| 1 | /* |
| 2 | * Copyright (c) 2000-2015 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
| 5 | * |
| 6 | * This file contains Original Code and/or Modifications of Original Code |
| 7 | * as defined in and that are subject to the Apple Public Source License |
| 8 | * Version 2.0 (the 'License'). You may not use this file except in |
| 9 | * compliance with the License. The rights granted to you under the License |
| 10 | * may not be used to create, or enable the creation or redistribution of, |
| 11 | * unlawful or unlicensed copies of an Apple operating system, or to |
| 12 | * circumvent, violate, or enable the circumvention or violation of, any |
| 13 | * terms of an Apple operating system software license agreement. |
| 14 | * |
| 15 | * Please obtain a copy of the License at |
| 16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
| 17 | * |
| 18 | * The Original Code and all software distributed under the License are |
| 19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| 23 | * Please see the License for the specific language governing rights and |
| 24 | * limitations under the License. |
| 25 | * |
| 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
| 27 | */ |
| 28 | |
| 29 | #include <mach/mach_types.h> |
| 30 | #include <mach/thread_act_server.h> |
| 31 | |
| 32 | #include <kern/kern_types.h> |
| 33 | #include <kern/processor.h> |
| 34 | #include <kern/thread.h> |
| 35 | #include <kern/affinity.h> |
| 36 | #include <kern/work_interval.h> |
| 37 | #include <mach/task_policy.h> |
| 38 | #include <kern/sfi.h> |
| 39 | #include <kern/policy_internal.h> |
| 40 | #include <sys/errno.h> |
| 41 | #include <sys/ulock.h> |
| 42 | |
| 43 | #include <mach/machine/sdt.h> |
| 44 | |
| 45 | static KALLOC_TYPE_DEFINE(thread_qos_override_zone, |
| 46 | struct thread_qos_override, KT_DEFAULT); |
| 47 | |
| 48 | #ifdef MACH_BSD |
| 49 | extern int proc_selfpid(void); |
| 50 | extern char * proc_name_address(void *p); |
| 51 | extern void rethrottle_thread(void * uthread); |
| 52 | #endif /* MACH_BSD */ |
| 53 | |
| 54 | #define (q) ((q) & 0xff) |
| 55 | |
| 56 | #define QOS_OVERRIDE_MODE_OVERHANG_PEAK 0 |
| 57 | #define QOS_OVERRIDE_MODE_IGNORE_OVERRIDE 1 |
| 58 | #define QOS_OVERRIDE_MODE_FINE_GRAINED_OVERRIDE 2 |
| 59 | #define QOS_OVERRIDE_MODE_FINE_GRAINED_OVERRIDE_BUT_SINGLE_MUTEX_OVERRIDE 3 |
| 60 | |
| 61 | TUNABLE(uint32_t, qos_override_mode, "qos_override_mode" , |
| 62 | QOS_OVERRIDE_MODE_FINE_GRAINED_OVERRIDE_BUT_SINGLE_MUTEX_OVERRIDE); |
| 63 | |
| 64 | static void |
| 65 | proc_thread_qos_remove_override_internal(thread_t thread, user_addr_t resource, int resource_type, boolean_t reset); |
| 66 | |
| 67 | const int thread_default_iotier_override = THROTTLE_LEVEL_END; |
| 68 | |
| 69 | const struct thread_requested_policy default_thread_requested_policy = { |
| 70 | .thrp_iotier_kevent_override = thread_default_iotier_override |
| 71 | }; |
| 72 | |
| 73 | /* |
| 74 | * THREAD_QOS_UNSPECIFIED is assigned the highest tier available, so it does not provide a limit |
| 75 | * to threads that don't have a QoS class set. |
| 76 | */ |
| 77 | const qos_policy_params_t thread_qos_policy_params = { |
| 78 | /* |
| 79 | * This table defines the starting base priority of the thread, |
| 80 | * which will be modified by the thread importance and the task max priority |
| 81 | * before being applied. |
| 82 | */ |
| 83 | .qos_pri[THREAD_QOS_UNSPECIFIED] = 0, /* not consulted */ |
| 84 | .qos_pri[THREAD_QOS_USER_INTERACTIVE] = BASEPRI_BACKGROUND, /* i.e. 46 */ |
| 85 | .qos_pri[THREAD_QOS_USER_INITIATED] = BASEPRI_USER_INITIATED, |
| 86 | .qos_pri[THREAD_QOS_LEGACY] = BASEPRI_DEFAULT, |
| 87 | .qos_pri[THREAD_QOS_UTILITY] = BASEPRI_UTILITY, |
| 88 | .qos_pri[THREAD_QOS_BACKGROUND] = MAXPRI_THROTTLE, |
| 89 | .qos_pri[THREAD_QOS_MAINTENANCE] = MAXPRI_THROTTLE, |
| 90 | |
| 91 | /* |
| 92 | * This table defines the highest IO priority that a thread marked with this |
| 93 | * QoS class can have. |
| 94 | */ |
| 95 | .qos_iotier[THREAD_QOS_UNSPECIFIED] = THROTTLE_LEVEL_TIER0, |
| 96 | .qos_iotier[THREAD_QOS_USER_INTERACTIVE] = THROTTLE_LEVEL_TIER0, |
| 97 | .qos_iotier[THREAD_QOS_USER_INITIATED] = THROTTLE_LEVEL_TIER0, |
| 98 | .qos_iotier[THREAD_QOS_LEGACY] = THROTTLE_LEVEL_TIER0, |
| 99 | .qos_iotier[THREAD_QOS_UTILITY] = THROTTLE_LEVEL_TIER1, |
| 100 | .qos_iotier[THREAD_QOS_BACKGROUND] = THROTTLE_LEVEL_TIER2, /* possibly overridden by bg_iotier */ |
| 101 | .qos_iotier[THREAD_QOS_MAINTENANCE] = THROTTLE_LEVEL_TIER3, |
| 102 | |
| 103 | /* |
| 104 | * This table defines the highest QoS level that |
| 105 | * a thread marked with this QoS class can have. |
| 106 | */ |
| 107 | |
| 108 | .qos_through_qos[THREAD_QOS_UNSPECIFIED] = QOS_EXTRACT(THROUGHPUT_QOS_TIER_UNSPECIFIED), |
| 109 | .qos_through_qos[THREAD_QOS_USER_INTERACTIVE] = QOS_EXTRACT(THROUGHPUT_QOS_TIER_0), |
| 110 | .qos_through_qos[THREAD_QOS_USER_INITIATED] = QOS_EXTRACT(THROUGHPUT_QOS_TIER_1), |
| 111 | .qos_through_qos[THREAD_QOS_LEGACY] = QOS_EXTRACT(THROUGHPUT_QOS_TIER_1), |
| 112 | .qos_through_qos[THREAD_QOS_UTILITY] = QOS_EXTRACT(THROUGHPUT_QOS_TIER_2), |
| 113 | .qos_through_qos[THREAD_QOS_BACKGROUND] = QOS_EXTRACT(THROUGHPUT_QOS_TIER_5), |
| 114 | .qos_through_qos[THREAD_QOS_MAINTENANCE] = QOS_EXTRACT(THROUGHPUT_QOS_TIER_5), |
| 115 | |
| 116 | .qos_latency_qos[THREAD_QOS_UNSPECIFIED] = QOS_EXTRACT(LATENCY_QOS_TIER_UNSPECIFIED), |
| 117 | .qos_latency_qos[THREAD_QOS_USER_INTERACTIVE] = QOS_EXTRACT(LATENCY_QOS_TIER_0), |
| 118 | .qos_latency_qos[THREAD_QOS_USER_INITIATED] = QOS_EXTRACT(LATENCY_QOS_TIER_1), |
| 119 | .qos_latency_qos[THREAD_QOS_LEGACY] = QOS_EXTRACT(LATENCY_QOS_TIER_1), |
| 120 | .qos_latency_qos[THREAD_QOS_UTILITY] = QOS_EXTRACT(LATENCY_QOS_TIER_3), |
| 121 | .qos_latency_qos[THREAD_QOS_BACKGROUND] = QOS_EXTRACT(LATENCY_QOS_TIER_3), |
| 122 | .qos_latency_qos[THREAD_QOS_MAINTENANCE] = QOS_EXTRACT(LATENCY_QOS_TIER_3), |
| 123 | }; |
| 124 | |
| 125 | static void |
| 126 | thread_set_user_sched_mode_and_recompute_pri(thread_t thread, sched_mode_t mode); |
| 127 | |
| 128 | static int |
| 129 | thread_qos_scaled_relative_priority(int qos, int qos_relprio); |
| 130 | |
| 131 | static void |
| 132 | proc_get_thread_policy_bitfield(thread_t thread, thread_policy_state_t info); |
| 133 | |
| 134 | static void |
| 135 | proc_set_thread_policy_locked(thread_t thread, int category, int flavor, int value, int value2, task_pend_token_t pend_token); |
| 136 | |
| 137 | static void |
| 138 | proc_set_thread_policy_spinlocked(thread_t thread, int category, int flavor, int value, int value2, task_pend_token_t pend_token); |
| 139 | |
| 140 | static void |
| 141 | thread_set_requested_policy_spinlocked(thread_t thread, int category, int flavor, int value, int value2, task_pend_token_t pend_token); |
| 142 | |
| 143 | static int |
| 144 | thread_get_requested_policy_spinlocked(thread_t thread, int category, int flavor, int* value2); |
| 145 | |
| 146 | static int |
| 147 | proc_get_thread_policy_locked(thread_t thread, int category, int flavor, int* value2); |
| 148 | |
| 149 | static void |
| 150 | thread_policy_update_spinlocked(thread_t thread, bool recompute_priority, task_pend_token_t pend_token); |
| 151 | |
| 152 | static void |
| 153 | thread_policy_update_internal_spinlocked(thread_t thread, bool recompute_priority, task_pend_token_t pend_token); |
| 154 | |
| 155 | boolean_t |
| 156 | thread_has_qos_policy(thread_t thread) |
| 157 | { |
| 158 | return (proc_get_thread_policy(thread, TASK_POLICY_ATTRIBUTE, TASK_POLICY_QOS) != THREAD_QOS_UNSPECIFIED) ? TRUE : FALSE; |
| 159 | } |
| 160 | |
| 161 | |
| 162 | static void |
| 163 | thread_remove_qos_policy_locked(thread_t thread, |
| 164 | task_pend_token_t pend_token) |
| 165 | { |
| 166 | __unused int prev_qos = thread->requested_policy.thrp_qos; |
| 167 | |
| 168 | DTRACE_PROC2(qos__remove, thread_t, thread, int, prev_qos); |
| 169 | |
| 170 | proc_set_thread_policy_locked(thread, TASK_POLICY_ATTRIBUTE, TASK_POLICY_QOS_AND_RELPRIO, |
| 171 | THREAD_QOS_UNSPECIFIED, value2: 0, pend_token); |
| 172 | } |
| 173 | |
| 174 | kern_return_t |
| 175 | thread_remove_qos_policy(thread_t thread) |
| 176 | { |
| 177 | struct task_pend_token pend_token = {}; |
| 178 | |
| 179 | thread_mtx_lock(thread); |
| 180 | if (!thread->active) { |
| 181 | thread_mtx_unlock(thread); |
| 182 | return KERN_TERMINATED; |
| 183 | } |
| 184 | |
| 185 | thread_remove_qos_policy_locked(thread, pend_token: &pend_token); |
| 186 | |
| 187 | thread_mtx_unlock(thread); |
| 188 | |
| 189 | thread_policy_update_complete_unlocked(task: thread, pend_token: &pend_token); |
| 190 | |
| 191 | return KERN_SUCCESS; |
| 192 | } |
| 193 | |
| 194 | |
| 195 | boolean_t |
| 196 | thread_is_static_param(thread_t thread) |
| 197 | { |
| 198 | if (thread->static_param) { |
| 199 | DTRACE_PROC1(qos__legacy__denied, thread_t, thread); |
| 200 | return TRUE; |
| 201 | } |
| 202 | return FALSE; |
| 203 | } |
| 204 | |
| 205 | /* |
| 206 | * Relative priorities can range between 0REL and -15REL. These |
| 207 | * map to QoS-specific ranges, to create non-overlapping priority |
| 208 | * ranges. |
| 209 | */ |
| 210 | static int |
| 211 | thread_qos_scaled_relative_priority(int qos, int qos_relprio) |
| 212 | { |
| 213 | int next_lower_qos; |
| 214 | |
| 215 | /* Fast path, since no validation or scaling is needed */ |
| 216 | if (qos_relprio == 0) { |
| 217 | return 0; |
| 218 | } |
| 219 | |
| 220 | switch (qos) { |
| 221 | case THREAD_QOS_USER_INTERACTIVE: |
| 222 | next_lower_qos = THREAD_QOS_USER_INITIATED; |
| 223 | break; |
| 224 | case THREAD_QOS_USER_INITIATED: |
| 225 | next_lower_qos = THREAD_QOS_LEGACY; |
| 226 | break; |
| 227 | case THREAD_QOS_LEGACY: |
| 228 | next_lower_qos = THREAD_QOS_UTILITY; |
| 229 | break; |
| 230 | case THREAD_QOS_UTILITY: |
| 231 | next_lower_qos = THREAD_QOS_BACKGROUND; |
| 232 | break; |
| 233 | case THREAD_QOS_MAINTENANCE: |
| 234 | case THREAD_QOS_BACKGROUND: |
| 235 | next_lower_qos = 0; |
| 236 | break; |
| 237 | default: |
| 238 | panic("Unrecognized QoS %d" , qos); |
| 239 | return 0; |
| 240 | } |
| 241 | |
| 242 | int prio_range_max = thread_qos_policy_params.qos_pri[qos]; |
| 243 | int prio_range_min = next_lower_qos ? thread_qos_policy_params.qos_pri[next_lower_qos] : 0; |
| 244 | |
| 245 | /* |
| 246 | * We now have the valid range that the scaled relative priority can map to. Note |
| 247 | * that the lower bound is exclusive, but the upper bound is inclusive. If the |
| 248 | * range is (21,31], 0REL should map to 31 and -15REL should map to 22. We use the |
| 249 | * fact that the max relative priority is -15 and use ">>4" to divide by 16 and discard |
| 250 | * remainder. |
| 251 | */ |
| 252 | int scaled_relprio = -(((prio_range_max - prio_range_min) * (-qos_relprio)) >> 4); |
| 253 | |
| 254 | return scaled_relprio; |
| 255 | } |
| 256 | |
| 257 | /* |
| 258 | * flag set by -qos-policy-allow boot-arg to allow |
| 259 | * testing thread qos policy from userspace |
| 260 | */ |
| 261 | static TUNABLE(bool, allow_qos_policy_set, "-qos-policy-allow" , false); |
| 262 | |
| 263 | kern_return_t |
| 264 | thread_policy_set( |
| 265 | thread_t thread, |
| 266 | thread_policy_flavor_t flavor, |
| 267 | thread_policy_t policy_info, |
| 268 | mach_msg_type_number_t count) |
| 269 | { |
| 270 | thread_qos_policy_data_t req_qos; |
| 271 | kern_return_t kr; |
| 272 | |
| 273 | req_qos.qos_tier = THREAD_QOS_UNSPECIFIED; |
| 274 | |
| 275 | if (thread == THREAD_NULL) { |
| 276 | return KERN_INVALID_ARGUMENT; |
| 277 | } |
| 278 | |
| 279 | if (!allow_qos_policy_set) { |
| 280 | if (thread_is_static_param(thread)) { |
| 281 | return KERN_POLICY_STATIC; |
| 282 | } |
| 283 | |
| 284 | if (flavor == THREAD_QOS_POLICY) { |
| 285 | return KERN_INVALID_ARGUMENT; |
| 286 | } |
| 287 | |
| 288 | if (flavor == THREAD_TIME_CONSTRAINT_WITH_PRIORITY_POLICY) { |
| 289 | if (count < THREAD_TIME_CONSTRAINT_WITH_PRIORITY_POLICY_COUNT) { |
| 290 | return KERN_INVALID_ARGUMENT; |
| 291 | } |
| 292 | thread_time_constraint_with_priority_policy_t info = (thread_time_constraint_with_priority_policy_t)policy_info; |
| 293 | if (info->priority != BASEPRI_RTQUEUES) { |
| 294 | return KERN_INVALID_ARGUMENT; |
| 295 | } |
| 296 | } |
| 297 | } |
| 298 | |
| 299 | if (flavor == THREAD_TIME_CONSTRAINT_POLICY || flavor == THREAD_TIME_CONSTRAINT_WITH_PRIORITY_POLICY) { |
| 300 | thread_work_interval_flags_t th_wi_flags = os_atomic_load( |
| 301 | &thread->th_work_interval_flags, relaxed); |
| 302 | if ((th_wi_flags & TH_WORK_INTERVAL_FLAGS_HAS_WORKLOAD_ID) && |
| 303 | !(th_wi_flags & TH_WORK_INTERVAL_FLAGS_RT_ALLOWED)) { |
| 304 | /* Fail requests to become realtime for threads having joined workintervals |
| 305 | * with workload ID that don't have the rt-allowed flag. */ |
| 306 | return KERN_INVALID_POLICY; |
| 307 | } |
| 308 | } |
| 309 | |
| 310 | /* Threads without static_param set reset their QoS when other policies are applied. */ |
| 311 | if (thread->requested_policy.thrp_qos != THREAD_QOS_UNSPECIFIED) { |
| 312 | /* Store the existing tier, if we fail this call it is used to reset back. */ |
| 313 | req_qos.qos_tier = thread->requested_policy.thrp_qos; |
| 314 | req_qos.tier_importance = thread->requested_policy.thrp_qos_relprio; |
| 315 | |
| 316 | kr = thread_remove_qos_policy(thread); |
| 317 | if (kr != KERN_SUCCESS) { |
| 318 | return kr; |
| 319 | } |
| 320 | } |
| 321 | |
| 322 | kr = thread_policy_set_internal(thread, flavor, policy_info, count); |
| 323 | |
| 324 | if (req_qos.qos_tier != THREAD_QOS_UNSPECIFIED) { |
| 325 | if (kr != KERN_SUCCESS) { |
| 326 | /* Reset back to our original tier as the set failed. */ |
| 327 | (void)thread_policy_set_internal(thread, THREAD_QOS_POLICY, policy_info: (thread_policy_t)&req_qos, THREAD_QOS_POLICY_COUNT); |
| 328 | } |
| 329 | } |
| 330 | |
| 331 | return kr; |
| 332 | } |
| 333 | |
| 334 | static_assert(offsetof(thread_time_constraint_with_priority_policy_data_t, period) == offsetof(thread_time_constraint_policy_data_t, period)); |
| 335 | static_assert(offsetof(thread_time_constraint_with_priority_policy_data_t, computation) == offsetof(thread_time_constraint_policy_data_t, computation)); |
| 336 | static_assert(offsetof(thread_time_constraint_with_priority_policy_data_t, constraint) == offsetof(thread_time_constraint_policy_data_t, constraint)); |
| 337 | static_assert(offsetof(thread_time_constraint_with_priority_policy_data_t, preemptible) == offsetof(thread_time_constraint_policy_data_t, preemptible)); |
| 338 | |
| 339 | kern_return_t |
| 340 | thread_policy_set_internal( |
| 341 | thread_t thread, |
| 342 | thread_policy_flavor_t flavor, |
| 343 | thread_policy_t policy_info, |
| 344 | mach_msg_type_number_t count) |
| 345 | { |
| 346 | kern_return_t result = KERN_SUCCESS; |
| 347 | struct task_pend_token pend_token = {}; |
| 348 | |
| 349 | thread_mtx_lock(thread); |
| 350 | if (!thread->active) { |
| 351 | thread_mtx_unlock(thread); |
| 352 | |
| 353 | return KERN_TERMINATED; |
| 354 | } |
| 355 | |
| 356 | switch (flavor) { |
| 357 | case THREAD_EXTENDED_POLICY: |
| 358 | { |
| 359 | boolean_t timeshare = TRUE; |
| 360 | |
| 361 | if (count >= THREAD_EXTENDED_POLICY_COUNT) { |
| 362 | thread_extended_policy_t info; |
| 363 | |
| 364 | info = (thread_extended_policy_t)policy_info; |
| 365 | timeshare = info->timeshare; |
| 366 | } |
| 367 | |
| 368 | sched_mode_t mode = (timeshare == TRUE) ? TH_MODE_TIMESHARE : TH_MODE_FIXED; |
| 369 | |
| 370 | spl_t s = splsched(); |
| 371 | thread_lock(thread); |
| 372 | |
| 373 | thread_set_user_sched_mode_and_recompute_pri(thread, mode); |
| 374 | |
| 375 | thread_unlock(thread); |
| 376 | splx(s); |
| 377 | |
| 378 | /* |
| 379 | * The thread may be demoted with RT_DISALLOWED but has just |
| 380 | * changed its sched mode to TIMESHARE or FIXED. Make sure to |
| 381 | * undemote the thread so the new sched mode takes effect. |
| 382 | */ |
| 383 | thread_rt_evaluate(thread); |
| 384 | |
| 385 | pend_token.tpt_update_thread_sfi = 1; |
| 386 | |
| 387 | break; |
| 388 | } |
| 389 | |
| 390 | case THREAD_TIME_CONSTRAINT_POLICY: |
| 391 | case THREAD_TIME_CONSTRAINT_WITH_PRIORITY_POLICY: |
| 392 | { |
| 393 | thread_time_constraint_with_priority_policy_t info; |
| 394 | |
| 395 | mach_msg_type_number_t min_count = (flavor == THREAD_TIME_CONSTRAINT_POLICY ? |
| 396 | THREAD_TIME_CONSTRAINT_POLICY_COUNT : |
| 397 | THREAD_TIME_CONSTRAINT_WITH_PRIORITY_POLICY_COUNT); |
| 398 | |
| 399 | if (count < min_count) { |
| 400 | result = KERN_INVALID_ARGUMENT; |
| 401 | break; |
| 402 | } |
| 403 | |
| 404 | info = (thread_time_constraint_with_priority_policy_t)policy_info; |
| 405 | |
| 406 | |
| 407 | if (info->constraint < info->computation || |
| 408 | info->computation > max_rt_quantum || |
| 409 | info->computation < min_rt_quantum) { |
| 410 | result = KERN_INVALID_ARGUMENT; |
| 411 | break; |
| 412 | } |
| 413 | |
| 414 | if (info->computation < (info->constraint / 2)) { |
| 415 | info->computation = (info->constraint / 2); |
| 416 | if (info->computation > max_rt_quantum) { |
| 417 | info->computation = max_rt_quantum; |
| 418 | } |
| 419 | } |
| 420 | |
| 421 | if (flavor == THREAD_TIME_CONSTRAINT_WITH_PRIORITY_POLICY) { |
| 422 | if ((info->priority < BASEPRI_RTQUEUES) || (info->priority > MAXPRI)) { |
| 423 | result = KERN_INVALID_ARGUMENT; |
| 424 | break; |
| 425 | } |
| 426 | } |
| 427 | |
| 428 | spl_t s = splsched(); |
| 429 | thread_lock(thread); |
| 430 | |
| 431 | thread->realtime.period = info->period; |
| 432 | thread->realtime.computation = info->computation; |
| 433 | thread->realtime.constraint = info->constraint; |
| 434 | thread->realtime.preemptible = info->preemptible; |
| 435 | |
| 436 | /* |
| 437 | * If the thread has a work interval driven policy, the priority |
| 438 | * offset has been set by the work interval. |
| 439 | */ |
| 440 | if (!thread->requested_policy.thrp_wi_driven) { |
| 441 | if (flavor == THREAD_TIME_CONSTRAINT_WITH_PRIORITY_POLICY) { |
| 442 | thread->realtime.priority_offset = (uint8_t)(info->priority - BASEPRI_RTQUEUES); |
| 443 | } else { |
| 444 | thread->realtime.priority_offset = 0; |
| 445 | } |
| 446 | } |
| 447 | |
| 448 | thread_set_user_sched_mode_and_recompute_pri(thread, mode: TH_MODE_REALTIME); |
| 449 | |
| 450 | thread_unlock(thread); |
| 451 | splx(s); |
| 452 | |
| 453 | thread_rt_evaluate(thread); |
| 454 | |
| 455 | pend_token.tpt_update_thread_sfi = 1; |
| 456 | |
| 457 | break; |
| 458 | } |
| 459 | |
| 460 | case THREAD_PRECEDENCE_POLICY: |
| 461 | { |
| 462 | thread_precedence_policy_t info; |
| 463 | |
| 464 | if (count < THREAD_PRECEDENCE_POLICY_COUNT) { |
| 465 | result = KERN_INVALID_ARGUMENT; |
| 466 | break; |
| 467 | } |
| 468 | info = (thread_precedence_policy_t)policy_info; |
| 469 | |
| 470 | spl_t s = splsched(); |
| 471 | thread_lock(thread); |
| 472 | |
| 473 | thread->importance = info->importance; |
| 474 | |
| 475 | thread_recompute_priority(thread); |
| 476 | |
| 477 | thread_unlock(thread); |
| 478 | splx(s); |
| 479 | |
| 480 | break; |
| 481 | } |
| 482 | |
| 483 | case THREAD_AFFINITY_POLICY: |
| 484 | { |
| 485 | extern boolean_t affinity_sets_enabled; |
| 486 | thread_affinity_policy_t info; |
| 487 | |
| 488 | if (!affinity_sets_enabled) { |
| 489 | result = KERN_INVALID_POLICY; |
| 490 | break; |
| 491 | } |
| 492 | |
| 493 | if (!thread_affinity_is_supported()) { |
| 494 | result = KERN_NOT_SUPPORTED; |
| 495 | break; |
| 496 | } |
| 497 | if (count < THREAD_AFFINITY_POLICY_COUNT) { |
| 498 | result = KERN_INVALID_ARGUMENT; |
| 499 | break; |
| 500 | } |
| 501 | |
| 502 | info = (thread_affinity_policy_t) policy_info; |
| 503 | /* |
| 504 | * Unlock the thread mutex here and |
| 505 | * return directly after calling thread_affinity_set(). |
| 506 | * This is necessary for correct lock ordering because |
| 507 | * thread_affinity_set() takes the task lock. |
| 508 | */ |
| 509 | thread_mtx_unlock(thread); |
| 510 | return thread_affinity_set(thread, tag: info->affinity_tag); |
| 511 | } |
| 512 | |
| 513 | #if !defined(XNU_TARGET_OS_OSX) |
| 514 | case THREAD_BACKGROUND_POLICY: |
| 515 | { |
| 516 | thread_background_policy_t info; |
| 517 | |
| 518 | if (count < THREAD_BACKGROUND_POLICY_COUNT) { |
| 519 | result = KERN_INVALID_ARGUMENT; |
| 520 | break; |
| 521 | } |
| 522 | |
| 523 | if (get_threadtask(thread) != current_task()) { |
| 524 | result = KERN_PROTECTION_FAILURE; |
| 525 | break; |
| 526 | } |
| 527 | |
| 528 | info = (thread_background_policy_t) policy_info; |
| 529 | |
| 530 | int enable; |
| 531 | |
| 532 | if (info->priority == THREAD_BACKGROUND_POLICY_DARWIN_BG) { |
| 533 | enable = TASK_POLICY_ENABLE; |
| 534 | } else { |
| 535 | enable = TASK_POLICY_DISABLE; |
| 536 | } |
| 537 | |
| 538 | int category = (current_thread() == thread) ? TASK_POLICY_INTERNAL : TASK_POLICY_EXTERNAL; |
| 539 | |
| 540 | proc_set_thread_policy_locked(thread, category, TASK_POLICY_DARWIN_BG, enable, 0, &pend_token); |
| 541 | |
| 542 | break; |
| 543 | } |
| 544 | #endif /* !defined(XNU_TARGET_OS_OSX) */ |
| 545 | |
| 546 | case THREAD_THROUGHPUT_QOS_POLICY: |
| 547 | { |
| 548 | thread_throughput_qos_policy_t info = (thread_throughput_qos_policy_t) policy_info; |
| 549 | thread_throughput_qos_t tqos; |
| 550 | |
| 551 | if (count < THREAD_THROUGHPUT_QOS_POLICY_COUNT) { |
| 552 | result = KERN_INVALID_ARGUMENT; |
| 553 | break; |
| 554 | } |
| 555 | |
| 556 | if ((result = qos_throughput_policy_validate(info->thread_throughput_qos_tier)) != KERN_SUCCESS) { |
| 557 | break; |
| 558 | } |
| 559 | |
| 560 | tqos = qos_extract(info->thread_throughput_qos_tier); |
| 561 | |
| 562 | proc_set_thread_policy_locked(thread, TASK_POLICY_ATTRIBUTE, |
| 563 | TASK_POLICY_THROUGH_QOS, value: tqos, value2: 0, pend_token: &pend_token); |
| 564 | |
| 565 | break; |
| 566 | } |
| 567 | |
| 568 | case THREAD_LATENCY_QOS_POLICY: |
| 569 | { |
| 570 | thread_latency_qos_policy_t info = (thread_latency_qos_policy_t) policy_info; |
| 571 | thread_latency_qos_t lqos; |
| 572 | |
| 573 | if (count < THREAD_LATENCY_QOS_POLICY_COUNT) { |
| 574 | result = KERN_INVALID_ARGUMENT; |
| 575 | break; |
| 576 | } |
| 577 | |
| 578 | if ((result = qos_latency_policy_validate(info->thread_latency_qos_tier)) != KERN_SUCCESS) { |
| 579 | break; |
| 580 | } |
| 581 | |
| 582 | lqos = qos_extract(info->thread_latency_qos_tier); |
| 583 | |
| 584 | proc_set_thread_policy_locked(thread, TASK_POLICY_ATTRIBUTE, |
| 585 | TASK_POLICY_LATENCY_QOS, value: lqos, value2: 0, pend_token: &pend_token); |
| 586 | |
| 587 | break; |
| 588 | } |
| 589 | |
| 590 | case THREAD_QOS_POLICY: |
| 591 | { |
| 592 | thread_qos_policy_t info = (thread_qos_policy_t)policy_info; |
| 593 | |
| 594 | if (count < THREAD_QOS_POLICY_COUNT) { |
| 595 | result = KERN_INVALID_ARGUMENT; |
| 596 | break; |
| 597 | } |
| 598 | |
| 599 | if (info->qos_tier < 0 || info->qos_tier >= THREAD_QOS_LAST) { |
| 600 | result = KERN_INVALID_ARGUMENT; |
| 601 | break; |
| 602 | } |
| 603 | |
| 604 | if (info->tier_importance > 0 || info->tier_importance < THREAD_QOS_MIN_TIER_IMPORTANCE) { |
| 605 | result = KERN_INVALID_ARGUMENT; |
| 606 | break; |
| 607 | } |
| 608 | |
| 609 | if (info->qos_tier == THREAD_QOS_UNSPECIFIED && info->tier_importance != 0) { |
| 610 | result = KERN_INVALID_ARGUMENT; |
| 611 | break; |
| 612 | } |
| 613 | |
| 614 | proc_set_thread_policy_locked(thread, TASK_POLICY_ATTRIBUTE, TASK_POLICY_QOS_AND_RELPRIO, |
| 615 | value: info->qos_tier, value2: -info->tier_importance, pend_token: &pend_token); |
| 616 | |
| 617 | break; |
| 618 | } |
| 619 | |
| 620 | default: |
| 621 | result = KERN_INVALID_ARGUMENT; |
| 622 | break; |
| 623 | } |
| 624 | |
| 625 | thread_mtx_unlock(thread); |
| 626 | |
| 627 | thread_policy_update_complete_unlocked(task: thread, pend_token: &pend_token); |
| 628 | |
| 629 | return result; |
| 630 | } |
| 631 | |
| 632 | /* |
| 633 | * Note that there is no implemented difference between POLICY_RR and POLICY_FIFO. |
| 634 | * Both result in FIXED mode scheduling. |
| 635 | */ |
| 636 | static sched_mode_t |
| 637 | convert_policy_to_sched_mode(integer_t policy) |
| 638 | { |
| 639 | switch (policy) { |
| 640 | case POLICY_TIMESHARE: |
| 641 | return TH_MODE_TIMESHARE; |
| 642 | case POLICY_RR: |
| 643 | case POLICY_FIFO: |
| 644 | return TH_MODE_FIXED; |
| 645 | default: |
| 646 | panic("unexpected sched policy: %d" , policy); |
| 647 | return TH_MODE_NONE; |
| 648 | } |
| 649 | } |
| 650 | |
| 651 | /* |
| 652 | * Called either with the thread mutex locked |
| 653 | * or from the pthread kext in a 'safe place'. |
| 654 | */ |
| 655 | static kern_return_t |
| 656 | thread_set_mode_and_absolute_pri_internal(thread_t thread, |
| 657 | sched_mode_t mode, |
| 658 | integer_t priority, |
| 659 | task_pend_token_t pend_token) |
| 660 | { |
| 661 | kern_return_t kr = KERN_SUCCESS; |
| 662 | |
| 663 | spl_t s = splsched(); |
| 664 | thread_lock(thread); |
| 665 | |
| 666 | /* This path isn't allowed to change a thread out of realtime. */ |
| 667 | if ((thread->sched_mode == TH_MODE_REALTIME) || |
| 668 | (thread->saved_mode == TH_MODE_REALTIME)) { |
| 669 | kr = KERN_FAILURE; |
| 670 | goto unlock; |
| 671 | } |
| 672 | |
| 673 | if (thread->policy_reset) { |
| 674 | kr = KERN_SUCCESS; |
| 675 | goto unlock; |
| 676 | } |
| 677 | |
| 678 | sched_mode_t old_mode = thread->sched_mode; |
| 679 | integer_t old_base_pri = thread->base_pri; |
| 680 | integer_t old_sched_pri = thread->sched_pri; |
| 681 | |
| 682 | /* |
| 683 | * Reverse engineer and apply the correct importance value |
| 684 | * from the requested absolute priority value. |
| 685 | * |
| 686 | * TODO: Store the absolute priority value instead |
| 687 | */ |
| 688 | |
| 689 | if (priority >= thread->max_priority) { |
| 690 | priority = thread->max_priority - thread->task_priority; |
| 691 | } else if (priority >= MINPRI_KERNEL) { |
| 692 | priority -= MINPRI_KERNEL; |
| 693 | } else if (priority >= MINPRI_RESERVED) { |
| 694 | priority -= MINPRI_RESERVED; |
| 695 | } else { |
| 696 | priority -= BASEPRI_DEFAULT; |
| 697 | } |
| 698 | |
| 699 | priority += thread->task_priority; |
| 700 | |
| 701 | if (priority > thread->max_priority) { |
| 702 | priority = thread->max_priority; |
| 703 | } else if (priority < MINPRI) { |
| 704 | priority = MINPRI; |
| 705 | } |
| 706 | |
| 707 | thread->importance = priority - thread->task_priority; |
| 708 | |
| 709 | thread_set_user_sched_mode_and_recompute_pri(thread, mode); |
| 710 | |
| 711 | if (mode != old_mode) { |
| 712 | pend_token->tpt_update_thread_sfi = 1; |
| 713 | } |
| 714 | |
| 715 | if (thread->base_pri != old_base_pri || |
| 716 | thread->sched_pri != old_sched_pri) { |
| 717 | pend_token->tpt_update_turnstile = 1; |
| 718 | } |
| 719 | |
| 720 | unlock: |
| 721 | thread_unlock(thread); |
| 722 | splx(s); |
| 723 | |
| 724 | return kr; |
| 725 | } |
| 726 | |
| 727 | void |
| 728 | thread_freeze_base_pri(thread_t thread) |
| 729 | { |
| 730 | assert(thread == current_thread()); |
| 731 | |
| 732 | spl_t s = splsched(); |
| 733 | thread_lock(thread); |
| 734 | |
| 735 | assert((thread->sched_flags & TH_SFLAG_BASE_PRI_FROZEN) == 0); |
| 736 | thread->sched_flags |= TH_SFLAG_BASE_PRI_FROZEN; |
| 737 | |
| 738 | thread_unlock(thread); |
| 739 | splx(s); |
| 740 | } |
| 741 | |
| 742 | bool |
| 743 | thread_unfreeze_base_pri(thread_t thread) |
| 744 | { |
| 745 | assert(thread == current_thread()); |
| 746 | integer_t base_pri; |
| 747 | ast_t ast = 0; |
| 748 | |
| 749 | spl_t s = splsched(); |
| 750 | thread_lock(thread); |
| 751 | |
| 752 | assert(thread->sched_flags & TH_SFLAG_BASE_PRI_FROZEN); |
| 753 | thread->sched_flags &= ~TH_SFLAG_BASE_PRI_FROZEN; |
| 754 | |
| 755 | base_pri = thread->req_base_pri; |
| 756 | if (base_pri != thread->base_pri) { |
| 757 | /* |
| 758 | * This function returns "true" if the base pri change |
| 759 | * is the most likely cause for the preemption. |
| 760 | */ |
| 761 | sched_set_thread_base_priority(thread, priority: base_pri); |
| 762 | ast = ast_peek(AST_PREEMPT); |
| 763 | } |
| 764 | |
| 765 | thread_unlock(thread); |
| 766 | splx(s); |
| 767 | |
| 768 | return ast != 0; |
| 769 | } |
| 770 | |
| 771 | uint8_t |
| 772 | thread_workq_pri_for_qos(thread_qos_t qos) |
| 773 | { |
| 774 | assert(qos < THREAD_QOS_LAST); |
| 775 | return (uint8_t)thread_qos_policy_params.qos_pri[qos]; |
| 776 | } |
| 777 | |
| 778 | thread_qos_t |
| 779 | thread_workq_qos_for_pri(int priority) |
| 780 | { |
| 781 | thread_qos_t qos; |
| 782 | if (priority > thread_qos_policy_params.qos_pri[THREAD_QOS_USER_INTERACTIVE]) { |
| 783 | // indicate that workq should map >UI threads to workq's |
| 784 | // internal notation for above-UI work. |
| 785 | return THREAD_QOS_UNSPECIFIED; |
| 786 | } |
| 787 | for (qos = THREAD_QOS_USER_INTERACTIVE; qos > THREAD_QOS_MAINTENANCE; qos--) { |
| 788 | // map a given priority up to the next nearest qos band. |
| 789 | if (thread_qos_policy_params.qos_pri[qos - 1] < priority) { |
| 790 | return qos; |
| 791 | } |
| 792 | } |
| 793 | return THREAD_QOS_MAINTENANCE; |
| 794 | } |
| 795 | |
| 796 | /* |
| 797 | * private interface for pthread workqueues |
| 798 | * |
| 799 | * Set scheduling policy & absolute priority for thread |
| 800 | * May be called with spinlocks held |
| 801 | * Thread mutex lock is not held |
| 802 | */ |
| 803 | void |
| 804 | thread_reset_workq_qos(thread_t thread, uint32_t qos) |
| 805 | { |
| 806 | struct task_pend_token pend_token = {}; |
| 807 | |
| 808 | assert(qos < THREAD_QOS_LAST); |
| 809 | |
| 810 | spl_t s = splsched(); |
| 811 | thread_lock(thread); |
| 812 | |
| 813 | proc_set_thread_policy_spinlocked(thread, TASK_POLICY_ATTRIBUTE, |
| 814 | TASK_POLICY_QOS_AND_RELPRIO, value: qos, value2: 0, pend_token: &pend_token); |
| 815 | proc_set_thread_policy_spinlocked(thread, TASK_POLICY_ATTRIBUTE, |
| 816 | TASK_POLICY_QOS_WORKQ_OVERRIDE, THREAD_QOS_UNSPECIFIED, value2: 0, |
| 817 | pend_token: &pend_token); |
| 818 | |
| 819 | assert(pend_token.tpt_update_sockets == 0); |
| 820 | |
| 821 | thread_unlock(thread); |
| 822 | splx(s); |
| 823 | |
| 824 | thread_policy_update_complete_unlocked(task: thread, pend_token: &pend_token); |
| 825 | } |
| 826 | |
| 827 | /* |
| 828 | * private interface for pthread workqueues |
| 829 | * |
| 830 | * Set scheduling policy & absolute priority for thread |
| 831 | * May be called with spinlocks held |
| 832 | * Thread mutex lock is held |
| 833 | */ |
| 834 | void |
| 835 | thread_set_workq_override(thread_t thread, uint32_t qos) |
| 836 | { |
| 837 | struct task_pend_token pend_token = {}; |
| 838 | |
| 839 | assert(qos < THREAD_QOS_LAST); |
| 840 | |
| 841 | spl_t s = splsched(); |
| 842 | thread_lock(thread); |
| 843 | |
| 844 | proc_set_thread_policy_spinlocked(thread, TASK_POLICY_ATTRIBUTE, |
| 845 | TASK_POLICY_QOS_WORKQ_OVERRIDE, value: qos, value2: 0, pend_token: &pend_token); |
| 846 | |
| 847 | assert(pend_token.tpt_update_sockets == 0); |
| 848 | |
| 849 | thread_unlock(thread); |
| 850 | splx(s); |
| 851 | |
| 852 | thread_policy_update_complete_unlocked(task: thread, pend_token: &pend_token); |
| 853 | } |
| 854 | |
| 855 | /* |
| 856 | * private interface for pthread workqueues |
| 857 | * |
| 858 | * Set scheduling policy & absolute priority for thread |
| 859 | * May be called with spinlocks held |
| 860 | * Thread mutex lock is not held |
| 861 | */ |
| 862 | void |
| 863 | thread_set_workq_pri(thread_t thread, |
| 864 | thread_qos_t qos, |
| 865 | integer_t priority, |
| 866 | integer_t policy) |
| 867 | { |
| 868 | struct task_pend_token pend_token = {}; |
| 869 | sched_mode_t mode = convert_policy_to_sched_mode(policy); |
| 870 | |
| 871 | assert(qos < THREAD_QOS_LAST); |
| 872 | assert(thread->static_param); |
| 873 | |
| 874 | if (!thread->static_param || !thread->active) { |
| 875 | return; |
| 876 | } |
| 877 | |
| 878 | spl_t s = splsched(); |
| 879 | thread_lock(thread); |
| 880 | |
| 881 | proc_set_thread_policy_spinlocked(thread, TASK_POLICY_ATTRIBUTE, |
| 882 | TASK_POLICY_QOS_AND_RELPRIO, value: qos, value2: 0, pend_token: &pend_token); |
| 883 | proc_set_thread_policy_spinlocked(thread, TASK_POLICY_ATTRIBUTE, |
| 884 | TASK_POLICY_QOS_WORKQ_OVERRIDE, THREAD_QOS_UNSPECIFIED, |
| 885 | value2: 0, pend_token: &pend_token); |
| 886 | |
| 887 | thread_unlock(thread); |
| 888 | splx(s); |
| 889 | |
| 890 | /* Concern: this doesn't hold the mutex... */ |
| 891 | |
| 892 | __assert_only kern_return_t kr; |
| 893 | kr = thread_set_mode_and_absolute_pri_internal(thread, mode, priority, |
| 894 | pend_token: &pend_token); |
| 895 | assert(kr == KERN_SUCCESS); |
| 896 | |
| 897 | assert(pend_token.tpt_update_sockets == 0); |
| 898 | |
| 899 | thread_policy_update_complete_unlocked(task: thread, pend_token: &pend_token); |
| 900 | } |
| 901 | |
| 902 | /* |
| 903 | * thread_set_mode_and_absolute_pri: |
| 904 | * |
| 905 | * Set scheduling policy & absolute priority for thread, for deprecated |
| 906 | * thread_set_policy and thread_policy interfaces. |
| 907 | * |
| 908 | * Called with nothing locked. |
| 909 | */ |
| 910 | kern_return_t |
| 911 | thread_set_mode_and_absolute_pri(thread_t thread, |
| 912 | integer_t policy, |
| 913 | integer_t priority) |
| 914 | { |
| 915 | kern_return_t kr = KERN_SUCCESS; |
| 916 | struct task_pend_token pend_token = {}; |
| 917 | |
| 918 | sched_mode_t mode = convert_policy_to_sched_mode(policy); |
| 919 | |
| 920 | thread_mtx_lock(thread); |
| 921 | |
| 922 | if (!thread->active) { |
| 923 | kr = KERN_TERMINATED; |
| 924 | goto unlock; |
| 925 | } |
| 926 | |
| 927 | if (thread_is_static_param(thread)) { |
| 928 | kr = KERN_POLICY_STATIC; |
| 929 | goto unlock; |
| 930 | } |
| 931 | |
| 932 | /* Setting legacy policies on threads kills the current QoS */ |
| 933 | if (thread->requested_policy.thrp_qos != THREAD_QOS_UNSPECIFIED) { |
| 934 | thread_remove_qos_policy_locked(thread, pend_token: &pend_token); |
| 935 | } |
| 936 | |
| 937 | kr = thread_set_mode_and_absolute_pri_internal(thread, mode, priority, pend_token: &pend_token); |
| 938 | |
| 939 | unlock: |
| 940 | thread_mtx_unlock(thread); |
| 941 | |
| 942 | thread_policy_update_complete_unlocked(task: thread, pend_token: &pend_token); |
| 943 | |
| 944 | return kr; |
| 945 | } |
| 946 | |
| 947 | /* |
| 948 | * Set the thread's requested mode and recompute priority |
| 949 | * Called with thread mutex and thread locked |
| 950 | * |
| 951 | * TODO: Mitigate potential problems caused by moving thread to end of runq |
| 952 | * whenever its priority is recomputed |
| 953 | * Only remove when it actually changes? Attempt to re-insert at appropriate location? |
| 954 | */ |
| 955 | static void |
| 956 | thread_set_user_sched_mode_and_recompute_pri(thread_t thread, sched_mode_t mode) |
| 957 | { |
| 958 | if (thread->policy_reset) { |
| 959 | return; |
| 960 | } |
| 961 | |
| 962 | boolean_t removed = thread_run_queue_remove(thread); |
| 963 | |
| 964 | sched_set_thread_mode_user(thread, mode); |
| 965 | |
| 966 | thread_recompute_priority(thread); |
| 967 | |
| 968 | if (removed) { |
| 969 | thread_run_queue_reinsert(thread, options: SCHED_TAILQ); |
| 970 | } |
| 971 | } |
| 972 | |
| 973 | /* called at splsched with thread lock locked */ |
| 974 | static void |
| 975 | thread_update_qos_cpu_time_locked(thread_t thread) |
| 976 | { |
| 977 | task_t task = get_threadtask(thread); |
| 978 | uint64_t timer_sum, timer_delta; |
| 979 | |
| 980 | /* |
| 981 | * This is only as accurate the thread's last context switch or user/kernel |
| 982 | * transition (unless precise user/kernel time is disabled). |
| 983 | * |
| 984 | * TODO: Consider running an update operation here to update it first. |
| 985 | * Maybe doable with interrupts disabled from current thread. |
| 986 | * If the thread is on a different core, may not be easy to get right. |
| 987 | */ |
| 988 | |
| 989 | timer_sum = recount_thread_time_mach(thread); |
| 990 | timer_delta = timer_sum - thread->vtimer_qos_save; |
| 991 | |
| 992 | thread->vtimer_qos_save = timer_sum; |
| 993 | |
| 994 | uint64_t* task_counter = NULL; |
| 995 | |
| 996 | /* Update the task-level effective and requested qos stats atomically, because we don't have the task lock. */ |
| 997 | switch (thread->effective_policy.thep_qos) { |
| 998 | case THREAD_QOS_UNSPECIFIED: task_counter = &task->cpu_time_eqos_stats.cpu_time_qos_default; break; |
| 999 | case THREAD_QOS_MAINTENANCE: task_counter = &task->cpu_time_eqos_stats.cpu_time_qos_maintenance; break; |
| 1000 | case THREAD_QOS_BACKGROUND: task_counter = &task->cpu_time_eqos_stats.cpu_time_qos_background; break; |
| 1001 | case THREAD_QOS_UTILITY: task_counter = &task->cpu_time_eqos_stats.cpu_time_qos_utility; break; |
| 1002 | case THREAD_QOS_LEGACY: task_counter = &task->cpu_time_eqos_stats.cpu_time_qos_legacy; break; |
| 1003 | case THREAD_QOS_USER_INITIATED: task_counter = &task->cpu_time_eqos_stats.cpu_time_qos_user_initiated; break; |
| 1004 | case THREAD_QOS_USER_INTERACTIVE: task_counter = &task->cpu_time_eqos_stats.cpu_time_qos_user_interactive; break; |
| 1005 | default: |
| 1006 | panic("unknown effective QoS: %d" , thread->effective_policy.thep_qos); |
| 1007 | } |
| 1008 | |
| 1009 | OSAddAtomic64(timer_delta, task_counter); |
| 1010 | |
| 1011 | /* Update the task-level qos stats atomically, because we don't have the task lock. */ |
| 1012 | switch (thread->requested_policy.thrp_qos) { |
| 1013 | case THREAD_QOS_UNSPECIFIED: task_counter = &task->cpu_time_rqos_stats.cpu_time_qos_default; break; |
| 1014 | case THREAD_QOS_MAINTENANCE: task_counter = &task->cpu_time_rqos_stats.cpu_time_qos_maintenance; break; |
| 1015 | case THREAD_QOS_BACKGROUND: task_counter = &task->cpu_time_rqos_stats.cpu_time_qos_background; break; |
| 1016 | case THREAD_QOS_UTILITY: task_counter = &task->cpu_time_rqos_stats.cpu_time_qos_utility; break; |
| 1017 | case THREAD_QOS_LEGACY: task_counter = &task->cpu_time_rqos_stats.cpu_time_qos_legacy; break; |
| 1018 | case THREAD_QOS_USER_INITIATED: task_counter = &task->cpu_time_rqos_stats.cpu_time_qos_user_initiated; break; |
| 1019 | case THREAD_QOS_USER_INTERACTIVE: task_counter = &task->cpu_time_rqos_stats.cpu_time_qos_user_interactive; break; |
| 1020 | default: |
| 1021 | panic("unknown requested QoS: %d" , thread->requested_policy.thrp_qos); |
| 1022 | } |
| 1023 | |
| 1024 | OSAddAtomic64(timer_delta, task_counter); |
| 1025 | } |
| 1026 | |
| 1027 | /* |
| 1028 | * called with no thread locks held |
| 1029 | * may hold task lock |
| 1030 | */ |
| 1031 | void |
| 1032 | thread_update_qos_cpu_time(thread_t thread) |
| 1033 | { |
| 1034 | thread_mtx_lock(thread); |
| 1035 | |
| 1036 | spl_t s = splsched(); |
| 1037 | thread_lock(thread); |
| 1038 | |
| 1039 | thread_update_qos_cpu_time_locked(thread); |
| 1040 | |
| 1041 | thread_unlock(thread); |
| 1042 | splx(s); |
| 1043 | |
| 1044 | thread_mtx_unlock(thread); |
| 1045 | } |
| 1046 | |
| 1047 | /* |
| 1048 | * Calculate base priority from thread attributes, and set it on the thread |
| 1049 | * |
| 1050 | * Called with thread_lock and thread mutex held. |
| 1051 | */ |
| 1052 | void |
| 1053 | thread_recompute_priority( |
| 1054 | thread_t thread) |
| 1055 | { |
| 1056 | integer_t priority; |
| 1057 | integer_t adj_priority; |
| 1058 | bool wi_priority = false; |
| 1059 | |
| 1060 | if (thread->policy_reset) { |
| 1061 | return; |
| 1062 | } |
| 1063 | |
| 1064 | if (thread->sched_mode == TH_MODE_REALTIME) { |
| 1065 | uint8_t i = thread->realtime.priority_offset; |
| 1066 | assert((i >= 0) && (i < NRTQS)); |
| 1067 | priority = BASEPRI_RTQUEUES + i; |
| 1068 | |
| 1069 | sched_set_thread_base_priority(thread, priority); |
| 1070 | if (thread->realtime.deadline == RT_DEADLINE_NONE) { |
| 1071 | /* Make sure the thread has a valid deadline */ |
| 1072 | uint64_t ctime = mach_absolute_time(); |
| 1073 | thread->realtime.deadline = thread->realtime.constraint + ctime; |
| 1074 | KDBG(MACHDBG_CODE(DBG_MACH_SCHED, MACH_SET_RT_DEADLINE) | DBG_FUNC_NONE, |
| 1075 | (uintptr_t)thread_tid(thread), thread->realtime.deadline, thread->realtime.computation, 1); |
| 1076 | } |
| 1077 | return; |
| 1078 | |
| 1079 | /* |
| 1080 | * A thread may have joined a RT work interval but then never |
| 1081 | * changed its sched mode or have been demoted. RT work |
| 1082 | * intervals will have RT priorities - ignore the priority if |
| 1083 | * the thread isn't RT. |
| 1084 | */ |
| 1085 | } else if (thread->effective_policy.thep_wi_driven && |
| 1086 | work_interval_get_priority(thread) < BASEPRI_RTQUEUES) { |
| 1087 | priority = work_interval_get_priority(thread); |
| 1088 | wi_priority = true; |
| 1089 | } else if (thread->effective_policy.thep_qos != THREAD_QOS_UNSPECIFIED) { |
| 1090 | int qos = thread->effective_policy.thep_qos; |
| 1091 | int qos_ui_is_urgent = thread->effective_policy.thep_qos_ui_is_urgent; |
| 1092 | int qos_relprio = -(thread->effective_policy.thep_qos_relprio); /* stored in task policy inverted */ |
| 1093 | int qos_scaled_relprio; |
| 1094 | |
| 1095 | assert(qos >= 0 && qos < THREAD_QOS_LAST); |
| 1096 | assert(qos_relprio <= 0 && qos_relprio >= THREAD_QOS_MIN_TIER_IMPORTANCE); |
| 1097 | |
| 1098 | priority = thread_qos_policy_params.qos_pri[qos]; |
| 1099 | qos_scaled_relprio = thread_qos_scaled_relative_priority(qos, qos_relprio); |
| 1100 | |
| 1101 | if (qos == THREAD_QOS_USER_INTERACTIVE && qos_ui_is_urgent == 1) { |
| 1102 | /* Bump priority 46 to 47 when in a frontmost app */ |
| 1103 | qos_scaled_relprio += 1; |
| 1104 | } |
| 1105 | |
| 1106 | /* TODO: factor in renice priority here? */ |
| 1107 | |
| 1108 | priority += qos_scaled_relprio; |
| 1109 | } else { |
| 1110 | if (thread->importance > MAXPRI) { |
| 1111 | priority = MAXPRI; |
| 1112 | } else if (thread->importance < -MAXPRI) { |
| 1113 | priority = -MAXPRI; |
| 1114 | } else { |
| 1115 | priority = thread->importance; |
| 1116 | } |
| 1117 | |
| 1118 | priority += thread->task_priority; |
| 1119 | } |
| 1120 | |
| 1121 | /* Boost the priority of threads which are RT demoted. */ |
| 1122 | if (sched_thread_mode_has_demotion(thread, TH_SFLAG_RT_DISALLOWED)) { |
| 1123 | priority = MAX(priority, MAXPRI_USER); |
| 1124 | } |
| 1125 | |
| 1126 | priority = MAX(priority, thread->user_promotion_basepri); |
| 1127 | |
| 1128 | /* |
| 1129 | * Clamp priority back into the allowed range for this task. |
| 1130 | * The initial priority value could be out of this range due to: |
| 1131 | * Task clamped to BG or Utility (max-pri is 4, or 20) |
| 1132 | * Task is user task (max-pri is 63) |
| 1133 | * Task is kernel task (max-pri is 95) |
| 1134 | * Note that thread->importance is user-settable to any integer |
| 1135 | * via THREAD_PRECEDENCE_POLICY. |
| 1136 | */ |
| 1137 | adj_priority = priority; |
| 1138 | adj_priority = MIN(adj_priority, thread->max_priority); |
| 1139 | adj_priority = MAX(adj_priority, MINPRI); |
| 1140 | |
| 1141 | /* Allow workload driven priorities to exceed max_priority. */ |
| 1142 | if (wi_priority) { |
| 1143 | adj_priority = MAX(adj_priority, priority); |
| 1144 | } |
| 1145 | |
| 1146 | /* Allow priority to exceed max_priority for promotions. */ |
| 1147 | if (thread->effective_policy.thep_promote_above_task) { |
| 1148 | adj_priority = MAX(adj_priority, thread->user_promotion_basepri); |
| 1149 | } |
| 1150 | priority = adj_priority; |
| 1151 | assert3u(priority, <=, MAXPRI); |
| 1152 | |
| 1153 | if (thread->saved_mode == TH_MODE_REALTIME && |
| 1154 | sched_thread_mode_has_demotion(thread, TH_SFLAG_FAILSAFE)) { |
| 1155 | priority = DEPRESSPRI; |
| 1156 | } |
| 1157 | |
| 1158 | if (thread->effective_policy.thep_terminated == TRUE) { |
| 1159 | /* |
| 1160 | * We temporarily want to override the expected priority to |
| 1161 | * ensure that the thread exits in a timely manner. |
| 1162 | * Note that this is allowed to exceed thread->max_priority |
| 1163 | * so that the thread is no longer clamped to background |
| 1164 | * during the final exit phase. |
| 1165 | */ |
| 1166 | if (priority < thread->task_priority) { |
| 1167 | priority = thread->task_priority; |
| 1168 | } |
| 1169 | if (priority < BASEPRI_DEFAULT) { |
| 1170 | priority = BASEPRI_DEFAULT; |
| 1171 | } |
| 1172 | } |
| 1173 | |
| 1174 | #if !defined(XNU_TARGET_OS_OSX) |
| 1175 | /* No one can have a base priority less than MAXPRI_THROTTLE */ |
| 1176 | if (priority < MAXPRI_THROTTLE) { |
| 1177 | priority = MAXPRI_THROTTLE; |
| 1178 | } |
| 1179 | #endif /* !defined(XNU_TARGET_OS_OSX) */ |
| 1180 | |
| 1181 | sched_set_thread_base_priority(thread, priority); |
| 1182 | } |
| 1183 | |
| 1184 | /* Called with the task lock held, but not the thread mutex or spinlock */ |
| 1185 | void |
| 1186 | thread_policy_update_tasklocked( |
| 1187 | thread_t thread, |
| 1188 | integer_t priority, |
| 1189 | integer_t max_priority, |
| 1190 | task_pend_token_t pend_token) |
| 1191 | { |
| 1192 | thread_mtx_lock(thread); |
| 1193 | |
| 1194 | if (!thread->active || thread->policy_reset) { |
| 1195 | thread_mtx_unlock(thread); |
| 1196 | return; |
| 1197 | } |
| 1198 | |
| 1199 | spl_t s = splsched(); |
| 1200 | thread_lock(thread); |
| 1201 | |
| 1202 | __unused |
| 1203 | integer_t old_max_priority = thread->max_priority; |
| 1204 | |
| 1205 | assert(priority >= INT16_MIN && priority <= INT16_MAX); |
| 1206 | thread->task_priority = (int16_t)priority; |
| 1207 | |
| 1208 | assert(max_priority >= INT16_MIN && max_priority <= INT16_MAX); |
| 1209 | thread->max_priority = (int16_t)max_priority; |
| 1210 | |
| 1211 | /* |
| 1212 | * When backgrounding a thread, realtime and fixed priority threads |
| 1213 | * should be demoted to timeshare background threads. |
| 1214 | * |
| 1215 | * TODO: Do this inside the thread policy update routine in order to avoid double |
| 1216 | * remove/reinsert for a runnable thread |
| 1217 | */ |
| 1218 | if ((max_priority <= MAXPRI_THROTTLE) && (old_max_priority > MAXPRI_THROTTLE)) { |
| 1219 | sched_thread_mode_demote(thread, TH_SFLAG_THROTTLED); |
| 1220 | } else if ((max_priority > MAXPRI_THROTTLE) && (old_max_priority <= MAXPRI_THROTTLE)) { |
| 1221 | sched_thread_mode_undemote(thread, TH_SFLAG_THROTTLED); |
| 1222 | } |
| 1223 | |
| 1224 | thread_policy_update_spinlocked(thread, true, pend_token); |
| 1225 | |
| 1226 | thread_unlock(thread); |
| 1227 | splx(s); |
| 1228 | |
| 1229 | thread_mtx_unlock(thread); |
| 1230 | } |
| 1231 | |
| 1232 | /* |
| 1233 | * Reset thread to default state in preparation for termination |
| 1234 | * Called with thread mutex locked |
| 1235 | * |
| 1236 | * Always called on current thread, so we don't need a run queue remove |
| 1237 | */ |
| 1238 | void |
| 1239 | thread_policy_reset( |
| 1240 | thread_t thread) |
| 1241 | { |
| 1242 | spl_t s; |
| 1243 | |
| 1244 | assert(thread == current_thread()); |
| 1245 | |
| 1246 | s = splsched(); |
| 1247 | thread_lock(thread); |
| 1248 | |
| 1249 | if (thread->sched_flags & TH_SFLAG_FAILSAFE) { |
| 1250 | sched_thread_mode_undemote(thread, TH_SFLAG_FAILSAFE); |
| 1251 | } |
| 1252 | |
| 1253 | if (thread->sched_flags & TH_SFLAG_THROTTLED) { |
| 1254 | sched_thread_mode_undemote(thread, TH_SFLAG_THROTTLED); |
| 1255 | } |
| 1256 | |
| 1257 | if (thread->sched_flags & TH_SFLAG_RT_DISALLOWED) { |
| 1258 | sched_thread_mode_undemote(thread, TH_SFLAG_RT_DISALLOWED); |
| 1259 | } |
| 1260 | |
| 1261 | /* At this point, the various demotions should be inactive */ |
| 1262 | assert(!(thread->sched_flags & TH_SFLAG_DEMOTED_MASK)); |
| 1263 | assert(!(thread->sched_flags & TH_SFLAG_DEPRESSED_MASK)); |
| 1264 | |
| 1265 | /* Reset thread back to task-default basepri and mode */ |
| 1266 | sched_mode_t newmode = SCHED(initial_thread_sched_mode)(get_threadtask(thread)); |
| 1267 | |
| 1268 | sched_set_thread_mode(thread, mode: newmode); |
| 1269 | |
| 1270 | thread->importance = 0; |
| 1271 | |
| 1272 | /* Prevent further changes to thread base priority or mode */ |
| 1273 | thread->policy_reset = 1; |
| 1274 | |
| 1275 | sched_set_thread_base_priority(thread, priority: thread->task_priority); |
| 1276 | |
| 1277 | thread_unlock(thread); |
| 1278 | splx(s); |
| 1279 | } |
| 1280 | |
| 1281 | kern_return_t |
| 1282 | thread_policy_get( |
| 1283 | thread_t thread, |
| 1284 | thread_policy_flavor_t flavor, |
| 1285 | thread_policy_t policy_info, |
| 1286 | mach_msg_type_number_t *count, |
| 1287 | boolean_t *get_default) |
| 1288 | { |
| 1289 | kern_return_t result = KERN_SUCCESS; |
| 1290 | |
| 1291 | if (thread == THREAD_NULL) { |
| 1292 | return KERN_INVALID_ARGUMENT; |
| 1293 | } |
| 1294 | |
| 1295 | thread_mtx_lock(thread); |
| 1296 | if (!thread->active) { |
| 1297 | thread_mtx_unlock(thread); |
| 1298 | |
| 1299 | return KERN_TERMINATED; |
| 1300 | } |
| 1301 | |
| 1302 | switch (flavor) { |
| 1303 | case THREAD_EXTENDED_POLICY: |
| 1304 | { |
| 1305 | boolean_t timeshare = TRUE; |
| 1306 | |
| 1307 | if (!(*get_default)) { |
| 1308 | spl_t s = splsched(); |
| 1309 | thread_lock(thread); |
| 1310 | |
| 1311 | if ((thread->sched_mode != TH_MODE_REALTIME) && |
| 1312 | (thread->saved_mode != TH_MODE_REALTIME)) { |
| 1313 | if (!(thread->sched_flags & TH_SFLAG_DEMOTED_MASK)) { |
| 1314 | timeshare = (thread->sched_mode == TH_MODE_TIMESHARE) != 0; |
| 1315 | } else { |
| 1316 | timeshare = (thread->saved_mode == TH_MODE_TIMESHARE) != 0; |
| 1317 | } |
| 1318 | } else { |
| 1319 | *get_default = TRUE; |
| 1320 | } |
| 1321 | |
| 1322 | thread_unlock(thread); |
| 1323 | splx(s); |
| 1324 | } |
| 1325 | |
| 1326 | if (*count >= THREAD_EXTENDED_POLICY_COUNT) { |
| 1327 | thread_extended_policy_t info; |
| 1328 | |
| 1329 | info = (thread_extended_policy_t)policy_info; |
| 1330 | info->timeshare = timeshare; |
| 1331 | } |
| 1332 | |
| 1333 | break; |
| 1334 | } |
| 1335 | |
| 1336 | case THREAD_TIME_CONSTRAINT_POLICY: |
| 1337 | case THREAD_TIME_CONSTRAINT_WITH_PRIORITY_POLICY: |
| 1338 | { |
| 1339 | thread_time_constraint_with_priority_policy_t info; |
| 1340 | |
| 1341 | mach_msg_type_number_t min_count = (flavor == THREAD_TIME_CONSTRAINT_POLICY ? |
| 1342 | THREAD_TIME_CONSTRAINT_POLICY_COUNT : |
| 1343 | THREAD_TIME_CONSTRAINT_WITH_PRIORITY_POLICY_COUNT); |
| 1344 | |
| 1345 | if (*count < min_count) { |
| 1346 | result = KERN_INVALID_ARGUMENT; |
| 1347 | break; |
| 1348 | } |
| 1349 | |
| 1350 | info = (thread_time_constraint_with_priority_policy_t)policy_info; |
| 1351 | |
| 1352 | if (!(*get_default)) { |
| 1353 | spl_t s = splsched(); |
| 1354 | thread_lock(thread); |
| 1355 | |
| 1356 | if ((thread->sched_mode == TH_MODE_REALTIME) || |
| 1357 | (thread->saved_mode == TH_MODE_REALTIME)) { |
| 1358 | info->period = thread->realtime.period; |
| 1359 | info->computation = thread->realtime.computation; |
| 1360 | info->constraint = thread->realtime.constraint; |
| 1361 | info->preemptible = thread->realtime.preemptible; |
| 1362 | if (flavor == THREAD_TIME_CONSTRAINT_WITH_PRIORITY_POLICY) { |
| 1363 | info->priority = thread->realtime.priority_offset + BASEPRI_RTQUEUES; |
| 1364 | } |
| 1365 | } else { |
| 1366 | *get_default = TRUE; |
| 1367 | } |
| 1368 | |
| 1369 | thread_unlock(thread); |
| 1370 | splx(s); |
| 1371 | } |
| 1372 | |
| 1373 | if (*get_default) { |
| 1374 | info->period = 0; |
| 1375 | info->computation = default_timeshare_computation; |
| 1376 | info->constraint = default_timeshare_constraint; |
| 1377 | info->preemptible = TRUE; |
| 1378 | if (flavor == THREAD_TIME_CONSTRAINT_WITH_PRIORITY_POLICY) { |
| 1379 | info->priority = BASEPRI_RTQUEUES; |
| 1380 | } |
| 1381 | } |
| 1382 | |
| 1383 | |
| 1384 | break; |
| 1385 | } |
| 1386 | |
| 1387 | case THREAD_PRECEDENCE_POLICY: |
| 1388 | { |
| 1389 | thread_precedence_policy_t info; |
| 1390 | |
| 1391 | if (*count < THREAD_PRECEDENCE_POLICY_COUNT) { |
| 1392 | result = KERN_INVALID_ARGUMENT; |
| 1393 | break; |
| 1394 | } |
| 1395 | |
| 1396 | info = (thread_precedence_policy_t)policy_info; |
| 1397 | |
| 1398 | if (!(*get_default)) { |
| 1399 | spl_t s = splsched(); |
| 1400 | thread_lock(thread); |
| 1401 | |
| 1402 | info->importance = thread->importance; |
| 1403 | |
| 1404 | thread_unlock(thread); |
| 1405 | splx(s); |
| 1406 | } else { |
| 1407 | info->importance = 0; |
| 1408 | } |
| 1409 | |
| 1410 | break; |
| 1411 | } |
| 1412 | |
| 1413 | case THREAD_AFFINITY_POLICY: |
| 1414 | { |
| 1415 | thread_affinity_policy_t info; |
| 1416 | |
| 1417 | if (!thread_affinity_is_supported()) { |
| 1418 | result = KERN_NOT_SUPPORTED; |
| 1419 | break; |
| 1420 | } |
| 1421 | if (*count < THREAD_AFFINITY_POLICY_COUNT) { |
| 1422 | result = KERN_INVALID_ARGUMENT; |
| 1423 | break; |
| 1424 | } |
| 1425 | |
| 1426 | info = (thread_affinity_policy_t)policy_info; |
| 1427 | |
| 1428 | if (!(*get_default)) { |
| 1429 | info->affinity_tag = thread_affinity_get(thread); |
| 1430 | } else { |
| 1431 | info->affinity_tag = THREAD_AFFINITY_TAG_NULL; |
| 1432 | } |
| 1433 | |
| 1434 | break; |
| 1435 | } |
| 1436 | |
| 1437 | case THREAD_POLICY_STATE: |
| 1438 | { |
| 1439 | thread_policy_state_t info; |
| 1440 | |
| 1441 | if (*count < THREAD_POLICY_STATE_COUNT) { |
| 1442 | result = KERN_INVALID_ARGUMENT; |
| 1443 | break; |
| 1444 | } |
| 1445 | |
| 1446 | /* Only root can get this info */ |
| 1447 | if (!task_is_privileged(task: current_task())) { |
| 1448 | result = KERN_PROTECTION_FAILURE; |
| 1449 | break; |
| 1450 | } |
| 1451 | |
| 1452 | info = (thread_policy_state_t)(void*)policy_info; |
| 1453 | |
| 1454 | if (!(*get_default)) { |
| 1455 | info->flags = 0; |
| 1456 | |
| 1457 | spl_t s = splsched(); |
| 1458 | thread_lock(thread); |
| 1459 | |
| 1460 | info->flags |= (thread->static_param ? THREAD_POLICY_STATE_FLAG_STATIC_PARAM : 0); |
| 1461 | |
| 1462 | info->thps_requested_policy = *(uint64_t*)(void*)(&thread->requested_policy); |
| 1463 | info->thps_effective_policy = *(uint64_t*)(void*)(&thread->effective_policy); |
| 1464 | |
| 1465 | info->thps_user_promotions = 0; |
| 1466 | info->thps_user_promotion_basepri = thread->user_promotion_basepri; |
| 1467 | info->thps_ipc_overrides = thread->kevent_overrides; |
| 1468 | |
| 1469 | proc_get_thread_policy_bitfield(thread, info); |
| 1470 | |
| 1471 | thread_unlock(thread); |
| 1472 | splx(s); |
| 1473 | } else { |
| 1474 | info->requested = 0; |
| 1475 | info->effective = 0; |
| 1476 | info->pending = 0; |
| 1477 | } |
| 1478 | |
| 1479 | break; |
| 1480 | } |
| 1481 | |
| 1482 | case THREAD_REQUESTED_STATE_POLICY: |
| 1483 | { |
| 1484 | if (*count < THREAD_REQUESTED_STATE_POLICY_COUNT) { |
| 1485 | result = KERN_INVALID_ARGUMENT; |
| 1486 | break; |
| 1487 | } |
| 1488 | |
| 1489 | thread_requested_qos_policy_t info = (thread_requested_qos_policy_t) policy_info; |
| 1490 | struct thread_requested_policy *req_policy = &thread->requested_policy; |
| 1491 | |
| 1492 | info->thrq_base_qos = req_policy->thrp_qos; |
| 1493 | info->thrq_qos_relprio = req_policy->thrp_qos_relprio; |
| 1494 | info->thrq_qos_override = req_policy->thrp_qos_override; |
| 1495 | info->thrq_qos_promote = req_policy->thrp_qos_promote; |
| 1496 | info->thrq_qos_kevent_override = req_policy->thrp_qos_kevent_override; |
| 1497 | info->thrq_qos_workq_override = req_policy->thrp_qos_workq_override; |
| 1498 | info->thrq_qos_wlsvc_override = req_policy->thrp_qos_wlsvc_override; |
| 1499 | |
| 1500 | break; |
| 1501 | } |
| 1502 | |
| 1503 | case THREAD_LATENCY_QOS_POLICY: |
| 1504 | { |
| 1505 | thread_latency_qos_policy_t info = (thread_latency_qos_policy_t) policy_info; |
| 1506 | thread_latency_qos_t plqos; |
| 1507 | |
| 1508 | if (*count < THREAD_LATENCY_QOS_POLICY_COUNT) { |
| 1509 | result = KERN_INVALID_ARGUMENT; |
| 1510 | break; |
| 1511 | } |
| 1512 | |
| 1513 | if (*get_default) { |
| 1514 | plqos = 0; |
| 1515 | } else { |
| 1516 | plqos = proc_get_thread_policy_locked(thread, TASK_POLICY_ATTRIBUTE, TASK_POLICY_LATENCY_QOS, NULL); |
| 1517 | } |
| 1518 | |
| 1519 | info->thread_latency_qos_tier = qos_latency_policy_package(plqos); |
| 1520 | } |
| 1521 | break; |
| 1522 | |
| 1523 | case THREAD_THROUGHPUT_QOS_POLICY: |
| 1524 | { |
| 1525 | thread_throughput_qos_policy_t info = (thread_throughput_qos_policy_t) policy_info; |
| 1526 | thread_throughput_qos_t ptqos; |
| 1527 | |
| 1528 | if (*count < THREAD_THROUGHPUT_QOS_POLICY_COUNT) { |
| 1529 | result = KERN_INVALID_ARGUMENT; |
| 1530 | break; |
| 1531 | } |
| 1532 | |
| 1533 | if (*get_default) { |
| 1534 | ptqos = 0; |
| 1535 | } else { |
| 1536 | ptqos = proc_get_thread_policy_locked(thread, TASK_POLICY_ATTRIBUTE, TASK_POLICY_THROUGH_QOS, NULL); |
| 1537 | } |
| 1538 | |
| 1539 | info->thread_throughput_qos_tier = qos_throughput_policy_package(ptqos); |
| 1540 | } |
| 1541 | break; |
| 1542 | |
| 1543 | case THREAD_QOS_POLICY: |
| 1544 | { |
| 1545 | thread_qos_policy_t info = (thread_qos_policy_t)policy_info; |
| 1546 | |
| 1547 | if (*count < THREAD_QOS_POLICY_COUNT) { |
| 1548 | result = KERN_INVALID_ARGUMENT; |
| 1549 | break; |
| 1550 | } |
| 1551 | |
| 1552 | if (!(*get_default)) { |
| 1553 | int relprio_value = 0; |
| 1554 | info->qos_tier = proc_get_thread_policy_locked(thread, TASK_POLICY_ATTRIBUTE, |
| 1555 | TASK_POLICY_QOS_AND_RELPRIO, value2: &relprio_value); |
| 1556 | |
| 1557 | info->tier_importance = -relprio_value; |
| 1558 | } else { |
| 1559 | info->qos_tier = THREAD_QOS_UNSPECIFIED; |
| 1560 | info->tier_importance = 0; |
| 1561 | } |
| 1562 | |
| 1563 | break; |
| 1564 | } |
| 1565 | |
| 1566 | default: |
| 1567 | result = KERN_INVALID_ARGUMENT; |
| 1568 | break; |
| 1569 | } |
| 1570 | |
| 1571 | thread_mtx_unlock(thread); |
| 1572 | |
| 1573 | return result; |
| 1574 | } |
| 1575 | |
| 1576 | void |
| 1577 | thread_policy_create(thread_t thread) |
| 1578 | { |
| 1579 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
| 1580 | (IMPORTANCE_CODE(IMP_UPDATE, (IMP_UPDATE_TASK_CREATE | TASK_POLICY_THREAD))) | DBG_FUNC_START, |
| 1581 | thread_tid(thread), theffective_0(thread), |
| 1582 | theffective_1(thread), thread->base_pri, 0); |
| 1583 | |
| 1584 | /* We pass a pend token but ignore it */ |
| 1585 | struct task_pend_token pend_token = {}; |
| 1586 | |
| 1587 | thread_policy_update_internal_spinlocked(thread, true, pend_token: &pend_token); |
| 1588 | |
| 1589 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
| 1590 | (IMPORTANCE_CODE(IMP_UPDATE, (IMP_UPDATE_TASK_CREATE | TASK_POLICY_THREAD))) | DBG_FUNC_END, |
| 1591 | thread_tid(thread), theffective_0(thread), |
| 1592 | theffective_1(thread), thread->base_pri, 0); |
| 1593 | } |
| 1594 | |
| 1595 | static void |
| 1596 | thread_policy_update_spinlocked(thread_t thread, bool recompute_priority, task_pend_token_t pend_token) |
| 1597 | { |
| 1598 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
| 1599 | (IMPORTANCE_CODE(IMP_UPDATE, TASK_POLICY_THREAD) | DBG_FUNC_START), |
| 1600 | thread_tid(thread), theffective_0(thread), |
| 1601 | theffective_1(thread), thread->base_pri, 0); |
| 1602 | |
| 1603 | thread_policy_update_internal_spinlocked(thread, recompute_priority, pend_token); |
| 1604 | |
| 1605 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
| 1606 | (IMPORTANCE_CODE(IMP_UPDATE, TASK_POLICY_THREAD)) | DBG_FUNC_END, |
| 1607 | thread_tid(thread), theffective_0(thread), |
| 1608 | theffective_1(thread), thread->base_pri, 0); |
| 1609 | } |
| 1610 | |
| 1611 | |
| 1612 | |
| 1613 | /* |
| 1614 | * One thread state update function TO RULE THEM ALL |
| 1615 | * |
| 1616 | * This function updates the thread effective policy fields |
| 1617 | * and pushes the results to the relevant subsystems. |
| 1618 | * |
| 1619 | * Called with thread spinlock locked, task may be locked, thread mutex may be locked |
| 1620 | */ |
| 1621 | static void |
| 1622 | thread_policy_update_internal_spinlocked(thread_t thread, bool recompute_priority, |
| 1623 | task_pend_token_t pend_token) |
| 1624 | { |
| 1625 | /* |
| 1626 | * Step 1: |
| 1627 | * Gather requested policy and effective task state |
| 1628 | */ |
| 1629 | |
| 1630 | const struct thread_requested_policy requested = thread->requested_policy; |
| 1631 | const struct task_effective_policy task_effective = get_threadtask(thread)->effective_policy; |
| 1632 | |
| 1633 | /* |
| 1634 | * Step 2: |
| 1635 | * Calculate new effective policies from requested policy, task and thread state |
| 1636 | * Rules: |
| 1637 | * Don't change requested, it won't take effect |
| 1638 | */ |
| 1639 | |
| 1640 | struct thread_effective_policy next = {}; |
| 1641 | |
| 1642 | next.thep_wi_driven = requested.thrp_wi_driven; |
| 1643 | |
| 1644 | next.thep_qos_ui_is_urgent = task_effective.tep_qos_ui_is_urgent; |
| 1645 | |
| 1646 | uint32_t next_qos = requested.thrp_qos; |
| 1647 | |
| 1648 | if (requested.thrp_qos != THREAD_QOS_UNSPECIFIED) { |
| 1649 | next_qos = MAX(requested.thrp_qos_override, next_qos); |
| 1650 | next_qos = MAX(requested.thrp_qos_promote, next_qos); |
| 1651 | next_qos = MAX(requested.thrp_qos_kevent_override, next_qos); |
| 1652 | next_qos = MAX(requested.thrp_qos_wlsvc_override, next_qos); |
| 1653 | next_qos = MAX(requested.thrp_qos_workq_override, next_qos); |
| 1654 | } |
| 1655 | |
| 1656 | if (task_effective.tep_darwinbg && task_effective.tep_adaptive_bg && |
| 1657 | requested.thrp_qos_promote > THREAD_QOS_BACKGROUND) { |
| 1658 | /* |
| 1659 | * This thread is turnstile-boosted higher than the adaptive clamp |
| 1660 | * by a synchronous waiter. Allow that to override the adaptive |
| 1661 | * clamp temporarily for this thread only. |
| 1662 | */ |
| 1663 | next.thep_promote_above_task = true; |
| 1664 | next_qos = requested.thrp_qos_promote; |
| 1665 | } |
| 1666 | |
| 1667 | next.thep_qos = next_qos; |
| 1668 | |
| 1669 | /* A task clamp will result in an effective QoS even when requested is UNSPECIFIED */ |
| 1670 | if (task_effective.tep_qos_clamp != THREAD_QOS_UNSPECIFIED) { |
| 1671 | if (next.thep_qos != THREAD_QOS_UNSPECIFIED) { |
| 1672 | next.thep_qos = MIN(task_effective.tep_qos_clamp, next.thep_qos); |
| 1673 | } else { |
| 1674 | next.thep_qos = task_effective.tep_qos_clamp; |
| 1675 | } |
| 1676 | next.thep_wi_driven = 0; |
| 1677 | } |
| 1678 | |
| 1679 | /* |
| 1680 | * Extract outbound-promotion QoS before applying task ceiling or BG clamp |
| 1681 | * This allows QoS promotions to work properly even after the process is unclamped. |
| 1682 | */ |
| 1683 | next.thep_qos_promote = next.thep_qos; |
| 1684 | |
| 1685 | /* The ceiling only applies to threads that are in the QoS world */ |
| 1686 | /* TODO: is it appropriate for this to limit a turnstile-boosted thread's QoS? */ |
| 1687 | if (task_effective.tep_qos_ceiling != THREAD_QOS_UNSPECIFIED && |
| 1688 | next.thep_qos != THREAD_QOS_UNSPECIFIED) { |
| 1689 | next.thep_qos = MIN(task_effective.tep_qos_ceiling, next.thep_qos); |
| 1690 | } |
| 1691 | |
| 1692 | /* |
| 1693 | * The QoS relative priority is only applicable when the original programmer's |
| 1694 | * intended (requested) QoS is in effect. When the QoS is clamped (e.g. |
| 1695 | * USER_INITIATED-13REL clamped to UTILITY), the relative priority is not honored, |
| 1696 | * since otherwise it would be lower than unclamped threads. Similarly, in the |
| 1697 | * presence of boosting, the programmer doesn't know what other actors |
| 1698 | * are boosting the thread. |
| 1699 | */ |
| 1700 | if ((requested.thrp_qos != THREAD_QOS_UNSPECIFIED) && |
| 1701 | (requested.thrp_qos == next.thep_qos) && |
| 1702 | (requested.thrp_qos_override == THREAD_QOS_UNSPECIFIED)) { |
| 1703 | next.thep_qos_relprio = requested.thrp_qos_relprio; |
| 1704 | } else { |
| 1705 | next.thep_qos_relprio = 0; |
| 1706 | } |
| 1707 | |
| 1708 | /* Calculate DARWIN_BG */ |
| 1709 | bool wants_darwinbg = false; |
| 1710 | bool wants_all_sockets_bg = false; /* Do I want my existing sockets to be bg */ |
| 1711 | |
| 1712 | if (task_effective.tep_darwinbg && !next.thep_promote_above_task) { |
| 1713 | wants_darwinbg = true; |
| 1714 | } |
| 1715 | |
| 1716 | /* |
| 1717 | * If DARWIN_BG has been requested at either level, it's engaged. |
| 1718 | * darwinbg threads always create bg sockets, |
| 1719 | * but only some types of darwinbg change the sockets |
| 1720 | * after they're created |
| 1721 | */ |
| 1722 | if (requested.thrp_int_darwinbg || requested.thrp_ext_darwinbg) { |
| 1723 | wants_all_sockets_bg = wants_darwinbg = true; |
| 1724 | } |
| 1725 | |
| 1726 | if (requested.thrp_pidbind_bg) { |
| 1727 | wants_all_sockets_bg = wants_darwinbg = true; |
| 1728 | } |
| 1729 | |
| 1730 | if (next.thep_qos == THREAD_QOS_BACKGROUND || |
| 1731 | next.thep_qos == THREAD_QOS_MAINTENANCE) { |
| 1732 | wants_darwinbg = true; |
| 1733 | } |
| 1734 | |
| 1735 | /* Calculate side effects of DARWIN_BG */ |
| 1736 | |
| 1737 | if (wants_darwinbg) { |
| 1738 | next.thep_darwinbg = 1; |
| 1739 | next.thep_wi_driven = 0; |
| 1740 | } |
| 1741 | |
| 1742 | if (next.thep_darwinbg || task_effective.tep_new_sockets_bg) { |
| 1743 | next.thep_new_sockets_bg = 1; |
| 1744 | } |
| 1745 | |
| 1746 | /* Don't use task_effective.tep_all_sockets_bg here */ |
| 1747 | if (wants_all_sockets_bg) { |
| 1748 | next.thep_all_sockets_bg = 1; |
| 1749 | } |
| 1750 | |
| 1751 | /* darwinbg implies background QOS (or lower) */ |
| 1752 | if (next.thep_darwinbg && |
| 1753 | (next.thep_qos > THREAD_QOS_BACKGROUND || next.thep_qos == THREAD_QOS_UNSPECIFIED)) { |
| 1754 | next.thep_qos = THREAD_QOS_BACKGROUND; |
| 1755 | next.thep_qos_relprio = 0; |
| 1756 | } |
| 1757 | |
| 1758 | /* Calculate IO policy */ |
| 1759 | |
| 1760 | int iopol = THROTTLE_LEVEL_TIER0; |
| 1761 | |
| 1762 | /* Factor in the task's IO policy */ |
| 1763 | if (next.thep_darwinbg) { |
| 1764 | iopol = MAX(iopol, task_effective.tep_bg_iotier); |
| 1765 | } |
| 1766 | |
| 1767 | if (!next.thep_promote_above_task) { |
| 1768 | iopol = MAX(iopol, task_effective.tep_io_tier); |
| 1769 | } |
| 1770 | |
| 1771 | /* Look up the associated IO tier value for the QoS class */ |
| 1772 | iopol = MAX(iopol, thread_qos_policy_params.qos_iotier[next.thep_qos]); |
| 1773 | |
| 1774 | iopol = MAX(iopol, requested.thrp_int_iotier); |
| 1775 | iopol = MAX(iopol, requested.thrp_ext_iotier); |
| 1776 | |
| 1777 | /* Apply the kevent iotier override */ |
| 1778 | iopol = MIN(iopol, requested.thrp_iotier_kevent_override); |
| 1779 | |
| 1780 | next.thep_io_tier = iopol; |
| 1781 | |
| 1782 | /* |
| 1783 | * If a QoS override is causing IO to go into a lower tier, we also set |
| 1784 | * the passive bit so that a thread doesn't end up stuck in its own throttle |
| 1785 | * window when the override goes away. |
| 1786 | */ |
| 1787 | |
| 1788 | int next_qos_iotier = thread_qos_policy_params.qos_iotier[next.thep_qos]; |
| 1789 | int req_qos_iotier = thread_qos_policy_params.qos_iotier[requested.thrp_qos]; |
| 1790 | bool qos_io_override_active = (next_qos_iotier < req_qos_iotier); |
| 1791 | |
| 1792 | /* Calculate Passive IO policy */ |
| 1793 | if (requested.thrp_ext_iopassive || |
| 1794 | requested.thrp_int_iopassive || |
| 1795 | qos_io_override_active || |
| 1796 | task_effective.tep_io_passive) { |
| 1797 | next.thep_io_passive = 1; |
| 1798 | } |
| 1799 | |
| 1800 | /* Calculate timer QOS */ |
| 1801 | uint32_t latency_qos = requested.thrp_latency_qos; |
| 1802 | |
| 1803 | if (!next.thep_promote_above_task) { |
| 1804 | latency_qos = MAX(latency_qos, task_effective.tep_latency_qos); |
| 1805 | } |
| 1806 | |
| 1807 | latency_qos = MAX(latency_qos, thread_qos_policy_params.qos_latency_qos[next.thep_qos]); |
| 1808 | |
| 1809 | next.thep_latency_qos = latency_qos; |
| 1810 | |
| 1811 | /* Calculate throughput QOS */ |
| 1812 | uint32_t through_qos = requested.thrp_through_qos; |
| 1813 | |
| 1814 | if (!next.thep_promote_above_task) { |
| 1815 | through_qos = MAX(through_qos, task_effective.tep_through_qos); |
| 1816 | } |
| 1817 | |
| 1818 | through_qos = MAX(through_qos, thread_qos_policy_params.qos_through_qos[next.thep_qos]); |
| 1819 | |
| 1820 | next.thep_through_qos = through_qos; |
| 1821 | |
| 1822 | if (task_effective.tep_terminated || requested.thrp_terminated) { |
| 1823 | /* Shoot down the throttles that slow down exit or response to SIGTERM */ |
| 1824 | next.thep_terminated = 1; |
| 1825 | next.thep_darwinbg = 0; |
| 1826 | next.thep_io_tier = THROTTLE_LEVEL_TIER0; |
| 1827 | next.thep_qos = THREAD_QOS_UNSPECIFIED; |
| 1828 | next.thep_latency_qos = LATENCY_QOS_TIER_UNSPECIFIED; |
| 1829 | next.thep_through_qos = THROUGHPUT_QOS_TIER_UNSPECIFIED; |
| 1830 | next.thep_wi_driven = 0; |
| 1831 | } |
| 1832 | |
| 1833 | /* |
| 1834 | * Step 3: |
| 1835 | * Swap out old policy for new policy |
| 1836 | */ |
| 1837 | |
| 1838 | struct thread_effective_policy prev = thread->effective_policy; |
| 1839 | |
| 1840 | thread_update_qos_cpu_time_locked(thread); |
| 1841 | |
| 1842 | /* This is the point where the new values become visible to other threads */ |
| 1843 | thread->effective_policy = next; |
| 1844 | |
| 1845 | /* |
| 1846 | * Step 4: |
| 1847 | * Pend updates that can't be done while holding the thread lock |
| 1848 | */ |
| 1849 | |
| 1850 | if (prev.thep_all_sockets_bg != next.thep_all_sockets_bg) { |
| 1851 | pend_token->tpt_update_sockets = 1; |
| 1852 | } |
| 1853 | |
| 1854 | /* TODO: Doesn't this only need to be done if the throttle went up? */ |
| 1855 | if (prev.thep_io_tier != next.thep_io_tier) { |
| 1856 | pend_token->tpt_update_throttle = 1; |
| 1857 | } |
| 1858 | |
| 1859 | /* |
| 1860 | * Check for the attributes that sfi_thread_classify() consults, |
| 1861 | * and trigger SFI re-evaluation. |
| 1862 | */ |
| 1863 | if (prev.thep_qos != next.thep_qos || |
| 1864 | prev.thep_darwinbg != next.thep_darwinbg) { |
| 1865 | pend_token->tpt_update_thread_sfi = 1; |
| 1866 | } |
| 1867 | |
| 1868 | integer_t old_base_pri = thread->base_pri; |
| 1869 | |
| 1870 | /* |
| 1871 | * Step 5: |
| 1872 | * Update other subsystems as necessary if something has changed |
| 1873 | */ |
| 1874 | |
| 1875 | /* Check for the attributes that thread_recompute_priority() consults */ |
| 1876 | if (prev.thep_qos != next.thep_qos || |
| 1877 | prev.thep_qos_relprio != next.thep_qos_relprio || |
| 1878 | prev.thep_qos_ui_is_urgent != next.thep_qos_ui_is_urgent || |
| 1879 | prev.thep_promote_above_task != next.thep_promote_above_task || |
| 1880 | prev.thep_terminated != next.thep_terminated || |
| 1881 | prev.thep_wi_driven != next.thep_wi_driven || |
| 1882 | pend_token->tpt_force_recompute_pri == 1 || |
| 1883 | recompute_priority) { |
| 1884 | thread_recompute_priority(thread); |
| 1885 | } |
| 1886 | |
| 1887 | /* |
| 1888 | * Check if the thread is waiting on a turnstile and needs priority propagation. |
| 1889 | */ |
| 1890 | if (pend_token->tpt_update_turnstile && |
| 1891 | ((old_base_pri == thread->base_pri) || |
| 1892 | !thread_get_waiting_turnstile(thread))) { |
| 1893 | /* |
| 1894 | * Reset update turnstile pend token since either |
| 1895 | * the thread priority did not change or thread is |
| 1896 | * not blocked on a turnstile. |
| 1897 | */ |
| 1898 | pend_token->tpt_update_turnstile = 0; |
| 1899 | } |
| 1900 | } |
| 1901 | |
| 1902 | |
| 1903 | /* |
| 1904 | * Initiate a thread policy state transition on a thread with its TID |
| 1905 | * Useful if you cannot guarantee the thread won't get terminated |
| 1906 | * Precondition: No locks are held |
| 1907 | * Will take task lock - using the non-tid variant is faster |
| 1908 | * if you already have a thread ref. |
| 1909 | */ |
| 1910 | void |
| 1911 | proc_set_thread_policy_with_tid(task_t task, |
| 1912 | uint64_t tid, |
| 1913 | int category, |
| 1914 | int flavor, |
| 1915 | int value) |
| 1916 | { |
| 1917 | /* takes task lock, returns ref'ed thread or NULL */ |
| 1918 | thread_t thread = task_findtid(task, tid); |
| 1919 | |
| 1920 | if (thread == THREAD_NULL) { |
| 1921 | return; |
| 1922 | } |
| 1923 | |
| 1924 | proc_set_thread_policy(thread, category, flavor, value); |
| 1925 | |
| 1926 | thread_deallocate(thread); |
| 1927 | } |
| 1928 | |
| 1929 | /* |
| 1930 | * Initiate a thread policy transition on a thread |
| 1931 | * This path supports networking transitions (i.e. darwinbg transitions) |
| 1932 | * Precondition: No locks are held |
| 1933 | */ |
| 1934 | void |
| 1935 | proc_set_thread_policy(thread_t thread, |
| 1936 | int category, |
| 1937 | int flavor, |
| 1938 | int value) |
| 1939 | { |
| 1940 | proc_set_thread_policy_ext(thread, category, flavor, value, value2: 0); |
| 1941 | } |
| 1942 | |
| 1943 | void |
| 1944 | proc_set_thread_policy_ext(thread_t thread, |
| 1945 | int category, |
| 1946 | int flavor, |
| 1947 | int value, |
| 1948 | int value2) |
| 1949 | { |
| 1950 | struct task_pend_token pend_token = {}; |
| 1951 | |
| 1952 | thread_mtx_lock(thread); |
| 1953 | |
| 1954 | proc_set_thread_policy_locked(thread, category, flavor, value, value2, pend_token: &pend_token); |
| 1955 | |
| 1956 | thread_mtx_unlock(thread); |
| 1957 | |
| 1958 | thread_policy_update_complete_unlocked(task: thread, pend_token: &pend_token); |
| 1959 | } |
| 1960 | |
| 1961 | /* |
| 1962 | * Do the things that can't be done while holding a thread mutex. |
| 1963 | * These are set up to call back into thread policy to get the latest value, |
| 1964 | * so they don't have to be synchronized with the update. |
| 1965 | * The only required semantic is 'call this sometime after updating effective policy' |
| 1966 | * |
| 1967 | * Precondition: Thread mutex is not held |
| 1968 | * |
| 1969 | * This may be called with the task lock held, but in that case it won't be |
| 1970 | * called with tpt_update_sockets set. |
| 1971 | */ |
| 1972 | void |
| 1973 | thread_policy_update_complete_unlocked(thread_t thread, task_pend_token_t pend_token) |
| 1974 | { |
| 1975 | #ifdef MACH_BSD |
| 1976 | if (pend_token->tpt_update_sockets) { |
| 1977 | proc_apply_task_networkbg(pid: task_pid(task: get_threadtask(thread)), thread); |
| 1978 | } |
| 1979 | #endif /* MACH_BSD */ |
| 1980 | |
| 1981 | if (pend_token->tpt_update_throttle) { |
| 1982 | rethrottle_thread(uthread: get_bsdthread_info(thread)); |
| 1983 | } |
| 1984 | |
| 1985 | if (pend_token->tpt_update_thread_sfi) { |
| 1986 | sfi_reevaluate(thread); |
| 1987 | } |
| 1988 | |
| 1989 | if (pend_token->tpt_update_turnstile) { |
| 1990 | turnstile_update_thread_priority_chain(thread); |
| 1991 | } |
| 1992 | } |
| 1993 | |
| 1994 | /* |
| 1995 | * Set and update thread policy |
| 1996 | * Thread mutex might be held |
| 1997 | */ |
| 1998 | static void |
| 1999 | proc_set_thread_policy_locked(thread_t thread, |
| 2000 | int category, |
| 2001 | int flavor, |
| 2002 | int value, |
| 2003 | int value2, |
| 2004 | task_pend_token_t pend_token) |
| 2005 | { |
| 2006 | spl_t s = splsched(); |
| 2007 | thread_lock(thread); |
| 2008 | |
| 2009 | proc_set_thread_policy_spinlocked(thread, category, flavor, value, value2, pend_token); |
| 2010 | |
| 2011 | thread_unlock(thread); |
| 2012 | splx(s); |
| 2013 | } |
| 2014 | |
| 2015 | /* |
| 2016 | * Set and update thread policy |
| 2017 | * Thread spinlock is held |
| 2018 | */ |
| 2019 | static void |
| 2020 | proc_set_thread_policy_spinlocked(thread_t thread, |
| 2021 | int category, |
| 2022 | int flavor, |
| 2023 | int value, |
| 2024 | int value2, |
| 2025 | task_pend_token_t pend_token) |
| 2026 | { |
| 2027 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
| 2028 | (IMPORTANCE_CODE(flavor, (category | TASK_POLICY_THREAD))) | DBG_FUNC_START, |
| 2029 | thread_tid(thread), threquested_0(thread), |
| 2030 | threquested_1(thread), value, 0); |
| 2031 | |
| 2032 | thread_set_requested_policy_spinlocked(thread, category, flavor, value, value2, pend_token); |
| 2033 | |
| 2034 | thread_policy_update_spinlocked(thread, false, pend_token); |
| 2035 | |
| 2036 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
| 2037 | (IMPORTANCE_CODE(flavor, (category | TASK_POLICY_THREAD))) | DBG_FUNC_END, |
| 2038 | thread_tid(thread), threquested_0(thread), |
| 2039 | threquested_1(thread), tpending(pend_token), 0); |
| 2040 | } |
| 2041 | |
| 2042 | /* |
| 2043 | * Set the requested state for a specific flavor to a specific value. |
| 2044 | */ |
| 2045 | static void |
| 2046 | thread_set_requested_policy_spinlocked(thread_t thread, |
| 2047 | int category, |
| 2048 | int flavor, |
| 2049 | int value, |
| 2050 | int value2, |
| 2051 | task_pend_token_t pend_token) |
| 2052 | { |
| 2053 | int tier, passive; |
| 2054 | |
| 2055 | struct thread_requested_policy requested = thread->requested_policy; |
| 2056 | |
| 2057 | switch (flavor) { |
| 2058 | /* Category: EXTERNAL and INTERNAL, thread and task */ |
| 2059 | |
| 2060 | case TASK_POLICY_DARWIN_BG: |
| 2061 | if (category == TASK_POLICY_EXTERNAL) { |
| 2062 | requested.thrp_ext_darwinbg = value; |
| 2063 | } else { |
| 2064 | requested.thrp_int_darwinbg = value; |
| 2065 | } |
| 2066 | pend_token->tpt_update_turnstile = 1; |
| 2067 | break; |
| 2068 | |
| 2069 | case TASK_POLICY_IOPOL: |
| 2070 | proc_iopol_to_tier(iopolicy: value, tier: &tier, passive: &passive); |
| 2071 | if (category == TASK_POLICY_EXTERNAL) { |
| 2072 | requested.thrp_ext_iotier = tier; |
| 2073 | requested.thrp_ext_iopassive = passive; |
| 2074 | } else { |
| 2075 | requested.thrp_int_iotier = tier; |
| 2076 | requested.thrp_int_iopassive = passive; |
| 2077 | } |
| 2078 | break; |
| 2079 | |
| 2080 | case TASK_POLICY_IO: |
| 2081 | if (category == TASK_POLICY_EXTERNAL) { |
| 2082 | requested.thrp_ext_iotier = value; |
| 2083 | } else { |
| 2084 | requested.thrp_int_iotier = value; |
| 2085 | } |
| 2086 | break; |
| 2087 | |
| 2088 | case TASK_POLICY_PASSIVE_IO: |
| 2089 | if (category == TASK_POLICY_EXTERNAL) { |
| 2090 | requested.thrp_ext_iopassive = value; |
| 2091 | } else { |
| 2092 | requested.thrp_int_iopassive = value; |
| 2093 | } |
| 2094 | break; |
| 2095 | |
| 2096 | /* Category: ATTRIBUTE, thread only */ |
| 2097 | |
| 2098 | case TASK_POLICY_PIDBIND_BG: |
| 2099 | assert(category == TASK_POLICY_ATTRIBUTE); |
| 2100 | requested.thrp_pidbind_bg = value; |
| 2101 | pend_token->tpt_update_turnstile = 1; |
| 2102 | break; |
| 2103 | |
| 2104 | case TASK_POLICY_LATENCY_QOS: |
| 2105 | assert(category == TASK_POLICY_ATTRIBUTE); |
| 2106 | requested.thrp_latency_qos = value; |
| 2107 | break; |
| 2108 | |
| 2109 | case TASK_POLICY_THROUGH_QOS: |
| 2110 | assert(category == TASK_POLICY_ATTRIBUTE); |
| 2111 | requested.thrp_through_qos = value; |
| 2112 | break; |
| 2113 | |
| 2114 | case TASK_POLICY_QOS_OVERRIDE: |
| 2115 | assert(category == TASK_POLICY_ATTRIBUTE); |
| 2116 | requested.thrp_qos_override = value; |
| 2117 | pend_token->tpt_update_turnstile = 1; |
| 2118 | break; |
| 2119 | |
| 2120 | case TASK_POLICY_QOS_AND_RELPRIO: |
| 2121 | assert(category == TASK_POLICY_ATTRIBUTE); |
| 2122 | requested.thrp_qos = value; |
| 2123 | requested.thrp_qos_relprio = value2; |
| 2124 | pend_token->tpt_update_turnstile = 1; |
| 2125 | DTRACE_BOOST3(qos_set, uint64_t, thread->thread_id, int, requested.thrp_qos, int, requested.thrp_qos_relprio); |
| 2126 | break; |
| 2127 | |
| 2128 | case TASK_POLICY_QOS_WORKQ_OVERRIDE: |
| 2129 | assert(category == TASK_POLICY_ATTRIBUTE); |
| 2130 | requested.thrp_qos_workq_override = value; |
| 2131 | pend_token->tpt_update_turnstile = 1; |
| 2132 | break; |
| 2133 | |
| 2134 | case TASK_POLICY_QOS_PROMOTE: |
| 2135 | assert(category == TASK_POLICY_ATTRIBUTE); |
| 2136 | requested.thrp_qos_promote = value; |
| 2137 | break; |
| 2138 | |
| 2139 | case TASK_POLICY_QOS_KEVENT_OVERRIDE: |
| 2140 | assert(category == TASK_POLICY_ATTRIBUTE); |
| 2141 | requested.thrp_qos_kevent_override = value; |
| 2142 | pend_token->tpt_update_turnstile = 1; |
| 2143 | break; |
| 2144 | |
| 2145 | case TASK_POLICY_QOS_SERVICER_OVERRIDE: |
| 2146 | assert(category == TASK_POLICY_ATTRIBUTE); |
| 2147 | requested.thrp_qos_wlsvc_override = value; |
| 2148 | pend_token->tpt_update_turnstile = 1; |
| 2149 | break; |
| 2150 | |
| 2151 | case TASK_POLICY_TERMINATED: |
| 2152 | assert(category == TASK_POLICY_ATTRIBUTE); |
| 2153 | requested.thrp_terminated = value; |
| 2154 | break; |
| 2155 | |
| 2156 | case TASK_POLICY_IOTIER_KEVENT_OVERRIDE: |
| 2157 | assert(category == TASK_POLICY_ATTRIBUTE); |
| 2158 | requested.thrp_iotier_kevent_override = value; |
| 2159 | break; |
| 2160 | |
| 2161 | case TASK_POLICY_WI_DRIVEN: |
| 2162 | assert(category == TASK_POLICY_ATTRIBUTE); |
| 2163 | assert(thread == current_thread()); |
| 2164 | |
| 2165 | const bool set_policy = value; |
| 2166 | const sched_mode_t mode = value2; |
| 2167 | |
| 2168 | requested.thrp_wi_driven = set_policy ? 1 : 0; |
| 2169 | |
| 2170 | /* |
| 2171 | * No sched mode change for REALTIME (threads must explicitly |
| 2172 | * opt-in), however the priority_offset needs to be updated. |
| 2173 | */ |
| 2174 | if (mode == TH_MODE_REALTIME) { |
| 2175 | const int pri = work_interval_get_priority(thread); |
| 2176 | assert3u(pri, >=, BASEPRI_RTQUEUES); |
| 2177 | thread->realtime.priority_offset = set_policy ? |
| 2178 | (uint8_t)(pri - BASEPRI_RTQUEUES) : 0; |
| 2179 | } else { |
| 2180 | sched_set_thread_mode_user(thread, mode); |
| 2181 | if (set_policy) { |
| 2182 | thread->static_param = true; |
| 2183 | } |
| 2184 | } |
| 2185 | break; |
| 2186 | |
| 2187 | default: |
| 2188 | panic("unknown task policy: %d %d %d" , category, flavor, value); |
| 2189 | break; |
| 2190 | } |
| 2191 | |
| 2192 | thread->requested_policy = requested; |
| 2193 | } |
| 2194 | |
| 2195 | /* |
| 2196 | * Gets what you set. Effective values may be different. |
| 2197 | * Precondition: No locks are held |
| 2198 | */ |
| 2199 | int |
| 2200 | proc_get_thread_policy(thread_t thread, |
| 2201 | int category, |
| 2202 | int flavor) |
| 2203 | { |
| 2204 | int value = 0; |
| 2205 | thread_mtx_lock(thread); |
| 2206 | value = proc_get_thread_policy_locked(thread, category, flavor, NULL); |
| 2207 | thread_mtx_unlock(thread); |
| 2208 | return value; |
| 2209 | } |
| 2210 | |
| 2211 | static int |
| 2212 | proc_get_thread_policy_locked(thread_t thread, |
| 2213 | int category, |
| 2214 | int flavor, |
| 2215 | int* value2) |
| 2216 | { |
| 2217 | int value = 0; |
| 2218 | |
| 2219 | spl_t s = splsched(); |
| 2220 | thread_lock(thread); |
| 2221 | |
| 2222 | value = thread_get_requested_policy_spinlocked(thread, category, flavor, value2); |
| 2223 | |
| 2224 | thread_unlock(thread); |
| 2225 | splx(s); |
| 2226 | |
| 2227 | return value; |
| 2228 | } |
| 2229 | |
| 2230 | /* |
| 2231 | * Gets what you set. Effective values may be different. |
| 2232 | */ |
| 2233 | static int |
| 2234 | thread_get_requested_policy_spinlocked(thread_t thread, |
| 2235 | int category, |
| 2236 | int flavor, |
| 2237 | int* value2) |
| 2238 | { |
| 2239 | int value = 0; |
| 2240 | |
| 2241 | struct thread_requested_policy requested = thread->requested_policy; |
| 2242 | |
| 2243 | switch (flavor) { |
| 2244 | case TASK_POLICY_DARWIN_BG: |
| 2245 | if (category == TASK_POLICY_EXTERNAL) { |
| 2246 | value = requested.thrp_ext_darwinbg; |
| 2247 | } else { |
| 2248 | value = requested.thrp_int_darwinbg; |
| 2249 | } |
| 2250 | break; |
| 2251 | case TASK_POLICY_IOPOL: |
| 2252 | if (category == TASK_POLICY_EXTERNAL) { |
| 2253 | value = proc_tier_to_iopol(tier: requested.thrp_ext_iotier, |
| 2254 | passive: requested.thrp_ext_iopassive); |
| 2255 | } else { |
| 2256 | value = proc_tier_to_iopol(tier: requested.thrp_int_iotier, |
| 2257 | passive: requested.thrp_int_iopassive); |
| 2258 | } |
| 2259 | break; |
| 2260 | case TASK_POLICY_IO: |
| 2261 | if (category == TASK_POLICY_EXTERNAL) { |
| 2262 | value = requested.thrp_ext_iotier; |
| 2263 | } else { |
| 2264 | value = requested.thrp_int_iotier; |
| 2265 | } |
| 2266 | break; |
| 2267 | case TASK_POLICY_PASSIVE_IO: |
| 2268 | if (category == TASK_POLICY_EXTERNAL) { |
| 2269 | value = requested.thrp_ext_iopassive; |
| 2270 | } else { |
| 2271 | value = requested.thrp_int_iopassive; |
| 2272 | } |
| 2273 | break; |
| 2274 | case TASK_POLICY_QOS: |
| 2275 | assert(category == TASK_POLICY_ATTRIBUTE); |
| 2276 | value = requested.thrp_qos; |
| 2277 | break; |
| 2278 | case TASK_POLICY_QOS_OVERRIDE: |
| 2279 | assert(category == TASK_POLICY_ATTRIBUTE); |
| 2280 | value = requested.thrp_qos_override; |
| 2281 | break; |
| 2282 | case TASK_POLICY_LATENCY_QOS: |
| 2283 | assert(category == TASK_POLICY_ATTRIBUTE); |
| 2284 | value = requested.thrp_latency_qos; |
| 2285 | break; |
| 2286 | case TASK_POLICY_THROUGH_QOS: |
| 2287 | assert(category == TASK_POLICY_ATTRIBUTE); |
| 2288 | value = requested.thrp_through_qos; |
| 2289 | break; |
| 2290 | case TASK_POLICY_QOS_WORKQ_OVERRIDE: |
| 2291 | assert(category == TASK_POLICY_ATTRIBUTE); |
| 2292 | value = requested.thrp_qos_workq_override; |
| 2293 | break; |
| 2294 | case TASK_POLICY_QOS_AND_RELPRIO: |
| 2295 | assert(category == TASK_POLICY_ATTRIBUTE); |
| 2296 | assert(value2 != NULL); |
| 2297 | value = requested.thrp_qos; |
| 2298 | *value2 = requested.thrp_qos_relprio; |
| 2299 | break; |
| 2300 | case TASK_POLICY_QOS_PROMOTE: |
| 2301 | assert(category == TASK_POLICY_ATTRIBUTE); |
| 2302 | value = requested.thrp_qos_promote; |
| 2303 | break; |
| 2304 | case TASK_POLICY_QOS_KEVENT_OVERRIDE: |
| 2305 | assert(category == TASK_POLICY_ATTRIBUTE); |
| 2306 | value = requested.thrp_qos_kevent_override; |
| 2307 | break; |
| 2308 | case TASK_POLICY_QOS_SERVICER_OVERRIDE: |
| 2309 | assert(category == TASK_POLICY_ATTRIBUTE); |
| 2310 | value = requested.thrp_qos_wlsvc_override; |
| 2311 | break; |
| 2312 | case TASK_POLICY_TERMINATED: |
| 2313 | assert(category == TASK_POLICY_ATTRIBUTE); |
| 2314 | value = requested.thrp_terminated; |
| 2315 | break; |
| 2316 | case TASK_POLICY_IOTIER_KEVENT_OVERRIDE: |
| 2317 | assert(category == TASK_POLICY_ATTRIBUTE); |
| 2318 | value = requested.thrp_iotier_kevent_override; |
| 2319 | break; |
| 2320 | |
| 2321 | case TASK_POLICY_WI_DRIVEN: |
| 2322 | assert(category == TASK_POLICY_ATTRIBUTE); |
| 2323 | value = requested.thrp_wi_driven; |
| 2324 | break; |
| 2325 | |
| 2326 | default: |
| 2327 | panic("unknown policy_flavor %d" , flavor); |
| 2328 | break; |
| 2329 | } |
| 2330 | |
| 2331 | return value; |
| 2332 | } |
| 2333 | |
| 2334 | /* |
| 2335 | * Gets what is actually in effect, for subsystems which pull policy instead of receive updates. |
| 2336 | * |
| 2337 | * NOTE: This accessor does not take the task or thread lock. |
| 2338 | * Notifications of state updates need to be externally synchronized with state queries. |
| 2339 | * This routine *MUST* remain interrupt safe, as it is potentially invoked |
| 2340 | * within the context of a timer interrupt. |
| 2341 | * |
| 2342 | * TODO: I think we can get away with architecting this such that we don't need to look at the task ever. |
| 2343 | * Is that a good idea? Maybe it's best to avoid evaluate-all-the-threads updates. |
| 2344 | * I don't think that cost is worth not having the right answer. |
| 2345 | */ |
| 2346 | int |
| 2347 | proc_get_effective_thread_policy(thread_t thread, |
| 2348 | int flavor) |
| 2349 | { |
| 2350 | int value = 0; |
| 2351 | |
| 2352 | switch (flavor) { |
| 2353 | case TASK_POLICY_DARWIN_BG: |
| 2354 | /* |
| 2355 | * This call is used within the timer layer, as well as |
| 2356 | * prioritizing requests to the graphics system. |
| 2357 | * It also informs SFI and originator-bg-state. |
| 2358 | * Returns 1 for background mode, 0 for normal mode |
| 2359 | */ |
| 2360 | |
| 2361 | value = thread->effective_policy.thep_darwinbg ? 1 : 0; |
| 2362 | break; |
| 2363 | case TASK_POLICY_IO: |
| 2364 | /* |
| 2365 | * The I/O system calls here to find out what throttling tier to apply to an operation. |
| 2366 | * Returns THROTTLE_LEVEL_* values |
| 2367 | */ |
| 2368 | value = thread->effective_policy.thep_io_tier; |
| 2369 | if (thread->iotier_override != THROTTLE_LEVEL_NONE) { |
| 2370 | value = MIN(value, thread->iotier_override); |
| 2371 | } |
| 2372 | break; |
| 2373 | case TASK_POLICY_PASSIVE_IO: |
| 2374 | /* |
| 2375 | * The I/O system calls here to find out whether an operation should be passive. |
| 2376 | * (i.e. not cause operations with lower throttle tiers to be throttled) |
| 2377 | * Returns 1 for passive mode, 0 for normal mode |
| 2378 | * |
| 2379 | * If an override is causing IO to go into a lower tier, we also set |
| 2380 | * the passive bit so that a thread doesn't end up stuck in its own throttle |
| 2381 | * window when the override goes away. |
| 2382 | */ |
| 2383 | value = thread->effective_policy.thep_io_passive ? 1 : 0; |
| 2384 | if (thread->iotier_override != THROTTLE_LEVEL_NONE && |
| 2385 | thread->iotier_override < thread->effective_policy.thep_io_tier) { |
| 2386 | value = 1; |
| 2387 | } |
| 2388 | break; |
| 2389 | case TASK_POLICY_ALL_SOCKETS_BG: |
| 2390 | /* |
| 2391 | * do_background_socket() calls this to determine whether |
| 2392 | * it should change the thread's sockets |
| 2393 | * Returns 1 for background mode, 0 for normal mode |
| 2394 | * This consults both thread and task so un-DBGing a thread while the task is BG |
| 2395 | * doesn't get you out of the network throttle. |
| 2396 | */ |
| 2397 | value = (thread->effective_policy.thep_all_sockets_bg || |
| 2398 | get_threadtask(thread)->effective_policy.tep_all_sockets_bg) ? 1 : 0; |
| 2399 | break; |
| 2400 | case TASK_POLICY_NEW_SOCKETS_BG: |
| 2401 | /* |
| 2402 | * socreate() calls this to determine if it should mark a new socket as background |
| 2403 | * Returns 1 for background mode, 0 for normal mode |
| 2404 | */ |
| 2405 | value = thread->effective_policy.thep_new_sockets_bg ? 1 : 0; |
| 2406 | break; |
| 2407 | case TASK_POLICY_LATENCY_QOS: |
| 2408 | /* |
| 2409 | * timer arming calls into here to find out the timer coalescing level |
| 2410 | * Returns a latency QoS tier (0-6) |
| 2411 | */ |
| 2412 | value = thread->effective_policy.thep_latency_qos; |
| 2413 | break; |
| 2414 | case TASK_POLICY_THROUGH_QOS: |
| 2415 | /* |
| 2416 | * This value is passed into the urgency callout from the scheduler |
| 2417 | * to the performance management subsystem. |
| 2418 | * |
| 2419 | * Returns a throughput QoS tier (0-6) |
| 2420 | */ |
| 2421 | value = thread->effective_policy.thep_through_qos; |
| 2422 | break; |
| 2423 | case TASK_POLICY_QOS: |
| 2424 | /* |
| 2425 | * This is communicated to the performance management layer and SFI. |
| 2426 | * |
| 2427 | * Returns a QoS policy tier |
| 2428 | */ |
| 2429 | value = thread->effective_policy.thep_qos; |
| 2430 | break; |
| 2431 | default: |
| 2432 | panic("unknown thread policy flavor %d" , flavor); |
| 2433 | break; |
| 2434 | } |
| 2435 | |
| 2436 | return value; |
| 2437 | } |
| 2438 | |
| 2439 | |
| 2440 | /* |
| 2441 | * (integer_t) casts limit the number of bits we can fit here |
| 2442 | * this interface is deprecated and replaced by the _EXT struct ? |
| 2443 | */ |
| 2444 | static void |
| 2445 | proc_get_thread_policy_bitfield(thread_t thread, thread_policy_state_t info) |
| 2446 | { |
| 2447 | uint64_t bits = 0; |
| 2448 | struct thread_requested_policy requested = thread->requested_policy; |
| 2449 | |
| 2450 | bits |= (requested.thrp_int_darwinbg ? POLICY_REQ_INT_DARWIN_BG : 0); |
| 2451 | bits |= (requested.thrp_ext_darwinbg ? POLICY_REQ_EXT_DARWIN_BG : 0); |
| 2452 | bits |= (requested.thrp_int_iotier ? (((uint64_t)requested.thrp_int_iotier) << POLICY_REQ_INT_IO_TIER_SHIFT) : 0); |
| 2453 | bits |= (requested.thrp_ext_iotier ? (((uint64_t)requested.thrp_ext_iotier) << POLICY_REQ_EXT_IO_TIER_SHIFT) : 0); |
| 2454 | bits |= (requested.thrp_int_iopassive ? POLICY_REQ_INT_PASSIVE_IO : 0); |
| 2455 | bits |= (requested.thrp_ext_iopassive ? POLICY_REQ_EXT_PASSIVE_IO : 0); |
| 2456 | |
| 2457 | bits |= (requested.thrp_qos ? (((uint64_t)requested.thrp_qos) << POLICY_REQ_TH_QOS_SHIFT) : 0); |
| 2458 | bits |= (requested.thrp_qos_override ? (((uint64_t)requested.thrp_qos_override) << POLICY_REQ_TH_QOS_OVER_SHIFT) : 0); |
| 2459 | |
| 2460 | bits |= (requested.thrp_pidbind_bg ? POLICY_REQ_PIDBIND_BG : 0); |
| 2461 | |
| 2462 | bits |= (requested.thrp_latency_qos ? (((uint64_t)requested.thrp_latency_qos) << POLICY_REQ_BASE_LATENCY_QOS_SHIFT) : 0); |
| 2463 | bits |= (requested.thrp_through_qos ? (((uint64_t)requested.thrp_through_qos) << POLICY_REQ_BASE_THROUGH_QOS_SHIFT) : 0); |
| 2464 | |
| 2465 | info->requested = (integer_t) bits; |
| 2466 | bits = 0; |
| 2467 | |
| 2468 | struct thread_effective_policy effective = thread->effective_policy; |
| 2469 | |
| 2470 | bits |= (effective.thep_darwinbg ? POLICY_EFF_DARWIN_BG : 0); |
| 2471 | |
| 2472 | bits |= (effective.thep_io_tier ? (((uint64_t)effective.thep_io_tier) << POLICY_EFF_IO_TIER_SHIFT) : 0); |
| 2473 | bits |= (effective.thep_io_passive ? POLICY_EFF_IO_PASSIVE : 0); |
| 2474 | bits |= (effective.thep_all_sockets_bg ? POLICY_EFF_ALL_SOCKETS_BG : 0); |
| 2475 | bits |= (effective.thep_new_sockets_bg ? POLICY_EFF_NEW_SOCKETS_BG : 0); |
| 2476 | |
| 2477 | bits |= (effective.thep_qos ? (((uint64_t)effective.thep_qos) << POLICY_EFF_TH_QOS_SHIFT) : 0); |
| 2478 | |
| 2479 | bits |= (effective.thep_latency_qos ? (((uint64_t)effective.thep_latency_qos) << POLICY_EFF_LATENCY_QOS_SHIFT) : 0); |
| 2480 | bits |= (effective.thep_through_qos ? (((uint64_t)effective.thep_through_qos) << POLICY_EFF_THROUGH_QOS_SHIFT) : 0); |
| 2481 | |
| 2482 | info->effective = (integer_t)bits; |
| 2483 | bits = 0; |
| 2484 | |
| 2485 | info->pending = 0; |
| 2486 | } |
| 2487 | |
| 2488 | /* |
| 2489 | * Sneakily trace either the task and thread requested |
| 2490 | * or just the thread requested, depending on if we have enough room. |
| 2491 | * We do have room on LP64. On LP32, we have to split it between two uintptr_t's. |
| 2492 | * |
| 2493 | * LP32 LP64 |
| 2494 | * threquested_0(thread) thread[0] task[0] |
| 2495 | * threquested_1(thread) thread[1] thread[0] |
| 2496 | * |
| 2497 | */ |
| 2498 | |
| 2499 | uintptr_t |
| 2500 | threquested_0(thread_t thread) |
| 2501 | { |
| 2502 | static_assert(sizeof(struct thread_requested_policy) == sizeof(uint64_t), "size invariant violated" ); |
| 2503 | |
| 2504 | uintptr_t* raw = (uintptr_t*)(void*)&thread->requested_policy; |
| 2505 | |
| 2506 | return raw[0]; |
| 2507 | } |
| 2508 | |
| 2509 | uintptr_t |
| 2510 | threquested_1(thread_t thread) |
| 2511 | { |
| 2512 | #if defined __LP64__ |
| 2513 | return *(uintptr_t*)&get_threadtask(thread)->requested_policy; |
| 2514 | #else |
| 2515 | uintptr_t* raw = (uintptr_t*)(void*)&thread->requested_policy; |
| 2516 | return raw[1]; |
| 2517 | #endif |
| 2518 | } |
| 2519 | |
| 2520 | uintptr_t |
| 2521 | theffective_0(thread_t thread) |
| 2522 | { |
| 2523 | static_assert(sizeof(struct thread_effective_policy) == sizeof(uint64_t), "size invariant violated" ); |
| 2524 | |
| 2525 | uintptr_t* raw = (uintptr_t*)(void*)&thread->effective_policy; |
| 2526 | return raw[0]; |
| 2527 | } |
| 2528 | |
| 2529 | uintptr_t |
| 2530 | theffective_1(thread_t thread) |
| 2531 | { |
| 2532 | #if defined __LP64__ |
| 2533 | return *(uintptr_t*)&get_threadtask(thread)->effective_policy; |
| 2534 | #else |
| 2535 | uintptr_t* raw = (uintptr_t*)(void*)&thread->effective_policy; |
| 2536 | return raw[1]; |
| 2537 | #endif |
| 2538 | } |
| 2539 | |
| 2540 | |
| 2541 | /* |
| 2542 | * Set an override on the thread which is consulted with a |
| 2543 | * higher priority than the task/thread policy. This should |
| 2544 | * only be set for temporary grants until the thread |
| 2545 | * returns to the userspace boundary |
| 2546 | * |
| 2547 | * We use atomic operations to swap in the override, with |
| 2548 | * the assumption that the thread itself can |
| 2549 | * read the override and clear it on return to userspace. |
| 2550 | * |
| 2551 | * No locking is performed, since it is acceptable to see |
| 2552 | * a stale override for one loop through throttle_lowpri_io(). |
| 2553 | * However a thread reference must be held on the thread. |
| 2554 | */ |
| 2555 | |
| 2556 | void |
| 2557 | set_thread_iotier_override(thread_t thread, int policy) |
| 2558 | { |
| 2559 | int current_override; |
| 2560 | |
| 2561 | /* Let most aggressive I/O policy win until user boundary */ |
| 2562 | do { |
| 2563 | current_override = thread->iotier_override; |
| 2564 | |
| 2565 | if (current_override != THROTTLE_LEVEL_NONE) { |
| 2566 | policy = MIN(current_override, policy); |
| 2567 | } |
| 2568 | |
| 2569 | if (current_override == policy) { |
| 2570 | /* no effective change */ |
| 2571 | return; |
| 2572 | } |
| 2573 | } while (!OSCompareAndSwap(current_override, policy, &thread->iotier_override)); |
| 2574 | |
| 2575 | /* |
| 2576 | * Since the thread may be currently throttled, |
| 2577 | * re-evaluate tiers and potentially break out |
| 2578 | * of an msleep |
| 2579 | */ |
| 2580 | rethrottle_thread(uthread: get_bsdthread_info(thread)); |
| 2581 | } |
| 2582 | |
| 2583 | /* |
| 2584 | * Userspace synchronization routines (like pthread mutexes, pthread reader-writer locks, |
| 2585 | * semaphores, dispatch_sync) may result in priority inversions where a higher priority |
| 2586 | * (i.e. scheduler priority, I/O tier, QoS tier) is waiting on a resource owned by a lower |
| 2587 | * priority thread. In these cases, we attempt to propagate the priority token, as long |
| 2588 | * as the subsystem informs us of the relationships between the threads. The userspace |
| 2589 | * synchronization subsystem should maintain the information of owner->resource and |
| 2590 | * resource->waiters itself. |
| 2591 | */ |
| 2592 | |
| 2593 | /* |
| 2594 | * This helper canonicalizes the resource/resource_type given the current qos_override_mode |
| 2595 | * in effect. Note that wildcards (THREAD_QOS_OVERRIDE_RESOURCE_WILDCARD) may need |
| 2596 | * to be handled specially in the future, but for now it's fine to slam |
| 2597 | * *resource to USER_ADDR_NULL even if it was previously a wildcard. |
| 2598 | */ |
| 2599 | static void |
| 2600 | canonicalize_resource_and_type(user_addr_t *resource, int *resource_type) |
| 2601 | { |
| 2602 | if (qos_override_mode == QOS_OVERRIDE_MODE_OVERHANG_PEAK || qos_override_mode == QOS_OVERRIDE_MODE_IGNORE_OVERRIDE) { |
| 2603 | /* Map all input resource/type to a single one */ |
| 2604 | *resource = USER_ADDR_NULL; |
| 2605 | *resource_type = THREAD_QOS_OVERRIDE_TYPE_UNKNOWN; |
| 2606 | } else if (qos_override_mode == QOS_OVERRIDE_MODE_FINE_GRAINED_OVERRIDE) { |
| 2607 | /* no transform */ |
| 2608 | } else if (qos_override_mode == QOS_OVERRIDE_MODE_FINE_GRAINED_OVERRIDE_BUT_SINGLE_MUTEX_OVERRIDE) { |
| 2609 | /* Map all mutex overrides to a single one, to avoid memory overhead */ |
| 2610 | if (*resource_type == THREAD_QOS_OVERRIDE_TYPE_PTHREAD_MUTEX) { |
| 2611 | *resource = USER_ADDR_NULL; |
| 2612 | } |
| 2613 | } |
| 2614 | } |
| 2615 | |
| 2616 | /* This helper routine finds an existing override if known. Locking should be done by caller */ |
| 2617 | static struct thread_qos_override * |
| 2618 | find_qos_override(thread_t thread, |
| 2619 | user_addr_t resource, |
| 2620 | int resource_type) |
| 2621 | { |
| 2622 | struct thread_qos_override *override; |
| 2623 | |
| 2624 | override = thread->overrides; |
| 2625 | while (override) { |
| 2626 | if (override->override_resource == resource && |
| 2627 | override->override_resource_type == resource_type) { |
| 2628 | return override; |
| 2629 | } |
| 2630 | |
| 2631 | override = override->override_next; |
| 2632 | } |
| 2633 | |
| 2634 | return NULL; |
| 2635 | } |
| 2636 | |
| 2637 | static void |
| 2638 | find_and_decrement_qos_override(thread_t thread, |
| 2639 | user_addr_t resource, |
| 2640 | int resource_type, |
| 2641 | boolean_t reset, |
| 2642 | struct thread_qos_override **free_override_list) |
| 2643 | { |
| 2644 | struct thread_qos_override *override, *override_prev; |
| 2645 | |
| 2646 | override_prev = NULL; |
| 2647 | override = thread->overrides; |
| 2648 | while (override) { |
| 2649 | struct thread_qos_override *override_next = override->override_next; |
| 2650 | |
| 2651 | if ((THREAD_QOS_OVERRIDE_RESOURCE_WILDCARD == resource || override->override_resource == resource) && |
| 2652 | (THREAD_QOS_OVERRIDE_TYPE_WILDCARD == resource_type || override->override_resource_type == resource_type)) { |
| 2653 | if (reset) { |
| 2654 | override->override_contended_resource_count = 0; |
| 2655 | } else { |
| 2656 | override->override_contended_resource_count--; |
| 2657 | } |
| 2658 | |
| 2659 | if (override->override_contended_resource_count == 0) { |
| 2660 | if (override_prev == NULL) { |
| 2661 | thread->overrides = override_next; |
| 2662 | } else { |
| 2663 | override_prev->override_next = override_next; |
| 2664 | } |
| 2665 | |
| 2666 | /* Add to out-param for later zfree */ |
| 2667 | override->override_next = *free_override_list; |
| 2668 | *free_override_list = override; |
| 2669 | } else { |
| 2670 | override_prev = override; |
| 2671 | } |
| 2672 | |
| 2673 | if (THREAD_QOS_OVERRIDE_RESOURCE_WILDCARD != resource) { |
| 2674 | return; |
| 2675 | } |
| 2676 | } else { |
| 2677 | override_prev = override; |
| 2678 | } |
| 2679 | |
| 2680 | override = override_next; |
| 2681 | } |
| 2682 | } |
| 2683 | |
| 2684 | /* This helper recalculates the current requested override using the policy selected at boot */ |
| 2685 | static int |
| 2686 | calculate_requested_qos_override(thread_t thread) |
| 2687 | { |
| 2688 | if (qos_override_mode == QOS_OVERRIDE_MODE_IGNORE_OVERRIDE) { |
| 2689 | return THREAD_QOS_UNSPECIFIED; |
| 2690 | } |
| 2691 | |
| 2692 | /* iterate over all overrides and calculate MAX */ |
| 2693 | struct thread_qos_override *override; |
| 2694 | int qos_override = THREAD_QOS_UNSPECIFIED; |
| 2695 | |
| 2696 | override = thread->overrides; |
| 2697 | while (override) { |
| 2698 | qos_override = MAX(qos_override, override->override_qos); |
| 2699 | override = override->override_next; |
| 2700 | } |
| 2701 | |
| 2702 | return qos_override; |
| 2703 | } |
| 2704 | |
| 2705 | /* |
| 2706 | * Returns: |
| 2707 | * - 0 on success |
| 2708 | * - EINVAL if some invalid input was passed |
| 2709 | */ |
| 2710 | static int |
| 2711 | proc_thread_qos_add_override_internal(thread_t thread, |
| 2712 | int override_qos, |
| 2713 | boolean_t first_override_for_resource, |
| 2714 | user_addr_t resource, |
| 2715 | int resource_type) |
| 2716 | { |
| 2717 | struct task_pend_token pend_token = {}; |
| 2718 | int rc = 0; |
| 2719 | |
| 2720 | thread_mtx_lock(thread); |
| 2721 | |
| 2722 | KERNEL_DEBUG_CONSTANT((IMPORTANCE_CODE(IMP_USYNCH_QOS_OVERRIDE, IMP_USYNCH_ADD_OVERRIDE)) | DBG_FUNC_START, |
| 2723 | thread_tid(thread), override_qos, first_override_for_resource ? 1 : 0, 0, 0); |
| 2724 | |
| 2725 | DTRACE_BOOST5(qos_add_override_pre, uint64_t, thread_tid(thread), |
| 2726 | uint64_t, thread->requested_policy.thrp_qos, |
| 2727 | uint64_t, thread->effective_policy.thep_qos, |
| 2728 | int, override_qos, boolean_t, first_override_for_resource); |
| 2729 | |
| 2730 | struct thread_qos_override *override; |
| 2731 | struct thread_qos_override *override_new = NULL; |
| 2732 | int new_qos_override, prev_qos_override; |
| 2733 | int new_effective_qos; |
| 2734 | |
| 2735 | canonicalize_resource_and_type(resource: &resource, resource_type: &resource_type); |
| 2736 | |
| 2737 | override = find_qos_override(thread, resource, resource_type); |
| 2738 | if (first_override_for_resource && !override) { |
| 2739 | /* We need to allocate a new object. Drop the thread lock and |
| 2740 | * recheck afterwards in case someone else added the override |
| 2741 | */ |
| 2742 | thread_mtx_unlock(thread); |
| 2743 | override_new = zalloc(kt_view: thread_qos_override_zone); |
| 2744 | thread_mtx_lock(thread); |
| 2745 | override = find_qos_override(thread, resource, resource_type); |
| 2746 | } |
| 2747 | if (first_override_for_resource && override) { |
| 2748 | /* Someone else already allocated while the thread lock was dropped */ |
| 2749 | override->override_contended_resource_count++; |
| 2750 | } else if (!override && override_new) { |
| 2751 | override = override_new; |
| 2752 | override_new = NULL; |
| 2753 | override->override_next = thread->overrides; |
| 2754 | /* since first_override_for_resource was TRUE */ |
| 2755 | override->override_contended_resource_count = 1; |
| 2756 | override->override_resource = resource; |
| 2757 | override->override_resource_type = (int16_t)resource_type; |
| 2758 | override->override_qos = THREAD_QOS_UNSPECIFIED; |
| 2759 | thread->overrides = override; |
| 2760 | } |
| 2761 | |
| 2762 | if (override) { |
| 2763 | if (override->override_qos == THREAD_QOS_UNSPECIFIED) { |
| 2764 | override->override_qos = (int16_t)override_qos; |
| 2765 | } else { |
| 2766 | override->override_qos = MAX(override->override_qos, (int16_t)override_qos); |
| 2767 | } |
| 2768 | } |
| 2769 | |
| 2770 | /* Determine how to combine the various overrides into a single current |
| 2771 | * requested override |
| 2772 | */ |
| 2773 | new_qos_override = calculate_requested_qos_override(thread); |
| 2774 | |
| 2775 | prev_qos_override = proc_get_thread_policy_locked(thread, |
| 2776 | TASK_POLICY_ATTRIBUTE, TASK_POLICY_QOS_OVERRIDE, NULL); |
| 2777 | |
| 2778 | if (new_qos_override != prev_qos_override) { |
| 2779 | proc_set_thread_policy_locked(thread, TASK_POLICY_ATTRIBUTE, |
| 2780 | TASK_POLICY_QOS_OVERRIDE, |
| 2781 | value: new_qos_override, value2: 0, pend_token: &pend_token); |
| 2782 | } |
| 2783 | |
| 2784 | new_effective_qos = proc_get_effective_thread_policy(thread, TASK_POLICY_QOS); |
| 2785 | |
| 2786 | thread_mtx_unlock(thread); |
| 2787 | |
| 2788 | thread_policy_update_complete_unlocked(thread, pend_token: &pend_token); |
| 2789 | |
| 2790 | if (override_new) { |
| 2791 | zfree(thread_qos_override_zone, override_new); |
| 2792 | } |
| 2793 | |
| 2794 | DTRACE_BOOST4(qos_add_override_post, int, prev_qos_override, |
| 2795 | int, new_qos_override, int, new_effective_qos, int, rc); |
| 2796 | |
| 2797 | KERNEL_DEBUG_CONSTANT((IMPORTANCE_CODE(IMP_USYNCH_QOS_OVERRIDE, IMP_USYNCH_ADD_OVERRIDE)) | DBG_FUNC_END, |
| 2798 | new_qos_override, resource, resource_type, 0, 0); |
| 2799 | |
| 2800 | return rc; |
| 2801 | } |
| 2802 | |
| 2803 | int |
| 2804 | proc_thread_qos_add_override(task_t task, |
| 2805 | thread_t thread, |
| 2806 | uint64_t tid, |
| 2807 | int override_qos, |
| 2808 | boolean_t first_override_for_resource, |
| 2809 | user_addr_t resource, |
| 2810 | int resource_type) |
| 2811 | { |
| 2812 | boolean_t has_thread_reference = FALSE; |
| 2813 | int rc = 0; |
| 2814 | |
| 2815 | if (thread == THREAD_NULL) { |
| 2816 | thread = task_findtid(task, tid); |
| 2817 | /* returns referenced thread */ |
| 2818 | |
| 2819 | if (thread == THREAD_NULL) { |
| 2820 | KERNEL_DEBUG_CONSTANT((IMPORTANCE_CODE(IMP_USYNCH_QOS_OVERRIDE, IMP_USYNCH_ADD_OVERRIDE)) | DBG_FUNC_NONE, |
| 2821 | tid, 0, 0xdead, 0, 0); |
| 2822 | return ESRCH; |
| 2823 | } |
| 2824 | has_thread_reference = TRUE; |
| 2825 | } else { |
| 2826 | assert(get_threadtask(thread) == task); |
| 2827 | } |
| 2828 | rc = proc_thread_qos_add_override_internal(thread, override_qos, |
| 2829 | first_override_for_resource, resource, resource_type); |
| 2830 | if (has_thread_reference) { |
| 2831 | thread_deallocate(thread); |
| 2832 | } |
| 2833 | |
| 2834 | return rc; |
| 2835 | } |
| 2836 | |
| 2837 | static void |
| 2838 | proc_thread_qos_remove_override_internal(thread_t thread, |
| 2839 | user_addr_t resource, |
| 2840 | int resource_type, |
| 2841 | boolean_t reset) |
| 2842 | { |
| 2843 | struct task_pend_token pend_token = {}; |
| 2844 | |
| 2845 | struct thread_qos_override *deferred_free_override_list = NULL; |
| 2846 | int new_qos_override, prev_qos_override, new_effective_qos; |
| 2847 | |
| 2848 | thread_mtx_lock(thread); |
| 2849 | |
| 2850 | canonicalize_resource_and_type(resource: &resource, resource_type: &resource_type); |
| 2851 | |
| 2852 | find_and_decrement_qos_override(thread, resource, resource_type, reset, free_override_list: &deferred_free_override_list); |
| 2853 | |
| 2854 | KERNEL_DEBUG_CONSTANT((IMPORTANCE_CODE(IMP_USYNCH_QOS_OVERRIDE, IMP_USYNCH_REMOVE_OVERRIDE)) | DBG_FUNC_START, |
| 2855 | thread_tid(thread), resource, reset, 0, 0); |
| 2856 | |
| 2857 | DTRACE_BOOST3(qos_remove_override_pre, uint64_t, thread_tid(thread), |
| 2858 | uint64_t, thread->requested_policy.thrp_qos, |
| 2859 | uint64_t, thread->effective_policy.thep_qos); |
| 2860 | |
| 2861 | /* Determine how to combine the various overrides into a single current requested override */ |
| 2862 | new_qos_override = calculate_requested_qos_override(thread); |
| 2863 | |
| 2864 | spl_t s = splsched(); |
| 2865 | thread_lock(thread); |
| 2866 | |
| 2867 | /* |
| 2868 | * The override chain and therefore the value of the current override is locked with thread mutex, |
| 2869 | * so we can do a get/set without races. However, the rest of thread policy is locked under the spinlock. |
| 2870 | * This means you can't change the current override from a spinlock-only setter. |
| 2871 | */ |
| 2872 | prev_qos_override = thread_get_requested_policy_spinlocked(thread, TASK_POLICY_ATTRIBUTE, TASK_POLICY_QOS_OVERRIDE, NULL); |
| 2873 | |
| 2874 | if (new_qos_override != prev_qos_override) { |
| 2875 | proc_set_thread_policy_spinlocked(thread, TASK_POLICY_ATTRIBUTE, TASK_POLICY_QOS_OVERRIDE, value: new_qos_override, value2: 0, pend_token: &pend_token); |
| 2876 | } |
| 2877 | |
| 2878 | new_effective_qos = proc_get_effective_thread_policy(thread, TASK_POLICY_QOS); |
| 2879 | |
| 2880 | thread_unlock(thread); |
| 2881 | splx(s); |
| 2882 | |
| 2883 | thread_mtx_unlock(thread); |
| 2884 | |
| 2885 | thread_policy_update_complete_unlocked(thread, pend_token: &pend_token); |
| 2886 | |
| 2887 | while (deferred_free_override_list) { |
| 2888 | struct thread_qos_override *override_next = deferred_free_override_list->override_next; |
| 2889 | |
| 2890 | zfree(thread_qos_override_zone, deferred_free_override_list); |
| 2891 | deferred_free_override_list = override_next; |
| 2892 | } |
| 2893 | |
| 2894 | DTRACE_BOOST3(qos_remove_override_post, int, prev_qos_override, |
| 2895 | int, new_qos_override, int, new_effective_qos); |
| 2896 | |
| 2897 | KERNEL_DEBUG_CONSTANT((IMPORTANCE_CODE(IMP_USYNCH_QOS_OVERRIDE, IMP_USYNCH_REMOVE_OVERRIDE)) | DBG_FUNC_END, |
| 2898 | thread_tid(thread), 0, 0, 0, 0); |
| 2899 | } |
| 2900 | |
| 2901 | int |
| 2902 | proc_thread_qos_remove_override(task_t task, |
| 2903 | thread_t thread, |
| 2904 | uint64_t tid, |
| 2905 | user_addr_t resource, |
| 2906 | int resource_type) |
| 2907 | { |
| 2908 | boolean_t has_thread_reference = FALSE; |
| 2909 | |
| 2910 | if (thread == THREAD_NULL) { |
| 2911 | thread = task_findtid(task, tid); |
| 2912 | /* returns referenced thread */ |
| 2913 | |
| 2914 | if (thread == THREAD_NULL) { |
| 2915 | KERNEL_DEBUG_CONSTANT((IMPORTANCE_CODE(IMP_USYNCH_QOS_OVERRIDE, IMP_USYNCH_REMOVE_OVERRIDE)) | DBG_FUNC_NONE, |
| 2916 | tid, 0, 0xdead, 0, 0); |
| 2917 | return ESRCH; |
| 2918 | } |
| 2919 | has_thread_reference = TRUE; |
| 2920 | } else { |
| 2921 | assert(task == get_threadtask(thread)); |
| 2922 | } |
| 2923 | |
| 2924 | proc_thread_qos_remove_override_internal(thread, resource, resource_type, FALSE); |
| 2925 | |
| 2926 | if (has_thread_reference) { |
| 2927 | thread_deallocate(thread); |
| 2928 | } |
| 2929 | |
| 2930 | return 0; |
| 2931 | } |
| 2932 | |
| 2933 | /* Deallocate before thread termination */ |
| 2934 | void |
| 2935 | proc_thread_qos_deallocate(thread_t thread) |
| 2936 | { |
| 2937 | /* This thread must have no more IPC overrides. */ |
| 2938 | assert(thread->kevent_overrides == 0); |
| 2939 | assert(thread->requested_policy.thrp_qos_kevent_override == THREAD_QOS_UNSPECIFIED); |
| 2940 | assert(thread->requested_policy.thrp_qos_wlsvc_override == THREAD_QOS_UNSPECIFIED); |
| 2941 | |
| 2942 | /* |
| 2943 | * Clear out any lingering override objects. |
| 2944 | */ |
| 2945 | struct thread_qos_override *override; |
| 2946 | |
| 2947 | thread_mtx_lock(thread); |
| 2948 | override = thread->overrides; |
| 2949 | thread->overrides = NULL; |
| 2950 | thread->requested_policy.thrp_qos_override = THREAD_QOS_UNSPECIFIED; |
| 2951 | /* We don't need to re-evaluate thread policy here because the thread has already exited */ |
| 2952 | thread_mtx_unlock(thread); |
| 2953 | |
| 2954 | while (override) { |
| 2955 | struct thread_qos_override *override_next = override->override_next; |
| 2956 | |
| 2957 | zfree(thread_qos_override_zone, override); |
| 2958 | override = override_next; |
| 2959 | } |
| 2960 | } |
| 2961 | |
| 2962 | /* |
| 2963 | * Set up the primordial thread's QoS |
| 2964 | */ |
| 2965 | void |
| 2966 | task_set_main_thread_qos(task_t task, thread_t thread) |
| 2967 | { |
| 2968 | struct task_pend_token pend_token = {}; |
| 2969 | |
| 2970 | assert(get_threadtask(thread) == task); |
| 2971 | |
| 2972 | thread_mtx_lock(thread); |
| 2973 | |
| 2974 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
| 2975 | (IMPORTANCE_CODE(IMP_MAIN_THREAD_QOS, 0)) | DBG_FUNC_START, |
| 2976 | thread_tid(thread), threquested_0(thread), threquested_1(thread), |
| 2977 | thread->requested_policy.thrp_qos, 0); |
| 2978 | |
| 2979 | thread_qos_t primordial_qos = task_compute_main_thread_qos(task); |
| 2980 | |
| 2981 | proc_set_thread_policy_locked(thread, TASK_POLICY_ATTRIBUTE, TASK_POLICY_QOS_AND_RELPRIO, |
| 2982 | value: primordial_qos, value2: 0, pend_token: &pend_token); |
| 2983 | |
| 2984 | thread_mtx_unlock(thread); |
| 2985 | |
| 2986 | thread_policy_update_complete_unlocked(thread, pend_token: &pend_token); |
| 2987 | |
| 2988 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
| 2989 | (IMPORTANCE_CODE(IMP_MAIN_THREAD_QOS, 0)) | DBG_FUNC_END, |
| 2990 | thread_tid(thread), threquested_0(thread), threquested_1(thread), |
| 2991 | primordial_qos, 0); |
| 2992 | } |
| 2993 | |
| 2994 | /* |
| 2995 | * KPI for pthread kext |
| 2996 | * |
| 2997 | * Return a good guess at what the initial manager QoS will be |
| 2998 | * Dispatch can override this in userspace if it so chooses |
| 2999 | */ |
| 3000 | thread_qos_t |
| 3001 | task_get_default_manager_qos(task_t task) |
| 3002 | { |
| 3003 | thread_qos_t primordial_qos = task_compute_main_thread_qos(task); |
| 3004 | |
| 3005 | if (primordial_qos == THREAD_QOS_LEGACY) { |
| 3006 | primordial_qos = THREAD_QOS_USER_INITIATED; |
| 3007 | } |
| 3008 | |
| 3009 | return primordial_qos; |
| 3010 | } |
| 3011 | |
| 3012 | /* |
| 3013 | * Check if the kernel promotion on thread has changed |
| 3014 | * and apply it. |
| 3015 | * |
| 3016 | * thread locked on entry and exit |
| 3017 | */ |
| 3018 | boolean_t |
| 3019 | thread_recompute_kernel_promotion_locked(thread_t thread) |
| 3020 | { |
| 3021 | boolean_t needs_update = FALSE; |
| 3022 | uint8_t kern_promotion_schedpri = (uint8_t)thread_get_inheritor_turnstile_sched_priority(thread); |
| 3023 | |
| 3024 | /* |
| 3025 | * For now just assert that kern_promotion_schedpri <= MAXPRI_PROMOTE. |
| 3026 | * TURNSTILE_KERNEL_PROMOTE adds threads on the waitq already capped to MAXPRI_PROMOTE |
| 3027 | * and propagates the priority through the chain with the same cap, because as of now it does |
| 3028 | * not differenciate on the kernel primitive. |
| 3029 | * |
| 3030 | * If this assumption will change with the adoption of a kernel primitive that does not |
| 3031 | * cap the when adding/propagating, |
| 3032 | * then here is the place to put the generic cap for all kernel primitives |
| 3033 | * (converts the assert to kern_promotion_schedpri = MIN(priority, MAXPRI_PROMOTE)) |
| 3034 | */ |
| 3035 | assert(kern_promotion_schedpri <= MAXPRI_PROMOTE); |
| 3036 | |
| 3037 | if (kern_promotion_schedpri != thread->kern_promotion_schedpri) { |
| 3038 | KDBG(MACHDBG_CODE( |
| 3039 | DBG_MACH_SCHED, MACH_TURNSTILE_KERNEL_CHANGE) | DBG_FUNC_NONE, |
| 3040 | thread_tid(thread), |
| 3041 | kern_promotion_schedpri, |
| 3042 | thread->kern_promotion_schedpri); |
| 3043 | |
| 3044 | needs_update = TRUE; |
| 3045 | thread->kern_promotion_schedpri = kern_promotion_schedpri; |
| 3046 | thread_recompute_sched_pri(thread, options: SETPRI_DEFAULT); |
| 3047 | } |
| 3048 | |
| 3049 | return needs_update; |
| 3050 | } |
| 3051 | |
| 3052 | /* |
| 3053 | * Check if the user promotion on thread has changed |
| 3054 | * and apply it. |
| 3055 | * |
| 3056 | * thread locked on entry, might drop the thread lock |
| 3057 | * and reacquire it. |
| 3058 | */ |
| 3059 | boolean_t |
| 3060 | thread_recompute_user_promotion_locked(thread_t thread) |
| 3061 | { |
| 3062 | boolean_t needs_update = FALSE; |
| 3063 | struct task_pend_token pend_token = {}; |
| 3064 | uint8_t user_promotion_basepri = MIN((uint8_t)thread_get_inheritor_turnstile_base_priority(thread), MAXPRI_USER); |
| 3065 | int old_base_pri = thread->base_pri; |
| 3066 | thread_qos_t qos_promotion; |
| 3067 | |
| 3068 | /* Check if user promotion has changed */ |
| 3069 | if (thread->user_promotion_basepri == user_promotion_basepri) { |
| 3070 | return needs_update; |
| 3071 | } else { |
| 3072 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
| 3073 | (TURNSTILE_CODE(TURNSTILE_PRIORITY_OPERATIONS, (THREAD_USER_PROMOTION_CHANGE))) | DBG_FUNC_NONE, |
| 3074 | thread_tid(thread), |
| 3075 | user_promotion_basepri, |
| 3076 | thread->user_promotion_basepri, |
| 3077 | 0, 0); |
| 3078 | KDBG(MACHDBG_CODE( |
| 3079 | DBG_MACH_SCHED, MACH_TURNSTILE_USER_CHANGE) | DBG_FUNC_NONE, |
| 3080 | thread_tid(thread), |
| 3081 | user_promotion_basepri, |
| 3082 | thread->user_promotion_basepri); |
| 3083 | } |
| 3084 | |
| 3085 | /* Update the user promotion base pri */ |
| 3086 | thread->user_promotion_basepri = user_promotion_basepri; |
| 3087 | pend_token.tpt_force_recompute_pri = 1; |
| 3088 | |
| 3089 | if (user_promotion_basepri <= MAXPRI_THROTTLE) { |
| 3090 | qos_promotion = THREAD_QOS_UNSPECIFIED; |
| 3091 | } else { |
| 3092 | qos_promotion = thread_user_promotion_qos_for_pri(priority: user_promotion_basepri); |
| 3093 | } |
| 3094 | |
| 3095 | proc_set_thread_policy_spinlocked(thread, TASK_POLICY_ATTRIBUTE, |
| 3096 | TASK_POLICY_QOS_PROMOTE, value: qos_promotion, value2: 0, pend_token: &pend_token); |
| 3097 | |
| 3098 | if (thread_get_waiting_turnstile(thread) && |
| 3099 | thread->base_pri != old_base_pri) { |
| 3100 | needs_update = TRUE; |
| 3101 | } |
| 3102 | |
| 3103 | thread_unlock(thread); |
| 3104 | |
| 3105 | thread_policy_update_complete_unlocked(thread, pend_token: &pend_token); |
| 3106 | |
| 3107 | thread_lock(thread); |
| 3108 | |
| 3109 | return needs_update; |
| 3110 | } |
| 3111 | |
| 3112 | /* |
| 3113 | * Convert the thread user promotion base pri to qos for threads in qos world. |
| 3114 | * For priority above UI qos, the qos would be set to UI. |
| 3115 | */ |
| 3116 | thread_qos_t |
| 3117 | thread_user_promotion_qos_for_pri(int priority) |
| 3118 | { |
| 3119 | thread_qos_t qos; |
| 3120 | for (qos = THREAD_QOS_USER_INTERACTIVE; qos > THREAD_QOS_MAINTENANCE; qos--) { |
| 3121 | if (thread_qos_policy_params.qos_pri[qos] <= priority) { |
| 3122 | return qos; |
| 3123 | } |
| 3124 | } |
| 3125 | return THREAD_QOS_MAINTENANCE; |
| 3126 | } |
| 3127 | |
| 3128 | /* |
| 3129 | * Set the thread's QoS Kevent override |
| 3130 | * Owned by the Kevent subsystem |
| 3131 | * |
| 3132 | * May be called with spinlocks held, but not spinlocks |
| 3133 | * that may deadlock against the thread lock, the throttle lock, or the SFI lock. |
| 3134 | * |
| 3135 | * One 'add' must be balanced by one 'drop'. |
| 3136 | * Between 'add' and 'drop', the overide QoS value may be updated with an 'update'. |
| 3137 | * Before the thread is deallocated, there must be 0 remaining overrides. |
| 3138 | */ |
| 3139 | static void |
| 3140 | thread_kevent_override(thread_t thread, |
| 3141 | uint32_t qos_override, |
| 3142 | boolean_t is_new_override) |
| 3143 | { |
| 3144 | struct task_pend_token pend_token = {}; |
| 3145 | boolean_t needs_update; |
| 3146 | |
| 3147 | spl_t s = splsched(); |
| 3148 | thread_lock(thread); |
| 3149 | |
| 3150 | uint32_t old_override = thread->requested_policy.thrp_qos_kevent_override; |
| 3151 | |
| 3152 | assert(qos_override > THREAD_QOS_UNSPECIFIED); |
| 3153 | assert(qos_override < THREAD_QOS_LAST); |
| 3154 | |
| 3155 | if (is_new_override) { |
| 3156 | if (thread->kevent_overrides++ == 0) { |
| 3157 | /* This add is the first override for this thread */ |
| 3158 | assert(old_override == THREAD_QOS_UNSPECIFIED); |
| 3159 | } else { |
| 3160 | /* There are already other overrides in effect for this thread */ |
| 3161 | assert(old_override > THREAD_QOS_UNSPECIFIED); |
| 3162 | } |
| 3163 | } else { |
| 3164 | /* There must be at least one override (the previous add call) in effect */ |
| 3165 | assert(thread->kevent_overrides > 0); |
| 3166 | assert(old_override > THREAD_QOS_UNSPECIFIED); |
| 3167 | } |
| 3168 | |
| 3169 | /* |
| 3170 | * We can't allow lowering if there are several IPC overrides because |
| 3171 | * the caller can't possibly know the whole truth |
| 3172 | */ |
| 3173 | if (thread->kevent_overrides == 1) { |
| 3174 | needs_update = qos_override != old_override; |
| 3175 | } else { |
| 3176 | needs_update = qos_override > old_override; |
| 3177 | } |
| 3178 | |
| 3179 | if (needs_update) { |
| 3180 | proc_set_thread_policy_spinlocked(thread, TASK_POLICY_ATTRIBUTE, |
| 3181 | TASK_POLICY_QOS_KEVENT_OVERRIDE, |
| 3182 | value: qos_override, value2: 0, pend_token: &pend_token); |
| 3183 | assert(pend_token.tpt_update_sockets == 0); |
| 3184 | } |
| 3185 | |
| 3186 | thread_unlock(thread); |
| 3187 | splx(s); |
| 3188 | |
| 3189 | thread_policy_update_complete_unlocked(thread, pend_token: &pend_token); |
| 3190 | } |
| 3191 | |
| 3192 | void |
| 3193 | thread_add_kevent_override(thread_t thread, uint32_t qos_override) |
| 3194 | { |
| 3195 | thread_kevent_override(thread, qos_override, TRUE); |
| 3196 | } |
| 3197 | |
| 3198 | void |
| 3199 | thread_update_kevent_override(thread_t thread, uint32_t qos_override) |
| 3200 | { |
| 3201 | thread_kevent_override(thread, qos_override, FALSE); |
| 3202 | } |
| 3203 | |
| 3204 | void |
| 3205 | thread_drop_kevent_override(thread_t thread) |
| 3206 | { |
| 3207 | struct task_pend_token pend_token = {}; |
| 3208 | |
| 3209 | spl_t s = splsched(); |
| 3210 | thread_lock(thread); |
| 3211 | |
| 3212 | assert(thread->kevent_overrides > 0); |
| 3213 | |
| 3214 | if (--thread->kevent_overrides == 0) { |
| 3215 | /* |
| 3216 | * There are no more overrides for this thread, so we should |
| 3217 | * clear out the saturated override value |
| 3218 | */ |
| 3219 | |
| 3220 | proc_set_thread_policy_spinlocked(thread, TASK_POLICY_ATTRIBUTE, |
| 3221 | TASK_POLICY_QOS_KEVENT_OVERRIDE, THREAD_QOS_UNSPECIFIED, |
| 3222 | value2: 0, pend_token: &pend_token); |
| 3223 | } |
| 3224 | |
| 3225 | thread_unlock(thread); |
| 3226 | splx(s); |
| 3227 | |
| 3228 | thread_policy_update_complete_unlocked(thread, pend_token: &pend_token); |
| 3229 | } |
| 3230 | |
| 3231 | /* |
| 3232 | * Set the thread's QoS Workloop Servicer override |
| 3233 | * Owned by the Kevent subsystem |
| 3234 | * |
| 3235 | * May be called with spinlocks held, but not spinlocks |
| 3236 | * that may deadlock against the thread lock, the throttle lock, or the SFI lock. |
| 3237 | * |
| 3238 | * One 'add' must be balanced by one 'drop'. |
| 3239 | * Between 'add' and 'drop', the overide QoS value may be updated with an 'update'. |
| 3240 | * Before the thread is deallocated, there must be 0 remaining overrides. |
| 3241 | */ |
| 3242 | static void |
| 3243 | thread_servicer_override(thread_t thread, |
| 3244 | uint32_t qos_override, |
| 3245 | boolean_t is_new_override) |
| 3246 | { |
| 3247 | struct task_pend_token pend_token = {}; |
| 3248 | |
| 3249 | spl_t s = splsched(); |
| 3250 | thread_lock(thread); |
| 3251 | |
| 3252 | if (is_new_override) { |
| 3253 | assert(!thread->requested_policy.thrp_qos_wlsvc_override); |
| 3254 | } else { |
| 3255 | assert(thread->requested_policy.thrp_qos_wlsvc_override); |
| 3256 | } |
| 3257 | |
| 3258 | proc_set_thread_policy_spinlocked(thread, TASK_POLICY_ATTRIBUTE, |
| 3259 | TASK_POLICY_QOS_SERVICER_OVERRIDE, |
| 3260 | value: qos_override, value2: 0, pend_token: &pend_token); |
| 3261 | |
| 3262 | thread_unlock(thread); |
| 3263 | splx(s); |
| 3264 | |
| 3265 | assert(pend_token.tpt_update_sockets == 0); |
| 3266 | thread_policy_update_complete_unlocked(thread, pend_token: &pend_token); |
| 3267 | } |
| 3268 | |
| 3269 | void |
| 3270 | thread_add_servicer_override(thread_t thread, uint32_t qos_override) |
| 3271 | { |
| 3272 | assert(qos_override > THREAD_QOS_UNSPECIFIED); |
| 3273 | assert(qos_override < THREAD_QOS_LAST); |
| 3274 | |
| 3275 | thread_servicer_override(thread, qos_override, TRUE); |
| 3276 | } |
| 3277 | |
| 3278 | void |
| 3279 | thread_update_servicer_override(thread_t thread, uint32_t qos_override) |
| 3280 | { |
| 3281 | assert(qos_override > THREAD_QOS_UNSPECIFIED); |
| 3282 | assert(qos_override < THREAD_QOS_LAST); |
| 3283 | |
| 3284 | thread_servicer_override(thread, qos_override, FALSE); |
| 3285 | } |
| 3286 | |
| 3287 | void |
| 3288 | thread_drop_servicer_override(thread_t thread) |
| 3289 | { |
| 3290 | thread_servicer_override(thread, THREAD_QOS_UNSPECIFIED, FALSE); |
| 3291 | } |
| 3292 | |
| 3293 | void |
| 3294 | thread_update_servicer_iotier_override(thread_t thread, uint8_t iotier_override) |
| 3295 | { |
| 3296 | struct task_pend_token pend_token = {}; |
| 3297 | uint8_t current_iotier; |
| 3298 | |
| 3299 | /* Check if the update is needed */ |
| 3300 | current_iotier = (uint8_t)thread_get_requested_policy_spinlocked(thread, |
| 3301 | TASK_POLICY_ATTRIBUTE, TASK_POLICY_IOTIER_KEVENT_OVERRIDE, NULL); |
| 3302 | |
| 3303 | if (iotier_override == current_iotier) { |
| 3304 | return; |
| 3305 | } |
| 3306 | |
| 3307 | spl_t s = splsched(); |
| 3308 | thread_lock(thread); |
| 3309 | |
| 3310 | proc_set_thread_policy_spinlocked(thread, TASK_POLICY_ATTRIBUTE, |
| 3311 | TASK_POLICY_IOTIER_KEVENT_OVERRIDE, |
| 3312 | value: iotier_override, value2: 0, pend_token: &pend_token); |
| 3313 | |
| 3314 | thread_unlock(thread); |
| 3315 | splx(s); |
| 3316 | |
| 3317 | assert(pend_token.tpt_update_sockets == 0); |
| 3318 | thread_policy_update_complete_unlocked(thread, pend_token: &pend_token); |
| 3319 | } |
| 3320 | |
| 3321 | /* Get current requested qos / relpri, may be called from spinlock context */ |
| 3322 | thread_qos_t |
| 3323 | thread_get_requested_qos(thread_t thread, int *relpri) |
| 3324 | { |
| 3325 | int relprio_value = 0; |
| 3326 | thread_qos_t qos; |
| 3327 | |
| 3328 | qos = (thread_qos_t)proc_get_thread_policy_locked(thread, TASK_POLICY_ATTRIBUTE, |
| 3329 | TASK_POLICY_QOS_AND_RELPRIO, value2: &relprio_value); |
| 3330 | if (relpri) { |
| 3331 | *relpri = -relprio_value; |
| 3332 | } |
| 3333 | return qos; |
| 3334 | } |
| 3335 | |
| 3336 | /* |
| 3337 | * This function will promote the thread priority |
| 3338 | * since exec could block other threads calling |
| 3339 | * proc_find on the proc. This boost must be removed |
| 3340 | * via call to thread_clear_exec_promotion. |
| 3341 | * |
| 3342 | * This should be replaced with a generic 'priority inheriting gate' mechanism (24194397) |
| 3343 | */ |
| 3344 | void |
| 3345 | thread_set_exec_promotion(thread_t thread) |
| 3346 | { |
| 3347 | spl_t s = splsched(); |
| 3348 | thread_lock(thread); |
| 3349 | |
| 3350 | sched_thread_promote_reason(thread, TH_SFLAG_EXEC_PROMOTED, trace_obj: 0); |
| 3351 | |
| 3352 | thread_unlock(thread); |
| 3353 | splx(s); |
| 3354 | } |
| 3355 | |
| 3356 | /* |
| 3357 | * This function will clear the exec thread |
| 3358 | * promotion set on the thread by thread_set_exec_promotion. |
| 3359 | */ |
| 3360 | void |
| 3361 | thread_clear_exec_promotion(thread_t thread) |
| 3362 | { |
| 3363 | spl_t s = splsched(); |
| 3364 | thread_lock(thread); |
| 3365 | |
| 3366 | sched_thread_unpromote_reason(thread, TH_SFLAG_EXEC_PROMOTED, trace_obj: 0); |
| 3367 | |
| 3368 | thread_unlock(thread); |
| 3369 | splx(s); |
| 3370 | } |
| 3371 | |
| 3372 | #if CONFIG_SCHED_RT_ALLOW |
| 3373 | |
| 3374 | /* |
| 3375 | * flag set by -rt-allow-policy-enable boot-arg to restrict use of |
| 3376 | * THREAD_TIME_CONSTRAINT_POLICY and THREAD_TIME_CONSTRAINT_WITH_PRIORITY_POLICY |
| 3377 | * to threads that have joined a workinterval with WORK_INTERVAL_WORKLOAD_ID_RT_ALLOWED. |
| 3378 | */ |
| 3379 | static TUNABLE( |
| 3380 | bool, |
| 3381 | rt_allow_policy_enabled, |
| 3382 | "-rt-allow_policy-enable" , |
| 3383 | false |
| 3384 | ); |
| 3385 | |
| 3386 | /* |
| 3387 | * When the RT allow policy is enabled and a thread allowed to become RT, |
| 3388 | * sometimes (if the processes RT allow policy is restricted) the thread will |
| 3389 | * have a CPU limit enforced. The following two tunables determine the |
| 3390 | * parameters for that CPU limit. |
| 3391 | */ |
| 3392 | |
| 3393 | /* % of the interval allowed to run. */ |
| 3394 | TUNABLE_DEV_WRITEABLE(uint8_t, rt_allow_limit_percent, |
| 3395 | "rt_allow_limit_percent" , 70); |
| 3396 | |
| 3397 | /* The length of interval in nanoseconds. */ |
| 3398 | TUNABLE_DEV_WRITEABLE(uint16_t, rt_allow_limit_interval_ms, |
| 3399 | "rt_allow_limit_interval" , 10); |
| 3400 | |
| 3401 | static bool |
| 3402 | thread_has_rt(thread_t thread) |
| 3403 | { |
| 3404 | return |
| 3405 | thread->sched_mode == TH_MODE_REALTIME || |
| 3406 | thread->saved_mode == TH_MODE_REALTIME; |
| 3407 | } |
| 3408 | |
| 3409 | /* |
| 3410 | * Set a CPU limit on a thread based on the RT allow policy. This will be picked |
| 3411 | * up by the target thread via the ledger AST. |
| 3412 | */ |
| 3413 | static void |
| 3414 | thread_rt_set_cpulimit(thread_t thread) |
| 3415 | { |
| 3416 | /* Force reasonable values for the cpu limit. */ |
| 3417 | const uint8_t percent = MAX(MIN(rt_allow_limit_percent, 99), 1); |
| 3418 | const uint16_t interval_ms = MAX(rt_allow_limit_interval_ms, 1); |
| 3419 | |
| 3420 | thread->t_ledger_req_percentage = percent; |
| 3421 | thread->t_ledger_req_interval_ms = interval_ms; |
| 3422 | thread->t_ledger_req_action = THREAD_CPULIMIT_BLOCK; |
| 3423 | |
| 3424 | thread->sched_flags |= TH_SFLAG_RT_CPULIMIT; |
| 3425 | } |
| 3426 | |
| 3427 | /* Similar to the above but removes any CPU limit. */ |
| 3428 | static void |
| 3429 | thread_rt_clear_cpulimit(thread_t thread) |
| 3430 | { |
| 3431 | thread->sched_flags &= ~TH_SFLAG_RT_CPULIMIT; |
| 3432 | |
| 3433 | thread->t_ledger_req_percentage = 0; |
| 3434 | thread->t_ledger_req_interval_ms = 0; |
| 3435 | thread->t_ledger_req_action = THREAD_CPULIMIT_DISABLE; |
| 3436 | } |
| 3437 | |
| 3438 | /* |
| 3439 | * Evaluate RT policy for a thread, demoting and undemoting as needed. |
| 3440 | */ |
| 3441 | void |
| 3442 | thread_rt_evaluate(thread_t thread) |
| 3443 | { |
| 3444 | task_t task = get_threadtask(thread); |
| 3445 | bool platform_binary = false; |
| 3446 | |
| 3447 | /* If the RT allow policy is not enabled - nothing to do. */ |
| 3448 | if (!rt_allow_policy_enabled) { |
| 3449 | return; |
| 3450 | } |
| 3451 | |
| 3452 | /* User threads only. */ |
| 3453 | if (task == kernel_task) { |
| 3454 | return; |
| 3455 | } |
| 3456 | |
| 3457 | /* Check for platform binary. */ |
| 3458 | platform_binary = (task_ro_flags_get(task) & TFRO_PLATFORM) != 0; |
| 3459 | |
| 3460 | spl_t s = splsched(); |
| 3461 | thread_lock(thread); |
| 3462 | |
| 3463 | const thread_work_interval_flags_t wi_flags = |
| 3464 | os_atomic_load(&thread->th_work_interval_flags, relaxed); |
| 3465 | |
| 3466 | /* |
| 3467 | * RT threads which are not joined to a work interval which allows RT |
| 3468 | * threads are demoted. Once those conditions no longer hold, the thread |
| 3469 | * undemoted. |
| 3470 | */ |
| 3471 | if (thread_has_rt(thread) && (wi_flags & TH_WORK_INTERVAL_FLAGS_RT_ALLOWED) == 0) { |
| 3472 | if (!sched_thread_mode_has_demotion(thread, TH_SFLAG_RT_DISALLOWED)) { |
| 3473 | KDBG(MACHDBG_CODE(DBG_MACH_SCHED, MACH_RT_DISALLOWED_WORK_INTERVAL), |
| 3474 | thread_tid(thread)); |
| 3475 | sched_thread_mode_demote(thread, TH_SFLAG_RT_DISALLOWED); |
| 3476 | } |
| 3477 | } else { |
| 3478 | if (sched_thread_mode_has_demotion(thread, TH_SFLAG_RT_DISALLOWED)) { |
| 3479 | sched_thread_mode_undemote(thread, TH_SFLAG_RT_DISALLOWED); |
| 3480 | } |
| 3481 | } |
| 3482 | |
| 3483 | /* |
| 3484 | * RT threads get a CPU limit unless they're part of a platform binary |
| 3485 | * task. If the thread is no longer RT, any existing CPU limit should be |
| 3486 | * removed. |
| 3487 | */ |
| 3488 | bool set_ast = false; |
| 3489 | if (!platform_binary && |
| 3490 | thread_has_rt(thread) && |
| 3491 | (thread->sched_flags & TH_SFLAG_RT_CPULIMIT) == 0) { |
| 3492 | thread_rt_set_cpulimit(thread); |
| 3493 | set_ast = true; |
| 3494 | } |
| 3495 | |
| 3496 | if (!platform_binary && |
| 3497 | !thread_has_rt(thread) && |
| 3498 | (thread->sched_flags & TH_SFLAG_RT_CPULIMIT) != 0) { |
| 3499 | thread_rt_clear_cpulimit(thread); |
| 3500 | set_ast = true; |
| 3501 | } |
| 3502 | |
| 3503 | thread_unlock(thread); |
| 3504 | splx(s); |
| 3505 | |
| 3506 | if (set_ast) { |
| 3507 | /* Ensure the target thread picks up any CPU limit change. */ |
| 3508 | act_set_astledger(thread); |
| 3509 | } |
| 3510 | } |
| 3511 | |
| 3512 | #else |
| 3513 | |
| 3514 | void |
| 3515 | thread_rt_evaluate(__unused thread_t thread) |
| 3516 | { |
| 3517 | } |
| 3518 | |
| 3519 | #endif /* CONFIG_SCHED_RT_ALLOW */ |
| 3520 | |