| 1 | /* |
| 2 | * Copyright (c) 2000-2016 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
| 5 | * |
| 6 | * This file contains Original Code and/or Modifications of Original Code |
| 7 | * as defined in and that are subject to the Apple Public Source License |
| 8 | * Version 2.0 (the 'License'). You may not use this file except in |
| 9 | * compliance with the License. The rights granted to you under the License |
| 10 | * may not be used to create, or enable the creation or redistribution of, |
| 11 | * unlawful or unlicensed copies of an Apple operating system, or to |
| 12 | * circumvent, violate, or enable the circumvention or violation of, any |
| 13 | * terms of an Apple operating system software license agreement. |
| 14 | * |
| 15 | * Please obtain a copy of the License at |
| 16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
| 17 | * |
| 18 | * The Original Code and all software distributed under the License are |
| 19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| 23 | * Please see the License for the specific language governing rights and |
| 24 | * limitations under the License. |
| 25 | * |
| 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
| 27 | */ |
| 28 | /* |
| 29 | * @OSF_FREE_COPYRIGHT@ |
| 30 | */ |
| 31 | /* |
| 32 | * Mach Operating System |
| 33 | * Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University |
| 34 | * All Rights Reserved. |
| 35 | * |
| 36 | * Permission to use, copy, modify and distribute this software and its |
| 37 | * documentation is hereby granted, provided that both the copyright |
| 38 | * notice and this permission notice appear in all copies of the |
| 39 | * software, derivative works or modified versions, and any portions |
| 40 | * thereof, and that both notices appear in supporting documentation. |
| 41 | * |
| 42 | * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" |
| 43 | * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR |
| 44 | * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. |
| 45 | * |
| 46 | * Carnegie Mellon requests users of this software to return to |
| 47 | * |
| 48 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU |
| 49 | * School of Computer Science |
| 50 | * Carnegie Mellon University |
| 51 | * Pittsburgh PA 15213-3890 |
| 52 | * |
| 53 | * any improvements or extensions that they make and grant Carnegie Mellon |
| 54 | * the rights to redistribute these changes. |
| 55 | */ |
| 56 | /* |
| 57 | */ |
| 58 | /* |
| 59 | * File: sched_prim.c |
| 60 | * Author: Avadis Tevanian, Jr. |
| 61 | * Date: 1986 |
| 62 | * |
| 63 | * Scheduling primitives |
| 64 | * |
| 65 | */ |
| 66 | |
| 67 | #include <debug.h> |
| 68 | |
| 69 | #include <mach/mach_types.h> |
| 70 | #include <mach/machine.h> |
| 71 | #include <mach/policy.h> |
| 72 | #include <mach/sync_policy.h> |
| 73 | #include <mach/thread_act.h> |
| 74 | |
| 75 | #include <machine/machine_routines.h> |
| 76 | #include <machine/sched_param.h> |
| 77 | #include <machine/machine_cpu.h> |
| 78 | #include <machine/limits.h> |
| 79 | #include <machine/atomic.h> |
| 80 | |
| 81 | #include <machine/commpage.h> |
| 82 | |
| 83 | #include <kern/kern_types.h> |
| 84 | #include <kern/backtrace.h> |
| 85 | #include <kern/clock.h> |
| 86 | #include <kern/cpu_number.h> |
| 87 | #include <kern/cpu_data.h> |
| 88 | #include <kern/smp.h> |
| 89 | #include <kern/debug.h> |
| 90 | #include <kern/macro_help.h> |
| 91 | #include <kern/machine.h> |
| 92 | #include <kern/misc_protos.h> |
| 93 | #include <kern/monotonic.h> |
| 94 | #include <kern/processor.h> |
| 95 | #include <kern/queue.h> |
| 96 | #include <kern/recount.h> |
| 97 | #include <kern/restartable.h> |
| 98 | #include <kern/sched.h> |
| 99 | #include <kern/sched_prim.h> |
| 100 | #include <kern/sfi.h> |
| 101 | #include <kern/syscall_subr.h> |
| 102 | #include <kern/task.h> |
| 103 | #include <kern/thread.h> |
| 104 | #include <kern/thread_group.h> |
| 105 | #include <kern/ledger.h> |
| 106 | #include <kern/timer_queue.h> |
| 107 | #include <kern/waitq.h> |
| 108 | #include <kern/policy_internal.h> |
| 109 | |
| 110 | #include <vm/pmap.h> |
| 111 | #include <vm/vm_kern.h> |
| 112 | #include <vm/vm_map.h> |
| 113 | #include <vm/vm_pageout.h> |
| 114 | |
| 115 | #include <mach/sdt.h> |
| 116 | #include <mach/mach_host.h> |
| 117 | #include <mach/host_info.h> |
| 118 | |
| 119 | #include <sys/kdebug.h> |
| 120 | #include <kperf/kperf.h> |
| 121 | #include <kern/kpc.h> |
| 122 | #include <san/kasan.h> |
| 123 | #include <kern/pms.h> |
| 124 | #include <kern/host.h> |
| 125 | #include <stdatomic.h> |
| 126 | #include <os/atomic_private.h> |
| 127 | |
| 128 | #ifdef KDBG_MACOS_RELEASE |
| 129 | #define KTRC KDBG_MACOS_RELEASE |
| 130 | #else |
| 131 | #define KTRC KDBG_RELEASE |
| 132 | #endif |
| 133 | |
| 134 | struct sched_statistics PERCPU_DATA(sched_stats); |
| 135 | bool sched_stats_active; |
| 136 | |
| 137 | static uint64_t |
| 138 | deadline_add(uint64_t d, uint64_t e) |
| 139 | { |
| 140 | uint64_t sum; |
| 141 | return os_add_overflow(d, e, &sum) ? UINT64_MAX : sum; |
| 142 | } |
| 143 | |
| 144 | int |
| 145 | rt_runq_count(processor_set_t pset) |
| 146 | { |
| 147 | return os_atomic_load(&SCHED(rt_runq)(pset)->count, relaxed); |
| 148 | } |
| 149 | |
| 150 | uint64_t |
| 151 | rt_runq_earliest_deadline(processor_set_t pset) |
| 152 | { |
| 153 | return os_atomic_load_wide(&SCHED(rt_runq)(pset)->earliest_deadline, relaxed); |
| 154 | } |
| 155 | |
| 156 | static int |
| 157 | rt_runq_priority(processor_set_t pset) |
| 158 | { |
| 159 | pset_assert_locked(pset); |
| 160 | rt_queue_t rt_run_queue = SCHED(rt_runq)(pset); |
| 161 | |
| 162 | bitmap_t *map = rt_run_queue->bitmap; |
| 163 | int i = bitmap_first(map, NRTQS); |
| 164 | assert(i < NRTQS); |
| 165 | |
| 166 | if (i >= 0) { |
| 167 | return i + BASEPRI_RTQUEUES; |
| 168 | } |
| 169 | |
| 170 | return i; |
| 171 | } |
| 172 | |
| 173 | static thread_t rt_runq_first(rt_queue_t rt_runq); |
| 174 | |
| 175 | #if DEBUG |
| 176 | static void |
| 177 | check_rt_runq_consistency(rt_queue_t rt_run_queue, thread_t thread) |
| 178 | { |
| 179 | bitmap_t *map = rt_run_queue->bitmap; |
| 180 | |
| 181 | uint64_t earliest_deadline = RT_DEADLINE_NONE; |
| 182 | uint32_t constraint = RT_CONSTRAINT_NONE; |
| 183 | int ed_index = NOPRI; |
| 184 | int count = 0; |
| 185 | bool found_thread = false; |
| 186 | |
| 187 | for (int pri = BASEPRI_RTQUEUES; pri <= MAXPRI; pri++) { |
| 188 | int i = pri - BASEPRI_RTQUEUES; |
| 189 | rt_queue_pri_t *rt_runq = &rt_run_queue->rt_queue_pri[i]; |
| 190 | queue_t queue = &rt_runq->pri_queue; |
| 191 | queue_entry_t iter; |
| 192 | int n = 0; |
| 193 | uint64_t previous_deadline = 0; |
| 194 | qe_foreach(iter, queue) { |
| 195 | thread_t iter_thread = qe_element(iter, struct thread, runq_links); |
| 196 | assert_thread_magic(iter_thread); |
| 197 | if (iter_thread == thread) { |
| 198 | found_thread = true; |
| 199 | } |
| 200 | assert(iter_thread->sched_pri == (i + BASEPRI_RTQUEUES)); |
| 201 | assert(iter_thread->realtime.deadline < RT_DEADLINE_NONE); |
| 202 | assert(iter_thread->realtime.constraint < RT_CONSTRAINT_NONE); |
| 203 | assert(previous_deadline <= iter_thread->realtime.deadline); |
| 204 | n++; |
| 205 | if (iter == queue_first(queue)) { |
| 206 | assert(rt_runq->pri_earliest_deadline == iter_thread->realtime.deadline); |
| 207 | assert(rt_runq->pri_constraint == iter_thread->realtime.constraint); |
| 208 | } |
| 209 | previous_deadline = iter_thread->realtime.deadline; |
| 210 | } |
| 211 | assert(n == rt_runq->pri_count); |
| 212 | if (n == 0) { |
| 213 | assert(bitmap_test(map, i) == false); |
| 214 | assert(rt_runq->pri_earliest_deadline == RT_DEADLINE_NONE); |
| 215 | assert(rt_runq->pri_constraint == RT_CONSTRAINT_NONE); |
| 216 | } else { |
| 217 | assert(bitmap_test(map, i) == true); |
| 218 | } |
| 219 | if (rt_runq->pri_earliest_deadline < earliest_deadline) { |
| 220 | earliest_deadline = rt_runq->pri_earliest_deadline; |
| 221 | constraint = rt_runq->pri_constraint; |
| 222 | ed_index = i; |
| 223 | } |
| 224 | count += n; |
| 225 | } |
| 226 | assert(os_atomic_load_wide(&rt_run_queue->earliest_deadline, relaxed) == earliest_deadline); |
| 227 | assert(os_atomic_load(&rt_run_queue->count, relaxed) == count); |
| 228 | assert(os_atomic_load(&rt_run_queue->constraint, relaxed) == constraint); |
| 229 | assert(os_atomic_load(&rt_run_queue->ed_index, relaxed) == ed_index); |
| 230 | if (thread) { |
| 231 | assert(found_thread); |
| 232 | } |
| 233 | } |
| 234 | #define CHECK_RT_RUNQ_CONSISTENCY(q, th) check_rt_runq_consistency(q, th) |
| 235 | #else |
| 236 | #define CHECK_RT_RUNQ_CONSISTENCY(q, th) do {} while (0) |
| 237 | #endif |
| 238 | |
| 239 | uint32_t rt_constraint_threshold; |
| 240 | |
| 241 | static bool |
| 242 | rt_runq_is_low_latency(processor_set_t pset) |
| 243 | { |
| 244 | return os_atomic_load(&SCHED(rt_runq)(pset)->constraint, relaxed) <= rt_constraint_threshold; |
| 245 | } |
| 246 | |
| 247 | TUNABLE(bool, cpulimit_affects_quantum, "cpulimit_affects_quantum" , true); |
| 248 | |
| 249 | /* TODO: enable this, to 50us (less than the deferred IPI latency, to beat a spill) */ |
| 250 | TUNABLE(uint32_t, nonurgent_preemption_timer_us, "nonurgent_preemption_timer" , 0); /* microseconds */ |
| 251 | static uint64_t nonurgent_preemption_timer_abs = 0; |
| 252 | |
| 253 | #define DEFAULT_PREEMPTION_RATE 100 /* (1/s) */ |
| 254 | TUNABLE(int, default_preemption_rate, "preempt" , DEFAULT_PREEMPTION_RATE); |
| 255 | |
| 256 | #define DEFAULT_BG_PREEMPTION_RATE 400 /* (1/s) */ |
| 257 | TUNABLE(int, default_bg_preemption_rate, "bg_preempt" , DEFAULT_BG_PREEMPTION_RATE); |
| 258 | |
| 259 | #define MAX_UNSAFE_RT_QUANTA 100 |
| 260 | #define SAFE_RT_MULTIPLIER 2 |
| 261 | |
| 262 | #define MAX_UNSAFE_FIXED_QUANTA 100 |
| 263 | #define SAFE_FIXED_MULTIPLIER 2 |
| 264 | |
| 265 | TUNABLE_DEV_WRITEABLE(int, max_unsafe_rt_quanta, "max_unsafe_rt_quanta" , MAX_UNSAFE_RT_QUANTA); |
| 266 | TUNABLE_DEV_WRITEABLE(int, max_unsafe_fixed_quanta, "max_unsafe_fixed_quanta" , MAX_UNSAFE_FIXED_QUANTA); |
| 267 | |
| 268 | TUNABLE_DEV_WRITEABLE(int, safe_rt_multiplier, "safe_rt_multiplier" , SAFE_RT_MULTIPLIER); |
| 269 | TUNABLE_DEV_WRITEABLE(int, safe_fixed_multiplier, "safe_fixed_multiplier" , SAFE_RT_MULTIPLIER); |
| 270 | |
| 271 | #define MAX_POLL_QUANTA 2 |
| 272 | TUNABLE(int, max_poll_quanta, "poll" , MAX_POLL_QUANTA); |
| 273 | |
| 274 | #define SCHED_POLL_YIELD_SHIFT 4 /* 1/16 */ |
| 275 | int sched_poll_yield_shift = SCHED_POLL_YIELD_SHIFT; |
| 276 | |
| 277 | uint64_t max_poll_computation; |
| 278 | |
| 279 | uint64_t max_unsafe_rt_computation; |
| 280 | uint64_t max_unsafe_fixed_computation; |
| 281 | uint64_t sched_safe_rt_duration; |
| 282 | uint64_t sched_safe_fixed_duration; |
| 283 | |
| 284 | #if defined(CONFIG_SCHED_TIMESHARE_CORE) |
| 285 | |
| 286 | uint32_t std_quantum; |
| 287 | uint32_t min_std_quantum; |
| 288 | uint32_t bg_quantum; |
| 289 | |
| 290 | uint32_t std_quantum_us; |
| 291 | uint32_t bg_quantum_us; |
| 292 | |
| 293 | #endif /* CONFIG_SCHED_TIMESHARE_CORE */ |
| 294 | |
| 295 | uint32_t thread_depress_time; |
| 296 | uint32_t default_timeshare_computation; |
| 297 | uint32_t default_timeshare_constraint; |
| 298 | |
| 299 | uint32_t max_rt_quantum; |
| 300 | uint32_t min_rt_quantum; |
| 301 | |
| 302 | uint32_t rt_deadline_epsilon; |
| 303 | |
| 304 | uint32_t rt_constraint_threshold; |
| 305 | |
| 306 | #if defined(CONFIG_SCHED_TIMESHARE_CORE) |
| 307 | |
| 308 | unsigned sched_tick; |
| 309 | uint32_t sched_tick_interval; |
| 310 | |
| 311 | /* Timeshare load calculation interval (15ms) */ |
| 312 | uint32_t sched_load_compute_interval_us = 15000; |
| 313 | uint64_t sched_load_compute_interval_abs; |
| 314 | static _Atomic uint64_t sched_load_compute_deadline; |
| 315 | |
| 316 | uint32_t sched_pri_shifts[TH_BUCKET_MAX]; |
| 317 | uint32_t sched_fixed_shift; |
| 318 | |
| 319 | uint32_t sched_decay_usage_age_factor = 1; /* accelerate 5/8^n usage aging */ |
| 320 | |
| 321 | /* Allow foreground to decay past default to resolve inversions */ |
| 322 | #define DEFAULT_DECAY_BAND_LIMIT ((BASEPRI_FOREGROUND - BASEPRI_DEFAULT) + 2) |
| 323 | int sched_pri_decay_band_limit = DEFAULT_DECAY_BAND_LIMIT; |
| 324 | |
| 325 | /* Defaults for timer deadline profiling */ |
| 326 | #define TIMER_DEADLINE_TRACKING_BIN_1_DEFAULT 2000000 /* Timers with deadlines <= |
| 327 | * 2ms */ |
| 328 | #define TIMER_DEADLINE_TRACKING_BIN_2_DEFAULT 5000000 /* Timers with deadlines |
| 329 | * <= 5ms */ |
| 330 | |
| 331 | uint64_t timer_deadline_tracking_bin_1; |
| 332 | uint64_t timer_deadline_tracking_bin_2; |
| 333 | |
| 334 | #endif /* CONFIG_SCHED_TIMESHARE_CORE */ |
| 335 | |
| 336 | thread_t sched_maintenance_thread; |
| 337 | |
| 338 | /* interrupts disabled lock to guard recommended cores state */ |
| 339 | decl_simple_lock_data(, sched_available_cores_lock); |
| 340 | uint64_t perfcontrol_requested_recommended_cores = ALL_CORES_RECOMMENDED; |
| 341 | uint64_t perfcontrol_system_requested_recommended_cores = ALL_CORES_RECOMMENDED; |
| 342 | uint64_t perfcontrol_user_requested_recommended_cores = ALL_CORES_RECOMMENDED; |
| 343 | static uint64_t usercontrol_requested_recommended_cores = ALL_CORES_RECOMMENDED; |
| 344 | static uint64_t sched_online_processors = 0; |
| 345 | static void sched_update_recommended_cores(uint64_t recommended_cores, processor_reason_t reason, uint32_t flags); |
| 346 | static void sched_update_powered_cores(uint64_t reqested_powered_cores, processor_reason_t reason, uint32_t flags); |
| 347 | |
| 348 | #if __arm64__ |
| 349 | static void sched_recommended_cores_maintenance(void); |
| 350 | uint64_t perfcontrol_failsafe_starvation_threshold; |
| 351 | extern char *proc_name_address(struct proc *p); |
| 352 | #endif /* __arm64__ */ |
| 353 | |
| 354 | uint64_t sched_one_second_interval; |
| 355 | boolean_t allow_direct_handoff = TRUE; |
| 356 | |
| 357 | /* Forwards */ |
| 358 | |
| 359 | #if defined(CONFIG_SCHED_TIMESHARE_CORE) |
| 360 | |
| 361 | static void load_shift_init(void); |
| 362 | static void preempt_pri_init(void); |
| 363 | |
| 364 | #endif /* CONFIG_SCHED_TIMESHARE_CORE */ |
| 365 | |
| 366 | thread_t processor_idle( |
| 367 | thread_t thread, |
| 368 | processor_t processor); |
| 369 | |
| 370 | static ast_t |
| 371 | csw_check_locked( |
| 372 | thread_t thread, |
| 373 | processor_t processor, |
| 374 | processor_set_t pset, |
| 375 | ast_t check_reason); |
| 376 | |
| 377 | static void processor_setrun( |
| 378 | processor_t processor, |
| 379 | thread_t thread, |
| 380 | integer_t options); |
| 381 | |
| 382 | static void |
| 383 | sched_realtime_timebase_init(void); |
| 384 | |
| 385 | static void |
| 386 | sched_timer_deadline_tracking_init(void); |
| 387 | |
| 388 | #if DEBUG |
| 389 | extern int debug_task; |
| 390 | #define TLOG(a, fmt, args...) if(debug_task & a) kprintf(fmt, ## args) |
| 391 | #else |
| 392 | #define TLOG(a, fmt, args...) do {} while (0) |
| 393 | #endif |
| 394 | |
| 395 | static processor_t |
| 396 | thread_bind_internal( |
| 397 | thread_t thread, |
| 398 | processor_t processor); |
| 399 | |
| 400 | static void |
| 401 | sched_vm_group_maintenance(void); |
| 402 | |
| 403 | #if defined(CONFIG_SCHED_TIMESHARE_CORE) |
| 404 | int8_t sched_load_shifts[NRQS]; |
| 405 | bitmap_t sched_preempt_pri[BITMAP_LEN(NRQS_MAX)]; |
| 406 | #endif /* CONFIG_SCHED_TIMESHARE_CORE */ |
| 407 | |
| 408 | /* |
| 409 | * Statically allocate a buffer to hold the longest possible |
| 410 | * scheduler description string, as currently implemented. |
| 411 | * bsd/kern/kern_sysctl.c has a corresponding definition in bsd/ |
| 412 | * to export to userspace via sysctl(3). If either version |
| 413 | * changes, update the other. |
| 414 | * |
| 415 | * Note that in addition to being an upper bound on the strings |
| 416 | * in the kernel, it's also an exact parameter to PE_get_default(), |
| 417 | * which interrogates the device tree on some platforms. That |
| 418 | * API requires the caller know the exact size of the device tree |
| 419 | * property, so we need both a legacy size (32) and the current size |
| 420 | * (48) to deal with old and new device trees. The device tree property |
| 421 | * is similarly padded to a fixed size so that the same kernel image |
| 422 | * can run on multiple devices with different schedulers configured |
| 423 | * in the device tree. |
| 424 | */ |
| 425 | char sched_string[SCHED_STRING_MAX_LENGTH]; |
| 426 | |
| 427 | uint32_t sched_debug_flags = SCHED_DEBUG_FLAG_CHOOSE_PROCESSOR_TRACEPOINTS; |
| 428 | |
| 429 | /* Global flag which indicates whether Background Stepper Context is enabled */ |
| 430 | static int cpu_throttle_enabled = 1; |
| 431 | |
| 432 | #if DEVELOPMENT || DEBUG |
| 433 | int enable_task_set_cluster_type = 0; |
| 434 | bool system_ecore_only = false; |
| 435 | #endif /* DEVELOPMENT || DEBUG */ |
| 436 | |
| 437 | void |
| 438 | sched_init(void) |
| 439 | { |
| 440 | boolean_t direct_handoff = FALSE; |
| 441 | kprintf(fmt: "Scheduler: Default of %s\n" , SCHED(sched_name)); |
| 442 | |
| 443 | if (!PE_parse_boot_argn(arg_string: "sched_pri_decay_limit" , arg_ptr: &sched_pri_decay_band_limit, max_arg: sizeof(sched_pri_decay_band_limit))) { |
| 444 | /* No boot-args, check in device tree */ |
| 445 | if (!PE_get_default(property_name: "kern.sched_pri_decay_limit" , |
| 446 | property_ptr: &sched_pri_decay_band_limit, |
| 447 | max_property: sizeof(sched_pri_decay_band_limit))) { |
| 448 | /* Allow decay all the way to normal limits */ |
| 449 | sched_pri_decay_band_limit = DEFAULT_DECAY_BAND_LIMIT; |
| 450 | } |
| 451 | } |
| 452 | |
| 453 | kprintf(fmt: "Setting scheduler priority decay band limit %d\n" , sched_pri_decay_band_limit); |
| 454 | |
| 455 | if (PE_parse_boot_argn(arg_string: "sched_debug" , arg_ptr: &sched_debug_flags, max_arg: sizeof(sched_debug_flags))) { |
| 456 | kprintf(fmt: "Scheduler: Debug flags 0x%08x\n" , sched_debug_flags); |
| 457 | } |
| 458 | strlcpy(dst: sched_string, SCHED(sched_name), n: sizeof(sched_string)); |
| 459 | |
| 460 | #if __arm64__ |
| 461 | clock_interval_to_absolutetime_interval(interval: expecting_ipi_wfe_timeout_usec, NSEC_PER_USEC, result: &expecting_ipi_wfe_timeout_mt); |
| 462 | #endif /* __arm64__ */ |
| 463 | |
| 464 | SCHED(init)(); |
| 465 | SCHED(rt_init)(&pset0); |
| 466 | sched_timer_deadline_tracking_init(); |
| 467 | |
| 468 | SCHED(pset_init)(&pset0); |
| 469 | SCHED(processor_init)(master_processor); |
| 470 | |
| 471 | if (PE_parse_boot_argn(arg_string: "direct_handoff" , arg_ptr: &direct_handoff, max_arg: sizeof(direct_handoff))) { |
| 472 | allow_direct_handoff = direct_handoff; |
| 473 | } |
| 474 | |
| 475 | #if DEVELOPMENT || DEBUG |
| 476 | if (PE_parse_boot_argn("enable_skstsct" , &enable_task_set_cluster_type, sizeof(enable_task_set_cluster_type))) { |
| 477 | system_ecore_only = (enable_task_set_cluster_type == 2); |
| 478 | } |
| 479 | #endif /* DEVELOPMENT || DEBUG */ |
| 480 | |
| 481 | simple_lock_init(&sched_available_cores_lock, 0); |
| 482 | } |
| 483 | |
| 484 | void |
| 485 | sched_timebase_init(void) |
| 486 | { |
| 487 | uint64_t abstime; |
| 488 | |
| 489 | clock_interval_to_absolutetime_interval(interval: 1, NSEC_PER_SEC, result: &abstime); |
| 490 | sched_one_second_interval = abstime; |
| 491 | |
| 492 | SCHED(timebase_init)(); |
| 493 | sched_realtime_timebase_init(); |
| 494 | } |
| 495 | |
| 496 | #if defined(CONFIG_SCHED_TIMESHARE_CORE) |
| 497 | |
| 498 | void |
| 499 | sched_timeshare_init(void) |
| 500 | { |
| 501 | /* |
| 502 | * Calculate the timeslicing quantum |
| 503 | * in us. |
| 504 | */ |
| 505 | if (default_preemption_rate < 1) { |
| 506 | default_preemption_rate = DEFAULT_PREEMPTION_RATE; |
| 507 | } |
| 508 | std_quantum_us = (1000 * 1000) / default_preemption_rate; |
| 509 | |
| 510 | printf(format: "standard timeslicing quantum is %d us\n" , std_quantum_us); |
| 511 | |
| 512 | if (default_bg_preemption_rate < 1) { |
| 513 | default_bg_preemption_rate = DEFAULT_BG_PREEMPTION_RATE; |
| 514 | } |
| 515 | bg_quantum_us = (1000 * 1000) / default_bg_preemption_rate; |
| 516 | |
| 517 | printf(format: "standard background quantum is %d us\n" , bg_quantum_us); |
| 518 | |
| 519 | load_shift_init(); |
| 520 | preempt_pri_init(); |
| 521 | sched_tick = 0; |
| 522 | } |
| 523 | |
| 524 | void |
| 525 | sched_set_max_unsafe_rt_quanta(int max) |
| 526 | { |
| 527 | const uint32_t quantum_size = SCHED(initial_quantum_size)(THREAD_NULL); |
| 528 | |
| 529 | max_unsafe_rt_computation = ((uint64_t)max) * quantum_size; |
| 530 | |
| 531 | const int mult = safe_rt_multiplier <= 0 ? 2 : safe_rt_multiplier; |
| 532 | sched_safe_rt_duration = mult * ((uint64_t)max) * quantum_size; |
| 533 | |
| 534 | |
| 535 | #if DEVELOPMENT || DEBUG |
| 536 | max_unsafe_rt_quanta = max; |
| 537 | #else |
| 538 | /* |
| 539 | * On RELEASE kernels, this is only called on boot where |
| 540 | * max is already equal to max_unsafe_rt_quanta. |
| 541 | */ |
| 542 | assert3s(max, ==, max_unsafe_rt_quanta); |
| 543 | #endif |
| 544 | } |
| 545 | |
| 546 | void |
| 547 | sched_set_max_unsafe_fixed_quanta(int max) |
| 548 | { |
| 549 | const uint32_t quantum_size = SCHED(initial_quantum_size)(THREAD_NULL); |
| 550 | |
| 551 | max_unsafe_fixed_computation = ((uint64_t)max) * quantum_size; |
| 552 | |
| 553 | const int mult = safe_fixed_multiplier <= 0 ? 2 : safe_fixed_multiplier; |
| 554 | sched_safe_fixed_duration = mult * ((uint64_t)max) * quantum_size; |
| 555 | |
| 556 | #if DEVELOPMENT || DEBUG |
| 557 | max_unsafe_fixed_quanta = max; |
| 558 | #else |
| 559 | /* |
| 560 | * On RELEASE kernels, this is only called on boot where |
| 561 | * max is already equal to max_unsafe_fixed_quanta. |
| 562 | */ |
| 563 | assert3s(max, ==, max_unsafe_fixed_quanta); |
| 564 | #endif |
| 565 | } |
| 566 | |
| 567 | void |
| 568 | sched_timeshare_timebase_init(void) |
| 569 | { |
| 570 | uint64_t abstime; |
| 571 | uint32_t shift; |
| 572 | |
| 573 | /* standard timeslicing quantum */ |
| 574 | clock_interval_to_absolutetime_interval( |
| 575 | interval: std_quantum_us, NSEC_PER_USEC, result: &abstime); |
| 576 | assert((abstime >> 32) == 0 && (uint32_t)abstime != 0); |
| 577 | std_quantum = (uint32_t)abstime; |
| 578 | |
| 579 | /* smallest remaining quantum (250 us) */ |
| 580 | clock_interval_to_absolutetime_interval(interval: 250, NSEC_PER_USEC, result: &abstime); |
| 581 | assert((abstime >> 32) == 0 && (uint32_t)abstime != 0); |
| 582 | min_std_quantum = (uint32_t)abstime; |
| 583 | |
| 584 | /* quantum for background tasks */ |
| 585 | clock_interval_to_absolutetime_interval( |
| 586 | interval: bg_quantum_us, NSEC_PER_USEC, result: &abstime); |
| 587 | assert((abstime >> 32) == 0 && (uint32_t)abstime != 0); |
| 588 | bg_quantum = (uint32_t)abstime; |
| 589 | |
| 590 | /* scheduler tick interval */ |
| 591 | clock_interval_to_absolutetime_interval(USEC_PER_SEC >> SCHED_TICK_SHIFT, |
| 592 | NSEC_PER_USEC, result: &abstime); |
| 593 | assert((abstime >> 32) == 0 && (uint32_t)abstime != 0); |
| 594 | sched_tick_interval = (uint32_t)abstime; |
| 595 | |
| 596 | /* timeshare load calculation interval & deadline initialization */ |
| 597 | clock_interval_to_absolutetime_interval(interval: sched_load_compute_interval_us, NSEC_PER_USEC, result: &sched_load_compute_interval_abs); |
| 598 | os_atomic_init(&sched_load_compute_deadline, sched_load_compute_interval_abs); |
| 599 | |
| 600 | /* |
| 601 | * Compute conversion factor from usage to |
| 602 | * timesharing priorities with 5/8 ** n aging. |
| 603 | */ |
| 604 | abstime = (abstime * 5) / 3; |
| 605 | for (shift = 0; abstime > BASEPRI_DEFAULT; ++shift) { |
| 606 | abstime >>= 1; |
| 607 | } |
| 608 | sched_fixed_shift = shift; |
| 609 | |
| 610 | for (uint32_t i = 0; i < TH_BUCKET_MAX; i++) { |
| 611 | sched_pri_shifts[i] = INT8_MAX; |
| 612 | } |
| 613 | |
| 614 | sched_set_max_unsafe_rt_quanta(max: max_unsafe_rt_quanta); |
| 615 | sched_set_max_unsafe_fixed_quanta(max: max_unsafe_fixed_quanta); |
| 616 | |
| 617 | max_poll_computation = ((uint64_t)max_poll_quanta) * std_quantum; |
| 618 | thread_depress_time = 1 * std_quantum; |
| 619 | default_timeshare_computation = std_quantum / 2; |
| 620 | default_timeshare_constraint = std_quantum; |
| 621 | |
| 622 | #if __arm64__ |
| 623 | perfcontrol_failsafe_starvation_threshold = (2 * sched_tick_interval); |
| 624 | #endif /* __arm64__ */ |
| 625 | |
| 626 | if (nonurgent_preemption_timer_us) { |
| 627 | clock_interval_to_absolutetime_interval(interval: nonurgent_preemption_timer_us, NSEC_PER_USEC, result: &abstime); |
| 628 | nonurgent_preemption_timer_abs = abstime; |
| 629 | } |
| 630 | } |
| 631 | |
| 632 | #endif /* CONFIG_SCHED_TIMESHARE_CORE */ |
| 633 | |
| 634 | void |
| 635 | pset_rt_init(processor_set_t pset) |
| 636 | { |
| 637 | for (int pri = BASEPRI_RTQUEUES; pri <= MAXPRI; pri++) { |
| 638 | int i = pri - BASEPRI_RTQUEUES; |
| 639 | rt_queue_pri_t *rqi = &pset->rt_runq.rt_queue_pri[i]; |
| 640 | queue_init(&rqi->pri_queue); |
| 641 | rqi->pri_count = 0; |
| 642 | rqi->pri_earliest_deadline = RT_DEADLINE_NONE; |
| 643 | rqi->pri_constraint = RT_CONSTRAINT_NONE; |
| 644 | } |
| 645 | os_atomic_init(&pset->rt_runq.count, 0); |
| 646 | os_atomic_init(&pset->rt_runq.earliest_deadline, RT_DEADLINE_NONE); |
| 647 | os_atomic_init(&pset->rt_runq.constraint, RT_CONSTRAINT_NONE); |
| 648 | os_atomic_init(&pset->rt_runq.ed_index, NOPRI); |
| 649 | memset(s: &pset->rt_runq.runq_stats, c: 0, n: sizeof pset->rt_runq.runq_stats); |
| 650 | } |
| 651 | |
| 652 | /* epsilon for comparing RT deadlines */ |
| 653 | int rt_deadline_epsilon_us = 100; |
| 654 | |
| 655 | int |
| 656 | sched_get_rt_deadline_epsilon(void) |
| 657 | { |
| 658 | return rt_deadline_epsilon_us; |
| 659 | } |
| 660 | |
| 661 | void |
| 662 | sched_set_rt_deadline_epsilon(int new_epsilon_us) |
| 663 | { |
| 664 | rt_deadline_epsilon_us = new_epsilon_us; |
| 665 | |
| 666 | uint64_t abstime; |
| 667 | clock_interval_to_absolutetime_interval(interval: rt_deadline_epsilon_us, NSEC_PER_USEC, result: &abstime); |
| 668 | assert((abstime >> 32) == 0 && ((rt_deadline_epsilon_us == 0) || (uint32_t)abstime != 0)); |
| 669 | rt_deadline_epsilon = (uint32_t)abstime; |
| 670 | } |
| 671 | |
| 672 | static void |
| 673 | sched_realtime_timebase_init(void) |
| 674 | { |
| 675 | uint64_t abstime; |
| 676 | |
| 677 | /* smallest rt computation (50 us) */ |
| 678 | clock_interval_to_absolutetime_interval(interval: 50, NSEC_PER_USEC, result: &abstime); |
| 679 | assert((abstime >> 32) == 0 && (uint32_t)abstime != 0); |
| 680 | min_rt_quantum = (uint32_t)abstime; |
| 681 | |
| 682 | /* maximum rt computation (50 ms) */ |
| 683 | clock_interval_to_absolutetime_interval( |
| 684 | interval: 50, scale_factor: 1000 * NSEC_PER_USEC, result: &abstime); |
| 685 | assert((abstime >> 32) == 0 && (uint32_t)abstime != 0); |
| 686 | max_rt_quantum = (uint32_t)abstime; |
| 687 | |
| 688 | /* constraint threshold for sending backup IPIs (4 ms) */ |
| 689 | clock_interval_to_absolutetime_interval(interval: 4, NSEC_PER_MSEC, result: &abstime); |
| 690 | assert((abstime >> 32) == 0 && (uint32_t)abstime != 0); |
| 691 | rt_constraint_threshold = (uint32_t)abstime; |
| 692 | |
| 693 | /* epsilon for comparing deadlines */ |
| 694 | sched_set_rt_deadline_epsilon(new_epsilon_us: rt_deadline_epsilon_us); |
| 695 | } |
| 696 | |
| 697 | void |
| 698 | sched_check_spill(processor_set_t pset, thread_t thread) |
| 699 | { |
| 700 | (void)pset; |
| 701 | (void)thread; |
| 702 | |
| 703 | return; |
| 704 | } |
| 705 | |
| 706 | bool |
| 707 | sched_thread_should_yield(processor_t processor, thread_t thread) |
| 708 | { |
| 709 | (void)thread; |
| 710 | |
| 711 | return !SCHED(processor_queue_empty)(processor) || rt_runq_count(pset: processor->processor_set) > 0; |
| 712 | } |
| 713 | |
| 714 | /* Default implementations of .steal_thread_enabled */ |
| 715 | bool |
| 716 | sched_steal_thread_DISABLED(processor_set_t pset) |
| 717 | { |
| 718 | (void)pset; |
| 719 | return false; |
| 720 | } |
| 721 | |
| 722 | bool |
| 723 | sched_steal_thread_enabled(processor_set_t pset) |
| 724 | { |
| 725 | return bit_count(x: pset->node->pset_map) > 1; |
| 726 | } |
| 727 | |
| 728 | #if defined(CONFIG_SCHED_TIMESHARE_CORE) |
| 729 | |
| 730 | /* |
| 731 | * Set up values for timeshare |
| 732 | * loading factors. |
| 733 | */ |
| 734 | static void |
| 735 | load_shift_init(void) |
| 736 | { |
| 737 | int8_t k, *p = sched_load_shifts; |
| 738 | uint32_t i, j; |
| 739 | |
| 740 | uint32_t sched_decay_penalty = 1; |
| 741 | |
| 742 | if (PE_parse_boot_argn(arg_string: "sched_decay_penalty" , arg_ptr: &sched_decay_penalty, max_arg: sizeof(sched_decay_penalty))) { |
| 743 | kprintf(fmt: "Overriding scheduler decay penalty %u\n" , sched_decay_penalty); |
| 744 | } |
| 745 | |
| 746 | if (PE_parse_boot_argn(arg_string: "sched_decay_usage_age_factor" , arg_ptr: &sched_decay_usage_age_factor, max_arg: sizeof(sched_decay_usage_age_factor))) { |
| 747 | kprintf(fmt: "Overriding scheduler decay usage age factor %u\n" , sched_decay_usage_age_factor); |
| 748 | } |
| 749 | |
| 750 | if (sched_decay_penalty == 0) { |
| 751 | /* |
| 752 | * There is no penalty for timeshare threads for using too much |
| 753 | * CPU, so set all load shifts to INT8_MIN. Even under high load, |
| 754 | * sched_pri_shift will be >INT8_MAX, and there will be no |
| 755 | * penalty applied to threads (nor will sched_usage be updated per |
| 756 | * thread). |
| 757 | */ |
| 758 | for (i = 0; i < NRQS; i++) { |
| 759 | sched_load_shifts[i] = INT8_MIN; |
| 760 | } |
| 761 | |
| 762 | return; |
| 763 | } |
| 764 | |
| 765 | *p++ = INT8_MIN; *p++ = 0; |
| 766 | |
| 767 | /* |
| 768 | * For a given system load "i", the per-thread priority |
| 769 | * penalty per quantum of CPU usage is ~2^k priority |
| 770 | * levels. "sched_decay_penalty" can cause more |
| 771 | * array entries to be filled with smaller "k" values |
| 772 | */ |
| 773 | for (i = 2, j = 1 << sched_decay_penalty, k = 1; i < NRQS; ++k) { |
| 774 | for (j <<= 1; (i < j) && (i < NRQS); ++i) { |
| 775 | *p++ = k; |
| 776 | } |
| 777 | } |
| 778 | } |
| 779 | |
| 780 | static void |
| 781 | preempt_pri_init(void) |
| 782 | { |
| 783 | bitmap_t *p = sched_preempt_pri; |
| 784 | |
| 785 | for (int i = BASEPRI_FOREGROUND; i < MINPRI_KERNEL; ++i) { |
| 786 | bitmap_set(map: p, n: i); |
| 787 | } |
| 788 | |
| 789 | for (int i = BASEPRI_PREEMPT; i <= MAXPRI; ++i) { |
| 790 | bitmap_set(map: p, n: i); |
| 791 | } |
| 792 | } |
| 793 | |
| 794 | #endif /* CONFIG_SCHED_TIMESHARE_CORE */ |
| 795 | |
| 796 | void |
| 797 | check_monotonic_time(uint64_t ctime) |
| 798 | { |
| 799 | processor_t processor = current_processor(); |
| 800 | uint64_t last_dispatch = processor->last_dispatch; |
| 801 | |
| 802 | if (last_dispatch > ctime) { |
| 803 | panic("Non-monotonic time: last_dispatch at 0x%llx, ctime 0x%llx" , |
| 804 | last_dispatch, ctime); |
| 805 | } |
| 806 | } |
| 807 | |
| 808 | |
| 809 | /* |
| 810 | * Thread wait timer expiration. |
| 811 | * Runs in timer interrupt context with interrupts disabled. |
| 812 | */ |
| 813 | void |
| 814 | thread_timer_expire(void *p0, __unused void *p1) |
| 815 | { |
| 816 | thread_t thread = (thread_t)p0; |
| 817 | |
| 818 | assert_thread_magic(thread); |
| 819 | |
| 820 | assert(ml_get_interrupts_enabled() == FALSE); |
| 821 | |
| 822 | thread_lock(thread); |
| 823 | |
| 824 | if (thread->wait_timer_armed) { |
| 825 | thread->wait_timer_armed = false; |
| 826 | clear_wait_internal(thread, THREAD_TIMED_OUT); |
| 827 | /* clear_wait_internal may have dropped and retaken the thread lock */ |
| 828 | } |
| 829 | |
| 830 | thread->wait_timer_active--; |
| 831 | |
| 832 | thread_unlock(thread); |
| 833 | } |
| 834 | |
| 835 | /* |
| 836 | * thread_unblock: |
| 837 | * |
| 838 | * Unblock thread on wake up. |
| 839 | * |
| 840 | * Returns TRUE if the thread should now be placed on the runqueue. |
| 841 | * |
| 842 | * Thread must be locked. |
| 843 | * |
| 844 | * Called at splsched(). |
| 845 | */ |
| 846 | boolean_t |
| 847 | thread_unblock( |
| 848 | thread_t thread, |
| 849 | wait_result_t wresult) |
| 850 | { |
| 851 | boolean_t ready_for_runq = FALSE; |
| 852 | thread_t cthread = current_thread(); |
| 853 | uint32_t new_run_count; |
| 854 | int old_thread_state; |
| 855 | |
| 856 | /* |
| 857 | * Set wait_result. |
| 858 | */ |
| 859 | thread->wait_result = wresult; |
| 860 | |
| 861 | /* |
| 862 | * Cancel pending wait timer. |
| 863 | */ |
| 864 | if (thread->wait_timer_armed) { |
| 865 | if (timer_call_cancel(call: thread->wait_timer)) { |
| 866 | thread->wait_timer_active--; |
| 867 | } |
| 868 | thread->wait_timer_armed = false; |
| 869 | } |
| 870 | |
| 871 | boolean_t aticontext, pidle; |
| 872 | ml_get_power_state(&aticontext, &pidle); |
| 873 | |
| 874 | /* |
| 875 | * Update scheduling state: not waiting, |
| 876 | * set running. |
| 877 | */ |
| 878 | old_thread_state = thread->state; |
| 879 | thread->state = (old_thread_state | TH_RUN) & |
| 880 | ~(TH_WAIT | TH_UNINT | TH_WAIT_REPORT | TH_WAKING); |
| 881 | |
| 882 | if ((old_thread_state & TH_RUN) == 0) { |
| 883 | uint64_t ctime = mach_approximate_time(); |
| 884 | |
| 885 | check_monotonic_time(ctime); |
| 886 | |
| 887 | thread->last_made_runnable_time = thread->last_basepri_change_time = ctime; |
| 888 | timer_start(timer: &thread->runnable_timer, tstamp: ctime); |
| 889 | |
| 890 | ready_for_runq = TRUE; |
| 891 | |
| 892 | if (old_thread_state & TH_WAIT_REPORT) { |
| 893 | (*thread->sched_call)(SCHED_CALL_UNBLOCK, thread); |
| 894 | } |
| 895 | |
| 896 | /* Update the runnable thread count */ |
| 897 | new_run_count = SCHED(run_count_incr)(thread); |
| 898 | |
| 899 | #if CONFIG_SCHED_AUTO_JOIN |
| 900 | if (aticontext == FALSE && work_interval_should_propagate(cthread, thread)) { |
| 901 | work_interval_auto_join_propagate(from: cthread, to: thread); |
| 902 | } |
| 903 | #endif /*CONFIG_SCHED_AUTO_JOIN */ |
| 904 | |
| 905 | } else { |
| 906 | /* |
| 907 | * Either the thread is idling in place on another processor, |
| 908 | * or it hasn't finished context switching yet. |
| 909 | */ |
| 910 | assert((thread->state & TH_IDLE) == 0); |
| 911 | /* |
| 912 | * The run count is only dropped after the context switch completes |
| 913 | * and the thread is still waiting, so we should not run_incr here |
| 914 | */ |
| 915 | new_run_count = os_atomic_load(&sched_run_buckets[TH_BUCKET_RUN], relaxed); |
| 916 | } |
| 917 | |
| 918 | /* |
| 919 | * Calculate deadline for real-time threads. |
| 920 | */ |
| 921 | if (thread->sched_mode == TH_MODE_REALTIME) { |
| 922 | uint64_t ctime = mach_absolute_time(); |
| 923 | thread->realtime.deadline = thread->realtime.constraint + ctime; |
| 924 | KTRC(MACHDBG_CODE(DBG_MACH_SCHED, MACH_SET_RT_DEADLINE) | DBG_FUNC_NONE, |
| 925 | (uintptr_t)thread_tid(thread), thread->realtime.deadline, thread->realtime.computation, 0); |
| 926 | } |
| 927 | |
| 928 | /* |
| 929 | * Clear old quantum, fail-safe computation, etc. |
| 930 | */ |
| 931 | thread->quantum_remaining = 0; |
| 932 | thread->computation_metered = 0; |
| 933 | thread->reason = AST_NONE; |
| 934 | thread->block_hint = kThreadWaitNone; |
| 935 | |
| 936 | /* Obtain power-relevant interrupt and "platform-idle exit" statistics. |
| 937 | * We also account for "double hop" thread signaling via |
| 938 | * the thread callout infrastructure. |
| 939 | * DRK: consider removing the callout wakeup counters in the future |
| 940 | * they're present for verification at the moment. |
| 941 | */ |
| 942 | |
| 943 | if (__improbable(aticontext && !(thread_get_tag_internal(thread) & THREAD_TAG_CALLOUT))) { |
| 944 | DTRACE_SCHED2(iwakeup, struct thread *, thread, struct proc *, current_proc()); |
| 945 | |
| 946 | uint64_t ttd = current_processor()->timer_call_ttd; |
| 947 | |
| 948 | if (ttd) { |
| 949 | if (ttd <= timer_deadline_tracking_bin_1) { |
| 950 | thread->thread_timer_wakeups_bin_1++; |
| 951 | } else if (ttd <= timer_deadline_tracking_bin_2) { |
| 952 | thread->thread_timer_wakeups_bin_2++; |
| 953 | } |
| 954 | } |
| 955 | |
| 956 | ledger_credit_thread(thread, ledger: thread->t_ledger, |
| 957 | entry: task_ledgers.interrupt_wakeups, amount: 1); |
| 958 | if (pidle) { |
| 959 | ledger_credit_thread(thread, ledger: thread->t_ledger, |
| 960 | entry: task_ledgers.platform_idle_wakeups, amount: 1); |
| 961 | } |
| 962 | } else if (thread_get_tag_internal(thread: cthread) & THREAD_TAG_CALLOUT) { |
| 963 | /* TODO: what about an interrupt that does a wake taken on a callout thread? */ |
| 964 | if (cthread->callout_woken_from_icontext) { |
| 965 | ledger_credit_thread(thread, ledger: thread->t_ledger, |
| 966 | entry: task_ledgers.interrupt_wakeups, amount: 1); |
| 967 | thread->thread_callout_interrupt_wakeups++; |
| 968 | |
| 969 | if (cthread->callout_woken_from_platform_idle) { |
| 970 | ledger_credit_thread(thread, ledger: thread->t_ledger, |
| 971 | entry: task_ledgers.platform_idle_wakeups, amount: 1); |
| 972 | thread->thread_callout_platform_idle_wakeups++; |
| 973 | } |
| 974 | |
| 975 | cthread->callout_woke_thread = TRUE; |
| 976 | } |
| 977 | } |
| 978 | |
| 979 | if (thread_get_tag_internal(thread) & THREAD_TAG_CALLOUT) { |
| 980 | thread->callout_woken_from_icontext = !!aticontext; |
| 981 | thread->callout_woken_from_platform_idle = !!pidle; |
| 982 | thread->callout_woke_thread = FALSE; |
| 983 | } |
| 984 | |
| 985 | #if KPERF |
| 986 | if (ready_for_runq) { |
| 987 | kperf_make_runnable(thread, interrupt: aticontext); |
| 988 | } |
| 989 | #endif /* KPERF */ |
| 990 | |
| 991 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
| 992 | MACHDBG_CODE(DBG_MACH_SCHED, MACH_MAKE_RUNNABLE) | DBG_FUNC_NONE, |
| 993 | (uintptr_t)thread_tid(thread), thread->sched_pri, thread->wait_result, |
| 994 | sched_run_buckets[TH_BUCKET_RUN], 0); |
| 995 | |
| 996 | DTRACE_SCHED2(wakeup, struct thread *, thread, struct proc *, current_proc()); |
| 997 | |
| 998 | return ready_for_runq; |
| 999 | } |
| 1000 | |
| 1001 | /* |
| 1002 | * Routine: thread_allowed_for_handoff |
| 1003 | * Purpose: |
| 1004 | * Check if the thread is allowed for handoff operation |
| 1005 | * Conditions: |
| 1006 | * thread lock held, IPC locks may be held. |
| 1007 | * TODO: In future, do not allow handoff if threads have different cluster |
| 1008 | * recommendations. |
| 1009 | */ |
| 1010 | boolean_t |
| 1011 | thread_allowed_for_handoff( |
| 1012 | thread_t thread) |
| 1013 | { |
| 1014 | thread_t self = current_thread(); |
| 1015 | |
| 1016 | if (allow_direct_handoff && |
| 1017 | thread->sched_mode == TH_MODE_REALTIME && |
| 1018 | self->sched_mode == TH_MODE_REALTIME) { |
| 1019 | return TRUE; |
| 1020 | } |
| 1021 | |
| 1022 | return FALSE; |
| 1023 | } |
| 1024 | |
| 1025 | /* |
| 1026 | * Routine: thread_go |
| 1027 | * Purpose: |
| 1028 | * Unblock and dispatch thread. |
| 1029 | * Conditions: |
| 1030 | * thread lock held, IPC locks may be held. |
| 1031 | * thread must have been waiting |
| 1032 | */ |
| 1033 | void |
| 1034 | thread_go( |
| 1035 | thread_t thread, |
| 1036 | wait_result_t wresult, |
| 1037 | bool try_handoff) |
| 1038 | { |
| 1039 | thread_t self = current_thread(); |
| 1040 | |
| 1041 | assert_thread_magic(thread); |
| 1042 | |
| 1043 | assert(thread->at_safe_point == FALSE); |
| 1044 | assert(thread->wait_event == NO_EVENT64); |
| 1045 | assert(waitq_is_null(thread->waitq)); |
| 1046 | |
| 1047 | assert(!(thread->state & (TH_TERMINATE | TH_TERMINATE2))); |
| 1048 | assert(thread->state & TH_WAIT); |
| 1049 | |
| 1050 | if (thread->started) { |
| 1051 | assert(thread->state & TH_WAKING); |
| 1052 | } |
| 1053 | |
| 1054 | thread_lock_assert(thread, LCK_ASSERT_OWNED); |
| 1055 | |
| 1056 | assert(ml_get_interrupts_enabled() == false); |
| 1057 | |
| 1058 | if (thread_unblock(thread, wresult)) { |
| 1059 | #if SCHED_TRACE_THREAD_WAKEUPS |
| 1060 | backtrace(&thread->thread_wakeup_bt[0], |
| 1061 | (sizeof(thread->thread_wakeup_bt) / sizeof(uintptr_t)), NULL, |
| 1062 | NULL); |
| 1063 | #endif /* SCHED_TRACE_THREAD_WAKEUPS */ |
| 1064 | if (try_handoff && thread_allowed_for_handoff(thread)) { |
| 1065 | thread_reference(thread); |
| 1066 | assert(self->handoff_thread == NULL); |
| 1067 | self->handoff_thread = thread; |
| 1068 | } else { |
| 1069 | thread_setrun(thread, options: SCHED_PREEMPT | SCHED_TAILQ); |
| 1070 | } |
| 1071 | } |
| 1072 | } |
| 1073 | |
| 1074 | /* |
| 1075 | * Routine: thread_mark_wait_locked |
| 1076 | * Purpose: |
| 1077 | * Mark a thread as waiting. If, given the circumstances, |
| 1078 | * it doesn't want to wait (i.e. already aborted), then |
| 1079 | * indicate that in the return value. |
| 1080 | * Conditions: |
| 1081 | * at splsched() and thread is locked. |
| 1082 | */ |
| 1083 | __private_extern__ |
| 1084 | wait_result_t |
| 1085 | thread_mark_wait_locked( |
| 1086 | thread_t thread, |
| 1087 | wait_interrupt_t interruptible_orig) |
| 1088 | { |
| 1089 | boolean_t at_safe_point; |
| 1090 | wait_interrupt_t interruptible = interruptible_orig; |
| 1091 | |
| 1092 | if (thread->state & TH_IDLE) { |
| 1093 | panic("Invalid attempt to wait while running the idle thread" ); |
| 1094 | } |
| 1095 | |
| 1096 | assert(!(thread->state & (TH_WAIT | TH_WAKING | TH_IDLE | TH_UNINT | TH_TERMINATE2 | TH_WAIT_REPORT))); |
| 1097 | |
| 1098 | /* |
| 1099 | * The thread may have certain types of interrupts/aborts masked |
| 1100 | * off. Even if the wait location says these types of interrupts |
| 1101 | * are OK, we have to honor mask settings (outer-scoped code may |
| 1102 | * not be able to handle aborts at the moment). |
| 1103 | */ |
| 1104 | interruptible &= TH_OPT_INTMASK; |
| 1105 | if (interruptible > (thread->options & TH_OPT_INTMASK)) { |
| 1106 | interruptible = thread->options & TH_OPT_INTMASK; |
| 1107 | } |
| 1108 | |
| 1109 | at_safe_point = (interruptible == THREAD_ABORTSAFE); |
| 1110 | |
| 1111 | if (interruptible == THREAD_UNINT || |
| 1112 | !(thread->sched_flags & TH_SFLAG_ABORT) || |
| 1113 | (!at_safe_point && |
| 1114 | (thread->sched_flags & TH_SFLAG_ABORTSAFELY))) { |
| 1115 | if (!(thread->state & TH_TERMINATE)) { |
| 1116 | DTRACE_SCHED(sleep); |
| 1117 | } |
| 1118 | |
| 1119 | int state_bits = TH_WAIT; |
| 1120 | if (!interruptible) { |
| 1121 | state_bits |= TH_UNINT; |
| 1122 | } |
| 1123 | if (thread->sched_call) { |
| 1124 | wait_interrupt_t mask = THREAD_WAIT_NOREPORT_USER; |
| 1125 | if (is_kerneltask(task: get_threadtask(thread))) { |
| 1126 | mask = THREAD_WAIT_NOREPORT_KERNEL; |
| 1127 | } |
| 1128 | if ((interruptible_orig & mask) == 0) { |
| 1129 | state_bits |= TH_WAIT_REPORT; |
| 1130 | } |
| 1131 | } |
| 1132 | thread->state |= state_bits; |
| 1133 | thread->at_safe_point = at_safe_point; |
| 1134 | |
| 1135 | /* TODO: pass this through assert_wait instead, have |
| 1136 | * assert_wait just take a struct as an argument */ |
| 1137 | assert(!thread->block_hint); |
| 1138 | thread->block_hint = thread->pending_block_hint; |
| 1139 | thread->pending_block_hint = kThreadWaitNone; |
| 1140 | |
| 1141 | return thread->wait_result = THREAD_WAITING; |
| 1142 | } else { |
| 1143 | if (thread->sched_flags & TH_SFLAG_ABORTSAFELY) { |
| 1144 | thread->sched_flags &= ~TH_SFLAG_ABORTED_MASK; |
| 1145 | } |
| 1146 | } |
| 1147 | thread->pending_block_hint = kThreadWaitNone; |
| 1148 | |
| 1149 | return thread->wait_result = THREAD_INTERRUPTED; |
| 1150 | } |
| 1151 | |
| 1152 | /* |
| 1153 | * Routine: thread_interrupt_level |
| 1154 | * Purpose: |
| 1155 | * Set the maximum interruptible state for the |
| 1156 | * current thread. The effective value of any |
| 1157 | * interruptible flag passed into assert_wait |
| 1158 | * will never exceed this. |
| 1159 | * |
| 1160 | * Useful for code that must not be interrupted, |
| 1161 | * but which calls code that doesn't know that. |
| 1162 | * Returns: |
| 1163 | * The old interrupt level for the thread. |
| 1164 | */ |
| 1165 | __private_extern__ |
| 1166 | wait_interrupt_t |
| 1167 | thread_interrupt_level( |
| 1168 | wait_interrupt_t new_level) |
| 1169 | { |
| 1170 | thread_t thread = current_thread(); |
| 1171 | wait_interrupt_t result = thread->options & TH_OPT_INTMASK; |
| 1172 | |
| 1173 | thread->options = (thread->options & ~TH_OPT_INTMASK) | (new_level & TH_OPT_INTMASK); |
| 1174 | |
| 1175 | return result; |
| 1176 | } |
| 1177 | |
| 1178 | /* |
| 1179 | * assert_wait: |
| 1180 | * |
| 1181 | * Assert that the current thread is about to go to |
| 1182 | * sleep until the specified event occurs. |
| 1183 | */ |
| 1184 | wait_result_t |
| 1185 | assert_wait( |
| 1186 | event_t event, |
| 1187 | wait_interrupt_t interruptible) |
| 1188 | { |
| 1189 | if (__improbable(event == NO_EVENT)) { |
| 1190 | panic("%s() called with NO_EVENT" , __func__); |
| 1191 | } |
| 1192 | |
| 1193 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
| 1194 | MACHDBG_CODE(DBG_MACH_SCHED, MACH_WAIT) | DBG_FUNC_NONE, |
| 1195 | VM_KERNEL_UNSLIDE_OR_PERM(event), 0, 0, 0, 0); |
| 1196 | |
| 1197 | struct waitq *waitq; |
| 1198 | waitq = global_eventq(event); |
| 1199 | return waitq_assert_wait64(waitq: waitq, CAST_EVENT64_T(event), interruptible, TIMEOUT_WAIT_FOREVER); |
| 1200 | } |
| 1201 | |
| 1202 | /* |
| 1203 | * assert_wait_queue: |
| 1204 | * |
| 1205 | * Return the global waitq for the specified event |
| 1206 | */ |
| 1207 | struct waitq * |
| 1208 | assert_wait_queue( |
| 1209 | event_t event) |
| 1210 | { |
| 1211 | return global_eventq(event); |
| 1212 | } |
| 1213 | |
| 1214 | wait_result_t |
| 1215 | assert_wait_timeout( |
| 1216 | event_t event, |
| 1217 | wait_interrupt_t interruptible, |
| 1218 | uint32_t interval, |
| 1219 | uint32_t scale_factor) |
| 1220 | { |
| 1221 | thread_t thread = current_thread(); |
| 1222 | wait_result_t wresult; |
| 1223 | uint64_t deadline; |
| 1224 | spl_t s; |
| 1225 | |
| 1226 | if (__improbable(event == NO_EVENT)) { |
| 1227 | panic("%s() called with NO_EVENT" , __func__); |
| 1228 | } |
| 1229 | |
| 1230 | struct waitq *waitq; |
| 1231 | waitq = global_eventq(event); |
| 1232 | |
| 1233 | s = splsched(); |
| 1234 | waitq_lock(wq: waitq); |
| 1235 | |
| 1236 | clock_interval_to_deadline(interval, scale_factor, result: &deadline); |
| 1237 | |
| 1238 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
| 1239 | MACHDBG_CODE(DBG_MACH_SCHED, MACH_WAIT) | DBG_FUNC_NONE, |
| 1240 | VM_KERNEL_UNSLIDE_OR_PERM(event), interruptible, deadline, 0, 0); |
| 1241 | |
| 1242 | wresult = waitq_assert_wait64_locked(waitq: waitq, CAST_EVENT64_T(event), |
| 1243 | interruptible, |
| 1244 | TIMEOUT_URGENCY_SYS_NORMAL, |
| 1245 | deadline, TIMEOUT_NO_LEEWAY, |
| 1246 | thread); |
| 1247 | |
| 1248 | waitq_unlock(wq: waitq); |
| 1249 | splx(s); |
| 1250 | return wresult; |
| 1251 | } |
| 1252 | |
| 1253 | wait_result_t |
| 1254 | assert_wait_timeout_with_leeway( |
| 1255 | event_t event, |
| 1256 | wait_interrupt_t interruptible, |
| 1257 | wait_timeout_urgency_t urgency, |
| 1258 | uint32_t interval, |
| 1259 | uint32_t leeway, |
| 1260 | uint32_t scale_factor) |
| 1261 | { |
| 1262 | thread_t thread = current_thread(); |
| 1263 | wait_result_t wresult; |
| 1264 | uint64_t deadline; |
| 1265 | uint64_t abstime; |
| 1266 | uint64_t slop; |
| 1267 | uint64_t now; |
| 1268 | spl_t s; |
| 1269 | |
| 1270 | if (__improbable(event == NO_EVENT)) { |
| 1271 | panic("%s() called with NO_EVENT" , __func__); |
| 1272 | } |
| 1273 | |
| 1274 | now = mach_absolute_time(); |
| 1275 | clock_interval_to_absolutetime_interval(interval, scale_factor, result: &abstime); |
| 1276 | deadline = now + abstime; |
| 1277 | |
| 1278 | clock_interval_to_absolutetime_interval(interval: leeway, scale_factor, result: &slop); |
| 1279 | |
| 1280 | struct waitq *waitq; |
| 1281 | waitq = global_eventq(event); |
| 1282 | |
| 1283 | s = splsched(); |
| 1284 | waitq_lock(wq: waitq); |
| 1285 | |
| 1286 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
| 1287 | MACHDBG_CODE(DBG_MACH_SCHED, MACH_WAIT) | DBG_FUNC_NONE, |
| 1288 | VM_KERNEL_UNSLIDE_OR_PERM(event), interruptible, deadline, 0, 0); |
| 1289 | |
| 1290 | wresult = waitq_assert_wait64_locked(waitq: waitq, CAST_EVENT64_T(event), |
| 1291 | interruptible, |
| 1292 | urgency, deadline, leeway: slop, |
| 1293 | thread); |
| 1294 | |
| 1295 | waitq_unlock(wq: waitq); |
| 1296 | splx(s); |
| 1297 | return wresult; |
| 1298 | } |
| 1299 | |
| 1300 | wait_result_t |
| 1301 | assert_wait_deadline( |
| 1302 | event_t event, |
| 1303 | wait_interrupt_t interruptible, |
| 1304 | uint64_t deadline) |
| 1305 | { |
| 1306 | thread_t thread = current_thread(); |
| 1307 | wait_result_t wresult; |
| 1308 | spl_t s; |
| 1309 | |
| 1310 | if (__improbable(event == NO_EVENT)) { |
| 1311 | panic("%s() called with NO_EVENT" , __func__); |
| 1312 | } |
| 1313 | |
| 1314 | struct waitq *waitq; |
| 1315 | waitq = global_eventq(event); |
| 1316 | |
| 1317 | s = splsched(); |
| 1318 | waitq_lock(wq: waitq); |
| 1319 | |
| 1320 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
| 1321 | MACHDBG_CODE(DBG_MACH_SCHED, MACH_WAIT) | DBG_FUNC_NONE, |
| 1322 | VM_KERNEL_UNSLIDE_OR_PERM(event), interruptible, deadline, 0, 0); |
| 1323 | |
| 1324 | wresult = waitq_assert_wait64_locked(waitq: waitq, CAST_EVENT64_T(event), |
| 1325 | interruptible, |
| 1326 | TIMEOUT_URGENCY_SYS_NORMAL, deadline, |
| 1327 | TIMEOUT_NO_LEEWAY, thread); |
| 1328 | waitq_unlock(wq: waitq); |
| 1329 | splx(s); |
| 1330 | return wresult; |
| 1331 | } |
| 1332 | |
| 1333 | wait_result_t |
| 1334 | assert_wait_deadline_with_leeway( |
| 1335 | event_t event, |
| 1336 | wait_interrupt_t interruptible, |
| 1337 | wait_timeout_urgency_t urgency, |
| 1338 | uint64_t deadline, |
| 1339 | uint64_t leeway) |
| 1340 | { |
| 1341 | thread_t thread = current_thread(); |
| 1342 | wait_result_t wresult; |
| 1343 | spl_t s; |
| 1344 | |
| 1345 | if (__improbable(event == NO_EVENT)) { |
| 1346 | panic("%s() called with NO_EVENT" , __func__); |
| 1347 | } |
| 1348 | |
| 1349 | struct waitq *waitq; |
| 1350 | waitq = global_eventq(event); |
| 1351 | |
| 1352 | s = splsched(); |
| 1353 | waitq_lock(wq: waitq); |
| 1354 | |
| 1355 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
| 1356 | MACHDBG_CODE(DBG_MACH_SCHED, MACH_WAIT) | DBG_FUNC_NONE, |
| 1357 | VM_KERNEL_UNSLIDE_OR_PERM(event), interruptible, deadline, 0, 0); |
| 1358 | |
| 1359 | wresult = waitq_assert_wait64_locked(waitq: waitq, CAST_EVENT64_T(event), |
| 1360 | interruptible, |
| 1361 | urgency, deadline, leeway, |
| 1362 | thread); |
| 1363 | waitq_unlock(wq: waitq); |
| 1364 | splx(s); |
| 1365 | return wresult; |
| 1366 | } |
| 1367 | |
| 1368 | void |
| 1369 | sched_cond_init( |
| 1370 | sched_cond_atomic_t *cond) |
| 1371 | { |
| 1372 | os_atomic_init(cond, SCHED_COND_INIT); |
| 1373 | } |
| 1374 | |
| 1375 | wait_result_t |
| 1376 | sched_cond_wait_parameter( |
| 1377 | sched_cond_atomic_t *cond, |
| 1378 | wait_interrupt_t interruptible, |
| 1379 | thread_continue_t continuation, |
| 1380 | void *parameter) |
| 1381 | { |
| 1382 | assert_wait(event: (event_t) cond, interruptible); |
| 1383 | /* clear active bit to indicate future wakeups will have to unblock this thread */ |
| 1384 | sched_cond_t new_state = (sched_cond_t) os_atomic_andnot(cond, SCHED_COND_ACTIVE, relaxed); |
| 1385 | if (__improbable(new_state & SCHED_COND_WAKEUP)) { |
| 1386 | /* a wakeup has been issued; undo wait assertion, ack the wakeup, and return */ |
| 1387 | thread_t thread = current_thread(); |
| 1388 | clear_wait(thread, THREAD_AWAKENED); |
| 1389 | sched_cond_ack(cond); |
| 1390 | return THREAD_AWAKENED; |
| 1391 | } |
| 1392 | return thread_block_parameter(continuation, parameter); |
| 1393 | } |
| 1394 | |
| 1395 | wait_result_t |
| 1396 | sched_cond_wait( |
| 1397 | sched_cond_atomic_t *cond, |
| 1398 | wait_interrupt_t interruptible, |
| 1399 | thread_continue_t continuation) |
| 1400 | { |
| 1401 | return sched_cond_wait_parameter(cond, interruptible, continuation, NULL); |
| 1402 | } |
| 1403 | |
| 1404 | sched_cond_t |
| 1405 | sched_cond_ack( |
| 1406 | sched_cond_atomic_t *cond) |
| 1407 | { |
| 1408 | sched_cond_t new_cond = (sched_cond_t) os_atomic_xor(cond, SCHED_COND_ACTIVE | SCHED_COND_WAKEUP, acquire); |
| 1409 | assert(new_cond & SCHED_COND_ACTIVE); |
| 1410 | return new_cond; |
| 1411 | } |
| 1412 | |
| 1413 | kern_return_t |
| 1414 | sched_cond_signal( |
| 1415 | sched_cond_atomic_t *cond, |
| 1416 | thread_t thread) |
| 1417 | { |
| 1418 | disable_preemption(); |
| 1419 | sched_cond_t old_cond = (sched_cond_t) os_atomic_or_orig(cond, SCHED_COND_WAKEUP, release); |
| 1420 | if (!(old_cond & (SCHED_COND_WAKEUP | SCHED_COND_ACTIVE))) { |
| 1421 | /* this was the first wakeup to be issued AND the thread was inactive */ |
| 1422 | thread_wakeup_thread(event: (event_t) cond, thread); |
| 1423 | } |
| 1424 | enable_preemption(); |
| 1425 | return KERN_SUCCESS; |
| 1426 | } |
| 1427 | |
| 1428 | /* |
| 1429 | * thread_isoncpu: |
| 1430 | * |
| 1431 | * Return TRUE if a thread is running on a processor such that an AST |
| 1432 | * is needed to pull it out of userspace execution, or if executing in |
| 1433 | * the kernel, bring to a context switch boundary that would cause |
| 1434 | * thread state to be serialized in the thread PCB. |
| 1435 | * |
| 1436 | * Thread locked, returns the same way. While locked, fields |
| 1437 | * like "state" cannot change. "runq" can change only from set to unset. |
| 1438 | */ |
| 1439 | static inline boolean_t |
| 1440 | thread_isoncpu(thread_t thread) |
| 1441 | { |
| 1442 | /* Not running or runnable */ |
| 1443 | if (!(thread->state & TH_RUN)) { |
| 1444 | return FALSE; |
| 1445 | } |
| 1446 | |
| 1447 | /* Waiting on a runqueue, not currently running */ |
| 1448 | /* TODO: This is invalid - it can get dequeued without thread lock, but not context switched. */ |
| 1449 | if (thread_get_runq(thread) != PROCESSOR_NULL) { |
| 1450 | return FALSE; |
| 1451 | } |
| 1452 | |
| 1453 | /* |
| 1454 | * Thread does not have a stack yet |
| 1455 | * It could be on the stack alloc queue or preparing to be invoked |
| 1456 | */ |
| 1457 | if (!thread->kernel_stack) { |
| 1458 | return FALSE; |
| 1459 | } |
| 1460 | |
| 1461 | /* |
| 1462 | * Thread must be running on a processor, or |
| 1463 | * about to run, or just did run. In all these |
| 1464 | * cases, an AST to the processor is needed |
| 1465 | * to guarantee that the thread is kicked out |
| 1466 | * of userspace and the processor has |
| 1467 | * context switched (and saved register state). |
| 1468 | */ |
| 1469 | return TRUE; |
| 1470 | } |
| 1471 | |
| 1472 | /* |
| 1473 | * thread_stop: |
| 1474 | * |
| 1475 | * Force a preemption point for a thread and wait |
| 1476 | * for it to stop running on a CPU. If a stronger |
| 1477 | * guarantee is requested, wait until no longer |
| 1478 | * runnable. Arbitrates access among |
| 1479 | * multiple stop requests. (released by unstop) |
| 1480 | * |
| 1481 | * The thread must enter a wait state and stop via a |
| 1482 | * separate means. |
| 1483 | * |
| 1484 | * Returns FALSE if interrupted. |
| 1485 | */ |
| 1486 | boolean_t |
| 1487 | thread_stop( |
| 1488 | thread_t thread, |
| 1489 | boolean_t until_not_runnable) |
| 1490 | { |
| 1491 | wait_result_t wresult; |
| 1492 | spl_t s = splsched(); |
| 1493 | boolean_t oncpu; |
| 1494 | |
| 1495 | wake_lock(thread); |
| 1496 | thread_lock(thread); |
| 1497 | |
| 1498 | while (thread->state & TH_SUSP) { |
| 1499 | thread->wake_active = TRUE; |
| 1500 | thread_unlock(thread); |
| 1501 | |
| 1502 | wresult = assert_wait(event: &thread->wake_active, THREAD_ABORTSAFE); |
| 1503 | wake_unlock(thread); |
| 1504 | splx(s); |
| 1505 | |
| 1506 | if (wresult == THREAD_WAITING) { |
| 1507 | wresult = thread_block(THREAD_CONTINUE_NULL); |
| 1508 | } |
| 1509 | |
| 1510 | if (wresult != THREAD_AWAKENED) { |
| 1511 | return FALSE; |
| 1512 | } |
| 1513 | |
| 1514 | s = splsched(); |
| 1515 | wake_lock(thread); |
| 1516 | thread_lock(thread); |
| 1517 | } |
| 1518 | |
| 1519 | thread->state |= TH_SUSP; |
| 1520 | |
| 1521 | while ((oncpu = thread_isoncpu(thread)) || |
| 1522 | (until_not_runnable && (thread->state & TH_RUN))) { |
| 1523 | processor_t processor; |
| 1524 | |
| 1525 | if (oncpu) { |
| 1526 | assert(thread->state & TH_RUN); |
| 1527 | processor = thread->chosen_processor; |
| 1528 | cause_ast_check(processor); |
| 1529 | } |
| 1530 | |
| 1531 | thread->wake_active = TRUE; |
| 1532 | thread_unlock(thread); |
| 1533 | |
| 1534 | wresult = assert_wait(event: &thread->wake_active, THREAD_ABORTSAFE); |
| 1535 | wake_unlock(thread); |
| 1536 | splx(s); |
| 1537 | |
| 1538 | if (wresult == THREAD_WAITING) { |
| 1539 | wresult = thread_block(THREAD_CONTINUE_NULL); |
| 1540 | } |
| 1541 | |
| 1542 | if (wresult != THREAD_AWAKENED) { |
| 1543 | thread_unstop(thread); |
| 1544 | return FALSE; |
| 1545 | } |
| 1546 | |
| 1547 | s = splsched(); |
| 1548 | wake_lock(thread); |
| 1549 | thread_lock(thread); |
| 1550 | } |
| 1551 | |
| 1552 | thread_unlock(thread); |
| 1553 | wake_unlock(thread); |
| 1554 | splx(s); |
| 1555 | |
| 1556 | /* |
| 1557 | * We return with the thread unlocked. To prevent it from |
| 1558 | * transitioning to a runnable state (or from TH_RUN to |
| 1559 | * being on the CPU), the caller must ensure the thread |
| 1560 | * is stopped via an external means (such as an AST) |
| 1561 | */ |
| 1562 | |
| 1563 | return TRUE; |
| 1564 | } |
| 1565 | |
| 1566 | /* |
| 1567 | * thread_unstop: |
| 1568 | * |
| 1569 | * Release a previous stop request and set |
| 1570 | * the thread running if appropriate. |
| 1571 | * |
| 1572 | * Use only after a successful stop operation. |
| 1573 | */ |
| 1574 | void |
| 1575 | thread_unstop( |
| 1576 | thread_t thread) |
| 1577 | { |
| 1578 | spl_t s = splsched(); |
| 1579 | |
| 1580 | wake_lock(thread); |
| 1581 | thread_lock(thread); |
| 1582 | |
| 1583 | assert((thread->state & (TH_RUN | TH_WAIT | TH_SUSP)) != TH_SUSP); |
| 1584 | |
| 1585 | if (thread->state & TH_SUSP) { |
| 1586 | thread->state &= ~TH_SUSP; |
| 1587 | |
| 1588 | if (thread->wake_active) { |
| 1589 | thread->wake_active = FALSE; |
| 1590 | thread_unlock(thread); |
| 1591 | |
| 1592 | thread_wakeup(&thread->wake_active); |
| 1593 | wake_unlock(thread); |
| 1594 | splx(s); |
| 1595 | |
| 1596 | return; |
| 1597 | } |
| 1598 | } |
| 1599 | |
| 1600 | thread_unlock(thread); |
| 1601 | wake_unlock(thread); |
| 1602 | splx(s); |
| 1603 | } |
| 1604 | |
| 1605 | /* |
| 1606 | * thread_wait: |
| 1607 | * |
| 1608 | * Wait for a thread to stop running. (non-interruptible) |
| 1609 | * |
| 1610 | */ |
| 1611 | void |
| 1612 | thread_wait( |
| 1613 | thread_t thread, |
| 1614 | boolean_t until_not_runnable) |
| 1615 | { |
| 1616 | wait_result_t wresult; |
| 1617 | boolean_t oncpu; |
| 1618 | processor_t processor; |
| 1619 | spl_t s = splsched(); |
| 1620 | |
| 1621 | wake_lock(thread); |
| 1622 | thread_lock(thread); |
| 1623 | |
| 1624 | /* |
| 1625 | * Wait until not running on a CPU. If stronger requirement |
| 1626 | * desired, wait until not runnable. Assumption: if thread is |
| 1627 | * on CPU, then TH_RUN is set, so we're not waiting in any case |
| 1628 | * where the original, pure "TH_RUN" check would have let us |
| 1629 | * finish. |
| 1630 | */ |
| 1631 | while ((oncpu = thread_isoncpu(thread)) || |
| 1632 | (until_not_runnable && (thread->state & TH_RUN))) { |
| 1633 | if (oncpu) { |
| 1634 | assert(thread->state & TH_RUN); |
| 1635 | processor = thread->chosen_processor; |
| 1636 | cause_ast_check(processor); |
| 1637 | } |
| 1638 | |
| 1639 | thread->wake_active = TRUE; |
| 1640 | thread_unlock(thread); |
| 1641 | |
| 1642 | wresult = assert_wait(event: &thread->wake_active, THREAD_UNINT); |
| 1643 | wake_unlock(thread); |
| 1644 | splx(s); |
| 1645 | |
| 1646 | if (wresult == THREAD_WAITING) { |
| 1647 | thread_block(THREAD_CONTINUE_NULL); |
| 1648 | } |
| 1649 | |
| 1650 | s = splsched(); |
| 1651 | wake_lock(thread); |
| 1652 | thread_lock(thread); |
| 1653 | } |
| 1654 | |
| 1655 | thread_unlock(thread); |
| 1656 | wake_unlock(thread); |
| 1657 | splx(s); |
| 1658 | } |
| 1659 | |
| 1660 | /* |
| 1661 | * Routine: clear_wait_internal |
| 1662 | * |
| 1663 | * Clear the wait condition for the specified thread. |
| 1664 | * Start the thread executing if that is appropriate. |
| 1665 | * Arguments: |
| 1666 | * thread thread to awaken |
| 1667 | * result Wakeup result the thread should see |
| 1668 | * Conditions: |
| 1669 | * At splsched |
| 1670 | * the thread is locked. |
| 1671 | * Returns: |
| 1672 | * KERN_SUCCESS thread was rousted out a wait |
| 1673 | * KERN_FAILURE thread was waiting but could not be rousted |
| 1674 | * KERN_NOT_WAITING thread was not waiting |
| 1675 | */ |
| 1676 | __private_extern__ kern_return_t |
| 1677 | clear_wait_internal( |
| 1678 | thread_t thread, |
| 1679 | wait_result_t wresult) |
| 1680 | { |
| 1681 | waitq_t waitq = thread->waitq; |
| 1682 | |
| 1683 | if (wresult == THREAD_INTERRUPTED && (thread->state & TH_UNINT)) { |
| 1684 | return KERN_FAILURE; |
| 1685 | } |
| 1686 | |
| 1687 | /* |
| 1688 | * Check that the thread is waiting and not waking, as a waking thread |
| 1689 | * has already cleared its waitq, and is destined to be go'ed, don't |
| 1690 | * need to do it again. |
| 1691 | */ |
| 1692 | if ((thread->state & (TH_WAIT | TH_TERMINATE | TH_WAKING)) != TH_WAIT) { |
| 1693 | assert(waitq_is_null(thread->waitq)); |
| 1694 | return KERN_NOT_WAITING; |
| 1695 | } |
| 1696 | |
| 1697 | /* may drop and retake the thread lock */ |
| 1698 | if (!waitq_is_null(wq: waitq) && !waitq_pull_thread_locked(waitq, thread)) { |
| 1699 | return KERN_NOT_WAITING; |
| 1700 | } |
| 1701 | |
| 1702 | thread_go(thread, wresult, /* handoff */ false); |
| 1703 | |
| 1704 | return KERN_SUCCESS; |
| 1705 | } |
| 1706 | |
| 1707 | |
| 1708 | /* |
| 1709 | * clear_wait: |
| 1710 | * |
| 1711 | * Clear the wait condition for the specified thread. Start the thread |
| 1712 | * executing if that is appropriate. |
| 1713 | * |
| 1714 | * parameters: |
| 1715 | * thread thread to awaken |
| 1716 | * result Wakeup result the thread should see |
| 1717 | */ |
| 1718 | kern_return_t |
| 1719 | clear_wait( |
| 1720 | thread_t thread, |
| 1721 | wait_result_t result) |
| 1722 | { |
| 1723 | kern_return_t ret; |
| 1724 | spl_t s; |
| 1725 | |
| 1726 | s = splsched(); |
| 1727 | thread_lock(thread); |
| 1728 | |
| 1729 | ret = clear_wait_internal(thread, wresult: result); |
| 1730 | |
| 1731 | if (thread == current_thread()) { |
| 1732 | /* |
| 1733 | * The thread must be ready to wait again immediately |
| 1734 | * after clearing its own wait. |
| 1735 | */ |
| 1736 | assert((thread->state & TH_WAKING) == 0); |
| 1737 | } |
| 1738 | |
| 1739 | thread_unlock(thread); |
| 1740 | splx(s); |
| 1741 | return ret; |
| 1742 | } |
| 1743 | |
| 1744 | |
| 1745 | /* |
| 1746 | * thread_wakeup_prim: |
| 1747 | * |
| 1748 | * Common routine for thread_wakeup, thread_wakeup_with_result, |
| 1749 | * and thread_wakeup_one. |
| 1750 | * |
| 1751 | */ |
| 1752 | kern_return_t |
| 1753 | thread_wakeup_prim( |
| 1754 | event_t event, |
| 1755 | boolean_t one_thread, |
| 1756 | wait_result_t result) |
| 1757 | { |
| 1758 | if (__improbable(event == NO_EVENT)) { |
| 1759 | panic("%s() called with NO_EVENT" , __func__); |
| 1760 | } |
| 1761 | |
| 1762 | struct waitq *wq = global_eventq(event); |
| 1763 | |
| 1764 | if (one_thread) { |
| 1765 | return waitq_wakeup64_one(waitq: wq, CAST_EVENT64_T(event), result, flags: WAITQ_WAKEUP_DEFAULT); |
| 1766 | } else { |
| 1767 | return waitq_wakeup64_all(waitq: wq, CAST_EVENT64_T(event), result, flags: WAITQ_WAKEUP_DEFAULT); |
| 1768 | } |
| 1769 | } |
| 1770 | |
| 1771 | /* |
| 1772 | * Wakeup a specified thread if and only if it's waiting for this event |
| 1773 | */ |
| 1774 | kern_return_t |
| 1775 | thread_wakeup_thread( |
| 1776 | event_t event, |
| 1777 | thread_t thread) |
| 1778 | { |
| 1779 | if (__improbable(event == NO_EVENT)) { |
| 1780 | panic("%s() called with NO_EVENT" , __func__); |
| 1781 | } |
| 1782 | |
| 1783 | if (__improbable(thread == THREAD_NULL)) { |
| 1784 | panic("%s() called with THREAD_NULL" , __func__); |
| 1785 | } |
| 1786 | |
| 1787 | struct waitq *wq = global_eventq(event); |
| 1788 | |
| 1789 | return waitq_wakeup64_thread(waitq: wq, CAST_EVENT64_T(event), thread, THREAD_AWAKENED); |
| 1790 | } |
| 1791 | |
| 1792 | /* |
| 1793 | * Wakeup a thread waiting on an event and promote it to a priority. |
| 1794 | * |
| 1795 | * Requires woken thread to un-promote itself when done. |
| 1796 | */ |
| 1797 | kern_return_t |
| 1798 | thread_wakeup_one_with_pri( |
| 1799 | event_t event, |
| 1800 | int priority) |
| 1801 | { |
| 1802 | if (__improbable(event == NO_EVENT)) { |
| 1803 | panic("%s() called with NO_EVENT" , __func__); |
| 1804 | } |
| 1805 | |
| 1806 | struct waitq *wq = global_eventq(event); |
| 1807 | |
| 1808 | return waitq_wakeup64_one(waitq: wq, CAST_EVENT64_T(event), THREAD_AWAKENED, flags: priority); |
| 1809 | } |
| 1810 | |
| 1811 | /* |
| 1812 | * Wakeup a thread waiting on an event, |
| 1813 | * promote it to a priority, |
| 1814 | * and return a reference to the woken thread. |
| 1815 | * |
| 1816 | * Requires woken thread to un-promote itself when done. |
| 1817 | */ |
| 1818 | thread_t |
| 1819 | thread_wakeup_identify(event_t event, |
| 1820 | int priority) |
| 1821 | { |
| 1822 | if (__improbable(event == NO_EVENT)) { |
| 1823 | panic("%s() called with NO_EVENT" , __func__); |
| 1824 | } |
| 1825 | |
| 1826 | struct waitq *wq = global_eventq(event); |
| 1827 | |
| 1828 | return waitq_wakeup64_identify(waitq: wq, CAST_EVENT64_T(event), THREAD_AWAKENED, flags: priority); |
| 1829 | } |
| 1830 | |
| 1831 | /* |
| 1832 | * thread_bind: |
| 1833 | * |
| 1834 | * Force the current thread to execute on the specified processor. |
| 1835 | * Takes effect after the next thread_block(). |
| 1836 | * |
| 1837 | * Returns the previous binding. PROCESSOR_NULL means |
| 1838 | * not bound. |
| 1839 | * |
| 1840 | * XXX - DO NOT export this to users - XXX |
| 1841 | */ |
| 1842 | processor_t |
| 1843 | thread_bind( |
| 1844 | processor_t processor) |
| 1845 | { |
| 1846 | thread_t self = current_thread(); |
| 1847 | processor_t prev; |
| 1848 | spl_t s; |
| 1849 | |
| 1850 | s = splsched(); |
| 1851 | thread_lock(self); |
| 1852 | |
| 1853 | prev = thread_bind_internal(thread: self, processor); |
| 1854 | |
| 1855 | thread_unlock(self); |
| 1856 | splx(s); |
| 1857 | |
| 1858 | return prev; |
| 1859 | } |
| 1860 | |
| 1861 | void |
| 1862 | thread_bind_during_wakeup(thread_t thread, processor_t processor) |
| 1863 | { |
| 1864 | assert(!ml_get_interrupts_enabled()); |
| 1865 | assert((thread->state & (TH_WAIT | TH_WAKING)) == (TH_WAIT | TH_WAKING)); |
| 1866 | #if MACH_ASSERT |
| 1867 | thread_lock_assert(thread, LCK_ASSERT_OWNED); |
| 1868 | #endif |
| 1869 | |
| 1870 | if (thread->bound_processor != processor) { |
| 1871 | thread_bind_internal(thread, processor); |
| 1872 | } |
| 1873 | } |
| 1874 | |
| 1875 | void |
| 1876 | thread_unbind_after_queue_shutdown( |
| 1877 | thread_t thread, |
| 1878 | processor_t processor __assert_only) |
| 1879 | { |
| 1880 | assert(!ml_get_interrupts_enabled()); |
| 1881 | |
| 1882 | thread_lock(thread); |
| 1883 | |
| 1884 | if (thread->bound_processor) { |
| 1885 | bool removed; |
| 1886 | |
| 1887 | assert(thread->bound_processor == processor); |
| 1888 | |
| 1889 | removed = thread_run_queue_remove(thread); |
| 1890 | /* |
| 1891 | * we can always unbind even if we didn't really remove the |
| 1892 | * thread from the runqueue |
| 1893 | */ |
| 1894 | thread_bind_internal(thread, PROCESSOR_NULL); |
| 1895 | if (removed) { |
| 1896 | thread_run_queue_reinsert(thread, options: SCHED_TAILQ); |
| 1897 | } |
| 1898 | } |
| 1899 | |
| 1900 | thread_unlock(thread); |
| 1901 | } |
| 1902 | |
| 1903 | /* |
| 1904 | * thread_bind_internal: |
| 1905 | * |
| 1906 | * If the specified thread is not the current thread, and it is currently |
| 1907 | * running on another CPU, a remote AST must be sent to that CPU to cause |
| 1908 | * the thread to migrate to its bound processor. Otherwise, the migration |
| 1909 | * will occur at the next quantum expiration or blocking point. |
| 1910 | * |
| 1911 | * When the thread is the current thread, and explicit thread_block() should |
| 1912 | * be used to force the current processor to context switch away and |
| 1913 | * let the thread migrate to the bound processor. |
| 1914 | * |
| 1915 | * Thread must be locked, and at splsched. |
| 1916 | */ |
| 1917 | |
| 1918 | static processor_t |
| 1919 | thread_bind_internal( |
| 1920 | thread_t thread, |
| 1921 | processor_t processor) |
| 1922 | { |
| 1923 | processor_t prev; |
| 1924 | |
| 1925 | /* <rdar://problem/15102234> */ |
| 1926 | assert(thread->sched_pri < BASEPRI_RTQUEUES); |
| 1927 | /* A thread can't be bound if it's sitting on a (potentially incorrect) runqueue */ |
| 1928 | thread_assert_runq_null(thread); |
| 1929 | |
| 1930 | KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED, MACH_THREAD_BIND), |
| 1931 | thread_tid(thread), processor ? processor->cpu_id : ~0ul, 0, 0, 0); |
| 1932 | |
| 1933 | prev = thread->bound_processor; |
| 1934 | thread->bound_processor = processor; |
| 1935 | |
| 1936 | return prev; |
| 1937 | } |
| 1938 | |
| 1939 | /* |
| 1940 | * thread_vm_bind_group_add: |
| 1941 | * |
| 1942 | * The "VM bind group" is a special mechanism to mark a collection |
| 1943 | * of threads from the VM subsystem that, in general, should be scheduled |
| 1944 | * with only one CPU of parallelism. To accomplish this, we initially |
| 1945 | * bind all the threads to the master processor, which has the effect |
| 1946 | * that only one of the threads in the group can execute at once, including |
| 1947 | * preempting threads in the group that are a lower priority. Future |
| 1948 | * mechanisms may use more dynamic mechanisms to prevent the collection |
| 1949 | * of VM threads from using more CPU time than desired. |
| 1950 | * |
| 1951 | * The current implementation can result in priority inversions where |
| 1952 | * compute-bound priority 95 or realtime threads that happen to have |
| 1953 | * landed on the master processor prevent the VM threads from running. |
| 1954 | * When this situation is detected, we unbind the threads for one |
| 1955 | * scheduler tick to allow the scheduler to run the threads an |
| 1956 | * additional CPUs, before restoring the binding (assuming high latency |
| 1957 | * is no longer a problem). |
| 1958 | */ |
| 1959 | |
| 1960 | /* |
| 1961 | * The current max is provisioned for: |
| 1962 | * vm_compressor_swap_trigger_thread (92) |
| 1963 | * 2 x vm_pageout_iothread_internal (92) when vm_restricted_to_single_processor==TRUE |
| 1964 | * vm_pageout_continue (92) |
| 1965 | * memorystatus_thread (95) |
| 1966 | */ |
| 1967 | #define MAX_VM_BIND_GROUP_COUNT (5) |
| 1968 | decl_simple_lock_data(static, sched_vm_group_list_lock); |
| 1969 | static thread_t sched_vm_group_thread_list[MAX_VM_BIND_GROUP_COUNT]; |
| 1970 | static int sched_vm_group_thread_count; |
| 1971 | static boolean_t sched_vm_group_temporarily_unbound = FALSE; |
| 1972 | |
| 1973 | void |
| 1974 | thread_vm_bind_group_add(void) |
| 1975 | { |
| 1976 | thread_t self = current_thread(); |
| 1977 | |
| 1978 | thread_reference(thread: self); |
| 1979 | self->options |= TH_OPT_SCHED_VM_GROUP; |
| 1980 | |
| 1981 | simple_lock(&sched_vm_group_list_lock, LCK_GRP_NULL); |
| 1982 | assert(sched_vm_group_thread_count < MAX_VM_BIND_GROUP_COUNT); |
| 1983 | sched_vm_group_thread_list[sched_vm_group_thread_count++] = self; |
| 1984 | simple_unlock(&sched_vm_group_list_lock); |
| 1985 | |
| 1986 | thread_bind(master_processor); |
| 1987 | |
| 1988 | /* Switch to bound processor if not already there */ |
| 1989 | thread_block(THREAD_CONTINUE_NULL); |
| 1990 | } |
| 1991 | |
| 1992 | static void |
| 1993 | sched_vm_group_maintenance(void) |
| 1994 | { |
| 1995 | uint64_t ctime = mach_absolute_time(); |
| 1996 | uint64_t longtime = ctime - sched_tick_interval; |
| 1997 | int i; |
| 1998 | spl_t s; |
| 1999 | boolean_t high_latency_observed = FALSE; |
| 2000 | boolean_t runnable_and_not_on_runq_observed = FALSE; |
| 2001 | boolean_t bind_target_changed = FALSE; |
| 2002 | processor_t bind_target = PROCESSOR_NULL; |
| 2003 | |
| 2004 | /* Make sure nobody attempts to add new threads while we are enumerating them */ |
| 2005 | simple_lock(&sched_vm_group_list_lock, LCK_GRP_NULL); |
| 2006 | |
| 2007 | s = splsched(); |
| 2008 | |
| 2009 | for (i = 0; i < sched_vm_group_thread_count; i++) { |
| 2010 | thread_t thread = sched_vm_group_thread_list[i]; |
| 2011 | assert(thread != THREAD_NULL); |
| 2012 | thread_lock(thread); |
| 2013 | if ((thread->state & (TH_RUN | TH_WAIT)) == TH_RUN) { |
| 2014 | if (thread_get_runq(thread) != PROCESSOR_NULL && thread->last_made_runnable_time < longtime) { |
| 2015 | high_latency_observed = TRUE; |
| 2016 | } else if (thread_get_runq(thread) == PROCESSOR_NULL) { |
| 2017 | /* There are some cases where a thread be transitiong that also fall into this case */ |
| 2018 | runnable_and_not_on_runq_observed = TRUE; |
| 2019 | } |
| 2020 | } |
| 2021 | thread_unlock(thread); |
| 2022 | |
| 2023 | if (high_latency_observed && runnable_and_not_on_runq_observed) { |
| 2024 | /* All the things we are looking for are true, stop looking */ |
| 2025 | break; |
| 2026 | } |
| 2027 | } |
| 2028 | |
| 2029 | splx(s); |
| 2030 | |
| 2031 | if (sched_vm_group_temporarily_unbound) { |
| 2032 | /* If we turned off binding, make sure everything is OK before rebinding */ |
| 2033 | if (!high_latency_observed) { |
| 2034 | /* rebind */ |
| 2035 | bind_target_changed = TRUE; |
| 2036 | bind_target = master_processor; |
| 2037 | sched_vm_group_temporarily_unbound = FALSE; /* might be reset to TRUE if change cannot be completed */ |
| 2038 | } |
| 2039 | } else { |
| 2040 | /* |
| 2041 | * Check if we're in a bad state, which is defined by high |
| 2042 | * latency with no core currently executing a thread. If a |
| 2043 | * single thread is making progress on a CPU, that means the |
| 2044 | * binding concept to reduce parallelism is working as |
| 2045 | * designed. |
| 2046 | */ |
| 2047 | if (high_latency_observed && !runnable_and_not_on_runq_observed) { |
| 2048 | /* unbind */ |
| 2049 | bind_target_changed = TRUE; |
| 2050 | bind_target = PROCESSOR_NULL; |
| 2051 | sched_vm_group_temporarily_unbound = TRUE; |
| 2052 | } |
| 2053 | } |
| 2054 | |
| 2055 | if (bind_target_changed) { |
| 2056 | s = splsched(); |
| 2057 | for (i = 0; i < sched_vm_group_thread_count; i++) { |
| 2058 | thread_t thread = sched_vm_group_thread_list[i]; |
| 2059 | boolean_t removed; |
| 2060 | assert(thread != THREAD_NULL); |
| 2061 | |
| 2062 | thread_lock(thread); |
| 2063 | removed = thread_run_queue_remove(thread); |
| 2064 | if (removed || ((thread->state & (TH_RUN | TH_WAIT)) == TH_WAIT)) { |
| 2065 | thread_bind_internal(thread, processor: bind_target); |
| 2066 | } else { |
| 2067 | /* |
| 2068 | * Thread was in the middle of being context-switched-to, |
| 2069 | * or was in the process of blocking. To avoid switching the bind |
| 2070 | * state out mid-flight, defer the change if possible. |
| 2071 | */ |
| 2072 | if (bind_target == PROCESSOR_NULL) { |
| 2073 | thread_bind_internal(thread, processor: bind_target); |
| 2074 | } else { |
| 2075 | sched_vm_group_temporarily_unbound = TRUE; /* next pass will try again */ |
| 2076 | } |
| 2077 | } |
| 2078 | |
| 2079 | if (removed) { |
| 2080 | thread_run_queue_reinsert(thread, options: SCHED_PREEMPT | SCHED_TAILQ); |
| 2081 | } |
| 2082 | thread_unlock(thread); |
| 2083 | } |
| 2084 | splx(s); |
| 2085 | } |
| 2086 | |
| 2087 | simple_unlock(&sched_vm_group_list_lock); |
| 2088 | } |
| 2089 | |
| 2090 | #if defined(__x86_64__) |
| 2091 | #define SCHED_AVOID_CPU0 1 |
| 2092 | #else |
| 2093 | #define SCHED_AVOID_CPU0 0 |
| 2094 | #endif |
| 2095 | |
| 2096 | int sched_allow_rt_smt = 1; |
| 2097 | int sched_avoid_cpu0 = SCHED_AVOID_CPU0; |
| 2098 | int sched_allow_rt_steal = 1; |
| 2099 | int sched_backup_cpu_timeout_count = 5; /* The maximum number of 10us delays to wait before using a backup cpu */ |
| 2100 | |
| 2101 | int sched_rt_n_backup_processors = SCHED_DEFAULT_BACKUP_PROCESSORS; |
| 2102 | |
| 2103 | int |
| 2104 | sched_get_rt_n_backup_processors(void) |
| 2105 | { |
| 2106 | return sched_rt_n_backup_processors; |
| 2107 | } |
| 2108 | |
| 2109 | void |
| 2110 | sched_set_rt_n_backup_processors(int n) |
| 2111 | { |
| 2112 | if (n < 0) { |
| 2113 | n = 0; |
| 2114 | } else if (n > SCHED_MAX_BACKUP_PROCESSORS) { |
| 2115 | n = SCHED_MAX_BACKUP_PROCESSORS; |
| 2116 | } |
| 2117 | |
| 2118 | sched_rt_n_backup_processors = n; |
| 2119 | } |
| 2120 | |
| 2121 | int sched_rt_runq_strict_priority = false; |
| 2122 | |
| 2123 | inline static processor_set_t |
| 2124 | change_locked_pset(processor_set_t current_pset, processor_set_t new_pset) |
| 2125 | { |
| 2126 | if (current_pset != new_pset) { |
| 2127 | pset_unlock(current_pset); |
| 2128 | pset_lock(new_pset); |
| 2129 | } |
| 2130 | |
| 2131 | return new_pset; |
| 2132 | } |
| 2133 | |
| 2134 | /* |
| 2135 | * Invoked prior to idle entry to determine if, on SMT capable processors, an SMT |
| 2136 | * rebalancing opportunity exists when a core is (instantaneously) idle, but |
| 2137 | * other SMT-capable cores may be over-committed. TODO: some possible negatives: |
| 2138 | * IPI thrash if this core does not remain idle following the load balancing ASTs |
| 2139 | * Idle "thrash", when IPI issue is followed by idle entry/core power down |
| 2140 | * followed by a wakeup shortly thereafter. |
| 2141 | */ |
| 2142 | |
| 2143 | #if (DEVELOPMENT || DEBUG) |
| 2144 | int sched_smt_balance = 1; |
| 2145 | #endif |
| 2146 | |
| 2147 | /* Invoked with pset locked, returns with pset unlocked */ |
| 2148 | bool |
| 2149 | sched_SMT_balance(processor_t cprocessor, processor_set_t cpset) |
| 2150 | { |
| 2151 | processor_t ast_processor = NULL; |
| 2152 | |
| 2153 | #if (DEVELOPMENT || DEBUG) |
| 2154 | if (__improbable(sched_smt_balance == 0)) { |
| 2155 | goto smt_balance_exit; |
| 2156 | } |
| 2157 | #endif |
| 2158 | |
| 2159 | assert(cprocessor == current_processor()); |
| 2160 | if (cprocessor->is_SMT == FALSE) { |
| 2161 | goto smt_balance_exit; |
| 2162 | } |
| 2163 | |
| 2164 | processor_t sib_processor = cprocessor->processor_secondary ? cprocessor->processor_secondary : cprocessor->processor_primary; |
| 2165 | |
| 2166 | /* Determine if both this processor and its sibling are idle, |
| 2167 | * indicating an SMT rebalancing opportunity. |
| 2168 | */ |
| 2169 | if (sib_processor->state != PROCESSOR_IDLE) { |
| 2170 | goto smt_balance_exit; |
| 2171 | } |
| 2172 | |
| 2173 | processor_t sprocessor; |
| 2174 | |
| 2175 | sched_ipi_type_t ipi_type = SCHED_IPI_NONE; |
| 2176 | uint64_t running_secondary_map = (cpset->cpu_state_map[PROCESSOR_RUNNING] & |
| 2177 | ~cpset->primary_map); |
| 2178 | for (int cpuid = lsb_first(bitmap: running_secondary_map); cpuid >= 0; cpuid = lsb_next(bitmap: running_secondary_map, previous_bit: cpuid)) { |
| 2179 | sprocessor = processor_array[cpuid]; |
| 2180 | if ((sprocessor->processor_primary->state == PROCESSOR_RUNNING) && |
| 2181 | (sprocessor->current_pri < BASEPRI_RTQUEUES)) { |
| 2182 | ipi_type = sched_ipi_action(dst: sprocessor, NULL, event: SCHED_IPI_EVENT_SMT_REBAL); |
| 2183 | if (ipi_type != SCHED_IPI_NONE) { |
| 2184 | assert(sprocessor != cprocessor); |
| 2185 | ast_processor = sprocessor; |
| 2186 | break; |
| 2187 | } |
| 2188 | } |
| 2189 | } |
| 2190 | |
| 2191 | smt_balance_exit: |
| 2192 | pset_unlock(cpset); |
| 2193 | |
| 2194 | if (ast_processor) { |
| 2195 | KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED, MACH_SCHED_SMT_BALANCE), ast_processor->cpu_id, ast_processor->state, ast_processor->processor_primary->state, 0, 0); |
| 2196 | sched_ipi_perform(dst: ast_processor, ipi: ipi_type); |
| 2197 | } |
| 2198 | return false; |
| 2199 | } |
| 2200 | |
| 2201 | static cpumap_t |
| 2202 | pset_available_cpumap(processor_set_t pset) |
| 2203 | { |
| 2204 | return pset->cpu_available_map & pset->recommended_bitmask; |
| 2205 | } |
| 2206 | |
| 2207 | int |
| 2208 | pset_available_cpu_count(processor_set_t pset) |
| 2209 | { |
| 2210 | return bit_count(x: pset_available_cpumap(pset)); |
| 2211 | } |
| 2212 | |
| 2213 | bool |
| 2214 | pset_is_recommended(processor_set_t pset) |
| 2215 | { |
| 2216 | if (!pset) { |
| 2217 | return false; |
| 2218 | } |
| 2219 | return pset_available_cpu_count(pset) > 0; |
| 2220 | } |
| 2221 | |
| 2222 | static cpumap_t |
| 2223 | pset_available_but_not_running_cpumap(processor_set_t pset) |
| 2224 | { |
| 2225 | return (pset->cpu_state_map[PROCESSOR_IDLE] | pset->cpu_state_map[PROCESSOR_DISPATCHING]) & |
| 2226 | pset->recommended_bitmask; |
| 2227 | } |
| 2228 | |
| 2229 | bool |
| 2230 | pset_has_stealable_threads(processor_set_t pset) |
| 2231 | { |
| 2232 | pset_assert_locked(pset); |
| 2233 | |
| 2234 | cpumap_t avail_map = pset_available_but_not_running_cpumap(pset); |
| 2235 | /* |
| 2236 | * Secondary CPUs never steal, so allow stealing of threads if there are more threads than |
| 2237 | * available primary CPUs |
| 2238 | */ |
| 2239 | avail_map &= pset->primary_map; |
| 2240 | |
| 2241 | return (pset->pset_runq.count > 0) && ((pset->pset_runq.count + rt_runq_count(pset)) > bit_count(x: avail_map)); |
| 2242 | } |
| 2243 | |
| 2244 | static cpumap_t |
| 2245 | pset_available_but_not_running_rt_threads_cpumap(processor_set_t pset) |
| 2246 | { |
| 2247 | cpumap_t avail_map = pset_available_cpumap(pset); |
| 2248 | if (!sched_allow_rt_smt) { |
| 2249 | /* |
| 2250 | * Secondary CPUs are not allowed to run RT threads, so |
| 2251 | * only primary CPUs should be included |
| 2252 | */ |
| 2253 | avail_map &= pset->primary_map; |
| 2254 | } |
| 2255 | |
| 2256 | return avail_map & ~pset->realtime_map; |
| 2257 | } |
| 2258 | |
| 2259 | static bool |
| 2260 | pset_needs_a_followup_IPI(processor_set_t pset) |
| 2261 | { |
| 2262 | int nbackup_cpus = 0; |
| 2263 | |
| 2264 | if (rt_runq_is_low_latency(pset)) { |
| 2265 | nbackup_cpus = sched_rt_n_backup_processors; |
| 2266 | } |
| 2267 | |
| 2268 | int rt_rq_count = rt_runq_count(pset); |
| 2269 | |
| 2270 | return (rt_rq_count > 0) && ((rt_rq_count + nbackup_cpus - bit_count(x: pset->pending_AST_URGENT_cpu_mask)) > 0); |
| 2271 | } |
| 2272 | |
| 2273 | bool |
| 2274 | pset_has_stealable_rt_threads(processor_set_t pset) |
| 2275 | { |
| 2276 | pset_node_t node = pset->node; |
| 2277 | if (bit_count(x: node->pset_map) == 1) { |
| 2278 | return false; |
| 2279 | } |
| 2280 | |
| 2281 | cpumap_t avail_map = pset_available_but_not_running_rt_threads_cpumap(pset); |
| 2282 | |
| 2283 | return rt_runq_count(pset) > bit_count(x: avail_map); |
| 2284 | } |
| 2285 | |
| 2286 | static void |
| 2287 | pset_update_rt_stealable_state(processor_set_t pset) |
| 2288 | { |
| 2289 | if (pset_has_stealable_rt_threads(pset)) { |
| 2290 | pset->stealable_rt_threads_earliest_deadline = rt_runq_earliest_deadline(pset); |
| 2291 | } else { |
| 2292 | pset->stealable_rt_threads_earliest_deadline = RT_DEADLINE_NONE; |
| 2293 | } |
| 2294 | } |
| 2295 | |
| 2296 | static void |
| 2297 | clear_pending_AST_bits(processor_set_t pset, processor_t processor, __kdebug_only const int trace_point_number) |
| 2298 | { |
| 2299 | /* Acknowledge any pending IPIs here with pset lock held */ |
| 2300 | pset_assert_locked(pset); |
| 2301 | if (bit_clear_if_set(pset->pending_AST_URGENT_cpu_mask, processor->cpu_id)) { |
| 2302 | KTRC(MACHDBG_CODE(DBG_MACH_SCHED, MACH_PENDING_AST_URGENT) | DBG_FUNC_END, |
| 2303 | processor->cpu_id, pset->pending_AST_URGENT_cpu_mask, 0, trace_point_number); |
| 2304 | } |
| 2305 | bit_clear(pset->pending_AST_PREEMPT_cpu_mask, processor->cpu_id); |
| 2306 | |
| 2307 | #if defined(CONFIG_SCHED_DEFERRED_AST) |
| 2308 | bit_clear(pset->pending_deferred_AST_cpu_mask, processor->cpu_id); |
| 2309 | #endif |
| 2310 | } |
| 2311 | |
| 2312 | /* |
| 2313 | * Called with pset locked, on a processor that is committing to run a new thread |
| 2314 | * Will transition an idle or dispatching processor to running as it picks up |
| 2315 | * the first new thread from the idle thread. |
| 2316 | */ |
| 2317 | static void |
| 2318 | pset_commit_processor_to_new_thread(processor_set_t pset, processor_t processor, thread_t new_thread) |
| 2319 | { |
| 2320 | pset_assert_locked(pset); |
| 2321 | |
| 2322 | if (processor->state == PROCESSOR_DISPATCHING || processor->state == PROCESSOR_IDLE) { |
| 2323 | assert(current_thread() == processor->idle_thread); |
| 2324 | |
| 2325 | /* |
| 2326 | * Dispatching processor is now committed to running new_thread, |
| 2327 | * so change its state to PROCESSOR_RUNNING. |
| 2328 | */ |
| 2329 | pset_update_processor_state(pset, processor, new_state: PROCESSOR_RUNNING); |
| 2330 | } else { |
| 2331 | assert((processor->state == PROCESSOR_RUNNING) || (processor->state == PROCESSOR_SHUTDOWN)); |
| 2332 | } |
| 2333 | |
| 2334 | processor_state_update_from_thread(processor, thread: new_thread, true); |
| 2335 | |
| 2336 | if (new_thread->sched_pri >= BASEPRI_RTQUEUES) { |
| 2337 | bit_set(pset->realtime_map, processor->cpu_id); |
| 2338 | } else { |
| 2339 | bit_clear(pset->realtime_map, processor->cpu_id); |
| 2340 | } |
| 2341 | pset_update_rt_stealable_state(pset); |
| 2342 | |
| 2343 | pset_node_t node = pset->node; |
| 2344 | |
| 2345 | if (bit_count(x: node->pset_map) == 1) { |
| 2346 | /* Node has only a single pset, so skip node pset map updates */ |
| 2347 | return; |
| 2348 | } |
| 2349 | |
| 2350 | cpumap_t avail_map = pset_available_cpumap(pset); |
| 2351 | |
| 2352 | if (new_thread->sched_pri >= BASEPRI_RTQUEUES) { |
| 2353 | if ((avail_map & pset->realtime_map) == avail_map) { |
| 2354 | /* No more non-RT CPUs in this pset */ |
| 2355 | atomic_bit_clear(map: &node->pset_non_rt_map, n: pset->pset_id, mem_order: memory_order_relaxed); |
| 2356 | } |
| 2357 | avail_map &= pset->primary_map; |
| 2358 | if ((avail_map & pset->realtime_map) == avail_map) { |
| 2359 | /* No more non-RT primary CPUs in this pset */ |
| 2360 | atomic_bit_clear(map: &node->pset_non_rt_primary_map, n: pset->pset_id, mem_order: memory_order_relaxed); |
| 2361 | } |
| 2362 | } else { |
| 2363 | if ((avail_map & pset->realtime_map) != avail_map) { |
| 2364 | if (!bit_test(atomic_load(&node->pset_non_rt_map), pset->pset_id)) { |
| 2365 | atomic_bit_set(map: &node->pset_non_rt_map, n: pset->pset_id, mem_order: memory_order_relaxed); |
| 2366 | } |
| 2367 | } |
| 2368 | avail_map &= pset->primary_map; |
| 2369 | if ((avail_map & pset->realtime_map) != avail_map) { |
| 2370 | if (!bit_test(atomic_load(&node->pset_non_rt_primary_map), pset->pset_id)) { |
| 2371 | atomic_bit_set(map: &node->pset_non_rt_primary_map, n: pset->pset_id, mem_order: memory_order_relaxed); |
| 2372 | } |
| 2373 | } |
| 2374 | } |
| 2375 | } |
| 2376 | |
| 2377 | static processor_t choose_processor_for_realtime_thread(processor_set_t pset, processor_t skip_processor, bool consider_secondaries, bool skip_spills); |
| 2378 | static processor_t choose_furthest_deadline_processor_for_realtime_thread(processor_set_t pset, int max_pri, uint64_t minimum_deadline, |
| 2379 | processor_t skip_processor, bool skip_spills, bool include_ast_urgent_pending_cpus); |
| 2380 | static processor_t choose_next_processor_for_realtime_thread(processor_set_t pset, int max_pri, uint64_t minimum_deadline, processor_t skip_processor, bool consider_secondaries); |
| 2381 | #if defined(__x86_64__) |
| 2382 | static bool all_available_primaries_are_running_realtime_threads(processor_set_t pset, bool include_backups); |
| 2383 | static bool these_processors_are_running_realtime_threads(processor_set_t pset, uint64_t these_map, bool include_backups); |
| 2384 | #endif |
| 2385 | static bool sched_ok_to_run_realtime_thread(processor_set_t pset, processor_t processor, bool as_backup); |
| 2386 | static bool processor_is_fast_track_candidate_for_realtime_thread(processor_set_t pset, processor_t processor); |
| 2387 | |
| 2388 | static bool |
| 2389 | other_psets_have_earlier_rt_threads_pending(processor_set_t stealing_pset, uint64_t earliest_deadline) |
| 2390 | { |
| 2391 | pset_map_t pset_map = stealing_pset->node->pset_map; |
| 2392 | |
| 2393 | bit_clear(pset_map, stealing_pset->pset_id); |
| 2394 | |
| 2395 | for (int pset_id = lsb_first(bitmap: pset_map); pset_id >= 0; pset_id = lsb_next(bitmap: pset_map, previous_bit: pset_id)) { |
| 2396 | processor_set_t nset = pset_array[pset_id]; |
| 2397 | |
| 2398 | if (deadline_add(d: nset->stealable_rt_threads_earliest_deadline, e: rt_deadline_epsilon) < earliest_deadline) { |
| 2399 | return true; |
| 2400 | } |
| 2401 | } |
| 2402 | |
| 2403 | return false; |
| 2404 | } |
| 2405 | |
| 2406 | /* |
| 2407 | * starting_pset must be locked, but returns true if it is unlocked before return |
| 2408 | */ |
| 2409 | static bool |
| 2410 | choose_next_rt_processor_for_IPI(processor_set_t starting_pset, processor_t chosen_processor, bool spill_ipi, |
| 2411 | processor_t *result_processor, sched_ipi_type_t *result_ipi_type) |
| 2412 | { |
| 2413 | bool starting_pset_is_unlocked = false; |
| 2414 | uint64_t earliest_deadline = rt_runq_earliest_deadline(pset: starting_pset); |
| 2415 | int max_pri = rt_runq_priority(pset: starting_pset); |
| 2416 | __kdebug_only uint64_t spill_tid = thread_tid(thread: rt_runq_first(rt_runq: &starting_pset->rt_runq)); |
| 2417 | processor_set_t pset = starting_pset; |
| 2418 | processor_t next_rt_processor = PROCESSOR_NULL; |
| 2419 | if (spill_ipi) { |
| 2420 | processor_set_t nset = next_pset(pset); |
| 2421 | assert(nset != starting_pset); |
| 2422 | pset = change_locked_pset(current_pset: pset, new_pset: nset); |
| 2423 | starting_pset_is_unlocked = true; |
| 2424 | } |
| 2425 | do { |
| 2426 | const bool consider_secondaries = true; |
| 2427 | next_rt_processor = choose_next_processor_for_realtime_thread(pset, max_pri, minimum_deadline: earliest_deadline, skip_processor: chosen_processor, consider_secondaries); |
| 2428 | if (next_rt_processor == PROCESSOR_NULL) { |
| 2429 | if (!spill_ipi) { |
| 2430 | break; |
| 2431 | } |
| 2432 | processor_set_t nset = next_pset(pset); |
| 2433 | if (nset == starting_pset) { |
| 2434 | break; |
| 2435 | } |
| 2436 | pset = change_locked_pset(current_pset: pset, new_pset: nset); |
| 2437 | starting_pset_is_unlocked = true; |
| 2438 | } |
| 2439 | } while (next_rt_processor == PROCESSOR_NULL); |
| 2440 | if (next_rt_processor) { |
| 2441 | if (pset != starting_pset) { |
| 2442 | if (bit_set_if_clear(pset->rt_pending_spill_cpu_mask, next_rt_processor->cpu_id)) { |
| 2443 | KTRC(MACHDBG_CODE(DBG_MACH_SCHED, MACH_RT_SIGNAL_SPILL) | DBG_FUNC_START, |
| 2444 | next_rt_processor->cpu_id, pset->rt_pending_spill_cpu_mask, starting_pset->cpu_set_low, (uintptr_t)spill_tid); |
| 2445 | } |
| 2446 | } |
| 2447 | *result_ipi_type = sched_ipi_action(dst: next_rt_processor, NULL, event: SCHED_IPI_EVENT_RT_PREEMPT); |
| 2448 | *result_processor = next_rt_processor; |
| 2449 | } |
| 2450 | if (pset != starting_pset) { |
| 2451 | pset_unlock(pset); |
| 2452 | } |
| 2453 | |
| 2454 | return starting_pset_is_unlocked; |
| 2455 | } |
| 2456 | |
| 2457 | /* |
| 2458 | * backup processor - used by choose_processor to send a backup IPI to in case the preferred processor can't immediately respond |
| 2459 | * followup processor - used in thread_select when there are still threads on the run queue and available processors |
| 2460 | * spill processor - a processor in a different processor set that is signalled to steal a thread from this run queue |
| 2461 | */ |
| 2462 | typedef enum { |
| 2463 | none, |
| 2464 | backup, |
| 2465 | followup, |
| 2466 | spill |
| 2467 | } next_processor_type_t; |
| 2468 | |
| 2469 | #undef LOOP_COUNT |
| 2470 | #ifdef LOOP_COUNT |
| 2471 | int max_loop_count[MAX_SCHED_CPUS] = { 0 }; |
| 2472 | #endif |
| 2473 | |
| 2474 | /* |
| 2475 | * thread_select: |
| 2476 | * |
| 2477 | * Select a new thread for the current processor to execute. |
| 2478 | * |
| 2479 | * May select the current thread, which must be locked. |
| 2480 | */ |
| 2481 | static thread_t |
| 2482 | thread_select(thread_t thread, |
| 2483 | processor_t processor, |
| 2484 | ast_t *reason) |
| 2485 | { |
| 2486 | processor_set_t pset = processor->processor_set; |
| 2487 | thread_t new_thread = THREAD_NULL; |
| 2488 | |
| 2489 | assert(processor == current_processor()); |
| 2490 | assert((thread->state & (TH_RUN | TH_TERMINATE2)) == TH_RUN); |
| 2491 | |
| 2492 | KTRC(MACHDBG_CODE(DBG_MACH_SCHED, MACH_SCHED_THREAD_SELECT) | DBG_FUNC_START, |
| 2493 | 0, pset->pending_AST_URGENT_cpu_mask, 0, 0); |
| 2494 | |
| 2495 | __kdebug_only int idle_reason = 0; |
| 2496 | __kdebug_only int delay_count = 0; |
| 2497 | |
| 2498 | #if defined(__x86_64__) |
| 2499 | int timeout_count = sched_backup_cpu_timeout_count; |
| 2500 | if ((sched_avoid_cpu0 == 1) && (processor->cpu_id == 0)) { |
| 2501 | /* Prefer cpu0 as backup */ |
| 2502 | timeout_count--; |
| 2503 | } else if ((sched_avoid_cpu0 == 2) && (processor->processor_primary != processor)) { |
| 2504 | /* Prefer secondary cpu as backup */ |
| 2505 | timeout_count--; |
| 2506 | } |
| 2507 | #endif |
| 2508 | bool pending_AST_URGENT = false; |
| 2509 | bool pending_AST_PREEMPT = false; |
| 2510 | |
| 2511 | #ifdef LOOP_COUNT |
| 2512 | int loop_count = -1; |
| 2513 | #endif |
| 2514 | |
| 2515 | do { |
| 2516 | /* |
| 2517 | * Update the priority. |
| 2518 | */ |
| 2519 | if (SCHED(can_update_priority)(thread)) { |
| 2520 | SCHED(update_priority)(thread); |
| 2521 | } |
| 2522 | |
| 2523 | pset_lock(pset); |
| 2524 | |
| 2525 | restart: |
| 2526 | #ifdef LOOP_COUNT |
| 2527 | loop_count++; |
| 2528 | if (loop_count > max_loop_count[processor->cpu_id]) { |
| 2529 | max_loop_count[processor->cpu_id] = loop_count; |
| 2530 | if (bit_count(loop_count) == 1) { |
| 2531 | kprintf("[%d]%s>max_loop_count = %d\n" , processor->cpu_id, __FUNCTION__, loop_count); |
| 2532 | } |
| 2533 | } |
| 2534 | #endif |
| 2535 | pending_AST_URGENT = bit_test(pset->pending_AST_URGENT_cpu_mask, processor->cpu_id); |
| 2536 | pending_AST_PREEMPT = bit_test(pset->pending_AST_PREEMPT_cpu_mask, processor->cpu_id); |
| 2537 | |
| 2538 | processor_state_update_from_thread(processor, thread, true); |
| 2539 | |
| 2540 | idle_reason = 0; |
| 2541 | |
| 2542 | processor_t ast_processor = PROCESSOR_NULL; |
| 2543 | processor_t next_rt_processor = PROCESSOR_NULL; |
| 2544 | sched_ipi_type_t ipi_type = SCHED_IPI_NONE; |
| 2545 | sched_ipi_type_t next_rt_ipi_type = SCHED_IPI_NONE; |
| 2546 | |
| 2547 | assert(processor->state != PROCESSOR_OFF_LINE); |
| 2548 | |
| 2549 | /* |
| 2550 | * Bound threads are dispatched to a processor without going through |
| 2551 | * choose_processor(), so in those cases we must continue trying to dequeue work |
| 2552 | * as we are the only option. |
| 2553 | */ |
| 2554 | if (!SCHED(processor_bound_count)(processor)) { |
| 2555 | if (!processor->is_recommended) { |
| 2556 | /* |
| 2557 | * The performance controller has provided a hint to not dispatch more threads, |
| 2558 | */ |
| 2559 | idle_reason = 1; |
| 2560 | goto send_followup_ipi_before_idle; |
| 2561 | } else if (rt_runq_count(pset)) { |
| 2562 | bool ok_to_run_realtime_thread = sched_ok_to_run_realtime_thread(pset, processor, false); |
| 2563 | /* Give the current RT thread a chance to complete */ |
| 2564 | ok_to_run_realtime_thread |= (thread->sched_pri >= BASEPRI_RTQUEUES && processor->first_timeslice); |
| 2565 | #if defined(__x86_64__) |
| 2566 | /* |
| 2567 | * On Intel we want to avoid SMT secondary processors and processor 0 |
| 2568 | * but allow them to be used as backup processors in case the preferred chosen |
| 2569 | * processor is delayed by interrupts or processor stalls. So if it is |
| 2570 | * not ok_to_run_realtime_thread as preferred (sched_ok_to_run_realtime_thread(pset, processor, as_backup=false)) |
| 2571 | * but ok_to_run_realtime_thread as backup (sched_ok_to_run_realtime_thread(pset, processor, as_backup=true)) |
| 2572 | * we delay up to (timeout_count * 10us) to give the preferred processor chance |
| 2573 | * to grab the thread before the (current) backup processor does. |
| 2574 | * |
| 2575 | * timeout_count defaults to 5 but can be tuned using sysctl kern.sched_backup_cpu_timeout_count |
| 2576 | * on DEVELOPMENT || DEBUG kernels. It is also adjusted (see above) depending on whether we want to use |
| 2577 | * cpu0 before secondary cpus or not. |
| 2578 | */ |
| 2579 | if (!ok_to_run_realtime_thread) { |
| 2580 | if (sched_ok_to_run_realtime_thread(pset, processor, true)) { |
| 2581 | if (timeout_count-- > 0) { |
| 2582 | pset_unlock(pset); |
| 2583 | thread_unlock(thread); |
| 2584 | delay(10); |
| 2585 | delay_count++; |
| 2586 | thread_lock(thread); |
| 2587 | pset_lock(pset); |
| 2588 | goto restart; |
| 2589 | } |
| 2590 | ok_to_run_realtime_thread = true; |
| 2591 | } |
| 2592 | } |
| 2593 | #endif |
| 2594 | if (!ok_to_run_realtime_thread) { |
| 2595 | idle_reason = 2; |
| 2596 | goto send_followup_ipi_before_idle; |
| 2597 | } |
| 2598 | } else if (processor->processor_primary != processor) { |
| 2599 | /* |
| 2600 | * Should this secondary SMT processor attempt to find work? For pset runqueue systems, |
| 2601 | * we should look for work only under the same conditions that choose_processor() |
| 2602 | * would have assigned work, which is when all primary processors have been assigned work. |
| 2603 | */ |
| 2604 | if ((pset->recommended_bitmask & pset->primary_map & pset->cpu_state_map[PROCESSOR_IDLE]) != 0) { |
| 2605 | /* There are idle primaries */ |
| 2606 | idle_reason = 3; |
| 2607 | goto idle; |
| 2608 | } |
| 2609 | } |
| 2610 | } |
| 2611 | |
| 2612 | /* |
| 2613 | * Test to see if the current thread should continue |
| 2614 | * to run on this processor. Must not be attempting to wait, and not |
| 2615 | * bound to a different processor, nor be in the wrong |
| 2616 | * processor set, nor be forced to context switch by TH_SUSP. |
| 2617 | * |
| 2618 | * Note that there are never any RT threads in the regular runqueue. |
| 2619 | * |
| 2620 | * This code is very insanely tricky. |
| 2621 | */ |
| 2622 | |
| 2623 | /* i.e. not waiting, not TH_SUSP'ed */ |
| 2624 | bool still_running = ((thread->state & (TH_TERMINATE | TH_IDLE | TH_WAIT | TH_RUN | TH_SUSP)) == TH_RUN); |
| 2625 | |
| 2626 | /* |
| 2627 | * Threads running on SMT processors are forced to context switch. Don't rebalance realtime threads. |
| 2628 | * TODO: This should check if it's worth it to rebalance, i.e. 'are there any idle primary processors' |
| 2629 | * <rdar://problem/47907700> |
| 2630 | * |
| 2631 | * A yielding thread shouldn't be forced to context switch. |
| 2632 | */ |
| 2633 | |
| 2634 | bool is_yielding = (*reason & AST_YIELD) == AST_YIELD; |
| 2635 | |
| 2636 | bool needs_smt_rebalance = !is_yielding && thread->sched_pri < BASEPRI_RTQUEUES && processor->processor_primary != processor; |
| 2637 | |
| 2638 | bool affinity_mismatch = thread->affinity_set != AFFINITY_SET_NULL && thread->affinity_set->aset_pset != pset; |
| 2639 | |
| 2640 | bool bound_elsewhere = thread->bound_processor != PROCESSOR_NULL && thread->bound_processor != processor; |
| 2641 | |
| 2642 | bool avoid_processor = !is_yielding && SCHED(avoid_processor_enabled) && SCHED(thread_avoid_processor)(processor, thread, *reason); |
| 2643 | |
| 2644 | bool ok_to_run_realtime_thread = sched_ok_to_run_realtime_thread(pset, processor, true); |
| 2645 | |
| 2646 | bool current_thread_can_keep_running = (still_running && !needs_smt_rebalance && !affinity_mismatch && !bound_elsewhere && !avoid_processor); |
| 2647 | if (current_thread_can_keep_running) { |
| 2648 | /* |
| 2649 | * This thread is eligible to keep running on this processor. |
| 2650 | * |
| 2651 | * RT threads with un-expired quantum stay on processor, |
| 2652 | * unless there's a valid RT thread with an earlier deadline |
| 2653 | * and it is still ok_to_run_realtime_thread. |
| 2654 | */ |
| 2655 | if (thread->sched_pri >= BASEPRI_RTQUEUES && processor->first_timeslice) { |
| 2656 | /* |
| 2657 | * Pick a new RT thread only if ok_to_run_realtime_thread |
| 2658 | * (but the current thread is allowed to complete). |
| 2659 | */ |
| 2660 | if (ok_to_run_realtime_thread) { |
| 2661 | if (bit_test(pset->rt_pending_spill_cpu_mask, processor->cpu_id)) { |
| 2662 | goto pick_new_rt_thread; |
| 2663 | } |
| 2664 | if (rt_runq_priority(pset) > thread->sched_pri) { |
| 2665 | if (sched_rt_runq_strict_priority) { |
| 2666 | /* The next RT thread is better, so pick it off the runqueue. */ |
| 2667 | goto pick_new_rt_thread; |
| 2668 | } |
| 2669 | |
| 2670 | /* |
| 2671 | * See if the current lower priority thread can continue to run without causing |
| 2672 | * the higher priority thread on the runq queue to miss its deadline. |
| 2673 | */ |
| 2674 | thread_t hi_thread = rt_runq_first(SCHED(rt_runq)(pset)); |
| 2675 | if (thread->realtime.computation + hi_thread->realtime.computation + rt_deadline_epsilon >= hi_thread->realtime.constraint) { |
| 2676 | /* The next RT thread is better, so pick it off the runqueue. */ |
| 2677 | goto pick_new_rt_thread; |
| 2678 | } |
| 2679 | } else if ((rt_runq_count(pset) > 0) && (deadline_add(d: rt_runq_earliest_deadline(pset), e: rt_deadline_epsilon) < thread->realtime.deadline)) { |
| 2680 | /* The next RT thread is better, so pick it off the runqueue. */ |
| 2681 | goto pick_new_rt_thread; |
| 2682 | } |
| 2683 | if (other_psets_have_earlier_rt_threads_pending(stealing_pset: pset, earliest_deadline: thread->realtime.deadline)) { |
| 2684 | goto pick_new_rt_thread; |
| 2685 | } |
| 2686 | } |
| 2687 | |
| 2688 | /* This is still the best RT thread to run. */ |
| 2689 | processor->deadline = thread->realtime.deadline; |
| 2690 | |
| 2691 | sched_update_pset_load_average(pset, curtime: 0); |
| 2692 | |
| 2693 | clear_pending_AST_bits(pset, processor, trace_point_number: 1); |
| 2694 | |
| 2695 | next_rt_processor = PROCESSOR_NULL; |
| 2696 | next_rt_ipi_type = SCHED_IPI_NONE; |
| 2697 | |
| 2698 | bool pset_unlocked = false; |
| 2699 | __kdebug_only next_processor_type_t nptype = none; |
| 2700 | if (sched_allow_rt_steal && pset_has_stealable_rt_threads(pset)) { |
| 2701 | nptype = spill; |
| 2702 | pset_unlocked = choose_next_rt_processor_for_IPI(starting_pset: pset, chosen_processor: processor, true, result_processor: &next_rt_processor, result_ipi_type: &next_rt_ipi_type); |
| 2703 | } else if (pset_needs_a_followup_IPI(pset)) { |
| 2704 | nptype = followup; |
| 2705 | pset_unlocked = choose_next_rt_processor_for_IPI(starting_pset: pset, chosen_processor: processor, false, result_processor: &next_rt_processor, result_ipi_type: &next_rt_ipi_type); |
| 2706 | } |
| 2707 | if (!pset_unlocked) { |
| 2708 | pset_unlock(pset); |
| 2709 | } |
| 2710 | |
| 2711 | if (next_rt_processor) { |
| 2712 | KTRC(MACHDBG_CODE(DBG_MACH_SCHED, MACH_SCHED_NEXT_PROCESSOR) | DBG_FUNC_NONE, |
| 2713 | next_rt_processor->cpu_id, next_rt_processor->state, nptype, 2); |
| 2714 | sched_ipi_perform(dst: next_rt_processor, ipi: next_rt_ipi_type); |
| 2715 | } |
| 2716 | |
| 2717 | KTRC(MACHDBG_CODE(DBG_MACH_SCHED, MACH_SCHED_THREAD_SELECT) | DBG_FUNC_END, |
| 2718 | (uintptr_t)thread_tid(thread), pset->pending_AST_URGENT_cpu_mask, delay_count, 1); |
| 2719 | return thread; |
| 2720 | } |
| 2721 | |
| 2722 | if ((rt_runq_count(pset) == 0) && |
| 2723 | SCHED(processor_queue_has_priority)(processor, thread->sched_pri, TRUE) == FALSE) { |
| 2724 | /* This thread is still the highest priority runnable (non-idle) thread */ |
| 2725 | processor->deadline = RT_DEADLINE_NONE; |
| 2726 | |
| 2727 | sched_update_pset_load_average(pset, curtime: 0); |
| 2728 | |
| 2729 | clear_pending_AST_bits(pset, processor, trace_point_number: 2); |
| 2730 | |
| 2731 | pset_unlock(pset); |
| 2732 | |
| 2733 | KTRC(MACHDBG_CODE(DBG_MACH_SCHED, MACH_SCHED_THREAD_SELECT) | DBG_FUNC_END, |
| 2734 | (uintptr_t)thread_tid(thread), pset->pending_AST_URGENT_cpu_mask, delay_count, 2); |
| 2735 | return thread; |
| 2736 | } |
| 2737 | } else { |
| 2738 | /* |
| 2739 | * This processor must context switch. |
| 2740 | * If it's due to a rebalance, we should aggressively find this thread a new home. |
| 2741 | */ |
| 2742 | if (needs_smt_rebalance || affinity_mismatch || bound_elsewhere || avoid_processor) { |
| 2743 | *reason |= AST_REBALANCE; |
| 2744 | } |
| 2745 | } |
| 2746 | |
| 2747 | bool secondary_forced_idle = ((processor->processor_secondary != PROCESSOR_NULL) && |
| 2748 | (thread_no_smt(thread) || (thread->sched_pri >= BASEPRI_RTQUEUES)) && |
| 2749 | (processor->processor_secondary->state == PROCESSOR_IDLE)); |
| 2750 | |
| 2751 | /* OK, so we're not going to run the current thread. Look at the RT queue. */ |
| 2752 | if (ok_to_run_realtime_thread) { |
| 2753 | pick_new_rt_thread: |
| 2754 | new_thread = sched_rt_choose_thread(pset); |
| 2755 | if (new_thread != THREAD_NULL) { |
| 2756 | processor->deadline = new_thread->realtime.deadline; |
| 2757 | pset_commit_processor_to_new_thread(pset, processor, new_thread); |
| 2758 | |
| 2759 | clear_pending_AST_bits(pset, processor, trace_point_number: 3); |
| 2760 | |
| 2761 | if (processor->processor_secondary != NULL) { |
| 2762 | processor_t sprocessor = processor->processor_secondary; |
| 2763 | if ((sprocessor->state == PROCESSOR_RUNNING) || (sprocessor->state == PROCESSOR_DISPATCHING)) { |
| 2764 | ipi_type = sched_ipi_action(dst: sprocessor, NULL, event: SCHED_IPI_EVENT_SMT_REBAL); |
| 2765 | ast_processor = sprocessor; |
| 2766 | } |
| 2767 | } |
| 2768 | } |
| 2769 | } |
| 2770 | |
| 2771 | send_followup_ipi_before_idle: |
| 2772 | /* This might not have been cleared if we didn't call sched_rt_choose_thread() */ |
| 2773 | if (bit_clear_if_set(pset->rt_pending_spill_cpu_mask, processor->cpu_id)) { |
| 2774 | KTRC(MACHDBG_CODE(DBG_MACH_SCHED, MACH_RT_SIGNAL_SPILL) | DBG_FUNC_END, processor->cpu_id, pset->rt_pending_spill_cpu_mask, 0, 5); |
| 2775 | } |
| 2776 | __kdebug_only next_processor_type_t nptype = none; |
| 2777 | bool pset_unlocked = false; |
| 2778 | if (sched_allow_rt_steal && pset_has_stealable_rt_threads(pset)) { |
| 2779 | nptype = spill; |
| 2780 | pset_unlocked = choose_next_rt_processor_for_IPI(starting_pset: pset, chosen_processor: processor, true, result_processor: &next_rt_processor, result_ipi_type: &next_rt_ipi_type); |
| 2781 | } else if (pset_needs_a_followup_IPI(pset)) { |
| 2782 | nptype = followup; |
| 2783 | pset_unlocked = choose_next_rt_processor_for_IPI(starting_pset: pset, chosen_processor: processor, false, result_processor: &next_rt_processor, result_ipi_type: &next_rt_ipi_type); |
| 2784 | } |
| 2785 | |
| 2786 | assert(new_thread || !ast_processor); |
| 2787 | if (new_thread || next_rt_processor) { |
| 2788 | if (!pset_unlocked) { |
| 2789 | pset_unlock(pset); |
| 2790 | pset_unlocked = true; |
| 2791 | } |
| 2792 | if (ast_processor == next_rt_processor) { |
| 2793 | ast_processor = PROCESSOR_NULL; |
| 2794 | ipi_type = SCHED_IPI_NONE; |
| 2795 | } |
| 2796 | |
| 2797 | if (ast_processor) { |
| 2798 | sched_ipi_perform(dst: ast_processor, ipi: ipi_type); |
| 2799 | } |
| 2800 | |
| 2801 | if (next_rt_processor) { |
| 2802 | KTRC(MACHDBG_CODE(DBG_MACH_SCHED, MACH_SCHED_NEXT_PROCESSOR) | DBG_FUNC_NONE, |
| 2803 | next_rt_processor->cpu_id, next_rt_processor->state, nptype, 3); |
| 2804 | sched_ipi_perform(dst: next_rt_processor, ipi: next_rt_ipi_type); |
| 2805 | } |
| 2806 | |
| 2807 | if (new_thread) { |
| 2808 | KTRC(MACHDBG_CODE(DBG_MACH_SCHED, MACH_SCHED_THREAD_SELECT) | DBG_FUNC_END, |
| 2809 | (uintptr_t)thread_tid(new_thread), pset->pending_AST_URGENT_cpu_mask, delay_count, 3); |
| 2810 | return new_thread; |
| 2811 | } |
| 2812 | } |
| 2813 | |
| 2814 | if (pset_unlocked) { |
| 2815 | pset_lock(pset); |
| 2816 | } |
| 2817 | |
| 2818 | if (!pending_AST_URGENT && bit_test(pset->pending_AST_URGENT_cpu_mask, processor->cpu_id)) { |
| 2819 | /* Things changed while we dropped the lock */ |
| 2820 | goto restart; |
| 2821 | } |
| 2822 | |
| 2823 | if (processor->is_recommended) { |
| 2824 | bool spill_pending = bit_test(pset->rt_pending_spill_cpu_mask, processor->cpu_id); |
| 2825 | if (sched_ok_to_run_realtime_thread(pset, processor, true) && (spill_pending || rt_runq_count(pset))) { |
| 2826 | /* Things changed while we dropped the lock */ |
| 2827 | goto restart; |
| 2828 | } |
| 2829 | |
| 2830 | if ((processor->processor_primary != processor) && (processor->processor_primary->current_pri >= BASEPRI_RTQUEUES)) { |
| 2831 | /* secondary can only run realtime thread */ |
| 2832 | if (idle_reason == 0) { |
| 2833 | idle_reason = 4; |
| 2834 | } |
| 2835 | goto idle; |
| 2836 | } |
| 2837 | } else if (!SCHED(processor_bound_count)(processor)) { |
| 2838 | /* processor not recommended and no bound threads */ |
| 2839 | if (idle_reason == 0) { |
| 2840 | idle_reason = 5; |
| 2841 | } |
| 2842 | goto idle; |
| 2843 | } |
| 2844 | |
| 2845 | processor->deadline = RT_DEADLINE_NONE; |
| 2846 | |
| 2847 | /* No RT threads, so let's look at the regular threads. */ |
| 2848 | if ((new_thread = SCHED(choose_thread)(processor, MINPRI, *reason)) != THREAD_NULL) { |
| 2849 | pset_commit_processor_to_new_thread(pset, processor, new_thread); |
| 2850 | |
| 2851 | clear_pending_AST_bits(pset, processor, trace_point_number: 4); |
| 2852 | |
| 2853 | ast_processor = PROCESSOR_NULL; |
| 2854 | ipi_type = SCHED_IPI_NONE; |
| 2855 | |
| 2856 | processor_t sprocessor = processor->processor_secondary; |
| 2857 | if (sprocessor != NULL) { |
| 2858 | if (sprocessor->state == PROCESSOR_RUNNING) { |
| 2859 | if (thread_no_smt(thread: new_thread)) { |
| 2860 | ipi_type = sched_ipi_action(dst: sprocessor, NULL, event: SCHED_IPI_EVENT_SMT_REBAL); |
| 2861 | ast_processor = sprocessor; |
| 2862 | } |
| 2863 | } else if (secondary_forced_idle && !thread_no_smt(thread: new_thread) && pset_has_stealable_threads(pset)) { |
| 2864 | ipi_type = sched_ipi_action(dst: sprocessor, NULL, event: SCHED_IPI_EVENT_PREEMPT); |
| 2865 | ast_processor = sprocessor; |
| 2866 | } |
| 2867 | } |
| 2868 | pset_unlock(pset); |
| 2869 | |
| 2870 | if (ast_processor) { |
| 2871 | sched_ipi_perform(dst: ast_processor, ipi: ipi_type); |
| 2872 | } |
| 2873 | KTRC(MACHDBG_CODE(DBG_MACH_SCHED, MACH_SCHED_THREAD_SELECT) | DBG_FUNC_END, |
| 2874 | (uintptr_t)thread_tid(new_thread), pset->pending_AST_URGENT_cpu_mask, delay_count, 4); |
| 2875 | return new_thread; |
| 2876 | } |
| 2877 | |
| 2878 | if (processor->must_idle) { |
| 2879 | processor->must_idle = false; |
| 2880 | *reason |= AST_REBALANCE; |
| 2881 | idle_reason = 6; |
| 2882 | goto idle; |
| 2883 | } |
| 2884 | |
| 2885 | if (SCHED(steal_thread_enabled)(pset) && (processor->processor_primary == processor)) { |
| 2886 | /* |
| 2887 | * No runnable threads, attempt to steal |
| 2888 | * from other processors. Returns with pset lock dropped. |
| 2889 | */ |
| 2890 | |
| 2891 | if ((new_thread = SCHED(steal_thread)(pset)) != THREAD_NULL) { |
| 2892 | pset_lock(pset); |
| 2893 | pset_commit_processor_to_new_thread(pset, processor, new_thread); |
| 2894 | if (!pending_AST_URGENT && bit_test(pset->pending_AST_URGENT_cpu_mask, processor->cpu_id)) { |
| 2895 | /* |
| 2896 | * A realtime thread choose this processor while it was DISPATCHING |
| 2897 | * and the pset lock was dropped |
| 2898 | */ |
| 2899 | ast_on(AST_URGENT | AST_PREEMPT); |
| 2900 | } |
| 2901 | |
| 2902 | clear_pending_AST_bits(pset, processor, trace_point_number: 5); |
| 2903 | |
| 2904 | pset_unlock(pset); |
| 2905 | |
| 2906 | KTRC(MACHDBG_CODE(DBG_MACH_SCHED, MACH_SCHED_THREAD_SELECT) | DBG_FUNC_END, |
| 2907 | (uintptr_t)thread_tid(new_thread), pset->pending_AST_URGENT_cpu_mask, delay_count, 5); |
| 2908 | return new_thread; |
| 2909 | } |
| 2910 | |
| 2911 | /* |
| 2912 | * If other threads have appeared, shortcut |
| 2913 | * around again. |
| 2914 | */ |
| 2915 | if (SCHED(processor_bound_count)(processor)) { |
| 2916 | continue; |
| 2917 | } |
| 2918 | if (processor->is_recommended) { |
| 2919 | if (!SCHED(processor_queue_empty)(processor) || (sched_ok_to_run_realtime_thread(pset, processor, true) && (rt_runq_count(pset) > 0))) { |
| 2920 | continue; |
| 2921 | } |
| 2922 | } |
| 2923 | |
| 2924 | pset_lock(pset); |
| 2925 | } |
| 2926 | |
| 2927 | idle: |
| 2928 | /* Someone selected this processor while we had dropped the lock */ |
| 2929 | if ((!pending_AST_URGENT && bit_test(pset->pending_AST_URGENT_cpu_mask, processor->cpu_id)) || |
| 2930 | (!pending_AST_PREEMPT && bit_test(pset->pending_AST_PREEMPT_cpu_mask, processor->cpu_id))) { |
| 2931 | goto restart; |
| 2932 | } |
| 2933 | |
| 2934 | if ((idle_reason == 0) && current_thread_can_keep_running) { |
| 2935 | /* This thread is the only runnable (non-idle) thread */ |
| 2936 | if (thread->sched_pri >= BASEPRI_RTQUEUES) { |
| 2937 | processor->deadline = thread->realtime.deadline; |
| 2938 | } else { |
| 2939 | processor->deadline = RT_DEADLINE_NONE; |
| 2940 | } |
| 2941 | |
| 2942 | sched_update_pset_load_average(pset, curtime: 0); |
| 2943 | |
| 2944 | clear_pending_AST_bits(pset, processor, trace_point_number: 6); |
| 2945 | |
| 2946 | KTRC(MACHDBG_CODE(DBG_MACH_SCHED, MACH_SCHED_THREAD_SELECT) | DBG_FUNC_END, |
| 2947 | (uintptr_t)thread_tid(thread), pset->pending_AST_URGENT_cpu_mask, delay_count, 6); |
| 2948 | pset_unlock(pset); |
| 2949 | return thread; |
| 2950 | } |
| 2951 | |
| 2952 | /* |
| 2953 | * Nothing is runnable, or this processor must be forced idle, |
| 2954 | * so set this processor idle if it was running. |
| 2955 | */ |
| 2956 | if ((processor->state == PROCESSOR_RUNNING) || (processor->state == PROCESSOR_DISPATCHING)) { |
| 2957 | pset_update_processor_state(pset, processor, new_state: PROCESSOR_IDLE); |
| 2958 | processor_state_update_idle(processor); |
| 2959 | } |
| 2960 | pset_update_rt_stealable_state(pset); |
| 2961 | |
| 2962 | clear_pending_AST_bits(pset, processor, trace_point_number: 7); |
| 2963 | |
| 2964 | /* Invoked with pset locked, returns with pset unlocked */ |
| 2965 | processor->next_idle_short = SCHED(processor_balance)(processor, pset); |
| 2966 | |
| 2967 | new_thread = processor->idle_thread; |
| 2968 | } while (new_thread == THREAD_NULL); |
| 2969 | |
| 2970 | KTRC(MACHDBG_CODE(DBG_MACH_SCHED, MACH_SCHED_THREAD_SELECT) | DBG_FUNC_END, |
| 2971 | (uintptr_t)thread_tid(new_thread), pset->pending_AST_URGENT_cpu_mask, delay_count, 10 + idle_reason); |
| 2972 | return new_thread; |
| 2973 | } |
| 2974 | |
| 2975 | /* |
| 2976 | * thread_invoke |
| 2977 | * |
| 2978 | * Called at splsched with neither thread locked. |
| 2979 | * |
| 2980 | * Perform a context switch and start executing the new thread. |
| 2981 | * |
| 2982 | * Returns FALSE when the context switch didn't happen. |
| 2983 | * The reference to the new thread is still consumed. |
| 2984 | * |
| 2985 | * "self" is what is currently running on the processor, |
| 2986 | * "thread" is the new thread to context switch to |
| 2987 | * (which may be the same thread in some cases) |
| 2988 | */ |
| 2989 | static boolean_t |
| 2990 | thread_invoke( |
| 2991 | thread_t self, |
| 2992 | thread_t thread, |
| 2993 | ast_t reason) |
| 2994 | { |
| 2995 | if (__improbable(get_preemption_level() != 0)) { |
| 2996 | int pl = get_preemption_level(); |
| 2997 | panic("thread_invoke: preemption_level %d, possible cause: %s" , |
| 2998 | pl, (pl < 0 ? "unlocking an unlocked mutex or spinlock" : |
| 2999 | "blocking while holding a spinlock, or within interrupt context" )); |
| 3000 | } |
| 3001 | |
| 3002 | thread_continue_t continuation = self->continuation; |
| 3003 | void *parameter = self->parameter; |
| 3004 | |
| 3005 | struct recount_snap snap = { 0 }; |
| 3006 | recount_snapshot(snap: &snap); |
| 3007 | uint64_t ctime = snap.rsn_time_mach; |
| 3008 | |
| 3009 | check_monotonic_time(ctime); |
| 3010 | |
| 3011 | #ifdef CONFIG_MACH_APPROXIMATE_TIME |
| 3012 | commpage_update_mach_approximate_time(ctime); |
| 3013 | #endif |
| 3014 | |
| 3015 | if (ctime < thread->last_made_runnable_time) { |
| 3016 | panic("Non-monotonic time: invoke at 0x%llx, runnable at 0x%llx" , |
| 3017 | ctime, thread->last_made_runnable_time); |
| 3018 | } |
| 3019 | |
| 3020 | #if defined(CONFIG_SCHED_TIMESHARE_CORE) |
| 3021 | if (!((thread->state & TH_IDLE) != 0 || |
| 3022 | ((reason & AST_HANDOFF) && self->sched_mode == TH_MODE_REALTIME))) { |
| 3023 | sched_timeshare_consider_maintenance(ctime, true); |
| 3024 | } |
| 3025 | #endif |
| 3026 | |
| 3027 | recount_log_switch_thread(snap: &snap); |
| 3028 | |
| 3029 | assert_thread_magic(self); |
| 3030 | assert(self == current_thread()); |
| 3031 | thread_assert_runq_null(thread: self); |
| 3032 | assert((self->state & (TH_RUN | TH_TERMINATE2)) == TH_RUN); |
| 3033 | |
| 3034 | thread_lock(thread); |
| 3035 | |
| 3036 | assert_thread_magic(thread); |
| 3037 | assert((thread->state & (TH_RUN | TH_WAIT | TH_UNINT | TH_TERMINATE | TH_TERMINATE2)) == TH_RUN); |
| 3038 | assert(thread->bound_processor == PROCESSOR_NULL || thread->bound_processor == current_processor()); |
| 3039 | thread_assert_runq_null(thread); |
| 3040 | |
| 3041 | /* Update SFI class based on other factors */ |
| 3042 | thread->sfi_class = sfi_thread_classify(thread); |
| 3043 | |
| 3044 | /* Update the same_pri_latency for the thread (used by perfcontrol callouts) */ |
| 3045 | thread->same_pri_latency = ctime - thread->last_basepri_change_time; |
| 3046 | /* |
| 3047 | * In case a base_pri update happened between the timestamp and |
| 3048 | * taking the thread lock |
| 3049 | */ |
| 3050 | if (ctime <= thread->last_basepri_change_time) { |
| 3051 | thread->same_pri_latency = ctime - thread->last_made_runnable_time; |
| 3052 | } |
| 3053 | |
| 3054 | /* Allow realtime threads to hang onto a stack. */ |
| 3055 | if ((self->sched_mode == TH_MODE_REALTIME) && !self->reserved_stack) { |
| 3056 | self->reserved_stack = self->kernel_stack; |
| 3057 | } |
| 3058 | |
| 3059 | /* Prepare for spin debugging */ |
| 3060 | #if SCHED_HYGIENE_DEBUG |
| 3061 | ml_spin_debug_clear(thread); |
| 3062 | #endif |
| 3063 | |
| 3064 | if (continuation != NULL) { |
| 3065 | if (!thread->kernel_stack) { |
| 3066 | /* |
| 3067 | * If we are using a privileged stack, |
| 3068 | * check to see whether we can exchange it with |
| 3069 | * that of the other thread. |
| 3070 | */ |
| 3071 | if (self->kernel_stack == self->reserved_stack && !thread->reserved_stack) { |
| 3072 | goto need_stack; |
| 3073 | } |
| 3074 | |
| 3075 | /* |
| 3076 | * Context switch by performing a stack handoff. |
| 3077 | * Requires both threads to be parked in a continuation. |
| 3078 | */ |
| 3079 | continuation = thread->continuation; |
| 3080 | parameter = thread->parameter; |
| 3081 | |
| 3082 | processor_t processor = current_processor(); |
| 3083 | processor->active_thread = thread; |
| 3084 | processor_state_update_from_thread(processor, thread, false); |
| 3085 | |
| 3086 | if (thread->last_processor != processor && thread->last_processor != NULL) { |
| 3087 | if (thread->last_processor->processor_set != processor->processor_set) { |
| 3088 | thread->ps_switch++; |
| 3089 | } |
| 3090 | thread->p_switch++; |
| 3091 | } |
| 3092 | thread->last_processor = processor; |
| 3093 | thread->c_switch++; |
| 3094 | ast_context(thread); |
| 3095 | |
| 3096 | thread_unlock(thread); |
| 3097 | |
| 3098 | self->reason = reason; |
| 3099 | |
| 3100 | processor->last_dispatch = ctime; |
| 3101 | self->last_run_time = ctime; |
| 3102 | timer_update(timer: &thread->runnable_timer, tstamp: ctime); |
| 3103 | recount_switch_thread(snap: &snap, off_thread: self, off_task: get_threadtask(self)); |
| 3104 | |
| 3105 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
| 3106 | MACHDBG_CODE(DBG_MACH_SCHED, MACH_STACK_HANDOFF) | DBG_FUNC_NONE, |
| 3107 | self->reason, (uintptr_t)thread_tid(thread), self->sched_pri, thread->sched_pri, 0); |
| 3108 | |
| 3109 | if ((thread->chosen_processor != processor) && (thread->chosen_processor != PROCESSOR_NULL)) { |
| 3110 | SCHED_DEBUG_CHOOSE_PROCESSOR_KERNEL_DEBUG_CONSTANT_IST(MACHDBG_CODE(DBG_MACH_SCHED, MACH_MOVED) | DBG_FUNC_NONE, |
| 3111 | (uintptr_t)thread_tid(thread), (uintptr_t)thread->chosen_processor->cpu_id, 0, 0, 0); |
| 3112 | } |
| 3113 | |
| 3114 | DTRACE_SCHED2(off__cpu, struct thread *, thread, struct proc *, current_proc()); |
| 3115 | |
| 3116 | SCHED_STATS_CSW(processor, self->reason, self->sched_pri, thread->sched_pri); |
| 3117 | |
| 3118 | #if KPERF |
| 3119 | kperf_off_cpu(thread: self); |
| 3120 | #endif /* KPERF */ |
| 3121 | |
| 3122 | /* |
| 3123 | * This is where we actually switch thread identity, |
| 3124 | * and address space if required. However, register |
| 3125 | * state is not switched - this routine leaves the |
| 3126 | * stack and register state active on the current CPU. |
| 3127 | */ |
| 3128 | TLOG(1, "thread_invoke: calling stack_handoff\n" ); |
| 3129 | stack_handoff(from: self, to: thread); |
| 3130 | |
| 3131 | /* 'self' is now off core */ |
| 3132 | assert(thread == current_thread_volatile()); |
| 3133 | |
| 3134 | DTRACE_SCHED(on__cpu); |
| 3135 | |
| 3136 | #if KPERF |
| 3137 | kperf_on_cpu(thread, continuation, NULL); |
| 3138 | #endif /* KPERF */ |
| 3139 | |
| 3140 | recount_log_switch_thread_on(snap: &snap); |
| 3141 | |
| 3142 | thread_dispatch(old_thread: self, new_thread: thread); |
| 3143 | |
| 3144 | #if KASAN |
| 3145 | /* Old thread's stack has been moved to the new thread, so explicitly |
| 3146 | * unpoison it. */ |
| 3147 | kasan_unpoison_stack(thread->kernel_stack, kernel_stack_size); |
| 3148 | #endif |
| 3149 | |
| 3150 | thread->continuation = thread->parameter = NULL; |
| 3151 | |
| 3152 | boolean_t enable_interrupts = TRUE; |
| 3153 | |
| 3154 | /* idle thread needs to stay interrupts-disabled */ |
| 3155 | if ((thread->state & TH_IDLE)) { |
| 3156 | enable_interrupts = FALSE; |
| 3157 | } |
| 3158 | |
| 3159 | assert(continuation); |
| 3160 | call_continuation(continuation, parameter, |
| 3161 | wresult: thread->wait_result, enable_interrupts); |
| 3162 | /*NOTREACHED*/ |
| 3163 | } else if (thread == self) { |
| 3164 | /* same thread but with continuation */ |
| 3165 | ast_context(thread: self); |
| 3166 | |
| 3167 | thread_unlock(self); |
| 3168 | |
| 3169 | #if KPERF |
| 3170 | kperf_on_cpu(thread, continuation, NULL); |
| 3171 | #endif /* KPERF */ |
| 3172 | |
| 3173 | recount_log_switch_thread_on(snap: &snap); |
| 3174 | |
| 3175 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
| 3176 | MACHDBG_CODE(DBG_MACH_SCHED, MACH_SCHED) | DBG_FUNC_NONE, |
| 3177 | self->reason, (uintptr_t)thread_tid(thread), self->sched_pri, thread->sched_pri, 0); |
| 3178 | |
| 3179 | #if KASAN |
| 3180 | /* stack handoff to self - no thread_dispatch(), so clear the stack |
| 3181 | * and free the fakestack directly */ |
| 3182 | #if KASAN_CLASSIC |
| 3183 | kasan_fakestack_drop(self); |
| 3184 | kasan_fakestack_gc(self); |
| 3185 | #endif /* KASAN_CLASSIC */ |
| 3186 | kasan_unpoison_stack(self->kernel_stack, kernel_stack_size); |
| 3187 | #endif /* KASAN */ |
| 3188 | |
| 3189 | self->continuation = self->parameter = NULL; |
| 3190 | |
| 3191 | boolean_t enable_interrupts = TRUE; |
| 3192 | |
| 3193 | /* idle thread needs to stay interrupts-disabled */ |
| 3194 | if ((self->state & TH_IDLE)) { |
| 3195 | enable_interrupts = FALSE; |
| 3196 | } |
| 3197 | |
| 3198 | call_continuation(continuation, parameter, |
| 3199 | wresult: self->wait_result, enable_interrupts); |
| 3200 | /*NOTREACHED*/ |
| 3201 | } |
| 3202 | } else { |
| 3203 | /* |
| 3204 | * Check that the other thread has a stack |
| 3205 | */ |
| 3206 | if (!thread->kernel_stack) { |
| 3207 | need_stack: |
| 3208 | if (!stack_alloc_try(thread)) { |
| 3209 | thread_unlock(thread); |
| 3210 | thread_stack_enqueue(thread); |
| 3211 | return FALSE; |
| 3212 | } |
| 3213 | } else if (thread == self) { |
| 3214 | ast_context(thread: self); |
| 3215 | thread_unlock(self); |
| 3216 | |
| 3217 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
| 3218 | MACHDBG_CODE(DBG_MACH_SCHED, MACH_SCHED) | DBG_FUNC_NONE, |
| 3219 | self->reason, (uintptr_t)thread_tid(thread), self->sched_pri, thread->sched_pri, 0); |
| 3220 | |
| 3221 | return TRUE; |
| 3222 | } |
| 3223 | } |
| 3224 | |
| 3225 | /* |
| 3226 | * Context switch by full context save. |
| 3227 | */ |
| 3228 | processor_t processor = current_processor(); |
| 3229 | processor->active_thread = thread; |
| 3230 | processor_state_update_from_thread(processor, thread, false); |
| 3231 | |
| 3232 | if (thread->last_processor != processor && thread->last_processor != NULL) { |
| 3233 | if (thread->last_processor->processor_set != processor->processor_set) { |
| 3234 | thread->ps_switch++; |
| 3235 | } |
| 3236 | thread->p_switch++; |
| 3237 | } |
| 3238 | thread->last_processor = processor; |
| 3239 | thread->c_switch++; |
| 3240 | ast_context(thread); |
| 3241 | |
| 3242 | thread_unlock(thread); |
| 3243 | |
| 3244 | self->reason = reason; |
| 3245 | |
| 3246 | processor->last_dispatch = ctime; |
| 3247 | self->last_run_time = ctime; |
| 3248 | timer_update(timer: &thread->runnable_timer, tstamp: ctime); |
| 3249 | recount_switch_thread(snap: &snap, off_thread: self, off_task: get_threadtask(self)); |
| 3250 | |
| 3251 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
| 3252 | MACHDBG_CODE(DBG_MACH_SCHED, MACH_SCHED) | DBG_FUNC_NONE, |
| 3253 | self->reason, (uintptr_t)thread_tid(thread), self->sched_pri, thread->sched_pri, 0); |
| 3254 | |
| 3255 | if ((thread->chosen_processor != processor) && (thread->chosen_processor != NULL)) { |
| 3256 | SCHED_DEBUG_CHOOSE_PROCESSOR_KERNEL_DEBUG_CONSTANT_IST(MACHDBG_CODE(DBG_MACH_SCHED, MACH_MOVED) | DBG_FUNC_NONE, |
| 3257 | (uintptr_t)thread_tid(thread), (uintptr_t)thread->chosen_processor->cpu_id, 0, 0, 0); |
| 3258 | } |
| 3259 | |
| 3260 | DTRACE_SCHED2(off__cpu, struct thread *, thread, struct proc *, current_proc()); |
| 3261 | |
| 3262 | SCHED_STATS_CSW(processor, self->reason, self->sched_pri, thread->sched_pri); |
| 3263 | |
| 3264 | #if KPERF |
| 3265 | kperf_off_cpu(thread: self); |
| 3266 | #endif /* KPERF */ |
| 3267 | |
| 3268 | /* |
| 3269 | * This is where we actually switch register context, |
| 3270 | * and address space if required. We will next run |
| 3271 | * as a result of a subsequent context switch. |
| 3272 | * |
| 3273 | * Once registers are switched and the processor is running "thread", |
| 3274 | * the stack variables and non-volatile registers will contain whatever |
| 3275 | * was there the last time that thread blocked. No local variables should |
| 3276 | * be used after this point, except for the special case of "thread", which |
| 3277 | * the platform layer returns as the previous thread running on the processor |
| 3278 | * via the function call ABI as a return register, and "self", which may have |
| 3279 | * been stored on the stack or a non-volatile register, but a stale idea of |
| 3280 | * what was on the CPU is newly-accurate because that thread is again |
| 3281 | * running on the CPU. |
| 3282 | * |
| 3283 | * If one of the threads is using a continuation, thread_continue |
| 3284 | * is used to stitch up its context. |
| 3285 | * |
| 3286 | * If we are invoking a thread which is resuming from a continuation, |
| 3287 | * the CPU will invoke thread_continue next. |
| 3288 | * |
| 3289 | * If the current thread is parking in a continuation, then its state |
| 3290 | * won't be saved and the stack will be discarded. When the stack is |
| 3291 | * re-allocated, it will be configured to resume from thread_continue. |
| 3292 | */ |
| 3293 | |
| 3294 | assert(continuation == self->continuation); |
| 3295 | thread = machine_switch_context(old_thread: self, continuation, new_thread: thread); |
| 3296 | assert(self == current_thread_volatile()); |
| 3297 | TLOG(1, "thread_invoke: returning machine_switch_context: self %p continuation %p thread %p\n" , self, continuation, thread); |
| 3298 | |
| 3299 | assert(continuation == NULL && self->continuation == NULL); |
| 3300 | |
| 3301 | DTRACE_SCHED(on__cpu); |
| 3302 | |
| 3303 | #if KPERF |
| 3304 | kperf_on_cpu(thread: self, NULL, starting_fp: __builtin_frame_address(0)); |
| 3305 | #endif /* KPERF */ |
| 3306 | |
| 3307 | /* Previous snap on the old stack is gone. */ |
| 3308 | recount_log_switch_thread_on(NULL); |
| 3309 | |
| 3310 | /* We have been resumed and are set to run. */ |
| 3311 | thread_dispatch(old_thread: thread, new_thread: self); |
| 3312 | |
| 3313 | return TRUE; |
| 3314 | } |
| 3315 | |
| 3316 | #if defined(CONFIG_SCHED_DEFERRED_AST) |
| 3317 | /* |
| 3318 | * pset_cancel_deferred_dispatch: |
| 3319 | * |
| 3320 | * Cancels all ASTs that we can cancel for the given processor set |
| 3321 | * if the current processor is running the last runnable thread in the |
| 3322 | * system. |
| 3323 | * |
| 3324 | * This function assumes the current thread is runnable. This must |
| 3325 | * be called with the pset unlocked. |
| 3326 | */ |
| 3327 | static void |
| 3328 | pset_cancel_deferred_dispatch( |
| 3329 | processor_set_t pset, |
| 3330 | processor_t processor) |
| 3331 | { |
| 3332 | processor_t active_processor = NULL; |
| 3333 | uint32_t sampled_sched_run_count; |
| 3334 | |
| 3335 | pset_lock(pset); |
| 3336 | sampled_sched_run_count = os_atomic_load(&sched_run_buckets[TH_BUCKET_RUN], relaxed); |
| 3337 | |
| 3338 | /* |
| 3339 | * If we have emptied the run queue, and our current thread is runnable, we |
| 3340 | * should tell any processors that are still DISPATCHING that they will |
| 3341 | * probably not have any work to do. In the event that there are no |
| 3342 | * pending signals that we can cancel, this is also uninteresting. |
| 3343 | * |
| 3344 | * In the unlikely event that another thread becomes runnable while we are |
| 3345 | * doing this (sched_run_count is atomically updated, not guarded), the |
| 3346 | * codepath making it runnable SHOULD (a dangerous word) need the pset lock |
| 3347 | * in order to dispatch it to a processor in our pset. So, the other |
| 3348 | * codepath will wait while we squash all cancelable ASTs, get the pset |
| 3349 | * lock, and then dispatch the freshly runnable thread. So this should be |
| 3350 | * correct (we won't accidentally have a runnable thread that hasn't been |
| 3351 | * dispatched to an idle processor), if not ideal (we may be restarting the |
| 3352 | * dispatch process, which could have some overhead). |
| 3353 | */ |
| 3354 | |
| 3355 | if ((sampled_sched_run_count == 1) && (pset->pending_deferred_AST_cpu_mask)) { |
| 3356 | uint64_t dispatching_map = (pset->cpu_state_map[PROCESSOR_DISPATCHING] & |
| 3357 | pset->pending_deferred_AST_cpu_mask & |
| 3358 | ~pset->pending_AST_URGENT_cpu_mask); |
| 3359 | for (int cpuid = lsb_first(bitmap: dispatching_map); cpuid >= 0; cpuid = lsb_next(bitmap: dispatching_map, previous_bit: cpuid)) { |
| 3360 | active_processor = processor_array[cpuid]; |
| 3361 | /* |
| 3362 | * If a processor is DISPATCHING, it could be because of |
| 3363 | * a cancelable signal. |
| 3364 | * |
| 3365 | * IF the processor is not our |
| 3366 | * current processor (the current processor should not |
| 3367 | * be DISPATCHING, so this is a bit paranoid), AND there |
| 3368 | * is a cancelable signal pending on the processor, AND |
| 3369 | * there is no non-cancelable signal pending (as there is |
| 3370 | * no point trying to backtrack on bringing the processor |
| 3371 | * up if a signal we cannot cancel is outstanding), THEN |
| 3372 | * it should make sense to roll back the processor state |
| 3373 | * to the IDLE state. |
| 3374 | * |
| 3375 | * If the racey nature of this approach (as the signal |
| 3376 | * will be arbitrated by hardware, and can fire as we |
| 3377 | * roll back state) results in the core responding |
| 3378 | * despite being pushed back to the IDLE state, it |
| 3379 | * should be no different than if the core took some |
| 3380 | * interrupt while IDLE. |
| 3381 | */ |
| 3382 | if (active_processor != processor) { |
| 3383 | /* |
| 3384 | * Squash all of the processor state back to some |
| 3385 | * reasonable facsimile of PROCESSOR_IDLE. |
| 3386 | */ |
| 3387 | |
| 3388 | processor_state_update_idle(processor: active_processor); |
| 3389 | active_processor->deadline = RT_DEADLINE_NONE; |
| 3390 | pset_update_processor_state(pset, processor: active_processor, new_state: PROCESSOR_IDLE); |
| 3391 | bit_clear(pset->pending_deferred_AST_cpu_mask, active_processor->cpu_id); |
| 3392 | machine_signal_idle_cancel(processor: active_processor); |
| 3393 | } |
| 3394 | } |
| 3395 | } |
| 3396 | |
| 3397 | pset_unlock(pset); |
| 3398 | } |
| 3399 | #else |
| 3400 | /* We don't support deferred ASTs; everything is candycanes and sunshine. */ |
| 3401 | #endif |
| 3402 | |
| 3403 | static void |
| 3404 | thread_csw_callout( |
| 3405 | thread_t old, |
| 3406 | thread_t new, |
| 3407 | uint64_t timestamp) |
| 3408 | { |
| 3409 | perfcontrol_event event = (new->state & TH_IDLE) ? IDLE : CONTEXT_SWITCH; |
| 3410 | uint64_t same_pri_latency = (new->state & TH_IDLE) ? 0 : new->same_pri_latency; |
| 3411 | machine_switch_perfcontrol_context(event, timestamp, flags: 0, |
| 3412 | new_thread_same_pri_latency: same_pri_latency, old, new); |
| 3413 | } |
| 3414 | |
| 3415 | |
| 3416 | /* |
| 3417 | * thread_dispatch: |
| 3418 | * |
| 3419 | * Handle threads at context switch. Re-dispatch other thread |
| 3420 | * if still running, otherwise update run state and perform |
| 3421 | * special actions. Update quantum for other thread and begin |
| 3422 | * the quantum for ourselves. |
| 3423 | * |
| 3424 | * "thread" is the old thread that we have switched away from. |
| 3425 | * "self" is the new current thread that we have context switched to |
| 3426 | * |
| 3427 | * Called at splsched. |
| 3428 | * |
| 3429 | */ |
| 3430 | void |
| 3431 | thread_dispatch( |
| 3432 | thread_t thread, |
| 3433 | thread_t self) |
| 3434 | { |
| 3435 | processor_t processor = self->last_processor; |
| 3436 | bool was_idle = false; |
| 3437 | |
| 3438 | assert(processor == current_processor()); |
| 3439 | assert(self == current_thread_volatile()); |
| 3440 | assert(thread != self); |
| 3441 | |
| 3442 | if (thread != THREAD_NULL) { |
| 3443 | /* |
| 3444 | * Do the perfcontrol callout for context switch. |
| 3445 | * The reason we do this here is: |
| 3446 | * - thread_dispatch() is called from various places that are not |
| 3447 | * the direct context switch path for eg. processor shutdown etc. |
| 3448 | * So adding the callout here covers all those cases. |
| 3449 | * - We want this callout as early as possible to be close |
| 3450 | * to the timestamp taken in thread_invoke() |
| 3451 | * - We want to avoid holding the thread lock while doing the |
| 3452 | * callout |
| 3453 | * - We do not want to callout if "thread" is NULL. |
| 3454 | */ |
| 3455 | thread_csw_callout(old: thread, new: self, timestamp: processor->last_dispatch); |
| 3456 | |
| 3457 | #if KASAN |
| 3458 | if (thread->continuation != NULL) { |
| 3459 | /* |
| 3460 | * Thread has a continuation and the normal stack is going away. |
| 3461 | * Unpoison the stack and mark all fakestack objects as unused. |
| 3462 | */ |
| 3463 | #if KASAN_CLASSIC |
| 3464 | kasan_fakestack_drop(thread); |
| 3465 | #endif /* KASAN_CLASSIC */ |
| 3466 | if (thread->kernel_stack) { |
| 3467 | kasan_unpoison_stack(thread->kernel_stack, kernel_stack_size); |
| 3468 | } |
| 3469 | } |
| 3470 | |
| 3471 | |
| 3472 | #if KASAN_CLASSIC |
| 3473 | /* |
| 3474 | * Free all unused fakestack objects. |
| 3475 | */ |
| 3476 | kasan_fakestack_gc(thread); |
| 3477 | #endif /* KASAN_CLASSIC */ |
| 3478 | #endif /* KASAN */ |
| 3479 | |
| 3480 | /* |
| 3481 | * If blocked at a continuation, discard |
| 3482 | * the stack. |
| 3483 | */ |
| 3484 | if (thread->continuation != NULL && thread->kernel_stack != 0) { |
| 3485 | stack_free(thread); |
| 3486 | } |
| 3487 | |
| 3488 | if (thread->state & TH_IDLE) { |
| 3489 | was_idle = true; |
| 3490 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
| 3491 | MACHDBG_CODE(DBG_MACH_SCHED, MACH_DISPATCH) | DBG_FUNC_NONE, |
| 3492 | (uintptr_t)thread_tid(thread), 0, thread->state, |
| 3493 | sched_run_buckets[TH_BUCKET_RUN], 0); |
| 3494 | } else { |
| 3495 | int64_t consumed; |
| 3496 | int64_t remainder = 0; |
| 3497 | |
| 3498 | if (processor->quantum_end > processor->last_dispatch) { |
| 3499 | remainder = processor->quantum_end - |
| 3500 | processor->last_dispatch; |
| 3501 | } |
| 3502 | |
| 3503 | consumed = thread->quantum_remaining - remainder; |
| 3504 | |
| 3505 | if ((thread->reason & AST_LEDGER) == 0) { |
| 3506 | /* |
| 3507 | * Bill CPU time to both the task and |
| 3508 | * the individual thread. |
| 3509 | */ |
| 3510 | ledger_credit_thread(thread, ledger: thread->t_ledger, |
| 3511 | entry: task_ledgers.cpu_time, amount: consumed); |
| 3512 | ledger_credit_thread(thread, ledger: thread->t_threadledger, |
| 3513 | entry: thread_ledgers.cpu_time, amount: consumed); |
| 3514 | if (thread->t_bankledger) { |
| 3515 | ledger_credit_thread(thread, ledger: thread->t_bankledger, |
| 3516 | entry: bank_ledgers.cpu_time, |
| 3517 | amount: (consumed - thread->t_deduct_bank_ledger_time)); |
| 3518 | } |
| 3519 | thread->t_deduct_bank_ledger_time = 0; |
| 3520 | if (consumed > 0) { |
| 3521 | /* |
| 3522 | * This should never be negative, but in traces we are seeing some instances |
| 3523 | * of consumed being negative. |
| 3524 | * <rdar://problem/57782596> thread_dispatch() thread CPU consumed calculation sometimes results in negative value |
| 3525 | */ |
| 3526 | sched_update_pset_avg_execution_time(pset: current_processor()->processor_set, delta: consumed, curtime: processor->last_dispatch, sched_bucket: thread->th_sched_bucket); |
| 3527 | } |
| 3528 | } |
| 3529 | |
| 3530 | /* For the thread that we just context switched away from, figure |
| 3531 | * out if we have expired the wq quantum and set the AST if we have |
| 3532 | */ |
| 3533 | if (thread_get_tag(thread) & THREAD_TAG_WORKQUEUE) { |
| 3534 | thread_evaluate_workqueue_quantum_expiry(thread); |
| 3535 | } |
| 3536 | |
| 3537 | if (__improbable(thread->rwlock_count != 0)) { |
| 3538 | smr_mark_active_trackers_stalled(self: thread); |
| 3539 | } |
| 3540 | |
| 3541 | /* |
| 3542 | * Pairs with task_restartable_ranges_synchronize |
| 3543 | */ |
| 3544 | wake_lock(thread); |
| 3545 | thread_lock(thread); |
| 3546 | |
| 3547 | /* |
| 3548 | * Same as ast_check(), in case we missed the IPI |
| 3549 | */ |
| 3550 | thread_reset_pcs_ack_IPI(thread); |
| 3551 | |
| 3552 | /* |
| 3553 | * Apply a priority floor if the thread holds a kernel resource |
| 3554 | * or explicitly requested it. |
| 3555 | * Do this before checking starting_pri to avoid overpenalizing |
| 3556 | * repeated rwlock blockers. |
| 3557 | */ |
| 3558 | if (__improbable(thread->rwlock_count != 0)) { |
| 3559 | lck_rw_set_promotion_locked(thread); |
| 3560 | } |
| 3561 | if (__improbable(thread->priority_floor_count != 0)) { |
| 3562 | thread_floor_boost_set_promotion_locked(thread); |
| 3563 | } |
| 3564 | |
| 3565 | boolean_t keep_quantum = processor->first_timeslice; |
| 3566 | |
| 3567 | /* |
| 3568 | * Treat a thread which has dropped priority since it got on core |
| 3569 | * as having expired its quantum. |
| 3570 | */ |
| 3571 | if (processor->starting_pri > thread->sched_pri) { |
| 3572 | keep_quantum = FALSE; |
| 3573 | } |
| 3574 | |
| 3575 | /* Compute remainder of current quantum. */ |
| 3576 | if (keep_quantum && |
| 3577 | processor->quantum_end > processor->last_dispatch) { |
| 3578 | thread->quantum_remaining = (uint32_t)remainder; |
| 3579 | } else { |
| 3580 | thread->quantum_remaining = 0; |
| 3581 | } |
| 3582 | |
| 3583 | if (thread->sched_mode == TH_MODE_REALTIME) { |
| 3584 | /* |
| 3585 | * Cancel the deadline if the thread has |
| 3586 | * consumed the entire quantum. |
| 3587 | */ |
| 3588 | if (thread->quantum_remaining == 0) { |
| 3589 | KTRC(MACHDBG_CODE(DBG_MACH_SCHED, MACH_CANCEL_RT_DEADLINE) | DBG_FUNC_NONE, |
| 3590 | (uintptr_t)thread_tid(thread), thread->realtime.deadline, thread->realtime.computation, 0); |
| 3591 | thread->realtime.deadline = RT_DEADLINE_QUANTUM_EXPIRED; |
| 3592 | } |
| 3593 | } else { |
| 3594 | #if defined(CONFIG_SCHED_TIMESHARE_CORE) |
| 3595 | /* |
| 3596 | * For non-realtime threads treat a tiny |
| 3597 | * remaining quantum as an expired quantum |
| 3598 | * but include what's left next time. |
| 3599 | */ |
| 3600 | if (thread->quantum_remaining < min_std_quantum) { |
| 3601 | thread->reason |= AST_QUANTUM; |
| 3602 | thread->quantum_remaining += SCHED(initial_quantum_size)(thread); |
| 3603 | } |
| 3604 | #endif /* CONFIG_SCHED_TIMESHARE_CORE */ |
| 3605 | } |
| 3606 | |
| 3607 | /* |
| 3608 | * If we are doing a direct handoff then |
| 3609 | * take the remainder of the quantum. |
| 3610 | */ |
| 3611 | if ((thread->reason & (AST_HANDOFF | AST_QUANTUM)) == AST_HANDOFF) { |
| 3612 | self->quantum_remaining = thread->quantum_remaining; |
| 3613 | thread->reason |= AST_QUANTUM; |
| 3614 | thread->quantum_remaining = 0; |
| 3615 | } else { |
| 3616 | #if defined(CONFIG_SCHED_MULTIQ) |
| 3617 | if (SCHED(sched_groups_enabled) && |
| 3618 | thread->sched_group == self->sched_group) { |
| 3619 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
| 3620 | MACHDBG_CODE(DBG_MACH_SCHED, MACH_QUANTUM_HANDOFF), |
| 3621 | self->reason, (uintptr_t)thread_tid(thread), |
| 3622 | self->quantum_remaining, thread->quantum_remaining, 0); |
| 3623 | |
| 3624 | self->quantum_remaining = thread->quantum_remaining; |
| 3625 | thread->quantum_remaining = 0; |
| 3626 | /* Don't set AST_QUANTUM here - old thread might still want to preempt someone else */ |
| 3627 | } |
| 3628 | #endif /* defined(CONFIG_SCHED_MULTIQ) */ |
| 3629 | } |
| 3630 | |
| 3631 | thread->computation_metered += (processor->last_dispatch - thread->computation_epoch); |
| 3632 | |
| 3633 | if (!(thread->state & TH_WAIT)) { |
| 3634 | /* |
| 3635 | * Still runnable. |
| 3636 | */ |
| 3637 | thread->last_made_runnable_time = thread->last_basepri_change_time = processor->last_dispatch; |
| 3638 | |
| 3639 | machine_thread_going_off_core(old_thread: thread, FALSE, last_dispatch: processor->last_dispatch, TRUE); |
| 3640 | |
| 3641 | ast_t reason = thread->reason; |
| 3642 | sched_options_t options = SCHED_NONE; |
| 3643 | |
| 3644 | if (reason & AST_REBALANCE) { |
| 3645 | options |= SCHED_REBALANCE; |
| 3646 | if (reason & AST_QUANTUM) { |
| 3647 | /* |
| 3648 | * Having gone to the trouble of forcing this thread off a less preferred core, |
| 3649 | * we should force the preferable core to reschedule immediately to give this |
| 3650 | * thread a chance to run instead of just sitting on the run queue where |
| 3651 | * it may just be stolen back by the idle core we just forced it off. |
| 3652 | * But only do this at the end of a quantum to prevent cascading effects. |
| 3653 | */ |
| 3654 | options |= SCHED_PREEMPT; |
| 3655 | } |
| 3656 | } |
| 3657 | |
| 3658 | if (reason & AST_QUANTUM) { |
| 3659 | options |= SCHED_TAILQ; |
| 3660 | } else if (reason & AST_PREEMPT) { |
| 3661 | options |= SCHED_HEADQ; |
| 3662 | } else { |
| 3663 | options |= (SCHED_PREEMPT | SCHED_TAILQ); |
| 3664 | } |
| 3665 | |
| 3666 | thread_setrun(thread, options); |
| 3667 | |
| 3668 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
| 3669 | MACHDBG_CODE(DBG_MACH_SCHED, MACH_DISPATCH) | DBG_FUNC_NONE, |
| 3670 | (uintptr_t)thread_tid(thread), thread->reason, thread->state, |
| 3671 | sched_run_buckets[TH_BUCKET_RUN], 0); |
| 3672 | |
| 3673 | if (thread->wake_active) { |
| 3674 | thread->wake_active = FALSE; |
| 3675 | thread_unlock(thread); |
| 3676 | |
| 3677 | thread_wakeup(&thread->wake_active); |
| 3678 | } else { |
| 3679 | thread_unlock(thread); |
| 3680 | } |
| 3681 | |
| 3682 | wake_unlock(thread); |
| 3683 | } else { |
| 3684 | /* |
| 3685 | * Waiting. |
| 3686 | */ |
| 3687 | boolean_t should_terminate = FALSE; |
| 3688 | uint32_t new_run_count; |
| 3689 | int thread_state = thread->state; |
| 3690 | |
| 3691 | /* Only the first call to thread_dispatch |
| 3692 | * after explicit termination should add |
| 3693 | * the thread to the termination queue |
| 3694 | */ |
| 3695 | if ((thread_state & (TH_TERMINATE | TH_TERMINATE2)) == TH_TERMINATE) { |
| 3696 | should_terminate = TRUE; |
| 3697 | thread_state |= TH_TERMINATE2; |
| 3698 | } |
| 3699 | |
| 3700 | timer_stop(timer: &thread->runnable_timer, tstamp: processor->last_dispatch); |
| 3701 | |
| 3702 | thread_state &= ~TH_RUN; |
| 3703 | thread->state = thread_state; |
| 3704 | |
| 3705 | thread->last_made_runnable_time = thread->last_basepri_change_time = THREAD_NOT_RUNNABLE; |
| 3706 | thread->chosen_processor = PROCESSOR_NULL; |
| 3707 | |
| 3708 | new_run_count = SCHED(run_count_decr)(thread); |
| 3709 | |
| 3710 | #if CONFIG_SCHED_AUTO_JOIN |
| 3711 | if ((thread->sched_flags & TH_SFLAG_THREAD_GROUP_AUTO_JOIN) != 0) { |
| 3712 | work_interval_auto_join_unwind(thread); |
| 3713 | } |
| 3714 | #endif /* CONFIG_SCHED_AUTO_JOIN */ |
| 3715 | |
| 3716 | #if CONFIG_SCHED_SFI |
| 3717 | if (thread->reason & AST_SFI) { |
| 3718 | thread->wait_sfi_begin_time = processor->last_dispatch; |
| 3719 | } |
| 3720 | #endif |
| 3721 | machine_thread_going_off_core(old_thread: thread, thread_terminating: should_terminate, last_dispatch: processor->last_dispatch, FALSE); |
| 3722 | |
| 3723 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
| 3724 | MACHDBG_CODE(DBG_MACH_SCHED, MACH_DISPATCH) | DBG_FUNC_NONE, |
| 3725 | (uintptr_t)thread_tid(thread), thread->reason, thread_state, |
| 3726 | new_run_count, 0); |
| 3727 | |
| 3728 | if (thread_state & TH_WAIT_REPORT) { |
| 3729 | (*thread->sched_call)(SCHED_CALL_BLOCK, thread); |
| 3730 | } |
| 3731 | |
| 3732 | if (thread->wake_active) { |
| 3733 | thread->wake_active = FALSE; |
| 3734 | thread_unlock(thread); |
| 3735 | |
| 3736 | thread_wakeup(&thread->wake_active); |
| 3737 | } else { |
| 3738 | thread_unlock(thread); |
| 3739 | } |
| 3740 | |
| 3741 | wake_unlock(thread); |
| 3742 | |
| 3743 | if (should_terminate) { |
| 3744 | thread_terminate_enqueue(thread); |
| 3745 | } |
| 3746 | } |
| 3747 | } |
| 3748 | /* |
| 3749 | * The thread could have been added to the termination queue, so it's |
| 3750 | * unsafe to use after this point. |
| 3751 | */ |
| 3752 | thread = THREAD_NULL; |
| 3753 | } |
| 3754 | |
| 3755 | int urgency = THREAD_URGENCY_NONE; |
| 3756 | uint64_t latency = 0; |
| 3757 | |
| 3758 | /* Update (new) current thread and reprogram running timers */ |
| 3759 | thread_lock(self); |
| 3760 | |
| 3761 | if (!(self->state & TH_IDLE)) { |
| 3762 | uint64_t arg1, arg2; |
| 3763 | |
| 3764 | #if CONFIG_SCHED_SFI |
| 3765 | ast_t new_ast; |
| 3766 | |
| 3767 | new_ast = sfi_thread_needs_ast(thread: self, NULL); |
| 3768 | |
| 3769 | if (new_ast != AST_NONE) { |
| 3770 | ast_on(reasons: new_ast); |
| 3771 | } |
| 3772 | #endif |
| 3773 | |
| 3774 | if (processor->last_dispatch < self->last_made_runnable_time) { |
| 3775 | panic("Non-monotonic time: dispatch at 0x%llx, runnable at 0x%llx" , |
| 3776 | processor->last_dispatch, self->last_made_runnable_time); |
| 3777 | } |
| 3778 | |
| 3779 | assert(self->last_made_runnable_time <= self->last_basepri_change_time); |
| 3780 | |
| 3781 | latency = processor->last_dispatch - self->last_made_runnable_time; |
| 3782 | assert(latency >= self->same_pri_latency); |
| 3783 | |
| 3784 | urgency = thread_get_urgency(thread: self, rt_period: &arg1, rt_deadline: &arg2); |
| 3785 | |
| 3786 | thread_tell_urgency(urgency, rt_period: arg1, rt_deadline: arg2, sched_latency: latency, nthread: self); |
| 3787 | |
| 3788 | /* |
| 3789 | * Start a new CPU limit interval if the previous one has |
| 3790 | * expired. This should happen before initializing a new |
| 3791 | * quantum. |
| 3792 | */ |
| 3793 | if (cpulimit_affects_quantum && |
| 3794 | thread_cpulimit_interval_has_expired(now: processor->last_dispatch)) { |
| 3795 | thread_cpulimit_restart(now: processor->last_dispatch); |
| 3796 | } |
| 3797 | |
| 3798 | /* |
| 3799 | * Get a new quantum if none remaining. |
| 3800 | */ |
| 3801 | if (self->quantum_remaining == 0) { |
| 3802 | thread_quantum_init(thread: self, now: processor->last_dispatch); |
| 3803 | } |
| 3804 | |
| 3805 | /* |
| 3806 | * Set up quantum timer and timeslice. |
| 3807 | */ |
| 3808 | processor->quantum_end = processor->last_dispatch + |
| 3809 | self->quantum_remaining; |
| 3810 | |
| 3811 | running_timer_setup(processor, timer: RUNNING_TIMER_QUANTUM, param: self, |
| 3812 | deadline: processor->quantum_end, now: processor->last_dispatch); |
| 3813 | if (was_idle) { |
| 3814 | /* |
| 3815 | * kperf's running timer is active whenever the idle thread for a |
| 3816 | * CPU is not running. |
| 3817 | */ |
| 3818 | kperf_running_setup(processor, now: processor->last_dispatch); |
| 3819 | } |
| 3820 | running_timers_activate(processor); |
| 3821 | processor->first_timeslice = TRUE; |
| 3822 | } else { |
| 3823 | running_timers_deactivate(processor); |
| 3824 | processor->first_timeslice = FALSE; |
| 3825 | thread_tell_urgency(urgency: THREAD_URGENCY_NONE, rt_period: 0, rt_deadline: 0, sched_latency: 0, nthread: self); |
| 3826 | } |
| 3827 | |
| 3828 | assert(self->block_hint == kThreadWaitNone); |
| 3829 | self->computation_epoch = processor->last_dispatch; |
| 3830 | /* |
| 3831 | * This relies on the interrupt time being tallied up to the thread in the |
| 3832 | * exception handler epilogue, which is before AST context where preemption |
| 3833 | * is considered (and the scheduler is potentially invoked to |
| 3834 | * context switch, here). |
| 3835 | */ |
| 3836 | self->computation_interrupt_epoch = recount_current_thread_interrupt_time_mach(); |
| 3837 | self->reason = AST_NONE; |
| 3838 | processor->starting_pri = self->sched_pri; |
| 3839 | |
| 3840 | thread_unlock(self); |
| 3841 | |
| 3842 | machine_thread_going_on_core(new_thread: self, urgency, sched_latency: latency, same_pri_latency: self->same_pri_latency, |
| 3843 | dispatch_time: processor->last_dispatch); |
| 3844 | |
| 3845 | #if defined(CONFIG_SCHED_DEFERRED_AST) |
| 3846 | /* |
| 3847 | * TODO: Can we state that redispatching our old thread is also |
| 3848 | * uninteresting? |
| 3849 | */ |
| 3850 | if ((os_atomic_load(&sched_run_buckets[TH_BUCKET_RUN], relaxed) == 1) && !(self->state & TH_IDLE)) { |
| 3851 | pset_cancel_deferred_dispatch(pset: processor->processor_set, processor); |
| 3852 | } |
| 3853 | #endif |
| 3854 | } |
| 3855 | |
| 3856 | /* |
| 3857 | * thread_block_reason: |
| 3858 | * |
| 3859 | * Forces a reschedule, blocking the caller if a wait |
| 3860 | * has been asserted. |
| 3861 | * |
| 3862 | * If a continuation is specified, then thread_invoke will |
| 3863 | * attempt to discard the thread's kernel stack. When the |
| 3864 | * thread resumes, it will execute the continuation function |
| 3865 | * on a new kernel stack. |
| 3866 | */ |
| 3867 | wait_result_t |
| 3868 | thread_block_reason( |
| 3869 | thread_continue_t continuation, |
| 3870 | void *parameter, |
| 3871 | ast_t reason) |
| 3872 | { |
| 3873 | thread_t self = current_thread(); |
| 3874 | processor_t processor; |
| 3875 | thread_t new_thread; |
| 3876 | spl_t s; |
| 3877 | |
| 3878 | s = splsched(); |
| 3879 | |
| 3880 | processor = current_processor(); |
| 3881 | |
| 3882 | /* If we're explicitly yielding, force a subsequent quantum */ |
| 3883 | if (reason & AST_YIELD) { |
| 3884 | processor->first_timeslice = FALSE; |
| 3885 | } |
| 3886 | |
| 3887 | /* We're handling all scheduling AST's */ |
| 3888 | ast_off(AST_SCHEDULING); |
| 3889 | |
| 3890 | clear_pending_nonurgent_preemption(processor); |
| 3891 | |
| 3892 | #if PROC_REF_DEBUG |
| 3893 | if ((continuation != NULL) && (get_threadtask(self) != kernel_task)) { |
| 3894 | uthread_assert_zero_proc_refcount(get_bsdthread_info(self)); |
| 3895 | } |
| 3896 | #endif |
| 3897 | |
| 3898 | #if CONFIG_EXCLAVES |
| 3899 | if (continuation != NULL) { |
| 3900 | assert3u(self->th_exclaves_state & TH_EXCLAVES_STATE_ANY, ==, 0); |
| 3901 | } |
| 3902 | #endif /* CONFIG_EXCLAVES */ |
| 3903 | |
| 3904 | self->continuation = continuation; |
| 3905 | self->parameter = parameter; |
| 3906 | |
| 3907 | if (self->state & ~(TH_RUN | TH_IDLE)) { |
| 3908 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
| 3909 | MACHDBG_CODE(DBG_MACH_SCHED, MACH_BLOCK), |
| 3910 | reason, VM_KERNEL_UNSLIDE(continuation), 0, 0, 0); |
| 3911 | } |
| 3912 | |
| 3913 | do { |
| 3914 | thread_lock(self); |
| 3915 | new_thread = thread_select(thread: self, processor, reason: &reason); |
| 3916 | thread_unlock(self); |
| 3917 | } while (!thread_invoke(self, thread: new_thread, reason)); |
| 3918 | |
| 3919 | splx(s); |
| 3920 | |
| 3921 | return self->wait_result; |
| 3922 | } |
| 3923 | |
| 3924 | /* |
| 3925 | * thread_block: |
| 3926 | * |
| 3927 | * Block the current thread if a wait has been asserted. |
| 3928 | */ |
| 3929 | wait_result_t |
| 3930 | thread_block( |
| 3931 | thread_continue_t continuation) |
| 3932 | { |
| 3933 | return thread_block_reason(continuation, NULL, AST_NONE); |
| 3934 | } |
| 3935 | |
| 3936 | wait_result_t |
| 3937 | thread_block_parameter( |
| 3938 | thread_continue_t continuation, |
| 3939 | void *parameter) |
| 3940 | { |
| 3941 | return thread_block_reason(continuation, parameter, AST_NONE); |
| 3942 | } |
| 3943 | |
| 3944 | /* |
| 3945 | * thread_run: |
| 3946 | * |
| 3947 | * Switch directly from the current thread to the |
| 3948 | * new thread, handing off our quantum if appropriate. |
| 3949 | * |
| 3950 | * New thread must be runnable, and not on a run queue. |
| 3951 | * |
| 3952 | * Called at splsched. |
| 3953 | */ |
| 3954 | int |
| 3955 | thread_run( |
| 3956 | thread_t self, |
| 3957 | thread_continue_t continuation, |
| 3958 | void *parameter, |
| 3959 | thread_t new_thread) |
| 3960 | { |
| 3961 | ast_t reason = AST_NONE; |
| 3962 | |
| 3963 | if ((self->state & TH_IDLE) == 0) { |
| 3964 | reason = AST_HANDOFF; |
| 3965 | } |
| 3966 | |
| 3967 | /* |
| 3968 | * If this thread hadn't been setrun'ed, it |
| 3969 | * might not have a chosen processor, so give it one |
| 3970 | */ |
| 3971 | if (new_thread->chosen_processor == NULL) { |
| 3972 | new_thread->chosen_processor = current_processor(); |
| 3973 | } |
| 3974 | |
| 3975 | self->continuation = continuation; |
| 3976 | self->parameter = parameter; |
| 3977 | |
| 3978 | while (!thread_invoke(self, thread: new_thread, reason)) { |
| 3979 | /* the handoff failed, so we have to fall back to the normal block path */ |
| 3980 | processor_t processor = current_processor(); |
| 3981 | |
| 3982 | reason = AST_NONE; |
| 3983 | |
| 3984 | thread_lock(self); |
| 3985 | new_thread = thread_select(thread: self, processor, reason: &reason); |
| 3986 | thread_unlock(self); |
| 3987 | } |
| 3988 | |
| 3989 | return self->wait_result; |
| 3990 | } |
| 3991 | |
| 3992 | /* |
| 3993 | * thread_continue: |
| 3994 | * |
| 3995 | * Called at splsched when a thread first receives |
| 3996 | * a new stack after a continuation. |
| 3997 | * |
| 3998 | * Called with THREAD_NULL as the old thread when |
| 3999 | * invoked by machine_load_context. |
| 4000 | */ |
| 4001 | void |
| 4002 | thread_continue( |
| 4003 | thread_t thread) |
| 4004 | { |
| 4005 | thread_t self = current_thread(); |
| 4006 | thread_continue_t continuation; |
| 4007 | void *parameter; |
| 4008 | |
| 4009 | DTRACE_SCHED(on__cpu); |
| 4010 | |
| 4011 | continuation = self->continuation; |
| 4012 | parameter = self->parameter; |
| 4013 | |
| 4014 | assert(continuation != NULL); |
| 4015 | |
| 4016 | #if KPERF |
| 4017 | kperf_on_cpu(thread: self, continuation, NULL); |
| 4018 | #endif |
| 4019 | |
| 4020 | thread_dispatch(thread, self); |
| 4021 | |
| 4022 | self->continuation = self->parameter = NULL; |
| 4023 | |
| 4024 | #if SCHED_HYGIENE_DEBUG |
| 4025 | /* Reset interrupt-masked spin debugging timeout */ |
| 4026 | ml_spin_debug_clear(self); |
| 4027 | #endif |
| 4028 | |
| 4029 | TLOG(1, "thread_continue: calling call_continuation\n" ); |
| 4030 | |
| 4031 | boolean_t enable_interrupts = TRUE; |
| 4032 | |
| 4033 | /* bootstrap thread, idle thread need to stay interrupts-disabled */ |
| 4034 | if (thread == THREAD_NULL || (self->state & TH_IDLE)) { |
| 4035 | enable_interrupts = FALSE; |
| 4036 | } |
| 4037 | |
| 4038 | #if KASAN_TBI |
| 4039 | kasan_unpoison_stack(self->kernel_stack, kernel_stack_size); |
| 4040 | #endif /* KASAN_TBI */ |
| 4041 | |
| 4042 | |
| 4043 | call_continuation(continuation, parameter, wresult: self->wait_result, enable_interrupts); |
| 4044 | /*NOTREACHED*/ |
| 4045 | } |
| 4046 | |
| 4047 | void |
| 4048 | thread_quantum_init(thread_t thread, uint64_t now) |
| 4049 | { |
| 4050 | uint64_t new_quantum = 0; |
| 4051 | |
| 4052 | switch (thread->sched_mode) { |
| 4053 | case TH_MODE_REALTIME: |
| 4054 | new_quantum = thread->realtime.computation; |
| 4055 | new_quantum = MIN(new_quantum, max_unsafe_rt_computation); |
| 4056 | break; |
| 4057 | |
| 4058 | case TH_MODE_FIXED: |
| 4059 | new_quantum = SCHED(initial_quantum_size)(thread); |
| 4060 | new_quantum = MIN(new_quantum, max_unsafe_fixed_computation); |
| 4061 | break; |
| 4062 | |
| 4063 | default: |
| 4064 | new_quantum = SCHED(initial_quantum_size)(thread); |
| 4065 | break; |
| 4066 | } |
| 4067 | |
| 4068 | if (cpulimit_affects_quantum) { |
| 4069 | const uint64_t cpulimit_remaining = thread_cpulimit_remaining(now); |
| 4070 | |
| 4071 | /* |
| 4072 | * If there's no remaining CPU time, the ledger system will |
| 4073 | * notice and put the thread to sleep. |
| 4074 | */ |
| 4075 | if (cpulimit_remaining > 0) { |
| 4076 | new_quantum = MIN(new_quantum, cpulimit_remaining); |
| 4077 | } |
| 4078 | } |
| 4079 | |
| 4080 | assert3u(new_quantum, <, UINT32_MAX); |
| 4081 | assert3u(new_quantum, >, 0); |
| 4082 | |
| 4083 | thread->quantum_remaining = (uint32_t)new_quantum; |
| 4084 | } |
| 4085 | |
| 4086 | uint32_t |
| 4087 | sched_timeshare_initial_quantum_size(thread_t thread) |
| 4088 | { |
| 4089 | if ((thread != THREAD_NULL) && thread->th_sched_bucket == TH_BUCKET_SHARE_BG) { |
| 4090 | return bg_quantum; |
| 4091 | } else { |
| 4092 | return std_quantum; |
| 4093 | } |
| 4094 | } |
| 4095 | |
| 4096 | /* |
| 4097 | * run_queue_init: |
| 4098 | * |
| 4099 | * Initialize a run queue before first use. |
| 4100 | */ |
| 4101 | void |
| 4102 | run_queue_init( |
| 4103 | run_queue_t rq) |
| 4104 | { |
| 4105 | rq->highq = NOPRI; |
| 4106 | for (u_int i = 0; i < BITMAP_LEN(NRQS); i++) { |
| 4107 | rq->bitmap[i] = 0; |
| 4108 | } |
| 4109 | rq->urgency = rq->count = 0; |
| 4110 | for (int i = 0; i < NRQS; i++) { |
| 4111 | circle_queue_init(&rq->queues[i]); |
| 4112 | } |
| 4113 | } |
| 4114 | |
| 4115 | /* |
| 4116 | * run_queue_dequeue: |
| 4117 | * |
| 4118 | * Perform a dequeue operation on a run queue, |
| 4119 | * and return the resulting thread. |
| 4120 | * |
| 4121 | * The run queue must be locked (see thread_run_queue_remove() |
| 4122 | * for more info), and not empty. |
| 4123 | */ |
| 4124 | thread_t |
| 4125 | run_queue_dequeue( |
| 4126 | run_queue_t rq, |
| 4127 | sched_options_t options) |
| 4128 | { |
| 4129 | thread_t thread; |
| 4130 | circle_queue_t queue = &rq->queues[rq->highq]; |
| 4131 | |
| 4132 | if (options & SCHED_HEADQ) { |
| 4133 | thread = cqe_dequeue_head(queue, struct thread, runq_links); |
| 4134 | } else { |
| 4135 | thread = cqe_dequeue_tail(queue, struct thread, runq_links); |
| 4136 | } |
| 4137 | |
| 4138 | assert(thread != THREAD_NULL); |
| 4139 | assert_thread_magic(thread); |
| 4140 | |
| 4141 | thread_clear_runq(thread); |
| 4142 | SCHED_STATS_RUNQ_CHANGE(&rq->runq_stats, rq->count); |
| 4143 | rq->count--; |
| 4144 | if (SCHED(priority_is_urgent)(rq->highq)) { |
| 4145 | rq->urgency--; assert(rq->urgency >= 0); |
| 4146 | } |
| 4147 | if (circle_queue_empty(cq: queue)) { |
| 4148 | bitmap_clear(map: rq->bitmap, n: rq->highq); |
| 4149 | rq->highq = bitmap_first(map: rq->bitmap, NRQS); |
| 4150 | } |
| 4151 | |
| 4152 | return thread; |
| 4153 | } |
| 4154 | |
| 4155 | /* |
| 4156 | * run_queue_enqueue: |
| 4157 | * |
| 4158 | * Perform a enqueue operation on a run queue. |
| 4159 | * |
| 4160 | * The run queue must be locked (see thread_run_queue_remove() |
| 4161 | * for more info). |
| 4162 | */ |
| 4163 | boolean_t |
| 4164 | run_queue_enqueue( |
| 4165 | run_queue_t rq, |
| 4166 | thread_t thread, |
| 4167 | sched_options_t options) |
| 4168 | { |
| 4169 | circle_queue_t queue = &rq->queues[thread->sched_pri]; |
| 4170 | boolean_t result = FALSE; |
| 4171 | |
| 4172 | assert_thread_magic(thread); |
| 4173 | |
| 4174 | if (circle_queue_empty(cq: queue)) { |
| 4175 | circle_enqueue_tail(cq: queue, elt: &thread->runq_links); |
| 4176 | |
| 4177 | rq_bitmap_set(map: rq->bitmap, n: thread->sched_pri); |
| 4178 | if (thread->sched_pri > rq->highq) { |
| 4179 | rq->highq = thread->sched_pri; |
| 4180 | result = TRUE; |
| 4181 | } |
| 4182 | } else { |
| 4183 | if (options & SCHED_TAILQ) { |
| 4184 | circle_enqueue_tail(cq: queue, elt: &thread->runq_links); |
| 4185 | } else { |
| 4186 | circle_enqueue_head(cq: queue, elt: &thread->runq_links); |
| 4187 | } |
| 4188 | } |
| 4189 | if (SCHED(priority_is_urgent)(thread->sched_pri)) { |
| 4190 | rq->urgency++; |
| 4191 | } |
| 4192 | SCHED_STATS_RUNQ_CHANGE(&rq->runq_stats, rq->count); |
| 4193 | rq->count++; |
| 4194 | |
| 4195 | return result; |
| 4196 | } |
| 4197 | |
| 4198 | /* |
| 4199 | * run_queue_remove: |
| 4200 | * |
| 4201 | * Remove a specific thread from a runqueue. |
| 4202 | * |
| 4203 | * The run queue must be locked. |
| 4204 | */ |
| 4205 | void |
| 4206 | run_queue_remove( |
| 4207 | run_queue_t rq, |
| 4208 | thread_t thread) |
| 4209 | { |
| 4210 | circle_queue_t queue = &rq->queues[thread->sched_pri]; |
| 4211 | |
| 4212 | thread_assert_runq_nonnull(thread); |
| 4213 | assert_thread_magic(thread); |
| 4214 | |
| 4215 | circle_dequeue(cq: queue, elt: &thread->runq_links); |
| 4216 | SCHED_STATS_RUNQ_CHANGE(&rq->runq_stats, rq->count); |
| 4217 | rq->count--; |
| 4218 | if (SCHED(priority_is_urgent)(thread->sched_pri)) { |
| 4219 | rq->urgency--; assert(rq->urgency >= 0); |
| 4220 | } |
| 4221 | |
| 4222 | if (circle_queue_empty(cq: queue)) { |
| 4223 | /* update run queue status */ |
| 4224 | bitmap_clear(map: rq->bitmap, n: thread->sched_pri); |
| 4225 | rq->highq = bitmap_first(map: rq->bitmap, NRQS); |
| 4226 | } |
| 4227 | |
| 4228 | thread_clear_runq(thread); |
| 4229 | } |
| 4230 | |
| 4231 | /* |
| 4232 | * run_queue_peek |
| 4233 | * |
| 4234 | * Peek at the runq and return the highest |
| 4235 | * priority thread from the runq. |
| 4236 | * |
| 4237 | * The run queue must be locked. |
| 4238 | */ |
| 4239 | thread_t |
| 4240 | run_queue_peek( |
| 4241 | run_queue_t rq) |
| 4242 | { |
| 4243 | if (rq->count > 0) { |
| 4244 | circle_queue_t queue = &rq->queues[rq->highq]; |
| 4245 | thread_t thread = cqe_queue_first(queue, struct thread, runq_links); |
| 4246 | assert_thread_magic(thread); |
| 4247 | return thread; |
| 4248 | } else { |
| 4249 | return THREAD_NULL; |
| 4250 | } |
| 4251 | } |
| 4252 | |
| 4253 | static bool |
| 4254 | rt_runq_enqueue(rt_queue_t rt_run_queue, thread_t thread, processor_t processor) |
| 4255 | { |
| 4256 | int pri = thread->sched_pri; |
| 4257 | assert((pri >= BASEPRI_RTQUEUES) && (pri <= MAXPRI)); |
| 4258 | int i = pri - BASEPRI_RTQUEUES; |
| 4259 | rt_queue_pri_t *rt_runq = &rt_run_queue->rt_queue_pri[i]; |
| 4260 | bitmap_t *map = rt_run_queue->bitmap; |
| 4261 | |
| 4262 | bitmap_set(map, n: i); |
| 4263 | |
| 4264 | queue_t queue = &rt_runq->pri_queue; |
| 4265 | uint64_t deadline = thread->realtime.deadline; |
| 4266 | bool preempt = false; |
| 4267 | bool earliest = false; |
| 4268 | |
| 4269 | if (queue_empty(queue)) { |
| 4270 | enqueue_tail(que: queue, elt: &thread->runq_links); |
| 4271 | preempt = true; |
| 4272 | earliest = true; |
| 4273 | rt_runq->pri_earliest_deadline = deadline; |
| 4274 | rt_runq->pri_constraint = thread->realtime.constraint; |
| 4275 | } else { |
| 4276 | /* Insert into rt_runq in thread deadline order */ |
| 4277 | queue_entry_t iter; |
| 4278 | qe_foreach(iter, queue) { |
| 4279 | thread_t iter_thread = qe_element(iter, struct thread, runq_links); |
| 4280 | assert_thread_magic(iter_thread); |
| 4281 | |
| 4282 | if (deadline < iter_thread->realtime.deadline) { |
| 4283 | if (iter == queue_first(queue)) { |
| 4284 | preempt = true; |
| 4285 | earliest = true; |
| 4286 | rt_runq->pri_earliest_deadline = deadline; |
| 4287 | rt_runq->pri_constraint = thread->realtime.constraint; |
| 4288 | } |
| 4289 | insque(entry: &thread->runq_links, queue_prev(iter)); |
| 4290 | break; |
| 4291 | } else if (iter == queue_last(queue)) { |
| 4292 | enqueue_tail(que: queue, elt: &thread->runq_links); |
| 4293 | break; |
| 4294 | } |
| 4295 | } |
| 4296 | } |
| 4297 | if (earliest && (deadline < os_atomic_load_wide(&rt_run_queue->earliest_deadline, relaxed))) { |
| 4298 | os_atomic_store_wide(&rt_run_queue->earliest_deadline, deadline, relaxed); |
| 4299 | os_atomic_store(&rt_run_queue->constraint, thread->realtime.constraint, relaxed); |
| 4300 | os_atomic_store(&rt_run_queue->ed_index, pri - BASEPRI_RTQUEUES, relaxed); |
| 4301 | } |
| 4302 | |
| 4303 | SCHED_STATS_RUNQ_CHANGE(&rt_run_queue->runq_stats, os_atomic_load(&rt_run_queue->count, relaxed)); |
| 4304 | rt_runq->pri_count++; |
| 4305 | os_atomic_inc(&rt_run_queue->count, relaxed); |
| 4306 | |
| 4307 | thread_set_runq_locked(thread, new_runq: processor); |
| 4308 | |
| 4309 | CHECK_RT_RUNQ_CONSISTENCY(rt_run_queue, thread); |
| 4310 | |
| 4311 | return preempt; |
| 4312 | } |
| 4313 | |
| 4314 | static thread_t |
| 4315 | rt_runq_dequeue(rt_queue_t rt_run_queue) |
| 4316 | { |
| 4317 | bitmap_t *map = rt_run_queue->bitmap; |
| 4318 | int i = bitmap_first(map, NRTQS); |
| 4319 | assert((i >= 0) && (i < NRTQS)); |
| 4320 | |
| 4321 | rt_queue_pri_t *rt_runq = &rt_run_queue->rt_queue_pri[i]; |
| 4322 | |
| 4323 | if (!sched_rt_runq_strict_priority) { |
| 4324 | int ed_index = os_atomic_load(&rt_run_queue->ed_index, relaxed); |
| 4325 | if (ed_index != i) { |
| 4326 | assert((ed_index >= 0) && (ed_index < NRTQS)); |
| 4327 | rt_queue_pri_t *ed_runq = &rt_run_queue->rt_queue_pri[ed_index]; |
| 4328 | |
| 4329 | thread_t ed_thread = qe_queue_first(&ed_runq->pri_queue, struct thread, runq_links); |
| 4330 | thread_t hi_thread = qe_queue_first(&rt_runq->pri_queue, struct thread, runq_links); |
| 4331 | |
| 4332 | if (ed_thread->realtime.computation + hi_thread->realtime.computation + rt_deadline_epsilon < hi_thread->realtime.constraint) { |
| 4333 | /* choose the earliest deadline thread */ |
| 4334 | rt_runq = ed_runq; |
| 4335 | i = ed_index; |
| 4336 | } |
| 4337 | } |
| 4338 | } |
| 4339 | |
| 4340 | assert(rt_runq->pri_count > 0); |
| 4341 | uint64_t earliest_deadline = RT_DEADLINE_NONE; |
| 4342 | uint32_t constraint = RT_CONSTRAINT_NONE; |
| 4343 | int ed_index = NOPRI; |
| 4344 | thread_t new_thread = qe_dequeue_head(&rt_runq->pri_queue, struct thread, runq_links); |
| 4345 | SCHED_STATS_RUNQ_CHANGE(&rt_run_queue->runq_stats, os_atomic_load(&rt_run_queue->count, relaxed)); |
| 4346 | if (--rt_runq->pri_count > 0) { |
| 4347 | thread_t next_rt = qe_queue_first(&rt_runq->pri_queue, struct thread, runq_links); |
| 4348 | assert(next_rt != THREAD_NULL); |
| 4349 | earliest_deadline = next_rt->realtime.deadline; |
| 4350 | constraint = next_rt->realtime.constraint; |
| 4351 | ed_index = i; |
| 4352 | } else { |
| 4353 | bitmap_clear(map, n: i); |
| 4354 | } |
| 4355 | rt_runq->pri_earliest_deadline = earliest_deadline; |
| 4356 | rt_runq->pri_constraint = constraint; |
| 4357 | |
| 4358 | for (i = bitmap_first(map, NRTQS); i >= 0; i = bitmap_next(map, prev: i)) { |
| 4359 | rt_runq = &rt_run_queue->rt_queue_pri[i]; |
| 4360 | if (rt_runq->pri_earliest_deadline < earliest_deadline) { |
| 4361 | earliest_deadline = rt_runq->pri_earliest_deadline; |
| 4362 | constraint = rt_runq->pri_constraint; |
| 4363 | ed_index = i; |
| 4364 | } |
| 4365 | } |
| 4366 | os_atomic_store_wide(&rt_run_queue->earliest_deadline, earliest_deadline, relaxed); |
| 4367 | os_atomic_store(&rt_run_queue->constraint, constraint, relaxed); |
| 4368 | os_atomic_store(&rt_run_queue->ed_index, ed_index, relaxed); |
| 4369 | os_atomic_dec(&rt_run_queue->count, relaxed); |
| 4370 | |
| 4371 | thread_clear_runq(thread: new_thread); |
| 4372 | |
| 4373 | CHECK_RT_RUNQ_CONSISTENCY(rt_run_queue, THREAD_NULL); |
| 4374 | |
| 4375 | return new_thread; |
| 4376 | } |
| 4377 | |
| 4378 | static thread_t |
| 4379 | rt_runq_first(rt_queue_t rt_run_queue) |
| 4380 | { |
| 4381 | bitmap_t *map = rt_run_queue->bitmap; |
| 4382 | int i = bitmap_first(map, NRTQS); |
| 4383 | if (i < 0) { |
| 4384 | return THREAD_NULL; |
| 4385 | } |
| 4386 | rt_queue_pri_t *rt_runq = &rt_run_queue->rt_queue_pri[i]; |
| 4387 | thread_t next_rt = qe_queue_first(&rt_runq->pri_queue, struct thread, runq_links); |
| 4388 | |
| 4389 | return next_rt; |
| 4390 | } |
| 4391 | |
| 4392 | static void |
| 4393 | rt_runq_remove(rt_queue_t rt_run_queue, thread_t thread) |
| 4394 | { |
| 4395 | CHECK_RT_RUNQ_CONSISTENCY(rt_run_queue, thread); |
| 4396 | |
| 4397 | int pri = thread->sched_pri; |
| 4398 | assert((pri >= BASEPRI_RTQUEUES) && (pri <= MAXPRI)); |
| 4399 | int i = pri - BASEPRI_RTQUEUES; |
| 4400 | rt_queue_pri_t *rt_runq = &rt_run_queue->rt_queue_pri[i]; |
| 4401 | bitmap_t *map = rt_run_queue->bitmap; |
| 4402 | |
| 4403 | assert(rt_runq->pri_count > 0); |
| 4404 | uint64_t earliest_deadline = RT_DEADLINE_NONE; |
| 4405 | uint32_t constraint = RT_CONSTRAINT_NONE; |
| 4406 | int ed_index = NOPRI; |
| 4407 | remqueue(elt: &thread->runq_links); |
| 4408 | SCHED_STATS_RUNQ_CHANGE(&rt_run_queue->runq_stats, os_atomic_load(&rt_run_queue->count, relaxed)); |
| 4409 | if (--rt_runq->pri_count > 0) { |
| 4410 | thread_t next_rt = qe_queue_first(&rt_runq->pri_queue, struct thread, runq_links); |
| 4411 | earliest_deadline = next_rt->realtime.deadline; |
| 4412 | constraint = next_rt->realtime.constraint; |
| 4413 | ed_index = i; |
| 4414 | } else { |
| 4415 | bitmap_clear(map, n: i); |
| 4416 | } |
| 4417 | rt_runq->pri_earliest_deadline = earliest_deadline; |
| 4418 | rt_runq->pri_constraint = constraint; |
| 4419 | |
| 4420 | for (i = bitmap_first(map, NRTQS); i >= 0; i = bitmap_next(map, prev: i)) { |
| 4421 | rt_runq = &rt_run_queue->rt_queue_pri[i]; |
| 4422 | if (rt_runq->pri_earliest_deadline < earliest_deadline) { |
| 4423 | earliest_deadline = rt_runq->pri_earliest_deadline; |
| 4424 | constraint = rt_runq->pri_constraint; |
| 4425 | ed_index = i; |
| 4426 | } |
| 4427 | } |
| 4428 | os_atomic_store_wide(&rt_run_queue->earliest_deadline, earliest_deadline, relaxed); |
| 4429 | os_atomic_store(&rt_run_queue->constraint, constraint, relaxed); |
| 4430 | os_atomic_store(&rt_run_queue->ed_index, ed_index, relaxed); |
| 4431 | os_atomic_dec(&rt_run_queue->count, relaxed); |
| 4432 | |
| 4433 | thread_clear_runq_locked(thread); |
| 4434 | |
| 4435 | CHECK_RT_RUNQ_CONSISTENCY(rt_run_queue, THREAD_NULL); |
| 4436 | } |
| 4437 | |
| 4438 | rt_queue_t |
| 4439 | sched_rtlocal_runq(processor_set_t pset) |
| 4440 | { |
| 4441 | return &pset->rt_runq; |
| 4442 | } |
| 4443 | |
| 4444 | void |
| 4445 | sched_rtlocal_init(processor_set_t pset) |
| 4446 | { |
| 4447 | pset_rt_init(pset); |
| 4448 | } |
| 4449 | |
| 4450 | void |
| 4451 | sched_rtlocal_queue_shutdown(processor_t processor) |
| 4452 | { |
| 4453 | processor_set_t pset = processor->processor_set; |
| 4454 | thread_t thread; |
| 4455 | queue_head_t tqueue; |
| 4456 | |
| 4457 | pset_lock(pset); |
| 4458 | |
| 4459 | /* We only need to migrate threads if this is the last active or last recommended processor in the pset */ |
| 4460 | if (bit_count(x: pset_available_cpumap(pset)) > 0) { |
| 4461 | pset_unlock(pset); |
| 4462 | return; |
| 4463 | } |
| 4464 | |
| 4465 | queue_init(&tqueue); |
| 4466 | |
| 4467 | while (rt_runq_count(pset) > 0) { |
| 4468 | thread = rt_runq_dequeue(rt_run_queue: &pset->rt_runq); |
| 4469 | enqueue_tail(que: &tqueue, elt: &thread->runq_links); |
| 4470 | } |
| 4471 | sched_update_pset_load_average(pset, curtime: 0); |
| 4472 | pset_update_rt_stealable_state(pset); |
| 4473 | pset_unlock(pset); |
| 4474 | |
| 4475 | qe_foreach_element_safe(thread, &tqueue, runq_links) { |
| 4476 | remqueue(elt: &thread->runq_links); |
| 4477 | |
| 4478 | thread_lock(thread); |
| 4479 | |
| 4480 | thread_setrun(thread, options: SCHED_TAILQ); |
| 4481 | |
| 4482 | thread_unlock(thread); |
| 4483 | } |
| 4484 | } |
| 4485 | |
| 4486 | /* Assumes RT lock is not held, and acquires splsched/rt_lock itself */ |
| 4487 | void |
| 4488 | sched_rtlocal_runq_scan(sched_update_scan_context_t scan_context) |
| 4489 | { |
| 4490 | thread_t thread; |
| 4491 | |
| 4492 | pset_node_t node = &pset_node0; |
| 4493 | processor_set_t pset = node->psets; |
| 4494 | |
| 4495 | spl_t s = splsched(); |
| 4496 | do { |
| 4497 | while (pset != NULL) { |
| 4498 | pset_lock(pset); |
| 4499 | |
| 4500 | bitmap_t *map = pset->rt_runq.bitmap; |
| 4501 | for (int i = bitmap_first(map, NRTQS); i >= 0; i = bitmap_next(map, prev: i)) { |
| 4502 | rt_queue_pri_t *rt_runq = &pset->rt_runq.rt_queue_pri[i]; |
| 4503 | |
| 4504 | qe_foreach_element_safe(thread, &rt_runq->pri_queue, runq_links) { |
| 4505 | if (thread->last_made_runnable_time < scan_context->earliest_rt_make_runnable_time) { |
| 4506 | scan_context->earliest_rt_make_runnable_time = thread->last_made_runnable_time; |
| 4507 | } |
| 4508 | } |
| 4509 | } |
| 4510 | |
| 4511 | pset_unlock(pset); |
| 4512 | |
| 4513 | pset = pset->pset_list; |
| 4514 | } |
| 4515 | } while (((node = node->node_list) != NULL) && ((pset = node->psets) != NULL)); |
| 4516 | splx(s); |
| 4517 | } |
| 4518 | |
| 4519 | int64_t |
| 4520 | sched_rtlocal_runq_count_sum(void) |
| 4521 | { |
| 4522 | pset_node_t node = &pset_node0; |
| 4523 | processor_set_t pset = node->psets; |
| 4524 | int64_t count = 0; |
| 4525 | |
| 4526 | do { |
| 4527 | while (pset != NULL) { |
| 4528 | count += pset->rt_runq.runq_stats.count_sum; |
| 4529 | |
| 4530 | pset = pset->pset_list; |
| 4531 | } |
| 4532 | } while (((node = node->node_list) != NULL) && ((pset = node->psets) != NULL)); |
| 4533 | |
| 4534 | return count; |
| 4535 | } |
| 4536 | |
| 4537 | /* |
| 4538 | * Called with stealing_pset locked and |
| 4539 | * returns with stealing_pset locked |
| 4540 | * but the lock will have been dropped |
| 4541 | * if a thread is returned. |
| 4542 | */ |
| 4543 | thread_t |
| 4544 | sched_rtlocal_steal_thread(processor_set_t stealing_pset, uint64_t earliest_deadline) |
| 4545 | { |
| 4546 | if (!sched_allow_rt_steal) { |
| 4547 | return THREAD_NULL; |
| 4548 | } |
| 4549 | pset_map_t pset_map = stealing_pset->node->pset_map; |
| 4550 | |
| 4551 | bit_clear(pset_map, stealing_pset->pset_id); |
| 4552 | |
| 4553 | processor_set_t pset = stealing_pset; |
| 4554 | |
| 4555 | processor_set_t target_pset; |
| 4556 | uint64_t target_deadline; |
| 4557 | |
| 4558 | retry: |
| 4559 | target_pset = NULL; |
| 4560 | target_deadline = earliest_deadline - rt_deadline_epsilon; |
| 4561 | |
| 4562 | for (int pset_id = lsb_first(bitmap: pset_map); pset_id >= 0; pset_id = lsb_next(bitmap: pset_map, previous_bit: pset_id)) { |
| 4563 | processor_set_t nset = pset_array[pset_id]; |
| 4564 | |
| 4565 | /* |
| 4566 | * During startup, while pset_array[] and node->pset_map are still being initialized, |
| 4567 | * the update to pset_map may become visible to this cpu before the update to pset_array[]. |
| 4568 | * It would be good to avoid inserting a memory barrier here that is only needed during startup, |
| 4569 | * so just check nset is not NULL instead. |
| 4570 | */ |
| 4571 | if (nset && (nset->stealable_rt_threads_earliest_deadline < target_deadline)) { |
| 4572 | target_deadline = nset->stealable_rt_threads_earliest_deadline; |
| 4573 | target_pset = nset; |
| 4574 | } |
| 4575 | } |
| 4576 | |
| 4577 | if (target_pset != NULL) { |
| 4578 | pset = change_locked_pset(current_pset: pset, new_pset: target_pset); |
| 4579 | if (pset->stealable_rt_threads_earliest_deadline <= target_deadline) { |
| 4580 | thread_t new_thread = rt_runq_dequeue(rt_run_queue: &pset->rt_runq); |
| 4581 | pset_update_rt_stealable_state(pset); |
| 4582 | KTRC(MACHDBG_CODE(DBG_MACH_SCHED, MACH_RT_STEAL) | DBG_FUNC_NONE, (uintptr_t)thread_tid(new_thread), pset->pset_id, pset->cpu_set_low, 0); |
| 4583 | |
| 4584 | pset = change_locked_pset(current_pset: pset, new_pset: stealing_pset); |
| 4585 | return new_thread; |
| 4586 | } |
| 4587 | pset = change_locked_pset(current_pset: pset, new_pset: stealing_pset); |
| 4588 | earliest_deadline = rt_runq_earliest_deadline(pset); |
| 4589 | goto retry; |
| 4590 | } |
| 4591 | |
| 4592 | pset = change_locked_pset(current_pset: pset, new_pset: stealing_pset); |
| 4593 | return THREAD_NULL; |
| 4594 | } |
| 4595 | |
| 4596 | /* |
| 4597 | * pset is locked |
| 4598 | */ |
| 4599 | thread_t |
| 4600 | sched_rt_choose_thread(processor_set_t pset) |
| 4601 | { |
| 4602 | processor_t processor = current_processor(); |
| 4603 | |
| 4604 | if (SCHED(steal_thread_enabled)(pset)) { |
| 4605 | do { |
| 4606 | bool spill_pending = bit_clear_if_set(pset->rt_pending_spill_cpu_mask, processor->cpu_id); |
| 4607 | if (spill_pending) { |
| 4608 | KTRC(MACHDBG_CODE(DBG_MACH_SCHED, MACH_RT_SIGNAL_SPILL) | DBG_FUNC_END, processor->cpu_id, pset->rt_pending_spill_cpu_mask, 0, 2); |
| 4609 | } |
| 4610 | thread_t new_thread = SCHED(rt_steal_thread)(pset, rt_runq_earliest_deadline(pset)); |
| 4611 | if (new_thread != THREAD_NULL) { |
| 4612 | if (bit_clear_if_set(pset->rt_pending_spill_cpu_mask, processor->cpu_id)) { |
| 4613 | KTRC(MACHDBG_CODE(DBG_MACH_SCHED, MACH_RT_SIGNAL_SPILL) | DBG_FUNC_END, processor->cpu_id, pset->rt_pending_spill_cpu_mask, 0, 3); |
| 4614 | } |
| 4615 | return new_thread; |
| 4616 | } |
| 4617 | } while (bit_test(pset->rt_pending_spill_cpu_mask, processor->cpu_id)); |
| 4618 | } |
| 4619 | |
| 4620 | if (bit_clear_if_set(pset->rt_pending_spill_cpu_mask, processor->cpu_id)) { |
| 4621 | KTRC(MACHDBG_CODE(DBG_MACH_SCHED, MACH_RT_SIGNAL_SPILL) | DBG_FUNC_END, processor->cpu_id, pset->rt_pending_spill_cpu_mask, 0, 4); |
| 4622 | } |
| 4623 | |
| 4624 | if (rt_runq_count(pset) > 0) { |
| 4625 | thread_t new_thread = rt_runq_dequeue(SCHED(rt_runq)(pset)); |
| 4626 | assert(new_thread != THREAD_NULL); |
| 4627 | pset_update_rt_stealable_state(pset); |
| 4628 | return new_thread; |
| 4629 | } |
| 4630 | |
| 4631 | return THREAD_NULL; |
| 4632 | } |
| 4633 | |
| 4634 | /* |
| 4635 | * realtime_queue_insert: |
| 4636 | * |
| 4637 | * Enqueue a thread for realtime execution. |
| 4638 | */ |
| 4639 | static bool |
| 4640 | realtime_queue_insert(processor_t processor, processor_set_t pset, thread_t thread) |
| 4641 | { |
| 4642 | pset_assert_locked(pset); |
| 4643 | |
| 4644 | bool preempt = rt_runq_enqueue(SCHED(rt_runq)(pset), thread, processor); |
| 4645 | pset_update_rt_stealable_state(pset); |
| 4646 | |
| 4647 | return preempt; |
| 4648 | } |
| 4649 | |
| 4650 | /* |
| 4651 | * realtime_setrun: |
| 4652 | * |
| 4653 | * Dispatch a thread for realtime execution. |
| 4654 | * |
| 4655 | * Thread must be locked. Associated pset must |
| 4656 | * be locked, and is returned unlocked. |
| 4657 | */ |
| 4658 | static void |
| 4659 | realtime_setrun( |
| 4660 | processor_t chosen_processor, |
| 4661 | thread_t thread) |
| 4662 | { |
| 4663 | processor_set_t pset = chosen_processor->processor_set; |
| 4664 | pset_assert_locked(pset); |
| 4665 | bool pset_is_locked = true; |
| 4666 | |
| 4667 | int n_backup = 0; |
| 4668 | |
| 4669 | if (thread->realtime.constraint <= rt_constraint_threshold) { |
| 4670 | n_backup = sched_rt_n_backup_processors; |
| 4671 | } |
| 4672 | assert((n_backup >= 0) && (n_backup <= SCHED_MAX_BACKUP_PROCESSORS)); |
| 4673 | |
| 4674 | int existing_backups = bit_count(x: pset->pending_AST_URGENT_cpu_mask) - rt_runq_count(pset); |
| 4675 | if (existing_backups > 0) { |
| 4676 | n_backup = n_backup - existing_backups; |
| 4677 | if (n_backup < 0) { |
| 4678 | n_backup = 0; |
| 4679 | } |
| 4680 | } |
| 4681 | |
| 4682 | sched_ipi_type_t ipi_type[SCHED_MAX_BACKUP_PROCESSORS + 1] = {}; |
| 4683 | processor_t ipi_processor[SCHED_MAX_BACKUP_PROCESSORS + 1] = {}; |
| 4684 | |
| 4685 | thread->chosen_processor = chosen_processor; |
| 4686 | |
| 4687 | /* <rdar://problem/15102234> */ |
| 4688 | assert(thread->bound_processor == PROCESSOR_NULL); |
| 4689 | |
| 4690 | realtime_queue_insert(processor: chosen_processor, pset, thread); |
| 4691 | |
| 4692 | processor_t processor = chosen_processor; |
| 4693 | |
| 4694 | int count = 0; |
| 4695 | for (int i = 0; i <= n_backup; i++) { |
| 4696 | if (i == 0) { |
| 4697 | ipi_type[i] = SCHED_IPI_NONE; |
| 4698 | ipi_processor[i] = processor; |
| 4699 | count++; |
| 4700 | |
| 4701 | ast_t preempt = AST_NONE; |
| 4702 | if (thread->sched_pri > processor->current_pri) { |
| 4703 | preempt = (AST_PREEMPT | AST_URGENT); |
| 4704 | } else if (thread->sched_pri == processor->current_pri) { |
| 4705 | if (deadline_add(d: thread->realtime.deadline, e: rt_deadline_epsilon) < processor->deadline) { |
| 4706 | preempt = (AST_PREEMPT | AST_URGENT); |
| 4707 | } |
| 4708 | } |
| 4709 | |
| 4710 | if (preempt != AST_NONE) { |
| 4711 | if (processor->state == PROCESSOR_IDLE) { |
| 4712 | if (processor == current_processor()) { |
| 4713 | pset_update_processor_state(pset, processor, new_state: PROCESSOR_DISPATCHING); |
| 4714 | ast_on(reasons: preempt); |
| 4715 | |
| 4716 | if ((preempt & AST_URGENT) == AST_URGENT) { |
| 4717 | if (bit_set_if_clear(pset->pending_AST_URGENT_cpu_mask, processor->cpu_id)) { |
| 4718 | KTRC(MACHDBG_CODE(DBG_MACH_SCHED, MACH_PENDING_AST_URGENT) | DBG_FUNC_START, |
| 4719 | processor->cpu_id, pset->pending_AST_URGENT_cpu_mask, (uintptr_t)thread_tid(thread), 1); |
| 4720 | } |
| 4721 | } |
| 4722 | |
| 4723 | if ((preempt & AST_PREEMPT) == AST_PREEMPT) { |
| 4724 | bit_set(pset->pending_AST_PREEMPT_cpu_mask, processor->cpu_id); |
| 4725 | } |
| 4726 | } else { |
| 4727 | ipi_type[i] = sched_ipi_action(dst: processor, thread, event: SCHED_IPI_EVENT_RT_PREEMPT); |
| 4728 | } |
| 4729 | } else if (processor->state == PROCESSOR_DISPATCHING) { |
| 4730 | if (bit_set_if_clear(pset->pending_AST_URGENT_cpu_mask, processor->cpu_id)) { |
| 4731 | KTRC(MACHDBG_CODE(DBG_MACH_SCHED, MACH_PENDING_AST_URGENT) | DBG_FUNC_START, |
| 4732 | processor->cpu_id, pset->pending_AST_URGENT_cpu_mask, (uintptr_t)thread_tid(thread), 2); |
| 4733 | } |
| 4734 | } else { |
| 4735 | if (processor == current_processor()) { |
| 4736 | ast_on(reasons: preempt); |
| 4737 | |
| 4738 | if ((preempt & AST_URGENT) == AST_URGENT) { |
| 4739 | if (bit_set_if_clear(pset->pending_AST_URGENT_cpu_mask, processor->cpu_id)) { |
| 4740 | KTRC(MACHDBG_CODE(DBG_MACH_SCHED, MACH_PENDING_AST_URGENT) | DBG_FUNC_START, |
| 4741 | processor->cpu_id, pset->pending_AST_URGENT_cpu_mask, (uintptr_t)thread_tid(thread), 3); |
| 4742 | } |
| 4743 | } |
| 4744 | |
| 4745 | if ((preempt & AST_PREEMPT) == AST_PREEMPT) { |
| 4746 | bit_set(pset->pending_AST_PREEMPT_cpu_mask, processor->cpu_id); |
| 4747 | } |
| 4748 | } else { |
| 4749 | ipi_type[i] = sched_ipi_action(dst: processor, thread, event: SCHED_IPI_EVENT_RT_PREEMPT); |
| 4750 | } |
| 4751 | } |
| 4752 | } else { |
| 4753 | /* Selected processor was too busy, just keep thread enqueued and let other processors drain it naturally. */ |
| 4754 | } |
| 4755 | } else { |
| 4756 | if (!pset_is_locked) { |
| 4757 | pset_lock(pset); |
| 4758 | } |
| 4759 | ipi_type[i] = SCHED_IPI_NONE; |
| 4760 | ipi_processor[i] = PROCESSOR_NULL; |
| 4761 | pset_is_locked = !choose_next_rt_processor_for_IPI(starting_pset: pset, chosen_processor, false, result_processor: &ipi_processor[i], result_ipi_type: &ipi_type[i]); |
| 4762 | if (ipi_processor[i] == PROCESSOR_NULL) { |
| 4763 | break; |
| 4764 | } |
| 4765 | count++; |
| 4766 | |
| 4767 | KTRC(MACHDBG_CODE(DBG_MACH_SCHED, MACH_SCHED_NEXT_PROCESSOR) | DBG_FUNC_NONE, |
| 4768 | ipi_processor[i]->cpu_id, ipi_processor[i]->state, backup, 1); |
| 4769 | #if defined(__x86_64__) |
| 4770 | #define p_is_good(p) (((p)->processor_primary == (p)) && ((sched_avoid_cpu0 != 1) || ((p)->cpu_id != 0))) |
| 4771 | if (n_backup == SCHED_DEFAULT_BACKUP_PROCESSORS_SMT) { |
| 4772 | processor_t p0 = ipi_processor[0]; |
| 4773 | processor_t p1 = ipi_processor[1]; |
| 4774 | assert(p0 && p1); |
| 4775 | if (p_is_good(p0) && p_is_good(p1)) { |
| 4776 | /* |
| 4777 | * Both the chosen processor and the first backup are non-cpu0 primaries, |
| 4778 | * so there is no need for a 2nd backup processor. |
| 4779 | */ |
| 4780 | break; |
| 4781 | } |
| 4782 | } |
| 4783 | #endif |
| 4784 | } |
| 4785 | } |
| 4786 | |
| 4787 | if (pset_is_locked) { |
| 4788 | pset_unlock(pset); |
| 4789 | } |
| 4790 | |
| 4791 | assert((count > 0) && (count <= (n_backup + 1))); |
| 4792 | for (int i = 0; i < count; i++) { |
| 4793 | assert(ipi_processor[i] != PROCESSOR_NULL); |
| 4794 | sched_ipi_perform(dst: ipi_processor[i], ipi: ipi_type[i]); |
| 4795 | } |
| 4796 | } |
| 4797 | |
| 4798 | |
| 4799 | sched_ipi_type_t |
| 4800 | sched_ipi_deferred_policy(processor_set_t pset, processor_t dst, |
| 4801 | thread_t thread, __unused sched_ipi_event_t event) |
| 4802 | { |
| 4803 | #if defined(CONFIG_SCHED_DEFERRED_AST) |
| 4804 | #if CONFIG_THREAD_GROUPS |
| 4805 | if (thread) { |
| 4806 | struct thread_group *tg = thread_group_get(t: thread); |
| 4807 | if (thread_group_uses_immediate_ipi(tg)) { |
| 4808 | return SCHED_IPI_IMMEDIATE; |
| 4809 | } |
| 4810 | } |
| 4811 | #endif /* CONFIG_THREAD_GROUPS */ |
| 4812 | if (!bit_test(pset->pending_deferred_AST_cpu_mask, dst->cpu_id)) { |
| 4813 | return SCHED_IPI_DEFERRED; |
| 4814 | } |
| 4815 | #else /* CONFIG_SCHED_DEFERRED_AST */ |
| 4816 | (void) thread; |
| 4817 | panic("Request for deferred IPI on an unsupported platform; pset: %p CPU: %d" , pset, dst->cpu_id); |
| 4818 | #endif /* CONFIG_SCHED_DEFERRED_AST */ |
| 4819 | return SCHED_IPI_NONE; |
| 4820 | } |
| 4821 | |
| 4822 | sched_ipi_type_t |
| 4823 | sched_ipi_action(processor_t dst, thread_t thread, sched_ipi_event_t event) |
| 4824 | { |
| 4825 | sched_ipi_type_t ipi_type = SCHED_IPI_NONE; |
| 4826 | assert(dst != NULL); |
| 4827 | |
| 4828 | processor_set_t pset = dst->processor_set; |
| 4829 | if (current_processor() == dst) { |
| 4830 | return SCHED_IPI_NONE; |
| 4831 | } |
| 4832 | |
| 4833 | bool dst_idle = (dst->state == PROCESSOR_IDLE); |
| 4834 | if (dst_idle) { |
| 4835 | pset_update_processor_state(pset, processor: dst, new_state: PROCESSOR_DISPATCHING); |
| 4836 | } |
| 4837 | |
| 4838 | ipi_type = SCHED(ipi_policy)(dst, thread, dst_idle, event); |
| 4839 | switch (ipi_type) { |
| 4840 | case SCHED_IPI_NONE: |
| 4841 | return SCHED_IPI_NONE; |
| 4842 | #if defined(CONFIG_SCHED_DEFERRED_AST) |
| 4843 | case SCHED_IPI_DEFERRED: |
| 4844 | bit_set(pset->pending_deferred_AST_cpu_mask, dst->cpu_id); |
| 4845 | break; |
| 4846 | #endif /* CONFIG_SCHED_DEFERRED_AST */ |
| 4847 | default: |
| 4848 | if (bit_set_if_clear(pset->pending_AST_URGENT_cpu_mask, dst->cpu_id)) { |
| 4849 | KTRC(MACHDBG_CODE(DBG_MACH_SCHED, MACH_PENDING_AST_URGENT) | DBG_FUNC_START, |
| 4850 | dst->cpu_id, pset->pending_AST_URGENT_cpu_mask, (uintptr_t)thread_tid(thread), 4); |
| 4851 | } |
| 4852 | bit_set(pset->pending_AST_PREEMPT_cpu_mask, dst->cpu_id); |
| 4853 | break; |
| 4854 | } |
| 4855 | return ipi_type; |
| 4856 | } |
| 4857 | |
| 4858 | sched_ipi_type_t |
| 4859 | sched_ipi_policy(processor_t dst, thread_t thread, boolean_t dst_idle, sched_ipi_event_t event) |
| 4860 | { |
| 4861 | sched_ipi_type_t ipi_type = SCHED_IPI_NONE; |
| 4862 | boolean_t deferred_ipi_supported = false; |
| 4863 | processor_set_t pset = dst->processor_set; |
| 4864 | |
| 4865 | #if defined(CONFIG_SCHED_DEFERRED_AST) |
| 4866 | deferred_ipi_supported = true; |
| 4867 | #endif /* CONFIG_SCHED_DEFERRED_AST */ |
| 4868 | |
| 4869 | switch (event) { |
| 4870 | case SCHED_IPI_EVENT_SPILL: |
| 4871 | case SCHED_IPI_EVENT_SMT_REBAL: |
| 4872 | case SCHED_IPI_EVENT_REBALANCE: |
| 4873 | case SCHED_IPI_EVENT_BOUND_THR: |
| 4874 | case SCHED_IPI_EVENT_RT_PREEMPT: |
| 4875 | /* |
| 4876 | * The RT preempt, spill, SMT rebalance, rebalance and the bound thread |
| 4877 | * scenarios use immediate IPIs always. |
| 4878 | */ |
| 4879 | ipi_type = dst_idle ? SCHED_IPI_IDLE : SCHED_IPI_IMMEDIATE; |
| 4880 | break; |
| 4881 | case SCHED_IPI_EVENT_PREEMPT: |
| 4882 | /* In the preemption case, use immediate IPIs for RT threads */ |
| 4883 | if (thread && (thread->sched_pri >= BASEPRI_RTQUEUES)) { |
| 4884 | ipi_type = dst_idle ? SCHED_IPI_IDLE : SCHED_IPI_IMMEDIATE; |
| 4885 | break; |
| 4886 | } |
| 4887 | |
| 4888 | /* |
| 4889 | * For Non-RT threads preemption, |
| 4890 | * If the core is active, use immediate IPIs. |
| 4891 | * If the core is idle, use deferred IPIs if supported; otherwise immediate IPI. |
| 4892 | */ |
| 4893 | if (deferred_ipi_supported && dst_idle) { |
| 4894 | return sched_ipi_deferred_policy(pset, dst, thread, event); |
| 4895 | } |
| 4896 | ipi_type = dst_idle ? SCHED_IPI_IDLE : SCHED_IPI_IMMEDIATE; |
| 4897 | break; |
| 4898 | default: |
| 4899 | panic("Unrecognized scheduler IPI event type %d" , event); |
| 4900 | } |
| 4901 | assert(ipi_type != SCHED_IPI_NONE); |
| 4902 | return ipi_type; |
| 4903 | } |
| 4904 | |
| 4905 | void |
| 4906 | sched_ipi_perform(processor_t dst, sched_ipi_type_t ipi) |
| 4907 | { |
| 4908 | switch (ipi) { |
| 4909 | case SCHED_IPI_NONE: |
| 4910 | break; |
| 4911 | case SCHED_IPI_IDLE: |
| 4912 | machine_signal_idle(processor: dst); |
| 4913 | break; |
| 4914 | case SCHED_IPI_IMMEDIATE: |
| 4915 | cause_ast_check(processor: dst); |
| 4916 | break; |
| 4917 | case SCHED_IPI_DEFERRED: |
| 4918 | machine_signal_idle_deferred(processor: dst); |
| 4919 | break; |
| 4920 | default: |
| 4921 | panic("Unrecognized scheduler IPI type: %d" , ipi); |
| 4922 | } |
| 4923 | } |
| 4924 | |
| 4925 | #if defined(CONFIG_SCHED_TIMESHARE_CORE) |
| 4926 | |
| 4927 | boolean_t |
| 4928 | priority_is_urgent(int priority) |
| 4929 | { |
| 4930 | return bitmap_test(map: sched_preempt_pri, n: priority) ? TRUE : FALSE; |
| 4931 | } |
| 4932 | |
| 4933 | #endif /* CONFIG_SCHED_TIMESHARE_CORE */ |
| 4934 | |
| 4935 | /* |
| 4936 | * processor_setrun: |
| 4937 | * |
| 4938 | * Dispatch a thread for execution on a |
| 4939 | * processor. |
| 4940 | * |
| 4941 | * Thread must be locked. Associated pset must |
| 4942 | * be locked, and is returned unlocked. |
| 4943 | */ |
| 4944 | static void |
| 4945 | processor_setrun( |
| 4946 | processor_t processor, |
| 4947 | thread_t thread, |
| 4948 | integer_t options) |
| 4949 | { |
| 4950 | processor_set_t pset = processor->processor_set; |
| 4951 | pset_assert_locked(pset); |
| 4952 | ast_t preempt = AST_NONE; |
| 4953 | enum { eExitIdle, eInterruptRunning, eDoNothing } ipi_action = eDoNothing; |
| 4954 | |
| 4955 | sched_ipi_type_t ipi_type = SCHED_IPI_NONE; |
| 4956 | |
| 4957 | thread->chosen_processor = processor; |
| 4958 | |
| 4959 | /* |
| 4960 | * Set preemption mode. |
| 4961 | */ |
| 4962 | #if defined(CONFIG_SCHED_DEFERRED_AST) |
| 4963 | /* TODO: Do we need to care about urgency (see rdar://problem/20136239)? */ |
| 4964 | #endif |
| 4965 | if (SCHED(priority_is_urgent)(thread->sched_pri) && thread->sched_pri > processor->current_pri) { |
| 4966 | preempt = (AST_PREEMPT | AST_URGENT); |
| 4967 | } else if (processor->current_is_eagerpreempt) { |
| 4968 | preempt = (AST_PREEMPT | AST_URGENT); |
| 4969 | } else if ((thread->sched_mode == TH_MODE_TIMESHARE) && (thread->sched_pri < thread->base_pri)) { |
| 4970 | if (SCHED(priority_is_urgent)(thread->base_pri) && thread->sched_pri > processor->current_pri) { |
| 4971 | preempt = (options & SCHED_PREEMPT)? AST_PREEMPT: AST_NONE; |
| 4972 | } else { |
| 4973 | preempt = AST_NONE; |
| 4974 | } |
| 4975 | } else { |
| 4976 | preempt = (options & SCHED_PREEMPT)? AST_PREEMPT: AST_NONE; |
| 4977 | } |
| 4978 | |
| 4979 | if ((options & (SCHED_PREEMPT | SCHED_REBALANCE)) == (SCHED_PREEMPT | SCHED_REBALANCE)) { |
| 4980 | /* |
| 4981 | * Having gone to the trouble of forcing this thread off a less preferred core, |
| 4982 | * we should force the preferable core to reschedule immediately to give this |
| 4983 | * thread a chance to run instead of just sitting on the run queue where |
| 4984 | * it may just be stolen back by the idle core we just forced it off. |
| 4985 | */ |
| 4986 | preempt |= AST_PREEMPT; |
| 4987 | } |
| 4988 | |
| 4989 | SCHED(processor_enqueue)(processor, thread, options); |
| 4990 | sched_update_pset_load_average(pset, curtime: 0); |
| 4991 | |
| 4992 | if (preempt != AST_NONE) { |
| 4993 | if (processor->state == PROCESSOR_IDLE) { |
| 4994 | ipi_action = eExitIdle; |
| 4995 | } else if (processor->state == PROCESSOR_DISPATCHING) { |
| 4996 | if (bit_set_if_clear(pset->pending_AST_URGENT_cpu_mask, processor->cpu_id)) { |
| 4997 | KTRC(MACHDBG_CODE(DBG_MACH_SCHED, MACH_PENDING_AST_URGENT) | DBG_FUNC_START, |
| 4998 | processor->cpu_id, pset->pending_AST_URGENT_cpu_mask, (uintptr_t)thread_tid(thread), 5); |
| 4999 | } |
| 5000 | } else if ((processor->state == PROCESSOR_RUNNING || |
| 5001 | processor->state == PROCESSOR_SHUTDOWN) && |
| 5002 | (thread->sched_pri >= processor->current_pri)) { |
| 5003 | ipi_action = eInterruptRunning; |
| 5004 | } |
| 5005 | } else { |
| 5006 | /* |
| 5007 | * New thread is not important enough to preempt what is running, but |
| 5008 | * special processor states may need special handling |
| 5009 | */ |
| 5010 | if (processor->state == PROCESSOR_SHUTDOWN && |
| 5011 | thread->sched_pri >= processor->current_pri) { |
| 5012 | ipi_action = eInterruptRunning; |
| 5013 | } else if (processor->state == PROCESSOR_IDLE) { |
| 5014 | ipi_action = eExitIdle; |
| 5015 | } else if (processor->state == PROCESSOR_DISPATCHING) { |
| 5016 | if (bit_set_if_clear(pset->pending_AST_URGENT_cpu_mask, processor->cpu_id)) { |
| 5017 | KTRC(MACHDBG_CODE(DBG_MACH_SCHED, MACH_PENDING_AST_URGENT) | DBG_FUNC_START, |
| 5018 | processor->cpu_id, pset->pending_AST_URGENT_cpu_mask, (uintptr_t)thread_tid(thread), 6); |
| 5019 | } |
| 5020 | } |
| 5021 | } |
| 5022 | |
| 5023 | if (ipi_action != eDoNothing) { |
| 5024 | if (processor == current_processor()) { |
| 5025 | if (ipi_action == eExitIdle) { |
| 5026 | pset_update_processor_state(pset, processor, new_state: PROCESSOR_DISPATCHING); |
| 5027 | } |
| 5028 | if ((preempt = csw_check_locked(thread: processor->active_thread, processor, pset, AST_NONE)) != AST_NONE) { |
| 5029 | ast_on(reasons: preempt); |
| 5030 | } |
| 5031 | |
| 5032 | if ((preempt & AST_URGENT) == AST_URGENT) { |
| 5033 | if (bit_set_if_clear(pset->pending_AST_URGENT_cpu_mask, processor->cpu_id)) { |
| 5034 | KTRC(MACHDBG_CODE(DBG_MACH_SCHED, MACH_PENDING_AST_URGENT) | DBG_FUNC_START, |
| 5035 | processor->cpu_id, pset->pending_AST_URGENT_cpu_mask, (uintptr_t)thread_tid(thread), 7); |
| 5036 | } |
| 5037 | } else { |
| 5038 | if (bit_clear_if_set(pset->pending_AST_URGENT_cpu_mask, processor->cpu_id)) { |
| 5039 | KTRC(MACHDBG_CODE(DBG_MACH_SCHED, MACH_PENDING_AST_URGENT) | DBG_FUNC_END, processor->cpu_id, pset->pending_AST_URGENT_cpu_mask, 0, 7); |
| 5040 | } |
| 5041 | } |
| 5042 | |
| 5043 | if ((preempt & AST_PREEMPT) == AST_PREEMPT) { |
| 5044 | bit_set(pset->pending_AST_PREEMPT_cpu_mask, processor->cpu_id); |
| 5045 | } else { |
| 5046 | bit_clear(pset->pending_AST_PREEMPT_cpu_mask, processor->cpu_id); |
| 5047 | } |
| 5048 | } else { |
| 5049 | sched_ipi_event_t event = (options & SCHED_REBALANCE) ? SCHED_IPI_EVENT_REBALANCE : SCHED_IPI_EVENT_PREEMPT; |
| 5050 | ipi_type = sched_ipi_action(dst: processor, thread, event); |
| 5051 | } |
| 5052 | } |
| 5053 | |
| 5054 | pset_unlock(pset); |
| 5055 | sched_ipi_perform(dst: processor, ipi: ipi_type); |
| 5056 | |
| 5057 | if (ipi_action != eDoNothing && processor == current_processor()) { |
| 5058 | ast_t new_preempt = update_pending_nonurgent_preemption(processor, reason: preempt); |
| 5059 | ast_on(reasons: new_preempt); |
| 5060 | } |
| 5061 | } |
| 5062 | |
| 5063 | /* |
| 5064 | * choose_next_pset: |
| 5065 | * |
| 5066 | * Return the next sibling pset containing |
| 5067 | * available processors. |
| 5068 | * |
| 5069 | * Returns the original pset if none other is |
| 5070 | * suitable. |
| 5071 | */ |
| 5072 | static processor_set_t |
| 5073 | choose_next_pset( |
| 5074 | processor_set_t pset) |
| 5075 | { |
| 5076 | processor_set_t nset = pset; |
| 5077 | |
| 5078 | do { |
| 5079 | nset = next_pset(pset: nset); |
| 5080 | |
| 5081 | /* |
| 5082 | * Sometimes during startup the pset_map can contain a bit |
| 5083 | * for a pset that isn't fully published in pset_array because |
| 5084 | * the pset_map read isn't an acquire load. |
| 5085 | * |
| 5086 | * In order to avoid needing an acquire barrier here, just bail |
| 5087 | * out. |
| 5088 | */ |
| 5089 | if (nset == PROCESSOR_SET_NULL) { |
| 5090 | return pset; |
| 5091 | } |
| 5092 | } while (nset->online_processor_count < 1 && nset != pset); |
| 5093 | |
| 5094 | return nset; |
| 5095 | } |
| 5096 | |
| 5097 | /* |
| 5098 | * choose_processor: |
| 5099 | * |
| 5100 | * Choose a processor for the thread, beginning at |
| 5101 | * the pset. Accepts an optional processor hint in |
| 5102 | * the pset. |
| 5103 | * |
| 5104 | * Returns a processor, possibly from a different pset. |
| 5105 | * |
| 5106 | * The thread must be locked. The pset must be locked, |
| 5107 | * and the resulting pset is locked on return. |
| 5108 | */ |
| 5109 | processor_t |
| 5110 | choose_processor( |
| 5111 | processor_set_t starting_pset, |
| 5112 | processor_t processor, |
| 5113 | thread_t thread) |
| 5114 | { |
| 5115 | processor_set_t pset = starting_pset; |
| 5116 | processor_set_t nset; |
| 5117 | |
| 5118 | assert(thread->sched_pri <= MAXPRI); |
| 5119 | |
| 5120 | /* |
| 5121 | * Prefer the hinted processor, when appropriate. |
| 5122 | */ |
| 5123 | |
| 5124 | /* Fold last processor hint from secondary processor to its primary */ |
| 5125 | if (processor != PROCESSOR_NULL) { |
| 5126 | processor = processor->processor_primary; |
| 5127 | } |
| 5128 | |
| 5129 | /* |
| 5130 | * Only consult platform layer if pset is active, which |
| 5131 | * it may not be in some cases when a multi-set system |
| 5132 | * is going to sleep. |
| 5133 | */ |
| 5134 | if (pset->online_processor_count) { |
| 5135 | if ((processor == PROCESSOR_NULL) || (processor->processor_set == pset && processor->state == PROCESSOR_IDLE)) { |
| 5136 | processor_t mc_processor = machine_choose_processor(pset, processor); |
| 5137 | if (mc_processor != PROCESSOR_NULL) { |
| 5138 | processor = mc_processor->processor_primary; |
| 5139 | } |
| 5140 | } |
| 5141 | } |
| 5142 | |
| 5143 | /* |
| 5144 | * At this point, we may have a processor hint, and we may have |
| 5145 | * an initial starting pset. If the hint is not in the pset, or |
| 5146 | * if the hint is for a processor in an invalid state, discard |
| 5147 | * the hint. |
| 5148 | */ |
| 5149 | if (processor != PROCESSOR_NULL) { |
| 5150 | if (processor->processor_set != pset) { |
| 5151 | processor = PROCESSOR_NULL; |
| 5152 | } else if (!processor->is_recommended) { |
| 5153 | processor = PROCESSOR_NULL; |
| 5154 | } else { |
| 5155 | switch (processor->state) { |
| 5156 | case PROCESSOR_START: |
| 5157 | case PROCESSOR_SHUTDOWN: |
| 5158 | case PROCESSOR_PENDING_OFFLINE: |
| 5159 | case PROCESSOR_OFF_LINE: |
| 5160 | /* |
| 5161 | * Hint is for a processor that cannot support running new threads. |
| 5162 | */ |
| 5163 | processor = PROCESSOR_NULL; |
| 5164 | break; |
| 5165 | case PROCESSOR_IDLE: |
| 5166 | /* |
| 5167 | * Hint is for an idle processor. Assume it is no worse than any other |
| 5168 | * idle processor. The platform layer had an opportunity to provide |
| 5169 | * the "least cost idle" processor above. |
| 5170 | */ |
| 5171 | if ((thread->sched_pri < BASEPRI_RTQUEUES) || processor_is_fast_track_candidate_for_realtime_thread(pset, processor)) { |
| 5172 | uint64_t idle_primary_map = (pset->cpu_state_map[PROCESSOR_IDLE] & pset->primary_map & pset->recommended_bitmask); |
| 5173 | uint64_t non_avoided_idle_primary_map = idle_primary_map & ~pset->perfcontrol_cpu_migration_bitmask; |
| 5174 | /* |
| 5175 | * If the rotation bitmask to force a migration is set for this core and there's an idle core that |
| 5176 | * that needn't be avoided, don't continue running on the same core. |
| 5177 | */ |
| 5178 | if (!(bit_test(processor->processor_set->perfcontrol_cpu_migration_bitmask, processor->cpu_id) && non_avoided_idle_primary_map != 0)) { |
| 5179 | return processor; |
| 5180 | } |
| 5181 | } |
| 5182 | processor = PROCESSOR_NULL; |
| 5183 | break; |
| 5184 | case PROCESSOR_RUNNING: |
| 5185 | case PROCESSOR_DISPATCHING: |
| 5186 | /* |
| 5187 | * Hint is for an active CPU. This fast-path allows |
| 5188 | * realtime threads to preempt non-realtime threads |
| 5189 | * to regain their previous executing processor. |
| 5190 | */ |
| 5191 | if (thread->sched_pri >= BASEPRI_RTQUEUES) { |
| 5192 | if (processor_is_fast_track_candidate_for_realtime_thread(pset, processor)) { |
| 5193 | return processor; |
| 5194 | } |
| 5195 | processor = PROCESSOR_NULL; |
| 5196 | } |
| 5197 | |
| 5198 | /* Otherwise, use hint as part of search below */ |
| 5199 | break; |
| 5200 | default: |
| 5201 | processor = PROCESSOR_NULL; |
| 5202 | break; |
| 5203 | } |
| 5204 | } |
| 5205 | } |
| 5206 | |
| 5207 | /* |
| 5208 | * Iterate through the processor sets to locate |
| 5209 | * an appropriate processor. Seed results with |
| 5210 | * a last-processor hint, if available, so that |
| 5211 | * a search must find something strictly better |
| 5212 | * to replace it. |
| 5213 | * |
| 5214 | * A primary/secondary pair of SMT processors are |
| 5215 | * "unpaired" if the primary is busy but its |
| 5216 | * corresponding secondary is idle (so the physical |
| 5217 | * core has full use of its resources). |
| 5218 | */ |
| 5219 | |
| 5220 | integer_t lowest_priority = MAXPRI + 1; |
| 5221 | integer_t lowest_secondary_priority = MAXPRI + 1; |
| 5222 | integer_t lowest_unpaired_primary_priority = MAXPRI + 1; |
| 5223 | integer_t lowest_idle_secondary_priority = MAXPRI + 1; |
| 5224 | integer_t lowest_count = INT_MAX; |
| 5225 | processor_t lp_processor = PROCESSOR_NULL; |
| 5226 | processor_t lp_unpaired_primary_processor = PROCESSOR_NULL; |
| 5227 | processor_t lp_idle_secondary_processor = PROCESSOR_NULL; |
| 5228 | processor_t lp_paired_secondary_processor = PROCESSOR_NULL; |
| 5229 | processor_t lc_processor = PROCESSOR_NULL; |
| 5230 | |
| 5231 | if (processor != PROCESSOR_NULL) { |
| 5232 | /* All other states should be enumerated above. */ |
| 5233 | assert(processor->state == PROCESSOR_RUNNING || processor->state == PROCESSOR_DISPATCHING); |
| 5234 | assert(thread->sched_pri < BASEPRI_RTQUEUES); |
| 5235 | |
| 5236 | lowest_priority = processor->current_pri; |
| 5237 | lp_processor = processor; |
| 5238 | |
| 5239 | lowest_count = SCHED(processor_runq_count)(processor); |
| 5240 | lc_processor = processor; |
| 5241 | } |
| 5242 | |
| 5243 | if (thread->sched_pri >= BASEPRI_RTQUEUES) { |
| 5244 | pset_node_t node = pset->node; |
| 5245 | bool include_ast_urgent_pending_cpus = false; |
| 5246 | cpumap_t ast_urgent_pending; |
| 5247 | try_again: |
| 5248 | ast_urgent_pending = 0; |
| 5249 | int consider_secondaries = (!pset->is_SMT) || (bit_count(x: node->pset_map) == 1) || (node->pset_non_rt_primary_map == 0) || include_ast_urgent_pending_cpus; |
| 5250 | for (; consider_secondaries < 2; consider_secondaries++) { |
| 5251 | pset = change_locked_pset(current_pset: pset, new_pset: starting_pset); |
| 5252 | do { |
| 5253 | cpumap_t available_map = pset_available_cpumap(pset); |
| 5254 | if (available_map == 0) { |
| 5255 | goto no_available_cpus; |
| 5256 | } |
| 5257 | |
| 5258 | processor = choose_processor_for_realtime_thread(pset, PROCESSOR_NULL, consider_secondaries, false); |
| 5259 | if (processor) { |
| 5260 | return processor; |
| 5261 | } |
| 5262 | |
| 5263 | if (consider_secondaries) { |
| 5264 | processor = choose_furthest_deadline_processor_for_realtime_thread(pset, max_pri: thread->sched_pri, minimum_deadline: thread->realtime.deadline, PROCESSOR_NULL, false, include_ast_urgent_pending_cpus); |
| 5265 | if (processor) { |
| 5266 | /* |
| 5267 | * Instead of looping through all the psets to find the global |
| 5268 | * furthest deadline processor, preempt the first candidate found. |
| 5269 | * The preempted thread will then find any other available far deadline |
| 5270 | * processors to preempt. |
| 5271 | */ |
| 5272 | return processor; |
| 5273 | } |
| 5274 | |
| 5275 | ast_urgent_pending |= pset->pending_AST_URGENT_cpu_mask; |
| 5276 | |
| 5277 | if (rt_runq_count(pset) < lowest_count) { |
| 5278 | int cpuid = bit_first(bitmap: available_map); |
| 5279 | assert(cpuid >= 0); |
| 5280 | lc_processor = processor_array[cpuid]; |
| 5281 | lowest_count = rt_runq_count(pset); |
| 5282 | } |
| 5283 | } |
| 5284 | |
| 5285 | no_available_cpus: |
| 5286 | nset = next_pset(pset); |
| 5287 | |
| 5288 | if (nset != starting_pset) { |
| 5289 | pset = change_locked_pset(current_pset: pset, new_pset: nset); |
| 5290 | } |
| 5291 | } while (nset != starting_pset); |
| 5292 | } |
| 5293 | |
| 5294 | /* Short cut for single pset nodes */ |
| 5295 | if (bit_count(x: node->pset_map) == 1) { |
| 5296 | if (lc_processor) { |
| 5297 | pset_assert_locked(lc_processor->processor_set); |
| 5298 | return lc_processor; |
| 5299 | } |
| 5300 | } else { |
| 5301 | if (ast_urgent_pending && !include_ast_urgent_pending_cpus) { |
| 5302 | /* See the comment in choose_furthest_deadline_processor_for_realtime_thread() */ |
| 5303 | include_ast_urgent_pending_cpus = true; |
| 5304 | goto try_again; |
| 5305 | } |
| 5306 | } |
| 5307 | |
| 5308 | processor = lc_processor; |
| 5309 | |
| 5310 | if (processor) { |
| 5311 | pset = change_locked_pset(current_pset: pset, new_pset: processor->processor_set); |
| 5312 | /* Check that chosen processor is still usable */ |
| 5313 | cpumap_t available_map = pset_available_cpumap(pset); |
| 5314 | if (bit_test(available_map, processor->cpu_id)) { |
| 5315 | return processor; |
| 5316 | } |
| 5317 | |
| 5318 | /* processor is no longer usable */ |
| 5319 | processor = PROCESSOR_NULL; |
| 5320 | } |
| 5321 | |
| 5322 | pset_assert_locked(pset); |
| 5323 | pset_unlock(pset); |
| 5324 | return PROCESSOR_NULL; |
| 5325 | } |
| 5326 | |
| 5327 | /* No realtime threads from this point on */ |
| 5328 | assert(thread->sched_pri < BASEPRI_RTQUEUES); |
| 5329 | |
| 5330 | do { |
| 5331 | /* |
| 5332 | * Choose an idle processor, in pset traversal order |
| 5333 | */ |
| 5334 | uint64_t idle_primary_map = (pset->cpu_state_map[PROCESSOR_IDLE] & pset->primary_map & pset->recommended_bitmask); |
| 5335 | uint64_t preferred_idle_primary_map = idle_primary_map & pset->perfcontrol_cpu_preferred_bitmask; |
| 5336 | |
| 5337 | /* there shouldn't be a pending AST if the processor is idle */ |
| 5338 | assert((idle_primary_map & pset->pending_AST_URGENT_cpu_mask) == 0); |
| 5339 | |
| 5340 | /* |
| 5341 | * Look at the preferred cores first. |
| 5342 | */ |
| 5343 | int cpuid = lsb_next(bitmap: preferred_idle_primary_map, previous_bit: pset->cpu_preferred_last_chosen); |
| 5344 | if (cpuid < 0) { |
| 5345 | cpuid = lsb_first(bitmap: preferred_idle_primary_map); |
| 5346 | } |
| 5347 | if (cpuid >= 0) { |
| 5348 | processor = processor_array[cpuid]; |
| 5349 | pset->cpu_preferred_last_chosen = cpuid; |
| 5350 | return processor; |
| 5351 | } |
| 5352 | |
| 5353 | /* |
| 5354 | * Look at the cores that don't need to be avoided next. |
| 5355 | */ |
| 5356 | if (pset->perfcontrol_cpu_migration_bitmask != 0) { |
| 5357 | uint64_t non_avoided_idle_primary_map = idle_primary_map & ~pset->perfcontrol_cpu_migration_bitmask; |
| 5358 | cpuid = lsb_next(bitmap: non_avoided_idle_primary_map, previous_bit: pset->cpu_preferred_last_chosen); |
| 5359 | if (cpuid < 0) { |
| 5360 | cpuid = lsb_first(bitmap: non_avoided_idle_primary_map); |
| 5361 | } |
| 5362 | if (cpuid >= 0) { |
| 5363 | processor = processor_array[cpuid]; |
| 5364 | pset->cpu_preferred_last_chosen = cpuid; |
| 5365 | return processor; |
| 5366 | } |
| 5367 | } |
| 5368 | |
| 5369 | /* |
| 5370 | * Fall back to any remaining idle cores if none of the preferred ones and non-avoided ones are available. |
| 5371 | */ |
| 5372 | cpuid = lsb_first(bitmap: idle_primary_map); |
| 5373 | if (cpuid >= 0) { |
| 5374 | processor = processor_array[cpuid]; |
| 5375 | return processor; |
| 5376 | } |
| 5377 | |
| 5378 | /* |
| 5379 | * Otherwise, enumerate active and idle processors to find primary candidates |
| 5380 | * with lower priority/etc. |
| 5381 | */ |
| 5382 | |
| 5383 | uint64_t active_map = ((pset->cpu_state_map[PROCESSOR_RUNNING] | pset->cpu_state_map[PROCESSOR_DISPATCHING]) & |
| 5384 | pset->recommended_bitmask & |
| 5385 | ~pset->pending_AST_URGENT_cpu_mask); |
| 5386 | |
| 5387 | if (SCHED(priority_is_urgent)(thread->sched_pri) == FALSE) { |
| 5388 | active_map &= ~pset->pending_AST_PREEMPT_cpu_mask; |
| 5389 | } |
| 5390 | |
| 5391 | active_map = bit_ror64(bitmap: active_map, n: (pset->last_chosen + 1)); |
| 5392 | for (int rotid = lsb_first(bitmap: active_map); rotid >= 0; rotid = lsb_next(bitmap: active_map, previous_bit: rotid)) { |
| 5393 | cpuid = ((rotid + pset->last_chosen + 1) & 63); |
| 5394 | processor = processor_array[cpuid]; |
| 5395 | |
| 5396 | integer_t cpri = processor->current_pri; |
| 5397 | processor_t primary = processor->processor_primary; |
| 5398 | if (primary != processor) { |
| 5399 | /* If primary is running a NO_SMT thread, don't choose its secondary */ |
| 5400 | if (!((primary->state == PROCESSOR_RUNNING) && processor_active_thread_no_smt(processor: primary))) { |
| 5401 | if (cpri < lowest_secondary_priority) { |
| 5402 | lowest_secondary_priority = cpri; |
| 5403 | lp_paired_secondary_processor = processor; |
| 5404 | } |
| 5405 | } |
| 5406 | } else { |
| 5407 | if (cpri < lowest_priority) { |
| 5408 | lowest_priority = cpri; |
| 5409 | lp_processor = processor; |
| 5410 | } |
| 5411 | } |
| 5412 | |
| 5413 | integer_t ccount = SCHED(processor_runq_count)(processor); |
| 5414 | if (ccount < lowest_count) { |
| 5415 | lowest_count = ccount; |
| 5416 | lc_processor = processor; |
| 5417 | } |
| 5418 | } |
| 5419 | |
| 5420 | /* |
| 5421 | * For SMT configs, these idle secondary processors must have active primary. Otherwise |
| 5422 | * the idle primary would have short-circuited the loop above |
| 5423 | */ |
| 5424 | uint64_t idle_secondary_map = (pset->cpu_state_map[PROCESSOR_IDLE] & |
| 5425 | ~pset->primary_map & |
| 5426 | pset->recommended_bitmask); |
| 5427 | |
| 5428 | /* there shouldn't be a pending AST if the processor is idle */ |
| 5429 | assert((idle_secondary_map & pset->pending_AST_URGENT_cpu_mask) == 0); |
| 5430 | assert((idle_secondary_map & pset->pending_AST_PREEMPT_cpu_mask) == 0); |
| 5431 | |
| 5432 | for (cpuid = lsb_first(bitmap: idle_secondary_map); cpuid >= 0; cpuid = lsb_next(bitmap: idle_secondary_map, previous_bit: cpuid)) { |
| 5433 | processor = processor_array[cpuid]; |
| 5434 | |
| 5435 | processor_t cprimary = processor->processor_primary; |
| 5436 | |
| 5437 | integer_t primary_pri = cprimary->current_pri; |
| 5438 | |
| 5439 | /* |
| 5440 | * TODO: This should also make the same decisions |
| 5441 | * as secondary_can_run_realtime_thread |
| 5442 | * |
| 5443 | * TODO: Keep track of the pending preemption priority |
| 5444 | * of the primary to make this more accurate. |
| 5445 | */ |
| 5446 | |
| 5447 | /* If the primary is running a no-smt thread, then don't choose its secondary */ |
| 5448 | if (cprimary->state == PROCESSOR_RUNNING && |
| 5449 | processor_active_thread_no_smt(processor: cprimary)) { |
| 5450 | continue; |
| 5451 | } |
| 5452 | |
| 5453 | /* |
| 5454 | * Find the idle secondary processor with the lowest priority primary |
| 5455 | * |
| 5456 | * We will choose this processor as a fallback if we find no better |
| 5457 | * primary to preempt. |
| 5458 | */ |
| 5459 | if (primary_pri < lowest_idle_secondary_priority) { |
| 5460 | lp_idle_secondary_processor = processor; |
| 5461 | lowest_idle_secondary_priority = primary_pri; |
| 5462 | } |
| 5463 | |
| 5464 | /* Find the the lowest priority active primary with idle secondary */ |
| 5465 | if (primary_pri < lowest_unpaired_primary_priority) { |
| 5466 | /* If the primary processor is offline or starting up, it's not a candidate for this path */ |
| 5467 | if (cprimary->state != PROCESSOR_RUNNING && |
| 5468 | cprimary->state != PROCESSOR_DISPATCHING) { |
| 5469 | continue; |
| 5470 | } |
| 5471 | |
| 5472 | if (!cprimary->is_recommended) { |
| 5473 | continue; |
| 5474 | } |
| 5475 | |
| 5476 | /* if the primary is pending preemption, don't try to re-preempt it */ |
| 5477 | if (bit_test(pset->pending_AST_URGENT_cpu_mask, cprimary->cpu_id)) { |
| 5478 | continue; |
| 5479 | } |
| 5480 | |
| 5481 | if (SCHED(priority_is_urgent)(thread->sched_pri) == FALSE && |
| 5482 | bit_test(pset->pending_AST_PREEMPT_cpu_mask, cprimary->cpu_id)) { |
| 5483 | continue; |
| 5484 | } |
| 5485 | |
| 5486 | lowest_unpaired_primary_priority = primary_pri; |
| 5487 | lp_unpaired_primary_processor = cprimary; |
| 5488 | } |
| 5489 | } |
| 5490 | |
| 5491 | /* |
| 5492 | * We prefer preempting a primary processor over waking up its secondary. |
| 5493 | * The secondary will then be woken up by the preempted thread. |
| 5494 | */ |
| 5495 | if (thread->sched_pri > lowest_unpaired_primary_priority) { |
| 5496 | pset->last_chosen = lp_unpaired_primary_processor->cpu_id; |
| 5497 | return lp_unpaired_primary_processor; |
| 5498 | } |
| 5499 | |
| 5500 | /* |
| 5501 | * We prefer preempting a lower priority active processor over directly |
| 5502 | * waking up an idle secondary. |
| 5503 | * The preempted thread will then find the idle secondary. |
| 5504 | */ |
| 5505 | if (thread->sched_pri > lowest_priority) { |
| 5506 | pset->last_chosen = lp_processor->cpu_id; |
| 5507 | return lp_processor; |
| 5508 | } |
| 5509 | |
| 5510 | /* |
| 5511 | * lc_processor is used to indicate the best processor set run queue |
| 5512 | * on which to enqueue a thread when all available CPUs are busy with |
| 5513 | * higher priority threads, so try to make sure it is initialized. |
| 5514 | */ |
| 5515 | if (lc_processor == PROCESSOR_NULL) { |
| 5516 | cpumap_t available_map = pset_available_cpumap(pset); |
| 5517 | cpuid = lsb_first(bitmap: available_map); |
| 5518 | if (cpuid >= 0) { |
| 5519 | lc_processor = processor_array[cpuid]; |
| 5520 | lowest_count = SCHED(processor_runq_count)(lc_processor); |
| 5521 | } |
| 5522 | } |
| 5523 | |
| 5524 | /* |
| 5525 | * Move onto the next processor set. |
| 5526 | * |
| 5527 | * If all primary processors in this pset are running a higher |
| 5528 | * priority thread, move on to next pset. Only when we have |
| 5529 | * exhausted the search for primary processors do we |
| 5530 | * fall back to secondaries. |
| 5531 | */ |
| 5532 | #if CONFIG_SCHED_EDGE |
| 5533 | /* |
| 5534 | * The edge scheduler expects a CPU to be selected from the pset it passed in |
| 5535 | * as the starting pset for non-RT workloads. The edge migration algorithm |
| 5536 | * should already have considered idle CPUs and loads to decide the starting_pset; |
| 5537 | * which means that this loop can be short-circuted. |
| 5538 | */ |
| 5539 | nset = starting_pset; |
| 5540 | #else /* CONFIG_SCHED_EDGE */ |
| 5541 | nset = next_pset(pset); |
| 5542 | #endif /* CONFIG_SCHED_EDGE */ |
| 5543 | |
| 5544 | if (nset != starting_pset) { |
| 5545 | pset = change_locked_pset(current_pset: pset, new_pset: nset); |
| 5546 | } |
| 5547 | } while (nset != starting_pset); |
| 5548 | |
| 5549 | /* |
| 5550 | * Make sure that we pick a running processor, |
| 5551 | * and that the correct processor set is locked. |
| 5552 | * Since we may have unlocked the candidate processor's |
| 5553 | * pset, it may have changed state. |
| 5554 | * |
| 5555 | * All primary processors are running a higher priority |
| 5556 | * thread, so the only options left are enqueuing on |
| 5557 | * the secondary processor that would perturb the least priority |
| 5558 | * primary, or the least busy primary. |
| 5559 | */ |
| 5560 | |
| 5561 | /* lowest_priority is evaluated in the main loops above */ |
| 5562 | if (lp_idle_secondary_processor != PROCESSOR_NULL) { |
| 5563 | processor = lp_idle_secondary_processor; |
| 5564 | } else if (lp_paired_secondary_processor != PROCESSOR_NULL) { |
| 5565 | processor = lp_paired_secondary_processor; |
| 5566 | } else if (lc_processor != PROCESSOR_NULL) { |
| 5567 | processor = lc_processor; |
| 5568 | } else { |
| 5569 | processor = PROCESSOR_NULL; |
| 5570 | } |
| 5571 | |
| 5572 | if (processor) { |
| 5573 | pset = change_locked_pset(current_pset: pset, new_pset: processor->processor_set); |
| 5574 | /* Check that chosen processor is still usable */ |
| 5575 | cpumap_t available_map = pset_available_cpumap(pset); |
| 5576 | if (bit_test(available_map, processor->cpu_id)) { |
| 5577 | pset->last_chosen = processor->cpu_id; |
| 5578 | return processor; |
| 5579 | } |
| 5580 | |
| 5581 | /* processor is no longer usable */ |
| 5582 | processor = PROCESSOR_NULL; |
| 5583 | } |
| 5584 | |
| 5585 | pset_assert_locked(pset); |
| 5586 | pset_unlock(pset); |
| 5587 | return PROCESSOR_NULL; |
| 5588 | } |
| 5589 | |
| 5590 | /* |
| 5591 | * Default implementation of SCHED(choose_node)() |
| 5592 | * for single node systems |
| 5593 | */ |
| 5594 | pset_node_t |
| 5595 | sched_choose_node(__unused thread_t thread) |
| 5596 | { |
| 5597 | return &pset_node0; |
| 5598 | } |
| 5599 | |
| 5600 | /* |
| 5601 | * choose_starting_pset: |
| 5602 | * |
| 5603 | * Choose a starting processor set for the thread. |
| 5604 | * May return a processor hint within the pset. |
| 5605 | * |
| 5606 | * Returns a starting processor set, to be used by |
| 5607 | * choose_processor. |
| 5608 | * |
| 5609 | * The thread must be locked. The resulting pset is unlocked on return, |
| 5610 | * and is chosen without taking any pset locks. |
| 5611 | */ |
| 5612 | processor_set_t |
| 5613 | choose_starting_pset(pset_node_t node, thread_t thread, processor_t *processor_hint) |
| 5614 | { |
| 5615 | processor_set_t pset; |
| 5616 | processor_t processor = PROCESSOR_NULL; |
| 5617 | |
| 5618 | if (thread->affinity_set != AFFINITY_SET_NULL) { |
| 5619 | /* |
| 5620 | * Use affinity set policy hint. |
| 5621 | */ |
| 5622 | pset = thread->affinity_set->aset_pset; |
| 5623 | } else if (thread->last_processor != PROCESSOR_NULL) { |
| 5624 | /* |
| 5625 | * Simple (last processor) affinity case. |
| 5626 | */ |
| 5627 | processor = thread->last_processor; |
| 5628 | pset = processor->processor_set; |
| 5629 | } else { |
| 5630 | /* |
| 5631 | * No Affinity case: |
| 5632 | * |
| 5633 | * Utilitize a per task hint to spread threads |
| 5634 | * among the available processor sets. |
| 5635 | * NRG this seems like the wrong thing to do. |
| 5636 | * See also task->pset_hint = pset in thread_setrun() |
| 5637 | */ |
| 5638 | pset = get_threadtask(thread)->pset_hint; |
| 5639 | if (pset == PROCESSOR_SET_NULL) { |
| 5640 | pset = current_processor()->processor_set; |
| 5641 | } |
| 5642 | |
| 5643 | pset = choose_next_pset(pset); |
| 5644 | } |
| 5645 | |
| 5646 | if (!bit_test(node->pset_map, pset->pset_id)) { |
| 5647 | /* pset is not from this node so choose one that is */ |
| 5648 | int id = lsb_first(bitmap: node->pset_map); |
| 5649 | if (id < 0) { |
| 5650 | /* startup race, so check again under the node lock */ |
| 5651 | lck_spin_lock(lck: &pset_node_lock); |
| 5652 | if (bit_test(node->pset_map, pset->pset_id)) { |
| 5653 | id = pset->pset_id; |
| 5654 | } else { |
| 5655 | id = lsb_first(bitmap: node->pset_map); |
| 5656 | } |
| 5657 | lck_spin_unlock(lck: &pset_node_lock); |
| 5658 | } |
| 5659 | assert(id >= 0); |
| 5660 | pset = pset_array[id]; |
| 5661 | } |
| 5662 | |
| 5663 | if (bit_count(x: node->pset_map) == 1) { |
| 5664 | /* Only a single pset in this node */ |
| 5665 | goto out; |
| 5666 | } |
| 5667 | |
| 5668 | bool avoid_cpu0 = false; |
| 5669 | |
| 5670 | #if defined(__x86_64__) |
| 5671 | if ((thread->sched_pri >= BASEPRI_RTQUEUES) && sched_avoid_cpu0) { |
| 5672 | /* Avoid the pset containing cpu0 */ |
| 5673 | avoid_cpu0 = true; |
| 5674 | /* Assert that cpu0 is in pset0. I expect this to be true on __x86_64__ */ |
| 5675 | assert(bit_test(pset_array[0]->cpu_bitmask, 0)); |
| 5676 | } |
| 5677 | #endif |
| 5678 | |
| 5679 | if (thread->sched_pri >= BASEPRI_RTQUEUES) { |
| 5680 | pset_map_t rt_target_map = atomic_load(&node->pset_non_rt_primary_map); |
| 5681 | if ((avoid_cpu0 && pset->pset_id == 0) || !bit_test(rt_target_map, pset->pset_id)) { |
| 5682 | if (avoid_cpu0) { |
| 5683 | rt_target_map = bit_ror64(bitmap: rt_target_map, n: 1); |
| 5684 | } |
| 5685 | int rotid = lsb_first(bitmap: rt_target_map); |
| 5686 | if (rotid >= 0) { |
| 5687 | int id = avoid_cpu0 ? ((rotid + 1) & 63) : rotid; |
| 5688 | pset = pset_array[id]; |
| 5689 | goto out; |
| 5690 | } |
| 5691 | } |
| 5692 | if (!pset->is_SMT || !sched_allow_rt_smt) { |
| 5693 | /* All psets are full of RT threads - fall back to choose processor to find the furthest deadline RT thread */ |
| 5694 | goto out; |
| 5695 | } |
| 5696 | rt_target_map = atomic_load(&node->pset_non_rt_map); |
| 5697 | if ((avoid_cpu0 && pset->pset_id == 0) || !bit_test(rt_target_map, pset->pset_id)) { |
| 5698 | if (avoid_cpu0) { |
| 5699 | rt_target_map = bit_ror64(bitmap: rt_target_map, n: 1); |
| 5700 | } |
| 5701 | int rotid = lsb_first(bitmap: rt_target_map); |
| 5702 | if (rotid >= 0) { |
| 5703 | int id = avoid_cpu0 ? ((rotid + 1) & 63) : rotid; |
| 5704 | pset = pset_array[id]; |
| 5705 | goto out; |
| 5706 | } |
| 5707 | } |
| 5708 | /* All psets are full of RT threads - fall back to choose processor to find the furthest deadline RT thread */ |
| 5709 | } else { |
| 5710 | pset_map_t idle_map = atomic_load(&node->pset_idle_map); |
| 5711 | if (!bit_test(idle_map, pset->pset_id)) { |
| 5712 | int next_idle_pset_id = lsb_first(bitmap: idle_map); |
| 5713 | if (next_idle_pset_id >= 0) { |
| 5714 | pset = pset_array[next_idle_pset_id]; |
| 5715 | } |
| 5716 | } |
| 5717 | } |
| 5718 | |
| 5719 | out: |
| 5720 | if ((processor != PROCESSOR_NULL) && (processor->processor_set != pset)) { |
| 5721 | processor = PROCESSOR_NULL; |
| 5722 | } |
| 5723 | if (processor != PROCESSOR_NULL) { |
| 5724 | *processor_hint = processor; |
| 5725 | } |
| 5726 | |
| 5727 | assert(pset != NULL); |
| 5728 | return pset; |
| 5729 | } |
| 5730 | |
| 5731 | /* |
| 5732 | * thread_setrun: |
| 5733 | * |
| 5734 | * Dispatch thread for execution, onto an idle |
| 5735 | * processor or run queue, and signal a preemption |
| 5736 | * as appropriate. |
| 5737 | * |
| 5738 | * Thread must be locked. |
| 5739 | */ |
| 5740 | void |
| 5741 | thread_setrun( |
| 5742 | thread_t thread, |
| 5743 | sched_options_t options) |
| 5744 | { |
| 5745 | processor_t processor = PROCESSOR_NULL; |
| 5746 | processor_set_t pset; |
| 5747 | |
| 5748 | assert((thread->state & (TH_RUN | TH_WAIT | TH_UNINT | TH_TERMINATE | TH_TERMINATE2)) == TH_RUN); |
| 5749 | thread_assert_runq_null(thread); |
| 5750 | |
| 5751 | #if CONFIG_PREADOPT_TG |
| 5752 | /* We know that the thread is not in the runq by virtue of being in this |
| 5753 | * function and the thread is not self since we are running. We can safely |
| 5754 | * resolve the thread group hierarchy and modify the thread's thread group |
| 5755 | * here. */ |
| 5756 | thread_resolve_and_enforce_thread_group_hierarchy_if_needed(t: thread); |
| 5757 | #endif |
| 5758 | |
| 5759 | /* |
| 5760 | * Update priority if needed. |
| 5761 | */ |
| 5762 | if (SCHED(can_update_priority)(thread)) { |
| 5763 | SCHED(update_priority)(thread); |
| 5764 | } |
| 5765 | thread->sfi_class = sfi_thread_classify(thread); |
| 5766 | |
| 5767 | if (thread->bound_processor == PROCESSOR_NULL) { |
| 5768 | /* |
| 5769 | * Unbound case. |
| 5770 | * |
| 5771 | * Usually, this loop will only be executed once, |
| 5772 | * but if CLPC derecommends a processor after it has been chosen, |
| 5773 | * or if a processor is shut down after it is chosen, |
| 5774 | * choose_processor() may return NULL, so a retry |
| 5775 | * may be necessary. A single retry will usually |
| 5776 | * be enough, and we can't afford to retry too many times |
| 5777 | * because interrupts are disabled. |
| 5778 | */ |
| 5779 | #define CHOOSE_PROCESSOR_MAX_RETRIES 3 |
| 5780 | for (int retry = 0; retry <= CHOOSE_PROCESSOR_MAX_RETRIES; retry++) { |
| 5781 | processor_t processor_hint = PROCESSOR_NULL; |
| 5782 | pset_node_t node = SCHED(choose_node)(thread); |
| 5783 | processor_set_t starting_pset = choose_starting_pset(node, thread, processor_hint: &processor_hint); |
| 5784 | |
| 5785 | pset_lock(starting_pset); |
| 5786 | |
| 5787 | processor = SCHED(choose_processor)(starting_pset, processor_hint, thread); |
| 5788 | if (processor != PROCESSOR_NULL) { |
| 5789 | pset = processor->processor_set; |
| 5790 | pset_assert_locked(pset); |
| 5791 | break; |
| 5792 | } |
| 5793 | } |
| 5794 | /* |
| 5795 | * If choose_processor() still returns NULL, |
| 5796 | * which is very unlikely, |
| 5797 | * choose the master_processor, which is always |
| 5798 | * safe to choose. |
| 5799 | */ |
| 5800 | if (processor == PROCESSOR_NULL) { |
| 5801 | /* Choose fallback processor */ |
| 5802 | processor = master_processor; |
| 5803 | pset = processor->processor_set; |
| 5804 | pset_lock(pset); |
| 5805 | assert((pset_available_cpu_count(pset) > 0) || (processor->state != PROCESSOR_OFF_LINE && processor->is_recommended)); |
| 5806 | } |
| 5807 | task_t task = get_threadtask(thread); |
| 5808 | if (!(task->t_flags & TF_USE_PSET_HINT_CLUSTER_TYPE)) { |
| 5809 | task->pset_hint = pset; /* NRG this is done without holding the task lock */ |
| 5810 | } |
| 5811 | SCHED_DEBUG_CHOOSE_PROCESSOR_KERNEL_DEBUG_CONSTANT_IST(MACHDBG_CODE(DBG_MACH_SCHED, MACH_SCHED_CHOOSE_PROCESSOR) | DBG_FUNC_NONE, |
| 5812 | (uintptr_t)thread_tid(thread), (uintptr_t)-1, processor->cpu_id, processor->state, 0); |
| 5813 | assert((pset_available_cpu_count(pset) > 0) || (processor->state != PROCESSOR_OFF_LINE && processor->is_recommended)); |
| 5814 | } else { |
| 5815 | /* |
| 5816 | * Bound case: |
| 5817 | * |
| 5818 | * Unconditionally dispatch on the processor. |
| 5819 | */ |
| 5820 | processor = thread->bound_processor; |
| 5821 | pset = processor->processor_set; |
| 5822 | pset_lock(pset); |
| 5823 | |
| 5824 | SCHED_DEBUG_CHOOSE_PROCESSOR_KERNEL_DEBUG_CONSTANT_IST(MACHDBG_CODE(DBG_MACH_SCHED, MACH_SCHED_CHOOSE_PROCESSOR) | DBG_FUNC_NONE, |
| 5825 | (uintptr_t)thread_tid(thread), (uintptr_t)-2, processor->cpu_id, processor->state, 0); |
| 5826 | } |
| 5827 | |
| 5828 | /* |
| 5829 | * Dispatch the thread on the chosen processor. |
| 5830 | * TODO: This should be based on sched_mode, not sched_pri |
| 5831 | */ |
| 5832 | if (thread->sched_pri >= BASEPRI_RTQUEUES) { |
| 5833 | realtime_setrun(chosen_processor: processor, thread); |
| 5834 | } else { |
| 5835 | processor_setrun(processor, thread, options); |
| 5836 | } |
| 5837 | /* pset is now unlocked */ |
| 5838 | if (thread->bound_processor == PROCESSOR_NULL) { |
| 5839 | SCHED(check_spill)(pset, thread); |
| 5840 | } |
| 5841 | } |
| 5842 | |
| 5843 | processor_set_t |
| 5844 | task_choose_pset( |
| 5845 | task_t task) |
| 5846 | { |
| 5847 | processor_set_t pset = task->pset_hint; |
| 5848 | |
| 5849 | if (pset != PROCESSOR_SET_NULL) { |
| 5850 | pset = choose_next_pset(pset); |
| 5851 | } |
| 5852 | |
| 5853 | return pset; |
| 5854 | } |
| 5855 | |
| 5856 | /* |
| 5857 | * Check for a preemption point in |
| 5858 | * the current context. |
| 5859 | * |
| 5860 | * Called at splsched with thread locked. |
| 5861 | */ |
| 5862 | ast_t |
| 5863 | csw_check( |
| 5864 | thread_t thread, |
| 5865 | processor_t processor, |
| 5866 | ast_t check_reason) |
| 5867 | { |
| 5868 | processor_set_t pset = processor->processor_set; |
| 5869 | |
| 5870 | assert(thread == processor->active_thread); |
| 5871 | |
| 5872 | pset_lock(pset); |
| 5873 | |
| 5874 | processor_state_update_from_thread(processor, thread, true); |
| 5875 | |
| 5876 | ast_t preempt = csw_check_locked(thread, processor, pset, check_reason); |
| 5877 | |
| 5878 | /* Acknowledge the IPI if we decided not to preempt */ |
| 5879 | |
| 5880 | if ((preempt & AST_URGENT) == 0) { |
| 5881 | if (bit_clear_if_set(pset->pending_AST_URGENT_cpu_mask, processor->cpu_id)) { |
| 5882 | KTRC(MACHDBG_CODE(DBG_MACH_SCHED, MACH_PENDING_AST_URGENT) | DBG_FUNC_END, processor->cpu_id, pset->pending_AST_URGENT_cpu_mask, 0, 8); |
| 5883 | } |
| 5884 | } |
| 5885 | |
| 5886 | if ((preempt & AST_PREEMPT) == 0) { |
| 5887 | bit_clear(pset->pending_AST_PREEMPT_cpu_mask, processor->cpu_id); |
| 5888 | } |
| 5889 | |
| 5890 | pset_unlock(pset); |
| 5891 | |
| 5892 | return update_pending_nonurgent_preemption(processor, reason: preempt); |
| 5893 | } |
| 5894 | |
| 5895 | void |
| 5896 | clear_pending_nonurgent_preemption(processor_t processor) |
| 5897 | { |
| 5898 | if (!processor->pending_nonurgent_preemption) { |
| 5899 | return; |
| 5900 | } |
| 5901 | |
| 5902 | KDBG_RELEASE(MACHDBG_CODE(DBG_MACH_SCHED, MACH_SCHED_PREEMPT_TIMER_ACTIVE) | DBG_FUNC_END); |
| 5903 | |
| 5904 | processor->pending_nonurgent_preemption = false; |
| 5905 | running_timer_clear(processor, timer: RUNNING_TIMER_PREEMPT); |
| 5906 | } |
| 5907 | |
| 5908 | ast_t |
| 5909 | update_pending_nonurgent_preemption(processor_t processor, ast_t reason) |
| 5910 | { |
| 5911 | if ((reason & (AST_URGENT | AST_PREEMPT)) != (AST_PREEMPT)) { |
| 5912 | clear_pending_nonurgent_preemption(processor); |
| 5913 | return reason; |
| 5914 | } |
| 5915 | |
| 5916 | if (nonurgent_preemption_timer_abs == 0) { |
| 5917 | /* Preemption timer not enabled */ |
| 5918 | return reason; |
| 5919 | } |
| 5920 | |
| 5921 | if (current_thread()->state & TH_IDLE) { |
| 5922 | /* idle threads don't need nonurgent preemption */ |
| 5923 | return reason; |
| 5924 | } |
| 5925 | |
| 5926 | if (processor->pending_nonurgent_preemption) { |
| 5927 | /* Timer is already armed, no need to do it again */ |
| 5928 | return reason; |
| 5929 | } |
| 5930 | |
| 5931 | if (ml_did_interrupt_userspace()) { |
| 5932 | /* |
| 5933 | * We're preempting userspace here, so we don't need |
| 5934 | * to defer the preemption. Force AST_URGENT |
| 5935 | * so that we can avoid arming this timer without risking |
| 5936 | * ast_taken_user deciding to spend too long in kernel |
| 5937 | * space to handle other ASTs. |
| 5938 | */ |
| 5939 | |
| 5940 | return reason | AST_URGENT; |
| 5941 | } |
| 5942 | |
| 5943 | /* |
| 5944 | * We've decided to do a nonurgent preemption when running in |
| 5945 | * kernelspace. We defer the preemption until reaching userspace boundary |
| 5946 | * to give a grace period for locks etc to be dropped and to reach |
| 5947 | * a clean preemption point, so that the preempting thread doesn't |
| 5948 | * always immediately hit the lock that the waking thread still holds. |
| 5949 | * |
| 5950 | * Arm a timer to enforce that the preemption executes within a bounded |
| 5951 | * time if the thread doesn't block or return to userspace quickly. |
| 5952 | */ |
| 5953 | |
| 5954 | processor->pending_nonurgent_preemption = true; |
| 5955 | KDBG_RELEASE(MACHDBG_CODE(DBG_MACH_SCHED, MACH_SCHED_PREEMPT_TIMER_ACTIVE) | DBG_FUNC_START, |
| 5956 | reason); |
| 5957 | |
| 5958 | uint64_t now = mach_absolute_time(); |
| 5959 | |
| 5960 | uint64_t deadline = now + nonurgent_preemption_timer_abs; |
| 5961 | |
| 5962 | running_timer_enter(processor, timer: RUNNING_TIMER_PREEMPT, NULL, |
| 5963 | deadline: now, now: deadline); |
| 5964 | |
| 5965 | return reason; |
| 5966 | } |
| 5967 | |
| 5968 | /* |
| 5969 | * Check for preemption at splsched with |
| 5970 | * pset and thread locked |
| 5971 | */ |
| 5972 | ast_t |
| 5973 | csw_check_locked( |
| 5974 | thread_t thread, |
| 5975 | processor_t processor, |
| 5976 | processor_set_t pset, |
| 5977 | ast_t check_reason) |
| 5978 | { |
| 5979 | /* |
| 5980 | * If the current thread is running on a processor that is no longer recommended, |
| 5981 | * urgently preempt it, at which point thread_select() should |
| 5982 | * try to idle the processor and re-dispatch the thread to a recommended processor. |
| 5983 | */ |
| 5984 | if (!processor->is_recommended) { |
| 5985 | return check_reason | AST_PREEMPT | AST_URGENT; |
| 5986 | } |
| 5987 | |
| 5988 | if (bit_test(pset->rt_pending_spill_cpu_mask, processor->cpu_id)) { |
| 5989 | return check_reason | AST_PREEMPT | AST_URGENT; |
| 5990 | } |
| 5991 | |
| 5992 | if (rt_runq_count(pset) > 0) { |
| 5993 | if ((rt_runq_priority(pset) > processor->current_pri) || !processor->first_timeslice) { |
| 5994 | return check_reason | AST_PREEMPT | AST_URGENT; |
| 5995 | } else if (deadline_add(d: rt_runq_earliest_deadline(pset), e: rt_deadline_epsilon) < processor->deadline) { |
| 5996 | return check_reason | AST_PREEMPT | AST_URGENT; |
| 5997 | } else { |
| 5998 | return check_reason | AST_PREEMPT; |
| 5999 | } |
| 6000 | } |
| 6001 | |
| 6002 | ast_t result = SCHED(processor_csw_check)(processor); |
| 6003 | if (result != AST_NONE) { |
| 6004 | return check_reason | result | (thread_is_eager_preempt(thread) ? AST_URGENT : AST_NONE); |
| 6005 | } |
| 6006 | |
| 6007 | /* |
| 6008 | * Same for avoid-processor |
| 6009 | * |
| 6010 | * TODO: Should these set AST_REBALANCE? |
| 6011 | */ |
| 6012 | if (SCHED(avoid_processor_enabled) && SCHED(thread_avoid_processor)(processor, thread, check_reason)) { |
| 6013 | return check_reason | AST_PREEMPT; |
| 6014 | } |
| 6015 | |
| 6016 | /* |
| 6017 | * Even though we could continue executing on this processor, a |
| 6018 | * secondary SMT core should try to shed load to another primary core. |
| 6019 | * |
| 6020 | * TODO: Should this do the same check that thread_select does? i.e. |
| 6021 | * if no bound threads target this processor, and idle primaries exist, preempt |
| 6022 | * The case of RT threads existing is already taken care of above |
| 6023 | */ |
| 6024 | |
| 6025 | if (processor->current_pri < BASEPRI_RTQUEUES && |
| 6026 | processor->processor_primary != processor) { |
| 6027 | return check_reason | AST_PREEMPT; |
| 6028 | } |
| 6029 | |
| 6030 | if (thread->state & TH_SUSP) { |
| 6031 | return check_reason | AST_PREEMPT; |
| 6032 | } |
| 6033 | |
| 6034 | #if CONFIG_SCHED_SFI |
| 6035 | /* |
| 6036 | * Current thread may not need to be preempted, but maybe needs |
| 6037 | * an SFI wait? |
| 6038 | */ |
| 6039 | result = sfi_thread_needs_ast(thread, NULL); |
| 6040 | if (result != AST_NONE) { |
| 6041 | return result; |
| 6042 | } |
| 6043 | #endif |
| 6044 | |
| 6045 | return AST_NONE; |
| 6046 | } |
| 6047 | |
| 6048 | /* |
| 6049 | * Handle preemption IPI or IPI in response to setting an AST flag |
| 6050 | * Triggered by cause_ast_check |
| 6051 | * Called at splsched |
| 6052 | */ |
| 6053 | void |
| 6054 | ast_check(processor_t processor) |
| 6055 | { |
| 6056 | smr_ack_ipi(); |
| 6057 | |
| 6058 | if (processor->state != PROCESSOR_RUNNING && |
| 6059 | processor->state != PROCESSOR_SHUTDOWN) { |
| 6060 | return; |
| 6061 | } |
| 6062 | |
| 6063 | SCHED_DEBUG_AST_CHECK_KDBG_RELEASE(MACHDBG_CODE(DBG_MACH_SCHED, |
| 6064 | MACH_SCHED_AST_CHECK) | DBG_FUNC_START); |
| 6065 | |
| 6066 | thread_t thread = processor->active_thread; |
| 6067 | |
| 6068 | assert(thread == current_thread()); |
| 6069 | |
| 6070 | /* |
| 6071 | * Pairs with task_restartable_ranges_synchronize |
| 6072 | */ |
| 6073 | thread_lock(thread); |
| 6074 | |
| 6075 | thread_reset_pcs_ack_IPI(thread); |
| 6076 | |
| 6077 | /* |
| 6078 | * Propagate thread ast to processor. |
| 6079 | * (handles IPI in response to setting AST flag) |
| 6080 | */ |
| 6081 | ast_propagate(thread); |
| 6082 | |
| 6083 | /* |
| 6084 | * Stash the old urgency and perfctl values to find out if |
| 6085 | * csw_check updates them. |
| 6086 | */ |
| 6087 | thread_urgency_t old_urgency = processor->current_urgency; |
| 6088 | perfcontrol_class_t old_perfctl_class = processor->current_perfctl_class; |
| 6089 | |
| 6090 | ast_t preempt; |
| 6091 | |
| 6092 | if ((preempt = csw_check(thread, processor, AST_NONE)) != AST_NONE) { |
| 6093 | ast_on(reasons: preempt); |
| 6094 | } |
| 6095 | |
| 6096 | if (old_urgency != processor->current_urgency) { |
| 6097 | /* |
| 6098 | * Urgency updates happen with the thread lock held (ugh). |
| 6099 | * TODO: This doesn't notice QoS changes... |
| 6100 | */ |
| 6101 | uint64_t urgency_param1, urgency_param2; |
| 6102 | |
| 6103 | thread_urgency_t urgency = thread_get_urgency(thread, rt_period: &urgency_param1, rt_deadline: &urgency_param2); |
| 6104 | thread_tell_urgency(urgency, rt_period: urgency_param1, rt_deadline: urgency_param2, sched_latency: 0, nthread: thread); |
| 6105 | } |
| 6106 | |
| 6107 | thread_unlock(thread); |
| 6108 | |
| 6109 | if (old_perfctl_class != processor->current_perfctl_class) { |
| 6110 | /* |
| 6111 | * We updated the perfctl class of this thread from another core. |
| 6112 | * Let CLPC know that the currently running thread has a new |
| 6113 | * class. |
| 6114 | */ |
| 6115 | |
| 6116 | machine_switch_perfcontrol_state_update(event: PERFCONTROL_ATTR_UPDATE, |
| 6117 | timestamp: mach_approximate_time(), flags: 0, thread); |
| 6118 | } |
| 6119 | |
| 6120 | SCHED_DEBUG_AST_CHECK_KDBG_RELEASE(MACHDBG_CODE(DBG_MACH_SCHED, |
| 6121 | MACH_SCHED_AST_CHECK) | DBG_FUNC_END, preempt); |
| 6122 | } |
| 6123 | |
| 6124 | |
| 6125 | void |
| 6126 | thread_preempt_expire( |
| 6127 | timer_call_param_t p0, |
| 6128 | __unused timer_call_param_t p1) |
| 6129 | { |
| 6130 | processor_t processor = p0; |
| 6131 | |
| 6132 | assert(processor == current_processor()); |
| 6133 | assert(p1 == NULL); |
| 6134 | |
| 6135 | thread_t thread = current_thread(); |
| 6136 | |
| 6137 | /* |
| 6138 | * This is set and cleared by the current core, so we will |
| 6139 | * never see a race with running timer expiration |
| 6140 | */ |
| 6141 | assert(processor->pending_nonurgent_preemption); |
| 6142 | |
| 6143 | clear_pending_nonurgent_preemption(processor); |
| 6144 | |
| 6145 | thread_lock(thread); |
| 6146 | |
| 6147 | /* |
| 6148 | * Check again to see if it's still worth a |
| 6149 | * context switch, but this time force enable kernel preemption |
| 6150 | */ |
| 6151 | |
| 6152 | ast_t preempt = csw_check(thread, processor, AST_URGENT); |
| 6153 | |
| 6154 | if (preempt) { |
| 6155 | ast_on(reasons: preempt); |
| 6156 | } |
| 6157 | |
| 6158 | thread_unlock(thread); |
| 6159 | |
| 6160 | KDBG_RELEASE(MACHDBG_CODE(DBG_MACH_SCHED, MACH_SCHED_PREEMPT_TIMER_ACTIVE), preempt); |
| 6161 | } |
| 6162 | |
| 6163 | |
| 6164 | /* |
| 6165 | * set_sched_pri: |
| 6166 | * |
| 6167 | * Set the scheduled priority of the specified thread. |
| 6168 | * |
| 6169 | * This may cause the thread to change queues. |
| 6170 | * |
| 6171 | * Thread must be locked. |
| 6172 | */ |
| 6173 | void |
| 6174 | set_sched_pri( |
| 6175 | thread_t thread, |
| 6176 | int16_t new_priority, |
| 6177 | set_sched_pri_options_t options) |
| 6178 | { |
| 6179 | bool is_current_thread = (thread == current_thread()); |
| 6180 | bool removed_from_runq = false; |
| 6181 | bool lazy_update = ((options & SETPRI_LAZY) == SETPRI_LAZY); |
| 6182 | |
| 6183 | int16_t old_priority = thread->sched_pri; |
| 6184 | |
| 6185 | /* If we're already at this priority, no need to mess with the runqueue */ |
| 6186 | if (new_priority == old_priority) { |
| 6187 | #if CONFIG_SCHED_CLUTCH |
| 6188 | /* For the first thread in the system, the priority is correct but |
| 6189 | * th_sched_bucket is still TH_BUCKET_RUN. Since the clutch |
| 6190 | * scheduler relies on the bucket being set for all threads, update |
| 6191 | * its bucket here. |
| 6192 | */ |
| 6193 | if (thread->th_sched_bucket == TH_BUCKET_RUN) { |
| 6194 | assert(thread == vm_pageout_scan_thread); |
| 6195 | SCHED(update_thread_bucket)(thread); |
| 6196 | } |
| 6197 | #endif /* CONFIG_SCHED_CLUTCH */ |
| 6198 | |
| 6199 | return; |
| 6200 | } |
| 6201 | |
| 6202 | if (is_current_thread) { |
| 6203 | assert(thread->state & TH_RUN); |
| 6204 | thread_assert_runq_null(thread); |
| 6205 | } else { |
| 6206 | removed_from_runq = thread_run_queue_remove(thread); |
| 6207 | } |
| 6208 | |
| 6209 | thread->sched_pri = new_priority; |
| 6210 | |
| 6211 | #if CONFIG_SCHED_CLUTCH |
| 6212 | /* |
| 6213 | * Since for the clutch scheduler, the thread's bucket determines its runq |
| 6214 | * in the hierarchy it is important to update the bucket when the thread |
| 6215 | * lock is held and the thread has been removed from the runq hierarchy. |
| 6216 | */ |
| 6217 | SCHED(update_thread_bucket)(thread); |
| 6218 | |
| 6219 | #endif /* CONFIG_SCHED_CLUTCH */ |
| 6220 | |
| 6221 | KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED, MACH_SCHED_CHANGE_PRIORITY), |
| 6222 | (uintptr_t)thread_tid(thread), |
| 6223 | thread->base_pri, |
| 6224 | thread->sched_pri, |
| 6225 | thread->sched_usage, |
| 6226 | 0); |
| 6227 | |
| 6228 | if (removed_from_runq) { |
| 6229 | thread_run_queue_reinsert(thread, options: SCHED_PREEMPT | SCHED_TAILQ); |
| 6230 | } else if (is_current_thread) { |
| 6231 | processor_t processor = thread->last_processor; |
| 6232 | assert(processor == current_processor()); |
| 6233 | |
| 6234 | thread_urgency_t old_urgency = processor->current_urgency; |
| 6235 | |
| 6236 | /* |
| 6237 | * When dropping in priority, check if the thread no longer belongs on core. |
| 6238 | * If a thread raises its own priority, don't aggressively rebalance it. |
| 6239 | * <rdar://problem/31699165> |
| 6240 | * |
| 6241 | * csw_check does a processor_state_update_from_thread, but |
| 6242 | * we should do our own if we're being lazy. |
| 6243 | */ |
| 6244 | if (!lazy_update && new_priority < old_priority) { |
| 6245 | ast_t preempt; |
| 6246 | |
| 6247 | if ((preempt = csw_check(thread, processor, AST_NONE)) != AST_NONE) { |
| 6248 | ast_on(reasons: preempt); |
| 6249 | } |
| 6250 | } else { |
| 6251 | processor_state_update_from_thread(processor, thread, false); |
| 6252 | } |
| 6253 | |
| 6254 | /* |
| 6255 | * set_sched_pri doesn't alter RT params. We expect direct base priority/QoS |
| 6256 | * class alterations from user space to occur relatively infrequently, hence |
| 6257 | * those are lazily handled. QoS classes have distinct priority bands, and QoS |
| 6258 | * inheritance is expected to involve priority changes. |
| 6259 | */ |
| 6260 | if (processor->current_urgency != old_urgency) { |
| 6261 | uint64_t urgency_param1, urgency_param2; |
| 6262 | |
| 6263 | thread_urgency_t new_urgency = thread_get_urgency(thread, |
| 6264 | rt_period: &urgency_param1, rt_deadline: &urgency_param2); |
| 6265 | |
| 6266 | thread_tell_urgency(urgency: new_urgency, rt_period: urgency_param1, |
| 6267 | rt_deadline: urgency_param2, sched_latency: 0, nthread: thread); |
| 6268 | } |
| 6269 | |
| 6270 | /* TODO: only call this if current_perfctl_class changed */ |
| 6271 | uint64_t ctime = mach_approximate_time(); |
| 6272 | machine_thread_going_on_core(new_thread: thread, urgency: processor->current_urgency, sched_latency: 0, same_pri_latency: 0, dispatch_time: ctime); |
| 6273 | } else if (thread->state & TH_RUN) { |
| 6274 | processor_t processor = thread->last_processor; |
| 6275 | |
| 6276 | if (!lazy_update && |
| 6277 | processor != PROCESSOR_NULL && |
| 6278 | processor != current_processor() && |
| 6279 | processor->active_thread == thread) { |
| 6280 | cause_ast_check(processor); |
| 6281 | } |
| 6282 | } |
| 6283 | } |
| 6284 | |
| 6285 | /* |
| 6286 | * thread_run_queue_remove_for_handoff |
| 6287 | * |
| 6288 | * Pull a thread or its (recursive) push target out of the runqueue |
| 6289 | * so that it is ready for thread_run() |
| 6290 | * |
| 6291 | * Called at splsched |
| 6292 | * |
| 6293 | * Returns the thread that was pulled or THREAD_NULL if no thread could be pulled. |
| 6294 | * This may be different than the thread that was passed in. |
| 6295 | */ |
| 6296 | thread_t |
| 6297 | thread_run_queue_remove_for_handoff(thread_t thread) |
| 6298 | { |
| 6299 | thread_t pulled_thread = THREAD_NULL; |
| 6300 | |
| 6301 | thread_lock(thread); |
| 6302 | |
| 6303 | /* |
| 6304 | * Check that the thread is not bound to a different processor, |
| 6305 | * NO_SMT flag is not set on the thread, cluster type of |
| 6306 | * processor matches with thread if the thread is pinned to a |
| 6307 | * particular cluster and that realtime is not involved. |
| 6308 | * |
| 6309 | * Next, pull it off its run queue. If it doesn't come, it's not eligible. |
| 6310 | */ |
| 6311 | processor_t processor = current_processor(); |
| 6312 | if ((thread->bound_processor == PROCESSOR_NULL || thread->bound_processor == processor) |
| 6313 | && (!thread_no_smt(thread)) |
| 6314 | && (processor->current_pri < BASEPRI_RTQUEUES) |
| 6315 | && (thread->sched_pri < BASEPRI_RTQUEUES) |
| 6316 | #if __AMP__ |
| 6317 | && ((thread->th_bound_cluster_id == THREAD_BOUND_CLUSTER_NONE) || |
| 6318 | processor->processor_set->pset_id == thread->th_bound_cluster_id) |
| 6319 | #endif /* __AMP__ */ |
| 6320 | ) { |
| 6321 | if (thread_run_queue_remove(thread)) { |
| 6322 | pulled_thread = thread; |
| 6323 | } |
| 6324 | } |
| 6325 | |
| 6326 | thread_unlock(thread); |
| 6327 | |
| 6328 | return pulled_thread; |
| 6329 | } |
| 6330 | |
| 6331 | /* |
| 6332 | * thread_prepare_for_handoff |
| 6333 | * |
| 6334 | * Make the thread ready for handoff. |
| 6335 | * If the thread was runnable then pull it off the runq, if the thread could |
| 6336 | * not be pulled, return NULL. |
| 6337 | * |
| 6338 | * If the thread was woken up from wait for handoff, make sure it is not bound to |
| 6339 | * different processor. |
| 6340 | * |
| 6341 | * Called at splsched |
| 6342 | * |
| 6343 | * Returns the thread that was pulled or THREAD_NULL if no thread could be pulled. |
| 6344 | * This may be different than the thread that was passed in. |
| 6345 | */ |
| 6346 | thread_t |
| 6347 | thread_prepare_for_handoff(thread_t thread, thread_handoff_option_t option) |
| 6348 | { |
| 6349 | thread_t pulled_thread = THREAD_NULL; |
| 6350 | |
| 6351 | if (option & THREAD_HANDOFF_SETRUN_NEEDED) { |
| 6352 | processor_t processor = current_processor(); |
| 6353 | thread_lock(thread); |
| 6354 | |
| 6355 | /* |
| 6356 | * Check that the thread is not bound to a different processor, |
| 6357 | * NO_SMT flag is not set on the thread and cluster type of |
| 6358 | * processor matches with thread if the thread is pinned to a |
| 6359 | * particular cluster. Call setrun instead if above conditions |
| 6360 | * are not satisfied. |
| 6361 | */ |
| 6362 | if ((thread->bound_processor == PROCESSOR_NULL || thread->bound_processor == processor) |
| 6363 | && (!thread_no_smt(thread)) |
| 6364 | #if __AMP__ |
| 6365 | && ((thread->th_bound_cluster_id == THREAD_BOUND_CLUSTER_NONE) || |
| 6366 | processor->processor_set->pset_id == thread->th_bound_cluster_id) |
| 6367 | #endif /* __AMP__ */ |
| 6368 | ) { |
| 6369 | pulled_thread = thread; |
| 6370 | } else { |
| 6371 | thread_setrun(thread, options: SCHED_PREEMPT | SCHED_TAILQ); |
| 6372 | } |
| 6373 | thread_unlock(thread); |
| 6374 | } else { |
| 6375 | pulled_thread = thread_run_queue_remove_for_handoff(thread); |
| 6376 | } |
| 6377 | |
| 6378 | return pulled_thread; |
| 6379 | } |
| 6380 | |
| 6381 | /* |
| 6382 | * thread_run_queue_remove: |
| 6383 | * |
| 6384 | * Remove a thread from its current run queue and |
| 6385 | * return TRUE if successful. |
| 6386 | * |
| 6387 | * Thread must be locked. |
| 6388 | * |
| 6389 | * If thread->runq is PROCESSOR_NULL, the thread will not re-enter the |
| 6390 | * run queues because the caller locked the thread. Otherwise |
| 6391 | * the thread is on a run queue, but could be chosen for dispatch |
| 6392 | * and removed by another processor under a different lock, which |
| 6393 | * will set thread->runq to PROCESSOR_NULL. |
| 6394 | * |
| 6395 | * Hence the thread select path must not rely on anything that could |
| 6396 | * be changed under the thread lock after calling this function, |
| 6397 | * most importantly thread->sched_pri. |
| 6398 | */ |
| 6399 | boolean_t |
| 6400 | thread_run_queue_remove( |
| 6401 | thread_t thread) |
| 6402 | { |
| 6403 | boolean_t removed = FALSE; |
| 6404 | |
| 6405 | if ((thread->state & (TH_RUN | TH_WAIT)) == TH_WAIT) { |
| 6406 | /* Thread isn't runnable */ |
| 6407 | thread_assert_runq_null(thread); |
| 6408 | return FALSE; |
| 6409 | } |
| 6410 | |
| 6411 | processor_t processor = thread_get_runq(thread); |
| 6412 | if (processor == PROCESSOR_NULL) { |
| 6413 | /* |
| 6414 | * The thread is either not on the runq, |
| 6415 | * or is in the midst of being removed from the runq. |
| 6416 | * |
| 6417 | * runq is set to NULL under the pset lock, not the thread |
| 6418 | * lock, so the thread may still be in the process of being dequeued |
| 6419 | * from the runq. It will wait in invoke for the thread lock to be |
| 6420 | * dropped. |
| 6421 | */ |
| 6422 | |
| 6423 | return FALSE; |
| 6424 | } |
| 6425 | |
| 6426 | if (thread->sched_pri < BASEPRI_RTQUEUES) { |
| 6427 | return SCHED(processor_queue_remove)(processor, thread); |
| 6428 | } |
| 6429 | |
| 6430 | processor_set_t pset = processor->processor_set; |
| 6431 | |
| 6432 | pset_lock(pset); |
| 6433 | |
| 6434 | /* |
| 6435 | * Must re-read the thread runq after acquiring the pset lock, in |
| 6436 | * case another core swooped in before us to dequeue the thread. |
| 6437 | */ |
| 6438 | if (thread_get_runq_locked(thread) != PROCESSOR_NULL) { |
| 6439 | /* |
| 6440 | * Thread is on the RT run queue and we have a lock on |
| 6441 | * that run queue. |
| 6442 | */ |
| 6443 | rt_runq_remove(SCHED(rt_runq)(pset), thread); |
| 6444 | pset_update_rt_stealable_state(pset); |
| 6445 | |
| 6446 | removed = TRUE; |
| 6447 | } |
| 6448 | |
| 6449 | pset_unlock(pset); |
| 6450 | |
| 6451 | return removed; |
| 6452 | } |
| 6453 | |
| 6454 | /* |
| 6455 | * Put the thread back where it goes after a thread_run_queue_remove |
| 6456 | * |
| 6457 | * Thread must have been removed under the same thread lock hold |
| 6458 | * |
| 6459 | * thread locked, at splsched |
| 6460 | */ |
| 6461 | void |
| 6462 | thread_run_queue_reinsert(thread_t thread, sched_options_t options) |
| 6463 | { |
| 6464 | thread_assert_runq_null(thread); |
| 6465 | assert(thread->state & (TH_RUN)); |
| 6466 | |
| 6467 | thread_setrun(thread, options); |
| 6468 | } |
| 6469 | |
| 6470 | void |
| 6471 | sys_override_cpu_throttle(boolean_t enable_override) |
| 6472 | { |
| 6473 | if (enable_override) { |
| 6474 | cpu_throttle_enabled = 0; |
| 6475 | } else { |
| 6476 | cpu_throttle_enabled = 1; |
| 6477 | } |
| 6478 | } |
| 6479 | |
| 6480 | thread_urgency_t |
| 6481 | thread_get_urgency(thread_t thread, uint64_t *arg1, uint64_t *arg2) |
| 6482 | { |
| 6483 | uint64_t urgency_param1 = 0, urgency_param2 = 0; |
| 6484 | task_t task = get_threadtask_early(thread); |
| 6485 | |
| 6486 | thread_urgency_t urgency; |
| 6487 | |
| 6488 | if (thread == NULL || task == TASK_NULL || (thread->state & TH_IDLE)) { |
| 6489 | urgency_param1 = 0; |
| 6490 | urgency_param2 = 0; |
| 6491 | |
| 6492 | urgency = THREAD_URGENCY_NONE; |
| 6493 | } else if (thread->sched_mode == TH_MODE_REALTIME) { |
| 6494 | urgency_param1 = thread->realtime.period; |
| 6495 | urgency_param2 = thread->realtime.deadline; |
| 6496 | |
| 6497 | urgency = THREAD_URGENCY_REAL_TIME; |
| 6498 | } else if (cpu_throttle_enabled && |
| 6499 | (thread->sched_pri <= MAXPRI_THROTTLE) && |
| 6500 | (thread->base_pri <= MAXPRI_THROTTLE)) { |
| 6501 | /* |
| 6502 | * Threads that are running at low priority but are not |
| 6503 | * tagged with a specific QoS are separated out from |
| 6504 | * the "background" urgency. Performance management |
| 6505 | * subsystem can decide to either treat these threads |
| 6506 | * as normal threads or look at other signals like thermal |
| 6507 | * levels for optimal power/perf tradeoffs for a platform. |
| 6508 | */ |
| 6509 | boolean_t thread_lacks_qos = (proc_get_effective_thread_policy(thread, TASK_POLICY_QOS) == THREAD_QOS_UNSPECIFIED); //thread_has_qos_policy(thread); |
| 6510 | boolean_t task_is_suppressed = (proc_get_effective_task_policy(task, TASK_POLICY_SUP_ACTIVE) == 0x1); |
| 6511 | |
| 6512 | /* |
| 6513 | * Background urgency applied when thread priority is |
| 6514 | * MAXPRI_THROTTLE or lower and thread is not promoted |
| 6515 | * and thread has a QoS specified |
| 6516 | */ |
| 6517 | urgency_param1 = thread->sched_pri; |
| 6518 | urgency_param2 = thread->base_pri; |
| 6519 | |
| 6520 | if (thread_lacks_qos && !task_is_suppressed) { |
| 6521 | urgency = THREAD_URGENCY_LOWPRI; |
| 6522 | } else { |
| 6523 | urgency = THREAD_URGENCY_BACKGROUND; |
| 6524 | } |
| 6525 | } else { |
| 6526 | /* For otherwise unclassified threads, report throughput QoS parameters */ |
| 6527 | urgency_param1 = proc_get_effective_thread_policy(thread, TASK_POLICY_THROUGH_QOS); |
| 6528 | urgency_param2 = proc_get_effective_task_policy(task, TASK_POLICY_THROUGH_QOS); |
| 6529 | urgency = THREAD_URGENCY_NORMAL; |
| 6530 | } |
| 6531 | |
| 6532 | if (arg1 != NULL) { |
| 6533 | *arg1 = urgency_param1; |
| 6534 | } |
| 6535 | if (arg2 != NULL) { |
| 6536 | *arg2 = urgency_param2; |
| 6537 | } |
| 6538 | |
| 6539 | return urgency; |
| 6540 | } |
| 6541 | |
| 6542 | perfcontrol_class_t |
| 6543 | thread_get_perfcontrol_class(thread_t thread) |
| 6544 | { |
| 6545 | /* Special case handling */ |
| 6546 | if (thread->state & TH_IDLE) { |
| 6547 | return PERFCONTROL_CLASS_IDLE; |
| 6548 | } |
| 6549 | |
| 6550 | if (thread->sched_mode == TH_MODE_REALTIME) { |
| 6551 | return PERFCONTROL_CLASS_REALTIME; |
| 6552 | } |
| 6553 | |
| 6554 | /* perfcontrol_class based on base_pri */ |
| 6555 | if (thread->base_pri <= MAXPRI_THROTTLE) { |
| 6556 | return PERFCONTROL_CLASS_BACKGROUND; |
| 6557 | } else if (thread->base_pri <= BASEPRI_UTILITY) { |
| 6558 | return PERFCONTROL_CLASS_UTILITY; |
| 6559 | } else if (thread->base_pri <= BASEPRI_DEFAULT) { |
| 6560 | return PERFCONTROL_CLASS_NONUI; |
| 6561 | } else if (thread->base_pri <= BASEPRI_USER_INITIATED) { |
| 6562 | return PERFCONTROL_CLASS_USER_INITIATED; |
| 6563 | } else if (thread->base_pri <= BASEPRI_FOREGROUND) { |
| 6564 | return PERFCONTROL_CLASS_UI; |
| 6565 | } else { |
| 6566 | if (get_threadtask(thread) == kernel_task) { |
| 6567 | /* |
| 6568 | * Classify Above UI kernel threads as PERFCONTROL_CLASS_KERNEL. |
| 6569 | * All other lower priority kernel threads should be treated |
| 6570 | * as regular threads for performance control purposes. |
| 6571 | */ |
| 6572 | return PERFCONTROL_CLASS_KERNEL; |
| 6573 | } |
| 6574 | return PERFCONTROL_CLASS_ABOVEUI; |
| 6575 | } |
| 6576 | } |
| 6577 | |
| 6578 | /* |
| 6579 | * This is the processor idle loop, which just looks for other threads |
| 6580 | * to execute. Processor idle threads invoke this without supplying a |
| 6581 | * current thread to idle without an asserted wait state. |
| 6582 | * |
| 6583 | * Returns a the next thread to execute if dispatched directly. |
| 6584 | */ |
| 6585 | |
| 6586 | #if 0 |
| 6587 | #define IDLE_KERNEL_DEBUG_CONSTANT(...) KERNEL_DEBUG_CONSTANT(__VA_ARGS__) |
| 6588 | #else |
| 6589 | #define IDLE_KERNEL_DEBUG_CONSTANT(...) do { } while(0) |
| 6590 | #endif |
| 6591 | |
| 6592 | #if (DEVELOPMENT || DEBUG) |
| 6593 | int sched_idle_delay_cpuid = -1; |
| 6594 | #endif |
| 6595 | |
| 6596 | thread_t |
| 6597 | processor_idle( |
| 6598 | thread_t thread, |
| 6599 | processor_t processor) |
| 6600 | { |
| 6601 | processor_set_t pset = processor->processor_set; |
| 6602 | struct recount_snap snap = { 0 }; |
| 6603 | |
| 6604 | (void)splsched(); |
| 6605 | |
| 6606 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
| 6607 | MACHDBG_CODE(DBG_MACH_SCHED, MACH_IDLE) | DBG_FUNC_START, |
| 6608 | (uintptr_t)thread_tid(thread), 0, 0, 0, 0); |
| 6609 | |
| 6610 | SCHED_STATS_INC(idle_transitions); |
| 6611 | assert(processor->running_timers_active == false); |
| 6612 | |
| 6613 | recount_snapshot(snap: &snap); |
| 6614 | recount_processor_idle(pr: &processor->pr_recount, snap: &snap); |
| 6615 | |
| 6616 | while (1) { |
| 6617 | /* |
| 6618 | * Ensure that updates to my processor and pset state, |
| 6619 | * made by the IPI source processor before sending the IPI, |
| 6620 | * are visible on this processor now (even though we don't |
| 6621 | * take the pset lock yet). |
| 6622 | */ |
| 6623 | atomic_thread_fence(memory_order_acquire); |
| 6624 | |
| 6625 | if (processor->state != PROCESSOR_IDLE) { |
| 6626 | break; |
| 6627 | } |
| 6628 | if (bit_test(pset->pending_AST_URGENT_cpu_mask, processor->cpu_id)) { |
| 6629 | break; |
| 6630 | } |
| 6631 | #if defined(CONFIG_SCHED_DEFERRED_AST) |
| 6632 | if (bit_test(pset->pending_deferred_AST_cpu_mask, processor->cpu_id)) { |
| 6633 | break; |
| 6634 | } |
| 6635 | #endif |
| 6636 | if (bit_test(pset->rt_pending_spill_cpu_mask, processor->cpu_id)) { |
| 6637 | break; |
| 6638 | } |
| 6639 | |
| 6640 | if (processor->is_recommended && (processor->processor_primary == processor)) { |
| 6641 | if (rt_runq_count(pset)) { |
| 6642 | break; |
| 6643 | } |
| 6644 | } else { |
| 6645 | if (SCHED(processor_bound_count)(processor)) { |
| 6646 | break; |
| 6647 | } |
| 6648 | } |
| 6649 | |
| 6650 | IDLE_KERNEL_DEBUG_CONSTANT( |
| 6651 | MACHDBG_CODE(DBG_MACH_SCHED, MACH_IDLE) | DBG_FUNC_NONE, (uintptr_t)thread_tid(thread), rt_runq_count(pset), SCHED(processor_runq_count)(processor), -1, 0); |
| 6652 | |
| 6653 | machine_track_platform_idle(TRUE); |
| 6654 | |
| 6655 | machine_idle(); |
| 6656 | /* returns with interrupts enabled */ |
| 6657 | |
| 6658 | machine_track_platform_idle(FALSE); |
| 6659 | |
| 6660 | #if (DEVELOPMENT || DEBUG) |
| 6661 | if (processor->cpu_id == sched_idle_delay_cpuid) { |
| 6662 | delay(500); |
| 6663 | } |
| 6664 | #endif |
| 6665 | |
| 6666 | (void)splsched(); |
| 6667 | |
| 6668 | atomic_thread_fence(memory_order_acquire); |
| 6669 | |
| 6670 | IDLE_KERNEL_DEBUG_CONSTANT( |
| 6671 | MACHDBG_CODE(DBG_MACH_SCHED, MACH_IDLE) | DBG_FUNC_NONE, (uintptr_t)thread_tid(thread), rt_runq_count(pset), SCHED(processor_runq_count)(processor), -2, 0); |
| 6672 | |
| 6673 | /* |
| 6674 | * Check if we should call sched_timeshare_consider_maintenance() here. |
| 6675 | * The CPU was woken out of idle due to an interrupt and we should do the |
| 6676 | * call only if the processor is still idle. If the processor is non-idle, |
| 6677 | * the threads running on the processor would do the call as part of |
| 6678 | * context swithing. |
| 6679 | */ |
| 6680 | if (processor->state == PROCESSOR_IDLE) { |
| 6681 | sched_timeshare_consider_maintenance(ctime: mach_absolute_time(), true); |
| 6682 | } |
| 6683 | |
| 6684 | if (!SCHED(processor_queue_empty)(processor)) { |
| 6685 | /* Secondary SMT processors respond to directed wakeups |
| 6686 | * exclusively. Some platforms induce 'spurious' SMT wakeups. |
| 6687 | */ |
| 6688 | if (processor->processor_primary == processor) { |
| 6689 | break; |
| 6690 | } |
| 6691 | } |
| 6692 | } |
| 6693 | |
| 6694 | recount_snapshot(snap: &snap); |
| 6695 | recount_processor_run(pr: &processor->pr_recount, snap: &snap); |
| 6696 | smr_cpu_join(processor, ctime: snap.rsn_time_mach); |
| 6697 | |
| 6698 | ast_t reason = AST_NONE; |
| 6699 | |
| 6700 | /* We're handling all scheduling AST's */ |
| 6701 | ast_off(AST_SCHEDULING); |
| 6702 | |
| 6703 | /* |
| 6704 | * thread_select will move the processor from dispatching to running, |
| 6705 | * or put it in idle if there's nothing to do. |
| 6706 | */ |
| 6707 | thread_t cur_thread = current_thread(); |
| 6708 | |
| 6709 | thread_lock(cur_thread); |
| 6710 | thread_t new_thread = thread_select(thread: cur_thread, processor, reason: &reason); |
| 6711 | thread_unlock(cur_thread); |
| 6712 | |
| 6713 | assert(processor->running_timers_active == false); |
| 6714 | |
| 6715 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
| 6716 | MACHDBG_CODE(DBG_MACH_SCHED, MACH_IDLE) | DBG_FUNC_END, |
| 6717 | (uintptr_t)thread_tid(thread), processor->state, (uintptr_t)thread_tid(new_thread), reason, 0); |
| 6718 | |
| 6719 | return new_thread; |
| 6720 | } |
| 6721 | |
| 6722 | /* |
| 6723 | * Each processor has a dedicated thread which |
| 6724 | * executes the idle loop when there is no suitable |
| 6725 | * previous context. |
| 6726 | * |
| 6727 | * This continuation is entered with interrupts disabled. |
| 6728 | */ |
| 6729 | void |
| 6730 | idle_thread(__assert_only void* parameter, |
| 6731 | __unused wait_result_t result) |
| 6732 | { |
| 6733 | assert(ml_get_interrupts_enabled() == FALSE); |
| 6734 | assert(parameter == NULL); |
| 6735 | |
| 6736 | processor_t processor = current_processor(); |
| 6737 | |
| 6738 | smr_cpu_leave(processor, ctime: processor->last_dispatch); |
| 6739 | |
| 6740 | /* |
| 6741 | * Ensure that anything running in idle context triggers |
| 6742 | * preemption-disabled checks. |
| 6743 | */ |
| 6744 | disable_preemption_without_measurements(); |
| 6745 | |
| 6746 | /* |
| 6747 | * Enable interrupts temporarily to handle any pending interrupts |
| 6748 | * or IPIs before deciding to sleep |
| 6749 | */ |
| 6750 | spllo(); |
| 6751 | |
| 6752 | thread_t new_thread = processor_idle(THREAD_NULL, processor); |
| 6753 | /* returns with interrupts disabled */ |
| 6754 | |
| 6755 | enable_preemption(); |
| 6756 | |
| 6757 | if (new_thread != THREAD_NULL) { |
| 6758 | thread_run(self: processor->idle_thread, |
| 6759 | continuation: idle_thread, NULL, new_thread); |
| 6760 | /*NOTREACHED*/ |
| 6761 | } |
| 6762 | |
| 6763 | thread_block(continuation: idle_thread); |
| 6764 | /*NOTREACHED*/ |
| 6765 | } |
| 6766 | |
| 6767 | kern_return_t |
| 6768 | idle_thread_create( |
| 6769 | processor_t processor) |
| 6770 | { |
| 6771 | kern_return_t result; |
| 6772 | thread_t thread; |
| 6773 | spl_t s; |
| 6774 | char name[MAXTHREADNAMESIZE]; |
| 6775 | |
| 6776 | result = kernel_thread_create(continuation: idle_thread, NULL, MAXPRI_KERNEL, new_thread: &thread); |
| 6777 | if (result != KERN_SUCCESS) { |
| 6778 | return result; |
| 6779 | } |
| 6780 | |
| 6781 | snprintf(name, sizeof(name), "idle #%d" , processor->cpu_id); |
| 6782 | thread_set_thread_name(th: thread, name); |
| 6783 | |
| 6784 | s = splsched(); |
| 6785 | thread_lock(thread); |
| 6786 | thread->bound_processor = processor; |
| 6787 | processor->idle_thread = thread; |
| 6788 | thread->sched_pri = thread->base_pri = IDLEPRI; |
| 6789 | thread->state = (TH_RUN | TH_IDLE); |
| 6790 | thread->options |= TH_OPT_IDLE_THREAD; |
| 6791 | thread->last_made_runnable_time = thread->last_basepri_change_time = mach_absolute_time(); |
| 6792 | thread_unlock(thread); |
| 6793 | splx(s); |
| 6794 | |
| 6795 | thread_deallocate(thread); |
| 6796 | |
| 6797 | return KERN_SUCCESS; |
| 6798 | } |
| 6799 | |
| 6800 | static void sched_update_powered_cores_continue(void); |
| 6801 | |
| 6802 | /* |
| 6803 | * sched_startup: |
| 6804 | * |
| 6805 | * Kicks off scheduler services. |
| 6806 | * |
| 6807 | * Called at splsched. |
| 6808 | */ |
| 6809 | void |
| 6810 | sched_startup(void) |
| 6811 | { |
| 6812 | kern_return_t result; |
| 6813 | thread_t thread; |
| 6814 | |
| 6815 | simple_lock_init(&sched_vm_group_list_lock, 0); |
| 6816 | |
| 6817 | result = kernel_thread_start_priority(continuation: (thread_continue_t)sched_init_thread, |
| 6818 | NULL, MAXPRI_KERNEL, new_thread: &thread); |
| 6819 | if (result != KERN_SUCCESS) { |
| 6820 | panic("sched_startup" ); |
| 6821 | } |
| 6822 | |
| 6823 | thread_deallocate(thread); |
| 6824 | |
| 6825 | assert_thread_magic(thread); |
| 6826 | |
| 6827 | /* |
| 6828 | * Yield to the sched_init_thread once, to |
| 6829 | * initialize our own thread after being switched |
| 6830 | * back to. |
| 6831 | * |
| 6832 | * The current thread is the only other thread |
| 6833 | * active at this point. |
| 6834 | */ |
| 6835 | thread_block(THREAD_CONTINUE_NULL); |
| 6836 | |
| 6837 | result = kernel_thread_start_priority(continuation: (thread_continue_t)sched_update_powered_cores_continue, |
| 6838 | NULL, MAXPRI_KERNEL, new_thread: &thread); |
| 6839 | if (result != KERN_SUCCESS) { |
| 6840 | panic("sched_startup" ); |
| 6841 | } |
| 6842 | |
| 6843 | thread_deallocate(thread); |
| 6844 | |
| 6845 | assert_thread_magic(thread); |
| 6846 | } |
| 6847 | |
| 6848 | #if __arm64__ |
| 6849 | static _Atomic uint64_t sched_perfcontrol_callback_deadline; |
| 6850 | #endif /* __arm64__ */ |
| 6851 | |
| 6852 | |
| 6853 | #if defined(CONFIG_SCHED_TIMESHARE_CORE) |
| 6854 | |
| 6855 | static volatile uint64_t sched_maintenance_deadline; |
| 6856 | static uint64_t sched_tick_last_abstime; |
| 6857 | static uint64_t sched_tick_delta; |
| 6858 | uint64_t sched_tick_max_delta; |
| 6859 | |
| 6860 | |
| 6861 | /* |
| 6862 | * sched_init_thread: |
| 6863 | * |
| 6864 | * Perform periodic bookkeeping functions about ten |
| 6865 | * times per second. |
| 6866 | */ |
| 6867 | void |
| 6868 | sched_timeshare_maintenance_continue(void) |
| 6869 | { |
| 6870 | uint64_t sched_tick_ctime, late_time; |
| 6871 | |
| 6872 | struct sched_update_scan_context scan_context = { |
| 6873 | .earliest_bg_make_runnable_time = UINT64_MAX, |
| 6874 | .earliest_normal_make_runnable_time = UINT64_MAX, |
| 6875 | .earliest_rt_make_runnable_time = UINT64_MAX |
| 6876 | }; |
| 6877 | |
| 6878 | sched_tick_ctime = mach_absolute_time(); |
| 6879 | |
| 6880 | if (__improbable(sched_tick_last_abstime == 0)) { |
| 6881 | sched_tick_last_abstime = sched_tick_ctime; |
| 6882 | late_time = 0; |
| 6883 | sched_tick_delta = 1; |
| 6884 | } else { |
| 6885 | late_time = sched_tick_ctime - sched_tick_last_abstime; |
| 6886 | sched_tick_delta = late_time / sched_tick_interval; |
| 6887 | /* Ensure a delta of 1, since the interval could be slightly |
| 6888 | * smaller than the sched_tick_interval due to dispatch |
| 6889 | * latencies. |
| 6890 | */ |
| 6891 | sched_tick_delta = MAX(sched_tick_delta, 1); |
| 6892 | |
| 6893 | /* In the event interrupt latencies or platform |
| 6894 | * idle events that advanced the timebase resulted |
| 6895 | * in periods where no threads were dispatched, |
| 6896 | * cap the maximum "tick delta" at SCHED_TICK_MAX_DELTA |
| 6897 | * iterations. |
| 6898 | */ |
| 6899 | sched_tick_delta = MIN(sched_tick_delta, SCHED_TICK_MAX_DELTA); |
| 6900 | |
| 6901 | sched_tick_last_abstime = sched_tick_ctime; |
| 6902 | sched_tick_max_delta = MAX(sched_tick_delta, sched_tick_max_delta); |
| 6903 | } |
| 6904 | |
| 6905 | scan_context.sched_tick_last_abstime = sched_tick_last_abstime; |
| 6906 | KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED, MACH_SCHED_MAINTENANCE) | DBG_FUNC_START, |
| 6907 | sched_tick_delta, late_time, 0, 0, 0); |
| 6908 | |
| 6909 | /* Add a number of pseudo-ticks corresponding to the elapsed interval |
| 6910 | * This could be greater than 1 if substantial intervals where |
| 6911 | * all processors are idle occur, which rarely occurs in practice. |
| 6912 | */ |
| 6913 | |
| 6914 | sched_tick += sched_tick_delta; |
| 6915 | |
| 6916 | update_vm_info(); |
| 6917 | |
| 6918 | /* |
| 6919 | * Compute various averages. |
| 6920 | */ |
| 6921 | compute_averages(sched_tick_delta); |
| 6922 | |
| 6923 | /* |
| 6924 | * Scan the run queues for threads which |
| 6925 | * may need to be updated, and find the earliest runnable thread on the runqueue |
| 6926 | * to report its latency. |
| 6927 | */ |
| 6928 | SCHED(thread_update_scan)(&scan_context); |
| 6929 | |
| 6930 | SCHED(rt_runq_scan)(&scan_context); |
| 6931 | |
| 6932 | uint64_t ctime = mach_absolute_time(); |
| 6933 | |
| 6934 | uint64_t bg_max_latency = (ctime > scan_context.earliest_bg_make_runnable_time) ? |
| 6935 | ctime - scan_context.earliest_bg_make_runnable_time : 0; |
| 6936 | |
| 6937 | uint64_t default_max_latency = (ctime > scan_context.earliest_normal_make_runnable_time) ? |
| 6938 | ctime - scan_context.earliest_normal_make_runnable_time : 0; |
| 6939 | |
| 6940 | uint64_t realtime_max_latency = (ctime > scan_context.earliest_rt_make_runnable_time) ? |
| 6941 | ctime - scan_context.earliest_rt_make_runnable_time : 0; |
| 6942 | |
| 6943 | machine_max_runnable_latency(bg_max_latency, default_max_latency, realtime_max_latency); |
| 6944 | |
| 6945 | /* |
| 6946 | * Check to see if the special sched VM group needs attention. |
| 6947 | */ |
| 6948 | sched_vm_group_maintenance(); |
| 6949 | |
| 6950 | #if __arm64__ |
| 6951 | /* Check to see if the recommended cores failsafe is active */ |
| 6952 | sched_recommended_cores_maintenance(); |
| 6953 | #endif /* __arm64__ */ |
| 6954 | |
| 6955 | |
| 6956 | #if DEBUG || DEVELOPMENT |
| 6957 | #if __x86_64__ |
| 6958 | #include <i386/misc_protos.h> |
| 6959 | /* Check for long-duration interrupts */ |
| 6960 | mp_interrupt_watchdog(); |
| 6961 | #endif /* __x86_64__ */ |
| 6962 | #endif /* DEBUG || DEVELOPMENT */ |
| 6963 | |
| 6964 | KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED, MACH_SCHED_MAINTENANCE) | DBG_FUNC_END, |
| 6965 | sched_pri_shifts[TH_BUCKET_SHARE_FG], sched_pri_shifts[TH_BUCKET_SHARE_BG], |
| 6966 | sched_pri_shifts[TH_BUCKET_SHARE_UT], sched_pri_shifts[TH_BUCKET_SHARE_DF], 0); |
| 6967 | |
| 6968 | assert_wait(event: (event_t)sched_timeshare_maintenance_continue, THREAD_UNINT); |
| 6969 | thread_block(continuation: (thread_continue_t)sched_timeshare_maintenance_continue); |
| 6970 | /*NOTREACHED*/ |
| 6971 | } |
| 6972 | |
| 6973 | static uint64_t sched_maintenance_wakeups; |
| 6974 | |
| 6975 | /* |
| 6976 | * Determine if the set of routines formerly driven by a maintenance timer |
| 6977 | * must be invoked, based on a deadline comparison. Signals the scheduler |
| 6978 | * maintenance thread on deadline expiration. Must be invoked at an interval |
| 6979 | * lower than the "sched_tick_interval", currently accomplished by |
| 6980 | * invocation via the quantum expiration timer and at context switch time. |
| 6981 | * Performance matters: this routine reuses a timestamp approximating the |
| 6982 | * current absolute time received from the caller, and should perform |
| 6983 | * no more than a comparison against the deadline in the common case. |
| 6984 | */ |
| 6985 | void |
| 6986 | sched_timeshare_consider_maintenance(uint64_t ctime, bool safe_point) |
| 6987 | { |
| 6988 | uint64_t deadline = sched_maintenance_deadline; |
| 6989 | |
| 6990 | if (__improbable(ctime >= deadline)) { |
| 6991 | if (__improbable(current_thread() == sched_maintenance_thread)) { |
| 6992 | return; |
| 6993 | } |
| 6994 | OSMemoryBarrier(); |
| 6995 | |
| 6996 | uint64_t ndeadline = ctime + sched_tick_interval; |
| 6997 | |
| 6998 | if (__probable(os_atomic_cmpxchg(&sched_maintenance_deadline, deadline, ndeadline, seq_cst))) { |
| 6999 | thread_wakeup((event_t)sched_timeshare_maintenance_continue); |
| 7000 | sched_maintenance_wakeups++; |
| 7001 | smr_maintenance(ctime); |
| 7002 | } |
| 7003 | } |
| 7004 | |
| 7005 | smr_cpu_tick(ctime, safe_point); |
| 7006 | |
| 7007 | #if !CONFIG_SCHED_CLUTCH |
| 7008 | /* |
| 7009 | * Only non-clutch schedulers use the global load calculation EWMA algorithm. For clutch |
| 7010 | * scheduler, the load is maintained at the thread group and bucket level. |
| 7011 | */ |
| 7012 | uint64_t load_compute_deadline = os_atomic_load_wide(&sched_load_compute_deadline, relaxed); |
| 7013 | |
| 7014 | if (__improbable(load_compute_deadline && ctime >= load_compute_deadline)) { |
| 7015 | uint64_t new_deadline = 0; |
| 7016 | if (os_atomic_cmpxchg(&sched_load_compute_deadline, load_compute_deadline, new_deadline, relaxed)) { |
| 7017 | compute_sched_load(); |
| 7018 | new_deadline = ctime + sched_load_compute_interval_abs; |
| 7019 | os_atomic_store_wide(&sched_load_compute_deadline, new_deadline, relaxed); |
| 7020 | } |
| 7021 | } |
| 7022 | #endif /* CONFIG_SCHED_CLUTCH */ |
| 7023 | |
| 7024 | #if __arm64__ |
| 7025 | uint64_t perf_deadline = os_atomic_load(&sched_perfcontrol_callback_deadline, relaxed); |
| 7026 | |
| 7027 | if (__improbable(perf_deadline && ctime >= perf_deadline)) { |
| 7028 | /* CAS in 0, if success, make callback. Otherwise let the next context switch check again. */ |
| 7029 | if (os_atomic_cmpxchg(&sched_perfcontrol_callback_deadline, perf_deadline, 0, relaxed)) { |
| 7030 | machine_perfcontrol_deadline_passed(deadline: perf_deadline); |
| 7031 | } |
| 7032 | } |
| 7033 | #endif /* __arm64__ */ |
| 7034 | } |
| 7035 | |
| 7036 | #endif /* CONFIG_SCHED_TIMESHARE_CORE */ |
| 7037 | |
| 7038 | void |
| 7039 | sched_init_thread(void) |
| 7040 | { |
| 7041 | thread_block(THREAD_CONTINUE_NULL); |
| 7042 | |
| 7043 | thread_t thread = current_thread(); |
| 7044 | |
| 7045 | thread_set_thread_name(th: thread, name: "sched_maintenance_thread" ); |
| 7046 | |
| 7047 | sched_maintenance_thread = thread; |
| 7048 | |
| 7049 | SCHED(maintenance_continuation)(); |
| 7050 | |
| 7051 | /*NOTREACHED*/ |
| 7052 | } |
| 7053 | |
| 7054 | #if defined(CONFIG_SCHED_TIMESHARE_CORE) |
| 7055 | |
| 7056 | /* |
| 7057 | * thread_update_scan / runq_scan: |
| 7058 | * |
| 7059 | * Scan the run queues to account for timesharing threads |
| 7060 | * which need to be updated. |
| 7061 | * |
| 7062 | * Scanner runs in two passes. Pass one squirrels likely |
| 7063 | * threads away in an array, pass two does the update. |
| 7064 | * |
| 7065 | * This is necessary because the run queue is locked for |
| 7066 | * the candidate scan, but the thread is locked for the update. |
| 7067 | * |
| 7068 | * Array should be sized to make forward progress, without |
| 7069 | * disabling preemption for long periods. |
| 7070 | */ |
| 7071 | |
| 7072 | #define THREAD_UPDATE_SIZE 128 |
| 7073 | |
| 7074 | static thread_t thread_update_array[THREAD_UPDATE_SIZE]; |
| 7075 | static uint32_t thread_update_count = 0; |
| 7076 | |
| 7077 | /* Returns TRUE if thread was added, FALSE if thread_update_array is full */ |
| 7078 | boolean_t |
| 7079 | thread_update_add_thread(thread_t thread) |
| 7080 | { |
| 7081 | if (thread_update_count == THREAD_UPDATE_SIZE) { |
| 7082 | return FALSE; |
| 7083 | } |
| 7084 | |
| 7085 | thread_update_array[thread_update_count++] = thread; |
| 7086 | thread_reference(thread); |
| 7087 | return TRUE; |
| 7088 | } |
| 7089 | |
| 7090 | void |
| 7091 | thread_update_process_threads(void) |
| 7092 | { |
| 7093 | assert(thread_update_count <= THREAD_UPDATE_SIZE); |
| 7094 | |
| 7095 | for (uint32_t i = 0; i < thread_update_count; i++) { |
| 7096 | thread_t thread = thread_update_array[i]; |
| 7097 | assert_thread_magic(thread); |
| 7098 | thread_update_array[i] = THREAD_NULL; |
| 7099 | |
| 7100 | spl_t s = splsched(); |
| 7101 | thread_lock(thread); |
| 7102 | if (!(thread->state & (TH_WAIT)) && thread->sched_stamp != sched_tick) { |
| 7103 | SCHED(update_priority)(thread); |
| 7104 | } |
| 7105 | thread_unlock(thread); |
| 7106 | splx(s); |
| 7107 | |
| 7108 | thread_deallocate(thread); |
| 7109 | } |
| 7110 | |
| 7111 | thread_update_count = 0; |
| 7112 | } |
| 7113 | |
| 7114 | static boolean_t |
| 7115 | runq_scan_thread( |
| 7116 | thread_t thread, |
| 7117 | sched_update_scan_context_t scan_context) |
| 7118 | { |
| 7119 | assert_thread_magic(thread); |
| 7120 | |
| 7121 | if (thread->sched_stamp != sched_tick && |
| 7122 | thread->sched_mode == TH_MODE_TIMESHARE) { |
| 7123 | if (thread_update_add_thread(thread) == FALSE) { |
| 7124 | return TRUE; |
| 7125 | } |
| 7126 | } |
| 7127 | |
| 7128 | if (cpu_throttle_enabled && ((thread->sched_pri <= MAXPRI_THROTTLE) && (thread->base_pri <= MAXPRI_THROTTLE))) { |
| 7129 | if (thread->last_made_runnable_time < scan_context->earliest_bg_make_runnable_time) { |
| 7130 | scan_context->earliest_bg_make_runnable_time = thread->last_made_runnable_time; |
| 7131 | } |
| 7132 | } else { |
| 7133 | if (thread->last_made_runnable_time < scan_context->earliest_normal_make_runnable_time) { |
| 7134 | scan_context->earliest_normal_make_runnable_time = thread->last_made_runnable_time; |
| 7135 | } |
| 7136 | } |
| 7137 | |
| 7138 | return FALSE; |
| 7139 | } |
| 7140 | |
| 7141 | /* |
| 7142 | * Scan a runq for candidate threads. |
| 7143 | * |
| 7144 | * Returns TRUE if retry is needed. |
| 7145 | */ |
| 7146 | boolean_t |
| 7147 | runq_scan( |
| 7148 | run_queue_t runq, |
| 7149 | sched_update_scan_context_t scan_context) |
| 7150 | { |
| 7151 | int count = runq->count; |
| 7152 | int queue_index; |
| 7153 | |
| 7154 | assert(count >= 0); |
| 7155 | |
| 7156 | if (count == 0) { |
| 7157 | return FALSE; |
| 7158 | } |
| 7159 | |
| 7160 | for (queue_index = bitmap_first(map: runq->bitmap, NRQS); |
| 7161 | queue_index >= 0; |
| 7162 | queue_index = bitmap_next(map: runq->bitmap, prev: queue_index)) { |
| 7163 | thread_t thread; |
| 7164 | circle_queue_t queue = &runq->queues[queue_index]; |
| 7165 | |
| 7166 | cqe_foreach_element(thread, queue, runq_links) { |
| 7167 | assert(count > 0); |
| 7168 | if (runq_scan_thread(thread, scan_context) == TRUE) { |
| 7169 | return TRUE; |
| 7170 | } |
| 7171 | count--; |
| 7172 | } |
| 7173 | } |
| 7174 | |
| 7175 | return FALSE; |
| 7176 | } |
| 7177 | |
| 7178 | #if CONFIG_SCHED_CLUTCH |
| 7179 | |
| 7180 | boolean_t |
| 7181 | sched_clutch_timeshare_scan( |
| 7182 | queue_t thread_queue, |
| 7183 | uint16_t thread_count, |
| 7184 | sched_update_scan_context_t scan_context) |
| 7185 | { |
| 7186 | if (thread_count == 0) { |
| 7187 | return FALSE; |
| 7188 | } |
| 7189 | |
| 7190 | thread_t thread; |
| 7191 | qe_foreach_element_safe(thread, thread_queue, th_clutch_timeshare_link) { |
| 7192 | if (runq_scan_thread(thread, scan_context) == TRUE) { |
| 7193 | return TRUE; |
| 7194 | } |
| 7195 | thread_count--; |
| 7196 | } |
| 7197 | |
| 7198 | assert(thread_count == 0); |
| 7199 | return FALSE; |
| 7200 | } |
| 7201 | |
| 7202 | |
| 7203 | #endif /* CONFIG_SCHED_CLUTCH */ |
| 7204 | |
| 7205 | #endif /* CONFIG_SCHED_TIMESHARE_CORE */ |
| 7206 | |
| 7207 | bool |
| 7208 | thread_is_eager_preempt(thread_t thread) |
| 7209 | { |
| 7210 | return thread->sched_flags & TH_SFLAG_EAGERPREEMPT; |
| 7211 | } |
| 7212 | |
| 7213 | void |
| 7214 | thread_set_eager_preempt(thread_t thread) |
| 7215 | { |
| 7216 | spl_t s = splsched(); |
| 7217 | thread_lock(thread); |
| 7218 | |
| 7219 | assert(!thread_is_eager_preempt(thread)); |
| 7220 | |
| 7221 | thread->sched_flags |= TH_SFLAG_EAGERPREEMPT; |
| 7222 | |
| 7223 | if (thread == current_thread()) { |
| 7224 | /* csw_check updates current_is_eagerpreempt on the processor */ |
| 7225 | ast_t ast = csw_check(thread, processor: current_processor(), AST_NONE); |
| 7226 | |
| 7227 | thread_unlock(thread); |
| 7228 | |
| 7229 | if (ast != AST_NONE) { |
| 7230 | thread_block_reason(THREAD_CONTINUE_NULL, NULL, reason: ast); |
| 7231 | } |
| 7232 | } else { |
| 7233 | processor_t last_processor = thread->last_processor; |
| 7234 | |
| 7235 | if (last_processor != PROCESSOR_NULL && |
| 7236 | last_processor->state == PROCESSOR_RUNNING && |
| 7237 | last_processor->active_thread == thread) { |
| 7238 | cause_ast_check(processor: last_processor); |
| 7239 | } |
| 7240 | |
| 7241 | thread_unlock(thread); |
| 7242 | } |
| 7243 | |
| 7244 | splx(s); |
| 7245 | } |
| 7246 | |
| 7247 | void |
| 7248 | thread_clear_eager_preempt(thread_t thread) |
| 7249 | { |
| 7250 | spl_t s = splsched(); |
| 7251 | thread_lock(thread); |
| 7252 | |
| 7253 | assert(thread_is_eager_preempt(thread)); |
| 7254 | |
| 7255 | thread->sched_flags &= ~TH_SFLAG_EAGERPREEMPT; |
| 7256 | |
| 7257 | if (thread == current_thread()) { |
| 7258 | current_processor()->current_is_eagerpreempt = false; |
| 7259 | } |
| 7260 | |
| 7261 | thread_unlock(thread); |
| 7262 | splx(s); |
| 7263 | } |
| 7264 | |
| 7265 | /* |
| 7266 | * Scheduling statistics |
| 7267 | */ |
| 7268 | void |
| 7269 | sched_stats_handle_csw(processor_t processor, int reasons, int selfpri, int otherpri) |
| 7270 | { |
| 7271 | struct sched_statistics *stats; |
| 7272 | boolean_t to_realtime = FALSE; |
| 7273 | |
| 7274 | stats = PERCPU_GET_RELATIVE(sched_stats, processor, processor); |
| 7275 | stats->csw_count++; |
| 7276 | |
| 7277 | if (otherpri >= BASEPRI_REALTIME) { |
| 7278 | stats->rt_sched_count++; |
| 7279 | to_realtime = TRUE; |
| 7280 | } |
| 7281 | |
| 7282 | if ((reasons & AST_PREEMPT) != 0) { |
| 7283 | stats->preempt_count++; |
| 7284 | |
| 7285 | if (selfpri >= BASEPRI_REALTIME) { |
| 7286 | stats->preempted_rt_count++; |
| 7287 | } |
| 7288 | |
| 7289 | if (to_realtime) { |
| 7290 | stats->preempted_by_rt_count++; |
| 7291 | } |
| 7292 | } |
| 7293 | } |
| 7294 | |
| 7295 | void |
| 7296 | sched_stats_handle_runq_change(struct runq_stats *stats, int old_count) |
| 7297 | { |
| 7298 | uint64_t timestamp = mach_absolute_time(); |
| 7299 | |
| 7300 | stats->count_sum += (timestamp - stats->last_change_timestamp) * old_count; |
| 7301 | stats->last_change_timestamp = timestamp; |
| 7302 | } |
| 7303 | |
| 7304 | /* |
| 7305 | * For calls from assembly code |
| 7306 | */ |
| 7307 | #undef thread_wakeup |
| 7308 | void |
| 7309 | thread_wakeup( |
| 7310 | event_t x); |
| 7311 | |
| 7312 | void |
| 7313 | thread_wakeup( |
| 7314 | event_t x) |
| 7315 | { |
| 7316 | thread_wakeup_with_result(x, THREAD_AWAKENED); |
| 7317 | } |
| 7318 | |
| 7319 | boolean_t |
| 7320 | preemption_enabled(void) |
| 7321 | { |
| 7322 | return get_preemption_level() == 0 && ml_get_interrupts_enabled(); |
| 7323 | } |
| 7324 | |
| 7325 | static void |
| 7326 | sched_timer_deadline_tracking_init(void) |
| 7327 | { |
| 7328 | nanoseconds_to_absolutetime(TIMER_DEADLINE_TRACKING_BIN_1_DEFAULT, result: &timer_deadline_tracking_bin_1); |
| 7329 | nanoseconds_to_absolutetime(TIMER_DEADLINE_TRACKING_BIN_2_DEFAULT, result: &timer_deadline_tracking_bin_2); |
| 7330 | } |
| 7331 | |
| 7332 | static uint64_t latest_requested_powered_cores = ALL_CORES_POWERED; |
| 7333 | processor_reason_t latest_requested_reason = REASON_NONE; |
| 7334 | static uint64_t current_requested_powered_cores = ALL_CORES_POWERED; |
| 7335 | bool perfcontrol_sleep_override = false; |
| 7336 | |
| 7337 | LCK_GRP_DECLARE(cluster_powerdown_grp, "cluster_powerdown" ); |
| 7338 | LCK_MTX_DECLARE(cluster_powerdown_lock, &cluster_powerdown_grp); |
| 7339 | int32_t cluster_powerdown_suspend_count = 0; |
| 7340 | |
| 7341 | bool |
| 7342 | sched_is_in_sleep(void) |
| 7343 | { |
| 7344 | os_atomic_thread_fence(acquire); |
| 7345 | return perfcontrol_sleep_override; |
| 7346 | } |
| 7347 | |
| 7348 | static void |
| 7349 | sched_update_powered_cores_continue(void) |
| 7350 | { |
| 7351 | lck_mtx_lock(lck: &cluster_powerdown_lock); |
| 7352 | |
| 7353 | if (!cluster_powerdown_suspend_count) { |
| 7354 | spl_t s = splsched(); |
| 7355 | simple_lock(&sched_available_cores_lock, LCK_GRP_NULL); |
| 7356 | |
| 7357 | uint64_t latest = latest_requested_powered_cores; |
| 7358 | processor_reason_t reason = latest_requested_reason; |
| 7359 | uint64_t current = current_requested_powered_cores; |
| 7360 | current_requested_powered_cores = latest; |
| 7361 | bool in_sleep = perfcontrol_sleep_override; |
| 7362 | |
| 7363 | simple_unlock(&sched_available_cores_lock); |
| 7364 | splx(s); |
| 7365 | |
| 7366 | while (latest != current) { |
| 7367 | if (!in_sleep) { |
| 7368 | assert((reason == REASON_CLPC_SYSTEM) || (reason == REASON_CLPC_USER)); |
| 7369 | sched_update_powered_cores(reqested_powered_cores: latest, reason, SHUTDOWN_TEMPORARY | WAIT_FOR_LAST_START); |
| 7370 | } |
| 7371 | |
| 7372 | s = splsched(); |
| 7373 | simple_lock(&sched_available_cores_lock, LCK_GRP_NULL); |
| 7374 | |
| 7375 | latest = latest_requested_powered_cores; |
| 7376 | reason = latest_requested_reason; |
| 7377 | current = current_requested_powered_cores; |
| 7378 | current_requested_powered_cores = latest; |
| 7379 | in_sleep = perfcontrol_sleep_override; |
| 7380 | |
| 7381 | simple_unlock(&sched_available_cores_lock); |
| 7382 | splx(s); |
| 7383 | } |
| 7384 | |
| 7385 | assert_wait(event: (event_t)sched_update_powered_cores_continue, THREAD_UNINT); |
| 7386 | |
| 7387 | s = splsched(); |
| 7388 | simple_lock(&sched_available_cores_lock, LCK_GRP_NULL); |
| 7389 | if (latest_requested_powered_cores != current_requested_powered_cores) { |
| 7390 | clear_wait(thread: current_thread(), THREAD_AWAKENED); |
| 7391 | } |
| 7392 | simple_unlock(&sched_available_cores_lock); |
| 7393 | splx(s); |
| 7394 | } |
| 7395 | |
| 7396 | lck_mtx_unlock(lck: &cluster_powerdown_lock); |
| 7397 | |
| 7398 | thread_block(continuation: (thread_continue_t)sched_update_powered_cores_continue); |
| 7399 | /*NOTREACHED*/ |
| 7400 | } |
| 7401 | |
| 7402 | void |
| 7403 | sched_perfcontrol_update_powered_cores(uint64_t requested_powered_cores, processor_reason_t reason, __unused uint32_t flags) |
| 7404 | { |
| 7405 | assert((reason == REASON_CLPC_SYSTEM) || (reason == REASON_CLPC_USER)); |
| 7406 | |
| 7407 | #if DEVELOPMENT || DEBUG |
| 7408 | if (flags & (ASSERT_IN_SLEEP | ASSERT_POWERDOWN_SUSPENDED)) { |
| 7409 | if (flags & ASSERT_POWERDOWN_SUSPENDED) { |
| 7410 | assert(cluster_powerdown_suspend_count > 0); |
| 7411 | } |
| 7412 | if (flags & ASSERT_IN_SLEEP) { |
| 7413 | assert(perfcontrol_sleep_override == true); |
| 7414 | } |
| 7415 | return; |
| 7416 | } |
| 7417 | #endif |
| 7418 | |
| 7419 | spl_t s = splsched(); |
| 7420 | simple_lock(&sched_available_cores_lock, LCK_GRP_NULL); |
| 7421 | |
| 7422 | bool should_wakeup = !cluster_powerdown_suspend_count; |
| 7423 | if (should_wakeup) { |
| 7424 | latest_requested_powered_cores = requested_powered_cores; |
| 7425 | latest_requested_reason = reason; |
| 7426 | } |
| 7427 | |
| 7428 | simple_unlock(&sched_available_cores_lock); |
| 7429 | splx(s); |
| 7430 | |
| 7431 | if (should_wakeup) { |
| 7432 | thread_wakeup(x: (event_t)sched_update_powered_cores_continue); |
| 7433 | } |
| 7434 | } |
| 7435 | |
| 7436 | void |
| 7437 | suspend_cluster_powerdown(void) |
| 7438 | { |
| 7439 | lck_mtx_lock(lck: &cluster_powerdown_lock); |
| 7440 | |
| 7441 | assert(cluster_powerdown_suspend_count >= 0); |
| 7442 | |
| 7443 | bool first_suspend = (cluster_powerdown_suspend_count == 0); |
| 7444 | if (first_suspend) { |
| 7445 | spl_t s = splsched(); |
| 7446 | simple_lock(&sched_available_cores_lock, LCK_GRP_NULL); |
| 7447 | latest_requested_powered_cores = ALL_CORES_POWERED; |
| 7448 | current_requested_powered_cores = ALL_CORES_POWERED; |
| 7449 | latest_requested_reason = REASON_SYSTEM; |
| 7450 | simple_unlock(&sched_available_cores_lock); |
| 7451 | splx(s); |
| 7452 | } |
| 7453 | |
| 7454 | cluster_powerdown_suspend_count++; |
| 7455 | |
| 7456 | if (first_suspend) { |
| 7457 | kprintf(fmt: "%s>calling sched_update_powered_cores(ALL_CORES_POWERED, REASON_SYSTEM, LOCK_STATE | WAIT_FOR_START)\n" , __FUNCTION__); |
| 7458 | sched_update_powered_cores(ALL_CORES_POWERED, reason: REASON_SYSTEM, LOCK_STATE | WAIT_FOR_START); |
| 7459 | } |
| 7460 | |
| 7461 | lck_mtx_unlock(lck: &cluster_powerdown_lock); |
| 7462 | } |
| 7463 | |
| 7464 | void |
| 7465 | resume_cluster_powerdown(void) |
| 7466 | { |
| 7467 | lck_mtx_lock(lck: &cluster_powerdown_lock); |
| 7468 | |
| 7469 | if (cluster_powerdown_suspend_count <= 0) { |
| 7470 | panic("resume_cluster_powerdown() called with cluster_powerdown_suspend_count=%d\n" , cluster_powerdown_suspend_count); |
| 7471 | } |
| 7472 | |
| 7473 | cluster_powerdown_suspend_count--; |
| 7474 | |
| 7475 | bool last_resume = (cluster_powerdown_suspend_count == 0); |
| 7476 | |
| 7477 | if (last_resume) { |
| 7478 | spl_t s = splsched(); |
| 7479 | simple_lock(&sched_available_cores_lock, LCK_GRP_NULL); |
| 7480 | latest_requested_powered_cores = ALL_CORES_POWERED; |
| 7481 | current_requested_powered_cores = ALL_CORES_POWERED; |
| 7482 | latest_requested_reason = REASON_SYSTEM; |
| 7483 | simple_unlock(&sched_available_cores_lock); |
| 7484 | splx(s); |
| 7485 | |
| 7486 | kprintf(fmt: "%s>calling sched_update_powered_cores(ALL_CORES_POWERED, REASON_SYSTEM, UNLOCK_STATE)\n" , __FUNCTION__); |
| 7487 | sched_update_powered_cores(ALL_CORES_POWERED, reason: REASON_SYSTEM, UNLOCK_STATE); |
| 7488 | } |
| 7489 | |
| 7490 | lck_mtx_unlock(lck: &cluster_powerdown_lock); |
| 7491 | } |
| 7492 | |
| 7493 | LCK_MTX_DECLARE(user_cluster_powerdown_lock, &cluster_powerdown_grp); |
| 7494 | static bool user_suspended_cluster_powerdown = false; |
| 7495 | |
| 7496 | kern_return_t |
| 7497 | suspend_cluster_powerdown_from_user(void) |
| 7498 | { |
| 7499 | kern_return_t ret = KERN_FAILURE; |
| 7500 | |
| 7501 | lck_mtx_lock(lck: &user_cluster_powerdown_lock); |
| 7502 | |
| 7503 | if (!user_suspended_cluster_powerdown) { |
| 7504 | suspend_cluster_powerdown(); |
| 7505 | user_suspended_cluster_powerdown = true; |
| 7506 | ret = KERN_SUCCESS; |
| 7507 | } |
| 7508 | |
| 7509 | lck_mtx_unlock(lck: &user_cluster_powerdown_lock); |
| 7510 | |
| 7511 | return ret; |
| 7512 | } |
| 7513 | |
| 7514 | kern_return_t |
| 7515 | resume_cluster_powerdown_from_user(void) |
| 7516 | { |
| 7517 | kern_return_t ret = KERN_FAILURE; |
| 7518 | |
| 7519 | lck_mtx_lock(lck: &user_cluster_powerdown_lock); |
| 7520 | |
| 7521 | if (user_suspended_cluster_powerdown) { |
| 7522 | resume_cluster_powerdown(); |
| 7523 | user_suspended_cluster_powerdown = false; |
| 7524 | ret = KERN_SUCCESS; |
| 7525 | } |
| 7526 | |
| 7527 | lck_mtx_unlock(lck: &user_cluster_powerdown_lock); |
| 7528 | |
| 7529 | return ret; |
| 7530 | } |
| 7531 | |
| 7532 | int |
| 7533 | get_cluster_powerdown_user_suspended(void) |
| 7534 | { |
| 7535 | lck_mtx_lock(lck: &user_cluster_powerdown_lock); |
| 7536 | |
| 7537 | int ret = (int)user_suspended_cluster_powerdown; |
| 7538 | |
| 7539 | lck_mtx_unlock(lck: &user_cluster_powerdown_lock); |
| 7540 | |
| 7541 | return ret; |
| 7542 | } |
| 7543 | |
| 7544 | #if DEVELOPMENT || DEBUG |
| 7545 | /* Functions to support the temporary sysctl */ |
| 7546 | static uint64_t saved_requested_powered_cores = ALL_CORES_POWERED; |
| 7547 | void |
| 7548 | sched_set_powered_cores(int requested_powered_cores) |
| 7549 | { |
| 7550 | processor_reason_t reason = bit_test(requested_powered_cores, 31) ? REASON_CLPC_USER : REASON_CLPC_SYSTEM; |
| 7551 | uint32_t flags = requested_powered_cores & 0x30000000; |
| 7552 | |
| 7553 | saved_requested_powered_cores = requested_powered_cores; |
| 7554 | |
| 7555 | requested_powered_cores = bits(requested_powered_cores, 28, 0); |
| 7556 | |
| 7557 | sched_perfcontrol_update_powered_cores(requested_powered_cores, reason, flags); |
| 7558 | } |
| 7559 | int |
| 7560 | sched_get_powered_cores(void) |
| 7561 | { |
| 7562 | return (int)saved_requested_powered_cores; |
| 7563 | } |
| 7564 | #endif |
| 7565 | |
| 7566 | /* |
| 7567 | * Ensure that all cores are powered and recommended before sleep |
| 7568 | */ |
| 7569 | void |
| 7570 | sched_override_available_cores_for_sleep(void) |
| 7571 | { |
| 7572 | spl_t s = splsched(); |
| 7573 | simple_lock(&sched_available_cores_lock, LCK_GRP_NULL); |
| 7574 | |
| 7575 | if (perfcontrol_sleep_override == false) { |
| 7576 | perfcontrol_sleep_override = true; |
| 7577 | #if __arm__ || __arm64__ |
| 7578 | sched_update_recommended_cores(ALL_CORES_RECOMMENDED, reason: REASON_SYSTEM, flags: 0); |
| 7579 | #endif |
| 7580 | } |
| 7581 | |
| 7582 | simple_unlock(&sched_available_cores_lock); |
| 7583 | splx(s); |
| 7584 | |
| 7585 | suspend_cluster_powerdown(); |
| 7586 | } |
| 7587 | |
| 7588 | /* |
| 7589 | * Restore the previously recommended cores, but leave all cores powered |
| 7590 | * after sleep |
| 7591 | */ |
| 7592 | void |
| 7593 | sched_restore_available_cores_after_sleep(void) |
| 7594 | { |
| 7595 | spl_t s = splsched(); |
| 7596 | simple_lock(&sched_available_cores_lock, LCK_GRP_NULL); |
| 7597 | |
| 7598 | if (perfcontrol_sleep_override == true) { |
| 7599 | perfcontrol_sleep_override = false; |
| 7600 | #if __arm__ || __arm64__ |
| 7601 | sched_update_recommended_cores(recommended_cores: perfcontrol_requested_recommended_cores & usercontrol_requested_recommended_cores, |
| 7602 | reason: REASON_NONE, flags: 0); |
| 7603 | #endif |
| 7604 | } |
| 7605 | |
| 7606 | simple_unlock(&sched_available_cores_lock); |
| 7607 | splx(s); |
| 7608 | |
| 7609 | resume_cluster_powerdown(); |
| 7610 | } |
| 7611 | |
| 7612 | #if __arm__ || __arm64__ |
| 7613 | |
| 7614 | uint32_t perfcontrol_requested_recommended_core_count = MAX_CPUS; |
| 7615 | bool perfcontrol_failsafe_active = false; |
| 7616 | |
| 7617 | uint64_t perfcontrol_failsafe_maintenance_runnable_time; |
| 7618 | uint64_t perfcontrol_failsafe_activation_time; |
| 7619 | uint64_t perfcontrol_failsafe_deactivation_time; |
| 7620 | |
| 7621 | /* data covering who likely caused it and how long they ran */ |
| 7622 | #define FAILSAFE_NAME_LEN 33 /* (2*MAXCOMLEN)+1 from size of p_name */ |
| 7623 | char perfcontrol_failsafe_name[FAILSAFE_NAME_LEN]; |
| 7624 | int perfcontrol_failsafe_pid; |
| 7625 | uint64_t perfcontrol_failsafe_tid; |
| 7626 | uint64_t perfcontrol_failsafe_thread_timer_at_start; |
| 7627 | uint64_t perfcontrol_failsafe_thread_timer_last_seen; |
| 7628 | uint64_t perfcontrol_failsafe_recommended_at_trigger; |
| 7629 | |
| 7630 | /* |
| 7631 | * Perf controller calls here to update the recommended core bitmask. |
| 7632 | * If the failsafe is active, we don't immediately apply the new value. |
| 7633 | * Instead, we store the new request and use it after the failsafe deactivates. |
| 7634 | * |
| 7635 | * If the failsafe is not active, immediately apply the update. |
| 7636 | * |
| 7637 | * No scheduler locks are held, no other locks are held that scheduler might depend on, |
| 7638 | * interrupts are enabled |
| 7639 | * |
| 7640 | * currently prototype is in osfmk/arm/machine_routines.h |
| 7641 | */ |
| 7642 | void |
| 7643 | sched_perfcontrol_update_recommended_cores_reason(uint64_t recommended_cores, processor_reason_t reason, uint32_t flags) |
| 7644 | { |
| 7645 | assert(preemption_enabled()); |
| 7646 | |
| 7647 | spl_t s = splsched(); |
| 7648 | simple_lock(&sched_available_cores_lock, LCK_GRP_NULL); |
| 7649 | |
| 7650 | if (reason == REASON_CLPC_SYSTEM) { |
| 7651 | perfcontrol_system_requested_recommended_cores = recommended_cores; |
| 7652 | } else { |
| 7653 | assert(reason == REASON_CLPC_USER); |
| 7654 | perfcontrol_user_requested_recommended_cores = recommended_cores; |
| 7655 | } |
| 7656 | |
| 7657 | perfcontrol_requested_recommended_cores = perfcontrol_system_requested_recommended_cores & perfcontrol_user_requested_recommended_cores; |
| 7658 | perfcontrol_requested_recommended_core_count = __builtin_popcountll(perfcontrol_requested_recommended_cores); |
| 7659 | |
| 7660 | if ((perfcontrol_failsafe_active == false) && (perfcontrol_sleep_override == false)) { |
| 7661 | sched_update_recommended_cores(recommended_cores: perfcontrol_requested_recommended_cores & usercontrol_requested_recommended_cores, reason, flags); |
| 7662 | } else { |
| 7663 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
| 7664 | MACHDBG_CODE(DBG_MACH_SCHED, MACH_REC_CORES_FAILSAFE) | DBG_FUNC_NONE, |
| 7665 | perfcontrol_requested_recommended_cores, |
| 7666 | sched_maintenance_thread->last_made_runnable_time, 0, 0, 0); |
| 7667 | } |
| 7668 | |
| 7669 | simple_unlock(&sched_available_cores_lock); |
| 7670 | splx(s); |
| 7671 | } |
| 7672 | |
| 7673 | void |
| 7674 | sched_perfcontrol_update_recommended_cores(uint32_t recommended_cores) |
| 7675 | { |
| 7676 | sched_perfcontrol_update_recommended_cores_reason(recommended_cores, reason: REASON_CLPC_USER, flags: 0); |
| 7677 | } |
| 7678 | |
| 7679 | /* |
| 7680 | * Consider whether we need to activate the recommended cores failsafe |
| 7681 | * |
| 7682 | * Called from quantum timer interrupt context of a realtime thread |
| 7683 | * No scheduler locks are held, interrupts are disabled |
| 7684 | */ |
| 7685 | void |
| 7686 | sched_consider_recommended_cores(uint64_t ctime, thread_t cur_thread) |
| 7687 | { |
| 7688 | /* |
| 7689 | * Check if a realtime thread is starving the system |
| 7690 | * and bringing up non-recommended cores would help |
| 7691 | * |
| 7692 | * TODO: Is this the correct check for recommended == possible cores? |
| 7693 | * TODO: Validate the checks without the relevant lock are OK. |
| 7694 | */ |
| 7695 | |
| 7696 | if (__improbable(perfcontrol_failsafe_active == TRUE)) { |
| 7697 | /* keep track of how long the responsible thread runs */ |
| 7698 | uint64_t cur_th_time = recount_current_thread_time_mach(); |
| 7699 | |
| 7700 | simple_lock(&sched_available_cores_lock, LCK_GRP_NULL); |
| 7701 | |
| 7702 | if (perfcontrol_failsafe_active == TRUE && |
| 7703 | cur_thread->thread_id == perfcontrol_failsafe_tid) { |
| 7704 | perfcontrol_failsafe_thread_timer_last_seen = cur_th_time; |
| 7705 | } |
| 7706 | |
| 7707 | simple_unlock(&sched_available_cores_lock); |
| 7708 | |
| 7709 | /* we're already trying to solve the problem, so bail */ |
| 7710 | return; |
| 7711 | } |
| 7712 | |
| 7713 | /* The failsafe won't help if there are no more processors to enable */ |
| 7714 | if (__probable(perfcontrol_requested_recommended_core_count >= processor_count)) { |
| 7715 | return; |
| 7716 | } |
| 7717 | |
| 7718 | uint64_t too_long_ago = ctime - perfcontrol_failsafe_starvation_threshold; |
| 7719 | |
| 7720 | /* Use the maintenance thread as our canary in the coal mine */ |
| 7721 | thread_t m_thread = sched_maintenance_thread; |
| 7722 | |
| 7723 | /* If it doesn't look bad, nothing to see here */ |
| 7724 | if (__probable(m_thread->last_made_runnable_time >= too_long_ago)) { |
| 7725 | return; |
| 7726 | } |
| 7727 | |
| 7728 | /* It looks bad, take the lock to be sure */ |
| 7729 | thread_lock(m_thread); |
| 7730 | |
| 7731 | if (thread_get_runq(thread: m_thread) == PROCESSOR_NULL || |
| 7732 | (m_thread->state & (TH_RUN | TH_WAIT)) != TH_RUN || |
| 7733 | m_thread->last_made_runnable_time >= too_long_ago) { |
| 7734 | /* |
| 7735 | * Maintenance thread is either on cpu or blocked, and |
| 7736 | * therefore wouldn't benefit from more cores |
| 7737 | */ |
| 7738 | thread_unlock(m_thread); |
| 7739 | return; |
| 7740 | } |
| 7741 | |
| 7742 | uint64_t maintenance_runnable_time = m_thread->last_made_runnable_time; |
| 7743 | |
| 7744 | thread_unlock(m_thread); |
| 7745 | |
| 7746 | /* |
| 7747 | * There are cores disabled at perfcontrol's recommendation, but the |
| 7748 | * system is so overloaded that the maintenance thread can't run. |
| 7749 | * That likely means that perfcontrol can't run either, so it can't fix |
| 7750 | * the recommendation. We have to kick in a failsafe to keep from starving. |
| 7751 | * |
| 7752 | * When the maintenance thread has been starved for too long, |
| 7753 | * ignore the recommendation from perfcontrol and light up all the cores. |
| 7754 | * |
| 7755 | * TODO: Consider weird states like boot, sleep, or debugger |
| 7756 | */ |
| 7757 | |
| 7758 | simple_lock(&sched_available_cores_lock, LCK_GRP_NULL); |
| 7759 | |
| 7760 | if (perfcontrol_failsafe_active == TRUE) { |
| 7761 | simple_unlock(&sched_available_cores_lock); |
| 7762 | return; |
| 7763 | } |
| 7764 | |
| 7765 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
| 7766 | MACHDBG_CODE(DBG_MACH_SCHED, MACH_REC_CORES_FAILSAFE) | DBG_FUNC_START, |
| 7767 | perfcontrol_requested_recommended_cores, maintenance_runnable_time, 0, 0, 0); |
| 7768 | |
| 7769 | perfcontrol_failsafe_active = TRUE; |
| 7770 | perfcontrol_failsafe_activation_time = mach_absolute_time(); |
| 7771 | perfcontrol_failsafe_maintenance_runnable_time = maintenance_runnable_time; |
| 7772 | perfcontrol_failsafe_recommended_at_trigger = perfcontrol_requested_recommended_cores; |
| 7773 | |
| 7774 | /* Capture some data about who screwed up (assuming that the thread on core is at fault) */ |
| 7775 | task_t task = get_threadtask(cur_thread); |
| 7776 | perfcontrol_failsafe_pid = task_pid(task); |
| 7777 | strlcpy(dst: perfcontrol_failsafe_name, src: proc_name_address(p: get_bsdtask_info(task)), n: sizeof(perfcontrol_failsafe_name)); |
| 7778 | |
| 7779 | perfcontrol_failsafe_tid = cur_thread->thread_id; |
| 7780 | |
| 7781 | /* Blame the thread for time it has run recently */ |
| 7782 | uint64_t recent_computation = (ctime - cur_thread->computation_epoch) + cur_thread->computation_metered; |
| 7783 | |
| 7784 | uint64_t last_seen = recount_current_thread_time_mach(); |
| 7785 | |
| 7786 | /* Compute the start time of the bad behavior in terms of the thread's on core time */ |
| 7787 | perfcontrol_failsafe_thread_timer_at_start = last_seen - recent_computation; |
| 7788 | perfcontrol_failsafe_thread_timer_last_seen = last_seen; |
| 7789 | |
| 7790 | /* Ignore the previously recommended core configuration */ |
| 7791 | sched_update_recommended_cores(ALL_CORES_RECOMMENDED, reason: REASON_SYSTEM, flags: 0); |
| 7792 | |
| 7793 | simple_unlock(&sched_available_cores_lock); |
| 7794 | } |
| 7795 | |
| 7796 | /* |
| 7797 | * Now that our bacon has been saved by the failsafe, consider whether to turn it off |
| 7798 | * |
| 7799 | * Runs in the context of the maintenance thread, no locks held |
| 7800 | */ |
| 7801 | static void |
| 7802 | sched_recommended_cores_maintenance(void) |
| 7803 | { |
| 7804 | /* Common case - no failsafe, nothing to be done here */ |
| 7805 | if (__probable(perfcontrol_failsafe_active == FALSE)) { |
| 7806 | return; |
| 7807 | } |
| 7808 | |
| 7809 | uint64_t ctime = mach_absolute_time(); |
| 7810 | |
| 7811 | boolean_t print_diagnostic = FALSE; |
| 7812 | char p_name[FAILSAFE_NAME_LEN] = "" ; |
| 7813 | |
| 7814 | spl_t s = splsched(); |
| 7815 | simple_lock(&sched_available_cores_lock, LCK_GRP_NULL); |
| 7816 | |
| 7817 | /* Check again, under the lock, to avoid races */ |
| 7818 | if (perfcontrol_failsafe_active == FALSE) { |
| 7819 | goto out; |
| 7820 | } |
| 7821 | |
| 7822 | /* |
| 7823 | * Ensure that the other cores get another few ticks to run some threads |
| 7824 | * If we don't have this hysteresis, the maintenance thread is the first |
| 7825 | * to run, and then it immediately kills the other cores |
| 7826 | */ |
| 7827 | if ((ctime - perfcontrol_failsafe_activation_time) < perfcontrol_failsafe_starvation_threshold) { |
| 7828 | goto out; |
| 7829 | } |
| 7830 | |
| 7831 | /* Capture some diagnostic state under the lock so we can print it out later */ |
| 7832 | |
| 7833 | int pid = perfcontrol_failsafe_pid; |
| 7834 | uint64_t tid = perfcontrol_failsafe_tid; |
| 7835 | |
| 7836 | uint64_t thread_usage = perfcontrol_failsafe_thread_timer_last_seen - |
| 7837 | perfcontrol_failsafe_thread_timer_at_start; |
| 7838 | uint64_t rec_cores_before = perfcontrol_failsafe_recommended_at_trigger; |
| 7839 | uint64_t rec_cores_after = perfcontrol_requested_recommended_cores; |
| 7840 | uint64_t failsafe_duration = ctime - perfcontrol_failsafe_activation_time; |
| 7841 | strlcpy(dst: p_name, src: perfcontrol_failsafe_name, n: sizeof(p_name)); |
| 7842 | |
| 7843 | print_diagnostic = TRUE; |
| 7844 | |
| 7845 | /* Deactivate the failsafe and reinstate the requested recommendation settings */ |
| 7846 | |
| 7847 | perfcontrol_failsafe_deactivation_time = ctime; |
| 7848 | perfcontrol_failsafe_active = FALSE; |
| 7849 | |
| 7850 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
| 7851 | MACHDBG_CODE(DBG_MACH_SCHED, MACH_REC_CORES_FAILSAFE) | DBG_FUNC_END, |
| 7852 | perfcontrol_requested_recommended_cores, failsafe_duration, 0, 0, 0); |
| 7853 | |
| 7854 | sched_update_recommended_cores(recommended_cores: perfcontrol_requested_recommended_cores & usercontrol_requested_recommended_cores, |
| 7855 | reason: REASON_NONE, flags: 0); |
| 7856 | |
| 7857 | out: |
| 7858 | simple_unlock(&sched_available_cores_lock); |
| 7859 | splx(s); |
| 7860 | |
| 7861 | if (print_diagnostic) { |
| 7862 | uint64_t failsafe_duration_ms = 0, thread_usage_ms = 0; |
| 7863 | |
| 7864 | absolutetime_to_nanoseconds(abstime: failsafe_duration, result: &failsafe_duration_ms); |
| 7865 | failsafe_duration_ms = failsafe_duration_ms / NSEC_PER_MSEC; |
| 7866 | |
| 7867 | absolutetime_to_nanoseconds(abstime: thread_usage, result: &thread_usage_ms); |
| 7868 | thread_usage_ms = thread_usage_ms / NSEC_PER_MSEC; |
| 7869 | |
| 7870 | printf(format: "recommended core failsafe kicked in for %lld ms " |
| 7871 | "likely due to %s[%d] thread 0x%llx spending " |
| 7872 | "%lld ms on cpu at realtime priority - " |
| 7873 | "new recommendation: 0x%llx -> 0x%llx\n" , |
| 7874 | failsafe_duration_ms, p_name, pid, tid, thread_usage_ms, |
| 7875 | rec_cores_before, rec_cores_after); |
| 7876 | } |
| 7877 | } |
| 7878 | |
| 7879 | #endif /* __arm64__ */ |
| 7880 | |
| 7881 | kern_return_t |
| 7882 | sched_processor_enable(processor_t processor, boolean_t enable) |
| 7883 | { |
| 7884 | assert(preemption_enabled()); |
| 7885 | |
| 7886 | if (processor == master_processor) { |
| 7887 | /* The system can hang if this is allowed */ |
| 7888 | return KERN_NOT_SUPPORTED; |
| 7889 | } |
| 7890 | |
| 7891 | spl_t s = splsched(); |
| 7892 | simple_lock(&sched_available_cores_lock, LCK_GRP_NULL); |
| 7893 | |
| 7894 | if (enable) { |
| 7895 | bit_set(usercontrol_requested_recommended_cores, processor->cpu_id); |
| 7896 | } else { |
| 7897 | bit_clear(usercontrol_requested_recommended_cores, processor->cpu_id); |
| 7898 | } |
| 7899 | |
| 7900 | #if __arm64__ |
| 7901 | if ((perfcontrol_failsafe_active == false) && (perfcontrol_sleep_override == false)) { |
| 7902 | sched_update_recommended_cores(recommended_cores: perfcontrol_requested_recommended_cores & usercontrol_requested_recommended_cores, |
| 7903 | reason: REASON_USER, flags: 0); |
| 7904 | } else { |
| 7905 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, |
| 7906 | MACHDBG_CODE(DBG_MACH_SCHED, MACH_REC_CORES_FAILSAFE) | DBG_FUNC_NONE, |
| 7907 | perfcontrol_requested_recommended_cores, |
| 7908 | sched_maintenance_thread->last_made_runnable_time, 0, 0, 0); |
| 7909 | } |
| 7910 | #else /* __arm64__ */ |
| 7911 | sched_update_recommended_cores(usercontrol_requested_recommended_cores, REASON_USER, 0); |
| 7912 | #endif /* ! __arm64__ */ |
| 7913 | |
| 7914 | simple_unlock(&sched_available_cores_lock); |
| 7915 | splx(s); |
| 7916 | |
| 7917 | return KERN_SUCCESS; |
| 7918 | } |
| 7919 | |
| 7920 | void |
| 7921 | sched_mark_processor_online_locked(processor_t processor, __assert_only processor_reason_t reason) |
| 7922 | { |
| 7923 | assert((processor != master_processor) || (reason == REASON_SYSTEM)); |
| 7924 | |
| 7925 | bit_set(sched_online_processors, processor->cpu_id); |
| 7926 | } |
| 7927 | |
| 7928 | kern_return_t |
| 7929 | sched_mark_processor_offline(processor_t processor, processor_reason_t reason) |
| 7930 | { |
| 7931 | assert((processor != master_processor) || (reason == REASON_SYSTEM)); |
| 7932 | kern_return_t ret = KERN_SUCCESS; |
| 7933 | |
| 7934 | spl_t s = splsched(); |
| 7935 | simple_lock(&sched_available_cores_lock, LCK_GRP_NULL); |
| 7936 | |
| 7937 | if (reason == REASON_SYSTEM) { |
| 7938 | bit_clear(sched_online_processors, processor->cpu_id); |
| 7939 | simple_unlock(&sched_available_cores_lock); |
| 7940 | splx(s); |
| 7941 | return ret; |
| 7942 | } |
| 7943 | |
| 7944 | uint64_t available_cores = sched_online_processors & perfcontrol_requested_recommended_cores & usercontrol_requested_recommended_cores; |
| 7945 | |
| 7946 | if (!bit_test(sched_online_processors, processor->cpu_id)) { |
| 7947 | /* Processor is already offline */ |
| 7948 | ret = KERN_NOT_IN_SET; |
| 7949 | } else if (available_cores == BIT(processor->cpu_id)) { |
| 7950 | ret = KERN_RESOURCE_SHORTAGE; |
| 7951 | } else { |
| 7952 | bit_clear(sched_online_processors, processor->cpu_id); |
| 7953 | ret = KERN_SUCCESS; |
| 7954 | } |
| 7955 | |
| 7956 | simple_unlock(&sched_available_cores_lock); |
| 7957 | splx(s); |
| 7958 | |
| 7959 | return ret; |
| 7960 | } |
| 7961 | |
| 7962 | /* |
| 7963 | * Apply a new recommended cores mask to the processors it affects |
| 7964 | * Runs after considering failsafes and such |
| 7965 | * |
| 7966 | * Iterate over processors and update their ->is_recommended field. |
| 7967 | * If a processor is running, we let it drain out at its next |
| 7968 | * quantum expiration or blocking point. If a processor is idle, there |
| 7969 | * may be more work for it to do, so IPI it. |
| 7970 | * |
| 7971 | * interrupts disabled, sched_available_cores_lock is held |
| 7972 | */ |
| 7973 | static void |
| 7974 | sched_update_recommended_cores(uint64_t recommended_cores, processor_reason_t reason, __unused uint32_t flags) |
| 7975 | { |
| 7976 | uint64_t needs_exit_idle_mask = 0x0; |
| 7977 | |
| 7978 | KTRC(MACHDBG_CODE(DBG_MACH_SCHED, MACH_SCHED_UPDATE_REC_CORES) | DBG_FUNC_START, |
| 7979 | recommended_cores, |
| 7980 | #if __arm64__ |
| 7981 | perfcontrol_failsafe_active, 0, 0); |
| 7982 | #else /* __arm64__ */ |
| 7983 | 0, 0, 0); |
| 7984 | #endif /* ! __arm64__ */ |
| 7985 | |
| 7986 | if (__builtin_popcountll(recommended_cores & sched_online_processors) == 0) { |
| 7987 | bit_set(recommended_cores, master_processor->cpu_id); /* add boot processor or we hang */ |
| 7988 | } |
| 7989 | |
| 7990 | /* First set recommended cores */ |
| 7991 | for (pset_node_t node = &pset_node0; node != NULL; node = node->node_list) { |
| 7992 | for (int pset_id = lsb_first(bitmap: node->pset_map); pset_id >= 0; pset_id = lsb_next(bitmap: node->pset_map, previous_bit: pset_id)) { |
| 7993 | processor_set_t pset = pset_array[pset_id]; |
| 7994 | |
| 7995 | cpumap_t changed_recommendations = (recommended_cores & pset->cpu_bitmask) ^ pset->recommended_bitmask; |
| 7996 | cpumap_t newly_recommended = changed_recommendations & recommended_cores; |
| 7997 | |
| 7998 | if (newly_recommended == 0) { |
| 7999 | /* Nothing to do */ |
| 8000 | continue; |
| 8001 | } |
| 8002 | |
| 8003 | pset_lock(pset); |
| 8004 | |
| 8005 | for (int cpu_id = lsb_first(bitmap: newly_recommended); cpu_id >= 0; cpu_id = lsb_next(bitmap: newly_recommended, previous_bit: cpu_id)) { |
| 8006 | processor_t processor = processor_array[cpu_id]; |
| 8007 | processor->is_recommended = TRUE; |
| 8008 | processor->last_recommend_reason = reason; |
| 8009 | bit_set(pset->recommended_bitmask, processor->cpu_id); |
| 8010 | |
| 8011 | if (processor->state == PROCESSOR_IDLE) { |
| 8012 | if (processor != current_processor()) { |
| 8013 | bit_set(needs_exit_idle_mask, processor->cpu_id); |
| 8014 | } |
| 8015 | } |
| 8016 | if ((processor->state != PROCESSOR_OFF_LINE) && (processor->state != PROCESSOR_PENDING_OFFLINE)) { |
| 8017 | os_atomic_inc(&processor_avail_count_user, relaxed); |
| 8018 | if (processor->processor_primary == processor) { |
| 8019 | os_atomic_inc(&primary_processor_avail_count_user, relaxed); |
| 8020 | } |
| 8021 | SCHED(pset_made_schedulable)(processor, pset, false); |
| 8022 | } |
| 8023 | } |
| 8024 | pset_update_rt_stealable_state(pset); |
| 8025 | |
| 8026 | pset_unlock(pset); |
| 8027 | |
| 8028 | for (int cpu_id = lsb_first(bitmap: newly_recommended); cpu_id >= 0; |
| 8029 | cpu_id = lsb_next(bitmap: newly_recommended, previous_bit: cpu_id)) { |
| 8030 | smr_cpu_up(processor_array[cpu_id], |
| 8031 | SMR_CPU_REASON_IGNORED); |
| 8032 | } |
| 8033 | } |
| 8034 | } |
| 8035 | |
| 8036 | /* Now shutdown not recommended cores */ |
| 8037 | for (pset_node_t node = &pset_node0; node != NULL; node = node->node_list) { |
| 8038 | for (int pset_id = lsb_first(bitmap: node->pset_map); pset_id >= 0; pset_id = lsb_next(bitmap: node->pset_map, previous_bit: pset_id)) { |
| 8039 | processor_set_t pset = pset_array[pset_id]; |
| 8040 | |
| 8041 | cpumap_t changed_recommendations = (recommended_cores & pset->cpu_bitmask) ^ pset->recommended_bitmask; |
| 8042 | cpumap_t newly_unrecommended = changed_recommendations & ~recommended_cores; |
| 8043 | |
| 8044 | if (newly_unrecommended == 0) { |
| 8045 | /* Nothing to do */ |
| 8046 | continue; |
| 8047 | } |
| 8048 | |
| 8049 | pset_lock(pset); |
| 8050 | |
| 8051 | for (int cpu_id = lsb_first(bitmap: newly_unrecommended); cpu_id >= 0; cpu_id = lsb_next(bitmap: newly_unrecommended, previous_bit: cpu_id)) { |
| 8052 | processor_t processor = processor_array[cpu_id]; |
| 8053 | sched_ipi_type_t ipi_type = SCHED_IPI_NONE; |
| 8054 | |
| 8055 | processor->is_recommended = FALSE; |
| 8056 | if (reason != REASON_NONE) { |
| 8057 | processor->last_derecommend_reason = reason; |
| 8058 | } |
| 8059 | bit_clear(pset->recommended_bitmask, processor->cpu_id); |
| 8060 | if ((processor->state != PROCESSOR_OFF_LINE) && (processor->state != PROCESSOR_PENDING_OFFLINE)) { |
| 8061 | os_atomic_dec(&processor_avail_count_user, relaxed); |
| 8062 | if (processor->processor_primary == processor) { |
| 8063 | os_atomic_dec(&primary_processor_avail_count_user, relaxed); |
| 8064 | } |
| 8065 | } |
| 8066 | pset_update_rt_stealable_state(pset); |
| 8067 | |
| 8068 | if ((processor->state == PROCESSOR_RUNNING) || (processor->state == PROCESSOR_DISPATCHING)) { |
| 8069 | ipi_type = SCHED_IPI_IMMEDIATE; |
| 8070 | } |
| 8071 | SCHED(processor_queue_shutdown)(processor); |
| 8072 | /* pset unlocked */ |
| 8073 | |
| 8074 | SCHED(rt_queue_shutdown)(processor); |
| 8075 | |
| 8076 | if (ipi_type == SCHED_IPI_NONE) { |
| 8077 | /* |
| 8078 | * If the core is idle, |
| 8079 | * we can directly mark the processor |
| 8080 | * as "Ignored" |
| 8081 | * |
| 8082 | * Otherwise, smr will detect this |
| 8083 | * during smr_cpu_leave() when the |
| 8084 | * processor actually idles. |
| 8085 | */ |
| 8086 | smr_cpu_down(processor, SMR_CPU_REASON_IGNORED); |
| 8087 | } else if (processor == current_processor()) { |
| 8088 | ast_on(AST_PREEMPT); |
| 8089 | } else { |
| 8090 | sched_ipi_perform(dst: processor, ipi: ipi_type); |
| 8091 | } |
| 8092 | |
| 8093 | pset_lock(pset); |
| 8094 | } |
| 8095 | pset_unlock(pset); |
| 8096 | } |
| 8097 | } |
| 8098 | |
| 8099 | #if defined(__x86_64__) |
| 8100 | commpage_update_active_cpus(); |
| 8101 | #endif |
| 8102 | /* Issue all pending IPIs now that the pset lock has been dropped */ |
| 8103 | for (int cpuid = lsb_first(bitmap: needs_exit_idle_mask); cpuid >= 0; cpuid = lsb_next(bitmap: needs_exit_idle_mask, previous_bit: cpuid)) { |
| 8104 | processor_t processor = processor_array[cpuid]; |
| 8105 | machine_signal_idle(processor); |
| 8106 | } |
| 8107 | |
| 8108 | KTRC(MACHDBG_CODE(DBG_MACH_SCHED, MACH_SCHED_UPDATE_REC_CORES) | DBG_FUNC_END, |
| 8109 | needs_exit_idle_mask, 0, 0, 0); |
| 8110 | } |
| 8111 | |
| 8112 | static void |
| 8113 | sched_update_powered_cores(uint64_t requested_powered_cores, processor_reason_t reason, uint32_t flags) |
| 8114 | { |
| 8115 | KTRC(MACHDBG_CODE(DBG_MACH_SCHED, MACH_UPDATE_POWERED_CORES) | DBG_FUNC_START, |
| 8116 | requested_powered_cores, reason, flags, 0); |
| 8117 | |
| 8118 | assert((flags & (LOCK_STATE | UNLOCK_STATE)) ? (reason == REASON_SYSTEM) && (requested_powered_cores == ALL_CORES_POWERED) : 1); |
| 8119 | |
| 8120 | /* |
| 8121 | * Loop through newly set requested_powered_cores and start them. |
| 8122 | * Loop through newly cleared requested_powered_cores and shut them down. |
| 8123 | */ |
| 8124 | |
| 8125 | if ((reason == REASON_CLPC_SYSTEM) || (reason == REASON_CLPC_USER)) { |
| 8126 | flags |= SHUTDOWN_TEMPORARY; |
| 8127 | } |
| 8128 | |
| 8129 | /* First set powered cores */ |
| 8130 | cpumap_t started_cores = 0ull; |
| 8131 | for (pset_node_t node = &pset_node0; node != NULL; node = node->node_list) { |
| 8132 | for (int pset_id = lsb_first(bitmap: node->pset_map); pset_id >= 0; pset_id = lsb_next(bitmap: node->pset_map, previous_bit: pset_id)) { |
| 8133 | processor_set_t pset = pset_array[pset_id]; |
| 8134 | |
| 8135 | spl_t s = splsched(); |
| 8136 | pset_lock(pset); |
| 8137 | cpumap_t pset_requested_powered_cores = requested_powered_cores & pset->cpu_bitmask; |
| 8138 | cpumap_t powered_cores = (pset->cpu_state_map[PROCESSOR_START] | pset->cpu_state_map[PROCESSOR_IDLE] | pset->cpu_state_map[PROCESSOR_DISPATCHING] | pset->cpu_state_map[PROCESSOR_RUNNING]); |
| 8139 | cpumap_t requested_changes = pset_requested_powered_cores ^ powered_cores; |
| 8140 | pset_unlock(pset); |
| 8141 | splx(s); |
| 8142 | |
| 8143 | cpumap_t newly_powered = requested_changes & requested_powered_cores; |
| 8144 | |
| 8145 | cpumap_t cpu_map = newly_powered; |
| 8146 | |
| 8147 | if (flags & (LOCK_STATE | UNLOCK_STATE)) { |
| 8148 | /* |
| 8149 | * We need to change the lock state even if |
| 8150 | * we don't need to change the actual state. |
| 8151 | */ |
| 8152 | cpu_map = pset_requested_powered_cores; |
| 8153 | /* But not the master_processor, which is always implicitly locked */ |
| 8154 | bit_clear(cpu_map, master_processor->cpu_id); |
| 8155 | } |
| 8156 | |
| 8157 | if (cpu_map == 0) { |
| 8158 | /* Nothing to do */ |
| 8159 | continue; |
| 8160 | } |
| 8161 | |
| 8162 | for (int cpu_id = lsb_first(bitmap: cpu_map); cpu_id >= 0; cpu_id = lsb_next(bitmap: cpu_map, previous_bit: cpu_id)) { |
| 8163 | processor_t processor = processor_array[cpu_id]; |
| 8164 | processor_start_reason(processor, reason, flags); |
| 8165 | bit_set(started_cores, cpu_id); |
| 8166 | } |
| 8167 | } |
| 8168 | } |
| 8169 | if (flags & WAIT_FOR_LAST_START) { |
| 8170 | for (int cpu_id = lsb_first(bitmap: started_cores); cpu_id >= 0; cpu_id = lsb_next(bitmap: started_cores, previous_bit: cpu_id)) { |
| 8171 | processor_t processor = processor_array[cpu_id]; |
| 8172 | processor_wait_for_start(processor); |
| 8173 | } |
| 8174 | } |
| 8175 | |
| 8176 | /* Now shutdown not powered cores */ |
| 8177 | for (pset_node_t node = &pset_node0; node != NULL; node = node->node_list) { |
| 8178 | for (int pset_id = lsb_first(bitmap: node->pset_map); pset_id >= 0; pset_id = lsb_next(bitmap: node->pset_map, previous_bit: pset_id)) { |
| 8179 | processor_set_t pset = pset_array[pset_id]; |
| 8180 | |
| 8181 | spl_t s = splsched(); |
| 8182 | pset_lock(pset); |
| 8183 | cpumap_t powered_cores = (pset->cpu_state_map[PROCESSOR_START] | pset->cpu_state_map[PROCESSOR_IDLE] | pset->cpu_state_map[PROCESSOR_DISPATCHING] | pset->cpu_state_map[PROCESSOR_RUNNING]); |
| 8184 | cpumap_t requested_changes = (requested_powered_cores & pset->cpu_bitmask) ^ powered_cores; |
| 8185 | pset_unlock(pset); |
| 8186 | splx(s); |
| 8187 | |
| 8188 | cpumap_t newly_unpowered = requested_changes & ~requested_powered_cores; |
| 8189 | |
| 8190 | if (newly_unpowered == 0) { |
| 8191 | /* Nothing to do */ |
| 8192 | continue; |
| 8193 | } |
| 8194 | |
| 8195 | for (int cpu_id = lsb_first(bitmap: newly_unpowered); cpu_id >= 0; cpu_id = lsb_next(bitmap: newly_unpowered, previous_bit: cpu_id)) { |
| 8196 | processor_t processor = processor_array[cpu_id]; |
| 8197 | |
| 8198 | processor_exit_reason(processor, reason, flags); |
| 8199 | } |
| 8200 | } |
| 8201 | } |
| 8202 | |
| 8203 | KTRC(MACHDBG_CODE(DBG_MACH_SCHED, MACH_UPDATE_POWERED_CORES) | DBG_FUNC_END, 0, 0, 0, 0); |
| 8204 | } |
| 8205 | |
| 8206 | void |
| 8207 | thread_set_options(uint32_t thopt) |
| 8208 | { |
| 8209 | spl_t x; |
| 8210 | thread_t t = current_thread(); |
| 8211 | |
| 8212 | x = splsched(); |
| 8213 | thread_lock(t); |
| 8214 | |
| 8215 | t->options |= thopt; |
| 8216 | |
| 8217 | thread_unlock(t); |
| 8218 | splx(x); |
| 8219 | } |
| 8220 | |
| 8221 | void |
| 8222 | thread_set_pending_block_hint(thread_t thread, block_hint_t block_hint) |
| 8223 | { |
| 8224 | thread->pending_block_hint = block_hint; |
| 8225 | } |
| 8226 | |
| 8227 | uint32_t |
| 8228 | qos_max_parallelism(int qos, uint64_t options) |
| 8229 | { |
| 8230 | return SCHED(qos_max_parallelism)(qos, options); |
| 8231 | } |
| 8232 | |
| 8233 | uint32_t |
| 8234 | sched_qos_max_parallelism(__unused int qos, uint64_t options) |
| 8235 | { |
| 8236 | host_basic_info_data_t hinfo; |
| 8237 | mach_msg_type_number_t count = HOST_BASIC_INFO_COUNT; |
| 8238 | |
| 8239 | |
| 8240 | /* |
| 8241 | * The QOS_PARALLELISM_CLUSTER_SHARED_RESOURCE should be used on AMP platforms only which |
| 8242 | * implement their own qos_max_parallelism() interfaces. |
| 8243 | */ |
| 8244 | assert((options & QOS_PARALLELISM_CLUSTER_SHARED_RESOURCE) == 0); |
| 8245 | |
| 8246 | /* Query the machine layer for core information */ |
| 8247 | __assert_only kern_return_t kret = host_info(host: host_self(), HOST_BASIC_INFO, |
| 8248 | host_info_out: (host_info_t)&hinfo, host_info_outCnt: &count); |
| 8249 | assert(kret == KERN_SUCCESS); |
| 8250 | |
| 8251 | if (options & QOS_PARALLELISM_COUNT_LOGICAL) { |
| 8252 | return hinfo.logical_cpu; |
| 8253 | } else { |
| 8254 | return hinfo.physical_cpu; |
| 8255 | } |
| 8256 | } |
| 8257 | |
| 8258 | int sched_allow_NO_SMT_threads = 1; |
| 8259 | bool |
| 8260 | thread_no_smt(thread_t thread) |
| 8261 | { |
| 8262 | return sched_allow_NO_SMT_threads && |
| 8263 | (thread->bound_processor == PROCESSOR_NULL) && |
| 8264 | ((thread->sched_flags & TH_SFLAG_NO_SMT) || (get_threadtask(thread)->t_flags & TF_NO_SMT)); |
| 8265 | } |
| 8266 | |
| 8267 | bool |
| 8268 | processor_active_thread_no_smt(processor_t processor) |
| 8269 | { |
| 8270 | return sched_allow_NO_SMT_threads && !processor->current_is_bound && processor->current_is_NO_SMT; |
| 8271 | } |
| 8272 | |
| 8273 | #if __arm64__ |
| 8274 | |
| 8275 | /* |
| 8276 | * Set up or replace old timer with new timer |
| 8277 | * |
| 8278 | * Returns true if canceled old timer, false if it did not |
| 8279 | */ |
| 8280 | boolean_t |
| 8281 | sched_perfcontrol_update_callback_deadline(uint64_t new_deadline) |
| 8282 | { |
| 8283 | /* |
| 8284 | * Exchange deadline for new deadline, if old deadline was nonzero, |
| 8285 | * then I cancelled the callback, otherwise I didn't |
| 8286 | */ |
| 8287 | |
| 8288 | return os_atomic_xchg(&sched_perfcontrol_callback_deadline, new_deadline, |
| 8289 | relaxed) != 0; |
| 8290 | } |
| 8291 | |
| 8292 | /* |
| 8293 | * Set global SFI window (in usec) |
| 8294 | */ |
| 8295 | kern_return_t |
| 8296 | sched_perfcontrol_sfi_set_window(uint64_t window_usecs) |
| 8297 | { |
| 8298 | kern_return_t ret = KERN_NOT_SUPPORTED; |
| 8299 | #if CONFIG_THREAD_GROUPS |
| 8300 | if (window_usecs == 0ULL) { |
| 8301 | ret = sfi_window_cancel(); |
| 8302 | } else { |
| 8303 | ret = sfi_set_window(window_usecs); |
| 8304 | } |
| 8305 | #endif // CONFIG_THREAD_GROUPS |
| 8306 | return ret; |
| 8307 | } |
| 8308 | |
| 8309 | /* |
| 8310 | * Set background and maintenance SFI class offtimes |
| 8311 | */ |
| 8312 | kern_return_t |
| 8313 | sched_perfcontrol_sfi_set_bg_offtime(uint64_t offtime_usecs) |
| 8314 | { |
| 8315 | kern_return_t ret = KERN_NOT_SUPPORTED; |
| 8316 | #if CONFIG_THREAD_GROUPS |
| 8317 | if (offtime_usecs == 0ULL) { |
| 8318 | ret = sfi_class_offtime_cancel(SFI_CLASS_MAINTENANCE); |
| 8319 | ret |= sfi_class_offtime_cancel(SFI_CLASS_DARWIN_BG); |
| 8320 | } else { |
| 8321 | ret = sfi_set_class_offtime(SFI_CLASS_MAINTENANCE, offtime_usecs); |
| 8322 | ret |= sfi_set_class_offtime(SFI_CLASS_DARWIN_BG, offtime_usecs); |
| 8323 | } |
| 8324 | #endif // CONFIG_THREAD_GROUPS |
| 8325 | return ret; |
| 8326 | } |
| 8327 | |
| 8328 | /* |
| 8329 | * Set utility SFI class offtime |
| 8330 | */ |
| 8331 | kern_return_t |
| 8332 | sched_perfcontrol_sfi_set_utility_offtime(uint64_t offtime_usecs) |
| 8333 | { |
| 8334 | kern_return_t ret = KERN_NOT_SUPPORTED; |
| 8335 | #if CONFIG_THREAD_GROUPS |
| 8336 | if (offtime_usecs == 0ULL) { |
| 8337 | ret = sfi_class_offtime_cancel(SFI_CLASS_UTILITY); |
| 8338 | } else { |
| 8339 | ret = sfi_set_class_offtime(SFI_CLASS_UTILITY, offtime_usecs); |
| 8340 | } |
| 8341 | #endif // CONFIG_THREAD_GROUPS |
| 8342 | return ret; |
| 8343 | } |
| 8344 | |
| 8345 | #endif /* __arm64__ */ |
| 8346 | |
| 8347 | #if CONFIG_SCHED_EDGE |
| 8348 | |
| 8349 | #define SCHED_PSET_LOAD_EWMA_TC_NSECS 10000000u |
| 8350 | |
| 8351 | /* |
| 8352 | * sched_edge_pset_running_higher_bucket() |
| 8353 | * |
| 8354 | * Routine to calculate cumulative running counts for each scheduling |
| 8355 | * bucket. This effectively lets the load calculation calculate if a |
| 8356 | * cluster is running any threads at a QoS lower than the thread being |
| 8357 | * migrated etc. |
| 8358 | */ |
| 8359 | |
| 8360 | static void |
| 8361 | sched_edge_pset_running_higher_bucket(processor_set_t pset, uint32_t *running_higher) |
| 8362 | { |
| 8363 | bitmap_t *active_map = &pset->cpu_state_map[PROCESSOR_RUNNING]; |
| 8364 | |
| 8365 | /* Edge Scheduler Optimization */ |
| 8366 | for (int cpu = bitmap_first(active_map, MAX_CPUS); cpu >= 0; cpu = bitmap_next(active_map, cpu)) { |
| 8367 | sched_bucket_t cpu_bucket = os_atomic_load(&pset->cpu_running_buckets[cpu], relaxed); |
| 8368 | for (sched_bucket_t bucket = cpu_bucket; bucket < TH_BUCKET_SCHED_MAX; bucket++) { |
| 8369 | running_higher[bucket]++; |
| 8370 | } |
| 8371 | } |
| 8372 | } |
| 8373 | |
| 8374 | /* |
| 8375 | * sched_update_pset_load_average() |
| 8376 | * |
| 8377 | * Updates the load average for each sched bucket for a cluster. |
| 8378 | * This routine must be called with the pset lock held. |
| 8379 | */ |
| 8380 | void |
| 8381 | sched_update_pset_load_average(processor_set_t pset, uint64_t curtime) |
| 8382 | { |
| 8383 | int avail_cpu_count = pset_available_cpu_count(pset); |
| 8384 | if (avail_cpu_count == 0) { |
| 8385 | /* Looks like the pset is not runnable any more; nothing to do here */ |
| 8386 | return; |
| 8387 | } |
| 8388 | |
| 8389 | /* |
| 8390 | * Edge Scheduler Optimization |
| 8391 | * |
| 8392 | * See if more callers of this routine can pass in timestamps to avoid the |
| 8393 | * mach_absolute_time() call here. |
| 8394 | */ |
| 8395 | |
| 8396 | if (!curtime) { |
| 8397 | curtime = mach_absolute_time(); |
| 8398 | } |
| 8399 | uint64_t last_update = os_atomic_load(&pset->pset_load_last_update, relaxed); |
| 8400 | int64_t delta_ticks = curtime - last_update; |
| 8401 | if (delta_ticks < 0) { |
| 8402 | return; |
| 8403 | } |
| 8404 | |
| 8405 | uint64_t delta_nsecs = 0; |
| 8406 | absolutetime_to_nanoseconds(delta_ticks, &delta_nsecs); |
| 8407 | |
| 8408 | if (__improbable(delta_nsecs > UINT32_MAX)) { |
| 8409 | delta_nsecs = UINT32_MAX; |
| 8410 | } |
| 8411 | |
| 8412 | #if CONFIG_SCHED_EDGE |
| 8413 | /* Update the shared resource load on the pset */ |
| 8414 | for (cluster_shared_rsrc_type_t shared_rsrc_type = CLUSTER_SHARED_RSRC_TYPE_MIN; shared_rsrc_type < CLUSTER_SHARED_RSRC_TYPE_COUNT; shared_rsrc_type++) { |
| 8415 | uint64_t shared_rsrc_runnable_load = sched_edge_shared_rsrc_runnable_load(&pset->pset_clutch_root, shared_rsrc_type); |
| 8416 | uint64_t shared_rsrc_running_load = bit_count(pset->cpu_running_cluster_shared_rsrc_thread[shared_rsrc_type]); |
| 8417 | uint64_t new_shared_load = shared_rsrc_runnable_load + shared_rsrc_running_load; |
| 8418 | uint64_t old_shared_load = os_atomic_xchg(&pset->pset_cluster_shared_rsrc_load[shared_rsrc_type], new_shared_load, relaxed); |
| 8419 | if (old_shared_load != new_shared_load) { |
| 8420 | KTRC(MACHDBG_CODE(DBG_MACH_SCHED_CLUTCH, MACH_SCHED_EDGE_CLUSTER_SHARED_LOAD) | DBG_FUNC_NONE, pset->pset_cluster_id, shared_rsrc_type, new_shared_load, shared_rsrc_running_load); |
| 8421 | } |
| 8422 | } |
| 8423 | #endif /* CONFIG_SCHED_EDGE */ |
| 8424 | |
| 8425 | uint32_t running_higher[TH_BUCKET_SCHED_MAX] = {0}; |
| 8426 | sched_edge_pset_running_higher_bucket(pset, running_higher); |
| 8427 | |
| 8428 | for (sched_bucket_t sched_bucket = TH_BUCKET_FIXPRI; sched_bucket < TH_BUCKET_SCHED_MAX; sched_bucket++) { |
| 8429 | uint64_t old_load_average = os_atomic_load(&pset->pset_load_average[sched_bucket], relaxed); |
| 8430 | uint64_t old_load_average_factor = old_load_average * SCHED_PSET_LOAD_EWMA_TC_NSECS; |
| 8431 | uint32_t current_runq_depth = (sched_edge_cluster_cumulative_count(&pset->pset_clutch_root, sched_bucket) + rt_runq_count(pset) + running_higher[sched_bucket]) / avail_cpu_count; |
| 8432 | |
| 8433 | /* |
| 8434 | * For the new load average multiply current_runq_depth by delta_nsecs (which resuts in a 32.0 value). |
| 8435 | * Since we want to maintain the load average as a 24.8 fixed arithmetic value for precision, the |
| 8436 | * new load averga needs to be shifted before it can be added to the old load average. |
| 8437 | */ |
| 8438 | uint64_t new_load_average_factor = (current_runq_depth * delta_nsecs) << SCHED_PSET_LOAD_EWMA_FRACTION_BITS; |
| 8439 | |
| 8440 | /* |
| 8441 | * For extremely parallel workloads, it is important that the load average on a cluster moves zero to non-zero |
| 8442 | * instantly to allow threads to be migrated to other (potentially idle) clusters quickly. Hence use the EWMA |
| 8443 | * when the system is already loaded; otherwise for an idle system use the latest load average immediately. |
| 8444 | */ |
| 8445 | int old_load_shifted = (int)((old_load_average + SCHED_PSET_LOAD_EWMA_ROUND_BIT) >> SCHED_PSET_LOAD_EWMA_FRACTION_BITS); |
| 8446 | boolean_t load_uptick = (old_load_shifted == 0) && (current_runq_depth != 0); |
| 8447 | boolean_t load_downtick = (old_load_shifted != 0) && (current_runq_depth == 0); |
| 8448 | uint64_t load_average; |
| 8449 | if (load_uptick || load_downtick) { |
| 8450 | load_average = (current_runq_depth << SCHED_PSET_LOAD_EWMA_FRACTION_BITS); |
| 8451 | } else { |
| 8452 | /* Indicates a loaded system; use EWMA for load average calculation */ |
| 8453 | load_average = (old_load_average_factor + new_load_average_factor) / (delta_nsecs + SCHED_PSET_LOAD_EWMA_TC_NSECS); |
| 8454 | } |
| 8455 | os_atomic_store(&pset->pset_load_average[sched_bucket], load_average, relaxed); |
| 8456 | if (load_average != old_load_average) { |
| 8457 | KTRC(MACHDBG_CODE(DBG_MACH_SCHED_CLUTCH, MACH_SCHED_EDGE_LOAD_AVG) | DBG_FUNC_NONE, pset->pset_cluster_id, (load_average >> SCHED_PSET_LOAD_EWMA_FRACTION_BITS), load_average & SCHED_PSET_LOAD_EWMA_FRACTION_MASK, sched_bucket); |
| 8458 | } |
| 8459 | } |
| 8460 | os_atomic_store(&pset->pset_load_last_update, curtime, relaxed); |
| 8461 | } |
| 8462 | |
| 8463 | void |
| 8464 | sched_update_pset_avg_execution_time(processor_set_t pset, uint64_t execution_time, uint64_t curtime, sched_bucket_t sched_bucket) |
| 8465 | { |
| 8466 | pset_execution_time_t old_execution_time_packed, new_execution_time_packed; |
| 8467 | uint64_t avg_thread_execution_time = 0; |
| 8468 | |
| 8469 | os_atomic_rmw_loop(&pset->pset_execution_time[sched_bucket].pset_execution_time_packed, |
| 8470 | old_execution_time_packed.pset_execution_time_packed, |
| 8471 | new_execution_time_packed.pset_execution_time_packed, relaxed, { |
| 8472 | uint64_t last_update = old_execution_time_packed.pset_execution_time_last_update; |
| 8473 | int64_t delta_ticks = curtime - last_update; |
| 8474 | if (delta_ticks < 0) { |
| 8475 | /* |
| 8476 | * Its possible that another CPU came in and updated the pset_execution_time |
| 8477 | * before this CPU could do it. Since the average execution time is meant to |
| 8478 | * be an approximate measure per cluster, ignore the older update. |
| 8479 | */ |
| 8480 | os_atomic_rmw_loop_give_up(return ); |
| 8481 | } |
| 8482 | uint64_t delta_nsecs = 0; |
| 8483 | absolutetime_to_nanoseconds(delta_ticks, &delta_nsecs); |
| 8484 | |
| 8485 | uint64_t nanotime = 0; |
| 8486 | absolutetime_to_nanoseconds(execution_time, &nanotime); |
| 8487 | uint64_t execution_time_us = nanotime / NSEC_PER_USEC; |
| 8488 | |
| 8489 | uint64_t old_execution_time = (old_execution_time_packed.pset_avg_thread_execution_time * SCHED_PSET_LOAD_EWMA_TC_NSECS); |
| 8490 | uint64_t new_execution_time = (execution_time_us * delta_nsecs); |
| 8491 | |
| 8492 | avg_thread_execution_time = (old_execution_time + new_execution_time) / (delta_nsecs + SCHED_PSET_LOAD_EWMA_TC_NSECS); |
| 8493 | new_execution_time_packed.pset_avg_thread_execution_time = avg_thread_execution_time; |
| 8494 | new_execution_time_packed.pset_execution_time_last_update = curtime; |
| 8495 | }); |
| 8496 | if (new_execution_time_packed.pset_avg_thread_execution_time != old_execution_time_packed.pset_execution_time_packed) { |
| 8497 | KTRC(MACHDBG_CODE(DBG_MACH_SCHED, MACH_PSET_AVG_EXEC_TIME) | DBG_FUNC_NONE, pset->pset_cluster_id, avg_thread_execution_time, sched_bucket); |
| 8498 | } |
| 8499 | } |
| 8500 | |
| 8501 | uint64_t |
| 8502 | sched_pset_cluster_shared_rsrc_load(processor_set_t pset, cluster_shared_rsrc_type_t shared_rsrc_type) |
| 8503 | { |
| 8504 | return os_atomic_load(&pset->pset_cluster_shared_rsrc_load[shared_rsrc_type], relaxed); |
| 8505 | } |
| 8506 | |
| 8507 | #else /* CONFIG_SCHED_EDGE */ |
| 8508 | |
| 8509 | void |
| 8510 | sched_update_pset_load_average(processor_set_t pset, __unused uint64_t curtime) |
| 8511 | { |
| 8512 | int non_rt_load = pset->pset_runq.count; |
| 8513 | int load = ((bit_count(x: pset->cpu_state_map[PROCESSOR_RUNNING]) + non_rt_load + rt_runq_count(pset)) << PSET_LOAD_NUMERATOR_SHIFT); |
| 8514 | int new_load_average = ((int)pset->load_average + load) >> 1; |
| 8515 | |
| 8516 | pset->load_average = new_load_average; |
| 8517 | #if (DEVELOPMENT || DEBUG) |
| 8518 | #if __AMP__ |
| 8519 | if (pset->pset_cluster_type == PSET_AMP_P) { |
| 8520 | KTRC(MACHDBG_CODE(DBG_MACH_SCHED, MACH_PSET_LOAD_AVERAGE) | DBG_FUNC_NONE, sched_get_pset_load_average(pset, 0), (bit_count(pset->cpu_state_map[PROCESSOR_RUNNING]) + pset->pset_runq.count + rt_runq_count(pset))); |
| 8521 | } |
| 8522 | #endif |
| 8523 | #endif |
| 8524 | } |
| 8525 | |
| 8526 | void |
| 8527 | sched_update_pset_avg_execution_time(__unused processor_set_t pset, __unused uint64_t execution_time, __unused uint64_t curtime, __unused sched_bucket_t sched_bucket) |
| 8528 | { |
| 8529 | } |
| 8530 | |
| 8531 | #endif /* CONFIG_SCHED_EDGE */ |
| 8532 | |
| 8533 | /* pset is locked */ |
| 8534 | static bool |
| 8535 | processor_is_fast_track_candidate_for_realtime_thread(processor_set_t pset, processor_t processor) |
| 8536 | { |
| 8537 | int cpuid = processor->cpu_id; |
| 8538 | #if defined(__x86_64__) |
| 8539 | if (sched_avoid_cpu0 && (cpuid == 0)) { |
| 8540 | return false; |
| 8541 | } |
| 8542 | #endif |
| 8543 | |
| 8544 | cpumap_t fasttrack_map = pset_available_cpumap(pset) & ~pset->pending_AST_URGENT_cpu_mask & ~pset->realtime_map; |
| 8545 | |
| 8546 | return bit_test(fasttrack_map, cpuid); |
| 8547 | } |
| 8548 | |
| 8549 | /* pset is locked */ |
| 8550 | static processor_t |
| 8551 | choose_processor_for_realtime_thread(processor_set_t pset, processor_t skip_processor, bool consider_secondaries, bool skip_spills) |
| 8552 | { |
| 8553 | #if defined(__x86_64__) |
| 8554 | bool avoid_cpu0 = sched_avoid_cpu0 && bit_test(pset->cpu_bitmask, 0); |
| 8555 | #else |
| 8556 | const bool avoid_cpu0 = false; |
| 8557 | #endif |
| 8558 | cpumap_t cpu_map; |
| 8559 | |
| 8560 | try_again: |
| 8561 | cpu_map = pset_available_cpumap(pset) & ~pset->pending_AST_URGENT_cpu_mask & ~pset->realtime_map; |
| 8562 | if (skip_processor) { |
| 8563 | bit_clear(cpu_map, skip_processor->cpu_id); |
| 8564 | } |
| 8565 | if (skip_spills) { |
| 8566 | cpu_map &= ~pset->rt_pending_spill_cpu_mask; |
| 8567 | } |
| 8568 | |
| 8569 | if (avoid_cpu0 && (sched_avoid_cpu0 == 2)) { |
| 8570 | bit_clear(cpu_map, 0); |
| 8571 | } |
| 8572 | |
| 8573 | cpumap_t primary_map = cpu_map & pset->primary_map; |
| 8574 | if (avoid_cpu0) { |
| 8575 | primary_map = bit_ror64(bitmap: primary_map, n: 1); |
| 8576 | } |
| 8577 | |
| 8578 | int rotid = lsb_first(bitmap: primary_map); |
| 8579 | if (rotid >= 0) { |
| 8580 | int cpuid = avoid_cpu0 ? ((rotid + 1) & 63) : rotid; |
| 8581 | |
| 8582 | processor_t processor = processor_array[cpuid]; |
| 8583 | |
| 8584 | return processor; |
| 8585 | } |
| 8586 | |
| 8587 | if (!pset->is_SMT || !sched_allow_rt_smt || !consider_secondaries) { |
| 8588 | goto out; |
| 8589 | } |
| 8590 | |
| 8591 | if (avoid_cpu0 && (sched_avoid_cpu0 == 2)) { |
| 8592 | /* Also avoid cpu1 */ |
| 8593 | bit_clear(cpu_map, 1); |
| 8594 | } |
| 8595 | |
| 8596 | /* Consider secondary processors whose primary is actually running a realtime thread */ |
| 8597 | cpumap_t secondary_map = cpu_map & ~pset->primary_map & (pset->realtime_map << 1); |
| 8598 | if (avoid_cpu0) { |
| 8599 | /* Also avoid cpu1 */ |
| 8600 | secondary_map = bit_ror64(bitmap: secondary_map, n: 2); |
| 8601 | } |
| 8602 | rotid = lsb_first(bitmap: secondary_map); |
| 8603 | if (rotid >= 0) { |
| 8604 | int cpuid = avoid_cpu0 ? ((rotid + 2) & 63) : rotid; |
| 8605 | |
| 8606 | processor_t processor = processor_array[cpuid]; |
| 8607 | |
| 8608 | return processor; |
| 8609 | } |
| 8610 | |
| 8611 | /* Consider secondary processors */ |
| 8612 | secondary_map = cpu_map & ~pset->primary_map; |
| 8613 | if (avoid_cpu0) { |
| 8614 | /* Also avoid cpu1 */ |
| 8615 | secondary_map = bit_ror64(bitmap: secondary_map, n: 2); |
| 8616 | } |
| 8617 | rotid = lsb_first(bitmap: secondary_map); |
| 8618 | if (rotid >= 0) { |
| 8619 | int cpuid = avoid_cpu0 ? ((rotid + 2) & 63) : rotid; |
| 8620 | |
| 8621 | processor_t processor = processor_array[cpuid]; |
| 8622 | |
| 8623 | return processor; |
| 8624 | } |
| 8625 | |
| 8626 | /* |
| 8627 | * I was hoping the compiler would optimize |
| 8628 | * this away when avoid_cpu0 is const bool false |
| 8629 | * but it still complains about the assignmnent |
| 8630 | * in that case. |
| 8631 | */ |
| 8632 | if (avoid_cpu0 && (sched_avoid_cpu0 == 2)) { |
| 8633 | #if defined(__x86_64__) |
| 8634 | avoid_cpu0 = false; |
| 8635 | #else |
| 8636 | assert(0); |
| 8637 | #endif |
| 8638 | goto try_again; |
| 8639 | } |
| 8640 | |
| 8641 | out: |
| 8642 | if (skip_processor) { |
| 8643 | return PROCESSOR_NULL; |
| 8644 | } |
| 8645 | |
| 8646 | /* |
| 8647 | * If we didn't find an obvious processor to choose, but there are still more CPUs |
| 8648 | * not already running realtime threads than realtime threads in the realtime run queue, |
| 8649 | * this thread belongs in this pset, so choose some other processor in this pset |
| 8650 | * to ensure the thread is enqueued here. |
| 8651 | */ |
| 8652 | cpumap_t non_realtime_map = pset_available_cpumap(pset) & pset->primary_map & ~pset->realtime_map; |
| 8653 | if (bit_count(x: non_realtime_map) > rt_runq_count(pset)) { |
| 8654 | cpu_map = non_realtime_map; |
| 8655 | assert(cpu_map != 0); |
| 8656 | int cpuid = bit_first(bitmap: cpu_map); |
| 8657 | assert(cpuid >= 0); |
| 8658 | return processor_array[cpuid]; |
| 8659 | } |
| 8660 | |
| 8661 | if (!pset->is_SMT || !sched_allow_rt_smt || !consider_secondaries) { |
| 8662 | goto skip_secondaries; |
| 8663 | } |
| 8664 | |
| 8665 | non_realtime_map = pset_available_cpumap(pset) & ~pset->realtime_map; |
| 8666 | if (bit_count(x: non_realtime_map) > rt_runq_count(pset)) { |
| 8667 | cpu_map = non_realtime_map; |
| 8668 | assert(cpu_map != 0); |
| 8669 | int cpuid = bit_first(bitmap: cpu_map); |
| 8670 | assert(cpuid >= 0); |
| 8671 | return processor_array[cpuid]; |
| 8672 | } |
| 8673 | |
| 8674 | skip_secondaries: |
| 8675 | return PROCESSOR_NULL; |
| 8676 | } |
| 8677 | |
| 8678 | /* |
| 8679 | * Choose the processor with (1) the lowest priority less than max_pri and (2) the furthest deadline for that priority. |
| 8680 | * If all available processors are at max_pri, choose the furthest deadline that is greater than minimum_deadline. |
| 8681 | * |
| 8682 | * pset is locked. |
| 8683 | */ |
| 8684 | static processor_t |
| 8685 | choose_furthest_deadline_processor_for_realtime_thread(processor_set_t pset, int max_pri, uint64_t minimum_deadline, processor_t skip_processor, bool skip_spills, bool include_ast_urgent_pending_cpus) |
| 8686 | { |
| 8687 | uint64_t furthest_deadline = deadline_add(d: minimum_deadline, e: rt_deadline_epsilon); |
| 8688 | processor_t fd_processor = PROCESSOR_NULL; |
| 8689 | int lowest_priority = max_pri; |
| 8690 | |
| 8691 | cpumap_t cpu_map = pset_available_cpumap(pset) & ~pset->pending_AST_URGENT_cpu_mask; |
| 8692 | if (skip_processor) { |
| 8693 | bit_clear(cpu_map, skip_processor->cpu_id); |
| 8694 | } |
| 8695 | if (skip_spills) { |
| 8696 | cpu_map &= ~pset->rt_pending_spill_cpu_mask; |
| 8697 | } |
| 8698 | |
| 8699 | for (int cpuid = bit_first(bitmap: cpu_map); cpuid >= 0; cpuid = bit_next(bitmap: cpu_map, previous_bit: cpuid)) { |
| 8700 | processor_t processor = processor_array[cpuid]; |
| 8701 | |
| 8702 | if (processor->current_pri > lowest_priority) { |
| 8703 | continue; |
| 8704 | } |
| 8705 | |
| 8706 | if (processor->current_pri < lowest_priority) { |
| 8707 | lowest_priority = processor->current_pri; |
| 8708 | furthest_deadline = processor->deadline; |
| 8709 | fd_processor = processor; |
| 8710 | continue; |
| 8711 | } |
| 8712 | |
| 8713 | if (processor->deadline > furthest_deadline) { |
| 8714 | furthest_deadline = processor->deadline; |
| 8715 | fd_processor = processor; |
| 8716 | } |
| 8717 | } |
| 8718 | |
| 8719 | if (fd_processor) { |
| 8720 | return fd_processor; |
| 8721 | } |
| 8722 | |
| 8723 | /* |
| 8724 | * There is a race condition possible when there are multiple processor sets. |
| 8725 | * choose_processor() takes pset lock A, sees the pending_AST_URGENT_cpu_mask set for a processor in that set and finds no suitable candiate CPU, |
| 8726 | * so it drops pset lock A and tries to take pset lock B. Meanwhile the pending_AST_URGENT_cpu_mask CPU is looking for a thread to run and holds |
| 8727 | * pset lock B. It doesn't find any threads (because the candidate thread isn't yet on any run queue), so drops lock B, takes lock A again to clear |
| 8728 | * the pending_AST_URGENT_cpu_mask bit, and keeps running the current (far deadline) thread. choose_processor() now has lock B and can only find |
| 8729 | * the lowest count processor in set B so enqueues it on set B's run queue but doesn't IPI anyone. (The lowest count includes all threads, |
| 8730 | * near and far deadlines, so will prefer a low count of earlier deadlines to a high count of far deadlines, which is suboptimal for EDF scheduling. |
| 8731 | * To make a better choice we would need to know how many threads with earlier deadlines than the candidate thread exist on each pset's run queue. |
| 8732 | * But even if we chose the better run queue, we still wouldn't send an IPI in this case.) |
| 8733 | * |
| 8734 | * The migitation is to also look for suitable CPUs that have their pending_AST_URGENT_cpu_mask bit set where there are no earlier deadline threads |
| 8735 | * on the run queue of that pset. |
| 8736 | */ |
| 8737 | if (include_ast_urgent_pending_cpus && (rt_runq_earliest_deadline(pset) > furthest_deadline)) { |
| 8738 | cpu_map = pset_available_cpumap(pset) & pset->pending_AST_URGENT_cpu_mask; |
| 8739 | assert(skip_processor == PROCESSOR_NULL); |
| 8740 | assert(skip_spills == false); |
| 8741 | |
| 8742 | for (int cpuid = bit_first(bitmap: cpu_map); cpuid >= 0; cpuid = bit_next(bitmap: cpu_map, previous_bit: cpuid)) { |
| 8743 | processor_t processor = processor_array[cpuid]; |
| 8744 | |
| 8745 | if (processor->current_pri > lowest_priority) { |
| 8746 | continue; |
| 8747 | } |
| 8748 | |
| 8749 | if (processor->current_pri < lowest_priority) { |
| 8750 | lowest_priority = processor->current_pri; |
| 8751 | furthest_deadline = processor->deadline; |
| 8752 | fd_processor = processor; |
| 8753 | continue; |
| 8754 | } |
| 8755 | |
| 8756 | if (processor->deadline > furthest_deadline) { |
| 8757 | furthest_deadline = processor->deadline; |
| 8758 | fd_processor = processor; |
| 8759 | } |
| 8760 | } |
| 8761 | } |
| 8762 | |
| 8763 | return fd_processor; |
| 8764 | } |
| 8765 | |
| 8766 | /* pset is locked */ |
| 8767 | static processor_t |
| 8768 | choose_next_processor_for_realtime_thread(processor_set_t pset, int max_pri, uint64_t minimum_deadline, processor_t skip_processor, bool consider_secondaries) |
| 8769 | { |
| 8770 | bool skip_spills = true; |
| 8771 | bool include_ast_urgent_pending_cpus = false; |
| 8772 | |
| 8773 | processor_t next_processor = choose_processor_for_realtime_thread(pset, skip_processor, consider_secondaries, skip_spills); |
| 8774 | if (next_processor != PROCESSOR_NULL) { |
| 8775 | return next_processor; |
| 8776 | } |
| 8777 | |
| 8778 | next_processor = choose_furthest_deadline_processor_for_realtime_thread(pset, max_pri, minimum_deadline, skip_processor, skip_spills, include_ast_urgent_pending_cpus); |
| 8779 | return next_processor; |
| 8780 | } |
| 8781 | |
| 8782 | #if defined(__x86_64__) |
| 8783 | /* pset is locked */ |
| 8784 | static bool |
| 8785 | all_available_primaries_are_running_realtime_threads(processor_set_t pset, bool include_backups) |
| 8786 | { |
| 8787 | bool avoid_cpu0 = sched_avoid_cpu0 && bit_test(pset->cpu_bitmask, 0); |
| 8788 | int nbackup_cpus = 0; |
| 8789 | |
| 8790 | if (include_backups && rt_runq_is_low_latency(pset)) { |
| 8791 | nbackup_cpus = sched_rt_n_backup_processors; |
| 8792 | } |
| 8793 | |
| 8794 | cpumap_t cpu_map = pset_available_cpumap(pset) & pset->primary_map & ~pset->realtime_map; |
| 8795 | if (avoid_cpu0 && (sched_avoid_cpu0 == 2)) { |
| 8796 | bit_clear(cpu_map, 0); |
| 8797 | } |
| 8798 | return (rt_runq_count(pset) + nbackup_cpus) > bit_count(cpu_map); |
| 8799 | } |
| 8800 | |
| 8801 | /* pset is locked */ |
| 8802 | static bool |
| 8803 | these_processors_are_running_realtime_threads(processor_set_t pset, uint64_t these_map, bool include_backups) |
| 8804 | { |
| 8805 | int nbackup_cpus = 0; |
| 8806 | |
| 8807 | if (include_backups && rt_runq_is_low_latency(pset)) { |
| 8808 | nbackup_cpus = sched_rt_n_backup_processors; |
| 8809 | } |
| 8810 | |
| 8811 | cpumap_t cpu_map = pset_available_cpumap(pset) & these_map & ~pset->realtime_map; |
| 8812 | return (rt_runq_count(pset) + nbackup_cpus) > bit_count(cpu_map); |
| 8813 | } |
| 8814 | #endif |
| 8815 | |
| 8816 | static bool |
| 8817 | sched_ok_to_run_realtime_thread(processor_set_t pset, processor_t processor, bool as_backup) |
| 8818 | { |
| 8819 | if (!processor->is_recommended) { |
| 8820 | return false; |
| 8821 | } |
| 8822 | bool ok_to_run_realtime_thread = true; |
| 8823 | #if defined(__x86_64__) |
| 8824 | bool spill_pending = bit_test(pset->rt_pending_spill_cpu_mask, processor->cpu_id); |
| 8825 | if (spill_pending) { |
| 8826 | return true; |
| 8827 | } |
| 8828 | if (processor->cpu_id == 0) { |
| 8829 | if (sched_avoid_cpu0 == 1) { |
| 8830 | ok_to_run_realtime_thread = these_processors_are_running_realtime_threads(pset, pset->primary_map & ~0x1, as_backup); |
| 8831 | } else if (sched_avoid_cpu0 == 2) { |
| 8832 | ok_to_run_realtime_thread = these_processors_are_running_realtime_threads(pset, ~0x3, as_backup); |
| 8833 | } |
| 8834 | } else if (sched_avoid_cpu0 && (processor->cpu_id == 1) && processor->is_SMT) { |
| 8835 | ok_to_run_realtime_thread = sched_allow_rt_smt && these_processors_are_running_realtime_threads(pset, ~0x2, as_backup); |
| 8836 | } else if (processor->processor_primary != processor) { |
| 8837 | ok_to_run_realtime_thread = (sched_allow_rt_smt && all_available_primaries_are_running_realtime_threads(pset, as_backup)); |
| 8838 | } |
| 8839 | #else |
| 8840 | (void)pset; |
| 8841 | (void)processor; |
| 8842 | (void)as_backup; |
| 8843 | #endif |
| 8844 | return ok_to_run_realtime_thread; |
| 8845 | } |
| 8846 | |
| 8847 | void |
| 8848 | sched_pset_made_schedulable(__unused processor_t processor, processor_set_t pset, boolean_t drop_lock) |
| 8849 | { |
| 8850 | if (drop_lock) { |
| 8851 | pset_unlock(pset); |
| 8852 | } |
| 8853 | } |
| 8854 | |
| 8855 | void |
| 8856 | thread_set_no_smt(bool set) |
| 8857 | { |
| 8858 | if (!system_is_SMT) { |
| 8859 | /* Not a machine that supports SMT */ |
| 8860 | return; |
| 8861 | } |
| 8862 | |
| 8863 | thread_t thread = current_thread(); |
| 8864 | |
| 8865 | spl_t s = splsched(); |
| 8866 | thread_lock(thread); |
| 8867 | if (set) { |
| 8868 | thread->sched_flags |= TH_SFLAG_NO_SMT; |
| 8869 | } |
| 8870 | thread_unlock(thread); |
| 8871 | splx(s); |
| 8872 | } |
| 8873 | |
| 8874 | bool |
| 8875 | thread_get_no_smt(void) |
| 8876 | { |
| 8877 | return current_thread()->sched_flags & TH_SFLAG_NO_SMT; |
| 8878 | } |
| 8879 | |
| 8880 | extern void task_set_no_smt(task_t); |
| 8881 | void |
| 8882 | task_set_no_smt(task_t task) |
| 8883 | { |
| 8884 | if (!system_is_SMT) { |
| 8885 | /* Not a machine that supports SMT */ |
| 8886 | return; |
| 8887 | } |
| 8888 | |
| 8889 | if (task == TASK_NULL) { |
| 8890 | task = current_task(); |
| 8891 | } |
| 8892 | |
| 8893 | task_lock(task); |
| 8894 | task->t_flags |= TF_NO_SMT; |
| 8895 | task_unlock(task); |
| 8896 | } |
| 8897 | |
| 8898 | #if DEBUG || DEVELOPMENT |
| 8899 | extern void sysctl_task_set_no_smt(char no_smt); |
| 8900 | void |
| 8901 | sysctl_task_set_no_smt(char no_smt) |
| 8902 | { |
| 8903 | if (!system_is_SMT) { |
| 8904 | /* Not a machine that supports SMT */ |
| 8905 | return; |
| 8906 | } |
| 8907 | |
| 8908 | task_t task = current_task(); |
| 8909 | |
| 8910 | task_lock(task); |
| 8911 | if (no_smt == '1') { |
| 8912 | task->t_flags |= TF_NO_SMT; |
| 8913 | } |
| 8914 | task_unlock(task); |
| 8915 | } |
| 8916 | |
| 8917 | extern char sysctl_task_get_no_smt(void); |
| 8918 | char |
| 8919 | sysctl_task_get_no_smt(void) |
| 8920 | { |
| 8921 | task_t task = current_task(); |
| 8922 | |
| 8923 | if (task->t_flags & TF_NO_SMT) { |
| 8924 | return '1'; |
| 8925 | } |
| 8926 | return '0'; |
| 8927 | } |
| 8928 | #endif /* DEVELOPMENT || DEBUG */ |
| 8929 | |
| 8930 | |
| 8931 | __private_extern__ void |
| 8932 | thread_bind_cluster_type(thread_t thread, char cluster_type, bool soft_bound) |
| 8933 | { |
| 8934 | #if __AMP__ |
| 8935 | spl_t s = splsched(); |
| 8936 | thread_lock(thread); |
| 8937 | thread->sched_flags &= ~(TH_SFLAG_BOUND_SOFT); |
| 8938 | thread->th_bound_cluster_id = THREAD_BOUND_CLUSTER_NONE; |
| 8939 | if (soft_bound) { |
| 8940 | thread->sched_flags |= TH_SFLAG_BOUND_SOFT; |
| 8941 | } |
| 8942 | switch (cluster_type) { |
| 8943 | case 'e': |
| 8944 | case 'E': |
| 8945 | if (pset0.pset_cluster_type == PSET_AMP_E) { |
| 8946 | thread->th_bound_cluster_id = pset0.pset_id; |
| 8947 | } else if (pset_node1.psets != PROCESSOR_SET_NULL) { |
| 8948 | thread->th_bound_cluster_id = pset_node1.psets->pset_id; |
| 8949 | } |
| 8950 | break; |
| 8951 | case 'p': |
| 8952 | case 'P': |
| 8953 | if (pset0.pset_cluster_type == PSET_AMP_P) { |
| 8954 | thread->th_bound_cluster_id = pset0.pset_id; |
| 8955 | } else if (pset_node1.psets != PROCESSOR_SET_NULL) { |
| 8956 | thread->th_bound_cluster_id = pset_node1.psets->pset_id; |
| 8957 | } |
| 8958 | break; |
| 8959 | default: |
| 8960 | break; |
| 8961 | } |
| 8962 | thread_unlock(thread); |
| 8963 | splx(s); |
| 8964 | |
| 8965 | if (thread == current_thread()) { |
| 8966 | thread_block(THREAD_CONTINUE_NULL); |
| 8967 | } |
| 8968 | #else /* __AMP__ */ |
| 8969 | (void)thread; |
| 8970 | (void)cluster_type; |
| 8971 | (void)soft_bound; |
| 8972 | #endif /* __AMP__ */ |
| 8973 | } |
| 8974 | |
| 8975 | extern uint32_t thread_bound_cluster_id(thread_t thread); |
| 8976 | uint32_t |
| 8977 | thread_bound_cluster_id(thread_t thread) |
| 8978 | { |
| 8979 | return thread->th_bound_cluster_id; |
| 8980 | } |
| 8981 | |
| 8982 | __private_extern__ kern_return_t |
| 8983 | thread_bind_cluster_id(thread_t thread, uint32_t cluster_id, thread_bind_option_t options) |
| 8984 | { |
| 8985 | #if __AMP__ |
| 8986 | |
| 8987 | processor_set_t pset = NULL; |
| 8988 | |
| 8989 | /* Treat binding to THREAD_BOUND_CLUSTER_NONE as a request to unbind. */ |
| 8990 | if ((options & THREAD_UNBIND) || cluster_id == THREAD_BOUND_CLUSTER_NONE) { |
| 8991 | /* If the thread was actually not bound to some cluster, nothing to do here */ |
| 8992 | if (thread_bound_cluster_id(thread) == THREAD_BOUND_CLUSTER_NONE) { |
| 8993 | return KERN_SUCCESS; |
| 8994 | } |
| 8995 | } else { |
| 8996 | /* Validate the inputs for the bind case */ |
| 8997 | int max_clusters = ml_get_cluster_count(); |
| 8998 | if (cluster_id >= max_clusters) { |
| 8999 | /* Invalid cluster id */ |
| 9000 | return KERN_INVALID_VALUE; |
| 9001 | } |
| 9002 | pset = pset_array[cluster_id]; |
| 9003 | if (pset == NULL) { |
| 9004 | /* Cluster has not been initialized yet */ |
| 9005 | return KERN_INVALID_VALUE; |
| 9006 | } |
| 9007 | if (options & THREAD_BIND_ELIGIBLE_ONLY) { |
| 9008 | if (SCHED(thread_eligible_for_pset(thread, pset)) == false) { |
| 9009 | /* Thread is not recommended for the cluster type */ |
| 9010 | return KERN_INVALID_POLICY; |
| 9011 | } |
| 9012 | } |
| 9013 | } |
| 9014 | |
| 9015 | spl_t s = splsched(); |
| 9016 | thread_lock(thread); |
| 9017 | |
| 9018 | /* Unbind the thread from its previous bound state */ |
| 9019 | thread->sched_flags &= ~(TH_SFLAG_BOUND_SOFT); |
| 9020 | thread->th_bound_cluster_id = THREAD_BOUND_CLUSTER_NONE; |
| 9021 | |
| 9022 | if (options & THREAD_UNBIND) { |
| 9023 | /* Nothing more to do here */ |
| 9024 | goto thread_bind_cluster_complete; |
| 9025 | } |
| 9026 | |
| 9027 | if (options & THREAD_BIND_SOFT) { |
| 9028 | thread->sched_flags |= TH_SFLAG_BOUND_SOFT; |
| 9029 | } |
| 9030 | thread->th_bound_cluster_id = cluster_id; |
| 9031 | |
| 9032 | thread_bind_cluster_complete: |
| 9033 | thread_unlock(thread); |
| 9034 | splx(s); |
| 9035 | |
| 9036 | if (thread == current_thread()) { |
| 9037 | thread_block(THREAD_CONTINUE_NULL); |
| 9038 | } |
| 9039 | #else /* __AMP__ */ |
| 9040 | (void)thread; |
| 9041 | (void)cluster_id; |
| 9042 | (void)options; |
| 9043 | #endif /* __AMP__ */ |
| 9044 | return KERN_SUCCESS; |
| 9045 | } |
| 9046 | |
| 9047 | #if DEVELOPMENT || DEBUG |
| 9048 | extern int32_t sysctl_get_bound_cpuid(void); |
| 9049 | int32_t |
| 9050 | sysctl_get_bound_cpuid(void) |
| 9051 | { |
| 9052 | int32_t cpuid = -1; |
| 9053 | thread_t self = current_thread(); |
| 9054 | |
| 9055 | processor_t processor = self->bound_processor; |
| 9056 | if (processor == NULL) { |
| 9057 | cpuid = -1; |
| 9058 | } else { |
| 9059 | cpuid = processor->cpu_id; |
| 9060 | } |
| 9061 | |
| 9062 | return cpuid; |
| 9063 | } |
| 9064 | |
| 9065 | extern kern_return_t sysctl_thread_bind_cpuid(int32_t cpuid); |
| 9066 | kern_return_t |
| 9067 | sysctl_thread_bind_cpuid(int32_t cpuid) |
| 9068 | { |
| 9069 | processor_t processor = PROCESSOR_NULL; |
| 9070 | |
| 9071 | if (cpuid == -1) { |
| 9072 | goto unbind; |
| 9073 | } |
| 9074 | |
| 9075 | if (cpuid < 0 || cpuid >= MAX_SCHED_CPUS) { |
| 9076 | return KERN_INVALID_VALUE; |
| 9077 | } |
| 9078 | |
| 9079 | processor = processor_array[cpuid]; |
| 9080 | if (processor == PROCESSOR_NULL) { |
| 9081 | return KERN_INVALID_VALUE; |
| 9082 | } |
| 9083 | |
| 9084 | #if __AMP__ |
| 9085 | |
| 9086 | thread_t thread = current_thread(); |
| 9087 | |
| 9088 | if (thread->th_bound_cluster_id != THREAD_BOUND_CLUSTER_NONE) { |
| 9089 | if ((thread->sched_flags & TH_SFLAG_BOUND_SOFT) == 0) { |
| 9090 | /* Cannot hard-bind an already hard-cluster-bound thread */ |
| 9091 | return KERN_NOT_SUPPORTED; |
| 9092 | } |
| 9093 | } |
| 9094 | |
| 9095 | #endif /* __AMP__ */ |
| 9096 | |
| 9097 | unbind: |
| 9098 | thread_bind(processor); |
| 9099 | |
| 9100 | thread_block(THREAD_CONTINUE_NULL); |
| 9101 | return KERN_SUCCESS; |
| 9102 | } |
| 9103 | |
| 9104 | extern char sysctl_get_task_cluster_type(void); |
| 9105 | char |
| 9106 | sysctl_get_task_cluster_type(void) |
| 9107 | { |
| 9108 | task_t task = current_task(); |
| 9109 | processor_set_t pset_hint = task->pset_hint; |
| 9110 | |
| 9111 | if (!pset_hint) { |
| 9112 | return '0'; |
| 9113 | } |
| 9114 | |
| 9115 | #if __AMP__ |
| 9116 | if (pset_hint->pset_cluster_type == PSET_AMP_E) { |
| 9117 | return 'E'; |
| 9118 | } else if (pset_hint->pset_cluster_type == PSET_AMP_P) { |
| 9119 | return 'P'; |
| 9120 | } |
| 9121 | #endif |
| 9122 | |
| 9123 | return '0'; |
| 9124 | } |
| 9125 | |
| 9126 | #if __AMP__ |
| 9127 | static processor_set_t |
| 9128 | find_pset_of_type(pset_cluster_type_t t) |
| 9129 | { |
| 9130 | for (pset_node_t node = &pset_node0; node != NULL; node = node->node_list) { |
| 9131 | if (node->pset_cluster_type != t) { |
| 9132 | continue; |
| 9133 | } |
| 9134 | |
| 9135 | processor_set_t pset = PROCESSOR_SET_NULL; |
| 9136 | for (int pset_id = lsb_first(node->pset_map); pset_id >= 0; pset_id = lsb_next(node->pset_map, pset_id)) { |
| 9137 | pset = pset_array[pset_id]; |
| 9138 | /* Prefer one with recommended processsors */ |
| 9139 | if (pset->recommended_bitmask != 0) { |
| 9140 | assert(pset->pset_cluster_type == t); |
| 9141 | return pset; |
| 9142 | } |
| 9143 | } |
| 9144 | /* Otherwise return whatever was found last */ |
| 9145 | return pset; |
| 9146 | } |
| 9147 | |
| 9148 | return PROCESSOR_SET_NULL; |
| 9149 | } |
| 9150 | #endif |
| 9151 | |
| 9152 | extern void sysctl_task_set_cluster_type(char cluster_type); |
| 9153 | void |
| 9154 | sysctl_task_set_cluster_type(char cluster_type) |
| 9155 | { |
| 9156 | task_t task = current_task(); |
| 9157 | processor_set_t pset_hint = PROCESSOR_SET_NULL; |
| 9158 | |
| 9159 | #if __AMP__ |
| 9160 | switch (cluster_type) { |
| 9161 | case 'e': |
| 9162 | case 'E': |
| 9163 | pset_hint = find_pset_of_type(PSET_AMP_E); |
| 9164 | break; |
| 9165 | case 'p': |
| 9166 | case 'P': |
| 9167 | pset_hint = find_pset_of_type(PSET_AMP_P); |
| 9168 | break; |
| 9169 | default: |
| 9170 | break; |
| 9171 | } |
| 9172 | |
| 9173 | if (pset_hint) { |
| 9174 | task_lock(task); |
| 9175 | task->t_flags |= TF_USE_PSET_HINT_CLUSTER_TYPE; |
| 9176 | task->pset_hint = pset_hint; |
| 9177 | task_unlock(task); |
| 9178 | |
| 9179 | thread_block(THREAD_CONTINUE_NULL); |
| 9180 | } |
| 9181 | #else |
| 9182 | (void)cluster_type; |
| 9183 | (void)task; |
| 9184 | (void)pset_hint; |
| 9185 | #endif |
| 9186 | } |
| 9187 | |
| 9188 | /* |
| 9189 | * The quantum length used for Fixed and RT sched modes. In general the quantum |
| 9190 | * can vary - for example for background or QOS. |
| 9191 | */ |
| 9192 | extern uint64_t sysctl_get_quantum_us(void); |
| 9193 | uint64_t |
| 9194 | sysctl_get_quantum_us(void) |
| 9195 | { |
| 9196 | uint32_t quantum; |
| 9197 | uint64_t quantum_ns; |
| 9198 | |
| 9199 | quantum = SCHED(initial_quantum_size)(THREAD_NULL); |
| 9200 | absolutetime_to_nanoseconds(quantum, &quantum_ns); |
| 9201 | |
| 9202 | return quantum_ns / 1000; |
| 9203 | } |
| 9204 | |
| 9205 | #endif /* DEVELOPMENT || DEBUG */ |
| 9206 | |