1 | /* |
2 | * Copyright (c) 2000-2020 Apple Inc. All rights reserved. |
3 | * |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
5 | * |
6 | * This file contains Original Code and/or Modifications of Original Code |
7 | * as defined in and that are subject to the Apple Public Source License |
8 | * Version 2.0 (the 'License'). You may not use this file except in |
9 | * compliance with the License. The rights granted to you under the License |
10 | * may not be used to create, or enable the creation or redistribution of, |
11 | * unlawful or unlicensed copies of an Apple operating system, or to |
12 | * circumvent, violate, or enable the circumvention or violation of, any |
13 | * terms of an Apple operating system software license agreement. |
14 | * |
15 | * Please obtain a copy of the License at |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
17 | * |
18 | * The Original Code and all software distributed under the License are |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
23 | * Please see the License for the specific language governing rights and |
24 | * limitations under the License. |
25 | * |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
27 | */ |
28 | /* |
29 | * @OSF_FREE_COPYRIGHT@ |
30 | */ |
31 | /* |
32 | * Mach Operating System |
33 | * Copyright (c) 1991,1990,1989,1988 Carnegie Mellon University |
34 | * All Rights Reserved. |
35 | * |
36 | * Permission to use, copy, modify and distribute this software and its |
37 | * documentation is hereby granted, provided that both the copyright |
38 | * notice and this permission notice appear in all copies of the |
39 | * software, derivative works or modified versions, and any portions |
40 | * thereof, and that both notices appear in supporting documentation. |
41 | * |
42 | * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" |
43 | * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR |
44 | * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. |
45 | * |
46 | * Carnegie Mellon requests users of this software to return to |
47 | * |
48 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU |
49 | * School of Computer Science |
50 | * Carnegie Mellon University |
51 | * Pittsburgh PA 15213-3890 |
52 | * |
53 | * any improvements or extensions that they make and grant Carnegie Mellon |
54 | * the rights to redistribute these changes. |
55 | */ |
56 | /* |
57 | * File: kern/task.c |
58 | * Author: Avadis Tevanian, Jr., Michael Wayne Young, David Golub, |
59 | * David Black |
60 | * |
61 | * Task management primitives implementation. |
62 | */ |
63 | /* |
64 | * Copyright (c) 1993 The University of Utah and |
65 | * the Computer Systems Laboratory (CSL). All rights reserved. |
66 | * |
67 | * Permission to use, copy, modify and distribute this software and its |
68 | * documentation is hereby granted, provided that both the copyright |
69 | * notice and this permission notice appear in all copies of the |
70 | * software, derivative works or modified versions, and any portions |
71 | * thereof, and that both notices appear in supporting documentation. |
72 | * |
73 | * THE UNIVERSITY OF UTAH AND CSL ALLOW FREE USE OF THIS SOFTWARE IN ITS "AS |
74 | * IS" CONDITION. THE UNIVERSITY OF UTAH AND CSL DISCLAIM ANY LIABILITY OF |
75 | * ANY KIND FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. |
76 | * |
77 | * CSL requests users of this software to return to csl-dist@cs.utah.edu any |
78 | * improvements that they make and grant CSL redistribution rights. |
79 | * |
80 | */ |
81 | /* |
82 | * NOTICE: This file was modified by McAfee Research in 2004 to introduce |
83 | * support for mandatory and extensible security protections. This notice |
84 | * is included in support of clause 2.2 (b) of the Apple Public License, |
85 | * Version 2.0. |
86 | * Copyright (c) 2005 SPARTA, Inc. |
87 | */ |
88 | |
89 | #include <mach/mach_types.h> |
90 | #include <mach/boolean.h> |
91 | #include <mach/host_priv.h> |
92 | #include <mach/machine/vm_types.h> |
93 | #include <mach/vm_param.h> |
94 | #include <mach/mach_vm.h> |
95 | #include <mach/semaphore.h> |
96 | #include <mach/task_info.h> |
97 | #include <mach/task_inspect.h> |
98 | #include <mach/task_special_ports.h> |
99 | #include <mach/sdt.h> |
100 | #include <mach/mach_test_upcall.h> |
101 | |
102 | #include <ipc/ipc_importance.h> |
103 | #include <ipc/ipc_types.h> |
104 | #include <ipc/ipc_space.h> |
105 | #include <ipc/ipc_entry.h> |
106 | #include <ipc/ipc_hash.h> |
107 | #include <ipc/ipc_init.h> |
108 | |
109 | #include <kern/kern_types.h> |
110 | #include <kern/mach_param.h> |
111 | #include <kern/misc_protos.h> |
112 | #include <kern/task.h> |
113 | #include <kern/thread.h> |
114 | #include <kern/coalition.h> |
115 | #include <kern/zalloc.h> |
116 | #include <kern/kalloc.h> |
117 | #include <kern/kern_cdata.h> |
118 | #include <kern/processor.h> |
119 | #include <kern/recount.h> |
120 | #include <kern/sched_prim.h> /* for thread_wakeup */ |
121 | #include <kern/ipc_tt.h> |
122 | #include <kern/host.h> |
123 | #include <kern/clock.h> |
124 | #include <kern/timer.h> |
125 | #include <kern/assert.h> |
126 | #include <kern/affinity.h> |
127 | #include <kern/exc_resource.h> |
128 | #include <kern/machine.h> |
129 | #include <kern/policy_internal.h> |
130 | #include <kern/restartable.h> |
131 | #include <kern/ipc_kobject.h> |
132 | |
133 | #include <corpses/task_corpse.h> |
134 | #if CONFIG_TELEMETRY |
135 | #include <kern/telemetry.h> |
136 | #endif |
137 | |
138 | #if CONFIG_PERVASIVE_CPI |
139 | #include <kern/monotonic.h> |
140 | #include <machine/monotonic.h> |
141 | #endif /* CONFIG_PERVASIVE_CPI */ |
142 | |
143 | #if CONFIG_EXCLAVES |
144 | #include "exclaves_boot.h" |
145 | #include "exclaves_resource.h" |
146 | #include "exclaves_boot.h" |
147 | #include "kern/exclaves.tightbeam.h" |
148 | #endif /* CONFIG_EXCLAVES */ |
149 | |
150 | #include <os/log.h> |
151 | |
152 | #include <vm/pmap.h> |
153 | #include <vm/vm_map.h> |
154 | #include <vm/vm_kern.h> /* for kernel_map, ipc_kernel_map */ |
155 | #include <vm/vm_pageout.h> |
156 | #include <vm/vm_protos.h> |
157 | #include <vm/vm_purgeable_internal.h> |
158 | #include <vm/vm_compressor_pager.h> |
159 | #include <vm/vm_reclaim_internal.h> |
160 | |
161 | #include <sys/proc_ro.h> |
162 | #include <sys/resource.h> |
163 | #include <sys/signalvar.h> /* for coredump */ |
164 | #include <sys/bsdtask_info.h> |
165 | #include <sys/kdebug_triage.h> |
166 | #include <sys/code_signing.h> /* for address_space_debugged */ |
167 | /* |
168 | * Exported interfaces |
169 | */ |
170 | |
171 | #include <mach/task_server.h> |
172 | #include <mach/mach_host_server.h> |
173 | #include <mach/mach_port_server.h> |
174 | |
175 | #include <vm/vm_shared_region.h> |
176 | |
177 | #include <libkern/OSDebug.h> |
178 | #include <libkern/OSAtomic.h> |
179 | #include <libkern/section_keywords.h> |
180 | |
181 | #include <mach-o/loader.h> |
182 | #include <kdp/kdp_dyld.h> |
183 | |
184 | #include <kern/sfi.h> /* picks up ledger.h */ |
185 | |
186 | #if CONFIG_MACF |
187 | #include <security/mac_mach_internal.h> |
188 | #endif |
189 | |
190 | #include <IOKit/IOBSD.h> |
191 | #include <kdp/processor_core.h> |
192 | |
193 | #include <string.h> |
194 | |
195 | #if KPERF |
196 | extern int kpc_force_all_ctrs(task_t, int); |
197 | #endif |
198 | |
199 | SECURITY_READ_ONLY_LATE(task_t) kernel_task; |
200 | |
201 | int64_t next_taskuniqueid = 0; |
202 | const size_t task_alignment = _Alignof(struct task); |
203 | extern const size_t proc_alignment; |
204 | extern size_t proc_struct_size; |
205 | extern size_t proc_and_task_size; |
206 | size_t task_struct_size; |
207 | |
208 | extern uint32_t ipc_control_port_options; |
209 | |
210 | extern int large_corpse_count; |
211 | |
212 | extern boolean_t proc_send_synchronous_EXC_RESOURCE(void *p); |
213 | extern void task_disown_frozen_csegs(task_t owner_task); |
214 | |
215 | static void task_port_no_senders(ipc_port_t, mach_msg_type_number_t); |
216 | static void task_port_with_flavor_no_senders(ipc_port_t, mach_msg_type_number_t); |
217 | static void task_suspension_no_senders(ipc_port_t, mach_msg_type_number_t); |
218 | static inline void task_zone_init(void); |
219 | |
220 | #if CONFIG_EXCLAVES |
221 | static bool task_should_panic_on_exit_due_to_conclave_taint(task_t task); |
222 | static bool task_is_conclave_tainted(task_t task); |
223 | static void task_set_conclave_taint(task_t task); |
224 | kern_return_t task_crash_info_conclave_upcall(task_t task, |
225 | const xnuupcalls_conclavesharedbuffer_s *shared_buf, uint32_t length); |
226 | kern_return_t |
227 | stackshot_exclaves_process_stackshot(const stackshot_stackshotresult_s *_Nonnull result, void *kcdata_ptr); |
228 | #endif /* CONFIG_EXCLAVES */ |
229 | |
230 | IPC_KOBJECT_DEFINE(IKOT_TASK_NAME); |
231 | IPC_KOBJECT_DEFINE(IKOT_TASK_CONTROL, |
232 | .iko_op_no_senders = task_port_no_senders); |
233 | IPC_KOBJECT_DEFINE(IKOT_TASK_READ, |
234 | .iko_op_no_senders = task_port_with_flavor_no_senders); |
235 | IPC_KOBJECT_DEFINE(IKOT_TASK_INSPECT, |
236 | .iko_op_no_senders = task_port_with_flavor_no_senders); |
237 | IPC_KOBJECT_DEFINE(IKOT_TASK_RESUME, |
238 | .iko_op_no_senders = task_suspension_no_senders); |
239 | |
240 | #if CONFIG_PROC_RESOURCE_LIMITS |
241 | static void task_fatal_port_no_senders(ipc_port_t, mach_msg_type_number_t); |
242 | static mach_port_t task_allocate_fatal_port(void); |
243 | |
244 | IPC_KOBJECT_DEFINE(IKOT_TASK_FATAL, |
245 | .iko_op_stable = true, |
246 | .iko_op_no_senders = task_fatal_port_no_senders); |
247 | |
248 | extern void task_id_token_set_port(task_id_token_t token, ipc_port_t port); |
249 | #endif /* CONFIG_PROC_RESOURCE_LIMITS */ |
250 | |
251 | /* Flag set by core audio when audio is playing. Used to stifle EXC_RESOURCE generation when active. */ |
252 | int audio_active = 0; |
253 | |
254 | /* |
255 | * structure for tracking zone usage |
256 | * Used either one per task/thread for all zones or <per-task,per-zone>. |
257 | */ |
258 | typedef struct zinfo_usage_store_t { |
259 | /* These fields may be updated atomically, and so must be 8 byte aligned */ |
260 | uint64_t alloc __attribute__((aligned(8))); /* allocation counter */ |
261 | uint64_t free __attribute__((aligned(8))); /* free counter */ |
262 | } zinfo_usage_store_t; |
263 | |
264 | /** |
265 | * Return codes related to diag threshold and memory limit |
266 | */ |
267 | __options_decl(diagthreshold_check_return, int, { |
268 | THRESHOLD_IS_SAME_AS_LIMIT_FLAG_DISABLED = 0, |
269 | THRESHOLD_IS_SAME_AS_LIMIT_FLAG_ENABLED = 1, |
270 | THRESHOLD_IS_NOT_SAME_AS_LIMIT_FLAG_DISABLED = 2, |
271 | THRESHOLD_IS_NOT_SAME_AS_LIMIT_FLAG_ENABLED = 3, |
272 | }); |
273 | |
274 | /** |
275 | * Return codes related to diag threshold and memory limit |
276 | */ |
277 | __options_decl(current_, int, { |
278 | THRESHOLD_IS_SAME_AS_LIMIT = 0, |
279 | THRESHOLD_IS_NOT_SAME_AS_LIMIT = 1 |
280 | }); |
281 | |
282 | zinfo_usage_store_t tasks_tkm_private; |
283 | zinfo_usage_store_t tasks_tkm_shared; |
284 | |
285 | /* A container to accumulate statistics for expired tasks */ |
286 | expired_task_statistics_t dead_task_statistics; |
287 | LCK_SPIN_DECLARE_ATTR(dead_task_statistics_lock, &task_lck_grp, &task_lck_attr); |
288 | |
289 | ledger_template_t task_ledger_template = NULL; |
290 | |
291 | /* global lock for task_dyld_process_info_notify_{register, deregister, get_trap} */ |
292 | LCK_GRP_DECLARE(g_dyldinfo_mtx_grp, "g_dyldinfo" ); |
293 | LCK_MTX_DECLARE(g_dyldinfo_mtx, &g_dyldinfo_mtx_grp); |
294 | |
295 | SECURITY_READ_ONLY_LATE(struct _task_ledger_indices) task_ledgers __attribute__((used)) = |
296 | {.cpu_time = -1, |
297 | .tkm_private = -1, |
298 | .tkm_shared = -1, |
299 | .phys_mem = -1, |
300 | .wired_mem = -1, |
301 | .internal = -1, |
302 | .iokit_mapped = -1, |
303 | .external = -1, |
304 | .reusable = -1, |
305 | .alternate_accounting = -1, |
306 | .alternate_accounting_compressed = -1, |
307 | .page_table = -1, |
308 | .phys_footprint = -1, |
309 | .internal_compressed = -1, |
310 | .purgeable_volatile = -1, |
311 | .purgeable_nonvolatile = -1, |
312 | .purgeable_volatile_compressed = -1, |
313 | .purgeable_nonvolatile_compressed = -1, |
314 | .tagged_nofootprint = -1, |
315 | .tagged_footprint = -1, |
316 | .tagged_nofootprint_compressed = -1, |
317 | .tagged_footprint_compressed = -1, |
318 | .network_volatile = -1, |
319 | .network_nonvolatile = -1, |
320 | .network_volatile_compressed = -1, |
321 | .network_nonvolatile_compressed = -1, |
322 | .media_nofootprint = -1, |
323 | .media_footprint = -1, |
324 | .media_nofootprint_compressed = -1, |
325 | .media_footprint_compressed = -1, |
326 | .graphics_nofootprint = -1, |
327 | .graphics_footprint = -1, |
328 | .graphics_nofootprint_compressed = -1, |
329 | .graphics_footprint_compressed = -1, |
330 | .neural_nofootprint = -1, |
331 | .neural_footprint = -1, |
332 | .neural_nofootprint_compressed = -1, |
333 | .neural_footprint_compressed = -1, |
334 | .platform_idle_wakeups = -1, |
335 | .interrupt_wakeups = -1, |
336 | #if CONFIG_SCHED_SFI |
337 | .sfi_wait_times = { 0 /* initialized at runtime */}, |
338 | #endif /* CONFIG_SCHED_SFI */ |
339 | .cpu_time_billed_to_me = -1, |
340 | .cpu_time_billed_to_others = -1, |
341 | .physical_writes = -1, |
342 | .logical_writes = -1, |
343 | .logical_writes_to_external = -1, |
344 | #if DEBUG || DEVELOPMENT |
345 | .pages_grabbed = -1, |
346 | .pages_grabbed_kern = -1, |
347 | .pages_grabbed_iopl = -1, |
348 | .pages_grabbed_upl = -1, |
349 | #endif |
350 | #if CONFIG_FREEZE |
351 | .frozen_to_swap = -1, |
352 | #endif /* CONFIG_FREEZE */ |
353 | .energy_billed_to_me = -1, |
354 | .energy_billed_to_others = -1, |
355 | #if CONFIG_PHYS_WRITE_ACCT |
356 | .fs_metadata_writes = -1, |
357 | #endif /* CONFIG_PHYS_WRITE_ACCT */ |
358 | #if CONFIG_MEMORYSTATUS |
359 | .memorystatus_dirty_time = -1, |
360 | #endif /* CONFIG_MEMORYSTATUS */ |
361 | .swapins = -1, |
362 | .conclave_mem = -1, }; |
363 | |
364 | /* System sleep state */ |
365 | boolean_t tasks_suspend_state; |
366 | |
367 | __options_decl(send_exec_resource_is_fatal, bool, { |
368 | IS_NOT_FATAL = false, |
369 | IS_FATAL = true |
370 | }); |
371 | |
372 | __options_decl(send_exec_resource_is_diagnostics, bool, { |
373 | IS_NOT_DIAGNOSTICS = false, |
374 | IS_DIAGNOSTICS = true |
375 | }); |
376 | |
377 | __options_decl(send_exec_resource_is_warning, bool, { |
378 | IS_NOT_WARNING = false, |
379 | IS_WARNING = true |
380 | }); |
381 | |
382 | __options_decl(send_exec_resource_options_t, uint8_t, { |
383 | EXEC_RESOURCE_FATAL = 0x01, |
384 | EXEC_RESOURCE_DIAGNOSTIC = 0x02, |
385 | EXEC_RESOURCE_WARNING = 0x04, |
386 | }); |
387 | |
388 | /** |
389 | * Actions to take when a process has reached the memory limit or the diagnostics threshold limits |
390 | */ |
391 | static inline void task_process_crossed_limit_no_diag(task_t task, ledger_amount_t ledger_limit_size, bool memlimit_is_fatal, bool memlimit_is_active, send_exec_resource_is_warning is_warning); |
392 | #if DEBUG || DEVELOPMENT |
393 | static inline void task_process_crossed_limit_diag(ledger_amount_t ledger_limit_size); |
394 | #endif |
395 | void init_task_ledgers(void); |
396 | void task_footprint_exceeded(int warning, __unused const void *param0, __unused const void *param1); |
397 | void task_wakeups_rate_exceeded(int warning, __unused const void *param0, __unused const void *param1); |
398 | void task_io_rate_exceeded(int warning, const void *param0, __unused const void *param1); |
399 | void __attribute__((noinline)) SENDING_NOTIFICATION__THIS_PROCESS_IS_CAUSING_TOO_MANY_WAKEUPS(void); |
400 | void __attribute__((noinline)) PROC_CROSSED_HIGH_WATERMARK__SEND_EXC_RESOURCE_AND_SUSPEND(int , send_exec_resource_options_t exception_options); |
401 | void __attribute__((noinline)) SENDING_NOTIFICATION__THIS_PROCESS_IS_CAUSING_TOO_MUCH_IO(int flavor); |
402 | #if CONFIG_PROC_RESOURCE_LIMITS |
403 | void __attribute__((noinline)) SENDING_NOTIFICATION__THIS_PROCESS_HAS_TOO_MANY_FILE_DESCRIPTORS(task_t task, int current_size, int soft_limit, int hard_limit); |
404 | mach_port_name_t current_task_get_fatal_port_name(void); |
405 | void __attribute__((noinline)) SENDING_NOTIFICATION__THIS_PROCESS_HAS_TOO_MANY_KQWORKLOOPS(task_t task, int current_size, int soft_limit, int hard_limit); |
406 | #endif /* CONFIG_PROC_RESOURCE_LIMITS */ |
407 | |
408 | kern_return_t task_suspend_internal_locked(task_t); |
409 | kern_return_t task_suspend_internal(task_t); |
410 | kern_return_t task_resume_internal_locked(task_t); |
411 | kern_return_t task_resume_internal(task_t); |
412 | static kern_return_t task_start_halt_locked(task_t task, boolean_t should_mark_corpse); |
413 | |
414 | extern kern_return_t iokit_task_terminate(task_t task, int phase); |
415 | extern void iokit_task_app_suspended_changed(task_t task); |
416 | |
417 | extern kern_return_t exception_deliver(thread_t, exception_type_t, mach_exception_data_t, mach_msg_type_number_t, struct exception_action *, lck_mtx_t *); |
418 | extern void bsd_copythreadname(void *dst_uth, void *src_uth); |
419 | extern kern_return_t thread_resume(thread_t thread); |
420 | |
421 | extern int exit_with_port_space_exception(void *proc, mach_exception_code_t code, mach_exception_subcode_t subcode); |
422 | |
423 | // Condition to include diag footprints |
424 | #define ((DEBUG || DEVELOPMENT) && CONFIG_MEMORYSTATUS) |
425 | |
426 | // Warn tasks when they hit 80% of their memory limit. |
427 | #define 80 |
428 | |
429 | #define TASK_WAKEUPS_MONITOR_DEFAULT_LIMIT 150 /* wakeups per second */ |
430 | #define TASK_WAKEUPS_MONITOR_DEFAULT_INTERVAL 300 /* in seconds. */ |
431 | |
432 | /* |
433 | * Level (in terms of percentage of the limit) at which the wakeups monitor triggers telemetry. |
434 | * |
435 | * (ie when the task's wakeups rate exceeds 70% of the limit, start taking user |
436 | * stacktraces, aka micro-stackshots) |
437 | */ |
438 | #define TASK_WAKEUPS_MONITOR_DEFAULT_USTACKSHOTS_TRIGGER 70 |
439 | |
440 | int task_wakeups_monitor_interval; /* In seconds. Time period over which wakeups rate is observed */ |
441 | int task_wakeups_monitor_rate; /* In hz. Maximum allowable wakeups per task before EXC_RESOURCE is sent */ |
442 | |
443 | unsigned int task_wakeups_monitor_ustackshots_trigger_pct; /* Percentage. Level at which we start gathering telemetry. */ |
444 | |
445 | TUNABLE(bool, disable_exc_resource, "disable_exc_resource" , false); /* Global override to suppress EXC_RESOURCE for resource monitor violations. */ |
446 | TUNABLE(bool, disable_exc_resource_during_audio, "disable_exc_resource_during_audio" , true); /* Global override to suppress EXC_RESOURCE while audio is active */ |
447 | |
448 | ledger_amount_t = 0; /* Per-task limit on physical memory consumption in bytes */ |
449 | unsigned int = 0; /* Per-task limit warning percentage */ |
450 | |
451 | /* |
452 | * Configure per-task memory limit. |
453 | * The boot-arg is interpreted as Megabytes, |
454 | * and takes precedence over the device tree. |
455 | * Setting the boot-arg to 0 disables task limits. |
456 | */ |
457 | TUNABLE_DT_WRITEABLE(int, , "/defaults" , "kern.max_task_pmem" , "max_task_pmem" , 0, TUNABLE_DT_NONE); |
458 | |
459 | /* I/O Monitor Limits */ |
460 | #define IOMON_DEFAULT_LIMIT (20480ull) /* MB of logical/physical I/O */ |
461 | #define IOMON_DEFAULT_INTERVAL (86400ull) /* in seconds */ |
462 | |
463 | uint64_t task_iomon_limit_mb; /* Per-task I/O monitor limit in MBs */ |
464 | uint64_t task_iomon_interval_secs; /* Per-task I/O monitor interval in secs */ |
465 | |
466 | #define IO_TELEMETRY_DEFAULT_LIMIT (10ll * 1024ll * 1024ll) |
467 | int64_t io_telemetry_limit; /* Threshold to take a microstackshot (0 indicated I/O telemetry is turned off) */ |
468 | int64_t global_logical_writes_count = 0; /* Global count for logical writes */ |
469 | int64_t global_logical_writes_to_external_count = 0; /* Global count for logical writes to external storage*/ |
470 | static boolean_t global_update_logical_writes(int64_t, int64_t*); |
471 | |
472 | #if DEBUG || DEVELOPMENT |
473 | static diagthreshold_check_return task_check_memorythreshold_is_valid(task_t task, uint64_t new_limit, bool is_diagnostics_value); |
474 | #endif |
475 | #define TASK_MAX_THREAD_LIMIT 256 |
476 | |
477 | #if MACH_ASSERT |
478 | int pmap_ledgers_panic = 1; |
479 | int pmap_ledgers_panic_leeway = 3; |
480 | #endif /* MACH_ASSERT */ |
481 | |
482 | int task_max = CONFIG_TASK_MAX; /* Max number of tasks */ |
483 | |
484 | #if CONFIG_COREDUMP |
485 | int hwm_user_cores = 0; /* high watermark violations generate user core files */ |
486 | #endif |
487 | |
488 | #ifdef MACH_BSD |
489 | extern uint32_t proc_platform(const struct proc *); |
490 | extern uint32_t proc_sdk(struct proc *); |
491 | extern void proc_getexecutableuuid(void *, unsigned char *, unsigned long); |
492 | extern int proc_pid(struct proc *p); |
493 | extern int proc_selfpid(void); |
494 | extern struct proc *current_proc(void); |
495 | extern char *proc_name_address(struct proc *p); |
496 | extern uint64_t get_dispatchqueue_offset_from_proc(void *); |
497 | extern int kevent_proc_copy_uptrs(void *proc, uint64_t *buf, uint32_t bufsize); |
498 | extern void workq_proc_suspended(struct proc *p); |
499 | extern void workq_proc_resumed(struct proc *p); |
500 | extern struct proc *kernproc; |
501 | |
502 | #if CONFIG_MEMORYSTATUS |
503 | extern void proc_memstat_skip(struct proc* p, boolean_t set); |
504 | extern void (int warning, bool memlimit_is_active, bool memlimit_is_fatal); |
505 | extern void memorystatus_log_exception(const int , bool memlimit_is_active, bool memlimit_is_fatal); |
506 | extern void memorystatus_log_diag_threshold_exception(const int diag_threshold_value); |
507 | extern boolean_t memorystatus_allowed_vm_map_fork(task_t task, bool *is_large); |
508 | extern uint64_t memorystatus_available_memory_internal(struct proc *p); |
509 | |
510 | #if DEVELOPMENT || DEBUG |
511 | extern void memorystatus_abort_vm_map_fork(task_t); |
512 | #endif |
513 | |
514 | #endif /* CONFIG_MEMORYSTATUS */ |
515 | |
516 | #endif /* MACH_BSD */ |
517 | |
518 | /* Boot-arg that turns on fatal pac exception delivery for all first-party apps */ |
519 | static TUNABLE(bool, enable_pac_exception, "enable_pac_exception" , false); |
520 | |
521 | /* |
522 | * Defaults for controllable EXC_GUARD behaviors |
523 | * |
524 | * Internal builds are fatal by default (except BRIDGE). |
525 | * Create an alternate set of defaults for special processes by name. |
526 | */ |
527 | struct task_exc_guard_named_default { |
528 | char *name; |
529 | uint32_t behavior; |
530 | }; |
531 | #define _TASK_EXC_GUARD_MP_CORPSE (TASK_EXC_GUARD_MP_DELIVER | TASK_EXC_GUARD_MP_CORPSE) |
532 | #define _TASK_EXC_GUARD_MP_ONCE (_TASK_EXC_GUARD_MP_CORPSE | TASK_EXC_GUARD_MP_ONCE) |
533 | #define _TASK_EXC_GUARD_MP_FATAL (TASK_EXC_GUARD_MP_DELIVER | TASK_EXC_GUARD_MP_FATAL) |
534 | |
535 | #define _TASK_EXC_GUARD_VM_CORPSE (TASK_EXC_GUARD_VM_DELIVER | TASK_EXC_GUARD_VM_ONCE) |
536 | #define _TASK_EXC_GUARD_VM_ONCE (_TASK_EXC_GUARD_VM_CORPSE | TASK_EXC_GUARD_VM_ONCE) |
537 | #define _TASK_EXC_GUARD_VM_FATAL (TASK_EXC_GUARD_VM_DELIVER | TASK_EXC_GUARD_VM_FATAL) |
538 | |
539 | #define _TASK_EXC_GUARD_ALL_CORPSE (_TASK_EXC_GUARD_MP_CORPSE | _TASK_EXC_GUARD_VM_CORPSE) |
540 | #define _TASK_EXC_GUARD_ALL_ONCE (_TASK_EXC_GUARD_MP_ONCE | _TASK_EXC_GUARD_VM_ONCE) |
541 | #define _TASK_EXC_GUARD_ALL_FATAL (_TASK_EXC_GUARD_MP_FATAL | _TASK_EXC_GUARD_VM_FATAL) |
542 | |
543 | /* cannot turn off FATAL and DELIVER bit if set */ |
544 | uint32_t task_exc_guard_no_unset_mask = TASK_EXC_GUARD_MP_FATAL | TASK_EXC_GUARD_VM_FATAL | |
545 | TASK_EXC_GUARD_MP_DELIVER | TASK_EXC_GUARD_VM_DELIVER; |
546 | /* cannot turn on ONCE bit if unset */ |
547 | uint32_t task_exc_guard_no_set_mask = TASK_EXC_GUARD_MP_ONCE | TASK_EXC_GUARD_VM_ONCE; |
548 | |
549 | #if !defined(XNU_TARGET_OS_BRIDGE) |
550 | |
551 | uint32_t task_exc_guard_default = _TASK_EXC_GUARD_ALL_FATAL; |
552 | uint32_t task_exc_guard_config_mask = TASK_EXC_GUARD_MP_ALL | TASK_EXC_GUARD_VM_ALL; |
553 | /* |
554 | * These "by-process-name" default overrides are intended to be a short-term fix to |
555 | * quickly get over races between changes introducing new EXC_GUARD raising behaviors |
556 | * in some process and a change in default behavior for same. We should ship with |
557 | * these lists empty (by fixing the bugs, or explicitly changing the task's EXC_GUARD |
558 | * exception behavior via task_set_exc_guard_behavior()). |
559 | * |
560 | * XXX Remember to add/remove TASK_EXC_GUARD_HONOR_NAMED_DEFAULTS back to |
561 | * task_exc_guard_default when transitioning this list between empty and |
562 | * non-empty. |
563 | */ |
564 | static struct task_exc_guard_named_default task_exc_guard_named_defaults[] = {}; |
565 | |
566 | #else /* !defined(XNU_TARGET_OS_BRIDGE) */ |
567 | |
568 | uint32_t task_exc_guard_default = _TASK_EXC_GUARD_ALL_ONCE; |
569 | uint32_t task_exc_guard_config_mask = TASK_EXC_GUARD_MP_ALL | TASK_EXC_GUARD_VM_ALL; |
570 | static struct task_exc_guard_named_default task_exc_guard_named_defaults[] = {}; |
571 | |
572 | #endif /* !defined(XNU_TARGET_OS_BRIDGE) */ |
573 | |
574 | /* Forwards */ |
575 | |
576 | static void task_hold_locked(task_t task); |
577 | static void task_wait_locked(task_t task, boolean_t until_not_runnable); |
578 | static void task_release_locked(task_t task); |
579 | extern task_t proc_get_task_raw(void *proc); |
580 | extern void task_ref_hold_proc_task_struct(task_t task); |
581 | extern void task_release_proc_task_struct(task_t task); |
582 | |
583 | static void task_synchronizer_destroy_all(task_t task); |
584 | static os_ref_count_t |
585 | task_add_turnstile_watchports_locked( |
586 | task_t task, |
587 | struct task_watchports *watchports, |
588 | struct task_watchport_elem **previous_elem_array, |
589 | ipc_port_t *portwatch_ports, |
590 | uint32_t portwatch_count); |
591 | |
592 | static os_ref_count_t |
593 | task_remove_turnstile_watchports_locked( |
594 | task_t task, |
595 | struct task_watchports *watchports, |
596 | ipc_port_t *port_freelist); |
597 | |
598 | static struct task_watchports * |
599 | task_watchports_alloc_init( |
600 | task_t task, |
601 | thread_t thread, |
602 | uint32_t count); |
603 | |
604 | static void |
605 | task_watchports_deallocate( |
606 | struct task_watchports *watchports); |
607 | |
608 | __attribute__((always_inline)) inline void |
609 | task_lock(task_t task) |
610 | { |
611 | lck_mtx_lock(lck: &(task)->lock); |
612 | } |
613 | |
614 | __attribute__((always_inline)) inline void |
615 | task_unlock(task_t task) |
616 | { |
617 | lck_mtx_unlock(lck: &(task)->lock); |
618 | } |
619 | |
620 | void |
621 | task_set_64bit( |
622 | task_t task, |
623 | boolean_t is_64bit, |
624 | boolean_t is_64bit_data) |
625 | { |
626 | #if defined(__i386__) || defined(__x86_64__) || defined(__arm64__) |
627 | thread_t thread; |
628 | #endif /* defined(__i386__) || defined(__x86_64__) || defined(__arm64__) */ |
629 | |
630 | task_lock(task); |
631 | |
632 | /* |
633 | * Switching to/from 64-bit address spaces |
634 | */ |
635 | if (is_64bit) { |
636 | if (!task_has_64Bit_addr(task)) { |
637 | task_set_64Bit_addr(task); |
638 | } |
639 | } else { |
640 | if (task_has_64Bit_addr(task)) { |
641 | task_clear_64Bit_addr(task); |
642 | } |
643 | } |
644 | |
645 | /* |
646 | * Switching to/from 64-bit register state. |
647 | */ |
648 | if (is_64bit_data) { |
649 | if (task_has_64Bit_data(task)) { |
650 | goto out; |
651 | } |
652 | |
653 | task_set_64Bit_data(task); |
654 | } else { |
655 | if (!task_has_64Bit_data(task)) { |
656 | goto out; |
657 | } |
658 | |
659 | task_clear_64Bit_data(task); |
660 | } |
661 | |
662 | /* FIXME: On x86, the thread save state flavor can diverge from the |
663 | * task's 64-bit feature flag due to the 32-bit/64-bit register save |
664 | * state dichotomy. Since we can be pre-empted in this interval, |
665 | * certain routines may observe the thread as being in an inconsistent |
666 | * state with respect to its task's 64-bitness. |
667 | */ |
668 | |
669 | #if defined(__x86_64__) || defined(__arm64__) |
670 | queue_iterate(&task->threads, thread, thread_t, task_threads) { |
671 | thread_mtx_lock(thread); |
672 | machine_thread_switch_addrmode(thread); |
673 | thread_mtx_unlock(thread); |
674 | } |
675 | #endif /* defined(__x86_64__) || defined(__arm64__) */ |
676 | |
677 | out: |
678 | task_unlock(task); |
679 | } |
680 | |
681 | bool |
682 | task_get_64bit_addr(task_t task) |
683 | { |
684 | return task_has_64Bit_addr(task); |
685 | } |
686 | |
687 | bool |
688 | task_get_64bit_data(task_t task) |
689 | { |
690 | return task_has_64Bit_data(task); |
691 | } |
692 | |
693 | void |
694 | task_set_platform_binary( |
695 | task_t task, |
696 | boolean_t is_platform) |
697 | { |
698 | if (is_platform) { |
699 | task_ro_flags_set(task, TFRO_PLATFORM); |
700 | } else { |
701 | task_ro_flags_clear(task, TFRO_PLATFORM); |
702 | } |
703 | } |
704 | |
705 | #if XNU_TARGET_OS_OSX |
706 | #if DEVELOPMENT || DEBUG |
707 | SECURITY_READ_ONLY_LATE(bool) AMFI_bootarg_disable_mach_hardening = false; |
708 | #endif /* DEVELOPMENT || DEBUG */ |
709 | |
710 | void |
711 | task_disable_mach_hardening(task_t task) |
712 | { |
713 | task_ro_flags_set(task, TFRO_MACH_HARDENING_OPT_OUT); |
714 | } |
715 | |
716 | bool |
717 | task_opted_out_mach_hardening(task_t task) |
718 | { |
719 | return task_ro_flags_get(task) & TFRO_MACH_HARDENING_OPT_OUT; |
720 | } |
721 | #endif /* XNU_TARGET_OS_OSX */ |
722 | |
723 | /* |
724 | * Use the `task_is_hardened_binary` macro below |
725 | * when applying new security policies. |
726 | * |
727 | * Kernel security policies now generally apply to |
728 | * "hardened binaries" - which are platform binaries, and |
729 | * third party binaries who adopt hardened runtime on ios. |
730 | */ |
731 | boolean_t |
732 | task_get_platform_binary(task_t task) |
733 | { |
734 | return (task_ro_flags_get(task) & TFRO_PLATFORM) != 0; |
735 | } |
736 | |
737 | static boolean_t |
738 | task_get_hardened_runtime(task_t task) |
739 | { |
740 | return (task_ro_flags_get(task) & TFRO_HARDENED) != 0; |
741 | } |
742 | |
743 | boolean_t |
744 | task_is_hardened_binary(task_t task) |
745 | { |
746 | return task_get_platform_binary(task) || |
747 | task_get_hardened_runtime(task); |
748 | } |
749 | |
750 | void |
751 | task_set_hardened_runtime( |
752 | task_t task, |
753 | bool is_hardened) |
754 | { |
755 | if (is_hardened) { |
756 | task_ro_flags_set(task, TFRO_HARDENED); |
757 | } else { |
758 | task_ro_flags_clear(task, TFRO_HARDENED); |
759 | } |
760 | } |
761 | |
762 | boolean_t |
763 | task_is_a_corpse(task_t task) |
764 | { |
765 | return (task_ro_flags_get(task) & TFRO_CORPSE) != 0; |
766 | } |
767 | |
768 | boolean_t |
769 | task_is_ipc_active(task_t task) |
770 | { |
771 | return task->ipc_active; |
772 | } |
773 | |
774 | void |
775 | task_set_corpse(task_t task) |
776 | { |
777 | return task_ro_flags_set(task, TFRO_CORPSE); |
778 | } |
779 | |
780 | void |
781 | task_set_immovable_pinned(task_t task) |
782 | { |
783 | ipc_task_set_immovable_pinned(task); |
784 | } |
785 | |
786 | /* |
787 | * Set or clear per-task TF_CA_CLIENT_WI flag according to specified argument. |
788 | * Returns "false" if flag is already set, and "true" in other cases. |
789 | */ |
790 | bool |
791 | task_set_ca_client_wi( |
792 | task_t task, |
793 | boolean_t set_or_clear) |
794 | { |
795 | bool ret = true; |
796 | task_lock(task); |
797 | if (set_or_clear) { |
798 | /* Tasks can have only one CA_CLIENT work interval */ |
799 | if (task->t_flags & TF_CA_CLIENT_WI) { |
800 | ret = false; |
801 | } else { |
802 | task->t_flags |= TF_CA_CLIENT_WI; |
803 | } |
804 | } else { |
805 | task->t_flags &= ~TF_CA_CLIENT_WI; |
806 | } |
807 | task_unlock(task); |
808 | return ret; |
809 | } |
810 | |
811 | /* |
812 | * task_set_dyld_info() is called at most three times. |
813 | * 1) at task struct creation to set addr/size to zero. |
814 | * 2) in mach_loader.c to set location of __all_image_info section in loaded dyld |
815 | * 3) is from dyld itself to update location of all_image_info |
816 | * For security any calls after that are ignored. The TF_DYLD_ALL_IMAGE_SET bit is used to determine state. |
817 | */ |
818 | kern_return_t |
819 | task_set_dyld_info( |
820 | task_t task, |
821 | mach_vm_address_t addr, |
822 | mach_vm_size_t size) |
823 | { |
824 | mach_vm_address_t end; |
825 | if (os_add_overflow(addr, size, &end)) { |
826 | return KERN_FAILURE; |
827 | } |
828 | |
829 | task_lock(task); |
830 | /* don't accept updates if all_image_info_addr is final */ |
831 | if ((task->t_flags & TF_DYLD_ALL_IMAGE_FINAL) == 0) { |
832 | bool inputNonZero = ((addr != 0) || (size != 0)); |
833 | bool currentNonZero = ((task->all_image_info_addr != 0) || (task->all_image_info_size != 0)); |
834 | task->all_image_info_addr = addr; |
835 | task->all_image_info_size = size; |
836 | /* can only change from a non-zero value to another non-zero once */ |
837 | if (inputNonZero && currentNonZero) { |
838 | task->t_flags |= TF_DYLD_ALL_IMAGE_FINAL; |
839 | } |
840 | task_unlock(task); |
841 | return KERN_SUCCESS; |
842 | } else { |
843 | task_unlock(task); |
844 | return KERN_FAILURE; |
845 | } |
846 | } |
847 | |
848 | bool |
849 | task_donates_own_pages( |
850 | task_t task) |
851 | { |
852 | return task->donates_own_pages; |
853 | } |
854 | |
855 | void |
856 | ( |
857 | task_t task, |
858 | mach_vm_address_t addr) |
859 | { |
860 | task_lock(task); |
861 | task->mach_header_vm_address = addr; |
862 | task_unlock(task); |
863 | } |
864 | |
865 | void |
866 | task_bank_reset(__unused task_t task) |
867 | { |
868 | if (task->bank_context != NULL) { |
869 | bank_task_destroy(task); |
870 | } |
871 | } |
872 | |
873 | /* |
874 | * NOTE: This should only be called when the P_LINTRANSIT |
875 | * flag is set (the proc_trans lock is held) on the |
876 | * proc associated with the task. |
877 | */ |
878 | void |
879 | task_bank_init(__unused task_t task) |
880 | { |
881 | if (task->bank_context != NULL) { |
882 | panic("Task bank init called with non null bank context for task: %p and bank_context: %p" , task, task->bank_context); |
883 | } |
884 | bank_task_initialize(task); |
885 | } |
886 | |
887 | void |
888 | task_set_did_exec_flag(task_t task) |
889 | { |
890 | task->t_procflags |= TPF_DID_EXEC; |
891 | } |
892 | |
893 | void |
894 | task_clear_exec_copy_flag(task_t task) |
895 | { |
896 | task->t_procflags &= ~TPF_EXEC_COPY; |
897 | } |
898 | |
899 | event_t |
900 | task_get_return_wait_event(task_t task) |
901 | { |
902 | return (event_t)&task->returnwait_inheritor; |
903 | } |
904 | |
905 | void |
906 | task_clear_return_wait(task_t task, uint32_t flags) |
907 | { |
908 | if (flags & TCRW_CLEAR_INITIAL_WAIT) { |
909 | thread_wakeup(task_get_return_wait_event(task)); |
910 | } |
911 | |
912 | if (flags & TCRW_CLEAR_FINAL_WAIT) { |
913 | is_write_lock(task->itk_space); |
914 | |
915 | task->t_returnwaitflags &= ~TRW_LRETURNWAIT; |
916 | task->returnwait_inheritor = NULL; |
917 | |
918 | if (flags & TCRW_CLEAR_EXEC_COMPLETE) { |
919 | task->t_returnwaitflags &= ~TRW_LEXEC_COMPLETE; |
920 | } |
921 | |
922 | if (task->t_returnwaitflags & TRW_LRETURNWAITER) { |
923 | struct turnstile *turnstile = turnstile_prepare_hash(proprietor: (uintptr_t) task_get_return_wait_event(task), |
924 | type: TURNSTILE_ULOCK); |
925 | |
926 | waitq_wakeup64_all(waitq: &turnstile->ts_waitq, |
927 | CAST_EVENT64_T(task_get_return_wait_event(task)), |
928 | THREAD_AWAKENED, flags: WAITQ_UPDATE_INHERITOR); |
929 | |
930 | turnstile_update_inheritor_complete(turnstile, flags: TURNSTILE_INTERLOCK_HELD); |
931 | |
932 | turnstile_complete_hash(proprietor: (uintptr_t) task_get_return_wait_event(task), type: TURNSTILE_ULOCK); |
933 | turnstile_cleanup(); |
934 | task->t_returnwaitflags &= ~TRW_LRETURNWAITER; |
935 | } |
936 | is_write_unlock(task->itk_space); |
937 | } |
938 | } |
939 | |
940 | void __attribute__((noreturn)) |
941 | task_wait_to_return(void) |
942 | { |
943 | task_t task = current_task(); |
944 | uint8_t returnwaitflags; |
945 | |
946 | is_write_lock(task->itk_space); |
947 | |
948 | if (task->t_returnwaitflags & TRW_LRETURNWAIT) { |
949 | struct turnstile *turnstile = turnstile_prepare_hash(proprietor: (uintptr_t) task_get_return_wait_event(task), |
950 | type: TURNSTILE_ULOCK); |
951 | |
952 | do { |
953 | task->t_returnwaitflags |= TRW_LRETURNWAITER; |
954 | turnstile_update_inheritor(turnstile, new_inheritor: task->returnwait_inheritor, |
955 | flags: (TURNSTILE_DELAYED_UPDATE | TURNSTILE_INHERITOR_THREAD)); |
956 | |
957 | waitq_assert_wait64(waitq: &turnstile->ts_waitq, |
958 | CAST_EVENT64_T(task_get_return_wait_event(task)), |
959 | THREAD_UNINT, TIMEOUT_WAIT_FOREVER); |
960 | |
961 | is_write_unlock(task->itk_space); |
962 | |
963 | turnstile_update_inheritor_complete(turnstile, flags: TURNSTILE_INTERLOCK_NOT_HELD); |
964 | |
965 | thread_block(THREAD_CONTINUE_NULL); |
966 | |
967 | is_write_lock(task->itk_space); |
968 | } while (task->t_returnwaitflags & TRW_LRETURNWAIT); |
969 | |
970 | turnstile_complete_hash(proprietor: (uintptr_t) task_get_return_wait_event(task), type: TURNSTILE_ULOCK); |
971 | } |
972 | |
973 | returnwaitflags = task->t_returnwaitflags; |
974 | is_write_unlock(task->itk_space); |
975 | turnstile_cleanup(); |
976 | |
977 | |
978 | #if CONFIG_MACF |
979 | /* |
980 | * Before jumping to userspace and allowing this process |
981 | * to execute any code, make sure its credentials are cached, |
982 | * and notify any interested parties. |
983 | */ |
984 | extern void current_cached_proc_cred_update(void); |
985 | |
986 | current_cached_proc_cred_update(); |
987 | if (returnwaitflags & TRW_LEXEC_COMPLETE) { |
988 | mac_proc_notify_exec_complete(proc: current_proc()); |
989 | } |
990 | #endif |
991 | |
992 | thread_bootstrap_return(); |
993 | } |
994 | |
995 | boolean_t |
996 | task_is_exec_copy(task_t task) |
997 | { |
998 | return task_is_exec_copy_internal(task); |
999 | } |
1000 | |
1001 | boolean_t |
1002 | task_did_exec(task_t task) |
1003 | { |
1004 | return task_did_exec_internal(task); |
1005 | } |
1006 | |
1007 | boolean_t |
1008 | task_is_active(task_t task) |
1009 | { |
1010 | return task->active; |
1011 | } |
1012 | |
1013 | boolean_t |
1014 | task_is_halting(task_t task) |
1015 | { |
1016 | return task->halting; |
1017 | } |
1018 | |
1019 | void |
1020 | task_init(void) |
1021 | { |
1022 | if (max_task_footprint_mb != 0) { |
1023 | #if CONFIG_MEMORYSTATUS |
1024 | if (max_task_footprint_mb < 50) { |
1025 | printf(format: "Warning: max_task_pmem %d below minimum.\n" , |
1026 | max_task_footprint_mb); |
1027 | max_task_footprint_mb = 50; |
1028 | } |
1029 | printf(format: "Limiting task physical memory footprint to %d MB\n" , |
1030 | max_task_footprint_mb); |
1031 | |
1032 | max_task_footprint = (ledger_amount_t)max_task_footprint_mb * 1024 * 1024; // Convert MB to bytes |
1033 | |
1034 | /* |
1035 | * Configure the per-task memory limit warning level. |
1036 | * This is computed as a percentage. |
1037 | */ |
1038 | max_task_footprint_warning_level = 0; |
1039 | |
1040 | if (max_mem < 0x40000000) { |
1041 | /* |
1042 | * On devices with < 1GB of memory: |
1043 | * -- set warnings to 50MB below the per-task limit. |
1044 | */ |
1045 | if (max_task_footprint_mb > 50) { |
1046 | max_task_footprint_warning_level = ((max_task_footprint_mb - 50) * 100) / max_task_footprint_mb; |
1047 | } |
1048 | } else { |
1049 | /* |
1050 | * On devices with >= 1GB of memory: |
1051 | * -- set warnings to 100MB below the per-task limit. |
1052 | */ |
1053 | if (max_task_footprint_mb > 100) { |
1054 | max_task_footprint_warning_level = ((max_task_footprint_mb - 100) * 100) / max_task_footprint_mb; |
1055 | } |
1056 | } |
1057 | |
1058 | /* |
1059 | * Never allow warning level to land below the default. |
1060 | */ |
1061 | if (max_task_footprint_warning_level < PHYS_FOOTPRINT_WARNING_LEVEL) { |
1062 | max_task_footprint_warning_level = PHYS_FOOTPRINT_WARNING_LEVEL; |
1063 | } |
1064 | |
1065 | printf(format: "Limiting task physical memory warning to %d%%\n" , max_task_footprint_warning_level); |
1066 | |
1067 | #else |
1068 | printf("Warning: max_task_pmem specified, but jetsam not configured; ignoring.\n" ); |
1069 | #endif /* CONFIG_MEMORYSTATUS */ |
1070 | } |
1071 | |
1072 | #if DEVELOPMENT || DEBUG |
1073 | PE_parse_boot_argn("task_exc_guard_default" , |
1074 | &task_exc_guard_default, |
1075 | sizeof(task_exc_guard_default)); |
1076 | #endif /* DEVELOPMENT || DEBUG */ |
1077 | |
1078 | #if CONFIG_COREDUMP |
1079 | if (!PE_parse_boot_argn(arg_string: "hwm_user_cores" , arg_ptr: &hwm_user_cores, |
1080 | max_arg: sizeof(hwm_user_cores))) { |
1081 | hwm_user_cores = 0; |
1082 | } |
1083 | #endif |
1084 | |
1085 | proc_init_cpumon_params(); |
1086 | |
1087 | if (!PE_parse_boot_argn(arg_string: "task_wakeups_monitor_rate" , arg_ptr: &task_wakeups_monitor_rate, max_arg: sizeof(task_wakeups_monitor_rate))) { |
1088 | task_wakeups_monitor_rate = TASK_WAKEUPS_MONITOR_DEFAULT_LIMIT; |
1089 | } |
1090 | |
1091 | if (!PE_parse_boot_argn(arg_string: "task_wakeups_monitor_interval" , arg_ptr: &task_wakeups_monitor_interval, max_arg: sizeof(task_wakeups_monitor_interval))) { |
1092 | task_wakeups_monitor_interval = TASK_WAKEUPS_MONITOR_DEFAULT_INTERVAL; |
1093 | } |
1094 | |
1095 | if (!PE_parse_boot_argn(arg_string: "task_wakeups_monitor_ustackshots_trigger_pct" , arg_ptr: &task_wakeups_monitor_ustackshots_trigger_pct, |
1096 | max_arg: sizeof(task_wakeups_monitor_ustackshots_trigger_pct))) { |
1097 | task_wakeups_monitor_ustackshots_trigger_pct = TASK_WAKEUPS_MONITOR_DEFAULT_USTACKSHOTS_TRIGGER; |
1098 | } |
1099 | |
1100 | if (!PE_parse_boot_argn(arg_string: "task_iomon_limit_mb" , arg_ptr: &task_iomon_limit_mb, max_arg: sizeof(task_iomon_limit_mb))) { |
1101 | task_iomon_limit_mb = IOMON_DEFAULT_LIMIT; |
1102 | } |
1103 | |
1104 | if (!PE_parse_boot_argn(arg_string: "task_iomon_interval_secs" , arg_ptr: &task_iomon_interval_secs, max_arg: sizeof(task_iomon_interval_secs))) { |
1105 | task_iomon_interval_secs = IOMON_DEFAULT_INTERVAL; |
1106 | } |
1107 | |
1108 | if (!PE_parse_boot_argn(arg_string: "io_telemetry_limit" , arg_ptr: &io_telemetry_limit, max_arg: sizeof(io_telemetry_limit))) { |
1109 | io_telemetry_limit = IO_TELEMETRY_DEFAULT_LIMIT; |
1110 | } |
1111 | |
1112 | /* |
1113 | * If we have coalitions, coalition_init() will call init_task_ledgers() as it |
1114 | * sets up the ledgers for the default coalition. If we don't have coalitions, |
1115 | * then we have to call it now. |
1116 | */ |
1117 | #if CONFIG_COALITIONS |
1118 | assert(task_ledger_template); |
1119 | #else /* CONFIG_COALITIONS */ |
1120 | init_task_ledgers(); |
1121 | #endif /* CONFIG_COALITIONS */ |
1122 | |
1123 | task_ref_init(); |
1124 | task_zone_init(); |
1125 | |
1126 | #ifdef __LP64__ |
1127 | boolean_t is_64bit = TRUE; |
1128 | #else |
1129 | boolean_t is_64bit = FALSE; |
1130 | #endif |
1131 | |
1132 | kernproc = (struct proc *)zalloc_flags(proc_task_zone, Z_WAITOK | Z_ZERO); |
1133 | kernel_task = proc_get_task_raw(proc: kernproc); |
1134 | |
1135 | /* |
1136 | * Create the kernel task as the first task. |
1137 | */ |
1138 | if (task_create_internal(TASK_NULL, NULL, NULL, FALSE, is_64bit, |
1139 | is_64bit_data: is_64bit, TF_NONE, TF_NONE, TPF_NONE, TWF_NONE, child_task: kernel_task) != KERN_SUCCESS) { |
1140 | panic("task_init" ); |
1141 | } |
1142 | |
1143 | ipc_task_enable(task: kernel_task); |
1144 | |
1145 | #if defined(HAS_APPLE_PAC) |
1146 | kernel_task->rop_pid = ml_default_rop_pid(); |
1147 | kernel_task->jop_pid = ml_default_jop_pid(); |
1148 | // kernel_task never runs at EL0, but machine_thread_state_convert_from/to_user() relies on |
1149 | // disable_user_jop to be false for kernel threads (e.g. in exception delivery on thread_exception_daemon) |
1150 | ml_task_set_disable_user_jop(task: kernel_task, FALSE); |
1151 | #endif |
1152 | |
1153 | vm_map_deallocate(map: kernel_task->map); |
1154 | kernel_task->map = kernel_map; |
1155 | } |
1156 | |
1157 | static inline void |
1158 | task_zone_init(void) |
1159 | { |
1160 | proc_struct_size = roundup(proc_struct_size, task_alignment); |
1161 | task_struct_size = roundup(sizeof(struct task), proc_alignment); |
1162 | proc_and_task_size = proc_struct_size + task_struct_size; |
1163 | |
1164 | proc_task_zone = zone_create_ext(name: "proc_task" , size: proc_and_task_size, |
1165 | flags: ZC_ZFREE_CLEARMEM | ZC_SEQUESTER, desired_zid: ZONE_ID_PROC_TASK, NULL); /* sequester is needed for proc_rele() */ |
1166 | } |
1167 | |
1168 | /* |
1169 | * Task ledgers |
1170 | * ------------ |
1171 | * |
1172 | * phys_footprint |
1173 | * Physical footprint: This is the sum of: |
1174 | * + (internal - alternate_accounting) |
1175 | * + (internal_compressed - alternate_accounting_compressed) |
1176 | * + iokit_mapped |
1177 | * + purgeable_nonvolatile |
1178 | * + purgeable_nonvolatile_compressed |
1179 | * + page_table |
1180 | * |
1181 | * internal |
1182 | * The task's anonymous memory, which on iOS is always resident. |
1183 | * |
1184 | * internal_compressed |
1185 | * Amount of this task's internal memory which is held by the compressor. |
1186 | * Such memory is no longer actually resident for the task [i.e., resident in its pmap], |
1187 | * and could be either decompressed back into memory, or paged out to storage, depending |
1188 | * on our implementation. |
1189 | * |
1190 | * iokit_mapped |
1191 | * IOKit mappings: The total size of all IOKit mappings in this task, regardless of |
1192 | * clean/dirty or internal/external state]. |
1193 | * |
1194 | * alternate_accounting |
1195 | * The number of internal dirty pages which are part of IOKit mappings. By definition, these pages |
1196 | * are counted in both internal *and* iokit_mapped, so we must subtract them from the total to avoid |
1197 | * double counting. |
1198 | * |
1199 | * pages_grabbed |
1200 | * pages_grabbed counts all page grabs in a task. It is also broken out into three subtypes |
1201 | * which track UPL, IOPL and Kernel page grabs. |
1202 | */ |
1203 | void |
1204 | init_task_ledgers(void) |
1205 | { |
1206 | ledger_template_t t; |
1207 | |
1208 | assert(task_ledger_template == NULL); |
1209 | assert(kernel_task == TASK_NULL); |
1210 | |
1211 | #if MACH_ASSERT |
1212 | PE_parse_boot_argn("pmap_ledgers_panic" , |
1213 | &pmap_ledgers_panic, |
1214 | sizeof(pmap_ledgers_panic)); |
1215 | PE_parse_boot_argn("pmap_ledgers_panic_leeway" , |
1216 | &pmap_ledgers_panic_leeway, |
1217 | sizeof(pmap_ledgers_panic_leeway)); |
1218 | #endif /* MACH_ASSERT */ |
1219 | |
1220 | if ((t = ledger_template_create(name: "Per-task ledger" )) == NULL) { |
1221 | panic("couldn't create task ledger template" ); |
1222 | } |
1223 | |
1224 | task_ledgers.cpu_time = ledger_entry_add(template: t, key: "cpu_time" , group: "sched" , units: "ns" ); |
1225 | task_ledgers.tkm_private = ledger_entry_add(template: t, key: "tkm_private" , |
1226 | group: "physmem" , units: "bytes" ); |
1227 | task_ledgers.tkm_shared = ledger_entry_add(template: t, key: "tkm_shared" , group: "physmem" , |
1228 | units: "bytes" ); |
1229 | task_ledgers.phys_mem = ledger_entry_add(template: t, key: "phys_mem" , group: "physmem" , |
1230 | units: "bytes" ); |
1231 | task_ledgers.wired_mem = ledger_entry_add(template: t, key: "wired_mem" , group: "physmem" , |
1232 | units: "bytes" ); |
1233 | task_ledgers.conclave_mem = ledger_entry_add_with_flags(template: t, key: "conclave_mem" , group: "physmem" , units: "count" , |
1234 | flags: LEDGER_ENTRY_ALLOW_PANIC_ON_NEGATIVE | LEDGER_ENTRY_ALLOW_DEBIT); |
1235 | task_ledgers.internal = ledger_entry_add(template: t, key: "internal" , group: "physmem" , |
1236 | units: "bytes" ); |
1237 | task_ledgers.iokit_mapped = ledger_entry_add_with_flags(template: t, key: "iokit_mapped" , group: "mappings" , |
1238 | units: "bytes" , flags: LEDGER_ENTRY_ALLOW_PANIC_ON_NEGATIVE); |
1239 | task_ledgers.alternate_accounting = ledger_entry_add_with_flags(template: t, key: "alternate_accounting" , group: "physmem" , |
1240 | units: "bytes" , flags: LEDGER_ENTRY_ALLOW_PANIC_ON_NEGATIVE); |
1241 | task_ledgers.alternate_accounting_compressed = ledger_entry_add_with_flags(template: t, key: "alternate_accounting_compressed" , group: "physmem" , |
1242 | units: "bytes" , flags: LEDGER_ENTRY_ALLOW_PANIC_ON_NEGATIVE); |
1243 | task_ledgers.page_table = ledger_entry_add_with_flags(template: t, key: "page_table" , group: "physmem" , |
1244 | units: "bytes" , flags: LEDGER_ENTRY_ALLOW_PANIC_ON_NEGATIVE); |
1245 | task_ledgers.phys_footprint = ledger_entry_add(template: t, key: "phys_footprint" , group: "physmem" , |
1246 | units: "bytes" ); |
1247 | task_ledgers.internal_compressed = ledger_entry_add(template: t, key: "internal_compressed" , group: "physmem" , |
1248 | units: "bytes" ); |
1249 | task_ledgers.reusable = ledger_entry_add(template: t, key: "reusable" , group: "physmem" , units: "bytes" ); |
1250 | task_ledgers.external = ledger_entry_add(template: t, key: "external" , group: "physmem" , units: "bytes" ); |
1251 | task_ledgers.purgeable_volatile = ledger_entry_add_with_flags(template: t, key: "purgeable_volatile" , group: "physmem" , units: "bytes" , flags: LEDGER_ENTRY_ALLOW_PANIC_ON_NEGATIVE); |
1252 | task_ledgers.purgeable_nonvolatile = ledger_entry_add_with_flags(template: t, key: "purgeable_nonvolatile" , group: "physmem" , units: "bytes" , flags: LEDGER_ENTRY_ALLOW_PANIC_ON_NEGATIVE); |
1253 | task_ledgers.purgeable_volatile_compressed = ledger_entry_add_with_flags(template: t, key: "purgeable_volatile_compress" , group: "physmem" , units: "bytes" , flags: LEDGER_ENTRY_ALLOW_PANIC_ON_NEGATIVE); |
1254 | task_ledgers.purgeable_nonvolatile_compressed = ledger_entry_add_with_flags(template: t, key: "purgeable_nonvolatile_compress" , group: "physmem" , units: "bytes" , flags: LEDGER_ENTRY_ALLOW_PANIC_ON_NEGATIVE); |
1255 | #if DEBUG || DEVELOPMENT |
1256 | task_ledgers.pages_grabbed = ledger_entry_add_with_flags(t, "pages_grabbed" , "physmem" , "count" , LEDGER_ENTRY_ALLOW_PANIC_ON_NEGATIVE); |
1257 | task_ledgers.pages_grabbed_kern = ledger_entry_add_with_flags(t, "pages_grabbed_kern" , "physmem" , "count" , LEDGER_ENTRY_ALLOW_PANIC_ON_NEGATIVE); |
1258 | task_ledgers.pages_grabbed_iopl = ledger_entry_add_with_flags(t, "pages_grabbed_iopl" , "physmem" , "count" , LEDGER_ENTRY_ALLOW_PANIC_ON_NEGATIVE); |
1259 | task_ledgers.pages_grabbed_upl = ledger_entry_add_with_flags(t, "pages_grabbed_upl" , "physmem" , "count" , LEDGER_ENTRY_ALLOW_PANIC_ON_NEGATIVE); |
1260 | #endif |
1261 | task_ledgers.tagged_nofootprint = ledger_entry_add_with_flags(template: t, key: "tagged_nofootprint" , group: "physmem" , units: "bytes" , flags: LEDGER_ENTRY_ALLOW_PANIC_ON_NEGATIVE); |
1262 | task_ledgers.tagged_footprint = ledger_entry_add_with_flags(template: t, key: "tagged_footprint" , group: "physmem" , units: "bytes" , flags: LEDGER_ENTRY_ALLOW_PANIC_ON_NEGATIVE); |
1263 | task_ledgers.tagged_nofootprint_compressed = ledger_entry_add_with_flags(template: t, key: "tagged_nofootprint_compressed" , group: "physmem" , units: "bytes" , flags: LEDGER_ENTRY_ALLOW_PANIC_ON_NEGATIVE); |
1264 | task_ledgers.tagged_footprint_compressed = ledger_entry_add_with_flags(template: t, key: "tagged_footprint_compressed" , group: "physmem" , units: "bytes" , flags: LEDGER_ENTRY_ALLOW_PANIC_ON_NEGATIVE); |
1265 | task_ledgers.network_volatile = ledger_entry_add_with_flags(template: t, key: "network_volatile" , group: "physmem" , units: "bytes" , flags: LEDGER_ENTRY_ALLOW_PANIC_ON_NEGATIVE); |
1266 | task_ledgers.network_nonvolatile = ledger_entry_add_with_flags(template: t, key: "network_nonvolatile" , group: "physmem" , units: "bytes" , flags: LEDGER_ENTRY_ALLOW_PANIC_ON_NEGATIVE); |
1267 | task_ledgers.network_volatile_compressed = ledger_entry_add_with_flags(template: t, key: "network_volatile_compressed" , group: "physmem" , units: "bytes" , flags: LEDGER_ENTRY_ALLOW_PANIC_ON_NEGATIVE); |
1268 | task_ledgers.network_nonvolatile_compressed = ledger_entry_add_with_flags(template: t, key: "network_nonvolatile_compressed" , group: "physmem" , units: "bytes" , flags: LEDGER_ENTRY_ALLOW_PANIC_ON_NEGATIVE); |
1269 | task_ledgers.media_nofootprint = ledger_entry_add_with_flags(template: t, key: "media_nofootprint" , group: "physmem" , units: "bytes" , flags: LEDGER_ENTRY_ALLOW_PANIC_ON_NEGATIVE); |
1270 | task_ledgers.media_footprint = ledger_entry_add_with_flags(template: t, key: "media_footprint" , group: "physmem" , units: "bytes" , flags: LEDGER_ENTRY_ALLOW_PANIC_ON_NEGATIVE); |
1271 | task_ledgers.media_nofootprint_compressed = ledger_entry_add_with_flags(template: t, key: "media_nofootprint_compressed" , group: "physmem" , units: "bytes" , flags: LEDGER_ENTRY_ALLOW_PANIC_ON_NEGATIVE); |
1272 | task_ledgers.media_footprint_compressed = ledger_entry_add_with_flags(template: t, key: "media_footprint_compressed" , group: "physmem" , units: "bytes" , flags: LEDGER_ENTRY_ALLOW_PANIC_ON_NEGATIVE); |
1273 | task_ledgers.graphics_nofootprint = ledger_entry_add_with_flags(template: t, key: "graphics_nofootprint" , group: "physmem" , units: "bytes" , flags: LEDGER_ENTRY_ALLOW_PANIC_ON_NEGATIVE); |
1274 | task_ledgers.graphics_footprint = ledger_entry_add_with_flags(template: t, key: "graphics_footprint" , group: "physmem" , units: "bytes" , flags: LEDGER_ENTRY_ALLOW_PANIC_ON_NEGATIVE); |
1275 | task_ledgers.graphics_nofootprint_compressed = ledger_entry_add_with_flags(template: t, key: "graphics_nofootprint_compressed" , group: "physmem" , units: "bytes" , flags: LEDGER_ENTRY_ALLOW_PANIC_ON_NEGATIVE); |
1276 | task_ledgers.graphics_footprint_compressed = ledger_entry_add_with_flags(template: t, key: "graphics_footprint_compressed" , group: "physmem" , units: "bytes" , flags: LEDGER_ENTRY_ALLOW_PANIC_ON_NEGATIVE); |
1277 | task_ledgers.neural_nofootprint = ledger_entry_add_with_flags(template: t, key: "neural_nofootprint" , group: "physmem" , units: "bytes" , flags: LEDGER_ENTRY_ALLOW_PANIC_ON_NEGATIVE); |
1278 | task_ledgers.neural_footprint = ledger_entry_add_with_flags(template: t, key: "neural_footprint" , group: "physmem" , units: "bytes" , flags: LEDGER_ENTRY_ALLOW_PANIC_ON_NEGATIVE); |
1279 | task_ledgers.neural_nofootprint_compressed = ledger_entry_add_with_flags(template: t, key: "neural_nofootprint_compressed" , group: "physmem" , units: "bytes" , flags: LEDGER_ENTRY_ALLOW_PANIC_ON_NEGATIVE); |
1280 | task_ledgers.neural_footprint_compressed = ledger_entry_add_with_flags(template: t, key: "neural_footprint_compressed" , group: "physmem" , units: "bytes" , flags: LEDGER_ENTRY_ALLOW_PANIC_ON_NEGATIVE); |
1281 | |
1282 | #if CONFIG_FREEZE |
1283 | task_ledgers.frozen_to_swap = ledger_entry_add(t, "frozen_to_swap" , "physmem" , "bytes" ); |
1284 | #endif /* CONFIG_FREEZE */ |
1285 | |
1286 | task_ledgers.platform_idle_wakeups = ledger_entry_add(template: t, key: "platform_idle_wakeups" , group: "power" , |
1287 | units: "count" ); |
1288 | task_ledgers.interrupt_wakeups = ledger_entry_add(template: t, key: "interrupt_wakeups" , group: "power" , |
1289 | units: "count" ); |
1290 | |
1291 | #if CONFIG_SCHED_SFI |
1292 | sfi_class_id_t class_id, ledger_alias; |
1293 | for (class_id = SFI_CLASS_UNSPECIFIED; class_id < MAX_SFI_CLASS_ID; class_id++) { |
1294 | task_ledgers.sfi_wait_times[class_id] = -1; |
1295 | } |
1296 | |
1297 | /* don't account for UNSPECIFIED */ |
1298 | for (class_id = SFI_CLASS_UNSPECIFIED + 1; class_id < MAX_SFI_CLASS_ID; class_id++) { |
1299 | ledger_alias = sfi_get_ledger_alias_for_class(class_id); |
1300 | if (ledger_alias != SFI_CLASS_UNSPECIFIED) { |
1301 | /* Check to see if alias has been registered yet */ |
1302 | if (task_ledgers.sfi_wait_times[ledger_alias] != -1) { |
1303 | task_ledgers.sfi_wait_times[class_id] = task_ledgers.sfi_wait_times[ledger_alias]; |
1304 | } else { |
1305 | /* Otherwise, initialize it first */ |
1306 | task_ledgers.sfi_wait_times[class_id] = task_ledgers.sfi_wait_times[ledger_alias] = sfi_ledger_entry_add(template: t, class_id: ledger_alias); |
1307 | } |
1308 | } else { |
1309 | task_ledgers.sfi_wait_times[class_id] = sfi_ledger_entry_add(template: t, class_id); |
1310 | } |
1311 | |
1312 | if (task_ledgers.sfi_wait_times[class_id] < 0) { |
1313 | panic("couldn't create entries for task ledger template for SFI class 0x%x" , class_id); |
1314 | } |
1315 | } |
1316 | |
1317 | assert(task_ledgers.sfi_wait_times[MAX_SFI_CLASS_ID - 1] != -1); |
1318 | #endif /* CONFIG_SCHED_SFI */ |
1319 | |
1320 | task_ledgers.cpu_time_billed_to_me = ledger_entry_add(template: t, key: "cpu_time_billed_to_me" , group: "sched" , units: "ns" ); |
1321 | task_ledgers.cpu_time_billed_to_others = ledger_entry_add(template: t, key: "cpu_time_billed_to_others" , group: "sched" , units: "ns" ); |
1322 | task_ledgers.physical_writes = ledger_entry_add(template: t, key: "physical_writes" , group: "res" , units: "bytes" ); |
1323 | task_ledgers.logical_writes = ledger_entry_add(template: t, key: "logical_writes" , group: "res" , units: "bytes" ); |
1324 | task_ledgers.logical_writes_to_external = ledger_entry_add(template: t, key: "logical_writes_to_external" , group: "res" , units: "bytes" ); |
1325 | #if CONFIG_PHYS_WRITE_ACCT |
1326 | task_ledgers.fs_metadata_writes = ledger_entry_add(template: t, key: "fs_metadata_writes" , group: "res" , units: "bytes" ); |
1327 | #endif /* CONFIG_PHYS_WRITE_ACCT */ |
1328 | task_ledgers.energy_billed_to_me = ledger_entry_add(template: t, key: "energy_billed_to_me" , group: "power" , units: "nj" ); |
1329 | task_ledgers.energy_billed_to_others = ledger_entry_add(template: t, key: "energy_billed_to_others" , group: "power" , units: "nj" ); |
1330 | |
1331 | #if CONFIG_MEMORYSTATUS |
1332 | task_ledgers.memorystatus_dirty_time = ledger_entry_add(template: t, key: "memorystatus_dirty_time" , group: "physmem" , units: "ns" ); |
1333 | #endif /* CONFIG_MEMORYSTATUS */ |
1334 | |
1335 | task_ledgers.swapins = ledger_entry_add_with_flags(template: t, key: "swapins" , group: "physmem" , units: "bytes" , |
1336 | flags: LEDGER_ENTRY_ALLOW_PANIC_ON_NEGATIVE); |
1337 | |
1338 | if ((task_ledgers.cpu_time < 0) || |
1339 | (task_ledgers.tkm_private < 0) || |
1340 | (task_ledgers.tkm_shared < 0) || |
1341 | (task_ledgers.phys_mem < 0) || |
1342 | (task_ledgers.wired_mem < 0) || |
1343 | (task_ledgers.conclave_mem < 0) || |
1344 | (task_ledgers.internal < 0) || |
1345 | (task_ledgers.external < 0) || |
1346 | (task_ledgers.reusable < 0) || |
1347 | (task_ledgers.iokit_mapped < 0) || |
1348 | (task_ledgers.alternate_accounting < 0) || |
1349 | (task_ledgers.alternate_accounting_compressed < 0) || |
1350 | (task_ledgers.page_table < 0) || |
1351 | (task_ledgers.phys_footprint < 0) || |
1352 | (task_ledgers.internal_compressed < 0) || |
1353 | (task_ledgers.purgeable_volatile < 0) || |
1354 | (task_ledgers.purgeable_nonvolatile < 0) || |
1355 | (task_ledgers.purgeable_volatile_compressed < 0) || |
1356 | (task_ledgers.purgeable_nonvolatile_compressed < 0) || |
1357 | (task_ledgers.tagged_nofootprint < 0) || |
1358 | (task_ledgers.tagged_footprint < 0) || |
1359 | (task_ledgers.tagged_nofootprint_compressed < 0) || |
1360 | (task_ledgers.tagged_footprint_compressed < 0) || |
1361 | #if CONFIG_FREEZE |
1362 | (task_ledgers.frozen_to_swap < 0) || |
1363 | #endif /* CONFIG_FREEZE */ |
1364 | (task_ledgers.network_volatile < 0) || |
1365 | (task_ledgers.network_nonvolatile < 0) || |
1366 | (task_ledgers.network_volatile_compressed < 0) || |
1367 | (task_ledgers.network_nonvolatile_compressed < 0) || |
1368 | (task_ledgers.media_nofootprint < 0) || |
1369 | (task_ledgers.media_footprint < 0) || |
1370 | (task_ledgers.media_nofootprint_compressed < 0) || |
1371 | (task_ledgers.media_footprint_compressed < 0) || |
1372 | (task_ledgers.graphics_nofootprint < 0) || |
1373 | (task_ledgers.graphics_footprint < 0) || |
1374 | (task_ledgers.graphics_nofootprint_compressed < 0) || |
1375 | (task_ledgers.graphics_footprint_compressed < 0) || |
1376 | (task_ledgers.neural_nofootprint < 0) || |
1377 | (task_ledgers.neural_footprint < 0) || |
1378 | (task_ledgers.neural_nofootprint_compressed < 0) || |
1379 | (task_ledgers.neural_footprint_compressed < 0) || |
1380 | (task_ledgers.platform_idle_wakeups < 0) || |
1381 | (task_ledgers.interrupt_wakeups < 0) || |
1382 | (task_ledgers.cpu_time_billed_to_me < 0) || (task_ledgers.cpu_time_billed_to_others < 0) || |
1383 | (task_ledgers.physical_writes < 0) || |
1384 | (task_ledgers.logical_writes < 0) || |
1385 | (task_ledgers.logical_writes_to_external < 0) || |
1386 | #if CONFIG_PHYS_WRITE_ACCT |
1387 | (task_ledgers.fs_metadata_writes < 0) || |
1388 | #endif /* CONFIG_PHYS_WRITE_ACCT */ |
1389 | #if CONFIG_MEMORYSTATUS |
1390 | (task_ledgers.memorystatus_dirty_time < 0) || |
1391 | #endif /* CONFIG_MEMORYSTATUS */ |
1392 | (task_ledgers.energy_billed_to_me < 0) || |
1393 | (task_ledgers.energy_billed_to_others < 0) || |
1394 | (task_ledgers.swapins < 0) |
1395 | ) { |
1396 | panic("couldn't create entries for task ledger template" ); |
1397 | } |
1398 | |
1399 | ledger_track_credit_only(template: t, entry: task_ledgers.phys_footprint); |
1400 | ledger_track_credit_only(template: t, entry: task_ledgers.internal); |
1401 | ledger_track_credit_only(template: t, entry: task_ledgers.external); |
1402 | ledger_track_credit_only(template: t, entry: task_ledgers.reusable); |
1403 | |
1404 | ledger_track_maximum(template: t, entry: task_ledgers.phys_footprint, period_in_secs: 60); |
1405 | ledger_track_maximum(template: t, entry: task_ledgers.phys_mem, period_in_secs: 60); |
1406 | ledger_track_maximum(template: t, entry: task_ledgers.internal, period_in_secs: 60); |
1407 | ledger_track_maximum(template: t, entry: task_ledgers.internal_compressed, period_in_secs: 60); |
1408 | ledger_track_maximum(template: t, entry: task_ledgers.reusable, period_in_secs: 60); |
1409 | ledger_track_maximum(template: t, entry: task_ledgers.external, period_in_secs: 60); |
1410 | #if MACH_ASSERT |
1411 | if (pmap_ledgers_panic) { |
1412 | ledger_panic_on_negative(t, task_ledgers.phys_footprint); |
1413 | ledger_panic_on_negative(t, task_ledgers.conclave_mem); |
1414 | ledger_panic_on_negative(t, task_ledgers.page_table); |
1415 | ledger_panic_on_negative(t, task_ledgers.internal); |
1416 | ledger_panic_on_negative(t, task_ledgers.iokit_mapped); |
1417 | ledger_panic_on_negative(t, task_ledgers.alternate_accounting); |
1418 | ledger_panic_on_negative(t, task_ledgers.alternate_accounting_compressed); |
1419 | ledger_panic_on_negative(t, task_ledgers.purgeable_volatile); |
1420 | ledger_panic_on_negative(t, task_ledgers.purgeable_nonvolatile); |
1421 | ledger_panic_on_negative(t, task_ledgers.purgeable_volatile_compressed); |
1422 | ledger_panic_on_negative(t, task_ledgers.purgeable_nonvolatile_compressed); |
1423 | #if CONFIG_PHYS_WRITE_ACCT |
1424 | ledger_panic_on_negative(t, task_ledgers.fs_metadata_writes); |
1425 | #endif /* CONFIG_PHYS_WRITE_ACCT */ |
1426 | |
1427 | ledger_panic_on_negative(t, task_ledgers.tagged_nofootprint); |
1428 | ledger_panic_on_negative(t, task_ledgers.tagged_footprint); |
1429 | ledger_panic_on_negative(t, task_ledgers.tagged_nofootprint_compressed); |
1430 | ledger_panic_on_negative(t, task_ledgers.tagged_footprint_compressed); |
1431 | ledger_panic_on_negative(t, task_ledgers.network_volatile); |
1432 | ledger_panic_on_negative(t, task_ledgers.network_nonvolatile); |
1433 | ledger_panic_on_negative(t, task_ledgers.network_volatile_compressed); |
1434 | ledger_panic_on_negative(t, task_ledgers.network_nonvolatile_compressed); |
1435 | ledger_panic_on_negative(t, task_ledgers.media_nofootprint); |
1436 | ledger_panic_on_negative(t, task_ledgers.media_footprint); |
1437 | ledger_panic_on_negative(t, task_ledgers.media_nofootprint_compressed); |
1438 | ledger_panic_on_negative(t, task_ledgers.media_footprint_compressed); |
1439 | ledger_panic_on_negative(t, task_ledgers.graphics_nofootprint); |
1440 | ledger_panic_on_negative(t, task_ledgers.graphics_footprint); |
1441 | ledger_panic_on_negative(t, task_ledgers.graphics_nofootprint_compressed); |
1442 | ledger_panic_on_negative(t, task_ledgers.graphics_footprint_compressed); |
1443 | ledger_panic_on_negative(t, task_ledgers.neural_nofootprint); |
1444 | ledger_panic_on_negative(t, task_ledgers.neural_footprint); |
1445 | ledger_panic_on_negative(t, task_ledgers.neural_nofootprint_compressed); |
1446 | ledger_panic_on_negative(t, task_ledgers.neural_footprint_compressed); |
1447 | } |
1448 | #endif /* MACH_ASSERT */ |
1449 | |
1450 | #if CONFIG_MEMORYSTATUS |
1451 | ledger_set_callback(template: t, entry: task_ledgers.phys_footprint, callback: task_footprint_exceeded, NULL, NULL); |
1452 | #endif /* CONFIG_MEMORYSTATUS */ |
1453 | |
1454 | ledger_set_callback(template: t, entry: task_ledgers.interrupt_wakeups, |
1455 | callback: task_wakeups_rate_exceeded, NULL, NULL); |
1456 | ledger_set_callback(template: t, entry: task_ledgers.physical_writes, callback: task_io_rate_exceeded, param0: (void *)FLAVOR_IO_PHYSICAL_WRITES, NULL); |
1457 | |
1458 | #if CONFIG_SPTM || !XNU_MONITOR |
1459 | ledger_template_complete(template: t); |
1460 | #else /* CONFIG_SPTM || !XNU_MONITOR */ |
1461 | ledger_template_complete_secure_alloc(t); |
1462 | #endif /* XNU_MONITOR */ |
1463 | task_ledger_template = t; |
1464 | } |
1465 | |
1466 | /* Create a task, but leave the task ports disabled */ |
1467 | kern_return_t |
1468 | task_create_internal( |
1469 | task_t parent_task, /* Null-able */ |
1470 | proc_ro_t proc_ro, |
1471 | coalition_t *parent_coalitions __unused, |
1472 | boolean_t inherit_memory, |
1473 | boolean_t is_64bit, |
1474 | boolean_t is_64bit_data, |
1475 | uint32_t t_flags, |
1476 | uint32_t t_flags_ro, |
1477 | uint32_t t_procflags, |
1478 | uint8_t t_returnwaitflags, |
1479 | task_t child_task) |
1480 | { |
1481 | task_t new_task; |
1482 | vm_shared_region_t shared_region; |
1483 | ledger_t ledger = NULL; |
1484 | struct task_ro_data task_ro_data = {}; |
1485 | uint32_t parent_t_flags_ro = 0; |
1486 | |
1487 | new_task = child_task; |
1488 | |
1489 | if (task_ref_count_init(new_task) != KERN_SUCCESS) { |
1490 | return KERN_RESOURCE_SHORTAGE; |
1491 | } |
1492 | |
1493 | /* allocate with active entries */ |
1494 | assert(task_ledger_template != NULL); |
1495 | ledger = ledger_instantiate(template: task_ledger_template, LEDGER_CREATE_ACTIVE_ENTRIES); |
1496 | if (ledger == NULL) { |
1497 | task_ref_count_fini(new_task); |
1498 | return KERN_RESOURCE_SHORTAGE; |
1499 | } |
1500 | |
1501 | counter_alloc(&(new_task->faults)); |
1502 | |
1503 | #if defined(HAS_APPLE_PAC) |
1504 | const uint8_t disable_user_jop = inherit_memory ? parent_task->disable_user_jop : FALSE; |
1505 | ml_task_set_rop_pid(task: new_task, parent_task, inherit: inherit_memory); |
1506 | ml_task_set_jop_pid(task: new_task, parent_task, inherit: inherit_memory, disable_user_jop); |
1507 | ml_task_set_disable_user_jop(task: new_task, disable_user_jop); |
1508 | #endif |
1509 | |
1510 | |
1511 | new_task->ledger = ledger; |
1512 | |
1513 | /* if inherit_memory is true, parent_task MUST not be NULL */ |
1514 | if (!(t_flags & TF_CORPSE_FORK) && inherit_memory) { |
1515 | #if CONFIG_DEFERRED_RECLAIM |
1516 | if (parent_task->deferred_reclamation_metadata) { |
1517 | /* |
1518 | * Prevent concurrent reclaims while we're forking the parent_task's map, |
1519 | * so that the child's map is in sync with the forked reclamation |
1520 | * metadata. |
1521 | */ |
1522 | vm_deferred_reclamation_buffer_lock( |
1523 | metadata: parent_task->deferred_reclamation_metadata); |
1524 | } |
1525 | #endif /* CONFIG_DEFERRED_RECLAIM */ |
1526 | new_task->map = vm_map_fork(ledger, old_map: parent_task->map, options: 0); |
1527 | #if CONFIG_DEFERRED_RECLAIM |
1528 | if (new_task->map != NULL && |
1529 | parent_task->deferred_reclamation_metadata) { |
1530 | new_task->deferred_reclamation_metadata = |
1531 | vm_deferred_reclamation_buffer_fork(task: new_task, |
1532 | parent: parent_task->deferred_reclamation_metadata); |
1533 | } |
1534 | #endif /* CONFIG_DEFERRED_RECLAIM */ |
1535 | } else { |
1536 | unsigned int pmap_flags = is_64bit ? PMAP_CREATE_64BIT : 0; |
1537 | pmap_t pmap = pmap_create_options(ledger, size: 0, flags: pmap_flags); |
1538 | vm_map_t new_map; |
1539 | |
1540 | if (pmap == NULL) { |
1541 | counter_free(&new_task->faults); |
1542 | ledger_dereference(ledger); |
1543 | task_ref_count_fini(new_task); |
1544 | return KERN_RESOURCE_SHORTAGE; |
1545 | } |
1546 | new_map = vm_map_create_options(pmap, |
1547 | min_off: (vm_map_offset_t)(VM_MIN_ADDRESS), |
1548 | max_off: (vm_map_offset_t)(VM_MAX_ADDRESS), |
1549 | options: VM_MAP_CREATE_PAGEABLE); |
1550 | if (parent_task) { |
1551 | vm_map_inherit_limits(new_map, old_map: parent_task->map); |
1552 | } |
1553 | new_task->map = new_map; |
1554 | } |
1555 | |
1556 | if (new_task->map == NULL) { |
1557 | counter_free(&new_task->faults); |
1558 | ledger_dereference(ledger); |
1559 | task_ref_count_fini(new_task); |
1560 | return KERN_RESOURCE_SHORTAGE; |
1561 | } |
1562 | |
1563 | #if defined(CONFIG_SCHED_MULTIQ) |
1564 | new_task->sched_group = sched_group_create(); |
1565 | #endif |
1566 | |
1567 | lck_mtx_init(lck: &new_task->lock, grp: &task_lck_grp, attr: &task_lck_attr); |
1568 | queue_init(&new_task->threads); |
1569 | new_task->suspend_count = 0; |
1570 | new_task->thread_count = 0; |
1571 | new_task->active_thread_count = 0; |
1572 | new_task->user_stop_count = 0; |
1573 | new_task->legacy_stop_count = 0; |
1574 | new_task->active = TRUE; |
1575 | new_task->halting = FALSE; |
1576 | new_task->priv_flags = 0; |
1577 | new_task->t_flags = t_flags; |
1578 | task_ro_data.t_flags_ro = t_flags_ro; |
1579 | new_task->t_procflags = t_procflags; |
1580 | new_task->t_returnwaitflags = t_returnwaitflags; |
1581 | new_task->returnwait_inheritor = current_thread(); |
1582 | new_task->importance = 0; |
1583 | new_task->crashed_thread_id = 0; |
1584 | new_task->watchports = NULL; |
1585 | new_task->t_rr_ranges = NULL; |
1586 | |
1587 | new_task->bank_context = NULL; |
1588 | |
1589 | if (parent_task) { |
1590 | parent_t_flags_ro = task_ro_flags_get(task: parent_task); |
1591 | } |
1592 | |
1593 | if (parent_task && inherit_memory) { |
1594 | #if __has_feature(ptrauth_calls) |
1595 | /* Inherit the pac exception flags from parent if in fork */ |
1596 | task_ro_data.t_flags_ro |= (parent_t_flags_ro & (TFRO_PAC_ENFORCE_USER_STATE | |
1597 | TFRO_PAC_EXC_FATAL)); |
1598 | #endif /* __has_feature(ptrauth_calls) */ |
1599 | /* Inherit the hardened binary flags from parent if in fork */ |
1600 | task_ro_data.t_flags_ro |= parent_t_flags_ro & (TFRO_HARDENED | TFRO_PLATFORM | TFRO_JIT_EXC_FATAL); |
1601 | #if XNU_TARGET_OS_OSX |
1602 | task_ro_data.t_flags_ro |= parent_t_flags_ro & TFRO_MACH_HARDENING_OPT_OUT; |
1603 | #endif /* XNU_TARGET_OS_OSX */ |
1604 | } |
1605 | |
1606 | #ifdef MACH_BSD |
1607 | new_task->corpse_info = NULL; |
1608 | #endif /* MACH_BSD */ |
1609 | |
1610 | /* kern_task not created by this function has unique id 0, start with 1 here. */ |
1611 | task_set_uniqueid(task: new_task); |
1612 | |
1613 | #if CONFIG_MACF |
1614 | set_task_crash_label(task: new_task, NULL); |
1615 | |
1616 | task_ro_data.task_filters.mach_trap_filter_mask = NULL; |
1617 | task_ro_data.task_filters.mach_kobj_filter_mask = NULL; |
1618 | #endif |
1619 | |
1620 | #if CONFIG_MEMORYSTATUS |
1621 | if (max_task_footprint != 0) { |
1622 | ledger_set_limit(ledger, entry: task_ledgers.phys_footprint, limit: max_task_footprint, PHYS_FOOTPRINT_WARNING_LEVEL); |
1623 | } |
1624 | #endif /* CONFIG_MEMORYSTATUS */ |
1625 | |
1626 | if (task_wakeups_monitor_rate != 0) { |
1627 | uint32_t flags = WAKEMON_ENABLE | WAKEMON_SET_DEFAULTS; |
1628 | int32_t rate; // Ignored because of WAKEMON_SET_DEFAULTS |
1629 | task_wakeups_monitor_ctl(task: new_task, rate_hz: &flags, flags: &rate); |
1630 | } |
1631 | |
1632 | #if CONFIG_IO_ACCOUNTING |
1633 | uint32_t flags = IOMON_ENABLE; |
1634 | task_io_monitor_ctl(new_task, &flags); |
1635 | #endif /* CONFIG_IO_ACCOUNTING */ |
1636 | |
1637 | machine_task_init(new_task, parent_task, memory_inherit: inherit_memory); |
1638 | |
1639 | new_task->task_debug = NULL; |
1640 | |
1641 | #if DEVELOPMENT || DEBUG |
1642 | new_task->task_unnested = FALSE; |
1643 | new_task->task_disconnected_count = 0; |
1644 | #endif |
1645 | queue_init(&new_task->semaphore_list); |
1646 | new_task->semaphores_owned = 0; |
1647 | |
1648 | new_task->vtimers = 0; |
1649 | |
1650 | new_task->shared_region = NULL; |
1651 | |
1652 | new_task->affinity_space = NULL; |
1653 | |
1654 | #if CONFIG_CPU_COUNTERS |
1655 | new_task->t_kpc = 0; |
1656 | #endif /* CONFIG_CPU_COUNTERS */ |
1657 | |
1658 | new_task->pidsuspended = FALSE; |
1659 | new_task->frozen = FALSE; |
1660 | new_task->changing_freeze_state = FALSE; |
1661 | new_task->rusage_cpu_flags = 0; |
1662 | new_task->rusage_cpu_percentage = 0; |
1663 | new_task->rusage_cpu_interval = 0; |
1664 | new_task->rusage_cpu_deadline = 0; |
1665 | new_task->rusage_cpu_callt = NULL; |
1666 | #if MACH_ASSERT |
1667 | new_task->suspends_outstanding = 0; |
1668 | #endif |
1669 | recount_task_init(tk: &new_task->tk_recount); |
1670 | |
1671 | #if HYPERVISOR |
1672 | new_task->hv_task_target = NULL; |
1673 | #endif /* HYPERVISOR */ |
1674 | |
1675 | #if CONFIG_TASKWATCH |
1676 | queue_init(&new_task->task_watchers); |
1677 | new_task->num_taskwatchers = 0; |
1678 | new_task->watchapplying = 0; |
1679 | #endif /* CONFIG_TASKWATCH */ |
1680 | |
1681 | new_task->mem_notify_reserved = 0; |
1682 | new_task->memlimit_attrs_reserved = 0; |
1683 | |
1684 | new_task->requested_policy = default_task_requested_policy; |
1685 | new_task->effective_policy = default_task_effective_policy; |
1686 | |
1687 | new_task->task_shared_region_slide = -1; |
1688 | |
1689 | if (parent_task != NULL) { |
1690 | task_ro_data.task_tokens.sec_token = *task_get_sec_token(task: parent_task); |
1691 | task_ro_data.task_tokens.audit_token = *task_get_audit_token(task: parent_task); |
1692 | |
1693 | /* only inherit the option bits, no effect until task_set_immovable_pinned() */ |
1694 | task_ro_data.task_control_port_options = task_get_control_port_options(task: parent_task); |
1695 | |
1696 | task_ro_data.t_flags_ro |= parent_t_flags_ro & TFRO_FILTER_MSG; |
1697 | #if CONFIG_MACF |
1698 | if (!(t_flags & TF_CORPSE_FORK)) { |
1699 | task_ro_data.task_filters.mach_trap_filter_mask = task_get_mach_trap_filter_mask(task: parent_task); |
1700 | task_ro_data.task_filters.mach_kobj_filter_mask = task_get_mach_kobj_filter_mask(task: parent_task); |
1701 | } |
1702 | #endif |
1703 | } else { |
1704 | task_ro_data.task_tokens.sec_token = KERNEL_SECURITY_TOKEN; |
1705 | task_ro_data.task_tokens.audit_token = KERNEL_AUDIT_TOKEN; |
1706 | |
1707 | task_ro_data.task_control_port_options = TASK_CONTROL_PORT_OPTIONS_NONE; |
1708 | } |
1709 | |
1710 | /* must set before task_importance_init_from_parent: */ |
1711 | if (proc_ro != NULL) { |
1712 | new_task->bsd_info_ro = proc_ro_ref_task(pr: proc_ro, t: new_task, t_data: &task_ro_data); |
1713 | } else { |
1714 | new_task->bsd_info_ro = proc_ro_alloc(NULL, NULL, t: new_task, t_data: &task_ro_data); |
1715 | } |
1716 | |
1717 | ipc_task_init(task: new_task, parent: parent_task); |
1718 | |
1719 | task_importance_init_from_parent(new_task, parent_task); |
1720 | |
1721 | new_task->corpse_vmobject_list = NULL; |
1722 | |
1723 | if (parent_task != TASK_NULL) { |
1724 | /* inherit the parent's shared region */ |
1725 | shared_region = vm_shared_region_get(task: parent_task); |
1726 | if (shared_region != NULL) { |
1727 | vm_shared_region_set(task: new_task, new_shared_region: shared_region); |
1728 | } |
1729 | |
1730 | #if __has_feature(ptrauth_calls) |
1731 | /* use parent's shared_region_id */ |
1732 | char *shared_region_id = task_get_vm_shared_region_id_and_jop_pid(parent_task, NULL); |
1733 | if (shared_region_id != NULL) { |
1734 | shared_region_key_alloc(shared_region_id, FALSE, 0); /* get a reference */ |
1735 | } |
1736 | task_set_shared_region_id(new_task, shared_region_id); |
1737 | #endif /* __has_feature(ptrauth_calls) */ |
1738 | |
1739 | if (task_has_64Bit_addr(parent_task)) { |
1740 | task_set_64Bit_addr(new_task); |
1741 | } |
1742 | |
1743 | if (task_has_64Bit_data(parent_task)) { |
1744 | task_set_64Bit_data(new_task); |
1745 | } |
1746 | |
1747 | new_task->all_image_info_addr = parent_task->all_image_info_addr; |
1748 | new_task->all_image_info_size = parent_task->all_image_info_size; |
1749 | new_task->mach_header_vm_address = 0; |
1750 | |
1751 | if (inherit_memory && parent_task->affinity_space) { |
1752 | task_affinity_create(parent_task, new_task); |
1753 | } |
1754 | |
1755 | new_task->pset_hint = parent_task->pset_hint = task_choose_pset(task: parent_task); |
1756 | |
1757 | new_task->task_exc_guard = parent_task->task_exc_guard; |
1758 | if (parent_task->t_flags & TF_NO_SMT) { |
1759 | new_task->t_flags |= TF_NO_SMT; |
1760 | } |
1761 | |
1762 | if (parent_task->t_flags & TF_USE_PSET_HINT_CLUSTER_TYPE) { |
1763 | new_task->t_flags |= TF_USE_PSET_HINT_CLUSTER_TYPE; |
1764 | } |
1765 | |
1766 | if (parent_task->t_flags & TF_TECS) { |
1767 | new_task->t_flags |= TF_TECS; |
1768 | } |
1769 | |
1770 | #if defined(__x86_64__) |
1771 | if (parent_task->t_flags & TF_INSN_COPY_OPTOUT) { |
1772 | new_task->t_flags |= TF_INSN_COPY_OPTOUT; |
1773 | } |
1774 | #endif |
1775 | |
1776 | new_task->priority = BASEPRI_DEFAULT; |
1777 | new_task->max_priority = MAXPRI_USER; |
1778 | |
1779 | task_policy_create(task: new_task, parent_task); |
1780 | } else { |
1781 | #ifdef __LP64__ |
1782 | if (is_64bit) { |
1783 | task_set_64Bit_addr(new_task); |
1784 | } |
1785 | #endif |
1786 | |
1787 | if (is_64bit_data) { |
1788 | task_set_64Bit_data(new_task); |
1789 | } |
1790 | |
1791 | new_task->all_image_info_addr = (mach_vm_address_t)0; |
1792 | new_task->all_image_info_size = (mach_vm_size_t)0; |
1793 | |
1794 | new_task->pset_hint = PROCESSOR_SET_NULL; |
1795 | |
1796 | new_task->task_exc_guard = TASK_EXC_GUARD_NONE; |
1797 | |
1798 | if (new_task == kernel_task) { |
1799 | new_task->priority = BASEPRI_KERNEL; |
1800 | new_task->max_priority = MAXPRI_KERNEL; |
1801 | } else { |
1802 | new_task->priority = BASEPRI_DEFAULT; |
1803 | new_task->max_priority = MAXPRI_USER; |
1804 | } |
1805 | } |
1806 | |
1807 | bzero(s: new_task->coalition, n: sizeof(new_task->coalition)); |
1808 | for (int i = 0; i < COALITION_NUM_TYPES; i++) { |
1809 | queue_chain_init(new_task->task_coalition[i]); |
1810 | } |
1811 | |
1812 | /* Allocate I/O Statistics */ |
1813 | new_task->task_io_stats = kalloc_data(sizeof(struct io_stat_info), |
1814 | Z_WAITOK | Z_ZERO | Z_NOFAIL); |
1815 | |
1816 | bzero(s: &(new_task->cpu_time_eqos_stats), n: sizeof(new_task->cpu_time_eqos_stats)); |
1817 | bzero(s: &(new_task->cpu_time_rqos_stats), n: sizeof(new_task->cpu_time_rqos_stats)); |
1818 | |
1819 | bzero(s: &new_task->extmod_statistics, n: sizeof(new_task->extmod_statistics)); |
1820 | |
1821 | counter_alloc(&(new_task->pageins)); |
1822 | counter_alloc(&(new_task->cow_faults)); |
1823 | counter_alloc(&(new_task->messages_sent)); |
1824 | counter_alloc(&(new_task->messages_received)); |
1825 | |
1826 | /* Copy resource acc. info from Parent for Corpe Forked task. */ |
1827 | if (parent_task != NULL && (t_flags & TF_CORPSE_FORK)) { |
1828 | task_rollup_accounting_info(new_task, parent_task); |
1829 | task_store_owned_vmobject_info(to_task: new_task, from_task: parent_task); |
1830 | } else { |
1831 | /* Initialize to zero for standard fork/spawn case */ |
1832 | new_task->total_runnable_time = 0; |
1833 | new_task->syscalls_mach = 0; |
1834 | new_task->syscalls_unix = 0; |
1835 | new_task->c_switch = 0; |
1836 | new_task->p_switch = 0; |
1837 | new_task->ps_switch = 0; |
1838 | new_task->decompressions = 0; |
1839 | new_task->low_mem_notified_warn = 0; |
1840 | new_task->low_mem_notified_critical = 0; |
1841 | new_task->purged_memory_warn = 0; |
1842 | new_task->purged_memory_critical = 0; |
1843 | new_task->low_mem_privileged_listener = 0; |
1844 | new_task->memlimit_is_active = 0; |
1845 | new_task->memlimit_is_fatal = 0; |
1846 | new_task->memlimit_active_exc_resource = 0; |
1847 | new_task->memlimit_inactive_exc_resource = 0; |
1848 | new_task->task_timer_wakeups_bin_1 = 0; |
1849 | new_task->task_timer_wakeups_bin_2 = 0; |
1850 | new_task->task_gpu_ns = 0; |
1851 | new_task->task_writes_counters_internal.task_immediate_writes = 0; |
1852 | new_task->task_writes_counters_internal.task_deferred_writes = 0; |
1853 | new_task->task_writes_counters_internal.task_invalidated_writes = 0; |
1854 | new_task->task_writes_counters_internal.task_metadata_writes = 0; |
1855 | new_task->task_writes_counters_external.task_immediate_writes = 0; |
1856 | new_task->task_writes_counters_external.task_deferred_writes = 0; |
1857 | new_task->task_writes_counters_external.task_invalidated_writes = 0; |
1858 | new_task->task_writes_counters_external.task_metadata_writes = 0; |
1859 | #if CONFIG_PHYS_WRITE_ACCT |
1860 | new_task->task_fs_metadata_writes = 0; |
1861 | #endif /* CONFIG_PHYS_WRITE_ACCT */ |
1862 | } |
1863 | |
1864 | |
1865 | new_task->donates_own_pages = FALSE; |
1866 | #if CONFIG_COALITIONS |
1867 | if (!(t_flags & TF_CORPSE_FORK)) { |
1868 | /* TODO: there is no graceful failure path here... */ |
1869 | if (parent_coalitions && parent_coalitions[COALITION_TYPE_RESOURCE]) { |
1870 | coalitions_adopt_task(coaltions: parent_coalitions, task: new_task); |
1871 | if (parent_coalitions[COALITION_TYPE_JETSAM]) { |
1872 | new_task->donates_own_pages = coalition_is_swappable(coal: parent_coalitions[COALITION_TYPE_JETSAM]); |
1873 | } |
1874 | } else if (parent_task && parent_task->coalition[COALITION_TYPE_RESOURCE]) { |
1875 | /* |
1876 | * all tasks at least have a resource coalition, so |
1877 | * if the parent has one then inherit all coalitions |
1878 | * the parent is a part of |
1879 | */ |
1880 | coalitions_adopt_task(coaltions: parent_task->coalition, task: new_task); |
1881 | if (parent_task->coalition[COALITION_TYPE_JETSAM]) { |
1882 | new_task->donates_own_pages = coalition_is_swappable(coal: parent_task->coalition[COALITION_TYPE_JETSAM]); |
1883 | } |
1884 | } else { |
1885 | /* TODO: assert that new_task will be PID 1 (launchd) */ |
1886 | coalitions_adopt_init_task(task: new_task); |
1887 | } |
1888 | /* |
1889 | * on exec, we need to transfer the coalition roles from the |
1890 | * parent task to the exec copy task. |
1891 | */ |
1892 | if (parent_task && (t_procflags & TPF_EXEC_COPY)) { |
1893 | int coal_roles[COALITION_NUM_TYPES]; |
1894 | task_coalition_roles(task: parent_task, roles: coal_roles); |
1895 | (void)coalitions_set_roles(coalitions: new_task->coalition, task: new_task, roles: coal_roles); |
1896 | } |
1897 | } else { |
1898 | coalitions_adopt_corpse_task(task: new_task); |
1899 | } |
1900 | |
1901 | if (new_task->coalition[COALITION_TYPE_RESOURCE] == COALITION_NULL) { |
1902 | panic("created task is not a member of a resource coalition" ); |
1903 | } |
1904 | task_set_coalition_member(new_task); |
1905 | #endif /* CONFIG_COALITIONS */ |
1906 | |
1907 | new_task->dispatchqueue_offset = 0; |
1908 | if (parent_task != NULL) { |
1909 | new_task->dispatchqueue_offset = parent_task->dispatchqueue_offset; |
1910 | } |
1911 | |
1912 | new_task->task_can_transfer_memory_ownership = FALSE; |
1913 | new_task->task_volatile_objects = 0; |
1914 | new_task->task_nonvolatile_objects = 0; |
1915 | new_task->task_objects_disowning = FALSE; |
1916 | new_task->task_objects_disowned = FALSE; |
1917 | new_task->task_owned_objects = 0; |
1918 | queue_init(&new_task->task_objq); |
1919 | |
1920 | #if CONFIG_FREEZE |
1921 | queue_init(&new_task->task_frozen_cseg_q); |
1922 | #endif /* CONFIG_FREEZE */ |
1923 | |
1924 | task_objq_lock_init(new_task); |
1925 | |
1926 | #if __arm64__ |
1927 | new_task->task_legacy_footprint = FALSE; |
1928 | new_task->task_extra_footprint_limit = FALSE; |
1929 | new_task->task_ios13extended_footprint_limit = FALSE; |
1930 | #endif /* __arm64__ */ |
1931 | new_task->task_region_footprint = FALSE; |
1932 | new_task->task_has_crossed_thread_limit = FALSE; |
1933 | new_task->task_thread_limit = 0; |
1934 | #if CONFIG_SECLUDED_MEMORY |
1935 | new_task->task_can_use_secluded_mem = FALSE; |
1936 | new_task->task_could_use_secluded_mem = FALSE; |
1937 | new_task->task_could_also_use_secluded_mem = FALSE; |
1938 | new_task->task_suppressed_secluded = FALSE; |
1939 | #endif /* CONFIG_SECLUDED_MEMORY */ |
1940 | |
1941 | /* |
1942 | * t_flags is set up above. But since we don't |
1943 | * support darkwake mode being set that way |
1944 | * currently, we clear it out here explicitly. |
1945 | */ |
1946 | new_task->t_flags &= ~(TF_DARKWAKE_MODE); |
1947 | |
1948 | queue_init(&new_task->io_user_clients); |
1949 | new_task->loadTag = 0; |
1950 | |
1951 | lck_mtx_lock(lck: &tasks_threads_lock); |
1952 | queue_enter(&tasks, new_task, task_t, tasks); |
1953 | tasks_count++; |
1954 | if (tasks_suspend_state) { |
1955 | task_suspend_internal(new_task); |
1956 | } |
1957 | lck_mtx_unlock(lck: &tasks_threads_lock); |
1958 | task_ref_hold_proc_task_struct(task: new_task); |
1959 | |
1960 | return KERN_SUCCESS; |
1961 | } |
1962 | |
1963 | /* |
1964 | * task_rollup_accounting_info |
1965 | * |
1966 | * Roll up accounting stats. Used to rollup stats |
1967 | * for exec copy task and corpse fork. |
1968 | */ |
1969 | void |
1970 | task_rollup_accounting_info(task_t to_task, task_t from_task) |
1971 | { |
1972 | assert(from_task != to_task); |
1973 | |
1974 | recount_task_copy(dst: &to_task->tk_recount, src: &from_task->tk_recount); |
1975 | to_task->total_runnable_time = from_task->total_runnable_time; |
1976 | counter_add(&to_task->faults, amount: counter_load(&from_task->faults)); |
1977 | counter_add(&to_task->pageins, amount: counter_load(&from_task->pageins)); |
1978 | counter_add(&to_task->cow_faults, amount: counter_load(&from_task->cow_faults)); |
1979 | counter_add(&to_task->messages_sent, amount: counter_load(&from_task->messages_sent)); |
1980 | counter_add(&to_task->messages_received, amount: counter_load(&from_task->messages_received)); |
1981 | to_task->decompressions = from_task->decompressions; |
1982 | to_task->syscalls_mach = from_task->syscalls_mach; |
1983 | to_task->syscalls_unix = from_task->syscalls_unix; |
1984 | to_task->c_switch = from_task->c_switch; |
1985 | to_task->p_switch = from_task->p_switch; |
1986 | to_task->ps_switch = from_task->ps_switch; |
1987 | to_task->extmod_statistics = from_task->extmod_statistics; |
1988 | to_task->low_mem_notified_warn = from_task->low_mem_notified_warn; |
1989 | to_task->low_mem_notified_critical = from_task->low_mem_notified_critical; |
1990 | to_task->purged_memory_warn = from_task->purged_memory_warn; |
1991 | to_task->purged_memory_critical = from_task->purged_memory_critical; |
1992 | to_task->low_mem_privileged_listener = from_task->low_mem_privileged_listener; |
1993 | *to_task->task_io_stats = *from_task->task_io_stats; |
1994 | to_task->cpu_time_eqos_stats = from_task->cpu_time_eqos_stats; |
1995 | to_task->cpu_time_rqos_stats = from_task->cpu_time_rqos_stats; |
1996 | to_task->task_timer_wakeups_bin_1 = from_task->task_timer_wakeups_bin_1; |
1997 | to_task->task_timer_wakeups_bin_2 = from_task->task_timer_wakeups_bin_2; |
1998 | to_task->task_gpu_ns = from_task->task_gpu_ns; |
1999 | to_task->task_writes_counters_internal.task_immediate_writes = from_task->task_writes_counters_internal.task_immediate_writes; |
2000 | to_task->task_writes_counters_internal.task_deferred_writes = from_task->task_writes_counters_internal.task_deferred_writes; |
2001 | to_task->task_writes_counters_internal.task_invalidated_writes = from_task->task_writes_counters_internal.task_invalidated_writes; |
2002 | to_task->task_writes_counters_internal.task_metadata_writes = from_task->task_writes_counters_internal.task_metadata_writes; |
2003 | to_task->task_writes_counters_external.task_immediate_writes = from_task->task_writes_counters_external.task_immediate_writes; |
2004 | to_task->task_writes_counters_external.task_deferred_writes = from_task->task_writes_counters_external.task_deferred_writes; |
2005 | to_task->task_writes_counters_external.task_invalidated_writes = from_task->task_writes_counters_external.task_invalidated_writes; |
2006 | to_task->task_writes_counters_external.task_metadata_writes = from_task->task_writes_counters_external.task_metadata_writes; |
2007 | #if CONFIG_PHYS_WRITE_ACCT |
2008 | to_task->task_fs_metadata_writes = from_task->task_fs_metadata_writes; |
2009 | #endif /* CONFIG_PHYS_WRITE_ACCT */ |
2010 | |
2011 | #if CONFIG_MEMORYSTATUS |
2012 | ledger_rollup_entry(to_ledger: to_task->ledger, from_ledger: from_task->ledger, entry: task_ledgers.memorystatus_dirty_time); |
2013 | #endif /* CONFIG_MEMORYSTATUS */ |
2014 | |
2015 | /* Skip ledger roll up for memory accounting entries */ |
2016 | ledger_rollup_entry(to_ledger: to_task->ledger, from_ledger: from_task->ledger, entry: task_ledgers.cpu_time); |
2017 | ledger_rollup_entry(to_ledger: to_task->ledger, from_ledger: from_task->ledger, entry: task_ledgers.platform_idle_wakeups); |
2018 | ledger_rollup_entry(to_ledger: to_task->ledger, from_ledger: from_task->ledger, entry: task_ledgers.interrupt_wakeups); |
2019 | #if CONFIG_SCHED_SFI |
2020 | for (sfi_class_id_t class_id = SFI_CLASS_UNSPECIFIED; class_id < MAX_SFI_CLASS_ID; class_id++) { |
2021 | ledger_rollup_entry(to_ledger: to_task->ledger, from_ledger: from_task->ledger, entry: task_ledgers.sfi_wait_times[class_id]); |
2022 | } |
2023 | #endif |
2024 | ledger_rollup_entry(to_ledger: to_task->ledger, from_ledger: from_task->ledger, entry: task_ledgers.cpu_time_billed_to_me); |
2025 | ledger_rollup_entry(to_ledger: to_task->ledger, from_ledger: from_task->ledger, entry: task_ledgers.cpu_time_billed_to_others); |
2026 | ledger_rollup_entry(to_ledger: to_task->ledger, from_ledger: from_task->ledger, entry: task_ledgers.physical_writes); |
2027 | ledger_rollup_entry(to_ledger: to_task->ledger, from_ledger: from_task->ledger, entry: task_ledgers.logical_writes); |
2028 | ledger_rollup_entry(to_ledger: to_task->ledger, from_ledger: from_task->ledger, entry: task_ledgers.energy_billed_to_me); |
2029 | ledger_rollup_entry(to_ledger: to_task->ledger, from_ledger: from_task->ledger, entry: task_ledgers.energy_billed_to_others); |
2030 | } |
2031 | |
2032 | /* |
2033 | * task_deallocate_internal: |
2034 | * |
2035 | * Drop a reference on a task. |
2036 | * Don't call this directly. |
2037 | */ |
2038 | extern void task_deallocate_internal(task_t task, os_ref_count_t refs); |
2039 | void |
2040 | task_deallocate_internal( |
2041 | task_t task, |
2042 | os_ref_count_t refs) |
2043 | { |
2044 | ledger_amount_t credit, debit, interrupt_wakeups, platform_idle_wakeups; |
2045 | |
2046 | if (task == TASK_NULL) { |
2047 | return; |
2048 | } |
2049 | |
2050 | #if IMPORTANCE_INHERITANCE |
2051 | if (refs == 1) { |
2052 | /* |
2053 | * If last ref potentially comes from the task's importance, |
2054 | * disconnect it. But more task refs may be added before |
2055 | * that completes, so wait for the reference to go to zero |
2056 | * naturally (it may happen on a recursive task_deallocate() |
2057 | * from the ipc_importance_disconnect_task() call). |
2058 | */ |
2059 | if (IIT_NULL != task->task_imp_base) { |
2060 | ipc_importance_disconnect_task(task); |
2061 | } |
2062 | return; |
2063 | } |
2064 | #endif /* IMPORTANCE_INHERITANCE */ |
2065 | |
2066 | if (refs > 0) { |
2067 | return; |
2068 | } |
2069 | |
2070 | /* |
2071 | * The task should be dead at this point. Ensure other resources |
2072 | * like threads, are gone before we trash the world. |
2073 | */ |
2074 | assert(queue_empty(&task->threads)); |
2075 | assert(get_bsdtask_info(task) == NULL); |
2076 | assert(!is_active(task->itk_space)); |
2077 | assert(!task->active); |
2078 | assert(task->active_thread_count == 0); |
2079 | assert(!task_get_game_mode(task)); |
2080 | |
2081 | lck_mtx_lock(lck: &tasks_threads_lock); |
2082 | assert(terminated_tasks_count > 0); |
2083 | queue_remove(&terminated_tasks, task, task_t, tasks); |
2084 | terminated_tasks_count--; |
2085 | lck_mtx_unlock(lck: &tasks_threads_lock); |
2086 | |
2087 | /* |
2088 | * remove the reference on bank context |
2089 | */ |
2090 | task_bank_reset(task); |
2091 | |
2092 | kfree_data(task->task_io_stats, sizeof(struct io_stat_info)); |
2093 | |
2094 | /* |
2095 | * Give the machine dependent code a chance |
2096 | * to perform cleanup before ripping apart |
2097 | * the task. |
2098 | */ |
2099 | machine_task_terminate(task); |
2100 | |
2101 | ipc_task_terminate(task); |
2102 | |
2103 | /* let iokit know 2 */ |
2104 | iokit_task_terminate(task, phase: 2); |
2105 | |
2106 | /* Unregister task from userspace coredumps on panic */ |
2107 | kern_unregister_userspace_coredump(task); |
2108 | |
2109 | if (task->affinity_space) { |
2110 | task_affinity_deallocate(task); |
2111 | } |
2112 | |
2113 | #if MACH_ASSERT |
2114 | if (task->ledger != NULL && |
2115 | task->map != NULL && |
2116 | task->map->pmap != NULL && |
2117 | task->map->pmap->ledger != NULL) { |
2118 | assert(task->ledger == task->map->pmap->ledger); |
2119 | } |
2120 | #endif /* MACH_ASSERT */ |
2121 | |
2122 | vm_owned_objects_disown(task); |
2123 | assert(task->task_objects_disowned); |
2124 | if (task->task_owned_objects != 0) { |
2125 | panic("task_deallocate(%p): " |
2126 | "volatile_objects=%d nonvolatile_objects=%d owned=%d\n" , |
2127 | task, |
2128 | task->task_volatile_objects, |
2129 | task->task_nonvolatile_objects, |
2130 | task->task_owned_objects); |
2131 | } |
2132 | |
2133 | #if CONFIG_DEFERRED_RECLAIM |
2134 | if (task->deferred_reclamation_metadata != NULL) { |
2135 | vm_deferred_reclamation_buffer_deallocate(metadata: task->deferred_reclamation_metadata); |
2136 | task->deferred_reclamation_metadata = NULL; |
2137 | } |
2138 | #endif /* CONFIG_DEFERRED_RECLAIM */ |
2139 | |
2140 | vm_map_deallocate(map: task->map); |
2141 | if (task->is_large_corpse) { |
2142 | assert(large_corpse_count > 0); |
2143 | OSDecrementAtomic(&large_corpse_count); |
2144 | task->is_large_corpse = false; |
2145 | } |
2146 | is_release(task->itk_space); |
2147 | |
2148 | if (task->t_rr_ranges) { |
2149 | restartable_ranges_release(ranges: task->t_rr_ranges); |
2150 | } |
2151 | |
2152 | ledger_get_entries(ledger: task->ledger, entry: task_ledgers.interrupt_wakeups, |
2153 | credit: &interrupt_wakeups, debit: &debit); |
2154 | ledger_get_entries(ledger: task->ledger, entry: task_ledgers.platform_idle_wakeups, |
2155 | credit: &platform_idle_wakeups, debit: &debit); |
2156 | |
2157 | #if defined(CONFIG_SCHED_MULTIQ) |
2158 | sched_group_destroy(sched_group: task->sched_group); |
2159 | #endif |
2160 | |
2161 | struct recount_times_mach sum = { 0 }; |
2162 | struct recount_times_mach p_only = { 0 }; |
2163 | recount_task_times_perf_only(task, sum: &sum, sum_perf_only: &p_only); |
2164 | #if CONFIG_PERVASIVE_ENERGY |
2165 | uint64_t energy = recount_task_energy_nj(task); |
2166 | #endif /* CONFIG_PERVASIVE_ENERGY */ |
2167 | recount_task_deinit(tk: &task->tk_recount); |
2168 | |
2169 | /* Accumulate statistics for dead tasks */ |
2170 | lck_spin_lock(lck: &dead_task_statistics_lock); |
2171 | dead_task_statistics.total_user_time += sum.rtm_user; |
2172 | dead_task_statistics.total_system_time += sum.rtm_system; |
2173 | |
2174 | dead_task_statistics.task_interrupt_wakeups += interrupt_wakeups; |
2175 | dead_task_statistics.task_platform_idle_wakeups += platform_idle_wakeups; |
2176 | |
2177 | dead_task_statistics.task_timer_wakeups_bin_1 += task->task_timer_wakeups_bin_1; |
2178 | dead_task_statistics.task_timer_wakeups_bin_2 += task->task_timer_wakeups_bin_2; |
2179 | dead_task_statistics.total_ptime += p_only.rtm_user + p_only.rtm_system; |
2180 | dead_task_statistics.total_pset_switches += task->ps_switch; |
2181 | dead_task_statistics.task_gpu_ns += task->task_gpu_ns; |
2182 | #if CONFIG_PERVASIVE_ENERGY |
2183 | dead_task_statistics.task_energy += energy; |
2184 | #endif /* CONFIG_PERVASIVE_ENERGY */ |
2185 | |
2186 | lck_spin_unlock(lck: &dead_task_statistics_lock); |
2187 | lck_mtx_destroy(lck: &task->lock, grp: &task_lck_grp); |
2188 | |
2189 | if (!ledger_get_entries(ledger: task->ledger, entry: task_ledgers.tkm_private, credit: &credit, |
2190 | debit: &debit)) { |
2191 | OSAddAtomic64(credit, (int64_t *)&tasks_tkm_private.alloc); |
2192 | OSAddAtomic64(debit, (int64_t *)&tasks_tkm_private.free); |
2193 | } |
2194 | if (!ledger_get_entries(ledger: task->ledger, entry: task_ledgers.tkm_shared, credit: &credit, |
2195 | debit: &debit)) { |
2196 | OSAddAtomic64(credit, (int64_t *)&tasks_tkm_shared.alloc); |
2197 | OSAddAtomic64(debit, (int64_t *)&tasks_tkm_shared.free); |
2198 | } |
2199 | ledger_dereference(ledger: task->ledger); |
2200 | |
2201 | counter_free(&task->faults); |
2202 | counter_free(&task->pageins); |
2203 | counter_free(&task->cow_faults); |
2204 | counter_free(&task->messages_sent); |
2205 | counter_free(&task->messages_received); |
2206 | |
2207 | #if CONFIG_COALITIONS |
2208 | task_release_coalitions(task); |
2209 | #endif /* CONFIG_COALITIONS */ |
2210 | |
2211 | bzero(s: task->coalition, n: sizeof(task->coalition)); |
2212 | |
2213 | #if MACH_BSD |
2214 | /* clean up collected information since last reference to task is gone */ |
2215 | if (task->corpse_info) { |
2216 | void *corpse_info_kernel = kcdata_memory_get_begin_addr(data: task->corpse_info); |
2217 | task_crashinfo_destroy(data: task->corpse_info); |
2218 | task->corpse_info = NULL; |
2219 | kfree_data(corpse_info_kernel, CORPSEINFO_ALLOCATION_SIZE); |
2220 | } |
2221 | #endif |
2222 | |
2223 | #if CONFIG_MACF |
2224 | if (get_task_crash_label(task)) { |
2225 | mac_exc_free_label(label: get_task_crash_label(task)); |
2226 | set_task_crash_label(task, NULL); |
2227 | } |
2228 | #endif |
2229 | |
2230 | assert(queue_empty(&task->task_objq)); |
2231 | task_objq_lock_destroy(task); |
2232 | |
2233 | if (task->corpse_vmobject_list) { |
2234 | kfree_data(task->corpse_vmobject_list, |
2235 | (vm_size_t)task->corpse_vmobject_list_size); |
2236 | } |
2237 | |
2238 | task_ref_count_fini(task); |
2239 | proc_ro_erase_task(pr: task->bsd_info_ro); |
2240 | task_release_proc_task_struct(task); |
2241 | } |
2242 | |
2243 | /* |
2244 | * task_name_deallocate_mig: |
2245 | * |
2246 | * Drop a reference on a task name. |
2247 | */ |
2248 | void |
2249 | task_name_deallocate_mig( |
2250 | task_name_t task_name) |
2251 | { |
2252 | return task_deallocate_grp((task_t)task_name, TASK_GRP_MIG); |
2253 | } |
2254 | |
2255 | /* |
2256 | * task_policy_set_deallocate_mig: |
2257 | * |
2258 | * Drop a reference on a task type. |
2259 | */ |
2260 | void |
2261 | task_policy_set_deallocate_mig(task_policy_set_t task_policy_set) |
2262 | { |
2263 | return task_deallocate_grp((task_t)task_policy_set, TASK_GRP_MIG); |
2264 | } |
2265 | |
2266 | /* |
2267 | * task_policy_get_deallocate_mig: |
2268 | * |
2269 | * Drop a reference on a task type. |
2270 | */ |
2271 | void |
2272 | task_policy_get_deallocate_mig(task_policy_get_t task_policy_get) |
2273 | { |
2274 | return task_deallocate_grp((task_t)task_policy_get, TASK_GRP_MIG); |
2275 | } |
2276 | |
2277 | /* |
2278 | * task_inspect_deallocate_mig: |
2279 | * |
2280 | * Drop a task inspection reference. |
2281 | */ |
2282 | void |
2283 | task_inspect_deallocate_mig( |
2284 | task_inspect_t task_inspect) |
2285 | { |
2286 | return task_deallocate_grp((task_t)task_inspect, TASK_GRP_MIG); |
2287 | } |
2288 | |
2289 | /* |
2290 | * task_read_deallocate_mig: |
2291 | * |
2292 | * Drop a reference on task read port. |
2293 | */ |
2294 | void |
2295 | task_read_deallocate_mig( |
2296 | task_read_t task_read) |
2297 | { |
2298 | return task_deallocate_grp((task_t)task_read, TASK_GRP_MIG); |
2299 | } |
2300 | |
2301 | /* |
2302 | * task_suspension_token_deallocate: |
2303 | * |
2304 | * Drop a reference on a task suspension token. |
2305 | */ |
2306 | void |
2307 | task_suspension_token_deallocate( |
2308 | task_suspension_token_t token) |
2309 | { |
2310 | return task_deallocate((task_t)token); |
2311 | } |
2312 | |
2313 | void |
2314 | task_suspension_token_deallocate_grp( |
2315 | task_suspension_token_t token, |
2316 | task_grp_t grp) |
2317 | { |
2318 | return task_deallocate_grp((task_t)token, grp); |
2319 | } |
2320 | |
2321 | /* |
2322 | * task_collect_crash_info: |
2323 | * |
2324 | * collect crash info from bsd and mach based data |
2325 | */ |
2326 | kern_return_t |
2327 | task_collect_crash_info( |
2328 | task_t task, |
2329 | #ifdef CONFIG_MACF |
2330 | struct label *crash_label, |
2331 | #endif |
2332 | int is_corpse_fork) |
2333 | { |
2334 | kern_return_t kr = KERN_SUCCESS; |
2335 | |
2336 | kcdata_descriptor_t crash_data = NULL; |
2337 | kcdata_descriptor_t crash_data_release = NULL; |
2338 | mach_msg_type_number_t size = CORPSEINFO_ALLOCATION_SIZE; |
2339 | mach_vm_offset_t crash_data_ptr = 0; |
2340 | void *crash_data_kernel = NULL; |
2341 | void *crash_data_kernel_release = NULL; |
2342 | #if CONFIG_MACF |
2343 | struct label *label, *free_label; |
2344 | #endif |
2345 | |
2346 | if (!corpses_enabled()) { |
2347 | return KERN_NOT_SUPPORTED; |
2348 | } |
2349 | |
2350 | #if CONFIG_MACF |
2351 | free_label = label = mac_exc_create_label(NULL); |
2352 | #endif |
2353 | |
2354 | task_lock(task); |
2355 | |
2356 | assert(is_corpse_fork || get_bsdtask_info(task) != NULL); |
2357 | if (task->corpse_info == NULL && (is_corpse_fork || get_bsdtask_info(task) != NULL)) { |
2358 | #if CONFIG_MACF |
2359 | /* Set the crash label, used by the exception delivery mac hook */ |
2360 | free_label = get_task_crash_label(task); // Most likely NULL. |
2361 | set_task_crash_label(task, label); |
2362 | mac_exc_update_task_crash_label(task, newlabel: crash_label); |
2363 | #endif |
2364 | task_unlock(task); |
2365 | |
2366 | crash_data_kernel = kalloc_data(CORPSEINFO_ALLOCATION_SIZE, |
2367 | Z_WAITOK | Z_ZERO); |
2368 | if (crash_data_kernel == NULL) { |
2369 | kr = KERN_RESOURCE_SHORTAGE; |
2370 | goto out_no_lock; |
2371 | } |
2372 | crash_data_ptr = (mach_vm_offset_t) crash_data_kernel; |
2373 | |
2374 | /* Do not get a corpse ref for corpse fork */ |
2375 | crash_data = task_crashinfo_alloc_init(crash_data_p: (mach_vm_address_t)crash_data_ptr, size, |
2376 | kc_u_flags: is_corpse_fork ? 0 : CORPSE_CRASHINFO_HAS_REF, |
2377 | KCFLAG_USE_MEMCOPY); |
2378 | if (crash_data) { |
2379 | task_lock(task); |
2380 | crash_data_release = task->corpse_info; |
2381 | crash_data_kernel_release = kcdata_memory_get_begin_addr(data: crash_data_release); |
2382 | task->corpse_info = crash_data; |
2383 | |
2384 | task_unlock(task); |
2385 | kr = KERN_SUCCESS; |
2386 | } else { |
2387 | kfree_data(crash_data_kernel, |
2388 | CORPSEINFO_ALLOCATION_SIZE); |
2389 | kr = KERN_FAILURE; |
2390 | } |
2391 | |
2392 | if (crash_data_release != NULL) { |
2393 | task_crashinfo_destroy(data: crash_data_release); |
2394 | } |
2395 | kfree_data(crash_data_kernel_release, CORPSEINFO_ALLOCATION_SIZE); |
2396 | } else { |
2397 | task_unlock(task); |
2398 | } |
2399 | |
2400 | out_no_lock: |
2401 | #if CONFIG_MACF |
2402 | if (free_label != NULL) { |
2403 | mac_exc_free_label(label: free_label); |
2404 | } |
2405 | #endif |
2406 | return kr; |
2407 | } |
2408 | |
2409 | /* |
2410 | * task_deliver_crash_notification: |
2411 | * |
2412 | * Makes outcall to registered host port for a corpse. |
2413 | */ |
2414 | kern_return_t |
2415 | task_deliver_crash_notification( |
2416 | task_t corpse, /* corpse or corpse fork */ |
2417 | thread_t thread, |
2418 | exception_type_t etype, |
2419 | mach_exception_subcode_t subcode) |
2420 | { |
2421 | kcdata_descriptor_t crash_info = corpse->corpse_info; |
2422 | thread_t th_iter = NULL; |
2423 | kern_return_t kr = KERN_SUCCESS; |
2424 | wait_interrupt_t wsave; |
2425 | mach_exception_data_type_t code[EXCEPTION_CODE_MAX]; |
2426 | ipc_port_t corpse_port; |
2427 | |
2428 | if (crash_info == NULL) { |
2429 | return KERN_FAILURE; |
2430 | } |
2431 | |
2432 | assert(task_is_a_corpse(corpse)); |
2433 | |
2434 | task_lock(task: corpse); |
2435 | |
2436 | /* |
2437 | * Always populate code[0] as the effective exception type for EXC_CORPSE_NOTIFY. |
2438 | * Crash reporters should derive whether it's fatal from corpse blob. |
2439 | */ |
2440 | code[0] = etype; |
2441 | code[1] = subcode; |
2442 | |
2443 | queue_iterate(&corpse->threads, th_iter, thread_t, task_threads) |
2444 | { |
2445 | if (th_iter->corpse_dup == FALSE) { |
2446 | ipc_thread_reset(thread: th_iter); |
2447 | } |
2448 | } |
2449 | task_unlock(task: corpse); |
2450 | |
2451 | /* Arm the no-sender notification for taskport */ |
2452 | task_reference(corpse); |
2453 | corpse_port = convert_corpse_to_port_and_nsrequest(task: corpse); |
2454 | |
2455 | wsave = thread_interrupt_level(THREAD_UNINT); |
2456 | kr = exception_triage_thread(EXC_CORPSE_NOTIFY, code, EXCEPTION_CODE_MAX, thread); |
2457 | if (kr != KERN_SUCCESS) { |
2458 | printf(format: "Failed to send exception EXC_CORPSE_NOTIFY. error code: %d for pid %d\n" , kr, task_pid(task: corpse)); |
2459 | } |
2460 | |
2461 | (void)thread_interrupt_level(interruptible: wsave); |
2462 | |
2463 | /* |
2464 | * Drop the send right on corpse port, will fire the |
2465 | * no-sender notification if exception deliver failed. |
2466 | */ |
2467 | ipc_port_release_send(port: corpse_port); |
2468 | return kr; |
2469 | } |
2470 | |
2471 | /* |
2472 | * task_terminate: |
2473 | * |
2474 | * Terminate the specified task. See comments on thread_terminate |
2475 | * (kern/thread.c) about problems with terminating the "current task." |
2476 | */ |
2477 | |
2478 | kern_return_t |
2479 | task_terminate( |
2480 | task_t task) |
2481 | { |
2482 | if (task == TASK_NULL) { |
2483 | return KERN_INVALID_ARGUMENT; |
2484 | } |
2485 | |
2486 | if (get_bsdtask_info(task)) { |
2487 | return KERN_FAILURE; |
2488 | } |
2489 | |
2490 | return task_terminate_internal(task); |
2491 | } |
2492 | |
2493 | #if MACH_ASSERT |
2494 | extern int proc_pid(struct proc *); |
2495 | extern void proc_name_kdp(struct proc *p, char *buf, int size); |
2496 | #endif /* MACH_ASSERT */ |
2497 | |
2498 | #define VM_MAP_PARTIAL_REAP 0x54 /* 0x150 */ |
2499 | static void |
2500 | __unused task_partial_reap(task_t task, __unused int pid) |
2501 | { |
2502 | unsigned int reclaimed_resident = 0; |
2503 | unsigned int reclaimed_compressed = 0; |
2504 | uint64_t task_page_count; |
2505 | |
2506 | task_page_count = (get_task_phys_footprint(task) / PAGE_SIZE_64); |
2507 | |
2508 | KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, VM_MAP_PARTIAL_REAP) | DBG_FUNC_START), |
2509 | pid, task_page_count, 0, 0, 0); |
2510 | |
2511 | vm_map_partial_reap(map: task->map, reclaimed_resident: &reclaimed_resident, reclaimed_compressed: &reclaimed_compressed); |
2512 | |
2513 | KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, VM_MAP_PARTIAL_REAP) | DBG_FUNC_END), |
2514 | pid, reclaimed_resident, reclaimed_compressed, 0, 0); |
2515 | } |
2516 | |
2517 | /* |
2518 | * task_mark_corpse: |
2519 | * |
2520 | * Mark the task as a corpse. Called by crashing thread. |
2521 | */ |
2522 | kern_return_t |
2523 | task_mark_corpse(task_t task) |
2524 | { |
2525 | kern_return_t kr = KERN_SUCCESS; |
2526 | thread_t self_thread; |
2527 | (void) self_thread; |
2528 | wait_interrupt_t wsave; |
2529 | #if CONFIG_MACF |
2530 | struct label *crash_label = NULL; |
2531 | #endif |
2532 | |
2533 | assert(task != kernel_task); |
2534 | assert(task == current_task()); |
2535 | assert(!task_is_a_corpse(task)); |
2536 | |
2537 | #if CONFIG_MACF |
2538 | crash_label = mac_exc_create_label_for_proc(proc: (struct proc*)get_bsdtask_info(task)); |
2539 | #endif |
2540 | |
2541 | kr = task_collect_crash_info(task, |
2542 | #if CONFIG_MACF |
2543 | crash_label, |
2544 | #endif |
2545 | FALSE); |
2546 | if (kr != KERN_SUCCESS) { |
2547 | goto out; |
2548 | } |
2549 | |
2550 | self_thread = current_thread(); |
2551 | |
2552 | wsave = thread_interrupt_level(THREAD_UNINT); |
2553 | task_lock(task); |
2554 | |
2555 | /* |
2556 | * Check if any other thread called task_terminate_internal |
2557 | * and made the task inactive before we could mark it for |
2558 | * corpse pending report. Bail out if the task is inactive. |
2559 | */ |
2560 | if (!task->active) { |
2561 | kcdata_descriptor_t crash_data_release = task->corpse_info;; |
2562 | void *crash_data_kernel_release = kcdata_memory_get_begin_addr(data: crash_data_release);; |
2563 | |
2564 | task->corpse_info = NULL; |
2565 | task_unlock(task); |
2566 | |
2567 | if (crash_data_release != NULL) { |
2568 | task_crashinfo_destroy(data: crash_data_release); |
2569 | } |
2570 | kfree_data(crash_data_kernel_release, CORPSEINFO_ALLOCATION_SIZE); |
2571 | return KERN_TERMINATED; |
2572 | } |
2573 | |
2574 | task_set_corpse_pending_report(task); |
2575 | task_set_corpse(task); |
2576 | task->crashed_thread_id = thread_tid(thread: self_thread); |
2577 | |
2578 | kr = task_start_halt_locked(task, TRUE); |
2579 | assert(kr == KERN_SUCCESS); |
2580 | |
2581 | task_set_uniqueid(task); |
2582 | |
2583 | task_unlock(task); |
2584 | |
2585 | /* |
2586 | * ipc_task_reset() moved to last thread_terminate_self(): rdar://75737960. |
2587 | * disable old ports here instead. |
2588 | * |
2589 | * The vm_map and ipc_space must exist until this function returns, |
2590 | * convert_port_to_{map,space}_with_flavor relies on this behavior. |
2591 | */ |
2592 | ipc_task_disable(task); |
2593 | |
2594 | /* let iokit know 1 */ |
2595 | iokit_task_terminate(task, phase: 1); |
2596 | |
2597 | /* terminate the ipc space */ |
2598 | ipc_space_terminate(space: task->itk_space); |
2599 | |
2600 | /* Add it to global corpse task list */ |
2601 | task_add_to_corpse_task_list(corpse_task: task); |
2602 | |
2603 | thread_terminate_internal(thread: self_thread); |
2604 | |
2605 | (void) thread_interrupt_level(interruptible: wsave); |
2606 | assert(task->halting == TRUE); |
2607 | |
2608 | out: |
2609 | #if CONFIG_MACF |
2610 | mac_exc_free_label(label: crash_label); |
2611 | #endif |
2612 | return kr; |
2613 | } |
2614 | |
2615 | /* |
2616 | * task_set_uniqueid |
2617 | * |
2618 | * Set task uniqueid to systemwide unique 64 bit value |
2619 | */ |
2620 | void |
2621 | task_set_uniqueid(task_t task) |
2622 | { |
2623 | task->task_uniqueid = OSIncrementAtomic64(address: &next_taskuniqueid); |
2624 | } |
2625 | |
2626 | /* |
2627 | * task_clear_corpse |
2628 | * |
2629 | * Clears the corpse pending bit on task. |
2630 | * Removes inspection bit on the threads. |
2631 | */ |
2632 | void |
2633 | task_clear_corpse(task_t task) |
2634 | { |
2635 | thread_t th_iter = NULL; |
2636 | |
2637 | task_lock(task); |
2638 | queue_iterate(&task->threads, th_iter, thread_t, task_threads) |
2639 | { |
2640 | thread_mtx_lock(thread: th_iter); |
2641 | th_iter->inspection = FALSE; |
2642 | ipc_thread_disable(thread: th_iter); |
2643 | thread_mtx_unlock(thread: th_iter); |
2644 | } |
2645 | |
2646 | thread_terminate_crashed_threads(); |
2647 | /* remove the pending corpse report flag */ |
2648 | task_clear_corpse_pending_report(task); |
2649 | |
2650 | task_unlock(task); |
2651 | } |
2652 | |
2653 | /* |
2654 | * task_port_no_senders |
2655 | * |
2656 | * Called whenever the Mach port system detects no-senders on |
2657 | * the task port of a corpse. |
2658 | * Each notification that comes in should terminate the task (corpse). |
2659 | */ |
2660 | static void |
2661 | task_port_no_senders(ipc_port_t port, __unused mach_port_mscount_t mscount) |
2662 | { |
2663 | task_t task = ipc_kobject_get_locked(port, type: IKOT_TASK_CONTROL); |
2664 | |
2665 | assert(task != TASK_NULL); |
2666 | assert(task_is_a_corpse(task)); |
2667 | |
2668 | /* Remove the task from global corpse task list */ |
2669 | task_remove_from_corpse_task_list(corpse_task: task); |
2670 | |
2671 | task_clear_corpse(task); |
2672 | vm_map_unset_corpse_source(map: task->map); |
2673 | task_terminate_internal(task); |
2674 | } |
2675 | |
2676 | /* |
2677 | * task_port_with_flavor_no_senders |
2678 | * |
2679 | * Called whenever the Mach port system detects no-senders on |
2680 | * the task inspect or read port. These ports are allocated lazily and |
2681 | * should be deallocated here when there are no senders remaining. |
2682 | */ |
2683 | static void |
2684 | task_port_with_flavor_no_senders( |
2685 | ipc_port_t port, |
2686 | mach_port_mscount_t mscount __unused) |
2687 | { |
2688 | task_t task; |
2689 | mach_task_flavor_t flavor; |
2690 | ipc_kobject_type_t kotype; |
2691 | |
2692 | ip_mq_lock(port); |
2693 | if (port->ip_srights > 0) { |
2694 | ip_mq_unlock(port); |
2695 | return; |
2696 | } |
2697 | kotype = ip_kotype(port); |
2698 | assert((IKOT_TASK_READ == kotype) || (IKOT_TASK_INSPECT == kotype)); |
2699 | task = ipc_kobject_get_locked(port, type: kotype); |
2700 | if (task != TASK_NULL) { |
2701 | task_reference(task); |
2702 | } |
2703 | ip_mq_unlock(port); |
2704 | |
2705 | if (task == TASK_NULL) { |
2706 | /* The task is exiting or disabled; it will eventually deallocate the port */ |
2707 | return; |
2708 | } |
2709 | |
2710 | if (kotype == IKOT_TASK_READ) { |
2711 | flavor = TASK_FLAVOR_READ; |
2712 | } else { |
2713 | flavor = TASK_FLAVOR_INSPECT; |
2714 | } |
2715 | |
2716 | itk_lock(task); |
2717 | ip_mq_lock(port); |
2718 | |
2719 | /* |
2720 | * If the port is no longer active, then ipc_task_terminate() ran |
2721 | * and destroyed the kobject already. Just deallocate the task |
2722 | * ref we took and go away. |
2723 | * |
2724 | * It is also possible that several nsrequests are in flight, |
2725 | * only one shall NULL-out the port entry, and this is the one |
2726 | * that gets to dealloc the port. |
2727 | * |
2728 | * Check for a stale no-senders notification. A call to any function |
2729 | * that vends out send rights to this port could resurrect it between |
2730 | * this notification being generated and actually being handled here. |
2731 | */ |
2732 | if (!ip_active(port) || |
2733 | task->itk_task_ports[flavor] != port || |
2734 | port->ip_srights > 0) { |
2735 | ip_mq_unlock(port); |
2736 | itk_unlock(task); |
2737 | task_deallocate(task); |
2738 | return; |
2739 | } |
2740 | |
2741 | assert(task->itk_task_ports[flavor] == port); |
2742 | task->itk_task_ports[flavor] = IP_NULL; |
2743 | itk_unlock(task); |
2744 | |
2745 | ipc_kobject_dealloc_port_and_unlock(port, mscount: 0, type: kotype); |
2746 | |
2747 | task_deallocate(task); |
2748 | } |
2749 | |
2750 | /* |
2751 | * task_wait_till_threads_terminate_locked |
2752 | * |
2753 | * Wait till all the threads in the task are terminated. |
2754 | * Might release the task lock and re-acquire it. |
2755 | */ |
2756 | void |
2757 | task_wait_till_threads_terminate_locked(task_t task) |
2758 | { |
2759 | /* wait for all the threads in the task to terminate */ |
2760 | while (task->active_thread_count != 0) { |
2761 | assert_wait(event: (event_t)&task->active_thread_count, THREAD_UNINT); |
2762 | task_unlock(task); |
2763 | thread_block(THREAD_CONTINUE_NULL); |
2764 | |
2765 | task_lock(task); |
2766 | } |
2767 | } |
2768 | |
2769 | /* |
2770 | * task_duplicate_map_and_threads |
2771 | * |
2772 | * Copy vmmap of source task. |
2773 | * Copy active threads from source task to destination task. |
2774 | * Source task would be suspended during the copy. |
2775 | */ |
2776 | kern_return_t |
2777 | task_duplicate_map_and_threads( |
2778 | task_t task, |
2779 | void *p, |
2780 | task_t new_task, |
2781 | thread_t *thread_ret, |
2782 | uint64_t **udata_buffer, |
2783 | int *size, |
2784 | int *num_udata, |
2785 | bool for_exception) |
2786 | { |
2787 | kern_return_t kr = KERN_SUCCESS; |
2788 | int active; |
2789 | thread_t thread, self, thread_return = THREAD_NULL; |
2790 | thread_t new_thread = THREAD_NULL, first_thread = THREAD_NULL; |
2791 | thread_t *thread_array; |
2792 | uint32_t active_thread_count = 0, array_count = 0, i; |
2793 | vm_map_t oldmap; |
2794 | uint64_t *buffer = NULL; |
2795 | int buf_size = 0; |
2796 | int est_knotes = 0, num_knotes = 0; |
2797 | |
2798 | self = current_thread(); |
2799 | |
2800 | /* |
2801 | * Suspend the task to copy thread state, use the internal |
2802 | * variant so that no user-space process can resume |
2803 | * the task from under us |
2804 | */ |
2805 | kr = task_suspend_internal(task); |
2806 | if (kr != KERN_SUCCESS) { |
2807 | return kr; |
2808 | } |
2809 | |
2810 | if (task->map->disable_vmentry_reuse == TRUE) { |
2811 | /* |
2812 | * Quite likely GuardMalloc (or some debugging tool) |
2813 | * is being used on this task. And it has gone through |
2814 | * its limit. Making a corpse will likely encounter |
2815 | * a lot of VM entries that will need COW. |
2816 | * |
2817 | * Skip it. |
2818 | */ |
2819 | #if DEVELOPMENT || DEBUG |
2820 | memorystatus_abort_vm_map_fork(task); |
2821 | #endif |
2822 | ktriage_record(thread_id: thread_tid(thread: self), KDBG_TRIAGE_EVENTID(KDBG_TRIAGE_SUBSYS_CORPSE, KDBG_TRIAGE_RESERVED, KDBG_TRIAGE_CORPSE_FAIL_LIBGMALLOC), arg: 0 /* arg */); |
2823 | task_resume_internal(task); |
2824 | return KERN_FAILURE; |
2825 | } |
2826 | |
2827 | /* Check with VM if vm_map_fork is allowed for this task */ |
2828 | bool is_large = false; |
2829 | if (memorystatus_allowed_vm_map_fork(task, is_large: &is_large)) { |
2830 | /* Setup new task's vmmap, switch from parent task's map to it COW map */ |
2831 | oldmap = new_task->map; |
2832 | new_task->map = vm_map_fork(ledger: new_task->ledger, |
2833 | old_map: task->map, |
2834 | options: (VM_MAP_FORK_SHARE_IF_INHERIT_NONE | |
2835 | VM_MAP_FORK_PRESERVE_PURGEABLE | |
2836 | VM_MAP_FORK_CORPSE_FOOTPRINT)); |
2837 | if (new_task->map) { |
2838 | new_task->is_large_corpse = is_large; |
2839 | vm_map_deallocate(map: oldmap); |
2840 | |
2841 | /* copy ledgers that impact the memory footprint */ |
2842 | vm_map_copy_footprint_ledgers(old_task: task, new_task); |
2843 | |
2844 | /* Get all the udata pointers from kqueue */ |
2845 | est_knotes = kevent_proc_copy_uptrs(proc: p, NULL, bufsize: 0); |
2846 | if (est_knotes > 0) { |
2847 | buf_size = (est_knotes + 32) * sizeof(uint64_t); |
2848 | buffer = kalloc_data(buf_size, Z_WAITOK); |
2849 | num_knotes = kevent_proc_copy_uptrs(proc: p, buf: buffer, bufsize: buf_size); |
2850 | if (num_knotes > est_knotes + 32) { |
2851 | num_knotes = est_knotes + 32; |
2852 | } |
2853 | } |
2854 | } else { |
2855 | if (is_large) { |
2856 | assert(large_corpse_count > 0); |
2857 | OSDecrementAtomic(&large_corpse_count); |
2858 | } |
2859 | new_task->map = oldmap; |
2860 | #if DEVELOPMENT || DEBUG |
2861 | memorystatus_abort_vm_map_fork(task); |
2862 | #endif |
2863 | task_resume_internal(task); |
2864 | return KERN_NO_SPACE; |
2865 | } |
2866 | } else if (!for_exception) { |
2867 | #if DEVELOPMENT || DEBUG |
2868 | memorystatus_abort_vm_map_fork(task); |
2869 | #endif |
2870 | task_resume_internal(task); |
2871 | return KERN_NO_SPACE; |
2872 | } |
2873 | |
2874 | active_thread_count = task->active_thread_count; |
2875 | if (active_thread_count == 0) { |
2876 | kfree_data(buffer, buf_size); |
2877 | task_resume_internal(task); |
2878 | return KERN_FAILURE; |
2879 | } |
2880 | |
2881 | thread_array = kalloc_type(thread_t, active_thread_count, Z_WAITOK); |
2882 | |
2883 | /* Iterate all the threads and drop the task lock before calling thread_create_with_continuation */ |
2884 | task_lock(task); |
2885 | queue_iterate(&task->threads, thread, thread_t, task_threads) { |
2886 | /* Skip inactive threads */ |
2887 | active = thread->active; |
2888 | if (!active) { |
2889 | continue; |
2890 | } |
2891 | |
2892 | if (array_count >= active_thread_count) { |
2893 | break; |
2894 | } |
2895 | |
2896 | thread_array[array_count++] = thread; |
2897 | thread_reference(thread); |
2898 | } |
2899 | task_unlock(task); |
2900 | |
2901 | for (i = 0; i < array_count; i++) { |
2902 | kr = thread_create_with_continuation(task: new_task, new_thread: &new_thread, continuation: (thread_continue_t)thread_corpse_continue); |
2903 | if (kr != KERN_SUCCESS) { |
2904 | break; |
2905 | } |
2906 | |
2907 | /* Equivalent of current thread in corpse */ |
2908 | if (thread_array[i] == self) { |
2909 | thread_return = new_thread; |
2910 | new_task->crashed_thread_id = thread_tid(thread: new_thread); |
2911 | } else if (first_thread == NULL) { |
2912 | first_thread = new_thread; |
2913 | } else { |
2914 | /* drop the extra ref returned by thread_create_with_continuation */ |
2915 | thread_deallocate(thread: new_thread); |
2916 | } |
2917 | |
2918 | kr = thread_dup2(thread_array[i], new_thread); |
2919 | if (kr != KERN_SUCCESS) { |
2920 | thread_mtx_lock(thread: new_thread); |
2921 | new_thread->corpse_dup = TRUE; |
2922 | thread_mtx_unlock(thread: new_thread); |
2923 | continue; |
2924 | } |
2925 | |
2926 | /* Copy thread name */ |
2927 | bsd_copythreadname(dst_uth: get_bsdthread_info(new_thread), |
2928 | src_uth: get_bsdthread_info(thread_array[i])); |
2929 | new_thread->thread_tag = thread_array[i]->thread_tag & |
2930 | ~THREAD_TAG_USER_JOIN; |
2931 | thread_copy_resource_info(dst_thread: new_thread, src_thread: thread_array[i]); |
2932 | } |
2933 | |
2934 | /* return the first thread if we couldn't find the equivalent of current */ |
2935 | if (thread_return == THREAD_NULL) { |
2936 | thread_return = first_thread; |
2937 | } else if (first_thread != THREAD_NULL) { |
2938 | /* drop the extra ref returned by thread_create_with_continuation */ |
2939 | thread_deallocate(thread: first_thread); |
2940 | } |
2941 | |
2942 | task_resume_internal(task); |
2943 | |
2944 | for (i = 0; i < array_count; i++) { |
2945 | thread_deallocate(thread: thread_array[i]); |
2946 | } |
2947 | kfree_type(thread_t, active_thread_count, thread_array); |
2948 | |
2949 | if (kr == KERN_SUCCESS) { |
2950 | *thread_ret = thread_return; |
2951 | *udata_buffer = buffer; |
2952 | *size = buf_size; |
2953 | *num_udata = num_knotes; |
2954 | } else { |
2955 | if (thread_return != THREAD_NULL) { |
2956 | thread_deallocate(thread: thread_return); |
2957 | } |
2958 | kfree_data(buffer, buf_size); |
2959 | } |
2960 | |
2961 | return kr; |
2962 | } |
2963 | |
2964 | #if CONFIG_SECLUDED_MEMORY |
2965 | extern void task_set_can_use_secluded_mem_locked( |
2966 | task_t task, |
2967 | boolean_t can_use_secluded_mem); |
2968 | #endif /* CONFIG_SECLUDED_MEMORY */ |
2969 | |
2970 | #if MACH_ASSERT |
2971 | int debug4k_panic_on_terminate = 0; |
2972 | #endif /* MACH_ASSERT */ |
2973 | kern_return_t |
2974 | task_terminate_internal( |
2975 | task_t task) |
2976 | { |
2977 | thread_t thread, self; |
2978 | task_t self_task; |
2979 | boolean_t interrupt_save; |
2980 | int pid = 0; |
2981 | |
2982 | assert(task != kernel_task); |
2983 | |
2984 | self = current_thread(); |
2985 | self_task = current_task(); |
2986 | |
2987 | /* |
2988 | * Get the task locked and make sure that we are not racing |
2989 | * with someone else trying to terminate us. |
2990 | */ |
2991 | if (task == self_task) { |
2992 | task_lock(task); |
2993 | } else if (task < self_task) { |
2994 | task_lock(task); |
2995 | task_lock(task: self_task); |
2996 | } else { |
2997 | task_lock(task: self_task); |
2998 | task_lock(task); |
2999 | } |
3000 | |
3001 | #if CONFIG_SECLUDED_MEMORY |
3002 | if (task->task_can_use_secluded_mem) { |
3003 | task_set_can_use_secluded_mem_locked(task, FALSE); |
3004 | } |
3005 | task->task_could_use_secluded_mem = FALSE; |
3006 | task->task_could_also_use_secluded_mem = FALSE; |
3007 | |
3008 | if (task->task_suppressed_secluded) { |
3009 | stop_secluded_suppression(task); |
3010 | } |
3011 | #endif /* CONFIG_SECLUDED_MEMORY */ |
3012 | |
3013 | if (!task->active) { |
3014 | /* |
3015 | * Task is already being terminated. |
3016 | * Just return an error. If we are dying, this will |
3017 | * just get us to our AST special handler and that |
3018 | * will get us to finalize the termination of ourselves. |
3019 | */ |
3020 | task_unlock(task); |
3021 | if (self_task != task) { |
3022 | task_unlock(task: self_task); |
3023 | } |
3024 | |
3025 | return KERN_FAILURE; |
3026 | } |
3027 | |
3028 | if (task_corpse_pending_report(task)) { |
3029 | /* |
3030 | * Task is marked for reporting as corpse. |
3031 | * Just return an error. This will |
3032 | * just get us to our AST special handler and that |
3033 | * will get us to finish the path to death |
3034 | */ |
3035 | task_unlock(task); |
3036 | if (self_task != task) { |
3037 | task_unlock(task: self_task); |
3038 | } |
3039 | |
3040 | return KERN_FAILURE; |
3041 | } |
3042 | |
3043 | if (self_task != task) { |
3044 | task_unlock(task: self_task); |
3045 | } |
3046 | |
3047 | /* |
3048 | * Make sure the current thread does not get aborted out of |
3049 | * the waits inside these operations. |
3050 | */ |
3051 | interrupt_save = thread_interrupt_level(THREAD_UNINT); |
3052 | |
3053 | /* |
3054 | * Indicate that we want all the threads to stop executing |
3055 | * at user space by holding the task (we would have held |
3056 | * each thread independently in thread_terminate_internal - |
3057 | * but this way we may be more likely to already find it |
3058 | * held there). Mark the task inactive, and prevent |
3059 | * further task operations via the task port. |
3060 | * |
3061 | * The vm_map and ipc_space must exist until this function returns, |
3062 | * convert_port_to_{map,space}_with_flavor relies on this behavior. |
3063 | */ |
3064 | task_hold_locked(task); |
3065 | task->active = FALSE; |
3066 | ipc_task_disable(task); |
3067 | |
3068 | #if CONFIG_EXCLAVES |
3069 | task_stop_conclave(task, false); |
3070 | #endif /* CONFIG_EXCLAVES */ |
3071 | |
3072 | #if CONFIG_TELEMETRY |
3073 | /* |
3074 | * Notify telemetry that this task is going away. |
3075 | */ |
3076 | telemetry_task_ctl_locked(task, TF_TELEMETRY, enable_disable: 0); |
3077 | #endif |
3078 | |
3079 | /* |
3080 | * Terminate each thread in the task. |
3081 | */ |
3082 | queue_iterate(&task->threads, thread, thread_t, task_threads) { |
3083 | thread_terminate_internal(thread); |
3084 | } |
3085 | |
3086 | #ifdef MACH_BSD |
3087 | void *bsd_info = get_bsdtask_info(task); |
3088 | if (bsd_info != NULL) { |
3089 | pid = proc_pid(p: bsd_info); |
3090 | } |
3091 | #endif /* MACH_BSD */ |
3092 | |
3093 | task_unlock(task); |
3094 | |
3095 | proc_set_task_policy(task, TASK_POLICY_ATTRIBUTE, |
3096 | TASK_POLICY_TERMINATED, TASK_POLICY_ENABLE); |
3097 | |
3098 | /* Early object reap phase */ |
3099 | |
3100 | // PR-17045188: Revisit implementation |
3101 | // task_partial_reap(task, pid); |
3102 | |
3103 | #if CONFIG_TASKWATCH |
3104 | /* |
3105 | * remove all task watchers |
3106 | */ |
3107 | task_removewatchers(task); |
3108 | |
3109 | #endif /* CONFIG_TASKWATCH */ |
3110 | |
3111 | /* |
3112 | * Destroy all synchronizers owned by the task. |
3113 | */ |
3114 | task_synchronizer_destroy_all(task); |
3115 | |
3116 | /* |
3117 | * Clear the watchport boost on the task. |
3118 | */ |
3119 | task_remove_turnstile_watchports(task); |
3120 | |
3121 | /* let iokit know 1 */ |
3122 | iokit_task_terminate(task, phase: 1); |
3123 | |
3124 | /* |
3125 | * Destroy the IPC space, leaving just a reference for it. |
3126 | */ |
3127 | ipc_space_terminate(space: task->itk_space); |
3128 | |
3129 | #if 00 |
3130 | /* if some ledgers go negative on tear-down again... */ |
3131 | ledger_disable_panic_on_negative(task->map->pmap->ledger, |
3132 | task_ledgers.phys_footprint); |
3133 | ledger_disable_panic_on_negative(task->map->pmap->ledger, |
3134 | task_ledgers.internal); |
3135 | ledger_disable_panic_on_negative(task->map->pmap->ledger, |
3136 | task_ledgers.iokit_mapped); |
3137 | ledger_disable_panic_on_negative(task->map->pmap->ledger, |
3138 | task_ledgers.alternate_accounting); |
3139 | ledger_disable_panic_on_negative(task->map->pmap->ledger, |
3140 | task_ledgers.alternate_accounting_compressed); |
3141 | #endif |
3142 | |
3143 | #if CONFIG_DEFERRED_RECLAIM |
3144 | /* |
3145 | * Remove this tasks reclaim buffer from global queues. |
3146 | */ |
3147 | if (task->deferred_reclamation_metadata != NULL) { |
3148 | vm_deferred_reclamation_buffer_uninstall(metadata: task->deferred_reclamation_metadata); |
3149 | } |
3150 | #endif /* CONFIG_DEFERRED_RECLAIM */ |
3151 | |
3152 | /* |
3153 | * If the current thread is a member of the task |
3154 | * being terminated, then the last reference to |
3155 | * the task will not be dropped until the thread |
3156 | * is finally reaped. To avoid incurring the |
3157 | * expense of removing the address space regions |
3158 | * at reap time, we do it explictly here. |
3159 | */ |
3160 | |
3161 | #if MACH_ASSERT |
3162 | /* |
3163 | * Identify the pmap's process, in case the pmap ledgers drift |
3164 | * and we have to report it. |
3165 | */ |
3166 | char procname[17]; |
3167 | void *proc = get_bsdtask_info(task); |
3168 | if (proc) { |
3169 | pid = proc_pid(proc); |
3170 | proc_name_kdp(proc, procname, sizeof(procname)); |
3171 | } else { |
3172 | pid = 0; |
3173 | strlcpy(procname, "<unknown>" , sizeof(procname)); |
3174 | } |
3175 | pmap_set_process(task->map->pmap, pid, procname); |
3176 | if (vm_map_page_shift(task->map) < (int)PAGE_SHIFT) { |
3177 | DEBUG4K_LIFE("map %p procname: %s\n" , task->map, procname); |
3178 | if (debug4k_panic_on_terminate) { |
3179 | panic("DEBUG4K: %s:%d %d[%s] map %p" , __FUNCTION__, __LINE__, pid, procname, task->map); |
3180 | } |
3181 | } |
3182 | #endif /* MACH_ASSERT */ |
3183 | |
3184 | vm_map_terminate(map: task->map); |
3185 | |
3186 | /* release our shared region */ |
3187 | vm_shared_region_set(task, NULL); |
3188 | |
3189 | #if __has_feature(ptrauth_calls) |
3190 | task_set_shared_region_id(task, NULL); |
3191 | #endif /* __has_feature(ptrauth_calls) */ |
3192 | |
3193 | lck_mtx_lock(lck: &tasks_threads_lock); |
3194 | queue_remove(&tasks, task, task_t, tasks); |
3195 | queue_enter(&terminated_tasks, task, task_t, tasks); |
3196 | tasks_count--; |
3197 | terminated_tasks_count++; |
3198 | lck_mtx_unlock(lck: &tasks_threads_lock); |
3199 | |
3200 | /* |
3201 | * We no longer need to guard against being aborted, so restore |
3202 | * the previous interruptible state. |
3203 | */ |
3204 | thread_interrupt_level(interruptible: interrupt_save); |
3205 | |
3206 | #if CONFIG_CPU_COUNTERS |
3207 | /* force the task to release all ctrs */ |
3208 | if (task->t_kpc & TASK_KPC_FORCED_ALL_CTRS) { |
3209 | kpc_force_all_ctrs(task, 0); |
3210 | } |
3211 | #endif /* CONFIG_CPU_COUNTERS */ |
3212 | |
3213 | #if CONFIG_COALITIONS |
3214 | /* |
3215 | * Leave the coalition for corpse task or task that |
3216 | * never had any active threads (e.g. fork, exec failure). |
3217 | * For task with active threads, the task will be removed |
3218 | * from coalition by last terminating thread. |
3219 | */ |
3220 | if (task->active_thread_count == 0) { |
3221 | coalitions_remove_task(task); |
3222 | } |
3223 | #endif |
3224 | |
3225 | #if CONFIG_FREEZE |
3226 | extern int vm_compressor_available; |
3227 | if (VM_CONFIG_FREEZER_SWAP_IS_ACTIVE && vm_compressor_available) { |
3228 | task_disown_frozen_csegs(task); |
3229 | assert(queue_empty(&task->task_frozen_cseg_q)); |
3230 | } |
3231 | #endif /* CONFIG_FREEZE */ |
3232 | |
3233 | |
3234 | /* |
3235 | * Get rid of the task active reference on itself. |
3236 | */ |
3237 | task_deallocate_grp(task, TASK_GRP_INTERNAL); |
3238 | |
3239 | return KERN_SUCCESS; |
3240 | } |
3241 | |
3242 | void |
3243 | tasks_system_suspend(boolean_t suspend) |
3244 | { |
3245 | task_t task; |
3246 | |
3247 | KDBG(MACHDBG_CODE(DBG_MACH_SCHED, MACH_SUSPEND_USERSPACE) | |
3248 | (suspend ? DBG_FUNC_START : DBG_FUNC_END)); |
3249 | |
3250 | lck_mtx_lock(lck: &tasks_threads_lock); |
3251 | assert(tasks_suspend_state != suspend); |
3252 | tasks_suspend_state = suspend; |
3253 | queue_iterate(&tasks, task, task_t, tasks) { |
3254 | if (task == kernel_task) { |
3255 | continue; |
3256 | } |
3257 | suspend ? task_suspend_internal(task) : task_resume_internal(task); |
3258 | } |
3259 | lck_mtx_unlock(lck: &tasks_threads_lock); |
3260 | } |
3261 | |
3262 | /* |
3263 | * task_start_halt: |
3264 | * |
3265 | * Shut the current task down (except for the current thread) in |
3266 | * preparation for dramatic changes to the task (probably exec). |
3267 | * We hold the task and mark all other threads in the task for |
3268 | * termination. |
3269 | */ |
3270 | kern_return_t |
3271 | task_start_halt(task_t task) |
3272 | { |
3273 | kern_return_t kr = KERN_SUCCESS; |
3274 | task_lock(task); |
3275 | kr = task_start_halt_locked(task, FALSE); |
3276 | task_unlock(task); |
3277 | return kr; |
3278 | } |
3279 | |
3280 | static kern_return_t |
3281 | task_start_halt_locked(task_t task, boolean_t should_mark_corpse) |
3282 | { |
3283 | thread_t thread, self; |
3284 | uint64_t dispatchqueue_offset; |
3285 | |
3286 | assert(task != kernel_task); |
3287 | |
3288 | self = current_thread(); |
3289 | |
3290 | if (task != get_threadtask(self) && !task_is_a_corpse_fork(task)) { |
3291 | return KERN_INVALID_ARGUMENT; |
3292 | } |
3293 | |
3294 | if (!should_mark_corpse && |
3295 | (task->halting || !task->active || !self->active)) { |
3296 | /* |
3297 | * Task or current thread is already being terminated. |
3298 | * Hurry up and return out of the current kernel context |
3299 | * so that we run our AST special handler to terminate |
3300 | * ourselves. If should_mark_corpse is set, the corpse |
3301 | * creation might have raced with exec, let the corpse |
3302 | * creation continue, once the current thread reaches AST |
3303 | * thread in exec will be woken up from task_complete_halt. |
3304 | * Exec will fail cause the proc was marked for exit. |
3305 | * Once the thread in exec reaches AST, it will call proc_exit |
3306 | * and deliver the EXC_CORPSE_NOTIFY. |
3307 | */ |
3308 | return KERN_FAILURE; |
3309 | } |
3310 | |
3311 | /* Thread creation will fail after this point of no return. */ |
3312 | task->halting = TRUE; |
3313 | |
3314 | /* |
3315 | * Mark all the threads to keep them from starting any more |
3316 | * user-level execution. The thread_terminate_internal code |
3317 | * would do this on a thread by thread basis anyway, but this |
3318 | * gives us a better chance of not having to wait there. |
3319 | */ |
3320 | task_hold_locked(task); |
3321 | |
3322 | #if CONFIG_EXCLAVES |
3323 | if (should_mark_corpse) { |
3324 | void *crash_info_ptr = task_get_corpseinfo(task); |
3325 | queue_iterate(&task->threads, thread, thread_t, task_threads) { |
3326 | if (crash_info_ptr != NULL && thread->th_exclaves_ipc_buffer != NULL) { |
3327 | struct thread_crash_exclaves_info info = { 0 }; |
3328 | |
3329 | info.tcei_flags = kExclaveRPCActive; |
3330 | info.tcei_scid = thread->th_exclaves_scheduling_context_id; |
3331 | info.tcei_thread_id = thread->thread_id; |
3332 | |
3333 | kcdata_push_data(crash_info_ptr, |
3334 | STACKSHOT_KCTYPE_KERN_EXCLAVES_CRASH_THREADINFO, |
3335 | sizeof(struct thread_crash_exclaves_info), &info); |
3336 | } |
3337 | } |
3338 | |
3339 | task_unlock(task); |
3340 | task_stop_conclave(task, true); |
3341 | task_lock(task); |
3342 | } |
3343 | #endif /* CONFIG_EXCLAVES */ |
3344 | |
3345 | dispatchqueue_offset = get_dispatchqueue_offset_from_proc(get_bsdtask_info(task)); |
3346 | /* |
3347 | * Terminate all the other threads in the task. |
3348 | */ |
3349 | queue_iterate(&task->threads, thread, thread_t, task_threads) |
3350 | { |
3351 | /* |
3352 | * Remove priority throttles for threads to terminate timely. This has |
3353 | * to be done after task_hold_locked() traps all threads to AST, but before |
3354 | * threads are marked inactive in thread_terminate_internal(). Takes thread |
3355 | * mutex lock. |
3356 | * |
3357 | * We need task_is_a_corpse() check so that we don't accidently update policy |
3358 | * for tasks that are doing posix_spawn(). |
3359 | * |
3360 | * See: thread_policy_update_tasklocked(). |
3361 | */ |
3362 | if (task_is_a_corpse(task)) { |
3363 | proc_set_thread_policy(thread, TASK_POLICY_ATTRIBUTE, |
3364 | TASK_POLICY_TERMINATED, TASK_POLICY_ENABLE); |
3365 | } |
3366 | |
3367 | if (should_mark_corpse) { |
3368 | thread_mtx_lock(thread); |
3369 | thread->inspection = TRUE; |
3370 | thread_mtx_unlock(thread); |
3371 | } |
3372 | if (thread != self) { |
3373 | thread_terminate_internal(thread); |
3374 | } |
3375 | } |
3376 | task->dispatchqueue_offset = dispatchqueue_offset; |
3377 | |
3378 | task_release_locked(task); |
3379 | |
3380 | return KERN_SUCCESS; |
3381 | } |
3382 | |
3383 | |
3384 | /* |
3385 | * task_complete_halt: |
3386 | * |
3387 | * Complete task halt by waiting for threads to terminate, then clean |
3388 | * up task resources (VM, port namespace, etc...) and then let the |
3389 | * current thread go in the (practically empty) task context. |
3390 | * |
3391 | * Note: task->halting flag is not cleared in order to avoid creation |
3392 | * of new thread in old exec'ed task. |
3393 | */ |
3394 | void |
3395 | task_complete_halt(task_t task) |
3396 | { |
3397 | task_lock(task); |
3398 | assert(task->halting); |
3399 | assert(task == current_task()); |
3400 | |
3401 | /* |
3402 | * Wait for the other threads to get shut down. |
3403 | * When the last other thread is reaped, we'll be |
3404 | * woken up. |
3405 | */ |
3406 | if (task->thread_count > 1) { |
3407 | assert_wait(event: (event_t)&task->halting, THREAD_UNINT); |
3408 | task_unlock(task); |
3409 | thread_block(THREAD_CONTINUE_NULL); |
3410 | } else { |
3411 | task_unlock(task); |
3412 | } |
3413 | |
3414 | #if CONFIG_DEFERRED_RECLAIM |
3415 | if (task->deferred_reclamation_metadata) { |
3416 | vm_deferred_reclamation_buffer_uninstall( |
3417 | metadata: task->deferred_reclamation_metadata); |
3418 | vm_deferred_reclamation_buffer_deallocate( |
3419 | metadata: task->deferred_reclamation_metadata); |
3420 | task->deferred_reclamation_metadata = NULL; |
3421 | } |
3422 | #endif /* CONFIG_DEFERRED_RECLAIM */ |
3423 | |
3424 | /* |
3425 | * Give the machine dependent code a chance |
3426 | * to perform cleanup of task-level resources |
3427 | * associated with the current thread before |
3428 | * ripping apart the task. |
3429 | */ |
3430 | machine_task_terminate(task); |
3431 | |
3432 | /* |
3433 | * Destroy all synchronizers owned by the task. |
3434 | */ |
3435 | task_synchronizer_destroy_all(task); |
3436 | |
3437 | /* let iokit know 1 */ |
3438 | iokit_task_terminate(task, phase: 1); |
3439 | |
3440 | /* |
3441 | * Terminate the IPC space. A long time ago, |
3442 | * this used to be ipc_space_clean() which would |
3443 | * keep the space active but hollow it. |
3444 | * |
3445 | * We really do not need this semantics given |
3446 | * tasks die with exec now. |
3447 | */ |
3448 | ipc_space_terminate(space: task->itk_space); |
3449 | |
3450 | /* |
3451 | * Clean out the address space, as we are going to be |
3452 | * getting a new one. |
3453 | */ |
3454 | vm_map_terminate(map: task->map); |
3455 | |
3456 | /* |
3457 | * Kick out any IOKitUser handles to the task. At best they're stale, |
3458 | * at worst someone is racing a SUID exec. |
3459 | */ |
3460 | /* let iokit know 2 */ |
3461 | iokit_task_terminate(task, phase: 2); |
3462 | } |
3463 | |
3464 | #ifdef CONFIG_TASK_SUSPEND_STATS |
3465 | |
3466 | static void |
3467 | _task_mark_suspend_source(task_t task) |
3468 | { |
3469 | int idx; |
3470 | task_suspend_stats_t stats; |
3471 | task_suspend_source_t source; |
3472 | task_lock_assert_owned(task); |
3473 | stats = &task->t_suspend_stats; |
3474 | |
3475 | idx = stats->tss_count % TASK_SUSPEND_SOURCES_MAX; |
3476 | source = &task->t_suspend_sources[idx]; |
3477 | bzero(source, sizeof(*source)); |
3478 | |
3479 | source->tss_time = mach_absolute_time(); |
3480 | source->tss_tid = current_thread()->thread_id; |
3481 | source->tss_pid = task_pid(current_task()); |
3482 | task_best_name(current_task(), source->tss_procname, sizeof(source->tss_procname)); |
3483 | |
3484 | stats->tss_count++; |
3485 | } |
3486 | |
3487 | static inline void |
3488 | _task_mark_suspend_start(task_t task) |
3489 | { |
3490 | task_lock_assert_owned(task); |
3491 | task->t_suspend_stats.tss_last_start = mach_absolute_time(); |
3492 | } |
3493 | |
3494 | static inline void |
3495 | _task_mark_suspend_end(task_t task) |
3496 | { |
3497 | task_lock_assert_owned(task); |
3498 | task->t_suspend_stats.tss_last_end = mach_absolute_time(); |
3499 | task->t_suspend_stats.tss_duration += (task->t_suspend_stats.tss_last_end - |
3500 | task->t_suspend_stats.tss_last_start); |
3501 | } |
3502 | |
3503 | static kern_return_t |
3504 | _task_get_suspend_stats_locked(task_t task, task_suspend_stats_t stats) |
3505 | { |
3506 | if (task == TASK_NULL || stats == NULL) { |
3507 | return KERN_INVALID_ARGUMENT; |
3508 | } |
3509 | task_lock_assert_owned(task); |
3510 | memcpy(stats, &task->t_suspend_stats, sizeof(task->t_suspend_stats)); |
3511 | return KERN_SUCCESS; |
3512 | } |
3513 | |
3514 | static kern_return_t |
3515 | _task_get_suspend_sources_locked(task_t task, task_suspend_source_t sources) |
3516 | { |
3517 | if (task == TASK_NULL || sources == NULL) { |
3518 | return KERN_INVALID_ARGUMENT; |
3519 | } |
3520 | task_lock_assert_owned(task); |
3521 | memcpy(sources, task->t_suspend_sources, |
3522 | sizeof(struct task_suspend_source_s) * TASK_SUSPEND_SOURCES_MAX); |
3523 | return KERN_SUCCESS; |
3524 | } |
3525 | |
3526 | #endif /* CONFIG_TASK_SUSPEND_STATS */ |
3527 | |
3528 | kern_return_t |
3529 | task_get_suspend_stats(task_t task, task_suspend_stats_t stats) |
3530 | { |
3531 | #ifdef CONFIG_TASK_SUSPEND_STATS |
3532 | kern_return_t kr; |
3533 | if (task == TASK_NULL || stats == NULL) { |
3534 | return KERN_INVALID_ARGUMENT; |
3535 | } |
3536 | task_lock(task); |
3537 | kr = _task_get_suspend_stats_locked(task, stats); |
3538 | task_unlock(task); |
3539 | return kr; |
3540 | #else /* CONFIG_TASK_SUSPEND_STATS */ |
3541 | (void)task; |
3542 | (void)stats; |
3543 | return KERN_NOT_SUPPORTED; |
3544 | #endif |
3545 | } |
3546 | |
3547 | kern_return_t |
3548 | task_get_suspend_stats_kdp(task_t task, task_suspend_stats_t stats) |
3549 | { |
3550 | #ifdef CONFIG_TASK_SUSPEND_STATS |
3551 | if (task == TASK_NULL || stats == NULL) { |
3552 | return KERN_INVALID_ARGUMENT; |
3553 | } |
3554 | memcpy(stats, &task->t_suspend_stats, sizeof(task->t_suspend_stats)); |
3555 | return KERN_SUCCESS; |
3556 | #else /* CONFIG_TASK_SUSPEND_STATS */ |
3557 | #pragma unused(task, stats) |
3558 | return KERN_NOT_SUPPORTED; |
3559 | #endif /* CONFIG_TASK_SUSPEND_STATS */ |
3560 | } |
3561 | |
3562 | kern_return_t |
3563 | task_get_suspend_sources(task_t task, task_suspend_source_array_t sources) |
3564 | { |
3565 | #ifdef CONFIG_TASK_SUSPEND_STATS |
3566 | kern_return_t kr; |
3567 | if (task == TASK_NULL || sources == NULL) { |
3568 | return KERN_INVALID_ARGUMENT; |
3569 | } |
3570 | task_lock(task); |
3571 | kr = _task_get_suspend_sources_locked(task, sources); |
3572 | task_unlock(task); |
3573 | return kr; |
3574 | #else /* CONFIG_TASK_SUSPEND_STATS */ |
3575 | (void)task; |
3576 | (void)sources; |
3577 | return KERN_NOT_SUPPORTED; |
3578 | #endif |
3579 | } |
3580 | |
3581 | kern_return_t |
3582 | task_get_suspend_sources_kdp(task_t task, task_suspend_source_array_t sources) |
3583 | { |
3584 | #ifdef CONFIG_TASK_SUSPEND_STATS |
3585 | if (task == TASK_NULL || sources == NULL) { |
3586 | return KERN_INVALID_ARGUMENT; |
3587 | } |
3588 | memcpy(sources, task->t_suspend_sources, |
3589 | sizeof(struct task_suspend_source_s) * TASK_SUSPEND_SOURCES_MAX); |
3590 | return KERN_SUCCESS; |
3591 | #else /* CONFIG_TASK_SUSPEND_STATS */ |
3592 | #pragma unused(task, sources) |
3593 | return KERN_NOT_SUPPORTED; |
3594 | #endif |
3595 | } |
3596 | |
3597 | /* |
3598 | * task_hold_locked: |
3599 | * |
3600 | * Suspend execution of the specified task. |
3601 | * This is a recursive-style suspension of the task, a count of |
3602 | * suspends is maintained. |
3603 | * |
3604 | * CONDITIONS: the task is locked and active. |
3605 | */ |
3606 | void |
3607 | task_hold_locked( |
3608 | task_t task) |
3609 | { |
3610 | thread_t thread; |
3611 | void *bsd_info = get_bsdtask_info(task); |
3612 | |
3613 | assert(task->active); |
3614 | |
3615 | if (task->suspend_count++ > 0) { |
3616 | return; |
3617 | } |
3618 | |
3619 | if (bsd_info) { |
3620 | workq_proc_suspended(p: bsd_info); |
3621 | } |
3622 | |
3623 | /* |
3624 | * Iterate through all the threads and hold them. |
3625 | */ |
3626 | queue_iterate(&task->threads, thread, thread_t, task_threads) { |
3627 | thread_mtx_lock(thread); |
3628 | thread_hold(thread); |
3629 | thread_mtx_unlock(thread); |
3630 | } |
3631 | |
3632 | #ifdef CONFIG_TASK_SUSPEND_STATS |
3633 | _task_mark_suspend_start(task); |
3634 | #endif |
3635 | } |
3636 | |
3637 | /* |
3638 | * task_hold_and_wait |
3639 | * |
3640 | * Same as the internal routine above, except that is must lock |
3641 | * and verify that the task is active. This differs from task_suspend |
3642 | * in that it places a kernel hold on the task rather than just a |
3643 | * user-level hold. This keeps users from over resuming and setting |
3644 | * it running out from under the kernel. |
3645 | * |
3646 | * CONDITIONS: the caller holds a reference on the task |
3647 | */ |
3648 | kern_return_t |
3649 | task_hold_and_wait( |
3650 | task_t task) |
3651 | { |
3652 | if (task == TASK_NULL) { |
3653 | return KERN_INVALID_ARGUMENT; |
3654 | } |
3655 | |
3656 | task_lock(task); |
3657 | if (!task->active) { |
3658 | task_unlock(task); |
3659 | return KERN_FAILURE; |
3660 | } |
3661 | |
3662 | #ifdef CONFIG_TASK_SUSPEND_STATS |
3663 | _task_mark_suspend_source(task); |
3664 | #endif /* CONFIG_TASK_SUSPEND_STATS */ |
3665 | |
3666 | task_hold_locked(task); |
3667 | task_wait_locked(task, FALSE); |
3668 | task_unlock(task); |
3669 | |
3670 | return KERN_SUCCESS; |
3671 | } |
3672 | |
3673 | /* |
3674 | * task_wait_locked: |
3675 | * |
3676 | * Wait for all threads in task to stop. |
3677 | * |
3678 | * Conditions: |
3679 | * Called with task locked, active, and held. |
3680 | */ |
3681 | void |
3682 | task_wait_locked( |
3683 | task_t task, |
3684 | boolean_t until_not_runnable) |
3685 | { |
3686 | thread_t thread, self; |
3687 | |
3688 | assert(task->active); |
3689 | assert(task->suspend_count > 0); |
3690 | |
3691 | self = current_thread(); |
3692 | |
3693 | /* |
3694 | * Iterate through all the threads and wait for them to |
3695 | * stop. Do not wait for the current thread if it is within |
3696 | * the task. |
3697 | */ |
3698 | queue_iterate(&task->threads, thread, thread_t, task_threads) { |
3699 | if (thread != self) { |
3700 | thread_wait(thread, until_not_runnable); |
3701 | } |
3702 | } |
3703 | } |
3704 | |
3705 | boolean_t |
3706 | task_is_app_suspended(task_t task) |
3707 | { |
3708 | return task->pidsuspended; |
3709 | } |
3710 | |
3711 | /* |
3712 | * task_release_locked: |
3713 | * |
3714 | * Release a kernel hold on a task. |
3715 | * |
3716 | * CONDITIONS: the task is locked and active |
3717 | */ |
3718 | void |
3719 | task_release_locked( |
3720 | task_t task) |
3721 | { |
3722 | thread_t thread; |
3723 | void *bsd_info = get_bsdtask_info(task); |
3724 | |
3725 | assert(task->active); |
3726 | assert(task->suspend_count > 0); |
3727 | |
3728 | if (--task->suspend_count > 0) { |
3729 | return; |
3730 | } |
3731 | |
3732 | if (bsd_info) { |
3733 | workq_proc_resumed(p: bsd_info); |
3734 | } |
3735 | |
3736 | queue_iterate(&task->threads, thread, thread_t, task_threads) { |
3737 | thread_mtx_lock(thread); |
3738 | thread_release(thread); |
3739 | thread_mtx_unlock(thread); |
3740 | } |
3741 | |
3742 | #if CONFIG_TASK_SUSPEND_STATS |
3743 | _task_mark_suspend_end(task); |
3744 | #endif |
3745 | } |
3746 | |
3747 | /* |
3748 | * task_release: |
3749 | * |
3750 | * Same as the internal routine above, except that it must lock |
3751 | * and verify that the task is active. |
3752 | * |
3753 | * CONDITIONS: The caller holds a reference to the task |
3754 | */ |
3755 | kern_return_t |
3756 | task_release( |
3757 | task_t task) |
3758 | { |
3759 | if (task == TASK_NULL) { |
3760 | return KERN_INVALID_ARGUMENT; |
3761 | } |
3762 | |
3763 | task_lock(task); |
3764 | |
3765 | if (!task->active) { |
3766 | task_unlock(task); |
3767 | |
3768 | return KERN_FAILURE; |
3769 | } |
3770 | |
3771 | task_release_locked(task); |
3772 | task_unlock(task); |
3773 | |
3774 | return KERN_SUCCESS; |
3775 | } |
3776 | |
3777 | static kern_return_t |
3778 | task_threads_internal( |
3779 | task_t task, |
3780 | thread_act_array_t *threads_out, |
3781 | mach_msg_type_number_t *countp, |
3782 | mach_thread_flavor_t flavor) |
3783 | { |
3784 | mach_msg_type_number_t actual, count, count_needed; |
3785 | thread_t *thread_list; |
3786 | thread_t thread; |
3787 | unsigned int i; |
3788 | |
3789 | count = 0; |
3790 | thread_list = NULL; |
3791 | |
3792 | if (task == TASK_NULL) { |
3793 | return KERN_INVALID_ARGUMENT; |
3794 | } |
3795 | |
3796 | assert(flavor <= THREAD_FLAVOR_INSPECT); |
3797 | |
3798 | for (;;) { |
3799 | task_lock(task); |
3800 | if (!task->active) { |
3801 | task_unlock(task); |
3802 | |
3803 | kfree_type(thread_t, count, thread_list); |
3804 | return KERN_FAILURE; |
3805 | } |
3806 | |
3807 | count_needed = actual = task->thread_count; |
3808 | if (count_needed <= count) { |
3809 | break; |
3810 | } |
3811 | |
3812 | /* unlock the task and allocate more memory */ |
3813 | task_unlock(task); |
3814 | |
3815 | kfree_type(thread_t, count, thread_list); |
3816 | count = count_needed; |
3817 | thread_list = kalloc_type(thread_t, count, Z_WAITOK); |
3818 | |
3819 | if (thread_list == NULL) { |
3820 | return KERN_RESOURCE_SHORTAGE; |
3821 | } |
3822 | } |
3823 | |
3824 | i = 0; |
3825 | queue_iterate(&task->threads, thread, thread_t, task_threads) { |
3826 | assert(i < actual); |
3827 | thread_reference(thread); |
3828 | thread_list[i++] = thread; |
3829 | } |
3830 | |
3831 | count_needed = actual; |
3832 | |
3833 | /* can unlock task now that we've got the thread refs */ |
3834 | task_unlock(task); |
3835 | |
3836 | if (actual == 0) { |
3837 | /* no threads, so return null pointer and deallocate memory */ |
3838 | |
3839 | *threads_out = NULL; |
3840 | *countp = 0; |
3841 | kfree_type(thread_t, count, thread_list); |
3842 | } else { |
3843 | /* if we allocated too much, must copy */ |
3844 | if (count_needed < count) { |
3845 | void *newaddr; |
3846 | |
3847 | newaddr = kalloc_type(thread_t, count_needed, Z_WAITOK); |
3848 | if (newaddr == NULL) { |
3849 | for (i = 0; i < actual; ++i) { |
3850 | thread_deallocate(thread: thread_list[i]); |
3851 | } |
3852 | kfree_type(thread_t, count, thread_list); |
3853 | return KERN_RESOURCE_SHORTAGE; |
3854 | } |
3855 | |
3856 | bcopy(src: thread_list, dst: newaddr, n: count_needed * sizeof(thread_t)); |
3857 | kfree_type(thread_t, count, thread_list); |
3858 | thread_list = (thread_t *)newaddr; |
3859 | } |
3860 | |
3861 | *threads_out = thread_list; |
3862 | *countp = actual; |
3863 | |
3864 | /* do the conversion that Mig should handle */ |
3865 | |
3866 | switch (flavor) { |
3867 | case THREAD_FLAVOR_CONTROL: |
3868 | if (task == current_task()) { |
3869 | for (i = 0; i < actual; ++i) { |
3870 | ((ipc_port_t *) thread_list)[i] = convert_thread_to_port_pinned(thread_list[i]); |
3871 | } |
3872 | } else { |
3873 | for (i = 0; i < actual; ++i) { |
3874 | ((ipc_port_t *) thread_list)[i] = convert_thread_to_port(thread_list[i]); |
3875 | } |
3876 | } |
3877 | break; |
3878 | case THREAD_FLAVOR_READ: |
3879 | for (i = 0; i < actual; ++i) { |
3880 | ((ipc_port_t *) thread_list)[i] = convert_thread_read_to_port(thread_list[i]); |
3881 | } |
3882 | break; |
3883 | case THREAD_FLAVOR_INSPECT: |
3884 | for (i = 0; i < actual; ++i) { |
3885 | ((ipc_port_t *) thread_list)[i] = convert_thread_inspect_to_port(thread_list[i]); |
3886 | } |
3887 | break; |
3888 | } |
3889 | } |
3890 | |
3891 | return KERN_SUCCESS; |
3892 | } |
3893 | |
3894 | kern_return_t |
3895 | task_threads( |
3896 | task_t task, |
3897 | thread_act_array_t *threads_out, |
3898 | mach_msg_type_number_t *count) |
3899 | { |
3900 | return task_threads_internal(task, threads_out, countp: count, THREAD_FLAVOR_CONTROL); |
3901 | } |
3902 | |
3903 | |
3904 | kern_return_t |
3905 | task_threads_from_user( |
3906 | mach_port_t port, |
3907 | thread_act_array_t *threads_out, |
3908 | mach_msg_type_number_t *count) |
3909 | { |
3910 | ipc_kobject_type_t kotype; |
3911 | kern_return_t kr; |
3912 | |
3913 | task_t task = convert_port_to_task_inspect_no_eval(port); |
3914 | |
3915 | if (task == TASK_NULL) { |
3916 | return KERN_INVALID_ARGUMENT; |
3917 | } |
3918 | |
3919 | kotype = ip_kotype(port); |
3920 | |
3921 | switch (kotype) { |
3922 | case IKOT_TASK_CONTROL: |
3923 | kr = task_threads_internal(task, threads_out, countp: count, THREAD_FLAVOR_CONTROL); |
3924 | break; |
3925 | case IKOT_TASK_READ: |
3926 | kr = task_threads_internal(task, threads_out, countp: count, THREAD_FLAVOR_READ); |
3927 | break; |
3928 | case IKOT_TASK_INSPECT: |
3929 | kr = task_threads_internal(task, threads_out, countp: count, THREAD_FLAVOR_INSPECT); |
3930 | break; |
3931 | default: |
3932 | panic("strange kobject type" ); |
3933 | break; |
3934 | } |
3935 | |
3936 | task_deallocate(task); |
3937 | return kr; |
3938 | } |
3939 | |
3940 | #define TASK_HOLD_NORMAL 0 |
3941 | #define TASK_HOLD_PIDSUSPEND 1 |
3942 | #define TASK_HOLD_LEGACY 2 |
3943 | #define TASK_HOLD_LEGACY_ALL 3 |
3944 | |
3945 | static kern_return_t |
3946 | place_task_hold( |
3947 | task_t task, |
3948 | int mode) |
3949 | { |
3950 | if (!task->active && !task_is_a_corpse(task)) { |
3951 | return KERN_FAILURE; |
3952 | } |
3953 | |
3954 | /* Return success for corpse task */ |
3955 | if (task_is_a_corpse(task)) { |
3956 | return KERN_SUCCESS; |
3957 | } |
3958 | |
3959 | KDBG_RELEASE(MACHDBG_CODE(DBG_MACH_IPC, MACH_TASK_SUSPEND), |
3960 | task_pid(task), |
3961 | task->thread_count > 0 ?((thread_t)queue_first(&task->threads))->thread_id : 0, |
3962 | task->user_stop_count, task->user_stop_count + 1); |
3963 | |
3964 | #if MACH_ASSERT |
3965 | current_task()->suspends_outstanding++; |
3966 | #endif |
3967 | |
3968 | if (mode == TASK_HOLD_LEGACY) { |
3969 | task->legacy_stop_count++; |
3970 | } |
3971 | |
3972 | #ifdef CONFIG_TASK_SUSPEND_STATS |
3973 | _task_mark_suspend_source(task); |
3974 | #endif /* CONFIG_TASK_SUSPEND_STATS */ |
3975 | |
3976 | if (task->user_stop_count++ > 0) { |
3977 | /* |
3978 | * If the stop count was positive, the task is |
3979 | * already stopped and we can exit. |
3980 | */ |
3981 | return KERN_SUCCESS; |
3982 | } |
3983 | |
3984 | /* |
3985 | * Put a kernel-level hold on the threads in the task (all |
3986 | * user-level task suspensions added together represent a |
3987 | * single kernel-level hold). We then wait for the threads |
3988 | * to stop executing user code. |
3989 | */ |
3990 | task_hold_locked(task); |
3991 | task_wait_locked(task, FALSE); |
3992 | |
3993 | return KERN_SUCCESS; |
3994 | } |
3995 | |
3996 | static kern_return_t |
3997 | release_task_hold( |
3998 | task_t task, |
3999 | int mode) |
4000 | { |
4001 | boolean_t release = FALSE; |
4002 | |
4003 | if (!task->active && !task_is_a_corpse(task)) { |
4004 | return KERN_FAILURE; |
4005 | } |
4006 | |
4007 | /* Return success for corpse task */ |
4008 | if (task_is_a_corpse(task)) { |
4009 | return KERN_SUCCESS; |
4010 | } |
4011 | |
4012 | if (mode == TASK_HOLD_PIDSUSPEND) { |
4013 | if (task->pidsuspended == FALSE) { |
4014 | return KERN_FAILURE; |
4015 | } |
4016 | task->pidsuspended = FALSE; |
4017 | } |
4018 | |
4019 | if (task->user_stop_count > (task->pidsuspended ? 1 : 0)) { |
4020 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
4021 | MACHDBG_CODE(DBG_MACH_IPC, MACH_TASK_RESUME) | DBG_FUNC_NONE, |
4022 | task_pid(task), ((thread_t)queue_first(&task->threads))->thread_id, |
4023 | task->user_stop_count, mode, task->legacy_stop_count); |
4024 | |
4025 | #if MACH_ASSERT |
4026 | /* |
4027 | * This is obviously not robust; if we suspend one task and then resume a different one, |
4028 | * we'll fly under the radar. This is only meant to catch the common case of a crashed |
4029 | * or buggy suspender. |
4030 | */ |
4031 | current_task()->suspends_outstanding--; |
4032 | #endif |
4033 | |
4034 | if (mode == TASK_HOLD_LEGACY_ALL) { |
4035 | if (task->legacy_stop_count >= task->user_stop_count) { |
4036 | task->user_stop_count = 0; |
4037 | release = TRUE; |
4038 | } else { |
4039 | task->user_stop_count -= task->legacy_stop_count; |
4040 | } |
4041 | task->legacy_stop_count = 0; |
4042 | } else { |
4043 | if (mode == TASK_HOLD_LEGACY && task->legacy_stop_count > 0) { |
4044 | task->legacy_stop_count--; |
4045 | } |
4046 | if (--task->user_stop_count == 0) { |
4047 | release = TRUE; |
4048 | } |
4049 | } |
4050 | } else { |
4051 | return KERN_FAILURE; |
4052 | } |
4053 | |
4054 | /* |
4055 | * Release the task if necessary. |
4056 | */ |
4057 | if (release) { |
4058 | task_release_locked(task); |
4059 | } |
4060 | |
4061 | return KERN_SUCCESS; |
4062 | } |
4063 | |
4064 | boolean_t |
4065 | get_task_suspended(task_t task) |
4066 | { |
4067 | return 0 != task->user_stop_count; |
4068 | } |
4069 | |
4070 | /* |
4071 | * task_suspend: |
4072 | * |
4073 | * Implement an (old-fashioned) user-level suspension on a task. |
4074 | * |
4075 | * Because the user isn't expecting to have to manage a suspension |
4076 | * token, we'll track it for him in the kernel in the form of a naked |
4077 | * send right to the task's resume port. All such send rights |
4078 | * account for a single suspension against the task (unlike task_suspend2() |
4079 | * where each caller gets a unique suspension count represented by a |
4080 | * unique send-once right). |
4081 | * |
4082 | * Conditions: |
4083 | * The caller holds a reference to the task |
4084 | */ |
4085 | kern_return_t |
4086 | task_suspend( |
4087 | task_t task) |
4088 | { |
4089 | kern_return_t kr; |
4090 | mach_port_t port; |
4091 | mach_port_name_t name; |
4092 | |
4093 | if (task == TASK_NULL || task == kernel_task) { |
4094 | return KERN_INVALID_ARGUMENT; |
4095 | } |
4096 | |
4097 | /* |
4098 | * place a legacy hold on the task. |
4099 | */ |
4100 | task_lock(task); |
4101 | kr = place_task_hold(task, TASK_HOLD_LEGACY); |
4102 | task_unlock(task); |
4103 | |
4104 | if (kr != KERN_SUCCESS) { |
4105 | return kr; |
4106 | } |
4107 | |
4108 | /* |
4109 | * Claim a send right on the task resume port, and request a no-senders |
4110 | * notification on that port (if none outstanding). |
4111 | */ |
4112 | itk_lock(task); |
4113 | port = task->itk_resume; |
4114 | if (port == IP_NULL) { |
4115 | port = ipc_kobject_alloc_port(kobject: task, type: IKOT_TASK_RESUME, |
4116 | options: IPC_KOBJECT_ALLOC_NSREQUEST | IPC_KOBJECT_ALLOC_MAKE_SEND); |
4117 | task->itk_resume = port; |
4118 | } else { |
4119 | (void)ipc_kobject_make_send_nsrequest(port, kobject: task, kotype: IKOT_TASK_RESUME); |
4120 | } |
4121 | itk_unlock(task); |
4122 | |
4123 | /* |
4124 | * Copyout the send right into the calling task's IPC space. It won't know it is there, |
4125 | * but we'll look it up when calling a traditional resume. Any IPC operations that |
4126 | * deallocate the send right will auto-release the suspension. |
4127 | */ |
4128 | if (IP_VALID(port)) { |
4129 | kr = ipc_object_copyout(current_space(), ip_to_object(port), |
4130 | MACH_MSG_TYPE_MOVE_SEND, flags: IPC_OBJECT_COPYOUT_FLAGS_NONE, |
4131 | NULL, NULL, namep: &name); |
4132 | } else { |
4133 | kr = KERN_SUCCESS; |
4134 | } |
4135 | if (kr != KERN_SUCCESS) { |
4136 | printf(format: "warning: %s(%d) failed to copyout suspension " |
4137 | "token for pid %d with error: %d\n" , |
4138 | proc_name_address(p: get_bsdtask_info(current_task())), |
4139 | proc_pid(p: get_bsdtask_info(current_task())), |
4140 | task_pid(task), kr); |
4141 | } |
4142 | |
4143 | return kr; |
4144 | } |
4145 | |
4146 | /* |
4147 | * task_resume: |
4148 | * Release a user hold on a task. |
4149 | * |
4150 | * Conditions: |
4151 | * The caller holds a reference to the task |
4152 | */ |
4153 | kern_return_t |
4154 | task_resume( |
4155 | task_t task) |
4156 | { |
4157 | kern_return_t kr; |
4158 | mach_port_name_t resume_port_name; |
4159 | ipc_entry_t resume_port_entry; |
4160 | ipc_space_t space = current_task()->itk_space; |
4161 | |
4162 | if (task == TASK_NULL || task == kernel_task) { |
4163 | return KERN_INVALID_ARGUMENT; |
4164 | } |
4165 | |
4166 | /* release a legacy task hold */ |
4167 | task_lock(task); |
4168 | kr = release_task_hold(task, TASK_HOLD_LEGACY); |
4169 | task_unlock(task); |
4170 | |
4171 | itk_lock(task); /* for itk_resume */ |
4172 | is_write_lock(space); /* spin lock */ |
4173 | if (is_active(space) && IP_VALID(task->itk_resume) && |
4174 | ipc_hash_lookup(space, ip_to_object(task->itk_resume), namep: &resume_port_name, entryp: &resume_port_entry) == TRUE) { |
4175 | /* |
4176 | * We found a suspension token in the caller's IPC space. Release a send right to indicate that |
4177 | * we are holding one less legacy hold on the task from this caller. If the release failed, |
4178 | * go ahead and drop all the rights, as someone either already released our holds or the task |
4179 | * is gone. |
4180 | */ |
4181 | itk_unlock(task); |
4182 | if (kr == KERN_SUCCESS) { |
4183 | ipc_right_dealloc(space, name: resume_port_name, entry: resume_port_entry); |
4184 | } else { |
4185 | ipc_right_destroy(space, name: resume_port_name, entry: resume_port_entry, FALSE, guard: 0); |
4186 | } |
4187 | /* space unlocked */ |
4188 | } else { |
4189 | itk_unlock(task); |
4190 | is_write_unlock(space); |
4191 | if (kr == KERN_SUCCESS) { |
4192 | printf(format: "warning: %s(%d) performed out-of-band resume on pid %d\n" , |
4193 | proc_name_address(p: get_bsdtask_info(current_task())), proc_pid(p: get_bsdtask_info(current_task())), |
4194 | task_pid(task)); |
4195 | } |
4196 | } |
4197 | |
4198 | return kr; |
4199 | } |
4200 | |
4201 | /* |
4202 | * Suspend a task that is already protected by a held lock. |
4203 | * Making/holding a token/reference/port is the caller's responsibility. |
4204 | */ |
4205 | kern_return_t |
4206 | task_suspend_internal_locked(task_t task) |
4207 | { |
4208 | if (task == TASK_NULL || task == kernel_task) { |
4209 | return KERN_INVALID_ARGUMENT; |
4210 | } |
4211 | |
4212 | return place_task_hold(task, TASK_HOLD_NORMAL); |
4213 | } |
4214 | |
4215 | /* |
4216 | * Suspend a task. |
4217 | * Making/holding a token/reference/port is the caller's responsibility. |
4218 | */ |
4219 | kern_return_t |
4220 | task_suspend_internal(task_t task) |
4221 | { |
4222 | kern_return_t kr; |
4223 | |
4224 | if (task == TASK_NULL || task == kernel_task) { |
4225 | return KERN_INVALID_ARGUMENT; |
4226 | } |
4227 | |
4228 | task_lock(task); |
4229 | kr = task_suspend_internal_locked(task); |
4230 | task_unlock(task); |
4231 | return kr; |
4232 | } |
4233 | |
4234 | /* |
4235 | * Suspend the target task, and return a suspension token. The token |
4236 | * represents a reference on the suspended task. |
4237 | */ |
4238 | static kern_return_t |
4239 | task_suspend2_grp( |
4240 | task_t task, |
4241 | task_suspension_token_t *suspend_token, |
4242 | task_grp_t grp) |
4243 | { |
4244 | kern_return_t kr; |
4245 | |
4246 | kr = task_suspend_internal(task); |
4247 | if (kr != KERN_SUCCESS) { |
4248 | *suspend_token = TASK_NULL; |
4249 | return kr; |
4250 | } |
4251 | |
4252 | /* |
4253 | * Take a reference on the target task and return that to the caller |
4254 | * as a "suspension token," which can be converted into an SO right to |
4255 | * the now-suspended task's resume port. |
4256 | */ |
4257 | task_reference_grp(task, grp); |
4258 | *suspend_token = task; |
4259 | |
4260 | return KERN_SUCCESS; |
4261 | } |
4262 | |
4263 | kern_return_t |
4264 | task_suspend2_mig( |
4265 | task_t task, |
4266 | task_suspension_token_t *suspend_token) |
4267 | { |
4268 | return task_suspend2_grp(task, suspend_token, grp: TASK_GRP_MIG); |
4269 | } |
4270 | |
4271 | kern_return_t |
4272 | task_suspend2_external( |
4273 | task_t task, |
4274 | task_suspension_token_t *suspend_token) |
4275 | { |
4276 | return task_suspend2_grp(task, suspend_token, grp: TASK_GRP_EXTERNAL); |
4277 | } |
4278 | |
4279 | /* |
4280 | * Resume a task that is already protected by a held lock. |
4281 | * (reference/token/port management is caller's responsibility). |
4282 | */ |
4283 | kern_return_t |
4284 | task_resume_internal_locked( |
4285 | task_suspension_token_t task) |
4286 | { |
4287 | if (task == TASK_NULL || task == kernel_task) { |
4288 | return KERN_INVALID_ARGUMENT; |
4289 | } |
4290 | |
4291 | return release_task_hold(task, TASK_HOLD_NORMAL); |
4292 | } |
4293 | |
4294 | /* |
4295 | * Resume a task. |
4296 | * (reference/token/port management is caller's responsibility). |
4297 | */ |
4298 | kern_return_t |
4299 | task_resume_internal( |
4300 | task_suspension_token_t task) |
4301 | { |
4302 | kern_return_t kr; |
4303 | |
4304 | if (task == TASK_NULL || task == kernel_task) { |
4305 | return KERN_INVALID_ARGUMENT; |
4306 | } |
4307 | |
4308 | task_lock(task); |
4309 | kr = task_resume_internal_locked(task); |
4310 | task_unlock(task); |
4311 | return kr; |
4312 | } |
4313 | |
4314 | /* |
4315 | * Resume the task using a suspension token. Consumes the token's ref. |
4316 | */ |
4317 | static kern_return_t |
4318 | task_resume2_grp( |
4319 | task_suspension_token_t task, |
4320 | task_grp_t grp) |
4321 | { |
4322 | kern_return_t kr; |
4323 | |
4324 | kr = task_resume_internal(task); |
4325 | task_suspension_token_deallocate_grp(token: task, grp); |
4326 | |
4327 | return kr; |
4328 | } |
4329 | |
4330 | kern_return_t |
4331 | task_resume2_mig( |
4332 | task_suspension_token_t task) |
4333 | { |
4334 | return task_resume2_grp(task, grp: TASK_GRP_MIG); |
4335 | } |
4336 | |
4337 | kern_return_t |
4338 | task_resume2_external( |
4339 | task_suspension_token_t task) |
4340 | { |
4341 | return task_resume2_grp(task, grp: TASK_GRP_EXTERNAL); |
4342 | } |
4343 | |
4344 | static void |
4345 | task_suspension_no_senders(ipc_port_t port, mach_port_mscount_t mscount) |
4346 | { |
4347 | task_t task = convert_port_to_task_suspension_token(port); |
4348 | kern_return_t kr; |
4349 | |
4350 | if (task == TASK_NULL) { |
4351 | return; |
4352 | } |
4353 | |
4354 | if (task == kernel_task) { |
4355 | task_suspension_token_deallocate(token: task); |
4356 | return; |
4357 | } |
4358 | |
4359 | task_lock(task); |
4360 | |
4361 | kr = ipc_kobject_nsrequest(port, sync: mscount, NULL); |
4362 | if (kr == KERN_FAILURE) { |
4363 | /* release all the [remaining] outstanding legacy holds */ |
4364 | release_task_hold(task, TASK_HOLD_LEGACY_ALL); |
4365 | } |
4366 | |
4367 | task_unlock(task); |
4368 | |
4369 | task_suspension_token_deallocate(token: task); /* drop token reference */ |
4370 | } |
4371 | |
4372 | /* |
4373 | * Fires when a send once made |
4374 | * by convert_task_suspension_token_to_port() dies. |
4375 | */ |
4376 | void |
4377 | task_suspension_send_once(ipc_port_t port) |
4378 | { |
4379 | task_t task = convert_port_to_task_suspension_token(port); |
4380 | |
4381 | if (task == TASK_NULL || task == kernel_task) { |
4382 | return; /* nothing to do */ |
4383 | } |
4384 | |
4385 | /* release the hold held by this specific send-once right */ |
4386 | task_lock(task); |
4387 | release_task_hold(task, TASK_HOLD_NORMAL); |
4388 | task_unlock(task); |
4389 | |
4390 | task_suspension_token_deallocate(token: task); /* drop token reference */ |
4391 | } |
4392 | |
4393 | static kern_return_t |
4394 | task_pidsuspend_locked(task_t task) |
4395 | { |
4396 | kern_return_t kr; |
4397 | |
4398 | if (task->pidsuspended) { |
4399 | kr = KERN_FAILURE; |
4400 | goto out; |
4401 | } |
4402 | |
4403 | task->pidsuspended = TRUE; |
4404 | |
4405 | kr = place_task_hold(task, TASK_HOLD_PIDSUSPEND); |
4406 | if (kr != KERN_SUCCESS) { |
4407 | task->pidsuspended = FALSE; |
4408 | } |
4409 | out: |
4410 | return kr; |
4411 | } |
4412 | |
4413 | |
4414 | /* |
4415 | * task_pidsuspend: |
4416 | * |
4417 | * Suspends a task by placing a hold on its threads. |
4418 | * |
4419 | * Conditions: |
4420 | * The caller holds a reference to the task |
4421 | */ |
4422 | kern_return_t |
4423 | task_pidsuspend( |
4424 | task_t task) |
4425 | { |
4426 | kern_return_t kr; |
4427 | |
4428 | if (task == TASK_NULL || task == kernel_task) { |
4429 | return KERN_INVALID_ARGUMENT; |
4430 | } |
4431 | |
4432 | task_lock(task); |
4433 | |
4434 | kr = task_pidsuspend_locked(task); |
4435 | |
4436 | task_unlock(task); |
4437 | |
4438 | if ((KERN_SUCCESS == kr) && task->message_app_suspended) { |
4439 | iokit_task_app_suspended_changed(task); |
4440 | } |
4441 | |
4442 | return kr; |
4443 | } |
4444 | |
4445 | /* |
4446 | * task_pidresume: |
4447 | * Resumes a previously suspended task. |
4448 | * |
4449 | * Conditions: |
4450 | * The caller holds a reference to the task |
4451 | */ |
4452 | kern_return_t |
4453 | task_pidresume( |
4454 | task_t task) |
4455 | { |
4456 | kern_return_t kr; |
4457 | |
4458 | if (task == TASK_NULL || task == kernel_task) { |
4459 | return KERN_INVALID_ARGUMENT; |
4460 | } |
4461 | |
4462 | task_lock(task); |
4463 | |
4464 | #if CONFIG_FREEZE |
4465 | |
4466 | while (task->changing_freeze_state) { |
4467 | assert_wait((event_t)&task->changing_freeze_state, THREAD_UNINT); |
4468 | task_unlock(task); |
4469 | thread_block(THREAD_CONTINUE_NULL); |
4470 | |
4471 | task_lock(task); |
4472 | } |
4473 | task->changing_freeze_state = TRUE; |
4474 | #endif |
4475 | |
4476 | kr = release_task_hold(task, TASK_HOLD_PIDSUSPEND); |
4477 | |
4478 | task_unlock(task); |
4479 | |
4480 | if ((KERN_SUCCESS == kr) && task->message_app_suspended) { |
4481 | iokit_task_app_suspended_changed(task); |
4482 | } |
4483 | |
4484 | #if CONFIG_FREEZE |
4485 | |
4486 | task_lock(task); |
4487 | |
4488 | if (kr == KERN_SUCCESS) { |
4489 | task->frozen = FALSE; |
4490 | } |
4491 | task->changing_freeze_state = FALSE; |
4492 | thread_wakeup(&task->changing_freeze_state); |
4493 | |
4494 | task_unlock(task); |
4495 | #endif |
4496 | |
4497 | return kr; |
4498 | } |
4499 | |
4500 | os_refgrp_decl(static, task_watchports_refgrp, "task_watchports" , NULL); |
4501 | |
4502 | /* |
4503 | * task_add_turnstile_watchports: |
4504 | * Setup watchports to boost the main thread of the task. |
4505 | * |
4506 | * Arguments: |
4507 | * task: task being spawned |
4508 | * thread: main thread of task |
4509 | * portwatch_ports: array of watchports |
4510 | * portwatch_count: number of watchports |
4511 | * |
4512 | * Conditions: |
4513 | * Nothing locked. |
4514 | */ |
4515 | void |
4516 | task_add_turnstile_watchports( |
4517 | task_t task, |
4518 | thread_t thread, |
4519 | ipc_port_t *portwatch_ports, |
4520 | uint32_t portwatch_count) |
4521 | { |
4522 | struct task_watchports *watchports = NULL; |
4523 | struct task_watchport_elem *previous_elem_array[TASK_MAX_WATCHPORT_COUNT] = {}; |
4524 | os_ref_count_t refs; |
4525 | |
4526 | /* Check if the task has terminated */ |
4527 | if (!task->active) { |
4528 | return; |
4529 | } |
4530 | |
4531 | assert(portwatch_count <= TASK_MAX_WATCHPORT_COUNT); |
4532 | |
4533 | watchports = task_watchports_alloc_init(task, thread, count: portwatch_count); |
4534 | |
4535 | /* Lock the ipc space */ |
4536 | is_write_lock(task->itk_space); |
4537 | |
4538 | /* Setup watchports to boost the main thread */ |
4539 | refs = task_add_turnstile_watchports_locked(task, |
4540 | watchports, previous_elem_array, portwatch_ports, |
4541 | portwatch_count); |
4542 | |
4543 | /* Drop the space lock */ |
4544 | is_write_unlock(task->itk_space); |
4545 | |
4546 | if (refs == 0) { |
4547 | task_watchports_deallocate(watchports); |
4548 | } |
4549 | |
4550 | /* Drop the ref on previous_elem_array */ |
4551 | for (uint32_t i = 0; i < portwatch_count && previous_elem_array[i] != NULL; i++) { |
4552 | task_watchport_elem_deallocate(watchport_elem: previous_elem_array[i]); |
4553 | } |
4554 | } |
4555 | |
4556 | /* |
4557 | * task_remove_turnstile_watchports: |
4558 | * Clear all turnstile boost on the task from watchports. |
4559 | * |
4560 | * Arguments: |
4561 | * task: task being terminated |
4562 | * |
4563 | * Conditions: |
4564 | * Nothing locked. |
4565 | */ |
4566 | void |
4567 | task_remove_turnstile_watchports( |
4568 | task_t task) |
4569 | { |
4570 | os_ref_count_t refs = TASK_MAX_WATCHPORT_COUNT; |
4571 | struct task_watchports *watchports = NULL; |
4572 | ipc_port_t port_freelist[TASK_MAX_WATCHPORT_COUNT] = {}; |
4573 | uint32_t portwatch_count; |
4574 | |
4575 | /* Lock the ipc space */ |
4576 | is_write_lock(task->itk_space); |
4577 | |
4578 | /* Check if watchport boost exist */ |
4579 | if (task->watchports == NULL) { |
4580 | is_write_unlock(task->itk_space); |
4581 | return; |
4582 | } |
4583 | watchports = task->watchports; |
4584 | portwatch_count = watchports->tw_elem_array_count; |
4585 | |
4586 | refs = task_remove_turnstile_watchports_locked(task, watchports, |
4587 | port_freelist); |
4588 | |
4589 | is_write_unlock(task->itk_space); |
4590 | |
4591 | /* Drop all the port references */ |
4592 | for (uint32_t i = 0; i < portwatch_count && port_freelist[i] != NULL; i++) { |
4593 | ip_release(port_freelist[i]); |
4594 | } |
4595 | |
4596 | /* Clear the task and thread references for task_watchport */ |
4597 | if (refs == 0) { |
4598 | task_watchports_deallocate(watchports); |
4599 | } |
4600 | } |
4601 | |
4602 | /* |
4603 | * task_transfer_turnstile_watchports: |
4604 | * Transfer all watchport turnstile boost from old task to new task. |
4605 | * |
4606 | * Arguments: |
4607 | * old_task: task calling exec |
4608 | * new_task: new exec'ed task |
4609 | * thread: main thread of new task |
4610 | * |
4611 | * Conditions: |
4612 | * Nothing locked. |
4613 | */ |
4614 | void |
4615 | task_transfer_turnstile_watchports( |
4616 | task_t old_task, |
4617 | task_t new_task, |
4618 | thread_t new_thread) |
4619 | { |
4620 | struct task_watchports *old_watchports = NULL; |
4621 | struct task_watchports *new_watchports = NULL; |
4622 | os_ref_count_t old_refs = TASK_MAX_WATCHPORT_COUNT; |
4623 | os_ref_count_t new_refs = TASK_MAX_WATCHPORT_COUNT; |
4624 | uint32_t portwatch_count; |
4625 | |
4626 | if (old_task->watchports == NULL || !new_task->active) { |
4627 | return; |
4628 | } |
4629 | |
4630 | /* Get the watch port count from the old task */ |
4631 | is_write_lock(old_task->itk_space); |
4632 | if (old_task->watchports == NULL) { |
4633 | is_write_unlock(old_task->itk_space); |
4634 | return; |
4635 | } |
4636 | |
4637 | portwatch_count = old_task->watchports->tw_elem_array_count; |
4638 | is_write_unlock(old_task->itk_space); |
4639 | |
4640 | new_watchports = task_watchports_alloc_init(task: new_task, thread: new_thread, count: portwatch_count); |
4641 | |
4642 | /* Lock the ipc space for old task */ |
4643 | is_write_lock(old_task->itk_space); |
4644 | |
4645 | /* Lock the ipc space for new task */ |
4646 | is_write_lock(new_task->itk_space); |
4647 | |
4648 | /* Check if watchport boost exist */ |
4649 | if (old_task->watchports == NULL || !new_task->active) { |
4650 | is_write_unlock(new_task->itk_space); |
4651 | is_write_unlock(old_task->itk_space); |
4652 | (void)task_watchports_release(new_watchports); |
4653 | task_watchports_deallocate(watchports: new_watchports); |
4654 | return; |
4655 | } |
4656 | |
4657 | old_watchports = old_task->watchports; |
4658 | assert(portwatch_count == old_task->watchports->tw_elem_array_count); |
4659 | |
4660 | /* Setup new task watchports */ |
4661 | new_task->watchports = new_watchports; |
4662 | |
4663 | for (uint32_t i = 0; i < portwatch_count; i++) { |
4664 | ipc_port_t port = old_watchports->tw_elem[i].twe_port; |
4665 | |
4666 | if (port == NULL) { |
4667 | task_watchport_elem_clear(&new_watchports->tw_elem[i]); |
4668 | continue; |
4669 | } |
4670 | |
4671 | /* Lock the port and check if it has the entry */ |
4672 | ip_mq_lock(port); |
4673 | |
4674 | task_watchport_elem_init(&new_watchports->tw_elem[i], new_task, port); |
4675 | |
4676 | if (ipc_port_replace_watchport_elem_conditional_locked(port, |
4677 | old_watchport_elem: &old_watchports->tw_elem[i], new_watchport_elem: &new_watchports->tw_elem[i]) == KERN_SUCCESS) { |
4678 | task_watchport_elem_clear(&old_watchports->tw_elem[i]); |
4679 | |
4680 | task_watchports_retain(new_watchports); |
4681 | old_refs = task_watchports_release(old_watchports); |
4682 | |
4683 | /* Check if all ports are cleaned */ |
4684 | if (old_refs == 0) { |
4685 | old_task->watchports = NULL; |
4686 | } |
4687 | } else { |
4688 | task_watchport_elem_clear(&new_watchports->tw_elem[i]); |
4689 | } |
4690 | /* port unlocked by ipc_port_replace_watchport_elem_conditional_locked */ |
4691 | } |
4692 | |
4693 | /* Drop the reference on new task_watchports struct returned by task_watchports_alloc_init */ |
4694 | new_refs = task_watchports_release(new_watchports); |
4695 | if (new_refs == 0) { |
4696 | new_task->watchports = NULL; |
4697 | } |
4698 | |
4699 | is_write_unlock(new_task->itk_space); |
4700 | is_write_unlock(old_task->itk_space); |
4701 | |
4702 | /* Clear the task and thread references for old_watchport */ |
4703 | if (old_refs == 0) { |
4704 | task_watchports_deallocate(watchports: old_watchports); |
4705 | } |
4706 | |
4707 | /* Clear the task and thread references for new_watchport */ |
4708 | if (new_refs == 0) { |
4709 | task_watchports_deallocate(watchports: new_watchports); |
4710 | } |
4711 | } |
4712 | |
4713 | /* |
4714 | * task_add_turnstile_watchports_locked: |
4715 | * Setup watchports to boost the main thread of the task. |
4716 | * |
4717 | * Arguments: |
4718 | * task: task to boost |
4719 | * watchports: watchport structure to be attached to the task |
4720 | * previous_elem_array: an array of old watchport_elem to be returned to caller |
4721 | * portwatch_ports: array of watchports |
4722 | * portwatch_count: number of watchports |
4723 | * |
4724 | * Conditions: |
4725 | * ipc space of the task locked. |
4726 | * returns array of old watchport_elem in previous_elem_array |
4727 | */ |
4728 | static os_ref_count_t |
4729 | task_add_turnstile_watchports_locked( |
4730 | task_t task, |
4731 | struct task_watchports *watchports, |
4732 | struct task_watchport_elem **previous_elem_array, |
4733 | ipc_port_t *portwatch_ports, |
4734 | uint32_t portwatch_count) |
4735 | { |
4736 | os_ref_count_t refs = TASK_MAX_WATCHPORT_COUNT; |
4737 | |
4738 | /* Check if the task is still active */ |
4739 | if (!task->active) { |
4740 | refs = task_watchports_release(watchports); |
4741 | return refs; |
4742 | } |
4743 | |
4744 | assert(task->watchports == NULL); |
4745 | task->watchports = watchports; |
4746 | |
4747 | for (uint32_t i = 0, j = 0; i < portwatch_count; i++) { |
4748 | ipc_port_t port = portwatch_ports[i]; |
4749 | |
4750 | task_watchport_elem_init(&watchports->tw_elem[i], task, port); |
4751 | if (port == NULL) { |
4752 | task_watchport_elem_clear(&watchports->tw_elem[i]); |
4753 | continue; |
4754 | } |
4755 | |
4756 | ip_mq_lock(port); |
4757 | |
4758 | /* Check if port is in valid state to be setup as watchport */ |
4759 | if (ipc_port_add_watchport_elem_locked(port, watchport_elem: &watchports->tw_elem[i], |
4760 | old_elem: &previous_elem_array[j]) != KERN_SUCCESS) { |
4761 | task_watchport_elem_clear(&watchports->tw_elem[i]); |
4762 | continue; |
4763 | } |
4764 | /* port unlocked on return */ |
4765 | |
4766 | ip_reference(port); |
4767 | task_watchports_retain(watchports); |
4768 | if (previous_elem_array[j] != NULL) { |
4769 | j++; |
4770 | } |
4771 | } |
4772 | |
4773 | /* Drop the reference on task_watchport struct returned by os_ref_init */ |
4774 | refs = task_watchports_release(watchports); |
4775 | if (refs == 0) { |
4776 | task->watchports = NULL; |
4777 | } |
4778 | |
4779 | return refs; |
4780 | } |
4781 | |
4782 | /* |
4783 | * task_remove_turnstile_watchports_locked: |
4784 | * Clear all turnstile boost on the task from watchports. |
4785 | * |
4786 | * Arguments: |
4787 | * task: task to remove watchports from |
4788 | * watchports: watchports structure for the task |
4789 | * port_freelist: array of ports returned with ref to caller |
4790 | * |
4791 | * |
4792 | * Conditions: |
4793 | * ipc space of the task locked. |
4794 | * array of ports with refs are returned in port_freelist |
4795 | */ |
4796 | static os_ref_count_t |
4797 | task_remove_turnstile_watchports_locked( |
4798 | task_t task, |
4799 | struct task_watchports *watchports, |
4800 | ipc_port_t *port_freelist) |
4801 | { |
4802 | os_ref_count_t refs = TASK_MAX_WATCHPORT_COUNT; |
4803 | |
4804 | for (uint32_t i = 0, j = 0; i < watchports->tw_elem_array_count; i++) { |
4805 | ipc_port_t port = watchports->tw_elem[i].twe_port; |
4806 | if (port == NULL) { |
4807 | continue; |
4808 | } |
4809 | |
4810 | /* Lock the port and check if it has the entry */ |
4811 | ip_mq_lock(port); |
4812 | if (ipc_port_clear_watchport_elem_internal_conditional_locked(port, |
4813 | watchport_elem: &watchports->tw_elem[i]) == KERN_SUCCESS) { |
4814 | task_watchport_elem_clear(&watchports->tw_elem[i]); |
4815 | port_freelist[j++] = port; |
4816 | refs = task_watchports_release(watchports); |
4817 | |
4818 | /* Check if all ports are cleaned */ |
4819 | if (refs == 0) { |
4820 | task->watchports = NULL; |
4821 | break; |
4822 | } |
4823 | } |
4824 | /* mqueue and port unlocked by ipc_port_clear_watchport_elem_internal_conditional_locked */ |
4825 | } |
4826 | return refs; |
4827 | } |
4828 | |
4829 | /* |
4830 | * task_watchports_alloc_init: |
4831 | * Allocate and initialize task watchport struct. |
4832 | * |
4833 | * Conditions: |
4834 | * Nothing locked. |
4835 | */ |
4836 | static struct task_watchports * |
4837 | task_watchports_alloc_init( |
4838 | task_t task, |
4839 | thread_t thread, |
4840 | uint32_t count) |
4841 | { |
4842 | struct task_watchports *watchports = kalloc_type(struct task_watchports, |
4843 | struct task_watchport_elem, count, Z_WAITOK | Z_ZERO | Z_NOFAIL); |
4844 | |
4845 | task_reference(task); |
4846 | thread_reference(thread); |
4847 | watchports->tw_task = task; |
4848 | watchports->tw_thread = thread; |
4849 | watchports->tw_elem_array_count = count; |
4850 | os_ref_init(&watchports->tw_refcount, &task_watchports_refgrp); |
4851 | |
4852 | return watchports; |
4853 | } |
4854 | |
4855 | /* |
4856 | * task_watchports_deallocate: |
4857 | * Deallocate task watchport struct. |
4858 | * |
4859 | * Conditions: |
4860 | * Nothing locked. |
4861 | */ |
4862 | static void |
4863 | task_watchports_deallocate( |
4864 | struct task_watchports *watchports) |
4865 | { |
4866 | uint32_t portwatch_count = watchports->tw_elem_array_count; |
4867 | |
4868 | task_deallocate(watchports->tw_task); |
4869 | thread_deallocate(thread: watchports->tw_thread); |
4870 | kfree_type(struct task_watchports, struct task_watchport_elem, |
4871 | portwatch_count, watchports); |
4872 | } |
4873 | |
4874 | /* |
4875 | * task_watchport_elem_deallocate: |
4876 | * Deallocate task watchport element and release its ref on task_watchport. |
4877 | * |
4878 | * Conditions: |
4879 | * Nothing locked. |
4880 | */ |
4881 | void |
4882 | task_watchport_elem_deallocate( |
4883 | struct task_watchport_elem *watchport_elem) |
4884 | { |
4885 | os_ref_count_t refs = TASK_MAX_WATCHPORT_COUNT; |
4886 | task_t task = watchport_elem->twe_task; |
4887 | struct task_watchports *watchports = NULL; |
4888 | ipc_port_t port = NULL; |
4889 | |
4890 | assert(task != NULL); |
4891 | |
4892 | /* Take the space lock to modify the elememt */ |
4893 | is_write_lock(task->itk_space); |
4894 | |
4895 | watchports = task->watchports; |
4896 | assert(watchports != NULL); |
4897 | |
4898 | port = watchport_elem->twe_port; |
4899 | assert(port != NULL); |
4900 | |
4901 | task_watchport_elem_clear(watchport_elem); |
4902 | refs = task_watchports_release(watchports); |
4903 | |
4904 | if (refs == 0) { |
4905 | task->watchports = NULL; |
4906 | } |
4907 | |
4908 | is_write_unlock(task->itk_space); |
4909 | |
4910 | ip_release(port); |
4911 | if (refs == 0) { |
4912 | task_watchports_deallocate(watchports); |
4913 | } |
4914 | } |
4915 | |
4916 | /* |
4917 | * task_has_watchports: |
4918 | * Return TRUE if task has watchport boosts. |
4919 | * |
4920 | * Conditions: |
4921 | * Nothing locked. |
4922 | */ |
4923 | boolean_t |
4924 | task_has_watchports(task_t task) |
4925 | { |
4926 | return task->watchports != NULL; |
4927 | } |
4928 | |
4929 | #if DEVELOPMENT || DEBUG |
4930 | |
4931 | extern void IOSleep(int); |
4932 | |
4933 | kern_return_t |
4934 | task_disconnect_page_mappings(task_t task) |
4935 | { |
4936 | int n; |
4937 | |
4938 | if (task == TASK_NULL || task == kernel_task) { |
4939 | return KERN_INVALID_ARGUMENT; |
4940 | } |
4941 | |
4942 | /* |
4943 | * this function is used to strip all of the mappings from |
4944 | * the pmap for the specified task to force the task to |
4945 | * re-fault all of the pages it is actively using... this |
4946 | * allows us to approximate the true working set of the |
4947 | * specified task. We only engage if at least 1 of the |
4948 | * threads in the task is runnable, but we want to continuously |
4949 | * sweep (at least for a while - I've arbitrarily set the limit at |
4950 | * 100 sweeps to be re-looked at as we gain experience) to get a better |
4951 | * view into what areas within a page are being visited (as opposed to only |
4952 | * seeing the first fault of a page after the task becomes |
4953 | * runnable)... in the future I may |
4954 | * try to block until awakened by a thread in this task |
4955 | * being made runnable, but for now we'll periodically poll from the |
4956 | * user level debug tool driving the sysctl |
4957 | */ |
4958 | for (n = 0; n < 100; n++) { |
4959 | thread_t thread; |
4960 | boolean_t runnable; |
4961 | boolean_t do_unnest; |
4962 | int page_count; |
4963 | |
4964 | runnable = FALSE; |
4965 | do_unnest = FALSE; |
4966 | |
4967 | task_lock(task); |
4968 | |
4969 | queue_iterate(&task->threads, thread, thread_t, task_threads) { |
4970 | if (thread->state & TH_RUN) { |
4971 | runnable = TRUE; |
4972 | break; |
4973 | } |
4974 | } |
4975 | if (n == 0) { |
4976 | task->task_disconnected_count++; |
4977 | } |
4978 | |
4979 | if (task->task_unnested == FALSE) { |
4980 | if (runnable == TRUE) { |
4981 | task->task_unnested = TRUE; |
4982 | do_unnest = TRUE; |
4983 | } |
4984 | } |
4985 | task_unlock(task); |
4986 | |
4987 | if (runnable == FALSE) { |
4988 | break; |
4989 | } |
4990 | |
4991 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, (MACHDBG_CODE(DBG_MACH_WORKINGSET, VM_DISCONNECT_TASK_PAGE_MAPPINGS)) | DBG_FUNC_START, |
4992 | task, do_unnest, task->task_disconnected_count, 0, 0); |
4993 | |
4994 | page_count = vm_map_disconnect_page_mappings(task->map, do_unnest); |
4995 | |
4996 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, (MACHDBG_CODE(DBG_MACH_WORKINGSET, VM_DISCONNECT_TASK_PAGE_MAPPINGS)) | DBG_FUNC_END, |
4997 | task, page_count, 0, 0, 0); |
4998 | |
4999 | if ((n % 5) == 4) { |
5000 | IOSleep(1); |
5001 | } |
5002 | } |
5003 | return KERN_SUCCESS; |
5004 | } |
5005 | |
5006 | #endif |
5007 | |
5008 | |
5009 | #if CONFIG_FREEZE |
5010 | |
5011 | /* |
5012 | * task_freeze: |
5013 | * |
5014 | * Freeze a task. |
5015 | * |
5016 | * Conditions: |
5017 | * The caller holds a reference to the task |
5018 | */ |
5019 | extern void vm_wake_compactor_swapper(void); |
5020 | extern struct freezer_context freezer_context_global; |
5021 | |
5022 | kern_return_t |
5023 | task_freeze( |
5024 | task_t task, |
5025 | uint32_t *purgeable_count, |
5026 | uint32_t *wired_count, |
5027 | uint32_t *clean_count, |
5028 | uint32_t *dirty_count, |
5029 | uint32_t dirty_budget, |
5030 | uint32_t *shared_count, |
5031 | int *freezer_error_code, |
5032 | boolean_t eval_only) |
5033 | { |
5034 | kern_return_t kr = KERN_SUCCESS; |
5035 | |
5036 | if (task == TASK_NULL || task == kernel_task) { |
5037 | return KERN_INVALID_ARGUMENT; |
5038 | } |
5039 | |
5040 | task_lock(task); |
5041 | |
5042 | while (task->changing_freeze_state) { |
5043 | assert_wait((event_t)&task->changing_freeze_state, THREAD_UNINT); |
5044 | task_unlock(task); |
5045 | thread_block(THREAD_CONTINUE_NULL); |
5046 | |
5047 | task_lock(task); |
5048 | } |
5049 | if (task->frozen) { |
5050 | task_unlock(task); |
5051 | return KERN_FAILURE; |
5052 | } |
5053 | task->changing_freeze_state = TRUE; |
5054 | |
5055 | freezer_context_global.freezer_ctx_task = task; |
5056 | |
5057 | task_unlock(task); |
5058 | |
5059 | kr = vm_map_freeze(task, |
5060 | purgeable_count, |
5061 | wired_count, |
5062 | clean_count, |
5063 | dirty_count, |
5064 | dirty_budget, |
5065 | shared_count, |
5066 | freezer_error_code, |
5067 | eval_only); |
5068 | |
5069 | task_lock(task); |
5070 | |
5071 | if ((kr == KERN_SUCCESS) && (eval_only == FALSE)) { |
5072 | task->frozen = TRUE; |
5073 | |
5074 | freezer_context_global.freezer_ctx_task = NULL; |
5075 | freezer_context_global.freezer_ctx_uncompressed_pages = 0; |
5076 | |
5077 | if (VM_CONFIG_FREEZER_SWAP_IS_ACTIVE) { |
5078 | /* |
5079 | * reset the counter tracking the # of swapped compressed pages |
5080 | * because we are now done with this freeze session and task. |
5081 | */ |
5082 | |
5083 | *dirty_count = (uint32_t) (freezer_context_global.freezer_ctx_swapped_bytes / PAGE_SIZE_64); /*used to track pageouts*/ |
5084 | } |
5085 | |
5086 | freezer_context_global.freezer_ctx_swapped_bytes = 0; |
5087 | } |
5088 | |
5089 | task->changing_freeze_state = FALSE; |
5090 | thread_wakeup(&task->changing_freeze_state); |
5091 | |
5092 | task_unlock(task); |
5093 | |
5094 | if (VM_CONFIG_COMPRESSOR_IS_PRESENT && |
5095 | (kr == KERN_SUCCESS) && |
5096 | (eval_only == FALSE)) { |
5097 | vm_wake_compactor_swapper(); |
5098 | /* |
5099 | * We do an explicit wakeup of the swapout thread here |
5100 | * because the compact_and_swap routines don't have |
5101 | * knowledge about these kind of "per-task packed c_segs" |
5102 | * and so will not be evaluating whether we need to do |
5103 | * a wakeup there. |
5104 | */ |
5105 | thread_wakeup((event_t)&vm_swapout_thread); |
5106 | } |
5107 | |
5108 | return kr; |
5109 | } |
5110 | |
5111 | /* |
5112 | * task_thaw: |
5113 | * |
5114 | * Thaw a currently frozen task. |
5115 | * |
5116 | * Conditions: |
5117 | * The caller holds a reference to the task |
5118 | */ |
5119 | kern_return_t |
5120 | task_thaw( |
5121 | task_t task) |
5122 | { |
5123 | if (task == TASK_NULL || task == kernel_task) { |
5124 | return KERN_INVALID_ARGUMENT; |
5125 | } |
5126 | |
5127 | task_lock(task); |
5128 | |
5129 | while (task->changing_freeze_state) { |
5130 | assert_wait((event_t)&task->changing_freeze_state, THREAD_UNINT); |
5131 | task_unlock(task); |
5132 | thread_block(THREAD_CONTINUE_NULL); |
5133 | |
5134 | task_lock(task); |
5135 | } |
5136 | if (!task->frozen) { |
5137 | task_unlock(task); |
5138 | return KERN_FAILURE; |
5139 | } |
5140 | task->frozen = FALSE; |
5141 | |
5142 | task_unlock(task); |
5143 | |
5144 | return KERN_SUCCESS; |
5145 | } |
5146 | |
5147 | void |
5148 | task_update_frozen_to_swap_acct(task_t task, int64_t amount, freezer_acct_op_t op) |
5149 | { |
5150 | /* |
5151 | * We don't assert that the task lock is held because we call this |
5152 | * routine from the decompression path and we won't be holding the |
5153 | * task lock. However, since we are in the context of the task we are |
5154 | * safe. |
5155 | * In the case of the task_freeze path, we call it from behind the task |
5156 | * lock but we don't need to because we have a reference on the proc |
5157 | * being frozen. |
5158 | */ |
5159 | |
5160 | assert(task); |
5161 | if (amount == 0) { |
5162 | return; |
5163 | } |
5164 | |
5165 | if (op == CREDIT_TO_SWAP) { |
5166 | ledger_credit_nocheck(task->ledger, task_ledgers.frozen_to_swap, amount); |
5167 | } else if (op == DEBIT_FROM_SWAP) { |
5168 | ledger_debit_nocheck(task->ledger, task_ledgers.frozen_to_swap, amount); |
5169 | } else { |
5170 | panic("task_update_frozen_to_swap_acct: Invalid ledger op" ); |
5171 | } |
5172 | } |
5173 | #endif /* CONFIG_FREEZE */ |
5174 | |
5175 | kern_return_t |
5176 | task_set_security_tokens( |
5177 | task_t task, |
5178 | security_token_t sec_token, |
5179 | audit_token_t audit_token, |
5180 | host_priv_t host_priv) |
5181 | { |
5182 | ipc_port_t host_port = IP_NULL; |
5183 | kern_return_t kr; |
5184 | |
5185 | if (task == TASK_NULL) { |
5186 | return KERN_INVALID_ARGUMENT; |
5187 | } |
5188 | |
5189 | task_lock(task); |
5190 | task_set_tokens(task, sec_token: &sec_token, audit_token: &audit_token); |
5191 | task_unlock(task); |
5192 | |
5193 | if (host_priv != HOST_PRIV_NULL) { |
5194 | kr = host_get_host_priv_port(host_priv, &host_port); |
5195 | } else { |
5196 | kr = host_get_host_port(host_priv_self(), &host_port); |
5197 | } |
5198 | assert(kr == KERN_SUCCESS); |
5199 | |
5200 | kr = task_set_special_port_internal(task, TASK_HOST_PORT, port: host_port); |
5201 | return kr; |
5202 | } |
5203 | |
5204 | kern_return_t |
5205 | task_send_trace_memory( |
5206 | __unused task_t target_task, |
5207 | __unused uint32_t pid, |
5208 | __unused uint64_t uniqueid) |
5209 | { |
5210 | return KERN_INVALID_ARGUMENT; |
5211 | } |
5212 | |
5213 | /* |
5214 | * This routine was added, pretty much exclusively, for registering the |
5215 | * RPC glue vector for in-kernel short circuited tasks. Rather than |
5216 | * removing it completely, I have only disabled that feature (which was |
5217 | * the only feature at the time). It just appears that we are going to |
5218 | * want to add some user data to tasks in the future (i.e. bsd info, |
5219 | * task names, etc...), so I left it in the formal task interface. |
5220 | */ |
5221 | kern_return_t |
5222 | task_set_info( |
5223 | task_t task, |
5224 | task_flavor_t flavor, |
5225 | __unused task_info_t task_info_in, /* pointer to IN array */ |
5226 | __unused mach_msg_type_number_t task_info_count) |
5227 | { |
5228 | if (task == TASK_NULL) { |
5229 | return KERN_INVALID_ARGUMENT; |
5230 | } |
5231 | switch (flavor) { |
5232 | #if CONFIG_ATM |
5233 | case TASK_TRACE_MEMORY_INFO: |
5234 | return KERN_NOT_SUPPORTED; |
5235 | #endif // CONFIG_ATM |
5236 | default: |
5237 | return KERN_INVALID_ARGUMENT; |
5238 | } |
5239 | } |
5240 | |
5241 | static void |
5242 | _task_fill_times(task_t task, time_value_t *user_time, time_value_t *sys_time) |
5243 | { |
5244 | clock_sec_t sec; |
5245 | clock_usec_t usec; |
5246 | |
5247 | struct recount_times_mach times = recount_task_terminated_times(task); |
5248 | absolutetime_to_microtime(abstime: times.rtm_user, secs: &sec, microsecs: &usec); |
5249 | user_time->seconds = (typeof(user_time->seconds))sec; |
5250 | user_time->microseconds = usec; |
5251 | absolutetime_to_microtime(abstime: times.rtm_system, secs: &sec, microsecs: &usec); |
5252 | sys_time->seconds = (typeof(sys_time->seconds))sec; |
5253 | sys_time->microseconds = usec; |
5254 | } |
5255 | |
5256 | int radar_20146450 = 1; |
5257 | kern_return_t |
5258 | task_info( |
5259 | task_t task, |
5260 | task_flavor_t flavor, |
5261 | task_info_t task_info_out, |
5262 | mach_msg_type_number_t *task_info_count) |
5263 | { |
5264 | kern_return_t error = KERN_SUCCESS; |
5265 | mach_msg_type_number_t original_task_info_count; |
5266 | bool is_kernel_task = (task == kernel_task); |
5267 | |
5268 | if (task == TASK_NULL) { |
5269 | return KERN_INVALID_ARGUMENT; |
5270 | } |
5271 | |
5272 | original_task_info_count = *task_info_count; |
5273 | task_lock(task); |
5274 | |
5275 | if (task != current_task() && !task->active) { |
5276 | task_unlock(task); |
5277 | return KERN_INVALID_ARGUMENT; |
5278 | } |
5279 | |
5280 | |
5281 | switch (flavor) { |
5282 | case TASK_BASIC_INFO_32: |
5283 | case TASK_BASIC2_INFO_32: |
5284 | #if defined(__arm64__) |
5285 | case TASK_BASIC_INFO_64: |
5286 | #endif |
5287 | { |
5288 | task_basic_info_32_t basic_info; |
5289 | ledger_amount_t tmp; |
5290 | |
5291 | if (*task_info_count < TASK_BASIC_INFO_32_COUNT) { |
5292 | error = KERN_INVALID_ARGUMENT; |
5293 | break; |
5294 | } |
5295 | |
5296 | basic_info = (task_basic_info_32_t)task_info_out; |
5297 | |
5298 | basic_info->virtual_size = (typeof(basic_info->virtual_size)) |
5299 | vm_map_adjusted_size(map: is_kernel_task ? kernel_map : task->map); |
5300 | if (flavor == TASK_BASIC2_INFO_32) { |
5301 | /* |
5302 | * The "BASIC2" flavor gets the maximum resident |
5303 | * size instead of the current resident size... |
5304 | */ |
5305 | ledger_get_lifetime_max(ledger: task->ledger, entry: task_ledgers.phys_mem, max_lifetime_balance: &tmp); |
5306 | } else { |
5307 | ledger_get_balance(ledger: task->ledger, entry: task_ledgers.phys_mem, balance: &tmp); |
5308 | } |
5309 | basic_info->resident_size = (natural_t) MIN((ledger_amount_t) UINT32_MAX, tmp); |
5310 | |
5311 | _task_fill_times(task, user_time: &basic_info->user_time, |
5312 | sys_time: &basic_info->system_time); |
5313 | |
5314 | basic_info->policy = is_kernel_task ? POLICY_RR : POLICY_TIMESHARE; |
5315 | basic_info->suspend_count = task->user_stop_count; |
5316 | |
5317 | *task_info_count = TASK_BASIC_INFO_32_COUNT; |
5318 | break; |
5319 | } |
5320 | |
5321 | #if defined(__arm64__) |
5322 | case TASK_BASIC_INFO_64_2: |
5323 | { |
5324 | task_basic_info_64_2_t basic_info; |
5325 | |
5326 | if (*task_info_count < TASK_BASIC_INFO_64_2_COUNT) { |
5327 | error = KERN_INVALID_ARGUMENT; |
5328 | break; |
5329 | } |
5330 | |
5331 | basic_info = (task_basic_info_64_2_t)task_info_out; |
5332 | |
5333 | basic_info->virtual_size = vm_map_adjusted_size(map: is_kernel_task ? |
5334 | kernel_map : task->map); |
5335 | ledger_get_balance(ledger: task->ledger, entry: task_ledgers.phys_mem, |
5336 | balance: (ledger_amount_t *)&basic_info->resident_size); |
5337 | basic_info->policy = is_kernel_task ? POLICY_RR : POLICY_TIMESHARE; |
5338 | basic_info->suspend_count = task->user_stop_count; |
5339 | _task_fill_times(task, user_time: &basic_info->user_time, |
5340 | sys_time: &basic_info->system_time); |
5341 | |
5342 | *task_info_count = TASK_BASIC_INFO_64_2_COUNT; |
5343 | break; |
5344 | } |
5345 | |
5346 | #else /* defined(__arm64__) */ |
5347 | case TASK_BASIC_INFO_64: |
5348 | { |
5349 | task_basic_info_64_t basic_info; |
5350 | |
5351 | if (*task_info_count < TASK_BASIC_INFO_64_COUNT) { |
5352 | error = KERN_INVALID_ARGUMENT; |
5353 | break; |
5354 | } |
5355 | |
5356 | basic_info = (task_basic_info_64_t)task_info_out; |
5357 | |
5358 | basic_info->virtual_size = vm_map_adjusted_size(is_kernel_task ? |
5359 | kernel_map : task->map); |
5360 | ledger_get_balance(task->ledger, task_ledgers.phys_mem, (ledger_amount_t *)&basic_info->resident_size); |
5361 | basic_info->policy = is_kernel_task ? POLICY_RR : POLICY_TIMESHARE; |
5362 | basic_info->suspend_count = task->user_stop_count; |
5363 | _task_fill_times(task, &basic_info->user_time, |
5364 | &basic_info->system_time); |
5365 | |
5366 | *task_info_count = TASK_BASIC_INFO_64_COUNT; |
5367 | break; |
5368 | } |
5369 | #endif /* defined(__arm64__) */ |
5370 | |
5371 | case MACH_TASK_BASIC_INFO: |
5372 | { |
5373 | mach_task_basic_info_t basic_info; |
5374 | |
5375 | if (*task_info_count < MACH_TASK_BASIC_INFO_COUNT) { |
5376 | error = KERN_INVALID_ARGUMENT; |
5377 | break; |
5378 | } |
5379 | |
5380 | basic_info = (mach_task_basic_info_t)task_info_out; |
5381 | |
5382 | basic_info->virtual_size = vm_map_adjusted_size(map: is_kernel_task ? |
5383 | kernel_map : task->map); |
5384 | ledger_get_balance(ledger: task->ledger, entry: task_ledgers.phys_mem, balance: (ledger_amount_t *) &basic_info->resident_size); |
5385 | ledger_get_lifetime_max(ledger: task->ledger, entry: task_ledgers.phys_mem, max_lifetime_balance: (ledger_amount_t *) &basic_info->resident_size_max); |
5386 | basic_info->policy = is_kernel_task ? POLICY_RR : POLICY_TIMESHARE; |
5387 | basic_info->suspend_count = task->user_stop_count; |
5388 | _task_fill_times(task, user_time: &basic_info->user_time, |
5389 | sys_time: &basic_info->system_time); |
5390 | |
5391 | *task_info_count = MACH_TASK_BASIC_INFO_COUNT; |
5392 | break; |
5393 | } |
5394 | |
5395 | case TASK_THREAD_TIMES_INFO: |
5396 | { |
5397 | task_thread_times_info_t times_info; |
5398 | thread_t thread; |
5399 | |
5400 | if (*task_info_count < TASK_THREAD_TIMES_INFO_COUNT) { |
5401 | error = KERN_INVALID_ARGUMENT; |
5402 | break; |
5403 | } |
5404 | |
5405 | times_info = (task_thread_times_info_t)task_info_out; |
5406 | times_info->user_time = (time_value_t){ 0 }; |
5407 | times_info->system_time = (time_value_t){ 0 }; |
5408 | |
5409 | queue_iterate(&task->threads, thread, thread_t, task_threads) { |
5410 | if ((thread->options & TH_OPT_IDLE_THREAD) == 0) { |
5411 | time_value_t user_time, system_time; |
5412 | |
5413 | thread_read_times(thread, &user_time, &system_time, NULL); |
5414 | time_value_add(×_info->user_time, &user_time); |
5415 | time_value_add(×_info->system_time, &system_time); |
5416 | } |
5417 | } |
5418 | |
5419 | *task_info_count = TASK_THREAD_TIMES_INFO_COUNT; |
5420 | break; |
5421 | } |
5422 | |
5423 | case TASK_ABSOLUTETIME_INFO: |
5424 | { |
5425 | task_absolutetime_info_t info; |
5426 | |
5427 | if (*task_info_count < TASK_ABSOLUTETIME_INFO_COUNT) { |
5428 | error = KERN_INVALID_ARGUMENT; |
5429 | break; |
5430 | } |
5431 | |
5432 | info = (task_absolutetime_info_t)task_info_out; |
5433 | |
5434 | struct recount_times_mach term_times = |
5435 | recount_task_terminated_times(task); |
5436 | struct recount_times_mach total_times = recount_task_times(task); |
5437 | |
5438 | info->total_user = total_times.rtm_user; |
5439 | info->total_system = total_times.rtm_system; |
5440 | info->threads_user = total_times.rtm_user - term_times.rtm_user; |
5441 | info->threads_system += total_times.rtm_system - term_times.rtm_system; |
5442 | |
5443 | *task_info_count = TASK_ABSOLUTETIME_INFO_COUNT; |
5444 | break; |
5445 | } |
5446 | |
5447 | case TASK_DYLD_INFO: |
5448 | { |
5449 | task_dyld_info_t info; |
5450 | |
5451 | /* |
5452 | * We added the format field to TASK_DYLD_INFO output. For |
5453 | * temporary backward compatibility, accept the fact that |
5454 | * clients may ask for the old version - distinquished by the |
5455 | * size of the expected result structure. |
5456 | */ |
5457 | #define TASK_LEGACY_DYLD_INFO_COUNT \ |
5458 | offsetof(struct task_dyld_info, all_image_info_format)/sizeof(natural_t) |
5459 | |
5460 | if (*task_info_count < TASK_LEGACY_DYLD_INFO_COUNT) { |
5461 | error = KERN_INVALID_ARGUMENT; |
5462 | break; |
5463 | } |
5464 | |
5465 | info = (task_dyld_info_t)task_info_out; |
5466 | info->all_image_info_addr = task->all_image_info_addr; |
5467 | info->all_image_info_size = task->all_image_info_size; |
5468 | |
5469 | /* only set format on output for those expecting it */ |
5470 | if (*task_info_count >= TASK_DYLD_INFO_COUNT) { |
5471 | info->all_image_info_format = task_has_64Bit_addr(task) ? |
5472 | TASK_DYLD_ALL_IMAGE_INFO_64 : |
5473 | TASK_DYLD_ALL_IMAGE_INFO_32; |
5474 | *task_info_count = TASK_DYLD_INFO_COUNT; |
5475 | } else { |
5476 | *task_info_count = TASK_LEGACY_DYLD_INFO_COUNT; |
5477 | } |
5478 | break; |
5479 | } |
5480 | |
5481 | case TASK_EXTMOD_INFO: |
5482 | { |
5483 | task_extmod_info_t info; |
5484 | void *p; |
5485 | |
5486 | if (*task_info_count < TASK_EXTMOD_INFO_COUNT) { |
5487 | error = KERN_INVALID_ARGUMENT; |
5488 | break; |
5489 | } |
5490 | |
5491 | info = (task_extmod_info_t)task_info_out; |
5492 | |
5493 | p = get_bsdtask_info(task); |
5494 | if (p) { |
5495 | proc_getexecutableuuid(p, info->task_uuid, sizeof(info->task_uuid)); |
5496 | } else { |
5497 | bzero(info->task_uuid, sizeof(info->task_uuid)); |
5498 | } |
5499 | info->extmod_statistics = task->extmod_statistics; |
5500 | *task_info_count = TASK_EXTMOD_INFO_COUNT; |
5501 | |
5502 | break; |
5503 | } |
5504 | |
5505 | case TASK_KERNELMEMORY_INFO: |
5506 | { |
5507 | task_kernelmemory_info_t tkm_info; |
5508 | ledger_amount_t credit, debit; |
5509 | |
5510 | if (*task_info_count < TASK_KERNELMEMORY_INFO_COUNT) { |
5511 | error = KERN_INVALID_ARGUMENT; |
5512 | break; |
5513 | } |
5514 | |
5515 | tkm_info = (task_kernelmemory_info_t) task_info_out; |
5516 | tkm_info->total_palloc = 0; |
5517 | tkm_info->total_pfree = 0; |
5518 | tkm_info->total_salloc = 0; |
5519 | tkm_info->total_sfree = 0; |
5520 | |
5521 | if (task == kernel_task) { |
5522 | /* |
5523 | * All shared allocs/frees from other tasks count against |
5524 | * the kernel private memory usage. If we are looking up |
5525 | * info for the kernel task, gather from everywhere. |
5526 | */ |
5527 | task_unlock(task); |
5528 | |
5529 | /* start by accounting for all the terminated tasks against the kernel */ |
5530 | tkm_info->total_palloc = tasks_tkm_private.alloc + tasks_tkm_shared.alloc; |
5531 | tkm_info->total_pfree = tasks_tkm_private.free + tasks_tkm_shared.free; |
5532 | |
5533 | /* count all other task/thread shared alloc/free against the kernel */ |
5534 | lck_mtx_lock(&tasks_threads_lock); |
5535 | |
5536 | /* XXX this really shouldn't be using the function parameter 'task' as a local var! */ |
5537 | queue_iterate(&tasks, task, task_t, tasks) { |
5538 | if (task == kernel_task) { |
5539 | if (ledger_get_entries(task->ledger, |
5540 | task_ledgers.tkm_private, &credit, |
5541 | &debit) == KERN_SUCCESS) { |
5542 | tkm_info->total_palloc += credit; |
5543 | tkm_info->total_pfree += debit; |
5544 | } |
5545 | } |
5546 | if (!ledger_get_entries(task->ledger, |
5547 | task_ledgers.tkm_shared, &credit, &debit)) { |
5548 | tkm_info->total_palloc += credit; |
5549 | tkm_info->total_pfree += debit; |
5550 | } |
5551 | } |
5552 | lck_mtx_unlock(&tasks_threads_lock); |
5553 | } else { |
5554 | if (!ledger_get_entries(task->ledger, |
5555 | task_ledgers.tkm_private, &credit, &debit)) { |
5556 | tkm_info->total_palloc = credit; |
5557 | tkm_info->total_pfree = debit; |
5558 | } |
5559 | if (!ledger_get_entries(task->ledger, |
5560 | task_ledgers.tkm_shared, &credit, &debit)) { |
5561 | tkm_info->total_salloc = credit; |
5562 | tkm_info->total_sfree = debit; |
5563 | } |
5564 | task_unlock(task); |
5565 | } |
5566 | |
5567 | *task_info_count = TASK_KERNELMEMORY_INFO_COUNT; |
5568 | return KERN_SUCCESS; |
5569 | } |
5570 | |
5571 | /* OBSOLETE */ |
5572 | case TASK_SCHED_FIFO_INFO: |
5573 | { |
5574 | if (*task_info_count < POLICY_FIFO_BASE_COUNT) { |
5575 | error = KERN_INVALID_ARGUMENT; |
5576 | break; |
5577 | } |
5578 | |
5579 | error = KERN_INVALID_POLICY; |
5580 | break; |
5581 | } |
5582 | |
5583 | /* OBSOLETE */ |
5584 | case TASK_SCHED_RR_INFO: |
5585 | { |
5586 | policy_rr_base_t rr_base; |
5587 | uint32_t quantum_time; |
5588 | uint64_t quantum_ns; |
5589 | |
5590 | if (*task_info_count < POLICY_RR_BASE_COUNT) { |
5591 | error = KERN_INVALID_ARGUMENT; |
5592 | break; |
5593 | } |
5594 | |
5595 | rr_base = (policy_rr_base_t) task_info_out; |
5596 | |
5597 | if (task != kernel_task) { |
5598 | error = KERN_INVALID_POLICY; |
5599 | break; |
5600 | } |
5601 | |
5602 | rr_base->base_priority = task->priority; |
5603 | |
5604 | quantum_time = SCHED(initial_quantum_size)(THREAD_NULL); |
5605 | absolutetime_to_nanoseconds(quantum_time, &quantum_ns); |
5606 | |
5607 | rr_base->quantum = (uint32_t)(quantum_ns / 1000 / 1000); |
5608 | |
5609 | *task_info_count = POLICY_RR_BASE_COUNT; |
5610 | break; |
5611 | } |
5612 | |
5613 | /* OBSOLETE */ |
5614 | case TASK_SCHED_TIMESHARE_INFO: |
5615 | { |
5616 | policy_timeshare_base_t ts_base; |
5617 | |
5618 | if (*task_info_count < POLICY_TIMESHARE_BASE_COUNT) { |
5619 | error = KERN_INVALID_ARGUMENT; |
5620 | break; |
5621 | } |
5622 | |
5623 | ts_base = (policy_timeshare_base_t) task_info_out; |
5624 | |
5625 | if (task == kernel_task) { |
5626 | error = KERN_INVALID_POLICY; |
5627 | break; |
5628 | } |
5629 | |
5630 | ts_base->base_priority = task->priority; |
5631 | |
5632 | *task_info_count = POLICY_TIMESHARE_BASE_COUNT; |
5633 | break; |
5634 | } |
5635 | |
5636 | case TASK_SECURITY_TOKEN: |
5637 | { |
5638 | security_token_t *sec_token_p; |
5639 | |
5640 | if (*task_info_count < TASK_SECURITY_TOKEN_COUNT) { |
5641 | error = KERN_INVALID_ARGUMENT; |
5642 | break; |
5643 | } |
5644 | |
5645 | sec_token_p = (security_token_t *) task_info_out; |
5646 | |
5647 | *sec_token_p = *task_get_sec_token(task); |
5648 | |
5649 | *task_info_count = TASK_SECURITY_TOKEN_COUNT; |
5650 | break; |
5651 | } |
5652 | |
5653 | case TASK_AUDIT_TOKEN: |
5654 | { |
5655 | audit_token_t *audit_token_p; |
5656 | |
5657 | if (*task_info_count < TASK_AUDIT_TOKEN_COUNT) { |
5658 | error = KERN_INVALID_ARGUMENT; |
5659 | break; |
5660 | } |
5661 | |
5662 | audit_token_p = (audit_token_t *) task_info_out; |
5663 | |
5664 | *audit_token_p = *task_get_audit_token(task); |
5665 | |
5666 | *task_info_count = TASK_AUDIT_TOKEN_COUNT; |
5667 | break; |
5668 | } |
5669 | |
5670 | case TASK_SCHED_INFO: |
5671 | error = KERN_INVALID_ARGUMENT; |
5672 | break; |
5673 | |
5674 | case TASK_EVENTS_INFO: |
5675 | { |
5676 | task_events_info_t events_info; |
5677 | thread_t thread; |
5678 | uint64_t n_syscalls_mach, n_syscalls_unix, n_csw; |
5679 | |
5680 | if (*task_info_count < TASK_EVENTS_INFO_COUNT) { |
5681 | error = KERN_INVALID_ARGUMENT; |
5682 | break; |
5683 | } |
5684 | |
5685 | events_info = (task_events_info_t) task_info_out; |
5686 | |
5687 | |
5688 | events_info->faults = (int32_t) MIN(counter_load(&task->faults), INT32_MAX); |
5689 | events_info->pageins = (int32_t) MIN(counter_load(&task->pageins), INT32_MAX); |
5690 | events_info->cow_faults = (int32_t) MIN(counter_load(&task->cow_faults), INT32_MAX); |
5691 | events_info->messages_sent = (int32_t) MIN(counter_load(&task->messages_sent), INT32_MAX); |
5692 | events_info->messages_received = (int32_t) MIN(counter_load(&task->messages_received), INT32_MAX); |
5693 | |
5694 | n_syscalls_mach = task->syscalls_mach; |
5695 | n_syscalls_unix = task->syscalls_unix; |
5696 | n_csw = task->c_switch; |
5697 | |
5698 | queue_iterate(&task->threads, thread, thread_t, task_threads) { |
5699 | n_csw += thread->c_switch; |
5700 | n_syscalls_mach += thread->syscalls_mach; |
5701 | n_syscalls_unix += thread->syscalls_unix; |
5702 | } |
5703 | |
5704 | events_info->syscalls_mach = (int32_t) MIN(n_syscalls_mach, INT32_MAX); |
5705 | events_info->syscalls_unix = (int32_t) MIN(n_syscalls_unix, INT32_MAX); |
5706 | events_info->csw = (int32_t) MIN(n_csw, INT32_MAX); |
5707 | |
5708 | *task_info_count = TASK_EVENTS_INFO_COUNT; |
5709 | break; |
5710 | } |
5711 | case TASK_AFFINITY_TAG_INFO: |
5712 | { |
5713 | if (*task_info_count < TASK_AFFINITY_TAG_INFO_COUNT) { |
5714 | error = KERN_INVALID_ARGUMENT; |
5715 | break; |
5716 | } |
5717 | |
5718 | error = task_affinity_info(task, task_info_out, task_info_count); |
5719 | break; |
5720 | } |
5721 | case TASK_POWER_INFO: |
5722 | { |
5723 | if (*task_info_count < TASK_POWER_INFO_COUNT) { |
5724 | error = KERN_INVALID_ARGUMENT; |
5725 | break; |
5726 | } |
5727 | |
5728 | task_power_info_locked(task, (task_power_info_t)task_info_out, NULL, NULL, NULL); |
5729 | break; |
5730 | } |
5731 | |
5732 | case TASK_POWER_INFO_V2: |
5733 | { |
5734 | if (*task_info_count < TASK_POWER_INFO_V2_COUNT_OLD) { |
5735 | error = KERN_INVALID_ARGUMENT; |
5736 | break; |
5737 | } |
5738 | task_power_info_v2_t tpiv2 = (task_power_info_v2_t) task_info_out; |
5739 | task_power_info_locked(task, &tpiv2->cpu_energy, &tpiv2->gpu_energy, tpiv2, NULL); |
5740 | break; |
5741 | } |
5742 | |
5743 | case TASK_VM_INFO: |
5744 | case TASK_VM_INFO_PURGEABLE: |
5745 | { |
5746 | task_vm_info_t vm_info; |
5747 | vm_map_t map; |
5748 | ledger_amount_t tmp_amount; |
5749 | |
5750 | struct proc *p; |
5751 | uint32_t platform, sdk; |
5752 | p = current_proc(); |
5753 | platform = proc_platform(p); |
5754 | sdk = proc_sdk(p); |
5755 | if (original_task_info_count > TASK_VM_INFO_COUNT) { |
5756 | /* |
5757 | * Some iOS apps pass an incorrect value for |
5758 | * task_info_count, expressed in number of bytes |
5759 | * instead of number of "natural_t" elements, which |
5760 | * can lead to binary compatibility issues (including |
5761 | * stack corruption) when the data structure is |
5762 | * expanded in the future. |
5763 | * Let's make this potential issue visible by |
5764 | * logging about it... |
5765 | */ |
5766 | printf("%s:%d %d[%s] task_info(flavor=%d) possibly invalid " |
5767 | "task_info_count=%d > TASK_VM_INFO_COUNT=%d platform %d sdk " |
5768 | "%d.%d.%d - please use TASK_VM_INFO_COUNT.\n" , |
5769 | __FUNCTION__, __LINE__, proc_pid(p), proc_name_address(p), |
5770 | flavor, original_task_info_count, TASK_VM_INFO_COUNT, |
5771 | platform, (sdk >> 16), ((sdk >> 8) & 0xff), (sdk & 0xff)); |
5772 | DTRACE_VM4(suspicious_task_vm_info_count, |
5773 | mach_msg_type_number_t, original_task_info_count, |
5774 | mach_msg_type_number_t, TASK_VM_INFO_COUNT, |
5775 | uint32_t, platform, |
5776 | uint32_t, sdk); |
5777 | } |
5778 | #if __arm64__ |
5779 | if (original_task_info_count > TASK_VM_INFO_REV2_COUNT && |
5780 | platform == PLATFORM_IOS && |
5781 | sdk != 0 && |
5782 | (sdk >> 16) <= 12) { |
5783 | /* |
5784 | * Some iOS apps pass an incorrect value for |
5785 | * task_info_count, expressed in number of bytes |
5786 | * instead of number of "natural_t" elements. |
5787 | * For the sake of backwards binary compatibility |
5788 | * for apps built with an iOS12 or older SDK and using |
5789 | * the "rev2" data structure, let's fix task_info_count |
5790 | * for them, to avoid stomping past the actual end |
5791 | * of their buffer. |
5792 | */ |
5793 | #if DEVELOPMENT || DEBUG |
5794 | printf("%s:%d %d[%s] rdar://49484582 task_info_count %d -> %d " |
5795 | "platform %d sdk %d.%d.%d\n" , __FUNCTION__, __LINE__, proc_pid(p), |
5796 | proc_name_address(p), original_task_info_count, |
5797 | TASK_VM_INFO_REV2_COUNT, platform, (sdk >> 16), |
5798 | ((sdk >> 8) & 0xff), (sdk & 0xff)); |
5799 | #endif /* DEVELOPMENT || DEBUG */ |
5800 | DTRACE_VM4(workaround_task_vm_info_count, |
5801 | mach_msg_type_number_t, original_task_info_count, |
5802 | mach_msg_type_number_t, TASK_VM_INFO_REV2_COUNT, |
5803 | uint32_t, platform, |
5804 | uint32_t, sdk); |
5805 | original_task_info_count = TASK_VM_INFO_REV2_COUNT; |
5806 | *task_info_count = original_task_info_count; |
5807 | } |
5808 | if (original_task_info_count > TASK_VM_INFO_REV5_COUNT && |
5809 | platform == PLATFORM_IOS && |
5810 | sdk != 0 && |
5811 | (sdk >> 16) <= 15) { |
5812 | /* |
5813 | * Some iOS apps pass an incorrect value for |
5814 | * task_info_count, expressed in number of bytes |
5815 | * instead of number of "natural_t" elements. |
5816 | */ |
5817 | printf("%s:%d %d[%s] task_info_count=%d > TASK_VM_INFO_COUNT=%d " |
5818 | "platform %d sdk %d.%d.%d\n" , __FUNCTION__, __LINE__, proc_pid(p), |
5819 | proc_name_address(p), original_task_info_count, |
5820 | TASK_VM_INFO_REV5_COUNT, platform, (sdk >> 16), |
5821 | ((sdk >> 8) & 0xff), (sdk & 0xff)); |
5822 | DTRACE_VM4(workaround_task_vm_info_count, |
5823 | mach_msg_type_number_t, original_task_info_count, |
5824 | mach_msg_type_number_t, TASK_VM_INFO_REV5_COUNT, |
5825 | uint32_t, platform, |
5826 | uint32_t, sdk); |
5827 | #if DEVELOPMENT || DEBUG |
5828 | /* |
5829 | * For the sake of internal builds livability, |
5830 | * work around this user-space bug by capping the |
5831 | * buffer's size to what it was with the iOS15 SDK. |
5832 | */ |
5833 | original_task_info_count = TASK_VM_INFO_REV5_COUNT; |
5834 | *task_info_count = original_task_info_count; |
5835 | #endif /* DEVELOPMENT || DEBUG */ |
5836 | } |
5837 | #endif /* __arm64__ */ |
5838 | |
5839 | if (*task_info_count < TASK_VM_INFO_REV0_COUNT) { |
5840 | error = KERN_INVALID_ARGUMENT; |
5841 | break; |
5842 | } |
5843 | |
5844 | vm_info = (task_vm_info_t)task_info_out; |
5845 | |
5846 | /* |
5847 | * Do not hold both the task and map locks, |
5848 | * so convert the task lock into a map reference, |
5849 | * drop the task lock, then lock the map. |
5850 | */ |
5851 | if (is_kernel_task) { |
5852 | map = kernel_map; |
5853 | task_unlock(task); |
5854 | /* no lock, no reference */ |
5855 | } else { |
5856 | map = task->map; |
5857 | vm_map_reference(map); |
5858 | task_unlock(task); |
5859 | vm_map_lock_read(map); |
5860 | } |
5861 | |
5862 | vm_info->virtual_size = (typeof(vm_info->virtual_size))vm_map_adjusted_size(map); |
5863 | vm_info->region_count = map->hdr.nentries; |
5864 | vm_info->page_size = vm_map_page_size(map); |
5865 | |
5866 | ledger_get_balance(task->ledger, task_ledgers.phys_mem, (ledger_amount_t *) &vm_info->resident_size); |
5867 | ledger_get_lifetime_max(task->ledger, task_ledgers.phys_mem, (ledger_amount_t *) &vm_info->resident_size_peak); |
5868 | |
5869 | vm_info->device = 0; |
5870 | vm_info->device_peak = 0; |
5871 | ledger_get_balance(task->ledger, task_ledgers.external, (ledger_amount_t *) &vm_info->external); |
5872 | ledger_get_lifetime_max(task->ledger, task_ledgers.external, (ledger_amount_t *) &vm_info->external_peak); |
5873 | ledger_get_balance(task->ledger, task_ledgers.internal, (ledger_amount_t *) &vm_info->internal); |
5874 | ledger_get_lifetime_max(task->ledger, task_ledgers.internal, (ledger_amount_t *) &vm_info->internal_peak); |
5875 | ledger_get_balance(task->ledger, task_ledgers.reusable, (ledger_amount_t *) &vm_info->reusable); |
5876 | ledger_get_lifetime_max(task->ledger, task_ledgers.reusable, (ledger_amount_t *) &vm_info->reusable_peak); |
5877 | ledger_get_balance(task->ledger, task_ledgers.internal_compressed, (ledger_amount_t*) &vm_info->compressed); |
5878 | ledger_get_lifetime_max(task->ledger, task_ledgers.internal_compressed, (ledger_amount_t*) &vm_info->compressed_peak); |
5879 | ledger_get_entries(task->ledger, task_ledgers.internal_compressed, (ledger_amount_t*) &vm_info->compressed_lifetime, &tmp_amount); |
5880 | |
5881 | vm_info->purgeable_volatile_pmap = 0; |
5882 | vm_info->purgeable_volatile_resident = 0; |
5883 | vm_info->purgeable_volatile_virtual = 0; |
5884 | if (is_kernel_task) { |
5885 | /* |
5886 | * We do not maintain the detailed stats for the |
5887 | * kernel_pmap, so just count everything as |
5888 | * "internal"... |
5889 | */ |
5890 | vm_info->internal = vm_info->resident_size; |
5891 | /* |
5892 | * ... but since the memory held by the VM compressor |
5893 | * in the kernel address space ought to be attributed |
5894 | * to user-space tasks, we subtract it from "internal" |
5895 | * to give memory reporting tools a more accurate idea |
5896 | * of what the kernel itself is actually using, instead |
5897 | * of making it look like the kernel is leaking memory |
5898 | * when the system is under memory pressure. |
5899 | */ |
5900 | vm_info->internal -= (VM_PAGE_COMPRESSOR_COUNT * |
5901 | PAGE_SIZE); |
5902 | } else { |
5903 | mach_vm_size_t volatile_virtual_size; |
5904 | mach_vm_size_t volatile_resident_size; |
5905 | mach_vm_size_t volatile_compressed_size; |
5906 | mach_vm_size_t volatile_pmap_size; |
5907 | mach_vm_size_t volatile_compressed_pmap_size; |
5908 | kern_return_t kr; |
5909 | |
5910 | if (flavor == TASK_VM_INFO_PURGEABLE) { |
5911 | kr = vm_map_query_volatile( |
5912 | map, |
5913 | &volatile_virtual_size, |
5914 | &volatile_resident_size, |
5915 | &volatile_compressed_size, |
5916 | &volatile_pmap_size, |
5917 | &volatile_compressed_pmap_size); |
5918 | if (kr == KERN_SUCCESS) { |
5919 | vm_info->purgeable_volatile_pmap = |
5920 | volatile_pmap_size; |
5921 | if (radar_20146450) { |
5922 | vm_info->compressed -= |
5923 | volatile_compressed_pmap_size; |
5924 | } |
5925 | vm_info->purgeable_volatile_resident = |
5926 | volatile_resident_size; |
5927 | vm_info->purgeable_volatile_virtual = |
5928 | volatile_virtual_size; |
5929 | } |
5930 | } |
5931 | } |
5932 | *task_info_count = TASK_VM_INFO_REV0_COUNT; |
5933 | |
5934 | if (original_task_info_count >= TASK_VM_INFO_REV2_COUNT) { |
5935 | /* must be captured while we still have the map lock */ |
5936 | vm_info->min_address = map->min_offset; |
5937 | vm_info->max_address = map->max_offset; |
5938 | } |
5939 | |
5940 | /* |
5941 | * Done with vm map things, can drop the map lock and reference, |
5942 | * and take the task lock back. |
5943 | * |
5944 | * Re-validate that the task didn't die on us. |
5945 | */ |
5946 | if (!is_kernel_task) { |
5947 | vm_map_unlock_read(map); |
5948 | vm_map_deallocate(map); |
5949 | } |
5950 | map = VM_MAP_NULL; |
5951 | |
5952 | task_lock(task); |
5953 | |
5954 | if ((task != current_task()) && (!task->active)) { |
5955 | error = KERN_INVALID_ARGUMENT; |
5956 | break; |
5957 | } |
5958 | |
5959 | if (original_task_info_count >= TASK_VM_INFO_REV1_COUNT) { |
5960 | vm_info->phys_footprint = |
5961 | (mach_vm_size_t) get_task_phys_footprint(task); |
5962 | *task_info_count = TASK_VM_INFO_REV1_COUNT; |
5963 | } |
5964 | if (original_task_info_count >= TASK_VM_INFO_REV2_COUNT) { |
5965 | /* data was captured above */ |
5966 | *task_info_count = TASK_VM_INFO_REV2_COUNT; |
5967 | } |
5968 | |
5969 | if (original_task_info_count >= TASK_VM_INFO_REV3_COUNT) { |
5970 | ledger_get_lifetime_max(task->ledger, |
5971 | task_ledgers.phys_footprint, |
5972 | &vm_info->ledger_phys_footprint_peak); |
5973 | ledger_get_balance(task->ledger, |
5974 | task_ledgers.purgeable_nonvolatile, |
5975 | &vm_info->ledger_purgeable_nonvolatile); |
5976 | ledger_get_balance(task->ledger, |
5977 | task_ledgers.purgeable_nonvolatile_compressed, |
5978 | &vm_info->ledger_purgeable_novolatile_compressed); |
5979 | ledger_get_balance(task->ledger, |
5980 | task_ledgers.purgeable_volatile, |
5981 | &vm_info->ledger_purgeable_volatile); |
5982 | ledger_get_balance(task->ledger, |
5983 | task_ledgers.purgeable_volatile_compressed, |
5984 | &vm_info->ledger_purgeable_volatile_compressed); |
5985 | ledger_get_balance(task->ledger, |
5986 | task_ledgers.network_nonvolatile, |
5987 | &vm_info->ledger_tag_network_nonvolatile); |
5988 | ledger_get_balance(task->ledger, |
5989 | task_ledgers.network_nonvolatile_compressed, |
5990 | &vm_info->ledger_tag_network_nonvolatile_compressed); |
5991 | ledger_get_balance(task->ledger, |
5992 | task_ledgers.network_volatile, |
5993 | &vm_info->ledger_tag_network_volatile); |
5994 | ledger_get_balance(task->ledger, |
5995 | task_ledgers.network_volatile_compressed, |
5996 | &vm_info->ledger_tag_network_volatile_compressed); |
5997 | ledger_get_balance(task->ledger, |
5998 | task_ledgers.media_footprint, |
5999 | &vm_info->ledger_tag_media_footprint); |
6000 | ledger_get_balance(task->ledger, |
6001 | task_ledgers.media_footprint_compressed, |
6002 | &vm_info->ledger_tag_media_footprint_compressed); |
6003 | ledger_get_balance(task->ledger, |
6004 | task_ledgers.media_nofootprint, |
6005 | &vm_info->ledger_tag_media_nofootprint); |
6006 | ledger_get_balance(task->ledger, |
6007 | task_ledgers.media_nofootprint_compressed, |
6008 | &vm_info->ledger_tag_media_nofootprint_compressed); |
6009 | ledger_get_balance(task->ledger, |
6010 | task_ledgers.graphics_footprint, |
6011 | &vm_info->ledger_tag_graphics_footprint); |
6012 | ledger_get_balance(task->ledger, |
6013 | task_ledgers.graphics_footprint_compressed, |
6014 | &vm_info->ledger_tag_graphics_footprint_compressed); |
6015 | ledger_get_balance(task->ledger, |
6016 | task_ledgers.graphics_nofootprint, |
6017 | &vm_info->ledger_tag_graphics_nofootprint); |
6018 | ledger_get_balance(task->ledger, |
6019 | task_ledgers.graphics_nofootprint_compressed, |
6020 | &vm_info->ledger_tag_graphics_nofootprint_compressed); |
6021 | ledger_get_balance(task->ledger, |
6022 | task_ledgers.neural_footprint, |
6023 | &vm_info->ledger_tag_neural_footprint); |
6024 | ledger_get_balance(task->ledger, |
6025 | task_ledgers.neural_footprint_compressed, |
6026 | &vm_info->ledger_tag_neural_footprint_compressed); |
6027 | ledger_get_balance(task->ledger, |
6028 | task_ledgers.neural_nofootprint, |
6029 | &vm_info->ledger_tag_neural_nofootprint); |
6030 | ledger_get_balance(task->ledger, |
6031 | task_ledgers.neural_nofootprint_compressed, |
6032 | &vm_info->ledger_tag_neural_nofootprint_compressed); |
6033 | *task_info_count = TASK_VM_INFO_REV3_COUNT; |
6034 | } |
6035 | if (original_task_info_count >= TASK_VM_INFO_REV4_COUNT) { |
6036 | if (get_bsdtask_info(task)) { |
6037 | vm_info->limit_bytes_remaining = |
6038 | memorystatus_available_memory_internal(get_bsdtask_info(task)); |
6039 | } else { |
6040 | vm_info->limit_bytes_remaining = 0; |
6041 | } |
6042 | *task_info_count = TASK_VM_INFO_REV4_COUNT; |
6043 | } |
6044 | if (original_task_info_count >= TASK_VM_INFO_REV5_COUNT) { |
6045 | thread_t thread; |
6046 | uint64_t total = task->decompressions; |
6047 | queue_iterate(&task->threads, thread, thread_t, task_threads) { |
6048 | total += thread->decompressions; |
6049 | } |
6050 | vm_info->decompressions = (int32_t) MIN(total, INT32_MAX); |
6051 | *task_info_count = TASK_VM_INFO_REV5_COUNT; |
6052 | } |
6053 | if (original_task_info_count >= TASK_VM_INFO_REV6_COUNT) { |
6054 | ledger_get_balance(task->ledger, task_ledgers.swapins, |
6055 | &vm_info->ledger_swapins); |
6056 | *task_info_count = TASK_VM_INFO_REV6_COUNT; |
6057 | } |
6058 | |
6059 | break; |
6060 | } |
6061 | |
6062 | case TASK_WAIT_STATE_INFO: |
6063 | { |
6064 | /* |
6065 | * Deprecated flavor. Currently allowing some results until all users |
6066 | * stop calling it. The results may not be accurate. |
6067 | */ |
6068 | task_wait_state_info_t wait_state_info; |
6069 | uint64_t total_sfi_ledger_val = 0; |
6070 | |
6071 | if (*task_info_count < TASK_WAIT_STATE_INFO_COUNT) { |
6072 | error = KERN_INVALID_ARGUMENT; |
6073 | break; |
6074 | } |
6075 | |
6076 | wait_state_info = (task_wait_state_info_t) task_info_out; |
6077 | |
6078 | wait_state_info->total_wait_state_time = 0; |
6079 | bzero(wait_state_info->_reserved, sizeof(wait_state_info->_reserved)); |
6080 | |
6081 | #if CONFIG_SCHED_SFI |
6082 | int i, prev_lentry = -1; |
6083 | int64_t val_credit, val_debit; |
6084 | |
6085 | for (i = 0; i < MAX_SFI_CLASS_ID; i++) { |
6086 | val_credit = 0; |
6087 | /* |
6088 | * checking with prev_lentry != entry ensures adjacent classes |
6089 | * which share the same ledger do not add wait times twice. |
6090 | * Note: Use ledger() call to get data for each individual sfi class. |
6091 | */ |
6092 | if (prev_lentry != task_ledgers.sfi_wait_times[i] && |
6093 | KERN_SUCCESS == ledger_get_entries(task->ledger, |
6094 | task_ledgers.sfi_wait_times[i], &val_credit, &val_debit)) { |
6095 | total_sfi_ledger_val += val_credit; |
6096 | } |
6097 | prev_lentry = task_ledgers.sfi_wait_times[i]; |
6098 | } |
6099 | |
6100 | #endif /* CONFIG_SCHED_SFI */ |
6101 | wait_state_info->total_wait_sfi_state_time = total_sfi_ledger_val; |
6102 | *task_info_count = TASK_WAIT_STATE_INFO_COUNT; |
6103 | |
6104 | break; |
6105 | } |
6106 | case TASK_VM_INFO_PURGEABLE_ACCOUNT: |
6107 | { |
6108 | #if DEVELOPMENT || DEBUG |
6109 | pvm_account_info_t acnt_info; |
6110 | |
6111 | if (*task_info_count < PVM_ACCOUNT_INFO_COUNT) { |
6112 | error = KERN_INVALID_ARGUMENT; |
6113 | break; |
6114 | } |
6115 | |
6116 | if (task_info_out == NULL) { |
6117 | error = KERN_INVALID_ARGUMENT; |
6118 | break; |
6119 | } |
6120 | |
6121 | acnt_info = (pvm_account_info_t) task_info_out; |
6122 | |
6123 | error = vm_purgeable_account(task, acnt_info); |
6124 | |
6125 | *task_info_count = PVM_ACCOUNT_INFO_COUNT; |
6126 | |
6127 | break; |
6128 | #else /* DEVELOPMENT || DEBUG */ |
6129 | error = KERN_NOT_SUPPORTED; |
6130 | break; |
6131 | #endif /* DEVELOPMENT || DEBUG */ |
6132 | } |
6133 | case TASK_FLAGS_INFO: |
6134 | { |
6135 | task_flags_info_t flags_info; |
6136 | |
6137 | if (*task_info_count < TASK_FLAGS_INFO_COUNT) { |
6138 | error = KERN_INVALID_ARGUMENT; |
6139 | break; |
6140 | } |
6141 | |
6142 | flags_info = (task_flags_info_t)task_info_out; |
6143 | |
6144 | /* only publish the 64-bit flag of the task */ |
6145 | flags_info->flags = task->t_flags & (TF_64B_ADDR | TF_64B_DATA); |
6146 | |
6147 | *task_info_count = TASK_FLAGS_INFO_COUNT; |
6148 | break; |
6149 | } |
6150 | |
6151 | case TASK_DEBUG_INFO_INTERNAL: |
6152 | { |
6153 | #if DEVELOPMENT || DEBUG |
6154 | task_debug_info_internal_t dbg_info; |
6155 | ipc_space_t space = task->itk_space; |
6156 | if (*task_info_count < TASK_DEBUG_INFO_INTERNAL_COUNT) { |
6157 | error = KERN_NOT_SUPPORTED; |
6158 | break; |
6159 | } |
6160 | |
6161 | if (task_info_out == NULL) { |
6162 | error = KERN_INVALID_ARGUMENT; |
6163 | break; |
6164 | } |
6165 | dbg_info = (task_debug_info_internal_t) task_info_out; |
6166 | dbg_info->ipc_space_size = 0; |
6167 | |
6168 | if (space) { |
6169 | smr_ipc_enter(); |
6170 | ipc_entry_table_t table = smr_entered_load(&space->is_table); |
6171 | if (table) { |
6172 | dbg_info->ipc_space_size = |
6173 | ipc_entry_table_count(table); |
6174 | } |
6175 | smr_ipc_leave(); |
6176 | } |
6177 | |
6178 | dbg_info->suspend_count = task->suspend_count; |
6179 | |
6180 | error = KERN_SUCCESS; |
6181 | *task_info_count = TASK_DEBUG_INFO_INTERNAL_COUNT; |
6182 | break; |
6183 | #else /* DEVELOPMENT || DEBUG */ |
6184 | error = KERN_NOT_SUPPORTED; |
6185 | break; |
6186 | #endif /* DEVELOPMENT || DEBUG */ |
6187 | } |
6188 | case TASK_SUSPEND_STATS_INFO: |
6189 | { |
6190 | #if CONFIG_TASK_SUSPEND_STATS && (DEVELOPMENT || DEBUG) |
6191 | if (*task_info_count < TASK_SUSPEND_STATS_INFO_COUNT || task_info_out == NULL) { |
6192 | error = KERN_INVALID_ARGUMENT; |
6193 | break; |
6194 | } |
6195 | error = _task_get_suspend_stats_locked(task, (task_suspend_stats_t)task_info_out); |
6196 | *task_info_count = TASK_SUSPEND_STATS_INFO_COUNT; |
6197 | break; |
6198 | #else /* CONFIG_TASK_SUSPEND_STATS && (DEVELOPMENT || DEBUG) */ |
6199 | error = KERN_NOT_SUPPORTED; |
6200 | break; |
6201 | #endif /* CONFIG_TASK_SUSPEND_STATS && (DEVELOPMENT || DEBUG) */ |
6202 | } |
6203 | case TASK_SUSPEND_SOURCES_INFO: |
6204 | { |
6205 | #if CONFIG_TASK_SUSPEND_STATS && (DEVELOPMENT || DEBUG) |
6206 | if (*task_info_count < TASK_SUSPEND_SOURCES_INFO_COUNT || task_info_out == NULL) { |
6207 | error = KERN_INVALID_ARGUMENT; |
6208 | break; |
6209 | } |
6210 | error = _task_get_suspend_sources_locked(task, (task_suspend_source_t)task_info_out); |
6211 | *task_info_count = TASK_SUSPEND_SOURCES_INFO_COUNT; |
6212 | break; |
6213 | #else /* CONFIG_TASK_SUSPEND_STATS && (DEVELOPMENT || DEBUG) */ |
6214 | error = KERN_NOT_SUPPORTED; |
6215 | break; |
6216 | #endif /* CONFIG_TASK_SUSPEND_STATS && (DEVELOPMENT || DEBUG) */ |
6217 | } |
6218 | default: |
6219 | error = KERN_INVALID_ARGUMENT; |
6220 | } |
6221 | |
6222 | task_unlock(task); |
6223 | return error; |
6224 | } |
6225 | |
6226 | /* |
6227 | * task_info_from_user |
6228 | * |
6229 | * When calling task_info from user space, |
6230 | * this function will be executed as mig server side |
6231 | * instead of calling directly into task_info. |
6232 | * This gives the possibility to perform more security |
6233 | * checks on task_port. |
6234 | * |
6235 | * In the case of TASK_DYLD_INFO, we require the more |
6236 | * privileged task_read_port not the less-privileged task_name_port. |
6237 | * |
6238 | */ |
6239 | kern_return_t |
6240 | task_info_from_user( |
6241 | mach_port_t task_port, |
6242 | task_flavor_t flavor, |
6243 | task_info_t task_info_out, |
6244 | mach_msg_type_number_t *task_info_count) |
6245 | { |
6246 | task_t task; |
6247 | kern_return_t ret; |
6248 | |
6249 | if (flavor == TASK_DYLD_INFO) { |
6250 | task = convert_port_to_task_read(port: task_port); |
6251 | } else { |
6252 | task = convert_port_to_task_name(port: task_port); |
6253 | } |
6254 | |
6255 | ret = task_info(task, flavor, task_info_out, task_info_count); |
6256 | |
6257 | task_deallocate(task); |
6258 | |
6259 | return ret; |
6260 | } |
6261 | |
6262 | /* |
6263 | * Routine: task_dyld_process_info_update_helper |
6264 | * |
6265 | * Release send rights in release_ports. |
6266 | * |
6267 | * If no active ports found in task's dyld notifier array, unset the magic value |
6268 | * in user space to indicate so. |
6269 | * |
6270 | * Condition: |
6271 | * task's itk_lock is locked, and is unlocked upon return. |
6272 | * Global g_dyldinfo_mtx is locked, and is unlocked upon return. |
6273 | */ |
6274 | void |
6275 | task_dyld_process_info_update_helper( |
6276 | task_t task, |
6277 | size_t active_count, |
6278 | vm_map_address_t magic_addr, /* a userspace address */ |
6279 | ipc_port_t *release_ports, |
6280 | size_t release_count) |
6281 | { |
6282 | void *notifiers_ptr = NULL; |
6283 | |
6284 | assert(release_count <= DYLD_MAX_PROCESS_INFO_NOTIFY_COUNT); |
6285 | |
6286 | if (active_count == 0) { |
6287 | assert(task->itk_dyld_notify != NULL); |
6288 | notifiers_ptr = task->itk_dyld_notify; |
6289 | task->itk_dyld_notify = NULL; |
6290 | itk_unlock(task); |
6291 | |
6292 | kfree_type(ipc_port_t, DYLD_MAX_PROCESS_INFO_NOTIFY_COUNT, notifiers_ptr); |
6293 | (void)copyoutmap_atomic32(map: task->map, MACH_PORT_NULL, toaddr: magic_addr); /* unset magic */ |
6294 | } else { |
6295 | itk_unlock(task); |
6296 | (void)copyoutmap_atomic32(map: task->map, value: (mach_port_name_t)DYLD_PROCESS_INFO_NOTIFY_MAGIC, |
6297 | toaddr: magic_addr); /* reset magic */ |
6298 | } |
6299 | |
6300 | lck_mtx_unlock(lck: &g_dyldinfo_mtx); |
6301 | |
6302 | for (size_t i = 0; i < release_count; i++) { |
6303 | ipc_port_release_send(port: release_ports[i]); |
6304 | } |
6305 | } |
6306 | |
6307 | /* |
6308 | * Routine: task_dyld_process_info_notify_register |
6309 | * |
6310 | * Insert a send right to target task's itk_dyld_notify array. Allocate kernel |
6311 | * memory for the array if it's the first port to be registered. Also cleanup |
6312 | * any dead rights found in the array. |
6313 | * |
6314 | * Consumes sright if returns KERN_SUCCESS, otherwise MIG will destroy it. |
6315 | * |
6316 | * Args: |
6317 | * task: Target task for the registration. |
6318 | * sright: A send right. |
6319 | * |
6320 | * Returns: |
6321 | * KERN_SUCCESS: Registration succeeded. |
6322 | * KERN_INVALID_TASK: task is invalid. |
6323 | * KERN_INVALID_RIGHT: sright is invalid. |
6324 | * KERN_DENIED: Security policy denied this call. |
6325 | * KERN_RESOURCE_SHORTAGE: Kernel memory allocation failed. |
6326 | * KERN_NO_SPACE: No available notifier port slot left for this task. |
6327 | * KERN_RIGHT_EXISTS: The notifier port is already registered and active. |
6328 | * |
6329 | * Other error code see task_info(). |
6330 | * |
6331 | * See Also: |
6332 | * task_dyld_process_info_notify_get_trap() in mach_kernelrpc.c |
6333 | */ |
6334 | kern_return_t |
6335 | task_dyld_process_info_notify_register( |
6336 | task_t task, |
6337 | ipc_port_t sright) |
6338 | { |
6339 | struct task_dyld_info dyld_info; |
6340 | mach_msg_type_number_t info_count = TASK_DYLD_INFO_COUNT; |
6341 | ipc_port_t release_ports[DYLD_MAX_PROCESS_INFO_NOTIFY_COUNT]; |
6342 | uint32_t release_count = 0, active_count = 0; |
6343 | mach_vm_address_t ports_addr; /* a user space address */ |
6344 | kern_return_t kr; |
6345 | boolean_t right_exists = false; |
6346 | ipc_port_t *notifiers_ptr = NULL; |
6347 | ipc_port_t *portp; |
6348 | |
6349 | if (task == TASK_NULL || task == kernel_task) { |
6350 | return KERN_INVALID_TASK; |
6351 | } |
6352 | |
6353 | if (!IP_VALID(sright)) { |
6354 | return KERN_INVALID_RIGHT; |
6355 | } |
6356 | |
6357 | #if CONFIG_MACF |
6358 | if (mac_task_check_dyld_process_info_notify_register()) { |
6359 | return KERN_DENIED; |
6360 | } |
6361 | #endif |
6362 | |
6363 | kr = task_info(task, TASK_DYLD_INFO, task_info_out: (task_info_t)&dyld_info, task_info_count: &info_count); |
6364 | if (kr) { |
6365 | return kr; |
6366 | } |
6367 | |
6368 | if (dyld_info.all_image_info_format == TASK_DYLD_ALL_IMAGE_INFO_32) { |
6369 | ports_addr = (mach_vm_address_t)(dyld_info.all_image_info_addr + |
6370 | offsetof(struct user32_dyld_all_image_infos, notifyMachPorts)); |
6371 | } else { |
6372 | ports_addr = (mach_vm_address_t)(dyld_info.all_image_info_addr + |
6373 | offsetof(struct user64_dyld_all_image_infos, notifyMachPorts)); |
6374 | } |
6375 | |
6376 | if (task->itk_dyld_notify == NULL) { |
6377 | notifiers_ptr = kalloc_type(ipc_port_t, |
6378 | DYLD_MAX_PROCESS_INFO_NOTIFY_COUNT, |
6379 | Z_WAITOK | Z_ZERO | Z_NOFAIL); |
6380 | } |
6381 | |
6382 | lck_mtx_lock(lck: &g_dyldinfo_mtx); |
6383 | itk_lock(task); |
6384 | |
6385 | if (task->itk_dyld_notify == NULL) { |
6386 | task->itk_dyld_notify = notifiers_ptr; |
6387 | notifiers_ptr = NULL; |
6388 | } |
6389 | |
6390 | assert(task->itk_dyld_notify != NULL); |
6391 | /* First pass: clear dead names and check for duplicate registration */ |
6392 | for (int slot = 0; slot < DYLD_MAX_PROCESS_INFO_NOTIFY_COUNT; slot++) { |
6393 | portp = &task->itk_dyld_notify[slot]; |
6394 | if (*portp != IPC_PORT_NULL && !ip_active(*portp)) { |
6395 | release_ports[release_count++] = *portp; |
6396 | *portp = IPC_PORT_NULL; |
6397 | } else if (*portp == sright) { |
6398 | /* the port is already registered and is active */ |
6399 | right_exists = true; |
6400 | } |
6401 | |
6402 | if (*portp != IPC_PORT_NULL) { |
6403 | active_count++; |
6404 | } |
6405 | } |
6406 | |
6407 | if (right_exists) { |
6408 | /* skip second pass */ |
6409 | kr = KERN_RIGHT_EXISTS; |
6410 | goto out; |
6411 | } |
6412 | |
6413 | /* Second pass: register the port */ |
6414 | kr = KERN_NO_SPACE; |
6415 | for (int slot = 0; slot < DYLD_MAX_PROCESS_INFO_NOTIFY_COUNT; slot++) { |
6416 | portp = &task->itk_dyld_notify[slot]; |
6417 | if (*portp == IPC_PORT_NULL) { |
6418 | *portp = sright; |
6419 | active_count++; |
6420 | kr = KERN_SUCCESS; |
6421 | break; |
6422 | } |
6423 | } |
6424 | |
6425 | out: |
6426 | assert(active_count > 0); |
6427 | |
6428 | task_dyld_process_info_update_helper(task, active_count, |
6429 | magic_addr: (vm_map_address_t)ports_addr, release_ports, release_count); |
6430 | /* itk_lock, g_dyldinfo_mtx are unlocked upon return */ |
6431 | |
6432 | kfree_type(ipc_port_t, DYLD_MAX_PROCESS_INFO_NOTIFY_COUNT, notifiers_ptr); |
6433 | |
6434 | return kr; |
6435 | } |
6436 | |
6437 | /* |
6438 | * Routine: task_dyld_process_info_notify_deregister |
6439 | * |
6440 | * Remove a send right in target task's itk_dyld_notify array matching the receive |
6441 | * right name passed in. Deallocate kernel memory for the array if it's the last port to |
6442 | * be deregistered, or all ports have died. Also cleanup any dead rights found in the array. |
6443 | * |
6444 | * Does not consume any reference. |
6445 | * |
6446 | * Args: |
6447 | * task: Target task for the deregistration. |
6448 | * rcv_name: The name denoting the receive right in caller's space. |
6449 | * |
6450 | * Returns: |
6451 | * KERN_SUCCESS: A matching entry found and degistration succeeded. |
6452 | * KERN_INVALID_TASK: task is invalid. |
6453 | * KERN_INVALID_NAME: name is invalid. |
6454 | * KERN_DENIED: Security policy denied this call. |
6455 | * KERN_FAILURE: A matching entry is not found. |
6456 | * KERN_INVALID_RIGHT: The name passed in does not represent a valid rcv right. |
6457 | * |
6458 | * Other error code see task_info(). |
6459 | * |
6460 | * See Also: |
6461 | * task_dyld_process_info_notify_get_trap() in mach_kernelrpc.c |
6462 | */ |
6463 | kern_return_t |
6464 | task_dyld_process_info_notify_deregister( |
6465 | task_t task, |
6466 | mach_port_name_t rcv_name) |
6467 | { |
6468 | struct task_dyld_info dyld_info; |
6469 | mach_msg_type_number_t info_count = TASK_DYLD_INFO_COUNT; |
6470 | ipc_port_t release_ports[DYLD_MAX_PROCESS_INFO_NOTIFY_COUNT]; |
6471 | uint32_t release_count = 0, active_count = 0; |
6472 | boolean_t port_found = false; |
6473 | mach_vm_address_t ports_addr; /* a user space address */ |
6474 | ipc_port_t sright; |
6475 | kern_return_t kr; |
6476 | ipc_port_t *portp; |
6477 | |
6478 | if (task == TASK_NULL || task == kernel_task) { |
6479 | return KERN_INVALID_TASK; |
6480 | } |
6481 | |
6482 | if (!MACH_PORT_VALID(rcv_name)) { |
6483 | return KERN_INVALID_NAME; |
6484 | } |
6485 | |
6486 | #if CONFIG_MACF |
6487 | if (mac_task_check_dyld_process_info_notify_register()) { |
6488 | return KERN_DENIED; |
6489 | } |
6490 | #endif |
6491 | |
6492 | kr = task_info(task, TASK_DYLD_INFO, task_info_out: (task_info_t)&dyld_info, task_info_count: &info_count); |
6493 | if (kr) { |
6494 | return kr; |
6495 | } |
6496 | |
6497 | if (dyld_info.all_image_info_format == TASK_DYLD_ALL_IMAGE_INFO_32) { |
6498 | ports_addr = (mach_vm_address_t)(dyld_info.all_image_info_addr + |
6499 | offsetof(struct user32_dyld_all_image_infos, notifyMachPorts)); |
6500 | } else { |
6501 | ports_addr = (mach_vm_address_t)(dyld_info.all_image_info_addr + |
6502 | offsetof(struct user64_dyld_all_image_infos, notifyMachPorts)); |
6503 | } |
6504 | |
6505 | kr = ipc_port_translate_receive(current_space(), name: rcv_name, portp: &sright); /* does not produce port ref */ |
6506 | if (kr) { |
6507 | return KERN_INVALID_RIGHT; |
6508 | } |
6509 | |
6510 | ip_reference(sright); |
6511 | ip_mq_unlock(sright); |
6512 | |
6513 | assert(sright != IPC_PORT_NULL); |
6514 | |
6515 | lck_mtx_lock(lck: &g_dyldinfo_mtx); |
6516 | itk_lock(task); |
6517 | |
6518 | if (task->itk_dyld_notify == NULL) { |
6519 | itk_unlock(task); |
6520 | lck_mtx_unlock(lck: &g_dyldinfo_mtx); |
6521 | ip_release(sright); |
6522 | return KERN_FAILURE; |
6523 | } |
6524 | |
6525 | for (int slot = 0; slot < DYLD_MAX_PROCESS_INFO_NOTIFY_COUNT; slot++) { |
6526 | portp = &task->itk_dyld_notify[slot]; |
6527 | if (*portp == sright) { |
6528 | release_ports[release_count++] = *portp; |
6529 | *portp = IPC_PORT_NULL; |
6530 | port_found = true; |
6531 | } else if ((*portp != IPC_PORT_NULL && !ip_active(*portp))) { |
6532 | release_ports[release_count++] = *portp; |
6533 | *portp = IPC_PORT_NULL; |
6534 | } |
6535 | |
6536 | if (*portp != IPC_PORT_NULL) { |
6537 | active_count++; |
6538 | } |
6539 | } |
6540 | |
6541 | task_dyld_process_info_update_helper(task, active_count, |
6542 | magic_addr: (vm_map_address_t)ports_addr, release_ports, release_count); |
6543 | /* itk_lock, g_dyldinfo_mtx are unlocked upon return */ |
6544 | |
6545 | ip_release(sright); |
6546 | |
6547 | return port_found ? KERN_SUCCESS : KERN_FAILURE; |
6548 | } |
6549 | |
6550 | /* |
6551 | * task_power_info |
6552 | * |
6553 | * Returns power stats for the task. |
6554 | * Note: Called with task locked. |
6555 | */ |
6556 | void |
6557 | task_power_info_locked( |
6558 | task_t task, |
6559 | task_power_info_t info, |
6560 | gpu_energy_data_t ginfo, |
6561 | task_power_info_v2_t infov2, |
6562 | struct task_power_info_extra *) |
6563 | { |
6564 | thread_t thread; |
6565 | ledger_amount_t tmp; |
6566 | |
6567 | uint64_t runnable_time_sum = 0; |
6568 | |
6569 | task_lock_assert_owned(task); |
6570 | |
6571 | ledger_get_entries(ledger: task->ledger, entry: task_ledgers.interrupt_wakeups, |
6572 | credit: (ledger_amount_t *)&info->task_interrupt_wakeups, debit: &tmp); |
6573 | ledger_get_entries(ledger: task->ledger, entry: task_ledgers.platform_idle_wakeups, |
6574 | credit: (ledger_amount_t *)&info->task_platform_idle_wakeups, debit: &tmp); |
6575 | |
6576 | info->task_timer_wakeups_bin_1 = task->task_timer_wakeups_bin_1; |
6577 | info->task_timer_wakeups_bin_2 = task->task_timer_wakeups_bin_2; |
6578 | |
6579 | struct recount_usage usage = { 0 }; |
6580 | struct recount_usage usage_perf = { 0 }; |
6581 | recount_task_usage_perf_only(task, sum: &usage, sum_perf_only: &usage_perf); |
6582 | |
6583 | info->total_user = usage.ru_metrics[RCT_LVL_USER].rm_time_mach; |
6584 | info->total_system = recount_usage_system_time_mach(usage: &usage); |
6585 | runnable_time_sum = task->total_runnable_time; |
6586 | |
6587 | if (ginfo) { |
6588 | ginfo->task_gpu_utilisation = task->task_gpu_ns; |
6589 | } |
6590 | |
6591 | if (infov2) { |
6592 | infov2->task_ptime = recount_usage_time_mach(usage: &usage_perf); |
6593 | infov2->task_pset_switches = task->ps_switch; |
6594 | #if CONFIG_PERVASIVE_ENERGY |
6595 | infov2->task_energy = usage.ru_energy_nj; |
6596 | #endif /* CONFIG_PERVASIVE_ENERGY */ |
6597 | } |
6598 | |
6599 | queue_iterate(&task->threads, thread, thread_t, task_threads) { |
6600 | spl_t x; |
6601 | |
6602 | if (thread->options & TH_OPT_IDLE_THREAD) { |
6603 | continue; |
6604 | } |
6605 | |
6606 | x = splsched(); |
6607 | thread_lock(thread); |
6608 | |
6609 | info->task_timer_wakeups_bin_1 += thread->thread_timer_wakeups_bin_1; |
6610 | info->task_timer_wakeups_bin_2 += thread->thread_timer_wakeups_bin_2; |
6611 | |
6612 | if (infov2) { |
6613 | infov2->task_pset_switches += thread->ps_switch; |
6614 | } |
6615 | |
6616 | runnable_time_sum += timer_grab(timer: &thread->runnable_timer); |
6617 | |
6618 | if (ginfo) { |
6619 | ginfo->task_gpu_utilisation += ml_gpu_stat(thread); |
6620 | } |
6621 | thread_unlock(thread); |
6622 | splx(x); |
6623 | } |
6624 | |
6625 | if (extra_info) { |
6626 | extra_info->runnable_time = runnable_time_sum; |
6627 | #if CONFIG_PERVASIVE_CPI |
6628 | extra_info->cycles = recount_usage_cycles(&usage); |
6629 | extra_info->instructions = recount_usage_instructions(&usage); |
6630 | extra_info->pcycles = recount_usage_cycles(&usage_perf); |
6631 | extra_info->pinstructions = recount_usage_instructions(&usage_perf); |
6632 | extra_info->user_ptime = usage_perf.ru_metrics[RCT_LVL_USER].rm_time_mach; |
6633 | extra_info->system_ptime = recount_usage_system_time_mach(&usage_perf); |
6634 | #endif // CONFIG_PERVASIVE_CPI |
6635 | #if CONFIG_PERVASIVE_ENERGY |
6636 | extra_info->energy = usage.ru_energy_nj; |
6637 | extra_info->penergy = usage_perf.ru_energy_nj; |
6638 | #endif // CONFIG_PERVASIVE_ENERGY |
6639 | #if RECOUNT_SECURE_METRICS |
6640 | if (PE_i_can_has_debugger(NULL)) { |
6641 | extra_info->secure_time = usage.ru_metrics[RCT_LVL_SECURE].rm_time_mach; |
6642 | extra_info->secure_ptime = usage_perf.ru_metrics[RCT_LVL_SECURE].rm_time_mach; |
6643 | } |
6644 | #endif // RECOUNT_SECURE_METRICS |
6645 | } |
6646 | } |
6647 | |
6648 | /* |
6649 | * task_gpu_utilisation |
6650 | * |
6651 | * Returns the total gpu time used by the all the threads of the task |
6652 | * (both dead and alive) |
6653 | */ |
6654 | uint64_t |
6655 | task_gpu_utilisation( |
6656 | task_t task) |
6657 | { |
6658 | uint64_t gpu_time = 0; |
6659 | #if defined(__x86_64__) |
6660 | thread_t thread; |
6661 | |
6662 | task_lock(task); |
6663 | gpu_time += task->task_gpu_ns; |
6664 | |
6665 | queue_iterate(&task->threads, thread, thread_t, task_threads) { |
6666 | spl_t x; |
6667 | x = splsched(); |
6668 | thread_lock(thread); |
6669 | gpu_time += ml_gpu_stat(thread); |
6670 | thread_unlock(thread); |
6671 | splx(x); |
6672 | } |
6673 | |
6674 | task_unlock(task); |
6675 | #else /* defined(__x86_64__) */ |
6676 | /* silence compiler warning */ |
6677 | (void)task; |
6678 | #endif /* defined(__x86_64__) */ |
6679 | return gpu_time; |
6680 | } |
6681 | |
6682 | /* This function updates the cpu time in the arrays for each |
6683 | * effective and requested QoS class |
6684 | */ |
6685 | void |
6686 | task_update_cpu_time_qos_stats( |
6687 | task_t task, |
6688 | uint64_t *eqos_stats, |
6689 | uint64_t *rqos_stats) |
6690 | { |
6691 | if (!eqos_stats && !rqos_stats) { |
6692 | return; |
6693 | } |
6694 | |
6695 | task_lock(task); |
6696 | thread_t thread; |
6697 | queue_iterate(&task->threads, thread, thread_t, task_threads) { |
6698 | if (thread->options & TH_OPT_IDLE_THREAD) { |
6699 | continue; |
6700 | } |
6701 | |
6702 | thread_update_qos_cpu_time(thread); |
6703 | } |
6704 | |
6705 | if (eqos_stats) { |
6706 | eqos_stats[THREAD_QOS_DEFAULT] += task->cpu_time_eqos_stats.cpu_time_qos_default; |
6707 | eqos_stats[THREAD_QOS_MAINTENANCE] += task->cpu_time_eqos_stats.cpu_time_qos_maintenance; |
6708 | eqos_stats[THREAD_QOS_BACKGROUND] += task->cpu_time_eqos_stats.cpu_time_qos_background; |
6709 | eqos_stats[THREAD_QOS_UTILITY] += task->cpu_time_eqos_stats.cpu_time_qos_utility; |
6710 | eqos_stats[THREAD_QOS_LEGACY] += task->cpu_time_eqos_stats.cpu_time_qos_legacy; |
6711 | eqos_stats[THREAD_QOS_USER_INITIATED] += task->cpu_time_eqos_stats.cpu_time_qos_user_initiated; |
6712 | eqos_stats[THREAD_QOS_USER_INTERACTIVE] += task->cpu_time_eqos_stats.cpu_time_qos_user_interactive; |
6713 | } |
6714 | |
6715 | if (rqos_stats) { |
6716 | rqos_stats[THREAD_QOS_DEFAULT] += task->cpu_time_rqos_stats.cpu_time_qos_default; |
6717 | rqos_stats[THREAD_QOS_MAINTENANCE] += task->cpu_time_rqos_stats.cpu_time_qos_maintenance; |
6718 | rqos_stats[THREAD_QOS_BACKGROUND] += task->cpu_time_rqos_stats.cpu_time_qos_background; |
6719 | rqos_stats[THREAD_QOS_UTILITY] += task->cpu_time_rqos_stats.cpu_time_qos_utility; |
6720 | rqos_stats[THREAD_QOS_LEGACY] += task->cpu_time_rqos_stats.cpu_time_qos_legacy; |
6721 | rqos_stats[THREAD_QOS_USER_INITIATED] += task->cpu_time_rqos_stats.cpu_time_qos_user_initiated; |
6722 | rqos_stats[THREAD_QOS_USER_INTERACTIVE] += task->cpu_time_rqos_stats.cpu_time_qos_user_interactive; |
6723 | } |
6724 | |
6725 | task_unlock(task); |
6726 | } |
6727 | |
6728 | kern_return_t |
6729 | task_purgable_info( |
6730 | task_t task, |
6731 | task_purgable_info_t *stats) |
6732 | { |
6733 | if (task == TASK_NULL || stats == NULL) { |
6734 | return KERN_INVALID_ARGUMENT; |
6735 | } |
6736 | /* Take task reference */ |
6737 | task_reference(task); |
6738 | vm_purgeable_stats(info: (vm_purgeable_info_t)stats, target_task: task); |
6739 | /* Drop task reference */ |
6740 | task_deallocate(task); |
6741 | return KERN_SUCCESS; |
6742 | } |
6743 | |
6744 | void |
6745 | task_vtimer_set( |
6746 | task_t task, |
6747 | integer_t which) |
6748 | { |
6749 | thread_t thread; |
6750 | spl_t x; |
6751 | |
6752 | task_lock(task); |
6753 | |
6754 | task->vtimers |= which; |
6755 | |
6756 | switch (which) { |
6757 | case TASK_VTIMER_USER: |
6758 | queue_iterate(&task->threads, thread, thread_t, task_threads) { |
6759 | x = splsched(); |
6760 | thread_lock(thread); |
6761 | struct recount_times_mach times = recount_thread_times(thread); |
6762 | thread->vtimer_user_save = times.rtm_user; |
6763 | thread_unlock(thread); |
6764 | splx(x); |
6765 | } |
6766 | break; |
6767 | |
6768 | case TASK_VTIMER_PROF: |
6769 | queue_iterate(&task->threads, thread, thread_t, task_threads) { |
6770 | x = splsched(); |
6771 | thread_lock(thread); |
6772 | thread->vtimer_prof_save = recount_thread_time_mach(thread); |
6773 | thread_unlock(thread); |
6774 | splx(x); |
6775 | } |
6776 | break; |
6777 | |
6778 | case TASK_VTIMER_RLIM: |
6779 | queue_iterate(&task->threads, thread, thread_t, task_threads) { |
6780 | x = splsched(); |
6781 | thread_lock(thread); |
6782 | thread->vtimer_rlim_save = recount_thread_time_mach(thread); |
6783 | thread_unlock(thread); |
6784 | splx(x); |
6785 | } |
6786 | break; |
6787 | } |
6788 | |
6789 | task_unlock(task); |
6790 | } |
6791 | |
6792 | void |
6793 | task_vtimer_clear( |
6794 | task_t task, |
6795 | integer_t which) |
6796 | { |
6797 | task_lock(task); |
6798 | |
6799 | task->vtimers &= ~which; |
6800 | |
6801 | task_unlock(task); |
6802 | } |
6803 | |
6804 | void |
6805 | task_vtimer_update( |
6806 | __unused |
6807 | task_t task, |
6808 | integer_t which, |
6809 | uint32_t *microsecs) |
6810 | { |
6811 | thread_t thread = current_thread(); |
6812 | uint32_t tdelt = 0; |
6813 | clock_sec_t secs = 0; |
6814 | uint64_t tsum; |
6815 | |
6816 | assert(task == current_task()); |
6817 | |
6818 | spl_t s = splsched(); |
6819 | thread_lock(thread); |
6820 | |
6821 | if ((task->vtimers & which) != (uint32_t)which) { |
6822 | thread_unlock(thread); |
6823 | splx(s); |
6824 | return; |
6825 | } |
6826 | |
6827 | switch (which) { |
6828 | case TASK_VTIMER_USER:; |
6829 | struct recount_times_mach times = recount_thread_times(thread); |
6830 | tsum = times.rtm_user; |
6831 | tdelt = (uint32_t)(tsum - thread->vtimer_user_save); |
6832 | thread->vtimer_user_save = tsum; |
6833 | absolutetime_to_microtime(abstime: tdelt, secs: &secs, microsecs); |
6834 | break; |
6835 | |
6836 | case TASK_VTIMER_PROF: |
6837 | tsum = recount_current_thread_time_mach(); |
6838 | tdelt = (uint32_t)(tsum - thread->vtimer_prof_save); |
6839 | absolutetime_to_microtime(abstime: tdelt, secs: &secs, microsecs); |
6840 | /* if the time delta is smaller than a usec, ignore */ |
6841 | if (*microsecs != 0) { |
6842 | thread->vtimer_prof_save = tsum; |
6843 | } |
6844 | break; |
6845 | |
6846 | case TASK_VTIMER_RLIM: |
6847 | tsum = recount_current_thread_time_mach(); |
6848 | tdelt = (uint32_t)(tsum - thread->vtimer_rlim_save); |
6849 | thread->vtimer_rlim_save = tsum; |
6850 | absolutetime_to_microtime(abstime: tdelt, secs: &secs, microsecs); |
6851 | break; |
6852 | } |
6853 | |
6854 | thread_unlock(thread); |
6855 | splx(s); |
6856 | } |
6857 | |
6858 | uint64_t |
6859 | get_task_dispatchqueue_offset( |
6860 | task_t task) |
6861 | { |
6862 | return task->dispatchqueue_offset; |
6863 | } |
6864 | |
6865 | void |
6866 | task_synchronizer_destroy_all(task_t task) |
6867 | { |
6868 | /* |
6869 | * Destroy owned semaphores |
6870 | */ |
6871 | semaphore_destroy_all(task); |
6872 | } |
6873 | |
6874 | /* |
6875 | * Install default (machine-dependent) initial thread state |
6876 | * on the task. Subsequent thread creation will have this initial |
6877 | * state set on the thread by machine_thread_inherit_taskwide(). |
6878 | * Flavors and structures are exactly the same as those to thread_set_state() |
6879 | */ |
6880 | kern_return_t |
6881 | task_set_state( |
6882 | task_t task, |
6883 | int flavor, |
6884 | thread_state_t state, |
6885 | mach_msg_type_number_t state_count) |
6886 | { |
6887 | kern_return_t ret; |
6888 | |
6889 | if (task == TASK_NULL) { |
6890 | return KERN_INVALID_ARGUMENT; |
6891 | } |
6892 | |
6893 | task_lock(task); |
6894 | |
6895 | if (!task->active) { |
6896 | task_unlock(task); |
6897 | return KERN_FAILURE; |
6898 | } |
6899 | |
6900 | ret = machine_task_set_state(task, flavor, state, state_count); |
6901 | |
6902 | task_unlock(task); |
6903 | return ret; |
6904 | } |
6905 | |
6906 | /* |
6907 | * Examine the default (machine-dependent) initial thread state |
6908 | * on the task, as set by task_set_state(). Flavors and structures |
6909 | * are exactly the same as those passed to thread_get_state(). |
6910 | */ |
6911 | kern_return_t |
6912 | task_get_state( |
6913 | task_t task, |
6914 | int flavor, |
6915 | thread_state_t state, |
6916 | mach_msg_type_number_t *state_count) |
6917 | { |
6918 | kern_return_t ret; |
6919 | |
6920 | if (task == TASK_NULL) { |
6921 | return KERN_INVALID_ARGUMENT; |
6922 | } |
6923 | |
6924 | task_lock(task); |
6925 | |
6926 | if (!task->active) { |
6927 | task_unlock(task); |
6928 | return KERN_FAILURE; |
6929 | } |
6930 | |
6931 | ret = machine_task_get_state(task, flavor, state, state_count); |
6932 | |
6933 | task_unlock(task); |
6934 | return ret; |
6935 | } |
6936 | |
6937 | |
6938 | static kern_return_t __attribute__((noinline, not_tail_called)) |
6939 | PROC_VIOLATED_GUARD__SEND_EXC_GUARD( |
6940 | mach_exception_code_t code, |
6941 | mach_exception_subcode_t subcode, |
6942 | void *reason, |
6943 | boolean_t backtrace_only) |
6944 | { |
6945 | #ifdef MACH_BSD |
6946 | if (1 == proc_selfpid()) { |
6947 | return KERN_NOT_SUPPORTED; // initproc is immune |
6948 | } |
6949 | #endif |
6950 | mach_exception_data_type_t codes[EXCEPTION_CODE_MAX] = { |
6951 | [0] = code, |
6952 | [1] = subcode, |
6953 | }; |
6954 | task_t task = current_task(); |
6955 | kern_return_t kr; |
6956 | void *bsd_info = get_bsdtask_info(task); |
6957 | |
6958 | /* (See jetsam-related comments below) */ |
6959 | |
6960 | proc_memstat_skip(p: bsd_info, TRUE); |
6961 | kr = task_enqueue_exception_with_corpse(task, EXC_GUARD, code: codes, codeCnt: 2, reason, lightweight: backtrace_only); |
6962 | proc_memstat_skip(p: bsd_info, FALSE); |
6963 | return kr; |
6964 | } |
6965 | |
6966 | kern_return_t |
6967 | task_violated_guard( |
6968 | mach_exception_code_t code, |
6969 | mach_exception_subcode_t subcode, |
6970 | void *reason, |
6971 | bool backtrace_only) |
6972 | { |
6973 | return PROC_VIOLATED_GUARD__SEND_EXC_GUARD(code, subcode, reason, backtrace_only); |
6974 | } |
6975 | |
6976 | |
6977 | #if CONFIG_MEMORYSTATUS |
6978 | |
6979 | boolean_t |
6980 | task_get_memlimit_is_active(task_t task) |
6981 | { |
6982 | assert(task != NULL); |
6983 | |
6984 | if (task->memlimit_is_active == 1) { |
6985 | return TRUE; |
6986 | } else { |
6987 | return FALSE; |
6988 | } |
6989 | } |
6990 | |
6991 | void |
6992 | task_set_memlimit_is_active(task_t task, boolean_t memlimit_is_active) |
6993 | { |
6994 | assert(task != NULL); |
6995 | |
6996 | if (memlimit_is_active) { |
6997 | task->memlimit_is_active = 1; |
6998 | } else { |
6999 | task->memlimit_is_active = 0; |
7000 | } |
7001 | } |
7002 | |
7003 | boolean_t |
7004 | task_get_memlimit_is_fatal(task_t task) |
7005 | { |
7006 | assert(task != NULL); |
7007 | |
7008 | if (task->memlimit_is_fatal == 1) { |
7009 | return TRUE; |
7010 | } else { |
7011 | return FALSE; |
7012 | } |
7013 | } |
7014 | |
7015 | void |
7016 | task_set_memlimit_is_fatal(task_t task, boolean_t memlimit_is_fatal) |
7017 | { |
7018 | assert(task != NULL); |
7019 | |
7020 | if (memlimit_is_fatal) { |
7021 | task->memlimit_is_fatal = 1; |
7022 | } else { |
7023 | task->memlimit_is_fatal = 0; |
7024 | } |
7025 | } |
7026 | |
7027 | uint64_t |
7028 | task_get_dirty_start(task_t task) |
7029 | { |
7030 | return task->memstat_dirty_start; |
7031 | } |
7032 | |
7033 | void |
7034 | task_set_dirty_start(task_t task, uint64_t start) |
7035 | { |
7036 | task_lock(task); |
7037 | task->memstat_dirty_start = start; |
7038 | task_unlock(task); |
7039 | } |
7040 | |
7041 | boolean_t |
7042 | task_has_triggered_exc_resource(task_t task, boolean_t memlimit_is_active) |
7043 | { |
7044 | boolean_t triggered = FALSE; |
7045 | |
7046 | assert(task == current_task()); |
7047 | |
7048 | /* |
7049 | * Returns true, if task has already triggered an exc_resource exception. |
7050 | */ |
7051 | |
7052 | if (memlimit_is_active) { |
7053 | triggered = (task->memlimit_active_exc_resource ? TRUE : FALSE); |
7054 | } else { |
7055 | triggered = (task->memlimit_inactive_exc_resource ? TRUE : FALSE); |
7056 | } |
7057 | |
7058 | return triggered; |
7059 | } |
7060 | |
7061 | void |
7062 | task_mark_has_triggered_exc_resource(task_t task, boolean_t memlimit_is_active) |
7063 | { |
7064 | assert(task == current_task()); |
7065 | |
7066 | /* |
7067 | * We allow one exc_resource per process per active/inactive limit. |
7068 | * The limit's fatal attribute does not come into play. |
7069 | */ |
7070 | |
7071 | if (memlimit_is_active) { |
7072 | task->memlimit_active_exc_resource = 1; |
7073 | } else { |
7074 | task->memlimit_inactive_exc_resource = 1; |
7075 | } |
7076 | } |
7077 | |
7078 | #define HWM_USERCORE_MINSPACE 250 // free space (in MB) required *after* core file creation |
7079 | |
7080 | void __attribute__((noinline)) |
7081 | PROC_CROSSED_HIGH_WATERMARK__SEND_EXC_RESOURCE_AND_SUSPEND(int , send_exec_resource_options_t exception_options) |
7082 | { |
7083 | task_t task = current_task(); |
7084 | int pid = 0; |
7085 | const char *procname = "unknown" ; |
7086 | mach_exception_data_type_t code[EXCEPTION_CODE_MAX]; |
7087 | boolean_t send_sync_exc_resource = FALSE; |
7088 | void *cur_bsd_info = get_bsdtask_info(current_task()); |
7089 | |
7090 | #ifdef MACH_BSD |
7091 | pid = proc_selfpid(); |
7092 | |
7093 | if (pid == 1) { |
7094 | /* |
7095 | * Cannot have ReportCrash analyzing |
7096 | * a suspended initproc. |
7097 | */ |
7098 | return; |
7099 | } |
7100 | |
7101 | if (cur_bsd_info != NULL) { |
7102 | procname = proc_name_address(p: cur_bsd_info); |
7103 | send_sync_exc_resource = proc_send_synchronous_EXC_RESOURCE(p: cur_bsd_info); |
7104 | } |
7105 | #endif |
7106 | #if CONFIG_COREDUMP |
7107 | if (hwm_user_cores) { |
7108 | int error; |
7109 | uint64_t starttime, end; |
7110 | clock_sec_t secs = 0; |
7111 | uint32_t microsecs = 0; |
7112 | |
7113 | starttime = mach_absolute_time(); |
7114 | /* |
7115 | * Trigger a coredump of this process. Don't proceed unless we know we won't |
7116 | * be filling up the disk; and ignore the core size resource limit for this |
7117 | * core file. |
7118 | */ |
7119 | if ((error = coredump(p: cur_bsd_info, HWM_USERCORE_MINSPACE, COREDUMP_IGNORE_ULIMIT)) != 0) { |
7120 | printf(format: "couldn't take coredump of %s[%d]: %d\n" , procname, pid, error); |
7121 | } |
7122 | /* |
7123 | * coredump() leaves the task suspended. |
7124 | */ |
7125 | task_resume_internal(task: current_task()); |
7126 | |
7127 | end = mach_absolute_time(); |
7128 | absolutetime_to_microtime(abstime: end - starttime, secs: &secs, microsecs: µsecs); |
7129 | printf(format: "coredump of %s[%d] taken in %d secs %d microsecs\n" , |
7130 | proc_name_address(p: cur_bsd_info), pid, (int)secs, microsecs); |
7131 | } |
7132 | #endif /* CONFIG_COREDUMP */ |
7133 | |
7134 | if (disable_exc_resource) { |
7135 | printf(format: "process %s[%d] crossed memory high watermark (%d MB); EXC_RESOURCE " |
7136 | "suppressed by a boot-arg.\n" , procname, pid, max_footprint_mb); |
7137 | return; |
7138 | } |
7139 | printf(format: "process %s [%d] crossed memory %s (%d MB); EXC_RESOURCE " |
7140 | "\n" , procname, pid, (!(exception_options & EXEC_RESOURCE_DIAGNOSTIC) ? "high watermark" : "diagnostics limit" ), max_footprint_mb); |
7141 | |
7142 | /* |
7143 | * A task that has triggered an EXC_RESOURCE, should not be |
7144 | * jetsammed when the device is under memory pressure. Here |
7145 | * we set the P_MEMSTAT_SKIP flag so that the process |
7146 | * will be skipped if the memorystatus_thread wakes up. |
7147 | * |
7148 | * This is a debugging aid to ensure we can get a corpse before |
7149 | * the jetsam thread kills the process. |
7150 | * Note that proc_memstat_skip is a no-op on release kernels. |
7151 | */ |
7152 | proc_memstat_skip(p: cur_bsd_info, TRUE); |
7153 | |
7154 | code[0] = code[1] = 0; |
7155 | EXC_RESOURCE_ENCODE_TYPE(code[0], RESOURCE_TYPE_MEMORY); |
7156 | /* |
7157 | * Regardless if there was a diag memlimit violation, fatal exceptions shall be notified always |
7158 | * as high level watermaks. In another words, if there was a diag limit and a watermark, and the |
7159 | * violation if for limit watermark, a watermark shall be reported. |
7160 | */ |
7161 | if (!(exception_options & EXEC_RESOURCE_FATAL)) { |
7162 | EXC_RESOURCE_ENCODE_FLAVOR(code[0], !(exception_options & EXEC_RESOURCE_DIAGNOSTIC) ? FLAVOR_HIGH_WATERMARK : FLAVOR_DIAG_MEMLIMIT); |
7163 | } else { |
7164 | EXC_RESOURCE_ENCODE_FLAVOR(code[0], FLAVOR_HIGH_WATERMARK ); |
7165 | } |
7166 | EXC_RESOURCE_HWM_ENCODE_LIMIT(code[0], max_footprint_mb); |
7167 | /* |
7168 | * Do not generate a corpse fork if the violation is a fatal one |
7169 | * or the process wants synchronous EXC_RESOURCE exceptions. |
7170 | */ |
7171 | if ((exception_options & EXEC_RESOURCE_FATAL) || send_sync_exc_resource || !exc_via_corpse_forking) { |
7172 | if (exception_options & EXEC_RESOURCE_FATAL) { |
7173 | vm_map_set_corpse_source(map: task->map); |
7174 | } |
7175 | |
7176 | /* Do not send a EXC_RESOURCE if corpse_for_fatal_memkill is set */ |
7177 | if (send_sync_exc_resource || !corpse_for_fatal_memkill) { |
7178 | /* |
7179 | * Use the _internal_ variant so that no user-space |
7180 | * process can resume our task from under us. |
7181 | */ |
7182 | task_suspend_internal(task); |
7183 | exception_triage(EXC_RESOURCE, code, EXCEPTION_CODE_MAX); |
7184 | task_resume_internal(task); |
7185 | } |
7186 | } else { |
7187 | if (disable_exc_resource_during_audio && audio_active) { |
7188 | printf(format: "process %s[%d] crossed memory high watermark (%d MB); EXC_RESOURCE " |
7189 | "suppressed due to audio playback.\n" , procname, pid, max_footprint_mb); |
7190 | } else { |
7191 | task_enqueue_exception_with_corpse(task, EXC_RESOURCE, |
7192 | code, EXCEPTION_CODE_MAX, NULL, FALSE); |
7193 | } |
7194 | } |
7195 | |
7196 | /* |
7197 | * After the EXC_RESOURCE has been handled, we must clear the |
7198 | * P_MEMSTAT_SKIP flag so that the process can again be |
7199 | * considered for jetsam if the memorystatus_thread wakes up. |
7200 | */ |
7201 | proc_memstat_skip(p: cur_bsd_info, FALSE); /* clear the flag */ |
7202 | } |
7203 | /* |
7204 | * Callback invoked when a task exceeds its physical footprint limit. |
7205 | */ |
7206 | void |
7207 | (int warning, __unused const void *param0, __unused const void *param1) |
7208 | { |
7209 | ledger_amount_t = 0; |
7210 | ledger_amount_t = 0; |
7211 | #if DEBUG || DEVELOPMENT |
7212 | ledger_amount_t diag_threshold_limit_mb = 0; |
7213 | ledger_amount_t diag_threshold_limit = 0; |
7214 | #endif |
7215 | #if CONFIG_DEFERRED_RECLAIM |
7216 | ledger_amount_t ; |
7217 | #endif /* CONFIG_DEFERRED_RECLAIM */ |
7218 | task_t task; |
7219 | send_exec_resource_is_warning is_warning = IS_NOT_WARNING; |
7220 | boolean_t memlimit_is_active; |
7221 | send_exec_resource_is_fatal memlimit_is_fatal; |
7222 | send_exec_resource_is_diagnostics is_diag_mem_threshold = IS_NOT_DIAGNOSTICS; |
7223 | if (warning == LEDGER_WARNING_DIAG_MEM_THRESHOLD) { |
7224 | is_diag_mem_threshold = IS_DIAGNOSTICS; |
7225 | is_warning = IS_WARNING; |
7226 | } else if (warning == LEDGER_WARNING_DIPPED_BELOW) { |
7227 | /* |
7228 | * Task memory limits only provide a warning on the way up. |
7229 | */ |
7230 | return; |
7231 | } else if (warning == LEDGER_WARNING_ROSE_ABOVE) { |
7232 | /* |
7233 | * This task is in danger of violating a memory limit, |
7234 | * It has exceeded a percentage level of the limit. |
7235 | */ |
7236 | is_warning = IS_WARNING; |
7237 | } else { |
7238 | /* |
7239 | * The task has exceeded the physical footprint limit. |
7240 | * This is not a warning but a true limit violation. |
7241 | */ |
7242 | is_warning = IS_NOT_WARNING; |
7243 | } |
7244 | |
7245 | task = current_task(); |
7246 | |
7247 | ledger_get_limit(ledger: task->ledger, entry: task_ledgers.phys_footprint, limit: &max_footprint); |
7248 | #if DEBUG || DEVELOPMENT |
7249 | ledger_get_diag_mem_threshold(task->ledger, task_ledgers.phys_footprint, &diag_threshold_limit); |
7250 | #endif |
7251 | #if CONFIG_DEFERRED_RECLAIM |
7252 | if (task->deferred_reclamation_metadata != NULL) { |
7253 | /* |
7254 | * Task is enrolled in deferred reclamation. |
7255 | * Do a reclaim to ensure it's really over its limit. |
7256 | */ |
7257 | vm_deferred_reclamation_reclaim_from_task_sync(task, UINT64_MAX); |
7258 | ledger_get_balance(ledger: task->ledger, entry: task_ledgers.phys_footprint, balance: ¤t_footprint); |
7259 | if (current_footprint < max_footprint) { |
7260 | return; |
7261 | } |
7262 | } |
7263 | #endif /* CONFIG_DEFERRED_RECLAIM */ |
7264 | max_footprint_mb = max_footprint >> 20; |
7265 | #if DEBUG || DEVELOPMENT |
7266 | diag_threshold_limit_mb = diag_threshold_limit >> 20; |
7267 | #endif |
7268 | memlimit_is_active = task_get_memlimit_is_active(task); |
7269 | memlimit_is_fatal = task_get_memlimit_is_fatal(task) == FALSE ? IS_NOT_FATAL : IS_FATAL; |
7270 | #if DEBUG || DEVELOPMENT |
7271 | if (is_diag_mem_threshold == IS_NOT_DIAGNOSTICS) { |
7272 | task_process_crossed_limit_no_diag(task, max_footprint_mb, memlimit_is_fatal, memlimit_is_active, is_warning); |
7273 | } else { |
7274 | task_process_crossed_limit_diag(diag_threshold_limit_mb); |
7275 | } |
7276 | #else |
7277 | task_process_crossed_limit_no_diag(task, ledger_limit_size: max_footprint_mb, memlimit_is_fatal, memlimit_is_active, is_warning); |
7278 | #endif |
7279 | } |
7280 | |
7281 | /* |
7282 | * Actions to perfrom when a process has crossed watermark or is a fatal consumption */ |
7283 | static inline void |
7284 | task_process_crossed_limit_no_diag(task_t task, ledger_amount_t ledger_limit_size, bool memlimit_is_fatal, bool memlimit_is_active, send_exec_resource_is_warning is_warning) |
7285 | { |
7286 | send_exec_resource_options_t exception_options = 0; |
7287 | if (memlimit_is_fatal) { |
7288 | exception_options |= EXEC_RESOURCE_FATAL; |
7289 | } |
7290 | /* |
7291 | * If this is an actual violation (not a warning), then generate EXC_RESOURCE exception. |
7292 | * We only generate the exception once per process per memlimit (active/inactive limit). |
7293 | * To enforce this, we monitor state based on the memlimit's active/inactive attribute |
7294 | * and we disable it by marking that memlimit as exception triggered. |
7295 | */ |
7296 | if (is_warning == IS_NOT_WARNING && !task_has_triggered_exc_resource(task, memlimit_is_active)) { |
7297 | PROC_CROSSED_HIGH_WATERMARK__SEND_EXC_RESOURCE_AND_SUSPEND(max_footprint_mb: (int)ledger_limit_size, exception_options); |
7298 | // If it was not a diag threshold (if was a memory limit), then we do not want more signalling, |
7299 | // however, if was a diag limit, the user may reload a different limit and signal again the violation |
7300 | memorystatus_log_exception(max_footprint_mb: (int)ledger_limit_size, memlimit_is_active, memlimit_is_fatal); |
7301 | task_mark_has_triggered_exc_resource(task, memlimit_is_active); |
7302 | } |
7303 | memorystatus_on_ledger_footprint_exceeded(warning: is_warning == IS_NOT_WARNING ? FALSE : TRUE, memlimit_is_active, memlimit_is_fatal); |
7304 | } |
7305 | |
7306 | #if DEBUG || DEVELOPMENT |
7307 | /** |
7308 | * Actions to take when a process has crossed the diagnostics limit |
7309 | */ |
7310 | static inline void |
7311 | task_process_crossed_limit_diag(ledger_amount_t ledger_limit_size) |
7312 | { |
7313 | /* |
7314 | * If this is an actual violation (not a warning), then generate EXC_RESOURCE exception. |
7315 | * In the case of the diagnostics thresholds, the exception will be signaled only once, but the |
7316 | * inhibit / rearm mechanism if performed at ledger level. |
7317 | */ |
7318 | send_exec_resource_options_t exception_options = EXEC_RESOURCE_DIAGNOSTIC; |
7319 | PROC_CROSSED_HIGH_WATERMARK__SEND_EXC_RESOURCE_AND_SUSPEND((int)ledger_limit_size, exception_options); |
7320 | memorystatus_log_diag_threshold_exception((int)ledger_limit_size); |
7321 | } |
7322 | #endif |
7323 | |
7324 | extern int (void); |
7325 | |
7326 | kern_return_t |
7327 | ( |
7328 | task_t task, |
7329 | int new_limit_mb, |
7330 | int *old_limit_mb) |
7331 | { |
7332 | kern_return_t error; |
7333 | |
7334 | boolean_t memlimit_is_active; |
7335 | boolean_t memlimit_is_fatal; |
7336 | |
7337 | if ((error = proc_check_footprint_priv())) { |
7338 | return KERN_NO_ACCESS; |
7339 | } |
7340 | |
7341 | /* |
7342 | * This call should probably be obsoleted. |
7343 | * But for now, we default to current state. |
7344 | */ |
7345 | memlimit_is_active = task_get_memlimit_is_active(task); |
7346 | memlimit_is_fatal = task_get_memlimit_is_fatal(task); |
7347 | |
7348 | return task_set_phys_footprint_limit_internal(task, new_limit_mb, old_limit_mb, memlimit_is_active, memlimit_is_fatal); |
7349 | } |
7350 | |
7351 | /* |
7352 | * Set the limit of diagnostics memory consumption for a concrete task |
7353 | */ |
7354 | #if CONFIG_MEMORYSTATUS |
7355 | #if DEVELOPMENT || DEBUG |
7356 | kern_return_t |
7357 | task_set_diag_footprint_limit( |
7358 | task_t task, |
7359 | uint64_t new_limit_mb, |
7360 | uint64_t *old_limit_mb) |
7361 | { |
7362 | kern_return_t error; |
7363 | |
7364 | if ((error = proc_check_footprint_priv())) { |
7365 | return KERN_NO_ACCESS; |
7366 | } |
7367 | |
7368 | return task_set_diag_footprint_limit_internal(task, new_limit_mb, old_limit_mb); |
7369 | } |
7370 | |
7371 | #endif // DEVELOPMENT || DEBUG |
7372 | #endif // CONFIG_MEMORYSTATUS |
7373 | |
7374 | kern_return_t |
7375 | ( |
7376 | int limit_mb, |
7377 | int *converted_limit_mb) |
7378 | { |
7379 | if (limit_mb == -1) { |
7380 | /* |
7381 | * No limit |
7382 | */ |
7383 | if (max_task_footprint != 0) { |
7384 | *converted_limit_mb = (int)(max_task_footprint / 1024 / 1024); /* bytes to MB */ |
7385 | } else { |
7386 | *converted_limit_mb = (int)(LEDGER_LIMIT_INFINITY >> 20); |
7387 | } |
7388 | } else { |
7389 | /* nothing to convert */ |
7390 | *converted_limit_mb = limit_mb; |
7391 | } |
7392 | return KERN_SUCCESS; |
7393 | } |
7394 | |
7395 | kern_return_t |
7396 | ( |
7397 | task_t task, |
7398 | int new_limit_mb, |
7399 | int *old_limit_mb, |
7400 | boolean_t memlimit_is_active, |
7401 | boolean_t memlimit_is_fatal) |
7402 | { |
7403 | ledger_amount_t old; |
7404 | kern_return_t ret; |
7405 | #if DEVELOPMENT || DEBUG |
7406 | diagthreshold_check_return diag_threshold_validity; |
7407 | #endif |
7408 | ret = ledger_get_limit(ledger: task->ledger, entry: task_ledgers.phys_footprint, limit: &old); |
7409 | |
7410 | if (ret != KERN_SUCCESS) { |
7411 | return ret; |
7412 | } |
7413 | /** |
7414 | * Maybe we will need to re-enable the diag threshold, lets get the value |
7415 | * and the current status |
7416 | */ |
7417 | #if DEVELOPMENT || DEBUG |
7418 | diag_threshold_validity = task_check_memorythreshold_is_valid( task, new_limit_mb, false); |
7419 | /** |
7420 | * If the footprint and diagnostics threshold are going to be same, lets disable the threshold |
7421 | */ |
7422 | if (diag_threshold_validity == THRESHOLD_IS_SAME_AS_LIMIT_FLAG_ENABLED) { |
7423 | ledger_set_diag_mem_threshold_disabled(task->ledger, task_ledgers.phys_footprint); |
7424 | } else if (diag_threshold_validity == THRESHOLD_IS_NOT_SAME_AS_LIMIT_FLAG_DISABLED) { |
7425 | ledger_set_diag_mem_threshold_enabled(task->ledger, task_ledgers.phys_footprint); |
7426 | } |
7427 | #endif |
7428 | |
7429 | /* |
7430 | * Check that limit >> 20 will not give an "unexpected" 32-bit |
7431 | * result. There are, however, implicit assumptions that -1 mb limit |
7432 | * equates to LEDGER_LIMIT_INFINITY. |
7433 | */ |
7434 | assert(((old & 0xFFF0000000000000LL) == 0) || (old == LEDGER_LIMIT_INFINITY)); |
7435 | |
7436 | if (old_limit_mb) { |
7437 | *old_limit_mb = (int)(old >> 20); |
7438 | } |
7439 | |
7440 | if (new_limit_mb == -1) { |
7441 | /* |
7442 | * Caller wishes to remove the limit. |
7443 | */ |
7444 | ledger_set_limit(ledger: task->ledger, entry: task_ledgers.phys_footprint, |
7445 | limit: max_task_footprint ? max_task_footprint : LEDGER_LIMIT_INFINITY, |
7446 | warn_level_percentage: max_task_footprint ? (uint8_t)max_task_footprint_warning_level : 0); |
7447 | |
7448 | task_lock(task); |
7449 | task_set_memlimit_is_active(task, memlimit_is_active); |
7450 | task_set_memlimit_is_fatal(task, memlimit_is_fatal); |
7451 | task_unlock(task); |
7452 | /** |
7453 | * If the diagnostics were disabled, and now we have a new limit, we have to re-enable it. |
7454 | */ |
7455 | #if DEVELOPMENT || DEBUG |
7456 | if (diag_threshold_validity == THRESHOLD_IS_SAME_AS_LIMIT_FLAG_ENABLED) { |
7457 | ledger_set_diag_mem_threshold_disabled(task->ledger, task_ledgers.phys_footprint); |
7458 | } else if (diag_threshold_validity == THRESHOLD_IS_NOT_SAME_AS_LIMIT_FLAG_DISABLED) { |
7459 | ledger_set_diag_mem_threshold_enabled(task->ledger, task_ledgers.phys_footprint); |
7460 | } |
7461 | #endif |
7462 | return KERN_SUCCESS; |
7463 | } |
7464 | |
7465 | #ifdef CONFIG_NOMONITORS |
7466 | return KERN_SUCCESS; |
7467 | #endif /* CONFIG_NOMONITORS */ |
7468 | |
7469 | task_lock(task); |
7470 | |
7471 | if ((memlimit_is_active == task_get_memlimit_is_active(task)) && |
7472 | (memlimit_is_fatal == task_get_memlimit_is_fatal(task)) && |
7473 | (((ledger_amount_t)new_limit_mb << 20) == old)) { |
7474 | /* |
7475 | * memlimit state is not changing |
7476 | */ |
7477 | task_unlock(task); |
7478 | return KERN_SUCCESS; |
7479 | } |
7480 | |
7481 | task_set_memlimit_is_active(task, memlimit_is_active); |
7482 | task_set_memlimit_is_fatal(task, memlimit_is_fatal); |
7483 | |
7484 | ledger_set_limit(ledger: task->ledger, entry: task_ledgers.phys_footprint, |
7485 | limit: (ledger_amount_t)new_limit_mb << 20, PHYS_FOOTPRINT_WARNING_LEVEL); |
7486 | |
7487 | if (task == current_task()) { |
7488 | ledger_check_new_balance(thread: current_thread(), ledger: task->ledger, |
7489 | entry: task_ledgers.phys_footprint); |
7490 | } |
7491 | |
7492 | task_unlock(task); |
7493 | #if DEVELOPMENT || DEBUG |
7494 | if (diag_threshold_validity == THRESHOLD_IS_NOT_SAME_AS_LIMIT_FLAG_DISABLED) { |
7495 | ledger_set_diag_mem_threshold_enabled(task->ledger, task_ledgers.phys_footprint); |
7496 | } |
7497 | #endif |
7498 | |
7499 | return KERN_SUCCESS; |
7500 | } |
7501 | |
7502 | #if RESETTABLE_DIAG_FOOTPRINT_LIMITS |
7503 | kern_return_t |
7504 | task_set_diag_footprint_limit_internal( |
7505 | task_t task, |
7506 | uint64_t new_limit_bytes, |
7507 | uint64_t *old_limit_bytes) |
7508 | { |
7509 | ledger_amount_t old = 0; |
7510 | kern_return_t ret = KERN_SUCCESS; |
7511 | diagthreshold_check_return diag_threshold_validity; |
7512 | ret = ledger_get_diag_mem_threshold(task->ledger, task_ledgers.phys_footprint, &old); |
7513 | |
7514 | if (ret != KERN_SUCCESS) { |
7515 | return ret; |
7516 | } |
7517 | /** |
7518 | * Maybe we will need to re-enable the diag threshold, lets get the value |
7519 | * and the current status |
7520 | */ |
7521 | diag_threshold_validity = task_check_memorythreshold_is_valid( task, new_limit_bytes >> 20, true); |
7522 | /** |
7523 | * If the footprint and diagnostics threshold are going to be same, lets disable the threshold |
7524 | */ |
7525 | if (diag_threshold_validity == THRESHOLD_IS_SAME_AS_LIMIT_FLAG_ENABLED) { |
7526 | ledger_set_diag_mem_threshold_disabled(task->ledger, task_ledgers.phys_footprint); |
7527 | } |
7528 | |
7529 | /* |
7530 | * Check that limit >> 20 will not give an "unexpected" 32-bit |
7531 | * result. There are, however, implicit assumptions that -1 mb limit |
7532 | * equates to LEDGER_LIMIT_INFINITY. |
7533 | */ |
7534 | if (old_limit_bytes) { |
7535 | *old_limit_bytes = old; |
7536 | } |
7537 | |
7538 | if (new_limit_bytes == -1) { |
7539 | /* |
7540 | * Caller wishes to remove the limit. |
7541 | */ |
7542 | ledger_set_diag_mem_threshold(task->ledger, task_ledgers.phys_footprint, |
7543 | LEDGER_LIMIT_INFINITY); |
7544 | /* |
7545 | * If the memory diagnostics flag was disabled, lets enable it again |
7546 | */ |
7547 | ledger_set_diag_mem_threshold_enabled(task->ledger, task_ledgers.phys_footprint); |
7548 | return KERN_SUCCESS; |
7549 | } |
7550 | |
7551 | #ifdef CONFIG_NOMONITORS |
7552 | return KERN_SUCCESS; |
7553 | #else |
7554 | |
7555 | task_lock(task); |
7556 | ledger_set_diag_mem_threshold(task->ledger, task_ledgers.phys_footprint, |
7557 | (ledger_amount_t)new_limit_bytes ); |
7558 | if (task == current_task()) { |
7559 | ledger_check_new_balance(current_thread(), task->ledger, |
7560 | task_ledgers.phys_footprint); |
7561 | } |
7562 | |
7563 | task_unlock(task); |
7564 | if (diag_threshold_validity == THRESHOLD_IS_SAME_AS_LIMIT_FLAG_ENABLED) { |
7565 | ledger_set_diag_mem_threshold_disabled(task->ledger, task_ledgers.phys_footprint); |
7566 | } else if (diag_threshold_validity == THRESHOLD_IS_NOT_SAME_AS_LIMIT_FLAG_DISABLED) { |
7567 | ledger_set_diag_mem_threshold_enabled(task->ledger, task_ledgers.phys_footprint); |
7568 | } |
7569 | |
7570 | return KERN_SUCCESS; |
7571 | #endif /* CONFIG_NOMONITORS */ |
7572 | } |
7573 | |
7574 | kern_return_t |
7575 | task_get_diag_footprint_limit_internal( |
7576 | task_t task, |
7577 | uint64_t *new_limit_bytes, |
7578 | bool *threshold_disabled) |
7579 | { |
7580 | ledger_amount_t ledger_limit; |
7581 | kern_return_t ret = KERN_SUCCESS; |
7582 | if (new_limit_bytes == NULL || threshold_disabled == NULL) { |
7583 | return KERN_INVALID_ARGUMENT; |
7584 | } |
7585 | ret = ledger_get_diag_mem_threshold(task->ledger, task_ledgers.phys_footprint, &ledger_limit); |
7586 | if (ledger_limit == LEDGER_LIMIT_INFINITY) { |
7587 | ledger_limit = -1; |
7588 | } |
7589 | if (ret == KERN_SUCCESS) { |
7590 | *new_limit_bytes = ledger_limit; |
7591 | ret = ledger_is_diag_threshold_enabled(task->ledger, task_ledgers.phys_footprint, threshold_disabled); |
7592 | } |
7593 | return ret; |
7594 | } |
7595 | #endif /* RESETTABLE_DIAG_FOOTPRINT_LIMITS */ |
7596 | |
7597 | |
7598 | kern_return_t |
7599 | ( |
7600 | task_t task, |
7601 | int *limit_mb) |
7602 | { |
7603 | ledger_amount_t limit; |
7604 | kern_return_t ret; |
7605 | |
7606 | ret = ledger_get_limit(ledger: task->ledger, entry: task_ledgers.phys_footprint, limit: &limit); |
7607 | if (ret != KERN_SUCCESS) { |
7608 | return ret; |
7609 | } |
7610 | |
7611 | /* |
7612 | * Check that limit >> 20 will not give an "unexpected" signed, 32-bit |
7613 | * result. There are, however, implicit assumptions that -1 mb limit |
7614 | * equates to LEDGER_LIMIT_INFINITY. |
7615 | */ |
7616 | assert(((limit & 0xFFF0000000000000LL) == 0) || (limit == LEDGER_LIMIT_INFINITY)); |
7617 | *limit_mb = (int)(limit >> 20); |
7618 | |
7619 | return KERN_SUCCESS; |
7620 | } |
7621 | #else /* CONFIG_MEMORYSTATUS */ |
7622 | kern_return_t |
7623 | task_set_phys_footprint_limit( |
7624 | __unused task_t task, |
7625 | __unused int new_limit_mb, |
7626 | __unused int *old_limit_mb) |
7627 | { |
7628 | return KERN_FAILURE; |
7629 | } |
7630 | |
7631 | kern_return_t |
7632 | task_get_phys_footprint_limit( |
7633 | __unused task_t task, |
7634 | __unused int *limit_mb) |
7635 | { |
7636 | return KERN_FAILURE; |
7637 | } |
7638 | #endif /* CONFIG_MEMORYSTATUS */ |
7639 | |
7640 | security_token_t * |
7641 | task_get_sec_token(task_t task) |
7642 | { |
7643 | return &task_get_ro(t: task)->task_tokens.sec_token; |
7644 | } |
7645 | |
7646 | void |
7647 | task_set_sec_token(task_t task, security_token_t *token) |
7648 | { |
7649 | zalloc_ro_update_field(ZONE_ID_PROC_RO, task_get_ro(task), |
7650 | task_tokens.sec_token, token); |
7651 | } |
7652 | |
7653 | audit_token_t * |
7654 | task_get_audit_token(task_t task) |
7655 | { |
7656 | return &task_get_ro(t: task)->task_tokens.audit_token; |
7657 | } |
7658 | |
7659 | void |
7660 | task_set_audit_token(task_t task, audit_token_t *token) |
7661 | { |
7662 | zalloc_ro_update_field(ZONE_ID_PROC_RO, task_get_ro(task), |
7663 | task_tokens.audit_token, token); |
7664 | } |
7665 | |
7666 | void |
7667 | task_set_tokens(task_t task, security_token_t *sec_token, audit_token_t *audit_token) |
7668 | { |
7669 | struct task_token_ro_data tokens; |
7670 | |
7671 | tokens = task_get_ro(t: task)->task_tokens; |
7672 | tokens.sec_token = *sec_token; |
7673 | tokens.audit_token = *audit_token; |
7674 | |
7675 | zalloc_ro_update_field(ZONE_ID_PROC_RO, task_get_ro(task), task_tokens, |
7676 | &tokens); |
7677 | } |
7678 | |
7679 | boolean_t |
7680 | task_is_privileged(task_t task) |
7681 | { |
7682 | return task_get_sec_token(task)->val[0] == 0; |
7683 | } |
7684 | |
7685 | #ifdef CONFIG_MACF |
7686 | uint8_t * |
7687 | task_get_mach_trap_filter_mask(task_t task) |
7688 | { |
7689 | return task_get_ro(t: task)->task_filters.mach_trap_filter_mask; |
7690 | } |
7691 | |
7692 | void |
7693 | task_set_mach_trap_filter_mask(task_t task, uint8_t *mask) |
7694 | { |
7695 | zalloc_ro_update_field(ZONE_ID_PROC_RO, task_get_ro(task), |
7696 | task_filters.mach_trap_filter_mask, &mask); |
7697 | } |
7698 | |
7699 | uint8_t * |
7700 | task_get_mach_kobj_filter_mask(task_t task) |
7701 | { |
7702 | return task_get_ro(t: task)->task_filters.mach_kobj_filter_mask; |
7703 | } |
7704 | |
7705 | mach_vm_address_t |
7706 | task_get_all_image_info_addr(task_t task) |
7707 | { |
7708 | return task->all_image_info_addr; |
7709 | } |
7710 | |
7711 | void |
7712 | task_set_mach_kobj_filter_mask(task_t task, uint8_t *mask) |
7713 | { |
7714 | zalloc_ro_update_field(ZONE_ID_PROC_RO, task_get_ro(task), |
7715 | task_filters.mach_kobj_filter_mask, &mask); |
7716 | } |
7717 | |
7718 | #endif /* CONFIG_MACF */ |
7719 | |
7720 | void |
7721 | task_set_thread_limit(task_t task, uint16_t thread_limit) |
7722 | { |
7723 | assert(task != kernel_task); |
7724 | if (thread_limit <= TASK_MAX_THREAD_LIMIT) { |
7725 | task_lock(task); |
7726 | task->task_thread_limit = thread_limit; |
7727 | task_unlock(task); |
7728 | } |
7729 | } |
7730 | |
7731 | #if CONFIG_PROC_RESOURCE_LIMITS |
7732 | kern_return_t |
7733 | task_set_port_space_limits(task_t task, uint32_t soft_limit, uint32_t hard_limit) |
7734 | { |
7735 | return ipc_space_set_table_size_limits(task->itk_space, soft_limit, hard_limit); |
7736 | } |
7737 | #endif /* CONFIG_PROC_RESOURCE_LIMITS */ |
7738 | |
7739 | #if XNU_TARGET_OS_OSX |
7740 | boolean_t |
7741 | task_has_system_version_compat_enabled(task_t task) |
7742 | { |
7743 | boolean_t enabled = FALSE; |
7744 | |
7745 | task_lock(task); |
7746 | enabled = (task->t_flags & TF_SYS_VERSION_COMPAT); |
7747 | task_unlock(task); |
7748 | |
7749 | return enabled; |
7750 | } |
7751 | |
7752 | void |
7753 | task_set_system_version_compat_enabled(task_t task, boolean_t enable_system_version_compat) |
7754 | { |
7755 | assert(task == current_task()); |
7756 | assert(task != kernel_task); |
7757 | |
7758 | task_lock(task); |
7759 | if (enable_system_version_compat) { |
7760 | task->t_flags |= TF_SYS_VERSION_COMPAT; |
7761 | } else { |
7762 | task->t_flags &= ~TF_SYS_VERSION_COMPAT; |
7763 | } |
7764 | task_unlock(task); |
7765 | } |
7766 | #endif /* XNU_TARGET_OS_OSX */ |
7767 | |
7768 | /* |
7769 | * We need to export some functions to other components that |
7770 | * are currently implemented in macros within the osfmk |
7771 | * component. Just export them as functions of the same name. |
7772 | */ |
7773 | boolean_t |
7774 | is_kerneltask(task_t t) |
7775 | { |
7776 | if (t == kernel_task) { |
7777 | return TRUE; |
7778 | } |
7779 | |
7780 | return FALSE; |
7781 | } |
7782 | |
7783 | boolean_t |
7784 | is_corpsefork(task_t t) |
7785 | { |
7786 | return task_is_a_corpse_fork(t); |
7787 | } |
7788 | |
7789 | task_t |
7790 | current_task_early(void) |
7791 | { |
7792 | if (__improbable(startup_phase < STARTUP_SUB_EARLY_BOOT)) { |
7793 | if (current_thread()->t_tro == NULL) { |
7794 | return TASK_NULL; |
7795 | } |
7796 | } |
7797 | return get_threadtask(current_thread()); |
7798 | } |
7799 | |
7800 | task_t |
7801 | current_task(void) |
7802 | { |
7803 | return get_threadtask(current_thread()); |
7804 | } |
7805 | |
7806 | /* defined in bsd/kern/kern_prot.c */ |
7807 | extern int get_audit_token_pid(audit_token_t *audit_token); |
7808 | |
7809 | int |
7810 | task_pid(task_t task) |
7811 | { |
7812 | if (task) { |
7813 | return get_audit_token_pid(audit_token: task_get_audit_token(task)); |
7814 | } |
7815 | return -1; |
7816 | } |
7817 | |
7818 | #if __has_feature(ptrauth_calls) |
7819 | /* |
7820 | * Get the shared region id and jop signing key for the task. |
7821 | * The function will allocate a kalloc buffer and return |
7822 | * it to caller, the caller needs to free it. This is used |
7823 | * for getting the information via task port. |
7824 | */ |
7825 | char * |
7826 | task_get_vm_shared_region_id_and_jop_pid(task_t task, uint64_t *jop_pid) |
7827 | { |
7828 | size_t len; |
7829 | char *shared_region_id = NULL; |
7830 | |
7831 | task_lock(task); |
7832 | if (task->shared_region_id == NULL) { |
7833 | task_unlock(task); |
7834 | return NULL; |
7835 | } |
7836 | len = strlen(task->shared_region_id) + 1; |
7837 | |
7838 | /* don't hold task lock while allocating */ |
7839 | task_unlock(task); |
7840 | shared_region_id = kalloc_data(len, Z_WAITOK); |
7841 | task_lock(task); |
7842 | |
7843 | if (task->shared_region_id == NULL) { |
7844 | task_unlock(task); |
7845 | kfree_data(shared_region_id, len); |
7846 | return NULL; |
7847 | } |
7848 | assert(len == strlen(task->shared_region_id) + 1); /* should never change */ |
7849 | strlcpy(shared_region_id, task->shared_region_id, len); |
7850 | task_unlock(task); |
7851 | |
7852 | /* find key from its auth pager */ |
7853 | if (jop_pid != NULL) { |
7854 | *jop_pid = shared_region_find_key(shared_region_id); |
7855 | } |
7856 | |
7857 | return shared_region_id; |
7858 | } |
7859 | |
7860 | /* |
7861 | * set the shared region id for a task |
7862 | */ |
7863 | void |
7864 | task_set_shared_region_id(task_t task, char *id) |
7865 | { |
7866 | char *old_id; |
7867 | |
7868 | task_lock(task); |
7869 | old_id = task->shared_region_id; |
7870 | task->shared_region_id = id; |
7871 | task->shared_region_auth_remapped = FALSE; |
7872 | task_unlock(task); |
7873 | |
7874 | /* free any pre-existing shared region id */ |
7875 | if (old_id != NULL) { |
7876 | shared_region_key_dealloc(old_id); |
7877 | kfree_data(old_id, strlen(old_id) + 1); |
7878 | } |
7879 | } |
7880 | #endif /* __has_feature(ptrauth_calls) */ |
7881 | |
7882 | /* |
7883 | * This routine finds a thread in a task by its unique id |
7884 | * Returns a referenced thread or THREAD_NULL if the thread was not found |
7885 | * |
7886 | * TODO: This is super inefficient - it's an O(threads in task) list walk! |
7887 | * We should make a tid hash, or transition all tid clients to thread ports |
7888 | * |
7889 | * Precondition: No locks held (will take task lock) |
7890 | */ |
7891 | thread_t |
7892 | task_findtid(task_t task, uint64_t tid) |
7893 | { |
7894 | thread_t self = current_thread(); |
7895 | thread_t found_thread = THREAD_NULL; |
7896 | thread_t iter_thread = THREAD_NULL; |
7897 | |
7898 | /* Short-circuit the lookup if we're looking up ourselves */ |
7899 | if (tid == self->thread_id || tid == TID_NULL) { |
7900 | assert(get_threadtask(self) == task); |
7901 | |
7902 | thread_reference(thread: self); |
7903 | |
7904 | return self; |
7905 | } |
7906 | |
7907 | task_lock(task); |
7908 | |
7909 | queue_iterate(&task->threads, iter_thread, thread_t, task_threads) { |
7910 | if (iter_thread->thread_id == tid) { |
7911 | found_thread = iter_thread; |
7912 | thread_reference(thread: found_thread); |
7913 | break; |
7914 | } |
7915 | } |
7916 | |
7917 | task_unlock(task); |
7918 | |
7919 | return found_thread; |
7920 | } |
7921 | |
7922 | int |
7923 | pid_from_task(task_t task) |
7924 | { |
7925 | int pid = -1; |
7926 | void *bsd_info = get_bsdtask_info(task); |
7927 | |
7928 | if (bsd_info) { |
7929 | pid = proc_pid(p: bsd_info); |
7930 | } else { |
7931 | pid = task_pid(task); |
7932 | } |
7933 | |
7934 | return pid; |
7935 | } |
7936 | |
7937 | /* |
7938 | * Control the CPU usage monitor for a task. |
7939 | */ |
7940 | kern_return_t |
7941 | task_cpu_usage_monitor_ctl(task_t task, uint32_t *flags) |
7942 | { |
7943 | int error = KERN_SUCCESS; |
7944 | |
7945 | if (*flags & CPUMON_MAKE_FATAL) { |
7946 | task->rusage_cpu_flags |= TASK_RUSECPU_FLAGS_FATAL_CPUMON; |
7947 | } else { |
7948 | error = KERN_INVALID_ARGUMENT; |
7949 | } |
7950 | |
7951 | return error; |
7952 | } |
7953 | |
7954 | /* |
7955 | * Control the wakeups monitor for a task. |
7956 | */ |
7957 | kern_return_t |
7958 | task_wakeups_monitor_ctl(task_t task, uint32_t *flags, int32_t *rate_hz) |
7959 | { |
7960 | ledger_t ledger = task->ledger; |
7961 | |
7962 | task_lock(task); |
7963 | if (*flags & WAKEMON_GET_PARAMS) { |
7964 | ledger_amount_t limit; |
7965 | uint64_t period; |
7966 | |
7967 | ledger_get_limit(ledger, entry: task_ledgers.interrupt_wakeups, limit: &limit); |
7968 | ledger_get_period(ledger, entry: task_ledgers.interrupt_wakeups, period: &period); |
7969 | |
7970 | if (limit != LEDGER_LIMIT_INFINITY) { |
7971 | /* |
7972 | * An active limit means the wakeups monitor is enabled. |
7973 | */ |
7974 | *rate_hz = (int32_t)(limit / (int64_t)(period / NSEC_PER_SEC)); |
7975 | *flags = WAKEMON_ENABLE; |
7976 | if (task->rusage_cpu_flags & TASK_RUSECPU_FLAGS_FATAL_WAKEUPSMON) { |
7977 | *flags |= WAKEMON_MAKE_FATAL; |
7978 | } |
7979 | } else { |
7980 | *flags = WAKEMON_DISABLE; |
7981 | *rate_hz = -1; |
7982 | } |
7983 | |
7984 | /* |
7985 | * If WAKEMON_GET_PARAMS is present in flags, all other flags are ignored. |
7986 | */ |
7987 | task_unlock(task); |
7988 | return KERN_SUCCESS; |
7989 | } |
7990 | |
7991 | if (*flags & WAKEMON_ENABLE) { |
7992 | if (*flags & WAKEMON_SET_DEFAULTS) { |
7993 | *rate_hz = task_wakeups_monitor_rate; |
7994 | } |
7995 | |
7996 | #ifndef CONFIG_NOMONITORS |
7997 | if (*flags & WAKEMON_MAKE_FATAL) { |
7998 | task->rusage_cpu_flags |= TASK_RUSECPU_FLAGS_FATAL_WAKEUPSMON; |
7999 | } |
8000 | #endif /* CONFIG_NOMONITORS */ |
8001 | |
8002 | if (*rate_hz <= 0) { |
8003 | task_unlock(task); |
8004 | return KERN_INVALID_ARGUMENT; |
8005 | } |
8006 | |
8007 | #ifndef CONFIG_NOMONITORS |
8008 | ledger_set_limit(ledger, entry: task_ledgers.interrupt_wakeups, limit: *rate_hz * task_wakeups_monitor_interval, |
8009 | warn_level_percentage: (uint8_t)task_wakeups_monitor_ustackshots_trigger_pct); |
8010 | ledger_set_period(ledger, entry: task_ledgers.interrupt_wakeups, period: task_wakeups_monitor_interval * NSEC_PER_SEC); |
8011 | ledger_enable_callback(ledger, entry: task_ledgers.interrupt_wakeups); |
8012 | #endif /* CONFIG_NOMONITORS */ |
8013 | } else if (*flags & WAKEMON_DISABLE) { |
8014 | /* |
8015 | * Caller wishes to disable wakeups monitor on the task. |
8016 | * |
8017 | * Disable telemetry if it was triggered by the wakeups monitor, and |
8018 | * remove the limit & callback on the wakeups ledger entry. |
8019 | */ |
8020 | #if CONFIG_TELEMETRY |
8021 | telemetry_task_ctl_locked(task, TF_WAKEMON_WARNING, enable_disable: 0); |
8022 | #endif |
8023 | ledger_disable_refill(l: ledger, entry: task_ledgers.interrupt_wakeups); |
8024 | ledger_disable_callback(ledger, entry: task_ledgers.interrupt_wakeups); |
8025 | } |
8026 | |
8027 | task_unlock(task); |
8028 | return KERN_SUCCESS; |
8029 | } |
8030 | |
8031 | void |
8032 | task_wakeups_rate_exceeded(int warning, __unused const void *param0, __unused const void *param1) |
8033 | { |
8034 | if (warning == LEDGER_WARNING_ROSE_ABOVE) { |
8035 | #if CONFIG_TELEMETRY |
8036 | /* |
8037 | * This task is in danger of violating the wakeups monitor. Enable telemetry on this task |
8038 | * so there are micro-stackshots available if and when EXC_RESOURCE is triggered. |
8039 | */ |
8040 | telemetry_task_ctl(task: current_task(), TF_WAKEMON_WARNING, enable_disable: 1); |
8041 | #endif |
8042 | return; |
8043 | } |
8044 | |
8045 | #if CONFIG_TELEMETRY |
8046 | /* |
8047 | * If the balance has dipped below the warning level (LEDGER_WARNING_DIPPED_BELOW) or |
8048 | * exceeded the limit, turn telemetry off for the task. |
8049 | */ |
8050 | telemetry_task_ctl(task: current_task(), TF_WAKEMON_WARNING, enable_disable: 0); |
8051 | #endif |
8052 | |
8053 | if (warning == 0) { |
8054 | SENDING_NOTIFICATION__THIS_PROCESS_IS_CAUSING_TOO_MANY_WAKEUPS(); |
8055 | } |
8056 | } |
8057 | |
8058 | TUNABLE(bool, enable_wakeup_reports, "enable_wakeup_reports" , false); /* Enable wakeup reports. */ |
8059 | |
8060 | void __attribute__((noinline)) |
8061 | SENDING_NOTIFICATION__THIS_PROCESS_IS_CAUSING_TOO_MANY_WAKEUPS(void) |
8062 | { |
8063 | task_t task = current_task(); |
8064 | int pid = 0; |
8065 | const char *procname = "unknown" ; |
8066 | boolean_t fatal; |
8067 | kern_return_t kr; |
8068 | #ifdef EXC_RESOURCE_MONITORS |
8069 | mach_exception_data_type_t code[EXCEPTION_CODE_MAX]; |
8070 | #endif /* EXC_RESOURCE_MONITORS */ |
8071 | struct ledger_entry_info lei; |
8072 | |
8073 | #ifdef MACH_BSD |
8074 | pid = proc_selfpid(); |
8075 | if (get_bsdtask_info(task) != NULL) { |
8076 | procname = proc_name_address(p: get_bsdtask_info(current_task())); |
8077 | } |
8078 | #endif |
8079 | |
8080 | ledger_get_entry_info(ledger: task->ledger, entry: task_ledgers.interrupt_wakeups, lei: &lei); |
8081 | |
8082 | /* |
8083 | * Disable the exception notification so we don't overwhelm |
8084 | * the listener with an endless stream of redundant exceptions. |
8085 | * TODO: detect whether another thread is already reporting the violation. |
8086 | */ |
8087 | uint32_t flags = WAKEMON_DISABLE; |
8088 | task_wakeups_monitor_ctl(task, flags: &flags, NULL); |
8089 | |
8090 | fatal = task->rusage_cpu_flags & TASK_RUSECPU_FLAGS_FATAL_WAKEUPSMON; |
8091 | trace_resource_violation(RMON_CPUWAKES_VIOLATED, ledger_info: &lei); |
8092 | os_log(OS_LOG_DEFAULT, "process %s[%d] caught waking the CPU %llu times " |
8093 | "over ~%llu seconds, averaging %llu wakes / second and " |
8094 | "violating a %slimit of %llu wakes over %llu seconds.\n" , |
8095 | procname, pid, |
8096 | lei.lei_balance, lei.lei_last_refill / NSEC_PER_SEC, |
8097 | lei.lei_last_refill == 0 ? 0 : |
8098 | (NSEC_PER_SEC * lei.lei_balance / lei.lei_last_refill), |
8099 | fatal ? "FATAL " : "" , |
8100 | lei.lei_limit, lei.lei_refill_period / NSEC_PER_SEC); |
8101 | |
8102 | if (enable_wakeup_reports) { |
8103 | kr = send_resource_violation(send_cpu_wakes_violation, violator: task, ledger_info: &lei, |
8104 | flags: fatal ? kRNFatalLimitFlag : 0); |
8105 | if (kr) { |
8106 | printf(format: "send_resource_violation(CPU wakes, ...): error %#x\n" , kr); |
8107 | } |
8108 | } |
8109 | |
8110 | #ifdef EXC_RESOURCE_MONITORS |
8111 | if (disable_exc_resource) { |
8112 | printf("process %s[%d] caught causing excessive wakeups. EXC_RESOURCE " |
8113 | "suppressed by a boot-arg\n" , procname, pid); |
8114 | return; |
8115 | } |
8116 | if (disable_exc_resource_during_audio && audio_active) { |
8117 | os_log(OS_LOG_DEFAULT, "process %s[%d] caught causing excessive wakeups. EXC_RESOURCE " |
8118 | "suppressed due to audio playback\n" , procname, pid); |
8119 | return; |
8120 | } |
8121 | if (lei.lei_last_refill == 0) { |
8122 | os_log(OS_LOG_DEFAULT, "process %s[%d] caught causing excessive wakeups. EXC_RESOURCE " |
8123 | "suppressed due to lei.lei_last_refill = 0 \n" , procname, pid); |
8124 | } |
8125 | |
8126 | code[0] = code[1] = 0; |
8127 | EXC_RESOURCE_ENCODE_TYPE(code[0], RESOURCE_TYPE_WAKEUPS); |
8128 | EXC_RESOURCE_ENCODE_FLAVOR(code[0], FLAVOR_WAKEUPS_MONITOR); |
8129 | EXC_RESOURCE_CPUMONITOR_ENCODE_WAKEUPS_PERMITTED(code[0], |
8130 | NSEC_PER_SEC * lei.lei_limit / lei.lei_refill_period); |
8131 | EXC_RESOURCE_CPUMONITOR_ENCODE_OBSERVATION_INTERVAL(code[0], |
8132 | lei.lei_last_refill); |
8133 | EXC_RESOURCE_CPUMONITOR_ENCODE_WAKEUPS_OBSERVED(code[1], |
8134 | NSEC_PER_SEC * lei.lei_balance / lei.lei_last_refill); |
8135 | exception_triage(EXC_RESOURCE, code, EXCEPTION_CODE_MAX); |
8136 | #endif /* EXC_RESOURCE_MONITORS */ |
8137 | |
8138 | if (fatal) { |
8139 | task_terminate_internal(task); |
8140 | } |
8141 | } |
8142 | |
8143 | static boolean_t |
8144 | global_update_logical_writes(int64_t io_delta, int64_t *global_write_count) |
8145 | { |
8146 | int64_t old_count, new_count; |
8147 | boolean_t needs_telemetry; |
8148 | |
8149 | do { |
8150 | new_count = old_count = *global_write_count; |
8151 | new_count += io_delta; |
8152 | if (new_count >= io_telemetry_limit) { |
8153 | new_count = 0; |
8154 | needs_telemetry = TRUE; |
8155 | } else { |
8156 | needs_telemetry = FALSE; |
8157 | } |
8158 | } while (!OSCompareAndSwap64(old_count, new_count, global_write_count)); |
8159 | return needs_telemetry; |
8160 | } |
8161 | |
8162 | void |
8163 | task_update_physical_writes(__unused task_t task, __unused task_physical_write_flavor_t flavor, __unused uint64_t io_size, __unused task_balance_flags_t flags) |
8164 | { |
8165 | #if CONFIG_PHYS_WRITE_ACCT |
8166 | if (!io_size) { |
8167 | return; |
8168 | } |
8169 | |
8170 | /* |
8171 | * task == NULL means that we have to update kernel_task ledgers |
8172 | */ |
8173 | if (!task) { |
8174 | task = kernel_task; |
8175 | } |
8176 | |
8177 | KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, VM_PHYS_WRITE_ACCT)) | DBG_FUNC_NONE, |
8178 | task_pid(task), flavor, io_size, flags, 0); |
8179 | DTRACE_IO4(physical_writes, struct task *, task, task_physical_write_flavor_t, flavor, uint64_t, io_size, task_balance_flags_t, flags); |
8180 | |
8181 | if (flags & TASK_BALANCE_CREDIT) { |
8182 | if (flavor == TASK_PHYSICAL_WRITE_METADATA) { |
8183 | OSAddAtomic64(io_size, (SInt64 *)&(task->task_fs_metadata_writes)); |
8184 | ledger_credit_nocheck(ledger: task->ledger, entry: task_ledgers.fs_metadata_writes, amount: io_size); |
8185 | } |
8186 | } else if (flags & TASK_BALANCE_DEBIT) { |
8187 | if (flavor == TASK_PHYSICAL_WRITE_METADATA) { |
8188 | OSAddAtomic64(-1 * io_size, (SInt64 *)&(task->task_fs_metadata_writes)); |
8189 | ledger_debit_nocheck(ledger: task->ledger, entry: task_ledgers.fs_metadata_writes, amount: io_size); |
8190 | } |
8191 | } |
8192 | #endif /* CONFIG_PHYS_WRITE_ACCT */ |
8193 | } |
8194 | |
8195 | void |
8196 | task_update_logical_writes(task_t task, uint32_t io_size, int flags, void *vp) |
8197 | { |
8198 | int64_t io_delta = 0; |
8199 | int64_t * global_counter_to_update; |
8200 | boolean_t needs_telemetry = FALSE; |
8201 | boolean_t is_external_device = FALSE; |
8202 | int ledger_to_update = 0; |
8203 | struct task_writes_counters * writes_counters_to_update; |
8204 | |
8205 | if ((!task) || (!io_size) || (!vp)) { |
8206 | return; |
8207 | } |
8208 | |
8209 | KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, VM_DATA_WRITE)) | DBG_FUNC_NONE, |
8210 | task_pid(task), io_size, flags, (uintptr_t)VM_KERNEL_ADDRPERM(vp), 0); |
8211 | DTRACE_IO4(logical_writes, struct task *, task, uint32_t, io_size, int, flags, vnode *, vp); |
8212 | |
8213 | // Is the drive backing this vnode internal or external to the system? |
8214 | if (vnode_isonexternalstorage(vp) == false) { |
8215 | global_counter_to_update = &global_logical_writes_count; |
8216 | ledger_to_update = task_ledgers.logical_writes; |
8217 | writes_counters_to_update = &task->task_writes_counters_internal; |
8218 | is_external_device = FALSE; |
8219 | } else { |
8220 | global_counter_to_update = &global_logical_writes_to_external_count; |
8221 | ledger_to_update = task_ledgers.logical_writes_to_external; |
8222 | writes_counters_to_update = &task->task_writes_counters_external; |
8223 | is_external_device = TRUE; |
8224 | } |
8225 | |
8226 | switch (flags) { |
8227 | case TASK_WRITE_IMMEDIATE: |
8228 | OSAddAtomic64(io_size, (SInt64 *)&(writes_counters_to_update->task_immediate_writes)); |
8229 | ledger_credit(ledger: task->ledger, entry: ledger_to_update, amount: io_size); |
8230 | if (!is_external_device) { |
8231 | coalition_io_ledger_update(task, FLAVOR_IO_LOGICAL_WRITES, TRUE, io_size); |
8232 | } |
8233 | break; |
8234 | case TASK_WRITE_DEFERRED: |
8235 | OSAddAtomic64(io_size, (SInt64 *)&(writes_counters_to_update->task_deferred_writes)); |
8236 | ledger_credit(ledger: task->ledger, entry: ledger_to_update, amount: io_size); |
8237 | if (!is_external_device) { |
8238 | coalition_io_ledger_update(task, FLAVOR_IO_LOGICAL_WRITES, TRUE, io_size); |
8239 | } |
8240 | break; |
8241 | case TASK_WRITE_INVALIDATED: |
8242 | OSAddAtomic64(io_size, (SInt64 *)&(writes_counters_to_update->task_invalidated_writes)); |
8243 | ledger_debit(ledger: task->ledger, entry: ledger_to_update, amount: io_size); |
8244 | if (!is_external_device) { |
8245 | coalition_io_ledger_update(task, FLAVOR_IO_LOGICAL_WRITES, FALSE, io_size); |
8246 | } |
8247 | break; |
8248 | case TASK_WRITE_METADATA: |
8249 | OSAddAtomic64(io_size, (SInt64 *)&(writes_counters_to_update->task_metadata_writes)); |
8250 | ledger_credit(ledger: task->ledger, entry: ledger_to_update, amount: io_size); |
8251 | if (!is_external_device) { |
8252 | coalition_io_ledger_update(task, FLAVOR_IO_LOGICAL_WRITES, TRUE, io_size); |
8253 | } |
8254 | break; |
8255 | } |
8256 | |
8257 | io_delta = (flags == TASK_WRITE_INVALIDATED) ? ((int64_t)io_size * -1ll) : ((int64_t)io_size); |
8258 | if (io_telemetry_limit != 0) { |
8259 | /* If io_telemetry_limit is 0, disable global updates and I/O telemetry */ |
8260 | needs_telemetry = global_update_logical_writes(io_delta, global_write_count: global_counter_to_update); |
8261 | if (needs_telemetry && !is_external_device) { |
8262 | act_set_io_telemetry_ast(current_thread()); |
8263 | } |
8264 | } |
8265 | } |
8266 | |
8267 | /* |
8268 | * Control the I/O monitor for a task. |
8269 | */ |
8270 | kern_return_t |
8271 | task_io_monitor_ctl(task_t task, uint32_t *flags) |
8272 | { |
8273 | ledger_t ledger = task->ledger; |
8274 | |
8275 | task_lock(task); |
8276 | if (*flags & IOMON_ENABLE) { |
8277 | /* Configure the physical I/O ledger */ |
8278 | ledger_set_limit(ledger, entry: task_ledgers.physical_writes, limit: (task_iomon_limit_mb * 1024 * 1024), warn_level_percentage: 0); |
8279 | ledger_set_period(ledger, entry: task_ledgers.physical_writes, period: (task_iomon_interval_secs * NSEC_PER_SEC)); |
8280 | } else if (*flags & IOMON_DISABLE) { |
8281 | /* |
8282 | * Caller wishes to disable I/O monitor on the task. |
8283 | */ |
8284 | ledger_disable_refill(l: ledger, entry: task_ledgers.physical_writes); |
8285 | ledger_disable_callback(ledger, entry: task_ledgers.physical_writes); |
8286 | } |
8287 | |
8288 | task_unlock(task); |
8289 | return KERN_SUCCESS; |
8290 | } |
8291 | |
8292 | void |
8293 | task_io_rate_exceeded(int warning, const void *param0, __unused const void *param1) |
8294 | { |
8295 | if (warning == 0) { |
8296 | SENDING_NOTIFICATION__THIS_PROCESS_IS_CAUSING_TOO_MUCH_IO(flavor: (int)param0); |
8297 | } |
8298 | } |
8299 | |
8300 | void __attribute__((noinline)) |
8301 | SENDING_NOTIFICATION__THIS_PROCESS_IS_CAUSING_TOO_MUCH_IO(int flavor) |
8302 | { |
8303 | int pid = 0; |
8304 | task_t task = current_task(); |
8305 | #ifdef EXC_RESOURCE_MONITORS |
8306 | mach_exception_data_type_t code[EXCEPTION_CODE_MAX]; |
8307 | #endif /* EXC_RESOURCE_MONITORS */ |
8308 | struct ledger_entry_info lei = {}; |
8309 | kern_return_t kr; |
8310 | |
8311 | #ifdef MACH_BSD |
8312 | pid = proc_selfpid(); |
8313 | #endif |
8314 | /* |
8315 | * Get the ledger entry info. We need to do this before disabling the exception |
8316 | * to get correct values for all fields. |
8317 | */ |
8318 | switch (flavor) { |
8319 | case FLAVOR_IO_PHYSICAL_WRITES: |
8320 | ledger_get_entry_info(ledger: task->ledger, entry: task_ledgers.physical_writes, lei: &lei); |
8321 | break; |
8322 | } |
8323 | |
8324 | |
8325 | /* |
8326 | * Disable the exception notification so we don't overwhelm |
8327 | * the listener with an endless stream of redundant exceptions. |
8328 | * TODO: detect whether another thread is already reporting the violation. |
8329 | */ |
8330 | uint32_t flags = IOMON_DISABLE; |
8331 | task_io_monitor_ctl(task, flags: &flags); |
8332 | |
8333 | if (flavor == FLAVOR_IO_LOGICAL_WRITES) { |
8334 | trace_resource_violation(RMON_LOGWRITES_VIOLATED, ledger_info: &lei); |
8335 | } |
8336 | os_log(OS_LOG_DEFAULT, "process [%d] caught causing excessive I/O (flavor: %d). Task I/O: %lld MB. [Limit : %lld MB per %lld secs]\n" , |
8337 | pid, flavor, (lei.lei_balance / (1024 * 1024)), (lei.lei_limit / (1024 * 1024)), (lei.lei_refill_period / NSEC_PER_SEC)); |
8338 | |
8339 | kr = send_resource_violation(send_disk_writes_violation, violator: task, ledger_info: &lei, kRNFlagsNone); |
8340 | if (kr) { |
8341 | printf(format: "send_resource_violation(disk_writes, ...): error %#x\n" , kr); |
8342 | } |
8343 | |
8344 | #ifdef EXC_RESOURCE_MONITORS |
8345 | code[0] = code[1] = 0; |
8346 | EXC_RESOURCE_ENCODE_TYPE(code[0], RESOURCE_TYPE_IO); |
8347 | EXC_RESOURCE_ENCODE_FLAVOR(code[0], flavor); |
8348 | EXC_RESOURCE_IO_ENCODE_INTERVAL(code[0], (lei.lei_refill_period / NSEC_PER_SEC)); |
8349 | EXC_RESOURCE_IO_ENCODE_LIMIT(code[0], (lei.lei_limit / (1024 * 1024))); |
8350 | EXC_RESOURCE_IO_ENCODE_OBSERVED(code[1], (lei.lei_balance / (1024 * 1024))); |
8351 | exception_triage(EXC_RESOURCE, code, EXCEPTION_CODE_MAX); |
8352 | #endif /* EXC_RESOURCE_MONITORS */ |
8353 | } |
8354 | |
8355 | void |
8356 | task_port_space_ast(__unused task_t task) |
8357 | { |
8358 | uint32_t current_size, soft_limit, hard_limit; |
8359 | assert(task == current_task()); |
8360 | bool should_notify = ipc_space_check_table_size_limit(space: task->itk_space, |
8361 | current_limit: ¤t_size, soft_limit: &soft_limit, hard_limit: &hard_limit); |
8362 | if (should_notify) { |
8363 | SENDING_NOTIFICATION__THIS_PROCESS_HAS_TOO_MANY_MACH_PORTS(task, current_size, soft_limit, hard_limit); |
8364 | } |
8365 | } |
8366 | |
8367 | #if CONFIG_PROC_RESOURCE_LIMITS |
8368 | static mach_port_t |
8369 | task_allocate_fatal_port(void) |
8370 | { |
8371 | mach_port_t task_fatal_port = MACH_PORT_NULL; |
8372 | task_id_token_t token; |
8373 | |
8374 | kern_return_t kr = task_create_identity_token(current_task(), &token); /* Takes a reference on the token */ |
8375 | if (kr) { |
8376 | return MACH_PORT_NULL; |
8377 | } |
8378 | task_fatal_port = ipc_kobject_alloc_port((ipc_kobject_t)token, IKOT_TASK_FATAL, |
8379 | IPC_KOBJECT_ALLOC_NSREQUEST | IPC_KOBJECT_ALLOC_MAKE_SEND); |
8380 | |
8381 | task_id_token_set_port(token, task_fatal_port); |
8382 | |
8383 | return task_fatal_port; |
8384 | } |
8385 | |
8386 | static void |
8387 | task_fatal_port_no_senders(ipc_port_t port, __unused mach_port_mscount_t mscount) |
8388 | { |
8389 | task_t task = TASK_NULL; |
8390 | kern_return_t kr; |
8391 | |
8392 | task_id_token_t token = ipc_kobject_get_stable(port, IKOT_TASK_FATAL); |
8393 | |
8394 | assert(token != NULL); |
8395 | if (token) { |
8396 | kr = task_identity_token_get_task_grp(token, &task, TASK_GRP_KERNEL); /* takes a reference on task */ |
8397 | if (task) { |
8398 | task_bsdtask_kill(task); |
8399 | task_deallocate(task); |
8400 | } |
8401 | task_id_token_release(token); /* consumes ref given by notification */ |
8402 | } |
8403 | } |
8404 | #endif /* CONFIG_PROC_RESOURCE_LIMITS */ |
8405 | |
8406 | void __attribute__((noinline)) |
8407 | SENDING_NOTIFICATION__THIS_PROCESS_HAS_TOO_MANY_MACH_PORTS(task_t task, uint32_t current_size, uint32_t soft_limit, uint32_t hard_limit) |
8408 | { |
8409 | int pid = 0; |
8410 | char *procname = (char *) "unknown" ; |
8411 | __unused kern_return_t kr; |
8412 | __unused resource_notify_flags_t flags = kRNFlagsNone; |
8413 | __unused uint32_t limit; |
8414 | __unused mach_port_t task_fatal_port = MACH_PORT_NULL; |
8415 | mach_exception_data_type_t code[EXCEPTION_CODE_MAX]; |
8416 | |
8417 | pid = proc_selfpid(); |
8418 | if (get_bsdtask_info(task) != NULL) { |
8419 | procname = proc_name_address(p: get_bsdtask_info(task)); |
8420 | } |
8421 | |
8422 | /* |
8423 | * Only kernel_task and launchd may be allowed to |
8424 | * have really large ipc space. |
8425 | */ |
8426 | if (pid == 0 || pid == 1) { |
8427 | return; |
8428 | } |
8429 | |
8430 | os_log(OS_LOG_DEFAULT, "process %s[%d] caught allocating too many mach ports. \ |
8431 | Num of ports allocated %u; \n" , procname, pid, current_size); |
8432 | |
8433 | /* Abort the process if it has hit the system-wide limit for ipc port table size */ |
8434 | if (!hard_limit && !soft_limit) { |
8435 | code[0] = code[1] = 0; |
8436 | EXC_RESOURCE_ENCODE_TYPE(code[0], RESOURCE_TYPE_PORTS); |
8437 | EXC_RESOURCE_ENCODE_FLAVOR(code[0], FLAVOR_PORT_SPACE_FULL); |
8438 | EXC_RESOURCE_PORTS_ENCODE_PORTS(code[0], current_size); |
8439 | |
8440 | exit_with_port_space_exception(proc: current_proc(), code: code[0], subcode: code[1]); |
8441 | |
8442 | return; |
8443 | } |
8444 | |
8445 | #if CONFIG_PROC_RESOURCE_LIMITS |
8446 | if (hard_limit > 0) { |
8447 | flags |= kRNHardLimitFlag; |
8448 | limit = hard_limit; |
8449 | task_fatal_port = task_allocate_fatal_port(); |
8450 | if (!task_fatal_port) { |
8451 | os_log(OS_LOG_DEFAULT, "process %s[%d] Unable to create task token ident object" , procname, pid); |
8452 | task_bsdtask_kill(task); |
8453 | } |
8454 | } else { |
8455 | flags |= kRNSoftLimitFlag; |
8456 | limit = soft_limit; |
8457 | } |
8458 | |
8459 | kr = send_resource_violation_with_fatal_port(send_port_space_violation, task, (int64_t)current_size, (int64_t)limit, task_fatal_port, flags); |
8460 | if (kr) { |
8461 | os_log(OS_LOG_DEFAULT, "send_resource_violation(ports, ...): error %#x\n" , kr); |
8462 | } |
8463 | if (task_fatal_port) { |
8464 | ipc_port_release_send(task_fatal_port); |
8465 | } |
8466 | #endif /* CONFIG_PROC_RESOURCE_LIMITS */ |
8467 | } |
8468 | |
8469 | #if CONFIG_PROC_RESOURCE_LIMITS |
8470 | void |
8471 | task_kqworkloop_ast(task_t task, int current_size, int soft_limit, int hard_limit) |
8472 | { |
8473 | assert(task == current_task()); |
8474 | return SENDING_NOTIFICATION__THIS_PROCESS_HAS_TOO_MANY_KQWORKLOOPS(task, current_size, soft_limit, hard_limit); |
8475 | } |
8476 | |
8477 | void __attribute__((noinline)) |
8478 | SENDING_NOTIFICATION__THIS_PROCESS_HAS_TOO_MANY_KQWORKLOOPS(task_t task, int current_size, int soft_limit, int hard_limit) |
8479 | { |
8480 | int pid = 0; |
8481 | char *procname = (char *) "unknown" ; |
8482 | #ifdef MACH_BSD |
8483 | pid = proc_selfpid(); |
8484 | if (get_bsdtask_info(task) != NULL) { |
8485 | procname = proc_name_address(get_bsdtask_info(task)); |
8486 | } |
8487 | #endif |
8488 | if (pid == 0 || pid == 1) { |
8489 | return; |
8490 | } |
8491 | |
8492 | os_log(OS_LOG_DEFAULT, "process %s[%d] caught allocating too many kqworkloops. \ |
8493 | Num of kqworkloops allocated %u; \n" , procname, pid, current_size); |
8494 | |
8495 | int limit = 0; |
8496 | resource_notify_flags_t flags = kRNFlagsNone; |
8497 | mach_port_t task_fatal_port = MACH_PORT_NULL; |
8498 | if (hard_limit) { |
8499 | flags |= kRNHardLimitFlag; |
8500 | limit = hard_limit; |
8501 | |
8502 | task_fatal_port = task_allocate_fatal_port(); |
8503 | if (task_fatal_port == MACH_PORT_NULL) { |
8504 | os_log(OS_LOG_DEFAULT, "process %s[%d] Unable to create task token ident object" , procname, pid); |
8505 | task_bsdtask_kill(task); |
8506 | } |
8507 | } else { |
8508 | flags |= kRNSoftLimitFlag; |
8509 | limit = soft_limit; |
8510 | } |
8511 | |
8512 | kern_return_t kr; |
8513 | kr = send_resource_violation_with_fatal_port(send_kqworkloops_violation, task, (int64_t)current_size, (int64_t)limit, task_fatal_port, flags); |
8514 | if (kr) { |
8515 | os_log(OS_LOG_DEFAULT, "send_resource_violation_with_fatal_port(kqworkloops, ...): error %#x\n" , kr); |
8516 | } |
8517 | if (task_fatal_port) { |
8518 | ipc_port_release_send(task_fatal_port); |
8519 | } |
8520 | } |
8521 | |
8522 | |
8523 | void |
8524 | task_filedesc_ast(__unused task_t task, __unused int current_size, __unused int soft_limit, __unused int hard_limit) |
8525 | { |
8526 | assert(task == current_task()); |
8527 | SENDING_NOTIFICATION__THIS_PROCESS_HAS_TOO_MANY_FILE_DESCRIPTORS(task, current_size, soft_limit, hard_limit); |
8528 | } |
8529 | |
8530 | void __attribute__((noinline)) |
8531 | SENDING_NOTIFICATION__THIS_PROCESS_HAS_TOO_MANY_FILE_DESCRIPTORS(task_t task, int current_size, int soft_limit, int hard_limit) |
8532 | { |
8533 | int pid = 0; |
8534 | char *procname = (char *) "unknown" ; |
8535 | kern_return_t kr; |
8536 | resource_notify_flags_t flags = kRNFlagsNone; |
8537 | int limit; |
8538 | mach_port_t task_fatal_port = MACH_PORT_NULL; |
8539 | |
8540 | #ifdef MACH_BSD |
8541 | pid = proc_selfpid(); |
8542 | if (get_bsdtask_info(task) != NULL) { |
8543 | procname = proc_name_address(get_bsdtask_info(task)); |
8544 | } |
8545 | #endif |
8546 | /* |
8547 | * Only kernel_task and launchd may be allowed to |
8548 | * have really large ipc space. |
8549 | */ |
8550 | if (pid == 0 || pid == 1) { |
8551 | return; |
8552 | } |
8553 | |
8554 | os_log(OS_LOG_DEFAULT, "process %s[%d] caught allocating too many file descriptors. \ |
8555 | Num of fds allocated %u; \n" , procname, pid, current_size); |
8556 | |
8557 | if (hard_limit > 0) { |
8558 | flags |= kRNHardLimitFlag; |
8559 | limit = hard_limit; |
8560 | task_fatal_port = task_allocate_fatal_port(); |
8561 | if (!task_fatal_port) { |
8562 | os_log(OS_LOG_DEFAULT, "process %s[%d] Unable to create task token ident object" , procname, pid); |
8563 | task_bsdtask_kill(task); |
8564 | } |
8565 | } else { |
8566 | flags |= kRNSoftLimitFlag; |
8567 | limit = soft_limit; |
8568 | } |
8569 | |
8570 | kr = send_resource_violation_with_fatal_port(send_file_descriptors_violation, task, (int64_t)current_size, (int64_t)limit, task_fatal_port, flags); |
8571 | if (kr) { |
8572 | os_log(OS_LOG_DEFAULT, "send_resource_violation_with_fatal_port(filedesc, ...): error %#x\n" , kr); |
8573 | } |
8574 | if (task_fatal_port) { |
8575 | ipc_port_release_send(task_fatal_port); |
8576 | } |
8577 | } |
8578 | #endif /* CONFIG_PROC_RESOURCE_LIMITS */ |
8579 | |
8580 | /* Placeholders for the task set/get voucher interfaces */ |
8581 | kern_return_t |
8582 | task_get_mach_voucher( |
8583 | task_t task, |
8584 | mach_voucher_selector_t __unused which, |
8585 | ipc_voucher_t *voucher) |
8586 | { |
8587 | if (TASK_NULL == task) { |
8588 | return KERN_INVALID_TASK; |
8589 | } |
8590 | |
8591 | *voucher = NULL; |
8592 | return KERN_SUCCESS; |
8593 | } |
8594 | |
8595 | kern_return_t |
8596 | task_set_mach_voucher( |
8597 | task_t task, |
8598 | ipc_voucher_t __unused voucher) |
8599 | { |
8600 | if (TASK_NULL == task) { |
8601 | return KERN_INVALID_TASK; |
8602 | } |
8603 | |
8604 | return KERN_SUCCESS; |
8605 | } |
8606 | |
8607 | kern_return_t |
8608 | task_swap_mach_voucher( |
8609 | __unused task_t task, |
8610 | __unused ipc_voucher_t new_voucher, |
8611 | ipc_voucher_t *in_out_old_voucher) |
8612 | { |
8613 | /* |
8614 | * Currently this function is only called from a MIG generated |
8615 | * routine which doesn't release the reference on the voucher |
8616 | * addressed by in_out_old_voucher. To avoid leaking this reference, |
8617 | * a call to release it has been added here. |
8618 | */ |
8619 | ipc_voucher_release(voucher: *in_out_old_voucher); |
8620 | OS_ANALYZER_SUPPRESS("81787115" ) return KERN_NOT_SUPPORTED; |
8621 | } |
8622 | |
8623 | void |
8624 | task_set_gpu_denied(task_t task, boolean_t denied) |
8625 | { |
8626 | task_lock(task); |
8627 | |
8628 | if (denied) { |
8629 | task->t_flags |= TF_GPU_DENIED; |
8630 | } else { |
8631 | task->t_flags &= ~TF_GPU_DENIED; |
8632 | } |
8633 | |
8634 | task_unlock(task); |
8635 | } |
8636 | |
8637 | boolean_t |
8638 | task_is_gpu_denied(task_t task) |
8639 | { |
8640 | /* We don't need the lock to read this flag */ |
8641 | return (task->t_flags & TF_GPU_DENIED) ? TRUE : FALSE; |
8642 | } |
8643 | |
8644 | /* |
8645 | * Task policy termination uses this path to clear the bit the final time |
8646 | * during the termination flow, and the TASK_POLICY_TERMINATED bit guarantees |
8647 | * that it won't be changed again on a terminated task. |
8648 | */ |
8649 | bool |
8650 | task_set_game_mode_locked(task_t task, bool enabled) |
8651 | { |
8652 | task_lock_assert_owned(task); |
8653 | |
8654 | if (enabled) { |
8655 | assert(proc_get_effective_task_policy(task, TASK_POLICY_TERMINATED) == 0); |
8656 | } |
8657 | |
8658 | bool previously_enabled = task_get_game_mode(task); |
8659 | bool needs_update = false; |
8660 | uint32_t new_count = 0; |
8661 | |
8662 | if (enabled) { |
8663 | task->t_flags |= TF_GAME_MODE; |
8664 | } else { |
8665 | task->t_flags &= ~TF_GAME_MODE; |
8666 | } |
8667 | |
8668 | if (enabled && !previously_enabled) { |
8669 | if (task_coalition_adjust_game_mode_count(task, count: 1, new_count: &new_count) && (new_count == 1)) { |
8670 | needs_update = true; |
8671 | } |
8672 | } else if (!enabled && previously_enabled) { |
8673 | if (task_coalition_adjust_game_mode_count(task, count: -1, new_count: &new_count) && (new_count == 0)) { |
8674 | needs_update = true; |
8675 | } |
8676 | } |
8677 | |
8678 | return needs_update; |
8679 | } |
8680 | |
8681 | void |
8682 | task_set_game_mode(task_t task, bool enabled) |
8683 | { |
8684 | bool needs_update = false; |
8685 | |
8686 | task_lock(task); |
8687 | |
8688 | /* After termination, further updates are no longer effective */ |
8689 | if (proc_get_effective_task_policy(task, TASK_POLICY_TERMINATED) == 0) { |
8690 | needs_update = task_set_game_mode_locked(task, enabled); |
8691 | } |
8692 | |
8693 | task_unlock(task); |
8694 | |
8695 | #if CONFIG_THREAD_GROUPS |
8696 | if (needs_update) { |
8697 | task_coalition_thread_group_game_mode_update(task); |
8698 | } |
8699 | #endif /* CONFIG_THREAD_GROUPS */ |
8700 | } |
8701 | |
8702 | bool |
8703 | task_get_game_mode(task_t task) |
8704 | { |
8705 | /* We don't need the lock to read this flag */ |
8706 | return task->t_flags & TF_GAME_MODE; |
8707 | } |
8708 | |
8709 | |
8710 | uint64_t |
8711 | get_task_memory_region_count(task_t task) |
8712 | { |
8713 | vm_map_t map; |
8714 | map = (task == kernel_task) ? kernel_map: task->map; |
8715 | return (uint64_t)get_map_nentries(map); |
8716 | } |
8717 | |
8718 | static void |
8719 | kdebug_trace_dyld_internal(uint32_t base_code, |
8720 | struct dyld_kernel_image_info *info) |
8721 | { |
8722 | static_assert(sizeof(info->uuid) >= 16); |
8723 | |
8724 | #if defined(__LP64__) |
8725 | uint64_t *uuid = (uint64_t *)&(info->uuid); |
8726 | |
8727 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
8728 | KDBG_EVENTID(DBG_DYLD, DBG_DYLD_UUID, base_code), uuid[0], |
8729 | uuid[1], info->load_addr, |
8730 | (uint64_t)info->fsid.val[0] | ((uint64_t)info->fsid.val[1] << 32), |
8731 | 0); |
8732 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
8733 | KDBG_EVENTID(DBG_DYLD, DBG_DYLD_UUID, base_code + 1), |
8734 | (uint64_t)info->fsobjid.fid_objno | |
8735 | ((uint64_t)info->fsobjid.fid_generation << 32), |
8736 | 0, 0, 0, 0); |
8737 | #else /* defined(__LP64__) */ |
8738 | uint32_t *uuid = (uint32_t *)&(info->uuid); |
8739 | |
8740 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
8741 | KDBG_EVENTID(DBG_DYLD, DBG_DYLD_UUID, base_code + 2), uuid[0], |
8742 | uuid[1], uuid[2], uuid[3], 0); |
8743 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
8744 | KDBG_EVENTID(DBG_DYLD, DBG_DYLD_UUID, base_code + 3), |
8745 | (uint32_t)info->load_addr, info->fsid.val[0], info->fsid.val[1], |
8746 | info->fsobjid.fid_objno, 0); |
8747 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
8748 | KDBG_EVENTID(DBG_DYLD, DBG_DYLD_UUID, base_code + 4), |
8749 | info->fsobjid.fid_generation, 0, 0, 0, 0); |
8750 | #endif /* !defined(__LP64__) */ |
8751 | } |
8752 | |
8753 | static kern_return_t |
8754 | kdebug_trace_dyld(task_t task, uint32_t base_code, |
8755 | vm_map_copy_t infos_copy, mach_msg_type_number_t infos_len) |
8756 | { |
8757 | kern_return_t kr; |
8758 | dyld_kernel_image_info_array_t infos; |
8759 | vm_map_offset_t map_data; |
8760 | vm_offset_t data; |
8761 | |
8762 | if (!infos_copy) { |
8763 | return KERN_INVALID_ADDRESS; |
8764 | } |
8765 | |
8766 | if (!kdebug_enable || |
8767 | !kdebug_debugid_enabled(KDBG_EVENTID(DBG_DYLD, DBG_DYLD_UUID, 0))) { |
8768 | vm_map_copy_discard(copy: infos_copy); |
8769 | return KERN_SUCCESS; |
8770 | } |
8771 | |
8772 | if (task == NULL || task != current_task()) { |
8773 | return KERN_INVALID_TASK; |
8774 | } |
8775 | |
8776 | kr = vm_map_copyout(dst_map: ipc_kernel_map, dst_addr: &map_data, copy: (vm_map_copy_t)infos_copy); |
8777 | if (kr != KERN_SUCCESS) { |
8778 | return kr; |
8779 | } |
8780 | |
8781 | infos = CAST_DOWN(dyld_kernel_image_info_array_t, map_data); |
8782 | |
8783 | for (mach_msg_type_number_t i = 0; i < infos_len; i++) { |
8784 | kdebug_trace_dyld_internal(base_code, info: &(infos[i])); |
8785 | } |
8786 | |
8787 | data = CAST_DOWN(vm_offset_t, map_data); |
8788 | mach_vm_deallocate(target: ipc_kernel_map, address: data, size: infos_len * sizeof(infos[0])); |
8789 | return KERN_SUCCESS; |
8790 | } |
8791 | |
8792 | kern_return_t |
8793 | task_register_dyld_image_infos(task_t task, |
8794 | dyld_kernel_image_info_array_t infos_copy, |
8795 | mach_msg_type_number_t infos_len) |
8796 | { |
8797 | return kdebug_trace_dyld(task, DBG_DYLD_UUID_MAP_A, |
8798 | infos_copy: (vm_map_copy_t)infos_copy, infos_len); |
8799 | } |
8800 | |
8801 | kern_return_t |
8802 | task_unregister_dyld_image_infos(task_t task, |
8803 | dyld_kernel_image_info_array_t infos_copy, |
8804 | mach_msg_type_number_t infos_len) |
8805 | { |
8806 | return kdebug_trace_dyld(task, DBG_DYLD_UUID_UNMAP_A, |
8807 | infos_copy: (vm_map_copy_t)infos_copy, infos_len); |
8808 | } |
8809 | |
8810 | kern_return_t |
8811 | task_get_dyld_image_infos(__unused task_t task, |
8812 | __unused dyld_kernel_image_info_array_t * dyld_images, |
8813 | __unused mach_msg_type_number_t * dyld_imagesCnt) |
8814 | { |
8815 | return KERN_NOT_SUPPORTED; |
8816 | } |
8817 | |
8818 | kern_return_t |
8819 | task_register_dyld_shared_cache_image_info(task_t task, |
8820 | dyld_kernel_image_info_t cache_img, |
8821 | __unused boolean_t no_cache, |
8822 | __unused boolean_t private_cache) |
8823 | { |
8824 | if (task == NULL || task != current_task()) { |
8825 | return KERN_INVALID_TASK; |
8826 | } |
8827 | |
8828 | kdebug_trace_dyld_internal(DBG_DYLD_UUID_SHARED_CACHE_A, info: &cache_img); |
8829 | return KERN_SUCCESS; |
8830 | } |
8831 | |
8832 | kern_return_t |
8833 | task_register_dyld_set_dyld_state(__unused task_t task, |
8834 | __unused uint8_t dyld_state) |
8835 | { |
8836 | return KERN_NOT_SUPPORTED; |
8837 | } |
8838 | |
8839 | kern_return_t |
8840 | task_register_dyld_get_process_state(__unused task_t task, |
8841 | __unused dyld_kernel_process_info_t * dyld_process_state) |
8842 | { |
8843 | return KERN_NOT_SUPPORTED; |
8844 | } |
8845 | |
8846 | kern_return_t |
8847 | task_inspect(task_inspect_t task_insp, task_inspect_flavor_t flavor, |
8848 | task_inspect_info_t info_out, mach_msg_type_number_t *size_in_out) |
8849 | { |
8850 | #if CONFIG_PERVASIVE_CPI |
8851 | task_t task = (task_t)task_insp; |
8852 | kern_return_t kr = KERN_SUCCESS; |
8853 | mach_msg_type_number_t size; |
8854 | |
8855 | if (task == TASK_NULL) { |
8856 | return KERN_INVALID_ARGUMENT; |
8857 | } |
8858 | |
8859 | size = *size_in_out; |
8860 | |
8861 | switch (flavor) { |
8862 | case TASK_INSPECT_BASIC_COUNTS: { |
8863 | struct task_inspect_basic_counts *bc = |
8864 | (struct task_inspect_basic_counts *)info_out; |
8865 | struct recount_usage stats = { 0 }; |
8866 | if (size < TASK_INSPECT_BASIC_COUNTS_COUNT) { |
8867 | kr = KERN_INVALID_ARGUMENT; |
8868 | break; |
8869 | } |
8870 | |
8871 | recount_sum(&recount_task_plan, task->tk_recount.rtk_lifetime, &stats); |
8872 | bc->instructions = recount_usage_instructions(&stats); |
8873 | bc->cycles = recount_usage_cycles(&stats); |
8874 | size = TASK_INSPECT_BASIC_COUNTS_COUNT; |
8875 | break; |
8876 | } |
8877 | default: |
8878 | kr = KERN_INVALID_ARGUMENT; |
8879 | break; |
8880 | } |
8881 | |
8882 | if (kr == KERN_SUCCESS) { |
8883 | *size_in_out = size; |
8884 | } |
8885 | return kr; |
8886 | #else /* CONFIG_PERVASIVE_CPI */ |
8887 | #pragma unused(task_insp, flavor, info_out, size_in_out) |
8888 | return KERN_NOT_SUPPORTED; |
8889 | #endif /* !CONFIG_PERVASIVE_CPI */ |
8890 | } |
8891 | |
8892 | #if CONFIG_SECLUDED_MEMORY |
8893 | int num_tasks_can_use_secluded_mem = 0; |
8894 | |
8895 | void |
8896 | task_set_can_use_secluded_mem( |
8897 | task_t task, |
8898 | boolean_t can_use_secluded_mem) |
8899 | { |
8900 | if (!task->task_could_use_secluded_mem) { |
8901 | return; |
8902 | } |
8903 | task_lock(task); |
8904 | task_set_can_use_secluded_mem_locked(task, can_use_secluded_mem); |
8905 | task_unlock(task); |
8906 | } |
8907 | |
8908 | void |
8909 | task_set_can_use_secluded_mem_locked( |
8910 | task_t task, |
8911 | boolean_t can_use_secluded_mem) |
8912 | { |
8913 | assert(task->task_could_use_secluded_mem); |
8914 | if (can_use_secluded_mem && |
8915 | secluded_for_apps && /* global boot-arg */ |
8916 | !task->task_can_use_secluded_mem) { |
8917 | assert(num_tasks_can_use_secluded_mem >= 0); |
8918 | OSAddAtomic(+1, |
8919 | (volatile SInt32 *)&num_tasks_can_use_secluded_mem); |
8920 | task->task_can_use_secluded_mem = TRUE; |
8921 | } else if (!can_use_secluded_mem && |
8922 | task->task_can_use_secluded_mem) { |
8923 | assert(num_tasks_can_use_secluded_mem > 0); |
8924 | OSAddAtomic(-1, |
8925 | (volatile SInt32 *)&num_tasks_can_use_secluded_mem); |
8926 | task->task_can_use_secluded_mem = FALSE; |
8927 | } |
8928 | } |
8929 | |
8930 | void |
8931 | task_set_could_use_secluded_mem( |
8932 | task_t task, |
8933 | boolean_t could_use_secluded_mem) |
8934 | { |
8935 | task->task_could_use_secluded_mem = !!could_use_secluded_mem; |
8936 | } |
8937 | |
8938 | void |
8939 | task_set_could_also_use_secluded_mem( |
8940 | task_t task, |
8941 | boolean_t could_also_use_secluded_mem) |
8942 | { |
8943 | task->task_could_also_use_secluded_mem = !!could_also_use_secluded_mem; |
8944 | } |
8945 | |
8946 | boolean_t |
8947 | task_can_use_secluded_mem( |
8948 | task_t task, |
8949 | boolean_t is_alloc) |
8950 | { |
8951 | if (task->task_can_use_secluded_mem) { |
8952 | assert(task->task_could_use_secluded_mem); |
8953 | assert(num_tasks_can_use_secluded_mem > 0); |
8954 | return TRUE; |
8955 | } |
8956 | if (task->task_could_also_use_secluded_mem && |
8957 | num_tasks_can_use_secluded_mem > 0) { |
8958 | assert(num_tasks_can_use_secluded_mem > 0); |
8959 | return TRUE; |
8960 | } |
8961 | |
8962 | /* |
8963 | * If a single task is using more than some large amount of |
8964 | * memory (i.e. secluded_shutoff_trigger) and is approaching |
8965 | * its task limit, allow it to dip into secluded and begin |
8966 | * suppression of rebuilding secluded memory until that task exits. |
8967 | */ |
8968 | if (is_alloc && secluded_shutoff_trigger != 0) { |
8969 | uint64_t phys_used = get_task_phys_footprint(task); |
8970 | uint64_t limit = get_task_phys_footprint_limit(task); |
8971 | if (phys_used > secluded_shutoff_trigger && |
8972 | limit > secluded_shutoff_trigger && |
8973 | phys_used > limit - secluded_shutoff_headroom) { |
8974 | start_secluded_suppression(task); |
8975 | return TRUE; |
8976 | } |
8977 | } |
8978 | |
8979 | return FALSE; |
8980 | } |
8981 | |
8982 | boolean_t |
8983 | task_could_use_secluded_mem( |
8984 | task_t task) |
8985 | { |
8986 | return task->task_could_use_secluded_mem; |
8987 | } |
8988 | |
8989 | boolean_t |
8990 | task_could_also_use_secluded_mem( |
8991 | task_t task) |
8992 | { |
8993 | return task->task_could_also_use_secluded_mem; |
8994 | } |
8995 | #endif /* CONFIG_SECLUDED_MEMORY */ |
8996 | |
8997 | queue_head_t * |
8998 | task_io_user_clients(task_t task) |
8999 | { |
9000 | return &task->io_user_clients; |
9001 | } |
9002 | |
9003 | void |
9004 | task_set_message_app_suspended(task_t task, boolean_t enable) |
9005 | { |
9006 | task->message_app_suspended = enable; |
9007 | } |
9008 | |
9009 | void |
9010 | task_copy_fields_for_exec(task_t dst_task, task_t src_task) |
9011 | { |
9012 | dst_task->vtimers = src_task->vtimers; |
9013 | } |
9014 | |
9015 | #if DEVELOPMENT || DEBUG |
9016 | int vm_region_footprint = 0; |
9017 | #endif /* DEVELOPMENT || DEBUG */ |
9018 | |
9019 | boolean_t |
9020 | (void) |
9021 | { |
9022 | #if DEVELOPMENT || DEBUG |
9023 | if (vm_region_footprint) { |
9024 | /* system-wide override */ |
9025 | return TRUE; |
9026 | } |
9027 | #endif /* DEVELOPMENT || DEBUG */ |
9028 | return current_task()->task_region_footprint; |
9029 | } |
9030 | |
9031 | void |
9032 | ( |
9033 | boolean_t newval) |
9034 | { |
9035 | task_t curtask; |
9036 | |
9037 | curtask = current_task(); |
9038 | task_lock(task: curtask); |
9039 | if (newval) { |
9040 | curtask->task_region_footprint = TRUE; |
9041 | } else { |
9042 | curtask->task_region_footprint = FALSE; |
9043 | } |
9044 | task_unlock(task: curtask); |
9045 | } |
9046 | |
9047 | void |
9048 | task_set_darkwake_mode(task_t task, boolean_t set_mode) |
9049 | { |
9050 | assert(task); |
9051 | |
9052 | task_lock(task); |
9053 | |
9054 | if (set_mode) { |
9055 | task->t_flags |= TF_DARKWAKE_MODE; |
9056 | } else { |
9057 | task->t_flags &= ~(TF_DARKWAKE_MODE); |
9058 | } |
9059 | |
9060 | task_unlock(task); |
9061 | } |
9062 | |
9063 | boolean_t |
9064 | task_get_darkwake_mode(task_t task) |
9065 | { |
9066 | assert(task); |
9067 | return (task->t_flags & TF_DARKWAKE_MODE) != 0; |
9068 | } |
9069 | |
9070 | /* |
9071 | * Set default behavior for task's control port and EXC_GUARD variants that have |
9072 | * settable behavior. |
9073 | * |
9074 | * Platform binaries typically have one behavior, third parties another - |
9075 | * but there are special exception we may need to account for. |
9076 | */ |
9077 | void |
9078 | task_set_exc_guard_ctrl_port_default( |
9079 | task_t task, |
9080 | thread_t main_thread, |
9081 | const char *name, |
9082 | unsigned int namelen, |
9083 | boolean_t is_simulated, |
9084 | uint32_t platform, |
9085 | uint32_t sdk) |
9086 | { |
9087 | task_control_port_options_t opts = TASK_CONTROL_PORT_OPTIONS_NONE; |
9088 | |
9089 | if (task_is_hardened_binary(task)) { |
9090 | /* set exc guard default behavior for hardened binaries */ |
9091 | task->task_exc_guard = (task_exc_guard_default & TASK_EXC_GUARD_ALL); |
9092 | |
9093 | if (1 == task_pid(task)) { |
9094 | /* special flags for inittask - delivery every instance as corpse */ |
9095 | task->task_exc_guard = _TASK_EXC_GUARD_ALL_CORPSE; |
9096 | } else if (task_exc_guard_default & TASK_EXC_GUARD_HONOR_NAMED_DEFAULTS) { |
9097 | /* honor by-name default setting overrides */ |
9098 | |
9099 | int count = sizeof(task_exc_guard_named_defaults) / sizeof(struct task_exc_guard_named_default); |
9100 | |
9101 | for (int i = 0; i < count; i++) { |
9102 | const struct task_exc_guard_named_default *named_default = |
9103 | &task_exc_guard_named_defaults[i]; |
9104 | if (strncmp(s1: named_default->name, s2: name, n: namelen) == 0 && |
9105 | strlen(s: named_default->name) == namelen) { |
9106 | task->task_exc_guard = named_default->behavior; |
9107 | break; |
9108 | } |
9109 | } |
9110 | } |
9111 | |
9112 | /* set control port options for 1p code, inherited from parent task by default */ |
9113 | opts = ipc_control_port_options & ICP_OPTIONS_1P_MASK; |
9114 | } else { |
9115 | /* set exc guard default behavior for third-party code */ |
9116 | task->task_exc_guard = ((task_exc_guard_default >> TASK_EXC_GUARD_THIRD_PARTY_DEFAULT_SHIFT) & TASK_EXC_GUARD_ALL); |
9117 | /* set control port options for 3p code, inherited from parent task by default */ |
9118 | opts = (ipc_control_port_options & ICP_OPTIONS_3P_MASK) >> ICP_OPTIONS_3P_SHIFT; |
9119 | } |
9120 | |
9121 | if (is_simulated) { |
9122 | /* If simulated and built against pre-iOS 15 SDK, disable all EXC_GUARD */ |
9123 | if ((platform == PLATFORM_IOSSIMULATOR && sdk < 0xf0000) || |
9124 | (platform == PLATFORM_TVOSSIMULATOR && sdk < 0xf0000) || |
9125 | (platform == PLATFORM_WATCHOSSIMULATOR && sdk < 0x80000)) { |
9126 | task->task_exc_guard = TASK_EXC_GUARD_NONE; |
9127 | } |
9128 | /* Disable protection for control ports for simulated binaries */ |
9129 | opts = TASK_CONTROL_PORT_OPTIONS_NONE; |
9130 | } |
9131 | |
9132 | |
9133 | task_set_control_port_options(task, opts); |
9134 | |
9135 | task_set_immovable_pinned(task); |
9136 | main_thread_set_immovable_pinned(thread: main_thread); |
9137 | } |
9138 | |
9139 | kern_return_t |
9140 | task_get_exc_guard_behavior( |
9141 | task_t task, |
9142 | task_exc_guard_behavior_t *behaviorp) |
9143 | { |
9144 | if (task == TASK_NULL) { |
9145 | return KERN_INVALID_TASK; |
9146 | } |
9147 | *behaviorp = task->task_exc_guard; |
9148 | return KERN_SUCCESS; |
9149 | } |
9150 | |
9151 | kern_return_t |
9152 | task_set_exc_guard_behavior( |
9153 | task_t task, |
9154 | task_exc_guard_behavior_t new_behavior) |
9155 | { |
9156 | if (task == TASK_NULL) { |
9157 | return KERN_INVALID_TASK; |
9158 | } |
9159 | if (new_behavior & ~TASK_EXC_GUARD_ALL) { |
9160 | return KERN_INVALID_VALUE; |
9161 | } |
9162 | |
9163 | /* limit setting to that allowed for this config */ |
9164 | new_behavior = new_behavior & task_exc_guard_config_mask; |
9165 | |
9166 | #if !defined (DEBUG) && !defined (DEVELOPMENT) |
9167 | /* On release kernels, only allow _upgrading_ exc guard behavior */ |
9168 | task_exc_guard_behavior_t cur_behavior; |
9169 | |
9170 | os_atomic_rmw_loop(&task->task_exc_guard, cur_behavior, new_behavior, relaxed, { |
9171 | if ((cur_behavior & task_exc_guard_no_unset_mask) & ~(new_behavior & task_exc_guard_no_unset_mask)) { |
9172 | os_atomic_rmw_loop_give_up(return KERN_DENIED); |
9173 | } |
9174 | |
9175 | if ((new_behavior & task_exc_guard_no_set_mask) & ~(cur_behavior & task_exc_guard_no_set_mask)) { |
9176 | os_atomic_rmw_loop_give_up(return KERN_DENIED); |
9177 | } |
9178 | |
9179 | /* no restrictions on CORPSE bit */ |
9180 | }); |
9181 | #else |
9182 | task->task_exc_guard = new_behavior; |
9183 | #endif |
9184 | return KERN_SUCCESS; |
9185 | } |
9186 | |
9187 | kern_return_t |
9188 | task_set_corpse_forking_behavior(task_t task, task_corpse_forking_behavior_t behavior) |
9189 | { |
9190 | #if DEVELOPMENT || DEBUG |
9191 | if (task == TASK_NULL) { |
9192 | return KERN_INVALID_TASK; |
9193 | } |
9194 | |
9195 | task_lock(task); |
9196 | if (behavior & TASK_CORPSE_FORKING_DISABLED_MEM_DIAG) { |
9197 | task->t_flags |= TF_NO_CORPSE_FORKING; |
9198 | } else { |
9199 | task->t_flags &= ~TF_NO_CORPSE_FORKING; |
9200 | } |
9201 | task_unlock(task); |
9202 | |
9203 | return KERN_SUCCESS; |
9204 | #else |
9205 | (void)task; |
9206 | (void)behavior; |
9207 | return KERN_NOT_SUPPORTED; |
9208 | #endif |
9209 | } |
9210 | |
9211 | boolean_t |
9212 | task_corpse_forking_disabled(task_t task) |
9213 | { |
9214 | boolean_t disabled = FALSE; |
9215 | |
9216 | task_lock(task); |
9217 | disabled = (task->t_flags & TF_NO_CORPSE_FORKING); |
9218 | task_unlock(task); |
9219 | |
9220 | return disabled; |
9221 | } |
9222 | |
9223 | #if __arm64__ |
9224 | extern int ; |
9225 | extern void (struct proc *, boolean_t); |
9226 | extern void (struct proc *); |
9227 | |
9228 | |
9229 | void |
9230 | ( |
9231 | task_t task) |
9232 | { |
9233 | task_lock(task); |
9234 | task->task_legacy_footprint = TRUE; |
9235 | task_unlock(task); |
9236 | } |
9237 | |
9238 | void |
9239 | ( |
9240 | task_t task) |
9241 | { |
9242 | if (task->task_extra_footprint_limit) { |
9243 | return; |
9244 | } |
9245 | task_lock(task); |
9246 | if (task->task_extra_footprint_limit) { |
9247 | task_unlock(task); |
9248 | return; |
9249 | } |
9250 | task->task_extra_footprint_limit = TRUE; |
9251 | task_unlock(task); |
9252 | memorystatus_act_on_legacy_footprint_entitlement(get_bsdtask_info(task), TRUE); |
9253 | } |
9254 | |
9255 | void |
9256 | ( |
9257 | task_t task) |
9258 | { |
9259 | if (task->task_ios13extended_footprint_limit) { |
9260 | return; |
9261 | } |
9262 | task_lock(task); |
9263 | if (task->task_ios13extended_footprint_limit) { |
9264 | task_unlock(task); |
9265 | return; |
9266 | } |
9267 | task->task_ios13extended_footprint_limit = TRUE; |
9268 | task_unlock(task); |
9269 | memorystatus_act_on_ios13extended_footprint_entitlement(get_bsdtask_info(task)); |
9270 | } |
9271 | #endif /* __arm64__ */ |
9272 | |
9273 | static inline ledger_amount_t |
9274 | task_ledger_get_balance( |
9275 | ledger_t ledger, |
9276 | int ledger_idx) |
9277 | { |
9278 | ledger_amount_t amount; |
9279 | amount = 0; |
9280 | ledger_get_balance(ledger, entry: ledger_idx, balance: &amount); |
9281 | return amount; |
9282 | } |
9283 | |
9284 | /* |
9285 | * Gather the amount of memory counted in a task's footprint due to |
9286 | * being in a specific set of ledgers. |
9287 | */ |
9288 | void |
9289 | ( |
9290 | ledger_t ledger, |
9291 | ledger_amount_t *ledger_resident, |
9292 | ledger_amount_t *ledger_compressed) |
9293 | { |
9294 | *ledger_resident = 0; |
9295 | *ledger_compressed = 0; |
9296 | |
9297 | /* purgeable non-volatile memory */ |
9298 | *ledger_resident += task_ledger_get_balance(ledger, ledger_idx: task_ledgers.purgeable_nonvolatile); |
9299 | *ledger_compressed += task_ledger_get_balance(ledger, ledger_idx: task_ledgers.purgeable_nonvolatile_compressed); |
9300 | |
9301 | /* "default" tagged memory */ |
9302 | *ledger_resident += task_ledger_get_balance(ledger, ledger_idx: task_ledgers.tagged_footprint); |
9303 | *ledger_compressed += task_ledger_get_balance(ledger, ledger_idx: task_ledgers.tagged_footprint_compressed); |
9304 | |
9305 | /* "network" currently never counts in the footprint... */ |
9306 | |
9307 | /* "media" tagged memory */ |
9308 | *ledger_resident += task_ledger_get_balance(ledger, ledger_idx: task_ledgers.media_footprint); |
9309 | *ledger_compressed += task_ledger_get_balance(ledger, ledger_idx: task_ledgers.media_footprint_compressed); |
9310 | |
9311 | /* "graphics" tagged memory */ |
9312 | *ledger_resident += task_ledger_get_balance(ledger, ledger_idx: task_ledgers.graphics_footprint); |
9313 | *ledger_compressed += task_ledger_get_balance(ledger, ledger_idx: task_ledgers.graphics_footprint_compressed); |
9314 | |
9315 | /* "neural" tagged memory */ |
9316 | *ledger_resident += task_ledger_get_balance(ledger, ledger_idx: task_ledgers.neural_footprint); |
9317 | *ledger_compressed += task_ledger_get_balance(ledger, ledger_idx: task_ledgers.neural_footprint_compressed); |
9318 | } |
9319 | |
9320 | #if CONFIG_MEMORYSTATUS |
9321 | /* |
9322 | * Credit any outstanding task dirty time to the ledger. |
9323 | * memstat_dirty_start is pushed forward to prevent any possibility of double |
9324 | * counting, making it safe to call this as often as necessary to ensure that |
9325 | * anyone reading the ledger gets up-to-date information. |
9326 | */ |
9327 | void |
9328 | task_ledger_settle_dirty_time(task_t t) |
9329 | { |
9330 | task_lock(task: t); |
9331 | |
9332 | uint64_t start = t->memstat_dirty_start; |
9333 | if (start) { |
9334 | uint64_t now = mach_absolute_time(); |
9335 | |
9336 | uint64_t duration; |
9337 | absolutetime_to_nanoseconds(abstime: now - start, result: &duration); |
9338 | |
9339 | ledger_t ledger = get_task_ledger(t); |
9340 | ledger_credit(ledger, entry: task_ledgers.memorystatus_dirty_time, amount: duration); |
9341 | |
9342 | t->memstat_dirty_start = now; |
9343 | } |
9344 | |
9345 | task_unlock(task: t); |
9346 | } |
9347 | #endif /* CONFIG_MEMORYSTATUS */ |
9348 | |
9349 | void |
9350 | task_set_memory_ownership_transfer( |
9351 | task_t task, |
9352 | boolean_t value) |
9353 | { |
9354 | task_lock(task); |
9355 | task->task_can_transfer_memory_ownership = !!value; |
9356 | task_unlock(task); |
9357 | } |
9358 | |
9359 | #if DEVELOPMENT || DEBUG |
9360 | |
9361 | void |
9362 | task_set_no_footprint_for_debug(task_t task, boolean_t value) |
9363 | { |
9364 | task_lock(task); |
9365 | task->task_no_footprint_for_debug = !!value; |
9366 | task_unlock(task); |
9367 | } |
9368 | |
9369 | int |
9370 | task_get_no_footprint_for_debug(task_t task) |
9371 | { |
9372 | return task->task_no_footprint_for_debug; |
9373 | } |
9374 | |
9375 | #endif /* DEVELOPMENT || DEBUG */ |
9376 | |
9377 | void |
9378 | task_copy_vmobjects(task_t task, vm_object_query_t query, size_t len, size_t *num) |
9379 | { |
9380 | vm_object_t find_vmo; |
9381 | size_t size = 0; |
9382 | |
9383 | /* |
9384 | * Allocate a save area for FP state before taking task_objq lock, |
9385 | * if necessary, to ensure that VM_KERNEL_ADDRHASH() doesn't cause |
9386 | * an FP state allocation while holding VM locks. |
9387 | */ |
9388 | ml_fp_save_area_prealloc(); |
9389 | |
9390 | task_objq_lock(task); |
9391 | if (query != NULL) { |
9392 | queue_iterate(&task->task_objq, find_vmo, vm_object_t, task_objq) |
9393 | { |
9394 | vm_object_query_t p = &query[size++]; |
9395 | |
9396 | /* make sure to not overrun */ |
9397 | if (size * sizeof(vm_object_query_data_t) > len) { |
9398 | --size; |
9399 | break; |
9400 | } |
9401 | |
9402 | bzero(s: p, n: sizeof(*p)); |
9403 | p->object_id = (vm_object_id_t) VM_KERNEL_ADDRHASH(find_vmo); |
9404 | p->virtual_size = find_vmo->internal ? find_vmo->vo_size : 0; |
9405 | p->resident_size = find_vmo->resident_page_count * PAGE_SIZE; |
9406 | p->wired_size = find_vmo->wired_page_count * PAGE_SIZE; |
9407 | p->reusable_size = find_vmo->reusable_page_count * PAGE_SIZE; |
9408 | p->vo_no_footprint = find_vmo->vo_no_footprint; |
9409 | p->vo_ledger_tag = find_vmo->vo_ledger_tag; |
9410 | p->purgable = find_vmo->purgable; |
9411 | |
9412 | if (find_vmo->internal && find_vmo->pager_created && find_vmo->pager != NULL) { |
9413 | p->compressed_size = vm_compressor_pager_get_count(mem_obj: find_vmo->pager) * PAGE_SIZE; |
9414 | } else { |
9415 | p->compressed_size = 0; |
9416 | } |
9417 | } |
9418 | } else { |
9419 | size = (size_t)task->task_owned_objects; |
9420 | } |
9421 | task_objq_unlock(task); |
9422 | |
9423 | *num = size; |
9424 | } |
9425 | |
9426 | void |
9427 | task_get_owned_vmobjects(task_t task, size_t buffer_size, vmobject_list_output_t buffer, size_t* output_size, size_t* entries) |
9428 | { |
9429 | assert(output_size); |
9430 | assert(entries); |
9431 | |
9432 | /* copy the vmobjects and vmobject data out of the task */ |
9433 | if (buffer_size == 0) { |
9434 | task_copy_vmobjects(task, NULL, len: 0, num: entries); |
9435 | *output_size = (*entries > 0) ? *entries * sizeof(vm_object_query_data_t) + sizeof(*buffer) : 0; |
9436 | } else { |
9437 | assert(buffer); |
9438 | task_copy_vmobjects(task, query: &buffer->data[0], len: buffer_size - sizeof(*buffer), num: entries); |
9439 | buffer->entries = (uint64_t)*entries; |
9440 | *output_size = *entries * sizeof(vm_object_query_data_t) + sizeof(*buffer); |
9441 | } |
9442 | } |
9443 | |
9444 | void |
9445 | task_store_owned_vmobject_info(task_t to_task, task_t from_task) |
9446 | { |
9447 | size_t buffer_size; |
9448 | vmobject_list_output_t buffer; |
9449 | size_t output_size; |
9450 | size_t entries; |
9451 | |
9452 | assert(to_task != from_task); |
9453 | |
9454 | /* get the size, allocate a bufferr, and populate */ |
9455 | entries = 0; |
9456 | output_size = 0; |
9457 | task_get_owned_vmobjects(task: from_task, buffer_size: 0, NULL, output_size: &output_size, entries: &entries); |
9458 | |
9459 | if (output_size) { |
9460 | buffer_size = output_size; |
9461 | buffer = kalloc_data(buffer_size, Z_WAITOK); |
9462 | |
9463 | if (buffer) { |
9464 | entries = 0; |
9465 | output_size = 0; |
9466 | |
9467 | task_get_owned_vmobjects(task: from_task, buffer_size, buffer, output_size: &output_size, entries: &entries); |
9468 | |
9469 | if (entries) { |
9470 | to_task->corpse_vmobject_list = buffer; |
9471 | to_task->corpse_vmobject_list_size = buffer_size; |
9472 | } |
9473 | } |
9474 | } |
9475 | } |
9476 | |
9477 | void |
9478 | task_set_filter_msg_flag( |
9479 | task_t task, |
9480 | boolean_t flag) |
9481 | { |
9482 | assert(task != TASK_NULL); |
9483 | |
9484 | if (flag) { |
9485 | task_ro_flags_set(task, TFRO_FILTER_MSG); |
9486 | } else { |
9487 | task_ro_flags_clear(task, TFRO_FILTER_MSG); |
9488 | } |
9489 | } |
9490 | |
9491 | boolean_t |
9492 | task_get_filter_msg_flag( |
9493 | task_t task) |
9494 | { |
9495 | if (!task) { |
9496 | return false; |
9497 | } |
9498 | |
9499 | return (task_ro_flags_get(task) & TFRO_FILTER_MSG) ? TRUE : FALSE; |
9500 | } |
9501 | bool |
9502 | task_is_exotic( |
9503 | task_t task) |
9504 | { |
9505 | if (task == TASK_NULL) { |
9506 | return false; |
9507 | } |
9508 | return vm_map_is_exotic(map: get_task_map(task)); |
9509 | } |
9510 | |
9511 | bool |
9512 | task_is_alien( |
9513 | task_t task) |
9514 | { |
9515 | if (task == TASK_NULL) { |
9516 | return false; |
9517 | } |
9518 | return vm_map_is_alien(map: get_task_map(task)); |
9519 | } |
9520 | |
9521 | |
9522 | |
9523 | #if CONFIG_MACF |
9524 | /* Set the filter mask for Mach traps. */ |
9525 | void |
9526 | mac_task_set_mach_filter_mask(task_t task, uint8_t *maskptr) |
9527 | { |
9528 | assert(task); |
9529 | |
9530 | task_set_mach_trap_filter_mask(task, mask: maskptr); |
9531 | } |
9532 | |
9533 | /* Set the filter mask for kobject msgs. */ |
9534 | void |
9535 | mac_task_set_kobj_filter_mask(task_t task, uint8_t *maskptr) |
9536 | { |
9537 | assert(task); |
9538 | |
9539 | task_set_mach_kobj_filter_mask(task, mask: maskptr); |
9540 | } |
9541 | |
9542 | /* Hook for mach trap/sc filter evaluation policy. */ |
9543 | SECURITY_READ_ONLY_LATE(mac_task_mach_filter_cbfunc_t) mac_task_mach_trap_evaluate = NULL; |
9544 | |
9545 | /* Hook for kobj message filter evaluation policy. */ |
9546 | SECURITY_READ_ONLY_LATE(mac_task_kobj_filter_cbfunc_t) mac_task_kobj_msg_evaluate = NULL; |
9547 | |
9548 | /* Set the callback hooks for the filtering policy. */ |
9549 | int |
9550 | mac_task_register_filter_callbacks( |
9551 | const mac_task_mach_filter_cbfunc_t mach_cbfunc, |
9552 | const mac_task_kobj_filter_cbfunc_t kobj_cbfunc) |
9553 | { |
9554 | if (mach_cbfunc != NULL) { |
9555 | if (mac_task_mach_trap_evaluate != NULL) { |
9556 | return KERN_FAILURE; |
9557 | } |
9558 | mac_task_mach_trap_evaluate = mach_cbfunc; |
9559 | } |
9560 | if (kobj_cbfunc != NULL) { |
9561 | if (mac_task_kobj_msg_evaluate != NULL) { |
9562 | return KERN_FAILURE; |
9563 | } |
9564 | mac_task_kobj_msg_evaluate = kobj_cbfunc; |
9565 | } |
9566 | |
9567 | return KERN_SUCCESS; |
9568 | } |
9569 | #endif /* CONFIG_MACF */ |
9570 | |
9571 | #if CONFIG_ROSETTA |
9572 | bool |
9573 | task_is_translated(task_t task) |
9574 | { |
9575 | extern boolean_t proc_is_translated(struct proc* p); |
9576 | return task && proc_is_translated(get_bsdtask_info(task)); |
9577 | } |
9578 | #endif |
9579 | |
9580 | |
9581 | |
9582 | #if __has_feature(ptrauth_calls) |
9583 | /* On FPAC, we want to deliver all PAC violations as fatal exceptions, regardless |
9584 | * of the enable_pac_exception boot-arg value or any other entitlements. |
9585 | * The only case where we allow non-fatal PAC exceptions on FPAC is for debugging, |
9586 | * which requires Developer Mode enabled. |
9587 | * |
9588 | * On non-FPAC hardware, we gate the decision behind entitlements and the |
9589 | * enable_pac_exception boot-arg. |
9590 | */ |
9591 | extern int gARM_FEAT_FPAC; |
9592 | /* |
9593 | * Having the PAC_EXCEPTION_ENTITLEMENT entitlement means we always enforce all |
9594 | * of the PAC exception hardening: fatal exceptions and signed user state. |
9595 | */ |
9596 | #define PAC_EXCEPTION_ENTITLEMENT "com.apple.private.pac.exception" |
9597 | /* |
9598 | * On non-FPAC hardware, when enable_pac_exception boot-arg is set to true, |
9599 | * processes can choose to get non-fatal PAC exception delivery by setting |
9600 | * the SKIP_PAC_EXCEPTION_ENTITLEMENT entitlement. |
9601 | */ |
9602 | #define SKIP_PAC_EXCEPTION_ENTITLEMENT "com.apple.private.skip.pac.exception" |
9603 | |
9604 | void |
9605 | task_set_pac_exception_fatal_flag( |
9606 | task_t task) |
9607 | { |
9608 | assert(task != TASK_NULL); |
9609 | bool pac_hardened_task = false; |
9610 | uint32_t set_flags = 0; |
9611 | |
9612 | /* |
9613 | * We must not apply this security policy on tasks which have opted out of mach hardening to |
9614 | * avoid regressions in third party plugins and third party apps when using AMFI boot-args |
9615 | */ |
9616 | bool platform_binary = task_get_platform_binary(task); |
9617 | #if XNU_TARGET_OS_OSX |
9618 | platform_binary &= !task_opted_out_mach_hardening(task); |
9619 | #endif /* XNU_TARGET_OS_OSX */ |
9620 | |
9621 | /* |
9622 | * On non-FPAC hardware, we allow gating PAC exceptions behind |
9623 | * SKIP_PAC_EXCEPTION_ENTITLEMENT and the boot-arg. |
9624 | */ |
9625 | if (!gARM_FEAT_FPAC && enable_pac_exception && |
9626 | IOTaskHasEntitlement(task, SKIP_PAC_EXCEPTION_ENTITLEMENT)) { |
9627 | return; |
9628 | } |
9629 | |
9630 | if (IOTaskHasEntitlement(task, PAC_EXCEPTION_ENTITLEMENT) || task_get_hardened_runtime(task)) { |
9631 | pac_hardened_task = true; |
9632 | set_flags |= TFRO_PAC_ENFORCE_USER_STATE; |
9633 | } |
9634 | |
9635 | /* On non-FPAC hardware, gate the fatal property behind entitlements and boot-arg. */ |
9636 | if (pac_hardened_task || |
9637 | ((enable_pac_exception || gARM_FEAT_FPAC) && platform_binary)) { |
9638 | /* If debugging is configured, do not make PAC exception fatal. */ |
9639 | if (address_space_debugged(task_get_proc_raw(task)) != KERN_SUCCESS) { |
9640 | set_flags |= TFRO_PAC_EXC_FATAL; |
9641 | } |
9642 | } |
9643 | |
9644 | if (set_flags != 0) { |
9645 | task_ro_flags_set(task, set_flags); |
9646 | } |
9647 | } |
9648 | |
9649 | bool |
9650 | task_is_pac_exception_fatal( |
9651 | task_t task) |
9652 | { |
9653 | assert(task != TASK_NULL); |
9654 | return !!(task_ro_flags_get(task) & TFRO_PAC_EXC_FATAL); |
9655 | } |
9656 | #endif /* __has_feature(ptrauth_calls) */ |
9657 | |
9658 | /* |
9659 | * FATAL_EXCEPTION_ENTITLEMENT, if present, will contain a list of |
9660 | * conditions for which access violations should deliver SIGKILL rather than |
9661 | * SIGSEGV. This is a hardening measure intended for use by applications |
9662 | * that are able to handle the stricter error handling behavior. Currently |
9663 | * this supports FATAL_EXCEPTION_ENTITLEMENT_JIT, which is documented in |
9664 | * user_fault_in_self_restrict_mode(). |
9665 | */ |
9666 | #define FATAL_EXCEPTION_ENTITLEMENT "com.apple.security.fatal-exceptions" |
9667 | #define FATAL_EXCEPTION_ENTITLEMENT_JIT "jit" |
9668 | |
9669 | void |
9670 | task_set_jit_exception_fatal_flag( |
9671 | task_t task) |
9672 | { |
9673 | assert(task != TASK_NULL); |
9674 | if (IOTaskHasStringEntitlement(task, FATAL_EXCEPTION_ENTITLEMENT, FATAL_EXCEPTION_ENTITLEMENT_JIT) && |
9675 | address_space_debugged(process: task_get_proc_raw(task)) != KERN_SUCCESS) { |
9676 | task_ro_flags_set(task, TFRO_JIT_EXC_FATAL); |
9677 | } |
9678 | } |
9679 | |
9680 | bool |
9681 | task_is_jit_exception_fatal( |
9682 | __unused task_t task) |
9683 | { |
9684 | #if !defined(XNU_PLATFORM_MacOSX) |
9685 | return true; |
9686 | #else |
9687 | assert(task != TASK_NULL); |
9688 | return !!(task_ro_flags_get(task) & TFRO_JIT_EXC_FATAL); |
9689 | #endif |
9690 | } |
9691 | |
9692 | bool |
9693 | task_needs_user_signed_thread_state( |
9694 | task_t task) |
9695 | { |
9696 | assert(task != TASK_NULL); |
9697 | return !!(task_ro_flags_get(task) & TFRO_PAC_ENFORCE_USER_STATE); |
9698 | } |
9699 | |
9700 | void |
9701 | task_set_tecs(task_t task) |
9702 | { |
9703 | if (task == TASK_NULL) { |
9704 | task = current_task(); |
9705 | } |
9706 | |
9707 | if (!machine_csv(cve: CPUVN_CI)) { |
9708 | return; |
9709 | } |
9710 | |
9711 | LCK_MTX_ASSERT(&task->lock, LCK_MTX_ASSERT_NOTOWNED); |
9712 | |
9713 | task_lock(task); |
9714 | |
9715 | task->t_flags |= TF_TECS; |
9716 | |
9717 | thread_t thread; |
9718 | queue_iterate(&task->threads, thread, thread_t, task_threads) { |
9719 | machine_tecs(thr: thread); |
9720 | } |
9721 | task_unlock(task); |
9722 | } |
9723 | |
9724 | kern_return_t |
9725 | task_test_sync_upcall( |
9726 | task_t task, |
9727 | ipc_port_t send_port) |
9728 | { |
9729 | #if DEVELOPMENT || DEBUG |
9730 | if (task != current_task() || !IPC_PORT_VALID(send_port)) { |
9731 | return KERN_INVALID_ARGUMENT; |
9732 | } |
9733 | |
9734 | /* Block on sync kernel upcall on the given send port */ |
9735 | mach_test_sync_upcall(send_port); |
9736 | |
9737 | ipc_port_release_send(send_port); |
9738 | return KERN_SUCCESS; |
9739 | #else |
9740 | (void)task; |
9741 | (void)send_port; |
9742 | return KERN_NOT_SUPPORTED; |
9743 | #endif |
9744 | } |
9745 | |
9746 | kern_return_t |
9747 | task_test_async_upcall_propagation( |
9748 | task_t task, |
9749 | ipc_port_t send_port, |
9750 | int qos, |
9751 | int iotier) |
9752 | { |
9753 | #if DEVELOPMENT || DEBUG |
9754 | kern_return_t kr; |
9755 | |
9756 | if (task != current_task() || !IPC_PORT_VALID(send_port)) { |
9757 | return KERN_INVALID_ARGUMENT; |
9758 | } |
9759 | |
9760 | if (qos < THREAD_QOS_DEFAULT || qos > THREAD_QOS_USER_INTERACTIVE || |
9761 | iotier < THROTTLE_LEVEL_START || iotier > THROTTLE_LEVEL_END) { |
9762 | return KERN_INVALID_ARGUMENT; |
9763 | } |
9764 | |
9765 | struct thread_attr_for_ipc_propagation attr = { |
9766 | .tafip_iotier = iotier, |
9767 | .tafip_qos = qos |
9768 | }; |
9769 | |
9770 | /* Apply propagate attr to port */ |
9771 | kr = ipc_port_propagate_thread_attr(send_port, attr); |
9772 | if (kr != KERN_SUCCESS) { |
9773 | return kr; |
9774 | } |
9775 | |
9776 | thread_enable_send_importance(current_thread(), TRUE); |
9777 | |
9778 | /* Perform an async kernel upcall on the given send port */ |
9779 | mach_test_async_upcall(send_port); |
9780 | thread_enable_send_importance(current_thread(), FALSE); |
9781 | |
9782 | ipc_port_release_send(send_port); |
9783 | return KERN_SUCCESS; |
9784 | #else |
9785 | (void)task; |
9786 | (void)send_port; |
9787 | (void)qos; |
9788 | (void)iotier; |
9789 | return KERN_NOT_SUPPORTED; |
9790 | #endif |
9791 | } |
9792 | |
9793 | #if CONFIG_PROC_RESOURCE_LIMITS |
9794 | mach_port_name_t |
9795 | current_task_get_fatal_port_name(void) |
9796 | { |
9797 | mach_port_t task_fatal_port = MACH_PORT_NULL; |
9798 | mach_port_name_t port_name = 0; |
9799 | |
9800 | task_fatal_port = task_allocate_fatal_port(); |
9801 | |
9802 | if (task_fatal_port) { |
9803 | ipc_object_copyout(current_space(), ip_to_object(task_fatal_port), MACH_MSG_TYPE_PORT_SEND, |
9804 | IPC_OBJECT_COPYOUT_FLAGS_NONE, NULL, NULL, &port_name); |
9805 | } |
9806 | |
9807 | return port_name; |
9808 | } |
9809 | #endif /* CONFIG_PROC_RESOURCE_LIMITS */ |
9810 | |
9811 | #if defined(__x86_64__) |
9812 | bool |
9813 | curtask_get_insn_copy_optout(void) |
9814 | { |
9815 | bool optout; |
9816 | task_t cur_task = current_task(); |
9817 | |
9818 | task_lock(cur_task); |
9819 | optout = (cur_task->t_flags & TF_INSN_COPY_OPTOUT) ? true : false; |
9820 | task_unlock(cur_task); |
9821 | |
9822 | return optout; |
9823 | } |
9824 | |
9825 | void |
9826 | curtask_set_insn_copy_optout(void) |
9827 | { |
9828 | task_t cur_task = current_task(); |
9829 | |
9830 | task_lock(cur_task); |
9831 | |
9832 | cur_task->t_flags |= TF_INSN_COPY_OPTOUT; |
9833 | |
9834 | thread_t thread; |
9835 | queue_iterate(&cur_task->threads, thread, thread_t, task_threads) { |
9836 | machine_thread_set_insn_copy_optout(thread); |
9837 | } |
9838 | task_unlock(cur_task); |
9839 | } |
9840 | #endif /* defined(__x86_64__) */ |
9841 | |
9842 | void |
9843 | task_get_corpse_vmobject_list(task_t task, vmobject_list_output_t* list, size_t* list_size) |
9844 | { |
9845 | assert(task); |
9846 | assert(list_size); |
9847 | |
9848 | *list = task->corpse_vmobject_list; |
9849 | *list_size = (size_t)task->corpse_vmobject_list_size; |
9850 | } |
9851 | |
9852 | __abortlike |
9853 | static void |
9854 | panic_proc_ro_task_backref_mismatch(task_t t, proc_ro_t ro) |
9855 | { |
9856 | panic("proc_ro->task backref mismatch: t=%p, ro=%p, " |
9857 | "proc_ro_task(ro)=%p" , t, ro, proc_ro_task(ro)); |
9858 | } |
9859 | |
9860 | proc_ro_t |
9861 | task_get_ro(task_t t) |
9862 | { |
9863 | proc_ro_t ro = (proc_ro_t)t->bsd_info_ro; |
9864 | |
9865 | zone_require_ro(zone_id: ZONE_ID_PROC_RO, elem_size: sizeof(struct proc_ro), addr: ro); |
9866 | if (__improbable(proc_ro_task(ro) != t)) { |
9867 | panic_proc_ro_task_backref_mismatch(t, ro); |
9868 | } |
9869 | |
9870 | return ro; |
9871 | } |
9872 | |
9873 | uint32_t |
9874 | task_ro_flags_get(task_t task) |
9875 | { |
9876 | return task_get_ro(t: task)->t_flags_ro; |
9877 | } |
9878 | |
9879 | void |
9880 | task_ro_flags_set(task_t task, uint32_t flags) |
9881 | { |
9882 | zalloc_ro_update_field_atomic(ZONE_ID_PROC_RO, task_get_ro(task), |
9883 | t_flags_ro, ZRO_ATOMIC_OR_32, flags); |
9884 | } |
9885 | |
9886 | void |
9887 | task_ro_flags_clear(task_t task, uint32_t flags) |
9888 | { |
9889 | zalloc_ro_update_field_atomic(ZONE_ID_PROC_RO, task_get_ro(task), |
9890 | t_flags_ro, ZRO_ATOMIC_AND_32, ~flags); |
9891 | } |
9892 | |
9893 | task_control_port_options_t |
9894 | task_get_control_port_options(task_t task) |
9895 | { |
9896 | return task_get_ro(t: task)->task_control_port_options; |
9897 | } |
9898 | |
9899 | void |
9900 | task_set_control_port_options(task_t task, task_control_port_options_t opts) |
9901 | { |
9902 | zalloc_ro_update_field(ZONE_ID_PROC_RO, task_get_ro(task), |
9903 | task_control_port_options, &opts); |
9904 | } |
9905 | |
9906 | /*! |
9907 | * @function kdp_task_is_locked |
9908 | * |
9909 | * @abstract |
9910 | * Checks if task is locked. |
9911 | * |
9912 | * @discussion |
9913 | * NOT SAFE: To be used only by kernel debugger. |
9914 | * |
9915 | * @param task task to check |
9916 | * |
9917 | * @returns TRUE if the task is locked. |
9918 | */ |
9919 | boolean_t |
9920 | kdp_task_is_locked(task_t task) |
9921 | { |
9922 | return kdp_lck_mtx_lock_spin_is_acquired(lck: &task->lock); |
9923 | } |
9924 | |
9925 | #if DEBUG || DEVELOPMENT |
9926 | /** |
9927 | * |
9928 | * Check if a threshold limit is valid based on the actual phys memory |
9929 | * limit. If they are same, race conditions may arise, so we have to prevent |
9930 | * it to happen. |
9931 | */ |
9932 | static diagthreshold_check_return |
9933 | task_check_memorythreshold_is_valid(task_t task, uint64_t new_limit, bool is_diagnostics_value) |
9934 | { |
9935 | int phys_limit_mb; |
9936 | kern_return_t ret_value; |
9937 | bool threshold_enabled; |
9938 | bool dummy; |
9939 | ret_value = ledger_is_diag_threshold_enabled(task->ledger, task_ledgers.phys_footprint, &threshold_enabled); |
9940 | if (ret_value != KERN_SUCCESS) { |
9941 | return ret_value; |
9942 | } |
9943 | if (is_diagnostics_value == true) { |
9944 | ret_value = task_get_phys_footprint_limit(task, &phys_limit_mb); |
9945 | } else { |
9946 | uint64_t diag_limit; |
9947 | ret_value = task_get_diag_footprint_limit_internal(task, &diag_limit, &dummy); |
9948 | phys_limit_mb = (int)(diag_limit >> 20); |
9949 | } |
9950 | if (ret_value != KERN_SUCCESS) { |
9951 | return ret_value; |
9952 | } |
9953 | if (phys_limit_mb == (int) new_limit) { |
9954 | if (threshold_enabled == false) { |
9955 | return THRESHOLD_IS_SAME_AS_LIMIT_FLAG_DISABLED; |
9956 | } else { |
9957 | return THRESHOLD_IS_SAME_AS_LIMIT_FLAG_ENABLED; |
9958 | } |
9959 | } |
9960 | if (threshold_enabled == false) { |
9961 | return THRESHOLD_IS_NOT_SAME_AS_LIMIT_FLAG_DISABLED; |
9962 | } else { |
9963 | return THRESHOLD_IS_NOT_SAME_AS_LIMIT_FLAG_ENABLED; |
9964 | } |
9965 | } |
9966 | #endif |
9967 | |
9968 | #if CONFIG_EXCLAVES |
9969 | kern_return_t |
9970 | task_add_conclave(task_t task, void *vnode, int64_t off, const char *task_conclave_id) |
9971 | { |
9972 | /* |
9973 | * Only launchd or properly entitled tasks can attach tasks to |
9974 | * conclaves. |
9975 | */ |
9976 | if (!exclaves_has_priv(current_task(), EXCLAVES_PRIV_CONCLAVE_SPAWN)) { |
9977 | return KERN_DENIED; |
9978 | } |
9979 | |
9980 | /* |
9981 | * Only entitled tasks can have conclaves attached. |
9982 | * Allow tasks which have the SPAWN privilege to also host conclaves. |
9983 | * This allows xpc proxy to add a conclave before execing a daemon. |
9984 | */ |
9985 | if (!exclaves_has_priv_vnode(vnode, off, EXCLAVES_PRIV_CONCLAVE_HOST) && |
9986 | !exclaves_has_priv_vnode(vnode, off, EXCLAVES_PRIV_CONCLAVE_SPAWN)) { |
9987 | return KERN_DENIED; |
9988 | } |
9989 | |
9990 | /* |
9991 | * Make this EXCLAVES_BOOT_STAGE_2 until userspace is actually |
9992 | * triggering the EXCLAVESKIT boot stage. |
9993 | */ |
9994 | kern_return_t kr = exclaves_boot_wait(EXCLAVES_BOOT_STAGE_2); |
9995 | if (kr != KERN_SUCCESS) { |
9996 | return kr; |
9997 | } |
9998 | |
9999 | return exclaves_conclave_attach(EXCLAVES_DOMAIN_KERNEL, task_conclave_id, task); |
10000 | } |
10001 | |
10002 | kern_return_t |
10003 | task_launch_conclave(mach_port_name_t port __unused) |
10004 | { |
10005 | kern_return_t kr = KERN_FAILURE; |
10006 | assert3u(port, ==, MACH_PORT_NULL); |
10007 | exclaves_resource_t *conclave = task_get_conclave(current_task()); |
10008 | if (conclave == NULL) { |
10009 | return kr; |
10010 | } |
10011 | |
10012 | kr = exclaves_conclave_launch(conclave); |
10013 | if (kr != KERN_SUCCESS) { |
10014 | return kr; |
10015 | } |
10016 | task_set_conclave_taint(current_task()); |
10017 | |
10018 | return KERN_SUCCESS; |
10019 | } |
10020 | |
10021 | kern_return_t |
10022 | task_inherit_conclave(task_t old_task, task_t new_task, void *vnode, int64_t off) |
10023 | { |
10024 | if (old_task->conclave == NULL || |
10025 | !exclaves_conclave_is_attached(old_task->conclave)) { |
10026 | return KERN_SUCCESS; |
10027 | } |
10028 | |
10029 | /* |
10030 | * Only launchd or properly entitled tasks can attach tasks to |
10031 | * conclaves. |
10032 | */ |
10033 | if (!exclaves_has_priv(current_task(), EXCLAVES_PRIV_CONCLAVE_SPAWN)) { |
10034 | return KERN_DENIED; |
10035 | } |
10036 | |
10037 | /* |
10038 | * Only entitled tasks can have conclaves attached. |
10039 | */ |
10040 | if (!exclaves_has_priv_vnode(vnode, off, EXCLAVES_PRIV_CONCLAVE_HOST)) { |
10041 | return KERN_DENIED; |
10042 | } |
10043 | |
10044 | return exclaves_conclave_inherit(old_task->conclave, old_task, new_task); |
10045 | } |
10046 | |
10047 | void |
10048 | task_clear_conclave(task_t task) |
10049 | { |
10050 | if (task->exclave_crash_info) { |
10051 | kfree_data(task->exclave_crash_info, CONCLAVE_CRASH_BUFFER_PAGECOUNT * PAGE_SIZE); |
10052 | task->exclave_crash_info = NULL; |
10053 | } |
10054 | |
10055 | if (task->conclave == NULL) { |
10056 | return; |
10057 | } |
10058 | |
10059 | /* |
10060 | * XXX |
10061 | * This should only fail if either the conclave is in an unexpected |
10062 | * state (i.e. not ATTACHED) or if the wrong port is supplied. |
10063 | * We should re-visit this and make sure we guarantee the above |
10064 | * constraints. |
10065 | */ |
10066 | __assert_only kern_return_t ret = |
10067 | exclaves_conclave_detach(task->conclave, task); |
10068 | assert3u(ret, ==, KERN_SUCCESS); |
10069 | } |
10070 | |
10071 | void |
10072 | task_stop_conclave(task_t task, bool gather_crash_bt) |
10073 | { |
10074 | thread_t thread = current_thread(); |
10075 | |
10076 | if (task->conclave == NULL) { |
10077 | return; |
10078 | } |
10079 | |
10080 | if (task_should_panic_on_exit_due_to_conclave_taint(task)) { |
10081 | panic("Conclave tainted task %p terminated\n" , task); |
10082 | } |
10083 | |
10084 | /* Stash the task on current thread for conclave teardown */ |
10085 | thread->conclave_stop_task = task; |
10086 | |
10087 | __assert_only kern_return_t ret = |
10088 | exclaves_conclave_stop(task->conclave, gather_crash_bt); |
10089 | |
10090 | thread->conclave_stop_task = TASK_NULL; |
10091 | |
10092 | assert3u(ret, ==, KERN_SUCCESS); |
10093 | } |
10094 | |
10095 | kern_return_t |
10096 | task_stop_conclave_upcall(void) |
10097 | { |
10098 | task_t task = current_task(); |
10099 | if (task->conclave == NULL) { |
10100 | return KERN_INVALID_TASK; |
10101 | } |
10102 | |
10103 | return exclaves_conclave_stop_upcall(task->conclave); |
10104 | } |
10105 | |
10106 | kern_return_t |
10107 | task_stop_conclave_upcall_complete(void) |
10108 | { |
10109 | task_t task = current_task(); |
10110 | thread_t thread = current_thread(); |
10111 | |
10112 | if (!(thread->th_exclaves_state & TH_EXCLAVES_STOP_UPCALL_PENDING)) { |
10113 | return KERN_SUCCESS; |
10114 | } |
10115 | |
10116 | assert3p(task->conclave, !=, NULL); |
10117 | |
10118 | return exclaves_conclave_stop_upcall_complete(task->conclave, task); |
10119 | } |
10120 | |
10121 | kern_return_t |
10122 | task_suspend_conclave_upcall(uint64_t *scid_list, size_t scid_list_count) |
10123 | { |
10124 | task_t task = current_task(); |
10125 | thread_t thread; |
10126 | int scid_count = 0; |
10127 | kern_return_t kr; |
10128 | if (task->conclave == NULL) { |
10129 | return KERN_INVALID_TASK; |
10130 | } |
10131 | |
10132 | kr = task_hold_and_wait(task); |
10133 | |
10134 | task_lock(task); |
10135 | queue_iterate(&task->threads, thread, thread_t, task_threads) |
10136 | { |
10137 | if (thread->th_exclaves_state & TH_EXCLAVES_RPC) { |
10138 | scid_list[scid_count++] = thread->th_exclaves_scheduling_context_id; |
10139 | if (scid_count >= scid_list_count) { |
10140 | break; |
10141 | } |
10142 | } |
10143 | } |
10144 | |
10145 | task_unlock(task); |
10146 | return kr; |
10147 | } |
10148 | |
10149 | kern_return_t |
10150 | task_crash_info_conclave_upcall(task_t task, const xnuupcalls_conclavesharedbuffer_s *shared_buf, |
10151 | uint32_t length) |
10152 | { |
10153 | if (task->conclave == NULL) { |
10154 | return KERN_INVALID_TASK; |
10155 | } |
10156 | |
10157 | /* Allocate the buffer and memcpy it */ |
10158 | int task_crash_info_buffer_size = 0; |
10159 | uint8_t * task_crash_info_buffer; |
10160 | |
10161 | if (!length) { |
10162 | printf("Conclave upcall: task_crash_info_conclave_upcall did not return any page addresses\n" ); |
10163 | return KERN_INVALID_ARGUMENT; |
10164 | } |
10165 | |
10166 | task_crash_info_buffer_size = CONCLAVE_CRASH_BUFFER_PAGECOUNT * PAGE_SIZE; |
10167 | assert3u(task_crash_info_buffer_size, >=, length); |
10168 | |
10169 | task_crash_info_buffer = kalloc_data(task_crash_info_buffer_size, Z_WAITOK); |
10170 | if (!task_crash_info_buffer) { |
10171 | panic("task_crash_info_conclave_upcall: cannot allocate buffer for task_info shared memory" ); |
10172 | return KERN_INVALID_ARGUMENT; |
10173 | } |
10174 | |
10175 | uint8_t * dst = task_crash_info_buffer; |
10176 | uint32_t remaining = length; |
10177 | for (size_t i = 0; i < CONCLAVE_CRASH_BUFFER_PAGECOUNT; i++) { |
10178 | if (remaining) { |
10179 | memcpy(dst, (uint8_t*)phystokv((pmap_paddr_t)shared_buf->physaddr[i]), PAGE_SIZE); |
10180 | remaining = (remaining >= PAGE_SIZE) ? remaining - PAGE_SIZE : 0; |
10181 | dst += PAGE_SIZE; |
10182 | } |
10183 | } |
10184 | |
10185 | task_lock(task); |
10186 | if (task->exclave_crash_info == NULL && task->active) { |
10187 | task->exclave_crash_info = task_crash_info_buffer; |
10188 | task->exclave_crash_info_length = length; |
10189 | task_crash_info_buffer = NULL; |
10190 | } |
10191 | task_unlock(task); |
10192 | |
10193 | if (task_crash_info_buffer) { |
10194 | kfree_data(task_crash_info_buffer, task_crash_info_buffer_size); |
10195 | } |
10196 | |
10197 | return KERN_SUCCESS; |
10198 | } |
10199 | |
10200 | exclaves_resource_t * |
10201 | task_get_conclave(task_t task) |
10202 | { |
10203 | return task->conclave; |
10204 | } |
10205 | |
10206 | extern boolean_t IOPMRootDomainGetWillShutdown(void); |
10207 | |
10208 | TUNABLE(bool, disable_conclave_taint, "disable_conclave_taint" , true); /* Do not taint processes when they talk to conclave, so system does not panic when exit. */ |
10209 | |
10210 | static bool |
10211 | task_should_panic_on_exit_due_to_conclave_taint(task_t task) |
10212 | { |
10213 | /* Check if boot-arg to disable conclave taint is set */ |
10214 | if (disable_conclave_taint) { |
10215 | return false; |
10216 | } |
10217 | |
10218 | /* Check if the system is shutting down */ |
10219 | if (IOPMRootDomainGetWillShutdown()) { |
10220 | return false; |
10221 | } |
10222 | |
10223 | return task_is_conclave_tainted(task); |
10224 | } |
10225 | |
10226 | static bool |
10227 | task_is_conclave_tainted(task_t task) |
10228 | { |
10229 | return (task->t_exclave_state & TES_CONCLAVE_TAINTED) != 0 && |
10230 | !(task->t_exclave_state & TES_CONCLAVE_UNTAINTABLE); |
10231 | } |
10232 | |
10233 | static void |
10234 | task_set_conclave_taint(task_t task) |
10235 | { |
10236 | os_atomic_or(&task->t_exclave_state, TES_CONCLAVE_TAINTED, relaxed); |
10237 | } |
10238 | |
10239 | void |
10240 | task_set_conclave_untaintable(task_t task) |
10241 | { |
10242 | os_atomic_or(&task->t_exclave_state, TES_CONCLAVE_UNTAINTABLE, relaxed); |
10243 | } |
10244 | |
10245 | void |
10246 | task_add_conclave_crash_info(task_t task, void *crash_info_ptr) |
10247 | { |
10248 | __block kern_return_t error = KERN_SUCCESS; |
10249 | tb_error_t tberr = TB_ERROR_SUCCESS; |
10250 | void *crash_info; |
10251 | uint32_t crash_info_length = 0; |
10252 | |
10253 | if (task->conclave == NULL) { |
10254 | return; |
10255 | } |
10256 | |
10257 | if (task->exclave_crash_info_length == 0) { |
10258 | return; |
10259 | } |
10260 | |
10261 | error = kcdata_add_container_marker(crash_info_ptr, KCDATA_TYPE_CONTAINER_BEGIN, |
10262 | STACKSHOT_KCCONTAINER_EXCLAVES, 0); |
10263 | if (error != KERN_SUCCESS) { |
10264 | return; |
10265 | } |
10266 | |
10267 | crash_info = task->exclave_crash_info; |
10268 | crash_info_length = task->exclave_crash_info_length; |
10269 | |
10270 | tberr = stackshot_stackshotresult__unmarshal(crash_info, |
10271 | (uint64_t)crash_info_length, ^(stackshot_stackshotresult_s result){ |
10272 | error = stackshot_exclaves_process_stackshot(&result, crash_info_ptr); |
10273 | if (error != KERN_SUCCESS) { |
10274 | printf("stackshot_exclaves_process_result: error processing stackshot result %d\n" , error); |
10275 | } |
10276 | }); |
10277 | if (tberr != TB_ERROR_SUCCESS) { |
10278 | printf("task_conclave_crash: task_add_conclave_crash_info could not unmarshal stackshot data 0x%x\n" , tberr); |
10279 | error = KERN_FAILURE; |
10280 | goto error_exit; |
10281 | } |
10282 | |
10283 | error_exit: |
10284 | kcdata_add_container_marker(crash_info_ptr, KCDATA_TYPE_CONTAINER_END, |
10285 | STACKSHOT_KCCONTAINER_EXCLAVES, 0); |
10286 | |
10287 | return; |
10288 | } |
10289 | |
10290 | #endif /* CONFIG_EXCLAVES */ |
10291 | |
10292 | #pragma mark task utils |
10293 | |
10294 | /* defined in bsd/kern/kern_proc.c */ |
10295 | extern void proc_name(int pid, char *buf, int size); |
10296 | extern char *proc_best_name(struct proc *p); |
10297 | |
10298 | void |
10299 | task_procname(task_t task, char *buf, int size) |
10300 | { |
10301 | proc_name(pid: task_pid(task), buf, size); |
10302 | } |
10303 | |
10304 | void |
10305 | task_best_name(task_t task, char *buf, size_t size) |
10306 | { |
10307 | char *name = proc_best_name(p: task_get_proc_raw(task)); |
10308 | strlcpy(dst: buf, src: name, n: size); |
10309 | } |
10310 | |