| 1 | /* |
| 2 | * Copyright (c) 2000-2020 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
| 5 | * |
| 6 | * This file contains Original Code and/or Modifications of Original Code |
| 7 | * as defined in and that are subject to the Apple Public Source License |
| 8 | * Version 2.0 (the 'License'). You may not use this file except in |
| 9 | * compliance with the License. The rights granted to you under the License |
| 10 | * may not be used to create, or enable the creation or redistribution of, |
| 11 | * unlawful or unlicensed copies of an Apple operating system, or to |
| 12 | * circumvent, violate, or enable the circumvention or violation of, any |
| 13 | * terms of an Apple operating system software license agreement. |
| 14 | * |
| 15 | * Please obtain a copy of the License at |
| 16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
| 17 | * |
| 18 | * The Original Code and all software distributed under the License are |
| 19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| 23 | * Please see the License for the specific language governing rights and |
| 24 | * limitations under the License. |
| 25 | * |
| 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
| 27 | */ |
| 28 | |
| 29 | #include <vm/vm_compressor.h> |
| 30 | |
| 31 | #if CONFIG_PHANTOM_CACHE |
| 32 | #include <vm/vm_phantom_cache.h> |
| 33 | #endif |
| 34 | |
| 35 | #include <vm/vm_map.h> |
| 36 | #include <vm/vm_pageout.h> |
| 37 | #include <vm/memory_object.h> |
| 38 | #include <vm/vm_compressor_algorithms.h> |
| 39 | #include <vm/vm_compressor_backing_store.h> |
| 40 | #include <vm/vm_fault.h> |
| 41 | #include <vm/vm_protos.h> |
| 42 | #include <mach/mach_host.h> /* for host_info() */ |
| 43 | #if DEVELOPMENT || DEBUG |
| 44 | #include <kern/hvg_hypercall.h> |
| 45 | #endif |
| 46 | #include <kern/ledger.h> |
| 47 | #include <kern/policy_internal.h> |
| 48 | #include <kern/thread_group.h> |
| 49 | #include <san/kasan.h> |
| 50 | #include <os/log.h> |
| 51 | #include <pexpert/pexpert.h> |
| 52 | #include <pexpert/device_tree.h> |
| 53 | |
| 54 | #if defined(__x86_64__) |
| 55 | #include <i386/misc_protos.h> |
| 56 | #endif |
| 57 | #if defined(__arm64__) |
| 58 | #include <arm/machine_routines.h> |
| 59 | #endif |
| 60 | |
| 61 | #include <IOKit/IOHibernatePrivate.h> |
| 62 | |
| 63 | /* |
| 64 | * The segment buffer size is a tradeoff. |
| 65 | * A larger buffer leads to faster I/O throughput, better compression ratios |
| 66 | * (since fewer bytes are wasted at the end of the segment), |
| 67 | * and less overhead (both in time and space). |
| 68 | * However, a smaller buffer causes less swap when the system is overcommited |
| 69 | * b/c a higher percentage of the swapped-in segment is definitely accessed |
| 70 | * before it goes back out to storage. |
| 71 | * |
| 72 | * So on systems without swap, a larger segment is a clear win. |
| 73 | * On systems with swap, the choice is murkier. Empirically, we've |
| 74 | * found that a 64KB segment provides a better tradeoff both in terms of |
| 75 | * performance and swap writes than a 256KB segment on systems with fast SSDs |
| 76 | * and a HW compression block. |
| 77 | */ |
| 78 | #define C_SEG_BUFSIZE_ARM_SWAP (1024 * 64) |
| 79 | #if XNU_TARGET_OS_OSX && defined(__arm64__) |
| 80 | #define C_SEG_BUFSIZE_DEFAULT C_SEG_BUFSIZE_ARM_SWAP |
| 81 | #else |
| 82 | #define C_SEG_BUFSIZE_DEFAULT (1024 * 256) |
| 83 | #endif /* TARGET_OS_OSX && defined(__arm64__) */ |
| 84 | uint32_t c_seg_bufsize; |
| 85 | |
| 86 | uint32_t c_seg_max_pages, c_seg_off_limit, c_seg_allocsize, c_seg_slot_var_array_min_len; |
| 87 | |
| 88 | extern boolean_t vm_darkwake_mode; |
| 89 | extern zone_t vm_page_zone; |
| 90 | |
| 91 | #if DEVELOPMENT || DEBUG |
| 92 | /* sysctl defined in bsd/dev/arm64/sysctl.c */ |
| 93 | int do_cseg_wedge_thread(void); |
| 94 | int do_cseg_unwedge_thread(void); |
| 95 | static event_t debug_cseg_wait_event = NULL; |
| 96 | #endif /* DEVELOPMENT || DEBUG */ |
| 97 | |
| 98 | #if CONFIG_FREEZE |
| 99 | bool freezer_incore_cseg_acct = TRUE; /* Only count incore compressed memory for jetsams. */ |
| 100 | void task_disown_frozen_csegs(task_t owner_task); |
| 101 | #endif /* CONFIG_FREEZE */ |
| 102 | |
| 103 | #if POPCOUNT_THE_COMPRESSED_DATA |
| 104 | boolean_t popcount_c_segs = TRUE; |
| 105 | |
| 106 | static inline uint32_t |
| 107 | vmc_pop(uintptr_t ins, int sz) |
| 108 | { |
| 109 | uint32_t rv = 0; |
| 110 | |
| 111 | if (__probable(popcount_c_segs == FALSE)) { |
| 112 | return 0xDEAD707C; |
| 113 | } |
| 114 | |
| 115 | while (sz >= 16) { |
| 116 | uint32_t rv1, rv2; |
| 117 | uint64_t *ins64 = (uint64_t *) ins; |
| 118 | uint64_t *ins642 = (uint64_t *) (ins + 8); |
| 119 | rv1 = __builtin_popcountll(*ins64); |
| 120 | rv2 = __builtin_popcountll(*ins642); |
| 121 | rv += rv1 + rv2; |
| 122 | sz -= 16; |
| 123 | ins += 16; |
| 124 | } |
| 125 | |
| 126 | while (sz >= 4) { |
| 127 | uint32_t *ins32 = (uint32_t *) ins; |
| 128 | rv += __builtin_popcount(*ins32); |
| 129 | sz -= 4; |
| 130 | ins += 4; |
| 131 | } |
| 132 | |
| 133 | while (sz > 0) { |
| 134 | char *ins8 = (char *)ins; |
| 135 | rv += __builtin_popcount(*ins8); |
| 136 | sz--; |
| 137 | ins++; |
| 138 | } |
| 139 | return rv; |
| 140 | } |
| 141 | #endif |
| 142 | |
| 143 | #if VALIDATE_C_SEGMENTS |
| 144 | boolean_t validate_c_segs = TRUE; |
| 145 | #endif |
| 146 | /* |
| 147 | * vm_compressor_mode has a hierarchy of control to set its value. |
| 148 | * boot-args are checked first, then device-tree, and finally |
| 149 | * the default value that is defined below. See vm_fault_init() for |
| 150 | * the boot-arg & device-tree code. |
| 151 | */ |
| 152 | |
| 153 | #if !XNU_TARGET_OS_OSX |
| 154 | |
| 155 | #if CONFIG_FREEZE |
| 156 | int vm_compressor_mode = VM_PAGER_FREEZER_DEFAULT; |
| 157 | struct freezer_context freezer_context_global; |
| 158 | #else /* CONFIG_FREEZE */ |
| 159 | int vm_compressor_mode = VM_PAGER_NOT_CONFIGURED; |
| 160 | #endif /* CONFIG_FREEZE */ |
| 161 | |
| 162 | #else /* !XNU_TARGET_OS_OSX */ |
| 163 | int vm_compressor_mode = VM_PAGER_COMPRESSOR_WITH_SWAP; |
| 164 | |
| 165 | #endif /* !XNU_TARGET_OS_OSX */ |
| 166 | |
| 167 | TUNABLE(uint32_t, vm_compression_limit, "vm_compression_limit" , 0); |
| 168 | int vm_compressor_is_active = 0; |
| 169 | int vm_compressor_available = 0; |
| 170 | |
| 171 | extern uint64_t vm_swap_get_max_configured_space(void); |
| 172 | extern void vm_pageout_io_throttle(void); |
| 173 | bool vm_compressor_swapout_is_ripe(void); |
| 174 | |
| 175 | #if CHECKSUM_THE_DATA || CHECKSUM_THE_SWAP || CHECKSUM_THE_COMPRESSED_DATA |
| 176 | extern unsigned int hash_string(char *cp, int len); |
| 177 | static unsigned int vmc_hash(char *, int); |
| 178 | boolean_t checksum_c_segs = TRUE; |
| 179 | |
| 180 | unsigned int |
| 181 | vmc_hash(char *cp, int len) |
| 182 | { |
| 183 | if (__probable(checksum_c_segs == FALSE)) { |
| 184 | return 0xDEAD7A37; |
| 185 | } |
| 186 | return hash_string(cp, len); |
| 187 | } |
| 188 | #endif |
| 189 | |
| 190 | #define UNPACK_C_SIZE(cs) ((cs->c_size == (PAGE_SIZE-1)) ? PAGE_SIZE : cs->c_size) |
| 191 | #define PACK_C_SIZE(cs, size) (cs->c_size = ((size == PAGE_SIZE) ? PAGE_SIZE - 1 : size)) |
| 192 | |
| 193 | |
| 194 | struct c_sv_hash_entry { |
| 195 | union { |
| 196 | struct { |
| 197 | uint32_t c_sv_he_ref; |
| 198 | uint32_t c_sv_he_data; |
| 199 | } c_sv_he; |
| 200 | uint64_t c_sv_he_record; |
| 201 | } c_sv_he_un; |
| 202 | }; |
| 203 | |
| 204 | #define he_ref c_sv_he_un.c_sv_he.c_sv_he_ref |
| 205 | #define he_data c_sv_he_un.c_sv_he.c_sv_he_data |
| 206 | #define he_record c_sv_he_un.c_sv_he_record |
| 207 | |
| 208 | #define C_SV_HASH_MAX_MISS 32 |
| 209 | #define C_SV_HASH_SIZE ((1 << 10)) |
| 210 | #define C_SV_HASH_MASK ((1 << 10) - 1) |
| 211 | |
| 212 | #if CONFIG_TRACK_UNMODIFIED_ANON_PAGES |
| 213 | #define C_SV_CSEG_ID ((1 << 21) - 1) |
| 214 | #else /* CONFIG_TRACK_UNMODIFIED_ANON_PAGES */ |
| 215 | #define C_SV_CSEG_ID ((1 << 22) - 1) |
| 216 | #endif /* CONFIG_TRACK_UNMODIFIED_ANON_PAGES */ |
| 217 | |
| 218 | |
| 219 | union c_segu { |
| 220 | c_segment_t c_seg; |
| 221 | uintptr_t c_segno; |
| 222 | }; |
| 223 | |
| 224 | #define C_SLOT_ASSERT_PACKABLE(ptr) \ |
| 225 | VM_ASSERT_POINTER_PACKABLE((vm_offset_t)(ptr), C_SLOT_PACKED_PTR); |
| 226 | |
| 227 | #define C_SLOT_PACK_PTR(ptr) \ |
| 228 | VM_PACK_POINTER((vm_offset_t)(ptr), C_SLOT_PACKED_PTR) |
| 229 | |
| 230 | #define C_SLOT_UNPACK_PTR(cslot) \ |
| 231 | (c_slot_mapping_t)VM_UNPACK_POINTER((cslot)->c_packed_ptr, C_SLOT_PACKED_PTR) |
| 232 | |
| 233 | /* for debugging purposes */ |
| 234 | SECURITY_READ_ONLY_EARLY(vm_packing_params_t) c_slot_packing_params = |
| 235 | VM_PACKING_PARAMS(C_SLOT_PACKED_PTR); |
| 236 | |
| 237 | uint32_t c_segment_count = 0; |
| 238 | uint32_t c_segment_count_max = 0; |
| 239 | |
| 240 | uint64_t c_generation_id = 0; |
| 241 | uint64_t c_generation_id_flush_barrier; |
| 242 | |
| 243 | |
| 244 | #define HIBERNATE_FLUSHING_SECS_TO_COMPLETE 120 |
| 245 | |
| 246 | boolean_t hibernate_no_swapspace = FALSE; |
| 247 | boolean_t hibernate_flush_timed_out = FALSE; |
| 248 | clock_sec_t hibernate_flushing_deadline = 0; |
| 249 | |
| 250 | #if RECORD_THE_COMPRESSED_DATA |
| 251 | char *c_compressed_record_sbuf; |
| 252 | char *c_compressed_record_ebuf; |
| 253 | char *c_compressed_record_cptr; |
| 254 | #endif |
| 255 | |
| 256 | |
| 257 | queue_head_t c_age_list_head; |
| 258 | queue_head_t c_early_swappedin_list_head, c_regular_swappedin_list_head, c_late_swappedin_list_head; |
| 259 | queue_head_t c_early_swapout_list_head, c_regular_swapout_list_head, c_late_swapout_list_head; |
| 260 | queue_head_t c_swapio_list_head; |
| 261 | queue_head_t c_swappedout_list_head; |
| 262 | queue_head_t c_swappedout_sparse_list_head; |
| 263 | queue_head_t c_major_list_head; |
| 264 | queue_head_t c_filling_list_head; |
| 265 | queue_head_t c_bad_list_head; |
| 266 | |
| 267 | uint32_t c_age_count = 0; |
| 268 | uint32_t c_early_swappedin_count = 0, c_regular_swappedin_count = 0, c_late_swappedin_count = 0; |
| 269 | uint32_t c_early_swapout_count = 0, c_regular_swapout_count = 0, c_late_swapout_count = 0; |
| 270 | uint32_t c_swapio_count = 0; |
| 271 | uint32_t c_swappedout_count = 0; |
| 272 | uint32_t c_swappedout_sparse_count = 0; |
| 273 | uint32_t c_major_count = 0; |
| 274 | uint32_t c_filling_count = 0; |
| 275 | uint32_t c_empty_count = 0; |
| 276 | uint32_t c_bad_count = 0; |
| 277 | |
| 278 | |
| 279 | queue_head_t c_minor_list_head; |
| 280 | uint32_t c_minor_count = 0; |
| 281 | |
| 282 | int c_overage_swapped_count = 0; |
| 283 | int c_overage_swapped_limit = 0; |
| 284 | |
| 285 | int c_seg_fixed_array_len; |
| 286 | union c_segu *c_segments; |
| 287 | vm_offset_t c_buffers; |
| 288 | vm_size_t c_buffers_size; |
| 289 | caddr_t c_segments_next_page; |
| 290 | boolean_t c_segments_busy; |
| 291 | uint32_t c_segments_available; |
| 292 | uint32_t c_segments_limit; |
| 293 | uint32_t c_segments_nearing_limit; |
| 294 | |
| 295 | uint32_t c_segment_svp_in_hash; |
| 296 | uint32_t c_segment_svp_hash_succeeded; |
| 297 | uint32_t c_segment_svp_hash_failed; |
| 298 | uint32_t c_segment_svp_zero_compressions; |
| 299 | uint32_t c_segment_svp_nonzero_compressions; |
| 300 | uint32_t c_segment_svp_zero_decompressions; |
| 301 | uint32_t c_segment_svp_nonzero_decompressions; |
| 302 | |
| 303 | uint32_t c_segment_noncompressible_pages; |
| 304 | |
| 305 | uint32_t c_segment_pages_compressed = 0; /* Tracks # of uncompressed pages fed into the compressor */ |
| 306 | #if CONFIG_FREEZE |
| 307 | int32_t c_segment_pages_compressed_incore = 0; /* Tracks # of uncompressed pages fed into the compressor that are in memory */ |
| 308 | int32_t c_segment_pages_compressed_incore_late_swapout = 0; /* Tracks # of uncompressed pages fed into the compressor that are in memory and tagged for swapout */ |
| 309 | uint32_t c_segments_incore_limit = 0; /* Tracks # of segments allowed to be in-core. Based on compressor pool size */ |
| 310 | #endif /* CONFIG_FREEZE */ |
| 311 | |
| 312 | uint32_t c_segment_pages_compressed_limit; |
| 313 | uint32_t c_segment_pages_compressed_nearing_limit; |
| 314 | uint32_t c_free_segno_head = (uint32_t)-1; |
| 315 | |
| 316 | uint32_t vm_compressor_minorcompact_threshold_divisor = 10; |
| 317 | uint32_t vm_compressor_majorcompact_threshold_divisor = 10; |
| 318 | uint32_t vm_compressor_unthrottle_threshold_divisor = 10; |
| 319 | uint32_t vm_compressor_catchup_threshold_divisor = 10; |
| 320 | |
| 321 | uint32_t vm_compressor_minorcompact_threshold_divisor_overridden = 0; |
| 322 | uint32_t vm_compressor_majorcompact_threshold_divisor_overridden = 0; |
| 323 | uint32_t vm_compressor_unthrottle_threshold_divisor_overridden = 0; |
| 324 | uint32_t vm_compressor_catchup_threshold_divisor_overridden = 0; |
| 325 | |
| 326 | #define C_SEGMENTS_PER_PAGE (PAGE_SIZE / sizeof(union c_segu)) |
| 327 | |
| 328 | LCK_GRP_DECLARE(vm_compressor_lck_grp, "vm_compressor" ); |
| 329 | LCK_RW_DECLARE(c_master_lock, &vm_compressor_lck_grp); |
| 330 | LCK_MTX_DECLARE(c_list_lock_storage, &vm_compressor_lck_grp); |
| 331 | |
| 332 | boolean_t decompressions_blocked = FALSE; |
| 333 | |
| 334 | zone_t compressor_segment_zone; |
| 335 | int c_compressor_swap_trigger = 0; |
| 336 | |
| 337 | uint32_t compressor_cpus; |
| 338 | char *compressor_scratch_bufs; |
| 339 | char *kdp_compressor_scratch_buf; |
| 340 | char *kdp_compressor_decompressed_page; |
| 341 | addr64_t kdp_compressor_decompressed_page_paddr; |
| 342 | ppnum_t kdp_compressor_decompressed_page_ppnum; |
| 343 | |
| 344 | clock_sec_t start_of_sample_period_sec = 0; |
| 345 | clock_nsec_t start_of_sample_period_nsec = 0; |
| 346 | clock_sec_t start_of_eval_period_sec = 0; |
| 347 | clock_nsec_t start_of_eval_period_nsec = 0; |
| 348 | uint32_t sample_period_decompression_count = 0; |
| 349 | uint32_t sample_period_compression_count = 0; |
| 350 | uint32_t last_eval_decompression_count = 0; |
| 351 | uint32_t last_eval_compression_count = 0; |
| 352 | |
| 353 | #define DECOMPRESSION_SAMPLE_MAX_AGE (60 * 30) |
| 354 | |
| 355 | boolean_t vm_swapout_ripe_segments = FALSE; |
| 356 | uint32_t vm_ripe_target_age = (60 * 60 * 48); |
| 357 | |
| 358 | uint32_t swapout_target_age = 0; |
| 359 | uint32_t age_of_decompressions_during_sample_period[DECOMPRESSION_SAMPLE_MAX_AGE]; |
| 360 | uint32_t overage_decompressions_during_sample_period = 0; |
| 361 | |
| 362 | |
| 363 | void do_fastwake_warmup(queue_head_t *, boolean_t); |
| 364 | boolean_t fastwake_warmup = FALSE; |
| 365 | boolean_t fastwake_recording_in_progress = FALSE; |
| 366 | clock_sec_t dont_trim_until_ts = 0; |
| 367 | |
| 368 | uint64_t c_segment_warmup_count; |
| 369 | uint64_t first_c_segment_to_warm_generation_id = 0; |
| 370 | uint64_t last_c_segment_to_warm_generation_id = 0; |
| 371 | boolean_t hibernate_flushing = FALSE; |
| 372 | |
| 373 | int64_t c_segment_input_bytes __attribute__((aligned(8))) = 0; |
| 374 | int64_t c_segment_compressed_bytes __attribute__((aligned(8))) = 0; |
| 375 | int64_t compressor_bytes_used __attribute__((aligned(8))) = 0; |
| 376 | |
| 377 | /* Keeps track of the most recent timestamp for when major compaction finished. */ |
| 378 | mach_timespec_t major_compact_ts; |
| 379 | |
| 380 | struct c_sv_hash_entry c_segment_sv_hash_table[C_SV_HASH_SIZE] __attribute__ ((aligned(8))); |
| 381 | |
| 382 | static void vm_compressor_swap_trigger_thread(void); |
| 383 | static void vm_compressor_do_delayed_compactions(boolean_t); |
| 384 | static void vm_compressor_compact_and_swap(boolean_t); |
| 385 | static void vm_compressor_process_regular_swapped_in_segments(boolean_t); |
| 386 | void vm_compressor_process_special_swapped_in_segments(void); |
| 387 | static void vm_compressor_process_special_swapped_in_segments_locked(void); |
| 388 | |
| 389 | struct vm_compressor_swapper_stats vmcs_stats; |
| 390 | |
| 391 | static void vm_compressor_process_major_segments(bool); |
| 392 | #if XNU_TARGET_OS_OSX |
| 393 | static void vm_compressor_take_paging_space_action(void); |
| 394 | #endif /* XNU_TARGET_OS_OSX */ |
| 395 | |
| 396 | void compute_swapout_target_age(void); |
| 397 | |
| 398 | boolean_t c_seg_major_compact(c_segment_t, c_segment_t); |
| 399 | boolean_t c_seg_major_compact_ok(c_segment_t, c_segment_t); |
| 400 | |
| 401 | int c_seg_minor_compaction_and_unlock(c_segment_t, boolean_t); |
| 402 | int c_seg_do_minor_compaction_and_unlock(c_segment_t, boolean_t, boolean_t, boolean_t); |
| 403 | void c_seg_try_minor_compaction_and_unlock(c_segment_t c_seg); |
| 404 | |
| 405 | void c_seg_move_to_sparse_list(c_segment_t); |
| 406 | void c_seg_insert_into_q(queue_head_t *, c_segment_t); |
| 407 | |
| 408 | uint64_t vm_available_memory(void); |
| 409 | uint64_t vm_compressor_pages_compressed(void); |
| 410 | uint32_t vm_compressor_pool_size(void); |
| 411 | uint32_t vm_compressor_fragmentation_level(void); |
| 412 | uint32_t vm_compression_ratio(void); |
| 413 | |
| 414 | /* |
| 415 | * indicate the need to do a major compaction if |
| 416 | * the overall set of in-use compression segments |
| 417 | * becomes sparse... on systems that support pressure |
| 418 | * driven swapping, this will also cause swapouts to |
| 419 | * be initiated. |
| 420 | */ |
| 421 | static inline bool |
| 422 | vm_compressor_needs_to_major_compact() |
| 423 | { |
| 424 | uint32_t incore_seg_count; |
| 425 | |
| 426 | incore_seg_count = c_segment_count - c_swappedout_count - c_swappedout_sparse_count; |
| 427 | |
| 428 | if ((c_segment_count >= (c_segments_nearing_limit / 8)) && |
| 429 | ((incore_seg_count * c_seg_max_pages) - VM_PAGE_COMPRESSOR_COUNT) > |
| 430 | ((incore_seg_count / 8) * c_seg_max_pages)) { |
| 431 | return true; |
| 432 | } |
| 433 | return false; |
| 434 | } |
| 435 | |
| 436 | |
| 437 | uint64_t |
| 438 | vm_available_memory(void) |
| 439 | { |
| 440 | return ((uint64_t)AVAILABLE_NON_COMPRESSED_MEMORY) * PAGE_SIZE_64; |
| 441 | } |
| 442 | |
| 443 | |
| 444 | uint32_t |
| 445 | vm_compressor_pool_size(void) |
| 446 | { |
| 447 | return VM_PAGE_COMPRESSOR_COUNT; |
| 448 | } |
| 449 | |
| 450 | uint32_t |
| 451 | vm_compressor_fragmentation_level(void) |
| 452 | { |
| 453 | const uint32_t incore_seg_count = c_segment_count - c_swappedout_count - c_swappedout_sparse_count; |
| 454 | if ((incore_seg_count == 0) || (c_seg_max_pages == 0)) { |
| 455 | return 0; |
| 456 | } |
| 457 | return 100 - (vm_compressor_pool_size() * 100 / (incore_seg_count * c_seg_max_pages)); |
| 458 | } |
| 459 | |
| 460 | uint32_t |
| 461 | vm_compression_ratio(void) |
| 462 | { |
| 463 | if (vm_compressor_pool_size() == 0) { |
| 464 | return UINT32_MAX; |
| 465 | } |
| 466 | return c_segment_pages_compressed / vm_compressor_pool_size(); |
| 467 | } |
| 468 | |
| 469 | uint64_t |
| 470 | vm_compressor_pages_compressed(void) |
| 471 | { |
| 472 | return c_segment_pages_compressed * PAGE_SIZE_64; |
| 473 | } |
| 474 | |
| 475 | bool |
| 476 | vm_compressor_compressed_pages_nearing_limit(void) |
| 477 | { |
| 478 | uint32_t pages = 0; |
| 479 | |
| 480 | #if CONFIG_FREEZE |
| 481 | pages = os_atomic_load(&c_segment_pages_compressed_incore, relaxed); |
| 482 | #else /* CONFIG_FREEZE */ |
| 483 | pages = c_segment_pages_compressed; |
| 484 | #endif /* CONFIG_FREEZE */ |
| 485 | |
| 486 | return pages > c_segment_pages_compressed_nearing_limit; |
| 487 | } |
| 488 | |
| 489 | static bool |
| 490 | vm_compressor_segments_nearing_limit(void) |
| 491 | { |
| 492 | uint64_t segments; |
| 493 | |
| 494 | #if CONFIG_FREEZE |
| 495 | if (freezer_incore_cseg_acct) { |
| 496 | if (os_sub_overflow(c_segment_count, c_swappedout_count, &segments)) { |
| 497 | segments = 0; |
| 498 | } |
| 499 | if (os_sub_overflow(segments, c_swappedout_sparse_count, &segments)) { |
| 500 | segments = 0; |
| 501 | } |
| 502 | } else { |
| 503 | segments = os_atomic_load(&c_segment_count, relaxed); |
| 504 | } |
| 505 | #else /* CONFIG_FREEZE */ |
| 506 | segments = c_segment_count; |
| 507 | #endif /* CONFIG_FREEZE */ |
| 508 | |
| 509 | return segments > c_segments_nearing_limit; |
| 510 | } |
| 511 | |
| 512 | boolean_t |
| 513 | vm_compressor_low_on_space(void) |
| 514 | { |
| 515 | return vm_compressor_compressed_pages_nearing_limit() || |
| 516 | vm_compressor_segments_nearing_limit(); |
| 517 | } |
| 518 | |
| 519 | |
| 520 | boolean_t |
| 521 | vm_compressor_out_of_space(void) |
| 522 | { |
| 523 | #if CONFIG_FREEZE |
| 524 | uint64_t incore_seg_count; |
| 525 | uint32_t incore_compressed_pages; |
| 526 | if (freezer_incore_cseg_acct) { |
| 527 | if (os_sub_overflow(c_segment_count, c_swappedout_count, &incore_seg_count)) { |
| 528 | incore_seg_count = 0; |
| 529 | } |
| 530 | if (os_sub_overflow(incore_seg_count, c_swappedout_sparse_count, &incore_seg_count)) { |
| 531 | incore_seg_count = 0; |
| 532 | } |
| 533 | incore_compressed_pages = os_atomic_load(&c_segment_pages_compressed_incore, relaxed); |
| 534 | } else { |
| 535 | incore_seg_count = os_atomic_load(&c_segment_count, relaxed); |
| 536 | incore_compressed_pages = os_atomic_load(&c_segment_pages_compressed_incore, relaxed); |
| 537 | } |
| 538 | |
| 539 | if ((incore_compressed_pages >= c_segment_pages_compressed_limit) || |
| 540 | (incore_seg_count > c_segments_incore_limit)) { |
| 541 | return TRUE; |
| 542 | } |
| 543 | #else /* CONFIG_FREEZE */ |
| 544 | if ((c_segment_pages_compressed >= c_segment_pages_compressed_limit) || |
| 545 | (c_segment_count >= c_segments_limit)) { |
| 546 | return TRUE; |
| 547 | } |
| 548 | #endif /* CONFIG_FREEZE */ |
| 549 | return FALSE; |
| 550 | } |
| 551 | |
| 552 | bool |
| 553 | vm_compressor_is_thrashing() |
| 554 | { |
| 555 | compute_swapout_target_age(); |
| 556 | |
| 557 | if (swapout_target_age) { |
| 558 | c_segment_t c_seg; |
| 559 | |
| 560 | lck_mtx_lock_spin_always(c_list_lock); |
| 561 | |
| 562 | if (!queue_empty(&c_age_list_head)) { |
| 563 | c_seg = (c_segment_t) queue_first(&c_age_list_head); |
| 564 | |
| 565 | if (c_seg->c_creation_ts > swapout_target_age) { |
| 566 | swapout_target_age = 0; |
| 567 | } |
| 568 | } |
| 569 | lck_mtx_unlock_always(c_list_lock); |
| 570 | } |
| 571 | |
| 572 | return swapout_target_age != 0; |
| 573 | } |
| 574 | |
| 575 | |
| 576 | int |
| 577 | vm_wants_task_throttled(task_t task) |
| 578 | { |
| 579 | ledger_amount_t compressed; |
| 580 | if (task == kernel_task) { |
| 581 | return 0; |
| 582 | } |
| 583 | |
| 584 | if (VM_CONFIG_SWAP_IS_ACTIVE) { |
| 585 | if ((vm_compressor_low_on_space() || HARD_THROTTLE_LIMIT_REACHED())) { |
| 586 | ledger_get_balance(ledger: task->ledger, entry: task_ledgers.internal_compressed, balance: &compressed); |
| 587 | compressed >>= VM_MAP_PAGE_SHIFT(map: task->map); |
| 588 | if ((unsigned int)compressed > (c_segment_pages_compressed / 4)) { |
| 589 | return 1; |
| 590 | } |
| 591 | } |
| 592 | } |
| 593 | return 0; |
| 594 | } |
| 595 | |
| 596 | |
| 597 | #if DEVELOPMENT || DEBUG |
| 598 | /* |
| 599 | * On compressor/swap exhaustion, kill the largest process regardless of |
| 600 | * its chosen process policy. |
| 601 | */ |
| 602 | TUNABLE(bool, kill_on_no_paging_space, "-kill_on_no_paging_space" , false); |
| 603 | #endif /* DEVELOPMENT || DEBUG */ |
| 604 | |
| 605 | #if CONFIG_JETSAM |
| 606 | boolean_t memorystatus_kill_on_VM_compressor_space_shortage(boolean_t); |
| 607 | void memorystatus_thread_wake(void); |
| 608 | extern uint32_t jetsam_kill_on_low_swap; |
| 609 | bool memorystatus_disable_swap(void); |
| 610 | #if CONFIG_PHANTOM_CACHE |
| 611 | extern bool memorystatus_phantom_cache_pressure; |
| 612 | #endif /* CONFIG_PHANTOM_CACHE */ |
| 613 | int compressor_thrashing_induced_jetsam = 0; |
| 614 | int filecache_thrashing_induced_jetsam = 0; |
| 615 | static boolean_t vm_compressor_thrashing_detected = FALSE; |
| 616 | #else /* CONFIG_JETSAM */ |
| 617 | static uint32_t no_paging_space_action_in_progress = 0; |
| 618 | extern void memorystatus_send_low_swap_note(void); |
| 619 | #endif /* CONFIG_JETSAM */ |
| 620 | |
| 621 | static void |
| 622 | vm_compressor_take_paging_space_action(void) |
| 623 | { |
| 624 | #if CONFIG_JETSAM |
| 625 | /* |
| 626 | * On systems with both swap and jetsam, |
| 627 | * just wake up the jetsam thread and have it handle the low swap condition |
| 628 | * by killing apps. |
| 629 | */ |
| 630 | if (jetsam_kill_on_low_swap) { |
| 631 | memorystatus_thread_wake(); |
| 632 | } |
| 633 | #else /* CONFIG_JETSAM */ |
| 634 | if (no_paging_space_action_in_progress == 0) { |
| 635 | if (OSCompareAndSwap(0, 1, (UInt32 *)&no_paging_space_action_in_progress)) { |
| 636 | if (no_paging_space_action()) { |
| 637 | #if DEVELOPMENT || DEBUG |
| 638 | if (kill_on_no_paging_space) { |
| 639 | /* |
| 640 | * Since we are choosing to always kill a process, we don't need the |
| 641 | * "out of application memory" dialog box in this mode. And, hence we won't |
| 642 | * send the knote. |
| 643 | */ |
| 644 | no_paging_space_action_in_progress = 0; |
| 645 | return; |
| 646 | } |
| 647 | #endif /* DEVELOPMENT || DEBUG */ |
| 648 | memorystatus_send_low_swap_note(); |
| 649 | } |
| 650 | |
| 651 | no_paging_space_action_in_progress = 0; |
| 652 | } |
| 653 | } |
| 654 | #endif /* !CONFIG_JETSAM */ |
| 655 | } |
| 656 | |
| 657 | |
| 658 | void |
| 659 | vm_decompressor_lock(void) |
| 660 | { |
| 661 | PAGE_REPLACEMENT_ALLOWED(TRUE); |
| 662 | |
| 663 | decompressions_blocked = TRUE; |
| 664 | |
| 665 | PAGE_REPLACEMENT_ALLOWED(FALSE); |
| 666 | } |
| 667 | |
| 668 | void |
| 669 | vm_decompressor_unlock(void) |
| 670 | { |
| 671 | PAGE_REPLACEMENT_ALLOWED(TRUE); |
| 672 | |
| 673 | decompressions_blocked = FALSE; |
| 674 | |
| 675 | PAGE_REPLACEMENT_ALLOWED(FALSE); |
| 676 | |
| 677 | thread_wakeup((event_t)&decompressions_blocked); |
| 678 | } |
| 679 | |
| 680 | static inline void |
| 681 | cslot_copy(c_slot_t cdst, c_slot_t csrc) |
| 682 | { |
| 683 | #if CHECKSUM_THE_DATA |
| 684 | cdst->c_hash_data = csrc->c_hash_data; |
| 685 | #endif |
| 686 | #if CHECKSUM_THE_COMPRESSED_DATA |
| 687 | cdst->c_hash_compressed_data = csrc->c_hash_compressed_data; |
| 688 | #endif |
| 689 | #if POPCOUNT_THE_COMPRESSED_DATA |
| 690 | cdst->c_pop_cdata = csrc->c_pop_cdata; |
| 691 | #endif |
| 692 | cdst->c_size = csrc->c_size; |
| 693 | cdst->c_packed_ptr = csrc->c_packed_ptr; |
| 694 | #if defined(__arm64__) |
| 695 | cdst->c_codec = csrc->c_codec; |
| 696 | #endif |
| 697 | } |
| 698 | |
| 699 | #if XNU_TARGET_OS_OSX |
| 700 | #define VM_COMPRESSOR_MAX_POOL_SIZE (192UL << 30) |
| 701 | #else |
| 702 | #define VM_COMPRESSOR_MAX_POOL_SIZE (0) |
| 703 | #endif |
| 704 | |
| 705 | static vm_map_size_t compressor_size; |
| 706 | static SECURITY_READ_ONLY_LATE(struct mach_vm_range) compressor_range; |
| 707 | vm_map_t compressor_map; |
| 708 | uint64_t compressor_pool_max_size; |
| 709 | uint64_t compressor_pool_size; |
| 710 | uint32_t compressor_pool_multiplier; |
| 711 | |
| 712 | #if DEVELOPMENT || DEBUG |
| 713 | /* |
| 714 | * Compressor segments are write-protected in development/debug |
| 715 | * kernels to help debug memory corruption. |
| 716 | * In cases where performance is a concern, this can be disabled |
| 717 | * via the boot-arg "-disable_cseg_write_protection". |
| 718 | */ |
| 719 | boolean_t write_protect_c_segs = TRUE; |
| 720 | int vm_compressor_test_seg_wp; |
| 721 | uint32_t vm_ktrace_enabled; |
| 722 | #endif /* DEVELOPMENT || DEBUG */ |
| 723 | |
| 724 | #if (XNU_TARGET_OS_OSX && __arm64__) |
| 725 | |
| 726 | #include <IOKit/IOPlatformExpert.h> |
| 727 | #include <sys/random.h> |
| 728 | |
| 729 | static const char *csegbufsizeExperimentProperty = "_csegbufsz_experiment" ; |
| 730 | static thread_call_t csegbufsz_experiment_thread_call; |
| 731 | |
| 732 | extern boolean_t IOServiceWaitForMatchingResource(const char * property, uint64_t timeout); |
| 733 | static void |
| 734 | erase_csegbufsz_experiment_property(__unused void *param0, __unused void *param1) |
| 735 | { |
| 736 | // Wait for NVRAM to be writable |
| 737 | if (!IOServiceWaitForMatchingResource(property: "IONVRAM" , UINT64_MAX)) { |
| 738 | printf(format: "csegbufsz_experiment_property: Failed to wait for IONVRAM." ); |
| 739 | } |
| 740 | |
| 741 | if (!PERemoveNVRAMProperty(symbol: csegbufsizeExperimentProperty)) { |
| 742 | printf(format: "csegbufsize_experiment_property: Failed to remove %s from NVRAM." , csegbufsizeExperimentProperty); |
| 743 | } |
| 744 | thread_call_free(call: csegbufsz_experiment_thread_call); |
| 745 | } |
| 746 | |
| 747 | static void |
| 748 | erase_csegbufsz_experiment_property_async() |
| 749 | { |
| 750 | csegbufsz_experiment_thread_call = thread_call_allocate_with_priority( |
| 751 | func: erase_csegbufsz_experiment_property, |
| 752 | NULL, |
| 753 | pri: THREAD_CALL_PRIORITY_LOW |
| 754 | ); |
| 755 | if (csegbufsz_experiment_thread_call == NULL) { |
| 756 | printf(format: "csegbufsize_experiment_property: Unable to allocate thread call." ); |
| 757 | } else { |
| 758 | thread_call_enter(call: csegbufsz_experiment_thread_call); |
| 759 | } |
| 760 | } |
| 761 | |
| 762 | static void |
| 763 | cleanup_csegbufsz_experiment(__unused void *arg0) |
| 764 | { |
| 765 | char nvram = 0; |
| 766 | unsigned int len = sizeof(nvram); |
| 767 | if (PEReadNVRAMProperty(symbol: csegbufsizeExperimentProperty, value: &nvram, len: &len)) { |
| 768 | erase_csegbufsz_experiment_property_async(); |
| 769 | } |
| 770 | } |
| 771 | |
| 772 | STARTUP_ARG(EARLY_BOOT, STARTUP_RANK_FIRST, cleanup_csegbufsz_experiment, NULL); |
| 773 | #endif /* XNU_TARGET_OS_OSX && __arm64__ */ |
| 774 | |
| 775 | #if CONFIG_JETSAM |
| 776 | extern unsigned int memorystatus_swap_all_apps; |
| 777 | #endif /* CONFIG_JETSAM */ |
| 778 | |
| 779 | TUNABLE_DT(uint64_t, swap_vol_min_capacity, "/defaults" , "kern.swap_min_capacity" , "kern.swap_min_capacity" , 0, TUNABLE_DT_NONE); |
| 780 | |
| 781 | static void |
| 782 | vm_compressor_set_size(void) |
| 783 | { |
| 784 | /* |
| 785 | * Note that this function may be called multiple times on systems with app swap |
| 786 | * because the value of vm_swap_get_max_configured_space() and memorystatus_swap_all_apps |
| 787 | * can change based the size of the swap volume. On these systems, we'll call |
| 788 | * this function once early in boot to reserve the maximum amount of VA required |
| 789 | * for the compressor submap and then one more time in vm_compressor_init after |
| 790 | * determining the swap volume size. We must not return a larger value the second |
| 791 | * time around. |
| 792 | */ |
| 793 | vm_size_t c_segments_arr_size = 0; |
| 794 | struct c_slot_mapping tmp_slot_ptr; |
| 795 | |
| 796 | /* The segment size can be overwritten by a boot-arg */ |
| 797 | if (!PE_parse_boot_argn(arg_string: "vm_compressor_segment_buffer_size" , arg_ptr: &c_seg_bufsize, max_arg: sizeof(c_seg_bufsize))) { |
| 798 | #if CONFIG_JETSAM |
| 799 | if (memorystatus_swap_all_apps) { |
| 800 | c_seg_bufsize = C_SEG_BUFSIZE_ARM_SWAP; |
| 801 | } else { |
| 802 | c_seg_bufsize = C_SEG_BUFSIZE_DEFAULT; |
| 803 | } |
| 804 | #else |
| 805 | c_seg_bufsize = C_SEG_BUFSIZE_DEFAULT; |
| 806 | #endif /* CONFIG_JETSAM */ |
| 807 | } |
| 808 | |
| 809 | vm_compressor_swap_init_swap_file_limit(); |
| 810 | if (vm_compression_limit) { |
| 811 | compressor_pool_size = ptoa_64(vm_compression_limit); |
| 812 | } |
| 813 | |
| 814 | compressor_pool_max_size = C_SEG_MAX_LIMIT; |
| 815 | compressor_pool_max_size *= c_seg_bufsize; |
| 816 | |
| 817 | #if XNU_TARGET_OS_OSX |
| 818 | |
| 819 | if (vm_compression_limit == 0) { |
| 820 | if (max_mem <= (4ULL * 1024ULL * 1024ULL * 1024ULL)) { |
| 821 | compressor_pool_size = 16ULL * max_mem; |
| 822 | } else if (max_mem <= (8ULL * 1024ULL * 1024ULL * 1024ULL)) { |
| 823 | compressor_pool_size = 8ULL * max_mem; |
| 824 | } else if (max_mem <= (32ULL * 1024ULL * 1024ULL * 1024ULL)) { |
| 825 | compressor_pool_size = 4ULL * max_mem; |
| 826 | } else { |
| 827 | compressor_pool_size = 2ULL * max_mem; |
| 828 | } |
| 829 | } |
| 830 | /* |
| 831 | * Cap the compressor pool size to a max of 192G |
| 832 | */ |
| 833 | if (compressor_pool_size > VM_COMPRESSOR_MAX_POOL_SIZE) { |
| 834 | compressor_pool_size = VM_COMPRESSOR_MAX_POOL_SIZE; |
| 835 | } |
| 836 | if (max_mem <= (8ULL * 1024ULL * 1024ULL * 1024ULL)) { |
| 837 | compressor_pool_multiplier = 1; |
| 838 | } else if (max_mem <= (32ULL * 1024ULL * 1024ULL * 1024ULL)) { |
| 839 | compressor_pool_multiplier = 2; |
| 840 | } else { |
| 841 | compressor_pool_multiplier = 4; |
| 842 | } |
| 843 | |
| 844 | #else |
| 845 | |
| 846 | if (compressor_pool_max_size > max_mem) { |
| 847 | compressor_pool_max_size = max_mem; |
| 848 | } |
| 849 | |
| 850 | if (vm_compression_limit == 0) { |
| 851 | compressor_pool_size = max_mem; |
| 852 | } |
| 853 | |
| 854 | #if XNU_TARGET_OS_WATCH |
| 855 | compressor_pool_multiplier = 2; |
| 856 | #elif XNU_TARGET_OS_IOS |
| 857 | if (max_mem <= (2ULL * 1024ULL * 1024ULL * 1024ULL)) { |
| 858 | compressor_pool_multiplier = 2; |
| 859 | } else { |
| 860 | compressor_pool_multiplier = 1; |
| 861 | } |
| 862 | #else |
| 863 | compressor_pool_multiplier = 1; |
| 864 | #endif |
| 865 | |
| 866 | #endif |
| 867 | |
| 868 | PE_parse_boot_argn(arg_string: "kern.compressor_pool_multiplier" , arg_ptr: &compressor_pool_multiplier, max_arg: sizeof(compressor_pool_multiplier)); |
| 869 | if (compressor_pool_multiplier < 1) { |
| 870 | compressor_pool_multiplier = 1; |
| 871 | } |
| 872 | |
| 873 | if (compressor_pool_size > compressor_pool_max_size) { |
| 874 | compressor_pool_size = compressor_pool_max_size; |
| 875 | } |
| 876 | |
| 877 | c_seg_max_pages = (c_seg_bufsize / PAGE_SIZE); |
| 878 | c_seg_slot_var_array_min_len = c_seg_max_pages; |
| 879 | |
| 880 | #if !defined(__x86_64__) |
| 881 | c_seg_off_limit = (C_SEG_BYTES_TO_OFFSET((c_seg_bufsize - 512))); |
| 882 | c_seg_allocsize = (c_seg_bufsize + PAGE_SIZE); |
| 883 | #else |
| 884 | c_seg_off_limit = (C_SEG_BYTES_TO_OFFSET((c_seg_bufsize - 128))); |
| 885 | c_seg_allocsize = c_seg_bufsize; |
| 886 | #endif /* !defined(__x86_64__) */ |
| 887 | |
| 888 | c_segments_limit = (uint32_t)(compressor_pool_size / (vm_size_t)(c_seg_allocsize)); |
| 889 | tmp_slot_ptr.s_cseg = c_segments_limit; |
| 890 | /* Panic on internal configs*/ |
| 891 | assertf((tmp_slot_ptr.s_cseg == c_segments_limit), "vm_compressor_init: overflowed s_cseg field in c_slot_mapping with c_segno: %d" , c_segments_limit); |
| 892 | |
| 893 | if (tmp_slot_ptr.s_cseg != c_segments_limit) { |
| 894 | tmp_slot_ptr.s_cseg = -1; |
| 895 | c_segments_limit = tmp_slot_ptr.s_cseg - 1; /*limited by segment idx bits in c_slot_mapping*/ |
| 896 | compressor_pool_size = (c_segments_limit * (vm_size_t)(c_seg_allocsize)); |
| 897 | } |
| 898 | |
| 899 | c_segments_nearing_limit = (uint32_t)(((uint64_t)c_segments_limit * 98ULL) / 100ULL); |
| 900 | |
| 901 | c_segment_pages_compressed_limit = (c_segments_limit * (c_seg_bufsize / PAGE_SIZE) * compressor_pool_multiplier); |
| 902 | |
| 903 | if (c_segment_pages_compressed_limit < (uint32_t)(max_mem / PAGE_SIZE)) { |
| 904 | #if defined(XNU_TARGET_OS_WATCH) |
| 905 | c_segment_pages_compressed_limit = (uint32_t)(max_mem / PAGE_SIZE); |
| 906 | #else |
| 907 | if (!vm_compression_limit) { |
| 908 | c_segment_pages_compressed_limit = (uint32_t)(max_mem / PAGE_SIZE); |
| 909 | } |
| 910 | #endif |
| 911 | } |
| 912 | |
| 913 | c_segment_pages_compressed_nearing_limit = (uint32_t)(((uint64_t)c_segment_pages_compressed_limit * 98ULL) / 100ULL); |
| 914 | |
| 915 | #if CONFIG_FREEZE |
| 916 | /* |
| 917 | * Our in-core limits are based on the size of the compressor pool. |
| 918 | * The c_segments_nearing_limit is also based on the compressor pool |
| 919 | * size and calculated above. |
| 920 | */ |
| 921 | c_segments_incore_limit = c_segments_limit; |
| 922 | |
| 923 | if (freezer_incore_cseg_acct) { |
| 924 | /* |
| 925 | * Add enough segments to track all frozen c_segs that can be stored in swap. |
| 926 | */ |
| 927 | c_segments_limit += (uint32_t)(vm_swap_get_max_configured_space() / (vm_size_t)(c_seg_allocsize)); |
| 928 | tmp_slot_ptr.s_cseg = c_segments_limit; |
| 929 | /* Panic on internal configs*/ |
| 930 | assertf((tmp_slot_ptr.s_cseg == c_segments_limit), "vm_compressor_init: freezer reserve overflowed s_cseg field in c_slot_mapping with c_segno: %d" , c_segments_limit); |
| 931 | } |
| 932 | #endif |
| 933 | /* |
| 934 | * Submap needs space for: |
| 935 | * - c_segments |
| 936 | * - c_buffers |
| 937 | * - swap reclaimations -- c_seg_bufsize |
| 938 | */ |
| 939 | c_segments_arr_size = vm_map_round_page((sizeof(union c_segu) * c_segments_limit), VM_MAP_PAGE_MASK(kernel_map)); |
| 940 | c_buffers_size = vm_map_round_page(((vm_size_t)c_seg_allocsize * (vm_size_t)c_segments_limit), VM_MAP_PAGE_MASK(kernel_map)); |
| 941 | |
| 942 | compressor_size = c_segments_arr_size + c_buffers_size + c_seg_bufsize; |
| 943 | |
| 944 | #if RECORD_THE_COMPRESSED_DATA |
| 945 | c_compressed_record_sbuf_size = (vm_size_t)c_seg_allocsize + (PAGE_SIZE * 2); |
| 946 | compressor_size += c_compressed_record_sbuf_size; |
| 947 | #endif /* RECORD_THE_COMPRESSED_DATA */ |
| 948 | } |
| 949 | STARTUP(KMEM, STARTUP_RANK_FIRST, vm_compressor_set_size); |
| 950 | |
| 951 | KMEM_RANGE_REGISTER_DYNAMIC(compressor, &compressor_range, ^() { |
| 952 | return compressor_size; |
| 953 | }); |
| 954 | |
| 955 | bool |
| 956 | osenvironment_is_diagnostics(void) |
| 957 | { |
| 958 | DTEntry chosen; |
| 959 | const char *osenvironment; |
| 960 | unsigned int size; |
| 961 | if (kSuccess == SecureDTLookupEntry(searchPoint: 0, pathName: "/chosen" , foundEntry: &chosen)) { |
| 962 | if (kSuccess == SecureDTGetProperty(entry: chosen, propertyName: "osenvironment" , propertyValue: (void const **) &osenvironment, propertySize: &size)) { |
| 963 | return strcmp(s1: osenvironment, s2: "diagnostics" ) == 0; |
| 964 | } |
| 965 | } |
| 966 | return false; |
| 967 | } |
| 968 | |
| 969 | void |
| 970 | vm_compressor_init(void) |
| 971 | { |
| 972 | thread_t thread; |
| 973 | #if RECORD_THE_COMPRESSED_DATA |
| 974 | vm_size_t c_compressed_record_sbuf_size = 0; |
| 975 | #endif /* RECORD_THE_COMPRESSED_DATA */ |
| 976 | |
| 977 | #if DEVELOPMENT || DEBUG || CONFIG_FREEZE |
| 978 | char bootarg_name[32]; |
| 979 | #endif /* DEVELOPMENT || DEBUG || CONFIG_FREEZE */ |
| 980 | __unused uint64_t early_boot_compressor_size = compressor_size; |
| 981 | |
| 982 | #if CONFIG_JETSAM |
| 983 | if (memorystatus_swap_all_apps && osenvironment_is_diagnostics()) { |
| 984 | printf("osenvironment == \"diagnostics\". Disabling app swap.\n" ); |
| 985 | memorystatus_disable_swap(); |
| 986 | } |
| 987 | |
| 988 | if (memorystatus_swap_all_apps) { |
| 989 | /* |
| 990 | * App swap is disabled on devices with small NANDs. |
| 991 | * Now that we're no longer in early boot, we can get |
| 992 | * the NAND size and re-run vm_compressor_set_size. |
| 993 | */ |
| 994 | int error = vm_swap_vol_get_capacity(SWAP_VOLUME_NAME, &vm_swap_volume_capacity); |
| 995 | #if DEVELOPMENT || DEBUG |
| 996 | if (error != 0) { |
| 997 | panic("vm_compressor_init: Unable to get swap volume capacity. error=%d\n" , error); |
| 998 | } |
| 999 | #else |
| 1000 | if (error != 0) { |
| 1001 | os_log_with_startup_serial(OS_LOG_DEFAULT, "vm_compressor_init: Unable to get swap volume capacity. error=%d\n" , error); |
| 1002 | } |
| 1003 | #endif /* DEVELOPMENT || DEBUG */ |
| 1004 | if (vm_swap_volume_capacity < swap_vol_min_capacity) { |
| 1005 | memorystatus_disable_swap(); |
| 1006 | } |
| 1007 | /* |
| 1008 | * Resize the compressor and swap now that we know the capacity |
| 1009 | * of the swap volume. |
| 1010 | */ |
| 1011 | vm_compressor_set_size(); |
| 1012 | /* |
| 1013 | * We reserved a chunk of VA early in boot for the compressor submap. |
| 1014 | * We can't allocate more than that. |
| 1015 | */ |
| 1016 | assert(compressor_size <= early_boot_compressor_size); |
| 1017 | } |
| 1018 | #endif /* CONFIG_JETSAM */ |
| 1019 | |
| 1020 | #if DEVELOPMENT || DEBUG |
| 1021 | if (PE_parse_boot_argn("-disable_cseg_write_protection" , bootarg_name, sizeof(bootarg_name))) { |
| 1022 | write_protect_c_segs = FALSE; |
| 1023 | } |
| 1024 | |
| 1025 | int vmcval = 1; |
| 1026 | #if defined(XNU_TARGET_OS_WATCH) |
| 1027 | vmcval = 0; |
| 1028 | #endif /* XNU_TARGET_OS_WATCH */ |
| 1029 | PE_parse_boot_argn("vm_compressor_validation" , &vmcval, sizeof(vmcval)); |
| 1030 | |
| 1031 | if (kern_feature_override(KF_COMPRSV_OVRD)) { |
| 1032 | vmcval = 0; |
| 1033 | } |
| 1034 | |
| 1035 | if (vmcval == 0) { |
| 1036 | #if POPCOUNT_THE_COMPRESSED_DATA |
| 1037 | popcount_c_segs = FALSE; |
| 1038 | #endif |
| 1039 | #if CHECKSUM_THE_DATA || CHECKSUM_THE_COMPRESSED_DATA |
| 1040 | checksum_c_segs = FALSE; |
| 1041 | #endif |
| 1042 | #if VALIDATE_C_SEGMENTS |
| 1043 | validate_c_segs = FALSE; |
| 1044 | #endif |
| 1045 | write_protect_c_segs = FALSE; |
| 1046 | } |
| 1047 | #endif /* DEVELOPMENT || DEBUG */ |
| 1048 | |
| 1049 | #if CONFIG_FREEZE |
| 1050 | if (PE_parse_boot_argn("-disable_freezer_cseg_acct" , bootarg_name, sizeof(bootarg_name))) { |
| 1051 | freezer_incore_cseg_acct = FALSE; |
| 1052 | } |
| 1053 | #endif /* CONFIG_FREEZE */ |
| 1054 | |
| 1055 | assert((C_SEGMENTS_PER_PAGE * sizeof(union c_segu)) == PAGE_SIZE); |
| 1056 | |
| 1057 | #if !XNU_TARGET_OS_OSX |
| 1058 | vm_compressor_minorcompact_threshold_divisor = 20; |
| 1059 | vm_compressor_majorcompact_threshold_divisor = 30; |
| 1060 | vm_compressor_unthrottle_threshold_divisor = 40; |
| 1061 | vm_compressor_catchup_threshold_divisor = 60; |
| 1062 | #else /* !XNU_TARGET_OS_OSX */ |
| 1063 | if (max_mem <= (3ULL * 1024ULL * 1024ULL * 1024ULL)) { |
| 1064 | vm_compressor_minorcompact_threshold_divisor = 11; |
| 1065 | vm_compressor_majorcompact_threshold_divisor = 13; |
| 1066 | vm_compressor_unthrottle_threshold_divisor = 20; |
| 1067 | vm_compressor_catchup_threshold_divisor = 35; |
| 1068 | } else { |
| 1069 | vm_compressor_minorcompact_threshold_divisor = 20; |
| 1070 | vm_compressor_majorcompact_threshold_divisor = 25; |
| 1071 | vm_compressor_unthrottle_threshold_divisor = 35; |
| 1072 | vm_compressor_catchup_threshold_divisor = 50; |
| 1073 | } |
| 1074 | #endif /* !XNU_TARGET_OS_OSX */ |
| 1075 | |
| 1076 | queue_init(&c_bad_list_head); |
| 1077 | queue_init(&c_age_list_head); |
| 1078 | queue_init(&c_minor_list_head); |
| 1079 | queue_init(&c_major_list_head); |
| 1080 | queue_init(&c_filling_list_head); |
| 1081 | queue_init(&c_early_swapout_list_head); |
| 1082 | queue_init(&c_regular_swapout_list_head); |
| 1083 | queue_init(&c_late_swapout_list_head); |
| 1084 | queue_init(&c_swapio_list_head); |
| 1085 | queue_init(&c_early_swappedin_list_head); |
| 1086 | queue_init(&c_regular_swappedin_list_head); |
| 1087 | queue_init(&c_late_swappedin_list_head); |
| 1088 | queue_init(&c_swappedout_list_head); |
| 1089 | queue_init(&c_swappedout_sparse_list_head); |
| 1090 | |
| 1091 | c_free_segno_head = -1; |
| 1092 | c_segments_available = 0; |
| 1093 | |
| 1094 | compressor_map = kmem_suballoc(parent: kernel_map, addr: &compressor_range.min_address, |
| 1095 | size: compressor_size, vmc_options: VM_MAP_CREATE_NEVER_FAULTS, |
| 1096 | VM_FLAGS_FIXED | VM_FLAGS_OVERWRITE, flags: KMS_NOFAIL | KMS_PERMANENT, |
| 1097 | VM_KERN_MEMORY_COMPRESSOR).kmr_submap; |
| 1098 | |
| 1099 | kmem_alloc(map: compressor_map, addrp: (vm_offset_t *)(&c_segments), |
| 1100 | size: (sizeof(union c_segu) * c_segments_limit), |
| 1101 | flags: KMA_NOFAIL | KMA_KOBJECT | KMA_VAONLY | KMA_PERMANENT, |
| 1102 | VM_KERN_MEMORY_COMPRESSOR); |
| 1103 | kmem_alloc(map: compressor_map, addrp: &c_buffers, size: c_buffers_size, |
| 1104 | flags: KMA_NOFAIL | KMA_COMPRESSOR | KMA_VAONLY | KMA_PERMANENT, |
| 1105 | VM_KERN_MEMORY_COMPRESSOR); |
| 1106 | |
| 1107 | #if DEVELOPMENT || DEBUG |
| 1108 | if (hvg_is_hcall_available(HVG_HCALL_SET_COREDUMP_DATA)) { |
| 1109 | hvg_hcall_set_coredump_data(); |
| 1110 | } |
| 1111 | #endif |
| 1112 | |
| 1113 | /* |
| 1114 | * Pick a good size that will minimize fragmentation in zalloc |
| 1115 | * by minimizing the fragmentation in a 16k run. |
| 1116 | * |
| 1117 | * c_seg_slot_var_array_min_len is larger on 4k systems than 16k ones, |
| 1118 | * making the fragmentation in a 4k page terrible. Using 16k for all |
| 1119 | * systems matches zalloc() and will minimize fragmentation. |
| 1120 | */ |
| 1121 | uint32_t c_segment_size = sizeof(struct c_segment) + (c_seg_slot_var_array_min_len * sizeof(struct c_slot)); |
| 1122 | uint32_t cnt = (16 << 10) / c_segment_size; |
| 1123 | uint32_t frag = (16 << 10) % c_segment_size; |
| 1124 | |
| 1125 | c_seg_fixed_array_len = c_seg_slot_var_array_min_len; |
| 1126 | |
| 1127 | while (cnt * sizeof(struct c_slot) < frag) { |
| 1128 | c_segment_size += sizeof(struct c_slot); |
| 1129 | c_seg_fixed_array_len++; |
| 1130 | frag -= cnt * sizeof(struct c_slot); |
| 1131 | } |
| 1132 | |
| 1133 | compressor_segment_zone = zone_create(name: "compressor_segment" , |
| 1134 | size: c_segment_size, flags: ZC_PGZ_USE_GUARDS | ZC_NOENCRYPT | ZC_ZFREE_CLEARMEM); |
| 1135 | |
| 1136 | c_segments_busy = FALSE; |
| 1137 | |
| 1138 | c_segments_next_page = (caddr_t)c_segments; |
| 1139 | vm_compressor_algorithm_init(); |
| 1140 | |
| 1141 | { |
| 1142 | host_basic_info_data_t hinfo; |
| 1143 | mach_msg_type_number_t count = HOST_BASIC_INFO_COUNT; |
| 1144 | size_t bufsize; |
| 1145 | char *buf; |
| 1146 | |
| 1147 | #define BSD_HOST 1 |
| 1148 | host_info(host: (host_t)BSD_HOST, HOST_BASIC_INFO, host_info_out: (host_info_t)&hinfo, host_info_outCnt: &count); |
| 1149 | |
| 1150 | compressor_cpus = hinfo.max_cpus; |
| 1151 | |
| 1152 | bufsize = PAGE_SIZE; |
| 1153 | bufsize += compressor_cpus * vm_compressor_get_decode_scratch_size(); |
| 1154 | /* For the KDP path */ |
| 1155 | bufsize += vm_compressor_get_decode_scratch_size(); |
| 1156 | #if CONFIG_FREEZE |
| 1157 | bufsize += vm_compressor_get_encode_scratch_size(); |
| 1158 | #endif |
| 1159 | #if RECORD_THE_COMPRESSED_DATA |
| 1160 | bufsize += c_compressed_record_sbuf_size; |
| 1161 | #endif |
| 1162 | |
| 1163 | kmem_alloc(map: kernel_map, addrp: (vm_offset_t *)&buf, size: bufsize, |
| 1164 | flags: KMA_DATA | KMA_NOFAIL | KMA_KOBJECT | KMA_PERMANENT, |
| 1165 | VM_KERN_MEMORY_COMPRESSOR); |
| 1166 | |
| 1167 | /* |
| 1168 | * kdp_compressor_decompressed_page must be page aligned because we access |
| 1169 | * it through the physical aperture by page number. |
| 1170 | */ |
| 1171 | kdp_compressor_decompressed_page = buf; |
| 1172 | kdp_compressor_decompressed_page_paddr = kvtophys(va: (vm_offset_t)kdp_compressor_decompressed_page); |
| 1173 | kdp_compressor_decompressed_page_ppnum = (ppnum_t) atop(kdp_compressor_decompressed_page_paddr); |
| 1174 | buf += PAGE_SIZE; |
| 1175 | bufsize -= PAGE_SIZE; |
| 1176 | |
| 1177 | compressor_scratch_bufs = buf; |
| 1178 | buf += compressor_cpus * vm_compressor_get_decode_scratch_size(); |
| 1179 | bufsize -= compressor_cpus * vm_compressor_get_decode_scratch_size(); |
| 1180 | |
| 1181 | kdp_compressor_scratch_buf = buf; |
| 1182 | buf += vm_compressor_get_decode_scratch_size(); |
| 1183 | bufsize -= vm_compressor_get_decode_scratch_size(); |
| 1184 | |
| 1185 | #if CONFIG_FREEZE |
| 1186 | freezer_context_global.freezer_ctx_compressor_scratch_buf = buf; |
| 1187 | buf += vm_compressor_get_encode_scratch_size(); |
| 1188 | bufsize -= vm_compressor_get_encode_scratch_size(); |
| 1189 | #endif |
| 1190 | |
| 1191 | #if RECORD_THE_COMPRESSED_DATA |
| 1192 | c_compressed_record_sbuf = buf; |
| 1193 | c_compressed_record_cptr = buf; |
| 1194 | c_compressed_record_ebuf = c_compressed_record_sbuf + c_compressed_record_sbuf_size; |
| 1195 | buf += c_compressed_record_sbuf_size; |
| 1196 | bufsize -= c_compressed_record_sbuf_size; |
| 1197 | #endif |
| 1198 | assert(bufsize == 0); |
| 1199 | } |
| 1200 | |
| 1201 | if (kernel_thread_start_priority(continuation: (thread_continue_t)vm_compressor_swap_trigger_thread, NULL, |
| 1202 | BASEPRI_VM, new_thread: &thread) != KERN_SUCCESS) { |
| 1203 | panic("vm_compressor_swap_trigger_thread: create failed" ); |
| 1204 | } |
| 1205 | thread_deallocate(thread); |
| 1206 | |
| 1207 | if (vm_pageout_internal_start() != KERN_SUCCESS) { |
| 1208 | panic("vm_compressor_init: Failed to start the internal pageout thread." ); |
| 1209 | } |
| 1210 | if (VM_CONFIG_SWAP_IS_PRESENT) { |
| 1211 | vm_compressor_swap_init(); |
| 1212 | } |
| 1213 | |
| 1214 | if (VM_CONFIG_COMPRESSOR_IS_ACTIVE) { |
| 1215 | vm_compressor_is_active = 1; |
| 1216 | } |
| 1217 | |
| 1218 | vm_compressor_available = 1; |
| 1219 | |
| 1220 | vm_page_reactivate_all_throttled(); |
| 1221 | |
| 1222 | bzero(s: &vmcs_stats, n: sizeof(struct vm_compressor_swapper_stats)); |
| 1223 | } |
| 1224 | |
| 1225 | |
| 1226 | #if VALIDATE_C_SEGMENTS |
| 1227 | |
| 1228 | static void |
| 1229 | c_seg_validate(c_segment_t c_seg, boolean_t must_be_compact) |
| 1230 | { |
| 1231 | uint16_t c_indx; |
| 1232 | int32_t bytes_used; |
| 1233 | uint32_t c_rounded_size; |
| 1234 | uint32_t c_size; |
| 1235 | c_slot_t cs; |
| 1236 | |
| 1237 | if (__probable(validate_c_segs == FALSE)) { |
| 1238 | return; |
| 1239 | } |
| 1240 | if (c_seg->c_firstemptyslot < c_seg->c_nextslot) { |
| 1241 | c_indx = c_seg->c_firstemptyslot; |
| 1242 | cs = C_SEG_SLOT_FROM_INDEX(c_seg, c_indx); |
| 1243 | |
| 1244 | if (cs == NULL) { |
| 1245 | panic("c_seg_validate: no slot backing c_firstemptyslot" ); |
| 1246 | } |
| 1247 | |
| 1248 | if (cs->c_size) { |
| 1249 | panic("c_seg_validate: c_firstemptyslot has non-zero size (%d)" , cs->c_size); |
| 1250 | } |
| 1251 | } |
| 1252 | bytes_used = 0; |
| 1253 | |
| 1254 | for (c_indx = 0; c_indx < c_seg->c_nextslot; c_indx++) { |
| 1255 | cs = C_SEG_SLOT_FROM_INDEX(c_seg, c_indx); |
| 1256 | |
| 1257 | c_size = UNPACK_C_SIZE(cs); |
| 1258 | |
| 1259 | c_rounded_size = (c_size + C_SEG_OFFSET_ALIGNMENT_MASK) & ~C_SEG_OFFSET_ALIGNMENT_MASK; |
| 1260 | |
| 1261 | bytes_used += c_rounded_size; |
| 1262 | |
| 1263 | #if CHECKSUM_THE_COMPRESSED_DATA |
| 1264 | unsigned csvhash; |
| 1265 | if (c_size && cs->c_hash_compressed_data != (csvhash = vmc_hash((char *)&c_seg->c_store.c_buffer[cs->c_offset], c_size))) { |
| 1266 | addr64_t csvphys = kvtophys((vm_offset_t)&c_seg->c_store.c_buffer[cs->c_offset]); |
| 1267 | panic("Compressed data doesn't match original %p phys: 0x%llx %d %p %d %d 0x%x 0x%x" , c_seg, csvphys, cs->c_offset, cs, c_indx, c_size, cs->c_hash_compressed_data, csvhash); |
| 1268 | } |
| 1269 | #endif |
| 1270 | #if POPCOUNT_THE_COMPRESSED_DATA |
| 1271 | unsigned csvpop; |
| 1272 | if (c_size) { |
| 1273 | uintptr_t csvaddr = (uintptr_t) &c_seg->c_store.c_buffer[cs->c_offset]; |
| 1274 | if (cs->c_pop_cdata != (csvpop = vmc_pop(csvaddr, c_size))) { |
| 1275 | panic("Compressed data popcount doesn't match original, bit distance: %d %p (phys: %p) %p %p 0x%llx 0x%x 0x%x 0x%x" , (csvpop - cs->c_pop_cdata), (void *)csvaddr, (void *) kvtophys(csvaddr), c_seg, cs, (uint64_t)cs->c_offset, c_size, csvpop, cs->c_pop_cdata); |
| 1276 | } |
| 1277 | } |
| 1278 | #endif |
| 1279 | } |
| 1280 | |
| 1281 | if (bytes_used != c_seg->c_bytes_used) { |
| 1282 | panic("c_seg_validate: bytes_used mismatch - found %d, segment has %d" , bytes_used, c_seg->c_bytes_used); |
| 1283 | } |
| 1284 | |
| 1285 | if (c_seg->c_bytes_used > C_SEG_OFFSET_TO_BYTES((int32_t)c_seg->c_nextoffset)) { |
| 1286 | panic("c_seg_validate: c_bytes_used > c_nextoffset - c_nextoffset = %d, c_bytes_used = %d" , |
| 1287 | (int32_t)C_SEG_OFFSET_TO_BYTES((int32_t)c_seg->c_nextoffset), c_seg->c_bytes_used); |
| 1288 | } |
| 1289 | |
| 1290 | if (must_be_compact) { |
| 1291 | if (c_seg->c_bytes_used != C_SEG_OFFSET_TO_BYTES((int32_t)c_seg->c_nextoffset)) { |
| 1292 | panic("c_seg_validate: c_bytes_used doesn't match c_nextoffset - c_nextoffset = %d, c_bytes_used = %d" , |
| 1293 | (int32_t)C_SEG_OFFSET_TO_BYTES((int32_t)c_seg->c_nextoffset), c_seg->c_bytes_used); |
| 1294 | } |
| 1295 | } |
| 1296 | } |
| 1297 | |
| 1298 | #endif |
| 1299 | |
| 1300 | |
| 1301 | void |
| 1302 | c_seg_need_delayed_compaction(c_segment_t c_seg, boolean_t c_list_lock_held) |
| 1303 | { |
| 1304 | boolean_t clear_busy = FALSE; |
| 1305 | |
| 1306 | if (c_list_lock_held == FALSE) { |
| 1307 | if (!lck_mtx_try_lock_spin_always(c_list_lock)) { |
| 1308 | C_SEG_BUSY(c_seg); |
| 1309 | |
| 1310 | lck_mtx_unlock_always(&c_seg->c_lock); |
| 1311 | lck_mtx_lock_spin_always(c_list_lock); |
| 1312 | lck_mtx_lock_spin_always(lck: &c_seg->c_lock); |
| 1313 | |
| 1314 | clear_busy = TRUE; |
| 1315 | } |
| 1316 | } |
| 1317 | assert(c_seg->c_state != C_IS_FILLING); |
| 1318 | |
| 1319 | if (!c_seg->c_on_minorcompact_q && !(C_SEG_IS_ON_DISK_OR_SOQ(c_seg)) && !c_seg->c_has_donated_pages) { |
| 1320 | queue_enter(&c_minor_list_head, c_seg, c_segment_t, c_list); |
| 1321 | c_seg->c_on_minorcompact_q = 1; |
| 1322 | c_minor_count++; |
| 1323 | } |
| 1324 | if (c_list_lock_held == FALSE) { |
| 1325 | lck_mtx_unlock_always(c_list_lock); |
| 1326 | } |
| 1327 | |
| 1328 | if (clear_busy == TRUE) { |
| 1329 | C_SEG_WAKEUP_DONE(c_seg); |
| 1330 | } |
| 1331 | } |
| 1332 | |
| 1333 | |
| 1334 | unsigned int c_seg_moved_to_sparse_list = 0; |
| 1335 | |
| 1336 | void |
| 1337 | c_seg_move_to_sparse_list(c_segment_t c_seg) |
| 1338 | { |
| 1339 | boolean_t clear_busy = FALSE; |
| 1340 | |
| 1341 | if (!lck_mtx_try_lock_spin_always(c_list_lock)) { |
| 1342 | C_SEG_BUSY(c_seg); |
| 1343 | |
| 1344 | lck_mtx_unlock_always(&c_seg->c_lock); |
| 1345 | lck_mtx_lock_spin_always(c_list_lock); |
| 1346 | lck_mtx_lock_spin_always(lck: &c_seg->c_lock); |
| 1347 | |
| 1348 | clear_busy = TRUE; |
| 1349 | } |
| 1350 | c_seg_switch_state(c_seg, C_ON_SWAPPEDOUTSPARSE_Q, FALSE); |
| 1351 | |
| 1352 | c_seg_moved_to_sparse_list++; |
| 1353 | |
| 1354 | lck_mtx_unlock_always(c_list_lock); |
| 1355 | |
| 1356 | if (clear_busy == TRUE) { |
| 1357 | C_SEG_WAKEUP_DONE(c_seg); |
| 1358 | } |
| 1359 | } |
| 1360 | |
| 1361 | |
| 1362 | void |
| 1363 | c_seg_insert_into_q(queue_head_t *qhead, c_segment_t c_seg) |
| 1364 | { |
| 1365 | c_segment_t c_seg_next; |
| 1366 | |
| 1367 | if (queue_empty(qhead)) { |
| 1368 | queue_enter(qhead, c_seg, c_segment_t, c_age_list); |
| 1369 | } else { |
| 1370 | c_seg_next = (c_segment_t)queue_first(qhead); |
| 1371 | |
| 1372 | while (TRUE) { |
| 1373 | if (c_seg->c_generation_id < c_seg_next->c_generation_id) { |
| 1374 | queue_insert_before(qhead, c_seg, c_seg_next, c_segment_t, c_age_list); |
| 1375 | break; |
| 1376 | } |
| 1377 | c_seg_next = (c_segment_t) queue_next(&c_seg_next->c_age_list); |
| 1378 | |
| 1379 | if (queue_end(qhead, (queue_entry_t) c_seg_next)) { |
| 1380 | queue_enter(qhead, c_seg, c_segment_t, c_age_list); |
| 1381 | break; |
| 1382 | } |
| 1383 | } |
| 1384 | } |
| 1385 | } |
| 1386 | |
| 1387 | |
| 1388 | int try_minor_compaction_failed = 0; |
| 1389 | int try_minor_compaction_succeeded = 0; |
| 1390 | |
| 1391 | void |
| 1392 | c_seg_try_minor_compaction_and_unlock(c_segment_t c_seg) |
| 1393 | { |
| 1394 | assert(c_seg->c_on_minorcompact_q); |
| 1395 | /* |
| 1396 | * c_seg is currently on the delayed minor compaction |
| 1397 | * queue and we have c_seg locked... if we can get the |
| 1398 | * c_list_lock w/o blocking (if we blocked we could deadlock |
| 1399 | * because the lock order is c_list_lock then c_seg's lock) |
| 1400 | * we'll pull it from the delayed list and free it directly |
| 1401 | */ |
| 1402 | if (!lck_mtx_try_lock_spin_always(c_list_lock)) { |
| 1403 | /* |
| 1404 | * c_list_lock is held, we need to bail |
| 1405 | */ |
| 1406 | try_minor_compaction_failed++; |
| 1407 | |
| 1408 | lck_mtx_unlock_always(&c_seg->c_lock); |
| 1409 | } else { |
| 1410 | try_minor_compaction_succeeded++; |
| 1411 | |
| 1412 | C_SEG_BUSY(c_seg); |
| 1413 | c_seg_do_minor_compaction_and_unlock(c_seg, TRUE, FALSE, FALSE); |
| 1414 | } |
| 1415 | } |
| 1416 | |
| 1417 | |
| 1418 | int |
| 1419 | c_seg_do_minor_compaction_and_unlock(c_segment_t c_seg, boolean_t clear_busy, boolean_t need_list_lock, boolean_t disallow_page_replacement) |
| 1420 | { |
| 1421 | int c_seg_freed; |
| 1422 | |
| 1423 | assert(c_seg->c_busy); |
| 1424 | assert(!C_SEG_IS_ON_DISK_OR_SOQ(c_seg)); |
| 1425 | |
| 1426 | /* |
| 1427 | * check for the case that can occur when we are not swapping |
| 1428 | * and this segment has been major compacted in the past |
| 1429 | * and moved to the majorcompact q to remove it from further |
| 1430 | * consideration... if the occupancy falls too low we need |
| 1431 | * to put it back on the age_q so that it will be considered |
| 1432 | * in the next major compaction sweep... if we don't do this |
| 1433 | * we will eventually run into the c_segments_limit |
| 1434 | */ |
| 1435 | if (c_seg->c_state == C_ON_MAJORCOMPACT_Q && C_SEG_SHOULD_MAJORCOMPACT_NOW(c_seg)) { |
| 1436 | c_seg_switch_state(c_seg, C_ON_AGE_Q, FALSE); |
| 1437 | } |
| 1438 | if (!c_seg->c_on_minorcompact_q) { |
| 1439 | if (clear_busy == TRUE) { |
| 1440 | C_SEG_WAKEUP_DONE(c_seg); |
| 1441 | } |
| 1442 | |
| 1443 | lck_mtx_unlock_always(&c_seg->c_lock); |
| 1444 | |
| 1445 | return 0; |
| 1446 | } |
| 1447 | queue_remove(&c_minor_list_head, c_seg, c_segment_t, c_list); |
| 1448 | c_seg->c_on_minorcompact_q = 0; |
| 1449 | c_minor_count--; |
| 1450 | |
| 1451 | lck_mtx_unlock_always(c_list_lock); |
| 1452 | |
| 1453 | if (disallow_page_replacement == TRUE) { |
| 1454 | lck_mtx_unlock_always(&c_seg->c_lock); |
| 1455 | |
| 1456 | PAGE_REPLACEMENT_DISALLOWED(TRUE); |
| 1457 | |
| 1458 | lck_mtx_lock_spin_always(lck: &c_seg->c_lock); |
| 1459 | } |
| 1460 | c_seg_freed = c_seg_minor_compaction_and_unlock(c_seg, clear_busy); |
| 1461 | |
| 1462 | if (disallow_page_replacement == TRUE) { |
| 1463 | PAGE_REPLACEMENT_DISALLOWED(FALSE); |
| 1464 | } |
| 1465 | |
| 1466 | if (need_list_lock == TRUE) { |
| 1467 | lck_mtx_lock_spin_always(c_list_lock); |
| 1468 | } |
| 1469 | |
| 1470 | return c_seg_freed; |
| 1471 | } |
| 1472 | |
| 1473 | void |
| 1474 | kdp_compressor_busy_find_owner(event64_t wait_event, thread_waitinfo_t *waitinfo) |
| 1475 | { |
| 1476 | c_segment_t c_seg = (c_segment_t) wait_event; |
| 1477 | |
| 1478 | waitinfo->owner = thread_tid(thread: c_seg->c_busy_for_thread); |
| 1479 | waitinfo->context = VM_KERNEL_UNSLIDE_OR_PERM(c_seg); |
| 1480 | } |
| 1481 | |
| 1482 | #if DEVELOPMENT || DEBUG |
| 1483 | int |
| 1484 | do_cseg_wedge_thread(void) |
| 1485 | { |
| 1486 | struct c_segment c_seg; |
| 1487 | c_seg.c_busy_for_thread = current_thread(); |
| 1488 | |
| 1489 | debug_cseg_wait_event = (event_t) &c_seg; |
| 1490 | |
| 1491 | thread_set_pending_block_hint(current_thread(), kThreadWaitCompressor); |
| 1492 | assert_wait((event_t) (&c_seg), THREAD_INTERRUPTIBLE); |
| 1493 | |
| 1494 | thread_block(THREAD_CONTINUE_NULL); |
| 1495 | |
| 1496 | return 0; |
| 1497 | } |
| 1498 | |
| 1499 | int |
| 1500 | do_cseg_unwedge_thread(void) |
| 1501 | { |
| 1502 | thread_wakeup(debug_cseg_wait_event); |
| 1503 | debug_cseg_wait_event = NULL; |
| 1504 | |
| 1505 | return 0; |
| 1506 | } |
| 1507 | #endif /* DEVELOPMENT || DEBUG */ |
| 1508 | |
| 1509 | void |
| 1510 | c_seg_wait_on_busy(c_segment_t c_seg) |
| 1511 | { |
| 1512 | c_seg->c_wanted = 1; |
| 1513 | |
| 1514 | thread_set_pending_block_hint(thread: current_thread(), block_hint: kThreadWaitCompressor); |
| 1515 | assert_wait(event: (event_t) (c_seg), THREAD_UNINT); |
| 1516 | |
| 1517 | lck_mtx_unlock_always(&c_seg->c_lock); |
| 1518 | thread_block(THREAD_CONTINUE_NULL); |
| 1519 | } |
| 1520 | |
| 1521 | #if CONFIG_FREEZE |
| 1522 | /* |
| 1523 | * We don't have the task lock held while updating the task's |
| 1524 | * c_seg queues. We can do that because of the following restrictions: |
| 1525 | * |
| 1526 | * - SINGLE FREEZER CONTEXT: |
| 1527 | * We 'insert' c_segs into the task list on the task_freeze path. |
| 1528 | * There can only be one such freeze in progress and the task |
| 1529 | * isn't disappearing because we have the VM map lock held throughout |
| 1530 | * and we have a reference on the proc too. |
| 1531 | * |
| 1532 | * - SINGLE TASK DISOWN CONTEXT: |
| 1533 | * We 'disown' c_segs of a task ONLY from the task_terminate context. So |
| 1534 | * we don't need the task lock but we need the c_list_lock and the |
| 1535 | * compressor master lock (shared). We also hold the individual |
| 1536 | * c_seg locks (exclusive). |
| 1537 | * |
| 1538 | * If we either: |
| 1539 | * - can't get the c_seg lock on a try, then we start again because maybe |
| 1540 | * the c_seg is part of a compaction and might get freed. So we can't trust |
| 1541 | * that linkage and need to restart our queue traversal. |
| 1542 | * - OR, we run into a busy c_seg (say being swapped in or free-ing) we |
| 1543 | * drop all locks again and wait and restart our queue traversal. |
| 1544 | * |
| 1545 | * - The new_owner_task below is currently only the kernel or NULL. |
| 1546 | * |
| 1547 | */ |
| 1548 | void |
| 1549 | c_seg_update_task_owner(c_segment_t c_seg, task_t new_owner_task) |
| 1550 | { |
| 1551 | task_t owner_task = c_seg->c_task_owner; |
| 1552 | uint64_t uncompressed_bytes = ((c_seg->c_slots_used) * PAGE_SIZE_64); |
| 1553 | |
| 1554 | LCK_MTX_ASSERT(c_list_lock, LCK_MTX_ASSERT_OWNED); |
| 1555 | LCK_MTX_ASSERT(&c_seg->c_lock, LCK_MTX_ASSERT_OWNED); |
| 1556 | |
| 1557 | if (owner_task) { |
| 1558 | task_update_frozen_to_swap_acct(owner_task, uncompressed_bytes, DEBIT_FROM_SWAP); |
| 1559 | queue_remove(&owner_task->task_frozen_cseg_q, c_seg, |
| 1560 | c_segment_t, c_task_list_next_cseg); |
| 1561 | } |
| 1562 | |
| 1563 | if (new_owner_task) { |
| 1564 | queue_enter(&new_owner_task->task_frozen_cseg_q, c_seg, |
| 1565 | c_segment_t, c_task_list_next_cseg); |
| 1566 | task_update_frozen_to_swap_acct(new_owner_task, uncompressed_bytes, CREDIT_TO_SWAP); |
| 1567 | } |
| 1568 | |
| 1569 | c_seg->c_task_owner = new_owner_task; |
| 1570 | } |
| 1571 | |
| 1572 | void |
| 1573 | task_disown_frozen_csegs(task_t owner_task) |
| 1574 | { |
| 1575 | c_segment_t c_seg = NULL, next_cseg = NULL; |
| 1576 | |
| 1577 | again: |
| 1578 | PAGE_REPLACEMENT_DISALLOWED(TRUE); |
| 1579 | lck_mtx_lock_spin_always(c_list_lock); |
| 1580 | |
| 1581 | for (c_seg = (c_segment_t) queue_first(&owner_task->task_frozen_cseg_q); |
| 1582 | !queue_end(&owner_task->task_frozen_cseg_q, (queue_entry_t) c_seg); |
| 1583 | c_seg = next_cseg) { |
| 1584 | next_cseg = (c_segment_t) queue_next(&c_seg->c_task_list_next_cseg); |
| 1585 | |
| 1586 | if (!lck_mtx_try_lock_spin_always(&c_seg->c_lock)) { |
| 1587 | lck_mtx_unlock(c_list_lock); |
| 1588 | PAGE_REPLACEMENT_DISALLOWED(FALSE); |
| 1589 | goto again; |
| 1590 | } |
| 1591 | |
| 1592 | if (c_seg->c_busy) { |
| 1593 | lck_mtx_unlock(c_list_lock); |
| 1594 | PAGE_REPLACEMENT_DISALLOWED(FALSE); |
| 1595 | |
| 1596 | c_seg_wait_on_busy(c_seg); |
| 1597 | |
| 1598 | goto again; |
| 1599 | } |
| 1600 | assert(c_seg->c_task_owner == owner_task); |
| 1601 | c_seg_update_task_owner(c_seg, kernel_task); |
| 1602 | lck_mtx_unlock_always(&c_seg->c_lock); |
| 1603 | } |
| 1604 | |
| 1605 | lck_mtx_unlock(c_list_lock); |
| 1606 | PAGE_REPLACEMENT_DISALLOWED(FALSE); |
| 1607 | } |
| 1608 | #endif /* CONFIG_FREEZE */ |
| 1609 | |
| 1610 | void |
| 1611 | c_seg_switch_state(c_segment_t c_seg, int new_state, boolean_t insert_head) |
| 1612 | { |
| 1613 | int old_state = c_seg->c_state; |
| 1614 | queue_head_t *donate_swapout_list_head, *donate_swappedin_list_head; |
| 1615 | uint32_t *donate_swapout_count, *donate_swappedin_count; |
| 1616 | |
| 1617 | /* |
| 1618 | * On macOS the donate queue is swapped first ie the c_early_swapout queue. |
| 1619 | * On other swap-capable platforms, we want to swap those out last. So we |
| 1620 | * use the c_late_swapout queue. |
| 1621 | */ |
| 1622 | #if XNU_TARGET_OS_OSX |
| 1623 | #if (DEVELOPMENT || DEBUG) |
| 1624 | if (new_state != C_IS_FILLING) { |
| 1625 | LCK_MTX_ASSERT(&c_seg->c_lock, LCK_MTX_ASSERT_OWNED); |
| 1626 | } |
| 1627 | LCK_MTX_ASSERT(c_list_lock, LCK_MTX_ASSERT_OWNED); |
| 1628 | #endif /* DEVELOPMENT || DEBUG */ |
| 1629 | |
| 1630 | donate_swapout_list_head = &c_early_swapout_list_head; |
| 1631 | donate_swapout_count = &c_early_swapout_count; |
| 1632 | donate_swappedin_list_head = &c_early_swappedin_list_head; |
| 1633 | donate_swappedin_count = &c_early_swappedin_count; |
| 1634 | #else /* XNU_TARGET_OS_OSX */ |
| 1635 | donate_swapout_list_head = &c_late_swapout_list_head; |
| 1636 | donate_swapout_count = &c_late_swapout_count; |
| 1637 | donate_swappedin_list_head = &c_late_swappedin_list_head; |
| 1638 | donate_swappedin_count = &c_late_swappedin_count; |
| 1639 | #endif /* XNU_TARGET_OS_OSX */ |
| 1640 | |
| 1641 | switch (old_state) { |
| 1642 | case C_IS_EMPTY: |
| 1643 | assert(new_state == C_IS_FILLING || new_state == C_IS_FREE); |
| 1644 | |
| 1645 | c_empty_count--; |
| 1646 | break; |
| 1647 | |
| 1648 | case C_IS_FILLING: |
| 1649 | assert(new_state == C_ON_AGE_Q || new_state == C_ON_SWAPOUT_Q); |
| 1650 | |
| 1651 | queue_remove(&c_filling_list_head, c_seg, c_segment_t, c_age_list); |
| 1652 | c_filling_count--; |
| 1653 | break; |
| 1654 | |
| 1655 | case C_ON_AGE_Q: |
| 1656 | assert(new_state == C_ON_SWAPOUT_Q || new_state == C_ON_MAJORCOMPACT_Q || |
| 1657 | new_state == C_IS_FREE); |
| 1658 | |
| 1659 | queue_remove(&c_age_list_head, c_seg, c_segment_t, c_age_list); |
| 1660 | c_age_count--; |
| 1661 | break; |
| 1662 | |
| 1663 | case C_ON_SWAPPEDIN_Q: |
| 1664 | if (c_seg->c_has_donated_pages) { |
| 1665 | assert(new_state == C_ON_SWAPOUT_Q || new_state == C_IS_FREE); |
| 1666 | queue_remove(donate_swappedin_list_head, c_seg, c_segment_t, c_age_list); |
| 1667 | *donate_swappedin_count -= 1; |
| 1668 | } else { |
| 1669 | assert(new_state == C_ON_AGE_Q || new_state == C_IS_FREE); |
| 1670 | #if CONFIG_FREEZE |
| 1671 | assert(c_seg->c_has_freezer_pages); |
| 1672 | queue_remove(&c_early_swappedin_list_head, c_seg, c_segment_t, c_age_list); |
| 1673 | c_early_swappedin_count--; |
| 1674 | #else /* CONFIG_FREEZE */ |
| 1675 | queue_remove(&c_regular_swappedin_list_head, c_seg, c_segment_t, c_age_list); |
| 1676 | c_regular_swappedin_count--; |
| 1677 | #endif /* CONFIG_FREEZE */ |
| 1678 | } |
| 1679 | break; |
| 1680 | |
| 1681 | case C_ON_SWAPOUT_Q: |
| 1682 | assert(new_state == C_ON_AGE_Q || new_state == C_IS_FREE || new_state == C_IS_EMPTY || new_state == C_ON_SWAPIO_Q); |
| 1683 | |
| 1684 | #if CONFIG_FREEZE |
| 1685 | if (c_seg->c_has_freezer_pages) { |
| 1686 | if (c_seg->c_task_owner && (new_state != C_ON_SWAPIO_Q)) { |
| 1687 | c_seg_update_task_owner(c_seg, NULL); |
| 1688 | } |
| 1689 | queue_remove(&c_early_swapout_list_head, c_seg, c_segment_t, c_age_list); |
| 1690 | c_early_swapout_count--; |
| 1691 | } else |
| 1692 | #endif /* CONFIG_FREEZE */ |
| 1693 | { |
| 1694 | if (c_seg->c_has_donated_pages) { |
| 1695 | queue_remove(donate_swapout_list_head, c_seg, c_segment_t, c_age_list); |
| 1696 | *donate_swapout_count -= 1; |
| 1697 | } else { |
| 1698 | queue_remove(&c_regular_swapout_list_head, c_seg, c_segment_t, c_age_list); |
| 1699 | c_regular_swapout_count--; |
| 1700 | } |
| 1701 | } |
| 1702 | |
| 1703 | if (new_state == C_ON_AGE_Q) { |
| 1704 | c_seg->c_has_donated_pages = 0; |
| 1705 | } |
| 1706 | thread_wakeup((event_t)&compaction_swapper_running); |
| 1707 | break; |
| 1708 | |
| 1709 | case C_ON_SWAPIO_Q: |
| 1710 | #if CONFIG_FREEZE |
| 1711 | if (c_seg->c_has_freezer_pages) { |
| 1712 | assert(new_state == C_ON_SWAPPEDOUT_Q || new_state == C_ON_SWAPPEDOUTSPARSE_Q || new_state == C_ON_AGE_Q); |
| 1713 | } else |
| 1714 | #endif /* CONFIG_FREEZE */ |
| 1715 | { |
| 1716 | if (c_seg->c_has_donated_pages) { |
| 1717 | assert(new_state == C_ON_SWAPPEDOUT_Q || new_state == C_ON_SWAPPEDOUTSPARSE_Q || new_state == C_ON_SWAPPEDIN_Q); |
| 1718 | } else { |
| 1719 | assert(new_state == C_ON_SWAPPEDOUT_Q || new_state == C_ON_SWAPPEDOUTSPARSE_Q || new_state == C_ON_AGE_Q); |
| 1720 | } |
| 1721 | } |
| 1722 | |
| 1723 | queue_remove(&c_swapio_list_head, c_seg, c_segment_t, c_age_list); |
| 1724 | c_swapio_count--; |
| 1725 | break; |
| 1726 | |
| 1727 | case C_ON_SWAPPEDOUT_Q: |
| 1728 | assert(new_state == C_ON_SWAPPEDIN_Q || new_state == C_ON_AGE_Q || |
| 1729 | new_state == C_ON_SWAPPEDOUTSPARSE_Q || |
| 1730 | new_state == C_ON_BAD_Q || new_state == C_IS_EMPTY || new_state == C_IS_FREE); |
| 1731 | |
| 1732 | queue_remove(&c_swappedout_list_head, c_seg, c_segment_t, c_age_list); |
| 1733 | c_swappedout_count--; |
| 1734 | break; |
| 1735 | |
| 1736 | case C_ON_SWAPPEDOUTSPARSE_Q: |
| 1737 | assert(new_state == C_ON_SWAPPEDIN_Q || new_state == C_ON_AGE_Q || |
| 1738 | new_state == C_ON_BAD_Q || new_state == C_IS_EMPTY || new_state == C_IS_FREE); |
| 1739 | |
| 1740 | queue_remove(&c_swappedout_sparse_list_head, c_seg, c_segment_t, c_age_list); |
| 1741 | c_swappedout_sparse_count--; |
| 1742 | break; |
| 1743 | |
| 1744 | case C_ON_MAJORCOMPACT_Q: |
| 1745 | assert(new_state == C_ON_AGE_Q || new_state == C_IS_FREE); |
| 1746 | |
| 1747 | queue_remove(&c_major_list_head, c_seg, c_segment_t, c_age_list); |
| 1748 | c_major_count--; |
| 1749 | break; |
| 1750 | |
| 1751 | case C_ON_BAD_Q: |
| 1752 | assert(new_state == C_IS_FREE); |
| 1753 | |
| 1754 | queue_remove(&c_bad_list_head, c_seg, c_segment_t, c_age_list); |
| 1755 | c_bad_count--; |
| 1756 | break; |
| 1757 | |
| 1758 | default: |
| 1759 | panic("c_seg %p has bad c_state = %d" , c_seg, old_state); |
| 1760 | } |
| 1761 | |
| 1762 | switch (new_state) { |
| 1763 | case C_IS_FREE: |
| 1764 | assert(old_state != C_IS_FILLING); |
| 1765 | |
| 1766 | break; |
| 1767 | |
| 1768 | case C_IS_EMPTY: |
| 1769 | assert(old_state == C_ON_SWAPOUT_Q || old_state == C_ON_SWAPPEDOUT_Q || old_state == C_ON_SWAPPEDOUTSPARSE_Q); |
| 1770 | |
| 1771 | c_empty_count++; |
| 1772 | break; |
| 1773 | |
| 1774 | case C_IS_FILLING: |
| 1775 | assert(old_state == C_IS_EMPTY); |
| 1776 | |
| 1777 | queue_enter(&c_filling_list_head, c_seg, c_segment_t, c_age_list); |
| 1778 | c_filling_count++; |
| 1779 | break; |
| 1780 | |
| 1781 | case C_ON_AGE_Q: |
| 1782 | assert(old_state == C_IS_FILLING || old_state == C_ON_SWAPPEDIN_Q || |
| 1783 | old_state == C_ON_SWAPOUT_Q || old_state == C_ON_SWAPIO_Q || |
| 1784 | old_state == C_ON_MAJORCOMPACT_Q || old_state == C_ON_SWAPPEDOUT_Q || old_state == C_ON_SWAPPEDOUTSPARSE_Q); |
| 1785 | |
| 1786 | assert(!c_seg->c_has_donated_pages); |
| 1787 | if (old_state == C_IS_FILLING) { |
| 1788 | queue_enter(&c_age_list_head, c_seg, c_segment_t, c_age_list); |
| 1789 | } else { |
| 1790 | if (!queue_empty(&c_age_list_head)) { |
| 1791 | c_segment_t c_first; |
| 1792 | |
| 1793 | c_first = (c_segment_t)queue_first(&c_age_list_head); |
| 1794 | c_seg->c_creation_ts = c_first->c_creation_ts; |
| 1795 | } |
| 1796 | queue_enter_first(&c_age_list_head, c_seg, c_segment_t, c_age_list); |
| 1797 | } |
| 1798 | c_age_count++; |
| 1799 | break; |
| 1800 | |
| 1801 | case C_ON_SWAPPEDIN_Q: |
| 1802 | { |
| 1803 | queue_head_t *list_head; |
| 1804 | |
| 1805 | assert(old_state == C_ON_SWAPPEDOUT_Q || old_state == C_ON_SWAPPEDOUTSPARSE_Q || old_state == C_ON_SWAPIO_Q); |
| 1806 | if (c_seg->c_has_donated_pages) { |
| 1807 | /* Error in swapouts could happen while the c_seg is still on the swapio queue */ |
| 1808 | list_head = donate_swappedin_list_head; |
| 1809 | *donate_swappedin_count += 1; |
| 1810 | } else { |
| 1811 | #if CONFIG_FREEZE |
| 1812 | assert(c_seg->c_has_freezer_pages); |
| 1813 | list_head = &c_early_swappedin_list_head; |
| 1814 | c_early_swappedin_count++; |
| 1815 | #else /* CONFIG_FREEZE */ |
| 1816 | list_head = &c_regular_swappedin_list_head; |
| 1817 | c_regular_swappedin_count++; |
| 1818 | #endif /* CONFIG_FREEZE */ |
| 1819 | } |
| 1820 | |
| 1821 | if (insert_head == TRUE) { |
| 1822 | queue_enter_first(list_head, c_seg, c_segment_t, c_age_list); |
| 1823 | } else { |
| 1824 | queue_enter(list_head, c_seg, c_segment_t, c_age_list); |
| 1825 | } |
| 1826 | break; |
| 1827 | } |
| 1828 | |
| 1829 | case C_ON_SWAPOUT_Q: |
| 1830 | { |
| 1831 | queue_head_t *list_head; |
| 1832 | |
| 1833 | #if CONFIG_FREEZE |
| 1834 | /* |
| 1835 | * A segment with both identities of frozen + donated pages |
| 1836 | * will be put on early swapout Q ie the frozen identity wins. |
| 1837 | * This is because when both identities are set, the donation bit |
| 1838 | * is added on after in the c_current_seg_filled path for accounting |
| 1839 | * purposes. |
| 1840 | */ |
| 1841 | if (c_seg->c_has_freezer_pages) { |
| 1842 | assert(old_state == C_ON_AGE_Q || old_state == C_IS_FILLING); |
| 1843 | list_head = &c_early_swapout_list_head; |
| 1844 | c_early_swapout_count++; |
| 1845 | } else |
| 1846 | #endif |
| 1847 | { |
| 1848 | if (c_seg->c_has_donated_pages) { |
| 1849 | assert(old_state == C_ON_SWAPPEDIN_Q || old_state == C_IS_FILLING); |
| 1850 | list_head = donate_swapout_list_head; |
| 1851 | *donate_swapout_count += 1; |
| 1852 | } else { |
| 1853 | assert(old_state == C_ON_AGE_Q || old_state == C_IS_FILLING); |
| 1854 | list_head = &c_regular_swapout_list_head; |
| 1855 | c_regular_swapout_count++; |
| 1856 | } |
| 1857 | } |
| 1858 | |
| 1859 | if (insert_head == TRUE) { |
| 1860 | queue_enter_first(list_head, c_seg, c_segment_t, c_age_list); |
| 1861 | } else { |
| 1862 | queue_enter(list_head, c_seg, c_segment_t, c_age_list); |
| 1863 | } |
| 1864 | break; |
| 1865 | } |
| 1866 | |
| 1867 | case C_ON_SWAPIO_Q: |
| 1868 | assert(old_state == C_ON_SWAPOUT_Q); |
| 1869 | |
| 1870 | if (insert_head == TRUE) { |
| 1871 | queue_enter_first(&c_swapio_list_head, c_seg, c_segment_t, c_age_list); |
| 1872 | } else { |
| 1873 | queue_enter(&c_swapio_list_head, c_seg, c_segment_t, c_age_list); |
| 1874 | } |
| 1875 | c_swapio_count++; |
| 1876 | break; |
| 1877 | |
| 1878 | case C_ON_SWAPPEDOUT_Q: |
| 1879 | assert(old_state == C_ON_SWAPIO_Q); |
| 1880 | |
| 1881 | if (insert_head == TRUE) { |
| 1882 | queue_enter_first(&c_swappedout_list_head, c_seg, c_segment_t, c_age_list); |
| 1883 | } else { |
| 1884 | queue_enter(&c_swappedout_list_head, c_seg, c_segment_t, c_age_list); |
| 1885 | } |
| 1886 | c_swappedout_count++; |
| 1887 | break; |
| 1888 | |
| 1889 | case C_ON_SWAPPEDOUTSPARSE_Q: |
| 1890 | assert(old_state == C_ON_SWAPIO_Q || old_state == C_ON_SWAPPEDOUT_Q); |
| 1891 | |
| 1892 | if (insert_head == TRUE) { |
| 1893 | queue_enter_first(&c_swappedout_sparse_list_head, c_seg, c_segment_t, c_age_list); |
| 1894 | } else { |
| 1895 | queue_enter(&c_swappedout_sparse_list_head, c_seg, c_segment_t, c_age_list); |
| 1896 | } |
| 1897 | |
| 1898 | c_swappedout_sparse_count++; |
| 1899 | break; |
| 1900 | |
| 1901 | case C_ON_MAJORCOMPACT_Q: |
| 1902 | assert(old_state == C_ON_AGE_Q); |
| 1903 | assert(!c_seg->c_has_donated_pages); |
| 1904 | |
| 1905 | if (insert_head == TRUE) { |
| 1906 | queue_enter_first(&c_major_list_head, c_seg, c_segment_t, c_age_list); |
| 1907 | } else { |
| 1908 | queue_enter(&c_major_list_head, c_seg, c_segment_t, c_age_list); |
| 1909 | } |
| 1910 | c_major_count++; |
| 1911 | break; |
| 1912 | |
| 1913 | case C_ON_BAD_Q: |
| 1914 | assert(old_state == C_ON_SWAPPEDOUT_Q || old_state == C_ON_SWAPPEDOUTSPARSE_Q); |
| 1915 | |
| 1916 | if (insert_head == TRUE) { |
| 1917 | queue_enter_first(&c_bad_list_head, c_seg, c_segment_t, c_age_list); |
| 1918 | } else { |
| 1919 | queue_enter(&c_bad_list_head, c_seg, c_segment_t, c_age_list); |
| 1920 | } |
| 1921 | c_bad_count++; |
| 1922 | break; |
| 1923 | |
| 1924 | default: |
| 1925 | panic("c_seg %p requesting bad c_state = %d" , c_seg, new_state); |
| 1926 | } |
| 1927 | c_seg->c_state = new_state; |
| 1928 | } |
| 1929 | |
| 1930 | |
| 1931 | |
| 1932 | void |
| 1933 | c_seg_free(c_segment_t c_seg) |
| 1934 | { |
| 1935 | assert(c_seg->c_busy); |
| 1936 | |
| 1937 | lck_mtx_unlock_always(&c_seg->c_lock); |
| 1938 | lck_mtx_lock_spin_always(c_list_lock); |
| 1939 | lck_mtx_lock_spin_always(lck: &c_seg->c_lock); |
| 1940 | |
| 1941 | c_seg_free_locked(c_seg); |
| 1942 | } |
| 1943 | |
| 1944 | |
| 1945 | void |
| 1946 | c_seg_free_locked(c_segment_t c_seg) |
| 1947 | { |
| 1948 | int segno; |
| 1949 | int pages_populated = 0; |
| 1950 | int32_t *c_buffer = NULL; |
| 1951 | uint64_t c_swap_handle = 0; |
| 1952 | |
| 1953 | assert(c_seg->c_busy); |
| 1954 | assert(c_seg->c_slots_used == 0); |
| 1955 | assert(!c_seg->c_on_minorcompact_q); |
| 1956 | assert(!c_seg->c_busy_swapping); |
| 1957 | |
| 1958 | if (c_seg->c_overage_swap == TRUE) { |
| 1959 | c_overage_swapped_count--; |
| 1960 | c_seg->c_overage_swap = FALSE; |
| 1961 | } |
| 1962 | if (!(C_SEG_IS_ONDISK(c_seg))) { |
| 1963 | c_buffer = c_seg->c_store.c_buffer; |
| 1964 | } else { |
| 1965 | c_swap_handle = c_seg->c_store.c_swap_handle; |
| 1966 | } |
| 1967 | |
| 1968 | c_seg_switch_state(c_seg, C_IS_FREE, FALSE); |
| 1969 | |
| 1970 | if (c_buffer) { |
| 1971 | pages_populated = (round_page_32(C_SEG_OFFSET_TO_BYTES(c_seg->c_populated_offset))) / PAGE_SIZE; |
| 1972 | c_seg->c_store.c_buffer = NULL; |
| 1973 | } else { |
| 1974 | #if CONFIG_FREEZE |
| 1975 | c_seg_update_task_owner(c_seg, NULL); |
| 1976 | #endif /* CONFIG_FREEZE */ |
| 1977 | |
| 1978 | c_seg->c_store.c_swap_handle = (uint64_t)-1; |
| 1979 | } |
| 1980 | |
| 1981 | lck_mtx_unlock_always(&c_seg->c_lock); |
| 1982 | |
| 1983 | lck_mtx_unlock_always(c_list_lock); |
| 1984 | |
| 1985 | if (c_buffer) { |
| 1986 | if (pages_populated) { |
| 1987 | kernel_memory_depopulate(addr: (vm_offset_t)c_buffer, |
| 1988 | ptoa(pages_populated), flags: KMA_COMPRESSOR, |
| 1989 | VM_KERN_MEMORY_COMPRESSOR); |
| 1990 | } |
| 1991 | } else if (c_swap_handle) { |
| 1992 | /* |
| 1993 | * Free swap space on disk. |
| 1994 | */ |
| 1995 | vm_swap_free(c_swap_handle); |
| 1996 | } |
| 1997 | lck_mtx_lock_spin_always(lck: &c_seg->c_lock); |
| 1998 | /* |
| 1999 | * c_seg must remain busy until |
| 2000 | * after the call to vm_swap_free |
| 2001 | */ |
| 2002 | C_SEG_WAKEUP_DONE(c_seg); |
| 2003 | lck_mtx_unlock_always(&c_seg->c_lock); |
| 2004 | |
| 2005 | segno = c_seg->c_mysegno; |
| 2006 | |
| 2007 | lck_mtx_lock_spin_always(c_list_lock); |
| 2008 | /* |
| 2009 | * because the c_buffer is now associated with the segno, |
| 2010 | * we can't put the segno back on the free list until |
| 2011 | * after we have depopulated the c_buffer range, or |
| 2012 | * we run the risk of depopulating a range that is |
| 2013 | * now being used in one of the compressor heads |
| 2014 | */ |
| 2015 | c_segments[segno].c_segno = c_free_segno_head; |
| 2016 | c_free_segno_head = segno; |
| 2017 | c_segment_count--; |
| 2018 | |
| 2019 | lck_mtx_unlock_always(c_list_lock); |
| 2020 | |
| 2021 | lck_mtx_destroy(lck: &c_seg->c_lock, grp: &vm_compressor_lck_grp); |
| 2022 | |
| 2023 | if (c_seg->c_slot_var_array_len) { |
| 2024 | kfree_type(struct c_slot, c_seg->c_slot_var_array_len, |
| 2025 | c_seg->c_slot_var_array); |
| 2026 | } |
| 2027 | |
| 2028 | zfree(compressor_segment_zone, c_seg); |
| 2029 | } |
| 2030 | |
| 2031 | #if DEVELOPMENT || DEBUG |
| 2032 | int c_seg_trim_page_count = 0; |
| 2033 | #endif |
| 2034 | |
| 2035 | void |
| 2036 | c_seg_trim_tail(c_segment_t c_seg) |
| 2037 | { |
| 2038 | c_slot_t cs; |
| 2039 | uint32_t c_size; |
| 2040 | uint32_t c_offset; |
| 2041 | uint32_t c_rounded_size; |
| 2042 | uint16_t current_nextslot; |
| 2043 | uint32_t current_populated_offset; |
| 2044 | |
| 2045 | if (c_seg->c_bytes_used == 0) { |
| 2046 | return; |
| 2047 | } |
| 2048 | current_nextslot = c_seg->c_nextslot; |
| 2049 | current_populated_offset = c_seg->c_populated_offset; |
| 2050 | |
| 2051 | while (c_seg->c_nextslot) { |
| 2052 | cs = C_SEG_SLOT_FROM_INDEX(c_seg, (c_seg->c_nextslot - 1)); |
| 2053 | |
| 2054 | c_size = UNPACK_C_SIZE(cs); |
| 2055 | |
| 2056 | if (c_size) { |
| 2057 | if (current_nextslot != c_seg->c_nextslot) { |
| 2058 | c_rounded_size = (c_size + C_SEG_OFFSET_ALIGNMENT_MASK) & ~C_SEG_OFFSET_ALIGNMENT_MASK; |
| 2059 | c_offset = cs->c_offset + C_SEG_BYTES_TO_OFFSET(c_rounded_size); |
| 2060 | |
| 2061 | c_seg->c_nextoffset = c_offset; |
| 2062 | c_seg->c_populated_offset = (c_offset + (C_SEG_BYTES_TO_OFFSET(PAGE_SIZE) - 1)) & |
| 2063 | ~(C_SEG_BYTES_TO_OFFSET(PAGE_SIZE) - 1); |
| 2064 | |
| 2065 | if (c_seg->c_firstemptyslot > c_seg->c_nextslot) { |
| 2066 | c_seg->c_firstemptyslot = c_seg->c_nextslot; |
| 2067 | } |
| 2068 | #if DEVELOPMENT || DEBUG |
| 2069 | c_seg_trim_page_count += ((round_page_32(C_SEG_OFFSET_TO_BYTES(current_populated_offset)) - |
| 2070 | round_page_32(C_SEG_OFFSET_TO_BYTES(c_seg->c_populated_offset))) / |
| 2071 | PAGE_SIZE); |
| 2072 | #endif |
| 2073 | } |
| 2074 | break; |
| 2075 | } |
| 2076 | c_seg->c_nextslot--; |
| 2077 | } |
| 2078 | assert(c_seg->c_nextslot); |
| 2079 | } |
| 2080 | |
| 2081 | |
| 2082 | int |
| 2083 | c_seg_minor_compaction_and_unlock(c_segment_t c_seg, boolean_t clear_busy) |
| 2084 | { |
| 2085 | c_slot_mapping_t slot_ptr; |
| 2086 | uint32_t c_offset = 0; |
| 2087 | uint32_t old_populated_offset; |
| 2088 | uint32_t c_rounded_size; |
| 2089 | uint32_t c_size; |
| 2090 | uint16_t c_indx = 0; |
| 2091 | int i; |
| 2092 | c_slot_t c_dst; |
| 2093 | c_slot_t c_src; |
| 2094 | |
| 2095 | assert(c_seg->c_busy); |
| 2096 | |
| 2097 | #if VALIDATE_C_SEGMENTS |
| 2098 | c_seg_validate(c_seg, FALSE); |
| 2099 | #endif |
| 2100 | if (c_seg->c_bytes_used == 0) { |
| 2101 | c_seg_free(c_seg); |
| 2102 | return 1; |
| 2103 | } |
| 2104 | lck_mtx_unlock_always(&c_seg->c_lock); |
| 2105 | |
| 2106 | if (c_seg->c_firstemptyslot >= c_seg->c_nextslot || C_SEG_UNUSED_BYTES(c_seg) < PAGE_SIZE) { |
| 2107 | goto done; |
| 2108 | } |
| 2109 | |
| 2110 | /* TODO: assert first emptyslot's c_size is actually 0 */ |
| 2111 | |
| 2112 | #if DEVELOPMENT || DEBUG |
| 2113 | C_SEG_MAKE_WRITEABLE(c_seg); |
| 2114 | #endif |
| 2115 | |
| 2116 | #if VALIDATE_C_SEGMENTS |
| 2117 | c_seg->c_was_minor_compacted++; |
| 2118 | #endif |
| 2119 | c_indx = c_seg->c_firstemptyslot; |
| 2120 | c_dst = C_SEG_SLOT_FROM_INDEX(c_seg, c_indx); |
| 2121 | |
| 2122 | old_populated_offset = c_seg->c_populated_offset; |
| 2123 | c_offset = c_dst->c_offset; |
| 2124 | |
| 2125 | for (i = c_indx + 1; i < c_seg->c_nextslot && c_offset < c_seg->c_nextoffset; i++) { |
| 2126 | c_src = C_SEG_SLOT_FROM_INDEX(c_seg, i); |
| 2127 | |
| 2128 | c_size = UNPACK_C_SIZE(c_src); |
| 2129 | |
| 2130 | if (c_size == 0) { |
| 2131 | continue; |
| 2132 | } |
| 2133 | |
| 2134 | c_rounded_size = (c_size + C_SEG_OFFSET_ALIGNMENT_MASK) & ~C_SEG_OFFSET_ALIGNMENT_MASK; |
| 2135 | /* N.B.: This memcpy may be an overlapping copy */ |
| 2136 | memcpy(dst: &c_seg->c_store.c_buffer[c_offset], src: &c_seg->c_store.c_buffer[c_src->c_offset], n: c_rounded_size); |
| 2137 | |
| 2138 | cslot_copy(cdst: c_dst, csrc: c_src); |
| 2139 | c_dst->c_offset = c_offset; |
| 2140 | |
| 2141 | slot_ptr = C_SLOT_UNPACK_PTR(c_dst); |
| 2142 | slot_ptr->s_cindx = c_indx; |
| 2143 | |
| 2144 | c_offset += C_SEG_BYTES_TO_OFFSET(c_rounded_size); |
| 2145 | PACK_C_SIZE(c_src, 0); |
| 2146 | c_indx++; |
| 2147 | |
| 2148 | c_dst = C_SEG_SLOT_FROM_INDEX(c_seg, c_indx); |
| 2149 | } |
| 2150 | c_seg->c_firstemptyslot = c_indx; |
| 2151 | c_seg->c_nextslot = c_indx; |
| 2152 | c_seg->c_nextoffset = c_offset; |
| 2153 | c_seg->c_populated_offset = (c_offset + (C_SEG_BYTES_TO_OFFSET(PAGE_SIZE) - 1)) & ~(C_SEG_BYTES_TO_OFFSET(PAGE_SIZE) - 1); |
| 2154 | c_seg->c_bytes_unused = 0; |
| 2155 | |
| 2156 | #if VALIDATE_C_SEGMENTS |
| 2157 | c_seg_validate(c_seg, TRUE); |
| 2158 | #endif |
| 2159 | if (old_populated_offset > c_seg->c_populated_offset) { |
| 2160 | uint32_t gc_size; |
| 2161 | int32_t *gc_ptr; |
| 2162 | |
| 2163 | gc_size = C_SEG_OFFSET_TO_BYTES(old_populated_offset - c_seg->c_populated_offset); |
| 2164 | gc_ptr = &c_seg->c_store.c_buffer[c_seg->c_populated_offset]; |
| 2165 | |
| 2166 | kernel_memory_depopulate(addr: (vm_offset_t)gc_ptr, size: gc_size, |
| 2167 | flags: KMA_COMPRESSOR, VM_KERN_MEMORY_COMPRESSOR); |
| 2168 | } |
| 2169 | |
| 2170 | #if DEVELOPMENT || DEBUG |
| 2171 | C_SEG_WRITE_PROTECT(c_seg); |
| 2172 | #endif |
| 2173 | |
| 2174 | done: |
| 2175 | if (clear_busy == TRUE) { |
| 2176 | lck_mtx_lock_spin_always(lck: &c_seg->c_lock); |
| 2177 | C_SEG_WAKEUP_DONE(c_seg); |
| 2178 | lck_mtx_unlock_always(&c_seg->c_lock); |
| 2179 | } |
| 2180 | return 0; |
| 2181 | } |
| 2182 | |
| 2183 | |
| 2184 | static void |
| 2185 | c_seg_alloc_nextslot(c_segment_t c_seg) |
| 2186 | { |
| 2187 | struct c_slot *old_slot_array = NULL; |
| 2188 | struct c_slot *new_slot_array = NULL; |
| 2189 | int newlen; |
| 2190 | int oldlen; |
| 2191 | |
| 2192 | if (c_seg->c_nextslot < c_seg_fixed_array_len) { |
| 2193 | return; |
| 2194 | } |
| 2195 | |
| 2196 | if ((c_seg->c_nextslot - c_seg_fixed_array_len) >= c_seg->c_slot_var_array_len) { |
| 2197 | oldlen = c_seg->c_slot_var_array_len; |
| 2198 | old_slot_array = c_seg->c_slot_var_array; |
| 2199 | |
| 2200 | if (oldlen == 0) { |
| 2201 | newlen = c_seg_slot_var_array_min_len; |
| 2202 | } else { |
| 2203 | newlen = oldlen * 2; |
| 2204 | } |
| 2205 | |
| 2206 | new_slot_array = kalloc_type(struct c_slot, newlen, Z_WAITOK); |
| 2207 | |
| 2208 | lck_mtx_lock_spin_always(lck: &c_seg->c_lock); |
| 2209 | |
| 2210 | if (old_slot_array) { |
| 2211 | memcpy(dst: new_slot_array, src: old_slot_array, |
| 2212 | n: sizeof(struct c_slot) * oldlen); |
| 2213 | } |
| 2214 | |
| 2215 | c_seg->c_slot_var_array_len = newlen; |
| 2216 | c_seg->c_slot_var_array = new_slot_array; |
| 2217 | |
| 2218 | lck_mtx_unlock_always(&c_seg->c_lock); |
| 2219 | |
| 2220 | kfree_type(struct c_slot, oldlen, old_slot_array); |
| 2221 | } |
| 2222 | } |
| 2223 | |
| 2224 | |
| 2225 | #define C_SEG_MAJOR_COMPACT_STATS_MAX (30) |
| 2226 | |
| 2227 | struct { |
| 2228 | uint64_t asked_permission; |
| 2229 | uint64_t compactions; |
| 2230 | uint64_t moved_slots; |
| 2231 | uint64_t moved_bytes; |
| 2232 | uint64_t wasted_space_in_swapouts; |
| 2233 | uint64_t count_of_swapouts; |
| 2234 | uint64_t count_of_freed_segs; |
| 2235 | uint64_t bailed_compactions; |
| 2236 | uint64_t bytes_freed_rate_us; |
| 2237 | } c_seg_major_compact_stats[C_SEG_MAJOR_COMPACT_STATS_MAX]; |
| 2238 | |
| 2239 | int c_seg_major_compact_stats_now = 0; |
| 2240 | |
| 2241 | |
| 2242 | #define C_MAJOR_COMPACTION_SIZE_APPROPRIATE ((c_seg_bufsize * 90) / 100) |
| 2243 | |
| 2244 | |
| 2245 | boolean_t |
| 2246 | c_seg_major_compact_ok( |
| 2247 | c_segment_t c_seg_dst, |
| 2248 | c_segment_t c_seg_src) |
| 2249 | { |
| 2250 | c_seg_major_compact_stats[c_seg_major_compact_stats_now].asked_permission++; |
| 2251 | |
| 2252 | if (c_seg_src->c_bytes_used >= C_MAJOR_COMPACTION_SIZE_APPROPRIATE && |
| 2253 | c_seg_dst->c_bytes_used >= C_MAJOR_COMPACTION_SIZE_APPROPRIATE) { |
| 2254 | return FALSE; |
| 2255 | } |
| 2256 | |
| 2257 | if (c_seg_dst->c_nextoffset >= c_seg_off_limit || c_seg_dst->c_nextslot >= C_SLOT_MAX_INDEX) { |
| 2258 | /* |
| 2259 | * destination segment is full... can't compact |
| 2260 | */ |
| 2261 | return FALSE; |
| 2262 | } |
| 2263 | |
| 2264 | return TRUE; |
| 2265 | } |
| 2266 | |
| 2267 | |
| 2268 | boolean_t |
| 2269 | c_seg_major_compact( |
| 2270 | c_segment_t c_seg_dst, |
| 2271 | c_segment_t c_seg_src) |
| 2272 | { |
| 2273 | c_slot_mapping_t slot_ptr; |
| 2274 | uint32_t c_rounded_size; |
| 2275 | uint32_t c_size; |
| 2276 | uint16_t dst_slot; |
| 2277 | int i; |
| 2278 | c_slot_t c_dst; |
| 2279 | c_slot_t c_src; |
| 2280 | boolean_t keep_compacting = TRUE; |
| 2281 | |
| 2282 | /* |
| 2283 | * segments are not locked but they are both marked c_busy |
| 2284 | * which keeps c_decompress from working on them... |
| 2285 | * we can safely allocate new pages, move compressed data |
| 2286 | * from c_seg_src to c_seg_dst and update both c_segment's |
| 2287 | * state w/o holding the master lock |
| 2288 | */ |
| 2289 | #if DEVELOPMENT || DEBUG |
| 2290 | C_SEG_MAKE_WRITEABLE(c_seg_dst); |
| 2291 | #endif |
| 2292 | |
| 2293 | #if VALIDATE_C_SEGMENTS |
| 2294 | c_seg_dst->c_was_major_compacted++; |
| 2295 | c_seg_src->c_was_major_donor++; |
| 2296 | #endif |
| 2297 | assertf(c_seg_dst->c_has_donated_pages == c_seg_src->c_has_donated_pages, "Mismatched donation status Dst: %p, Src: %p\n" , c_seg_dst, c_seg_src); |
| 2298 | c_seg_major_compact_stats[c_seg_major_compact_stats_now].compactions++; |
| 2299 | |
| 2300 | dst_slot = c_seg_dst->c_nextslot; |
| 2301 | |
| 2302 | for (i = 0; i < c_seg_src->c_nextslot; i++) { |
| 2303 | c_src = C_SEG_SLOT_FROM_INDEX(c_seg_src, i); |
| 2304 | |
| 2305 | c_size = UNPACK_C_SIZE(c_src); |
| 2306 | |
| 2307 | if (c_size == 0) { |
| 2308 | /* BATCH: move what we have so far; */ |
| 2309 | continue; |
| 2310 | } |
| 2311 | |
| 2312 | if (C_SEG_OFFSET_TO_BYTES(c_seg_dst->c_populated_offset - c_seg_dst->c_nextoffset) < (unsigned) c_size) { |
| 2313 | int size_to_populate; |
| 2314 | |
| 2315 | /* doesn't fit */ |
| 2316 | size_to_populate = c_seg_bufsize - C_SEG_OFFSET_TO_BYTES(c_seg_dst->c_populated_offset); |
| 2317 | |
| 2318 | if (size_to_populate == 0) { |
| 2319 | /* can't fit */ |
| 2320 | keep_compacting = FALSE; |
| 2321 | break; |
| 2322 | } |
| 2323 | if (size_to_populate > C_SEG_MAX_POPULATE_SIZE) { |
| 2324 | size_to_populate = C_SEG_MAX_POPULATE_SIZE; |
| 2325 | } |
| 2326 | |
| 2327 | kernel_memory_populate( |
| 2328 | addr: (vm_offset_t) &c_seg_dst->c_store.c_buffer[c_seg_dst->c_populated_offset], |
| 2329 | size: size_to_populate, |
| 2330 | flags: KMA_NOFAIL | KMA_COMPRESSOR, |
| 2331 | VM_KERN_MEMORY_COMPRESSOR); |
| 2332 | |
| 2333 | c_seg_dst->c_populated_offset += C_SEG_BYTES_TO_OFFSET(size_to_populate); |
| 2334 | assert(C_SEG_OFFSET_TO_BYTES(c_seg_dst->c_populated_offset) <= c_seg_bufsize); |
| 2335 | } |
| 2336 | c_seg_alloc_nextslot(c_seg: c_seg_dst); |
| 2337 | |
| 2338 | c_dst = C_SEG_SLOT_FROM_INDEX(c_seg_dst, c_seg_dst->c_nextslot); |
| 2339 | |
| 2340 | memcpy(dst: &c_seg_dst->c_store.c_buffer[c_seg_dst->c_nextoffset], src: &c_seg_src->c_store.c_buffer[c_src->c_offset], n: c_size); |
| 2341 | |
| 2342 | c_rounded_size = (c_size + C_SEG_OFFSET_ALIGNMENT_MASK) & ~C_SEG_OFFSET_ALIGNMENT_MASK; |
| 2343 | |
| 2344 | c_seg_major_compact_stats[c_seg_major_compact_stats_now].moved_slots++; |
| 2345 | c_seg_major_compact_stats[c_seg_major_compact_stats_now].moved_bytes += c_size; |
| 2346 | |
| 2347 | cslot_copy(cdst: c_dst, csrc: c_src); |
| 2348 | c_dst->c_offset = c_seg_dst->c_nextoffset; |
| 2349 | |
| 2350 | if (c_seg_dst->c_firstemptyslot == c_seg_dst->c_nextslot) { |
| 2351 | c_seg_dst->c_firstemptyslot++; |
| 2352 | } |
| 2353 | c_seg_dst->c_slots_used++; |
| 2354 | c_seg_dst->c_nextslot++; |
| 2355 | c_seg_dst->c_bytes_used += c_rounded_size; |
| 2356 | c_seg_dst->c_nextoffset += C_SEG_BYTES_TO_OFFSET(c_rounded_size); |
| 2357 | |
| 2358 | PACK_C_SIZE(c_src, 0); |
| 2359 | |
| 2360 | c_seg_src->c_bytes_used -= c_rounded_size; |
| 2361 | c_seg_src->c_bytes_unused += c_rounded_size; |
| 2362 | c_seg_src->c_firstemptyslot = 0; |
| 2363 | |
| 2364 | assert(c_seg_src->c_slots_used); |
| 2365 | c_seg_src->c_slots_used--; |
| 2366 | |
| 2367 | if (!c_seg_src->c_swappedin) { |
| 2368 | /* Pessimistically lose swappedin status when non-swappedin pages are added. */ |
| 2369 | c_seg_dst->c_swappedin = false; |
| 2370 | } |
| 2371 | |
| 2372 | if (c_seg_dst->c_nextoffset >= c_seg_off_limit || c_seg_dst->c_nextslot >= C_SLOT_MAX_INDEX) { |
| 2373 | /* dest segment is now full */ |
| 2374 | keep_compacting = FALSE; |
| 2375 | break; |
| 2376 | } |
| 2377 | } |
| 2378 | #if DEVELOPMENT || DEBUG |
| 2379 | C_SEG_WRITE_PROTECT(c_seg_dst); |
| 2380 | #endif |
| 2381 | if (dst_slot < c_seg_dst->c_nextslot) { |
| 2382 | PAGE_REPLACEMENT_ALLOWED(TRUE); |
| 2383 | /* |
| 2384 | * we've now locked out c_decompress from |
| 2385 | * converting the slot passed into it into |
| 2386 | * a c_segment_t which allows us to use |
| 2387 | * the backptr to change which c_segment and |
| 2388 | * index the slot points to |
| 2389 | */ |
| 2390 | while (dst_slot < c_seg_dst->c_nextslot) { |
| 2391 | c_dst = C_SEG_SLOT_FROM_INDEX(c_seg_dst, dst_slot); |
| 2392 | |
| 2393 | slot_ptr = C_SLOT_UNPACK_PTR(c_dst); |
| 2394 | /* <csegno=0,indx=0> would mean "empty slot", so use csegno+1 */ |
| 2395 | slot_ptr->s_cseg = c_seg_dst->c_mysegno + 1; |
| 2396 | slot_ptr->s_cindx = dst_slot++; |
| 2397 | } |
| 2398 | PAGE_REPLACEMENT_ALLOWED(FALSE); |
| 2399 | } |
| 2400 | return keep_compacting; |
| 2401 | } |
| 2402 | |
| 2403 | |
| 2404 | uint64_t |
| 2405 | vm_compressor_compute_elapsed_msecs(clock_sec_t end_sec, clock_nsec_t end_nsec, clock_sec_t start_sec, clock_nsec_t start_nsec) |
| 2406 | { |
| 2407 | uint64_t end_msecs; |
| 2408 | uint64_t start_msecs; |
| 2409 | |
| 2410 | end_msecs = (end_sec * 1000) + end_nsec / 1000000; |
| 2411 | start_msecs = (start_sec * 1000) + start_nsec / 1000000; |
| 2412 | |
| 2413 | return end_msecs - start_msecs; |
| 2414 | } |
| 2415 | |
| 2416 | |
| 2417 | |
| 2418 | uint32_t compressor_eval_period_in_msecs = 250; |
| 2419 | uint32_t compressor_sample_min_in_msecs = 500; |
| 2420 | uint32_t compressor_sample_max_in_msecs = 10000; |
| 2421 | uint32_t compressor_thrashing_threshold_per_10msecs = 50; |
| 2422 | uint32_t compressor_thrashing_min_per_10msecs = 20; |
| 2423 | |
| 2424 | /* When true, reset sample data next chance we get. */ |
| 2425 | static boolean_t compressor_need_sample_reset = FALSE; |
| 2426 | |
| 2427 | |
| 2428 | void |
| 2429 | compute_swapout_target_age(void) |
| 2430 | { |
| 2431 | clock_sec_t cur_ts_sec; |
| 2432 | clock_nsec_t cur_ts_nsec; |
| 2433 | uint32_t min_operations_needed_in_this_sample; |
| 2434 | uint64_t elapsed_msecs_in_eval; |
| 2435 | uint64_t elapsed_msecs_in_sample; |
| 2436 | boolean_t need_eval_reset = FALSE; |
| 2437 | |
| 2438 | clock_get_system_nanotime(secs: &cur_ts_sec, nanosecs: &cur_ts_nsec); |
| 2439 | |
| 2440 | elapsed_msecs_in_sample = vm_compressor_compute_elapsed_msecs(end_sec: cur_ts_sec, end_nsec: cur_ts_nsec, start_sec: start_of_sample_period_sec, start_nsec: start_of_sample_period_nsec); |
| 2441 | |
| 2442 | if (compressor_need_sample_reset || |
| 2443 | elapsed_msecs_in_sample >= compressor_sample_max_in_msecs) { |
| 2444 | compressor_need_sample_reset = TRUE; |
| 2445 | need_eval_reset = TRUE; |
| 2446 | goto done; |
| 2447 | } |
| 2448 | elapsed_msecs_in_eval = vm_compressor_compute_elapsed_msecs(end_sec: cur_ts_sec, end_nsec: cur_ts_nsec, start_sec: start_of_eval_period_sec, start_nsec: start_of_eval_period_nsec); |
| 2449 | |
| 2450 | if (elapsed_msecs_in_eval < compressor_eval_period_in_msecs) { |
| 2451 | goto done; |
| 2452 | } |
| 2453 | need_eval_reset = TRUE; |
| 2454 | |
| 2455 | KERNEL_DEBUG(0xe0400020 | DBG_FUNC_START, elapsed_msecs_in_eval, sample_period_compression_count, sample_period_decompression_count, 0, 0); |
| 2456 | |
| 2457 | min_operations_needed_in_this_sample = (compressor_thrashing_min_per_10msecs * (uint32_t)elapsed_msecs_in_eval) / 10; |
| 2458 | |
| 2459 | if ((sample_period_compression_count - last_eval_compression_count) < min_operations_needed_in_this_sample || |
| 2460 | (sample_period_decompression_count - last_eval_decompression_count) < min_operations_needed_in_this_sample) { |
| 2461 | KERNEL_DEBUG(0xe0400020 | DBG_FUNC_END, sample_period_compression_count - last_eval_compression_count, |
| 2462 | sample_period_decompression_count - last_eval_decompression_count, 0, 1, 0); |
| 2463 | |
| 2464 | swapout_target_age = 0; |
| 2465 | |
| 2466 | compressor_need_sample_reset = TRUE; |
| 2467 | need_eval_reset = TRUE; |
| 2468 | goto done; |
| 2469 | } |
| 2470 | last_eval_compression_count = sample_period_compression_count; |
| 2471 | last_eval_decompression_count = sample_period_decompression_count; |
| 2472 | |
| 2473 | if (elapsed_msecs_in_sample < compressor_sample_min_in_msecs) { |
| 2474 | KERNEL_DEBUG(0xe0400020 | DBG_FUNC_END, swapout_target_age, 0, 0, 5, 0); |
| 2475 | goto done; |
| 2476 | } |
| 2477 | if (sample_period_decompression_count > ((compressor_thrashing_threshold_per_10msecs * elapsed_msecs_in_sample) / 10)) { |
| 2478 | uint64_t running_total; |
| 2479 | uint64_t working_target; |
| 2480 | uint64_t aging_target; |
| 2481 | uint32_t oldest_age_of_csegs_sampled = 0; |
| 2482 | uint64_t working_set_approximation = 0; |
| 2483 | |
| 2484 | swapout_target_age = 0; |
| 2485 | |
| 2486 | working_target = (sample_period_decompression_count / 100) * 95; /* 95 percent */ |
| 2487 | aging_target = (sample_period_decompression_count / 100) * 1; /* 1 percent */ |
| 2488 | running_total = 0; |
| 2489 | |
| 2490 | for (oldest_age_of_csegs_sampled = 0; oldest_age_of_csegs_sampled < DECOMPRESSION_SAMPLE_MAX_AGE; oldest_age_of_csegs_sampled++) { |
| 2491 | running_total += age_of_decompressions_during_sample_period[oldest_age_of_csegs_sampled]; |
| 2492 | |
| 2493 | working_set_approximation += oldest_age_of_csegs_sampled * age_of_decompressions_during_sample_period[oldest_age_of_csegs_sampled]; |
| 2494 | |
| 2495 | if (running_total >= working_target) { |
| 2496 | break; |
| 2497 | } |
| 2498 | } |
| 2499 | if (oldest_age_of_csegs_sampled < DECOMPRESSION_SAMPLE_MAX_AGE) { |
| 2500 | working_set_approximation = (working_set_approximation * 1000) / elapsed_msecs_in_sample; |
| 2501 | |
| 2502 | if (working_set_approximation < VM_PAGE_COMPRESSOR_COUNT) { |
| 2503 | running_total = overage_decompressions_during_sample_period; |
| 2504 | |
| 2505 | for (oldest_age_of_csegs_sampled = DECOMPRESSION_SAMPLE_MAX_AGE - 1; oldest_age_of_csegs_sampled; oldest_age_of_csegs_sampled--) { |
| 2506 | running_total += age_of_decompressions_during_sample_period[oldest_age_of_csegs_sampled]; |
| 2507 | |
| 2508 | if (running_total >= aging_target) { |
| 2509 | break; |
| 2510 | } |
| 2511 | } |
| 2512 | swapout_target_age = (uint32_t)cur_ts_sec - oldest_age_of_csegs_sampled; |
| 2513 | |
| 2514 | KERNEL_DEBUG(0xe0400020 | DBG_FUNC_END, swapout_target_age, working_set_approximation, VM_PAGE_COMPRESSOR_COUNT, 2, 0); |
| 2515 | } else { |
| 2516 | KERNEL_DEBUG(0xe0400020 | DBG_FUNC_END, working_set_approximation, VM_PAGE_COMPRESSOR_COUNT, 0, 3, 0); |
| 2517 | } |
| 2518 | } else { |
| 2519 | KERNEL_DEBUG(0xe0400020 | DBG_FUNC_END, working_target, running_total, 0, 4, 0); |
| 2520 | } |
| 2521 | |
| 2522 | compressor_need_sample_reset = TRUE; |
| 2523 | need_eval_reset = TRUE; |
| 2524 | } else { |
| 2525 | KERNEL_DEBUG(0xe0400020 | DBG_FUNC_END, sample_period_decompression_count, (compressor_thrashing_threshold_per_10msecs * elapsed_msecs_in_sample) / 10, 0, 6, 0); |
| 2526 | } |
| 2527 | done: |
| 2528 | if (compressor_need_sample_reset == TRUE) { |
| 2529 | bzero(s: age_of_decompressions_during_sample_period, n: sizeof(age_of_decompressions_during_sample_period)); |
| 2530 | overage_decompressions_during_sample_period = 0; |
| 2531 | |
| 2532 | start_of_sample_period_sec = cur_ts_sec; |
| 2533 | start_of_sample_period_nsec = cur_ts_nsec; |
| 2534 | sample_period_decompression_count = 0; |
| 2535 | sample_period_compression_count = 0; |
| 2536 | last_eval_decompression_count = 0; |
| 2537 | last_eval_compression_count = 0; |
| 2538 | compressor_need_sample_reset = FALSE; |
| 2539 | } |
| 2540 | if (need_eval_reset == TRUE) { |
| 2541 | start_of_eval_period_sec = cur_ts_sec; |
| 2542 | start_of_eval_period_nsec = cur_ts_nsec; |
| 2543 | } |
| 2544 | } |
| 2545 | |
| 2546 | |
| 2547 | int compaction_swapper_init_now = 0; |
| 2548 | int compaction_swapper_running = 0; |
| 2549 | int compaction_swapper_awakened = 0; |
| 2550 | int compaction_swapper_abort = 0; |
| 2551 | |
| 2552 | bool |
| 2553 | vm_compressor_swapout_is_ripe() |
| 2554 | { |
| 2555 | bool is_ripe = false; |
| 2556 | if (vm_swapout_ripe_segments == TRUE && c_overage_swapped_count < c_overage_swapped_limit) { |
| 2557 | c_segment_t c_seg; |
| 2558 | clock_sec_t now; |
| 2559 | clock_sec_t age; |
| 2560 | clock_nsec_t nsec; |
| 2561 | |
| 2562 | clock_get_system_nanotime(secs: &now, nanosecs: &nsec); |
| 2563 | age = 0; |
| 2564 | |
| 2565 | lck_mtx_lock_spin_always(c_list_lock); |
| 2566 | |
| 2567 | if (!queue_empty(&c_age_list_head)) { |
| 2568 | c_seg = (c_segment_t) queue_first(&c_age_list_head); |
| 2569 | |
| 2570 | age = now - c_seg->c_creation_ts; |
| 2571 | } |
| 2572 | lck_mtx_unlock_always(c_list_lock); |
| 2573 | |
| 2574 | if (age >= vm_ripe_target_age) { |
| 2575 | is_ripe = true; |
| 2576 | } |
| 2577 | } |
| 2578 | return is_ripe; |
| 2579 | } |
| 2580 | |
| 2581 | static bool |
| 2582 | compressor_swapout_conditions_met(void) |
| 2583 | { |
| 2584 | bool should_swap = false; |
| 2585 | if (COMPRESSOR_NEEDS_TO_SWAP()) { |
| 2586 | should_swap = true; |
| 2587 | vmcs_stats.compressor_swap_threshold_exceeded++; |
| 2588 | } |
| 2589 | if (VM_PAGE_Q_THROTTLED(&vm_pageout_queue_external) && vm_page_anonymous_count < (vm_page_inactive_count / 20)) { |
| 2590 | should_swap = true; |
| 2591 | vmcs_stats.external_q_throttled++; |
| 2592 | } |
| 2593 | if (vm_page_free_count < (vm_page_free_reserved - (COMPRESSOR_FREE_RESERVED_LIMIT * 2))) { |
| 2594 | should_swap = true; |
| 2595 | vmcs_stats.free_count_below_reserve++; |
| 2596 | } |
| 2597 | return should_swap; |
| 2598 | } |
| 2599 | |
| 2600 | static bool |
| 2601 | compressor_needs_to_swap() |
| 2602 | { |
| 2603 | bool should_swap = false; |
| 2604 | if (vm_compressor_swapout_is_ripe()) { |
| 2605 | should_swap = true; |
| 2606 | goto check_if_low_space; |
| 2607 | } |
| 2608 | |
| 2609 | if (VM_CONFIG_SWAP_IS_ACTIVE) { |
| 2610 | should_swap = compressor_swapout_conditions_met(); |
| 2611 | if (should_swap) { |
| 2612 | goto check_if_low_space; |
| 2613 | } |
| 2614 | } |
| 2615 | |
| 2616 | #if (XNU_TARGET_OS_OSX && __arm64__) |
| 2617 | /* |
| 2618 | * Thrashing detection disabled. |
| 2619 | */ |
| 2620 | #else /* (XNU_TARGET_OS_OSX && __arm64__) */ |
| 2621 | |
| 2622 | if (vm_compressor_is_thrashing()) { |
| 2623 | should_swap = true; |
| 2624 | vmcs_stats.thrashing_detected++; |
| 2625 | } |
| 2626 | |
| 2627 | #if CONFIG_PHANTOM_CACHE |
| 2628 | if (vm_phantom_cache_check_pressure()) { |
| 2629 | os_atomic_store(&memorystatus_phantom_cache_pressure, true, release); |
| 2630 | should_swap = true; |
| 2631 | } |
| 2632 | #endif |
| 2633 | if (swapout_target_age) { |
| 2634 | should_swap = true; |
| 2635 | } |
| 2636 | #endif /* (XNU_TARGET_OS_OSX && __arm64__) */ |
| 2637 | |
| 2638 | check_if_low_space: |
| 2639 | |
| 2640 | #if CONFIG_JETSAM |
| 2641 | if (should_swap || vm_compressor_low_on_space() == TRUE) { |
| 2642 | if (vm_compressor_thrashing_detected == FALSE) { |
| 2643 | vm_compressor_thrashing_detected = TRUE; |
| 2644 | |
| 2645 | if (swapout_target_age) { |
| 2646 | compressor_thrashing_induced_jetsam++; |
| 2647 | } else if (vm_compressor_low_on_space() == TRUE) { |
| 2648 | compressor_thrashing_induced_jetsam++; |
| 2649 | } else { |
| 2650 | filecache_thrashing_induced_jetsam++; |
| 2651 | } |
| 2652 | /* |
| 2653 | * Wake up the memorystatus thread so that it can return |
| 2654 | * the system to a healthy state (by killing processes). |
| 2655 | */ |
| 2656 | memorystatus_thread_wake(); |
| 2657 | } |
| 2658 | /* |
| 2659 | * let the jetsam take precedence over |
| 2660 | * any major compactions we might have |
| 2661 | * been able to do... otherwise we run |
| 2662 | * the risk of doing major compactions |
| 2663 | * on segments we're about to free up |
| 2664 | * due to the jetsam activity. |
| 2665 | */ |
| 2666 | should_swap = false; |
| 2667 | if (memorystatus_swap_all_apps && vm_swap_low_on_space()) { |
| 2668 | vm_compressor_take_paging_space_action(); |
| 2669 | } |
| 2670 | } |
| 2671 | |
| 2672 | #else /* CONFIG_JETSAM */ |
| 2673 | if (should_swap && vm_swap_low_on_space()) { |
| 2674 | vm_compressor_take_paging_space_action(); |
| 2675 | } |
| 2676 | #endif /* CONFIG_JETSAM */ |
| 2677 | |
| 2678 | if (should_swap == false) { |
| 2679 | /* |
| 2680 | * vm_compressor_needs_to_major_compact returns true only if we're |
| 2681 | * about to run out of available compressor segments... in this |
| 2682 | * case, we absolutely need to run a major compaction even if |
| 2683 | * we've just kicked off a jetsam or we don't otherwise need to |
| 2684 | * swap... terminating objects releases |
| 2685 | * pages back to the uncompressed cache, but does not guarantee |
| 2686 | * that we will free up even a single compression segment |
| 2687 | */ |
| 2688 | should_swap = vm_compressor_needs_to_major_compact(); |
| 2689 | if (should_swap) { |
| 2690 | vmcs_stats.fragmentation_detected++; |
| 2691 | } |
| 2692 | } |
| 2693 | |
| 2694 | /* |
| 2695 | * returning TRUE when swap_supported == FALSE |
| 2696 | * will cause the major compaction engine to |
| 2697 | * run, but will not trigger any swapping... |
| 2698 | * segments that have been major compacted |
| 2699 | * will be moved to the majorcompact queue |
| 2700 | */ |
| 2701 | return should_swap; |
| 2702 | } |
| 2703 | |
| 2704 | #if CONFIG_JETSAM |
| 2705 | /* |
| 2706 | * This function is called from the jetsam thread after killing something to |
| 2707 | * mitigate thrashing. |
| 2708 | * |
| 2709 | * We need to restart our thrashing detection heuristics since memory pressure |
| 2710 | * has potentially changed significantly, and we don't want to detect on old |
| 2711 | * data from before the jetsam. |
| 2712 | */ |
| 2713 | void |
| 2714 | vm_thrashing_jetsam_done(void) |
| 2715 | { |
| 2716 | vm_compressor_thrashing_detected = FALSE; |
| 2717 | |
| 2718 | /* Were we compressor-thrashing or filecache-thrashing? */ |
| 2719 | if (swapout_target_age) { |
| 2720 | swapout_target_age = 0; |
| 2721 | compressor_need_sample_reset = TRUE; |
| 2722 | } |
| 2723 | #if CONFIG_PHANTOM_CACHE |
| 2724 | else { |
| 2725 | vm_phantom_cache_restart_sample(); |
| 2726 | } |
| 2727 | #endif |
| 2728 | } |
| 2729 | #endif /* CONFIG_JETSAM */ |
| 2730 | |
| 2731 | uint32_t vm_wake_compactor_swapper_calls = 0; |
| 2732 | uint32_t vm_run_compactor_already_running = 0; |
| 2733 | uint32_t vm_run_compactor_empty_minor_q = 0; |
| 2734 | uint32_t vm_run_compactor_did_compact = 0; |
| 2735 | uint32_t vm_run_compactor_waited = 0; |
| 2736 | |
| 2737 | void |
| 2738 | vm_run_compactor(void) |
| 2739 | { |
| 2740 | if (c_segment_count == 0) { |
| 2741 | return; |
| 2742 | } |
| 2743 | |
| 2744 | lck_mtx_lock_spin_always(c_list_lock); |
| 2745 | |
| 2746 | if (c_minor_count == 0) { |
| 2747 | vm_run_compactor_empty_minor_q++; |
| 2748 | |
| 2749 | lck_mtx_unlock_always(c_list_lock); |
| 2750 | return; |
| 2751 | } |
| 2752 | if (compaction_swapper_running) { |
| 2753 | if (vm_pageout_state.vm_restricted_to_single_processor == FALSE) { |
| 2754 | vm_run_compactor_already_running++; |
| 2755 | |
| 2756 | lck_mtx_unlock_always(c_list_lock); |
| 2757 | return; |
| 2758 | } |
| 2759 | vm_run_compactor_waited++; |
| 2760 | |
| 2761 | assert_wait(event: (event_t)&compaction_swapper_running, THREAD_UNINT); |
| 2762 | |
| 2763 | lck_mtx_unlock_always(c_list_lock); |
| 2764 | |
| 2765 | thread_block(THREAD_CONTINUE_NULL); |
| 2766 | |
| 2767 | return; |
| 2768 | } |
| 2769 | vm_run_compactor_did_compact++; |
| 2770 | |
| 2771 | fastwake_warmup = FALSE; |
| 2772 | compaction_swapper_running = 1; |
| 2773 | |
| 2774 | vm_compressor_do_delayed_compactions(FALSE); |
| 2775 | |
| 2776 | compaction_swapper_running = 0; |
| 2777 | |
| 2778 | lck_mtx_unlock_always(c_list_lock); |
| 2779 | |
| 2780 | thread_wakeup((event_t)&compaction_swapper_running); |
| 2781 | } |
| 2782 | |
| 2783 | |
| 2784 | void |
| 2785 | vm_wake_compactor_swapper(void) |
| 2786 | { |
| 2787 | if (compaction_swapper_running || compaction_swapper_awakened || c_segment_count == 0) { |
| 2788 | return; |
| 2789 | } |
| 2790 | |
| 2791 | if (c_minor_count || vm_compressor_needs_to_major_compact()) { |
| 2792 | lck_mtx_lock_spin_always(c_list_lock); |
| 2793 | |
| 2794 | fastwake_warmup = FALSE; |
| 2795 | |
| 2796 | if (compaction_swapper_running == 0 && compaction_swapper_awakened == 0) { |
| 2797 | vm_wake_compactor_swapper_calls++; |
| 2798 | |
| 2799 | compaction_swapper_awakened = 1; |
| 2800 | thread_wakeup((event_t)&c_compressor_swap_trigger); |
| 2801 | } |
| 2802 | lck_mtx_unlock_always(c_list_lock); |
| 2803 | } |
| 2804 | } |
| 2805 | |
| 2806 | |
| 2807 | void |
| 2808 | vm_consider_swapping() |
| 2809 | { |
| 2810 | assert(VM_CONFIG_SWAP_IS_PRESENT); |
| 2811 | |
| 2812 | lck_mtx_lock_spin_always(c_list_lock); |
| 2813 | |
| 2814 | compaction_swapper_abort = 1; |
| 2815 | |
| 2816 | while (compaction_swapper_running) { |
| 2817 | assert_wait(event: (event_t)&compaction_swapper_running, THREAD_UNINT); |
| 2818 | |
| 2819 | lck_mtx_unlock_always(c_list_lock); |
| 2820 | |
| 2821 | thread_block(THREAD_CONTINUE_NULL); |
| 2822 | |
| 2823 | lck_mtx_lock_spin_always(c_list_lock); |
| 2824 | } |
| 2825 | compaction_swapper_abort = 0; |
| 2826 | compaction_swapper_running = 1; |
| 2827 | |
| 2828 | vm_swapout_ripe_segments = TRUE; |
| 2829 | |
| 2830 | vm_compressor_process_major_segments(vm_swapout_ripe_segments); |
| 2831 | |
| 2832 | vm_compressor_compact_and_swap(FALSE); |
| 2833 | |
| 2834 | compaction_swapper_running = 0; |
| 2835 | |
| 2836 | vm_swapout_ripe_segments = FALSE; |
| 2837 | |
| 2838 | lck_mtx_unlock_always(c_list_lock); |
| 2839 | |
| 2840 | thread_wakeup((event_t)&compaction_swapper_running); |
| 2841 | } |
| 2842 | |
| 2843 | |
| 2844 | void |
| 2845 | vm_consider_waking_compactor_swapper(void) |
| 2846 | { |
| 2847 | boolean_t need_wakeup = FALSE; |
| 2848 | |
| 2849 | if (c_segment_count == 0) { |
| 2850 | return; |
| 2851 | } |
| 2852 | |
| 2853 | if (compaction_swapper_running || compaction_swapper_awakened) { |
| 2854 | return; |
| 2855 | } |
| 2856 | |
| 2857 | if (!compaction_swapper_inited && !compaction_swapper_init_now) { |
| 2858 | compaction_swapper_init_now = 1; |
| 2859 | need_wakeup = TRUE; |
| 2860 | } |
| 2861 | |
| 2862 | if (c_minor_count && (COMPRESSOR_NEEDS_TO_MINOR_COMPACT())) { |
| 2863 | need_wakeup = TRUE; |
| 2864 | } else if (compressor_needs_to_swap()) { |
| 2865 | need_wakeup = TRUE; |
| 2866 | } else if (c_minor_count) { |
| 2867 | uint64_t total_bytes; |
| 2868 | |
| 2869 | total_bytes = compressor_object->resident_page_count * PAGE_SIZE_64; |
| 2870 | |
| 2871 | if ((total_bytes - compressor_bytes_used) > total_bytes / 10) { |
| 2872 | need_wakeup = TRUE; |
| 2873 | } |
| 2874 | } |
| 2875 | if (need_wakeup == TRUE) { |
| 2876 | lck_mtx_lock_spin_always(c_list_lock); |
| 2877 | |
| 2878 | fastwake_warmup = FALSE; |
| 2879 | |
| 2880 | if (compaction_swapper_running == 0 && compaction_swapper_awakened == 0) { |
| 2881 | memoryshot(VM_WAKEUP_COMPACTOR_SWAPPER, DBG_FUNC_NONE); |
| 2882 | |
| 2883 | compaction_swapper_awakened = 1; |
| 2884 | thread_wakeup((event_t)&c_compressor_swap_trigger); |
| 2885 | } |
| 2886 | lck_mtx_unlock_always(c_list_lock); |
| 2887 | } |
| 2888 | } |
| 2889 | |
| 2890 | |
| 2891 | #define C_SWAPOUT_LIMIT 4 |
| 2892 | #define DELAYED_COMPACTIONS_PER_PASS 30 |
| 2893 | |
| 2894 | void |
| 2895 | vm_compressor_do_delayed_compactions(boolean_t flush_all) |
| 2896 | { |
| 2897 | c_segment_t c_seg; |
| 2898 | int number_compacted = 0; |
| 2899 | boolean_t needs_to_swap = FALSE; |
| 2900 | uint32_t c_swapout_count = 0; |
| 2901 | |
| 2902 | |
| 2903 | VM_DEBUG_CONSTANT_EVENT(vm_compressor_do_delayed_compactions, VM_COMPRESSOR_DO_DELAYED_COMPACTIONS, DBG_FUNC_START, c_minor_count, flush_all, 0, 0); |
| 2904 | |
| 2905 | #if XNU_TARGET_OS_OSX |
| 2906 | LCK_MTX_ASSERT(c_list_lock, LCK_MTX_ASSERT_OWNED); |
| 2907 | #endif /* XNU_TARGET_OS_OSX */ |
| 2908 | |
| 2909 | while (!queue_empty(&c_minor_list_head) && needs_to_swap == FALSE) { |
| 2910 | c_seg = (c_segment_t)queue_first(&c_minor_list_head); |
| 2911 | |
| 2912 | lck_mtx_lock_spin_always(lck: &c_seg->c_lock); |
| 2913 | |
| 2914 | if (c_seg->c_busy) { |
| 2915 | lck_mtx_unlock_always(c_list_lock); |
| 2916 | c_seg_wait_on_busy(c_seg); |
| 2917 | lck_mtx_lock_spin_always(c_list_lock); |
| 2918 | |
| 2919 | continue; |
| 2920 | } |
| 2921 | C_SEG_BUSY(c_seg); |
| 2922 | |
| 2923 | c_seg_do_minor_compaction_and_unlock(c_seg, TRUE, FALSE, TRUE); |
| 2924 | |
| 2925 | c_swapout_count = c_early_swapout_count + c_regular_swapout_count + c_late_swapout_count; |
| 2926 | if (VM_CONFIG_SWAP_IS_ACTIVE && (number_compacted++ > DELAYED_COMPACTIONS_PER_PASS)) { |
| 2927 | if ((flush_all == TRUE || compressor_needs_to_swap()) && c_swapout_count < C_SWAPOUT_LIMIT) { |
| 2928 | needs_to_swap = TRUE; |
| 2929 | } |
| 2930 | |
| 2931 | number_compacted = 0; |
| 2932 | } |
| 2933 | lck_mtx_lock_spin_always(c_list_lock); |
| 2934 | } |
| 2935 | |
| 2936 | VM_DEBUG_CONSTANT_EVENT(vm_compressor_do_delayed_compactions, VM_COMPRESSOR_DO_DELAYED_COMPACTIONS, DBG_FUNC_END, c_minor_count, number_compacted, needs_to_swap, 0); |
| 2937 | } |
| 2938 | |
| 2939 | int min_csegs_per_major_compaction = DELAYED_COMPACTIONS_PER_PASS; |
| 2940 | |
| 2941 | static bool |
| 2942 | vm_compressor_major_compact_cseg(c_segment_t c_seg, uint32_t* c_seg_considered, bool* bail_wanted_cseg, uint64_t* total_bytes_freed) |
| 2943 | { |
| 2944 | /* |
| 2945 | * Major compaction |
| 2946 | */ |
| 2947 | bool keep_compacting = true, fully_compacted = true; |
| 2948 | queue_head_t *list_head = NULL; |
| 2949 | c_segment_t c_seg_next; |
| 2950 | uint64_t bytes_to_free = 0, bytes_freed = 0; |
| 2951 | uint32_t number_considered = 0; |
| 2952 | |
| 2953 | if (c_seg->c_state == C_ON_AGE_Q) { |
| 2954 | assert(!c_seg->c_has_donated_pages); |
| 2955 | list_head = &c_age_list_head; |
| 2956 | } else if (c_seg->c_state == C_ON_SWAPPEDIN_Q) { |
| 2957 | assert(c_seg->c_has_donated_pages); |
| 2958 | list_head = &c_late_swappedin_list_head; |
| 2959 | } |
| 2960 | |
| 2961 | while (keep_compacting == TRUE) { |
| 2962 | assert(c_seg->c_busy); |
| 2963 | |
| 2964 | /* look for another segment to consolidate */ |
| 2965 | |
| 2966 | c_seg_next = (c_segment_t) queue_next(&c_seg->c_age_list); |
| 2967 | |
| 2968 | if (queue_end(list_head, (queue_entry_t)c_seg_next)) { |
| 2969 | break; |
| 2970 | } |
| 2971 | |
| 2972 | assert(c_seg_next->c_state == c_seg->c_state); |
| 2973 | |
| 2974 | number_considered++; |
| 2975 | |
| 2976 | if (c_seg_major_compact_ok(c_seg_dst: c_seg, c_seg_src: c_seg_next) == FALSE) { |
| 2977 | break; |
| 2978 | } |
| 2979 | |
| 2980 | lck_mtx_lock_spin_always(lck: &c_seg_next->c_lock); |
| 2981 | |
| 2982 | if (c_seg_next->c_busy) { |
| 2983 | /* |
| 2984 | * We are going to block for our neighbor. |
| 2985 | * If our c_seg is wanted, we should unbusy |
| 2986 | * it because we don't know how long we might |
| 2987 | * have to block here. |
| 2988 | */ |
| 2989 | if (c_seg->c_wanted) { |
| 2990 | lck_mtx_unlock_always(&c_seg_next->c_lock); |
| 2991 | fully_compacted = false; |
| 2992 | c_seg_major_compact_stats[c_seg_major_compact_stats_now].bailed_compactions++; |
| 2993 | *bail_wanted_cseg = true; |
| 2994 | break; |
| 2995 | } |
| 2996 | |
| 2997 | lck_mtx_unlock_always(c_list_lock); |
| 2998 | |
| 2999 | VM_DEBUG_CONSTANT_EVENT(vm_compressor_compact_and_swap, VM_COMPRESSOR_COMPACT_AND_SWAP, DBG_FUNC_NONE, 8, (void*) VM_KERNEL_ADDRPERM(c_seg_next), 0, 0); |
| 3000 | |
| 3001 | c_seg_wait_on_busy(c_seg: c_seg_next); |
| 3002 | lck_mtx_lock_spin_always(c_list_lock); |
| 3003 | |
| 3004 | continue; |
| 3005 | } |
| 3006 | /* grab that segment */ |
| 3007 | C_SEG_BUSY(c_seg_next); |
| 3008 | |
| 3009 | bytes_to_free = C_SEG_OFFSET_TO_BYTES(c_seg_next->c_populated_offset); |
| 3010 | if (c_seg_do_minor_compaction_and_unlock(c_seg: c_seg_next, FALSE, TRUE, TRUE)) { |
| 3011 | /* |
| 3012 | * found an empty c_segment and freed it |
| 3013 | * so we can't continue to use c_seg_next |
| 3014 | */ |
| 3015 | bytes_freed += bytes_to_free; |
| 3016 | c_seg_major_compact_stats[c_seg_major_compact_stats_now].count_of_freed_segs++; |
| 3017 | continue; |
| 3018 | } |
| 3019 | |
| 3020 | /* unlock the list ... */ |
| 3021 | lck_mtx_unlock_always(c_list_lock); |
| 3022 | |
| 3023 | /* do the major compaction */ |
| 3024 | |
| 3025 | keep_compacting = c_seg_major_compact(c_seg_dst: c_seg, c_seg_src: c_seg_next); |
| 3026 | |
| 3027 | VM_DEBUG_CONSTANT_EVENT(vm_compressor_compact_and_swap, VM_COMPRESSOR_COMPACT_AND_SWAP, DBG_FUNC_NONE, 9, keep_compacting, 0, 0); |
| 3028 | |
| 3029 | PAGE_REPLACEMENT_DISALLOWED(TRUE); |
| 3030 | |
| 3031 | lck_mtx_lock_spin_always(lck: &c_seg_next->c_lock); |
| 3032 | /* |
| 3033 | * run a minor compaction on the donor segment |
| 3034 | * since we pulled at least some of it's |
| 3035 | * data into our target... if we've emptied |
| 3036 | * it, now is a good time to free it which |
| 3037 | * c_seg_minor_compaction_and_unlock also takes care of |
| 3038 | * |
| 3039 | * by passing TRUE, we ask for c_busy to be cleared |
| 3040 | * and c_wanted to be taken care of |
| 3041 | */ |
| 3042 | bytes_to_free = C_SEG_OFFSET_TO_BYTES(c_seg_next->c_populated_offset); |
| 3043 | if (c_seg_minor_compaction_and_unlock(c_seg: c_seg_next, TRUE)) { |
| 3044 | bytes_freed += bytes_to_free; |
| 3045 | c_seg_major_compact_stats[c_seg_major_compact_stats_now].count_of_freed_segs++; |
| 3046 | } else { |
| 3047 | bytes_to_free -= C_SEG_OFFSET_TO_BYTES(c_seg_next->c_populated_offset); |
| 3048 | bytes_freed += bytes_to_free; |
| 3049 | } |
| 3050 | |
| 3051 | PAGE_REPLACEMENT_DISALLOWED(FALSE); |
| 3052 | |
| 3053 | /* relock the list */ |
| 3054 | lck_mtx_lock_spin_always(c_list_lock); |
| 3055 | |
| 3056 | if (c_seg->c_wanted) { |
| 3057 | /* |
| 3058 | * Our c_seg is in demand. Let's |
| 3059 | * unbusy it and wakeup the waiters |
| 3060 | * instead of continuing the compaction |
| 3061 | * because we could be in this loop |
| 3062 | * for a while. |
| 3063 | */ |
| 3064 | fully_compacted = false; |
| 3065 | *bail_wanted_cseg = true; |
| 3066 | c_seg_major_compact_stats[c_seg_major_compact_stats_now].bailed_compactions++; |
| 3067 | break; |
| 3068 | } |
| 3069 | } /* major compaction */ |
| 3070 | |
| 3071 | VM_DEBUG_CONSTANT_EVENT(vm_compressor_compact_and_swap, VM_COMPRESSOR_COMPACT_AND_SWAP, DBG_FUNC_NONE, 10, number_considered, *bail_wanted_cseg, 0); |
| 3072 | |
| 3073 | *c_seg_considered += number_considered; |
| 3074 | *total_bytes_freed += bytes_freed; |
| 3075 | |
| 3076 | lck_mtx_lock_spin_always(lck: &c_seg->c_lock); |
| 3077 | return fully_compacted; |
| 3078 | } |
| 3079 | |
| 3080 | #define TIME_SUB(rsecs, secs, rfrac, frac, unit) \ |
| 3081 | MACRO_BEGIN \ |
| 3082 | if ((int)((rfrac) -= (frac)) < 0) { \ |
| 3083 | (rfrac) += (unit); \ |
| 3084 | (rsecs) -= 1; \ |
| 3085 | } \ |
| 3086 | (rsecs) -= (secs); \ |
| 3087 | MACRO_END |
| 3088 | |
| 3089 | clock_nsec_t c_process_major_report_over_ms = 9; /* report if over 9 ms */ |
| 3090 | int c_process_major_yield_after = 1000; /* yield after moving 1,000 segments */ |
| 3091 | uint64_t c_process_major_reports = 0; |
| 3092 | clock_sec_t c_process_major_max_sec = 0; |
| 3093 | clock_nsec_t c_process_major_max_nsec = 0; |
| 3094 | uint32_t c_process_major_peak_segcount = 0; |
| 3095 | static void |
| 3096 | vm_compressor_process_major_segments(bool ripe_age_only) |
| 3097 | { |
| 3098 | c_segment_t c_seg = NULL; |
| 3099 | int count = 0, total = 0, breaks = 0; |
| 3100 | clock_sec_t start_sec, end_sec; |
| 3101 | clock_nsec_t start_nsec, end_nsec; |
| 3102 | clock_nsec_t report_over_ns; |
| 3103 | |
| 3104 | if (queue_empty(&c_major_list_head)) { |
| 3105 | return; |
| 3106 | } |
| 3107 | |
| 3108 | // printf("%s: starting to move segments from MAJORQ to AGEQ\n", __FUNCTION__); |
| 3109 | if (c_process_major_report_over_ms != 0) { |
| 3110 | report_over_ns = c_process_major_report_over_ms * NSEC_PER_MSEC; |
| 3111 | } else { |
| 3112 | report_over_ns = (clock_nsec_t)-1; |
| 3113 | } |
| 3114 | |
| 3115 | if (ripe_age_only) { |
| 3116 | if (c_overage_swapped_count >= c_overage_swapped_limit) { |
| 3117 | /* |
| 3118 | * Return while we wait for the overage segments |
| 3119 | * in our queue to get pushed out first. |
| 3120 | */ |
| 3121 | return; |
| 3122 | } |
| 3123 | } |
| 3124 | |
| 3125 | clock_get_system_nanotime(secs: &start_sec, nanosecs: &start_nsec); |
| 3126 | while (!queue_empty(&c_major_list_head)) { |
| 3127 | if (!ripe_age_only) { |
| 3128 | /* |
| 3129 | * Start from the end to preserve aging order. The newer |
| 3130 | * segments are at the tail and so need to be inserted in |
| 3131 | * the aging queue in this way so we have the older segments |
| 3132 | * at the end of the AGE_Q. |
| 3133 | */ |
| 3134 | c_seg = (c_segment_t)queue_last(&c_major_list_head); |
| 3135 | } else { |
| 3136 | c_seg = (c_segment_t)queue_first(&c_major_list_head); |
| 3137 | if ((start_sec - c_seg->c_creation_ts) < vm_ripe_target_age) { |
| 3138 | /* |
| 3139 | * We have found the first segment in our queue that is not ripe. Segments after it |
| 3140 | * will be the same. So let's bail here. Return with c_list_lock held. |
| 3141 | */ |
| 3142 | break; |
| 3143 | } |
| 3144 | } |
| 3145 | |
| 3146 | lck_mtx_lock_spin_always(lck: &c_seg->c_lock); |
| 3147 | c_seg_switch_state(c_seg, C_ON_AGE_Q, FALSE); |
| 3148 | lck_mtx_unlock_always(&c_seg->c_lock); |
| 3149 | |
| 3150 | count++; |
| 3151 | if (count == c_process_major_yield_after || |
| 3152 | queue_empty(&c_major_list_head)) { |
| 3153 | /* done or time to take a break */ |
| 3154 | } else { |
| 3155 | /* keep going */ |
| 3156 | continue; |
| 3157 | } |
| 3158 | |
| 3159 | total += count; |
| 3160 | clock_get_system_nanotime(secs: &end_sec, nanosecs: &end_nsec); |
| 3161 | TIME_SUB(end_sec, start_sec, end_nsec, start_nsec, NSEC_PER_SEC); |
| 3162 | if (end_sec > c_process_major_max_sec) { |
| 3163 | c_process_major_max_sec = end_sec; |
| 3164 | c_process_major_max_nsec = end_nsec; |
| 3165 | } else if (end_sec == c_process_major_max_sec && |
| 3166 | end_nsec > c_process_major_max_nsec) { |
| 3167 | c_process_major_max_nsec = end_nsec; |
| 3168 | } |
| 3169 | if (total > c_process_major_peak_segcount) { |
| 3170 | c_process_major_peak_segcount = total; |
| 3171 | } |
| 3172 | if (end_sec > 0 || |
| 3173 | end_nsec >= report_over_ns) { |
| 3174 | /* we used more than expected */ |
| 3175 | c_process_major_reports++; |
| 3176 | printf(format: "%s: moved %d/%d segments from MAJORQ to AGEQ in %lu.%09u seconds and %d breaks\n" , |
| 3177 | __FUNCTION__, count, total, |
| 3178 | end_sec, end_nsec, breaks); |
| 3179 | } |
| 3180 | if (queue_empty(&c_major_list_head)) { |
| 3181 | /* done */ |
| 3182 | break; |
| 3183 | } |
| 3184 | /* take a break to allow someone else to grab the lock */ |
| 3185 | lck_mtx_unlock_always(c_list_lock); |
| 3186 | mutex_pause(0); /* 10 microseconds */ |
| 3187 | lck_mtx_lock_spin_always(c_list_lock); |
| 3188 | /* start again */ |
| 3189 | clock_get_system_nanotime(secs: &start_sec, nanosecs: &start_nsec); |
| 3190 | count = 0; |
| 3191 | breaks++; |
| 3192 | } |
| 3193 | } |
| 3194 | |
| 3195 | /* |
| 3196 | * macOS special swappable csegs -> early_swapin queue |
| 3197 | * non-macOS special swappable+non-freezer csegs -> late_swapin queue |
| 3198 | * Processing special csegs means minor compacting each cseg and then |
| 3199 | * major compacting it and putting them on the early or late |
| 3200 | * (depending on platform) swapout queue. |
| 3201 | */ |
| 3202 | static void |
| 3203 | vm_compressor_process_special_swapped_in_segments_locked(void) |
| 3204 | { |
| 3205 | c_segment_t c_seg = NULL; |
| 3206 | bool switch_state = true, bail_wanted_cseg = false; |
| 3207 | unsigned int number_considered = 0, yield_after_considered_per_pass = 0; |
| 3208 | uint64_t bytes_freed = 0; |
| 3209 | queue_head_t *special_swappedin_list_head; |
| 3210 | |
| 3211 | #if XNU_TARGET_OS_OSX |
| 3212 | special_swappedin_list_head = &c_early_swappedin_list_head; |
| 3213 | #else /* XNU_TARGET_OS_OSX */ |
| 3214 | if (memorystatus_swap_all_apps) { |
| 3215 | special_swappedin_list_head = &c_late_swappedin_list_head; |
| 3216 | } else { |
| 3217 | /* called on unsupported config*/ |
| 3218 | return; |
| 3219 | } |
| 3220 | #endif /* XNU_TARGET_OS_OSX */ |
| 3221 | |
| 3222 | yield_after_considered_per_pass = MAX(min_csegs_per_major_compaction, DELAYED_COMPACTIONS_PER_PASS); |
| 3223 | while (!queue_empty(special_swappedin_list_head)) { |
| 3224 | c_seg = (c_segment_t)queue_first(special_swappedin_list_head); |
| 3225 | |
| 3226 | lck_mtx_lock_spin_always(lck: &c_seg->c_lock); |
| 3227 | |
| 3228 | if (c_seg->c_busy) { |
| 3229 | lck_mtx_unlock_always(c_list_lock); |
| 3230 | c_seg_wait_on_busy(c_seg); |
| 3231 | lck_mtx_lock_spin_always(c_list_lock); |
| 3232 | continue; |
| 3233 | } |
| 3234 | |
| 3235 | C_SEG_BUSY(c_seg); |
| 3236 | lck_mtx_unlock_always(&c_seg->c_lock); |
| 3237 | lck_mtx_unlock_always(c_list_lock); |
| 3238 | |
| 3239 | PAGE_REPLACEMENT_DISALLOWED(TRUE); |
| 3240 | |
| 3241 | lck_mtx_lock_spin_always(lck: &c_seg->c_lock); |
| 3242 | |
| 3243 | if (c_seg_minor_compaction_and_unlock(c_seg, FALSE /*clear busy?*/)) { |
| 3244 | /* |
| 3245 | * found an empty c_segment and freed it |
| 3246 | * so go grab the next guy in the queue |
| 3247 | */ |
| 3248 | PAGE_REPLACEMENT_DISALLOWED(FALSE); |
| 3249 | lck_mtx_lock_spin_always(c_list_lock); |
| 3250 | continue; |
| 3251 | } |
| 3252 | |
| 3253 | PAGE_REPLACEMENT_DISALLOWED(FALSE); |
| 3254 | lck_mtx_lock_spin_always(c_list_lock); |
| 3255 | |
| 3256 | switch_state = vm_compressor_major_compact_cseg(c_seg, c_seg_considered: &number_considered, bail_wanted_cseg: &bail_wanted_cseg, total_bytes_freed: &bytes_freed); |
| 3257 | assert(c_seg->c_busy); |
| 3258 | assert(!c_seg->c_on_minorcompact_q); |
| 3259 | |
| 3260 | if (switch_state) { |
| 3261 | if (VM_CONFIG_SWAP_IS_ACTIVE || VM_CONFIG_FREEZER_SWAP_IS_ACTIVE) { |
| 3262 | /* |
| 3263 | * Ordinarily we let swapped in segments age out + get |
| 3264 | * major compacted with the rest of the c_segs on the ageQ. |
| 3265 | * But the early donated c_segs, if well compacted, should be |
| 3266 | * kept ready to be swapped out if needed. These are typically |
| 3267 | * describing memory belonging to a leaky app (macOS) or a swap- |
| 3268 | * capable app (iPadOS) and for the latter we can keep these |
| 3269 | * around longer because we control the triggers in the memorystatus |
| 3270 | * subsystem |
| 3271 | */ |
| 3272 | c_seg_switch_state(c_seg, C_ON_SWAPOUT_Q, FALSE); |
| 3273 | } |
| 3274 | } |
| 3275 | |
| 3276 | C_SEG_WAKEUP_DONE(c_seg); |
| 3277 | |
| 3278 | lck_mtx_unlock_always(&c_seg->c_lock); |
| 3279 | |
| 3280 | if (number_considered >= yield_after_considered_per_pass) { |
| 3281 | if (bail_wanted_cseg) { |
| 3282 | /* |
| 3283 | * We stopped major compactions on a c_seg |
| 3284 | * that is wanted. We don't know the priority |
| 3285 | * of the waiter unfortunately but we are at |
| 3286 | * a very high priority and so, just in case |
| 3287 | * the waiter is a critical system daemon or |
| 3288 | * UI thread, let's give up the CPU in case |
| 3289 | * the system is running a few CPU intensive |
| 3290 | * tasks. |
| 3291 | */ |
| 3292 | bail_wanted_cseg = false; |
| 3293 | lck_mtx_unlock_always(c_list_lock); |
| 3294 | |
| 3295 | mutex_pause(2); /* 100us yield */ |
| 3296 | |
| 3297 | lck_mtx_lock_spin_always(c_list_lock); |
| 3298 | } |
| 3299 | |
| 3300 | number_considered = 0; |
| 3301 | } |
| 3302 | } |
| 3303 | } |
| 3304 | |
| 3305 | void |
| 3306 | vm_compressor_process_special_swapped_in_segments(void) |
| 3307 | { |
| 3308 | lck_mtx_lock_spin_always(c_list_lock); |
| 3309 | vm_compressor_process_special_swapped_in_segments_locked(); |
| 3310 | lck_mtx_unlock_always(c_list_lock); |
| 3311 | } |
| 3312 | |
| 3313 | #define C_SEGMENT_SWAPPEDIN_AGE_LIMIT 10 |
| 3314 | /* |
| 3315 | * Processing regular csegs means aging them. |
| 3316 | */ |
| 3317 | static void |
| 3318 | vm_compressor_process_regular_swapped_in_segments(boolean_t flush_all) |
| 3319 | { |
| 3320 | c_segment_t c_seg; |
| 3321 | clock_sec_t now; |
| 3322 | clock_nsec_t nsec; |
| 3323 | |
| 3324 | clock_get_system_nanotime(secs: &now, nanosecs: &nsec); |
| 3325 | |
| 3326 | while (!queue_empty(&c_regular_swappedin_list_head)) { |
| 3327 | c_seg = (c_segment_t)queue_first(&c_regular_swappedin_list_head); |
| 3328 | |
| 3329 | if (flush_all == FALSE && (now - c_seg->c_swappedin_ts) < C_SEGMENT_SWAPPEDIN_AGE_LIMIT) { |
| 3330 | break; |
| 3331 | } |
| 3332 | |
| 3333 | lck_mtx_lock_spin_always(lck: &c_seg->c_lock); |
| 3334 | |
| 3335 | c_seg_switch_state(c_seg, C_ON_AGE_Q, FALSE); |
| 3336 | c_seg->c_agedin_ts = (uint32_t) now; |
| 3337 | |
| 3338 | lck_mtx_unlock_always(&c_seg->c_lock); |
| 3339 | } |
| 3340 | } |
| 3341 | |
| 3342 | |
| 3343 | extern int vm_num_swap_files; |
| 3344 | extern int vm_num_pinned_swap_files; |
| 3345 | extern int vm_swappin_enabled; |
| 3346 | |
| 3347 | extern unsigned int vm_swapfile_total_segs_used; |
| 3348 | extern unsigned int vm_swapfile_total_segs_alloced; |
| 3349 | |
| 3350 | |
| 3351 | void |
| 3352 | vm_compressor_flush(void) |
| 3353 | { |
| 3354 | uint64_t vm_swap_put_failures_at_start; |
| 3355 | wait_result_t wait_result = 0; |
| 3356 | AbsoluteTime startTime, endTime; |
| 3357 | clock_sec_t now_sec; |
| 3358 | clock_nsec_t now_nsec; |
| 3359 | uint64_t nsec; |
| 3360 | c_segment_t c_seg, c_seg_next; |
| 3361 | |
| 3362 | HIBLOG("vm_compressor_flush - starting\n" ); |
| 3363 | |
| 3364 | clock_get_uptime(result: &startTime); |
| 3365 | |
| 3366 | lck_mtx_lock_spin_always(c_list_lock); |
| 3367 | |
| 3368 | fastwake_warmup = FALSE; |
| 3369 | compaction_swapper_abort = 1; |
| 3370 | |
| 3371 | while (compaction_swapper_running) { |
| 3372 | assert_wait(event: (event_t)&compaction_swapper_running, THREAD_UNINT); |
| 3373 | |
| 3374 | lck_mtx_unlock_always(c_list_lock); |
| 3375 | |
| 3376 | thread_block(THREAD_CONTINUE_NULL); |
| 3377 | |
| 3378 | lck_mtx_lock_spin_always(c_list_lock); |
| 3379 | } |
| 3380 | compaction_swapper_abort = 0; |
| 3381 | compaction_swapper_running = 1; |
| 3382 | |
| 3383 | hibernate_flushing = TRUE; |
| 3384 | hibernate_no_swapspace = FALSE; |
| 3385 | hibernate_flush_timed_out = FALSE; |
| 3386 | c_generation_id_flush_barrier = c_generation_id + 1000; |
| 3387 | |
| 3388 | clock_get_system_nanotime(secs: &now_sec, nanosecs: &now_nsec); |
| 3389 | hibernate_flushing_deadline = now_sec + HIBERNATE_FLUSHING_SECS_TO_COMPLETE; |
| 3390 | |
| 3391 | vm_swap_put_failures_at_start = vm_swap_put_failures; |
| 3392 | |
| 3393 | /* |
| 3394 | * We are about to hibernate and so we want all segments flushed to disk. |
| 3395 | * Segments that are on the major compaction queue won't be considered in |
| 3396 | * the vm_compressor_compact_and_swap() pass. So we need to bring them to |
| 3397 | * the ageQ for consideration. |
| 3398 | */ |
| 3399 | if (!queue_empty(&c_major_list_head)) { |
| 3400 | c_seg = (c_segment_t)queue_first(&c_major_list_head); |
| 3401 | |
| 3402 | while (!queue_end(&c_major_list_head, (queue_entry_t)c_seg)) { |
| 3403 | c_seg_next = (c_segment_t) queue_next(&c_seg->c_age_list); |
| 3404 | lck_mtx_lock_spin_always(lck: &c_seg->c_lock); |
| 3405 | c_seg_switch_state(c_seg, C_ON_AGE_Q, FALSE); |
| 3406 | lck_mtx_unlock_always(&c_seg->c_lock); |
| 3407 | c_seg = c_seg_next; |
| 3408 | } |
| 3409 | } |
| 3410 | vm_compressor_compact_and_swap(TRUE); |
| 3411 | |
| 3412 | while (!queue_empty(&c_early_swapout_list_head) || !queue_empty(&c_regular_swapout_list_head) || !queue_empty(&c_late_swapout_list_head)) { |
| 3413 | assert_wait_timeout(event: (event_t) &compaction_swapper_running, THREAD_INTERRUPTIBLE, interval: 5000, scale_factor: 1000 * NSEC_PER_USEC); |
| 3414 | |
| 3415 | lck_mtx_unlock_always(c_list_lock); |
| 3416 | |
| 3417 | wait_result = thread_block(THREAD_CONTINUE_NULL); |
| 3418 | |
| 3419 | lck_mtx_lock_spin_always(c_list_lock); |
| 3420 | |
| 3421 | if (wait_result == THREAD_TIMED_OUT) { |
| 3422 | break; |
| 3423 | } |
| 3424 | } |
| 3425 | hibernate_flushing = FALSE; |
| 3426 | compaction_swapper_running = 0; |
| 3427 | |
| 3428 | if (vm_swap_put_failures > vm_swap_put_failures_at_start) { |
| 3429 | HIBLOG("vm_compressor_flush failed to clean %llu segments - vm_page_compressor_count(%d)\n" , |
| 3430 | vm_swap_put_failures - vm_swap_put_failures_at_start, VM_PAGE_COMPRESSOR_COUNT); |
| 3431 | } |
| 3432 | |
| 3433 | lck_mtx_unlock_always(c_list_lock); |
| 3434 | |
| 3435 | thread_wakeup((event_t)&compaction_swapper_running); |
| 3436 | |
| 3437 | clock_get_uptime(result: &endTime); |
| 3438 | SUB_ABSOLUTETIME(&endTime, &startTime); |
| 3439 | absolutetime_to_nanoseconds(abstime: endTime, result: &nsec); |
| 3440 | |
| 3441 | HIBLOG("vm_compressor_flush completed - took %qd msecs - vm_num_swap_files = %d, vm_num_pinned_swap_files = %d, vm_swappin_enabled = %d\n" , |
| 3442 | nsec / 1000000ULL, vm_num_swap_files, vm_num_pinned_swap_files, vm_swappin_enabled); |
| 3443 | } |
| 3444 | |
| 3445 | |
| 3446 | int compaction_swap_trigger_thread_awakened = 0; |
| 3447 | |
| 3448 | static void |
| 3449 | vm_compressor_swap_trigger_thread(void) |
| 3450 | { |
| 3451 | current_thread()->options |= TH_OPT_VMPRIV; |
| 3452 | |
| 3453 | /* |
| 3454 | * compaction_swapper_init_now is set when the first call to |
| 3455 | * vm_consider_waking_compactor_swapper is made from |
| 3456 | * vm_pageout_scan... since this function is called upon |
| 3457 | * thread creation, we want to make sure to delay adjusting |
| 3458 | * the tuneables until we are awakened via vm_pageout_scan |
| 3459 | * so that we are at a point where the vm_swapfile_open will |
| 3460 | * be operating on the correct directory (in case the default |
| 3461 | * of using the VM volume is overridden by the dynamic_pager) |
| 3462 | */ |
| 3463 | if (compaction_swapper_init_now) { |
| 3464 | vm_compaction_swapper_do_init(); |
| 3465 | |
| 3466 | if (vm_pageout_state.vm_restricted_to_single_processor == TRUE) { |
| 3467 | thread_vm_bind_group_add(); |
| 3468 | } |
| 3469 | #if CONFIG_THREAD_GROUPS |
| 3470 | thread_group_vm_add(); |
| 3471 | #endif |
| 3472 | thread_set_thread_name(th: current_thread(), name: "VM_cswap_trigger" ); |
| 3473 | compaction_swapper_init_now = 0; |
| 3474 | } |
| 3475 | lck_mtx_lock_spin_always(c_list_lock); |
| 3476 | |
| 3477 | compaction_swap_trigger_thread_awakened++; |
| 3478 | compaction_swapper_awakened = 0; |
| 3479 | |
| 3480 | if (compaction_swapper_running == 0) { |
| 3481 | compaction_swapper_running = 1; |
| 3482 | |
| 3483 | vm_compressor_compact_and_swap(FALSE); |
| 3484 | |
| 3485 | compaction_swapper_running = 0; |
| 3486 | } |
| 3487 | assert_wait(event: (event_t)&c_compressor_swap_trigger, THREAD_UNINT); |
| 3488 | |
| 3489 | if (compaction_swapper_running == 0) { |
| 3490 | thread_wakeup((event_t)&compaction_swapper_running); |
| 3491 | } |
| 3492 | |
| 3493 | lck_mtx_unlock_always(c_list_lock); |
| 3494 | |
| 3495 | thread_block(continuation: (thread_continue_t)vm_compressor_swap_trigger_thread); |
| 3496 | |
| 3497 | /* NOTREACHED */ |
| 3498 | } |
| 3499 | |
| 3500 | |
| 3501 | void |
| 3502 | vm_compressor_record_warmup_start(void) |
| 3503 | { |
| 3504 | c_segment_t c_seg; |
| 3505 | |
| 3506 | lck_mtx_lock_spin_always(c_list_lock); |
| 3507 | |
| 3508 | if (first_c_segment_to_warm_generation_id == 0) { |
| 3509 | if (!queue_empty(&c_age_list_head)) { |
| 3510 | c_seg = (c_segment_t)queue_last(&c_age_list_head); |
| 3511 | |
| 3512 | first_c_segment_to_warm_generation_id = c_seg->c_generation_id; |
| 3513 | } else { |
| 3514 | first_c_segment_to_warm_generation_id = 0; |
| 3515 | } |
| 3516 | |
| 3517 | fastwake_recording_in_progress = TRUE; |
| 3518 | } |
| 3519 | lck_mtx_unlock_always(c_list_lock); |
| 3520 | } |
| 3521 | |
| 3522 | |
| 3523 | void |
| 3524 | vm_compressor_record_warmup_end(void) |
| 3525 | { |
| 3526 | c_segment_t c_seg; |
| 3527 | |
| 3528 | lck_mtx_lock_spin_always(c_list_lock); |
| 3529 | |
| 3530 | if (fastwake_recording_in_progress == TRUE) { |
| 3531 | if (!queue_empty(&c_age_list_head)) { |
| 3532 | c_seg = (c_segment_t)queue_last(&c_age_list_head); |
| 3533 | |
| 3534 | last_c_segment_to_warm_generation_id = c_seg->c_generation_id; |
| 3535 | } else { |
| 3536 | last_c_segment_to_warm_generation_id = first_c_segment_to_warm_generation_id; |
| 3537 | } |
| 3538 | |
| 3539 | fastwake_recording_in_progress = FALSE; |
| 3540 | |
| 3541 | HIBLOG("vm_compressor_record_warmup (%qd - %qd)\n" , first_c_segment_to_warm_generation_id, last_c_segment_to_warm_generation_id); |
| 3542 | } |
| 3543 | lck_mtx_unlock_always(c_list_lock); |
| 3544 | } |
| 3545 | |
| 3546 | |
| 3547 | #define DELAY_TRIM_ON_WAKE_SECS 25 |
| 3548 | |
| 3549 | void |
| 3550 | vm_compressor_delay_trim(void) |
| 3551 | { |
| 3552 | clock_sec_t sec; |
| 3553 | clock_nsec_t nsec; |
| 3554 | |
| 3555 | clock_get_system_nanotime(secs: &sec, nanosecs: &nsec); |
| 3556 | dont_trim_until_ts = sec + DELAY_TRIM_ON_WAKE_SECS; |
| 3557 | } |
| 3558 | |
| 3559 | |
| 3560 | void |
| 3561 | vm_compressor_do_warmup(void) |
| 3562 | { |
| 3563 | lck_mtx_lock_spin_always(c_list_lock); |
| 3564 | |
| 3565 | if (first_c_segment_to_warm_generation_id == last_c_segment_to_warm_generation_id) { |
| 3566 | first_c_segment_to_warm_generation_id = last_c_segment_to_warm_generation_id = 0; |
| 3567 | |
| 3568 | lck_mtx_unlock_always(c_list_lock); |
| 3569 | return; |
| 3570 | } |
| 3571 | |
| 3572 | if (compaction_swapper_running == 0 && compaction_swapper_awakened == 0) { |
| 3573 | fastwake_warmup = TRUE; |
| 3574 | |
| 3575 | compaction_swapper_awakened = 1; |
| 3576 | thread_wakeup((event_t)&c_compressor_swap_trigger); |
| 3577 | } |
| 3578 | lck_mtx_unlock_always(c_list_lock); |
| 3579 | } |
| 3580 | |
| 3581 | void |
| 3582 | do_fastwake_warmup_all(void) |
| 3583 | { |
| 3584 | lck_mtx_lock_spin_always(c_list_lock); |
| 3585 | |
| 3586 | if (queue_empty(&c_swappedout_list_head) && queue_empty(&c_swappedout_sparse_list_head)) { |
| 3587 | lck_mtx_unlock_always(c_list_lock); |
| 3588 | return; |
| 3589 | } |
| 3590 | |
| 3591 | fastwake_warmup = TRUE; |
| 3592 | |
| 3593 | do_fastwake_warmup(&c_swappedout_list_head, TRUE); |
| 3594 | |
| 3595 | do_fastwake_warmup(&c_swappedout_sparse_list_head, TRUE); |
| 3596 | |
| 3597 | fastwake_warmup = FALSE; |
| 3598 | |
| 3599 | lck_mtx_unlock_always(c_list_lock); |
| 3600 | } |
| 3601 | |
| 3602 | void |
| 3603 | do_fastwake_warmup(queue_head_t *c_queue, boolean_t consider_all_cseg) |
| 3604 | { |
| 3605 | c_segment_t c_seg = NULL; |
| 3606 | AbsoluteTime startTime, endTime; |
| 3607 | uint64_t nsec; |
| 3608 | |
| 3609 | |
| 3610 | HIBLOG("vm_compressor_fastwake_warmup (%qd - %qd) - starting\n" , first_c_segment_to_warm_generation_id, last_c_segment_to_warm_generation_id); |
| 3611 | |
| 3612 | clock_get_uptime(result: &startTime); |
| 3613 | |
| 3614 | lck_mtx_unlock_always(c_list_lock); |
| 3615 | |
| 3616 | proc_set_thread_policy(thread: current_thread(), |
| 3617 | TASK_POLICY_INTERNAL, TASK_POLICY_IO, THROTTLE_LEVEL_COMPRESSOR_TIER2); |
| 3618 | |
| 3619 | PAGE_REPLACEMENT_DISALLOWED(TRUE); |
| 3620 | |
| 3621 | lck_mtx_lock_spin_always(c_list_lock); |
| 3622 | |
| 3623 | while (!queue_empty(c_queue) && fastwake_warmup == TRUE) { |
| 3624 | c_seg = (c_segment_t) queue_first(c_queue); |
| 3625 | |
| 3626 | if (consider_all_cseg == FALSE) { |
| 3627 | if (c_seg->c_generation_id < first_c_segment_to_warm_generation_id || |
| 3628 | c_seg->c_generation_id > last_c_segment_to_warm_generation_id) { |
| 3629 | break; |
| 3630 | } |
| 3631 | |
| 3632 | if (vm_page_free_count < (AVAILABLE_MEMORY / 4)) { |
| 3633 | break; |
| 3634 | } |
| 3635 | } |
| 3636 | |
| 3637 | lck_mtx_lock_spin_always(lck: &c_seg->c_lock); |
| 3638 | lck_mtx_unlock_always(c_list_lock); |
| 3639 | |
| 3640 | if (c_seg->c_busy) { |
| 3641 | PAGE_REPLACEMENT_DISALLOWED(FALSE); |
| 3642 | c_seg_wait_on_busy(c_seg); |
| 3643 | PAGE_REPLACEMENT_DISALLOWED(TRUE); |
| 3644 | } else { |
| 3645 | if (c_seg_swapin(c_seg, TRUE, FALSE) == 0) { |
| 3646 | lck_mtx_unlock_always(&c_seg->c_lock); |
| 3647 | } |
| 3648 | c_segment_warmup_count++; |
| 3649 | |
| 3650 | PAGE_REPLACEMENT_DISALLOWED(FALSE); |
| 3651 | vm_pageout_io_throttle(); |
| 3652 | PAGE_REPLACEMENT_DISALLOWED(TRUE); |
| 3653 | } |
| 3654 | lck_mtx_lock_spin_always(c_list_lock); |
| 3655 | } |
| 3656 | lck_mtx_unlock_always(c_list_lock); |
| 3657 | |
| 3658 | PAGE_REPLACEMENT_DISALLOWED(FALSE); |
| 3659 | |
| 3660 | proc_set_thread_policy(thread: current_thread(), |
| 3661 | TASK_POLICY_INTERNAL, TASK_POLICY_IO, THROTTLE_LEVEL_COMPRESSOR_TIER0); |
| 3662 | |
| 3663 | clock_get_uptime(result: &endTime); |
| 3664 | SUB_ABSOLUTETIME(&endTime, &startTime); |
| 3665 | absolutetime_to_nanoseconds(abstime: endTime, result: &nsec); |
| 3666 | |
| 3667 | HIBLOG("vm_compressor_fastwake_warmup completed - took %qd msecs\n" , nsec / 1000000ULL); |
| 3668 | |
| 3669 | lck_mtx_lock_spin_always(c_list_lock); |
| 3670 | |
| 3671 | if (consider_all_cseg == FALSE) { |
| 3672 | first_c_segment_to_warm_generation_id = last_c_segment_to_warm_generation_id = 0; |
| 3673 | } |
| 3674 | } |
| 3675 | |
| 3676 | extern bool vm_swapout_thread_running; |
| 3677 | extern boolean_t compressor_store_stop_compaction; |
| 3678 | |
| 3679 | void |
| 3680 | vm_compressor_compact_and_swap(boolean_t flush_all) |
| 3681 | { |
| 3682 | c_segment_t c_seg; |
| 3683 | bool switch_state, bail_wanted_cseg = false; |
| 3684 | clock_sec_t now; |
| 3685 | clock_nsec_t nsec; |
| 3686 | mach_timespec_t start_ts, end_ts; |
| 3687 | unsigned int number_considered, wanted_cseg_found, yield_after_considered_per_pass, number_yields; |
| 3688 | uint64_t bytes_freed, delta_usec; |
| 3689 | uint32_t c_swapout_count = 0; |
| 3690 | |
| 3691 | VM_DEBUG_CONSTANT_EVENT(vm_compressor_compact_and_swap, VM_COMPRESSOR_COMPACT_AND_SWAP, DBG_FUNC_START, c_age_count, c_minor_count, c_major_count, vm_page_free_count); |
| 3692 | |
| 3693 | if (fastwake_warmup == TRUE) { |
| 3694 | uint64_t starting_warmup_count; |
| 3695 | |
| 3696 | starting_warmup_count = c_segment_warmup_count; |
| 3697 | |
| 3698 | KERNEL_DEBUG_CONSTANT(IOKDBG_CODE(DBG_HIBERNATE, 11) | DBG_FUNC_START, c_segment_warmup_count, |
| 3699 | first_c_segment_to_warm_generation_id, last_c_segment_to_warm_generation_id, 0, 0); |
| 3700 | do_fastwake_warmup(c_queue: &c_swappedout_list_head, FALSE); |
| 3701 | KERNEL_DEBUG_CONSTANT(IOKDBG_CODE(DBG_HIBERNATE, 11) | DBG_FUNC_END, c_segment_warmup_count, c_segment_warmup_count - starting_warmup_count, 0, 0, 0); |
| 3702 | |
| 3703 | fastwake_warmup = FALSE; |
| 3704 | } |
| 3705 | |
| 3706 | #if (XNU_TARGET_OS_OSX && __arm64__) |
| 3707 | /* |
| 3708 | * Re-considering major csegs showed benefits on all platforms by |
| 3709 | * significantly reducing fragmentation and getting back memory. |
| 3710 | * However, on smaller devices, eg watch, there was increased power |
| 3711 | * use for the additional compactions. And the turnover in csegs on |
| 3712 | * those smaller platforms is high enough in the decompression/free |
| 3713 | * path that we can skip reconsidering them here because we already |
| 3714 | * consider them for major compaction in those paths. |
| 3715 | */ |
| 3716 | vm_compressor_process_major_segments(false /*all segments and not just the ripe-aged ones*/); |
| 3717 | #endif /* (XNU_TARGET_OS_OSX && __arm64__) */ |
| 3718 | |
| 3719 | /* |
| 3720 | * it's possible for the c_age_list_head to be empty if we |
| 3721 | * hit our limits for growing the compressor pool and we subsequently |
| 3722 | * hibernated... on the next hibernation we could see the queue as |
| 3723 | * empty and not proceeed even though we have a bunch of segments on |
| 3724 | * the swapped in queue that need to be dealt with. |
| 3725 | */ |
| 3726 | vm_compressor_do_delayed_compactions(flush_all); |
| 3727 | vm_compressor_process_special_swapped_in_segments_locked(); |
| 3728 | vm_compressor_process_regular_swapped_in_segments(flush_all); |
| 3729 | |
| 3730 | /* |
| 3731 | * we only need to grab the timestamp once per |
| 3732 | * invocation of this function since the |
| 3733 | * timescale we're interested in is measured |
| 3734 | * in days |
| 3735 | */ |
| 3736 | clock_get_system_nanotime(secs: &now, nanosecs: &nsec); |
| 3737 | |
| 3738 | start_ts.tv_sec = (int) now; |
| 3739 | start_ts.tv_nsec = nsec; |
| 3740 | delta_usec = 0; |
| 3741 | number_considered = 0; |
| 3742 | wanted_cseg_found = 0; |
| 3743 | number_yields = 0; |
| 3744 | bytes_freed = 0; |
| 3745 | yield_after_considered_per_pass = MAX(min_csegs_per_major_compaction, DELAYED_COMPACTIONS_PER_PASS); |
| 3746 | |
| 3747 | #if 0 |
| 3748 | /** |
| 3749 | * SW: Need to figure out how to properly rate limit this log because it is currently way too |
| 3750 | * noisy. rdar://99379414 (Figure out how to rate limit the fragmentation level logging) |
| 3751 | */ |
| 3752 | os_log(OS_LOG_DEFAULT, "memorystatus: before compaction fragmentation level %u\n" , vm_compressor_fragmentation_level()); |
| 3753 | #endif |
| 3754 | |
| 3755 | while (!queue_empty(&c_age_list_head) && !compaction_swapper_abort && !compressor_store_stop_compaction) { |
| 3756 | if (hibernate_flushing == TRUE) { |
| 3757 | clock_sec_t sec; |
| 3758 | |
| 3759 | if (hibernate_should_abort()) { |
| 3760 | HIBLOG("vm_compressor_flush - hibernate_should_abort returned TRUE\n" ); |
| 3761 | break; |
| 3762 | } |
| 3763 | if (hibernate_no_swapspace == TRUE) { |
| 3764 | HIBLOG("vm_compressor_flush - out of swap space\n" ); |
| 3765 | break; |
| 3766 | } |
| 3767 | if (vm_swap_files_pinned() == FALSE) { |
| 3768 | HIBLOG("vm_compressor_flush - unpinned swap files\n" ); |
| 3769 | break; |
| 3770 | } |
| 3771 | if (hibernate_in_progress_with_pinned_swap == TRUE && |
| 3772 | (vm_swapfile_total_segs_alloced == vm_swapfile_total_segs_used)) { |
| 3773 | HIBLOG("vm_compressor_flush - out of pinned swap space\n" ); |
| 3774 | break; |
| 3775 | } |
| 3776 | clock_get_system_nanotime(secs: &sec, nanosecs: &nsec); |
| 3777 | |
| 3778 | if (sec > hibernate_flushing_deadline) { |
| 3779 | hibernate_flush_timed_out = TRUE; |
| 3780 | HIBLOG("vm_compressor_flush - failed to finish before deadline\n" ); |
| 3781 | break; |
| 3782 | } |
| 3783 | } |
| 3784 | |
| 3785 | c_swapout_count = c_early_swapout_count + c_regular_swapout_count + c_late_swapout_count; |
| 3786 | if (VM_CONFIG_SWAP_IS_ACTIVE && !vm_swap_out_of_space() && c_swapout_count >= C_SWAPOUT_LIMIT) { |
| 3787 | assert_wait_timeout(event: (event_t) &compaction_swapper_running, THREAD_INTERRUPTIBLE, interval: 100, scale_factor: 1000 * NSEC_PER_USEC); |
| 3788 | |
| 3789 | if (!vm_swapout_thread_running) { |
| 3790 | thread_wakeup((event_t)&vm_swapout_thread); |
| 3791 | } |
| 3792 | |
| 3793 | lck_mtx_unlock_always(c_list_lock); |
| 3794 | |
| 3795 | VM_DEBUG_CONSTANT_EVENT(vm_compressor_compact_and_swap, VM_COMPRESSOR_COMPACT_AND_SWAP, DBG_FUNC_NONE, 1, c_swapout_count, 0, 0); |
| 3796 | |
| 3797 | thread_block(THREAD_CONTINUE_NULL); |
| 3798 | |
| 3799 | lck_mtx_lock_spin_always(c_list_lock); |
| 3800 | } |
| 3801 | /* |
| 3802 | * Minor compactions |
| 3803 | */ |
| 3804 | vm_compressor_do_delayed_compactions(flush_all); |
| 3805 | |
| 3806 | /* |
| 3807 | * vm_compressor_process_early_swapped_in_segments() |
| 3808 | * might be too aggressive. So OFF for now. |
| 3809 | */ |
| 3810 | vm_compressor_process_regular_swapped_in_segments(flush_all); |
| 3811 | |
| 3812 | /* Recompute because we dropped the c_list_lock above*/ |
| 3813 | c_swapout_count = c_early_swapout_count + c_regular_swapout_count + c_late_swapout_count; |
| 3814 | if (VM_CONFIG_SWAP_IS_ACTIVE && !vm_swap_out_of_space() && c_swapout_count >= C_SWAPOUT_LIMIT) { |
| 3815 | /* |
| 3816 | * we timed out on the above thread_block |
| 3817 | * let's loop around and try again |
| 3818 | * the timeout allows us to continue |
| 3819 | * to do minor compactions to make |
| 3820 | * more memory available |
| 3821 | */ |
| 3822 | VM_DEBUG_CONSTANT_EVENT(vm_compressor_compact_and_swap, VM_COMPRESSOR_COMPACT_AND_SWAP, DBG_FUNC_NONE, 2, c_swapout_count, 0, 0); |
| 3823 | |
| 3824 | continue; |
| 3825 | } |
| 3826 | |
| 3827 | /* |
| 3828 | * Swap out segments? |
| 3829 | */ |
| 3830 | if (flush_all == FALSE) { |
| 3831 | bool needs_to_swap; |
| 3832 | |
| 3833 | lck_mtx_unlock_always(c_list_lock); |
| 3834 | |
| 3835 | needs_to_swap = compressor_needs_to_swap(); |
| 3836 | |
| 3837 | lck_mtx_lock_spin_always(c_list_lock); |
| 3838 | |
| 3839 | VM_DEBUG_CONSTANT_EVENT(vm_compressor_compact_and_swap, VM_COMPRESSOR_COMPACT_AND_SWAP, DBG_FUNC_NONE, 3, needs_to_swap, 0, 0); |
| 3840 | |
| 3841 | if (!needs_to_swap) { |
| 3842 | break; |
| 3843 | } |
| 3844 | } |
| 3845 | if (queue_empty(&c_age_list_head)) { |
| 3846 | VM_DEBUG_CONSTANT_EVENT(vm_compressor_compact_and_swap, VM_COMPRESSOR_COMPACT_AND_SWAP, DBG_FUNC_NONE, 4, c_age_count, 0, 0); |
| 3847 | break; |
| 3848 | } |
| 3849 | c_seg = (c_segment_t) queue_first(&c_age_list_head); |
| 3850 | |
| 3851 | assert(c_seg->c_state == C_ON_AGE_Q); |
| 3852 | |
| 3853 | if (flush_all == TRUE && c_seg->c_generation_id > c_generation_id_flush_barrier) { |
| 3854 | VM_DEBUG_CONSTANT_EVENT(vm_compressor_compact_and_swap, VM_COMPRESSOR_COMPACT_AND_SWAP, DBG_FUNC_NONE, 5, 0, 0, 0); |
| 3855 | break; |
| 3856 | } |
| 3857 | |
| 3858 | lck_mtx_lock_spin_always(lck: &c_seg->c_lock); |
| 3859 | |
| 3860 | if (c_seg->c_busy) { |
| 3861 | VM_DEBUG_CONSTANT_EVENT(vm_compressor_compact_and_swap, VM_COMPRESSOR_COMPACT_AND_SWAP, DBG_FUNC_NONE, 6, (void*) VM_KERNEL_ADDRPERM(c_seg), 0, 0); |
| 3862 | |
| 3863 | lck_mtx_unlock_always(c_list_lock); |
| 3864 | c_seg_wait_on_busy(c_seg); |
| 3865 | lck_mtx_lock_spin_always(c_list_lock); |
| 3866 | |
| 3867 | continue; |
| 3868 | } |
| 3869 | C_SEG_BUSY(c_seg); |
| 3870 | |
| 3871 | if (c_seg_do_minor_compaction_and_unlock(c_seg, FALSE, TRUE, TRUE)) { |
| 3872 | /* |
| 3873 | * found an empty c_segment and freed it |
| 3874 | * so go grab the next guy in the queue |
| 3875 | */ |
| 3876 | VM_DEBUG_CONSTANT_EVENT(vm_compressor_compact_and_swap, VM_COMPRESSOR_COMPACT_AND_SWAP, DBG_FUNC_NONE, 7, 0, 0, 0); |
| 3877 | c_seg_major_compact_stats[c_seg_major_compact_stats_now].count_of_freed_segs++; |
| 3878 | continue; |
| 3879 | } |
| 3880 | |
| 3881 | switch_state = vm_compressor_major_compact_cseg(c_seg, c_seg_considered: &number_considered, bail_wanted_cseg: &bail_wanted_cseg, total_bytes_freed: &bytes_freed); |
| 3882 | if (bail_wanted_cseg) { |
| 3883 | wanted_cseg_found++; |
| 3884 | bail_wanted_cseg = false; |
| 3885 | } |
| 3886 | |
| 3887 | assert(c_seg->c_busy); |
| 3888 | assert(!c_seg->c_on_minorcompact_q); |
| 3889 | |
| 3890 | if (switch_state) { |
| 3891 | if (VM_CONFIG_SWAP_IS_ACTIVE) { |
| 3892 | int new_state = C_ON_SWAPOUT_Q; |
| 3893 | #if (XNU_TARGET_OS_OSX && __arm64__) |
| 3894 | if (flush_all == false && compressor_swapout_conditions_met() == false) { |
| 3895 | new_state = C_ON_MAJORCOMPACT_Q; |
| 3896 | } |
| 3897 | #endif /* (XNU_TARGET_OS_OSX && __arm64__) */ |
| 3898 | |
| 3899 | if (new_state == C_ON_SWAPOUT_Q) { |
| 3900 | /* |
| 3901 | * This mode of putting a generic c_seg on the swapout list is |
| 3902 | * only supported when we have general swapping enabled |
| 3903 | */ |
| 3904 | clock_sec_t lnow; |
| 3905 | clock_nsec_t lnsec; |
| 3906 | clock_get_system_nanotime(secs: &lnow, nanosecs: &lnsec); |
| 3907 | if (c_seg->c_agedin_ts && (lnow - c_seg->c_agedin_ts) < 30) { |
| 3908 | vmcs_stats.unripe_under_30s++; |
| 3909 | } else if (c_seg->c_agedin_ts && (lnow - c_seg->c_agedin_ts) < 60) { |
| 3910 | vmcs_stats.unripe_under_60s++; |
| 3911 | } else if (c_seg->c_agedin_ts && (lnow - c_seg->c_agedin_ts) < 300) { |
| 3912 | vmcs_stats.unripe_under_300s++; |
| 3913 | } |
| 3914 | } |
| 3915 | |
| 3916 | c_seg_switch_state(c_seg, new_state, FALSE); |
| 3917 | } else { |
| 3918 | if ((vm_swapout_ripe_segments == TRUE && c_overage_swapped_count < c_overage_swapped_limit)) { |
| 3919 | assert(VM_CONFIG_SWAP_IS_PRESENT); |
| 3920 | /* |
| 3921 | * we are running compressor sweeps with swap-behind |
| 3922 | * make sure the c_seg has aged enough before swapping it |
| 3923 | * out... |
| 3924 | */ |
| 3925 | if ((now - c_seg->c_creation_ts) >= vm_ripe_target_age) { |
| 3926 | c_seg->c_overage_swap = TRUE; |
| 3927 | c_overage_swapped_count++; |
| 3928 | c_seg_switch_state(c_seg, C_ON_SWAPOUT_Q, FALSE); |
| 3929 | } |
| 3930 | } |
| 3931 | } |
| 3932 | if (c_seg->c_state == C_ON_AGE_Q) { |
| 3933 | /* |
| 3934 | * this c_seg didn't get moved to the swapout queue |
| 3935 | * so we need to move it out of the way... |
| 3936 | * we just did a major compaction on it so put it |
| 3937 | * on that queue |
| 3938 | */ |
| 3939 | c_seg_switch_state(c_seg, C_ON_MAJORCOMPACT_Q, FALSE); |
| 3940 | } else { |
| 3941 | c_seg_major_compact_stats[c_seg_major_compact_stats_now].wasted_space_in_swapouts += c_seg_bufsize - c_seg->c_bytes_used; |
| 3942 | c_seg_major_compact_stats[c_seg_major_compact_stats_now].count_of_swapouts++; |
| 3943 | } |
| 3944 | } |
| 3945 | |
| 3946 | C_SEG_WAKEUP_DONE(c_seg); |
| 3947 | |
| 3948 | lck_mtx_unlock_always(&c_seg->c_lock); |
| 3949 | |
| 3950 | /* |
| 3951 | * On systems _with_ general swap, regardless of jetsam, we wake up the swapout thread here. |
| 3952 | * On systems _without_ general swap, it's the responsibility of the memorystatus |
| 3953 | * subsystem to wake up the swapper. |
| 3954 | * TODO: When we have full jetsam support on a swap enabled system, we will need to revisit |
| 3955 | * this policy. |
| 3956 | */ |
| 3957 | if (VM_CONFIG_SWAP_IS_ACTIVE && c_swapout_count) { |
| 3958 | /* |
| 3959 | * We don't pause/yield here because we will either |
| 3960 | * yield below or at the top of the loop with the |
| 3961 | * assert_wait_timeout. |
| 3962 | */ |
| 3963 | if (!vm_swapout_thread_running) { |
| 3964 | thread_wakeup((event_t)&vm_swapout_thread); |
| 3965 | } |
| 3966 | } |
| 3967 | |
| 3968 | if (number_considered >= yield_after_considered_per_pass) { |
| 3969 | if (wanted_cseg_found) { |
| 3970 | /* |
| 3971 | * We stopped major compactions on a c_seg |
| 3972 | * that is wanted. We don't know the priority |
| 3973 | * of the waiter unfortunately but we are at |
| 3974 | * a very high priority and so, just in case |
| 3975 | * the waiter is a critical system daemon or |
| 3976 | * UI thread, let's give up the CPU in case |
| 3977 | * the system is running a few CPU intensive |
| 3978 | * tasks. |
| 3979 | */ |
| 3980 | lck_mtx_unlock_always(c_list_lock); |
| 3981 | |
| 3982 | mutex_pause(2); /* 100us yield */ |
| 3983 | |
| 3984 | number_yields++; |
| 3985 | |
| 3986 | VM_DEBUG_CONSTANT_EVENT(vm_compressor_compact_and_swap, VM_COMPRESSOR_COMPACT_AND_SWAP, DBG_FUNC_NONE, 11, number_considered, number_yields, 0); |
| 3987 | |
| 3988 | lck_mtx_lock_spin_always(c_list_lock); |
| 3989 | } |
| 3990 | |
| 3991 | number_considered = 0; |
| 3992 | wanted_cseg_found = 0; |
| 3993 | } |
| 3994 | } |
| 3995 | clock_get_system_nanotime(secs: &now, nanosecs: &nsec); |
| 3996 | |
| 3997 | end_ts = major_compact_ts = (mach_timespec_t){.tv_sec = (int)now, .tv_nsec = nsec}; |
| 3998 | |
| 3999 | SUB_MACH_TIMESPEC(&end_ts, &start_ts); |
| 4000 | |
| 4001 | delta_usec = (end_ts.tv_sec * USEC_PER_SEC) + (end_ts.tv_nsec / NSEC_PER_USEC) - (number_yields * 100); |
| 4002 | |
| 4003 | delta_usec = MAX(1, delta_usec); /* we could have 0 usec run if conditions weren't right */ |
| 4004 | |
| 4005 | c_seg_major_compact_stats[c_seg_major_compact_stats_now].bytes_freed_rate_us = (bytes_freed / delta_usec); |
| 4006 | |
| 4007 | if ((c_seg_major_compact_stats_now + 1) == C_SEG_MAJOR_COMPACT_STATS_MAX) { |
| 4008 | c_seg_major_compact_stats_now = 0; |
| 4009 | } else { |
| 4010 | c_seg_major_compact_stats_now++; |
| 4011 | } |
| 4012 | |
| 4013 | assert(c_seg_major_compact_stats_now < C_SEG_MAJOR_COMPACT_STATS_MAX); |
| 4014 | |
| 4015 | VM_DEBUG_CONSTANT_EVENT(vm_compressor_compact_and_swap, VM_COMPRESSOR_COMPACT_AND_SWAP, DBG_FUNC_END, c_age_count, c_minor_count, c_major_count, vm_page_free_count); |
| 4016 | } |
| 4017 | |
| 4018 | |
| 4019 | static c_segment_t |
| 4020 | c_seg_allocate(c_segment_t *current_chead) |
| 4021 | { |
| 4022 | c_segment_t c_seg; |
| 4023 | int min_needed; |
| 4024 | int size_to_populate; |
| 4025 | c_segment_t *donate_queue_head; |
| 4026 | |
| 4027 | #if XNU_TARGET_OS_OSX |
| 4028 | if (vm_compressor_low_on_space()) { |
| 4029 | vm_compressor_take_paging_space_action(); |
| 4030 | } |
| 4031 | #endif /* XNU_TARGET_OS_OSX */ |
| 4032 | |
| 4033 | if ((c_seg = *current_chead) == NULL) { |
| 4034 | uint32_t c_segno; |
| 4035 | |
| 4036 | lck_mtx_lock_spin_always(c_list_lock); |
| 4037 | |
| 4038 | while (c_segments_busy == TRUE) { |
| 4039 | assert_wait(event: (event_t) (&c_segments_busy), THREAD_UNINT); |
| 4040 | |
| 4041 | lck_mtx_unlock_always(c_list_lock); |
| 4042 | |
| 4043 | thread_block(THREAD_CONTINUE_NULL); |
| 4044 | |
| 4045 | lck_mtx_lock_spin_always(c_list_lock); |
| 4046 | } |
| 4047 | if (c_free_segno_head == (uint32_t)-1) { |
| 4048 | uint32_t c_segments_available_new; |
| 4049 | uint32_t compressed_pages; |
| 4050 | |
| 4051 | #if CONFIG_FREEZE |
| 4052 | if (freezer_incore_cseg_acct) { |
| 4053 | compressed_pages = c_segment_pages_compressed_incore; |
| 4054 | } else { |
| 4055 | compressed_pages = c_segment_pages_compressed; |
| 4056 | } |
| 4057 | #else |
| 4058 | compressed_pages = c_segment_pages_compressed; |
| 4059 | #endif /* CONFIG_FREEZE */ |
| 4060 | |
| 4061 | if (c_segments_available >= c_segments_limit || compressed_pages >= c_segment_pages_compressed_limit) { |
| 4062 | lck_mtx_unlock_always(c_list_lock); |
| 4063 | |
| 4064 | return NULL; |
| 4065 | } |
| 4066 | c_segments_busy = TRUE; |
| 4067 | lck_mtx_unlock_always(c_list_lock); |
| 4068 | |
| 4069 | kernel_memory_populate(addr: (vm_offset_t)c_segments_next_page, |
| 4070 | PAGE_SIZE, flags: KMA_NOFAIL | KMA_KOBJECT, |
| 4071 | VM_KERN_MEMORY_COMPRESSOR); |
| 4072 | c_segments_next_page += PAGE_SIZE; |
| 4073 | |
| 4074 | c_segments_available_new = c_segments_available + C_SEGMENTS_PER_PAGE; |
| 4075 | |
| 4076 | if (c_segments_available_new > c_segments_limit) { |
| 4077 | c_segments_available_new = c_segments_limit; |
| 4078 | } |
| 4079 | |
| 4080 | for (c_segno = c_segments_available + 1; c_segno < c_segments_available_new; c_segno++) { |
| 4081 | c_segments[c_segno - 1].c_segno = c_segno; |
| 4082 | } |
| 4083 | |
| 4084 | lck_mtx_lock_spin_always(c_list_lock); |
| 4085 | |
| 4086 | c_segments[c_segno - 1].c_segno = c_free_segno_head; |
| 4087 | c_free_segno_head = c_segments_available; |
| 4088 | c_segments_available = c_segments_available_new; |
| 4089 | |
| 4090 | c_segments_busy = FALSE; |
| 4091 | thread_wakeup((event_t) (&c_segments_busy)); |
| 4092 | } |
| 4093 | c_segno = c_free_segno_head; |
| 4094 | assert(c_segno >= 0 && c_segno < c_segments_limit); |
| 4095 | |
| 4096 | c_free_segno_head = (uint32_t)c_segments[c_segno].c_segno; |
| 4097 | |
| 4098 | /* |
| 4099 | * do the rest of the bookkeeping now while we're still behind |
| 4100 | * the list lock and grab our generation id now into a local |
| 4101 | * so that we can install it once we have the c_seg allocated |
| 4102 | */ |
| 4103 | c_segment_count++; |
| 4104 | if (c_segment_count > c_segment_count_max) { |
| 4105 | c_segment_count_max = c_segment_count; |
| 4106 | } |
| 4107 | |
| 4108 | lck_mtx_unlock_always(c_list_lock); |
| 4109 | |
| 4110 | c_seg = zalloc_flags(compressor_segment_zone, Z_WAITOK | Z_ZERO); |
| 4111 | |
| 4112 | c_seg->c_store.c_buffer = (int32_t *)C_SEG_BUFFER_ADDRESS(c_segno); |
| 4113 | |
| 4114 | lck_mtx_init(lck: &c_seg->c_lock, grp: &vm_compressor_lck_grp, LCK_ATTR_NULL); |
| 4115 | |
| 4116 | c_seg->c_state = C_IS_EMPTY; |
| 4117 | c_seg->c_firstemptyslot = C_SLOT_MAX_INDEX; |
| 4118 | c_seg->c_mysegno = c_segno; |
| 4119 | |
| 4120 | lck_mtx_lock_spin_always(c_list_lock); |
| 4121 | c_empty_count++; |
| 4122 | c_seg_switch_state(c_seg, C_IS_FILLING, FALSE); |
| 4123 | c_segments[c_segno].c_seg = c_seg; |
| 4124 | assert(c_segments[c_segno].c_segno > c_segments_available); |
| 4125 | lck_mtx_unlock_always(c_list_lock); |
| 4126 | |
| 4127 | for (int i = 0; i < vm_pageout_state.vm_compressor_thread_count; i++) { |
| 4128 | #if XNU_TARGET_OS_OSX |
| 4129 | donate_queue_head = (c_segment_t*) &(pgo_iothread_internal_state[i].current_early_swapout_chead); |
| 4130 | #else /* XNU_TARGET_OS_OSX */ |
| 4131 | if (memorystatus_swap_all_apps) { |
| 4132 | donate_queue_head = (c_segment_t*) &(pgo_iothread_internal_state[i].current_late_swapout_chead); |
| 4133 | } else { |
| 4134 | donate_queue_head = NULL; |
| 4135 | } |
| 4136 | #endif /* XNU_TARGET_OS_OSX */ |
| 4137 | |
| 4138 | if (current_chead == donate_queue_head) { |
| 4139 | c_seg->c_has_donated_pages = 1; |
| 4140 | break; |
| 4141 | } |
| 4142 | } |
| 4143 | |
| 4144 | *current_chead = c_seg; |
| 4145 | |
| 4146 | #if DEVELOPMENT || DEBUG |
| 4147 | C_SEG_MAKE_WRITEABLE(c_seg); |
| 4148 | #endif |
| 4149 | } |
| 4150 | c_seg_alloc_nextslot(c_seg); |
| 4151 | |
| 4152 | size_to_populate = c_seg_allocsize - C_SEG_OFFSET_TO_BYTES(c_seg->c_populated_offset); |
| 4153 | |
| 4154 | if (size_to_populate) { |
| 4155 | min_needed = PAGE_SIZE + (c_seg_allocsize - c_seg_bufsize); |
| 4156 | |
| 4157 | if (C_SEG_OFFSET_TO_BYTES(c_seg->c_populated_offset - c_seg->c_nextoffset) < (unsigned) min_needed) { |
| 4158 | if (size_to_populate > C_SEG_MAX_POPULATE_SIZE) { |
| 4159 | size_to_populate = C_SEG_MAX_POPULATE_SIZE; |
| 4160 | } |
| 4161 | |
| 4162 | OSAddAtomic64(size_to_populate / PAGE_SIZE, &vm_pageout_vminfo.vm_compressor_pages_grabbed); |
| 4163 | |
| 4164 | kernel_memory_populate( |
| 4165 | addr: (vm_offset_t) &c_seg->c_store.c_buffer[c_seg->c_populated_offset], |
| 4166 | size: size_to_populate, |
| 4167 | flags: KMA_NOFAIL | KMA_COMPRESSOR, |
| 4168 | VM_KERN_MEMORY_COMPRESSOR); |
| 4169 | } else { |
| 4170 | size_to_populate = 0; |
| 4171 | } |
| 4172 | } |
| 4173 | PAGE_REPLACEMENT_DISALLOWED(TRUE); |
| 4174 | |
| 4175 | lck_mtx_lock_spin_always(lck: &c_seg->c_lock); |
| 4176 | |
| 4177 | if (size_to_populate) { |
| 4178 | c_seg->c_populated_offset += C_SEG_BYTES_TO_OFFSET(size_to_populate); |
| 4179 | } |
| 4180 | |
| 4181 | return c_seg; |
| 4182 | } |
| 4183 | |
| 4184 | #if DEVELOPMENT || DEBUG |
| 4185 | #if CONFIG_FREEZE |
| 4186 | extern boolean_t memorystatus_freeze_to_memory; |
| 4187 | #endif /* CONFIG_FREEZE */ |
| 4188 | #endif /* DEVELOPMENT || DEBUG */ |
| 4189 | uint64_t c_seg_total_donated_bytes = 0; /* For testing/debugging only for now. Remove and add new counters for vm_stat.*/ |
| 4190 | |
| 4191 | uint64_t c_seg_filled_no_contention = 0; |
| 4192 | uint64_t c_seg_filled_contention = 0; |
| 4193 | clock_sec_t c_seg_filled_contention_sec_max = 0; |
| 4194 | clock_nsec_t c_seg_filled_contention_nsec_max = 0; |
| 4195 | |
| 4196 | static void |
| 4197 | c_current_seg_filled(c_segment_t c_seg, c_segment_t *current_chead) |
| 4198 | { |
| 4199 | uint32_t unused_bytes; |
| 4200 | uint32_t offset_to_depopulate; |
| 4201 | int new_state = C_ON_AGE_Q; |
| 4202 | clock_sec_t sec; |
| 4203 | clock_nsec_t nsec; |
| 4204 | bool head_insert = false, wakeup_swapout_thread = false; |
| 4205 | |
| 4206 | unused_bytes = trunc_page_32(C_SEG_OFFSET_TO_BYTES(c_seg->c_populated_offset - c_seg->c_nextoffset)); |
| 4207 | |
| 4208 | if (unused_bytes) { |
| 4209 | offset_to_depopulate = C_SEG_BYTES_TO_OFFSET(round_page_32(C_SEG_OFFSET_TO_BYTES(c_seg->c_nextoffset))); |
| 4210 | |
| 4211 | /* |
| 4212 | * release the extra physical page(s) at the end of the segment |
| 4213 | */ |
| 4214 | lck_mtx_unlock_always(&c_seg->c_lock); |
| 4215 | |
| 4216 | kernel_memory_depopulate( |
| 4217 | addr: (vm_offset_t) &c_seg->c_store.c_buffer[offset_to_depopulate], |
| 4218 | size: unused_bytes, |
| 4219 | flags: KMA_COMPRESSOR, |
| 4220 | VM_KERN_MEMORY_COMPRESSOR); |
| 4221 | |
| 4222 | lck_mtx_lock_spin_always(lck: &c_seg->c_lock); |
| 4223 | |
| 4224 | c_seg->c_populated_offset = offset_to_depopulate; |
| 4225 | } |
| 4226 | assert(C_SEG_OFFSET_TO_BYTES(c_seg->c_populated_offset) <= c_seg_bufsize); |
| 4227 | |
| 4228 | #if DEVELOPMENT || DEBUG |
| 4229 | { |
| 4230 | boolean_t c_seg_was_busy = FALSE; |
| 4231 | |
| 4232 | if (!c_seg->c_busy) { |
| 4233 | C_SEG_BUSY(c_seg); |
| 4234 | } else { |
| 4235 | c_seg_was_busy = TRUE; |
| 4236 | } |
| 4237 | |
| 4238 | lck_mtx_unlock_always(&c_seg->c_lock); |
| 4239 | |
| 4240 | C_SEG_WRITE_PROTECT(c_seg); |
| 4241 | |
| 4242 | lck_mtx_lock_spin_always(&c_seg->c_lock); |
| 4243 | |
| 4244 | if (c_seg_was_busy == FALSE) { |
| 4245 | C_SEG_WAKEUP_DONE(c_seg); |
| 4246 | } |
| 4247 | } |
| 4248 | #endif |
| 4249 | |
| 4250 | #if CONFIG_FREEZE |
| 4251 | if (current_chead == (c_segment_t*) &(freezer_context_global.freezer_ctx_chead) && |
| 4252 | VM_CONFIG_SWAP_IS_PRESENT && |
| 4253 | VM_CONFIG_FREEZER_SWAP_IS_ACTIVE |
| 4254 | #if DEVELOPMENT || DEBUG |
| 4255 | && !memorystatus_freeze_to_memory |
| 4256 | #endif /* DEVELOPMENT || DEBUG */ |
| 4257 | ) { |
| 4258 | new_state = C_ON_SWAPOUT_Q; |
| 4259 | wakeup_swapout_thread = true; |
| 4260 | } |
| 4261 | #endif /* CONFIG_FREEZE */ |
| 4262 | |
| 4263 | if (vm_darkwake_mode == TRUE) { |
| 4264 | new_state = C_ON_SWAPOUT_Q; |
| 4265 | head_insert = true; |
| 4266 | wakeup_swapout_thread = true; |
| 4267 | } else { |
| 4268 | c_segment_t *donate_queue_head; |
| 4269 | for (int i = 0; i < vm_pageout_state.vm_compressor_thread_count; i++) { |
| 4270 | #if XNU_TARGET_OS_OSX |
| 4271 | donate_queue_head = (c_segment_t*) &(pgo_iothread_internal_state[i].current_early_swapout_chead); |
| 4272 | #else /* XNU_TARGET_OS_OSX */ |
| 4273 | donate_queue_head = (c_segment_t*) &(pgo_iothread_internal_state[i].current_late_swapout_chead); |
| 4274 | #endif /* XNU_TARGET_OS_OSX */ |
| 4275 | |
| 4276 | if (current_chead == donate_queue_head) { |
| 4277 | assert(c_seg->c_has_donated_pages); |
| 4278 | new_state = C_ON_SWAPOUT_Q; |
| 4279 | c_seg_total_donated_bytes += c_seg->c_bytes_used; |
| 4280 | break; |
| 4281 | } |
| 4282 | } |
| 4283 | } |
| 4284 | |
| 4285 | clock_get_system_nanotime(secs: &sec, nanosecs: &nsec); |
| 4286 | c_seg->c_creation_ts = (uint32_t)sec; |
| 4287 | |
| 4288 | if (!lck_mtx_try_lock_spin_always(c_list_lock)) { |
| 4289 | clock_sec_t sec2; |
| 4290 | clock_nsec_t nsec2; |
| 4291 | |
| 4292 | lck_mtx_lock_spin_always(c_list_lock); |
| 4293 | clock_get_system_nanotime(secs: &sec2, nanosecs: &nsec2); |
| 4294 | TIME_SUB(sec2, sec, nsec2, nsec, NSEC_PER_SEC); |
| 4295 | // printf("FBDP %s: head %p waited for c_list_lock for %lu.%09u seconds\n", __FUNCTION__, current_chead, sec2, nsec2); |
| 4296 | if (sec2 > c_seg_filled_contention_sec_max) { |
| 4297 | c_seg_filled_contention_sec_max = sec2; |
| 4298 | c_seg_filled_contention_nsec_max = nsec2; |
| 4299 | } else if (sec2 == c_seg_filled_contention_sec_max && |
| 4300 | nsec2 > c_seg_filled_contention_nsec_max) { |
| 4301 | c_seg_filled_contention_nsec_max = nsec2; |
| 4302 | } |
| 4303 | c_seg_filled_contention++; |
| 4304 | } else { |
| 4305 | c_seg_filled_no_contention++; |
| 4306 | } |
| 4307 | |
| 4308 | #if CONFIG_FREEZE |
| 4309 | if (current_chead == (c_segment_t*) &(freezer_context_global.freezer_ctx_chead)) { |
| 4310 | if (freezer_context_global.freezer_ctx_task->donates_own_pages) { |
| 4311 | assert(!c_seg->c_has_donated_pages); |
| 4312 | c_seg->c_has_donated_pages = 1; |
| 4313 | OSAddAtomic(c_seg->c_slots_used, &c_segment_pages_compressed_incore_late_swapout); |
| 4314 | } |
| 4315 | c_seg->c_has_freezer_pages = 1; |
| 4316 | } |
| 4317 | #endif /* CONFIG_FREEZE */ |
| 4318 | |
| 4319 | c_seg->c_generation_id = c_generation_id++; |
| 4320 | c_seg_switch_state(c_seg, new_state, insert_head: head_insert); |
| 4321 | |
| 4322 | #if CONFIG_FREEZE |
| 4323 | /* |
| 4324 | * Donated segments count as frozen to swap if we go through the freezer. |
| 4325 | * TODO: What we need is a new ledger and cseg state that can describe |
| 4326 | * a frozen cseg from a donated task so we can accurately decrement it on |
| 4327 | * swapins. |
| 4328 | */ |
| 4329 | if (current_chead == (c_segment_t*) &(freezer_context_global.freezer_ctx_chead) && (c_seg->c_state == C_ON_SWAPOUT_Q)) { |
| 4330 | /* |
| 4331 | * darkwake and freezer can't co-exist together |
| 4332 | * We'll need to fix this accounting as a start. |
| 4333 | * And early donation c_segs are separate from frozen c_segs. |
| 4334 | */ |
| 4335 | assert(vm_darkwake_mode == FALSE); |
| 4336 | c_seg_update_task_owner(c_seg, freezer_context_global.freezer_ctx_task); |
| 4337 | freezer_context_global.freezer_ctx_swapped_bytes += c_seg->c_bytes_used; |
| 4338 | } |
| 4339 | #endif /* CONFIG_FREEZE */ |
| 4340 | |
| 4341 | if (c_seg->c_state == C_ON_AGE_Q && C_SEG_UNUSED_BYTES(c_seg) >= PAGE_SIZE) { |
| 4342 | #if CONFIG_FREEZE |
| 4343 | assert(c_seg->c_task_owner == NULL); |
| 4344 | #endif /* CONFIG_FREEZE */ |
| 4345 | c_seg_need_delayed_compaction(c_seg, TRUE); |
| 4346 | } |
| 4347 | |
| 4348 | lck_mtx_unlock_always(c_list_lock); |
| 4349 | |
| 4350 | if (wakeup_swapout_thread) { |
| 4351 | /* |
| 4352 | * Darkwake and Freeze configs always |
| 4353 | * wake up the swapout thread because |
| 4354 | * the compactor thread that normally handles |
| 4355 | * it may not be running as much in these |
| 4356 | * configs. |
| 4357 | */ |
| 4358 | thread_wakeup((event_t)&vm_swapout_thread); |
| 4359 | } |
| 4360 | |
| 4361 | *current_chead = NULL; |
| 4362 | } |
| 4363 | |
| 4364 | /* |
| 4365 | * returns with c_seg locked |
| 4366 | */ |
| 4367 | void |
| 4368 | c_seg_swapin_requeue(c_segment_t c_seg, boolean_t has_data, boolean_t minor_compact_ok, boolean_t age_on_swapin_q) |
| 4369 | { |
| 4370 | clock_sec_t sec; |
| 4371 | clock_nsec_t nsec; |
| 4372 | |
| 4373 | clock_get_system_nanotime(secs: &sec, nanosecs: &nsec); |
| 4374 | |
| 4375 | lck_mtx_lock_spin_always(c_list_lock); |
| 4376 | lck_mtx_lock_spin_always(lck: &c_seg->c_lock); |
| 4377 | |
| 4378 | assert(c_seg->c_busy_swapping); |
| 4379 | assert(c_seg->c_busy); |
| 4380 | |
| 4381 | c_seg->c_busy_swapping = 0; |
| 4382 | |
| 4383 | if (c_seg->c_overage_swap == TRUE) { |
| 4384 | c_overage_swapped_count--; |
| 4385 | c_seg->c_overage_swap = FALSE; |
| 4386 | } |
| 4387 | if (has_data == TRUE) { |
| 4388 | if (age_on_swapin_q == TRUE || c_seg->c_has_donated_pages) { |
| 4389 | #if CONFIG_FREEZE |
| 4390 | /* |
| 4391 | * If a segment has both identities, frozen and donated bits set, the donated |
| 4392 | * bit wins on the swapin path. This is because the segment is being swapped back |
| 4393 | * in and so is in demand and should be given more time to spend in memory before |
| 4394 | * being swapped back out under pressure. |
| 4395 | */ |
| 4396 | if (c_seg->c_has_donated_pages) { |
| 4397 | c_seg->c_has_freezer_pages = 0; |
| 4398 | } |
| 4399 | #endif /* CONFIG_FREEZE */ |
| 4400 | c_seg_switch_state(c_seg, C_ON_SWAPPEDIN_Q, FALSE); |
| 4401 | } else { |
| 4402 | c_seg_switch_state(c_seg, C_ON_AGE_Q, FALSE); |
| 4403 | } |
| 4404 | |
| 4405 | if (minor_compact_ok == TRUE && !c_seg->c_on_minorcompact_q && C_SEG_UNUSED_BYTES(c_seg) >= PAGE_SIZE) { |
| 4406 | c_seg_need_delayed_compaction(c_seg, TRUE); |
| 4407 | } |
| 4408 | } else { |
| 4409 | c_seg->c_store.c_buffer = (int32_t*) NULL; |
| 4410 | c_seg->c_populated_offset = C_SEG_BYTES_TO_OFFSET(0); |
| 4411 | |
| 4412 | c_seg_switch_state(c_seg, C_ON_BAD_Q, FALSE); |
| 4413 | } |
| 4414 | c_seg->c_swappedin_ts = (uint32_t)sec; |
| 4415 | c_seg->c_swappedin = true; |
| 4416 | |
| 4417 | lck_mtx_unlock_always(c_list_lock); |
| 4418 | } |
| 4419 | |
| 4420 | |
| 4421 | |
| 4422 | /* |
| 4423 | * c_seg has to be locked and is returned locked if the c_seg isn't freed |
| 4424 | * PAGE_REPLACMENT_DISALLOWED has to be TRUE on entry and is returned TRUE |
| 4425 | * c_seg_swapin returns 1 if the c_seg was freed, 0 otherwise |
| 4426 | */ |
| 4427 | |
| 4428 | int |
| 4429 | c_seg_swapin(c_segment_t c_seg, boolean_t force_minor_compaction, boolean_t age_on_swapin_q) |
| 4430 | { |
| 4431 | vm_offset_t addr = 0; |
| 4432 | uint32_t io_size = 0; |
| 4433 | uint64_t f_offset; |
| 4434 | thread_pri_floor_t token; |
| 4435 | |
| 4436 | assert(C_SEG_IS_ONDISK(c_seg)); |
| 4437 | |
| 4438 | #if !CHECKSUM_THE_SWAP |
| 4439 | c_seg_trim_tail(c_seg); |
| 4440 | #endif |
| 4441 | io_size = round_page_32(C_SEG_OFFSET_TO_BYTES(c_seg->c_populated_offset)); |
| 4442 | f_offset = c_seg->c_store.c_swap_handle; |
| 4443 | |
| 4444 | C_SEG_BUSY(c_seg); |
| 4445 | c_seg->c_busy_swapping = 1; |
| 4446 | |
| 4447 | /* |
| 4448 | * This thread is likely going to block for I/O. |
| 4449 | * Make sure it is ready to run when the I/O completes because |
| 4450 | * it needs to clear the busy bit on the c_seg so that other |
| 4451 | * waiting threads can make progress too. |
| 4452 | */ |
| 4453 | token = thread_priority_floor_start(); |
| 4454 | lck_mtx_unlock_always(&c_seg->c_lock); |
| 4455 | |
| 4456 | PAGE_REPLACEMENT_DISALLOWED(FALSE); |
| 4457 | |
| 4458 | addr = (vm_offset_t)C_SEG_BUFFER_ADDRESS(c_seg->c_mysegno); |
| 4459 | c_seg->c_store.c_buffer = (int32_t*) addr; |
| 4460 | |
| 4461 | kernel_memory_populate(addr, size: io_size, flags: KMA_NOFAIL | KMA_COMPRESSOR, |
| 4462 | VM_KERN_MEMORY_COMPRESSOR); |
| 4463 | |
| 4464 | if (vm_swap_get(c_seg, f_offset, io_size) != KERN_SUCCESS) { |
| 4465 | PAGE_REPLACEMENT_DISALLOWED(TRUE); |
| 4466 | |
| 4467 | kernel_memory_depopulate(addr, size: io_size, flags: KMA_COMPRESSOR, |
| 4468 | VM_KERN_MEMORY_COMPRESSOR); |
| 4469 | |
| 4470 | c_seg_swapin_requeue(c_seg, FALSE, TRUE, age_on_swapin_q); |
| 4471 | } else { |
| 4472 | #if ENCRYPTED_SWAP |
| 4473 | vm_swap_decrypt(c_seg); |
| 4474 | #endif /* ENCRYPTED_SWAP */ |
| 4475 | |
| 4476 | #if CHECKSUM_THE_SWAP |
| 4477 | if (c_seg->cseg_swap_size != io_size) { |
| 4478 | panic("swapin size doesn't match swapout size" ); |
| 4479 | } |
| 4480 | |
| 4481 | if (c_seg->cseg_hash != vmc_hash((char*) c_seg->c_store.c_buffer, (int)io_size)) { |
| 4482 | panic("c_seg_swapin - Swap hash mismatch" ); |
| 4483 | } |
| 4484 | #endif /* CHECKSUM_THE_SWAP */ |
| 4485 | |
| 4486 | PAGE_REPLACEMENT_DISALLOWED(TRUE); |
| 4487 | |
| 4488 | c_seg_swapin_requeue(c_seg, TRUE, minor_compact_ok: force_minor_compaction == TRUE ? FALSE : TRUE, age_on_swapin_q); |
| 4489 | |
| 4490 | #if CONFIG_FREEZE |
| 4491 | /* |
| 4492 | * c_seg_swapin_requeue() returns with the c_seg lock held. |
| 4493 | */ |
| 4494 | if (!lck_mtx_try_lock_spin_always(c_list_lock)) { |
| 4495 | assert(c_seg->c_busy); |
| 4496 | |
| 4497 | lck_mtx_unlock_always(&c_seg->c_lock); |
| 4498 | lck_mtx_lock_spin_always(c_list_lock); |
| 4499 | lck_mtx_lock_spin_always(&c_seg->c_lock); |
| 4500 | } |
| 4501 | |
| 4502 | if (c_seg->c_task_owner) { |
| 4503 | c_seg_update_task_owner(c_seg, NULL); |
| 4504 | } |
| 4505 | |
| 4506 | lck_mtx_unlock_always(c_list_lock); |
| 4507 | |
| 4508 | OSAddAtomic(c_seg->c_slots_used, &c_segment_pages_compressed_incore); |
| 4509 | if (c_seg->c_has_donated_pages) { |
| 4510 | OSAddAtomic(c_seg->c_slots_used, &c_segment_pages_compressed_incore_late_swapout); |
| 4511 | } |
| 4512 | #endif /* CONFIG_FREEZE */ |
| 4513 | |
| 4514 | OSAddAtomic64(c_seg->c_bytes_used, &compressor_bytes_used); |
| 4515 | |
| 4516 | if (force_minor_compaction == TRUE) { |
| 4517 | if (c_seg_minor_compaction_and_unlock(c_seg, FALSE)) { |
| 4518 | /* |
| 4519 | * c_seg was completely empty so it was freed, |
| 4520 | * so be careful not to reference it again |
| 4521 | * |
| 4522 | * Drop the boost so that the thread priority |
| 4523 | * is returned back to where it is supposed to be. |
| 4524 | */ |
| 4525 | thread_priority_floor_end(token: &token); |
| 4526 | return 1; |
| 4527 | } |
| 4528 | |
| 4529 | lck_mtx_lock_spin_always(lck: &c_seg->c_lock); |
| 4530 | } |
| 4531 | } |
| 4532 | C_SEG_WAKEUP_DONE(c_seg); |
| 4533 | |
| 4534 | /* |
| 4535 | * Drop the boost so that the thread priority |
| 4536 | * is returned back to where it is supposed to be. |
| 4537 | */ |
| 4538 | thread_priority_floor_end(token: &token); |
| 4539 | |
| 4540 | return 0; |
| 4541 | } |
| 4542 | |
| 4543 | |
| 4544 | static void |
| 4545 | c_segment_sv_hash_drop_ref(int hash_indx) |
| 4546 | { |
| 4547 | struct c_sv_hash_entry o_sv_he, n_sv_he; |
| 4548 | |
| 4549 | while (1) { |
| 4550 | o_sv_he.he_record = c_segment_sv_hash_table[hash_indx].he_record; |
| 4551 | |
| 4552 | n_sv_he.he_ref = o_sv_he.he_ref - 1; |
| 4553 | n_sv_he.he_data = o_sv_he.he_data; |
| 4554 | |
| 4555 | if (OSCompareAndSwap64((UInt64)o_sv_he.he_record, (UInt64)n_sv_he.he_record, (UInt64 *) &c_segment_sv_hash_table[hash_indx].he_record) == TRUE) { |
| 4556 | if (n_sv_he.he_ref == 0) { |
| 4557 | OSAddAtomic(-1, &c_segment_svp_in_hash); |
| 4558 | } |
| 4559 | break; |
| 4560 | } |
| 4561 | } |
| 4562 | } |
| 4563 | |
| 4564 | |
| 4565 | static int |
| 4566 | c_segment_sv_hash_insert(uint32_t data) |
| 4567 | { |
| 4568 | int hash_sindx; |
| 4569 | int misses; |
| 4570 | struct c_sv_hash_entry o_sv_he, n_sv_he; |
| 4571 | boolean_t got_ref = FALSE; |
| 4572 | |
| 4573 | if (data == 0) { |
| 4574 | OSAddAtomic(1, &c_segment_svp_zero_compressions); |
| 4575 | } else { |
| 4576 | OSAddAtomic(1, &c_segment_svp_nonzero_compressions); |
| 4577 | } |
| 4578 | |
| 4579 | hash_sindx = data & C_SV_HASH_MASK; |
| 4580 | |
| 4581 | for (misses = 0; misses < C_SV_HASH_MAX_MISS; misses++) { |
| 4582 | o_sv_he.he_record = c_segment_sv_hash_table[hash_sindx].he_record; |
| 4583 | |
| 4584 | while (o_sv_he.he_data == data || o_sv_he.he_ref == 0) { |
| 4585 | n_sv_he.he_ref = o_sv_he.he_ref + 1; |
| 4586 | n_sv_he.he_data = data; |
| 4587 | |
| 4588 | if (OSCompareAndSwap64((UInt64)o_sv_he.he_record, (UInt64)n_sv_he.he_record, (UInt64 *) &c_segment_sv_hash_table[hash_sindx].he_record) == TRUE) { |
| 4589 | if (n_sv_he.he_ref == 1) { |
| 4590 | OSAddAtomic(1, &c_segment_svp_in_hash); |
| 4591 | } |
| 4592 | got_ref = TRUE; |
| 4593 | break; |
| 4594 | } |
| 4595 | o_sv_he.he_record = c_segment_sv_hash_table[hash_sindx].he_record; |
| 4596 | } |
| 4597 | if (got_ref == TRUE) { |
| 4598 | break; |
| 4599 | } |
| 4600 | hash_sindx++; |
| 4601 | |
| 4602 | if (hash_sindx == C_SV_HASH_SIZE) { |
| 4603 | hash_sindx = 0; |
| 4604 | } |
| 4605 | } |
| 4606 | if (got_ref == FALSE) { |
| 4607 | return -1; |
| 4608 | } |
| 4609 | |
| 4610 | return hash_sindx; |
| 4611 | } |
| 4612 | |
| 4613 | |
| 4614 | #if RECORD_THE_COMPRESSED_DATA |
| 4615 | |
| 4616 | static void |
| 4617 | c_compressed_record_data(char *src, int c_size) |
| 4618 | { |
| 4619 | if ((c_compressed_record_cptr + c_size + 4) >= c_compressed_record_ebuf) { |
| 4620 | panic("c_compressed_record_cptr >= c_compressed_record_ebuf" ); |
| 4621 | } |
| 4622 | |
| 4623 | *(int *)((void *)c_compressed_record_cptr) = c_size; |
| 4624 | |
| 4625 | c_compressed_record_cptr += 4; |
| 4626 | |
| 4627 | memcpy(c_compressed_record_cptr, src, c_size); |
| 4628 | c_compressed_record_cptr += c_size; |
| 4629 | } |
| 4630 | #endif |
| 4631 | |
| 4632 | |
| 4633 | static int |
| 4634 | c_compress_page(char *src, c_slot_mapping_t slot_ptr, c_segment_t *current_chead, char *scratch_buf) |
| 4635 | { |
| 4636 | int c_size = -1; |
| 4637 | int c_rounded_size = 0; |
| 4638 | int max_csize; |
| 4639 | c_slot_t cs; |
| 4640 | c_segment_t c_seg; |
| 4641 | bool single_value = false; |
| 4642 | |
| 4643 | KERNEL_DEBUG(0xe0400000 | DBG_FUNC_START, *current_chead, 0, 0, 0, 0); |
| 4644 | retry: |
| 4645 | if ((c_seg = c_seg_allocate(current_chead)) == NULL) { |
| 4646 | return 1; |
| 4647 | } |
| 4648 | /* |
| 4649 | * returns with c_seg lock held |
| 4650 | * and PAGE_REPLACEMENT_DISALLOWED(TRUE)... |
| 4651 | * c_nextslot has been allocated and |
| 4652 | * c_store.c_buffer populated |
| 4653 | */ |
| 4654 | assert(c_seg->c_state == C_IS_FILLING); |
| 4655 | |
| 4656 | cs = C_SEG_SLOT_FROM_INDEX(c_seg, c_seg->c_nextslot); |
| 4657 | |
| 4658 | C_SLOT_ASSERT_PACKABLE(slot_ptr); |
| 4659 | cs->c_packed_ptr = C_SLOT_PACK_PTR(slot_ptr); |
| 4660 | |
| 4661 | cs->c_offset = c_seg->c_nextoffset; |
| 4662 | |
| 4663 | max_csize = c_seg_bufsize - C_SEG_OFFSET_TO_BYTES((int32_t)cs->c_offset); |
| 4664 | |
| 4665 | if (max_csize > PAGE_SIZE) { |
| 4666 | max_csize = PAGE_SIZE; |
| 4667 | } |
| 4668 | |
| 4669 | #if CHECKSUM_THE_DATA |
| 4670 | cs->c_hash_data = vmc_hash(src, PAGE_SIZE); |
| 4671 | #endif |
| 4672 | boolean_t incomp_copy = FALSE; |
| 4673 | int max_csize_adj = (max_csize - 4); |
| 4674 | |
| 4675 | if (vm_compressor_algorithm() != VM_COMPRESSOR_DEFAULT_CODEC) { |
| 4676 | #if defined(__arm64__) |
| 4677 | uint16_t ccodec = CINVALID; |
| 4678 | uint32_t inline_popcount; |
| 4679 | if (max_csize >= C_SEG_OFFSET_ALIGNMENT_BOUNDARY) { |
| 4680 | c_size = metacompressor(in: (const uint8_t *) src, |
| 4681 | cdst: (uint8_t *) &c_seg->c_store.c_buffer[cs->c_offset], |
| 4682 | outbufsz: max_csize_adj, codec: &ccodec, |
| 4683 | cscratch: scratch_buf, &incomp_copy, pop_count_p: &inline_popcount); |
| 4684 | assert(inline_popcount == C_SLOT_NO_POPCOUNT); |
| 4685 | |
| 4686 | #if C_SEG_OFFSET_ALIGNMENT_BOUNDARY > 4 |
| 4687 | if (c_size > max_csize_adj) { |
| 4688 | c_size = -1; |
| 4689 | } |
| 4690 | #endif |
| 4691 | } else { |
| 4692 | c_size = -1; |
| 4693 | } |
| 4694 | assert(ccodec == CCWK || ccodec == CCLZ4); |
| 4695 | cs->c_codec = ccodec; |
| 4696 | #endif |
| 4697 | } else { |
| 4698 | #if defined(__arm64__) |
| 4699 | cs->c_codec = CCWK; |
| 4700 | __unreachable_ok_push |
| 4701 | if (PAGE_SIZE == 4096) { |
| 4702 | c_size = WKdm_compress_4k(src_buf: (WK_word *)(uintptr_t)src, dest_buf: (WK_word *)(uintptr_t)&c_seg->c_store.c_buffer[cs->c_offset], |
| 4703 | scratch: (WK_word *)(uintptr_t)scratch_buf, limit: max_csize_adj); |
| 4704 | } else { |
| 4705 | c_size = WKdm_compress_16k(src_buf: (WK_word *)(uintptr_t)src, dest_buf: (WK_word *)(uintptr_t)&c_seg->c_store.c_buffer[cs->c_offset], |
| 4706 | scratch: (WK_word *)(uintptr_t)scratch_buf, limit: max_csize_adj); |
| 4707 | } |
| 4708 | __unreachable_ok_pop |
| 4709 | #else |
| 4710 | c_size = WKdm_compress_new((const WK_word *)(uintptr_t)src, (WK_word *)(uintptr_t)&c_seg->c_store.c_buffer[cs->c_offset], |
| 4711 | (WK_word *)(uintptr_t)scratch_buf, max_csize_adj); |
| 4712 | #endif |
| 4713 | } |
| 4714 | assertf(((c_size <= max_csize_adj) && (c_size >= -1)), |
| 4715 | "c_size invalid (%d, %d), cur compressions: %d" , c_size, max_csize_adj, c_segment_pages_compressed); |
| 4716 | |
| 4717 | if (c_size == -1) { |
| 4718 | if (max_csize < PAGE_SIZE) { |
| 4719 | c_current_seg_filled(c_seg, current_chead); |
| 4720 | assert(*current_chead == NULL); |
| 4721 | |
| 4722 | lck_mtx_unlock_always(&c_seg->c_lock); |
| 4723 | /* TODO: it may be worth requiring codecs to distinguish |
| 4724 | * between incompressible inputs and failures due to |
| 4725 | * budget exhaustion. |
| 4726 | */ |
| 4727 | PAGE_REPLACEMENT_DISALLOWED(FALSE); |
| 4728 | goto retry; |
| 4729 | } |
| 4730 | c_size = PAGE_SIZE; |
| 4731 | |
| 4732 | if (incomp_copy == FALSE) { |
| 4733 | memcpy(dst: &c_seg->c_store.c_buffer[cs->c_offset], src, n: c_size); |
| 4734 | } |
| 4735 | |
| 4736 | OSAddAtomic(1, &c_segment_noncompressible_pages); |
| 4737 | } else if (c_size == 0) { |
| 4738 | int hash_index; |
| 4739 | |
| 4740 | /* |
| 4741 | * special case - this is a page completely full of a single 32 bit value |
| 4742 | */ |
| 4743 | single_value = true; |
| 4744 | hash_index = c_segment_sv_hash_insert(data: *(uint32_t *)(uintptr_t)src); |
| 4745 | |
| 4746 | if (hash_index != -1) { |
| 4747 | slot_ptr->s_cindx = hash_index; |
| 4748 | slot_ptr->s_cseg = C_SV_CSEG_ID; |
| 4749 | #if CONFIG_TRACK_UNMODIFIED_ANON_PAGES |
| 4750 | slot_ptr->s_uncompressed = 0; |
| 4751 | #endif /* CONFIG_TRACK_UNMODIFIED_ANON_PAGES */ |
| 4752 | |
| 4753 | OSAddAtomic(1, &c_segment_svp_hash_succeeded); |
| 4754 | #if RECORD_THE_COMPRESSED_DATA |
| 4755 | c_compressed_record_data(src, 4); |
| 4756 | #endif |
| 4757 | goto sv_compression; |
| 4758 | } |
| 4759 | c_size = 4; |
| 4760 | |
| 4761 | memcpy(dst: &c_seg->c_store.c_buffer[cs->c_offset], src, n: c_size); |
| 4762 | |
| 4763 | OSAddAtomic(1, &c_segment_svp_hash_failed); |
| 4764 | } |
| 4765 | |
| 4766 | #if RECORD_THE_COMPRESSED_DATA |
| 4767 | c_compressed_record_data((char *)&c_seg->c_store.c_buffer[cs->c_offset], c_size); |
| 4768 | #endif |
| 4769 | #if CHECKSUM_THE_COMPRESSED_DATA |
| 4770 | cs->c_hash_compressed_data = vmc_hash((char *)&c_seg->c_store.c_buffer[cs->c_offset], c_size); |
| 4771 | #endif |
| 4772 | #if POPCOUNT_THE_COMPRESSED_DATA |
| 4773 | cs->c_pop_cdata = vmc_pop((uintptr_t) &c_seg->c_store.c_buffer[cs->c_offset], c_size); |
| 4774 | #endif |
| 4775 | c_rounded_size = (c_size + C_SEG_OFFSET_ALIGNMENT_MASK) & ~C_SEG_OFFSET_ALIGNMENT_MASK; |
| 4776 | |
| 4777 | PACK_C_SIZE(cs, c_size); |
| 4778 | c_seg->c_bytes_used += c_rounded_size; |
| 4779 | c_seg->c_nextoffset += C_SEG_BYTES_TO_OFFSET(c_rounded_size); |
| 4780 | c_seg->c_slots_used++; |
| 4781 | |
| 4782 | #if CONFIG_FREEZE |
| 4783 | /* TODO: should c_segment_pages_compressed be up here too? See 88598046 for details */ |
| 4784 | OSAddAtomic(1, &c_segment_pages_compressed_incore); |
| 4785 | if (c_seg->c_has_donated_pages) { |
| 4786 | OSAddAtomic(1, &c_segment_pages_compressed_incore_late_swapout); |
| 4787 | } |
| 4788 | #endif /* CONFIG_FREEZE */ |
| 4789 | |
| 4790 | slot_ptr->s_cindx = c_seg->c_nextslot++; |
| 4791 | /* <csegno=0,indx=0> would mean "empty slot", so use csegno+1 */ |
| 4792 | slot_ptr->s_cseg = c_seg->c_mysegno + 1; |
| 4793 | |
| 4794 | #if CONFIG_TRACK_UNMODIFIED_ANON_PAGES |
| 4795 | slot_ptr->s_uncompressed = 0; |
| 4796 | #endif /* CONFIG_TRACK_UNMODIFIED_ANON_PAGES */ |
| 4797 | |
| 4798 | sv_compression: |
| 4799 | if (c_seg->c_nextoffset >= c_seg_off_limit || c_seg->c_nextslot >= C_SLOT_MAX_INDEX) { |
| 4800 | c_current_seg_filled(c_seg, current_chead); |
| 4801 | assert(*current_chead == NULL); |
| 4802 | } |
| 4803 | |
| 4804 | lck_mtx_unlock_always(&c_seg->c_lock); |
| 4805 | |
| 4806 | PAGE_REPLACEMENT_DISALLOWED(FALSE); |
| 4807 | |
| 4808 | #if RECORD_THE_COMPRESSED_DATA |
| 4809 | if ((c_compressed_record_cptr - c_compressed_record_sbuf) >= c_seg_allocsize) { |
| 4810 | c_compressed_record_write(c_compressed_record_sbuf, (int)(c_compressed_record_cptr - c_compressed_record_sbuf)); |
| 4811 | c_compressed_record_cptr = c_compressed_record_sbuf; |
| 4812 | } |
| 4813 | #endif |
| 4814 | if (c_size) { |
| 4815 | OSAddAtomic64(c_size, &c_segment_compressed_bytes); |
| 4816 | OSAddAtomic64(c_rounded_size, &compressor_bytes_used); |
| 4817 | } |
| 4818 | OSAddAtomic64(PAGE_SIZE, &c_segment_input_bytes); |
| 4819 | |
| 4820 | OSAddAtomic(1, &c_segment_pages_compressed); |
| 4821 | #if DEVELOPMENT || DEBUG |
| 4822 | if (!compressor_running_perf_test) { |
| 4823 | /* |
| 4824 | * The perf_compressor benchmark should not be able to trigger |
| 4825 | * compressor thrashing jetsams. |
| 4826 | */ |
| 4827 | OSAddAtomic(1, &sample_period_compression_count); |
| 4828 | } |
| 4829 | #else /* DEVELOPMENT || DEBUG */ |
| 4830 | OSAddAtomic(1, &sample_period_compression_count); |
| 4831 | #endif /* DEVELOPMENT || DEBUG */ |
| 4832 | |
| 4833 | KERNEL_DEBUG(0xe0400000 | DBG_FUNC_END, *current_chead, c_size, c_segment_input_bytes, c_segment_compressed_bytes, 0); |
| 4834 | |
| 4835 | return 0; |
| 4836 | } |
| 4837 | |
| 4838 | static inline void |
| 4839 | sv_decompress(int32_t *ddst, int32_t pattern) |
| 4840 | { |
| 4841 | // assert(__builtin_constant_p(PAGE_SIZE) != 0); |
| 4842 | #if defined(__x86_64__) |
| 4843 | memset_word(ddst, pattern, PAGE_SIZE / sizeof(int32_t)); |
| 4844 | #elif defined(__arm64__) |
| 4845 | assert((PAGE_SIZE % 128) == 0); |
| 4846 | if (pattern == 0) { |
| 4847 | fill32_dczva((addr64_t)ddst, PAGE_SIZE); |
| 4848 | } else { |
| 4849 | fill32_nt((addr64_t)ddst, PAGE_SIZE, pattern); |
| 4850 | } |
| 4851 | #else |
| 4852 | size_t i; |
| 4853 | |
| 4854 | /* Unroll the pattern fill loop 4x to encourage the |
| 4855 | * compiler to emit NEON stores, cf. |
| 4856 | * <rdar://problem/25839866> Loop autovectorization |
| 4857 | * anomalies. |
| 4858 | */ |
| 4859 | /* * We use separate loops for each PAGE_SIZE |
| 4860 | * to allow the autovectorizer to engage, as PAGE_SIZE |
| 4861 | * may not be a constant. |
| 4862 | */ |
| 4863 | |
| 4864 | __unreachable_ok_push |
| 4865 | if (PAGE_SIZE == 4096) { |
| 4866 | for (i = 0; i < (4096U / sizeof(int32_t)); i += 4) { |
| 4867 | *ddst++ = pattern; |
| 4868 | *ddst++ = pattern; |
| 4869 | *ddst++ = pattern; |
| 4870 | *ddst++ = pattern; |
| 4871 | } |
| 4872 | } else { |
| 4873 | assert(PAGE_SIZE == 16384); |
| 4874 | for (i = 0; i < (int)(16384U / sizeof(int32_t)); i += 4) { |
| 4875 | *ddst++ = pattern; |
| 4876 | *ddst++ = pattern; |
| 4877 | *ddst++ = pattern; |
| 4878 | *ddst++ = pattern; |
| 4879 | } |
| 4880 | } |
| 4881 | __unreachable_ok_pop |
| 4882 | #endif |
| 4883 | } |
| 4884 | |
| 4885 | static int |
| 4886 | c_decompress_page(char *dst, volatile c_slot_mapping_t slot_ptr, vm_compressor_options_t flags, int *zeroslot) |
| 4887 | { |
| 4888 | c_slot_t cs; |
| 4889 | c_segment_t c_seg; |
| 4890 | uint32_t c_segno; |
| 4891 | uint16_t c_indx; |
| 4892 | int c_rounded_size; |
| 4893 | uint32_t c_size; |
| 4894 | int retval = 0; |
| 4895 | boolean_t need_unlock = TRUE; |
| 4896 | boolean_t consider_defragmenting = FALSE; |
| 4897 | boolean_t kdp_mode = FALSE; |
| 4898 | |
| 4899 | if (__improbable(flags & C_KDP)) { |
| 4900 | if (not_in_kdp) { |
| 4901 | panic("C_KDP passed to decompress page from outside of debugger context" ); |
| 4902 | } |
| 4903 | |
| 4904 | assert((flags & C_KEEP) == C_KEEP); |
| 4905 | assert((flags & C_DONT_BLOCK) == C_DONT_BLOCK); |
| 4906 | |
| 4907 | if ((flags & (C_DONT_BLOCK | C_KEEP)) != (C_DONT_BLOCK | C_KEEP)) { |
| 4908 | return -2; |
| 4909 | } |
| 4910 | |
| 4911 | kdp_mode = TRUE; |
| 4912 | *zeroslot = 0; |
| 4913 | } |
| 4914 | |
| 4915 | ReTry: |
| 4916 | if (__probable(!kdp_mode)) { |
| 4917 | PAGE_REPLACEMENT_DISALLOWED(TRUE); |
| 4918 | } else { |
| 4919 | if (kdp_lck_rw_lock_is_acquired_exclusive(lck: &c_master_lock)) { |
| 4920 | return -2; |
| 4921 | } |
| 4922 | } |
| 4923 | |
| 4924 | #if HIBERNATION |
| 4925 | /* |
| 4926 | * if hibernation is enabled, it indicates (via a call |
| 4927 | * to 'vm_decompressor_lock' that no further |
| 4928 | * decompressions are allowed once it reaches |
| 4929 | * the point of flushing all of the currently dirty |
| 4930 | * anonymous memory through the compressor and out |
| 4931 | * to disk... in this state we allow freeing of compressed |
| 4932 | * pages and must honor the C_DONT_BLOCK case |
| 4933 | */ |
| 4934 | if (__improbable(dst && decompressions_blocked == TRUE)) { |
| 4935 | if (flags & C_DONT_BLOCK) { |
| 4936 | if (__probable(!kdp_mode)) { |
| 4937 | PAGE_REPLACEMENT_DISALLOWED(FALSE); |
| 4938 | } |
| 4939 | |
| 4940 | *zeroslot = 0; |
| 4941 | return -2; |
| 4942 | } |
| 4943 | /* |
| 4944 | * it's safe to atomically assert and block behind the |
| 4945 | * lock held in shared mode because "decompressions_blocked" is |
| 4946 | * only set and cleared and the thread_wakeup done when the lock |
| 4947 | * is held exclusively |
| 4948 | */ |
| 4949 | assert_wait((event_t)&decompressions_blocked, THREAD_UNINT); |
| 4950 | |
| 4951 | PAGE_REPLACEMENT_DISALLOWED(FALSE); |
| 4952 | |
| 4953 | thread_block(THREAD_CONTINUE_NULL); |
| 4954 | |
| 4955 | goto ReTry; |
| 4956 | } |
| 4957 | #endif |
| 4958 | /* s_cseg is actually "segno+1" */ |
| 4959 | c_segno = slot_ptr->s_cseg - 1; |
| 4960 | |
| 4961 | if (__improbable(c_segno >= c_segments_available)) { |
| 4962 | panic("c_decompress_page: c_segno %d >= c_segments_available %d, slot_ptr(%p), slot_data(%x)" , |
| 4963 | c_segno, c_segments_available, slot_ptr, *(int *)((void *)slot_ptr)); |
| 4964 | } |
| 4965 | |
| 4966 | if (__improbable(c_segments[c_segno].c_segno < c_segments_available)) { |
| 4967 | panic("c_decompress_page: c_segno %d is free, slot_ptr(%p), slot_data(%x)" , |
| 4968 | c_segno, slot_ptr, *(int *)((void *)slot_ptr)); |
| 4969 | } |
| 4970 | |
| 4971 | c_seg = c_segments[c_segno].c_seg; |
| 4972 | |
| 4973 | if (__probable(!kdp_mode)) { |
| 4974 | lck_mtx_lock_spin_always(lck: &c_seg->c_lock); |
| 4975 | } else { |
| 4976 | if (kdp_lck_mtx_lock_spin_is_acquired(lck: &c_seg->c_lock)) { |
| 4977 | return -2; |
| 4978 | } |
| 4979 | } |
| 4980 | |
| 4981 | assert(c_seg->c_state != C_IS_EMPTY && c_seg->c_state != C_IS_FREE); |
| 4982 | |
| 4983 | if (dst == NULL && c_seg->c_busy_swapping) { |
| 4984 | assert(c_seg->c_busy); |
| 4985 | |
| 4986 | goto bypass_busy_check; |
| 4987 | } |
| 4988 | if (flags & C_DONT_BLOCK) { |
| 4989 | if (c_seg->c_busy || (C_SEG_IS_ONDISK(c_seg) && dst)) { |
| 4990 | *zeroslot = 0; |
| 4991 | |
| 4992 | retval = -2; |
| 4993 | goto done; |
| 4994 | } |
| 4995 | } |
| 4996 | if (c_seg->c_busy) { |
| 4997 | PAGE_REPLACEMENT_DISALLOWED(FALSE); |
| 4998 | |
| 4999 | c_seg_wait_on_busy(c_seg); |
| 5000 | |
| 5001 | goto ReTry; |
| 5002 | } |
| 5003 | bypass_busy_check: |
| 5004 | |
| 5005 | c_indx = slot_ptr->s_cindx; |
| 5006 | |
| 5007 | if (__improbable(c_indx >= c_seg->c_nextslot)) { |
| 5008 | panic("c_decompress_page: c_indx %d >= c_nextslot %d, c_seg(%p), slot_ptr(%p), slot_data(%x)" , |
| 5009 | c_indx, c_seg->c_nextslot, c_seg, slot_ptr, *(int *)((void *)slot_ptr)); |
| 5010 | } |
| 5011 | |
| 5012 | cs = C_SEG_SLOT_FROM_INDEX(c_seg, c_indx); |
| 5013 | |
| 5014 | c_size = UNPACK_C_SIZE(cs); |
| 5015 | |
| 5016 | if (__improbable(c_size == 0)) { |
| 5017 | panic("c_decompress_page: c_size == 0, c_seg(%p), slot_ptr(%p), slot_data(%x)" , |
| 5018 | c_seg, slot_ptr, *(int *)((void *)slot_ptr)); |
| 5019 | } |
| 5020 | |
| 5021 | c_rounded_size = (c_size + C_SEG_OFFSET_ALIGNMENT_MASK) & ~C_SEG_OFFSET_ALIGNMENT_MASK; |
| 5022 | |
| 5023 | if (dst) { |
| 5024 | uint32_t age_of_cseg; |
| 5025 | clock_sec_t cur_ts_sec; |
| 5026 | clock_nsec_t cur_ts_nsec; |
| 5027 | |
| 5028 | if (C_SEG_IS_ONDISK(c_seg)) { |
| 5029 | #if CONFIG_FREEZE |
| 5030 | if (freezer_incore_cseg_acct) { |
| 5031 | if ((c_seg->c_slots_used + c_segment_pages_compressed_incore) >= c_segment_pages_compressed_nearing_limit) { |
| 5032 | PAGE_REPLACEMENT_DISALLOWED(FALSE); |
| 5033 | lck_mtx_unlock_always(&c_seg->c_lock); |
| 5034 | |
| 5035 | memorystatus_kill_on_VM_compressor_space_shortage(FALSE /* async */); |
| 5036 | |
| 5037 | goto ReTry; |
| 5038 | } |
| 5039 | |
| 5040 | uint32_t incore_seg_count = c_segment_count - c_swappedout_count - c_swappedout_sparse_count; |
| 5041 | if ((incore_seg_count + 1) >= c_segments_nearing_limit) { |
| 5042 | PAGE_REPLACEMENT_DISALLOWED(FALSE); |
| 5043 | lck_mtx_unlock_always(&c_seg->c_lock); |
| 5044 | |
| 5045 | memorystatus_kill_on_VM_compressor_space_shortage(FALSE /* async */); |
| 5046 | |
| 5047 | goto ReTry; |
| 5048 | } |
| 5049 | } |
| 5050 | #endif /* CONFIG_FREEZE */ |
| 5051 | assert(kdp_mode == FALSE); |
| 5052 | retval = c_seg_swapin(c_seg, FALSE, TRUE); |
| 5053 | assert(retval == 0); |
| 5054 | |
| 5055 | retval = 1; |
| 5056 | } |
| 5057 | if (c_seg->c_state == C_ON_BAD_Q) { |
| 5058 | assert(c_seg->c_store.c_buffer == NULL); |
| 5059 | *zeroslot = 0; |
| 5060 | |
| 5061 | retval = -1; |
| 5062 | goto done; |
| 5063 | } |
| 5064 | |
| 5065 | #if POPCOUNT_THE_COMPRESSED_DATA |
| 5066 | unsigned csvpop; |
| 5067 | uintptr_t csvaddr = (uintptr_t) &c_seg->c_store.c_buffer[cs->c_offset]; |
| 5068 | if (cs->c_pop_cdata != (csvpop = vmc_pop(csvaddr, c_size))) { |
| 5069 | panic("Compressed data popcount doesn't match original, bit distance: %d %p (phys: %p) %p %p 0x%x 0x%x 0x%x 0x%x" , (csvpop - cs->c_pop_cdata), (void *)csvaddr, (void *) kvtophys(csvaddr), c_seg, cs, cs->c_offset, c_size, csvpop, cs->c_pop_cdata); |
| 5070 | } |
| 5071 | #endif |
| 5072 | |
| 5073 | #if CHECKSUM_THE_COMPRESSED_DATA |
| 5074 | unsigned csvhash; |
| 5075 | if (cs->c_hash_compressed_data != (csvhash = vmc_hash((char *)&c_seg->c_store.c_buffer[cs->c_offset], c_size))) { |
| 5076 | panic("Compressed data doesn't match original %p %p %u %u %u" , c_seg, cs, c_size, cs->c_hash_compressed_data, csvhash); |
| 5077 | } |
| 5078 | #endif |
| 5079 | if (c_rounded_size == PAGE_SIZE) { |
| 5080 | /* |
| 5081 | * page wasn't compressible... just copy it out |
| 5082 | */ |
| 5083 | memcpy(dst, src: &c_seg->c_store.c_buffer[cs->c_offset], PAGE_SIZE); |
| 5084 | } else if (c_size == 4) { |
| 5085 | int32_t data; |
| 5086 | int32_t *dptr; |
| 5087 | |
| 5088 | /* |
| 5089 | * page was populated with a single value |
| 5090 | * that didn't fit into our fast hash |
| 5091 | * so we packed it in as a single non-compressed value |
| 5092 | * that we need to populate the page with |
| 5093 | */ |
| 5094 | dptr = (int32_t *)(uintptr_t)dst; |
| 5095 | data = *(int32_t *)(&c_seg->c_store.c_buffer[cs->c_offset]); |
| 5096 | sv_decompress(ddst: dptr, pattern: data); |
| 5097 | } else { |
| 5098 | uint32_t my_cpu_no; |
| 5099 | char *scratch_buf; |
| 5100 | |
| 5101 | if (__probable(!kdp_mode)) { |
| 5102 | /* |
| 5103 | * we're behind the c_seg lock held in spin mode |
| 5104 | * which means pre-emption is disabled... therefore |
| 5105 | * the following sequence is atomic and safe |
| 5106 | */ |
| 5107 | my_cpu_no = cpu_number(); |
| 5108 | |
| 5109 | assert(my_cpu_no < compressor_cpus); |
| 5110 | |
| 5111 | scratch_buf = &compressor_scratch_bufs[my_cpu_no * vm_compressor_get_decode_scratch_size()]; |
| 5112 | } else { |
| 5113 | scratch_buf = kdp_compressor_scratch_buf; |
| 5114 | } |
| 5115 | |
| 5116 | if (vm_compressor_algorithm() != VM_COMPRESSOR_DEFAULT_CODEC) { |
| 5117 | #if defined(__arm64__) |
| 5118 | uint16_t c_codec = cs->c_codec; |
| 5119 | uint32_t inline_popcount; |
| 5120 | if (!metadecompressor(source: (const uint8_t *) &c_seg->c_store.c_buffer[cs->c_offset], |
| 5121 | dest: (uint8_t *)dst, csize: c_size, ccodec: c_codec, compressor_dscratch: (void *)scratch_buf, pop_count_p: &inline_popcount)) { |
| 5122 | retval = -1; |
| 5123 | } else { |
| 5124 | assert(inline_popcount == C_SLOT_NO_POPCOUNT); |
| 5125 | } |
| 5126 | #endif |
| 5127 | } else { |
| 5128 | #if defined(__arm64__) |
| 5129 | __unreachable_ok_push |
| 5130 | if (PAGE_SIZE == 4096) { |
| 5131 | WKdm_decompress_4k(src_buf: (WK_word *)(uintptr_t)&c_seg->c_store.c_buffer[cs->c_offset], |
| 5132 | dest_buf: (WK_word *)(uintptr_t)dst, scratch: (WK_word *)(uintptr_t)scratch_buf, bytes: c_size); |
| 5133 | } else { |
| 5134 | WKdm_decompress_16k(src_buf: (WK_word *)(uintptr_t)&c_seg->c_store.c_buffer[cs->c_offset], |
| 5135 | dest_buf: (WK_word *)(uintptr_t)dst, scratch: (WK_word *)(uintptr_t)scratch_buf, bytes: c_size); |
| 5136 | } |
| 5137 | __unreachable_ok_pop |
| 5138 | #else |
| 5139 | WKdm_decompress_new((WK_word *)(uintptr_t)&c_seg->c_store.c_buffer[cs->c_offset], |
| 5140 | (WK_word *)(uintptr_t)dst, (WK_word *)(uintptr_t)scratch_buf, c_size); |
| 5141 | #endif |
| 5142 | } |
| 5143 | } |
| 5144 | |
| 5145 | #if CHECKSUM_THE_DATA |
| 5146 | if (cs->c_hash_data != vmc_hash(dst, PAGE_SIZE)) { |
| 5147 | #if defined(__arm64__) |
| 5148 | int32_t *dinput = &c_seg->c_store.c_buffer[cs->c_offset]; |
| 5149 | panic("decompressed data doesn't match original cs: %p, hash: 0x%x, offset: %d, c_size: %d, c_rounded_size: %d, codec: %d, header: 0x%x 0x%x 0x%x" , cs, cs->c_hash_data, cs->c_offset, c_size, c_rounded_size, cs->c_codec, *dinput, *(dinput + 1), *(dinput + 2)); |
| 5150 | #else |
| 5151 | panic("decompressed data doesn't match original cs: %p, hash: %d, offset: 0x%x, c_size: %d" , cs, cs->c_hash_data, cs->c_offset, c_size); |
| 5152 | #endif |
| 5153 | } |
| 5154 | #endif |
| 5155 | if (c_seg->c_swappedin_ts == 0 && !kdp_mode) { |
| 5156 | clock_get_system_nanotime(secs: &cur_ts_sec, nanosecs: &cur_ts_nsec); |
| 5157 | |
| 5158 | age_of_cseg = (uint32_t)cur_ts_sec - c_seg->c_creation_ts; |
| 5159 | if (age_of_cseg < DECOMPRESSION_SAMPLE_MAX_AGE) { |
| 5160 | OSAddAtomic(1, &age_of_decompressions_during_sample_period[age_of_cseg]); |
| 5161 | } else { |
| 5162 | OSAddAtomic(1, &overage_decompressions_during_sample_period); |
| 5163 | } |
| 5164 | |
| 5165 | OSAddAtomic(1, &sample_period_decompression_count); |
| 5166 | } |
| 5167 | } |
| 5168 | #if CONFIG_FREEZE |
| 5169 | else { |
| 5170 | /* |
| 5171 | * We are freeing an uncompressed page from this c_seg and so balance the ledgers. |
| 5172 | */ |
| 5173 | if (C_SEG_IS_ONDISK(c_seg)) { |
| 5174 | /* |
| 5175 | * The compression sweep feature will push out anonymous pages to disk |
| 5176 | * without going through the freezer path and so those c_segs, while |
| 5177 | * swapped out, won't have an owner. |
| 5178 | */ |
| 5179 | if (c_seg->c_task_owner) { |
| 5180 | task_update_frozen_to_swap_acct(c_seg->c_task_owner, PAGE_SIZE_64, DEBIT_FROM_SWAP); |
| 5181 | } |
| 5182 | |
| 5183 | /* |
| 5184 | * We are freeing a page in swap without swapping it in. We bump the in-core |
| 5185 | * count here to simulate a swapin of a page so that we can accurately |
| 5186 | * decrement it below. |
| 5187 | */ |
| 5188 | OSAddAtomic(1, &c_segment_pages_compressed_incore); |
| 5189 | if (c_seg->c_has_donated_pages) { |
| 5190 | OSAddAtomic(1, &c_segment_pages_compressed_incore_late_swapout); |
| 5191 | } |
| 5192 | } else if (c_seg->c_state == C_ON_BAD_Q) { |
| 5193 | assert(c_seg->c_store.c_buffer == NULL); |
| 5194 | *zeroslot = 0; |
| 5195 | |
| 5196 | retval = -1; |
| 5197 | goto done; |
| 5198 | } |
| 5199 | } |
| 5200 | #endif /* CONFIG_FREEZE */ |
| 5201 | |
| 5202 | if (flags & C_KEEP) { |
| 5203 | *zeroslot = 0; |
| 5204 | goto done; |
| 5205 | } |
| 5206 | assert(kdp_mode == FALSE); |
| 5207 | |
| 5208 | c_seg->c_bytes_unused += c_rounded_size; |
| 5209 | c_seg->c_bytes_used -= c_rounded_size; |
| 5210 | |
| 5211 | assert(c_seg->c_slots_used); |
| 5212 | c_seg->c_slots_used--; |
| 5213 | if (dst && c_seg->c_swappedin) { |
| 5214 | task_t task = current_task(); |
| 5215 | if (task) { |
| 5216 | ledger_credit(ledger: task->ledger, entry: task_ledgers.swapins, PAGE_SIZE); |
| 5217 | } |
| 5218 | } |
| 5219 | |
| 5220 | PACK_C_SIZE(cs, 0); |
| 5221 | |
| 5222 | if (c_indx < c_seg->c_firstemptyslot) { |
| 5223 | c_seg->c_firstemptyslot = c_indx; |
| 5224 | } |
| 5225 | |
| 5226 | OSAddAtomic(-1, &c_segment_pages_compressed); |
| 5227 | #if CONFIG_FREEZE |
| 5228 | OSAddAtomic(-1, &c_segment_pages_compressed_incore); |
| 5229 | assertf(c_segment_pages_compressed_incore >= 0, "-ve incore count %p 0x%x" , c_seg, c_segment_pages_compressed_incore); |
| 5230 | if (c_seg->c_has_donated_pages) { |
| 5231 | OSAddAtomic(-1, &c_segment_pages_compressed_incore_late_swapout); |
| 5232 | assertf(c_segment_pages_compressed_incore_late_swapout >= 0, "-ve lateswapout count %p 0x%x" , c_seg, c_segment_pages_compressed_incore_late_swapout); |
| 5233 | } |
| 5234 | #endif /* CONFIG_FREEZE */ |
| 5235 | |
| 5236 | if (c_seg->c_state != C_ON_BAD_Q && !(C_SEG_IS_ONDISK(c_seg))) { |
| 5237 | /* |
| 5238 | * C_SEG_IS_ONDISK == TRUE can occur when we're doing a |
| 5239 | * free of a compressed page (i.e. dst == NULL) |
| 5240 | */ |
| 5241 | OSAddAtomic64(-c_rounded_size, &compressor_bytes_used); |
| 5242 | } |
| 5243 | if (c_seg->c_busy_swapping) { |
| 5244 | /* |
| 5245 | * bypass case for c_busy_swapping... |
| 5246 | * let the swapin/swapout paths deal with putting |
| 5247 | * the c_seg on the minor compaction queue if needed |
| 5248 | */ |
| 5249 | assert(c_seg->c_busy); |
| 5250 | goto done; |
| 5251 | } |
| 5252 | assert(!c_seg->c_busy); |
| 5253 | |
| 5254 | if (c_seg->c_state != C_IS_FILLING) { |
| 5255 | if (c_seg->c_bytes_used == 0) { |
| 5256 | if (!(C_SEG_IS_ONDISK(c_seg))) { |
| 5257 | int pages_populated; |
| 5258 | |
| 5259 | pages_populated = (round_page_32(C_SEG_OFFSET_TO_BYTES(c_seg->c_populated_offset))) / PAGE_SIZE; |
| 5260 | c_seg->c_populated_offset = C_SEG_BYTES_TO_OFFSET(0); |
| 5261 | |
| 5262 | if (pages_populated) { |
| 5263 | assert(c_seg->c_state != C_ON_BAD_Q); |
| 5264 | assert(c_seg->c_store.c_buffer != NULL); |
| 5265 | |
| 5266 | C_SEG_BUSY(c_seg); |
| 5267 | lck_mtx_unlock_always(&c_seg->c_lock); |
| 5268 | |
| 5269 | kernel_memory_depopulate( |
| 5270 | addr: (vm_offset_t) c_seg->c_store.c_buffer, |
| 5271 | ptoa(pages_populated), |
| 5272 | flags: KMA_COMPRESSOR, VM_KERN_MEMORY_COMPRESSOR); |
| 5273 | |
| 5274 | lck_mtx_lock_spin_always(lck: &c_seg->c_lock); |
| 5275 | C_SEG_WAKEUP_DONE(c_seg); |
| 5276 | } |
| 5277 | if (!c_seg->c_on_minorcompact_q && c_seg->c_state != C_ON_SWAPIO_Q) { |
| 5278 | if (c_seg->c_state == C_ON_SWAPOUT_Q) { |
| 5279 | bool clear_busy = false; |
| 5280 | if (!lck_mtx_try_lock_spin_always(c_list_lock)) { |
| 5281 | C_SEG_BUSY(c_seg); |
| 5282 | |
| 5283 | lck_mtx_unlock_always(&c_seg->c_lock); |
| 5284 | lck_mtx_lock_spin_always(c_list_lock); |
| 5285 | lck_mtx_lock_spin_always(lck: &c_seg->c_lock); |
| 5286 | clear_busy = true; |
| 5287 | } |
| 5288 | c_seg_switch_state(c_seg, C_ON_AGE_Q, FALSE); |
| 5289 | if (clear_busy) { |
| 5290 | C_SEG_WAKEUP_DONE(c_seg); |
| 5291 | clear_busy = false; |
| 5292 | } |
| 5293 | lck_mtx_unlock_always(c_list_lock); |
| 5294 | } |
| 5295 | c_seg_need_delayed_compaction(c_seg, FALSE); |
| 5296 | } |
| 5297 | } else { |
| 5298 | if (c_seg->c_state != C_ON_SWAPPEDOUTSPARSE_Q) { |
| 5299 | c_seg_move_to_sparse_list(c_seg); |
| 5300 | consider_defragmenting = TRUE; |
| 5301 | } |
| 5302 | } |
| 5303 | } else if (c_seg->c_on_minorcompact_q) { |
| 5304 | assert(c_seg->c_state != C_ON_BAD_Q); |
| 5305 | assert(!C_SEG_IS_ON_DISK_OR_SOQ(c_seg)); |
| 5306 | |
| 5307 | if (C_SEG_SHOULD_MINORCOMPACT_NOW(c_seg)) { |
| 5308 | c_seg_try_minor_compaction_and_unlock(c_seg); |
| 5309 | need_unlock = FALSE; |
| 5310 | } |
| 5311 | } else if (!(C_SEG_IS_ONDISK(c_seg))) { |
| 5312 | if (c_seg->c_state != C_ON_BAD_Q && c_seg->c_state != C_ON_SWAPOUT_Q && c_seg->c_state != C_ON_SWAPIO_Q && |
| 5313 | C_SEG_UNUSED_BYTES(c_seg) >= PAGE_SIZE) { |
| 5314 | c_seg_need_delayed_compaction(c_seg, FALSE); |
| 5315 | } |
| 5316 | } else if (c_seg->c_state != C_ON_SWAPPEDOUTSPARSE_Q && C_SEG_ONDISK_IS_SPARSE(c_seg)) { |
| 5317 | c_seg_move_to_sparse_list(c_seg); |
| 5318 | consider_defragmenting = TRUE; |
| 5319 | } |
| 5320 | } |
| 5321 | done: |
| 5322 | if (__improbable(kdp_mode)) { |
| 5323 | return retval; |
| 5324 | } |
| 5325 | |
| 5326 | if (need_unlock == TRUE) { |
| 5327 | lck_mtx_unlock_always(&c_seg->c_lock); |
| 5328 | } |
| 5329 | |
| 5330 | PAGE_REPLACEMENT_DISALLOWED(FALSE); |
| 5331 | |
| 5332 | if (consider_defragmenting == TRUE) { |
| 5333 | vm_swap_consider_defragmenting(VM_SWAP_FLAGS_NONE); |
| 5334 | } |
| 5335 | |
| 5336 | #if !XNU_TARGET_OS_OSX |
| 5337 | if ((c_minor_count && COMPRESSOR_NEEDS_TO_MINOR_COMPACT()) || vm_compressor_needs_to_major_compact()) { |
| 5338 | vm_wake_compactor_swapper(); |
| 5339 | } |
| 5340 | #endif /* !XNU_TARGET_OS_OSX */ |
| 5341 | |
| 5342 | return retval; |
| 5343 | } |
| 5344 | |
| 5345 | |
| 5346 | inline bool |
| 5347 | vm_compressor_is_slot_compressed(int *slot) |
| 5348 | { |
| 5349 | #if !CONFIG_TRACK_UNMODIFIED_ANON_PAGES |
| 5350 | #pragma unused(slot) |
| 5351 | return true; |
| 5352 | #else /* !CONFIG_TRACK_UNMODIFIED_ANON_PAGES*/ |
| 5353 | c_slot_mapping_t slot_ptr = (c_slot_mapping_t)slot; |
| 5354 | return !slot_ptr->s_uncompressed; |
| 5355 | #endif /* !CONFIG_TRACK_UNMODIFIED_ANON_PAGES*/ |
| 5356 | } |
| 5357 | |
| 5358 | int |
| 5359 | vm_compressor_get(ppnum_t pn, int *slot, vm_compressor_options_t flags) |
| 5360 | { |
| 5361 | c_slot_mapping_t slot_ptr; |
| 5362 | char *dst; |
| 5363 | int zeroslot = 1; |
| 5364 | int retval; |
| 5365 | |
| 5366 | #if CONFIG_TRACK_UNMODIFIED_ANON_PAGES |
| 5367 | if (flags & C_PAGE_UNMODIFIED) { |
| 5368 | retval = vm_uncompressed_get(pn, slot, flags | C_KEEP); |
| 5369 | if (retval == 0) { |
| 5370 | os_atomic_inc(&compressor_ro_uncompressed_get, relaxed); |
| 5371 | } |
| 5372 | |
| 5373 | return retval; |
| 5374 | } |
| 5375 | #endif /* CONFIG_TRACK_UNMODIFIED_ANON_PAGES */ |
| 5376 | |
| 5377 | dst = pmap_map_compressor_page(pn); |
| 5378 | slot_ptr = (c_slot_mapping_t)slot; |
| 5379 | |
| 5380 | assert(dst != NULL); |
| 5381 | |
| 5382 | if (slot_ptr->s_cseg == C_SV_CSEG_ID) { |
| 5383 | int32_t data; |
| 5384 | int32_t *dptr; |
| 5385 | |
| 5386 | /* |
| 5387 | * page was populated with a single value |
| 5388 | * that found a home in our hash table |
| 5389 | * grab that value from the hash and populate the page |
| 5390 | * that we need to populate the page with |
| 5391 | */ |
| 5392 | dptr = (int32_t *)(uintptr_t)dst; |
| 5393 | data = c_segment_sv_hash_table[slot_ptr->s_cindx].he_data; |
| 5394 | sv_decompress(ddst: dptr, pattern: data); |
| 5395 | if (!(flags & C_KEEP)) { |
| 5396 | c_segment_sv_hash_drop_ref(hash_indx: slot_ptr->s_cindx); |
| 5397 | |
| 5398 | OSAddAtomic(-1, &c_segment_pages_compressed); |
| 5399 | *slot = 0; |
| 5400 | } |
| 5401 | if (data) { |
| 5402 | OSAddAtomic(1, &c_segment_svp_nonzero_decompressions); |
| 5403 | } else { |
| 5404 | OSAddAtomic(1, &c_segment_svp_zero_decompressions); |
| 5405 | } |
| 5406 | |
| 5407 | pmap_unmap_compressor_page(pn, dst); |
| 5408 | return 0; |
| 5409 | } |
| 5410 | |
| 5411 | retval = c_decompress_page(dst, slot_ptr, flags, zeroslot: &zeroslot); |
| 5412 | |
| 5413 | /* |
| 5414 | * zeroslot will be set to 0 by c_decompress_page if (flags & C_KEEP) |
| 5415 | * or (flags & C_DONT_BLOCK) and we found 'c_busy' or 'C_SEG_IS_ONDISK' to be TRUE |
| 5416 | */ |
| 5417 | if (zeroslot) { |
| 5418 | *slot = 0; |
| 5419 | } |
| 5420 | |
| 5421 | pmap_unmap_compressor_page(pn, dst); |
| 5422 | |
| 5423 | /* |
| 5424 | * returns 0 if we successfully decompressed a page from a segment already in memory |
| 5425 | * returns 1 if we had to first swap in the segment, before successfully decompressing the page |
| 5426 | * returns -1 if we encountered an error swapping in the segment - decompression failed |
| 5427 | * returns -2 if (flags & C_DONT_BLOCK) and we found 'c_busy' or 'C_SEG_IS_ONDISK' to be true |
| 5428 | */ |
| 5429 | return retval; |
| 5430 | } |
| 5431 | |
| 5432 | int |
| 5433 | vm_compressor_free(int *slot, vm_compressor_options_t flags) |
| 5434 | { |
| 5435 | bool slot_is_compressed = vm_compressor_is_slot_compressed(slot); |
| 5436 | |
| 5437 | if (slot_is_compressed) { |
| 5438 | c_slot_mapping_t slot_ptr; |
| 5439 | int zeroslot = 1; |
| 5440 | int retval = 0; |
| 5441 | |
| 5442 | assert(flags == 0 || flags == C_DONT_BLOCK); |
| 5443 | |
| 5444 | slot_ptr = (c_slot_mapping_t)slot; |
| 5445 | |
| 5446 | if (slot_ptr->s_cseg == C_SV_CSEG_ID) { |
| 5447 | c_segment_sv_hash_drop_ref(hash_indx: slot_ptr->s_cindx); |
| 5448 | OSAddAtomic(-1, &c_segment_pages_compressed); |
| 5449 | |
| 5450 | *slot = 0; |
| 5451 | return 0; |
| 5452 | } |
| 5453 | retval = c_decompress_page(NULL, slot_ptr, flags, zeroslot: &zeroslot); |
| 5454 | /* |
| 5455 | * returns 0 if we successfully freed the specified compressed page |
| 5456 | * returns -1 if we encountered an error swapping in the segment - decompression failed |
| 5457 | * returns -2 if (flags & C_DONT_BLOCK) and we found 'c_busy' set |
| 5458 | */ |
| 5459 | |
| 5460 | if (retval == 0) { |
| 5461 | *slot = 0; |
| 5462 | } |
| 5463 | |
| 5464 | return retval; |
| 5465 | } |
| 5466 | #if CONFIG_TRACK_UNMODIFIED_ANON_PAGES |
| 5467 | else { |
| 5468 | if ((flags & C_PAGE_UNMODIFIED) == 0) { |
| 5469 | /* moving from uncompressed state to compressed. Free it.*/ |
| 5470 | vm_uncompressed_free(slot, 0); |
| 5471 | assert(*slot == 0); |
| 5472 | } |
| 5473 | } |
| 5474 | #endif /* CONFIG_TRACK_UNMODIFIED_ANON_PAGES */ |
| 5475 | return KERN_SUCCESS; |
| 5476 | } |
| 5477 | |
| 5478 | int |
| 5479 | vm_compressor_put(ppnum_t pn, int *slot, void **current_chead, char *scratch_buf, bool unmodified) |
| 5480 | { |
| 5481 | char *src; |
| 5482 | int retval = 0; |
| 5483 | |
| 5484 | #if CONFIG_TRACK_UNMODIFIED_ANON_PAGES |
| 5485 | if (unmodified) { |
| 5486 | if (*slot) { |
| 5487 | os_atomic_inc(&compressor_ro_uncompressed_skip_returned, relaxed); |
| 5488 | return retval; |
| 5489 | } else { |
| 5490 | retval = vm_uncompressed_put(pn, slot); |
| 5491 | if (retval == KERN_SUCCESS) { |
| 5492 | os_atomic_inc(&compressor_ro_uncompressed_put, relaxed); |
| 5493 | return retval; |
| 5494 | } |
| 5495 | } |
| 5496 | } |
| 5497 | #else /* CONFIG_TRACK_UNMODIFIED_ANON_PAGES */ |
| 5498 | #pragma unused(unmodified) |
| 5499 | #endif /* CONFIG_TRACK_UNMODIFIED_ANON_PAGES */ |
| 5500 | |
| 5501 | src = pmap_map_compressor_page(pn); |
| 5502 | assert(src != NULL); |
| 5503 | |
| 5504 | retval = c_compress_page(src, slot_ptr: (c_slot_mapping_t)slot, current_chead: (c_segment_t *)current_chead, scratch_buf); |
| 5505 | pmap_unmap_compressor_page(pn, src); |
| 5506 | |
| 5507 | return retval; |
| 5508 | } |
| 5509 | |
| 5510 | void |
| 5511 | vm_compressor_transfer( |
| 5512 | int *dst_slot_p, |
| 5513 | int *src_slot_p) |
| 5514 | { |
| 5515 | c_slot_mapping_t dst_slot, src_slot; |
| 5516 | c_segment_t c_seg; |
| 5517 | uint16_t c_indx; |
| 5518 | c_slot_t cs; |
| 5519 | |
| 5520 | src_slot = (c_slot_mapping_t) src_slot_p; |
| 5521 | |
| 5522 | if (src_slot->s_cseg == C_SV_CSEG_ID || !vm_compressor_is_slot_compressed(slot: src_slot_p)) { |
| 5523 | *dst_slot_p = *src_slot_p; |
| 5524 | *src_slot_p = 0; |
| 5525 | return; |
| 5526 | } |
| 5527 | dst_slot = (c_slot_mapping_t) dst_slot_p; |
| 5528 | Retry: |
| 5529 | PAGE_REPLACEMENT_DISALLOWED(TRUE); |
| 5530 | /* get segment for src_slot */ |
| 5531 | c_seg = c_segments[src_slot->s_cseg - 1].c_seg; |
| 5532 | /* lock segment */ |
| 5533 | lck_mtx_lock_spin_always(lck: &c_seg->c_lock); |
| 5534 | /* wait if it's busy */ |
| 5535 | if (c_seg->c_busy && !c_seg->c_busy_swapping) { |
| 5536 | PAGE_REPLACEMENT_DISALLOWED(FALSE); |
| 5537 | c_seg_wait_on_busy(c_seg); |
| 5538 | goto Retry; |
| 5539 | } |
| 5540 | /* find the c_slot */ |
| 5541 | c_indx = src_slot->s_cindx; |
| 5542 | cs = C_SEG_SLOT_FROM_INDEX(c_seg, c_indx); |
| 5543 | /* point the c_slot back to dst_slot instead of src_slot */ |
| 5544 | C_SLOT_ASSERT_PACKABLE(dst_slot); |
| 5545 | cs->c_packed_ptr = C_SLOT_PACK_PTR(dst_slot); |
| 5546 | /* transfer */ |
| 5547 | *dst_slot_p = *src_slot_p; |
| 5548 | *src_slot_p = 0; |
| 5549 | lck_mtx_unlock_always(&c_seg->c_lock); |
| 5550 | PAGE_REPLACEMENT_DISALLOWED(FALSE); |
| 5551 | } |
| 5552 | |
| 5553 | #if defined(__arm64__) |
| 5554 | extern clock_sec_t vm_swapfile_last_failed_to_create_ts; |
| 5555 | __attribute__((noreturn)) |
| 5556 | void |
| 5557 | vm_panic_hibernate_write_image_failed(int err) |
| 5558 | { |
| 5559 | panic("hibernate_write_image encountered error 0x%x - %u, %u, %d, %d, %d, %d, %d, %d, %d, %d, %llu, %d, %d, %d\n" , |
| 5560 | err, |
| 5561 | VM_PAGE_COMPRESSOR_COUNT, vm_page_wire_count, |
| 5562 | c_age_count, c_major_count, c_minor_count, (c_early_swapout_count + c_regular_swapout_count + c_late_swapout_count), c_swappedout_sparse_count, |
| 5563 | vm_num_swap_files, vm_num_pinned_swap_files, vm_swappin_enabled, vm_swap_put_failures, |
| 5564 | (vm_swapfile_last_failed_to_create_ts ? 1:0), hibernate_no_swapspace, hibernate_flush_timed_out); |
| 5565 | } |
| 5566 | #endif /*(__arm64__)*/ |
| 5567 | |
| 5568 | #if CONFIG_FREEZE |
| 5569 | |
| 5570 | int freezer_finished_filling = 0; |
| 5571 | |
| 5572 | void |
| 5573 | vm_compressor_finished_filling( |
| 5574 | void **current_chead) |
| 5575 | { |
| 5576 | c_segment_t c_seg; |
| 5577 | |
| 5578 | if ((c_seg = *(c_segment_t *)current_chead) == NULL) { |
| 5579 | return; |
| 5580 | } |
| 5581 | |
| 5582 | assert(c_seg->c_state == C_IS_FILLING); |
| 5583 | |
| 5584 | lck_mtx_lock_spin_always(&c_seg->c_lock); |
| 5585 | |
| 5586 | c_current_seg_filled(c_seg, (c_segment_t *)current_chead); |
| 5587 | |
| 5588 | lck_mtx_unlock_always(&c_seg->c_lock); |
| 5589 | |
| 5590 | freezer_finished_filling++; |
| 5591 | } |
| 5592 | |
| 5593 | |
| 5594 | /* |
| 5595 | * This routine is used to transfer the compressed chunks from |
| 5596 | * the c_seg/cindx pointed to by slot_p into a new c_seg headed |
| 5597 | * by the current_chead and a new cindx within that c_seg. |
| 5598 | * |
| 5599 | * Currently, this routine is only used by the "freezer backed by |
| 5600 | * compressor with swap" mode to create a series of c_segs that |
| 5601 | * only contain compressed data belonging to one task. So, we |
| 5602 | * move a task's previously compressed data into a set of new |
| 5603 | * c_segs which will also hold the task's yet to be compressed data. |
| 5604 | */ |
| 5605 | |
| 5606 | kern_return_t |
| 5607 | vm_compressor_relocate( |
| 5608 | void **current_chead, |
| 5609 | int *slot_p) |
| 5610 | { |
| 5611 | c_slot_mapping_t slot_ptr; |
| 5612 | c_slot_mapping_t src_slot; |
| 5613 | uint32_t c_rounded_size; |
| 5614 | uint32_t c_size; |
| 5615 | uint16_t dst_slot; |
| 5616 | c_slot_t c_dst; |
| 5617 | c_slot_t c_src; |
| 5618 | uint16_t c_indx; |
| 5619 | c_segment_t c_seg_dst = NULL; |
| 5620 | c_segment_t c_seg_src = NULL; |
| 5621 | kern_return_t kr = KERN_SUCCESS; |
| 5622 | |
| 5623 | |
| 5624 | src_slot = (c_slot_mapping_t) slot_p; |
| 5625 | |
| 5626 | if (src_slot->s_cseg == C_SV_CSEG_ID) { |
| 5627 | /* |
| 5628 | * no need to relocate... this is a page full of a single |
| 5629 | * value which is hashed to a single entry not contained |
| 5630 | * in a c_segment_t |
| 5631 | */ |
| 5632 | return kr; |
| 5633 | } |
| 5634 | |
| 5635 | if (vm_compressor_is_slot_compressed((int *)src_slot) == false) { |
| 5636 | /* |
| 5637 | * Unmodified anonymous pages are sitting uncompressed on disk. |
| 5638 | * So don't pull them back in again. |
| 5639 | */ |
| 5640 | return kr; |
| 5641 | } |
| 5642 | |
| 5643 | Relookup_dst: |
| 5644 | c_seg_dst = c_seg_allocate((c_segment_t *)current_chead); |
| 5645 | /* |
| 5646 | * returns with c_seg lock held |
| 5647 | * and PAGE_REPLACEMENT_DISALLOWED(TRUE)... |
| 5648 | * c_nextslot has been allocated and |
| 5649 | * c_store.c_buffer populated |
| 5650 | */ |
| 5651 | if (c_seg_dst == NULL) { |
| 5652 | /* |
| 5653 | * Out of compression segments? |
| 5654 | */ |
| 5655 | kr = KERN_RESOURCE_SHORTAGE; |
| 5656 | goto out; |
| 5657 | } |
| 5658 | |
| 5659 | assert(c_seg_dst->c_busy == 0); |
| 5660 | |
| 5661 | C_SEG_BUSY(c_seg_dst); |
| 5662 | |
| 5663 | dst_slot = c_seg_dst->c_nextslot; |
| 5664 | |
| 5665 | lck_mtx_unlock_always(&c_seg_dst->c_lock); |
| 5666 | |
| 5667 | Relookup_src: |
| 5668 | c_seg_src = c_segments[src_slot->s_cseg - 1].c_seg; |
| 5669 | |
| 5670 | assert(c_seg_dst != c_seg_src); |
| 5671 | |
| 5672 | lck_mtx_lock_spin_always(&c_seg_src->c_lock); |
| 5673 | |
| 5674 | if (C_SEG_IS_ON_DISK_OR_SOQ(c_seg_src) || |
| 5675 | c_seg_src->c_state == C_IS_FILLING) { |
| 5676 | /* |
| 5677 | * Skip this page if :- |
| 5678 | * a) the src c_seg is already on-disk (or on its way there) |
| 5679 | * A "thaw" can mark a process as eligible for |
| 5680 | * another freeze cycle without bringing any of |
| 5681 | * its swapped out c_segs back from disk (because |
| 5682 | * that is done on-demand). |
| 5683 | * Or, this page may be mapped elsewhere in the task's map, |
| 5684 | * and we may have marked it for swap already. |
| 5685 | * |
| 5686 | * b) Or, the src c_seg is being filled by the compressor |
| 5687 | * thread. We don't want the added latency of waiting for |
| 5688 | * this c_seg in the freeze path and so we skip it. |
| 5689 | */ |
| 5690 | |
| 5691 | PAGE_REPLACEMENT_DISALLOWED(FALSE); |
| 5692 | |
| 5693 | lck_mtx_unlock_always(&c_seg_src->c_lock); |
| 5694 | |
| 5695 | c_seg_src = NULL; |
| 5696 | |
| 5697 | goto out; |
| 5698 | } |
| 5699 | |
| 5700 | if (c_seg_src->c_busy) { |
| 5701 | PAGE_REPLACEMENT_DISALLOWED(FALSE); |
| 5702 | c_seg_wait_on_busy(c_seg_src); |
| 5703 | |
| 5704 | c_seg_src = NULL; |
| 5705 | |
| 5706 | PAGE_REPLACEMENT_DISALLOWED(TRUE); |
| 5707 | |
| 5708 | goto Relookup_src; |
| 5709 | } |
| 5710 | |
| 5711 | C_SEG_BUSY(c_seg_src); |
| 5712 | |
| 5713 | lck_mtx_unlock_always(&c_seg_src->c_lock); |
| 5714 | |
| 5715 | PAGE_REPLACEMENT_DISALLOWED(FALSE); |
| 5716 | |
| 5717 | /* find the c_slot */ |
| 5718 | c_indx = src_slot->s_cindx; |
| 5719 | |
| 5720 | c_src = C_SEG_SLOT_FROM_INDEX(c_seg_src, c_indx); |
| 5721 | |
| 5722 | c_size = UNPACK_C_SIZE(c_src); |
| 5723 | |
| 5724 | assert(c_size); |
| 5725 | |
| 5726 | if (c_size > (uint32_t)(c_seg_bufsize - C_SEG_OFFSET_TO_BYTES((int32_t)c_seg_dst->c_nextoffset))) { |
| 5727 | /* |
| 5728 | * This segment is full. We need a new one. |
| 5729 | */ |
| 5730 | |
| 5731 | PAGE_REPLACEMENT_DISALLOWED(TRUE); |
| 5732 | |
| 5733 | lck_mtx_lock_spin_always(&c_seg_src->c_lock); |
| 5734 | C_SEG_WAKEUP_DONE(c_seg_src); |
| 5735 | lck_mtx_unlock_always(&c_seg_src->c_lock); |
| 5736 | |
| 5737 | c_seg_src = NULL; |
| 5738 | |
| 5739 | lck_mtx_lock_spin_always(&c_seg_dst->c_lock); |
| 5740 | |
| 5741 | assert(c_seg_dst->c_busy); |
| 5742 | assert(c_seg_dst->c_state == C_IS_FILLING); |
| 5743 | assert(!c_seg_dst->c_on_minorcompact_q); |
| 5744 | |
| 5745 | c_current_seg_filled(c_seg_dst, (c_segment_t *)current_chead); |
| 5746 | assert(*current_chead == NULL); |
| 5747 | |
| 5748 | C_SEG_WAKEUP_DONE(c_seg_dst); |
| 5749 | |
| 5750 | lck_mtx_unlock_always(&c_seg_dst->c_lock); |
| 5751 | |
| 5752 | c_seg_dst = NULL; |
| 5753 | |
| 5754 | PAGE_REPLACEMENT_DISALLOWED(FALSE); |
| 5755 | |
| 5756 | goto Relookup_dst; |
| 5757 | } |
| 5758 | |
| 5759 | c_dst = C_SEG_SLOT_FROM_INDEX(c_seg_dst, c_seg_dst->c_nextslot); |
| 5760 | |
| 5761 | memcpy(&c_seg_dst->c_store.c_buffer[c_seg_dst->c_nextoffset], &c_seg_src->c_store.c_buffer[c_src->c_offset], c_size); |
| 5762 | /* |
| 5763 | * Is platform alignment actually necessary since wkdm aligns its output? |
| 5764 | */ |
| 5765 | c_rounded_size = (c_size + C_SEG_OFFSET_ALIGNMENT_MASK) & ~C_SEG_OFFSET_ALIGNMENT_MASK; |
| 5766 | |
| 5767 | cslot_copy(c_dst, c_src); |
| 5768 | c_dst->c_offset = c_seg_dst->c_nextoffset; |
| 5769 | |
| 5770 | if (c_seg_dst->c_firstemptyslot == c_seg_dst->c_nextslot) { |
| 5771 | c_seg_dst->c_firstemptyslot++; |
| 5772 | } |
| 5773 | |
| 5774 | c_seg_dst->c_slots_used++; |
| 5775 | c_seg_dst->c_nextslot++; |
| 5776 | c_seg_dst->c_bytes_used += c_rounded_size; |
| 5777 | c_seg_dst->c_nextoffset += C_SEG_BYTES_TO_OFFSET(c_rounded_size); |
| 5778 | |
| 5779 | |
| 5780 | PACK_C_SIZE(c_src, 0); |
| 5781 | |
| 5782 | c_seg_src->c_bytes_used -= c_rounded_size; |
| 5783 | c_seg_src->c_bytes_unused += c_rounded_size; |
| 5784 | |
| 5785 | assert(c_seg_src->c_slots_used); |
| 5786 | c_seg_src->c_slots_used--; |
| 5787 | |
| 5788 | if (!c_seg_src->c_swappedin) { |
| 5789 | /* Pessimistically lose swappedin status when non-swappedin pages are added. */ |
| 5790 | c_seg_dst->c_swappedin = false; |
| 5791 | } |
| 5792 | |
| 5793 | if (c_indx < c_seg_src->c_firstemptyslot) { |
| 5794 | c_seg_src->c_firstemptyslot = c_indx; |
| 5795 | } |
| 5796 | |
| 5797 | c_dst = C_SEG_SLOT_FROM_INDEX(c_seg_dst, dst_slot); |
| 5798 | |
| 5799 | PAGE_REPLACEMENT_ALLOWED(TRUE); |
| 5800 | slot_ptr = C_SLOT_UNPACK_PTR(c_dst); |
| 5801 | /* <csegno=0,indx=0> would mean "empty slot", so use csegno+1 */ |
| 5802 | slot_ptr->s_cseg = c_seg_dst->c_mysegno + 1; |
| 5803 | slot_ptr->s_cindx = dst_slot; |
| 5804 | |
| 5805 | PAGE_REPLACEMENT_ALLOWED(FALSE); |
| 5806 | |
| 5807 | out: |
| 5808 | if (c_seg_src) { |
| 5809 | lck_mtx_lock_spin_always(&c_seg_src->c_lock); |
| 5810 | |
| 5811 | C_SEG_WAKEUP_DONE(c_seg_src); |
| 5812 | |
| 5813 | if (c_seg_src->c_bytes_used == 0 && c_seg_src->c_state != C_IS_FILLING) { |
| 5814 | if (!c_seg_src->c_on_minorcompact_q) { |
| 5815 | c_seg_need_delayed_compaction(c_seg_src, FALSE); |
| 5816 | } |
| 5817 | } |
| 5818 | |
| 5819 | lck_mtx_unlock_always(&c_seg_src->c_lock); |
| 5820 | } |
| 5821 | |
| 5822 | if (c_seg_dst) { |
| 5823 | PAGE_REPLACEMENT_DISALLOWED(TRUE); |
| 5824 | |
| 5825 | lck_mtx_lock_spin_always(&c_seg_dst->c_lock); |
| 5826 | |
| 5827 | if (c_seg_dst->c_nextoffset >= c_seg_off_limit || c_seg_dst->c_nextslot >= C_SLOT_MAX_INDEX) { |
| 5828 | /* |
| 5829 | * Nearing or exceeded maximum slot and offset capacity. |
| 5830 | */ |
| 5831 | assert(c_seg_dst->c_busy); |
| 5832 | assert(c_seg_dst->c_state == C_IS_FILLING); |
| 5833 | assert(!c_seg_dst->c_on_minorcompact_q); |
| 5834 | |
| 5835 | c_current_seg_filled(c_seg_dst, (c_segment_t *)current_chead); |
| 5836 | assert(*current_chead == NULL); |
| 5837 | } |
| 5838 | |
| 5839 | C_SEG_WAKEUP_DONE(c_seg_dst); |
| 5840 | |
| 5841 | lck_mtx_unlock_always(&c_seg_dst->c_lock); |
| 5842 | |
| 5843 | c_seg_dst = NULL; |
| 5844 | |
| 5845 | PAGE_REPLACEMENT_DISALLOWED(FALSE); |
| 5846 | } |
| 5847 | |
| 5848 | return kr; |
| 5849 | } |
| 5850 | #endif /* CONFIG_FREEZE */ |
| 5851 | |
| 5852 | #if DEVELOPMENT || DEBUG |
| 5853 | |
| 5854 | void |
| 5855 | vm_compressor_inject_error(int *slot) |
| 5856 | { |
| 5857 | c_slot_mapping_t slot_ptr = (c_slot_mapping_t)slot; |
| 5858 | |
| 5859 | /* No error detection for single-value compression. */ |
| 5860 | if (slot_ptr->s_cseg == C_SV_CSEG_ID) { |
| 5861 | printf("%s(): cannot inject errors in SV-compressed pages\n" , __func__ ); |
| 5862 | return; |
| 5863 | } |
| 5864 | |
| 5865 | /* s_cseg is actually "segno+1" */ |
| 5866 | const uint32_t c_segno = slot_ptr->s_cseg - 1; |
| 5867 | |
| 5868 | assert(c_segno < c_segments_available); |
| 5869 | assert(c_segments[c_segno].c_segno >= c_segments_available); |
| 5870 | |
| 5871 | const c_segment_t c_seg = c_segments[c_segno].c_seg; |
| 5872 | |
| 5873 | PAGE_REPLACEMENT_DISALLOWED(TRUE); |
| 5874 | |
| 5875 | lck_mtx_lock_spin_always(&c_seg->c_lock); |
| 5876 | assert(c_seg->c_state != C_IS_EMPTY && c_seg->c_state != C_IS_FREE); |
| 5877 | |
| 5878 | const uint16_t c_indx = slot_ptr->s_cindx; |
| 5879 | assert(c_indx < c_seg->c_nextslot); |
| 5880 | |
| 5881 | /* |
| 5882 | * To safely make this segment temporarily writable, we need to mark |
| 5883 | * the segment busy, which allows us to release the segment lock. |
| 5884 | */ |
| 5885 | while (c_seg->c_busy) { |
| 5886 | c_seg_wait_on_busy(c_seg); |
| 5887 | lck_mtx_lock_spin_always(&c_seg->c_lock); |
| 5888 | } |
| 5889 | C_SEG_BUSY(c_seg); |
| 5890 | |
| 5891 | bool already_writable = (c_seg->c_state == C_IS_FILLING); |
| 5892 | if (!already_writable) { |
| 5893 | /* |
| 5894 | * Protection update must be performed preemptibly, so temporarily drop |
| 5895 | * the lock. Having set c_busy will prevent most other concurrent |
| 5896 | * operations. |
| 5897 | */ |
| 5898 | lck_mtx_unlock_always(&c_seg->c_lock); |
| 5899 | C_SEG_MAKE_WRITEABLE(c_seg); |
| 5900 | lck_mtx_lock_spin_always(&c_seg->c_lock); |
| 5901 | } |
| 5902 | |
| 5903 | /* |
| 5904 | * Once we've released the lock following our c_state == C_IS_FILLING check, |
| 5905 | * c_current_seg_filled() can (re-)write-protect the segment. However, it |
| 5906 | * will transition from C_IS_FILLING before releasing the c_seg lock, so we |
| 5907 | * can detect this by re-checking after we've reobtained the lock. |
| 5908 | */ |
| 5909 | if (already_writable && c_seg->c_state != C_IS_FILLING) { |
| 5910 | lck_mtx_unlock_always(&c_seg->c_lock); |
| 5911 | C_SEG_MAKE_WRITEABLE(c_seg); |
| 5912 | lck_mtx_lock_spin_always(&c_seg->c_lock); |
| 5913 | already_writable = false; |
| 5914 | /* Segment can't be freed while c_busy is set. */ |
| 5915 | assert(c_seg->c_state != C_IS_FILLING); |
| 5916 | } |
| 5917 | |
| 5918 | /* |
| 5919 | * Skip if the segment is on disk. This check can only be performed after |
| 5920 | * the final acquisition of the segment lock before we attempt to write to |
| 5921 | * the segment. |
| 5922 | */ |
| 5923 | if (!C_SEG_IS_ON_DISK_OR_SOQ(c_seg)) { |
| 5924 | c_slot_t cs = C_SEG_SLOT_FROM_INDEX(c_seg, c_indx); |
| 5925 | int32_t *data = &c_seg->c_store.c_buffer[cs->c_offset]; |
| 5926 | /* assume that the compressed data holds at least one int32_t */ |
| 5927 | assert(UNPACK_C_SIZE(cs) > sizeof(*data)); |
| 5928 | /* |
| 5929 | * This bit is known to be in the payload of a MISS packet resulting from |
| 5930 | * the pattern used in the test pattern from decompression_failure.c. |
| 5931 | * Flipping it should result in many corrupted bits in the test page. |
| 5932 | */ |
| 5933 | data[0] ^= 0x00000100; |
| 5934 | } |
| 5935 | |
| 5936 | if (!already_writable) { |
| 5937 | lck_mtx_unlock_always(&c_seg->c_lock); |
| 5938 | C_SEG_WRITE_PROTECT(c_seg); |
| 5939 | lck_mtx_lock_spin_always(&c_seg->c_lock); |
| 5940 | } |
| 5941 | |
| 5942 | C_SEG_WAKEUP_DONE(c_seg); |
| 5943 | lck_mtx_unlock_always(&c_seg->c_lock); |
| 5944 | |
| 5945 | PAGE_REPLACEMENT_DISALLOWED(FALSE); |
| 5946 | } |
| 5947 | |
| 5948 | #endif /* DEVELOPMENT || DEBUG */ |
| 5949 | |
| 5950 | |
| 5951 | #if CONFIG_TRACK_UNMODIFIED_ANON_PAGES |
| 5952 | |
| 5953 | struct vnode; |
| 5954 | extern void vm_swapfile_open(const char *path, struct vnode **vp); |
| 5955 | extern int vm_swapfile_preallocate(struct vnode *vp, uint64_t *size, boolean_t *pin); |
| 5956 | |
| 5957 | struct vnode *uncompressed_vp0 = NULL; |
| 5958 | struct vnode *uncompressed_vp1 = NULL; |
| 5959 | uint32_t uncompressed_file0_free_pages = 0, uncompressed_file1_free_pages = 0; |
| 5960 | uint64_t uncompressed_file0_free_offset = 0, uncompressed_file1_free_offset = 0; |
| 5961 | |
| 5962 | uint64_t compressor_ro_uncompressed = 0; |
| 5963 | uint64_t compressor_ro_uncompressed_total_returned = 0; |
| 5964 | uint64_t compressor_ro_uncompressed_skip_returned = 0; |
| 5965 | uint64_t compressor_ro_uncompressed_get = 0; |
| 5966 | uint64_t compressor_ro_uncompressed_put = 0; |
| 5967 | uint64_t compressor_ro_uncompressed_swap_usage = 0; |
| 5968 | |
| 5969 | extern void vnode_put(struct vnode* vp); |
| 5970 | extern int vnode_getwithref(struct vnode* vp); |
| 5971 | extern int vm_swapfile_io(struct vnode *vp, uint64_t offset, uint64_t start, int npages, int flags, void *upl_ctx); |
| 5972 | |
| 5973 | #define MAX_OFFSET_PAGES (255) |
| 5974 | uint64_t uncompressed_file0_space_bitmap[MAX_OFFSET_PAGES]; |
| 5975 | uint64_t uncompressed_file1_space_bitmap[MAX_OFFSET_PAGES]; |
| 5976 | |
| 5977 | #define UNCOMPRESSED_FILEIDX_OFFSET_MASK (((uint32_t)1<<31ull) - 1) |
| 5978 | #define UNCOMPRESSED_FILEIDX_SHIFT (29) |
| 5979 | #define UNCOMPRESSED_FILEIDX_MASK (3) |
| 5980 | #define UNCOMPRESSED_OFFSET_SHIFT (29) |
| 5981 | #define UNCOMPRESSED_OFFSET_MASK (7) |
| 5982 | |
| 5983 | static uint32_t |
| 5984 | vm_uncompressed_extract_swap_file(int slot) |
| 5985 | { |
| 5986 | uint32_t fileidx = (((uint32_t)slot & UNCOMPRESSED_FILEIDX_OFFSET_MASK) >> UNCOMPRESSED_FILEIDX_SHIFT) & UNCOMPRESSED_FILEIDX_MASK; |
| 5987 | return fileidx; |
| 5988 | } |
| 5989 | |
| 5990 | static uint32_t |
| 5991 | vm_uncompressed_extract_swap_offset(int slot) |
| 5992 | { |
| 5993 | return slot & (uint32_t)(~(UNCOMPRESSED_OFFSET_MASK << UNCOMPRESSED_OFFSET_SHIFT)); |
| 5994 | } |
| 5995 | |
| 5996 | static void |
| 5997 | vm_uncompressed_return_space_to_swap(int slot) |
| 5998 | { |
| 5999 | PAGE_REPLACEMENT_ALLOWED(TRUE); |
| 6000 | uint32_t fileidx = vm_uncompressed_extract_swap_file(slot); |
| 6001 | if (fileidx == 1) { |
| 6002 | uint32_t free_offset = vm_uncompressed_extract_swap_offset(slot); |
| 6003 | uint64_t pgidx = free_offset / PAGE_SIZE_64; |
| 6004 | uint64_t chunkidx = pgidx / 64; |
| 6005 | uint64_t chunkoffset = pgidx % 64; |
| 6006 | #if DEVELOPMENT || DEBUG |
| 6007 | uint64_t vaddr = (uint64_t)&uncompressed_file0_space_bitmap[chunkidx]; |
| 6008 | uint64_t maxvaddr = (uint64_t)&uncompressed_file0_space_bitmap[MAX_OFFSET_PAGES]; |
| 6009 | assertf(vaddr < maxvaddr, "0x%llx 0x%llx" , vaddr, maxvaddr); |
| 6010 | #endif /*DEVELOPMENT || DEBUG*/ |
| 6011 | assertf((uncompressed_file0_space_bitmap[chunkidx] & ((uint64_t)1 << chunkoffset)), |
| 6012 | "0x%x %llu %llu" , slot, chunkidx, chunkoffset); |
| 6013 | uncompressed_file0_space_bitmap[chunkidx] &= ~((uint64_t)1 << chunkoffset); |
| 6014 | assertf(!(uncompressed_file0_space_bitmap[chunkidx] & ((uint64_t)1 << chunkoffset)), |
| 6015 | "0x%x %llu %llu" , slot, chunkidx, chunkoffset); |
| 6016 | |
| 6017 | uncompressed_file0_free_pages++; |
| 6018 | } else { |
| 6019 | uint32_t free_offset = vm_uncompressed_extract_swap_offset(slot); |
| 6020 | uint64_t pgidx = free_offset / PAGE_SIZE_64; |
| 6021 | uint64_t chunkidx = pgidx / 64; |
| 6022 | uint64_t chunkoffset = pgidx % 64; |
| 6023 | assertf((uncompressed_file1_space_bitmap[chunkidx] & ((uint64_t)1 << chunkoffset)), |
| 6024 | "%llu %llu" , chunkidx, chunkoffset); |
| 6025 | uncompressed_file1_space_bitmap[chunkidx] &= ~((uint64_t)1 << chunkoffset); |
| 6026 | |
| 6027 | uncompressed_file1_free_pages++; |
| 6028 | } |
| 6029 | compressor_ro_uncompressed_swap_usage--; |
| 6030 | PAGE_REPLACEMENT_ALLOWED(FALSE); |
| 6031 | } |
| 6032 | |
| 6033 | static int |
| 6034 | vm_uncompressed_reserve_space_in_swap() |
| 6035 | { |
| 6036 | int slot = 0; |
| 6037 | if (uncompressed_file0_free_pages == 0 && uncompressed_file1_free_pages == 0) { |
| 6038 | return -1; |
| 6039 | } |
| 6040 | |
| 6041 | PAGE_REPLACEMENT_ALLOWED(TRUE); |
| 6042 | if (uncompressed_file0_free_pages) { |
| 6043 | uint64_t chunkidx = 0; |
| 6044 | uint64_t chunkoffset = 0; |
| 6045 | while (uncompressed_file0_space_bitmap[chunkidx] == 0xffffffffffffffff) { |
| 6046 | chunkidx++; |
| 6047 | } |
| 6048 | while (uncompressed_file0_space_bitmap[chunkidx] & ((uint64_t)1 << chunkoffset)) { |
| 6049 | chunkoffset++; |
| 6050 | } |
| 6051 | |
| 6052 | assertf((uncompressed_file0_space_bitmap[chunkidx] & ((uint64_t)1 << chunkoffset)) == 0, |
| 6053 | "%llu %llu" , chunkidx, chunkoffset); |
| 6054 | #if DEVELOPMENT || DEBUG |
| 6055 | uint64_t vaddr = (uint64_t)&uncompressed_file0_space_bitmap[chunkidx]; |
| 6056 | uint64_t maxvaddr = (uint64_t)&uncompressed_file0_space_bitmap[MAX_OFFSET_PAGES]; |
| 6057 | assertf(vaddr < maxvaddr, "0x%llx 0x%llx" , vaddr, maxvaddr); |
| 6058 | #endif /*DEVELOPMENT || DEBUG*/ |
| 6059 | uncompressed_file0_space_bitmap[chunkidx] |= ((uint64_t)1 << chunkoffset); |
| 6060 | uncompressed_file0_free_offset = ((chunkidx * 64) + chunkoffset) * PAGE_SIZE_64; |
| 6061 | assertf((uncompressed_file0_space_bitmap[chunkidx] & ((uint64_t)1 << chunkoffset)), |
| 6062 | "%llu %llu" , chunkidx, chunkoffset); |
| 6063 | |
| 6064 | assert(uncompressed_file0_free_offset <= (1 << UNCOMPRESSED_OFFSET_SHIFT)); |
| 6065 | slot = (int)((1 << UNCOMPRESSED_FILEIDX_SHIFT) + uncompressed_file0_free_offset); |
| 6066 | uncompressed_file0_free_pages--; |
| 6067 | } else { |
| 6068 | uint64_t chunkidx = 0; |
| 6069 | uint64_t chunkoffset = 0; |
| 6070 | while (uncompressed_file1_space_bitmap[chunkidx] == 0xFFFFFFFFFFFFFFFF) { |
| 6071 | chunkidx++; |
| 6072 | } |
| 6073 | while (uncompressed_file1_space_bitmap[chunkidx] & ((uint64_t)1 << chunkoffset)) { |
| 6074 | chunkoffset++; |
| 6075 | } |
| 6076 | assert((uncompressed_file1_space_bitmap[chunkidx] & ((uint64_t)1 << chunkoffset)) == 0); |
| 6077 | uncompressed_file1_space_bitmap[chunkidx] |= ((uint64_t)1 << chunkoffset); |
| 6078 | uncompressed_file1_free_offset = ((chunkidx * 64) + chunkoffset) * PAGE_SIZE_64; |
| 6079 | slot = (int)((2 << UNCOMPRESSED_FILEIDX_SHIFT) + uncompressed_file1_free_offset); |
| 6080 | uncompressed_file1_free_pages--; |
| 6081 | } |
| 6082 | compressor_ro_uncompressed_swap_usage++; |
| 6083 | PAGE_REPLACEMENT_ALLOWED(FALSE); |
| 6084 | return slot; |
| 6085 | } |
| 6086 | |
| 6087 | #define MAX_IO_REQ (16) |
| 6088 | struct _uncompressor_io_req { |
| 6089 | uint64_t addr; |
| 6090 | bool inuse; |
| 6091 | } uncompressor_io_req[MAX_IO_REQ]; |
| 6092 | |
| 6093 | int |
| 6094 | vm_uncompressed_put(ppnum_t pn, int *slot) |
| 6095 | { |
| 6096 | int retval = 0; |
| 6097 | struct vnode *uncompressed_vp = NULL; |
| 6098 | uint64_t uncompress_offset = 0; |
| 6099 | |
| 6100 | again: |
| 6101 | if (uncompressed_vp0 == NULL) { |
| 6102 | PAGE_REPLACEMENT_ALLOWED(TRUE); |
| 6103 | if (uncompressed_vp0 == NULL) { |
| 6104 | uint64_t size = (MAX_OFFSET_PAGES * 1024 * 1024ULL); |
| 6105 | vm_swapfile_open("/private/var/vm/uncompressedswap0" , &uncompressed_vp0); |
| 6106 | if (uncompressed_vp0 == NULL) { |
| 6107 | PAGE_REPLACEMENT_ALLOWED(FALSE); |
| 6108 | return KERN_NO_ACCESS; |
| 6109 | } |
| 6110 | vm_swapfile_preallocate(uncompressed_vp0, &size, NULL); |
| 6111 | uncompressed_file0_free_pages = (uint32_t)atop(size); |
| 6112 | bzero(uncompressed_file0_space_bitmap, sizeof(uint64_t) * MAX_OFFSET_PAGES); |
| 6113 | |
| 6114 | int i = 0; |
| 6115 | for (; i < MAX_IO_REQ; i++) { |
| 6116 | kmem_alloc(kernel_map, (vm_offset_t*)&uncompressor_io_req[i].addr, PAGE_SIZE_64, KMA_NOFAIL | KMA_KOBJECT, VM_KERN_MEMORY_COMPRESSOR); |
| 6117 | uncompressor_io_req[i].inuse = false; |
| 6118 | } |
| 6119 | |
| 6120 | vm_swapfile_open("/private/var/vm/uncompressedswap1" , &uncompressed_vp1); |
| 6121 | assert(uncompressed_vp1); |
| 6122 | vm_swapfile_preallocate(uncompressed_vp1, &size, NULL); |
| 6123 | uncompressed_file1_free_pages = (uint32_t)atop(size); |
| 6124 | bzero(uncompressed_file1_space_bitmap, sizeof(uint64_t) * MAX_OFFSET_PAGES); |
| 6125 | PAGE_REPLACEMENT_ALLOWED(FALSE); |
| 6126 | } else { |
| 6127 | PAGE_REPLACEMENT_ALLOWED(FALSE); |
| 6128 | delay(100); |
| 6129 | goto again; |
| 6130 | } |
| 6131 | } |
| 6132 | |
| 6133 | int swapinfo = vm_uncompressed_reserve_space_in_swap(); |
| 6134 | if (swapinfo == -1) { |
| 6135 | *slot = 0; |
| 6136 | return KERN_RESOURCE_SHORTAGE; |
| 6137 | } |
| 6138 | |
| 6139 | if (vm_uncompressed_extract_swap_file(swapinfo) == 1) { |
| 6140 | uncompressed_vp = uncompressed_vp0; |
| 6141 | } else { |
| 6142 | uncompressed_vp = uncompressed_vp1; |
| 6143 | } |
| 6144 | uncompress_offset = vm_uncompressed_extract_swap_offset(swapinfo); |
| 6145 | if ((retval = vnode_getwithref(uncompressed_vp)) != 0) { |
| 6146 | os_log_error_with_startup_serial(OS_LOG_DEFAULT, "vm_uncompressed_put: vnode_getwithref on swapfile failed with %d\n" , retval); |
| 6147 | } else { |
| 6148 | int i = 0; |
| 6149 | retry: |
| 6150 | PAGE_REPLACEMENT_ALLOWED(TRUE); |
| 6151 | for (i = 0; i < MAX_IO_REQ; i++) { |
| 6152 | if (uncompressor_io_req[i].inuse == false) { |
| 6153 | uncompressor_io_req[i].inuse = true; |
| 6154 | break; |
| 6155 | } |
| 6156 | } |
| 6157 | if (i == MAX_IO_REQ) { |
| 6158 | assert_wait((event_t)&uncompressor_io_req, THREAD_UNINT); |
| 6159 | PAGE_REPLACEMENT_ALLOWED(FALSE); |
| 6160 | thread_block(THREAD_CONTINUE_NULL); |
| 6161 | goto retry; |
| 6162 | } |
| 6163 | PAGE_REPLACEMENT_ALLOWED(FALSE); |
| 6164 | void *addr = pmap_map_compressor_page(pn); |
| 6165 | memcpy((void*)uncompressor_io_req[i].addr, addr, PAGE_SIZE_64); |
| 6166 | pmap_unmap_compressor_page(pn, addr); |
| 6167 | |
| 6168 | retval = vm_swapfile_io(uncompressed_vp, uncompress_offset, (uint64_t)uncompressor_io_req[i].addr, 1, SWAP_WRITE, NULL); |
| 6169 | if (retval) { |
| 6170 | *slot = 0; |
| 6171 | } else { |
| 6172 | *slot = (int)swapinfo; |
| 6173 | ((c_slot_mapping_t)(slot))->s_uncompressed = 1; |
| 6174 | } |
| 6175 | vnode_put(uncompressed_vp); |
| 6176 | PAGE_REPLACEMENT_ALLOWED(TRUE); |
| 6177 | uncompressor_io_req[i].inuse = false; |
| 6178 | thread_wakeup((event_t)&uncompressor_io_req); |
| 6179 | PAGE_REPLACEMENT_ALLOWED(FALSE); |
| 6180 | } |
| 6181 | return retval; |
| 6182 | } |
| 6183 | |
| 6184 | int |
| 6185 | vm_uncompressed_get(ppnum_t pn, int *slot, __unused vm_compressor_options_t flags) |
| 6186 | { |
| 6187 | int retval = 0; |
| 6188 | struct vnode *uncompressed_vp = NULL; |
| 6189 | uint32_t fileidx = vm_uncompressed_extract_swap_file(*slot); |
| 6190 | uint64_t uncompress_offset = vm_uncompressed_extract_swap_offset(*slot); |
| 6191 | |
| 6192 | if (__improbable(flags & C_KDP)) { |
| 6193 | return -2; |
| 6194 | } |
| 6195 | |
| 6196 | if (fileidx == 1) { |
| 6197 | uncompressed_vp = uncompressed_vp0; |
| 6198 | } else { |
| 6199 | uncompressed_vp = uncompressed_vp1; |
| 6200 | } |
| 6201 | |
| 6202 | if ((retval = vnode_getwithref(uncompressed_vp)) != 0) { |
| 6203 | os_log_error_with_startup_serial(OS_LOG_DEFAULT, "vm_uncompressed_put: vnode_getwithref on swapfile failed with %d\n" , retval); |
| 6204 | } else { |
| 6205 | int i = 0; |
| 6206 | retry: |
| 6207 | PAGE_REPLACEMENT_ALLOWED(TRUE); |
| 6208 | for (i = 0; i < MAX_IO_REQ; i++) { |
| 6209 | if (uncompressor_io_req[i].inuse == false) { |
| 6210 | uncompressor_io_req[i].inuse = true; |
| 6211 | break; |
| 6212 | } |
| 6213 | } |
| 6214 | if (i == MAX_IO_REQ) { |
| 6215 | assert_wait((event_t)&uncompressor_io_req, THREAD_UNINT); |
| 6216 | PAGE_REPLACEMENT_ALLOWED(FALSE); |
| 6217 | thread_block(THREAD_CONTINUE_NULL); |
| 6218 | goto retry; |
| 6219 | } |
| 6220 | PAGE_REPLACEMENT_ALLOWED(FALSE); |
| 6221 | retval = vm_swapfile_io(uncompressed_vp, uncompress_offset, (uint64_t)uncompressor_io_req[i].addr, 1, SWAP_READ, NULL); |
| 6222 | vnode_put(uncompressed_vp); |
| 6223 | void *addr = pmap_map_compressor_page(pn); |
| 6224 | memcpy(addr, (void*)uncompressor_io_req[i].addr, PAGE_SIZE_64); |
| 6225 | pmap_unmap_compressor_page(pn, addr); |
| 6226 | PAGE_REPLACEMENT_ALLOWED(TRUE); |
| 6227 | uncompressor_io_req[i].inuse = false; |
| 6228 | thread_wakeup((event_t)&uncompressor_io_req); |
| 6229 | PAGE_REPLACEMENT_ALLOWED(FALSE); |
| 6230 | } |
| 6231 | return retval; |
| 6232 | } |
| 6233 | |
| 6234 | int |
| 6235 | vm_uncompressed_free(int *slot, __unused vm_compressor_options_t flags) |
| 6236 | { |
| 6237 | vm_uncompressed_return_space_to_swap(*slot); |
| 6238 | *slot = 0; |
| 6239 | return 0; |
| 6240 | } |
| 6241 | |
| 6242 | #endif /*CONFIG_TRACK_UNMODIFIED_ANON_PAGES*/ |
| 6243 | |