| 1 | /* |
| 2 | * Copyright (c) 2021 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
| 5 | * |
| 6 | * This file contains Original Code and/or Modifications of Original Code |
| 7 | * as defined in and that are subject to the Apple Public Source License |
| 8 | * Version 2.0 (the 'License'). You may not use this file except in |
| 9 | * compliance with the License. The rights granted to you under the License |
| 10 | * may not be used to create, or enable the creation or redistribution of, |
| 11 | * unlawful or unlicensed copies of an Apple operating system, or to |
| 12 | * circumvent, violate, or enable the circumvention or violation of, any |
| 13 | * terms of an Apple operating system software license agreement. |
| 14 | * |
| 15 | * Please obtain a copy of the License at |
| 16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
| 17 | * |
| 18 | * The Original Code and all software distributed under the License are |
| 19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| 23 | * Please see the License for the specific language governing rights and |
| 24 | * limitations under the License. |
| 25 | * |
| 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
| 27 | */ |
| 28 | |
| 29 | #include <kern/locks_internal.h> |
| 30 | #include <kern/cpu_data.h> |
| 31 | #include <kern/machine.h> |
| 32 | #include <kern/mpsc_queue.h> |
| 33 | #include <kern/percpu.h> |
| 34 | #include <kern/sched.h> |
| 35 | #include <kern/smr.h> |
| 36 | #include <kern/smr_hash.h> |
| 37 | #include <kern/thread.h> |
| 38 | #include <kern/zalloc.h> |
| 39 | #include <machine/commpage.h> |
| 40 | #include <os/hash.h> |
| 41 | |
| 42 | |
| 43 | #pragma mark - SMR domains |
| 44 | |
| 45 | /* |
| 46 | * This SMR scheme is directly FreeBSD's "Global Unbounded Sequences". |
| 47 | * |
| 48 | * Major differences are: |
| 49 | * |
| 50 | * - only eager clocks are implemented (no lazy, no implicit) |
| 51 | * |
| 52 | * |
| 53 | * SMR clocks have 3 state machines interacting at any given time: |
| 54 | * |
| 55 | * 1. reader critical sections |
| 56 | * ~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| 57 | * |
| 58 | * Each CPU can disable preemption and do this sequence: |
| 59 | * |
| 60 | * CPU::c_rd_seq = GLOBAL::c_wr_seq; |
| 61 | * |
| 62 | * < unfortunate place to receive a long IRQ > [I] |
| 63 | * |
| 64 | * os_atomic_thread_fence(seq_cst); [R1] |
| 65 | * |
| 66 | * { |
| 67 | * // critical section |
| 68 | * } |
| 69 | * |
| 70 | * os_atomic_store(&CPU::c_rd_seq, INVALID, release); [R2] |
| 71 | * |
| 72 | * |
| 73 | * |
| 74 | * 2. writer sequence advances |
| 75 | * ~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| 76 | * |
| 77 | * Each writer can increment the global write sequence |
| 78 | * at any given time: |
| 79 | * |
| 80 | * os_atomic_add(&GLOBAL::c_wr_seq, SMR_SEQ_INC, release); [W] |
| 81 | * |
| 82 | * |
| 83 | * |
| 84 | * 3. synchronization sequence: poll/wait/scan |
| 85 | * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| 86 | * |
| 87 | * This state machine synchronizes with the other two in order to decide |
| 88 | * if a given "goal" is in the past. Only the cases when the call |
| 89 | * is successful is interresting for barrier purposes, and we will focus |
| 90 | * on cases that do not take an early return for failures. |
| 91 | * |
| 92 | * a. __smr_poll: |
| 93 | * |
| 94 | * rd_seq = os_atomic_load(&GLOBAL::c_rd_seq, acquire); [S1] |
| 95 | * if (goal < rd_seq) SUCCESS. |
| 96 | * wr_seq = os_atomic_load(&GLOBAL::c_rd_seq, relaxed); |
| 97 | * |
| 98 | * b. __smr_scan |
| 99 | * |
| 100 | * os_atomic_thread_fence(seq_cst) [S2] |
| 101 | * |
| 102 | * observe the minimum CPU::c_rd_seq "min_rd_seq" |
| 103 | * value possible or rw_seq if no CPU was in a critical section. |
| 104 | * (possibly spinning until it satisfies "goal") |
| 105 | * |
| 106 | * c. __smr_rd_advance |
| 107 | * |
| 108 | * cur_rd_seq = load_exclusive(&GLOBAL::c_rd_seq); |
| 109 | * os_atomic_thread_fence(seq_cst); [S3] |
| 110 | * if (min_rd_seq > cur_rd_seq) { |
| 111 | * store_exlusive(&GLOBAL::c_rd_seq, min_rd_seq); |
| 112 | * } |
| 113 | * |
| 114 | * |
| 115 | * One sentence summary |
| 116 | * ~~~~~~~~~~~~~~~~~~~~ |
| 117 | * |
| 118 | * A simplistic one-sentence summary of the algorithm is that __smr_scan() |
| 119 | * works really hard to insert itself in the timeline of write sequences and |
| 120 | * observe a reasonnable bound for first safe-to-reclaim sequence, and |
| 121 | * issues [S3] to sequence everything around "c_rd_seq" (via [S3] -> [S1]): |
| 122 | * |
| 123 | * GLOBAL::c_rd_seq GLOBAL::c_wr_seq |
| 124 | * v v |
| 125 | * ──────────────────────┬────────────────┬───────────────────── |
| 126 | * ... safe to reclaim │ deferred │ future ... |
| 127 | * ──────────────────────┴────────────────┴───────────────────── |
| 128 | * |
| 129 | * |
| 130 | * Detailed explanation |
| 131 | * ~~~~~~~~~~~~~~~~~~~~ |
| 132 | * |
| 133 | * [W] -> [R1] establishes a "happens before" relationship between a given |
| 134 | * writer and this critical section. The loaded GLOBAL::c_wr_seq might |
| 135 | * however be stale with respect to the one [R1] really synchronizes with |
| 136 | * (see [I] explanation below). |
| 137 | * |
| 138 | * |
| 139 | * [R1] -> [S2] establishes a "happens before" relationship between all the |
| 140 | * active critical sections and the scanner. |
| 141 | * It lets us compute the oldest possible sequence pinned by an active |
| 142 | * critical section. |
| 143 | * |
| 144 | * |
| 145 | * [R2] -> [S3] establishes a "happens before" relationship between all the |
| 146 | * inactive critical sections and the scanner. |
| 147 | * |
| 148 | * |
| 149 | * [S3] -> [S1] is the typical expected fastpath: when the caller can decide |
| 150 | * that its goal is older than the last update an __smr_rd_advance() did. |
| 151 | * Note that [S3] doubles as an "[S1]" when two __smr_scan() race each other |
| 152 | * and one of them finishes last but observed a "worse" read sequence. |
| 153 | * |
| 154 | * |
| 155 | * [W], [S3] -> [S1] is the last crucial property: all updates to the global |
| 156 | * clock are totally ordered because they update the entire 128bit state |
| 157 | * every time with an RMW. This guarantees that __smr_poll() can't load |
| 158 | * an `rd_seq` that is younger than the `wr_seq` it loads next. |
| 159 | * |
| 160 | * |
| 161 | * [I] __smr_enter() also can be unfortunately delayed after observing |
| 162 | * a given write sequence and right before [R1] at [I]. |
| 163 | * |
| 164 | * However for a read sequence to have move past what __smr_enter() observed, |
| 165 | * it means another __smr_scan() didn't observe the store to CPU::c_rd_seq |
| 166 | * made by __smr_enter() and thought the section was inactive. |
| 167 | * |
| 168 | * This can only happen if the scan's [S2] was issued before the delayed |
| 169 | * __smr_enter() [R1] (during the [I] window). |
| 170 | * |
| 171 | * As a consequence the outcome of that scan can be accepted as the "real" |
| 172 | * write sequence __smr_enter() should have observed. |
| 173 | * |
| 174 | * |
| 175 | * Litmus tests |
| 176 | * ~~~~~~~~~~~~ |
| 177 | * |
| 178 | * This is the proof of [W] -> [R1] -> [S2] being established properly: |
| 179 | * - P0 sets a global and calls smr_synchronize() |
| 180 | * - P1 does smr_enter() and loads the global |
| 181 | * |
| 182 | * AArch64 MP |
| 183 | * { |
| 184 | * global = 0; |
| 185 | * wr_seq = 123; |
| 186 | * p1_rd_seq = 0; |
| 187 | * |
| 188 | * 0:x0 = global; 0:x1 = wr_seq; 0:x2 = p1_rd_seq; |
| 189 | * 1:x0 = global; 1:x1 = wr_seq; 1:x2 = p1_rd_seq; |
| 190 | * } |
| 191 | * P0 | P1 ; |
| 192 | * MOV X8, #2 | LDR X8, [X1] ; |
| 193 | * STR X8, [X0] | STR X8, [X2] ; |
| 194 | * LDADDL X8, X9, [X1] | DMB SY ; |
| 195 | * DMB SY | LDR X10, [X0] ; |
| 196 | * LDR X10, [X2] | ; |
| 197 | * exists (0:X10 = 0 /\ 1:X8 = 123 /\ 1:X10 = 0) |
| 198 | * |
| 199 | * |
| 200 | * This is the proof that deferred advances are also correct: |
| 201 | * - P0 sets a global and does a smr_deferred_advance() |
| 202 | * - P1 does an smr_synchronize() and reads the global |
| 203 | * |
| 204 | * AArch64 MP |
| 205 | * { |
| 206 | * global = 0; |
| 207 | * wr_seq = 123; |
| 208 | * |
| 209 | * 0:x0 = global; 0:x1 = wr_seq; 0:x2 = 2; |
| 210 | * 1:x0 = global; 1:x1 = wr_seq; 1:x2 = 2; |
| 211 | * } |
| 212 | * P0 | P1 ; |
| 213 | * STR X2, [X0] | LDADDL X2, X9, [X1] ; |
| 214 | * DMB SY | DMB SY ; |
| 215 | * LDR X9, [X1] | LDR X10, [X0] ; |
| 216 | * ADD X9, X9, X2 | ; |
| 217 | * exists (0:X9 = 125 /\ 1:X9 = 123 /\ 1:X10 = 0) |
| 218 | * |
| 219 | */ |
| 220 | |
| 221 | /*! |
| 222 | * @struct smr_worker |
| 223 | * |
| 224 | * @brief |
| 225 | * Structure tracking the per-cpu SMR workers state. |
| 226 | * |
| 227 | * @discussion |
| 228 | * This structure is system wide and global and is used to track |
| 229 | * the various active SMR domains at the granularity of a CPU. |
| 230 | * |
| 231 | * Each structure has an associated thread which is responsible |
| 232 | * for the forward progress the @c smr_call() and @c smr_barrier() |
| 233 | * interfaces. |
| 234 | * |
| 235 | * It also tracks all the active, non stalled, sleepable SMR sections. |
| 236 | */ |
| 237 | struct smr_worker { |
| 238 | /* |
| 239 | * The thread for this worker, |
| 240 | * and conveniency pointer to the processor it is bound to. |
| 241 | */ |
| 242 | struct thread *thread; |
| 243 | struct processor *processor; |
| 244 | |
| 245 | /* |
| 246 | * Thread binding/locking logic: |
| 247 | * |
| 248 | * If the worker thread is running on its canonical CPU, |
| 249 | * then locking to access the various SMR per-cpu data |
| 250 | * structures it is draining is just preemption disablement. |
| 251 | * |
| 252 | * However, if it is currently not bound to its canonical |
| 253 | * CPU because the CPU has been offlined or de-recommended, |
| 254 | * then a lock which serializes with the CPU going online |
| 255 | * again is being used. |
| 256 | */ |
| 257 | struct waitq waitq; |
| 258 | smr_cpu_reason_t detach_reason; |
| 259 | |
| 260 | #if CONFIG_QUIESCE_COUNTER |
| 261 | /* |
| 262 | * Currently active quiescent generation for this processor, |
| 263 | * and the last timestamp when a scan of all cores was performed. |
| 264 | */ |
| 265 | smr_seq_t rd_quiesce_seq; |
| 266 | #endif |
| 267 | |
| 268 | /* |
| 269 | * List of all the active sleepable sections that haven't |
| 270 | * been stalled. |
| 271 | */ |
| 272 | struct smrq_list_head sect_queue; |
| 273 | struct thread *sect_waiter; |
| 274 | |
| 275 | /* |
| 276 | * Queue of SMR domains with pending smr_call() |
| 277 | * callouts to drain. |
| 278 | * |
| 279 | * This uses an ageing strategy in order to amortize |
| 280 | * SMR clock updates: |
| 281 | * |
| 282 | * - the "old" queue have domains whose callbacks have |
| 283 | * a committed and aged sequence, |
| 284 | * - the "age" queue have domains whose callbacks have |
| 285 | * a commited but fresh sequence and need ageing, |
| 286 | * - the "cur" queue have domains whose callbacks have |
| 287 | * a sequence in the future and need for it to be committed. |
| 288 | */ |
| 289 | struct smr_pcpu *whead; |
| 290 | struct smr_pcpu **wold_tail; |
| 291 | struct smr_pcpu **wage_tail; |
| 292 | struct smr_pcpu **wcur_tail; |
| 293 | uint64_t drain_ctime; |
| 294 | |
| 295 | /* |
| 296 | * Queue of smr_barrier() calls in flight, |
| 297 | * that will be picked up by the worker thread |
| 298 | * to enqueue as smr_call() entries in their |
| 299 | * respective per-CPU data structures. |
| 300 | */ |
| 301 | struct mpsc_queue_head barrier_queue; |
| 302 | } __attribute__((aligned(64))); |
| 303 | |
| 304 | |
| 305 | typedef struct smr_pcpu { |
| 306 | /* |
| 307 | * CPU private cacheline. |
| 308 | * |
| 309 | * Nothing else than the CPU this state is made for, |
| 310 | * ever writes to this cacheline. |
| 311 | * |
| 312 | * It holds the epoch activity witness (rd_seq), and |
| 313 | * the local smr_call() queue, which is structured this way: |
| 314 | * |
| 315 | * head -> n1 -> n2 -> n3 -> n4 -> ... -> ni -> ... -> nN -> NULL |
| 316 | * ^ ^ ^ |
| 317 | * qold_tail -------------' | | |
| 318 | * qage_tail --------------------------' | |
| 319 | * qcur_tail ---------------------------------------------' |
| 320 | * |
| 321 | * - the "old" queue can be reclaimed once qold_seq is past, |
| 322 | * qold_seq is always a commited sequence. |
| 323 | * - the "age" queue can be reclaimed once qage_seq is past, |
| 324 | * qage_seq might not be commited yet. |
| 325 | * - the "cur" queue has an approximate size of qcur_size bytes, |
| 326 | * and a length of qcur_cnt callbacks. |
| 327 | */ |
| 328 | |
| 329 | smr_seq_t c_rd_seq; /* might have SMR_SEQ_SLEEPABLE set */ |
| 330 | |
| 331 | smr_node_t qhead; |
| 332 | |
| 333 | smr_seq_t qold_seq; |
| 334 | smr_node_t *qold_tail; |
| 335 | |
| 336 | smr_seq_t qage_seq; |
| 337 | smr_node_t *qage_tail; |
| 338 | |
| 339 | uint32_t qcur_size; |
| 340 | uint32_t qcur_cnt; |
| 341 | smr_node_t *qcur_tail; |
| 342 | |
| 343 | uint8_t __cacheline_sep[0]; |
| 344 | |
| 345 | /* |
| 346 | * Drain queue. |
| 347 | * |
| 348 | * This is used to drive smr_call() via the smr worker threads. |
| 349 | * If the SMR domain is not using smr_call() or smr_barrier(), |
| 350 | * this isn't used. |
| 351 | */ |
| 352 | struct smr *drain_smr; |
| 353 | struct smr_pcpu *drain_next; |
| 354 | uint16_t __check_cpu; |
| 355 | uint8_t __check_reason; |
| 356 | uint8_t __check_list; |
| 357 | |
| 358 | /* |
| 359 | * Stalled queue. |
| 360 | * |
| 361 | * Stalled sections are enqueued onto this queue by the scheduler |
| 362 | * when their thread blocks (see smr_mark_active_trackers_stalled()). |
| 363 | * |
| 364 | * If the SMR domain is not sleepable, then this isn't used. |
| 365 | * |
| 366 | * This list is protected by a lock. |
| 367 | * |
| 368 | * When there are stalled sections, stall_rd_seq contains |
| 369 | * the oldest active stalled sequence number. |
| 370 | * |
| 371 | * When threads want to expedite a stalled section, they set |
| 372 | * stall_waiter_goal to the sequence number they are waiting |
| 373 | * for and block via turnstile on the oldest stalled section. |
| 374 | */ |
| 375 | hw_lck_ticket_t stall_lock; |
| 376 | smr_seq_t stall_rd_seq; |
| 377 | smr_seq_t stall_waiter_goal; |
| 378 | struct smrq_tailq_head stall_queue; |
| 379 | struct turnstile *stall_ts; |
| 380 | } __attribute__((aligned(128))) * smr_pcpu_t; |
| 381 | |
| 382 | static_assert(offsetof(struct smr_pcpu, __cacheline_sep) == 64); |
| 383 | static_assert(sizeof(struct smr_pcpu) == 128); |
| 384 | |
| 385 | #define CPU_CHECKIN_MIN_INTERVAL_US 5000 /* 5ms */ |
| 386 | #define CPU_CHECKIN_MIN_INTERVAL_MAX_US USEC_PER_SEC /* 1s */ |
| 387 | static uint64_t cpu_checkin_min_interval; |
| 388 | static uint32_t cpu_checkin_min_interval_us; |
| 389 | |
| 390 | /*! the amount of memory pending retiring that causes a foreceful flush */ |
| 391 | #if XNU_TARGET_OS_OSX |
| 392 | static TUNABLE(vm_size_t, smr_call_size_cap, "smr_call_size_cap" , 256 << 10); |
| 393 | static TUNABLE(vm_size_t, smr_call_cnt_cap, "smr_call_cnt_cap" , 128); |
| 394 | #else |
| 395 | static TUNABLE(vm_size_t, smr_call_size_cap, "smr_call_size_cap" , 64 << 10); |
| 396 | static TUNABLE(vm_size_t, smr_call_cnt_cap, "smr_call_cnt_cap" , 32); |
| 397 | #endif |
| 398 | /* time __smr_wait_for_oncore busy spins before going the expensive route */ |
| 399 | static TUNABLE(uint32_t, smr_wait_spin_us, "smr_wait_spin_us" , 20); |
| 400 | |
| 401 | static LCK_GRP_DECLARE(smr_lock_grp, "smr" ); |
| 402 | static struct smr_worker PERCPU_DATA(smr_worker); |
| 403 | static struct smrq_tailq_head smr_domains = SMRQ_TAILQ_INITIALIZER(smr_domains); |
| 404 | |
| 405 | SMR_DEFINE_FLAGS(smr_system, "system" , SMR_NONE); |
| 406 | SMR_DEFINE_FLAGS(smr_system_sleepable, "system (sleepable)" , SMR_SLEEPABLE); |
| 407 | |
| 408 | |
| 409 | #pragma mark SMR domains: init & helpers |
| 410 | |
| 411 | #define SMR_PCPU_NOT_QUEUED ((struct smr_pcpu *)-1) |
| 412 | |
| 413 | __attribute__((always_inline, overloadable)) |
| 414 | static inline smr_pcpu_t |
| 415 | __smr_pcpu(smr_t smr, int cpu) |
| 416 | { |
| 417 | return &smr->smr_pcpu[cpu]; |
| 418 | } |
| 419 | |
| 420 | __attribute__((always_inline, overloadable)) |
| 421 | static inline smr_pcpu_t |
| 422 | __smr_pcpu(smr_t smr) |
| 423 | { |
| 424 | return __smr_pcpu(smr, cpu: cpu_number()); |
| 425 | } |
| 426 | |
| 427 | static inline bool |
| 428 | __smr_pcpu_queued(smr_pcpu_t pcpu) |
| 429 | { |
| 430 | return pcpu->drain_next != SMR_PCPU_NOT_QUEUED; |
| 431 | } |
| 432 | |
| 433 | static inline void |
| 434 | __smr_pcpu_set_not_queued(smr_pcpu_t pcpu) |
| 435 | { |
| 436 | pcpu->drain_next = SMR_PCPU_NOT_QUEUED; |
| 437 | } |
| 438 | |
| 439 | static inline void |
| 440 | __smr_pcpu_associate(smr_t smr, smr_pcpu_t pcpu) |
| 441 | { |
| 442 | zpercpu_foreach_cpu(cpu) { |
| 443 | pcpu[cpu].qold_tail = &pcpu[cpu].qhead; |
| 444 | pcpu[cpu].qage_tail = &pcpu[cpu].qhead; |
| 445 | pcpu[cpu].qcur_tail = &pcpu[cpu].qhead; |
| 446 | |
| 447 | pcpu[cpu].drain_smr = smr; |
| 448 | __smr_pcpu_set_not_queued(pcpu: &pcpu[cpu]); |
| 449 | hw_lck_ticket_init(&pcpu[cpu].stall_lock, &smr_lock_grp); |
| 450 | smrq_init(&pcpu[cpu].stall_queue); |
| 451 | } |
| 452 | |
| 453 | os_atomic_store(&smr->smr_pcpu, pcpu, release); |
| 454 | } |
| 455 | |
| 456 | static inline event64_t |
| 457 | __smrw_oncore_event(struct smr_worker *smrw) |
| 458 | { |
| 459 | return CAST_EVENT64_T(&smrw->sect_queue); |
| 460 | } |
| 461 | |
| 462 | static inline event64_t |
| 463 | __smrw_drain_event(struct smr_worker *smrw) |
| 464 | { |
| 465 | return CAST_EVENT64_T(&smrw->whead); |
| 466 | } |
| 467 | |
| 468 | static inline processor_t |
| 469 | __smrw_drain_bind_target(struct smr_worker *smrw) |
| 470 | { |
| 471 | return smrw->detach_reason ? PROCESSOR_NULL : smrw->processor; |
| 472 | } |
| 473 | |
| 474 | static inline void |
| 475 | __smrw_lock(struct smr_worker *smrw) |
| 476 | { |
| 477 | waitq_lock(wq: &smrw->waitq); |
| 478 | } |
| 479 | |
| 480 | static inline void |
| 481 | __smrw_unlock(struct smr_worker *smrw) |
| 482 | { |
| 483 | waitq_unlock(wq: &smrw->waitq); |
| 484 | } |
| 485 | |
| 486 | /*! |
| 487 | * @function __smrw_wakeup_and_unlock() |
| 488 | * |
| 489 | * @brief |
| 490 | * Wakes up (with binding) the SMR worker. |
| 491 | * |
| 492 | * @discussion |
| 493 | * Wakeup the worker thread and bind it to the proper processor |
| 494 | * as a side effect. |
| 495 | * |
| 496 | * This function must be called with interrupts disabled. |
| 497 | */ |
| 498 | static bool |
| 499 | __smrw_wakeup_and_unlock(struct smr_worker *smrw) |
| 500 | { |
| 501 | thread_t thread; |
| 502 | |
| 503 | assert(!ml_get_interrupts_enabled()); |
| 504 | |
| 505 | thread = waitq_wakeup64_identify_locked(waitq: &smrw->waitq, |
| 506 | wake_event: __smrw_drain_event(smrw), THREAD_AWAKENED, flags: WAITQ_UNLOCK); |
| 507 | |
| 508 | if (thread != THREAD_NULL) { |
| 509 | assert(thread == smrw->thread); |
| 510 | |
| 511 | waitq_resume_and_bind_identified_thread(waitq: &smrw->waitq, |
| 512 | thread, processor: __smrw_drain_bind_target(smrw), |
| 513 | THREAD_AWAKENED, flags: WAITQ_WAKEUP_DEFAULT); |
| 514 | } |
| 515 | |
| 516 | return thread != THREAD_NULL; |
| 517 | } |
| 518 | |
| 519 | static void |
| 520 | __smr_call_drain(smr_node_t head) |
| 521 | { |
| 522 | smr_node_t node; |
| 523 | |
| 524 | while ((node = head) != NULL) { |
| 525 | head = node->smrn_next; |
| 526 | node->smrn_next = NULL; |
| 527 | node->smrn_cb(node); |
| 528 | } |
| 529 | } |
| 530 | |
| 531 | __startup_func |
| 532 | void |
| 533 | __smr_domain_init(smr_t smr) |
| 534 | { |
| 535 | smr_pcpu_t pcpu; |
| 536 | vm_size_t size; |
| 537 | |
| 538 | if (startup_phase < STARTUP_SUB_TUNABLES) { |
| 539 | smr_seq_t *rd_seqp = &smr->smr_early; |
| 540 | |
| 541 | /* |
| 542 | * This is a big cheat, but before the EARLY_BOOT phase, |
| 543 | * all smr_* APIs that would access past the rd_seq |
| 544 | * will early return. |
| 545 | */ |
| 546 | pcpu = __container_of(rd_seqp, struct smr_pcpu, c_rd_seq); |
| 547 | smr->smr_pcpu = pcpu - cpu_number(); |
| 548 | assert(&__smr_pcpu(smr)->c_rd_seq == &smr->smr_early); |
| 549 | } else { |
| 550 | size = zpercpu_count() * sizeof(struct smr_pcpu); |
| 551 | pcpu = zalloc_permanent(size, ZALIGN(struct smr_pcpu)); |
| 552 | |
| 553 | __smr_pcpu_associate(smr, pcpu); |
| 554 | } |
| 555 | } |
| 556 | |
| 557 | smr_t |
| 558 | smr_domain_create(smr_flags_t flags, const char *name) |
| 559 | { |
| 560 | smr_pcpu_t pcpu; |
| 561 | smr_t smr; |
| 562 | |
| 563 | smr = kalloc_type(struct smr, Z_WAITOK | Z_ZERO | Z_NOFAIL); |
| 564 | pcpu = kalloc_type(struct smr_pcpu, zpercpu_count(), |
| 565 | Z_WAITOK | Z_ZERO | Z_NOFAIL); |
| 566 | |
| 567 | smr->smr_clock.s_rd_seq = SMR_SEQ_INIT; |
| 568 | smr->smr_clock.s_wr_seq = SMR_SEQ_INIT; |
| 569 | smr->smr_flags = flags; |
| 570 | static_assert(sizeof(struct smr) == |
| 571 | offsetof(struct smr, smr_name) + SMR_NAME_MAX); |
| 572 | strlcpy(dst: smr->smr_name, src: name, n: sizeof(smr->smr_name)); |
| 573 | |
| 574 | __smr_pcpu_associate(smr, pcpu); |
| 575 | |
| 576 | return smr; |
| 577 | } |
| 578 | |
| 579 | void |
| 580 | smr_domain_free(smr_t smr) |
| 581 | { |
| 582 | smr_barrier(smr); |
| 583 | |
| 584 | zpercpu_foreach_cpu(cpu) { |
| 585 | smr_pcpu_t pcpu = __smr_pcpu(smr, cpu); |
| 586 | |
| 587 | assert(pcpu->qhead == NULL); |
| 588 | hw_lck_ticket_destroy(&pcpu->stall_lock, &smr_lock_grp); |
| 589 | } |
| 590 | |
| 591 | kfree_type(struct smr_pcpu, zpercpu_count(), smr->smr_pcpu); |
| 592 | kfree_type(struct smr, smr); |
| 593 | } |
| 594 | |
| 595 | |
| 596 | #pragma mark SMR domains: enter / leave |
| 597 | |
| 598 | bool |
| 599 | smr_entered(smr_t smr) |
| 600 | { |
| 601 | thread_t self = current_thread(); |
| 602 | smr_tracker_t t; |
| 603 | |
| 604 | if (lock_preemption_level_for_thread(self) && |
| 605 | __smr_pcpu(smr)->c_rd_seq != SMR_SEQ_INVALID) { |
| 606 | return true; |
| 607 | } |
| 608 | |
| 609 | if (smr->smr_flags & SMR_SLEEPABLE) { |
| 610 | smrq_serialized_foreach(t, &self->smr_stack, smrt_stack) { |
| 611 | if (t->smrt_domain == smr) { |
| 612 | return true; |
| 613 | } |
| 614 | } |
| 615 | } |
| 616 | |
| 617 | return false; |
| 618 | } |
| 619 | |
| 620 | __attribute__((always_inline)) |
| 621 | bool |
| 622 | smr_entered_cpu_noblock(smr_t smr, int cpu) |
| 623 | { |
| 624 | assert((smr->smr_flags & SMR_SLEEPABLE) == 0); |
| 625 | return __smr_pcpu(smr, cpu)->c_rd_seq != SMR_SEQ_INVALID; |
| 626 | } |
| 627 | |
| 628 | __attribute__((always_inline)) |
| 629 | static smr_seq_t |
| 630 | __smr_enter(smr_t smr, smr_pcpu_t pcpu, smr_seq_t sleepable) |
| 631 | { |
| 632 | smr_seq_t s_wr_seq; |
| 633 | smr_seq_t old_seq; |
| 634 | |
| 635 | assert(!ml_at_interrupt_context()); |
| 636 | |
| 637 | /* |
| 638 | * It is possible to have a long delay between loading the s_wr_seq |
| 639 | * and storing it to the percpu copy of it. |
| 640 | * |
| 641 | * It is unlikely but possible by that time the s_rd_seq advances |
| 642 | * ahead of what we will store. This however is still safe |
| 643 | * and handled in __smr_scan(). |
| 644 | * |
| 645 | * On Intel, to achieve the ordering we want, we could use a store |
| 646 | * followed by an mfence, or any RMW (XCHG, XADD, CMPXCHG, ...). |
| 647 | * XADD is just the fastest instruction of the alternatives, |
| 648 | * but it will only ever add to '0'. |
| 649 | */ |
| 650 | s_wr_seq = os_atomic_load(&smr->smr_clock.s_wr_seq, relaxed); |
| 651 | #if __x86_64__ |
| 652 | /* [R1] */ |
| 653 | old_seq = os_atomic_add_orig(&pcpu->c_rd_seq, s_wr_seq | sleepable, seq_cst); |
| 654 | #else |
| 655 | old_seq = pcpu->c_rd_seq; |
| 656 | os_atomic_store(&pcpu->c_rd_seq, s_wr_seq | sleepable, relaxed); |
| 657 | os_atomic_thread_fence(seq_cst); /* [R1] */ |
| 658 | #endif |
| 659 | assert(old_seq == SMR_SEQ_INVALID); |
| 660 | |
| 661 | return s_wr_seq; |
| 662 | } |
| 663 | |
| 664 | __attribute__((always_inline)) |
| 665 | static void |
| 666 | __smr_leave(smr_pcpu_t pcpu) |
| 667 | { |
| 668 | assert(!ml_at_interrupt_context()); |
| 669 | /* [R2] */ |
| 670 | os_atomic_store(&pcpu->c_rd_seq, SMR_SEQ_INVALID, release); |
| 671 | } |
| 672 | |
| 673 | __attribute__((always_inline)) |
| 674 | void |
| 675 | smr_enter(smr_t smr) |
| 676 | { |
| 677 | disable_preemption(); |
| 678 | __smr_enter(smr, pcpu: __smr_pcpu(smr), sleepable: 0); |
| 679 | } |
| 680 | |
| 681 | __attribute__((always_inline)) |
| 682 | void |
| 683 | smr_leave(smr_t smr) |
| 684 | { |
| 685 | __smr_leave(pcpu: __smr_pcpu(smr)); |
| 686 | enable_preemption(); |
| 687 | } |
| 688 | |
| 689 | void |
| 690 | smr_enter_sleepable(smr_t smr, smr_tracker_t tracker) |
| 691 | { |
| 692 | thread_t self = current_thread(); |
| 693 | struct smr_worker *smrw; |
| 694 | smr_pcpu_t pcpu; |
| 695 | |
| 696 | assert(smr->smr_flags & SMR_SLEEPABLE); |
| 697 | |
| 698 | lock_disable_preemption_for_thread(self); |
| 699 | lck_rw_lock_count_inc(thread: self, lock: smr); |
| 700 | |
| 701 | pcpu = __smr_pcpu(smr); |
| 702 | smrw = PERCPU_GET(smr_worker); |
| 703 | |
| 704 | tracker->smrt_domain = smr; |
| 705 | tracker->smrt_seq = __smr_enter(smr, pcpu, SMR_SEQ_SLEEPABLE); |
| 706 | smrq_serialized_insert_head_relaxed(&smrw->sect_queue, &tracker->smrt_link); |
| 707 | smrq_serialized_insert_head_relaxed(&self->smr_stack, &tracker->smrt_stack); |
| 708 | tracker->smrt_ctid = 0; |
| 709 | tracker->smrt_cpu = -1; |
| 710 | |
| 711 | lock_enable_preemption(); |
| 712 | } |
| 713 | |
| 714 | __attribute__((always_inline)) |
| 715 | static void |
| 716 | __smr_wake_oncore_sleepers(struct smr_worker *smrw) |
| 717 | { |
| 718 | /* |
| 719 | * prevent reordering of making the list empty and checking for waiters. |
| 720 | */ |
| 721 | if (__improbable(os_atomic_load(&smrw->sect_waiter, compiler_acq_rel))) { |
| 722 | if (smrq_empty(&smrw->sect_queue)) { |
| 723 | os_atomic_store(&smrw->sect_waiter, NULL, relaxed); |
| 724 | waitq_wakeup64_all(waitq: &smrw->waitq, |
| 725 | wake_event: __smrw_oncore_event(smrw), THREAD_AWAKENED, |
| 726 | flags: WAITQ_WAKEUP_DEFAULT); |
| 727 | } |
| 728 | } |
| 729 | } |
| 730 | |
| 731 | void |
| 732 | smr_ack_ipi(void) |
| 733 | { |
| 734 | /* |
| 735 | * see __smr_wait_for_oncore(): if at the time of the IPI ack |
| 736 | * the list is empty and there is still a waiter, wake it up. |
| 737 | * |
| 738 | * If the queue is not empty, then when smr_leave_sleepable() |
| 739 | * runs it can't possibly fail to observe smrw->sect_waiter |
| 740 | * being non NULL and will do the wakeup then. |
| 741 | */ |
| 742 | __smr_wake_oncore_sleepers(PERCPU_GET(smr_worker)); |
| 743 | } |
| 744 | |
| 745 | void |
| 746 | smr_mark_active_trackers_stalled(thread_t self) |
| 747 | { |
| 748 | struct smr_worker *smrw = PERCPU_GET(smr_worker); |
| 749 | int cpu = cpu_number(); |
| 750 | smr_tracker_t t; |
| 751 | |
| 752 | /* called at splsched */ |
| 753 | |
| 754 | smrq_serialized_foreach_safe(t, &smrw->sect_queue, smrt_link) { |
| 755 | smr_t smr = t->smrt_domain; |
| 756 | smr_pcpu_t pcpu; |
| 757 | |
| 758 | pcpu = __smr_pcpu(smr, cpu); |
| 759 | |
| 760 | t->smrt_ctid = self->ctid; |
| 761 | t->smrt_cpu = cpu; |
| 762 | |
| 763 | hw_lck_ticket_lock_nopreempt(&pcpu->stall_lock, &smr_lock_grp); |
| 764 | |
| 765 | /* |
| 766 | * Transfer the section to the stalled queue, |
| 767 | * and _then_ leave the regular one. |
| 768 | * |
| 769 | * A store-release is sufficient to order these stores, |
| 770 | * and guarantee that __smr_scan() can't fail to observe |
| 771 | * both the @c rd_seq and @c stall_rd_seq during a transfer |
| 772 | * of a stalled section that was active when it started. |
| 773 | */ |
| 774 | if (smrq_empty(&pcpu->stall_queue)) { |
| 775 | os_atomic_store(&pcpu->stall_rd_seq, t->smrt_seq, relaxed); |
| 776 | } |
| 777 | os_atomic_store(&pcpu->c_rd_seq, SMR_SEQ_INVALID, release); |
| 778 | |
| 779 | smrq_serialized_insert_tail_relaxed(&pcpu->stall_queue, &t->smrt_link); |
| 780 | |
| 781 | hw_lck_ticket_unlock_nopreempt(tlock: &pcpu->stall_lock); |
| 782 | } |
| 783 | |
| 784 | smrq_init(&smrw->sect_queue); |
| 785 | |
| 786 | __smr_wake_oncore_sleepers(smrw); |
| 787 | } |
| 788 | |
| 789 | |
| 790 | __attribute__((noinline)) |
| 791 | static void |
| 792 | __smr_leave_stalled(smr_t smr, smr_tracker_t tracker, thread_t self) |
| 793 | { |
| 794 | smr_seq_t new_stall_seq = SMR_SEQ_INVALID; |
| 795 | smr_tracker_t first = NULL; |
| 796 | smr_pcpu_t pcpu; |
| 797 | bool progress; |
| 798 | |
| 799 | pcpu = __smr_pcpu(smr, cpu: tracker->smrt_cpu); |
| 800 | |
| 801 | hw_lck_ticket_lock_nopreempt(&pcpu->stall_lock, &smr_lock_grp); |
| 802 | |
| 803 | progress = smrq_serialized_first(&pcpu->stall_queue, |
| 804 | struct smr_tracker, smrt_link) == tracker; |
| 805 | |
| 806 | smrq_serialized_remove(&self->smr_stack, &tracker->smrt_stack); |
| 807 | smrq_serialized_remove(&pcpu->stall_queue, &tracker->smrt_link); |
| 808 | bzero(s: tracker, n: sizeof(*tracker)); |
| 809 | |
| 810 | if (progress) { |
| 811 | if (!smrq_empty(&pcpu->stall_queue)) { |
| 812 | first = smrq_serialized_first(&pcpu->stall_queue, |
| 813 | struct smr_tracker, smrt_link); |
| 814 | new_stall_seq = first->smrt_seq; |
| 815 | __builtin_assume(new_stall_seq != SMR_SEQ_INVALID); |
| 816 | assert(SMR_SEQ_CMP(pcpu->stall_rd_seq, <=, new_stall_seq)); |
| 817 | } |
| 818 | |
| 819 | os_atomic_store(&pcpu->stall_rd_seq, new_stall_seq, release); |
| 820 | |
| 821 | progress = pcpu->stall_waiter_goal != SMR_SEQ_INVALID; |
| 822 | } |
| 823 | |
| 824 | if (progress) { |
| 825 | struct turnstile *ts; |
| 826 | |
| 827 | ts = turnstile_prepare(proprietor: (uintptr_t)pcpu, tstore: &pcpu->stall_ts, |
| 828 | TURNSTILE_NULL, type: TURNSTILE_KERNEL_MUTEX); |
| 829 | |
| 830 | if (new_stall_seq == SMR_SEQ_INVALID || |
| 831 | SMR_SEQ_CMP(pcpu->stall_waiter_goal, <=, new_stall_seq)) { |
| 832 | pcpu->stall_waiter_goal = SMR_SEQ_INVALID; |
| 833 | waitq_wakeup64_all(waitq: &ts->ts_waitq, CAST_EVENT64_T(pcpu), |
| 834 | THREAD_AWAKENED, flags: WAITQ_UPDATE_INHERITOR); |
| 835 | } else { |
| 836 | turnstile_update_inheritor(turnstile: ts, new_inheritor: ctid_get_thread(ctid: first->smrt_ctid), |
| 837 | flags: TURNSTILE_IMMEDIATE_UPDATE | TURNSTILE_INHERITOR_THREAD); |
| 838 | } |
| 839 | |
| 840 | turnstile_update_inheritor_complete(turnstile: ts, flags: TURNSTILE_INTERLOCK_HELD); |
| 841 | |
| 842 | turnstile_complete(proprietor: (uintptr_t)pcpu, tstore: &pcpu->stall_ts, |
| 843 | NULL, type: TURNSTILE_KERNEL_MUTEX); |
| 844 | } |
| 845 | |
| 846 | /* reenables preemption disabled in smr_leave_sleepable() */ |
| 847 | hw_lck_ticket_unlock(tlock: &pcpu->stall_lock); |
| 848 | |
| 849 | turnstile_cleanup(); |
| 850 | } |
| 851 | |
| 852 | void |
| 853 | smr_leave_sleepable(smr_t smr, smr_tracker_t tracker) |
| 854 | { |
| 855 | struct smr_worker *smrw; |
| 856 | thread_t self = current_thread(); |
| 857 | |
| 858 | assert(tracker->smrt_seq != SMR_SEQ_INVALID); |
| 859 | assert(smr->smr_flags & SMR_SLEEPABLE); |
| 860 | |
| 861 | lock_disable_preemption_for_thread(self); |
| 862 | |
| 863 | lck_rw_lock_count_dec(thread: self, lock: smr); |
| 864 | |
| 865 | if (__improbable(tracker->smrt_cpu != -1)) { |
| 866 | return __smr_leave_stalled(smr, tracker, self); |
| 867 | } |
| 868 | |
| 869 | __smr_leave(pcpu: __smr_pcpu(smr)); |
| 870 | |
| 871 | smrw = PERCPU_GET(smr_worker); |
| 872 | smrq_serialized_remove(&self->smr_stack, &tracker->smrt_stack); |
| 873 | smrq_serialized_remove(&smrw->sect_queue, &tracker->smrt_link); |
| 874 | bzero(s: tracker, n: sizeof(*tracker)); |
| 875 | |
| 876 | __smr_wake_oncore_sleepers(PERCPU_GET(smr_worker)); |
| 877 | |
| 878 | lock_enable_preemption(); |
| 879 | } |
| 880 | |
| 881 | |
| 882 | #pragma mark SMR domains: advance, wait, poll, synchronize |
| 883 | |
| 884 | static inline smr_seq_t |
| 885 | __smr_wr_advance(smr_t smr) |
| 886 | { |
| 887 | /* [W] */ |
| 888 | return os_atomic_add(&smr->smr_clock.s_wr_seq, SMR_SEQ_INC, release); |
| 889 | } |
| 890 | |
| 891 | static inline bool |
| 892 | __smr_rd_advance(smr_t smr, smr_seq_t goal, smr_seq_t rd_seq) |
| 893 | { |
| 894 | smr_seq_t o_seq; |
| 895 | |
| 896 | os_atomic_thread_fence(seq_cst); /* [S3] */ |
| 897 | |
| 898 | os_atomic_rmw_loop(&smr->smr_clock.s_rd_seq, o_seq, rd_seq, relaxed, { |
| 899 | if (SMR_SEQ_CMP(rd_seq, <=, o_seq)) { |
| 900 | rd_seq = o_seq; |
| 901 | os_atomic_rmw_loop_give_up(break); |
| 902 | } |
| 903 | }); |
| 904 | |
| 905 | return SMR_SEQ_CMP(goal, <=, rd_seq); |
| 906 | } |
| 907 | |
| 908 | __attribute__((noinline)) |
| 909 | static smr_seq_t |
| 910 | __smr_wait_for_stalled(smr_pcpu_t pcpu, smr_seq_t goal) |
| 911 | { |
| 912 | struct turnstile *ts; |
| 913 | thread_t inheritor; |
| 914 | wait_result_t wr; |
| 915 | smr_seq_t stall_rd_seq; |
| 916 | |
| 917 | hw_lck_ticket_lock(&pcpu->stall_lock, &smr_lock_grp); |
| 918 | |
| 919 | stall_rd_seq = pcpu->stall_rd_seq; |
| 920 | if (stall_rd_seq == SMR_SEQ_INVALID || |
| 921 | SMR_SEQ_CMP(goal, <=, stall_rd_seq)) { |
| 922 | hw_lck_ticket_unlock(tlock: &pcpu->stall_lock); |
| 923 | return stall_rd_seq; |
| 924 | } |
| 925 | |
| 926 | if (pcpu->stall_waiter_goal == SMR_SEQ_INVALID || |
| 927 | SMR_SEQ_CMP(goal, <, pcpu->stall_waiter_goal)) { |
| 928 | pcpu->stall_waiter_goal = goal; |
| 929 | } |
| 930 | |
| 931 | inheritor = ctid_get_thread(smrq_serialized_first(&pcpu->stall_queue, |
| 932 | struct smr_tracker, smrt_link)->smrt_ctid); |
| 933 | |
| 934 | ts = turnstile_prepare(proprietor: (uintptr_t)pcpu, tstore: &pcpu->stall_ts, |
| 935 | TURNSTILE_NULL, type: TURNSTILE_KERNEL_MUTEX); |
| 936 | |
| 937 | turnstile_update_inheritor(turnstile: ts, new_inheritor: inheritor, |
| 938 | flags: TURNSTILE_DELAYED_UPDATE | TURNSTILE_INHERITOR_THREAD); |
| 939 | wr = waitq_assert_wait64(waitq: &ts->ts_waitq, CAST_EVENT64_T(pcpu), |
| 940 | THREAD_UNINT, TIMEOUT_WAIT_FOREVER); |
| 941 | turnstile_update_inheritor_complete(turnstile: ts, flags: TURNSTILE_INTERLOCK_HELD); |
| 942 | |
| 943 | if (wr == THREAD_WAITING) { |
| 944 | hw_lck_ticket_unlock(tlock: &pcpu->stall_lock); |
| 945 | thread_block(THREAD_CONTINUE_NULL); |
| 946 | hw_lck_ticket_lock(&pcpu->stall_lock, &smr_lock_grp); |
| 947 | } |
| 948 | |
| 949 | turnstile_complete(proprietor: (uintptr_t)pcpu, tstore: &pcpu->stall_ts, |
| 950 | NULL, type: TURNSTILE_KERNEL_MUTEX); |
| 951 | |
| 952 | stall_rd_seq = pcpu->stall_rd_seq; |
| 953 | hw_lck_ticket_unlock(tlock: &pcpu->stall_lock); |
| 954 | |
| 955 | turnstile_cleanup(); |
| 956 | |
| 957 | return stall_rd_seq; |
| 958 | } |
| 959 | |
| 960 | __attribute__((noinline)) |
| 961 | static smr_seq_t |
| 962 | __smr_wait_for_oncore(smr_pcpu_t pcpu, smr_seq_t goal, uint32_t cpu) |
| 963 | { |
| 964 | thread_t self = current_thread(); |
| 965 | struct smr_worker *smrw; |
| 966 | uint64_t deadline = 0; |
| 967 | vm_offset_t base; |
| 968 | smr_seq_t rd_seq; |
| 969 | |
| 970 | /* |
| 971 | * We are waiting for a currently active SMR section. |
| 972 | * Start spin-waiting for it for a bit. |
| 973 | */ |
| 974 | for (;;) { |
| 975 | if (hw_spin_wait_until(&pcpu->c_rd_seq, rd_seq, |
| 976 | rd_seq == SMR_SEQ_INVALID || SMR_SEQ_CMP(goal, <=, rd_seq))) { |
| 977 | return rd_seq; |
| 978 | } |
| 979 | |
| 980 | if (deadline == 0) { |
| 981 | clock_interval_to_deadline(interval: smr_wait_spin_us, |
| 982 | NSEC_PER_USEC, result: &deadline); |
| 983 | } else if (mach_absolute_time() > deadline) { |
| 984 | break; |
| 985 | } |
| 986 | } |
| 987 | |
| 988 | /* |
| 989 | * This section is being active for a while, |
| 990 | * we need to move to a more passive way of waiting. |
| 991 | * |
| 992 | * We post ourselves on the remote processor tracking head, |
| 993 | * to denote we need a thread_wakeup() when the tracker head clears, |
| 994 | * then send an IPI which will have 2 possible outcomes: |
| 995 | * |
| 996 | * 1. when smr_ack_ipi() runs, the queue is already cleared, |
| 997 | * and we will be woken up immediately. |
| 998 | * |
| 999 | * 2. when smr_ack_ipi() runs, the queue isn't cleared, |
| 1000 | * then it does nothing, but there is a guarantee that |
| 1001 | * when the queue clears, the remote core will observe |
| 1002 | * that there is a waiter, and thread_wakeup() will be |
| 1003 | * called then. |
| 1004 | * |
| 1005 | * In order to avoid to actually wait, we do spin some more, |
| 1006 | * hoping for the remote sequence to change. |
| 1007 | */ |
| 1008 | base = other_percpu_base(cpu_number: cpu); |
| 1009 | smrw = PERCPU_GET_WITH_BASE(base, smr_worker); |
| 1010 | |
| 1011 | waitq_assert_wait64(waitq: &smrw->waitq, wait_event: __smrw_oncore_event(smrw), |
| 1012 | THREAD_UNINT, TIMEOUT_WAIT_FOREVER); |
| 1013 | |
| 1014 | if (lock_cmpxchg(&smrw->sect_waiter, NULL, self, relaxed)) { |
| 1015 | /* |
| 1016 | * only really send the IPI if we're first, |
| 1017 | * to avoid IPI storms in case of a pile-up |
| 1018 | * of smr_synchronize() calls stalled on the same guy. |
| 1019 | */ |
| 1020 | cause_ast_check(PERCPU_GET_WITH_BASE(base, processor)); |
| 1021 | } |
| 1022 | |
| 1023 | if (hw_spin_wait_until(&pcpu->c_rd_seq, rd_seq, |
| 1024 | rd_seq == SMR_SEQ_INVALID || SMR_SEQ_CMP(goal, <=, rd_seq))) { |
| 1025 | clear_wait(thread: self, THREAD_AWAKENED); |
| 1026 | return rd_seq; |
| 1027 | } |
| 1028 | |
| 1029 | thread_block(THREAD_CONTINUE_NULL); |
| 1030 | |
| 1031 | return os_atomic_load(&pcpu->c_rd_seq, relaxed); |
| 1032 | } |
| 1033 | |
| 1034 | __attribute__((noinline)) |
| 1035 | static bool |
| 1036 | __smr_scan(smr_t smr, smr_seq_t goal, smr_clock_t clk, bool wait) |
| 1037 | { |
| 1038 | smr_delta_t delta; |
| 1039 | smr_seq_t rd_seq; |
| 1040 | |
| 1041 | if (__improbable(startup_phase < STARTUP_SUB_EARLY_BOOT)) { |
| 1042 | return true; |
| 1043 | } |
| 1044 | |
| 1045 | /* |
| 1046 | * Validate that the goal is sane. |
| 1047 | */ |
| 1048 | delta = SMR_SEQ_DELTA(goal, clk.s_wr_seq); |
| 1049 | if (delta == SMR_SEQ_INC) { |
| 1050 | /* |
| 1051 | * This SMR clock uses deferred advance, |
| 1052 | * and the goal is one inc in the future. |
| 1053 | * |
| 1054 | * If we can wait, then commit the sequence number, |
| 1055 | * else we can't possibly succeed. |
| 1056 | * |
| 1057 | * Doing a commit here rather than an advance |
| 1058 | * gives the hardware a chance to abort the |
| 1059 | * transaction early in case of high contention |
| 1060 | * compared to an unconditional advance. |
| 1061 | */ |
| 1062 | if (!wait) { |
| 1063 | return false; |
| 1064 | } |
| 1065 | if (lock_cmpxchgv(&smr->smr_clock.s_wr_seq, |
| 1066 | clk.s_wr_seq, goal, &clk.s_wr_seq, relaxed)) { |
| 1067 | clk.s_wr_seq = goal; |
| 1068 | } |
| 1069 | } else if (delta > 0) { |
| 1070 | /* |
| 1071 | * Invalid goal: the caller held on it for too long, |
| 1072 | * and integers wrapped. |
| 1073 | */ |
| 1074 | return true; |
| 1075 | } |
| 1076 | |
| 1077 | os_atomic_thread_fence(seq_cst); /* [S2] */ |
| 1078 | |
| 1079 | /* |
| 1080 | * The read sequence can be no larger than the write sequence |
| 1081 | * at the start of the poll. |
| 1082 | * |
| 1083 | * We know that on entry: |
| 1084 | * |
| 1085 | * s_rd_seq < goal <= s_wr_seq |
| 1086 | * |
| 1087 | * The correctness of this algorithm relies on the fact that |
| 1088 | * the SMR domain [s_rd_seq, s_wr_seq) can't possibly move |
| 1089 | * by more than roughly (ULONG_MAX / 2) while __smr_scan() |
| 1090 | * is running, otherwise the "rd_seq" we try to scan for |
| 1091 | * might appear larger than s_rd_seq spuriously and we'd |
| 1092 | * __smr_rd_advance() incorrectly. |
| 1093 | * |
| 1094 | * This is guaranteed by the fact that this represents |
| 1095 | * advancing 2^62 times. At one advance every nanosecond, |
| 1096 | * it takes more than a century, which makes it possible |
| 1097 | * to call smr_wait() or smr_poll() with preemption enabled. |
| 1098 | */ |
| 1099 | rd_seq = clk.s_wr_seq; |
| 1100 | |
| 1101 | zpercpu_foreach_cpu(cpu) { |
| 1102 | smr_pcpu_t pcpu = __smr_pcpu(smr, cpu); |
| 1103 | smr_seq_t seq = os_atomic_load(&pcpu->c_rd_seq, relaxed); |
| 1104 | |
| 1105 | while (seq != SMR_SEQ_INVALID) { |
| 1106 | /* |
| 1107 | * Resolve the race documented in __smr_enter(). |
| 1108 | * |
| 1109 | * The CPU has loaded a stale s_wr_seq, and s_rd_seq |
| 1110 | * moved past this stale value. |
| 1111 | * |
| 1112 | * Its critical section is however properly serialized, |
| 1113 | * but we can't know what the "correct" s_wr_seq it |
| 1114 | * could have observed was. We have to assume `s_rd_seq` |
| 1115 | * to prevent it from advancing. |
| 1116 | */ |
| 1117 | if (SMR_SEQ_CMP(seq, <, clk.s_rd_seq)) { |
| 1118 | seq = clk.s_rd_seq; |
| 1119 | } |
| 1120 | |
| 1121 | if (!wait || SMR_SEQ_CMP(goal, <=, seq)) { |
| 1122 | seq &= ~SMR_SEQ_SLEEPABLE; |
| 1123 | break; |
| 1124 | } |
| 1125 | |
| 1126 | if (seq & SMR_SEQ_SLEEPABLE) { |
| 1127 | seq = __smr_wait_for_oncore(pcpu, goal, cpu); |
| 1128 | } else { |
| 1129 | disable_preemption(); |
| 1130 | seq = hw_wait_while_equals_long(&pcpu->c_rd_seq, seq); |
| 1131 | enable_preemption(); |
| 1132 | } |
| 1133 | } |
| 1134 | |
| 1135 | if (seq != SMR_SEQ_INVALID && SMR_SEQ_CMP(seq, <, rd_seq)) { |
| 1136 | rd_seq = seq; |
| 1137 | } |
| 1138 | } |
| 1139 | |
| 1140 | if (smr->smr_flags & SMR_SLEEPABLE) { |
| 1141 | /* |
| 1142 | * Order observation of stalled sections, |
| 1143 | * see smr_mark_active_trackers_stalled(). |
| 1144 | */ |
| 1145 | os_atomic_thread_fence(seq_cst); |
| 1146 | |
| 1147 | zpercpu_foreach_cpu(cpu) { |
| 1148 | smr_pcpu_t pcpu = __smr_pcpu(smr, cpu); |
| 1149 | smr_seq_t seq = os_atomic_load(&pcpu->stall_rd_seq, relaxed); |
| 1150 | |
| 1151 | while (seq != SMR_SEQ_INVALID) { |
| 1152 | if (SMR_SEQ_CMP(seq, <, clk.s_rd_seq)) { |
| 1153 | seq = clk.s_rd_seq; |
| 1154 | } |
| 1155 | |
| 1156 | if (!wait || SMR_SEQ_CMP(goal, <=, seq)) { |
| 1157 | seq &= ~SMR_SEQ_SLEEPABLE; |
| 1158 | break; |
| 1159 | } |
| 1160 | |
| 1161 | seq = __smr_wait_for_stalled(pcpu, goal); |
| 1162 | } |
| 1163 | |
| 1164 | if (seq != SMR_SEQ_INVALID && SMR_SEQ_CMP(seq, <, rd_seq)) { |
| 1165 | rd_seq = seq; |
| 1166 | } |
| 1167 | } |
| 1168 | } |
| 1169 | |
| 1170 | /* |
| 1171 | * Advance the rd_seq as long as we observed a more recent value. |
| 1172 | */ |
| 1173 | return __smr_rd_advance(smr, goal, rd_seq); |
| 1174 | } |
| 1175 | |
| 1176 | static inline bool |
| 1177 | __smr_poll(smr_t smr, smr_seq_t goal, bool wait) |
| 1178 | { |
| 1179 | smr_clock_t clk; |
| 1180 | |
| 1181 | /* |
| 1182 | * Load both the s_rd_seq and s_wr_seq in the right order so that we |
| 1183 | * can't observe a s_rd_seq older than s_wr_seq. |
| 1184 | */ |
| 1185 | |
| 1186 | /* [S1] */ |
| 1187 | clk.s_rd_seq = os_atomic_load(&smr->smr_clock.s_rd_seq, acquire); |
| 1188 | |
| 1189 | /* |
| 1190 | * We expect this to be typical: the goal has already been observed. |
| 1191 | */ |
| 1192 | if (__probable(SMR_SEQ_CMP(goal, <=, clk.s_rd_seq))) { |
| 1193 | return true; |
| 1194 | } |
| 1195 | |
| 1196 | clk.s_wr_seq = os_atomic_load(&smr->smr_clock.s_wr_seq, relaxed); |
| 1197 | |
| 1198 | return __smr_scan(smr, goal, clk, wait); |
| 1199 | } |
| 1200 | |
| 1201 | smr_seq_t |
| 1202 | smr_advance(smr_t smr) |
| 1203 | { |
| 1204 | smr_clock_t clk; |
| 1205 | |
| 1206 | assert(!smr_entered(smr)); |
| 1207 | |
| 1208 | /* |
| 1209 | * We assume that there will at least be a successful __smr_poll |
| 1210 | * call every 2^60 calls to smr_advance() or so, so we do not need |
| 1211 | * to check if [s_rd_seq, s_wr_seq) is growing too wide. |
| 1212 | */ |
| 1213 | static_assert(sizeof(clk.s_wr_seq) == 8); |
| 1214 | return __smr_wr_advance(smr); |
| 1215 | } |
| 1216 | |
| 1217 | smr_seq_t |
| 1218 | smr_deferred_advance(smr_t smr) |
| 1219 | { |
| 1220 | os_atomic_thread_fence(seq_cst); |
| 1221 | return SMR_SEQ_INC + os_atomic_load(&smr->smr_clock.s_wr_seq, relaxed); |
| 1222 | } |
| 1223 | |
| 1224 | void |
| 1225 | smr_deferred_advance_commit(smr_t smr, smr_seq_t seq) |
| 1226 | { |
| 1227 | /* |
| 1228 | * no barrier needed: smr_deferred_advance() had one already. |
| 1229 | * no failure handling: it means someone updated the clock already! |
| 1230 | * lock_cmpxchg: so that we pre-test for architectures needing it. |
| 1231 | */ |
| 1232 | assert(seq != SMR_SEQ_INVALID); |
| 1233 | lock_cmpxchg(&smr->smr_clock.s_wr_seq, seq - SMR_SEQ_INC, seq, relaxed); |
| 1234 | } |
| 1235 | |
| 1236 | bool |
| 1237 | smr_poll(smr_t smr, smr_seq_t goal) |
| 1238 | { |
| 1239 | assert(!smr_entered(smr) && goal != SMR_SEQ_INVALID); |
| 1240 | return __smr_poll(smr, goal, false); |
| 1241 | } |
| 1242 | |
| 1243 | void |
| 1244 | smr_wait(smr_t smr, smr_seq_t goal) |
| 1245 | { |
| 1246 | assert(!smr_entered(smr) && goal != SMR_SEQ_INVALID); |
| 1247 | if (smr->smr_flags & SMR_SLEEPABLE) { |
| 1248 | assert(get_preemption_level() == 0); |
| 1249 | } |
| 1250 | (void)__smr_poll(smr, goal, true); |
| 1251 | } |
| 1252 | |
| 1253 | void |
| 1254 | smr_synchronize(smr_t smr) |
| 1255 | { |
| 1256 | smr_clock_t clk; |
| 1257 | |
| 1258 | assert(!smr_entered(smr)); |
| 1259 | assert(!ml_at_interrupt_context()); |
| 1260 | if (smr->smr_flags & SMR_SLEEPABLE) { |
| 1261 | assert(get_preemption_level() == 0); |
| 1262 | } |
| 1263 | |
| 1264 | /* |
| 1265 | * Similar to __smr_poll() but also does a deferred advance which |
| 1266 | * __smr_scan will commit. |
| 1267 | */ |
| 1268 | |
| 1269 | clk.s_rd_seq = os_atomic_load(&smr->smr_clock.s_rd_seq, relaxed); |
| 1270 | os_atomic_thread_fence(seq_cst); |
| 1271 | clk.s_wr_seq = os_atomic_load(&smr->smr_clock.s_wr_seq, relaxed); |
| 1272 | |
| 1273 | (void)__smr_scan(smr, goal: clk.s_wr_seq + SMR_SEQ_INC, clk, true); |
| 1274 | } |
| 1275 | |
| 1276 | |
| 1277 | #pragma mark SMR domains: smr_call & smr_barrier |
| 1278 | |
| 1279 | /*! |
| 1280 | * @struct smr_barrier_ctx |
| 1281 | * |
| 1282 | * @brief |
| 1283 | * Data structure to track the completion of an smr_barrier() call. |
| 1284 | */ |
| 1285 | struct smr_barrier_ctx { |
| 1286 | struct smr *smrb_domain; |
| 1287 | struct thread *smrb_waiter; |
| 1288 | uint32_t smrb_pending; |
| 1289 | uint32_t smrb_count; |
| 1290 | }; |
| 1291 | |
| 1292 | /*! |
| 1293 | * @struct smr_barrier_job |
| 1294 | * |
| 1295 | * @brief |
| 1296 | * Data structure used to track completion of smr_barrier() calls. |
| 1297 | */ |
| 1298 | struct smr_barrier_job { |
| 1299 | struct smr_barrier_ctx *smrj_context; |
| 1300 | union { |
| 1301 | struct smr_node smrj_node; |
| 1302 | struct mpsc_queue_chain smrj_link; |
| 1303 | }; |
| 1304 | }; |
| 1305 | |
| 1306 | #define SMR_BARRIER_SIZE 24 |
| 1307 | static_assert(sizeof(struct smr_barrier_job) == SMR_BARRIER_SIZE); |
| 1308 | #define SMR_BARRIER_USE_STACK (SMR_BARRIER_SIZE * MAX_CPUS <= 512) |
| 1309 | |
| 1310 | static void |
| 1311 | __smr_worker_check_invariants(struct smr_worker *smrw) |
| 1312 | { |
| 1313 | #if MACH_ASSERT |
| 1314 | smr_pcpu_t pcpu = smrw->whead; |
| 1315 | uint16_t num = (uint16_t)cpu_number(); |
| 1316 | |
| 1317 | assert(!ml_get_interrupts_enabled() || get_preemption_level()); |
| 1318 | |
| 1319 | for (; pcpu != *smrw->wold_tail; pcpu = pcpu->drain_next) { |
| 1320 | assertf(pcpu->qold_seq != SMR_SEQ_INVALID && |
| 1321 | __smr_pcpu_queued(pcpu), |
| 1322 | "pcpu %p doesn't belong on %p old queue" , pcpu, smrw); |
| 1323 | pcpu->__check_cpu = num; |
| 1324 | pcpu->__check_reason = (uint8_t)smrw->detach_reason; |
| 1325 | pcpu->__check_list = 1; |
| 1326 | } |
| 1327 | |
| 1328 | for (; pcpu != *smrw->wage_tail; pcpu = pcpu->drain_next) { |
| 1329 | __assert_only smr_t smr = pcpu->drain_smr; |
| 1330 | |
| 1331 | assertf(pcpu->qold_seq == SMR_SEQ_INVALID && |
| 1332 | pcpu->qage_seq != SMR_SEQ_INVALID && |
| 1333 | SMR_SEQ_CMP(pcpu->qage_seq, <=, smr->smr_clock.s_wr_seq) && |
| 1334 | __smr_pcpu_queued(pcpu), |
| 1335 | "pcpu %p doesn't belong on %p aging queue" , pcpu, smrw); |
| 1336 | pcpu->__check_cpu = num; |
| 1337 | pcpu->__check_reason = (uint8_t)smrw->detach_reason; |
| 1338 | pcpu->__check_list = 2; |
| 1339 | } |
| 1340 | |
| 1341 | for (; pcpu != *smrw->wcur_tail; pcpu = pcpu->drain_next) { |
| 1342 | assertf(pcpu->qold_seq == SMR_SEQ_INVALID && |
| 1343 | pcpu->qage_seq != SMR_SEQ_INVALID && |
| 1344 | __smr_pcpu_queued(pcpu), |
| 1345 | "pcpu %p doesn't belong on %p current queue" , pcpu, smrw); |
| 1346 | pcpu->__check_cpu = num; |
| 1347 | pcpu->__check_reason = (uint8_t)smrw->detach_reason; |
| 1348 | pcpu->__check_list = 3; |
| 1349 | } |
| 1350 | |
| 1351 | assert(pcpu == NULL); |
| 1352 | #else |
| 1353 | (void)smrw; |
| 1354 | #endif |
| 1355 | } |
| 1356 | |
| 1357 | __attribute__((noinline)) |
| 1358 | static void |
| 1359 | __smr_cpu_lazy_up(struct smr_worker *smrw) |
| 1360 | { |
| 1361 | spl_t spl; |
| 1362 | |
| 1363 | /* |
| 1364 | * calling smr_call/smr_barrier() from the context of a CPU |
| 1365 | * with a detached worker is illegal. |
| 1366 | * |
| 1367 | * However, bound threads might run on a derecommended (IGNORED) |
| 1368 | * cpu which we correct for here (and the CPU will go back to IGNORED |
| 1369 | * in smr_cpu_leave()). |
| 1370 | */ |
| 1371 | assert(smrw->detach_reason == SMR_CPU_REASON_IGNORED); |
| 1372 | |
| 1373 | spl = splsched(); |
| 1374 | __smrw_lock(smrw); |
| 1375 | smrw->detach_reason &= ~SMR_CPU_REASON_IGNORED; |
| 1376 | __smrw_unlock(smrw); |
| 1377 | splx(spl); |
| 1378 | } |
| 1379 | |
| 1380 | static void |
| 1381 | __smr_cpu_lazy_up_if_needed(struct smr_worker *smrw) |
| 1382 | { |
| 1383 | if (__improbable(smrw->detach_reason != SMR_CPU_REASON_NONE)) { |
| 1384 | __smr_cpu_lazy_up(smrw); |
| 1385 | } |
| 1386 | } |
| 1387 | |
| 1388 | static bool |
| 1389 | __smr_call_should_advance(smr_pcpu_t pcpu) |
| 1390 | { |
| 1391 | if (pcpu->qcur_cnt > smr_call_cnt_cap) { |
| 1392 | return true; |
| 1393 | } |
| 1394 | if (pcpu->qcur_size > smr_call_size_cap) { |
| 1395 | return true; |
| 1396 | } |
| 1397 | return false; |
| 1398 | } |
| 1399 | |
| 1400 | static void |
| 1401 | __smr_call_advance_qcur(smr_t smr, smr_pcpu_t pcpu, bool needs_commit) |
| 1402 | { |
| 1403 | smr_seq_t new_seq; |
| 1404 | |
| 1405 | if (needs_commit || pcpu->qage_seq) { |
| 1406 | new_seq = smr_advance(smr); |
| 1407 | } else { |
| 1408 | new_seq = smr_deferred_advance(smr); |
| 1409 | } |
| 1410 | __builtin_assume(new_seq != SMR_SEQ_INVALID); |
| 1411 | |
| 1412 | pcpu->qage_seq = new_seq; |
| 1413 | pcpu->qage_tail = pcpu->qcur_tail; |
| 1414 | |
| 1415 | pcpu->qcur_size = 0; |
| 1416 | pcpu->qcur_cnt = 0; |
| 1417 | } |
| 1418 | |
| 1419 | static void |
| 1420 | __smr_call_push(smr_pcpu_t pcpu, smr_node_t node, smr_cb_t cb) |
| 1421 | { |
| 1422 | assert(pcpu->c_rd_seq == SMR_SEQ_INVALID); |
| 1423 | |
| 1424 | node->smrn_next = NULL; |
| 1425 | node->smrn_cb = cb; |
| 1426 | |
| 1427 | *pcpu->qcur_tail = node; |
| 1428 | pcpu->qcur_tail = &node->smrn_next; |
| 1429 | pcpu->qcur_cnt += 1; |
| 1430 | } |
| 1431 | |
| 1432 | static void |
| 1433 | __smr_call_dispatch(struct smr_worker *smrw, smr_pcpu_t pcpu) |
| 1434 | { |
| 1435 | __smr_worker_check_invariants(smrw); |
| 1436 | |
| 1437 | if (!__smr_pcpu_queued(pcpu)) { |
| 1438 | assert(pcpu->qold_seq == SMR_SEQ_INVALID); |
| 1439 | assert(pcpu->qage_seq != SMR_SEQ_INVALID); |
| 1440 | |
| 1441 | pcpu->drain_next = NULL; |
| 1442 | *smrw->wcur_tail = pcpu; |
| 1443 | smrw->wcur_tail = &pcpu->drain_next; |
| 1444 | } |
| 1445 | } |
| 1446 | |
| 1447 | void |
| 1448 | smr_call(smr_t smr, smr_node_t node, vm_size_t size, smr_cb_t cb) |
| 1449 | { |
| 1450 | struct smr_worker *smrw; |
| 1451 | smr_pcpu_t pcpu; |
| 1452 | |
| 1453 | if (__improbable(startup_phase < STARTUP_SUB_EARLY_BOOT)) { |
| 1454 | return cb(node); |
| 1455 | } |
| 1456 | |
| 1457 | lock_disable_preemption_for_thread(current_thread()); |
| 1458 | assert(!ml_at_interrupt_context()); |
| 1459 | |
| 1460 | smrw = PERCPU_GET(smr_worker); |
| 1461 | __smr_cpu_lazy_up_if_needed(smrw); |
| 1462 | |
| 1463 | pcpu = __smr_pcpu(smr); |
| 1464 | assert(pcpu->c_rd_seq == SMR_SEQ_INVALID); |
| 1465 | |
| 1466 | if (os_add_overflow(pcpu->qcur_size, size, &pcpu->qcur_size)) { |
| 1467 | pcpu->qcur_size = UINT32_MAX; |
| 1468 | } |
| 1469 | |
| 1470 | __smr_call_push(pcpu, node, cb); |
| 1471 | if (__smr_call_should_advance(pcpu)) { |
| 1472 | if (pcpu->qage_seq == SMR_SEQ_INVALID) { |
| 1473 | __smr_call_advance_qcur(smr, pcpu, false); |
| 1474 | } |
| 1475 | __smr_call_dispatch(smrw, pcpu); |
| 1476 | } |
| 1477 | |
| 1478 | return lock_enable_preemption(); |
| 1479 | } |
| 1480 | |
| 1481 | static inline event_t |
| 1482 | __smrb_event(struct smr_barrier_ctx *ctx) |
| 1483 | { |
| 1484 | return ctx; |
| 1485 | } |
| 1486 | |
| 1487 | static void |
| 1488 | __smr_barrier_cb(struct smr_node *node) |
| 1489 | { |
| 1490 | struct smr_barrier_job *job; |
| 1491 | struct smr_barrier_ctx *ctx; |
| 1492 | |
| 1493 | job = __container_of(node, struct smr_barrier_job, smrj_node); |
| 1494 | ctx = job->smrj_context; |
| 1495 | |
| 1496 | if (os_atomic_dec(&ctx->smrb_pending, relaxed) == 0) { |
| 1497 | /* |
| 1498 | * It is permitted to still reach into the context |
| 1499 | * because smr_barrier() always blocks, which means |
| 1500 | * that the context will be valid until this wakeup |
| 1501 | * happens. |
| 1502 | */ |
| 1503 | thread_wakeup_thread(event: __smrb_event(ctx), thread: ctx->smrb_waiter); |
| 1504 | } |
| 1505 | } |
| 1506 | |
| 1507 | static bool |
| 1508 | __smr_barrier_drain(struct smr_worker *smrw, bool needs_commit) |
| 1509 | { |
| 1510 | mpsc_queue_chain_t head, tail, it; |
| 1511 | |
| 1512 | head = mpsc_queue_dequeue_batch(q: &smrw->barrier_queue, tail: &tail, |
| 1513 | OS_ATOMIC_DEPENDENCY_NONE); |
| 1514 | |
| 1515 | mpsc_queue_batch_foreach_safe(it, head, tail) { |
| 1516 | struct smr_barrier_job *job; |
| 1517 | struct smr_barrier_ctx *ctx; |
| 1518 | smr_pcpu_t pcpu; |
| 1519 | smr_t smr; |
| 1520 | |
| 1521 | job = __container_of(it, struct smr_barrier_job, smrj_link); |
| 1522 | ctx = job->smrj_context; |
| 1523 | smr = ctx->smrb_domain; |
| 1524 | pcpu = __smr_pcpu(smr, smrw->processor->cpu_id); |
| 1525 | |
| 1526 | pcpu->qcur_size = UINT32_MAX; |
| 1527 | __smr_call_push(pcpu, &job->smrj_node, __smr_barrier_cb); |
| 1528 | __smr_call_advance_qcur(smr, pcpu, needs_commit); |
| 1529 | __smr_call_dispatch(smrw, pcpu); |
| 1530 | } |
| 1531 | |
| 1532 | return head != NULL; |
| 1533 | } |
| 1534 | |
| 1535 | |
| 1536 | void |
| 1537 | smr_barrier(smr_t smr) |
| 1538 | { |
| 1539 | #if SMR_BARRIER_USE_STACK |
| 1540 | struct smr_barrier_job jobs[MAX_CPUS]; |
| 1541 | #else |
| 1542 | struct smr_barrier_job *jobs; |
| 1543 | #endif |
| 1544 | struct smr_barrier_job *job; |
| 1545 | struct smr_barrier_ctx ctx = { |
| 1546 | .smrb_domain = smr, |
| 1547 | .smrb_waiter = current_thread(), |
| 1548 | .smrb_pending = zpercpu_count(), |
| 1549 | .smrb_count = zpercpu_count(), |
| 1550 | }; |
| 1551 | spl_t spl; |
| 1552 | |
| 1553 | /* |
| 1554 | * First wait for all readers to observe whatever it is |
| 1555 | * that changed prior to this call. |
| 1556 | * |
| 1557 | * _then_ enqueue callbacks that push out anything ahead. |
| 1558 | */ |
| 1559 | smr_synchronize(smr); |
| 1560 | |
| 1561 | #if !SMR_BARRIER_USE_STACK |
| 1562 | jobs = kalloc_type(struct smr_barrier_job, ctx.smrb_count, |
| 1563 | Z_WAITOK | Z_ZERO | Z_NOFAIL); |
| 1564 | #endif |
| 1565 | job = jobs; |
| 1566 | spl = splsched(); |
| 1567 | |
| 1568 | __smr_cpu_lazy_up_if_needed(PERCPU_GET(smr_worker)); |
| 1569 | |
| 1570 | percpu_foreach(smrw, smr_worker) { |
| 1571 | job->smrj_context = &ctx; |
| 1572 | if (mpsc_queue_append(q: &smrw->barrier_queue, elm: &job->smrj_link)) { |
| 1573 | __smrw_lock(smrw); |
| 1574 | __smrw_wakeup_and_unlock(smrw); |
| 1575 | } |
| 1576 | job++; |
| 1577 | } |
| 1578 | |
| 1579 | /* |
| 1580 | * Because we disabled interrupts, our own CPU's callback |
| 1581 | * can't possibly have run, so just block. |
| 1582 | * |
| 1583 | * We must block in order to guarantee the lifetime of "ctx". |
| 1584 | * (See comment in __smr_barrier_cb). |
| 1585 | */ |
| 1586 | assert_wait(event: __smrb_event(ctx: &ctx), THREAD_UNINT); |
| 1587 | assert(ctx.smrb_pending > 0); |
| 1588 | splx(spl); |
| 1589 | thread_block(THREAD_CONTINUE_NULL); |
| 1590 | |
| 1591 | #if !SMR_BARRIER_USE_STACK |
| 1592 | kfree_type(struct smr_barrier_job, ctx.smrb_count, jobs); |
| 1593 | #endif |
| 1594 | } |
| 1595 | |
| 1596 | |
| 1597 | #pragma mark SMR domains: smr_worker |
| 1598 | |
| 1599 | static void |
| 1600 | __smr_worker_drain_lock(struct smr_worker *smrw) |
| 1601 | { |
| 1602 | for (;;) { |
| 1603 | ml_set_interrupts_enabled(false); |
| 1604 | __smrw_lock(smrw); |
| 1605 | |
| 1606 | /* |
| 1607 | * Check we are on an appropriate processor |
| 1608 | * |
| 1609 | * Note that we might be running on the canonical |
| 1610 | * processor incorrectly: if the processor has been |
| 1611 | * de-recommended but isn't offline. |
| 1612 | */ |
| 1613 | if (__probable(current_processor() == smrw->processor)) { |
| 1614 | if (__probable(!smrw->detach_reason)) { |
| 1615 | break; |
| 1616 | } |
| 1617 | } else { |
| 1618 | if (__probable(smrw->detach_reason)) { |
| 1619 | break; |
| 1620 | } |
| 1621 | } |
| 1622 | |
| 1623 | /* go bind in the right place and retry */ |
| 1624 | thread_bind(processor: __smrw_drain_bind_target(smrw)); |
| 1625 | __smrw_unlock(smrw); |
| 1626 | ml_set_interrupts_enabled(true); |
| 1627 | thread_block(THREAD_CONTINUE_NULL); |
| 1628 | } |
| 1629 | } |
| 1630 | |
| 1631 | static void |
| 1632 | __smr_worker_drain_unlock(struct smr_worker *smrw) |
| 1633 | { |
| 1634 | __smrw_unlock(smrw); |
| 1635 | ml_set_interrupts_enabled(true); |
| 1636 | } |
| 1637 | |
| 1638 | /*! |
| 1639 | * @function __smr_worker_tick |
| 1640 | * |
| 1641 | * @brief |
| 1642 | * Make the SMR worker queues make gentle progress |
| 1643 | * |
| 1644 | * @discussion |
| 1645 | * One round of progress will: |
| 1646 | * - move entries that have aged as being old, |
| 1647 | * - commit entries that have a deferred sequence and let them age. |
| 1648 | * |
| 1649 | * If this results into any callbacks to become "old", |
| 1650 | * then the worker is being woken up to start running callbacks. |
| 1651 | * |
| 1652 | * This function must run either on the processfor for this worker, |
| 1653 | * or under the worker drain lock being held. |
| 1654 | */ |
| 1655 | static void |
| 1656 | __smr_worker_tick(struct smr_worker *smrw, uint64_t ctime, bool wakeup) |
| 1657 | { |
| 1658 | smr_pcpu_t pcpu = *smrw->wold_tail; |
| 1659 | |
| 1660 | __smr_worker_check_invariants(smrw); |
| 1661 | |
| 1662 | for (; pcpu != *smrw->wage_tail; pcpu = pcpu->drain_next) { |
| 1663 | assert(pcpu->qold_seq == SMR_SEQ_INVALID); |
| 1664 | assert(pcpu->qage_seq != SMR_SEQ_INVALID); |
| 1665 | |
| 1666 | pcpu->qold_seq = pcpu->qage_seq; |
| 1667 | pcpu->qold_tail = pcpu->qage_tail; |
| 1668 | |
| 1669 | pcpu->qage_seq = SMR_SEQ_INVALID; |
| 1670 | } |
| 1671 | |
| 1672 | for (; pcpu; pcpu = pcpu->drain_next) { |
| 1673 | assert(pcpu->qold_seq == SMR_SEQ_INVALID); |
| 1674 | assert(pcpu->qage_seq != SMR_SEQ_INVALID); |
| 1675 | |
| 1676 | smr_deferred_advance_commit(smr: pcpu->drain_smr, seq: pcpu->qage_seq); |
| 1677 | } |
| 1678 | |
| 1679 | smrw->wold_tail = smrw->wage_tail; |
| 1680 | smrw->wage_tail = smrw->wcur_tail; |
| 1681 | smrw->drain_ctime = ctime; |
| 1682 | |
| 1683 | __smr_worker_check_invariants(smrw); |
| 1684 | |
| 1685 | if (wakeup && smrw->wold_tail != &smrw->whead) { |
| 1686 | __smrw_lock(smrw); |
| 1687 | __smrw_wakeup_and_unlock(smrw); |
| 1688 | } |
| 1689 | } |
| 1690 | |
| 1691 | static void |
| 1692 | __smr_worker_update_wold_tail(struct smr_worker *smrw, smr_pcpu_t *new_tail) |
| 1693 | { |
| 1694 | smr_pcpu_t *old_tail = smrw->wold_tail; |
| 1695 | |
| 1696 | if (smrw->wcur_tail == old_tail) { |
| 1697 | smrw->wage_tail = new_tail; |
| 1698 | smrw->wcur_tail = new_tail; |
| 1699 | } else if (smrw->wage_tail == old_tail) { |
| 1700 | smrw->wage_tail = new_tail; |
| 1701 | } |
| 1702 | |
| 1703 | smrw->wold_tail = new_tail; |
| 1704 | } |
| 1705 | |
| 1706 | static void |
| 1707 | __smr_worker_drain_one(struct smr_worker *smrw, smr_pcpu_t pcpu) |
| 1708 | { |
| 1709 | smr_t smr = pcpu->drain_smr; |
| 1710 | smr_seq_t seq = pcpu->qold_seq; |
| 1711 | smr_node_t head; |
| 1712 | |
| 1713 | /* |
| 1714 | * Step 1: pop the "old" items, |
| 1715 | * (qold_tail/qold_seq left dangling) |
| 1716 | */ |
| 1717 | |
| 1718 | assert(seq != SMR_SEQ_INVALID); |
| 1719 | head = pcpu->qhead; |
| 1720 | pcpu->qhead = *pcpu->qold_tail; |
| 1721 | *pcpu->qold_tail = NULL; |
| 1722 | |
| 1723 | /* |
| 1724 | * Step 2: Reconstruct the queue |
| 1725 | * based on the sequence numbers and count fields. |
| 1726 | * |
| 1727 | * Do what __smr_worker_tick() would do on this queue: |
| 1728 | * - commit the aging queue |
| 1729 | * - advance the current queue if needed |
| 1730 | */ |
| 1731 | |
| 1732 | if (pcpu->qage_seq != SMR_SEQ_INVALID) { |
| 1733 | assert(pcpu->qage_tail != pcpu->qold_tail); |
| 1734 | |
| 1735 | smr_deferred_advance_commit(smr, seq: pcpu->qage_seq); |
| 1736 | pcpu->qold_seq = pcpu->qage_seq; |
| 1737 | pcpu->qold_tail = pcpu->qage_tail; |
| 1738 | } else { |
| 1739 | assert(pcpu->qage_tail == pcpu->qold_tail); |
| 1740 | |
| 1741 | pcpu->qold_seq = SMR_SEQ_INVALID; |
| 1742 | pcpu->qold_tail = &pcpu->qhead; |
| 1743 | } |
| 1744 | |
| 1745 | if (__smr_call_should_advance(pcpu)) { |
| 1746 | __smr_call_advance_qcur(smr, pcpu, false); |
| 1747 | } else { |
| 1748 | pcpu->qage_seq = SMR_SEQ_INVALID; |
| 1749 | pcpu->qage_tail = pcpu->qold_tail; |
| 1750 | if (pcpu->qcur_cnt == 0) { |
| 1751 | pcpu->qcur_tail = pcpu->qage_tail; |
| 1752 | } |
| 1753 | } |
| 1754 | |
| 1755 | if (pcpu->qold_seq != SMR_SEQ_INVALID) { |
| 1756 | /* |
| 1757 | * The node has gained an "old seq" back, |
| 1758 | * it goes to the ready queue. |
| 1759 | */ |
| 1760 | pcpu->drain_next = *smrw->wold_tail; |
| 1761 | *smrw->wold_tail = pcpu; |
| 1762 | __smr_worker_update_wold_tail(smrw, |
| 1763 | new_tail: &pcpu->drain_next); |
| 1764 | } else if (pcpu->qage_seq != SMR_SEQ_INVALID) { |
| 1765 | /* |
| 1766 | * The node has gained an "age seq" back, |
| 1767 | * it needs to age and wait for a tick |
| 1768 | * for its sequence number to be commited. |
| 1769 | */ |
| 1770 | pcpu->drain_next = NULL; |
| 1771 | *smrw->wcur_tail = pcpu; |
| 1772 | smrw->wcur_tail = &pcpu->drain_next; |
| 1773 | } else { |
| 1774 | /* |
| 1775 | * The node is empty or with "current" |
| 1776 | * callbacks only, it can be dequeued. |
| 1777 | */ |
| 1778 | assert(!__smr_call_should_advance(pcpu)); |
| 1779 | pcpu->__check_cpu = (uint16_t)cpu_number(); |
| 1780 | pcpu->__check_reason = (uint8_t)smrw->detach_reason; |
| 1781 | pcpu->__check_list = 0; |
| 1782 | __smr_pcpu_set_not_queued(pcpu); |
| 1783 | } |
| 1784 | |
| 1785 | /* |
| 1786 | * Step 3: drain callbacks. |
| 1787 | */ |
| 1788 | __smr_worker_check_invariants(smrw); |
| 1789 | __smr_worker_drain_unlock(smrw); |
| 1790 | |
| 1791 | __smr_poll(smr, goal: seq, true); |
| 1792 | __smr_call_drain(head); |
| 1793 | |
| 1794 | __smr_worker_drain_lock(smrw); |
| 1795 | } |
| 1796 | |
| 1797 | static void |
| 1798 | __smr_worker_continue(void *arg, wait_result_t wr __unused) |
| 1799 | { |
| 1800 | smr_pcpu_t pcpu = NULL, next = NULL; |
| 1801 | struct smr_worker *const smrw = arg; |
| 1802 | uint64_t deadline; |
| 1803 | |
| 1804 | __smr_worker_drain_lock(smrw); |
| 1805 | __smr_worker_check_invariants(smrw); |
| 1806 | |
| 1807 | if (smrw->wold_tail != &smrw->whead) { |
| 1808 | next = smrw->whead; |
| 1809 | smrw->whead = *smrw->wold_tail; |
| 1810 | *smrw->wold_tail = NULL; |
| 1811 | __smr_worker_update_wold_tail(smrw, new_tail: &smrw->whead); |
| 1812 | } |
| 1813 | |
| 1814 | /* |
| 1815 | * The pipeline of per-cpu SMR data structures with pending |
| 1816 | * smr_call() callbacks has three stages: wcur -> wage -> wold. |
| 1817 | * |
| 1818 | * In order to guarantee forward progress, a tick happens |
| 1819 | * for each of them, either via __smr_worker_tick(), |
| 1820 | * or via __smr_worker_drain_one(). |
| 1821 | * |
| 1822 | * The second tick will happen either because to core stayed |
| 1823 | * busy enough that a subsequent smr_cpu_tick() decided to |
| 1824 | * perform it, or because the CPU idled, and smr_cpu_leave() |
| 1825 | * will perform an unconditional __smr_worker_tick(). |
| 1826 | */ |
| 1827 | __smr_barrier_drain(smrw, false); |
| 1828 | __smr_worker_tick(smrw, ctime: mach_absolute_time(), false); |
| 1829 | |
| 1830 | while ((pcpu = next)) { |
| 1831 | next = next->drain_next; |
| 1832 | __smr_worker_drain_one(smrw, pcpu); |
| 1833 | } |
| 1834 | |
| 1835 | if (__improbable(smrw->whead && smrw->detach_reason)) { |
| 1836 | /* |
| 1837 | * If the thread isn't bound, we want to flush anything |
| 1838 | * that is pending without causing too much contention. |
| 1839 | * |
| 1840 | * Sleep for a bit in order to give the system time |
| 1841 | * to observe any advance commits we did. |
| 1842 | */ |
| 1843 | deadline = mach_absolute_time() + cpu_checkin_min_interval; |
| 1844 | } else { |
| 1845 | deadline = TIMEOUT_WAIT_FOREVER; |
| 1846 | } |
| 1847 | waitq_assert_wait64_locked(waitq: &smrw->waitq, wait_event: __smrw_drain_event(smrw), |
| 1848 | THREAD_UNINT, TIMEOUT_URGENCY_SYS_NORMAL, deadline, |
| 1849 | TIMEOUT_NO_LEEWAY, thread: smrw->thread); |
| 1850 | |
| 1851 | /* |
| 1852 | * Make sure there's no barrier left, after we called assert_wait() |
| 1853 | * in order to pair with __smr_barrier_cb(). If we do find some, |
| 1854 | * we must be careful about invariants and forward progress. |
| 1855 | * |
| 1856 | * For affected domains, the dequeued barriers have been added |
| 1857 | * to their "qage" queue. If their "qage" queue was non empty, |
| 1858 | * then its "qage_seq" was already commited, and we must preserve |
| 1859 | * this invariant. |
| 1860 | * |
| 1861 | * Affected domains that were idle before will get enqueued on this |
| 1862 | * worker's "wcur" queue. In order to guarantee forward progress, |
| 1863 | * we must force a tick if both the "wage" and "wold" queues |
| 1864 | * of the worker are empty. |
| 1865 | */ |
| 1866 | if (__improbable(__smr_barrier_drain(smrw, true))) { |
| 1867 | if (smrw->wage_tail == &smrw->whead) { |
| 1868 | __smr_worker_tick(smrw, ctime: mach_absolute_time(), false); |
| 1869 | } |
| 1870 | } |
| 1871 | |
| 1872 | __smr_worker_check_invariants(smrw); |
| 1873 | __smr_worker_drain_unlock(smrw); |
| 1874 | |
| 1875 | thread_block_parameter(continuation: __smr_worker_continue, parameter: smrw); |
| 1876 | } |
| 1877 | |
| 1878 | |
| 1879 | #pragma mark SMR domains: scheduler integration |
| 1880 | |
| 1881 | #if CONFIG_QUIESCE_COUNTER |
| 1882 | __startup_data |
| 1883 | static uint64_t _Atomic quiesce_gen_startup; |
| 1884 | static uint64_t _Atomic *quiesce_genp = &quiesce_gen_startup; |
| 1885 | static uint64_t _Atomic quiesce_ctime; |
| 1886 | |
| 1887 | void |
| 1888 | cpu_quiescent_set_storage(uint64_t _Atomic *ptr) |
| 1889 | { |
| 1890 | /* |
| 1891 | * Transfer to the real location for the commpage. |
| 1892 | * |
| 1893 | * this is ok to do like this because the system |
| 1894 | * is still single threaded. |
| 1895 | */ |
| 1896 | uint64_t gen = os_atomic_load(&quiesce_gen_startup, relaxed); |
| 1897 | |
| 1898 | os_atomic_store(ptr, gen, relaxed); |
| 1899 | quiesce_genp = ptr; |
| 1900 | } |
| 1901 | |
| 1902 | static smr_seq_t |
| 1903 | cpu_quiescent_gen_to_seq(uint64_t gen) |
| 1904 | { |
| 1905 | return gen * SMR_SEQ_INC + SMR_SEQ_INIT; |
| 1906 | } |
| 1907 | |
| 1908 | static void |
| 1909 | cpu_quiescent_advance(uint64_t gen, uint64_t ctime __kdebug_only) |
| 1910 | { |
| 1911 | smr_seq_t seq = cpu_quiescent_gen_to_seq(gen); |
| 1912 | |
| 1913 | os_atomic_thread_fence(seq_cst); |
| 1914 | |
| 1915 | percpu_foreach(it, smr_worker) { |
| 1916 | smr_seq_t rd_seq = os_atomic_load(&it->rd_quiesce_seq, relaxed); |
| 1917 | |
| 1918 | if (rd_seq != SMR_SEQ_INVALID && SMR_SEQ_CMP(rd_seq, <, seq)) { |
| 1919 | return; |
| 1920 | } |
| 1921 | } |
| 1922 | |
| 1923 | os_atomic_thread_fence(seq_cst); |
| 1924 | |
| 1925 | if (lock_cmpxchg(quiesce_genp, gen, gen + 1, relaxed)) { |
| 1926 | KDBG(MACHDBG_CODE(DBG_MACH_SCHED, MACH_QUIESCENT_COUNTER), |
| 1927 | gen, 0, ctime, 0); |
| 1928 | } |
| 1929 | } |
| 1930 | |
| 1931 | static void |
| 1932 | cpu_quiescent_join(struct smr_worker *smrw) |
| 1933 | { |
| 1934 | uint64_t gen = os_atomic_load(quiesce_genp, relaxed); |
| 1935 | |
| 1936 | assert(smrw->rd_quiesce_seq == SMR_SEQ_INVALID); |
| 1937 | os_atomic_store(&smrw->rd_quiesce_seq, |
| 1938 | cpu_quiescent_gen_to_seq(gen), relaxed); |
| 1939 | os_atomic_thread_fence(seq_cst); |
| 1940 | } |
| 1941 | |
| 1942 | static void |
| 1943 | cpu_quiescent_tick(struct smr_worker *smrw, uint64_t ctime, uint64_t interval) |
| 1944 | { |
| 1945 | uint64_t gen = os_atomic_load(quiesce_genp, relaxed); |
| 1946 | smr_seq_t seq = cpu_quiescent_gen_to_seq(gen); |
| 1947 | |
| 1948 | if (smrw->rd_quiesce_seq == SMR_SEQ_INVALID) { |
| 1949 | /* |
| 1950 | * Likely called because of the scheduler tick, |
| 1951 | * smr_maintenance() will do the right thing. |
| 1952 | */ |
| 1953 | assert(current_processor()->state != PROCESSOR_RUNNING); |
| 1954 | } else if (seq != smrw->rd_quiesce_seq) { |
| 1955 | /* |
| 1956 | * Someone managed to update the sequence already, |
| 1957 | * learn it, update our ctime. |
| 1958 | */ |
| 1959 | os_atomic_store(&smrw->rd_quiesce_seq, seq, release); |
| 1960 | os_atomic_store(&quiesce_ctime, ctime, relaxed); |
| 1961 | os_atomic_thread_fence(seq_cst); |
| 1962 | } else if ((ctime - os_atomic_load(&quiesce_ctime, relaxed)) > interval) { |
| 1963 | /* |
| 1964 | * The system looks busy enough we want to update |
| 1965 | * the counter faster than every scheduler tick. |
| 1966 | */ |
| 1967 | os_atomic_store(&quiesce_ctime, ctime, relaxed); |
| 1968 | cpu_quiescent_advance(gen, ctime); |
| 1969 | } |
| 1970 | } |
| 1971 | |
| 1972 | static void |
| 1973 | cpu_quiescent_leave(struct smr_worker *smrw) |
| 1974 | { |
| 1975 | assert(smrw->rd_quiesce_seq != SMR_SEQ_INVALID); |
| 1976 | os_atomic_store(&smrw->rd_quiesce_seq, SMR_SEQ_INVALID, release); |
| 1977 | } |
| 1978 | #endif /* CONFIG_QUIESCE_COUNTER */ |
| 1979 | |
| 1980 | uint32_t |
| 1981 | smr_cpu_checkin_get_min_interval_us(void) |
| 1982 | { |
| 1983 | return cpu_checkin_min_interval_us; |
| 1984 | } |
| 1985 | |
| 1986 | void |
| 1987 | smr_cpu_checkin_set_min_interval_us(uint32_t new_value_us) |
| 1988 | { |
| 1989 | /* clamp to something vaguely sane */ |
| 1990 | if (new_value_us > CPU_CHECKIN_MIN_INTERVAL_MAX_US) { |
| 1991 | new_value_us = CPU_CHECKIN_MIN_INTERVAL_MAX_US; |
| 1992 | } |
| 1993 | |
| 1994 | cpu_checkin_min_interval_us = new_value_us; |
| 1995 | |
| 1996 | uint64_t abstime = 0; |
| 1997 | clock_interval_to_absolutetime_interval(interval: cpu_checkin_min_interval_us, |
| 1998 | NSEC_PER_USEC, result: &abstime); |
| 1999 | cpu_checkin_min_interval = abstime; |
| 2000 | } |
| 2001 | |
| 2002 | __startup_func |
| 2003 | static void |
| 2004 | smr_cpu_checkin_init_min_interval_us(void) |
| 2005 | { |
| 2006 | smr_cpu_checkin_set_min_interval_us(CPU_CHECKIN_MIN_INTERVAL_US); |
| 2007 | } |
| 2008 | STARTUP(TUNABLES, STARTUP_RANK_FIRST, smr_cpu_checkin_init_min_interval_us); |
| 2009 | |
| 2010 | static void |
| 2011 | __smr_cpu_init_thread(struct smr_worker *smrw) |
| 2012 | { |
| 2013 | char name[MAXTHREADNAMESIZE]; |
| 2014 | thread_t th = THREAD_NULL; |
| 2015 | |
| 2016 | kernel_thread_create(continuation: __smr_worker_continue, parameter: smrw, MINPRI_KERNEL, new_thread: &th); |
| 2017 | smrw->thread = th; |
| 2018 | |
| 2019 | snprintf(name, sizeof(name), "smr.reclaim:%d" , smrw->processor->cpu_id); |
| 2020 | thread_set_thread_name(th, name); |
| 2021 | thread_start_in_assert_wait(thread: th, |
| 2022 | waitq: &smrw->waitq, event: __smrw_drain_event(smrw), THREAD_UNINT); |
| 2023 | } |
| 2024 | |
| 2025 | void |
| 2026 | smr_cpu_init(struct processor *processor) |
| 2027 | { |
| 2028 | struct smr_worker *smrw; |
| 2029 | |
| 2030 | smrw = PERCPU_GET_RELATIVE(smr_worker, processor, processor); |
| 2031 | smrw->processor = processor; |
| 2032 | |
| 2033 | waitq_init(waitq: &smrw->waitq, type: WQT_QUEUE, SYNC_POLICY_FIFO); |
| 2034 | smrw->detach_reason = SMR_CPU_REASON_OFFLINE; |
| 2035 | |
| 2036 | smrq_init(&smrw->sect_queue); |
| 2037 | smrw->wold_tail = &smrw->whead; |
| 2038 | smrw->wage_tail = &smrw->whead; |
| 2039 | smrw->wcur_tail = &smrw->whead; |
| 2040 | mpsc_queue_init(q: &smrw->barrier_queue); |
| 2041 | |
| 2042 | if (processor != master_processor) { |
| 2043 | __smr_cpu_init_thread(smrw); |
| 2044 | } |
| 2045 | } |
| 2046 | STARTUP_ARG(LOCKS, STARTUP_RANK_LAST, smr_cpu_init, master_processor); |
| 2047 | STARTUP_ARG(THREAD_CALL, STARTUP_RANK_LAST, |
| 2048 | __smr_cpu_init_thread, PERCPU_GET_MASTER(smr_worker)); |
| 2049 | |
| 2050 | /*! |
| 2051 | * @function smr_cpu_up() |
| 2052 | * |
| 2053 | * @brief |
| 2054 | * Scheduler callback to notify this processor is going up. |
| 2055 | * |
| 2056 | * @discussion |
| 2057 | * Called at splsched() under the sched_available_cores_lock. |
| 2058 | */ |
| 2059 | void |
| 2060 | smr_cpu_up(struct processor *processor, smr_cpu_reason_t reason) |
| 2061 | { |
| 2062 | struct smr_worker *smrw; |
| 2063 | |
| 2064 | smrw = PERCPU_GET_RELATIVE(smr_worker, processor, processor); |
| 2065 | |
| 2066 | __smrw_lock(smrw); |
| 2067 | if (reason != SMR_CPU_REASON_IGNORED) { |
| 2068 | assert((smrw->detach_reason & reason) == reason); |
| 2069 | } |
| 2070 | smrw->detach_reason &= ~reason; |
| 2071 | __smrw_unlock(smrw); |
| 2072 | } |
| 2073 | |
| 2074 | static void |
| 2075 | __smr_cpu_down_and_unlock( |
| 2076 | struct processor *processor, |
| 2077 | struct smr_worker *smrw, |
| 2078 | smr_cpu_reason_t reason) |
| 2079 | { |
| 2080 | bool detach = !smrw->detach_reason; |
| 2081 | |
| 2082 | /* |
| 2083 | * When reason is SMR_CPU_REASON_IGNORED, |
| 2084 | * this is called from smr_cpu_leave() on the way to idle. |
| 2085 | * |
| 2086 | * However this isn't sychronized with the recommendation |
| 2087 | * lock, hence it is possible that the CPU might actually |
| 2088 | * be recommended again while we're on the way to idle. |
| 2089 | * |
| 2090 | * By re-checking processor recommendation under |
| 2091 | * the __smrw_lock, we serialize with smr_cpu_up(). |
| 2092 | */ |
| 2093 | if (reason != SMR_CPU_REASON_IGNORED) { |
| 2094 | assert((smrw->detach_reason & reason) == 0); |
| 2095 | } else if (processor->is_recommended) { |
| 2096 | /* |
| 2097 | * The race we try to detect happened, |
| 2098 | * do nothing. |
| 2099 | */ |
| 2100 | reason = SMR_CPU_REASON_NONE; |
| 2101 | detach = false; |
| 2102 | } |
| 2103 | smrw->detach_reason |= reason; |
| 2104 | reason = smrw->detach_reason; |
| 2105 | |
| 2106 | if (detach && smrw->whead) { |
| 2107 | detach = !__smrw_wakeup_and_unlock(smrw); |
| 2108 | } else { |
| 2109 | __smrw_unlock(smrw); |
| 2110 | } |
| 2111 | |
| 2112 | if (detach) { |
| 2113 | thread_unbind_after_queue_shutdown(thread: smrw->thread, processor); |
| 2114 | } |
| 2115 | } |
| 2116 | |
| 2117 | /*! |
| 2118 | * @function smr_cpu_down() |
| 2119 | * |
| 2120 | * @brief |
| 2121 | * Scheduler callback to notify this processor is going down. |
| 2122 | * |
| 2123 | * @discussion |
| 2124 | * Called at splsched() when the processor run queue is being shut down. |
| 2125 | */ |
| 2126 | void |
| 2127 | smr_cpu_down(struct processor *processor, smr_cpu_reason_t reason) |
| 2128 | { |
| 2129 | struct smr_worker *smrw; |
| 2130 | |
| 2131 | smrw = PERCPU_GET_RELATIVE(smr_worker, processor, processor); |
| 2132 | |
| 2133 | __smrw_lock(smrw); |
| 2134 | __smr_cpu_down_and_unlock(processor, smrw, reason); |
| 2135 | } |
| 2136 | |
| 2137 | |
| 2138 | /*! |
| 2139 | * @function smr_cpu_join() |
| 2140 | * |
| 2141 | * @brief |
| 2142 | * Scheduler callback to notify this processor is going out of idle. |
| 2143 | * |
| 2144 | * @discussion |
| 2145 | * Called at splsched(). |
| 2146 | */ |
| 2147 | void |
| 2148 | smr_cpu_join(struct processor *processor, uint64_t ctime __unused) |
| 2149 | { |
| 2150 | #if CONFIG_QUIESCE_COUNTER |
| 2151 | struct smr_worker *smrw; |
| 2152 | |
| 2153 | smrw = PERCPU_GET_RELATIVE(smr_worker, processor, processor); |
| 2154 | cpu_quiescent_join(smrw); |
| 2155 | #else |
| 2156 | (void)processor; |
| 2157 | #endif /* CONFIG_QUIESCE_COUNTER */ |
| 2158 | } |
| 2159 | |
| 2160 | /*! |
| 2161 | * @function smr_cpu_tick() |
| 2162 | * |
| 2163 | * @brief |
| 2164 | * Scheduler callback invoked during the scheduler maintenance routine. |
| 2165 | * |
| 2166 | * @discussion |
| 2167 | * Called at splsched(). |
| 2168 | */ |
| 2169 | void |
| 2170 | smr_cpu_tick(uint64_t ctime, bool safe_point) |
| 2171 | { |
| 2172 | struct smr_worker *smrw = PERCPU_GET(smr_worker); |
| 2173 | uint64_t interval = cpu_checkin_min_interval; |
| 2174 | |
| 2175 | #if CONFIG_QUIESCE_COUNTER |
| 2176 | cpu_quiescent_tick(smrw, ctime, interval); |
| 2177 | #endif /* CONFIG_QUIESCE_COUNTER */ |
| 2178 | |
| 2179 | /* |
| 2180 | * if a bound thread was woken up on a derecommended core, |
| 2181 | * our detach_reason might be "IGNORED" and we want to leave |
| 2182 | * it alone in that case |
| 2183 | */ |
| 2184 | if (safe_point && !smrw->detach_reason && smrw->whead && |
| 2185 | current_processor()->state == PROCESSOR_RUNNING && |
| 2186 | (ctime - smrw->drain_ctime) > interval) { |
| 2187 | __smr_worker_tick(smrw, ctime, true); |
| 2188 | } |
| 2189 | } |
| 2190 | |
| 2191 | /*! |
| 2192 | * @function smr_cpu_leave() |
| 2193 | * |
| 2194 | * @brief |
| 2195 | * Scheduler callback to notify this processor is going idle. |
| 2196 | * |
| 2197 | * @discussion |
| 2198 | * Called at splsched(). |
| 2199 | */ |
| 2200 | void |
| 2201 | smr_cpu_leave(struct processor *processor, uint64_t ctime) |
| 2202 | { |
| 2203 | struct smr_worker *smrw; |
| 2204 | |
| 2205 | smrw = PERCPU_GET_RELATIVE(smr_worker, processor, processor); |
| 2206 | |
| 2207 | /* |
| 2208 | * if a bound thread was woken up on a derecommended core, |
| 2209 | * our detach_reason might be "IGNORED" and we want to leave |
| 2210 | * it alone in that case |
| 2211 | * |
| 2212 | * See comment in __smr_worker_continue for why this must be |
| 2213 | * done unconditionally otherwise. |
| 2214 | */ |
| 2215 | if (!smrw->detach_reason && smrw->whead) { |
| 2216 | __smr_worker_tick(smrw, ctime, true); |
| 2217 | } |
| 2218 | |
| 2219 | if (__improbable(!processor->is_recommended)) { |
| 2220 | __smrw_lock(smrw); |
| 2221 | __smr_cpu_down_and_unlock(processor, smrw, reason: SMR_CPU_REASON_IGNORED); |
| 2222 | } |
| 2223 | |
| 2224 | #if CONFIG_QUIESCE_COUNTER |
| 2225 | cpu_quiescent_leave(smrw); |
| 2226 | #endif /* CONFIG_QUIESCE_COUNTER */ |
| 2227 | } |
| 2228 | |
| 2229 | /*! |
| 2230 | * @function smr_maintenance() |
| 2231 | * |
| 2232 | * @brief |
| 2233 | * Scheduler callback called at the scheduler tick. |
| 2234 | * |
| 2235 | * @discussion |
| 2236 | * Called at splsched(). |
| 2237 | */ |
| 2238 | void |
| 2239 | smr_maintenance(uint64_t ctime) |
| 2240 | { |
| 2241 | #if CONFIG_QUIESCE_COUNTER |
| 2242 | cpu_quiescent_advance(os_atomic_load(quiesce_genp, relaxed), ctime); |
| 2243 | #else |
| 2244 | (void)ctime; |
| 2245 | #endif /* CONFIG_QUIESCE_COUNTER */ |
| 2246 | } |
| 2247 | |
| 2248 | |
| 2249 | #pragma mark - SMR hash tables |
| 2250 | |
| 2251 | static struct smrq_slist_head * |
| 2252 | smr_hash_alloc_array(size_t size) |
| 2253 | { |
| 2254 | return kalloc_type(struct smrq_slist_head, size, |
| 2255 | Z_WAITOK | Z_ZERO | Z_SPRAYQTN); |
| 2256 | } |
| 2257 | |
| 2258 | static void |
| 2259 | smr_hash_free_array(struct smrq_slist_head *array, size_t size) |
| 2260 | { |
| 2261 | kfree_type(struct smrq_slist_head, size, array); |
| 2262 | } |
| 2263 | |
| 2264 | static inline uintptr_t |
| 2265 | smr_hash_array_encode(struct smrq_slist_head *array, uint16_t order) |
| 2266 | { |
| 2267 | uintptr_t ptr; |
| 2268 | |
| 2269 | ptr = (uintptr_t)array; |
| 2270 | ptr &= ~SMRH_ARRAY_ORDER_MASK; |
| 2271 | ptr |= (uintptr_t)order << SMRH_ARRAY_ORDER_SHIFT; |
| 2272 | |
| 2273 | return ptr; |
| 2274 | } |
| 2275 | |
| 2276 | #pragma mark SMR simple hash tables |
| 2277 | |
| 2278 | void |
| 2279 | smr_hash_init(struct smr_hash *smrh, size_t size) |
| 2280 | { |
| 2281 | struct smrq_slist_head *array; |
| 2282 | uint16_t shift; |
| 2283 | |
| 2284 | assert(size); |
| 2285 | shift = (uint16_t)flsll(mask: size - 1); |
| 2286 | size = 1UL << shift; |
| 2287 | if (startup_phase >= STARTUP_SUB_LOCKDOWN) { |
| 2288 | assert(size * sizeof(struct smrq_slist_head) <= |
| 2289 | KALLOC_SAFE_ALLOC_SIZE); |
| 2290 | } |
| 2291 | array = smr_hash_alloc_array(size); |
| 2292 | |
| 2293 | *smrh = (struct smr_hash){ |
| 2294 | .smrh_array = smr_hash_array_encode(array, order: 64 - shift), |
| 2295 | }; |
| 2296 | } |
| 2297 | |
| 2298 | void |
| 2299 | smr_hash_destroy(struct smr_hash *smrh) |
| 2300 | { |
| 2301 | struct smr_hash_array array = smr_hash_array_decode(smrh); |
| 2302 | |
| 2303 | smr_hash_free_array(array: array.smrh_array, size: smr_hash_size(array)); |
| 2304 | *smrh = (struct smr_hash){ }; |
| 2305 | } |
| 2306 | |
| 2307 | void |
| 2308 | __smr_hash_serialized_clear( |
| 2309 | struct smr_hash *smrh, |
| 2310 | smrh_traits_t smrht, |
| 2311 | void (^free)(void *obj)) |
| 2312 | { |
| 2313 | struct smr_hash_array array = smr_hash_array_decode(smrh); |
| 2314 | |
| 2315 | for (size_t i = 0; i < smr_hash_size(array); i++) { |
| 2316 | struct smrq_slink *link; |
| 2317 | __smrq_slink_t *prev; |
| 2318 | |
| 2319 | prev = &array.smrh_array[i].first; |
| 2320 | while ((link = smr_serialized_load(prev))) { |
| 2321 | prev = &link->next; |
| 2322 | free(__smrht_link_to_obj(traits: smrht, link)); |
| 2323 | } |
| 2324 | |
| 2325 | smr_clear_store(&array.smrh_array[i].first); |
| 2326 | } |
| 2327 | |
| 2328 | smrh->smrh_count = 0; |
| 2329 | } |
| 2330 | |
| 2331 | kern_return_t |
| 2332 | __smr_hash_shrink_and_unlock( |
| 2333 | struct smr_hash *smrh, |
| 2334 | lck_mtx_t *lock, |
| 2335 | smrh_traits_t smrht) |
| 2336 | { |
| 2337 | struct smr_hash_array decptr = smr_hash_array_decode(smrh); |
| 2338 | struct smrq_slist_head *newarray, *oldarray; |
| 2339 | uint16_t neworder = decptr.smrh_order + 1; |
| 2340 | size_t oldsize = smr_hash_size(array: decptr); |
| 2341 | size_t newsize = oldsize / 2; |
| 2342 | |
| 2343 | assert(newsize); |
| 2344 | |
| 2345 | if (os_atomic_load(&smrh->smrh_resizing, relaxed)) { |
| 2346 | lck_mtx_unlock(lck: lock); |
| 2347 | return KERN_FAILURE; |
| 2348 | } |
| 2349 | |
| 2350 | os_atomic_store(&smrh->smrh_resizing, true, relaxed); |
| 2351 | lck_mtx_unlock(lck: lock); |
| 2352 | |
| 2353 | newarray = smr_hash_alloc_array(size: newsize); |
| 2354 | if (newarray == NULL) { |
| 2355 | os_atomic_store(&smrh->smrh_resizing, false, relaxed); |
| 2356 | return KERN_RESOURCE_SHORTAGE; |
| 2357 | } |
| 2358 | |
| 2359 | lck_mtx_lock(lck: lock); |
| 2360 | |
| 2361 | /* |
| 2362 | * Step 1: collapse all the chains in pairs. |
| 2363 | */ |
| 2364 | oldarray = decptr.smrh_array; |
| 2365 | |
| 2366 | for (size_t i = 0; i < newsize; i++) { |
| 2367 | newarray[i] = oldarray[i]; |
| 2368 | smrq_serialized_append(&newarray[i], &oldarray[i + newsize]); |
| 2369 | } |
| 2370 | |
| 2371 | /* |
| 2372 | * Step 2: publish the new array. |
| 2373 | */ |
| 2374 | os_atomic_store(&smrh->smrh_array, |
| 2375 | smr_hash_array_encode(newarray, neworder), release); |
| 2376 | |
| 2377 | os_atomic_store(&smrh->smrh_resizing, false, relaxed); |
| 2378 | |
| 2379 | lck_mtx_unlock(lck: lock); |
| 2380 | |
| 2381 | /* |
| 2382 | * Step 3: free the old array once readers can't observe the old values. |
| 2383 | */ |
| 2384 | smr_synchronize(smr: smrht->domain); |
| 2385 | |
| 2386 | smr_hash_free_array(array: oldarray, size: oldsize); |
| 2387 | return KERN_SUCCESS; |
| 2388 | } |
| 2389 | |
| 2390 | kern_return_t |
| 2391 | __smr_hash_grow_and_unlock( |
| 2392 | struct smr_hash *smrh, |
| 2393 | lck_mtx_t *lock, |
| 2394 | smrh_traits_t smrht) |
| 2395 | { |
| 2396 | struct smr_hash_array decptr = smr_hash_array_decode(smrh); |
| 2397 | struct smrq_slist_head *newarray, *oldarray; |
| 2398 | __smrq_slink_t **prevarray; |
| 2399 | uint16_t neworder = decptr.smrh_order - 1; |
| 2400 | size_t oldsize = smr_hash_size(array: decptr); |
| 2401 | size_t newsize = 2 * oldsize; |
| 2402 | bool needs_another_round = false; |
| 2403 | |
| 2404 | if (smrh->smrh_resizing) { |
| 2405 | lck_mtx_unlock(lck: lock); |
| 2406 | return KERN_FAILURE; |
| 2407 | } |
| 2408 | |
| 2409 | smrh->smrh_resizing = true; |
| 2410 | lck_mtx_unlock(lck: lock); |
| 2411 | |
| 2412 | newarray = smr_hash_alloc_array(size: newsize); |
| 2413 | if (newarray == NULL) { |
| 2414 | os_atomic_store(&smrh->smrh_resizing, false, relaxed); |
| 2415 | return KERN_RESOURCE_SHORTAGE; |
| 2416 | } |
| 2417 | |
| 2418 | prevarray = kalloc_type(__smrq_slink_t *, newsize, |
| 2419 | Z_WAITOK | Z_ZERO | Z_SPRAYQTN); |
| 2420 | if (prevarray == NULL) { |
| 2421 | smr_hash_free_array(array: newarray, size: newsize); |
| 2422 | os_atomic_store(&smrh->smrh_resizing, false, relaxed); |
| 2423 | return KERN_RESOURCE_SHORTAGE; |
| 2424 | } |
| 2425 | |
| 2426 | |
| 2427 | lck_mtx_lock(lck: lock); |
| 2428 | |
| 2429 | /* |
| 2430 | * Step 1: create a duplicated array with twice as many heads. |
| 2431 | */ |
| 2432 | oldarray = decptr.smrh_array; |
| 2433 | |
| 2434 | memcpy(dst: newarray, src: oldarray, n: oldsize * sizeof(newarray[0])); |
| 2435 | memcpy(dst: newarray + oldsize, src: oldarray, n: oldsize * sizeof(newarray[0])); |
| 2436 | |
| 2437 | /* |
| 2438 | * Step 2: Publish the new array, and wait for readers to observe it |
| 2439 | * before we do any change. |
| 2440 | */ |
| 2441 | os_atomic_store(&smrh->smrh_array, |
| 2442 | smr_hash_array_encode(newarray, neworder), release); |
| 2443 | |
| 2444 | smr_synchronize(smr: smrht->domain); |
| 2445 | |
| 2446 | |
| 2447 | /* |
| 2448 | * Step 3: split the lists. |
| 2449 | */ |
| 2450 | |
| 2451 | /* |
| 2452 | * If the list we are trying to split looked like this, |
| 2453 | * where L elements will go to the "left" bucket and "R" |
| 2454 | * to the right one: |
| 2455 | * |
| 2456 | * old_head --> L1 --> L2 -> L5 |
| 2457 | * \ / \ |
| 2458 | * -> R3 --> R4 -> R6 --> NULL |
| 2459 | * |
| 2460 | * Then make sure the new heads point to their legitimate first element, |
| 2461 | * leading to this state: |
| 2462 | * |
| 2463 | * l_head --> L1 --> L2 -> L5 |
| 2464 | * \ / \ |
| 2465 | * r_head ----------------> R3 --> R4 -> R6 --> NULL |
| 2466 | * |
| 2467 | * |
| 2468 | * prevarray[left] = &L2->next |
| 2469 | * prevarray[right] = &r_head |
| 2470 | * oldarray[old] = L2 |
| 2471 | */ |
| 2472 | |
| 2473 | for (size_t i = 0; i < oldsize; i++) { |
| 2474 | struct smrq_slink *link, *next; |
| 2475 | uint32_t want_mask; |
| 2476 | |
| 2477 | link = smr_serialized_load(&oldarray[i].first); |
| 2478 | if (link == NULL) { |
| 2479 | continue; |
| 2480 | } |
| 2481 | |
| 2482 | want_mask = smrht->obj_hash(link, 0) & oldsize; |
| 2483 | while ((next = smr_serialized_load(&link->next)) && |
| 2484 | (smrht->obj_hash(next, 0) & oldsize) == want_mask) { |
| 2485 | link = next; |
| 2486 | } |
| 2487 | |
| 2488 | if (want_mask == 0) { |
| 2489 | /* elements seen go to the "left" bucket */ |
| 2490 | prevarray[i] = &link->next; |
| 2491 | prevarray[i + oldsize] = &newarray[i + oldsize].first; |
| 2492 | smr_serialized_store_relaxed(prevarray[i + oldsize], next); |
| 2493 | } else { |
| 2494 | /* elements seen go to the "right" bucket */ |
| 2495 | prevarray[i] = &newarray[i].first; |
| 2496 | prevarray[i + oldsize] = &link->next; |
| 2497 | smr_serialized_store_relaxed(prevarray[i], next); |
| 2498 | } |
| 2499 | |
| 2500 | smr_serialized_store_relaxed(&oldarray[i].first, |
| 2501 | next ? link : NULL); |
| 2502 | |
| 2503 | needs_another_round |= (next != NULL); |
| 2504 | } |
| 2505 | |
| 2506 | /* |
| 2507 | * At this point, when we split further, we must wait for |
| 2508 | * readers to observe the previous state before we split |
| 2509 | * further. Indeed, reusing the example above, the next |
| 2510 | * round of splitting would end up with this: |
| 2511 | * |
| 2512 | * l_head --> L1 --> L2 ----------------> L5 |
| 2513 | * / \ |
| 2514 | * r_head ----------------> R3 --> R4 -> R6 --> NULL |
| 2515 | * |
| 2516 | * |
| 2517 | * prevarray[left] = &L2->next |
| 2518 | * prevarray[right] = &R4->next |
| 2519 | * oldarray[old] = R4 |
| 2520 | * |
| 2521 | * But we must be sure that no readers can observe r_head |
| 2522 | * having been L1, otherwise a stale reader might skip over |
| 2523 | * R3/R4. |
| 2524 | * |
| 2525 | * Generally speaking we need to do that each time we do a round |
| 2526 | * of splitting that isn't terminating the list with NULL. |
| 2527 | */ |
| 2528 | |
| 2529 | while (needs_another_round) { |
| 2530 | smr_synchronize(smr: smrht->domain); |
| 2531 | |
| 2532 | needs_another_round = false; |
| 2533 | |
| 2534 | for (size_t i = 0; i < oldsize; i++) { |
| 2535 | struct smrq_slink *link, *next; |
| 2536 | uint32_t want_mask; |
| 2537 | |
| 2538 | link = smr_serialized_load(&oldarray[i].first); |
| 2539 | if (link == NULL) { |
| 2540 | continue; |
| 2541 | } |
| 2542 | |
| 2543 | /* |
| 2544 | * If `prevarray[i]` (left) points to the linkage |
| 2545 | * we stopped at, then it means the next element |
| 2546 | * will be "to the right" and vice versa. |
| 2547 | * |
| 2548 | * We also already know "next" exists, so only probe |
| 2549 | * after it. |
| 2550 | */ |
| 2551 | if (prevarray[i] == &link->next) { |
| 2552 | want_mask = (uint32_t)oldsize; |
| 2553 | } else { |
| 2554 | want_mask = 0; |
| 2555 | } |
| 2556 | |
| 2557 | link = smr_serialized_load(&link->next); |
| 2558 | |
| 2559 | while ((next = smr_serialized_load(&link->next)) && |
| 2560 | (smrht->obj_hash(next, 0) & oldsize) == want_mask) { |
| 2561 | link = next; |
| 2562 | } |
| 2563 | |
| 2564 | if (want_mask == 0) { |
| 2565 | /* elements seen go to the "left" bucket */ |
| 2566 | prevarray[i] = &link->next; |
| 2567 | smr_serialized_store_relaxed(prevarray[i + oldsize], next); |
| 2568 | } else { |
| 2569 | /* elements seen go to the "right" bucket */ |
| 2570 | smr_serialized_store_relaxed(prevarray[i], next); |
| 2571 | prevarray[i + oldsize] = &link->next; |
| 2572 | } |
| 2573 | |
| 2574 | smr_serialized_store_relaxed(&oldarray[i].first, |
| 2575 | next ? link : NULL); |
| 2576 | |
| 2577 | needs_another_round |= (next != NULL); |
| 2578 | } |
| 2579 | } |
| 2580 | |
| 2581 | smrh->smrh_resizing = false; |
| 2582 | lck_mtx_unlock(lck: lock); |
| 2583 | |
| 2584 | /* |
| 2585 | * Step 4: cleanup, no need to wait for readers, this happened already |
| 2586 | * at least once for splitting reasons. |
| 2587 | */ |
| 2588 | smr_hash_free_array(array: oldarray, size: oldsize); |
| 2589 | kfree_type(__smrq_slink_t *, newsize, prevarray); |
| 2590 | return KERN_SUCCESS; |
| 2591 | } |
| 2592 | |
| 2593 | #pragma mark SMR scalable hash tables |
| 2594 | |
| 2595 | #define SMRSH_MIGRATED ((struct smrq_slink *)SMRSH_BUCKET_STOP_BIT) |
| 2596 | static LCK_GRP_DECLARE(smr_shash_grp, "smr_shash" ); |
| 2597 | |
| 2598 | static inline size_t |
| 2599 | __smr_shash_min_size(struct smr_shash *smrh) |
| 2600 | { |
| 2601 | return 1ul << smrh->smrsh_min_shift; |
| 2602 | } |
| 2603 | |
| 2604 | static inline size_t |
| 2605 | __smr_shash_size_for_shift(uint8_t shift) |
| 2606 | { |
| 2607 | return (~0u >> shift) + 1; |
| 2608 | } |
| 2609 | |
| 2610 | static inline size_t |
| 2611 | __smr_shash_cursize(smrsh_state_t state) |
| 2612 | { |
| 2613 | return __smr_shash_size_for_shift(shift: state.curshift); |
| 2614 | } |
| 2615 | |
| 2616 | static void |
| 2617 | __smr_shash_bucket_init(hw_lck_ptr_t *head) |
| 2618 | { |
| 2619 | hw_lck_ptr_init(head, __smr_shash_bucket_stop(head), &smr_shash_grp); |
| 2620 | } |
| 2621 | |
| 2622 | static void |
| 2623 | __smr_shash_bucket_destroy(hw_lck_ptr_t *head) |
| 2624 | { |
| 2625 | hw_lck_ptr_destroy(head, &smr_shash_grp); |
| 2626 | } |
| 2627 | |
| 2628 | __attribute__((noinline)) |
| 2629 | void * |
| 2630 | __smr_shash_entered_find_slow( |
| 2631 | const struct smr_shash *smrh, |
| 2632 | smrh_key_t key, |
| 2633 | hw_lck_ptr_t *head, |
| 2634 | smrh_traits_t traits) |
| 2635 | { |
| 2636 | struct smrq_slink *link; |
| 2637 | smrsh_state_t state; |
| 2638 | uint32_t hash; |
| 2639 | |
| 2640 | /* wait for the rehashing to be done into their target buckets */ |
| 2641 | hw_lck_ptr_wait_for_value(head, SMRSH_MIGRATED, &smr_shash_grp); |
| 2642 | |
| 2643 | state = os_atomic_load(&smrh->smrsh_state, dependency); |
| 2644 | hash = __smr_shash_hash(smrh, idx: state.newidx, key, traits); |
| 2645 | head = __smr_shash_bucket(smrh, state, sel: SMRSH_NEW, hash); |
| 2646 | |
| 2647 | link = hw_lck_ptr_value(lck: head); |
| 2648 | while (!__smr_shash_is_stop(link)) { |
| 2649 | if (traits->obj_equ(link, key)) { |
| 2650 | return __smrht_link_to_obj(traits, link); |
| 2651 | } |
| 2652 | link = smr_entered_load(&link->next); |
| 2653 | } |
| 2654 | |
| 2655 | assert(link == __smr_shash_bucket_stop(head)); |
| 2656 | return NULL; |
| 2657 | } |
| 2658 | |
| 2659 | static const uint8_t __smr_shash_grow_ratio[] = { |
| 2660 | [SMRSH_COMPACT] = 6, |
| 2661 | [SMRSH_BALANCED] = 4, |
| 2662 | [SMRSH_BALANCED_NOSHRINK] = 4, |
| 2663 | [SMRSH_FASTEST] = 2, |
| 2664 | }; |
| 2665 | |
| 2666 | static inline uint64_t |
| 2667 | __smr_shash_count(struct smr_shash *smrh) |
| 2668 | { |
| 2669 | int64_t count = (int64_t)counter_load(&smrh->smrsh_count); |
| 2670 | |
| 2671 | /* |
| 2672 | * negative values make no sense and is likely due to some |
| 2673 | * stale values being read. |
| 2674 | */ |
| 2675 | return count < 0 ? 0ull : (uint64_t)count; |
| 2676 | } |
| 2677 | |
| 2678 | static inline bool |
| 2679 | __smr_shash_should_grow( |
| 2680 | struct smr_shash *smrh, |
| 2681 | smrsh_state_t state, |
| 2682 | uint64_t count) |
| 2683 | { |
| 2684 | size_t size = __smr_shash_cursize(state); |
| 2685 | |
| 2686 | /* grow if elem:bucket ratio is worse than grow_ratio:1 */ |
| 2687 | return count > __smr_shash_grow_ratio[smrh->smrsh_policy] * size; |
| 2688 | } |
| 2689 | |
| 2690 | static inline bool |
| 2691 | __smr_shash_should_reseed( |
| 2692 | struct smr_shash *smrh, |
| 2693 | size_t observed_depth) |
| 2694 | { |
| 2695 | return observed_depth > 10 * __smr_shash_grow_ratio[smrh->smrsh_policy]; |
| 2696 | } |
| 2697 | |
| 2698 | static inline bool |
| 2699 | __smr_shash_should_shrink( |
| 2700 | struct smr_shash *smrh, |
| 2701 | smrsh_state_t state, |
| 2702 | uint64_t count) |
| 2703 | { |
| 2704 | size_t size = __smr_shash_cursize(state); |
| 2705 | |
| 2706 | switch (smrh->smrsh_policy) { |
| 2707 | case SMRSH_COMPACT: |
| 2708 | /* shrink if bucket:elem ratio is worse than 1:1 */ |
| 2709 | return size > count && size > __smr_shash_min_size(smrh); |
| 2710 | case SMRSH_BALANCED: |
| 2711 | /* shrink if bucket:elem ratio is worse than 2:1 */ |
| 2712 | return size > 2 * count && size > __smr_shash_min_size(smrh); |
| 2713 | case SMRSH_BALANCED_NOSHRINK: |
| 2714 | case SMRSH_FASTEST: |
| 2715 | return false; |
| 2716 | } |
| 2717 | } |
| 2718 | |
| 2719 | static inline void |
| 2720 | __smr_shash_schedule_rehash( |
| 2721 | struct smr_shash *smrh, |
| 2722 | smrh_traits_t traits, |
| 2723 | smrsh_rehash_t reason) |
| 2724 | { |
| 2725 | smrsh_rehash_t rehash; |
| 2726 | |
| 2727 | rehash = os_atomic_load(&smrh->smrsh_rehashing, relaxed); |
| 2728 | if (rehash & reason) { |
| 2729 | return; |
| 2730 | } |
| 2731 | |
| 2732 | rehash = os_atomic_or_orig(&smrh->smrsh_rehashing, reason, relaxed); |
| 2733 | if (!rehash) { |
| 2734 | thread_call_enter1(call: smrh->smrsh_callout, |
| 2735 | __DECONST(void *, traits)); |
| 2736 | } |
| 2737 | } |
| 2738 | |
| 2739 | void * |
| 2740 | __smr_shash_entered_get_or_insert( |
| 2741 | struct smr_shash *smrh, |
| 2742 | smrh_key_t key, |
| 2743 | struct smrq_slink *link, |
| 2744 | smrh_traits_t traits) |
| 2745 | { |
| 2746 | struct smrq_slink *first; |
| 2747 | struct smrq_slink *other; |
| 2748 | uint32_t hash, depth; |
| 2749 | smrsh_state_t state; |
| 2750 | hw_lck_ptr_t *head; |
| 2751 | void *obj; |
| 2752 | |
| 2753 | state = os_atomic_load(&smrh->smrsh_state, dependency); |
| 2754 | hash = __smr_shash_hash(smrh, idx: state.curidx, key, traits); |
| 2755 | head = __smr_shash_bucket(smrh, state, sel: SMRSH_CUR, hash); |
| 2756 | first = hw_lck_ptr_lock(head, &smr_shash_grp); |
| 2757 | |
| 2758 | if (__improbable(first == SMRSH_MIGRATED)) { |
| 2759 | hw_lck_ptr_unlock_nopreempt(head, first, &smr_shash_grp); |
| 2760 | |
| 2761 | state = os_atomic_load(&smrh->smrsh_state, dependency); |
| 2762 | hash = __smr_shash_hash(smrh, idx: state.newidx, key, traits); |
| 2763 | head = __smr_shash_bucket(smrh, state, sel: SMRSH_NEW, hash); |
| 2764 | first = hw_lck_ptr_lock_nopreempt(head, &smr_shash_grp); |
| 2765 | } |
| 2766 | |
| 2767 | depth = 0; |
| 2768 | other = first; |
| 2769 | while (!__smr_shash_is_stop(link: other)) { |
| 2770 | depth++; |
| 2771 | if (traits->obj_equ(other, key)) { |
| 2772 | obj = __smrht_link_to_obj(traits, link: other); |
| 2773 | if (traits->obj_try_get(obj)) { |
| 2774 | hw_lck_ptr_unlock(head, first, |
| 2775 | &smr_shash_grp); |
| 2776 | return obj; |
| 2777 | } |
| 2778 | break; |
| 2779 | } |
| 2780 | other = smr_serialized_load(&other->next); |
| 2781 | } |
| 2782 | |
| 2783 | counter_inc_preemption_disabled(&smrh->smrsh_count); |
| 2784 | smr_serialized_store_relaxed(&link->next, first); |
| 2785 | hw_lck_ptr_unlock(head, link, &smr_shash_grp); |
| 2786 | |
| 2787 | if (__smr_shash_should_reseed(smrh, observed_depth: depth)) { |
| 2788 | __smr_shash_schedule_rehash(smrh, traits, reason: SMRSH_REHASH_RESEED); |
| 2789 | } else if (depth * 2 >= __smr_shash_grow_ratio[smrh->smrsh_policy] && |
| 2790 | __smr_shash_should_grow(smrh, state, count: __smr_shash_count(smrh))) { |
| 2791 | __smr_shash_schedule_rehash(smrh, traits, reason: SMRSH_REHASH_GROW); |
| 2792 | } |
| 2793 | return NULL; |
| 2794 | } |
| 2795 | |
| 2796 | __abortlike |
| 2797 | static void |
| 2798 | __smr_shash_missing_elt_panic( |
| 2799 | struct smr_shash *smrh, |
| 2800 | struct smrq_slink *link, |
| 2801 | smrh_traits_t traits) |
| 2802 | { |
| 2803 | panic("Unable to find item %p (linkage %p) in %p (traits %p)" , |
| 2804 | __smrht_link_to_obj(traits, link), link, smrh, traits); |
| 2805 | } |
| 2806 | |
| 2807 | smr_shash_mut_cursor_t |
| 2808 | __smr_shash_entered_mut_begin( |
| 2809 | struct smr_shash *smrh, |
| 2810 | struct smrq_slink *link, |
| 2811 | smrh_traits_t traits) |
| 2812 | { |
| 2813 | struct smrq_slink *first, *next; |
| 2814 | __smrq_slink_t *prev; |
| 2815 | smrsh_state_t state; |
| 2816 | hw_lck_ptr_t *head; |
| 2817 | uint32_t hash; |
| 2818 | |
| 2819 | state = os_atomic_load(&smrh->smrsh_state, dependency); |
| 2820 | hash = __smr_shash_hash(smrh, idx: state.curidx, link, traits); |
| 2821 | head = __smr_shash_bucket(smrh, state, sel: SMRSH_CUR, hash); |
| 2822 | first = hw_lck_ptr_lock(head, &smr_shash_grp); |
| 2823 | |
| 2824 | if (__improbable(first == SMRSH_MIGRATED)) { |
| 2825 | hw_lck_ptr_unlock_nopreempt(head, first, &smr_shash_grp); |
| 2826 | |
| 2827 | state = os_atomic_load(&smrh->smrsh_state, dependency); |
| 2828 | hash = __smr_shash_hash(smrh, idx: state.newidx, link, traits); |
| 2829 | head = __smr_shash_bucket(smrh, state, sel: SMRSH_NEW, hash); |
| 2830 | first = hw_lck_ptr_lock_nopreempt(head, &smr_shash_grp); |
| 2831 | } |
| 2832 | |
| 2833 | next = first; |
| 2834 | while (next != link) { |
| 2835 | if (__smr_shash_is_stop(link: next)) { |
| 2836 | __smr_shash_missing_elt_panic(smrh, link, traits); |
| 2837 | } |
| 2838 | prev = &next->next; |
| 2839 | next = smr_serialized_load(prev); |
| 2840 | } |
| 2841 | |
| 2842 | return (smr_shash_mut_cursor_t){ .head = head, .prev = prev }; |
| 2843 | } |
| 2844 | |
| 2845 | void |
| 2846 | __smr_shash_entered_mut_erase( |
| 2847 | struct smr_shash *smrh, |
| 2848 | smr_shash_mut_cursor_t cursor, |
| 2849 | struct smrq_slink *link, |
| 2850 | smrh_traits_t traits) |
| 2851 | { |
| 2852 | struct smrq_slink *next, *first; |
| 2853 | smrsh_state_t state; |
| 2854 | |
| 2855 | first = hw_lck_ptr_value(lck: cursor.head); |
| 2856 | |
| 2857 | next = smr_serialized_load(&link->next); |
| 2858 | if (first == link) { |
| 2859 | counter_dec_preemption_disabled(&smrh->smrsh_count); |
| 2860 | hw_lck_ptr_unlock(cursor.head, next, &smr_shash_grp); |
| 2861 | } else { |
| 2862 | smr_serialized_store_relaxed(cursor.prev, next); |
| 2863 | counter_dec_preemption_disabled(&smrh->smrsh_count); |
| 2864 | hw_lck_ptr_unlock(cursor.head, first, &smr_shash_grp); |
| 2865 | } |
| 2866 | |
| 2867 | state = atomic_load_explicit(&smrh->smrsh_state, memory_order_relaxed); |
| 2868 | if (first == link && __smr_shash_is_stop(link: next) && |
| 2869 | __smr_shash_should_shrink(smrh, state, count: __smr_shash_count(smrh))) { |
| 2870 | __smr_shash_schedule_rehash(smrh, traits, reason: SMRSH_REHASH_SHRINK); |
| 2871 | } |
| 2872 | } |
| 2873 | |
| 2874 | void |
| 2875 | __smr_shash_entered_mut_replace( |
| 2876 | smr_shash_mut_cursor_t cursor, |
| 2877 | struct smrq_slink *old_link, |
| 2878 | struct smrq_slink *new_link) |
| 2879 | { |
| 2880 | struct smrq_slink *first, *next; |
| 2881 | |
| 2882 | first = hw_lck_ptr_value(lck: cursor.head); |
| 2883 | |
| 2884 | next = smr_serialized_load(&old_link->next); |
| 2885 | smr_serialized_store_relaxed(&new_link->next, next); |
| 2886 | if (first == old_link) { |
| 2887 | hw_lck_ptr_unlock(cursor.head, new_link, &smr_shash_grp); |
| 2888 | } else { |
| 2889 | smr_serialized_store_relaxed(cursor.prev, new_link); |
| 2890 | hw_lck_ptr_unlock(cursor.head, first, &smr_shash_grp); |
| 2891 | } |
| 2892 | } |
| 2893 | |
| 2894 | void |
| 2895 | __smr_shash_entered_mut_abort(smr_shash_mut_cursor_t cursor) |
| 2896 | { |
| 2897 | hw_lck_ptr_unlock(cursor.head, |
| 2898 | hw_lck_ptr_value(cursor.head), &smr_shash_grp); |
| 2899 | } |
| 2900 | |
| 2901 | static kern_return_t |
| 2902 | __smr_shash_rehash_with_target( |
| 2903 | struct smr_shash *smrh, |
| 2904 | smrsh_state_t state, |
| 2905 | uint8_t newshift, |
| 2906 | smrh_traits_t traits) |
| 2907 | { |
| 2908 | const size_t FLAT_SIZE = 256; |
| 2909 | struct smrq_slink *flat_queue[FLAT_SIZE]; |
| 2910 | |
| 2911 | size_t oldsize, newsize; |
| 2912 | hw_lck_ptr_t *oldarray; |
| 2913 | hw_lck_ptr_t *newarray; |
| 2914 | uint32_t newseed; |
| 2915 | uint8_t oldidx; |
| 2916 | |
| 2917 | /* |
| 2918 | * This function resizes a scalable hash table. |
| 2919 | * |
| 2920 | * It doesn't require a lock because it is the callout |
| 2921 | * of a THREAD_CALL_ONCE thread call. |
| 2922 | */ |
| 2923 | |
| 2924 | oldidx = state.curidx; |
| 2925 | state.newidx = 1 - state.curidx; |
| 2926 | state.newshift = newshift; |
| 2927 | assert(__smr_shash_load_array(smrh, state.newidx) == NULL); |
| 2928 | |
| 2929 | oldsize = __smr_shash_cursize(state); |
| 2930 | newsize = __smr_shash_size_for_shift(shift: newshift); |
| 2931 | |
| 2932 | oldarray = __smr_shash_load_array(smrh, idx: state.curidx); |
| 2933 | newarray = (hw_lck_ptr_t *)smr_hash_alloc_array(size: newsize); |
| 2934 | newseed = (uint32_t)early_random(); |
| 2935 | |
| 2936 | if (newarray == NULL) { |
| 2937 | return KERN_RESOURCE_SHORTAGE; |
| 2938 | } |
| 2939 | |
| 2940 | /* |
| 2941 | * Step 1: initialize the new array and seed, |
| 2942 | * and then publish the state referencing it. |
| 2943 | * |
| 2944 | * We do not need to synchronize explicitly with SMR, |
| 2945 | * because readers/writers will notice rehashing when |
| 2946 | * the bucket they interact with has a SMRSH_MIGRATED |
| 2947 | * value. |
| 2948 | */ |
| 2949 | |
| 2950 | for (size_t i = 0; i < newsize; i++) { |
| 2951 | __smr_shash_bucket_init(head: &newarray[i]); |
| 2952 | } |
| 2953 | os_atomic_store(&smrh->smrsh_array[state.newidx], newarray, relaxed); |
| 2954 | os_atomic_store(&smrh->smrsh_seed[state.newidx], newseed, relaxed); |
| 2955 | os_atomic_store(&smrh->smrsh_state, state, release); |
| 2956 | |
| 2957 | /* |
| 2958 | * Step 2: migrate buckets "atomically" under the old bucket lock. |
| 2959 | * |
| 2960 | * This migration is atomic for writers because |
| 2961 | * they take the old bucket lock first, and if |
| 2962 | * they observe SMRSH_MIGRATED as the value, |
| 2963 | * go look in the new bucket instead. |
| 2964 | * |
| 2965 | * This migration is atomic for readers, because |
| 2966 | * as we move elements to their new buckets, |
| 2967 | * the hash chains will not circle back to their |
| 2968 | * bucket head (the "stop" value won't match), |
| 2969 | * or the bucket head will be SMRSH_MIGRATED. |
| 2970 | * |
| 2971 | * This causes a slowpath which spins waiting |
| 2972 | * for SMRSH_MIGRATED to appear and then looks |
| 2973 | * in the new bucket. |
| 2974 | */ |
| 2975 | for (size_t i = 0; i < oldsize; i++) { |
| 2976 | struct smrq_slink *first, *link, *next; |
| 2977 | hw_lck_ptr_t *head; |
| 2978 | uint32_t hash; |
| 2979 | size_t n = 0; |
| 2980 | |
| 2981 | link = first = hw_lck_ptr_lock(&oldarray[i], &smr_shash_grp); |
| 2982 | |
| 2983 | while (!__smr_shash_is_stop(link)) { |
| 2984 | flat_queue[n++ % FLAT_SIZE] = link; |
| 2985 | link = smr_serialized_load(&link->next); |
| 2986 | } |
| 2987 | |
| 2988 | while (n-- > 0) { |
| 2989 | for (size_t j = (n % FLAT_SIZE) + 1; j-- > 0;) { |
| 2990 | link = flat_queue[j]; |
| 2991 | hash = traits->obj_hash(link, newseed); |
| 2992 | head = &newarray[hash >> newshift]; |
| 2993 | next = hw_lck_ptr_lock_nopreempt(head, |
| 2994 | &smr_shash_grp); |
| 2995 | smr_serialized_store_relaxed(&link->next, next); |
| 2996 | hw_lck_ptr_unlock_nopreempt(head, link, |
| 2997 | &smr_shash_grp); |
| 2998 | } |
| 2999 | n &= ~(FLAT_SIZE - 1); |
| 3000 | |
| 3001 | /* |
| 3002 | * If there were more than FLAT_SIZE elements in the |
| 3003 | * chain (which is super unlikely and in many ways, |
| 3004 | * worrisome), then we need to repopoulate |
| 3005 | * the flattened queue array for each run. |
| 3006 | * |
| 3007 | * This is O(n^2) but we have worse problems anyway |
| 3008 | * if we ever hit this path. |
| 3009 | */ |
| 3010 | if (__improbable(n > 0)) { |
| 3011 | link = first; |
| 3012 | for (size_t j = 0; j < n - FLAT_SIZE; j++) { |
| 3013 | link = smr_serialized_load(&link->next); |
| 3014 | } |
| 3015 | |
| 3016 | flat_queue[0] = link; |
| 3017 | for (size_t j = 1; j < FLAT_SIZE; j++) { |
| 3018 | link = smr_serialized_load(&link->next); |
| 3019 | flat_queue[j] = link; |
| 3020 | } |
| 3021 | } |
| 3022 | } |
| 3023 | |
| 3024 | hw_lck_ptr_unlock(&oldarray[i], SMRSH_MIGRATED, &smr_shash_grp); |
| 3025 | } |
| 3026 | |
| 3027 | /* |
| 3028 | * Step 3: deallocate the old array of buckets, |
| 3029 | * making sure to hide it from readers. |
| 3030 | */ |
| 3031 | |
| 3032 | state.curshift = state.newshift; |
| 3033 | state.curidx = state.newidx; |
| 3034 | os_atomic_store(&smrh->smrsh_state, state, release); |
| 3035 | |
| 3036 | smr_synchronize(smr: traits->domain); |
| 3037 | |
| 3038 | os_atomic_store(&smrh->smrsh_array[oldidx], NULL, relaxed); |
| 3039 | for (size_t i = 0; i < oldsize; i++) { |
| 3040 | __smr_shash_bucket_destroy(head: &oldarray[i]); |
| 3041 | } |
| 3042 | smr_hash_free_array(array: (struct smrq_slist_head *)oldarray, size: oldsize); |
| 3043 | |
| 3044 | return KERN_SUCCESS; |
| 3045 | } |
| 3046 | |
| 3047 | static void |
| 3048 | __smr_shash_rehash(thread_call_param_t arg0, thread_call_param_t arg1) |
| 3049 | { |
| 3050 | struct smr_shash *smrh = arg0; |
| 3051 | smrh_traits_t traits = arg1; |
| 3052 | smrsh_rehash_t reason; |
| 3053 | smrsh_state_t state; |
| 3054 | uint64_t count; |
| 3055 | kern_return_t kr; |
| 3056 | |
| 3057 | do { |
| 3058 | reason = os_atomic_xchg(&smrh->smrsh_rehashing, |
| 3059 | SMRSH_REHASH_RUNNING, relaxed); |
| 3060 | |
| 3061 | state = os_atomic_load(&smrh->smrsh_state, relaxed); |
| 3062 | count = __smr_shash_count(smrh); |
| 3063 | |
| 3064 | if (__smr_shash_should_grow(smrh, state, count)) { |
| 3065 | kr = __smr_shash_rehash_with_target(smrh, state, |
| 3066 | newshift: state.curshift - 1, traits); |
| 3067 | } else if (__smr_shash_should_shrink(smrh, state, count)) { |
| 3068 | kr = __smr_shash_rehash_with_target(smrh, state, |
| 3069 | newshift: state.curshift + 1, traits); |
| 3070 | } else if (reason & SMRSH_REHASH_RESEED) { |
| 3071 | kr = __smr_shash_rehash_with_target(smrh, state, |
| 3072 | newshift: state.curshift, traits); |
| 3073 | } else { |
| 3074 | kr = KERN_SUCCESS; |
| 3075 | } |
| 3076 | |
| 3077 | if (kr == KERN_RESOURCE_SHORTAGE) { |
| 3078 | uint64_t deadline; |
| 3079 | |
| 3080 | os_atomic_or(&smrh->smrsh_rehashing, reason, relaxed); |
| 3081 | nanoseconds_to_deadline(NSEC_PER_MSEC, result: &deadline); |
| 3082 | thread_call_enter1_delayed(call: smrh->smrsh_callout, |
| 3083 | param1: arg1, deadline); |
| 3084 | break; |
| 3085 | } |
| 3086 | } while (!os_atomic_cmpxchg(&smrh->smrsh_rehashing, |
| 3087 | SMRSH_REHASH_RUNNING, SMRSH_REHASH_NONE, relaxed)); |
| 3088 | } |
| 3089 | |
| 3090 | void |
| 3091 | smr_shash_init(struct smr_shash *smrh, smrsh_policy_t policy, size_t min_size) |
| 3092 | { |
| 3093 | smrsh_state_t state; |
| 3094 | hw_lck_ptr_t *array; |
| 3095 | uint8_t shift; |
| 3096 | size_t size; |
| 3097 | |
| 3098 | switch (policy) { |
| 3099 | case SMRSH_COMPACT: |
| 3100 | if (min_size < 2) { |
| 3101 | min_size = 2; |
| 3102 | } |
| 3103 | break; |
| 3104 | default: |
| 3105 | if (min_size < 16) { |
| 3106 | min_size = 16; |
| 3107 | } |
| 3108 | break; |
| 3109 | } |
| 3110 | |
| 3111 | switch (policy) { |
| 3112 | case SMRSH_COMPACT: |
| 3113 | size = MIN(2, min_size); |
| 3114 | break; |
| 3115 | case SMRSH_BALANCED: |
| 3116 | case SMRSH_BALANCED_NOSHRINK: |
| 3117 | size = MIN(16, min_size); |
| 3118 | break; |
| 3119 | case SMRSH_FASTEST: |
| 3120 | size = min_size; |
| 3121 | break; |
| 3122 | } |
| 3123 | |
| 3124 | if (size > KALLOC_SAFE_ALLOC_SIZE / sizeof(*array)) { |
| 3125 | size = KALLOC_SAFE_ALLOC_SIZE / sizeof(*array); |
| 3126 | } |
| 3127 | shift = (uint8_t)__builtin_clz((uint32_t)(size - 1)); |
| 3128 | size = (~0u >> shift) + 1; |
| 3129 | array = (hw_lck_ptr_t *)smr_hash_alloc_array(size); |
| 3130 | for (size_t i = 0; i < size; i++) { |
| 3131 | __smr_shash_bucket_init(head: &array[i]); |
| 3132 | } |
| 3133 | |
| 3134 | state = (smrsh_state_t){ |
| 3135 | .curshift = shift, |
| 3136 | .newshift = shift, |
| 3137 | }; |
| 3138 | *smrh = (struct smr_shash){ |
| 3139 | .smrsh_array[0] = array, |
| 3140 | .smrsh_seed[0] = (uint32_t)early_random(), |
| 3141 | .smrsh_state = state, |
| 3142 | .smrsh_policy = policy, |
| 3143 | .smrsh_min_shift = (uint8_t)flsll(mask: min_size - 1), |
| 3144 | }; |
| 3145 | counter_alloc(&smrh->smrsh_count); |
| 3146 | smrh->smrsh_callout = thread_call_allocate_with_options(func: __smr_shash_rehash, |
| 3147 | param0: smrh, pri: THREAD_CALL_PRIORITY_KERNEL, options: THREAD_CALL_OPTIONS_ONCE); |
| 3148 | } |
| 3149 | |
| 3150 | void |
| 3151 | __smr_shash_destroy( |
| 3152 | struct smr_shash *smrh, |
| 3153 | smrh_traits_t traits, |
| 3154 | void (^free)(void *)) |
| 3155 | { |
| 3156 | smrsh_state_t state; |
| 3157 | hw_lck_ptr_t *array; |
| 3158 | size_t size; |
| 3159 | |
| 3160 | thread_call_cancel_wait(call: smrh->smrsh_callout); |
| 3161 | |
| 3162 | state = os_atomic_load(&smrh->smrsh_state, dependency); |
| 3163 | assert(state.curidx == state.newidx); |
| 3164 | assert(__smr_shash_load_array(smrh, 1 - state.curidx) == NULL); |
| 3165 | size = __smr_shash_cursize(state); |
| 3166 | array = __smr_shash_load_array(smrh, idx: state.curidx); |
| 3167 | |
| 3168 | if (free) { |
| 3169 | for (size_t i = 0; i < size; i++) { |
| 3170 | struct smrq_slink *link, *next; |
| 3171 | |
| 3172 | next = hw_lck_ptr_value(lck: &array[i]); |
| 3173 | while (!__smr_shash_is_stop(link: next)) { |
| 3174 | link = next; |
| 3175 | next = smr_serialized_load(&link->next); |
| 3176 | free(__smrht_link_to_obj(traits, link)); |
| 3177 | } |
| 3178 | } |
| 3179 | } |
| 3180 | for (size_t i = 0; i < size; i++) { |
| 3181 | __smr_shash_bucket_destroy(head: &array[i]); |
| 3182 | } |
| 3183 | |
| 3184 | thread_call_free(call: smrh->smrsh_callout); |
| 3185 | counter_free(&smrh->smrsh_count); |
| 3186 | smr_hash_free_array(array: (struct smrq_slist_head *)array, size); |
| 3187 | bzero(s: smrh, n: sizeof(*smrh)); |
| 3188 | } |
| 3189 | |
| 3190 | |
| 3191 | #pragma mark misc |
| 3192 | |
| 3193 | void |
| 3194 | __smr_linkage_invalid(__smrq_link_t *link) |
| 3195 | { |
| 3196 | struct smrq_link *elem = __container_of(link, struct smrq_link, next); |
| 3197 | struct smrq_link *next = smr_serialized_load(&elem->next); |
| 3198 | |
| 3199 | panic("Invalid queue linkage: elt:%p next:%p next->prev:%p" , |
| 3200 | elem, next, __container_of(next->prev, struct smrq_link, next)); |
| 3201 | } |
| 3202 | |
| 3203 | void |
| 3204 | __smr_stail_invalid(__smrq_slink_t *link, __smrq_slink_t *last) |
| 3205 | { |
| 3206 | struct smrq_slink *elem = __container_of(link, struct smrq_slink, next); |
| 3207 | struct smrq_slink *next = smr_serialized_load(&elem->next); |
| 3208 | |
| 3209 | if (next) { |
| 3210 | panic("Invalid queue tail (element past end): elt:%p elt->next:%p" , |
| 3211 | elem, next); |
| 3212 | } else { |
| 3213 | panic("Invalid queue tail (early end): elt:%p tail:%p" , |
| 3214 | elem, __container_of(last, struct smrq_slink, next)); |
| 3215 | } |
| 3216 | } |
| 3217 | |
| 3218 | void |
| 3219 | __smr_tail_invalid(__smrq_link_t *link, __smrq_link_t *last) |
| 3220 | { |
| 3221 | struct smrq_link *elem = __container_of(link, struct smrq_link, next); |
| 3222 | struct smrq_link *next = smr_serialized_load(&elem->next); |
| 3223 | |
| 3224 | if (next) { |
| 3225 | panic("Invalid queue tail (element past end): elt:%p elt->next:%p" , |
| 3226 | elem, next); |
| 3227 | } else { |
| 3228 | panic("Invalid queue tail (early end): elt:%p tail:%p" , |
| 3229 | elem, __container_of(last, struct smrq_link, next)); |
| 3230 | } |
| 3231 | } |
| 3232 | |