1 | /* |
2 | * Copyright (c) 2015-2021 Apple Inc. All rights reserved. |
3 | * |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
5 | * |
6 | * This file contains Original Code and/or Modifications of Original Code |
7 | * as defined in and that are subject to the Apple Public Source License |
8 | * Version 2.0 (the 'License'). You may not use this file except in |
9 | * compliance with the License. The rights granted to you under the License |
10 | * may not be used to create, or enable the creation or redistribution of, |
11 | * unlawful or unlicensed copies of an Apple operating system, or to |
12 | * circumvent, violate, or enable the circumvention or violation of, any |
13 | * terms of an Apple operating system software license agreement. |
14 | * |
15 | * Please obtain a copy of the License at |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
17 | * |
18 | * The Original Code and all software distributed under the License are |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
23 | * Please see the License for the specific language governing rights and |
24 | * limitations under the License. |
25 | * |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
27 | */ |
28 | /* |
29 | * @OSF_FREE_COPYRIGHT@ |
30 | */ |
31 | /* |
32 | * Mach Operating System |
33 | * Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University |
34 | * All Rights Reserved. |
35 | * |
36 | * Permission to use, copy, modify and distribute this software and its |
37 | * documentation is hereby granted, provided that both the copyright |
38 | * notice and this permission notice appear in all copies of the |
39 | * software, derivative works or modified versions, and any portions |
40 | * thereof, and that both notices appear in supporting documentation. |
41 | * |
42 | * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" |
43 | * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR |
44 | * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. |
45 | * |
46 | * Carnegie Mellon requests users of this software to return to |
47 | * |
48 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU |
49 | * School of Computer Science |
50 | * Carnegie Mellon University |
51 | * Pittsburgh PA 15213-3890 |
52 | * |
53 | * any improvements or extensions that they make and grant Carnegie Mellon |
54 | * the rights to redistribute these changes. |
55 | */ |
56 | |
57 | #include <kern/ast.h> |
58 | #include <kern/backtrace.h> |
59 | #include <kern/kern_types.h> |
60 | #include <kern/mach_param.h> |
61 | #include <kern/percpu.h> |
62 | #include <kern/queue.h> |
63 | #include <kern/sched_prim.h> |
64 | #include <kern/simple_lock.h> |
65 | #include <kern/spl.h> |
66 | #include <kern/waitq.h> |
67 | #include <kern/zalloc.h> |
68 | #include <kern/policy_internal.h> |
69 | #include <kern/turnstile.h> |
70 | |
71 | #include <os/hash.h> |
72 | #include <libkern/section_keywords.h> |
73 | #include <mach/sync_policy.h> |
74 | #include <vm/vm_kern.h> |
75 | |
76 | #include <sys/kdebug.h> |
77 | |
78 | /*! |
79 | * @const waitq_set_unlink_batch |
80 | * |
81 | * @brief |
82 | * How many links are unhooked under a single set lock hold. |
83 | * |
84 | * @discussion |
85 | * Holding a waitq set lock for too long can cause |
86 | * extreme contention (when a set is being torn down concurrently |
87 | * to messages being sent to ports who used to belong to that set). |
88 | * |
89 | * In order to fight this, large wait queue sets will drop |
90 | * and reacquire their lock for each unlinking batch. |
91 | */ |
92 | static TUNABLE(uint32_t, waitq_set_unlink_batch, "waitq_set_unlink_batch" , 64); |
93 | |
94 | /*! |
95 | * @const WQL_PREPOST_MARKER |
96 | * |
97 | * @brief |
98 | * Marker set in the @c wql_wqs field of wait queue linkages to denote that |
99 | * this linkage has preposted to its wait queue set already. |
100 | * |
101 | * @discussion |
102 | * This bit is manipulated under both the wait queue and the wait queue set |
103 | * locks, and is used for two purposes: |
104 | * |
105 | * - for port set queues, it denotes in which circle queue the linkage |
106 | * is queued on (@c waitq_set::wqset_links or @c waitq_set::wqset_preposts) |
107 | * |
108 | * - as an optimization during pre-post to not walk sets this link already |
109 | * preposted to. |
110 | */ |
111 | #define WQL_PREPOST_MARKER 1ul |
112 | |
113 | #if __LP64__ |
114 | /*! |
115 | * @struct waitq_link_hdr |
116 | * |
117 | * @brief |
118 | * Common "header" between all linkages, in order to find the waitq_set |
119 | * of this linkage. |
120 | * |
121 | * @discussion |
122 | * Due to unfortunate alignment constraints on @c queue_chain_t, |
123 | * this is wildly different for LP64 and ILP32. |
124 | * |
125 | * Do note that `wql |
126 | */ |
127 | struct waitq_link_hdr { |
128 | uintptr_t wql_wqs; |
129 | }; |
130 | |
131 | /*! |
132 | * @struct waitq_sellink |
133 | * |
134 | * @brief |
135 | * Linkages used for select waitq queues to select wait queue sets. |
136 | * |
137 | * @discussion |
138 | * Select linkages are one way (queue to set) for two reasons: |
139 | * |
140 | * 1. select doesn't use the wait queue subsystem to discover which file |
141 | * descriptor woke up the set (it will instead scan all fds again), |
142 | * |
143 | * 2. all linkages are unhooked on each syscall return, so we minimize |
144 | * work to be done to be as quick as possible, using a fast invalidation |
145 | * scheme based on unique identifiers and sequestering |
146 | * (see @c select_set_nextid()). |
147 | */ |
148 | struct waitq_sellink { |
149 | uintptr_t wql_wqs; |
150 | struct waitq_link_list_entry wql_next; |
151 | uint64_t wql_setid; |
152 | }; |
153 | |
154 | /*! |
155 | * @struct waitq_link |
156 | * |
157 | * @brief |
158 | * Linkages used for port wait queues and port-set wait queue sets. |
159 | * |
160 | * @discussion |
161 | * Those linkages go both ways so that receiving messages through a port-set |
162 | * can quickly find ports that preposted to the set. |
163 | * |
164 | * It also means that unhooking linkages cannot be lazy. |
165 | */ |
166 | struct waitq_link { |
167 | uintptr_t wql_wqs; /**< wait queue set for this link */ |
168 | queue_chain_t wql_qlink; /**< linkage through the waitq list */ |
169 | queue_chain_t wql_slink; /**< linkage through the wqset list */ |
170 | struct waitq *wql_wq; /**< wait queue for this link */ |
171 | }; |
172 | #else |
173 | struct waitq_link_hdr { |
174 | uint64_t __wql_padding; |
175 | uintptr_t wql_wqs; |
176 | }; |
177 | |
178 | struct waitq_sellink { |
179 | struct waitq_link_list_entry wql_next; |
180 | uintptr_t __wql_padding; |
181 | uintptr_t wql_wqs; |
182 | uint64_t wql_setid; |
183 | }; |
184 | |
185 | struct waitq_link { |
186 | queue_chain_t wql_qlink; |
187 | uintptr_t wql_wqs; |
188 | struct waitq *wql_wq; |
189 | queue_chain_t wql_slink; |
190 | }; |
191 | #endif |
192 | |
193 | static_assert(offsetof(struct waitq_link_hdr, wql_wqs) == |
194 | offsetof(struct waitq_sellink, wql_wqs)); |
195 | static_assert(offsetof(struct waitq_link_hdr, wql_wqs) == |
196 | offsetof(struct waitq_link, wql_wqs)); |
197 | static_assert(sizeof(struct waitq) <= WQ_OPAQUE_SIZE, "waitq structure size mismatch" ); |
198 | static_assert(__alignof(struct waitq) == WQ_OPAQUE_ALIGN, "waitq structure alignment mismatch" ); |
199 | |
200 | static KALLOC_TYPE_DEFINE(waitq_sellink_zone, struct waitq_sellink, KT_PRIV_ACCT); |
201 | static KALLOC_TYPE_DEFINE(waitq_link_zone, struct waitq_link, KT_PRIV_ACCT); |
202 | ZONE_DEFINE_ID(ZONE_ID_SELECT_SET, "select_set" , struct select_set, |
203 | ZC_SEQUESTER | ZC_NOPGZ | ZC_ZFREE_CLEARMEM); |
204 | |
205 | static LCK_GRP_DECLARE(waitq_lck_grp, "waitq" ); |
206 | |
207 | static uint64_t PERCPU_DATA(select_setid); |
208 | struct waitq select_conflict_queue; |
209 | |
210 | #pragma mark waitq links |
211 | |
212 | static inline bool |
213 | waitq_is_sellink(waitq_type_t type) |
214 | { |
215 | return type == WQT_SELECT || type == WQT_SELECT_SET; |
216 | } |
217 | |
218 | static inline bool |
219 | wql_sellink_valid(struct select_set *selset, struct waitq_sellink *link) |
220 | { |
221 | return waitq_valid(waitq: selset) && selset->selset_id == link->wql_setid; |
222 | } |
223 | |
224 | static waitq_t |
225 | wql_wqs(waitq_link_t link) |
226 | { |
227 | return (waitq_t){ .wq_q: (void *)(link.wqlh->wql_wqs & ~WQL_PREPOST_MARKER) }; |
228 | } |
229 | |
230 | static bool |
231 | wql_wqs_preposted(waitq_link_t link) |
232 | { |
233 | return link.wqlh->wql_wqs & WQL_PREPOST_MARKER; |
234 | } |
235 | |
236 | static void |
237 | wql_wqs_mark_preposted(waitq_link_t link) |
238 | { |
239 | assert(!wql_wqs_preposted(link)); |
240 | link.wqlh->wql_wqs |= WQL_PREPOST_MARKER; |
241 | } |
242 | |
243 | static void |
244 | wql_wqs_clear_preposted(waitq_link_t link) |
245 | { |
246 | assert(wql_wqs_preposted(link)); |
247 | link.wqlh->wql_wqs &= ~WQL_PREPOST_MARKER; |
248 | } |
249 | |
250 | static circle_queue_t |
251 | wql_wqs_queue(struct waitq_set *wqs, struct waitq_link *link) |
252 | { |
253 | return wql_wqs_preposted(link: link) ? &wqs->wqset_preposts : &wqs->wqset_links; |
254 | } |
255 | |
256 | static void |
257 | wql_list_push(waitq_link_list_t *list, waitq_link_t link) |
258 | { |
259 | link.wqls->wql_next.next = list->next; |
260 | list->next = &link.wqls->wql_next; |
261 | } |
262 | |
263 | static inline struct waitq_sellink * |
264 | wql_list_elem(struct waitq_link_list_entry *e) |
265 | { |
266 | return e ? __container_of(e, struct waitq_sellink, wql_next) : NULL; |
267 | } |
268 | |
269 | /*! |
270 | * @function wql_list_next() |
271 | * |
272 | * @brief |
273 | * Helper function to implement wait queue link list enumeration. |
274 | * |
275 | * @param e in: pointer to the current element, |
276 | * out: pointer to the next element or NULL |
277 | * @param end which element to stop enumeration at (NULL for lists, |
278 | * or the first element enumerated for circle queues). |
279 | * @returns true (makes writing for(;;) based enumerators easier). |
280 | */ |
281 | static inline bool |
282 | wql_list_next(struct waitq_link_list_entry **e, struct waitq_link_list_entry *end) |
283 | { |
284 | if (*e == NULL || (*e)->next == end) { |
285 | *e = NULL; |
286 | } else { |
287 | *e = (*e)->next; |
288 | } |
289 | return true; |
290 | } |
291 | |
292 | #define __wql_list_foreach(it, head, end) \ |
293 | for (struct waitq_link_list_entry *__it = (head)->next, *__end = end; \ |
294 | ((it) = wql_list_elem(__it)); wql_list_next(&__it, __end)) |
295 | |
296 | #define wql_list_foreach(it, head) \ |
297 | __wql_list_foreach(it, head, NULL) |
298 | |
299 | #define wql_list_foreach_safe(it, head) \ |
300 | for (struct waitq_link_list_entry *__it = (head)->next; \ |
301 | ((it) = wql_list_elem(__it)) && wql_list_next(&__it, NULL); ) |
302 | |
303 | /* |
304 | * Gross hack: passing `__it` to `__wql_list_foreach` makes it stop whether |
305 | * we circle back to the first element or NULL (whichever comes first). |
306 | * |
307 | * This allows to have a single enumeration function oblivious to whether |
308 | * we enumerate a circle queue or a sellink list. |
309 | */ |
310 | #define waitq_link_foreach(link, waitq) \ |
311 | __wql_list_foreach((link).wqls, &(waitq).wq_q->waitq_sellinks, __it) |
312 | |
313 | static_assert(offsetof(struct waitq, waitq_sellinks) == |
314 | offsetof(struct waitq, waitq_links)); |
315 | static_assert(offsetof(struct waitq_sellink, wql_next) == |
316 | offsetof(struct waitq_link, wql_qlink.next)); |
317 | |
318 | static struct waitq_link * |
319 | wql_find(struct waitq *waitq, waitq_t wqset) |
320 | { |
321 | struct waitq_link *link; |
322 | |
323 | cqe_foreach_element(link, &waitq->waitq_links, wql_qlink) { |
324 | if (waitq_same(wq1: wql_wqs(link: link), wq2: wqset)) { |
325 | return link; |
326 | } |
327 | } |
328 | |
329 | return NULL; |
330 | } |
331 | |
332 | waitq_link_t |
333 | waitq_link_alloc(waitq_type_t type) |
334 | { |
335 | waitq_link_t link; |
336 | |
337 | if (waitq_is_sellink(type)) { |
338 | link.wqls = zalloc_flags(waitq_sellink_zone, Z_WAITOK | Z_ZERO); |
339 | } else { |
340 | link.wqll = zalloc_flags(waitq_link_zone, Z_WAITOK | Z_ZERO); |
341 | } |
342 | return link; |
343 | } |
344 | |
345 | void |
346 | waitq_link_free(waitq_type_t type, waitq_link_t link) |
347 | { |
348 | if (waitq_is_sellink(type)) { |
349 | return zfree(waitq_sellink_zone, link.wqls); |
350 | } else { |
351 | return zfree(waitq_link_zone, link.wqll); |
352 | } |
353 | } |
354 | |
355 | void |
356 | waitq_link_free_list(waitq_type_t type, waitq_link_list_t *free_l) |
357 | { |
358 | waitq_link_t link; |
359 | |
360 | wql_list_foreach_safe(link.wqls, free_l) { |
361 | waitq_link_free(type, link); |
362 | } |
363 | |
364 | free_l->next = NULL; |
365 | } |
366 | |
367 | |
368 | #pragma mark global wait queues |
369 | |
370 | static __startup_data struct waitq g_boot_waitq; |
371 | static SECURITY_READ_ONLY_LATE(struct waitq *) global_waitqs = &g_boot_waitq; |
372 | static SECURITY_READ_ONLY_LATE(uint32_t) g_num_waitqs = 1; |
373 | |
374 | /* |
375 | * Zero out the used MSBs of the event. |
376 | */ |
377 | #define _CAST_TO_EVENT_MASK(event) \ |
378 | ((waitq_flags_t)(uintptr_t)(event) & ((1ul << _EVENT_MASK_BITS) - 1ul)) |
379 | |
380 | static inline uint32_t |
381 | waitq_hash(char *key, size_t length) |
382 | { |
383 | return os_hash_jenkins(data: key, length) & (g_num_waitqs - 1); |
384 | } |
385 | |
386 | /* return a global waitq pointer corresponding to the given event */ |
387 | struct waitq * |
388 | _global_eventq(char *event, size_t event_length) |
389 | { |
390 | return &global_waitqs[waitq_hash(key: event, length: event_length)]; |
391 | } |
392 | |
393 | bool |
394 | waitq_is_valid(waitq_t waitq) |
395 | { |
396 | return waitq_valid(waitq); |
397 | } |
398 | |
399 | static inline bool |
400 | waitq_is_global(waitq_t waitq) |
401 | { |
402 | if (waitq_type(wq: waitq) != WQT_QUEUE) { |
403 | return false; |
404 | } |
405 | return waitq.wq_q >= global_waitqs && waitq.wq_q < global_waitqs + g_num_waitqs; |
406 | } |
407 | |
408 | static inline bool |
409 | waitq_empty(waitq_t wq) |
410 | { |
411 | struct turnstile *ts; |
412 | |
413 | switch (waitq_type(wq)) { |
414 | case WQT_TURNSTILE: |
415 | return priority_queue_empty(&wq.wq_q->waitq_prio_queue); |
416 | case WQT_PORT: |
417 | ts = wq.wq_q->waitq_ts; |
418 | return ts == TURNSTILE_NULL || |
419 | priority_queue_empty(&ts->ts_waitq.waitq_prio_queue); |
420 | case WQT_QUEUE: |
421 | case WQT_SELECT: |
422 | case WQT_PORT_SET: |
423 | case WQT_SELECT_SET: |
424 | return circle_queue_empty(cq: &wq.wq_q->waitq_queue); |
425 | |
426 | default: |
427 | return true; |
428 | } |
429 | } |
430 | |
431 | #if CONFIG_WAITQ_STATS |
432 | #define NWAITQ_BTFRAMES 5 |
433 | |
434 | struct wq_stats { |
435 | uint64_t waits; |
436 | uint64_t wakeups; |
437 | uint64_t clears; |
438 | uint64_t failed_wakeups; |
439 | |
440 | uintptr_t last_wait[NWAITQ_BTFRAMES]; |
441 | uintptr_t last_wakeup[NWAITQ_BTFRAMES]; |
442 | uintptr_t last_failed_wakeup[NWAITQ_BTFRAMES]; |
443 | }; |
444 | |
445 | /* this global is for lldb */ |
446 | const uint32_t g_nwaitq_btframes = NWAITQ_BTFRAMES; |
447 | struct wq_stats g_boot_stats; |
448 | struct wq_stats *g_waitq_stats = &g_boot_stats; |
449 | |
450 | static __inline__ void |
451 | waitq_grab_backtrace(uintptr_t bt[NWAITQ_BTFRAMES], unsigned skip) |
452 | { |
453 | uintptr_t buf[NWAITQ_BTFRAMES + skip]; |
454 | |
455 | memset(buf, 0, (NWAITQ_BTFRAMES + skip) * sizeof(uintptr_t)); |
456 | backtrace(buf, g_nwaitq_btframes + skip, NULL, NULL); |
457 | memcpy(&bt[0], &buf[skip], NWAITQ_BTFRAMES * sizeof(uintptr_t)); |
458 | } |
459 | |
460 | static __inline__ struct wq_stats * |
461 | waitq_global_stats(waitq_t waitq) |
462 | { |
463 | struct wq_stats *wqs; |
464 | uint32_t idx; |
465 | |
466 | if (!waitq_is_global(waitq)) { |
467 | return NULL; |
468 | } |
469 | |
470 | idx = (uint32_t)(waitq.wq_q - global_waitqs); |
471 | assert(idx < g_num_waitqs); |
472 | wqs = &g_waitq_stats[idx]; |
473 | return wqs; |
474 | } |
475 | |
476 | static __inline__ void |
477 | waitq_stats_count_wait(waitq_t waitq) |
478 | { |
479 | struct wq_stats *wqs = waitq_global_stats(waitq); |
480 | if (wqs != NULL) { |
481 | wqs->waits++; |
482 | waitq_grab_backtrace(wqs->last_wait, 2); |
483 | } |
484 | } |
485 | |
486 | static __inline__ void |
487 | waitq_stats_count_wakeup(waitq_t waitq, int n) |
488 | { |
489 | struct wq_stats *wqs = waitq_global_stats(waitq); |
490 | if (wqs != NULL) { |
491 | if (n > 0) { |
492 | wqs->wakeups += n; |
493 | waitq_grab_backtrace(wqs->last_wakeup, 2); |
494 | } else { |
495 | wqs->failed_wakeups++; |
496 | waitq_grab_backtrace(wqs->last_failed_wakeup, 2); |
497 | } |
498 | } |
499 | } |
500 | |
501 | static __inline__ void |
502 | waitq_stats_count_clear_wakeup(waitq_t waitq) |
503 | { |
504 | struct wq_stats *wqs = waitq_global_stats(waitq); |
505 | if (wqs != NULL) { |
506 | wqs->wakeups++; |
507 | wqs->clears++; |
508 | waitq_grab_backtrace(wqs->last_wakeup, 2); |
509 | } |
510 | } |
511 | #else /* !CONFIG_WAITQ_STATS */ |
512 | #define waitq_stats_count_wait(q) do { } while (0) |
513 | #define waitq_stats_count_wakeup(q, n) do { } while (0) |
514 | #define waitq_stats_count_clear_wakeup(q) do { } while (0) |
515 | #endif |
516 | |
517 | static struct waitq * |
518 | waitq_get_safeq(waitq_t waitq) |
519 | { |
520 | if (waitq_type(wq: waitq) == WQT_PORT) { |
521 | struct turnstile *ts = waitq.wq_q->waitq_ts; |
522 | return ts ? &ts->ts_waitq : NULL; |
523 | } |
524 | |
525 | uint32_t hash = os_hash_kernel_pointer(pointer: waitq.wq_q); |
526 | return &global_waitqs[hash & (g_num_waitqs - 1)]; |
527 | } |
528 | |
529 | /* |
530 | * Since the priority ordered waitq uses basepri as the |
531 | * ordering key assert that this value fits in a uint8_t. |
532 | */ |
533 | static_assert(MAXPRI <= UINT8_MAX); |
534 | |
535 | static inline void |
536 | waitq_thread_insert(struct waitq *safeq, thread_t thread, |
537 | waitq_t wq, event64_t event) |
538 | { |
539 | if (waitq_type(wq: safeq) == WQT_TURNSTILE) { |
540 | turnstile_stats_update(hop: 0, flags: TSU_TURNSTILE_BLOCK_COUNT, NULL); |
541 | turnstile_waitq_add_thread_priority_queue(wq: safeq, thread); |
542 | } else { |
543 | turnstile_stats_update(hop: 0, flags: TSU_REGULAR_WAITQ_BLOCK_COUNT, NULL); |
544 | /* |
545 | * This is the extent to which we currently take scheduling |
546 | * attributes into account: |
547 | * |
548 | * - If the thread is vm privileged, we stick it at the front |
549 | * of the queue, later, these queues will honor the policy |
550 | * value set at waitq_init time. |
551 | * |
552 | * - Realtime threads get priority for wait queue placements. |
553 | * This allows wait_queue_wakeup_one to prefer a waiting |
554 | * realtime thread, similar in principle to performing |
555 | * a wait_queue_wakeup_all and allowing scheduler |
556 | * prioritization to run the realtime thread, but without |
557 | * causing the lock contention of that scenario. |
558 | */ |
559 | if (thread->sched_pri >= BASEPRI_REALTIME || |
560 | !safeq->waitq_fifo || |
561 | (thread->options & TH_OPT_VMPRIV)) { |
562 | circle_enqueue_head(cq: &safeq->waitq_queue, elt: &thread->wait_links); |
563 | } else { |
564 | circle_enqueue_tail(cq: &safeq->waitq_queue, elt: &thread->wait_links); |
565 | } |
566 | } |
567 | |
568 | /* mark the event and real waitq, even if enqueued on a global safeq */ |
569 | thread->wait_event = event; |
570 | thread->waitq = wq; |
571 | } |
572 | |
573 | /** |
574 | * clear the thread-related waitq state, moving the thread from |
575 | * TH_WAIT to TH_WAIT | TH_WAKING, where it is no longer on a waitq and |
576 | * can expect to be go'ed in the near future. |
577 | * |
578 | * Clearing the waitq prevents further propagation of a turnstile boost |
579 | * on the thread and stops a clear_wait from succeeding. |
580 | * |
581 | * Conditions: |
582 | * 'thread' is locked, thread is waiting |
583 | */ |
584 | static inline void |
585 | thread_clear_waitq_state(thread_t thread) |
586 | { |
587 | assert(thread->state & TH_WAIT); |
588 | |
589 | thread->waitq.wq_q = NULL; |
590 | thread->wait_event = NO_EVENT64; |
591 | thread->at_safe_point = FALSE; |
592 | thread->block_hint = kThreadWaitNone; |
593 | thread->state |= TH_WAKING; |
594 | } |
595 | |
596 | static inline void |
597 | waitq_thread_remove(waitq_t wq, thread_t thread) |
598 | { |
599 | if (waitq_type(wq) == WQT_TURNSTILE) { |
600 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
601 | (TURNSTILE_CODE(TURNSTILE_HEAP_OPERATIONS, |
602 | (THREAD_REMOVED_FROM_TURNSTILE_WAITQ))) | DBG_FUNC_NONE, |
603 | VM_KERNEL_UNSLIDE_OR_PERM(waitq_to_turnstile(wq.wq_q)), |
604 | thread_tid(thread), 0, 0, 0); |
605 | priority_queue_remove(que: &wq.wq_q->waitq_prio_queue, |
606 | elt: &thread->wait_prioq_links); |
607 | } else { |
608 | circle_dequeue(cq: &wq.wq_q->waitq_queue, elt: &thread->wait_links); |
609 | if (waitq_is_global(waitq: wq) && waitq_empty(wq)) { |
610 | wq.wq_q->waitq_eventmask = 0; |
611 | } |
612 | } |
613 | |
614 | thread_clear_waitq_state(thread); |
615 | } |
616 | |
617 | bool |
618 | waitq_wait_possible(thread_t thread) |
619 | { |
620 | return waitq_is_null(wq: thread->waitq) && |
621 | ((thread->state & TH_WAKING) == 0); |
622 | } |
623 | |
624 | __startup_func |
625 | static void |
626 | waitq_bootstrap(void) |
627 | { |
628 | const uint32_t qsz = sizeof(struct waitq); |
629 | vm_offset_t whsize; |
630 | int cpu = 0; |
631 | |
632 | /* |
633 | * Determine the amount of memory we're willing to reserve for |
634 | * the waitqueue hash table |
635 | */ |
636 | if (!PE_parse_boot_argn(arg_string: "wqsize" , arg_ptr: &whsize, max_arg: sizeof(whsize))) { |
637 | whsize = round_page(x: thread_max * qsz / 5); |
638 | } |
639 | |
640 | /* |
641 | * Determine the number of waitqueues we can fit. |
642 | * The hash algorithm requires that this be a power of 2. |
643 | */ |
644 | g_num_waitqs = 0x80000000u >> __builtin_clzl(whsize / qsz); |
645 | assert(g_num_waitqs > 0); |
646 | whsize = round_page(x: g_num_waitqs * qsz); |
647 | |
648 | kmem_alloc(map: kernel_map, addrp: (vm_offset_t *)&global_waitqs, size: whsize, |
649 | flags: KMA_NOFAIL | KMA_KOBJECT | KMA_NOPAGEWAIT | KMA_PERMANENT, |
650 | VM_KERN_MEMORY_WAITQ); |
651 | |
652 | #if CONFIG_WAITQ_STATS |
653 | whsize = round_page(g_num_waitqs * sizeof(struct wq_stats)); |
654 | kmem_alloc(kernel_map, (vm_offset_t *)&g_waitq_stats, whsize, |
655 | KMA_NOFAIL | KMA_KOBJECT | KMA_NOPAGEWAIT | KMA_ZERO | KMA_PERMANENT, |
656 | VM_KERN_MEMORY_WAITQ); |
657 | #endif |
658 | |
659 | for (uint32_t i = 0; i < g_num_waitqs; i++) { |
660 | waitq_init(waitq: &global_waitqs[i], type: WQT_QUEUE, SYNC_POLICY_FIFO); |
661 | } |
662 | |
663 | waitq_init(waitq: &select_conflict_queue, type: WQT_SELECT, SYNC_POLICY_FIFO); |
664 | |
665 | percpu_foreach(setid, select_setid) { |
666 | /* is not cpu_number() but CPUs haven't been numbered yet */ |
667 | *setid = cpu++; |
668 | } |
669 | } |
670 | STARTUP(MACH_IPC, STARTUP_RANK_FIRST, waitq_bootstrap); |
671 | |
672 | |
673 | #pragma mark locking |
674 | |
675 | static hw_spin_timeout_status_t |
676 | waitq_timeout_handler(void *_lock, hw_spin_timeout_t to, hw_spin_state_t st) |
677 | { |
678 | lck_spinlock_to_info_t lsti; |
679 | hw_lck_ticket_t tmp; |
680 | struct waitq *wq = _lock; |
681 | |
682 | if (machine_timeout_suspended()) { |
683 | return HW_LOCK_TIMEOUT_CONTINUE; |
684 | } |
685 | |
686 | lsti = lck_spinlock_timeout_hit(lck: &wq->waitq_interlock, owner: 0); |
687 | tmp.tcurnext = os_atomic_load(&wq->waitq_interlock.tcurnext, relaxed); |
688 | |
689 | panic("waitq(%p) lock " HW_SPIN_TIMEOUT_FMT "; cpu=%d, " |
690 | "cticket: 0x%x, nticket: 0x%x, waiting for 0x%x, " |
691 | HW_SPIN_TIMEOUT_DETAILS_FMT, |
692 | wq, HW_SPIN_TIMEOUT_ARG(to, st), cpu_number(), |
693 | tmp.cticket, tmp.nticket, lsti->extra, |
694 | HW_SPIN_TIMEOUT_DETAILS_ARG(to, st)); |
695 | } |
696 | |
697 | static const struct hw_spin_policy waitq_spin_policy = { |
698 | .hwsp_name = "waitq" , |
699 | #if defined(__i386__) || defined(__x86_64__) |
700 | .hwsp_timeout = &LockTimeOutTSC, |
701 | #else |
702 | .hwsp_timeout_atomic = &LockTimeOut, |
703 | #endif |
704 | /* |
705 | * Double the standard lock timeout, because wait queues tend |
706 | * to iterate over a number of threads - locking each. If there is |
707 | * a problem with a thread lock, it normally times out at the wait |
708 | * queue level first, hiding the real problem. |
709 | */ |
710 | .hwsp_timeout_shift = 1, |
711 | .hwsp_lock_offset = offsetof(struct waitq, waitq_interlock), |
712 | .hwsp_op_timeout = waitq_timeout_handler, |
713 | }; |
714 | |
715 | void |
716 | waitq_invalidate(waitq_t waitq) |
717 | { |
718 | hw_lck_ticket_invalidate(tlock: &waitq.wq_q->waitq_interlock); |
719 | } |
720 | |
721 | bool |
722 | waitq_held(waitq_t wq) |
723 | { |
724 | return hw_lck_ticket_held(tlock: &wq.wq_q->waitq_interlock); |
725 | } |
726 | |
727 | void |
728 | waitq_lock(waitq_t wq) |
729 | { |
730 | (void)hw_lck_ticket_lock_to(&wq.wq_q->waitq_interlock, |
731 | &waitq_spin_policy, &waitq_lck_grp); |
732 | #if defined(__x86_64__) |
733 | pltrace(FALSE); |
734 | #endif |
735 | } |
736 | |
737 | bool |
738 | waitq_lock_try(waitq_t wq) |
739 | { |
740 | bool rc = hw_lck_ticket_lock_try(&wq.wq_q->waitq_interlock, &waitq_lck_grp); |
741 | |
742 | #if defined(__x86_64__) |
743 | if (rc) { |
744 | pltrace(FALSE); |
745 | } |
746 | #endif |
747 | return rc; |
748 | } |
749 | |
750 | bool |
751 | waitq_lock_reserve(waitq_t wq, uint32_t *ticket) |
752 | { |
753 | return hw_lck_ticket_reserve(&wq.wq_q->waitq_interlock, ticket, &waitq_lck_grp); |
754 | } |
755 | |
756 | void |
757 | waitq_lock_wait(waitq_t wq, uint32_t ticket) |
758 | { |
759 | (void)hw_lck_ticket_wait(&wq.wq_q->waitq_interlock, ticket, |
760 | &waitq_spin_policy, &waitq_lck_grp); |
761 | #if defined(__x86_64__) |
762 | pltrace(FALSE); |
763 | #endif |
764 | } |
765 | |
766 | bool |
767 | waitq_lock_allow_invalid(waitq_t wq) |
768 | { |
769 | hw_lock_status_t rc; |
770 | |
771 | rc = hw_lck_ticket_lock_allow_invalid(&wq.wq_q->waitq_interlock, |
772 | &waitq_spin_policy, &waitq_lck_grp); |
773 | |
774 | #if defined(__x86_64__) |
775 | if (rc == HW_LOCK_ACQUIRED) { |
776 | pltrace(FALSE); |
777 | } |
778 | #endif |
779 | return rc == HW_LOCK_ACQUIRED; |
780 | } |
781 | |
782 | void |
783 | waitq_unlock(waitq_t wq) |
784 | { |
785 | assert(waitq_held(wq)); |
786 | #if defined(__x86_64__) |
787 | pltrace(TRUE); |
788 | #endif |
789 | hw_lck_ticket_unlock(tlock: &wq.wq_q->waitq_interlock); |
790 | } |
791 | |
792 | |
793 | #pragma mark assert_wait / wakeup |
794 | |
795 | struct waitq_select_args { |
796 | /* input parameters */ |
797 | event64_t event; |
798 | wait_result_t result; |
799 | waitq_wakeup_flags_t flags; |
800 | uint32_t max_threads; |
801 | bool is_identified; |
802 | |
803 | /* output parameters */ |
804 | /* counts all woken threads, may have more threads than on threadq */ |
805 | uint32_t nthreads; |
806 | /* preemption is disabled while threadq is non-empty */ |
807 | circle_queue_head_t threadq; |
808 | }; |
809 | |
810 | static inline void |
811 | maybe_adjust_thread_pri( |
812 | thread_t thread, |
813 | waitq_wakeup_flags_t flags, |
814 | __kdebug_only waitq_t waitq) |
815 | { |
816 | /* |
817 | * If the caller is requesting the waitq subsystem to promote the |
818 | * priority of the awoken thread, then boost the thread's priority to |
819 | * the default WAITQ_BOOST_PRIORITY (if it's not already equal or |
820 | * higher priority). This boost must be removed via a call to |
821 | * waitq_clear_promotion_locked before the thread waits again. |
822 | */ |
823 | if (flags & WAITQ_PROMOTE_PRIORITY) { |
824 | uintptr_t trace_waitq = 0; |
825 | if (__improbable(kdebug_enable)) { |
826 | trace_waitq = VM_KERNEL_UNSLIDE_OR_PERM(waitq.wq_q); |
827 | } |
828 | |
829 | sched_thread_promote_reason(thread, TH_SFLAG_WAITQ_PROMOTED, trace_obj: trace_waitq); |
830 | } |
831 | } |
832 | |
833 | static void |
834 | waitq_select_queue_add(waitq_t waitq, thread_t thread, struct waitq_select_args *args) |
835 | { |
836 | spl_t s = splsched(); |
837 | |
838 | thread_lock(thread); |
839 | thread_clear_waitq_state(thread); |
840 | |
841 | if (!args->is_identified && thread->state & TH_RUN) { |
842 | /* |
843 | * A thread that is currently on core may try to clear its own |
844 | * wait with clear wait or by waking its own event instead of |
845 | * calling thread_block as is normally expected. After doing |
846 | * this, it expects to be able to immediately wait again. |
847 | * |
848 | * If we are currently on a different CPU and waking that |
849 | * thread, as soon as we unlock the waitq and thread, that |
850 | * operation could complete, but we would still be holding the |
851 | * thread on our flush queue, leaving it in the waking state |
852 | * where it can't yet assert another wait. |
853 | * |
854 | * Since we know that we won't actually need to enqueue the |
855 | * thread on the runq due to it being on core, we can just |
856 | * immediately unblock it here so that the thread will be in a |
857 | * waitable state after we release its thread lock from this |
858 | * lock hold. |
859 | * |
860 | * Wakeups using *_identify can't be allowed to pass |
861 | * thread block until they're resumed, so they can't use |
862 | * this path. That means they are not allowed to skip calling |
863 | * thread_block. |
864 | */ |
865 | maybe_adjust_thread_pri(thread, flags: args->flags, waitq); |
866 | thread_go(thread, wresult: args->result, false); |
867 | } else { |
868 | if (circle_queue_empty(cq: &args->threadq)) { |
869 | /* |
870 | * preemption is disabled while threads are |
871 | * on threadq - balanced in: |
872 | * waitq_resume_identified_thread |
873 | * waitq_select_queue_flush |
874 | */ |
875 | disable_preemption(); |
876 | } |
877 | |
878 | circle_enqueue_tail(cq: &args->threadq, elt: &thread->wait_links); |
879 | } |
880 | |
881 | thread_unlock(thread); |
882 | |
883 | splx(s); |
884 | } |
885 | |
886 | |
887 | #if SCHED_HYGIENE_DEBUG |
888 | |
889 | TUNABLE_DEV_WRITEABLE(uint32_t, waitq_flush_excess_threads, "waitq_flush_excess_threads" , 20); |
890 | TUNABLE_DEV_WRITEABLE(uint32_t, waitq_flush_excess_time_mt, "waitq_flush_excess_time_mt" , 7200); /* 300us */ |
891 | |
892 | #endif /* SCHED_HYGIENE_DEBUG */ |
893 | |
894 | |
895 | static void |
896 | waitq_select_queue_flush(waitq_t waitq, struct waitq_select_args *args) |
897 | { |
898 | thread_t thread = THREAD_NULL; |
899 | |
900 | assert(!circle_queue_empty(&args->threadq)); |
901 | |
902 | int flushed_threads = 0; |
903 | |
904 | #if SCHED_HYGIENE_DEBUG |
905 | uint64_t start_time = ml_get_sched_hygiene_timebase(); |
906 | disable_preemption(); |
907 | #endif /* SCHED_HYGIENE_DEBUG */ |
908 | |
909 | cqe_foreach_element_safe(thread, &args->threadq, wait_links) { |
910 | circle_dequeue(cq: &args->threadq, elt: &thread->wait_links); |
911 | assert_thread_magic(thread); |
912 | |
913 | spl_t s = splsched(); |
914 | |
915 | thread_lock(thread); |
916 | maybe_adjust_thread_pri(thread, flags: args->flags, waitq); |
917 | thread_go(thread, wresult: args->result, try_handoff: args->flags & WAITQ_HANDOFF); |
918 | thread_unlock(thread); |
919 | |
920 | splx(s); |
921 | |
922 | flushed_threads++; |
923 | } |
924 | |
925 | #if SCHED_HYGIENE_DEBUG |
926 | uint64_t end_time = ml_get_sched_hygiene_timebase(); |
927 | |
928 | /* |
929 | * Check for a combination of excess threads and long time, |
930 | * so that a single thread wakeup that gets stuck is still caught |
931 | */ |
932 | if (waitq_flush_excess_threads && waitq_flush_excess_time_mt && |
933 | flushed_threads > waitq_flush_excess_threads && |
934 | (end_time - start_time) > waitq_flush_excess_time_mt) { |
935 | /* |
936 | * Hack alert: |
937 | * |
938 | * If a wakeup-all is done with interrupts disabled, or if |
939 | * there are enough threads / lock contention to pass the |
940 | * preemption disable threshold, it can take Too Long to get |
941 | * through waking up all the threads, leading to |
942 | * the watchdog going off. |
943 | * |
944 | * While we are working on a change to break up this |
945 | * giant glob of work into smaller chunks, remove this |
946 | * time region from the watchdog's memory to avoid |
947 | * unit tests that wake up hundreds of threads on |
948 | * one semaphore from causing this to blow up. |
949 | * |
950 | * We only trigger this when seeing a combination of |
951 | * excess threads and long time, so that a single |
952 | * thread wakeup that gets stuck is still caught. |
953 | * |
954 | * This was improved with |
955 | * rdar://90325140 |
956 | * to enable interrupts during most wakeup-all's |
957 | * and will be removed with |
958 | * rdar://101110793 |
959 | */ |
960 | if (ml_get_interrupts_enabled() == false) { |
961 | ml_spin_debug_reset(current_thread()); |
962 | ml_irq_debug_abandon(); |
963 | } |
964 | abandon_preemption_disable_measurement(); |
965 | |
966 | KDBG(MACHDBG_CODE(DBG_MACH_SCHED, MACH_INT_MASKED_RESET), flushed_threads, end_time - start_time); |
967 | } |
968 | |
969 | enable_preemption(); |
970 | |
971 | #endif /* SCHED_HYGIENE_DEBUG */ |
972 | |
973 | /* |
974 | * match the disable when making threadq nonempty from |
975 | * waitq_select_queue_add |
976 | */ |
977 | enable_preemption(); |
978 | } |
979 | |
980 | /** |
981 | * Routine to iterate over the waitq for non-priority ordered waitqs |
982 | * |
983 | * Conditions: |
984 | * args->waitq (and the posted waitq) is locked |
985 | * |
986 | * Notes: |
987 | * If one or more threads are selected, this may disable preemption, |
988 | * which is balanced when the threadq is flushed in |
989 | * waitq_resume_identified_thread or waitq_select_queue_flush. |
990 | */ |
991 | static waitq_flags_t |
992 | waitq_queue_iterate_locked(struct waitq *safeq, struct waitq *waitq, |
993 | struct waitq_select_args *args) |
994 | { |
995 | thread_t thread = THREAD_NULL; |
996 | waitq_flags_t eventmask = 0; |
997 | |
998 | cqe_foreach_element_safe(thread, &safeq->waitq_queue, wait_links) { |
999 | assert_thread_magic(thread); |
1000 | |
1001 | /* |
1002 | * For non-priority ordered waitqs, we allow multiple events to be |
1003 | * mux'ed into the same waitq. Also safeqs may contain threads from |
1004 | * multiple waitqs. Only pick threads that match the |
1005 | * requested wait event. |
1006 | */ |
1007 | if (waitq_same(wq1: thread->waitq, wq2: waitq) && thread->wait_event == args->event) { |
1008 | /* We found a matching thread! Pull it from the queue. */ |
1009 | |
1010 | circle_dequeue(cq: &safeq->waitq_queue, elt: &thread->wait_links); |
1011 | |
1012 | waitq_select_queue_add(waitq: waitq, thread, args); |
1013 | |
1014 | if (++args->nthreads >= args->max_threads) { |
1015 | break; |
1016 | } |
1017 | } else { |
1018 | /* thread wasn't selected so track its event */ |
1019 | eventmask |= waitq_same(wq1: thread->waitq, wq2: safeq) |
1020 | ? _CAST_TO_EVENT_MASK(thread->wait_event) |
1021 | : _CAST_TO_EVENT_MASK(thread->waitq.wq_q); |
1022 | } |
1023 | } |
1024 | |
1025 | return eventmask; |
1026 | } |
1027 | |
1028 | /** |
1029 | * Routine to iterate and remove threads from priority ordered waitqs |
1030 | * |
1031 | * Conditions: |
1032 | * args->waitq (and the posted waitq) is locked |
1033 | * |
1034 | * Notes: |
1035 | * The priority ordered waitqs only support maximum priority element removal. |
1036 | * |
1037 | * Also, the implementation makes sure that all threads in a priority ordered |
1038 | * waitq are waiting on the same wait event. This is not necessarily true for |
1039 | * non-priority ordered waitqs. If one or more threads are selected, this may |
1040 | * disable preemption. |
1041 | */ |
1042 | static void |
1043 | waitq_prioq_iterate_locked( |
1044 | struct waitq *ts_wq, |
1045 | struct waitq *waitq, |
1046 | struct waitq_select_args *args) |
1047 | { |
1048 | struct turnstile *ts = waitq_to_turnstile(ts_wq); |
1049 | bool update_inheritor = (args->flags & WAITQ_UPDATE_INHERITOR); |
1050 | |
1051 | if (update_inheritor && args->max_threads == UINT32_MAX) { |
1052 | /* |
1053 | * If we are going to wake up all threads, |
1054 | * go ahead and set the inheritor to NULL. |
1055 | */ |
1056 | turnstile_kernel_update_inheritor_on_wake_locked(turnstile: ts, |
1057 | TURNSTILE_INHERITOR_NULL, flags: TURNSTILE_INHERITOR_THREAD); |
1058 | update_inheritor = false; |
1059 | } |
1060 | |
1061 | while (!priority_queue_empty(&ts_wq->waitq_prio_queue)) { |
1062 | thread_t thread; |
1063 | |
1064 | thread = priority_queue_remove_max(&ts_wq->waitq_prio_queue, |
1065 | struct thread, wait_prioq_links); |
1066 | |
1067 | assert_thread_magic(thread); |
1068 | |
1069 | /* |
1070 | * Ensure the wait event matches since priority ordered waitqs do not |
1071 | * support multiple events in the same waitq. |
1072 | */ |
1073 | assert(waitq_same(thread->waitq, waitq) && (thread->wait_event == args->event)); |
1074 | |
1075 | if (update_inheritor) { |
1076 | turnstile_inheritor_t inheritor = thread; |
1077 | |
1078 | if (priority_queue_empty(&ts_wq->waitq_prio_queue)) { |
1079 | inheritor = TURNSTILE_INHERITOR_NULL; |
1080 | } |
1081 | turnstile_kernel_update_inheritor_on_wake_locked(turnstile: ts, |
1082 | new_inheritor: inheritor, flags: TURNSTILE_INHERITOR_THREAD); |
1083 | update_inheritor = false; |
1084 | } |
1085 | |
1086 | waitq_select_queue_add(waitq: waitq, thread, args); |
1087 | |
1088 | if (++args->nthreads >= args->max_threads) { |
1089 | break; |
1090 | } |
1091 | } |
1092 | } |
1093 | |
1094 | /** |
1095 | * @function do_waitq_select_n_locked_queue |
1096 | * |
1097 | * @brief |
1098 | * Selects threads waiting on a wait queue. |
1099 | * |
1100 | * @discussion |
1101 | * @c waitq is locked. |
1102 | * If @c waitq is a set, then the wait queue posting to it is locked too. |
1103 | * |
1104 | * If one or more threads are selected, this may disable preemption. |
1105 | */ |
1106 | static void |
1107 | do_waitq_select_n_locked_queue(waitq_t waitq, struct waitq_select_args *args) |
1108 | { |
1109 | spl_t s = 0; |
1110 | |
1111 | struct waitq *safeq; |
1112 | waitq_flags_t eventmask, remaining_eventmask; |
1113 | |
1114 | if (waitq_irq_safe(waitq)) { |
1115 | eventmask = _CAST_TO_EVENT_MASK(args->event); |
1116 | safeq = waitq.wq_q; |
1117 | } else { |
1118 | /* JMM - add flag to waitq to avoid global lookup if no waiters */ |
1119 | eventmask = _CAST_TO_EVENT_MASK(waitq.wq_q); |
1120 | safeq = waitq_get_safeq(waitq); |
1121 | if (safeq == NULL) { |
1122 | return; |
1123 | } |
1124 | |
1125 | s = splsched(); |
1126 | waitq_lock(wq: safeq); |
1127 | } |
1128 | |
1129 | /* |
1130 | * If the safeq doesn't have an eventmask (not global) or the event |
1131 | * we're looking for IS set in its eventmask, then scan the threads |
1132 | * in that queue for ones that match the original <waitq,event> pair. |
1133 | */ |
1134 | if (waitq_type(wq: safeq) == WQT_TURNSTILE) { |
1135 | waitq_prioq_iterate_locked(ts_wq: safeq, waitq: waitq.wq_q, args); |
1136 | } else if (!waitq_is_global(waitq: safeq)) { |
1137 | waitq_queue_iterate_locked(safeq, waitq: waitq.wq_q, args); |
1138 | } else if ((safeq->waitq_eventmask & eventmask) == eventmask) { |
1139 | remaining_eventmask = waitq_queue_iterate_locked(safeq, |
1140 | waitq: waitq.wq_q, args); |
1141 | |
1142 | /* |
1143 | * Update the eventmask of global queues we just scanned: |
1144 | * - If we selected all the threads in the queue, |
1145 | * we can clear its eventmask. |
1146 | * |
1147 | * - If we didn't find enough threads to fill our needs, |
1148 | * then we can assume we looked at every thread in the queue |
1149 | * and the mask we computed is complete - so reset it. |
1150 | */ |
1151 | if (waitq_empty(wq: safeq)) { |
1152 | safeq->waitq_eventmask = 0; |
1153 | } else if (args->nthreads < args->max_threads) { |
1154 | safeq->waitq_eventmask = remaining_eventmask; |
1155 | } |
1156 | } |
1157 | |
1158 | /* unlock the safe queue if we locked one above */ |
1159 | if (!waitq_same(wq1: waitq, wq2: safeq)) { |
1160 | waitq_unlock(wq: safeq); |
1161 | splx(s); |
1162 | } |
1163 | } |
1164 | |
1165 | /** |
1166 | * @function do_waitq_link_select_n_locked() |
1167 | * |
1168 | * @brief |
1169 | * Selects threads waiting on any set a wait queue belongs to, |
1170 | * or preposts the wait queue onto them. |
1171 | * |
1172 | * @discussion |
1173 | * @c waitq is locked. |
1174 | */ |
1175 | __attribute__((noinline)) |
1176 | static void |
1177 | do_waitq_select_n_locked_sets(waitq_t waitq, struct waitq_select_args *args) |
1178 | { |
1179 | waitq_type_t wq_type = waitq_type(wq: waitq); |
1180 | waitq_link_t link; |
1181 | |
1182 | assert(args->event == NO_EVENT64); |
1183 | assert(waitq_preposts(waitq)); |
1184 | |
1185 | waitq_link_foreach(link, waitq) { |
1186 | waitq_t wqset = wql_wqs(link); |
1187 | |
1188 | if (wql_wqs_preposted(link)) { |
1189 | /* |
1190 | * The wql_wqs_preposted() bit is cleared |
1191 | * under both the wq/wqset lock. |
1192 | * |
1193 | * If the wqset is still preposted, |
1194 | * we really won't find threads there. |
1195 | * |
1196 | * Just mark the waitq as preposted and move on. |
1197 | */ |
1198 | if (wq_type == WQT_PORT) { |
1199 | waitq.wq_q->waitq_preposted = true; |
1200 | } |
1201 | continue; |
1202 | } |
1203 | |
1204 | if (wq_type == WQT_SELECT) { |
1205 | /* |
1206 | * If PGZ picked this select set, |
1207 | * translate it to the real address |
1208 | * |
1209 | * If it is still a select set |
1210 | * (the slot could have been reused), |
1211 | * then keep using it for the rest of the logic. |
1212 | * |
1213 | * Even in the extremely unlikely case where |
1214 | * the slot was reused for another select_set, |
1215 | * the `wql_sellink_valid` check below will |
1216 | * take care of debouncing it. But we must |
1217 | * forget the original pointer we read |
1218 | * so that we unlock the proper object. |
1219 | */ |
1220 | wqset.wqs_sel = pgz_decode_allow_invalid(wqset.wqs_sel, |
1221 | ZONE_ID_SELECT_SET); |
1222 | if (!wqset.wqs_sel) { |
1223 | continue; |
1224 | } |
1225 | if (!waitq_lock_allow_invalid(wq: wqset)) { |
1226 | continue; |
1227 | } |
1228 | if (!wql_sellink_valid(selset: wqset.wqs_sel, link: link.wqls)) { |
1229 | goto out_unlock; |
1230 | } |
1231 | } else { |
1232 | waitq_lock(wq: wqset); |
1233 | if (!waitq_valid(waitq: wqset)) { |
1234 | goto out_unlock; |
1235 | } |
1236 | } |
1237 | |
1238 | /* |
1239 | * Find any threads waiting on this wait queue set as a queue. |
1240 | */ |
1241 | do_waitq_select_n_locked_queue(waitq: wqset, args); |
1242 | |
1243 | if (args->nthreads == 0) { |
1244 | /* No thread selected: prepost 'waitq' to 'wqset' */ |
1245 | wql_wqs_mark_preposted(link); |
1246 | if (wq_type == WQT_SELECT) { |
1247 | wqset.wqs_sel->selset_preposted = true; |
1248 | } else { |
1249 | waitq.wq_q->waitq_preposted = true; |
1250 | circle_dequeue(cq: &wqset.wqs_set->wqset_links, |
1251 | elt: &link.wqll->wql_slink); |
1252 | circle_enqueue_tail(cq: &wqset.wqs_set->wqset_preposts, |
1253 | elt: &link.wqll->wql_slink); |
1254 | ipc_pset_prepost(wqset: wqset.wqs_set, waitq: waitq.wq_q); |
1255 | } |
1256 | } |
1257 | |
1258 | out_unlock: |
1259 | waitq_unlock(wq: wqset); |
1260 | |
1261 | if (args->nthreads >= args->max_threads) { |
1262 | break; |
1263 | } |
1264 | } |
1265 | } |
1266 | |
1267 | /** |
1268 | * @function do_waitq_select_n_locked |
1269 | * |
1270 | * @brief |
1271 | * Selects threads waiting on a wait queue, or preposts it. |
1272 | * |
1273 | * @discussion |
1274 | * @c waitq is locked. |
1275 | * |
1276 | * Recurses into all sets this wait queue belongs to. |
1277 | */ |
1278 | static void |
1279 | do_waitq_select_n_locked(waitq_t waitq, struct waitq_select_args *args) |
1280 | { |
1281 | do_waitq_select_n_locked_queue(waitq, args); |
1282 | |
1283 | if (args->nthreads >= args->max_threads) { |
1284 | /* already enough threads found */ |
1285 | return; |
1286 | } |
1287 | |
1288 | if (args->event != NO_EVENT64 || !waitq_preposts(wq: waitq)) { |
1289 | /* this wakeup should not recurse into sets */ |
1290 | return; |
1291 | } |
1292 | |
1293 | do_waitq_select_n_locked_sets(waitq, args); |
1294 | } |
1295 | |
1296 | static inline bool |
1297 | waitq_is_preposted_set(waitq_t waitq) |
1298 | { |
1299 | switch (waitq_type(wq: waitq)) { |
1300 | case WQT_PORT_SET: |
1301 | return waitq_set_first_prepost(wqset: waitq.wqs_set, flags: WQS_PREPOST_PEEK) != NULL; |
1302 | |
1303 | case WQT_SELECT_SET: |
1304 | return waitq.wqs_sel->selset_preposted; |
1305 | |
1306 | default: |
1307 | return false; |
1308 | } |
1309 | } |
1310 | |
1311 | wait_result_t |
1312 | waitq_assert_wait64_locked(waitq_t waitq, |
1313 | event64_t wait_event, |
1314 | wait_interrupt_t interruptible, |
1315 | wait_timeout_urgency_t urgency, |
1316 | uint64_t deadline, |
1317 | uint64_t leeway, |
1318 | thread_t thread) |
1319 | { |
1320 | wait_result_t wait_result; |
1321 | struct waitq *safeq; |
1322 | uintptr_t eventmask; |
1323 | spl_t s; |
1324 | |
1325 | switch (waitq_type(wq: waitq)) { |
1326 | case WQT_PORT: |
1327 | case WQT_SELECT: |
1328 | case WQT_PORT_SET: |
1329 | case WQT_SELECT_SET: |
1330 | assert(wait_event == NO_EVENT64); |
1331 | break; |
1332 | default: |
1333 | assert(wait_event != NO_EVENT64); |
1334 | break; |
1335 | } |
1336 | |
1337 | /* |
1338 | * Warning: Do _not_ place debugging print statements here. |
1339 | * The waitq is locked! |
1340 | */ |
1341 | assert(!thread->started || thread == current_thread()); |
1342 | |
1343 | if (!waitq_wait_possible(thread)) { |
1344 | panic("thread already waiting on %p" , thread->waitq.wq_q); |
1345 | } |
1346 | |
1347 | s = splsched(); |
1348 | |
1349 | /* |
1350 | * early-out if the thread is waiting on a wait queue set |
1351 | * that has already been pre-posted. |
1352 | * |
1353 | * Note: waitq_is_preposted_set() may unlock the waitq-set |
1354 | */ |
1355 | if (waitq_is_preposted_set(waitq)) { |
1356 | thread_lock(thread); |
1357 | thread->wait_result = THREAD_AWAKENED; |
1358 | thread_unlock(thread); |
1359 | splx(s); |
1360 | return THREAD_AWAKENED; |
1361 | } |
1362 | |
1363 | /* |
1364 | * If already dealing with an irq safe wait queue, we are all set. |
1365 | * Otherwise, determine a global queue to use and lock it. |
1366 | */ |
1367 | if (waitq_irq_safe(waitq)) { |
1368 | safeq = waitq.wq_q; |
1369 | eventmask = _CAST_TO_EVENT_MASK(wait_event); |
1370 | } else { |
1371 | safeq = waitq_get_safeq(waitq); |
1372 | if (__improbable(safeq == NULL)) { |
1373 | panic("Trying to assert_wait on a turnstile proxy " |
1374 | "that hasn't been donated one (waitq: %p)" , waitq.wq_q); |
1375 | } |
1376 | eventmask = _CAST_TO_EVENT_MASK(waitq.wq_q); |
1377 | waitq_lock(wq: safeq); |
1378 | } |
1379 | |
1380 | /* lock the thread now that we have the irq-safe waitq locked */ |
1381 | thread_lock(thread); |
1382 | |
1383 | wait_result = thread_mark_wait_locked(thread, interruptible); |
1384 | /* thread->wait_result has been set */ |
1385 | if (wait_result == THREAD_WAITING) { |
1386 | waitq_thread_insert(safeq, thread, wq: waitq, event: wait_event); |
1387 | |
1388 | if (deadline != 0) { |
1389 | bool was_active; |
1390 | |
1391 | was_active = timer_call_enter_with_leeway(call: thread->wait_timer, |
1392 | NULL, |
1393 | deadline, leeway, |
1394 | flags: urgency, FALSE); |
1395 | if (!was_active) { |
1396 | thread->wait_timer_active++; |
1397 | } |
1398 | thread->wait_timer_armed = true; |
1399 | } |
1400 | |
1401 | if (waitq_is_global(waitq: safeq)) { |
1402 | safeq->waitq_eventmask |= (waitq_flags_t)eventmask; |
1403 | } |
1404 | |
1405 | waitq_stats_count_wait(waitq); |
1406 | } |
1407 | |
1408 | /* unlock the thread */ |
1409 | thread_unlock(thread); |
1410 | |
1411 | /* update the inheritor's thread priority if the waitq is embedded in turnstile */ |
1412 | if (waitq_type(wq: safeq) == WQT_TURNSTILE && wait_result == THREAD_WAITING) { |
1413 | turnstile_recompute_priority_locked(waitq_to_turnstile(safeq)); |
1414 | turnstile_update_inheritor_locked(waitq_to_turnstile(safeq)); |
1415 | } |
1416 | |
1417 | /* unlock the safeq if we locked it here */ |
1418 | if (!waitq_same(wq1: waitq, wq2: safeq)) { |
1419 | waitq_unlock(wq: safeq); |
1420 | } |
1421 | |
1422 | splx(s); |
1423 | |
1424 | return wait_result; |
1425 | } |
1426 | |
1427 | bool |
1428 | waitq_pull_thread_locked(waitq_t waitq, thread_t thread) |
1429 | { |
1430 | struct waitq *safeq; |
1431 | uint32_t ticket; |
1432 | |
1433 | assert_thread_magic(thread); |
1434 | |
1435 | /* Find the interrupts disabled queue thread is waiting on */ |
1436 | if (waitq_irq_safe(waitq)) { |
1437 | safeq = waitq.wq_q; |
1438 | } else { |
1439 | safeq = waitq_get_safeq(waitq); |
1440 | if (__improbable(safeq == NULL)) { |
1441 | panic("Trying to clear_wait on a turnstile proxy " |
1442 | "that hasn't been donated one (waitq: %p)" , waitq.wq_q); |
1443 | } |
1444 | } |
1445 | |
1446 | /* |
1447 | * thread is already locked so have to try for the waitq lock. |
1448 | * |
1449 | * We can't wait for the waitq lock under the thread lock, |
1450 | * however we can reserve our slot in the lock queue, |
1451 | * and if that reservation requires waiting, we are guaranteed |
1452 | * that this waitq can't die until we got our turn! |
1453 | */ |
1454 | if (!waitq_lock_reserve(wq: safeq, ticket: &ticket)) { |
1455 | thread_unlock(thread); |
1456 | waitq_lock_wait(wq: safeq, ticket); |
1457 | thread_lock(thread); |
1458 | |
1459 | if (!waitq_same(wq1: waitq, wq2: thread->waitq)) { |
1460 | /* |
1461 | * While we were waiting for our reservation the thread |
1462 | * stopped waiting on this waitq, bail out. |
1463 | */ |
1464 | waitq_unlock(wq: safeq); |
1465 | return false; |
1466 | } |
1467 | } |
1468 | |
1469 | waitq_thread_remove(wq: safeq, thread); |
1470 | waitq_stats_count_clear_wakeup(waitq); |
1471 | waitq_unlock(wq: safeq); |
1472 | return true; |
1473 | } |
1474 | |
1475 | |
1476 | void |
1477 | waitq_clear_promotion_locked(waitq_t waitq, thread_t thread) |
1478 | { |
1479 | spl_t s = 0; |
1480 | |
1481 | assert(waitq_held(waitq)); |
1482 | assert(thread != THREAD_NULL); |
1483 | assert(thread == current_thread()); |
1484 | |
1485 | /* This flag is only cleared by the thread itself, so safe to check outside lock */ |
1486 | if ((thread->sched_flags & TH_SFLAG_WAITQ_PROMOTED) != TH_SFLAG_WAITQ_PROMOTED) { |
1487 | return; |
1488 | } |
1489 | |
1490 | if (!waitq_irq_safe(waitq)) { |
1491 | s = splsched(); |
1492 | } |
1493 | thread_lock(thread); |
1494 | |
1495 | sched_thread_unpromote_reason(thread, TH_SFLAG_WAITQ_PROMOTED, trace_obj: 0); |
1496 | |
1497 | thread_unlock(thread); |
1498 | if (!waitq_irq_safe(waitq)) { |
1499 | splx(s); |
1500 | } |
1501 | } |
1502 | |
1503 | static inline bool |
1504 | waitq_should_unlock(waitq_wakeup_flags_t flags) |
1505 | { |
1506 | return (flags & (WAITQ_UNLOCK | WAITQ_KEEP_LOCKED)) == WAITQ_UNLOCK; |
1507 | } |
1508 | |
1509 | static inline bool |
1510 | waitq_should_enable_interrupts(waitq_wakeup_flags_t flags) |
1511 | { |
1512 | return (flags & (WAITQ_UNLOCK | WAITQ_KEEP_LOCKED | WAITQ_ENABLE_INTERRUPTS)) == (WAITQ_UNLOCK | WAITQ_ENABLE_INTERRUPTS); |
1513 | } |
1514 | |
1515 | kern_return_t |
1516 | waitq_wakeup64_all_locked( |
1517 | waitq_t waitq, |
1518 | event64_t wake_event, |
1519 | wait_result_t result, |
1520 | waitq_wakeup_flags_t flags) |
1521 | { |
1522 | struct waitq_select_args args = { |
1523 | .event = wake_event, |
1524 | .result = result, |
1525 | .flags = flags & ~WAITQ_HANDOFF, |
1526 | .max_threads = UINT32_MAX, |
1527 | }; |
1528 | |
1529 | assert(waitq_held(waitq)); |
1530 | |
1531 | if (flags & WAITQ_ENABLE_INTERRUPTS) { |
1532 | assert(waitq_should_unlock(flags)); |
1533 | assert(ml_get_interrupts_enabled() == false); |
1534 | } |
1535 | |
1536 | do_waitq_select_n_locked(waitq, args: &args); |
1537 | waitq_stats_count_wakeup(waitq, args.nthreads); |
1538 | |
1539 | if (waitq_should_unlock(flags)) { |
1540 | waitq_unlock(wq: waitq); |
1541 | } |
1542 | |
1543 | if (waitq_should_enable_interrupts(flags)) { |
1544 | ml_set_interrupts_enabled(true); |
1545 | } |
1546 | |
1547 | if (!circle_queue_empty(cq: &args.threadq)) { |
1548 | waitq_select_queue_flush(waitq, args: &args); |
1549 | } |
1550 | |
1551 | if (args.nthreads > 0) { |
1552 | return KERN_SUCCESS; |
1553 | } |
1554 | |
1555 | return KERN_NOT_WAITING; |
1556 | } |
1557 | |
1558 | kern_return_t |
1559 | waitq_wakeup64_one_locked( |
1560 | waitq_t waitq, |
1561 | event64_t wake_event, |
1562 | wait_result_t result, |
1563 | waitq_wakeup_flags_t flags) |
1564 | { |
1565 | struct waitq_select_args args = { |
1566 | .event = wake_event, |
1567 | .result = result, |
1568 | .flags = flags, |
1569 | .max_threads = 1, |
1570 | }; |
1571 | |
1572 | assert(waitq_held(waitq)); |
1573 | |
1574 | if (flags & WAITQ_ENABLE_INTERRUPTS) { |
1575 | assert(waitq_should_unlock(flags)); |
1576 | assert(ml_get_interrupts_enabled() == false); |
1577 | } |
1578 | |
1579 | do_waitq_select_n_locked(waitq, args: &args); |
1580 | waitq_stats_count_wakeup(waitq, args.nthreads); |
1581 | |
1582 | if (waitq_should_unlock(flags)) { |
1583 | waitq_unlock(wq: waitq); |
1584 | } |
1585 | |
1586 | if (waitq_should_enable_interrupts(flags)) { |
1587 | ml_set_interrupts_enabled(true); |
1588 | } |
1589 | |
1590 | if (!circle_queue_empty(cq: &args.threadq)) { |
1591 | waitq_select_queue_flush(waitq, args: &args); |
1592 | } |
1593 | |
1594 | if (args.nthreads > 0) { |
1595 | return KERN_SUCCESS; |
1596 | } |
1597 | |
1598 | return KERN_NOT_WAITING; |
1599 | } |
1600 | |
1601 | thread_t |
1602 | waitq_wakeup64_identify_locked( |
1603 | waitq_t waitq, |
1604 | event64_t wake_event, |
1605 | wait_result_t result, |
1606 | waitq_wakeup_flags_t flags) |
1607 | { |
1608 | struct waitq_select_args args = { |
1609 | .event = wake_event, |
1610 | .result = result, |
1611 | .flags = flags, |
1612 | .max_threads = 1, |
1613 | .is_identified = true, |
1614 | }; |
1615 | |
1616 | assert(waitq_held(waitq)); |
1617 | |
1618 | do_waitq_select_n_locked(waitq, args: &args); |
1619 | waitq_stats_count_wakeup(waitq, args.nthreads); |
1620 | |
1621 | if (waitq_should_unlock(flags)) { |
1622 | waitq_unlock(wq: waitq); |
1623 | } |
1624 | |
1625 | if (waitq_should_enable_interrupts(flags)) { |
1626 | ml_set_interrupts_enabled(true); |
1627 | } |
1628 | |
1629 | if (args.nthreads > 0) { |
1630 | thread_t thread = cqe_dequeue_head(&args.threadq, struct thread, wait_links); |
1631 | |
1632 | assert(args.nthreads == 1 && circle_queue_empty(&args.threadq)); |
1633 | |
1634 | /* Thread is off waitq, not unblocked yet */ |
1635 | |
1636 | return thread; |
1637 | } |
1638 | |
1639 | return THREAD_NULL; |
1640 | } |
1641 | |
1642 | void |
1643 | waitq_resume_identified_thread( |
1644 | waitq_t waitq, |
1645 | thread_t thread, |
1646 | wait_result_t result, |
1647 | waitq_wakeup_flags_t flags) |
1648 | { |
1649 | spl_t spl = splsched(); |
1650 | |
1651 | thread_lock(thread); |
1652 | |
1653 | assert((thread->state & (TH_WAIT | TH_WAKING)) == (TH_WAIT | TH_WAKING)); |
1654 | |
1655 | maybe_adjust_thread_pri(thread, flags, waitq); |
1656 | thread_go(thread, wresult: result, try_handoff: (flags & WAITQ_HANDOFF)); |
1657 | |
1658 | thread_unlock(thread); |
1659 | splx(spl); |
1660 | |
1661 | enable_preemption(); // balance disable upon pulling thread |
1662 | } |
1663 | |
1664 | void |
1665 | waitq_resume_and_bind_identified_thread( |
1666 | waitq_t waitq, |
1667 | thread_t thread, |
1668 | processor_t processor, |
1669 | wait_result_t result, |
1670 | waitq_wakeup_flags_t flags) |
1671 | { |
1672 | spl_t spl = splsched(); |
1673 | |
1674 | thread_lock(thread); |
1675 | |
1676 | assert((thread->state & (TH_WAIT | TH_WAKING)) == (TH_WAIT | TH_WAKING)); |
1677 | |
1678 | maybe_adjust_thread_pri(thread, flags, waitq); |
1679 | thread_bind_during_wakeup(thread, processor); |
1680 | thread_go(thread, wresult: result, try_handoff: (flags & WAITQ_HANDOFF)); |
1681 | |
1682 | thread_unlock(thread); |
1683 | splx(spl); |
1684 | |
1685 | enable_preemption(); // balance disable upon pulling thread |
1686 | } |
1687 | |
1688 | kern_return_t |
1689 | waitq_wakeup64_thread_and_unlock( |
1690 | struct waitq *waitq, |
1691 | event64_t event, |
1692 | thread_t thread, |
1693 | wait_result_t result) |
1694 | { |
1695 | kern_return_t ret = KERN_NOT_WAITING; |
1696 | |
1697 | assert(waitq_irq_safe(waitq)); |
1698 | assert(waitq_held(waitq)); |
1699 | assert_thread_magic(thread); |
1700 | |
1701 | /* |
1702 | * See if the thread was still waiting there. If so, it got |
1703 | * dequeued and returned locked. |
1704 | * |
1705 | * By holding the thread locked across the go, a thread on another CPU |
1706 | * can't see itself in 'waking' state, even if it uses clear_wait. |
1707 | */ |
1708 | thread_lock(thread); |
1709 | |
1710 | if (waitq_same(wq1: thread->waitq, wq2: waitq) && thread->wait_event == event) { |
1711 | waitq_thread_remove(wq: waitq, thread); |
1712 | ret = KERN_SUCCESS; |
1713 | } |
1714 | waitq_stats_count_wakeup(waitq, ret == KERN_SUCCESS ? 1 : 0); |
1715 | |
1716 | waitq_unlock(wq: waitq); |
1717 | |
1718 | if (ret == KERN_SUCCESS) { |
1719 | thread_go(thread, wresult: result, /* handoff */ false); |
1720 | } |
1721 | |
1722 | thread_unlock(thread); |
1723 | |
1724 | return ret; |
1725 | } |
1726 | |
1727 | |
1728 | #pragma mark waitq |
1729 | |
1730 | __attribute__((always_inline)) |
1731 | void |
1732 | waitq_init(waitq_t waitq, waitq_type_t type, int policy) |
1733 | { |
1734 | assert((policy & SYNC_POLICY_FIXED_PRIORITY) == 0); |
1735 | |
1736 | *waitq.wq_q = (struct waitq){ |
1737 | .waitq_type = type, |
1738 | .waitq_fifo = ((policy & SYNC_POLICY_REVERSED) == 0), |
1739 | }; |
1740 | |
1741 | switch (type) { |
1742 | case WQT_INVALID: |
1743 | __builtin_trap(); |
1744 | |
1745 | case WQT_TURNSTILE: |
1746 | /* For turnstile, initialize it as a priority queue */ |
1747 | priority_queue_init(que: &waitq.wq_q->waitq_prio_queue); |
1748 | assert(waitq.wq_q->waitq_fifo == 0); |
1749 | break; |
1750 | |
1751 | case WQT_PORT: |
1752 | waitq.wq_q->waitq_ts = TURNSTILE_NULL; |
1753 | break; |
1754 | |
1755 | case WQT_PORT_SET: |
1756 | circle_queue_init(&waitq.wqs_set->wqset_preposts); |
1757 | OS_FALLTHROUGH; |
1758 | case WQT_SELECT_SET: |
1759 | case WQT_QUEUE: |
1760 | case WQT_SELECT: |
1761 | circle_queue_init(&waitq.wq_q->waitq_queue); |
1762 | break; |
1763 | } |
1764 | |
1765 | if (policy & SYNC_POLICY_INIT_LOCKED) { |
1766 | hw_lck_ticket_init_locked(&waitq.wq_q->waitq_interlock, &waitq_lck_grp); |
1767 | } else { |
1768 | hw_lck_ticket_init(&waitq.wq_q->waitq_interlock, &waitq_lck_grp); |
1769 | } |
1770 | } |
1771 | |
1772 | void |
1773 | waitq_deinit(waitq_t waitq) |
1774 | { |
1775 | waitq_type_t type = waitq_type(wq: waitq); |
1776 | |
1777 | switch (type) { |
1778 | case WQT_QUEUE: |
1779 | assert(circle_queue_empty(&waitq.wq_q->waitq_queue)); |
1780 | waitq_invalidate(waitq); |
1781 | break; |
1782 | |
1783 | case WQT_TURNSTILE: |
1784 | assert(priority_queue_empty(&waitq.wq_q->waitq_prio_queue)); |
1785 | assert(waitq.wq_q->waitq_inheritor == TURNSTILE_INHERITOR_NULL); |
1786 | waitq_invalidate(waitq); |
1787 | break; |
1788 | |
1789 | case WQT_PORT: |
1790 | assert(waitq.wq_q->waitq_ts == TURNSTILE_NULL); |
1791 | assert(circle_queue_empty(&waitq.wq_q->waitq_links)); |
1792 | break; |
1793 | |
1794 | case WQT_SELECT: |
1795 | assert(waitq.wq_q->waitq_sellinks.next == NULL); |
1796 | assert(circle_queue_empty(&waitq.wqs_set->wqset_queue)); |
1797 | break; |
1798 | |
1799 | case WQT_PORT_SET: |
1800 | assert(circle_queue_empty(&waitq.wqs_set->wqset_queue)); |
1801 | assert(circle_queue_empty(&waitq.wqs_set->wqset_links)); |
1802 | assert(circle_queue_empty(&waitq.wqs_set->wqset_preposts)); |
1803 | break; |
1804 | |
1805 | default: |
1806 | panic("invalid wait type: %p/%d" , waitq.wq_q, type); |
1807 | } |
1808 | |
1809 | /* |
1810 | * The waitq must have been invalidated, or hw_lck_ticket_destroy() |
1811 | * below won't wait for reservations from waitq_lock_reserve(), |
1812 | * or waitq_lock_allow_invalid(). |
1813 | */ |
1814 | assert(!waitq_valid(waitq.wqs_set)); |
1815 | hw_lck_ticket_destroy(&waitq.wq_q->waitq_interlock, &waitq_lck_grp); |
1816 | } |
1817 | |
1818 | |
1819 | #pragma mark port-set sets |
1820 | |
1821 | void |
1822 | waitq_set_unlink_all_locked(struct waitq_set *wqset, waitq_link_list_t *free_l) |
1823 | { |
1824 | uint32_t batch = waitq_set_unlink_batch; |
1825 | |
1826 | waitq_invalidate(waitq: wqset); |
1827 | |
1828 | for (;;) { |
1829 | struct waitq_link *link; |
1830 | queue_entry_t elt; |
1831 | circle_queue_t q; |
1832 | struct waitq *wq; |
1833 | uint32_t ticket; |
1834 | bool stable = true; |
1835 | |
1836 | if (!circle_queue_empty(cq: &wqset->wqset_links)) { |
1837 | q = &wqset->wqset_links; |
1838 | } else if (!circle_queue_empty(cq: &wqset->wqset_preposts)) { |
1839 | q = &wqset->wqset_preposts; |
1840 | } else { |
1841 | break; |
1842 | } |
1843 | |
1844 | if (batch-- == 0) { |
1845 | waitq_unlock(wq: wqset); |
1846 | waitq_lock(wq: wqset); |
1847 | batch = waitq_set_unlink_batch; |
1848 | continue; |
1849 | } |
1850 | |
1851 | elt = circle_queue_first(cq: q); |
1852 | link = cqe_element(elt, struct waitq_link, wql_slink); |
1853 | wq = link->wql_wq; |
1854 | |
1855 | if (__improbable(!waitq_lock_reserve(wq, &ticket))) { |
1856 | waitq_unlock(wq: wqset); |
1857 | waitq_lock_wait(wq: wq, ticket); |
1858 | waitq_lock(wq: wqset); |
1859 | stable = (elt == circle_queue_first(cq: q) && link->wql_wq == wq); |
1860 | } |
1861 | |
1862 | if (stable) { |
1863 | circle_dequeue(cq: q, elt: &link->wql_slink); |
1864 | circle_dequeue(cq: &wq->waitq_links, elt: &link->wql_qlink); |
1865 | wql_list_push(list: free_l, link: link); |
1866 | } |
1867 | |
1868 | waitq_unlock(wq: wq); |
1869 | } |
1870 | } |
1871 | |
1872 | void |
1873 | waitq_clear_prepost_locked(struct waitq *waitq) |
1874 | { |
1875 | assert(waitq_type(waitq) == WQT_PORT); |
1876 | waitq->waitq_preposted = false; |
1877 | } |
1878 | |
1879 | void |
1880 | waitq_set_foreach_member_locked(struct waitq_set *wqs, void (^cb)(struct waitq *)) |
1881 | { |
1882 | struct waitq_link *link; |
1883 | |
1884 | cqe_foreach_element(link, &wqs->wqset_links, wql_slink) { |
1885 | cb(link->wql_wq); |
1886 | } |
1887 | |
1888 | cqe_foreach_element(link, &wqs->wqset_preposts, wql_slink) { |
1889 | cb(link->wql_wq); |
1890 | } |
1891 | } |
1892 | |
1893 | __abortlike |
1894 | static void |
1895 | __waitq_link_arguments_panic(struct waitq *waitq, struct waitq_set *wqset) |
1896 | { |
1897 | if (!waitq_valid(waitq: waitq)) { |
1898 | panic("Invalid waitq: %p" , waitq); |
1899 | } |
1900 | if (waitq_type(wq: waitq) != WQT_PORT) { |
1901 | panic("Invalid waitq type: %p:%d" , waitq, waitq->waitq_type); |
1902 | } |
1903 | panic("Invalid waitq-set: %p" , wqset); |
1904 | } |
1905 | |
1906 | static inline void |
1907 | __waitq_link_arguments_validate(struct waitq *waitq, struct waitq_set *wqset) |
1908 | { |
1909 | if (!waitq_valid(waitq: waitq) || |
1910 | waitq_type(wq: waitq) != WQT_PORT || |
1911 | waitq_type(wq: wqset) != WQT_PORT_SET) { |
1912 | __waitq_link_arguments_panic(waitq, wqset); |
1913 | } |
1914 | } |
1915 | |
1916 | __abortlike |
1917 | static void |
1918 | __waitq_invalid_panic(waitq_t waitq) |
1919 | { |
1920 | panic("Invalid waitq: %p" , waitq.wq_q); |
1921 | } |
1922 | |
1923 | static void |
1924 | __waitq_validate(waitq_t waitq) |
1925 | { |
1926 | if (!waitq_valid(waitq)) { |
1927 | __waitq_invalid_panic(waitq); |
1928 | } |
1929 | } |
1930 | |
1931 | kern_return_t |
1932 | waitq_link_locked(struct waitq *waitq, struct waitq_set *wqset, |
1933 | waitq_link_t *linkp) |
1934 | { |
1935 | assert(linkp->wqlh); |
1936 | |
1937 | __waitq_link_arguments_validate(waitq, wqset); |
1938 | |
1939 | if (wql_find(waitq, wqset: wqset)) { |
1940 | return KERN_ALREADY_IN_SET; |
1941 | } |
1942 | |
1943 | linkp->wqll->wql_wq = waitq; |
1944 | linkp->wqll->wql_wqs = (uintptr_t)wqset; |
1945 | |
1946 | if (waitq_valid(waitq: wqset)) { |
1947 | circle_enqueue_tail(cq: &wqset->wqset_links, elt: &linkp->wqll->wql_slink); |
1948 | circle_enqueue_tail(cq: &waitq->waitq_links, elt: &linkp->wqll->wql_qlink); |
1949 | *linkp = WQL_NULL; |
1950 | } |
1951 | |
1952 | return KERN_SUCCESS; |
1953 | } |
1954 | |
1955 | kern_return_t |
1956 | waitq_link_prepost_locked(struct waitq *waitq, struct waitq_set *wqset) |
1957 | { |
1958 | struct waitq_link *link; |
1959 | |
1960 | __waitq_link_arguments_validate(waitq, wqset); |
1961 | |
1962 | link = wql_find(waitq, wqset: wqset); |
1963 | if (link == NULL) { |
1964 | return KERN_NOT_IN_SET; |
1965 | } |
1966 | |
1967 | if (!wql_wqs_preposted(link: link)) { |
1968 | wql_wqs_mark_preposted(link: link); |
1969 | waitq->waitq_preposted = true; |
1970 | circle_dequeue(cq: &wqset->wqset_links, elt: &link->wql_slink); |
1971 | circle_enqueue_tail(cq: &wqset->wqset_preposts, elt: &link->wql_slink); |
1972 | ipc_pset_prepost(wqset, waitq); |
1973 | } |
1974 | |
1975 | return KERN_SUCCESS; |
1976 | } |
1977 | |
1978 | waitq_link_t |
1979 | waitq_unlink_locked(struct waitq *waitq, struct waitq_set *wqset) |
1980 | { |
1981 | struct waitq_link *link; |
1982 | |
1983 | __waitq_link_arguments_validate(waitq, wqset); |
1984 | |
1985 | link = wql_find(waitq, wqset: wqset); |
1986 | if (link) { |
1987 | circle_dequeue(cq: wql_wqs_queue(wqs: wqset, link), elt: &link->wql_slink); |
1988 | circle_dequeue(cq: &waitq->waitq_links, elt: &link->wql_qlink); |
1989 | } |
1990 | |
1991 | return (waitq_link_t){ .wqll = link }; |
1992 | } |
1993 | |
1994 | void |
1995 | waitq_unlink_all_locked(struct waitq *waitq, struct waitq_set *except_wqset, |
1996 | waitq_link_list_t *free_l) |
1997 | { |
1998 | struct waitq_link *kept_link = NULL; |
1999 | struct waitq_link *link; |
2000 | |
2001 | assert(waitq_type(waitq) == WQT_PORT); |
2002 | |
2003 | cqe_foreach_element_safe(link, &waitq->waitq_links, wql_qlink) { |
2004 | waitq_t wqs = wql_wqs(link: link); |
2005 | |
2006 | if (wqs.wqs_set == except_wqset) { |
2007 | kept_link = link; |
2008 | continue; |
2009 | } |
2010 | |
2011 | waitq_lock(wq: wqs); |
2012 | circle_dequeue(cq: wql_wqs_queue(wqs: wqs.wqs_set, link), |
2013 | elt: &link->wql_slink); |
2014 | wql_list_push(list: free_l, link: link); |
2015 | waitq_unlock(wq: wqs); |
2016 | } |
2017 | |
2018 | circle_queue_init(&waitq->waitq_links); |
2019 | if (kept_link) { |
2020 | circle_enqueue_tail(cq: &waitq->waitq_links, elt: &kept_link->wql_qlink); |
2021 | } |
2022 | } |
2023 | |
2024 | struct waitq * |
2025 | waitq_set_first_prepost(struct waitq_set *wqset, wqs_prepost_flags_t flags) |
2026 | { |
2027 | circle_queue_t q = &wqset->wqset_preposts; |
2028 | queue_entry_t elt; |
2029 | struct waitq_link *link; |
2030 | struct waitq *wq; |
2031 | uint32_t ticket; |
2032 | |
2033 | if (__improbable(!waitq_valid(wqset))) { |
2034 | return NULL; |
2035 | } |
2036 | |
2037 | while (!circle_queue_empty(cq: q)) { |
2038 | elt = circle_queue_first(cq: q); |
2039 | link = cqe_element(elt, struct waitq_link, wql_slink); |
2040 | wq = link->wql_wq; |
2041 | |
2042 | if (__improbable(!waitq_lock_reserve(wq, &ticket))) { |
2043 | waitq_unlock(wq: wqset); |
2044 | waitq_lock_wait(wq: wq, ticket); |
2045 | waitq_lock(wq: wqset); |
2046 | if (!waitq_valid(waitq: wqset)) { |
2047 | waitq_unlock(wq: wq); |
2048 | return NULL; |
2049 | } |
2050 | |
2051 | if (elt != circle_queue_first(cq: q) || link->wql_wq != wq) { |
2052 | waitq_unlock(wq: wq); |
2053 | continue; |
2054 | } |
2055 | } |
2056 | |
2057 | if (wq->waitq_preposted) { |
2058 | if ((flags & WQS_PREPOST_PEEK) == 0) { |
2059 | circle_queue_rotate_head_forward(cq: q); |
2060 | } |
2061 | if ((flags & WQS_PREPOST_LOCK) == 0) { |
2062 | waitq_unlock(wq: wq); |
2063 | } |
2064 | return wq; |
2065 | } |
2066 | |
2067 | /* |
2068 | * We found a link that is no longer preposted, |
2069 | * someone must have called waitq_clear_prepost_locked() |
2070 | * and this set just only noticed. |
2071 | */ |
2072 | wql_wqs_clear_preposted(link: link); |
2073 | waitq_unlock(wq: wq); |
2074 | |
2075 | circle_dequeue(cq: q, elt: &link->wql_slink); |
2076 | circle_enqueue_tail(cq: &wqset->wqset_links, elt: &link->wql_slink); |
2077 | } |
2078 | |
2079 | return NULL; |
2080 | } |
2081 | |
2082 | |
2083 | #pragma mark select sets |
2084 | |
2085 | /** |
2086 | * @function select_set_nextid() |
2087 | * |
2088 | * @brief |
2089 | * Generate a unique ID for a select set "generation" |
2090 | * |
2091 | * @discussion |
2092 | * This mixes the CPU number with a monotonic clock |
2093 | * (in order to avoid contention on a global atomic). |
2094 | * |
2095 | * In order for select sets to be invalidated very quickly, |
2096 | * they do not have backward linkages to their member queues. |
2097 | * |
2098 | * Instead, each time a new @c select() "pass" is initiated, |
2099 | * a new ID is generated, which is copied onto the @c waitq_sellink |
2100 | * links at the time of link. |
2101 | * |
2102 | * The zone for select sets is sequestered, which allows for select |
2103 | * wait queues to speculatively lock their set during prepost |
2104 | * and use this ID to debounce wakeups and avoid spurious wakeups |
2105 | * (as an "optimization" because select recovers from spurious wakeups, |
2106 | * we just want those to be very rare). |
2107 | */ |
2108 | __attribute__((always_inline)) |
2109 | static inline uint64_t |
2110 | select_set_nextid(bool preemption_enabled) |
2111 | { |
2112 | /* waitq_bootstrap() set the low byte to a unique value per CPU */ |
2113 | static_assert(MAX_CPUS <= 256); |
2114 | const uint64_t inc = 256; |
2115 | uint64_t id; |
2116 | |
2117 | #ifdef __x86_64__ |
2118 | /* uncontended atomics are slower than disabling preemption on Intel */ |
2119 | if (preemption_enabled) { |
2120 | disable_preemption(); |
2121 | } |
2122 | id = (*PERCPU_GET(select_setid) += inc); |
2123 | if (preemption_enabled) { |
2124 | enable_preemption(); |
2125 | } |
2126 | #else |
2127 | /* |
2128 | * if preemption is enabled this might update another CPU's |
2129 | * setid, which will be rare but is acceptable, it still |
2130 | * produces a unique select ID. |
2131 | * |
2132 | * We chose this because the uncontended atomics on !intel |
2133 | * are faster than disabling/reenabling preemption. |
2134 | */ |
2135 | (void)preemption_enabled; |
2136 | id = os_atomic_add(PERCPU_GET(select_setid), inc, relaxed); |
2137 | #endif |
2138 | |
2139 | return id; |
2140 | } |
2141 | |
2142 | struct select_set * |
2143 | select_set_alloc(void) |
2144 | { |
2145 | struct select_set *selset; |
2146 | selset = zalloc_id(ZONE_ID_SELECT_SET, Z_ZERO | Z_WAITOK | Z_NOFAIL); |
2147 | |
2148 | waitq_init(waitq: selset, type: WQT_SELECT_SET, SYNC_POLICY_FIFO); |
2149 | selset->selset_id = select_set_nextid(true); |
2150 | |
2151 | return selset; |
2152 | } |
2153 | |
2154 | __abortlike |
2155 | static void |
2156 | __select_set_link_arguments_panic(struct waitq *waitq, struct select_set *set) |
2157 | { |
2158 | if (!waitq_valid(waitq: waitq)) { |
2159 | panic("Invalid waitq: %p" , waitq); |
2160 | } |
2161 | if (waitq_type(wq: waitq) != WQT_SELECT) { |
2162 | panic("Invalid waitq type: %p:%d" , waitq, waitq->waitq_type); |
2163 | } |
2164 | panic("Invalid waitq-set: %p" , set); |
2165 | } |
2166 | |
2167 | static inline void |
2168 | __select_set_link_arguments_validate(struct waitq *waitq, struct select_set *set) |
2169 | { |
2170 | if (!waitq_valid(waitq: waitq) || |
2171 | waitq_type(wq: waitq) != WQT_SELECT || |
2172 | waitq_type(wq: set) != WQT_SELECT_SET) { |
2173 | __select_set_link_arguments_panic(waitq, set); |
2174 | } |
2175 | } |
2176 | |
2177 | void |
2178 | select_set_link(struct waitq *waitq, struct select_set *set, |
2179 | waitq_link_t *linkp) |
2180 | { |
2181 | struct waitq_sellink *link; |
2182 | |
2183 | __select_set_link_arguments_validate(waitq, set); |
2184 | |
2185 | waitq_lock(wq: waitq); |
2186 | |
2187 | if (waitq == &select_conflict_queue) { |
2188 | waitq_lock(wq: set); |
2189 | set->selset_conflict = true; |
2190 | waitq_unlock(wq: set); |
2191 | } |
2192 | |
2193 | wql_list_foreach(link, &waitq->waitq_sellinks) { |
2194 | if (waitq_same(wq1: wql_wqs(link: link), wq2: set)) { |
2195 | goto found; |
2196 | } |
2197 | } |
2198 | |
2199 | link = linkp->wqls; |
2200 | *linkp = WQL_NULL; |
2201 | wql_list_push(list: &waitq->waitq_sellinks, link: link); |
2202 | |
2203 | found: |
2204 | link->wql_wqs = (uintptr_t)set; |
2205 | link->wql_setid = set->selset_id; |
2206 | waitq_unlock(wq: waitq); |
2207 | } |
2208 | |
2209 | static void |
2210 | select_set_unlink_conflict_queue(struct select_set *set) |
2211 | { |
2212 | struct waitq_link_list_entry **prev; |
2213 | struct waitq_sellink *link; |
2214 | |
2215 | waitq_lock(wq: &select_conflict_queue); |
2216 | |
2217 | /* |
2218 | * We know the conflict queue is hooked, |
2219 | * so find the linkage and free it. |
2220 | */ |
2221 | prev = &select_conflict_queue.waitq_sellinks.next; |
2222 | for (;;) { |
2223 | assert(*prev); |
2224 | link = wql_list_elem(e: *prev); |
2225 | if (waitq_same(wq1: wql_wqs(link: link), wq2: set)) { |
2226 | *prev = link->wql_next.next; |
2227 | break; |
2228 | } |
2229 | prev = &link->wql_next.next; |
2230 | } |
2231 | |
2232 | waitq_unlock(wq: &select_conflict_queue); |
2233 | |
2234 | waitq_link_free(type: WQT_SELECT_SET, link: link); |
2235 | } |
2236 | |
2237 | static void |
2238 | __select_set_reset(struct select_set *set, bool invalidate) |
2239 | { |
2240 | if (set->selset_conflict) { |
2241 | select_set_unlink_conflict_queue(set); |
2242 | } |
2243 | |
2244 | waitq_lock(wq: set); |
2245 | if (invalidate) { |
2246 | waitq_invalidate(waitq: set); |
2247 | } |
2248 | set->selset_id = select_set_nextid(false); |
2249 | set->selset_preposted = 0; |
2250 | set->selset_conflict = 0; |
2251 | waitq_unlock(wq: set); |
2252 | } |
2253 | |
2254 | void |
2255 | select_set_reset(struct select_set *set) |
2256 | { |
2257 | __select_set_reset(set, false); |
2258 | } |
2259 | |
2260 | void |
2261 | select_set_free(struct select_set *set) |
2262 | { |
2263 | __select_set_reset(set, true); |
2264 | hw_lck_ticket_destroy(&set->selset_interlock, &waitq_lck_grp); |
2265 | zfree_id(ZONE_ID_SELECT_SET, set); |
2266 | } |
2267 | |
2268 | void |
2269 | select_waitq_wakeup_and_deinit( |
2270 | struct waitq *waitq, |
2271 | event64_t wake_event, |
2272 | wait_result_t result) |
2273 | { |
2274 | waitq_link_list_t free_l = { }; |
2275 | |
2276 | if (waitq_is_valid(waitq: waitq)) { |
2277 | assert(waitq_type(waitq) == WQT_SELECT); |
2278 | |
2279 | waitq_lock(wq: waitq); |
2280 | |
2281 | waitq_wakeup64_all_locked(waitq: waitq, wake_event, result, |
2282 | flags: WAITQ_KEEP_LOCKED); |
2283 | |
2284 | waitq_invalidate(waitq: waitq); |
2285 | free_l = waitq->waitq_sellinks; |
2286 | waitq->waitq_sellinks.next = NULL; |
2287 | |
2288 | waitq_unlock(wq: waitq); |
2289 | |
2290 | waitq_link_free_list(type: WQT_SELECT, free_l: &free_l); |
2291 | |
2292 | waitq_deinit(waitq: waitq); |
2293 | } |
2294 | } |
2295 | |
2296 | #pragma mark assert_wait / wakeup (high level) |
2297 | |
2298 | wait_result_t |
2299 | waitq_assert_wait64(struct waitq *waitq, |
2300 | event64_t wait_event, |
2301 | wait_interrupt_t interruptible, |
2302 | uint64_t deadline) |
2303 | { |
2304 | thread_t thread = current_thread(); |
2305 | wait_result_t ret; |
2306 | spl_t s = 0; |
2307 | |
2308 | __waitq_validate(waitq: waitq); |
2309 | |
2310 | if (waitq_irq_safe(waitq: waitq)) { |
2311 | s = splsched(); |
2312 | } |
2313 | waitq_lock(wq: waitq); |
2314 | |
2315 | ret = waitq_assert_wait64_locked(waitq: waitq, wait_event, interruptible, |
2316 | TIMEOUT_URGENCY_SYS_NORMAL, deadline, TIMEOUT_NO_LEEWAY, thread); |
2317 | |
2318 | waitq_unlock(wq: waitq); |
2319 | if (waitq_irq_safe(waitq: waitq)) { |
2320 | splx(s); |
2321 | } |
2322 | |
2323 | return ret; |
2324 | } |
2325 | |
2326 | wait_result_t |
2327 | waitq_assert_wait64_leeway(struct waitq *waitq, |
2328 | event64_t wait_event, |
2329 | wait_interrupt_t interruptible, |
2330 | wait_timeout_urgency_t urgency, |
2331 | uint64_t deadline, |
2332 | uint64_t leeway) |
2333 | { |
2334 | wait_result_t ret; |
2335 | thread_t thread = current_thread(); |
2336 | spl_t s = 0; |
2337 | |
2338 | __waitq_validate(waitq: waitq); |
2339 | |
2340 | if (waitq_irq_safe(waitq: waitq)) { |
2341 | s = splsched(); |
2342 | } |
2343 | waitq_lock(wq: waitq); |
2344 | |
2345 | ret = waitq_assert_wait64_locked(waitq: waitq, wait_event, interruptible, |
2346 | urgency, deadline, leeway, thread); |
2347 | |
2348 | waitq_unlock(wq: waitq); |
2349 | if (waitq_irq_safe(waitq: waitq)) { |
2350 | splx(s); |
2351 | } |
2352 | |
2353 | return ret; |
2354 | } |
2355 | |
2356 | kern_return_t |
2357 | waitq_wakeup64_one( |
2358 | waitq_t waitq, |
2359 | event64_t wake_event, |
2360 | wait_result_t result, |
2361 | waitq_wakeup_flags_t flags) |
2362 | { |
2363 | __waitq_validate(waitq); |
2364 | |
2365 | spl_t spl = 0; |
2366 | |
2367 | if (waitq_irq_safe(waitq)) { |
2368 | spl = splsched(); |
2369 | } |
2370 | |
2371 | waitq_lock(wq: waitq); |
2372 | |
2373 | /* waitq is unlocked upon return, splx is handled */ |
2374 | return waitq_wakeup64_one_locked(waitq, wake_event, result, |
2375 | flags: flags | waitq_flags_splx(spl_level: spl) | WAITQ_UNLOCK); |
2376 | } |
2377 | |
2378 | kern_return_t |
2379 | waitq_wakeup64_all( |
2380 | waitq_t waitq, |
2381 | event64_t wake_event, |
2382 | wait_result_t result, |
2383 | waitq_wakeup_flags_t flags) |
2384 | { |
2385 | __waitq_validate(waitq); |
2386 | |
2387 | spl_t spl = 0; |
2388 | |
2389 | if (waitq_irq_safe(waitq)) { |
2390 | spl = splsched(); |
2391 | } |
2392 | |
2393 | waitq_lock(wq: waitq); |
2394 | |
2395 | /* waitq is unlocked upon return, splx is handled */ |
2396 | return waitq_wakeup64_all_locked(waitq, wake_event, result, |
2397 | flags: flags | waitq_flags_splx(spl_level: spl) | WAITQ_UNLOCK); |
2398 | } |
2399 | |
2400 | kern_return_t |
2401 | waitq_wakeup64_thread( |
2402 | struct waitq *waitq, |
2403 | event64_t event, |
2404 | thread_t thread, |
2405 | wait_result_t result) |
2406 | { |
2407 | spl_t s = splsched(); |
2408 | kern_return_t ret; |
2409 | |
2410 | __waitq_validate(waitq: waitq); |
2411 | assert(waitq_irq_safe(waitq)); |
2412 | waitq_lock(wq: waitq); |
2413 | |
2414 | ret = waitq_wakeup64_thread_and_unlock(waitq, event, thread, result); |
2415 | |
2416 | splx(s); |
2417 | |
2418 | return ret; |
2419 | } |
2420 | |
2421 | thread_t |
2422 | waitq_wakeup64_identify( |
2423 | waitq_t waitq, |
2424 | event64_t wake_event, |
2425 | wait_result_t result, |
2426 | waitq_wakeup_flags_t flags) |
2427 | { |
2428 | __waitq_validate(waitq); |
2429 | |
2430 | spl_t spl = 0; |
2431 | |
2432 | if (waitq_irq_safe(waitq)) { |
2433 | spl = splsched(); |
2434 | } |
2435 | |
2436 | waitq_lock(wq: waitq); |
2437 | |
2438 | thread_t thread = waitq_wakeup64_identify_locked(waitq, wake_event, |
2439 | result, flags: flags | waitq_flags_splx(spl_level: spl) | WAITQ_UNLOCK); |
2440 | /* waitq is unlocked, thread is not go-ed yet */ |
2441 | /* preemption disabled if thread non-null */ |
2442 | /* splx is handled */ |
2443 | |
2444 | if (thread != THREAD_NULL) { |
2445 | thread_reference(thread); |
2446 | waitq_resume_identified_thread(waitq, thread, result, flags); |
2447 | /* preemption enabled, thread go-ed */ |
2448 | /* returns +1 ref to running thread */ |
2449 | return thread; |
2450 | } |
2451 | |
2452 | return THREAD_NULL; |
2453 | } |
2454 | |
2455 | |
2456 | #pragma mark tests |
2457 | #if DEBUG || DEVELOPMENT |
2458 | |
2459 | #include <ipc/ipc_pset.h> |
2460 | #include <sys/errno.h> |
2461 | |
2462 | #define MAX_GLOBAL_TEST_QUEUES 64 |
2463 | static struct waitq wqt_waitq_array[MAX_GLOBAL_TEST_QUEUES]; |
2464 | static bool wqt_running; |
2465 | static bool wqt_init; |
2466 | |
2467 | static bool |
2468 | wqt_start(const char *test, int64_t *out) |
2469 | { |
2470 | if (os_atomic_xchg(&wqt_running, true, acquire)) { |
2471 | *out = 0; |
2472 | return false; |
2473 | } |
2474 | |
2475 | if (!wqt_init) { |
2476 | wqt_init = true; |
2477 | for (int i = 0; i < MAX_GLOBAL_TEST_QUEUES; i++) { |
2478 | waitq_init(&wqt_waitq_array[i], WQT_PORT, SYNC_POLICY_FIFO); |
2479 | } |
2480 | } |
2481 | |
2482 | printf("[WQ] starting %s\n" , test); |
2483 | return true; |
2484 | } |
2485 | |
2486 | static int |
2487 | wqt_end(const char *test, int64_t *out) |
2488 | { |
2489 | os_atomic_store(&wqt_running, false, release); |
2490 | printf("[WQ] done %s\n" , test); |
2491 | *out = 1; |
2492 | return 0; |
2493 | } |
2494 | |
2495 | static struct waitq * |
2496 | wqt_wq(uint32_t index) |
2497 | { |
2498 | return &wqt_waitq_array[index]; |
2499 | } |
2500 | |
2501 | static uint32_t |
2502 | wqt_idx(struct waitq *waitq) |
2503 | { |
2504 | assert(waitq >= wqt_waitq_array && |
2505 | waitq < wqt_waitq_array + MAX_GLOBAL_TEST_QUEUES); |
2506 | return (uint32_t)(waitq - wqt_waitq_array); |
2507 | } |
2508 | |
2509 | __attribute__((overloadable)) |
2510 | static uint64_t |
2511 | wqt_bit(uint32_t index) |
2512 | { |
2513 | return 1ull << index; |
2514 | } |
2515 | |
2516 | __attribute__((overloadable)) |
2517 | static uint64_t |
2518 | wqt_bit(struct waitq *waitq) |
2519 | { |
2520 | return wqt_bit(wqt_idx(waitq)); |
2521 | } |
2522 | |
2523 | static struct waitq_set * |
2524 | wqt_wqset_create(void) |
2525 | { |
2526 | struct waitq_set *wqset; |
2527 | |
2528 | wqset = &ipc_pset_alloc_special(ipc_space_kernel)->ips_wqset; |
2529 | printf("[WQ]: created waitq set %p\n" , wqset); |
2530 | return wqset; |
2531 | } |
2532 | |
2533 | static void |
2534 | wqt_wqset_free(struct waitq_set *wqset) |
2535 | { |
2536 | printf("[WQ]: destroying waitq set %p\n" , wqset); |
2537 | waitq_lock(wqset); |
2538 | ipc_pset_destroy(ipc_space_kernel, |
2539 | __container_of(wqset, struct ipc_pset, ips_wqset)); |
2540 | } |
2541 | |
2542 | static void |
2543 | wqt_link(uint32_t index, struct waitq_set *wqset, kern_return_t want) |
2544 | { |
2545 | struct waitq *waitq = wqt_wq(index); |
2546 | waitq_link_t link = waitq_link_alloc(WQT_PORT_SET); |
2547 | kern_return_t kr; |
2548 | |
2549 | printf("[WQ]: linking waitq [%d] to global wqset (%p)\n" , index, wqset); |
2550 | |
2551 | waitq_lock(waitq); |
2552 | waitq_lock(wqset); |
2553 | kr = waitq_link_locked(waitq, wqset, &link); |
2554 | waitq_unlock(wqset); |
2555 | waitq_unlock(waitq); |
2556 | |
2557 | if (link.wqlh) { |
2558 | waitq_link_free(WQT_PORT_SET, link); |
2559 | } |
2560 | |
2561 | printf("[WQ]:\tkr=%d\texpected=%d\n" , kr, want); |
2562 | assert(kr == want); |
2563 | } |
2564 | |
2565 | static void |
2566 | wqt_unlink(uint32_t index, struct waitq_set *wqset, kern_return_t want) |
2567 | { |
2568 | struct waitq *waitq = wqt_wq(index); |
2569 | waitq_link_t link; |
2570 | kern_return_t kr; |
2571 | |
2572 | printf("[WQ]: unlinking waitq [%d] from global wqset (%p)\n" , |
2573 | index, wqset); |
2574 | |
2575 | waitq_lock(waitq); |
2576 | waitq_lock(wqset); |
2577 | link = waitq_unlink_locked(waitq, wqset); |
2578 | waitq_unlock(wqset); |
2579 | waitq_unlock(waitq); |
2580 | |
2581 | if (link.wqlh) { |
2582 | waitq_link_free(WQT_PORT_SET, link); |
2583 | kr = KERN_SUCCESS; |
2584 | } else { |
2585 | kr = KERN_NOT_IN_SET; |
2586 | } |
2587 | |
2588 | printf("[WQ]: \tkr=%d\n" , kr); |
2589 | assert(kr == want); |
2590 | } |
2591 | |
2592 | static void |
2593 | wqt_wakeup_one(uint32_t index, event64_t event64, kern_return_t want) |
2594 | { |
2595 | kern_return_t kr; |
2596 | |
2597 | printf("[WQ]: Waking one thread on waitq [%d] event:0x%llx\n" , |
2598 | index, event64); |
2599 | kr = waitq_wakeup64_one(wqt_wq(index), event64, |
2600 | THREAD_AWAKENED, WAITQ_WAKEUP_DEFAULT); |
2601 | printf("[WQ]: \tkr=%d\n" , kr); |
2602 | assert(kr == want); |
2603 | } |
2604 | |
2605 | static void |
2606 | wqt_clear_preposts(uint32_t idx) |
2607 | { |
2608 | waitq_lock(wqt_wq(idx)); |
2609 | (void)waitq_clear_prepost_locked(wqt_wq(idx)); |
2610 | waitq_unlock(wqt_wq(idx)); |
2611 | } |
2612 | |
2613 | static void |
2614 | wqt_preposts_gc_locked(struct waitq_set *wqset) |
2615 | { |
2616 | circle_queue_t q = &wqset->wqset_preposts; |
2617 | struct waitq_link *link; |
2618 | uint32_t ticket; |
2619 | |
2620 | again: |
2621 | cqe_foreach_element_safe(link, q, wql_slink) { |
2622 | struct waitq *wq = link->wql_wq; |
2623 | |
2624 | if (!waitq_lock_reserve(wq, &ticket)) { |
2625 | waitq_unlock(wqset); |
2626 | waitq_lock_wait(wq, ticket); |
2627 | waitq_lock(wqset); |
2628 | waitq_unlock(wq); |
2629 | /* the list was possibly mutated, restart */ |
2630 | goto again; |
2631 | } |
2632 | |
2633 | if (!wq->waitq_preposted) { |
2634 | wql_wqs_clear_preposted(link); |
2635 | circle_dequeue(q, &link->wql_slink); |
2636 | circle_enqueue_tail(&wqset->wqset_links, &link->wql_slink); |
2637 | } |
2638 | |
2639 | waitq_unlock(wq); |
2640 | } |
2641 | } |
2642 | |
2643 | static void |
2644 | wqt_expect_preposts(struct waitq_set *wqset, uint64_t preposts) |
2645 | { |
2646 | struct waitq_link *link; |
2647 | uint64_t found = 0; |
2648 | |
2649 | waitq_lock(wqset); |
2650 | |
2651 | wqt_preposts_gc_locked(wqset); |
2652 | |
2653 | cqe_foreach_element(link, &wqset->wqset_preposts, wql_slink) { |
2654 | struct waitq *waitq = link->wql_wq; |
2655 | |
2656 | printf("[WQ]: found prepost %d\n" , wqt_idx(waitq)); |
2657 | assertf((found & wqt_bit(waitq)) == 0, |
2658 | "found waitq %d twice" , wqt_idx(waitq)); |
2659 | found |= wqt_bit(waitq); |
2660 | } |
2661 | |
2662 | waitq_unlock(wqset); |
2663 | |
2664 | assertf(found == preposts, "preposts expected 0x%llx, but got 0x%llx" , |
2665 | preposts, found); |
2666 | } |
2667 | |
2668 | static int |
2669 | waitq_basic_test(__unused int64_t in, int64_t *out) |
2670 | { |
2671 | struct waitq_set *wqset; |
2672 | |
2673 | if (!wqt_start(__func__, out)) { |
2674 | return EBUSY; |
2675 | } |
2676 | |
2677 | wqset = wqt_wqset_create(); |
2678 | wqt_link(10, wqset, KERN_SUCCESS); |
2679 | wqt_link(10, wqset, KERN_ALREADY_IN_SET); |
2680 | wqt_link(11, wqset, KERN_SUCCESS); |
2681 | wqt_link(11, wqset, KERN_ALREADY_IN_SET); |
2682 | wqt_link(12, wqset, KERN_SUCCESS); |
2683 | wqt_link(12, wqset, KERN_ALREADY_IN_SET); |
2684 | |
2685 | wqt_wakeup_one(10, NO_EVENT64, KERN_NOT_WAITING); |
2686 | wqt_wakeup_one(12, NO_EVENT64, KERN_NOT_WAITING); |
2687 | |
2688 | wqt_expect_preposts(wqset, wqt_bit(10) | wqt_bit(12)); |
2689 | wqt_clear_preposts(10); |
2690 | |
2691 | wqt_expect_preposts(wqset, wqt_bit(12)); |
2692 | wqt_clear_preposts(12); |
2693 | |
2694 | wqt_expect_preposts(wqset, 0); |
2695 | |
2696 | wqt_unlink(12, wqset, KERN_SUCCESS); |
2697 | wqt_unlink(12, wqset, KERN_NOT_IN_SET); |
2698 | wqt_unlink(11, wqset, KERN_SUCCESS); |
2699 | wqt_unlink(10, wqset, KERN_SUCCESS); |
2700 | wqt_wqset_free(wqset); |
2701 | |
2702 | return wqt_end(__func__, out); |
2703 | } |
2704 | SYSCTL_TEST_REGISTER(waitq_basic, waitq_basic_test); |
2705 | #endif /* DEBUG || DEVELOPMENT */ |
2706 | |