| 1 | /* |
| 2 | * Copyright (c) 2013 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
| 5 | * |
| 6 | * This file contains Original Code and/or Modifications of Original Code |
| 7 | * as defined in and that are subject to the Apple Public Source License |
| 8 | * Version 2.0 (the 'License'). You may not use this file except in |
| 9 | * compliance with the License. The rights granted to you under the License |
| 10 | * may not be used to create, or enable the creation or redistribution of, |
| 11 | * unlawful or unlicensed copies of an Apple operating system, or to |
| 12 | * circumvent, violate, or enable the circumvention or violation of, any |
| 13 | * terms of an Apple operating system software license agreement. |
| 14 | * |
| 15 | * Please obtain a copy of the License at |
| 16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
| 17 | * |
| 18 | * The Original Code and all software distributed under the License are |
| 19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| 23 | * Please see the License for the specific language governing rights and |
| 24 | * limitations under the License. |
| 25 | * |
| 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
| 27 | */ |
| 28 | #include <mach/mach_types.h> |
| 29 | #include <kern/assert.h> |
| 30 | #include <kern/clock.h> |
| 31 | #include <kern/coalition.h> |
| 32 | #include <kern/debug.h> |
| 33 | #include <kern/startup.h> |
| 34 | #include <kern/host.h> |
| 35 | #include <kern/kern_types.h> |
| 36 | #include <kern/machine.h> |
| 37 | #include <kern/simple_lock.h> |
| 38 | #include <kern/misc_protos.h> |
| 39 | #include <kern/sched.h> |
| 40 | #include <kern/sched_prim.h> |
| 41 | #include <kern/sfi.h> |
| 42 | #include <kern/timer_call.h> |
| 43 | #include <kern/waitq.h> |
| 44 | #include <kern/ledger.h> |
| 45 | #include <kern/policy_internal.h> |
| 46 | |
| 47 | #include <machine/atomic.h> |
| 48 | |
| 49 | #include <pexpert/pexpert.h> |
| 50 | |
| 51 | #include <libkern/kernel_mach_header.h> |
| 52 | |
| 53 | #include <sys/kdebug.h> |
| 54 | |
| 55 | #if CONFIG_SCHED_SFI |
| 56 | |
| 57 | #define SFI_DEBUG 0 |
| 58 | |
| 59 | #if SFI_DEBUG |
| 60 | #define dprintf(...) kprintf(__VA_ARGS__) |
| 61 | #else |
| 62 | #define dprintf(...) do { } while(0) |
| 63 | #endif |
| 64 | |
| 65 | /* |
| 66 | * SFI (Selective Forced Idle) operates by enabling a global |
| 67 | * timer on the SFI window interval. When it fires, all processors |
| 68 | * running a thread that should be SFI-ed are sent an AST. |
| 69 | * As threads become runnable while in their "off phase", they |
| 70 | * are placed on a deferred ready queue. When a per-class |
| 71 | * "on timer" fires, the ready threads for that class are |
| 72 | * re-enqueued for running. As an optimization to avoid spurious |
| 73 | * wakeups, the timer may be lazily programmed. |
| 74 | */ |
| 75 | |
| 76 | /* |
| 77 | * The "sfi_lock" simple lock guards access to static configuration |
| 78 | * parameters (as specified by userspace), dynamic state changes |
| 79 | * (as updated by the timer event routine), and timer data structures. |
| 80 | * Since it can be taken with interrupts disabled in some cases, all |
| 81 | * uses should be taken with interrupts disabled at splsched(). The |
| 82 | * "sfi_lock" also guards the "sfi_wait_class" field of thread_t, and |
| 83 | * must only be accessed with it held. |
| 84 | * |
| 85 | * When an "on timer" fires, we must deterministically be able to drain |
| 86 | * the wait queue, since if any threads are added to the queue afterwards, |
| 87 | * they may never get woken out of SFI wait. So sfi_lock must be |
| 88 | * taken before the wait queue's own spinlock. |
| 89 | * |
| 90 | * The wait queue will take the thread's scheduling lock. We may also take |
| 91 | * the thread_lock directly to update the "sfi_class" field and determine |
| 92 | * if the thread should block in the wait queue, but the lock will be |
| 93 | * released before doing so. |
| 94 | * |
| 95 | * The pset lock may also be taken, but not while any other locks are held. |
| 96 | * |
| 97 | * The task and thread mutex may also be held while reevaluating sfi state. |
| 98 | * |
| 99 | * splsched ---> sfi_lock ---> waitq ---> thread_lock |
| 100 | * \ \ \__ thread_lock (*) |
| 101 | * \ \__ pset_lock |
| 102 | * \ |
| 103 | * \__ thread_lock |
| 104 | */ |
| 105 | |
| 106 | decl_simple_lock_data(static, sfi_lock); |
| 107 | static timer_call_data_t sfi_timer_call_entry; |
| 108 | volatile boolean_t sfi_is_enabled; |
| 109 | |
| 110 | boolean_t sfi_window_is_set; |
| 111 | uint64_t sfi_window_usecs; |
| 112 | uint64_t sfi_window_interval; |
| 113 | uint64_t sfi_next_off_deadline; |
| 114 | |
| 115 | typedef struct { |
| 116 | sfi_class_id_t class_id; |
| 117 | thread_continue_t class_continuation; |
| 118 | const char * class_name; |
| 119 | const char * class_ledger_name; |
| 120 | } sfi_class_registration_t; |
| 121 | |
| 122 | /* |
| 123 | * To add a new SFI class: |
| 124 | * |
| 125 | * 1) Raise MAX_SFI_CLASS_ID in mach/sfi_class.h |
| 126 | * 2) Add a #define for it to mach/sfi_class.h. It need not be inserted in order of restrictiveness. |
| 127 | * 3) Add a call to SFI_CLASS_REGISTER below |
| 128 | * 4) Augment sfi_thread_classify to categorize threads as early as possible for as restrictive as possible. |
| 129 | * 5) Modify thermald to use the SFI class |
| 130 | */ |
| 131 | |
| 132 | static inline void _sfi_wait_cleanup(void); |
| 133 | |
| 134 | static void sfi_class_register(sfi_class_registration_t *); |
| 135 | |
| 136 | #define SFI_CLASS_REGISTER(clsid, ledger_name) \ |
| 137 | \ |
| 138 | static void __attribute__((noinline, noreturn)) \ |
| 139 | SFI_ ## clsid ## _THREAD_IS_WAITING(void *arg __unused, wait_result_t wret __unused) \ |
| 140 | { \ |
| 141 | _sfi_wait_cleanup(); \ |
| 142 | thread_exception_return(); \ |
| 143 | } \ |
| 144 | \ |
| 145 | static_assert(SFI_CLASS_ ## clsid < MAX_SFI_CLASS_ID, "Invalid ID"); \ |
| 146 | \ |
| 147 | static __startup_data sfi_class_registration_t \ |
| 148 | SFI_ ## clsid ## _registration = { \ |
| 149 | .class_id = SFI_CLASS_ ## clsid, \ |
| 150 | .class_continuation = SFI_ ## clsid ## _THREAD_IS_WAITING, \ |
| 151 | .class_name = "SFI_CLASS_" # clsid, \ |
| 152 | .class_ledger_name = "SFI_CLASS_" # ledger_name, \ |
| 153 | }; \ |
| 154 | STARTUP_ARG(TUNABLES, STARTUP_RANK_MIDDLE, \ |
| 155 | sfi_class_register, &SFI_ ## clsid ## _registration) |
| 156 | |
| 157 | /* SFI_CLASS_UNSPECIFIED not included here */ |
| 158 | SFI_CLASS_REGISTER(MAINTENANCE, MAINTENANCE); |
| 159 | SFI_CLASS_REGISTER(DARWIN_BG, DARWIN_BG); |
| 160 | SFI_CLASS_REGISTER(APP_NAP, APP_NAP); |
| 161 | SFI_CLASS_REGISTER(MANAGED_FOCAL, MANAGED); |
| 162 | SFI_CLASS_REGISTER(MANAGED_NONFOCAL, MANAGED); |
| 163 | SFI_CLASS_REGISTER(UTILITY, UTILITY); |
| 164 | SFI_CLASS_REGISTER(DEFAULT_FOCAL, DEFAULT); |
| 165 | SFI_CLASS_REGISTER(DEFAULT_NONFOCAL, DEFAULT); |
| 166 | SFI_CLASS_REGISTER(LEGACY_FOCAL, LEGACY); |
| 167 | SFI_CLASS_REGISTER(LEGACY_NONFOCAL, LEGACY); |
| 168 | SFI_CLASS_REGISTER(USER_INITIATED_FOCAL, USER_INITIATED); |
| 169 | SFI_CLASS_REGISTER(USER_INITIATED_NONFOCAL, USER_INITIATED); |
| 170 | SFI_CLASS_REGISTER(USER_INTERACTIVE_FOCAL, USER_INTERACTIVE); |
| 171 | SFI_CLASS_REGISTER(USER_INTERACTIVE_NONFOCAL, USER_INTERACTIVE); |
| 172 | SFI_CLASS_REGISTER(KERNEL, OPTED_OUT); |
| 173 | SFI_CLASS_REGISTER(OPTED_OUT, OPTED_OUT); |
| 174 | |
| 175 | struct sfi_class_state { |
| 176 | uint64_t off_time_usecs; |
| 177 | uint64_t off_time_interval; |
| 178 | |
| 179 | thread_call_t on_timer; |
| 180 | uint64_t on_timer_deadline; |
| 181 | boolean_t on_timer_programmed; |
| 182 | |
| 183 | boolean_t class_sfi_is_enabled; |
| 184 | volatile boolean_t class_in_on_phase; |
| 185 | |
| 186 | struct waitq waitq; /* threads in ready state */ |
| 187 | thread_continue_t continuation; |
| 188 | |
| 189 | const char * class_name; |
| 190 | const char * class_ledger_name; |
| 191 | }; |
| 192 | |
| 193 | /* Static configuration performed in sfi_early_init() */ |
| 194 | struct sfi_class_state sfi_classes[MAX_SFI_CLASS_ID]; |
| 195 | |
| 196 | int sfi_enabled_class_count; // protected by sfi_lock and used atomically |
| 197 | |
| 198 | static void sfi_timer_global_off( |
| 199 | timer_call_param_t param0, |
| 200 | timer_call_param_t param1); |
| 201 | |
| 202 | static void sfi_timer_per_class_on( |
| 203 | timer_call_param_t param0, |
| 204 | timer_call_param_t param1); |
| 205 | |
| 206 | /* Called early in boot, when kernel is single-threaded */ |
| 207 | __startup_func |
| 208 | static void |
| 209 | sfi_class_register(sfi_class_registration_t *reg) |
| 210 | { |
| 211 | sfi_class_id_t class_id = reg->class_id; |
| 212 | |
| 213 | if (class_id >= MAX_SFI_CLASS_ID) { |
| 214 | panic("Invalid SFI class 0x%x" , class_id); |
| 215 | } |
| 216 | if (sfi_classes[class_id].continuation != NULL) { |
| 217 | panic("Duplicate SFI registration for class 0x%x" , class_id); |
| 218 | } |
| 219 | sfi_classes[class_id].class_sfi_is_enabled = FALSE; |
| 220 | sfi_classes[class_id].class_in_on_phase = TRUE; |
| 221 | sfi_classes[class_id].continuation = reg->class_continuation; |
| 222 | sfi_classes[class_id].class_name = reg->class_name; |
| 223 | sfi_classes[class_id].class_ledger_name = reg->class_ledger_name; |
| 224 | } |
| 225 | |
| 226 | void |
| 227 | sfi_init(void) |
| 228 | { |
| 229 | sfi_class_id_t i; |
| 230 | |
| 231 | simple_lock_init(&sfi_lock, 0); |
| 232 | timer_call_setup(call: &sfi_timer_call_entry, func: sfi_timer_global_off, NULL); |
| 233 | sfi_window_is_set = FALSE; |
| 234 | os_atomic_init(&sfi_enabled_class_count, 0); |
| 235 | sfi_is_enabled = FALSE; |
| 236 | |
| 237 | for (i = 0; i < MAX_SFI_CLASS_ID; i++) { |
| 238 | /* If the class was set up in sfi_early_init(), initialize remaining fields */ |
| 239 | if (sfi_classes[i].continuation) { |
| 240 | sfi_classes[i].on_timer = thread_call_allocate_with_options( |
| 241 | func: sfi_timer_per_class_on, param0: (void *)(uintptr_t)i, pri: THREAD_CALL_PRIORITY_HIGH, |
| 242 | options: THREAD_CALL_OPTIONS_ONCE); |
| 243 | sfi_classes[i].on_timer_programmed = FALSE; |
| 244 | |
| 245 | waitq_init(waitq: &sfi_classes[i].waitq, type: WQT_QUEUE, SYNC_POLICY_FIFO); |
| 246 | } else { |
| 247 | /* The only allowed gap is for SFI_CLASS_UNSPECIFIED */ |
| 248 | if (i != SFI_CLASS_UNSPECIFIED) { |
| 249 | panic("Gap in registered SFI classes" ); |
| 250 | } |
| 251 | } |
| 252 | } |
| 253 | } |
| 254 | |
| 255 | /* Can be called before sfi_init() by task initialization, but after sfi_early_init() */ |
| 256 | sfi_class_id_t |
| 257 | sfi_get_ledger_alias_for_class(sfi_class_id_t class_id) |
| 258 | { |
| 259 | sfi_class_id_t i; |
| 260 | const char *ledger_name = NULL; |
| 261 | |
| 262 | ledger_name = sfi_classes[class_id].class_ledger_name; |
| 263 | |
| 264 | /* Find the first class in the registration table with this ledger name */ |
| 265 | if (ledger_name) { |
| 266 | for (i = SFI_CLASS_UNSPECIFIED + 1; i < class_id; i++) { |
| 267 | if (0 == strcmp(s1: sfi_classes[i].class_ledger_name, s2: ledger_name)) { |
| 268 | dprintf("sfi_get_ledger_alias_for_class(0x%x) -> 0x%x\n" , class_id, i); |
| 269 | return i; |
| 270 | } |
| 271 | } |
| 272 | |
| 273 | /* This class is the primary one for the ledger, so there is no alias */ |
| 274 | dprintf("sfi_get_ledger_alias_for_class(0x%x) -> 0x%x\n" , class_id, SFI_CLASS_UNSPECIFIED); |
| 275 | return SFI_CLASS_UNSPECIFIED; |
| 276 | } |
| 277 | |
| 278 | /* We are permissive on SFI class lookup failures. In sfi_init(), we assert more */ |
| 279 | return SFI_CLASS_UNSPECIFIED; |
| 280 | } |
| 281 | |
| 282 | int |
| 283 | sfi_ledger_entry_add(ledger_template_t template, sfi_class_id_t class_id) |
| 284 | { |
| 285 | const char *ledger_name = NULL; |
| 286 | |
| 287 | ledger_name = sfi_classes[class_id].class_ledger_name; |
| 288 | |
| 289 | dprintf("sfi_ledger_entry_add(%p, 0x%x) -> %s\n" , template, class_id, ledger_name); |
| 290 | return ledger_entry_add(template, key: ledger_name, group: "sfi" , units: "MATUs" ); |
| 291 | } |
| 292 | |
| 293 | static void |
| 294 | sfi_timer_global_off( |
| 295 | timer_call_param_t param0 __unused, |
| 296 | timer_call_param_t param1 __unused) |
| 297 | { |
| 298 | uint64_t now = mach_absolute_time(); |
| 299 | sfi_class_id_t i; |
| 300 | processor_set_t pset, nset; |
| 301 | processor_t processor; |
| 302 | uint32_t needs_cause_ast_mask = 0x0; |
| 303 | spl_t s; |
| 304 | |
| 305 | s = splsched(); |
| 306 | |
| 307 | simple_lock(&sfi_lock, LCK_GRP_NULL); |
| 308 | if (!sfi_is_enabled) { |
| 309 | /* If SFI has been disabled, let all "on" timers drain naturally */ |
| 310 | KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SFI, SFI_OFF_TIMER) | DBG_FUNC_NONE, 1, 0, 0, 0, 0); |
| 311 | |
| 312 | simple_unlock(&sfi_lock); |
| 313 | splx(s); |
| 314 | return; |
| 315 | } |
| 316 | |
| 317 | KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SFI, SFI_OFF_TIMER) | DBG_FUNC_START, 0, 0, 0, 0, 0); |
| 318 | |
| 319 | /* First set all configured classes into the off state, and program their "on" timer */ |
| 320 | for (i = 0; i < MAX_SFI_CLASS_ID; i++) { |
| 321 | if (sfi_classes[i].class_sfi_is_enabled) { |
| 322 | uint64_t on_timer_deadline; |
| 323 | |
| 324 | sfi_classes[i].class_in_on_phase = FALSE; |
| 325 | sfi_classes[i].on_timer_programmed = TRUE; |
| 326 | |
| 327 | /* Push out on-timer */ |
| 328 | on_timer_deadline = now + sfi_classes[i].off_time_interval; |
| 329 | sfi_classes[i].on_timer_deadline = on_timer_deadline; |
| 330 | |
| 331 | thread_call_enter_delayed_with_leeway(call: sfi_classes[i].on_timer, NULL, deadline: on_timer_deadline, leeway: 0, THREAD_CALL_DELAY_SYS_CRITICAL); |
| 332 | } else { |
| 333 | /* If this class no longer needs SFI, make sure the timer is cancelled */ |
| 334 | sfi_classes[i].class_in_on_phase = TRUE; |
| 335 | if (sfi_classes[i].on_timer_programmed) { |
| 336 | sfi_classes[i].on_timer_programmed = FALSE; |
| 337 | sfi_classes[i].on_timer_deadline = ~0ULL; |
| 338 | thread_call_cancel(call: sfi_classes[i].on_timer); |
| 339 | } |
| 340 | } |
| 341 | } |
| 342 | simple_unlock(&sfi_lock); |
| 343 | |
| 344 | /* Iterate over processors, call cause_ast_check() on ones running a thread that should be in an off phase */ |
| 345 | processor = processor_list; |
| 346 | pset = processor->processor_set; |
| 347 | |
| 348 | pset_lock(pset); |
| 349 | |
| 350 | do { |
| 351 | nset = processor->processor_set; |
| 352 | if (nset != pset) { |
| 353 | pset_unlock(pset); |
| 354 | pset = nset; |
| 355 | pset_lock(pset); |
| 356 | } |
| 357 | |
| 358 | /* "processor" and its pset are locked */ |
| 359 | if (processor->state == PROCESSOR_RUNNING) { |
| 360 | if (AST_NONE != sfi_processor_needs_ast(processor)) { |
| 361 | needs_cause_ast_mask |= (1U << processor->cpu_id); |
| 362 | } |
| 363 | } |
| 364 | } while ((processor = processor->processor_list) != NULL); |
| 365 | |
| 366 | pset_unlock(pset); |
| 367 | |
| 368 | for (int cpuid = lsb_first(bitmap: needs_cause_ast_mask); cpuid >= 0; cpuid = lsb_next(bitmap: needs_cause_ast_mask, previous_bit: cpuid)) { |
| 369 | processor = processor_array[cpuid]; |
| 370 | if (processor == current_processor()) { |
| 371 | ast_on(AST_SFI); |
| 372 | } else { |
| 373 | cause_ast_check(processor); |
| 374 | } |
| 375 | } |
| 376 | |
| 377 | /* Re-arm timer if still enabled */ |
| 378 | simple_lock(&sfi_lock, LCK_GRP_NULL); |
| 379 | if (sfi_is_enabled) { |
| 380 | clock_deadline_for_periodic_event(interval: sfi_window_interval, |
| 381 | abstime: now, |
| 382 | deadline: &sfi_next_off_deadline); |
| 383 | timer_call_enter1(call: &sfi_timer_call_entry, |
| 384 | NULL, |
| 385 | deadline: sfi_next_off_deadline, |
| 386 | TIMER_CALL_SYS_CRITICAL); |
| 387 | } |
| 388 | |
| 389 | KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SFI, SFI_OFF_TIMER) | DBG_FUNC_END, 0, 0, 0, 0, 0); |
| 390 | |
| 391 | simple_unlock(&sfi_lock); |
| 392 | |
| 393 | splx(s); |
| 394 | } |
| 395 | |
| 396 | static void |
| 397 | sfi_timer_per_class_on( |
| 398 | timer_call_param_t param0, |
| 399 | timer_call_param_t param1 __unused) |
| 400 | { |
| 401 | sfi_class_id_t sfi_class_id = (sfi_class_id_t)(uintptr_t)param0; |
| 402 | struct sfi_class_state *sfi_class = &sfi_classes[sfi_class_id]; |
| 403 | |
| 404 | spl_t s = splsched(); |
| 405 | |
| 406 | simple_lock(&sfi_lock, LCK_GRP_NULL); |
| 407 | |
| 408 | KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SFI, SFI_ON_TIMER) | DBG_FUNC_START, sfi_class_id, 0, 0, 0, 0); |
| 409 | |
| 410 | /* |
| 411 | * Any threads that may have accumulated in the ready queue for this class should get re-enqueued. |
| 412 | * Since we have the sfi_lock held and have changed "class_in_on_phase", we expect |
| 413 | * no new threads to be put on this wait queue until the global "off timer" has fired. |
| 414 | */ |
| 415 | |
| 416 | sfi_class->class_in_on_phase = TRUE; |
| 417 | sfi_class->on_timer_programmed = FALSE; |
| 418 | |
| 419 | simple_unlock(&sfi_lock); |
| 420 | |
| 421 | /* |
| 422 | * Issue the wakeup outside the lock to reduce lock hold time |
| 423 | * rdar://problem/96463639 |
| 424 | */ |
| 425 | __assert_only kern_return_t kret; |
| 426 | |
| 427 | kret = waitq_wakeup64_all(waitq: &sfi_class->waitq, |
| 428 | CAST_EVENT64_T(sfi_class_id), |
| 429 | THREAD_AWAKENED, flags: waitq_flags_splx(spl_level: s)); |
| 430 | assert(kret == KERN_SUCCESS || kret == KERN_NOT_WAITING); |
| 431 | |
| 432 | KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SFI, SFI_ON_TIMER) | DBG_FUNC_END, 0, 0, 0, 0, 0); |
| 433 | } |
| 434 | |
| 435 | |
| 436 | kern_return_t |
| 437 | sfi_set_window(uint64_t window_usecs) |
| 438 | { |
| 439 | uint64_t interval, deadline; |
| 440 | uint64_t now = mach_absolute_time(); |
| 441 | sfi_class_id_t i; |
| 442 | spl_t s; |
| 443 | uint64_t largest_class_off_interval = 0; |
| 444 | |
| 445 | if (window_usecs < MIN_SFI_WINDOW_USEC) { |
| 446 | window_usecs = MIN_SFI_WINDOW_USEC; |
| 447 | } |
| 448 | |
| 449 | if (window_usecs > UINT32_MAX) { |
| 450 | return KERN_INVALID_ARGUMENT; |
| 451 | } |
| 452 | |
| 453 | KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SFI, SFI_SET_WINDOW), window_usecs, 0, 0, 0, 0); |
| 454 | |
| 455 | clock_interval_to_absolutetime_interval(interval: (uint32_t)window_usecs, NSEC_PER_USEC, result: &interval); |
| 456 | deadline = now + interval; |
| 457 | |
| 458 | s = splsched(); |
| 459 | |
| 460 | simple_lock(&sfi_lock, LCK_GRP_NULL); |
| 461 | |
| 462 | /* Check that we are not bringing in the SFI window smaller than any class */ |
| 463 | for (i = 0; i < MAX_SFI_CLASS_ID; i++) { |
| 464 | if (sfi_classes[i].class_sfi_is_enabled) { |
| 465 | largest_class_off_interval = MAX(largest_class_off_interval, sfi_classes[i].off_time_interval); |
| 466 | } |
| 467 | } |
| 468 | |
| 469 | /* |
| 470 | * Off window must be strictly greater than all enabled classes, |
| 471 | * otherwise threads would build up on ready queue and never be able to run. |
| 472 | */ |
| 473 | if (interval <= largest_class_off_interval) { |
| 474 | simple_unlock(&sfi_lock); |
| 475 | splx(s); |
| 476 | return KERN_INVALID_ARGUMENT; |
| 477 | } |
| 478 | |
| 479 | /* |
| 480 | * If the new "off" deadline is further out than the current programmed timer, |
| 481 | * just let the current one expire (and the new cadence will be established thereafter). |
| 482 | * If the new "off" deadline is nearer than the current one, bring it in, so we |
| 483 | * can start the new behavior sooner. Note that this may cause the "off" timer to |
| 484 | * fire before some of the class "on" timers have fired. |
| 485 | */ |
| 486 | sfi_window_usecs = window_usecs; |
| 487 | sfi_window_interval = interval; |
| 488 | sfi_window_is_set = TRUE; |
| 489 | |
| 490 | if (os_atomic_load(&sfi_enabled_class_count, relaxed) == 0) { |
| 491 | /* Can't program timer yet */ |
| 492 | } else if (!sfi_is_enabled) { |
| 493 | sfi_is_enabled = TRUE; |
| 494 | sfi_next_off_deadline = deadline; |
| 495 | timer_call_enter1(call: &sfi_timer_call_entry, |
| 496 | NULL, |
| 497 | deadline: sfi_next_off_deadline, |
| 498 | TIMER_CALL_SYS_CRITICAL); |
| 499 | } else if (deadline >= sfi_next_off_deadline) { |
| 500 | sfi_next_off_deadline = deadline; |
| 501 | } else { |
| 502 | sfi_next_off_deadline = deadline; |
| 503 | timer_call_enter1(call: &sfi_timer_call_entry, |
| 504 | NULL, |
| 505 | deadline: sfi_next_off_deadline, |
| 506 | TIMER_CALL_SYS_CRITICAL); |
| 507 | } |
| 508 | |
| 509 | simple_unlock(&sfi_lock); |
| 510 | splx(s); |
| 511 | |
| 512 | return KERN_SUCCESS; |
| 513 | } |
| 514 | |
| 515 | kern_return_t |
| 516 | sfi_window_cancel(void) |
| 517 | { |
| 518 | spl_t s; |
| 519 | |
| 520 | s = splsched(); |
| 521 | |
| 522 | KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SFI, SFI_CANCEL_WINDOW), 0, 0, 0, 0, 0); |
| 523 | |
| 524 | /* Disable globals so that global "off-timer" is not re-armed */ |
| 525 | simple_lock(&sfi_lock, LCK_GRP_NULL); |
| 526 | sfi_window_is_set = FALSE; |
| 527 | sfi_window_usecs = 0; |
| 528 | sfi_window_interval = 0; |
| 529 | sfi_next_off_deadline = 0; |
| 530 | sfi_is_enabled = FALSE; |
| 531 | simple_unlock(&sfi_lock); |
| 532 | |
| 533 | splx(s); |
| 534 | |
| 535 | return KERN_SUCCESS; |
| 536 | } |
| 537 | |
| 538 | /* Defers SFI off and per-class on timers (if live) by the specified interval |
| 539 | * in Mach Absolute Time Units. Currently invoked to align with the global |
| 540 | * forced idle mechanism. Making some simplifying assumptions, the iterative GFI |
| 541 | * induced SFI on+off deferrals form a geometric series that converges to yield |
| 542 | * an effective SFI duty cycle that is scaled by the GFI duty cycle. Initial phase |
| 543 | * alignment and congruency of the SFI/GFI periods can distort this to some extent. |
| 544 | */ |
| 545 | |
| 546 | kern_return_t |
| 547 | sfi_defer(uint64_t sfi_defer_matus) |
| 548 | { |
| 549 | kern_return_t kr = KERN_FAILURE; |
| 550 | spl_t s = splsched(); |
| 551 | |
| 552 | KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SFI, SFI_GLOBAL_DEFER), sfi_defer_matus, 0, 0, 0, 0); |
| 553 | |
| 554 | simple_lock(&sfi_lock, LCK_GRP_NULL); |
| 555 | if (!sfi_is_enabled) { |
| 556 | goto sfi_defer_done; |
| 557 | } |
| 558 | |
| 559 | assert(sfi_next_off_deadline != 0); |
| 560 | |
| 561 | sfi_next_off_deadline += sfi_defer_matus; |
| 562 | timer_call_enter1(call: &sfi_timer_call_entry, NULL, deadline: sfi_next_off_deadline, TIMER_CALL_SYS_CRITICAL); |
| 563 | |
| 564 | for (int i = 0; i < MAX_SFI_CLASS_ID; i++) { |
| 565 | if (sfi_classes[i].class_sfi_is_enabled) { |
| 566 | if (sfi_classes[i].on_timer_programmed) { |
| 567 | uint64_t new_on_deadline = sfi_classes[i].on_timer_deadline + sfi_defer_matus; |
| 568 | sfi_classes[i].on_timer_deadline = new_on_deadline; |
| 569 | thread_call_enter_delayed_with_leeway(call: sfi_classes[i].on_timer, NULL, deadline: new_on_deadline, leeway: 0, THREAD_CALL_DELAY_SYS_CRITICAL); |
| 570 | } |
| 571 | } |
| 572 | } |
| 573 | |
| 574 | kr = KERN_SUCCESS; |
| 575 | sfi_defer_done: |
| 576 | simple_unlock(&sfi_lock); |
| 577 | |
| 578 | splx(s); |
| 579 | |
| 580 | return kr; |
| 581 | } |
| 582 | |
| 583 | |
| 584 | kern_return_t |
| 585 | sfi_get_window(uint64_t *window_usecs) |
| 586 | { |
| 587 | spl_t s; |
| 588 | uint64_t off_window_us; |
| 589 | |
| 590 | s = splsched(); |
| 591 | simple_lock(&sfi_lock, LCK_GRP_NULL); |
| 592 | |
| 593 | off_window_us = sfi_window_usecs; |
| 594 | |
| 595 | simple_unlock(&sfi_lock); |
| 596 | splx(s); |
| 597 | |
| 598 | *window_usecs = off_window_us; |
| 599 | |
| 600 | return KERN_SUCCESS; |
| 601 | } |
| 602 | |
| 603 | |
| 604 | kern_return_t |
| 605 | sfi_set_class_offtime(sfi_class_id_t class_id, uint64_t offtime_usecs) |
| 606 | { |
| 607 | uint64_t interval; |
| 608 | spl_t s; |
| 609 | uint64_t off_window_interval; |
| 610 | |
| 611 | if (offtime_usecs < MIN_SFI_WINDOW_USEC) { |
| 612 | offtime_usecs = MIN_SFI_WINDOW_USEC; |
| 613 | } |
| 614 | |
| 615 | if (class_id == SFI_CLASS_UNSPECIFIED || class_id >= MAX_SFI_CLASS_ID) { |
| 616 | return KERN_INVALID_ARGUMENT; |
| 617 | } |
| 618 | |
| 619 | if (offtime_usecs > UINT32_MAX) { |
| 620 | return KERN_INVALID_ARGUMENT; |
| 621 | } |
| 622 | |
| 623 | KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SFI, SFI_SET_CLASS_OFFTIME), offtime_usecs, class_id, 0, 0, 0); |
| 624 | |
| 625 | clock_interval_to_absolutetime_interval(interval: (uint32_t)offtime_usecs, NSEC_PER_USEC, result: &interval); |
| 626 | |
| 627 | s = splsched(); |
| 628 | |
| 629 | simple_lock(&sfi_lock, LCK_GRP_NULL); |
| 630 | off_window_interval = sfi_window_interval; |
| 631 | |
| 632 | /* Check that we are not bringing in class off-time larger than the SFI window */ |
| 633 | if (off_window_interval && (interval >= off_window_interval)) { |
| 634 | simple_unlock(&sfi_lock); |
| 635 | splx(s); |
| 636 | return KERN_INVALID_ARGUMENT; |
| 637 | } |
| 638 | |
| 639 | /* We never re-program the per-class on-timer, but rather just let it expire naturally */ |
| 640 | if (!sfi_classes[class_id].class_sfi_is_enabled) { |
| 641 | os_atomic_inc(&sfi_enabled_class_count, relaxed); |
| 642 | } |
| 643 | sfi_classes[class_id].off_time_usecs = offtime_usecs; |
| 644 | sfi_classes[class_id].off_time_interval = interval; |
| 645 | sfi_classes[class_id].class_sfi_is_enabled = TRUE; |
| 646 | |
| 647 | if (sfi_window_is_set && !sfi_is_enabled) { |
| 648 | /* start global off timer */ |
| 649 | sfi_is_enabled = TRUE; |
| 650 | sfi_next_off_deadline = mach_absolute_time() + sfi_window_interval; |
| 651 | timer_call_enter1(call: &sfi_timer_call_entry, |
| 652 | NULL, |
| 653 | deadline: sfi_next_off_deadline, |
| 654 | TIMER_CALL_SYS_CRITICAL); |
| 655 | } |
| 656 | |
| 657 | simple_unlock(&sfi_lock); |
| 658 | |
| 659 | splx(s); |
| 660 | |
| 661 | return KERN_SUCCESS; |
| 662 | } |
| 663 | |
| 664 | kern_return_t |
| 665 | sfi_class_offtime_cancel(sfi_class_id_t class_id) |
| 666 | { |
| 667 | spl_t s; |
| 668 | |
| 669 | if (class_id == SFI_CLASS_UNSPECIFIED || class_id >= MAX_SFI_CLASS_ID) { |
| 670 | return KERN_INVALID_ARGUMENT; |
| 671 | } |
| 672 | |
| 673 | s = splsched(); |
| 674 | |
| 675 | KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SFI, SFI_CANCEL_CLASS_OFFTIME), class_id, 0, 0, 0, 0); |
| 676 | |
| 677 | simple_lock(&sfi_lock, LCK_GRP_NULL); |
| 678 | |
| 679 | /* We never re-program the per-class on-timer, but rather just let it expire naturally */ |
| 680 | if (sfi_classes[class_id].class_sfi_is_enabled) { |
| 681 | os_atomic_dec(&sfi_enabled_class_count, relaxed); |
| 682 | } |
| 683 | sfi_classes[class_id].off_time_usecs = 0; |
| 684 | sfi_classes[class_id].off_time_interval = 0; |
| 685 | sfi_classes[class_id].class_sfi_is_enabled = FALSE; |
| 686 | |
| 687 | if (os_atomic_load(&sfi_enabled_class_count, relaxed) == 0) { |
| 688 | sfi_is_enabled = FALSE; |
| 689 | } |
| 690 | |
| 691 | simple_unlock(&sfi_lock); |
| 692 | |
| 693 | splx(s); |
| 694 | |
| 695 | return KERN_SUCCESS; |
| 696 | } |
| 697 | |
| 698 | kern_return_t |
| 699 | sfi_get_class_offtime(sfi_class_id_t class_id, uint64_t *offtime_usecs) |
| 700 | { |
| 701 | uint64_t off_time_us; |
| 702 | spl_t s; |
| 703 | |
| 704 | if (class_id == SFI_CLASS_UNSPECIFIED || class_id >= MAX_SFI_CLASS_ID) { |
| 705 | return 0; |
| 706 | } |
| 707 | |
| 708 | s = splsched(); |
| 709 | |
| 710 | simple_lock(&sfi_lock, LCK_GRP_NULL); |
| 711 | off_time_us = sfi_classes[class_id].off_time_usecs; |
| 712 | simple_unlock(&sfi_lock); |
| 713 | |
| 714 | splx(s); |
| 715 | |
| 716 | *offtime_usecs = off_time_us; |
| 717 | |
| 718 | return KERN_SUCCESS; |
| 719 | } |
| 720 | |
| 721 | /* |
| 722 | * sfi_thread_classify and sfi_processor_active_thread_classify perform the critical |
| 723 | * role of quickly categorizing a thread into its SFI class so that an AST_SFI can be |
| 724 | * set. As the thread is unwinding to userspace, sfi_ast() performs full locking |
| 725 | * and determines whether the thread should enter an SFI wait state. Because of |
| 726 | * the inherent races between the time the AST is set and when it is evaluated, |
| 727 | * thread classification can be inaccurate (but should always be safe). This is |
| 728 | * especially the case for sfi_processor_active_thread_classify, which must |
| 729 | * classify the active thread on a remote processor without taking the thread lock. |
| 730 | * When in doubt, classification should err on the side of *not* classifying a |
| 731 | * thread at all, and wait for the thread itself to either hit a quantum expiration |
| 732 | * or block inside the kernel. |
| 733 | */ |
| 734 | |
| 735 | /* |
| 736 | * Thread must be locked. Ultimately, the real decision to enter |
| 737 | * SFI wait happens at the AST boundary. |
| 738 | */ |
| 739 | sfi_class_id_t |
| 740 | sfi_thread_classify(thread_t thread) |
| 741 | { |
| 742 | task_t task = get_threadtask(thread); |
| 743 | boolean_t is_kernel_thread = (task == kernel_task); |
| 744 | sched_mode_t thmode = thread->sched_mode; |
| 745 | boolean_t focal = FALSE; |
| 746 | |
| 747 | /* kernel threads never reach the user AST boundary, and are in a separate world for SFI */ |
| 748 | if (is_kernel_thread) { |
| 749 | return SFI_CLASS_KERNEL; |
| 750 | } |
| 751 | |
| 752 | /* no need to re-classify threads unless there is at least one enabled SFI class */ |
| 753 | if (os_atomic_load(&sfi_enabled_class_count, relaxed) == 0) { |
| 754 | return SFI_CLASS_OPTED_OUT; |
| 755 | } |
| 756 | |
| 757 | int task_role = proc_get_effective_task_policy(task, TASK_POLICY_ROLE); |
| 758 | int latency_qos = proc_get_effective_task_policy(task, TASK_POLICY_LATENCY_QOS); |
| 759 | int managed_task = proc_get_effective_task_policy(task, TASK_POLICY_SFI_MANAGED); |
| 760 | |
| 761 | int thread_qos = proc_get_effective_thread_policy(thread, TASK_POLICY_QOS); |
| 762 | int thread_bg = proc_get_effective_thread_policy(thread, TASK_POLICY_DARWIN_BG); |
| 763 | |
| 764 | if (thread_qos == THREAD_QOS_MAINTENANCE) { |
| 765 | return SFI_CLASS_MAINTENANCE; |
| 766 | } |
| 767 | |
| 768 | if (thread_bg || thread_qos == THREAD_QOS_BACKGROUND) { |
| 769 | return SFI_CLASS_DARWIN_BG; |
| 770 | } |
| 771 | |
| 772 | if (latency_qos != 0) { |
| 773 | int latency_qos_wtf = latency_qos - 1; |
| 774 | |
| 775 | if ((latency_qos_wtf >= 4) && (latency_qos_wtf <= 5)) { |
| 776 | return SFI_CLASS_APP_NAP; |
| 777 | } |
| 778 | } |
| 779 | |
| 780 | /* |
| 781 | * Realtime and fixed priority threads express their duty cycle constraints |
| 782 | * via other mechanisms, and are opted out of (most) forms of SFI |
| 783 | */ |
| 784 | if (thmode == TH_MODE_REALTIME || thmode == TH_MODE_FIXED || task_role == TASK_GRAPHICS_SERVER) { |
| 785 | return SFI_CLASS_OPTED_OUT; |
| 786 | } |
| 787 | |
| 788 | /* |
| 789 | * Threads with unspecified, legacy, or user-initiated QOS class can be individually managed. |
| 790 | */ |
| 791 | switch (task_role) { |
| 792 | case TASK_CONTROL_APPLICATION: |
| 793 | case TASK_FOREGROUND_APPLICATION: |
| 794 | focal = TRUE; |
| 795 | break; |
| 796 | case TASK_BACKGROUND_APPLICATION: |
| 797 | case TASK_DEFAULT_APPLICATION: |
| 798 | case TASK_UNSPECIFIED: |
| 799 | /* Focal if the task is in a coalition with a FG/focal app */ |
| 800 | if (task_coalition_focal_count(task) > 0) { |
| 801 | focal = TRUE; |
| 802 | } |
| 803 | break; |
| 804 | case TASK_THROTTLE_APPLICATION: |
| 805 | case TASK_DARWINBG_APPLICATION: |
| 806 | case TASK_NONUI_APPLICATION: |
| 807 | /* Definitely not focal */ |
| 808 | default: |
| 809 | break; |
| 810 | } |
| 811 | |
| 812 | if (managed_task) { |
| 813 | switch (thread_qos) { |
| 814 | case THREAD_QOS_UNSPECIFIED: |
| 815 | case THREAD_QOS_LEGACY: |
| 816 | case THREAD_QOS_USER_INITIATED: |
| 817 | if (focal) { |
| 818 | return SFI_CLASS_MANAGED_FOCAL; |
| 819 | } else { |
| 820 | return SFI_CLASS_MANAGED_NONFOCAL; |
| 821 | } |
| 822 | default: |
| 823 | break; |
| 824 | } |
| 825 | } |
| 826 | |
| 827 | if (thread_qos == THREAD_QOS_UTILITY) { |
| 828 | return SFI_CLASS_UTILITY; |
| 829 | } |
| 830 | |
| 831 | /* |
| 832 | * Classify threads in non-managed tasks |
| 833 | */ |
| 834 | if (focal) { |
| 835 | switch (thread_qos) { |
| 836 | case THREAD_QOS_USER_INTERACTIVE: |
| 837 | return SFI_CLASS_USER_INTERACTIVE_FOCAL; |
| 838 | case THREAD_QOS_USER_INITIATED: |
| 839 | return SFI_CLASS_USER_INITIATED_FOCAL; |
| 840 | case THREAD_QOS_LEGACY: |
| 841 | return SFI_CLASS_LEGACY_FOCAL; |
| 842 | default: |
| 843 | return SFI_CLASS_DEFAULT_FOCAL; |
| 844 | } |
| 845 | } else { |
| 846 | switch (thread_qos) { |
| 847 | case THREAD_QOS_USER_INTERACTIVE: |
| 848 | return SFI_CLASS_USER_INTERACTIVE_NONFOCAL; |
| 849 | case THREAD_QOS_USER_INITIATED: |
| 850 | return SFI_CLASS_USER_INITIATED_NONFOCAL; |
| 851 | case THREAD_QOS_LEGACY: |
| 852 | return SFI_CLASS_LEGACY_NONFOCAL; |
| 853 | default: |
| 854 | return SFI_CLASS_DEFAULT_NONFOCAL; |
| 855 | } |
| 856 | } |
| 857 | } |
| 858 | |
| 859 | /* |
| 860 | * pset must be locked. |
| 861 | */ |
| 862 | sfi_class_id_t |
| 863 | sfi_processor_active_thread_classify(processor_t processor) |
| 864 | { |
| 865 | return processor->current_sfi_class; |
| 866 | } |
| 867 | |
| 868 | /* |
| 869 | * thread must be locked. This is inherently racy, with the intent that |
| 870 | * at the AST boundary, it will be fully evaluated whether we need to |
| 871 | * perform an AST wait |
| 872 | */ |
| 873 | ast_t |
| 874 | sfi_thread_needs_ast(thread_t thread, sfi_class_id_t *out_class) |
| 875 | { |
| 876 | sfi_class_id_t class_id; |
| 877 | |
| 878 | class_id = sfi_thread_classify(thread); |
| 879 | |
| 880 | if (out_class) { |
| 881 | *out_class = class_id; |
| 882 | } |
| 883 | |
| 884 | /* No lock taken, so a stale value may be used. */ |
| 885 | if (!sfi_classes[class_id].class_in_on_phase) { |
| 886 | return AST_SFI; |
| 887 | } else { |
| 888 | return AST_NONE; |
| 889 | } |
| 890 | } |
| 891 | |
| 892 | /* |
| 893 | * pset must be locked. We take the SFI class for |
| 894 | * the currently running thread which is cached on |
| 895 | * the processor_t, and assume it is accurate. In the |
| 896 | * worst case, the processor will get an IPI and be asked |
| 897 | * to evaluate if the current running thread at that |
| 898 | * later point in time should be in an SFI wait. |
| 899 | */ |
| 900 | ast_t |
| 901 | sfi_processor_needs_ast(processor_t processor) |
| 902 | { |
| 903 | sfi_class_id_t class_id; |
| 904 | |
| 905 | class_id = sfi_processor_active_thread_classify(processor); |
| 906 | |
| 907 | /* No lock taken, so a stale value may be used. */ |
| 908 | if (!sfi_classes[class_id].class_in_on_phase) { |
| 909 | return AST_SFI; |
| 910 | } else { |
| 911 | return AST_NONE; |
| 912 | } |
| 913 | } |
| 914 | |
| 915 | static inline void |
| 916 | _sfi_wait_cleanup(void) |
| 917 | { |
| 918 | thread_t self = current_thread(); |
| 919 | |
| 920 | spl_t s = splsched(); |
| 921 | simple_lock(&sfi_lock, LCK_GRP_NULL); |
| 922 | |
| 923 | sfi_class_id_t current_sfi_wait_class = self->sfi_wait_class; |
| 924 | |
| 925 | assert((SFI_CLASS_UNSPECIFIED < current_sfi_wait_class) && |
| 926 | (current_sfi_wait_class < MAX_SFI_CLASS_ID)); |
| 927 | |
| 928 | self->sfi_wait_class = SFI_CLASS_UNSPECIFIED; |
| 929 | |
| 930 | simple_unlock(&sfi_lock); |
| 931 | splx(s); |
| 932 | |
| 933 | /* |
| 934 | * It's possible for the thread to be woken up due to the SFI period |
| 935 | * ending *before* it finishes blocking. In that case, |
| 936 | * wait_sfi_begin_time won't be set. |
| 937 | * |
| 938 | * Derive the time sacrificed to SFI by looking at when this thread was |
| 939 | * awoken by the on-timer, to avoid counting the time this thread spent |
| 940 | * waiting to get scheduled. |
| 941 | * |
| 942 | * Note that last_made_runnable_time could be reset if this thread |
| 943 | * gets preempted before we read the value. To fix that, we'd need to |
| 944 | * track wait time in a thread timer, sample the timer before blocking, |
| 945 | * pass the value through thread->parameter, and subtract that. |
| 946 | */ |
| 947 | |
| 948 | if (self->wait_sfi_begin_time != 0) { |
| 949 | uint64_t made_runnable = os_atomic_load(&self->last_made_runnable_time, relaxed); |
| 950 | int64_t sfi_wait_time = made_runnable - self->wait_sfi_begin_time; |
| 951 | assert(sfi_wait_time >= 0); |
| 952 | |
| 953 | ledger_credit(ledger: get_threadtask(self)->ledger, |
| 954 | entry: task_ledgers.sfi_wait_times[current_sfi_wait_class], |
| 955 | amount: sfi_wait_time); |
| 956 | |
| 957 | self->wait_sfi_begin_time = 0; |
| 958 | } |
| 959 | } |
| 960 | |
| 961 | /* |
| 962 | * Called at AST context to fully evaluate if the current thread |
| 963 | * (which is obviously running) should instead block in an SFI wait. |
| 964 | * We must take the sfi_lock to check whether we are in the "off" period |
| 965 | * for the class, and if so, block. |
| 966 | */ |
| 967 | void |
| 968 | sfi_ast(thread_t thread) |
| 969 | { |
| 970 | sfi_class_id_t class_id; |
| 971 | spl_t s; |
| 972 | struct sfi_class_state *sfi_class; |
| 973 | wait_result_t waitret; |
| 974 | boolean_t did_wait = FALSE; |
| 975 | thread_continue_t continuation; |
| 976 | |
| 977 | s = splsched(); |
| 978 | |
| 979 | simple_lock(&sfi_lock, LCK_GRP_NULL); |
| 980 | |
| 981 | if (!sfi_is_enabled) { |
| 982 | /* |
| 983 | * SFI is not enabled, or has recently been disabled. |
| 984 | * There is no point putting this thread on a deferred ready |
| 985 | * queue, even if it were classified as needing it, since |
| 986 | * SFI will truly be off at the next global off timer |
| 987 | */ |
| 988 | simple_unlock(&sfi_lock); |
| 989 | splx(s); |
| 990 | |
| 991 | return; |
| 992 | } |
| 993 | |
| 994 | thread_lock(thread); |
| 995 | thread->sfi_class = class_id = sfi_thread_classify(thread); |
| 996 | thread_unlock(thread); |
| 997 | |
| 998 | /* |
| 999 | * Once the sfi_lock is taken and the thread's ->sfi_class field is updated, we |
| 1000 | * are committed to transitioning to whatever state is indicated by "->class_in_on_phase". |
| 1001 | * If another thread tries to call sfi_reevaluate() after this point, it will take the |
| 1002 | * sfi_lock and see the thread in this wait state. If another thread calls |
| 1003 | * sfi_reevaluate() before this point, it would see a runnable thread and at most |
| 1004 | * attempt to send an AST to this processor, but we would have the most accurate |
| 1005 | * classification. |
| 1006 | */ |
| 1007 | |
| 1008 | sfi_class = &sfi_classes[class_id]; |
| 1009 | if (!sfi_class->class_in_on_phase) { |
| 1010 | /* Need to block thread in wait queue */ |
| 1011 | KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SFI, SFI_THREAD_DEFER), |
| 1012 | thread_tid(thread), class_id, 0, 0, 0); |
| 1013 | |
| 1014 | waitret = waitq_assert_wait64(waitq: &sfi_class->waitq, |
| 1015 | CAST_EVENT64_T(class_id), |
| 1016 | THREAD_INTERRUPTIBLE | THREAD_WAIT_NOREPORT, deadline: 0); |
| 1017 | if (waitret == THREAD_WAITING) { |
| 1018 | thread->sfi_wait_class = class_id; |
| 1019 | did_wait = TRUE; |
| 1020 | continuation = sfi_class->continuation; |
| 1021 | } else { |
| 1022 | /* thread may be exiting already, all other errors are unexpected */ |
| 1023 | assert(waitret == THREAD_INTERRUPTED); |
| 1024 | } |
| 1025 | } |
| 1026 | simple_unlock(&sfi_lock); |
| 1027 | |
| 1028 | splx(s); |
| 1029 | |
| 1030 | if (did_wait) { |
| 1031 | assert(thread->wait_sfi_begin_time == 0); |
| 1032 | |
| 1033 | thread_block_reason(continuation, NULL, AST_SFI); |
| 1034 | } |
| 1035 | } |
| 1036 | |
| 1037 | /* Thread must be unlocked */ |
| 1038 | void |
| 1039 | sfi_reevaluate(thread_t thread) |
| 1040 | { |
| 1041 | kern_return_t kret; |
| 1042 | spl_t s; |
| 1043 | sfi_class_id_t class_id, current_class_id; |
| 1044 | ast_t sfi_ast; |
| 1045 | |
| 1046 | s = splsched(); |
| 1047 | |
| 1048 | simple_lock(&sfi_lock, LCK_GRP_NULL); |
| 1049 | |
| 1050 | thread_lock(thread); |
| 1051 | sfi_ast = sfi_thread_needs_ast(thread, out_class: &class_id); |
| 1052 | thread->sfi_class = class_id; |
| 1053 | |
| 1054 | /* |
| 1055 | * This routine chiefly exists to boost threads out of an SFI wait |
| 1056 | * if their classification changes before the "on" timer fires. |
| 1057 | * |
| 1058 | * If we calculate that a thread is in a different ->sfi_wait_class |
| 1059 | * than we think it should be (including no-SFI-wait), we need to |
| 1060 | * correct that: |
| 1061 | * |
| 1062 | * If the thread is in SFI wait and should not be (or should be waiting |
| 1063 | * on a different class' "on" timer), we wake it up. If needed, the |
| 1064 | * thread may immediately block again in the different SFI wait state. |
| 1065 | * |
| 1066 | * If the thread is not in an SFI wait state and it should be, we need |
| 1067 | * to get that thread's attention, possibly by sending an AST to another |
| 1068 | * processor. |
| 1069 | */ |
| 1070 | |
| 1071 | if ((current_class_id = thread->sfi_wait_class) != SFI_CLASS_UNSPECIFIED) { |
| 1072 | thread_unlock(thread); /* not needed anymore */ |
| 1073 | |
| 1074 | assert(current_class_id < MAX_SFI_CLASS_ID); |
| 1075 | |
| 1076 | if ((sfi_ast == AST_NONE) || (class_id != current_class_id)) { |
| 1077 | struct sfi_class_state *sfi_class = &sfi_classes[current_class_id]; |
| 1078 | |
| 1079 | KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SFI, SFI_WAIT_CANCELED), thread_tid(thread), current_class_id, class_id, 0, 0); |
| 1080 | |
| 1081 | kret = waitq_wakeup64_thread(waitq: &sfi_class->waitq, |
| 1082 | CAST_EVENT64_T(current_class_id), |
| 1083 | thread, |
| 1084 | THREAD_AWAKENED); |
| 1085 | assert(kret == KERN_SUCCESS || kret == KERN_NOT_WAITING); |
| 1086 | } |
| 1087 | } else { |
| 1088 | /* |
| 1089 | * Thread's current SFI wait class is not set, and because we |
| 1090 | * have the sfi_lock, it won't get set. |
| 1091 | */ |
| 1092 | |
| 1093 | if ((thread->state & (TH_RUN | TH_IDLE)) == TH_RUN) { |
| 1094 | if (sfi_ast != AST_NONE) { |
| 1095 | if (thread == current_thread()) { |
| 1096 | ast_on(reasons: sfi_ast); |
| 1097 | } else { |
| 1098 | processor_t processor = thread->last_processor; |
| 1099 | |
| 1100 | if (processor != PROCESSOR_NULL && |
| 1101 | processor->state == PROCESSOR_RUNNING && |
| 1102 | processor->active_thread == thread) { |
| 1103 | cause_ast_check(processor); |
| 1104 | } else { |
| 1105 | /* |
| 1106 | * Runnable thread that's not on a CPU currently. When a processor |
| 1107 | * does context switch to it, the AST will get set based on whether |
| 1108 | * the thread is in its "off time". |
| 1109 | */ |
| 1110 | } |
| 1111 | } |
| 1112 | } |
| 1113 | } |
| 1114 | |
| 1115 | thread_unlock(thread); |
| 1116 | } |
| 1117 | |
| 1118 | simple_unlock(&sfi_lock); |
| 1119 | splx(s); |
| 1120 | } |
| 1121 | |
| 1122 | #else /* !CONFIG_SCHED_SFI */ |
| 1123 | |
| 1124 | kern_return_t |
| 1125 | sfi_set_window(uint64_t window_usecs __unused) |
| 1126 | { |
| 1127 | return KERN_NOT_SUPPORTED; |
| 1128 | } |
| 1129 | |
| 1130 | kern_return_t |
| 1131 | sfi_window_cancel(void) |
| 1132 | { |
| 1133 | return KERN_NOT_SUPPORTED; |
| 1134 | } |
| 1135 | |
| 1136 | |
| 1137 | kern_return_t |
| 1138 | sfi_get_window(uint64_t *window_usecs __unused) |
| 1139 | { |
| 1140 | return KERN_NOT_SUPPORTED; |
| 1141 | } |
| 1142 | |
| 1143 | |
| 1144 | kern_return_t |
| 1145 | sfi_set_class_offtime(sfi_class_id_t class_id __unused, uint64_t offtime_usecs __unused) |
| 1146 | { |
| 1147 | return KERN_NOT_SUPPORTED; |
| 1148 | } |
| 1149 | |
| 1150 | kern_return_t |
| 1151 | sfi_class_offtime_cancel(sfi_class_id_t class_id __unused) |
| 1152 | { |
| 1153 | return KERN_NOT_SUPPORTED; |
| 1154 | } |
| 1155 | |
| 1156 | kern_return_t |
| 1157 | sfi_get_class_offtime(sfi_class_id_t class_id __unused, uint64_t *offtime_usecs __unused) |
| 1158 | { |
| 1159 | return KERN_NOT_SUPPORTED; |
| 1160 | } |
| 1161 | |
| 1162 | void |
| 1163 | sfi_reevaluate(thread_t thread __unused) |
| 1164 | { |
| 1165 | return; |
| 1166 | } |
| 1167 | |
| 1168 | sfi_class_id_t |
| 1169 | sfi_thread_classify(thread_t thread) |
| 1170 | { |
| 1171 | task_t task = get_threadtask(thread); |
| 1172 | boolean_t is_kernel_thread = (task == kernel_task); |
| 1173 | |
| 1174 | if (is_kernel_thread) { |
| 1175 | return SFI_CLASS_KERNEL; |
| 1176 | } |
| 1177 | |
| 1178 | return SFI_CLASS_OPTED_OUT; |
| 1179 | } |
| 1180 | |
| 1181 | #endif /* !CONFIG_SCHED_SFI */ |
| 1182 | |