| 1 | /* |
| 2 | * Copyright (c) 2000-2021 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
| 5 | * |
| 6 | * This file contains Original Code and/or Modifications of Original Code |
| 7 | * as defined in and that are subject to the Apple Public Source License |
| 8 | * Version 2.0 (the 'License'). You may not use this file except in |
| 9 | * compliance with the License. The rights granted to you under the License |
| 10 | * may not be used to create, or enable the creation or redistribution of, |
| 11 | * unlawful or unlicensed copies of an Apple operating system, or to |
| 12 | * circumvent, violate, or enable the circumvention or violation of, any |
| 13 | * terms of an Apple operating system software license agreement. |
| 14 | * |
| 15 | * Please obtain a copy of the License at |
| 16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
| 17 | * |
| 18 | * The Original Code and all software distributed under the License are |
| 19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| 23 | * Please see the License for the specific language governing rights and |
| 24 | * limitations under the License. |
| 25 | * |
| 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
| 27 | */ |
| 28 | /* |
| 29 | * @OSF_FREE_COPYRIGHT@ |
| 30 | */ |
| 31 | /* |
| 32 | * Mach Operating System |
| 33 | * Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University |
| 34 | * All Rights Reserved. |
| 35 | * |
| 36 | * Permission to use, copy, modify and distribute this software and its |
| 37 | * documentation is hereby granted, provided that both the copyright |
| 38 | * notice and this permission notice appear in all copies of the |
| 39 | * software, derivative works or modified versions, and any portions |
| 40 | * thereof, and that both notices appear in supporting documentation. |
| 41 | * |
| 42 | * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" |
| 43 | * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR |
| 44 | * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. |
| 45 | * |
| 46 | * Carnegie Mellon requests users of this software to return to |
| 47 | * |
| 48 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU |
| 49 | * School of Computer Science |
| 50 | * Carnegie Mellon University |
| 51 | * Pittsburgh PA 15213-3890 |
| 52 | * |
| 53 | * any improvements or extensions that they make and grant Carnegie Mellon |
| 54 | * the rights to redistribute these changes. |
| 55 | */ |
| 56 | /* |
| 57 | */ |
| 58 | /* |
| 59 | * File: kern/thread.c |
| 60 | * Author: Avadis Tevanian, Jr., Michael Wayne Young, David Golub |
| 61 | * Date: 1986 |
| 62 | * |
| 63 | * Thread management primitives implementation. |
| 64 | */ |
| 65 | /* |
| 66 | * Copyright (c) 1993 The University of Utah and |
| 67 | * the Computer Systems Laboratory (CSL). All rights reserved. |
| 68 | * |
| 69 | * Permission to use, copy, modify and distribute this software and its |
| 70 | * documentation is hereby granted, provided that both the copyright |
| 71 | * notice and this permission notice appear in all copies of the |
| 72 | * software, derivative works or modified versions, and any portions |
| 73 | * thereof, and that both notices appear in supporting documentation. |
| 74 | * |
| 75 | * THE UNIVERSITY OF UTAH AND CSL ALLOW FREE USE OF THIS SOFTWARE IN ITS "AS |
| 76 | * IS" CONDITION. THE UNIVERSITY OF UTAH AND CSL DISCLAIM ANY LIABILITY OF |
| 77 | * ANY KIND FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. |
| 78 | * |
| 79 | * CSL requests users of this software to return to csl-dist@cs.utah.edu any |
| 80 | * improvements that they make and grant CSL redistribution rights. |
| 81 | * |
| 82 | */ |
| 83 | |
| 84 | #include <mach/mach_types.h> |
| 85 | #include <mach/boolean.h> |
| 86 | #include <mach/policy.h> |
| 87 | #include <mach/thread_info.h> |
| 88 | #include <mach/thread_special_ports.h> |
| 89 | #include <mach/thread_act.h> |
| 90 | #include <mach/thread_status.h> |
| 91 | #include <mach/time_value.h> |
| 92 | #include <mach/vm_param.h> |
| 93 | |
| 94 | #include <machine/thread.h> |
| 95 | #include <machine/pal_routines.h> |
| 96 | #include <machine/limits.h> |
| 97 | |
| 98 | #include <kern/kern_types.h> |
| 99 | #include <kern/kalloc.h> |
| 100 | #include <kern/cpu_data.h> |
| 101 | #include <kern/extmod_statistics.h> |
| 102 | #include <kern/ipc_mig.h> |
| 103 | #include <kern/ipc_tt.h> |
| 104 | #include <kern/mach_param.h> |
| 105 | #include <kern/machine.h> |
| 106 | #include <kern/misc_protos.h> |
| 107 | #include <kern/processor.h> |
| 108 | #include <kern/queue.h> |
| 109 | #include <kern/restartable.h> |
| 110 | #include <kern/sched.h> |
| 111 | #include <kern/sched_prim.h> |
| 112 | #include <kern/syscall_subr.h> |
| 113 | #include <kern/task.h> |
| 114 | #include <kern/thread.h> |
| 115 | #include <kern/thread_group.h> |
| 116 | #include <kern/coalition.h> |
| 117 | #include <kern/host.h> |
| 118 | #include <kern/zalloc.h> |
| 119 | #include <kern/assert.h> |
| 120 | #include <kern/exc_resource.h> |
| 121 | #include <kern/exc_guard.h> |
| 122 | #include <kern/telemetry.h> |
| 123 | #include <kern/policy_internal.h> |
| 124 | #include <kern/turnstile.h> |
| 125 | #include <kern/sched_clutch.h> |
| 126 | #include <kern/recount.h> |
| 127 | #include <kern/smr.h> |
| 128 | #include <kern/ast.h> |
| 129 | #include <kern/compact_id.h> |
| 130 | |
| 131 | #include <corpses/task_corpse.h> |
| 132 | #include <kern/kpc.h> |
| 133 | |
| 134 | #if CONFIG_PERVASIVE_CPI |
| 135 | #include <kern/monotonic.h> |
| 136 | #include <machine/monotonic.h> |
| 137 | #endif /* CONFIG_PERVASIVE_CPI */ |
| 138 | |
| 139 | #include <ipc/ipc_kmsg.h> |
| 140 | #include <ipc/ipc_port.h> |
| 141 | #include <bank/bank_types.h> |
| 142 | |
| 143 | #include <vm/vm_kern.h> |
| 144 | #include <vm/vm_pageout.h> |
| 145 | |
| 146 | #include <sys/kdebug.h> |
| 147 | #include <sys/bsdtask_info.h> |
| 148 | #include <mach/sdt.h> |
| 149 | #include <san/kasan.h> |
| 150 | #include <san/kcov_stksz.h> |
| 151 | |
| 152 | #include <stdatomic.h> |
| 153 | |
| 154 | #if defined(HAS_APPLE_PAC) |
| 155 | #include <ptrauth.h> |
| 156 | #include <arm64/proc_reg.h> |
| 157 | #endif /* defined(HAS_APPLE_PAC) */ |
| 158 | |
| 159 | /* |
| 160 | * Exported interfaces |
| 161 | */ |
| 162 | #include <mach/task_server.h> |
| 163 | #include <mach/thread_act_server.h> |
| 164 | #include <mach/mach_host_server.h> |
| 165 | #include <mach/host_priv_server.h> |
| 166 | #include <mach/mach_voucher_server.h> |
| 167 | #include <kern/policy_internal.h> |
| 168 | |
| 169 | #if CONFIG_MACF |
| 170 | #include <security/mac_mach_internal.h> |
| 171 | #endif |
| 172 | |
| 173 | #include <pthread/workqueue_trace.h> |
| 174 | |
| 175 | #if CONFIG_EXCLAVES |
| 176 | #include <mach/exclaves.h> |
| 177 | #endif |
| 178 | |
| 179 | LCK_GRP_DECLARE(thread_lck_grp, "thread" ); |
| 180 | |
| 181 | static SECURITY_READ_ONLY_LATE(zone_t) thread_zone; |
| 182 | ZONE_DEFINE_ID(ZONE_ID_THREAD_RO, "threads_ro" , struct thread_ro, ZC_READONLY); |
| 183 | |
| 184 | static void thread_port_with_flavor_no_senders(ipc_port_t, mach_port_mscount_t); |
| 185 | |
| 186 | IPC_KOBJECT_DEFINE(IKOT_THREAD_CONTROL); |
| 187 | IPC_KOBJECT_DEFINE(IKOT_THREAD_READ, |
| 188 | .iko_op_no_senders = thread_port_with_flavor_no_senders); |
| 189 | IPC_KOBJECT_DEFINE(IKOT_THREAD_INSPECT, |
| 190 | .iko_op_no_senders = thread_port_with_flavor_no_senders); |
| 191 | |
| 192 | static struct mpsc_daemon_queue thread_stack_queue; |
| 193 | static struct mpsc_daemon_queue thread_terminate_queue; |
| 194 | static struct mpsc_daemon_queue thread_deallocate_queue; |
| 195 | static struct mpsc_daemon_queue thread_exception_queue; |
| 196 | static struct mpsc_daemon_queue thread_backtrace_queue; |
| 197 | |
| 198 | decl_simple_lock_data(static, crashed_threads_lock); |
| 199 | static queue_head_t crashed_threads_queue; |
| 200 | |
| 201 | struct thread_exception_elt { |
| 202 | struct mpsc_queue_chain link; |
| 203 | exception_type_t exception_type; |
| 204 | task_t exception_task; |
| 205 | thread_t exception_thread; |
| 206 | }; |
| 207 | |
| 208 | struct thread_backtrace_elt { |
| 209 | struct mpsc_queue_chain link; |
| 210 | exception_type_t exception_type; |
| 211 | kcdata_object_t obj; |
| 212 | exception_port_t exc_ports[BT_EXC_PORTS_COUNT]; /* send rights */ |
| 213 | }; |
| 214 | |
| 215 | static SECURITY_READ_ONLY_LATE(struct thread) thread_template = { |
| 216 | #if MACH_ASSERT |
| 217 | .thread_magic = THREAD_MAGIC, |
| 218 | #endif /* MACH_ASSERT */ |
| 219 | .wait_result = THREAD_WAITING, |
| 220 | .options = THREAD_ABORTSAFE, |
| 221 | .state = TH_WAIT | TH_UNINT, |
| 222 | .th_sched_bucket = TH_BUCKET_RUN, |
| 223 | .base_pri = BASEPRI_DEFAULT, |
| 224 | .realtime.deadline = UINT64_MAX, |
| 225 | .last_made_runnable_time = THREAD_NOT_RUNNABLE, |
| 226 | .last_basepri_change_time = THREAD_NOT_RUNNABLE, |
| 227 | #if defined(CONFIG_SCHED_TIMESHARE_CORE) |
| 228 | .pri_shift = INT8_MAX, |
| 229 | #endif |
| 230 | /* timers are initialized in thread_bootstrap */ |
| 231 | }; |
| 232 | |
| 233 | #define CTID_SIZE_BIT 20 |
| 234 | #define CTID_MASK ((1u << CTID_SIZE_BIT) - 1) |
| 235 | #define CTID_MAX_THREAD_NUMBER (CTID_MASK - 1) |
| 236 | static_assert(CTID_MAX_THREAD_NUMBER <= COMPACT_ID_MAX); |
| 237 | |
| 238 | #ifndef __LITTLE_ENDIAN__ |
| 239 | #error "ctid relies on the ls bits of uint32_t to be populated" |
| 240 | #endif |
| 241 | |
| 242 | __startup_data |
| 243 | static struct thread init_thread; |
| 244 | static SECURITY_READ_ONLY_LATE(uint32_t) ctid_nonce; |
| 245 | COMPACT_ID_TABLE_DEFINE(static, ctid_table); |
| 246 | |
| 247 | __startup_func |
| 248 | static void |
| 249 | thread_zone_startup(void) |
| 250 | { |
| 251 | size_t size = sizeof(struct thread); |
| 252 | |
| 253 | #ifdef MACH_BSD |
| 254 | size += roundup(uthread_size, _Alignof(struct thread)); |
| 255 | #endif |
| 256 | thread_zone = zone_create_ext(name: "threads" , size, |
| 257 | flags: ZC_SEQUESTER | ZC_ZFREE_CLEARMEM, desired_zid: ZONE_ID_THREAD, NULL); |
| 258 | } |
| 259 | STARTUP(ZALLOC, STARTUP_RANK_FOURTH, thread_zone_startup); |
| 260 | |
| 261 | static void thread_deallocate_enqueue(thread_t thread); |
| 262 | static void thread_deallocate_complete(thread_t thread); |
| 263 | |
| 264 | static void ctid_table_remove(thread_t thread); |
| 265 | static void ctid_table_add(thread_t thread); |
| 266 | static void ctid_table_init(void); |
| 267 | |
| 268 | #ifdef MACH_BSD |
| 269 | extern void proc_exit(void *); |
| 270 | extern mach_exception_data_type_t proc_encode_exit_exception_code(void *); |
| 271 | extern uint64_t get_dispatchqueue_offset_from_proc(void *); |
| 272 | extern uint64_t get_return_to_kernel_offset_from_proc(void *p); |
| 273 | extern uint64_t get_wq_quantum_offset_from_proc(void *); |
| 274 | extern int proc_selfpid(void); |
| 275 | extern void proc_name(int, char*, int); |
| 276 | extern char * proc_name_address(void *p); |
| 277 | exception_type_t get_exception_from_corpse_crashinfo(kcdata_descriptor_t corpse_info); |
| 278 | extern void kdebug_proc_name_args(struct proc *proc, long args[static 4]); |
| 279 | #endif /* MACH_BSD */ |
| 280 | |
| 281 | extern bool bsdthread_part_of_cooperative_workqueue(struct uthread *uth); |
| 282 | extern bool disable_exc_resource; |
| 283 | extern bool disable_exc_resource_during_audio; |
| 284 | extern int audio_active; |
| 285 | extern int debug_task; |
| 286 | int thread_max = CONFIG_THREAD_MAX; /* Max number of threads */ |
| 287 | int task_threadmax = CONFIG_THREAD_MAX; |
| 288 | |
| 289 | static uint64_t thread_unique_id = 100; |
| 290 | |
| 291 | struct _thread_ledger_indices thread_ledgers = { .cpu_time = -1 }; |
| 292 | static ledger_template_t thread_ledger_template = NULL; |
| 293 | static void init_thread_ledgers(void); |
| 294 | |
| 295 | #if CONFIG_JETSAM |
| 296 | void jetsam_on_ledger_cpulimit_exceeded(void); |
| 297 | #endif |
| 298 | |
| 299 | extern int task_thread_soft_limit; |
| 300 | |
| 301 | |
| 302 | /* |
| 303 | * Level (in terms of percentage of the limit) at which the CPU usage monitor triggers telemetry. |
| 304 | * |
| 305 | * (ie when any thread's CPU consumption exceeds 70% of the limit, start taking user |
| 306 | * stacktraces, aka micro-stackshots) |
| 307 | */ |
| 308 | #define CPUMON_USTACKSHOTS_TRIGGER_DEFAULT_PCT 70 |
| 309 | |
| 310 | /* Percentage. Level at which we start gathering telemetry. */ |
| 311 | static TUNABLE(uint8_t, cpumon_ustackshots_trigger_pct, |
| 312 | "cpumon_ustackshots_trigger_pct" , CPUMON_USTACKSHOTS_TRIGGER_DEFAULT_PCT); |
| 313 | void __attribute__((noinline)) SENDING_NOTIFICATION__THIS_THREAD_IS_CONSUMING_TOO_MUCH_CPU(void); |
| 314 | |
| 315 | #if DEVELOPMENT || DEBUG |
| 316 | TUNABLE_WRITEABLE(int, exc_resource_threads_enabled, "exc_resource_threads_enabled" , 1); |
| 317 | |
| 318 | void __attribute__((noinline)) SENDING_NOTIFICATION__TASK_HAS_TOO_MANY_THREADS(task_t, int); |
| 319 | #endif /* DEVELOPMENT || DEBUG */ |
| 320 | |
| 321 | /* |
| 322 | * The smallest interval over which we support limiting CPU consumption is 1ms |
| 323 | */ |
| 324 | #define MINIMUM_CPULIMIT_INTERVAL_MS 1 |
| 325 | |
| 326 | os_refgrp_decl(static, thread_refgrp, "thread" , NULL); |
| 327 | |
| 328 | static inline void |
| 329 | init_thread_from_template(thread_t thread) |
| 330 | { |
| 331 | /* |
| 332 | * In general, struct thread isn't trivially-copyable, since it may |
| 333 | * contain pointers to thread-specific state. This may be enforced at |
| 334 | * compile time on architectures that store authed + diversified |
| 335 | * pointers in machine_thread. |
| 336 | * |
| 337 | * In this specific case, where we're initializing a new thread from a |
| 338 | * thread_template, we know all diversified pointers are NULL; these are |
| 339 | * safe to bitwise copy. |
| 340 | */ |
| 341 | #pragma clang diagnostic push |
| 342 | #pragma clang diagnostic ignored "-Wnontrivial-memaccess" |
| 343 | memcpy(dst: thread, src: &thread_template, n: sizeof(*thread)); |
| 344 | #pragma clang diagnostic pop |
| 345 | } |
| 346 | |
| 347 | static void |
| 348 | thread_ro_create(task_t parent_task, thread_t th, thread_ro_t tro_tpl) |
| 349 | { |
| 350 | #if __x86_64__ |
| 351 | th->t_task = parent_task; |
| 352 | #endif |
| 353 | tro_tpl->tro_owner = th; |
| 354 | tro_tpl->tro_task = parent_task; |
| 355 | th->t_tro = zalloc_ro(ZONE_ID_THREAD_RO, Z_WAITOK | Z_ZERO | Z_NOFAIL); |
| 356 | zalloc_ro_update_elem(ZONE_ID_THREAD_RO, th->t_tro, tro_tpl); |
| 357 | } |
| 358 | |
| 359 | static void |
| 360 | thread_ro_destroy(thread_t th) |
| 361 | { |
| 362 | thread_ro_t tro = get_thread_ro(th); |
| 363 | #if MACH_BSD |
| 364 | struct ucred *cred = tro->tro_cred; |
| 365 | struct ucred *rcred = tro->tro_realcred; |
| 366 | #endif |
| 367 | zfree_ro(ZONE_ID_THREAD_RO, tro); |
| 368 | #if MACH_BSD |
| 369 | uthread_cred_free(cred); |
| 370 | uthread_cred_free(rcred); |
| 371 | #endif |
| 372 | } |
| 373 | |
| 374 | __startup_func |
| 375 | thread_t |
| 376 | thread_bootstrap(void) |
| 377 | { |
| 378 | /* |
| 379 | * Fill in a template thread for fast initialization. |
| 380 | */ |
| 381 | timer_init(timer: &thread_template.runnable_timer); |
| 382 | |
| 383 | init_thread_from_template(thread: &init_thread); |
| 384 | /* fiddle with init thread to skip asserts in set_sched_pri */ |
| 385 | init_thread.sched_pri = MAXPRI_KERNEL; |
| 386 | |
| 387 | /* |
| 388 | * We can't quite use ctid yet, on ARM thread_bootstrap() is called |
| 389 | * before we can call random or anything, |
| 390 | * so we just make it barely work and it will get fixed up |
| 391 | * when the first thread is actually made. |
| 392 | */ |
| 393 | *compact_id_resolve(table: &ctid_table, compact_id: 0) = &init_thread; |
| 394 | init_thread.ctid = CTID_MASK; |
| 395 | |
| 396 | return &init_thread; |
| 397 | } |
| 398 | |
| 399 | void |
| 400 | thread_machine_init_template(void) |
| 401 | { |
| 402 | machine_thread_template_init(thr_template: &thread_template); |
| 403 | } |
| 404 | |
| 405 | void |
| 406 | thread_init(void) |
| 407 | { |
| 408 | /* |
| 409 | * Initialize any machine-dependent |
| 410 | * per-thread structures necessary. |
| 411 | */ |
| 412 | machine_thread_init(); |
| 413 | |
| 414 | init_thread_ledgers(); |
| 415 | } |
| 416 | |
| 417 | boolean_t |
| 418 | thread_is_active(thread_t thread) |
| 419 | { |
| 420 | return thread->active; |
| 421 | } |
| 422 | |
| 423 | void |
| 424 | thread_corpse_continue(void) |
| 425 | { |
| 426 | thread_t thread = current_thread(); |
| 427 | |
| 428 | thread_terminate_internal(thread); |
| 429 | |
| 430 | /* |
| 431 | * Handle the thread termination directly |
| 432 | * here instead of returning to userspace. |
| 433 | */ |
| 434 | assert(thread->active == FALSE); |
| 435 | thread_ast_clear(thread, AST_APC); |
| 436 | thread_apc_ast(thread); |
| 437 | |
| 438 | panic("thread_corpse_continue" ); |
| 439 | /*NOTREACHED*/ |
| 440 | } |
| 441 | |
| 442 | __dead2 |
| 443 | static void |
| 444 | thread_terminate_continue(void) |
| 445 | { |
| 446 | panic("thread_terminate_continue" ); |
| 447 | /*NOTREACHED*/ |
| 448 | } |
| 449 | |
| 450 | /* |
| 451 | * thread_terminate_self: |
| 452 | */ |
| 453 | void |
| 454 | thread_terminate_self(void) |
| 455 | { |
| 456 | thread_t thread = current_thread(); |
| 457 | thread_ro_t tro = get_thread_ro(thread); |
| 458 | task_t task = tro->tro_task; |
| 459 | void *bsd_info = get_bsdtask_info(task); |
| 460 | int threadcnt; |
| 461 | |
| 462 | pal_thread_terminate_self(thread); |
| 463 | |
| 464 | DTRACE_PROC(lwp__exit); |
| 465 | |
| 466 | thread_mtx_lock(thread); |
| 467 | |
| 468 | ipc_thread_disable(thread); |
| 469 | |
| 470 | thread_mtx_unlock(thread); |
| 471 | |
| 472 | thread_sched_call(thread, NULL); |
| 473 | |
| 474 | spl_t s = splsched(); |
| 475 | thread_lock(thread); |
| 476 | |
| 477 | thread_depress_abort_locked(thread); |
| 478 | |
| 479 | /* |
| 480 | * Before we take the thread_lock right above, |
| 481 | * act_set_ast_reset_pcs() might not yet observe |
| 482 | * that the thread is inactive, and could have |
| 483 | * requested an IPI Ack. |
| 484 | * |
| 485 | * Once we unlock the thread, we know that |
| 486 | * act_set_ast_reset_pcs() can't fail to notice |
| 487 | * that thread->active is false, |
| 488 | * and won't set new ones. |
| 489 | */ |
| 490 | thread_reset_pcs_ack_IPI(thread); |
| 491 | |
| 492 | thread_unlock(thread); |
| 493 | |
| 494 | splx(s); |
| 495 | |
| 496 | #if CONFIG_TASKWATCH |
| 497 | thead_remove_taskwatch(thread); |
| 498 | #endif /* CONFIG_TASKWATCH */ |
| 499 | |
| 500 | work_interval_thread_terminate(thread); |
| 501 | |
| 502 | thread_mtx_lock(thread); |
| 503 | |
| 504 | thread_policy_reset(thread); |
| 505 | |
| 506 | thread_mtx_unlock(thread); |
| 507 | |
| 508 | assert(thread->th_work_interval == NULL); |
| 509 | |
| 510 | bank_swap_thread_bank_ledger(thread, NULL); |
| 511 | |
| 512 | if (kdebug_enable && bsd_hasthreadname(uth: get_bsdthread_info(thread))) { |
| 513 | char threadname[MAXTHREADNAMESIZE]; |
| 514 | bsd_getthreadname(uth: get_bsdthread_info(thread), buffer: threadname); |
| 515 | kernel_debug_string_simple(TRACE_STRING_THREADNAME_PREV, str: threadname); |
| 516 | } |
| 517 | |
| 518 | uthread_cleanup(get_bsdthread_info(thread), tro); |
| 519 | |
| 520 | if (kdebug_enable && bsd_info && !task_is_exec_copy(task)) { |
| 521 | /* trace out pid before we sign off */ |
| 522 | long dbg_arg1 = 0; |
| 523 | long dbg_arg2 = 0; |
| 524 | |
| 525 | kdbg_trace_data(proc: get_bsdtask_info(task), arg_pid: &dbg_arg1, arg_uniqueid: &dbg_arg2); |
| 526 | #if CONFIG_PERVASIVE_CPI |
| 527 | if (kdebug_debugid_enabled(DBG_MT_INSTRS_CYCLES_THR_EXIT)) { |
| 528 | struct recount_usage usage = { 0 }; |
| 529 | struct recount_usage perf_only = { 0 }; |
| 530 | boolean_t intrs_end = ml_set_interrupts_enabled(FALSE); |
| 531 | recount_current_thread_usage_perf_only(&usage, &perf_only); |
| 532 | ml_set_interrupts_enabled(intrs_end); |
| 533 | KDBG_RELEASE(DBG_MT_INSTRS_CYCLES_THR_EXIT, |
| 534 | recount_usage_instructions(&usage), |
| 535 | recount_usage_cycles(&usage), |
| 536 | recount_usage_system_time_mach(&usage), |
| 537 | usage.ru_metrics[RCT_LVL_USER].rm_time_mach); |
| 538 | #if __AMP__ |
| 539 | KDBG_RELEASE(DBG_MT_P_INSTRS_CYCLES_THR_EXIT, |
| 540 | recount_usage_instructions(&perf_only), |
| 541 | recount_usage_cycles(&perf_only), |
| 542 | recount_usage_system_time_mach(&perf_only), |
| 543 | perf_only.ru_metrics[RCT_LVL_USER].rm_time_mach); |
| 544 | #endif // __AMP__ |
| 545 | } |
| 546 | #endif/* CONFIG_PERVASIVE_CPI */ |
| 547 | KDBG_RELEASE(TRACE_DATA_THREAD_TERMINATE_PID, dbg_arg1, dbg_arg2); |
| 548 | } |
| 549 | |
| 550 | /* |
| 551 | * After this subtraction, this thread should never access |
| 552 | * task->bsd_info unless it got 0 back from the os_atomic_dec. It |
| 553 | * could be racing with other threads to be the last thread in the |
| 554 | * process, and the last thread in the process will tear down the proc |
| 555 | * structure and zero-out task->bsd_info. |
| 556 | */ |
| 557 | threadcnt = os_atomic_dec(&task->active_thread_count, relaxed); |
| 558 | |
| 559 | #if CONFIG_COALITIONS |
| 560 | /* |
| 561 | * Leave the coalitions when last thread of task is exiting and the |
| 562 | * task is not a corpse. |
| 563 | */ |
| 564 | if (threadcnt == 0 && !task->corpse_info) { |
| 565 | coalitions_remove_task(task); |
| 566 | } |
| 567 | #endif |
| 568 | |
| 569 | /* |
| 570 | * If we are the last thread to terminate and the task is |
| 571 | * associated with a BSD process, perform BSD process exit. |
| 572 | */ |
| 573 | if (threadcnt == 0 && bsd_info != NULL) { |
| 574 | mach_exception_data_type_t subcode = 0; |
| 575 | if (kdebug_enable) { |
| 576 | /* since we're the last thread in this process, trace out the command name too */ |
| 577 | long args[4] = { 0 }; |
| 578 | kdebug_proc_name_args(proc: bsd_info, args); |
| 579 | #if CONFIG_PERVASIVE_CPI |
| 580 | if (kdebug_debugid_enabled(DBG_MT_INSTRS_CYCLES_PROC_EXIT)) { |
| 581 | struct recount_usage usage = { 0 }; |
| 582 | struct recount_usage perf_only = { 0 }; |
| 583 | recount_current_task_usage_perf_only(&usage, &perf_only); |
| 584 | KDBG_RELEASE(DBG_MT_INSTRS_CYCLES_PROC_EXIT, |
| 585 | recount_usage_instructions(&usage), |
| 586 | recount_usage_cycles(&usage), |
| 587 | recount_usage_system_time_mach(&usage), |
| 588 | usage.ru_metrics[RCT_LVL_USER].rm_time_mach); |
| 589 | #if __AMP__ |
| 590 | KDBG_RELEASE(DBG_MT_P_INSTRS_CYCLES_PROC_EXIT, |
| 591 | recount_usage_instructions(&perf_only), |
| 592 | recount_usage_cycles(&perf_only), |
| 593 | recount_usage_system_time_mach(&perf_only), |
| 594 | perf_only.ru_metrics[RCT_LVL_USER].rm_time_mach); |
| 595 | #endif // __AMP__ |
| 596 | } |
| 597 | #endif/* CONFIG_PERVASIVE_CPI */ |
| 598 | KDBG_RELEASE(TRACE_STRING_PROC_EXIT, args[0], args[1], args[2], args[3]); |
| 599 | } |
| 600 | |
| 601 | /* Get the exit reason before proc_exit */ |
| 602 | subcode = proc_encode_exit_exception_code(bsd_info); |
| 603 | proc_exit(bsd_info); |
| 604 | bsd_info = NULL; |
| 605 | #if CONFIG_EXCLAVES |
| 606 | task_clear_conclave(task); |
| 607 | #endif |
| 608 | /* |
| 609 | * if there is crash info in task |
| 610 | * then do the deliver action since this is |
| 611 | * last thread for this task. |
| 612 | */ |
| 613 | if (task->corpse_info) { |
| 614 | /* reset all except task name port */ |
| 615 | ipc_task_reset(task); |
| 616 | /* enable all task ports (name port unchanged) */ |
| 617 | ipc_task_enable(task); |
| 618 | exception_type_t etype = get_exception_from_corpse_crashinfo(corpse_info: task->corpse_info); |
| 619 | task_deliver_crash_notification(task, current_thread(), etype, subcode); |
| 620 | } |
| 621 | } |
| 622 | |
| 623 | if (threadcnt == 0) { |
| 624 | task_lock(task); |
| 625 | if (task_is_a_corpse_fork(task)) { |
| 626 | thread_wakeup((event_t)&task->active_thread_count); |
| 627 | } |
| 628 | task_unlock(task); |
| 629 | } |
| 630 | |
| 631 | #if CONFIG_EXCLAVES |
| 632 | exclaves_thread_terminate(thread); |
| 633 | #endif |
| 634 | |
| 635 | s = splsched(); |
| 636 | thread_lock(thread); |
| 637 | |
| 638 | /* |
| 639 | * Ensure that the depress timer is no longer enqueued, |
| 640 | * so the timer can be safely deallocated |
| 641 | * |
| 642 | * TODO: build timer_call_cancel_wait |
| 643 | */ |
| 644 | |
| 645 | assert((thread->sched_flags & TH_SFLAG_DEPRESSED_MASK) == 0); |
| 646 | |
| 647 | uint32_t delay_us = 1; |
| 648 | |
| 649 | while (thread->depress_timer_active > 0) { |
| 650 | thread_unlock(thread); |
| 651 | splx(s); |
| 652 | |
| 653 | delay(usec: delay_us++); |
| 654 | |
| 655 | if (delay_us > USEC_PER_SEC) { |
| 656 | panic("depress timer failed to inactivate!" |
| 657 | "thread: %p depress_timer_active: %d" , |
| 658 | thread, thread->depress_timer_active); |
| 659 | } |
| 660 | |
| 661 | s = splsched(); |
| 662 | thread_lock(thread); |
| 663 | } |
| 664 | |
| 665 | /* |
| 666 | * Cancel wait timer, and wait for |
| 667 | * concurrent expirations. |
| 668 | */ |
| 669 | if (thread->wait_timer_armed) { |
| 670 | thread->wait_timer_armed = false; |
| 671 | |
| 672 | if (timer_call_cancel(call: thread->wait_timer)) { |
| 673 | thread->wait_timer_active--; |
| 674 | } |
| 675 | } |
| 676 | |
| 677 | delay_us = 1; |
| 678 | |
| 679 | while (thread->wait_timer_active > 0) { |
| 680 | thread_unlock(thread); |
| 681 | splx(s); |
| 682 | |
| 683 | delay(usec: delay_us++); |
| 684 | |
| 685 | if (delay_us > USEC_PER_SEC) { |
| 686 | panic("wait timer failed to inactivate!" |
| 687 | "thread: %p, wait_timer_active: %d, " |
| 688 | "wait_timer_armed: %d" , |
| 689 | thread, thread->wait_timer_active, |
| 690 | thread->wait_timer_armed); |
| 691 | } |
| 692 | |
| 693 | s = splsched(); |
| 694 | thread_lock(thread); |
| 695 | } |
| 696 | |
| 697 | /* |
| 698 | * If there is a reserved stack, release it. |
| 699 | */ |
| 700 | if (thread->reserved_stack != 0) { |
| 701 | stack_free_reserved(thread); |
| 702 | thread->reserved_stack = 0; |
| 703 | } |
| 704 | |
| 705 | /* |
| 706 | * Mark thread as terminating, and block. |
| 707 | */ |
| 708 | thread->state |= TH_TERMINATE; |
| 709 | thread_mark_wait_locked(thread, THREAD_UNINT); |
| 710 | |
| 711 | #if CONFIG_EXCLAVES |
| 712 | assert(thread->th_exclaves_ipc_buffer == NULL); |
| 713 | assert(thread->th_exclaves_scheduling_context_id == 0); |
| 714 | assert(thread->th_exclaves_intstate == 0); |
| 715 | assert(thread->th_exclaves_state == 0); |
| 716 | #endif |
| 717 | assert(thread->th_work_interval_flags == TH_WORK_INTERVAL_FLAGS_NONE); |
| 718 | assert(thread->kern_promotion_schedpri == 0); |
| 719 | if (thread->rwlock_count > 0) { |
| 720 | panic("rwlock_count is %d for thread %p, possibly it still holds a rwlock" , thread->rwlock_count, thread); |
| 721 | } |
| 722 | assert(thread->priority_floor_count == 0); |
| 723 | assert(thread->handoff_thread == THREAD_NULL); |
| 724 | assert(thread->th_work_interval == NULL); |
| 725 | assert(thread->t_rr_state.trr_value == 0); |
| 726 | |
| 727 | assert3u(0, ==, thread->sched_flags & |
| 728 | (TH_SFLAG_WAITQ_PROMOTED | |
| 729 | TH_SFLAG_RW_PROMOTED | |
| 730 | TH_SFLAG_EXEC_PROMOTED | |
| 731 | TH_SFLAG_FLOOR_PROMOTED | |
| 732 | TH_SFLAG_PROMOTED | |
| 733 | TH_SFLAG_DEPRESS)); |
| 734 | |
| 735 | thread_unlock(thread); |
| 736 | /* splsched */ |
| 737 | |
| 738 | thread_block(continuation: (thread_continue_t)thread_terminate_continue); |
| 739 | /*NOTREACHED*/ |
| 740 | } |
| 741 | |
| 742 | static bool |
| 743 | thread_ref_release(thread_t thread) |
| 744 | { |
| 745 | if (thread == THREAD_NULL) { |
| 746 | return false; |
| 747 | } |
| 748 | |
| 749 | assert_thread_magic(thread); |
| 750 | |
| 751 | return os_ref_release_raw(&thread->ref_count, &thread_refgrp) == 0; |
| 752 | } |
| 753 | |
| 754 | /* Drop a thread refcount safely without triggering a zfree */ |
| 755 | void |
| 756 | thread_deallocate_safe(thread_t thread) |
| 757 | { |
| 758 | if (__improbable(thread_ref_release(thread))) { |
| 759 | /* enqueue the thread for thread deallocate deamon to call thread_deallocate_complete */ |
| 760 | thread_deallocate_enqueue(thread); |
| 761 | } |
| 762 | } |
| 763 | |
| 764 | void |
| 765 | thread_deallocate(thread_t thread) |
| 766 | { |
| 767 | if (__improbable(thread_ref_release(thread))) { |
| 768 | thread_deallocate_complete(thread); |
| 769 | } |
| 770 | } |
| 771 | |
| 772 | void |
| 773 | thread_deallocate_complete( |
| 774 | thread_t thread) |
| 775 | { |
| 776 | task_t task; |
| 777 | |
| 778 | assert_thread_magic(thread); |
| 779 | |
| 780 | assert(os_ref_get_count_raw(&thread->ref_count) == 0); |
| 781 | |
| 782 | if (!(thread->state & TH_TERMINATE2)) { |
| 783 | panic("thread_deallocate: thread not properly terminated" ); |
| 784 | } |
| 785 | |
| 786 | thread_assert_runq_null(thread); |
| 787 | assert(!(thread->state & TH_WAKING)); |
| 788 | |
| 789 | #if CONFIG_CPU_COUNTERS |
| 790 | kpc_thread_destroy(thread); |
| 791 | #endif /* CONFIG_CPU_COUNTERS */ |
| 792 | |
| 793 | ipc_thread_terminate(thread); |
| 794 | |
| 795 | proc_thread_qos_deallocate(thread); |
| 796 | |
| 797 | task = get_threadtask(thread); |
| 798 | |
| 799 | #ifdef MACH_BSD |
| 800 | uthread_destroy(get_bsdthread_info(thread)); |
| 801 | #endif /* MACH_BSD */ |
| 802 | |
| 803 | if (thread->t_ledger) { |
| 804 | ledger_dereference(ledger: thread->t_ledger); |
| 805 | } |
| 806 | if (thread->t_threadledger) { |
| 807 | ledger_dereference(ledger: thread->t_threadledger); |
| 808 | } |
| 809 | |
| 810 | assert(thread->turnstile != TURNSTILE_NULL); |
| 811 | if (thread->turnstile) { |
| 812 | turnstile_deallocate(turnstile: thread->turnstile); |
| 813 | } |
| 814 | turnstile_compact_id_put(cid: thread->ctsid); |
| 815 | |
| 816 | if (IPC_VOUCHER_NULL != thread->ith_voucher) { |
| 817 | ipc_voucher_release(voucher: thread->ith_voucher); |
| 818 | } |
| 819 | |
| 820 | kfree_data(thread->thread_io_stats, sizeof(struct io_stat_info)); |
| 821 | #if CONFIG_PREADOPT_TG |
| 822 | if (thread->old_preadopt_thread_group) { |
| 823 | thread_group_release(tg: thread->old_preadopt_thread_group); |
| 824 | } |
| 825 | |
| 826 | if (thread->preadopt_thread_group) { |
| 827 | thread_group_release(tg: thread->preadopt_thread_group); |
| 828 | } |
| 829 | #endif /* CONFIG_PREADOPT_TG */ |
| 830 | |
| 831 | if (thread->kernel_stack != 0) { |
| 832 | stack_free(thread); |
| 833 | } |
| 834 | |
| 835 | recount_thread_deinit(th: &thread->th_recount); |
| 836 | |
| 837 | lck_mtx_destroy(lck: &thread->mutex, grp: &thread_lck_grp); |
| 838 | machine_thread_destroy(thread); |
| 839 | |
| 840 | task_deallocate_grp(task, TASK_GRP_INTERNAL); |
| 841 | |
| 842 | #if MACH_ASSERT |
| 843 | assert_thread_magic(thread); |
| 844 | thread->thread_magic = 0; |
| 845 | #endif /* MACH_ASSERT */ |
| 846 | |
| 847 | lck_mtx_lock(lck: &tasks_threads_lock); |
| 848 | assert(terminated_threads_count > 0); |
| 849 | queue_remove(&terminated_threads, thread, thread_t, threads); |
| 850 | terminated_threads_count--; |
| 851 | lck_mtx_unlock(lck: &tasks_threads_lock); |
| 852 | |
| 853 | timer_call_free(call: thread->depress_timer); |
| 854 | timer_call_free(call: thread->wait_timer); |
| 855 | |
| 856 | ctid_table_remove(thread); |
| 857 | |
| 858 | thread_ro_destroy(th: thread); |
| 859 | zfree(thread_zone, thread); |
| 860 | } |
| 861 | |
| 862 | /* |
| 863 | * thread_inspect_deallocate: |
| 864 | * |
| 865 | * Drop a thread inspection reference. |
| 866 | */ |
| 867 | void |
| 868 | thread_inspect_deallocate( |
| 869 | thread_inspect_t thread_inspect) |
| 870 | { |
| 871 | return thread_deallocate(thread: (thread_t)thread_inspect); |
| 872 | } |
| 873 | |
| 874 | /* |
| 875 | * thread_read_deallocate: |
| 876 | * |
| 877 | * Drop a reference on thread read port. |
| 878 | */ |
| 879 | void |
| 880 | thread_read_deallocate( |
| 881 | thread_read_t thread_read) |
| 882 | { |
| 883 | return thread_deallocate(thread: (thread_t)thread_read); |
| 884 | } |
| 885 | |
| 886 | |
| 887 | /* |
| 888 | * thread_exception_queue_invoke: |
| 889 | * |
| 890 | * Deliver EXC_{RESOURCE,GUARD} exception |
| 891 | */ |
| 892 | static void |
| 893 | thread_exception_queue_invoke(mpsc_queue_chain_t elm, |
| 894 | __assert_only mpsc_daemon_queue_t dq) |
| 895 | { |
| 896 | struct thread_exception_elt *elt; |
| 897 | task_t task; |
| 898 | thread_t thread; |
| 899 | exception_type_t etype; |
| 900 | |
| 901 | assert(dq == &thread_exception_queue); |
| 902 | elt = mpsc_queue_element(elm, struct thread_exception_elt, link); |
| 903 | |
| 904 | etype = elt->exception_type; |
| 905 | task = elt->exception_task; |
| 906 | thread = elt->exception_thread; |
| 907 | assert_thread_magic(thread); |
| 908 | |
| 909 | kfree_type(struct thread_exception_elt, elt); |
| 910 | |
| 911 | /* wait for all the threads in the task to terminate */ |
| 912 | task_lock(task); |
| 913 | task_wait_till_threads_terminate_locked(task); |
| 914 | task_unlock(task); |
| 915 | |
| 916 | /* Consumes the task ref returned by task_generate_corpse_internal */ |
| 917 | task_deallocate(task); |
| 918 | /* Consumes the thread ref returned by task_generate_corpse_internal */ |
| 919 | thread_deallocate(thread); |
| 920 | |
| 921 | /* Deliver the notification, also clears the corpse. */ |
| 922 | task_deliver_crash_notification(task, thread, etype, 0); |
| 923 | } |
| 924 | |
| 925 | static void |
| 926 | thread_backtrace_queue_invoke(mpsc_queue_chain_t elm, |
| 927 | __assert_only mpsc_daemon_queue_t dq) |
| 928 | { |
| 929 | struct thread_backtrace_elt *elt; |
| 930 | kcdata_object_t obj; |
| 931 | exception_port_t exc_ports[BT_EXC_PORTS_COUNT]; /* send rights */ |
| 932 | exception_type_t etype; |
| 933 | |
| 934 | assert(dq == &thread_backtrace_queue); |
| 935 | elt = mpsc_queue_element(elm, struct thread_backtrace_elt, link); |
| 936 | |
| 937 | obj = elt->obj; |
| 938 | memcpy(dst: exc_ports, src: elt->exc_ports, n: sizeof(ipc_port_t) * BT_EXC_PORTS_COUNT); |
| 939 | etype = elt->exception_type; |
| 940 | |
| 941 | kfree_type(struct thread_backtrace_elt, elt); |
| 942 | |
| 943 | /* Deliver to backtrace exception ports */ |
| 944 | exception_deliver_backtrace(bt_object: obj, exc_ports, exception: etype); |
| 945 | |
| 946 | /* |
| 947 | * Release port right and kcdata object refs given by |
| 948 | * task_enqueue_exception_with_corpse() |
| 949 | */ |
| 950 | |
| 951 | for (unsigned int i = 0; i < BT_EXC_PORTS_COUNT; i++) { |
| 952 | ipc_port_release_send(port: exc_ports[i]); |
| 953 | } |
| 954 | |
| 955 | kcdata_object_release(obj); |
| 956 | } |
| 957 | |
| 958 | /* |
| 959 | * thread_exception_enqueue: |
| 960 | * |
| 961 | * Enqueue a corpse port to be delivered an EXC_{RESOURCE,GUARD}. |
| 962 | */ |
| 963 | void |
| 964 | thread_exception_enqueue( |
| 965 | task_t task, |
| 966 | thread_t thread, |
| 967 | exception_type_t etype) |
| 968 | { |
| 969 | assert(EXC_RESOURCE == etype || EXC_GUARD == etype); |
| 970 | struct thread_exception_elt *elt = kalloc_type(struct thread_exception_elt, Z_WAITOK | Z_NOFAIL); |
| 971 | elt->exception_type = etype; |
| 972 | elt->exception_task = task; |
| 973 | elt->exception_thread = thread; |
| 974 | |
| 975 | mpsc_daemon_enqueue(dq: &thread_exception_queue, elm: &elt->link, |
| 976 | options: MPSC_QUEUE_DISABLE_PREEMPTION); |
| 977 | } |
| 978 | |
| 979 | void |
| 980 | thread_backtrace_enqueue( |
| 981 | kcdata_object_t obj, |
| 982 | exception_port_t ports[static BT_EXC_PORTS_COUNT], |
| 983 | exception_type_t etype) |
| 984 | { |
| 985 | struct thread_backtrace_elt *elt = kalloc_type(struct thread_backtrace_elt, Z_WAITOK | Z_NOFAIL); |
| 986 | elt->obj = obj; |
| 987 | elt->exception_type = etype; |
| 988 | |
| 989 | memcpy(dst: elt->exc_ports, src: ports, n: sizeof(ipc_port_t) * BT_EXC_PORTS_COUNT); |
| 990 | |
| 991 | mpsc_daemon_enqueue(dq: &thread_backtrace_queue, elm: &elt->link, |
| 992 | options: MPSC_QUEUE_DISABLE_PREEMPTION); |
| 993 | } |
| 994 | |
| 995 | /* |
| 996 | * thread_copy_resource_info |
| 997 | * |
| 998 | * Copy the resource info counters from source |
| 999 | * thread to destination thread. |
| 1000 | */ |
| 1001 | void |
| 1002 | thread_copy_resource_info( |
| 1003 | thread_t dst_thread, |
| 1004 | thread_t src_thread) |
| 1005 | { |
| 1006 | dst_thread->c_switch = src_thread->c_switch; |
| 1007 | dst_thread->p_switch = src_thread->p_switch; |
| 1008 | dst_thread->ps_switch = src_thread->ps_switch; |
| 1009 | dst_thread->sched_time_save = src_thread->sched_time_save; |
| 1010 | dst_thread->runnable_timer = src_thread->runnable_timer; |
| 1011 | dst_thread->vtimer_user_save = src_thread->vtimer_user_save; |
| 1012 | dst_thread->vtimer_prof_save = src_thread->vtimer_prof_save; |
| 1013 | dst_thread->vtimer_rlim_save = src_thread->vtimer_rlim_save; |
| 1014 | dst_thread->vtimer_qos_save = src_thread->vtimer_qos_save; |
| 1015 | dst_thread->syscalls_unix = src_thread->syscalls_unix; |
| 1016 | dst_thread->syscalls_mach = src_thread->syscalls_mach; |
| 1017 | ledger_rollup(to_ledger: dst_thread->t_threadledger, from_ledger: src_thread->t_threadledger); |
| 1018 | recount_thread_copy(dst: &dst_thread->th_recount, src: &src_thread->th_recount); |
| 1019 | *dst_thread->thread_io_stats = *src_thread->thread_io_stats; |
| 1020 | } |
| 1021 | |
| 1022 | static void |
| 1023 | thread_terminate_queue_invoke(mpsc_queue_chain_t e, |
| 1024 | __assert_only mpsc_daemon_queue_t dq) |
| 1025 | { |
| 1026 | thread_t thread = mpsc_queue_element(e, struct thread, mpsc_links); |
| 1027 | task_t task = get_threadtask(thread); |
| 1028 | |
| 1029 | assert(dq == &thread_terminate_queue); |
| 1030 | |
| 1031 | task_lock(task); |
| 1032 | |
| 1033 | /* |
| 1034 | * if marked for crash reporting, skip reaping. |
| 1035 | * The corpse delivery thread will clear bit and enqueue |
| 1036 | * for reaping when done |
| 1037 | * |
| 1038 | * Note: the inspection field is set under the task lock |
| 1039 | * |
| 1040 | * FIXME[mad]: why enqueue for termination before `inspection` is false ? |
| 1041 | */ |
| 1042 | if (__improbable(thread->inspection)) { |
| 1043 | simple_lock(&crashed_threads_lock, &thread_lck_grp); |
| 1044 | task_unlock(task); |
| 1045 | |
| 1046 | enqueue_tail(que: &crashed_threads_queue, elt: &thread->runq_links); |
| 1047 | simple_unlock(&crashed_threads_lock); |
| 1048 | return; |
| 1049 | } |
| 1050 | |
| 1051 | recount_task_rollup_thread(tk: &task->tk_recount, th: &thread->th_recount); |
| 1052 | |
| 1053 | task->total_runnable_time += timer_grab(timer: &thread->runnable_timer); |
| 1054 | task->c_switch += thread->c_switch; |
| 1055 | task->p_switch += thread->p_switch; |
| 1056 | task->ps_switch += thread->ps_switch; |
| 1057 | |
| 1058 | task->syscalls_unix += thread->syscalls_unix; |
| 1059 | task->syscalls_mach += thread->syscalls_mach; |
| 1060 | |
| 1061 | task->task_timer_wakeups_bin_1 += thread->thread_timer_wakeups_bin_1; |
| 1062 | task->task_timer_wakeups_bin_2 += thread->thread_timer_wakeups_bin_2; |
| 1063 | task->task_gpu_ns += ml_gpu_stat(thread); |
| 1064 | task->decompressions += thread->decompressions; |
| 1065 | |
| 1066 | thread_update_qos_cpu_time(thread); |
| 1067 | |
| 1068 | queue_remove(&task->threads, thread, thread_t, task_threads); |
| 1069 | task->thread_count--; |
| 1070 | |
| 1071 | /* |
| 1072 | * If the task is being halted, and there is only one thread |
| 1073 | * left in the task after this one, then wakeup that thread. |
| 1074 | */ |
| 1075 | if (task->thread_count == 1 && task->halting) { |
| 1076 | thread_wakeup((event_t)&task->halting); |
| 1077 | } |
| 1078 | |
| 1079 | task_unlock(task); |
| 1080 | |
| 1081 | lck_mtx_lock(lck: &tasks_threads_lock); |
| 1082 | queue_remove(&threads, thread, thread_t, threads); |
| 1083 | threads_count--; |
| 1084 | queue_enter(&terminated_threads, thread, thread_t, threads); |
| 1085 | terminated_threads_count++; |
| 1086 | lck_mtx_unlock(lck: &tasks_threads_lock); |
| 1087 | |
| 1088 | #if MACH_BSD |
| 1089 | /* |
| 1090 | * The thread no longer counts against the task's thread count, |
| 1091 | * we can now wake up any pending joiner. |
| 1092 | * |
| 1093 | * Note that the inheritor will be set to `thread` which is |
| 1094 | * incorrect once it is on the termination queue, however |
| 1095 | * the termination queue runs at MINPRI_KERNEL which is higher |
| 1096 | * than any user thread, so this isn't a priority inversion. |
| 1097 | */ |
| 1098 | if (thread_get_tag(thread) & THREAD_TAG_USER_JOIN) { |
| 1099 | struct uthread *uth = get_bsdthread_info(thread); |
| 1100 | mach_port_name_t kport = uthread_joiner_port(uth); |
| 1101 | |
| 1102 | /* |
| 1103 | * Clear the port low two bits to tell pthread that thread is gone. |
| 1104 | */ |
| 1105 | #ifndef NO_PORT_GEN |
| 1106 | kport &= ~MACH_PORT_MAKE(0, IE_BITS_GEN_MASK + IE_BITS_GEN_ONE); |
| 1107 | #else |
| 1108 | kport |= MACH_PORT_MAKE(0, ~(IE_BITS_GEN_MASK + IE_BITS_GEN_ONE)); |
| 1109 | #endif |
| 1110 | (void)copyoutmap_atomic32(map: task->map, value: kport, |
| 1111 | toaddr: uthread_joiner_address(uth)); |
| 1112 | uthread_joiner_wake(task, uth); |
| 1113 | } |
| 1114 | #endif |
| 1115 | |
| 1116 | thread_deallocate(thread); |
| 1117 | } |
| 1118 | |
| 1119 | static void |
| 1120 | thread_deallocate_queue_invoke(mpsc_queue_chain_t e, |
| 1121 | __assert_only mpsc_daemon_queue_t dq) |
| 1122 | { |
| 1123 | thread_t thread = mpsc_queue_element(e, struct thread, mpsc_links); |
| 1124 | |
| 1125 | assert(dq == &thread_deallocate_queue); |
| 1126 | |
| 1127 | thread_deallocate_complete(thread); |
| 1128 | } |
| 1129 | |
| 1130 | /* |
| 1131 | * thread_terminate_enqueue: |
| 1132 | * |
| 1133 | * Enqueue a terminating thread for final disposition. |
| 1134 | * |
| 1135 | * Called at splsched. |
| 1136 | */ |
| 1137 | void |
| 1138 | thread_terminate_enqueue( |
| 1139 | thread_t thread) |
| 1140 | { |
| 1141 | KDBG_RELEASE(TRACE_DATA_THREAD_TERMINATE, thread->thread_id); |
| 1142 | |
| 1143 | mpsc_daemon_enqueue(dq: &thread_terminate_queue, elm: &thread->mpsc_links, |
| 1144 | options: MPSC_QUEUE_DISABLE_PREEMPTION); |
| 1145 | } |
| 1146 | |
| 1147 | /* |
| 1148 | * thread_deallocate_enqueue: |
| 1149 | * |
| 1150 | * Enqueue a thread for final deallocation. |
| 1151 | */ |
| 1152 | static void |
| 1153 | thread_deallocate_enqueue( |
| 1154 | thread_t thread) |
| 1155 | { |
| 1156 | mpsc_daemon_enqueue(dq: &thread_deallocate_queue, elm: &thread->mpsc_links, |
| 1157 | options: MPSC_QUEUE_DISABLE_PREEMPTION); |
| 1158 | } |
| 1159 | |
| 1160 | /* |
| 1161 | * thread_terminate_crashed_threads: |
| 1162 | * walk the list of crashed threads and put back set of threads |
| 1163 | * who are no longer being inspected. |
| 1164 | */ |
| 1165 | void |
| 1166 | thread_terminate_crashed_threads(void) |
| 1167 | { |
| 1168 | thread_t th_remove; |
| 1169 | |
| 1170 | simple_lock(&crashed_threads_lock, &thread_lck_grp); |
| 1171 | /* |
| 1172 | * loop through the crashed threads queue |
| 1173 | * to put any threads that are not being inspected anymore |
| 1174 | */ |
| 1175 | |
| 1176 | qe_foreach_element_safe(th_remove, &crashed_threads_queue, runq_links) { |
| 1177 | /* make sure current_thread is never in crashed queue */ |
| 1178 | assert(th_remove != current_thread()); |
| 1179 | |
| 1180 | if (th_remove->inspection == FALSE) { |
| 1181 | remqueue(elt: &th_remove->runq_links); |
| 1182 | mpsc_daemon_enqueue(dq: &thread_terminate_queue, elm: &th_remove->mpsc_links, |
| 1183 | options: MPSC_QUEUE_NONE); |
| 1184 | } |
| 1185 | } |
| 1186 | |
| 1187 | simple_unlock(&crashed_threads_lock); |
| 1188 | } |
| 1189 | |
| 1190 | /* |
| 1191 | * thread_stack_queue_invoke: |
| 1192 | * |
| 1193 | * Perform stack allocation as required due to |
| 1194 | * invoke failures. |
| 1195 | */ |
| 1196 | static void |
| 1197 | thread_stack_queue_invoke(mpsc_queue_chain_t elm, |
| 1198 | __assert_only mpsc_daemon_queue_t dq) |
| 1199 | { |
| 1200 | thread_t thread = mpsc_queue_element(elm, struct thread, mpsc_links); |
| 1201 | |
| 1202 | assert(dq == &thread_stack_queue); |
| 1203 | |
| 1204 | /* allocate stack with interrupts enabled so that we can call into VM */ |
| 1205 | stack_alloc(thread); |
| 1206 | |
| 1207 | KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED, MACH_STACK_WAIT) | DBG_FUNC_END, thread_tid(thread), 0, 0, 0, 0); |
| 1208 | |
| 1209 | spl_t s = splsched(); |
| 1210 | thread_lock(thread); |
| 1211 | thread_setrun(thread, options: SCHED_PREEMPT | SCHED_TAILQ); |
| 1212 | thread_unlock(thread); |
| 1213 | splx(s); |
| 1214 | } |
| 1215 | |
| 1216 | /* |
| 1217 | * thread_stack_enqueue: |
| 1218 | * |
| 1219 | * Enqueue a thread for stack allocation. |
| 1220 | * |
| 1221 | * Called at splsched. |
| 1222 | */ |
| 1223 | void |
| 1224 | thread_stack_enqueue( |
| 1225 | thread_t thread) |
| 1226 | { |
| 1227 | KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED, MACH_STACK_WAIT) | DBG_FUNC_START, thread_tid(thread), 0, 0, 0, 0); |
| 1228 | assert_thread_magic(thread); |
| 1229 | |
| 1230 | mpsc_daemon_enqueue(dq: &thread_stack_queue, elm: &thread->mpsc_links, |
| 1231 | options: MPSC_QUEUE_DISABLE_PREEMPTION); |
| 1232 | } |
| 1233 | |
| 1234 | void |
| 1235 | thread_daemon_init(void) |
| 1236 | { |
| 1237 | kern_return_t result; |
| 1238 | |
| 1239 | thread_deallocate_daemon_init(); |
| 1240 | |
| 1241 | thread_deallocate_daemon_register_queue(dq: &thread_terminate_queue, |
| 1242 | invoke: thread_terminate_queue_invoke); |
| 1243 | |
| 1244 | thread_deallocate_daemon_register_queue(dq: &thread_deallocate_queue, |
| 1245 | invoke: thread_deallocate_queue_invoke); |
| 1246 | |
| 1247 | ipc_object_deallocate_register_queue(); |
| 1248 | |
| 1249 | simple_lock_init(&crashed_threads_lock, 0); |
| 1250 | queue_init(&crashed_threads_queue); |
| 1251 | |
| 1252 | result = mpsc_daemon_queue_init_with_thread(dq: &thread_stack_queue, |
| 1253 | invoke: thread_stack_queue_invoke, BASEPRI_PREEMPT_HIGH, |
| 1254 | name: "daemon.thread-stack" , flags: MPSC_DAEMON_INIT_NONE); |
| 1255 | if (result != KERN_SUCCESS) { |
| 1256 | panic("thread_daemon_init: thread_stack_daemon" ); |
| 1257 | } |
| 1258 | |
| 1259 | result = mpsc_daemon_queue_init_with_thread(dq: &thread_exception_queue, |
| 1260 | invoke: thread_exception_queue_invoke, MINPRI_KERNEL, |
| 1261 | name: "daemon.thread-exception" , flags: MPSC_DAEMON_INIT_NONE); |
| 1262 | |
| 1263 | if (result != KERN_SUCCESS) { |
| 1264 | panic("thread_daemon_init: thread_exception_daemon" ); |
| 1265 | } |
| 1266 | |
| 1267 | result = mpsc_daemon_queue_init_with_thread(dq: &thread_backtrace_queue, |
| 1268 | invoke: thread_backtrace_queue_invoke, MINPRI_KERNEL, |
| 1269 | name: "daemon.thread-backtrace" , flags: MPSC_DAEMON_INIT_NONE); |
| 1270 | |
| 1271 | if (result != KERN_SUCCESS) { |
| 1272 | panic("thread_daemon_init: thread_backtrace_daemon" ); |
| 1273 | } |
| 1274 | } |
| 1275 | |
| 1276 | __options_decl(thread_create_internal_options_t, uint32_t, { |
| 1277 | TH_OPTION_NONE = 0x00, |
| 1278 | TH_OPTION_NOSUSP = 0x02, |
| 1279 | TH_OPTION_WORKQ = 0x04, |
| 1280 | TH_OPTION_MAINTHREAD = 0x08, |
| 1281 | }); |
| 1282 | |
| 1283 | void |
| 1284 | main_thread_set_immovable_pinned(thread_t thread) |
| 1285 | { |
| 1286 | ipc_main_thread_set_immovable_pinned(thread); |
| 1287 | } |
| 1288 | |
| 1289 | /* |
| 1290 | * Create a new thread. |
| 1291 | * Doesn't start the thread running. |
| 1292 | * |
| 1293 | * Task and tasks_threads_lock are returned locked on success. |
| 1294 | */ |
| 1295 | static kern_return_t |
| 1296 | thread_create_internal( |
| 1297 | task_t parent_task, |
| 1298 | integer_t priority, |
| 1299 | thread_continue_t continuation, |
| 1300 | void *parameter, |
| 1301 | thread_create_internal_options_t options, |
| 1302 | thread_t *out_thread) |
| 1303 | { |
| 1304 | thread_t new_thread; |
| 1305 | ipc_thread_init_options_t init_options = IPC_THREAD_INIT_NONE; |
| 1306 | struct thread_ro tro_tpl = { }; |
| 1307 | bool first_thread = false; |
| 1308 | kern_return_t kr = KERN_FAILURE; |
| 1309 | |
| 1310 | /* |
| 1311 | * Allocate a thread and initialize static fields |
| 1312 | */ |
| 1313 | new_thread = zalloc_flags(thread_zone, Z_WAITOK | Z_NOFAIL); |
| 1314 | |
| 1315 | if (__improbable(current_thread() == &init_thread)) { |
| 1316 | /* |
| 1317 | * The first thread ever is a global, but because we want to be |
| 1318 | * able to zone_id_require() threads, we have to stop using the |
| 1319 | * global piece of memory we used to boostrap the kernel and |
| 1320 | * jump to a proper thread from a zone. |
| 1321 | * |
| 1322 | * This is why that one thread will inherit its original |
| 1323 | * state differently. |
| 1324 | * |
| 1325 | * Also remember this thread in `vm_pageout_scan_thread` |
| 1326 | * as this is what the first thread ever becomes. |
| 1327 | * |
| 1328 | * Also pre-warm the depress timer since the VM pageout scan |
| 1329 | * daemon might need to use it. |
| 1330 | */ |
| 1331 | assert(vm_pageout_scan_thread == THREAD_NULL); |
| 1332 | vm_pageout_scan_thread = new_thread; |
| 1333 | |
| 1334 | first_thread = true; |
| 1335 | #pragma clang diagnostic push |
| 1336 | #pragma clang diagnostic ignored "-Wnontrivial-memaccess" |
| 1337 | /* work around 74481146 */ |
| 1338 | memcpy(dst: new_thread, src: &init_thread, n: sizeof(*new_thread)); |
| 1339 | #pragma clang diagnostic pop |
| 1340 | |
| 1341 | /* |
| 1342 | * Make the ctid table functional |
| 1343 | */ |
| 1344 | ctid_table_init(); |
| 1345 | new_thread->ctid = 0; |
| 1346 | } else { |
| 1347 | init_thread_from_template(thread: new_thread); |
| 1348 | } |
| 1349 | |
| 1350 | if (options & TH_OPTION_MAINTHREAD) { |
| 1351 | init_options |= IPC_THREAD_INIT_MAINTHREAD; |
| 1352 | } |
| 1353 | |
| 1354 | os_ref_init_count_raw(&new_thread->ref_count, &thread_refgrp, 2); |
| 1355 | machine_thread_create(thread: new_thread, task: parent_task, first_thread); |
| 1356 | |
| 1357 | machine_thread_process_signature(thread: new_thread, task: parent_task); |
| 1358 | |
| 1359 | #ifdef MACH_BSD |
| 1360 | uthread_init(parent_task, get_bsdthread_info(new_thread), |
| 1361 | &tro_tpl, (options & TH_OPTION_WORKQ) != 0); |
| 1362 | if (!task_is_a_corpse(task: parent_task)) { |
| 1363 | /* |
| 1364 | * uthread_init will set tro_cred (with a +1) |
| 1365 | * and tro_proc for live tasks. |
| 1366 | */ |
| 1367 | assert(tro_tpl.tro_cred && tro_tpl.tro_proc); |
| 1368 | } |
| 1369 | #endif /* MACH_BSD */ |
| 1370 | |
| 1371 | thread_lock_init(new_thread); |
| 1372 | wake_lock_init(new_thread); |
| 1373 | |
| 1374 | lck_mtx_init(lck: &new_thread->mutex, grp: &thread_lck_grp, LCK_ATTR_NULL); |
| 1375 | |
| 1376 | ipc_thread_init(task: parent_task, thread: new_thread, tro: &tro_tpl, options: init_options); |
| 1377 | |
| 1378 | thread_ro_create(parent_task, th: new_thread, tro_tpl: &tro_tpl); |
| 1379 | |
| 1380 | new_thread->continuation = continuation; |
| 1381 | new_thread->parameter = parameter; |
| 1382 | new_thread->inheritor_flags = TURNSTILE_UPDATE_FLAGS_NONE; |
| 1383 | new_thread->requested_policy = default_thread_requested_policy; |
| 1384 | new_thread->__runq.runq = PROCESSOR_NULL; |
| 1385 | priority_queue_init(que: &new_thread->sched_inheritor_queue); |
| 1386 | priority_queue_init(que: &new_thread->base_inheritor_queue); |
| 1387 | #if CONFIG_SCHED_CLUTCH |
| 1388 | priority_queue_entry_init(&new_thread->th_clutch_runq_link); |
| 1389 | priority_queue_entry_init(&new_thread->th_clutch_pri_link); |
| 1390 | #endif /* CONFIG_SCHED_CLUTCH */ |
| 1391 | |
| 1392 | #if CONFIG_SCHED_EDGE |
| 1393 | new_thread->th_bound_cluster_enqueued = false; |
| 1394 | for (cluster_shared_rsrc_type_t shared_rsrc_type = CLUSTER_SHARED_RSRC_TYPE_MIN; shared_rsrc_type < CLUSTER_SHARED_RSRC_TYPE_COUNT; shared_rsrc_type++) { |
| 1395 | new_thread->th_shared_rsrc_enqueued[shared_rsrc_type] = false; |
| 1396 | new_thread->th_shared_rsrc_heavy_user[shared_rsrc_type] = false; |
| 1397 | new_thread->th_shared_rsrc_heavy_perf_control[shared_rsrc_type] = false; |
| 1398 | } |
| 1399 | #endif /* CONFIG_SCHED_EDGE */ |
| 1400 | new_thread->th_bound_cluster_id = THREAD_BOUND_CLUSTER_NONE; |
| 1401 | |
| 1402 | /* Allocate I/O Statistics structure */ |
| 1403 | new_thread->thread_io_stats = kalloc_data(sizeof(struct io_stat_info), |
| 1404 | Z_WAITOK | Z_ZERO | Z_NOFAIL); |
| 1405 | |
| 1406 | #if KASAN_CLASSIC |
| 1407 | kasan_init_thread(&new_thread->kasan_data); |
| 1408 | #endif /* KASAN_CLASSIC */ |
| 1409 | |
| 1410 | #if CONFIG_KCOV |
| 1411 | kcov_init_thread(&new_thread->kcov_data); |
| 1412 | #endif |
| 1413 | |
| 1414 | #if CONFIG_IOSCHED |
| 1415 | /* Clear out the I/O Scheduling info for AppleFSCompression */ |
| 1416 | new_thread->decmp_upl = NULL; |
| 1417 | #endif /* CONFIG_IOSCHED */ |
| 1418 | |
| 1419 | new_thread->thread_region_page_shift = 0; |
| 1420 | |
| 1421 | #if DEVELOPMENT || DEBUG |
| 1422 | task_lock(parent_task); |
| 1423 | uint16_t thread_limit = parent_task->task_thread_limit; |
| 1424 | if (exc_resource_threads_enabled && |
| 1425 | thread_limit > 0 && |
| 1426 | parent_task->thread_count >= thread_limit && |
| 1427 | !parent_task->task_has_crossed_thread_limit && |
| 1428 | !(task_is_a_corpse(parent_task))) { |
| 1429 | int thread_count = parent_task->thread_count; |
| 1430 | parent_task->task_has_crossed_thread_limit = TRUE; |
| 1431 | task_unlock(parent_task); |
| 1432 | SENDING_NOTIFICATION__TASK_HAS_TOO_MANY_THREADS(parent_task, thread_count); |
| 1433 | } else { |
| 1434 | task_unlock(parent_task); |
| 1435 | } |
| 1436 | #endif |
| 1437 | |
| 1438 | lck_mtx_lock(lck: &tasks_threads_lock); |
| 1439 | task_lock(parent_task); |
| 1440 | |
| 1441 | /* |
| 1442 | * Fail thread creation if parent task is being torn down or has too many threads |
| 1443 | * If the caller asked for TH_OPTION_NOSUSP, also fail if the parent task is suspended |
| 1444 | */ |
| 1445 | if (parent_task->active == 0 || parent_task->halting || |
| 1446 | (parent_task->suspend_count > 0 && (options & TH_OPTION_NOSUSP) != 0) || |
| 1447 | (parent_task->thread_count >= task_threadmax && parent_task != kernel_task)) { |
| 1448 | task_unlock(parent_task); |
| 1449 | lck_mtx_unlock(lck: &tasks_threads_lock); |
| 1450 | |
| 1451 | ipc_thread_disable(thread: new_thread); |
| 1452 | ipc_thread_terminate(thread: new_thread); |
| 1453 | kfree_data(new_thread->thread_io_stats, |
| 1454 | sizeof(struct io_stat_info)); |
| 1455 | lck_mtx_destroy(lck: &new_thread->mutex, grp: &thread_lck_grp); |
| 1456 | kr = KERN_FAILURE; |
| 1457 | goto out_thread_cleanup; |
| 1458 | } |
| 1459 | |
| 1460 | /* Protected by the tasks_threads_lock */ |
| 1461 | new_thread->thread_id = ++thread_unique_id; |
| 1462 | |
| 1463 | ctid_table_add(thread: new_thread); |
| 1464 | |
| 1465 | /* New threads inherit any default state on the task */ |
| 1466 | machine_thread_inherit_taskwide(thread: new_thread, parent_task); |
| 1467 | |
| 1468 | task_reference_grp(parent_task, TASK_GRP_INTERNAL); |
| 1469 | |
| 1470 | if (parent_task->rusage_cpu_flags & TASK_RUSECPU_FLAGS_PERTHR_LIMIT) { |
| 1471 | /* |
| 1472 | * This task has a per-thread CPU limit; make sure this new thread |
| 1473 | * gets its limit set too, before it gets out of the kernel. |
| 1474 | */ |
| 1475 | act_set_astledger(thread: new_thread); |
| 1476 | } |
| 1477 | |
| 1478 | /* Instantiate a thread ledger. Do not fail thread creation if ledger creation fails. */ |
| 1479 | if ((new_thread->t_threadledger = ledger_instantiate(template: thread_ledger_template, |
| 1480 | LEDGER_CREATE_INACTIVE_ENTRIES)) != LEDGER_NULL) { |
| 1481 | ledger_entry_setactive(ledger: new_thread->t_threadledger, entry: thread_ledgers.cpu_time); |
| 1482 | } |
| 1483 | |
| 1484 | new_thread->t_bankledger = LEDGER_NULL; |
| 1485 | new_thread->t_deduct_bank_ledger_time = 0; |
| 1486 | new_thread->t_deduct_bank_ledger_energy = 0; |
| 1487 | |
| 1488 | new_thread->t_ledger = parent_task->ledger; |
| 1489 | if (new_thread->t_ledger) { |
| 1490 | ledger_reference(ledger: new_thread->t_ledger); |
| 1491 | } |
| 1492 | |
| 1493 | recount_thread_init(th: &new_thread->th_recount); |
| 1494 | |
| 1495 | #if defined(CONFIG_SCHED_MULTIQ) |
| 1496 | /* Cache the task's sched_group */ |
| 1497 | new_thread->sched_group = parent_task->sched_group; |
| 1498 | #endif /* defined(CONFIG_SCHED_MULTIQ) */ |
| 1499 | |
| 1500 | /* Cache the task's map */ |
| 1501 | new_thread->map = parent_task->map; |
| 1502 | |
| 1503 | new_thread->depress_timer = timer_call_alloc(func: thread_depress_expire, param0: new_thread); |
| 1504 | new_thread->wait_timer = timer_call_alloc(func: thread_timer_expire, param0: new_thread); |
| 1505 | |
| 1506 | #if CONFIG_CPU_COUNTERS |
| 1507 | kpc_thread_create(new_thread); |
| 1508 | #endif /* CONFIG_CPU_COUNTERS */ |
| 1509 | |
| 1510 | /* Set the thread's scheduling parameters */ |
| 1511 | new_thread->sched_mode = SCHED(initial_thread_sched_mode)(parent_task); |
| 1512 | new_thread->max_priority = parent_task->max_priority; |
| 1513 | new_thread->task_priority = parent_task->priority; |
| 1514 | |
| 1515 | #if CONFIG_THREAD_GROUPS |
| 1516 | thread_group_init_thread(t: new_thread, task: parent_task); |
| 1517 | #endif /* CONFIG_THREAD_GROUPS */ |
| 1518 | |
| 1519 | int new_priority = (priority < 0) ? parent_task->priority: priority; |
| 1520 | new_priority = (priority < 0)? parent_task->priority: priority; |
| 1521 | if (new_priority > new_thread->max_priority) { |
| 1522 | new_priority = new_thread->max_priority; |
| 1523 | } |
| 1524 | #if !defined(XNU_TARGET_OS_OSX) |
| 1525 | if (new_priority < MAXPRI_THROTTLE) { |
| 1526 | new_priority = MAXPRI_THROTTLE; |
| 1527 | } |
| 1528 | #endif /* !defined(XNU_TARGET_OS_OSX) */ |
| 1529 | |
| 1530 | new_thread->importance = new_priority - new_thread->task_priority; |
| 1531 | |
| 1532 | sched_set_thread_base_priority(thread: new_thread, priority: new_priority); |
| 1533 | |
| 1534 | #if defined(CONFIG_SCHED_TIMESHARE_CORE) |
| 1535 | new_thread->sched_stamp = sched_tick; |
| 1536 | #if CONFIG_SCHED_CLUTCH |
| 1537 | new_thread->pri_shift = sched_clutch_thread_pri_shift(new_thread, new_thread->th_sched_bucket); |
| 1538 | #else /* CONFIG_SCHED_CLUTCH */ |
| 1539 | new_thread->pri_shift = sched_pri_shifts[new_thread->th_sched_bucket]; |
| 1540 | #endif /* CONFIG_SCHED_CLUTCH */ |
| 1541 | #endif /* defined(CONFIG_SCHED_TIMESHARE_CORE) */ |
| 1542 | |
| 1543 | if (parent_task->max_priority <= MAXPRI_THROTTLE) { |
| 1544 | sched_thread_mode_demote(thread: new_thread, TH_SFLAG_THROTTLED); |
| 1545 | } |
| 1546 | |
| 1547 | thread_policy_create(thread: new_thread); |
| 1548 | |
| 1549 | /* Chain the thread onto the task's list */ |
| 1550 | queue_enter(&parent_task->threads, new_thread, thread_t, task_threads); |
| 1551 | parent_task->thread_count++; |
| 1552 | |
| 1553 | /* So terminating threads don't need to take the task lock to decrement */ |
| 1554 | os_atomic_inc(&parent_task->active_thread_count, relaxed); |
| 1555 | |
| 1556 | queue_enter(&threads, new_thread, thread_t, threads); |
| 1557 | threads_count++; |
| 1558 | |
| 1559 | new_thread->active = TRUE; |
| 1560 | if (task_is_a_corpse_fork(parent_task)) { |
| 1561 | /* Set the inspection bit if the task is a corpse fork */ |
| 1562 | new_thread->inspection = TRUE; |
| 1563 | } else { |
| 1564 | new_thread->inspection = FALSE; |
| 1565 | } |
| 1566 | new_thread->corpse_dup = FALSE; |
| 1567 | new_thread->turnstile = turnstile_alloc(); |
| 1568 | new_thread->ctsid = turnstile_compact_id_get(); |
| 1569 | |
| 1570 | |
| 1571 | *out_thread = new_thread; |
| 1572 | |
| 1573 | if (kdebug_enable) { |
| 1574 | long args[4] = {}; |
| 1575 | |
| 1576 | kdbg_trace_data(proc: get_bsdtask_info(parent_task), arg_pid: &args[1], arg_uniqueid: &args[3]); |
| 1577 | |
| 1578 | /* |
| 1579 | * Starting with 26604425, exec'ing creates a new task/thread. |
| 1580 | * |
| 1581 | * NEWTHREAD in the current process has two possible meanings: |
| 1582 | * |
| 1583 | * 1) Create a new thread for this process. |
| 1584 | * 2) Create a new thread for the future process this will become in an |
| 1585 | * exec. |
| 1586 | * |
| 1587 | * To disambiguate these, arg3 will be set to TRUE for case #2. |
| 1588 | * |
| 1589 | * The value we need to find (TPF_EXEC_COPY) is stable in the case of a |
| 1590 | * task exec'ing. The read of t_procflags does not take the proc_lock. |
| 1591 | */ |
| 1592 | args[2] = task_is_exec_copy(parent_task) ? 1 : 0; |
| 1593 | |
| 1594 | KDBG_RELEASE(TRACE_DATA_NEWTHREAD, (uintptr_t)thread_tid(new_thread), |
| 1595 | args[1], args[2], args[3]); |
| 1596 | |
| 1597 | kdebug_proc_name_args(proc: get_bsdtask_info(parent_task), args); |
| 1598 | KDBG_RELEASE(TRACE_STRING_NEWTHREAD, args[0], args[1], args[2], |
| 1599 | args[3]); |
| 1600 | } |
| 1601 | |
| 1602 | DTRACE_PROC1(lwp__create, thread_t, *out_thread); |
| 1603 | |
| 1604 | kr = KERN_SUCCESS; |
| 1605 | goto done; |
| 1606 | |
| 1607 | out_thread_cleanup: |
| 1608 | #ifdef MACH_BSD |
| 1609 | { |
| 1610 | struct uthread *ut = get_bsdthread_info(new_thread); |
| 1611 | |
| 1612 | uthread_cleanup(ut, &tro_tpl); |
| 1613 | uthread_destroy(ut); |
| 1614 | } |
| 1615 | #endif /* MACH_BSD */ |
| 1616 | |
| 1617 | machine_thread_destroy(thread: new_thread); |
| 1618 | |
| 1619 | thread_ro_destroy(th: new_thread); |
| 1620 | zfree(thread_zone, new_thread); |
| 1621 | |
| 1622 | done: |
| 1623 | return kr; |
| 1624 | } |
| 1625 | |
| 1626 | static kern_return_t |
| 1627 | thread_create_with_options_internal( |
| 1628 | task_t task, |
| 1629 | thread_t *new_thread, |
| 1630 | boolean_t from_user, |
| 1631 | thread_create_internal_options_t options, |
| 1632 | thread_continue_t continuation) |
| 1633 | { |
| 1634 | kern_return_t result; |
| 1635 | thread_t thread; |
| 1636 | |
| 1637 | if (task == TASK_NULL || task == kernel_task) { |
| 1638 | return KERN_INVALID_ARGUMENT; |
| 1639 | } |
| 1640 | |
| 1641 | #if CONFIG_MACF |
| 1642 | if (from_user && current_task() != task && |
| 1643 | mac_proc_check_remote_thread_create(task, flavor: -1, NULL, new_state_count: 0) != 0) { |
| 1644 | return KERN_DENIED; |
| 1645 | } |
| 1646 | #endif |
| 1647 | |
| 1648 | result = thread_create_internal(parent_task: task, priority: -1, continuation, NULL, options, out_thread: &thread); |
| 1649 | if (result != KERN_SUCCESS) { |
| 1650 | return result; |
| 1651 | } |
| 1652 | |
| 1653 | thread->user_stop_count = 1; |
| 1654 | thread_hold(thread); |
| 1655 | if (task->suspend_count > 0) { |
| 1656 | thread_hold(thread); |
| 1657 | } |
| 1658 | |
| 1659 | if (from_user) { |
| 1660 | extmod_statistics_incr_thread_create(target: task); |
| 1661 | } |
| 1662 | |
| 1663 | task_unlock(task); |
| 1664 | lck_mtx_unlock(lck: &tasks_threads_lock); |
| 1665 | |
| 1666 | *new_thread = thread; |
| 1667 | |
| 1668 | return KERN_SUCCESS; |
| 1669 | } |
| 1670 | |
| 1671 | kern_return_t |
| 1672 | thread_create_immovable( |
| 1673 | task_t task, |
| 1674 | thread_t *new_thread) |
| 1675 | { |
| 1676 | return thread_create_with_options_internal(task, new_thread, FALSE, |
| 1677 | options: TH_OPTION_NONE, continuation: (thread_continue_t)thread_bootstrap_return); |
| 1678 | } |
| 1679 | |
| 1680 | kern_return_t |
| 1681 | thread_create_from_user( |
| 1682 | task_t task, |
| 1683 | thread_t *new_thread) |
| 1684 | { |
| 1685 | /* All thread ports are created immovable by default */ |
| 1686 | return thread_create_with_options_internal(task, new_thread, TRUE, options: TH_OPTION_NONE, |
| 1687 | continuation: (thread_continue_t)thread_bootstrap_return); |
| 1688 | } |
| 1689 | |
| 1690 | kern_return_t |
| 1691 | thread_create_with_continuation( |
| 1692 | task_t task, |
| 1693 | thread_t *new_thread, |
| 1694 | thread_continue_t continuation) |
| 1695 | { |
| 1696 | return thread_create_with_options_internal(task, new_thread, FALSE, options: TH_OPTION_NONE, continuation); |
| 1697 | } |
| 1698 | |
| 1699 | /* |
| 1700 | * Create a thread that is already started, but is waiting on an event |
| 1701 | */ |
| 1702 | static kern_return_t |
| 1703 | thread_create_waiting_internal( |
| 1704 | task_t task, |
| 1705 | thread_continue_t continuation, |
| 1706 | event_t event, |
| 1707 | block_hint_t block_hint, |
| 1708 | thread_create_internal_options_t options, |
| 1709 | thread_t *new_thread) |
| 1710 | { |
| 1711 | kern_return_t result; |
| 1712 | thread_t thread; |
| 1713 | wait_interrupt_t wait_interrupt = THREAD_INTERRUPTIBLE; |
| 1714 | |
| 1715 | if (task == TASK_NULL || task == kernel_task) { |
| 1716 | return KERN_INVALID_ARGUMENT; |
| 1717 | } |
| 1718 | |
| 1719 | result = thread_create_internal(parent_task: task, priority: -1, continuation, NULL, |
| 1720 | options, out_thread: &thread); |
| 1721 | if (result != KERN_SUCCESS) { |
| 1722 | return result; |
| 1723 | } |
| 1724 | |
| 1725 | /* note no user_stop_count or thread_hold here */ |
| 1726 | |
| 1727 | if (task->suspend_count > 0) { |
| 1728 | thread_hold(thread); |
| 1729 | } |
| 1730 | |
| 1731 | thread_mtx_lock(thread); |
| 1732 | thread_set_pending_block_hint(thread, block_hint); |
| 1733 | if (options & TH_OPTION_WORKQ) { |
| 1734 | thread->static_param = true; |
| 1735 | event = workq_thread_init_and_wq_lock(task, thread); |
| 1736 | } else if (options & TH_OPTION_MAINTHREAD) { |
| 1737 | wait_interrupt = THREAD_UNINT; |
| 1738 | } |
| 1739 | thread_start_in_assert_wait(thread, |
| 1740 | waitq: assert_wait_queue(event), CAST_EVENT64_T(event), |
| 1741 | interruptible: wait_interrupt); |
| 1742 | thread_mtx_unlock(thread); |
| 1743 | |
| 1744 | task_unlock(task); |
| 1745 | lck_mtx_unlock(lck: &tasks_threads_lock); |
| 1746 | |
| 1747 | *new_thread = thread; |
| 1748 | |
| 1749 | return KERN_SUCCESS; |
| 1750 | } |
| 1751 | |
| 1752 | kern_return_t |
| 1753 | main_thread_create_waiting( |
| 1754 | task_t task, |
| 1755 | thread_continue_t continuation, |
| 1756 | event_t event, |
| 1757 | thread_t *new_thread) |
| 1758 | { |
| 1759 | return thread_create_waiting_internal(task, continuation, event, |
| 1760 | block_hint: kThreadWaitNone, options: TH_OPTION_MAINTHREAD, new_thread); |
| 1761 | } |
| 1762 | |
| 1763 | |
| 1764 | static kern_return_t |
| 1765 | thread_create_running_internal2( |
| 1766 | task_t task, |
| 1767 | int flavor, |
| 1768 | thread_state_t new_state, |
| 1769 | mach_msg_type_number_t new_state_count, |
| 1770 | thread_t *new_thread, |
| 1771 | boolean_t from_user) |
| 1772 | { |
| 1773 | kern_return_t result; |
| 1774 | thread_t thread; |
| 1775 | |
| 1776 | if (task == TASK_NULL || task == kernel_task) { |
| 1777 | return KERN_INVALID_ARGUMENT; |
| 1778 | } |
| 1779 | |
| 1780 | #if CONFIG_MACF |
| 1781 | if (from_user && current_task() != task && |
| 1782 | mac_proc_check_remote_thread_create(task, flavor, new_state, new_state_count) != 0) { |
| 1783 | return KERN_DENIED; |
| 1784 | } |
| 1785 | #endif |
| 1786 | |
| 1787 | result = thread_create_internal(parent_task: task, priority: -1, |
| 1788 | continuation: (thread_continue_t)thread_bootstrap_return, NULL, |
| 1789 | options: TH_OPTION_NONE, out_thread: &thread); |
| 1790 | if (result != KERN_SUCCESS) { |
| 1791 | return result; |
| 1792 | } |
| 1793 | |
| 1794 | if (task->suspend_count > 0) { |
| 1795 | thread_hold(thread); |
| 1796 | } |
| 1797 | |
| 1798 | if (from_user) { |
| 1799 | result = machine_thread_state_convert_from_user(thread, flavor, |
| 1800 | tstate: new_state, count: new_state_count, NULL, old_count: 0, tssf_flags: TSSF_FLAGS_NONE); |
| 1801 | } |
| 1802 | if (result == KERN_SUCCESS) { |
| 1803 | result = machine_thread_set_state(thread, flavor, state: new_state, |
| 1804 | count: new_state_count); |
| 1805 | } |
| 1806 | if (result != KERN_SUCCESS) { |
| 1807 | task_unlock(task); |
| 1808 | lck_mtx_unlock(lck: &tasks_threads_lock); |
| 1809 | |
| 1810 | thread_terminate(target_act: thread); |
| 1811 | thread_deallocate(thread); |
| 1812 | return result; |
| 1813 | } |
| 1814 | |
| 1815 | thread_mtx_lock(thread); |
| 1816 | thread_start(thread); |
| 1817 | thread_mtx_unlock(thread); |
| 1818 | |
| 1819 | if (from_user) { |
| 1820 | extmod_statistics_incr_thread_create(target: task); |
| 1821 | } |
| 1822 | |
| 1823 | task_unlock(task); |
| 1824 | lck_mtx_unlock(lck: &tasks_threads_lock); |
| 1825 | |
| 1826 | *new_thread = thread; |
| 1827 | |
| 1828 | return result; |
| 1829 | } |
| 1830 | |
| 1831 | /* Prototype, see justification above */ |
| 1832 | kern_return_t |
| 1833 | thread_create_running( |
| 1834 | task_t task, |
| 1835 | int flavor, |
| 1836 | thread_state_t new_state, |
| 1837 | mach_msg_type_number_t new_state_count, |
| 1838 | thread_t *new_thread); |
| 1839 | |
| 1840 | kern_return_t |
| 1841 | thread_create_running( |
| 1842 | task_t task, |
| 1843 | int flavor, |
| 1844 | thread_state_t new_state, |
| 1845 | mach_msg_type_number_t new_state_count, |
| 1846 | thread_t *new_thread) |
| 1847 | { |
| 1848 | return thread_create_running_internal2( |
| 1849 | task, flavor, new_state, new_state_count, |
| 1850 | new_thread, FALSE); |
| 1851 | } |
| 1852 | |
| 1853 | kern_return_t |
| 1854 | thread_create_running_from_user( |
| 1855 | task_t task, |
| 1856 | int flavor, |
| 1857 | thread_state_t new_state, |
| 1858 | mach_msg_type_number_t new_state_count, |
| 1859 | thread_t *new_thread) |
| 1860 | { |
| 1861 | return thread_create_running_internal2( |
| 1862 | task, flavor, new_state, new_state_count, |
| 1863 | new_thread, TRUE); |
| 1864 | } |
| 1865 | |
| 1866 | kern_return_t |
| 1867 | thread_create_workq_waiting( |
| 1868 | task_t task, |
| 1869 | thread_continue_t continuation, |
| 1870 | thread_t *new_thread) |
| 1871 | { |
| 1872 | /* |
| 1873 | * Create thread, but don't pin control port just yet, in case someone calls |
| 1874 | * task_threads() and deallocates pinned port before kernel copyout happens, |
| 1875 | * which will result in pinned port guard exception. Instead, pin and copyout |
| 1876 | * atomically during workq_setup_and_run(). |
| 1877 | */ |
| 1878 | int options = TH_OPTION_NOSUSP | TH_OPTION_WORKQ; |
| 1879 | return thread_create_waiting_internal(task, continuation, NULL, |
| 1880 | block_hint: kThreadWaitParkedWorkQueue, options, new_thread); |
| 1881 | } |
| 1882 | |
| 1883 | /* |
| 1884 | * kernel_thread_create: |
| 1885 | * |
| 1886 | * Create a thread in the kernel task |
| 1887 | * to execute in kernel context. |
| 1888 | */ |
| 1889 | kern_return_t |
| 1890 | kernel_thread_create( |
| 1891 | thread_continue_t continuation, |
| 1892 | void *parameter, |
| 1893 | integer_t priority, |
| 1894 | thread_t *new_thread) |
| 1895 | { |
| 1896 | kern_return_t result; |
| 1897 | thread_t thread; |
| 1898 | task_t task = kernel_task; |
| 1899 | |
| 1900 | result = thread_create_internal(parent_task: task, priority, continuation, parameter, |
| 1901 | options: TH_OPTION_NONE, out_thread: &thread); |
| 1902 | if (result != KERN_SUCCESS) { |
| 1903 | return result; |
| 1904 | } |
| 1905 | |
| 1906 | task_unlock(task); |
| 1907 | lck_mtx_unlock(lck: &tasks_threads_lock); |
| 1908 | |
| 1909 | stack_alloc(thread); |
| 1910 | assert(thread->kernel_stack != 0); |
| 1911 | #if !defined(XNU_TARGET_OS_OSX) |
| 1912 | if (priority > BASEPRI_KERNEL) |
| 1913 | #endif |
| 1914 | thread->reserved_stack = thread->kernel_stack; |
| 1915 | |
| 1916 | if (debug_task & 1) { |
| 1917 | kprintf(fmt: "kernel_thread_create: thread = %p continuation = %p\n" , thread, continuation); |
| 1918 | } |
| 1919 | *new_thread = thread; |
| 1920 | |
| 1921 | return result; |
| 1922 | } |
| 1923 | |
| 1924 | kern_return_t |
| 1925 | kernel_thread_start_priority( |
| 1926 | thread_continue_t continuation, |
| 1927 | void *parameter, |
| 1928 | integer_t priority, |
| 1929 | thread_t *new_thread) |
| 1930 | { |
| 1931 | kern_return_t result; |
| 1932 | thread_t thread; |
| 1933 | |
| 1934 | result = kernel_thread_create(continuation, parameter, priority, new_thread: &thread); |
| 1935 | if (result != KERN_SUCCESS) { |
| 1936 | return result; |
| 1937 | } |
| 1938 | |
| 1939 | *new_thread = thread; |
| 1940 | |
| 1941 | thread_mtx_lock(thread); |
| 1942 | thread_start(thread); |
| 1943 | thread_mtx_unlock(thread); |
| 1944 | |
| 1945 | return result; |
| 1946 | } |
| 1947 | |
| 1948 | kern_return_t |
| 1949 | kernel_thread_start( |
| 1950 | thread_continue_t continuation, |
| 1951 | void *parameter, |
| 1952 | thread_t *new_thread) |
| 1953 | { |
| 1954 | return kernel_thread_start_priority(continuation, parameter, priority: -1, new_thread); |
| 1955 | } |
| 1956 | |
| 1957 | /* Separated into helper function so it can be used by THREAD_BASIC_INFO and THREAD_EXTENDED_INFO */ |
| 1958 | /* it is assumed that the thread is locked by the caller */ |
| 1959 | static void |
| 1960 | retrieve_thread_basic_info(thread_t thread, thread_basic_info_t basic_info) |
| 1961 | { |
| 1962 | int state, flags; |
| 1963 | |
| 1964 | /* fill in info */ |
| 1965 | |
| 1966 | thread_read_times(thread, user_time: &basic_info->user_time, |
| 1967 | system_time: &basic_info->system_time, NULL); |
| 1968 | |
| 1969 | /* |
| 1970 | * Update lazy-evaluated scheduler info because someone wants it. |
| 1971 | */ |
| 1972 | if (SCHED(can_update_priority)(thread)) { |
| 1973 | SCHED(update_priority)(thread); |
| 1974 | } |
| 1975 | |
| 1976 | basic_info->sleep_time = 0; |
| 1977 | |
| 1978 | /* |
| 1979 | * To calculate cpu_usage, first correct for timer rate, |
| 1980 | * then for 5/8 ageing. The correction factor [3/5] is |
| 1981 | * (1/(5/8) - 1). |
| 1982 | */ |
| 1983 | basic_info->cpu_usage = 0; |
| 1984 | #if defined(CONFIG_SCHED_TIMESHARE_CORE) |
| 1985 | if (sched_tick_interval) { |
| 1986 | basic_info->cpu_usage = (integer_t)(((uint64_t)thread->cpu_usage |
| 1987 | * TH_USAGE_SCALE) / sched_tick_interval); |
| 1988 | basic_info->cpu_usage = (basic_info->cpu_usage * 3) / 5; |
| 1989 | } |
| 1990 | #endif |
| 1991 | |
| 1992 | if (basic_info->cpu_usage > TH_USAGE_SCALE) { |
| 1993 | basic_info->cpu_usage = TH_USAGE_SCALE; |
| 1994 | } |
| 1995 | |
| 1996 | basic_info->policy = ((thread->sched_mode == TH_MODE_TIMESHARE)? |
| 1997 | POLICY_TIMESHARE: POLICY_RR); |
| 1998 | |
| 1999 | flags = 0; |
| 2000 | if (thread->options & TH_OPT_IDLE_THREAD) { |
| 2001 | flags |= TH_FLAGS_IDLE; |
| 2002 | } |
| 2003 | |
| 2004 | if (thread->options & TH_OPT_GLOBAL_FORCED_IDLE) { |
| 2005 | flags |= TH_FLAGS_GLOBAL_FORCED_IDLE; |
| 2006 | } |
| 2007 | |
| 2008 | if (!thread->kernel_stack) { |
| 2009 | flags |= TH_FLAGS_SWAPPED; |
| 2010 | } |
| 2011 | |
| 2012 | state = 0; |
| 2013 | if (thread->state & TH_TERMINATE) { |
| 2014 | state = TH_STATE_HALTED; |
| 2015 | } else if (thread->state & TH_RUN) { |
| 2016 | state = TH_STATE_RUNNING; |
| 2017 | } else if (thread->state & TH_UNINT) { |
| 2018 | state = TH_STATE_UNINTERRUPTIBLE; |
| 2019 | } else if (thread->state & TH_SUSP) { |
| 2020 | state = TH_STATE_STOPPED; |
| 2021 | } else if (thread->state & TH_WAIT) { |
| 2022 | state = TH_STATE_WAITING; |
| 2023 | } |
| 2024 | |
| 2025 | basic_info->run_state = state; |
| 2026 | basic_info->flags = flags; |
| 2027 | |
| 2028 | basic_info->suspend_count = thread->user_stop_count; |
| 2029 | |
| 2030 | return; |
| 2031 | } |
| 2032 | |
| 2033 | kern_return_t |
| 2034 | thread_info_internal( |
| 2035 | thread_t thread, |
| 2036 | thread_flavor_t flavor, |
| 2037 | thread_info_t thread_info_out, /* ptr to OUT array */ |
| 2038 | mach_msg_type_number_t *thread_info_count) /*IN/OUT*/ |
| 2039 | { |
| 2040 | spl_t s; |
| 2041 | |
| 2042 | if (thread == THREAD_NULL) { |
| 2043 | return KERN_INVALID_ARGUMENT; |
| 2044 | } |
| 2045 | |
| 2046 | if (flavor == THREAD_BASIC_INFO) { |
| 2047 | if (*thread_info_count < THREAD_BASIC_INFO_COUNT) { |
| 2048 | return KERN_INVALID_ARGUMENT; |
| 2049 | } |
| 2050 | |
| 2051 | s = splsched(); |
| 2052 | thread_lock(thread); |
| 2053 | |
| 2054 | retrieve_thread_basic_info(thread, basic_info: (thread_basic_info_t) thread_info_out); |
| 2055 | |
| 2056 | thread_unlock(thread); |
| 2057 | splx(s); |
| 2058 | |
| 2059 | *thread_info_count = THREAD_BASIC_INFO_COUNT; |
| 2060 | |
| 2061 | return KERN_SUCCESS; |
| 2062 | } else if (flavor == THREAD_IDENTIFIER_INFO) { |
| 2063 | thread_identifier_info_t identifier_info; |
| 2064 | |
| 2065 | if (*thread_info_count < THREAD_IDENTIFIER_INFO_COUNT) { |
| 2066 | return KERN_INVALID_ARGUMENT; |
| 2067 | } |
| 2068 | |
| 2069 | identifier_info = __IGNORE_WCASTALIGN((thread_identifier_info_t)thread_info_out); |
| 2070 | |
| 2071 | s = splsched(); |
| 2072 | thread_lock(thread); |
| 2073 | |
| 2074 | identifier_info->thread_id = thread->thread_id; |
| 2075 | identifier_info->thread_handle = thread->machine.cthread_self; |
| 2076 | identifier_info->dispatch_qaddr = thread_dispatchqaddr(thread); |
| 2077 | |
| 2078 | thread_unlock(thread); |
| 2079 | splx(s); |
| 2080 | return KERN_SUCCESS; |
| 2081 | } else if (flavor == THREAD_SCHED_TIMESHARE_INFO) { |
| 2082 | policy_timeshare_info_t ts_info; |
| 2083 | |
| 2084 | if (*thread_info_count < POLICY_TIMESHARE_INFO_COUNT) { |
| 2085 | return KERN_INVALID_ARGUMENT; |
| 2086 | } |
| 2087 | |
| 2088 | ts_info = (policy_timeshare_info_t)thread_info_out; |
| 2089 | |
| 2090 | s = splsched(); |
| 2091 | thread_lock(thread); |
| 2092 | |
| 2093 | if (thread->sched_mode != TH_MODE_TIMESHARE) { |
| 2094 | thread_unlock(thread); |
| 2095 | splx(s); |
| 2096 | return KERN_INVALID_POLICY; |
| 2097 | } |
| 2098 | |
| 2099 | ts_info->depressed = (thread->sched_flags & TH_SFLAG_DEPRESSED_MASK) != 0; |
| 2100 | if (ts_info->depressed) { |
| 2101 | ts_info->base_priority = DEPRESSPRI; |
| 2102 | ts_info->depress_priority = thread->base_pri; |
| 2103 | } else { |
| 2104 | ts_info->base_priority = thread->base_pri; |
| 2105 | ts_info->depress_priority = -1; |
| 2106 | } |
| 2107 | |
| 2108 | ts_info->cur_priority = thread->sched_pri; |
| 2109 | ts_info->max_priority = thread->max_priority; |
| 2110 | |
| 2111 | thread_unlock(thread); |
| 2112 | splx(s); |
| 2113 | |
| 2114 | *thread_info_count = POLICY_TIMESHARE_INFO_COUNT; |
| 2115 | |
| 2116 | return KERN_SUCCESS; |
| 2117 | } else if (flavor == THREAD_SCHED_FIFO_INFO) { |
| 2118 | if (*thread_info_count < POLICY_FIFO_INFO_COUNT) { |
| 2119 | return KERN_INVALID_ARGUMENT; |
| 2120 | } |
| 2121 | |
| 2122 | return KERN_INVALID_POLICY; |
| 2123 | } else if (flavor == THREAD_SCHED_RR_INFO) { |
| 2124 | policy_rr_info_t rr_info; |
| 2125 | uint32_t quantum_time; |
| 2126 | uint64_t quantum_ns; |
| 2127 | |
| 2128 | if (*thread_info_count < POLICY_RR_INFO_COUNT) { |
| 2129 | return KERN_INVALID_ARGUMENT; |
| 2130 | } |
| 2131 | |
| 2132 | rr_info = (policy_rr_info_t) thread_info_out; |
| 2133 | |
| 2134 | s = splsched(); |
| 2135 | thread_lock(thread); |
| 2136 | |
| 2137 | if (thread->sched_mode == TH_MODE_TIMESHARE) { |
| 2138 | thread_unlock(thread); |
| 2139 | splx(s); |
| 2140 | |
| 2141 | return KERN_INVALID_POLICY; |
| 2142 | } |
| 2143 | |
| 2144 | rr_info->depressed = (thread->sched_flags & TH_SFLAG_DEPRESSED_MASK) != 0; |
| 2145 | if (rr_info->depressed) { |
| 2146 | rr_info->base_priority = DEPRESSPRI; |
| 2147 | rr_info->depress_priority = thread->base_pri; |
| 2148 | } else { |
| 2149 | rr_info->base_priority = thread->base_pri; |
| 2150 | rr_info->depress_priority = -1; |
| 2151 | } |
| 2152 | |
| 2153 | quantum_time = SCHED(initial_quantum_size)(THREAD_NULL); |
| 2154 | absolutetime_to_nanoseconds(abstime: quantum_time, result: &quantum_ns); |
| 2155 | |
| 2156 | rr_info->max_priority = thread->max_priority; |
| 2157 | rr_info->quantum = (uint32_t)(quantum_ns / 1000 / 1000); |
| 2158 | |
| 2159 | thread_unlock(thread); |
| 2160 | splx(s); |
| 2161 | |
| 2162 | *thread_info_count = POLICY_RR_INFO_COUNT; |
| 2163 | |
| 2164 | return KERN_SUCCESS; |
| 2165 | } else if (flavor == THREAD_EXTENDED_INFO) { |
| 2166 | thread_basic_info_data_t basic_info; |
| 2167 | thread_extended_info_t extended_info = __IGNORE_WCASTALIGN((thread_extended_info_t)thread_info_out); |
| 2168 | |
| 2169 | if (*thread_info_count < THREAD_EXTENDED_INFO_COUNT) { |
| 2170 | return KERN_INVALID_ARGUMENT; |
| 2171 | } |
| 2172 | |
| 2173 | s = splsched(); |
| 2174 | thread_lock(thread); |
| 2175 | |
| 2176 | /* NOTE: This mimics fill_taskthreadinfo(), which is the function used by proc_pidinfo() for |
| 2177 | * the PROC_PIDTHREADINFO flavor (which can't be used on corpses) |
| 2178 | */ |
| 2179 | retrieve_thread_basic_info(thread, basic_info: &basic_info); |
| 2180 | extended_info->pth_user_time = (((uint64_t)basic_info.user_time.seconds * NSEC_PER_SEC) + ((uint64_t)basic_info.user_time.microseconds * NSEC_PER_USEC)); |
| 2181 | extended_info->pth_system_time = (((uint64_t)basic_info.system_time.seconds * NSEC_PER_SEC) + ((uint64_t)basic_info.system_time.microseconds * NSEC_PER_USEC)); |
| 2182 | |
| 2183 | extended_info->pth_cpu_usage = basic_info.cpu_usage; |
| 2184 | extended_info->pth_policy = basic_info.policy; |
| 2185 | extended_info->pth_run_state = basic_info.run_state; |
| 2186 | extended_info->pth_flags = basic_info.flags; |
| 2187 | extended_info->pth_sleep_time = basic_info.sleep_time; |
| 2188 | extended_info->pth_curpri = thread->sched_pri; |
| 2189 | extended_info->pth_priority = thread->base_pri; |
| 2190 | extended_info->pth_maxpriority = thread->max_priority; |
| 2191 | |
| 2192 | bsd_getthreadname(uth: get_bsdthread_info(thread), buffer: extended_info->pth_name); |
| 2193 | |
| 2194 | thread_unlock(thread); |
| 2195 | splx(s); |
| 2196 | |
| 2197 | *thread_info_count = THREAD_EXTENDED_INFO_COUNT; |
| 2198 | |
| 2199 | return KERN_SUCCESS; |
| 2200 | } else if (flavor == THREAD_DEBUG_INFO_INTERNAL) { |
| 2201 | #if DEVELOPMENT || DEBUG |
| 2202 | thread_debug_info_internal_t dbg_info; |
| 2203 | if (*thread_info_count < THREAD_DEBUG_INFO_INTERNAL_COUNT) { |
| 2204 | return KERN_NOT_SUPPORTED; |
| 2205 | } |
| 2206 | |
| 2207 | if (thread_info_out == NULL) { |
| 2208 | return KERN_INVALID_ARGUMENT; |
| 2209 | } |
| 2210 | |
| 2211 | dbg_info = __IGNORE_WCASTALIGN((thread_debug_info_internal_t)thread_info_out); |
| 2212 | dbg_info->page_creation_count = thread->t_page_creation_count; |
| 2213 | |
| 2214 | *thread_info_count = THREAD_DEBUG_INFO_INTERNAL_COUNT; |
| 2215 | return KERN_SUCCESS; |
| 2216 | #endif /* DEVELOPMENT || DEBUG */ |
| 2217 | return KERN_NOT_SUPPORTED; |
| 2218 | } |
| 2219 | |
| 2220 | return KERN_INVALID_ARGUMENT; |
| 2221 | } |
| 2222 | |
| 2223 | static void |
| 2224 | _convert_mach_to_time_value(uint64_t time_mach, time_value_t *time) |
| 2225 | { |
| 2226 | clock_sec_t secs; |
| 2227 | clock_usec_t usecs; |
| 2228 | absolutetime_to_microtime(abstime: time_mach, secs: &secs, microsecs: &usecs); |
| 2229 | time->seconds = (typeof(time->seconds))secs; |
| 2230 | time->microseconds = usecs; |
| 2231 | } |
| 2232 | |
| 2233 | void |
| 2234 | thread_read_times( |
| 2235 | thread_t thread, |
| 2236 | time_value_t *user_time, |
| 2237 | time_value_t *system_time, |
| 2238 | time_value_t *runnable_time) |
| 2239 | { |
| 2240 | if (user_time && system_time) { |
| 2241 | struct recount_times_mach times = recount_thread_times(thread); |
| 2242 | _convert_mach_to_time_value(time_mach: times.rtm_user, time: user_time); |
| 2243 | _convert_mach_to_time_value(time_mach: times.rtm_system, time: system_time); |
| 2244 | } |
| 2245 | |
| 2246 | if (runnable_time) { |
| 2247 | uint64_t runnable_time_mach = timer_grab(timer: &thread->runnable_timer); |
| 2248 | _convert_mach_to_time_value(time_mach: runnable_time_mach, time: runnable_time); |
| 2249 | } |
| 2250 | } |
| 2251 | |
| 2252 | uint64_t |
| 2253 | thread_get_runtime_self(void) |
| 2254 | { |
| 2255 | /* |
| 2256 | * Must be guaranteed to stay on the same CPU and not be updated by the |
| 2257 | * scheduler. |
| 2258 | */ |
| 2259 | boolean_t interrupt_state = ml_set_interrupts_enabled(FALSE); |
| 2260 | uint64_t time_mach = recount_current_thread_time_mach(); |
| 2261 | ml_set_interrupts_enabled(enable: interrupt_state); |
| 2262 | return time_mach; |
| 2263 | } |
| 2264 | |
| 2265 | /* |
| 2266 | * thread_wire_internal: |
| 2267 | * |
| 2268 | * Specify that the target thread must always be able |
| 2269 | * to run and to allocate memory. |
| 2270 | */ |
| 2271 | kern_return_t |
| 2272 | thread_wire_internal( |
| 2273 | host_priv_t host_priv, |
| 2274 | thread_t thread, |
| 2275 | boolean_t wired, |
| 2276 | boolean_t *prev_state) |
| 2277 | { |
| 2278 | if (host_priv == NULL || thread != current_thread()) { |
| 2279 | return KERN_INVALID_ARGUMENT; |
| 2280 | } |
| 2281 | |
| 2282 | if (prev_state) { |
| 2283 | *prev_state = (thread->options & TH_OPT_VMPRIV) != 0; |
| 2284 | } |
| 2285 | |
| 2286 | if (wired) { |
| 2287 | if (!(thread->options & TH_OPT_VMPRIV)) { |
| 2288 | vm_page_free_reserve(pages: 1); /* XXX */ |
| 2289 | } |
| 2290 | thread->options |= TH_OPT_VMPRIV; |
| 2291 | } else { |
| 2292 | if (thread->options & TH_OPT_VMPRIV) { |
| 2293 | vm_page_free_reserve(pages: -1); /* XXX */ |
| 2294 | } |
| 2295 | thread->options &= ~TH_OPT_VMPRIV; |
| 2296 | } |
| 2297 | |
| 2298 | return KERN_SUCCESS; |
| 2299 | } |
| 2300 | |
| 2301 | |
| 2302 | /* |
| 2303 | * thread_wire: |
| 2304 | * |
| 2305 | * User-api wrapper for thread_wire_internal() |
| 2306 | */ |
| 2307 | kern_return_t |
| 2308 | thread_wire( |
| 2309 | host_priv_t host_priv __unused, |
| 2310 | thread_t thread __unused, |
| 2311 | boolean_t wired __unused) |
| 2312 | { |
| 2313 | return KERN_NOT_SUPPORTED; |
| 2314 | } |
| 2315 | |
| 2316 | boolean_t |
| 2317 | is_external_pageout_thread(void) |
| 2318 | { |
| 2319 | return current_thread() == pgo_iothread_external_state.pgo_iothread; |
| 2320 | } |
| 2321 | |
| 2322 | boolean_t |
| 2323 | is_vm_privileged(void) |
| 2324 | { |
| 2325 | return current_thread()->options & TH_OPT_VMPRIV ? TRUE : FALSE; |
| 2326 | } |
| 2327 | |
| 2328 | boolean_t |
| 2329 | set_vm_privilege(boolean_t privileged) |
| 2330 | { |
| 2331 | boolean_t was_vmpriv; |
| 2332 | |
| 2333 | if (current_thread()->options & TH_OPT_VMPRIV) { |
| 2334 | was_vmpriv = TRUE; |
| 2335 | } else { |
| 2336 | was_vmpriv = FALSE; |
| 2337 | } |
| 2338 | |
| 2339 | if (privileged != FALSE) { |
| 2340 | current_thread()->options |= TH_OPT_VMPRIV; |
| 2341 | } else { |
| 2342 | current_thread()->options &= ~TH_OPT_VMPRIV; |
| 2343 | } |
| 2344 | |
| 2345 | return was_vmpriv; |
| 2346 | } |
| 2347 | |
| 2348 | void |
| 2349 | thread_floor_boost_set_promotion_locked(thread_t thread) |
| 2350 | { |
| 2351 | assert(thread->priority_floor_count > 0); |
| 2352 | |
| 2353 | if (!(thread->sched_flags & TH_SFLAG_FLOOR_PROMOTED)) { |
| 2354 | sched_thread_promote_reason(thread, TH_SFLAG_FLOOR_PROMOTED, trace_obj: 0); |
| 2355 | } |
| 2356 | } |
| 2357 | |
| 2358 | /*! @function thread_priority_floor_start |
| 2359 | * @abstract boost the current thread priority to floor. |
| 2360 | * @discussion Increase the priority of the current thread to at least MINPRI_FLOOR. |
| 2361 | * The boost will be mantained until a corresponding thread_priority_floor_end() |
| 2362 | * is called. Every call of thread_priority_floor_start() needs to have a corresponding |
| 2363 | * call to thread_priority_floor_end() from the same thread. |
| 2364 | * No thread can return to userspace before calling thread_priority_floor_end(). |
| 2365 | * |
| 2366 | * NOTE: avoid to use this function. Try to use gate_t or sleep_with_inheritor() |
| 2367 | * instead. |
| 2368 | * @result a token to be given to the corresponding thread_priority_floor_end() |
| 2369 | */ |
| 2370 | thread_pri_floor_t |
| 2371 | thread_priority_floor_start(void) |
| 2372 | { |
| 2373 | thread_pri_floor_t ret; |
| 2374 | thread_t thread = current_thread(); |
| 2375 | __assert_only uint16_t prev_priority_floor_count; |
| 2376 | |
| 2377 | assert(thread->priority_floor_count < UINT16_MAX); |
| 2378 | prev_priority_floor_count = thread->priority_floor_count++; |
| 2379 | #if MACH_ASSERT |
| 2380 | /* |
| 2381 | * Set the ast to check that the |
| 2382 | * priority_floor_count is going to be set to zero when |
| 2383 | * going back to userspace. |
| 2384 | * Set it only once when we increment it for the first time. |
| 2385 | */ |
| 2386 | if (prev_priority_floor_count == 0) { |
| 2387 | act_set_debug_assert(); |
| 2388 | } |
| 2389 | #endif |
| 2390 | |
| 2391 | ret.thread = thread; |
| 2392 | return ret; |
| 2393 | } |
| 2394 | |
| 2395 | /*! @function thread_priority_floor_end |
| 2396 | * @abstract ends the floor boost. |
| 2397 | * @param token the token obtained from thread_priority_floor_start() |
| 2398 | * @discussion ends the priority floor boost started with thread_priority_floor_start() |
| 2399 | */ |
| 2400 | void |
| 2401 | thread_priority_floor_end(thread_pri_floor_t *token) |
| 2402 | { |
| 2403 | thread_t thread = current_thread(); |
| 2404 | |
| 2405 | assert(thread->priority_floor_count > 0); |
| 2406 | assertf(token->thread == thread, "thread_priority_floor_end called from a different thread from thread_priority_floor_start %p %p" , thread, token->thread); |
| 2407 | |
| 2408 | if ((thread->priority_floor_count-- == 1) && (thread->sched_flags & TH_SFLAG_FLOOR_PROMOTED)) { |
| 2409 | spl_t s = splsched(); |
| 2410 | thread_lock(thread); |
| 2411 | |
| 2412 | if (thread->sched_flags & TH_SFLAG_FLOOR_PROMOTED) { |
| 2413 | sched_thread_unpromote_reason(thread, TH_SFLAG_FLOOR_PROMOTED, trace_obj: 0); |
| 2414 | } |
| 2415 | |
| 2416 | thread_unlock(thread); |
| 2417 | splx(s); |
| 2418 | } |
| 2419 | |
| 2420 | token->thread = NULL; |
| 2421 | } |
| 2422 | |
| 2423 | /* |
| 2424 | * XXX assuming current thread only, for now... |
| 2425 | */ |
| 2426 | void |
| 2427 | thread_guard_violation(thread_t thread, |
| 2428 | mach_exception_data_type_t code, mach_exception_data_type_t subcode, boolean_t fatal) |
| 2429 | { |
| 2430 | assert(thread == current_thread()); |
| 2431 | |
| 2432 | /* Don't set up the AST for kernel threads; this check is needed to ensure |
| 2433 | * that the guard_exc_* fields in the thread structure are set only by the |
| 2434 | * current thread and therefore, don't require a lock. |
| 2435 | */ |
| 2436 | if (get_threadtask(thread) == kernel_task) { |
| 2437 | return; |
| 2438 | } |
| 2439 | |
| 2440 | assert(EXC_GUARD_DECODE_GUARD_TYPE(code)); |
| 2441 | |
| 2442 | /* |
| 2443 | * Use the saved state area of the thread structure |
| 2444 | * to store all info required to handle the AST when |
| 2445 | * returning to userspace. It's possible that there is |
| 2446 | * already a pending guard exception. If it's non-fatal, |
| 2447 | * it can only be over-written by a fatal exception code. |
| 2448 | */ |
| 2449 | if (thread->guard_exc_info.code && (thread->guard_exc_fatal || !fatal)) { |
| 2450 | return; |
| 2451 | } |
| 2452 | |
| 2453 | thread->guard_exc_info.code = code; |
| 2454 | thread->guard_exc_info.subcode = subcode; |
| 2455 | thread->guard_exc_fatal = fatal ? 1 : 0; |
| 2456 | |
| 2457 | spl_t s = splsched(); |
| 2458 | thread_ast_set(thread, AST_GUARD); |
| 2459 | ast_propagate(thread); |
| 2460 | splx(s); |
| 2461 | } |
| 2462 | |
| 2463 | #if CONFIG_DEBUG_SYSCALL_REJECTION |
| 2464 | extern void rejected_syscall_guard_ast(thread_t __unused t, mach_exception_data_type_t code, mach_exception_data_type_t subcode); |
| 2465 | #endif /* CONFIG_DEBUG_SYSCALL_REJECTION */ |
| 2466 | |
| 2467 | /* |
| 2468 | * guard_ast: |
| 2469 | * |
| 2470 | * Handle AST_GUARD for a thread. This routine looks at the |
| 2471 | * state saved in the thread structure to determine the cause |
| 2472 | * of this exception. Based on this value, it invokes the |
| 2473 | * appropriate routine which determines other exception related |
| 2474 | * info and raises the exception. |
| 2475 | */ |
| 2476 | void |
| 2477 | guard_ast(thread_t t) |
| 2478 | { |
| 2479 | const mach_exception_data_type_t |
| 2480 | code = t->guard_exc_info.code, |
| 2481 | subcode = t->guard_exc_info.subcode; |
| 2482 | |
| 2483 | t->guard_exc_info.code = 0; |
| 2484 | t->guard_exc_info.subcode = 0; |
| 2485 | t->guard_exc_fatal = 0; |
| 2486 | |
| 2487 | switch (EXC_GUARD_DECODE_GUARD_TYPE(code)) { |
| 2488 | case GUARD_TYPE_NONE: |
| 2489 | /* lingering AST_GUARD on the processor? */ |
| 2490 | break; |
| 2491 | case GUARD_TYPE_MACH_PORT: |
| 2492 | mach_port_guard_ast(t, code, subcode); |
| 2493 | break; |
| 2494 | case GUARD_TYPE_FD: |
| 2495 | fd_guard_ast(t, code, subcode); |
| 2496 | break; |
| 2497 | #if CONFIG_VNGUARD |
| 2498 | case GUARD_TYPE_VN: |
| 2499 | vn_guard_ast(t, code, subcode); |
| 2500 | break; |
| 2501 | #endif |
| 2502 | case GUARD_TYPE_VIRT_MEMORY: |
| 2503 | virt_memory_guard_ast(t, code, subcode); |
| 2504 | break; |
| 2505 | #if CONFIG_DEBUG_SYSCALL_REJECTION |
| 2506 | case GUARD_TYPE_REJECTED_SC: |
| 2507 | rejected_syscall_guard_ast(t, code, subcode); |
| 2508 | break; |
| 2509 | #endif /* CONFIG_DEBUG_SYSCALL_REJECTION */ |
| 2510 | default: |
| 2511 | panic("guard_exc_info %llx %llx" , code, subcode); |
| 2512 | } |
| 2513 | } |
| 2514 | |
| 2515 | static void |
| 2516 | thread_cputime_callback(int warning, __unused const void *arg0, __unused const void *arg1) |
| 2517 | { |
| 2518 | if (warning == LEDGER_WARNING_ROSE_ABOVE) { |
| 2519 | #if CONFIG_TELEMETRY |
| 2520 | /* |
| 2521 | * This thread is in danger of violating the CPU usage monitor. Enable telemetry |
| 2522 | * on the entire task so there are micro-stackshots available if and when |
| 2523 | * EXC_RESOURCE is triggered. We could have chosen to enable micro-stackshots |
| 2524 | * for this thread only; but now that this task is suspect, knowing what all of |
| 2525 | * its threads are up to will be useful. |
| 2526 | */ |
| 2527 | telemetry_task_ctl(task: current_task(), TF_CPUMON_WARNING, enable_disable: 1); |
| 2528 | #endif |
| 2529 | return; |
| 2530 | } |
| 2531 | |
| 2532 | #if CONFIG_TELEMETRY |
| 2533 | /* |
| 2534 | * If the balance has dipped below the warning level (LEDGER_WARNING_DIPPED_BELOW) or |
| 2535 | * exceeded the limit, turn telemetry off for the task. |
| 2536 | */ |
| 2537 | telemetry_task_ctl(task: current_task(), TF_CPUMON_WARNING, enable_disable: 0); |
| 2538 | #endif |
| 2539 | |
| 2540 | if (warning == 0) { |
| 2541 | SENDING_NOTIFICATION__THIS_THREAD_IS_CONSUMING_TOO_MUCH_CPU(); |
| 2542 | } |
| 2543 | } |
| 2544 | |
| 2545 | void __attribute__((noinline)) |
| 2546 | SENDING_NOTIFICATION__THIS_THREAD_IS_CONSUMING_TOO_MUCH_CPU(void) |
| 2547 | { |
| 2548 | int pid = 0; |
| 2549 | task_t task = current_task(); |
| 2550 | thread_t thread = current_thread(); |
| 2551 | uint64_t tid = thread->thread_id; |
| 2552 | const char *procname = "unknown" ; |
| 2553 | time_value_t thread_total_time = {0, 0}; |
| 2554 | time_value_t thread_system_time; |
| 2555 | time_value_t thread_user_time; |
| 2556 | int action; |
| 2557 | uint8_t percentage; |
| 2558 | uint32_t usage_percent = 0; |
| 2559 | uint32_t interval_sec; |
| 2560 | uint64_t interval_ns; |
| 2561 | uint64_t balance_ns; |
| 2562 | boolean_t fatal = FALSE; |
| 2563 | boolean_t send_exc_resource = TRUE; /* in addition to RESOURCE_NOTIFY */ |
| 2564 | kern_return_t kr; |
| 2565 | |
| 2566 | #ifdef EXC_RESOURCE_MONITORS |
| 2567 | mach_exception_data_type_t code[EXCEPTION_CODE_MAX]; |
| 2568 | #endif /* EXC_RESOURCE_MONITORS */ |
| 2569 | struct ledger_entry_info lei; |
| 2570 | |
| 2571 | assert(thread->t_threadledger != LEDGER_NULL); |
| 2572 | |
| 2573 | /* |
| 2574 | * Extract the fatal bit and suspend the monitor (which clears the bit). |
| 2575 | */ |
| 2576 | task_lock(task); |
| 2577 | if (task->rusage_cpu_flags & TASK_RUSECPU_FLAGS_FATAL_CPUMON) { |
| 2578 | fatal = TRUE; |
| 2579 | send_exc_resource = TRUE; |
| 2580 | } |
| 2581 | /* Only one thread can be here at a time. Whichever makes it through |
| 2582 | * first will successfully suspend the monitor and proceed to send the |
| 2583 | * notification. Other threads will get an error trying to suspend the |
| 2584 | * monitor and give up on sending the notification. In the first release, |
| 2585 | * the monitor won't be resumed for a number of seconds, but we may |
| 2586 | * eventually need to handle low-latency resume. |
| 2587 | */ |
| 2588 | kr = task_suspend_cpumon(task); |
| 2589 | task_unlock(task); |
| 2590 | if (kr == KERN_INVALID_ARGUMENT) { |
| 2591 | return; |
| 2592 | } |
| 2593 | |
| 2594 | #ifdef MACH_BSD |
| 2595 | pid = proc_selfpid(); |
| 2596 | void *bsd_info = get_bsdtask_info(task); |
| 2597 | if (bsd_info != NULL) { |
| 2598 | procname = proc_name_address(p: bsd_info); |
| 2599 | } |
| 2600 | #endif |
| 2601 | |
| 2602 | thread_get_cpulimit(action: &action, percentage: &percentage, interval_ns: &interval_ns); |
| 2603 | |
| 2604 | interval_sec = (uint32_t)(interval_ns / NSEC_PER_SEC); |
| 2605 | |
| 2606 | thread_read_times(thread, user_time: &thread_user_time, system_time: &thread_system_time, NULL); |
| 2607 | time_value_add(&thread_total_time, &thread_user_time); |
| 2608 | time_value_add(&thread_total_time, &thread_system_time); |
| 2609 | ledger_get_entry_info(ledger: thread->t_threadledger, entry: thread_ledgers.cpu_time, lei: &lei); |
| 2610 | |
| 2611 | /* credit/debit/balance/limit are in absolute time units; |
| 2612 | * the refill info is in nanoseconds. */ |
| 2613 | absolutetime_to_nanoseconds(abstime: lei.lei_balance, result: &balance_ns); |
| 2614 | if (lei.lei_last_refill > 0) { |
| 2615 | usage_percent = (uint32_t)((balance_ns * 100ULL) / lei.lei_last_refill); |
| 2616 | } |
| 2617 | |
| 2618 | /* TODO: show task total runtime (via TASK_ABSOLUTETIME_INFO)? */ |
| 2619 | printf(format: "process %s[%d] thread %llu caught burning CPU! It used more than %d%% CPU over %u seconds\n" , |
| 2620 | procname, pid, tid, percentage, interval_sec); |
| 2621 | printf(format: " (actual recent usage: %d%% over ~%llu seconds)\n" , |
| 2622 | usage_percent, (lei.lei_last_refill + NSEC_PER_SEC / 2) / NSEC_PER_SEC); |
| 2623 | printf(format: " Thread lifetime cpu usage %d.%06ds, (%d.%06d user, %d.%06d sys)\n" , |
| 2624 | thread_total_time.seconds, thread_total_time.microseconds, |
| 2625 | thread_user_time.seconds, thread_user_time.microseconds, |
| 2626 | thread_system_time.seconds, thread_system_time.microseconds); |
| 2627 | printf(format: " Ledger balance: %lld; mabs credit: %lld; mabs debit: %lld\n" , |
| 2628 | lei.lei_balance, lei.lei_credit, lei.lei_debit); |
| 2629 | printf(format: " mabs limit: %llu; mabs period: %llu ns; last refill: %llu ns%s.\n" , |
| 2630 | lei.lei_limit, lei.lei_refill_period, lei.lei_last_refill, |
| 2631 | (fatal ? " [fatal violation]" : "" )); |
| 2632 | |
| 2633 | /* |
| 2634 | * For now, send RESOURCE_NOTIFY in parallel with EXC_RESOURCE. Once |
| 2635 | * we have logging parity, we will stop sending EXC_RESOURCE (24508922). |
| 2636 | */ |
| 2637 | |
| 2638 | /* RESOURCE_NOTIFY MIG specifies nanoseconds of CPU time */ |
| 2639 | lei.lei_balance = balance_ns; |
| 2640 | absolutetime_to_nanoseconds(abstime: lei.lei_limit, result: &lei.lei_limit); |
| 2641 | trace_resource_violation(RMON_CPUUSAGE_VIOLATED, ledger_info: &lei); |
| 2642 | kr = send_resource_violation(send_cpu_usage_violation, violator: task, ledger_info: &lei, |
| 2643 | flags: fatal ? kRNFatalLimitFlag : 0); |
| 2644 | if (kr) { |
| 2645 | printf(format: "send_resource_violation(CPU usage, ...): error %#x\n" , kr); |
| 2646 | } |
| 2647 | |
| 2648 | #ifdef EXC_RESOURCE_MONITORS |
| 2649 | if (send_exc_resource) { |
| 2650 | if (disable_exc_resource) { |
| 2651 | printf("process %s[%d] thread %llu caught burning CPU! " |
| 2652 | "EXC_RESOURCE%s suppressed by a boot-arg\n" , |
| 2653 | procname, pid, tid, fatal ? " (and termination)" : "" ); |
| 2654 | return; |
| 2655 | } |
| 2656 | |
| 2657 | if (disable_exc_resource_during_audio && audio_active) { |
| 2658 | printf("process %s[%d] thread %llu caught burning CPU! " |
| 2659 | "EXC_RESOURCE & termination suppressed due to audio playback\n" , |
| 2660 | procname, pid, tid); |
| 2661 | return; |
| 2662 | } |
| 2663 | } |
| 2664 | |
| 2665 | |
| 2666 | if (send_exc_resource) { |
| 2667 | code[0] = code[1] = 0; |
| 2668 | EXC_RESOURCE_ENCODE_TYPE(code[0], RESOURCE_TYPE_CPU); |
| 2669 | if (fatal) { |
| 2670 | EXC_RESOURCE_ENCODE_FLAVOR(code[0], FLAVOR_CPU_MONITOR_FATAL); |
| 2671 | } else { |
| 2672 | EXC_RESOURCE_ENCODE_FLAVOR(code[0], FLAVOR_CPU_MONITOR); |
| 2673 | } |
| 2674 | EXC_RESOURCE_CPUMONITOR_ENCODE_INTERVAL(code[0], interval_sec); |
| 2675 | EXC_RESOURCE_CPUMONITOR_ENCODE_PERCENTAGE(code[0], percentage); |
| 2676 | EXC_RESOURCE_CPUMONITOR_ENCODE_PERCENTAGE(code[1], usage_percent); |
| 2677 | exception_triage(EXC_RESOURCE, code, EXCEPTION_CODE_MAX); |
| 2678 | } |
| 2679 | #endif /* EXC_RESOURCE_MONITORS */ |
| 2680 | |
| 2681 | if (fatal) { |
| 2682 | #if CONFIG_JETSAM |
| 2683 | jetsam_on_ledger_cpulimit_exceeded(); |
| 2684 | #else |
| 2685 | task_terminate_internal(task); |
| 2686 | #endif |
| 2687 | } |
| 2688 | } |
| 2689 | |
| 2690 | bool os_variant_has_internal_diagnostics(const char *subsystem); |
| 2691 | |
| 2692 | #if DEVELOPMENT || DEBUG |
| 2693 | |
| 2694 | void __attribute__((noinline)) |
| 2695 | SENDING_NOTIFICATION__TASK_HAS_TOO_MANY_THREADS(task_t task, int thread_count) |
| 2696 | { |
| 2697 | mach_exception_data_type_t code[EXCEPTION_CODE_MAX] = {0}; |
| 2698 | int pid = task_pid(task); |
| 2699 | char procname[MAXCOMLEN + 1] = "unknown" ; |
| 2700 | |
| 2701 | if (pid == 1) { |
| 2702 | /* |
| 2703 | * Cannot suspend launchd |
| 2704 | */ |
| 2705 | return; |
| 2706 | } |
| 2707 | |
| 2708 | proc_name(pid, procname, sizeof(procname)); |
| 2709 | |
| 2710 | /* |
| 2711 | * Skip all checks for testing when exc_resource_threads_enabled is overriden |
| 2712 | */ |
| 2713 | if (exc_resource_threads_enabled == 2) { |
| 2714 | goto skip_checks; |
| 2715 | } |
| 2716 | |
| 2717 | if (disable_exc_resource) { |
| 2718 | printf("process %s[%d] crossed thread count high watermark (%d), EXC_RESOURCE " |
| 2719 | "suppressed by a boot-arg.\n" , procname, pid, thread_count); |
| 2720 | return; |
| 2721 | } |
| 2722 | |
| 2723 | if (!os_variant_has_internal_diagnostics("com.apple.xnu" )) { |
| 2724 | printf("process %s[%d] crossed thread count high watermark (%d), EXC_RESOURCE " |
| 2725 | "suppressed, internal diagnostics disabled.\n" , procname, pid, thread_count); |
| 2726 | return; |
| 2727 | } |
| 2728 | |
| 2729 | if (disable_exc_resource_during_audio && audio_active) { |
| 2730 | printf("process %s[%d] crossed thread count high watermark (%d), EXC_RESOURCE " |
| 2731 | "suppressed due to audio playback.\n" , procname, pid, thread_count); |
| 2732 | return; |
| 2733 | } |
| 2734 | |
| 2735 | if (!exc_via_corpse_forking) { |
| 2736 | printf("process %s[%d] crossed thread count high watermark (%d), EXC_RESOURCE " |
| 2737 | "suppressed due to corpse forking being disabled.\n" , procname, pid, |
| 2738 | thread_count); |
| 2739 | return; |
| 2740 | } |
| 2741 | |
| 2742 | skip_checks: |
| 2743 | printf("process %s[%d] crossed thread count high watermark (%d), sending " |
| 2744 | "EXC_RESOURCE\n" , procname, pid, thread_count); |
| 2745 | |
| 2746 | EXC_RESOURCE_ENCODE_TYPE(code[0], RESOURCE_TYPE_THREADS); |
| 2747 | EXC_RESOURCE_ENCODE_FLAVOR(code[0], FLAVOR_THREADS_HIGH_WATERMARK); |
| 2748 | EXC_RESOURCE_THREADS_ENCODE_THREADS(code[0], thread_count); |
| 2749 | |
| 2750 | task_enqueue_exception_with_corpse(task, EXC_RESOURCE, code, EXCEPTION_CODE_MAX, NULL, FALSE); |
| 2751 | } |
| 2752 | #endif /* DEVELOPMENT || DEBUG */ |
| 2753 | |
| 2754 | void |
| 2755 | thread_update_io_stats(thread_t thread, int size, int io_flags) |
| 2756 | { |
| 2757 | task_t task = get_threadtask(thread); |
| 2758 | int io_tier; |
| 2759 | |
| 2760 | if (thread->thread_io_stats == NULL || task->task_io_stats == NULL) { |
| 2761 | return; |
| 2762 | } |
| 2763 | |
| 2764 | if (io_flags & DKIO_READ) { |
| 2765 | UPDATE_IO_STATS(thread->thread_io_stats->disk_reads, size); |
| 2766 | UPDATE_IO_STATS_ATOMIC(task->task_io_stats->disk_reads, size); |
| 2767 | } |
| 2768 | |
| 2769 | if (io_flags & DKIO_META) { |
| 2770 | UPDATE_IO_STATS(thread->thread_io_stats->metadata, size); |
| 2771 | UPDATE_IO_STATS_ATOMIC(task->task_io_stats->metadata, size); |
| 2772 | } |
| 2773 | |
| 2774 | if (io_flags & DKIO_PAGING) { |
| 2775 | UPDATE_IO_STATS(thread->thread_io_stats->paging, size); |
| 2776 | UPDATE_IO_STATS_ATOMIC(task->task_io_stats->paging, size); |
| 2777 | } |
| 2778 | |
| 2779 | io_tier = ((io_flags & DKIO_TIER_MASK) >> DKIO_TIER_SHIFT); |
| 2780 | assert(io_tier < IO_NUM_PRIORITIES); |
| 2781 | |
| 2782 | UPDATE_IO_STATS(thread->thread_io_stats->io_priority[io_tier], size); |
| 2783 | UPDATE_IO_STATS_ATOMIC(task->task_io_stats->io_priority[io_tier], size); |
| 2784 | |
| 2785 | /* Update Total I/O Counts */ |
| 2786 | UPDATE_IO_STATS(thread->thread_io_stats->total_io, size); |
| 2787 | UPDATE_IO_STATS_ATOMIC(task->task_io_stats->total_io, size); |
| 2788 | |
| 2789 | if (!(io_flags & DKIO_READ)) { |
| 2790 | DTRACE_IO3(physical_writes, struct task *, task, uint32_t, size, int, io_flags); |
| 2791 | ledger_credit(ledger: task->ledger, entry: task_ledgers.physical_writes, amount: size); |
| 2792 | } |
| 2793 | } |
| 2794 | |
| 2795 | static void |
| 2796 | init_thread_ledgers(void) |
| 2797 | { |
| 2798 | ledger_template_t t; |
| 2799 | int idx; |
| 2800 | |
| 2801 | assert(thread_ledger_template == NULL); |
| 2802 | |
| 2803 | if ((t = ledger_template_create(name: "Per-thread ledger" )) == NULL) { |
| 2804 | panic("couldn't create thread ledger template" ); |
| 2805 | } |
| 2806 | |
| 2807 | if ((idx = ledger_entry_add(template: t, key: "cpu_time" , group: "sched" , units: "ns" )) < 0) { |
| 2808 | panic("couldn't create cpu_time entry for thread ledger template" ); |
| 2809 | } |
| 2810 | |
| 2811 | if (ledger_set_callback(template: t, entry: idx, callback: thread_cputime_callback, NULL, NULL) < 0) { |
| 2812 | panic("couldn't set thread ledger callback for cpu_time entry" ); |
| 2813 | } |
| 2814 | |
| 2815 | thread_ledgers.cpu_time = idx; |
| 2816 | |
| 2817 | ledger_template_complete(template: t); |
| 2818 | thread_ledger_template = t; |
| 2819 | } |
| 2820 | |
| 2821 | /* |
| 2822 | * Returns the amount of (abs) CPU time that remains before the limit would be |
| 2823 | * hit or the amount of time left in the current interval, whichever is smaller. |
| 2824 | * This value changes as CPU time is consumed and the ledgers refilled. |
| 2825 | * Used to limit the quantum of a thread. |
| 2826 | */ |
| 2827 | uint64_t |
| 2828 | thread_cpulimit_remaining(uint64_t now) |
| 2829 | { |
| 2830 | thread_t thread = current_thread(); |
| 2831 | |
| 2832 | if ((thread->options & |
| 2833 | (TH_OPT_PROC_CPULIMIT | TH_OPT_PRVT_CPULIMIT)) == 0) { |
| 2834 | return UINT64_MAX; |
| 2835 | } |
| 2836 | |
| 2837 | /* Amount of time left in the current interval. */ |
| 2838 | const uint64_t interval_remaining = |
| 2839 | ledger_get_interval_remaining(ledger: thread->t_threadledger, entry: thread_ledgers.cpu_time, now); |
| 2840 | |
| 2841 | /* Amount that can be spent until the limit is hit. */ |
| 2842 | const uint64_t remaining = |
| 2843 | ledger_get_remaining(ledger: thread->t_threadledger, entry: thread_ledgers.cpu_time); |
| 2844 | |
| 2845 | return MIN(interval_remaining, remaining); |
| 2846 | } |
| 2847 | |
| 2848 | /* |
| 2849 | * Returns true if a new interval should be started. |
| 2850 | */ |
| 2851 | bool |
| 2852 | thread_cpulimit_interval_has_expired(uint64_t now) |
| 2853 | { |
| 2854 | thread_t thread = current_thread(); |
| 2855 | |
| 2856 | if ((thread->options & |
| 2857 | (TH_OPT_PROC_CPULIMIT | TH_OPT_PRVT_CPULIMIT)) == 0) { |
| 2858 | return false; |
| 2859 | } |
| 2860 | |
| 2861 | return ledger_get_interval_remaining(ledger: thread->t_threadledger, |
| 2862 | entry: thread_ledgers.cpu_time, now) == 0; |
| 2863 | } |
| 2864 | |
| 2865 | /* |
| 2866 | * Balances the ledger and sets the last refill time to `now`. |
| 2867 | */ |
| 2868 | void |
| 2869 | thread_cpulimit_restart(uint64_t now) |
| 2870 | { |
| 2871 | thread_t thread = current_thread(); |
| 2872 | |
| 2873 | assert3u(thread->options & (TH_OPT_PROC_CPULIMIT | TH_OPT_PRVT_CPULIMIT), !=, 0); |
| 2874 | |
| 2875 | ledger_restart(ledger: thread->t_threadledger, entry: thread_ledgers.cpu_time, now); |
| 2876 | } |
| 2877 | |
| 2878 | /* |
| 2879 | * Returns currently applied CPU usage limit, or 0/0 if none is applied. |
| 2880 | */ |
| 2881 | int |
| 2882 | thread_get_cpulimit(int *action, uint8_t *percentage, uint64_t *interval_ns) |
| 2883 | { |
| 2884 | int64_t abstime = 0; |
| 2885 | uint64_t limittime = 0; |
| 2886 | thread_t thread = current_thread(); |
| 2887 | |
| 2888 | *percentage = 0; |
| 2889 | *interval_ns = 0; |
| 2890 | *action = 0; |
| 2891 | |
| 2892 | if (thread->t_threadledger == LEDGER_NULL) { |
| 2893 | /* |
| 2894 | * This thread has no per-thread ledger, so it can't possibly |
| 2895 | * have a CPU limit applied. |
| 2896 | */ |
| 2897 | return KERN_SUCCESS; |
| 2898 | } |
| 2899 | |
| 2900 | ledger_get_period(ledger: thread->t_threadledger, entry: thread_ledgers.cpu_time, period: interval_ns); |
| 2901 | ledger_get_limit(ledger: thread->t_threadledger, entry: thread_ledgers.cpu_time, limit: &abstime); |
| 2902 | |
| 2903 | if ((abstime == LEDGER_LIMIT_INFINITY) || (*interval_ns == 0)) { |
| 2904 | /* |
| 2905 | * This thread's CPU time ledger has no period or limit; so it |
| 2906 | * doesn't have a CPU limit applied. |
| 2907 | */ |
| 2908 | return KERN_SUCCESS; |
| 2909 | } |
| 2910 | |
| 2911 | /* |
| 2912 | * This calculation is the converse to the one in thread_set_cpulimit(). |
| 2913 | */ |
| 2914 | absolutetime_to_nanoseconds(abstime, result: &limittime); |
| 2915 | *percentage = (uint8_t)((limittime * 100ULL) / *interval_ns); |
| 2916 | assert(*percentage <= 100); |
| 2917 | |
| 2918 | if (thread->options & TH_OPT_PROC_CPULIMIT) { |
| 2919 | assert((thread->options & TH_OPT_PRVT_CPULIMIT) == 0); |
| 2920 | |
| 2921 | *action = THREAD_CPULIMIT_BLOCK; |
| 2922 | } else if (thread->options & TH_OPT_PRVT_CPULIMIT) { |
| 2923 | assert((thread->options & TH_OPT_PROC_CPULIMIT) == 0); |
| 2924 | |
| 2925 | *action = THREAD_CPULIMIT_EXCEPTION; |
| 2926 | } else { |
| 2927 | *action = THREAD_CPULIMIT_DISABLE; |
| 2928 | } |
| 2929 | |
| 2930 | return KERN_SUCCESS; |
| 2931 | } |
| 2932 | |
| 2933 | /* |
| 2934 | * Set CPU usage limit on a thread. |
| 2935 | */ |
| 2936 | int |
| 2937 | thread_set_cpulimit(int action, uint8_t percentage, uint64_t interval_ns) |
| 2938 | { |
| 2939 | thread_t thread = current_thread(); |
| 2940 | ledger_t l; |
| 2941 | uint64_t limittime = 0; |
| 2942 | uint64_t abstime = 0; |
| 2943 | |
| 2944 | assert(percentage <= 100); |
| 2945 | assert(percentage > 0 || action == THREAD_CPULIMIT_DISABLE); |
| 2946 | |
| 2947 | /* |
| 2948 | * Disallow any change to the CPU limit if the TH_OPT_FORCED_LEDGER |
| 2949 | * flag is set. |
| 2950 | */ |
| 2951 | if ((thread->options & TH_OPT_FORCED_LEDGER) != 0) { |
| 2952 | return KERN_FAILURE; |
| 2953 | } |
| 2954 | |
| 2955 | if (action == THREAD_CPULIMIT_DISABLE) { |
| 2956 | /* |
| 2957 | * Remove CPU limit, if any exists. |
| 2958 | */ |
| 2959 | if (thread->t_threadledger != LEDGER_NULL) { |
| 2960 | l = thread->t_threadledger; |
| 2961 | ledger_set_limit(ledger: l, entry: thread_ledgers.cpu_time, LEDGER_LIMIT_INFINITY, warn_level_percentage: 0); |
| 2962 | ledger_set_action(ledger: l, entry: thread_ledgers.cpu_time, LEDGER_ACTION_IGNORE); |
| 2963 | thread->options &= ~(TH_OPT_PROC_CPULIMIT | TH_OPT_PRVT_CPULIMIT); |
| 2964 | } |
| 2965 | |
| 2966 | return 0; |
| 2967 | } |
| 2968 | |
| 2969 | if (interval_ns < MINIMUM_CPULIMIT_INTERVAL_MS * NSEC_PER_MSEC) { |
| 2970 | return KERN_INVALID_ARGUMENT; |
| 2971 | } |
| 2972 | |
| 2973 | l = thread->t_threadledger; |
| 2974 | if (l == LEDGER_NULL) { |
| 2975 | /* |
| 2976 | * This thread doesn't yet have a per-thread ledger; so create one with the CPU time entry active. |
| 2977 | */ |
| 2978 | if ((l = ledger_instantiate(template: thread_ledger_template, LEDGER_CREATE_INACTIVE_ENTRIES)) == LEDGER_NULL) { |
| 2979 | return KERN_RESOURCE_SHORTAGE; |
| 2980 | } |
| 2981 | |
| 2982 | /* |
| 2983 | * We are the first to create this thread's ledger, so only activate our entry. |
| 2984 | */ |
| 2985 | ledger_entry_setactive(ledger: l, entry: thread_ledgers.cpu_time); |
| 2986 | thread->t_threadledger = l; |
| 2987 | } |
| 2988 | |
| 2989 | /* |
| 2990 | * The limit is specified as a percentage of CPU over an interval in nanoseconds. |
| 2991 | * Calculate the amount of CPU time that the thread needs to consume in order to hit the limit. |
| 2992 | */ |
| 2993 | limittime = (interval_ns * percentage) / 100; |
| 2994 | nanoseconds_to_absolutetime(nanoseconds: limittime, result: &abstime); |
| 2995 | ledger_set_limit(ledger: l, entry: thread_ledgers.cpu_time, limit: abstime, warn_level_percentage: cpumon_ustackshots_trigger_pct); |
| 2996 | /* |
| 2997 | * Refill the thread's allotted CPU time every interval_ns nanoseconds. |
| 2998 | */ |
| 2999 | ledger_set_period(ledger: l, entry: thread_ledgers.cpu_time, period: interval_ns); |
| 3000 | |
| 3001 | if (action == THREAD_CPULIMIT_EXCEPTION) { |
| 3002 | /* |
| 3003 | * We don't support programming the CPU usage monitor on a task if any of its |
| 3004 | * threads have a per-thread blocking CPU limit configured. |
| 3005 | */ |
| 3006 | if (thread->options & TH_OPT_PRVT_CPULIMIT) { |
| 3007 | panic("CPU usage monitor activated, but blocking thread limit exists" ); |
| 3008 | } |
| 3009 | |
| 3010 | /* |
| 3011 | * Make a note that this thread's CPU limit is being used for the task-wide CPU |
| 3012 | * usage monitor. We don't have to arm the callback which will trigger the |
| 3013 | * exception, because that was done for us in ledger_instantiate (because the |
| 3014 | * ledger template used has a default callback). |
| 3015 | */ |
| 3016 | thread->options |= TH_OPT_PROC_CPULIMIT; |
| 3017 | } else { |
| 3018 | /* |
| 3019 | * We deliberately override any CPU limit imposed by a task-wide limit (eg |
| 3020 | * CPU usage monitor). |
| 3021 | */ |
| 3022 | thread->options &= ~TH_OPT_PROC_CPULIMIT; |
| 3023 | |
| 3024 | thread->options |= TH_OPT_PRVT_CPULIMIT; |
| 3025 | /* The per-thread ledger template by default has a callback for CPU time */ |
| 3026 | ledger_disable_callback(ledger: l, entry: thread_ledgers.cpu_time); |
| 3027 | ledger_set_action(ledger: l, entry: thread_ledgers.cpu_time, LEDGER_ACTION_BLOCK); |
| 3028 | } |
| 3029 | |
| 3030 | return 0; |
| 3031 | } |
| 3032 | |
| 3033 | void |
| 3034 | thread_sched_call( |
| 3035 | thread_t thread, |
| 3036 | sched_call_t call) |
| 3037 | { |
| 3038 | assert((thread->state & TH_WAIT_REPORT) == 0); |
| 3039 | thread->sched_call = call; |
| 3040 | } |
| 3041 | |
| 3042 | uint64_t |
| 3043 | thread_tid( |
| 3044 | thread_t thread) |
| 3045 | { |
| 3046 | return thread != THREAD_NULL? thread->thread_id: 0; |
| 3047 | } |
| 3048 | |
| 3049 | uint64_t |
| 3050 | uthread_tid( |
| 3051 | struct uthread *uth) |
| 3052 | { |
| 3053 | if (uth) { |
| 3054 | return thread_tid(thread: get_machthread(uth)); |
| 3055 | } |
| 3056 | return 0; |
| 3057 | } |
| 3058 | |
| 3059 | uint16_t |
| 3060 | thread_set_tag(thread_t th, uint16_t tag) |
| 3061 | { |
| 3062 | return thread_set_tag_internal(thread: th, tag); |
| 3063 | } |
| 3064 | |
| 3065 | uint16_t |
| 3066 | thread_get_tag(thread_t th) |
| 3067 | { |
| 3068 | return thread_get_tag_internal(thread: th); |
| 3069 | } |
| 3070 | |
| 3071 | uint64_t |
| 3072 | thread_last_run_time(thread_t th) |
| 3073 | { |
| 3074 | return th->last_run_time; |
| 3075 | } |
| 3076 | |
| 3077 | /* |
| 3078 | * Shared resource contention management |
| 3079 | * |
| 3080 | * The scheduler attempts to load balance the shared resource intensive |
| 3081 | * workloads across clusters to ensure that the resource is not heavily |
| 3082 | * contended. The kernel relies on external agents (userspace or |
| 3083 | * performance controller) to identify shared resource heavy threads. |
| 3084 | * The load balancing is achieved based on the scheduler configuration |
| 3085 | * enabled on the platform. |
| 3086 | */ |
| 3087 | |
| 3088 | |
| 3089 | #if CONFIG_SCHED_EDGE |
| 3090 | |
| 3091 | /* |
| 3092 | * On the Edge scheduler, the load balancing is achieved by looking |
| 3093 | * at cluster level shared resource loads and migrating resource heavy |
| 3094 | * threads dynamically to under utilized cluster. Therefore, when a |
| 3095 | * thread is indicated as a resource heavy thread, the policy set |
| 3096 | * routine simply adds a flag to the thread which is looked at by |
| 3097 | * the scheduler on thread migration decisions. |
| 3098 | */ |
| 3099 | |
| 3100 | boolean_t |
| 3101 | thread_shared_rsrc_policy_get(thread_t thread, cluster_shared_rsrc_type_t type) |
| 3102 | { |
| 3103 | return thread->th_shared_rsrc_heavy_user[type] || thread->th_shared_rsrc_heavy_perf_control[type]; |
| 3104 | } |
| 3105 | |
| 3106 | __options_decl(sched_edge_rsrc_heavy_thread_state, uint32_t, { |
| 3107 | SCHED_EDGE_RSRC_HEAVY_THREAD_SET = 1, |
| 3108 | SCHED_EDGE_RSRC_HEAVY_THREAD_CLR = 2, |
| 3109 | }); |
| 3110 | |
| 3111 | kern_return_t |
| 3112 | thread_shared_rsrc_policy_set(thread_t thread, __unused uint32_t index, cluster_shared_rsrc_type_t type, shared_rsrc_policy_agent_t agent) |
| 3113 | { |
| 3114 | spl_t s = splsched(); |
| 3115 | thread_lock(thread); |
| 3116 | |
| 3117 | bool user = (agent == SHARED_RSRC_POLICY_AGENT_DISPATCH) || (agent == SHARED_RSRC_POLICY_AGENT_SYSCTL); |
| 3118 | bool *thread_flags = (user) ? thread->th_shared_rsrc_heavy_user : thread->th_shared_rsrc_heavy_perf_control; |
| 3119 | if (thread_flags[type]) { |
| 3120 | thread_unlock(thread); |
| 3121 | splx(s); |
| 3122 | return KERN_FAILURE; |
| 3123 | } |
| 3124 | |
| 3125 | thread_flags[type] = true; |
| 3126 | thread_unlock(thread); |
| 3127 | splx(s); |
| 3128 | |
| 3129 | KDBG(MACHDBG_CODE(DBG_MACH_SCHED_CLUTCH, MACH_SCHED_EDGE_RSRC_HEAVY_THREAD) | DBG_FUNC_NONE, SCHED_EDGE_RSRC_HEAVY_THREAD_SET, thread_tid(thread), type, agent); |
| 3130 | if (thread == current_thread()) { |
| 3131 | if (agent == SHARED_RSRC_POLICY_AGENT_PERFCTL_QUANTUM) { |
| 3132 | ast_on(AST_PREEMPT); |
| 3133 | } else { |
| 3134 | assert(agent != SHARED_RSRC_POLICY_AGENT_PERFCTL_CSW); |
| 3135 | thread_block(THREAD_CONTINUE_NULL); |
| 3136 | } |
| 3137 | } |
| 3138 | return KERN_SUCCESS; |
| 3139 | } |
| 3140 | |
| 3141 | kern_return_t |
| 3142 | thread_shared_rsrc_policy_clear(thread_t thread, cluster_shared_rsrc_type_t type, shared_rsrc_policy_agent_t agent) |
| 3143 | { |
| 3144 | spl_t s = splsched(); |
| 3145 | thread_lock(thread); |
| 3146 | |
| 3147 | bool user = (agent == SHARED_RSRC_POLICY_AGENT_DISPATCH) || (agent == SHARED_RSRC_POLICY_AGENT_SYSCTL); |
| 3148 | bool *thread_flags = (user) ? thread->th_shared_rsrc_heavy_user : thread->th_shared_rsrc_heavy_perf_control; |
| 3149 | if (!thread_flags[type]) { |
| 3150 | thread_unlock(thread); |
| 3151 | splx(s); |
| 3152 | return KERN_FAILURE; |
| 3153 | } |
| 3154 | |
| 3155 | thread_flags[type] = false; |
| 3156 | thread_unlock(thread); |
| 3157 | splx(s); |
| 3158 | |
| 3159 | KDBG(MACHDBG_CODE(DBG_MACH_SCHED_CLUTCH, MACH_SCHED_EDGE_RSRC_HEAVY_THREAD) | DBG_FUNC_NONE, SCHED_EDGE_RSRC_HEAVY_THREAD_CLR, thread_tid(thread), type, agent); |
| 3160 | if (thread == current_thread()) { |
| 3161 | if (agent == SHARED_RSRC_POLICY_AGENT_PERFCTL_QUANTUM) { |
| 3162 | ast_on(AST_PREEMPT); |
| 3163 | } else { |
| 3164 | assert(agent != SHARED_RSRC_POLICY_AGENT_PERFCTL_CSW); |
| 3165 | thread_block(THREAD_CONTINUE_NULL); |
| 3166 | } |
| 3167 | } |
| 3168 | return KERN_SUCCESS; |
| 3169 | } |
| 3170 | |
| 3171 | #else /* CONFIG_SCHED_EDGE */ |
| 3172 | |
| 3173 | /* |
| 3174 | * On non-Edge schedulers, the shared resource contention |
| 3175 | * is managed by simply binding threads to specific clusters |
| 3176 | * based on the worker index passed by the agents marking |
| 3177 | * this thread as resource heavy threads. The thread binding |
| 3178 | * approach does not provide any rebalancing opportunities; |
| 3179 | * it can also suffer from scheduling delays if the cluster |
| 3180 | * where the thread is bound is contended. |
| 3181 | */ |
| 3182 | |
| 3183 | boolean_t |
| 3184 | thread_shared_rsrc_policy_get(__unused thread_t thread, __unused cluster_shared_rsrc_type_t type) |
| 3185 | { |
| 3186 | return false; |
| 3187 | } |
| 3188 | |
| 3189 | kern_return_t |
| 3190 | thread_shared_rsrc_policy_set(thread_t thread, uint32_t index, __unused cluster_shared_rsrc_type_t type, __unused shared_rsrc_policy_agent_t agent) |
| 3191 | { |
| 3192 | return thread_bind_cluster_id(thread, cluster_id: index, options: THREAD_BIND_SOFT | THREAD_BIND_ELIGIBLE_ONLY); |
| 3193 | } |
| 3194 | |
| 3195 | kern_return_t |
| 3196 | thread_shared_rsrc_policy_clear(thread_t thread, __unused cluster_shared_rsrc_type_t type, __unused shared_rsrc_policy_agent_t agent) |
| 3197 | { |
| 3198 | return thread_bind_cluster_id(thread, cluster_id: 0, options: THREAD_UNBIND); |
| 3199 | } |
| 3200 | |
| 3201 | #endif /* CONFIG_SCHED_EDGE */ |
| 3202 | |
| 3203 | uint64_t |
| 3204 | thread_dispatchqaddr( |
| 3205 | thread_t thread) |
| 3206 | { |
| 3207 | uint64_t dispatchqueue_addr; |
| 3208 | uint64_t thread_handle; |
| 3209 | task_t task; |
| 3210 | |
| 3211 | if (thread == THREAD_NULL) { |
| 3212 | return 0; |
| 3213 | } |
| 3214 | |
| 3215 | thread_handle = thread->machine.cthread_self; |
| 3216 | if (thread_handle == 0) { |
| 3217 | return 0; |
| 3218 | } |
| 3219 | |
| 3220 | task = get_threadtask(thread); |
| 3221 | void *bsd_info = get_bsdtask_info(task); |
| 3222 | if (thread->inspection == TRUE) { |
| 3223 | dispatchqueue_addr = thread_handle + get_task_dispatchqueue_offset(task); |
| 3224 | } else if (bsd_info) { |
| 3225 | dispatchqueue_addr = thread_handle + get_dispatchqueue_offset_from_proc(bsd_info); |
| 3226 | } else { |
| 3227 | dispatchqueue_addr = 0; |
| 3228 | } |
| 3229 | |
| 3230 | return dispatchqueue_addr; |
| 3231 | } |
| 3232 | |
| 3233 | |
| 3234 | uint64_t |
| 3235 | thread_wqquantum_addr(thread_t thread) |
| 3236 | { |
| 3237 | uint64_t thread_handle; |
| 3238 | task_t task; |
| 3239 | |
| 3240 | if (thread == THREAD_NULL) { |
| 3241 | return 0; |
| 3242 | } |
| 3243 | |
| 3244 | thread_handle = thread->machine.cthread_self; |
| 3245 | if (thread_handle == 0) { |
| 3246 | return 0; |
| 3247 | } |
| 3248 | task = get_threadtask(thread); |
| 3249 | |
| 3250 | uint64_t wq_quantum_expiry_offset = get_wq_quantum_offset_from_proc(get_bsdtask_info(task)); |
| 3251 | if (wq_quantum_expiry_offset == 0) { |
| 3252 | return 0; |
| 3253 | } |
| 3254 | |
| 3255 | return wq_quantum_expiry_offset + thread_handle; |
| 3256 | } |
| 3257 | |
| 3258 | uint64_t |
| 3259 | thread_rettokern_addr( |
| 3260 | thread_t thread) |
| 3261 | { |
| 3262 | uint64_t rettokern_addr; |
| 3263 | uint64_t rettokern_offset; |
| 3264 | uint64_t thread_handle; |
| 3265 | task_t task; |
| 3266 | void *bsd_info; |
| 3267 | |
| 3268 | if (thread == THREAD_NULL) { |
| 3269 | return 0; |
| 3270 | } |
| 3271 | |
| 3272 | thread_handle = thread->machine.cthread_self; |
| 3273 | if (thread_handle == 0) { |
| 3274 | return 0; |
| 3275 | } |
| 3276 | task = get_threadtask(thread); |
| 3277 | bsd_info = get_bsdtask_info(task); |
| 3278 | |
| 3279 | if (bsd_info) { |
| 3280 | rettokern_offset = get_return_to_kernel_offset_from_proc(p: bsd_info); |
| 3281 | |
| 3282 | /* Return 0 if return to kernel offset is not initialized. */ |
| 3283 | if (rettokern_offset == 0) { |
| 3284 | rettokern_addr = 0; |
| 3285 | } else { |
| 3286 | rettokern_addr = thread_handle + rettokern_offset; |
| 3287 | } |
| 3288 | } else { |
| 3289 | rettokern_addr = 0; |
| 3290 | } |
| 3291 | |
| 3292 | return rettokern_addr; |
| 3293 | } |
| 3294 | |
| 3295 | /* |
| 3296 | * Export routines to other components for things that are done as macros |
| 3297 | * within the osfmk component. |
| 3298 | */ |
| 3299 | |
| 3300 | void |
| 3301 | thread_mtx_lock(thread_t thread) |
| 3302 | { |
| 3303 | lck_mtx_lock(lck: &thread->mutex); |
| 3304 | } |
| 3305 | |
| 3306 | void |
| 3307 | thread_mtx_unlock(thread_t thread) |
| 3308 | { |
| 3309 | lck_mtx_unlock(lck: &thread->mutex); |
| 3310 | } |
| 3311 | |
| 3312 | void |
| 3313 | thread_reference( |
| 3314 | thread_t thread) |
| 3315 | { |
| 3316 | if (thread != THREAD_NULL) { |
| 3317 | zone_id_require(zone_id: ZONE_ID_THREAD, elem_size: sizeof(struct thread), addr: thread); |
| 3318 | os_ref_retain_raw(&thread->ref_count, &thread_refgrp); |
| 3319 | } |
| 3320 | } |
| 3321 | |
| 3322 | void |
| 3323 | thread_require(thread_t thread) |
| 3324 | { |
| 3325 | zone_id_require(zone_id: ZONE_ID_THREAD, elem_size: sizeof(struct thread), addr: thread); |
| 3326 | } |
| 3327 | |
| 3328 | #undef thread_should_halt |
| 3329 | |
| 3330 | boolean_t |
| 3331 | thread_should_halt( |
| 3332 | thread_t th) |
| 3333 | { |
| 3334 | return thread_should_halt_fast(th); |
| 3335 | } |
| 3336 | |
| 3337 | /* |
| 3338 | * thread_set_voucher_name - reset the voucher port name bound to this thread |
| 3339 | * |
| 3340 | * Conditions: nothing locked |
| 3341 | */ |
| 3342 | |
| 3343 | kern_return_t |
| 3344 | thread_set_voucher_name(mach_port_name_t voucher_name) |
| 3345 | { |
| 3346 | thread_t thread = current_thread(); |
| 3347 | ipc_voucher_t new_voucher = IPC_VOUCHER_NULL; |
| 3348 | ipc_voucher_t voucher; |
| 3349 | ledger_t bankledger = NULL; |
| 3350 | struct thread_group *banktg = NULL; |
| 3351 | uint32_t persona_id = 0; |
| 3352 | |
| 3353 | if (MACH_PORT_DEAD == voucher_name) { |
| 3354 | return KERN_INVALID_RIGHT; |
| 3355 | } |
| 3356 | |
| 3357 | /* |
| 3358 | * agressively convert to voucher reference |
| 3359 | */ |
| 3360 | if (MACH_PORT_VALID(voucher_name)) { |
| 3361 | new_voucher = convert_port_name_to_voucher(name: voucher_name); |
| 3362 | if (IPC_VOUCHER_NULL == new_voucher) { |
| 3363 | return KERN_INVALID_ARGUMENT; |
| 3364 | } |
| 3365 | } |
| 3366 | bank_get_bank_ledger_thread_group_and_persona(voucher: new_voucher, bankledger: &bankledger, banktg: &banktg, persona_id: &persona_id); |
| 3367 | |
| 3368 | thread_mtx_lock(thread); |
| 3369 | voucher = thread->ith_voucher; |
| 3370 | thread->ith_voucher_name = voucher_name; |
| 3371 | thread->ith_voucher = new_voucher; |
| 3372 | thread_mtx_unlock(thread); |
| 3373 | |
| 3374 | bank_swap_thread_bank_ledger(thread, ledger: bankledger); |
| 3375 | #if CONFIG_THREAD_GROUPS |
| 3376 | thread_group_set_bank(t: thread, tg: banktg); |
| 3377 | #endif /* CONFIG_THREAD_GROUPS */ |
| 3378 | |
| 3379 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
| 3380 | MACHDBG_CODE(DBG_MACH_IPC, MACH_THREAD_SET_VOUCHER) | DBG_FUNC_NONE, |
| 3381 | (uintptr_t)thread_tid(thread), |
| 3382 | (uintptr_t)voucher_name, |
| 3383 | VM_KERNEL_ADDRPERM((uintptr_t)new_voucher), |
| 3384 | persona_id, 0); |
| 3385 | |
| 3386 | if (IPC_VOUCHER_NULL != voucher) { |
| 3387 | ipc_voucher_release(voucher); |
| 3388 | } |
| 3389 | |
| 3390 | return KERN_SUCCESS; |
| 3391 | } |
| 3392 | |
| 3393 | /* |
| 3394 | * thread_get_mach_voucher - return a voucher reference for the specified thread voucher |
| 3395 | * |
| 3396 | * Conditions: nothing locked |
| 3397 | * |
| 3398 | * NOTE: At the moment, there is no distinction between the current and effective |
| 3399 | * vouchers because we only set them at the thread level currently. |
| 3400 | */ |
| 3401 | kern_return_t |
| 3402 | thread_get_mach_voucher( |
| 3403 | thread_act_t thread, |
| 3404 | mach_voucher_selector_t __unused which, |
| 3405 | ipc_voucher_t *voucherp) |
| 3406 | { |
| 3407 | ipc_voucher_t voucher; |
| 3408 | |
| 3409 | if (THREAD_NULL == thread) { |
| 3410 | return KERN_INVALID_ARGUMENT; |
| 3411 | } |
| 3412 | |
| 3413 | thread_mtx_lock(thread); |
| 3414 | voucher = thread->ith_voucher; |
| 3415 | |
| 3416 | if (IPC_VOUCHER_NULL != voucher) { |
| 3417 | ipc_voucher_reference(voucher); |
| 3418 | thread_mtx_unlock(thread); |
| 3419 | *voucherp = voucher; |
| 3420 | return KERN_SUCCESS; |
| 3421 | } |
| 3422 | |
| 3423 | thread_mtx_unlock(thread); |
| 3424 | |
| 3425 | *voucherp = IPC_VOUCHER_NULL; |
| 3426 | return KERN_SUCCESS; |
| 3427 | } |
| 3428 | |
| 3429 | /* |
| 3430 | * thread_set_mach_voucher - set a voucher reference for the specified thread voucher |
| 3431 | * |
| 3432 | * Conditions: callers holds a reference on the voucher. |
| 3433 | * nothing locked. |
| 3434 | * |
| 3435 | * We grab another reference to the voucher and bind it to the thread. |
| 3436 | * The old voucher reference associated with the thread is |
| 3437 | * discarded. |
| 3438 | */ |
| 3439 | kern_return_t |
| 3440 | thread_set_mach_voucher( |
| 3441 | thread_t thread, |
| 3442 | ipc_voucher_t voucher) |
| 3443 | { |
| 3444 | ipc_voucher_t old_voucher; |
| 3445 | ledger_t bankledger = NULL; |
| 3446 | struct thread_group *banktg = NULL; |
| 3447 | uint32_t persona_id = 0; |
| 3448 | |
| 3449 | if (THREAD_NULL == thread) { |
| 3450 | return KERN_INVALID_ARGUMENT; |
| 3451 | } |
| 3452 | |
| 3453 | bank_get_bank_ledger_thread_group_and_persona(voucher, bankledger: &bankledger, banktg: &banktg, persona_id: &persona_id); |
| 3454 | |
| 3455 | thread_mtx_lock(thread); |
| 3456 | /* |
| 3457 | * Once the thread is started, we will look at `ith_voucher` without |
| 3458 | * holding any lock. |
| 3459 | * |
| 3460 | * Setting the voucher hence can only be done by current_thread() or |
| 3461 | * before it started. "started" flips under the thread mutex and must be |
| 3462 | * tested under it too. |
| 3463 | */ |
| 3464 | if (thread != current_thread() && thread->started) { |
| 3465 | thread_mtx_unlock(thread); |
| 3466 | return KERN_INVALID_ARGUMENT; |
| 3467 | } |
| 3468 | |
| 3469 | ipc_voucher_reference(voucher); |
| 3470 | old_voucher = thread->ith_voucher; |
| 3471 | thread->ith_voucher = voucher; |
| 3472 | thread->ith_voucher_name = MACH_PORT_NULL; |
| 3473 | thread_mtx_unlock(thread); |
| 3474 | |
| 3475 | bank_swap_thread_bank_ledger(thread, ledger: bankledger); |
| 3476 | #if CONFIG_THREAD_GROUPS |
| 3477 | thread_group_set_bank(t: thread, tg: banktg); |
| 3478 | #endif /* CONFIG_THREAD_GROUPS */ |
| 3479 | |
| 3480 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
| 3481 | MACHDBG_CODE(DBG_MACH_IPC, MACH_THREAD_SET_VOUCHER) | DBG_FUNC_NONE, |
| 3482 | (uintptr_t)thread_tid(thread), |
| 3483 | (uintptr_t)MACH_PORT_NULL, |
| 3484 | VM_KERNEL_ADDRPERM((uintptr_t)voucher), |
| 3485 | persona_id, 0); |
| 3486 | |
| 3487 | ipc_voucher_release(voucher: old_voucher); |
| 3488 | |
| 3489 | return KERN_SUCCESS; |
| 3490 | } |
| 3491 | |
| 3492 | /* |
| 3493 | * thread_swap_mach_voucher - swap a voucher reference for the specified thread voucher |
| 3494 | * |
| 3495 | * Conditions: callers holds a reference on the new and presumed old voucher(s). |
| 3496 | * nothing locked. |
| 3497 | * |
| 3498 | * This function is no longer supported. |
| 3499 | */ |
| 3500 | kern_return_t |
| 3501 | thread_swap_mach_voucher( |
| 3502 | __unused thread_t thread, |
| 3503 | __unused ipc_voucher_t new_voucher, |
| 3504 | ipc_voucher_t *in_out_old_voucher) |
| 3505 | { |
| 3506 | /* |
| 3507 | * Currently this function is only called from a MIG generated |
| 3508 | * routine which doesn't release the reference on the voucher |
| 3509 | * addressed by in_out_old_voucher. To avoid leaking this reference, |
| 3510 | * a call to release it has been added here. |
| 3511 | */ |
| 3512 | ipc_voucher_release(voucher: *in_out_old_voucher); |
| 3513 | OS_ANALYZER_SUPPRESS("81787115" ) return KERN_NOT_SUPPORTED; |
| 3514 | } |
| 3515 | |
| 3516 | /* |
| 3517 | * thread_get_current_voucher_origin_pid - get the pid of the originator of the current voucher. |
| 3518 | */ |
| 3519 | kern_return_t |
| 3520 | thread_get_current_voucher_origin_pid( |
| 3521 | int32_t *pid) |
| 3522 | { |
| 3523 | return thread_get_voucher_origin_pid(thread: current_thread(), pid); |
| 3524 | } |
| 3525 | |
| 3526 | /* |
| 3527 | * thread_get_current_voucher_origin_pid - get the pid of the originator of the current voucher. |
| 3528 | */ |
| 3529 | kern_return_t |
| 3530 | thread_get_voucher_origin_pid(thread_t thread, int32_t *pid) |
| 3531 | { |
| 3532 | uint32_t buf_size = sizeof(*pid); |
| 3533 | return mach_voucher_attr_command(voucher: thread->ith_voucher, |
| 3534 | MACH_VOUCHER_ATTR_KEY_BANK, |
| 3535 | BANK_ORIGINATOR_PID, |
| 3536 | NULL, |
| 3537 | in_contentCnt: 0, |
| 3538 | out_content: (mach_voucher_attr_content_t)pid, |
| 3539 | out_contentCnt: &buf_size); |
| 3540 | } |
| 3541 | |
| 3542 | /* |
| 3543 | * thread_get_current_voucher_proximate_pid - get the pid of the proximate process of the current voucher. |
| 3544 | */ |
| 3545 | kern_return_t |
| 3546 | thread_get_voucher_origin_proximate_pid(thread_t thread, int32_t *origin_pid, int32_t *proximate_pid) |
| 3547 | { |
| 3548 | int32_t origin_proximate_pids[2] = { }; |
| 3549 | uint32_t buf_size = sizeof(origin_proximate_pids); |
| 3550 | kern_return_t kr = mach_voucher_attr_command(voucher: thread->ith_voucher, |
| 3551 | MACH_VOUCHER_ATTR_KEY_BANK, |
| 3552 | BANK_ORIGINATOR_PROXIMATE_PID, |
| 3553 | NULL, |
| 3554 | in_contentCnt: 0, |
| 3555 | out_content: (mach_voucher_attr_content_t)origin_proximate_pids, |
| 3556 | out_contentCnt: &buf_size); |
| 3557 | if (kr == KERN_SUCCESS) { |
| 3558 | *origin_pid = origin_proximate_pids[0]; |
| 3559 | *proximate_pid = origin_proximate_pids[1]; |
| 3560 | } |
| 3561 | return kr; |
| 3562 | } |
| 3563 | |
| 3564 | #if CONFIG_THREAD_GROUPS |
| 3565 | /* |
| 3566 | * Returns the current thread's voucher-carried thread group |
| 3567 | * |
| 3568 | * Reference is borrowed from this being the current voucher, so it does NOT |
| 3569 | * return a reference to the group. |
| 3570 | */ |
| 3571 | struct thread_group * |
| 3572 | thread_get_current_voucher_thread_group(thread_t thread) |
| 3573 | { |
| 3574 | assert(thread == current_thread()); |
| 3575 | |
| 3576 | if (thread->ith_voucher == NULL) { |
| 3577 | return NULL; |
| 3578 | } |
| 3579 | |
| 3580 | ledger_t bankledger = NULL; |
| 3581 | struct thread_group *banktg = NULL; |
| 3582 | |
| 3583 | bank_get_bank_ledger_thread_group_and_persona(voucher: thread->ith_voucher, bankledger: &bankledger, banktg: &banktg, NULL); |
| 3584 | |
| 3585 | return banktg; |
| 3586 | } |
| 3587 | |
| 3588 | #endif /* CONFIG_THREAD_GROUPS */ |
| 3589 | |
| 3590 | #if CONFIG_COALITIONS |
| 3591 | |
| 3592 | uint64_t |
| 3593 | thread_get_current_voucher_resource_coalition_id(thread_t thread) |
| 3594 | { |
| 3595 | uint64_t id = 0; |
| 3596 | assert(thread == current_thread()); |
| 3597 | if (thread->ith_voucher != NULL) { |
| 3598 | id = bank_get_bank_ledger_resource_coalition_id(voucher: thread->ith_voucher); |
| 3599 | } |
| 3600 | return id; |
| 3601 | } |
| 3602 | |
| 3603 | #endif /* CONFIG_COALITIONS */ |
| 3604 | |
| 3605 | extern struct workqueue * |
| 3606 | proc_get_wqptr(void *proc); |
| 3607 | |
| 3608 | static bool |
| 3609 | task_supports_cooperative_workqueue(task_t task) |
| 3610 | { |
| 3611 | void *bsd_info = get_bsdtask_info(task); |
| 3612 | |
| 3613 | assert(task == current_task()); |
| 3614 | if (bsd_info == NULL) { |
| 3615 | return false; |
| 3616 | } |
| 3617 | |
| 3618 | uint64_t wq_quantum_expiry_offset = get_wq_quantum_offset_from_proc(bsd_info); |
| 3619 | /* userspace may not yet have called workq_open yet */ |
| 3620 | struct workqueue *wq = proc_get_wqptr(proc: bsd_info); |
| 3621 | |
| 3622 | return (wq != NULL) && (wq_quantum_expiry_offset != 0); |
| 3623 | } |
| 3624 | |
| 3625 | /* Not safe to call from scheduler paths - should only be called on self */ |
| 3626 | bool |
| 3627 | thread_supports_cooperative_workqueue(thread_t thread) |
| 3628 | { |
| 3629 | struct uthread *uth = get_bsdthread_info(thread); |
| 3630 | task_t task = get_threadtask(thread); |
| 3631 | |
| 3632 | assert(thread == current_thread()); |
| 3633 | |
| 3634 | return task_supports_cooperative_workqueue(task) && |
| 3635 | bsdthread_part_of_cooperative_workqueue(uth); |
| 3636 | } |
| 3637 | |
| 3638 | static inline bool |
| 3639 | thread_has_armed_workqueue_quantum(thread_t thread) |
| 3640 | { |
| 3641 | return thread->workq_quantum_deadline != 0; |
| 3642 | } |
| 3643 | |
| 3644 | /* |
| 3645 | * The workq quantum is a lazy timer that is evaluated at 2 specific times in |
| 3646 | * the scheduler: |
| 3647 | * |
| 3648 | * - context switch time |
| 3649 | * - scheduler quantum expiry time. |
| 3650 | * |
| 3651 | * We're currently expressing the workq quantum with a 0.5 scale factor of the |
| 3652 | * scheduler quantum. It is possible that if the workq quantum is rearmed |
| 3653 | * shortly after the scheduler quantum begins, we could have a large delay |
| 3654 | * between when the workq quantum next expires and when it actually is noticed. |
| 3655 | * |
| 3656 | * A potential future improvement for the wq quantum expiry logic is to compare |
| 3657 | * it to the next actual scheduler quantum deadline and expire it if it is |
| 3658 | * within a certain leeway. |
| 3659 | */ |
| 3660 | static inline uint64_t |
| 3661 | thread_workq_quantum_size(thread_t thread) |
| 3662 | { |
| 3663 | return (uint64_t) (SCHED(initial_quantum_size)(thread) / 2); |
| 3664 | } |
| 3665 | |
| 3666 | /* |
| 3667 | * Always called by thread on itself - either at AST boundary after processing |
| 3668 | * an existing quantum expiry, or when a new quantum is armed before the thread |
| 3669 | * goes out to userspace to handle a thread request |
| 3670 | */ |
| 3671 | void |
| 3672 | thread_arm_workqueue_quantum(thread_t thread) |
| 3673 | { |
| 3674 | /* |
| 3675 | * If the task is not opted into wq quantum notification, or if the thread |
| 3676 | * is not part of the cooperative workqueue, don't even bother with tracking |
| 3677 | * the quantum or calculating expiry |
| 3678 | */ |
| 3679 | if (!thread_supports_cooperative_workqueue(thread)) { |
| 3680 | assert(thread->workq_quantum_deadline == 0); |
| 3681 | return; |
| 3682 | } |
| 3683 | |
| 3684 | assert(current_thread() == thread); |
| 3685 | assert(thread_get_tag(thread) & THREAD_TAG_WORKQUEUE); |
| 3686 | |
| 3687 | uint64_t current_runtime = thread_get_runtime_self(); |
| 3688 | uint64_t deadline = thread_workq_quantum_size(thread) + current_runtime; |
| 3689 | |
| 3690 | /* |
| 3691 | * The update of a workqueue quantum should always be followed by the update |
| 3692 | * of the AST - see explanation in kern/thread.h for synchronization of this |
| 3693 | * field |
| 3694 | */ |
| 3695 | thread->workq_quantum_deadline = deadline; |
| 3696 | |
| 3697 | /* We're arming a new quantum, clear any previous expiry notification */ |
| 3698 | act_clear_astkevent(thread, AST_KEVENT_WORKQ_QUANTUM_EXPIRED); |
| 3699 | |
| 3700 | WQ_TRACE(TRACE_wq_quantum_arm, current_runtime, deadline, 0, 0); |
| 3701 | |
| 3702 | WORKQ_QUANTUM_HISTORY_WRITE_ENTRY(thread, thread->workq_quantum_deadline, true); |
| 3703 | } |
| 3704 | |
| 3705 | /* Called by a thread on itself when it is about to park */ |
| 3706 | void |
| 3707 | thread_disarm_workqueue_quantum(thread_t thread) |
| 3708 | { |
| 3709 | /* The update of a workqueue quantum should always be followed by the update |
| 3710 | * of the AST - see explanation in kern/thread.h for synchronization of this |
| 3711 | * field */ |
| 3712 | thread->workq_quantum_deadline = 0; |
| 3713 | act_clear_astkevent(thread, AST_KEVENT_WORKQ_QUANTUM_EXPIRED); |
| 3714 | |
| 3715 | WQ_TRACE(TRACE_wq_quantum_disarm, 0, 0, 0, 0); |
| 3716 | |
| 3717 | WORKQ_QUANTUM_HISTORY_WRITE_ENTRY(thread, thread->workq_quantum_deadline, false); |
| 3718 | } |
| 3719 | |
| 3720 | /* This is called at context switch time on a thread that may not be self, |
| 3721 | * and at AST time |
| 3722 | */ |
| 3723 | bool |
| 3724 | thread_has_expired_workqueue_quantum(thread_t thread, bool should_trace) |
| 3725 | { |
| 3726 | if (!thread_has_armed_workqueue_quantum(thread)) { |
| 3727 | return false; |
| 3728 | } |
| 3729 | /* We do not do a thread_get_runtime_self() here since this function is |
| 3730 | * called from context switch time or during scheduler quantum expiry and |
| 3731 | * therefore, we may not be evaluating it on the current thread/self. |
| 3732 | * |
| 3733 | * In addition, the timers on the thread have just been updated recently so |
| 3734 | * we don't need to update them again. |
| 3735 | */ |
| 3736 | uint64_t runtime = recount_thread_time_mach(thread); |
| 3737 | bool expired = runtime > thread->workq_quantum_deadline; |
| 3738 | |
| 3739 | if (expired && should_trace) { |
| 3740 | WQ_TRACE(TRACE_wq_quantum_expired, runtime, thread->workq_quantum_deadline, 0, 0); |
| 3741 | } |
| 3742 | |
| 3743 | return expired; |
| 3744 | } |
| 3745 | |
| 3746 | /* |
| 3747 | * Called on a thread that is being context switched out or during quantum |
| 3748 | * expiry on self. Only called from scheduler paths. |
| 3749 | */ |
| 3750 | void |
| 3751 | thread_evaluate_workqueue_quantum_expiry(thread_t thread) |
| 3752 | { |
| 3753 | if (thread_has_expired_workqueue_quantum(thread, true)) { |
| 3754 | act_set_astkevent(thread, AST_KEVENT_WORKQ_QUANTUM_EXPIRED); |
| 3755 | } |
| 3756 | } |
| 3757 | |
| 3758 | boolean_t |
| 3759 | thread_has_thread_name(thread_t th) |
| 3760 | { |
| 3761 | if (th) { |
| 3762 | return bsd_hasthreadname(uth: get_bsdthread_info(th)); |
| 3763 | } |
| 3764 | |
| 3765 | /* |
| 3766 | * This is an odd case; clients may set the thread name based on the lack of |
| 3767 | * a name, but in this context there is no uthread to attach the name to. |
| 3768 | */ |
| 3769 | return FALSE; |
| 3770 | } |
| 3771 | |
| 3772 | void |
| 3773 | thread_set_thread_name(thread_t th, const char* name) |
| 3774 | { |
| 3775 | if (th && name) { |
| 3776 | bsd_setthreadname(uth: get_bsdthread_info(th), tid: thread_tid(thread: th), buffer: name); |
| 3777 | } |
| 3778 | } |
| 3779 | |
| 3780 | void |
| 3781 | thread_get_thread_name(thread_t th, char* name) |
| 3782 | { |
| 3783 | if (!name) { |
| 3784 | return; |
| 3785 | } |
| 3786 | if (th) { |
| 3787 | bsd_getthreadname(uth: get_bsdthread_info(th), buffer: name); |
| 3788 | } else { |
| 3789 | name[0] = '\0'; |
| 3790 | } |
| 3791 | } |
| 3792 | |
| 3793 | processor_t |
| 3794 | thread_get_runq(thread_t thread) |
| 3795 | { |
| 3796 | thread_lock_assert(thread, LCK_ASSERT_OWNED); |
| 3797 | processor_t runq = thread->__runq.runq; |
| 3798 | os_atomic_thread_fence(acquire); |
| 3799 | return runq; |
| 3800 | } |
| 3801 | |
| 3802 | processor_t |
| 3803 | thread_get_runq_locked(thread_t thread) |
| 3804 | { |
| 3805 | thread_lock_assert(thread, LCK_ASSERT_OWNED); |
| 3806 | processor_t runq = thread->__runq.runq; |
| 3807 | if (runq != PROCESSOR_NULL) { |
| 3808 | pset_assert_locked(runq->processor_set); |
| 3809 | } |
| 3810 | return runq; |
| 3811 | } |
| 3812 | |
| 3813 | void |
| 3814 | thread_set_runq_locked(thread_t thread, processor_t new_runq) |
| 3815 | { |
| 3816 | thread_lock_assert(thread, LCK_ASSERT_OWNED); |
| 3817 | pset_assert_locked(new_runq->processor_set); |
| 3818 | thread_assert_runq_null(thread); |
| 3819 | thread->__runq.runq = new_runq; |
| 3820 | } |
| 3821 | |
| 3822 | void |
| 3823 | thread_clear_runq(thread_t thread) |
| 3824 | { |
| 3825 | thread_assert_runq_nonnull(thread); |
| 3826 | os_atomic_thread_fence(release); |
| 3827 | thread->__runq.runq = PROCESSOR_NULL; |
| 3828 | } |
| 3829 | |
| 3830 | void |
| 3831 | thread_clear_runq_locked(thread_t thread) |
| 3832 | { |
| 3833 | thread_lock_assert(thread, LCK_ASSERT_OWNED); |
| 3834 | thread_assert_runq_nonnull(thread); |
| 3835 | thread->__runq.runq = PROCESSOR_NULL; |
| 3836 | } |
| 3837 | |
| 3838 | void |
| 3839 | thread_assert_runq_null(__assert_only thread_t thread) |
| 3840 | { |
| 3841 | assert(thread->__runq.runq == PROCESSOR_NULL); |
| 3842 | } |
| 3843 | |
| 3844 | void |
| 3845 | thread_assert_runq_nonnull(thread_t thread) |
| 3846 | { |
| 3847 | pset_assert_locked(thread->__runq.runq->processor_set); |
| 3848 | assert(thread->__runq.runq != PROCESSOR_NULL); |
| 3849 | } |
| 3850 | |
| 3851 | void |
| 3852 | thread_set_honor_qlimit(thread_t thread) |
| 3853 | { |
| 3854 | thread->options |= TH_OPT_HONOR_QLIMIT; |
| 3855 | } |
| 3856 | |
| 3857 | void |
| 3858 | thread_clear_honor_qlimit(thread_t thread) |
| 3859 | { |
| 3860 | thread->options &= (~TH_OPT_HONOR_QLIMIT); |
| 3861 | } |
| 3862 | |
| 3863 | /* |
| 3864 | * thread_enable_send_importance - set/clear the SEND_IMPORTANCE thread option bit. |
| 3865 | */ |
| 3866 | void |
| 3867 | thread_enable_send_importance(thread_t thread, boolean_t enable) |
| 3868 | { |
| 3869 | if (enable == TRUE) { |
| 3870 | thread->options |= TH_OPT_SEND_IMPORTANCE; |
| 3871 | } else { |
| 3872 | thread->options &= ~TH_OPT_SEND_IMPORTANCE; |
| 3873 | } |
| 3874 | } |
| 3875 | |
| 3876 | kern_return_t |
| 3877 | thread_get_ipc_propagate_attr(thread_t thread, struct thread_attr_for_ipc_propagation *attr) |
| 3878 | { |
| 3879 | int iotier; |
| 3880 | int qos; |
| 3881 | |
| 3882 | if (thread == NULL || attr == NULL) { |
| 3883 | return KERN_INVALID_ARGUMENT; |
| 3884 | } |
| 3885 | |
| 3886 | iotier = proc_get_effective_thread_policy(thread, TASK_POLICY_IO); |
| 3887 | qos = proc_get_effective_thread_policy(thread, TASK_POLICY_QOS); |
| 3888 | |
| 3889 | if (!qos) { |
| 3890 | qos = thread_user_promotion_qos_for_pri(priority: thread->base_pri); |
| 3891 | } |
| 3892 | |
| 3893 | attr->tafip_iotier = iotier; |
| 3894 | attr->tafip_qos = qos; |
| 3895 | |
| 3896 | return KERN_SUCCESS; |
| 3897 | } |
| 3898 | |
| 3899 | /* |
| 3900 | * thread_set_allocation_name - . |
| 3901 | */ |
| 3902 | |
| 3903 | kern_allocation_name_t |
| 3904 | thread_set_allocation_name(kern_allocation_name_t new_name) |
| 3905 | { |
| 3906 | kern_allocation_name_t ret; |
| 3907 | thread_kernel_state_t kstate = thread_get_kernel_state(current_thread()); |
| 3908 | ret = kstate->allocation_name; |
| 3909 | // fifo |
| 3910 | if (!new_name || !kstate->allocation_name) { |
| 3911 | kstate->allocation_name = new_name; |
| 3912 | } |
| 3913 | return ret; |
| 3914 | } |
| 3915 | |
| 3916 | void * |
| 3917 | thread_iokit_tls_get(uint32_t index) |
| 3918 | { |
| 3919 | assert(index < THREAD_SAVE_IOKIT_TLS_COUNT); |
| 3920 | return current_thread()->saved.iokit.tls[index]; |
| 3921 | } |
| 3922 | |
| 3923 | void |
| 3924 | thread_iokit_tls_set(uint32_t index, void * data) |
| 3925 | { |
| 3926 | assert(index < THREAD_SAVE_IOKIT_TLS_COUNT); |
| 3927 | current_thread()->saved.iokit.tls[index] = data; |
| 3928 | } |
| 3929 | |
| 3930 | uint64_t |
| 3931 | thread_get_last_wait_duration(thread_t thread) |
| 3932 | { |
| 3933 | return thread->last_made_runnable_time - thread->last_run_time; |
| 3934 | } |
| 3935 | |
| 3936 | integer_t |
| 3937 | thread_kern_get_pri(thread_t thr) |
| 3938 | { |
| 3939 | return thr->base_pri; |
| 3940 | } |
| 3941 | |
| 3942 | void |
| 3943 | thread_kern_set_pri(thread_t thr, integer_t pri) |
| 3944 | { |
| 3945 | sched_set_kernel_thread_priority(thread: thr, priority: pri); |
| 3946 | } |
| 3947 | |
| 3948 | integer_t |
| 3949 | thread_kern_get_kernel_maxpri(void) |
| 3950 | { |
| 3951 | return MAXPRI_KERNEL; |
| 3952 | } |
| 3953 | /* |
| 3954 | * thread_port_with_flavor_no_senders |
| 3955 | * |
| 3956 | * Called whenever the Mach port system detects no-senders on |
| 3957 | * the thread inspect or read port. These ports are allocated lazily and |
| 3958 | * should be deallocated here when there are no senders remaining. |
| 3959 | */ |
| 3960 | static void |
| 3961 | thread_port_with_flavor_no_senders( |
| 3962 | ipc_port_t port, |
| 3963 | mach_port_mscount_t mscount __unused) |
| 3964 | { |
| 3965 | thread_ro_t tro; |
| 3966 | thread_t thread; |
| 3967 | mach_thread_flavor_t flavor; |
| 3968 | ipc_kobject_type_t kotype; |
| 3969 | |
| 3970 | ip_mq_lock(port); |
| 3971 | if (port->ip_srights > 0) { |
| 3972 | ip_mq_unlock(port); |
| 3973 | return; |
| 3974 | } |
| 3975 | kotype = ip_kotype(port); |
| 3976 | assert((IKOT_THREAD_READ == kotype) || (IKOT_THREAD_INSPECT == kotype)); |
| 3977 | thread = ipc_kobject_get_locked(port, type: kotype); |
| 3978 | if (thread != THREAD_NULL) { |
| 3979 | thread_reference(thread); |
| 3980 | } |
| 3981 | ip_mq_unlock(port); |
| 3982 | |
| 3983 | if (thread == THREAD_NULL) { |
| 3984 | /* The thread is exiting or disabled; it will eventually deallocate the port */ |
| 3985 | return; |
| 3986 | } |
| 3987 | |
| 3988 | if (kotype == IKOT_THREAD_READ) { |
| 3989 | flavor = THREAD_FLAVOR_READ; |
| 3990 | } else { |
| 3991 | flavor = THREAD_FLAVOR_INSPECT; |
| 3992 | } |
| 3993 | |
| 3994 | thread_mtx_lock(thread); |
| 3995 | ip_mq_lock(port); |
| 3996 | |
| 3997 | /* |
| 3998 | * If the port is no longer active, then ipc_thread_terminate() ran |
| 3999 | * and destroyed the kobject already. Just deallocate the task |
| 4000 | * ref we took and go away. |
| 4001 | * |
| 4002 | * It is also possible that several nsrequests are in flight, |
| 4003 | * only one shall NULL-out the port entry, and this is the one |
| 4004 | * that gets to dealloc the port. |
| 4005 | * |
| 4006 | * Check for a stale no-senders notification. A call to any function |
| 4007 | * that vends out send rights to this port could resurrect it between |
| 4008 | * this notification being generated and actually being handled here. |
| 4009 | */ |
| 4010 | tro = get_thread_ro(thread); |
| 4011 | if (!ip_active(port) || |
| 4012 | tro->tro_ports[flavor] != port || |
| 4013 | port->ip_srights > 0) { |
| 4014 | ip_mq_unlock(port); |
| 4015 | thread_mtx_unlock(thread); |
| 4016 | thread_deallocate(thread); |
| 4017 | return; |
| 4018 | } |
| 4019 | |
| 4020 | assert(tro->tro_ports[flavor] == port); |
| 4021 | zalloc_ro_clear_field(ZONE_ID_THREAD_RO, tro, tro_ports[flavor]); |
| 4022 | thread_mtx_unlock(thread); |
| 4023 | |
| 4024 | ipc_kobject_dealloc_port_and_unlock(port, mscount: 0, type: kotype); |
| 4025 | |
| 4026 | thread_deallocate(thread); |
| 4027 | } |
| 4028 | |
| 4029 | /* |
| 4030 | * The 'thread_region_page_shift' is used by footprint |
| 4031 | * to specify the page size that it will use to |
| 4032 | * accomplish its accounting work on the task being |
| 4033 | * inspected. Since footprint uses a thread for each |
| 4034 | * task that it works on, we need to keep the page_shift |
| 4035 | * on a per-thread basis. |
| 4036 | */ |
| 4037 | |
| 4038 | int |
| 4039 | thread_self_region_page_shift(void) |
| 4040 | { |
| 4041 | /* |
| 4042 | * Return the page shift that this thread |
| 4043 | * would like to use for its accounting work. |
| 4044 | */ |
| 4045 | return current_thread()->thread_region_page_shift; |
| 4046 | } |
| 4047 | |
| 4048 | void |
| 4049 | thread_self_region_page_shift_set( |
| 4050 | int pgshift) |
| 4051 | { |
| 4052 | /* |
| 4053 | * Set the page shift that this thread |
| 4054 | * would like to use for its accounting work |
| 4055 | * when dealing with a task. |
| 4056 | */ |
| 4057 | current_thread()->thread_region_page_shift = pgshift; |
| 4058 | } |
| 4059 | |
| 4060 | __startup_func |
| 4061 | static void |
| 4062 | ctid_table_init(void) |
| 4063 | { |
| 4064 | /* |
| 4065 | * Pretend the early boot setup didn't exist, |
| 4066 | * and pick a mangling nonce. |
| 4067 | */ |
| 4068 | *compact_id_resolve(table: &ctid_table, compact_id: 0) = THREAD_NULL; |
| 4069 | ctid_nonce = (uint32_t)early_random() & CTID_MASK; |
| 4070 | } |
| 4071 | |
| 4072 | |
| 4073 | /* |
| 4074 | * This maps the [0, CTID_MAX_THREAD_NUMBER] range |
| 4075 | * to [1, CTID_MAX_THREAD_NUMBER + 1 == CTID_MASK] |
| 4076 | * so that in mangled form, '0' is an invalid CTID. |
| 4077 | */ |
| 4078 | static ctid_t |
| 4079 | ctid_mangle(compact_id_t cid) |
| 4080 | { |
| 4081 | return (cid == ctid_nonce ? CTID_MASK : cid) ^ ctid_nonce; |
| 4082 | } |
| 4083 | |
| 4084 | static compact_id_t |
| 4085 | ctid_unmangle(ctid_t ctid) |
| 4086 | { |
| 4087 | ctid ^= ctid_nonce; |
| 4088 | return ctid == CTID_MASK ? ctid_nonce : ctid; |
| 4089 | } |
| 4090 | |
| 4091 | void |
| 4092 | ctid_table_add(thread_t thread) |
| 4093 | { |
| 4094 | compact_id_t cid; |
| 4095 | |
| 4096 | cid = compact_id_get(table: &ctid_table, CTID_MAX_THREAD_NUMBER, value: thread); |
| 4097 | thread->ctid = ctid_mangle(cid); |
| 4098 | } |
| 4099 | |
| 4100 | void |
| 4101 | ctid_table_remove(thread_t thread) |
| 4102 | { |
| 4103 | __assert_only thread_t value; |
| 4104 | |
| 4105 | value = compact_id_put(table: &ctid_table, compact_id: ctid_unmangle(ctid: thread->ctid)); |
| 4106 | assert3p(value, ==, thread); |
| 4107 | thread->ctid = 0; |
| 4108 | } |
| 4109 | |
| 4110 | thread_t |
| 4111 | ctid_get_thread_unsafe(ctid_t ctid) |
| 4112 | { |
| 4113 | if (ctid) { |
| 4114 | return *compact_id_resolve(table: &ctid_table, compact_id: ctid_unmangle(ctid)); |
| 4115 | } |
| 4116 | return THREAD_NULL; |
| 4117 | } |
| 4118 | |
| 4119 | thread_t |
| 4120 | ctid_get_thread(ctid_t ctid) |
| 4121 | { |
| 4122 | thread_t thread = THREAD_NULL; |
| 4123 | |
| 4124 | if (ctid) { |
| 4125 | thread = *compact_id_resolve(table: &ctid_table, compact_id: ctid_unmangle(ctid)); |
| 4126 | assert(thread && thread->ctid == ctid); |
| 4127 | } |
| 4128 | return thread; |
| 4129 | } |
| 4130 | |
| 4131 | ctid_t |
| 4132 | thread_get_ctid(thread_t thread) |
| 4133 | { |
| 4134 | return thread->ctid; |
| 4135 | } |
| 4136 | |
| 4137 | /* |
| 4138 | * Adjust code signature dependent thread state. |
| 4139 | * |
| 4140 | * Called to allow code signature dependent adjustments to the thread |
| 4141 | * state. Note that this is usually called twice for the main thread: |
| 4142 | * Once at thread creation by thread_create, when the signature is |
| 4143 | * potentially not attached yet (which is usually the case for the |
| 4144 | * first/main thread of a task), and once after the task's signature |
| 4145 | * has actually been attached. |
| 4146 | * |
| 4147 | */ |
| 4148 | kern_return_t |
| 4149 | thread_process_signature(thread_t thread, task_t task) |
| 4150 | { |
| 4151 | return machine_thread_process_signature(thread, task); |
| 4152 | } |
| 4153 | |
| 4154 | #if CONFIG_SPTM |
| 4155 | |
| 4156 | void |
| 4157 | thread_associate_txm_thread_stack(uintptr_t thread_stack) |
| 4158 | { |
| 4159 | thread_t self = current_thread(); |
| 4160 | |
| 4161 | if (self->txm_thread_stack != 0) { |
| 4162 | panic("attempted multiple TXM thread associations: %lu | %lu" , |
| 4163 | self->txm_thread_stack, thread_stack); |
| 4164 | } |
| 4165 | |
| 4166 | self->txm_thread_stack = thread_stack; |
| 4167 | } |
| 4168 | |
| 4169 | void |
| 4170 | thread_disassociate_txm_thread_stack(uintptr_t thread_stack) |
| 4171 | { |
| 4172 | thread_t self = current_thread(); |
| 4173 | |
| 4174 | if (self->txm_thread_stack == 0) { |
| 4175 | panic("attempted to disassociate non-existent TXM thread" ); |
| 4176 | } else if (self->txm_thread_stack != thread_stack) { |
| 4177 | panic("invalid disassociation for TXM thread: %lu | %lu" , |
| 4178 | self->txm_thread_stack, thread_stack); |
| 4179 | } |
| 4180 | |
| 4181 | self->txm_thread_stack = 0; |
| 4182 | } |
| 4183 | |
| 4184 | uintptr_t |
| 4185 | thread_get_txm_thread_stack(void) |
| 4186 | { |
| 4187 | return current_thread()->txm_thread_stack; |
| 4188 | } |
| 4189 | |
| 4190 | #endif |
| 4191 | |
| 4192 | #if CONFIG_DTRACE |
| 4193 | uint32_t |
| 4194 | dtrace_get_thread_predcache(thread_t thread) |
| 4195 | { |
| 4196 | if (thread != THREAD_NULL) { |
| 4197 | return thread->t_dtrace_predcache; |
| 4198 | } else { |
| 4199 | return 0; |
| 4200 | } |
| 4201 | } |
| 4202 | |
| 4203 | int64_t |
| 4204 | dtrace_get_thread_vtime(thread_t thread) |
| 4205 | { |
| 4206 | if (thread != THREAD_NULL) { |
| 4207 | return thread->t_dtrace_vtime; |
| 4208 | } else { |
| 4209 | return 0; |
| 4210 | } |
| 4211 | } |
| 4212 | |
| 4213 | int |
| 4214 | dtrace_get_thread_last_cpu_id(thread_t thread) |
| 4215 | { |
| 4216 | if ((thread != THREAD_NULL) && (thread->last_processor != PROCESSOR_NULL)) { |
| 4217 | return thread->last_processor->cpu_id; |
| 4218 | } else { |
| 4219 | return -1; |
| 4220 | } |
| 4221 | } |
| 4222 | |
| 4223 | int64_t |
| 4224 | dtrace_get_thread_tracing(thread_t thread) |
| 4225 | { |
| 4226 | if (thread != THREAD_NULL) { |
| 4227 | return thread->t_dtrace_tracing; |
| 4228 | } else { |
| 4229 | return 0; |
| 4230 | } |
| 4231 | } |
| 4232 | |
| 4233 | uint16_t |
| 4234 | dtrace_get_thread_inprobe(thread_t thread) |
| 4235 | { |
| 4236 | if (thread != THREAD_NULL) { |
| 4237 | return thread->t_dtrace_inprobe; |
| 4238 | } else { |
| 4239 | return 0; |
| 4240 | } |
| 4241 | } |
| 4242 | |
| 4243 | vm_offset_t |
| 4244 | thread_get_kernel_stack(thread_t thread) |
| 4245 | { |
| 4246 | if (thread != THREAD_NULL) { |
| 4247 | return thread->kernel_stack; |
| 4248 | } else { |
| 4249 | return 0; |
| 4250 | } |
| 4251 | } |
| 4252 | |
| 4253 | #if KASAN |
| 4254 | struct kasan_thread_data * |
| 4255 | kasan_get_thread_data(thread_t thread) |
| 4256 | { |
| 4257 | return &thread->kasan_data; |
| 4258 | } |
| 4259 | #endif |
| 4260 | |
| 4261 | #if CONFIG_KCOV |
| 4262 | kcov_thread_data_t * |
| 4263 | kcov_get_thread_data(thread_t thread) |
| 4264 | { |
| 4265 | return &thread->kcov_data; |
| 4266 | } |
| 4267 | #endif |
| 4268 | |
| 4269 | #if CONFIG_STKSZ |
| 4270 | /* |
| 4271 | * Returns base of a thread's kernel stack. |
| 4272 | * |
| 4273 | * Coverage sanitizer instruments every function including those that participates in stack handoff between threads. |
| 4274 | * There is a window in which CPU still holds old values but stack has been handed over to anoher thread already. |
| 4275 | * In this window kernel_stack is 0 but CPU still uses the original stack (until contex switch occurs). The original |
| 4276 | * kernel_stack value is preserved in ksancov_stack during this window. |
| 4277 | */ |
| 4278 | vm_offset_t |
| 4279 | kcov_stksz_get_thread_stkbase(thread_t thread) |
| 4280 | { |
| 4281 | if (thread != THREAD_NULL) { |
| 4282 | kcov_thread_data_t *data = kcov_get_thread_data(thread); |
| 4283 | if (data->ktd_stksz.kst_stack) { |
| 4284 | return data->ktd_stksz.kst_stack; |
| 4285 | } else { |
| 4286 | return thread->kernel_stack; |
| 4287 | } |
| 4288 | } else { |
| 4289 | return 0; |
| 4290 | } |
| 4291 | } |
| 4292 | |
| 4293 | vm_offset_t |
| 4294 | kcov_stksz_get_thread_stksize(thread_t thread) |
| 4295 | { |
| 4296 | if (thread != THREAD_NULL) { |
| 4297 | return kernel_stack_size; |
| 4298 | } else { |
| 4299 | return 0; |
| 4300 | } |
| 4301 | } |
| 4302 | |
| 4303 | void |
| 4304 | kcov_stksz_set_thread_stack(thread_t thread, vm_offset_t stack) |
| 4305 | { |
| 4306 | kcov_thread_data_t *data = kcov_get_thread_data(thread); |
| 4307 | data->ktd_stksz.kst_stack = stack; |
| 4308 | } |
| 4309 | #endif /* CONFIG_STKSZ */ |
| 4310 | |
| 4311 | int64_t |
| 4312 | dtrace_calc_thread_recent_vtime(thread_t thread) |
| 4313 | { |
| 4314 | if (thread == THREAD_NULL) { |
| 4315 | return 0; |
| 4316 | } |
| 4317 | |
| 4318 | struct recount_usage usage = { 0 }; |
| 4319 | recount_current_thread_usage(usage: &usage); |
| 4320 | return (int64_t)(recount_usage_time_mach(usage: &usage)); |
| 4321 | } |
| 4322 | |
| 4323 | void |
| 4324 | dtrace_set_thread_predcache(thread_t thread, uint32_t predcache) |
| 4325 | { |
| 4326 | if (thread != THREAD_NULL) { |
| 4327 | thread->t_dtrace_predcache = predcache; |
| 4328 | } |
| 4329 | } |
| 4330 | |
| 4331 | void |
| 4332 | dtrace_set_thread_vtime(thread_t thread, int64_t vtime) |
| 4333 | { |
| 4334 | if (thread != THREAD_NULL) { |
| 4335 | thread->t_dtrace_vtime = vtime; |
| 4336 | } |
| 4337 | } |
| 4338 | |
| 4339 | void |
| 4340 | dtrace_set_thread_tracing(thread_t thread, int64_t accum) |
| 4341 | { |
| 4342 | if (thread != THREAD_NULL) { |
| 4343 | thread->t_dtrace_tracing = accum; |
| 4344 | } |
| 4345 | } |
| 4346 | |
| 4347 | void |
| 4348 | dtrace_set_thread_inprobe(thread_t thread, uint16_t inprobe) |
| 4349 | { |
| 4350 | if (thread != THREAD_NULL) { |
| 4351 | thread->t_dtrace_inprobe = inprobe; |
| 4352 | } |
| 4353 | } |
| 4354 | |
| 4355 | void |
| 4356 | dtrace_thread_bootstrap(void) |
| 4357 | { |
| 4358 | task_t task = current_task(); |
| 4359 | |
| 4360 | if (task->thread_count == 1) { |
| 4361 | thread_t thread = current_thread(); |
| 4362 | if (thread->t_dtrace_flags & TH_DTRACE_EXECSUCCESS) { |
| 4363 | thread->t_dtrace_flags &= ~TH_DTRACE_EXECSUCCESS; |
| 4364 | DTRACE_PROC(exec__success); |
| 4365 | KDBG(BSDDBG_CODE(DBG_BSD_PROC, BSD_PROC_EXEC), |
| 4366 | task_pid(task)); |
| 4367 | } |
| 4368 | DTRACE_PROC(start); |
| 4369 | } |
| 4370 | DTRACE_PROC(lwp__start); |
| 4371 | } |
| 4372 | |
| 4373 | void |
| 4374 | dtrace_thread_didexec(thread_t thread) |
| 4375 | { |
| 4376 | thread->t_dtrace_flags |= TH_DTRACE_EXECSUCCESS; |
| 4377 | } |
| 4378 | #endif /* CONFIG_DTRACE */ |
| 4379 | |