1 | /* |
2 | * Copyright (c) 2000-2021 Apple Inc. All rights reserved. |
3 | * |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
5 | * |
6 | * This file contains Original Code and/or Modifications of Original Code |
7 | * as defined in and that are subject to the Apple Public Source License |
8 | * Version 2.0 (the 'License'). You may not use this file except in |
9 | * compliance with the License. The rights granted to you under the License |
10 | * may not be used to create, or enable the creation or redistribution of, |
11 | * unlawful or unlicensed copies of an Apple operating system, or to |
12 | * circumvent, violate, or enable the circumvention or violation of, any |
13 | * terms of an Apple operating system software license agreement. |
14 | * |
15 | * Please obtain a copy of the License at |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
17 | * |
18 | * The Original Code and all software distributed under the License are |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
23 | * Please see the License for the specific language governing rights and |
24 | * limitations under the License. |
25 | * |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
27 | */ |
28 | /* |
29 | * @OSF_FREE_COPYRIGHT@ |
30 | */ |
31 | /* |
32 | * Mach Operating System |
33 | * Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University |
34 | * All Rights Reserved. |
35 | * |
36 | * Permission to use, copy, modify and distribute this software and its |
37 | * documentation is hereby granted, provided that both the copyright |
38 | * notice and this permission notice appear in all copies of the |
39 | * software, derivative works or modified versions, and any portions |
40 | * thereof, and that both notices appear in supporting documentation. |
41 | * |
42 | * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" |
43 | * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR |
44 | * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. |
45 | * |
46 | * Carnegie Mellon requests users of this software to return to |
47 | * |
48 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU |
49 | * School of Computer Science |
50 | * Carnegie Mellon University |
51 | * Pittsburgh PA 15213-3890 |
52 | * |
53 | * any improvements or extensions that they make and grant Carnegie Mellon |
54 | * the rights to redistribute these changes. |
55 | */ |
56 | /* |
57 | */ |
58 | /* |
59 | * File: kern/thread.c |
60 | * Author: Avadis Tevanian, Jr., Michael Wayne Young, David Golub |
61 | * Date: 1986 |
62 | * |
63 | * Thread management primitives implementation. |
64 | */ |
65 | /* |
66 | * Copyright (c) 1993 The University of Utah and |
67 | * the Computer Systems Laboratory (CSL). All rights reserved. |
68 | * |
69 | * Permission to use, copy, modify and distribute this software and its |
70 | * documentation is hereby granted, provided that both the copyright |
71 | * notice and this permission notice appear in all copies of the |
72 | * software, derivative works or modified versions, and any portions |
73 | * thereof, and that both notices appear in supporting documentation. |
74 | * |
75 | * THE UNIVERSITY OF UTAH AND CSL ALLOW FREE USE OF THIS SOFTWARE IN ITS "AS |
76 | * IS" CONDITION. THE UNIVERSITY OF UTAH AND CSL DISCLAIM ANY LIABILITY OF |
77 | * ANY KIND FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. |
78 | * |
79 | * CSL requests users of this software to return to csl-dist@cs.utah.edu any |
80 | * improvements that they make and grant CSL redistribution rights. |
81 | * |
82 | */ |
83 | |
84 | #include <mach/mach_types.h> |
85 | #include <mach/boolean.h> |
86 | #include <mach/policy.h> |
87 | #include <mach/thread_info.h> |
88 | #include <mach/thread_special_ports.h> |
89 | #include <mach/thread_act.h> |
90 | #include <mach/thread_status.h> |
91 | #include <mach/time_value.h> |
92 | #include <mach/vm_param.h> |
93 | |
94 | #include <machine/thread.h> |
95 | #include <machine/pal_routines.h> |
96 | #include <machine/limits.h> |
97 | |
98 | #include <kern/kern_types.h> |
99 | #include <kern/kalloc.h> |
100 | #include <kern/cpu_data.h> |
101 | #include <kern/extmod_statistics.h> |
102 | #include <kern/ipc_mig.h> |
103 | #include <kern/ipc_tt.h> |
104 | #include <kern/mach_param.h> |
105 | #include <kern/machine.h> |
106 | #include <kern/misc_protos.h> |
107 | #include <kern/processor.h> |
108 | #include <kern/queue.h> |
109 | #include <kern/restartable.h> |
110 | #include <kern/sched.h> |
111 | #include <kern/sched_prim.h> |
112 | #include <kern/syscall_subr.h> |
113 | #include <kern/task.h> |
114 | #include <kern/thread.h> |
115 | #include <kern/thread_group.h> |
116 | #include <kern/coalition.h> |
117 | #include <kern/host.h> |
118 | #include <kern/zalloc.h> |
119 | #include <kern/assert.h> |
120 | #include <kern/exc_resource.h> |
121 | #include <kern/exc_guard.h> |
122 | #include <kern/telemetry.h> |
123 | #include <kern/policy_internal.h> |
124 | #include <kern/turnstile.h> |
125 | #include <kern/sched_clutch.h> |
126 | #include <kern/recount.h> |
127 | #include <kern/smr.h> |
128 | #include <kern/ast.h> |
129 | #include <kern/compact_id.h> |
130 | |
131 | #include <corpses/task_corpse.h> |
132 | #include <kern/kpc.h> |
133 | |
134 | #if CONFIG_PERVASIVE_CPI |
135 | #include <kern/monotonic.h> |
136 | #include <machine/monotonic.h> |
137 | #endif /* CONFIG_PERVASIVE_CPI */ |
138 | |
139 | #include <ipc/ipc_kmsg.h> |
140 | #include <ipc/ipc_port.h> |
141 | #include <bank/bank_types.h> |
142 | |
143 | #include <vm/vm_kern.h> |
144 | #include <vm/vm_pageout.h> |
145 | |
146 | #include <sys/kdebug.h> |
147 | #include <sys/bsdtask_info.h> |
148 | #include <mach/sdt.h> |
149 | #include <san/kasan.h> |
150 | #include <san/kcov_stksz.h> |
151 | |
152 | #include <stdatomic.h> |
153 | |
154 | #if defined(HAS_APPLE_PAC) |
155 | #include <ptrauth.h> |
156 | #include <arm64/proc_reg.h> |
157 | #endif /* defined(HAS_APPLE_PAC) */ |
158 | |
159 | /* |
160 | * Exported interfaces |
161 | */ |
162 | #include <mach/task_server.h> |
163 | #include <mach/thread_act_server.h> |
164 | #include <mach/mach_host_server.h> |
165 | #include <mach/host_priv_server.h> |
166 | #include <mach/mach_voucher_server.h> |
167 | #include <kern/policy_internal.h> |
168 | |
169 | #if CONFIG_MACF |
170 | #include <security/mac_mach_internal.h> |
171 | #endif |
172 | |
173 | #include <pthread/workqueue_trace.h> |
174 | |
175 | #if CONFIG_EXCLAVES |
176 | #include <mach/exclaves.h> |
177 | #endif |
178 | |
179 | LCK_GRP_DECLARE(thread_lck_grp, "thread" ); |
180 | |
181 | static SECURITY_READ_ONLY_LATE(zone_t) thread_zone; |
182 | ZONE_DEFINE_ID(ZONE_ID_THREAD_RO, "threads_ro" , struct thread_ro, ZC_READONLY); |
183 | |
184 | static void thread_port_with_flavor_no_senders(ipc_port_t, mach_port_mscount_t); |
185 | |
186 | IPC_KOBJECT_DEFINE(IKOT_THREAD_CONTROL); |
187 | IPC_KOBJECT_DEFINE(IKOT_THREAD_READ, |
188 | .iko_op_no_senders = thread_port_with_flavor_no_senders); |
189 | IPC_KOBJECT_DEFINE(IKOT_THREAD_INSPECT, |
190 | .iko_op_no_senders = thread_port_with_flavor_no_senders); |
191 | |
192 | static struct mpsc_daemon_queue thread_stack_queue; |
193 | static struct mpsc_daemon_queue thread_terminate_queue; |
194 | static struct mpsc_daemon_queue thread_deallocate_queue; |
195 | static struct mpsc_daemon_queue thread_exception_queue; |
196 | static struct mpsc_daemon_queue thread_backtrace_queue; |
197 | |
198 | decl_simple_lock_data(static, crashed_threads_lock); |
199 | static queue_head_t crashed_threads_queue; |
200 | |
201 | struct thread_exception_elt { |
202 | struct mpsc_queue_chain link; |
203 | exception_type_t exception_type; |
204 | task_t exception_task; |
205 | thread_t exception_thread; |
206 | }; |
207 | |
208 | struct thread_backtrace_elt { |
209 | struct mpsc_queue_chain link; |
210 | exception_type_t exception_type; |
211 | kcdata_object_t obj; |
212 | exception_port_t exc_ports[BT_EXC_PORTS_COUNT]; /* send rights */ |
213 | }; |
214 | |
215 | static SECURITY_READ_ONLY_LATE(struct thread) thread_template = { |
216 | #if MACH_ASSERT |
217 | .thread_magic = THREAD_MAGIC, |
218 | #endif /* MACH_ASSERT */ |
219 | .wait_result = THREAD_WAITING, |
220 | .options = THREAD_ABORTSAFE, |
221 | .state = TH_WAIT | TH_UNINT, |
222 | .th_sched_bucket = TH_BUCKET_RUN, |
223 | .base_pri = BASEPRI_DEFAULT, |
224 | .realtime.deadline = UINT64_MAX, |
225 | .last_made_runnable_time = THREAD_NOT_RUNNABLE, |
226 | .last_basepri_change_time = THREAD_NOT_RUNNABLE, |
227 | #if defined(CONFIG_SCHED_TIMESHARE_CORE) |
228 | .pri_shift = INT8_MAX, |
229 | #endif |
230 | /* timers are initialized in thread_bootstrap */ |
231 | }; |
232 | |
233 | #define CTID_SIZE_BIT 20 |
234 | #define CTID_MASK ((1u << CTID_SIZE_BIT) - 1) |
235 | #define CTID_MAX_THREAD_NUMBER (CTID_MASK - 1) |
236 | static_assert(CTID_MAX_THREAD_NUMBER <= COMPACT_ID_MAX); |
237 | |
238 | #ifndef __LITTLE_ENDIAN__ |
239 | #error "ctid relies on the ls bits of uint32_t to be populated" |
240 | #endif |
241 | |
242 | __startup_data |
243 | static struct thread init_thread; |
244 | static SECURITY_READ_ONLY_LATE(uint32_t) ctid_nonce; |
245 | COMPACT_ID_TABLE_DEFINE(static, ctid_table); |
246 | |
247 | __startup_func |
248 | static void |
249 | thread_zone_startup(void) |
250 | { |
251 | size_t size = sizeof(struct thread); |
252 | |
253 | #ifdef MACH_BSD |
254 | size += roundup(uthread_size, _Alignof(struct thread)); |
255 | #endif |
256 | thread_zone = zone_create_ext(name: "threads" , size, |
257 | flags: ZC_SEQUESTER | ZC_ZFREE_CLEARMEM, desired_zid: ZONE_ID_THREAD, NULL); |
258 | } |
259 | STARTUP(ZALLOC, STARTUP_RANK_FOURTH, thread_zone_startup); |
260 | |
261 | static void thread_deallocate_enqueue(thread_t thread); |
262 | static void thread_deallocate_complete(thread_t thread); |
263 | |
264 | static void ctid_table_remove(thread_t thread); |
265 | static void ctid_table_add(thread_t thread); |
266 | static void ctid_table_init(void); |
267 | |
268 | #ifdef MACH_BSD |
269 | extern void proc_exit(void *); |
270 | extern mach_exception_data_type_t proc_encode_exit_exception_code(void *); |
271 | extern uint64_t get_dispatchqueue_offset_from_proc(void *); |
272 | extern uint64_t get_return_to_kernel_offset_from_proc(void *p); |
273 | extern uint64_t get_wq_quantum_offset_from_proc(void *); |
274 | extern int proc_selfpid(void); |
275 | extern void proc_name(int, char*, int); |
276 | extern char * proc_name_address(void *p); |
277 | exception_type_t get_exception_from_corpse_crashinfo(kcdata_descriptor_t corpse_info); |
278 | extern void kdebug_proc_name_args(struct proc *proc, long args[static 4]); |
279 | #endif /* MACH_BSD */ |
280 | |
281 | extern bool bsdthread_part_of_cooperative_workqueue(struct uthread *uth); |
282 | extern bool disable_exc_resource; |
283 | extern bool disable_exc_resource_during_audio; |
284 | extern int audio_active; |
285 | extern int debug_task; |
286 | int thread_max = CONFIG_THREAD_MAX; /* Max number of threads */ |
287 | int task_threadmax = CONFIG_THREAD_MAX; |
288 | |
289 | static uint64_t thread_unique_id = 100; |
290 | |
291 | struct _thread_ledger_indices thread_ledgers = { .cpu_time = -1 }; |
292 | static ledger_template_t thread_ledger_template = NULL; |
293 | static void init_thread_ledgers(void); |
294 | |
295 | #if CONFIG_JETSAM |
296 | void jetsam_on_ledger_cpulimit_exceeded(void); |
297 | #endif |
298 | |
299 | extern int task_thread_soft_limit; |
300 | |
301 | |
302 | /* |
303 | * Level (in terms of percentage of the limit) at which the CPU usage monitor triggers telemetry. |
304 | * |
305 | * (ie when any thread's CPU consumption exceeds 70% of the limit, start taking user |
306 | * stacktraces, aka micro-stackshots) |
307 | */ |
308 | #define CPUMON_USTACKSHOTS_TRIGGER_DEFAULT_PCT 70 |
309 | |
310 | /* Percentage. Level at which we start gathering telemetry. */ |
311 | static TUNABLE(uint8_t, cpumon_ustackshots_trigger_pct, |
312 | "cpumon_ustackshots_trigger_pct" , CPUMON_USTACKSHOTS_TRIGGER_DEFAULT_PCT); |
313 | void __attribute__((noinline)) SENDING_NOTIFICATION__THIS_THREAD_IS_CONSUMING_TOO_MUCH_CPU(void); |
314 | |
315 | #if DEVELOPMENT || DEBUG |
316 | TUNABLE_WRITEABLE(int, exc_resource_threads_enabled, "exc_resource_threads_enabled" , 1); |
317 | |
318 | void __attribute__((noinline)) SENDING_NOTIFICATION__TASK_HAS_TOO_MANY_THREADS(task_t, int); |
319 | #endif /* DEVELOPMENT || DEBUG */ |
320 | |
321 | /* |
322 | * The smallest interval over which we support limiting CPU consumption is 1ms |
323 | */ |
324 | #define MINIMUM_CPULIMIT_INTERVAL_MS 1 |
325 | |
326 | os_refgrp_decl(static, thread_refgrp, "thread" , NULL); |
327 | |
328 | static inline void |
329 | init_thread_from_template(thread_t thread) |
330 | { |
331 | /* |
332 | * In general, struct thread isn't trivially-copyable, since it may |
333 | * contain pointers to thread-specific state. This may be enforced at |
334 | * compile time on architectures that store authed + diversified |
335 | * pointers in machine_thread. |
336 | * |
337 | * In this specific case, where we're initializing a new thread from a |
338 | * thread_template, we know all diversified pointers are NULL; these are |
339 | * safe to bitwise copy. |
340 | */ |
341 | #pragma clang diagnostic push |
342 | #pragma clang diagnostic ignored "-Wnontrivial-memaccess" |
343 | memcpy(dst: thread, src: &thread_template, n: sizeof(*thread)); |
344 | #pragma clang diagnostic pop |
345 | } |
346 | |
347 | static void |
348 | thread_ro_create(task_t parent_task, thread_t th, thread_ro_t tro_tpl) |
349 | { |
350 | #if __x86_64__ |
351 | th->t_task = parent_task; |
352 | #endif |
353 | tro_tpl->tro_owner = th; |
354 | tro_tpl->tro_task = parent_task; |
355 | th->t_tro = zalloc_ro(ZONE_ID_THREAD_RO, Z_WAITOK | Z_ZERO | Z_NOFAIL); |
356 | zalloc_ro_update_elem(ZONE_ID_THREAD_RO, th->t_tro, tro_tpl); |
357 | } |
358 | |
359 | static void |
360 | thread_ro_destroy(thread_t th) |
361 | { |
362 | thread_ro_t tro = get_thread_ro(th); |
363 | #if MACH_BSD |
364 | struct ucred *cred = tro->tro_cred; |
365 | struct ucred *rcred = tro->tro_realcred; |
366 | #endif |
367 | zfree_ro(ZONE_ID_THREAD_RO, tro); |
368 | #if MACH_BSD |
369 | uthread_cred_free(cred); |
370 | uthread_cred_free(rcred); |
371 | #endif |
372 | } |
373 | |
374 | __startup_func |
375 | thread_t |
376 | thread_bootstrap(void) |
377 | { |
378 | /* |
379 | * Fill in a template thread for fast initialization. |
380 | */ |
381 | timer_init(timer: &thread_template.runnable_timer); |
382 | |
383 | init_thread_from_template(thread: &init_thread); |
384 | /* fiddle with init thread to skip asserts in set_sched_pri */ |
385 | init_thread.sched_pri = MAXPRI_KERNEL; |
386 | |
387 | /* |
388 | * We can't quite use ctid yet, on ARM thread_bootstrap() is called |
389 | * before we can call random or anything, |
390 | * so we just make it barely work and it will get fixed up |
391 | * when the first thread is actually made. |
392 | */ |
393 | *compact_id_resolve(table: &ctid_table, compact_id: 0) = &init_thread; |
394 | init_thread.ctid = CTID_MASK; |
395 | |
396 | return &init_thread; |
397 | } |
398 | |
399 | void |
400 | thread_machine_init_template(void) |
401 | { |
402 | machine_thread_template_init(thr_template: &thread_template); |
403 | } |
404 | |
405 | void |
406 | thread_init(void) |
407 | { |
408 | /* |
409 | * Initialize any machine-dependent |
410 | * per-thread structures necessary. |
411 | */ |
412 | machine_thread_init(); |
413 | |
414 | init_thread_ledgers(); |
415 | } |
416 | |
417 | boolean_t |
418 | thread_is_active(thread_t thread) |
419 | { |
420 | return thread->active; |
421 | } |
422 | |
423 | void |
424 | thread_corpse_continue(void) |
425 | { |
426 | thread_t thread = current_thread(); |
427 | |
428 | thread_terminate_internal(thread); |
429 | |
430 | /* |
431 | * Handle the thread termination directly |
432 | * here instead of returning to userspace. |
433 | */ |
434 | assert(thread->active == FALSE); |
435 | thread_ast_clear(thread, AST_APC); |
436 | thread_apc_ast(thread); |
437 | |
438 | panic("thread_corpse_continue" ); |
439 | /*NOTREACHED*/ |
440 | } |
441 | |
442 | __dead2 |
443 | static void |
444 | thread_terminate_continue(void) |
445 | { |
446 | panic("thread_terminate_continue" ); |
447 | /*NOTREACHED*/ |
448 | } |
449 | |
450 | /* |
451 | * thread_terminate_self: |
452 | */ |
453 | void |
454 | thread_terminate_self(void) |
455 | { |
456 | thread_t thread = current_thread(); |
457 | thread_ro_t tro = get_thread_ro(thread); |
458 | task_t task = tro->tro_task; |
459 | void *bsd_info = get_bsdtask_info(task); |
460 | int threadcnt; |
461 | |
462 | pal_thread_terminate_self(thread); |
463 | |
464 | DTRACE_PROC(lwp__exit); |
465 | |
466 | thread_mtx_lock(thread); |
467 | |
468 | ipc_thread_disable(thread); |
469 | |
470 | thread_mtx_unlock(thread); |
471 | |
472 | thread_sched_call(thread, NULL); |
473 | |
474 | spl_t s = splsched(); |
475 | thread_lock(thread); |
476 | |
477 | thread_depress_abort_locked(thread); |
478 | |
479 | /* |
480 | * Before we take the thread_lock right above, |
481 | * act_set_ast_reset_pcs() might not yet observe |
482 | * that the thread is inactive, and could have |
483 | * requested an IPI Ack. |
484 | * |
485 | * Once we unlock the thread, we know that |
486 | * act_set_ast_reset_pcs() can't fail to notice |
487 | * that thread->active is false, |
488 | * and won't set new ones. |
489 | */ |
490 | thread_reset_pcs_ack_IPI(thread); |
491 | |
492 | thread_unlock(thread); |
493 | |
494 | splx(s); |
495 | |
496 | #if CONFIG_TASKWATCH |
497 | thead_remove_taskwatch(thread); |
498 | #endif /* CONFIG_TASKWATCH */ |
499 | |
500 | work_interval_thread_terminate(thread); |
501 | |
502 | thread_mtx_lock(thread); |
503 | |
504 | thread_policy_reset(thread); |
505 | |
506 | thread_mtx_unlock(thread); |
507 | |
508 | assert(thread->th_work_interval == NULL); |
509 | |
510 | bank_swap_thread_bank_ledger(thread, NULL); |
511 | |
512 | if (kdebug_enable && bsd_hasthreadname(uth: get_bsdthread_info(thread))) { |
513 | char threadname[MAXTHREADNAMESIZE]; |
514 | bsd_getthreadname(uth: get_bsdthread_info(thread), buffer: threadname); |
515 | kernel_debug_string_simple(TRACE_STRING_THREADNAME_PREV, str: threadname); |
516 | } |
517 | |
518 | uthread_cleanup(get_bsdthread_info(thread), tro); |
519 | |
520 | if (kdebug_enable && bsd_info && !task_is_exec_copy(task)) { |
521 | /* trace out pid before we sign off */ |
522 | long dbg_arg1 = 0; |
523 | long dbg_arg2 = 0; |
524 | |
525 | kdbg_trace_data(proc: get_bsdtask_info(task), arg_pid: &dbg_arg1, arg_uniqueid: &dbg_arg2); |
526 | #if CONFIG_PERVASIVE_CPI |
527 | if (kdebug_debugid_enabled(DBG_MT_INSTRS_CYCLES_THR_EXIT)) { |
528 | struct recount_usage usage = { 0 }; |
529 | struct recount_usage perf_only = { 0 }; |
530 | boolean_t intrs_end = ml_set_interrupts_enabled(FALSE); |
531 | recount_current_thread_usage_perf_only(&usage, &perf_only); |
532 | ml_set_interrupts_enabled(intrs_end); |
533 | KDBG_RELEASE(DBG_MT_INSTRS_CYCLES_THR_EXIT, |
534 | recount_usage_instructions(&usage), |
535 | recount_usage_cycles(&usage), |
536 | recount_usage_system_time_mach(&usage), |
537 | usage.ru_metrics[RCT_LVL_USER].rm_time_mach); |
538 | #if __AMP__ |
539 | KDBG_RELEASE(DBG_MT_P_INSTRS_CYCLES_THR_EXIT, |
540 | recount_usage_instructions(&perf_only), |
541 | recount_usage_cycles(&perf_only), |
542 | recount_usage_system_time_mach(&perf_only), |
543 | perf_only.ru_metrics[RCT_LVL_USER].rm_time_mach); |
544 | #endif // __AMP__ |
545 | } |
546 | #endif/* CONFIG_PERVASIVE_CPI */ |
547 | KDBG_RELEASE(TRACE_DATA_THREAD_TERMINATE_PID, dbg_arg1, dbg_arg2); |
548 | } |
549 | |
550 | /* |
551 | * After this subtraction, this thread should never access |
552 | * task->bsd_info unless it got 0 back from the os_atomic_dec. It |
553 | * could be racing with other threads to be the last thread in the |
554 | * process, and the last thread in the process will tear down the proc |
555 | * structure and zero-out task->bsd_info. |
556 | */ |
557 | threadcnt = os_atomic_dec(&task->active_thread_count, relaxed); |
558 | |
559 | #if CONFIG_COALITIONS |
560 | /* |
561 | * Leave the coalitions when last thread of task is exiting and the |
562 | * task is not a corpse. |
563 | */ |
564 | if (threadcnt == 0 && !task->corpse_info) { |
565 | coalitions_remove_task(task); |
566 | } |
567 | #endif |
568 | |
569 | /* |
570 | * If we are the last thread to terminate and the task is |
571 | * associated with a BSD process, perform BSD process exit. |
572 | */ |
573 | if (threadcnt == 0 && bsd_info != NULL) { |
574 | mach_exception_data_type_t subcode = 0; |
575 | if (kdebug_enable) { |
576 | /* since we're the last thread in this process, trace out the command name too */ |
577 | long args[4] = { 0 }; |
578 | kdebug_proc_name_args(proc: bsd_info, args); |
579 | #if CONFIG_PERVASIVE_CPI |
580 | if (kdebug_debugid_enabled(DBG_MT_INSTRS_CYCLES_PROC_EXIT)) { |
581 | struct recount_usage usage = { 0 }; |
582 | struct recount_usage perf_only = { 0 }; |
583 | recount_current_task_usage_perf_only(&usage, &perf_only); |
584 | KDBG_RELEASE(DBG_MT_INSTRS_CYCLES_PROC_EXIT, |
585 | recount_usage_instructions(&usage), |
586 | recount_usage_cycles(&usage), |
587 | recount_usage_system_time_mach(&usage), |
588 | usage.ru_metrics[RCT_LVL_USER].rm_time_mach); |
589 | #if __AMP__ |
590 | KDBG_RELEASE(DBG_MT_P_INSTRS_CYCLES_PROC_EXIT, |
591 | recount_usage_instructions(&perf_only), |
592 | recount_usage_cycles(&perf_only), |
593 | recount_usage_system_time_mach(&perf_only), |
594 | perf_only.ru_metrics[RCT_LVL_USER].rm_time_mach); |
595 | #endif // __AMP__ |
596 | } |
597 | #endif/* CONFIG_PERVASIVE_CPI */ |
598 | KDBG_RELEASE(TRACE_STRING_PROC_EXIT, args[0], args[1], args[2], args[3]); |
599 | } |
600 | |
601 | /* Get the exit reason before proc_exit */ |
602 | subcode = proc_encode_exit_exception_code(bsd_info); |
603 | proc_exit(bsd_info); |
604 | bsd_info = NULL; |
605 | #if CONFIG_EXCLAVES |
606 | task_clear_conclave(task); |
607 | #endif |
608 | /* |
609 | * if there is crash info in task |
610 | * then do the deliver action since this is |
611 | * last thread for this task. |
612 | */ |
613 | if (task->corpse_info) { |
614 | /* reset all except task name port */ |
615 | ipc_task_reset(task); |
616 | /* enable all task ports (name port unchanged) */ |
617 | ipc_task_enable(task); |
618 | exception_type_t etype = get_exception_from_corpse_crashinfo(corpse_info: task->corpse_info); |
619 | task_deliver_crash_notification(task, current_thread(), etype, subcode); |
620 | } |
621 | } |
622 | |
623 | if (threadcnt == 0) { |
624 | task_lock(task); |
625 | if (task_is_a_corpse_fork(task)) { |
626 | thread_wakeup((event_t)&task->active_thread_count); |
627 | } |
628 | task_unlock(task); |
629 | } |
630 | |
631 | #if CONFIG_EXCLAVES |
632 | exclaves_thread_terminate(thread); |
633 | #endif |
634 | |
635 | s = splsched(); |
636 | thread_lock(thread); |
637 | |
638 | /* |
639 | * Ensure that the depress timer is no longer enqueued, |
640 | * so the timer can be safely deallocated |
641 | * |
642 | * TODO: build timer_call_cancel_wait |
643 | */ |
644 | |
645 | assert((thread->sched_flags & TH_SFLAG_DEPRESSED_MASK) == 0); |
646 | |
647 | uint32_t delay_us = 1; |
648 | |
649 | while (thread->depress_timer_active > 0) { |
650 | thread_unlock(thread); |
651 | splx(s); |
652 | |
653 | delay(usec: delay_us++); |
654 | |
655 | if (delay_us > USEC_PER_SEC) { |
656 | panic("depress timer failed to inactivate!" |
657 | "thread: %p depress_timer_active: %d" , |
658 | thread, thread->depress_timer_active); |
659 | } |
660 | |
661 | s = splsched(); |
662 | thread_lock(thread); |
663 | } |
664 | |
665 | /* |
666 | * Cancel wait timer, and wait for |
667 | * concurrent expirations. |
668 | */ |
669 | if (thread->wait_timer_armed) { |
670 | thread->wait_timer_armed = false; |
671 | |
672 | if (timer_call_cancel(call: thread->wait_timer)) { |
673 | thread->wait_timer_active--; |
674 | } |
675 | } |
676 | |
677 | delay_us = 1; |
678 | |
679 | while (thread->wait_timer_active > 0) { |
680 | thread_unlock(thread); |
681 | splx(s); |
682 | |
683 | delay(usec: delay_us++); |
684 | |
685 | if (delay_us > USEC_PER_SEC) { |
686 | panic("wait timer failed to inactivate!" |
687 | "thread: %p, wait_timer_active: %d, " |
688 | "wait_timer_armed: %d" , |
689 | thread, thread->wait_timer_active, |
690 | thread->wait_timer_armed); |
691 | } |
692 | |
693 | s = splsched(); |
694 | thread_lock(thread); |
695 | } |
696 | |
697 | /* |
698 | * If there is a reserved stack, release it. |
699 | */ |
700 | if (thread->reserved_stack != 0) { |
701 | stack_free_reserved(thread); |
702 | thread->reserved_stack = 0; |
703 | } |
704 | |
705 | /* |
706 | * Mark thread as terminating, and block. |
707 | */ |
708 | thread->state |= TH_TERMINATE; |
709 | thread_mark_wait_locked(thread, THREAD_UNINT); |
710 | |
711 | #if CONFIG_EXCLAVES |
712 | assert(thread->th_exclaves_ipc_buffer == NULL); |
713 | assert(thread->th_exclaves_scheduling_context_id == 0); |
714 | assert(thread->th_exclaves_intstate == 0); |
715 | assert(thread->th_exclaves_state == 0); |
716 | #endif |
717 | assert(thread->th_work_interval_flags == TH_WORK_INTERVAL_FLAGS_NONE); |
718 | assert(thread->kern_promotion_schedpri == 0); |
719 | if (thread->rwlock_count > 0) { |
720 | panic("rwlock_count is %d for thread %p, possibly it still holds a rwlock" , thread->rwlock_count, thread); |
721 | } |
722 | assert(thread->priority_floor_count == 0); |
723 | assert(thread->handoff_thread == THREAD_NULL); |
724 | assert(thread->th_work_interval == NULL); |
725 | assert(thread->t_rr_state.trr_value == 0); |
726 | |
727 | assert3u(0, ==, thread->sched_flags & |
728 | (TH_SFLAG_WAITQ_PROMOTED | |
729 | TH_SFLAG_RW_PROMOTED | |
730 | TH_SFLAG_EXEC_PROMOTED | |
731 | TH_SFLAG_FLOOR_PROMOTED | |
732 | TH_SFLAG_PROMOTED | |
733 | TH_SFLAG_DEPRESS)); |
734 | |
735 | thread_unlock(thread); |
736 | /* splsched */ |
737 | |
738 | thread_block(continuation: (thread_continue_t)thread_terminate_continue); |
739 | /*NOTREACHED*/ |
740 | } |
741 | |
742 | static bool |
743 | thread_ref_release(thread_t thread) |
744 | { |
745 | if (thread == THREAD_NULL) { |
746 | return false; |
747 | } |
748 | |
749 | assert_thread_magic(thread); |
750 | |
751 | return os_ref_release_raw(&thread->ref_count, &thread_refgrp) == 0; |
752 | } |
753 | |
754 | /* Drop a thread refcount safely without triggering a zfree */ |
755 | void |
756 | thread_deallocate_safe(thread_t thread) |
757 | { |
758 | if (__improbable(thread_ref_release(thread))) { |
759 | /* enqueue the thread for thread deallocate deamon to call thread_deallocate_complete */ |
760 | thread_deallocate_enqueue(thread); |
761 | } |
762 | } |
763 | |
764 | void |
765 | thread_deallocate(thread_t thread) |
766 | { |
767 | if (__improbable(thread_ref_release(thread))) { |
768 | thread_deallocate_complete(thread); |
769 | } |
770 | } |
771 | |
772 | void |
773 | thread_deallocate_complete( |
774 | thread_t thread) |
775 | { |
776 | task_t task; |
777 | |
778 | assert_thread_magic(thread); |
779 | |
780 | assert(os_ref_get_count_raw(&thread->ref_count) == 0); |
781 | |
782 | if (!(thread->state & TH_TERMINATE2)) { |
783 | panic("thread_deallocate: thread not properly terminated" ); |
784 | } |
785 | |
786 | thread_assert_runq_null(thread); |
787 | assert(!(thread->state & TH_WAKING)); |
788 | |
789 | #if CONFIG_CPU_COUNTERS |
790 | kpc_thread_destroy(thread); |
791 | #endif /* CONFIG_CPU_COUNTERS */ |
792 | |
793 | ipc_thread_terminate(thread); |
794 | |
795 | proc_thread_qos_deallocate(thread); |
796 | |
797 | task = get_threadtask(thread); |
798 | |
799 | #ifdef MACH_BSD |
800 | uthread_destroy(get_bsdthread_info(thread)); |
801 | #endif /* MACH_BSD */ |
802 | |
803 | if (thread->t_ledger) { |
804 | ledger_dereference(ledger: thread->t_ledger); |
805 | } |
806 | if (thread->t_threadledger) { |
807 | ledger_dereference(ledger: thread->t_threadledger); |
808 | } |
809 | |
810 | assert(thread->turnstile != TURNSTILE_NULL); |
811 | if (thread->turnstile) { |
812 | turnstile_deallocate(turnstile: thread->turnstile); |
813 | } |
814 | turnstile_compact_id_put(cid: thread->ctsid); |
815 | |
816 | if (IPC_VOUCHER_NULL != thread->ith_voucher) { |
817 | ipc_voucher_release(voucher: thread->ith_voucher); |
818 | } |
819 | |
820 | kfree_data(thread->thread_io_stats, sizeof(struct io_stat_info)); |
821 | #if CONFIG_PREADOPT_TG |
822 | if (thread->old_preadopt_thread_group) { |
823 | thread_group_release(tg: thread->old_preadopt_thread_group); |
824 | } |
825 | |
826 | if (thread->preadopt_thread_group) { |
827 | thread_group_release(tg: thread->preadopt_thread_group); |
828 | } |
829 | #endif /* CONFIG_PREADOPT_TG */ |
830 | |
831 | if (thread->kernel_stack != 0) { |
832 | stack_free(thread); |
833 | } |
834 | |
835 | recount_thread_deinit(th: &thread->th_recount); |
836 | |
837 | lck_mtx_destroy(lck: &thread->mutex, grp: &thread_lck_grp); |
838 | machine_thread_destroy(thread); |
839 | |
840 | task_deallocate_grp(task, TASK_GRP_INTERNAL); |
841 | |
842 | #if MACH_ASSERT |
843 | assert_thread_magic(thread); |
844 | thread->thread_magic = 0; |
845 | #endif /* MACH_ASSERT */ |
846 | |
847 | lck_mtx_lock(lck: &tasks_threads_lock); |
848 | assert(terminated_threads_count > 0); |
849 | queue_remove(&terminated_threads, thread, thread_t, threads); |
850 | terminated_threads_count--; |
851 | lck_mtx_unlock(lck: &tasks_threads_lock); |
852 | |
853 | timer_call_free(call: thread->depress_timer); |
854 | timer_call_free(call: thread->wait_timer); |
855 | |
856 | ctid_table_remove(thread); |
857 | |
858 | thread_ro_destroy(th: thread); |
859 | zfree(thread_zone, thread); |
860 | } |
861 | |
862 | /* |
863 | * thread_inspect_deallocate: |
864 | * |
865 | * Drop a thread inspection reference. |
866 | */ |
867 | void |
868 | thread_inspect_deallocate( |
869 | thread_inspect_t thread_inspect) |
870 | { |
871 | return thread_deallocate(thread: (thread_t)thread_inspect); |
872 | } |
873 | |
874 | /* |
875 | * thread_read_deallocate: |
876 | * |
877 | * Drop a reference on thread read port. |
878 | */ |
879 | void |
880 | thread_read_deallocate( |
881 | thread_read_t thread_read) |
882 | { |
883 | return thread_deallocate(thread: (thread_t)thread_read); |
884 | } |
885 | |
886 | |
887 | /* |
888 | * thread_exception_queue_invoke: |
889 | * |
890 | * Deliver EXC_{RESOURCE,GUARD} exception |
891 | */ |
892 | static void |
893 | thread_exception_queue_invoke(mpsc_queue_chain_t elm, |
894 | __assert_only mpsc_daemon_queue_t dq) |
895 | { |
896 | struct thread_exception_elt *elt; |
897 | task_t task; |
898 | thread_t thread; |
899 | exception_type_t etype; |
900 | |
901 | assert(dq == &thread_exception_queue); |
902 | elt = mpsc_queue_element(elm, struct thread_exception_elt, link); |
903 | |
904 | etype = elt->exception_type; |
905 | task = elt->exception_task; |
906 | thread = elt->exception_thread; |
907 | assert_thread_magic(thread); |
908 | |
909 | kfree_type(struct thread_exception_elt, elt); |
910 | |
911 | /* wait for all the threads in the task to terminate */ |
912 | task_lock(task); |
913 | task_wait_till_threads_terminate_locked(task); |
914 | task_unlock(task); |
915 | |
916 | /* Consumes the task ref returned by task_generate_corpse_internal */ |
917 | task_deallocate(task); |
918 | /* Consumes the thread ref returned by task_generate_corpse_internal */ |
919 | thread_deallocate(thread); |
920 | |
921 | /* Deliver the notification, also clears the corpse. */ |
922 | task_deliver_crash_notification(task, thread, etype, 0); |
923 | } |
924 | |
925 | static void |
926 | thread_backtrace_queue_invoke(mpsc_queue_chain_t elm, |
927 | __assert_only mpsc_daemon_queue_t dq) |
928 | { |
929 | struct thread_backtrace_elt *elt; |
930 | kcdata_object_t obj; |
931 | exception_port_t exc_ports[BT_EXC_PORTS_COUNT]; /* send rights */ |
932 | exception_type_t etype; |
933 | |
934 | assert(dq == &thread_backtrace_queue); |
935 | elt = mpsc_queue_element(elm, struct thread_backtrace_elt, link); |
936 | |
937 | obj = elt->obj; |
938 | memcpy(dst: exc_ports, src: elt->exc_ports, n: sizeof(ipc_port_t) * BT_EXC_PORTS_COUNT); |
939 | etype = elt->exception_type; |
940 | |
941 | kfree_type(struct thread_backtrace_elt, elt); |
942 | |
943 | /* Deliver to backtrace exception ports */ |
944 | exception_deliver_backtrace(bt_object: obj, exc_ports, exception: etype); |
945 | |
946 | /* |
947 | * Release port right and kcdata object refs given by |
948 | * task_enqueue_exception_with_corpse() |
949 | */ |
950 | |
951 | for (unsigned int i = 0; i < BT_EXC_PORTS_COUNT; i++) { |
952 | ipc_port_release_send(port: exc_ports[i]); |
953 | } |
954 | |
955 | kcdata_object_release(obj); |
956 | } |
957 | |
958 | /* |
959 | * thread_exception_enqueue: |
960 | * |
961 | * Enqueue a corpse port to be delivered an EXC_{RESOURCE,GUARD}. |
962 | */ |
963 | void |
964 | thread_exception_enqueue( |
965 | task_t task, |
966 | thread_t thread, |
967 | exception_type_t etype) |
968 | { |
969 | assert(EXC_RESOURCE == etype || EXC_GUARD == etype); |
970 | struct thread_exception_elt *elt = kalloc_type(struct thread_exception_elt, Z_WAITOK | Z_NOFAIL); |
971 | elt->exception_type = etype; |
972 | elt->exception_task = task; |
973 | elt->exception_thread = thread; |
974 | |
975 | mpsc_daemon_enqueue(dq: &thread_exception_queue, elm: &elt->link, |
976 | options: MPSC_QUEUE_DISABLE_PREEMPTION); |
977 | } |
978 | |
979 | void |
980 | thread_backtrace_enqueue( |
981 | kcdata_object_t obj, |
982 | exception_port_t ports[static BT_EXC_PORTS_COUNT], |
983 | exception_type_t etype) |
984 | { |
985 | struct thread_backtrace_elt *elt = kalloc_type(struct thread_backtrace_elt, Z_WAITOK | Z_NOFAIL); |
986 | elt->obj = obj; |
987 | elt->exception_type = etype; |
988 | |
989 | memcpy(dst: elt->exc_ports, src: ports, n: sizeof(ipc_port_t) * BT_EXC_PORTS_COUNT); |
990 | |
991 | mpsc_daemon_enqueue(dq: &thread_backtrace_queue, elm: &elt->link, |
992 | options: MPSC_QUEUE_DISABLE_PREEMPTION); |
993 | } |
994 | |
995 | /* |
996 | * thread_copy_resource_info |
997 | * |
998 | * Copy the resource info counters from source |
999 | * thread to destination thread. |
1000 | */ |
1001 | void |
1002 | thread_copy_resource_info( |
1003 | thread_t dst_thread, |
1004 | thread_t src_thread) |
1005 | { |
1006 | dst_thread->c_switch = src_thread->c_switch; |
1007 | dst_thread->p_switch = src_thread->p_switch; |
1008 | dst_thread->ps_switch = src_thread->ps_switch; |
1009 | dst_thread->sched_time_save = src_thread->sched_time_save; |
1010 | dst_thread->runnable_timer = src_thread->runnable_timer; |
1011 | dst_thread->vtimer_user_save = src_thread->vtimer_user_save; |
1012 | dst_thread->vtimer_prof_save = src_thread->vtimer_prof_save; |
1013 | dst_thread->vtimer_rlim_save = src_thread->vtimer_rlim_save; |
1014 | dst_thread->vtimer_qos_save = src_thread->vtimer_qos_save; |
1015 | dst_thread->syscalls_unix = src_thread->syscalls_unix; |
1016 | dst_thread->syscalls_mach = src_thread->syscalls_mach; |
1017 | ledger_rollup(to_ledger: dst_thread->t_threadledger, from_ledger: src_thread->t_threadledger); |
1018 | recount_thread_copy(dst: &dst_thread->th_recount, src: &src_thread->th_recount); |
1019 | *dst_thread->thread_io_stats = *src_thread->thread_io_stats; |
1020 | } |
1021 | |
1022 | static void |
1023 | thread_terminate_queue_invoke(mpsc_queue_chain_t e, |
1024 | __assert_only mpsc_daemon_queue_t dq) |
1025 | { |
1026 | thread_t thread = mpsc_queue_element(e, struct thread, mpsc_links); |
1027 | task_t task = get_threadtask(thread); |
1028 | |
1029 | assert(dq == &thread_terminate_queue); |
1030 | |
1031 | task_lock(task); |
1032 | |
1033 | /* |
1034 | * if marked for crash reporting, skip reaping. |
1035 | * The corpse delivery thread will clear bit and enqueue |
1036 | * for reaping when done |
1037 | * |
1038 | * Note: the inspection field is set under the task lock |
1039 | * |
1040 | * FIXME[mad]: why enqueue for termination before `inspection` is false ? |
1041 | */ |
1042 | if (__improbable(thread->inspection)) { |
1043 | simple_lock(&crashed_threads_lock, &thread_lck_grp); |
1044 | task_unlock(task); |
1045 | |
1046 | enqueue_tail(que: &crashed_threads_queue, elt: &thread->runq_links); |
1047 | simple_unlock(&crashed_threads_lock); |
1048 | return; |
1049 | } |
1050 | |
1051 | recount_task_rollup_thread(tk: &task->tk_recount, th: &thread->th_recount); |
1052 | |
1053 | task->total_runnable_time += timer_grab(timer: &thread->runnable_timer); |
1054 | task->c_switch += thread->c_switch; |
1055 | task->p_switch += thread->p_switch; |
1056 | task->ps_switch += thread->ps_switch; |
1057 | |
1058 | task->syscalls_unix += thread->syscalls_unix; |
1059 | task->syscalls_mach += thread->syscalls_mach; |
1060 | |
1061 | task->task_timer_wakeups_bin_1 += thread->thread_timer_wakeups_bin_1; |
1062 | task->task_timer_wakeups_bin_2 += thread->thread_timer_wakeups_bin_2; |
1063 | task->task_gpu_ns += ml_gpu_stat(thread); |
1064 | task->decompressions += thread->decompressions; |
1065 | |
1066 | thread_update_qos_cpu_time(thread); |
1067 | |
1068 | queue_remove(&task->threads, thread, thread_t, task_threads); |
1069 | task->thread_count--; |
1070 | |
1071 | /* |
1072 | * If the task is being halted, and there is only one thread |
1073 | * left in the task after this one, then wakeup that thread. |
1074 | */ |
1075 | if (task->thread_count == 1 && task->halting) { |
1076 | thread_wakeup((event_t)&task->halting); |
1077 | } |
1078 | |
1079 | task_unlock(task); |
1080 | |
1081 | lck_mtx_lock(lck: &tasks_threads_lock); |
1082 | queue_remove(&threads, thread, thread_t, threads); |
1083 | threads_count--; |
1084 | queue_enter(&terminated_threads, thread, thread_t, threads); |
1085 | terminated_threads_count++; |
1086 | lck_mtx_unlock(lck: &tasks_threads_lock); |
1087 | |
1088 | #if MACH_BSD |
1089 | /* |
1090 | * The thread no longer counts against the task's thread count, |
1091 | * we can now wake up any pending joiner. |
1092 | * |
1093 | * Note that the inheritor will be set to `thread` which is |
1094 | * incorrect once it is on the termination queue, however |
1095 | * the termination queue runs at MINPRI_KERNEL which is higher |
1096 | * than any user thread, so this isn't a priority inversion. |
1097 | */ |
1098 | if (thread_get_tag(thread) & THREAD_TAG_USER_JOIN) { |
1099 | struct uthread *uth = get_bsdthread_info(thread); |
1100 | mach_port_name_t kport = uthread_joiner_port(uth); |
1101 | |
1102 | /* |
1103 | * Clear the port low two bits to tell pthread that thread is gone. |
1104 | */ |
1105 | #ifndef NO_PORT_GEN |
1106 | kport &= ~MACH_PORT_MAKE(0, IE_BITS_GEN_MASK + IE_BITS_GEN_ONE); |
1107 | #else |
1108 | kport |= MACH_PORT_MAKE(0, ~(IE_BITS_GEN_MASK + IE_BITS_GEN_ONE)); |
1109 | #endif |
1110 | (void)copyoutmap_atomic32(map: task->map, value: kport, |
1111 | toaddr: uthread_joiner_address(uth)); |
1112 | uthread_joiner_wake(task, uth); |
1113 | } |
1114 | #endif |
1115 | |
1116 | thread_deallocate(thread); |
1117 | } |
1118 | |
1119 | static void |
1120 | thread_deallocate_queue_invoke(mpsc_queue_chain_t e, |
1121 | __assert_only mpsc_daemon_queue_t dq) |
1122 | { |
1123 | thread_t thread = mpsc_queue_element(e, struct thread, mpsc_links); |
1124 | |
1125 | assert(dq == &thread_deallocate_queue); |
1126 | |
1127 | thread_deallocate_complete(thread); |
1128 | } |
1129 | |
1130 | /* |
1131 | * thread_terminate_enqueue: |
1132 | * |
1133 | * Enqueue a terminating thread for final disposition. |
1134 | * |
1135 | * Called at splsched. |
1136 | */ |
1137 | void |
1138 | thread_terminate_enqueue( |
1139 | thread_t thread) |
1140 | { |
1141 | KDBG_RELEASE(TRACE_DATA_THREAD_TERMINATE, thread->thread_id); |
1142 | |
1143 | mpsc_daemon_enqueue(dq: &thread_terminate_queue, elm: &thread->mpsc_links, |
1144 | options: MPSC_QUEUE_DISABLE_PREEMPTION); |
1145 | } |
1146 | |
1147 | /* |
1148 | * thread_deallocate_enqueue: |
1149 | * |
1150 | * Enqueue a thread for final deallocation. |
1151 | */ |
1152 | static void |
1153 | thread_deallocate_enqueue( |
1154 | thread_t thread) |
1155 | { |
1156 | mpsc_daemon_enqueue(dq: &thread_deallocate_queue, elm: &thread->mpsc_links, |
1157 | options: MPSC_QUEUE_DISABLE_PREEMPTION); |
1158 | } |
1159 | |
1160 | /* |
1161 | * thread_terminate_crashed_threads: |
1162 | * walk the list of crashed threads and put back set of threads |
1163 | * who are no longer being inspected. |
1164 | */ |
1165 | void |
1166 | thread_terminate_crashed_threads(void) |
1167 | { |
1168 | thread_t th_remove; |
1169 | |
1170 | simple_lock(&crashed_threads_lock, &thread_lck_grp); |
1171 | /* |
1172 | * loop through the crashed threads queue |
1173 | * to put any threads that are not being inspected anymore |
1174 | */ |
1175 | |
1176 | qe_foreach_element_safe(th_remove, &crashed_threads_queue, runq_links) { |
1177 | /* make sure current_thread is never in crashed queue */ |
1178 | assert(th_remove != current_thread()); |
1179 | |
1180 | if (th_remove->inspection == FALSE) { |
1181 | remqueue(elt: &th_remove->runq_links); |
1182 | mpsc_daemon_enqueue(dq: &thread_terminate_queue, elm: &th_remove->mpsc_links, |
1183 | options: MPSC_QUEUE_NONE); |
1184 | } |
1185 | } |
1186 | |
1187 | simple_unlock(&crashed_threads_lock); |
1188 | } |
1189 | |
1190 | /* |
1191 | * thread_stack_queue_invoke: |
1192 | * |
1193 | * Perform stack allocation as required due to |
1194 | * invoke failures. |
1195 | */ |
1196 | static void |
1197 | thread_stack_queue_invoke(mpsc_queue_chain_t elm, |
1198 | __assert_only mpsc_daemon_queue_t dq) |
1199 | { |
1200 | thread_t thread = mpsc_queue_element(elm, struct thread, mpsc_links); |
1201 | |
1202 | assert(dq == &thread_stack_queue); |
1203 | |
1204 | /* allocate stack with interrupts enabled so that we can call into VM */ |
1205 | stack_alloc(thread); |
1206 | |
1207 | KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED, MACH_STACK_WAIT) | DBG_FUNC_END, thread_tid(thread), 0, 0, 0, 0); |
1208 | |
1209 | spl_t s = splsched(); |
1210 | thread_lock(thread); |
1211 | thread_setrun(thread, options: SCHED_PREEMPT | SCHED_TAILQ); |
1212 | thread_unlock(thread); |
1213 | splx(s); |
1214 | } |
1215 | |
1216 | /* |
1217 | * thread_stack_enqueue: |
1218 | * |
1219 | * Enqueue a thread for stack allocation. |
1220 | * |
1221 | * Called at splsched. |
1222 | */ |
1223 | void |
1224 | thread_stack_enqueue( |
1225 | thread_t thread) |
1226 | { |
1227 | KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED, MACH_STACK_WAIT) | DBG_FUNC_START, thread_tid(thread), 0, 0, 0, 0); |
1228 | assert_thread_magic(thread); |
1229 | |
1230 | mpsc_daemon_enqueue(dq: &thread_stack_queue, elm: &thread->mpsc_links, |
1231 | options: MPSC_QUEUE_DISABLE_PREEMPTION); |
1232 | } |
1233 | |
1234 | void |
1235 | thread_daemon_init(void) |
1236 | { |
1237 | kern_return_t result; |
1238 | |
1239 | thread_deallocate_daemon_init(); |
1240 | |
1241 | thread_deallocate_daemon_register_queue(dq: &thread_terminate_queue, |
1242 | invoke: thread_terminate_queue_invoke); |
1243 | |
1244 | thread_deallocate_daemon_register_queue(dq: &thread_deallocate_queue, |
1245 | invoke: thread_deallocate_queue_invoke); |
1246 | |
1247 | ipc_object_deallocate_register_queue(); |
1248 | |
1249 | simple_lock_init(&crashed_threads_lock, 0); |
1250 | queue_init(&crashed_threads_queue); |
1251 | |
1252 | result = mpsc_daemon_queue_init_with_thread(dq: &thread_stack_queue, |
1253 | invoke: thread_stack_queue_invoke, BASEPRI_PREEMPT_HIGH, |
1254 | name: "daemon.thread-stack" , flags: MPSC_DAEMON_INIT_NONE); |
1255 | if (result != KERN_SUCCESS) { |
1256 | panic("thread_daemon_init: thread_stack_daemon" ); |
1257 | } |
1258 | |
1259 | result = mpsc_daemon_queue_init_with_thread(dq: &thread_exception_queue, |
1260 | invoke: thread_exception_queue_invoke, MINPRI_KERNEL, |
1261 | name: "daemon.thread-exception" , flags: MPSC_DAEMON_INIT_NONE); |
1262 | |
1263 | if (result != KERN_SUCCESS) { |
1264 | panic("thread_daemon_init: thread_exception_daemon" ); |
1265 | } |
1266 | |
1267 | result = mpsc_daemon_queue_init_with_thread(dq: &thread_backtrace_queue, |
1268 | invoke: thread_backtrace_queue_invoke, MINPRI_KERNEL, |
1269 | name: "daemon.thread-backtrace" , flags: MPSC_DAEMON_INIT_NONE); |
1270 | |
1271 | if (result != KERN_SUCCESS) { |
1272 | panic("thread_daemon_init: thread_backtrace_daemon" ); |
1273 | } |
1274 | } |
1275 | |
1276 | __options_decl(thread_create_internal_options_t, uint32_t, { |
1277 | TH_OPTION_NONE = 0x00, |
1278 | TH_OPTION_NOSUSP = 0x02, |
1279 | TH_OPTION_WORKQ = 0x04, |
1280 | TH_OPTION_MAINTHREAD = 0x08, |
1281 | }); |
1282 | |
1283 | void |
1284 | main_thread_set_immovable_pinned(thread_t thread) |
1285 | { |
1286 | ipc_main_thread_set_immovable_pinned(thread); |
1287 | } |
1288 | |
1289 | /* |
1290 | * Create a new thread. |
1291 | * Doesn't start the thread running. |
1292 | * |
1293 | * Task and tasks_threads_lock are returned locked on success. |
1294 | */ |
1295 | static kern_return_t |
1296 | thread_create_internal( |
1297 | task_t parent_task, |
1298 | integer_t priority, |
1299 | thread_continue_t continuation, |
1300 | void *parameter, |
1301 | thread_create_internal_options_t options, |
1302 | thread_t *out_thread) |
1303 | { |
1304 | thread_t new_thread; |
1305 | ipc_thread_init_options_t init_options = IPC_THREAD_INIT_NONE; |
1306 | struct thread_ro tro_tpl = { }; |
1307 | bool first_thread = false; |
1308 | kern_return_t kr = KERN_FAILURE; |
1309 | |
1310 | /* |
1311 | * Allocate a thread and initialize static fields |
1312 | */ |
1313 | new_thread = zalloc_flags(thread_zone, Z_WAITOK | Z_NOFAIL); |
1314 | |
1315 | if (__improbable(current_thread() == &init_thread)) { |
1316 | /* |
1317 | * The first thread ever is a global, but because we want to be |
1318 | * able to zone_id_require() threads, we have to stop using the |
1319 | * global piece of memory we used to boostrap the kernel and |
1320 | * jump to a proper thread from a zone. |
1321 | * |
1322 | * This is why that one thread will inherit its original |
1323 | * state differently. |
1324 | * |
1325 | * Also remember this thread in `vm_pageout_scan_thread` |
1326 | * as this is what the first thread ever becomes. |
1327 | * |
1328 | * Also pre-warm the depress timer since the VM pageout scan |
1329 | * daemon might need to use it. |
1330 | */ |
1331 | assert(vm_pageout_scan_thread == THREAD_NULL); |
1332 | vm_pageout_scan_thread = new_thread; |
1333 | |
1334 | first_thread = true; |
1335 | #pragma clang diagnostic push |
1336 | #pragma clang diagnostic ignored "-Wnontrivial-memaccess" |
1337 | /* work around 74481146 */ |
1338 | memcpy(dst: new_thread, src: &init_thread, n: sizeof(*new_thread)); |
1339 | #pragma clang diagnostic pop |
1340 | |
1341 | /* |
1342 | * Make the ctid table functional |
1343 | */ |
1344 | ctid_table_init(); |
1345 | new_thread->ctid = 0; |
1346 | } else { |
1347 | init_thread_from_template(thread: new_thread); |
1348 | } |
1349 | |
1350 | if (options & TH_OPTION_MAINTHREAD) { |
1351 | init_options |= IPC_THREAD_INIT_MAINTHREAD; |
1352 | } |
1353 | |
1354 | os_ref_init_count_raw(&new_thread->ref_count, &thread_refgrp, 2); |
1355 | machine_thread_create(thread: new_thread, task: parent_task, first_thread); |
1356 | |
1357 | machine_thread_process_signature(thread: new_thread, task: parent_task); |
1358 | |
1359 | #ifdef MACH_BSD |
1360 | uthread_init(parent_task, get_bsdthread_info(new_thread), |
1361 | &tro_tpl, (options & TH_OPTION_WORKQ) != 0); |
1362 | if (!task_is_a_corpse(task: parent_task)) { |
1363 | /* |
1364 | * uthread_init will set tro_cred (with a +1) |
1365 | * and tro_proc for live tasks. |
1366 | */ |
1367 | assert(tro_tpl.tro_cred && tro_tpl.tro_proc); |
1368 | } |
1369 | #endif /* MACH_BSD */ |
1370 | |
1371 | thread_lock_init(new_thread); |
1372 | wake_lock_init(new_thread); |
1373 | |
1374 | lck_mtx_init(lck: &new_thread->mutex, grp: &thread_lck_grp, LCK_ATTR_NULL); |
1375 | |
1376 | ipc_thread_init(task: parent_task, thread: new_thread, tro: &tro_tpl, options: init_options); |
1377 | |
1378 | thread_ro_create(parent_task, th: new_thread, tro_tpl: &tro_tpl); |
1379 | |
1380 | new_thread->continuation = continuation; |
1381 | new_thread->parameter = parameter; |
1382 | new_thread->inheritor_flags = TURNSTILE_UPDATE_FLAGS_NONE; |
1383 | new_thread->requested_policy = default_thread_requested_policy; |
1384 | new_thread->__runq.runq = PROCESSOR_NULL; |
1385 | priority_queue_init(que: &new_thread->sched_inheritor_queue); |
1386 | priority_queue_init(que: &new_thread->base_inheritor_queue); |
1387 | #if CONFIG_SCHED_CLUTCH |
1388 | priority_queue_entry_init(&new_thread->th_clutch_runq_link); |
1389 | priority_queue_entry_init(&new_thread->th_clutch_pri_link); |
1390 | #endif /* CONFIG_SCHED_CLUTCH */ |
1391 | |
1392 | #if CONFIG_SCHED_EDGE |
1393 | new_thread->th_bound_cluster_enqueued = false; |
1394 | for (cluster_shared_rsrc_type_t shared_rsrc_type = CLUSTER_SHARED_RSRC_TYPE_MIN; shared_rsrc_type < CLUSTER_SHARED_RSRC_TYPE_COUNT; shared_rsrc_type++) { |
1395 | new_thread->th_shared_rsrc_enqueued[shared_rsrc_type] = false; |
1396 | new_thread->th_shared_rsrc_heavy_user[shared_rsrc_type] = false; |
1397 | new_thread->th_shared_rsrc_heavy_perf_control[shared_rsrc_type] = false; |
1398 | } |
1399 | #endif /* CONFIG_SCHED_EDGE */ |
1400 | new_thread->th_bound_cluster_id = THREAD_BOUND_CLUSTER_NONE; |
1401 | |
1402 | /* Allocate I/O Statistics structure */ |
1403 | new_thread->thread_io_stats = kalloc_data(sizeof(struct io_stat_info), |
1404 | Z_WAITOK | Z_ZERO | Z_NOFAIL); |
1405 | |
1406 | #if KASAN_CLASSIC |
1407 | kasan_init_thread(&new_thread->kasan_data); |
1408 | #endif /* KASAN_CLASSIC */ |
1409 | |
1410 | #if CONFIG_KCOV |
1411 | kcov_init_thread(&new_thread->kcov_data); |
1412 | #endif |
1413 | |
1414 | #if CONFIG_IOSCHED |
1415 | /* Clear out the I/O Scheduling info for AppleFSCompression */ |
1416 | new_thread->decmp_upl = NULL; |
1417 | #endif /* CONFIG_IOSCHED */ |
1418 | |
1419 | new_thread->thread_region_page_shift = 0; |
1420 | |
1421 | #if DEVELOPMENT || DEBUG |
1422 | task_lock(parent_task); |
1423 | uint16_t thread_limit = parent_task->task_thread_limit; |
1424 | if (exc_resource_threads_enabled && |
1425 | thread_limit > 0 && |
1426 | parent_task->thread_count >= thread_limit && |
1427 | !parent_task->task_has_crossed_thread_limit && |
1428 | !(task_is_a_corpse(parent_task))) { |
1429 | int thread_count = parent_task->thread_count; |
1430 | parent_task->task_has_crossed_thread_limit = TRUE; |
1431 | task_unlock(parent_task); |
1432 | SENDING_NOTIFICATION__TASK_HAS_TOO_MANY_THREADS(parent_task, thread_count); |
1433 | } else { |
1434 | task_unlock(parent_task); |
1435 | } |
1436 | #endif |
1437 | |
1438 | lck_mtx_lock(lck: &tasks_threads_lock); |
1439 | task_lock(parent_task); |
1440 | |
1441 | /* |
1442 | * Fail thread creation if parent task is being torn down or has too many threads |
1443 | * If the caller asked for TH_OPTION_NOSUSP, also fail if the parent task is suspended |
1444 | */ |
1445 | if (parent_task->active == 0 || parent_task->halting || |
1446 | (parent_task->suspend_count > 0 && (options & TH_OPTION_NOSUSP) != 0) || |
1447 | (parent_task->thread_count >= task_threadmax && parent_task != kernel_task)) { |
1448 | task_unlock(parent_task); |
1449 | lck_mtx_unlock(lck: &tasks_threads_lock); |
1450 | |
1451 | ipc_thread_disable(thread: new_thread); |
1452 | ipc_thread_terminate(thread: new_thread); |
1453 | kfree_data(new_thread->thread_io_stats, |
1454 | sizeof(struct io_stat_info)); |
1455 | lck_mtx_destroy(lck: &new_thread->mutex, grp: &thread_lck_grp); |
1456 | kr = KERN_FAILURE; |
1457 | goto out_thread_cleanup; |
1458 | } |
1459 | |
1460 | /* Protected by the tasks_threads_lock */ |
1461 | new_thread->thread_id = ++thread_unique_id; |
1462 | |
1463 | ctid_table_add(thread: new_thread); |
1464 | |
1465 | /* New threads inherit any default state on the task */ |
1466 | machine_thread_inherit_taskwide(thread: new_thread, parent_task); |
1467 | |
1468 | task_reference_grp(parent_task, TASK_GRP_INTERNAL); |
1469 | |
1470 | if (parent_task->rusage_cpu_flags & TASK_RUSECPU_FLAGS_PERTHR_LIMIT) { |
1471 | /* |
1472 | * This task has a per-thread CPU limit; make sure this new thread |
1473 | * gets its limit set too, before it gets out of the kernel. |
1474 | */ |
1475 | act_set_astledger(thread: new_thread); |
1476 | } |
1477 | |
1478 | /* Instantiate a thread ledger. Do not fail thread creation if ledger creation fails. */ |
1479 | if ((new_thread->t_threadledger = ledger_instantiate(template: thread_ledger_template, |
1480 | LEDGER_CREATE_INACTIVE_ENTRIES)) != LEDGER_NULL) { |
1481 | ledger_entry_setactive(ledger: new_thread->t_threadledger, entry: thread_ledgers.cpu_time); |
1482 | } |
1483 | |
1484 | new_thread->t_bankledger = LEDGER_NULL; |
1485 | new_thread->t_deduct_bank_ledger_time = 0; |
1486 | new_thread->t_deduct_bank_ledger_energy = 0; |
1487 | |
1488 | new_thread->t_ledger = parent_task->ledger; |
1489 | if (new_thread->t_ledger) { |
1490 | ledger_reference(ledger: new_thread->t_ledger); |
1491 | } |
1492 | |
1493 | recount_thread_init(th: &new_thread->th_recount); |
1494 | |
1495 | #if defined(CONFIG_SCHED_MULTIQ) |
1496 | /* Cache the task's sched_group */ |
1497 | new_thread->sched_group = parent_task->sched_group; |
1498 | #endif /* defined(CONFIG_SCHED_MULTIQ) */ |
1499 | |
1500 | /* Cache the task's map */ |
1501 | new_thread->map = parent_task->map; |
1502 | |
1503 | new_thread->depress_timer = timer_call_alloc(func: thread_depress_expire, param0: new_thread); |
1504 | new_thread->wait_timer = timer_call_alloc(func: thread_timer_expire, param0: new_thread); |
1505 | |
1506 | #if CONFIG_CPU_COUNTERS |
1507 | kpc_thread_create(new_thread); |
1508 | #endif /* CONFIG_CPU_COUNTERS */ |
1509 | |
1510 | /* Set the thread's scheduling parameters */ |
1511 | new_thread->sched_mode = SCHED(initial_thread_sched_mode)(parent_task); |
1512 | new_thread->max_priority = parent_task->max_priority; |
1513 | new_thread->task_priority = parent_task->priority; |
1514 | |
1515 | #if CONFIG_THREAD_GROUPS |
1516 | thread_group_init_thread(t: new_thread, task: parent_task); |
1517 | #endif /* CONFIG_THREAD_GROUPS */ |
1518 | |
1519 | int new_priority = (priority < 0) ? parent_task->priority: priority; |
1520 | new_priority = (priority < 0)? parent_task->priority: priority; |
1521 | if (new_priority > new_thread->max_priority) { |
1522 | new_priority = new_thread->max_priority; |
1523 | } |
1524 | #if !defined(XNU_TARGET_OS_OSX) |
1525 | if (new_priority < MAXPRI_THROTTLE) { |
1526 | new_priority = MAXPRI_THROTTLE; |
1527 | } |
1528 | #endif /* !defined(XNU_TARGET_OS_OSX) */ |
1529 | |
1530 | new_thread->importance = new_priority - new_thread->task_priority; |
1531 | |
1532 | sched_set_thread_base_priority(thread: new_thread, priority: new_priority); |
1533 | |
1534 | #if defined(CONFIG_SCHED_TIMESHARE_CORE) |
1535 | new_thread->sched_stamp = sched_tick; |
1536 | #if CONFIG_SCHED_CLUTCH |
1537 | new_thread->pri_shift = sched_clutch_thread_pri_shift(new_thread, new_thread->th_sched_bucket); |
1538 | #else /* CONFIG_SCHED_CLUTCH */ |
1539 | new_thread->pri_shift = sched_pri_shifts[new_thread->th_sched_bucket]; |
1540 | #endif /* CONFIG_SCHED_CLUTCH */ |
1541 | #endif /* defined(CONFIG_SCHED_TIMESHARE_CORE) */ |
1542 | |
1543 | if (parent_task->max_priority <= MAXPRI_THROTTLE) { |
1544 | sched_thread_mode_demote(thread: new_thread, TH_SFLAG_THROTTLED); |
1545 | } |
1546 | |
1547 | thread_policy_create(thread: new_thread); |
1548 | |
1549 | /* Chain the thread onto the task's list */ |
1550 | queue_enter(&parent_task->threads, new_thread, thread_t, task_threads); |
1551 | parent_task->thread_count++; |
1552 | |
1553 | /* So terminating threads don't need to take the task lock to decrement */ |
1554 | os_atomic_inc(&parent_task->active_thread_count, relaxed); |
1555 | |
1556 | queue_enter(&threads, new_thread, thread_t, threads); |
1557 | threads_count++; |
1558 | |
1559 | new_thread->active = TRUE; |
1560 | if (task_is_a_corpse_fork(parent_task)) { |
1561 | /* Set the inspection bit if the task is a corpse fork */ |
1562 | new_thread->inspection = TRUE; |
1563 | } else { |
1564 | new_thread->inspection = FALSE; |
1565 | } |
1566 | new_thread->corpse_dup = FALSE; |
1567 | new_thread->turnstile = turnstile_alloc(); |
1568 | new_thread->ctsid = turnstile_compact_id_get(); |
1569 | |
1570 | |
1571 | *out_thread = new_thread; |
1572 | |
1573 | if (kdebug_enable) { |
1574 | long args[4] = {}; |
1575 | |
1576 | kdbg_trace_data(proc: get_bsdtask_info(parent_task), arg_pid: &args[1], arg_uniqueid: &args[3]); |
1577 | |
1578 | /* |
1579 | * Starting with 26604425, exec'ing creates a new task/thread. |
1580 | * |
1581 | * NEWTHREAD in the current process has two possible meanings: |
1582 | * |
1583 | * 1) Create a new thread for this process. |
1584 | * 2) Create a new thread for the future process this will become in an |
1585 | * exec. |
1586 | * |
1587 | * To disambiguate these, arg3 will be set to TRUE for case #2. |
1588 | * |
1589 | * The value we need to find (TPF_EXEC_COPY) is stable in the case of a |
1590 | * task exec'ing. The read of t_procflags does not take the proc_lock. |
1591 | */ |
1592 | args[2] = task_is_exec_copy(parent_task) ? 1 : 0; |
1593 | |
1594 | KDBG_RELEASE(TRACE_DATA_NEWTHREAD, (uintptr_t)thread_tid(new_thread), |
1595 | args[1], args[2], args[3]); |
1596 | |
1597 | kdebug_proc_name_args(proc: get_bsdtask_info(parent_task), args); |
1598 | KDBG_RELEASE(TRACE_STRING_NEWTHREAD, args[0], args[1], args[2], |
1599 | args[3]); |
1600 | } |
1601 | |
1602 | DTRACE_PROC1(lwp__create, thread_t, *out_thread); |
1603 | |
1604 | kr = KERN_SUCCESS; |
1605 | goto done; |
1606 | |
1607 | out_thread_cleanup: |
1608 | #ifdef MACH_BSD |
1609 | { |
1610 | struct uthread *ut = get_bsdthread_info(new_thread); |
1611 | |
1612 | uthread_cleanup(ut, &tro_tpl); |
1613 | uthread_destroy(ut); |
1614 | } |
1615 | #endif /* MACH_BSD */ |
1616 | |
1617 | machine_thread_destroy(thread: new_thread); |
1618 | |
1619 | thread_ro_destroy(th: new_thread); |
1620 | zfree(thread_zone, new_thread); |
1621 | |
1622 | done: |
1623 | return kr; |
1624 | } |
1625 | |
1626 | static kern_return_t |
1627 | thread_create_with_options_internal( |
1628 | task_t task, |
1629 | thread_t *new_thread, |
1630 | boolean_t from_user, |
1631 | thread_create_internal_options_t options, |
1632 | thread_continue_t continuation) |
1633 | { |
1634 | kern_return_t result; |
1635 | thread_t thread; |
1636 | |
1637 | if (task == TASK_NULL || task == kernel_task) { |
1638 | return KERN_INVALID_ARGUMENT; |
1639 | } |
1640 | |
1641 | #if CONFIG_MACF |
1642 | if (from_user && current_task() != task && |
1643 | mac_proc_check_remote_thread_create(task, flavor: -1, NULL, new_state_count: 0) != 0) { |
1644 | return KERN_DENIED; |
1645 | } |
1646 | #endif |
1647 | |
1648 | result = thread_create_internal(parent_task: task, priority: -1, continuation, NULL, options, out_thread: &thread); |
1649 | if (result != KERN_SUCCESS) { |
1650 | return result; |
1651 | } |
1652 | |
1653 | thread->user_stop_count = 1; |
1654 | thread_hold(thread); |
1655 | if (task->suspend_count > 0) { |
1656 | thread_hold(thread); |
1657 | } |
1658 | |
1659 | if (from_user) { |
1660 | extmod_statistics_incr_thread_create(target: task); |
1661 | } |
1662 | |
1663 | task_unlock(task); |
1664 | lck_mtx_unlock(lck: &tasks_threads_lock); |
1665 | |
1666 | *new_thread = thread; |
1667 | |
1668 | return KERN_SUCCESS; |
1669 | } |
1670 | |
1671 | kern_return_t |
1672 | thread_create_immovable( |
1673 | task_t task, |
1674 | thread_t *new_thread) |
1675 | { |
1676 | return thread_create_with_options_internal(task, new_thread, FALSE, |
1677 | options: TH_OPTION_NONE, continuation: (thread_continue_t)thread_bootstrap_return); |
1678 | } |
1679 | |
1680 | kern_return_t |
1681 | thread_create_from_user( |
1682 | task_t task, |
1683 | thread_t *new_thread) |
1684 | { |
1685 | /* All thread ports are created immovable by default */ |
1686 | return thread_create_with_options_internal(task, new_thread, TRUE, options: TH_OPTION_NONE, |
1687 | continuation: (thread_continue_t)thread_bootstrap_return); |
1688 | } |
1689 | |
1690 | kern_return_t |
1691 | thread_create_with_continuation( |
1692 | task_t task, |
1693 | thread_t *new_thread, |
1694 | thread_continue_t continuation) |
1695 | { |
1696 | return thread_create_with_options_internal(task, new_thread, FALSE, options: TH_OPTION_NONE, continuation); |
1697 | } |
1698 | |
1699 | /* |
1700 | * Create a thread that is already started, but is waiting on an event |
1701 | */ |
1702 | static kern_return_t |
1703 | thread_create_waiting_internal( |
1704 | task_t task, |
1705 | thread_continue_t continuation, |
1706 | event_t event, |
1707 | block_hint_t block_hint, |
1708 | thread_create_internal_options_t options, |
1709 | thread_t *new_thread) |
1710 | { |
1711 | kern_return_t result; |
1712 | thread_t thread; |
1713 | wait_interrupt_t wait_interrupt = THREAD_INTERRUPTIBLE; |
1714 | |
1715 | if (task == TASK_NULL || task == kernel_task) { |
1716 | return KERN_INVALID_ARGUMENT; |
1717 | } |
1718 | |
1719 | result = thread_create_internal(parent_task: task, priority: -1, continuation, NULL, |
1720 | options, out_thread: &thread); |
1721 | if (result != KERN_SUCCESS) { |
1722 | return result; |
1723 | } |
1724 | |
1725 | /* note no user_stop_count or thread_hold here */ |
1726 | |
1727 | if (task->suspend_count > 0) { |
1728 | thread_hold(thread); |
1729 | } |
1730 | |
1731 | thread_mtx_lock(thread); |
1732 | thread_set_pending_block_hint(thread, block_hint); |
1733 | if (options & TH_OPTION_WORKQ) { |
1734 | thread->static_param = true; |
1735 | event = workq_thread_init_and_wq_lock(task, thread); |
1736 | } else if (options & TH_OPTION_MAINTHREAD) { |
1737 | wait_interrupt = THREAD_UNINT; |
1738 | } |
1739 | thread_start_in_assert_wait(thread, |
1740 | waitq: assert_wait_queue(event), CAST_EVENT64_T(event), |
1741 | interruptible: wait_interrupt); |
1742 | thread_mtx_unlock(thread); |
1743 | |
1744 | task_unlock(task); |
1745 | lck_mtx_unlock(lck: &tasks_threads_lock); |
1746 | |
1747 | *new_thread = thread; |
1748 | |
1749 | return KERN_SUCCESS; |
1750 | } |
1751 | |
1752 | kern_return_t |
1753 | main_thread_create_waiting( |
1754 | task_t task, |
1755 | thread_continue_t continuation, |
1756 | event_t event, |
1757 | thread_t *new_thread) |
1758 | { |
1759 | return thread_create_waiting_internal(task, continuation, event, |
1760 | block_hint: kThreadWaitNone, options: TH_OPTION_MAINTHREAD, new_thread); |
1761 | } |
1762 | |
1763 | |
1764 | static kern_return_t |
1765 | thread_create_running_internal2( |
1766 | task_t task, |
1767 | int flavor, |
1768 | thread_state_t new_state, |
1769 | mach_msg_type_number_t new_state_count, |
1770 | thread_t *new_thread, |
1771 | boolean_t from_user) |
1772 | { |
1773 | kern_return_t result; |
1774 | thread_t thread; |
1775 | |
1776 | if (task == TASK_NULL || task == kernel_task) { |
1777 | return KERN_INVALID_ARGUMENT; |
1778 | } |
1779 | |
1780 | #if CONFIG_MACF |
1781 | if (from_user && current_task() != task && |
1782 | mac_proc_check_remote_thread_create(task, flavor, new_state, new_state_count) != 0) { |
1783 | return KERN_DENIED; |
1784 | } |
1785 | #endif |
1786 | |
1787 | result = thread_create_internal(parent_task: task, priority: -1, |
1788 | continuation: (thread_continue_t)thread_bootstrap_return, NULL, |
1789 | options: TH_OPTION_NONE, out_thread: &thread); |
1790 | if (result != KERN_SUCCESS) { |
1791 | return result; |
1792 | } |
1793 | |
1794 | if (task->suspend_count > 0) { |
1795 | thread_hold(thread); |
1796 | } |
1797 | |
1798 | if (from_user) { |
1799 | result = machine_thread_state_convert_from_user(thread, flavor, |
1800 | tstate: new_state, count: new_state_count, NULL, old_count: 0, tssf_flags: TSSF_FLAGS_NONE); |
1801 | } |
1802 | if (result == KERN_SUCCESS) { |
1803 | result = machine_thread_set_state(thread, flavor, state: new_state, |
1804 | count: new_state_count); |
1805 | } |
1806 | if (result != KERN_SUCCESS) { |
1807 | task_unlock(task); |
1808 | lck_mtx_unlock(lck: &tasks_threads_lock); |
1809 | |
1810 | thread_terminate(target_act: thread); |
1811 | thread_deallocate(thread); |
1812 | return result; |
1813 | } |
1814 | |
1815 | thread_mtx_lock(thread); |
1816 | thread_start(thread); |
1817 | thread_mtx_unlock(thread); |
1818 | |
1819 | if (from_user) { |
1820 | extmod_statistics_incr_thread_create(target: task); |
1821 | } |
1822 | |
1823 | task_unlock(task); |
1824 | lck_mtx_unlock(lck: &tasks_threads_lock); |
1825 | |
1826 | *new_thread = thread; |
1827 | |
1828 | return result; |
1829 | } |
1830 | |
1831 | /* Prototype, see justification above */ |
1832 | kern_return_t |
1833 | thread_create_running( |
1834 | task_t task, |
1835 | int flavor, |
1836 | thread_state_t new_state, |
1837 | mach_msg_type_number_t new_state_count, |
1838 | thread_t *new_thread); |
1839 | |
1840 | kern_return_t |
1841 | thread_create_running( |
1842 | task_t task, |
1843 | int flavor, |
1844 | thread_state_t new_state, |
1845 | mach_msg_type_number_t new_state_count, |
1846 | thread_t *new_thread) |
1847 | { |
1848 | return thread_create_running_internal2( |
1849 | task, flavor, new_state, new_state_count, |
1850 | new_thread, FALSE); |
1851 | } |
1852 | |
1853 | kern_return_t |
1854 | thread_create_running_from_user( |
1855 | task_t task, |
1856 | int flavor, |
1857 | thread_state_t new_state, |
1858 | mach_msg_type_number_t new_state_count, |
1859 | thread_t *new_thread) |
1860 | { |
1861 | return thread_create_running_internal2( |
1862 | task, flavor, new_state, new_state_count, |
1863 | new_thread, TRUE); |
1864 | } |
1865 | |
1866 | kern_return_t |
1867 | thread_create_workq_waiting( |
1868 | task_t task, |
1869 | thread_continue_t continuation, |
1870 | thread_t *new_thread) |
1871 | { |
1872 | /* |
1873 | * Create thread, but don't pin control port just yet, in case someone calls |
1874 | * task_threads() and deallocates pinned port before kernel copyout happens, |
1875 | * which will result in pinned port guard exception. Instead, pin and copyout |
1876 | * atomically during workq_setup_and_run(). |
1877 | */ |
1878 | int options = TH_OPTION_NOSUSP | TH_OPTION_WORKQ; |
1879 | return thread_create_waiting_internal(task, continuation, NULL, |
1880 | block_hint: kThreadWaitParkedWorkQueue, options, new_thread); |
1881 | } |
1882 | |
1883 | /* |
1884 | * kernel_thread_create: |
1885 | * |
1886 | * Create a thread in the kernel task |
1887 | * to execute in kernel context. |
1888 | */ |
1889 | kern_return_t |
1890 | kernel_thread_create( |
1891 | thread_continue_t continuation, |
1892 | void *parameter, |
1893 | integer_t priority, |
1894 | thread_t *new_thread) |
1895 | { |
1896 | kern_return_t result; |
1897 | thread_t thread; |
1898 | task_t task = kernel_task; |
1899 | |
1900 | result = thread_create_internal(parent_task: task, priority, continuation, parameter, |
1901 | options: TH_OPTION_NONE, out_thread: &thread); |
1902 | if (result != KERN_SUCCESS) { |
1903 | return result; |
1904 | } |
1905 | |
1906 | task_unlock(task); |
1907 | lck_mtx_unlock(lck: &tasks_threads_lock); |
1908 | |
1909 | stack_alloc(thread); |
1910 | assert(thread->kernel_stack != 0); |
1911 | #if !defined(XNU_TARGET_OS_OSX) |
1912 | if (priority > BASEPRI_KERNEL) |
1913 | #endif |
1914 | thread->reserved_stack = thread->kernel_stack; |
1915 | |
1916 | if (debug_task & 1) { |
1917 | kprintf(fmt: "kernel_thread_create: thread = %p continuation = %p\n" , thread, continuation); |
1918 | } |
1919 | *new_thread = thread; |
1920 | |
1921 | return result; |
1922 | } |
1923 | |
1924 | kern_return_t |
1925 | kernel_thread_start_priority( |
1926 | thread_continue_t continuation, |
1927 | void *parameter, |
1928 | integer_t priority, |
1929 | thread_t *new_thread) |
1930 | { |
1931 | kern_return_t result; |
1932 | thread_t thread; |
1933 | |
1934 | result = kernel_thread_create(continuation, parameter, priority, new_thread: &thread); |
1935 | if (result != KERN_SUCCESS) { |
1936 | return result; |
1937 | } |
1938 | |
1939 | *new_thread = thread; |
1940 | |
1941 | thread_mtx_lock(thread); |
1942 | thread_start(thread); |
1943 | thread_mtx_unlock(thread); |
1944 | |
1945 | return result; |
1946 | } |
1947 | |
1948 | kern_return_t |
1949 | kernel_thread_start( |
1950 | thread_continue_t continuation, |
1951 | void *parameter, |
1952 | thread_t *new_thread) |
1953 | { |
1954 | return kernel_thread_start_priority(continuation, parameter, priority: -1, new_thread); |
1955 | } |
1956 | |
1957 | /* Separated into helper function so it can be used by THREAD_BASIC_INFO and THREAD_EXTENDED_INFO */ |
1958 | /* it is assumed that the thread is locked by the caller */ |
1959 | static void |
1960 | retrieve_thread_basic_info(thread_t thread, thread_basic_info_t basic_info) |
1961 | { |
1962 | int state, flags; |
1963 | |
1964 | /* fill in info */ |
1965 | |
1966 | thread_read_times(thread, user_time: &basic_info->user_time, |
1967 | system_time: &basic_info->system_time, NULL); |
1968 | |
1969 | /* |
1970 | * Update lazy-evaluated scheduler info because someone wants it. |
1971 | */ |
1972 | if (SCHED(can_update_priority)(thread)) { |
1973 | SCHED(update_priority)(thread); |
1974 | } |
1975 | |
1976 | basic_info->sleep_time = 0; |
1977 | |
1978 | /* |
1979 | * To calculate cpu_usage, first correct for timer rate, |
1980 | * then for 5/8 ageing. The correction factor [3/5] is |
1981 | * (1/(5/8) - 1). |
1982 | */ |
1983 | basic_info->cpu_usage = 0; |
1984 | #if defined(CONFIG_SCHED_TIMESHARE_CORE) |
1985 | if (sched_tick_interval) { |
1986 | basic_info->cpu_usage = (integer_t)(((uint64_t)thread->cpu_usage |
1987 | * TH_USAGE_SCALE) / sched_tick_interval); |
1988 | basic_info->cpu_usage = (basic_info->cpu_usage * 3) / 5; |
1989 | } |
1990 | #endif |
1991 | |
1992 | if (basic_info->cpu_usage > TH_USAGE_SCALE) { |
1993 | basic_info->cpu_usage = TH_USAGE_SCALE; |
1994 | } |
1995 | |
1996 | basic_info->policy = ((thread->sched_mode == TH_MODE_TIMESHARE)? |
1997 | POLICY_TIMESHARE: POLICY_RR); |
1998 | |
1999 | flags = 0; |
2000 | if (thread->options & TH_OPT_IDLE_THREAD) { |
2001 | flags |= TH_FLAGS_IDLE; |
2002 | } |
2003 | |
2004 | if (thread->options & TH_OPT_GLOBAL_FORCED_IDLE) { |
2005 | flags |= TH_FLAGS_GLOBAL_FORCED_IDLE; |
2006 | } |
2007 | |
2008 | if (!thread->kernel_stack) { |
2009 | flags |= TH_FLAGS_SWAPPED; |
2010 | } |
2011 | |
2012 | state = 0; |
2013 | if (thread->state & TH_TERMINATE) { |
2014 | state = TH_STATE_HALTED; |
2015 | } else if (thread->state & TH_RUN) { |
2016 | state = TH_STATE_RUNNING; |
2017 | } else if (thread->state & TH_UNINT) { |
2018 | state = TH_STATE_UNINTERRUPTIBLE; |
2019 | } else if (thread->state & TH_SUSP) { |
2020 | state = TH_STATE_STOPPED; |
2021 | } else if (thread->state & TH_WAIT) { |
2022 | state = TH_STATE_WAITING; |
2023 | } |
2024 | |
2025 | basic_info->run_state = state; |
2026 | basic_info->flags = flags; |
2027 | |
2028 | basic_info->suspend_count = thread->user_stop_count; |
2029 | |
2030 | return; |
2031 | } |
2032 | |
2033 | kern_return_t |
2034 | thread_info_internal( |
2035 | thread_t thread, |
2036 | thread_flavor_t flavor, |
2037 | thread_info_t thread_info_out, /* ptr to OUT array */ |
2038 | mach_msg_type_number_t *thread_info_count) /*IN/OUT*/ |
2039 | { |
2040 | spl_t s; |
2041 | |
2042 | if (thread == THREAD_NULL) { |
2043 | return KERN_INVALID_ARGUMENT; |
2044 | } |
2045 | |
2046 | if (flavor == THREAD_BASIC_INFO) { |
2047 | if (*thread_info_count < THREAD_BASIC_INFO_COUNT) { |
2048 | return KERN_INVALID_ARGUMENT; |
2049 | } |
2050 | |
2051 | s = splsched(); |
2052 | thread_lock(thread); |
2053 | |
2054 | retrieve_thread_basic_info(thread, basic_info: (thread_basic_info_t) thread_info_out); |
2055 | |
2056 | thread_unlock(thread); |
2057 | splx(s); |
2058 | |
2059 | *thread_info_count = THREAD_BASIC_INFO_COUNT; |
2060 | |
2061 | return KERN_SUCCESS; |
2062 | } else if (flavor == THREAD_IDENTIFIER_INFO) { |
2063 | thread_identifier_info_t identifier_info; |
2064 | |
2065 | if (*thread_info_count < THREAD_IDENTIFIER_INFO_COUNT) { |
2066 | return KERN_INVALID_ARGUMENT; |
2067 | } |
2068 | |
2069 | identifier_info = __IGNORE_WCASTALIGN((thread_identifier_info_t)thread_info_out); |
2070 | |
2071 | s = splsched(); |
2072 | thread_lock(thread); |
2073 | |
2074 | identifier_info->thread_id = thread->thread_id; |
2075 | identifier_info->thread_handle = thread->machine.cthread_self; |
2076 | identifier_info->dispatch_qaddr = thread_dispatchqaddr(thread); |
2077 | |
2078 | thread_unlock(thread); |
2079 | splx(s); |
2080 | return KERN_SUCCESS; |
2081 | } else if (flavor == THREAD_SCHED_TIMESHARE_INFO) { |
2082 | policy_timeshare_info_t ts_info; |
2083 | |
2084 | if (*thread_info_count < POLICY_TIMESHARE_INFO_COUNT) { |
2085 | return KERN_INVALID_ARGUMENT; |
2086 | } |
2087 | |
2088 | ts_info = (policy_timeshare_info_t)thread_info_out; |
2089 | |
2090 | s = splsched(); |
2091 | thread_lock(thread); |
2092 | |
2093 | if (thread->sched_mode != TH_MODE_TIMESHARE) { |
2094 | thread_unlock(thread); |
2095 | splx(s); |
2096 | return KERN_INVALID_POLICY; |
2097 | } |
2098 | |
2099 | ts_info->depressed = (thread->sched_flags & TH_SFLAG_DEPRESSED_MASK) != 0; |
2100 | if (ts_info->depressed) { |
2101 | ts_info->base_priority = DEPRESSPRI; |
2102 | ts_info->depress_priority = thread->base_pri; |
2103 | } else { |
2104 | ts_info->base_priority = thread->base_pri; |
2105 | ts_info->depress_priority = -1; |
2106 | } |
2107 | |
2108 | ts_info->cur_priority = thread->sched_pri; |
2109 | ts_info->max_priority = thread->max_priority; |
2110 | |
2111 | thread_unlock(thread); |
2112 | splx(s); |
2113 | |
2114 | *thread_info_count = POLICY_TIMESHARE_INFO_COUNT; |
2115 | |
2116 | return KERN_SUCCESS; |
2117 | } else if (flavor == THREAD_SCHED_FIFO_INFO) { |
2118 | if (*thread_info_count < POLICY_FIFO_INFO_COUNT) { |
2119 | return KERN_INVALID_ARGUMENT; |
2120 | } |
2121 | |
2122 | return KERN_INVALID_POLICY; |
2123 | } else if (flavor == THREAD_SCHED_RR_INFO) { |
2124 | policy_rr_info_t rr_info; |
2125 | uint32_t quantum_time; |
2126 | uint64_t quantum_ns; |
2127 | |
2128 | if (*thread_info_count < POLICY_RR_INFO_COUNT) { |
2129 | return KERN_INVALID_ARGUMENT; |
2130 | } |
2131 | |
2132 | rr_info = (policy_rr_info_t) thread_info_out; |
2133 | |
2134 | s = splsched(); |
2135 | thread_lock(thread); |
2136 | |
2137 | if (thread->sched_mode == TH_MODE_TIMESHARE) { |
2138 | thread_unlock(thread); |
2139 | splx(s); |
2140 | |
2141 | return KERN_INVALID_POLICY; |
2142 | } |
2143 | |
2144 | rr_info->depressed = (thread->sched_flags & TH_SFLAG_DEPRESSED_MASK) != 0; |
2145 | if (rr_info->depressed) { |
2146 | rr_info->base_priority = DEPRESSPRI; |
2147 | rr_info->depress_priority = thread->base_pri; |
2148 | } else { |
2149 | rr_info->base_priority = thread->base_pri; |
2150 | rr_info->depress_priority = -1; |
2151 | } |
2152 | |
2153 | quantum_time = SCHED(initial_quantum_size)(THREAD_NULL); |
2154 | absolutetime_to_nanoseconds(abstime: quantum_time, result: &quantum_ns); |
2155 | |
2156 | rr_info->max_priority = thread->max_priority; |
2157 | rr_info->quantum = (uint32_t)(quantum_ns / 1000 / 1000); |
2158 | |
2159 | thread_unlock(thread); |
2160 | splx(s); |
2161 | |
2162 | *thread_info_count = POLICY_RR_INFO_COUNT; |
2163 | |
2164 | return KERN_SUCCESS; |
2165 | } else if (flavor == THREAD_EXTENDED_INFO) { |
2166 | thread_basic_info_data_t basic_info; |
2167 | thread_extended_info_t extended_info = __IGNORE_WCASTALIGN((thread_extended_info_t)thread_info_out); |
2168 | |
2169 | if (*thread_info_count < THREAD_EXTENDED_INFO_COUNT) { |
2170 | return KERN_INVALID_ARGUMENT; |
2171 | } |
2172 | |
2173 | s = splsched(); |
2174 | thread_lock(thread); |
2175 | |
2176 | /* NOTE: This mimics fill_taskthreadinfo(), which is the function used by proc_pidinfo() for |
2177 | * the PROC_PIDTHREADINFO flavor (which can't be used on corpses) |
2178 | */ |
2179 | retrieve_thread_basic_info(thread, basic_info: &basic_info); |
2180 | extended_info->pth_user_time = (((uint64_t)basic_info.user_time.seconds * NSEC_PER_SEC) + ((uint64_t)basic_info.user_time.microseconds * NSEC_PER_USEC)); |
2181 | extended_info->pth_system_time = (((uint64_t)basic_info.system_time.seconds * NSEC_PER_SEC) + ((uint64_t)basic_info.system_time.microseconds * NSEC_PER_USEC)); |
2182 | |
2183 | extended_info->pth_cpu_usage = basic_info.cpu_usage; |
2184 | extended_info->pth_policy = basic_info.policy; |
2185 | extended_info->pth_run_state = basic_info.run_state; |
2186 | extended_info->pth_flags = basic_info.flags; |
2187 | extended_info->pth_sleep_time = basic_info.sleep_time; |
2188 | extended_info->pth_curpri = thread->sched_pri; |
2189 | extended_info->pth_priority = thread->base_pri; |
2190 | extended_info->pth_maxpriority = thread->max_priority; |
2191 | |
2192 | bsd_getthreadname(uth: get_bsdthread_info(thread), buffer: extended_info->pth_name); |
2193 | |
2194 | thread_unlock(thread); |
2195 | splx(s); |
2196 | |
2197 | *thread_info_count = THREAD_EXTENDED_INFO_COUNT; |
2198 | |
2199 | return KERN_SUCCESS; |
2200 | } else if (flavor == THREAD_DEBUG_INFO_INTERNAL) { |
2201 | #if DEVELOPMENT || DEBUG |
2202 | thread_debug_info_internal_t dbg_info; |
2203 | if (*thread_info_count < THREAD_DEBUG_INFO_INTERNAL_COUNT) { |
2204 | return KERN_NOT_SUPPORTED; |
2205 | } |
2206 | |
2207 | if (thread_info_out == NULL) { |
2208 | return KERN_INVALID_ARGUMENT; |
2209 | } |
2210 | |
2211 | dbg_info = __IGNORE_WCASTALIGN((thread_debug_info_internal_t)thread_info_out); |
2212 | dbg_info->page_creation_count = thread->t_page_creation_count; |
2213 | |
2214 | *thread_info_count = THREAD_DEBUG_INFO_INTERNAL_COUNT; |
2215 | return KERN_SUCCESS; |
2216 | #endif /* DEVELOPMENT || DEBUG */ |
2217 | return KERN_NOT_SUPPORTED; |
2218 | } |
2219 | |
2220 | return KERN_INVALID_ARGUMENT; |
2221 | } |
2222 | |
2223 | static void |
2224 | _convert_mach_to_time_value(uint64_t time_mach, time_value_t *time) |
2225 | { |
2226 | clock_sec_t secs; |
2227 | clock_usec_t usecs; |
2228 | absolutetime_to_microtime(abstime: time_mach, secs: &secs, microsecs: &usecs); |
2229 | time->seconds = (typeof(time->seconds))secs; |
2230 | time->microseconds = usecs; |
2231 | } |
2232 | |
2233 | void |
2234 | thread_read_times( |
2235 | thread_t thread, |
2236 | time_value_t *user_time, |
2237 | time_value_t *system_time, |
2238 | time_value_t *runnable_time) |
2239 | { |
2240 | if (user_time && system_time) { |
2241 | struct recount_times_mach times = recount_thread_times(thread); |
2242 | _convert_mach_to_time_value(time_mach: times.rtm_user, time: user_time); |
2243 | _convert_mach_to_time_value(time_mach: times.rtm_system, time: system_time); |
2244 | } |
2245 | |
2246 | if (runnable_time) { |
2247 | uint64_t runnable_time_mach = timer_grab(timer: &thread->runnable_timer); |
2248 | _convert_mach_to_time_value(time_mach: runnable_time_mach, time: runnable_time); |
2249 | } |
2250 | } |
2251 | |
2252 | uint64_t |
2253 | thread_get_runtime_self(void) |
2254 | { |
2255 | /* |
2256 | * Must be guaranteed to stay on the same CPU and not be updated by the |
2257 | * scheduler. |
2258 | */ |
2259 | boolean_t interrupt_state = ml_set_interrupts_enabled(FALSE); |
2260 | uint64_t time_mach = recount_current_thread_time_mach(); |
2261 | ml_set_interrupts_enabled(enable: interrupt_state); |
2262 | return time_mach; |
2263 | } |
2264 | |
2265 | /* |
2266 | * thread_wire_internal: |
2267 | * |
2268 | * Specify that the target thread must always be able |
2269 | * to run and to allocate memory. |
2270 | */ |
2271 | kern_return_t |
2272 | thread_wire_internal( |
2273 | host_priv_t host_priv, |
2274 | thread_t thread, |
2275 | boolean_t wired, |
2276 | boolean_t *prev_state) |
2277 | { |
2278 | if (host_priv == NULL || thread != current_thread()) { |
2279 | return KERN_INVALID_ARGUMENT; |
2280 | } |
2281 | |
2282 | if (prev_state) { |
2283 | *prev_state = (thread->options & TH_OPT_VMPRIV) != 0; |
2284 | } |
2285 | |
2286 | if (wired) { |
2287 | if (!(thread->options & TH_OPT_VMPRIV)) { |
2288 | vm_page_free_reserve(pages: 1); /* XXX */ |
2289 | } |
2290 | thread->options |= TH_OPT_VMPRIV; |
2291 | } else { |
2292 | if (thread->options & TH_OPT_VMPRIV) { |
2293 | vm_page_free_reserve(pages: -1); /* XXX */ |
2294 | } |
2295 | thread->options &= ~TH_OPT_VMPRIV; |
2296 | } |
2297 | |
2298 | return KERN_SUCCESS; |
2299 | } |
2300 | |
2301 | |
2302 | /* |
2303 | * thread_wire: |
2304 | * |
2305 | * User-api wrapper for thread_wire_internal() |
2306 | */ |
2307 | kern_return_t |
2308 | thread_wire( |
2309 | host_priv_t host_priv __unused, |
2310 | thread_t thread __unused, |
2311 | boolean_t wired __unused) |
2312 | { |
2313 | return KERN_NOT_SUPPORTED; |
2314 | } |
2315 | |
2316 | boolean_t |
2317 | is_external_pageout_thread(void) |
2318 | { |
2319 | return current_thread() == pgo_iothread_external_state.pgo_iothread; |
2320 | } |
2321 | |
2322 | boolean_t |
2323 | is_vm_privileged(void) |
2324 | { |
2325 | return current_thread()->options & TH_OPT_VMPRIV ? TRUE : FALSE; |
2326 | } |
2327 | |
2328 | boolean_t |
2329 | set_vm_privilege(boolean_t privileged) |
2330 | { |
2331 | boolean_t was_vmpriv; |
2332 | |
2333 | if (current_thread()->options & TH_OPT_VMPRIV) { |
2334 | was_vmpriv = TRUE; |
2335 | } else { |
2336 | was_vmpriv = FALSE; |
2337 | } |
2338 | |
2339 | if (privileged != FALSE) { |
2340 | current_thread()->options |= TH_OPT_VMPRIV; |
2341 | } else { |
2342 | current_thread()->options &= ~TH_OPT_VMPRIV; |
2343 | } |
2344 | |
2345 | return was_vmpriv; |
2346 | } |
2347 | |
2348 | void |
2349 | thread_floor_boost_set_promotion_locked(thread_t thread) |
2350 | { |
2351 | assert(thread->priority_floor_count > 0); |
2352 | |
2353 | if (!(thread->sched_flags & TH_SFLAG_FLOOR_PROMOTED)) { |
2354 | sched_thread_promote_reason(thread, TH_SFLAG_FLOOR_PROMOTED, trace_obj: 0); |
2355 | } |
2356 | } |
2357 | |
2358 | /*! @function thread_priority_floor_start |
2359 | * @abstract boost the current thread priority to floor. |
2360 | * @discussion Increase the priority of the current thread to at least MINPRI_FLOOR. |
2361 | * The boost will be mantained until a corresponding thread_priority_floor_end() |
2362 | * is called. Every call of thread_priority_floor_start() needs to have a corresponding |
2363 | * call to thread_priority_floor_end() from the same thread. |
2364 | * No thread can return to userspace before calling thread_priority_floor_end(). |
2365 | * |
2366 | * NOTE: avoid to use this function. Try to use gate_t or sleep_with_inheritor() |
2367 | * instead. |
2368 | * @result a token to be given to the corresponding thread_priority_floor_end() |
2369 | */ |
2370 | thread_pri_floor_t |
2371 | thread_priority_floor_start(void) |
2372 | { |
2373 | thread_pri_floor_t ret; |
2374 | thread_t thread = current_thread(); |
2375 | __assert_only uint16_t prev_priority_floor_count; |
2376 | |
2377 | assert(thread->priority_floor_count < UINT16_MAX); |
2378 | prev_priority_floor_count = thread->priority_floor_count++; |
2379 | #if MACH_ASSERT |
2380 | /* |
2381 | * Set the ast to check that the |
2382 | * priority_floor_count is going to be set to zero when |
2383 | * going back to userspace. |
2384 | * Set it only once when we increment it for the first time. |
2385 | */ |
2386 | if (prev_priority_floor_count == 0) { |
2387 | act_set_debug_assert(); |
2388 | } |
2389 | #endif |
2390 | |
2391 | ret.thread = thread; |
2392 | return ret; |
2393 | } |
2394 | |
2395 | /*! @function thread_priority_floor_end |
2396 | * @abstract ends the floor boost. |
2397 | * @param token the token obtained from thread_priority_floor_start() |
2398 | * @discussion ends the priority floor boost started with thread_priority_floor_start() |
2399 | */ |
2400 | void |
2401 | thread_priority_floor_end(thread_pri_floor_t *token) |
2402 | { |
2403 | thread_t thread = current_thread(); |
2404 | |
2405 | assert(thread->priority_floor_count > 0); |
2406 | assertf(token->thread == thread, "thread_priority_floor_end called from a different thread from thread_priority_floor_start %p %p" , thread, token->thread); |
2407 | |
2408 | if ((thread->priority_floor_count-- == 1) && (thread->sched_flags & TH_SFLAG_FLOOR_PROMOTED)) { |
2409 | spl_t s = splsched(); |
2410 | thread_lock(thread); |
2411 | |
2412 | if (thread->sched_flags & TH_SFLAG_FLOOR_PROMOTED) { |
2413 | sched_thread_unpromote_reason(thread, TH_SFLAG_FLOOR_PROMOTED, trace_obj: 0); |
2414 | } |
2415 | |
2416 | thread_unlock(thread); |
2417 | splx(s); |
2418 | } |
2419 | |
2420 | token->thread = NULL; |
2421 | } |
2422 | |
2423 | /* |
2424 | * XXX assuming current thread only, for now... |
2425 | */ |
2426 | void |
2427 | thread_guard_violation(thread_t thread, |
2428 | mach_exception_data_type_t code, mach_exception_data_type_t subcode, boolean_t fatal) |
2429 | { |
2430 | assert(thread == current_thread()); |
2431 | |
2432 | /* Don't set up the AST for kernel threads; this check is needed to ensure |
2433 | * that the guard_exc_* fields in the thread structure are set only by the |
2434 | * current thread and therefore, don't require a lock. |
2435 | */ |
2436 | if (get_threadtask(thread) == kernel_task) { |
2437 | return; |
2438 | } |
2439 | |
2440 | assert(EXC_GUARD_DECODE_GUARD_TYPE(code)); |
2441 | |
2442 | /* |
2443 | * Use the saved state area of the thread structure |
2444 | * to store all info required to handle the AST when |
2445 | * returning to userspace. It's possible that there is |
2446 | * already a pending guard exception. If it's non-fatal, |
2447 | * it can only be over-written by a fatal exception code. |
2448 | */ |
2449 | if (thread->guard_exc_info.code && (thread->guard_exc_fatal || !fatal)) { |
2450 | return; |
2451 | } |
2452 | |
2453 | thread->guard_exc_info.code = code; |
2454 | thread->guard_exc_info.subcode = subcode; |
2455 | thread->guard_exc_fatal = fatal ? 1 : 0; |
2456 | |
2457 | spl_t s = splsched(); |
2458 | thread_ast_set(thread, AST_GUARD); |
2459 | ast_propagate(thread); |
2460 | splx(s); |
2461 | } |
2462 | |
2463 | #if CONFIG_DEBUG_SYSCALL_REJECTION |
2464 | extern void rejected_syscall_guard_ast(thread_t __unused t, mach_exception_data_type_t code, mach_exception_data_type_t subcode); |
2465 | #endif /* CONFIG_DEBUG_SYSCALL_REJECTION */ |
2466 | |
2467 | /* |
2468 | * guard_ast: |
2469 | * |
2470 | * Handle AST_GUARD for a thread. This routine looks at the |
2471 | * state saved in the thread structure to determine the cause |
2472 | * of this exception. Based on this value, it invokes the |
2473 | * appropriate routine which determines other exception related |
2474 | * info and raises the exception. |
2475 | */ |
2476 | void |
2477 | guard_ast(thread_t t) |
2478 | { |
2479 | const mach_exception_data_type_t |
2480 | code = t->guard_exc_info.code, |
2481 | subcode = t->guard_exc_info.subcode; |
2482 | |
2483 | t->guard_exc_info.code = 0; |
2484 | t->guard_exc_info.subcode = 0; |
2485 | t->guard_exc_fatal = 0; |
2486 | |
2487 | switch (EXC_GUARD_DECODE_GUARD_TYPE(code)) { |
2488 | case GUARD_TYPE_NONE: |
2489 | /* lingering AST_GUARD on the processor? */ |
2490 | break; |
2491 | case GUARD_TYPE_MACH_PORT: |
2492 | mach_port_guard_ast(t, code, subcode); |
2493 | break; |
2494 | case GUARD_TYPE_FD: |
2495 | fd_guard_ast(t, code, subcode); |
2496 | break; |
2497 | #if CONFIG_VNGUARD |
2498 | case GUARD_TYPE_VN: |
2499 | vn_guard_ast(t, code, subcode); |
2500 | break; |
2501 | #endif |
2502 | case GUARD_TYPE_VIRT_MEMORY: |
2503 | virt_memory_guard_ast(t, code, subcode); |
2504 | break; |
2505 | #if CONFIG_DEBUG_SYSCALL_REJECTION |
2506 | case GUARD_TYPE_REJECTED_SC: |
2507 | rejected_syscall_guard_ast(t, code, subcode); |
2508 | break; |
2509 | #endif /* CONFIG_DEBUG_SYSCALL_REJECTION */ |
2510 | default: |
2511 | panic("guard_exc_info %llx %llx" , code, subcode); |
2512 | } |
2513 | } |
2514 | |
2515 | static void |
2516 | thread_cputime_callback(int warning, __unused const void *arg0, __unused const void *arg1) |
2517 | { |
2518 | if (warning == LEDGER_WARNING_ROSE_ABOVE) { |
2519 | #if CONFIG_TELEMETRY |
2520 | /* |
2521 | * This thread is in danger of violating the CPU usage monitor. Enable telemetry |
2522 | * on the entire task so there are micro-stackshots available if and when |
2523 | * EXC_RESOURCE is triggered. We could have chosen to enable micro-stackshots |
2524 | * for this thread only; but now that this task is suspect, knowing what all of |
2525 | * its threads are up to will be useful. |
2526 | */ |
2527 | telemetry_task_ctl(task: current_task(), TF_CPUMON_WARNING, enable_disable: 1); |
2528 | #endif |
2529 | return; |
2530 | } |
2531 | |
2532 | #if CONFIG_TELEMETRY |
2533 | /* |
2534 | * If the balance has dipped below the warning level (LEDGER_WARNING_DIPPED_BELOW) or |
2535 | * exceeded the limit, turn telemetry off for the task. |
2536 | */ |
2537 | telemetry_task_ctl(task: current_task(), TF_CPUMON_WARNING, enable_disable: 0); |
2538 | #endif |
2539 | |
2540 | if (warning == 0) { |
2541 | SENDING_NOTIFICATION__THIS_THREAD_IS_CONSUMING_TOO_MUCH_CPU(); |
2542 | } |
2543 | } |
2544 | |
2545 | void __attribute__((noinline)) |
2546 | SENDING_NOTIFICATION__THIS_THREAD_IS_CONSUMING_TOO_MUCH_CPU(void) |
2547 | { |
2548 | int pid = 0; |
2549 | task_t task = current_task(); |
2550 | thread_t thread = current_thread(); |
2551 | uint64_t tid = thread->thread_id; |
2552 | const char *procname = "unknown" ; |
2553 | time_value_t thread_total_time = {0, 0}; |
2554 | time_value_t thread_system_time; |
2555 | time_value_t thread_user_time; |
2556 | int action; |
2557 | uint8_t percentage; |
2558 | uint32_t usage_percent = 0; |
2559 | uint32_t interval_sec; |
2560 | uint64_t interval_ns; |
2561 | uint64_t balance_ns; |
2562 | boolean_t fatal = FALSE; |
2563 | boolean_t send_exc_resource = TRUE; /* in addition to RESOURCE_NOTIFY */ |
2564 | kern_return_t kr; |
2565 | |
2566 | #ifdef EXC_RESOURCE_MONITORS |
2567 | mach_exception_data_type_t code[EXCEPTION_CODE_MAX]; |
2568 | #endif /* EXC_RESOURCE_MONITORS */ |
2569 | struct ledger_entry_info lei; |
2570 | |
2571 | assert(thread->t_threadledger != LEDGER_NULL); |
2572 | |
2573 | /* |
2574 | * Extract the fatal bit and suspend the monitor (which clears the bit). |
2575 | */ |
2576 | task_lock(task); |
2577 | if (task->rusage_cpu_flags & TASK_RUSECPU_FLAGS_FATAL_CPUMON) { |
2578 | fatal = TRUE; |
2579 | send_exc_resource = TRUE; |
2580 | } |
2581 | /* Only one thread can be here at a time. Whichever makes it through |
2582 | * first will successfully suspend the monitor and proceed to send the |
2583 | * notification. Other threads will get an error trying to suspend the |
2584 | * monitor and give up on sending the notification. In the first release, |
2585 | * the monitor won't be resumed for a number of seconds, but we may |
2586 | * eventually need to handle low-latency resume. |
2587 | */ |
2588 | kr = task_suspend_cpumon(task); |
2589 | task_unlock(task); |
2590 | if (kr == KERN_INVALID_ARGUMENT) { |
2591 | return; |
2592 | } |
2593 | |
2594 | #ifdef MACH_BSD |
2595 | pid = proc_selfpid(); |
2596 | void *bsd_info = get_bsdtask_info(task); |
2597 | if (bsd_info != NULL) { |
2598 | procname = proc_name_address(p: bsd_info); |
2599 | } |
2600 | #endif |
2601 | |
2602 | thread_get_cpulimit(action: &action, percentage: &percentage, interval_ns: &interval_ns); |
2603 | |
2604 | interval_sec = (uint32_t)(interval_ns / NSEC_PER_SEC); |
2605 | |
2606 | thread_read_times(thread, user_time: &thread_user_time, system_time: &thread_system_time, NULL); |
2607 | time_value_add(&thread_total_time, &thread_user_time); |
2608 | time_value_add(&thread_total_time, &thread_system_time); |
2609 | ledger_get_entry_info(ledger: thread->t_threadledger, entry: thread_ledgers.cpu_time, lei: &lei); |
2610 | |
2611 | /* credit/debit/balance/limit are in absolute time units; |
2612 | * the refill info is in nanoseconds. */ |
2613 | absolutetime_to_nanoseconds(abstime: lei.lei_balance, result: &balance_ns); |
2614 | if (lei.lei_last_refill > 0) { |
2615 | usage_percent = (uint32_t)((balance_ns * 100ULL) / lei.lei_last_refill); |
2616 | } |
2617 | |
2618 | /* TODO: show task total runtime (via TASK_ABSOLUTETIME_INFO)? */ |
2619 | printf(format: "process %s[%d] thread %llu caught burning CPU! It used more than %d%% CPU over %u seconds\n" , |
2620 | procname, pid, tid, percentage, interval_sec); |
2621 | printf(format: " (actual recent usage: %d%% over ~%llu seconds)\n" , |
2622 | usage_percent, (lei.lei_last_refill + NSEC_PER_SEC / 2) / NSEC_PER_SEC); |
2623 | printf(format: " Thread lifetime cpu usage %d.%06ds, (%d.%06d user, %d.%06d sys)\n" , |
2624 | thread_total_time.seconds, thread_total_time.microseconds, |
2625 | thread_user_time.seconds, thread_user_time.microseconds, |
2626 | thread_system_time.seconds, thread_system_time.microseconds); |
2627 | printf(format: " Ledger balance: %lld; mabs credit: %lld; mabs debit: %lld\n" , |
2628 | lei.lei_balance, lei.lei_credit, lei.lei_debit); |
2629 | printf(format: " mabs limit: %llu; mabs period: %llu ns; last refill: %llu ns%s.\n" , |
2630 | lei.lei_limit, lei.lei_refill_period, lei.lei_last_refill, |
2631 | (fatal ? " [fatal violation]" : "" )); |
2632 | |
2633 | /* |
2634 | * For now, send RESOURCE_NOTIFY in parallel with EXC_RESOURCE. Once |
2635 | * we have logging parity, we will stop sending EXC_RESOURCE (24508922). |
2636 | */ |
2637 | |
2638 | /* RESOURCE_NOTIFY MIG specifies nanoseconds of CPU time */ |
2639 | lei.lei_balance = balance_ns; |
2640 | absolutetime_to_nanoseconds(abstime: lei.lei_limit, result: &lei.lei_limit); |
2641 | trace_resource_violation(RMON_CPUUSAGE_VIOLATED, ledger_info: &lei); |
2642 | kr = send_resource_violation(send_cpu_usage_violation, violator: task, ledger_info: &lei, |
2643 | flags: fatal ? kRNFatalLimitFlag : 0); |
2644 | if (kr) { |
2645 | printf(format: "send_resource_violation(CPU usage, ...): error %#x\n" , kr); |
2646 | } |
2647 | |
2648 | #ifdef EXC_RESOURCE_MONITORS |
2649 | if (send_exc_resource) { |
2650 | if (disable_exc_resource) { |
2651 | printf("process %s[%d] thread %llu caught burning CPU! " |
2652 | "EXC_RESOURCE%s suppressed by a boot-arg\n" , |
2653 | procname, pid, tid, fatal ? " (and termination)" : "" ); |
2654 | return; |
2655 | } |
2656 | |
2657 | if (disable_exc_resource_during_audio && audio_active) { |
2658 | printf("process %s[%d] thread %llu caught burning CPU! " |
2659 | "EXC_RESOURCE & termination suppressed due to audio playback\n" , |
2660 | procname, pid, tid); |
2661 | return; |
2662 | } |
2663 | } |
2664 | |
2665 | |
2666 | if (send_exc_resource) { |
2667 | code[0] = code[1] = 0; |
2668 | EXC_RESOURCE_ENCODE_TYPE(code[0], RESOURCE_TYPE_CPU); |
2669 | if (fatal) { |
2670 | EXC_RESOURCE_ENCODE_FLAVOR(code[0], FLAVOR_CPU_MONITOR_FATAL); |
2671 | } else { |
2672 | EXC_RESOURCE_ENCODE_FLAVOR(code[0], FLAVOR_CPU_MONITOR); |
2673 | } |
2674 | EXC_RESOURCE_CPUMONITOR_ENCODE_INTERVAL(code[0], interval_sec); |
2675 | EXC_RESOURCE_CPUMONITOR_ENCODE_PERCENTAGE(code[0], percentage); |
2676 | EXC_RESOURCE_CPUMONITOR_ENCODE_PERCENTAGE(code[1], usage_percent); |
2677 | exception_triage(EXC_RESOURCE, code, EXCEPTION_CODE_MAX); |
2678 | } |
2679 | #endif /* EXC_RESOURCE_MONITORS */ |
2680 | |
2681 | if (fatal) { |
2682 | #if CONFIG_JETSAM |
2683 | jetsam_on_ledger_cpulimit_exceeded(); |
2684 | #else |
2685 | task_terminate_internal(task); |
2686 | #endif |
2687 | } |
2688 | } |
2689 | |
2690 | bool os_variant_has_internal_diagnostics(const char *subsystem); |
2691 | |
2692 | #if DEVELOPMENT || DEBUG |
2693 | |
2694 | void __attribute__((noinline)) |
2695 | SENDING_NOTIFICATION__TASK_HAS_TOO_MANY_THREADS(task_t task, int thread_count) |
2696 | { |
2697 | mach_exception_data_type_t code[EXCEPTION_CODE_MAX] = {0}; |
2698 | int pid = task_pid(task); |
2699 | char procname[MAXCOMLEN + 1] = "unknown" ; |
2700 | |
2701 | if (pid == 1) { |
2702 | /* |
2703 | * Cannot suspend launchd |
2704 | */ |
2705 | return; |
2706 | } |
2707 | |
2708 | proc_name(pid, procname, sizeof(procname)); |
2709 | |
2710 | /* |
2711 | * Skip all checks for testing when exc_resource_threads_enabled is overriden |
2712 | */ |
2713 | if (exc_resource_threads_enabled == 2) { |
2714 | goto skip_checks; |
2715 | } |
2716 | |
2717 | if (disable_exc_resource) { |
2718 | printf("process %s[%d] crossed thread count high watermark (%d), EXC_RESOURCE " |
2719 | "suppressed by a boot-arg.\n" , procname, pid, thread_count); |
2720 | return; |
2721 | } |
2722 | |
2723 | if (!os_variant_has_internal_diagnostics("com.apple.xnu" )) { |
2724 | printf("process %s[%d] crossed thread count high watermark (%d), EXC_RESOURCE " |
2725 | "suppressed, internal diagnostics disabled.\n" , procname, pid, thread_count); |
2726 | return; |
2727 | } |
2728 | |
2729 | if (disable_exc_resource_during_audio && audio_active) { |
2730 | printf("process %s[%d] crossed thread count high watermark (%d), EXC_RESOURCE " |
2731 | "suppressed due to audio playback.\n" , procname, pid, thread_count); |
2732 | return; |
2733 | } |
2734 | |
2735 | if (!exc_via_corpse_forking) { |
2736 | printf("process %s[%d] crossed thread count high watermark (%d), EXC_RESOURCE " |
2737 | "suppressed due to corpse forking being disabled.\n" , procname, pid, |
2738 | thread_count); |
2739 | return; |
2740 | } |
2741 | |
2742 | skip_checks: |
2743 | printf("process %s[%d] crossed thread count high watermark (%d), sending " |
2744 | "EXC_RESOURCE\n" , procname, pid, thread_count); |
2745 | |
2746 | EXC_RESOURCE_ENCODE_TYPE(code[0], RESOURCE_TYPE_THREADS); |
2747 | EXC_RESOURCE_ENCODE_FLAVOR(code[0], FLAVOR_THREADS_HIGH_WATERMARK); |
2748 | EXC_RESOURCE_THREADS_ENCODE_THREADS(code[0], thread_count); |
2749 | |
2750 | task_enqueue_exception_with_corpse(task, EXC_RESOURCE, code, EXCEPTION_CODE_MAX, NULL, FALSE); |
2751 | } |
2752 | #endif /* DEVELOPMENT || DEBUG */ |
2753 | |
2754 | void |
2755 | thread_update_io_stats(thread_t thread, int size, int io_flags) |
2756 | { |
2757 | task_t task = get_threadtask(thread); |
2758 | int io_tier; |
2759 | |
2760 | if (thread->thread_io_stats == NULL || task->task_io_stats == NULL) { |
2761 | return; |
2762 | } |
2763 | |
2764 | if (io_flags & DKIO_READ) { |
2765 | UPDATE_IO_STATS(thread->thread_io_stats->disk_reads, size); |
2766 | UPDATE_IO_STATS_ATOMIC(task->task_io_stats->disk_reads, size); |
2767 | } |
2768 | |
2769 | if (io_flags & DKIO_META) { |
2770 | UPDATE_IO_STATS(thread->thread_io_stats->metadata, size); |
2771 | UPDATE_IO_STATS_ATOMIC(task->task_io_stats->metadata, size); |
2772 | } |
2773 | |
2774 | if (io_flags & DKIO_PAGING) { |
2775 | UPDATE_IO_STATS(thread->thread_io_stats->paging, size); |
2776 | UPDATE_IO_STATS_ATOMIC(task->task_io_stats->paging, size); |
2777 | } |
2778 | |
2779 | io_tier = ((io_flags & DKIO_TIER_MASK) >> DKIO_TIER_SHIFT); |
2780 | assert(io_tier < IO_NUM_PRIORITIES); |
2781 | |
2782 | UPDATE_IO_STATS(thread->thread_io_stats->io_priority[io_tier], size); |
2783 | UPDATE_IO_STATS_ATOMIC(task->task_io_stats->io_priority[io_tier], size); |
2784 | |
2785 | /* Update Total I/O Counts */ |
2786 | UPDATE_IO_STATS(thread->thread_io_stats->total_io, size); |
2787 | UPDATE_IO_STATS_ATOMIC(task->task_io_stats->total_io, size); |
2788 | |
2789 | if (!(io_flags & DKIO_READ)) { |
2790 | DTRACE_IO3(physical_writes, struct task *, task, uint32_t, size, int, io_flags); |
2791 | ledger_credit(ledger: task->ledger, entry: task_ledgers.physical_writes, amount: size); |
2792 | } |
2793 | } |
2794 | |
2795 | static void |
2796 | init_thread_ledgers(void) |
2797 | { |
2798 | ledger_template_t t; |
2799 | int idx; |
2800 | |
2801 | assert(thread_ledger_template == NULL); |
2802 | |
2803 | if ((t = ledger_template_create(name: "Per-thread ledger" )) == NULL) { |
2804 | panic("couldn't create thread ledger template" ); |
2805 | } |
2806 | |
2807 | if ((idx = ledger_entry_add(template: t, key: "cpu_time" , group: "sched" , units: "ns" )) < 0) { |
2808 | panic("couldn't create cpu_time entry for thread ledger template" ); |
2809 | } |
2810 | |
2811 | if (ledger_set_callback(template: t, entry: idx, callback: thread_cputime_callback, NULL, NULL) < 0) { |
2812 | panic("couldn't set thread ledger callback for cpu_time entry" ); |
2813 | } |
2814 | |
2815 | thread_ledgers.cpu_time = idx; |
2816 | |
2817 | ledger_template_complete(template: t); |
2818 | thread_ledger_template = t; |
2819 | } |
2820 | |
2821 | /* |
2822 | * Returns the amount of (abs) CPU time that remains before the limit would be |
2823 | * hit or the amount of time left in the current interval, whichever is smaller. |
2824 | * This value changes as CPU time is consumed and the ledgers refilled. |
2825 | * Used to limit the quantum of a thread. |
2826 | */ |
2827 | uint64_t |
2828 | thread_cpulimit_remaining(uint64_t now) |
2829 | { |
2830 | thread_t thread = current_thread(); |
2831 | |
2832 | if ((thread->options & |
2833 | (TH_OPT_PROC_CPULIMIT | TH_OPT_PRVT_CPULIMIT)) == 0) { |
2834 | return UINT64_MAX; |
2835 | } |
2836 | |
2837 | /* Amount of time left in the current interval. */ |
2838 | const uint64_t interval_remaining = |
2839 | ledger_get_interval_remaining(ledger: thread->t_threadledger, entry: thread_ledgers.cpu_time, now); |
2840 | |
2841 | /* Amount that can be spent until the limit is hit. */ |
2842 | const uint64_t remaining = |
2843 | ledger_get_remaining(ledger: thread->t_threadledger, entry: thread_ledgers.cpu_time); |
2844 | |
2845 | return MIN(interval_remaining, remaining); |
2846 | } |
2847 | |
2848 | /* |
2849 | * Returns true if a new interval should be started. |
2850 | */ |
2851 | bool |
2852 | thread_cpulimit_interval_has_expired(uint64_t now) |
2853 | { |
2854 | thread_t thread = current_thread(); |
2855 | |
2856 | if ((thread->options & |
2857 | (TH_OPT_PROC_CPULIMIT | TH_OPT_PRVT_CPULIMIT)) == 0) { |
2858 | return false; |
2859 | } |
2860 | |
2861 | return ledger_get_interval_remaining(ledger: thread->t_threadledger, |
2862 | entry: thread_ledgers.cpu_time, now) == 0; |
2863 | } |
2864 | |
2865 | /* |
2866 | * Balances the ledger and sets the last refill time to `now`. |
2867 | */ |
2868 | void |
2869 | thread_cpulimit_restart(uint64_t now) |
2870 | { |
2871 | thread_t thread = current_thread(); |
2872 | |
2873 | assert3u(thread->options & (TH_OPT_PROC_CPULIMIT | TH_OPT_PRVT_CPULIMIT), !=, 0); |
2874 | |
2875 | ledger_restart(ledger: thread->t_threadledger, entry: thread_ledgers.cpu_time, now); |
2876 | } |
2877 | |
2878 | /* |
2879 | * Returns currently applied CPU usage limit, or 0/0 if none is applied. |
2880 | */ |
2881 | int |
2882 | thread_get_cpulimit(int *action, uint8_t *percentage, uint64_t *interval_ns) |
2883 | { |
2884 | int64_t abstime = 0; |
2885 | uint64_t limittime = 0; |
2886 | thread_t thread = current_thread(); |
2887 | |
2888 | *percentage = 0; |
2889 | *interval_ns = 0; |
2890 | *action = 0; |
2891 | |
2892 | if (thread->t_threadledger == LEDGER_NULL) { |
2893 | /* |
2894 | * This thread has no per-thread ledger, so it can't possibly |
2895 | * have a CPU limit applied. |
2896 | */ |
2897 | return KERN_SUCCESS; |
2898 | } |
2899 | |
2900 | ledger_get_period(ledger: thread->t_threadledger, entry: thread_ledgers.cpu_time, period: interval_ns); |
2901 | ledger_get_limit(ledger: thread->t_threadledger, entry: thread_ledgers.cpu_time, limit: &abstime); |
2902 | |
2903 | if ((abstime == LEDGER_LIMIT_INFINITY) || (*interval_ns == 0)) { |
2904 | /* |
2905 | * This thread's CPU time ledger has no period or limit; so it |
2906 | * doesn't have a CPU limit applied. |
2907 | */ |
2908 | return KERN_SUCCESS; |
2909 | } |
2910 | |
2911 | /* |
2912 | * This calculation is the converse to the one in thread_set_cpulimit(). |
2913 | */ |
2914 | absolutetime_to_nanoseconds(abstime, result: &limittime); |
2915 | *percentage = (uint8_t)((limittime * 100ULL) / *interval_ns); |
2916 | assert(*percentage <= 100); |
2917 | |
2918 | if (thread->options & TH_OPT_PROC_CPULIMIT) { |
2919 | assert((thread->options & TH_OPT_PRVT_CPULIMIT) == 0); |
2920 | |
2921 | *action = THREAD_CPULIMIT_BLOCK; |
2922 | } else if (thread->options & TH_OPT_PRVT_CPULIMIT) { |
2923 | assert((thread->options & TH_OPT_PROC_CPULIMIT) == 0); |
2924 | |
2925 | *action = THREAD_CPULIMIT_EXCEPTION; |
2926 | } else { |
2927 | *action = THREAD_CPULIMIT_DISABLE; |
2928 | } |
2929 | |
2930 | return KERN_SUCCESS; |
2931 | } |
2932 | |
2933 | /* |
2934 | * Set CPU usage limit on a thread. |
2935 | */ |
2936 | int |
2937 | thread_set_cpulimit(int action, uint8_t percentage, uint64_t interval_ns) |
2938 | { |
2939 | thread_t thread = current_thread(); |
2940 | ledger_t l; |
2941 | uint64_t limittime = 0; |
2942 | uint64_t abstime = 0; |
2943 | |
2944 | assert(percentage <= 100); |
2945 | assert(percentage > 0 || action == THREAD_CPULIMIT_DISABLE); |
2946 | |
2947 | /* |
2948 | * Disallow any change to the CPU limit if the TH_OPT_FORCED_LEDGER |
2949 | * flag is set. |
2950 | */ |
2951 | if ((thread->options & TH_OPT_FORCED_LEDGER) != 0) { |
2952 | return KERN_FAILURE; |
2953 | } |
2954 | |
2955 | if (action == THREAD_CPULIMIT_DISABLE) { |
2956 | /* |
2957 | * Remove CPU limit, if any exists. |
2958 | */ |
2959 | if (thread->t_threadledger != LEDGER_NULL) { |
2960 | l = thread->t_threadledger; |
2961 | ledger_set_limit(ledger: l, entry: thread_ledgers.cpu_time, LEDGER_LIMIT_INFINITY, warn_level_percentage: 0); |
2962 | ledger_set_action(ledger: l, entry: thread_ledgers.cpu_time, LEDGER_ACTION_IGNORE); |
2963 | thread->options &= ~(TH_OPT_PROC_CPULIMIT | TH_OPT_PRVT_CPULIMIT); |
2964 | } |
2965 | |
2966 | return 0; |
2967 | } |
2968 | |
2969 | if (interval_ns < MINIMUM_CPULIMIT_INTERVAL_MS * NSEC_PER_MSEC) { |
2970 | return KERN_INVALID_ARGUMENT; |
2971 | } |
2972 | |
2973 | l = thread->t_threadledger; |
2974 | if (l == LEDGER_NULL) { |
2975 | /* |
2976 | * This thread doesn't yet have a per-thread ledger; so create one with the CPU time entry active. |
2977 | */ |
2978 | if ((l = ledger_instantiate(template: thread_ledger_template, LEDGER_CREATE_INACTIVE_ENTRIES)) == LEDGER_NULL) { |
2979 | return KERN_RESOURCE_SHORTAGE; |
2980 | } |
2981 | |
2982 | /* |
2983 | * We are the first to create this thread's ledger, so only activate our entry. |
2984 | */ |
2985 | ledger_entry_setactive(ledger: l, entry: thread_ledgers.cpu_time); |
2986 | thread->t_threadledger = l; |
2987 | } |
2988 | |
2989 | /* |
2990 | * The limit is specified as a percentage of CPU over an interval in nanoseconds. |
2991 | * Calculate the amount of CPU time that the thread needs to consume in order to hit the limit. |
2992 | */ |
2993 | limittime = (interval_ns * percentage) / 100; |
2994 | nanoseconds_to_absolutetime(nanoseconds: limittime, result: &abstime); |
2995 | ledger_set_limit(ledger: l, entry: thread_ledgers.cpu_time, limit: abstime, warn_level_percentage: cpumon_ustackshots_trigger_pct); |
2996 | /* |
2997 | * Refill the thread's allotted CPU time every interval_ns nanoseconds. |
2998 | */ |
2999 | ledger_set_period(ledger: l, entry: thread_ledgers.cpu_time, period: interval_ns); |
3000 | |
3001 | if (action == THREAD_CPULIMIT_EXCEPTION) { |
3002 | /* |
3003 | * We don't support programming the CPU usage monitor on a task if any of its |
3004 | * threads have a per-thread blocking CPU limit configured. |
3005 | */ |
3006 | if (thread->options & TH_OPT_PRVT_CPULIMIT) { |
3007 | panic("CPU usage monitor activated, but blocking thread limit exists" ); |
3008 | } |
3009 | |
3010 | /* |
3011 | * Make a note that this thread's CPU limit is being used for the task-wide CPU |
3012 | * usage monitor. We don't have to arm the callback which will trigger the |
3013 | * exception, because that was done for us in ledger_instantiate (because the |
3014 | * ledger template used has a default callback). |
3015 | */ |
3016 | thread->options |= TH_OPT_PROC_CPULIMIT; |
3017 | } else { |
3018 | /* |
3019 | * We deliberately override any CPU limit imposed by a task-wide limit (eg |
3020 | * CPU usage monitor). |
3021 | */ |
3022 | thread->options &= ~TH_OPT_PROC_CPULIMIT; |
3023 | |
3024 | thread->options |= TH_OPT_PRVT_CPULIMIT; |
3025 | /* The per-thread ledger template by default has a callback for CPU time */ |
3026 | ledger_disable_callback(ledger: l, entry: thread_ledgers.cpu_time); |
3027 | ledger_set_action(ledger: l, entry: thread_ledgers.cpu_time, LEDGER_ACTION_BLOCK); |
3028 | } |
3029 | |
3030 | return 0; |
3031 | } |
3032 | |
3033 | void |
3034 | thread_sched_call( |
3035 | thread_t thread, |
3036 | sched_call_t call) |
3037 | { |
3038 | assert((thread->state & TH_WAIT_REPORT) == 0); |
3039 | thread->sched_call = call; |
3040 | } |
3041 | |
3042 | uint64_t |
3043 | thread_tid( |
3044 | thread_t thread) |
3045 | { |
3046 | return thread != THREAD_NULL? thread->thread_id: 0; |
3047 | } |
3048 | |
3049 | uint64_t |
3050 | uthread_tid( |
3051 | struct uthread *uth) |
3052 | { |
3053 | if (uth) { |
3054 | return thread_tid(thread: get_machthread(uth)); |
3055 | } |
3056 | return 0; |
3057 | } |
3058 | |
3059 | uint16_t |
3060 | thread_set_tag(thread_t th, uint16_t tag) |
3061 | { |
3062 | return thread_set_tag_internal(thread: th, tag); |
3063 | } |
3064 | |
3065 | uint16_t |
3066 | thread_get_tag(thread_t th) |
3067 | { |
3068 | return thread_get_tag_internal(thread: th); |
3069 | } |
3070 | |
3071 | uint64_t |
3072 | thread_last_run_time(thread_t th) |
3073 | { |
3074 | return th->last_run_time; |
3075 | } |
3076 | |
3077 | /* |
3078 | * Shared resource contention management |
3079 | * |
3080 | * The scheduler attempts to load balance the shared resource intensive |
3081 | * workloads across clusters to ensure that the resource is not heavily |
3082 | * contended. The kernel relies on external agents (userspace or |
3083 | * performance controller) to identify shared resource heavy threads. |
3084 | * The load balancing is achieved based on the scheduler configuration |
3085 | * enabled on the platform. |
3086 | */ |
3087 | |
3088 | |
3089 | #if CONFIG_SCHED_EDGE |
3090 | |
3091 | /* |
3092 | * On the Edge scheduler, the load balancing is achieved by looking |
3093 | * at cluster level shared resource loads and migrating resource heavy |
3094 | * threads dynamically to under utilized cluster. Therefore, when a |
3095 | * thread is indicated as a resource heavy thread, the policy set |
3096 | * routine simply adds a flag to the thread which is looked at by |
3097 | * the scheduler on thread migration decisions. |
3098 | */ |
3099 | |
3100 | boolean_t |
3101 | thread_shared_rsrc_policy_get(thread_t thread, cluster_shared_rsrc_type_t type) |
3102 | { |
3103 | return thread->th_shared_rsrc_heavy_user[type] || thread->th_shared_rsrc_heavy_perf_control[type]; |
3104 | } |
3105 | |
3106 | __options_decl(sched_edge_rsrc_heavy_thread_state, uint32_t, { |
3107 | SCHED_EDGE_RSRC_HEAVY_THREAD_SET = 1, |
3108 | SCHED_EDGE_RSRC_HEAVY_THREAD_CLR = 2, |
3109 | }); |
3110 | |
3111 | kern_return_t |
3112 | thread_shared_rsrc_policy_set(thread_t thread, __unused uint32_t index, cluster_shared_rsrc_type_t type, shared_rsrc_policy_agent_t agent) |
3113 | { |
3114 | spl_t s = splsched(); |
3115 | thread_lock(thread); |
3116 | |
3117 | bool user = (agent == SHARED_RSRC_POLICY_AGENT_DISPATCH) || (agent == SHARED_RSRC_POLICY_AGENT_SYSCTL); |
3118 | bool *thread_flags = (user) ? thread->th_shared_rsrc_heavy_user : thread->th_shared_rsrc_heavy_perf_control; |
3119 | if (thread_flags[type]) { |
3120 | thread_unlock(thread); |
3121 | splx(s); |
3122 | return KERN_FAILURE; |
3123 | } |
3124 | |
3125 | thread_flags[type] = true; |
3126 | thread_unlock(thread); |
3127 | splx(s); |
3128 | |
3129 | KDBG(MACHDBG_CODE(DBG_MACH_SCHED_CLUTCH, MACH_SCHED_EDGE_RSRC_HEAVY_THREAD) | DBG_FUNC_NONE, SCHED_EDGE_RSRC_HEAVY_THREAD_SET, thread_tid(thread), type, agent); |
3130 | if (thread == current_thread()) { |
3131 | if (agent == SHARED_RSRC_POLICY_AGENT_PERFCTL_QUANTUM) { |
3132 | ast_on(AST_PREEMPT); |
3133 | } else { |
3134 | assert(agent != SHARED_RSRC_POLICY_AGENT_PERFCTL_CSW); |
3135 | thread_block(THREAD_CONTINUE_NULL); |
3136 | } |
3137 | } |
3138 | return KERN_SUCCESS; |
3139 | } |
3140 | |
3141 | kern_return_t |
3142 | thread_shared_rsrc_policy_clear(thread_t thread, cluster_shared_rsrc_type_t type, shared_rsrc_policy_agent_t agent) |
3143 | { |
3144 | spl_t s = splsched(); |
3145 | thread_lock(thread); |
3146 | |
3147 | bool user = (agent == SHARED_RSRC_POLICY_AGENT_DISPATCH) || (agent == SHARED_RSRC_POLICY_AGENT_SYSCTL); |
3148 | bool *thread_flags = (user) ? thread->th_shared_rsrc_heavy_user : thread->th_shared_rsrc_heavy_perf_control; |
3149 | if (!thread_flags[type]) { |
3150 | thread_unlock(thread); |
3151 | splx(s); |
3152 | return KERN_FAILURE; |
3153 | } |
3154 | |
3155 | thread_flags[type] = false; |
3156 | thread_unlock(thread); |
3157 | splx(s); |
3158 | |
3159 | KDBG(MACHDBG_CODE(DBG_MACH_SCHED_CLUTCH, MACH_SCHED_EDGE_RSRC_HEAVY_THREAD) | DBG_FUNC_NONE, SCHED_EDGE_RSRC_HEAVY_THREAD_CLR, thread_tid(thread), type, agent); |
3160 | if (thread == current_thread()) { |
3161 | if (agent == SHARED_RSRC_POLICY_AGENT_PERFCTL_QUANTUM) { |
3162 | ast_on(AST_PREEMPT); |
3163 | } else { |
3164 | assert(agent != SHARED_RSRC_POLICY_AGENT_PERFCTL_CSW); |
3165 | thread_block(THREAD_CONTINUE_NULL); |
3166 | } |
3167 | } |
3168 | return KERN_SUCCESS; |
3169 | } |
3170 | |
3171 | #else /* CONFIG_SCHED_EDGE */ |
3172 | |
3173 | /* |
3174 | * On non-Edge schedulers, the shared resource contention |
3175 | * is managed by simply binding threads to specific clusters |
3176 | * based on the worker index passed by the agents marking |
3177 | * this thread as resource heavy threads. The thread binding |
3178 | * approach does not provide any rebalancing opportunities; |
3179 | * it can also suffer from scheduling delays if the cluster |
3180 | * where the thread is bound is contended. |
3181 | */ |
3182 | |
3183 | boolean_t |
3184 | thread_shared_rsrc_policy_get(__unused thread_t thread, __unused cluster_shared_rsrc_type_t type) |
3185 | { |
3186 | return false; |
3187 | } |
3188 | |
3189 | kern_return_t |
3190 | thread_shared_rsrc_policy_set(thread_t thread, uint32_t index, __unused cluster_shared_rsrc_type_t type, __unused shared_rsrc_policy_agent_t agent) |
3191 | { |
3192 | return thread_bind_cluster_id(thread, cluster_id: index, options: THREAD_BIND_SOFT | THREAD_BIND_ELIGIBLE_ONLY); |
3193 | } |
3194 | |
3195 | kern_return_t |
3196 | thread_shared_rsrc_policy_clear(thread_t thread, __unused cluster_shared_rsrc_type_t type, __unused shared_rsrc_policy_agent_t agent) |
3197 | { |
3198 | return thread_bind_cluster_id(thread, cluster_id: 0, options: THREAD_UNBIND); |
3199 | } |
3200 | |
3201 | #endif /* CONFIG_SCHED_EDGE */ |
3202 | |
3203 | uint64_t |
3204 | thread_dispatchqaddr( |
3205 | thread_t thread) |
3206 | { |
3207 | uint64_t dispatchqueue_addr; |
3208 | uint64_t thread_handle; |
3209 | task_t task; |
3210 | |
3211 | if (thread == THREAD_NULL) { |
3212 | return 0; |
3213 | } |
3214 | |
3215 | thread_handle = thread->machine.cthread_self; |
3216 | if (thread_handle == 0) { |
3217 | return 0; |
3218 | } |
3219 | |
3220 | task = get_threadtask(thread); |
3221 | void *bsd_info = get_bsdtask_info(task); |
3222 | if (thread->inspection == TRUE) { |
3223 | dispatchqueue_addr = thread_handle + get_task_dispatchqueue_offset(task); |
3224 | } else if (bsd_info) { |
3225 | dispatchqueue_addr = thread_handle + get_dispatchqueue_offset_from_proc(bsd_info); |
3226 | } else { |
3227 | dispatchqueue_addr = 0; |
3228 | } |
3229 | |
3230 | return dispatchqueue_addr; |
3231 | } |
3232 | |
3233 | |
3234 | uint64_t |
3235 | thread_wqquantum_addr(thread_t thread) |
3236 | { |
3237 | uint64_t thread_handle; |
3238 | task_t task; |
3239 | |
3240 | if (thread == THREAD_NULL) { |
3241 | return 0; |
3242 | } |
3243 | |
3244 | thread_handle = thread->machine.cthread_self; |
3245 | if (thread_handle == 0) { |
3246 | return 0; |
3247 | } |
3248 | task = get_threadtask(thread); |
3249 | |
3250 | uint64_t wq_quantum_expiry_offset = get_wq_quantum_offset_from_proc(get_bsdtask_info(task)); |
3251 | if (wq_quantum_expiry_offset == 0) { |
3252 | return 0; |
3253 | } |
3254 | |
3255 | return wq_quantum_expiry_offset + thread_handle; |
3256 | } |
3257 | |
3258 | uint64_t |
3259 | thread_rettokern_addr( |
3260 | thread_t thread) |
3261 | { |
3262 | uint64_t rettokern_addr; |
3263 | uint64_t rettokern_offset; |
3264 | uint64_t thread_handle; |
3265 | task_t task; |
3266 | void *bsd_info; |
3267 | |
3268 | if (thread == THREAD_NULL) { |
3269 | return 0; |
3270 | } |
3271 | |
3272 | thread_handle = thread->machine.cthread_self; |
3273 | if (thread_handle == 0) { |
3274 | return 0; |
3275 | } |
3276 | task = get_threadtask(thread); |
3277 | bsd_info = get_bsdtask_info(task); |
3278 | |
3279 | if (bsd_info) { |
3280 | rettokern_offset = get_return_to_kernel_offset_from_proc(p: bsd_info); |
3281 | |
3282 | /* Return 0 if return to kernel offset is not initialized. */ |
3283 | if (rettokern_offset == 0) { |
3284 | rettokern_addr = 0; |
3285 | } else { |
3286 | rettokern_addr = thread_handle + rettokern_offset; |
3287 | } |
3288 | } else { |
3289 | rettokern_addr = 0; |
3290 | } |
3291 | |
3292 | return rettokern_addr; |
3293 | } |
3294 | |
3295 | /* |
3296 | * Export routines to other components for things that are done as macros |
3297 | * within the osfmk component. |
3298 | */ |
3299 | |
3300 | void |
3301 | thread_mtx_lock(thread_t thread) |
3302 | { |
3303 | lck_mtx_lock(lck: &thread->mutex); |
3304 | } |
3305 | |
3306 | void |
3307 | thread_mtx_unlock(thread_t thread) |
3308 | { |
3309 | lck_mtx_unlock(lck: &thread->mutex); |
3310 | } |
3311 | |
3312 | void |
3313 | thread_reference( |
3314 | thread_t thread) |
3315 | { |
3316 | if (thread != THREAD_NULL) { |
3317 | zone_id_require(zone_id: ZONE_ID_THREAD, elem_size: sizeof(struct thread), addr: thread); |
3318 | os_ref_retain_raw(&thread->ref_count, &thread_refgrp); |
3319 | } |
3320 | } |
3321 | |
3322 | void |
3323 | thread_require(thread_t thread) |
3324 | { |
3325 | zone_id_require(zone_id: ZONE_ID_THREAD, elem_size: sizeof(struct thread), addr: thread); |
3326 | } |
3327 | |
3328 | #undef thread_should_halt |
3329 | |
3330 | boolean_t |
3331 | thread_should_halt( |
3332 | thread_t th) |
3333 | { |
3334 | return thread_should_halt_fast(th); |
3335 | } |
3336 | |
3337 | /* |
3338 | * thread_set_voucher_name - reset the voucher port name bound to this thread |
3339 | * |
3340 | * Conditions: nothing locked |
3341 | */ |
3342 | |
3343 | kern_return_t |
3344 | thread_set_voucher_name(mach_port_name_t voucher_name) |
3345 | { |
3346 | thread_t thread = current_thread(); |
3347 | ipc_voucher_t new_voucher = IPC_VOUCHER_NULL; |
3348 | ipc_voucher_t voucher; |
3349 | ledger_t bankledger = NULL; |
3350 | struct thread_group *banktg = NULL; |
3351 | uint32_t persona_id = 0; |
3352 | |
3353 | if (MACH_PORT_DEAD == voucher_name) { |
3354 | return KERN_INVALID_RIGHT; |
3355 | } |
3356 | |
3357 | /* |
3358 | * agressively convert to voucher reference |
3359 | */ |
3360 | if (MACH_PORT_VALID(voucher_name)) { |
3361 | new_voucher = convert_port_name_to_voucher(name: voucher_name); |
3362 | if (IPC_VOUCHER_NULL == new_voucher) { |
3363 | return KERN_INVALID_ARGUMENT; |
3364 | } |
3365 | } |
3366 | bank_get_bank_ledger_thread_group_and_persona(voucher: new_voucher, bankledger: &bankledger, banktg: &banktg, persona_id: &persona_id); |
3367 | |
3368 | thread_mtx_lock(thread); |
3369 | voucher = thread->ith_voucher; |
3370 | thread->ith_voucher_name = voucher_name; |
3371 | thread->ith_voucher = new_voucher; |
3372 | thread_mtx_unlock(thread); |
3373 | |
3374 | bank_swap_thread_bank_ledger(thread, ledger: bankledger); |
3375 | #if CONFIG_THREAD_GROUPS |
3376 | thread_group_set_bank(t: thread, tg: banktg); |
3377 | #endif /* CONFIG_THREAD_GROUPS */ |
3378 | |
3379 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
3380 | MACHDBG_CODE(DBG_MACH_IPC, MACH_THREAD_SET_VOUCHER) | DBG_FUNC_NONE, |
3381 | (uintptr_t)thread_tid(thread), |
3382 | (uintptr_t)voucher_name, |
3383 | VM_KERNEL_ADDRPERM((uintptr_t)new_voucher), |
3384 | persona_id, 0); |
3385 | |
3386 | if (IPC_VOUCHER_NULL != voucher) { |
3387 | ipc_voucher_release(voucher); |
3388 | } |
3389 | |
3390 | return KERN_SUCCESS; |
3391 | } |
3392 | |
3393 | /* |
3394 | * thread_get_mach_voucher - return a voucher reference for the specified thread voucher |
3395 | * |
3396 | * Conditions: nothing locked |
3397 | * |
3398 | * NOTE: At the moment, there is no distinction between the current and effective |
3399 | * vouchers because we only set them at the thread level currently. |
3400 | */ |
3401 | kern_return_t |
3402 | thread_get_mach_voucher( |
3403 | thread_act_t thread, |
3404 | mach_voucher_selector_t __unused which, |
3405 | ipc_voucher_t *voucherp) |
3406 | { |
3407 | ipc_voucher_t voucher; |
3408 | |
3409 | if (THREAD_NULL == thread) { |
3410 | return KERN_INVALID_ARGUMENT; |
3411 | } |
3412 | |
3413 | thread_mtx_lock(thread); |
3414 | voucher = thread->ith_voucher; |
3415 | |
3416 | if (IPC_VOUCHER_NULL != voucher) { |
3417 | ipc_voucher_reference(voucher); |
3418 | thread_mtx_unlock(thread); |
3419 | *voucherp = voucher; |
3420 | return KERN_SUCCESS; |
3421 | } |
3422 | |
3423 | thread_mtx_unlock(thread); |
3424 | |
3425 | *voucherp = IPC_VOUCHER_NULL; |
3426 | return KERN_SUCCESS; |
3427 | } |
3428 | |
3429 | /* |
3430 | * thread_set_mach_voucher - set a voucher reference for the specified thread voucher |
3431 | * |
3432 | * Conditions: callers holds a reference on the voucher. |
3433 | * nothing locked. |
3434 | * |
3435 | * We grab another reference to the voucher and bind it to the thread. |
3436 | * The old voucher reference associated with the thread is |
3437 | * discarded. |
3438 | */ |
3439 | kern_return_t |
3440 | thread_set_mach_voucher( |
3441 | thread_t thread, |
3442 | ipc_voucher_t voucher) |
3443 | { |
3444 | ipc_voucher_t old_voucher; |
3445 | ledger_t bankledger = NULL; |
3446 | struct thread_group *banktg = NULL; |
3447 | uint32_t persona_id = 0; |
3448 | |
3449 | if (THREAD_NULL == thread) { |
3450 | return KERN_INVALID_ARGUMENT; |
3451 | } |
3452 | |
3453 | bank_get_bank_ledger_thread_group_and_persona(voucher, bankledger: &bankledger, banktg: &banktg, persona_id: &persona_id); |
3454 | |
3455 | thread_mtx_lock(thread); |
3456 | /* |
3457 | * Once the thread is started, we will look at `ith_voucher` without |
3458 | * holding any lock. |
3459 | * |
3460 | * Setting the voucher hence can only be done by current_thread() or |
3461 | * before it started. "started" flips under the thread mutex and must be |
3462 | * tested under it too. |
3463 | */ |
3464 | if (thread != current_thread() && thread->started) { |
3465 | thread_mtx_unlock(thread); |
3466 | return KERN_INVALID_ARGUMENT; |
3467 | } |
3468 | |
3469 | ipc_voucher_reference(voucher); |
3470 | old_voucher = thread->ith_voucher; |
3471 | thread->ith_voucher = voucher; |
3472 | thread->ith_voucher_name = MACH_PORT_NULL; |
3473 | thread_mtx_unlock(thread); |
3474 | |
3475 | bank_swap_thread_bank_ledger(thread, ledger: bankledger); |
3476 | #if CONFIG_THREAD_GROUPS |
3477 | thread_group_set_bank(t: thread, tg: banktg); |
3478 | #endif /* CONFIG_THREAD_GROUPS */ |
3479 | |
3480 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
3481 | MACHDBG_CODE(DBG_MACH_IPC, MACH_THREAD_SET_VOUCHER) | DBG_FUNC_NONE, |
3482 | (uintptr_t)thread_tid(thread), |
3483 | (uintptr_t)MACH_PORT_NULL, |
3484 | VM_KERNEL_ADDRPERM((uintptr_t)voucher), |
3485 | persona_id, 0); |
3486 | |
3487 | ipc_voucher_release(voucher: old_voucher); |
3488 | |
3489 | return KERN_SUCCESS; |
3490 | } |
3491 | |
3492 | /* |
3493 | * thread_swap_mach_voucher - swap a voucher reference for the specified thread voucher |
3494 | * |
3495 | * Conditions: callers holds a reference on the new and presumed old voucher(s). |
3496 | * nothing locked. |
3497 | * |
3498 | * This function is no longer supported. |
3499 | */ |
3500 | kern_return_t |
3501 | thread_swap_mach_voucher( |
3502 | __unused thread_t thread, |
3503 | __unused ipc_voucher_t new_voucher, |
3504 | ipc_voucher_t *in_out_old_voucher) |
3505 | { |
3506 | /* |
3507 | * Currently this function is only called from a MIG generated |
3508 | * routine which doesn't release the reference on the voucher |
3509 | * addressed by in_out_old_voucher. To avoid leaking this reference, |
3510 | * a call to release it has been added here. |
3511 | */ |
3512 | ipc_voucher_release(voucher: *in_out_old_voucher); |
3513 | OS_ANALYZER_SUPPRESS("81787115" ) return KERN_NOT_SUPPORTED; |
3514 | } |
3515 | |
3516 | /* |
3517 | * thread_get_current_voucher_origin_pid - get the pid of the originator of the current voucher. |
3518 | */ |
3519 | kern_return_t |
3520 | thread_get_current_voucher_origin_pid( |
3521 | int32_t *pid) |
3522 | { |
3523 | return thread_get_voucher_origin_pid(thread: current_thread(), pid); |
3524 | } |
3525 | |
3526 | /* |
3527 | * thread_get_current_voucher_origin_pid - get the pid of the originator of the current voucher. |
3528 | */ |
3529 | kern_return_t |
3530 | thread_get_voucher_origin_pid(thread_t thread, int32_t *pid) |
3531 | { |
3532 | uint32_t buf_size = sizeof(*pid); |
3533 | return mach_voucher_attr_command(voucher: thread->ith_voucher, |
3534 | MACH_VOUCHER_ATTR_KEY_BANK, |
3535 | BANK_ORIGINATOR_PID, |
3536 | NULL, |
3537 | in_contentCnt: 0, |
3538 | out_content: (mach_voucher_attr_content_t)pid, |
3539 | out_contentCnt: &buf_size); |
3540 | } |
3541 | |
3542 | /* |
3543 | * thread_get_current_voucher_proximate_pid - get the pid of the proximate process of the current voucher. |
3544 | */ |
3545 | kern_return_t |
3546 | thread_get_voucher_origin_proximate_pid(thread_t thread, int32_t *origin_pid, int32_t *proximate_pid) |
3547 | { |
3548 | int32_t origin_proximate_pids[2] = { }; |
3549 | uint32_t buf_size = sizeof(origin_proximate_pids); |
3550 | kern_return_t kr = mach_voucher_attr_command(voucher: thread->ith_voucher, |
3551 | MACH_VOUCHER_ATTR_KEY_BANK, |
3552 | BANK_ORIGINATOR_PROXIMATE_PID, |
3553 | NULL, |
3554 | in_contentCnt: 0, |
3555 | out_content: (mach_voucher_attr_content_t)origin_proximate_pids, |
3556 | out_contentCnt: &buf_size); |
3557 | if (kr == KERN_SUCCESS) { |
3558 | *origin_pid = origin_proximate_pids[0]; |
3559 | *proximate_pid = origin_proximate_pids[1]; |
3560 | } |
3561 | return kr; |
3562 | } |
3563 | |
3564 | #if CONFIG_THREAD_GROUPS |
3565 | /* |
3566 | * Returns the current thread's voucher-carried thread group |
3567 | * |
3568 | * Reference is borrowed from this being the current voucher, so it does NOT |
3569 | * return a reference to the group. |
3570 | */ |
3571 | struct thread_group * |
3572 | thread_get_current_voucher_thread_group(thread_t thread) |
3573 | { |
3574 | assert(thread == current_thread()); |
3575 | |
3576 | if (thread->ith_voucher == NULL) { |
3577 | return NULL; |
3578 | } |
3579 | |
3580 | ledger_t bankledger = NULL; |
3581 | struct thread_group *banktg = NULL; |
3582 | |
3583 | bank_get_bank_ledger_thread_group_and_persona(voucher: thread->ith_voucher, bankledger: &bankledger, banktg: &banktg, NULL); |
3584 | |
3585 | return banktg; |
3586 | } |
3587 | |
3588 | #endif /* CONFIG_THREAD_GROUPS */ |
3589 | |
3590 | #if CONFIG_COALITIONS |
3591 | |
3592 | uint64_t |
3593 | thread_get_current_voucher_resource_coalition_id(thread_t thread) |
3594 | { |
3595 | uint64_t id = 0; |
3596 | assert(thread == current_thread()); |
3597 | if (thread->ith_voucher != NULL) { |
3598 | id = bank_get_bank_ledger_resource_coalition_id(voucher: thread->ith_voucher); |
3599 | } |
3600 | return id; |
3601 | } |
3602 | |
3603 | #endif /* CONFIG_COALITIONS */ |
3604 | |
3605 | extern struct workqueue * |
3606 | proc_get_wqptr(void *proc); |
3607 | |
3608 | static bool |
3609 | task_supports_cooperative_workqueue(task_t task) |
3610 | { |
3611 | void *bsd_info = get_bsdtask_info(task); |
3612 | |
3613 | assert(task == current_task()); |
3614 | if (bsd_info == NULL) { |
3615 | return false; |
3616 | } |
3617 | |
3618 | uint64_t wq_quantum_expiry_offset = get_wq_quantum_offset_from_proc(bsd_info); |
3619 | /* userspace may not yet have called workq_open yet */ |
3620 | struct workqueue *wq = proc_get_wqptr(proc: bsd_info); |
3621 | |
3622 | return (wq != NULL) && (wq_quantum_expiry_offset != 0); |
3623 | } |
3624 | |
3625 | /* Not safe to call from scheduler paths - should only be called on self */ |
3626 | bool |
3627 | thread_supports_cooperative_workqueue(thread_t thread) |
3628 | { |
3629 | struct uthread *uth = get_bsdthread_info(thread); |
3630 | task_t task = get_threadtask(thread); |
3631 | |
3632 | assert(thread == current_thread()); |
3633 | |
3634 | return task_supports_cooperative_workqueue(task) && |
3635 | bsdthread_part_of_cooperative_workqueue(uth); |
3636 | } |
3637 | |
3638 | static inline bool |
3639 | thread_has_armed_workqueue_quantum(thread_t thread) |
3640 | { |
3641 | return thread->workq_quantum_deadline != 0; |
3642 | } |
3643 | |
3644 | /* |
3645 | * The workq quantum is a lazy timer that is evaluated at 2 specific times in |
3646 | * the scheduler: |
3647 | * |
3648 | * - context switch time |
3649 | * - scheduler quantum expiry time. |
3650 | * |
3651 | * We're currently expressing the workq quantum with a 0.5 scale factor of the |
3652 | * scheduler quantum. It is possible that if the workq quantum is rearmed |
3653 | * shortly after the scheduler quantum begins, we could have a large delay |
3654 | * between when the workq quantum next expires and when it actually is noticed. |
3655 | * |
3656 | * A potential future improvement for the wq quantum expiry logic is to compare |
3657 | * it to the next actual scheduler quantum deadline and expire it if it is |
3658 | * within a certain leeway. |
3659 | */ |
3660 | static inline uint64_t |
3661 | thread_workq_quantum_size(thread_t thread) |
3662 | { |
3663 | return (uint64_t) (SCHED(initial_quantum_size)(thread) / 2); |
3664 | } |
3665 | |
3666 | /* |
3667 | * Always called by thread on itself - either at AST boundary after processing |
3668 | * an existing quantum expiry, or when a new quantum is armed before the thread |
3669 | * goes out to userspace to handle a thread request |
3670 | */ |
3671 | void |
3672 | thread_arm_workqueue_quantum(thread_t thread) |
3673 | { |
3674 | /* |
3675 | * If the task is not opted into wq quantum notification, or if the thread |
3676 | * is not part of the cooperative workqueue, don't even bother with tracking |
3677 | * the quantum or calculating expiry |
3678 | */ |
3679 | if (!thread_supports_cooperative_workqueue(thread)) { |
3680 | assert(thread->workq_quantum_deadline == 0); |
3681 | return; |
3682 | } |
3683 | |
3684 | assert(current_thread() == thread); |
3685 | assert(thread_get_tag(thread) & THREAD_TAG_WORKQUEUE); |
3686 | |
3687 | uint64_t current_runtime = thread_get_runtime_self(); |
3688 | uint64_t deadline = thread_workq_quantum_size(thread) + current_runtime; |
3689 | |
3690 | /* |
3691 | * The update of a workqueue quantum should always be followed by the update |
3692 | * of the AST - see explanation in kern/thread.h for synchronization of this |
3693 | * field |
3694 | */ |
3695 | thread->workq_quantum_deadline = deadline; |
3696 | |
3697 | /* We're arming a new quantum, clear any previous expiry notification */ |
3698 | act_clear_astkevent(thread, AST_KEVENT_WORKQ_QUANTUM_EXPIRED); |
3699 | |
3700 | WQ_TRACE(TRACE_wq_quantum_arm, current_runtime, deadline, 0, 0); |
3701 | |
3702 | WORKQ_QUANTUM_HISTORY_WRITE_ENTRY(thread, thread->workq_quantum_deadline, true); |
3703 | } |
3704 | |
3705 | /* Called by a thread on itself when it is about to park */ |
3706 | void |
3707 | thread_disarm_workqueue_quantum(thread_t thread) |
3708 | { |
3709 | /* The update of a workqueue quantum should always be followed by the update |
3710 | * of the AST - see explanation in kern/thread.h for synchronization of this |
3711 | * field */ |
3712 | thread->workq_quantum_deadline = 0; |
3713 | act_clear_astkevent(thread, AST_KEVENT_WORKQ_QUANTUM_EXPIRED); |
3714 | |
3715 | WQ_TRACE(TRACE_wq_quantum_disarm, 0, 0, 0, 0); |
3716 | |
3717 | WORKQ_QUANTUM_HISTORY_WRITE_ENTRY(thread, thread->workq_quantum_deadline, false); |
3718 | } |
3719 | |
3720 | /* This is called at context switch time on a thread that may not be self, |
3721 | * and at AST time |
3722 | */ |
3723 | bool |
3724 | thread_has_expired_workqueue_quantum(thread_t thread, bool should_trace) |
3725 | { |
3726 | if (!thread_has_armed_workqueue_quantum(thread)) { |
3727 | return false; |
3728 | } |
3729 | /* We do not do a thread_get_runtime_self() here since this function is |
3730 | * called from context switch time or during scheduler quantum expiry and |
3731 | * therefore, we may not be evaluating it on the current thread/self. |
3732 | * |
3733 | * In addition, the timers on the thread have just been updated recently so |
3734 | * we don't need to update them again. |
3735 | */ |
3736 | uint64_t runtime = recount_thread_time_mach(thread); |
3737 | bool expired = runtime > thread->workq_quantum_deadline; |
3738 | |
3739 | if (expired && should_trace) { |
3740 | WQ_TRACE(TRACE_wq_quantum_expired, runtime, thread->workq_quantum_deadline, 0, 0); |
3741 | } |
3742 | |
3743 | return expired; |
3744 | } |
3745 | |
3746 | /* |
3747 | * Called on a thread that is being context switched out or during quantum |
3748 | * expiry on self. Only called from scheduler paths. |
3749 | */ |
3750 | void |
3751 | thread_evaluate_workqueue_quantum_expiry(thread_t thread) |
3752 | { |
3753 | if (thread_has_expired_workqueue_quantum(thread, true)) { |
3754 | act_set_astkevent(thread, AST_KEVENT_WORKQ_QUANTUM_EXPIRED); |
3755 | } |
3756 | } |
3757 | |
3758 | boolean_t |
3759 | thread_has_thread_name(thread_t th) |
3760 | { |
3761 | if (th) { |
3762 | return bsd_hasthreadname(uth: get_bsdthread_info(th)); |
3763 | } |
3764 | |
3765 | /* |
3766 | * This is an odd case; clients may set the thread name based on the lack of |
3767 | * a name, but in this context there is no uthread to attach the name to. |
3768 | */ |
3769 | return FALSE; |
3770 | } |
3771 | |
3772 | void |
3773 | thread_set_thread_name(thread_t th, const char* name) |
3774 | { |
3775 | if (th && name) { |
3776 | bsd_setthreadname(uth: get_bsdthread_info(th), tid: thread_tid(thread: th), buffer: name); |
3777 | } |
3778 | } |
3779 | |
3780 | void |
3781 | thread_get_thread_name(thread_t th, char* name) |
3782 | { |
3783 | if (!name) { |
3784 | return; |
3785 | } |
3786 | if (th) { |
3787 | bsd_getthreadname(uth: get_bsdthread_info(th), buffer: name); |
3788 | } else { |
3789 | name[0] = '\0'; |
3790 | } |
3791 | } |
3792 | |
3793 | processor_t |
3794 | thread_get_runq(thread_t thread) |
3795 | { |
3796 | thread_lock_assert(thread, LCK_ASSERT_OWNED); |
3797 | processor_t runq = thread->__runq.runq; |
3798 | os_atomic_thread_fence(acquire); |
3799 | return runq; |
3800 | } |
3801 | |
3802 | processor_t |
3803 | thread_get_runq_locked(thread_t thread) |
3804 | { |
3805 | thread_lock_assert(thread, LCK_ASSERT_OWNED); |
3806 | processor_t runq = thread->__runq.runq; |
3807 | if (runq != PROCESSOR_NULL) { |
3808 | pset_assert_locked(runq->processor_set); |
3809 | } |
3810 | return runq; |
3811 | } |
3812 | |
3813 | void |
3814 | thread_set_runq_locked(thread_t thread, processor_t new_runq) |
3815 | { |
3816 | thread_lock_assert(thread, LCK_ASSERT_OWNED); |
3817 | pset_assert_locked(new_runq->processor_set); |
3818 | thread_assert_runq_null(thread); |
3819 | thread->__runq.runq = new_runq; |
3820 | } |
3821 | |
3822 | void |
3823 | thread_clear_runq(thread_t thread) |
3824 | { |
3825 | thread_assert_runq_nonnull(thread); |
3826 | os_atomic_thread_fence(release); |
3827 | thread->__runq.runq = PROCESSOR_NULL; |
3828 | } |
3829 | |
3830 | void |
3831 | thread_clear_runq_locked(thread_t thread) |
3832 | { |
3833 | thread_lock_assert(thread, LCK_ASSERT_OWNED); |
3834 | thread_assert_runq_nonnull(thread); |
3835 | thread->__runq.runq = PROCESSOR_NULL; |
3836 | } |
3837 | |
3838 | void |
3839 | thread_assert_runq_null(__assert_only thread_t thread) |
3840 | { |
3841 | assert(thread->__runq.runq == PROCESSOR_NULL); |
3842 | } |
3843 | |
3844 | void |
3845 | thread_assert_runq_nonnull(thread_t thread) |
3846 | { |
3847 | pset_assert_locked(thread->__runq.runq->processor_set); |
3848 | assert(thread->__runq.runq != PROCESSOR_NULL); |
3849 | } |
3850 | |
3851 | void |
3852 | thread_set_honor_qlimit(thread_t thread) |
3853 | { |
3854 | thread->options |= TH_OPT_HONOR_QLIMIT; |
3855 | } |
3856 | |
3857 | void |
3858 | thread_clear_honor_qlimit(thread_t thread) |
3859 | { |
3860 | thread->options &= (~TH_OPT_HONOR_QLIMIT); |
3861 | } |
3862 | |
3863 | /* |
3864 | * thread_enable_send_importance - set/clear the SEND_IMPORTANCE thread option bit. |
3865 | */ |
3866 | void |
3867 | thread_enable_send_importance(thread_t thread, boolean_t enable) |
3868 | { |
3869 | if (enable == TRUE) { |
3870 | thread->options |= TH_OPT_SEND_IMPORTANCE; |
3871 | } else { |
3872 | thread->options &= ~TH_OPT_SEND_IMPORTANCE; |
3873 | } |
3874 | } |
3875 | |
3876 | kern_return_t |
3877 | thread_get_ipc_propagate_attr(thread_t thread, struct thread_attr_for_ipc_propagation *attr) |
3878 | { |
3879 | int iotier; |
3880 | int qos; |
3881 | |
3882 | if (thread == NULL || attr == NULL) { |
3883 | return KERN_INVALID_ARGUMENT; |
3884 | } |
3885 | |
3886 | iotier = proc_get_effective_thread_policy(thread, TASK_POLICY_IO); |
3887 | qos = proc_get_effective_thread_policy(thread, TASK_POLICY_QOS); |
3888 | |
3889 | if (!qos) { |
3890 | qos = thread_user_promotion_qos_for_pri(priority: thread->base_pri); |
3891 | } |
3892 | |
3893 | attr->tafip_iotier = iotier; |
3894 | attr->tafip_qos = qos; |
3895 | |
3896 | return KERN_SUCCESS; |
3897 | } |
3898 | |
3899 | /* |
3900 | * thread_set_allocation_name - . |
3901 | */ |
3902 | |
3903 | kern_allocation_name_t |
3904 | thread_set_allocation_name(kern_allocation_name_t new_name) |
3905 | { |
3906 | kern_allocation_name_t ret; |
3907 | thread_kernel_state_t kstate = thread_get_kernel_state(current_thread()); |
3908 | ret = kstate->allocation_name; |
3909 | // fifo |
3910 | if (!new_name || !kstate->allocation_name) { |
3911 | kstate->allocation_name = new_name; |
3912 | } |
3913 | return ret; |
3914 | } |
3915 | |
3916 | void * |
3917 | thread_iokit_tls_get(uint32_t index) |
3918 | { |
3919 | assert(index < THREAD_SAVE_IOKIT_TLS_COUNT); |
3920 | return current_thread()->saved.iokit.tls[index]; |
3921 | } |
3922 | |
3923 | void |
3924 | thread_iokit_tls_set(uint32_t index, void * data) |
3925 | { |
3926 | assert(index < THREAD_SAVE_IOKIT_TLS_COUNT); |
3927 | current_thread()->saved.iokit.tls[index] = data; |
3928 | } |
3929 | |
3930 | uint64_t |
3931 | thread_get_last_wait_duration(thread_t thread) |
3932 | { |
3933 | return thread->last_made_runnable_time - thread->last_run_time; |
3934 | } |
3935 | |
3936 | integer_t |
3937 | thread_kern_get_pri(thread_t thr) |
3938 | { |
3939 | return thr->base_pri; |
3940 | } |
3941 | |
3942 | void |
3943 | thread_kern_set_pri(thread_t thr, integer_t pri) |
3944 | { |
3945 | sched_set_kernel_thread_priority(thread: thr, priority: pri); |
3946 | } |
3947 | |
3948 | integer_t |
3949 | thread_kern_get_kernel_maxpri(void) |
3950 | { |
3951 | return MAXPRI_KERNEL; |
3952 | } |
3953 | /* |
3954 | * thread_port_with_flavor_no_senders |
3955 | * |
3956 | * Called whenever the Mach port system detects no-senders on |
3957 | * the thread inspect or read port. These ports are allocated lazily and |
3958 | * should be deallocated here when there are no senders remaining. |
3959 | */ |
3960 | static void |
3961 | thread_port_with_flavor_no_senders( |
3962 | ipc_port_t port, |
3963 | mach_port_mscount_t mscount __unused) |
3964 | { |
3965 | thread_ro_t tro; |
3966 | thread_t thread; |
3967 | mach_thread_flavor_t flavor; |
3968 | ipc_kobject_type_t kotype; |
3969 | |
3970 | ip_mq_lock(port); |
3971 | if (port->ip_srights > 0) { |
3972 | ip_mq_unlock(port); |
3973 | return; |
3974 | } |
3975 | kotype = ip_kotype(port); |
3976 | assert((IKOT_THREAD_READ == kotype) || (IKOT_THREAD_INSPECT == kotype)); |
3977 | thread = ipc_kobject_get_locked(port, type: kotype); |
3978 | if (thread != THREAD_NULL) { |
3979 | thread_reference(thread); |
3980 | } |
3981 | ip_mq_unlock(port); |
3982 | |
3983 | if (thread == THREAD_NULL) { |
3984 | /* The thread is exiting or disabled; it will eventually deallocate the port */ |
3985 | return; |
3986 | } |
3987 | |
3988 | if (kotype == IKOT_THREAD_READ) { |
3989 | flavor = THREAD_FLAVOR_READ; |
3990 | } else { |
3991 | flavor = THREAD_FLAVOR_INSPECT; |
3992 | } |
3993 | |
3994 | thread_mtx_lock(thread); |
3995 | ip_mq_lock(port); |
3996 | |
3997 | /* |
3998 | * If the port is no longer active, then ipc_thread_terminate() ran |
3999 | * and destroyed the kobject already. Just deallocate the task |
4000 | * ref we took and go away. |
4001 | * |
4002 | * It is also possible that several nsrequests are in flight, |
4003 | * only one shall NULL-out the port entry, and this is the one |
4004 | * that gets to dealloc the port. |
4005 | * |
4006 | * Check for a stale no-senders notification. A call to any function |
4007 | * that vends out send rights to this port could resurrect it between |
4008 | * this notification being generated and actually being handled here. |
4009 | */ |
4010 | tro = get_thread_ro(thread); |
4011 | if (!ip_active(port) || |
4012 | tro->tro_ports[flavor] != port || |
4013 | port->ip_srights > 0) { |
4014 | ip_mq_unlock(port); |
4015 | thread_mtx_unlock(thread); |
4016 | thread_deallocate(thread); |
4017 | return; |
4018 | } |
4019 | |
4020 | assert(tro->tro_ports[flavor] == port); |
4021 | zalloc_ro_clear_field(ZONE_ID_THREAD_RO, tro, tro_ports[flavor]); |
4022 | thread_mtx_unlock(thread); |
4023 | |
4024 | ipc_kobject_dealloc_port_and_unlock(port, mscount: 0, type: kotype); |
4025 | |
4026 | thread_deallocate(thread); |
4027 | } |
4028 | |
4029 | /* |
4030 | * The 'thread_region_page_shift' is used by footprint |
4031 | * to specify the page size that it will use to |
4032 | * accomplish its accounting work on the task being |
4033 | * inspected. Since footprint uses a thread for each |
4034 | * task that it works on, we need to keep the page_shift |
4035 | * on a per-thread basis. |
4036 | */ |
4037 | |
4038 | int |
4039 | thread_self_region_page_shift(void) |
4040 | { |
4041 | /* |
4042 | * Return the page shift that this thread |
4043 | * would like to use for its accounting work. |
4044 | */ |
4045 | return current_thread()->thread_region_page_shift; |
4046 | } |
4047 | |
4048 | void |
4049 | thread_self_region_page_shift_set( |
4050 | int pgshift) |
4051 | { |
4052 | /* |
4053 | * Set the page shift that this thread |
4054 | * would like to use for its accounting work |
4055 | * when dealing with a task. |
4056 | */ |
4057 | current_thread()->thread_region_page_shift = pgshift; |
4058 | } |
4059 | |
4060 | __startup_func |
4061 | static void |
4062 | ctid_table_init(void) |
4063 | { |
4064 | /* |
4065 | * Pretend the early boot setup didn't exist, |
4066 | * and pick a mangling nonce. |
4067 | */ |
4068 | *compact_id_resolve(table: &ctid_table, compact_id: 0) = THREAD_NULL; |
4069 | ctid_nonce = (uint32_t)early_random() & CTID_MASK; |
4070 | } |
4071 | |
4072 | |
4073 | /* |
4074 | * This maps the [0, CTID_MAX_THREAD_NUMBER] range |
4075 | * to [1, CTID_MAX_THREAD_NUMBER + 1 == CTID_MASK] |
4076 | * so that in mangled form, '0' is an invalid CTID. |
4077 | */ |
4078 | static ctid_t |
4079 | ctid_mangle(compact_id_t cid) |
4080 | { |
4081 | return (cid == ctid_nonce ? CTID_MASK : cid) ^ ctid_nonce; |
4082 | } |
4083 | |
4084 | static compact_id_t |
4085 | ctid_unmangle(ctid_t ctid) |
4086 | { |
4087 | ctid ^= ctid_nonce; |
4088 | return ctid == CTID_MASK ? ctid_nonce : ctid; |
4089 | } |
4090 | |
4091 | void |
4092 | ctid_table_add(thread_t thread) |
4093 | { |
4094 | compact_id_t cid; |
4095 | |
4096 | cid = compact_id_get(table: &ctid_table, CTID_MAX_THREAD_NUMBER, value: thread); |
4097 | thread->ctid = ctid_mangle(cid); |
4098 | } |
4099 | |
4100 | void |
4101 | ctid_table_remove(thread_t thread) |
4102 | { |
4103 | __assert_only thread_t value; |
4104 | |
4105 | value = compact_id_put(table: &ctid_table, compact_id: ctid_unmangle(ctid: thread->ctid)); |
4106 | assert3p(value, ==, thread); |
4107 | thread->ctid = 0; |
4108 | } |
4109 | |
4110 | thread_t |
4111 | ctid_get_thread_unsafe(ctid_t ctid) |
4112 | { |
4113 | if (ctid) { |
4114 | return *compact_id_resolve(table: &ctid_table, compact_id: ctid_unmangle(ctid)); |
4115 | } |
4116 | return THREAD_NULL; |
4117 | } |
4118 | |
4119 | thread_t |
4120 | ctid_get_thread(ctid_t ctid) |
4121 | { |
4122 | thread_t thread = THREAD_NULL; |
4123 | |
4124 | if (ctid) { |
4125 | thread = *compact_id_resolve(table: &ctid_table, compact_id: ctid_unmangle(ctid)); |
4126 | assert(thread && thread->ctid == ctid); |
4127 | } |
4128 | return thread; |
4129 | } |
4130 | |
4131 | ctid_t |
4132 | thread_get_ctid(thread_t thread) |
4133 | { |
4134 | return thread->ctid; |
4135 | } |
4136 | |
4137 | /* |
4138 | * Adjust code signature dependent thread state. |
4139 | * |
4140 | * Called to allow code signature dependent adjustments to the thread |
4141 | * state. Note that this is usually called twice for the main thread: |
4142 | * Once at thread creation by thread_create, when the signature is |
4143 | * potentially not attached yet (which is usually the case for the |
4144 | * first/main thread of a task), and once after the task's signature |
4145 | * has actually been attached. |
4146 | * |
4147 | */ |
4148 | kern_return_t |
4149 | thread_process_signature(thread_t thread, task_t task) |
4150 | { |
4151 | return machine_thread_process_signature(thread, task); |
4152 | } |
4153 | |
4154 | #if CONFIG_SPTM |
4155 | |
4156 | void |
4157 | thread_associate_txm_thread_stack(uintptr_t thread_stack) |
4158 | { |
4159 | thread_t self = current_thread(); |
4160 | |
4161 | if (self->txm_thread_stack != 0) { |
4162 | panic("attempted multiple TXM thread associations: %lu | %lu" , |
4163 | self->txm_thread_stack, thread_stack); |
4164 | } |
4165 | |
4166 | self->txm_thread_stack = thread_stack; |
4167 | } |
4168 | |
4169 | void |
4170 | thread_disassociate_txm_thread_stack(uintptr_t thread_stack) |
4171 | { |
4172 | thread_t self = current_thread(); |
4173 | |
4174 | if (self->txm_thread_stack == 0) { |
4175 | panic("attempted to disassociate non-existent TXM thread" ); |
4176 | } else if (self->txm_thread_stack != thread_stack) { |
4177 | panic("invalid disassociation for TXM thread: %lu | %lu" , |
4178 | self->txm_thread_stack, thread_stack); |
4179 | } |
4180 | |
4181 | self->txm_thread_stack = 0; |
4182 | } |
4183 | |
4184 | uintptr_t |
4185 | thread_get_txm_thread_stack(void) |
4186 | { |
4187 | return current_thread()->txm_thread_stack; |
4188 | } |
4189 | |
4190 | #endif |
4191 | |
4192 | #if CONFIG_DTRACE |
4193 | uint32_t |
4194 | dtrace_get_thread_predcache(thread_t thread) |
4195 | { |
4196 | if (thread != THREAD_NULL) { |
4197 | return thread->t_dtrace_predcache; |
4198 | } else { |
4199 | return 0; |
4200 | } |
4201 | } |
4202 | |
4203 | int64_t |
4204 | dtrace_get_thread_vtime(thread_t thread) |
4205 | { |
4206 | if (thread != THREAD_NULL) { |
4207 | return thread->t_dtrace_vtime; |
4208 | } else { |
4209 | return 0; |
4210 | } |
4211 | } |
4212 | |
4213 | int |
4214 | dtrace_get_thread_last_cpu_id(thread_t thread) |
4215 | { |
4216 | if ((thread != THREAD_NULL) && (thread->last_processor != PROCESSOR_NULL)) { |
4217 | return thread->last_processor->cpu_id; |
4218 | } else { |
4219 | return -1; |
4220 | } |
4221 | } |
4222 | |
4223 | int64_t |
4224 | dtrace_get_thread_tracing(thread_t thread) |
4225 | { |
4226 | if (thread != THREAD_NULL) { |
4227 | return thread->t_dtrace_tracing; |
4228 | } else { |
4229 | return 0; |
4230 | } |
4231 | } |
4232 | |
4233 | uint16_t |
4234 | dtrace_get_thread_inprobe(thread_t thread) |
4235 | { |
4236 | if (thread != THREAD_NULL) { |
4237 | return thread->t_dtrace_inprobe; |
4238 | } else { |
4239 | return 0; |
4240 | } |
4241 | } |
4242 | |
4243 | vm_offset_t |
4244 | thread_get_kernel_stack(thread_t thread) |
4245 | { |
4246 | if (thread != THREAD_NULL) { |
4247 | return thread->kernel_stack; |
4248 | } else { |
4249 | return 0; |
4250 | } |
4251 | } |
4252 | |
4253 | #if KASAN |
4254 | struct kasan_thread_data * |
4255 | kasan_get_thread_data(thread_t thread) |
4256 | { |
4257 | return &thread->kasan_data; |
4258 | } |
4259 | #endif |
4260 | |
4261 | #if CONFIG_KCOV |
4262 | kcov_thread_data_t * |
4263 | kcov_get_thread_data(thread_t thread) |
4264 | { |
4265 | return &thread->kcov_data; |
4266 | } |
4267 | #endif |
4268 | |
4269 | #if CONFIG_STKSZ |
4270 | /* |
4271 | * Returns base of a thread's kernel stack. |
4272 | * |
4273 | * Coverage sanitizer instruments every function including those that participates in stack handoff between threads. |
4274 | * There is a window in which CPU still holds old values but stack has been handed over to anoher thread already. |
4275 | * In this window kernel_stack is 0 but CPU still uses the original stack (until contex switch occurs). The original |
4276 | * kernel_stack value is preserved in ksancov_stack during this window. |
4277 | */ |
4278 | vm_offset_t |
4279 | kcov_stksz_get_thread_stkbase(thread_t thread) |
4280 | { |
4281 | if (thread != THREAD_NULL) { |
4282 | kcov_thread_data_t *data = kcov_get_thread_data(thread); |
4283 | if (data->ktd_stksz.kst_stack) { |
4284 | return data->ktd_stksz.kst_stack; |
4285 | } else { |
4286 | return thread->kernel_stack; |
4287 | } |
4288 | } else { |
4289 | return 0; |
4290 | } |
4291 | } |
4292 | |
4293 | vm_offset_t |
4294 | kcov_stksz_get_thread_stksize(thread_t thread) |
4295 | { |
4296 | if (thread != THREAD_NULL) { |
4297 | return kernel_stack_size; |
4298 | } else { |
4299 | return 0; |
4300 | } |
4301 | } |
4302 | |
4303 | void |
4304 | kcov_stksz_set_thread_stack(thread_t thread, vm_offset_t stack) |
4305 | { |
4306 | kcov_thread_data_t *data = kcov_get_thread_data(thread); |
4307 | data->ktd_stksz.kst_stack = stack; |
4308 | } |
4309 | #endif /* CONFIG_STKSZ */ |
4310 | |
4311 | int64_t |
4312 | dtrace_calc_thread_recent_vtime(thread_t thread) |
4313 | { |
4314 | if (thread == THREAD_NULL) { |
4315 | return 0; |
4316 | } |
4317 | |
4318 | struct recount_usage usage = { 0 }; |
4319 | recount_current_thread_usage(usage: &usage); |
4320 | return (int64_t)(recount_usage_time_mach(usage: &usage)); |
4321 | } |
4322 | |
4323 | void |
4324 | dtrace_set_thread_predcache(thread_t thread, uint32_t predcache) |
4325 | { |
4326 | if (thread != THREAD_NULL) { |
4327 | thread->t_dtrace_predcache = predcache; |
4328 | } |
4329 | } |
4330 | |
4331 | void |
4332 | dtrace_set_thread_vtime(thread_t thread, int64_t vtime) |
4333 | { |
4334 | if (thread != THREAD_NULL) { |
4335 | thread->t_dtrace_vtime = vtime; |
4336 | } |
4337 | } |
4338 | |
4339 | void |
4340 | dtrace_set_thread_tracing(thread_t thread, int64_t accum) |
4341 | { |
4342 | if (thread != THREAD_NULL) { |
4343 | thread->t_dtrace_tracing = accum; |
4344 | } |
4345 | } |
4346 | |
4347 | void |
4348 | dtrace_set_thread_inprobe(thread_t thread, uint16_t inprobe) |
4349 | { |
4350 | if (thread != THREAD_NULL) { |
4351 | thread->t_dtrace_inprobe = inprobe; |
4352 | } |
4353 | } |
4354 | |
4355 | void |
4356 | dtrace_thread_bootstrap(void) |
4357 | { |
4358 | task_t task = current_task(); |
4359 | |
4360 | if (task->thread_count == 1) { |
4361 | thread_t thread = current_thread(); |
4362 | if (thread->t_dtrace_flags & TH_DTRACE_EXECSUCCESS) { |
4363 | thread->t_dtrace_flags &= ~TH_DTRACE_EXECSUCCESS; |
4364 | DTRACE_PROC(exec__success); |
4365 | KDBG(BSDDBG_CODE(DBG_BSD_PROC, BSD_PROC_EXEC), |
4366 | task_pid(task)); |
4367 | } |
4368 | DTRACE_PROC(start); |
4369 | } |
4370 | DTRACE_PROC(lwp__start); |
4371 | } |
4372 | |
4373 | void |
4374 | dtrace_thread_didexec(thread_t thread) |
4375 | { |
4376 | thread->t_dtrace_flags |= TH_DTRACE_EXECSUCCESS; |
4377 | } |
4378 | #endif /* CONFIG_DTRACE */ |
4379 | |