg->c_busy); |
| 1479 | |
| 1480 | c_seg->c_busy_swapping = 0; |
| 1481 | lck_mtx_unlock_always(c_list_lock); |
| 1482 | |
| 1483 | C_SEG_WAKEUP_DONE(c_seg); |
| 1484 | lck_mtx_unlock_always(&c_seg->c_lock); |
| 1485 | |
| 1486 | PAGE_REPLACEMENT_DISALLOWED(FALSE); |
| 1487 | } |
| 1488 | |
| 1489 | |
| 1490 | boolean_t |
| 1491 | vm_swap_create_file() |
| 1492 | { |
| 1493 | uint64_t size = 0; |
| 1494 | int namelen = 0; |
| 1495 | boolean_t swap_file_created = FALSE; |
| 1496 | boolean_t swap_file_reuse = FALSE; |
| 1497 | boolean_t swap_file_pin = FALSE; |
| 1498 | struct swapfile *swf = NULL; |
| 1499 | |
| 1500 | /* |
| 1501 | * make sure we've got all the info we need |
| 1502 | * to potentially pin a swap file... we could |
| 1503 | * be swapping out due to hibernation w/o ever |
| 1504 | * having run vm_pageout_scan, which is normally |
| 1505 | * the trigger to do the init |
| 1506 | */ |
| 1507 | vm_compaction_swapper_do_init(); |
| 1508 | |
| 1509 | /* |
| 1510 | * Any swapfile structure ready for re-use? |
| 1511 | */ |
| 1512 | |
| 1513 | lck_mtx_lock(lck: &vm_swap_data_lock); |
| 1514 | |
| 1515 | swf = (struct swapfile*) queue_first(&swf_global_queue); |
| 1516 | |
| 1517 | while (queue_end(&swf_global_queue, (queue_entry_t)swf) == FALSE) { |
| 1518 | if (swf->swp_flags == SWAP_REUSE) { |
| 1519 | swap_file_reuse = TRUE; |
| 1520 | break; |
| 1521 | } |
| 1522 | swf = (struct swapfile*) queue_next(&swf->swp_queue); |
| 1523 | } |
| 1524 | |
| 1525 | lck_mtx_unlock(lck: &vm_swap_data_lock); |
| 1526 | |
| 1527 | if (swap_file_reuse == FALSE) { |
| 1528 | namelen = (int)strlen(s: swapfilename) + SWAPFILENAME_INDEX_LEN + 1; |
| 1529 | |
| 1530 | swf = kalloc_type(struct swapfile, Z_WAITOK | Z_ZERO); |
| 1531 | swf->swp_index = vm_num_swap_files + 1; |
| 1532 | swf->swp_pathlen = namelen; |
| 1533 | swf->swp_path = kalloc_data(swf->swp_pathlen, Z_WAITOK | Z_ZERO); |
| 1534 | |
| 1535 | snprintf(swf->swp_path, namelen, "%s%d" , swapfilename, vm_num_swap_files); |
| 1536 | } |
| 1537 | |
| 1538 | vm_swapfile_open(path: swf->swp_path, vp: &swf->swp_vp); |
| 1539 | |
| 1540 | if (swf->swp_vp == NULL) { |
| 1541 | if (swap_file_reuse == FALSE) { |
| 1542 | kfree_data(swf->swp_path, swf->swp_pathlen); |
| 1543 | kfree_type(struct swapfile, swf); |
| 1544 | } |
| 1545 | return FALSE; |
| 1546 | } |
| 1547 | vm_swapfile_can_be_created = TRUE; |
| 1548 | |
| 1549 | size = MAX_SWAP_FILE_SIZE; |
| 1550 | |
| 1551 | while (size >= MIN_SWAP_FILE_SIZE) { |
| 1552 | swap_file_pin = VM_SWAP_SHOULD_PIN(size); |
| 1553 | |
| 1554 | if (vm_swapfile_preallocate(vp: swf->swp_vp, size: &size, pin: &swap_file_pin) == 0) { |
| 1555 | int num_bytes_for_bitmap = 0; |
| 1556 | |
| 1557 | swap_file_created = TRUE; |
| 1558 | |
| 1559 | swf->swp_size = size; |
| 1560 | swf->swp_nsegs = (unsigned int) (size / compressed_swap_chunk_size); |
| 1561 | swf->swp_nseginuse = 0; |
| 1562 | swf->swp_free_hint = 0; |
| 1563 | |
| 1564 | num_bytes_for_bitmap = MAX((swf->swp_nsegs >> 3), 1); |
| 1565 | /* |
| 1566 | * Allocate a bitmap that describes the |
| 1567 | * number of segments held by this swapfile. |
| 1568 | */ |
| 1569 | swf->swp_bitmap = kalloc_data(num_bytes_for_bitmap, |
| 1570 | Z_WAITOK | Z_ZERO); |
| 1571 | |
| 1572 | swf->swp_csegs = kalloc_type(c_segment_t, swf->swp_nsegs, |
| 1573 | Z_WAITOK | Z_ZERO); |
| 1574 | |
| 1575 | /* |
| 1576 | * passing a NULL trim_list into vnode_trim_list |
| 1577 | * will return ENOTSUP if trim isn't supported |
| 1578 | * and 0 if it is |
| 1579 | */ |
| 1580 | if (vnode_trim_list(vp: swf->swp_vp, NULL, FALSE) == 0) { |
| 1581 | swp_trim_supported = TRUE; |
| 1582 | } |
| 1583 | |
| 1584 | lck_mtx_lock(lck: &vm_swap_data_lock); |
| 1585 | |
| 1586 | swf->swp_flags = SWAP_READY; |
| 1587 | |
| 1588 | if (swap_file_reuse == FALSE) { |
| 1589 | queue_enter(&swf_global_queue, swf, struct swapfile*, swp_queue); |
| 1590 | } |
| 1591 | |
| 1592 | vm_num_swap_files++; |
| 1593 | |
| 1594 | vm_swapfile_total_segs_alloced += swf->swp_nsegs; |
| 1595 | if (vm_swapfile_total_segs_alloced > vm_swapfile_total_segs_alloced_max) { |
| 1596 | vm_swapfile_total_segs_alloced_max = vm_swapfile_total_segs_alloced; |
| 1597 | } |
| 1598 | |
| 1599 | if (swap_file_pin == TRUE) { |
| 1600 | vm_num_pinned_swap_files++; |
| 1601 | swf->swp_flags |= SWAP_PINNED; |
| 1602 | vm_swappin_avail -= swf->swp_size; |
| 1603 | } |
| 1604 | |
| 1605 | lck_mtx_unlock(lck: &vm_swap_data_lock); |
| 1606 | |
| 1607 | thread_wakeup((event_t) &vm_num_swap_files); |
| 1608 | #if !XNU_TARGET_OS_OSX |
| 1609 | if (vm_num_swap_files == 1) { |
| 1610 | c_overage_swapped_limit = (uint32_t)size / c_seg_bufsize; |
| 1611 | |
| 1612 | if (VM_CONFIG_FREEZER_SWAP_IS_ACTIVE) { |
| 1613 | c_overage_swapped_limit /= 2; |
| 1614 | } |
| 1615 | } |
| 1616 | #endif /* !XNU_TARGET_OS_OSX */ |
| 1617 | break; |
| 1618 | } else { |
| 1619 | size = size / 2; |
| 1620 | } |
| 1621 | } |
| 1622 | if (swap_file_created == FALSE) { |
| 1623 | vm_swapfile_close(path: (uint64_t)(swf->swp_path), vp: swf->swp_vp); |
| 1624 | |
| 1625 | swf->swp_vp = NULL; |
| 1626 | |
| 1627 | if (swap_file_reuse == FALSE) { |
| 1628 | kfree_data(swf->swp_path, swf->swp_pathlen); |
| 1629 | kfree_type(struct swapfile, swf); |
| 1630 | } |
| 1631 | } |
| 1632 | return swap_file_created; |
| 1633 | } |
| 1634 | |
| 1635 | extern void vnode_put(struct vnode* vp); |
| 1636 | kern_return_t |
| 1637 | vm_swap_get(c_segment_t c_seg, uint64_t f_offset, uint64_t size) |
| 1638 | { |
| 1639 | struct swapfile *swf = NULL; |
| 1640 | uint64_t file_offset = 0; |
| 1641 | int retval = 0; |
| 1642 | |
| 1643 | assert(c_seg->c_store.c_buffer); |
| 1644 | |
| 1645 | lck_mtx_lock(lck: &vm_swap_data_lock); |
| 1646 | |
| 1647 | swf = vm_swapfile_for_handle(f_offset); |
| 1648 | |
| 1649 | if (swf == NULL || (!(swf->swp_flags & SWAP_READY) && !(swf->swp_flags & SWAP_RECLAIM))) { |
| 1650 | vm_swap_get_failures++; |
| 1651 | retval = 1; |
| 1652 | goto done; |
| 1653 | } |
| 1654 | swf->swp_io_count++; |
| 1655 | |
| 1656 | lck_mtx_unlock(lck: &vm_swap_data_lock); |
| 1657 | |
| 1658 | #if DEVELOPMENT || DEBUG |
| 1659 | C_SEG_MAKE_WRITEABLE(c_seg); |
| 1660 | #endif |
| 1661 | file_offset = (f_offset & SWAP_SLOT_MASK); |
| 1662 | |
| 1663 | if ((retval = vnode_getwithref(vp: swf->swp_vp)) != 0) { |
| 1664 | printf(format: "vm_swap_get: vnode_getwithref on swapfile failed with %d\n" , retval); |
| 1665 | } else { |
| 1666 | retval = vm_swapfile_io(vp: swf->swp_vp, offset: file_offset, start: (uint64_t)c_seg->c_store.c_buffer, npages: (int)(size / PAGE_SIZE_64), SWAP_READ, NULL); |
| 1667 | vnode_put(vp: swf->swp_vp); |
| 1668 | } |
| 1669 | |
| 1670 | #if DEVELOPMENT || DEBUG |
| 1671 | C_SEG_WRITE_PROTECT(c_seg); |
| 1672 | #endif |
| 1673 | if (retval == 0) { |
| 1674 | counter_add(&vm_statistics_swapins, amount: size >> PAGE_SHIFT); |
| 1675 | } else { |
| 1676 | vm_swap_get_failures++; |
| 1677 | } |
| 1678 | |
| 1679 | /* |
| 1680 | * Free this slot in the swap structure. |
| 1681 | */ |
| 1682 | vm_swap_free(f_offset); |
| 1683 | |
| 1684 | lck_mtx_lock(lck: &vm_swap_data_lock); |
| 1685 | swf->swp_io_count--; |
| 1686 | |
| 1687 | if ((swf->swp_flags & SWAP_WANTED) && swf->swp_io_count == 0) { |
| 1688 | swf->swp_flags &= ~SWAP_WANTED; |
| 1689 | thread_wakeup((event_t) &swf->swp_flags); |
| 1690 | } |
| 1691 | done: |
| 1692 | lck_mtx_unlock(lck: &vm_swap_data_lock); |
| 1693 | |
| 1694 | if (retval == 0) { |
| 1695 | return KERN_SUCCESS; |
| 1696 | } else { |
| 1697 | return KERN_FAILURE; |
| 1698 | } |
| 1699 | } |
| 1700 | |
| 1701 | kern_return_t |
| 1702 | vm_swap_put(vm_offset_t addr, uint64_t *f_offset, uint32_t size, c_segment_t c_seg, struct swapout_io_completion *soc) |
| 1703 | { |
| 1704 | unsigned int segidx = 0; |
| 1705 | struct swapfile *swf = NULL; |
| 1706 | uint64_t file_offset = 0; |
| 1707 | uint64_t swapfile_index = 0; |
| 1708 | unsigned int byte_for_segidx = 0; |
| 1709 | unsigned int offset_within_byte = 0; |
| 1710 | boolean_t swf_eligible = FALSE; |
| 1711 | boolean_t waiting = FALSE; |
| 1712 | boolean_t retried = FALSE; |
| 1713 | int error = 0; |
| 1714 | clock_sec_t sec; |
| 1715 | clock_nsec_t nsec; |
| 1716 | void *upl_ctx = NULL; |
| 1717 | boolean_t drop_iocount = FALSE; |
| 1718 | |
| 1719 | if (addr == 0 || f_offset == NULL || compressor_store_stop_compaction) { |
| 1720 | return KERN_FAILURE; |
| 1721 | } |
| 1722 | retry: |
| 1723 | lck_mtx_lock(lck: &vm_swap_data_lock); |
| 1724 | |
| 1725 | swf = (struct swapfile*) queue_first(&swf_global_queue); |
| 1726 | |
| 1727 | while (queue_end(&swf_global_queue, (queue_entry_t)swf) == FALSE) { |
| 1728 | segidx = swf->swp_free_hint; |
| 1729 | |
| 1730 | swf_eligible = (swf->swp_flags & SWAP_READY) && (swf->swp_nseginuse < swf->swp_nsegs); |
| 1731 | |
| 1732 | if (swf_eligible) { |
| 1733 | while (segidx < swf->swp_nsegs) { |
| 1734 | byte_for_segidx = segidx >> 3; |
| 1735 | offset_within_byte = segidx % 8; |
| 1736 | |
| 1737 | if ((swf->swp_bitmap)[byte_for_segidx] & (1 << offset_within_byte)) { |
| 1738 | segidx++; |
| 1739 | continue; |
| 1740 | } |
| 1741 | |
| 1742 | (swf->swp_bitmap)[byte_for_segidx] |= (uint8_t)(1 << offset_within_byte); |
| 1743 | |
| 1744 | file_offset = segidx * compressed_swap_chunk_size; |
| 1745 | swf->swp_nseginuse++; |
| 1746 | swf->swp_io_count++; |
| 1747 | swf->swp_csegs[segidx] = c_seg; |
| 1748 | |
| 1749 | swapfile_index = swf->swp_index; |
| 1750 | vm_swapfile_total_segs_used++; |
| 1751 | if (vm_swapfile_total_segs_used > vm_swapfile_total_segs_used_max) { |
| 1752 | vm_swapfile_total_segs_used_max = vm_swapfile_total_segs_used; |
| 1753 | } |
| 1754 | |
| 1755 | clock_get_system_nanotime(secs: &sec, nanosecs: &nsec); |
| 1756 | |
| 1757 | if (VM_SWAP_SHOULD_CREATE(sec) && !vm_swapfile_create_thread_running) { |
| 1758 | thread_wakeup((event_t) &vm_swapfile_create_needed); |
| 1759 | } |
| 1760 | |
| 1761 | lck_mtx_unlock(lck: &vm_swap_data_lock); |
| 1762 | |
| 1763 | goto issue_io; |
| 1764 | } |
| 1765 | } |
| 1766 | swf = (struct swapfile*) queue_next(&swf->swp_queue); |
| 1767 | } |
| 1768 | assert(queue_end(&swf_global_queue, (queue_entry_t) swf)); |
| 1769 | |
| 1770 | /* |
| 1771 | * we've run out of swap segments, but may not |
| 1772 | * be in a position to immediately create a new swap |
| 1773 | * file if we've recently failed to create due to a lack |
| 1774 | * of free space in the root filesystem... we'll try |
| 1775 | * to kick that create off, but in any event we're going |
| 1776 | * to take a breather (up to 1 second) so that we're not caught in a tight |
| 1777 | * loop back in "vm_compressor_compact_and_swap" trying to stuff |
| 1778 | * segments into swap files only to have them immediately put back |
| 1779 | * on the c_age queue due to vm_swap_put failing. |
| 1780 | * |
| 1781 | * if we're doing these puts due to a hibernation flush, |
| 1782 | * no need to block... setting hibernate_no_swapspace to TRUE, |
| 1783 | * will cause "vm_compressor_compact_and_swap" to immediately abort |
| 1784 | */ |
| 1785 | clock_get_system_nanotime(secs: &sec, nanosecs: &nsec); |
| 1786 | |
| 1787 | if (VM_SWAP_SHOULD_CREATE(sec)) { |
| 1788 | if (!vm_swapfile_create_thread_running) { |
| 1789 | thread_wakeup((event_t) &vm_swapfile_create_needed); |
| 1790 | } |
| 1791 | waiting = TRUE; |
| 1792 | assert_wait_timeout(event: (event_t) &vm_num_swap_files, THREAD_INTERRUPTIBLE, interval: 1000, scale_factor: 1000 * NSEC_PER_USEC); |
| 1793 | } else { |
| 1794 | if (hibernate_flushing) { |
| 1795 | hibernate_no_swapspace = TRUE; |
| 1796 | } |
| 1797 | } |
| 1798 | |
| 1799 | lck_mtx_unlock(lck: &vm_swap_data_lock); |
| 1800 | |
| 1801 | if (waiting == TRUE) { |
| 1802 | thread_block(THREAD_CONTINUE_NULL); |
| 1803 | |
| 1804 | if (retried == FALSE && hibernate_flushing == TRUE) { |
| 1805 | retried = TRUE; |
| 1806 | goto retry; |
| 1807 | } |
| 1808 | } |
| 1809 | vm_swap_put_failures_no_swap_file++; |
| 1810 | |
| 1811 | return KERN_FAILURE; |
| 1812 | |
| 1813 | issue_io: |
| 1814 | assert(c_seg->c_busy_swapping); |
| 1815 | assert(c_seg->c_busy); |
| 1816 | assert(!c_seg->c_on_minorcompact_q); |
| 1817 | |
| 1818 | *f_offset = (swapfile_index << SWAP_DEVICE_SHIFT) | file_offset; |
| 1819 | |
| 1820 | if (soc) { |
| 1821 | soc->swp_c_seg = c_seg; |
| 1822 | soc->swp_c_size = size; |
| 1823 | |
| 1824 | soc->swp_swf = swf; |
| 1825 | |
| 1826 | soc->swp_io_error = 0; |
| 1827 | soc->swp_io_done = 0; |
| 1828 | |
| 1829 | upl_ctx = (void *)&soc->swp_upl_ctx; |
| 1830 | } |
| 1831 | |
| 1832 | if ((error = vnode_getwithref(vp: swf->swp_vp)) != 0) { |
| 1833 | printf(format: "vm_swap_put: vnode_getwithref on swapfile failed with %d\n" , error); |
| 1834 | } else { |
| 1835 | error = vm_swapfile_io(vp: swf->swp_vp, offset: file_offset, start: addr, npages: (int) (size / PAGE_SIZE_64), SWAP_WRITE, upl_ctx); |
| 1836 | drop_iocount = TRUE; |
| 1837 | } |
| 1838 | |
| 1839 | if (error || upl_ctx == NULL) { |
| 1840 | return vm_swap_put_finish(swf, f_offset, error, drop_iocount); |
| 1841 | } |
| 1842 | |
| 1843 | return KERN_SUCCESS; |
| 1844 | } |
| 1845 | |
| 1846 | kern_return_t |
| 1847 | vm_swap_put_finish(struct swapfile *swf, uint64_t *f_offset, int error, boolean_t drop_iocount) |
| 1848 | { |
| 1849 | if (drop_iocount) { |
| 1850 | vnode_put(vp: swf->swp_vp); |
| 1851 | } |
| 1852 | |
| 1853 | lck_mtx_lock(lck: &vm_swap_data_lock); |
| 1854 | |
| 1855 | swf->swp_io_count--; |
| 1856 | |
| 1857 | if ((swf->swp_flags & SWAP_WANTED) && swf->swp_io_count == 0) { |
| 1858 | swf->swp_flags &= ~SWAP_WANTED; |
| 1859 | thread_wakeup((event_t) &swf->swp_flags); |
| 1860 | } |
| 1861 | lck_mtx_unlock(lck: &vm_swap_data_lock); |
| 1862 | |
| 1863 | if (error) { |
| 1864 | vm_swap_free(*f_offset); |
| 1865 | vm_swap_put_failures++; |
| 1866 | |
| 1867 | return KERN_FAILURE; |
| 1868 | } |
| 1869 | return KERN_SUCCESS; |
| 1870 | } |
| 1871 | |
| 1872 | |
| 1873 | static void |
| 1874 | vm_swap_free_now(struct swapfile *swf, uint64_t f_offset) |
| 1875 | { |
| 1876 | uint64_t file_offset = 0; |
| 1877 | unsigned int segidx = 0; |
| 1878 | |
| 1879 | |
| 1880 | if ((swf->swp_flags & SWAP_READY) || (swf->swp_flags & SWAP_RECLAIM)) { |
| 1881 | unsigned int byte_for_segidx = 0; |
| 1882 | unsigned int offset_within_byte = 0; |
| 1883 | |
| 1884 | file_offset = (f_offset & SWAP_SLOT_MASK); |
| 1885 | segidx = (unsigned int) (file_offset / compressed_swap_chunk_size); |
| 1886 | |
| 1887 | byte_for_segidx = segidx >> 3; |
| 1888 | offset_within_byte = segidx % 8; |
| 1889 | |
| 1890 | if ((swf->swp_bitmap)[byte_for_segidx] & (1 << offset_within_byte)) { |
| 1891 | (swf->swp_bitmap)[byte_for_segidx] &= ~(1 << offset_within_byte); |
| 1892 | |
| 1893 | swf->swp_csegs[segidx] = NULL; |
| 1894 | |
| 1895 | swf->swp_nseginuse--; |
| 1896 | vm_swapfile_total_segs_used--; |
| 1897 | |
| 1898 | if (segidx < swf->swp_free_hint) { |
| 1899 | swf->swp_free_hint = segidx; |
| 1900 | } |
| 1901 | } |
| 1902 | if (VM_SWAP_SHOULD_RECLAIM() && !vm_swapfile_gc_thread_running) { |
| 1903 | thread_wakeup((event_t) &vm_swapfile_gc_needed); |
| 1904 | } |
| 1905 | } |
| 1906 | } |
| 1907 | |
| 1908 | |
| 1909 | uint32_t vm_swap_free_now_count = 0; |
| 1910 | uint32_t vm_swap_free_delayed_count = 0; |
| 1911 | |
| 1912 | |
| 1913 | void |
| 1914 | vm_swap_free(uint64_t f_offset) |
| 1915 | { |
| 1916 | struct swapfile *swf = NULL; |
| 1917 | struct trim_list *tl = NULL; |
| 1918 | clock_sec_t sec; |
| 1919 | clock_nsec_t nsec; |
| 1920 | |
| 1921 | if (swp_trim_supported == TRUE) { |
| 1922 | tl = kalloc_type(struct trim_list, Z_WAITOK); |
| 1923 | } |
| 1924 | |
| 1925 | lck_mtx_lock(lck: &vm_swap_data_lock); |
| 1926 | |
| 1927 | swf = vm_swapfile_for_handle(f_offset); |
| 1928 | |
| 1929 | if (swf && (swf->swp_flags & (SWAP_READY | SWAP_RECLAIM))) { |
| 1930 | if (swp_trim_supported == FALSE || (swf->swp_flags & SWAP_RECLAIM)) { |
| 1931 | /* |
| 1932 | * don't delay the free if the underlying disk doesn't support |
| 1933 | * trim, or we're in the midst of reclaiming this swap file since |
| 1934 | * we don't want to move segments that are technically free |
| 1935 | * but not yet handled by the delayed free mechanism |
| 1936 | */ |
| 1937 | vm_swap_free_now(swf, f_offset); |
| 1938 | |
| 1939 | vm_swap_free_now_count++; |
| 1940 | goto done; |
| 1941 | } |
| 1942 | tl->tl_offset = f_offset & SWAP_SLOT_MASK; |
| 1943 | tl->tl_length = compressed_swap_chunk_size; |
| 1944 | |
| 1945 | tl->tl_next = swf->swp_delayed_trim_list_head; |
| 1946 | swf->swp_delayed_trim_list_head = tl; |
| 1947 | swf->swp_delayed_trim_count++; |
| 1948 | tl = NULL; |
| 1949 | |
| 1950 | if (VM_SWAP_SHOULD_TRIM(swf) && !vm_swapfile_create_thread_running) { |
| 1951 | clock_get_system_nanotime(secs: &sec, nanosecs: &nsec); |
| 1952 | |
| 1953 | if (sec > dont_trim_until_ts) { |
| 1954 | thread_wakeup((event_t) &vm_swapfile_create_needed); |
| 1955 | } |
| 1956 | } |
| 1957 | vm_swap_free_delayed_count++; |
| 1958 | } |
| 1959 | done: |
| 1960 | lck_mtx_unlock(lck: &vm_swap_data_lock); |
| 1961 | |
| 1962 | if (tl != NULL) { |
| 1963 | kfree_type(struct trim_list, tl); |
| 1964 | } |
| 1965 | } |
| 1966 | |
| 1967 | |
| 1968 | static void |
| 1969 | vm_swap_wait_on_trim_handling_in_progress() |
| 1970 | { |
| 1971 | while (delayed_trim_handling_in_progress == TRUE) { |
| 1972 | assert_wait(event: (event_t) &delayed_trim_handling_in_progress, THREAD_UNINT); |
| 1973 | lck_mtx_unlock(lck: &vm_swap_data_lock); |
| 1974 | |
| 1975 | thread_block(THREAD_CONTINUE_NULL); |
| 1976 | |
| 1977 | lck_mtx_lock(lck: &vm_swap_data_lock); |
| 1978 | } |
| 1979 | } |
| 1980 | |
| 1981 | |
| 1982 | static void |
| 1983 | vm_swap_handle_delayed_trims(boolean_t force_now) |
| 1984 | { |
| 1985 | struct swapfile *swf = NULL; |
| 1986 | |
| 1987 | /* |
| 1988 | * serialize the race between us and vm_swap_reclaim... |
| 1989 | * if vm_swap_reclaim wins it will turn off SWAP_READY |
| 1990 | * on the victim it has chosen... we can just skip over |
| 1991 | * that file since vm_swap_reclaim will first process |
| 1992 | * all of the delayed trims associated with it |
| 1993 | */ |
| 1994 | |
| 1995 | if (compressor_store_stop_compaction == TRUE) { |
| 1996 | return; |
| 1997 | } |
| 1998 | |
| 1999 | lck_mtx_lock(lck: &vm_swap_data_lock); |
| 2000 | |
| 2001 | delayed_trim_handling_in_progress = TRUE; |
| 2002 | |
| 2003 | lck_mtx_unlock(lck: &vm_swap_data_lock); |
| 2004 | |
| 2005 | /* |
| 2006 | * no need to hold the lock to walk the swf list since |
| 2007 | * vm_swap_create (the only place where we add to this list) |
| 2008 | * is run on the same thread as this function |
| 2009 | * and vm_swap_reclaim doesn't remove items from this list |
| 2010 | * instead marking them with SWAP_REUSE for future re-use |
| 2011 | */ |
| 2012 | swf = (struct swapfile*) queue_first(&swf_global_queue); |
| 2013 | |
| 2014 | while (queue_end(&swf_global_queue, (queue_entry_t)swf) == FALSE) { |
| 2015 | if ((swf->swp_flags & SWAP_READY) && (force_now == TRUE || VM_SWAP_SHOULD_TRIM(swf))) { |
| 2016 | assert(!(swf->swp_flags & SWAP_RECLAIM)); |
| 2017 | vm_swap_do_delayed_trim(swf); |
| 2018 | } |
| 2019 | swf = (struct swapfile*) queue_next(&swf->swp_queue); |
| 2020 | } |
| 2021 | lck_mtx_lock(lck: &vm_swap_data_lock); |
| 2022 | |
| 2023 | delayed_trim_handling_in_progress = FALSE; |
| 2024 | thread_wakeup((event_t) &delayed_trim_handling_in_progress); |
| 2025 | |
| 2026 | if (VM_SWAP_SHOULD_RECLAIM() && !vm_swapfile_gc_thread_running) { |
| 2027 | thread_wakeup((event_t) &vm_swapfile_gc_needed); |
| 2028 | } |
| 2029 | |
| 2030 | lck_mtx_unlock(lck: &vm_swap_data_lock); |
| 2031 | } |
| 2032 | |
| 2033 | static void |
| 2034 | vm_swap_do_delayed_trim(struct swapfile *swf) |
| 2035 | { |
| 2036 | struct trim_list *tl, *tl_head; |
| 2037 | int error; |
| 2038 | |
| 2039 | if (compressor_store_stop_compaction == TRUE) { |
| 2040 | return; |
| 2041 | } |
| 2042 | |
| 2043 | if ((error = vnode_getwithref(vp: swf->swp_vp)) != 0) { |
| 2044 | printf(format: "vm_swap_do_delayed_trim: vnode_getwithref on swapfile failed with %d\n" , error); |
| 2045 | return; |
| 2046 | } |
| 2047 | |
| 2048 | lck_mtx_lock(lck: &vm_swap_data_lock); |
| 2049 | |
| 2050 | tl_head = swf->swp_delayed_trim_list_head; |
| 2051 | swf->swp_delayed_trim_list_head = NULL; |
| 2052 | swf->swp_delayed_trim_count = 0; |
| 2053 | |
| 2054 | lck_mtx_unlock(lck: &vm_swap_data_lock); |
| 2055 | |
| 2056 | vnode_trim_list(vp: swf->swp_vp, tl: tl_head, TRUE); |
| 2057 | |
| 2058 | (void) vnode_put(vp: swf->swp_vp); |
| 2059 | |
| 2060 | while ((tl = tl_head) != NULL) { |
| 2061 | unsigned int segidx = 0; |
| 2062 | unsigned int byte_for_segidx = 0; |
| 2063 | unsigned int offset_within_byte = 0; |
| 2064 | |
| 2065 | lck_mtx_lock(lck: &vm_swap_data_lock); |
| 2066 | |
| 2067 | segidx = (unsigned int) (tl->tl_offset / compressed_swap_chunk_size); |
| 2068 | |
| 2069 | byte_for_segidx = segidx >> 3; |
| 2070 | offset_within_byte = segidx % 8; |
| 2071 | |
| 2072 | if ((swf->swp_bitmap)[byte_for_segidx] & (1 << offset_within_byte)) { |
| 2073 | (swf->swp_bitmap)[byte_for_segidx] &= ~(1 << offset_within_byte); |
| 2074 | |
| 2075 | swf->swp_csegs[segidx] = NULL; |
| 2076 | |
| 2077 | swf->swp_nseginuse--; |
| 2078 | vm_swapfile_total_segs_used--; |
| 2079 | |
| 2080 | if (segidx < swf->swp_free_hint) { |
| 2081 | swf->swp_free_hint = segidx; |
| 2082 | } |
| 2083 | } |
| 2084 | lck_mtx_unlock(lck: &vm_swap_data_lock); |
| 2085 | |
| 2086 | tl_head = tl->tl_next; |
| 2087 | |
| 2088 | kfree_type(struct trim_list, tl); |
| 2089 | } |
| 2090 | } |
| 2091 | |
| 2092 | |
| 2093 | void |
| 2094 | vm_swap_flush() |
| 2095 | { |
| 2096 | return; |
| 2097 | } |
| 2098 | |
| 2099 | int vm_swap_reclaim_yielded = 0; |
| 2100 | |
| 2101 | void |
| 2102 | vm_swap_reclaim(void) |
| 2103 | { |
| 2104 | vm_offset_t addr = 0; |
| 2105 | unsigned int segidx = 0; |
| 2106 | uint64_t f_offset = 0; |
| 2107 | struct swapfile *swf = NULL; |
| 2108 | struct swapfile *smallest_swf = NULL; |
| 2109 | unsigned int min_nsegs = 0; |
| 2110 | unsigned int byte_for_segidx = 0; |
| 2111 | unsigned int offset_within_byte = 0; |
| 2112 | uint32_t c_size = 0; |
| 2113 | |
| 2114 | c_segment_t c_seg = NULL; |
| 2115 | |
| 2116 | kmem_alloc(map: compressor_map, addrp: (vm_offset_t *)&addr, size: c_seg_bufsize, |
| 2117 | flags: KMA_NOFAIL | KMA_KOBJECT | KMA_DATA, VM_KERN_MEMORY_COMPRESSOR); |
| 2118 | |
| 2119 | lck_mtx_lock(lck: &vm_swap_data_lock); |
| 2120 | |
| 2121 | /* |
| 2122 | * if we're running the swapfile list looking for |
| 2123 | * candidates with delayed trims, we need to |
| 2124 | * wait before making our decision concerning |
| 2125 | * the swapfile we want to reclaim |
| 2126 | */ |
| 2127 | vm_swap_wait_on_trim_handling_in_progress(); |
| 2128 | |
| 2129 | /* |
| 2130 | * from here until we knock down the SWAP_READY bit, |
| 2131 | * we need to remain behind the vm_swap_data_lock... |
| 2132 | * once that bit has been turned off, "vm_swap_handle_delayed_trims" |
| 2133 | * will not consider this swapfile for processing |
| 2134 | */ |
| 2135 | swf = (struct swapfile*) queue_first(&swf_global_queue); |
| 2136 | min_nsegs = MAX_SWAP_FILE_SIZE / compressed_swap_chunk_size; |
| 2137 | smallest_swf = NULL; |
| 2138 | |
| 2139 | while (queue_end(&swf_global_queue, (queue_entry_t)swf) == FALSE) { |
| 2140 | if ((swf->swp_flags & SWAP_READY) && (swf->swp_nseginuse <= min_nsegs)) { |
| 2141 | smallest_swf = swf; |
| 2142 | min_nsegs = swf->swp_nseginuse; |
| 2143 | } |
| 2144 | swf = (struct swapfile*) queue_next(&swf->swp_queue); |
| 2145 | } |
| 2146 | |
| 2147 | if (smallest_swf == NULL) { |
| 2148 | goto done; |
| 2149 | } |
| 2150 | |
| 2151 | swf = smallest_swf; |
| 2152 | |
| 2153 | |
| 2154 | swf->swp_flags &= ~SWAP_READY; |
| 2155 | swf->swp_flags |= SWAP_RECLAIM; |
| 2156 | |
| 2157 | if (swf->swp_delayed_trim_count) { |
| 2158 | lck_mtx_unlock(lck: &vm_swap_data_lock); |
| 2159 | |
| 2160 | vm_swap_do_delayed_trim(swf); |
| 2161 | |
| 2162 | lck_mtx_lock(lck: &vm_swap_data_lock); |
| 2163 | } |
| 2164 | segidx = 0; |
| 2165 | |
| 2166 | while (segidx < swf->swp_nsegs) { |
| 2167 | ReTry_for_cseg: |
| 2168 | /* |
| 2169 | * Wait for outgoing I/Os. |
| 2170 | */ |
| 2171 | while (swf->swp_io_count) { |
| 2172 | swf->swp_flags |= SWAP_WANTED; |
| 2173 | |
| 2174 | assert_wait(event: (event_t) &swf->swp_flags, THREAD_UNINT); |
| 2175 | lck_mtx_unlock(lck: &vm_swap_data_lock); |
| 2176 | |
| 2177 | thread_block(THREAD_CONTINUE_NULL); |
| 2178 | |
| 2179 | lck_mtx_lock(lck: &vm_swap_data_lock); |
| 2180 | } |
| 2181 | if (compressor_store_stop_compaction == TRUE || VM_SWAP_SHOULD_ABORT_RECLAIM() || VM_SWAP_BUSY()) { |
| 2182 | vm_swap_reclaim_yielded++; |
| 2183 | break; |
| 2184 | } |
| 2185 | |
| 2186 | byte_for_segidx = segidx >> 3; |
| 2187 | offset_within_byte = segidx % 8; |
| 2188 | |
| 2189 | if (((swf->swp_bitmap)[byte_for_segidx] & (1 << offset_within_byte)) == 0) { |
| 2190 | segidx++; |
| 2191 | continue; |
| 2192 | } |
| 2193 | |
| 2194 | c_seg = swf->swp_csegs[segidx]; |
| 2195 | assert(c_seg); |
| 2196 | |
| 2197 | lck_mtx_lock_spin_always(lck: &c_seg->c_lock); |
| 2198 | |
| 2199 | if (c_seg->c_busy) { |
| 2200 | /* |
| 2201 | * a swapped out c_segment in the process of being freed will remain in the |
| 2202 | * busy state until after the vm_swap_free is called on it... vm_swap_free |
| 2203 | * takes the vm_swap_data_lock, so can't change the swap state until after |
| 2204 | * we drop the vm_swap_data_lock... once we do, vm_swap_free will complete |
| 2205 | * which will allow c_seg_free_locked to clear busy and wake up this thread... |
| 2206 | * at that point, we re-look up the swap state which will now indicate that |
| 2207 | * this c_segment no longer exists. |
| 2208 | */ |
| 2209 | c_seg->c_wanted = 1; |
| 2210 | |
| 2211 | assert_wait(event: (event_t) (c_seg), THREAD_UNINT); |
| 2212 | lck_mtx_unlock_always(&c_seg->c_lock); |
| 2213 | |
| 2214 | lck_mtx_unlock(lck: &vm_swap_data_lock); |
| 2215 | |
| 2216 | thread_block(THREAD_CONTINUE_NULL); |
| 2217 | |
| 2218 | lck_mtx_lock(lck: &vm_swap_data_lock); |
| 2219 | |
| 2220 | goto ReTry_for_cseg; |
| 2221 | } |
| 2222 | (swf->swp_bitmap)[byte_for_segidx] &= ~(1 << offset_within_byte); |
| 2223 | |
| 2224 | f_offset = segidx * compressed_swap_chunk_size; |
| 2225 | |
| 2226 | assert(c_seg == swf->swp_csegs[segidx]); |
| 2227 | swf->swp_csegs[segidx] = NULL; |
| 2228 | swf->swp_nseginuse--; |
| 2229 | |
| 2230 | vm_swapfile_total_segs_used--; |
| 2231 | |
| 2232 | lck_mtx_unlock(lck: &vm_swap_data_lock); |
| 2233 | |
| 2234 | assert(C_SEG_IS_ONDISK(c_seg)); |
| 2235 | |
| 2236 | C_SEG_BUSY(c_seg); |
| 2237 | c_seg->c_busy_swapping = 1; |
| 2238 | #if !CHECKSUM_THE_SWAP |
| 2239 | c_seg_trim_tail(c_seg); |
| 2240 | #endif |
| 2241 | c_size = round_page_32(C_SEG_OFFSET_TO_BYTES(c_seg->c_populated_offset)); |
| 2242 | |
| 2243 | assert(c_size <= c_seg_bufsize && c_size); |
| 2244 | |
| 2245 | lck_mtx_unlock_always(&c_seg->c_lock); |
| 2246 | |
| 2247 | if (vnode_getwithref(vp: swf->swp_vp)) { |
| 2248 | printf(format: "vm_swap_reclaim: vnode_getwithref on swapfile failed.\n" ); |
| 2249 | vm_swap_get_failures++; |
| 2250 | goto swap_io_failed; |
| 2251 | } else { |
| 2252 | if (vm_swapfile_io(vp: swf->swp_vp, offset: f_offset, start: addr, npages: (int)(c_size / PAGE_SIZE_64), SWAP_READ, NULL)) { |
| 2253 | /* |
| 2254 | * reading the data back in failed, so convert c_seg |
| 2255 | * to a swapped in c_segment that contains no data |
| 2256 | */ |
| 2257 | c_seg_swapin_requeue(c_seg, FALSE, TRUE, FALSE); |
| 2258 | /* |
| 2259 | * returns with c_busy_swapping cleared |
| 2260 | */ |
| 2261 | vnode_put(vp: swf->swp_vp); |
| 2262 | vm_swap_get_failures++; |
| 2263 | goto swap_io_failed; |
| 2264 | } |
| 2265 | vnode_put(vp: swf->swp_vp); |
| 2266 | } |
| 2267 | |
| 2268 | counter_add(&vm_statistics_swapins, amount: c_size >> PAGE_SHIFT); |
| 2269 | vmcs_stats.reclaim_swapins += c_size >> PAGE_SHIFT; |
| 2270 | |
| 2271 | if (vm_swap_put(addr, f_offset: &f_offset, size: c_size, c_seg, NULL)) { |
| 2272 | vm_offset_t c_buffer; |
| 2273 | |
| 2274 | /* |
| 2275 | * the put failed, so convert c_seg to a fully swapped in c_segment |
| 2276 | * with valid data |
| 2277 | */ |
| 2278 | c_buffer = (vm_offset_t)C_SEG_BUFFER_ADDRESS(c_seg->c_mysegno); |
| 2279 | |
| 2280 | kernel_memory_populate(addr: c_buffer, size: c_size, |
| 2281 | flags: KMA_NOFAIL | KMA_COMPRESSOR, |
| 2282 | VM_KERN_MEMORY_COMPRESSOR); |
| 2283 | |
| 2284 | memcpy(dst: (char *)c_buffer, src: (char *)addr, n: c_size); |
| 2285 | |
| 2286 | c_seg->c_store.c_buffer = (int32_t *)c_buffer; |
| 2287 | #if ENCRYPTED_SWAP |
| 2288 | vm_swap_decrypt(c_seg); |
| 2289 | #endif /* ENCRYPTED_SWAP */ |
| 2290 | c_seg_swapin_requeue(c_seg, TRUE, TRUE, FALSE); |
| 2291 | /* |
| 2292 | * returns with c_busy_swapping cleared |
| 2293 | */ |
| 2294 | OSAddAtomic64(c_seg->c_bytes_used, &compressor_bytes_used); |
| 2295 | |
| 2296 | goto swap_io_failed; |
| 2297 | } |
| 2298 | counter_add(&vm_statistics_swapouts, amount: c_size >> PAGE_SHIFT); |
| 2299 | |
| 2300 | lck_mtx_lock_spin_always(lck: &c_seg->c_lock); |
| 2301 | |
| 2302 | c_seg->c_swappedin = false; |
| 2303 | |
| 2304 | assert(C_SEG_IS_ONDISK(c_seg)); |
| 2305 | /* |
| 2306 | * The c_seg will now know about the new location on disk. |
| 2307 | */ |
| 2308 | c_seg->c_store.c_swap_handle = f_offset; |
| 2309 | |
| 2310 | assert(c_seg->c_busy_swapping); |
| 2311 | c_seg->c_busy_swapping = 0; |
| 2312 | swap_io_failed: |
| 2313 | assert(c_seg->c_busy); |
| 2314 | C_SEG_WAKEUP_DONE(c_seg); |
| 2315 | |
| 2316 | lck_mtx_unlock_always(&c_seg->c_lock); |
| 2317 | lck_mtx_lock(lck: &vm_swap_data_lock); |
| 2318 | } |
| 2319 | |
| 2320 | if (swf->swp_nseginuse) { |
| 2321 | swf->swp_flags &= ~SWAP_RECLAIM; |
| 2322 | swf->swp_flags |= SWAP_READY; |
| 2323 | |
| 2324 | goto done; |
| 2325 | } |
| 2326 | /* |
| 2327 | * We don't remove this inactive swf from the queue. |
| 2328 | * That way, we can re-use it when needed again and |
| 2329 | * preserve the namespace. The delayed_trim processing |
| 2330 | * is also dependent on us not removing swfs from the queue. |
| 2331 | */ |
| 2332 | //queue_remove(&swf_global_queue, swf, struct swapfile*, swp_queue); |
| 2333 | |
| 2334 | vm_swapfile_total_segs_alloced -= swf->swp_nsegs; |
| 2335 | |
| 2336 | lck_mtx_unlock(lck: &vm_swap_data_lock); |
| 2337 | |
| 2338 | vm_swapfile_close(path: (uint64_t)(swf->swp_path), vp: swf->swp_vp); |
| 2339 | |
| 2340 | kfree_type(c_segment_t, swf->swp_nsegs, swf->swp_csegs); |
| 2341 | kfree_data(swf->swp_bitmap, MAX((swf->swp_nsegs >> 3), 1)); |
| 2342 | |
| 2343 | lck_mtx_lock(lck: &vm_swap_data_lock); |
| 2344 | |
| 2345 | if (swf->swp_flags & SWAP_PINNED) { |
| 2346 | vm_num_pinned_swap_files--; |
| 2347 | vm_swappin_avail += swf->swp_size; |
| 2348 | } |
| 2349 | |
| 2350 | swf->swp_vp = NULL; |
| 2351 | swf->swp_size = 0; |
| 2352 | swf->swp_free_hint = 0; |
| 2353 | swf->swp_nsegs = 0; |
| 2354 | swf->swp_flags = SWAP_REUSE; |
| 2355 | |
| 2356 | vm_num_swap_files--; |
| 2357 | |
| 2358 | done: |
| 2359 | thread_wakeup((event_t) &swf->swp_flags); |
| 2360 | lck_mtx_unlock(lck: &vm_swap_data_lock); |
| 2361 | |
| 2362 | kmem_free(map: compressor_map, addr: (vm_offset_t) addr, size: c_seg_bufsize); |
| 2363 | } |
| 2364 | |
| 2365 | |
| 2366 | uint64_t |
| 2367 | vm_swap_get_total_space(void) |
| 2368 | { |
| 2369 | uint64_t total_space = 0; |
| 2370 | |
| 2371 | total_space = (uint64_t)vm_swapfile_total_segs_alloced * compressed_swap_chunk_size; |
| 2372 | |
| 2373 | return total_space; |
| 2374 | } |
| 2375 | |
| 2376 | uint64_t |
| 2377 | vm_swap_get_used_space(void) |
| 2378 | { |
| 2379 | uint64_t used_space = 0; |
| 2380 | |
| 2381 | used_space = (uint64_t)vm_swapfile_total_segs_used * compressed_swap_chunk_size; |
| 2382 | |
| 2383 | return used_space; |
| 2384 | } |
| 2385 | |
| 2386 | uint64_t |
| 2387 | vm_swap_get_free_space(void) |
| 2388 | { |
| 2389 | return vm_swap_get_total_space() - vm_swap_get_used_space(); |
| 2390 | } |
| 2391 | |
| 2392 | uint64_t |
| 2393 | vm_swap_get_max_configured_space(void) |
| 2394 | { |
| 2395 | int num_swap_files = (vm_num_swap_files_config ? vm_num_swap_files_config : VM_MAX_SWAP_FILE_NUM); |
| 2396 | return num_swap_files * MAX_SWAP_FILE_SIZE; |
| 2397 | } |
| 2398 | |
| 2399 | int |
| 2400 | vm_swap_low_on_space(void) |
| 2401 | { |
| 2402 | if (vm_num_swap_files == 0 && vm_swapfile_can_be_created == FALSE) { |
| 2403 | return 0; |
| 2404 | } |
| 2405 | |
| 2406 | if (((vm_swapfile_total_segs_alloced - vm_swapfile_total_segs_used) < ((unsigned int)vm_swapfile_hiwater_segs) / 8)) { |
| 2407 | if (vm_num_swap_files == 0 && !SWAPPER_NEEDS_TO_UNTHROTTLE()) { |
| 2408 | return 0; |
| 2409 | } |
| 2410 | |
| 2411 | if (vm_swapfile_last_failed_to_create_ts >= vm_swapfile_last_successful_create_ts) { |
| 2412 | return 1; |
| 2413 | } |
| 2414 | } |
| 2415 | return 0; |
| 2416 | } |
| 2417 | |
| 2418 | int |
| 2419 | vm_swap_out_of_space(void) |
| 2420 | { |
| 2421 | if ((vm_num_swap_files == vm_num_swap_files_config) && |
| 2422 | ((vm_swapfile_total_segs_alloced - vm_swapfile_total_segs_used) < VM_SWAPOUT_LIMIT_MAX)) { |
| 2423 | /* |
| 2424 | * Last swapfile and we have only space for the |
| 2425 | * last few swapouts. |
| 2426 | */ |
| 2427 | return 1; |
| 2428 | } |
| 2429 | |
| 2430 | return 0; |
| 2431 | } |
| 2432 | |
| 2433 | boolean_t |
| 2434 | vm_swap_files_pinned(void) |
| 2435 | { |
| 2436 | boolean_t result; |
| 2437 | |
| 2438 | if (vm_swappin_enabled == FALSE) { |
| 2439 | return TRUE; |
| 2440 | } |
| 2441 | |
| 2442 | result = (vm_num_pinned_swap_files == vm_num_swap_files); |
| 2443 | |
| 2444 | return result; |
| 2445 | } |
| 2446 | |
| 2447 | #if CONFIG_FREEZE |
| 2448 | boolean_t |
| 2449 | vm_swap_max_budget(uint64_t *freeze_daily_budget) |
| 2450 | { |
| 2451 | boolean_t use_device_value = FALSE; |
| 2452 | struct swapfile *swf = NULL; |
| 2453 | |
| 2454 | if (vm_num_swap_files) { |
| 2455 | lck_mtx_lock(&vm_swap_data_lock); |
| 2456 | |
| 2457 | swf = (struct swapfile*) queue_first(&swf_global_queue); |
| 2458 | |
| 2459 | if (swf) { |
| 2460 | while (queue_end(&swf_global_queue, (queue_entry_t)swf) == FALSE) { |
| 2461 | if (swf->swp_flags == SWAP_READY) { |
| 2462 | assert(swf->swp_vp); |
| 2463 | |
| 2464 | if (vm_swap_vol_get_budget(swf->swp_vp, freeze_daily_budget) == 0) { |
| 2465 | use_device_value = TRUE; |
| 2466 | } |
| 2467 | break; |
| 2468 | } |
| 2469 | swf = (struct swapfile*) queue_next(&swf->swp_queue); |
| 2470 | } |
| 2471 | } |
| 2472 | |
| 2473 | lck_mtx_unlock(&vm_swap_data_lock); |
| 2474 | } else { |
| 2475 | /* |
| 2476 | * This block is used for the initial budget value before any swap files |
| 2477 | * are created. We create a temp swap file to get the budget. |
| 2478 | */ |
| 2479 | |
| 2480 | struct vnode *temp_vp = NULL; |
| 2481 | |
| 2482 | vm_swapfile_open(swapfilename, &temp_vp); |
| 2483 | |
| 2484 | if (temp_vp) { |
| 2485 | if (vm_swap_vol_get_budget(temp_vp, freeze_daily_budget) == 0) { |
| 2486 | use_device_value = TRUE; |
| 2487 | } |
| 2488 | |
| 2489 | vm_swapfile_close((uint64_t)&swapfilename, temp_vp); |
| 2490 | temp_vp = NULL; |
| 2491 | } else { |
| 2492 | *freeze_daily_budget = 0; |
| 2493 | } |
| 2494 | } |
| 2495 | |
| 2496 | return use_device_value; |
| 2497 | } |
| 2498 | #endif /* CONFIG_FREEZE */ |
| 2499 | |
| 2500 | void |
| 2501 | vm_swap_reset_max_segs_tracking(uint64_t *alloced_max, uint64_t *used_max) |
| 2502 | { |
| 2503 | lck_mtx_lock(lck: &vm_swap_data_lock); |
| 2504 | |
| 2505 | *alloced_max = (uint64_t) vm_swapfile_total_segs_alloced_max * compressed_swap_chunk_size; |
| 2506 | *used_max = (uint64_t) vm_swapfile_total_segs_used_max * compressed_swap_chunk_size; |
| 2507 | |
| 2508 | vm_swapfile_total_segs_alloced_max = vm_swapfile_total_segs_alloced; |
| 2509 | vm_swapfile_total_segs_used_max = vm_swapfile_total_segs_used; |
| 2510 | |
| 2511 | lck_mtx_unlock(lck: &vm_swap_data_lock); |
| 2512 | } |
| 2513 | |