| 1 | /* |
| 2 | * Copyright (c) 2000-2020 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
| 5 | * |
| 6 | * This file contains Original Code and/or Modifications of Original Code |
| 7 | * as defined in and that are subject to the Apple Public Source License |
| 8 | * Version 2.0 (the 'License'). You may not use this file except in |
| 9 | * compliance with the License. The rights granted to you under the License |
| 10 | * may not be used to create, or enable the creation or redistribution of, |
| 11 | * unlawful or unlicensed copies of an Apple operating system, or to |
| 12 | * circumvent, violate, or enable the circumvention or violation of, any |
| 13 | * terms of an Apple operating system software license agreement. |
| 14 | * |
| 15 | * Please obtain a copy of the License at |
| 16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
| 17 | * |
| 18 | * The Original Code and all software distributed under the License are |
| 19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| 23 | * Please see the License for the specific language governing rights and |
| 24 | * limitations under the License. |
| 25 | * |
| 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
| 27 | */ |
| 28 | /* |
| 29 | * @OSF_FREE_COPYRIGHT@ |
| 30 | */ |
| 31 | /* |
| 32 | * Mach Operating System |
| 33 | * Copyright (c) 1991,1990,1989,1988 Carnegie Mellon University |
| 34 | * All Rights Reserved. |
| 35 | * |
| 36 | * Permission to use, copy, modify and distribute this software and its |
| 37 | * documentation is hereby granted, provided that both the copyright |
| 38 | * notice and this permission notice appear in all copies of the |
| 39 | * software, derivative works or modified versions, and any portions |
| 40 | * thereof, and that both notices appear in supporting documentation. |
| 41 | * |
| 42 | * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" |
| 43 | * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR |
| 44 | * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. |
| 45 | * |
| 46 | * Carnegie Mellon requests users of this software to return to |
| 47 | * |
| 48 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU |
| 49 | * School of Computer Science |
| 50 | * Carnegie Mellon University |
| 51 | * Pittsburgh PA 15213-3890 |
| 52 | * |
| 53 | * any improvements or extensions that they make and grant Carnegie Mellon |
| 54 | * the rights to redistribute these changes. |
| 55 | */ |
| 56 | /* |
| 57 | * File: kern/task.c |
| 58 | * Author: Avadis Tevanian, Jr., Michael Wayne Young, David Golub, |
| 59 | * David Black |
| 60 | * |
| 61 | * Task management primitives implementation. |
| 62 | */ |
| 63 | /* |
| 64 | * Copyright (c) 1993 The University of Utah and |
| 65 | * the Computer Systems Laboratory (CSL). All rights reserved. |
| 66 | * |
| 67 | * Permission to use, copy, modify and distribute this software and its |
| 68 | * documentation is hereby granted, provided that both the copyright |
| 69 | * notice and this permission notice appear in all copies of the |
| 70 | * software, derivative works or modified versions, and any portions |
| 71 | * thereof, and that both notices appear in supporting documentation. |
| 72 | * |
| 73 | * THE UNIVERSITY OF UTAH AND CSL ALLOW FREE USE OF THIS SOFTWARE IN ITS "AS |
| 74 | * IS" CONDITION. THE UNIVERSITY OF UTAH AND CSL DISCLAIM ANY LIABILITY OF |
| 75 | * ANY KIND FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. |
| 76 | * |
| 77 | * CSL requests users of this software to return to csl-dist@cs.utah.edu any |
| 78 | * improvements that they make and grant CSL redistribution rights. |
| 79 | * |
| 80 | */ |
| 81 | /* |
| 82 | * NOTICE: This file was modified by McAfee Research in 2004 to introduce |
| 83 | * support for mandatory and extensible security protections. This notice |
| 84 | * is included in support of clause 2.2 (b) of the Apple Public License, |
| 85 | * Version 2.0. |
| 86 | * Copyright (c) 2005 SPARTA, Inc. |
| 87 | */ |
| 88 | |
| 89 | #include <mach/mach_types.h> |
| 90 | #include <mach/boolean.h> |
| 91 | #include <mach/host_priv.h> |
| 92 | #include <mach/machine/vm_types.h> |
| 93 | #include <mach/vm_param.h> |
| 94 | #include <mach/mach_vm.h> |
| 95 | #include <mach/semaphore.h> |
| 96 | #include <mach/task_info.h> |
| 97 | #include <mach/task_inspect.h> |
| 98 | #include <mach/task_special_ports.h> |
| 99 | #include <mach/sdt.h> |
| 100 | #include <mach/mach_test_upcall.h> |
| 101 | |
| 102 | #include <ipc/ipc_importance.h> |
| 103 | #include <ipc/ipc_types.h> |
| 104 | #include <ipc/ipc_space.h> |
| 105 | #include <ipc/ipc_entry.h> |
| 106 | #include <ipc/ipc_hash.h> |
| 107 | #include <ipc/ipc_init.h> |
| 108 | |
| 109 | #include <kern/kern_types.h> |
| 110 | #include <kern/mach_param.h> |
| 111 | #include <kern/misc_protos.h> |
| 112 | #include <kern/task.h> |
| 113 | #include <kern/thread.h> |
| 114 | #include <kern/coalition.h> |
| 115 | #include <kern/zalloc.h> |
| 116 | #include <kern/kalloc.h> |
| 117 | #include <kern/kern_cdata.h> |
| 118 | #include <kern/processor.h> |
| 119 | #include <kern/recount.h> |
| 120 | #include <kern/sched_prim.h> /* for thread_wakeup */ |
| 121 | #include <kern/ipc_tt.h> |
| 122 | #include <kern/host.h> |
| 123 | #include <kern/clock.h> |
| 124 | #include <kern/timer.h> |
| 125 | #include <kern/assert.h> |
| 126 | #include <kern/affinity.h> |
| 127 | #include <kern/exc_resource.h> |
| 128 | #include <kern/machine.h> |
| 129 | #include <kern/policy_internal.h> |
| 130 | #include <kern/restartable.h> |
| 131 | #include <kern/ipc_kobject.h> |
| 132 | |
| 133 | #include <corpses/task_corpse.h> |
| 134 | #if CONFIG_TELEMETRY |
| 135 | #include <kern/telemetry.h> |
| 136 | #endif |
| 137 | |
| 138 | #if CONFIG_PERVASIVE_CPI |
| 139 | #include <kern/monotonic.h> |
| 140 | #include <machine/monotonic.h> |
| 141 | #endif /* CONFIG_PERVASIVE_CPI */ |
| 142 | |
| 143 | #if CONFIG_EXCLAVES |
| 144 | #include "exclaves_boot.h" |
| 145 | #include "exclaves_resource.h" |
| 146 | #include "exclaves_boot.h" |
| 147 | #include "kern/exclaves.tightbeam.h" |
| 148 | #endif /* CONFIG_EXCLAVES */ |
| 149 | |
| 150 | #include <os/log.h> |
| 151 | |
| 152 | #include <vm/pmap.h> |
| 153 | #include <vm/vm_map.h> |
| 154 | #include <vm/vm_kern.h> /* for kernel_map, ipc_kernel_map */ |
| 155 | #include <vm/vm_pageout.h> |
| 156 | #include <vm/vm_protos.h> |
| 157 | #include <vm/vm_purgeable_internal.h> |
| 158 | #include <vm/vm_compressor_pager.h> |
| 159 | #include <vm/vm_reclaim_internal.h> |
| 160 | |
| 161 | #include <sys/proc_ro.h> |
| 162 | #include <sys/resource.h> |
| 163 | #include <sys/signalvar.h> /* for coredump */ |
| 164 | #include <sys/bsdtask_info.h> |
| 165 | #include <sys/kdebug_triage.h> |
| 166 | #include <sys/code_signing.h> /* for address_space_debugged */ |
| 167 | /* |
| 168 | * Exported interfaces |
| 169 | */ |
| 170 | |
| 171 | #include <mach/task_server.h> |
| 172 | #include <mach/mach_host_server.h> |
| 173 | #include <mach/mach_port_server.h> |
| 174 | |
| 175 | #include <vm/vm_shared_region.h> |
| 176 | |
| 177 | #include <libkern/OSDebug.h> |
| 178 | #include <libkern/OSAtomic.h> |
| 179 | #include <libkern/section_keywords.h> |
| 180 | |
| 181 | #include <mach-o/loader.h> |
| 182 | #include <kdp/kdp_dyld.h> |
| 183 | |
| 184 | #include <kern/sfi.h> /* picks up ledger.h */ |
| 185 | |
| 186 | #if CONFIG_MACF |
| 187 | #include <security/mac_mach_internal.h> |
| 188 | #endif |
| 189 | |
| 190 | #include <IOKit/IOBSD.h> |
| 191 | #include <kdp/processor_core.h> |
| 192 | |
| 193 | #include <string.h> |
| 194 | |
| 195 | #if KPERF |
| 196 | extern int kpc_force_all_ctrs(task_t, int); |
| 197 | #endif |
| 198 | |
| 199 | SECURITY_READ_ONLY_LATE(task_t) kernel_task; |
| 200 | |
| 201 | int64_t next_taskuniqueid = 0; |
| 202 | const size_t task_alignment = _Alignof(struct task); |
| 203 | extern const size_t proc_alignment; |
| 204 | extern size_t proc_struct_size; |
| 205 | extern size_t proc_and_task_size; |
| 206 | size_t task_struct_size; |
| 207 | |
| 208 | extern uint32_t ipc_control_port_options; |
| 209 | |
| 210 | extern int large_corpse_count; |
| 211 | |
| 212 | extern boolean_t proc_send_synchronous_EXC_RESOURCE(void *p); |
| 213 | extern void task_disown_frozen_csegs(task_t owner_task); |
| 214 | |
| 215 | static void task_port_no_senders(ipc_port_t, mach_msg_type_number_t); |
| 216 | static void task_port_with_flavor_no_senders(ipc_port_t, mach_msg_type_number_t); |
| 217 | static void task_suspension_no_senders(ipc_port_t, mach_msg_type_number_t); |
| 218 | static inline void task_zone_init(void); |
| 219 | |
| 220 | #if CONFIG_EXCLAVES |
| 221 | static bool task_should_panic_on_exit_due_to_conclave_taint(task_t task); |
| 222 | static bool task_is_conclave_tainted(task_t task); |
| 223 | static void task_set_conclave_taint(task_t task); |
| 224 | kern_return_t task_crash_info_conclave_upcall(task_t task, |
| 225 | const xnuupcalls_conclavesharedbuffer_s *shared_buf, uint32_t length); |
| 226 | kern_return_t |
| 227 | stackshot_exclaves_process_stackshot(const stackshot_stackshotresult_s *_Nonnull result, void *kcdata_ptr); |
| 228 | #endif /* CONFIG_EXCLAVES */ |
| 229 | |
| 230 | IPC_KOBJECT_DEFINE(IKOT_TASK_NAME); |
| 231 | IPC_KOBJECT_DEFINE(IKOT_TASK_CONTROL, |
| 232 | .iko_op_no_senders = task_port_no_senders); |
| 233 | IPC_KOBJECT_DEFINE(IKOT_TASK_READ, |
| 234 | .iko_op_no_senders = task_port_with_flavor_no_senders); |
| 235 | IPC_KOBJECT_DEFINE(IKOT_TASK_INSPECT, |
| 236 | .iko_op_no_senders = task_port_with_flavor_no_senders); |
| 237 | IPC_KOBJECT_DEFINE(IKOT_TASK_RESUME, |
| 238 | .iko_op_no_senders = task_suspension_no_senders); |
| 239 | |
| 240 | #if CONFIG_PROC_RESOURCE_LIMITS |
| 241 | static void task_fatal_port_no_senders(ipc_port_t, mach_msg_type_number_t); |
| 242 | static mach_port_t task_allocate_fatal_port(void); |
| 243 | |
| 244 | IPC_KOBJECT_DEFINE(IKOT_TASK_FATAL, |
| 245 | .iko_op_stable = true, |
| 246 | .iko_op_no_senders = task_fatal_port_no_senders); |
| 247 | |
| 248 | extern void task_id_token_set_port(task_id_token_t token, ipc_port_t port); |
| 249 | #endif /* CONFIG_PROC_RESOURCE_LIMITS */ |
| 250 | |
| 251 | /* Flag set by core audio when audio is playing. Used to stifle EXC_RESOURCE generation when active. */ |
| 252 | int audio_active = 0; |
| 253 | |
| 254 | /* |
| 255 | * structure for tracking zone usage |
| 256 | * Used either one per task/thread for all zones or <per-task,per-zone>. |
| 257 | */ |
| 258 | typedef struct zinfo_usage_store_t { |
| 259 | /* These fields may be updated atomically, and so must be 8 byte aligned */ |
| 260 | uint64_t alloc __attribute__((aligned(8))); /* allocation counter */ |
| 261 | uint64_t free __attribute__((aligned(8))); /* free counter */ |
| 262 | } zinfo_usage_store_t; |
| 263 | |
| 264 | /** |
| 265 | * Return codes related to diag threshold and memory limit |
| 266 | */ |
| 267 | __options_decl(diagthreshold_check_return, int, { |
| 268 | THRESHOLD_IS_SAME_AS_LIMIT_FLAG_DISABLED = 0, |
| 269 | THRESHOLD_IS_SAME_AS_LIMIT_FLAG_ENABLED = 1, |
| 270 | THRESHOLD_IS_NOT_SAME_AS_LIMIT_FLAG_DISABLED = 2, |
| 271 | THRESHOLD_IS_NOT_SAME_AS_LIMIT_FLAG_ENABLED = 3, |
| 272 | }); |
| 273 | |
| 274 | /** |
| 275 | * Return codes related to diag threshold and memory limit |
| 276 | */ |
| 277 | __options_decl(current_, int, { |
| 278 | THRESHOLD_IS_SAME_AS_LIMIT = 0, |
| 279 | THRESHOLD_IS_NOT_SAME_AS_LIMIT = 1 |
| 280 | }); |
| 281 | |
| 282 | zinfo_usage_store_t tasks_tkm_private; |
| 283 | zinfo_usage_store_t tasks_tkm_shared; |
| 284 | |
| 285 | /* A container to accumulate statistics for expired tasks */ |
| 286 | expired_task_statistics_t dead_task_statistics; |
| 287 | LCK_SPIN_DECLARE_ATTR(dead_task_statistics_lock, &task_lck_grp, &task_lck_attr); |
| 288 | |
| 289 | ledger_template_t task_ledger_template = NULL; |
| 290 | |
| 291 | /* global lock for task_dyld_process_info_notify_{register, deregister, get_trap} */ |
| 292 | LCK_GRP_DECLARE(g_dyldinfo_mtx_grp, "g_dyldinfo" ); |
| 293 | LCK_MTX_DECLARE(g_dyldinfo_mtx, &g_dyldinfo_mtx_grp); |
| 294 | |
| 295 | SECURITY_READ_ONLY_LATE(struct _task_ledger_indices) task_ledgers __attribute__((used)) = |
| 296 | {.cpu_time = -1, |
| 297 | .tkm_private = -1, |
| 298 | .tkm_shared = -1, |
| 299 | .phys_mem = -1, |
| 300 | .wired_mem = -1, |
| 301 | .internal = -1, |
| 302 | .iokit_mapped = -1, |
| 303 | .external = -1, |
| 304 | .reusable = -1, |
| 305 | .alternate_accounting = -1, |
| 306 | .alternate_accounting_compressed = -1, |
| 307 | .page_table = -1, |
| 308 | .phys_footprint = -1, |
| 309 | .internal_compressed = -1, |
| 310 | .purgeable_volatile = -1, |
| 311 | .purgeable_nonvolatile = -1, |
| 312 | .purgeable_volatile_compressed = -1, |
| 313 | .purgeable_nonvolatile_compressed = -1, |
| 314 | .tagged_nofootprint = -1, |
| 315 | .tagged_footprint = -1, |
| 316 | .tagged_nofootprint_compressed = -1, |
| 317 | .tagged_footprint_compressed = -1, |
| 318 | .network_volatile = -1, |
| 319 | .network_nonvolatile = -1, |
| 320 | .network_volatile_compressed = -1, |
| 321 | .network_nonvolatile_compressed = -1, |
| 322 | .media_nofootprint = -1, |
| 323 | .media_footprint = -1, |
| 324 | .media_nofootprint_compressed = -1, |
| 325 | .media_footprint_compressed = -1, |
| 326 | .graphics_nofootprint = -1, |
| 327 | .graphics_footprint = -1, |
| 328 | .graphics_nofootprint_compressed = -1, |
| 329 | .graphics_footprint_compressed = -1, |
| 330 | .neural_nofootprint = -1, |
| 331 | .neural_footprint = -1, |
| 332 | .neural_nofootprint_compressed = -1, |
| 333 | .neural_footprint_compressed = -1, |
| 334 | .platform_idle_wakeups = -1, |
| 335 | .interrupt_wakeups = -1, |
| 336 | #if CONFIG_SCHED_SFI |
| 337 | .sfi_wait_times = { 0 /* initialized at runtime */}, |
| 338 | #endif /* CONFIG_SCHED_SFI */ |
| 339 | .cpu_time_billed_to_me = -1, |
| 340 | .cpu_time_billed_to_others = -1, |
| 341 | .physical_writes = -1, |
| 342 | .logical_writes = -1, |
| 343 | .logical_writes_to_external = -1, |
| 344 | #if DEBUG || DEVELOPMENT |
| 345 | .pages_grabbed = -1, |
| 346 | .pages_grabbed_kern = -1, |
| 347 | .pages_grabbed_iopl = -1, |
| 348 | .pages_grabbed_upl = -1, |
| 349 | #endif |
| 350 | #if CONFIG_FREEZE |
| 351 | .frozen_to_swap = -1, |
| 352 | #endif /* CONFIG_FREEZE */ |
| 353 | .energy_billed_to_me = -1, |
| 354 | .energy_billed_to_others = -1, |
| 355 | #if CONFIG_PHYS_WRITE_ACCT |
| 356 | .fs_metadata_writes = -1, |
| 357 | #endif /* CONFIG_PHYS_WRITE_ACCT */ |
| 358 | #if CONFIG_MEMORYSTATUS |
| 359 | .memorystatus_dirty_time = -1, |
| 360 | #endif /* CONFIG_MEMORYSTATUS */ |
| 361 | .swapins = -1, |
| 362 | .conclave_mem = -1, }; |
| 363 | |
| 364 | /* System sleep state */ |
| 365 | boolean_t tasks_suspend_state; |
| 366 | |
| 367 | __options_decl(send_exec_resource_is_fatal, bool, { |
| 368 | IS_NOT_FATAL = false, |
| 369 | IS_FATAL = true |
| 370 | }); |
| 371 | |
| 372 | __options_decl(send_exec_resource_is_diagnostics, bool, { |
| 373 | IS_NOT_DIAGNOSTICS = false, |
| 374 | IS_DIAGNOSTICS = true |
| 375 | }); |
| 376 | |
| 377 | __options_decl(send_exec_resource_is_warning, bool, { |
| 378 | IS_NOT_WARNING = false, |
| 379 | IS_WARNING = true |
| 380 | }); |
| 381 | |
| 382 | __options_decl(send_exec_resource_options_t, uint8_t, { |
| 383 | EXEC_RESOURCE_FATAL = 0x01, |
| 384 | EXEC_RESOURCE_DIAGNOSTIC = 0x02, |
| 385 | EXEC_RESOURCE_WARNING = 0x04, |
| 386 | }); |
| 387 | |
| 388 | /** |
| 389 | * Actions to take when a process has reached the memory limit or the diagnostics threshold limits |
| 390 | */ |
| 391 | static inline void task_process_crossed_limit_no_diag(task_t task, ledger_amount_t ledger_limit_size, bool memlimit_is_fatal, bool memlimit_is_active, send_exec_resource_is_warning is_warning); |
| 392 | #if DEBUG || DEVELOPMENT |
| 393 | static inline void task_process_crossed_limit_diag(ledger_amount_t ledger_limit_size); |
| 394 | #endif |
| 395 | void init_task_ledgers(void); |
| 396 | void task_footprint_exceeded(int warning, __unused const void *param0, __unused const void *param1); |
| 397 | void task_wakeups_rate_exceeded(int warning, __unused const void *param0, __unused const void *param1); |
| 398 | void task_io_rate_exceeded(int warning, const void *param0, __unused const void *param1); |
| 399 | void __attribute__((noinline)) SENDING_NOTIFICATION__THIS_PROCESS_IS_CAUSING_TOO_MANY_WAKEUPS(void); |
| 400 | void __attribute__((noinline)) PROC_CROSSED_HIGH_WATERMARK__SEND_EXC_RESOURCE_AND_SUSPEND(int , send_exec_resource_options_t exception_options); |
| 401 | void __attribute__((noinline)) SENDING_NOTIFICATION__THIS_PROCESS_IS_CAUSING_TOO_MUCH_IO(int flavor); |
| 402 | #if CONFIG_PROC_RESOURCE_LIMITS |
| 403 | void __attribute__((noinline)) SENDING_NOTIFICATION__THIS_PROCESS_HAS_TOO_MANY_FILE_DESCRIPTORS(task_t task, int current_size, int soft_limit, int hard_limit); |
| 404 | mach_port_name_t current_task_get_fatal_port_name(void); |
| 405 | void __attribute__((noinline)) SENDING_NOTIFICATION__THIS_PROCESS_HAS_TOO_MANY_KQWORKLOOPS(task_t task, int current_size, int soft_limit, int hard_limit); |
| 406 | #endif /* CONFIG_PROC_RESOURCE_LIMITS */ |
| 407 | |
| 408 | kern_return_t task_suspend_internal_locked(task_t); |
| 409 | kern_return_t task_suspend_internal(task_t); |
| 410 | kern_return_t task_resume_internal_locked(task_t); |
| 411 | kern_return_t task_resume_internal(task_t); |
| 412 | static kern_return_t task_start_halt_locked(task_t task, boolean_t should_mark_corpse); |
| 413 | |
| 414 | extern kern_return_t iokit_task_terminate(task_t task, int phase); |
| 415 | extern void iokit_task_app_suspended_changed(task_t task); |
| 416 | |
| 417 | extern kern_return_t exception_deliver(thread_t, exception_type_t, mach_exception_data_t, mach_msg_type_number_t, struct exception_action *, lck_mtx_t *); |
| 418 | extern void bsd_copythreadname(void *dst_uth, void *src_uth); |
| 419 | extern kern_return_t thread_resume(thread_t thread); |
| 420 | |
| 421 | extern int exit_with_port_space_exception(void *proc, mach_exception_code_t code, mach_exception_subcode_t subcode); |
| 422 | |
| 423 | // Condition to include diag footprints |
| 424 | #define ((DEBUG || DEVELOPMENT) && CONFIG_MEMORYSTATUS) |
| 425 | |
| 426 | // Warn tasks when they hit 80% of their memory limit. |
| 427 | #define 80 |
| 428 | |
| 429 | #define TASK_WAKEUPS_MONITOR_DEFAULT_LIMIT 150 /* wakeups per second */ |
| 430 | #define TASK_WAKEUPS_MONITOR_DEFAULT_INTERVAL 300 /* in seconds. */ |
| 431 | |
| 432 | /* |
| 433 | * Level (in terms of percentage of the limit) at which the wakeups monitor triggers telemetry. |
| 434 | * |
| 435 | * (ie when the task's wakeups rate exceeds 70% of the limit, start taking user |
| 436 | * stacktraces, aka micro-stackshots) |
| 437 | */ |
| 438 | #define TASK_WAKEUPS_MONITOR_DEFAULT_USTACKSHOTS_TRIGGER 70 |
| 439 | |
| 440 | int task_wakeups_monitor_interval; /* In seconds. Time period over which wakeups rate is observed */ |
| 441 | int task_wakeups_monitor_rate; /* In hz. Maximum allowable wakeups per task before EXC_RESOURCE is sent */ |
| 442 | |
| 443 | unsigned int task_wakeups_monitor_ustackshots_trigger_pct; /* Percentage. Level at which we start gathering telemetry. */ |
| 444 | |
| 445 | TUNABLE(bool, disable_exc_resource, "disable_exc_resource" , false); /* Global override to suppress EXC_RESOURCE for resource monitor violations. */ |
| 446 | TUNABLE(bool, disable_exc_resource_during_audio, "disable_exc_resource_during_audio" , true); /* Global override to suppress EXC_RESOURCE while audio is active */ |
| 447 | |
| 448 | ledger_amount_t = 0; /* Per-task limit on physical memory consumption in bytes */ |
| 449 | unsigned int = 0; /* Per-task limit warning percentage */ |
| 450 | |
| 451 | /* |
| 452 | * Configure per-task memory limit. |
| 453 | * The boot-arg is interpreted as Megabytes, |
| 454 | * and takes precedence over the device tree. |
| 455 | * Setting the boot-arg to 0 disables task limits. |
| 456 | */ |
| 457 | TUNABLE_DT_WRITEABLE(int, , "/defaults" , "kern.max_task_pmem" , "max_task_pmem" , 0, TUNABLE_DT_NONE); |
| 458 | |
| 459 | /* I/O Monitor Limits */ |
| 460 | #define IOMON_DEFAULT_LIMIT (20480ull) /* MB of logical/physical I/O */ |
| 461 | #define IOMON_DEFAULT_INTERVAL (86400ull) /* in seconds */ |
| 462 | |
| 463 | uint64_t task_iomon_limit_mb; /* Per-task I/O monitor limit in MBs */ |
| 464 | uint64_t task_iomon_interval_secs; /* Per-task I/O monitor interval in secs */ |
| 465 | |
| 466 | #define IO_TELEMETRY_DEFAULT_LIMIT (10ll * 1024ll * 1024ll) |
| 467 | int64_t io_telemetry_limit; /* Threshold to take a microstackshot (0 indicated I/O telemetry is turned off) */ |
| 468 | int64_t global_logical_writes_count = 0; /* Global count for logical writes */ |
| 469 | int64_t global_logical_writes_to_external_count = 0; /* Global count for logical writes to external storage*/ |
| 470 | static boolean_t global_update_logical_writes(int64_t, int64_t*); |
| 471 | |
| 472 | #if DEBUG || DEVELOPMENT |
| 473 | static diagthreshold_check_return task_check_memorythreshold_is_valid(task_t task, uint64_t new_limit, bool is_diagnostics_value); |
| 474 | #endif |
| 475 | #define TASK_MAX_THREAD_LIMIT 256 |
| 476 | |
| 477 | #if MACH_ASSERT |
| 478 | int pmap_ledgers_panic = 1; |
| 479 | int pmap_ledgers_panic_leeway = 3; |
| 480 | #endif /* MACH_ASSERT */ |
| 481 | |
| 482 | int task_max = CONFIG_TASK_MAX; /* Max number of tasks */ |
| 483 | |
| 484 | #if CONFIG_COREDUMP |
| 485 | int hwm_user_cores = 0; /* high watermark violations generate user core files */ |
| 486 | #endif |
| 487 | |
| 488 | #ifdef MACH_BSD |
| 489 | extern uint32_t proc_platform(const struct proc *); |
| 490 | extern uint32_t proc_sdk(struct proc *); |
| 491 | extern void proc_getexecutableuuid(void *, unsigned char *, unsigned long); |
| 492 | extern int proc_pid(struct proc *p); |
| 493 | extern int proc_selfpid(void); |
| 494 | extern struct proc *current_proc(void); |
| 495 | extern char *proc_name_address(struct proc *p); |
| 496 | extern uint64_t get_dispatchqueue_offset_from_proc(void *); |
| 497 | extern int kevent_proc_copy_uptrs(void *proc, uint64_t *buf, uint32_t bufsize); |
| 498 | extern void workq_proc_suspended(struct proc *p); |
| 499 | extern void workq_proc_resumed(struct proc *p); |
| 500 | extern struct proc *kernproc; |
| 501 | |
| 502 | #if CONFIG_MEMORYSTATUS |
| 503 | extern void proc_memstat_skip(struct proc* p, boolean_t set); |
| 504 | extern void (int warning, bool memlimit_is_active, bool memlimit_is_fatal); |
| 505 | extern void memorystatus_log_exception(const int , bool memlimit_is_active, bool memlimit_is_fatal); |
| 506 | extern void memorystatus_log_diag_threshold_exception(const int diag_threshold_value); |
| 507 | extern boolean_t memorystatus_allowed_vm_map_fork(task_t task, bool *is_large); |
| 508 | extern uint64_t memorystatus_available_memory_internal(struct proc *p); |
| 509 | |
| 510 | #if DEVELOPMENT || DEBUG |
| 511 | extern void memorystatus_abort_vm_map_fork(task_t); |
| 512 | #endif |
| 513 | |
| 514 | #endif /* CONFIG_MEMORYSTATUS */ |
| 515 | |
| 516 | #endif /* MACH_BSD */ |
| 517 | |
| 518 | /* Boot-arg that turns on fatal pac exception delivery for all first-party apps */ |
| 519 | static TUNABLE(bool, enable_pac_exception, "enable_pac_exception" , false); |
| 520 | |
| 521 | /* |
| 522 | * Defaults for controllable EXC_GUARD behaviors |
| 523 | * |
| 524 | * Internal builds are fatal by default (except BRIDGE). |
| 525 | * Create an alternate set of defaults for special processes by name. |
| 526 | */ |
| 527 | struct task_exc_guard_named_default { |
| 528 | char *name; |
| 529 | uint32_t behavior; |
| 530 | }; |
| 531 | #define _TASK_EXC_GUARD_MP_CORPSE (TASK_EXC_GUARD_MP_DELIVER | TASK_EXC_GUARD_MP_CORPSE) |
| 532 | #define _TASK_EXC_GUARD_MP_ONCE (_TASK_EXC_GUARD_MP_CORPSE | TASK_EXC_GUARD_MP_ONCE) |
| 533 | #define _TASK_EXC_GUARD_MP_FATAL (TASK_EXC_GUARD_MP_DELIVER | TASK_EXC_GUARD_MP_FATAL) |
| 534 | |
| 535 | #define _TASK_EXC_GUARD_VM_CORPSE (TASK_EXC_GUARD_VM_DELIVER | TASK_EXC_GUARD_VM_ONCE) |
| 536 | #define _TASK_EXC_GUARD_VM_ONCE (_TASK_EXC_GUARD_VM_CORPSE | TASK_EXC_GUARD_VM_ONCE) |
| 537 | #define _TASK_EXC_GUARD_VM_FATAL (TASK_EXC_GUARD_VM_DELIVER | TASK_EXC_GUARD_VM_FATAL) |
| 538 | |
| 539 | #define _TASK_EXC_GUARD_ALL_CORPSE (_TASK_EXC_GUARD_MP_CORPSE | _TASK_EXC_GUARD_VM_CORPSE) |
| 540 | #define _TASK_EXC_GUARD_ALL_ONCE (_TASK_EXC_GUARD_MP_ONCE | _TASK_EXC_GUARD_VM_ONCE) |
| 541 | #define _TASK_EXC_GUARD_ALL_FATAL (_TASK_EXC_GUARD_MP_FATAL | _TASK_EXC_GUARD_VM_FATAL) |
| 542 | |
| 543 | /* cannot turn off FATAL and DELIVER bit if set */ |
| 544 | uint32_t task_exc_guard_no_unset_mask = TASK_EXC_GUARD_MP_FATAL | TASK_EXC_GUARD_VM_FATAL | |
| 545 | TASK_EXC_GUARD_MP_DELIVER | TASK_EXC_GUARD_VM_DELIVER; |
| 546 | /* cannot turn on ONCE bit if unset */ |
| 547 | uint32_t task_exc_guard_no_set_mask = TASK_EXC_GUARD_MP_ONCE | TASK_EXC_GUARD_VM_ONCE; |
| 548 | |
| 549 | #if !defined(XNU_TARGET_OS_BRIDGE) |
| 550 | |
| 551 | uint32_t task_exc_guard_default = _TASK_EXC_GUARD_ALL_FATAL; |
| 552 | uint32_t task_exc_guard_config_mask = TASK_EXC_GUARD_MP_ALL | TASK_EXC_GUARD_VM_ALL; |
| 553 | /* |
| 554 | * These "by-process-name" default overrides are intended to be a short-term fix to |
| 555 | * quickly get over races between changes introducing new EXC_GUARD raising behaviors |
| 556 | * in some process and a change in default behavior for same. We should ship with |
| 557 | * these lists empty (by fixing the bugs, or explicitly changing the task's EXC_GUARD |
| 558 | * exception behavior via task_set_exc_guard_behavior()). |
| 559 | * |
| 560 | * XXX Remember to add/remove TASK_EXC_GUARD_HONOR_NAMED_DEFAULTS back to |
| 561 | * task_exc_guard_default when transitioning this list between empty and |
| 562 | * non-empty. |
| 563 | */ |
| 564 | static struct task_exc_guard_named_default task_exc_guard_named_defaults[] = {}; |
| 565 | |
| 566 | #else /* !defined(XNU_TARGET_OS_BRIDGE) */ |
| 567 | |
| 568 | uint32_t task_exc_guard_default = _TASK_EXC_GUARD_ALL_ONCE; |
| 569 | uint32_t task_exc_guard_config_mask = TASK_EXC_GUARD_MP_ALL | TASK_EXC_GUARD_VM_ALL; |
| 570 | static struct task_exc_guard_named_default task_exc_guard_named_defaults[] = {}; |
| 571 | |
| 572 | #endif /* !defined(XNU_TARGET_OS_BRIDGE) */ |
| 573 | |
| 574 | /* Forwards */ |
| 575 | |
| 576 | static void task_hold_locked(task_t task); |
| 577 | static void task_wait_locked(task_t task, boolean_t until_not_runnable); |
| 578 | static void task_release_locked(task_t task); |
| 579 | extern task_t proc_get_task_raw(void *proc); |
| 580 | extern void task_ref_hold_proc_task_struct(task_t task); |
| 581 | extern void task_release_proc_task_struct(task_t task); |
| 582 | |
| 583 | static void task_synchronizer_destroy_all(task_t task); |
| 584 | static os_ref_count_t |
| 585 | task_add_turnstile_watchports_locked( |
| 586 | task_t task, |
| 587 | struct task_watchports *watchports, |
| 588 | struct task_watchport_elem **previous_elem_array, |
| 589 | ipc_port_t *portwatch_ports, |
| 590 | uint32_t portwatch_count); |
| 591 | |
| 592 | static os_ref_count_t |
| 593 | task_remove_turnstile_watchports_locked( |
| 594 | task_t task, |
| 595 | struct task_watchports *watchports, |
| 596 | ipc_port_t *port_freelist); |
| 597 | |
| 598 | static struct task_watchports * |
| 599 | task_watchports_alloc_init( |
| 600 | task_t task, |
| 601 | thread_t thread, |
| 602 | uint32_t count); |
| 603 | |
| 604 | static void |
| 605 | task_watchports_deallocate( |
| 606 | struct task_watchports *watchports); |
| 607 | |
| 608 | __attribute__((always_inline)) inline void |
| 609 | task_lock(task_t task) |
| 610 | { |
| 611 | lck_mtx_lock(lck: &(task)->lock); |
| 612 | } |
| 613 | |
| 614 | __attribute__((always_inline)) inline void |
| 615 | task_unlock(task_t task) |
| 616 | { |
| 617 | lck_mtx_unlock(lck: &(task)->lock); |
| 618 | } |
| 619 | |
| 620 | void |
| 621 | task_set_64bit( |
| 622 | task_t task, |
| 623 | boolean_t is_64bit, |
| 624 | boolean_t is_64bit_data) |
| 625 | { |
| 626 | #if defined(__i386__) || defined(__x86_64__) || defined(__arm64__) |
| 627 | thread_t thread; |
| 628 | #endif /* defined(__i386__) || defined(__x86_64__) || defined(__arm64__) */ |
| 629 | |
| 630 | task_lock(task); |
| 631 | |
| 632 | /* |
| 633 | * Switching to/from 64-bit address spaces |
| 634 | */ |
| 635 | if (is_64bit) { |
| 636 | if (!task_has_64Bit_addr(task)) { |
| 637 | task_set_64Bit_addr(task); |
| 638 | } |
| 639 | } else { |
| 640 | if (task_has_64Bit_addr(task)) { |
| 641 | task_clear_64Bit_addr(task); |
| 642 | } |
| 643 | } |
| 644 | |
| 645 | /* |
| 646 | * Switching to/from 64-bit register state. |
| 647 | */ |
| 648 | if (is_64bit_data) { |
| 649 | if (task_has_64Bit_data(task)) { |
| 650 | goto out; |
| 651 | } |
| 652 | |
| 653 | task_set_64Bit_data(task); |
| 654 | } else { |
| 655 | if (!task_has_64Bit_data(task)) { |
| 656 | goto out; |
| 657 | } |
| 658 | |
| 659 | task_clear_64Bit_data(task); |
| 660 | } |
| 661 | |
| 662 | /* FIXME: On x86, the thread save state flavor can diverge from the |
| 663 | * task's 64-bit feature flag due to the 32-bit/64-bit register save |
| 664 | * state dichotomy. Since we can be pre-empted in this interval, |
| 665 | * certain routines may observe the thread as being in an inconsistent |
| 666 | * state with respect to its task's 64-bitness. |
| 667 | */ |
| 668 | |
| 669 | #if defined(__x86_64__) || defined(__arm64__) |
| 670 | queue_iterate(&task->threads, thread, thread_t, task_threads) { |
| 671 | thread_mtx_lock(thread); |
| 672 | machine_thread_switch_addrmode(thread); |
| 673 | thread_mtx_unlock(thread); |
| 674 | } |
| 675 | #endif /* defined(__x86_64__) || defined(__arm64__) */ |
| 676 | |
| 677 | out: |
| 678 | task_unlock(task); |
| 679 | } |
| 680 | |
| 681 | bool |
| 682 | task_get_64bit_addr(task_t task) |
| 683 | { |
| 684 | return task_has_64Bit_addr(task); |
| 685 | } |
| 686 | |
| 687 | bool |
| 688 | task_get_64bit_data(task_t task) |
| 689 | { |
| 690 | return task_has_64Bit_data(task); |
| 691 | } |
| 692 | |
| 693 | void |
| 694 | task_set_platform_binary( |
| 695 | task_t task, |
| 696 | boolean_t is_platform) |
| 697 | { |
| 698 | if (is_platform) { |
| 699 | task_ro_flags_set(task, TFRO_PLATFORM); |
| 700 | } else { |
| 701 | task_ro_flags_clear(task, TFRO_PLATFORM); |
| 702 | } |
| 703 | } |
| 704 | |
| 705 | #if XNU_TARGET_OS_OSX |
| 706 | #if DEVELOPMENT || DEBUG |
| 707 | SECURITY_READ_ONLY_LATE(bool) AMFI_bootarg_disable_mach_hardening = false; |
| 708 | #endif /* DEVELOPMENT || DEBUG */ |
| 709 | |
| 710 | void |
| 711 | task_disable_mach_hardening(task_t task) |
| 712 | { |
| 713 | task_ro_flags_set(task, TFRO_MACH_HARDENING_OPT_OUT); |
| 714 | } |
| 715 | |
| 716 | bool |
| 717 | task_opted_out_mach_hardening(task_t task) |
| 718 | { |
| 719 | return task_ro_flags_get(task) & TFRO_MACH_HARDENING_OPT_OUT; |
| 720 | } |
| 721 | #endif /* XNU_TARGET_OS_OSX */ |
| 722 | |
| 723 | /* |
| 724 | * Use the `task_is_hardened_binary` macro below |
| 725 | * when applying new security policies. |
| 726 | * |
| 727 | * Kernel security policies now generally apply to |
| 728 | * "hardened binaries" - which are platform binaries, and |
| 729 | * third party binaries who adopt hardened runtime on ios. |
| 730 | */ |
| 731 | boolean_t |
| 732 | task_get_platform_binary(task_t task) |
| 733 | { |
| 734 | return (task_ro_flags_get(task) & TFRO_PLATFORM) != 0; |
| 735 | } |
| 736 | |
| 737 | static boolean_t |
| 738 | task_get_hardened_runtime(task_t task) |
| 739 | { |
| 740 | return (task_ro_flags_get(task) & TFRO_HARDENED) != 0; |
| 741 | } |
| 742 | |
| 743 | boolean_t |
| 744 | task_is_hardened_binary(task_t task) |
| 745 | { |
| 746 | return task_get_platform_binary(task) || |
| 747 | task_get_hardened_runtime(task); |
| 748 | } |
| 749 | |
| 750 | void |
| 751 | task_set_hardened_runtime( |
| 752 | task_t task, |
| 753 | bool is_hardened) |
| 754 | { |
| 755 | if (is_hardened) { |
| 756 | task_ro_flags_set(task, TFRO_HARDENED); |
| 757 | } else { |
| 758 | task_ro_flags_clear(task, TFRO_HARDENED); |
| 759 | } |
| 760 | } |
| 761 | |
| 762 | boolean_t |
| 763 | task_is_a_corpse(task_t task) |
| 764 | { |
| 765 | return (task_ro_flags_get(task) & TFRO_CORPSE) != 0; |
| 766 | } |
| 767 | |
| 768 | boolean_t |
| 769 | task_is_ipc_active(task_t task) |
| 770 | { |
| 771 | return task->ipc_active; |
| 772 | } |
| 773 | |
| 774 | void |
| 775 | task_set_corpse(task_t task) |
| 776 | { |
| 777 | return task_ro_flags_set(task, TFRO_CORPSE); |
| 778 | } |
| 779 | |
| 780 | void |
| 781 | task_set_immovable_pinned(task_t task) |
| 782 | { |
| 783 | ipc_task_set_immovable_pinned(task); |
| 784 | } |
| 785 | |
| 786 | /* |
| 787 | * Set or clear per-task TF_CA_CLIENT_WI flag according to specified argument. |
| 788 | * Returns "false" if flag is already set, and "true" in other cases. |
| 789 | */ |
| 790 | bool |
| 791 | task_set_ca_client_wi( |
| 792 | task_t task, |
| 793 | boolean_t set_or_clear) |
| 794 | { |
| 795 | bool ret = true; |
| 796 | task_lock(task); |
| 797 | if (set_or_clear) { |
| 798 | /* Tasks can have only one CA_CLIENT work interval */ |
| 799 | if (task->t_flags & TF_CA_CLIENT_WI) { |
| 800 | ret = false; |
| 801 | } else { |
| 802 | task->t_flags |= TF_CA_CLIENT_WI; |
| 803 | } |
| 804 | } else { |
| 805 | task->t_flags &= ~TF_CA_CLIENT_WI; |
| 806 | } |
| 807 | task_unlock(task); |
| 808 | return ret; |
| 809 | } |
| 810 | |
| 811 | /* |
| 812 | * task_set_dyld_info() is called at most three times. |
| 813 | * 1) at task struct creation to set addr/size to zero. |
| 814 | * 2) in mach_loader.c to set location of __all_image_info section in loaded dyld |
| 815 | * 3) is from dyld itself to update location of all_image_info |
| 816 | * For security any calls after that are ignored. The TF_DYLD_ALL_IMAGE_SET bit is used to determine state. |
| 817 | */ |
| 818 | kern_return_t |
| 819 | task_set_dyld_info( |
| 820 | task_t task, |
| 821 | mach_vm_address_t addr, |
| 822 | mach_vm_size_t size) |
| 823 | { |
| 824 | mach_vm_address_t end; |
| 825 | if (os_add_overflow(addr, size, &end)) { |
| 826 | return KERN_FAILURE; |
| 827 | } |
| 828 | |
| 829 | task_lock(task); |
| 830 | /* don't accept updates if all_image_info_addr is final */ |
| 831 | if ((task->t_flags & TF_DYLD_ALL_IMAGE_FINAL) == 0) { |
| 832 | bool inputNonZero = ((addr != 0) || (size != 0)); |
| 833 | bool currentNonZero = ((task->all_image_info_addr != 0) || (task->all_image_info_size != 0)); |
| 834 | task->all_image_info_addr = addr; |
| 835 | task->all_image_info_size = size; |
| 836 | /* can only change from a non-zero value to another non-zero once */ |
| 837 | if (inputNonZero && currentNonZero) { |
| 838 | task->t_flags |= TF_DYLD_ALL_IMAGE_FINAL; |
| 839 | } |
| 840 | task_unlock(task); |
| 841 | return KERN_SUCCESS; |
| 842 | } else { |
| 843 | task_unlock(task); |
| 844 | return KERN_FAILURE; |
| 845 | } |
| 846 | } |
| 847 | |
| 848 | bool |
| 849 | task_donates_own_pages( |
| 850 | task_t task) |
| 851 | { |
| 852 | return task->donates_own_pages; |
| 853 | } |
| 854 | |
| 855 | void |
| 856 | ( |
| 857 | task_t task, |
| 858 | mach_vm_address_t addr) |
| 859 | { |
| 860 | task_lock(task); |
| 861 | task->mach_header_vm_address = addr; |
| 862 | task_unlock(task); |
| 863 | } |
| 864 | |
| 865 | void |
| 866 | task_bank_reset(__unused task_t task) |
| 867 | { |
| 868 | if (task->bank_context != NULL) { |
| 869 | bank_task_destroy(task); |
| 870 | } |
| 871 | } |
| 872 | |
| 873 | /* |
| 874 | * NOTE: This should only be called when the P_LINTRANSIT |
| 875 | * flag is set (the proc_trans lock is held) on the |
| 876 | * proc associated with the task. |
| 877 | */ |
| 878 | void |
| 879 | task_bank_init(__unused task_t task) |
| 880 | { |
| 881 | if (task->bank_context != NULL) { |
| 882 | panic("Task bank init called with non null bank context for task: %p and bank_context: %p" , task, task->bank_context); |
| 883 | } |
| 884 | bank_task_initialize(task); |
| 885 | } |
| 886 | |
| 887 | void |
| 888 | task_set_did_exec_flag(task_t task) |
| 889 | { |
| 890 | task->t_procflags |= TPF_DID_EXEC; |
| 891 | } |
| 892 | |
| 893 | void |
| 894 | task_clear_exec_copy_flag(task_t task) |
| 895 | { |
| 896 | task->t_procflags &= ~TPF_EXEC_COPY; |
| 897 | } |
| 898 | |
| 899 | event_t |
| 900 | task_get_return_wait_event(task_t task) |
| 901 | { |
| 902 | return (event_t)&task->returnwait_inheritor; |
| 903 | } |
| 904 | |
| 905 | void |
| 906 | task_clear_return_wait(task_t task, uint32_t flags) |
| 907 | { |
| 908 | if (flags & TCRW_CLEAR_INITIAL_WAIT) { |
| 909 | thread_wakeup(task_get_return_wait_event(task)); |
| 910 | } |
| 911 | |
| 912 | if (flags & TCRW_CLEAR_FINAL_WAIT) { |
| 913 | is_write_lock(task->itk_space); |
| 914 | |
| 915 | task->t_returnwaitflags &= ~TRW_LRETURNWAIT; |
| 916 | task->returnwait_inheritor = NULL; |
| 917 | |
| 918 | if (flags & TCRW_CLEAR_EXEC_COMPLETE) { |
| 919 | task->t_returnwaitflags &= ~TRW_LEXEC_COMPLETE; |
| 920 | } |
| 921 | |
| 922 | if (task->t_returnwaitflags & TRW_LRETURNWAITER) { |
| 923 | struct turnstile *turnstile = turnstile_prepare_hash(proprietor: (uintptr_t) task_get_return_wait_event(task), |
| 924 | type: TURNSTILE_ULOCK); |
| 925 | |
| 926 | waitq_wakeup64_all(waitq: &turnstile->ts_waitq, |
| 927 | CAST_EVENT64_T(task_get_return_wait_event(task)), |
| 928 | THREAD_AWAKENED, flags: WAITQ_UPDATE_INHERITOR); |
| 929 | |
| 930 | turnstile_update_inheritor_complete(turnstile, flags: TURNSTILE_INTERLOCK_HELD); |
| 931 | |
| 932 | turnstile_complete_hash(proprietor: (uintptr_t) task_get_return_wait_event(task), type: TURNSTILE_ULOCK); |
| 933 | turnstile_cleanup(); |
| 934 | task->t_returnwaitflags &= ~TRW_LRETURNWAITER; |
| 935 | } |
| 936 | is_write_unlock(task->itk_space); |
| 937 | } |
| 938 | } |
| 939 | |
| 940 | void __attribute__((noreturn)) |
| 941 | task_wait_to_return(void) |
| 942 | { |
| 943 | task_t task = current_task(); |
| 944 | uint8_t returnwaitflags; |
| 945 | |
| 946 | is_write_lock(task->itk_space); |
| 947 | |
| 948 | if (task->t_returnwaitflags & TRW_LRETURNWAIT) { |
| 949 | struct turnstile *turnstile = turnstile_prepare_hash(proprietor: (uintptr_t) task_get_return_wait_event(task), |
| 950 | type: TURNSTILE_ULOCK); |
| 951 | |
| 952 | do { |
| 953 | task->t_returnwaitflags |= TRW_LRETURNWAITER; |
| 954 | turnstile_update_inheritor(turnstile, new_inheritor: task->returnwait_inheritor, |
| 955 | flags: (TURNSTILE_DELAYED_UPDATE | TURNSTILE_INHERITOR_THREAD)); |
| 956 | |
| 957 | waitq_assert_wait64(waitq: &turnstile->ts_waitq, |
| 958 | CAST_EVENT64_T(task_get_return_wait_event(task)), |
| 959 | THREAD_UNINT, TIMEOUT_WAIT_FOREVER); |
| 960 | |
| 961 | is_write_unlock(task->itk_space); |
| 962 | |
| 963 | turnstile_update_inheritor_complete(turnstile, flags: TURNSTILE_INTERLOCK_NOT_HELD); |
| 964 | |
| 965 | thread_block(THREAD_CONTINUE_NULL); |
| 966 | |
| 967 | is_write_lock(task->itk_space); |
| 968 | } while (task->t_returnwaitflags & TRW_LRETURNWAIT); |
| 969 | |
| 970 | turnstile_complete_hash(proprietor: (uintptr_t) task_get_return_wait_event(task), type: TURNSTILE_ULOCK); |
| 971 | } |
| 972 | |
| 973 | returnwaitflags = task->t_returnwaitflags; |
| 974 | is_write_unlock(task->itk_space); |
| 975 | turnstile_cleanup(); |
| 976 | |
| 977 | |
| 978 | #if CONFIG_MACF |
| 979 | /* |
| 980 | * Before jumping to userspace and allowing this process |
| 981 | * to execute any code, make sure its credentials are cached, |
| 982 | * and notify any interested parties. |
| 983 | */ |
| 984 | extern void current_cached_proc_cred_update(void); |
| 985 | |
| 986 | current_cached_proc_cred_update(); |
| 987 | if (returnwaitflags & TRW_LEXEC_COMPLETE) { |
| 988 | mac_proc_notify_exec_complete(proc: current_proc()); |
| 989 | } |
| 990 | #endif |
| 991 | |
| 992 | thread_bootstrap_return(); |
| 993 | } |
| 994 | |
| 995 | boolean_t |
| 996 | task_is_exec_copy(task_t task) |
| 997 | { |
| 998 | return task_is_exec_copy_internal(task); |
| 999 | } |
| 1000 | |
| 1001 | boolean_t |
| 1002 | task_did_exec(task_t task) |
| 1003 | { |
| 1004 | return task_did_exec_internal(task); |
| 1005 | } |
| 1006 | |
| 1007 | boolean_t |
| 1008 | task_is_active(task_t task) |
| 1009 | { |
| 1010 | return task->active; |
| 1011 | } |
| 1012 | |
| 1013 | boolean_t |
| 1014 | task_is_halting(task_t task) |
| 1015 | { |
| 1016 | return task->halting; |
| 1017 | } |
| 1018 | |
| 1019 | void |
| 1020 | task_init(void) |
| 1021 | { |
| 1022 | if (max_task_footprint_mb != 0) { |
| 1023 | #if CONFIG_MEMORYSTATUS |
| 1024 | if (max_task_footprint_mb < 50) { |
| 1025 | printf(format: "Warning: max_task_pmem %d below minimum.\n" , |
| 1026 | max_task_footprint_mb); |
| 1027 | max_task_footprint_mb = 50; |
| 1028 | } |
| 1029 | printf(format: "Limiting task physical memory footprint to %d MB\n" , |
| 1030 | max_task_footprint_mb); |
| 1031 | |
| 1032 | max_task_footprint = (ledger_amount_t)max_task_footprint_mb * 1024 * 1024; // Convert MB to bytes |
| 1033 | |
| 1034 | /* |
| 1035 | * Configure the per-task memory limit warning level. |
| 1036 | * This is computed as a percentage. |
| 1037 | */ |
| 1038 | max_task_footprint_warning_level = 0; |
| 1039 | |
| 1040 | if (max_mem < 0x40000000) { |
| 1041 | /* |
| 1042 | * On devices with < 1GB of memory: |
| 1043 | * -- set warnings to 50MB below the per-task limit. |
| 1044 | */ |
| 1045 | if (max_task_footprint_mb > 50) { |
| 1046 | max_task_footprint_warning_level = ((max_task_footprint_mb - 50) * 100) / max_task_footprint_mb; |
| 1047 | } |
| 1048 | } else { |
| 1049 | /* |
| 1050 | * On devices with >= 1GB of memory: |
| 1051 | * -- set warnings to 100MB below the per-task limit. |
| 1052 | */ |
| 1053 | if (max_task_footprint_mb > 100) { |
| 1054 | max_task_footprint_warning_level = ((max_task_footprint_mb - 100) * 100) / max_task_footprint_mb; |
| 1055 | } |
| 1056 | } |
| 1057 | |
| 1058 | /* |
| 1059 | * Never allow warning level to land below the default. |
| 1060 | */ |
| 1061 | if (max_task_footprint_warning_level < PHYS_FOOTPRINT_WARNING_LEVEL) { |
| 1062 | max_task_footprint_warning_level = PHYS_FOOTPRINT_WARNING_LEVEL; |
| 1063 | } |
| 1064 | |
| 1065 | printf(format: "Limiting task physical memory warning to %d%%\n" , max_task_footprint_warning_level); |
| 1066 | |
| 1067 | #else |
| 1068 | printf("Warning: max_task_pmem specified, but jetsam not configured; ignoring.\n" ); |
| 1069 | #endif /* CONFIG_MEMORYSTATUS */ |
| 1070 | } |
| 1071 | |
| 1072 | #if DEVELOPMENT || DEBUG |
| 1073 | PE_parse_boot_argn("task_exc_guard_default" , |
| 1074 | &task_exc_guard_default, |
| 1075 | sizeof(task_exc_guard_default)); |
| 1076 | #endif /* DEVELOPMENT || DEBUG */ |
| 1077 | |
| 1078 | #if CONFIG_COREDUMP |
| 1079 | if (!PE_parse_boot_argn(arg_string: "hwm_user_cores" , arg_ptr: &hwm_user_cores, |
| 1080 | max_arg: sizeof(hwm_user_cores))) { |
| 1081 | hwm_user_cores = 0; |
| 1082 | } |
| 1083 | #endif |
| 1084 | |
| 1085 | proc_init_cpumon_params(); |
| 1086 | |
| 1087 | if (!PE_parse_boot_argn(arg_string: "task_wakeups_monitor_rate" , arg_ptr: &task_wakeups_monitor_rate, max_arg: sizeof(task_wakeups_monitor_rate))) { |
| 1088 | task_wakeups_monitor_rate = TASK_WAKEUPS_MONITOR_DEFAULT_LIMIT; |
| 1089 | } |
| 1090 | |
| 1091 | if (!PE_parse_boot_argn(arg_string: "task_wakeups_monitor_interval" , arg_ptr: &task_wakeups_monitor_interval, max_arg: sizeof(task_wakeups_monitor_interval))) { |
| 1092 | task_wakeups_monitor_interval = TASK_WAKEUPS_MONITOR_DEFAULT_INTERVAL; |
| 1093 | } |
| 1094 | |
| 1095 | if (!PE_parse_boot_argn(arg_string: "task_wakeups_monitor_ustackshots_trigger_pct" , arg_ptr: &task_wakeups_monitor_ustackshots_trigger_pct, |
| 1096 | max_arg: sizeof(task_wakeups_monitor_ustackshots_trigger_pct))) { |
| 1097 | task_wakeups_monitor_ustackshots_trigger_pct = TASK_WAKEUPS_MONITOR_DEFAULT_USTACKSHOTS_TRIGGER; |
| 1098 | } |
| 1099 | |
| 1100 | if (!PE_parse_boot_argn(arg_string: "task_iomon_limit_mb" , arg_ptr: &task_iomon_limit_mb, max_arg: sizeof(task_iomon_limit_mb))) { |
| 1101 | task_iomon_limit_mb = IOMON_DEFAULT_LIMIT; |
| 1102 | } |
| 1103 | |
| 1104 | if (!PE_parse_boot_argn(arg_string: "task_iomon_interval_secs" , arg_ptr: &task_iomon_interval_secs, max_arg: sizeof(task_iomon_interval_secs))) { |
| 1105 | task_iomon_interval_secs = IOMON_DEFAULT_INTERVAL; |
| 1106 | } |
| 1107 | |
| 1108 | if (!PE_parse_boot_argn(arg_string: "io_telemetry_limit" , arg_ptr: &io_telemetry_limit, max_arg: sizeof(io_telemetry_limit))) { |
| 1109 | io_telemetry_limit = IO_TELEMETRY_DEFAULT_LIMIT; |
| 1110 | } |
| 1111 | |
| 1112 | /* |
| 1113 | * If we have coalitions, coalition_init() will call init_task_ledgers() as it |
| 1114 | * sets up the ledgers for the default coalition. If we don't have coalitions, |
| 1115 | * then we have to call it now. |
| 1116 | */ |
| 1117 | #if CONFIG_COALITIONS |
| 1118 | assert(task_ledger_template); |
| 1119 | #else /* CONFIG_COALITIONS */ |
| 1120 | init_task_ledgers(); |
| 1121 | #endif /* CONFIG_COALITIONS */ |
| 1122 | |
| 1123 | task_ref_init(); |
| 1124 | task_zone_init(); |
| 1125 | |
| 1126 | #ifdef __LP64__ |
| 1127 | boolean_t is_64bit = TRUE; |
| 1128 | #else |
| 1129 | boolean_t is_64bit = FALSE; |
| 1130 | #endif |
| 1131 | |
| 1132 | kernproc = (struct proc *)zalloc_flags(proc_task_zone, Z_WAITOK | Z_ZERO); |
| 1133 | kernel_task = proc_get_task_raw(proc: kernproc); |
| 1134 | |
| 1135 | /* |
| 1136 | * Create the kernel task as the first task. |
| 1137 | */ |
| 1138 | if (task_create_internal(TASK_NULL, NULL, NULL, FALSE, is_64bit, |
| 1139 | is_64bit_data: is_64bit, TF_NONE, TF_NONE, TPF_NONE, TWF_NONE, child_task: kernel_task) != KERN_SUCCESS) { |
| 1140 | panic("task_init" ); |
| 1141 | } |
| 1142 | |
| 1143 | ipc_task_enable(task: kernel_task); |
| 1144 | |
| 1145 | #if defined(HAS_APPLE_PAC) |
| 1146 | kernel_task->rop_pid = ml_default_rop_pid(); |
| 1147 | kernel_task->jop_pid = ml_default_jop_pid(); |
| 1148 | // kernel_task never runs at EL0, but machine_thread_state_convert_from/to_user() relies on |
| 1149 | // disable_user_jop to be false for kernel threads (e.g. in exception delivery on thread_exception_daemon) |
| 1150 | ml_task_set_disable_user_jop(task: kernel_task, FALSE); |
| 1151 | #endif |
| 1152 | |
| 1153 | vm_map_deallocate(map: kernel_task->map); |
| 1154 | kernel_task->map = kernel_map; |
| 1155 | } |
| 1156 | |
| 1157 | static inline void |
| 1158 | task_zone_init(void) |
| 1159 | { |
| 1160 | proc_struct_size = roundup(proc_struct_size, task_alignment); |
| 1161 | task_struct_size = roundup(sizeof(struct task), proc_alignment); |
| 1162 | proc_and_task_size = proc_struct_size + task_struct_size; |
| 1163 | |
| 1164 | proc_task_zone = zone_create_ext(name: "proc_task" , size: proc_and_task_size, |
| 1165 | flags: ZC_ZFREE_CLEARMEM | ZC_SEQUESTER, desired_zid: ZONE_ID_PROC_TASK, NULL); /* sequester is needed for proc_rele() */ |
| 1166 | } |
| 1167 | |
| 1168 | /* |
| 1169 | * Task ledgers |
| 1170 | * ------------ |
| 1171 | * |
| 1172 | * phys_footprint |
| 1173 | * Physical footprint: This is the sum of: |
| 1174 | * + (internal - alternate_accounting) |
| 1175 | * + (internal_compressed - alternate_accounting_compressed) |
| 1176 | * + iokit_mapped |
| 1177 | * + purgeable_nonvolatile |
| 1178 | * + purgeable_nonvolatile_compressed |
| 1179 | * + page_table |
| 1180 | * |
| 1181 | * internal |
| 1182 | * The task's anonymous memory, which on iOS is always resident. |
| 1183 | * |
| 1184 | * internal_compressed |
| 1185 | * Amount of this task's internal memory which is held by the compressor. |
| 1186 | * Such memory is no longer actually resident for the task [i.e., resident in its pmap], |
| 1187 | * and could be either decompressed back into memory, or paged out to storage, depending |
| 1188 | * on our implementation. |
| 1189 | * |
| 1190 | * iokit_mapped |
| 1191 | * IOKit mappings: The total size of all IOKit mappings in this task, regardless of |
| 1192 | * clean/dirty or internal/external state]. |
| 1193 | * |
| 1194 | * alternate_accounting |
| 1195 | * The number of internal dirty pages which are part of IOKit mappings. By definition, these pages |
| 1196 | * are counted in both internal *and* iokit_mapped, so we must subtract them from the total to avoid |
| 1197 | * double counting. |
| 1198 | * |
| 1199 | * pages_grabbed |
| 1200 | * pages_grabbed counts all page grabs in a task. It is also broken out into three subtypes |
| 1201 | * which track UPL, IOPL and Kernel page grabs. |
| 1202 | */ |
| 1203 | void |
| 1204 | init_task_ledgers(void) |
| 1205 | { |
| 1206 | ledger_template_t t; |
| 1207 | |
| 1208 | assert(task_ledger_template == NULL); |
| 1209 | assert(kernel_task == TASK_NULL); |
| 1210 | |
| 1211 | #if MACH_ASSERT |
| 1212 | PE_parse_boot_argn("pmap_ledgers_panic" , |
| 1213 | &pmap_ledgers_panic, |
| 1214 | sizeof(pmap_ledgers_panic)); |
| 1215 | PE_parse_boot_argn("pmap_ledgers_panic_leeway" , |
| 1216 | &pmap_ledgers_panic_leeway, |
| 1217 | sizeof(pmap_ledgers_panic_leeway)); |
| 1218 | #endif /* MACH_ASSERT */ |
| 1219 | |
| 1220 | if ((t = ledger_template_create(name: "Per-task ledger" )) == NULL) { |
| 1221 | panic("couldn't create task ledger template" ); |
| 1222 | } |
| 1223 | |
| 1224 | task_ledgers.cpu_time = ledger_entry_add(template: t, key: "cpu_time" , group: "sched" , units: "ns" ); |
| 1225 | task_ledgers.tkm_private = ledger_entry_add(template: t, key: "tkm_private" , |
| 1226 | group: "physmem" , units: "bytes" ); |
| 1227 | task_ledgers.tkm_shared = ledger_entry_add(template: t, key: "tkm_shared" , group: "physmem" , |
| 1228 | units: "bytes" ); |
| 1229 | task_ledgers.phys_mem = ledger_entry_add(template: t, key: "phys_mem" , group: "physmem" , |
| 1230 | units: "bytes" ); |
| 1231 | task_ledgers.wired_mem = ledger_entry_add(template: t, key: "wired_mem" , group: "physmem" , |
| 1232 | units: "bytes" ); |
| 1233 | task_ledgers.conclave_mem = ledger_entry_add_with_flags(template: t, key: "conclave_mem" , group: "physmem" , units: "count" , |
| 1234 | flags: LEDGER_ENTRY_ALLOW_PANIC_ON_NEGATIVE | LEDGER_ENTRY_ALLOW_DEBIT); |
| 1235 | task_ledgers.internal = ledger_entry_add(template: t, key: "internal" , group: "physmem" , |
| 1236 | units: "bytes" ); |
| 1237 | task_ledgers.iokit_mapped = ledger_entry_add_with_flags(template: t, key: "iokit_mapped" , group: "mappings" , |
| 1238 | units: "bytes" , flags: LEDGER_ENTRY_ALLOW_PANIC_ON_NEGATIVE); |
| 1239 | task_ledgers.alternate_accounting = ledger_entry_add_with_flags(template: t, key: "alternate_accounting" , group: "physmem" , |
| 1240 | units: "bytes" , flags: LEDGER_ENTRY_ALLOW_PANIC_ON_NEGATIVE); |
| 1241 | task_ledgers.alternate_accounting_compressed = ledger_entry_add_with_flags(template: t, key: "alternate_accounting_compressed" , group: "physmem" , |
| 1242 | units: "bytes" , flags: LEDGER_ENTRY_ALLOW_PANIC_ON_NEGATIVE); |
| 1243 | task_ledgers.page_table = ledger_entry_add_with_flags(template: t, key: "page_table" , group: "physmem" , |
| 1244 | units: "bytes" , flags: LEDGER_ENTRY_ALLOW_PANIC_ON_NEGATIVE); |
| 1245 | task_ledgers.phys_footprint = ledger_entry_add(template: t, key: "phys_footprint" , group: "physmem" , |
| 1246 | units: "bytes" ); |
| 1247 | task_ledgers.internal_compressed = ledger_entry_add(template: t, key: "internal_compressed" , group: "physmem" , |
| 1248 | units: "bytes" ); |
| 1249 | task_ledgers.reusable = ledger_entry_add(template: t, key: "reusable" , group: "physmem" , units: "bytes" ); |
| 1250 | task_ledgers.external = ledger_entry_add(template: t, key: "external" , group: "physmem" , units: "bytes" ); |
| 1251 | task_ledgers.purgeable_volatile = ledger_entry_add_with_flags(template: t, key: "purgeable_volatile" , group: "physmem" , units: "bytes" , flags: LEDGER_ENTRY_ALLOW_PANIC_ON_NEGATIVE); |
| 1252 | task_ledgers.purgeable_nonvolatile = ledger_entry_add_with_flags(template: t, key: "purgeable_nonvolatile" , group: "physmem" , units: "bytes" , flags: LEDGER_ENTRY_ALLOW_PANIC_ON_NEGATIVE); |
| 1253 | task_ledgers.purgeable_volatile_compressed = ledger_entry_add_with_flags(template: t, key: "purgeable_volatile_compress" , group: "physmem" , units: "bytes" , flags: LEDGER_ENTRY_ALLOW_PANIC_ON_NEGATIVE); |
| 1254 | task_ledgers.purgeable_nonvolatile_compressed = ledger_entry_add_with_flags(template: t, key: "purgeable_nonvolatile_compress" , group: "physmem" , units: "bytes" , flags: LEDGER_ENTRY_ALLOW_PANIC_ON_NEGATIVE); |
| 1255 | #if DEBUG || DEVELOPMENT |
| 1256 | task_ledgers.pages_grabbed = ledger_entry_add_with_flags(t, "pages_grabbed" , "physmem" , "count" , LEDGER_ENTRY_ALLOW_PANIC_ON_NEGATIVE); |
| 1257 | task_ledgers.pages_grabbed_kern = ledger_entry_add_with_flags(t, "pages_grabbed_kern" , "physmem" , "count" , LEDGER_ENTRY_ALLOW_PANIC_ON_NEGATIVE); |
| 1258 | task_ledgers.pages_grabbed_iopl = ledger_entry_add_with_flags(t, "pages_grabbed_iopl" , "physmem" , "count" , LEDGER_ENTRY_ALLOW_PANIC_ON_NEGATIVE); |
| 1259 | task_ledgers.pages_grabbed_upl = ledger_entry_add_with_flags(t, "pages_grabbed_upl" , "physmem" , "count" , LEDGER_ENTRY_ALLOW_PANIC_ON_NEGATIVE); |
| 1260 | #endif |
| 1261 | task_ledgers.tagged_nofootprint = ledger_entry_add_with_flags(template: t, key: "tagged_nofootprint" , group: "physmem" , units: "bytes" , flags: LEDGER_ENTRY_ALLOW_PANIC_ON_NEGATIVE); |
| 1262 | task_ledgers.tagged_footprint = ledger_entry_add_with_flags(template: t, key: "tagged_footprint" , group: "physmem" , units: "bytes" , flags: LEDGER_ENTRY_ALLOW_PANIC_ON_NEGATIVE); |
| 1263 | task_ledgers.tagged_nofootprint_compressed = ledger_entry_add_with_flags(template: t, key: "tagged_nofootprint_compressed" , group: "physmem" , units: "bytes" , flags: LEDGER_ENTRY_ALLOW_PANIC_ON_NEGATIVE); |
| 1264 | task_ledgers.tagged_footprint_compressed = ledger_entry_add_with_flags(template: t, key: "tagged_footprint_compressed" , group: "physmem" , units: "bytes" , flags: LEDGER_ENTRY_ALLOW_PANIC_ON_NEGATIVE); |
| 1265 | task_ledgers.network_volatile = ledger_entry_add_with_flags(template: t, key: "network_volatile" , group: "physmem" , units: "bytes" , flags: LEDGER_ENTRY_ALLOW_PANIC_ON_NEGATIVE); |
| 1266 | task_ledgers.network_nonvolatile = ledger_entry_add_with_flags(template: t, key: "network_nonvolatile" , group: "physmem" , units: "bytes" , flags: LEDGER_ENTRY_ALLOW_PANIC_ON_NEGATIVE); |
| 1267 | task_ledgers.network_volatile_compressed = ledger_entry_add_with_flags(template: t, key: "network_volatile_compressed" , group: "physmem" , units: "bytes" , flags: LEDGER_ENTRY_ALLOW_PANIC_ON_NEGATIVE); |
| 1268 | task_ledgers.network_nonvolatile_compressed = ledger_entry_add_with_flags(template: t, key: "network_nonvolatile_compressed" , group: "physmem" , units: "bytes" , flags: LEDGER_ENTRY_ALLOW_PANIC_ON_NEGATIVE); |
| 1269 | task_ledgers.media_nofootprint = ledger_entry_add_with_flags(template: t, key: "media_nofootprint" , group: "physmem" , units: "bytes" , flags: LEDGER_ENTRY_ALLOW_PANIC_ON_NEGATIVE); |
| 1270 | task_ledgers.media_footprint = ledger_entry_add_with_flags(template: t, key: "media_footprint" , group: "physmem" , units: "bytes" , flags: LEDGER_ENTRY_ALLOW_PANIC_ON_NEGATIVE); |
| 1271 | task_ledgers.media_nofootprint_compressed = ledger_entry_add_with_flags(template: t, key: "media_nofootprint_compressed" , group: "physmem" , units: "bytes" , flags: LEDGER_ENTRY_ALLOW_PANIC_ON_NEGATIVE); |
| 1272 | task_ledgers.media_footprint_compressed = ledger_entry_add_with_flags(template: t, key: "media_footprint_compressed" , group: "physmem" , units: "bytes" , flags: LEDGER_ENTRY_ALLOW_PANIC_ON_NEGATIVE); |
| 1273 | task_ledgers.graphics_nofootprint = ledger_entry_add_with_flags(template: t, key: "graphics_nofootprint" , group: "physmem" , units: "bytes" , flags: LEDGER_ENTRY_ALLOW_PANIC_ON_NEGATIVE); |
| 1274 | task_ledgers.graphics_footprint = ledger_entry_add_with_flags(template: t, key: "graphics_footprint" , group: "physmem" , units: "bytes" , flags: LEDGER_ENTRY_ALLOW_PANIC_ON_NEGATIVE); |
| 1275 | task_ledgers.graphics_nofootprint_compressed = ledger_entry_add_with_flags(template: t, key: "graphics_nofootprint_compressed" , group: "physmem" , units: "bytes" , flags: LEDGER_ENTRY_ALLOW_PANIC_ON_NEGATIVE); |
| 1276 | task_ledgers.graphics_footprint_compressed = ledger_entry_add_with_flags(template: t, key: "graphics_footprint_compressed" , group: "physmem" , units: "bytes" , flags: LEDGER_ENTRY_ALLOW_PANIC_ON_NEGATIVE); |
| 1277 | task_ledgers.neural_nofootprint = ledger_entry_add_with_flags(template: t, key: "neural_nofootprint" , group: "physmem" , units: "bytes" , flags: LEDGER_ENTRY_ALLOW_PANIC_ON_NEGATIVE); |
| 1278 | task_ledgers.neural_footprint = ledger_entry_add_with_flags(template: t, key: "neural_footprint" , group: "physmem" , units: "bytes" , flags: LEDGER_ENTRY_ALLOW_PANIC_ON_NEGATIVE); |
| 1279 | task_ledgers.neural_nofootprint_compressed = ledger_entry_add_with_flags(template: t, key: "neural_nofootprint_compressed" , group: "physmem" , units: "bytes" , flags: LEDGER_ENTRY_ALLOW_PANIC_ON_NEGATIVE); |
| 1280 | task_ledgers.neural_footprint_compressed = ledger_entry_add_with_flags(template: t, key: "neural_footprint_compressed" , group: "physmem" , units: "bytes" , flags: LEDGER_ENTRY_ALLOW_PANIC_ON_NEGATIVE); |
| 1281 | |
| 1282 | #if CONFIG_FREEZE |
| 1283 | task_ledgers.frozen_to_swap = ledger_entry_add(t, "frozen_to_swap" , "physmem" , "bytes" ); |
| 1284 | #endif /* CONFIG_FREEZE */ |
| 1285 | |
| 1286 | task_ledgers.platform_idle_wakeups = ledger_entry_add(template: t, key: "platform_idle_wakeups" , group: "power" , |
| 1287 | units: "count" ); |
| 1288 | task_ledgers.interrupt_wakeups = ledger_entry_add(template: t, key: "interrupt_wakeups" , group: "power" , |
| 1289 | units: "count" ); |
| 1290 | |
| 1291 | #if CONFIG_SCHED_SFI |
| 1292 | sfi_class_id_t class_id, ledger_alias; |
| 1293 | for (class_id = SFI_CLASS_UNSPECIFIED; class_id < MAX_SFI_CLASS_ID; class_id++) { |
| 1294 | task_ledgers.sfi_wait_times[class_id] = -1; |
| 1295 | } |
| 1296 | |
| 1297 | /* don't account for UNSPECIFIED */ |
| 1298 | for (class_id = SFI_CLASS_UNSPECIFIED + 1; class_id < MAX_SFI_CLASS_ID; class_id++) { |
| 1299 | ledger_alias = sfi_get_ledger_alias_for_class(class_id); |
| 1300 | if (ledger_alias != SFI_CLASS_UNSPECIFIED) { |
| 1301 | /* Check to see if alias has been registered yet */ |
| 1302 | if (task_ledgers.sfi_wait_times[ledger_alias] != -1) { |
| 1303 | task_ledgers.sfi_wait_times[class_id] = task_ledgers.sfi_wait_times[ledger_alias]; |
| 1304 | } else { |
| 1305 | /* Otherwise, initialize it first */ |
| 1306 | task_ledgers.sfi_wait_times[class_id] = task_ledgers.sfi_wait_times[ledger_alias] = sfi_ledger_entry_add(template: t, class_id: ledger_alias); |
| 1307 | } |
| 1308 | } else { |
| 1309 | task_ledgers.sfi_wait_times[class_id] = sfi_ledger_entry_add(template: t, class_id); |
| 1310 | } |
| 1311 | |
| 1312 | if (task_ledgers.sfi_wait_times[class_id] < 0) { |
| 1313 | panic("couldn't create entries for task ledger template for SFI class 0x%x" , class_id); |
| 1314 | } |
| 1315 | } |
| 1316 | |
| 1317 | assert(task_ledgers.sfi_wait_times[MAX_SFI_CLASS_ID - 1] != -1); |
| 1318 | #endif /* CONFIG_SCHED_SFI */ |
| 1319 | |
| 1320 | task_ledgers.cpu_time_billed_to_me = ledger_entry_add(template: t, key: "cpu_time_billed_to_me" , group: "sched" , units: "ns" ); |
| 1321 | task_ledgers.cpu_time_billed_to_others = ledger_entry_add(template: t, key: "cpu_time_billed_to_others" , group: "sched" , units: "ns" ); |
| 1322 | task_ledgers.physical_writes = ledger_entry_add(template: t, key: "physical_writes" , group: "res" , units: "bytes" ); |
| 1323 | task_ledgers.logical_writes = ledger_entry_add(template: t, key: "logical_writes" , group: "res" , units: "bytes" ); |
| 1324 | task_ledgers.logical_writes_to_external = ledger_entry_add(template: t, key: "logical_writes_to_external" , group: "res" , units: "bytes" ); |
| 1325 | #if CONFIG_PHYS_WRITE_ACCT |
| 1326 | task_ledgers.fs_metadata_writes = ledger_entry_add(template: t, key: "fs_metadata_writes" , group: "res" , units: "bytes" ); |
| 1327 | #endif /* CONFIG_PHYS_WRITE_ACCT */ |
| 1328 | task_ledgers.energy_billed_to_me = ledger_entry_add(template: t, key: "energy_billed_to_me" , group: "power" , units: "nj" ); |
| 1329 | task_ledgers.energy_billed_to_others = ledger_entry_add(template: t, key: "energy_billed_to_others" , group: "power" , units: "nj" ); |
| 1330 | |
| 1331 | #if CONFIG_MEMORYSTATUS |
| 1332 | task_ledgers.memorystatus_dirty_time = ledger_entry_add(template: t, key: "memorystatus_dirty_time" , group: "physmem" , units: "ns" ); |
| 1333 | #endif /* CONFIG_MEMORYSTATUS */ |
| 1334 | |
| 1335 | task_ledgers.swapins = ledger_entry_add_with_flags(template: t, key: "swapins" , group: "physmem" , units: "bytes" , |
| 1336 | flags: LEDGER_ENTRY_ALLOW_PANIC_ON_NEGATIVE); |
| 1337 | |
| 1338 | if ((task_ledgers.cpu_time < 0) || |
| 1339 | (task_ledgers.tkm_private < 0) || |
| 1340 | (task_ledgers.tkm_shared < 0) || |
| 1341 | (task_ledgers.phys_mem < 0) || |
| 1342 | (task_ledgers.wired_mem < 0) || |
| 1343 | (task_ledgers.conclave_mem < 0) || |
| 1344 | (task_ledgers.internal < 0) || |
| 1345 | (task_ledgers.external < 0) || |
| 1346 | (task_ledgers.reusable < 0) || |
| 1347 | (task_ledgers.iokit_mapped < 0) || |
| 1348 | (task_ledgers.alternate_accounting < 0) || |
| 1349 | (task_ledgers.alternate_accounting_compressed < 0) || |
| 1350 | (task_ledgers.page_table < 0) || |
| 1351 | (task_ledgers.phys_footprint < 0) || |
| 1352 | (task_ledgers.internal_compressed < 0) || |
| 1353 | (task_ledgers.purgeable_volatile < 0) || |
| 1354 | (task_ledgers.purgeable_nonvolatile < 0) || |
| 1355 | (task_ledgers.purgeable_volatile_compressed < 0) || |
| 1356 | (task_ledgers.purgeable_nonvolatile_compressed < 0) || |
| 1357 | (task_ledgers.tagged_nofootprint < 0) || |
| 1358 | (task_ledgers.tagged_footprint < 0) || |
| 1359 | (task_ledgers.tagged_nofootprint_compressed < 0) || |
| 1360 | (task_ledgers.tagged_footprint_compressed < 0) || |
| 1361 | #if CONFIG_FREEZE |
| 1362 | (task_ledgers.frozen_to_swap < 0) || |
| 1363 | #endif /* CONFIG_FREEZE */ |
| 1364 | (task_ledgers.network_volatile < 0) || |
| 1365 | (task_ledgers.network_nonvolatile < 0) || |
| 1366 | (task_ledgers.network_volatile_compressed < 0) || |
| 1367 | (task_ledgers.network_nonvolatile_compressed < 0) || |
| 1368 | (task_ledgers.media_nofootprint < 0) || |
| 1369 | (task_ledgers.media_footprint < 0) || |
| 1370 | (task_ledgers.media_nofootprint_compressed < 0) || |
| 1371 | (task_ledgers.media_footprint_compressed < 0) || |
| 1372 | (task_ledgers.graphics_nofootprint < 0) || |
| 1373 | (task_ledgers.graphics_footprint < 0) || |
| 1374 | (task_ledgers.graphics_nofootprint_compressed < 0) || |
| 1375 | (task_ledgers.graphics_footprint_compressed < 0) || |
| 1376 | (task_ledgers.neural_nofootprint < 0) || |
| 1377 | (task_ledgers.neural_footprint < 0) || |
| 1378 | (task_ledgers.neural_nofootprint_compressed < 0) || |
| 1379 | (task_ledgers.neural_footprint_compressed < 0) || |
| 1380 | (task_ledgers.platform_idle_wakeups < 0) || |
| 1381 | (task_ledgers.interrupt_wakeups < 0) || |
| 1382 | (task_ledgers.cpu_time_billed_to_me < 0) || (task_ledgers.cpu_time_billed_to_others < 0) || |
| 1383 | (task_ledgers.physical_writes < 0) || |
| 1384 | (task_ledgers.logical_writes < 0) || |
| 1385 | (task_ledgers.logical_writes_to_external < 0) || |
| 1386 | #if CONFIG_PHYS_WRITE_ACCT |
| 1387 | (task_ledgers.fs_metadata_writes < 0) || |
| 1388 | #endif /* CONFIG_PHYS_WRITE_ACCT */ |
| 1389 | #if CONFIG_MEMORYSTATUS |
| 1390 | (task_ledgers.memorystatus_dirty_time < 0) || |
| 1391 | #endif /* CONFIG_MEMORYSTATUS */ |
| 1392 | (task_ledgers.energy_billed_to_me < 0) || |
| 1393 | (task_ledgers.energy_billed_to_others < 0) || |
| 1394 | (task_ledgers.swapins < 0) |
| 1395 | ) { |
| 1396 | panic("couldn't create entries for task ledger template" ); |
| 1397 | } |
| 1398 | |
| 1399 | ledger_track_credit_only(template: t, entry: task_ledgers.phys_footprint); |
| 1400 | ledger_track_credit_only(template: t, entry: task_ledgers.internal); |
| 1401 | ledger_track_credit_only(template: t, entry: task_ledgers.external); |
| 1402 | ledger_track_credit_only(template: t, entry: task_ledgers.reusable); |
| 1403 | |
| 1404 | ledger_track_maximum(template: t, entry: task_ledgers.phys_footprint, period_in_secs: 60); |
| 1405 | ledger_track_maximum(template: t, entry: task_ledgers.phys_mem, period_in_secs: 60); |
| 1406 | ledger_track_maximum(template: t, entry: task_ledgers.internal, period_in_secs: 60); |
| 1407 | ledger_track_maximum(template: t, entry: task_ledgers.internal_compressed, period_in_secs: 60); |
| 1408 | ledger_track_maximum(template: t, entry: task_ledgers.reusable, period_in_secs: 60); |
| 1409 | ledger_track_maximum(template: t, entry: task_ledgers.external, period_in_secs: 60); |
| 1410 | #if MACH_ASSERT |
| 1411 | if (pmap_ledgers_panic) { |
| 1412 | ledger_panic_on_negative(t, task_ledgers.phys_footprint); |
| 1413 | ledger_panic_on_negative(t, task_ledgers.conclave_mem); |
| 1414 | ledger_panic_on_negative(t, task_ledgers.page_table); |
| 1415 | ledger_panic_on_negative(t, task_ledgers.internal); |
| 1416 | ledger_panic_on_negative(t, task_ledgers.iokit_mapped); |
| 1417 | ledger_panic_on_negative(t, task_ledgers.alternate_accounting); |
| 1418 | ledger_panic_on_negative(t, task_ledgers.alternate_accounting_compressed); |
| 1419 | ledger_panic_on_negative(t, task_ledgers.purgeable_volatile); |
| 1420 | ledger_panic_on_negative(t, task_ledgers.purgeable_nonvolatile); |
| 1421 | ledger_panic_on_negative(t, task_ledgers.purgeable_volatile_compressed); |
| 1422 | ledger_panic_on_negative(t, task_ledgers.purgeable_nonvolatile_compressed); |
| 1423 | #if CONFIG_PHYS_WRITE_ACCT |
| 1424 | ledger_panic_on_negative(t, task_ledgers.fs_metadata_writes); |
| 1425 | #endif /* CONFIG_PHYS_WRITE_ACCT */ |
| 1426 | |
| 1427 | ledger_panic_on_negative(t, task_ledgers.tagged_nofootprint); |
| 1428 | ledger_panic_on_negative(t, task_ledgers.tagged_footprint); |
| 1429 | ledger_panic_on_negative(t, task_ledgers.tagged_nofootprint_compressed); |
| 1430 | ledger_panic_on_negative(t, task_ledgers.tagged_footprint_compressed); |
| 1431 | ledger_panic_on_negative(t, task_ledgers.network_volatile); |
| 1432 | ledger_panic_on_negative(t, task_ledgers.network_nonvolatile); |
| 1433 | ledger_panic_on_negative(t, task_ledgers.network_volatile_compressed); |
| 1434 | ledger_panic_on_negative(t, task_ledgers.network_nonvolatile_compressed); |
| 1435 | ledger_panic_on_negative(t, task_ledgers.media_nofootprint); |
| 1436 | ledger_panic_on_negative(t, task_ledgers.media_footprint); |
| 1437 | ledger_panic_on_negative(t, task_ledgers.media_nofootprint_compressed); |
| 1438 | ledger_panic_on_negative(t, task_ledgers.media_footprint_compressed); |
| 1439 | ledger_panic_on_negative(t, task_ledgers.graphics_nofootprint); |
| 1440 | ledger_panic_on_negative(t, task_ledgers.graphics_footprint); |
| 1441 | ledger_panic_on_negative(t, task_ledgers.graphics_nofootprint_compressed); |
| 1442 | ledger_panic_on_negative(t, task_ledgers.graphics_footprint_compressed); |
| 1443 | ledger_panic_on_negative(t, task_ledgers.neural_nofootprint); |
| 1444 | ledger_panic_on_negative(t, task_ledgers.neural_footprint); |
| 1445 | ledger_panic_on_negative(t, task_ledgers.neural_nofootprint_compressed); |
| 1446 | ledger_panic_on_negative(t, task_ledgers.neural_footprint_compressed); |
| 1447 | } |
| 1448 | #endif /* MACH_ASSERT */ |
| 1449 | |
| 1450 | #if CONFIG_MEMORYSTATUS |
| 1451 | ledger_set_callback(template: t, entry: task_ledgers.phys_footprint, callback: task_footprint_exceeded, NULL, NULL); |
| 1452 | #endif /* CONFIG_MEMORYSTATUS */ |
| 1453 | |
| 1454 | ledger_set_callback(template: t, entry: task_ledgers.interrupt_wakeups, |
| 1455 | callback: task_wakeups_rate_exceeded, NULL, NULL); |
| 1456 | ledger_set_callback(template: t, entry: task_ledgers.physical_writes, callback: task_io_rate_exceeded, param0: (void *)FLAVOR_IO_PHYSICAL_WRITES, NULL); |
| 1457 | |
| 1458 | #if CONFIG_SPTM || !XNU_MONITOR |
| 1459 | ledger_template_complete(template: t); |
| 1460 | #else /* CONFIG_SPTM || !XNU_MONITOR */ |
| 1461 | ledger_template_complete_secure_alloc(t); |
| 1462 | #endif /* XNU_MONITOR */ |
| 1463 | task_ledger_template = t; |
| 1464 | } |
| 1465 | |
| 1466 | /* Create a task, but leave the task ports disabled */ |
| 1467 | kern_return_t |
| 1468 | task_create_internal( |
| 1469 | task_t parent_task, /* Null-able */ |
| 1470 | proc_ro_t proc_ro, |
| 1471 | coalition_t *parent_coalitions __unused, |
| 1472 | boolean_t inherit_memory, |
| 1473 | boolean_t is_64bit, |
| 1474 | boolean_t is_64bit_data, |
| 1475 | uint32_t t_flags, |
| 1476 | uint32_t t_flags_ro, |
| 1477 | uint32_t t_procflags, |
| 1478 | uint8_t t_returnwaitflags, |
| 1479 | task_t child_task) |
| 1480 | { |
| 1481 | task_t new_task; |
| 1482 | vm_shared_region_t shared_region; |
| 1483 | ledger_t ledger = NULL; |
| 1484 | struct task_ro_data task_ro_data = {}; |
| 1485 | uint32_t parent_t_flags_ro = 0; |
| 1486 | |
| 1487 | new_task = child_task; |
| 1488 | |
| 1489 | if (task_ref_count_init(new_task) != KERN_SUCCESS) { |
| 1490 | return KERN_RESOURCE_SHORTAGE; |
| 1491 | } |
| 1492 | |
| 1493 | /* allocate with active entries */ |
| 1494 | assert(task_ledger_template != NULL); |
| 1495 | ledger = ledger_instantiate(template: task_ledger_template, LEDGER_CREATE_ACTIVE_ENTRIES); |
| 1496 | if (ledger == NULL) { |
| 1497 | task_ref_count_fini(new_task); |
| 1498 | return KERN_RESOURCE_SHORTAGE; |
| 1499 | } |
| 1500 | |
| 1501 | counter_alloc(&(new_task->faults)); |
| 1502 | |
| 1503 | #if defined(HAS_APPLE_PAC) |
| 1504 | const uint8_t disable_user_jop = inherit_memory ? parent_task->disable_user_jop : FALSE; |
| 1505 | ml_task_set_rop_pid(task: new_task, parent_task, inherit: inherit_memory); |
| 1506 | ml_task_set_jop_pid(task: new_task, parent_task, inherit: inherit_memory, disable_user_jop); |
| 1507 | ml_task_set_disable_user_jop(task: new_task, disable_user_jop); |
| 1508 | #endif |
| 1509 | |
| 1510 | |
| 1511 | new_task->ledger = ledger; |
| 1512 | |
| 1513 | /* if inherit_memory is true, parent_task MUST not be NULL */ |
| 1514 | if (!(t_flags & TF_CORPSE_FORK) && inherit_memory) { |
| 1515 | #if CONFIG_DEFERRED_RECLAIM |
| 1516 | if (parent_task->deferred_reclamation_metadata) { |
| 1517 | /* |
| 1518 | * Prevent concurrent reclaims while we're forking the parent_task's map, |
| 1519 | * so that the child's map is in sync with the forked reclamation |
| 1520 | * metadata. |
| 1521 | */ |
| 1522 | vm_deferred_reclamation_buffer_lock( |
| 1523 | metadata: parent_task->deferred_reclamation_metadata); |
| 1524 | } |
| 1525 | #endif /* CONFIG_DEFERRED_RECLAIM */ |
| 1526 | new_task->map = vm_map_fork(ledger, old_map: parent_task->map, options: 0); |
| 1527 | #if CONFIG_DEFERRED_RECLAIM |
| 1528 | if (new_task->map != NULL && |
| 1529 | parent_task->deferred_reclamation_metadata) { |
| 1530 | new_task->deferred_reclamation_metadata = |
| 1531 | vm_deferred_reclamation_buffer_fork(task: new_task, |
| 1532 | parent: parent_task->deferred_reclamation_metadata); |
| 1533 | } |
| 1534 | #endif /* CONFIG_DEFERRED_RECLAIM */ |
| 1535 | } else { |
| 1536 | unsigned int pmap_flags = is_64bit ? PMAP_CREATE_64BIT : 0; |
| 1537 | pmap_t pmap = pmap_create_options(ledger, size: 0, flags: pmap_flags); |
| 1538 | vm_map_t new_map; |
| 1539 | |
| 1540 | if (pmap == NULL) { |
| 1541 | counter_free(&new_task->faults); |
| 1542 | ledger_dereference(ledger); |
| 1543 | task_ref_count_fini(new_task); |
| 1544 | return KERN_RESOURCE_SHORTAGE; |
| 1545 | } |
| 1546 | new_map = vm_map_create_options(pmap, |
| 1547 | min_off: (vm_map_offset_t)(VM_MIN_ADDRESS), |
| 1548 | max_off: (vm_map_offset_t)(VM_MAX_ADDRESS), |
| 1549 | options: VM_MAP_CREATE_PAGEABLE); |
| 1550 | if (parent_task) { |
| 1551 | vm_map_inherit_limits(new_map, old_map: parent_task->map); |
| 1552 | } |
| 1553 | new_task->map = new_map; |
| 1554 | } |
| 1555 | |
| 1556 | if (new_task->map == NULL) { |
| 1557 | counter_free(&new_task->faults); |
| 1558 | ledger_dereference(ledger); |
| 1559 | task_ref_count_fini(new_task); |
| 1560 | return KERN_RESOURCE_SHORTAGE; |
| 1561 | } |
| 1562 | |
| 1563 | #if defined(CONFIG_SCHED_MULTIQ) |
| 1564 | new_task->sched_group = sched_group_create(); |
| 1565 | #endif |
| 1566 | |
| 1567 | lck_mtx_init(lck: &new_task->lock, grp: &task_lck_grp, attr: &task_lck_attr); |
| 1568 | queue_init(&new_task->threads); |
| 1569 | new_task->suspend_count = 0; |
| 1570 | new_task->thread_count = 0; |
| 1571 | new_task->active_thread_count = 0; |
| 1572 | new_task->user_stop_count = 0; |
| 1573 | new_task->legacy_stop_count = 0; |
| 1574 | new_task->active = TRUE; |
| 1575 | new_task->halting = FALSE; |
| 1576 | new_task->priv_flags = 0; |
| 1577 | new_task->t_flags = t_flags; |
| 1578 | task_ro_data.t_flags_ro = t_flags_ro; |
| 1579 | new_task->t_procflags = t_procflags; |
| 1580 | new_task->t_returnwaitflags = t_returnwaitflags; |
| 1581 | new_task->returnwait_inheritor = current_thread(); |
| 1582 | new_task->importance = 0; |
| 1583 | new_task->crashed_thread_id = 0; |
| 1584 | new_task->watchports = NULL; |
| 1585 | new_task->t_rr_ranges = NULL; |
| 1586 | |
| 1587 | new_task->bank_context = NULL; |
| 1588 | |
| 1589 | if (parent_task) { |
| 1590 | parent_t_flags_ro = task_ro_flags_get(task: parent_task); |
| 1591 | } |
| 1592 | |
| 1593 | if (parent_task && inherit_memory) { |
| 1594 | #if __has_feature(ptrauth_calls) |
| 1595 | /* Inherit the pac exception flags from parent if in fork */ |
| 1596 | task_ro_data.t_flags_ro |= (parent_t_flags_ro & (TFRO_PAC_ENFORCE_USER_STATE | |
| 1597 | TFRO_PAC_EXC_FATAL)); |
| 1598 | #endif /* __has_feature(ptrauth_calls) */ |
| 1599 | /* Inherit the hardened binary flags from parent if in fork */ |
| 1600 | task_ro_data.t_flags_ro |= parent_t_flags_ro & (TFRO_HARDENED | TFRO_PLATFORM | TFRO_JIT_EXC_FATAL); |
| 1601 | #if XNU_TARGET_OS_OSX |
| 1602 | task_ro_data.t_flags_ro |= parent_t_flags_ro & TFRO_MACH_HARDENING_OPT_OUT; |
| 1603 | #endif /* XNU_TARGET_OS_OSX */ |
| 1604 | } |
| 1605 | |
| 1606 | #ifdef MACH_BSD |
| 1607 | new_task->corpse_info = NULL; |
| 1608 | #endif /* MACH_BSD */ |
| 1609 | |
| 1610 | /* kern_task not created by this function has unique id 0, start with 1 here. */ |
| 1611 | task_set_uniqueid(task: new_task); |
| 1612 | |
| 1613 | #if CONFIG_MACF |
| 1614 | set_task_crash_label(task: new_task, NULL); |
| 1615 | |
| 1616 | task_ro_data.task_filters.mach_trap_filter_mask = NULL; |
| 1617 | task_ro_data.task_filters.mach_kobj_filter_mask = NULL; |
| 1618 | #endif |
| 1619 | |
| 1620 | #if CONFIG_MEMORYSTATUS |
| 1621 | if (max_task_footprint != 0) { |
| 1622 | ledger_set_limit(ledger, entry: task_ledgers.phys_footprint, limit: max_task_footprint, PHYS_FOOTPRINT_WARNING_LEVEL); |
| 1623 | } |
| 1624 | #endif /* CONFIG_MEMORYSTATUS */ |
| 1625 | |
| 1626 | if (task_wakeups_monitor_rate != 0) { |
| 1627 | uint32_t flags = WAKEMON_ENABLE | WAKEMON_SET_DEFAULTS; |
| 1628 | int32_t rate; // Ignored because of WAKEMON_SET_DEFAULTS |
| 1629 | task_wakeups_monitor_ctl(task: new_task, rate_hz: &flags, flags: &rate); |
| 1630 | } |
| 1631 | |
| 1632 | #if CONFIG_IO_ACCOUNTING |
| 1633 | uint32_t flags = IOMON_ENABLE; |
| 1634 | task_io_monitor_ctl(new_task, &flags); |
| 1635 | #endif /* CONFIG_IO_ACCOUNTING */ |
| 1636 | |
| 1637 | machine_task_init(new_task, parent_task, memory_inherit: inherit_memory); |
| 1638 | |
| 1639 | new_task->task_debug = NULL; |
| 1640 | |
| 1641 | #if DEVELOPMENT || DEBUG |
| 1642 | new_task->task_unnested = FALSE; |
| 1643 | new_task->task_disconnected_count = 0; |
| 1644 | #endif |
| 1645 | queue_init(&new_task->semaphore_list); |
| 1646 | new_task->semaphores_owned = 0; |
| 1647 | |
| 1648 | new_task->vtimers = 0; |
| 1649 | |
| 1650 | new_task->shared_region = NULL; |
| 1651 | |
| 1652 | new_task->affinity_space = NULL; |
| 1653 | |
| 1654 | #if CONFIG_CPU_COUNTERS |
| 1655 | new_task->t_kpc = 0; |
| 1656 | #endif /* CONFIG_CPU_COUNTERS */ |
| 1657 | |
| 1658 | new_task->pidsuspended = FALSE; |
| 1659 | new_task->frozen = FALSE; |
| 1660 | new_task->changing_freeze_state = FALSE; |
| 1661 | new_task->rusage_cpu_flags = 0; |
| 1662 | new_task->rusage_cpu_percentage = 0; |
| 1663 | new_task->rusage_cpu_interval = 0; |
| 1664 | new_task->rusage_cpu_deadline = 0; |
| 1665 | new_task->rusage_cpu_callt = NULL; |
| 1666 | #if MACH_ASSERT |
| 1667 | new_task->suspends_outstanding = 0; |
| 1668 | #endif |
| 1669 | recount_task_init(tk: &new_task->tk_recount); |
| 1670 | |
| 1671 | #if HYPERVISOR |
| 1672 | new_task->hv_task_target = NULL; |
| 1673 | #endif /* HYPERVISOR */ |
| 1674 | |
| 1675 | #if CONFIG_TASKWATCH |
| 1676 | queue_init(&new_task->task_watchers); |
| 1677 | new_task->num_taskwatchers = 0; |
| 1678 | new_task->watchapplying = 0; |
| 1679 | #endif /* CONFIG_TASKWATCH */ |
| 1680 | |
| 1681 | new_task->mem_notify_reserved = 0; |
| 1682 | new_task->memlimit_attrs_reserved = 0; |
| 1683 | |
| 1684 | new_task->requested_policy = default_task_requested_policy; |
| 1685 | new_task->effective_policy = default_task_effective_policy; |
| 1686 | |
| 1687 | new_task->task_shared_region_slide = -1; |
| 1688 | |
| 1689 | if (parent_task != NULL) { |
| 1690 | task_ro_data.task_tokens.sec_token = *task_get_sec_token(task: parent_task); |
| 1691 | task_ro_data.task_tokens.audit_token = *task_get_audit_token(task: parent_task); |
| 1692 | |
| 1693 | /* only inherit the option bits, no effect until task_set_immovable_pinned() */ |
| 1694 | task_ro_data.task_control_port_options = task_get_control_port_options(task: parent_task); |
| 1695 | |
| 1696 | task_ro_data.t_flags_ro |= parent_t_flags_ro & TFRO_FILTER_MSG; |
| 1697 | #if CONFIG_MACF |
| 1698 | if (!(t_flags & TF_CORPSE_FORK)) { |
| 1699 | task_ro_data.task_filters.mach_trap_filter_mask = task_get_mach_trap_filter_mask(task: parent_task); |
| 1700 | task_ro_data.task_filters.mach_kobj_filter_mask = task_get_mach_kobj_filter_mask(task: parent_task); |
| 1701 | } |
| 1702 | #endif |
| 1703 | } else { |
| 1704 | task_ro_data.task_tokens.sec_token = KERNEL_SECURITY_TOKEN; |
| 1705 | task_ro_data.task_tokens.audit_token = KERNEL_AUDIT_TOKEN; |
| 1706 | |
| 1707 | task_ro_data.task_control_port_options = TASK_CONTROL_PORT_OPTIONS_NONE; |
| 1708 | } |
| 1709 | |
| 1710 | /* must set before task_importance_init_from_parent: */ |
| 1711 | if (proc_ro != NULL) { |
| 1712 | new_task->bsd_info_ro = proc_ro_ref_task(pr: proc_ro, t: new_task, t_data: &task_ro_data); |
| 1713 | } else { |
| 1714 | new_task->bsd_info_ro = proc_ro_alloc(NULL, NULL, t: new_task, t_data: &task_ro_data); |
| 1715 | } |
| 1716 | |
| 1717 | ipc_task_init(task: new_task, parent: parent_task); |
| 1718 | |
| 1719 | task_importance_init_from_parent(new_task, parent_task); |
| 1720 | |
| 1721 | new_task->corpse_vmobject_list = NULL; |
| 1722 | |
| 1723 | if (parent_task != TASK_NULL) { |
| 1724 | /* inherit the parent's shared region */ |
| 1725 | shared_region = vm_shared_region_get(task: parent_task); |
| 1726 | if (shared_region != NULL) { |
| 1727 | vm_shared_region_set(task: new_task, new_shared_region: shared_region); |
| 1728 | } |
| 1729 | |
| 1730 | #if __has_feature(ptrauth_calls) |
| 1731 | /* use parent's shared_region_id */ |
| 1732 | char *shared_region_id = task_get_vm_shared_region_id_and_jop_pid(parent_task, NULL); |
| 1733 | if (shared_region_id != NULL) { |
| 1734 | shared_region_key_alloc(shared_region_id, FALSE, 0); /* get a reference */ |
| 1735 | } |
| 1736 | task_set_shared_region_id(new_task, shared_region_id); |
| 1737 | #endif /* __has_feature(ptrauth_calls) */ |
| 1738 | |
| 1739 | if (task_has_64Bit_addr(parent_task)) { |
| 1740 | task_set_64Bit_addr(new_task); |
| 1741 | } |
| 1742 | |
| 1743 | if (task_has_64Bit_data(parent_task)) { |
| 1744 | task_set_64Bit_data(new_task); |
| 1745 | } |
| 1746 | |
| 1747 | new_task->all_image_info_addr = parent_task->all_image_info_addr; |
| 1748 | new_task->all_image_info_size = parent_task->all_image_info_size; |
| 1749 | new_task->mach_header_vm_address = 0; |
| 1750 | |
| 1751 | if (inherit_memory && parent_task->affinity_space) { |
| 1752 | task_affinity_create(parent_task, new_task); |
| 1753 | } |
| 1754 | |
| 1755 | new_task->pset_hint = parent_task->pset_hint = task_choose_pset(task: parent_task); |
| 1756 | |
| 1757 | new_task->task_exc_guard = parent_task->task_exc_guard; |
| 1758 | if (parent_task->t_flags & TF_NO_SMT) { |
| 1759 | new_task->t_flags |= TF_NO_SMT; |
| 1760 | } |
| 1761 | |
| 1762 | if (parent_task->t_flags & TF_USE_PSET_HINT_CLUSTER_TYPE) { |
| 1763 | new_task->t_flags |= TF_USE_PSET_HINT_CLUSTER_TYPE; |
| 1764 | } |
| 1765 | |
| 1766 | if (parent_task->t_flags & TF_TECS) { |
| 1767 | new_task->t_flags |= TF_TECS; |
| 1768 | } |
| 1769 | |
| 1770 | #if defined(__x86_64__) |
| 1771 | if (parent_task->t_flags & TF_INSN_COPY_OPTOUT) { |
| 1772 | new_task->t_flags |= TF_INSN_COPY_OPTOUT; |
| 1773 | } |
| 1774 | #endif |
| 1775 | |
| 1776 | new_task->priority = BASEPRI_DEFAULT; |
| 1777 | new_task->max_priority = MAXPRI_USER; |
| 1778 | |
| 1779 | task_policy_create(task: new_task, parent_task); |
| 1780 | } else { |
| 1781 | #ifdef __LP64__ |
| 1782 | if (is_64bit) { |
| 1783 | task_set_64Bit_addr(new_task); |
| 1784 | } |
| 1785 | #endif |
| 1786 | |
| 1787 | if (is_64bit_data) { |
| 1788 | task_set_64Bit_data(new_task); |
| 1789 | } |
| 1790 | |
| 1791 | new_task->all_image_info_addr = (mach_vm_address_t)0; |
| 1792 | new_task->all_image_info_size = (mach_vm_size_t)0; |
| 1793 | |
| 1794 | new_task->pset_hint = PROCESSOR_SET_NULL; |
| 1795 | |
| 1796 | new_task->task_exc_guard = TASK_EXC_GUARD_NONE; |
| 1797 | |
| 1798 | if (new_task == kernel_task) { |
| 1799 | new_task->priority = BASEPRI_KERNEL; |
| 1800 | new_task->max_priority = MAXPRI_KERNEL; |
| 1801 | } else { |
| 1802 | new_task->priority = BASEPRI_DEFAULT; |
| 1803 | new_task->max_priority = MAXPRI_USER; |
| 1804 | } |
| 1805 | } |
| 1806 | |
| 1807 | bzero(s: new_task->coalition, n: sizeof(new_task->coalition)); |
| 1808 | for (int i = 0; i < COALITION_NUM_TYPES; i++) { |
| 1809 | queue_chain_init(new_task->task_coalition[i]); |
| 1810 | } |
| 1811 | |
| 1812 | /* Allocate I/O Statistics */ |
| 1813 | new_task->task_io_stats = kalloc_data(sizeof(struct io_stat_info), |
| 1814 | Z_WAITOK | Z_ZERO | Z_NOFAIL); |
| 1815 | |
| 1816 | bzero(s: &(new_task->cpu_time_eqos_stats), n: sizeof(new_task->cpu_time_eqos_stats)); |
| 1817 | bzero(s: &(new_task->cpu_time_rqos_stats), n: sizeof(new_task->cpu_time_rqos_stats)); |
| 1818 | |
| 1819 | bzero(s: &new_task->extmod_statistics, n: sizeof(new_task->extmod_statistics)); |
| 1820 | |
| 1821 | counter_alloc(&(new_task->pageins)); |
| 1822 | counter_alloc(&(new_task->cow_faults)); |
| 1823 | counter_alloc(&(new_task->messages_sent)); |
| 1824 | counter_alloc(&(new_task->messages_received)); |
| 1825 | |
| 1826 | /* Copy resource acc. info from Parent for Corpe Forked task. */ |
| 1827 | if (parent_task != NULL && (t_flags & TF_CORPSE_FORK)) { |
| 1828 | task_rollup_accounting_info(new_task, parent_task); |
| 1829 | task_store_owned_vmobject_info(to_task: new_task, from_task: parent_task); |
| 1830 | } else { |
| 1831 | /* Initialize to zero for standard fork/spawn case */ |
| 1832 | new_task->total_runnable_time = 0; |
| 1833 | new_task->syscalls_mach = 0; |
| 1834 | new_task->syscalls_unix = 0; |
| 1835 | new_task->c_switch = 0; |
| 1836 | new_task->p_switch = 0; |
| 1837 | new_task->ps_switch = 0; |
| 1838 | new_task->decompressions = 0; |
| 1839 | new_task->low_mem_notified_warn = 0; |
| 1840 | new_task->low_mem_notified_critical = 0; |
| 1841 | new_task->purged_memory_warn = 0; |
| 1842 | new_task->purged_memory_critical = 0; |
| 1843 | new_task->low_mem_privileged_listener = 0; |
| 1844 | new_task->memlimit_is_active = 0; |
| 1845 | new_task->memlimit_is_fatal = 0; |
| 1846 | new_task->memlimit_active_exc_resource = 0; |
| 1847 | new_task->memlimit_inactive_exc_resource = 0; |
| 1848 | new_task->task_timer_wakeups_bin_1 = 0; |
| 1849 | new_task->task_timer_wakeups_bin_2 = 0; |
| 1850 | new_task->task_gpu_ns = 0; |
| 1851 | new_task->task_writes_counters_internal.task_immediate_writes = 0; |
| 1852 | new_task->task_writes_counters_internal.task_deferred_writes = 0; |
| 1853 | new_task->task_writes_counters_internal.task_invalidated_writes = 0; |
| 1854 | new_task->task_writes_counters_internal.task_metadata_writes = 0; |
| 1855 | new_task->task_writes_counters_external.task_immediate_writes = 0; |
| 1856 | new_task->task_writes_counters_external.task_deferred_writes = 0; |
| 1857 | new_task->task_writes_counters_external.task_invalidated_writes = 0; |
| 1858 | new_task->task_writes_counters_external.task_metadata_writes = 0; |
| 1859 | #if CONFIG_PHYS_WRITE_ACCT |
| 1860 | new_task->task_fs_metadata_writes = 0; |
| 1861 | #endif /* CONFIG_PHYS_WRITE_ACCT */ |
| 1862 | } |
| 1863 | |
| 1864 | |
| 1865 | new_task->donates_own_pages = FALSE; |
| 1866 | #if CONFIG_COALITIONS |
| 1867 | if (!(t_flags & TF_CORPSE_FORK)) { |
| 1868 | /* TODO: there is no graceful failure path here... */ |
| 1869 | if (parent_coalitions && parent_coalitions[COALITION_TYPE_RESOURCE]) { |
| 1870 | coalitions_adopt_task(coaltions: parent_coalitions, task: new_task); |
| 1871 | if (parent_coalitions[COALITION_TYPE_JETSAM]) { |
| 1872 | new_task->donates_own_pages = coalition_is_swappable(coal: parent_coalitions[COALITION_TYPE_JETSAM]); |
| 1873 | } |
| 1874 | } else if (parent_task && parent_task->coalition[COALITION_TYPE_RESOURCE]) { |
| 1875 | /* |
| 1876 | * all tasks at least have a resource coalition, so |
| 1877 | * if the parent has one then inherit all coalitions |
| 1878 | * the parent is a part of |
| 1879 | */ |
| 1880 | coalitions_adopt_task(coaltions: parent_task->coalition, task: new_task); |
| 1881 | if (parent_task->coalition[COALITION_TYPE_JETSAM]) { |
| 1882 | new_task->donates_own_pages = coalition_is_swappable(coal: parent_task->coalition[COALITION_TYPE_JETSAM]); |
| 1883 | } |
| 1884 | } else { |
| 1885 | /* TODO: assert that new_task will be PID 1 (launchd) */ |
| 1886 | coalitions_adopt_init_task(task: new_task); |
| 1887 | } |
| 1888 | /* |
| 1889 | * on exec, we need to transfer the coalition roles from the |
| 1890 | * parent task to the exec copy task. |
| 1891 | */ |
| 1892 | if (parent_task && (t_procflags & TPF_EXEC_COPY)) { |
| 1893 | int coal_roles[COALITION_NUM_TYPES]; |
| 1894 | task_coalition_roles(task: parent_task, roles: coal_roles); |
| 1895 | (void)coalitions_set_roles(coalitions: new_task->coalition, task: new_task, roles: coal_roles); |
| 1896 | } |
| 1897 | } else { |
| 1898 | coalitions_adopt_corpse_task(task: new_task); |
| 1899 | } |
| 1900 | |
| 1901 | if (new_task->coalition[COALITION_TYPE_RESOURCE] == COALITION_NULL) { |
| 1902 | panic("created task is not a member of a resource coalition" ); |
| 1903 | } |
| 1904 | task_set_coalition_member(new_task); |
| 1905 | #endif /* CONFIG_COALITIONS */ |
| 1906 | |
| 1907 | new_task->dispatchqueue_offset = 0; |
| 1908 | if (parent_task != NULL) { |
| 1909 | new_task->dispatchqueue_offset = parent_task->dispatchqueue_offset; |
| 1910 | } |
| 1911 | |
| 1912 | new_task->task_can_transfer_memory_ownership = FALSE; |
| 1913 | new_task->task_volatile_objects = 0; |
| 1914 | new_task->task_nonvolatile_objects = 0; |
| 1915 | new_task->task_objects_disowning = FALSE; |
| 1916 | new_task->task_objects_disowned = FALSE; |
| 1917 | new_task->task_owned_objects = 0; |
| 1918 | queue_init(&new_task->task_objq); |
| 1919 | |
| 1920 | #if CONFIG_FREEZE |
| 1921 | queue_init(&new_task->task_frozen_cseg_q); |
| 1922 | #endif /* CONFIG_FREEZE */ |
| 1923 | |
| 1924 | task_objq_lock_init(new_task); |
| 1925 | |
| 1926 | #if __arm64__ |
| 1927 | new_task->task_legacy_footprint = FALSE; |
| 1928 | new_task->task_extra_footprint_limit = FALSE; |
| 1929 | new_task->task_ios13extended_footprint_limit = FALSE; |
| 1930 | #endif /* __arm64__ */ |
| 1931 | new_task->task_region_footprint = FALSE; |
| 1932 | new_task->task_has_crossed_thread_limit = FALSE; |
| 1933 | new_task->task_thread_limit = 0; |
| 1934 | #if CONFIG_SECLUDED_MEMORY |
| 1935 | new_task->task_can_use_secluded_mem = FALSE; |
| 1936 | new_task->task_could_use_secluded_mem = FALSE; |
| 1937 | new_task->task_could_also_use_secluded_mem = FALSE; |
| 1938 | new_task->task_suppressed_secluded = FALSE; |
| 1939 | #endif /* CONFIG_SECLUDED_MEMORY */ |
| 1940 | |
| 1941 | /* |
| 1942 | * t_flags is set up above. But since we don't |
| 1943 | * support darkwake mode being set that way |
| 1944 | * currently, we clear it out here explicitly. |
| 1945 | */ |
| 1946 | new_task->t_flags &= ~(TF_DARKWAKE_MODE); |
| 1947 | |
| 1948 | queue_init(&new_task->io_user_clients); |
| 1949 | new_task->loadTag = 0; |
| 1950 | |
| 1951 | lck_mtx_lock(lck: &tasks_threads_lock); |
| 1952 | queue_enter(&tasks, new_task, task_t, tasks); |
| 1953 | tasks_count++; |
| 1954 | if (tasks_suspend_state) { |
| 1955 | task_suspend_internal(new_task); |
| 1956 | } |
| 1957 | lck_mtx_unlock(lck: &tasks_threads_lock); |
| 1958 | task_ref_hold_proc_task_struct(task: new_task); |
| 1959 | |
| 1960 | return KERN_SUCCESS; |
| 1961 | } |
| 1962 | |
| 1963 | /* |
| 1964 | * task_rollup_accounting_info |
| 1965 | * |
| 1966 | * Roll up accounting stats. Used to rollup stats |
| 1967 | * for exec copy task and corpse fork. |
| 1968 | */ |
| 1969 | void |
| 1970 | task_rollup_accounting_info(task_t to_task, task_t from_task) |
| 1971 | { |
| 1972 | assert(from_task != to_task); |
| 1973 | |
| 1974 | recount_task_copy(dst: &to_task->tk_recount, src: &from_task->tk_recount); |
| 1975 | to_task->total_runnable_time = from_task->total_runnable_time; |
| 1976 | counter_add(&to_task->faults, amount: counter_load(&from_task->faults)); |
| 1977 | counter_add(&to_task->pageins, amount: counter_load(&from_task->pageins)); |
| 1978 | counter_add(&to_task->cow_faults, amount: counter_load(&from_task->cow_faults)); |
| 1979 | counter_add(&to_task->messages_sent, amount: counter_load(&from_task->messages_sent)); |
| 1980 | counter_add(&to_task->messages_received, amount: counter_load(&from_task->messages_received)); |
| 1981 | to_task->decompressions = from_task->decompressions; |
| 1982 | to_task->syscalls_mach = from_task->syscalls_mach; |
| 1983 | to_task->syscalls_unix = from_task->syscalls_unix; |
| 1984 | to_task->c_switch = from_task->c_switch; |
| 1985 | to_task->p_switch = from_task->p_switch; |
| 1986 | to_task->ps_switch = from_task->ps_switch; |
| 1987 | to_task->extmod_statistics = from_task->extmod_statistics; |
| 1988 | to_task->low_mem_notified_warn = from_task->low_mem_notified_warn; |
| 1989 | to_task->low_mem_notified_critical = from_task->low_mem_notified_critical; |
| 1990 | to_task->purged_memory_warn = from_task->purged_memory_warn; |
| 1991 | to_task->purged_memory_critical = from_task->purged_memory_critical; |
| 1992 | to_task->low_mem_privileged_listener = from_task->low_mem_privileged_listener; |
| 1993 | *to_task->task_io_stats = *from_task->task_io_stats; |
| 1994 | to_task->cpu_time_eqos_stats = from_task->cpu_time_eqos_stats; |
| 1995 | to_task->cpu_time_rqos_stats = from_task->cpu_time_rqos_stats; |
| 1996 | to_task->task_timer_wakeups_bin_1 = from_task->task_timer_wakeups_bin_1; |
| 1997 | to_task->task_timer_wakeups_bin_2 = from_task->task_timer_wakeups_bin_2; |
| 1998 | to_task->task_gpu_ns = from_task->task_gpu_ns; |
| 1999 | to_task->task_writes_counters_internal.task_immediate_writes = from_task->task_writes_counters_internal.task_immediate_writes; |
| 2000 | to_task->task_writes_counters_internal.task_deferred_writes = from_task->task_writes_counters_internal.task_deferred_writes; |
| 2001 | to_task->task_writes_counters_internal.task_invalidated_writes = from_task->task_writes_counters_internal.task_invalidated_writes; |
| 2002 | to_task->task_writes_counters_internal.task_metadata_writes = from_task->task_writes_counters_internal.task_metadata_writes; |
| 2003 | to_task->task_writes_counters_external.task_immediate_writes = from_task->task_writes_counters_external.task_immediate_writes; |
| 2004 | to_task->task_writes_counters_external.task_deferred_writes = from_task->task_writes_counters_external.task_deferred_writes; |
| 2005 | to_task->task_writes_counters_external.task_invalidated_writes = from_task->task_writes_counters_external.task_invalidated_writes; |
| 2006 | to_task->task_writes_counters_external.task_metadata_writes = from_task->task_writes_counters_external.task_metadata_writes; |
| 2007 | #if CONFIG_PHYS_WRITE_ACCT |
| 2008 | to_task->task_fs_metadata_writes = from_task->task_fs_metadata_writes; |
| 2009 | #endif /* CONFIG_PHYS_WRITE_ACCT */ |
| 2010 | |
| 2011 | #if CONFIG_MEMORYSTATUS |
| 2012 | ledger_rollup_entry(to_ledger: to_task->ledger, from_ledger: from_task->ledger, entry: task_ledgers.memorystatus_dirty_time); |
| 2013 | #endif /* CONFIG_MEMORYSTATUS */ |
| 2014 | |
| 2015 | /* Skip ledger roll up for memory accounting entries */ |
| 2016 | ledger_rollup_entry(to_ledger: to_task->ledger, from_ledger: from_task->ledger, entry: task_ledgers.cpu_time); |
| 2017 | ledger_rollup_entry(to_ledger: to_task->ledger, from_ledger: from_task->ledger, entry: task_ledgers.platform_idle_wakeups); |
| 2018 | ledger_rollup_entry(to_ledger: to_task->ledger, from_ledger: from_task->ledger, entry: task_ledgers.interrupt_wakeups); |
| 2019 | #if CONFIG_SCHED_SFI |
| 2020 | for (sfi_class_id_t class_id = SFI_CLASS_UNSPECIFIED; class_id < MAX_SFI_CLASS_ID; class_id++) { |
| 2021 | ledger_rollup_entry(to_ledger: to_task->ledger, from_ledger: from_task->ledger, entry: task_ledgers.sfi_wait_times[class_id]); |
| 2022 | } |
| 2023 | #endif |
| 2024 | ledger_rollup_entry(to_ledger: to_task->ledger, from_ledger: from_task->ledger, entry: task_ledgers.cpu_time_billed_to_me); |
| 2025 | ledger_rollup_entry(to_ledger: to_task->ledger, from_ledger: from_task->ledger, entry: task_ledgers.cpu_time_billed_to_others); |
| 2026 | ledger_rollup_entry(to_ledger: to_task->ledger, from_ledger: from_task->ledger, entry: task_ledgers.physical_writes); |
| 2027 | ledger_rollup_entry(to_ledger: to_task->ledger, from_ledger: from_task->ledger, entry: task_ledgers.logical_writes); |
| 2028 | ledger_rollup_entry(to_ledger: to_task->ledger, from_ledger: from_task->ledger, entry: task_ledgers.energy_billed_to_me); |
| 2029 | ledger_rollup_entry(to_ledger: to_task->ledger, from_ledger: from_task->ledger, entry: task_ledgers.energy_billed_to_others); |
| 2030 | } |
| 2031 | |
| 2032 | /* |
| 2033 | * task_deallocate_internal: |
| 2034 | * |
| 2035 | * Drop a reference on a task. |
| 2036 | * Don't call this directly. |
| 2037 | */ |
| 2038 | extern void task_deallocate_internal(task_t task, os_ref_count_t refs); |
| 2039 | void |
| 2040 | task_deallocate_internal( |
| 2041 | task_t task, |
| 2042 | os_ref_count_t refs) |
| 2043 | { |
| 2044 | ledger_amount_t credit, debit, interrupt_wakeups, platform_idle_wakeups; |
| 2045 | |
| 2046 | if (task == TASK_NULL) { |
| 2047 | return; |
| 2048 | } |
| 2049 | |
| 2050 | #if IMPORTANCE_INHERITANCE |
| 2051 | if (refs == 1) { |
| 2052 | /* |
| 2053 | * If last ref potentially comes from the task's importance, |
| 2054 | * disconnect it. But more task refs may be added before |
| 2055 | * that completes, so wait for the reference to go to zero |
| 2056 | * naturally (it may happen on a recursive task_deallocate() |
| 2057 | * from the ipc_importance_disconnect_task() call). |
| 2058 | */ |
| 2059 | if (IIT_NULL != task->task_imp_base) { |
| 2060 | ipc_importance_disconnect_task(task); |
| 2061 | } |
| 2062 | return; |
| 2063 | } |
| 2064 | #endif /* IMPORTANCE_INHERITANCE */ |
| 2065 | |
| 2066 | if (refs > 0) { |
| 2067 | return; |
| 2068 | } |
| 2069 | |
| 2070 | /* |
| 2071 | * The task should be dead at this point. Ensure other resources |
| 2072 | * like threads, are gone before we trash the world. |
| 2073 | */ |
| 2074 | assert(queue_empty(&task->threads)); |
| 2075 | assert(get_bsdtask_info(task) == NULL); |
| 2076 | assert(!is_active(task->itk_space)); |
| 2077 | assert(!task->active); |
| 2078 | assert(task->active_thread_count == 0); |
| 2079 | assert(!task_get_game_mode(task)); |
| 2080 | |
| 2081 | lck_mtx_lock(lck: &tasks_threads_lock); |
| 2082 | assert(terminated_tasks_count > 0); |
| 2083 | queue_remove(&terminated_tasks, task, task_t, tasks); |
| 2084 | terminated_tasks_count--; |
| 2085 | lck_mtx_unlock(lck: &tasks_threads_lock); |
| 2086 | |
| 2087 | /* |
| 2088 | * remove the reference on bank context |
| 2089 | */ |
| 2090 | task_bank_reset(task); |
| 2091 | |
| 2092 | kfree_data(task->task_io_stats, sizeof(struct io_stat_info)); |
| 2093 | |
| 2094 | /* |
| 2095 | * Give the machine dependent code a chance |
| 2096 | * to perform cleanup before ripping apart |
| 2097 | * the task. |
| 2098 | */ |
| 2099 | machine_task_terminate(task); |
| 2100 | |
| 2101 | ipc_task_terminate(task); |
| 2102 | |
| 2103 | /* let iokit know 2 */ |
| 2104 | iokit_task_terminate(task, phase: 2); |
| 2105 | |
| 2106 | /* Unregister task from userspace coredumps on panic */ |
| 2107 | kern_unregister_userspace_coredump(task); |
| 2108 | |
| 2109 | if (task->affinity_space) { |
| 2110 | task_affinity_deallocate(task); |
| 2111 | } |
| 2112 | |
| 2113 | #if MACH_ASSERT |
| 2114 | if (task->ledger != NULL && |
| 2115 | task->map != NULL && |
| 2116 | task->map->pmap != NULL && |
| 2117 | task->map->pmap->ledger != NULL) { |
| 2118 | assert(task->ledger == task->map->pmap->ledger); |
| 2119 | } |
| 2120 | #endif /* MACH_ASSERT */ |
| 2121 | |
| 2122 | vm_owned_objects_disown(task); |
| 2123 | assert(task->task_objects_disowned); |
| 2124 | if (task->task_owned_objects != 0) { |
| 2125 | panic("task_deallocate(%p): " |
| 2126 | "volatile_objects=%d nonvolatile_objects=%d owned=%d\n" , |
| 2127 | task, |
| 2128 | task->task_volatile_objects, |
| 2129 | task->task_nonvolatile_objects, |
| 2130 | task->task_owned_objects); |
| 2131 | } |
| 2132 | |
| 2133 | #if CONFIG_DEFERRED_RECLAIM |
| 2134 | if (task->deferred_reclamation_metadata != NULL) { |
| 2135 | vm_deferred_reclamation_buffer_deallocate(metadata: task->deferred_reclamation_metadata); |
| 2136 | task->deferred_reclamation_metadata = NULL; |
| 2137 | } |
| 2138 | #endif /* CONFIG_DEFERRED_RECLAIM */ |
| 2139 | |
| 2140 | vm_map_deallocate(map: task->map); |
| 2141 | if (task->is_large_corpse) { |
| 2142 | assert(large_corpse_count > 0); |
| 2143 | OSDecrementAtomic(&large_corpse_count); |
| 2144 | task->is_large_corpse = false; |
| 2145 | } |
| 2146 | is_release(task->itk_space); |
| 2147 | |
| 2148 | if (task->t_rr_ranges) { |
| 2149 | restartable_ranges_release(ranges: task->t_rr_ranges); |
| 2150 | } |
| 2151 | |
| 2152 | ledger_get_entries(ledger: task->ledger, entry: task_ledgers.interrupt_wakeups, |
| 2153 | credit: &interrupt_wakeups, debit: &debit); |
| 2154 | ledger_get_entries(ledger: task->ledger, entry: task_ledgers.platform_idle_wakeups, |
| 2155 | credit: &platform_idle_wakeups, debit: &debit); |
| 2156 | |
| 2157 | #if defined(CONFIG_SCHED_MULTIQ) |
| 2158 | sched_group_destroy(sched_group: task->sched_group); |
| 2159 | #endif |
| 2160 | |
| 2161 | struct recount_times_mach sum = { 0 }; |
| 2162 | struct recount_times_mach p_only = { 0 }; |
| 2163 | recount_task_times_perf_only(task, sum: &sum, sum_perf_only: &p_only); |
| 2164 | #if CONFIG_PERVASIVE_ENERGY |
| 2165 | uint64_t energy = recount_task_energy_nj(task); |
| 2166 | #endif /* CONFIG_PERVASIVE_ENERGY */ |
| 2167 | recount_task_deinit(tk: &task->tk_recount); |
| 2168 | |
| 2169 | /* Accumulate statistics for dead tasks */ |
| 2170 | lck_spin_lock(lck: &dead_task_statistics_lock); |
| 2171 | dead_task_statistics.total_user_time += sum.rtm_user; |
| 2172 | dead_task_statistics.total_system_time += sum.rtm_system; |
| 2173 | |
| 2174 | dead_task_statistics.task_interrupt_wakeups += interrupt_wakeups; |
| 2175 | dead_task_statistics.task_platform_idle_wakeups += platform_idle_wakeups; |
| 2176 | |
| 2177 | dead_task_statistics.task_timer_wakeups_bin_1 += task->task_timer_wakeups_bin_1; |
| 2178 | dead_task_statistics.task_timer_wakeups_bin_2 += task->task_timer_wakeups_bin_2; |
| 2179 | dead_task_statistics.total_ptime += p_only.rtm_user + p_only.rtm_system; |
| 2180 | dead_task_statistics.total_pset_switches += task->ps_switch; |
| 2181 | dead_task_statistics.task_gpu_ns += task->task_gpu_ns; |
| 2182 | #if CONFIG_PERVASIVE_ENERGY |
| 2183 | dead_task_statistics.task_energy += energy; |
| 2184 | #endif /* CONFIG_PERVASIVE_ENERGY */ |
| 2185 | |
| 2186 | lck_spin_unlock(lck: &dead_task_statistics_lock); |
| 2187 | lck_mtx_destroy(lck: &task->lock, grp: &task_lck_grp); |
| 2188 | |
| 2189 | if (!ledger_get_entries(ledger: task->ledger, entry: task_ledgers.tkm_private, credit: &credit, |
| 2190 | debit: &debit)) { |
| 2191 | OSAddAtomic64(credit, (int64_t *)&tasks_tkm_private.alloc); |
| 2192 | OSAddAtomic64(debit, (int64_t *)&tasks_tkm_private.free); |
| 2193 | } |
| 2194 | if (!ledger_get_entries(ledger: task->ledger, entry: task_ledgers.tkm_shared, credit: &credit, |
| 2195 | debit: &debit)) { |
| 2196 | OSAddAtomic64(credit, (int64_t *)&tasks_tkm_shared.alloc); |
| 2197 | OSAddAtomic64(debit, (int64_t *)&tasks_tkm_shared.free); |
| 2198 | } |
| 2199 | ledger_dereference(ledger: task->ledger); |
| 2200 | |
| 2201 | counter_free(&task->faults); |
| 2202 | counter_free(&task->pageins); |
| 2203 | counter_free(&task->cow_faults); |
| 2204 | counter_free(&task->messages_sent); |
| 2205 | counter_free(&task->messages_received); |
| 2206 | |
| 2207 | #if CONFIG_COALITIONS |
| 2208 | task_release_coalitions(task); |
| 2209 | #endif /* CONFIG_COALITIONS */ |
| 2210 | |
| 2211 | bzero(s: task->coalition, n: sizeof(task->coalition)); |
| 2212 | |
| 2213 | #if MACH_BSD |
| 2214 | /* clean up collected information since last reference to task is gone */ |
| 2215 | if (task->corpse_info) { |
| 2216 | void *corpse_info_kernel = kcdata_memory_get_begin_addr(data: task->corpse_info); |
| 2217 | task_crashinfo_destroy(data: task->corpse_info); |
| 2218 | task->corpse_info = NULL; |
| 2219 | kfree_data(corpse_info_kernel, CORPSEINFO_ALLOCATION_SIZE); |
| 2220 | } |
| 2221 | #endif |
| 2222 | |
| 2223 | #if CONFIG_MACF |
| 2224 | if (get_task_crash_label(task)) { |
| 2225 | mac_exc_free_label(label: get_task_crash_label(task)); |
| 2226 | set_task_crash_label(task, NULL); |
| 2227 | } |
| 2228 | #endif |
| 2229 | |
| 2230 | assert(queue_empty(&task->task_objq)); |
| 2231 | task_objq_lock_destroy(task); |
| 2232 | |
| 2233 | if (task->corpse_vmobject_list) { |
| 2234 | kfree_data(task->corpse_vmobject_list, |
| 2235 | (vm_size_t)task->corpse_vmobject_list_size); |
| 2236 | } |
| 2237 | |
| 2238 | task_ref_count_fini(task); |
| 2239 | proc_ro_erase_task(pr: task->bsd_info_ro); |
| 2240 | task_release_proc_task_struct(task); |
| 2241 | } |
| 2242 | |
| 2243 | /* |
| 2244 | * task_name_deallocate_mig: |
| 2245 | * |
| 2246 | * Drop a reference on a task name. |
| 2247 | */ |
| 2248 | void |
| 2249 | task_name_deallocate_mig( |
| 2250 | task_name_t task_name) |
| 2251 | { |
| 2252 | return task_deallocate_grp((task_t)task_name, TASK_GRP_MIG); |
| 2253 | } |
| 2254 | |
| 2255 | /* |
| 2256 | * task_policy_set_deallocate_mig: |
| 2257 | * |
| 2258 | * Drop a reference on a task type. |
| 2259 | */ |
| 2260 | void |
| 2261 | task_policy_set_deallocate_mig(task_policy_set_t task_policy_set) |
| 2262 | { |
| 2263 | return task_deallocate_grp((task_t)task_policy_set, TASK_GRP_MIG); |
| 2264 | } |
| 2265 | |
| 2266 | /* |
| 2267 | * task_policy_get_deallocate_mig: |
| 2268 | * |
| 2269 | * Drop a reference on a task type. |
| 2270 | */ |
| 2271 | void |
| 2272 | task_policy_get_deallocate_mig(task_policy_get_t task_policy_get) |
| 2273 | { |
| 2274 | return task_deallocate_grp((task_t)task_policy_get, TASK_GRP_MIG); |
| 2275 | } |
| 2276 | |
| 2277 | /* |
| 2278 | * task_inspect_deallocate_mig: |
| 2279 | * |
| 2280 | * Drop a task inspection reference. |
| 2281 | */ |
| 2282 | void |
| 2283 | task_inspect_deallocate_mig( |
| 2284 | task_inspect_t task_inspect) |
| 2285 | { |
| 2286 | return task_deallocate_grp((task_t)task_inspect, TASK_GRP_MIG); |
| 2287 | } |
| 2288 | |
| 2289 | /* |
| 2290 | * task_read_deallocate_mig: |
| 2291 | * |
| 2292 | * Drop a reference on task read port. |
| 2293 | */ |
| 2294 | void |
| 2295 | task_read_deallocate_mig( |
| 2296 | task_read_t task_read) |
| 2297 | { |
| 2298 | return task_deallocate_grp((task_t)task_read, TASK_GRP_MIG); |
| 2299 | } |
| 2300 | |
| 2301 | /* |
| 2302 | * task_suspension_token_deallocate: |
| 2303 | * |
| 2304 | * Drop a reference on a task suspension token. |
| 2305 | */ |
| 2306 | void |
| 2307 | task_suspension_token_deallocate( |
| 2308 | task_suspension_token_t token) |
| 2309 | { |
| 2310 | return task_deallocate((task_t)token); |
| 2311 | } |
| 2312 | |
| 2313 | void |
| 2314 | task_suspension_token_deallocate_grp( |
| 2315 | task_suspension_token_t token, |
| 2316 | task_grp_t grp) |
| 2317 | { |
| 2318 | return task_deallocate_grp((task_t)token, grp); |
| 2319 | } |
| 2320 | |
| 2321 | /* |
| 2322 | * task_collect_crash_info: |
| 2323 | * |
| 2324 | * collect crash info from bsd and mach based data |
| 2325 | */ |
| 2326 | kern_return_t |
| 2327 | task_collect_crash_info( |
| 2328 | task_t task, |
| 2329 | #ifdef CONFIG_MACF |
| 2330 | struct label *crash_label, |
| 2331 | #endif |
| 2332 | int is_corpse_fork) |
| 2333 | { |
| 2334 | kern_return_t kr = KERN_SUCCESS; |
| 2335 | |
| 2336 | kcdata_descriptor_t crash_data = NULL; |
| 2337 | kcdata_descriptor_t crash_data_release = NULL; |
| 2338 | mach_msg_type_number_t size = CORPSEINFO_ALLOCATION_SIZE; |
| 2339 | mach_vm_offset_t crash_data_ptr = 0; |
| 2340 | void *crash_data_kernel = NULL; |
| 2341 | void *crash_data_kernel_release = NULL; |
| 2342 | #if CONFIG_MACF |
| 2343 | struct label *label, *free_label; |
| 2344 | #endif |
| 2345 | |
| 2346 | if (!corpses_enabled()) { |
| 2347 | return KERN_NOT_SUPPORTED; |
| 2348 | } |
| 2349 | |
| 2350 | #if CONFIG_MACF |
| 2351 | free_label = label = mac_exc_create_label(NULL); |
| 2352 | #endif |
| 2353 | |
| 2354 | task_lock(task); |
| 2355 | |
| 2356 | assert(is_corpse_fork || get_bsdtask_info(task) != NULL); |
| 2357 | if (task->corpse_info == NULL && (is_corpse_fork || get_bsdtask_info(task) != NULL)) { |
| 2358 | #if CONFIG_MACF |
| 2359 | /* Set the crash label, used by the exception delivery mac hook */ |
| 2360 | free_label = get_task_crash_label(task); // Most likely NULL. |
| 2361 | set_task_crash_label(task, label); |
| 2362 | mac_exc_update_task_crash_label(task, newlabel: crash_label); |
| 2363 | #endif |
| 2364 | task_unlock(task); |
| 2365 | |
| 2366 | crash_data_kernel = kalloc_data(CORPSEINFO_ALLOCATION_SIZE, |
| 2367 | Z_WAITOK | Z_ZERO); |
| 2368 | if (crash_data_kernel == NULL) { |
| 2369 | kr = KERN_RESOURCE_SHORTAGE; |
| 2370 | goto out_no_lock; |
| 2371 | } |
| 2372 | crash_data_ptr = (mach_vm_offset_t) crash_data_kernel; |
| 2373 | |
| 2374 | /* Do not get a corpse ref for corpse fork */ |
| 2375 | crash_data = task_crashinfo_alloc_init(crash_data_p: (mach_vm_address_t)crash_data_ptr, size, |
| 2376 | kc_u_flags: is_corpse_fork ? 0 : CORPSE_CRASHINFO_HAS_REF, |
| 2377 | KCFLAG_USE_MEMCOPY); |
| 2378 | if (crash_data) { |
| 2379 | task_lock(task); |
| 2380 | crash_data_release = task->corpse_info; |
| 2381 | crash_data_kernel_release = kcdata_memory_get_begin_addr(data: crash_data_release); |
| 2382 | task->corpse_info = crash_data; |
| 2383 | |
| 2384 | task_unlock(task); |
| 2385 | kr = KERN_SUCCESS; |
| 2386 | } else { |
| 2387 | kfree_data(crash_data_kernel, |
| 2388 | CORPSEINFO_ALLOCATION_SIZE); |
| 2389 | kr = KERN_FAILURE; |
| 2390 | } |
| 2391 | |
| 2392 | if (crash_data_release != NULL) { |
| 2393 | task_crashinfo_destroy(data: crash_data_release); |
| 2394 | } |
| 2395 | kfree_data(crash_data_kernel_release, CORPSEINFO_ALLOCATION_SIZE); |
| 2396 | } else { |
| 2397 | task_unlock(task); |
| 2398 | } |
| 2399 | |
| 2400 | out_no_lock: |
| 2401 | #if CONFIG_MACF |
| 2402 | if (free_label != NULL) { |
| 2403 | mac_exc_free_label(label: free_label); |
| 2404 | } |
| 2405 | #endif |
| 2406 | return kr; |
| 2407 | } |
| 2408 | |
| 2409 | /* |
| 2410 | * task_deliver_crash_notification: |
| 2411 | * |
| 2412 | * Makes outcall to registered host port for a corpse. |
| 2413 | */ |
| 2414 | kern_return_t |
| 2415 | task_deliver_crash_notification( |
| 2416 | task_t corpse, /* corpse or corpse fork */ |
| 2417 | thread_t thread, |
| 2418 | exception_type_t etype, |
| 2419 | mach_exception_subcode_t subcode) |
| 2420 | { |
| 2421 | kcdata_descriptor_t crash_info = corpse->corpse_info; |
| 2422 | thread_t th_iter = NULL; |
| 2423 | kern_return_t kr = KERN_SUCCESS; |
| 2424 | wait_interrupt_t wsave; |
| 2425 | mach_exception_data_type_t code[EXCEPTION_CODE_MAX]; |
| 2426 | ipc_port_t corpse_port; |
| 2427 | |
| 2428 | if (crash_info == NULL) { |
| 2429 | return KERN_FAILURE; |
| 2430 | } |
| 2431 | |
| 2432 | assert(task_is_a_corpse(corpse)); |
| 2433 | |
| 2434 | task_lock(task: corpse); |
| 2435 | |
| 2436 | /* |
| 2437 | * Always populate code[0] as the effective exception type for EXC_CORPSE_NOTIFY. |
| 2438 | * Crash reporters should derive whether it's fatal from corpse blob. |
| 2439 | */ |
| 2440 | code[0] = etype; |
| 2441 | code[1] = subcode; |
| 2442 | |
| 2443 | queue_iterate(&corpse->threads, th_iter, thread_t, task_threads) |
| 2444 | { |
| 2445 | if (th_iter->corpse_dup == FALSE) { |
| 2446 | ipc_thread_reset(thread: th_iter); |
| 2447 | } |
| 2448 | } |
| 2449 | task_unlock(task: corpse); |
| 2450 | |
| 2451 | /* Arm the no-sender notification for taskport */ |
| 2452 | task_reference(corpse); |
| 2453 | corpse_port = convert_corpse_to_port_and_nsrequest(task: corpse); |
| 2454 | |
| 2455 | wsave = thread_interrupt_level(THREAD_UNINT); |
| 2456 | kr = exception_triage_thread(EXC_CORPSE_NOTIFY, code, EXCEPTION_CODE_MAX, thread); |
| 2457 | if (kr != KERN_SUCCESS) { |
| 2458 | printf(format: "Failed to send exception EXC_CORPSE_NOTIFY. error code: %d for pid %d\n" , kr, task_pid(task: corpse)); |
| 2459 | } |
| 2460 | |
| 2461 | (void)thread_interrupt_level(interruptible: wsave); |
| 2462 | |
| 2463 | /* |
| 2464 | * Drop the send right on corpse port, will fire the |
| 2465 | * no-sender notification if exception deliver failed. |
| 2466 | */ |
| 2467 | ipc_port_release_send(port: corpse_port); |
| 2468 | return kr; |
| 2469 | } |
| 2470 | |
| 2471 | /* |
| 2472 | * task_terminate: |
| 2473 | * |
| 2474 | * Terminate the specified task. See comments on thread_terminate |
| 2475 | * (kern/thread.c) about problems with terminating the "current task." |
| 2476 | */ |
| 2477 | |
| 2478 | kern_return_t |
| 2479 | task_terminate( |
| 2480 | task_t task) |
| 2481 | { |
| 2482 | if (task == TASK_NULL) { |
| 2483 | return KERN_INVALID_ARGUMENT; |
| 2484 | } |
| 2485 | |
| 2486 | if (get_bsdtask_info(task)) { |
| 2487 | return KERN_FAILURE; |
| 2488 | } |
| 2489 | |
| 2490 | return task_terminate_internal(task); |
| 2491 | } |
| 2492 | |
| 2493 | #if MACH_ASSERT |
| 2494 | extern int proc_pid(struct proc *); |
| 2495 | extern void proc_name_kdp(struct proc *p, char *buf, int size); |
| 2496 | #endif /* MACH_ASSERT */ |
| 2497 | |
| 2498 | #define VM_MAP_PARTIAL_REAP 0x54 /* 0x150 */ |
| 2499 | static void |
| 2500 | __unused task_partial_reap(task_t task, __unused int pid) |
| 2501 | { |
| 2502 | unsigned int reclaimed_resident = 0; |
| 2503 | unsigned int reclaimed_compressed = 0; |
| 2504 | uint64_t task_page_count; |
| 2505 | |
| 2506 | task_page_count = (get_task_phys_footprint(task) / PAGE_SIZE_64); |
| 2507 | |
| 2508 | KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, VM_MAP_PARTIAL_REAP) | DBG_FUNC_START), |
| 2509 | pid, task_page_count, 0, 0, 0); |
| 2510 | |
| 2511 | vm_map_partial_reap(map: task->map, reclaimed_resident: &reclaimed_resident, reclaimed_compressed: &reclaimed_compressed); |
| 2512 | |
| 2513 | KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, VM_MAP_PARTIAL_REAP) | DBG_FUNC_END), |
| 2514 | pid, reclaimed_resident, reclaimed_compressed, 0, 0); |
| 2515 | } |
| 2516 | |
| 2517 | /* |
| 2518 | * task_mark_corpse: |
| 2519 | * |
| 2520 | * Mark the task as a corpse. Called by crashing thread. |
| 2521 | */ |
| 2522 | kern_return_t |
| 2523 | task_mark_corpse(task_t task) |
| 2524 | { |
| 2525 | kern_return_t kr = KERN_SUCCESS; |
| 2526 | thread_t self_thread; |
| 2527 | (void) self_thread; |
| 2528 | wait_interrupt_t wsave; |
| 2529 | #if CONFIG_MACF |
| 2530 | struct label *crash_label = NULL; |
| 2531 | #endif |
| 2532 | |
| 2533 | assert(task != kernel_task); |
| 2534 | assert(task == current_task()); |
| 2535 | assert(!task_is_a_corpse(task)); |
| 2536 | |
| 2537 | #if CONFIG_MACF |
| 2538 | crash_label = mac_exc_create_label_for_proc(proc: (struct proc*)get_bsdtask_info(task)); |
| 2539 | #endif |
| 2540 | |
| 2541 | kr = task_collect_crash_info(task, |
| 2542 | #if CONFIG_MACF |
| 2543 | crash_label, |
| 2544 | #endif |
| 2545 | FALSE); |
| 2546 | if (kr != KERN_SUCCESS) { |
| 2547 | goto out; |
| 2548 | } |
| 2549 | |
| 2550 | self_thread = current_thread(); |
| 2551 | |
| 2552 | wsave = thread_interrupt_level(THREAD_UNINT); |
| 2553 | task_lock(task); |
| 2554 | |
| 2555 | /* |
| 2556 | * Check if any other thread called task_terminate_internal |
| 2557 | * and made the task inactive before we could mark it for |
| 2558 | * corpse pending report. Bail out if the task is inactive. |
| 2559 | */ |
| 2560 | if (!task->active) { |
| 2561 | kcdata_descriptor_t crash_data_release = task->corpse_info;; |
| 2562 | void *crash_data_kernel_release = kcdata_memory_get_begin_addr(data: crash_data_release);; |
| 2563 | |
| 2564 | task->corpse_info = NULL; |
| 2565 | task_unlock(task); |
| 2566 | |
| 2567 | if (crash_data_release != NULL) { |
| 2568 | task_crashinfo_destroy(data: crash_data_release); |
| 2569 | } |
| 2570 | kfree_data(crash_data_kernel_release, CORPSEINFO_ALLOCATION_SIZE); |
| 2571 | return KERN_TERMINATED; |
| 2572 | } |
| 2573 | |
| 2574 | task_set_corpse_pending_report(task); |
| 2575 | task_set_corpse(task); |
| 2576 | task->crashed_thread_id = thread_tid(thread: self_thread); |
| 2577 | |
| 2578 | kr = task_start_halt_locked(task, TRUE); |
| 2579 | assert(kr == KERN_SUCCESS); |
| 2580 | |
| 2581 | task_set_uniqueid(task); |
| 2582 | |
| 2583 | task_unlock(task); |
| 2584 | |
| 2585 | /* |
| 2586 | * ipc_task_reset() moved to last thread_terminate_self(): rdar://75737960. |
| 2587 | * disable old ports here instead. |
| 2588 | * |
| 2589 | * The vm_map and ipc_space must exist until this function returns, |
| 2590 | * convert_port_to_{map,space}_with_flavor relies on this behavior. |
| 2591 | */ |
| 2592 | ipc_task_disable(task); |
| 2593 | |
| 2594 | /* let iokit know 1 */ |
| 2595 | iokit_task_terminate(task, phase: 1); |
| 2596 | |
| 2597 | /* terminate the ipc space */ |
| 2598 | ipc_space_terminate(space: task->itk_space); |
| 2599 | |
| 2600 | /* Add it to global corpse task list */ |
| 2601 | task_add_to_corpse_task_list(corpse_task: task); |
| 2602 | |
| 2603 | thread_terminate_internal(thread: self_thread); |
| 2604 | |
| 2605 | (void) thread_interrupt_level(interruptible: wsave); |
| 2606 | assert(task->halting == TRUE); |
| 2607 | |
| 2608 | out: |
| 2609 | #if CONFIG_MACF |
| 2610 | mac_exc_free_label(label: crash_label); |
| 2611 | #endif |
| 2612 | return kr; |
| 2613 | } |
| 2614 | |
| 2615 | /* |
| 2616 | * task_set_uniqueid |
| 2617 | * |
| 2618 | * Set task uniqueid to systemwide unique 64 bit value |
| 2619 | */ |
| 2620 | void |
| 2621 | task_set_uniqueid(task_t task) |
| 2622 | { |
| 2623 | task->task_uniqueid = OSIncrementAtomic64(address: &next_taskuniqueid); |
| 2624 | } |
| 2625 | |
| 2626 | /* |
| 2627 | * task_clear_corpse |
| 2628 | * |
| 2629 | * Clears the corpse pending bit on task. |
| 2630 | * Removes inspection bit on the threads. |
| 2631 | */ |
| 2632 | void |
| 2633 | task_clear_corpse(task_t task) |
| 2634 | { |
| 2635 | thread_t th_iter = NULL; |
| 2636 | |
| 2637 | task_lock(task); |
| 2638 | queue_iterate(&task->threads, th_iter, thread_t, task_threads) |
| 2639 | { |
| 2640 | thread_mtx_lock(thread: th_iter); |
| 2641 | th_iter->inspection = FALSE; |
| 2642 | ipc_thread_disable(thread: th_iter); |
| 2643 | thread_mtx_unlock(thread: th_iter); |
| 2644 | } |
| 2645 | |
| 2646 | thread_terminate_crashed_threads(); |
| 2647 | /* remove the pending corpse report flag */ |
| 2648 | task_clear_corpse_pending_report(task); |
| 2649 | |
| 2650 | task_unlock(task); |
| 2651 | } |
| 2652 | |
| 2653 | /* |
| 2654 | * task_port_no_senders |
| 2655 | * |
| 2656 | * Called whenever the Mach port system detects no-senders on |
| 2657 | * the task port of a corpse. |
| 2658 | * Each notification that comes in should terminate the task (corpse). |
| 2659 | */ |
| 2660 | static void |
| 2661 | task_port_no_senders(ipc_port_t port, __unused mach_port_mscount_t mscount) |
| 2662 | { |
| 2663 | task_t task = ipc_kobject_get_locked(port, type: IKOT_TASK_CONTROL); |
| 2664 | |
| 2665 | assert(task != TASK_NULL); |
| 2666 | assert(task_is_a_corpse(task)); |
| 2667 | |
| 2668 | /* Remove the task from global corpse task list */ |
| 2669 | task_remove_from_corpse_task_list(corpse_task: task); |
| 2670 | |
| 2671 | task_clear_corpse(task); |
| 2672 | vm_map_unset_corpse_source(map: task->map); |
| 2673 | task_terminate_internal(task); |
| 2674 | } |
| 2675 | |
| 2676 | /* |
| 2677 | * task_port_with_flavor_no_senders |
| 2678 | * |
| 2679 | * Called whenever the Mach port system detects no-senders on |
| 2680 | * the task inspect or read port. These ports are allocated lazily and |
| 2681 | * should be deallocated here when there are no senders remaining. |
| 2682 | */ |
| 2683 | static void |
| 2684 | task_port_with_flavor_no_senders( |
| 2685 | ipc_port_t port, |
| 2686 | mach_port_mscount_t mscount __unused) |
| 2687 | { |
| 2688 | task_t task; |
| 2689 | mach_task_flavor_t flavor; |
| 2690 | ipc_kobject_type_t kotype; |
| 2691 | |
| 2692 | ip_mq_lock(port); |
| 2693 | if (port->ip_srights > 0) { |
| 2694 | ip_mq_unlock(port); |
| 2695 | return; |
| 2696 | } |
| 2697 | kotype = ip_kotype(port); |
| 2698 | assert((IKOT_TASK_READ == kotype) || (IKOT_TASK_INSPECT == kotype)); |
| 2699 | task = ipc_kobject_get_locked(port, type: kotype); |
| 2700 | if (task != TASK_NULL) { |
| 2701 | task_reference(task); |
| 2702 | } |
| 2703 | ip_mq_unlock(port); |
| 2704 | |
| 2705 | if (task == TASK_NULL) { |
| 2706 | /* The task is exiting or disabled; it will eventually deallocate the port */ |
| 2707 | return; |
| 2708 | } |
| 2709 | |
| 2710 | if (kotype == IKOT_TASK_READ) { |
| 2711 | flavor = TASK_FLAVOR_READ; |
| 2712 | } else { |
| 2713 | flavor = TASK_FLAVOR_INSPECT; |
| 2714 | } |
| 2715 | |
| 2716 | itk_lock(task); |
| 2717 | ip_mq_lock(port); |
| 2718 | |
| 2719 | /* |
| 2720 | * If the port is no longer active, then ipc_task_terminate() ran |
| 2721 | * and destroyed the kobject already. Just deallocate the task |
| 2722 | * ref we took and go away. |
| 2723 | * |
| 2724 | * It is also possible that several nsrequests are in flight, |
| 2725 | * only one shall NULL-out the port entry, and this is the one |
| 2726 | * that gets to dealloc the port. |
| 2727 | * |
| 2728 | * Check for a stale no-senders notification. A call to any function |
| 2729 | * that vends out send rights to this port could resurrect it between |
| 2730 | * this notification being generated and actually being handled here. |
| 2731 | */ |
| 2732 | if (!ip_active(port) || |
| 2733 | task->itk_task_ports[flavor] != port || |
| 2734 | port->ip_srights > 0) { |
| 2735 | ip_mq_unlock(port); |
| 2736 | itk_unlock(task); |
| 2737 | task_deallocate(task); |
| 2738 | return; |
| 2739 | } |
| 2740 | |
| 2741 | assert(task->itk_task_ports[flavor] == port); |
| 2742 | task->itk_task_ports[flavor] = IP_NULL; |
| 2743 | itk_unlock(task); |
| 2744 | |
| 2745 | ipc_kobject_dealloc_port_and_unlock(port, mscount: 0, type: kotype); |
| 2746 | |
| 2747 | task_deallocate(task); |
| 2748 | } |
| 2749 | |
| 2750 | /* |
| 2751 | * task_wait_till_threads_terminate_locked |
| 2752 | * |
| 2753 | * Wait till all the threads in the task are terminated. |
| 2754 | * Might release the task lock and re-acquire it. |
| 2755 | */ |
| 2756 | void |
| 2757 | task_wait_till_threads_terminate_locked(task_t task) |
| 2758 | { |
| 2759 | /* wait for all the threads in the task to terminate */ |
| 2760 | while (task->active_thread_count != 0) { |
| 2761 | assert_wait(event: (event_t)&task->active_thread_count, THREAD_UNINT); |
| 2762 | task_unlock(task); |
| 2763 | thread_block(THREAD_CONTINUE_NULL); |
| 2764 | |
| 2765 | task_lock(task); |
| 2766 | } |
| 2767 | } |
| 2768 | |
| 2769 | /* |
| 2770 | * task_duplicate_map_and_threads |
| 2771 | * |
| 2772 | * Copy vmmap of source task. |
| 2773 | * Copy active threads from source task to destination task. |
| 2774 | * Source task would be suspended during the copy. |
| 2775 | */ |
| 2776 | kern_return_t |
| 2777 | task_duplicate_map_and_threads( |
| 2778 | task_t task, |
| 2779 | void *p, |
| 2780 | task_t new_task, |
| 2781 | thread_t *thread_ret, |
| 2782 | uint64_t **udata_buffer, |
| 2783 | int *size, |
| 2784 | int *num_udata, |
| 2785 | bool for_exception) |
| 2786 | { |
| 2787 | kern_return_t kr = KERN_SUCCESS; |
| 2788 | int active; |
| 2789 | thread_t thread, self, thread_return = THREAD_NULL; |
| 2790 | thread_t new_thread = THREAD_NULL, first_thread = THREAD_NULL; |
| 2791 | thread_t *thread_array; |
| 2792 | uint32_t active_thread_count = 0, array_count = 0, i; |
| 2793 | vm_map_t oldmap; |
| 2794 | uint64_t *buffer = NULL; |
| 2795 | int buf_size = 0; |
| 2796 | int est_knotes = 0, num_knotes = 0; |
| 2797 | |
| 2798 | self = current_thread(); |
| 2799 | |
| 2800 | /* |
| 2801 | * Suspend the task to copy thread state, use the internal |
| 2802 | * variant so that no user-space process can resume |
| 2803 | * the task from under us |
| 2804 | */ |
| 2805 | kr = task_suspend_internal(task); |
| 2806 | if (kr != KERN_SUCCESS) { |
| 2807 | return kr; |
| 2808 | } |
| 2809 | |
| 2810 | if (task->map->disable_vmentry_reuse == TRUE) { |
| 2811 | /* |
| 2812 | * Quite likely GuardMalloc (or some debugging tool) |
| 2813 | * is being used on this task. And it has gone through |
| 2814 | * its limit. Making a corpse will likely encounter |
| 2815 | * a lot of VM entries that will need COW. |
| 2816 | * |
| 2817 | * Skip it. |
| 2818 | */ |
| 2819 | #if DEVELOPMENT || DEBUG |
| 2820 | memorystatus_abort_vm_map_fork(task); |
| 2821 | #endif |
| 2822 | ktriage_record(thread_id: thread_tid(thread: self), KDBG_TRIAGE_EVENTID(KDBG_TRIAGE_SUBSYS_CORPSE, KDBG_TRIAGE_RESERVED, KDBG_TRIAGE_CORPSE_FAIL_LIBGMALLOC), arg: 0 /* arg */); |
| 2823 | task_resume_internal(task); |
| 2824 | return KERN_FAILURE; |
| 2825 | } |
| 2826 | |
| 2827 | /* Check with VM if vm_map_fork is allowed for this task */ |
| 2828 | bool is_large = false; |
| 2829 | if (memorystatus_allowed_vm_map_fork(task, is_large: &is_large)) { |
| 2830 | /* Setup new task's vmmap, switch from parent task's map to it COW map */ |
| 2831 | oldmap = new_task->map; |
| 2832 | new_task->map = vm_map_fork(ledger: new_task->ledger, |
| 2833 | old_map: task->map, |
| 2834 | options: (VM_MAP_FORK_SHARE_IF_INHERIT_NONE | |
| 2835 | VM_MAP_FORK_PRESERVE_PURGEABLE | |
| 2836 | VM_MAP_FORK_CORPSE_FOOTPRINT)); |
| 2837 | if (new_task->map) { |
| 2838 | new_task->is_large_corpse = is_large; |
| 2839 | vm_map_deallocate(map: oldmap); |
| 2840 | |
| 2841 | /* copy ledgers that impact the memory footprint */ |
| 2842 | vm_map_copy_footprint_ledgers(old_task: task, new_task); |
| 2843 | |
| 2844 | /* Get all the udata pointers from kqueue */ |
| 2845 | est_knotes = kevent_proc_copy_uptrs(proc: p, NULL, bufsize: 0); |
| 2846 | if (est_knotes > 0) { |
| 2847 | buf_size = (est_knotes + 32) * sizeof(uint64_t); |
| 2848 | buffer = kalloc_data(buf_size, Z_WAITOK); |
| 2849 | num_knotes = kevent_proc_copy_uptrs(proc: p, buf: buffer, bufsize: buf_size); |
| 2850 | if (num_knotes > est_knotes + 32) { |
| 2851 | num_knotes = est_knotes + 32; |
| 2852 | } |
| 2853 | } |
| 2854 | } else { |
| 2855 | if (is_large) { |
| 2856 | assert(large_corpse_count > 0); |
| 2857 | OSDecrementAtomic(&large_corpse_count); |
| 2858 | } |
| 2859 | new_task->map = oldmap; |
| 2860 | #if DEVELOPMENT || DEBUG |
| 2861 | memorystatus_abort_vm_map_fork(task); |
| 2862 | #endif |
| 2863 | task_resume_internal(task); |
| 2864 | return KERN_NO_SPACE; |
| 2865 | } |
| 2866 | } else if (!for_exception) { |
| 2867 | #if DEVELOPMENT || DEBUG |
| 2868 | memorystatus_abort_vm_map_fork(task); |
| 2869 | #endif |
| 2870 | task_resume_internal(task); |
| 2871 | return KERN_NO_SPACE; |
| 2872 | } |
| 2873 | |
| 2874 | active_thread_count = task->active_thread_count; |
| 2875 | if (active_thread_count == 0) { |
| 2876 | kfree_data(buffer, buf_size); |
| 2877 | task_resume_internal(task); |
| 2878 | return KERN_FAILURE; |
| 2879 | } |
| 2880 | |
| 2881 | thread_array = kalloc_type(thread_t, active_thread_count, Z_WAITOK); |
| 2882 | |
| 2883 | /* Iterate all the threads and drop the task lock before calling thread_create_with_continuation */ |
| 2884 | task_lock(task); |
| 2885 | queue_iterate(&task->threads, thread, thread_t, task_threads) { |
| 2886 | /* Skip inactive threads */ |
| 2887 | active = thread->active; |
| 2888 | if (!active) { |
| 2889 | continue; |
| 2890 | } |
| 2891 | |
| 2892 | if (array_count >= active_thread_count) { |
| 2893 | break; |
| 2894 | } |
| 2895 | |
| 2896 | thread_array[array_count++] = thread; |
| 2897 | thread_reference(thread); |
| 2898 | } |
| 2899 | task_unlock(task); |
| 2900 | |
| 2901 | for (i = 0; i < array_count; i++) { |
| 2902 | kr = thread_create_with_continuation(task: new_task, new_thread: &new_thread, continuation: (thread_continue_t)thread_corpse_continue); |
| 2903 | if (kr != KERN_SUCCESS) { |
| 2904 | break; |
| 2905 | } |
| 2906 | |
| 2907 | /* Equivalent of current thread in corpse */ |
| 2908 | if (thread_array[i] == self) { |
| 2909 | thread_return = new_thread; |
| 2910 | new_task->crashed_thread_id = thread_tid(thread: new_thread); |
| 2911 | } else if (first_thread == NULL) { |
| 2912 | first_thread = new_thread; |
| 2913 | } else { |
| 2914 | /* drop the extra ref returned by thread_create_with_continuation */ |
| 2915 | thread_deallocate(thread: new_thread); |
| 2916 | } |
| 2917 | |
| 2918 | kr = thread_dup2(thread_array[i], new_thread); |
| 2919 | if (kr != KERN_SUCCESS) { |
| 2920 | thread_mtx_lock(thread: new_thread); |
| 2921 | new_thread->corpse_dup = TRUE; |
| 2922 | thread_mtx_unlock(thread: new_thread); |
| 2923 | continue; |
| 2924 | } |
| 2925 | |
| 2926 | /* Copy thread name */ |
| 2927 | bsd_copythreadname(dst_uth: get_bsdthread_info(new_thread), |
| 2928 | src_uth: get_bsdthread_info(thread_array[i])); |
| 2929 | new_thread->thread_tag = thread_array[i]->thread_tag & |
| 2930 | ~THREAD_TAG_USER_JOIN; |
| 2931 | thread_copy_resource_info(dst_thread: new_thread, src_thread: thread_array[i]); |
| 2932 | } |
| 2933 | |
| 2934 | /* return the first thread if we couldn't find the equivalent of current */ |
| 2935 | if (thread_return == THREAD_NULL) { |
| 2936 | thread_return = first_thread; |
| 2937 | } else if (first_thread != THREAD_NULL) { |
| 2938 | /* drop the extra ref returned by thread_create_with_continuation */ |
| 2939 | thread_deallocate(thread: first_thread); |
| 2940 | } |
| 2941 | |
| 2942 | task_resume_internal(task); |
| 2943 | |
| 2944 | for (i = 0; i < array_count; i++) { |
| 2945 | thread_deallocate(thread: thread_array[i]); |
| 2946 | } |
| 2947 | kfree_type(thread_t, active_thread_count, thread_array); |
| 2948 | |
| 2949 | if (kr == KERN_SUCCESS) { |
| 2950 | *thread_ret = thread_return; |
| 2951 | *udata_buffer = buffer; |
| 2952 | *size = buf_size; |
| 2953 | *num_udata = num_knotes; |
| 2954 | } else { |
| 2955 | if (thread_return != THREAD_NULL) { |
| 2956 | thread_deallocate(thread: thread_return); |
| 2957 | } |
| 2958 | kfree_data(buffer, buf_size); |
| 2959 | } |
| 2960 | |
| 2961 | return kr; |
| 2962 | } |
| 2963 | |
| 2964 | #if CONFIG_SECLUDED_MEMORY |
| 2965 | extern void task_set_can_use_secluded_mem_locked( |
| 2966 | task_t task, |
| 2967 | boolean_t can_use_secluded_mem); |
| 2968 | #endif /* CONFIG_SECLUDED_MEMORY */ |
| 2969 | |
| 2970 | #if MACH_ASSERT |
| 2971 | int debug4k_panic_on_terminate = 0; |
| 2972 | #endif /* MACH_ASSERT */ |
| 2973 | kern_return_t |
| 2974 | task_terminate_internal( |
| 2975 | task_t task) |
| 2976 | { |
| 2977 | thread_t thread, self; |
| 2978 | task_t self_task; |
| 2979 | boolean_t interrupt_save; |
| 2980 | int pid = 0; |
| 2981 | |
| 2982 | assert(task != kernel_task); |
| 2983 | |
| 2984 | self = current_thread(); |
| 2985 | self_task = current_task(); |
| 2986 | |
| 2987 | /* |
| 2988 | * Get the task locked and make sure that we are not racing |
| 2989 | * with someone else trying to terminate us. |
| 2990 | */ |
| 2991 | if (task == self_task) { |
| 2992 | task_lock(task); |
| 2993 | } else if (task < self_task) { |
| 2994 | task_lock(task); |
| 2995 | task_lock(task: self_task); |
| 2996 | } else { |
| 2997 | task_lock(task: self_task); |
| 2998 | task_lock(task); |
| 2999 | } |
| 3000 | |
| 3001 | #if CONFIG_SECLUDED_MEMORY |
| 3002 | if (task->task_can_use_secluded_mem) { |
| 3003 | task_set_can_use_secluded_mem_locked(task, FALSE); |
| 3004 | } |
| 3005 | task->task_could_use_secluded_mem = FALSE; |
| 3006 | task->task_could_also_use_secluded_mem = FALSE; |
| 3007 | |
| 3008 | if (task->task_suppressed_secluded) { |
| 3009 | stop_secluded_suppression(task); |
| 3010 | } |
| 3011 | #endif /* CONFIG_SECLUDED_MEMORY */ |
| 3012 | |
| 3013 | if (!task->active) { |
| 3014 | /* |
| 3015 | * Task is already being terminated. |
| 3016 | * Just return an error. If we are dying, this will |
| 3017 | * just get us to our AST special handler and that |
| 3018 | * will get us to finalize the termination of ourselves. |
| 3019 | */ |
| 3020 | task_unlock(task); |
| 3021 | if (self_task != task) { |
| 3022 | task_unlock(task: self_task); |
| 3023 | } |
| 3024 | |
| 3025 | return KERN_FAILURE; |
| 3026 | } |
| 3027 | |
| 3028 | if (task_corpse_pending_report(task)) { |
| 3029 | /* |
| 3030 | * Task is marked for reporting as corpse. |
| 3031 | * Just return an error. This will |
| 3032 | * just get us to our AST special handler and that |
| 3033 | * will get us to finish the path to death |
| 3034 | */ |
| 3035 | task_unlock(task); |
| 3036 | if (self_task != task) { |
| 3037 | task_unlock(task: self_task); |
| 3038 | } |
| 3039 | |
| 3040 | return KERN_FAILURE; |
| 3041 | } |
| 3042 | |
| 3043 | if (self_task != task) { |
| 3044 | task_unlock(task: self_task); |
| 3045 | } |
| 3046 | |
| 3047 | /* |
| 3048 | * Make sure the current thread does not get aborted out of |
| 3049 | * the waits inside these operations. |
| 3050 | */ |
| 3051 | interrupt_save = thread_interrupt_level(THREAD_UNINT); |
| 3052 | |
| 3053 | /* |
| 3054 | * Indicate that we want all the threads to stop executing |
| 3055 | * at user space by holding the task (we would have held |
| 3056 | * each thread independently in thread_terminate_internal - |
| 3057 | * but this way we may be more likely to already find it |
| 3058 | * held there). Mark the task inactive, and prevent |
| 3059 | * further task operations via the task port. |
| 3060 | * |
| 3061 | * The vm_map and ipc_space must exist until this function returns, |
| 3062 | * convert_port_to_{map,space}_with_flavor relies on this behavior. |
| 3063 | */ |
| 3064 | task_hold_locked(task); |
| 3065 | task->active = FALSE; |
| 3066 | ipc_task_disable(task); |
| 3067 | |
| 3068 | #if CONFIG_EXCLAVES |
| 3069 | task_stop_conclave(task, false); |
| 3070 | #endif /* CONFIG_EXCLAVES */ |
| 3071 | |
| 3072 | #if CONFIG_TELEMETRY |
| 3073 | /* |
| 3074 | * Notify telemetry that this task is going away. |
| 3075 | */ |
| 3076 | telemetry_task_ctl_locked(task, TF_TELEMETRY, enable_disable: 0); |
| 3077 | #endif |
| 3078 | |
| 3079 | /* |
| 3080 | * Terminate each thread in the task. |
| 3081 | */ |
| 3082 | queue_iterate(&task->threads, thread, thread_t, task_threads) { |
| 3083 | thread_terminate_internal(thread); |
| 3084 | } |
| 3085 | |
| 3086 | #ifdef MACH_BSD |
| 3087 | void *bsd_info = get_bsdtask_info(task); |
| 3088 | if (bsd_info != NULL) { |
| 3089 | pid = proc_pid(p: bsd_info); |
| 3090 | } |
| 3091 | #endif /* MACH_BSD */ |
| 3092 | |
| 3093 | task_unlock(task); |
| 3094 | |
| 3095 | proc_set_task_policy(task, TASK_POLICY_ATTRIBUTE, |
| 3096 | TASK_POLICY_TERMINATED, TASK_POLICY_ENABLE); |
| 3097 | |
| 3098 | /* Early object reap phase */ |
| 3099 | |
| 3100 | // PR-17045188: Revisit implementation |
| 3101 | // task_partial_reap(task, pid); |
| 3102 | |
| 3103 | #if CONFIG_TASKWATCH |
| 3104 | /* |
| 3105 | * remove all task watchers |
| 3106 | */ |
| 3107 | task_removewatchers(task); |
| 3108 | |
| 3109 | #endif /* CONFIG_TASKWATCH */ |
| 3110 | |
| 3111 | /* |
| 3112 | * Destroy all synchronizers owned by the task. |
| 3113 | */ |
| 3114 | task_synchronizer_destroy_all(task); |
| 3115 | |
| 3116 | /* |
| 3117 | * Clear the watchport boost on the task. |
| 3118 | */ |
| 3119 | task_remove_turnstile_watchports(task); |
| 3120 | |
| 3121 | /* let iokit know 1 */ |
| 3122 | iokit_task_terminate(task, phase: 1); |
| 3123 | |
| 3124 | /* |
| 3125 | * Destroy the IPC space, leaving just a reference for it. |
| 3126 | */ |
| 3127 | ipc_space_terminate(space: task->itk_space); |
| 3128 | |
| 3129 | #if 00 |
| 3130 | /* if some ledgers go negative on tear-down again... */ |
| 3131 | ledger_disable_panic_on_negative(task->map->pmap->ledger, |
| 3132 | task_ledgers.phys_footprint); |
| 3133 | ledger_disable_panic_on_negative(task->map->pmap->ledger, |
| 3134 | task_ledgers.internal); |
| 3135 | ledger_disable_panic_on_negative(task->map->pmap->ledger, |
| 3136 | task_ledgers.iokit_mapped); |
| 3137 | ledger_disable_panic_on_negative(task->map->pmap->ledger, |
| 3138 | task_ledgers.alternate_accounting); |
| 3139 | ledger_disable_panic_on_negative(task->map->pmap->ledger, |
| 3140 | task_ledgers.alternate_accounting_compressed); |
| 3141 | #endif |
| 3142 | |
| 3143 | #if CONFIG_DEFERRED_RECLAIM |
| 3144 | /* |
| 3145 | * Remove this tasks reclaim buffer from global queues. |
| 3146 | */ |
| 3147 | if (task->deferred_reclamation_metadata != NULL) { |
| 3148 | vm_deferred_reclamation_buffer_uninstall(metadata: task->deferred_reclamation_metadata); |
| 3149 | } |
| 3150 | #endif /* CONFIG_DEFERRED_RECLAIM */ |
| 3151 | |
| 3152 | /* |
| 3153 | * If the current thread is a member of the task |
| 3154 | * being terminated, then the last reference to |
| 3155 | * the task will not be dropped until the thread |
| 3156 | * is finally reaped. To avoid incurring the |
| 3157 | * expense of removing the address space regions |
| 3158 | * at reap time, we do it explictly here. |
| 3159 | */ |
| 3160 | |
| 3161 | #if MACH_ASSERT |
| 3162 | /* |
| 3163 | * Identify the pmap's process, in case the pmap ledgers drift |
| 3164 | * and we have to report it. |
| 3165 | */ |
| 3166 | char procname[17]; |
| 3167 | void *proc = get_bsdtask_info(task); |
| 3168 | if (proc) { |
| 3169 | pid = proc_pid(proc); |
| 3170 | proc_name_kdp(proc, procname, sizeof(procname)); |
| 3171 | } else { |
| 3172 | pid = 0; |
| 3173 | strlcpy(procname, "<unknown>" , sizeof(procname)); |
| 3174 | } |
| 3175 | pmap_set_process(task->map->pmap, pid, procname); |
| 3176 | if (vm_map_page_shift(task->map) < (int)PAGE_SHIFT) { |
| 3177 | DEBUG4K_LIFE("map %p procname: %s\n" , task->map, procname); |
| 3178 | if (debug4k_panic_on_terminate) { |
| 3179 | panic("DEBUG4K: %s:%d %d[%s] map %p" , __FUNCTION__, __LINE__, pid, procname, task->map); |
| 3180 | } |
| 3181 | } |
| 3182 | #endif /* MACH_ASSERT */ |
| 3183 | |
| 3184 | vm_map_terminate(map: task->map); |
| 3185 | |
| 3186 | /* release our shared region */ |
| 3187 | vm_shared_region_set(task, NULL); |
| 3188 | |
| 3189 | #if __has_feature(ptrauth_calls) |
| 3190 | task_set_shared_region_id(task, NULL); |
| 3191 | #endif /* __has_feature(ptrauth_calls) */ |
| 3192 | |
| 3193 | lck_mtx_lock(lck: &tasks_threads_lock); |
| 3194 | queue_remove(&tasks, task, task_t, tasks); |
| 3195 | queue_enter(&terminated_tasks, task, task_t, tasks); |
| 3196 | tasks_count--; |
| 3197 | terminated_tasks_count++; |
| 3198 | lck_mtx_unlock(lck: &tasks_threads_lock); |
| 3199 | |
| 3200 | /* |
| 3201 | * We no longer need to guard against being aborted, so restore |
| 3202 | * the previous interruptible state. |
| 3203 | */ |
| 3204 | thread_interrupt_level(interruptible: interrupt_save); |
| 3205 | |
| 3206 | #if CONFIG_CPU_COUNTERS |
| 3207 | /* force the task to release all ctrs */ |
| 3208 | if (task->t_kpc & TASK_KPC_FORCED_ALL_CTRS) { |
| 3209 | kpc_force_all_ctrs(task, 0); |
| 3210 | } |
| 3211 | #endif /* CONFIG_CPU_COUNTERS */ |
| 3212 | |
| 3213 | #if CONFIG_COALITIONS |
| 3214 | /* |
| 3215 | * Leave the coalition for corpse task or task that |
| 3216 | * never had any active threads (e.g. fork, exec failure). |
| 3217 | * For task with active threads, the task will be removed |
| 3218 | * from coalition by last terminating thread. |
| 3219 | */ |
| 3220 | if (task->active_thread_count == 0) { |
| 3221 | coalitions_remove_task(task); |
| 3222 | } |
| 3223 | #endif |
| 3224 | |
| 3225 | #if CONFIG_FREEZE |
| 3226 | extern int vm_compressor_available; |
| 3227 | if (VM_CONFIG_FREEZER_SWAP_IS_ACTIVE && vm_compressor_available) { |
| 3228 | task_disown_frozen_csegs(task); |
| 3229 | assert(queue_empty(&task->task_frozen_cseg_q)); |
| 3230 | } |
| 3231 | #endif /* CONFIG_FREEZE */ |
| 3232 | |
| 3233 | |
| 3234 | /* |
| 3235 | * Get rid of the task active reference on itself. |
| 3236 | */ |
| 3237 | task_deallocate_grp(task, TASK_GRP_INTERNAL); |
| 3238 | |
| 3239 | return KERN_SUCCESS; |
| 3240 | } |
| 3241 | |
| 3242 | void |
| 3243 | tasks_system_suspend(boolean_t suspend) |
| 3244 | { |
| 3245 | task_t task; |
| 3246 | |
| 3247 | KDBG(MACHDBG_CODE(DBG_MACH_SCHED, MACH_SUSPEND_USERSPACE) | |
| 3248 | (suspend ? DBG_FUNC_START : DBG_FUNC_END)); |
| 3249 | |
| 3250 | lck_mtx_lock(lck: &tasks_threads_lock); |
| 3251 | assert(tasks_suspend_state != suspend); |
| 3252 | tasks_suspend_state = suspend; |
| 3253 | queue_iterate(&tasks, task, task_t, tasks) { |
| 3254 | if (task == kernel_task) { |
| 3255 | continue; |
| 3256 | } |
| 3257 | suspend ? task_suspend_internal(task) : task_resume_internal(task); |
| 3258 | } |
| 3259 | lck_mtx_unlock(lck: &tasks_threads_lock); |
| 3260 | } |
| 3261 | |
| 3262 | /* |
| 3263 | * task_start_halt: |
| 3264 | * |
| 3265 | * Shut the current task down (except for the current thread) in |
| 3266 | * preparation for dramatic changes to the task (probably exec). |
| 3267 | * We hold the task and mark all other threads in the task for |
| 3268 | * termination. |
| 3269 | */ |
| 3270 | kern_return_t |
| 3271 | task_start_halt(task_t task) |
| 3272 | { |
| 3273 | kern_return_t kr = KERN_SUCCESS; |
| 3274 | task_lock(task); |
| 3275 | kr = task_start_halt_locked(task, FALSE); |
| 3276 | task_unlock(task); |
| 3277 | return kr; |
| 3278 | } |
| 3279 | |
| 3280 | static kern_return_t |
| 3281 | task_start_halt_locked(task_t task, boolean_t should_mark_corpse) |
| 3282 | { |
| 3283 | thread_t thread, self; |
| 3284 | uint64_t dispatchqueue_offset; |
| 3285 | |
| 3286 | assert(task != kernel_task); |
| 3287 | |
| 3288 | self = current_thread(); |
| 3289 | |
| 3290 | if (task != get_threadtask(self) && !task_is_a_corpse_fork(task)) { |
| 3291 | return KERN_INVALID_ARGUMENT; |
| 3292 | } |
| 3293 | |
| 3294 | if (!should_mark_corpse && |
| 3295 | (task->halting || !task->active || !self->active)) { |
| 3296 | /* |
| 3297 | * Task or current thread is already being terminated. |
| 3298 | * Hurry up and return out of the current kernel context |
| 3299 | * so that we run our AST special handler to terminate |
| 3300 | * ourselves. If should_mark_corpse is set, the corpse |
| 3301 | * creation might have raced with exec, let the corpse |
| 3302 | * creation continue, once the current thread reaches AST |
| 3303 | * thread in exec will be woken up from task_complete_halt. |
| 3304 | * Exec will fail cause the proc was marked for exit. |
| 3305 | * Once the thread in exec reaches AST, it will call proc_exit |
| 3306 | * and deliver the EXC_CORPSE_NOTIFY. |
| 3307 | */ |
| 3308 | return KERN_FAILURE; |
| 3309 | } |
| 3310 | |
| 3311 | /* Thread creation will fail after this point of no return. */ |
| 3312 | task->halting = TRUE; |
| 3313 | |
| 3314 | /* |
| 3315 | * Mark all the threads to keep them from starting any more |
| 3316 | * user-level execution. The thread_terminate_internal code |
| 3317 | * would do this on a thread by thread basis anyway, but this |
| 3318 | * gives us a better chance of not having to wait there. |
| 3319 | */ |
| 3320 | task_hold_locked(task); |
| 3321 | |
| 3322 | #if CONFIG_EXCLAVES |
| 3323 | if (should_mark_corpse) { |
| 3324 | void *crash_info_ptr = task_get_corpseinfo(task); |
| 3325 | queue_iterate(&task->threads, thread, thread_t, task_threads) { |
| 3326 | if (crash_info_ptr != NULL && thread->th_exclaves_ipc_buffer != NULL) { |
| 3327 | struct thread_crash_exclaves_info info = { 0 }; |
| 3328 | |
| 3329 | info.tcei_flags = kExclaveRPCActive; |
| 3330 | info.tcei_scid = thread->th_exclaves_scheduling_context_id; |
| 3331 | info.tcei_thread_id = thread->thread_id; |
| 3332 | |
| 3333 | kcdata_push_data(crash_info_ptr, |
| 3334 | STACKSHOT_KCTYPE_KERN_EXCLAVES_CRASH_THREADINFO, |
| 3335 | sizeof(struct thread_crash_exclaves_info), &info); |
| 3336 | } |
| 3337 | } |
| 3338 | |
| 3339 | task_unlock(task); |
| 3340 | task_stop_conclave(task, true); |
| 3341 | task_lock(task); |
| 3342 | } |
| 3343 | #endif /* CONFIG_EXCLAVES */ |
| 3344 | |
| 3345 | dispatchqueue_offset = get_dispatchqueue_offset_from_proc(get_bsdtask_info(task)); |
| 3346 | /* |
| 3347 | * Terminate all the other threads in the task. |
| 3348 | */ |
| 3349 | queue_iterate(&task->threads, thread, thread_t, task_threads) |
| 3350 | { |
| 3351 | /* |
| 3352 | * Remove priority throttles for threads to terminate timely. This has |
| 3353 | * to be done after task_hold_locked() traps all threads to AST, but before |
| 3354 | * threads are marked inactive in thread_terminate_internal(). Takes thread |
| 3355 | * mutex lock. |
| 3356 | * |
| 3357 | * We need task_is_a_corpse() check so that we don't accidently update policy |
| 3358 | * for tasks that are doing posix_spawn(). |
| 3359 | * |
| 3360 | * See: thread_policy_update_tasklocked(). |
| 3361 | */ |
| 3362 | if (task_is_a_corpse(task)) { |
| 3363 | proc_set_thread_policy(thread, TASK_POLICY_ATTRIBUTE, |
| 3364 | TASK_POLICY_TERMINATED, TASK_POLICY_ENABLE); |
| 3365 | } |
| 3366 | |
| 3367 | if (should_mark_corpse) { |
| 3368 | thread_mtx_lock(thread); |
| 3369 | thread->inspection = TRUE; |
| 3370 | thread_mtx_unlock(thread); |
| 3371 | } |
| 3372 | if (thread != self) { |
| 3373 | thread_terminate_internal(thread); |
| 3374 | } |
| 3375 | } |
| 3376 | task->dispatchqueue_offset = dispatchqueue_offset; |
| 3377 | |
| 3378 | task_release_locked(task); |
| 3379 | |
| 3380 | return KERN_SUCCESS; |
| 3381 | } |
| 3382 | |
| 3383 | |
| 3384 | /* |
| 3385 | * task_complete_halt: |
| 3386 | * |
| 3387 | * Complete task halt by waiting for threads to terminate, then clean |
| 3388 | * up task resources (VM, port namespace, etc...) and then let the |
| 3389 | * current thread go in the (practically empty) task context. |
| 3390 | * |
| 3391 | * Note: task->halting flag is not cleared in order to avoid creation |
| 3392 | * of new thread in old exec'ed task. |
| 3393 | */ |
| 3394 | void |
| 3395 | task_complete_halt(task_t task) |
| 3396 | { |
| 3397 | task_lock(task); |
| 3398 | assert(task->halting); |
| 3399 | assert(task == current_task()); |
| 3400 | |
| 3401 | /* |
| 3402 | * Wait for the other threads to get shut down. |
| 3403 | * When the last other thread is reaped, we'll be |
| 3404 | * woken up. |
| 3405 | */ |
| 3406 | if (task->thread_count > 1) { |
| 3407 | assert_wait(event: (event_t)&task->halting, THREAD_UNINT); |
| 3408 | task_unlock(task); |
| 3409 | thread_block(THREAD_CONTINUE_NULL); |
| 3410 | } else { |
| 3411 | task_unlock(task); |
| 3412 | } |
| 3413 | |
| 3414 | #if CONFIG_DEFERRED_RECLAIM |
| 3415 | if (task->deferred_reclamation_metadata) { |
| 3416 | vm_deferred_reclamation_buffer_uninstall( |
| 3417 | metadata: task->deferred_reclamation_metadata); |
| 3418 | vm_deferred_reclamation_buffer_deallocate( |
| 3419 | metadata: task->deferred_reclamation_metadata); |
| 3420 | task->deferred_reclamation_metadata = NULL; |
| 3421 | } |
| 3422 | #endif /* CONFIG_DEFERRED_RECLAIM */ |
| 3423 | |
| 3424 | /* |
| 3425 | * Give the machine dependent code a chance |
| 3426 | * to perform cleanup of task-level resources |
| 3427 | * associated with the current thread before |
| 3428 | * ripping apart the task. |
| 3429 | */ |
| 3430 | machine_task_terminate(task); |
| 3431 | |
| 3432 | /* |
| 3433 | * Destroy all synchronizers owned by the task. |
| 3434 | */ |
| 3435 | task_synchronizer_destroy_all(task); |
| 3436 | |
| 3437 | /* let iokit know 1 */ |
| 3438 | iokit_task_terminate(task, phase: 1); |
| 3439 | |
| 3440 | /* |
| 3441 | * Terminate the IPC space. A long time ago, |
| 3442 | * this used to be ipc_space_clean() which would |
| 3443 | * keep the space active but hollow it. |
| 3444 | * |
| 3445 | * We really do not need this semantics given |
| 3446 | * tasks die with exec now. |
| 3447 | */ |
| 3448 | ipc_space_terminate(space: task->itk_space); |
| 3449 | |
| 3450 | /* |
| 3451 | * Clean out the address space, as we are going to be |
| 3452 | * getting a new one. |
| 3453 | */ |
| 3454 | vm_map_terminate(map: task->map); |
| 3455 | |
| 3456 | /* |
| 3457 | * Kick out any IOKitUser handles to the task. At best they're stale, |
| 3458 | * at worst someone is racing a SUID exec. |
| 3459 | */ |
| 3460 | /* let iokit know 2 */ |
| 3461 | iokit_task_terminate(task, phase: 2); |
| 3462 | } |
| 3463 | |
| 3464 | #ifdef CONFIG_TASK_SUSPEND_STATS |
| 3465 | |
| 3466 | static void |
| 3467 | _task_mark_suspend_source(task_t task) |
| 3468 | { |
| 3469 | int idx; |
| 3470 | task_suspend_stats_t stats; |
| 3471 | task_suspend_source_t source; |
| 3472 | task_lock_assert_owned(task); |
| 3473 | stats = &task->t_suspend_stats; |
| 3474 | |
| 3475 | idx = stats->tss_count % TASK_SUSPEND_SOURCES_MAX; |
| 3476 | source = &task->t_suspend_sources[idx]; |
| 3477 | bzero(source, sizeof(*source)); |
| 3478 | |
| 3479 | source->tss_time = mach_absolute_time(); |
| 3480 | source->tss_tid = current_thread()->thread_id; |
| 3481 | source->tss_pid = task_pid(current_task()); |
| 3482 | task_best_name(current_task(), source->tss_procname, sizeof(source->tss_procname)); |
| 3483 | |
| 3484 | stats->tss_count++; |
| 3485 | } |
| 3486 | |
| 3487 | static inline void |
| 3488 | _task_mark_suspend_start(task_t task) |
| 3489 | { |
| 3490 | task_lock_assert_owned(task); |
| 3491 | task->t_suspend_stats.tss_last_start = mach_absolute_time(); |
| 3492 | } |
| 3493 | |
| 3494 | static inline void |
| 3495 | _task_mark_suspend_end(task_t task) |
| 3496 | { |
| 3497 | task_lock_assert_owned(task); |
| 3498 | task->t_suspend_stats.tss_last_end = mach_absolute_time(); |
| 3499 | task->t_suspend_stats.tss_duration += (task->t_suspend_stats.tss_last_end - |
| 3500 | task->t_suspend_stats.tss_last_start); |
| 3501 | } |
| 3502 | |
| 3503 | static kern_return_t |
| 3504 | _task_get_suspend_stats_locked(task_t task, task_suspend_stats_t stats) |
| 3505 | { |
| 3506 | if (task == TASK_NULL || stats == NULL) { |
| 3507 | return KERN_INVALID_ARGUMENT; |
| 3508 | } |
| 3509 | task_lock_assert_owned(task); |
| 3510 | memcpy(stats, &task->t_suspend_stats, sizeof(task->t_suspend_stats)); |
| 3511 | return KERN_SUCCESS; |
| 3512 | } |
| 3513 | |
| 3514 | static kern_return_t |
| 3515 | _task_get_suspend_sources_locked(task_t task, task_suspend_source_t sources) |
| 3516 | { |
| 3517 | if (task == TASK_NULL || sources == NULL) { |
| 3518 | return KERN_INVALID_ARGUMENT; |
| 3519 | } |
| 3520 | task_lock_assert_owned(task); |
| 3521 | memcpy(sources, task->t_suspend_sources, |
| 3522 | sizeof(struct task_suspend_source_s) * TASK_SUSPEND_SOURCES_MAX); |
| 3523 | return KERN_SUCCESS; |
| 3524 | } |
| 3525 | |
| 3526 | #endif /* CONFIG_TASK_SUSPEND_STATS */ |
| 3527 | |
| 3528 | kern_return_t |
| 3529 | task_get_suspend_stats(task_t task, task_suspend_stats_t stats) |
| 3530 | { |
| 3531 | #ifdef CONFIG_TASK_SUSPEND_STATS |
| 3532 | kern_return_t kr; |
| 3533 | if (task == TASK_NULL || stats == NULL) { |
| 3534 | return KERN_INVALID_ARGUMENT; |
| 3535 | } |
| 3536 | task_lock(task); |
| 3537 | kr = _task_get_suspend_stats_locked(task, stats); |
| 3538 | task_unlock(task); |
| 3539 | return kr; |
| 3540 | #else /* CONFIG_TASK_SUSPEND_STATS */ |
| 3541 | (void)task; |
| 3542 | (void)stats; |
| 3543 | return KERN_NOT_SUPPORTED; |
| 3544 | #endif |
| 3545 | } |
| 3546 | |
| 3547 | kern_return_t |
| 3548 | task_get_suspend_stats_kdp(task_t task, task_suspend_stats_t stats) |
| 3549 | { |
| 3550 | #ifdef CONFIG_TASK_SUSPEND_STATS |
| 3551 | if (task == TASK_NULL || stats == NULL) { |
| 3552 | return KERN_INVALID_ARGUMENT; |
| 3553 | } |
| 3554 | memcpy(stats, &task->t_suspend_stats, sizeof(task->t_suspend_stats)); |
| 3555 | return KERN_SUCCESS; |
| 3556 | #else /* CONFIG_TASK_SUSPEND_STATS */ |
| 3557 | #pragma unused(task, stats) |
| 3558 | return KERN_NOT_SUPPORTED; |
| 3559 | #endif /* CONFIG_TASK_SUSPEND_STATS */ |
| 3560 | } |
| 3561 | |
| 3562 | kern_return_t |
| 3563 | task_get_suspend_sources(task_t task, task_suspend_source_array_t sources) |
| 3564 | { |
| 3565 | #ifdef CONFIG_TASK_SUSPEND_STATS |
| 3566 | kern_return_t kr; |
| 3567 | if (task == TASK_NULL || sources == NULL) { |
| 3568 | return KERN_INVALID_ARGUMENT; |
| 3569 | } |
| 3570 | task_lock(task); |
| 3571 | kr = _task_get_suspend_sources_locked(task, sources); |
| 3572 | task_unlock(task); |
| 3573 | return kr; |
| 3574 | #else /* CONFIG_TASK_SUSPEND_STATS */ |
| 3575 | (void)task; |
| 3576 | (void)sources; |
| 3577 | return KERN_NOT_SUPPORTED; |
| 3578 | #endif |
| 3579 | } |
| 3580 | |
| 3581 | kern_return_t |
| 3582 | task_get_suspend_sources_kdp(task_t task, task_suspend_source_array_t sources) |
| 3583 | { |
| 3584 | #ifdef CONFIG_TASK_SUSPEND_STATS |
| 3585 | if (task == TASK_NULL || sources == NULL) { |
| 3586 | return KERN_INVALID_ARGUMENT; |
| 3587 | } |
| 3588 | memcpy(sources, task->t_suspend_sources, |
| 3589 | sizeof(struct task_suspend_source_s) * TASK_SUSPEND_SOURCES_MAX); |
| 3590 | return KERN_SUCCESS; |
| 3591 | #else /* CONFIG_TASK_SUSPEND_STATS */ |
| 3592 | #pragma unused(task, sources) |
| 3593 | return KERN_NOT_SUPPORTED; |
| 3594 | #endif |
| 3595 | } |
| 3596 | |
| 3597 | /* |
| 3598 | * task_hold_locked: |
| 3599 | * |
| 3600 | * Suspend execution of the specified task. |
| 3601 | * This is a recursive-style suspension of the task, a count of |
| 3602 | * suspends is maintained. |
| 3603 | * |
| 3604 | * CONDITIONS: the task is locked and active. |
| 3605 | */ |
| 3606 | void |
| 3607 | task_hold_locked( |
| 3608 | task_t task) |
| 3609 | { |
| 3610 | thread_t thread; |
| 3611 | void *bsd_info = get_bsdtask_info(task); |
| 3612 | |
| 3613 | assert(task->active); |
| 3614 | |
| 3615 | if (task->suspend_count++ > 0) { |
| 3616 | return; |
| 3617 | } |
| 3618 | |
| 3619 | if (bsd_info) { |
| 3620 | workq_proc_suspended(p: bsd_info); |
| 3621 | } |
| 3622 | |
| 3623 | /* |
| 3624 | * Iterate through all the threads and hold them. |
| 3625 | */ |
| 3626 | queue_iterate(&task->threads, thread, thread_t, task_threads) { |
| 3627 | thread_mtx_lock(thread); |
| 3628 | thread_hold(thread); |
| 3629 | thread_mtx_unlock(thread); |
| 3630 | } |
| 3631 | |
| 3632 | #ifdef CONFIG_TASK_SUSPEND_STATS |
| 3633 | _task_mark_suspend_start(task); |
| 3634 | #endif |
| 3635 | } |
| 3636 | |
| 3637 | /* |
| 3638 | * task_hold_and_wait |
| 3639 | * |
| 3640 | * Same as the internal routine above, except that is must lock |
| 3641 | * and verify that the task is active. This differs from task_suspend |
| 3642 | * in that it places a kernel hold on the task rather than just a |
| 3643 | * user-level hold. This keeps users from over resuming and setting |
| 3644 | * it running out from under the kernel. |
| 3645 | * |
| 3646 | * CONDITIONS: the caller holds a reference on the task |
| 3647 | */ |
| 3648 | kern_return_t |
| 3649 | task_hold_and_wait( |
| 3650 | task_t task) |
| 3651 | { |
| 3652 | if (task == TASK_NULL) { |
| 3653 | return KERN_INVALID_ARGUMENT; |
| 3654 | } |
| 3655 | |
| 3656 | task_lock(task); |
| 3657 | if (!task->active) { |
| 3658 | task_unlock(task); |
| 3659 | return KERN_FAILURE; |
| 3660 | } |
| 3661 | |
| 3662 | #ifdef CONFIG_TASK_SUSPEND_STATS |
| 3663 | _task_mark_suspend_source(task); |
| 3664 | #endif /* CONFIG_TASK_SUSPEND_STATS */ |
| 3665 | |
| 3666 | task_hold_locked(task); |
| 3667 | task_wait_locked(task, FALSE); |
| 3668 | task_unlock(task); |
| 3669 | |
| 3670 | return KERN_SUCCESS; |
| 3671 | } |
| 3672 | |
| 3673 | /* |
| 3674 | * task_wait_locked: |
| 3675 | * |
| 3676 | * Wait for all threads in task to stop. |
| 3677 | * |
| 3678 | * Conditions: |
| 3679 | * Called with task locked, active, and held. |
| 3680 | */ |
| 3681 | void |
| 3682 | task_wait_locked( |
| 3683 | task_t task, |
| 3684 | boolean_t until_not_runnable) |
| 3685 | { |
| 3686 | thread_t thread, self; |
| 3687 | |
| 3688 | assert(task->active); |
| 3689 | assert(task->suspend_count > 0); |
| 3690 | |
| 3691 | self = current_thread(); |
| 3692 | |
| 3693 | /* |
| 3694 | * Iterate through all the threads and wait for them to |
| 3695 | * stop. Do not wait for the current thread if it is within |
| 3696 | * the task. |
| 3697 | */ |
| 3698 | queue_iterate(&task->threads, thread, thread_t, task_threads) { |
| 3699 | if (thread != self) { |
| 3700 | thread_wait(thread, until_not_runnable); |
| 3701 | } |
| 3702 | } |
| 3703 | } |
| 3704 | |
| 3705 | boolean_t |
| 3706 | task_is_app_suspended(task_t task) |
| 3707 | { |
| 3708 | return task->pidsuspended; |
| 3709 | } |
| 3710 | |
| 3711 | /* |
| 3712 | * task_release_locked: |
| 3713 | * |
| 3714 | * Release a kernel hold on a task. |
| 3715 | * |
| 3716 | * CONDITIONS: the task is locked and active |
| 3717 | */ |
| 3718 | void |
| 3719 | task_release_locked( |
| 3720 | task_t task) |
| 3721 | { |
| 3722 | thread_t thread; |
| 3723 | void *bsd_info = get_bsdtask_info(task); |
| 3724 | |
| 3725 | assert(task->active); |
| 3726 | assert(task->suspend_count > 0); |
| 3727 | |
| 3728 | if (--task->suspend_count > 0) { |
| 3729 | return; |
| 3730 | } |
| 3731 | |
| 3732 | if (bsd_info) { |
| 3733 | workq_proc_resumed(p: bsd_info); |
| 3734 | } |
| 3735 | |
| 3736 | queue_iterate(&task->threads, thread, thread_t, task_threads) { |
| 3737 | thread_mtx_lock(thread); |
| 3738 | thread_release(thread); |
| 3739 | thread_mtx_unlock(thread); |
| 3740 | } |
| 3741 | |
| 3742 | #if CONFIG_TASK_SUSPEND_STATS |
| 3743 | _task_mark_suspend_end(task); |
| 3744 | #endif |
| 3745 | } |
| 3746 | |
| 3747 | /* |
| 3748 | * task_release: |
| 3749 | * |
| 3750 | * Same as the internal routine above, except that it must lock |
| 3751 | * and verify that the task is active. |
| 3752 | * |
| 3753 | * CONDITIONS: The caller holds a reference to the task |
| 3754 | */ |
| 3755 | kern_return_t |
| 3756 | task_release( |
| 3757 | task_t task) |
| 3758 | { |
| 3759 | if (task == TASK_NULL) { |
| 3760 | return KERN_INVALID_ARGUMENT; |
| 3761 | } |
| 3762 | |
| 3763 | task_lock(task); |
| 3764 | |
| 3765 | if (!task->active) { |
| 3766 | task_unlock(task); |
| 3767 | |
| 3768 | return KERN_FAILURE; |
| 3769 | } |
| 3770 | |
| 3771 | task_release_locked(task); |
| 3772 | task_unlock(task); |
| 3773 | |
| 3774 | return KERN_SUCCESS; |
| 3775 | } |
| 3776 | |
| 3777 | static kern_return_t |
| 3778 | task_threads_internal( |
| 3779 | task_t task, |
| 3780 | thread_act_array_t *threads_out, |
| 3781 | mach_msg_type_number_t *countp, |
| 3782 | mach_thread_flavor_t flavor) |
| 3783 | { |
| 3784 | mach_msg_type_number_t actual, count, count_needed; |
| 3785 | thread_t *thread_list; |
| 3786 | thread_t thread; |
| 3787 | unsigned int i; |
| 3788 | |
| 3789 | count = 0; |
| 3790 | thread_list = NULL; |
| 3791 | |
| 3792 | if (task == TASK_NULL) { |
| 3793 | return KERN_INVALID_ARGUMENT; |
| 3794 | } |
| 3795 | |
| 3796 | assert(flavor <= THREAD_FLAVOR_INSPECT); |
| 3797 | |
| 3798 | for (;;) { |
| 3799 | task_lock(task); |
| 3800 | if (!task->active) { |
| 3801 | task_unlock(task); |
| 3802 | |
| 3803 | kfree_type(thread_t, count, thread_list); |
| 3804 | return KERN_FAILURE; |
| 3805 | } |
| 3806 | |
| 3807 | count_needed = actual = task->thread_count; |
| 3808 | if (count_needed <= count) { |
| 3809 | break; |
| 3810 | } |
| 3811 | |
| 3812 | /* unlock the task and allocate more memory */ |
| 3813 | task_unlock(task); |
| 3814 | |
| 3815 | kfree_type(thread_t, count, thread_list); |
| 3816 | count = count_needed; |
| 3817 | thread_list = kalloc_type(thread_t, count, Z_WAITOK); |
| 3818 | |
| 3819 | if (thread_list == NULL) { |
| 3820 | return KERN_RESOURCE_SHORTAGE; |
| 3821 | } |
| 3822 | } |
| 3823 | |
| 3824 | i = 0; |
| 3825 | queue_iterate(&task->threads, thread, thread_t, task_threads) { |
| 3826 | assert(i < actual); |
| 3827 | thread_reference(thread); |
| 3828 | thread_list[i++] = thread; |
| 3829 | } |
| 3830 | |
| 3831 | count_needed = actual; |
| 3832 | |
| 3833 | /* can unlock task now that we've got the thread refs */ |
| 3834 | task_unlock(task); |
| 3835 | |
| 3836 | if (actual == 0) { |
| 3837 | /* no threads, so return null pointer and deallocate memory */ |
| 3838 | |
| 3839 | *threads_out = NULL; |
| 3840 | *countp = 0; |
| 3841 | kfree_type(thread_t, count, thread_list); |
| 3842 | } else { |
| 3843 | /* if we allocated too much, must copy */ |
| 3844 | if (count_needed < count) { |
| 3845 | void *newaddr; |
| 3846 | |
| 3847 | newaddr = kalloc_type(thread_t, count_needed, Z_WAITOK); |
| 3848 | if (newaddr == NULL) { |
| 3849 | for (i = 0; i < actual; ++i) { |
| 3850 | thread_deallocate(thread: thread_list[i]); |
| 3851 | } |
| 3852 | kfree_type(thread_t, count, thread_list); |
| 3853 | return KERN_RESOURCE_SHORTAGE; |
| 3854 | } |
| 3855 | |
| 3856 | bcopy(src: thread_list, dst: newaddr, n: count_needed * sizeof(thread_t)); |
| 3857 | kfree_type(thread_t, count, thread_list); |
| 3858 | thread_list = (thread_t *)newaddr; |
| 3859 | } |
| 3860 | |
| 3861 | *threads_out = thread_list; |
| 3862 | *countp = actual; |
| 3863 | |
| 3864 | /* do the conversion that Mig should handle */ |
| 3865 | |
| 3866 | switch (flavor) { |
| 3867 | case THREAD_FLAVOR_CONTROL: |
| 3868 | if (task == current_task()) { |
| 3869 | for (i = 0; i < actual; ++i) { |
| 3870 | ((ipc_port_t *) thread_list)[i] = convert_thread_to_port_pinned(thread_list[i]); |
| 3871 | } |
| 3872 | } else { |
| 3873 | for (i = 0; i < actual; ++i) { |
| 3874 | ((ipc_port_t *) thread_list)[i] = convert_thread_to_port(thread_list[i]); |
| 3875 | } |
| 3876 | } |
| 3877 | break; |
| 3878 | case THREAD_FLAVOR_READ: |
| 3879 | for (i = 0; i < actual; ++i) { |
| 3880 | ((ipc_port_t *) thread_list)[i] = convert_thread_read_to_port(thread_list[i]); |
| 3881 | } |
| 3882 | break; |
| 3883 | case THREAD_FLAVOR_INSPECT: |
| 3884 | for (i = 0; i < actual; ++i) { |
| 3885 | ((ipc_port_t *) thread_list)[i] = convert_thread_inspect_to_port(thread_list[i]); |
| 3886 | } |
| 3887 | break; |
| 3888 | } |
| 3889 | } |
| 3890 | |
| 3891 | return KERN_SUCCESS; |
| 3892 | } |
| 3893 | |
| 3894 | kern_return_t |
| 3895 | task_threads( |
| 3896 | task_t task, |
| 3897 | thread_act_array_t *threads_out, |
| 3898 | mach_msg_type_number_t *count) |
| 3899 | { |
| 3900 | return task_threads_internal(task, threads_out, countp: count, THREAD_FLAVOR_CONTROL); |
| 3901 | } |
| 3902 | |
| 3903 | |
| 3904 | kern_return_t |
| 3905 | task_threads_from_user( |
| 3906 | mach_port_t port, |
| 3907 | thread_act_array_t *threads_out, |
| 3908 | mach_msg_type_number_t *count) |
| 3909 | { |
| 3910 | ipc_kobject_type_t kotype; |
| 3911 | kern_return_t kr; |
| 3912 | |
| 3913 | task_t task = convert_port_to_task_inspect_no_eval(port); |
| 3914 | |
| 3915 | if (task == TASK_NULL) { |
| 3916 | return KERN_INVALID_ARGUMENT; |
| 3917 | } |
| 3918 | |
| 3919 | kotype = ip_kotype(port); |
| 3920 | |
| 3921 | switch (kotype) { |
| 3922 | case IKOT_TASK_CONTROL: |
| 3923 | kr = task_threads_internal(task, threads_out, countp: count, THREAD_FLAVOR_CONTROL); |
| 3924 | break; |
| 3925 | case IKOT_TASK_READ: |
| 3926 | kr = task_threads_internal(task, threads_out, countp: count, THREAD_FLAVOR_READ); |
| 3927 | break; |
| 3928 | case IKOT_TASK_INSPECT: |
| 3929 | kr = task_threads_internal(task, threads_out, countp: count, THREAD_FLAVOR_INSPECT); |
| 3930 | break; |
| 3931 | default: |
| 3932 | panic("strange kobject type" ); |
| 3933 | break; |
| 3934 | } |
| 3935 | |
| 3936 | task_deallocate(task); |
| 3937 | return kr; |
| 3938 | } |
| 3939 | |
| 3940 | #define TASK_HOLD_NORMAL 0 |
| 3941 | #define TASK_HOLD_PIDSUSPEND 1 |
| 3942 | #define TASK_HOLD_LEGACY 2 |
| 3943 | #define TASK_HOLD_LEGACY_ALL 3 |
| 3944 | |
| 3945 | static kern_return_t |
| 3946 | place_task_hold( |
| 3947 | task_t task, |
| 3948 | int mode) |
| 3949 | { |
| 3950 | if (!task->active && !task_is_a_corpse(task)) { |
| 3951 | return KERN_FAILURE; |
| 3952 | } |
| 3953 | |
| 3954 | /* Return success for corpse task */ |
| 3955 | if (task_is_a_corpse(task)) { |
| 3956 | return KERN_SUCCESS; |
| 3957 | } |
| 3958 | |
| 3959 | KDBG_RELEASE(MACHDBG_CODE(DBG_MACH_IPC, MACH_TASK_SUSPEND), |
| 3960 | task_pid(task), |
| 3961 | task->thread_count > 0 ?((thread_t)queue_first(&task->threads))->thread_id : 0, |
| 3962 | task->user_stop_count, task->user_stop_count + 1); |
| 3963 | |
| 3964 | #if MACH_ASSERT |
| 3965 | current_task()->suspends_outstanding++; |
| 3966 | #endif |
| 3967 | |
| 3968 | if (mode == TASK_HOLD_LEGACY) { |
| 3969 | task->legacy_stop_count++; |
| 3970 | } |
| 3971 | |
| 3972 | #ifdef CONFIG_TASK_SUSPEND_STATS |
| 3973 | _task_mark_suspend_source(task); |
| 3974 | #endif /* CONFIG_TASK_SUSPEND_STATS */ |
| 3975 | |
| 3976 | if (task->user_stop_count++ > 0) { |
| 3977 | /* |
| 3978 | * If the stop count was positive, the task is |
| 3979 | * already stopped and we can exit. |
| 3980 | */ |
| 3981 | return KERN_SUCCESS; |
| 3982 | } |
| 3983 | |
| 3984 | /* |
| 3985 | * Put a kernel-level hold on the threads in the task (all |
| 3986 | * user-level task suspensions added together represent a |
| 3987 | * single kernel-level hold). We then wait for the threads |
| 3988 | * to stop executing user code. |
| 3989 | */ |
| 3990 | task_hold_locked(task); |
| 3991 | task_wait_locked(task, FALSE); |
| 3992 | |
| 3993 | return KERN_SUCCESS; |
| 3994 | } |
| 3995 | |
| 3996 | static kern_return_t |
| 3997 | release_task_hold( |
| 3998 | task_t task, |
| 3999 | int mode) |
| 4000 | { |
| 4001 | boolean_t release = FALSE; |
| 4002 | |
| 4003 | if (!task->active && !task_is_a_corpse(task)) { |
| 4004 | return KERN_FAILURE; |
| 4005 | } |
| 4006 | |
| 4007 | /* Return success for corpse task */ |
| 4008 | if (task_is_a_corpse(task)) { |
| 4009 | return KERN_SUCCESS; |
| 4010 | } |
| 4011 | |
| 4012 | if (mode == TASK_HOLD_PIDSUSPEND) { |
| 4013 | if (task->pidsuspended == FALSE) { |
| 4014 | return KERN_FAILURE; |
| 4015 | } |
| 4016 | task->pidsuspended = FALSE; |
| 4017 | } |
| 4018 | |
| 4019 | if (task->user_stop_count > (task->pidsuspended ? 1 : 0)) { |
| 4020 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
| 4021 | MACHDBG_CODE(DBG_MACH_IPC, MACH_TASK_RESUME) | DBG_FUNC_NONE, |
| 4022 | task_pid(task), ((thread_t)queue_first(&task->threads))->thread_id, |
| 4023 | task->user_stop_count, mode, task->legacy_stop_count); |
| 4024 | |
| 4025 | #if MACH_ASSERT |
| 4026 | /* |
| 4027 | * This is obviously not robust; if we suspend one task and then resume a different one, |
| 4028 | * we'll fly under the radar. This is only meant to catch the common case of a crashed |
| 4029 | * or buggy suspender. |
| 4030 | */ |
| 4031 | current_task()->suspends_outstanding--; |
| 4032 | #endif |
| 4033 | |
| 4034 | if (mode == TASK_HOLD_LEGACY_ALL) { |
| 4035 | if (task->legacy_stop_count >= task->user_stop_count) { |
| 4036 | task->user_stop_count = 0; |
| 4037 | release = TRUE; |
| 4038 | } else { |
| 4039 | task->user_stop_count -= task->legacy_stop_count; |
| 4040 | } |
| 4041 | task->legacy_stop_count = 0; |
| 4042 | } else { |
| 4043 | if (mode == TASK_HOLD_LEGACY && task->legacy_stop_count > 0) { |
| 4044 | task->legacy_stop_count--; |
| 4045 | } |
| 4046 | if (--task->user_stop_count == 0) { |
| 4047 | release = TRUE; |
| 4048 | } |
| 4049 | } |
| 4050 | } else { |
| 4051 | return KERN_FAILURE; |
| 4052 | } |
| 4053 | |
| 4054 | /* |
| 4055 | * Release the task if necessary. |
| 4056 | */ |
| 4057 | if (release) { |
| 4058 | task_release_locked(task); |
| 4059 | } |
| 4060 | |
| 4061 | return KERN_SUCCESS; |
| 4062 | } |
| 4063 | |
| 4064 | boolean_t |
| 4065 | get_task_suspended(task_t task) |
| 4066 | { |
| 4067 | return 0 != task->user_stop_count; |
| 4068 | } |
| 4069 | |
| 4070 | /* |
| 4071 | * task_suspend: |
| 4072 | * |
| 4073 | * Implement an (old-fashioned) user-level suspension on a task. |
| 4074 | * |
| 4075 | * Because the user isn't expecting to have to manage a suspension |
| 4076 | * token, we'll track it for him in the kernel in the form of a naked |
| 4077 | * send right to the task's resume port. All such send rights |
| 4078 | * account for a single suspension against the task (unlike task_suspend2() |
| 4079 | * where each caller gets a unique suspension count represented by a |
| 4080 | * unique send-once right). |
| 4081 | * |
| 4082 | * Conditions: |
| 4083 | * The caller holds a reference to the task |
| 4084 | */ |
| 4085 | kern_return_t |
| 4086 | task_suspend( |
| 4087 | task_t task) |
| 4088 | { |
| 4089 | kern_return_t kr; |
| 4090 | mach_port_t port; |
| 4091 | mach_port_name_t name; |
| 4092 | |
| 4093 | if (task == TASK_NULL || task == kernel_task) { |
| 4094 | return KERN_INVALID_ARGUMENT; |
| 4095 | } |
| 4096 | |
| 4097 | /* |
| 4098 | * place a legacy hold on the task. |
| 4099 | */ |
| 4100 | task_lock(task); |
| 4101 | kr = place_task_hold(task, TASK_HOLD_LEGACY); |
| 4102 | task_unlock(task); |
| 4103 | |
| 4104 | if (kr != KERN_SUCCESS) { |
| 4105 | return kr; |
| 4106 | } |
| 4107 | |
| 4108 | /* |
| 4109 | * Claim a send right on the task resume port, and request a no-senders |
| 4110 | * notification on that port (if none outstanding). |
| 4111 | */ |
| 4112 | itk_lock(task); |
| 4113 | port = task->itk_resume; |
| 4114 | if (port == IP_NULL) { |
| 4115 | port = ipc_kobject_alloc_port(kobject: task, type: IKOT_TASK_RESUME, |
| 4116 | options: IPC_KOBJECT_ALLOC_NSREQUEST | IPC_KOBJECT_ALLOC_MAKE_SEND); |
| 4117 | task->itk_resume = port; |
| 4118 | } else { |
| 4119 | (void)ipc_kobject_make_send_nsrequest(port, kobject: task, kotype: IKOT_TASK_RESUME); |
| 4120 | } |
| 4121 | itk_unlock(task); |
| 4122 | |
| 4123 | /* |
| 4124 | * Copyout the send right into the calling task's IPC space. It won't know it is there, |
| 4125 | * but we'll look it up when calling a traditional resume. Any IPC operations that |
| 4126 | * deallocate the send right will auto-release the suspension. |
| 4127 | */ |
| 4128 | if (IP_VALID(port)) { |
| 4129 | kr = ipc_object_copyout(current_space(), ip_to_object(port), |
| 4130 | MACH_MSG_TYPE_MOVE_SEND, flags: IPC_OBJECT_COPYOUT_FLAGS_NONE, |
| 4131 | NULL, NULL, namep: &name); |
| 4132 | } else { |
| 4133 | kr = KERN_SUCCESS; |
| 4134 | } |
| 4135 | if (kr != KERN_SUCCESS) { |
| 4136 | printf(format: "warning: %s(%d) failed to copyout suspension " |
| 4137 | "token for pid %d with error: %d\n" , |
| 4138 | proc_name_address(p: get_bsdtask_info(current_task())), |
| 4139 | proc_pid(p: get_bsdtask_info(current_task())), |
| 4140 | task_pid(task), kr); |
| 4141 | } |
| 4142 | |
| 4143 | return kr; |
| 4144 | } |
| 4145 | |
| 4146 | /* |
| 4147 | * task_resume: |
| 4148 | * Release a user hold on a task. |
| 4149 | * |
| 4150 | * Conditions: |
| 4151 | * The caller holds a reference to the task |
| 4152 | */ |
| 4153 | kern_return_t |
| 4154 | task_resume( |
| 4155 | task_t task) |
| 4156 | { |
| 4157 | kern_return_t kr; |
| 4158 | mach_port_name_t resume_port_name; |
| 4159 | ipc_entry_t resume_port_entry; |
| 4160 | ipc_space_t space = current_task()->itk_space; |
| 4161 | |
| 4162 | if (task == TASK_NULL || task == kernel_task) { |
| 4163 | return KERN_INVALID_ARGUMENT; |
| 4164 | } |
| 4165 | |
| 4166 | /* release a legacy task hold */ |
| 4167 | task_lock(task); |
| 4168 | kr = release_task_hold(task, TASK_HOLD_LEGACY); |
| 4169 | task_unlock(task); |
| 4170 | |
| 4171 | itk_lock(task); /* for itk_resume */ |
| 4172 | is_write_lock(space); /* spin lock */ |
| 4173 | if (is_active(space) && IP_VALID(task->itk_resume) && |
| 4174 | ipc_hash_lookup(space, ip_to_object(task->itk_resume), namep: &resume_port_name, entryp: &resume_port_entry) == TRUE) { |
| 4175 | /* |
| 4176 | * We found a suspension token in the caller's IPC space. Release a send right to indicate that |
| 4177 | * we are holding one less legacy hold on the task from this caller. If the release failed, |
| 4178 | * go ahead and drop all the rights, as someone either already released our holds or the task |
| 4179 | * is gone. |
| 4180 | */ |
| 4181 | itk_unlock(task); |
| 4182 | if (kr == KERN_SUCCESS) { |
| 4183 | ipc_right_dealloc(space, name: resume_port_name, entry: resume_port_entry); |
| 4184 | } else { |
| 4185 | ipc_right_destroy(space, name: resume_port_name, entry: resume_port_entry, FALSE, guard: 0); |
| 4186 | } |
| 4187 | /* space unlocked */ |
| 4188 | } else { |
| 4189 | itk_unlock(task); |
| 4190 | is_write_unlock(space); |
| 4191 | if (kr == KERN_SUCCESS) { |
| 4192 | printf(format: "warning: %s(%d) performed out-of-band resume on pid %d\n" , |
| 4193 | proc_name_address(p: get_bsdtask_info(current_task())), proc_pid(p: get_bsdtask_info(current_task())), |
| 4194 | task_pid(task)); |
| 4195 | } |
| 4196 | } |
| 4197 | |
| 4198 | return kr; |
| 4199 | } |
| 4200 | |
| 4201 | /* |
| 4202 | * Suspend a task that is already protected by a held lock. |
| 4203 | * Making/holding a token/reference/port is the caller's responsibility. |
| 4204 | */ |
| 4205 | kern_return_t |
| 4206 | task_suspend_internal_locked(task_t task) |
| 4207 | { |
| 4208 | if (task == TASK_NULL || task == kernel_task) { |
| 4209 | return KERN_INVALID_ARGUMENT; |
| 4210 | } |
| 4211 | |
| 4212 | return place_task_hold(task, TASK_HOLD_NORMAL); |
| 4213 | } |
| 4214 | |
| 4215 | /* |
| 4216 | * Suspend a task. |
| 4217 | * Making/holding a token/reference/port is the caller's responsibility. |
| 4218 | */ |
| 4219 | kern_return_t |
| 4220 | task_suspend_internal(task_t task) |
| 4221 | { |
| 4222 | kern_return_t kr; |
| 4223 | |
| 4224 | if (task == TASK_NULL || task == kernel_task) { |
| 4225 | return KERN_INVALID_ARGUMENT; |
| 4226 | } |
| 4227 | |
| 4228 | task_lock(task); |
| 4229 | kr = task_suspend_internal_locked(task); |
| 4230 | task_unlock(task); |
| 4231 | return kr; |
| 4232 | } |
| 4233 | |
| 4234 | /* |
| 4235 | * Suspend the target task, and return a suspension token. The token |
| 4236 | * represents a reference on the suspended task. |
| 4237 | */ |
| 4238 | static kern_return_t |
| 4239 | task_suspend2_grp( |
| 4240 | task_t task, |
| 4241 | task_suspension_token_t *suspend_token, |
| 4242 | task_grp_t grp) |
| 4243 | { |
| 4244 | kern_return_t kr; |
| 4245 | |
| 4246 | kr = task_suspend_internal(task); |
| 4247 | if (kr != KERN_SUCCESS) { |
| 4248 | *suspend_token = TASK_NULL; |
| 4249 | return kr; |
| 4250 | } |
| 4251 | |
| 4252 | /* |
| 4253 | * Take a reference on the target task and return that to the caller |
| 4254 | * as a "suspension token," which can be converted into an SO right to |
| 4255 | * the now-suspended task's resume port. |
| 4256 | */ |
| 4257 | task_reference_grp(task, grp); |
| 4258 | *suspend_token = task; |
| 4259 | |
| 4260 | return KERN_SUCCESS; |
| 4261 | } |
| 4262 | |
| 4263 | kern_return_t |
| 4264 | task_suspend2_mig( |
| 4265 | task_t task, |
| 4266 | task_suspension_token_t *suspend_token) |
| 4267 | { |
| 4268 | return task_suspend2_grp(task, suspend_token, grp: TASK_GRP_MIG); |
| 4269 | } |
| 4270 | |
| 4271 | kern_return_t |
| 4272 | task_suspend2_external( |
| 4273 | task_t task, |
| 4274 | task_suspension_token_t *suspend_token) |
| 4275 | { |
| 4276 | return task_suspend2_grp(task, suspend_token, grp: TASK_GRP_EXTERNAL); |
| 4277 | } |
| 4278 | |
| 4279 | /* |
| 4280 | * Resume a task that is already protected by a held lock. |
| 4281 | * (reference/token/port management is caller's responsibility). |
| 4282 | */ |
| 4283 | kern_return_t |
| 4284 | task_resume_internal_locked( |
| 4285 | task_suspension_token_t task) |
| 4286 | { |
| 4287 | if (task == TASK_NULL || task == kernel_task) { |
| 4288 | return KERN_INVALID_ARGUMENT; |
| 4289 | } |
| 4290 | |
| 4291 | return release_task_hold(task, TASK_HOLD_NORMAL); |
| 4292 | } |
| 4293 | |
| 4294 | /* |
| 4295 | * Resume a task. |
| 4296 | * (reference/token/port management is caller's responsibility). |
| 4297 | */ |
| 4298 | kern_return_t |
| 4299 | task_resume_internal( |
| 4300 | task_suspension_token_t task) |
| 4301 | { |
| 4302 | kern_return_t kr; |
| 4303 | |
| 4304 | if (task == TASK_NULL || task == kernel_task) { |
| 4305 | return KERN_INVALID_ARGUMENT; |
| 4306 | } |
| 4307 | |
| 4308 | task_lock(task); |
| 4309 | kr = task_resume_internal_locked(task); |
| 4310 | task_unlock(task); |
| 4311 | return kr; |
| 4312 | } |
| 4313 | |
| 4314 | /* |
| 4315 | * Resume the task using a suspension token. Consumes the token's ref. |
| 4316 | */ |
| 4317 | static kern_return_t |
| 4318 | task_resume2_grp( |
| 4319 | task_suspension_token_t task, |
| 4320 | task_grp_t grp) |
| 4321 | { |
| 4322 | kern_return_t kr; |
| 4323 | |
| 4324 | kr = task_resume_internal(task); |
| 4325 | task_suspension_token_deallocate_grp(token: task, grp); |
| 4326 | |
| 4327 | return kr; |
| 4328 | } |
| 4329 | |
| 4330 | kern_return_t |
| 4331 | task_resume2_mig( |
| 4332 | task_suspension_token_t task) |
| 4333 | { |
| 4334 | return task_resume2_grp(task, grp: TASK_GRP_MIG); |
| 4335 | } |
| 4336 | |
| 4337 | kern_return_t |
| 4338 | task_resume2_external( |
| 4339 | task_suspension_token_t task) |
| 4340 | { |
| 4341 | return task_resume2_grp(task, grp: TASK_GRP_EXTERNAL); |
| 4342 | } |
| 4343 | |
| 4344 | static void |
| 4345 | task_suspension_no_senders(ipc_port_t port, mach_port_mscount_t mscount) |
| 4346 | { |
| 4347 | task_t task = convert_port_to_task_suspension_token(port); |
| 4348 | kern_return_t kr; |
| 4349 | |
| 4350 | if (task == TASK_NULL) { |
| 4351 | return; |
| 4352 | } |
| 4353 | |
| 4354 | if (task == kernel_task) { |
| 4355 | task_suspension_token_deallocate(token: task); |
| 4356 | return; |
| 4357 | } |
| 4358 | |
| 4359 | task_lock(task); |
| 4360 | |
| 4361 | kr = ipc_kobject_nsrequest(port, sync: mscount, NULL); |
| 4362 | if (kr == KERN_FAILURE) { |
| 4363 | /* release all the [remaining] outstanding legacy holds */ |
| 4364 | release_task_hold(task, TASK_HOLD_LEGACY_ALL); |
| 4365 | } |
| 4366 | |
| 4367 | task_unlock(task); |
| 4368 | |
| 4369 | task_suspension_token_deallocate(token: task); /* drop token reference */ |
| 4370 | } |
| 4371 | |
| 4372 | /* |
| 4373 | * Fires when a send once made |
| 4374 | * by convert_task_suspension_token_to_port() dies. |
| 4375 | */ |
| 4376 | void |
| 4377 | task_suspension_send_once(ipc_port_t port) |
| 4378 | { |
| 4379 | task_t task = convert_port_to_task_suspension_token(port); |
| 4380 | |
| 4381 | if (task == TASK_NULL || task == kernel_task) { |
| 4382 | return; /* nothing to do */ |
| 4383 | } |
| 4384 | |
| 4385 | /* release the hold held by this specific send-once right */ |
| 4386 | task_lock(task); |
| 4387 | release_task_hold(task, TASK_HOLD_NORMAL); |
| 4388 | task_unlock(task); |
| 4389 | |
| 4390 | task_suspension_token_deallocate(token: task); /* drop token reference */ |
| 4391 | } |
| 4392 | |
| 4393 | static kern_return_t |
| 4394 | task_pidsuspend_locked(task_t task) |
| 4395 | { |
| 4396 | kern_return_t kr; |
| 4397 | |
| 4398 | if (task->pidsuspended) { |
| 4399 | kr = KERN_FAILURE; |
| 4400 | goto out; |
| 4401 | } |
| 4402 | |
| 4403 | task->pidsuspended = TRUE; |
| 4404 | |
| 4405 | kr = place_task_hold(task, TASK_HOLD_PIDSUSPEND); |
| 4406 | if (kr != KERN_SUCCESS) { |
| 4407 | task->pidsuspended = FALSE; |
| 4408 | } |
| 4409 | out: |
| 4410 | return kr; |
| 4411 | } |
| 4412 | |
| 4413 | |
| 4414 | /* |
| 4415 | * task_pidsuspend: |
| 4416 | * |
| 4417 | * Suspends a task by placing a hold on its threads. |
| 4418 | * |
| 4419 | * Conditions: |
| 4420 | * The caller holds a reference to the task |
| 4421 | */ |
| 4422 | kern_return_t |
| 4423 | task_pidsuspend( |
| 4424 | task_t task) |
| 4425 | { |
| 4426 | kern_return_t kr; |
| 4427 | |
| 4428 | if (task == TASK_NULL || task == kernel_task) { |
| 4429 | return KERN_INVALID_ARGUMENT; |
| 4430 | } |
| 4431 | |
| 4432 | task_lock(task); |
| 4433 | |
| 4434 | kr = task_pidsuspend_locked(task); |
| 4435 | |
| 4436 | task_unlock(task); |
| 4437 | |
| 4438 | if ((KERN_SUCCESS == kr) && task->message_app_suspended) { |
| 4439 | iokit_task_app_suspended_changed(task); |
| 4440 | } |
| 4441 | |
| 4442 | return kr; |
| 4443 | } |
| 4444 | |
| 4445 | /* |
| 4446 | * task_pidresume: |
| 4447 | * Resumes a previously suspended task. |
| 4448 | * |
| 4449 | * Conditions: |
| 4450 | * The caller holds a reference to the task |
| 4451 | */ |
| 4452 | kern_return_t |
| 4453 | task_pidresume( |
| 4454 | task_t task) |
| 4455 | { |
| 4456 | kern_return_t kr; |
| 4457 | |
| 4458 | if (task == TASK_NULL || task == kernel_task) { |
| 4459 | return KERN_INVALID_ARGUMENT; |
| 4460 | } |
| 4461 | |
| 4462 | task_lock(task); |
| 4463 | |
| 4464 | #if CONFIG_FREEZE |
| 4465 | |
| 4466 | while (task->changing_freeze_state) { |
| 4467 | assert_wait((event_t)&task->changing_freeze_state, THREAD_UNINT); |
| 4468 | task_unlock(task); |
| 4469 | thread_block(THREAD_CONTINUE_NULL); |
| 4470 | |
| 4471 | task_lock(task); |
| 4472 | } |
| 4473 | task->changing_freeze_state = TRUE; |
| 4474 | #endif |
| 4475 | |
| 4476 | kr = release_task_hold(task, TASK_HOLD_PIDSUSPEND); |
| 4477 | |
| 4478 | task_unlock(task); |
| 4479 | |
| 4480 | if ((KERN_SUCCESS == kr) && task->message_app_suspended) { |
| 4481 | iokit_task_app_suspended_changed(task); |
| 4482 | } |
| 4483 | |
| 4484 | #if CONFIG_FREEZE |
| 4485 | |
| 4486 | task_lock(task); |
| 4487 | |
| 4488 | if (kr == KERN_SUCCESS) { |
| 4489 | task->frozen = FALSE; |
| 4490 | } |
| 4491 | task->changing_freeze_state = FALSE; |
| 4492 | thread_wakeup(&task->changing_freeze_state); |
| 4493 | |
| 4494 | task_unlock(task); |
| 4495 | #endif |
| 4496 | |
| 4497 | return kr; |
| 4498 | } |
| 4499 | |
| 4500 | os_refgrp_decl(static, task_watchports_refgrp, "task_watchports" , NULL); |
| 4501 | |
| 4502 | /* |
| 4503 | * task_add_turnstile_watchports: |
| 4504 | * Setup watchports to boost the main thread of the task. |
| 4505 | * |
| 4506 | * Arguments: |
| 4507 | * task: task being spawned |
| 4508 | * thread: main thread of task |
| 4509 | * portwatch_ports: array of watchports |
| 4510 | * portwatch_count: number of watchports |
| 4511 | * |
| 4512 | * Conditions: |
| 4513 | * Nothing locked. |
| 4514 | */ |
| 4515 | void |
| 4516 | task_add_turnstile_watchports( |
| 4517 | task_t task, |
| 4518 | thread_t thread, |
| 4519 | ipc_port_t *portwatch_ports, |
| 4520 | uint32_t portwatch_count) |
| 4521 | { |
| 4522 | struct task_watchports *watchports = NULL; |
| 4523 | struct task_watchport_elem *previous_elem_array[TASK_MAX_WATCHPORT_COUNT] = {}; |
| 4524 | os_ref_count_t refs; |
| 4525 | |
| 4526 | /* Check if the task has terminated */ |
| 4527 | if (!task->active) { |
| 4528 | return; |
| 4529 | } |
| 4530 | |
| 4531 | assert(portwatch_count <= TASK_MAX_WATCHPORT_COUNT); |
| 4532 | |
| 4533 | watchports = task_watchports_alloc_init(task, thread, count: portwatch_count); |
| 4534 | |
| 4535 | /* Lock the ipc space */ |
| 4536 | is_write_lock(task->itk_space); |
| 4537 | |
| 4538 | /* Setup watchports to boost the main thread */ |
| 4539 | refs = task_add_turnstile_watchports_locked(task, |
| 4540 | watchports, previous_elem_array, portwatch_ports, |
| 4541 | portwatch_count); |
| 4542 | |
| 4543 | /* Drop the space lock */ |
| 4544 | is_write_unlock(task->itk_space); |
| 4545 | |
| 4546 | if (refs == 0) { |
| 4547 | task_watchports_deallocate(watchports); |
| 4548 | } |
| 4549 | |
| 4550 | /* Drop the ref on previous_elem_array */ |
| 4551 | for (uint32_t i = 0; i < portwatch_count && previous_elem_array[i] != NULL; i++) { |
| 4552 | task_watchport_elem_deallocate(watchport_elem: previous_elem_array[i]); |
| 4553 | } |
| 4554 | } |
| 4555 | |
| 4556 | /* |
| 4557 | * task_remove_turnstile_watchports: |
| 4558 | * Clear all turnstile boost on the task from watchports. |
| 4559 | * |
| 4560 | * Arguments: |
| 4561 | * task: task being terminated |
| 4562 | * |
| 4563 | * Conditions: |
| 4564 | * Nothing locked. |
| 4565 | */ |
| 4566 | void |
| 4567 | task_remove_turnstile_watchports( |
| 4568 | task_t task) |
| 4569 | { |
| 4570 | os_ref_count_t refs = TASK_MAX_WATCHPORT_COUNT; |
| 4571 | struct task_watchports *watchports = NULL; |
| 4572 | ipc_port_t port_freelist[TASK_MAX_WATCHPORT_COUNT] = {}; |
| 4573 | uint32_t portwatch_count; |
| 4574 | |
| 4575 | /* Lock the ipc space */ |
| 4576 | is_write_lock(task->itk_space); |
| 4577 | |
| 4578 | /* Check if watchport boost exist */ |
| 4579 | if (task->watchports == NULL) { |
| 4580 | is_write_unlock(task->itk_space); |
| 4581 | return; |
| 4582 | } |
| 4583 | watchports = task->watchports; |
| 4584 | portwatch_count = watchports->tw_elem_array_count; |
| 4585 | |
| 4586 | refs = task_remove_turnstile_watchports_locked(task, watchports, |
| 4587 | port_freelist); |
| 4588 | |
| 4589 | is_write_unlock(task->itk_space); |
| 4590 | |
| 4591 | /* Drop all the port references */ |
| 4592 | for (uint32_t i = 0; i < portwatch_count && port_freelist[i] != NULL; i++) { |
| 4593 | ip_release(port_freelist[i]); |
| 4594 | } |
| 4595 | |
| 4596 | /* Clear the task and thread references for task_watchport */ |
| 4597 | if (refs == 0) { |
| 4598 | task_watchports_deallocate(watchports); |
| 4599 | } |
| 4600 | } |
| 4601 | |
| 4602 | /* |
| 4603 | * task_transfer_turnstile_watchports: |
| 4604 | * Transfer all watchport turnstile boost from old task to new task. |
| 4605 | * |
| 4606 | * Arguments: |
| 4607 | * old_task: task calling exec |
| 4608 | * new_task: new exec'ed task |
| 4609 | * thread: main thread of new task |
| 4610 | * |
| 4611 | * Conditions: |
| 4612 | * Nothing locked. |
| 4613 | */ |
| 4614 | void |
| 4615 | task_transfer_turnstile_watchports( |
| 4616 | task_t old_task, |
| 4617 | task_t new_task, |
| 4618 | thread_t new_thread) |
| 4619 | { |
| 4620 | struct task_watchports *old_watchports = NULL; |
| 4621 | struct task_watchports *new_watchports = NULL; |
| 4622 | os_ref_count_t old_refs = TASK_MAX_WATCHPORT_COUNT; |
| 4623 | os_ref_count_t new_refs = TASK_MAX_WATCHPORT_COUNT; |
| 4624 | uint32_t portwatch_count; |
| 4625 | |
| 4626 | if (old_task->watchports == NULL || !new_task->active) { |
| 4627 | return; |
| 4628 | } |
| 4629 | |
| 4630 | /* Get the watch port count from the old task */ |
| 4631 | is_write_lock(old_task->itk_space); |
| 4632 | if (old_task->watchports == NULL) { |
| 4633 | is_write_unlock(old_task->itk_space); |
| 4634 | return; |
| 4635 | } |
| 4636 | |
| 4637 | portwatch_count = old_task->watchports->tw_elem_array_count; |
| 4638 | is_write_unlock(old_task->itk_space); |
| 4639 | |
| 4640 | new_watchports = task_watchports_alloc_init(task: new_task, thread: new_thread, count: portwatch_count); |
| 4641 | |
| 4642 | /* Lock the ipc space for old task */ |
| 4643 | is_write_lock(old_task->itk_space); |
| 4644 | |
| 4645 | /* Lock the ipc space for new task */ |
| 4646 | is_write_lock(new_task->itk_space); |
| 4647 | |
| 4648 | /* Check if watchport boost exist */ |
| 4649 | if (old_task->watchports == NULL || !new_task->active) { |
| 4650 | is_write_unlock(new_task->itk_space); |
| 4651 | is_write_unlock(old_task->itk_space); |
| 4652 | (void)task_watchports_release(new_watchports); |
| 4653 | task_watchports_deallocate(watchports: new_watchports); |
| 4654 | return; |
| 4655 | } |
| 4656 | |
| 4657 | old_watchports = old_task->watchports; |
| 4658 | assert(portwatch_count == old_task->watchports->tw_elem_array_count); |
| 4659 | |
| 4660 | /* Setup new task watchports */ |
| 4661 | new_task->watchports = new_watchports; |
| 4662 | |
| 4663 | for (uint32_t i = 0; i < portwatch_count; i++) { |
| 4664 | ipc_port_t port = old_watchports->tw_elem[i].twe_port; |
| 4665 | |
| 4666 | if (port == NULL) { |
| 4667 | task_watchport_elem_clear(&new_watchports->tw_elem[i]); |
| 4668 | continue; |
| 4669 | } |
| 4670 | |
| 4671 | /* Lock the port and check if it has the entry */ |
| 4672 | ip_mq_lock(port); |
| 4673 | |
| 4674 | task_watchport_elem_init(&new_watchports->tw_elem[i], new_task, port); |
| 4675 | |
| 4676 | if (ipc_port_replace_watchport_elem_conditional_locked(port, |
| 4677 | old_watchport_elem: &old_watchports->tw_elem[i], new_watchport_elem: &new_watchports->tw_elem[i]) == KERN_SUCCESS) { |
| 4678 | task_watchport_elem_clear(&old_watchports->tw_elem[i]); |
| 4679 | |
| 4680 | task_watchports_retain(new_watchports); |
| 4681 | old_refs = task_watchports_release(old_watchports); |
| 4682 | |
| 4683 | /* Check if all ports are cleaned */ |
| 4684 | if (old_refs == 0) { |
| 4685 | old_task->watchports = NULL; |
| 4686 | } |
| 4687 | } else { |
| 4688 | task_watchport_elem_clear(&new_watchports->tw_elem[i]); |
| 4689 | } |
| 4690 | /* port unlocked by ipc_port_replace_watchport_elem_conditional_locked */ |
| 4691 | } |
| 4692 | |
| 4693 | /* Drop the reference on new task_watchports struct returned by task_watchports_alloc_init */ |
| 4694 | new_refs = task_watchports_release(new_watchports); |
| 4695 | if (new_refs == 0) { |
| 4696 | new_task->watchports = NULL; |
| 4697 | } |
| 4698 | |
| 4699 | is_write_unlock(new_task->itk_space); |
| 4700 | is_write_unlock(old_task->itk_space); |
| 4701 | |
| 4702 | /* Clear the task and thread references for old_watchport */ |
| 4703 | if (old_refs == 0) { |
| 4704 | task_watchports_deallocate(watchports: old_watchports); |
| 4705 | } |
| 4706 | |
| 4707 | /* Clear the task and thread references for new_watchport */ |
| 4708 | if (new_refs == 0) { |
| 4709 | task_watchports_deallocate(watchports: new_watchports); |
| 4710 | } |
| 4711 | } |
| 4712 | |
| 4713 | /* |
| 4714 | * task_add_turnstile_watchports_locked: |
| 4715 | * Setup watchports to boost the main thread of the task. |
| 4716 | * |
| 4717 | * Arguments: |
| 4718 | * task: task to boost |
| 4719 | * watchports: watchport structure to be attached to the task |
| 4720 | * previous_elem_array: an array of old watchport_elem to be returned to caller |
| 4721 | * portwatch_ports: array of watchports |
| 4722 | * portwatch_count: number of watchports |
| 4723 | * |
| 4724 | * Conditions: |
| 4725 | * ipc space of the task locked. |
| 4726 | * returns array of old watchport_elem in previous_elem_array |
| 4727 | */ |
| 4728 | static os_ref_count_t |
| 4729 | task_add_turnstile_watchports_locked( |
| 4730 | task_t task, |
| 4731 | struct task_watchports *watchports, |
| 4732 | struct task_watchport_elem **previous_elem_array, |
| 4733 | ipc_port_t *portwatch_ports, |
| 4734 | uint32_t portwatch_count) |
| 4735 | { |
| 4736 | os_ref_count_t refs = TASK_MAX_WATCHPORT_COUNT; |
| 4737 | |
| 4738 | /* Check if the task is still active */ |
| 4739 | if (!task->active) { |
| 4740 | refs = task_watchports_release(watchports); |
| 4741 | return refs; |
| 4742 | } |
| 4743 | |
| 4744 | assert(task->watchports == NULL); |
| 4745 | task->watchports = watchports; |
| 4746 | |
| 4747 | for (uint32_t i = 0, j = 0; i < portwatch_count; i++) { |
| 4748 | ipc_port_t port = portwatch_ports[i]; |
| 4749 | |
| 4750 | task_watchport_elem_init(&watchports->tw_elem[i], task, port); |
| 4751 | if (port == NULL) { |
| 4752 | task_watchport_elem_clear(&watchports->tw_elem[i]); |
| 4753 | continue; |
| 4754 | } |
| 4755 | |
| 4756 | ip_mq_lock(port); |
| 4757 | |
| 4758 | /* Check if port is in valid state to be setup as watchport */ |
| 4759 | if (ipc_port_add_watchport_elem_locked(port, watchport_elem: &watchports->tw_elem[i], |
| 4760 | old_elem: &previous_elem_array[j]) != KERN_SUCCESS) { |
| 4761 | task_watchport_elem_clear(&watchports->tw_elem[i]); |
| 4762 | continue; |
| 4763 | } |
| 4764 | /* port unlocked on return */ |
| 4765 | |
| 4766 | ip_reference(port); |
| 4767 | task_watchports_retain(watchports); |
| 4768 | if (previous_elem_array[j] != NULL) { |
| 4769 | j++; |
| 4770 | } |
| 4771 | } |
| 4772 | |
| 4773 | /* Drop the reference on task_watchport struct returned by os_ref_init */ |
| 4774 | refs = task_watchports_release(watchports); |
| 4775 | if (refs == 0) { |
| 4776 | task->watchports = NULL; |
| 4777 | } |
| 4778 | |
| 4779 | return refs; |
| 4780 | } |
| 4781 | |
| 4782 | /* |
| 4783 | * task_remove_turnstile_watchports_locked: |
| 4784 | * Clear all turnstile boost on the task from watchports. |
| 4785 | * |
| 4786 | * Arguments: |
| 4787 | * task: task to remove watchports from |
| 4788 | * watchports: watchports structure for the task |
| 4789 | * port_freelist: array of ports returned with ref to caller |
| 4790 | * |
| 4791 | * |
| 4792 | * Conditions: |
| 4793 | * ipc space of the task locked. |
| 4794 | * array of ports with refs are returned in port_freelist |
| 4795 | */ |
| 4796 | static os_ref_count_t |
| 4797 | task_remove_turnstile_watchports_locked( |
| 4798 | task_t task, |
| 4799 | struct task_watchports *watchports, |
| 4800 | ipc_port_t *port_freelist) |
| 4801 | { |
| 4802 | os_ref_count_t refs = TASK_MAX_WATCHPORT_COUNT; |
| 4803 | |
| 4804 | for (uint32_t i = 0, j = 0; i < watchports->tw_elem_array_count; i++) { |
| 4805 | ipc_port_t port = watchports->tw_elem[i].twe_port; |
| 4806 | if (port == NULL) { |
| 4807 | continue; |
| 4808 | } |
| 4809 | |
| 4810 | /* Lock the port and check if it has the entry */ |
| 4811 | ip_mq_lock(port); |
| 4812 | if (ipc_port_clear_watchport_elem_internal_conditional_locked(port, |
| 4813 | watchport_elem: &watchports->tw_elem[i]) == KERN_SUCCESS) { |
| 4814 | task_watchport_elem_clear(&watchports->tw_elem[i]); |
| 4815 | port_freelist[j++] = port; |
| 4816 | refs = task_watchports_release(watchports); |
| 4817 | |
| 4818 | /* Check if all ports are cleaned */ |
| 4819 | if (refs == 0) { |
| 4820 | task->watchports = NULL; |
| 4821 | break; |
| 4822 | } |
| 4823 | } |
| 4824 | /* mqueue and port unlocked by ipc_port_clear_watchport_elem_internal_conditional_locked */ |
| 4825 | } |
| 4826 | return refs; |
| 4827 | } |
| 4828 | |
| 4829 | /* |
| 4830 | * task_watchports_alloc_init: |
| 4831 | * Allocate and initialize task watchport struct. |
| 4832 | * |
| 4833 | * Conditions: |
| 4834 | * Nothing locked. |
| 4835 | */ |
| 4836 | static struct task_watchports * |
| 4837 | task_watchports_alloc_init( |
| 4838 | task_t task, |
| 4839 | thread_t thread, |
| 4840 | uint32_t count) |
| 4841 | { |
| 4842 | struct task_watchports *watchports = kalloc_type(struct task_watchports, |
| 4843 | struct task_watchport_elem, count, Z_WAITOK | Z_ZERO | Z_NOFAIL); |
| 4844 | |
| 4845 | task_reference(task); |
| 4846 | thread_reference(thread); |
| 4847 | watchports->tw_task = task; |
| 4848 | watchports->tw_thread = thread; |
| 4849 | watchports->tw_elem_array_count = count; |
| 4850 | os_ref_init(&watchports->tw_refcount, &task_watchports_refgrp); |
| 4851 | |
| 4852 | return watchports; |
| 4853 | } |
| 4854 | |
| 4855 | /* |
| 4856 | * task_watchports_deallocate: |
| 4857 | * Deallocate task watchport struct. |
| 4858 | * |
| 4859 | * Conditions: |
| 4860 | * Nothing locked. |
| 4861 | */ |
| 4862 | static void |
| 4863 | task_watchports_deallocate( |
| 4864 | struct task_watchports *watchports) |
| 4865 | { |
| 4866 | uint32_t portwatch_count = watchports->tw_elem_array_count; |
| 4867 | |
| 4868 | task_deallocate(watchports->tw_task); |
| 4869 | thread_deallocate(thread: watchports->tw_thread); |
| 4870 | kfree_type(struct task_watchports, struct task_watchport_elem, |
| 4871 | portwatch_count, watchports); |
| 4872 | } |
| 4873 | |
| 4874 | /* |
| 4875 | * task_watchport_elem_deallocate: |
| 4876 | * Deallocate task watchport element and release its ref on task_watchport. |
| 4877 | * |
| 4878 | * Conditions: |
| 4879 | * Nothing locked. |
| 4880 | */ |
| 4881 | void |
| 4882 | task_watchport_elem_deallocate( |
| 4883 | struct task_watchport_elem *watchport_elem) |
| 4884 | { |
| 4885 | os_ref_count_t refs = TASK_MAX_WATCHPORT_COUNT; |
| 4886 | task_t task = watchport_elem->twe_task; |
| 4887 | struct task_watchports *watchports = NULL; |
| 4888 | ipc_port_t port = NULL; |
| 4889 | |
| 4890 | assert(task != NULL); |
| 4891 | |
| 4892 | /* Take the space lock to modify the elememt */ |
| 4893 | is_write_lock(task->itk_space); |
| 4894 | |
| 4895 | watchports = task->watchports; |
| 4896 | assert(watchports != NULL); |
| 4897 | |
| 4898 | port = watchport_elem->twe_port; |
| 4899 | assert(port != NULL); |
| 4900 | |
| 4901 | task_watchport_elem_clear(watchport_elem); |
| 4902 | refs = task_watchports_release(watchports); |
| 4903 | |
| 4904 | if (refs == 0) { |
| 4905 | task->watchports = NULL; |
| 4906 | } |
| 4907 | |
| 4908 | is_write_unlock(task->itk_space); |
| 4909 | |
| 4910 | ip_release(port); |
| 4911 | if (refs == 0) { |
| 4912 | task_watchports_deallocate(watchports); |
| 4913 | } |
| 4914 | } |
| 4915 | |
| 4916 | /* |
| 4917 | * task_has_watchports: |
| 4918 | * Return TRUE if task has watchport boosts. |
| 4919 | * |
| 4920 | * Conditions: |
| 4921 | * Nothing locked. |
| 4922 | */ |
| 4923 | boolean_t |
| 4924 | task_has_watchports(task_t task) |
| 4925 | { |
| 4926 | return task->watchports != NULL; |
| 4927 | } |
| 4928 | |
| 4929 | #if DEVELOPMENT || DEBUG |
| 4930 | |
| 4931 | extern void IOSleep(int); |
| 4932 | |
| 4933 | kern_return_t |
| 4934 | task_disconnect_page_mappings(task_t task) |
| 4935 | { |
| 4936 | int n; |
| 4937 | |
| 4938 | if (task == TASK_NULL || task == kernel_task) { |
| 4939 | return KERN_INVALID_ARGUMENT; |
| 4940 | } |
| 4941 | |
| 4942 | /* |
| 4943 | * this function is used to strip all of the mappings from |
| 4944 | * the pmap for the specified task to force the task to |
| 4945 | * re-fault all of the pages it is actively using... this |
| 4946 | * allows us to approximate the true working set of the |
| 4947 | * specified task. We only engage if at least 1 of the |
| 4948 | * threads in the task is runnable, but we want to continuously |
| 4949 | * sweep (at least for a while - I've arbitrarily set the limit at |
| 4950 | * 100 sweeps to be re-looked at as we gain experience) to get a better |
| 4951 | * view into what areas within a page are being visited (as opposed to only |
| 4952 | * seeing the first fault of a page after the task becomes |
| 4953 | * runnable)... in the future I may |
| 4954 | * try to block until awakened by a thread in this task |
| 4955 | * being made runnable, but for now we'll periodically poll from the |
| 4956 | * user level debug tool driving the sysctl |
| 4957 | */ |
| 4958 | for (n = 0; n < 100; n++) { |
| 4959 | thread_t thread; |
| 4960 | boolean_t runnable; |
| 4961 | boolean_t do_unnest; |
| 4962 | int page_count; |
| 4963 | |
| 4964 | runnable = FALSE; |
| 4965 | do_unnest = FALSE; |
| 4966 | |
| 4967 | task_lock(task); |
| 4968 | |
| 4969 | queue_iterate(&task->threads, thread, thread_t, task_threads) { |
| 4970 | if (thread->state & TH_RUN) { |
| 4971 | runnable = TRUE; |
| 4972 | break; |
| 4973 | } |
| 4974 | } |
| 4975 | if (n == 0) { |
| 4976 | task->task_disconnected_count++; |
| 4977 | } |
| 4978 | |
| 4979 | if (task->task_unnested == FALSE) { |
| 4980 | if (runnable == TRUE) { |
| 4981 | task->task_unnested = TRUE; |
| 4982 | do_unnest = TRUE; |
| 4983 | } |
| 4984 | } |
| 4985 | task_unlock(task); |
| 4986 | |
| 4987 | if (runnable == FALSE) { |
| 4988 | break; |
| 4989 | } |
| 4990 | |
| 4991 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, (MACHDBG_CODE(DBG_MACH_WORKINGSET, VM_DISCONNECT_TASK_PAGE_MAPPINGS)) | DBG_FUNC_START, |
| 4992 | task, do_unnest, task->task_disconnected_count, 0, 0); |
| 4993 | |
| 4994 | page_count = vm_map_disconnect_page_mappings(task->map, do_unnest); |
| 4995 | |
| 4996 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, (MACHDBG_CODE(DBG_MACH_WORKINGSET, VM_DISCONNECT_TASK_PAGE_MAPPINGS)) | DBG_FUNC_END, |
| 4997 | task, page_count, 0, 0, 0); |
| 4998 | |
| 4999 | if ((n % 5) == 4) { |
| 5000 | IOSleep(1); |
| 5001 | } |
| 5002 | } |
| 5003 | return KERN_SUCCESS; |
| 5004 | } |
| 5005 | |
| 5006 | #endif |
| 5007 | |
| 5008 | |
| 5009 | #if CONFIG_FREEZE |
| 5010 | |
| 5011 | /* |
| 5012 | * task_freeze: |
| 5013 | * |
| 5014 | * Freeze a task. |
| 5015 | * |
| 5016 | * Conditions: |
| 5017 | * The caller holds a reference to the task |
| 5018 | */ |
| 5019 | extern void vm_wake_compactor_swapper(void); |
| 5020 | extern struct freezer_context freezer_context_global; |
| 5021 | |
| 5022 | kern_return_t |
| 5023 | task_freeze( |
| 5024 | task_t task, |
| 5025 | uint32_t *purgeable_count, |
| 5026 | uint32_t *wired_count, |
| 5027 | uint32_t *clean_count, |
| 5028 | uint32_t *dirty_count, |
| 5029 | uint32_t dirty_budget, |
| 5030 | uint32_t *shared_count, |
| 5031 | int *freezer_error_code, |
| 5032 | boolean_t eval_only) |
| 5033 | { |
| 5034 | kern_return_t kr = KERN_SUCCESS; |
| 5035 | |
| 5036 | if (task == TASK_NULL || task == kernel_task) { |
| 5037 | return KERN_INVALID_ARGUMENT; |
| 5038 | } |
| 5039 | |
| 5040 | task_lock(task); |
| 5041 | |
| 5042 | while (task->changing_freeze_state) { |
| 5043 | assert_wait((event_t)&task->changing_freeze_state, THREAD_UNINT); |
| 5044 | task_unlock(task); |
| 5045 | thread_block(THREAD_CONTINUE_NULL); |
| 5046 | |
| 5047 | task_lock(task); |
| 5048 | } |
| 5049 | if (task->frozen) { |
| 5050 | task_unlock(task); |
| 5051 | return KERN_FAILURE; |
| 5052 | } |
| 5053 | task->changing_freeze_state = TRUE; |
| 5054 | |
| 5055 | freezer_context_global.freezer_ctx_task = task; |
| 5056 | |
| 5057 | task_unlock(task); |
| 5058 | |
| 5059 | kr = vm_map_freeze(task, |
| 5060 | purgeable_count, |
| 5061 | wired_count, |
| 5062 | clean_count, |
| 5063 | dirty_count, |
| 5064 | dirty_budget, |
| 5065 | shared_count, |
| 5066 | freezer_error_code, |
| 5067 | eval_only); |
| 5068 | |
| 5069 | task_lock(task); |
| 5070 | |
| 5071 | if ((kr == KERN_SUCCESS) && (eval_only == FALSE)) { |
| 5072 | task->frozen = TRUE; |
| 5073 | |
| 5074 | freezer_context_global.freezer_ctx_task = NULL; |
| 5075 | freezer_context_global.freezer_ctx_uncompressed_pages = 0; |
| 5076 | |
| 5077 | if (VM_CONFIG_FREEZER_SWAP_IS_ACTIVE) { |
| 5078 | /* |
| 5079 | * reset the counter tracking the # of swapped compressed pages |
| 5080 | * because we are now done with this freeze session and task. |
| 5081 | */ |
| 5082 | |
| 5083 | *dirty_count = (uint32_t) (freezer_context_global.freezer_ctx_swapped_bytes / PAGE_SIZE_64); /*used to track pageouts*/ |
| 5084 | } |
| 5085 | |
| 5086 | freezer_context_global.freezer_ctx_swapped_bytes = 0; |
| 5087 | } |
| 5088 | |
| 5089 | task->changing_freeze_state = FALSE; |
| 5090 | thread_wakeup(&task->changing_freeze_state); |
| 5091 | |
| 5092 | task_unlock(task); |
| 5093 | |
| 5094 | if (VM_CONFIG_COMPRESSOR_IS_PRESENT && |
| 5095 | (kr == KERN_SUCCESS) && |
| 5096 | (eval_only == FALSE)) { |
| 5097 | vm_wake_compactor_swapper(); |
| 5098 | /* |
| 5099 | * We do an explicit wakeup of the swapout thread here |
| 5100 | * because the compact_and_swap routines don't have |
| 5101 | * knowledge about these kind of "per-task packed c_segs" |
| 5102 | * and so will not be evaluating whether we need to do |
| 5103 | * a wakeup there. |
| 5104 | */ |
| 5105 | thread_wakeup((event_t)&vm_swapout_thread); |
| 5106 | } |
| 5107 | |
| 5108 | return kr; |
| 5109 | } |
| 5110 | |
| 5111 | /* |
| 5112 | * task_thaw: |
| 5113 | * |
| 5114 | * Thaw a currently frozen task. |
| 5115 | * |
| 5116 | * Conditions: |
| 5117 | * The caller holds a reference to the task |
| 5118 | */ |
| 5119 | kern_return_t |
| 5120 | task_thaw( |
| 5121 | task_t task) |
| 5122 | { |
| 5123 | if (task == TASK_NULL || task == kernel_task) { |
| 5124 | return KERN_INVALID_ARGUMENT; |
| 5125 | } |
| 5126 | |
| 5127 | task_lock(task); |
| 5128 | |
| 5129 | while (task->changing_freeze_state) { |
| 5130 | assert_wait((event_t)&task->changing_freeze_state, THREAD_UNINT); |
| 5131 | task_unlock(task); |
| 5132 | thread_block(THREAD_CONTINUE_NULL); |
| 5133 | |
| 5134 | task_lock(task); |
| 5135 | } |
| 5136 | if (!task->frozen) { |
| 5137 | task_unlock(task); |
| 5138 | return KERN_FAILURE; |
| 5139 | } |
| 5140 | task->frozen = FALSE; |
| 5141 | |
| 5142 | task_unlock(task); |
| 5143 | |
| 5144 | return KERN_SUCCESS; |
| 5145 | } |
| 5146 | |
| 5147 | void |
| 5148 | task_update_frozen_to_swap_acct(task_t task, int64_t amount, freezer_acct_op_t op) |
| 5149 | { |
| 5150 | /* |
| 5151 | * We don't assert that the task lock is held because we call this |
| 5152 | * routine from the decompression path and we won't be holding the |
| 5153 | * task lock. However, since we are in the context of the task we are |
| 5154 | * safe. |
| 5155 | * In the case of the task_freeze path, we call it from behind the task |
| 5156 | * lock but we don't need to because we have a reference on the proc |
| 5157 | * being frozen. |
| 5158 | */ |
| 5159 | |
| 5160 | assert(task); |
| 5161 | if (amount == 0) { |
| 5162 | return; |
| 5163 | } |
| 5164 | |
| 5165 | if (op == CREDIT_TO_SWAP) { |
| 5166 | ledger_credit_nocheck(task->ledger, task_ledgers.frozen_to_swap, amount); |
| 5167 | } else if (op == DEBIT_FROM_SWAP) { |
| 5168 | ledger_debit_nocheck(task->ledger, task_ledgers.frozen_to_swap, amount); |
| 5169 | } else { |
| 5170 | panic("task_update_frozen_to_swap_acct: Invalid ledger op" ); |
| 5171 | } |
| 5172 | } |
| 5173 | #endif /* CONFIG_FREEZE */ |
| 5174 | |
| 5175 | kern_return_t |
| 5176 | task_set_security_tokens( |
| 5177 | task_t task, |
| 5178 | security_token_t sec_token, |
| 5179 | audit_token_t audit_token, |
| 5180 | host_priv_t host_priv) |
| 5181 | { |
| 5182 | ipc_port_t host_port = IP_NULL; |
| 5183 | kern_return_t kr; |
| 5184 | |
| 5185 | if (task == TASK_NULL) { |
| 5186 | return KERN_INVALID_ARGUMENT; |
| 5187 | } |
| 5188 | |
| 5189 | task_lock(task); |
| 5190 | task_set_tokens(task, sec_token: &sec_token, audit_token: &audit_token); |
| 5191 | task_unlock(task); |
| 5192 | |
| 5193 | if (host_priv != HOST_PRIV_NULL) { |
| 5194 | kr = host_get_host_priv_port(host_priv, &host_port); |
| 5195 | } else { |
| 5196 | kr = host_get_host_port(host_priv_self(), &host_port); |
| 5197 | } |
| 5198 | assert(kr == KERN_SUCCESS); |
| 5199 | |
| 5200 | kr = task_set_special_port_internal(task, TASK_HOST_PORT, port: host_port); |
| 5201 | return kr; |
| 5202 | } |
| 5203 | |
| 5204 | kern_return_t |
| 5205 | task_send_trace_memory( |
| 5206 | __unused task_t target_task, |
| 5207 | __unused uint32_t pid, |
| 5208 | __unused uint64_t uniqueid) |
| 5209 | { |
| 5210 | return KERN_INVALID_ARGUMENT; |
| 5211 | } |
| 5212 | |
| 5213 | /* |
| 5214 | * This routine was added, pretty much exclusively, for registering the |
| 5215 | * RPC glue vector for in-kernel short circuited tasks. Rather than |
| 5216 | * removing it completely, I have only disabled that feature (which was |
| 5217 | * the only feature at the time). It just appears that we are going to |
| 5218 | * want to add some user data to tasks in the future (i.e. bsd info, |
| 5219 | * task names, etc...), so I left it in the formal task interface. |
| 5220 | */ |
| 5221 | kern_return_t |
| 5222 | task_set_info( |
| 5223 | task_t task, |
| 5224 | task_flavor_t flavor, |
| 5225 | __unused task_info_t task_info_in, /* pointer to IN array */ |
| 5226 | __unused mach_msg_type_number_t task_info_count) |
| 5227 | { |
| 5228 | if (task == TASK_NULL) { |
| 5229 | return KERN_INVALID_ARGUMENT; |
| 5230 | } |
| 5231 | switch (flavor) { |
| 5232 | #if CONFIG_ATM |
| 5233 | case TASK_TRACE_MEMORY_INFO: |
| 5234 | return KERN_NOT_SUPPORTED; |
| 5235 | #endif // CONFIG_ATM |
| 5236 | default: |
| 5237 | return KERN_INVALID_ARGUMENT; |
| 5238 | } |
| 5239 | } |
| 5240 | |
| 5241 | static void |
| 5242 | _task_fill_times(task_t task, time_value_t *user_time, time_value_t *sys_time) |
| 5243 | { |
| 5244 | clock_sec_t sec; |
| 5245 | clock_usec_t usec; |
| 5246 | |
| 5247 | struct recount_times_mach times = recount_task_terminated_times(task); |
| 5248 | absolutetime_to_microtime(abstime: times.rtm_user, secs: &sec, microsecs: &usec); |
| 5249 | user_time->seconds = (typeof(user_time->seconds))sec; |
| 5250 | user_time->microseconds = usec; |
| 5251 | absolutetime_to_microtime(abstime: times.rtm_system, secs: &sec, microsecs: &usec); |
| 5252 | sys_time->seconds = (typeof(sys_time->seconds))sec; |
| 5253 | sys_time->microseconds = usec; |
| 5254 | } |
| 5255 | |
| 5256 | int radar_20146450 = 1; |
| 5257 | kern_return_t |
| 5258 | task_info( |
| 5259 | task_t task, |
| 5260 | task_flavor_t flavor, |
| 5261 | task_info_t task_info_out, |
| 5262 | mach_msg_type_number_t *task_info_count) |
| 5263 | { |
| 5264 | kern_return_t error = KERN_SUCCESS; |
| 5265 | mach_msg_type_number_t original_task_info_count; |
| 5266 | bool is_kernel_task = (task == kernel_task); |
| 5267 | |
| 5268 | if (task == TASK_NULL) { |
| 5269 | return KERN_INVALID_ARGUMENT; |
| 5270 | } |
| 5271 | |
| 5272 | original_task_info_count = *task_info_count; |
| 5273 | task_lock(task); |
| 5274 | |
| 5275 | if (task != current_task() && !task->active) { |
| 5276 | task_unlock(task); |
| 5277 | return KERN_INVALID_ARGUMENT; |
| 5278 | } |
| 5279 | |
| 5280 | |
| 5281 | switch (flavor) { |
| 5282 | case TASK_BASIC_INFO_32: |
| 5283 | case TASK_BASIC2_INFO_32: |
| 5284 | #if defined(__arm64__) |
| 5285 | case TASK_BASIC_INFO_64: |
| 5286 | #endif |
| 5287 | { |
| 5288 | task_basic_info_32_t basic_info; |
| 5289 | ledger_amount_t tmp; |
| 5290 | |
| 5291 | if (*task_info_count < TASK_BASIC_INFO_32_COUNT) { |
| 5292 | error = KERN_INVALID_ARGUMENT; |
| 5293 | break; |
| 5294 | } |
| 5295 | |
| 5296 | basic_info = (task_basic_info_32_t)task_info_out; |
| 5297 | |
| 5298 | basic_info->virtual_size = (typeof(basic_info->virtual_size)) |
| 5299 | vm_map_adjusted_size(map: is_kernel_task ? kernel_map : task->map); |
| 5300 | if (flavor == TASK_BASIC2_INFO_32) { |
| 5301 | /* |
| 5302 | * The "BASIC2" flavor gets the maximum resident |
| 5303 | * size instead of the current resident size... |
| 5304 | */ |
| 5305 | ledger_get_lifetime_max(ledger: task->ledger, entry: task_ledgers.phys_mem, max_lifetime_balance: &tmp); |
| 5306 | } else { |
| 5307 | ledger_get_balance(ledger: task->ledger, entry: task_ledgers.phys_mem, balance: &tmp); |
| 5308 | } |
| 5309 | basic_info->resident_size = (natural_t) MIN((ledger_amount_t) UINT32_MAX, tmp); |
| 5310 | |
| 5311 | _task_fill_times(task, user_time: &basic_info->user_time, |
| 5312 | sys_time: &basic_info->system_time); |
| 5313 | |
| 5314 | basic_info->policy = is_kernel_task ? POLICY_RR : POLICY_TIMESHARE; |
| 5315 | basic_info->suspend_count = task->user_stop_count; |
| 5316 | |
| 5317 | *task_info_count = TASK_BASIC_INFO_32_COUNT; |
| 5318 | break; |
| 5319 | } |
| 5320 | |
| 5321 | #if defined(__arm64__) |
| 5322 | case TASK_BASIC_INFO_64_2: |
| 5323 | { |
| 5324 | task_basic_info_64_2_t basic_info; |
| 5325 | |
| 5326 | if (*task_info_count < TASK_BASIC_INFO_64_2_COUNT) { |
| 5327 | error = KERN_INVALID_ARGUMENT; |
| 5328 | break; |
| 5329 | } |
| 5330 | |
| 5331 | basic_info = (task_basic_info_64_2_t)task_info_out; |
| 5332 | |
| 5333 | basic_info->virtual_size = vm_map_adjusted_size(map: is_kernel_task ? |
| 5334 | kernel_map : task->map); |
| 5335 | ledger_get_balance(ledger: task->ledger, entry: task_ledgers.phys_mem, |
| 5336 | balance: (ledger_amount_t *)&basic_info->resident_size); |
| 5337 | basic_info->policy = is_kernel_task ? POLICY_RR : POLICY_TIMESHARE; |
| 5338 | basic_info->suspend_count = task->user_stop_count; |
| 5339 | _task_fill_times(task, user_time: &basic_info->user_time, |
| 5340 | sys_time: &basic_info->system_time); |
| 5341 | |
| 5342 | *task_info_count = TASK_BASIC_INFO_64_2_COUNT; |
| 5343 | break; |
| 5344 | } |
| 5345 | |
| 5346 | #else /* defined(__arm64__) */ |
| 5347 | case TASK_BASIC_INFO_64: |
| 5348 | { |
| 5349 | task_basic_info_64_t basic_info; |
| 5350 | |
| 5351 | if (*task_info_count < TASK_BASIC_INFO_64_COUNT) { |
| 5352 | error = KERN_INVALID_ARGUMENT; |
| 5353 | break; |
| 5354 | } |
| 5355 | |
| 5356 | basic_info = (task_basic_info_64_t)task_info_out; |
| 5357 | |
| 5358 | basic_info->virtual_size = vm_map_adjusted_size(is_kernel_task ? |
| 5359 | kernel_map : task->map); |
| 5360 | ledger_get_balance(task->ledger, task_ledgers.phys_mem, (ledger_amount_t *)&basic_info->resident_size); |
| 5361 | basic_info->policy = is_kernel_task ? POLICY_RR : POLICY_TIMESHARE; |
| 5362 | basic_info->suspend_count = task->user_stop_count; |
| 5363 | _task_fill_times(task, &basic_info->user_time, |
| 5364 | &basic_info->system_time); |
| 5365 | |
| 5366 | *task_info_count = TASK_BASIC_INFO_64_COUNT; |
| 5367 | break; |
| 5368 | } |
| 5369 | #endif /* defined(__arm64__) */ |
| 5370 | |
| 5371 | case MACH_TASK_BASIC_INFO: |
| 5372 | { |
| 5373 | mach_task_basic_info_t basic_info; |
| 5374 | |
| 5375 | if (*task_info_count < MACH_TASK_BASIC_INFO_COUNT) { |
| 5376 | error = KERN_INVALID_ARGUMENT; |
| 5377 | break; |
| 5378 | } |
| 5379 | |
| 5380 | basic_info = (mach_task_basic_info_t)task_info_out; |
| 5381 | |
| 5382 | basic_info->virtual_size = vm_map_adjusted_size(map: is_kernel_task ? |
| 5383 | kernel_map : task->map); |
| 5384 | ledger_get_balance(ledger: task->ledger, entry: task_ledgers.phys_mem, balance: (ledger_amount_t *) &basic_info->resident_size); |
| 5385 | ledger_get_lifetime_max(ledger: task->ledger, entry: task_ledgers.phys_mem, max_lifetime_balance: (ledger_amount_t *) &basic_info->resident_size_max); |
| 5386 | basic_info->policy = is_kernel_task ? POLICY_RR : POLICY_TIMESHARE; |
| 5387 | basic_info->suspend_count = task->user_stop_count; |
| 5388 | _task_fill_times(task, user_time: &basic_info->user_time, |
| 5389 | sys_time: &basic_info->system_time); |
| 5390 | |
| 5391 | *task_info_count = MACH_TASK_BASIC_INFO_COUNT; |
| 5392 | break; |
| 5393 | } |
| 5394 | |
| 5395 | case TASK_THREAD_TIMES_INFO: |
| 5396 | { |
| 5397 | task_thread_times_info_t times_info; |
| 5398 | thread_t thread; |
| 5399 | |
| 5400 | if (*task_info_count < TASK_THREAD_TIMES_INFO_COUNT) { |
| 5401 | error = KERN_INVALID_ARGUMENT; |
| 5402 | break; |
| 5403 | } |
| 5404 | |
| 5405 | times_info = (task_thread_times_info_t)task_info_out; |
| 5406 | times_info->user_time = (time_value_t){ 0 }; |
| 5407 | times_info->system_time = (time_value_t){ 0 }; |
| 5408 | |
| 5409 | queue_iterate(&task->threads, thread, thread_t, task_threads) { |
| 5410 | if ((thread->options & TH_OPT_IDLE_THREAD) == 0) { |
| 5411 | time_value_t user_time, system_time; |
| 5412 | |
| 5413 | thread_read_times(thread, &user_time, &system_time, NULL); |
| 5414 | time_value_add(×_info->user_time, &user_time); |
| 5415 | time_value_add(×_info->system_time, &system_time); |
| 5416 | } |
| 5417 | } |
| 5418 | |
| 5419 | *task_info_count = TASK_THREAD_TIMES_INFO_COUNT; |
| 5420 | break; |
| 5421 | } |
| 5422 | |
| 5423 | case TASK_ABSOLUTETIME_INFO: |
| 5424 | { |
| 5425 | task_absolutetime_info_t info; |
| 5426 | |
| 5427 | if (*task_info_count < TASK_ABSOLUTETIME_INFO_COUNT) { |
| 5428 | error = KERN_INVALID_ARGUMENT; |
| 5429 | break; |
| 5430 | } |
| 5431 | |
| 5432 | info = (task_absolutetime_info_t)task_info_out; |
| 5433 | |
| 5434 | struct recount_times_mach term_times = |
| 5435 | recount_task_terminated_times(task); |
| 5436 | struct recount_times_mach total_times = recount_task_times(task); |
| 5437 | |
| 5438 | info->total_user = total_times.rtm_user; |
| 5439 | info->total_system = total_times.rtm_system; |
| 5440 | info->threads_user = total_times.rtm_user - term_times.rtm_user; |
| 5441 | info->threads_system += total_times.rtm_system - term_times.rtm_system; |
| 5442 | |
| 5443 | *task_info_count = TASK_ABSOLUTETIME_INFO_COUNT; |
| 5444 | break; |
| 5445 | } |
| 5446 | |
| 5447 | case TASK_DYLD_INFO: |
| 5448 | { |
| 5449 | task_dyld_info_t info; |
| 5450 | |
| 5451 | /* |
| 5452 | * We added the format field to TASK_DYLD_INFO output. For |
| 5453 | * temporary backward compatibility, accept the fact that |
| 5454 | * clients may ask for the old version - distinquished by the |
| 5455 | * size of the expected result structure. |
| 5456 | */ |
| 5457 | #define TASK_LEGACY_DYLD_INFO_COUNT \ |
| 5458 | offsetof(struct task_dyld_info, all_image_info_format)/sizeof(natural_t) |
| 5459 | |
| 5460 | if (*task_info_count < TASK_LEGACY_DYLD_INFO_COUNT) { |
| 5461 | error = KERN_INVALID_ARGUMENT; |
| 5462 | break; |
| 5463 | } |
| 5464 | |
| 5465 | info = (task_dyld_info_t)task_info_out; |
| 5466 | info->all_image_info_addr = task->all_image_info_addr; |
| 5467 | info->all_image_info_size = task->all_image_info_size; |
| 5468 | |
| 5469 | /* only set format on output for those expecting it */ |
| 5470 | if (*task_info_count >= TASK_DYLD_INFO_COUNT) { |
| 5471 | info->all_image_info_format = task_has_64Bit_addr(task) ? |
| 5472 | TASK_DYLD_ALL_IMAGE_INFO_64 : |
| 5473 | TASK_DYLD_ALL_IMAGE_INFO_32; |
| 5474 | *task_info_count = TASK_DYLD_INFO_COUNT; |
| 5475 | } else { |
| 5476 | *task_info_count = TASK_LEGACY_DYLD_INFO_COUNT; |
| 5477 | } |
| 5478 | break; |
| 5479 | } |
| 5480 | |
| 5481 | case TASK_EXTMOD_INFO: |
| 5482 | { |
| 5483 | task_extmod_info_t info; |
| 5484 | void *p; |
| 5485 | |
| 5486 | if (*task_info_count < TASK_EXTMOD_INFO_COUNT) { |
| 5487 | error = KERN_INVALID_ARGUMENT; |
| 5488 | break; |
| 5489 | } |
| 5490 | |
| 5491 | info = (task_extmod_info_t)task_info_out; |
| 5492 | |
| 5493 | p = get_bsdtask_info(task); |
| 5494 | if (p) { |
| 5495 | proc_getexecutableuuid(p, info->task_uuid, sizeof(info->task_uuid)); |
| 5496 | } else { |
| 5497 | bzero(info->task_uuid, sizeof(info->task_uuid)); |
| 5498 | } |
| 5499 | info->extmod_statistics = task->extmod_statistics; |
| 5500 | *task_info_count = TASK_EXTMOD_INFO_COUNT; |
| 5501 | |
| 5502 | break; |
| 5503 | } |
| 5504 | |
| 5505 | case TASK_KERNELMEMORY_INFO: |
| 5506 | { |
| 5507 | task_kernelmemory_info_t tkm_info; |
| 5508 | ledger_amount_t credit, debit; |
| 5509 | |
| 5510 | if (*task_info_count < TASK_KERNELMEMORY_INFO_COUNT) { |
| 5511 | error = KERN_INVALID_ARGUMENT; |
| 5512 | break; |
| 5513 | } |
| 5514 | |
| 5515 | tkm_info = (task_kernelmemory_info_t) task_info_out; |
| 5516 | tkm_info->total_palloc = 0; |
| 5517 | tkm_info->total_pfree = 0; |
| 5518 | tkm_info->total_salloc = 0; |
| 5519 | tkm_info->total_sfree = 0; |
| 5520 | |
| 5521 | if (task == kernel_task) { |
| 5522 | /* |
| 5523 | * All shared allocs/frees from other tasks count against |
| 5524 | * the kernel private memory usage. If we are looking up |
| 5525 | * info for the kernel task, gather from everywhere. |
| 5526 | */ |
| 5527 | task_unlock(task); |
| 5528 | |
| 5529 | /* start by accounting for all the terminated tasks against the kernel */ |
| 5530 | tkm_info->total_palloc = tasks_tkm_private.alloc + tasks_tkm_shared.alloc; |
| 5531 | tkm_info->total_pfree = tasks_tkm_private.free + tasks_tkm_shared.free; |
| 5532 | |
| 5533 | /* count all other task/thread shared alloc/free against the kernel */ |
| 5534 | lck_mtx_lock(&tasks_threads_lock); |
| 5535 | |
| 5536 | /* XXX this really shouldn't be using the function parameter 'task' as a local var! */ |
| 5537 | queue_iterate(&tasks, task, task_t, tasks) { |
| 5538 | if (task == kernel_task) { |
| 5539 | if (ledger_get_entries(task->ledger, |
| 5540 | task_ledgers.tkm_private, &credit, |
| 5541 | &debit) == KERN_SUCCESS) { |
| 5542 | tkm_info->total_palloc += credit; |
| 5543 | tkm_info->total_pfree += debit; |
| 5544 | } |
| 5545 | } |
| 5546 | if (!ledger_get_entries(task->ledger, |
| 5547 | task_ledgers.tkm_shared, &credit, &debit)) { |
| 5548 | tkm_info->total_palloc += credit; |
| 5549 | tkm_info->total_pfree += debit; |
| 5550 | } |
| 5551 | } |
| 5552 | lck_mtx_unlock(&tasks_threads_lock); |
| 5553 | } else { |
| 5554 | if (!ledger_get_entries(task->ledger, |
| 5555 | task_ledgers.tkm_private, &credit, &debit)) { |
| 5556 | tkm_info->total_palloc = credit; |
| 5557 | tkm_info->total_pfree = debit; |
| 5558 | } |
| 5559 | if (!ledger_get_entries(task->ledger, |
| 5560 | task_ledgers.tkm_shared, &credit, &debit)) { |
| 5561 | tkm_info->total_salloc = credit; |
| 5562 | tkm_info->total_sfree = debit; |
| 5563 | } |
| 5564 | task_unlock(task); |
| 5565 | } |
| 5566 | |
| 5567 | *task_info_count = TASK_KERNELMEMORY_INFO_COUNT; |
| 5568 | return KERN_SUCCESS; |
| 5569 | } |
| 5570 | |
| 5571 | /* OBSOLETE */ |
| 5572 | case TASK_SCHED_FIFO_INFO: |
| 5573 | { |
| 5574 | if (*task_info_count < POLICY_FIFO_BASE_COUNT) { |
| 5575 | error = KERN_INVALID_ARGUMENT; |
| 5576 | break; |
| 5577 | } |
| 5578 | |
| 5579 | error = KERN_INVALID_POLICY; |
| 5580 | break; |
| 5581 | } |
| 5582 | |
| 5583 | /* OBSOLETE */ |
| 5584 | case TASK_SCHED_RR_INFO: |
| 5585 | { |
| 5586 | policy_rr_base_t rr_base; |
| 5587 | uint32_t quantum_time; |
| 5588 | uint64_t quantum_ns; |
| 5589 | |
| 5590 | if (*task_info_count < POLICY_RR_BASE_COUNT) { |
| 5591 | error = KERN_INVALID_ARGUMENT; |
| 5592 | break; |
| 5593 | } |
| 5594 | |
| 5595 | rr_base = (policy_rr_base_t) task_info_out; |
| 5596 | |
| 5597 | if (task != kernel_task) { |
| 5598 | error = KERN_INVALID_POLICY; |
| 5599 | break; |
| 5600 | } |
| 5601 | |
| 5602 | rr_base->base_priority = task->priority; |
| 5603 | |
| 5604 | quantum_time = SCHED(initial_quantum_size)(THREAD_NULL); |
| 5605 | absolutetime_to_nanoseconds(quantum_time, &quantum_ns); |
| 5606 | |
| 5607 | rr_base->quantum = (uint32_t)(quantum_ns / 1000 / 1000); |
| 5608 | |
| 5609 | *task_info_count = POLICY_RR_BASE_COUNT; |
| 5610 | break; |
| 5611 | } |
| 5612 | |
| 5613 | /* OBSOLETE */ |
| 5614 | case TASK_SCHED_TIMESHARE_INFO: |
| 5615 | { |
| 5616 | policy_timeshare_base_t ts_base; |
| 5617 | |
| 5618 | if (*task_info_count < POLICY_TIMESHARE_BASE_COUNT) { |
| 5619 | error = KERN_INVALID_ARGUMENT; |
| 5620 | break; |
| 5621 | } |
| 5622 | |
| 5623 | ts_base = (policy_timeshare_base_t) task_info_out; |
| 5624 | |
| 5625 | if (task == kernel_task) { |
| 5626 | error = KERN_INVALID_POLICY; |
| 5627 | break; |
| 5628 | } |
| 5629 | |
| 5630 | ts_base->base_priority = task->priority; |
| 5631 | |
| 5632 | *task_info_count = POLICY_TIMESHARE_BASE_COUNT; |
| 5633 | break; |
| 5634 | } |
| 5635 | |
| 5636 | case TASK_SECURITY_TOKEN: |
| 5637 | { |
| 5638 | security_token_t *sec_token_p; |
| 5639 | |
| 5640 | if (*task_info_count < TASK_SECURITY_TOKEN_COUNT) { |
| 5641 | error = KERN_INVALID_ARGUMENT; |
| 5642 | break; |
| 5643 | } |
| 5644 | |
| 5645 | sec_token_p = (security_token_t *) task_info_out; |
| 5646 | |
| 5647 | *sec_token_p = *task_get_sec_token(task); |
| 5648 | |
| 5649 | *task_info_count = TASK_SECURITY_TOKEN_COUNT; |
| 5650 | break; |
| 5651 | } |
| 5652 | |
| 5653 | case TASK_AUDIT_TOKEN: |
| 5654 | { |
| 5655 | audit_token_t *audit_token_p; |
| 5656 | |
| 5657 | if (*task_info_count < TASK_AUDIT_TOKEN_COUNT) { |
| 5658 | error = KERN_INVALID_ARGUMENT; |
| 5659 | break; |
| 5660 | } |
| 5661 | |
| 5662 | audit_token_p = (audit_token_t *) task_info_out; |
| 5663 | |
| 5664 | *audit_token_p = *task_get_audit_token(task); |
| 5665 | |
| 5666 | *task_info_count = TASK_AUDIT_TOKEN_COUNT; |
| 5667 | break; |
| 5668 | } |
| 5669 | |
| 5670 | case TASK_SCHED_INFO: |
| 5671 | error = KERN_INVALID_ARGUMENT; |
| 5672 | break; |
| 5673 | |
| 5674 | case TASK_EVENTS_INFO: |
| 5675 | { |
| 5676 | task_events_info_t events_info; |
| 5677 | thread_t thread; |
| 5678 | uint64_t n_syscalls_mach, n_syscalls_unix, n_csw; |
| 5679 | |
| 5680 | if (*task_info_count < TASK_EVENTS_INFO_COUNT) { |
| 5681 | error = KERN_INVALID_ARGUMENT; |
| 5682 | break; |
| 5683 | } |
| 5684 | |
| 5685 | events_info = (task_events_info_t) task_info_out; |
| 5686 | |
| 5687 | |
| 5688 | events_info->faults = (int32_t) MIN(counter_load(&task->faults), INT32_MAX); |
| 5689 | events_info->pageins = (int32_t) MIN(counter_load(&task->pageins), INT32_MAX); |
| 5690 | events_info->cow_faults = (int32_t) MIN(counter_load(&task->cow_faults), INT32_MAX); |
| 5691 | events_info->messages_sent = (int32_t) MIN(counter_load(&task->messages_sent), INT32_MAX); |
| 5692 | events_info->messages_received = (int32_t) MIN(counter_load(&task->messages_received), INT32_MAX); |
| 5693 | |
| 5694 | n_syscalls_mach = task->syscalls_mach; |
| 5695 | n_syscalls_unix = task->syscalls_unix; |
| 5696 | n_csw = task->c_switch; |
| 5697 | |
| 5698 | queue_iterate(&task->threads, thread, thread_t, task_threads) { |
| 5699 | n_csw += thread->c_switch; |
| 5700 | n_syscalls_mach += thread->syscalls_mach; |
| 5701 | n_syscalls_unix += thread->syscalls_unix; |
| 5702 | } |
| 5703 | |
| 5704 | events_info->syscalls_mach = (int32_t) MIN(n_syscalls_mach, INT32_MAX); |
| 5705 | events_info->syscalls_unix = (int32_t) MIN(n_syscalls_unix, INT32_MAX); |
| 5706 | events_info->csw = (int32_t) MIN(n_csw, INT32_MAX); |
| 5707 | |
| 5708 | *task_info_count = TASK_EVENTS_INFO_COUNT; |
| 5709 | break; |
| 5710 | } |
| 5711 | case TASK_AFFINITY_TAG_INFO: |
| 5712 | { |
| 5713 | if (*task_info_count < TASK_AFFINITY_TAG_INFO_COUNT) { |
| 5714 | error = KERN_INVALID_ARGUMENT; |
| 5715 | break; |
| 5716 | } |
| 5717 | |
| 5718 | error = task_affinity_info(task, task_info_out, task_info_count); |
| 5719 | break; |
| 5720 | } |
| 5721 | case TASK_POWER_INFO: |
| 5722 | { |
| 5723 | if (*task_info_count < TASK_POWER_INFO_COUNT) { |
| 5724 | error = KERN_INVALID_ARGUMENT; |
| 5725 | break; |
| 5726 | } |
| 5727 | |
| 5728 | task_power_info_locked(task, (task_power_info_t)task_info_out, NULL, NULL, NULL); |
| 5729 | break; |
| 5730 | } |
| 5731 | |
| 5732 | case TASK_POWER_INFO_V2: |
| 5733 | { |
| 5734 | if (*task_info_count < TASK_POWER_INFO_V2_COUNT_OLD) { |
| 5735 | error = KERN_INVALID_ARGUMENT; |
| 5736 | break; |
| 5737 | } |
| 5738 | task_power_info_v2_t tpiv2 = (task_power_info_v2_t) task_info_out; |
| 5739 | task_power_info_locked(task, &tpiv2->cpu_energy, &tpiv2->gpu_energy, tpiv2, NULL); |
| 5740 | break; |
| 5741 | } |
| 5742 | |
| 5743 | case TASK_VM_INFO: |
| 5744 | case TASK_VM_INFO_PURGEABLE: |
| 5745 | { |
| 5746 | task_vm_info_t vm_info; |
| 5747 | vm_map_t map; |
| 5748 | ledger_amount_t tmp_amount; |
| 5749 | |
| 5750 | struct proc *p; |
| 5751 | uint32_t platform, sdk; |
| 5752 | p = current_proc(); |
| 5753 | platform = proc_platform(p); |
| 5754 | sdk = proc_sdk(p); |
| 5755 | if (original_task_info_count > TASK_VM_INFO_COUNT) { |
| 5756 | /* |
| 5757 | * Some iOS apps pass an incorrect value for |
| 5758 | * task_info_count, expressed in number of bytes |
| 5759 | * instead of number of "natural_t" elements, which |
| 5760 | * can lead to binary compatibility issues (including |
| 5761 | * stack corruption) when the data structure is |
| 5762 | * expanded in the future. |
| 5763 | * Let's make this potential issue visible by |
| 5764 | * logging about it... |
| 5765 | */ |
| 5766 | printf("%s:%d %d[%s] task_info(flavor=%d) possibly invalid " |
| 5767 | "task_info_count=%d > TASK_VM_INFO_COUNT=%d platform %d sdk " |
| 5768 | "%d.%d.%d - please use TASK_VM_INFO_COUNT.\n" , |
| 5769 | __FUNCTION__, __LINE__, proc_pid(p), proc_name_address(p), |
| 5770 | flavor, original_task_info_count, TASK_VM_INFO_COUNT, |
| 5771 | platform, (sdk >> 16), ((sdk >> 8) & 0xff), (sdk & 0xff)); |
| 5772 | DTRACE_VM4(suspicious_task_vm_info_count, |
| 5773 | mach_msg_type_number_t, original_task_info_count, |
| 5774 | mach_msg_type_number_t, TASK_VM_INFO_COUNT, |
| 5775 | uint32_t, platform, |
| 5776 | uint32_t, sdk); |
| 5777 | } |
| 5778 | #if __arm64__ |
| 5779 | if (original_task_info_count > TASK_VM_INFO_REV2_COUNT && |
| 5780 | platform == PLATFORM_IOS && |
| 5781 | sdk != 0 && |
| 5782 | (sdk >> 16) <= 12) { |
| 5783 | /* |
| 5784 | * Some iOS apps pass an incorrect value for |
| 5785 | * task_info_count, expressed in number of bytes |
| 5786 | * instead of number of "natural_t" elements. |
| 5787 | * For the sake of backwards binary compatibility |
| 5788 | * for apps built with an iOS12 or older SDK and using |
| 5789 | * the "rev2" data structure, let's fix task_info_count |
| 5790 | * for them, to avoid stomping past the actual end |
| 5791 | * of their buffer. |
| 5792 | */ |
| 5793 | #if DEVELOPMENT || DEBUG |
| 5794 | printf("%s:%d %d[%s] rdar://49484582 task_info_count %d -> %d " |
| 5795 | "platform %d sdk %d.%d.%d\n" , __FUNCTION__, __LINE__, proc_pid(p), |
| 5796 | proc_name_address(p), original_task_info_count, |
| 5797 | TASK_VM_INFO_REV2_COUNT, platform, (sdk >> 16), |
| 5798 | ((sdk >> 8) & 0xff), (sdk & 0xff)); |
| 5799 | #endif /* DEVELOPMENT || DEBUG */ |
| 5800 | DTRACE_VM4(workaround_task_vm_info_count, |
| 5801 | mach_msg_type_number_t, original_task_info_count, |
| 5802 | mach_msg_type_number_t, TASK_VM_INFO_REV2_COUNT, |
| 5803 | uint32_t, platform, |
| 5804 | uint32_t, sdk); |
| 5805 | original_task_info_count = TASK_VM_INFO_REV2_COUNT; |
| 5806 | *task_info_count = original_task_info_count; |
| 5807 | } |
| 5808 | if (original_task_info_count > TASK_VM_INFO_REV5_COUNT && |
| 5809 | platform == PLATFORM_IOS && |
| 5810 | sdk != 0 && |
| 5811 | (sdk >> 16) <= 15) { |
| 5812 | /* |
| 5813 | * Some iOS apps pass an incorrect value for |
| 5814 | * task_info_count, expressed in number of bytes |
| 5815 | * instead of number of "natural_t" elements. |
| 5816 | */ |
| 5817 | printf("%s:%d %d[%s] task_info_count=%d > TASK_VM_INFO_COUNT=%d " |
| 5818 | "platform %d sdk %d.%d.%d\n" , __FUNCTION__, __LINE__, proc_pid(p), |
| 5819 | proc_name_address(p), original_task_info_count, |
| 5820 | TASK_VM_INFO_REV5_COUNT, platform, (sdk >> 16), |
| 5821 | ((sdk >> 8) & 0xff), (sdk & 0xff)); |
| 5822 | DTRACE_VM4(workaround_task_vm_info_count, |
| 5823 | mach_msg_type_number_t, original_task_info_count, |
| 5824 | mach_msg_type_number_t, TASK_VM_INFO_REV5_COUNT, |
| 5825 | uint32_t, platform, |
| 5826 | uint32_t, sdk); |
| 5827 | #if DEVELOPMENT || DEBUG |
| 5828 | /* |
| 5829 | * For the sake of internal builds livability, |
| 5830 | * work around this user-space bug by capping the |
| 5831 | * buffer's size to what it was with the iOS15 SDK. |
| 5832 | */ |
| 5833 | original_task_info_count = TASK_VM_INFO_REV5_COUNT; |
| 5834 | *task_info_count = original_task_info_count; |
| 5835 | #endif /* DEVELOPMENT || DEBUG */ |
| 5836 | } |
| 5837 | #endif /* __arm64__ */ |
| 5838 | |
| 5839 | if (*task_info_count < TASK_VM_INFO_REV0_COUNT) { |
| 5840 | error = KERN_INVALID_ARGUMENT; |
| 5841 | break; |
| 5842 | } |
| 5843 | |
| 5844 | vm_info = (task_vm_info_t)task_info_out; |
| 5845 | |
| 5846 | /* |
| 5847 | * Do not hold both the task and map locks, |
| 5848 | * so convert the task lock into a map reference, |
| 5849 | * drop the task lock, then lock the map. |
| 5850 | */ |
| 5851 | if (is_kernel_task) { |
| 5852 | map = kernel_map; |
| 5853 | task_unlock(task); |
| 5854 | /* no lock, no reference */ |
| 5855 | } else { |
| 5856 | map = task->map; |
| 5857 | vm_map_reference(map); |
| 5858 | task_unlock(task); |
| 5859 | vm_map_lock_read(map); |
| 5860 | } |
| 5861 | |
| 5862 | vm_info->virtual_size = (typeof(vm_info->virtual_size))vm_map_adjusted_size(map); |
| 5863 | vm_info->region_count = map->hdr.nentries; |
| 5864 | vm_info->page_size = vm_map_page_size(map); |
| 5865 | |
| 5866 | ledger_get_balance(task->ledger, task_ledgers.phys_mem, (ledger_amount_t *) &vm_info->resident_size); |
| 5867 | ledger_get_lifetime_max(task->ledger, task_ledgers.phys_mem, (ledger_amount_t *) &vm_info->resident_size_peak); |
| 5868 | |
| 5869 | vm_info->device = 0; |
| 5870 | vm_info->device_peak = 0; |
| 5871 | ledger_get_balance(task->ledger, task_ledgers.external, (ledger_amount_t *) &vm_info->external); |
| 5872 | ledger_get_lifetime_max(task->ledger, task_ledgers.external, (ledger_amount_t *) &vm_info->external_peak); |
| 5873 | ledger_get_balance(task->ledger, task_ledgers.internal, (ledger_amount_t *) &vm_info->internal); |
| 5874 | ledger_get_lifetime_max(task->ledger, task_ledgers.internal, (ledger_amount_t *) &vm_info->internal_peak); |
| 5875 | ledger_get_balance(task->ledger, task_ledgers.reusable, (ledger_amount_t *) &vm_info->reusable); |
| 5876 | ledger_get_lifetime_max(task->ledger, task_ledgers.reusable, (ledger_amount_t *) &vm_info->reusable_peak); |
| 5877 | ledger_get_balance(task->ledger, task_ledgers.internal_compressed, (ledger_amount_t*) &vm_info->compressed); |
| 5878 | ledger_get_lifetime_max(task->ledger, task_ledgers.internal_compressed, (ledger_amount_t*) &vm_info->compressed_peak); |
| 5879 | ledger_get_entries(task->ledger, task_ledgers.internal_compressed, (ledger_amount_t*) &vm_info->compressed_lifetime, &tmp_amount); |
| 5880 | |
| 5881 | vm_info->purgeable_volatile_pmap = 0; |
| 5882 | vm_info->purgeable_volatile_resident = 0; |
| 5883 | vm_info->purgeable_volatile_virtual = 0; |
| 5884 | if (is_kernel_task) { |
| 5885 | /* |
| 5886 | * We do not maintain the detailed stats for the |
| 5887 | * kernel_pmap, so just count everything as |
| 5888 | * "internal"... |
| 5889 | */ |
| 5890 | vm_info->internal = vm_info->resident_size; |
| 5891 | /* |
| 5892 | * ... but since the memory held by the VM compressor |
| 5893 | * in the kernel address space ought to be attributed |
| 5894 | * to user-space tasks, we subtract it from "internal" |
| 5895 | * to give memory reporting tools a more accurate idea |
| 5896 | * of what the kernel itself is actually using, instead |
| 5897 | * of making it look like the kernel is leaking memory |
| 5898 | * when the system is under memory pressure. |
| 5899 | */ |
| 5900 | vm_info->internal -= (VM_PAGE_COMPRESSOR_COUNT * |
| 5901 | PAGE_SIZE); |
| 5902 | } else { |
| 5903 | mach_vm_size_t volatile_virtual_size; |
| 5904 | mach_vm_size_t volatile_resident_size; |
| 5905 | mach_vm_size_t volatile_compressed_size; |
| 5906 | mach_vm_size_t volatile_pmap_size; |
| 5907 | mach_vm_size_t volatile_compressed_pmap_size; |
| 5908 | kern_return_t kr; |
| 5909 | |
| 5910 | if (flavor == TASK_VM_INFO_PURGEABLE) { |
| 5911 | kr = vm_map_query_volatile( |
| 5912 | map, |
| 5913 | &volatile_virtual_size, |
| 5914 | &volatile_resident_size, |
| 5915 | &volatile_compressed_size, |
| 5916 | &volatile_pmap_size, |
| 5917 | &volatile_compressed_pmap_size); |
| 5918 | if (kr == KERN_SUCCESS) { |
| 5919 | vm_info->purgeable_volatile_pmap = |
| 5920 | volatile_pmap_size; |
| 5921 | if (radar_20146450) { |
| 5922 | vm_info->compressed -= |
| 5923 | volatile_compressed_pmap_size; |
| 5924 | } |
| 5925 | vm_info->purgeable_volatile_resident = |
| 5926 | volatile_resident_size; |
| 5927 | vm_info->purgeable_volatile_virtual = |
| 5928 | volatile_virtual_size; |
| 5929 | } |
| 5930 | } |
| 5931 | } |
| 5932 | *task_info_count = TASK_VM_INFO_REV0_COUNT; |
| 5933 | |
| 5934 | if (original_task_info_count >= TASK_VM_INFO_REV2_COUNT) { |
| 5935 | /* must be captured while we still have the map lock */ |
| 5936 | vm_info->min_address = map->min_offset; |
| 5937 | vm_info->max_address = map->max_offset; |
| 5938 | } |
| 5939 | |
| 5940 | /* |
| 5941 | * Done with vm map things, can drop the map lock and reference, |
| 5942 | * and take the task lock back. |
| 5943 | * |
| 5944 | * Re-validate that the task didn't die on us. |
| 5945 | */ |
| 5946 | if (!is_kernel_task) { |
| 5947 | vm_map_unlock_read(map); |
| 5948 | vm_map_deallocate(map); |
| 5949 | } |
| 5950 | map = VM_MAP_NULL; |
| 5951 | |
| 5952 | task_lock(task); |
| 5953 | |
| 5954 | if ((task != current_task()) && (!task->active)) { |
| 5955 | error = KERN_INVALID_ARGUMENT; |
| 5956 | break; |
| 5957 | } |
| 5958 | |
| 5959 | if (original_task_info_count >= TASK_VM_INFO_REV1_COUNT) { |
| 5960 | vm_info->phys_footprint = |
| 5961 | (mach_vm_size_t) get_task_phys_footprint(task); |
| 5962 | *task_info_count = TASK_VM_INFO_REV1_COUNT; |
| 5963 | } |
| 5964 | if (original_task_info_count >= TASK_VM_INFO_REV2_COUNT) { |
| 5965 | /* data was captured above */ |
| 5966 | *task_info_count = TASK_VM_INFO_REV2_COUNT; |
| 5967 | } |
| 5968 | |
| 5969 | if (original_task_info_count >= TASK_VM_INFO_REV3_COUNT) { |
| 5970 | ledger_get_lifetime_max(task->ledger, |
| 5971 | task_ledgers.phys_footprint, |
| 5972 | &vm_info->ledger_phys_footprint_peak); |
| 5973 | ledger_get_balance(task->ledger, |
| 5974 | task_ledgers.purgeable_nonvolatile, |
| 5975 | &vm_info->ledger_purgeable_nonvolatile); |
| 5976 | ledger_get_balance(task->ledger, |
| 5977 | task_ledgers.purgeable_nonvolatile_compressed, |
| 5978 | &vm_info->ledger_purgeable_novolatile_compressed); |
| 5979 | ledger_get_balance(task->ledger, |
| 5980 | task_ledgers.purgeable_volatile, |
| 5981 | &vm_info->ledger_purgeable_volatile); |
| 5982 | ledger_get_balance(task->ledger, |
| 5983 | task_ledgers.purgeable_volatile_compressed, |
| 5984 | &vm_info->ledger_purgeable_volatile_compressed); |
| 5985 | ledger_get_balance(task->ledger, |
| 5986 | task_ledgers.network_nonvolatile, |
| 5987 | &vm_info->ledger_tag_network_nonvolatile); |
| 5988 | ledger_get_balance(task->ledger, |
| 5989 | task_ledgers.network_nonvolatile_compressed, |
| 5990 | &vm_info->ledger_tag_network_nonvolatile_compressed); |
| 5991 | ledger_get_balance(task->ledger, |
| 5992 | task_ledgers.network_volatile, |
| 5993 | &vm_info->ledger_tag_network_volatile); |
| 5994 | ledger_get_balance(task->ledger, |
| 5995 | task_ledgers.network_volatile_compressed, |
| 5996 | &vm_info->ledger_tag_network_volatile_compressed); |
| 5997 | ledger_get_balance(task->ledger, |
| 5998 | task_ledgers.media_footprint, |
| 5999 | &vm_info->ledger_tag_media_footprint); |
| 6000 | ledger_get_balance(task->ledger, |
| 6001 | task_ledgers.media_footprint_compressed, |
| 6002 | &vm_info->ledger_tag_media_footprint_compressed); |
| 6003 | ledger_get_balance(task->ledger, |
| 6004 | task_ledgers.media_nofootprint, |
| 6005 | &vm_info->ledger_tag_media_nofootprint); |
| 6006 | ledger_get_balance(task->ledger, |
| 6007 | task_ledgers.media_nofootprint_compressed, |
| 6008 | &vm_info->ledger_tag_media_nofootprint_compressed); |
| 6009 | ledger_get_balance(task->ledger, |
| 6010 | task_ledgers.graphics_footprint, |
| 6011 | &vm_info->ledger_tag_graphics_footprint); |
| 6012 | ledger_get_balance(task->ledger, |
| 6013 | task_ledgers.graphics_footprint_compressed, |
| 6014 | &vm_info->ledger_tag_graphics_footprint_compressed); |
| 6015 | ledger_get_balance(task->ledger, |
| 6016 | task_ledgers.graphics_nofootprint, |
| 6017 | &vm_info->ledger_tag_graphics_nofootprint); |
| 6018 | ledger_get_balance(task->ledger, |
| 6019 | task_ledgers.graphics_nofootprint_compressed, |
| 6020 | &vm_info->ledger_tag_graphics_nofootprint_compressed); |
| 6021 | ledger_get_balance(task->ledger, |
| 6022 | task_ledgers.neural_footprint, |
| 6023 | &vm_info->ledger_tag_neural_footprint); |
| 6024 | ledger_get_balance(task->ledger, |
| 6025 | task_ledgers.neural_footprint_compressed, |
| 6026 | &vm_info->ledger_tag_neural_footprint_compressed); |
| 6027 | ledger_get_balance(task->ledger, |
| 6028 | task_ledgers.neural_nofootprint, |
| 6029 | &vm_info->ledger_tag_neural_nofootprint); |
| 6030 | ledger_get_balance(task->ledger, |
| 6031 | task_ledgers.neural_nofootprint_compressed, |
| 6032 | &vm_info->ledger_tag_neural_nofootprint_compressed); |
| 6033 | *task_info_count = TASK_VM_INFO_REV3_COUNT; |
| 6034 | } |
| 6035 | if (original_task_info_count >= TASK_VM_INFO_REV4_COUNT) { |
| 6036 | if (get_bsdtask_info(task)) { |
| 6037 | vm_info->limit_bytes_remaining = |
| 6038 | memorystatus_available_memory_internal(get_bsdtask_info(task)); |
| 6039 | } else { |
| 6040 | vm_info->limit_bytes_remaining = 0; |
| 6041 | } |
| 6042 | *task_info_count = TASK_VM_INFO_REV4_COUNT; |
| 6043 | } |
| 6044 | if (original_task_info_count >= TASK_VM_INFO_REV5_COUNT) { |
| 6045 | thread_t thread; |
| 6046 | uint64_t total = task->decompressions; |
| 6047 | queue_iterate(&task->threads, thread, thread_t, task_threads) { |
| 6048 | total += thread->decompressions; |
| 6049 | } |
| 6050 | vm_info->decompressions = (int32_t) MIN(total, INT32_MAX); |
| 6051 | *task_info_count = TASK_VM_INFO_REV5_COUNT; |
| 6052 | } |
| 6053 | if (original_task_info_count >= TASK_VM_INFO_REV6_COUNT) { |
| 6054 | ledger_get_balance(task->ledger, task_ledgers.swapins, |
| 6055 | &vm_info->ledger_swapins); |
| 6056 | *task_info_count = TASK_VM_INFO_REV6_COUNT; |
| 6057 | } |
| 6058 | |
| 6059 | break; |
| 6060 | } |
| 6061 | |
| 6062 | case TASK_WAIT_STATE_INFO: |
| 6063 | { |
| 6064 | /* |
| 6065 | * Deprecated flavor. Currently allowing some results until all users |
| 6066 | * stop calling it. The results may not be accurate. |
| 6067 | */ |
| 6068 | task_wait_state_info_t wait_state_info; |
| 6069 | uint64_t total_sfi_ledger_val = 0; |
| 6070 | |
| 6071 | if (*task_info_count < TASK_WAIT_STATE_INFO_COUNT) { |
| 6072 | error = KERN_INVALID_ARGUMENT; |
| 6073 | break; |
| 6074 | } |
| 6075 | |
| 6076 | wait_state_info = (task_wait_state_info_t) task_info_out; |
| 6077 | |
| 6078 | wait_state_info->total_wait_state_time = 0; |
| 6079 | bzero(wait_state_info->_reserved, sizeof(wait_state_info->_reserved)); |
| 6080 | |
| 6081 | #if CONFIG_SCHED_SFI |
| 6082 | int i, prev_lentry = -1; |
| 6083 | int64_t val_credit, val_debit; |
| 6084 | |
| 6085 | for (i = 0; i < MAX_SFI_CLASS_ID; i++) { |
| 6086 | val_credit = 0; |
| 6087 | /* |
| 6088 | * checking with prev_lentry != entry ensures adjacent classes |
| 6089 | * which share the same ledger do not add wait times twice. |
| 6090 | * Note: Use ledger() call to get data for each individual sfi class. |
| 6091 | */ |
| 6092 | if (prev_lentry != task_ledgers.sfi_wait_times[i] && |
| 6093 | KERN_SUCCESS == ledger_get_entries(task->ledger, |
| 6094 | task_ledgers.sfi_wait_times[i], &val_credit, &val_debit)) { |
| 6095 | total_sfi_ledger_val += val_credit; |
| 6096 | } |
| 6097 | prev_lentry = task_ledgers.sfi_wait_times[i]; |
| 6098 | } |
| 6099 | |
| 6100 | #endif /* CONFIG_SCHED_SFI */ |
| 6101 | wait_state_info->total_wait_sfi_state_time = total_sfi_ledger_val; |
| 6102 | *task_info_count = TASK_WAIT_STATE_INFO_COUNT; |
| 6103 | |
| 6104 | break; |
| 6105 | } |
| 6106 | case TASK_VM_INFO_PURGEABLE_ACCOUNT: |
| 6107 | { |
| 6108 | #if DEVELOPMENT || DEBUG |
| 6109 | pvm_account_info_t acnt_info; |
| 6110 | |
| 6111 | if (*task_info_count < PVM_ACCOUNT_INFO_COUNT) { |
| 6112 | error = KERN_INVALID_ARGUMENT; |
| 6113 | break; |
| 6114 | } |
| 6115 | |
| 6116 | if (task_info_out == NULL) { |
| 6117 | error = KERN_INVALID_ARGUMENT; |
| 6118 | break; |
| 6119 | } |
| 6120 | |
| 6121 | acnt_info = (pvm_account_info_t) task_info_out; |
| 6122 | |
| 6123 | error = vm_purgeable_account(task, acnt_info); |
| 6124 | |
| 6125 | *task_info_count = PVM_ACCOUNT_INFO_COUNT; |
| 6126 | |
| 6127 | break; |
| 6128 | #else /* DEVELOPMENT || DEBUG */ |
| 6129 | error = KERN_NOT_SUPPORTED; |
| 6130 | break; |
| 6131 | #endif /* DEVELOPMENT || DEBUG */ |
| 6132 | } |
| 6133 | case TASK_FLAGS_INFO: |
| 6134 | { |
| 6135 | task_flags_info_t flags_info; |
| 6136 | |
| 6137 | if (*task_info_count < TASK_FLAGS_INFO_COUNT) { |
| 6138 | error = KERN_INVALID_ARGUMENT; |
| 6139 | break; |
| 6140 | } |
| 6141 | |
| 6142 | flags_info = (task_flags_info_t)task_info_out; |
| 6143 | |
| 6144 | /* only publish the 64-bit flag of the task */ |
| 6145 | flags_info->flags = task->t_flags & (TF_64B_ADDR | TF_64B_DATA); |
| 6146 | |
| 6147 | *task_info_count = TASK_FLAGS_INFO_COUNT; |
| 6148 | break; |
| 6149 | } |
| 6150 | |
| 6151 | case TASK_DEBUG_INFO_INTERNAL: |
| 6152 | { |
| 6153 | #if DEVELOPMENT || DEBUG |
| 6154 | task_debug_info_internal_t dbg_info; |
| 6155 | ipc_space_t space = task->itk_space; |
| 6156 | if (*task_info_count < TASK_DEBUG_INFO_INTERNAL_COUNT) { |
| 6157 | error = KERN_NOT_SUPPORTED; |
| 6158 | break; |
| 6159 | } |
| 6160 | |
| 6161 | if (task_info_out == NULL) { |
| 6162 | error = KERN_INVALID_ARGUMENT; |
| 6163 | break; |
| 6164 | } |
| 6165 | dbg_info = (task_debug_info_internal_t) task_info_out; |
| 6166 | dbg_info->ipc_space_size = 0; |
| 6167 | |
| 6168 | if (space) { |
| 6169 | smr_ipc_enter(); |
| 6170 | ipc_entry_table_t table = smr_entered_load(&space->is_table); |
| 6171 | if (table) { |
| 6172 | dbg_info->ipc_space_size = |
| 6173 | ipc_entry_table_count(table); |
| 6174 | } |
| 6175 | smr_ipc_leave(); |
| 6176 | } |
| 6177 | |
| 6178 | dbg_info->suspend_count = task->suspend_count; |
| 6179 | |
| 6180 | error = KERN_SUCCESS; |
| 6181 | *task_info_count = TASK_DEBUG_INFO_INTERNAL_COUNT; |
| 6182 | break; |
| 6183 | #else /* DEVELOPMENT || DEBUG */ |
| 6184 | error = KERN_NOT_SUPPORTED; |
| 6185 | break; |
| 6186 | #endif /* DEVELOPMENT || DEBUG */ |
| 6187 | } |
| 6188 | case TASK_SUSPEND_STATS_INFO: |
| 6189 | { |
| 6190 | #if CONFIG_TASK_SUSPEND_STATS && (DEVELOPMENT || DEBUG) |
| 6191 | if (*task_info_count < TASK_SUSPEND_STATS_INFO_COUNT || task_info_out == NULL) { |
| 6192 | error = KERN_INVALID_ARGUMENT; |
| 6193 | break; |
| 6194 | } |
| 6195 | error = _task_get_suspend_stats_locked(task, (task_suspend_stats_t)task_info_out); |
| 6196 | *task_info_count = TASK_SUSPEND_STATS_INFO_COUNT; |
| 6197 | break; |
| 6198 | #else /* CONFIG_TASK_SUSPEND_STATS && (DEVELOPMENT || DEBUG) */ |
| 6199 | error = KERN_NOT_SUPPORTED; |
| 6200 | break; |
| 6201 | #endif /* CONFIG_TASK_SUSPEND_STATS && (DEVELOPMENT || DEBUG) */ |
| 6202 | } |
| 6203 | case TASK_SUSPEND_SOURCES_INFO: |
| 6204 | { |
| 6205 | #if CONFIG_TASK_SUSPEND_STATS && (DEVELOPMENT || DEBUG) |
| 6206 | if (*task_info_count < TASK_SUSPEND_SOURCES_INFO_COUNT || task_info_out == NULL) { |
| 6207 | error = KERN_INVALID_ARGUMENT; |
| 6208 | break; |
| 6209 | } |
| 6210 | error = _task_get_suspend_sources_locked(task, (task_suspend_source_t)task_info_out); |
| 6211 | *task_info_count = TASK_SUSPEND_SOURCES_INFO_COUNT; |
| 6212 | break; |
| 6213 | #else /* CONFIG_TASK_SUSPEND_STATS && (DEVELOPMENT || DEBUG) */ |
| 6214 | error = KERN_NOT_SUPPORTED; |
| 6215 | break; |
| 6216 | #endif /* CONFIG_TASK_SUSPEND_STATS && (DEVELOPMENT || DEBUG) */ |
| 6217 | } |
| 6218 | default: |
| 6219 | error = KERN_INVALID_ARGUMENT; |
| 6220 | } |
| 6221 | |
| 6222 | task_unlock(task); |
| 6223 | return error; |
| 6224 | } |
| 6225 | |
| 6226 | /* |
| 6227 | * task_info_from_user |
| 6228 | * |
| 6229 | * When calling task_info from user space, |
| 6230 | * this function will be executed as mig server side |
| 6231 | * instead of calling directly into task_info. |
| 6232 | * This gives the possibility to perform more security |
| 6233 | * checks on task_port. |
| 6234 | * |
| 6235 | * In the case of TASK_DYLD_INFO, we require the more |
| 6236 | * privileged task_read_port not the less-privileged task_name_port. |
| 6237 | * |
| 6238 | */ |
| 6239 | kern_return_t |
| 6240 | task_info_from_user( |
| 6241 | mach_port_t task_port, |
| 6242 | task_flavor_t flavor, |
| 6243 | task_info_t task_info_out, |
| 6244 | mach_msg_type_number_t *task_info_count) |
| 6245 | { |
| 6246 | task_t task; |
| 6247 | kern_return_t ret; |
| 6248 | |
| 6249 | if (flavor == TASK_DYLD_INFO) { |
| 6250 | task = convert_port_to_task_read(port: task_port); |
| 6251 | } else { |
| 6252 | task = convert_port_to_task_name(port: task_port); |
| 6253 | } |
| 6254 | |
| 6255 | ret = task_info(task, flavor, task_info_out, task_info_count); |
| 6256 | |
| 6257 | task_deallocate(task); |
| 6258 | |
| 6259 | return ret; |
| 6260 | } |
| 6261 | |
| 6262 | /* |
| 6263 | * Routine: task_dyld_process_info_update_helper |
| 6264 | * |
| 6265 | * Release send rights in release_ports. |
| 6266 | * |
| 6267 | * If no active ports found in task's dyld notifier array, unset the magic value |
| 6268 | * in user space to indicate so. |
| 6269 | * |
| 6270 | * Condition: |
| 6271 | * task's itk_lock is locked, and is unlocked upon return. |
| 6272 | * Global g_dyldinfo_mtx is locked, and is unlocked upon return. |
| 6273 | */ |
| 6274 | void |
| 6275 | task_dyld_process_info_update_helper( |
| 6276 | task_t task, |
| 6277 | size_t active_count, |
| 6278 | vm_map_address_t magic_addr, /* a userspace address */ |
| 6279 | ipc_port_t *release_ports, |
| 6280 | size_t release_count) |
| 6281 | { |
| 6282 | void *notifiers_ptr = NULL; |
| 6283 | |
| 6284 | assert(release_count <= DYLD_MAX_PROCESS_INFO_NOTIFY_COUNT); |
| 6285 | |
| 6286 | if (active_count == 0) { |
| 6287 | assert(task->itk_dyld_notify != NULL); |
| 6288 | notifiers_ptr = task->itk_dyld_notify; |
| 6289 | task->itk_dyld_notify = NULL; |
| 6290 | itk_unlock(task); |
| 6291 | |
| 6292 | kfree_type(ipc_port_t, DYLD_MAX_PROCESS_INFO_NOTIFY_COUNT, notifiers_ptr); |
| 6293 | (void)copyoutmap_atomic32(map: task->map, MACH_PORT_NULL, toaddr: magic_addr); /* unset magic */ |
| 6294 | } else { |
| 6295 | itk_unlock(task); |
| 6296 | (void)copyoutmap_atomic32(map: task->map, value: (mach_port_name_t)DYLD_PROCESS_INFO_NOTIFY_MAGIC, |
| 6297 | toaddr: magic_addr); /* reset magic */ |
| 6298 | } |
| 6299 | |
| 6300 | lck_mtx_unlock(lck: &g_dyldinfo_mtx); |
| 6301 | |
| 6302 | for (size_t i = 0; i < release_count; i++) { |
| 6303 | ipc_port_release_send(port: release_ports[i]); |
| 6304 | } |
| 6305 | } |
| 6306 | |
| 6307 | /* |
| 6308 | * Routine: task_dyld_process_info_notify_register |
| 6309 | * |
| 6310 | * Insert a send right to target task's itk_dyld_notify array. Allocate kernel |
| 6311 | * memory for the array if it's the first port to be registered. Also cleanup |
| 6312 | * any dead rights found in the array. |
| 6313 | * |
| 6314 | * Consumes sright if returns KERN_SUCCESS, otherwise MIG will destroy it. |
| 6315 | * |
| 6316 | * Args: |
| 6317 | * task: Target task for the registration. |
| 6318 | * sright: A send right. |
| 6319 | * |
| 6320 | * Returns: |
| 6321 | * KERN_SUCCESS: Registration succeeded. |
| 6322 | * KERN_INVALID_TASK: task is invalid. |
| 6323 | * KERN_INVALID_RIGHT: sright is invalid. |
| 6324 | * KERN_DENIED: Security policy denied this call. |
| 6325 | * KERN_RESOURCE_SHORTAGE: Kernel memory allocation failed. |
| 6326 | * KERN_NO_SPACE: No available notifier port slot left for this task. |
| 6327 | * KERN_RIGHT_EXISTS: The notifier port is already registered and active. |
| 6328 | * |
| 6329 | * Other error code see task_info(). |
| 6330 | * |
| 6331 | * See Also: |
| 6332 | * task_dyld_process_info_notify_get_trap() in mach_kernelrpc.c |
| 6333 | */ |
| 6334 | kern_return_t |
| 6335 | task_dyld_process_info_notify_register( |
| 6336 | task_t task, |
| 6337 | ipc_port_t sright) |
| 6338 | { |
| 6339 | struct task_dyld_info dyld_info; |
| 6340 | mach_msg_type_number_t info_count = TASK_DYLD_INFO_COUNT; |
| 6341 | ipc_port_t release_ports[DYLD_MAX_PROCESS_INFO_NOTIFY_COUNT]; |
| 6342 | uint32_t release_count = 0, active_count = 0; |
| 6343 | mach_vm_address_t ports_addr; /* a user space address */ |
| 6344 | kern_return_t kr; |
| 6345 | boolean_t right_exists = false; |
| 6346 | ipc_port_t *notifiers_ptr = NULL; |
| 6347 | ipc_port_t *portp; |
| 6348 | |
| 6349 | if (task == TASK_NULL || task == kernel_task) { |
| 6350 | return KERN_INVALID_TASK; |
| 6351 | } |
| 6352 | |
| 6353 | if (!IP_VALID(sright)) { |
| 6354 | return KERN_INVALID_RIGHT; |
| 6355 | } |
| 6356 | |
| 6357 | #if CONFIG_MACF |
| 6358 | if (mac_task_check_dyld_process_info_notify_register()) { |
| 6359 | return KERN_DENIED; |
| 6360 | } |
| 6361 | #endif |
| 6362 | |
| 6363 | kr = task_info(task, TASK_DYLD_INFO, task_info_out: (task_info_t)&dyld_info, task_info_count: &info_count); |
| 6364 | if (kr) { |
| 6365 | return kr; |
| 6366 | } |
| 6367 | |
| 6368 | if (dyld_info.all_image_info_format == TASK_DYLD_ALL_IMAGE_INFO_32) { |
| 6369 | ports_addr = (mach_vm_address_t)(dyld_info.all_image_info_addr + |
| 6370 | offsetof(struct user32_dyld_all_image_infos, notifyMachPorts)); |
| 6371 | } else { |
| 6372 | ports_addr = (mach_vm_address_t)(dyld_info.all_image_info_addr + |
| 6373 | offsetof(struct user64_dyld_all_image_infos, notifyMachPorts)); |
| 6374 | } |
| 6375 | |
| 6376 | if (task->itk_dyld_notify == NULL) { |
| 6377 | notifiers_ptr = kalloc_type(ipc_port_t, |
| 6378 | DYLD_MAX_PROCESS_INFO_NOTIFY_COUNT, |
| 6379 | Z_WAITOK | Z_ZERO | Z_NOFAIL); |
| 6380 | } |
| 6381 | |
| 6382 | lck_mtx_lock(lck: &g_dyldinfo_mtx); |
| 6383 | itk_lock(task); |
| 6384 | |
| 6385 | if (task->itk_dyld_notify == NULL) { |
| 6386 | task->itk_dyld_notify = notifiers_ptr; |
| 6387 | notifiers_ptr = NULL; |
| 6388 | } |
| 6389 | |
| 6390 | assert(task->itk_dyld_notify != NULL); |
| 6391 | /* First pass: clear dead names and check for duplicate registration */ |
| 6392 | for (int slot = 0; slot < DYLD_MAX_PROCESS_INFO_NOTIFY_COUNT; slot++) { |
| 6393 | portp = &task->itk_dyld_notify[slot]; |
| 6394 | if (*portp != IPC_PORT_NULL && !ip_active(*portp)) { |
| 6395 | release_ports[release_count++] = *portp; |
| 6396 | *portp = IPC_PORT_NULL; |
| 6397 | } else if (*portp == sright) { |
| 6398 | /* the port is already registered and is active */ |
| 6399 | right_exists = true; |
| 6400 | } |
| 6401 | |
| 6402 | if (*portp != IPC_PORT_NULL) { |
| 6403 | active_count++; |
| 6404 | } |
| 6405 | } |
| 6406 | |
| 6407 | if (right_exists) { |
| 6408 | /* skip second pass */ |
| 6409 | kr = KERN_RIGHT_EXISTS; |
| 6410 | goto out; |
| 6411 | } |
| 6412 | |
| 6413 | /* Second pass: register the port */ |
| 6414 | kr = KERN_NO_SPACE; |
| 6415 | for (int slot = 0; slot < DYLD_MAX_PROCESS_INFO_NOTIFY_COUNT; slot++) { |
| 6416 | portp = &task->itk_dyld_notify[slot]; |
| 6417 | if (*portp == IPC_PORT_NULL) { |
| 6418 | *portp = sright; |
| 6419 | active_count++; |
| 6420 | kr = KERN_SUCCESS; |
| 6421 | break; |
| 6422 | } |
| 6423 | } |
| 6424 | |
| 6425 | out: |
| 6426 | assert(active_count > 0); |
| 6427 | |
| 6428 | task_dyld_process_info_update_helper(task, active_count, |
| 6429 | magic_addr: (vm_map_address_t)ports_addr, release_ports, release_count); |
| 6430 | /* itk_lock, g_dyldinfo_mtx are unlocked upon return */ |
| 6431 | |
| 6432 | kfree_type(ipc_port_t, DYLD_MAX_PROCESS_INFO_NOTIFY_COUNT, notifiers_ptr); |
| 6433 | |
| 6434 | return kr; |
| 6435 | } |
| 6436 | |
| 6437 | /* |
| 6438 | * Routine: task_dyld_process_info_notify_deregister |
| 6439 | * |
| 6440 | * Remove a send right in target task's itk_dyld_notify array matching the receive |
| 6441 | * right name passed in. Deallocate kernel memory for the array if it's the last port to |
| 6442 | * be deregistered, or all ports have died. Also cleanup any dead rights found in the array. |
| 6443 | * |
| 6444 | * Does not consume any reference. |
| 6445 | * |
| 6446 | * Args: |
| 6447 | * task: Target task for the deregistration. |
| 6448 | * rcv_name: The name denoting the receive right in caller's space. |
| 6449 | * |
| 6450 | * Returns: |
| 6451 | * KERN_SUCCESS: A matching entry found and degistration succeeded. |
| 6452 | * KERN_INVALID_TASK: task is invalid. |
| 6453 | * KERN_INVALID_NAME: name is invalid. |
| 6454 | * KERN_DENIED: Security policy denied this call. |
| 6455 | * KERN_FAILURE: A matching entry is not found. |
| 6456 | * KERN_INVALID_RIGHT: The name passed in does not represent a valid rcv right. |
| 6457 | * |
| 6458 | * Other error code see task_info(). |
| 6459 | * |
| 6460 | * See Also: |
| 6461 | * task_dyld_process_info_notify_get_trap() in mach_kernelrpc.c |
| 6462 | */ |
| 6463 | kern_return_t |
| 6464 | task_dyld_process_info_notify_deregister( |
| 6465 | task_t task, |
| 6466 | mach_port_name_t rcv_name) |
| 6467 | { |
| 6468 | struct task_dyld_info dyld_info; |
| 6469 | mach_msg_type_number_t info_count = TASK_DYLD_INFO_COUNT; |
| 6470 | ipc_port_t release_ports[DYLD_MAX_PROCESS_INFO_NOTIFY_COUNT]; |
| 6471 | uint32_t release_count = 0, active_count = 0; |
| 6472 | boolean_t port_found = false; |
| 6473 | mach_vm_address_t ports_addr; /* a user space address */ |
| 6474 | ipc_port_t sright; |
| 6475 | kern_return_t kr; |
| 6476 | ipc_port_t *portp; |
| 6477 | |
| 6478 | if (task == TASK_NULL || task == kernel_task) { |
| 6479 | return KERN_INVALID_TASK; |
| 6480 | } |
| 6481 | |
| 6482 | if (!MACH_PORT_VALID(rcv_name)) { |
| 6483 | return KERN_INVALID_NAME; |
| 6484 | } |
| 6485 | |
| 6486 | #if CONFIG_MACF |
| 6487 | if (mac_task_check_dyld_process_info_notify_register()) { |
| 6488 | return KERN_DENIED; |
| 6489 | } |
| 6490 | #endif |
| 6491 | |
| 6492 | kr = task_info(task, TASK_DYLD_INFO, task_info_out: (task_info_t)&dyld_info, task_info_count: &info_count); |
| 6493 | if (kr) { |
| 6494 | return kr; |
| 6495 | } |
| 6496 | |
| 6497 | if (dyld_info.all_image_info_format == TASK_DYLD_ALL_IMAGE_INFO_32) { |
| 6498 | ports_addr = (mach_vm_address_t)(dyld_info.all_image_info_addr + |
| 6499 | offsetof(struct user32_dyld_all_image_infos, notifyMachPorts)); |
| 6500 | } else { |
| 6501 | ports_addr = (mach_vm_address_t)(dyld_info.all_image_info_addr + |
| 6502 | offsetof(struct user64_dyld_all_image_infos, notifyMachPorts)); |
| 6503 | } |
| 6504 | |
| 6505 | kr = ipc_port_translate_receive(current_space(), name: rcv_name, portp: &sright); /* does not produce port ref */ |
| 6506 | if (kr) { |
| 6507 | return KERN_INVALID_RIGHT; |
| 6508 | } |
| 6509 | |
| 6510 | ip_reference(sright); |
| 6511 | ip_mq_unlock(sright); |
| 6512 | |
| 6513 | assert(sright != IPC_PORT_NULL); |
| 6514 | |
| 6515 | lck_mtx_lock(lck: &g_dyldinfo_mtx); |
| 6516 | itk_lock(task); |
| 6517 | |
| 6518 | if (task->itk_dyld_notify == NULL) { |
| 6519 | itk_unlock(task); |
| 6520 | lck_mtx_unlock(lck: &g_dyldinfo_mtx); |
| 6521 | ip_release(sright); |
| 6522 | return KERN_FAILURE; |
| 6523 | } |
| 6524 | |
| 6525 | for (int slot = 0; slot < DYLD_MAX_PROCESS_INFO_NOTIFY_COUNT; slot++) { |
| 6526 | portp = &task->itk_dyld_notify[slot]; |
| 6527 | if (*portp == sright) { |
| 6528 | release_ports[release_count++] = *portp; |
| 6529 | *portp = IPC_PORT_NULL; |
| 6530 | port_found = true; |
| 6531 | } else if ((*portp != IPC_PORT_NULL && !ip_active(*portp))) { |
| 6532 | release_ports[release_count++] = *portp; |
| 6533 | *portp = IPC_PORT_NULL; |
| 6534 | } |
| 6535 | |
| 6536 | if (*portp != IPC_PORT_NULL) { |
| 6537 | active_count++; |
| 6538 | } |
| 6539 | } |
| 6540 | |
| 6541 | task_dyld_process_info_update_helper(task, active_count, |
| 6542 | magic_addr: (vm_map_address_t)ports_addr, release_ports, release_count); |
| 6543 | /* itk_lock, g_dyldinfo_mtx are unlocked upon return */ |
| 6544 | |
| 6545 | ip_release(sright); |
| 6546 | |
| 6547 | return port_found ? KERN_SUCCESS : KERN_FAILURE; |
| 6548 | } |
| 6549 | |
| 6550 | /* |
| 6551 | * task_power_info |
| 6552 | * |
| 6553 | * Returns power stats for the task. |
| 6554 | * Note: Called with task locked. |
| 6555 | */ |
| 6556 | void |
| 6557 | task_power_info_locked( |
| 6558 | task_t task, |
| 6559 | task_power_info_t info, |
| 6560 | gpu_energy_data_t ginfo, |
| 6561 | task_power_info_v2_t infov2, |
| 6562 | struct task_power_info_extra *) |
| 6563 | { |
| 6564 | thread_t thread; |
| 6565 | ledger_amount_t tmp; |
| 6566 | |
| 6567 | uint64_t runnable_time_sum = 0; |
| 6568 | |
| 6569 | task_lock_assert_owned(task); |
| 6570 | |
| 6571 | ledger_get_entries(ledger: task->ledger, entry: task_ledgers.interrupt_wakeups, |
| 6572 | credit: (ledger_amount_t *)&info->task_interrupt_wakeups, debit: &tmp); |
| 6573 | ledger_get_entries(ledger: task->ledger, entry: task_ledgers.platform_idle_wakeups, |
| 6574 | credit: (ledger_amount_t *)&info->task_platform_idle_wakeups, debit: &tmp); |
| 6575 | |
| 6576 | info->task_timer_wakeups_bin_1 = task->task_timer_wakeups_bin_1; |
| 6577 | info->task_timer_wakeups_bin_2 = task->task_timer_wakeups_bin_2; |
| 6578 | |
| 6579 | struct recount_usage usage = { 0 }; |
| 6580 | struct recount_usage usage_perf = { 0 }; |
| 6581 | recount_task_usage_perf_only(task, sum: &usage, sum_perf_only: &usage_perf); |
| 6582 | |
| 6583 | info->total_user = usage.ru_metrics[RCT_LVL_USER].rm_time_mach; |
| 6584 | info->total_system = recount_usage_system_time_mach(usage: &usage); |
| 6585 | runnable_time_sum = task->total_runnable_time; |
| 6586 | |
| 6587 | if (ginfo) { |
| 6588 | ginfo->task_gpu_utilisation = task->task_gpu_ns; |
| 6589 | } |
| 6590 | |
| 6591 | if (infov2) { |
| 6592 | infov2->task_ptime = recount_usage_time_mach(usage: &usage_perf); |
| 6593 | infov2->task_pset_switches = task->ps_switch; |
| 6594 | #if CONFIG_PERVASIVE_ENERGY |
| 6595 | infov2->task_energy = usage.ru_energy_nj; |
| 6596 | #endif /* CONFIG_PERVASIVE_ENERGY */ |
| 6597 | } |
| 6598 | |
| 6599 | queue_iterate(&task->threads, thread, thread_t, task_threads) { |
| 6600 | spl_t x; |
| 6601 | |
| 6602 | if (thread->options & TH_OPT_IDLE_THREAD) { |
| 6603 | continue; |
| 6604 | } |
| 6605 | |
| 6606 | x = splsched(); |
| 6607 | thread_lock(thread); |
| 6608 | |
| 6609 | info->task_timer_wakeups_bin_1 += thread->thread_timer_wakeups_bin_1; |
| 6610 | info->task_timer_wakeups_bin_2 += thread->thread_timer_wakeups_bin_2; |
| 6611 | |
| 6612 | if (infov2) { |
| 6613 | infov2->task_pset_switches += thread->ps_switch; |
| 6614 | } |
| 6615 | |
| 6616 | runnable_time_sum += timer_grab(timer: &thread->runnable_timer); |
| 6617 | |
| 6618 | if (ginfo) { |
| 6619 | ginfo->task_gpu_utilisation += ml_gpu_stat(thread); |
| 6620 | } |
| 6621 | thread_unlock(thread); |
| 6622 | splx(x); |
| 6623 | } |
| 6624 | |
| 6625 | if (extra_info) { |
| 6626 | extra_info->runnable_time = runnable_time_sum; |
| 6627 | #if CONFIG_PERVASIVE_CPI |
| 6628 | extra_info->cycles = recount_usage_cycles(&usage); |
| 6629 | extra_info->instructions = recount_usage_instructions(&usage); |
| 6630 | extra_info->pcycles = recount_usage_cycles(&usage_perf); |
| 6631 | extra_info->pinstructions = recount_usage_instructions(&usage_perf); |
| 6632 | extra_info->user_ptime = usage_perf.ru_metrics[RCT_LVL_USER].rm_time_mach; |
| 6633 | extra_info->system_ptime = recount_usage_system_time_mach(&usage_perf); |
| 6634 | #endif // CONFIG_PERVASIVE_CPI |
| 6635 | #if CONFIG_PERVASIVE_ENERGY |
| 6636 | extra_info->energy = usage.ru_energy_nj; |
| 6637 | extra_info->penergy = usage_perf.ru_energy_nj; |
| 6638 | #endif // CONFIG_PERVASIVE_ENERGY |
| 6639 | #if RECOUNT_SECURE_METRICS |
| 6640 | if (PE_i_can_has_debugger(NULL)) { |
| 6641 | extra_info->secure_time = usage.ru_metrics[RCT_LVL_SECURE].rm_time_mach; |
| 6642 | extra_info->secure_ptime = usage_perf.ru_metrics[RCT_LVL_SECURE].rm_time_mach; |
| 6643 | } |
| 6644 | #endif // RECOUNT_SECURE_METRICS |
| 6645 | } |
| 6646 | } |
| 6647 | |
| 6648 | /* |
| 6649 | * task_gpu_utilisation |
| 6650 | * |
| 6651 | * Returns the total gpu time used by the all the threads of the task |
| 6652 | * (both dead and alive) |
| 6653 | */ |
| 6654 | uint64_t |
| 6655 | task_gpu_utilisation( |
| 6656 | task_t task) |
| 6657 | { |
| 6658 | uint64_t gpu_time = 0; |
| 6659 | #if defined(__x86_64__) |
| 6660 | thread_t thread; |
| 6661 | |
| 6662 | task_lock(task); |
| 6663 | gpu_time += task->task_gpu_ns; |
| 6664 | |
| 6665 | queue_iterate(&task->threads, thread, thread_t, task_threads) { |
| 6666 | spl_t x; |
| 6667 | x = splsched(); |
| 6668 | thread_lock(thread); |
| 6669 | gpu_time += ml_gpu_stat(thread); |
| 6670 | thread_unlock(thread); |
| 6671 | splx(x); |
| 6672 | } |
| 6673 | |
| 6674 | task_unlock(task); |
| 6675 | #else /* defined(__x86_64__) */ |
| 6676 | /* silence compiler warning */ |
| 6677 | (void)task; |
| 6678 | #endif /* defined(__x86_64__) */ |
| 6679 | return gpu_time; |
| 6680 | } |
| 6681 | |
| 6682 | /* This function updates the cpu time in the arrays for each |
| 6683 | * effective and requested QoS class |
| 6684 | */ |
| 6685 | void |
| 6686 | task_update_cpu_time_qos_stats( |
| 6687 | task_t task, |
| 6688 | uint64_t *eqos_stats, |
| 6689 | uint64_t *rqos_stats) |
| 6690 | { |
| 6691 | if (!eqos_stats && !rqos_stats) { |
| 6692 | return; |
| 6693 | } |
| 6694 | |
| 6695 | task_lock(task); |
| 6696 | thread_t thread; |
| 6697 | queue_iterate(&task->threads, thread, thread_t, task_threads) { |
| 6698 | if (thread->options & TH_OPT_IDLE_THREAD) { |
| 6699 | continue; |
| 6700 | } |
| 6701 | |
| 6702 | thread_update_qos_cpu_time(thread); |
| 6703 | } |
| 6704 | |
| 6705 | if (eqos_stats) { |
| 6706 | eqos_stats[THREAD_QOS_DEFAULT] += task->cpu_time_eqos_stats.cpu_time_qos_default; |
| 6707 | eqos_stats[THREAD_QOS_MAINTENANCE] += task->cpu_time_eqos_stats.cpu_time_qos_maintenance; |
| 6708 | eqos_stats[THREAD_QOS_BACKGROUND] += task->cpu_time_eqos_stats.cpu_time_qos_background; |
| 6709 | eqos_stats[THREAD_QOS_UTILITY] += task->cpu_time_eqos_stats.cpu_time_qos_utility; |
| 6710 | eqos_stats[THREAD_QOS_LEGACY] += task->cpu_time_eqos_stats.cpu_time_qos_legacy; |
| 6711 | eqos_stats[THREAD_QOS_USER_INITIATED] += task->cpu_time_eqos_stats.cpu_time_qos_user_initiated; |
| 6712 | eqos_stats[THREAD_QOS_USER_INTERACTIVE] += task->cpu_time_eqos_stats.cpu_time_qos_user_interactive; |
| 6713 | } |
| 6714 | |
| 6715 | if (rqos_stats) { |
| 6716 | rqos_stats[THREAD_QOS_DEFAULT] += task->cpu_time_rqos_stats.cpu_time_qos_default; |
| 6717 | rqos_stats[THREAD_QOS_MAINTENANCE] += task->cpu_time_rqos_stats.cpu_time_qos_maintenance; |
| 6718 | rqos_stats[THREAD_QOS_BACKGROUND] += task->cpu_time_rqos_stats.cpu_time_qos_background; |
| 6719 | rqos_stats[THREAD_QOS_UTILITY] += task->cpu_time_rqos_stats.cpu_time_qos_utility; |
| 6720 | rqos_stats[THREAD_QOS_LEGACY] += task->cpu_time_rqos_stats.cpu_time_qos_legacy; |
| 6721 | rqos_stats[THREAD_QOS_USER_INITIATED] += task->cpu_time_rqos_stats.cpu_time_qos_user_initiated; |
| 6722 | rqos_stats[THREAD_QOS_USER_INTERACTIVE] += task->cpu_time_rqos_stats.cpu_time_qos_user_interactive; |
| 6723 | } |
| 6724 | |
| 6725 | task_unlock(task); |
| 6726 | } |
| 6727 | |
| 6728 | kern_return_t |
| 6729 | task_purgable_info( |
| 6730 | task_t task, |
| 6731 | task_purgable_info_t *stats) |
| 6732 | { |
| 6733 | if (task == TASK_NULL || stats == NULL) { |
| 6734 | return KERN_INVALID_ARGUMENT; |
| 6735 | } |
| 6736 | /* Take task reference */ |
| 6737 | task_reference(task); |
| 6738 | vm_purgeable_stats(info: (vm_purgeable_info_t)stats, target_task: task); |
| 6739 | /* Drop task reference */ |
| 6740 | task_deallocate(task); |
| 6741 | return KERN_SUCCESS; |
| 6742 | } |
| 6743 | |
| 6744 | void |
| 6745 | task_vtimer_set( |
| 6746 | task_t task, |
| 6747 | integer_t which) |
| 6748 | { |
| 6749 | thread_t thread; |
| 6750 | spl_t x; |
| 6751 | |
| 6752 | task_lock(task); |
| 6753 | |
| 6754 | task->vtimers |= which; |
| 6755 | |
| 6756 | switch (which) { |
| 6757 | case TASK_VTIMER_USER: |
| 6758 | queue_iterate(&task->threads, thread, thread_t, task_threads) { |
| 6759 | x = splsched(); |
| 6760 | thread_lock(thread); |
| 6761 | struct recount_times_mach times = recount_thread_times(thread); |
| 6762 | thread->vtimer_user_save = times.rtm_user; |
| 6763 | thread_unlock(thread); |
| 6764 | splx(x); |
| 6765 | } |
| 6766 | break; |
| 6767 | |
| 6768 | case TASK_VTIMER_PROF: |
| 6769 | queue_iterate(&task->threads, thread, thread_t, task_threads) { |
| 6770 | x = splsched(); |
| 6771 | thread_lock(thread); |
| 6772 | thread->vtimer_prof_save = recount_thread_time_mach(thread); |
| 6773 | thread_unlock(thread); |
| 6774 | splx(x); |
| 6775 | } |
| 6776 | break; |
| 6777 | |
| 6778 | case TASK_VTIMER_RLIM: |
| 6779 | queue_iterate(&task->threads, thread, thread_t, task_threads) { |
| 6780 | x = splsched(); |
| 6781 | thread_lock(thread); |
| 6782 | thread->vtimer_rlim_save = recount_thread_time_mach(thread); |
| 6783 | thread_unlock(thread); |
| 6784 | splx(x); |
| 6785 | } |
| 6786 | break; |
| 6787 | } |
| 6788 | |
| 6789 | task_unlock(task); |
| 6790 | } |
| 6791 | |
| 6792 | void |
| 6793 | task_vtimer_clear( |
| 6794 | task_t task, |
| 6795 | integer_t which) |
| 6796 | { |
| 6797 | task_lock(task); |
| 6798 | |
| 6799 | task->vtimers &= ~which; |
| 6800 | |
| 6801 | task_unlock(task); |
| 6802 | } |
| 6803 | |
| 6804 | void |
| 6805 | task_vtimer_update( |
| 6806 | __unused |
| 6807 | task_t task, |
| 6808 | integer_t which, |
| 6809 | uint32_t *microsecs) |
| 6810 | { |
| 6811 | thread_t thread = current_thread(); |
| 6812 | uint32_t tdelt = 0; |
| 6813 | clock_sec_t secs = 0; |
| 6814 | uint64_t tsum; |
| 6815 | |
| 6816 | assert(task == current_task()); |
| 6817 | |
| 6818 | spl_t s = splsched(); |
| 6819 | thread_lock(thread); |
| 6820 | |
| 6821 | if ((task->vtimers & which) != (uint32_t)which) { |
| 6822 | thread_unlock(thread); |
| 6823 | splx(s); |
| 6824 | return; |
| 6825 | } |
| 6826 | |
| 6827 | switch (which) { |
| 6828 | case TASK_VTIMER_USER:; |
| 6829 | struct recount_times_mach times = recount_thread_times(thread); |
| 6830 | tsum = times.rtm_user; |
| 6831 | tdelt = (uint32_t)(tsum - thread->vtimer_user_save); |
| 6832 | thread->vtimer_user_save = tsum; |
| 6833 | absolutetime_to_microtime(abstime: tdelt, secs: &secs, microsecs); |
| 6834 | break; |
| 6835 | |
| 6836 | case TASK_VTIMER_PROF: |
| 6837 | tsum = recount_current_thread_time_mach(); |
| 6838 | tdelt = (uint32_t)(tsum - thread->vtimer_prof_save); |
| 6839 | absolutetime_to_microtime(abstime: tdelt, secs: &secs, microsecs); |
| 6840 | /* if the time delta is smaller than a usec, ignore */ |
| 6841 | if (*microsecs != 0) { |
| 6842 | thread->vtimer_prof_save = tsum; |
| 6843 | } |
| 6844 | break; |
| 6845 | |
| 6846 | case TASK_VTIMER_RLIM: |
| 6847 | tsum = recount_current_thread_time_mach(); |
| 6848 | tdelt = (uint32_t)(tsum - thread->vtimer_rlim_save); |
| 6849 | thread->vtimer_rlim_save = tsum; |
| 6850 | absolutetime_to_microtime(abstime: tdelt, secs: &secs, microsecs); |
| 6851 | break; |
| 6852 | } |
| 6853 | |
| 6854 | thread_unlock(thread); |
| 6855 | splx(s); |
| 6856 | } |
| 6857 | |
| 6858 | uint64_t |
| 6859 | get_task_dispatchqueue_offset( |
| 6860 | task_t task) |
| 6861 | { |
| 6862 | return task->dispatchqueue_offset; |
| 6863 | } |
| 6864 | |
| 6865 | void |
| 6866 | task_synchronizer_destroy_all(task_t task) |
| 6867 | { |
| 6868 | /* |
| 6869 | * Destroy owned semaphores |
| 6870 | */ |
| 6871 | semaphore_destroy_all(task); |
| 6872 | } |
| 6873 | |
| 6874 | /* |
| 6875 | * Install default (machine-dependent) initial thread state |
| 6876 | * on the task. Subsequent thread creation will have this initial |
| 6877 | * state set on the thread by machine_thread_inherit_taskwide(). |
| 6878 | * Flavors and structures are exactly the same as those to thread_set_state() |
| 6879 | */ |
| 6880 | kern_return_t |
| 6881 | task_set_state( |
| 6882 | task_t task, |
| 6883 | int flavor, |
| 6884 | thread_state_t state, |
| 6885 | mach_msg_type_number_t state_count) |
| 6886 | { |
| 6887 | kern_return_t ret; |
| 6888 | |
| 6889 | if (task == TASK_NULL) { |
| 6890 | return KERN_INVALID_ARGUMENT; |
| 6891 | } |
| 6892 | |
| 6893 | task_lock(task); |
| 6894 | |
| 6895 | if (!task->active) { |
| 6896 | task_unlock(task); |
| 6897 | return KERN_FAILURE; |
| 6898 | } |
| 6899 | |
| 6900 | ret = machine_task_set_state(task, flavor, state, state_count); |
| 6901 | |
| 6902 | task_unlock(task); |
| 6903 | return ret; |
| 6904 | } |
| 6905 | |
| 6906 | /* |
| 6907 | * Examine the default (machine-dependent) initial thread state |
| 6908 | * on the task, as set by task_set_state(). Flavors and structures |
| 6909 | * are exactly the same as those passed to thread_get_state(). |
| 6910 | */ |
| 6911 | kern_return_t |
| 6912 | task_get_state( |
| 6913 | task_t task, |
| 6914 | int flavor, |
| 6915 | thread_state_t state, |
| 6916 | mach_msg_type_number_t *state_count) |
| 6917 | { |
| 6918 | kern_return_t ret; |
| 6919 | |
| 6920 | if (task == TASK_NULL) { |
| 6921 | return KERN_INVALID_ARGUMENT; |
| 6922 | } |
| 6923 | |
| 6924 | task_lock(task); |
| 6925 | |
| 6926 | if (!task->active) { |
| 6927 | task_unlock(task); |
| 6928 | return KERN_FAILURE; |
| 6929 | } |
| 6930 | |
| 6931 | ret = machine_task_get_state(task, flavor, state, state_count); |
| 6932 | |
| 6933 | task_unlock(task); |
| 6934 | return ret; |
| 6935 | } |
| 6936 | |
| 6937 | |
| 6938 | static kern_return_t __attribute__((noinline, not_tail_called)) |
| 6939 | PROC_VIOLATED_GUARD__SEND_EXC_GUARD( |
| 6940 | mach_exception_code_t code, |
| 6941 | mach_exception_subcode_t subcode, |
| 6942 | void *reason, |
| 6943 | boolean_t backtrace_only) |
| 6944 | { |
| 6945 | #ifdef MACH_BSD |
| 6946 | if (1 == proc_selfpid()) { |
| 6947 | return KERN_NOT_SUPPORTED; // initproc is immune |
| 6948 | } |
| 6949 | #endif |
| 6950 | mach_exception_data_type_t codes[EXCEPTION_CODE_MAX] = { |
| 6951 | [0] = code, |
| 6952 | [1] = subcode, |
| 6953 | }; |
| 6954 | task_t task = current_task(); |
| 6955 | kern_return_t kr; |
| 6956 | void *bsd_info = get_bsdtask_info(task); |
| 6957 | |
| 6958 | /* (See jetsam-related comments below) */ |
| 6959 | |
| 6960 | proc_memstat_skip(p: bsd_info, TRUE); |
| 6961 | kr = task_enqueue_exception_with_corpse(task, EXC_GUARD, code: codes, codeCnt: 2, reason, lightweight: backtrace_only); |
| 6962 | proc_memstat_skip(p: bsd_info, FALSE); |
| 6963 | return kr; |
| 6964 | } |
| 6965 | |
| 6966 | kern_return_t |
| 6967 | task_violated_guard( |
| 6968 | mach_exception_code_t code, |
| 6969 | mach_exception_subcode_t subcode, |
| 6970 | void *reason, |
| 6971 | bool backtrace_only) |
| 6972 | { |
| 6973 | return PROC_VIOLATED_GUARD__SEND_EXC_GUARD(code, subcode, reason, backtrace_only); |
| 6974 | } |
| 6975 | |
| 6976 | |
| 6977 | #if CONFIG_MEMORYSTATUS |
| 6978 | |
| 6979 | boolean_t |
| 6980 | task_get_memlimit_is_active(task_t task) |
| 6981 | { |
| 6982 | assert(task != NULL); |
| 6983 | |
| 6984 | if (task->memlimit_is_active == 1) { |
| 6985 | return TRUE; |
| 6986 | } else { |
| 6987 | return FALSE; |
| 6988 | } |
| 6989 | } |
| 6990 | |
| 6991 | void |
| 6992 | task_set_memlimit_is_active(task_t task, boolean_t memlimit_is_active) |
| 6993 | { |
| 6994 | assert(task != NULL); |
| 6995 | |
| 6996 | if (memlimit_is_active) { |
| 6997 | task->memlimit_is_active = 1; |
| 6998 | } else { |
| 6999 | task->memlimit_is_active = 0; |
| 7000 | } |
| 7001 | } |
| 7002 | |
| 7003 | boolean_t |
| 7004 | task_get_memlimit_is_fatal(task_t task) |
| 7005 | { |
| 7006 | assert(task != NULL); |
| 7007 | |
| 7008 | if (task->memlimit_is_fatal == 1) { |
| 7009 | return TRUE; |
| 7010 | } else { |
| 7011 | return FALSE; |
| 7012 | } |
| 7013 | } |
| 7014 | |
| 7015 | void |
| 7016 | task_set_memlimit_is_fatal(task_t task, boolean_t memlimit_is_fatal) |
| 7017 | { |
| 7018 | assert(task != NULL); |
| 7019 | |
| 7020 | if (memlimit_is_fatal) { |
| 7021 | task->memlimit_is_fatal = 1; |
| 7022 | } else { |
| 7023 | task->memlimit_is_fatal = 0; |
| 7024 | } |
| 7025 | } |
| 7026 | |
| 7027 | uint64_t |
| 7028 | task_get_dirty_start(task_t task) |
| 7029 | { |
| 7030 | return task->memstat_dirty_start; |
| 7031 | } |
| 7032 | |
| 7033 | void |
| 7034 | task_set_dirty_start(task_t task, uint64_t start) |
| 7035 | { |
| 7036 | task_lock(task); |
| 7037 | task->memstat_dirty_start = start; |
| 7038 | task_unlock(task); |
| 7039 | } |
| 7040 | |
| 7041 | boolean_t |
| 7042 | task_has_triggered_exc_resource(task_t task, boolean_t memlimit_is_active) |
| 7043 | { |
| 7044 | boolean_t triggered = FALSE; |
| 7045 | |
| 7046 | assert(task == current_task()); |
| 7047 | |
| 7048 | /* |
| 7049 | * Returns true, if task has already triggered an exc_resource exception. |
| 7050 | */ |
| 7051 | |
| 7052 | if (memlimit_is_active) { |
| 7053 | triggered = (task->memlimit_active_exc_resource ? TRUE : FALSE); |
| 7054 | } else { |
| 7055 | triggered = (task->memlimit_inactive_exc_resource ? TRUE : FALSE); |
| 7056 | } |
| 7057 | |
| 7058 | return triggered; |
| 7059 | } |
| 7060 | |
| 7061 | void |
| 7062 | task_mark_has_triggered_exc_resource(task_t task, boolean_t memlimit_is_active) |
| 7063 | { |
| 7064 | assert(task == current_task()); |
| 7065 | |
| 7066 | /* |
| 7067 | * We allow one exc_resource per process per active/inactive limit. |
| 7068 | * The limit's fatal attribute does not come into play. |
| 7069 | */ |
| 7070 | |
| 7071 | if (memlimit_is_active) { |
| 7072 | task->memlimit_active_exc_resource = 1; |
| 7073 | } else { |
| 7074 | task->memlimit_inactive_exc_resource = 1; |
| 7075 | } |
| 7076 | } |
| 7077 | |
| 7078 | #define HWM_USERCORE_MINSPACE 250 // free space (in MB) required *after* core file creation |
| 7079 | |
| 7080 | void __attribute__((noinline)) |
| 7081 | PROC_CROSSED_HIGH_WATERMARK__SEND_EXC_RESOURCE_AND_SUSPEND(int , send_exec_resource_options_t exception_options) |
| 7082 | { |
| 7083 | task_t task = current_task(); |
| 7084 | int pid = 0; |
| 7085 | const char *procname = "unknown" ; |
| 7086 | mach_exception_data_type_t code[EXCEPTION_CODE_MAX]; |
| 7087 | boolean_t send_sync_exc_resource = FALSE; |
| 7088 | void *cur_bsd_info = get_bsdtask_info(current_task()); |
| 7089 | |
| 7090 | #ifdef MACH_BSD |
| 7091 | pid = proc_selfpid(); |
| 7092 | |
| 7093 | if (pid == 1) { |
| 7094 | /* |
| 7095 | * Cannot have ReportCrash analyzing |
| 7096 | * a suspended initproc. |
| 7097 | */ |
| 7098 | return; |
| 7099 | } |
| 7100 | |
| 7101 | if (cur_bsd_info != NULL) { |
| 7102 | procname = proc_name_address(p: cur_bsd_info); |
| 7103 | send_sync_exc_resource = proc_send_synchronous_EXC_RESOURCE(p: cur_bsd_info); |
| 7104 | } |
| 7105 | #endif |
| 7106 | #if CONFIG_COREDUMP |
| 7107 | if (hwm_user_cores) { |
| 7108 | int error; |
| 7109 | uint64_t starttime, end; |
| 7110 | clock_sec_t secs = 0; |
| 7111 | uint32_t microsecs = 0; |
| 7112 | |
| 7113 | starttime = mach_absolute_time(); |
| 7114 | /* |
| 7115 | * Trigger a coredump of this process. Don't proceed unless we know we won't |
| 7116 | * be filling up the disk; and ignore the core size resource limit for this |
| 7117 | * core file. |
| 7118 | */ |
| 7119 | if ((error = coredump(p: cur_bsd_info, HWM_USERCORE_MINSPACE, COREDUMP_IGNORE_ULIMIT)) != 0) { |
| 7120 | printf(format: "couldn't take coredump of %s[%d]: %d\n" , procname, pid, error); |
| 7121 | } |
| 7122 | /* |
| 7123 | * coredump() leaves the task suspended. |
| 7124 | */ |
| 7125 | task_resume_internal(task: current_task()); |
| 7126 | |
| 7127 | end = mach_absolute_time(); |
| 7128 | absolutetime_to_microtime(abstime: end - starttime, secs: &secs, microsecs: µsecs); |
| 7129 | printf(format: "coredump of %s[%d] taken in %d secs %d microsecs\n" , |
| 7130 | proc_name_address(p: cur_bsd_info), pid, (int)secs, microsecs); |
| 7131 | } |
| 7132 | #endif /* CONFIG_COREDUMP */ |
| 7133 | |
| 7134 | if (disable_exc_resource) { |
| 7135 | printf(format: "process %s[%d] crossed memory high watermark (%d MB); EXC_RESOURCE " |
| 7136 | "suppressed by a boot-arg.\n" , procname, pid, max_footprint_mb); |
| 7137 | return; |
| 7138 | } |
| 7139 | printf(format: "process %s [%d] crossed memory %s (%d MB); EXC_RESOURCE " |
| 7140 | "\n" , procname, pid, (!(exception_options & EXEC_RESOURCE_DIAGNOSTIC) ? "high watermark" : "diagnostics limit" ), max_footprint_mb); |
| 7141 | |
| 7142 | /* |
| 7143 | * A task that has triggered an EXC_RESOURCE, should not be |
| 7144 | * jetsammed when the device is under memory pressure. Here |
| 7145 | * we set the P_MEMSTAT_SKIP flag so that the process |
| 7146 | * will be skipped if the memorystatus_thread wakes up. |
| 7147 | * |
| 7148 | * This is a debugging aid to ensure we can get a corpse before |
| 7149 | * the jetsam thread kills the process. |
| 7150 | * Note that proc_memstat_skip is a no-op on release kernels. |
| 7151 | */ |
| 7152 | proc_memstat_skip(p: cur_bsd_info, TRUE); |
| 7153 | |
| 7154 | code[0] = code[1] = 0; |
| 7155 | EXC_RESOURCE_ENCODE_TYPE(code[0], RESOURCE_TYPE_MEMORY); |
| 7156 | /* |
| 7157 | * Regardless if there was a diag memlimit violation, fatal exceptions shall be notified always |
| 7158 | * as high level watermaks. In another words, if there was a diag limit and a watermark, and the |
| 7159 | * violation if for limit watermark, a watermark shall be reported. |
| 7160 | */ |
| 7161 | if (!(exception_options & EXEC_RESOURCE_FATAL)) { |
| 7162 | EXC_RESOURCE_ENCODE_FLAVOR(code[0], !(exception_options & EXEC_RESOURCE_DIAGNOSTIC) ? FLAVOR_HIGH_WATERMARK : FLAVOR_DIAG_MEMLIMIT); |
| 7163 | } else { |
| 7164 | EXC_RESOURCE_ENCODE_FLAVOR(code[0], FLAVOR_HIGH_WATERMARK ); |
| 7165 | } |
| 7166 | EXC_RESOURCE_HWM_ENCODE_LIMIT(code[0], max_footprint_mb); |
| 7167 | /* |
| 7168 | * Do not generate a corpse fork if the violation is a fatal one |
| 7169 | * or the process wants synchronous EXC_RESOURCE exceptions. |
| 7170 | */ |
| 7171 | if ((exception_options & EXEC_RESOURCE_FATAL) || send_sync_exc_resource || !exc_via_corpse_forking) { |
| 7172 | if (exception_options & EXEC_RESOURCE_FATAL) { |
| 7173 | vm_map_set_corpse_source(map: task->map); |
| 7174 | } |
| 7175 | |
| 7176 | /* Do not send a EXC_RESOURCE if corpse_for_fatal_memkill is set */ |
| 7177 | if (send_sync_exc_resource || !corpse_for_fatal_memkill) { |
| 7178 | /* |
| 7179 | * Use the _internal_ variant so that no user-space |
| 7180 | * process can resume our task from under us. |
| 7181 | */ |
| 7182 | task_suspend_internal(task); |
| 7183 | exception_triage(EXC_RESOURCE, code, EXCEPTION_CODE_MAX); |
| 7184 | task_resume_internal(task); |
| 7185 | } |
| 7186 | } else { |
| 7187 | if (disable_exc_resource_during_audio && audio_active) { |
| 7188 | printf(format: "process %s[%d] crossed memory high watermark (%d MB); EXC_RESOURCE " |
| 7189 | "suppressed due to audio playback.\n" , procname, pid, max_footprint_mb); |
| 7190 | } else { |
| 7191 | task_enqueue_exception_with_corpse(task, EXC_RESOURCE, |
| 7192 | code, EXCEPTION_CODE_MAX, NULL, FALSE); |
| 7193 | } |
| 7194 | } |
| 7195 | |
| 7196 | /* |
| 7197 | * After the EXC_RESOURCE has been handled, we must clear the |
| 7198 | * P_MEMSTAT_SKIP flag so that the process can again be |
| 7199 | * considered for jetsam if the memorystatus_thread wakes up. |
| 7200 | */ |
| 7201 | proc_memstat_skip(p: cur_bsd_info, FALSE); /* clear the flag */ |
| 7202 | } |
| 7203 | /* |
| 7204 | * Callback invoked when a task exceeds its physical footprint limit. |
| 7205 | */ |
| 7206 | void |
| 7207 | (int warning, __unused const void *param0, __unused const void *param1) |
| 7208 | { |
| 7209 | ledger_amount_t = 0; |
| 7210 | ledger_amount_t = 0; |
| 7211 | #if DEBUG || DEVELOPMENT |
| 7212 | ledger_amount_t diag_threshold_limit_mb = 0; |
| 7213 | ledger_amount_t diag_threshold_limit = 0; |
| 7214 | #endif |
| 7215 | #if CONFIG_DEFERRED_RECLAIM |
| 7216 | ledger_amount_t ; |
| 7217 | #endif /* CONFIG_DEFERRED_RECLAIM */ |
| 7218 | task_t task; |
| 7219 | send_exec_resource_is_warning is_warning = IS_NOT_WARNING; |
| 7220 | boolean_t memlimit_is_active; |
| 7221 | send_exec_resource_is_fatal memlimit_is_fatal; |
| 7222 | send_exec_resource_is_diagnostics is_diag_mem_threshold = IS_NOT_DIAGNOSTICS; |
| 7223 | if (warning == LEDGER_WARNING_DIAG_MEM_THRESHOLD) { |
| 7224 | is_diag_mem_threshold = IS_DIAGNOSTICS; |
| 7225 | is_warning = IS_WARNING; |
| 7226 | } else if (warning == LEDGER_WARNING_DIPPED_BELOW) { |
| 7227 | /* |
| 7228 | * Task memory limits only provide a warning on the way up. |
| 7229 | */ |
| 7230 | return; |
| 7231 | } else if (warning == LEDGER_WARNING_ROSE_ABOVE) { |
| 7232 | /* |
| 7233 | * This task is in danger of violating a memory limit, |
| 7234 | * It has exceeded a percentage level of the limit. |
| 7235 | */ |
| 7236 | is_warning = IS_WARNING; |
| 7237 | } else { |
| 7238 | /* |
| 7239 | * The task has exceeded the physical footprint limit. |
| 7240 | * This is not a warning but a true limit violation. |
| 7241 | */ |
| 7242 | is_warning = IS_NOT_WARNING; |
| 7243 | } |
| 7244 | |
| 7245 | task = current_task(); |
| 7246 | |
| 7247 | ledger_get_limit(ledger: task->ledger, entry: task_ledgers.phys_footprint, limit: &max_footprint); |
| 7248 | #if DEBUG || DEVELOPMENT |
| 7249 | ledger_get_diag_mem_threshold(task->ledger, task_ledgers.phys_footprint, &diag_threshold_limit); |
| 7250 | #endif |
| 7251 | #if CONFIG_DEFERRED_RECLAIM |
| 7252 | if (task->deferred_reclamation_metadata != NULL) { |
| 7253 | /* |
| 7254 | * Task is enrolled in deferred reclamation. |
| 7255 | * Do a reclaim to ensure it's really over its limit. |
| 7256 | */ |
| 7257 | vm_deferred_reclamation_reclaim_from_task_sync(task, UINT64_MAX); |
| 7258 | ledger_get_balance(ledger: task->ledger, entry: task_ledgers.phys_footprint, balance: ¤t_footprint); |
| 7259 | if (current_footprint < max_footprint) { |
| 7260 | return; |
| 7261 | } |
| 7262 | } |
| 7263 | #endif /* CONFIG_DEFERRED_RECLAIM */ |
| 7264 | max_footprint_mb = max_footprint >> 20; |
| 7265 | #if DEBUG || DEVELOPMENT |
| 7266 | diag_threshold_limit_mb = diag_threshold_limit >> 20; |
| 7267 | #endif |
| 7268 | memlimit_is_active = task_get_memlimit_is_active(task); |
| 7269 | memlimit_is_fatal = task_get_memlimit_is_fatal(task) == FALSE ? IS_NOT_FATAL : IS_FATAL; |
| 7270 | #if DEBUG || DEVELOPMENT |
| 7271 | if (is_diag_mem_threshold == IS_NOT_DIAGNOSTICS) { |
| 7272 | task_process_crossed_limit_no_diag(task, max_footprint_mb, memlimit_is_fatal, memlimit_is_active, is_warning); |
| 7273 | } else { |
| 7274 | task_process_crossed_limit_diag(diag_threshold_limit_mb); |
| 7275 | } |
| 7276 | #else |
| 7277 | task_process_crossed_limit_no_diag(task, ledger_limit_size: max_footprint_mb, memlimit_is_fatal, memlimit_is_active, is_warning); |
| 7278 | #endif |
| 7279 | } |
| 7280 | |
| 7281 | /* |
| 7282 | * Actions to perfrom when a process has crossed watermark or is a fatal consumption */ |
| 7283 | static inline void |
| 7284 | task_process_crossed_limit_no_diag(task_t task, ledger_amount_t ledger_limit_size, bool memlimit_is_fatal, bool memlimit_is_active, send_exec_resource_is_warning is_warning) |
| 7285 | { |
| 7286 | send_exec_resource_options_t exception_options = 0; |
| 7287 | if (memlimit_is_fatal) { |
| 7288 | exception_options |= EXEC_RESOURCE_FATAL; |
| 7289 | } |
| 7290 | /* |
| 7291 | * If this is an actual violation (not a warning), then generate EXC_RESOURCE exception. |
| 7292 | * We only generate the exception once per process per memlimit (active/inactive limit). |
| 7293 | * To enforce this, we monitor state based on the memlimit's active/inactive attribute |
| 7294 | * and we disable it by marking that memlimit as exception triggered. |
| 7295 | */ |
| 7296 | if (is_warning == IS_NOT_WARNING && !task_has_triggered_exc_resource(task, memlimit_is_active)) { |
| 7297 | PROC_CROSSED_HIGH_WATERMARK__SEND_EXC_RESOURCE_AND_SUSPEND(max_footprint_mb: (int)ledger_limit_size, exception_options); |
| 7298 | // If it was not a diag threshold (if was a memory limit), then we do not want more signalling, |
| 7299 | // however, if was a diag limit, the user may reload a different limit and signal again the violation |
| 7300 | memorystatus_log_exception(max_footprint_mb: (int)ledger_limit_size, memlimit_is_active, memlimit_is_fatal); |
| 7301 | task_mark_has_triggered_exc_resource(task, memlimit_is_active); |
| 7302 | } |
| 7303 | memorystatus_on_ledger_footprint_exceeded(warning: is_warning == IS_NOT_WARNING ? FALSE : TRUE, memlimit_is_active, memlimit_is_fatal); |
| 7304 | } |
| 7305 | |
| 7306 | #if DEBUG || DEVELOPMENT |
| 7307 | /** |
| 7308 | * Actions to take when a process has crossed the diagnostics limit |
| 7309 | */ |
| 7310 | static inline void |
| 7311 | task_process_crossed_limit_diag(ledger_amount_t ledger_limit_size) |
| 7312 | { |
| 7313 | /* |
| 7314 | * If this is an actual violation (not a warning), then generate EXC_RESOURCE exception. |
| 7315 | * In the case of the diagnostics thresholds, the exception will be signaled only once, but the |
| 7316 | * inhibit / rearm mechanism if performed at ledger level. |
| 7317 | */ |
| 7318 | send_exec_resource_options_t exception_options = EXEC_RESOURCE_DIAGNOSTIC; |
| 7319 | PROC_CROSSED_HIGH_WATERMARK__SEND_EXC_RESOURCE_AND_SUSPEND((int)ledger_limit_size, exception_options); |
| 7320 | memorystatus_log_diag_threshold_exception((int)ledger_limit_size); |
| 7321 | } |
| 7322 | #endif |
| 7323 | |
| 7324 | extern int (void); |
| 7325 | |
| 7326 | kern_return_t |
| 7327 | ( |
| 7328 | task_t task, |
| 7329 | int new_limit_mb, |
| 7330 | int *old_limit_mb) |
| 7331 | { |
| 7332 | kern_return_t error; |
| 7333 | |
| 7334 | boolean_t memlimit_is_active; |
| 7335 | boolean_t memlimit_is_fatal; |
| 7336 | |
| 7337 | if ((error = proc_check_footprint_priv())) { |
| 7338 | return KERN_NO_ACCESS; |
| 7339 | } |
| 7340 | |
| 7341 | /* |
| 7342 | * This call should probably be obsoleted. |
| 7343 | * But for now, we default to current state. |
| 7344 | */ |
| 7345 | memlimit_is_active = task_get_memlimit_is_active(task); |
| 7346 | memlimit_is_fatal = task_get_memlimit_is_fatal(task); |
| 7347 | |
| 7348 | return task_set_phys_footprint_limit_internal(task, new_limit_mb, old_limit_mb, memlimit_is_active, memlimit_is_fatal); |
| 7349 | } |
| 7350 | |
| 7351 | /* |
| 7352 | * Set the limit of diagnostics memory consumption for a concrete task |
| 7353 | */ |
| 7354 | #if CONFIG_MEMORYSTATUS |
| 7355 | #if DEVELOPMENT || DEBUG |
| 7356 | kern_return_t |
| 7357 | task_set_diag_footprint_limit( |
| 7358 | task_t task, |
| 7359 | uint64_t new_limit_mb, |
| 7360 | uint64_t *old_limit_mb) |
| 7361 | { |
| 7362 | kern_return_t error; |
| 7363 | |
| 7364 | if ((error = proc_check_footprint_priv())) { |
| 7365 | return KERN_NO_ACCESS; |
| 7366 | } |
| 7367 | |
| 7368 | return task_set_diag_footprint_limit_internal(task, new_limit_mb, old_limit_mb); |
| 7369 | } |
| 7370 | |
| 7371 | #endif // DEVELOPMENT || DEBUG |
| 7372 | #endif // CONFIG_MEMORYSTATUS |
| 7373 | |
| 7374 | kern_return_t |
| 7375 | ( |
| 7376 | int limit_mb, |
| 7377 | int *converted_limit_mb) |
| 7378 | { |
| 7379 | if (limit_mb == -1) { |
| 7380 | /* |
| 7381 | * No limit |
| 7382 | */ |
| 7383 | if (max_task_footprint != 0) { |
| 7384 | *converted_limit_mb = (int)(max_task_footprint / 1024 / 1024); /* bytes to MB */ |
| 7385 | } else { |
| 7386 | *converted_limit_mb = (int)(LEDGER_LIMIT_INFINITY >> 20); |
| 7387 | } |
| 7388 | } else { |
| 7389 | /* nothing to convert */ |
| 7390 | *converted_limit_mb = limit_mb; |
| 7391 | } |
| 7392 | return KERN_SUCCESS; |
| 7393 | } |
| 7394 | |
| 7395 | kern_return_t |
| 7396 | ( |
| 7397 | task_t task, |
| 7398 | int new_limit_mb, |
| 7399 | int *old_limit_mb, |
| 7400 | boolean_t memlimit_is_active, |
| 7401 | boolean_t memlimit_is_fatal) |
| 7402 | { |
| 7403 | ledger_amount_t old; |
| 7404 | kern_return_t ret; |
| 7405 | #if DEVELOPMENT || DEBUG |
| 7406 | diagthreshold_check_return diag_threshold_validity; |
| 7407 | #endif |
| 7408 | ret = ledger_get_limit(ledger: task->ledger, entry: task_ledgers.phys_footprint, limit: &old); |
| 7409 | |
| 7410 | if (ret != KERN_SUCCESS) { |
| 7411 | return ret; |
| 7412 | } |
| 7413 | /** |
| 7414 | * Maybe we will need to re-enable the diag threshold, lets get the value |
| 7415 | * and the current status |
| 7416 | */ |
| 7417 | #if DEVELOPMENT || DEBUG |
| 7418 | diag_threshold_validity = task_check_memorythreshold_is_valid( task, new_limit_mb, false); |
| 7419 | /** |
| 7420 | * If the footprint and diagnostics threshold are going to be same, lets disable the threshold |
| 7421 | */ |
| 7422 | if (diag_threshold_validity == THRESHOLD_IS_SAME_AS_LIMIT_FLAG_ENABLED) { |
| 7423 | ledger_set_diag_mem_threshold_disabled(task->ledger, task_ledgers.phys_footprint); |
| 7424 | } else if (diag_threshold_validity == THRESHOLD_IS_NOT_SAME_AS_LIMIT_FLAG_DISABLED) { |
| 7425 | ledger_set_diag_mem_threshold_enabled(task->ledger, task_ledgers.phys_footprint); |
| 7426 | } |
| 7427 | #endif |
| 7428 | |
| 7429 | /* |
| 7430 | * Check that limit >> 20 will not give an "unexpected" 32-bit |
| 7431 | * result. There are, however, implicit assumptions that -1 mb limit |
| 7432 | * equates to LEDGER_LIMIT_INFINITY. |
| 7433 | */ |
| 7434 | assert(((old & 0xFFF0000000000000LL) == 0) || (old == LEDGER_LIMIT_INFINITY)); |
| 7435 | |
| 7436 | if (old_limit_mb) { |
| 7437 | *old_limit_mb = (int)(old >> 20); |
| 7438 | } |
| 7439 | |
| 7440 | if (new_limit_mb == -1) { |
| 7441 | /* |
| 7442 | * Caller wishes to remove the limit. |
| 7443 | */ |
| 7444 | ledger_set_limit(ledger: task->ledger, entry: task_ledgers.phys_footprint, |
| 7445 | limit: max_task_footprint ? max_task_footprint : LEDGER_LIMIT_INFINITY, |
| 7446 | warn_level_percentage: max_task_footprint ? (uint8_t)max_task_footprint_warning_level : 0); |
| 7447 | |
| 7448 | task_lock(task); |
| 7449 | task_set_memlimit_is_active(task, memlimit_is_active); |
| 7450 | task_set_memlimit_is_fatal(task, memlimit_is_fatal); |
| 7451 | task_unlock(task); |
| 7452 | /** |
| 7453 | * If the diagnostics were disabled, and now we have a new limit, we have to re-enable it. |
| 7454 | */ |
| 7455 | #if DEVELOPMENT || DEBUG |
| 7456 | if (diag_threshold_validity == THRESHOLD_IS_SAME_AS_LIMIT_FLAG_ENABLED) { |
| 7457 | ledger_set_diag_mem_threshold_disabled(task->ledger, task_ledgers.phys_footprint); |
| 7458 | } else if (diag_threshold_validity == THRESHOLD_IS_NOT_SAME_AS_LIMIT_FLAG_DISABLED) { |
| 7459 | ledger_set_diag_mem_threshold_enabled(task->ledger, task_ledgers.phys_footprint); |
| 7460 | } |
| 7461 | #endif |
| 7462 | return KERN_SUCCESS; |
| 7463 | } |
| 7464 | |
| 7465 | #ifdef CONFIG_NOMONITORS |
| 7466 | return KERN_SUCCESS; |
| 7467 | #endif /* CONFIG_NOMONITORS */ |
| 7468 | |
| 7469 | task_lock(task); |
| 7470 | |
| 7471 | if ((memlimit_is_active == task_get_memlimit_is_active(task)) && |
| 7472 | (memlimit_is_fatal == task_get_memlimit_is_fatal(task)) && |
| 7473 | (((ledger_amount_t)new_limit_mb << 20) == old)) { |
| 7474 | /* |
| 7475 | * memlimit state is not changing |
| 7476 | */ |
| 7477 | task_unlock(task); |
| 7478 | return KERN_SUCCESS; |
| 7479 | } |
| 7480 | |
| 7481 | task_set_memlimit_is_active(task, memlimit_is_active); |
| 7482 | task_set_memlimit_is_fatal(task, memlimit_is_fatal); |
| 7483 | |
| 7484 | ledger_set_limit(ledger: task->ledger, entry: task_ledgers.phys_footprint, |
| 7485 | limit: (ledger_amount_t)new_limit_mb << 20, PHYS_FOOTPRINT_WARNING_LEVEL); |
| 7486 | |
| 7487 | if (task == current_task()) { |
| 7488 | ledger_check_new_balance(thread: current_thread(), ledger: task->ledger, |
| 7489 | entry: task_ledgers.phys_footprint); |
| 7490 | } |
| 7491 | |
| 7492 | task_unlock(task); |
| 7493 | #if DEVELOPMENT || DEBUG |
| 7494 | if (diag_threshold_validity == THRESHOLD_IS_NOT_SAME_AS_LIMIT_FLAG_DISABLED) { |
| 7495 | ledger_set_diag_mem_threshold_enabled(task->ledger, task_ledgers.phys_footprint); |
| 7496 | } |
| 7497 | #endif |
| 7498 | |
| 7499 | return KERN_SUCCESS; |
| 7500 | } |
| 7501 | |
| 7502 | #if RESETTABLE_DIAG_FOOTPRINT_LIMITS |
| 7503 | kern_return_t |
| 7504 | task_set_diag_footprint_limit_internal( |
| 7505 | task_t task, |
| 7506 | uint64_t new_limit_bytes, |
| 7507 | uint64_t *old_limit_bytes) |
| 7508 | { |
| 7509 | ledger_amount_t old = 0; |
| 7510 | kern_return_t ret = KERN_SUCCESS; |
| 7511 | diagthreshold_check_return diag_threshold_validity; |
| 7512 | ret = ledger_get_diag_mem_threshold(task->ledger, task_ledgers.phys_footprint, &old); |
| 7513 | |
| 7514 | if (ret != KERN_SUCCESS) { |
| 7515 | return ret; |
| 7516 | } |
| 7517 | /** |
| 7518 | * Maybe we will need to re-enable the diag threshold, lets get the value |
| 7519 | * and the current status |
| 7520 | */ |
| 7521 | diag_threshold_validity = task_check_memorythreshold_is_valid( task, new_limit_bytes >> 20, true); |
| 7522 | /** |
| 7523 | * If the footprint and diagnostics threshold are going to be same, lets disable the threshold |
| 7524 | */ |
| 7525 | if (diag_threshold_validity == THRESHOLD_IS_SAME_AS_LIMIT_FLAG_ENABLED) { |
| 7526 | ledger_set_diag_mem_threshold_disabled(task->ledger, task_ledgers.phys_footprint); |
| 7527 | } |
| 7528 | |
| 7529 | /* |
| 7530 | * Check that limit >> 20 will not give an "unexpected" 32-bit |
| 7531 | * result. There are, however, implicit assumptions that -1 mb limit |
| 7532 | * equates to LEDGER_LIMIT_INFINITY. |
| 7533 | */ |
| 7534 | if (old_limit_bytes) { |
| 7535 | *old_limit_bytes = old; |
| 7536 | } |
| 7537 | |
| 7538 | if (new_limit_bytes == -1) { |
| 7539 | /* |
| 7540 | * Caller wishes to remove the limit. |
| 7541 | */ |
| 7542 | ledger_set_diag_mem_threshold(task->ledger, task_ledgers.phys_footprint, |
| 7543 | LEDGER_LIMIT_INFINITY); |
| 7544 | /* |
| 7545 | * If the memory diagnostics flag was disabled, lets enable it again |
| 7546 | */ |
| 7547 | ledger_set_diag_mem_threshold_enabled(task->ledger, task_ledgers.phys_footprint); |
| 7548 | return KERN_SUCCESS; |
| 7549 | } |
| 7550 | |
| 7551 | #ifdef CONFIG_NOMONITORS |
| 7552 | return KERN_SUCCESS; |
| 7553 | #else |
| 7554 | |
| 7555 | task_lock(task); |
| 7556 | ledger_set_diag_mem_threshold(task->ledger, task_ledgers.phys_footprint, |
| 7557 | (ledger_amount_t)new_limit_bytes ); |
| 7558 | if (task == current_task()) { |
| 7559 | ledger_check_new_balance(current_thread(), task->ledger, |
| 7560 | task_ledgers.phys_footprint); |
| 7561 | } |
| 7562 | |
| 7563 | task_unlock(task); |
| 7564 | if (diag_threshold_validity == THRESHOLD_IS_SAME_AS_LIMIT_FLAG_ENABLED) { |
| 7565 | ledger_set_diag_mem_threshold_disabled(task->ledger, task_ledgers.phys_footprint); |
| 7566 | } else if (diag_threshold_validity == THRESHOLD_IS_NOT_SAME_AS_LIMIT_FLAG_DISABLED) { |
| 7567 | ledger_set_diag_mem_threshold_enabled(task->ledger, task_ledgers.phys_footprint); |
| 7568 | } |
| 7569 | |
| 7570 | return KERN_SUCCESS; |
| 7571 | #endif /* CONFIG_NOMONITORS */ |
| 7572 | } |
| 7573 | |
| 7574 | kern_return_t |
| 7575 | task_get_diag_footprint_limit_internal( |
| 7576 | task_t task, |
| 7577 | uint64_t *new_limit_bytes, |
| 7578 | bool *threshold_disabled) |
| 7579 | { |
| 7580 | ledger_amount_t ledger_limit; |
| 7581 | kern_return_t ret = KERN_SUCCESS; |
| 7582 | if (new_limit_bytes == NULL || threshold_disabled == NULL) { |
| 7583 | return KERN_INVALID_ARGUMENT; |
| 7584 | } |
| 7585 | ret = ledger_get_diag_mem_threshold(task->ledger, task_ledgers.phys_footprint, &ledger_limit); |
| 7586 | if (ledger_limit == LEDGER_LIMIT_INFINITY) { |
| 7587 | ledger_limit = -1; |
| 7588 | } |
| 7589 | if (ret == KERN_SUCCESS) { |
| 7590 | *new_limit_bytes = ledger_limit; |
| 7591 | ret = ledger_is_diag_threshold_enabled(task->ledger, task_ledgers.phys_footprint, threshold_disabled); |
| 7592 | } |
| 7593 | return ret; |
| 7594 | } |
| 7595 | #endif /* RESETTABLE_DIAG_FOOTPRINT_LIMITS */ |
| 7596 | |
| 7597 | |
| 7598 | kern_return_t |
| 7599 | ( |
| 7600 | task_t task, |
| 7601 | int *limit_mb) |
| 7602 | { |
| 7603 | ledger_amount_t limit; |
| 7604 | kern_return_t ret; |
| 7605 | |
| 7606 | ret = ledger_get_limit(ledger: task->ledger, entry: task_ledgers.phys_footprint, limit: &limit); |
| 7607 | if (ret != KERN_SUCCESS) { |
| 7608 | return ret; |
| 7609 | } |
| 7610 | |
| 7611 | /* |
| 7612 | * Check that limit >> 20 will not give an "unexpected" signed, 32-bit |
| 7613 | * result. There are, however, implicit assumptions that -1 mb limit |
| 7614 | * equates to LEDGER_LIMIT_INFINITY. |
| 7615 | */ |
| 7616 | assert(((limit & 0xFFF0000000000000LL) == 0) || (limit == LEDGER_LIMIT_INFINITY)); |
| 7617 | *limit_mb = (int)(limit >> 20); |
| 7618 | |
| 7619 | return KERN_SUCCESS; |
| 7620 | } |
| 7621 | #else /* CONFIG_MEMORYSTATUS */ |
| 7622 | kern_return_t |
| 7623 | task_set_phys_footprint_limit( |
| 7624 | __unused task_t task, |
| 7625 | __unused int new_limit_mb, |
| 7626 | __unused int *old_limit_mb) |
| 7627 | { |
| 7628 | return KERN_FAILURE; |
| 7629 | } |
| 7630 | |
| 7631 | kern_return_t |
| 7632 | task_get_phys_footprint_limit( |
| 7633 | __unused task_t task, |
| 7634 | __unused int *limit_mb) |
| 7635 | { |
| 7636 | return KERN_FAILURE; |
| 7637 | } |
| 7638 | #endif /* CONFIG_MEMORYSTATUS */ |
| 7639 | |
| 7640 | security_token_t * |
| 7641 | task_get_sec_token(task_t task) |
| 7642 | { |
| 7643 | return &task_get_ro(t: task)->task_tokens.sec_token; |
| 7644 | } |
| 7645 | |
| 7646 | void |
| 7647 | task_set_sec_token(task_t task, security_token_t *token) |
| 7648 | { |
| 7649 | zalloc_ro_update_field(ZONE_ID_PROC_RO, task_get_ro(task), |
| 7650 | task_tokens.sec_token, token); |
| 7651 | } |
| 7652 | |
| 7653 | audit_token_t * |
| 7654 | task_get_audit_token(task_t task) |
| 7655 | { |
| 7656 | return &task_get_ro(t: task)->task_tokens.audit_token; |
| 7657 | } |
| 7658 | |
| 7659 | void |
| 7660 | task_set_audit_token(task_t task, audit_token_t *token) |
| 7661 | { |
| 7662 | zalloc_ro_update_field(ZONE_ID_PROC_RO, task_get_ro(task), |
| 7663 | task_tokens.audit_token, token); |
| 7664 | } |
| 7665 | |
| 7666 | void |
| 7667 | task_set_tokens(task_t task, security_token_t *sec_token, audit_token_t *audit_token) |
| 7668 | { |
| 7669 | struct task_token_ro_data tokens; |
| 7670 | |
| 7671 | tokens = task_get_ro(t: task)->task_tokens; |
| 7672 | tokens.sec_token = *sec_token; |
| 7673 | tokens.audit_token = *audit_token; |
| 7674 | |
| 7675 | zalloc_ro_update_field(ZONE_ID_PROC_RO, task_get_ro(task), task_tokens, |
| 7676 | &tokens); |
| 7677 | } |
| 7678 | |
| 7679 | boolean_t |
| 7680 | task_is_privileged(task_t task) |
| 7681 | { |
| 7682 | return task_get_sec_token(task)->val[0] == 0; |
| 7683 | } |
| 7684 | |
| 7685 | #ifdef CONFIG_MACF |
| 7686 | uint8_t * |
| 7687 | task_get_mach_trap_filter_mask(task_t task) |
| 7688 | { |
| 7689 | return task_get_ro(t: task)->task_filters.mach_trap_filter_mask; |
| 7690 | } |
| 7691 | |
| 7692 | void |
| 7693 | task_set_mach_trap_filter_mask(task_t task, uint8_t *mask) |
| 7694 | { |
| 7695 | zalloc_ro_update_field(ZONE_ID_PROC_RO, task_get_ro(task), |
| 7696 | task_filters.mach_trap_filter_mask, &mask); |
| 7697 | } |
| 7698 | |
| 7699 | uint8_t * |
| 7700 | task_get_mach_kobj_filter_mask(task_t task) |
| 7701 | { |
| 7702 | return task_get_ro(t: task)->task_filters.mach_kobj_filter_mask; |
| 7703 | } |
| 7704 | |
| 7705 | mach_vm_address_t |
| 7706 | task_get_all_image_info_addr(task_t task) |
| 7707 | { |
| 7708 | return task->all_image_info_addr; |
| 7709 | } |
| 7710 | |
| 7711 | void |
| 7712 | task_set_mach_kobj_filter_mask(task_t task, uint8_t *mask) |
| 7713 | { |
| 7714 | zalloc_ro_update_field(ZONE_ID_PROC_RO, task_get_ro(task), |
| 7715 | task_filters.mach_kobj_filter_mask, &mask); |
| 7716 | } |
| 7717 | |
| 7718 | #endif /* CONFIG_MACF */ |
| 7719 | |
| 7720 | void |
| 7721 | task_set_thread_limit(task_t task, uint16_t thread_limit) |
| 7722 | { |
| 7723 | assert(task != kernel_task); |
| 7724 | if (thread_limit <= TASK_MAX_THREAD_LIMIT) { |
| 7725 | task_lock(task); |
| 7726 | task->task_thread_limit = thread_limit; |
| 7727 | task_unlock(task); |
| 7728 | } |
| 7729 | } |
| 7730 | |
| 7731 | #if CONFIG_PROC_RESOURCE_LIMITS |
| 7732 | kern_return_t |
| 7733 | task_set_port_space_limits(task_t task, uint32_t soft_limit, uint32_t hard_limit) |
| 7734 | { |
| 7735 | return ipc_space_set_table_size_limits(task->itk_space, soft_limit, hard_limit); |
| 7736 | } |
| 7737 | #endif /* CONFIG_PROC_RESOURCE_LIMITS */ |
| 7738 | |
| 7739 | #if XNU_TARGET_OS_OSX |
| 7740 | boolean_t |
| 7741 | task_has_system_version_compat_enabled(task_t task) |
| 7742 | { |
| 7743 | boolean_t enabled = FALSE; |
| 7744 | |
| 7745 | task_lock(task); |
| 7746 | enabled = (task->t_flags & TF_SYS_VERSION_COMPAT); |
| 7747 | task_unlock(task); |
| 7748 | |
| 7749 | return enabled; |
| 7750 | } |
| 7751 | |
| 7752 | void |
| 7753 | task_set_system_version_compat_enabled(task_t task, boolean_t enable_system_version_compat) |
| 7754 | { |
| 7755 | assert(task == current_task()); |
| 7756 | assert(task != kernel_task); |
| 7757 | |
| 7758 | task_lock(task); |
| 7759 | if (enable_system_version_compat) { |
| 7760 | task->t_flags |= TF_SYS_VERSION_COMPAT; |
| 7761 | } else { |
| 7762 | task->t_flags &= ~TF_SYS_VERSION_COMPAT; |
| 7763 | } |
| 7764 | task_unlock(task); |
| 7765 | } |
| 7766 | #endif /* XNU_TARGET_OS_OSX */ |
| 7767 | |
| 7768 | /* |
| 7769 | * We need to export some functions to other components that |
| 7770 | * are currently implemented in macros within the osfmk |
| 7771 | * component. Just export them as functions of the same name. |
| 7772 | */ |
| 7773 | boolean_t |
| 7774 | is_kerneltask(task_t t) |
| 7775 | { |
| 7776 | if (t == kernel_task) { |
| 7777 | return TRUE; |
| 7778 | } |
| 7779 | |
| 7780 | return FALSE; |
| 7781 | } |
| 7782 | |
| 7783 | boolean_t |
| 7784 | is_corpsefork(task_t t) |
| 7785 | { |
| 7786 | return task_is_a_corpse_fork(t); |
| 7787 | } |
| 7788 | |
| 7789 | task_t |
| 7790 | current_task_early(void) |
| 7791 | { |
| 7792 | if (__improbable(startup_phase < STARTUP_SUB_EARLY_BOOT)) { |
| 7793 | if (current_thread()->t_tro == NULL) { |
| 7794 | return TASK_NULL; |
| 7795 | } |
| 7796 | } |
| 7797 | return get_threadtask(current_thread()); |
| 7798 | } |
| 7799 | |
| 7800 | task_t |
| 7801 | current_task(void) |
| 7802 | { |
| 7803 | return get_threadtask(current_thread()); |
| 7804 | } |
| 7805 | |
| 7806 | /* defined in bsd/kern/kern_prot.c */ |
| 7807 | extern int get_audit_token_pid(audit_token_t *audit_token); |
| 7808 | |
| 7809 | int |
| 7810 | task_pid(task_t task) |
| 7811 | { |
| 7812 | if (task) { |
| 7813 | return get_audit_token_pid(audit_token: task_get_audit_token(task)); |
| 7814 | } |
| 7815 | return -1; |
| 7816 | } |
| 7817 | |
| 7818 | #if __has_feature(ptrauth_calls) |
| 7819 | /* |
| 7820 | * Get the shared region id and jop signing key for the task. |
| 7821 | * The function will allocate a kalloc buffer and return |
| 7822 | * it to caller, the caller needs to free it. This is used |
| 7823 | * for getting the information via task port. |
| 7824 | */ |
| 7825 | char * |
| 7826 | task_get_vm_shared_region_id_and_jop_pid(task_t task, uint64_t *jop_pid) |
| 7827 | { |
| 7828 | size_t len; |
| 7829 | char *shared_region_id = NULL; |
| 7830 | |
| 7831 | task_lock(task); |
| 7832 | if (task->shared_region_id == NULL) { |
| 7833 | task_unlock(task); |
| 7834 | return NULL; |
| 7835 | } |
| 7836 | len = strlen(task->shared_region_id) + 1; |
| 7837 | |
| 7838 | /* don't hold task lock while allocating */ |
| 7839 | task_unlock(task); |
| 7840 | shared_region_id = kalloc_data(len, Z_WAITOK); |
| 7841 | task_lock(task); |
| 7842 | |
| 7843 | if (task->shared_region_id == NULL) { |
| 7844 | task_unlock(task); |
| 7845 | kfree_data(shared_region_id, len); |
| 7846 | return NULL; |
| 7847 | } |
| 7848 | assert(len == strlen(task->shared_region_id) + 1); /* should never change */ |
| 7849 | strlcpy(shared_region_id, task->shared_region_id, len); |
| 7850 | task_unlock(task); |
| 7851 | |
| 7852 | /* find key from its auth pager */ |
| 7853 | if (jop_pid != NULL) { |
| 7854 | *jop_pid = shared_region_find_key(shared_region_id); |
| 7855 | } |
| 7856 | |
| 7857 | return shared_region_id; |
| 7858 | } |
| 7859 | |
| 7860 | /* |
| 7861 | * set the shared region id for a task |
| 7862 | */ |
| 7863 | void |
| 7864 | task_set_shared_region_id(task_t task, char *id) |
| 7865 | { |
| 7866 | char *old_id; |
| 7867 | |
| 7868 | task_lock(task); |
| 7869 | old_id = task->shared_region_id; |
| 7870 | task->shared_region_id = id; |
| 7871 | task->shared_region_auth_remapped = FALSE; |
| 7872 | task_unlock(task); |
| 7873 | |
| 7874 | /* free any pre-existing shared region id */ |
| 7875 | if (old_id != NULL) { |
| 7876 | shared_region_key_dealloc(old_id); |
| 7877 | kfree_data(old_id, strlen(old_id) + 1); |
| 7878 | } |
| 7879 | } |
| 7880 | #endif /* __has_feature(ptrauth_calls) */ |
| 7881 | |
| 7882 | /* |
| 7883 | * This routine finds a thread in a task by its unique id |
| 7884 | * Returns a referenced thread or THREAD_NULL if the thread was not found |
| 7885 | * |
| 7886 | * TODO: This is super inefficient - it's an O(threads in task) list walk! |
| 7887 | * We should make a tid hash, or transition all tid clients to thread ports |
| 7888 | * |
| 7889 | * Precondition: No locks held (will take task lock) |
| 7890 | */ |
| 7891 | thread_t |
| 7892 | task_findtid(task_t task, uint64_t tid) |
| 7893 | { |
| 7894 | thread_t self = current_thread(); |
| 7895 | thread_t found_thread = THREAD_NULL; |
| 7896 | thread_t iter_thread = THREAD_NULL; |
| 7897 | |
| 7898 | /* Short-circuit the lookup if we're looking up ourselves */ |
| 7899 | if (tid == self->thread_id || tid == TID_NULL) { |
| 7900 | assert(get_threadtask(self) == task); |
| 7901 | |
| 7902 | thread_reference(thread: self); |
| 7903 | |
| 7904 | return self; |
| 7905 | } |
| 7906 | |
| 7907 | task_lock(task); |
| 7908 | |
| 7909 | queue_iterate(&task->threads, iter_thread, thread_t, task_threads) { |
| 7910 | if (iter_thread->thread_id == tid) { |
| 7911 | found_thread = iter_thread; |
| 7912 | thread_reference(thread: found_thread); |
| 7913 | break; |
| 7914 | } |
| 7915 | } |
| 7916 | |
| 7917 | task_unlock(task); |
| 7918 | |
| 7919 | return found_thread; |
| 7920 | } |
| 7921 | |
| 7922 | int |
| 7923 | pid_from_task(task_t task) |
| 7924 | { |
| 7925 | int pid = -1; |
| 7926 | void *bsd_info = get_bsdtask_info(task); |
| 7927 | |
| 7928 | if (bsd_info) { |
| 7929 | pid = proc_pid(p: bsd_info); |
| 7930 | } else { |
| 7931 | pid = task_pid(task); |
| 7932 | } |
| 7933 | |
| 7934 | return pid; |
| 7935 | } |
| 7936 | |
| 7937 | /* |
| 7938 | * Control the CPU usage monitor for a task. |
| 7939 | */ |
| 7940 | kern_return_t |
| 7941 | task_cpu_usage_monitor_ctl(task_t task, uint32_t *flags) |
| 7942 | { |
| 7943 | int error = KERN_SUCCESS; |
| 7944 | |
| 7945 | if (*flags & CPUMON_MAKE_FATAL) { |
| 7946 | task->rusage_cpu_flags |= TASK_RUSECPU_FLAGS_FATAL_CPUMON; |
| 7947 | } else { |
| 7948 | error = KERN_INVALID_ARGUMENT; |
| 7949 | } |
| 7950 | |
| 7951 | return error; |
| 7952 | } |
| 7953 | |
| 7954 | /* |
| 7955 | * Control the wakeups monitor for a task. |
| 7956 | */ |
| 7957 | kern_return_t |
| 7958 | task_wakeups_monitor_ctl(task_t task, uint32_t *flags, int32_t *rate_hz) |
| 7959 | { |
| 7960 | ledger_t ledger = task->ledger; |
| 7961 | |
| 7962 | task_lock(task); |
| 7963 | if (*flags & WAKEMON_GET_PARAMS) { |
| 7964 | ledger_amount_t limit; |
| 7965 | uint64_t period; |
| 7966 | |
| 7967 | ledger_get_limit(ledger, entry: task_ledgers.interrupt_wakeups, limit: &limit); |
| 7968 | ledger_get_period(ledger, entry: task_ledgers.interrupt_wakeups, period: &period); |
| 7969 | |
| 7970 | if (limit != LEDGER_LIMIT_INFINITY) { |
| 7971 | /* |
| 7972 | * An active limit means the wakeups monitor is enabled. |
| 7973 | */ |
| 7974 | *rate_hz = (int32_t)(limit / (int64_t)(period / NSEC_PER_SEC)); |
| 7975 | *flags = WAKEMON_ENABLE; |
| 7976 | if (task->rusage_cpu_flags & TASK_RUSECPU_FLAGS_FATAL_WAKEUPSMON) { |
| 7977 | *flags |= WAKEMON_MAKE_FATAL; |
| 7978 | } |
| 7979 | } else { |
| 7980 | *flags = WAKEMON_DISABLE; |
| 7981 | *rate_hz = -1; |
| 7982 | } |
| 7983 | |
| 7984 | /* |
| 7985 | * If WAKEMON_GET_PARAMS is present in flags, all other flags are ignored. |
| 7986 | */ |
| 7987 | task_unlock(task); |
| 7988 | return KERN_SUCCESS; |
| 7989 | } |
| 7990 | |
| 7991 | if (*flags & WAKEMON_ENABLE) { |
| 7992 | if (*flags & WAKEMON_SET_DEFAULTS) { |
| 7993 | *rate_hz = task_wakeups_monitor_rate; |
| 7994 | } |
| 7995 | |
| 7996 | #ifndef CONFIG_NOMONITORS |
| 7997 | if (*flags & WAKEMON_MAKE_FATAL) { |
| 7998 | task->rusage_cpu_flags |= TASK_RUSECPU_FLAGS_FATAL_WAKEUPSMON; |
| 7999 | } |
| 8000 | #endif /* CONFIG_NOMONITORS */ |
| 8001 | |
| 8002 | if (*rate_hz <= 0) { |
| 8003 | task_unlock(task); |
| 8004 | return KERN_INVALID_ARGUMENT; |
| 8005 | } |
| 8006 | |
| 8007 | #ifndef CONFIG_NOMONITORS |
| 8008 | ledger_set_limit(ledger, entry: task_ledgers.interrupt_wakeups, limit: *rate_hz * task_wakeups_monitor_interval, |
| 8009 | warn_level_percentage: (uint8_t)task_wakeups_monitor_ustackshots_trigger_pct); |
| 8010 | ledger_set_period(ledger, entry: task_ledgers.interrupt_wakeups, period: task_wakeups_monitor_interval * NSEC_PER_SEC); |
| 8011 | ledger_enable_callback(ledger, entry: task_ledgers.interrupt_wakeups); |
| 8012 | #endif /* CONFIG_NOMONITORS */ |
| 8013 | } else if (*flags & WAKEMON_DISABLE) { |
| 8014 | /* |
| 8015 | * Caller wishes to disable wakeups monitor on the task. |
| 8016 | * |
| 8017 | * Disable telemetry if it was triggered by the wakeups monitor, and |
| 8018 | * remove the limit & callback on the wakeups ledger entry. |
| 8019 | */ |
| 8020 | #if CONFIG_TELEMETRY |
| 8021 | telemetry_task_ctl_locked(task, TF_WAKEMON_WARNING, enable_disable: 0); |
| 8022 | #endif |
| 8023 | ledger_disable_refill(l: ledger, entry: task_ledgers.interrupt_wakeups); |
| 8024 | ledger_disable_callback(ledger, entry: task_ledgers.interrupt_wakeups); |
| 8025 | } |
| 8026 | |
| 8027 | task_unlock(task); |
| 8028 | return KERN_SUCCESS; |
| 8029 | } |
| 8030 | |
| 8031 | void |
| 8032 | task_wakeups_rate_exceeded(int warning, __unused const void *param0, __unused const void *param1) |
| 8033 | { |
| 8034 | if (warning == LEDGER_WARNING_ROSE_ABOVE) { |
| 8035 | #if CONFIG_TELEMETRY |
| 8036 | /* |
| 8037 | * This task is in danger of violating the wakeups monitor. Enable telemetry on this task |
| 8038 | * so there are micro-stackshots available if and when EXC_RESOURCE is triggered. |
| 8039 | */ |
| 8040 | telemetry_task_ctl(task: current_task(), TF_WAKEMON_WARNING, enable_disable: 1); |
| 8041 | #endif |
| 8042 | return; |
| 8043 | } |
| 8044 | |
| 8045 | #if CONFIG_TELEMETRY |
| 8046 | /* |
| 8047 | * If the balance has dipped below the warning level (LEDGER_WARNING_DIPPED_BELOW) or |
| 8048 | * exceeded the limit, turn telemetry off for the task. |
| 8049 | */ |
| 8050 | telemetry_task_ctl(task: current_task(), TF_WAKEMON_WARNING, enable_disable: 0); |
| 8051 | #endif |
| 8052 | |
| 8053 | if (warning == 0) { |
| 8054 | SENDING_NOTIFICATION__THIS_PROCESS_IS_CAUSING_TOO_MANY_WAKEUPS(); |
| 8055 | } |
| 8056 | } |
| 8057 | |
| 8058 | TUNABLE(bool, enable_wakeup_reports, "enable_wakeup_reports" , false); /* Enable wakeup reports. */ |
| 8059 | |
| 8060 | void __attribute__((noinline)) |
| 8061 | SENDING_NOTIFICATION__THIS_PROCESS_IS_CAUSING_TOO_MANY_WAKEUPS(void) |
| 8062 | { |
| 8063 | task_t task = current_task(); |
| 8064 | int pid = 0; |
| 8065 | const char *procname = "unknown" ; |
| 8066 | boolean_t fatal; |
| 8067 | kern_return_t kr; |
| 8068 | #ifdef EXC_RESOURCE_MONITORS |
| 8069 | mach_exception_data_type_t code[EXCEPTION_CODE_MAX]; |
| 8070 | #endif /* EXC_RESOURCE_MONITORS */ |
| 8071 | struct ledger_entry_info lei; |
| 8072 | |
| 8073 | #ifdef MACH_BSD |
| 8074 | pid = proc_selfpid(); |
| 8075 | if (get_bsdtask_info(task) != NULL) { |
| 8076 | procname = proc_name_address(p: get_bsdtask_info(current_task())); |
| 8077 | } |
| 8078 | #endif |
| 8079 | |
| 8080 | ledger_get_entry_info(ledger: task->ledger, entry: task_ledgers.interrupt_wakeups, lei: &lei); |
| 8081 | |
| 8082 | /* |
| 8083 | * Disable the exception notification so we don't overwhelm |
| 8084 | * the listener with an endless stream of redundant exceptions. |
| 8085 | * TODO: detect whether another thread is already reporting the violation. |
| 8086 | */ |
| 8087 | uint32_t flags = WAKEMON_DISABLE; |
| 8088 | task_wakeups_monitor_ctl(task, flags: &flags, NULL); |
| 8089 | |
| 8090 | fatal = task->rusage_cpu_flags & TASK_RUSECPU_FLAGS_FATAL_WAKEUPSMON; |
| 8091 | trace_resource_violation(RMON_CPUWAKES_VIOLATED, ledger_info: &lei); |
| 8092 | os_log(OS_LOG_DEFAULT, "process %s[%d] caught waking the CPU %llu times " |
| 8093 | "over ~%llu seconds, averaging %llu wakes / second and " |
| 8094 | "violating a %slimit of %llu wakes over %llu seconds.\n" , |
| 8095 | procname, pid, |
| 8096 | lei.lei_balance, lei.lei_last_refill / NSEC_PER_SEC, |
| 8097 | lei.lei_last_refill == 0 ? 0 : |
| 8098 | (NSEC_PER_SEC * lei.lei_balance / lei.lei_last_refill), |
| 8099 | fatal ? "FATAL " : "" , |
| 8100 | lei.lei_limit, lei.lei_refill_period / NSEC_PER_SEC); |
| 8101 | |
| 8102 | if (enable_wakeup_reports) { |
| 8103 | kr = send_resource_violation(send_cpu_wakes_violation, violator: task, ledger_info: &lei, |
| 8104 | flags: fatal ? kRNFatalLimitFlag : 0); |
| 8105 | if (kr) { |
| 8106 | printf(format: "send_resource_violation(CPU wakes, ...): error %#x\n" , kr); |
| 8107 | } |
| 8108 | } |
| 8109 | |
| 8110 | #ifdef EXC_RESOURCE_MONITORS |
| 8111 | if (disable_exc_resource) { |
| 8112 | printf("process %s[%d] caught causing excessive wakeups. EXC_RESOURCE " |
| 8113 | "suppressed by a boot-arg\n" , procname, pid); |
| 8114 | return; |
| 8115 | } |
| 8116 | if (disable_exc_resource_during_audio && audio_active) { |
| 8117 | os_log(OS_LOG_DEFAULT, "process %s[%d] caught causing excessive wakeups. EXC_RESOURCE " |
| 8118 | "suppressed due to audio playback\n" , procname, pid); |
| 8119 | return; |
| 8120 | } |
| 8121 | if (lei.lei_last_refill == 0) { |
| 8122 | os_log(OS_LOG_DEFAULT, "process %s[%d] caught causing excessive wakeups. EXC_RESOURCE " |
| 8123 | "suppressed due to lei.lei_last_refill = 0 \n" , procname, pid); |
| 8124 | } |
| 8125 | |
| 8126 | code[0] = code[1] = 0; |
| 8127 | EXC_RESOURCE_ENCODE_TYPE(code[0], RESOURCE_TYPE_WAKEUPS); |
| 8128 | EXC_RESOURCE_ENCODE_FLAVOR(code[0], FLAVOR_WAKEUPS_MONITOR); |
| 8129 | EXC_RESOURCE_CPUMONITOR_ENCODE_WAKEUPS_PERMITTED(code[0], |
| 8130 | NSEC_PER_SEC * lei.lei_limit / lei.lei_refill_period); |
| 8131 | EXC_RESOURCE_CPUMONITOR_ENCODE_OBSERVATION_INTERVAL(code[0], |
| 8132 | lei.lei_last_refill); |
| 8133 | EXC_RESOURCE_CPUMONITOR_ENCODE_WAKEUPS_OBSERVED(code[1], |
| 8134 | NSEC_PER_SEC * lei.lei_balance / lei.lei_last_refill); |
| 8135 | exception_triage(EXC_RESOURCE, code, EXCEPTION_CODE_MAX); |
| 8136 | #endif /* EXC_RESOURCE_MONITORS */ |
| 8137 | |
| 8138 | if (fatal) { |
| 8139 | task_terminate_internal(task); |
| 8140 | } |
| 8141 | } |
| 8142 | |
| 8143 | static boolean_t |
| 8144 | global_update_logical_writes(int64_t io_delta, int64_t *global_write_count) |
| 8145 | { |
| 8146 | int64_t old_count, new_count; |
| 8147 | boolean_t needs_telemetry; |
| 8148 | |
| 8149 | do { |
| 8150 | new_count = old_count = *global_write_count; |
| 8151 | new_count += io_delta; |
| 8152 | if (new_count >= io_telemetry_limit) { |
| 8153 | new_count = 0; |
| 8154 | needs_telemetry = TRUE; |
| 8155 | } else { |
| 8156 | needs_telemetry = FALSE; |
| 8157 | } |
| 8158 | } while (!OSCompareAndSwap64(old_count, new_count, global_write_count)); |
| 8159 | return needs_telemetry; |
| 8160 | } |
| 8161 | |
| 8162 | void |
| 8163 | task_update_physical_writes(__unused task_t task, __unused task_physical_write_flavor_t flavor, __unused uint64_t io_size, __unused task_balance_flags_t flags) |
| 8164 | { |
| 8165 | #if CONFIG_PHYS_WRITE_ACCT |
| 8166 | if (!io_size) { |
| 8167 | return; |
| 8168 | } |
| 8169 | |
| 8170 | /* |
| 8171 | * task == NULL means that we have to update kernel_task ledgers |
| 8172 | */ |
| 8173 | if (!task) { |
| 8174 | task = kernel_task; |
| 8175 | } |
| 8176 | |
| 8177 | KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, VM_PHYS_WRITE_ACCT)) | DBG_FUNC_NONE, |
| 8178 | task_pid(task), flavor, io_size, flags, 0); |
| 8179 | DTRACE_IO4(physical_writes, struct task *, task, task_physical_write_flavor_t, flavor, uint64_t, io_size, task_balance_flags_t, flags); |
| 8180 | |
| 8181 | if (flags & TASK_BALANCE_CREDIT) { |
| 8182 | if (flavor == TASK_PHYSICAL_WRITE_METADATA) { |
| 8183 | OSAddAtomic64(io_size, (SInt64 *)&(task->task_fs_metadata_writes)); |
| 8184 | ledger_credit_nocheck(ledger: task->ledger, entry: task_ledgers.fs_metadata_writes, amount: io_size); |
| 8185 | } |
| 8186 | } else if (flags & TASK_BALANCE_DEBIT) { |
| 8187 | if (flavor == TASK_PHYSICAL_WRITE_METADATA) { |
| 8188 | OSAddAtomic64(-1 * io_size, (SInt64 *)&(task->task_fs_metadata_writes)); |
| 8189 | ledger_debit_nocheck(ledger: task->ledger, entry: task_ledgers.fs_metadata_writes, amount: io_size); |
| 8190 | } |
| 8191 | } |
| 8192 | #endif /* CONFIG_PHYS_WRITE_ACCT */ |
| 8193 | } |
| 8194 | |
| 8195 | void |
| 8196 | task_update_logical_writes(task_t task, uint32_t io_size, int flags, void *vp) |
| 8197 | { |
| 8198 | int64_t io_delta = 0; |
| 8199 | int64_t * global_counter_to_update; |
| 8200 | boolean_t needs_telemetry = FALSE; |
| 8201 | boolean_t is_external_device = FALSE; |
| 8202 | int ledger_to_update = 0; |
| 8203 | struct task_writes_counters * writes_counters_to_update; |
| 8204 | |
| 8205 | if ((!task) || (!io_size) || (!vp)) { |
| 8206 | return; |
| 8207 | } |
| 8208 | |
| 8209 | KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, VM_DATA_WRITE)) | DBG_FUNC_NONE, |
| 8210 | task_pid(task), io_size, flags, (uintptr_t)VM_KERNEL_ADDRPERM(vp), 0); |
| 8211 | DTRACE_IO4(logical_writes, struct task *, task, uint32_t, io_size, int, flags, vnode *, vp); |
| 8212 | |
| 8213 | // Is the drive backing this vnode internal or external to the system? |
| 8214 | if (vnode_isonexternalstorage(vp) == false) { |
| 8215 | global_counter_to_update = &global_logical_writes_count; |
| 8216 | ledger_to_update = task_ledgers.logical_writes; |
| 8217 | writes_counters_to_update = &task->task_writes_counters_internal; |
| 8218 | is_external_device = FALSE; |
| 8219 | } else { |
| 8220 | global_counter_to_update = &global_logical_writes_to_external_count; |
| 8221 | ledger_to_update = task_ledgers.logical_writes_to_external; |
| 8222 | writes_counters_to_update = &task->task_writes_counters_external; |
| 8223 | is_external_device = TRUE; |
| 8224 | } |
| 8225 | |
| 8226 | switch (flags) { |
| 8227 | case TASK_WRITE_IMMEDIATE: |
| 8228 | OSAddAtomic64(io_size, (SInt64 *)&(writes_counters_to_update->task_immediate_writes)); |
| 8229 | ledger_credit(ledger: task->ledger, entry: ledger_to_update, amount: io_size); |
| 8230 | if (!is_external_device) { |
| 8231 | coalition_io_ledger_update(task, FLAVOR_IO_LOGICAL_WRITES, TRUE, io_size); |
| 8232 | } |
| 8233 | break; |
| 8234 | case TASK_WRITE_DEFERRED: |
| 8235 | OSAddAtomic64(io_size, (SInt64 *)&(writes_counters_to_update->task_deferred_writes)); |
| 8236 | ledger_credit(ledger: task->ledger, entry: ledger_to_update, amount: io_size); |
| 8237 | if (!is_external_device) { |
| 8238 | coalition_io_ledger_update(task, FLAVOR_IO_LOGICAL_WRITES, TRUE, io_size); |
| 8239 | } |
| 8240 | break; |
| 8241 | case TASK_WRITE_INVALIDATED: |
| 8242 | OSAddAtomic64(io_size, (SInt64 *)&(writes_counters_to_update->task_invalidated_writes)); |
| 8243 | ledger_debit(ledger: task->ledger, entry: ledger_to_update, amount: io_size); |
| 8244 | if (!is_external_device) { |
| 8245 | coalition_io_ledger_update(task, FLAVOR_IO_LOGICAL_WRITES, FALSE, io_size); |
| 8246 | } |
| 8247 | break; |
| 8248 | case TASK_WRITE_METADATA: |
| 8249 | OSAddAtomic64(io_size, (SInt64 *)&(writes_counters_to_update->task_metadata_writes)); |
| 8250 | ledger_credit(ledger: task->ledger, entry: ledger_to_update, amount: io_size); |
| 8251 | if (!is_external_device) { |
| 8252 | coalition_io_ledger_update(task, FLAVOR_IO_LOGICAL_WRITES, TRUE, io_size); |
| 8253 | } |
| 8254 | break; |
| 8255 | } |
| 8256 | |
| 8257 | io_delta = (flags == TASK_WRITE_INVALIDATED) ? ((int64_t)io_size * -1ll) : ((int64_t)io_size); |
| 8258 | if (io_telemetry_limit != 0) { |
| 8259 | /* If io_telemetry_limit is 0, disable global updates and I/O telemetry */ |
| 8260 | needs_telemetry = global_update_logical_writes(io_delta, global_write_count: global_counter_to_update); |
| 8261 | if (needs_telemetry && !is_external_device) { |
| 8262 | act_set_io_telemetry_ast(current_thread()); |
| 8263 | } |
| 8264 | } |
| 8265 | } |
| 8266 | |
| 8267 | /* |
| 8268 | * Control the I/O monitor for a task. |
| 8269 | */ |
| 8270 | kern_return_t |
| 8271 | task_io_monitor_ctl(task_t task, uint32_t *flags) |
| 8272 | { |
| 8273 | ledger_t ledger = task->ledger; |
| 8274 | |
| 8275 | task_lock(task); |
| 8276 | if (*flags & IOMON_ENABLE) { |
| 8277 | /* Configure the physical I/O ledger */ |
| 8278 | ledger_set_limit(ledger, entry: task_ledgers.physical_writes, limit: (task_iomon_limit_mb * 1024 * 1024), warn_level_percentage: 0); |
| 8279 | ledger_set_period(ledger, entry: task_ledgers.physical_writes, period: (task_iomon_interval_secs * NSEC_PER_SEC)); |
| 8280 | } else if (*flags & IOMON_DISABLE) { |
| 8281 | /* |
| 8282 | * Caller wishes to disable I/O monitor on the task. |
| 8283 | */ |
| 8284 | ledger_disable_refill(l: ledger, entry: task_ledgers.physical_writes); |
| 8285 | ledger_disable_callback(ledger, entry: task_ledgers.physical_writes); |
| 8286 | } |
| 8287 | |
| 8288 | task_unlock(task); |
| 8289 | return KERN_SUCCESS; |
| 8290 | } |
| 8291 | |
| 8292 | void |
| 8293 | task_io_rate_exceeded(int warning, const void *param0, __unused const void *param1) |
| 8294 | { |
| 8295 | if (warning == 0) { |
| 8296 | SENDING_NOTIFICATION__THIS_PROCESS_IS_CAUSING_TOO_MUCH_IO(flavor: (int)param0); |
| 8297 | } |
| 8298 | } |
| 8299 | |
| 8300 | void __attribute__((noinline)) |
| 8301 | SENDING_NOTIFICATION__THIS_PROCESS_IS_CAUSING_TOO_MUCH_IO(int flavor) |
| 8302 | { |
| 8303 | int pid = 0; |
| 8304 | task_t task = current_task(); |
| 8305 | #ifdef EXC_RESOURCE_MONITORS |
| 8306 | mach_exception_data_type_t code[EXCEPTION_CODE_MAX]; |
| 8307 | #endif /* EXC_RESOURCE_MONITORS */ |
| 8308 | struct ledger_entry_info lei = {}; |
| 8309 | kern_return_t kr; |
| 8310 | |
| 8311 | #ifdef MACH_BSD |
| 8312 | pid = proc_selfpid(); |
| 8313 | #endif |
| 8314 | /* |
| 8315 | * Get the ledger entry info. We need to do this before disabling the exception |
| 8316 | * to get correct values for all fields. |
| 8317 | */ |
| 8318 | switch (flavor) { |
| 8319 | case FLAVOR_IO_PHYSICAL_WRITES: |
| 8320 | ledger_get_entry_info(ledger: task->ledger, entry: task_ledgers.physical_writes, lei: &lei); |
| 8321 | break; |
| 8322 | } |
| 8323 | |
| 8324 | |
| 8325 | /* |
| 8326 | * Disable the exception notification so we don't overwhelm |
| 8327 | * the listener with an endless stream of redundant exceptions. |
| 8328 | * TODO: detect whether another thread is already reporting the violation. |
| 8329 | */ |
| 8330 | uint32_t flags = IOMON_DISABLE; |
| 8331 | task_io_monitor_ctl(task, flags: &flags); |
| 8332 | |
| 8333 | if (flavor == FLAVOR_IO_LOGICAL_WRITES) { |
| 8334 | trace_resource_violation(RMON_LOGWRITES_VIOLATED, ledger_info: &lei); |
| 8335 | } |
| 8336 | os_log(OS_LOG_DEFAULT, "process [%d] caught causing excessive I/O (flavor: %d). Task I/O: %lld MB. [Limit : %lld MB per %lld secs]\n" , |
| 8337 | pid, flavor, (lei.lei_balance / (1024 * 1024)), (lei.lei_limit / (1024 * 1024)), (lei.lei_refill_period / NSEC_PER_SEC)); |
| 8338 | |
| 8339 | kr = send_resource_violation(send_disk_writes_violation, violator: task, ledger_info: &lei, kRNFlagsNone); |
| 8340 | if (kr) { |
| 8341 | printf(format: "send_resource_violation(disk_writes, ...): error %#x\n" , kr); |
| 8342 | } |
| 8343 | |
| 8344 | #ifdef EXC_RESOURCE_MONITORS |
| 8345 | code[0] = code[1] = 0; |
| 8346 | EXC_RESOURCE_ENCODE_TYPE(code[0], RESOURCE_TYPE_IO); |
| 8347 | EXC_RESOURCE_ENCODE_FLAVOR(code[0], flavor); |
| 8348 | EXC_RESOURCE_IO_ENCODE_INTERVAL(code[0], (lei.lei_refill_period / NSEC_PER_SEC)); |
| 8349 | EXC_RESOURCE_IO_ENCODE_LIMIT(code[0], (lei.lei_limit / (1024 * 1024))); |
| 8350 | EXC_RESOURCE_IO_ENCODE_OBSERVED(code[1], (lei.lei_balance / (1024 * 1024))); |
| 8351 | exception_triage(EXC_RESOURCE, code, EXCEPTION_CODE_MAX); |
| 8352 | #endif /* EXC_RESOURCE_MONITORS */ |
| 8353 | } |
| 8354 | |
| 8355 | void |
| 8356 | task_port_space_ast(__unused task_t task) |
| 8357 | { |
| 8358 | uint32_t current_size, soft_limit, hard_limit; |
| 8359 | assert(task == current_task()); |
| 8360 | bool should_notify = ipc_space_check_table_size_limit(space: task->itk_space, |
| 8361 | current_limit: ¤t_size, soft_limit: &soft_limit, hard_limit: &hard_limit); |
| 8362 | if (should_notify) { |
| 8363 | SENDING_NOTIFICATION__THIS_PROCESS_HAS_TOO_MANY_MACH_PORTS(task, current_size, soft_limit, hard_limit); |
| 8364 | } |
| 8365 | } |
| 8366 | |
| 8367 | #if CONFIG_PROC_RESOURCE_LIMITS |
| 8368 | static mach_port_t |
| 8369 | task_allocate_fatal_port(void) |
| 8370 | { |
| 8371 | mach_port_t task_fatal_port = MACH_PORT_NULL; |
| 8372 | task_id_token_t token; |
| 8373 | |
| 8374 | kern_return_t kr = task_create_identity_token(current_task(), &token); /* Takes a reference on the token */ |
| 8375 | if (kr) { |
| 8376 | return MACH_PORT_NULL; |
| 8377 | } |
| 8378 | task_fatal_port = ipc_kobject_alloc_port((ipc_kobject_t)token, IKOT_TASK_FATAL, |
| 8379 | IPC_KOBJECT_ALLOC_NSREQUEST | IPC_KOBJECT_ALLOC_MAKE_SEND); |
| 8380 | |
| 8381 | task_id_token_set_port(token, task_fatal_port); |
| 8382 | |
| 8383 | return task_fatal_port; |
| 8384 | } |
| 8385 | |
| 8386 | static void |
| 8387 | task_fatal_port_no_senders(ipc_port_t port, __unused mach_port_mscount_t mscount) |
| 8388 | { |
| 8389 | task_t task = TASK_NULL; |
| 8390 | kern_return_t kr; |
| 8391 | |
| 8392 | task_id_token_t token = ipc_kobject_get_stable(port, IKOT_TASK_FATAL); |
| 8393 | |
| 8394 | assert(token != NULL); |
| 8395 | if (token) { |
| 8396 | kr = task_identity_token_get_task_grp(token, &task, TASK_GRP_KERNEL); /* takes a reference on task */ |
| 8397 | if (task) { |
| 8398 | task_bsdtask_kill(task); |
| 8399 | task_deallocate(task); |
| 8400 | } |
| 8401 | task_id_token_release(token); /* consumes ref given by notification */ |
| 8402 | } |
| 8403 | } |
| 8404 | #endif /* CONFIG_PROC_RESOURCE_LIMITS */ |
| 8405 | |
| 8406 | void __attribute__((noinline)) |
| 8407 | SENDING_NOTIFICATION__THIS_PROCESS_HAS_TOO_MANY_MACH_PORTS(task_t task, uint32_t current_size, uint32_t soft_limit, uint32_t hard_limit) |
| 8408 | { |
| 8409 | int pid = 0; |
| 8410 | char *procname = (char *) "unknown" ; |
| 8411 | __unused kern_return_t kr; |
| 8412 | __unused resource_notify_flags_t flags = kRNFlagsNone; |
| 8413 | __unused uint32_t limit; |
| 8414 | __unused mach_port_t task_fatal_port = MACH_PORT_NULL; |
| 8415 | mach_exception_data_type_t code[EXCEPTION_CODE_MAX]; |
| 8416 | |
| 8417 | pid = proc_selfpid(); |
| 8418 | if (get_bsdtask_info(task) != NULL) { |
| 8419 | procname = proc_name_address(p: get_bsdtask_info(task)); |
| 8420 | } |
| 8421 | |
| 8422 | /* |
| 8423 | * Only kernel_task and launchd may be allowed to |
| 8424 | * have really large ipc space. |
| 8425 | */ |
| 8426 | if (pid == 0 || pid == 1) { |
| 8427 | return; |
| 8428 | } |
| 8429 | |
| 8430 | os_log(OS_LOG_DEFAULT, "process %s[%d] caught allocating too many mach ports. \ |
| 8431 | Num of ports allocated %u; \n" , procname, pid, current_size); |
| 8432 | |
| 8433 | /* Abort the process if it has hit the system-wide limit for ipc port table size */ |
| 8434 | if (!hard_limit && !soft_limit) { |
| 8435 | code[0] = code[1] = 0; |
| 8436 | EXC_RESOURCE_ENCODE_TYPE(code[0], RESOURCE_TYPE_PORTS); |
| 8437 | EXC_RESOURCE_ENCODE_FLAVOR(code[0], FLAVOR_PORT_SPACE_FULL); |
| 8438 | EXC_RESOURCE_PORTS_ENCODE_PORTS(code[0], current_size); |
| 8439 | |
| 8440 | exit_with_port_space_exception(proc: current_proc(), code: code[0], subcode: code[1]); |
| 8441 | |
| 8442 | return; |
| 8443 | } |
| 8444 | |
| 8445 | #if CONFIG_PROC_RESOURCE_LIMITS |
| 8446 | if (hard_limit > 0) { |
| 8447 | flags |= kRNHardLimitFlag; |
| 8448 | limit = hard_limit; |
| 8449 | task_fatal_port = task_allocate_fatal_port(); |
| 8450 | if (!task_fatal_port) { |
| 8451 | os_log(OS_LOG_DEFAULT, "process %s[%d] Unable to create task token ident object" , procname, pid); |
| 8452 | task_bsdtask_kill(task); |
| 8453 | } |
| 8454 | } else { |
| 8455 | flags |= kRNSoftLimitFlag; |
| 8456 | limit = soft_limit; |
| 8457 | } |
| 8458 | |
| 8459 | kr = send_resource_violation_with_fatal_port(send_port_space_violation, task, (int64_t)current_size, (int64_t)limit, task_fatal_port, flags); |
| 8460 | if (kr) { |
| 8461 | os_log(OS_LOG_DEFAULT, "send_resource_violation(ports, ...): error %#x\n" , kr); |
| 8462 | } |
| 8463 | if (task_fatal_port) { |
| 8464 | ipc_port_release_send(task_fatal_port); |
| 8465 | } |
| 8466 | #endif /* CONFIG_PROC_RESOURCE_LIMITS */ |
| 8467 | } |
| 8468 | |
| 8469 | #if CONFIG_PROC_RESOURCE_LIMITS |
| 8470 | void |
| 8471 | task_kqworkloop_ast(task_t task, int current_size, int soft_limit, int hard_limit) |
| 8472 | { |
| 8473 | assert(task == current_task()); |
| 8474 | return SENDING_NOTIFICATION__THIS_PROCESS_HAS_TOO_MANY_KQWORKLOOPS(task, current_size, soft_limit, hard_limit); |
| 8475 | } |
| 8476 | |
| 8477 | void __attribute__((noinline)) |
| 8478 | SENDING_NOTIFICATION__THIS_PROCESS_HAS_TOO_MANY_KQWORKLOOPS(task_t task, int current_size, int soft_limit, int hard_limit) |
| 8479 | { |
| 8480 | int pid = 0; |
| 8481 | char *procname = (char *) "unknown" ; |
| 8482 | #ifdef MACH_BSD |
| 8483 | pid = proc_selfpid(); |
| 8484 | if (get_bsdtask_info(task) != NULL) { |
| 8485 | procname = proc_name_address(get_bsdtask_info(task)); |
| 8486 | } |
| 8487 | #endif |
| 8488 | if (pid == 0 || pid == 1) { |
| 8489 | return; |
| 8490 | } |
| 8491 | |
| 8492 | os_log(OS_LOG_DEFAULT, "process %s[%d] caught allocating too many kqworkloops. \ |
| 8493 | Num of kqworkloops allocated %u; \n" , procname, pid, current_size); |
| 8494 | |
| 8495 | int limit = 0; |
| 8496 | resource_notify_flags_t flags = kRNFlagsNone; |
| 8497 | mach_port_t task_fatal_port = MACH_PORT_NULL; |
| 8498 | if (hard_limit) { |
| 8499 | flags |= kRNHardLimitFlag; |
| 8500 | limit = hard_limit; |
| 8501 | |
| 8502 | task_fatal_port = task_allocate_fatal_port(); |
| 8503 | if (task_fatal_port == MACH_PORT_NULL) { |
| 8504 | os_log(OS_LOG_DEFAULT, "process %s[%d] Unable to create task token ident object" , procname, pid); |
| 8505 | task_bsdtask_kill(task); |
| 8506 | } |
| 8507 | } else { |
| 8508 | flags |= kRNSoftLimitFlag; |
| 8509 | limit = soft_limit; |
| 8510 | } |
| 8511 | |
| 8512 | kern_return_t kr; |
| 8513 | kr = send_resource_violation_with_fatal_port(send_kqworkloops_violation, task, (int64_t)current_size, (int64_t)limit, task_fatal_port, flags); |
| 8514 | if (kr) { |
| 8515 | os_log(OS_LOG_DEFAULT, "send_resource_violation_with_fatal_port(kqworkloops, ...): error %#x\n" , kr); |
| 8516 | } |
| 8517 | if (task_fatal_port) { |
| 8518 | ipc_port_release_send(task_fatal_port); |
| 8519 | } |
| 8520 | } |
| 8521 | |
| 8522 | |
| 8523 | void |
| 8524 | task_filedesc_ast(__unused task_t task, __unused int current_size, __unused int soft_limit, __unused int hard_limit) |
| 8525 | { |
| 8526 | assert(task == current_task()); |
| 8527 | SENDING_NOTIFICATION__THIS_PROCESS_HAS_TOO_MANY_FILE_DESCRIPTORS(task, current_size, soft_limit, hard_limit); |
| 8528 | } |
| 8529 | |
| 8530 | void __attribute__((noinline)) |
| 8531 | SENDING_NOTIFICATION__THIS_PROCESS_HAS_TOO_MANY_FILE_DESCRIPTORS(task_t task, int current_size, int soft_limit, int hard_limit) |
| 8532 | { |
| 8533 | int pid = 0; |
| 8534 | char *procname = (char *) "unknown" ; |
| 8535 | kern_return_t kr; |
| 8536 | resource_notify_flags_t flags = kRNFlagsNone; |
| 8537 | int limit; |
| 8538 | mach_port_t task_fatal_port = MACH_PORT_NULL; |
| 8539 | |
| 8540 | #ifdef MACH_BSD |
| 8541 | pid = proc_selfpid(); |
| 8542 | if (get_bsdtask_info(task) != NULL) { |
| 8543 | procname = proc_name_address(get_bsdtask_info(task)); |
| 8544 | } |
| 8545 | #endif |
| 8546 | /* |
| 8547 | * Only kernel_task and launchd may be allowed to |
| 8548 | * have really large ipc space. |
| 8549 | */ |
| 8550 | if (pid == 0 || pid == 1) { |
| 8551 | return; |
| 8552 | } |
| 8553 | |
| 8554 | os_log(OS_LOG_DEFAULT, "process %s[%d] caught allocating too many file descriptors. \ |
| 8555 | Num of fds allocated %u; \n" , procname, pid, current_size); |
| 8556 | |
| 8557 | if (hard_limit > 0) { |
| 8558 | flags |= kRNHardLimitFlag; |
| 8559 | limit = hard_limit; |
| 8560 | task_fatal_port = task_allocate_fatal_port(); |
| 8561 | if (!task_fatal_port) { |
| 8562 | os_log(OS_LOG_DEFAULT, "process %s[%d] Unable to create task token ident object" , procname, pid); |
| 8563 | task_bsdtask_kill(task); |
| 8564 | } |
| 8565 | } else { |
| 8566 | flags |= kRNSoftLimitFlag; |
| 8567 | limit = soft_limit; |
| 8568 | } |
| 8569 | |
| 8570 | kr = send_resource_violation_with_fatal_port(send_file_descriptors_violation, task, (int64_t)current_size, (int64_t)limit, task_fatal_port, flags); |
| 8571 | if (kr) { |
| 8572 | os_log(OS_LOG_DEFAULT, "send_resource_violation_with_fatal_port(filedesc, ...): error %#x\n" , kr); |
| 8573 | } |
| 8574 | if (task_fatal_port) { |
| 8575 | ipc_port_release_send(task_fatal_port); |
| 8576 | } |
| 8577 | } |
| 8578 | #endif /* CONFIG_PROC_RESOURCE_LIMITS */ |
| 8579 | |
| 8580 | /* Placeholders for the task set/get voucher interfaces */ |
| 8581 | kern_return_t |
| 8582 | task_get_mach_voucher( |
| 8583 | task_t task, |
| 8584 | mach_voucher_selector_t __unused which, |
| 8585 | ipc_voucher_t *voucher) |
| 8586 | { |
| 8587 | if (TASK_NULL == task) { |
| 8588 | return KERN_INVALID_TASK; |
| 8589 | } |
| 8590 | |
| 8591 | *voucher = NULL; |
| 8592 | return KERN_SUCCESS; |
| 8593 | } |
| 8594 | |
| 8595 | kern_return_t |
| 8596 | task_set_mach_voucher( |
| 8597 | task_t task, |
| 8598 | ipc_voucher_t __unused voucher) |
| 8599 | { |
| 8600 | if (TASK_NULL == task) { |
| 8601 | return KERN_INVALID_TASK; |
| 8602 | } |
| 8603 | |
| 8604 | return KERN_SUCCESS; |
| 8605 | } |
| 8606 | |
| 8607 | kern_return_t |
| 8608 | task_swap_mach_voucher( |
| 8609 | __unused task_t task, |
| 8610 | __unused ipc_voucher_t new_voucher, |
| 8611 | ipc_voucher_t *in_out_old_voucher) |
| 8612 | { |
| 8613 | /* |
| 8614 | * Currently this function is only called from a MIG generated |
| 8615 | * routine which doesn't release the reference on the voucher |
| 8616 | * addressed by in_out_old_voucher. To avoid leaking this reference, |
| 8617 | * a call to release it has been added here. |
| 8618 | */ |
| 8619 | ipc_voucher_release(voucher: *in_out_old_voucher); |
| 8620 | OS_ANALYZER_SUPPRESS("81787115" ) return KERN_NOT_SUPPORTED; |
| 8621 | } |
| 8622 | |
| 8623 | void |
| 8624 | task_set_gpu_denied(task_t task, boolean_t denied) |
| 8625 | { |
| 8626 | task_lock(task); |
| 8627 | |
| 8628 | if (denied) { |
| 8629 | task->t_flags |= TF_GPU_DENIED; |
| 8630 | } else { |
| 8631 | task->t_flags &= ~TF_GPU_DENIED; |
| 8632 | } |
| 8633 | |
| 8634 | task_unlock(task); |
| 8635 | } |
| 8636 | |
| 8637 | boolean_t |
| 8638 | task_is_gpu_denied(task_t task) |
| 8639 | { |
| 8640 | /* We don't need the lock to read this flag */ |
| 8641 | return (task->t_flags & TF_GPU_DENIED) ? TRUE : FALSE; |
| 8642 | } |
| 8643 | |
| 8644 | /* |
| 8645 | * Task policy termination uses this path to clear the bit the final time |
| 8646 | * during the termination flow, and the TASK_POLICY_TERMINATED bit guarantees |
| 8647 | * that it won't be changed again on a terminated task. |
| 8648 | */ |
| 8649 | bool |
| 8650 | task_set_game_mode_locked(task_t task, bool enabled) |
| 8651 | { |
| 8652 | task_lock_assert_owned(task); |
| 8653 | |
| 8654 | if (enabled) { |
| 8655 | assert(proc_get_effective_task_policy(task, TASK_POLICY_TERMINATED) == 0); |
| 8656 | } |
| 8657 | |
| 8658 | bool previously_enabled = task_get_game_mode(task); |
| 8659 | bool needs_update = false; |
| 8660 | uint32_t new_count = 0; |
| 8661 | |
| 8662 | if (enabled) { |
| 8663 | task->t_flags |= TF_GAME_MODE; |
| 8664 | } else { |
| 8665 | task->t_flags &= ~TF_GAME_MODE; |
| 8666 | } |
| 8667 | |
| 8668 | if (enabled && !previously_enabled) { |
| 8669 | if (task_coalition_adjust_game_mode_count(task, count: 1, new_count: &new_count) && (new_count == 1)) { |
| 8670 | needs_update = true; |
| 8671 | } |
| 8672 | } else if (!enabled && previously_enabled) { |
| 8673 | if (task_coalition_adjust_game_mode_count(task, count: -1, new_count: &new_count) && (new_count == 0)) { |
| 8674 | needs_update = true; |
| 8675 | } |
| 8676 | } |
| 8677 | |
| 8678 | return needs_update; |
| 8679 | } |
| 8680 | |
| 8681 | void |
| 8682 | task_set_game_mode(task_t task, bool enabled) |
| 8683 | { |
| 8684 | bool needs_update = false; |
| 8685 | |
| 8686 | task_lock(task); |
| 8687 | |
| 8688 | /* After termination, further updates are no longer effective */ |
| 8689 | if (proc_get_effective_task_policy(task, TASK_POLICY_TERMINATED) == 0) { |
| 8690 | needs_update = task_set_game_mode_locked(task, enabled); |
| 8691 | } |
| 8692 | |
| 8693 | task_unlock(task); |
| 8694 | |
| 8695 | #if CONFIG_THREAD_GROUPS |
| 8696 | if (needs_update) { |
| 8697 | task_coalition_thread_group_game_mode_update(task); |
| 8698 | } |
| 8699 | #endif /* CONFIG_THREAD_GROUPS */ |
| 8700 | } |
| 8701 | |
| 8702 | bool |
| 8703 | task_get_game_mode(task_t task) |
| 8704 | { |
| 8705 | /* We don't need the lock to read this flag */ |
| 8706 | return task->t_flags & TF_GAME_MODE; |
| 8707 | } |
| 8708 | |
| 8709 | |
| 8710 | uint64_t |
| 8711 | get_task_memory_region_count(task_t task) |
| 8712 | { |
| 8713 | vm_map_t map; |
| 8714 | map = (task == kernel_task) ? kernel_map: task->map; |
| 8715 | return (uint64_t)get_map_nentries(map); |
| 8716 | } |
| 8717 | |
| 8718 | static void |
| 8719 | kdebug_trace_dyld_internal(uint32_t base_code, |
| 8720 | struct dyld_kernel_image_info *info) |
| 8721 | { |
| 8722 | static_assert(sizeof(info->uuid) >= 16); |
| 8723 | |
| 8724 | #if defined(__LP64__) |
| 8725 | uint64_t *uuid = (uint64_t *)&(info->uuid); |
| 8726 | |
| 8727 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
| 8728 | KDBG_EVENTID(DBG_DYLD, DBG_DYLD_UUID, base_code), uuid[0], |
| 8729 | uuid[1], info->load_addr, |
| 8730 | (uint64_t)info->fsid.val[0] | ((uint64_t)info->fsid.val[1] << 32), |
| 8731 | 0); |
| 8732 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
| 8733 | KDBG_EVENTID(DBG_DYLD, DBG_DYLD_UUID, base_code + 1), |
| 8734 | (uint64_t)info->fsobjid.fid_objno | |
| 8735 | ((uint64_t)info->fsobjid.fid_generation << 32), |
| 8736 | 0, 0, 0, 0); |
| 8737 | #else /* defined(__LP64__) */ |
| 8738 | uint32_t *uuid = (uint32_t *)&(info->uuid); |
| 8739 | |
| 8740 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
| 8741 | KDBG_EVENTID(DBG_DYLD, DBG_DYLD_UUID, base_code + 2), uuid[0], |
| 8742 | uuid[1], uuid[2], uuid[3], 0); |
| 8743 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
| 8744 | KDBG_EVENTID(DBG_DYLD, DBG_DYLD_UUID, base_code + 3), |
| 8745 | (uint32_t)info->load_addr, info->fsid.val[0], info->fsid.val[1], |
| 8746 | info->fsobjid.fid_objno, 0); |
| 8747 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
| 8748 | KDBG_EVENTID(DBG_DYLD, DBG_DYLD_UUID, base_code + 4), |
| 8749 | info->fsobjid.fid_generation, 0, 0, 0, 0); |
| 8750 | #endif /* !defined(__LP64__) */ |
| 8751 | } |
| 8752 | |
| 8753 | static kern_return_t |
| 8754 | kdebug_trace_dyld(task_t task, uint32_t base_code, |
| 8755 | vm_map_copy_t infos_copy, mach_msg_type_number_t infos_len) |
| 8756 | { |
| 8757 | kern_return_t kr; |
| 8758 | dyld_kernel_image_info_array_t infos; |
| 8759 | vm_map_offset_t map_data; |
| 8760 | vm_offset_t data; |
| 8761 | |
| 8762 | if (!infos_copy) { |
| 8763 | return KERN_INVALID_ADDRESS; |
| 8764 | } |
| 8765 | |
| 8766 | if (!kdebug_enable || |
| 8767 | !kdebug_debugid_enabled(KDBG_EVENTID(DBG_DYLD, DBG_DYLD_UUID, 0))) { |
| 8768 | vm_map_copy_discard(copy: infos_copy); |
| 8769 | return KERN_SUCCESS; |
| 8770 | } |
| 8771 | |
| 8772 | if (task == NULL || task != current_task()) { |
| 8773 | return KERN_INVALID_TASK; |
| 8774 | } |
| 8775 | |
| 8776 | kr = vm_map_copyout(dst_map: ipc_kernel_map, dst_addr: &map_data, copy: (vm_map_copy_t)infos_copy); |
| 8777 | if (kr != KERN_SUCCESS) { |
| 8778 | return kr; |
| 8779 | } |
| 8780 | |
| 8781 | infos = CAST_DOWN(dyld_kernel_image_info_array_t, map_data); |
| 8782 | |
| 8783 | for (mach_msg_type_number_t i = 0; i < infos_len; i++) { |
| 8784 | kdebug_trace_dyld_internal(base_code, info: &(infos[i])); |
| 8785 | } |
| 8786 | |
| 8787 | data = CAST_DOWN(vm_offset_t, map_data); |
| 8788 | mach_vm_deallocate(target: ipc_kernel_map, address: data, size: infos_len * sizeof(infos[0])); |
| 8789 | return KERN_SUCCESS; |
| 8790 | } |
| 8791 | |
| 8792 | kern_return_t |
| 8793 | task_register_dyld_image_infos(task_t task, |
| 8794 | dyld_kernel_image_info_array_t infos_copy, |
| 8795 | mach_msg_type_number_t infos_len) |
| 8796 | { |
| 8797 | return kdebug_trace_dyld(task, DBG_DYLD_UUID_MAP_A, |
| 8798 | infos_copy: (vm_map_copy_t)infos_copy, infos_len); |
| 8799 | } |
| 8800 | |
| 8801 | kern_return_t |
| 8802 | task_unregister_dyld_image_infos(task_t task, |
| 8803 | dyld_kernel_image_info_array_t infos_copy, |
| 8804 | mach_msg_type_number_t infos_len) |
| 8805 | { |
| 8806 | return kdebug_trace_dyld(task, DBG_DYLD_UUID_UNMAP_A, |
| 8807 | infos_copy: (vm_map_copy_t)infos_copy, infos_len); |
| 8808 | } |
| 8809 | |
| 8810 | kern_return_t |
| 8811 | task_get_dyld_image_infos(__unused task_t task, |
| 8812 | __unused dyld_kernel_image_info_array_t * dyld_images, |
| 8813 | __unused mach_msg_type_number_t * dyld_imagesCnt) |
| 8814 | { |
| 8815 | return KERN_NOT_SUPPORTED; |
| 8816 | } |
| 8817 | |
| 8818 | kern_return_t |
| 8819 | task_register_dyld_shared_cache_image_info(task_t task, |
| 8820 | dyld_kernel_image_info_t cache_img, |
| 8821 | __unused boolean_t no_cache, |
| 8822 | __unused boolean_t private_cache) |
| 8823 | { |
| 8824 | if (task == NULL || task != current_task()) { |
| 8825 | return KERN_INVALID_TASK; |
| 8826 | } |
| 8827 | |
| 8828 | kdebug_trace_dyld_internal(DBG_DYLD_UUID_SHARED_CACHE_A, info: &cache_img); |
| 8829 | return KERN_SUCCESS; |
| 8830 | } |
| 8831 | |
| 8832 | kern_return_t |
| 8833 | task_register_dyld_set_dyld_state(__unused task_t task, |
| 8834 | __unused uint8_t dyld_state) |
| 8835 | { |
| 8836 | return KERN_NOT_SUPPORTED; |
| 8837 | } |
| 8838 | |
| 8839 | kern_return_t |
| 8840 | task_register_dyld_get_process_state(__unused task_t task, |
| 8841 | __unused dyld_kernel_process_info_t * dyld_process_state) |
| 8842 | { |
| 8843 | return KERN_NOT_SUPPORTED; |
| 8844 | } |
| 8845 | |
| 8846 | kern_return_t |
| 8847 | task_inspect(task_inspect_t task_insp, task_inspect_flavor_t flavor, |
| 8848 | task_inspect_info_t info_out, mach_msg_type_number_t *size_in_out) |
| 8849 | { |
| 8850 | #if CONFIG_PERVASIVE_CPI |
| 8851 | task_t task = (task_t)task_insp; |
| 8852 | kern_return_t kr = KERN_SUCCESS; |
| 8853 | mach_msg_type_number_t size; |
| 8854 | |
| 8855 | if (task == TASK_NULL) { |
| 8856 | return KERN_INVALID_ARGUMENT; |
| 8857 | } |
| 8858 | |
| 8859 | size = *size_in_out; |
| 8860 | |
| 8861 | switch (flavor) { |
| 8862 | case TASK_INSPECT_BASIC_COUNTS: { |
| 8863 | struct task_inspect_basic_counts *bc = |
| 8864 | (struct task_inspect_basic_counts *)info_out; |
| 8865 | struct recount_usage stats = { 0 }; |
| 8866 | if (size < TASK_INSPECT_BASIC_COUNTS_COUNT) { |
| 8867 | kr = KERN_INVALID_ARGUMENT; |
| 8868 | break; |
| 8869 | } |
| 8870 | |
| 8871 | recount_sum(&recount_task_plan, task->tk_recount.rtk_lifetime, &stats); |
| 8872 | bc->instructions = recount_usage_instructions(&stats); |
| 8873 | bc->cycles = recount_usage_cycles(&stats); |
| 8874 | size = TASK_INSPECT_BASIC_COUNTS_COUNT; |
| 8875 | break; |
| 8876 | } |
| 8877 | default: |
| 8878 | kr = KERN_INVALID_ARGUMENT; |
| 8879 | break; |
| 8880 | } |
| 8881 | |
| 8882 | if (kr == KERN_SUCCESS) { |
| 8883 | *size_in_out = size; |
| 8884 | } |
| 8885 | return kr; |
| 8886 | #else /* CONFIG_PERVASIVE_CPI */ |
| 8887 | #pragma unused(task_insp, flavor, info_out, size_in_out) |
| 8888 | return KERN_NOT_SUPPORTED; |
| 8889 | #endif /* !CONFIG_PERVASIVE_CPI */ |
| 8890 | } |
| 8891 | |
| 8892 | #if CONFIG_SECLUDED_MEMORY |
| 8893 | int num_tasks_can_use_secluded_mem = 0; |
| 8894 | |
| 8895 | void |
| 8896 | task_set_can_use_secluded_mem( |
| 8897 | task_t task, |
| 8898 | boolean_t can_use_secluded_mem) |
| 8899 | { |
| 8900 | if (!task->task_could_use_secluded_mem) { |
| 8901 | return; |
| 8902 | } |
| 8903 | task_lock(task); |
| 8904 | task_set_can_use_secluded_mem_locked(task, can_use_secluded_mem); |
| 8905 | task_unlock(task); |
| 8906 | } |
| 8907 | |
| 8908 | void |
| 8909 | task_set_can_use_secluded_mem_locked( |
| 8910 | task_t task, |
| 8911 | boolean_t can_use_secluded_mem) |
| 8912 | { |
| 8913 | assert(task->task_could_use_secluded_mem); |
| 8914 | if (can_use_secluded_mem && |
| 8915 | secluded_for_apps && /* global boot-arg */ |
| 8916 | !task->task_can_use_secluded_mem) { |
| 8917 | assert(num_tasks_can_use_secluded_mem >= 0); |
| 8918 | OSAddAtomic(+1, |
| 8919 | (volatile SInt32 *)&num_tasks_can_use_secluded_mem); |
| 8920 | task->task_can_use_secluded_mem = TRUE; |
| 8921 | } else if (!can_use_secluded_mem && |
| 8922 | task->task_can_use_secluded_mem) { |
| 8923 | assert(num_tasks_can_use_secluded_mem > 0); |
| 8924 | OSAddAtomic(-1, |
| 8925 | (volatile SInt32 *)&num_tasks_can_use_secluded_mem); |
| 8926 | task->task_can_use_secluded_mem = FALSE; |
| 8927 | } |
| 8928 | } |
| 8929 | |
| 8930 | void |
| 8931 | task_set_could_use_secluded_mem( |
| 8932 | task_t task, |
| 8933 | boolean_t could_use_secluded_mem) |
| 8934 | { |
| 8935 | task->task_could_use_secluded_mem = !!could_use_secluded_mem; |
| 8936 | } |
| 8937 | |
| 8938 | void |
| 8939 | task_set_could_also_use_secluded_mem( |
| 8940 | task_t task, |
| 8941 | boolean_t could_also_use_secluded_mem) |
| 8942 | { |
| 8943 | task->task_could_also_use_secluded_mem = !!could_also_use_secluded_mem; |
| 8944 | } |
| 8945 | |
| 8946 | boolean_t |
| 8947 | task_can_use_secluded_mem( |
| 8948 | task_t task, |
| 8949 | boolean_t is_alloc) |
| 8950 | { |
| 8951 | if (task->task_can_use_secluded_mem) { |
| 8952 | assert(task->task_could_use_secluded_mem); |
| 8953 | assert(num_tasks_can_use_secluded_mem > 0); |
| 8954 | return TRUE; |
| 8955 | } |
| 8956 | if (task->task_could_also_use_secluded_mem && |
| 8957 | num_tasks_can_use_secluded_mem > 0) { |
| 8958 | assert(num_tasks_can_use_secluded_mem > 0); |
| 8959 | return TRUE; |
| 8960 | } |
| 8961 | |
| 8962 | /* |
| 8963 | * If a single task is using more than some large amount of |
| 8964 | * memory (i.e. secluded_shutoff_trigger) and is approaching |
| 8965 | * its task limit, allow it to dip into secluded and begin |
| 8966 | * suppression of rebuilding secluded memory until that task exits. |
| 8967 | */ |
| 8968 | if (is_alloc && secluded_shutoff_trigger != 0) { |
| 8969 | uint64_t phys_used = get_task_phys_footprint(task); |
| 8970 | uint64_t limit = get_task_phys_footprint_limit(task); |
| 8971 | if (phys_used > secluded_shutoff_trigger && |
| 8972 | limit > secluded_shutoff_trigger && |
| 8973 | phys_used > limit - secluded_shutoff_headroom) { |
| 8974 | start_secluded_suppression(task); |
| 8975 | return TRUE; |
| 8976 | } |
| 8977 | } |
| 8978 | |
| 8979 | return FALSE; |
| 8980 | } |
| 8981 | |
| 8982 | boolean_t |
| 8983 | task_could_use_secluded_mem( |
| 8984 | task_t task) |
| 8985 | { |
| 8986 | return task->task_could_use_secluded_mem; |
| 8987 | } |
| 8988 | |
| 8989 | boolean_t |
| 8990 | task_could_also_use_secluded_mem( |
| 8991 | task_t task) |
| 8992 | { |
| 8993 | return task->task_could_also_use_secluded_mem; |
| 8994 | } |
| 8995 | #endif /* CONFIG_SECLUDED_MEMORY */ |
| 8996 | |
| 8997 | queue_head_t * |
| 8998 | task_io_user_clients(task_t task) |
| 8999 | { |
| 9000 | return &task->io_user_clients; |
| 9001 | } |
| 9002 | |
| 9003 | void |
| 9004 | task_set_message_app_suspended(task_t task, boolean_t enable) |
| 9005 | { |
| 9006 | task->message_app_suspended = enable; |
| 9007 | } |
| 9008 | |
| 9009 | void |
| 9010 | task_copy_fields_for_exec(task_t dst_task, task_t src_task) |
| 9011 | { |
| 9012 | dst_task->vtimers = src_task->vtimers; |
| 9013 | } |
| 9014 | |
| 9015 | #if DEVELOPMENT || DEBUG |
| 9016 | int vm_region_footprint = 0; |
| 9017 | #endif /* DEVELOPMENT || DEBUG */ |
| 9018 | |
| 9019 | boolean_t |
| 9020 | (void) |
| 9021 | { |
| 9022 | #if DEVELOPMENT || DEBUG |
| 9023 | if (vm_region_footprint) { |
| 9024 | /* system-wide override */ |
| 9025 | return TRUE; |
| 9026 | } |
| 9027 | #endif /* DEVELOPMENT || DEBUG */ |
| 9028 | return current_task()->task_region_footprint; |
| 9029 | } |
| 9030 | |
| 9031 | void |
| 9032 | ( |
| 9033 | boolean_t newval) |
| 9034 | { |
| 9035 | task_t curtask; |
| 9036 | |
| 9037 | curtask = current_task(); |
| 9038 | task_lock(task: curtask); |
| 9039 | if (newval) { |
| 9040 | curtask->task_region_footprint = TRUE; |
| 9041 | } else { |
| 9042 | curtask->task_region_footprint = FALSE; |
| 9043 | } |
| 9044 | task_unlock(task: curtask); |
| 9045 | } |
| 9046 | |
| 9047 | void |
| 9048 | task_set_darkwake_mode(task_t task, boolean_t set_mode) |
| 9049 | { |
| 9050 | assert(task); |
| 9051 | |
| 9052 | task_lock(task); |
| 9053 | |
| 9054 | if (set_mode) { |
| 9055 | task->t_flags |= TF_DARKWAKE_MODE; |
| 9056 | } else { |
| 9057 | task->t_flags &= ~(TF_DARKWAKE_MODE); |
| 9058 | } |
| 9059 | |
| 9060 | task_unlock(task); |
| 9061 | } |
| 9062 | |
| 9063 | boolean_t |
| 9064 | task_get_darkwake_mode(task_t task) |
| 9065 | { |
| 9066 | assert(task); |
| 9067 | return (task->t_flags & TF_DARKWAKE_MODE) != 0; |
| 9068 | } |
| 9069 | |
| 9070 | /* |
| 9071 | * Set default behavior for task's control port and EXC_GUARD variants that have |
| 9072 | * settable behavior. |
| 9073 | * |
| 9074 | * Platform binaries typically have one behavior, third parties another - |
| 9075 | * but there are special exception we may need to account for. |
| 9076 | */ |
| 9077 | void |
| 9078 | task_set_exc_guard_ctrl_port_default( |
| 9079 | task_t task, |
| 9080 | thread_t main_thread, |
| 9081 | const char *name, |
| 9082 | unsigned int namelen, |
| 9083 | boolean_t is_simulated, |
| 9084 | uint32_t platform, |
| 9085 | uint32_t sdk) |
| 9086 | { |
| 9087 | task_control_port_options_t opts = TASK_CONTROL_PORT_OPTIONS_NONE; |
| 9088 | |
| 9089 | if (task_is_hardened_binary(task)) { |
| 9090 | /* set exc guard default behavior for hardened binaries */ |
| 9091 | task->task_exc_guard = (task_exc_guard_default & TASK_EXC_GUARD_ALL); |
| 9092 | |
| 9093 | if (1 == task_pid(task)) { |
| 9094 | /* special flags for inittask - delivery every instance as corpse */ |
| 9095 | task->task_exc_guard = _TASK_EXC_GUARD_ALL_CORPSE; |
| 9096 | } else if (task_exc_guard_default & TASK_EXC_GUARD_HONOR_NAMED_DEFAULTS) { |
| 9097 | /* honor by-name default setting overrides */ |
| 9098 | |
| 9099 | int count = sizeof(task_exc_guard_named_defaults) / sizeof(struct task_exc_guard_named_default); |
| 9100 | |
| 9101 | for (int i = 0; i < count; i++) { |
| 9102 | const struct task_exc_guard_named_default *named_default = |
| 9103 | &task_exc_guard_named_defaults[i]; |
| 9104 | if (strncmp(s1: named_default->name, s2: name, n: namelen) == 0 && |
| 9105 | strlen(s: named_default->name) == namelen) { |
| 9106 | task->task_exc_guard = named_default->behavior; |
| 9107 | break; |
| 9108 | } |
| 9109 | } |
| 9110 | } |
| 9111 | |
| 9112 | /* set control port options for 1p code, inherited from parent task by default */ |
| 9113 | opts = ipc_control_port_options & ICP_OPTIONS_1P_MASK; |
| 9114 | } else { |
| 9115 | /* set exc guard default behavior for third-party code */ |
| 9116 | task->task_exc_guard = ((task_exc_guard_default >> TASK_EXC_GUARD_THIRD_PARTY_DEFAULT_SHIFT) & TASK_EXC_GUARD_ALL); |
| 9117 | /* set control port options for 3p code, inherited from parent task by default */ |
| 9118 | opts = (ipc_control_port_options & ICP_OPTIONS_3P_MASK) >> ICP_OPTIONS_3P_SHIFT; |
| 9119 | } |
| 9120 | |
| 9121 | if (is_simulated) { |
| 9122 | /* If simulated and built against pre-iOS 15 SDK, disable all EXC_GUARD */ |
| 9123 | if ((platform == PLATFORM_IOSSIMULATOR && sdk < 0xf0000) || |
| 9124 | (platform == PLATFORM_TVOSSIMULATOR && sdk < 0xf0000) || |
| 9125 | (platform == PLATFORM_WATCHOSSIMULATOR && sdk < 0x80000)) { |
| 9126 | task->task_exc_guard = TASK_EXC_GUARD_NONE; |
| 9127 | } |
| 9128 | /* Disable protection for control ports for simulated binaries */ |
| 9129 | opts = TASK_CONTROL_PORT_OPTIONS_NONE; |
| 9130 | } |
| 9131 | |
| 9132 | |
| 9133 | task_set_control_port_options(task, opts); |
| 9134 | |
| 9135 | task_set_immovable_pinned(task); |
| 9136 | main_thread_set_immovable_pinned(thread: main_thread); |
| 9137 | } |
| 9138 | |
| 9139 | kern_return_t |
| 9140 | task_get_exc_guard_behavior( |
| 9141 | task_t task, |
| 9142 | task_exc_guard_behavior_t *behaviorp) |
| 9143 | { |
| 9144 | if (task == TASK_NULL) { |
| 9145 | return KERN_INVALID_TASK; |
| 9146 | } |
| 9147 | *behaviorp = task->task_exc_guard; |
| 9148 | return KERN_SUCCESS; |
| 9149 | } |
| 9150 | |
| 9151 | kern_return_t |
| 9152 | task_set_exc_guard_behavior( |
| 9153 | task_t task, |
| 9154 | task_exc_guard_behavior_t new_behavior) |
| 9155 | { |
| 9156 | if (task == TASK_NULL) { |
| 9157 | return KERN_INVALID_TASK; |
| 9158 | } |
| 9159 | if (new_behavior & ~TASK_EXC_GUARD_ALL) { |
| 9160 | return KERN_INVALID_VALUE; |
| 9161 | } |
| 9162 | |
| 9163 | /* limit setting to that allowed for this config */ |
| 9164 | new_behavior = new_behavior & task_exc_guard_config_mask; |
| 9165 | |
| 9166 | #if !defined (DEBUG) && !defined (DEVELOPMENT) |
| 9167 | /* On release kernels, only allow _upgrading_ exc guard behavior */ |
| 9168 | task_exc_guard_behavior_t cur_behavior; |
| 9169 | |
| 9170 | os_atomic_rmw_loop(&task->task_exc_guard, cur_behavior, new_behavior, relaxed, { |
| 9171 | if ((cur_behavior & task_exc_guard_no_unset_mask) & ~(new_behavior & task_exc_guard_no_unset_mask)) { |
| 9172 | os_atomic_rmw_loop_give_up(return KERN_DENIED); |
| 9173 | } |
| 9174 | |
| 9175 | if ((new_behavior & task_exc_guard_no_set_mask) & ~(cur_behavior & task_exc_guard_no_set_mask)) { |
| 9176 | os_atomic_rmw_loop_give_up(return KERN_DENIED); |
| 9177 | } |
| 9178 | |
| 9179 | /* no restrictions on CORPSE bit */ |
| 9180 | }); |
| 9181 | #else |
| 9182 | task->task_exc_guard = new_behavior; |
| 9183 | #endif |
| 9184 | return KERN_SUCCESS; |
| 9185 | } |
| 9186 | |
| 9187 | kern_return_t |
| 9188 | task_set_corpse_forking_behavior(task_t task, task_corpse_forking_behavior_t behavior) |
| 9189 | { |
| 9190 | #if DEVELOPMENT || DEBUG |
| 9191 | if (task == TASK_NULL) { |
| 9192 | return KERN_INVALID_TASK; |
| 9193 | } |
| 9194 | |
| 9195 | task_lock(task); |
| 9196 | if (behavior & TASK_CORPSE_FORKING_DISABLED_MEM_DIAG) { |
| 9197 | task->t_flags |= TF_NO_CORPSE_FORKING; |
| 9198 | } else { |
| 9199 | task->t_flags &= ~TF_NO_CORPSE_FORKING; |
| 9200 | } |
| 9201 | task_unlock(task); |
| 9202 | |
| 9203 | return KERN_SUCCESS; |
| 9204 | #else |
| 9205 | (void)task; |
| 9206 | (void)behavior; |
| 9207 | return KERN_NOT_SUPPORTED; |
| 9208 | #endif |
| 9209 | } |
| 9210 | |
| 9211 | boolean_t |
| 9212 | task_corpse_forking_disabled(task_t task) |
| 9213 | { |
| 9214 | boolean_t disabled = FALSE; |
| 9215 | |
| 9216 | task_lock(task); |
| 9217 | disabled = (task->t_flags & TF_NO_CORPSE_FORKING); |
| 9218 | task_unlock(task); |
| 9219 | |
| 9220 | return disabled; |
| 9221 | } |
| 9222 | |
| 9223 | #if __arm64__ |
| 9224 | extern int ; |
| 9225 | extern void (struct proc *, boolean_t); |
| 9226 | extern void (struct proc *); |
| 9227 | |
| 9228 | |
| 9229 | void |
| 9230 | ( |
| 9231 | task_t task) |
| 9232 | { |
| 9233 | task_lock(task); |
| 9234 | task->task_legacy_footprint = TRUE; |
| 9235 | task_unlock(task); |
| 9236 | } |
| 9237 | |
| 9238 | void |
| 9239 | ( |
| 9240 | task_t task) |
| 9241 | { |
| 9242 | if (task->task_extra_footprint_limit) { |
| 9243 | return; |
| 9244 | } |
| 9245 | task_lock(task); |
| 9246 | if (task->task_extra_footprint_limit) { |
| 9247 | task_unlock(task); |
| 9248 | return; |
| 9249 | } |
| 9250 | task->task_extra_footprint_limit = TRUE; |
| 9251 | task_unlock(task); |
| 9252 | memorystatus_act_on_legacy_footprint_entitlement(get_bsdtask_info(task), TRUE); |
| 9253 | } |
| 9254 | |
| 9255 | void |
| 9256 | ( |
| 9257 | task_t task) |
| 9258 | { |
| 9259 | if (task->task_ios13extended_footprint_limit) { |
| 9260 | return; |
| 9261 | } |
| 9262 | task_lock(task); |
| 9263 | if (task->task_ios13extended_footprint_limit) { |
| 9264 | task_unlock(task); |
| 9265 | return; |
| 9266 | } |
| 9267 | task->task_ios13extended_footprint_limit = TRUE; |
| 9268 | task_unlock(task); |
| 9269 | memorystatus_act_on_ios13extended_footprint_entitlement(get_bsdtask_info(task)); |
| 9270 | } |
| 9271 | #endif /* __arm64__ */ |
| 9272 | |
| 9273 | static inline ledger_amount_t |
| 9274 | task_ledger_get_balance( |
| 9275 | ledger_t ledger, |
| 9276 | int ledger_idx) |
| 9277 | { |
| 9278 | ledger_amount_t amount; |
| 9279 | amount = 0; |
| 9280 | ledger_get_balance(ledger, entry: ledger_idx, balance: &amount); |
| 9281 | return amount; |
| 9282 | } |
| 9283 | |
| 9284 | /* |
| 9285 | * Gather the amount of memory counted in a task's footprint due to |
| 9286 | * being in a specific set of ledgers. |
| 9287 | */ |
| 9288 | void |
| 9289 | ( |
| 9290 | ledger_t ledger, |
| 9291 | ledger_amount_t *ledger_resident, |
| 9292 | ledger_amount_t *ledger_compressed) |
| 9293 | { |
| 9294 | *ledger_resident = 0; |
| 9295 | *ledger_compressed = 0; |
| 9296 | |
| 9297 | /* purgeable non-volatile memory */ |
| 9298 | *ledger_resident += task_ledger_get_balance(ledger, ledger_idx: task_ledgers.purgeable_nonvolatile); |
| 9299 | *ledger_compressed += task_ledger_get_balance(ledger, ledger_idx: task_ledgers.purgeable_nonvolatile_compressed); |
| 9300 | |
| 9301 | /* "default" tagged memory */ |
| 9302 | *ledger_resident += task_ledger_get_balance(ledger, ledger_idx: task_ledgers.tagged_footprint); |
| 9303 | *ledger_compressed += task_ledger_get_balance(ledger, ledger_idx: task_ledgers.tagged_footprint_compressed); |
| 9304 | |
| 9305 | /* "network" currently never counts in the footprint... */ |
| 9306 | |
| 9307 | /* "media" tagged memory */ |
| 9308 | *ledger_resident += task_ledger_get_balance(ledger, ledger_idx: task_ledgers.media_footprint); |
| 9309 | *ledger_compressed += task_ledger_get_balance(ledger, ledger_idx: task_ledgers.media_footprint_compressed); |
| 9310 | |
| 9311 | /* "graphics" tagged memory */ |
| 9312 | *ledger_resident += task_ledger_get_balance(ledger, ledger_idx: task_ledgers.graphics_footprint); |
| 9313 | *ledger_compressed += task_ledger_get_balance(ledger, ledger_idx: task_ledgers.graphics_footprint_compressed); |
| 9314 | |
| 9315 | /* "neural" tagged memory */ |
| 9316 | *ledger_resident += task_ledger_get_balance(ledger, ledger_idx: task_ledgers.neural_footprint); |
| 9317 | *ledger_compressed += task_ledger_get_balance(ledger, ledger_idx: task_ledgers.neural_footprint_compressed); |
| 9318 | } |
| 9319 | |
| 9320 | #if CONFIG_MEMORYSTATUS |
| 9321 | /* |
| 9322 | * Credit any outstanding task dirty time to the ledger. |
| 9323 | * memstat_dirty_start is pushed forward to prevent any possibility of double |
| 9324 | * counting, making it safe to call this as often as necessary to ensure that |
| 9325 | * anyone reading the ledger gets up-to-date information. |
| 9326 | */ |
| 9327 | void |
| 9328 | task_ledger_settle_dirty_time(task_t t) |
| 9329 | { |
| 9330 | task_lock(task: t); |
| 9331 | |
| 9332 | uint64_t start = t->memstat_dirty_start; |
| 9333 | if (start) { |
| 9334 | uint64_t now = mach_absolute_time(); |
| 9335 | |
| 9336 | uint64_t duration; |
| 9337 | absolutetime_to_nanoseconds(abstime: now - start, result: &duration); |
| 9338 | |
| 9339 | ledger_t ledger = get_task_ledger(t); |
| 9340 | ledger_credit(ledger, entry: task_ledgers.memorystatus_dirty_time, amount: duration); |
| 9341 | |
| 9342 | t->memstat_dirty_start = now; |
| 9343 | } |
| 9344 | |
| 9345 | task_unlock(task: t); |
| 9346 | } |
| 9347 | #endif /* CONFIG_MEMORYSTATUS */ |
| 9348 | |
| 9349 | void |
| 9350 | task_set_memory_ownership_transfer( |
| 9351 | task_t task, |
| 9352 | boolean_t value) |
| 9353 | { |
| 9354 | task_lock(task); |
| 9355 | task->task_can_transfer_memory_ownership = !!value; |
| 9356 | task_unlock(task); |
| 9357 | } |
| 9358 | |
| 9359 | #if DEVELOPMENT || DEBUG |
| 9360 | |
| 9361 | void |
| 9362 | task_set_no_footprint_for_debug(task_t task, boolean_t value) |
| 9363 | { |
| 9364 | task_lock(task); |
| 9365 | task->task_no_footprint_for_debug = !!value; |
| 9366 | task_unlock(task); |
| 9367 | } |
| 9368 | |
| 9369 | int |
| 9370 | task_get_no_footprint_for_debug(task_t task) |
| 9371 | { |
| 9372 | return task->task_no_footprint_for_debug; |
| 9373 | } |
| 9374 | |
| 9375 | #endif /* DEVELOPMENT || DEBUG */ |
| 9376 | |
| 9377 | void |
| 9378 | task_copy_vmobjects(task_t task, vm_object_query_t query, size_t len, size_t *num) |
| 9379 | { |
| 9380 | vm_object_t find_vmo; |
| 9381 | size_t size = 0; |
| 9382 | |
| 9383 | /* |
| 9384 | * Allocate a save area for FP state before taking task_objq lock, |
| 9385 | * if necessary, to ensure that VM_KERNEL_ADDRHASH() doesn't cause |
| 9386 | * an FP state allocation while holding VM locks. |
| 9387 | */ |
| 9388 | ml_fp_save_area_prealloc(); |
| 9389 | |
| 9390 | task_objq_lock(task); |
| 9391 | if (query != NULL) { |
| 9392 | queue_iterate(&task->task_objq, find_vmo, vm_object_t, task_objq) |
| 9393 | { |
| 9394 | vm_object_query_t p = &query[size++]; |
| 9395 | |
| 9396 | /* make sure to not overrun */ |
| 9397 | if (size * sizeof(vm_object_query_data_t) > len) { |
| 9398 | --size; |
| 9399 | break; |
| 9400 | } |
| 9401 | |
| 9402 | bzero(s: p, n: sizeof(*p)); |
| 9403 | p->object_id = (vm_object_id_t) VM_KERNEL_ADDRHASH(find_vmo); |
| 9404 | p->virtual_size = find_vmo->internal ? find_vmo->vo_size : 0; |
| 9405 | p->resident_size = find_vmo->resident_page_count * PAGE_SIZE; |
| 9406 | p->wired_size = find_vmo->wired_page_count * PAGE_SIZE; |
| 9407 | p->reusable_size = find_vmo->reusable_page_count * PAGE_SIZE; |
| 9408 | p->vo_no_footprint = find_vmo->vo_no_footprint; |
| 9409 | p->vo_ledger_tag = find_vmo->vo_ledger_tag; |
| 9410 | p->purgable = find_vmo->purgable; |
| 9411 | |
| 9412 | if (find_vmo->internal && find_vmo->pager_created && find_vmo->pager != NULL) { |
| 9413 | p->compressed_size = vm_compressor_pager_get_count(mem_obj: find_vmo->pager) * PAGE_SIZE; |
| 9414 | } else { |
| 9415 | p->compressed_size = 0; |
| 9416 | } |
| 9417 | } |
| 9418 | } else { |
| 9419 | size = (size_t)task->task_owned_objects; |
| 9420 | } |
| 9421 | task_objq_unlock(task); |
| 9422 | |
| 9423 | *num = size; |
| 9424 | } |
| 9425 | |
| 9426 | void |
| 9427 | task_get_owned_vmobjects(task_t task, size_t buffer_size, vmobject_list_output_t buffer, size_t* output_size, size_t* entries) |
| 9428 | { |
| 9429 | assert(output_size); |
| 9430 | assert(entries); |
| 9431 | |
| 9432 | /* copy the vmobjects and vmobject data out of the task */ |
| 9433 | if (buffer_size == 0) { |
| 9434 | task_copy_vmobjects(task, NULL, len: 0, num: entries); |
| 9435 | *output_size = (*entries > 0) ? *entries * sizeof(vm_object_query_data_t) + sizeof(*buffer) : 0; |
| 9436 | } else { |
| 9437 | assert(buffer); |
| 9438 | task_copy_vmobjects(task, query: &buffer->data[0], len: buffer_size - sizeof(*buffer), num: entries); |
| 9439 | buffer->entries = (uint64_t)*entries; |
| 9440 | *output_size = *entries * sizeof(vm_object_query_data_t) + sizeof(*buffer); |
| 9441 | } |
| 9442 | } |
| 9443 | |
| 9444 | void |
| 9445 | task_store_owned_vmobject_info(task_t to_task, task_t from_task) |
| 9446 | { |
| 9447 | size_t buffer_size; |
| 9448 | vmobject_list_output_t buffer; |
| 9449 | size_t output_size; |
| 9450 | size_t entries; |
| 9451 | |
| 9452 | assert(to_task != from_task); |
| 9453 | |
| 9454 | /* get the size, allocate a bufferr, and populate */ |
| 9455 | entries = 0; |
| 9456 | output_size = 0; |
| 9457 | task_get_owned_vmobjects(task: from_task, buffer_size: 0, NULL, output_size: &output_size, entries: &entries); |
| 9458 | |
| 9459 | if (output_size) { |
| 9460 | buffer_size = output_size; |
| 9461 | buffer = kalloc_data(buffer_size, Z_WAITOK); |
| 9462 | |
| 9463 | if (buffer) { |
| 9464 | entries = 0; |
| 9465 | output_size = 0; |
| 9466 | |
| 9467 | task_get_owned_vmobjects(task: from_task, buffer_size, buffer, output_size: &output_size, entries: &entries); |
| 9468 | |
| 9469 | if (entries) { |
| 9470 | to_task->corpse_vmobject_list = buffer; |
| 9471 | to_task->corpse_vmobject_list_size = buffer_size; |
| 9472 | } |
| 9473 | } |
| 9474 | } |
| 9475 | } |
| 9476 | |
| 9477 | void |
| 9478 | task_set_filter_msg_flag( |
| 9479 | task_t task, |
| 9480 | boolean_t flag) |
| 9481 | { |
| 9482 | assert(task != TASK_NULL); |
| 9483 | |
| 9484 | if (flag) { |
| 9485 | task_ro_flags_set(task, TFRO_FILTER_MSG); |
| 9486 | } else { |
| 9487 | task_ro_flags_clear(task, TFRO_FILTER_MSG); |
| 9488 | } |
| 9489 | } |
| 9490 | |
| 9491 | boolean_t |
| 9492 | task_get_filter_msg_flag( |
| 9493 | task_t task) |
| 9494 | { |
| 9495 | if (!task) { |
| 9496 | return false; |
| 9497 | } |
| 9498 | |
| 9499 | return (task_ro_flags_get(task) & TFRO_FILTER_MSG) ? TRUE : FALSE; |
| 9500 | } |
| 9501 | bool |
| 9502 | task_is_exotic( |
| 9503 | task_t task) |
| 9504 | { |
| 9505 | if (task == TASK_NULL) { |
| 9506 | return false; |
| 9507 | } |
| 9508 | return vm_map_is_exotic(map: get_task_map(task)); |
| 9509 | } |
| 9510 | |
| 9511 | bool |
| 9512 | task_is_alien( |
| 9513 | task_t task) |
| 9514 | { |
| 9515 | if (task == TASK_NULL) { |
| 9516 | return false; |
| 9517 | } |
| 9518 | return vm_map_is_alien(map: get_task_map(task)); |
| 9519 | } |
| 9520 | |
| 9521 | |
| 9522 | |
| 9523 | #if CONFIG_MACF |
| 9524 | /* Set the filter mask for Mach traps. */ |
| 9525 | void |
| 9526 | mac_task_set_mach_filter_mask(task_t task, uint8_t *maskptr) |
| 9527 | { |
| 9528 | assert(task); |
| 9529 | |
| 9530 | task_set_mach_trap_filter_mask(task, mask: maskptr); |
| 9531 | } |
| 9532 | |
| 9533 | /* Set the filter mask for kobject msgs. */ |
| 9534 | void |
| 9535 | mac_task_set_kobj_filter_mask(task_t task, uint8_t *maskptr) |
| 9536 | { |
| 9537 | assert(task); |
| 9538 | |
| 9539 | task_set_mach_kobj_filter_mask(task, mask: maskptr); |
| 9540 | } |
| 9541 | |
| 9542 | /* Hook for mach trap/sc filter evaluation policy. */ |
| 9543 | SECURITY_READ_ONLY_LATE(mac_task_mach_filter_cbfunc_t) mac_task_mach_trap_evaluate = NULL; |
| 9544 | |
| 9545 | /* Hook for kobj message filter evaluation policy. */ |
| 9546 | SECURITY_READ_ONLY_LATE(mac_task_kobj_filter_cbfunc_t) mac_task_kobj_msg_evaluate = NULL; |
| 9547 | |
| 9548 | /* Set the callback hooks for the filtering policy. */ |
| 9549 | int |
| 9550 | mac_task_register_filter_callbacks( |
| 9551 | const mac_task_mach_filter_cbfunc_t mach_cbfunc, |
| 9552 | const mac_task_kobj_filter_cbfunc_t kobj_cbfunc) |
| 9553 | { |
| 9554 | if (mach_cbfunc != NULL) { |
| 9555 | if (mac_task_mach_trap_evaluate != NULL) { |
| 9556 | return KERN_FAILURE; |
| 9557 | } |
| 9558 | mac_task_mach_trap_evaluate = mach_cbfunc; |
| 9559 | } |
| 9560 | if (kobj_cbfunc != NULL) { |
| 9561 | if (mac_task_kobj_msg_evaluate != NULL) { |
| 9562 | return KERN_FAILURE; |
| 9563 | } |
| 9564 | mac_task_kobj_msg_evaluate = kobj_cbfunc; |
| 9565 | } |
| 9566 | |
| 9567 | return KERN_SUCCESS; |
| 9568 | } |
| 9569 | #endif /* CONFIG_MACF */ |
| 9570 | |
| 9571 | #if CONFIG_ROSETTA |
| 9572 | bool |
| 9573 | task_is_translated(task_t task) |
| 9574 | { |
| 9575 | extern boolean_t proc_is_translated(struct proc* p); |
| 9576 | return task && proc_is_translated(get_bsdtask_info(task)); |
| 9577 | } |
| 9578 | #endif |
| 9579 | |
| 9580 | |
| 9581 | |
| 9582 | #if __has_feature(ptrauth_calls) |
| 9583 | /* On FPAC, we want to deliver all PAC violations as fatal exceptions, regardless |
| 9584 | * of the enable_pac_exception boot-arg value or any other entitlements. |
| 9585 | * The only case where we allow non-fatal PAC exceptions on FPAC is for debugging, |
| 9586 | * which requires Developer Mode enabled. |
| 9587 | * |
| 9588 | * On non-FPAC hardware, we gate the decision behind entitlements and the |
| 9589 | * enable_pac_exception boot-arg. |
| 9590 | */ |
| 9591 | extern int gARM_FEAT_FPAC; |
| 9592 | /* |
| 9593 | * Having the PAC_EXCEPTION_ENTITLEMENT entitlement means we always enforce all |
| 9594 | * of the PAC exception hardening: fatal exceptions and signed user state. |
| 9595 | */ |
| 9596 | #define PAC_EXCEPTION_ENTITLEMENT "com.apple.private.pac.exception" |
| 9597 | /* |
| 9598 | * On non-FPAC hardware, when enable_pac_exception boot-arg is set to true, |
| 9599 | * processes can choose to get non-fatal PAC exception delivery by setting |
| 9600 | * the SKIP_PAC_EXCEPTION_ENTITLEMENT entitlement. |
| 9601 | */ |
| 9602 | #define SKIP_PAC_EXCEPTION_ENTITLEMENT "com.apple.private.skip.pac.exception" |
| 9603 | |
| 9604 | void |
| 9605 | task_set_pac_exception_fatal_flag( |
| 9606 | task_t task) |
| 9607 | { |
| 9608 | assert(task != TASK_NULL); |
| 9609 | bool pac_hardened_task = false; |
| 9610 | uint32_t set_flags = 0; |
| 9611 | |
| 9612 | /* |
| 9613 | * We must not apply this security policy on tasks which have opted out of mach hardening to |
| 9614 | * avoid regressions in third party plugins and third party apps when using AMFI boot-args |
| 9615 | */ |
| 9616 | bool platform_binary = task_get_platform_binary(task); |
| 9617 | #if XNU_TARGET_OS_OSX |
| 9618 | platform_binary &= !task_opted_out_mach_hardening(task); |
| 9619 | #endif /* XNU_TARGET_OS_OSX */ |
| 9620 | |
| 9621 | /* |
| 9622 | * On non-FPAC hardware, we allow gating PAC exceptions behind |
| 9623 | * SKIP_PAC_EXCEPTION_ENTITLEMENT and the boot-arg. |
| 9624 | */ |
| 9625 | if (!gARM_FEAT_FPAC && enable_pac_exception && |
| 9626 | IOTaskHasEntitlement(task, SKIP_PAC_EXCEPTION_ENTITLEMENT)) { |
| 9627 | return; |
| 9628 | } |
| 9629 | |
| 9630 | if (IOTaskHasEntitlement(task, PAC_EXCEPTION_ENTITLEMENT) || task_get_hardened_runtime(task)) { |
| 9631 | pac_hardened_task = true; |
| 9632 | set_flags |= TFRO_PAC_ENFORCE_USER_STATE; |
| 9633 | } |
| 9634 | |
| 9635 | /* On non-FPAC hardware, gate the fatal property behind entitlements and boot-arg. */ |
| 9636 | if (pac_hardened_task || |
| 9637 | ((enable_pac_exception || gARM_FEAT_FPAC) && platform_binary)) { |
| 9638 | /* If debugging is configured, do not make PAC exception fatal. */ |
| 9639 | if (address_space_debugged(task_get_proc_raw(task)) != KERN_SUCCESS) { |
| 9640 | set_flags |= TFRO_PAC_EXC_FATAL; |
| 9641 | } |
| 9642 | } |
| 9643 | |
| 9644 | if (set_flags != 0) { |
| 9645 | task_ro_flags_set(task, set_flags); |
| 9646 | } |
| 9647 | } |
| 9648 | |
| 9649 | bool |
| 9650 | task_is_pac_exception_fatal( |
| 9651 | task_t task) |
| 9652 | { |
| 9653 | assert(task != TASK_NULL); |
| 9654 | return !!(task_ro_flags_get(task) & TFRO_PAC_EXC_FATAL); |
| 9655 | } |
| 9656 | #endif /* __has_feature(ptrauth_calls) */ |
| 9657 | |
| 9658 | /* |
| 9659 | * FATAL_EXCEPTION_ENTITLEMENT, if present, will contain a list of |
| 9660 | * conditions for which access violations should deliver SIGKILL rather than |
| 9661 | * SIGSEGV. This is a hardening measure intended for use by applications |
| 9662 | * that are able to handle the stricter error handling behavior. Currently |
| 9663 | * this supports FATAL_EXCEPTION_ENTITLEMENT_JIT, which is documented in |
| 9664 | * user_fault_in_self_restrict_mode(). |
| 9665 | */ |
| 9666 | #define FATAL_EXCEPTION_ENTITLEMENT "com.apple.security.fatal-exceptions" |
| 9667 | #define FATAL_EXCEPTION_ENTITLEMENT_JIT "jit" |
| 9668 | |
| 9669 | void |
| 9670 | task_set_jit_exception_fatal_flag( |
| 9671 | task_t task) |
| 9672 | { |
| 9673 | assert(task != TASK_NULL); |
| 9674 | if (IOTaskHasStringEntitlement(task, FATAL_EXCEPTION_ENTITLEMENT, FATAL_EXCEPTION_ENTITLEMENT_JIT) && |
| 9675 | address_space_debugged(process: task_get_proc_raw(task)) != KERN_SUCCESS) { |
| 9676 | task_ro_flags_set(task, TFRO_JIT_EXC_FATAL); |
| 9677 | } |
| 9678 | } |
| 9679 | |
| 9680 | bool |
| 9681 | task_is_jit_exception_fatal( |
| 9682 | __unused task_t task) |
| 9683 | { |
| 9684 | #if !defined(XNU_PLATFORM_MacOSX) |
| 9685 | return true; |
| 9686 | #else |
| 9687 | assert(task != TASK_NULL); |
| 9688 | return !!(task_ro_flags_get(task) & TFRO_JIT_EXC_FATAL); |
| 9689 | #endif |
| 9690 | } |
| 9691 | |
| 9692 | bool |
| 9693 | task_needs_user_signed_thread_state( |
| 9694 | task_t task) |
| 9695 | { |
| 9696 | assert(task != TASK_NULL); |
| 9697 | return !!(task_ro_flags_get(task) & TFRO_PAC_ENFORCE_USER_STATE); |
| 9698 | } |
| 9699 | |
| 9700 | void |
| 9701 | task_set_tecs(task_t task) |
| 9702 | { |
| 9703 | if (task == TASK_NULL) { |
| 9704 | task = current_task(); |
| 9705 | } |
| 9706 | |
| 9707 | if (!machine_csv(cve: CPUVN_CI)) { |
| 9708 | return; |
| 9709 | } |
| 9710 | |
| 9711 | LCK_MTX_ASSERT(&task->lock, LCK_MTX_ASSERT_NOTOWNED); |
| 9712 | |
| 9713 | task_lock(task); |
| 9714 | |
| 9715 | task->t_flags |= TF_TECS; |
| 9716 | |
| 9717 | thread_t thread; |
| 9718 | queue_iterate(&task->threads, thread, thread_t, task_threads) { |
| 9719 | machine_tecs(thr: thread); |
| 9720 | } |
| 9721 | task_unlock(task); |
| 9722 | } |
| 9723 | |
| 9724 | kern_return_t |
| 9725 | task_test_sync_upcall( |
| 9726 | task_t task, |
| 9727 | ipc_port_t send_port) |
| 9728 | { |
| 9729 | #if DEVELOPMENT || DEBUG |
| 9730 | if (task != current_task() || !IPC_PORT_VALID(send_port)) { |
| 9731 | return KERN_INVALID_ARGUMENT; |
| 9732 | } |
| 9733 | |
| 9734 | /* Block on sync kernel upcall on the given send port */ |
| 9735 | mach_test_sync_upcall(send_port); |
| 9736 | |
| 9737 | ipc_port_release_send(send_port); |
| 9738 | return KERN_SUCCESS; |
| 9739 | #else |
| 9740 | (void)task; |
| 9741 | (void)send_port; |
| 9742 | return KERN_NOT_SUPPORTED; |
| 9743 | #endif |
| 9744 | } |
| 9745 | |
| 9746 | kern_return_t |
| 9747 | task_test_async_upcall_propagation( |
| 9748 | task_t task, |
| 9749 | ipc_port_t send_port, |
| 9750 | int qos, |
| 9751 | int iotier) |
| 9752 | { |
| 9753 | #if DEVELOPMENT || DEBUG |
| 9754 | kern_return_t kr; |
| 9755 | |
| 9756 | if (task != current_task() || !IPC_PORT_VALID(send_port)) { |
| 9757 | return KERN_INVALID_ARGUMENT; |
| 9758 | } |
| 9759 | |
| 9760 | if (qos < THREAD_QOS_DEFAULT || qos > THREAD_QOS_USER_INTERACTIVE || |
| 9761 | iotier < THROTTLE_LEVEL_START || iotier > THROTTLE_LEVEL_END) { |
| 9762 | return KERN_INVALID_ARGUMENT; |
| 9763 | } |
| 9764 | |
| 9765 | struct thread_attr_for_ipc_propagation attr = { |
| 9766 | .tafip_iotier = iotier, |
| 9767 | .tafip_qos = qos |
| 9768 | }; |
| 9769 | |
| 9770 | /* Apply propagate attr to port */ |
| 9771 | kr = ipc_port_propagate_thread_attr(send_port, attr); |
| 9772 | if (kr != KERN_SUCCESS) { |
| 9773 | return kr; |
| 9774 | } |
| 9775 | |
| 9776 | thread_enable_send_importance(current_thread(), TRUE); |
| 9777 | |
| 9778 | /* Perform an async kernel upcall on the given send port */ |
| 9779 | mach_test_async_upcall(send_port); |
| 9780 | thread_enable_send_importance(current_thread(), FALSE); |
| 9781 | |
| 9782 | ipc_port_release_send(send_port); |
| 9783 | return KERN_SUCCESS; |
| 9784 | #else |
| 9785 | (void)task; |
| 9786 | (void)send_port; |
| 9787 | (void)qos; |
| 9788 | (void)iotier; |
| 9789 | return KERN_NOT_SUPPORTED; |
| 9790 | #endif |
| 9791 | } |
| 9792 | |
| 9793 | #if CONFIG_PROC_RESOURCE_LIMITS |
| 9794 | mach_port_name_t |
| 9795 | current_task_get_fatal_port_name(void) |
| 9796 | { |
| 9797 | mach_port_t task_fatal_port = MACH_PORT_NULL; |
| 9798 | mach_port_name_t port_name = 0; |
| 9799 | |
| 9800 | task_fatal_port = task_allocate_fatal_port(); |
| 9801 | |
| 9802 | if (task_fatal_port) { |
| 9803 | ipc_object_copyout(current_space(), ip_to_object(task_fatal_port), MACH_MSG_TYPE_PORT_SEND, |
| 9804 | IPC_OBJECT_COPYOUT_FLAGS_NONE, NULL, NULL, &port_name); |
| 9805 | } |
| 9806 | |
| 9807 | return port_name; |
| 9808 | } |
| 9809 | #endif /* CONFIG_PROC_RESOURCE_LIMITS */ |
| 9810 | |
| 9811 | #if defined(__x86_64__) |
| 9812 | bool |
| 9813 | curtask_get_insn_copy_optout(void) |
| 9814 | { |
| 9815 | bool optout; |
| 9816 | task_t cur_task = current_task(); |
| 9817 | |
| 9818 | task_lock(cur_task); |
| 9819 | optout = (cur_task->t_flags & TF_INSN_COPY_OPTOUT) ? true : false; |
| 9820 | task_unlock(cur_task); |
| 9821 | |
| 9822 | return optout; |
| 9823 | } |
| 9824 | |
| 9825 | void |
| 9826 | curtask_set_insn_copy_optout(void) |
| 9827 | { |
| 9828 | task_t cur_task = current_task(); |
| 9829 | |
| 9830 | task_lock(cur_task); |
| 9831 | |
| 9832 | cur_task->t_flags |= TF_INSN_COPY_OPTOUT; |
| 9833 | |
| 9834 | thread_t thread; |
| 9835 | queue_iterate(&cur_task->threads, thread, thread_t, task_threads) { |
| 9836 | machine_thread_set_insn_copy_optout(thread); |
| 9837 | } |
| 9838 | task_unlock(cur_task); |
| 9839 | } |
| 9840 | #endif /* defined(__x86_64__) */ |
| 9841 | |
| 9842 | void |
| 9843 | task_get_corpse_vmobject_list(task_t task, vmobject_list_output_t* list, size_t* list_size) |
| 9844 | { |
| 9845 | assert(task); |
| 9846 | assert(list_size); |
| 9847 | |
| 9848 | *list = task->corpse_vmobject_list; |
| 9849 | *list_size = (size_t)task->corpse_vmobject_list_size; |
| 9850 | } |
| 9851 | |
| 9852 | __abortlike |
| 9853 | static void |
| 9854 | panic_proc_ro_task_backref_mismatch(task_t t, proc_ro_t ro) |
| 9855 | { |
| 9856 | panic("proc_ro->task backref mismatch: t=%p, ro=%p, " |
| 9857 | "proc_ro_task(ro)=%p" , t, ro, proc_ro_task(ro)); |
| 9858 | } |
| 9859 | |
| 9860 | proc_ro_t |
| 9861 | task_get_ro(task_t t) |
| 9862 | { |
| 9863 | proc_ro_t ro = (proc_ro_t)t->bsd_info_ro; |
| 9864 | |
| 9865 | zone_require_ro(zone_id: ZONE_ID_PROC_RO, elem_size: sizeof(struct proc_ro), addr: ro); |
| 9866 | if (__improbable(proc_ro_task(ro) != t)) { |
| 9867 | panic_proc_ro_task_backref_mismatch(t, ro); |
| 9868 | } |
| 9869 | |
| 9870 | return ro; |
| 9871 | } |
| 9872 | |
| 9873 | uint32_t |
| 9874 | task_ro_flags_get(task_t task) |
| 9875 | { |
| 9876 | return task_get_ro(t: task)->t_flags_ro; |
| 9877 | } |
| 9878 | |
| 9879 | void |
| 9880 | task_ro_flags_set(task_t task, uint32_t flags) |
| 9881 | { |
| 9882 | zalloc_ro_update_field_atomic(ZONE_ID_PROC_RO, task_get_ro(task), |
| 9883 | t_flags_ro, ZRO_ATOMIC_OR_32, flags); |
| 9884 | } |
| 9885 | |
| 9886 | void |
| 9887 | task_ro_flags_clear(task_t task, uint32_t flags) |
| 9888 | { |
| 9889 | zalloc_ro_update_field_atomic(ZONE_ID_PROC_RO, task_get_ro(task), |
| 9890 | t_flags_ro, ZRO_ATOMIC_AND_32, ~flags); |
| 9891 | } |
| 9892 | |
| 9893 | task_control_port_options_t |
| 9894 | task_get_control_port_options(task_t task) |
| 9895 | { |
| 9896 | return task_get_ro(t: task)->task_control_port_options; |
| 9897 | } |
| 9898 | |
| 9899 | void |
| 9900 | task_set_control_port_options(task_t task, task_control_port_options_t opts) |
| 9901 | { |
| 9902 | zalloc_ro_update_field(ZONE_ID_PROC_RO, task_get_ro(task), |
| 9903 | task_control_port_options, &opts); |
| 9904 | } |
| 9905 | |
| 9906 | /*! |
| 9907 | * @function kdp_task_is_locked |
| 9908 | * |
| 9909 | * @abstract |
| 9910 | * Checks if task is locked. |
| 9911 | * |
| 9912 | * @discussion |
| 9913 | * NOT SAFE: To be used only by kernel debugger. |
| 9914 | * |
| 9915 | * @param task task to check |
| 9916 | * |
| 9917 | * @returns TRUE if the task is locked. |
| 9918 | */ |
| 9919 | boolean_t |
| 9920 | kdp_task_is_locked(task_t task) |
| 9921 | { |
| 9922 | return kdp_lck_mtx_lock_spin_is_acquired(lck: &task->lock); |
| 9923 | } |
| 9924 | |
| 9925 | #if DEBUG || DEVELOPMENT |
| 9926 | /** |
| 9927 | * |
| 9928 | * Check if a threshold limit is valid based on the actual phys memory |
| 9929 | * limit. If they are same, race conditions may arise, so we have to prevent |
| 9930 | * it to happen. |
| 9931 | */ |
| 9932 | static diagthreshold_check_return |
| 9933 | task_check_memorythreshold_is_valid(task_t task, uint64_t new_limit, bool is_diagnostics_value) |
| 9934 | { |
| 9935 | int phys_limit_mb; |
| 9936 | kern_return_t ret_value; |
| 9937 | bool threshold_enabled; |
| 9938 | bool dummy; |
| 9939 | ret_value = ledger_is_diag_threshold_enabled(task->ledger, task_ledgers.phys_footprint, &threshold_enabled); |
| 9940 | if (ret_value != KERN_SUCCESS) { |
| 9941 | return ret_value; |
| 9942 | } |
| 9943 | if (is_diagnostics_value == true) { |
| 9944 | ret_value = task_get_phys_footprint_limit(task, &phys_limit_mb); |
| 9945 | } else { |
| 9946 | uint64_t diag_limit; |
| 9947 | ret_value = task_get_diag_footprint_limit_internal(task, &diag_limit, &dummy); |
| 9948 | phys_limit_mb = (int)(diag_limit >> 20); |
| 9949 | } |
| 9950 | if (ret_value != KERN_SUCCESS) { |
| 9951 | return ret_value; |
| 9952 | } |
| 9953 | if (phys_limit_mb == (int) new_limit) { |
| 9954 | if (threshold_enabled == false) { |
| 9955 | return THRESHOLD_IS_SAME_AS_LIMIT_FLAG_DISABLED; |
| 9956 | } else { |
| 9957 | return THRESHOLD_IS_SAME_AS_LIMIT_FLAG_ENABLED; |
| 9958 | } |
| 9959 | } |
| 9960 | if (threshold_enabled == false) { |
| 9961 | return THRESHOLD_IS_NOT_SAME_AS_LIMIT_FLAG_DISABLED; |
| 9962 | } else { |
| 9963 | return THRESHOLD_IS_NOT_SAME_AS_LIMIT_FLAG_ENABLED; |
| 9964 | } |
| 9965 | } |
| 9966 | #endif |
| 9967 | |
| 9968 | #if CONFIG_EXCLAVES |
| 9969 | kern_return_t |
| 9970 | task_add_conclave(task_t task, void *vnode, int64_t off, const char *task_conclave_id) |
| 9971 | { |
| 9972 | /* |
| 9973 | * Only launchd or properly entitled tasks can attach tasks to |
| 9974 | * conclaves. |
| 9975 | */ |
| 9976 | if (!exclaves_has_priv(current_task(), EXCLAVES_PRIV_CONCLAVE_SPAWN)) { |
| 9977 | return KERN_DENIED; |
| 9978 | } |
| 9979 | |
| 9980 | /* |
| 9981 | * Only entitled tasks can have conclaves attached. |
| 9982 | * Allow tasks which have the SPAWN privilege to also host conclaves. |
| 9983 | * This allows xpc proxy to add a conclave before execing a daemon. |
| 9984 | */ |
| 9985 | if (!exclaves_has_priv_vnode(vnode, off, EXCLAVES_PRIV_CONCLAVE_HOST) && |
| 9986 | !exclaves_has_priv_vnode(vnode, off, EXCLAVES_PRIV_CONCLAVE_SPAWN)) { |
| 9987 | return KERN_DENIED; |
| 9988 | } |
| 9989 | |
| 9990 | /* |
| 9991 | * Make this EXCLAVES_BOOT_STAGE_2 until userspace is actually |
| 9992 | * triggering the EXCLAVESKIT boot stage. |
| 9993 | */ |
| 9994 | kern_return_t kr = exclaves_boot_wait(EXCLAVES_BOOT_STAGE_2); |
| 9995 | if (kr != KERN_SUCCESS) { |
| 9996 | return kr; |
| 9997 | } |
| 9998 | |
| 9999 | return exclaves_conclave_attach(EXCLAVES_DOMAIN_KERNEL, task_conclave_id, task); |
| 10000 | } |
| 10001 | |
| 10002 | kern_return_t |
| 10003 | task_launch_conclave(mach_port_name_t port __unused) |
| 10004 | { |
| 10005 | kern_return_t kr = KERN_FAILURE; |
| 10006 | assert3u(port, ==, MACH_PORT_NULL); |
| 10007 | exclaves_resource_t *conclave = task_get_conclave(current_task()); |
| 10008 | if (conclave == NULL) { |
| 10009 | return kr; |
| 10010 | } |
| 10011 | |
| 10012 | kr = exclaves_conclave_launch(conclave); |
| 10013 | if (kr != KERN_SUCCESS) { |
| 10014 | return kr; |
| 10015 | } |
| 10016 | task_set_conclave_taint(current_task()); |
| 10017 | |
| 10018 | return KERN_SUCCESS; |
| 10019 | } |
| 10020 | |
| 10021 | kern_return_t |
| 10022 | task_inherit_conclave(task_t old_task, task_t new_task, void *vnode, int64_t off) |
| 10023 | { |
| 10024 | if (old_task->conclave == NULL || |
| 10025 | !exclaves_conclave_is_attached(old_task->conclave)) { |
| 10026 | return KERN_SUCCESS; |
| 10027 | } |
| 10028 | |
| 10029 | /* |
| 10030 | * Only launchd or properly entitled tasks can attach tasks to |
| 10031 | * conclaves. |
| 10032 | */ |
| 10033 | if (!exclaves_has_priv(current_task(), EXCLAVES_PRIV_CONCLAVE_SPAWN)) { |
| 10034 | return KERN_DENIED; |
| 10035 | } |
| 10036 | |
| 10037 | /* |
| 10038 | * Only entitled tasks can have conclaves attached. |
| 10039 | */ |
| 10040 | if (!exclaves_has_priv_vnode(vnode, off, EXCLAVES_PRIV_CONCLAVE_HOST)) { |
| 10041 | return KERN_DENIED; |
| 10042 | } |
| 10043 | |
| 10044 | return exclaves_conclave_inherit(old_task->conclave, old_task, new_task); |
| 10045 | } |
| 10046 | |
| 10047 | void |
| 10048 | task_clear_conclave(task_t task) |
| 10049 | { |
| 10050 | if (task->exclave_crash_info) { |
| 10051 | kfree_data(task->exclave_crash_info, CONCLAVE_CRASH_BUFFER_PAGECOUNT * PAGE_SIZE); |
| 10052 | task->exclave_crash_info = NULL; |
| 10053 | } |
| 10054 | |
| 10055 | if (task->conclave == NULL) { |
| 10056 | return; |
| 10057 | } |
| 10058 | |
| 10059 | /* |
| 10060 | * XXX |
| 10061 | * This should only fail if either the conclave is in an unexpected |
| 10062 | * state (i.e. not ATTACHED) or if the wrong port is supplied. |
| 10063 | * We should re-visit this and make sure we guarantee the above |
| 10064 | * constraints. |
| 10065 | */ |
| 10066 | __assert_only kern_return_t ret = |
| 10067 | exclaves_conclave_detach(task->conclave, task); |
| 10068 | assert3u(ret, ==, KERN_SUCCESS); |
| 10069 | } |
| 10070 | |
| 10071 | void |
| 10072 | task_stop_conclave(task_t task, bool gather_crash_bt) |
| 10073 | { |
| 10074 | thread_t thread = current_thread(); |
| 10075 | |
| 10076 | if (task->conclave == NULL) { |
| 10077 | return; |
| 10078 | } |
| 10079 | |
| 10080 | if (task_should_panic_on_exit_due_to_conclave_taint(task)) { |
| 10081 | panic("Conclave tainted task %p terminated\n" , task); |
| 10082 | } |
| 10083 | |
| 10084 | /* Stash the task on current thread for conclave teardown */ |
| 10085 | thread->conclave_stop_task = task; |
| 10086 | |
| 10087 | __assert_only kern_return_t ret = |
| 10088 | exclaves_conclave_stop(task->conclave, gather_crash_bt); |
| 10089 | |
| 10090 | thread->conclave_stop_task = TASK_NULL; |
| 10091 | |
| 10092 | assert3u(ret, ==, KERN_SUCCESS); |
| 10093 | } |
| 10094 | |
| 10095 | kern_return_t |
| 10096 | task_stop_conclave_upcall(void) |
| 10097 | { |
| 10098 | task_t task = current_task(); |
| 10099 | if (task->conclave == NULL) { |
| 10100 | return KERN_INVALID_TASK; |
| 10101 | } |
| 10102 | |
| 10103 | return exclaves_conclave_stop_upcall(task->conclave); |
| 10104 | } |
| 10105 | |
| 10106 | kern_return_t |
| 10107 | task_stop_conclave_upcall_complete(void) |
| 10108 | { |
| 10109 | task_t task = current_task(); |
| 10110 | thread_t thread = current_thread(); |
| 10111 | |
| 10112 | if (!(thread->th_exclaves_state & TH_EXCLAVES_STOP_UPCALL_PENDING)) { |
| 10113 | return KERN_SUCCESS; |
| 10114 | } |
| 10115 | |
| 10116 | assert3p(task->conclave, !=, NULL); |
| 10117 | |
| 10118 | return exclaves_conclave_stop_upcall_complete(task->conclave, task); |
| 10119 | } |
| 10120 | |
| 10121 | kern_return_t |
| 10122 | task_suspend_conclave_upcall(uint64_t *scid_list, size_t scid_list_count) |
| 10123 | { |
| 10124 | task_t task = current_task(); |
| 10125 | thread_t thread; |
| 10126 | int scid_count = 0; |
| 10127 | kern_return_t kr; |
| 10128 | if (task->conclave == NULL) { |
| 10129 | return KERN_INVALID_TASK; |
| 10130 | } |
| 10131 | |
| 10132 | kr = task_hold_and_wait(task); |
| 10133 | |
| 10134 | task_lock(task); |
| 10135 | queue_iterate(&task->threads, thread, thread_t, task_threads) |
| 10136 | { |
| 10137 | if (thread->th_exclaves_state & TH_EXCLAVES_RPC) { |
| 10138 | scid_list[scid_count++] = thread->th_exclaves_scheduling_context_id; |
| 10139 | if (scid_count >= scid_list_count) { |
| 10140 | break; |
| 10141 | } |
| 10142 | } |
| 10143 | } |
| 10144 | |
| 10145 | task_unlock(task); |
| 10146 | return kr; |
| 10147 | } |
| 10148 | |
| 10149 | kern_return_t |
| 10150 | task_crash_info_conclave_upcall(task_t task, const xnuupcalls_conclavesharedbuffer_s *shared_buf, |
| 10151 | uint32_t length) |
| 10152 | { |
| 10153 | if (task->conclave == NULL) { |
| 10154 | return KERN_INVALID_TASK; |
| 10155 | } |
| 10156 | |
| 10157 | /* Allocate the buffer and memcpy it */ |
| 10158 | int task_crash_info_buffer_size = 0; |
| 10159 | uint8_t * task_crash_info_buffer; |
| 10160 | |
| 10161 | if (!length) { |
| 10162 | printf("Conclave upcall: task_crash_info_conclave_upcall did not return any page addresses\n" ); |
| 10163 | return KERN_INVALID_ARGUMENT; |
| 10164 | } |
| 10165 | |
| 10166 | task_crash_info_buffer_size = CONCLAVE_CRASH_BUFFER_PAGECOUNT * PAGE_SIZE; |
| 10167 | assert3u(task_crash_info_buffer_size, >=, length); |
| 10168 | |
| 10169 | task_crash_info_buffer = kalloc_data(task_crash_info_buffer_size, Z_WAITOK); |
| 10170 | if (!task_crash_info_buffer) { |
| 10171 | panic("task_crash_info_conclave_upcall: cannot allocate buffer for task_info shared memory" ); |
| 10172 | return KERN_INVALID_ARGUMENT; |
| 10173 | } |
| 10174 | |
| 10175 | uint8_t * dst = task_crash_info_buffer; |
| 10176 | uint32_t remaining = length; |
| 10177 | for (size_t i = 0; i < CONCLAVE_CRASH_BUFFER_PAGECOUNT; i++) { |
| 10178 | if (remaining) { |
| 10179 | memcpy(dst, (uint8_t*)phystokv((pmap_paddr_t)shared_buf->physaddr[i]), PAGE_SIZE); |
| 10180 | remaining = (remaining >= PAGE_SIZE) ? remaining - PAGE_SIZE : 0; |
| 10181 | dst += PAGE_SIZE; |
| 10182 | } |
| 10183 | } |
| 10184 | |
| 10185 | task_lock(task); |
| 10186 | if (task->exclave_crash_info == NULL && task->active) { |
| 10187 | task->exclave_crash_info = task_crash_info_buffer; |
| 10188 | task->exclave_crash_info_length = length; |
| 10189 | task_crash_info_buffer = NULL; |
| 10190 | } |
| 10191 | task_unlock(task); |
| 10192 | |
| 10193 | if (task_crash_info_buffer) { |
| 10194 | kfree_data(task_crash_info_buffer, task_crash_info_buffer_size); |
| 10195 | } |
| 10196 | |
| 10197 | return KERN_SUCCESS; |
| 10198 | } |
| 10199 | |
| 10200 | exclaves_resource_t * |
| 10201 | task_get_conclave(task_t task) |
| 10202 | { |
| 10203 | return task->conclave; |
| 10204 | } |
| 10205 | |
| 10206 | extern boolean_t IOPMRootDomainGetWillShutdown(void); |
| 10207 | |
| 10208 | TUNABLE(bool, disable_conclave_taint, "disable_conclave_taint" , true); /* Do not taint processes when they talk to conclave, so system does not panic when exit. */ |
| 10209 | |
| 10210 | static bool |
| 10211 | task_should_panic_on_exit_due_to_conclave_taint(task_t task) |
| 10212 | { |
| 10213 | /* Check if boot-arg to disable conclave taint is set */ |
| 10214 | if (disable_conclave_taint) { |
| 10215 | return false; |
| 10216 | } |
| 10217 | |
| 10218 | /* Check if the system is shutting down */ |
| 10219 | if (IOPMRootDomainGetWillShutdown()) { |
| 10220 | return false; |
| 10221 | } |
| 10222 | |
| 10223 | return task_is_conclave_tainted(task); |
| 10224 | } |
| 10225 | |
| 10226 | static bool |
| 10227 | task_is_conclave_tainted(task_t task) |
| 10228 | { |
| 10229 | return (task->t_exclave_state & TES_CONCLAVE_TAINTED) != 0 && |
| 10230 | !(task->t_exclave_state & TES_CONCLAVE_UNTAINTABLE); |
| 10231 | } |
| 10232 | |
| 10233 | static void |
| 10234 | task_set_conclave_taint(task_t task) |
| 10235 | { |
| 10236 | os_atomic_or(&task->t_exclave_state, TES_CONCLAVE_TAINTED, relaxed); |
| 10237 | } |
| 10238 | |
| 10239 | void |
| 10240 | task_set_conclave_untaintable(task_t task) |
| 10241 | { |
| 10242 | os_atomic_or(&task->t_exclave_state, TES_CONCLAVE_UNTAINTABLE, relaxed); |
| 10243 | } |
| 10244 | |
| 10245 | void |
| 10246 | task_add_conclave_crash_info(task_t task, void *crash_info_ptr) |
| 10247 | { |
| 10248 | __block kern_return_t error = KERN_SUCCESS; |
| 10249 | tb_error_t tberr = TB_ERROR_SUCCESS; |
| 10250 | void *crash_info; |
| 10251 | uint32_t crash_info_length = 0; |
| 10252 | |
| 10253 | if (task->conclave == NULL) { |
| 10254 | return; |
| 10255 | } |
| 10256 | |
| 10257 | if (task->exclave_crash_info_length == 0) { |
| 10258 | return; |
| 10259 | } |
| 10260 | |
| 10261 | error = kcdata_add_container_marker(crash_info_ptr, KCDATA_TYPE_CONTAINER_BEGIN, |
| 10262 | STACKSHOT_KCCONTAINER_EXCLAVES, 0); |
| 10263 | if (error != KERN_SUCCESS) { |
| 10264 | return; |
| 10265 | } |
| 10266 | |
| 10267 | crash_info = task->exclave_crash_info; |
| 10268 | crash_info_length = task->exclave_crash_info_length; |
| 10269 | |
| 10270 | tberr = stackshot_stackshotresult__unmarshal(crash_info, |
| 10271 | (uint64_t)crash_info_length, ^(stackshot_stackshotresult_s result){ |
| 10272 | error = stackshot_exclaves_process_stackshot(&result, crash_info_ptr); |
| 10273 | if (error != KERN_SUCCESS) { |
| 10274 | printf("stackshot_exclaves_process_result: error processing stackshot result %d\n" , error); |
| 10275 | } |
| 10276 | }); |
| 10277 | if (tberr != TB_ERROR_SUCCESS) { |
| 10278 | printf("task_conclave_crash: task_add_conclave_crash_info could not unmarshal stackshot data 0x%x\n" , tberr); |
| 10279 | error = KERN_FAILURE; |
| 10280 | goto error_exit; |
| 10281 | } |
| 10282 | |
| 10283 | error_exit: |
| 10284 | kcdata_add_container_marker(crash_info_ptr, KCDATA_TYPE_CONTAINER_END, |
| 10285 | STACKSHOT_KCCONTAINER_EXCLAVES, 0); |
| 10286 | |
| 10287 | return; |
| 10288 | } |
| 10289 | |
| 10290 | #endif /* CONFIG_EXCLAVES */ |
| 10291 | |
| 10292 | #pragma mark task utils |
| 10293 | |
| 10294 | /* defined in bsd/kern/kern_proc.c */ |
| 10295 | extern void proc_name(int pid, char *buf, int size); |
| 10296 | extern char *proc_best_name(struct proc *p); |
| 10297 | |
| 10298 | void |
| 10299 | task_procname(task_t task, char *buf, int size) |
| 10300 | { |
| 10301 | proc_name(pid: task_pid(task), buf, size); |
| 10302 | } |
| 10303 | |
| 10304 | void |
| 10305 | task_best_name(task_t task, char *buf, size_t size) |
| 10306 | { |
| 10307 | char *name = proc_best_name(p: task_get_proc_raw(task)); |
| 10308 | strlcpy(dst: buf, src: name, n: size); |
| 10309 | } |
| 10310 | |