| 1 | /* |
| 2 | * Copyright (c) 2011-2018 Apple Computer, Inc. All rights reserved. |
| 3 | * |
| 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
| 5 | * |
| 6 | * This file contains Original Code and/or Modifications of Original Code |
| 7 | * as defined in and that are subject to the Apple Public Source License |
| 8 | * Version 2.0 (the 'License'). You may not use this file except in |
| 9 | * compliance with the License. The rights granted to you under the License |
| 10 | * may not be used to create, or enable the creation or redistribution of, |
| 11 | * unlawful or unlicensed copies of an Apple operating system, or to |
| 12 | * circumvent, violate, or enable the circumvention or violation of, any |
| 13 | * terms of an Apple operating system software license agreement. |
| 14 | * |
| 15 | * Please obtain a copy of the License at |
| 16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
| 17 | * |
| 18 | * The Original Code and all software distributed under the License are |
| 19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| 23 | * Please see the License for the specific language governing rights and |
| 24 | * limitations under the License. |
| 25 | * |
| 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
| 27 | */ |
| 28 | |
| 29 | /* |
| 30 | * Profile Every Thread (PET) provides a profile of all threads on the system |
| 31 | * when a timer fires. PET supports the "record waiting threads" mode in |
| 32 | * Instruments, and used to be called All Thread States (ATS). New tools should |
| 33 | * adopt the lightweight PET mode, which provides the same information, but with |
| 34 | * much less overhead. |
| 35 | * |
| 36 | * When traditional (non-lightweight) PET is active, a migrating timer call |
| 37 | * causes the PET thread to wake up. The timer handler also issues a broadcast |
| 38 | * IPI to the other CPUs, to provide a (somewhat) synchronized set of on-core |
| 39 | * samples. This is provided for backwards-compatibility with clients that |
| 40 | * expect on-core samples, when PET's timer was based off the on-core timers. |
| 41 | * Because PET sampling can take on the order of milliseconds, the PET thread |
| 42 | * will enter a new timer deadline after it finished sampling This perturbs the |
| 43 | * timer cadence by the duration of PET sampling, but it leaves the system to |
| 44 | * work on non-profiling tasks for the duration of the timer period. |
| 45 | * |
| 46 | * Lightweight PET samples the system less-intrusively than normal PET |
| 47 | * mode. Instead of iterating tasks and threads on each sample, it increments |
| 48 | * a global generation count, `kppet_gencount`, which is checked as threads are |
| 49 | * context switched on-core. If the thread's local generation count is older |
| 50 | * than the global generation, the thread samples itself. |
| 51 | * |
| 52 | * | | |
| 53 | * thread A +--+---------| |
| 54 | * | | |
| 55 | * thread B |--+---------------| |
| 56 | * | | |
| 57 | * thread C | | |------------------------------------- |
| 58 | * | | | |
| 59 | * thread D | | | |------------------------------- |
| 60 | * | | | | |
| 61 | * +--+---------+-----+--------------------------------> time |
| 62 | * | │ | |
| 63 | * | +-----+--- threads sampled when they come on-core in |
| 64 | * | kperf_pet_switch_context |
| 65 | * | |
| 66 | * +--- PET timer fire, sample on-core threads A and B, |
| 67 | * increment kppet_gencount |
| 68 | */ |
| 69 | |
| 70 | #include <mach/mach_types.h> |
| 71 | #include <sys/errno.h> |
| 72 | |
| 73 | #include <kperf/kperf.h> |
| 74 | #include <kperf/buffer.h> |
| 75 | #include <kperf/sample.h> |
| 76 | #include <kperf/context.h> |
| 77 | #include <kperf/action.h> |
| 78 | #include <kperf/pet.h> |
| 79 | #include <kperf/kptimer.h> |
| 80 | |
| 81 | #include <kern/task.h> |
| 82 | #include <kern/kalloc.h> |
| 83 | #if defined(__x86_64__) |
| 84 | #include <i386/mp.h> |
| 85 | #endif /* defined(__x86_64__) */ |
| 86 | |
| 87 | static LCK_MTX_DECLARE(kppet_mtx, &kperf_lck_grp); |
| 88 | |
| 89 | static struct { |
| 90 | unsigned int g_actionid; |
| 91 | /* |
| 92 | * The idle rate controls how many sampling periods to skip if a thread |
| 93 | * is idle. |
| 94 | */ |
| 95 | uint32_t g_idle_rate; |
| 96 | bool g_setup:1; |
| 97 | bool g_lightweight:1; |
| 98 | struct kperf_sample *g_sample; |
| 99 | |
| 100 | thread_t g_sample_thread; |
| 101 | |
| 102 | /* |
| 103 | * Used by the PET thread to manage which threads and tasks to sample. |
| 104 | */ |
| 105 | thread_t *g_threads; |
| 106 | unsigned int g_nthreads; |
| 107 | size_t g_threads_count; |
| 108 | |
| 109 | task_t *g_tasks; |
| 110 | unsigned int g_ntasks; |
| 111 | size_t g_tasks_count; |
| 112 | } kppet = { |
| 113 | .g_actionid = 0, |
| 114 | .g_idle_rate = KPERF_PET_DEFAULT_IDLE_RATE, |
| 115 | }; |
| 116 | |
| 117 | bool kppet_lightweight_active = false; |
| 118 | _Atomic uint32_t kppet_gencount = 0; |
| 119 | |
| 120 | static uint64_t kppet_sample_tasks(uint32_t idle_rate); |
| 121 | static void kppet_thread(void * param, wait_result_t wr); |
| 122 | |
| 123 | static void |
| 124 | kppet_lock_assert_owned(void) |
| 125 | { |
| 126 | lck_mtx_assert(lck: &kppet_mtx, LCK_MTX_ASSERT_OWNED); |
| 127 | } |
| 128 | |
| 129 | static void |
| 130 | kppet_lock(void) |
| 131 | { |
| 132 | lck_mtx_lock(lck: &kppet_mtx); |
| 133 | } |
| 134 | |
| 135 | static void |
| 136 | kppet_unlock(void) |
| 137 | { |
| 138 | lck_mtx_unlock(lck: &kppet_mtx); |
| 139 | } |
| 140 | |
| 141 | void |
| 142 | kppet_on_cpu(thread_t thread, thread_continue_t continuation, |
| 143 | uintptr_t *starting_fp) |
| 144 | { |
| 145 | assert(thread != NULL); |
| 146 | assert(ml_get_interrupts_enabled() == FALSE); |
| 147 | |
| 148 | uint32_t actionid = kppet.g_actionid; |
| 149 | if (actionid == 0) { |
| 150 | return; |
| 151 | } |
| 152 | |
| 153 | if (thread->kperf_pet_gen != atomic_load(&kppet_gencount)) { |
| 154 | BUF_VERB(PERF_PET_SAMPLE_THREAD | DBG_FUNC_START, |
| 155 | atomic_load_explicit(&kppet_gencount, |
| 156 | memory_order_relaxed), thread->kperf_pet_gen); |
| 157 | |
| 158 | task_t task = get_threadtask(thread); |
| 159 | struct kperf_context ctx = { |
| 160 | .cur_thread = thread, |
| 161 | .cur_task = task, |
| 162 | .cur_pid = task_pid(task), |
| 163 | .starting_fp = starting_fp, |
| 164 | }; |
| 165 | /* |
| 166 | * Use a per-CPU interrupt buffer, since this is only called |
| 167 | * while interrupts are disabled, from the scheduler. |
| 168 | */ |
| 169 | struct kperf_sample *sample = kperf_intr_sample_buffer(); |
| 170 | if (!sample) { |
| 171 | BUF_VERB(PERF_PET_SAMPLE_THREAD | DBG_FUNC_END, 1); |
| 172 | return; |
| 173 | } |
| 174 | |
| 175 | unsigned int flags = SAMPLE_FLAG_NON_INTERRUPT | SAMPLE_FLAG_PEND_USER; |
| 176 | if (continuation != NULL) { |
| 177 | flags |= SAMPLE_FLAG_CONTINUATION; |
| 178 | } |
| 179 | kperf_sample(sbuf: sample, ctx: &ctx, actionid, sample_flags: flags); |
| 180 | |
| 181 | BUF_VERB(PERF_PET_SAMPLE_THREAD | DBG_FUNC_END); |
| 182 | } else { |
| 183 | BUF_VERB(PERF_PET_SAMPLE_THREAD, |
| 184 | os_atomic_load(&kppet_gencount, relaxed), thread->kperf_pet_gen); |
| 185 | } |
| 186 | } |
| 187 | |
| 188 | #pragma mark - state transitions |
| 189 | |
| 190 | /* |
| 191 | * Lazily initialize PET. The PET thread never exits once PET has been used |
| 192 | * once. |
| 193 | */ |
| 194 | static void |
| 195 | kppet_setup(void) |
| 196 | { |
| 197 | if (kppet.g_setup) { |
| 198 | return; |
| 199 | } |
| 200 | |
| 201 | kern_return_t kr = kernel_thread_start(continuation: kppet_thread, NULL, |
| 202 | new_thread: &kppet.g_sample_thread); |
| 203 | if (kr != KERN_SUCCESS) { |
| 204 | panic("kperf: failed to create PET thread %d" , kr); |
| 205 | } |
| 206 | |
| 207 | thread_set_thread_name(th: kppet.g_sample_thread, name: "kperf-pet-sampling" ); |
| 208 | kppet.g_setup = true; |
| 209 | } |
| 210 | |
| 211 | void |
| 212 | kppet_config(unsigned int actionid) |
| 213 | { |
| 214 | /* |
| 215 | * Resetting kperf shouldn't get the PET thread started. |
| 216 | */ |
| 217 | if (actionid == 0 && !kppet.g_setup) { |
| 218 | return; |
| 219 | } |
| 220 | |
| 221 | kppet_setup(); |
| 222 | |
| 223 | kppet_lock(); |
| 224 | |
| 225 | kppet.g_actionid = actionid; |
| 226 | |
| 227 | if (actionid > 0) { |
| 228 | if (!kppet.g_sample) { |
| 229 | kppet.g_sample = kalloc_type_tag(struct kperf_sample, |
| 230 | Z_WAITOK | Z_NOFAIL, VM_KERN_MEMORY_DIAG); |
| 231 | kppet.g_sample->usample.usample_min = kalloc_type_tag( |
| 232 | struct kperf_usample_min, Z_WAITOK | Z_NOFAIL, VM_KERN_MEMORY_DIAG); |
| 233 | } |
| 234 | } else { |
| 235 | if (kppet.g_tasks) { |
| 236 | assert(kppet.g_tasks_count != 0); |
| 237 | kfree_type(task_t, kppet.g_tasks_count, kppet.g_tasks); |
| 238 | kppet.g_tasks = NULL; |
| 239 | kppet.g_tasks_count = 0; |
| 240 | kppet.g_ntasks = 0; |
| 241 | } |
| 242 | if (kppet.g_threads) { |
| 243 | assert(kppet.g_threads_count != 0); |
| 244 | void *g_tasks = (void *)kppet.g_tasks; |
| 245 | kfree_type(thread_t, kppet.g_threads_count, g_tasks); |
| 246 | kppet.g_tasks = NULL; |
| 247 | kppet.g_threads = NULL; |
| 248 | kppet.g_threads_count = 0; |
| 249 | kppet.g_nthreads = 0; |
| 250 | } |
| 251 | if (kppet.g_sample != NULL) { |
| 252 | kfree_type(struct kperf_usample_min, |
| 253 | kppet.g_sample->usample.usample_min); |
| 254 | kfree_type(struct kperf_sample, kppet.g_sample); |
| 255 | } |
| 256 | } |
| 257 | |
| 258 | kppet_unlock(); |
| 259 | } |
| 260 | |
| 261 | void |
| 262 | kppet_reset(void) |
| 263 | { |
| 264 | kppet_config(actionid: 0); |
| 265 | kppet_set_idle_rate(KPERF_PET_DEFAULT_IDLE_RATE); |
| 266 | kppet_set_lightweight_pet(on: 0); |
| 267 | } |
| 268 | |
| 269 | void |
| 270 | kppet_wake_thread(void) |
| 271 | { |
| 272 | thread_wakeup(&kppet); |
| 273 | } |
| 274 | |
| 275 | __attribute__((noreturn)) |
| 276 | static void |
| 277 | kppet_thread(void * __unused param, wait_result_t __unused wr) |
| 278 | { |
| 279 | kppet_lock(); |
| 280 | |
| 281 | for (;;) { |
| 282 | BUF_INFO(PERF_PET_IDLE); |
| 283 | |
| 284 | do { |
| 285 | (void)lck_mtx_sleep(lck: &kppet_mtx, lck_sleep_action: LCK_SLEEP_DEFAULT, event: &kppet, |
| 286 | THREAD_UNINT); |
| 287 | } while (kppet.g_actionid == 0); |
| 288 | |
| 289 | BUF_INFO(PERF_PET_RUN); |
| 290 | |
| 291 | uint64_t sampledur_abs = kppet_sample_tasks(idle_rate: kppet.g_idle_rate); |
| 292 | |
| 293 | kptimer_pet_enter(sampledur_abs); |
| 294 | } |
| 295 | } |
| 296 | |
| 297 | #pragma mark - sampling |
| 298 | |
| 299 | static void |
| 300 | kppet_sample_thread(int pid, task_t task, thread_t thread, uint32_t idle_rate) |
| 301 | { |
| 302 | kppet_lock_assert_owned(); |
| 303 | |
| 304 | uint32_t sample_flags = SAMPLE_FLAG_IDLE_THREADS | |
| 305 | SAMPLE_FLAG_THREAD_ONLY; |
| 306 | |
| 307 | BUF_VERB(PERF_PET_SAMPLE_THREAD | DBG_FUNC_START); |
| 308 | |
| 309 | struct kperf_context ctx = { |
| 310 | .cur_thread = thread, |
| 311 | .cur_task = task, |
| 312 | .cur_pid = pid, |
| 313 | }; |
| 314 | |
| 315 | boolean_t thread_dirty = kperf_thread_get_dirty(thread); |
| 316 | |
| 317 | /* |
| 318 | * Clean a dirty thread and skip callstack sample if the thread was not |
| 319 | * dirty and thread had skipped less than `idle_rate` samples. |
| 320 | */ |
| 321 | if (thread_dirty) { |
| 322 | kperf_thread_set_dirty(thread, FALSE); |
| 323 | } else if ((thread->kperf_pet_cnt % idle_rate) != 0) { |
| 324 | sample_flags |= SAMPLE_FLAG_EMPTY_CALLSTACK; |
| 325 | } |
| 326 | thread->kperf_pet_cnt++; |
| 327 | |
| 328 | kperf_sample(sbuf: kppet.g_sample, ctx: &ctx, actionid: kppet.g_actionid, sample_flags); |
| 329 | kperf_sample_user(sbuf: &kppet.g_sample->usample, ctx: &ctx, actionid: kppet.g_actionid, |
| 330 | sample_flags); |
| 331 | |
| 332 | BUF_VERB(PERF_PET_SAMPLE_THREAD | DBG_FUNC_END); |
| 333 | } |
| 334 | |
| 335 | static kern_return_t |
| 336 | kppet_threads_prepare(task_t task) |
| 337 | { |
| 338 | kppet_lock_assert_owned(); |
| 339 | |
| 340 | vm_size_t count_needed; |
| 341 | |
| 342 | for (;;) { |
| 343 | task_lock(task); |
| 344 | |
| 345 | if (!task->active) { |
| 346 | task_unlock(task); |
| 347 | return KERN_FAILURE; |
| 348 | } |
| 349 | |
| 350 | /* |
| 351 | * With the task locked, figure out if enough space has been allocated to |
| 352 | * contain all of the thread references. |
| 353 | */ |
| 354 | count_needed = task->thread_count; |
| 355 | if (count_needed <= kppet.g_threads_count) { |
| 356 | break; |
| 357 | } |
| 358 | |
| 359 | /* |
| 360 | * Otherwise, allocate more and try again. |
| 361 | */ |
| 362 | task_unlock(task); |
| 363 | |
| 364 | kfree_type(thread_t, kppet.g_threads_count, kppet.g_threads); |
| 365 | |
| 366 | assert(count_needed > 0); |
| 367 | kppet.g_threads_count = count_needed; |
| 368 | |
| 369 | kppet.g_threads = kalloc_type_tag(thread_t, kppet.g_threads_count, |
| 370 | Z_WAITOK | Z_ZERO, VM_KERN_MEMORY_DIAG); |
| 371 | if (kppet.g_threads == NULL) { |
| 372 | kppet.g_threads_count = 0; |
| 373 | return KERN_RESOURCE_SHORTAGE; |
| 374 | } |
| 375 | } |
| 376 | |
| 377 | thread_t thread; |
| 378 | kppet.g_nthreads = 0; |
| 379 | queue_iterate(&(task->threads), thread, thread_t, task_threads) { |
| 380 | thread_reference(thread); |
| 381 | kppet.g_threads[kppet.g_nthreads++] = thread; |
| 382 | } |
| 383 | |
| 384 | task_unlock(task); |
| 385 | |
| 386 | return (kppet.g_nthreads > 0) ? KERN_SUCCESS : KERN_FAILURE; |
| 387 | } |
| 388 | |
| 389 | /* |
| 390 | * Sample a `task`, using `idle_rate` to control whether idle threads need to be |
| 391 | * re-sampled. |
| 392 | * |
| 393 | * The task must be referenced. |
| 394 | */ |
| 395 | static void |
| 396 | kppet_sample_task(task_t task, uint32_t idle_rate) |
| 397 | { |
| 398 | kppet_lock_assert_owned(); |
| 399 | assert(task != kernel_task); |
| 400 | if (task == kernel_task) { |
| 401 | return; |
| 402 | } |
| 403 | |
| 404 | BUF_VERB(PERF_PET_SAMPLE_TASK | DBG_FUNC_START); |
| 405 | |
| 406 | int pid = task_pid(task); |
| 407 | if (kperf_action_has_task(actionid: kppet.g_actionid)) { |
| 408 | struct kperf_context ctx = { |
| 409 | .cur_task = task, |
| 410 | .cur_pid = pid, |
| 411 | }; |
| 412 | |
| 413 | kperf_sample(sbuf: kppet.g_sample, ctx: &ctx, actionid: kppet.g_actionid, |
| 414 | SAMPLE_FLAG_TASK_ONLY); |
| 415 | } |
| 416 | |
| 417 | if (!kperf_action_has_thread(actionid: kppet.g_actionid)) { |
| 418 | BUF_VERB(PERF_PET_SAMPLE_TASK | DBG_FUNC_END); |
| 419 | return; |
| 420 | } |
| 421 | |
| 422 | /* |
| 423 | * Suspend the task to see an atomic snapshot of all its threads. This |
| 424 | * is expensive and disruptive. |
| 425 | */ |
| 426 | kern_return_t kr = task_suspend_internal(task); |
| 427 | if (kr != KERN_SUCCESS) { |
| 428 | BUF_VERB(PERF_PET_SAMPLE_TASK | DBG_FUNC_END, 1); |
| 429 | return; |
| 430 | } |
| 431 | |
| 432 | kr = kppet_threads_prepare(task); |
| 433 | if (kr != KERN_SUCCESS) { |
| 434 | BUF_INFO(PERF_PET_ERROR, ERR_THREAD, kr); |
| 435 | goto out; |
| 436 | } |
| 437 | |
| 438 | for (unsigned int i = 0; i < kppet.g_nthreads; i++) { |
| 439 | thread_t thread = kppet.g_threads[i]; |
| 440 | assert(thread != THREAD_NULL); |
| 441 | |
| 442 | kppet_sample_thread(pid, task, thread, idle_rate); |
| 443 | |
| 444 | thread_deallocate(thread: kppet.g_threads[i]); |
| 445 | } |
| 446 | |
| 447 | out: |
| 448 | task_resume_internal(task); |
| 449 | |
| 450 | BUF_VERB(PERF_PET_SAMPLE_TASK | DBG_FUNC_END, kppet.g_nthreads); |
| 451 | } |
| 452 | |
| 453 | /* |
| 454 | * Store and reference all tasks on the system, so they can be safely inspected |
| 455 | * outside the `tasks_threads_lock`. |
| 456 | */ |
| 457 | static kern_return_t |
| 458 | kppet_tasks_prepare(void) |
| 459 | { |
| 460 | kppet_lock_assert_owned(); |
| 461 | |
| 462 | vm_size_t count_needed = 0; |
| 463 | |
| 464 | for (;;) { |
| 465 | lck_mtx_lock(lck: &tasks_threads_lock); |
| 466 | |
| 467 | /* |
| 468 | * With the lock held, break out of the lock/unlock loop if |
| 469 | * there's enough space to store all the tasks. |
| 470 | */ |
| 471 | count_needed = tasks_count; |
| 472 | if (count_needed <= kppet.g_tasks_count) { |
| 473 | break; |
| 474 | } |
| 475 | |
| 476 | /* |
| 477 | * Otherwise, allocate more memory outside of the lock. |
| 478 | */ |
| 479 | lck_mtx_unlock(lck: &tasks_threads_lock); |
| 480 | |
| 481 | if (count_needed > kppet.g_tasks_count) { |
| 482 | if (kppet.g_tasks_count != 0) { |
| 483 | kfree_type(task_t, kppet.g_tasks_count, kppet.g_tasks); |
| 484 | } |
| 485 | |
| 486 | assert(count_needed > 0); |
| 487 | kppet.g_tasks_count = count_needed; |
| 488 | |
| 489 | kppet.g_tasks = kalloc_type_tag(task_t, kppet.g_tasks_count, |
| 490 | Z_WAITOK | Z_ZERO, VM_KERN_MEMORY_DIAG); |
| 491 | if (!kppet.g_tasks) { |
| 492 | kppet.g_tasks_count = 0; |
| 493 | return KERN_RESOURCE_SHORTAGE; |
| 494 | } |
| 495 | } |
| 496 | } |
| 497 | |
| 498 | task_t task = TASK_NULL; |
| 499 | kppet.g_ntasks = 0; |
| 500 | queue_iterate(&tasks, task, task_t, tasks) { |
| 501 | bool eligible_task = task != kernel_task; |
| 502 | if (eligible_task) { |
| 503 | task_reference(task); |
| 504 | kppet.g_tasks[kppet.g_ntasks++] = task; |
| 505 | } |
| 506 | } |
| 507 | |
| 508 | lck_mtx_unlock(lck: &tasks_threads_lock); |
| 509 | |
| 510 | return KERN_SUCCESS; |
| 511 | } |
| 512 | |
| 513 | static uint64_t |
| 514 | kppet_sample_tasks(uint32_t idle_rate) |
| 515 | { |
| 516 | kppet_lock_assert_owned(); |
| 517 | assert(kppet.g_actionid > 0); |
| 518 | |
| 519 | uint64_t start_abs = mach_absolute_time(); |
| 520 | |
| 521 | BUF_INFO(PERF_PET_SAMPLE | DBG_FUNC_START); |
| 522 | |
| 523 | kern_return_t kr = kppet_tasks_prepare(); |
| 524 | if (kr != KERN_SUCCESS) { |
| 525 | BUF_INFO(PERF_PET_ERROR, ERR_TASK, kr); |
| 526 | BUF_INFO(PERF_PET_SAMPLE | DBG_FUNC_END); |
| 527 | return mach_absolute_time() - start_abs; |
| 528 | } |
| 529 | |
| 530 | for (unsigned int i = 0; i < kppet.g_ntasks; i++) { |
| 531 | task_t task = kppet.g_tasks[i]; |
| 532 | assert(task != TASK_NULL); |
| 533 | kppet_sample_task(task, idle_rate); |
| 534 | task_deallocate(task); |
| 535 | kppet.g_tasks[i] = TASK_NULL; |
| 536 | } |
| 537 | |
| 538 | BUF_INFO(PERF_PET_SAMPLE | DBG_FUNC_END, kppet.g_ntasks); |
| 539 | kppet.g_ntasks = 0; |
| 540 | return mach_absolute_time() - start_abs; |
| 541 | } |
| 542 | |
| 543 | #pragma mark - sysctl accessors |
| 544 | |
| 545 | int |
| 546 | kppet_get_idle_rate(void) |
| 547 | { |
| 548 | return kppet.g_idle_rate; |
| 549 | } |
| 550 | |
| 551 | int |
| 552 | kppet_set_idle_rate(int new_idle_rate) |
| 553 | { |
| 554 | kppet.g_idle_rate = new_idle_rate; |
| 555 | return 0; |
| 556 | } |
| 557 | |
| 558 | void |
| 559 | kppet_lightweight_active_update(void) |
| 560 | { |
| 561 | kppet_lightweight_active = (kperf_is_sampling() && kppet.g_lightweight); |
| 562 | kperf_on_cpu_update(); |
| 563 | } |
| 564 | |
| 565 | int |
| 566 | kppet_get_lightweight_pet(void) |
| 567 | { |
| 568 | return kppet.g_lightweight; |
| 569 | } |
| 570 | |
| 571 | int |
| 572 | kppet_set_lightweight_pet(int on) |
| 573 | { |
| 574 | if (kperf_is_sampling()) { |
| 575 | return EBUSY; |
| 576 | } |
| 577 | |
| 578 | kppet.g_lightweight = (on == 1); |
| 579 | kppet_lightweight_active_update(); |
| 580 | return 0; |
| 581 | } |
| 582 | |