| 1 | /* |
| 2 | * Copyright (c) 2011-2022 Apple Computer, Inc. All rights reserved. |
| 3 | * |
| 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
| 5 | * |
| 6 | * This file contains Original Code and/or Modifications of Original Code |
| 7 | * as defined in and that are subject to the Apple Public Source License |
| 8 | * Version 2.0 (the 'License'). You may not use this file except in |
| 9 | * compliance with the License. The rights granted to you under the License |
| 10 | * may not be used to create, or enable the creation or redistribution of, |
| 11 | * unlawful or unlicensed copies of an Apple operating system, or to |
| 12 | * circumvent, violate, or enable the circumvention or violation of, any |
| 13 | * terms of an Apple operating system software license agreement. |
| 14 | * |
| 15 | * Please obtain a copy of the License at |
| 16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
| 17 | * |
| 18 | * The Original Code and all software distributed under the License are |
| 19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| 23 | * Please see the License for the specific language governing rights and |
| 24 | * limitations under the License. |
| 25 | * |
| 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
| 27 | */ |
| 28 | |
| 29 | /* Collect kernel callstacks */ |
| 30 | |
| 31 | #include <mach/mach_types.h> |
| 32 | #include <kern/thread.h> |
| 33 | #include <kern/backtrace.h> |
| 34 | #include <kern/cambria_layout.h> |
| 35 | #include <vm/vm_map.h> |
| 36 | #include <kperf/buffer.h> |
| 37 | #include <kperf/context.h> |
| 38 | #include <kperf/callstack.h> |
| 39 | #include <kperf/ast.h> |
| 40 | #include <sys/errno.h> |
| 41 | #include <mach/exclaves.h> |
| 42 | |
| 43 | #if defined(__arm64__) |
| 44 | #include <arm/cpu_data.h> |
| 45 | #include <arm/cpu_data_internal.h> |
| 46 | #endif |
| 47 | |
| 48 | static void |
| 49 | callstack_fixup_user(struct kp_ucallstack *cs, thread_t thread) |
| 50 | { |
| 51 | uint64_t fixup_val = 0; |
| 52 | assert(cs->kpuc_nframes < MAX_UCALLSTACK_FRAMES); |
| 53 | |
| 54 | #if defined(__x86_64__) |
| 55 | user_addr_t sp_user; |
| 56 | bool user_64; |
| 57 | x86_saved_state_t *state; |
| 58 | |
| 59 | state = get_user_regs(thread); |
| 60 | if (!state) { |
| 61 | goto out; |
| 62 | } |
| 63 | |
| 64 | user_64 = is_saved_state64(state); |
| 65 | if (user_64) { |
| 66 | sp_user = saved_state64(state)->isf.rsp; |
| 67 | } else { |
| 68 | sp_user = saved_state32(state)->uesp; |
| 69 | } |
| 70 | |
| 71 | if (thread == current_thread()) { |
| 72 | (void)copyin(sp_user, (char *)&fixup_val, |
| 73 | user_64 ? sizeof(uint64_t) : sizeof(uint32_t)); |
| 74 | } else { |
| 75 | (void)vm_map_read_user(get_task_map(get_threadtask(thread)), sp_user, |
| 76 | &fixup_val, user_64 ? sizeof(uint64_t) : sizeof(uint32_t)); |
| 77 | } |
| 78 | |
| 79 | #elif defined(__arm64__) |
| 80 | |
| 81 | struct arm_saved_state *state = get_user_regs(thread); |
| 82 | if (!state) { |
| 83 | goto out; |
| 84 | } |
| 85 | |
| 86 | /* encode thumb mode into low bit of PC */ |
| 87 | if (is_saved_state32(iss: state) && (get_saved_state_cpsr(iss: state) & PSR_TF)) { |
| 88 | cs->kpuc_frames[0] |= 1ULL; |
| 89 | } |
| 90 | |
| 91 | |
| 92 | fixup_val = get_saved_state_lr(iss: state); |
| 93 | |
| 94 | #else |
| 95 | #error "callstack_fixup_user: unsupported architecture" |
| 96 | #endif |
| 97 | |
| 98 | out: |
| 99 | cs->kpuc_frames[cs->kpuc_nframes++] = fixup_val; |
| 100 | } |
| 101 | |
| 102 | #if defined(__x86_64__) |
| 103 | |
| 104 | __attribute__((used)) |
| 105 | static kern_return_t |
| 106 | interrupted_kernel_sp_value(uintptr_t *sp_val) |
| 107 | { |
| 108 | x86_saved_state_t *state; |
| 109 | uintptr_t sp; |
| 110 | bool state_64; |
| 111 | uint64_t cs; |
| 112 | uintptr_t top, bottom; |
| 113 | |
| 114 | state = current_cpu_datap()->cpu_int_state; |
| 115 | if (!state) { |
| 116 | return KERN_FAILURE; |
| 117 | } |
| 118 | |
| 119 | state_64 = is_saved_state64(state); |
| 120 | |
| 121 | if (state_64) { |
| 122 | cs = saved_state64(state)->isf.cs; |
| 123 | } else { |
| 124 | cs = saved_state32(state)->cs; |
| 125 | } |
| 126 | /* return early if interrupted a thread in user space */ |
| 127 | if ((cs & SEL_PL) == SEL_PL_U) { |
| 128 | return KERN_FAILURE; |
| 129 | } |
| 130 | |
| 131 | if (state_64) { |
| 132 | sp = saved_state64(state)->isf.rsp; |
| 133 | } else { |
| 134 | sp = saved_state32(state)->uesp; |
| 135 | } |
| 136 | |
| 137 | /* make sure the stack pointer is pointing somewhere in this stack */ |
| 138 | bottom = current_thread()->kernel_stack; |
| 139 | top = bottom + kernel_stack_size; |
| 140 | if (sp >= bottom && sp < top) { |
| 141 | return KERN_FAILURE; |
| 142 | } |
| 143 | |
| 144 | *sp_val = *(uintptr_t *)sp; |
| 145 | return KERN_SUCCESS; |
| 146 | } |
| 147 | |
| 148 | #elif defined(__arm64__) |
| 149 | |
| 150 | __attribute__((used)) |
| 151 | static kern_return_t |
| 152 | interrupted_kernel_lr(uintptr_t *lr) |
| 153 | { |
| 154 | struct arm_saved_state *state; |
| 155 | |
| 156 | state = getCpuDatap()->cpu_int_state; |
| 157 | |
| 158 | /* return early if interrupted a thread in user space */ |
| 159 | if (PSR64_IS_USER(get_saved_state_cpsr(state))) { |
| 160 | return KERN_FAILURE; |
| 161 | } |
| 162 | |
| 163 | *lr = get_saved_state_lr(iss: state); |
| 164 | return KERN_SUCCESS; |
| 165 | } |
| 166 | #else /* defined(__arm64__) */ |
| 167 | #error "interrupted_kernel_{sp,lr}: unsupported architecture" |
| 168 | #endif /* !defined(__arm64__) */ |
| 169 | |
| 170 | |
| 171 | static void |
| 172 | callstack_fixup_interrupted(struct kp_kcallstack *cs) |
| 173 | { |
| 174 | uintptr_t fixup_val = 0; |
| 175 | assert(cs->kpkc_nframes < MAX_KCALLSTACK_FRAMES); |
| 176 | |
| 177 | /* |
| 178 | * Only provide arbitrary data on development or debug kernels. |
| 179 | */ |
| 180 | #if DEVELOPMENT || DEBUG |
| 181 | #if defined(__x86_64__) |
| 182 | (void)interrupted_kernel_sp_value(&fixup_val); |
| 183 | #elif defined(__arm64__) |
| 184 | (void)interrupted_kernel_lr(&fixup_val); |
| 185 | #endif /* defined(__x86_64__) */ |
| 186 | #endif /* DEVELOPMENT || DEBUG */ |
| 187 | |
| 188 | assert(cs->kpkc_flags & CALLSTACK_KERNEL); |
| 189 | cs->kpkc_frames[cs->kpkc_nframes++] = fixup_val; |
| 190 | } |
| 191 | |
| 192 | void |
| 193 | kperf_continuation_sample(struct kp_kcallstack *cs, struct kperf_context *context) |
| 194 | { |
| 195 | thread_t thread; |
| 196 | |
| 197 | assert(cs != NULL); |
| 198 | assert(context != NULL); |
| 199 | |
| 200 | thread = context->cur_thread; |
| 201 | assert(thread != NULL); |
| 202 | assert(thread->continuation != NULL); |
| 203 | |
| 204 | cs->kpkc_flags = CALLSTACK_CONTINUATION | CALLSTACK_VALID | CALLSTACK_KERNEL; |
| 205 | #ifdef __LP64__ |
| 206 | cs->kpkc_flags |= CALLSTACK_64BIT; |
| 207 | #endif |
| 208 | |
| 209 | cs->kpkc_nframes = 1; |
| 210 | cs->kpkc_frames[0] = VM_KERNEL_UNSLIDE(thread->continuation); |
| 211 | } |
| 212 | |
| 213 | void |
| 214 | kperf_backtrace_sample(struct kp_kcallstack *cs, struct kperf_context *context) |
| 215 | { |
| 216 | assert(cs != NULL); |
| 217 | assert(context != NULL); |
| 218 | assert(context->cur_thread == current_thread()); |
| 219 | |
| 220 | cs->kpkc_flags = CALLSTACK_KERNEL | CALLSTACK_KERNEL_WORDS; |
| 221 | #ifdef __LP64__ |
| 222 | cs->kpkc_flags |= CALLSTACK_64BIT; |
| 223 | #endif |
| 224 | |
| 225 | BUF_VERB(PERF_CS_BACKTRACE | DBG_FUNC_START, 1); |
| 226 | |
| 227 | backtrace_info_t btinfo = BTI_NONE; |
| 228 | struct backtrace_control ctl = { |
| 229 | .btc_frame_addr = (uintptr_t)context->starting_fp, |
| 230 | }; |
| 231 | cs->kpkc_nframes = backtrace(bt: cs->kpkc_word_frames, btlen: cs->kpkc_nframes - 1, |
| 232 | ctl: &ctl, info_out: &btinfo); |
| 233 | if (cs->kpkc_nframes > 0) { |
| 234 | cs->kpkc_flags |= CALLSTACK_VALID; |
| 235 | |
| 236 | cs->kpkc_exclaves_offset = 0; |
| 237 | #if CONFIG_EXCLAVES |
| 238 | if ((context->cur_thread->th_exclaves_state & TH_EXCLAVES_RPC) != 0) { |
| 239 | cs->kpkc_exclaves_offset = exclaves_stack_offset(cs->kpkc_word_frames, cs->kpkc_nframes, true); |
| 240 | } |
| 241 | #endif /* CONFIG_EXCLAVES */ |
| 242 | |
| 243 | /* |
| 244 | * Fake the value pointed to by the stack pointer or the link |
| 245 | * register for symbolicators. |
| 246 | */ |
| 247 | cs->kpkc_word_frames[cs->kpkc_nframes + 1] = 0; |
| 248 | cs->kpkc_nframes += 1; |
| 249 | } |
| 250 | if ((btinfo & BTI_TRUNCATED)) { |
| 251 | cs->kpkc_flags |= CALLSTACK_TRUNCATED; |
| 252 | } |
| 253 | |
| 254 | BUF_VERB(PERF_CS_BACKTRACE | DBG_FUNC_END, cs->kpkc_nframes); |
| 255 | } |
| 256 | |
| 257 | kern_return_t chudxnu_thread_get_callstack64_kperf(thread_t thread, |
| 258 | uint64_t *callStack, mach_msg_type_number_t *count, |
| 259 | boolean_t user_only); |
| 260 | |
| 261 | void |
| 262 | kperf_kcallstack_sample(struct kp_kcallstack *cs, struct kperf_context *context) |
| 263 | { |
| 264 | thread_t thread; |
| 265 | |
| 266 | assert(cs != NULL); |
| 267 | assert(context != NULL); |
| 268 | assert(cs->kpkc_nframes <= MAX_KCALLSTACK_FRAMES); |
| 269 | |
| 270 | thread = context->cur_thread; |
| 271 | assert(thread != NULL); |
| 272 | |
| 273 | BUF_INFO(PERF_CS_KSAMPLE | DBG_FUNC_START, (uintptr_t)thread_tid(thread), |
| 274 | cs->kpkc_nframes); |
| 275 | |
| 276 | cs->kpkc_flags = CALLSTACK_KERNEL; |
| 277 | #ifdef __LP64__ |
| 278 | cs->kpkc_flags |= CALLSTACK_64BIT; |
| 279 | #endif |
| 280 | |
| 281 | if (ml_at_interrupt_context()) { |
| 282 | assert(thread == current_thread()); |
| 283 | cs->kpkc_flags |= CALLSTACK_KERNEL_WORDS; |
| 284 | backtrace_info_t btinfo = BTI_NONE; |
| 285 | struct backtrace_control ctl = { .btc_flags = BTF_KERN_INTERRUPTED, }; |
| 286 | cs->kpkc_nframes = backtrace(bt: cs->kpkc_word_frames, btlen: cs->kpkc_nframes - 1, |
| 287 | ctl: &ctl, info_out: &btinfo); |
| 288 | if (cs->kpkc_nframes != 0) { |
| 289 | callstack_fixup_interrupted(cs); |
| 290 | } |
| 291 | if ((btinfo & BTI_TRUNCATED)) { |
| 292 | cs->kpkc_flags |= CALLSTACK_TRUNCATED; |
| 293 | } |
| 294 | |
| 295 | cs->kpkc_exclaves_offset = 0; |
| 296 | #if CONFIG_EXCLAVES |
| 297 | if ((thread->th_exclaves_state & TH_EXCLAVES_RPC) != 0) { |
| 298 | cs->kpkc_exclaves_offset = exclaves_stack_offset(cs->kpkc_word_frames, cs->kpkc_nframes, true); |
| 299 | } |
| 300 | #endif /* CONFIG_EXCLAVES */ |
| 301 | } else { |
| 302 | /* |
| 303 | * Rely on legacy CHUD backtracer to backtrace kernel stacks on |
| 304 | * other threads. |
| 305 | */ |
| 306 | kern_return_t kr; |
| 307 | kr = chudxnu_thread_get_callstack64_kperf(thread, |
| 308 | callStack: cs->kpkc_frames, count: &cs->kpkc_nframes, FALSE); |
| 309 | if (kr == KERN_SUCCESS) { |
| 310 | cs->kpkc_flags |= CALLSTACK_VALID; |
| 311 | } else if (kr == KERN_RESOURCE_SHORTAGE) { |
| 312 | cs->kpkc_flags |= CALLSTACK_VALID; |
| 313 | cs->kpkc_flags |= CALLSTACK_TRUNCATED; |
| 314 | } else { |
| 315 | cs->kpkc_nframes = 0; |
| 316 | } |
| 317 | } |
| 318 | |
| 319 | if (!(cs->kpkc_flags & CALLSTACK_VALID)) { |
| 320 | BUF_INFO(PERF_CS_ERROR, ERR_GETSTACK); |
| 321 | } |
| 322 | |
| 323 | BUF_INFO(PERF_CS_KSAMPLE | DBG_FUNC_END, (uintptr_t)thread_tid(thread), |
| 324 | cs->kpkc_flags, cs->kpkc_nframes); |
| 325 | } |
| 326 | |
| 327 | void |
| 328 | kperf_ucallstack_sample(struct kp_ucallstack *cs, struct kperf_context *context) |
| 329 | { |
| 330 | assert(ml_get_interrupts_enabled() == TRUE); |
| 331 | |
| 332 | thread_t thread = context->cur_thread; |
| 333 | assert(thread != NULL); |
| 334 | |
| 335 | BUF_INFO(PERF_CS_USAMPLE | DBG_FUNC_START, |
| 336 | (uintptr_t)thread_tid(thread), cs->kpuc_nframes); |
| 337 | |
| 338 | struct backtrace_user_info btinfo = BTUINFO_INIT; |
| 339 | /* |
| 340 | * Leave space for the fixup information. |
| 341 | */ |
| 342 | unsigned int maxnframes = cs->kpuc_nframes - 1; |
| 343 | struct backtrace_control ctl = { .btc_user_thread = thread, }; |
| 344 | unsigned int nframes = backtrace_user(bt: cs->kpuc_frames, btlen: maxnframes, ctl: &ctl, |
| 345 | info_out: &btinfo); |
| 346 | cs->kpuc_nframes = MIN(maxnframes, nframes); |
| 347 | |
| 348 | cs->kpuc_flags |= CALLSTACK_KERNEL_WORDS | |
| 349 | ((btinfo.btui_info & BTI_TRUNCATED) ? CALLSTACK_TRUNCATED : 0) | |
| 350 | ((btinfo.btui_info & BTI_64_BIT) ? CALLSTACK_64BIT : 0); |
| 351 | |
| 352 | /* |
| 353 | * Ignore EFAULT to get as much of the stack as possible. |
| 354 | */ |
| 355 | if (btinfo.btui_error == 0 || btinfo.btui_error == EFAULT) { |
| 356 | callstack_fixup_user(cs, thread); |
| 357 | cs->kpuc_flags |= CALLSTACK_VALID; |
| 358 | |
| 359 | if (cs->kpuc_nframes < maxnframes && |
| 360 | btinfo.btui_async_frame_addr != 0) { |
| 361 | cs->kpuc_async_index = btinfo.btui_async_start_index; |
| 362 | ctl.btc_frame_addr = btinfo.btui_async_frame_addr; |
| 363 | ctl.btc_addr_offset = BTCTL_ASYNC_ADDR_OFFSET; |
| 364 | maxnframes -= cs->kpuc_nframes; |
| 365 | btinfo = BTUINFO_INIT; |
| 366 | unsigned int nasync_frames = backtrace_user( |
| 367 | bt: &cs->kpuc_frames[cs->kpuc_nframes], btlen: maxnframes, ctl: &ctl, info_out: &btinfo); |
| 368 | if (btinfo.btui_info & BTI_TRUNCATED) { |
| 369 | cs->kpuc_flags |= CALLSTACK_TRUNCATED; |
| 370 | } |
| 371 | if (btinfo.btui_error == 0 || btinfo.btui_error == EFAULT) { |
| 372 | cs->kpuc_flags |= CALLSTACK_HAS_ASYNC; |
| 373 | cs->kpuc_async_nframes = nasync_frames; |
| 374 | } |
| 375 | } |
| 376 | } else { |
| 377 | cs->kpuc_nframes = 0; |
| 378 | BUF_INFO(PERF_CS_ERROR, ERR_GETSTACK, btinfo.btui_error); |
| 379 | } |
| 380 | |
| 381 | BUF_INFO(PERF_CS_USAMPLE | DBG_FUNC_END, (uintptr_t)thread_tid(thread), |
| 382 | cs->kpuc_flags, cs->kpuc_nframes); |
| 383 | } |
| 384 | |
| 385 | static inline uintptr_t |
| 386 | scrub_word(uintptr_t *bt, int n_frames, int frame, bool kern) |
| 387 | { |
| 388 | if (frame < n_frames) { |
| 389 | if (kern) { |
| 390 | return VM_KERNEL_UNSLIDE(bt[frame]); |
| 391 | } else { |
| 392 | return bt[frame]; |
| 393 | } |
| 394 | } else { |
| 395 | return 0; |
| 396 | } |
| 397 | } |
| 398 | |
| 399 | static inline uintptr_t |
| 400 | scrub_frame(uint64_t *bt, int n_frames, int frame) |
| 401 | { |
| 402 | if (frame < n_frames) { |
| 403 | return (uintptr_t)(bt[frame]); |
| 404 | } else { |
| 405 | return 0; |
| 406 | } |
| 407 | } |
| 408 | |
| 409 | static void |
| 410 | callstack_log(uint32_t hdrid, uint32_t dataid, void *vframes, |
| 411 | unsigned int nframes, unsigned int flags, unsigned int async_index, |
| 412 | unsigned int async_nframes) |
| 413 | { |
| 414 | BUF_VERB(PERF_CS_LOG | DBG_FUNC_START, flags, nframes); |
| 415 | BUF_DATA(hdrid, flags, nframes - async_nframes, async_index, async_nframes); |
| 416 | |
| 417 | unsigned int nevts = nframes / 4; |
| 418 | unsigned int ovf = nframes % 4; |
| 419 | if (ovf != 0) { |
| 420 | nevts++; |
| 421 | } |
| 422 | |
| 423 | bool kern = flags & CALLSTACK_KERNEL; |
| 424 | |
| 425 | if (flags & CALLSTACK_KERNEL_WORDS) { |
| 426 | uintptr_t *frames = vframes; |
| 427 | for (unsigned int i = 0; i < nevts; i++) { |
| 428 | unsigned int j = i * 4; |
| 429 | BUF_DATA(dataid, |
| 430 | scrub_word(frames, nframes, j + 0, kern), |
| 431 | scrub_word(frames, nframes, j + 1, kern), |
| 432 | scrub_word(frames, nframes, j + 2, kern), |
| 433 | scrub_word(frames, nframes, j + 3, kern)); |
| 434 | } |
| 435 | } else { |
| 436 | for (unsigned int i = 0; i < nevts; i++) { |
| 437 | uint64_t *frames = vframes; |
| 438 | unsigned int j = i * 4; |
| 439 | BUF_DATA(dataid, |
| 440 | scrub_frame(frames, nframes, j + 0), |
| 441 | scrub_frame(frames, nframes, j + 1), |
| 442 | scrub_frame(frames, nframes, j + 2), |
| 443 | scrub_frame(frames, nframes, j + 3)); |
| 444 | } |
| 445 | } |
| 446 | |
| 447 | BUF_VERB(PERF_CS_LOG | DBG_FUNC_END, flags, nframes); |
| 448 | } |
| 449 | |
| 450 | void |
| 451 | kperf_kcallstack_log(struct kp_kcallstack *cs) |
| 452 | { |
| 453 | callstack_log(PERF_CS_KHDR, PERF_CS_KDATA, vframes: cs->kpkc_frames, |
| 454 | nframes: cs->kpkc_nframes, flags: cs->kpkc_flags, async_index: 0, async_nframes: 0); |
| 455 | |
| 456 | if (cs->kpkc_exclaves_offset != 0) { |
| 457 | BUF_DATA(PERF_CS_KEXOFFSET, cs->kpkc_exclaves_offset); |
| 458 | } |
| 459 | } |
| 460 | |
| 461 | void |
| 462 | kperf_ucallstack_log(struct kp_ucallstack *cs) |
| 463 | { |
| 464 | callstack_log(PERF_CS_UHDR, PERF_CS_UDATA, vframes: cs->kpuc_frames, |
| 465 | nframes: cs->kpuc_nframes + cs->kpuc_async_nframes, flags: cs->kpuc_flags, |
| 466 | async_index: cs->kpuc_async_index, async_nframes: cs->kpuc_async_nframes); |
| 467 | } |
| 468 | |
| 469 | #if CONFIG_EXCLAVES |
| 470 | void |
| 471 | kperf_excallstack_log(const stackshot_ipcstackentry_s *ipcstack) |
| 472 | { |
| 473 | __block unsigned int nframes = 0; |
| 474 | __block unsigned int flags = CALLSTACK_VALID; |
| 475 | uint64_t frames[MAX_EXCALLSTACK_FRAMES] = {}; |
| 476 | uint64_t *frames_block = frames; |
| 477 | |
| 478 | BUF_DATA(PERF_CS_EXSTACK, ipcstack->asid); |
| 479 | |
| 480 | if (ipcstack->stacktrace.has_value) { |
| 481 | address__v_visit(&ipcstack->stacktrace.value, ^(size_t i, const stackshot_address_s item) { |
| 482 | if (i >= MAX_EXCALLSTACK_FRAMES) { |
| 483 | flags |= CALLSTACK_TRUNCATED; |
| 484 | return; |
| 485 | } |
| 486 | frames_block[i] = item; |
| 487 | nframes += 1; |
| 488 | }); |
| 489 | callstack_log(PERF_CS_EXHDR, PERF_CS_EXDATA, frames, nframes, flags, 0, 0); |
| 490 | } |
| 491 | } |
| 492 | |
| 493 | bool |
| 494 | kperf_exclave_callstack_pend(struct kperf_context *context, unsigned int actionid) |
| 495 | { |
| 496 | if ((context->cur_thread->th_exclaves_state & TH_EXCLAVES_RPC) |
| 497 | && (os_atomic_load(&context->cur_thread->th_exclaves_inspection_state, relaxed) & TH_EXCLAVES_INSPECTION_NOINSPECT) == 0) { |
| 498 | os_atomic_or(&context->cur_thread->th_exclaves_inspection_state, TH_EXCLAVES_INSPECTION_KPERF, relaxed); |
| 499 | context->cur_thread->kperf_exclaves_ast |= T_KPERF_SET_ACTIONID(actionid); |
| 500 | return true; |
| 501 | } |
| 502 | return false; |
| 503 | } |
| 504 | #endif /* CONFIG_EXCLAVES */ |
| 505 | |
| 506 | int |
| 507 | kperf_ucallstack_pend(struct kperf_context * context, uint32_t depth, |
| 508 | unsigned int actionid) |
| 509 | { |
| 510 | if (depth < 2) { |
| 511 | panic("HUH" ); |
| 512 | } |
| 513 | kperf_ast_set_callstack_depth(thread: context->cur_thread, depth); |
| 514 | return kperf_ast_pend(thread: context->cur_thread, T_KPERF_AST_CALLSTACK, |
| 515 | actionid); |
| 516 | } |
| 517 | |
| 518 | static kern_return_t |
| 519 | chudxnu_kern_read(void *dstaddr, vm_offset_t srcaddr, vm_size_t size) |
| 520 | { |
| 521 | return (ml_nofault_copy(virtsrc: srcaddr, virtdst: (vm_offset_t)dstaddr, size) == size) ? |
| 522 | KERN_SUCCESS : KERN_FAILURE; |
| 523 | } |
| 524 | |
| 525 | static kern_return_t |
| 526 | chudxnu_task_read( |
| 527 | task_t task, |
| 528 | void *kernaddr, |
| 529 | uint64_t usraddr, |
| 530 | vm_size_t size) |
| 531 | { |
| 532 | //ppc version ported to arm |
| 533 | kern_return_t ret = KERN_SUCCESS; |
| 534 | |
| 535 | if (ml_at_interrupt_context()) { |
| 536 | return KERN_FAILURE; // can't look at tasks on interrupt stack |
| 537 | } |
| 538 | |
| 539 | if (current_task() == task) { |
| 540 | if (copyin(usraddr, kernaddr, size)) { |
| 541 | ret = KERN_FAILURE; |
| 542 | } |
| 543 | } else { |
| 544 | vm_map_t map = get_task_map(task); |
| 545 | ret = vm_map_read_user(map, src_addr: usraddr, dst_p: kernaddr, size); |
| 546 | } |
| 547 | |
| 548 | return ret; |
| 549 | } |
| 550 | |
| 551 | static inline uint64_t |
| 552 | chudxnu_vm_unslide( uint64_t ptr, int kaddr ) |
| 553 | { |
| 554 | if (!kaddr) { |
| 555 | return ptr; |
| 556 | } |
| 557 | |
| 558 | return VM_KERNEL_UNSLIDE(ptr); |
| 559 | } |
| 560 | |
| 561 | #if __arm64__ |
| 562 | |
| 563 | #if defined(HAS_APPLE_PAC) |
| 564 | #include <ptrauth.h> |
| 565 | #endif |
| 566 | |
| 567 | // chudxnu_thread_get_callstack gathers a raw callstack along with any information needed to |
| 568 | // fix it up later (in case we stopped program as it was saving values into prev stack frame, etc.) |
| 569 | // after sampling has finished. |
| 570 | // |
| 571 | // For an N-entry callstack: |
| 572 | // |
| 573 | // [0] current pc |
| 574 | // [1..N-3] stack frames (including current one) |
| 575 | // [N-2] current LR (return value if we're in a leaf function) |
| 576 | // [N-1] current r0 (in case we've saved LR in r0) (optional) |
| 577 | // |
| 578 | // |
| 579 | #define 1 // capture extra sp register |
| 580 | |
| 581 | static kern_return_t |
| 582 | chudxnu_thread_get_callstack64_internal( |
| 583 | thread_t thread, |
| 584 | uint64_t *callStack, |
| 585 | mach_msg_type_number_t *count, |
| 586 | boolean_t user_only, |
| 587 | int flags) |
| 588 | { |
| 589 | kern_return_t kr = KERN_SUCCESS; |
| 590 | task_t task; |
| 591 | uint64_t currPC = 0ULL, currLR = 0ULL, currSP = 0ULL; |
| 592 | uint64_t prevPC = 0ULL; |
| 593 | uint64_t kernStackMin = thread->kernel_stack; |
| 594 | uint64_t kernStackMax = kernStackMin + kernel_stack_size; |
| 595 | uint64_t *buffer = callStack; |
| 596 | int bufferIndex = 0; |
| 597 | int bufferMaxIndex = 0; |
| 598 | boolean_t kernel = FALSE; |
| 599 | struct arm_saved_state *sstate = NULL; |
| 600 | uint64_t pc = 0ULL; |
| 601 | |
| 602 | task = get_threadtask(thread); |
| 603 | bufferMaxIndex = *count; |
| 604 | //get thread state |
| 605 | if (user_only) { |
| 606 | sstate = find_user_regs(thread); |
| 607 | } else { |
| 608 | sstate = find_kern_regs(thread); |
| 609 | } |
| 610 | |
| 611 | if (!sstate) { |
| 612 | *count = 0; |
| 613 | return KERN_FAILURE; |
| 614 | } |
| 615 | |
| 616 | if (is_saved_state64(iss: sstate)) { |
| 617 | struct arm_saved_state64 *state = NULL; |
| 618 | uint64_t *fp = NULL, *nextFramePointer = NULL, *topfp = NULL; |
| 619 | uint64_t frame[2]; |
| 620 | |
| 621 | state = saved_state64(iss: sstate); |
| 622 | |
| 623 | /* make sure it is safe to dereference before you do it */ |
| 624 | kernel = PSR64_IS_KERNEL(state->cpsr); |
| 625 | |
| 626 | /* can't take a kernel callstack if we've got a user frame */ |
| 627 | if (!user_only && !kernel) { |
| 628 | return KERN_FAILURE; |
| 629 | } |
| 630 | |
| 631 | /* |
| 632 | * Reserve space for saving LR (and sometimes SP) at the end of the |
| 633 | * backtrace. |
| 634 | */ |
| 635 | if (flags & CS_FLAG_EXTRASP) { |
| 636 | bufferMaxIndex -= 2; |
| 637 | } else { |
| 638 | bufferMaxIndex -= 1; |
| 639 | } |
| 640 | |
| 641 | if (bufferMaxIndex < 2) { |
| 642 | *count = 0; |
| 643 | return KERN_RESOURCE_SHORTAGE; |
| 644 | } |
| 645 | |
| 646 | currPC = state->pc; |
| 647 | currLR = state->lr; |
| 648 | currSP = state->sp; |
| 649 | |
| 650 | fp = (uint64_t *)state->fp; /* frame pointer */ |
| 651 | #if defined(HAS_APPLE_PAC) |
| 652 | /* frame pointers on stack will be signed by arm64e ABI */ |
| 653 | fp = ptrauth_strip(fp, ptrauth_key_frame_pointer); |
| 654 | #endif |
| 655 | topfp = fp; |
| 656 | |
| 657 | bufferIndex = 0; // start with a stack of size zero |
| 658 | buffer[bufferIndex++] = chudxnu_vm_unslide(ptr: currPC, kaddr: kernel); // save PC in position 0. |
| 659 | |
| 660 | BUF_VERB(PERF_CS_BACKTRACE | DBG_FUNC_START, kernel, 0); |
| 661 | |
| 662 | // Now, fill buffer with stack backtraces. |
| 663 | while (bufferIndex < bufferMaxIndex) { |
| 664 | pc = 0ULL; |
| 665 | /* |
| 666 | * Below the frame pointer, the following values are saved: |
| 667 | * -> FP |
| 668 | */ |
| 669 | |
| 670 | /* |
| 671 | * Note that we read the pc even for the first stack frame |
| 672 | * (which, in theory, is always empty because the callee fills |
| 673 | * it in just before it lowers the stack. However, if we |
| 674 | * catch the program in between filling in the return address |
| 675 | * and lowering the stack, we want to still have a valid |
| 676 | * backtrace. FixupStack correctly disregards this value if |
| 677 | * necessary. |
| 678 | */ |
| 679 | |
| 680 | if ((uint64_t)fp == 0 || ((uint64_t)fp & 0x3) != 0) { |
| 681 | /* frame pointer is invalid - stop backtracing */ |
| 682 | pc = 0ULL; |
| 683 | break; |
| 684 | } |
| 685 | |
| 686 | if (kernel) { |
| 687 | if (((uint64_t)fp > kernStackMax) || |
| 688 | ((uint64_t)fp < kernStackMin)) { |
| 689 | kr = KERN_FAILURE; |
| 690 | } else { |
| 691 | kr = chudxnu_kern_read(dstaddr: &frame, |
| 692 | srcaddr: (vm_offset_t)fp, |
| 693 | size: (vm_size_t)sizeof(frame)); |
| 694 | if (kr == KERN_SUCCESS) { |
| 695 | #if defined(HAS_APPLE_PAC) |
| 696 | /* return addresses on stack will be signed by arm64e ABI */ |
| 697 | pc = (uint64_t)ptrauth_strip((void *)frame[1], ptrauth_key_return_address); |
| 698 | #else |
| 699 | pc = frame[1]; |
| 700 | #endif |
| 701 | nextFramePointer = (uint64_t *)frame[0]; |
| 702 | #if defined(HAS_APPLE_PAC) |
| 703 | /* frame pointers on stack will be signed by arm64e ABI */ |
| 704 | nextFramePointer = ptrauth_strip(nextFramePointer, ptrauth_key_frame_pointer); |
| 705 | #endif |
| 706 | } else { |
| 707 | pc = 0ULL; |
| 708 | nextFramePointer = 0ULL; |
| 709 | kr = KERN_FAILURE; |
| 710 | } |
| 711 | } |
| 712 | } else { |
| 713 | kr = chudxnu_task_read(task, |
| 714 | kernaddr: &frame, |
| 715 | usraddr: (vm_offset_t)fp, |
| 716 | size: (vm_size_t)sizeof(frame)); |
| 717 | if (kr == KERN_SUCCESS) { |
| 718 | #if defined(HAS_APPLE_PAC) |
| 719 | /* return addresses on stack will be signed by arm64e ABI */ |
| 720 | pc = (uint64_t)ptrauth_strip((void *)frame[1], ptrauth_key_return_address); |
| 721 | #else |
| 722 | pc = frame[1]; |
| 723 | #endif |
| 724 | nextFramePointer = (uint64_t *)(frame[0]); |
| 725 | #if defined(HAS_APPLE_PAC) |
| 726 | /* frame pointers on stack will be signed by arm64e ABI */ |
| 727 | nextFramePointer = ptrauth_strip(nextFramePointer, ptrauth_key_frame_pointer); |
| 728 | #endif |
| 729 | } else { |
| 730 | pc = 0ULL; |
| 731 | nextFramePointer = 0ULL; |
| 732 | kr = KERN_FAILURE; |
| 733 | } |
| 734 | } |
| 735 | |
| 736 | if (kr != KERN_SUCCESS) { |
| 737 | pc = 0ULL; |
| 738 | break; |
| 739 | } |
| 740 | |
| 741 | if (nextFramePointer) { |
| 742 | buffer[bufferIndex++] = chudxnu_vm_unslide(ptr: pc, kaddr: kernel); |
| 743 | prevPC = pc; |
| 744 | } |
| 745 | |
| 746 | if (nextFramePointer < fp) { |
| 747 | break; |
| 748 | } else { |
| 749 | fp = nextFramePointer; |
| 750 | } |
| 751 | } |
| 752 | |
| 753 | BUF_VERB(PERF_CS_BACKTRACE | DBG_FUNC_END, bufferIndex); |
| 754 | |
| 755 | if (bufferIndex >= bufferMaxIndex) { |
| 756 | bufferIndex = bufferMaxIndex; |
| 757 | kr = KERN_RESOURCE_SHORTAGE; |
| 758 | } else { |
| 759 | kr = KERN_SUCCESS; |
| 760 | } |
| 761 | |
| 762 | // Save link register and SP at bottom of stack (used for later fixup). |
| 763 | buffer[bufferIndex++] = chudxnu_vm_unslide(ptr: currLR, kaddr: kernel); |
| 764 | if (flags & CS_FLAG_EXTRASP) { |
| 765 | buffer[bufferIndex++] = chudxnu_vm_unslide(ptr: currSP, kaddr: kernel); |
| 766 | } |
| 767 | } else { |
| 768 | struct arm_saved_state32 *state = NULL; |
| 769 | uint32_t *fp = NULL, *nextFramePointer = NULL, *topfp = NULL; |
| 770 | |
| 771 | /* 64-bit kernel stacks, 32-bit user stacks */ |
| 772 | uint64_t frame[2]; |
| 773 | uint32_t frame32[2]; |
| 774 | |
| 775 | state = saved_state32(iss: sstate); |
| 776 | |
| 777 | /* make sure it is safe to dereference before you do it */ |
| 778 | kernel = PSR_IS_KERNEL(state->cpsr); |
| 779 | |
| 780 | /* can't take a kernel callstack if we've got a user frame */ |
| 781 | if (!user_only && !kernel) { |
| 782 | return KERN_FAILURE; |
| 783 | } |
| 784 | |
| 785 | /* |
| 786 | * Reserve space for saving LR (and sometimes SP) at the end of the |
| 787 | * backtrace. |
| 788 | */ |
| 789 | if (flags & CS_FLAG_EXTRASP) { |
| 790 | bufferMaxIndex -= 2; |
| 791 | } else { |
| 792 | bufferMaxIndex -= 1; |
| 793 | } |
| 794 | |
| 795 | if (bufferMaxIndex < 2) { |
| 796 | *count = 0; |
| 797 | return KERN_RESOURCE_SHORTAGE; |
| 798 | } |
| 799 | |
| 800 | currPC = (uint64_t)state->pc; /* r15 */ |
| 801 | if (state->cpsr & PSR_TF) { |
| 802 | currPC |= 1ULL; /* encode thumb mode into low bit of PC */ |
| 803 | } |
| 804 | currLR = (uint64_t)state->lr; /* r14 */ |
| 805 | currSP = (uint64_t)state->sp; /* r13 */ |
| 806 | |
| 807 | fp = (uint32_t *)(uintptr_t)state->r[7]; /* frame pointer */ |
| 808 | topfp = fp; |
| 809 | |
| 810 | bufferIndex = 0; // start with a stack of size zero |
| 811 | buffer[bufferIndex++] = chudxnu_vm_unslide(ptr: currPC, kaddr: kernel); // save PC in position 0. |
| 812 | |
| 813 | BUF_VERB(PERF_CS_BACKTRACE | DBG_FUNC_START, kernel, 1); |
| 814 | |
| 815 | // Now, fill buffer with stack backtraces. |
| 816 | while (bufferIndex < bufferMaxIndex) { |
| 817 | pc = 0ULL; |
| 818 | /* |
| 819 | * Below the frame pointer, the following values are saved: |
| 820 | * -> FP |
| 821 | */ |
| 822 | |
| 823 | /* |
| 824 | * Note that we read the pc even for the first stack frame |
| 825 | * (which, in theory, is always empty because the callee fills |
| 826 | * it in just before it lowers the stack. However, if we |
| 827 | * catch the program in between filling in the return address |
| 828 | * and lowering the stack, we want to still have a valid |
| 829 | * backtrace. FixupStack correctly disregards this value if |
| 830 | * necessary. |
| 831 | */ |
| 832 | |
| 833 | if ((uint32_t)fp == 0 || ((uint32_t)fp & 0x3) != 0) { |
| 834 | /* frame pointer is invalid - stop backtracing */ |
| 835 | pc = 0ULL; |
| 836 | break; |
| 837 | } |
| 838 | |
| 839 | if (kernel) { |
| 840 | if (((uint32_t)fp > kernStackMax) || |
| 841 | ((uint32_t)fp < kernStackMin)) { |
| 842 | kr = KERN_FAILURE; |
| 843 | } else { |
| 844 | kr = chudxnu_kern_read(dstaddr: &frame, |
| 845 | srcaddr: (vm_offset_t)fp, |
| 846 | size: (vm_size_t)sizeof(frame)); |
| 847 | if (kr == KERN_SUCCESS) { |
| 848 | pc = (uint64_t)frame[1]; |
| 849 | nextFramePointer = (uint32_t *) (frame[0]); |
| 850 | } else { |
| 851 | pc = 0ULL; |
| 852 | nextFramePointer = 0ULL; |
| 853 | kr = KERN_FAILURE; |
| 854 | } |
| 855 | } |
| 856 | } else { |
| 857 | kr = chudxnu_task_read(task, |
| 858 | kernaddr: &frame32, |
| 859 | usraddr: (((uint64_t)(uint32_t)fp) & 0x00000000FFFFFFFFULL), |
| 860 | size: sizeof(frame32)); |
| 861 | if (kr == KERN_SUCCESS) { |
| 862 | pc = (uint64_t)frame32[1]; |
| 863 | nextFramePointer = (uint32_t *)(uintptr_t)(frame32[0]); |
| 864 | } else { |
| 865 | pc = 0ULL; |
| 866 | nextFramePointer = 0ULL; |
| 867 | kr = KERN_FAILURE; |
| 868 | } |
| 869 | } |
| 870 | |
| 871 | if (kr != KERN_SUCCESS) { |
| 872 | pc = 0ULL; |
| 873 | break; |
| 874 | } |
| 875 | |
| 876 | if (nextFramePointer) { |
| 877 | buffer[bufferIndex++] = chudxnu_vm_unslide(ptr: pc, kaddr: kernel); |
| 878 | prevPC = pc; |
| 879 | } |
| 880 | |
| 881 | if (nextFramePointer < fp) { |
| 882 | break; |
| 883 | } else { |
| 884 | fp = nextFramePointer; |
| 885 | } |
| 886 | } |
| 887 | |
| 888 | BUF_VERB(PERF_CS_BACKTRACE | DBG_FUNC_END, bufferIndex); |
| 889 | |
| 890 | /* clamp callstack size to max */ |
| 891 | if (bufferIndex >= bufferMaxIndex) { |
| 892 | bufferIndex = bufferMaxIndex; |
| 893 | kr = KERN_RESOURCE_SHORTAGE; |
| 894 | } else { |
| 895 | /* ignore all other failures */ |
| 896 | kr = KERN_SUCCESS; |
| 897 | } |
| 898 | |
| 899 | // Save link register and R13 (sp) at bottom of stack (used for later fixup). |
| 900 | buffer[bufferIndex++] = chudxnu_vm_unslide(ptr: currLR, kaddr: kernel); |
| 901 | if (flags & CS_FLAG_EXTRASP) { |
| 902 | buffer[bufferIndex++] = chudxnu_vm_unslide(ptr: currSP, kaddr: kernel); |
| 903 | } |
| 904 | } |
| 905 | |
| 906 | *count = bufferIndex; |
| 907 | return kr; |
| 908 | } |
| 909 | |
| 910 | kern_return_t |
| 911 | chudxnu_thread_get_callstack64_kperf( |
| 912 | thread_t thread, |
| 913 | uint64_t *callStack, |
| 914 | mach_msg_type_number_t *count, |
| 915 | boolean_t user_only) |
| 916 | { |
| 917 | return chudxnu_thread_get_callstack64_internal( thread, callStack, count, user_only, flags: 0 ); |
| 918 | } |
| 919 | #elif __x86_64__ |
| 920 | |
| 921 | #define VALID_STACK_ADDRESS(supervisor, addr, minKernAddr, maxKernAddr) (supervisor ? (addr>=minKernAddr && addr<=maxKernAddr) : TRUE) |
| 922 | // don't try to read in the hole |
| 923 | #define VALID_STACK_ADDRESS64(supervisor, addr, minKernAddr, maxKernAddr) \ |
| 924 | (supervisor ? ((uint64_t)addr >= minKernAddr && (uint64_t)addr <= maxKernAddr) : \ |
| 925 | ((uint64_t)addr != 0ULL && ((uint64_t)addr <= 0x00007FFFFFFFFFFFULL || (uint64_t)addr >= 0xFFFF800000000000ULL))) |
| 926 | |
| 927 | typedef struct _cframe64_t { |
| 928 | uint64_t prevFP; // can't use a real pointer here until we're a 64 bit kernel |
| 929 | uint64_t caller; |
| 930 | uint64_t args[0]; |
| 931 | }cframe64_t; |
| 932 | |
| 933 | |
| 934 | typedef struct _cframe_t { |
| 935 | uint32_t prev; // this is really a user32-space pointer to the previous frame |
| 936 | uint32_t caller; |
| 937 | uint32_t args[0]; |
| 938 | } cframe_t; |
| 939 | |
| 940 | extern void * find_user_regs(thread_t); |
| 941 | extern x86_saved_state32_t *find_kern_regs(thread_t); |
| 942 | |
| 943 | static kern_return_t |
| 944 | do_kernel_backtrace( |
| 945 | thread_t thread, |
| 946 | struct x86_kernel_state *regs, |
| 947 | uint64_t *frames, |
| 948 | mach_msg_type_number_t *start_idx, |
| 949 | mach_msg_type_number_t max_idx) |
| 950 | { |
| 951 | uint64_t kernStackMin = (uint64_t)thread->kernel_stack; |
| 952 | uint64_t kernStackMax = (uint64_t)kernStackMin + kernel_stack_size; |
| 953 | mach_msg_type_number_t ct = *start_idx; |
| 954 | kern_return_t kr = KERN_FAILURE; |
| 955 | |
| 956 | #if __LP64__ |
| 957 | uint64_t currPC = 0ULL; |
| 958 | uint64_t currFP = 0ULL; |
| 959 | uint64_t prevPC = 0ULL; |
| 960 | uint64_t prevFP = 0ULL; |
| 961 | if (KERN_SUCCESS != chudxnu_kern_read(&currPC, (vm_offset_t)&(regs->k_rip), sizeof(uint64_t))) { |
| 962 | return KERN_FAILURE; |
| 963 | } |
| 964 | if (KERN_SUCCESS != chudxnu_kern_read(&currFP, (vm_offset_t)&(regs->k_rbp), sizeof(uint64_t))) { |
| 965 | return KERN_FAILURE; |
| 966 | } |
| 967 | #else |
| 968 | uint32_t currPC = 0U; |
| 969 | uint32_t currFP = 0U; |
| 970 | uint32_t prevPC = 0U; |
| 971 | uint32_t prevFP = 0U; |
| 972 | if (KERN_SUCCESS != chudxnu_kern_read(&currPC, (vm_offset_t)&(regs->k_eip), sizeof(uint32_t))) { |
| 973 | return KERN_FAILURE; |
| 974 | } |
| 975 | if (KERN_SUCCESS != chudxnu_kern_read(&currFP, (vm_offset_t)&(regs->k_ebp), sizeof(uint32_t))) { |
| 976 | return KERN_FAILURE; |
| 977 | } |
| 978 | #endif |
| 979 | |
| 980 | if (*start_idx >= max_idx) { |
| 981 | return KERN_RESOURCE_SHORTAGE; // no frames traced |
| 982 | } |
| 983 | if (!currPC) { |
| 984 | return KERN_FAILURE; |
| 985 | } |
| 986 | |
| 987 | frames[ct++] = chudxnu_vm_unslide((uint64_t)currPC, 1); |
| 988 | |
| 989 | // build a backtrace of this kernel state |
| 990 | #if __LP64__ |
| 991 | while (VALID_STACK_ADDRESS64(TRUE, currFP, kernStackMin, kernStackMax)) { |
| 992 | // this is the address where caller lives in the user thread |
| 993 | uint64_t caller = currFP + sizeof(uint64_t); |
| 994 | #else |
| 995 | while (VALID_STACK_ADDRESS(TRUE, currFP, kernStackMin, kernStackMax)) { |
| 996 | uint32_t caller = (uint32_t)currFP + sizeof(uint32_t); |
| 997 | #endif |
| 998 | |
| 999 | if (!currFP || !currPC) { |
| 1000 | currPC = 0; |
| 1001 | break; |
| 1002 | } |
| 1003 | |
| 1004 | if (ct >= max_idx) { |
| 1005 | *start_idx = ct; |
| 1006 | return KERN_RESOURCE_SHORTAGE; |
| 1007 | } |
| 1008 | |
| 1009 | /* read our caller */ |
| 1010 | kr = chudxnu_kern_read(&currPC, (vm_offset_t)caller, sizeof(currPC)); |
| 1011 | |
| 1012 | if (kr != KERN_SUCCESS || !currPC) { |
| 1013 | currPC = 0UL; |
| 1014 | break; |
| 1015 | } |
| 1016 | |
| 1017 | /* |
| 1018 | * retrive contents of the frame pointer and advance to the next stack |
| 1019 | * frame if it's valid |
| 1020 | */ |
| 1021 | prevFP = 0; |
| 1022 | kr = chudxnu_kern_read(&prevFP, (vm_offset_t)currFP, sizeof(currPC)); |
| 1023 | |
| 1024 | #if __LP64__ |
| 1025 | if (VALID_STACK_ADDRESS64(TRUE, prevFP, kernStackMin, kernStackMax)) { |
| 1026 | #else |
| 1027 | if (VALID_STACK_ADDRESS(TRUE, prevFP, kernStackMin, kernStackMax)) { |
| 1028 | #endif |
| 1029 | frames[ct++] = chudxnu_vm_unslide((uint64_t)currPC, 1); |
| 1030 | prevPC = currPC; |
| 1031 | } |
| 1032 | if (prevFP <= currFP) { |
| 1033 | break; |
| 1034 | } else { |
| 1035 | currFP = prevFP; |
| 1036 | } |
| 1037 | } |
| 1038 | |
| 1039 | *start_idx = ct; |
| 1040 | return KERN_SUCCESS; |
| 1041 | } |
| 1042 | |
| 1043 | |
| 1044 | |
| 1045 | static kern_return_t |
| 1046 | do_backtrace32( |
| 1047 | task_t task, |
| 1048 | thread_t thread, |
| 1049 | x86_saved_state32_t *regs, |
| 1050 | uint64_t *frames, |
| 1051 | mach_msg_type_number_t *start_idx, |
| 1052 | mach_msg_type_number_t max_idx, |
| 1053 | boolean_t supervisor) |
| 1054 | { |
| 1055 | uint32_t tmpWord = 0UL; |
| 1056 | uint64_t currPC = (uint64_t) regs->eip; |
| 1057 | uint64_t currFP = (uint64_t) regs->ebp; |
| 1058 | uint64_t prevPC = 0ULL; |
| 1059 | uint64_t prevFP = 0ULL; |
| 1060 | uint64_t kernStackMin = thread->kernel_stack; |
| 1061 | uint64_t kernStackMax = kernStackMin + kernel_stack_size; |
| 1062 | mach_msg_type_number_t ct = *start_idx; |
| 1063 | kern_return_t kr = KERN_FAILURE; |
| 1064 | |
| 1065 | if (ct >= max_idx) { |
| 1066 | return KERN_RESOURCE_SHORTAGE; // no frames traced |
| 1067 | } |
| 1068 | frames[ct++] = chudxnu_vm_unslide(currPC, supervisor); |
| 1069 | |
| 1070 | // build a backtrace of this 32 bit state. |
| 1071 | while (VALID_STACK_ADDRESS(supervisor, currFP, kernStackMin, kernStackMax)) { |
| 1072 | cframe_t *fp = (cframe_t *) (uintptr_t) currFP; |
| 1073 | |
| 1074 | if (!currFP) { |
| 1075 | currPC = 0; |
| 1076 | break; |
| 1077 | } |
| 1078 | |
| 1079 | if (ct >= max_idx) { |
| 1080 | *start_idx = ct; |
| 1081 | return KERN_RESOURCE_SHORTAGE; |
| 1082 | } |
| 1083 | |
| 1084 | /* read our caller */ |
| 1085 | if (supervisor) { |
| 1086 | kr = chudxnu_kern_read(&tmpWord, (vm_offset_t) &fp->caller, sizeof(uint32_t)); |
| 1087 | } else { |
| 1088 | kr = chudxnu_task_read(task, &tmpWord, (vm_offset_t) &fp->caller, sizeof(uint32_t)); |
| 1089 | } |
| 1090 | |
| 1091 | if (kr != KERN_SUCCESS) { |
| 1092 | currPC = 0ULL; |
| 1093 | break; |
| 1094 | } |
| 1095 | |
| 1096 | currPC = (uint64_t) tmpWord; // promote 32 bit address |
| 1097 | |
| 1098 | /* |
| 1099 | * retrive contents of the frame pointer and advance to the next stack |
| 1100 | * frame if it's valid |
| 1101 | */ |
| 1102 | prevFP = 0; |
| 1103 | if (supervisor) { |
| 1104 | kr = chudxnu_kern_read(&tmpWord, (vm_offset_t)&fp->prev, sizeof(uint32_t)); |
| 1105 | } else { |
| 1106 | kr = chudxnu_task_read(task, &tmpWord, (vm_offset_t)&fp->prev, sizeof(uint32_t)); |
| 1107 | } |
| 1108 | prevFP = (uint64_t) tmpWord; // promote 32 bit address |
| 1109 | |
| 1110 | if (prevFP) { |
| 1111 | frames[ct++] = chudxnu_vm_unslide(currPC, supervisor); |
| 1112 | prevPC = currPC; |
| 1113 | } |
| 1114 | if (prevFP < currFP) { |
| 1115 | break; |
| 1116 | } else { |
| 1117 | currFP = prevFP; |
| 1118 | } |
| 1119 | } |
| 1120 | |
| 1121 | *start_idx = ct; |
| 1122 | return KERN_SUCCESS; |
| 1123 | } |
| 1124 | |
| 1125 | static kern_return_t |
| 1126 | do_backtrace64( |
| 1127 | task_t task, |
| 1128 | thread_t thread, |
| 1129 | x86_saved_state64_t *regs, |
| 1130 | uint64_t *frames, |
| 1131 | mach_msg_type_number_t *start_idx, |
| 1132 | mach_msg_type_number_t max_idx, |
| 1133 | boolean_t supervisor) |
| 1134 | { |
| 1135 | uint64_t currPC = regs->isf.rip; |
| 1136 | uint64_t currFP = regs->rbp; |
| 1137 | uint64_t prevPC = 0ULL; |
| 1138 | uint64_t prevFP = 0ULL; |
| 1139 | uint64_t kernStackMin = (uint64_t)thread->kernel_stack; |
| 1140 | uint64_t kernStackMax = (uint64_t)kernStackMin + kernel_stack_size; |
| 1141 | mach_msg_type_number_t ct = *start_idx; |
| 1142 | kern_return_t kr = KERN_FAILURE; |
| 1143 | |
| 1144 | if (*start_idx >= max_idx) { |
| 1145 | return KERN_RESOURCE_SHORTAGE; // no frames traced |
| 1146 | } |
| 1147 | frames[ct++] = chudxnu_vm_unslide(currPC, supervisor); |
| 1148 | |
| 1149 | // build a backtrace of this 32 bit state. |
| 1150 | while (VALID_STACK_ADDRESS64(supervisor, currFP, kernStackMin, kernStackMax)) { |
| 1151 | // this is the address where caller lives in the user thread |
| 1152 | uint64_t caller = currFP + sizeof(uint64_t); |
| 1153 | |
| 1154 | if (!currFP) { |
| 1155 | currPC = 0; |
| 1156 | break; |
| 1157 | } |
| 1158 | |
| 1159 | if (ct >= max_idx) { |
| 1160 | *start_idx = ct; |
| 1161 | return KERN_RESOURCE_SHORTAGE; |
| 1162 | } |
| 1163 | |
| 1164 | /* read our caller */ |
| 1165 | if (supervisor) { |
| 1166 | kr = chudxnu_kern_read(&currPC, (vm_offset_t)caller, sizeof(uint64_t)); |
| 1167 | } else { |
| 1168 | kr = chudxnu_task_read(task, &currPC, caller, sizeof(uint64_t)); |
| 1169 | } |
| 1170 | |
| 1171 | if (kr != KERN_SUCCESS) { |
| 1172 | currPC = 0ULL; |
| 1173 | break; |
| 1174 | } |
| 1175 | |
| 1176 | /* |
| 1177 | * retrive contents of the frame pointer and advance to the next stack |
| 1178 | * frame if it's valid |
| 1179 | */ |
| 1180 | prevFP = 0; |
| 1181 | if (supervisor) { |
| 1182 | kr = chudxnu_kern_read(&prevFP, (vm_offset_t)currFP, sizeof(uint64_t)); |
| 1183 | } else { |
| 1184 | kr = chudxnu_task_read(task, &prevFP, currFP, sizeof(uint64_t)); |
| 1185 | } |
| 1186 | |
| 1187 | if (VALID_STACK_ADDRESS64(supervisor, prevFP, kernStackMin, kernStackMax)) { |
| 1188 | frames[ct++] = chudxnu_vm_unslide(currPC, supervisor); |
| 1189 | prevPC = currPC; |
| 1190 | } |
| 1191 | if (prevFP < currFP) { |
| 1192 | break; |
| 1193 | } else { |
| 1194 | currFP = prevFP; |
| 1195 | } |
| 1196 | } |
| 1197 | |
| 1198 | *start_idx = ct; |
| 1199 | return KERN_SUCCESS; |
| 1200 | } |
| 1201 | |
| 1202 | static kern_return_t |
| 1203 | chudxnu_thread_get_callstack64_internal( |
| 1204 | thread_t thread, |
| 1205 | uint64_t *callstack, |
| 1206 | mach_msg_type_number_t *count, |
| 1207 | boolean_t user_only, |
| 1208 | boolean_t kern_only) |
| 1209 | { |
| 1210 | kern_return_t kr = KERN_FAILURE; |
| 1211 | task_t task = get_threadtask(thread); |
| 1212 | uint64_t currPC = 0ULL; |
| 1213 | boolean_t supervisor = FALSE; |
| 1214 | mach_msg_type_number_t bufferIndex = 0; |
| 1215 | mach_msg_type_number_t bufferMaxIndex = *count; |
| 1216 | x86_saved_state_t *tagged_regs = NULL; // kernel register state |
| 1217 | x86_saved_state64_t *regs64 = NULL; |
| 1218 | x86_saved_state32_t *regs32 = NULL; |
| 1219 | x86_saved_state32_t *u_regs32 = NULL; |
| 1220 | x86_saved_state64_t *u_regs64 = NULL; |
| 1221 | struct x86_kernel_state *kregs = NULL; |
| 1222 | |
| 1223 | if (ml_at_interrupt_context()) { |
| 1224 | if (user_only) { |
| 1225 | /* can't backtrace user state on interrupt stack. */ |
| 1226 | return KERN_FAILURE; |
| 1227 | } |
| 1228 | |
| 1229 | /* backtracing at interrupt context? */ |
| 1230 | if (thread == current_thread() && current_cpu_datap()->cpu_int_state) { |
| 1231 | /* |
| 1232 | * Locate the registers for the interrupted thread, assuming it is |
| 1233 | * current_thread(). |
| 1234 | */ |
| 1235 | tagged_regs = current_cpu_datap()->cpu_int_state; |
| 1236 | |
| 1237 | if (is_saved_state64(tagged_regs)) { |
| 1238 | /* 64 bit registers */ |
| 1239 | regs64 = saved_state64(tagged_regs); |
| 1240 | supervisor = ((regs64->isf.cs & SEL_PL) != SEL_PL_U); |
| 1241 | } else { |
| 1242 | /* 32 bit registers */ |
| 1243 | regs32 = saved_state32(tagged_regs); |
| 1244 | supervisor = ((regs32->cs & SEL_PL) != SEL_PL_U); |
| 1245 | } |
| 1246 | } |
| 1247 | } |
| 1248 | |
| 1249 | if (!ml_at_interrupt_context() && kernel_task == task) { |
| 1250 | if (!thread->kernel_stack) { |
| 1251 | return KERN_FAILURE; |
| 1252 | } |
| 1253 | |
| 1254 | // Kernel thread not at interrupt context |
| 1255 | kregs = (struct x86_kernel_state *)NULL; |
| 1256 | |
| 1257 | // nofault read of the thread->kernel_stack pointer |
| 1258 | if (KERN_SUCCESS != chudxnu_kern_read(&kregs, (vm_offset_t)&(thread->kernel_stack), sizeof(void *))) { |
| 1259 | return KERN_FAILURE; |
| 1260 | } |
| 1261 | |
| 1262 | // Adjust to find the saved kernel state |
| 1263 | kregs = STACK_IKS((vm_offset_t)(uintptr_t)kregs); |
| 1264 | |
| 1265 | supervisor = TRUE; |
| 1266 | } else if (!tagged_regs) { |
| 1267 | /* |
| 1268 | * not at interrupt context, or tracing a different thread than |
| 1269 | * current_thread() at interrupt context |
| 1270 | */ |
| 1271 | tagged_regs = USER_STATE(thread); |
| 1272 | if (is_saved_state64(tagged_regs)) { |
| 1273 | /* 64 bit registers */ |
| 1274 | regs64 = saved_state64(tagged_regs); |
| 1275 | supervisor = ((regs64->isf.cs & SEL_PL) != SEL_PL_U); |
| 1276 | } else { |
| 1277 | /* 32 bit registers */ |
| 1278 | regs32 = saved_state32(tagged_regs); |
| 1279 | supervisor = ((regs32->cs & SEL_PL) != SEL_PL_U); |
| 1280 | } |
| 1281 | } |
| 1282 | |
| 1283 | *count = 0; |
| 1284 | |
| 1285 | if (supervisor) { |
| 1286 | // the caller only wants a user callstack. |
| 1287 | if (user_only) { |
| 1288 | // bail - we've only got kernel state |
| 1289 | return KERN_FAILURE; |
| 1290 | } |
| 1291 | } else { |
| 1292 | // regs32(64) is not in supervisor mode. |
| 1293 | u_regs32 = regs32; |
| 1294 | u_regs64 = regs64; |
| 1295 | regs32 = NULL; |
| 1296 | regs64 = NULL; |
| 1297 | } |
| 1298 | |
| 1299 | if (user_only) { |
| 1300 | /* we only want to backtrace the user mode */ |
| 1301 | if (!(u_regs32 || u_regs64)) { |
| 1302 | /* no user state to look at */ |
| 1303 | return KERN_FAILURE; |
| 1304 | } |
| 1305 | } |
| 1306 | |
| 1307 | /* |
| 1308 | * Order of preference for top of stack: |
| 1309 | * 64 bit kernel state (not likely) |
| 1310 | * 32 bit kernel state |
| 1311 | * 64 bit user land state |
| 1312 | * 32 bit user land state |
| 1313 | */ |
| 1314 | |
| 1315 | if (kregs) { |
| 1316 | /* |
| 1317 | * nofault read of the registers from the kernel stack (as they can |
| 1318 | * disappear on the fly). |
| 1319 | */ |
| 1320 | |
| 1321 | if (KERN_SUCCESS != chudxnu_kern_read(&currPC, (vm_offset_t)&(kregs->k_rip), sizeof(uint64_t))) { |
| 1322 | return KERN_FAILURE; |
| 1323 | } |
| 1324 | } else if (regs64) { |
| 1325 | currPC = regs64->isf.rip; |
| 1326 | } else if (regs32) { |
| 1327 | currPC = (uint64_t) regs32->eip; |
| 1328 | } else if (u_regs64) { |
| 1329 | currPC = u_regs64->isf.rip; |
| 1330 | } else if (u_regs32) { |
| 1331 | currPC = (uint64_t) u_regs32->eip; |
| 1332 | } |
| 1333 | |
| 1334 | if (!currPC) { |
| 1335 | /* no top of the stack, bail out */ |
| 1336 | return KERN_FAILURE; |
| 1337 | } |
| 1338 | |
| 1339 | bufferIndex = 0; |
| 1340 | |
| 1341 | if (bufferMaxIndex < 1) { |
| 1342 | *count = 0; |
| 1343 | return KERN_RESOURCE_SHORTAGE; |
| 1344 | } |
| 1345 | |
| 1346 | /* backtrace kernel */ |
| 1347 | if (kregs) { |
| 1348 | addr64_t address = 0ULL; |
| 1349 | size_t size = 0UL; |
| 1350 | |
| 1351 | // do the backtrace |
| 1352 | kr = do_kernel_backtrace(thread, kregs, callstack, &bufferIndex, bufferMaxIndex); |
| 1353 | |
| 1354 | // and do a nofault read of (r|e)sp |
| 1355 | uint64_t rsp = 0ULL; |
| 1356 | size = sizeof(uint64_t); |
| 1357 | |
| 1358 | if (KERN_SUCCESS != chudxnu_kern_read(&address, (vm_offset_t)&(kregs->k_rsp), size)) { |
| 1359 | address = 0ULL; |
| 1360 | } |
| 1361 | |
| 1362 | if (address && KERN_SUCCESS == chudxnu_kern_read(&rsp, (vm_offset_t)address, size) && bufferIndex < bufferMaxIndex) { |
| 1363 | callstack[bufferIndex++] = (uint64_t)rsp; |
| 1364 | } |
| 1365 | } else if (regs64) { |
| 1366 | uint64_t rsp = 0ULL; |
| 1367 | |
| 1368 | // backtrace the 64bit side. |
| 1369 | kr = do_backtrace64(task, thread, regs64, callstack, &bufferIndex, |
| 1370 | bufferMaxIndex - 1, TRUE); |
| 1371 | |
| 1372 | if (KERN_SUCCESS == chudxnu_kern_read(&rsp, (vm_offset_t) regs64->isf.rsp, sizeof(uint64_t)) && |
| 1373 | bufferIndex < bufferMaxIndex) { |
| 1374 | callstack[bufferIndex++] = rsp; |
| 1375 | } |
| 1376 | } else if (regs32) { |
| 1377 | uint32_t esp = 0UL; |
| 1378 | |
| 1379 | // backtrace the 32bit side. |
| 1380 | kr = do_backtrace32(task, thread, regs32, callstack, &bufferIndex, |
| 1381 | bufferMaxIndex - 1, TRUE); |
| 1382 | |
| 1383 | if (KERN_SUCCESS == chudxnu_kern_read(&esp, (vm_offset_t) regs32->uesp, sizeof(uint32_t)) && |
| 1384 | bufferIndex < bufferMaxIndex) { |
| 1385 | callstack[bufferIndex++] = (uint64_t) esp; |
| 1386 | } |
| 1387 | } else if (u_regs64 && !kern_only) { |
| 1388 | /* backtrace user land */ |
| 1389 | uint64_t rsp = 0ULL; |
| 1390 | |
| 1391 | kr = do_backtrace64(task, thread, u_regs64, callstack, &bufferIndex, |
| 1392 | bufferMaxIndex - 1, FALSE); |
| 1393 | |
| 1394 | if (KERN_SUCCESS == chudxnu_task_read(task, &rsp, (addr64_t) u_regs64->isf.rsp, sizeof(uint64_t)) && |
| 1395 | bufferIndex < bufferMaxIndex) { |
| 1396 | callstack[bufferIndex++] = rsp; |
| 1397 | } |
| 1398 | } else if (u_regs32 && !kern_only) { |
| 1399 | uint32_t esp = 0UL; |
| 1400 | |
| 1401 | kr = do_backtrace32(task, thread, u_regs32, callstack, &bufferIndex, |
| 1402 | bufferMaxIndex - 1, FALSE); |
| 1403 | |
| 1404 | if (KERN_SUCCESS == chudxnu_task_read(task, &esp, (addr64_t) u_regs32->uesp, sizeof(uint32_t)) && |
| 1405 | bufferIndex < bufferMaxIndex) { |
| 1406 | callstack[bufferIndex++] = (uint64_t) esp; |
| 1407 | } |
| 1408 | } |
| 1409 | |
| 1410 | *count = bufferIndex; |
| 1411 | return kr; |
| 1412 | } |
| 1413 | |
| 1414 | __private_extern__ |
| 1415 | kern_return_t |
| 1416 | chudxnu_thread_get_callstack64_kperf( |
| 1417 | thread_t thread, |
| 1418 | uint64_t *callstack, |
| 1419 | mach_msg_type_number_t *count, |
| 1420 | boolean_t is_user) |
| 1421 | { |
| 1422 | return chudxnu_thread_get_callstack64_internal(thread, callstack, count, is_user, !is_user); |
| 1423 | } |
| 1424 | #else /* !__arm64__ && !__x86_64__ */ |
| 1425 | #error kperf: unsupported architecture |
| 1426 | #endif /* !__arm64__ && !__x86_64__ */ |
| 1427 | |