| 1 | /* |
| 2 | * Copyright (c) 1993-2008 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
| 5 | * |
| 6 | * This file contains Original Code and/or Modifications of Original Code |
| 7 | * as defined in and that are subject to the Apple Public Source License |
| 8 | * Version 2.0 (the 'License'). You may not use this file except in |
| 9 | * compliance with the License. The rights granted to you under the License |
| 10 | * may not be used to create, or enable the creation or redistribution of, |
| 11 | * unlawful or unlicensed copies of an Apple operating system, or to |
| 12 | * circumvent, violate, or enable the circumvention or violation of, any |
| 13 | * terms of an Apple operating system software license agreement. |
| 14 | * |
| 15 | * Please obtain a copy of the License at |
| 16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
| 17 | * |
| 18 | * The Original Code and all software distributed under the License are |
| 19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| 23 | * Please see the License for the specific language governing rights and |
| 24 | * limitations under the License. |
| 25 | * |
| 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
| 27 | */ |
| 28 | /* |
| 29 | * Timer interrupt callout module. |
| 30 | */ |
| 31 | |
| 32 | #include <mach/mach_types.h> |
| 33 | |
| 34 | #include <kern/clock.h> |
| 35 | #include <kern/counter.h> |
| 36 | #include <kern/smp.h> |
| 37 | #include <kern/processor.h> |
| 38 | #include <kern/timer_call.h> |
| 39 | #include <kern/timer_queue.h> |
| 40 | #include <kern/thread.h> |
| 41 | #include <kern/thread_group.h> |
| 42 | #include <kern/policy_internal.h> |
| 43 | |
| 44 | #include <sys/kdebug.h> |
| 45 | |
| 46 | #if CONFIG_DTRACE |
| 47 | #include <mach/sdt.h> |
| 48 | #endif |
| 49 | |
| 50 | |
| 51 | #if DEBUG |
| 52 | #define TIMER_ASSERT 1 |
| 53 | #endif |
| 54 | |
| 55 | //#define TIMER_ASSERT 1 |
| 56 | //#define TIMER_DBG 1 |
| 57 | |
| 58 | #if TIMER_DBG |
| 59 | #define DBG(x...) kprintf("DBG: " x); |
| 60 | #else |
| 61 | #define DBG(x...) |
| 62 | #endif |
| 63 | |
| 64 | #if TIMER_TRACE |
| 65 | #define TIMER_KDEBUG_TRACE KERNEL_DEBUG_CONSTANT_IST |
| 66 | #else |
| 67 | #define TIMER_KDEBUG_TRACE(x...) |
| 68 | #endif |
| 69 | |
| 70 | LCK_GRP_DECLARE(timer_call_lck_grp, "timer_call" ); |
| 71 | LCK_GRP_DECLARE(timer_longterm_lck_grp, "timer_longterm" ); |
| 72 | LCK_GRP_DECLARE(timer_queue_lck_grp, "timer_queue" ); |
| 73 | |
| 74 | /* Timer queue lock must be acquired with interrupts disabled (under splclock()) */ |
| 75 | #define timer_queue_lock_spin(queue) lck_ticket_lock(&(queue)->lock_data, &timer_queue_lck_grp) |
| 76 | #define timer_queue_unlock(queue) lck_ticket_unlock(&(queue)->lock_data) |
| 77 | |
| 78 | /* |
| 79 | * The longterm timer object is a global structure holding all timers |
| 80 | * beyond the short-term, local timer queue threshold. The boot processor |
| 81 | * is responsible for moving each timer to its local timer queue |
| 82 | * if and when that timer becomes due within the threshold. |
| 83 | */ |
| 84 | |
| 85 | /* Sentinel for "no time set": */ |
| 86 | #define TIMER_LONGTERM_NONE EndOfAllTime |
| 87 | /* The default threadhold is the delta above which a timer is "long-term" */ |
| 88 | #if defined(__x86_64__) |
| 89 | #define TIMER_LONGTERM_THRESHOLD (1ULL * NSEC_PER_SEC) /* 1 sec */ |
| 90 | #else |
| 91 | #define TIMER_LONGTERM_THRESHOLD TIMER_LONGTERM_NONE /* disabled */ |
| 92 | #endif |
| 93 | |
| 94 | /* |
| 95 | * The scan_limit throttles processing of the longterm queue. |
| 96 | * If the scan time exceeds this limit, we terminate, unlock |
| 97 | * and defer for scan_interval. This prevents unbounded holding of |
| 98 | * timer queue locks with interrupts masked. |
| 99 | */ |
| 100 | #define TIMER_LONGTERM_SCAN_LIMIT (100ULL * NSEC_PER_USEC) /* 100 us */ |
| 101 | #define TIMER_LONGTERM_SCAN_INTERVAL (100ULL * NSEC_PER_USEC) /* 100 us */ |
| 102 | /* Sentinel for "scan limit exceeded": */ |
| 103 | #define TIMER_LONGTERM_SCAN_AGAIN 0 |
| 104 | |
| 105 | /* |
| 106 | * In a similar way to the longterm queue's scan limit, the following bounds the |
| 107 | * amount of time spent processing regular timers. |
| 108 | */ |
| 109 | TUNABLE_WRITEABLE(uint64_t, timer_scan_limit_us, "timer_scan_limit_us" , 400); |
| 110 | TUNABLE_WRITEABLE(uint64_t, timer_scan_interval_us, "timer_scan_interval_us" , 40); |
| 111 | static uint64_t timer_scan_limit_abs = 0; |
| 112 | static uint64_t timer_scan_interval_abs = 0; |
| 113 | |
| 114 | /* |
| 115 | * Count of times scanning the queue was aborted early (to avoid long |
| 116 | * scan times). |
| 117 | */ |
| 118 | SCALABLE_COUNTER_DEFINE(timer_scan_pauses_cnt); |
| 119 | |
| 120 | /* |
| 121 | * Count of times scanning the queue was aborted early resulting in a |
| 122 | * postponed hard deadline. |
| 123 | */ |
| 124 | SCALABLE_COUNTER_DEFINE(timer_scan_postpones_cnt); |
| 125 | |
| 126 | #define MAX_TIMER_SCAN_LIMIT (30000ULL * NSEC_PER_USEC) /* 30 ms */ |
| 127 | #define MIN_TIMER_SCAN_LIMIT ( 50ULL * NSEC_PER_USEC) /* 50 us */ |
| 128 | #define MAX_TIMER_SCAN_INTERVAL ( 2000ULL * NSEC_PER_USEC) /* 2 ms */ |
| 129 | #define MIN_TIMER_SCAN_INTERVAL ( 20ULL * NSEC_PER_USEC) /* 20 us */ |
| 130 | |
| 131 | typedef struct { |
| 132 | uint64_t interval; /* longterm timer interval */ |
| 133 | uint64_t margin; /* fudge factor (10% of interval */ |
| 134 | uint64_t deadline; /* first/soonest longterm deadline */ |
| 135 | uint64_t preempted; /* sooner timer has pre-empted */ |
| 136 | timer_call_t call; /* first/soonest longterm timer call */ |
| 137 | uint64_t deadline_set; /* next timer set */ |
| 138 | timer_call_data_t timer; /* timer used by threshold management */ |
| 139 | /* Stats: */ |
| 140 | uint64_t scans; /* num threshold timer scans */ |
| 141 | uint64_t preempts; /* num threshold reductions */ |
| 142 | uint64_t latency; /* average threshold latency */ |
| 143 | uint64_t latency_min; /* minimum threshold latency */ |
| 144 | uint64_t latency_max; /* maximum threshold latency */ |
| 145 | } threshold_t; |
| 146 | |
| 147 | typedef struct { |
| 148 | mpqueue_head_t queue; /* longterm timer list */ |
| 149 | uint64_t enqueues; /* num timers queued */ |
| 150 | uint64_t dequeues; /* num timers dequeued */ |
| 151 | uint64_t escalates; /* num timers becoming shortterm */ |
| 152 | uint64_t scan_time; /* last time the list was scanned */ |
| 153 | threshold_t threshold; /* longterm timer threshold */ |
| 154 | uint64_t scan_limit; /* maximum scan time */ |
| 155 | uint64_t scan_interval; /* interval between LT "escalation" scans */ |
| 156 | uint64_t scan_pauses; /* num scans exceeding time limit */ |
| 157 | } timer_longterm_t; |
| 158 | |
| 159 | timer_longterm_t timer_longterm = { |
| 160 | .scan_limit = TIMER_LONGTERM_SCAN_LIMIT, |
| 161 | .scan_interval = TIMER_LONGTERM_SCAN_INTERVAL, |
| 162 | }; |
| 163 | |
| 164 | static mpqueue_head_t *timer_longterm_queue = NULL; |
| 165 | |
| 166 | static void timer_longterm_init(void); |
| 167 | static void timer_longterm_callout( |
| 168 | timer_call_param_t p0, |
| 169 | timer_call_param_t p1); |
| 170 | extern void timer_longterm_scan( |
| 171 | timer_longterm_t *tlp, |
| 172 | uint64_t now); |
| 173 | static void timer_longterm_update( |
| 174 | timer_longterm_t *tlp); |
| 175 | static void timer_longterm_update_locked( |
| 176 | timer_longterm_t *tlp); |
| 177 | static mpqueue_head_t * timer_longterm_enqueue_unlocked( |
| 178 | timer_call_t call, |
| 179 | uint64_t now, |
| 180 | uint64_t deadline, |
| 181 | mpqueue_head_t ** old_queue, |
| 182 | uint64_t soft_deadline, |
| 183 | uint64_t ttd, |
| 184 | timer_call_param_t param1, |
| 185 | uint32_t callout_flags); |
| 186 | static void timer_longterm_dequeued_locked( |
| 187 | timer_call_t call); |
| 188 | |
| 189 | uint64_t past_deadline_timers; |
| 190 | uint64_t past_deadline_deltas; |
| 191 | uint64_t past_deadline_longest; |
| 192 | uint64_t past_deadline_shortest = ~0ULL; |
| 193 | enum {PAST_DEADLINE_TIMER_ADJUSTMENT_NS = 10 * 1000}; |
| 194 | |
| 195 | uint64_t past_deadline_timer_adjustment; |
| 196 | |
| 197 | static boolean_t timer_call_enter_internal(timer_call_t call, timer_call_param_t param1, uint64_t deadline, uint64_t leeway, uint32_t flags, boolean_t ratelimited); |
| 198 | boolean_t mach_timer_coalescing_enabled = TRUE; |
| 199 | |
| 200 | mpqueue_head_t *timer_call_enqueue_deadline_unlocked( |
| 201 | timer_call_t call, |
| 202 | mpqueue_head_t *queue, |
| 203 | uint64_t deadline, |
| 204 | uint64_t soft_deadline, |
| 205 | uint64_t ttd, |
| 206 | timer_call_param_t param1, |
| 207 | uint32_t flags); |
| 208 | |
| 209 | mpqueue_head_t *timer_call_dequeue_unlocked( |
| 210 | timer_call_t call); |
| 211 | |
| 212 | timer_coalescing_priority_params_t tcoal_prio_params; |
| 213 | |
| 214 | #if TCOAL_PRIO_STATS |
| 215 | int32_t nc_tcl, rt_tcl, bg_tcl, kt_tcl, fp_tcl, ts_tcl, qos_tcl; |
| 216 | #define TCOAL_PRIO_STAT(x) (x++) |
| 217 | #else |
| 218 | #define TCOAL_PRIO_STAT(x) |
| 219 | #endif |
| 220 | |
| 221 | static void |
| 222 | timer_call_init_abstime(void) |
| 223 | { |
| 224 | int i; |
| 225 | uint64_t result; |
| 226 | timer_coalescing_priority_params_ns_t * tcoal_prio_params_init = timer_call_get_priority_params(); |
| 227 | nanoseconds_to_absolutetime(nanoseconds: PAST_DEADLINE_TIMER_ADJUSTMENT_NS, result: &past_deadline_timer_adjustment); |
| 228 | nanoseconds_to_absolutetime(nanoseconds: tcoal_prio_params_init->idle_entry_timer_processing_hdeadline_threshold_ns, result: &result); |
| 229 | tcoal_prio_params.idle_entry_timer_processing_hdeadline_threshold_abstime = (uint32_t)result; |
| 230 | nanoseconds_to_absolutetime(nanoseconds: tcoal_prio_params_init->interrupt_timer_coalescing_ilat_threshold_ns, result: &result); |
| 231 | tcoal_prio_params.interrupt_timer_coalescing_ilat_threshold_abstime = (uint32_t)result; |
| 232 | nanoseconds_to_absolutetime(nanoseconds: tcoal_prio_params_init->timer_resort_threshold_ns, result: &result); |
| 233 | tcoal_prio_params.timer_resort_threshold_abstime = (uint32_t)result; |
| 234 | tcoal_prio_params.timer_coalesce_rt_shift = tcoal_prio_params_init->timer_coalesce_rt_shift; |
| 235 | tcoal_prio_params.timer_coalesce_bg_shift = tcoal_prio_params_init->timer_coalesce_bg_shift; |
| 236 | tcoal_prio_params.timer_coalesce_kt_shift = tcoal_prio_params_init->timer_coalesce_kt_shift; |
| 237 | tcoal_prio_params.timer_coalesce_fp_shift = tcoal_prio_params_init->timer_coalesce_fp_shift; |
| 238 | tcoal_prio_params.timer_coalesce_ts_shift = tcoal_prio_params_init->timer_coalesce_ts_shift; |
| 239 | |
| 240 | nanoseconds_to_absolutetime(nanoseconds: tcoal_prio_params_init->timer_coalesce_rt_ns_max, |
| 241 | result: &tcoal_prio_params.timer_coalesce_rt_abstime_max); |
| 242 | nanoseconds_to_absolutetime(nanoseconds: tcoal_prio_params_init->timer_coalesce_bg_ns_max, |
| 243 | result: &tcoal_prio_params.timer_coalesce_bg_abstime_max); |
| 244 | nanoseconds_to_absolutetime(nanoseconds: tcoal_prio_params_init->timer_coalesce_kt_ns_max, |
| 245 | result: &tcoal_prio_params.timer_coalesce_kt_abstime_max); |
| 246 | nanoseconds_to_absolutetime(nanoseconds: tcoal_prio_params_init->timer_coalesce_fp_ns_max, |
| 247 | result: &tcoal_prio_params.timer_coalesce_fp_abstime_max); |
| 248 | nanoseconds_to_absolutetime(nanoseconds: tcoal_prio_params_init->timer_coalesce_ts_ns_max, |
| 249 | result: &tcoal_prio_params.timer_coalesce_ts_abstime_max); |
| 250 | |
| 251 | for (i = 0; i < NUM_LATENCY_QOS_TIERS; i++) { |
| 252 | tcoal_prio_params.latency_qos_scale[i] = tcoal_prio_params_init->latency_qos_scale[i]; |
| 253 | nanoseconds_to_absolutetime(nanoseconds: tcoal_prio_params_init->latency_qos_ns_max[i], |
| 254 | result: &tcoal_prio_params.latency_qos_abstime_max[i]); |
| 255 | tcoal_prio_params.latency_tier_rate_limited[i] = tcoal_prio_params_init->latency_tier_rate_limited[i]; |
| 256 | } |
| 257 | |
| 258 | nanoseconds_to_absolutetime(nanoseconds: timer_scan_limit_us * NSEC_PER_USEC, result: &timer_scan_limit_abs); |
| 259 | nanoseconds_to_absolutetime(nanoseconds: timer_scan_interval_us * NSEC_PER_USEC, result: &timer_scan_interval_abs); |
| 260 | } |
| 261 | |
| 262 | |
| 263 | void |
| 264 | timer_call_init(void) |
| 265 | { |
| 266 | timer_longterm_init(); |
| 267 | timer_call_init_abstime(); |
| 268 | } |
| 269 | |
| 270 | |
| 271 | void |
| 272 | timer_call_queue_init(mpqueue_head_t *queue) |
| 273 | { |
| 274 | DBG("timer_call_queue_init(%p)\n" , queue); |
| 275 | mpqueue_init(queue, &timer_call_lck_grp, LCK_ATTR_NULL); |
| 276 | } |
| 277 | |
| 278 | |
| 279 | void |
| 280 | timer_call_setup( |
| 281 | timer_call_t call, |
| 282 | timer_call_func_t func, |
| 283 | timer_call_param_t param0) |
| 284 | { |
| 285 | DBG("timer_call_setup(%p,%p,%p)\n" , call, func, param0); |
| 286 | |
| 287 | *call = (struct timer_call) { |
| 288 | .tc_func = func, |
| 289 | .tc_param0 = param0, |
| 290 | .tc_async_dequeue = false, |
| 291 | }; |
| 292 | |
| 293 | simple_lock_init(&(call)->tc_lock, 0); |
| 294 | } |
| 295 | |
| 296 | timer_call_t |
| 297 | timer_call_alloc( |
| 298 | timer_call_func_t func, |
| 299 | timer_call_param_t param0) |
| 300 | { |
| 301 | timer_call_t call; |
| 302 | |
| 303 | call = kalloc_type(struct timer_call, Z_ZERO | Z_WAITOK | Z_NOFAIL); |
| 304 | timer_call_setup(call, func, param0); |
| 305 | return call; |
| 306 | } |
| 307 | |
| 308 | void |
| 309 | timer_call_free( |
| 310 | timer_call_t call) |
| 311 | { |
| 312 | kfree_type(struct timer_call, call); |
| 313 | } |
| 314 | |
| 315 | static mpqueue_head_t* |
| 316 | mpqueue_for_timer_call(timer_call_t entry) |
| 317 | { |
| 318 | queue_t queue_entry_is_on = entry->tc_queue; |
| 319 | /* 'cast' the queue back to the orignal mpqueue */ |
| 320 | return __container_of(queue_entry_is_on, struct mpqueue_head, head); |
| 321 | } |
| 322 | |
| 323 | |
| 324 | static __inline__ mpqueue_head_t * |
| 325 | timer_call_entry_dequeue( |
| 326 | timer_call_t entry) |
| 327 | { |
| 328 | mpqueue_head_t *old_mpqueue = mpqueue_for_timer_call(entry); |
| 329 | |
| 330 | /* The entry was always on a queue */ |
| 331 | assert(old_mpqueue != NULL); |
| 332 | |
| 333 | #if TIMER_ASSERT |
| 334 | if (!hw_lock_held((hw_lock_t)&entry->tc_lock)) { |
| 335 | panic("_call_entry_dequeue() " |
| 336 | "entry %p is not locked\n" , entry); |
| 337 | } |
| 338 | |
| 339 | /* |
| 340 | * XXX The queue lock is actually a mutex in spin mode |
| 341 | * but there's no way to test for it being held |
| 342 | * so we pretend it's a spinlock! |
| 343 | */ |
| 344 | if (!hw_lock_held((hw_lock_t)&old_mpqueue->lock_data)) { |
| 345 | panic("_call_entry_dequeue() " |
| 346 | "queue %p is not locked\n" , old_mpqueue); |
| 347 | } |
| 348 | #endif /* TIMER_ASSERT */ |
| 349 | |
| 350 | if (old_mpqueue != timer_longterm_queue) { |
| 351 | priority_queue_remove(que: &old_mpqueue->mpq_pqhead, |
| 352 | elt: &entry->tc_pqlink); |
| 353 | } |
| 354 | |
| 355 | remqueue(elt: &entry->tc_qlink); |
| 356 | |
| 357 | entry->tc_queue = NULL; |
| 358 | |
| 359 | old_mpqueue->count--; |
| 360 | |
| 361 | return old_mpqueue; |
| 362 | } |
| 363 | |
| 364 | static __inline__ mpqueue_head_t * |
| 365 | timer_call_entry_enqueue_deadline( |
| 366 | timer_call_t entry, |
| 367 | mpqueue_head_t *new_mpqueue, |
| 368 | uint64_t deadline) |
| 369 | { |
| 370 | mpqueue_head_t *old_mpqueue = mpqueue_for_timer_call(entry); |
| 371 | |
| 372 | #if TIMER_ASSERT |
| 373 | if (!hw_lock_held((hw_lock_t)&entry->tc_lock)) { |
| 374 | panic("_call_entry_enqueue_deadline() " |
| 375 | "entry %p is not locked\n" , entry); |
| 376 | } |
| 377 | |
| 378 | /* XXX More lock pretense: */ |
| 379 | if (!hw_lock_held((hw_lock_t)&new_mpqueue->lock_data)) { |
| 380 | panic("_call_entry_enqueue_deadline() " |
| 381 | "queue %p is not locked\n" , new_mpqueue); |
| 382 | } |
| 383 | |
| 384 | if (old_mpqueue != NULL && old_mpqueue != new_mpqueue) { |
| 385 | panic("_call_entry_enqueue_deadline() " |
| 386 | "old_mpqueue %p != new_mpqueue" , old_mpqueue); |
| 387 | } |
| 388 | #endif /* TIMER_ASSERT */ |
| 389 | |
| 390 | /* no longterm queue involved */ |
| 391 | assert(new_mpqueue != timer_longterm_queue); |
| 392 | assert(old_mpqueue != timer_longterm_queue); |
| 393 | |
| 394 | if (old_mpqueue == new_mpqueue) { |
| 395 | /* optimize the same-queue case to avoid a full re-insert */ |
| 396 | uint64_t old_deadline = entry->tc_pqlink.deadline; |
| 397 | entry->tc_pqlink.deadline = deadline; |
| 398 | |
| 399 | if (old_deadline < deadline) { |
| 400 | priority_queue_entry_increased(que: &new_mpqueue->mpq_pqhead, |
| 401 | elt: &entry->tc_pqlink); |
| 402 | } else { |
| 403 | priority_queue_entry_decreased(que: &new_mpqueue->mpq_pqhead, |
| 404 | elt: &entry->tc_pqlink); |
| 405 | } |
| 406 | } else { |
| 407 | if (old_mpqueue != NULL) { |
| 408 | priority_queue_remove(que: &old_mpqueue->mpq_pqhead, |
| 409 | elt: &entry->tc_pqlink); |
| 410 | |
| 411 | re_queue_tail(que: &new_mpqueue->head, elt: &entry->tc_qlink); |
| 412 | } else { |
| 413 | enqueue_tail(que: &new_mpqueue->head, elt: &entry->tc_qlink); |
| 414 | } |
| 415 | |
| 416 | entry->tc_queue = &new_mpqueue->head; |
| 417 | entry->tc_pqlink.deadline = deadline; |
| 418 | |
| 419 | priority_queue_insert(que: &new_mpqueue->mpq_pqhead, elt: &entry->tc_pqlink); |
| 420 | } |
| 421 | |
| 422 | |
| 423 | /* For efficiency, track the earliest soft deadline on the queue, |
| 424 | * so that fuzzy decisions can be made without lock acquisitions. |
| 425 | */ |
| 426 | |
| 427 | timer_call_t thead = priority_queue_min(&new_mpqueue->mpq_pqhead, struct timer_call, tc_pqlink); |
| 428 | |
| 429 | new_mpqueue->earliest_soft_deadline = thead->tc_flags & TIMER_CALL_RATELIMITED ? thead->tc_pqlink.deadline : thead->tc_soft_deadline; |
| 430 | |
| 431 | if (old_mpqueue) { |
| 432 | old_mpqueue->count--; |
| 433 | } |
| 434 | new_mpqueue->count++; |
| 435 | |
| 436 | return old_mpqueue; |
| 437 | } |
| 438 | |
| 439 | static __inline__ void |
| 440 | timer_call_entry_enqueue_tail( |
| 441 | timer_call_t entry, |
| 442 | mpqueue_head_t *queue) |
| 443 | { |
| 444 | /* entry is always dequeued before this call */ |
| 445 | assert(entry->tc_queue == NULL); |
| 446 | |
| 447 | /* |
| 448 | * this is only used for timer_longterm_queue, which is unordered |
| 449 | * and thus needs no priority queueing |
| 450 | */ |
| 451 | assert(queue == timer_longterm_queue); |
| 452 | |
| 453 | enqueue_tail(que: &queue->head, elt: &entry->tc_qlink); |
| 454 | |
| 455 | entry->tc_queue = &queue->head; |
| 456 | |
| 457 | queue->count++; |
| 458 | return; |
| 459 | } |
| 460 | |
| 461 | /* |
| 462 | * Remove timer entry from its queue but don't change the queue pointer |
| 463 | * and set the async_dequeue flag. This is locking case 2b. |
| 464 | */ |
| 465 | static __inline__ void |
| 466 | timer_call_entry_dequeue_async( |
| 467 | timer_call_t entry) |
| 468 | { |
| 469 | mpqueue_head_t *old_mpqueue = mpqueue_for_timer_call(entry); |
| 470 | if (old_mpqueue) { |
| 471 | old_mpqueue->count--; |
| 472 | |
| 473 | if (old_mpqueue != timer_longterm_queue) { |
| 474 | priority_queue_remove(que: &old_mpqueue->mpq_pqhead, |
| 475 | elt: &entry->tc_pqlink); |
| 476 | } |
| 477 | |
| 478 | remqueue(elt: &entry->tc_qlink); |
| 479 | entry->tc_async_dequeue = true; |
| 480 | } |
| 481 | return; |
| 482 | } |
| 483 | |
| 484 | #if TIMER_ASSERT |
| 485 | unsigned timer_call_enqueue_deadline_unlocked_async1; |
| 486 | unsigned timer_call_enqueue_deadline_unlocked_async2; |
| 487 | #endif |
| 488 | /* |
| 489 | * Assumes call_entry and queues unlocked, interrupts disabled. |
| 490 | */ |
| 491 | __inline__ mpqueue_head_t * |
| 492 | timer_call_enqueue_deadline_unlocked( |
| 493 | timer_call_t call, |
| 494 | mpqueue_head_t *queue, |
| 495 | uint64_t deadline, |
| 496 | uint64_t soft_deadline, |
| 497 | uint64_t ttd, |
| 498 | timer_call_param_t param1, |
| 499 | uint32_t callout_flags) |
| 500 | { |
| 501 | DBG("timer_call_enqueue_deadline_unlocked(%p,%p,)\n" , call, queue); |
| 502 | |
| 503 | simple_lock(&call->tc_lock, LCK_GRP_NULL); |
| 504 | |
| 505 | mpqueue_head_t *old_queue = mpqueue_for_timer_call(entry: call); |
| 506 | |
| 507 | if (old_queue != NULL) { |
| 508 | timer_queue_lock_spin(old_queue); |
| 509 | if (call->tc_async_dequeue) { |
| 510 | /* collision (1c): timer already dequeued, clear flag */ |
| 511 | #if TIMER_ASSERT |
| 512 | TIMER_KDEBUG_TRACE(KDEBUG_TRACE, |
| 513 | DECR_TIMER_ASYNC_DEQ | DBG_FUNC_NONE, |
| 514 | VM_KERNEL_UNSLIDE_OR_PERM(call), |
| 515 | call->tc_async_dequeue, |
| 516 | VM_KERNEL_UNSLIDE_OR_PERM(call->tc_queue), |
| 517 | 0x1c, 0); |
| 518 | timer_call_enqueue_deadline_unlocked_async1++; |
| 519 | #endif |
| 520 | call->tc_async_dequeue = false; |
| 521 | call->tc_queue = NULL; |
| 522 | } else if (old_queue != queue) { |
| 523 | timer_call_entry_dequeue(entry: call); |
| 524 | #if TIMER_ASSERT |
| 525 | timer_call_enqueue_deadline_unlocked_async2++; |
| 526 | #endif |
| 527 | } |
| 528 | if (old_queue == timer_longterm_queue) { |
| 529 | timer_longterm_dequeued_locked(call); |
| 530 | } |
| 531 | if (old_queue != queue) { |
| 532 | timer_queue_unlock(old_queue); |
| 533 | timer_queue_lock_spin(queue); |
| 534 | } |
| 535 | } else { |
| 536 | timer_queue_lock_spin(queue); |
| 537 | } |
| 538 | |
| 539 | call->tc_soft_deadline = soft_deadline; |
| 540 | call->tc_flags = callout_flags; |
| 541 | call->tc_param1 = param1; |
| 542 | call->tc_ttd = ttd; |
| 543 | |
| 544 | timer_call_entry_enqueue_deadline(entry: call, new_mpqueue: queue, deadline); |
| 545 | timer_queue_unlock(queue); |
| 546 | simple_unlock(&call->tc_lock); |
| 547 | |
| 548 | return old_queue; |
| 549 | } |
| 550 | |
| 551 | #if TIMER_ASSERT |
| 552 | unsigned timer_call_dequeue_unlocked_async1; |
| 553 | unsigned timer_call_dequeue_unlocked_async2; |
| 554 | #endif |
| 555 | mpqueue_head_t * |
| 556 | timer_call_dequeue_unlocked( |
| 557 | timer_call_t call) |
| 558 | { |
| 559 | DBG("timer_call_dequeue_unlocked(%p)\n" , call); |
| 560 | |
| 561 | simple_lock(&call->tc_lock, LCK_GRP_NULL); |
| 562 | |
| 563 | mpqueue_head_t *old_queue = mpqueue_for_timer_call(entry: call); |
| 564 | |
| 565 | #if TIMER_ASSERT |
| 566 | TIMER_KDEBUG_TRACE(KDEBUG_TRACE, |
| 567 | DECR_TIMER_ASYNC_DEQ | DBG_FUNC_NONE, |
| 568 | VM_KERNEL_UNSLIDE_OR_PERM(call), |
| 569 | call->tc_async_dequeue, |
| 570 | VM_KERNEL_UNSLIDE_OR_PERM(call->tc_queue), |
| 571 | 0, 0); |
| 572 | #endif |
| 573 | if (old_queue != NULL) { |
| 574 | timer_queue_lock_spin(old_queue); |
| 575 | if (call->tc_async_dequeue) { |
| 576 | /* collision (1c): timer already dequeued, clear flag */ |
| 577 | #if TIMER_ASSERT |
| 578 | TIMER_KDEBUG_TRACE(KDEBUG_TRACE, |
| 579 | DECR_TIMER_ASYNC_DEQ | DBG_FUNC_NONE, |
| 580 | VM_KERNEL_UNSLIDE_OR_PERM(call), |
| 581 | call->tc_async_dequeue, |
| 582 | VM_KERNEL_UNSLIDE_OR_PERM(call->tc_queue), |
| 583 | 0x1c, 0); |
| 584 | timer_call_dequeue_unlocked_async1++; |
| 585 | #endif |
| 586 | call->tc_async_dequeue = false; |
| 587 | call->tc_queue = NULL; |
| 588 | } else { |
| 589 | timer_call_entry_dequeue(entry: call); |
| 590 | } |
| 591 | if (old_queue == timer_longterm_queue) { |
| 592 | timer_longterm_dequeued_locked(call); |
| 593 | } |
| 594 | timer_queue_unlock(old_queue); |
| 595 | } |
| 596 | simple_unlock(&call->tc_lock); |
| 597 | return old_queue; |
| 598 | } |
| 599 | |
| 600 | uint64_t |
| 601 | timer_call_past_deadline_timer_handle(uint64_t deadline, uint64_t ctime) |
| 602 | { |
| 603 | uint64_t delta = (ctime - deadline); |
| 604 | |
| 605 | past_deadline_timers++; |
| 606 | past_deadline_deltas += delta; |
| 607 | if (delta > past_deadline_longest) { |
| 608 | past_deadline_longest = deadline; |
| 609 | } |
| 610 | if (delta < past_deadline_shortest) { |
| 611 | past_deadline_shortest = delta; |
| 612 | } |
| 613 | |
| 614 | return ctime + past_deadline_timer_adjustment; |
| 615 | } |
| 616 | |
| 617 | /* |
| 618 | * Timer call entry locking model |
| 619 | * ============================== |
| 620 | * |
| 621 | * Timer call entries are linked on per-cpu timer queues which are protected |
| 622 | * by the queue lock and the call entry lock. The locking protocol is: |
| 623 | * |
| 624 | * 0) The canonical locking order is timer call entry followed by queue. |
| 625 | * |
| 626 | * 1) With only the entry lock held, entry.queue is valid: |
| 627 | * 1a) NULL: the entry is not queued, or |
| 628 | * 1b) non-NULL: this queue must be locked before the entry is modified. |
| 629 | * After locking the queue, the call.async_dequeue flag must be checked: |
| 630 | * 1c) TRUE: the entry was removed from the queue by another thread |
| 631 | * and we must NULL the entry.queue and reset this flag, or |
| 632 | * 1d) FALSE: (ie. queued), the entry can be manipulated. |
| 633 | * |
| 634 | * 2) If a queue lock is obtained first, the queue is stable: |
| 635 | * 2a) If a try-lock of a queued entry succeeds, the call can be operated on |
| 636 | * and dequeued. |
| 637 | * 2b) If a try-lock fails, it indicates that another thread is attempting |
| 638 | * to change the entry and move it to a different position in this queue |
| 639 | * or to different queue. The entry can be dequeued but it should not be |
| 640 | * operated upon since it is being changed. Furthermore, we don't null |
| 641 | * the entry.queue pointer (protected by the entry lock we don't own). |
| 642 | * Instead, we set the async_dequeue flag -- see (1c). |
| 643 | * 2c) Same as 2b but occurring when a longterm timer is matured. |
| 644 | * 3) A callout's parameters (deadline, flags, parameters, soft deadline &c.) |
| 645 | * should be manipulated with the appropriate timer queue lock held, |
| 646 | * to prevent queue traversal observations from observing inconsistent |
| 647 | * updates to an in-flight callout. |
| 648 | */ |
| 649 | |
| 650 | /* |
| 651 | * In the debug case, we assert that the timer call locking protocol |
| 652 | * is being obeyed. |
| 653 | */ |
| 654 | |
| 655 | static boolean_t |
| 656 | timer_call_enter_internal( |
| 657 | timer_call_t call, |
| 658 | timer_call_param_t param1, |
| 659 | uint64_t deadline, |
| 660 | uint64_t leeway, |
| 661 | uint32_t flags, |
| 662 | boolean_t ratelimited) |
| 663 | { |
| 664 | mpqueue_head_t *queue = NULL; |
| 665 | mpqueue_head_t *old_queue; |
| 666 | spl_t s; |
| 667 | uint64_t slop; |
| 668 | uint32_t urgency; |
| 669 | uint64_t sdeadline, ttd; |
| 670 | |
| 671 | assert(call->tc_func != NULL); |
| 672 | s = splclock(); |
| 673 | |
| 674 | sdeadline = deadline; |
| 675 | uint64_t ctime = mach_absolute_time(); |
| 676 | |
| 677 | TIMER_KDEBUG_TRACE(KDEBUG_TRACE, |
| 678 | DECR_TIMER_ENTER | DBG_FUNC_START, |
| 679 | VM_KERNEL_UNSLIDE_OR_PERM(call), |
| 680 | VM_KERNEL_ADDRHIDE(param1), deadline, flags, 0); |
| 681 | |
| 682 | urgency = (flags & TIMER_CALL_URGENCY_MASK); |
| 683 | |
| 684 | boolean_t slop_ratelimited = FALSE; |
| 685 | slop = timer_call_slop(deadline, armtime: ctime, urgency, arming_thread: current_thread(), rlimited: &slop_ratelimited); |
| 686 | |
| 687 | if ((flags & TIMER_CALL_LEEWAY) != 0 && leeway > slop) { |
| 688 | slop = leeway; |
| 689 | } |
| 690 | |
| 691 | if (UINT64_MAX - deadline <= slop) { |
| 692 | deadline = UINT64_MAX; |
| 693 | } else { |
| 694 | deadline += slop; |
| 695 | } |
| 696 | |
| 697 | if (__improbable(deadline < ctime)) { |
| 698 | deadline = timer_call_past_deadline_timer_handle(deadline, ctime); |
| 699 | sdeadline = deadline; |
| 700 | } |
| 701 | |
| 702 | if (ratelimited || slop_ratelimited) { |
| 703 | flags |= TIMER_CALL_RATELIMITED; |
| 704 | } else { |
| 705 | flags &= ~TIMER_CALL_RATELIMITED; |
| 706 | } |
| 707 | |
| 708 | ttd = sdeadline - ctime; |
| 709 | #if CONFIG_DTRACE |
| 710 | DTRACE_TMR7(callout__create, timer_call_func_t, call->tc_func, |
| 711 | timer_call_param_t, call->tc_param0, uint32_t, flags, |
| 712 | (deadline - sdeadline), |
| 713 | (ttd >> 32), (unsigned) (ttd & 0xFFFFFFFF), call); |
| 714 | #endif |
| 715 | |
| 716 | /* Program timer callout parameters under the appropriate per-CPU or |
| 717 | * longterm queue lock. The callout may have been previously enqueued |
| 718 | * and in-flight on this or another timer queue. |
| 719 | */ |
| 720 | if (!ratelimited && !slop_ratelimited) { |
| 721 | queue = timer_longterm_enqueue_unlocked(call, now: ctime, deadline, old_queue: &old_queue, soft_deadline: sdeadline, ttd, param1, callout_flags: flags); |
| 722 | } |
| 723 | |
| 724 | if (queue == NULL) { |
| 725 | queue = timer_queue_assign(deadline); |
| 726 | old_queue = timer_call_enqueue_deadline_unlocked(call, queue, deadline, soft_deadline: sdeadline, ttd, param1, callout_flags: flags); |
| 727 | } |
| 728 | |
| 729 | #if TIMER_TRACE |
| 730 | call->tc_entry_time = ctime; |
| 731 | #endif |
| 732 | |
| 733 | TIMER_KDEBUG_TRACE(KDEBUG_TRACE, |
| 734 | DECR_TIMER_ENTER | DBG_FUNC_END, |
| 735 | VM_KERNEL_UNSLIDE_OR_PERM(call), |
| 736 | (old_queue != NULL), deadline, queue->count, 0); |
| 737 | |
| 738 | splx(s); |
| 739 | |
| 740 | return old_queue != NULL; |
| 741 | } |
| 742 | |
| 743 | /* |
| 744 | * timer_call_*() |
| 745 | * return boolean indicating whether the call was previously queued. |
| 746 | */ |
| 747 | boolean_t |
| 748 | timer_call_enter( |
| 749 | timer_call_t call, |
| 750 | uint64_t deadline, |
| 751 | uint32_t flags) |
| 752 | { |
| 753 | return timer_call_enter_internal(call, NULL, deadline, leeway: 0, flags, FALSE); |
| 754 | } |
| 755 | |
| 756 | boolean_t |
| 757 | timer_call_enter1( |
| 758 | timer_call_t call, |
| 759 | timer_call_param_t param1, |
| 760 | uint64_t deadline, |
| 761 | uint32_t flags) |
| 762 | { |
| 763 | return timer_call_enter_internal(call, param1, deadline, leeway: 0, flags, FALSE); |
| 764 | } |
| 765 | |
| 766 | boolean_t |
| 767 | timer_call_enter_with_leeway( |
| 768 | timer_call_t call, |
| 769 | timer_call_param_t param1, |
| 770 | uint64_t deadline, |
| 771 | uint64_t leeway, |
| 772 | uint32_t flags, |
| 773 | boolean_t ratelimited) |
| 774 | { |
| 775 | return timer_call_enter_internal(call, param1, deadline, leeway, flags, ratelimited); |
| 776 | } |
| 777 | |
| 778 | boolean_t |
| 779 | timer_call_cancel( |
| 780 | timer_call_t call) |
| 781 | { |
| 782 | mpqueue_head_t *old_queue; |
| 783 | spl_t s; |
| 784 | |
| 785 | s = splclock(); |
| 786 | |
| 787 | TIMER_KDEBUG_TRACE(KDEBUG_TRACE, |
| 788 | DECR_TIMER_CANCEL | DBG_FUNC_START, |
| 789 | VM_KERNEL_UNSLIDE_OR_PERM(call), |
| 790 | call->tc_pqlink.deadline, call->tc_soft_deadline, call->tc_flags, 0); |
| 791 | |
| 792 | old_queue = timer_call_dequeue_unlocked(call); |
| 793 | |
| 794 | if (old_queue != NULL) { |
| 795 | timer_queue_lock_spin(old_queue); |
| 796 | |
| 797 | timer_call_t new_head = priority_queue_min(&old_queue->mpq_pqhead, struct timer_call, tc_pqlink); |
| 798 | |
| 799 | if (new_head) { |
| 800 | timer_queue_cancel(queue: old_queue, deadline: call->tc_pqlink.deadline, new_deadline: new_head->tc_pqlink.deadline); |
| 801 | old_queue->earliest_soft_deadline = new_head->tc_flags & TIMER_CALL_RATELIMITED ? new_head->tc_pqlink.deadline : new_head->tc_soft_deadline; |
| 802 | } else { |
| 803 | timer_queue_cancel(queue: old_queue, deadline: call->tc_pqlink.deadline, UINT64_MAX); |
| 804 | old_queue->earliest_soft_deadline = UINT64_MAX; |
| 805 | } |
| 806 | |
| 807 | timer_queue_unlock(old_queue); |
| 808 | } |
| 809 | TIMER_KDEBUG_TRACE(KDEBUG_TRACE, |
| 810 | DECR_TIMER_CANCEL | DBG_FUNC_END, |
| 811 | VM_KERNEL_UNSLIDE_OR_PERM(call), |
| 812 | VM_KERNEL_UNSLIDE_OR_PERM(old_queue), |
| 813 | call->tc_pqlink.deadline - mach_absolute_time(), |
| 814 | call->tc_pqlink.deadline - call->tc_entry_time, 0); |
| 815 | splx(s); |
| 816 | |
| 817 | #if CONFIG_DTRACE |
| 818 | DTRACE_TMR6(callout__cancel, timer_call_func_t, call->tc_func, |
| 819 | timer_call_param_t, call->tc_param0, uint32_t, call->tc_flags, 0, |
| 820 | (call->tc_ttd >> 32), (unsigned) (call->tc_ttd & 0xFFFFFFFF)); |
| 821 | #endif /* CONFIG_DTRACE */ |
| 822 | |
| 823 | return old_queue != NULL; |
| 824 | } |
| 825 | |
| 826 | static uint32_t timer_queue_shutdown_lock_skips; |
| 827 | static uint32_t timer_queue_shutdown_discarded; |
| 828 | |
| 829 | void |
| 830 | timer_queue_shutdown( |
| 831 | mpqueue_head_t *queue) |
| 832 | { |
| 833 | timer_call_t call; |
| 834 | mpqueue_head_t *new_queue; |
| 835 | spl_t s; |
| 836 | |
| 837 | |
| 838 | DBG("timer_queue_shutdown(%p)\n" , queue); |
| 839 | |
| 840 | s = splclock(); |
| 841 | |
| 842 | while (TRUE) { |
| 843 | timer_queue_lock_spin(queue); |
| 844 | |
| 845 | call = qe_queue_first(&queue->head, struct timer_call, tc_qlink); |
| 846 | |
| 847 | if (call == NULL) { |
| 848 | break; |
| 849 | } |
| 850 | |
| 851 | if (!simple_lock_try(&call->tc_lock, LCK_GRP_NULL)) { |
| 852 | /* |
| 853 | * case (2b) lock order inversion, dequeue and skip |
| 854 | * Don't change the call_entry queue back-pointer |
| 855 | * but set the async_dequeue field. |
| 856 | */ |
| 857 | timer_queue_shutdown_lock_skips++; |
| 858 | timer_call_entry_dequeue_async(entry: call); |
| 859 | #if TIMER_ASSERT |
| 860 | TIMER_KDEBUG_TRACE(KDEBUG_TRACE, |
| 861 | DECR_TIMER_ASYNC_DEQ | DBG_FUNC_NONE, |
| 862 | VM_KERNEL_UNSLIDE_OR_PERM(call), |
| 863 | call->tc_async_dequeue, |
| 864 | VM_KERNEL_UNSLIDE_OR_PERM(call->tc_queue), |
| 865 | 0x2b, 0); |
| 866 | #endif |
| 867 | timer_queue_unlock(queue); |
| 868 | continue; |
| 869 | } |
| 870 | |
| 871 | boolean_t call_local = ((call->tc_flags & TIMER_CALL_LOCAL) != 0); |
| 872 | |
| 873 | /* remove entry from old queue */ |
| 874 | timer_call_entry_dequeue(entry: call); |
| 875 | timer_queue_unlock(queue); |
| 876 | |
| 877 | if (call_local == FALSE) { |
| 878 | /* and queue it on new, discarding LOCAL timers */ |
| 879 | new_queue = timer_queue_assign(deadline: call->tc_pqlink.deadline); |
| 880 | timer_queue_lock_spin(new_queue); |
| 881 | timer_call_entry_enqueue_deadline( |
| 882 | entry: call, new_mpqueue: new_queue, deadline: call->tc_pqlink.deadline); |
| 883 | timer_queue_unlock(new_queue); |
| 884 | } else { |
| 885 | timer_queue_shutdown_discarded++; |
| 886 | } |
| 887 | |
| 888 | assert(call_local == FALSE); |
| 889 | simple_unlock(&call->tc_lock); |
| 890 | } |
| 891 | |
| 892 | timer_queue_unlock(queue); |
| 893 | splx(s); |
| 894 | } |
| 895 | |
| 896 | |
| 897 | static uint32_t timer_queue_expire_lock_skips; |
| 898 | uint64_t |
| 899 | timer_queue_expire_with_options( |
| 900 | mpqueue_head_t *queue, |
| 901 | uint64_t deadline, |
| 902 | boolean_t rescan) |
| 903 | { |
| 904 | timer_call_t call = NULL; |
| 905 | uint32_t tc_iterations = 0; |
| 906 | DBG("timer_queue_expire(%p,)\n" , queue); |
| 907 | |
| 908 | /* 'rescan' means look at every timer in the list, instead of |
| 909 | * early-exiting when the head of the list expires in the future. |
| 910 | * when 'rescan' is true, iterate by linked list instead of priority queue. |
| 911 | * |
| 912 | * TODO: if we keep a deadline ordered and soft-deadline ordered |
| 913 | * priority queue, then it's no longer necessary to do that |
| 914 | */ |
| 915 | |
| 916 | uint64_t cur_deadline = deadline; |
| 917 | |
| 918 | /* Force an early return if this time limit is hit. */ |
| 919 | const uint64_t time_limit = deadline + timer_scan_limit_abs; |
| 920 | |
| 921 | /* Next deadline if the time limit is hit */ |
| 922 | uint64_t time_limit_deadline = 0; |
| 923 | |
| 924 | timer_queue_lock_spin(queue); |
| 925 | |
| 926 | while (!queue_empty(&queue->head)) { |
| 927 | if (++tc_iterations > 1) { |
| 928 | const uint64_t now = mach_absolute_time(); |
| 929 | |
| 930 | /* |
| 931 | * Abort the scan if it's taking too long to avoid long |
| 932 | * periods with interrupts disabled. |
| 933 | * Scanning will restart after a short pause |
| 934 | * (timer_scan_interval_abs) if there's a hard deadline |
| 935 | * pending. |
| 936 | */ |
| 937 | if (rescan == FALSE && now > time_limit) { |
| 938 | TIMER_KDEBUG_TRACE(KDEBUG_TRACE, |
| 939 | DECR_TIMER_PAUSE | DBG_FUNC_NONE, |
| 940 | queue->count, tc_iterations - 1, |
| 941 | 0, 0, 0); |
| 942 | |
| 943 | counter_inc(&timer_scan_pauses_cnt); |
| 944 | time_limit_deadline = now + timer_scan_interval_abs; |
| 945 | break; |
| 946 | } |
| 947 | |
| 948 | /* |
| 949 | * Upon processing one or more timer calls, refresh the |
| 950 | * deadline to account for time elapsed in the callout |
| 951 | */ |
| 952 | cur_deadline = now; |
| 953 | } |
| 954 | |
| 955 | if (call == NULL) { |
| 956 | if (rescan == FALSE) { |
| 957 | call = priority_queue_min(&queue->mpq_pqhead, struct timer_call, tc_pqlink); |
| 958 | } else { |
| 959 | call = qe_queue_first(&queue->head, struct timer_call, tc_qlink); |
| 960 | } |
| 961 | } |
| 962 | |
| 963 | if (call->tc_soft_deadline <= cur_deadline) { |
| 964 | timer_call_func_t func; |
| 965 | timer_call_param_t param0, param1; |
| 966 | |
| 967 | TCOAL_DEBUG(0xDDDD0000, queue->earliest_soft_deadline, call->tc_soft_deadline, 0, 0, 0); |
| 968 | TIMER_KDEBUG_TRACE(KDEBUG_TRACE, |
| 969 | DECR_TIMER_EXPIRE | DBG_FUNC_NONE, |
| 970 | VM_KERNEL_UNSLIDE_OR_PERM(call), |
| 971 | call->tc_soft_deadline, |
| 972 | call->tc_pqlink.deadline, |
| 973 | call->tc_entry_time, 0); |
| 974 | |
| 975 | if ((call->tc_flags & TIMER_CALL_RATELIMITED) && |
| 976 | (call->tc_pqlink.deadline > cur_deadline)) { |
| 977 | if (rescan == FALSE) { |
| 978 | break; |
| 979 | } |
| 980 | } |
| 981 | |
| 982 | if (!simple_lock_try(&call->tc_lock, LCK_GRP_NULL)) { |
| 983 | /* case (2b) lock inversion, dequeue and skip */ |
| 984 | timer_queue_expire_lock_skips++; |
| 985 | timer_call_entry_dequeue_async(entry: call); |
| 986 | call = NULL; |
| 987 | continue; |
| 988 | } |
| 989 | |
| 990 | timer_call_entry_dequeue(entry: call); |
| 991 | |
| 992 | func = call->tc_func; |
| 993 | param0 = call->tc_param0; |
| 994 | param1 = call->tc_param1; |
| 995 | |
| 996 | simple_unlock(&call->tc_lock); |
| 997 | timer_queue_unlock(queue); |
| 998 | |
| 999 | TIMER_KDEBUG_TRACE(KDEBUG_TRACE, |
| 1000 | DECR_TIMER_CALLOUT | DBG_FUNC_START, |
| 1001 | VM_KERNEL_UNSLIDE_OR_PERM(call), VM_KERNEL_UNSLIDE(func), |
| 1002 | VM_KERNEL_ADDRHIDE(param0), |
| 1003 | VM_KERNEL_ADDRHIDE(param1), |
| 1004 | 0); |
| 1005 | |
| 1006 | #if CONFIG_DTRACE |
| 1007 | DTRACE_TMR7(callout__start, timer_call_func_t, func, |
| 1008 | timer_call_param_t, param0, unsigned, call->tc_flags, |
| 1009 | 0, (call->tc_ttd >> 32), |
| 1010 | (unsigned) (call->tc_ttd & 0xFFFFFFFF), call); |
| 1011 | #endif |
| 1012 | /* Maintain time-to-deadline in per-processor data |
| 1013 | * structure for thread wakeup deadline statistics. |
| 1014 | */ |
| 1015 | uint64_t *ttdp = ¤t_processor()->timer_call_ttd; |
| 1016 | *ttdp = call->tc_ttd; |
| 1017 | (*func)(param0, param1); |
| 1018 | *ttdp = 0; |
| 1019 | #if CONFIG_DTRACE |
| 1020 | DTRACE_TMR4(callout__end, timer_call_func_t, func, |
| 1021 | param0, param1, call); |
| 1022 | #endif |
| 1023 | |
| 1024 | TIMER_KDEBUG_TRACE(KDEBUG_TRACE, |
| 1025 | DECR_TIMER_CALLOUT | DBG_FUNC_END, |
| 1026 | VM_KERNEL_UNSLIDE_OR_PERM(call), VM_KERNEL_UNSLIDE(func), |
| 1027 | VM_KERNEL_ADDRHIDE(param0), |
| 1028 | VM_KERNEL_ADDRHIDE(param1), |
| 1029 | 0); |
| 1030 | call = NULL; |
| 1031 | timer_queue_lock_spin(queue); |
| 1032 | } else { |
| 1033 | if (__probable(rescan == FALSE)) { |
| 1034 | break; |
| 1035 | } else { |
| 1036 | int64_t skew = call->tc_pqlink.deadline - call->tc_soft_deadline; |
| 1037 | assert(call->tc_pqlink.deadline >= call->tc_soft_deadline); |
| 1038 | |
| 1039 | /* DRK: On a latency quality-of-service level change, |
| 1040 | * re-sort potentially rate-limited timers. The platform |
| 1041 | * layer determines which timers require |
| 1042 | * this. In the absence of the per-callout |
| 1043 | * synchronization requirement, a global resort could |
| 1044 | * be more efficient. The re-sort effectively |
| 1045 | * annuls all timer adjustments, i.e. the "soft |
| 1046 | * deadline" is the sort key. |
| 1047 | */ |
| 1048 | |
| 1049 | if (timer_resort_threshold(skew)) { |
| 1050 | if (__probable(simple_lock_try(&call->tc_lock, LCK_GRP_NULL))) { |
| 1051 | /* TODO: don't need to dequeue before enqueue */ |
| 1052 | timer_call_entry_dequeue(entry: call); |
| 1053 | timer_call_entry_enqueue_deadline(entry: call, new_mpqueue: queue, deadline: call->tc_soft_deadline); |
| 1054 | simple_unlock(&call->tc_lock); |
| 1055 | call = NULL; |
| 1056 | } |
| 1057 | } |
| 1058 | if (call) { |
| 1059 | call = qe_queue_next(&queue->head, call, struct timer_call, tc_qlink); |
| 1060 | |
| 1061 | if (call == NULL) { |
| 1062 | break; |
| 1063 | } |
| 1064 | } |
| 1065 | } |
| 1066 | } |
| 1067 | } |
| 1068 | |
| 1069 | call = priority_queue_min(&queue->mpq_pqhead, struct timer_call, tc_pqlink); |
| 1070 | |
| 1071 | if (call) { |
| 1072 | /* |
| 1073 | * Even if the time limit has been hit, it doesn't mean a hard |
| 1074 | * deadline will be missed - the next hard deadline may be in |
| 1075 | * future. |
| 1076 | */ |
| 1077 | if (time_limit_deadline > call->tc_pqlink.deadline) { |
| 1078 | TIMER_KDEBUG_TRACE(KDEBUG_TRACE, |
| 1079 | DECR_TIMER_POSTPONE | DBG_FUNC_NONE, |
| 1080 | VM_KERNEL_UNSLIDE_OR_PERM(call), |
| 1081 | call->tc_pqlink.deadline, |
| 1082 | time_limit_deadline, |
| 1083 | 0, 0); |
| 1084 | counter_inc(&timer_scan_postpones_cnt); |
| 1085 | cur_deadline = time_limit_deadline; |
| 1086 | } else { |
| 1087 | cur_deadline = call->tc_pqlink.deadline; |
| 1088 | } |
| 1089 | queue->earliest_soft_deadline = (call->tc_flags & TIMER_CALL_RATELIMITED) ? call->tc_pqlink.deadline: call->tc_soft_deadline; |
| 1090 | } else { |
| 1091 | queue->earliest_soft_deadline = cur_deadline = UINT64_MAX; |
| 1092 | } |
| 1093 | |
| 1094 | timer_queue_unlock(queue); |
| 1095 | |
| 1096 | return cur_deadline; |
| 1097 | } |
| 1098 | |
| 1099 | uint64_t |
| 1100 | timer_queue_expire( |
| 1101 | mpqueue_head_t *queue, |
| 1102 | uint64_t deadline) |
| 1103 | { |
| 1104 | return timer_queue_expire_with_options(queue, deadline, FALSE); |
| 1105 | } |
| 1106 | |
| 1107 | extern int serverperfmode; |
| 1108 | static uint32_t timer_queue_migrate_lock_skips; |
| 1109 | /* |
| 1110 | * timer_queue_migrate() is called by timer_queue_migrate_cpu() |
| 1111 | * to move timer requests from the local processor (queue_from) |
| 1112 | * to a target processor's (queue_to). |
| 1113 | */ |
| 1114 | int |
| 1115 | timer_queue_migrate(mpqueue_head_t *queue_from, mpqueue_head_t *queue_to) |
| 1116 | { |
| 1117 | timer_call_t call; |
| 1118 | timer_call_t head_to; |
| 1119 | int timers_migrated = 0; |
| 1120 | |
| 1121 | DBG("timer_queue_migrate(%p,%p)\n" , queue_from, queue_to); |
| 1122 | |
| 1123 | assert(!ml_get_interrupts_enabled()); |
| 1124 | assert(queue_from != queue_to); |
| 1125 | |
| 1126 | if (serverperfmode) { |
| 1127 | /* |
| 1128 | * if we're running a high end server |
| 1129 | * avoid migrations... they add latency |
| 1130 | * and don't save us power under typical |
| 1131 | * server workloads |
| 1132 | */ |
| 1133 | return -4; |
| 1134 | } |
| 1135 | |
| 1136 | /* |
| 1137 | * Take both local (from) and target (to) timer queue locks while |
| 1138 | * moving the timers from the local queue to the target processor. |
| 1139 | * We assume that the target is always the boot processor. |
| 1140 | * But only move if all of the following is true: |
| 1141 | * - the target queue is non-empty |
| 1142 | * - the local queue is non-empty |
| 1143 | * - the local queue's first deadline is later than the target's |
| 1144 | * - the local queue contains no non-migrateable "local" call |
| 1145 | * so that we need not have the target resync. |
| 1146 | */ |
| 1147 | |
| 1148 | timer_queue_lock_spin(queue_to); |
| 1149 | |
| 1150 | head_to = priority_queue_min(&queue_to->mpq_pqhead, struct timer_call, tc_pqlink); |
| 1151 | |
| 1152 | if (head_to == NULL) { |
| 1153 | timers_migrated = -1; |
| 1154 | goto abort1; |
| 1155 | } |
| 1156 | |
| 1157 | timer_queue_lock_spin(queue_from); |
| 1158 | |
| 1159 | call = priority_queue_min(&queue_from->mpq_pqhead, struct timer_call, tc_pqlink); |
| 1160 | |
| 1161 | if (call == NULL) { |
| 1162 | timers_migrated = -2; |
| 1163 | goto abort2; |
| 1164 | } |
| 1165 | |
| 1166 | if (call->tc_pqlink.deadline < head_to->tc_pqlink.deadline) { |
| 1167 | timers_migrated = 0; |
| 1168 | goto abort2; |
| 1169 | } |
| 1170 | |
| 1171 | /* perform scan for non-migratable timers */ |
| 1172 | qe_foreach_element(call, &queue_from->head, tc_qlink) { |
| 1173 | if (call->tc_flags & TIMER_CALL_LOCAL) { |
| 1174 | timers_migrated = -3; |
| 1175 | goto abort2; |
| 1176 | } |
| 1177 | } |
| 1178 | |
| 1179 | /* migration loop itself -- both queues are locked */ |
| 1180 | qe_foreach_element_safe(call, &queue_from->head, tc_qlink) { |
| 1181 | if (!simple_lock_try(&call->tc_lock, LCK_GRP_NULL)) { |
| 1182 | /* case (2b) lock order inversion, dequeue only */ |
| 1183 | #ifdef TIMER_ASSERT |
| 1184 | TIMER_KDEBUG_TRACE(KDEBUG_TRACE, |
| 1185 | DECR_TIMER_ASYNC_DEQ | DBG_FUNC_NONE, |
| 1186 | VM_KERNEL_UNSLIDE_OR_PERM(call), |
| 1187 | VM_KERNEL_UNSLIDE_OR_PERM(call->tc_queue), |
| 1188 | 0, |
| 1189 | 0x2b, 0); |
| 1190 | #endif |
| 1191 | timer_queue_migrate_lock_skips++; |
| 1192 | timer_call_entry_dequeue_async(entry: call); |
| 1193 | continue; |
| 1194 | } |
| 1195 | timer_call_entry_dequeue(entry: call); |
| 1196 | timer_call_entry_enqueue_deadline( |
| 1197 | entry: call, new_mpqueue: queue_to, deadline: call->tc_pqlink.deadline); |
| 1198 | timers_migrated++; |
| 1199 | simple_unlock(&call->tc_lock); |
| 1200 | } |
| 1201 | queue_from->earliest_soft_deadline = UINT64_MAX; |
| 1202 | abort2: |
| 1203 | timer_queue_unlock(queue_from); |
| 1204 | abort1: |
| 1205 | timer_queue_unlock(queue_to); |
| 1206 | |
| 1207 | return timers_migrated; |
| 1208 | } |
| 1209 | |
| 1210 | void |
| 1211 | timer_queue_trace_cpu(int ncpu) |
| 1212 | { |
| 1213 | timer_call_nosync_cpu( |
| 1214 | cpu: ncpu, |
| 1215 | fn: (void (*)(void *))timer_queue_trace, |
| 1216 | arg: (void*) timer_queue_cpu(cpu: ncpu)); |
| 1217 | } |
| 1218 | |
| 1219 | void |
| 1220 | timer_queue_trace( |
| 1221 | mpqueue_head_t *queue) |
| 1222 | { |
| 1223 | timer_call_t call; |
| 1224 | spl_t s; |
| 1225 | |
| 1226 | if (!kdebug_enable) { |
| 1227 | return; |
| 1228 | } |
| 1229 | |
| 1230 | s = splclock(); |
| 1231 | timer_queue_lock_spin(queue); |
| 1232 | |
| 1233 | TIMER_KDEBUG_TRACE(KDEBUG_TRACE, |
| 1234 | DECR_TIMER_QUEUE | DBG_FUNC_START, |
| 1235 | queue->count, mach_absolute_time(), 0, 0, 0); |
| 1236 | |
| 1237 | qe_foreach_element(call, &queue->head, tc_qlink) { |
| 1238 | TIMER_KDEBUG_TRACE(KDEBUG_TRACE, |
| 1239 | DECR_TIMER_QUEUE | DBG_FUNC_NONE, |
| 1240 | call->tc_soft_deadline, |
| 1241 | call->tc_pqlink.deadline, |
| 1242 | call->tc_entry_time, |
| 1243 | VM_KERNEL_UNSLIDE(call->tc_func), |
| 1244 | 0); |
| 1245 | } |
| 1246 | |
| 1247 | TIMER_KDEBUG_TRACE(KDEBUG_TRACE, |
| 1248 | DECR_TIMER_QUEUE | DBG_FUNC_END, |
| 1249 | queue->count, mach_absolute_time(), 0, 0, 0); |
| 1250 | |
| 1251 | timer_queue_unlock(queue); |
| 1252 | splx(s); |
| 1253 | } |
| 1254 | |
| 1255 | void |
| 1256 | timer_longterm_dequeued_locked(timer_call_t call) |
| 1257 | { |
| 1258 | timer_longterm_t *tlp = &timer_longterm; |
| 1259 | |
| 1260 | tlp->dequeues++; |
| 1261 | if (call == tlp->threshold.call) { |
| 1262 | tlp->threshold.call = NULL; |
| 1263 | } |
| 1264 | } |
| 1265 | |
| 1266 | /* |
| 1267 | * Place a timer call in the longterm list |
| 1268 | * and adjust the next timer callout deadline if the new timer is first. |
| 1269 | */ |
| 1270 | mpqueue_head_t * |
| 1271 | timer_longterm_enqueue_unlocked(timer_call_t call, |
| 1272 | uint64_t now, |
| 1273 | uint64_t deadline, |
| 1274 | mpqueue_head_t **old_queue, |
| 1275 | uint64_t soft_deadline, |
| 1276 | uint64_t ttd, |
| 1277 | timer_call_param_t param1, |
| 1278 | uint32_t callout_flags) |
| 1279 | { |
| 1280 | timer_longterm_t *tlp = &timer_longterm; |
| 1281 | boolean_t update_required = FALSE; |
| 1282 | uint64_t longterm_threshold; |
| 1283 | |
| 1284 | longterm_threshold = now + tlp->threshold.interval; |
| 1285 | |
| 1286 | /* |
| 1287 | * Return NULL without doing anything if: |
| 1288 | * - this timer is local, or |
| 1289 | * - the longterm mechanism is disabled, or |
| 1290 | * - this deadline is too short. |
| 1291 | */ |
| 1292 | if ((callout_flags & TIMER_CALL_LOCAL) != 0 || |
| 1293 | (tlp->threshold.interval == TIMER_LONGTERM_NONE) || |
| 1294 | (deadline <= longterm_threshold)) { |
| 1295 | return NULL; |
| 1296 | } |
| 1297 | |
| 1298 | /* |
| 1299 | * Remove timer from its current queue, if any. |
| 1300 | */ |
| 1301 | *old_queue = timer_call_dequeue_unlocked(call); |
| 1302 | |
| 1303 | /* |
| 1304 | * Lock the longterm queue, queue timer and determine |
| 1305 | * whether an update is necessary. |
| 1306 | */ |
| 1307 | assert(!ml_get_interrupts_enabled()); |
| 1308 | simple_lock(&call->tc_lock, LCK_GRP_NULL); |
| 1309 | timer_queue_lock_spin(timer_longterm_queue); |
| 1310 | call->tc_pqlink.deadline = deadline; |
| 1311 | call->tc_param1 = param1; |
| 1312 | call->tc_ttd = ttd; |
| 1313 | call->tc_soft_deadline = soft_deadline; |
| 1314 | call->tc_flags = callout_flags; |
| 1315 | timer_call_entry_enqueue_tail(entry: call, queue: timer_longterm_queue); |
| 1316 | |
| 1317 | tlp->enqueues++; |
| 1318 | |
| 1319 | /* |
| 1320 | * We'll need to update the currently set threshold timer |
| 1321 | * if the new deadline is sooner and no sooner update is in flight. |
| 1322 | */ |
| 1323 | if (deadline < tlp->threshold.deadline && |
| 1324 | deadline < tlp->threshold.preempted) { |
| 1325 | tlp->threshold.preempted = deadline; |
| 1326 | tlp->threshold.call = call; |
| 1327 | update_required = TRUE; |
| 1328 | } |
| 1329 | timer_queue_unlock(timer_longterm_queue); |
| 1330 | simple_unlock(&call->tc_lock); |
| 1331 | |
| 1332 | if (update_required) { |
| 1333 | /* |
| 1334 | * Note: this call expects that calling the master cpu |
| 1335 | * alone does not involve locking the topo lock. |
| 1336 | */ |
| 1337 | timer_call_nosync_cpu( |
| 1338 | cpu: master_cpu, |
| 1339 | fn: (void (*)(void *))timer_longterm_update, |
| 1340 | arg: (void *)tlp); |
| 1341 | } |
| 1342 | |
| 1343 | return timer_longterm_queue; |
| 1344 | } |
| 1345 | |
| 1346 | /* |
| 1347 | * Scan for timers below the longterm threshold. |
| 1348 | * Move these to the local timer queue (of the boot processor on which the |
| 1349 | * calling thread is running). |
| 1350 | * Both the local (boot) queue and the longterm queue are locked. |
| 1351 | * The scan is similar to the timer migrate sequence but is performed by |
| 1352 | * successively examining each timer on the longterm queue: |
| 1353 | * - if within the short-term threshold |
| 1354 | * - enter on the local queue (unless being deleted), |
| 1355 | * - otherwise: |
| 1356 | * - if sooner, deadline becomes the next threshold deadline. |
| 1357 | * The total scan time is limited to TIMER_LONGTERM_SCAN_LIMIT. Should this be |
| 1358 | * exceeded, we abort and reschedule again so that we don't shut others from |
| 1359 | * the timer queues. Longterm timers firing late is not critical. |
| 1360 | */ |
| 1361 | void |
| 1362 | timer_longterm_scan(timer_longterm_t *tlp, |
| 1363 | uint64_t time_start) |
| 1364 | { |
| 1365 | timer_call_t call; |
| 1366 | uint64_t threshold = TIMER_LONGTERM_NONE; |
| 1367 | uint64_t deadline; |
| 1368 | uint64_t time_limit = time_start + tlp->scan_limit; |
| 1369 | mpqueue_head_t *timer_master_queue; |
| 1370 | |
| 1371 | assert(!ml_get_interrupts_enabled()); |
| 1372 | assert(cpu_number() == master_cpu); |
| 1373 | |
| 1374 | if (tlp->threshold.interval != TIMER_LONGTERM_NONE) { |
| 1375 | threshold = time_start + tlp->threshold.interval; |
| 1376 | } |
| 1377 | |
| 1378 | tlp->threshold.deadline = TIMER_LONGTERM_NONE; |
| 1379 | tlp->threshold.call = NULL; |
| 1380 | |
| 1381 | if (queue_empty(&timer_longterm_queue->head)) { |
| 1382 | return; |
| 1383 | } |
| 1384 | |
| 1385 | timer_master_queue = timer_queue_cpu(cpu: master_cpu); |
| 1386 | timer_queue_lock_spin(timer_master_queue); |
| 1387 | |
| 1388 | qe_foreach_element_safe(call, &timer_longterm_queue->head, tc_qlink) { |
| 1389 | deadline = call->tc_soft_deadline; |
| 1390 | if (!simple_lock_try(&call->tc_lock, LCK_GRP_NULL)) { |
| 1391 | /* case (2c) lock order inversion, dequeue only */ |
| 1392 | #ifdef TIMER_ASSERT |
| 1393 | TIMER_KDEBUG_TRACE(KDEBUG_TRACE, |
| 1394 | DECR_TIMER_ASYNC_DEQ | DBG_FUNC_NONE, |
| 1395 | VM_KERNEL_UNSLIDE_OR_PERM(call), |
| 1396 | VM_KERNEL_UNSLIDE_OR_PERM(call->tc_queue), |
| 1397 | 0, |
| 1398 | 0x2c, 0); |
| 1399 | #endif |
| 1400 | timer_call_entry_dequeue_async(entry: call); |
| 1401 | continue; |
| 1402 | } |
| 1403 | if (deadline < threshold) { |
| 1404 | /* |
| 1405 | * This timer needs moving (escalating) |
| 1406 | * to the local (boot) processor's queue. |
| 1407 | */ |
| 1408 | #ifdef TIMER_ASSERT |
| 1409 | if (deadline < time_start) { |
| 1410 | TIMER_KDEBUG_TRACE(KDEBUG_TRACE, |
| 1411 | DECR_TIMER_OVERDUE | DBG_FUNC_NONE, |
| 1412 | VM_KERNEL_UNSLIDE_OR_PERM(call), |
| 1413 | deadline, |
| 1414 | time_start, |
| 1415 | threshold, |
| 1416 | 0); |
| 1417 | } |
| 1418 | #endif |
| 1419 | TIMER_KDEBUG_TRACE(KDEBUG_TRACE, |
| 1420 | DECR_TIMER_ESCALATE | DBG_FUNC_NONE, |
| 1421 | VM_KERNEL_UNSLIDE_OR_PERM(call), |
| 1422 | call->tc_pqlink.deadline, |
| 1423 | call->tc_entry_time, |
| 1424 | VM_KERNEL_UNSLIDE(call->tc_func), |
| 1425 | 0); |
| 1426 | tlp->escalates++; |
| 1427 | timer_call_entry_dequeue(entry: call); |
| 1428 | timer_call_entry_enqueue_deadline( |
| 1429 | entry: call, new_mpqueue: timer_master_queue, deadline: call->tc_pqlink.deadline); |
| 1430 | /* |
| 1431 | * A side-effect of the following call is to update |
| 1432 | * the actual hardware deadline if required. |
| 1433 | */ |
| 1434 | (void) timer_queue_assign(deadline); |
| 1435 | } else { |
| 1436 | if (deadline < tlp->threshold.deadline) { |
| 1437 | tlp->threshold.deadline = deadline; |
| 1438 | tlp->threshold.call = call; |
| 1439 | } |
| 1440 | } |
| 1441 | simple_unlock(&call->tc_lock); |
| 1442 | |
| 1443 | /* Abort scan if we're taking too long. */ |
| 1444 | if (mach_absolute_time() > time_limit) { |
| 1445 | tlp->threshold.deadline = TIMER_LONGTERM_SCAN_AGAIN; |
| 1446 | tlp->scan_pauses++; |
| 1447 | DBG("timer_longterm_scan() paused %llu, qlen: %llu\n" , |
| 1448 | time_limit, tlp->queue.count); |
| 1449 | break; |
| 1450 | } |
| 1451 | } |
| 1452 | |
| 1453 | timer_queue_unlock(timer_master_queue); |
| 1454 | } |
| 1455 | |
| 1456 | void |
| 1457 | timer_longterm_callout(timer_call_param_t p0, __unused timer_call_param_t p1) |
| 1458 | { |
| 1459 | timer_longterm_t *tlp = (timer_longterm_t *) p0; |
| 1460 | |
| 1461 | timer_longterm_update(tlp); |
| 1462 | } |
| 1463 | |
| 1464 | void |
| 1465 | timer_longterm_update_locked(timer_longterm_t *tlp) |
| 1466 | { |
| 1467 | uint64_t latency; |
| 1468 | |
| 1469 | TIMER_KDEBUG_TRACE(KDEBUG_TRACE, |
| 1470 | DECR_TIMER_UPDATE | DBG_FUNC_START, |
| 1471 | VM_KERNEL_UNSLIDE_OR_PERM(&tlp->queue), |
| 1472 | tlp->threshold.deadline, |
| 1473 | tlp->threshold.preempted, |
| 1474 | tlp->queue.count, 0); |
| 1475 | |
| 1476 | tlp->scan_time = mach_absolute_time(); |
| 1477 | if (tlp->threshold.preempted != TIMER_LONGTERM_NONE) { |
| 1478 | tlp->threshold.preempts++; |
| 1479 | tlp->threshold.deadline = tlp->threshold.preempted; |
| 1480 | tlp->threshold.preempted = TIMER_LONGTERM_NONE; |
| 1481 | /* |
| 1482 | * Note: in the unlikely event that a pre-empted timer has |
| 1483 | * itself been cancelled, we'll simply re-scan later at the |
| 1484 | * time of the preempted/cancelled timer. |
| 1485 | */ |
| 1486 | } else { |
| 1487 | tlp->threshold.scans++; |
| 1488 | |
| 1489 | /* |
| 1490 | * Maintain a moving average of our wakeup latency. |
| 1491 | * Clamp latency to 0 and ignore above threshold interval. |
| 1492 | */ |
| 1493 | if (tlp->scan_time > tlp->threshold.deadline_set) { |
| 1494 | latency = tlp->scan_time - tlp->threshold.deadline_set; |
| 1495 | } else { |
| 1496 | latency = 0; |
| 1497 | } |
| 1498 | if (latency < tlp->threshold.interval) { |
| 1499 | tlp->threshold.latency_min = |
| 1500 | MIN(tlp->threshold.latency_min, latency); |
| 1501 | tlp->threshold.latency_max = |
| 1502 | MAX(tlp->threshold.latency_max, latency); |
| 1503 | tlp->threshold.latency = |
| 1504 | (tlp->threshold.latency * 99 + latency) / 100; |
| 1505 | } |
| 1506 | |
| 1507 | timer_longterm_scan(tlp, time_start: tlp->scan_time); |
| 1508 | } |
| 1509 | |
| 1510 | tlp->threshold.deadline_set = tlp->threshold.deadline; |
| 1511 | /* The next deadline timer to be set is adjusted */ |
| 1512 | if (tlp->threshold.deadline != TIMER_LONGTERM_NONE && |
| 1513 | tlp->threshold.deadline != TIMER_LONGTERM_SCAN_AGAIN) { |
| 1514 | tlp->threshold.deadline_set -= tlp->threshold.margin; |
| 1515 | tlp->threshold.deadline_set -= tlp->threshold.latency; |
| 1516 | } |
| 1517 | |
| 1518 | /* Throttle next scan time */ |
| 1519 | uint64_t scan_clamp = mach_absolute_time() + tlp->scan_interval; |
| 1520 | if (tlp->threshold.deadline_set < scan_clamp) { |
| 1521 | tlp->threshold.deadline_set = scan_clamp; |
| 1522 | } |
| 1523 | |
| 1524 | TIMER_KDEBUG_TRACE(KDEBUG_TRACE, |
| 1525 | DECR_TIMER_UPDATE | DBG_FUNC_END, |
| 1526 | VM_KERNEL_UNSLIDE_OR_PERM(&tlp->queue), |
| 1527 | tlp->threshold.deadline, |
| 1528 | tlp->threshold.scans, |
| 1529 | tlp->queue.count, 0); |
| 1530 | } |
| 1531 | |
| 1532 | void |
| 1533 | timer_longterm_update(timer_longterm_t *tlp) |
| 1534 | { |
| 1535 | spl_t s = splclock(); |
| 1536 | |
| 1537 | timer_queue_lock_spin(timer_longterm_queue); |
| 1538 | |
| 1539 | if (cpu_number() != master_cpu) { |
| 1540 | panic("timer_longterm_update_master() on non-boot cpu" ); |
| 1541 | } |
| 1542 | |
| 1543 | timer_longterm_update_locked(tlp); |
| 1544 | |
| 1545 | if (tlp->threshold.deadline != TIMER_LONGTERM_NONE) { |
| 1546 | timer_call_enter( |
| 1547 | call: &tlp->threshold.timer, |
| 1548 | deadline: tlp->threshold.deadline_set, |
| 1549 | TIMER_CALL_LOCAL | TIMER_CALL_SYS_CRITICAL); |
| 1550 | } |
| 1551 | |
| 1552 | timer_queue_unlock(timer_longterm_queue); |
| 1553 | splx(s); |
| 1554 | } |
| 1555 | |
| 1556 | void |
| 1557 | timer_longterm_init(void) |
| 1558 | { |
| 1559 | uint32_t longterm; |
| 1560 | timer_longterm_t *tlp = &timer_longterm; |
| 1561 | |
| 1562 | DBG("timer_longterm_init() tlp: %p, queue: %p\n" , tlp, &tlp->queue); |
| 1563 | |
| 1564 | /* |
| 1565 | * Set the longterm timer threshold. Defaults to TIMER_LONGTERM_THRESHOLD |
| 1566 | * or TIMER_LONGTERM_NONE (disabled) for server; |
| 1567 | * overridden longterm boot-arg |
| 1568 | */ |
| 1569 | tlp->threshold.interval = serverperfmode ? TIMER_LONGTERM_NONE |
| 1570 | : TIMER_LONGTERM_THRESHOLD; |
| 1571 | if (PE_parse_boot_argn(arg_string: "longterm" , arg_ptr: &longterm, max_arg: sizeof(longterm))) { |
| 1572 | tlp->threshold.interval = (longterm == 0) ? |
| 1573 | TIMER_LONGTERM_NONE : |
| 1574 | longterm * NSEC_PER_MSEC; |
| 1575 | } |
| 1576 | if (tlp->threshold.interval != TIMER_LONGTERM_NONE) { |
| 1577 | printf(format: "Longterm timer threshold: %llu ms\n" , |
| 1578 | tlp->threshold.interval / NSEC_PER_MSEC); |
| 1579 | kprintf(fmt: "Longterm timer threshold: %llu ms\n" , |
| 1580 | tlp->threshold.interval / NSEC_PER_MSEC); |
| 1581 | nanoseconds_to_absolutetime(nanoseconds: tlp->threshold.interval, |
| 1582 | result: &tlp->threshold.interval); |
| 1583 | tlp->threshold.margin = tlp->threshold.interval / 10; |
| 1584 | tlp->threshold.latency_min = EndOfAllTime; |
| 1585 | tlp->threshold.latency_max = 0; |
| 1586 | } |
| 1587 | |
| 1588 | tlp->threshold.preempted = TIMER_LONGTERM_NONE; |
| 1589 | tlp->threshold.deadline = TIMER_LONGTERM_NONE; |
| 1590 | |
| 1591 | mpqueue_init(&tlp->queue, &timer_longterm_lck_grp, LCK_ATTR_NULL); |
| 1592 | |
| 1593 | timer_call_setup(call: &tlp->threshold.timer, |
| 1594 | func: timer_longterm_callout, param0: (timer_call_param_t) tlp); |
| 1595 | |
| 1596 | timer_longterm_queue = &tlp->queue; |
| 1597 | } |
| 1598 | |
| 1599 | enum { |
| 1600 | THRESHOLD, QCOUNT, |
| 1601 | ENQUEUES, DEQUEUES, ESCALATES, SCANS, PREEMPTS, |
| 1602 | LATENCY, LATENCY_MIN, LATENCY_MAX, LONG_TERM_SCAN_LIMIT, |
| 1603 | LONG_TERM_SCAN_INTERVAL, LONG_TERM_SCAN_PAUSES, |
| 1604 | SCAN_LIMIT, SCAN_INTERVAL, SCAN_PAUSES, SCAN_POSTPONES, |
| 1605 | }; |
| 1606 | uint64_t |
| 1607 | timer_sysctl_get(int oid) |
| 1608 | { |
| 1609 | timer_longterm_t *tlp = &timer_longterm; |
| 1610 | |
| 1611 | switch (oid) { |
| 1612 | case THRESHOLD: |
| 1613 | return (tlp->threshold.interval == TIMER_LONGTERM_NONE) ? |
| 1614 | 0 : tlp->threshold.interval / NSEC_PER_MSEC; |
| 1615 | case QCOUNT: |
| 1616 | return tlp->queue.count; |
| 1617 | case ENQUEUES: |
| 1618 | return tlp->enqueues; |
| 1619 | case DEQUEUES: |
| 1620 | return tlp->dequeues; |
| 1621 | case ESCALATES: |
| 1622 | return tlp->escalates; |
| 1623 | case SCANS: |
| 1624 | return tlp->threshold.scans; |
| 1625 | case PREEMPTS: |
| 1626 | return tlp->threshold.preempts; |
| 1627 | case LATENCY: |
| 1628 | return tlp->threshold.latency; |
| 1629 | case LATENCY_MIN: |
| 1630 | return tlp->threshold.latency_min; |
| 1631 | case LATENCY_MAX: |
| 1632 | return tlp->threshold.latency_max; |
| 1633 | case LONG_TERM_SCAN_LIMIT: |
| 1634 | return tlp->scan_limit; |
| 1635 | case LONG_TERM_SCAN_INTERVAL: |
| 1636 | return tlp->scan_interval; |
| 1637 | case LONG_TERM_SCAN_PAUSES: |
| 1638 | return tlp->scan_pauses; |
| 1639 | case SCAN_LIMIT: |
| 1640 | return timer_scan_limit_us * NSEC_PER_USEC; |
| 1641 | case SCAN_INTERVAL: |
| 1642 | return timer_scan_interval_us * NSEC_PER_USEC; |
| 1643 | case SCAN_PAUSES: |
| 1644 | return counter_load(&timer_scan_pauses_cnt); |
| 1645 | case SCAN_POSTPONES: |
| 1646 | return counter_load(&timer_scan_postpones_cnt); |
| 1647 | |
| 1648 | default: |
| 1649 | return 0; |
| 1650 | } |
| 1651 | } |
| 1652 | |
| 1653 | /* |
| 1654 | * timer_master_scan() is the inverse of timer_longterm_scan() |
| 1655 | * since it un-escalates timers to the longterm queue. |
| 1656 | */ |
| 1657 | static void |
| 1658 | timer_master_scan(timer_longterm_t *tlp, |
| 1659 | uint64_t now) |
| 1660 | { |
| 1661 | timer_call_t call; |
| 1662 | uint64_t threshold; |
| 1663 | uint64_t deadline; |
| 1664 | mpqueue_head_t *timer_master_queue; |
| 1665 | |
| 1666 | if (tlp->threshold.interval != TIMER_LONGTERM_NONE) { |
| 1667 | threshold = now + tlp->threshold.interval; |
| 1668 | } else { |
| 1669 | threshold = TIMER_LONGTERM_NONE; |
| 1670 | } |
| 1671 | |
| 1672 | timer_master_queue = timer_queue_cpu(cpu: master_cpu); |
| 1673 | timer_queue_lock_spin(timer_master_queue); |
| 1674 | |
| 1675 | qe_foreach_element_safe(call, &timer_master_queue->head, tc_qlink) { |
| 1676 | deadline = call->tc_pqlink.deadline; |
| 1677 | if ((call->tc_flags & TIMER_CALL_LOCAL) != 0) { |
| 1678 | continue; |
| 1679 | } |
| 1680 | if (!simple_lock_try(&call->tc_lock, LCK_GRP_NULL)) { |
| 1681 | /* case (2c) lock order inversion, dequeue only */ |
| 1682 | timer_call_entry_dequeue_async(entry: call); |
| 1683 | continue; |
| 1684 | } |
| 1685 | if (deadline > threshold) { |
| 1686 | /* move from master to longterm */ |
| 1687 | timer_call_entry_dequeue(entry: call); |
| 1688 | timer_call_entry_enqueue_tail(entry: call, queue: timer_longterm_queue); |
| 1689 | if (deadline < tlp->threshold.deadline) { |
| 1690 | tlp->threshold.deadline = deadline; |
| 1691 | tlp->threshold.call = call; |
| 1692 | } |
| 1693 | } |
| 1694 | simple_unlock(&call->tc_lock); |
| 1695 | } |
| 1696 | timer_queue_unlock(timer_master_queue); |
| 1697 | } |
| 1698 | |
| 1699 | static void |
| 1700 | timer_sysctl_set_threshold(void* valp) |
| 1701 | { |
| 1702 | uint64_t value = (uint64_t)valp; |
| 1703 | timer_longterm_t *tlp = &timer_longterm; |
| 1704 | spl_t s = splclock(); |
| 1705 | boolean_t threshold_increase; |
| 1706 | |
| 1707 | timer_queue_lock_spin(timer_longterm_queue); |
| 1708 | |
| 1709 | timer_call_cancel(call: &tlp->threshold.timer); |
| 1710 | |
| 1711 | /* |
| 1712 | * Set the new threshold and note whther it's increasing. |
| 1713 | */ |
| 1714 | if (value == 0) { |
| 1715 | tlp->threshold.interval = TIMER_LONGTERM_NONE; |
| 1716 | threshold_increase = TRUE; |
| 1717 | timer_call_cancel(call: &tlp->threshold.timer); |
| 1718 | } else { |
| 1719 | uint64_t old_interval = tlp->threshold.interval; |
| 1720 | tlp->threshold.interval = value * NSEC_PER_MSEC; |
| 1721 | nanoseconds_to_absolutetime(nanoseconds: tlp->threshold.interval, |
| 1722 | result: &tlp->threshold.interval); |
| 1723 | tlp->threshold.margin = tlp->threshold.interval / 10; |
| 1724 | if (old_interval == TIMER_LONGTERM_NONE) { |
| 1725 | threshold_increase = FALSE; |
| 1726 | } else { |
| 1727 | threshold_increase = (tlp->threshold.interval > old_interval); |
| 1728 | } |
| 1729 | } |
| 1730 | |
| 1731 | if (threshold_increase /* or removal */) { |
| 1732 | /* Escalate timers from the longterm queue */ |
| 1733 | timer_longterm_scan(tlp, time_start: mach_absolute_time()); |
| 1734 | } else { /* decrease or addition */ |
| 1735 | /* |
| 1736 | * We scan the local/master queue for timers now longterm. |
| 1737 | * To be strictly correct, we should scan all processor queues |
| 1738 | * but timer migration results in most timers gravitating to the |
| 1739 | * master processor in any case. |
| 1740 | */ |
| 1741 | timer_master_scan(tlp, now: mach_absolute_time()); |
| 1742 | } |
| 1743 | |
| 1744 | /* Set new timer accordingly */ |
| 1745 | tlp->threshold.deadline_set = tlp->threshold.deadline; |
| 1746 | if (tlp->threshold.deadline != TIMER_LONGTERM_NONE) { |
| 1747 | tlp->threshold.deadline_set -= tlp->threshold.margin; |
| 1748 | tlp->threshold.deadline_set -= tlp->threshold.latency; |
| 1749 | timer_call_enter( |
| 1750 | call: &tlp->threshold.timer, |
| 1751 | deadline: tlp->threshold.deadline_set, |
| 1752 | TIMER_CALL_LOCAL | TIMER_CALL_SYS_CRITICAL); |
| 1753 | } |
| 1754 | |
| 1755 | /* Reset stats */ |
| 1756 | tlp->enqueues = 0; |
| 1757 | tlp->dequeues = 0; |
| 1758 | tlp->escalates = 0; |
| 1759 | tlp->scan_pauses = 0; |
| 1760 | tlp->threshold.scans = 0; |
| 1761 | tlp->threshold.preempts = 0; |
| 1762 | tlp->threshold.latency = 0; |
| 1763 | tlp->threshold.latency_min = EndOfAllTime; |
| 1764 | tlp->threshold.latency_max = 0; |
| 1765 | |
| 1766 | timer_queue_unlock(timer_longterm_queue); |
| 1767 | splx(s); |
| 1768 | } |
| 1769 | |
| 1770 | int |
| 1771 | timer_sysctl_set(int oid, uint64_t value) |
| 1772 | { |
| 1773 | switch (oid) { |
| 1774 | case THRESHOLD: |
| 1775 | timer_call_cpu( |
| 1776 | cpu: master_cpu, |
| 1777 | fn: timer_sysctl_set_threshold, |
| 1778 | arg: (void *) value); |
| 1779 | return KERN_SUCCESS; |
| 1780 | case LONG_TERM_SCAN_LIMIT: |
| 1781 | timer_longterm.scan_limit = value; |
| 1782 | return KERN_SUCCESS; |
| 1783 | case LONG_TERM_SCAN_INTERVAL: |
| 1784 | timer_longterm.scan_interval = value; |
| 1785 | return KERN_SUCCESS; |
| 1786 | case SCAN_LIMIT: |
| 1787 | if (value > MAX_TIMER_SCAN_LIMIT || |
| 1788 | value < MIN_TIMER_SCAN_LIMIT) { |
| 1789 | return KERN_INVALID_ARGUMENT; |
| 1790 | } |
| 1791 | timer_scan_limit_us = value / NSEC_PER_USEC; |
| 1792 | nanoseconds_to_absolutetime(nanoseconds: timer_scan_limit_us * NSEC_PER_USEC, |
| 1793 | result: &timer_scan_limit_abs); |
| 1794 | return KERN_SUCCESS; |
| 1795 | case SCAN_INTERVAL: |
| 1796 | if (value > MAX_TIMER_SCAN_INTERVAL || |
| 1797 | value < MIN_TIMER_SCAN_INTERVAL) { |
| 1798 | return KERN_INVALID_ARGUMENT; |
| 1799 | } |
| 1800 | timer_scan_interval_us = value / NSEC_PER_USEC; |
| 1801 | nanoseconds_to_absolutetime(nanoseconds: timer_scan_interval_us * NSEC_PER_USEC, |
| 1802 | result: &timer_scan_interval_abs); |
| 1803 | return KERN_SUCCESS; |
| 1804 | default: |
| 1805 | return KERN_INVALID_ARGUMENT; |
| 1806 | } |
| 1807 | } |
| 1808 | |
| 1809 | |
| 1810 | /* Select timer coalescing window based on per-task quality-of-service hints */ |
| 1811 | static boolean_t |
| 1812 | tcoal_qos_adjust(thread_t t, int32_t *tshift, uint64_t *tmax_abstime, boolean_t *pratelimited) |
| 1813 | { |
| 1814 | uint32_t latency_qos; |
| 1815 | boolean_t adjusted = FALSE; |
| 1816 | task_t ctask = get_threadtask(t); |
| 1817 | |
| 1818 | if (ctask) { |
| 1819 | latency_qos = proc_get_effective_thread_policy(thread: t, TASK_POLICY_LATENCY_QOS); |
| 1820 | |
| 1821 | assert(latency_qos <= NUM_LATENCY_QOS_TIERS); |
| 1822 | |
| 1823 | if (latency_qos) { |
| 1824 | *tshift = tcoal_prio_params.latency_qos_scale[latency_qos - 1]; |
| 1825 | *tmax_abstime = tcoal_prio_params.latency_qos_abstime_max[latency_qos - 1]; |
| 1826 | *pratelimited = tcoal_prio_params.latency_tier_rate_limited[latency_qos - 1]; |
| 1827 | adjusted = TRUE; |
| 1828 | } |
| 1829 | } |
| 1830 | return adjusted; |
| 1831 | } |
| 1832 | |
| 1833 | |
| 1834 | /* Adjust timer deadlines based on priority of the thread and the |
| 1835 | * urgency value provided at timeout establishment. With this mechanism, |
| 1836 | * timers are no longer necessarily sorted in order of soft deadline |
| 1837 | * on a given timer queue, i.e. they may be differentially skewed. |
| 1838 | * In the current scheme, this could lead to fewer pending timers |
| 1839 | * processed than is technically possible when the HW deadline arrives. |
| 1840 | */ |
| 1841 | static void |
| 1842 | timer_compute_leeway(thread_t cthread, int32_t urgency, int32_t *tshift, uint64_t *tmax_abstime, boolean_t *pratelimited) |
| 1843 | { |
| 1844 | int16_t tpri = cthread->sched_pri; |
| 1845 | if ((urgency & TIMER_CALL_USER_MASK) != 0) { |
| 1846 | bool tg_critical = false; |
| 1847 | #if CONFIG_THREAD_GROUPS |
| 1848 | uint32_t tg_flags = thread_group_get_flags(thread_group_get(t: cthread)); |
| 1849 | tg_critical = tg_flags & (THREAD_GROUP_FLAGS_CRITICAL | THREAD_GROUP_FLAGS_STRICT_TIMERS); |
| 1850 | #endif /* CONFIG_THREAD_GROUPS */ |
| 1851 | bool timer_critical = (tpri >= BASEPRI_RTQUEUES) || |
| 1852 | (urgency == TIMER_CALL_USER_CRITICAL) || |
| 1853 | tg_critical; |
| 1854 | if (timer_critical) { |
| 1855 | *tshift = tcoal_prio_params.timer_coalesce_rt_shift; |
| 1856 | *tmax_abstime = tcoal_prio_params.timer_coalesce_rt_abstime_max; |
| 1857 | TCOAL_PRIO_STAT(rt_tcl); |
| 1858 | } else if (proc_get_effective_thread_policy(thread: cthread, TASK_POLICY_DARWIN_BG) || |
| 1859 | (urgency == TIMER_CALL_USER_BACKGROUND)) { |
| 1860 | /* Determine if timer should be subjected to a lower QoS */ |
| 1861 | if (tcoal_qos_adjust(t: cthread, tshift, tmax_abstime, pratelimited)) { |
| 1862 | if (*tmax_abstime > tcoal_prio_params.timer_coalesce_bg_abstime_max) { |
| 1863 | return; |
| 1864 | } else { |
| 1865 | *pratelimited = FALSE; |
| 1866 | } |
| 1867 | } |
| 1868 | *tshift = tcoal_prio_params.timer_coalesce_bg_shift; |
| 1869 | *tmax_abstime = tcoal_prio_params.timer_coalesce_bg_abstime_max; |
| 1870 | TCOAL_PRIO_STAT(bg_tcl); |
| 1871 | } else if (tpri >= MINPRI_KERNEL) { |
| 1872 | *tshift = tcoal_prio_params.timer_coalesce_kt_shift; |
| 1873 | *tmax_abstime = tcoal_prio_params.timer_coalesce_kt_abstime_max; |
| 1874 | TCOAL_PRIO_STAT(kt_tcl); |
| 1875 | } else if (cthread->sched_mode == TH_MODE_FIXED) { |
| 1876 | *tshift = tcoal_prio_params.timer_coalesce_fp_shift; |
| 1877 | *tmax_abstime = tcoal_prio_params.timer_coalesce_fp_abstime_max; |
| 1878 | TCOAL_PRIO_STAT(fp_tcl); |
| 1879 | } else if (tcoal_qos_adjust(t: cthread, tshift, tmax_abstime, pratelimited)) { |
| 1880 | TCOAL_PRIO_STAT(qos_tcl); |
| 1881 | } else if (cthread->sched_mode == TH_MODE_TIMESHARE) { |
| 1882 | *tshift = tcoal_prio_params.timer_coalesce_ts_shift; |
| 1883 | *tmax_abstime = tcoal_prio_params.timer_coalesce_ts_abstime_max; |
| 1884 | TCOAL_PRIO_STAT(ts_tcl); |
| 1885 | } else { |
| 1886 | TCOAL_PRIO_STAT(nc_tcl); |
| 1887 | } |
| 1888 | } else if (urgency == TIMER_CALL_SYS_BACKGROUND) { |
| 1889 | *tshift = tcoal_prio_params.timer_coalesce_bg_shift; |
| 1890 | *tmax_abstime = tcoal_prio_params.timer_coalesce_bg_abstime_max; |
| 1891 | TCOAL_PRIO_STAT(bg_tcl); |
| 1892 | } else { |
| 1893 | *tshift = tcoal_prio_params.timer_coalesce_kt_shift; |
| 1894 | *tmax_abstime = tcoal_prio_params.timer_coalesce_kt_abstime_max; |
| 1895 | TCOAL_PRIO_STAT(kt_tcl); |
| 1896 | } |
| 1897 | } |
| 1898 | |
| 1899 | |
| 1900 | int timer_user_idle_level; |
| 1901 | |
| 1902 | uint64_t |
| 1903 | timer_call_slop(uint64_t deadline, uint64_t now, uint32_t flags, thread_t cthread, boolean_t *pratelimited) |
| 1904 | { |
| 1905 | int32_t tcs_shift = 0; |
| 1906 | uint64_t tcs_max_abstime = 0; |
| 1907 | uint64_t adjval; |
| 1908 | uint32_t urgency = (flags & TIMER_CALL_URGENCY_MASK); |
| 1909 | |
| 1910 | if (mach_timer_coalescing_enabled && |
| 1911 | (deadline > now) && (urgency != TIMER_CALL_SYS_CRITICAL)) { |
| 1912 | timer_compute_leeway(cthread, urgency, tshift: &tcs_shift, tmax_abstime: &tcs_max_abstime, pratelimited); |
| 1913 | |
| 1914 | if (tcs_shift >= 0) { |
| 1915 | adjval = MIN((deadline - now) >> tcs_shift, tcs_max_abstime); |
| 1916 | } else { |
| 1917 | adjval = MIN((deadline - now) << (-tcs_shift), tcs_max_abstime); |
| 1918 | } |
| 1919 | /* Apply adjustments derived from "user idle level" heuristic */ |
| 1920 | adjval += (adjval * timer_user_idle_level) >> 7; |
| 1921 | return adjval; |
| 1922 | } else { |
| 1923 | return 0; |
| 1924 | } |
| 1925 | } |
| 1926 | |
| 1927 | int |
| 1928 | timer_get_user_idle_level(void) |
| 1929 | { |
| 1930 | return timer_user_idle_level; |
| 1931 | } |
| 1932 | |
| 1933 | kern_return_t |
| 1934 | timer_set_user_idle_level(int ilevel) |
| 1935 | { |
| 1936 | boolean_t do_reeval = FALSE; |
| 1937 | |
| 1938 | if ((ilevel < 0) || (ilevel > 128)) { |
| 1939 | return KERN_INVALID_ARGUMENT; |
| 1940 | } |
| 1941 | |
| 1942 | if (ilevel < timer_user_idle_level) { |
| 1943 | do_reeval = TRUE; |
| 1944 | } |
| 1945 | |
| 1946 | timer_user_idle_level = ilevel; |
| 1947 | |
| 1948 | if (do_reeval) { |
| 1949 | ml_timer_evaluate(); |
| 1950 | } |
| 1951 | |
| 1952 | return KERN_SUCCESS; |
| 1953 | } |
| 1954 | |
| 1955 | #pragma mark - running timers |
| 1956 | |
| 1957 | #define RUNNING_TIMER_FAKE_FLAGS (TIMER_CALL_SYS_CRITICAL | \ |
| 1958 | TIMER_CALL_LOCAL) |
| 1959 | |
| 1960 | /* |
| 1961 | * timer_call_trace_* functions mimic the tracing behavior from the normal |
| 1962 | * timer_call subsystem, so tools continue to function. |
| 1963 | */ |
| 1964 | |
| 1965 | static void |
| 1966 | timer_call_trace_enter_before(struct timer_call *call, uint64_t deadline, |
| 1967 | uint32_t flags, uint64_t now) |
| 1968 | { |
| 1969 | #pragma unused(call, deadline, flags, now) |
| 1970 | TIMER_KDEBUG_TRACE(KDEBUG_TRACE, DECR_TIMER_ENTER | DBG_FUNC_START, |
| 1971 | VM_KERNEL_UNSLIDE_OR_PERM(call), VM_KERNEL_ADDRHIDE(call->tc_param1), |
| 1972 | deadline, flags, 0); |
| 1973 | #if CONFIG_DTRACE |
| 1974 | uint64_t ttd = deadline - now; |
| 1975 | DTRACE_TMR7(callout__create, timer_call_func_t, call->tc_func, |
| 1976 | timer_call_param_t, call->tc_param0, uint32_t, flags, 0, |
| 1977 | (ttd >> 32), (unsigned int)(ttd & 0xFFFFFFFF), NULL); |
| 1978 | #endif /* CONFIG_DTRACE */ |
| 1979 | TIMER_KDEBUG_TRACE(KDEBUG_TRACE, DECR_TIMER_ENTER | DBG_FUNC_END, |
| 1980 | VM_KERNEL_UNSLIDE_OR_PERM(call), 0, deadline, 0, 0); |
| 1981 | } |
| 1982 | |
| 1983 | static void |
| 1984 | timer_call_trace_enter_after(struct timer_call *call, uint64_t deadline) |
| 1985 | { |
| 1986 | #pragma unused(call, deadline) |
| 1987 | TIMER_KDEBUG_TRACE(KDEBUG_TRACE, DECR_TIMER_ENTER | DBG_FUNC_END, |
| 1988 | VM_KERNEL_UNSLIDE_OR_PERM(call), 0, deadline, 0, 0); |
| 1989 | } |
| 1990 | |
| 1991 | static void |
| 1992 | timer_call_trace_cancel(struct timer_call *call) |
| 1993 | { |
| 1994 | #pragma unused(call) |
| 1995 | __unused uint64_t deadline = call->tc_pqlink.deadline; |
| 1996 | TIMER_KDEBUG_TRACE(KDEBUG_TRACE, DECR_TIMER_CANCEL | DBG_FUNC_START, |
| 1997 | VM_KERNEL_UNSLIDE_OR_PERM(call), deadline, 0, |
| 1998 | call->tc_flags, 0); |
| 1999 | TIMER_KDEBUG_TRACE(KDEBUG_TRACE, DECR_TIMER_CANCEL | DBG_FUNC_END, |
| 2000 | VM_KERNEL_UNSLIDE_OR_PERM(call), 0, deadline - mach_absolute_time(), |
| 2001 | deadline - call->tc_entry_time, 0); |
| 2002 | #if CONFIG_DTRACE |
| 2003 | #if TIMER_TRACE |
| 2004 | uint64_t ttd = deadline - call->tc_entry_time; |
| 2005 | #else |
| 2006 | uint64_t ttd = UINT64_MAX; |
| 2007 | #endif /* TIMER_TRACE */ |
| 2008 | DTRACE_TMR6(callout__cancel, timer_call_func_t, call->tc_func, |
| 2009 | timer_call_param_t, call->tc_param0, uint32_t, call->tc_flags, 0, |
| 2010 | (ttd >> 32), (unsigned int)(ttd & 0xFFFFFFFF)); |
| 2011 | #endif /* CONFIG_DTRACE */ |
| 2012 | } |
| 2013 | |
| 2014 | static void |
| 2015 | timer_call_trace_expire_entry(struct timer_call *call) |
| 2016 | { |
| 2017 | #pragma unused(call) |
| 2018 | TIMER_KDEBUG_TRACE(KDEBUG_TRACE, DECR_TIMER_CALLOUT | DBG_FUNC_START, |
| 2019 | VM_KERNEL_UNSLIDE_OR_PERM(call), VM_KERNEL_UNSLIDE(call->tc_func), |
| 2020 | VM_KERNEL_ADDRHIDE(call->tc_param0), |
| 2021 | VM_KERNEL_ADDRHIDE(call->tc_param1), |
| 2022 | 0); |
| 2023 | #if CONFIG_DTRACE |
| 2024 | #if TIMER_TRACE |
| 2025 | uint64_t ttd = call->tc_pqlink.deadline - call->tc_entry_time; |
| 2026 | #else /* TIMER_TRACE */ |
| 2027 | uint64_t ttd = UINT64_MAX; |
| 2028 | #endif /* TIMER_TRACE */ |
| 2029 | DTRACE_TMR7(callout__start, timer_call_func_t, call->tc_func, |
| 2030 | timer_call_param_t, call->tc_param0, unsigned, call->tc_flags, |
| 2031 | 0, (ttd >> 32), (unsigned int)(ttd & 0xFFFFFFFF), NULL); |
| 2032 | #endif /* CONFIG_DTRACE */ |
| 2033 | } |
| 2034 | |
| 2035 | static void |
| 2036 | timer_call_trace_expire_return(struct timer_call *call) |
| 2037 | { |
| 2038 | #pragma unused(call) |
| 2039 | #if CONFIG_DTRACE |
| 2040 | DTRACE_TMR4(callout__end, timer_call_func_t, call->tc_func, |
| 2041 | call->tc_param0, call->tc_param1, NULL); |
| 2042 | #endif /* CONFIG_DTRACE */ |
| 2043 | TIMER_KDEBUG_TRACE(KDEBUG_TRACE, DECR_TIMER_CALLOUT | DBG_FUNC_END, |
| 2044 | VM_KERNEL_UNSLIDE_OR_PERM(call), |
| 2045 | VM_KERNEL_UNSLIDE(call->tc_func), |
| 2046 | VM_KERNEL_ADDRHIDE(call->tc_param0), |
| 2047 | VM_KERNEL_ADDRHIDE(call->tc_param1), |
| 2048 | 0); |
| 2049 | } |
| 2050 | |
| 2051 | /* |
| 2052 | * Set a new deadline for a running timer on this processor. |
| 2053 | */ |
| 2054 | void |
| 2055 | running_timer_setup(processor_t processor, enum running_timer timer, |
| 2056 | void *param, uint64_t deadline, uint64_t now) |
| 2057 | { |
| 2058 | assert(timer < RUNNING_TIMER_MAX); |
| 2059 | assert(ml_get_interrupts_enabled() == FALSE); |
| 2060 | |
| 2061 | struct timer_call *call = &processor->running_timers[timer]; |
| 2062 | |
| 2063 | timer_call_trace_enter_before(call, deadline, RUNNING_TIMER_FAKE_FLAGS, |
| 2064 | now); |
| 2065 | |
| 2066 | if (__improbable(deadline < now)) { |
| 2067 | deadline = timer_call_past_deadline_timer_handle(deadline, ctime: now); |
| 2068 | } |
| 2069 | |
| 2070 | call->tc_pqlink.deadline = deadline; |
| 2071 | #if TIMER_TRACE |
| 2072 | call->tc_entry_time = now; |
| 2073 | #endif /* TIMER_TRACE */ |
| 2074 | call->tc_param1 = param; |
| 2075 | |
| 2076 | timer_call_trace_enter_after(call, deadline); |
| 2077 | } |
| 2078 | |
| 2079 | void |
| 2080 | running_timers_sync(void) |
| 2081 | { |
| 2082 | timer_resync_deadlines(); |
| 2083 | } |
| 2084 | |
| 2085 | void |
| 2086 | running_timer_enter(processor_t processor, unsigned int timer, |
| 2087 | void *param, uint64_t deadline, uint64_t now) |
| 2088 | { |
| 2089 | running_timer_setup(processor, timer, param, deadline, now); |
| 2090 | running_timers_sync(); |
| 2091 | } |
| 2092 | |
| 2093 | /* |
| 2094 | * Call the callback for any running timers that fired for this processor. |
| 2095 | * Returns true if any timers were past their deadline. |
| 2096 | */ |
| 2097 | bool |
| 2098 | running_timers_expire(processor_t processor, uint64_t now) |
| 2099 | { |
| 2100 | bool expired = false; |
| 2101 | |
| 2102 | if (!processor->running_timers_active) { |
| 2103 | return expired; |
| 2104 | } |
| 2105 | |
| 2106 | for (int i = 0; i < RUNNING_TIMER_MAX; i++) { |
| 2107 | struct timer_call *call = &processor->running_timers[i]; |
| 2108 | |
| 2109 | uint64_t deadline = call->tc_pqlink.deadline; |
| 2110 | if (deadline > now) { |
| 2111 | continue; |
| 2112 | } |
| 2113 | |
| 2114 | expired = true; |
| 2115 | timer_call_trace_expire_entry(call); |
| 2116 | call->tc_func(call->tc_param0, call->tc_param1); |
| 2117 | timer_call_trace_expire_return(call); |
| 2118 | } |
| 2119 | |
| 2120 | return expired; |
| 2121 | } |
| 2122 | |
| 2123 | void |
| 2124 | running_timer_clear(processor_t processor, enum running_timer timer) |
| 2125 | { |
| 2126 | struct timer_call *call = &processor->running_timers[timer]; |
| 2127 | uint64_t deadline = call->tc_pqlink.deadline; |
| 2128 | if (deadline == EndOfAllTime) { |
| 2129 | return; |
| 2130 | } |
| 2131 | |
| 2132 | call->tc_pqlink.deadline = EndOfAllTime; |
| 2133 | #if TIMER_TRACE |
| 2134 | call->tc_entry_time = 0; |
| 2135 | #endif /* TIMER_TRACE */ |
| 2136 | timer_call_trace_cancel(call); |
| 2137 | } |
| 2138 | |
| 2139 | void |
| 2140 | running_timer_cancel(processor_t processor, unsigned int timer) |
| 2141 | { |
| 2142 | running_timer_clear(processor, timer); |
| 2143 | running_timers_sync(); |
| 2144 | } |
| 2145 | |
| 2146 | uint64_t |
| 2147 | running_timers_deadline(processor_t processor) |
| 2148 | { |
| 2149 | if (!processor->running_timers_active) { |
| 2150 | return EndOfAllTime; |
| 2151 | } |
| 2152 | |
| 2153 | uint64_t deadline = EndOfAllTime; |
| 2154 | for (int i = 0; i < RUNNING_TIMER_MAX; i++) { |
| 2155 | uint64_t candidate = |
| 2156 | processor->running_timers[i].tc_pqlink.deadline; |
| 2157 | if (candidate != 0 && candidate < deadline) { |
| 2158 | deadline = candidate; |
| 2159 | } |
| 2160 | } |
| 2161 | |
| 2162 | return deadline; |
| 2163 | } |
| 2164 | |
| 2165 | void |
| 2166 | running_timers_activate(processor_t processor) |
| 2167 | { |
| 2168 | processor->running_timers_active = true; |
| 2169 | running_timers_sync(); |
| 2170 | } |
| 2171 | |
| 2172 | void |
| 2173 | running_timers_deactivate(processor_t processor) |
| 2174 | { |
| 2175 | assert(processor->running_timers_active == true); |
| 2176 | processor->running_timers_active = false; |
| 2177 | running_timers_sync(); |
| 2178 | } |
| 2179 | |