| 1 | /* |
| 2 | * Copyright (c) 2000-2020 Apple Computer, Inc. All rights reserved. |
| 3 | * |
| 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
| 5 | * |
| 6 | * This file contains Original Code and/or Modifications of Original Code |
| 7 | * as defined in and that are subject to the Apple Public Source License |
| 8 | * Version 2.0 (the 'License'). You may not use this file except in |
| 9 | * compliance with the License. The rights granted to you under the License |
| 10 | * may not be used to create, or enable the creation or redistribution of, |
| 11 | * unlawful or unlicensed copies of an Apple operating system, or to |
| 12 | * circumvent, violate, or enable the circumvention or violation of, any |
| 13 | * terms of an Apple operating system software license agreement. |
| 14 | * |
| 15 | * Please obtain a copy of the License at |
| 16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
| 17 | * |
| 18 | * The Original Code and all software distributed under the License are |
| 19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| 23 | * Please see the License for the specific language governing rights and |
| 24 | * limitations under the License. |
| 25 | * |
| 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
| 27 | */ |
| 28 | |
| 29 | #include <kern/policy_internal.h> |
| 30 | #include <mach/task_policy.h> |
| 31 | #include <mach/task.h> |
| 32 | #include <mach/mach_types.h> |
| 33 | #include <mach/task_server.h> |
| 34 | #include <kern/host.h> /* host_priv_self() */ |
| 35 | #include <mach/host_priv.h> /* host_get_special_port() */ |
| 36 | #include <mach/host_special_ports.h> /* RESOURCE_NOTIFY_PORT */ |
| 37 | #include <kern/sched.h> |
| 38 | #include <kern/task.h> |
| 39 | #include <mach/thread_policy.h> |
| 40 | #include <sys/errno.h> |
| 41 | #include <sys/resource.h> |
| 42 | #include <machine/limits.h> |
| 43 | #include <kern/ledger.h> |
| 44 | #include <kern/thread_call.h> |
| 45 | #include <kern/sfi.h> |
| 46 | #include <kern/coalition.h> |
| 47 | #if CONFIG_TELEMETRY |
| 48 | #include <kern/telemetry.h> |
| 49 | #endif |
| 50 | #if !defined(XNU_TARGET_OS_OSX) |
| 51 | #include <kern/kalloc.h> |
| 52 | #include <sys/errno.h> |
| 53 | #endif /* !defined(XNU_TARGET_OS_OSX) */ |
| 54 | |
| 55 | #if IMPORTANCE_INHERITANCE |
| 56 | #include <ipc/ipc_importance.h> |
| 57 | #if IMPORTANCE_TRACE |
| 58 | #include <mach/machine/sdt.h> |
| 59 | #endif /* IMPORTANCE_TRACE */ |
| 60 | #endif /* IMPORTANCE_INHERITACE */ |
| 61 | |
| 62 | #include <sys/kdebug.h> |
| 63 | |
| 64 | /* |
| 65 | * Task Policy |
| 66 | * |
| 67 | * This subsystem manages task and thread IO priority and backgrounding, |
| 68 | * as well as importance inheritance, process suppression, task QoS, and apptype. |
| 69 | * These properties have a suprising number of complex interactions, so they are |
| 70 | * centralized here in one state machine to simplify the implementation of those interactions. |
| 71 | * |
| 72 | * Architecture: |
| 73 | * Threads and tasks have two policy fields: requested, effective. |
| 74 | * Requested represents the wishes of each interface that influences task policy. |
| 75 | * Effective represents the distillation of that policy into a set of behaviors. |
| 76 | * |
| 77 | * Each thread making a modification in the policy system passes a 'pending' struct, |
| 78 | * which tracks updates that will be applied after dropping the policy engine lock. |
| 79 | * |
| 80 | * Each interface that has an input into the task policy state machine controls a field in requested. |
| 81 | * If the interface has a getter, it returns what is in the field in requested, but that is |
| 82 | * not necessarily what is actually in effect. |
| 83 | * |
| 84 | * All kernel subsystems that behave differently based on task policy call into |
| 85 | * the proc_get_effective_(task|thread)_policy functions, which return the decision of the task policy state machine |
| 86 | * for that subsystem by querying only the 'effective' field. |
| 87 | * |
| 88 | * Policy change operations: |
| 89 | * Here are the steps to change a policy on a task or thread: |
| 90 | * 1) Lock task |
| 91 | * 2) Change requested field for the relevant policy |
| 92 | * 3) Run a task policy update, which recalculates effective based on requested, |
| 93 | * then takes a diff between the old and new versions of requested and calls the relevant |
| 94 | * other subsystems to apply these changes, and updates the pending field. |
| 95 | * 4) Unlock task |
| 96 | * 5) Run task policy update complete, which looks at the pending field to update |
| 97 | * subsystems which cannot be touched while holding the task lock. |
| 98 | * |
| 99 | * To add a new requested policy, add the field in the requested struct, the flavor in task.h, |
| 100 | * the setter and getter in proc_(set|get)_task_policy*, |
| 101 | * then set up the effects of that behavior in task_policy_update*. If the policy manifests |
| 102 | * itself as a distinct effective policy, add it to the effective struct and add it to the |
| 103 | * proc_get_effective_task_policy accessor. |
| 104 | * |
| 105 | * Most policies are set via proc_set_task_policy, but policies that don't fit that interface |
| 106 | * roll their own lock/set/update/unlock/complete code inside this file. |
| 107 | * |
| 108 | * |
| 109 | * Suppression policy |
| 110 | * |
| 111 | * These are a set of behaviors that can be requested for a task. They currently have specific |
| 112 | * implied actions when they're enabled, but they may be made customizable in the future. |
| 113 | * |
| 114 | * When the affected task is boosted, we temporarily disable the suppression behaviors |
| 115 | * so that the affected process has a chance to run so it can call the API to permanently |
| 116 | * disable the suppression behaviors. |
| 117 | * |
| 118 | * Locking |
| 119 | * |
| 120 | * Changing task policy on a task takes the task lock. |
| 121 | * Changing task policy on a thread takes the thread mutex. |
| 122 | * Task policy changes that affect threads will take each thread's mutex to update it if necessary. |
| 123 | * |
| 124 | * Querying the effective policy does not take a lock, because callers |
| 125 | * may run in interrupt context or other place where locks are not OK. |
| 126 | * |
| 127 | * This means that any notification of state change needs to be externally synchronized. |
| 128 | * We do this by idempotent callouts after the state has changed to ask |
| 129 | * other subsystems to update their view of the world. |
| 130 | * |
| 131 | * TODO: Move all cpu/wakes/io monitor code into a separate file |
| 132 | * TODO: Move all importance code over to importance subsystem |
| 133 | * TODO: Move all taskwatch code into a separate file |
| 134 | * TODO: Move all VM importance code into a separate file |
| 135 | */ |
| 136 | |
| 137 | /* Task policy related helper functions */ |
| 138 | static void proc_set_task_policy_locked(task_t task, int category, int flavor, int value, int value2); |
| 139 | |
| 140 | static void task_policy_update_locked(task_t task, task_pend_token_t pend_token); |
| 141 | static void task_policy_update_internal_locked(task_t task, bool in_create, task_pend_token_t pend_token); |
| 142 | |
| 143 | /* For attributes that have two scalars as input/output */ |
| 144 | static void proc_set_task_policy2(task_t task, int category, int flavor, int value1, int value2); |
| 145 | static void proc_get_task_policy2(task_t task, int category, int flavor, int *value1, int *value2); |
| 146 | |
| 147 | static boolean_t task_policy_update_coalition_focal_tasks(task_t task, int prev_role, int next_role, task_pend_token_t pend_token); |
| 148 | |
| 149 | static uint64_t task_requested_bitfield(task_t task); |
| 150 | static uint64_t task_effective_bitfield(task_t task); |
| 151 | |
| 152 | /* Convenience functions for munging a policy bitfield into a tracepoint */ |
| 153 | static uintptr_t trequested_0(task_t task); |
| 154 | static uintptr_t trequested_1(task_t task); |
| 155 | static uintptr_t teffective_0(task_t task); |
| 156 | static uintptr_t teffective_1(task_t task); |
| 157 | |
| 158 | /* CPU limits helper functions */ |
| 159 | static int task_set_cpuusage(task_t task, uint8_t percentage, uint64_t interval, uint64_t deadline, int scope, int entitled); |
| 160 | static int task_get_cpuusage(task_t task, uint8_t *percentagep, uint64_t *intervalp, uint64_t *deadlinep, int *scope); |
| 161 | static int task_enable_cpumon_locked(task_t task); |
| 162 | static int task_disable_cpumon(task_t task); |
| 163 | static int task_clear_cpuusage_locked(task_t task, int cpumon_entitled); |
| 164 | static int task_apply_resource_actions(task_t task, int type); |
| 165 | static void task_action_cpuusage(thread_call_param_t param0, thread_call_param_t param1); |
| 166 | |
| 167 | #ifdef MACH_BSD |
| 168 | typedef struct proc * proc_t; |
| 169 | int proc_pid(struct proc *proc); |
| 170 | extern int proc_selfpid(void); |
| 171 | extern char * proc_name_address(void *p); |
| 172 | extern char * proc_best_name(proc_t proc); |
| 173 | |
| 174 | extern int proc_pidpathinfo_internal(proc_t p, uint64_t arg, |
| 175 | char *buffer, uint32_t buffersize, |
| 176 | int32_t *retval); |
| 177 | #endif /* MACH_BSD */ |
| 178 | |
| 179 | |
| 180 | #if CONFIG_TASKWATCH |
| 181 | /* Taskwatch related helper functions */ |
| 182 | static void set_thread_appbg(thread_t thread, int setbg, int importance); |
| 183 | static void add_taskwatch_locked(task_t task, task_watch_t * twp); |
| 184 | static void remove_taskwatch_locked(task_t task, task_watch_t * twp); |
| 185 | static void task_watch_lock(void); |
| 186 | static void task_watch_unlock(void); |
| 187 | static void apply_appstate_watchers(task_t task); |
| 188 | |
| 189 | typedef struct task_watcher { |
| 190 | queue_chain_t tw_links; /* queueing of threads */ |
| 191 | task_t tw_task; /* task that is being watched */ |
| 192 | thread_t tw_thread; /* thread that is watching the watch_task */ |
| 193 | int tw_state; /* the current app state of the thread */ |
| 194 | int tw_importance; /* importance prior to backgrounding */ |
| 195 | } task_watch_t; |
| 196 | |
| 197 | typedef struct thread_watchlist { |
| 198 | thread_t thread; /* thread being worked on for taskwatch action */ |
| 199 | int importance; /* importance to be restored if thread is being made active */ |
| 200 | } thread_watchlist_t; |
| 201 | |
| 202 | #endif /* CONFIG_TASKWATCH */ |
| 203 | |
| 204 | extern int memorystatus_update_priority_for_appnap(proc_t p, boolean_t is_appnap); |
| 205 | |
| 206 | /* Importance Inheritance related helper functions */ |
| 207 | |
| 208 | #if IMPORTANCE_INHERITANCE |
| 209 | |
| 210 | static void task_importance_mark_live_donor(task_t task, boolean_t donating); |
| 211 | static void task_importance_mark_receiver(task_t task, boolean_t receiving); |
| 212 | static void task_importance_mark_denap_receiver(task_t task, boolean_t denap); |
| 213 | |
| 214 | static boolean_t task_is_marked_live_importance_donor(task_t task); |
| 215 | static boolean_t task_is_importance_receiver(task_t task); |
| 216 | static boolean_t task_is_importance_denap_receiver(task_t task); |
| 217 | |
| 218 | static int task_importance_hold_internal_assertion(task_t target_task, uint32_t count); |
| 219 | |
| 220 | static void task_add_importance_watchport(task_t task, mach_port_t port, int *boostp); |
| 221 | static void task_importance_update_live_donor(task_t target_task); |
| 222 | |
| 223 | static void task_set_boost_locked(task_t task, boolean_t boost_active); |
| 224 | |
| 225 | #endif /* IMPORTANCE_INHERITANCE */ |
| 226 | |
| 227 | #if IMPORTANCE_TRACE |
| 228 | #define __imptrace_only |
| 229 | #else /* IMPORTANCE_TRACE */ |
| 230 | #define __imptrace_only __unused |
| 231 | #endif /* !IMPORTANCE_TRACE */ |
| 232 | |
| 233 | #if IMPORTANCE_INHERITANCE |
| 234 | #define __imp_only |
| 235 | #else |
| 236 | #define __imp_only __unused |
| 237 | #endif |
| 238 | |
| 239 | /* |
| 240 | * Default parameters for certain policies |
| 241 | */ |
| 242 | |
| 243 | int proc_standard_daemon_tier = THROTTLE_LEVEL_TIER1; |
| 244 | int proc_suppressed_disk_tier = THROTTLE_LEVEL_TIER1; |
| 245 | |
| 246 | int proc_graphics_timer_qos = (LATENCY_QOS_TIER_0 & 0xFF); |
| 247 | |
| 248 | const int proc_default_bg_iotier = THROTTLE_LEVEL_TIER2; |
| 249 | |
| 250 | /* Latency/throughput QoS fields remain zeroed, i.e. TIER_UNSPECIFIED at creation */ |
| 251 | const struct task_requested_policy default_task_requested_policy = { |
| 252 | .trp_bg_iotier = proc_default_bg_iotier |
| 253 | }; |
| 254 | const struct task_effective_policy default_task_effective_policy = {}; |
| 255 | |
| 256 | /* |
| 257 | * Default parameters for CPU usage monitor. |
| 258 | * |
| 259 | * Default setting is 50% over 3 minutes. |
| 260 | */ |
| 261 | #define DEFAULT_CPUMON_PERCENTAGE 50 |
| 262 | #define DEFAULT_CPUMON_INTERVAL (3 * 60) |
| 263 | |
| 264 | uint8_t proc_max_cpumon_percentage; |
| 265 | uint64_t proc_max_cpumon_interval; |
| 266 | |
| 267 | kern_return_t |
| 268 | qos_latency_policy_validate(task_latency_qos_t ltier) |
| 269 | { |
| 270 | if ((ltier != LATENCY_QOS_TIER_UNSPECIFIED) && |
| 271 | ((ltier > LATENCY_QOS_TIER_5) || (ltier < LATENCY_QOS_TIER_0))) { |
| 272 | return KERN_INVALID_ARGUMENT; |
| 273 | } |
| 274 | |
| 275 | return KERN_SUCCESS; |
| 276 | } |
| 277 | |
| 278 | kern_return_t |
| 279 | qos_throughput_policy_validate(task_throughput_qos_t ttier) |
| 280 | { |
| 281 | if ((ttier != THROUGHPUT_QOS_TIER_UNSPECIFIED) && |
| 282 | ((ttier > THROUGHPUT_QOS_TIER_5) || (ttier < THROUGHPUT_QOS_TIER_0))) { |
| 283 | return KERN_INVALID_ARGUMENT; |
| 284 | } |
| 285 | |
| 286 | return KERN_SUCCESS; |
| 287 | } |
| 288 | |
| 289 | static kern_return_t |
| 290 | task_qos_policy_validate(task_qos_policy_t qosinfo, mach_msg_type_number_t count) |
| 291 | { |
| 292 | if (count < TASK_QOS_POLICY_COUNT) { |
| 293 | return KERN_INVALID_ARGUMENT; |
| 294 | } |
| 295 | |
| 296 | task_latency_qos_t ltier = qosinfo->task_latency_qos_tier; |
| 297 | task_throughput_qos_t ttier = qosinfo->task_throughput_qos_tier; |
| 298 | |
| 299 | kern_return_t kr = qos_latency_policy_validate(ltier); |
| 300 | |
| 301 | if (kr != KERN_SUCCESS) { |
| 302 | return kr; |
| 303 | } |
| 304 | |
| 305 | kr = qos_throughput_policy_validate(ttier); |
| 306 | |
| 307 | return kr; |
| 308 | } |
| 309 | |
| 310 | uint32_t |
| 311 | (uint32_t qv) |
| 312 | { |
| 313 | return qv & 0xFF; |
| 314 | } |
| 315 | |
| 316 | uint32_t |
| 317 | qos_latency_policy_package(uint32_t qv) |
| 318 | { |
| 319 | return (qv == LATENCY_QOS_TIER_UNSPECIFIED) ? LATENCY_QOS_TIER_UNSPECIFIED : ((0xFF << 16) | qv); |
| 320 | } |
| 321 | |
| 322 | uint32_t |
| 323 | qos_throughput_policy_package(uint32_t qv) |
| 324 | { |
| 325 | return (qv == THROUGHPUT_QOS_TIER_UNSPECIFIED) ? THROUGHPUT_QOS_TIER_UNSPECIFIED : ((0xFE << 16) | qv); |
| 326 | } |
| 327 | |
| 328 | #define TASK_POLICY_SUPPRESSION_DISABLE 0x1 |
| 329 | #define TASK_POLICY_SUPPRESSION_IOTIER2 0x2 |
| 330 | #define TASK_POLICY_SUPPRESSION_NONDONOR 0x4 |
| 331 | /* TEMPORARY boot-arg controlling task_policy suppression (App Nap) */ |
| 332 | static boolean_t task_policy_suppression_flags = TASK_POLICY_SUPPRESSION_IOTIER2 | |
| 333 | TASK_POLICY_SUPPRESSION_NONDONOR; |
| 334 | |
| 335 | static void |
| 336 | task_set_requested_apptype(task_t task, uint64_t apptype, __unused boolean_t update_tg_flag) |
| 337 | { |
| 338 | task->requested_policy.trp_apptype = apptype; |
| 339 | #if CONFIG_THREAD_GROUPS |
| 340 | if (update_tg_flag && task_is_app(task)) { |
| 341 | task_coalition_thread_group_application_set(task); |
| 342 | } |
| 343 | #endif /* CONFIG_THREAD_GROUPS */ |
| 344 | } |
| 345 | |
| 346 | kern_return_t |
| 347 | task_policy_set( |
| 348 | task_t task, |
| 349 | task_policy_flavor_t flavor, |
| 350 | task_policy_t policy_info, |
| 351 | mach_msg_type_number_t count) |
| 352 | { |
| 353 | kern_return_t result = KERN_SUCCESS; |
| 354 | |
| 355 | if (task == TASK_NULL || task == kernel_task) { |
| 356 | return KERN_INVALID_ARGUMENT; |
| 357 | } |
| 358 | |
| 359 | switch (flavor) { |
| 360 | case TASK_CATEGORY_POLICY: { |
| 361 | task_category_policy_t info = (task_category_policy_t)policy_info; |
| 362 | |
| 363 | if (count < TASK_CATEGORY_POLICY_COUNT) { |
| 364 | return KERN_INVALID_ARGUMENT; |
| 365 | } |
| 366 | |
| 367 | #if !defined(XNU_TARGET_OS_OSX) |
| 368 | /* On embedded, you can't modify your own role. */ |
| 369 | if (current_task() == task) { |
| 370 | return KERN_INVALID_ARGUMENT; |
| 371 | } |
| 372 | #endif |
| 373 | |
| 374 | switch (info->role) { |
| 375 | case TASK_FOREGROUND_APPLICATION: |
| 376 | case TASK_BACKGROUND_APPLICATION: |
| 377 | case TASK_DEFAULT_APPLICATION: |
| 378 | proc_set_task_policy(task, |
| 379 | TASK_POLICY_ATTRIBUTE, TASK_POLICY_ROLE, |
| 380 | value: info->role); |
| 381 | break; |
| 382 | |
| 383 | case TASK_CONTROL_APPLICATION: |
| 384 | if (task != current_task() || !task_is_privileged(task)) { |
| 385 | result = KERN_INVALID_ARGUMENT; |
| 386 | } else { |
| 387 | proc_set_task_policy(task, |
| 388 | TASK_POLICY_ATTRIBUTE, TASK_POLICY_ROLE, |
| 389 | value: info->role); |
| 390 | } |
| 391 | break; |
| 392 | |
| 393 | case TASK_GRAPHICS_SERVER: |
| 394 | /* TODO: Restrict this role to FCFS <rdar://problem/12552788> */ |
| 395 | if (task != current_task() || !task_is_privileged(task)) { |
| 396 | result = KERN_INVALID_ARGUMENT; |
| 397 | } else { |
| 398 | proc_set_task_policy(task, |
| 399 | TASK_POLICY_ATTRIBUTE, TASK_POLICY_ROLE, |
| 400 | value: info->role); |
| 401 | } |
| 402 | break; |
| 403 | default: |
| 404 | result = KERN_INVALID_ARGUMENT; |
| 405 | break; |
| 406 | } /* switch (info->role) */ |
| 407 | |
| 408 | break; |
| 409 | } |
| 410 | |
| 411 | /* Desired energy-efficiency/performance "quality-of-service" */ |
| 412 | case TASK_BASE_QOS_POLICY: |
| 413 | case TASK_OVERRIDE_QOS_POLICY: |
| 414 | { |
| 415 | task_qos_policy_t qosinfo = (task_qos_policy_t)policy_info; |
| 416 | kern_return_t kr = task_qos_policy_validate(qosinfo, count); |
| 417 | |
| 418 | if (kr != KERN_SUCCESS) { |
| 419 | return kr; |
| 420 | } |
| 421 | |
| 422 | |
| 423 | uint32_t lqos = qos_extract(qv: qosinfo->task_latency_qos_tier); |
| 424 | uint32_t tqos = qos_extract(qv: qosinfo->task_throughput_qos_tier); |
| 425 | |
| 426 | proc_set_task_policy2(task, TASK_POLICY_ATTRIBUTE, |
| 427 | flavor: flavor == TASK_BASE_QOS_POLICY ? TASK_POLICY_BASE_LATENCY_AND_THROUGHPUT_QOS : TASK_POLICY_OVERRIDE_LATENCY_AND_THROUGHPUT_QOS, |
| 428 | value1: lqos, value2: tqos); |
| 429 | } |
| 430 | break; |
| 431 | |
| 432 | case TASK_BASE_LATENCY_QOS_POLICY: |
| 433 | { |
| 434 | task_qos_policy_t qosinfo = (task_qos_policy_t)policy_info; |
| 435 | kern_return_t kr = task_qos_policy_validate(qosinfo, count); |
| 436 | |
| 437 | if (kr != KERN_SUCCESS) { |
| 438 | return kr; |
| 439 | } |
| 440 | |
| 441 | uint32_t lqos = qos_extract(qv: qosinfo->task_latency_qos_tier); |
| 442 | |
| 443 | proc_set_task_policy(task, TASK_POLICY_ATTRIBUTE, TASK_BASE_LATENCY_QOS_POLICY, value: lqos); |
| 444 | } |
| 445 | break; |
| 446 | |
| 447 | case TASK_BASE_THROUGHPUT_QOS_POLICY: |
| 448 | { |
| 449 | task_qos_policy_t qosinfo = (task_qos_policy_t)policy_info; |
| 450 | kern_return_t kr = task_qos_policy_validate(qosinfo, count); |
| 451 | |
| 452 | if (kr != KERN_SUCCESS) { |
| 453 | return kr; |
| 454 | } |
| 455 | |
| 456 | uint32_t tqos = qos_extract(qv: qosinfo->task_throughput_qos_tier); |
| 457 | |
| 458 | proc_set_task_policy(task, TASK_POLICY_ATTRIBUTE, TASK_BASE_THROUGHPUT_QOS_POLICY, value: tqos); |
| 459 | } |
| 460 | break; |
| 461 | |
| 462 | case TASK_SUPPRESSION_POLICY: |
| 463 | { |
| 464 | #if !defined(XNU_TARGET_OS_OSX) |
| 465 | /* |
| 466 | * Suppression policy is not enabled for embedded |
| 467 | * because apps aren't marked as denap receivers |
| 468 | */ |
| 469 | result = KERN_INVALID_ARGUMENT; |
| 470 | break; |
| 471 | #else /* !defined(XNU_TARGET_OS_OSX) */ |
| 472 | |
| 473 | task_suppression_policy_t info = (task_suppression_policy_t)policy_info; |
| 474 | |
| 475 | if (count < TASK_SUPPRESSION_POLICY_COUNT) { |
| 476 | return KERN_INVALID_ARGUMENT; |
| 477 | } |
| 478 | |
| 479 | struct task_qos_policy qosinfo; |
| 480 | |
| 481 | qosinfo.task_latency_qos_tier = info->timer_throttle; |
| 482 | qosinfo.task_throughput_qos_tier = info->throughput_qos; |
| 483 | |
| 484 | kern_return_t kr = task_qos_policy_validate(qosinfo: &qosinfo, TASK_QOS_POLICY_COUNT); |
| 485 | |
| 486 | if (kr != KERN_SUCCESS) { |
| 487 | return kr; |
| 488 | } |
| 489 | |
| 490 | /* TEMPORARY disablement of task suppression */ |
| 491 | if (info->active && |
| 492 | (task_policy_suppression_flags & TASK_POLICY_SUPPRESSION_DISABLE)) { |
| 493 | return KERN_SUCCESS; |
| 494 | } |
| 495 | |
| 496 | struct task_pend_token pend_token = {}; |
| 497 | |
| 498 | task_lock(task); |
| 499 | |
| 500 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
| 501 | (IMPORTANCE_CODE(IMP_TASK_SUPPRESSION, info->active)) | DBG_FUNC_START, |
| 502 | proc_selfpid(), task_pid(task), trequested_0(task), |
| 503 | trequested_1(task), 0); |
| 504 | |
| 505 | task->requested_policy.trp_sup_active = (info->active) ? 1 : 0; |
| 506 | task->requested_policy.trp_sup_lowpri_cpu = (info->lowpri_cpu) ? 1 : 0; |
| 507 | task->requested_policy.trp_sup_timer = qos_extract(qv: info->timer_throttle); |
| 508 | task->requested_policy.trp_sup_disk = (info->disk_throttle) ? 1 : 0; |
| 509 | task->requested_policy.trp_sup_throughput = qos_extract(qv: info->throughput_qos); |
| 510 | task->requested_policy.trp_sup_cpu = (info->suppressed_cpu) ? 1 : 0; |
| 511 | task->requested_policy.trp_sup_bg_sockets = (info->background_sockets) ? 1 : 0; |
| 512 | |
| 513 | task_policy_update_locked(task, pend_token: &pend_token); |
| 514 | |
| 515 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
| 516 | (IMPORTANCE_CODE(IMP_TASK_SUPPRESSION, info->active)) | DBG_FUNC_END, |
| 517 | proc_selfpid(), task_pid(task), trequested_0(task), |
| 518 | trequested_1(task), 0); |
| 519 | |
| 520 | task_unlock(task); |
| 521 | |
| 522 | task_policy_update_complete_unlocked(task, pend_token: &pend_token); |
| 523 | |
| 524 | break; |
| 525 | |
| 526 | #endif /* !defined(XNU_TARGET_OS_OSX) */ |
| 527 | } |
| 528 | |
| 529 | default: |
| 530 | result = KERN_INVALID_ARGUMENT; |
| 531 | break; |
| 532 | } |
| 533 | |
| 534 | return result; |
| 535 | } |
| 536 | |
| 537 | /* Sets BSD 'nice' value on the task */ |
| 538 | kern_return_t |
| 539 | task_importance( |
| 540 | task_t task, |
| 541 | integer_t importance) |
| 542 | { |
| 543 | if (task == TASK_NULL || task == kernel_task) { |
| 544 | return KERN_INVALID_ARGUMENT; |
| 545 | } |
| 546 | |
| 547 | task_lock(task); |
| 548 | |
| 549 | if (!task->active) { |
| 550 | task_unlock(task); |
| 551 | |
| 552 | return KERN_TERMINATED; |
| 553 | } |
| 554 | |
| 555 | if (proc_get_effective_task_policy(task, TASK_POLICY_ROLE) >= TASK_CONTROL_APPLICATION) { |
| 556 | task_unlock(task); |
| 557 | |
| 558 | return KERN_INVALID_ARGUMENT; |
| 559 | } |
| 560 | |
| 561 | task->importance = importance; |
| 562 | |
| 563 | struct task_pend_token pend_token = {}; |
| 564 | |
| 565 | task_policy_update_locked(task, pend_token: &pend_token); |
| 566 | |
| 567 | task_unlock(task); |
| 568 | |
| 569 | task_policy_update_complete_unlocked(task, pend_token: &pend_token); |
| 570 | |
| 571 | return KERN_SUCCESS; |
| 572 | } |
| 573 | |
| 574 | kern_return_t |
| 575 | task_policy_get( |
| 576 | task_t task, |
| 577 | task_policy_flavor_t flavor, |
| 578 | task_policy_t policy_info, |
| 579 | mach_msg_type_number_t *count, |
| 580 | boolean_t *get_default) |
| 581 | { |
| 582 | if (task == TASK_NULL || task == kernel_task) { |
| 583 | return KERN_INVALID_ARGUMENT; |
| 584 | } |
| 585 | |
| 586 | switch (flavor) { |
| 587 | case TASK_CATEGORY_POLICY: |
| 588 | { |
| 589 | task_category_policy_t info = (task_category_policy_t)policy_info; |
| 590 | |
| 591 | if (*count < TASK_CATEGORY_POLICY_COUNT) { |
| 592 | return KERN_INVALID_ARGUMENT; |
| 593 | } |
| 594 | |
| 595 | if (*get_default) { |
| 596 | info->role = TASK_UNSPECIFIED; |
| 597 | } else { |
| 598 | info->role = proc_get_task_policy(task, TASK_POLICY_ATTRIBUTE, TASK_POLICY_ROLE); |
| 599 | } |
| 600 | break; |
| 601 | } |
| 602 | |
| 603 | case TASK_BASE_QOS_POLICY: /* FALLTHRU */ |
| 604 | case TASK_OVERRIDE_QOS_POLICY: |
| 605 | { |
| 606 | task_qos_policy_t info = (task_qos_policy_t)policy_info; |
| 607 | |
| 608 | if (*count < TASK_QOS_POLICY_COUNT) { |
| 609 | return KERN_INVALID_ARGUMENT; |
| 610 | } |
| 611 | |
| 612 | if (*get_default) { |
| 613 | info->task_latency_qos_tier = LATENCY_QOS_TIER_UNSPECIFIED; |
| 614 | info->task_throughput_qos_tier = THROUGHPUT_QOS_TIER_UNSPECIFIED; |
| 615 | } else if (flavor == TASK_BASE_QOS_POLICY) { |
| 616 | int value1, value2; |
| 617 | |
| 618 | proc_get_task_policy2(task, TASK_POLICY_ATTRIBUTE, TASK_POLICY_BASE_LATENCY_AND_THROUGHPUT_QOS, value1: &value1, value2: &value2); |
| 619 | |
| 620 | info->task_latency_qos_tier = qos_latency_policy_package(qv: value1); |
| 621 | info->task_throughput_qos_tier = qos_throughput_policy_package(qv: value2); |
| 622 | } else if (flavor == TASK_OVERRIDE_QOS_POLICY) { |
| 623 | int value1, value2; |
| 624 | |
| 625 | proc_get_task_policy2(task, TASK_POLICY_ATTRIBUTE, TASK_POLICY_OVERRIDE_LATENCY_AND_THROUGHPUT_QOS, value1: &value1, value2: &value2); |
| 626 | |
| 627 | info->task_latency_qos_tier = qos_latency_policy_package(qv: value1); |
| 628 | info->task_throughput_qos_tier = qos_throughput_policy_package(qv: value2); |
| 629 | } |
| 630 | |
| 631 | break; |
| 632 | } |
| 633 | |
| 634 | case TASK_POLICY_STATE: |
| 635 | { |
| 636 | task_policy_state_t info = (task_policy_state_t)policy_info; |
| 637 | |
| 638 | if (*count < TASK_POLICY_STATE_COUNT) { |
| 639 | return KERN_INVALID_ARGUMENT; |
| 640 | } |
| 641 | |
| 642 | /* Only root can get this info */ |
| 643 | if (!task_is_privileged(task: current_task())) { |
| 644 | return KERN_PROTECTION_FAILURE; |
| 645 | } |
| 646 | |
| 647 | if (*get_default) { |
| 648 | info->requested = 0; |
| 649 | info->effective = 0; |
| 650 | info->pending = 0; |
| 651 | info->imp_assertcnt = 0; |
| 652 | info->imp_externcnt = 0; |
| 653 | info->flags = 0; |
| 654 | info->imp_transitions = 0; |
| 655 | } else { |
| 656 | task_lock(task); |
| 657 | |
| 658 | info->requested = task_requested_bitfield(task); |
| 659 | info->effective = task_effective_bitfield(task); |
| 660 | info->pending = 0; |
| 661 | |
| 662 | info->tps_requested_policy = *(uint64_t*)(&task->requested_policy); |
| 663 | info->tps_effective_policy = *(uint64_t*)(&task->effective_policy); |
| 664 | |
| 665 | info->flags = 0; |
| 666 | if (task->task_imp_base != NULL) { |
| 667 | info->imp_assertcnt = task->task_imp_base->iit_assertcnt; |
| 668 | info->imp_externcnt = IIT_EXTERN(task->task_imp_base); |
| 669 | info->flags |= (task_is_marked_importance_receiver(task) ? TASK_IMP_RECEIVER : 0); |
| 670 | info->flags |= (task_is_marked_importance_denap_receiver(task) ? TASK_DENAP_RECEIVER : 0); |
| 671 | info->flags |= (task_is_marked_importance_donor(task) ? TASK_IMP_DONOR : 0); |
| 672 | info->flags |= (task_is_marked_live_importance_donor(task) ? TASK_IMP_LIVE_DONOR : 0); |
| 673 | info->flags |= (get_task_pidsuspended(task) ? TASK_IS_PIDSUSPENDED : 0); |
| 674 | info->imp_transitions = task->task_imp_base->iit_transitions; |
| 675 | } else { |
| 676 | info->imp_assertcnt = 0; |
| 677 | info->imp_externcnt = 0; |
| 678 | info->imp_transitions = 0; |
| 679 | } |
| 680 | task_unlock(task); |
| 681 | } |
| 682 | |
| 683 | break; |
| 684 | } |
| 685 | |
| 686 | case TASK_SUPPRESSION_POLICY: |
| 687 | { |
| 688 | task_suppression_policy_t info = (task_suppression_policy_t)policy_info; |
| 689 | |
| 690 | if (*count < TASK_SUPPRESSION_POLICY_COUNT) { |
| 691 | return KERN_INVALID_ARGUMENT; |
| 692 | } |
| 693 | |
| 694 | task_lock(task); |
| 695 | |
| 696 | if (*get_default) { |
| 697 | info->active = 0; |
| 698 | info->lowpri_cpu = 0; |
| 699 | info->timer_throttle = LATENCY_QOS_TIER_UNSPECIFIED; |
| 700 | info->disk_throttle = 0; |
| 701 | info->cpu_limit = 0; |
| 702 | info->suspend = 0; |
| 703 | info->throughput_qos = 0; |
| 704 | info->suppressed_cpu = 0; |
| 705 | } else { |
| 706 | info->active = task->requested_policy.trp_sup_active; |
| 707 | info->lowpri_cpu = task->requested_policy.trp_sup_lowpri_cpu; |
| 708 | info->timer_throttle = qos_latency_policy_package(qv: task->requested_policy.trp_sup_timer); |
| 709 | info->disk_throttle = task->requested_policy.trp_sup_disk; |
| 710 | info->cpu_limit = 0; |
| 711 | info->suspend = 0; |
| 712 | info->throughput_qos = qos_throughput_policy_package(qv: task->requested_policy.trp_sup_throughput); |
| 713 | info->suppressed_cpu = task->requested_policy.trp_sup_cpu; |
| 714 | info->background_sockets = task->requested_policy.trp_sup_bg_sockets; |
| 715 | } |
| 716 | |
| 717 | task_unlock(task); |
| 718 | break; |
| 719 | } |
| 720 | |
| 721 | default: |
| 722 | return KERN_INVALID_ARGUMENT; |
| 723 | } |
| 724 | |
| 725 | return KERN_SUCCESS; |
| 726 | } |
| 727 | |
| 728 | /* |
| 729 | * Called at task creation |
| 730 | * We calculate the correct effective but don't apply it to anything yet. |
| 731 | * The threads, etc will inherit from the task as they get created. |
| 732 | */ |
| 733 | void |
| 734 | task_policy_create(task_t task, task_t parent_task) |
| 735 | { |
| 736 | task_set_requested_apptype(task, apptype: parent_task->requested_policy.trp_apptype, true); |
| 737 | |
| 738 | task->requested_policy.trp_int_darwinbg = parent_task->requested_policy.trp_int_darwinbg; |
| 739 | task->requested_policy.trp_ext_darwinbg = parent_task->requested_policy.trp_ext_darwinbg; |
| 740 | task->requested_policy.trp_int_iotier = parent_task->requested_policy.trp_int_iotier; |
| 741 | task->requested_policy.trp_ext_iotier = parent_task->requested_policy.trp_ext_iotier; |
| 742 | task->requested_policy.trp_int_iopassive = parent_task->requested_policy.trp_int_iopassive; |
| 743 | task->requested_policy.trp_ext_iopassive = parent_task->requested_policy.trp_ext_iopassive; |
| 744 | task->requested_policy.trp_bg_iotier = parent_task->requested_policy.trp_bg_iotier; |
| 745 | task->requested_policy.trp_terminated = parent_task->requested_policy.trp_terminated; |
| 746 | task->requested_policy.trp_qos_clamp = parent_task->requested_policy.trp_qos_clamp; |
| 747 | |
| 748 | if (task->requested_policy.trp_apptype == TASK_APPTYPE_DAEMON_ADAPTIVE && !task_is_exec_copy(task)) { |
| 749 | /* Do not update the apptype for exec copy task */ |
| 750 | if (parent_task->requested_policy.trp_boosted) { |
| 751 | task_set_requested_apptype(task, TASK_APPTYPE_DAEMON_INTERACTIVE, true); |
| 752 | task_importance_mark_donor(task, TRUE); |
| 753 | } else { |
| 754 | task_set_requested_apptype(task, TASK_APPTYPE_DAEMON_BACKGROUND, true); |
| 755 | task_importance_mark_receiver(task, FALSE); |
| 756 | } |
| 757 | } |
| 758 | |
| 759 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
| 760 | (IMPORTANCE_CODE(IMP_UPDATE, (IMP_UPDATE_TASK_CREATE | TASK_POLICY_TASK))) | DBG_FUNC_START, |
| 761 | task_pid(task), teffective_0(task), |
| 762 | teffective_1(task), task->priority, 0); |
| 763 | |
| 764 | task_policy_update_internal_locked(task, true, NULL); |
| 765 | |
| 766 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
| 767 | (IMPORTANCE_CODE(IMP_UPDATE, (IMP_UPDATE_TASK_CREATE | TASK_POLICY_TASK))) | DBG_FUNC_END, |
| 768 | task_pid(task), teffective_0(task), |
| 769 | teffective_1(task), task->priority, 0); |
| 770 | |
| 771 | task_importance_update_live_donor(target_task: task); |
| 772 | } |
| 773 | |
| 774 | |
| 775 | static void |
| 776 | task_policy_update_locked(task_t task, task_pend_token_t pend_token) |
| 777 | { |
| 778 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
| 779 | (IMPORTANCE_CODE(IMP_UPDATE, TASK_POLICY_TASK) | DBG_FUNC_START), |
| 780 | task_pid(task), teffective_0(task), |
| 781 | teffective_1(task), task->priority, 0); |
| 782 | |
| 783 | task_policy_update_internal_locked(task, false, pend_token); |
| 784 | |
| 785 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
| 786 | (IMPORTANCE_CODE(IMP_UPDATE, TASK_POLICY_TASK)) | DBG_FUNC_END, |
| 787 | task_pid(task), teffective_0(task), |
| 788 | teffective_1(task), task->priority, 0); |
| 789 | } |
| 790 | |
| 791 | /* |
| 792 | * One state update function TO RULE THEM ALL |
| 793 | * |
| 794 | * This function updates the task or thread effective policy fields |
| 795 | * and pushes the results to the relevant subsystems. |
| 796 | * |
| 797 | * Must call update_complete after unlocking the task, |
| 798 | * as some subsystems cannot be updated while holding the task lock. |
| 799 | * |
| 800 | * Called with task locked, not thread |
| 801 | */ |
| 802 | |
| 803 | static void |
| 804 | task_policy_update_internal_locked(task_t task, bool in_create, task_pend_token_t pend_token) |
| 805 | { |
| 806 | /* |
| 807 | * Step 1: |
| 808 | * Gather requested policy |
| 809 | */ |
| 810 | |
| 811 | struct task_requested_policy requested = task->requested_policy; |
| 812 | |
| 813 | /* |
| 814 | * Step 2: |
| 815 | * Calculate new effective policies from requested policy and task state |
| 816 | * Rules: |
| 817 | * Don't change requested, it won't take effect |
| 818 | */ |
| 819 | |
| 820 | struct task_effective_policy next = {}; |
| 821 | |
| 822 | /* Update task role */ |
| 823 | next.tep_role = requested.trp_role; |
| 824 | |
| 825 | /* Set task qos clamp and ceiling */ |
| 826 | |
| 827 | thread_qos_t role_clamp = THREAD_QOS_UNSPECIFIED; |
| 828 | |
| 829 | if (requested.trp_apptype == TASK_APPTYPE_APP_DEFAULT) { |
| 830 | switch (next.tep_role) { |
| 831 | case TASK_FOREGROUND_APPLICATION: |
| 832 | /* Foreground apps get urgent scheduler priority */ |
| 833 | next.tep_qos_ui_is_urgent = 1; |
| 834 | next.tep_qos_ceiling = THREAD_QOS_UNSPECIFIED; |
| 835 | break; |
| 836 | |
| 837 | case TASK_BACKGROUND_APPLICATION: |
| 838 | /* This is really 'non-focal but on-screen' */ |
| 839 | next.tep_qos_ceiling = THREAD_QOS_UNSPECIFIED; |
| 840 | break; |
| 841 | |
| 842 | case TASK_DEFAULT_APPLICATION: |
| 843 | /* This is 'may render UI but we don't know if it's focal/nonfocal' */ |
| 844 | next.tep_qos_ceiling = THREAD_QOS_UNSPECIFIED; |
| 845 | break; |
| 846 | |
| 847 | case TASK_NONUI_APPLICATION: |
| 848 | /* i.e. 'off-screen' */ |
| 849 | next.tep_qos_ceiling = THREAD_QOS_LEGACY; |
| 850 | break; |
| 851 | |
| 852 | case TASK_CONTROL_APPLICATION: |
| 853 | case TASK_GRAPHICS_SERVER: |
| 854 | next.tep_qos_ui_is_urgent = 1; |
| 855 | next.tep_qos_ceiling = THREAD_QOS_UNSPECIFIED; |
| 856 | break; |
| 857 | |
| 858 | case TASK_THROTTLE_APPLICATION: |
| 859 | /* i.e. 'TAL launch' */ |
| 860 | next.tep_qos_ceiling = THREAD_QOS_UTILITY; |
| 861 | role_clamp = THREAD_QOS_UTILITY; |
| 862 | break; |
| 863 | |
| 864 | case TASK_DARWINBG_APPLICATION: |
| 865 | /* i.e. 'DARWIN_BG throttled background application' */ |
| 866 | next.tep_qos_ceiling = THREAD_QOS_BACKGROUND; |
| 867 | break; |
| 868 | |
| 869 | case TASK_UNSPECIFIED: |
| 870 | default: |
| 871 | /* Apps that don't have an application role get |
| 872 | * USER_INTERACTIVE and USER_INITIATED squashed to LEGACY */ |
| 873 | next.tep_qos_ceiling = THREAD_QOS_LEGACY; |
| 874 | break; |
| 875 | } |
| 876 | } else { |
| 877 | /* Daemons and dext get USER_INTERACTIVE squashed to USER_INITIATED */ |
| 878 | next.tep_qos_ceiling = THREAD_QOS_USER_INITIATED; |
| 879 | } |
| 880 | |
| 881 | if (role_clamp != THREAD_QOS_UNSPECIFIED) { |
| 882 | if (requested.trp_qos_clamp != THREAD_QOS_UNSPECIFIED) { |
| 883 | next.tep_qos_clamp = MIN(role_clamp, requested.trp_qos_clamp); |
| 884 | } else { |
| 885 | next.tep_qos_clamp = role_clamp; |
| 886 | } |
| 887 | } else { |
| 888 | next.tep_qos_clamp = requested.trp_qos_clamp; |
| 889 | } |
| 890 | |
| 891 | /* Calculate DARWIN_BG */ |
| 892 | bool wants_darwinbg = false; |
| 893 | bool wants_all_sockets_bg = false; /* Do I want my existing sockets to be bg */ |
| 894 | bool wants_watchersbg = false; /* Do I want my pidbound threads to be bg */ |
| 895 | bool adaptive_bg_only = false; /* This task is BG only because it's adaptive unboosted */ |
| 896 | |
| 897 | /* Adaptive daemons are DARWIN_BG unless boosted, and don't get network throttled. */ |
| 898 | if (requested.trp_apptype == TASK_APPTYPE_DAEMON_ADAPTIVE && |
| 899 | requested.trp_boosted == 0) { |
| 900 | wants_darwinbg = true; |
| 901 | adaptive_bg_only = true; |
| 902 | } |
| 903 | |
| 904 | /* |
| 905 | * If DARWIN_BG has been requested at either level, it's engaged. |
| 906 | * Only true DARWIN_BG changes cause watchers to transition. |
| 907 | * |
| 908 | * Backgrounding due to apptype does. |
| 909 | */ |
| 910 | if (requested.trp_int_darwinbg || requested.trp_ext_darwinbg || |
| 911 | next.tep_role == TASK_DARWINBG_APPLICATION) { |
| 912 | wants_watchersbg = wants_all_sockets_bg = wants_darwinbg = true; |
| 913 | adaptive_bg_only = false; |
| 914 | } |
| 915 | |
| 916 | /* Application launching in special Transparent App Lifecycle throttle mode */ |
| 917 | if (requested.trp_apptype == TASK_APPTYPE_APP_DEFAULT && |
| 918 | requested.trp_role == TASK_THROTTLE_APPLICATION) { |
| 919 | next.tep_tal_engaged = 1; |
| 920 | } |
| 921 | |
| 922 | /* Background daemons are always DARWIN_BG, no exceptions, and don't get network throttled. */ |
| 923 | if (requested.trp_apptype == TASK_APPTYPE_DAEMON_BACKGROUND) { |
| 924 | wants_darwinbg = true; |
| 925 | adaptive_bg_only = false; |
| 926 | } |
| 927 | |
| 928 | if (next.tep_qos_clamp == THREAD_QOS_BACKGROUND || |
| 929 | next.tep_qos_clamp == THREAD_QOS_MAINTENANCE) { |
| 930 | wants_darwinbg = true; |
| 931 | adaptive_bg_only = false; |
| 932 | } |
| 933 | |
| 934 | /* Calculate side effects of DARWIN_BG */ |
| 935 | |
| 936 | if (wants_darwinbg) { |
| 937 | next.tep_darwinbg = 1; |
| 938 | /* darwinbg tasks always create bg sockets, but we don't always loop over all sockets */ |
| 939 | next.tep_new_sockets_bg = 1; |
| 940 | next.tep_lowpri_cpu = 1; |
| 941 | } |
| 942 | |
| 943 | if (wants_all_sockets_bg) { |
| 944 | next.tep_all_sockets_bg = 1; |
| 945 | } |
| 946 | |
| 947 | if (wants_watchersbg) { |
| 948 | next.tep_watchers_bg = 1; |
| 949 | } |
| 950 | |
| 951 | next.tep_adaptive_bg = adaptive_bg_only; |
| 952 | |
| 953 | /* Calculate low CPU priority */ |
| 954 | |
| 955 | boolean_t wants_lowpri_cpu = false; |
| 956 | |
| 957 | if (wants_darwinbg) { |
| 958 | wants_lowpri_cpu = true; |
| 959 | } |
| 960 | |
| 961 | if (requested.trp_sup_lowpri_cpu && requested.trp_boosted == 0) { |
| 962 | wants_lowpri_cpu = true; |
| 963 | } |
| 964 | |
| 965 | if (wants_lowpri_cpu) { |
| 966 | next.tep_lowpri_cpu = 1; |
| 967 | } |
| 968 | |
| 969 | /* Calculate IO policy */ |
| 970 | |
| 971 | /* Update BG IO policy (so we can see if it has changed) */ |
| 972 | next.tep_bg_iotier = requested.trp_bg_iotier; |
| 973 | |
| 974 | int iopol = THROTTLE_LEVEL_TIER0; |
| 975 | |
| 976 | if (wants_darwinbg) { |
| 977 | iopol = MAX(iopol, requested.trp_bg_iotier); |
| 978 | } |
| 979 | |
| 980 | if (requested.trp_apptype == TASK_APPTYPE_DAEMON_STANDARD) { |
| 981 | iopol = MAX(iopol, proc_standard_daemon_tier); |
| 982 | } |
| 983 | |
| 984 | if (requested.trp_sup_disk && requested.trp_boosted == 0) { |
| 985 | iopol = MAX(iopol, proc_suppressed_disk_tier); |
| 986 | } |
| 987 | |
| 988 | if (next.tep_qos_clamp != THREAD_QOS_UNSPECIFIED) { |
| 989 | iopol = MAX(iopol, thread_qos_policy_params.qos_iotier[next.tep_qos_clamp]); |
| 990 | } |
| 991 | |
| 992 | iopol = MAX(iopol, requested.trp_int_iotier); |
| 993 | iopol = MAX(iopol, requested.trp_ext_iotier); |
| 994 | |
| 995 | next.tep_io_tier = iopol; |
| 996 | |
| 997 | /* Calculate Passive IO policy */ |
| 998 | |
| 999 | if (requested.trp_ext_iopassive || requested.trp_int_iopassive) { |
| 1000 | next.tep_io_passive = 1; |
| 1001 | } |
| 1002 | |
| 1003 | /* Calculate suppression-active flag */ |
| 1004 | boolean_t appnap_transition = false; |
| 1005 | |
| 1006 | if (requested.trp_sup_active && requested.trp_boosted == 0) { |
| 1007 | next.tep_sup_active = 1; |
| 1008 | } |
| 1009 | |
| 1010 | if (task->effective_policy.tep_sup_active != next.tep_sup_active) { |
| 1011 | appnap_transition = true; |
| 1012 | } |
| 1013 | |
| 1014 | /* Calculate timer QOS */ |
| 1015 | int latency_qos = requested.trp_base_latency_qos; |
| 1016 | |
| 1017 | if (requested.trp_sup_timer && requested.trp_boosted == 0) { |
| 1018 | latency_qos = requested.trp_sup_timer; |
| 1019 | } |
| 1020 | |
| 1021 | if (next.tep_qos_clamp != THREAD_QOS_UNSPECIFIED) { |
| 1022 | latency_qos = MAX(latency_qos, (int)thread_qos_policy_params.qos_latency_qos[next.tep_qos_clamp]); |
| 1023 | } |
| 1024 | |
| 1025 | if (requested.trp_over_latency_qos != 0) { |
| 1026 | latency_qos = requested.trp_over_latency_qos; |
| 1027 | } |
| 1028 | |
| 1029 | /* Treat the windowserver special */ |
| 1030 | if (requested.trp_role == TASK_GRAPHICS_SERVER) { |
| 1031 | latency_qos = proc_graphics_timer_qos; |
| 1032 | } |
| 1033 | |
| 1034 | next.tep_latency_qos = latency_qos; |
| 1035 | |
| 1036 | /* Calculate throughput QOS */ |
| 1037 | int through_qos = requested.trp_base_through_qos; |
| 1038 | |
| 1039 | if (requested.trp_sup_throughput && requested.trp_boosted == 0) { |
| 1040 | through_qos = requested.trp_sup_throughput; |
| 1041 | } |
| 1042 | |
| 1043 | if (next.tep_qos_clamp != THREAD_QOS_UNSPECIFIED) { |
| 1044 | through_qos = MAX(through_qos, (int)thread_qos_policy_params.qos_through_qos[next.tep_qos_clamp]); |
| 1045 | } |
| 1046 | |
| 1047 | if (requested.trp_over_through_qos != 0) { |
| 1048 | through_qos = requested.trp_over_through_qos; |
| 1049 | } |
| 1050 | |
| 1051 | next.tep_through_qos = through_qos; |
| 1052 | |
| 1053 | /* Calculate suppressed CPU priority */ |
| 1054 | if (requested.trp_sup_cpu && requested.trp_boosted == 0) { |
| 1055 | next.tep_suppressed_cpu = 1; |
| 1056 | } |
| 1057 | |
| 1058 | /* |
| 1059 | * Calculate background sockets |
| 1060 | * Don't take into account boosting to limit transition frequency. |
| 1061 | */ |
| 1062 | if (requested.trp_sup_bg_sockets) { |
| 1063 | next.tep_all_sockets_bg = 1; |
| 1064 | next.tep_new_sockets_bg = 1; |
| 1065 | } |
| 1066 | |
| 1067 | /* Apply SFI Managed class bit */ |
| 1068 | next.tep_sfi_managed = requested.trp_sfi_managed; |
| 1069 | |
| 1070 | /* Calculate 'live donor' status for live importance */ |
| 1071 | switch (requested.trp_apptype) { |
| 1072 | case TASK_APPTYPE_APP_TAL: |
| 1073 | case TASK_APPTYPE_APP_DEFAULT: |
| 1074 | if (requested.trp_ext_darwinbg == 1 || |
| 1075 | (next.tep_sup_active == 1 && |
| 1076 | (task_policy_suppression_flags & TASK_POLICY_SUPPRESSION_NONDONOR)) || |
| 1077 | next.tep_role == TASK_DARWINBG_APPLICATION) { |
| 1078 | next.tep_live_donor = 0; |
| 1079 | } else { |
| 1080 | next.tep_live_donor = 1; |
| 1081 | } |
| 1082 | break; |
| 1083 | |
| 1084 | case TASK_APPTYPE_DAEMON_INTERACTIVE: |
| 1085 | case TASK_APPTYPE_DAEMON_STANDARD: |
| 1086 | case TASK_APPTYPE_DAEMON_ADAPTIVE: |
| 1087 | case TASK_APPTYPE_DAEMON_BACKGROUND: |
| 1088 | case TASK_APPTYPE_DRIVER: |
| 1089 | default: |
| 1090 | next.tep_live_donor = 0; |
| 1091 | break; |
| 1092 | } |
| 1093 | |
| 1094 | if (requested.trp_terminated) { |
| 1095 | /* |
| 1096 | * Shoot down the throttles that slow down exit or response to SIGTERM |
| 1097 | * We don't need to shoot down: |
| 1098 | * passive (don't want to cause others to throttle) |
| 1099 | * all_sockets_bg (don't need to iterate FDs on every exit) |
| 1100 | * new_sockets_bg (doesn't matter for exiting process) |
| 1101 | * pidsuspend (jetsam-ed BG process shouldn't run again) |
| 1102 | * watchers_bg (watcher threads don't need to be unthrottled) |
| 1103 | * latency_qos (affects userspace timers only) |
| 1104 | */ |
| 1105 | |
| 1106 | next.tep_terminated = 1; |
| 1107 | next.tep_darwinbg = 0; |
| 1108 | next.tep_lowpri_cpu = 0; |
| 1109 | next.tep_io_tier = THROTTLE_LEVEL_TIER0; |
| 1110 | next.tep_tal_engaged = 0; |
| 1111 | next.tep_role = TASK_UNSPECIFIED; |
| 1112 | next.tep_suppressed_cpu = 0; |
| 1113 | } |
| 1114 | |
| 1115 | /* |
| 1116 | * Step 3: |
| 1117 | * Swap out old policy for new policy |
| 1118 | */ |
| 1119 | |
| 1120 | struct task_effective_policy prev = task->effective_policy; |
| 1121 | |
| 1122 | /* This is the point where the new values become visible to other threads */ |
| 1123 | task->effective_policy = next; |
| 1124 | |
| 1125 | /* Don't do anything further to a half-formed task */ |
| 1126 | if (in_create) { |
| 1127 | return; |
| 1128 | } |
| 1129 | |
| 1130 | if (task == kernel_task) { |
| 1131 | panic("Attempting to set task policy on kernel_task" ); |
| 1132 | } |
| 1133 | |
| 1134 | /* |
| 1135 | * Step 4: |
| 1136 | * Pend updates that can't be done while holding the task lock |
| 1137 | */ |
| 1138 | |
| 1139 | if (prev.tep_all_sockets_bg != next.tep_all_sockets_bg) { |
| 1140 | pend_token->tpt_update_sockets = 1; |
| 1141 | } |
| 1142 | |
| 1143 | /* Only re-scan the timer list if the qos level is getting less strong */ |
| 1144 | if (prev.tep_latency_qos > next.tep_latency_qos) { |
| 1145 | pend_token->tpt_update_timers = 1; |
| 1146 | } |
| 1147 | |
| 1148 | #if CONFIG_TASKWATCH |
| 1149 | if (prev.tep_watchers_bg != next.tep_watchers_bg) { |
| 1150 | pend_token->tpt_update_watchers = 1; |
| 1151 | } |
| 1152 | #endif /* CONFIG_TASKWATCH */ |
| 1153 | |
| 1154 | if (prev.tep_live_donor != next.tep_live_donor) { |
| 1155 | pend_token->tpt_update_live_donor = 1; |
| 1156 | } |
| 1157 | |
| 1158 | /* |
| 1159 | * Step 5: |
| 1160 | * Update other subsystems as necessary if something has changed |
| 1161 | */ |
| 1162 | |
| 1163 | bool update_threads = false, update_sfi = false, update_termination = false; |
| 1164 | |
| 1165 | /* |
| 1166 | * Check for the attributes that thread_policy_update_internal_locked() consults, |
| 1167 | * and trigger thread policy re-evaluation. |
| 1168 | */ |
| 1169 | if (prev.tep_io_tier != next.tep_io_tier || |
| 1170 | prev.tep_bg_iotier != next.tep_bg_iotier || |
| 1171 | prev.tep_io_passive != next.tep_io_passive || |
| 1172 | prev.tep_darwinbg != next.tep_darwinbg || |
| 1173 | prev.tep_qos_clamp != next.tep_qos_clamp || |
| 1174 | prev.tep_qos_ceiling != next.tep_qos_ceiling || |
| 1175 | prev.tep_qos_ui_is_urgent != next.tep_qos_ui_is_urgent || |
| 1176 | prev.tep_latency_qos != next.tep_latency_qos || |
| 1177 | prev.tep_through_qos != next.tep_through_qos || |
| 1178 | prev.tep_lowpri_cpu != next.tep_lowpri_cpu || |
| 1179 | prev.tep_new_sockets_bg != next.tep_new_sockets_bg || |
| 1180 | prev.tep_terminated != next.tep_terminated || |
| 1181 | prev.tep_adaptive_bg != next.tep_adaptive_bg) { |
| 1182 | update_threads = true; |
| 1183 | } |
| 1184 | |
| 1185 | /* |
| 1186 | * Check for the attributes that sfi_thread_classify() consults, |
| 1187 | * and trigger SFI re-evaluation. |
| 1188 | */ |
| 1189 | if (prev.tep_latency_qos != next.tep_latency_qos || |
| 1190 | prev.tep_role != next.tep_role || |
| 1191 | prev.tep_sfi_managed != next.tep_sfi_managed) { |
| 1192 | update_sfi = true; |
| 1193 | } |
| 1194 | |
| 1195 | /* Reflect task role transitions into the coalition role counters */ |
| 1196 | if (prev.tep_role != next.tep_role) { |
| 1197 | if (task_policy_update_coalition_focal_tasks(task, prev_role: prev.tep_role, next_role: next.tep_role, pend_token)) { |
| 1198 | update_sfi = true; |
| 1199 | } |
| 1200 | } |
| 1201 | |
| 1202 | if (prev.tep_terminated != next.tep_terminated) { |
| 1203 | update_termination = true; |
| 1204 | } |
| 1205 | |
| 1206 | bool update_priority = false; |
| 1207 | |
| 1208 | int16_t priority = BASEPRI_DEFAULT; |
| 1209 | int16_t max_priority = MAXPRI_USER; |
| 1210 | |
| 1211 | if (next.tep_lowpri_cpu) { |
| 1212 | priority = MAXPRI_THROTTLE; |
| 1213 | max_priority = MAXPRI_THROTTLE; |
| 1214 | } else if (next.tep_suppressed_cpu) { |
| 1215 | priority = MAXPRI_SUPPRESSED; |
| 1216 | max_priority = MAXPRI_SUPPRESSED; |
| 1217 | } else { |
| 1218 | switch (next.tep_role) { |
| 1219 | case TASK_CONTROL_APPLICATION: |
| 1220 | priority = BASEPRI_CONTROL; |
| 1221 | break; |
| 1222 | case TASK_GRAPHICS_SERVER: |
| 1223 | priority = BASEPRI_GRAPHICS; |
| 1224 | max_priority = MAXPRI_RESERVED; |
| 1225 | break; |
| 1226 | default: |
| 1227 | break; |
| 1228 | } |
| 1229 | |
| 1230 | /* factor in 'nice' value */ |
| 1231 | priority += task->importance; |
| 1232 | |
| 1233 | if (task->effective_policy.tep_qos_clamp != THREAD_QOS_UNSPECIFIED) { |
| 1234 | int16_t qos_clamp_priority = thread_qos_policy_params.qos_pri[task->effective_policy.tep_qos_clamp]; |
| 1235 | |
| 1236 | priority = MIN(priority, qos_clamp_priority); |
| 1237 | max_priority = MIN(max_priority, qos_clamp_priority); |
| 1238 | } |
| 1239 | |
| 1240 | if (priority > max_priority) { |
| 1241 | priority = max_priority; |
| 1242 | } else if (priority < MINPRI) { |
| 1243 | priority = MINPRI; |
| 1244 | } |
| 1245 | } |
| 1246 | |
| 1247 | assert(priority <= max_priority); |
| 1248 | |
| 1249 | /* avoid extra work if priority isn't changing */ |
| 1250 | if (priority != task->priority || |
| 1251 | max_priority != task->max_priority) { |
| 1252 | /* update the scheduling priority for the task */ |
| 1253 | task->max_priority = max_priority; |
| 1254 | task->priority = priority; |
| 1255 | update_priority = true; |
| 1256 | } |
| 1257 | |
| 1258 | /* Loop over the threads in the task: |
| 1259 | * only once |
| 1260 | * only if necessary |
| 1261 | * with one thread mutex hold per thread |
| 1262 | */ |
| 1263 | if (update_threads || update_priority || update_sfi) { |
| 1264 | thread_t thread; |
| 1265 | |
| 1266 | queue_iterate(&task->threads, thread, thread_t, task_threads) { |
| 1267 | struct task_pend_token thread_pend_token = {}; |
| 1268 | |
| 1269 | if (update_sfi) { |
| 1270 | thread_pend_token.tpt_update_thread_sfi = 1; |
| 1271 | } |
| 1272 | |
| 1273 | if (update_priority || update_threads) { |
| 1274 | /* Check if we need to reevaluate turnstile push */ |
| 1275 | if (pend_token->tpt_update_turnstile) { |
| 1276 | thread_pend_token.tpt_update_turnstile = 1; |
| 1277 | } |
| 1278 | thread_policy_update_tasklocked(thread, |
| 1279 | priority: task->priority, max_priority: task->max_priority, |
| 1280 | pend_token: &thread_pend_token); |
| 1281 | } |
| 1282 | |
| 1283 | assert(!thread_pend_token.tpt_update_sockets); |
| 1284 | |
| 1285 | // Slightly risky, as we still hold the task lock... |
| 1286 | thread_policy_update_complete_unlocked(task: thread, pend_token: &thread_pend_token); |
| 1287 | } |
| 1288 | } |
| 1289 | |
| 1290 | /* |
| 1291 | * Use the app-nap transitions to influence the |
| 1292 | * transition of the process within the jetsam band |
| 1293 | * [and optionally its live-donor status] |
| 1294 | * On macOS only. |
| 1295 | */ |
| 1296 | if (appnap_transition) { |
| 1297 | if (task->effective_policy.tep_sup_active == 1) { |
| 1298 | memorystatus_update_priority_for_appnap(p: ((proc_t) get_bsdtask_info(task)), TRUE); |
| 1299 | } else { |
| 1300 | memorystatus_update_priority_for_appnap(p: ((proc_t) get_bsdtask_info(task)), FALSE); |
| 1301 | } |
| 1302 | } |
| 1303 | |
| 1304 | if (update_termination) { |
| 1305 | /* |
| 1306 | * This update is done after the terminated bit is set, |
| 1307 | * and all updates other than this one will check that bit, |
| 1308 | * so we know that it will be the last update. (This path |
| 1309 | * skips the check for the terminated bit.) |
| 1310 | */ |
| 1311 | if (task_set_game_mode_locked(task, false)) { |
| 1312 | pend_token->tpt_update_game_mode = 1; |
| 1313 | } |
| 1314 | } |
| 1315 | } |
| 1316 | |
| 1317 | |
| 1318 | /* |
| 1319 | * Yet another layering violation. We reach out and bang on the coalition directly. |
| 1320 | */ |
| 1321 | static boolean_t |
| 1322 | task_policy_update_coalition_focal_tasks(task_t task, |
| 1323 | int prev_role, |
| 1324 | int next_role, |
| 1325 | task_pend_token_t pend_token) |
| 1326 | { |
| 1327 | boolean_t sfi_transition = FALSE; |
| 1328 | uint32_t new_count = 0; |
| 1329 | |
| 1330 | /* task moving into/out-of the foreground */ |
| 1331 | if (prev_role != TASK_FOREGROUND_APPLICATION && next_role == TASK_FOREGROUND_APPLICATION) { |
| 1332 | if (task_coalition_adjust_focal_count(task, count: 1, new_count: &new_count) && (new_count == 1)) { |
| 1333 | sfi_transition = TRUE; |
| 1334 | pend_token->tpt_update_tg_ui_flag = TRUE; |
| 1335 | } |
| 1336 | } else if (prev_role == TASK_FOREGROUND_APPLICATION && next_role != TASK_FOREGROUND_APPLICATION) { |
| 1337 | if (task_coalition_adjust_focal_count(task, count: -1, new_count: &new_count) && (new_count == 0)) { |
| 1338 | sfi_transition = TRUE; |
| 1339 | pend_token->tpt_update_tg_ui_flag = TRUE; |
| 1340 | } |
| 1341 | } |
| 1342 | |
| 1343 | /* task moving into/out-of background */ |
| 1344 | if (prev_role != TASK_BACKGROUND_APPLICATION && next_role == TASK_BACKGROUND_APPLICATION) { |
| 1345 | if (task_coalition_adjust_nonfocal_count(task, count: 1, new_count: &new_count) && (new_count == 1)) { |
| 1346 | sfi_transition = TRUE; |
| 1347 | } |
| 1348 | } else if (prev_role == TASK_BACKGROUND_APPLICATION && next_role != TASK_BACKGROUND_APPLICATION) { |
| 1349 | if (task_coalition_adjust_nonfocal_count(task, count: -1, new_count: &new_count) && (new_count == 0)) { |
| 1350 | sfi_transition = TRUE; |
| 1351 | } |
| 1352 | } |
| 1353 | |
| 1354 | if (sfi_transition) { |
| 1355 | pend_token->tpt_update_coal_sfi = 1; |
| 1356 | } |
| 1357 | return sfi_transition; |
| 1358 | } |
| 1359 | |
| 1360 | #if CONFIG_SCHED_SFI |
| 1361 | |
| 1362 | /* coalition object is locked */ |
| 1363 | static void |
| 1364 | task_sfi_reevaluate_cb(coalition_t coal, void *ctx, task_t task) |
| 1365 | { |
| 1366 | thread_t thread; |
| 1367 | |
| 1368 | /* unused for now */ |
| 1369 | (void)coal; |
| 1370 | |
| 1371 | /* skip the task we're re-evaluating on behalf of: it's already updated */ |
| 1372 | if (task == (task_t)ctx) { |
| 1373 | return; |
| 1374 | } |
| 1375 | |
| 1376 | task_lock(task); |
| 1377 | |
| 1378 | queue_iterate(&task->threads, thread, thread_t, task_threads) { |
| 1379 | sfi_reevaluate(thread); |
| 1380 | } |
| 1381 | |
| 1382 | task_unlock(task); |
| 1383 | } |
| 1384 | #endif /* CONFIG_SCHED_SFI */ |
| 1385 | |
| 1386 | /* |
| 1387 | * Called with task unlocked to do things that can't be done while holding the task lock |
| 1388 | */ |
| 1389 | void |
| 1390 | task_policy_update_complete_unlocked(task_t task, task_pend_token_t pend_token) |
| 1391 | { |
| 1392 | #ifdef MACH_BSD |
| 1393 | if (pend_token->tpt_update_sockets) { |
| 1394 | proc_apply_task_networkbg(pid: task_pid(task), THREAD_NULL); |
| 1395 | } |
| 1396 | #endif /* MACH_BSD */ |
| 1397 | |
| 1398 | /* The timer throttle has been removed or reduced, we need to look for expired timers and fire them */ |
| 1399 | if (pend_token->tpt_update_timers) { |
| 1400 | ml_timer_evaluate(); |
| 1401 | } |
| 1402 | |
| 1403 | #if CONFIG_TASKWATCH |
| 1404 | if (pend_token->tpt_update_watchers) { |
| 1405 | apply_appstate_watchers(task); |
| 1406 | } |
| 1407 | #endif /* CONFIG_TASKWATCH */ |
| 1408 | |
| 1409 | if (pend_token->tpt_update_live_donor) { |
| 1410 | task_importance_update_live_donor(target_task: task); |
| 1411 | } |
| 1412 | |
| 1413 | #if CONFIG_SCHED_SFI |
| 1414 | /* use the resource coalition for SFI re-evaluation */ |
| 1415 | if (pend_token->tpt_update_coal_sfi) { |
| 1416 | coalition_for_each_task(coal: task->coalition[COALITION_TYPE_RESOURCE], |
| 1417 | ctx: (void *)task, callback: task_sfi_reevaluate_cb); |
| 1418 | } |
| 1419 | #endif /* CONFIG_SCHED_SFI */ |
| 1420 | |
| 1421 | #if CONFIG_THREAD_GROUPS |
| 1422 | if (pend_token->tpt_update_tg_ui_flag) { |
| 1423 | task_coalition_thread_group_focal_update(task); |
| 1424 | } |
| 1425 | if (pend_token->tpt_update_tg_app_flag) { |
| 1426 | task_coalition_thread_group_application_set(task); |
| 1427 | } |
| 1428 | if (pend_token->tpt_update_game_mode) { |
| 1429 | task_coalition_thread_group_game_mode_update(task); |
| 1430 | } |
| 1431 | #endif /* CONFIG_THREAD_GROUPS */ |
| 1432 | } |
| 1433 | |
| 1434 | /* |
| 1435 | * Initiate a task policy state transition |
| 1436 | * |
| 1437 | * Everything that modifies requested except functions that need to hold the task lock |
| 1438 | * should use this function |
| 1439 | * |
| 1440 | * Argument validation should be performed before reaching this point. |
| 1441 | * |
| 1442 | * TODO: Do we need to check task->active? |
| 1443 | */ |
| 1444 | void |
| 1445 | proc_set_task_policy(task_t task, |
| 1446 | int category, |
| 1447 | int flavor, |
| 1448 | int value) |
| 1449 | { |
| 1450 | struct task_pend_token pend_token = {}; |
| 1451 | |
| 1452 | task_lock(task); |
| 1453 | |
| 1454 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
| 1455 | (IMPORTANCE_CODE(flavor, (category | TASK_POLICY_TASK))) | DBG_FUNC_START, |
| 1456 | task_pid(task), trequested_0(task), |
| 1457 | trequested_1(task), value, 0); |
| 1458 | |
| 1459 | proc_set_task_policy_locked(task, category, flavor, value, value2: 0); |
| 1460 | |
| 1461 | task_policy_update_locked(task, pend_token: &pend_token); |
| 1462 | |
| 1463 | |
| 1464 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
| 1465 | (IMPORTANCE_CODE(flavor, (category | TASK_POLICY_TASK))) | DBG_FUNC_END, |
| 1466 | task_pid(task), trequested_0(task), |
| 1467 | trequested_1(task), tpending(&pend_token), 0); |
| 1468 | |
| 1469 | task_unlock(task); |
| 1470 | |
| 1471 | task_policy_update_complete_unlocked(task, pend_token: &pend_token); |
| 1472 | } |
| 1473 | |
| 1474 | /* |
| 1475 | * Variant of proc_set_task_policy() that sets two scalars in the requested policy structure. |
| 1476 | * Same locking rules apply. |
| 1477 | */ |
| 1478 | void |
| 1479 | proc_set_task_policy2(task_t task, |
| 1480 | int category, |
| 1481 | int flavor, |
| 1482 | int value, |
| 1483 | int value2) |
| 1484 | { |
| 1485 | struct task_pend_token pend_token = {}; |
| 1486 | |
| 1487 | task_lock(task); |
| 1488 | |
| 1489 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
| 1490 | (IMPORTANCE_CODE(flavor, (category | TASK_POLICY_TASK))) | DBG_FUNC_START, |
| 1491 | task_pid(task), trequested_0(task), |
| 1492 | trequested_1(task), value, 0); |
| 1493 | |
| 1494 | proc_set_task_policy_locked(task, category, flavor, value, value2); |
| 1495 | |
| 1496 | task_policy_update_locked(task, pend_token: &pend_token); |
| 1497 | |
| 1498 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
| 1499 | (IMPORTANCE_CODE(flavor, (category | TASK_POLICY_TASK))) | DBG_FUNC_END, |
| 1500 | task_pid(task), trequested_0(task), |
| 1501 | trequested_1(task), tpending(&pend_token), 0); |
| 1502 | |
| 1503 | task_unlock(task); |
| 1504 | |
| 1505 | task_policy_update_complete_unlocked(task, pend_token: &pend_token); |
| 1506 | } |
| 1507 | |
| 1508 | /* |
| 1509 | * Set the requested state for a specific flavor to a specific value. |
| 1510 | * |
| 1511 | * TODO: |
| 1512 | * Verify that arguments to non iopol things are 1 or 0 |
| 1513 | */ |
| 1514 | static void |
| 1515 | proc_set_task_policy_locked(task_t task, |
| 1516 | int category, |
| 1517 | int flavor, |
| 1518 | int value, |
| 1519 | int value2) |
| 1520 | { |
| 1521 | int tier, passive; |
| 1522 | |
| 1523 | struct task_requested_policy requested = task->requested_policy; |
| 1524 | |
| 1525 | switch (flavor) { |
| 1526 | /* Category: EXTERNAL and INTERNAL */ |
| 1527 | |
| 1528 | case TASK_POLICY_DARWIN_BG: |
| 1529 | if (category == TASK_POLICY_EXTERNAL) { |
| 1530 | requested.trp_ext_darwinbg = value; |
| 1531 | } else { |
| 1532 | requested.trp_int_darwinbg = value; |
| 1533 | } |
| 1534 | break; |
| 1535 | |
| 1536 | case TASK_POLICY_IOPOL: |
| 1537 | proc_iopol_to_tier(iopolicy: value, tier: &tier, passive: &passive); |
| 1538 | if (category == TASK_POLICY_EXTERNAL) { |
| 1539 | requested.trp_ext_iotier = tier; |
| 1540 | requested.trp_ext_iopassive = passive; |
| 1541 | } else { |
| 1542 | requested.trp_int_iotier = tier; |
| 1543 | requested.trp_int_iopassive = passive; |
| 1544 | } |
| 1545 | break; |
| 1546 | |
| 1547 | case TASK_POLICY_IO: |
| 1548 | if (category == TASK_POLICY_EXTERNAL) { |
| 1549 | requested.trp_ext_iotier = value; |
| 1550 | } else { |
| 1551 | requested.trp_int_iotier = value; |
| 1552 | } |
| 1553 | break; |
| 1554 | |
| 1555 | case TASK_POLICY_PASSIVE_IO: |
| 1556 | if (category == TASK_POLICY_EXTERNAL) { |
| 1557 | requested.trp_ext_iopassive = value; |
| 1558 | } else { |
| 1559 | requested.trp_int_iopassive = value; |
| 1560 | } |
| 1561 | break; |
| 1562 | |
| 1563 | /* Category: INTERNAL */ |
| 1564 | |
| 1565 | case TASK_POLICY_DARWIN_BG_IOPOL: |
| 1566 | assert(category == TASK_POLICY_INTERNAL); |
| 1567 | proc_iopol_to_tier(iopolicy: value, tier: &tier, passive: &passive); |
| 1568 | requested.trp_bg_iotier = tier; |
| 1569 | break; |
| 1570 | |
| 1571 | /* Category: ATTRIBUTE */ |
| 1572 | |
| 1573 | case TASK_POLICY_BOOST: |
| 1574 | assert(category == TASK_POLICY_ATTRIBUTE); |
| 1575 | requested.trp_boosted = value; |
| 1576 | break; |
| 1577 | |
| 1578 | case TASK_POLICY_ROLE: |
| 1579 | assert(category == TASK_POLICY_ATTRIBUTE); |
| 1580 | requested.trp_role = value; |
| 1581 | break; |
| 1582 | |
| 1583 | case TASK_POLICY_TERMINATED: |
| 1584 | assert(category == TASK_POLICY_ATTRIBUTE); |
| 1585 | requested.trp_terminated = value; |
| 1586 | break; |
| 1587 | |
| 1588 | case TASK_BASE_LATENCY_QOS_POLICY: |
| 1589 | assert(category == TASK_POLICY_ATTRIBUTE); |
| 1590 | requested.trp_base_latency_qos = value; |
| 1591 | break; |
| 1592 | |
| 1593 | case TASK_BASE_THROUGHPUT_QOS_POLICY: |
| 1594 | assert(category == TASK_POLICY_ATTRIBUTE); |
| 1595 | requested.trp_base_through_qos = value; |
| 1596 | break; |
| 1597 | |
| 1598 | case TASK_POLICY_SFI_MANAGED: |
| 1599 | assert(category == TASK_POLICY_ATTRIBUTE); |
| 1600 | requested.trp_sfi_managed = value; |
| 1601 | break; |
| 1602 | |
| 1603 | case TASK_POLICY_BASE_LATENCY_AND_THROUGHPUT_QOS: |
| 1604 | assert(category == TASK_POLICY_ATTRIBUTE); |
| 1605 | requested.trp_base_latency_qos = value; |
| 1606 | requested.trp_base_through_qos = value2; |
| 1607 | break; |
| 1608 | |
| 1609 | case TASK_POLICY_OVERRIDE_LATENCY_AND_THROUGHPUT_QOS: |
| 1610 | assert(category == TASK_POLICY_ATTRIBUTE); |
| 1611 | requested.trp_over_latency_qos = value; |
| 1612 | requested.trp_over_through_qos = value2; |
| 1613 | break; |
| 1614 | |
| 1615 | default: |
| 1616 | panic("unknown task policy: %d %d %d %d" , category, flavor, value, value2); |
| 1617 | break; |
| 1618 | } |
| 1619 | |
| 1620 | task->requested_policy = requested; |
| 1621 | } |
| 1622 | |
| 1623 | /* |
| 1624 | * Gets what you set. Effective values may be different. |
| 1625 | */ |
| 1626 | int |
| 1627 | proc_get_task_policy(task_t task, |
| 1628 | int category, |
| 1629 | int flavor) |
| 1630 | { |
| 1631 | int value = 0; |
| 1632 | |
| 1633 | task_lock(task); |
| 1634 | |
| 1635 | struct task_requested_policy requested = task->requested_policy; |
| 1636 | |
| 1637 | switch (flavor) { |
| 1638 | case TASK_POLICY_DARWIN_BG: |
| 1639 | if (category == TASK_POLICY_EXTERNAL) { |
| 1640 | value = requested.trp_ext_darwinbg; |
| 1641 | } else { |
| 1642 | value = requested.trp_int_darwinbg; |
| 1643 | } |
| 1644 | break; |
| 1645 | case TASK_POLICY_IOPOL: |
| 1646 | if (category == TASK_POLICY_EXTERNAL) { |
| 1647 | value = proc_tier_to_iopol(tier: requested.trp_ext_iotier, |
| 1648 | passive: requested.trp_ext_iopassive); |
| 1649 | } else { |
| 1650 | value = proc_tier_to_iopol(tier: requested.trp_int_iotier, |
| 1651 | passive: requested.trp_int_iopassive); |
| 1652 | } |
| 1653 | break; |
| 1654 | case TASK_POLICY_IO: |
| 1655 | if (category == TASK_POLICY_EXTERNAL) { |
| 1656 | value = requested.trp_ext_iotier; |
| 1657 | } else { |
| 1658 | value = requested.trp_int_iotier; |
| 1659 | } |
| 1660 | break; |
| 1661 | case TASK_POLICY_PASSIVE_IO: |
| 1662 | if (category == TASK_POLICY_EXTERNAL) { |
| 1663 | value = requested.trp_ext_iopassive; |
| 1664 | } else { |
| 1665 | value = requested.trp_int_iopassive; |
| 1666 | } |
| 1667 | break; |
| 1668 | case TASK_POLICY_DARWIN_BG_IOPOL: |
| 1669 | assert(category == TASK_POLICY_INTERNAL); |
| 1670 | value = proc_tier_to_iopol(tier: requested.trp_bg_iotier, passive: 0); |
| 1671 | break; |
| 1672 | case TASK_POLICY_ROLE: |
| 1673 | assert(category == TASK_POLICY_ATTRIBUTE); |
| 1674 | value = requested.trp_role; |
| 1675 | break; |
| 1676 | case TASK_POLICY_SFI_MANAGED: |
| 1677 | assert(category == TASK_POLICY_ATTRIBUTE); |
| 1678 | value = requested.trp_sfi_managed; |
| 1679 | break; |
| 1680 | default: |
| 1681 | panic("unknown policy_flavor %d" , flavor); |
| 1682 | break; |
| 1683 | } |
| 1684 | |
| 1685 | task_unlock(task); |
| 1686 | |
| 1687 | return value; |
| 1688 | } |
| 1689 | |
| 1690 | /* |
| 1691 | * Variant of proc_get_task_policy() that returns two scalar outputs. |
| 1692 | */ |
| 1693 | void |
| 1694 | proc_get_task_policy2(task_t task, |
| 1695 | __assert_only int category, |
| 1696 | int flavor, |
| 1697 | int *value1, |
| 1698 | int *value2) |
| 1699 | { |
| 1700 | task_lock(task); |
| 1701 | |
| 1702 | struct task_requested_policy requested = task->requested_policy; |
| 1703 | |
| 1704 | switch (flavor) { |
| 1705 | case TASK_POLICY_BASE_LATENCY_AND_THROUGHPUT_QOS: |
| 1706 | assert(category == TASK_POLICY_ATTRIBUTE); |
| 1707 | *value1 = requested.trp_base_latency_qos; |
| 1708 | *value2 = requested.trp_base_through_qos; |
| 1709 | break; |
| 1710 | |
| 1711 | case TASK_POLICY_OVERRIDE_LATENCY_AND_THROUGHPUT_QOS: |
| 1712 | assert(category == TASK_POLICY_ATTRIBUTE); |
| 1713 | *value1 = requested.trp_over_latency_qos; |
| 1714 | *value2 = requested.trp_over_through_qos; |
| 1715 | break; |
| 1716 | |
| 1717 | default: |
| 1718 | panic("unknown policy_flavor %d" , flavor); |
| 1719 | break; |
| 1720 | } |
| 1721 | |
| 1722 | task_unlock(task); |
| 1723 | } |
| 1724 | |
| 1725 | /* |
| 1726 | * Function for querying effective state for relevant subsystems |
| 1727 | * Gets what is actually in effect, for subsystems which pull policy instead of receive updates. |
| 1728 | * |
| 1729 | * ONLY the relevant subsystem should query this. |
| 1730 | * NEVER take a value from the 'effective' function and stuff it into a setter. |
| 1731 | * |
| 1732 | * NOTE: This accessor does not take the task lock. |
| 1733 | * Notifications of state updates need to be externally synchronized with state queries. |
| 1734 | * This routine *MUST* remain interrupt safe, as it is potentially invoked |
| 1735 | * within the context of a timer interrupt. It is also called in KDP context for stackshot. |
| 1736 | */ |
| 1737 | int |
| 1738 | proc_get_effective_task_policy(task_t task, |
| 1739 | int flavor) |
| 1740 | { |
| 1741 | int value = 0; |
| 1742 | |
| 1743 | switch (flavor) { |
| 1744 | case TASK_POLICY_DARWIN_BG: |
| 1745 | /* |
| 1746 | * This backs the KPI call proc_pidbackgrounded to find |
| 1747 | * out if a pid is backgrounded. |
| 1748 | * It is used to communicate state to the VM system, as well as |
| 1749 | * prioritizing requests to the graphics system. |
| 1750 | * Returns 1 for background mode, 0 for normal mode |
| 1751 | */ |
| 1752 | value = task->effective_policy.tep_darwinbg; |
| 1753 | break; |
| 1754 | case TASK_POLICY_ALL_SOCKETS_BG: |
| 1755 | /* |
| 1756 | * do_background_socket() calls this to determine what it should do to the proc's sockets |
| 1757 | * Returns 1 for background mode, 0 for normal mode |
| 1758 | * |
| 1759 | * This consults both thread and task so un-DBGing a thread while the task is BG |
| 1760 | * doesn't get you out of the network throttle. |
| 1761 | */ |
| 1762 | value = task->effective_policy.tep_all_sockets_bg; |
| 1763 | break; |
| 1764 | case TASK_POLICY_SUP_ACTIVE: |
| 1765 | /* |
| 1766 | * Is the task in AppNap? This is used to determine the urgency |
| 1767 | * that's passed to the performance management subsystem for threads |
| 1768 | * that are running at a priority <= MAXPRI_THROTTLE. |
| 1769 | */ |
| 1770 | value = task->effective_policy.tep_sup_active; |
| 1771 | break; |
| 1772 | case TASK_POLICY_LATENCY_QOS: |
| 1773 | /* |
| 1774 | * timer arming calls into here to find out the timer coalescing level |
| 1775 | * Returns a QoS tier (0-6) |
| 1776 | */ |
| 1777 | value = task->effective_policy.tep_latency_qos; |
| 1778 | break; |
| 1779 | case TASK_POLICY_THROUGH_QOS: |
| 1780 | /* |
| 1781 | * This value is passed into the urgency callout from the scheduler |
| 1782 | * to the performance management subsystem. |
| 1783 | * Returns a QoS tier (0-6) |
| 1784 | */ |
| 1785 | value = task->effective_policy.tep_through_qos; |
| 1786 | break; |
| 1787 | case TASK_POLICY_ROLE: |
| 1788 | /* |
| 1789 | * This controls various things that ask whether a process is foreground, |
| 1790 | * like SFI, VM, access to GPU, etc |
| 1791 | */ |
| 1792 | value = task->effective_policy.tep_role; |
| 1793 | break; |
| 1794 | case TASK_POLICY_WATCHERS_BG: |
| 1795 | /* |
| 1796 | * This controls whether or not a thread watching this process should be BG. |
| 1797 | */ |
| 1798 | value = task->effective_policy.tep_watchers_bg; |
| 1799 | break; |
| 1800 | case TASK_POLICY_SFI_MANAGED: |
| 1801 | /* |
| 1802 | * This controls whether or not a process is targeted for specific control by thermald. |
| 1803 | */ |
| 1804 | value = task->effective_policy.tep_sfi_managed; |
| 1805 | break; |
| 1806 | case TASK_POLICY_TERMINATED: |
| 1807 | /* |
| 1808 | * This controls whether or not a process has its throttling properties shot down for termination. |
| 1809 | */ |
| 1810 | value = task->effective_policy.tep_terminated; |
| 1811 | break; |
| 1812 | default: |
| 1813 | panic("unknown policy_flavor %d" , flavor); |
| 1814 | break; |
| 1815 | } |
| 1816 | |
| 1817 | return value; |
| 1818 | } |
| 1819 | |
| 1820 | /* |
| 1821 | * Convert from IOPOL_* values to throttle tiers. |
| 1822 | * |
| 1823 | * TODO: Can this be made more compact, like an array lookup |
| 1824 | * Note that it is possible to support e.g. IOPOL_PASSIVE_STANDARD in the future |
| 1825 | */ |
| 1826 | |
| 1827 | void |
| 1828 | proc_iopol_to_tier(int iopolicy, int *tier, int *passive) |
| 1829 | { |
| 1830 | *passive = 0; |
| 1831 | *tier = 0; |
| 1832 | switch (iopolicy) { |
| 1833 | case IOPOL_IMPORTANT: |
| 1834 | *tier = THROTTLE_LEVEL_TIER0; |
| 1835 | break; |
| 1836 | case IOPOL_PASSIVE: |
| 1837 | *tier = THROTTLE_LEVEL_TIER0; |
| 1838 | *passive = 1; |
| 1839 | break; |
| 1840 | case IOPOL_STANDARD: |
| 1841 | *tier = THROTTLE_LEVEL_TIER1; |
| 1842 | break; |
| 1843 | case IOPOL_UTILITY: |
| 1844 | *tier = THROTTLE_LEVEL_TIER2; |
| 1845 | break; |
| 1846 | case IOPOL_THROTTLE: |
| 1847 | *tier = THROTTLE_LEVEL_TIER3; |
| 1848 | break; |
| 1849 | default: |
| 1850 | panic("unknown I/O policy %d" , iopolicy); |
| 1851 | break; |
| 1852 | } |
| 1853 | } |
| 1854 | |
| 1855 | int |
| 1856 | proc_tier_to_iopol(int tier, int passive) |
| 1857 | { |
| 1858 | if (passive == 1) { |
| 1859 | switch (tier) { |
| 1860 | case THROTTLE_LEVEL_TIER0: |
| 1861 | return IOPOL_PASSIVE; |
| 1862 | default: |
| 1863 | panic("unknown passive tier %d" , tier); |
| 1864 | return IOPOL_DEFAULT; |
| 1865 | } |
| 1866 | } else { |
| 1867 | switch (tier) { |
| 1868 | case THROTTLE_LEVEL_NONE: |
| 1869 | case THROTTLE_LEVEL_TIER0: |
| 1870 | return IOPOL_DEFAULT; |
| 1871 | case THROTTLE_LEVEL_TIER1: |
| 1872 | return IOPOL_STANDARD; |
| 1873 | case THROTTLE_LEVEL_TIER2: |
| 1874 | return IOPOL_UTILITY; |
| 1875 | case THROTTLE_LEVEL_TIER3: |
| 1876 | return IOPOL_THROTTLE; |
| 1877 | default: |
| 1878 | panic("unknown tier %d" , tier); |
| 1879 | return IOPOL_DEFAULT; |
| 1880 | } |
| 1881 | } |
| 1882 | } |
| 1883 | |
| 1884 | int |
| 1885 | proc_darwin_role_to_task_role(int darwin_role, task_role_t* task_role) |
| 1886 | { |
| 1887 | integer_t role = TASK_UNSPECIFIED; |
| 1888 | |
| 1889 | switch (darwin_role) { |
| 1890 | case PRIO_DARWIN_ROLE_DEFAULT: |
| 1891 | role = TASK_UNSPECIFIED; |
| 1892 | break; |
| 1893 | case PRIO_DARWIN_ROLE_UI_FOCAL: |
| 1894 | role = TASK_FOREGROUND_APPLICATION; |
| 1895 | break; |
| 1896 | case PRIO_DARWIN_ROLE_UI: |
| 1897 | role = TASK_DEFAULT_APPLICATION; |
| 1898 | break; |
| 1899 | case PRIO_DARWIN_ROLE_NON_UI: |
| 1900 | role = TASK_NONUI_APPLICATION; |
| 1901 | break; |
| 1902 | case PRIO_DARWIN_ROLE_UI_NON_FOCAL: |
| 1903 | role = TASK_BACKGROUND_APPLICATION; |
| 1904 | break; |
| 1905 | case PRIO_DARWIN_ROLE_TAL_LAUNCH: |
| 1906 | role = TASK_THROTTLE_APPLICATION; |
| 1907 | break; |
| 1908 | case PRIO_DARWIN_ROLE_DARWIN_BG: |
| 1909 | role = TASK_DARWINBG_APPLICATION; |
| 1910 | break; |
| 1911 | default: |
| 1912 | return EINVAL; |
| 1913 | } |
| 1914 | |
| 1915 | *task_role = role; |
| 1916 | |
| 1917 | return 0; |
| 1918 | } |
| 1919 | |
| 1920 | int |
| 1921 | proc_task_role_to_darwin_role(task_role_t task_role) |
| 1922 | { |
| 1923 | switch (task_role) { |
| 1924 | case TASK_FOREGROUND_APPLICATION: |
| 1925 | return PRIO_DARWIN_ROLE_UI_FOCAL; |
| 1926 | case TASK_BACKGROUND_APPLICATION: |
| 1927 | return PRIO_DARWIN_ROLE_UI_NON_FOCAL; |
| 1928 | case TASK_NONUI_APPLICATION: |
| 1929 | return PRIO_DARWIN_ROLE_NON_UI; |
| 1930 | case TASK_DEFAULT_APPLICATION: |
| 1931 | return PRIO_DARWIN_ROLE_UI; |
| 1932 | case TASK_THROTTLE_APPLICATION: |
| 1933 | return PRIO_DARWIN_ROLE_TAL_LAUNCH; |
| 1934 | case TASK_DARWINBG_APPLICATION: |
| 1935 | return PRIO_DARWIN_ROLE_DARWIN_BG; |
| 1936 | case TASK_UNSPECIFIED: |
| 1937 | default: |
| 1938 | return PRIO_DARWIN_ROLE_DEFAULT; |
| 1939 | } |
| 1940 | } |
| 1941 | |
| 1942 | |
| 1943 | /* TODO: remove this variable when interactive daemon audit period is over */ |
| 1944 | static TUNABLE(bool, ipc_importance_interactive_receiver, |
| 1945 | "imp_interactive_receiver" , false); |
| 1946 | |
| 1947 | /* |
| 1948 | * Called at process exec to initialize the apptype, qos clamp, and qos seed of a process |
| 1949 | * |
| 1950 | * TODO: Make this function more table-driven instead of ad-hoc |
| 1951 | */ |
| 1952 | void |
| 1953 | proc_set_task_spawnpolicy(task_t task, thread_t thread, int apptype, int qos_clamp, task_role_t role, |
| 1954 | ipc_port_t * portwatch_ports, uint32_t portwatch_count) |
| 1955 | { |
| 1956 | struct task_pend_token pend_token = {}; |
| 1957 | |
| 1958 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
| 1959 | (IMPORTANCE_CODE(IMP_TASK_APPTYPE, apptype)) | DBG_FUNC_START, |
| 1960 | task_pid(task), trequested_0(task), trequested_1(task), |
| 1961 | apptype, 0); |
| 1962 | |
| 1963 | if (apptype != TASK_APPTYPE_NONE) { |
| 1964 | /* |
| 1965 | * Reset the receiver and denap state inherited from the |
| 1966 | * task's parent, but only if we are going to reset it via the |
| 1967 | * provided apptype. |
| 1968 | */ |
| 1969 | if (task_is_importance_receiver(task)) { |
| 1970 | task_importance_mark_receiver(task, FALSE); |
| 1971 | } |
| 1972 | if (task_is_importance_denap_receiver(task)) { |
| 1973 | task_importance_mark_denap_receiver(task, FALSE); |
| 1974 | } |
| 1975 | } |
| 1976 | |
| 1977 | switch (apptype) { |
| 1978 | case TASK_APPTYPE_APP_DEFAULT: |
| 1979 | /* Apps become donors via the 'live-donor' flag instead of the static donor flag */ |
| 1980 | task_importance_mark_donor(task, FALSE); |
| 1981 | task_importance_mark_live_donor(task, TRUE); |
| 1982 | // importance_receiver == FALSE |
| 1983 | #if defined(XNU_TARGET_OS_OSX) |
| 1984 | /* Apps are de-nap recievers on macOS for suppression behaviors */ |
| 1985 | task_importance_mark_denap_receiver(task, TRUE); |
| 1986 | #endif /* !defined(XNU_TARGET_OS_OSX) */ |
| 1987 | break; |
| 1988 | |
| 1989 | case TASK_APPTYPE_DAEMON_INTERACTIVE: |
| 1990 | task_importance_mark_donor(task, TRUE); |
| 1991 | task_importance_mark_live_donor(task, FALSE); |
| 1992 | // importance_denap_receiver == FALSE |
| 1993 | |
| 1994 | /* |
| 1995 | * A boot arg controls whether interactive daemons are importance receivers. |
| 1996 | * Normally, they are not. But for testing their behavior as an adaptive |
| 1997 | * daemon, the boot-arg can be set. |
| 1998 | * |
| 1999 | * TODO: remove this when the interactive daemon audit period is over. |
| 2000 | */ |
| 2001 | task_importance_mark_receiver(task, /* FALSE */ receiving: ipc_importance_interactive_receiver); |
| 2002 | break; |
| 2003 | |
| 2004 | case TASK_APPTYPE_DAEMON_STANDARD: |
| 2005 | task_importance_mark_donor(task, TRUE); |
| 2006 | task_importance_mark_live_donor(task, FALSE); |
| 2007 | // importance_denap_receiver == FALSE |
| 2008 | // importance_receiver == FALSE |
| 2009 | break; |
| 2010 | |
| 2011 | case TASK_APPTYPE_DAEMON_ADAPTIVE: |
| 2012 | task_importance_mark_donor(task, FALSE); |
| 2013 | task_importance_mark_live_donor(task, FALSE); |
| 2014 | task_importance_mark_receiver(task, TRUE); |
| 2015 | // importance_denap_receiver == FALSE |
| 2016 | break; |
| 2017 | |
| 2018 | case TASK_APPTYPE_DAEMON_BACKGROUND: |
| 2019 | task_importance_mark_donor(task, FALSE); |
| 2020 | task_importance_mark_live_donor(task, FALSE); |
| 2021 | // importance_denap_receiver == FALSE |
| 2022 | // importance_receiver == FALSE |
| 2023 | break; |
| 2024 | |
| 2025 | case TASK_APPTYPE_DRIVER: |
| 2026 | task_importance_mark_donor(task, FALSE); |
| 2027 | task_importance_mark_live_donor(task, FALSE); |
| 2028 | // importance_denap_receiver == FALSE |
| 2029 | // importance_receiver == FALSE |
| 2030 | break; |
| 2031 | |
| 2032 | case TASK_APPTYPE_NONE: |
| 2033 | break; |
| 2034 | } |
| 2035 | |
| 2036 | if (portwatch_ports != NULL && apptype == TASK_APPTYPE_DAEMON_ADAPTIVE) { |
| 2037 | int portwatch_boosts = 0; |
| 2038 | |
| 2039 | for (uint32_t i = 0; i < portwatch_count; i++) { |
| 2040 | ipc_port_t port = NULL; |
| 2041 | |
| 2042 | if (IP_VALID(port = portwatch_ports[i])) { |
| 2043 | int boost = 0; |
| 2044 | task_add_importance_watchport(task, port, boostp: &boost); |
| 2045 | portwatch_boosts += boost; |
| 2046 | } |
| 2047 | } |
| 2048 | |
| 2049 | if (portwatch_boosts > 0) { |
| 2050 | task_importance_hold_internal_assertion(target_task: task, count: portwatch_boosts); |
| 2051 | } |
| 2052 | } |
| 2053 | |
| 2054 | /* Redirect the turnstile push of watchports to task */ |
| 2055 | if (portwatch_count && portwatch_ports != NULL) { |
| 2056 | task_add_turnstile_watchports(task, thread, portwatch_ports, portwatch_count); |
| 2057 | } |
| 2058 | |
| 2059 | task_lock(task); |
| 2060 | |
| 2061 | if (apptype != TASK_APPTYPE_NONE) { |
| 2062 | task_set_requested_apptype(task, apptype, false); |
| 2063 | if (task_is_app(task)) { |
| 2064 | pend_token.tpt_update_tg_app_flag = 1; |
| 2065 | } |
| 2066 | } |
| 2067 | |
| 2068 | #if !defined(XNU_TARGET_OS_OSX) |
| 2069 | /* Remove this after launchd starts setting it properly */ |
| 2070 | if (apptype == TASK_APPTYPE_APP_DEFAULT && role == TASK_UNSPECIFIED) { |
| 2071 | task->requested_policy.trp_role = TASK_FOREGROUND_APPLICATION; |
| 2072 | } else |
| 2073 | #endif |
| 2074 | if (role != TASK_UNSPECIFIED) { |
| 2075 | task->requested_policy.trp_role = (uint32_t)role; |
| 2076 | } |
| 2077 | |
| 2078 | if (qos_clamp != THREAD_QOS_UNSPECIFIED) { |
| 2079 | task->requested_policy.trp_qos_clamp = qos_clamp; |
| 2080 | } |
| 2081 | |
| 2082 | task_policy_update_locked(task, pend_token: &pend_token); |
| 2083 | |
| 2084 | task_unlock(task); |
| 2085 | |
| 2086 | /* Ensure the donor bit is updated to be in sync with the new live donor status */ |
| 2087 | pend_token.tpt_update_live_donor = 1; |
| 2088 | |
| 2089 | task_policy_update_complete_unlocked(task, pend_token: &pend_token); |
| 2090 | |
| 2091 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
| 2092 | (IMPORTANCE_CODE(IMP_TASK_APPTYPE, apptype)) | DBG_FUNC_END, |
| 2093 | task_pid(task), trequested_0(task), trequested_1(task), |
| 2094 | task_is_importance_receiver(task), 0); |
| 2095 | } |
| 2096 | |
| 2097 | /* |
| 2098 | * Inherit task role across exec |
| 2099 | */ |
| 2100 | void |
| 2101 | proc_inherit_task_role(task_t new_task, |
| 2102 | task_t old_task) |
| 2103 | { |
| 2104 | int role; |
| 2105 | |
| 2106 | /* inherit the role from old task to new task */ |
| 2107 | role = proc_get_task_policy(task: old_task, TASK_POLICY_ATTRIBUTE, TASK_POLICY_ROLE); |
| 2108 | proc_set_task_policy(task: new_task, TASK_POLICY_ATTRIBUTE, TASK_POLICY_ROLE, value: role); |
| 2109 | } |
| 2110 | |
| 2111 | extern void * XNU_PTRAUTH_SIGNED_PTR("initproc" ) initproc; |
| 2112 | |
| 2113 | /* |
| 2114 | * Compute the default main thread qos for a task |
| 2115 | */ |
| 2116 | thread_qos_t |
| 2117 | task_compute_main_thread_qos(task_t task) |
| 2118 | { |
| 2119 | thread_qos_t primordial_qos = THREAD_QOS_UNSPECIFIED; |
| 2120 | |
| 2121 | thread_qos_t qos_clamp = task->requested_policy.trp_qos_clamp; |
| 2122 | |
| 2123 | switch (task->requested_policy.trp_apptype) { |
| 2124 | case TASK_APPTYPE_APP_TAL: |
| 2125 | case TASK_APPTYPE_APP_DEFAULT: |
| 2126 | primordial_qos = THREAD_QOS_USER_INTERACTIVE; |
| 2127 | break; |
| 2128 | |
| 2129 | case TASK_APPTYPE_DAEMON_INTERACTIVE: |
| 2130 | case TASK_APPTYPE_DAEMON_STANDARD: |
| 2131 | case TASK_APPTYPE_DAEMON_ADAPTIVE: |
| 2132 | case TASK_APPTYPE_DRIVER: |
| 2133 | primordial_qos = THREAD_QOS_LEGACY; |
| 2134 | break; |
| 2135 | |
| 2136 | case TASK_APPTYPE_DAEMON_BACKGROUND: |
| 2137 | primordial_qos = THREAD_QOS_BACKGROUND; |
| 2138 | break; |
| 2139 | } |
| 2140 | |
| 2141 | if (get_bsdtask_info(task) == initproc) { |
| 2142 | /* PID 1 gets a special case */ |
| 2143 | primordial_qos = MAX(primordial_qos, THREAD_QOS_USER_INITIATED); |
| 2144 | } |
| 2145 | |
| 2146 | if (qos_clamp != THREAD_QOS_UNSPECIFIED) { |
| 2147 | if (primordial_qos != THREAD_QOS_UNSPECIFIED) { |
| 2148 | primordial_qos = MIN(qos_clamp, primordial_qos); |
| 2149 | } else { |
| 2150 | primordial_qos = qos_clamp; |
| 2151 | } |
| 2152 | } |
| 2153 | |
| 2154 | return primordial_qos; |
| 2155 | } |
| 2156 | |
| 2157 | |
| 2158 | /* for process_policy to check before attempting to set */ |
| 2159 | boolean_t |
| 2160 | proc_task_is_tal(task_t task) |
| 2161 | { |
| 2162 | return (task->requested_policy.trp_apptype == TASK_APPTYPE_APP_TAL) ? TRUE : FALSE; |
| 2163 | } |
| 2164 | |
| 2165 | int |
| 2166 | task_get_apptype(task_t task) |
| 2167 | { |
| 2168 | return task->requested_policy.trp_apptype; |
| 2169 | } |
| 2170 | |
| 2171 | boolean_t |
| 2172 | task_is_daemon(task_t task) |
| 2173 | { |
| 2174 | switch (task->requested_policy.trp_apptype) { |
| 2175 | case TASK_APPTYPE_DAEMON_INTERACTIVE: |
| 2176 | case TASK_APPTYPE_DAEMON_STANDARD: |
| 2177 | case TASK_APPTYPE_DAEMON_ADAPTIVE: |
| 2178 | case TASK_APPTYPE_DAEMON_BACKGROUND: |
| 2179 | return TRUE; |
| 2180 | default: |
| 2181 | return FALSE; |
| 2182 | } |
| 2183 | } |
| 2184 | |
| 2185 | bool |
| 2186 | task_is_driver(task_t task) |
| 2187 | { |
| 2188 | if (!task) { |
| 2189 | return FALSE; |
| 2190 | } |
| 2191 | return task->requested_policy.trp_apptype == TASK_APPTYPE_DRIVER; |
| 2192 | } |
| 2193 | |
| 2194 | boolean_t |
| 2195 | task_is_app(task_t task) |
| 2196 | { |
| 2197 | switch (task->requested_policy.trp_apptype) { |
| 2198 | case TASK_APPTYPE_APP_DEFAULT: |
| 2199 | case TASK_APPTYPE_APP_TAL: |
| 2200 | return TRUE; |
| 2201 | default: |
| 2202 | return FALSE; |
| 2203 | } |
| 2204 | } |
| 2205 | |
| 2206 | |
| 2207 | /* for telemetry */ |
| 2208 | integer_t |
| 2209 | task_grab_latency_qos(task_t task) |
| 2210 | { |
| 2211 | return qos_latency_policy_package(qv: proc_get_effective_task_policy(task, TASK_POLICY_LATENCY_QOS)); |
| 2212 | } |
| 2213 | |
| 2214 | /* update the darwin background action state in the flags field for libproc */ |
| 2215 | int |
| 2216 | proc_get_darwinbgstate(task_t task, uint32_t * flagsp) |
| 2217 | { |
| 2218 | if (task->requested_policy.trp_ext_darwinbg) { |
| 2219 | *flagsp |= PROC_FLAG_EXT_DARWINBG; |
| 2220 | } |
| 2221 | |
| 2222 | if (task->requested_policy.trp_int_darwinbg) { |
| 2223 | *flagsp |= PROC_FLAG_DARWINBG; |
| 2224 | } |
| 2225 | |
| 2226 | #if !defined(XNU_TARGET_OS_OSX) |
| 2227 | if (task->requested_policy.trp_apptype == TASK_APPTYPE_DAEMON_BACKGROUND) { |
| 2228 | *flagsp |= PROC_FLAG_IOS_APPLEDAEMON; |
| 2229 | } |
| 2230 | |
| 2231 | if (task->requested_policy.trp_apptype == TASK_APPTYPE_DAEMON_ADAPTIVE) { |
| 2232 | *flagsp |= PROC_FLAG_IOS_IMPPROMOTION; |
| 2233 | } |
| 2234 | #endif /* !defined(XNU_TARGET_OS_OSX) */ |
| 2235 | |
| 2236 | if (task->requested_policy.trp_apptype == TASK_APPTYPE_APP_DEFAULT || |
| 2237 | task->requested_policy.trp_apptype == TASK_APPTYPE_APP_TAL) { |
| 2238 | *flagsp |= PROC_FLAG_APPLICATION; |
| 2239 | } |
| 2240 | |
| 2241 | if (task->requested_policy.trp_apptype == TASK_APPTYPE_DAEMON_ADAPTIVE) { |
| 2242 | *flagsp |= PROC_FLAG_ADAPTIVE; |
| 2243 | } |
| 2244 | |
| 2245 | if (task->requested_policy.trp_apptype == TASK_APPTYPE_DAEMON_ADAPTIVE && |
| 2246 | task->requested_policy.trp_boosted == 1) { |
| 2247 | *flagsp |= PROC_FLAG_ADAPTIVE_IMPORTANT; |
| 2248 | } |
| 2249 | |
| 2250 | if (task_is_importance_donor(task)) { |
| 2251 | *flagsp |= PROC_FLAG_IMPORTANCE_DONOR; |
| 2252 | } |
| 2253 | |
| 2254 | if (task->effective_policy.tep_sup_active) { |
| 2255 | *flagsp |= PROC_FLAG_SUPPRESSED; |
| 2256 | } |
| 2257 | |
| 2258 | return 0; |
| 2259 | } |
| 2260 | |
| 2261 | /* |
| 2262 | * Tracepoint data... Reading the tracepoint data can be somewhat complicated. |
| 2263 | * The current scheme packs as much data into a single tracepoint as it can. |
| 2264 | * |
| 2265 | * Each task/thread requested/effective structure is 64 bits in size. Any |
| 2266 | * given tracepoint will emit either requested or effective data, but not both. |
| 2267 | * |
| 2268 | * A tracepoint may emit any of task, thread, or task & thread data. |
| 2269 | * |
| 2270 | * The type of data emitted varies with pointer size. Where possible, both |
| 2271 | * task and thread data are emitted. In LP32 systems, the first and second |
| 2272 | * halves of either the task or thread data is emitted. |
| 2273 | * |
| 2274 | * The code uses uintptr_t array indexes instead of high/low to avoid |
| 2275 | * confusion WRT big vs little endian. |
| 2276 | * |
| 2277 | * The truth table for the tracepoint data functions is below, and has the |
| 2278 | * following invariants: |
| 2279 | * |
| 2280 | * 1) task and thread are uintptr_t* |
| 2281 | * 2) task may never be NULL |
| 2282 | * |
| 2283 | * |
| 2284 | * LP32 LP64 |
| 2285 | * trequested_0(task, NULL) task[0] task[0] |
| 2286 | * trequested_1(task, NULL) task[1] NULL |
| 2287 | * trequested_0(task, thread) thread[0] task[0] |
| 2288 | * trequested_1(task, thread) thread[1] thread[0] |
| 2289 | * |
| 2290 | * Basically, you get a full task or thread on LP32, and both on LP64. |
| 2291 | * |
| 2292 | * The uintptr_t munging here is squicky enough to deserve a comment. |
| 2293 | * |
| 2294 | * The variables we are accessing are laid out in memory like this: |
| 2295 | * |
| 2296 | * [ LP64 uintptr_t 0 ] |
| 2297 | * [ LP32 uintptr_t 0 ] [ LP32 uintptr_t 1 ] |
| 2298 | * |
| 2299 | * 1 2 3 4 5 6 7 8 |
| 2300 | * |
| 2301 | */ |
| 2302 | |
| 2303 | static uintptr_t |
| 2304 | trequested_0(task_t task) |
| 2305 | { |
| 2306 | static_assert(sizeof(struct task_requested_policy) == sizeof(uint64_t), "size invariant violated" ); |
| 2307 | |
| 2308 | uintptr_t* raw = (uintptr_t*)&task->requested_policy; |
| 2309 | |
| 2310 | return raw[0]; |
| 2311 | } |
| 2312 | |
| 2313 | static uintptr_t |
| 2314 | trequested_1(task_t task) |
| 2315 | { |
| 2316 | #if defined __LP64__ |
| 2317 | (void)task; |
| 2318 | return 0; |
| 2319 | #else |
| 2320 | uintptr_t* raw = (uintptr_t*)(&task->requested_policy); |
| 2321 | return raw[1]; |
| 2322 | #endif |
| 2323 | } |
| 2324 | |
| 2325 | static uintptr_t |
| 2326 | teffective_0(task_t task) |
| 2327 | { |
| 2328 | uintptr_t* raw = (uintptr_t*)&task->effective_policy; |
| 2329 | |
| 2330 | return raw[0]; |
| 2331 | } |
| 2332 | |
| 2333 | static uintptr_t |
| 2334 | teffective_1(task_t task) |
| 2335 | { |
| 2336 | #if defined __LP64__ |
| 2337 | (void)task; |
| 2338 | return 0; |
| 2339 | #else |
| 2340 | uintptr_t* raw = (uintptr_t*)(&task->effective_policy); |
| 2341 | return raw[1]; |
| 2342 | #endif |
| 2343 | } |
| 2344 | |
| 2345 | /* dump pending for tracepoint */ |
| 2346 | uint32_t |
| 2347 | tpending(task_pend_token_t pend_token) |
| 2348 | { |
| 2349 | return *(uint32_t*)(void*)(pend_token); |
| 2350 | } |
| 2351 | |
| 2352 | uint64_t |
| 2353 | task_requested_bitfield(task_t task) |
| 2354 | { |
| 2355 | uint64_t bits = 0; |
| 2356 | struct task_requested_policy requested = task->requested_policy; |
| 2357 | |
| 2358 | bits |= (requested.trp_int_darwinbg ? POLICY_REQ_INT_DARWIN_BG : 0); |
| 2359 | bits |= (requested.trp_ext_darwinbg ? POLICY_REQ_EXT_DARWIN_BG : 0); |
| 2360 | bits |= (requested.trp_int_iotier ? (((uint64_t)requested.trp_int_iotier) << POLICY_REQ_INT_IO_TIER_SHIFT) : 0); |
| 2361 | bits |= (requested.trp_ext_iotier ? (((uint64_t)requested.trp_ext_iotier) << POLICY_REQ_EXT_IO_TIER_SHIFT) : 0); |
| 2362 | bits |= (requested.trp_int_iopassive ? POLICY_REQ_INT_PASSIVE_IO : 0); |
| 2363 | bits |= (requested.trp_ext_iopassive ? POLICY_REQ_EXT_PASSIVE_IO : 0); |
| 2364 | bits |= (requested.trp_bg_iotier ? (((uint64_t)requested.trp_bg_iotier) << POLICY_REQ_BG_IOTIER_SHIFT) : 0); |
| 2365 | bits |= (requested.trp_terminated ? POLICY_REQ_TERMINATED : 0); |
| 2366 | |
| 2367 | bits |= (requested.trp_boosted ? POLICY_REQ_BOOSTED : 0); |
| 2368 | bits |= (requested.trp_tal_enabled ? POLICY_REQ_TAL_ENABLED : 0); |
| 2369 | bits |= (requested.trp_apptype ? (((uint64_t)requested.trp_apptype) << POLICY_REQ_APPTYPE_SHIFT) : 0); |
| 2370 | bits |= (requested.trp_role ? (((uint64_t)requested.trp_role) << POLICY_REQ_ROLE_SHIFT) : 0); |
| 2371 | |
| 2372 | bits |= (requested.trp_sup_active ? POLICY_REQ_SUP_ACTIVE : 0); |
| 2373 | bits |= (requested.trp_sup_lowpri_cpu ? POLICY_REQ_SUP_LOWPRI_CPU : 0); |
| 2374 | bits |= (requested.trp_sup_cpu ? POLICY_REQ_SUP_CPU : 0); |
| 2375 | bits |= (requested.trp_sup_timer ? (((uint64_t)requested.trp_sup_timer) << POLICY_REQ_SUP_TIMER_THROTTLE_SHIFT) : 0); |
| 2376 | bits |= (requested.trp_sup_throughput ? (((uint64_t)requested.trp_sup_throughput) << POLICY_REQ_SUP_THROUGHPUT_SHIFT) : 0); |
| 2377 | bits |= (requested.trp_sup_disk ? POLICY_REQ_SUP_DISK_THROTTLE : 0); |
| 2378 | bits |= (requested.trp_sup_bg_sockets ? POLICY_REQ_SUP_BG_SOCKETS : 0); |
| 2379 | |
| 2380 | bits |= (requested.trp_base_latency_qos ? (((uint64_t)requested.trp_base_latency_qos) << POLICY_REQ_BASE_LATENCY_QOS_SHIFT) : 0); |
| 2381 | bits |= (requested.trp_over_latency_qos ? (((uint64_t)requested.trp_over_latency_qos) << POLICY_REQ_OVER_LATENCY_QOS_SHIFT) : 0); |
| 2382 | bits |= (requested.trp_base_through_qos ? (((uint64_t)requested.trp_base_through_qos) << POLICY_REQ_BASE_THROUGH_QOS_SHIFT) : 0); |
| 2383 | bits |= (requested.trp_over_through_qos ? (((uint64_t)requested.trp_over_through_qos) << POLICY_REQ_OVER_THROUGH_QOS_SHIFT) : 0); |
| 2384 | bits |= (requested.trp_sfi_managed ? POLICY_REQ_SFI_MANAGED : 0); |
| 2385 | bits |= (requested.trp_qos_clamp ? (((uint64_t)requested.trp_qos_clamp) << POLICY_REQ_QOS_CLAMP_SHIFT) : 0); |
| 2386 | |
| 2387 | return bits; |
| 2388 | } |
| 2389 | |
| 2390 | uint64_t |
| 2391 | task_effective_bitfield(task_t task) |
| 2392 | { |
| 2393 | uint64_t bits = 0; |
| 2394 | struct task_effective_policy effective = task->effective_policy; |
| 2395 | |
| 2396 | bits |= (effective.tep_io_tier ? (((uint64_t)effective.tep_io_tier) << POLICY_EFF_IO_TIER_SHIFT) : 0); |
| 2397 | bits |= (effective.tep_io_passive ? POLICY_EFF_IO_PASSIVE : 0); |
| 2398 | bits |= (effective.tep_darwinbg ? POLICY_EFF_DARWIN_BG : 0); |
| 2399 | bits |= (effective.tep_lowpri_cpu ? POLICY_EFF_LOWPRI_CPU : 0); |
| 2400 | bits |= (effective.tep_terminated ? POLICY_EFF_TERMINATED : 0); |
| 2401 | bits |= (effective.tep_all_sockets_bg ? POLICY_EFF_ALL_SOCKETS_BG : 0); |
| 2402 | bits |= (effective.tep_new_sockets_bg ? POLICY_EFF_NEW_SOCKETS_BG : 0); |
| 2403 | bits |= (effective.tep_bg_iotier ? (((uint64_t)effective.tep_bg_iotier) << POLICY_EFF_BG_IOTIER_SHIFT) : 0); |
| 2404 | bits |= (effective.tep_qos_ui_is_urgent ? POLICY_EFF_QOS_UI_IS_URGENT : 0); |
| 2405 | |
| 2406 | bits |= (effective.tep_tal_engaged ? POLICY_EFF_TAL_ENGAGED : 0); |
| 2407 | bits |= (effective.tep_watchers_bg ? POLICY_EFF_WATCHERS_BG : 0); |
| 2408 | bits |= (effective.tep_sup_active ? POLICY_EFF_SUP_ACTIVE : 0); |
| 2409 | bits |= (effective.tep_suppressed_cpu ? POLICY_EFF_SUP_CPU : 0); |
| 2410 | bits |= (effective.tep_role ? (((uint64_t)effective.tep_role) << POLICY_EFF_ROLE_SHIFT) : 0); |
| 2411 | bits |= (effective.tep_latency_qos ? (((uint64_t)effective.tep_latency_qos) << POLICY_EFF_LATENCY_QOS_SHIFT) : 0); |
| 2412 | bits |= (effective.tep_through_qos ? (((uint64_t)effective.tep_through_qos) << POLICY_EFF_THROUGH_QOS_SHIFT) : 0); |
| 2413 | bits |= (effective.tep_sfi_managed ? POLICY_EFF_SFI_MANAGED : 0); |
| 2414 | bits |= (effective.tep_qos_ceiling ? (((uint64_t)effective.tep_qos_ceiling) << POLICY_EFF_QOS_CEILING_SHIFT) : 0); |
| 2415 | |
| 2416 | return bits; |
| 2417 | } |
| 2418 | |
| 2419 | |
| 2420 | /* |
| 2421 | * Resource usage and CPU related routines |
| 2422 | */ |
| 2423 | |
| 2424 | int |
| 2425 | proc_get_task_ruse_cpu(task_t task, uint32_t *policyp, uint8_t *percentagep, uint64_t *intervalp, uint64_t *deadlinep) |
| 2426 | { |
| 2427 | int error = 0; |
| 2428 | int scope; |
| 2429 | |
| 2430 | task_lock(task); |
| 2431 | |
| 2432 | |
| 2433 | error = task_get_cpuusage(task, percentagep, intervalp, deadlinep, scope: &scope); |
| 2434 | task_unlock(task); |
| 2435 | |
| 2436 | /* |
| 2437 | * Reverse-map from CPU resource limit scopes back to policies (see comment below). |
| 2438 | */ |
| 2439 | if (scope == TASK_RUSECPU_FLAGS_PERTHR_LIMIT) { |
| 2440 | *policyp = TASK_POLICY_RESOURCE_ATTRIBUTE_NOTIFY_EXC; |
| 2441 | } else if (scope == TASK_RUSECPU_FLAGS_PROC_LIMIT) { |
| 2442 | *policyp = TASK_POLICY_RESOURCE_ATTRIBUTE_THROTTLE; |
| 2443 | } else if (scope == TASK_RUSECPU_FLAGS_DEADLINE) { |
| 2444 | *policyp = TASK_POLICY_RESOURCE_ATTRIBUTE_NONE; |
| 2445 | } |
| 2446 | |
| 2447 | return error; |
| 2448 | } |
| 2449 | |
| 2450 | /* |
| 2451 | * Configure the default CPU usage monitor parameters. |
| 2452 | * |
| 2453 | * For tasks which have this mechanism activated: if any thread in the |
| 2454 | * process consumes more CPU than this, an EXC_RESOURCE exception will be generated. |
| 2455 | */ |
| 2456 | void |
| 2457 | proc_init_cpumon_params(void) |
| 2458 | { |
| 2459 | /* |
| 2460 | * The max CPU percentage can be configured via the boot-args and |
| 2461 | * a key in the device tree. The boot-args are honored first, then the |
| 2462 | * device tree. |
| 2463 | */ |
| 2464 | if (!PE_parse_boot_argn(arg_string: "max_cpumon_percentage" , arg_ptr: &proc_max_cpumon_percentage, |
| 2465 | max_arg: sizeof(proc_max_cpumon_percentage))) { |
| 2466 | uint64_t max_percentage = 0ULL; |
| 2467 | |
| 2468 | if (!PE_get_default(property_name: "kern.max_cpumon_percentage" , property_ptr: &max_percentage, |
| 2469 | max_property: sizeof(max_percentage))) { |
| 2470 | max_percentage = DEFAULT_CPUMON_PERCENTAGE; |
| 2471 | } |
| 2472 | |
| 2473 | assert(max_percentage <= UINT8_MAX); |
| 2474 | proc_max_cpumon_percentage = (uint8_t) max_percentage; |
| 2475 | } |
| 2476 | |
| 2477 | if (proc_max_cpumon_percentage > 100) { |
| 2478 | proc_max_cpumon_percentage = 100; |
| 2479 | } |
| 2480 | |
| 2481 | /* |
| 2482 | * The interval should be specified in seconds. |
| 2483 | * |
| 2484 | * Like the max CPU percentage, the max CPU interval can be configured |
| 2485 | * via boot-args and the device tree. |
| 2486 | */ |
| 2487 | if (!PE_parse_boot_argn(arg_string: "max_cpumon_interval" , arg_ptr: &proc_max_cpumon_interval, |
| 2488 | max_arg: sizeof(proc_max_cpumon_interval))) { |
| 2489 | if (!PE_get_default(property_name: "kern.max_cpumon_interval" , property_ptr: &proc_max_cpumon_interval, |
| 2490 | max_property: sizeof(proc_max_cpumon_interval))) { |
| 2491 | proc_max_cpumon_interval = DEFAULT_CPUMON_INTERVAL; |
| 2492 | } |
| 2493 | } |
| 2494 | |
| 2495 | proc_max_cpumon_interval *= NSEC_PER_SEC; |
| 2496 | |
| 2497 | /* TEMPORARY boot arg to control App suppression */ |
| 2498 | PE_parse_boot_argn(arg_string: "task_policy_suppression_flags" , |
| 2499 | arg_ptr: &task_policy_suppression_flags, |
| 2500 | max_arg: sizeof(task_policy_suppression_flags)); |
| 2501 | |
| 2502 | /* adjust suppression disk policy if called for in boot arg */ |
| 2503 | if (task_policy_suppression_flags & TASK_POLICY_SUPPRESSION_IOTIER2) { |
| 2504 | proc_suppressed_disk_tier = THROTTLE_LEVEL_TIER2; |
| 2505 | } |
| 2506 | } |
| 2507 | |
| 2508 | /* |
| 2509 | * Currently supported configurations for CPU limits. |
| 2510 | * |
| 2511 | * Policy | Deadline-based CPU limit | Percentage-based CPU limit |
| 2512 | * -------------------------------------+--------------------------+------------------------------ |
| 2513 | * PROC_POLICY_RSRCACT_THROTTLE | ENOTSUP | Task-wide scope only |
| 2514 | * PROC_POLICY_RSRCACT_SUSPEND | Task-wide scope only | ENOTSUP |
| 2515 | * PROC_POLICY_RSRCACT_TERMINATE | Task-wide scope only | ENOTSUP |
| 2516 | * PROC_POLICY_RSRCACT_NOTIFY_KQ | Task-wide scope only | ENOTSUP |
| 2517 | * PROC_POLICY_RSRCACT_NOTIFY_EXC | ENOTSUP | Per-thread scope only |
| 2518 | * |
| 2519 | * A deadline-based CPU limit is actually a simple wallclock timer - the requested action is performed |
| 2520 | * after the specified amount of wallclock time has elapsed. |
| 2521 | * |
| 2522 | * A percentage-based CPU limit performs the requested action after the specified amount of actual CPU time |
| 2523 | * has been consumed -- regardless of how much wallclock time has elapsed -- by either the task as an |
| 2524 | * aggregate entity (so-called "Task-wide" or "Proc-wide" scope, whereby the CPU time consumed by all threads |
| 2525 | * in the task are added together), or by any one thread in the task (so-called "per-thread" scope). |
| 2526 | * |
| 2527 | * We support either deadline != 0 OR percentage != 0, but not both. The original intention in having them |
| 2528 | * share an API was to use actual CPU time as the basis of the deadline-based limit (as in: perform an action |
| 2529 | * after I have used some amount of CPU time; this is different than the recurring percentage/interval model) |
| 2530 | * but the potential consumer of the API at the time was insisting on wallclock time instead. |
| 2531 | * |
| 2532 | * Currently, requesting notification via an exception is the only way to get per-thread scope for a |
| 2533 | * CPU limit. All other types of notifications force task-wide scope for the limit. |
| 2534 | */ |
| 2535 | int |
| 2536 | proc_set_task_ruse_cpu(task_t task, uint16_t policy, uint8_t percentage, uint64_t interval, uint64_t deadline, |
| 2537 | int cpumon_entitled) |
| 2538 | { |
| 2539 | int error = 0; |
| 2540 | int scope; |
| 2541 | |
| 2542 | /* |
| 2543 | * Enforce the matrix of supported configurations for policy, percentage, and deadline. |
| 2544 | */ |
| 2545 | switch (policy) { |
| 2546 | // If no policy is explicitly given, the default is to throttle. |
| 2547 | case TASK_POLICY_RESOURCE_ATTRIBUTE_NONE: |
| 2548 | case TASK_POLICY_RESOURCE_ATTRIBUTE_THROTTLE: |
| 2549 | if (deadline != 0) { |
| 2550 | return ENOTSUP; |
| 2551 | } |
| 2552 | scope = TASK_RUSECPU_FLAGS_PROC_LIMIT; |
| 2553 | break; |
| 2554 | case TASK_POLICY_RESOURCE_ATTRIBUTE_SUSPEND: |
| 2555 | case TASK_POLICY_RESOURCE_ATTRIBUTE_TERMINATE: |
| 2556 | case TASK_POLICY_RESOURCE_ATTRIBUTE_NOTIFY_KQ: |
| 2557 | if (percentage != 0) { |
| 2558 | return ENOTSUP; |
| 2559 | } |
| 2560 | scope = TASK_RUSECPU_FLAGS_DEADLINE; |
| 2561 | break; |
| 2562 | case TASK_POLICY_RESOURCE_ATTRIBUTE_NOTIFY_EXC: |
| 2563 | if (deadline != 0) { |
| 2564 | return ENOTSUP; |
| 2565 | } |
| 2566 | scope = TASK_RUSECPU_FLAGS_PERTHR_LIMIT; |
| 2567 | #ifdef CONFIG_NOMONITORS |
| 2568 | return error; |
| 2569 | #endif /* CONFIG_NOMONITORS */ |
| 2570 | break; |
| 2571 | default: |
| 2572 | return EINVAL; |
| 2573 | } |
| 2574 | |
| 2575 | task_lock(task); |
| 2576 | if (task != current_task()) { |
| 2577 | task->policy_ru_cpu_ext = policy; |
| 2578 | } else { |
| 2579 | task->policy_ru_cpu = policy; |
| 2580 | } |
| 2581 | error = task_set_cpuusage(task, percentage, interval, deadline, scope, entitled: cpumon_entitled); |
| 2582 | task_unlock(task); |
| 2583 | return error; |
| 2584 | } |
| 2585 | |
| 2586 | /* TODO: get rid of these */ |
| 2587 | #define TASK_POLICY_CPU_RESOURCE_USAGE 0 |
| 2588 | #define TASK_POLICY_WIREDMEM_RESOURCE_USAGE 1 |
| 2589 | #define TASK_POLICY_VIRTUALMEM_RESOURCE_USAGE 2 |
| 2590 | #define TASK_POLICY_DISK_RESOURCE_USAGE 3 |
| 2591 | #define TASK_POLICY_NETWORK_RESOURCE_USAGE 4 |
| 2592 | #define TASK_POLICY_POWER_RESOURCE_USAGE 5 |
| 2593 | |
| 2594 | #define TASK_POLICY_RESOURCE_USAGE_COUNT 6 |
| 2595 | |
| 2596 | int |
| 2597 | proc_clear_task_ruse_cpu(task_t task, int cpumon_entitled) |
| 2598 | { |
| 2599 | int error = 0; |
| 2600 | int action; |
| 2601 | void * bsdinfo = NULL; |
| 2602 | |
| 2603 | task_lock(task); |
| 2604 | if (task != current_task()) { |
| 2605 | task->policy_ru_cpu_ext = TASK_POLICY_RESOURCE_ATTRIBUTE_DEFAULT; |
| 2606 | } else { |
| 2607 | task->policy_ru_cpu = TASK_POLICY_RESOURCE_ATTRIBUTE_DEFAULT; |
| 2608 | } |
| 2609 | |
| 2610 | error = task_clear_cpuusage_locked(task, cpumon_entitled); |
| 2611 | if (error != 0) { |
| 2612 | goto out; |
| 2613 | } |
| 2614 | |
| 2615 | action = task->applied_ru_cpu; |
| 2616 | if (task->applied_ru_cpu_ext != TASK_POLICY_RESOURCE_ATTRIBUTE_NONE) { |
| 2617 | /* reset action */ |
| 2618 | task->applied_ru_cpu_ext = TASK_POLICY_RESOURCE_ATTRIBUTE_NONE; |
| 2619 | } |
| 2620 | if (action != TASK_POLICY_RESOURCE_ATTRIBUTE_NONE) { |
| 2621 | bsdinfo = get_bsdtask_info(task); |
| 2622 | task_unlock(task); |
| 2623 | proc_restore_resource_actions(p: bsdinfo, TASK_POLICY_CPU_RESOURCE_USAGE, action); |
| 2624 | goto out1; |
| 2625 | } |
| 2626 | |
| 2627 | out: |
| 2628 | task_unlock(task); |
| 2629 | out1: |
| 2630 | return error; |
| 2631 | } |
| 2632 | |
| 2633 | /* used to apply resource limit related actions */ |
| 2634 | static int |
| 2635 | task_apply_resource_actions(task_t task, int type) |
| 2636 | { |
| 2637 | int action = TASK_POLICY_RESOURCE_ATTRIBUTE_NONE; |
| 2638 | void * bsdinfo = NULL; |
| 2639 | |
| 2640 | switch (type) { |
| 2641 | case TASK_POLICY_CPU_RESOURCE_USAGE: |
| 2642 | break; |
| 2643 | case TASK_POLICY_WIREDMEM_RESOURCE_USAGE: |
| 2644 | case TASK_POLICY_VIRTUALMEM_RESOURCE_USAGE: |
| 2645 | case TASK_POLICY_DISK_RESOURCE_USAGE: |
| 2646 | case TASK_POLICY_NETWORK_RESOURCE_USAGE: |
| 2647 | case TASK_POLICY_POWER_RESOURCE_USAGE: |
| 2648 | return 0; |
| 2649 | |
| 2650 | default: |
| 2651 | return 1; |
| 2652 | } |
| 2653 | ; |
| 2654 | |
| 2655 | /* only cpu actions for now */ |
| 2656 | task_lock(task); |
| 2657 | |
| 2658 | if (task->applied_ru_cpu_ext == TASK_POLICY_RESOURCE_ATTRIBUTE_NONE) { |
| 2659 | /* apply action */ |
| 2660 | task->applied_ru_cpu_ext = task->policy_ru_cpu_ext; |
| 2661 | action = task->applied_ru_cpu_ext; |
| 2662 | } else { |
| 2663 | action = task->applied_ru_cpu_ext; |
| 2664 | } |
| 2665 | |
| 2666 | if (action != TASK_POLICY_RESOURCE_ATTRIBUTE_NONE) { |
| 2667 | bsdinfo = get_bsdtask_info(task); |
| 2668 | task_unlock(task); |
| 2669 | proc_apply_resource_actions(p: bsdinfo, TASK_POLICY_CPU_RESOURCE_USAGE, action); |
| 2670 | } else { |
| 2671 | task_unlock(task); |
| 2672 | } |
| 2673 | |
| 2674 | return 0; |
| 2675 | } |
| 2676 | |
| 2677 | /* |
| 2678 | * XXX This API is somewhat broken; we support multiple simultaneous CPU limits, but the get/set API |
| 2679 | * only allows for one at a time. This means that if there is a per-thread limit active, the other |
| 2680 | * "scopes" will not be accessible via this API. We could change it to pass in the scope of interest |
| 2681 | * to the caller, and prefer that, but there's no need for that at the moment. |
| 2682 | */ |
| 2683 | static int |
| 2684 | task_get_cpuusage(task_t task, uint8_t *percentagep, uint64_t *intervalp, uint64_t *deadlinep, int *scope) |
| 2685 | { |
| 2686 | *percentagep = 0; |
| 2687 | *intervalp = 0; |
| 2688 | *deadlinep = 0; |
| 2689 | |
| 2690 | if ((task->rusage_cpu_flags & TASK_RUSECPU_FLAGS_PERTHR_LIMIT) != 0) { |
| 2691 | *scope = TASK_RUSECPU_FLAGS_PERTHR_LIMIT; |
| 2692 | *percentagep = task->rusage_cpu_perthr_percentage; |
| 2693 | *intervalp = task->rusage_cpu_perthr_interval; |
| 2694 | } else if ((task->rusage_cpu_flags & TASK_RUSECPU_FLAGS_PROC_LIMIT) != 0) { |
| 2695 | *scope = TASK_RUSECPU_FLAGS_PROC_LIMIT; |
| 2696 | *percentagep = task->rusage_cpu_percentage; |
| 2697 | *intervalp = task->rusage_cpu_interval; |
| 2698 | } else if ((task->rusage_cpu_flags & TASK_RUSECPU_FLAGS_DEADLINE) != 0) { |
| 2699 | *scope = TASK_RUSECPU_FLAGS_DEADLINE; |
| 2700 | *deadlinep = task->rusage_cpu_deadline; |
| 2701 | } else { |
| 2702 | *scope = 0; |
| 2703 | } |
| 2704 | |
| 2705 | return 0; |
| 2706 | } |
| 2707 | |
| 2708 | /* |
| 2709 | * Suspend the CPU usage monitor for the task. Return value indicates |
| 2710 | * if the mechanism was actually enabled. |
| 2711 | */ |
| 2712 | int |
| 2713 | task_suspend_cpumon(task_t task) |
| 2714 | { |
| 2715 | thread_t thread; |
| 2716 | |
| 2717 | task_lock_assert_owned(task); |
| 2718 | |
| 2719 | if ((task->rusage_cpu_flags & TASK_RUSECPU_FLAGS_PERTHR_LIMIT) == 0) { |
| 2720 | return KERN_INVALID_ARGUMENT; |
| 2721 | } |
| 2722 | |
| 2723 | #if CONFIG_TELEMETRY |
| 2724 | /* |
| 2725 | * Disable task-wide telemetry if it was ever enabled by the CPU usage |
| 2726 | * monitor's warning zone. |
| 2727 | */ |
| 2728 | telemetry_task_ctl_locked(task, TF_CPUMON_WARNING, enable_disable: 0); |
| 2729 | #endif |
| 2730 | |
| 2731 | /* |
| 2732 | * Suspend monitoring for the task, and propagate that change to each thread. |
| 2733 | */ |
| 2734 | task->rusage_cpu_flags &= ~(TASK_RUSECPU_FLAGS_PERTHR_LIMIT | TASK_RUSECPU_FLAGS_FATAL_CPUMON); |
| 2735 | queue_iterate(&task->threads, thread, thread_t, task_threads) { |
| 2736 | act_set_astledger(thread); |
| 2737 | } |
| 2738 | |
| 2739 | return KERN_SUCCESS; |
| 2740 | } |
| 2741 | |
| 2742 | /* |
| 2743 | * Remove all traces of the CPU monitor. |
| 2744 | */ |
| 2745 | int |
| 2746 | task_disable_cpumon(task_t task) |
| 2747 | { |
| 2748 | int kret; |
| 2749 | |
| 2750 | task_lock_assert_owned(task); |
| 2751 | |
| 2752 | kret = task_suspend_cpumon(task); |
| 2753 | if (kret) { |
| 2754 | return kret; |
| 2755 | } |
| 2756 | |
| 2757 | /* Once we clear these values, the monitor can't be resumed */ |
| 2758 | task->rusage_cpu_perthr_percentage = 0; |
| 2759 | task->rusage_cpu_perthr_interval = 0; |
| 2760 | |
| 2761 | return KERN_SUCCESS; |
| 2762 | } |
| 2763 | |
| 2764 | |
| 2765 | static int |
| 2766 | task_enable_cpumon_locked(task_t task) |
| 2767 | { |
| 2768 | thread_t thread; |
| 2769 | task_lock_assert_owned(task); |
| 2770 | |
| 2771 | if (task->rusage_cpu_perthr_percentage == 0 || |
| 2772 | task->rusage_cpu_perthr_interval == 0) { |
| 2773 | return KERN_INVALID_ARGUMENT; |
| 2774 | } |
| 2775 | |
| 2776 | task->rusage_cpu_flags |= TASK_RUSECPU_FLAGS_PERTHR_LIMIT; |
| 2777 | queue_iterate(&task->threads, thread, thread_t, task_threads) { |
| 2778 | act_set_astledger(thread); |
| 2779 | } |
| 2780 | |
| 2781 | return KERN_SUCCESS; |
| 2782 | } |
| 2783 | |
| 2784 | int |
| 2785 | task_resume_cpumon(task_t task) |
| 2786 | { |
| 2787 | kern_return_t kret; |
| 2788 | |
| 2789 | if (!task) { |
| 2790 | return EINVAL; |
| 2791 | } |
| 2792 | |
| 2793 | task_lock(task); |
| 2794 | kret = task_enable_cpumon_locked(task); |
| 2795 | task_unlock(task); |
| 2796 | |
| 2797 | return kret; |
| 2798 | } |
| 2799 | |
| 2800 | |
| 2801 | /* duplicate values from bsd/sys/process_policy.h */ |
| 2802 | #define PROC_POLICY_CPUMON_DISABLE 0xFF |
| 2803 | #define PROC_POLICY_CPUMON_DEFAULTS 0xFE |
| 2804 | |
| 2805 | static int |
| 2806 | task_set_cpuusage(task_t task, uint8_t percentage, uint64_t interval, uint64_t deadline, int scope, int cpumon_entitled) |
| 2807 | { |
| 2808 | uint64_t abstime = 0; |
| 2809 | uint64_t limittime = 0; |
| 2810 | |
| 2811 | lck_mtx_assert(lck: &task->lock, LCK_MTX_ASSERT_OWNED); |
| 2812 | |
| 2813 | /* By default, refill once per second */ |
| 2814 | if (interval == 0) { |
| 2815 | interval = NSEC_PER_SEC; |
| 2816 | } |
| 2817 | |
| 2818 | if (percentage != 0) { |
| 2819 | if (scope == TASK_RUSECPU_FLAGS_PERTHR_LIMIT) { |
| 2820 | boolean_t warn = FALSE; |
| 2821 | |
| 2822 | /* |
| 2823 | * A per-thread CPU limit on a task generates an exception |
| 2824 | * (LEDGER_ACTION_EXCEPTION) if any one thread in the task |
| 2825 | * exceeds the limit. |
| 2826 | */ |
| 2827 | |
| 2828 | if (percentage == PROC_POLICY_CPUMON_DISABLE) { |
| 2829 | if (cpumon_entitled) { |
| 2830 | /* 25095698 - task_disable_cpumon() should be reliable */ |
| 2831 | task_disable_cpumon(task); |
| 2832 | return 0; |
| 2833 | } |
| 2834 | |
| 2835 | /* |
| 2836 | * This task wishes to disable the CPU usage monitor, but it's |
| 2837 | * missing the required entitlement: |
| 2838 | * com.apple.private.kernel.override-cpumon |
| 2839 | * |
| 2840 | * Instead, treat this as a request to reset its params |
| 2841 | * back to the defaults. |
| 2842 | */ |
| 2843 | warn = TRUE; |
| 2844 | percentage = PROC_POLICY_CPUMON_DEFAULTS; |
| 2845 | } |
| 2846 | |
| 2847 | if (percentage == PROC_POLICY_CPUMON_DEFAULTS) { |
| 2848 | percentage = proc_max_cpumon_percentage; |
| 2849 | interval = proc_max_cpumon_interval; |
| 2850 | } |
| 2851 | |
| 2852 | if (percentage > 100) { |
| 2853 | percentage = 100; |
| 2854 | } |
| 2855 | |
| 2856 | /* |
| 2857 | * Passing in an interval of -1 means either: |
| 2858 | * - Leave the interval as-is, if there's already a per-thread |
| 2859 | * limit configured |
| 2860 | * - Use the system default. |
| 2861 | */ |
| 2862 | if (interval == -1ULL) { |
| 2863 | if (task->rusage_cpu_flags & TASK_RUSECPU_FLAGS_PERTHR_LIMIT) { |
| 2864 | interval = task->rusage_cpu_perthr_interval; |
| 2865 | } else { |
| 2866 | interval = proc_max_cpumon_interval; |
| 2867 | } |
| 2868 | } |
| 2869 | |
| 2870 | /* |
| 2871 | * Enforce global caps on CPU usage monitor here if the process is not |
| 2872 | * entitled to escape the global caps. |
| 2873 | */ |
| 2874 | if ((percentage > proc_max_cpumon_percentage) && (cpumon_entitled == 0)) { |
| 2875 | warn = TRUE; |
| 2876 | percentage = proc_max_cpumon_percentage; |
| 2877 | } |
| 2878 | |
| 2879 | if ((interval > proc_max_cpumon_interval) && (cpumon_entitled == 0)) { |
| 2880 | warn = TRUE; |
| 2881 | interval = proc_max_cpumon_interval; |
| 2882 | } |
| 2883 | |
| 2884 | if (warn) { |
| 2885 | int pid = 0; |
| 2886 | const char *procname = "unknown" ; |
| 2887 | |
| 2888 | #ifdef MACH_BSD |
| 2889 | pid = proc_selfpid(); |
| 2890 | void *cur_bsd_info = get_bsdtask_info(current_task()); |
| 2891 | if (cur_bsd_info != NULL) { |
| 2892 | procname = proc_name_address(p: cur_bsd_info); |
| 2893 | } |
| 2894 | #endif |
| 2895 | |
| 2896 | printf(format: "process %s[%d] denied attempt to escape CPU monitor" |
| 2897 | " (missing required entitlement).\n" , procname, pid); |
| 2898 | } |
| 2899 | |
| 2900 | /* configure the limit values */ |
| 2901 | task->rusage_cpu_perthr_percentage = percentage; |
| 2902 | task->rusage_cpu_perthr_interval = interval; |
| 2903 | |
| 2904 | /* and enable the CPU monitor */ |
| 2905 | (void)task_enable_cpumon_locked(task); |
| 2906 | } else if (scope == TASK_RUSECPU_FLAGS_PROC_LIMIT) { |
| 2907 | /* |
| 2908 | * Currently, a proc-wide CPU limit always blocks if the limit is |
| 2909 | * exceeded (LEDGER_ACTION_BLOCK). |
| 2910 | */ |
| 2911 | task->rusage_cpu_flags |= TASK_RUSECPU_FLAGS_PROC_LIMIT; |
| 2912 | task->rusage_cpu_percentage = percentage; |
| 2913 | task->rusage_cpu_interval = interval; |
| 2914 | |
| 2915 | limittime = (interval * percentage) / 100; |
| 2916 | nanoseconds_to_absolutetime(nanoseconds: limittime, result: &abstime); |
| 2917 | |
| 2918 | ledger_set_limit(ledger: task->ledger, entry: task_ledgers.cpu_time, limit: abstime, warn_level_percentage: 0); |
| 2919 | ledger_set_period(ledger: task->ledger, entry: task_ledgers.cpu_time, period: interval); |
| 2920 | ledger_set_action(ledger: task->ledger, entry: task_ledgers.cpu_time, LEDGER_ACTION_BLOCK); |
| 2921 | } |
| 2922 | } |
| 2923 | |
| 2924 | if (deadline != 0) { |
| 2925 | assert(scope == TASK_RUSECPU_FLAGS_DEADLINE); |
| 2926 | |
| 2927 | /* if already in use, cancel and wait for it to cleanout */ |
| 2928 | if (task->rusage_cpu_callt != NULL) { |
| 2929 | task_unlock(task); |
| 2930 | thread_call_cancel_wait(call: task->rusage_cpu_callt); |
| 2931 | task_lock(task); |
| 2932 | } |
| 2933 | if (task->rusage_cpu_callt == NULL) { |
| 2934 | task->rusage_cpu_callt = thread_call_allocate_with_priority(func: task_action_cpuusage, param0: (thread_call_param_t)task, pri: THREAD_CALL_PRIORITY_KERNEL); |
| 2935 | } |
| 2936 | /* setup callout */ |
| 2937 | if (task->rusage_cpu_callt != 0) { |
| 2938 | uint64_t save_abstime = 0; |
| 2939 | |
| 2940 | task->rusage_cpu_flags |= TASK_RUSECPU_FLAGS_DEADLINE; |
| 2941 | task->rusage_cpu_deadline = deadline; |
| 2942 | |
| 2943 | nanoseconds_to_absolutetime(nanoseconds: deadline, result: &abstime); |
| 2944 | save_abstime = abstime; |
| 2945 | clock_absolutetime_interval_to_deadline(abstime: save_abstime, result: &abstime); |
| 2946 | thread_call_enter_delayed(call: task->rusage_cpu_callt, deadline: abstime); |
| 2947 | } |
| 2948 | } |
| 2949 | |
| 2950 | return 0; |
| 2951 | } |
| 2952 | |
| 2953 | int |
| 2954 | task_clear_cpuusage(task_t task, int cpumon_entitled) |
| 2955 | { |
| 2956 | int retval = 0; |
| 2957 | |
| 2958 | task_lock(task); |
| 2959 | retval = task_clear_cpuusage_locked(task, cpumon_entitled); |
| 2960 | task_unlock(task); |
| 2961 | |
| 2962 | return retval; |
| 2963 | } |
| 2964 | |
| 2965 | static int |
| 2966 | task_clear_cpuusage_locked(task_t task, int cpumon_entitled) |
| 2967 | { |
| 2968 | thread_call_t savecallt; |
| 2969 | |
| 2970 | /* cancel percentage handling if set */ |
| 2971 | if (task->rusage_cpu_flags & TASK_RUSECPU_FLAGS_PROC_LIMIT) { |
| 2972 | task->rusage_cpu_flags &= ~TASK_RUSECPU_FLAGS_PROC_LIMIT; |
| 2973 | ledger_set_limit(ledger: task->ledger, entry: task_ledgers.cpu_time, LEDGER_LIMIT_INFINITY, warn_level_percentage: 0); |
| 2974 | task->rusage_cpu_percentage = 0; |
| 2975 | task->rusage_cpu_interval = 0; |
| 2976 | } |
| 2977 | |
| 2978 | /* |
| 2979 | * Disable the CPU usage monitor. |
| 2980 | */ |
| 2981 | if (cpumon_entitled) { |
| 2982 | task_disable_cpumon(task); |
| 2983 | } |
| 2984 | |
| 2985 | /* cancel deadline handling if set */ |
| 2986 | if (task->rusage_cpu_flags & TASK_RUSECPU_FLAGS_DEADLINE) { |
| 2987 | task->rusage_cpu_flags &= ~TASK_RUSECPU_FLAGS_DEADLINE; |
| 2988 | if (task->rusage_cpu_callt != 0) { |
| 2989 | savecallt = task->rusage_cpu_callt; |
| 2990 | task->rusage_cpu_callt = NULL; |
| 2991 | task->rusage_cpu_deadline = 0; |
| 2992 | task_unlock(task); |
| 2993 | thread_call_cancel_wait(call: savecallt); |
| 2994 | thread_call_free(call: savecallt); |
| 2995 | task_lock(task); |
| 2996 | } |
| 2997 | } |
| 2998 | return 0; |
| 2999 | } |
| 3000 | |
| 3001 | /* called by ledger unit to enforce action due to resource usage criteria being met */ |
| 3002 | static void |
| 3003 | task_action_cpuusage(thread_call_param_t param0, __unused thread_call_param_t param1) |
| 3004 | { |
| 3005 | task_t task = (task_t)param0; |
| 3006 | (void)task_apply_resource_actions(task, TASK_POLICY_CPU_RESOURCE_USAGE); |
| 3007 | return; |
| 3008 | } |
| 3009 | |
| 3010 | |
| 3011 | /* |
| 3012 | * Routines for taskwatch and pidbind |
| 3013 | */ |
| 3014 | |
| 3015 | #if CONFIG_TASKWATCH |
| 3016 | |
| 3017 | LCK_MTX_DECLARE_ATTR(task_watch_mtx, &task_lck_grp, &task_lck_attr); |
| 3018 | |
| 3019 | static void |
| 3020 | task_watch_lock(void) |
| 3021 | { |
| 3022 | lck_mtx_lock(lck: &task_watch_mtx); |
| 3023 | } |
| 3024 | |
| 3025 | static void |
| 3026 | task_watch_unlock(void) |
| 3027 | { |
| 3028 | lck_mtx_unlock(lck: &task_watch_mtx); |
| 3029 | } |
| 3030 | |
| 3031 | static void |
| 3032 | add_taskwatch_locked(task_t task, task_watch_t * twp) |
| 3033 | { |
| 3034 | queue_enter(&task->task_watchers, twp, task_watch_t *, tw_links); |
| 3035 | task->num_taskwatchers++; |
| 3036 | } |
| 3037 | |
| 3038 | static void |
| 3039 | remove_taskwatch_locked(task_t task, task_watch_t * twp) |
| 3040 | { |
| 3041 | queue_remove(&task->task_watchers, twp, task_watch_t *, tw_links); |
| 3042 | task->num_taskwatchers--; |
| 3043 | } |
| 3044 | |
| 3045 | |
| 3046 | int |
| 3047 | proc_lf_pidbind(task_t curtask, uint64_t tid, task_t target_task, int bind) |
| 3048 | { |
| 3049 | thread_t target_thread = NULL; |
| 3050 | int ret = 0, setbg = 0; |
| 3051 | task_watch_t *twp = NULL; |
| 3052 | task_t task = TASK_NULL; |
| 3053 | |
| 3054 | target_thread = task_findtid(task: curtask, tid); |
| 3055 | if (target_thread == NULL) { |
| 3056 | return ESRCH; |
| 3057 | } |
| 3058 | /* holds thread reference */ |
| 3059 | |
| 3060 | if (bind != 0) { |
| 3061 | /* task is still active ? */ |
| 3062 | task_lock(target_task); |
| 3063 | if (target_task->active == 0) { |
| 3064 | task_unlock(target_task); |
| 3065 | ret = ESRCH; |
| 3066 | goto out; |
| 3067 | } |
| 3068 | task_unlock(target_task); |
| 3069 | |
| 3070 | twp = kalloc_type(task_watch_t, Z_WAITOK | Z_ZERO | Z_NOFAIL); |
| 3071 | |
| 3072 | task_watch_lock(); |
| 3073 | |
| 3074 | if (target_thread->taskwatch != NULL) { |
| 3075 | /* already bound to another task */ |
| 3076 | task_watch_unlock(); |
| 3077 | |
| 3078 | kfree_type(task_watch_t, twp); |
| 3079 | ret = EBUSY; |
| 3080 | goto out; |
| 3081 | } |
| 3082 | |
| 3083 | task_reference(target_task); |
| 3084 | |
| 3085 | setbg = proc_get_effective_task_policy(task: target_task, TASK_POLICY_WATCHERS_BG); |
| 3086 | |
| 3087 | twp->tw_task = target_task; /* holds the task reference */ |
| 3088 | twp->tw_thread = target_thread; /* holds the thread reference */ |
| 3089 | twp->tw_state = setbg; |
| 3090 | twp->tw_importance = target_thread->importance; |
| 3091 | |
| 3092 | add_taskwatch_locked(task: target_task, twp); |
| 3093 | |
| 3094 | target_thread->taskwatch = twp; |
| 3095 | |
| 3096 | task_watch_unlock(); |
| 3097 | |
| 3098 | if (setbg) { |
| 3099 | set_thread_appbg(thread: target_thread, setbg, INT_MIN); |
| 3100 | } |
| 3101 | |
| 3102 | /* retain the thread reference as it is in twp */ |
| 3103 | target_thread = NULL; |
| 3104 | } else { |
| 3105 | /* unbind */ |
| 3106 | task_watch_lock(); |
| 3107 | if ((twp = target_thread->taskwatch) != NULL) { |
| 3108 | task = twp->tw_task; |
| 3109 | target_thread->taskwatch = NULL; |
| 3110 | remove_taskwatch_locked(task, twp); |
| 3111 | |
| 3112 | task_watch_unlock(); |
| 3113 | |
| 3114 | task_deallocate(task); /* drop task ref in twp */ |
| 3115 | set_thread_appbg(thread: target_thread, setbg: 0, importance: twp->tw_importance); |
| 3116 | thread_deallocate(thread: target_thread); /* drop thread ref in twp */ |
| 3117 | kfree_type(task_watch_t, twp); |
| 3118 | } else { |
| 3119 | task_watch_unlock(); |
| 3120 | ret = 0; /* return success if it not alredy bound */ |
| 3121 | goto out; |
| 3122 | } |
| 3123 | } |
| 3124 | out: |
| 3125 | thread_deallocate(thread: target_thread); /* drop thread ref acquired in this routine */ |
| 3126 | return ret; |
| 3127 | } |
| 3128 | |
| 3129 | static void |
| 3130 | set_thread_appbg(thread_t thread, int setbg, __unused int importance) |
| 3131 | { |
| 3132 | int enable = (setbg ? TASK_POLICY_ENABLE : TASK_POLICY_DISABLE); |
| 3133 | |
| 3134 | proc_set_thread_policy(thread, TASK_POLICY_ATTRIBUTE, TASK_POLICY_PIDBIND_BG, value: enable); |
| 3135 | } |
| 3136 | |
| 3137 | static void |
| 3138 | apply_appstate_watchers(task_t task) |
| 3139 | { |
| 3140 | int numwatchers = 0, i, j, setbg; |
| 3141 | thread_watchlist_t * threadlist; |
| 3142 | task_watch_t * twp; |
| 3143 | |
| 3144 | retry: |
| 3145 | /* if no watchers on the list return */ |
| 3146 | if ((numwatchers = task->num_taskwatchers) == 0) { |
| 3147 | return; |
| 3148 | } |
| 3149 | |
| 3150 | threadlist = kalloc_type(thread_watchlist_t, numwatchers, Z_WAITOK | Z_ZERO); |
| 3151 | if (threadlist == NULL) { |
| 3152 | return; |
| 3153 | } |
| 3154 | |
| 3155 | task_watch_lock(); |
| 3156 | /*serialize application of app state changes */ |
| 3157 | |
| 3158 | if (task->watchapplying != 0) { |
| 3159 | lck_mtx_sleep(lck: &task_watch_mtx, lck_sleep_action: LCK_SLEEP_DEFAULT, event: &task->watchapplying, THREAD_UNINT); |
| 3160 | task_watch_unlock(); |
| 3161 | kfree_type(thread_watchlist_t, numwatchers, threadlist); |
| 3162 | goto retry; |
| 3163 | } |
| 3164 | |
| 3165 | if (numwatchers != task->num_taskwatchers) { |
| 3166 | task_watch_unlock(); |
| 3167 | kfree_type(thread_watchlist_t, numwatchers, threadlist); |
| 3168 | goto retry; |
| 3169 | } |
| 3170 | |
| 3171 | setbg = proc_get_effective_task_policy(task, TASK_POLICY_WATCHERS_BG); |
| 3172 | |
| 3173 | task->watchapplying = 1; |
| 3174 | i = 0; |
| 3175 | queue_iterate(&task->task_watchers, twp, task_watch_t *, tw_links) { |
| 3176 | threadlist[i].thread = twp->tw_thread; |
| 3177 | thread_reference(thread: threadlist[i].thread); |
| 3178 | if (setbg != 0) { |
| 3179 | twp->tw_importance = twp->tw_thread->importance; |
| 3180 | threadlist[i].importance = INT_MIN; |
| 3181 | } else { |
| 3182 | threadlist[i].importance = twp->tw_importance; |
| 3183 | } |
| 3184 | i++; |
| 3185 | if (i > numwatchers) { |
| 3186 | break; |
| 3187 | } |
| 3188 | } |
| 3189 | |
| 3190 | task_watch_unlock(); |
| 3191 | |
| 3192 | for (j = 0; j < i; j++) { |
| 3193 | set_thread_appbg(thread: threadlist[j].thread, setbg, importance: threadlist[j].importance); |
| 3194 | thread_deallocate(thread: threadlist[j].thread); |
| 3195 | } |
| 3196 | kfree_type(thread_watchlist_t, numwatchers, threadlist); |
| 3197 | |
| 3198 | |
| 3199 | task_watch_lock(); |
| 3200 | task->watchapplying = 0; |
| 3201 | thread_wakeup_one(&task->watchapplying); |
| 3202 | task_watch_unlock(); |
| 3203 | } |
| 3204 | |
| 3205 | void |
| 3206 | thead_remove_taskwatch(thread_t thread) |
| 3207 | { |
| 3208 | task_watch_t * twp; |
| 3209 | int importance = 0; |
| 3210 | |
| 3211 | task_watch_lock(); |
| 3212 | if ((twp = thread->taskwatch) != NULL) { |
| 3213 | thread->taskwatch = NULL; |
| 3214 | remove_taskwatch_locked(task: twp->tw_task, twp); |
| 3215 | } |
| 3216 | task_watch_unlock(); |
| 3217 | if (twp != NULL) { |
| 3218 | thread_deallocate(thread: twp->tw_thread); |
| 3219 | task_deallocate(twp->tw_task); |
| 3220 | importance = twp->tw_importance; |
| 3221 | kfree_type(task_watch_t, twp); |
| 3222 | /* remove the thread and networkbg */ |
| 3223 | set_thread_appbg(thread, setbg: 0, importance); |
| 3224 | } |
| 3225 | } |
| 3226 | |
| 3227 | void |
| 3228 | task_removewatchers(task_t task) |
| 3229 | { |
| 3230 | queue_head_t queue; |
| 3231 | task_watch_t *twp; |
| 3232 | |
| 3233 | task_watch_lock(); |
| 3234 | queue_new_head(&task->task_watchers, &queue, task_watch_t *, tw_links); |
| 3235 | queue_init(&task->task_watchers); |
| 3236 | |
| 3237 | queue_iterate(&queue, twp, task_watch_t *, tw_links) { |
| 3238 | /* |
| 3239 | * Since the linkage is removed and thead state cleanup is already set up, |
| 3240 | * remove the refernce from the thread. |
| 3241 | */ |
| 3242 | twp->tw_thread->taskwatch = NULL; /* removed linkage, clear thread holding ref */ |
| 3243 | } |
| 3244 | |
| 3245 | task->num_taskwatchers = 0; |
| 3246 | task_watch_unlock(); |
| 3247 | |
| 3248 | while (!queue_empty(&queue)) { |
| 3249 | queue_remove_first(&queue, twp, task_watch_t *, tw_links); |
| 3250 | /* remove thread and network bg */ |
| 3251 | set_thread_appbg(thread: twp->tw_thread, setbg: 0, importance: twp->tw_importance); |
| 3252 | thread_deallocate(thread: twp->tw_thread); |
| 3253 | task_deallocate(twp->tw_task); |
| 3254 | kfree_type(task_watch_t, twp); |
| 3255 | } |
| 3256 | } |
| 3257 | #endif /* CONFIG_TASKWATCH */ |
| 3258 | |
| 3259 | /* |
| 3260 | * Routines for importance donation/inheritance/boosting |
| 3261 | */ |
| 3262 | |
| 3263 | static void |
| 3264 | task_importance_update_live_donor(task_t target_task) |
| 3265 | { |
| 3266 | #if IMPORTANCE_INHERITANCE |
| 3267 | |
| 3268 | ipc_importance_task_t task_imp; |
| 3269 | |
| 3270 | task_imp = ipc_importance_for_task(task: target_task, FALSE); |
| 3271 | if (IIT_NULL != task_imp) { |
| 3272 | ipc_importance_task_update_live_donor(task_imp); |
| 3273 | ipc_importance_task_release(task_imp); |
| 3274 | } |
| 3275 | #endif /* IMPORTANCE_INHERITANCE */ |
| 3276 | } |
| 3277 | |
| 3278 | void |
| 3279 | task_importance_mark_donor(task_t task, boolean_t donating) |
| 3280 | { |
| 3281 | #if IMPORTANCE_INHERITANCE |
| 3282 | ipc_importance_task_t task_imp; |
| 3283 | |
| 3284 | task_imp = ipc_importance_for_task(task, FALSE); |
| 3285 | if (IIT_NULL != task_imp) { |
| 3286 | ipc_importance_task_mark_donor(task_imp, donating); |
| 3287 | ipc_importance_task_release(task_imp); |
| 3288 | } |
| 3289 | #endif /* IMPORTANCE_INHERITANCE */ |
| 3290 | } |
| 3291 | |
| 3292 | void |
| 3293 | task_importance_mark_live_donor(task_t task, boolean_t live_donating) |
| 3294 | { |
| 3295 | #if IMPORTANCE_INHERITANCE |
| 3296 | ipc_importance_task_t task_imp; |
| 3297 | |
| 3298 | task_imp = ipc_importance_for_task(task, FALSE); |
| 3299 | if (IIT_NULL != task_imp) { |
| 3300 | ipc_importance_task_mark_live_donor(task_imp, live_donating); |
| 3301 | ipc_importance_task_release(task_imp); |
| 3302 | } |
| 3303 | #endif /* IMPORTANCE_INHERITANCE */ |
| 3304 | } |
| 3305 | |
| 3306 | void |
| 3307 | task_importance_mark_receiver(task_t task, boolean_t receiving) |
| 3308 | { |
| 3309 | #if IMPORTANCE_INHERITANCE |
| 3310 | ipc_importance_task_t task_imp; |
| 3311 | |
| 3312 | task_imp = ipc_importance_for_task(task, FALSE); |
| 3313 | if (IIT_NULL != task_imp) { |
| 3314 | ipc_importance_task_mark_receiver(task_imp, receiving); |
| 3315 | ipc_importance_task_release(task_imp); |
| 3316 | } |
| 3317 | #endif /* IMPORTANCE_INHERITANCE */ |
| 3318 | } |
| 3319 | |
| 3320 | void |
| 3321 | task_importance_mark_denap_receiver(task_t task, boolean_t denap) |
| 3322 | { |
| 3323 | #if IMPORTANCE_INHERITANCE |
| 3324 | ipc_importance_task_t task_imp; |
| 3325 | |
| 3326 | task_imp = ipc_importance_for_task(task, FALSE); |
| 3327 | if (IIT_NULL != task_imp) { |
| 3328 | ipc_importance_task_mark_denap_receiver(task_imp, receiving: denap); |
| 3329 | ipc_importance_task_release(task_imp); |
| 3330 | } |
| 3331 | #endif /* IMPORTANCE_INHERITANCE */ |
| 3332 | } |
| 3333 | |
| 3334 | void |
| 3335 | task_importance_reset(__imp_only task_t task) |
| 3336 | { |
| 3337 | #if IMPORTANCE_INHERITANCE |
| 3338 | ipc_importance_task_t task_imp; |
| 3339 | |
| 3340 | /* TODO: Lower importance downstream before disconnect */ |
| 3341 | task_imp = task->task_imp_base; |
| 3342 | ipc_importance_reset(task_imp, FALSE); |
| 3343 | task_importance_update_live_donor(target_task: task); |
| 3344 | #endif /* IMPORTANCE_INHERITANCE */ |
| 3345 | } |
| 3346 | |
| 3347 | void |
| 3348 | task_importance_init_from_parent(__imp_only task_t new_task, __imp_only task_t parent_task) |
| 3349 | { |
| 3350 | #if IMPORTANCE_INHERITANCE |
| 3351 | ipc_importance_task_t new_task_imp = IIT_NULL; |
| 3352 | |
| 3353 | new_task->task_imp_base = NULL; |
| 3354 | if (!parent_task) { |
| 3355 | return; |
| 3356 | } |
| 3357 | |
| 3358 | if (task_is_marked_importance_donor(task: parent_task)) { |
| 3359 | new_task_imp = ipc_importance_for_task(task: new_task, FALSE); |
| 3360 | assert(IIT_NULL != new_task_imp); |
| 3361 | ipc_importance_task_mark_donor(task_imp: new_task_imp, TRUE); |
| 3362 | } |
| 3363 | if (task_is_marked_live_importance_donor(task: parent_task)) { |
| 3364 | if (IIT_NULL == new_task_imp) { |
| 3365 | new_task_imp = ipc_importance_for_task(task: new_task, FALSE); |
| 3366 | } |
| 3367 | assert(IIT_NULL != new_task_imp); |
| 3368 | ipc_importance_task_mark_live_donor(task_imp: new_task_imp, TRUE); |
| 3369 | } |
| 3370 | /* Do not inherit 'receiver' on fork, vfexec or true spawn */ |
| 3371 | if (task_is_exec_copy(new_task) && |
| 3372 | task_is_marked_importance_receiver(task: parent_task)) { |
| 3373 | if (IIT_NULL == new_task_imp) { |
| 3374 | new_task_imp = ipc_importance_for_task(task: new_task, FALSE); |
| 3375 | } |
| 3376 | assert(IIT_NULL != new_task_imp); |
| 3377 | ipc_importance_task_mark_receiver(task_imp: new_task_imp, TRUE); |
| 3378 | } |
| 3379 | if (task_is_marked_importance_denap_receiver(task: parent_task)) { |
| 3380 | if (IIT_NULL == new_task_imp) { |
| 3381 | new_task_imp = ipc_importance_for_task(task: new_task, FALSE); |
| 3382 | } |
| 3383 | assert(IIT_NULL != new_task_imp); |
| 3384 | ipc_importance_task_mark_denap_receiver(task_imp: new_task_imp, TRUE); |
| 3385 | } |
| 3386 | if (IIT_NULL != new_task_imp) { |
| 3387 | assert(new_task->task_imp_base == new_task_imp); |
| 3388 | ipc_importance_task_release(task_imp: new_task_imp); |
| 3389 | } |
| 3390 | #endif /* IMPORTANCE_INHERITANCE */ |
| 3391 | } |
| 3392 | |
| 3393 | #if IMPORTANCE_INHERITANCE |
| 3394 | /* |
| 3395 | * Sets the task boost bit to the provided value. Does NOT run the update function. |
| 3396 | * |
| 3397 | * Task lock must be held. |
| 3398 | */ |
| 3399 | static void |
| 3400 | task_set_boost_locked(task_t task, boolean_t boost_active) |
| 3401 | { |
| 3402 | #if IMPORTANCE_TRACE |
| 3403 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, (IMPORTANCE_CODE(IMP_BOOST, (boost_active ? IMP_BOOSTED : IMP_UNBOOSTED)) | DBG_FUNC_START), |
| 3404 | proc_selfpid(), task_pid(task), trequested_0(task), trequested_1(task), 0); |
| 3405 | #endif /* IMPORTANCE_TRACE */ |
| 3406 | |
| 3407 | task->requested_policy.trp_boosted = boost_active; |
| 3408 | |
| 3409 | #if IMPORTANCE_TRACE |
| 3410 | if (boost_active == TRUE) { |
| 3411 | DTRACE_BOOST2(boost, task_t, task, int, task_pid(task)); |
| 3412 | } else { |
| 3413 | DTRACE_BOOST2(unboost, task_t, task, int, task_pid(task)); |
| 3414 | } |
| 3415 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, (IMPORTANCE_CODE(IMP_BOOST, (boost_active ? IMP_BOOSTED : IMP_UNBOOSTED)) | DBG_FUNC_END), |
| 3416 | proc_selfpid(), task_pid(task), |
| 3417 | trequested_0(task), trequested_1(task), 0); |
| 3418 | #endif /* IMPORTANCE_TRACE */ |
| 3419 | } |
| 3420 | |
| 3421 | /* |
| 3422 | * Sets the task boost bit to the provided value and applies the update. |
| 3423 | * |
| 3424 | * Task lock must be held. Must call update complete after unlocking the task. |
| 3425 | */ |
| 3426 | void |
| 3427 | task_update_boost_locked(task_t task, boolean_t boost_active, task_pend_token_t pend_token) |
| 3428 | { |
| 3429 | task_set_boost_locked(task, boost_active); |
| 3430 | |
| 3431 | task_policy_update_locked(task, pend_token); |
| 3432 | } |
| 3433 | |
| 3434 | /* |
| 3435 | * Check if this task should donate importance. |
| 3436 | * |
| 3437 | * May be called without taking the task lock. In that case, donor status can change |
| 3438 | * so you must check only once for each donation event. |
| 3439 | */ |
| 3440 | boolean_t |
| 3441 | task_is_importance_donor(task_t task) |
| 3442 | { |
| 3443 | if (task->task_imp_base == IIT_NULL) { |
| 3444 | return FALSE; |
| 3445 | } |
| 3446 | return ipc_importance_task_is_donor(task_imp: task->task_imp_base); |
| 3447 | } |
| 3448 | |
| 3449 | /* |
| 3450 | * Query the status of the task's donor mark. |
| 3451 | */ |
| 3452 | boolean_t |
| 3453 | task_is_marked_importance_donor(task_t task) |
| 3454 | { |
| 3455 | if (task->task_imp_base == IIT_NULL) { |
| 3456 | return FALSE; |
| 3457 | } |
| 3458 | return ipc_importance_task_is_marked_donor(task_imp: task->task_imp_base); |
| 3459 | } |
| 3460 | |
| 3461 | /* |
| 3462 | * Query the status of the task's live donor and donor mark. |
| 3463 | */ |
| 3464 | boolean_t |
| 3465 | task_is_marked_live_importance_donor(task_t task) |
| 3466 | { |
| 3467 | if (task->task_imp_base == IIT_NULL) { |
| 3468 | return FALSE; |
| 3469 | } |
| 3470 | return ipc_importance_task_is_marked_live_donor(task_imp: task->task_imp_base); |
| 3471 | } |
| 3472 | |
| 3473 | |
| 3474 | /* |
| 3475 | * This routine may be called without holding task lock |
| 3476 | * since the value of imp_receiver can never be unset. |
| 3477 | */ |
| 3478 | boolean_t |
| 3479 | task_is_importance_receiver(task_t task) |
| 3480 | { |
| 3481 | if (task->task_imp_base == IIT_NULL) { |
| 3482 | return FALSE; |
| 3483 | } |
| 3484 | return ipc_importance_task_is_marked_receiver(task_imp: task->task_imp_base); |
| 3485 | } |
| 3486 | |
| 3487 | /* |
| 3488 | * Query the task's receiver mark. |
| 3489 | */ |
| 3490 | boolean_t |
| 3491 | task_is_marked_importance_receiver(task_t task) |
| 3492 | { |
| 3493 | if (task->task_imp_base == IIT_NULL) { |
| 3494 | return FALSE; |
| 3495 | } |
| 3496 | return ipc_importance_task_is_marked_receiver(task_imp: task->task_imp_base); |
| 3497 | } |
| 3498 | |
| 3499 | /* |
| 3500 | * This routine may be called without holding task lock |
| 3501 | * since the value of de-nap receiver can never be unset. |
| 3502 | */ |
| 3503 | boolean_t |
| 3504 | task_is_importance_denap_receiver(task_t task) |
| 3505 | { |
| 3506 | if (task->task_imp_base == IIT_NULL) { |
| 3507 | return FALSE; |
| 3508 | } |
| 3509 | return ipc_importance_task_is_denap_receiver(task_imp: task->task_imp_base); |
| 3510 | } |
| 3511 | |
| 3512 | /* |
| 3513 | * Query the task's de-nap receiver mark. |
| 3514 | */ |
| 3515 | boolean_t |
| 3516 | task_is_marked_importance_denap_receiver(task_t task) |
| 3517 | { |
| 3518 | if (task->task_imp_base == IIT_NULL) { |
| 3519 | return FALSE; |
| 3520 | } |
| 3521 | return ipc_importance_task_is_marked_denap_receiver(task_imp: task->task_imp_base); |
| 3522 | } |
| 3523 | |
| 3524 | /* |
| 3525 | * This routine may be called without holding task lock |
| 3526 | * since the value of imp_receiver can never be unset. |
| 3527 | */ |
| 3528 | boolean_t |
| 3529 | task_is_importance_receiver_type(task_t task) |
| 3530 | { |
| 3531 | if (task->task_imp_base == IIT_NULL) { |
| 3532 | return FALSE; |
| 3533 | } |
| 3534 | return task_is_importance_receiver(task) || |
| 3535 | task_is_importance_denap_receiver(task); |
| 3536 | } |
| 3537 | |
| 3538 | /* |
| 3539 | * External importance assertions are managed by the process in userspace |
| 3540 | * Internal importance assertions are the responsibility of the kernel |
| 3541 | * Assertions are changed from internal to external via task_importance_externalize_assertion |
| 3542 | */ |
| 3543 | |
| 3544 | int |
| 3545 | task_importance_hold_internal_assertion(task_t target_task, uint32_t count) |
| 3546 | { |
| 3547 | ipc_importance_task_t task_imp; |
| 3548 | kern_return_t ret; |
| 3549 | |
| 3550 | /* may be first time, so allow for possible importance setup */ |
| 3551 | task_imp = ipc_importance_for_task(task: target_task, FALSE); |
| 3552 | if (IIT_NULL == task_imp) { |
| 3553 | return EOVERFLOW; |
| 3554 | } |
| 3555 | ret = ipc_importance_task_hold_internal_assertion(task_imp, count); |
| 3556 | ipc_importance_task_release(task_imp); |
| 3557 | |
| 3558 | return (KERN_SUCCESS != ret) ? ENOTSUP : 0; |
| 3559 | } |
| 3560 | |
| 3561 | int |
| 3562 | task_importance_hold_file_lock_assertion(task_t target_task, uint32_t count) |
| 3563 | { |
| 3564 | ipc_importance_task_t task_imp; |
| 3565 | kern_return_t ret; |
| 3566 | |
| 3567 | /* may be first time, so allow for possible importance setup */ |
| 3568 | task_imp = ipc_importance_for_task(task: target_task, FALSE); |
| 3569 | if (IIT_NULL == task_imp) { |
| 3570 | return EOVERFLOW; |
| 3571 | } |
| 3572 | ret = ipc_importance_task_hold_file_lock_assertion(task_imp, count); |
| 3573 | ipc_importance_task_release(task_imp); |
| 3574 | |
| 3575 | return (KERN_SUCCESS != ret) ? ENOTSUP : 0; |
| 3576 | } |
| 3577 | |
| 3578 | int |
| 3579 | task_importance_hold_legacy_external_assertion(task_t target_task, uint32_t count) |
| 3580 | { |
| 3581 | ipc_importance_task_t task_imp; |
| 3582 | kern_return_t ret; |
| 3583 | |
| 3584 | /* must already have set up an importance */ |
| 3585 | task_imp = target_task->task_imp_base; |
| 3586 | if (IIT_NULL == task_imp) { |
| 3587 | return EOVERFLOW; |
| 3588 | } |
| 3589 | ret = ipc_importance_task_hold_legacy_external_assertion(task_imp, count); |
| 3590 | return (KERN_SUCCESS != ret) ? ENOTSUP : 0; |
| 3591 | } |
| 3592 | |
| 3593 | int |
| 3594 | task_importance_drop_file_lock_assertion(task_t target_task, uint32_t count) |
| 3595 | { |
| 3596 | ipc_importance_task_t task_imp; |
| 3597 | kern_return_t ret; |
| 3598 | |
| 3599 | /* must already have set up an importance */ |
| 3600 | task_imp = target_task->task_imp_base; |
| 3601 | if (IIT_NULL == task_imp) { |
| 3602 | return EOVERFLOW; |
| 3603 | } |
| 3604 | ret = ipc_importance_task_drop_file_lock_assertion(task_imp: target_task->task_imp_base, count); |
| 3605 | return (KERN_SUCCESS != ret) ? EOVERFLOW : 0; |
| 3606 | } |
| 3607 | |
| 3608 | int |
| 3609 | task_importance_drop_legacy_external_assertion(task_t target_task, uint32_t count) |
| 3610 | { |
| 3611 | ipc_importance_task_t task_imp; |
| 3612 | kern_return_t ret; |
| 3613 | |
| 3614 | /* must already have set up an importance */ |
| 3615 | task_imp = target_task->task_imp_base; |
| 3616 | if (IIT_NULL == task_imp) { |
| 3617 | return EOVERFLOW; |
| 3618 | } |
| 3619 | ret = ipc_importance_task_drop_legacy_external_assertion(task_imp, count); |
| 3620 | return (KERN_SUCCESS != ret) ? EOVERFLOW : 0; |
| 3621 | } |
| 3622 | |
| 3623 | static void |
| 3624 | task_add_importance_watchport(task_t task, mach_port_t port, int *boostp) |
| 3625 | { |
| 3626 | int boost = 0; |
| 3627 | |
| 3628 | __imptrace_only int released_pid = 0; |
| 3629 | __imptrace_only int pid = task_pid(task); |
| 3630 | |
| 3631 | ipc_importance_task_t release_imp_task = IIT_NULL; |
| 3632 | |
| 3633 | if (IP_VALID(port) != 0) { |
| 3634 | ipc_importance_task_t new_imp_task = ipc_importance_for_task(task, FALSE); |
| 3635 | |
| 3636 | ip_mq_lock(port); |
| 3637 | |
| 3638 | /* |
| 3639 | * The port must have been marked tempowner already. |
| 3640 | * This also filters out ports whose receive rights |
| 3641 | * are already enqueued in a message, as you can't |
| 3642 | * change the right's destination once it's already |
| 3643 | * on its way. |
| 3644 | */ |
| 3645 | if (port->ip_tempowner != 0) { |
| 3646 | assert(port->ip_impdonation != 0); |
| 3647 | |
| 3648 | boost = port->ip_impcount; |
| 3649 | if (IIT_NULL != ip_get_imp_task(port)) { |
| 3650 | /* |
| 3651 | * if this port is already bound to a task, |
| 3652 | * release the task reference and drop any |
| 3653 | * watchport-forwarded boosts |
| 3654 | */ |
| 3655 | release_imp_task = ip_get_imp_task(port); |
| 3656 | port->ip_imp_task = IIT_NULL; |
| 3657 | } |
| 3658 | |
| 3659 | /* mark the port is watching another task (reference held in port->ip_imp_task) */ |
| 3660 | if (ipc_importance_task_is_marked_receiver(task_imp: new_imp_task)) { |
| 3661 | port->ip_imp_task = new_imp_task; |
| 3662 | new_imp_task = IIT_NULL; |
| 3663 | } |
| 3664 | } |
| 3665 | ip_mq_unlock(port); |
| 3666 | |
| 3667 | if (IIT_NULL != new_imp_task) { |
| 3668 | ipc_importance_task_release(task_imp: new_imp_task); |
| 3669 | } |
| 3670 | |
| 3671 | if (IIT_NULL != release_imp_task) { |
| 3672 | if (boost > 0) { |
| 3673 | ipc_importance_task_drop_internal_assertion(task_imp: release_imp_task, count: boost); |
| 3674 | } |
| 3675 | |
| 3676 | // released_pid = task_pid(release_imp_task); /* TODO: Need ref-safe way to get pid */ |
| 3677 | ipc_importance_task_release(task_imp: release_imp_task); |
| 3678 | } |
| 3679 | #if IMPORTANCE_TRACE |
| 3680 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, (IMPORTANCE_CODE(IMP_WATCHPORT, 0)) | DBG_FUNC_NONE, |
| 3681 | proc_selfpid(), pid, boost, released_pid, 0); |
| 3682 | #endif /* IMPORTANCE_TRACE */ |
| 3683 | } |
| 3684 | |
| 3685 | *boostp = boost; |
| 3686 | return; |
| 3687 | } |
| 3688 | |
| 3689 | #endif /* IMPORTANCE_INHERITANCE */ |
| 3690 | |
| 3691 | /* |
| 3692 | * Routines for VM to query task importance |
| 3693 | */ |
| 3694 | |
| 3695 | |
| 3696 | /* |
| 3697 | * Order to be considered while estimating importance |
| 3698 | * for low memory notification and purging purgeable memory. |
| 3699 | */ |
| 3700 | #define TASK_IMPORTANCE_FOREGROUND 4 |
| 3701 | #define TASK_IMPORTANCE_NOTDARWINBG 1 |
| 3702 | |
| 3703 | |
| 3704 | /* |
| 3705 | * (Un)Mark the task as a privileged listener for memory notifications. |
| 3706 | * if marked, this task will be among the first to be notified amongst |
| 3707 | * the bulk of all other tasks when the system enters a pressure level |
| 3708 | * of interest to this task. |
| 3709 | */ |
| 3710 | int |
| 3711 | task_low_mem_privileged_listener(task_t task, boolean_t new_value, boolean_t *old_value) |
| 3712 | { |
| 3713 | if (old_value != NULL) { |
| 3714 | *old_value = (boolean_t)task->low_mem_privileged_listener; |
| 3715 | } else { |
| 3716 | task_lock(task); |
| 3717 | task->low_mem_privileged_listener = (uint32_t)new_value; |
| 3718 | task_unlock(task); |
| 3719 | } |
| 3720 | |
| 3721 | return 0; |
| 3722 | } |
| 3723 | |
| 3724 | /* |
| 3725 | * Checks if the task is already notified. |
| 3726 | * |
| 3727 | * Condition: task lock should be held while calling this function. |
| 3728 | */ |
| 3729 | boolean_t |
| 3730 | task_has_been_notified(task_t task, int pressurelevel) |
| 3731 | { |
| 3732 | if (task == NULL) { |
| 3733 | return FALSE; |
| 3734 | } |
| 3735 | |
| 3736 | if (pressurelevel == kVMPressureWarning) { |
| 3737 | return task->low_mem_notified_warn ? TRUE : FALSE; |
| 3738 | } else if (pressurelevel == kVMPressureCritical) { |
| 3739 | return task->low_mem_notified_critical ? TRUE : FALSE; |
| 3740 | } else { |
| 3741 | return TRUE; |
| 3742 | } |
| 3743 | } |
| 3744 | |
| 3745 | |
| 3746 | /* |
| 3747 | * Checks if the task is used for purging. |
| 3748 | * |
| 3749 | * Condition: task lock should be held while calling this function. |
| 3750 | */ |
| 3751 | boolean_t |
| 3752 | task_used_for_purging(task_t task, int pressurelevel) |
| 3753 | { |
| 3754 | if (task == NULL) { |
| 3755 | return FALSE; |
| 3756 | } |
| 3757 | |
| 3758 | if (pressurelevel == kVMPressureWarning) { |
| 3759 | return task->purged_memory_warn ? TRUE : FALSE; |
| 3760 | } else if (pressurelevel == kVMPressureCritical) { |
| 3761 | return task->purged_memory_critical ? TRUE : FALSE; |
| 3762 | } else { |
| 3763 | return TRUE; |
| 3764 | } |
| 3765 | } |
| 3766 | |
| 3767 | |
| 3768 | /* |
| 3769 | * Mark the task as notified with memory notification. |
| 3770 | * |
| 3771 | * Condition: task lock should be held while calling this function. |
| 3772 | */ |
| 3773 | void |
| 3774 | task_mark_has_been_notified(task_t task, int pressurelevel) |
| 3775 | { |
| 3776 | if (task == NULL) { |
| 3777 | return; |
| 3778 | } |
| 3779 | |
| 3780 | if (pressurelevel == kVMPressureWarning) { |
| 3781 | task->low_mem_notified_warn = 1; |
| 3782 | } else if (pressurelevel == kVMPressureCritical) { |
| 3783 | task->low_mem_notified_critical = 1; |
| 3784 | } |
| 3785 | } |
| 3786 | |
| 3787 | |
| 3788 | /* |
| 3789 | * Mark the task as purged. |
| 3790 | * |
| 3791 | * Condition: task lock should be held while calling this function. |
| 3792 | */ |
| 3793 | void |
| 3794 | task_mark_used_for_purging(task_t task, int pressurelevel) |
| 3795 | { |
| 3796 | if (task == NULL) { |
| 3797 | return; |
| 3798 | } |
| 3799 | |
| 3800 | if (pressurelevel == kVMPressureWarning) { |
| 3801 | task->purged_memory_warn = 1; |
| 3802 | } else if (pressurelevel == kVMPressureCritical) { |
| 3803 | task->purged_memory_critical = 1; |
| 3804 | } |
| 3805 | } |
| 3806 | |
| 3807 | |
| 3808 | /* |
| 3809 | * Mark the task eligible for low memory notification. |
| 3810 | * |
| 3811 | * Condition: task lock should be held while calling this function. |
| 3812 | */ |
| 3813 | void |
| 3814 | task_clear_has_been_notified(task_t task, int pressurelevel) |
| 3815 | { |
| 3816 | if (task == NULL) { |
| 3817 | return; |
| 3818 | } |
| 3819 | |
| 3820 | if (pressurelevel == kVMPressureWarning) { |
| 3821 | task->low_mem_notified_warn = 0; |
| 3822 | } else if (pressurelevel == kVMPressureCritical) { |
| 3823 | task->low_mem_notified_critical = 0; |
| 3824 | } |
| 3825 | } |
| 3826 | |
| 3827 | |
| 3828 | /* |
| 3829 | * Mark the task eligible for purging its purgeable memory. |
| 3830 | * |
| 3831 | * Condition: task lock should be held while calling this function. |
| 3832 | */ |
| 3833 | void |
| 3834 | task_clear_used_for_purging(task_t task) |
| 3835 | { |
| 3836 | if (task == NULL) { |
| 3837 | return; |
| 3838 | } |
| 3839 | |
| 3840 | task->purged_memory_warn = 0; |
| 3841 | task->purged_memory_critical = 0; |
| 3842 | } |
| 3843 | |
| 3844 | |
| 3845 | /* |
| 3846 | * Estimate task importance for purging its purgeable memory |
| 3847 | * and low memory notification. |
| 3848 | * |
| 3849 | * Importance is calculated in the following order of criteria: |
| 3850 | * -Task role : Background vs Foreground |
| 3851 | * -Boost status: Not boosted vs Boosted |
| 3852 | * -Darwin BG status. |
| 3853 | * |
| 3854 | * Returns: Estimated task importance. Less important task will have lower |
| 3855 | * estimated importance. |
| 3856 | */ |
| 3857 | int |
| 3858 | task_importance_estimate(task_t task) |
| 3859 | { |
| 3860 | int task_importance = 0; |
| 3861 | |
| 3862 | if (task == NULL) { |
| 3863 | return 0; |
| 3864 | } |
| 3865 | |
| 3866 | if (proc_get_effective_task_policy(task, TASK_POLICY_ROLE) == TASK_FOREGROUND_APPLICATION) { |
| 3867 | task_importance += TASK_IMPORTANCE_FOREGROUND; |
| 3868 | } |
| 3869 | |
| 3870 | if (proc_get_effective_task_policy(task, TASK_POLICY_DARWIN_BG) == 0) { |
| 3871 | task_importance += TASK_IMPORTANCE_NOTDARWINBG; |
| 3872 | } |
| 3873 | |
| 3874 | return task_importance; |
| 3875 | } |
| 3876 | |
| 3877 | boolean_t |
| 3878 | task_has_assertions(task_t task) |
| 3879 | { |
| 3880 | return task->task_imp_base->iit_assertcnt? TRUE : FALSE; |
| 3881 | } |
| 3882 | |
| 3883 | |
| 3884 | kern_return_t |
| 3885 | send_resource_violation(typeof(send_cpu_usage_violation) sendfunc, |
| 3886 | task_t violator, |
| 3887 | struct ledger_entry_info *linfo, |
| 3888 | resource_notify_flags_t flags) |
| 3889 | { |
| 3890 | #ifndef MACH_BSD |
| 3891 | return KERN_NOT_SUPPORTED; |
| 3892 | #else |
| 3893 | kern_return_t kr = KERN_SUCCESS; |
| 3894 | proc_t proc = NULL; |
| 3895 | posix_path_t proc_path = "" ; |
| 3896 | proc_name_t procname = "<unknown>" ; |
| 3897 | int pid = -1; |
| 3898 | clock_sec_t secs; |
| 3899 | clock_nsec_t nsecs; |
| 3900 | mach_timespec_t timestamp; |
| 3901 | thread_t curthread = current_thread(); |
| 3902 | ipc_port_t dstport = MACH_PORT_NULL; |
| 3903 | |
| 3904 | if (!violator) { |
| 3905 | kr = KERN_INVALID_ARGUMENT; goto finish; |
| 3906 | } |
| 3907 | |
| 3908 | /* extract violator information */ |
| 3909 | task_lock(violator); |
| 3910 | if (!(proc = get_bsdtask_info(violator))) { |
| 3911 | task_unlock(violator); |
| 3912 | kr = KERN_INVALID_ARGUMENT; goto finish; |
| 3913 | } |
| 3914 | (void)mig_strncpy(dest: procname, src: proc_best_name(proc), len: sizeof(procname)); |
| 3915 | pid = task_pid(task: violator); |
| 3916 | if (flags & kRNFatalLimitFlag) { |
| 3917 | kr = proc_pidpathinfo_internal(p: proc, arg: 0, buffer: proc_path, |
| 3918 | buffersize: sizeof(proc_path), NULL); |
| 3919 | } |
| 3920 | task_unlock(violator); |
| 3921 | if (kr) { |
| 3922 | goto finish; |
| 3923 | } |
| 3924 | |
| 3925 | /* violation time ~ now */ |
| 3926 | clock_get_calendar_nanotime(secs: &secs, nanosecs: &nsecs); |
| 3927 | timestamp.tv_sec = (int32_t)secs; |
| 3928 | timestamp.tv_nsec = (int32_t)nsecs; |
| 3929 | /* 25567702 tracks widening mach_timespec_t */ |
| 3930 | |
| 3931 | /* send message */ |
| 3932 | kr = host_get_special_port(host_priv: host_priv_self(), HOST_LOCAL_NODE, |
| 3933 | HOST_RESOURCE_NOTIFY_PORT, port: &dstport); |
| 3934 | if (kr) { |
| 3935 | goto finish; |
| 3936 | } |
| 3937 | |
| 3938 | thread_set_honor_qlimit(thread: curthread); |
| 3939 | kr = sendfunc(dstport, |
| 3940 | procname, pid, proc_path, timestamp, |
| 3941 | linfo->lei_balance, linfo->lei_last_refill, |
| 3942 | linfo->lei_limit, linfo->lei_refill_period, |
| 3943 | flags); |
| 3944 | thread_clear_honor_qlimit(thread: curthread); |
| 3945 | |
| 3946 | ipc_port_release_send(port: dstport); |
| 3947 | |
| 3948 | finish: |
| 3949 | return kr; |
| 3950 | #endif /* MACH_BSD */ |
| 3951 | } |
| 3952 | |
| 3953 | kern_return_t |
| 3954 | send_resource_violation_with_fatal_port(typeof(send_port_space_violation) sendfunc, |
| 3955 | task_t violator, |
| 3956 | int64_t current_size, |
| 3957 | int64_t limit, |
| 3958 | mach_port_t fatal_port, |
| 3959 | resource_notify_flags_t flags) |
| 3960 | { |
| 3961 | #ifndef MACH_BSD |
| 3962 | kr = KERN_NOT_SUPPORTED; goto finish; |
| 3963 | #else |
| 3964 | kern_return_t kr = KERN_SUCCESS; |
| 3965 | proc_t proc = NULL; |
| 3966 | proc_name_t procname = "<unknown>" ; |
| 3967 | int pid = -1; |
| 3968 | clock_sec_t secs; |
| 3969 | clock_nsec_t nsecs; |
| 3970 | mach_timespec_t timestamp; |
| 3971 | thread_t curthread = current_thread(); |
| 3972 | ipc_port_t dstport = MACH_PORT_NULL; |
| 3973 | |
| 3974 | if (!violator) { |
| 3975 | kr = KERN_INVALID_ARGUMENT; goto finish; |
| 3976 | } |
| 3977 | |
| 3978 | /* extract violator information; no need to acquire task lock */ |
| 3979 | assert(violator == current_task()); |
| 3980 | if (!(proc = get_bsdtask_info(violator))) { |
| 3981 | kr = KERN_INVALID_ARGUMENT; goto finish; |
| 3982 | } |
| 3983 | (void)mig_strncpy(dest: procname, src: proc_best_name(proc), len: sizeof(procname)); |
| 3984 | pid = task_pid(task: violator); |
| 3985 | |
| 3986 | /* violation time ~ now */ |
| 3987 | clock_get_calendar_nanotime(secs: &secs, nanosecs: &nsecs); |
| 3988 | timestamp.tv_sec = (int32_t)secs; |
| 3989 | timestamp.tv_nsec = (int32_t)nsecs; |
| 3990 | /* 25567702 tracks widening mach_timespec_t */ |
| 3991 | |
| 3992 | /* send message */ |
| 3993 | kr = task_get_special_port(task: current_task(), TASK_RESOURCE_NOTIFY_PORT, special_port: &dstport); |
| 3994 | if (dstport == MACH_PORT_NULL) { |
| 3995 | kr = host_get_special_port(host_priv: host_priv_self(), HOST_LOCAL_NODE, |
| 3996 | HOST_RESOURCE_NOTIFY_PORT, port: &dstport); |
| 3997 | if (kr) { |
| 3998 | goto finish; |
| 3999 | } |
| 4000 | } |
| 4001 | |
| 4002 | thread_set_honor_qlimit(thread: curthread); |
| 4003 | kr = sendfunc(dstport, |
| 4004 | procname, pid, timestamp, |
| 4005 | current_size, limit, fatal_port, |
| 4006 | flags); |
| 4007 | thread_clear_honor_qlimit(thread: curthread); |
| 4008 | |
| 4009 | ipc_port_release_send(port: dstport); |
| 4010 | |
| 4011 | #endif /* MACH_BSD */ |
| 4012 | finish: |
| 4013 | return kr; |
| 4014 | } |
| 4015 | |
| 4016 | /* |
| 4017 | * Resource violations trace four 64-bit integers. For K32, two additional |
| 4018 | * codes are allocated, the first with the low nibble doubled. So if the K64 |
| 4019 | * code is 0x042, the K32 codes would be 0x044 and 0x45. |
| 4020 | */ |
| 4021 | #ifdef __LP64__ |
| 4022 | void |
| 4023 | trace_resource_violation(uint16_t code, |
| 4024 | struct ledger_entry_info *linfo) |
| 4025 | { |
| 4026 | KERNEL_DBG_IST_SANE(KDBG_CODE(DBG_MACH, DBG_MACH_RESOURCE, code), |
| 4027 | linfo->lei_balance, linfo->lei_last_refill, |
| 4028 | linfo->lei_limit, linfo->lei_refill_period); |
| 4029 | } |
| 4030 | #else /* K32 */ |
| 4031 | /* TODO: create/find a trace_two_LLs() for K32 systems */ |
| 4032 | #define MASK32 0xffffffff |
| 4033 | void |
| 4034 | trace_resource_violation(uint16_t code, |
| 4035 | struct ledger_entry_info *linfo) |
| 4036 | { |
| 4037 | int8_t lownibble = (code & 0x3) * 2; |
| 4038 | int16_t codeA = (code & 0xffc) | lownibble; |
| 4039 | int16_t codeB = codeA + 1; |
| 4040 | |
| 4041 | int32_t balance_high = (linfo->lei_balance >> 32) & MASK32; |
| 4042 | int32_t balance_low = linfo->lei_balance & MASK32; |
| 4043 | int32_t last_refill_high = (linfo->lei_last_refill >> 32) & MASK32; |
| 4044 | int32_t last_refill_low = linfo->lei_last_refill & MASK32; |
| 4045 | |
| 4046 | int32_t limit_high = (linfo->lei_limit >> 32) & MASK32; |
| 4047 | int32_t limit_low = linfo->lei_limit & MASK32; |
| 4048 | int32_t refill_period_high = (linfo->lei_refill_period >> 32) & MASK32; |
| 4049 | int32_t refill_period_low = linfo->lei_refill_period & MASK32; |
| 4050 | |
| 4051 | KERNEL_DBG_IST_SANE(KDBG_CODE(DBG_MACH, DBG_MACH_RESOURCE, codeA), |
| 4052 | balance_high, balance_low, |
| 4053 | last_refill_high, last_refill_low); |
| 4054 | KERNEL_DBG_IST_SANE(KDBG_CODE(DBG_MACH, DBG_MACH_RESOURCE, codeB), |
| 4055 | limit_high, limit_low, |
| 4056 | refill_period_high, refill_period_low); |
| 4057 | } |
| 4058 | #endif /* K64/K32 */ |
| 4059 | |