| 1 | /* |
| 2 | * Copyright (c) 2013 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
| 5 | * |
| 6 | * This file contains Original Code and/or Modifications of Original Code |
| 7 | * as defined in and that are subject to the Apple Public Source License |
| 8 | * Version 2.0 (the 'License'). You may not use this file except in |
| 9 | * compliance with the License. The rights granted to you under the License |
| 10 | * may not be used to create, or enable the creation or redistribution of, |
| 11 | * unlawful or unlicensed copies of an Apple operating system, or to |
| 12 | * circumvent, violate, or enable the circumvention or violation of, any |
| 13 | * terms of an Apple operating system software license agreement. |
| 14 | * |
| 15 | * Please obtain a copy of the License at |
| 16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
| 17 | * |
| 18 | * The Original Code and all software distributed under the License are |
| 19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| 23 | * Please see the License for the specific language governing rights and |
| 24 | * limitations under the License. |
| 25 | * |
| 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
| 27 | */ |
| 28 | |
| 29 | #include <mach/mach_types.h> |
| 30 | #include <mach/machine.h> |
| 31 | |
| 32 | #include <machine/machine_routines.h> |
| 33 | #include <machine/sched_param.h> |
| 34 | #include <machine/machine_cpu.h> |
| 35 | |
| 36 | #include <kern/kern_types.h> |
| 37 | #include <kern/debug.h> |
| 38 | #include <kern/machine.h> |
| 39 | #include <kern/misc_protos.h> |
| 40 | #include <kern/processor.h> |
| 41 | #include <kern/queue.h> |
| 42 | #include <kern/sched.h> |
| 43 | #include <kern/sched_prim.h> |
| 44 | #include <kern/task.h> |
| 45 | #include <kern/thread.h> |
| 46 | |
| 47 | #include <sys/kdebug.h> |
| 48 | |
| 49 | static void |
| 50 | sched_dualq_init(void); |
| 51 | |
| 52 | static thread_t |
| 53 | sched_dualq_steal_thread(processor_set_t pset); |
| 54 | |
| 55 | static void |
| 56 | sched_dualq_thread_update_scan(sched_update_scan_context_t scan_context); |
| 57 | |
| 58 | static boolean_t |
| 59 | sched_dualq_processor_enqueue(processor_t processor, thread_t thread, |
| 60 | sched_options_t options); |
| 61 | |
| 62 | static boolean_t |
| 63 | sched_dualq_processor_queue_remove(processor_t processor, thread_t thread); |
| 64 | |
| 65 | static ast_t |
| 66 | sched_dualq_processor_csw_check(processor_t processor); |
| 67 | |
| 68 | static boolean_t |
| 69 | sched_dualq_processor_queue_has_priority(processor_t processor, int priority, boolean_t gte); |
| 70 | |
| 71 | static int |
| 72 | sched_dualq_runq_count(processor_t processor); |
| 73 | |
| 74 | static boolean_t |
| 75 | sched_dualq_processor_queue_empty(processor_t processor); |
| 76 | |
| 77 | static uint64_t |
| 78 | sched_dualq_runq_stats_count_sum(processor_t processor); |
| 79 | |
| 80 | static int |
| 81 | sched_dualq_processor_bound_count(processor_t processor); |
| 82 | |
| 83 | static void |
| 84 | sched_dualq_pset_init(processor_set_t pset); |
| 85 | |
| 86 | static void |
| 87 | sched_dualq_processor_init(processor_t processor); |
| 88 | |
| 89 | static thread_t |
| 90 | sched_dualq_choose_thread(processor_t processor, int priority, ast_t reason); |
| 91 | |
| 92 | static void |
| 93 | sched_dualq_processor_queue_shutdown(processor_t processor); |
| 94 | |
| 95 | static sched_mode_t |
| 96 | sched_dualq_initial_thread_sched_mode(task_t parent_task); |
| 97 | |
| 98 | static bool |
| 99 | sched_dualq_thread_avoid_processor(processor_t processor, thread_t thread, __unused ast_t reason); |
| 100 | |
| 101 | const struct sched_dispatch_table sched_dualq_dispatch = { |
| 102 | .sched_name = "dualq" , |
| 103 | .init = sched_dualq_init, |
| 104 | .timebase_init = sched_timeshare_timebase_init, |
| 105 | .processor_init = sched_dualq_processor_init, |
| 106 | .pset_init = sched_dualq_pset_init, |
| 107 | .maintenance_continuation = sched_timeshare_maintenance_continue, |
| 108 | .choose_thread = sched_dualq_choose_thread, |
| 109 | .steal_thread_enabled = sched_steal_thread_enabled, |
| 110 | .steal_thread = sched_dualq_steal_thread, |
| 111 | .compute_timeshare_priority = sched_compute_timeshare_priority, |
| 112 | .choose_node = sched_choose_node, |
| 113 | .choose_processor = choose_processor, |
| 114 | .processor_enqueue = sched_dualq_processor_enqueue, |
| 115 | .processor_queue_shutdown = sched_dualq_processor_queue_shutdown, |
| 116 | .processor_queue_remove = sched_dualq_processor_queue_remove, |
| 117 | .processor_queue_empty = sched_dualq_processor_queue_empty, |
| 118 | .priority_is_urgent = priority_is_urgent, |
| 119 | .processor_csw_check = sched_dualq_processor_csw_check, |
| 120 | .processor_queue_has_priority = sched_dualq_processor_queue_has_priority, |
| 121 | .initial_quantum_size = sched_timeshare_initial_quantum_size, |
| 122 | .initial_thread_sched_mode = sched_dualq_initial_thread_sched_mode, |
| 123 | .can_update_priority = can_update_priority, |
| 124 | .update_priority = update_priority, |
| 125 | .lightweight_update_priority = lightweight_update_priority, |
| 126 | .quantum_expire = sched_default_quantum_expire, |
| 127 | .processor_runq_count = sched_dualq_runq_count, |
| 128 | .processor_runq_stats_count_sum = sched_dualq_runq_stats_count_sum, |
| 129 | .processor_bound_count = sched_dualq_processor_bound_count, |
| 130 | .thread_update_scan = sched_dualq_thread_update_scan, |
| 131 | .multiple_psets_enabled = TRUE, |
| 132 | .sched_groups_enabled = FALSE, |
| 133 | .avoid_processor_enabled = TRUE, |
| 134 | .thread_avoid_processor = sched_dualq_thread_avoid_processor, |
| 135 | .processor_balance = sched_SMT_balance, |
| 136 | |
| 137 | .rt_runq = sched_rtlocal_runq, |
| 138 | .rt_init = sched_rtlocal_init, |
| 139 | .rt_queue_shutdown = sched_rtlocal_queue_shutdown, |
| 140 | .rt_runq_scan = sched_rtlocal_runq_scan, |
| 141 | .rt_runq_count_sum = sched_rtlocal_runq_count_sum, |
| 142 | .rt_steal_thread = sched_rtlocal_steal_thread, |
| 143 | |
| 144 | .qos_max_parallelism = sched_qos_max_parallelism, |
| 145 | .check_spill = sched_check_spill, |
| 146 | .ipi_policy = sched_ipi_policy, |
| 147 | .thread_should_yield = sched_thread_should_yield, |
| 148 | .run_count_incr = sched_smt_run_incr, |
| 149 | .run_count_decr = sched_smt_run_decr, |
| 150 | .update_thread_bucket = sched_smt_update_thread_bucket, |
| 151 | .pset_made_schedulable = sched_pset_made_schedulable, |
| 152 | .cpu_init_completed = NULL, |
| 153 | .thread_eligible_for_pset = NULL, |
| 154 | }; |
| 155 | |
| 156 | __attribute__((always_inline)) |
| 157 | static inline run_queue_t |
| 158 | dualq_main_runq(processor_t processor) |
| 159 | { |
| 160 | return &processor->processor_set->pset_runq; |
| 161 | } |
| 162 | |
| 163 | __attribute__((always_inline)) |
| 164 | static inline run_queue_t |
| 165 | dualq_bound_runq(processor_t processor) |
| 166 | { |
| 167 | return &processor->runq; |
| 168 | } |
| 169 | |
| 170 | __attribute__((always_inline)) |
| 171 | static inline run_queue_t |
| 172 | dualq_runq_for_thread(processor_t processor, thread_t thread) |
| 173 | { |
| 174 | if (thread->bound_processor == PROCESSOR_NULL) { |
| 175 | return dualq_main_runq(processor); |
| 176 | } else { |
| 177 | assert(thread->bound_processor == processor); |
| 178 | return dualq_bound_runq(processor); |
| 179 | } |
| 180 | } |
| 181 | |
| 182 | static sched_mode_t |
| 183 | sched_dualq_initial_thread_sched_mode(task_t parent_task) |
| 184 | { |
| 185 | if (parent_task == kernel_task) { |
| 186 | return TH_MODE_FIXED; |
| 187 | } else { |
| 188 | return TH_MODE_TIMESHARE; |
| 189 | } |
| 190 | } |
| 191 | |
| 192 | static void |
| 193 | sched_dualq_processor_init(processor_t processor) |
| 194 | { |
| 195 | run_queue_init(runq: &processor->runq); |
| 196 | } |
| 197 | |
| 198 | static void |
| 199 | sched_dualq_pset_init(processor_set_t pset) |
| 200 | { |
| 201 | run_queue_init(runq: &pset->pset_runq); |
| 202 | } |
| 203 | |
| 204 | extern int sched_allow_NO_SMT_threads; |
| 205 | static void |
| 206 | sched_dualq_init(void) |
| 207 | { |
| 208 | sched_timeshare_init(); |
| 209 | |
| 210 | if (PE_parse_boot_argn(arg_string: "disable_NO_SMT_threads" , NULL, max_arg: 0)) { |
| 211 | sched_allow_NO_SMT_threads = 0; |
| 212 | } |
| 213 | } |
| 214 | |
| 215 | static thread_t |
| 216 | sched_dualq_choose_thread( |
| 217 | processor_t processor, |
| 218 | int priority, |
| 219 | __unused ast_t reason) |
| 220 | { |
| 221 | run_queue_t main_runq = dualq_main_runq(processor); |
| 222 | run_queue_t bound_runq = dualq_bound_runq(processor); |
| 223 | run_queue_t chosen_runq; |
| 224 | |
| 225 | if (bound_runq->highq < priority && |
| 226 | main_runq->highq < priority) { |
| 227 | return THREAD_NULL; |
| 228 | } |
| 229 | |
| 230 | if (bound_runq->count && main_runq->count) { |
| 231 | if (bound_runq->highq >= main_runq->highq) { |
| 232 | chosen_runq = bound_runq; |
| 233 | } else { |
| 234 | chosen_runq = main_runq; |
| 235 | } |
| 236 | } else if (bound_runq->count) { |
| 237 | chosen_runq = bound_runq; |
| 238 | } else if (main_runq->count) { |
| 239 | chosen_runq = main_runq; |
| 240 | } else { |
| 241 | return THREAD_NULL; |
| 242 | } |
| 243 | |
| 244 | if (chosen_runq == bound_runq) { |
| 245 | return run_queue_dequeue(runq: chosen_runq, options: SCHED_HEADQ); |
| 246 | } |
| 247 | |
| 248 | if (processor->is_SMT) { |
| 249 | thread_t potential_thread = run_queue_peek(runq: chosen_runq); |
| 250 | if (potential_thread == THREAD_NULL) { |
| 251 | return THREAD_NULL; |
| 252 | } |
| 253 | if (processor->processor_primary != processor) { |
| 254 | /* |
| 255 | * Secondary processor may not run a NO_SMT thread, |
| 256 | * nor any thread if the primary is running a NO_SMT thread. |
| 257 | */ |
| 258 | if (thread_no_smt(thread: potential_thread)) { |
| 259 | processor->must_idle = true; |
| 260 | return THREAD_NULL; |
| 261 | } |
| 262 | processor_t primary = processor->processor_primary; |
| 263 | if (primary->state == PROCESSOR_RUNNING) { |
| 264 | if (processor_active_thread_no_smt(processor: primary)) { |
| 265 | processor->must_idle = true; |
| 266 | return THREAD_NULL; |
| 267 | } |
| 268 | } |
| 269 | } else if (processor->processor_secondary != PROCESSOR_NULL) { |
| 270 | processor_t secondary = processor->processor_secondary; |
| 271 | /* |
| 272 | * Primary processor may not run a NO_SMT thread if |
| 273 | * its secondary is running a bound thread. |
| 274 | */ |
| 275 | if (secondary->state == PROCESSOR_RUNNING) { |
| 276 | if (thread_no_smt(thread: potential_thread) && secondary->current_is_bound) { |
| 277 | processor->must_idle = true; |
| 278 | return THREAD_NULL; |
| 279 | } |
| 280 | } |
| 281 | } |
| 282 | } |
| 283 | |
| 284 | return run_queue_dequeue(runq: chosen_runq, options: SCHED_HEADQ); |
| 285 | } |
| 286 | |
| 287 | static boolean_t |
| 288 | sched_dualq_processor_enqueue( |
| 289 | processor_t processor, |
| 290 | thread_t thread, |
| 291 | sched_options_t options) |
| 292 | { |
| 293 | run_queue_t rq = dualq_runq_for_thread(processor, thread); |
| 294 | boolean_t result; |
| 295 | |
| 296 | result = run_queue_enqueue(runq: rq, thread, options); |
| 297 | thread_set_runq_locked(thread, new_runq: processor); |
| 298 | |
| 299 | return result; |
| 300 | } |
| 301 | |
| 302 | static boolean_t |
| 303 | sched_dualq_processor_queue_empty(processor_t processor) |
| 304 | { |
| 305 | return dualq_main_runq(processor)->count == 0 && |
| 306 | dualq_bound_runq(processor)->count == 0; |
| 307 | } |
| 308 | |
| 309 | static ast_t |
| 310 | sched_dualq_processor_csw_check(processor_t processor) |
| 311 | { |
| 312 | boolean_t has_higher; |
| 313 | int pri; |
| 314 | |
| 315 | if (sched_dualq_thread_avoid_processor(processor, thread: current_thread(), AST_NONE)) { |
| 316 | return AST_PREEMPT | AST_URGENT; |
| 317 | } |
| 318 | |
| 319 | run_queue_t main_runq = dualq_main_runq(processor); |
| 320 | run_queue_t bound_runq = dualq_bound_runq(processor); |
| 321 | |
| 322 | assert(processor->active_thread != NULL); |
| 323 | |
| 324 | pri = MAX(main_runq->highq, bound_runq->highq); |
| 325 | |
| 326 | if (processor->first_timeslice) { |
| 327 | has_higher = (pri > processor->current_pri); |
| 328 | } else { |
| 329 | has_higher = (pri >= processor->current_pri); |
| 330 | } |
| 331 | |
| 332 | if (has_higher) { |
| 333 | if (main_runq->urgency > 0) { |
| 334 | return AST_PREEMPT | AST_URGENT; |
| 335 | } |
| 336 | |
| 337 | if (bound_runq->urgency > 0) { |
| 338 | return AST_PREEMPT | AST_URGENT; |
| 339 | } |
| 340 | |
| 341 | return AST_PREEMPT; |
| 342 | } |
| 343 | |
| 344 | return AST_NONE; |
| 345 | } |
| 346 | |
| 347 | static boolean_t |
| 348 | sched_dualq_processor_queue_has_priority(processor_t processor, |
| 349 | int priority, |
| 350 | boolean_t gte) |
| 351 | { |
| 352 | run_queue_t main_runq = dualq_main_runq(processor); |
| 353 | run_queue_t bound_runq = dualq_bound_runq(processor); |
| 354 | |
| 355 | int qpri = MAX(main_runq->highq, bound_runq->highq); |
| 356 | |
| 357 | if (gte) { |
| 358 | return qpri >= priority; |
| 359 | } else { |
| 360 | return qpri > priority; |
| 361 | } |
| 362 | } |
| 363 | |
| 364 | static int |
| 365 | sched_dualq_runq_count(processor_t processor) |
| 366 | { |
| 367 | return dualq_main_runq(processor)->count + dualq_bound_runq(processor)->count; |
| 368 | } |
| 369 | |
| 370 | static uint64_t |
| 371 | sched_dualq_runq_stats_count_sum(processor_t processor) |
| 372 | { |
| 373 | uint64_t bound_sum = dualq_bound_runq(processor)->runq_stats.count_sum; |
| 374 | |
| 375 | if (processor->cpu_id == processor->processor_set->cpu_set_low) { |
| 376 | return bound_sum + dualq_main_runq(processor)->runq_stats.count_sum; |
| 377 | } else { |
| 378 | return bound_sum; |
| 379 | } |
| 380 | } |
| 381 | static int |
| 382 | sched_dualq_processor_bound_count(processor_t processor) |
| 383 | { |
| 384 | return dualq_bound_runq(processor)->count; |
| 385 | } |
| 386 | |
| 387 | static void |
| 388 | sched_dualq_processor_queue_shutdown(processor_t processor) |
| 389 | { |
| 390 | processor_set_t pset = processor->processor_set; |
| 391 | run_queue_t rq = dualq_main_runq(processor); |
| 392 | thread_t thread; |
| 393 | queue_head_t tqueue; |
| 394 | |
| 395 | /* We only need to migrate threads if this is the last active processor in the pset */ |
| 396 | if (pset->online_processor_count > 0) { |
| 397 | pset_unlock(pset); |
| 398 | return; |
| 399 | } |
| 400 | |
| 401 | queue_init(&tqueue); |
| 402 | |
| 403 | while (rq->count > 0) { |
| 404 | thread = run_queue_dequeue(runq: rq, options: SCHED_HEADQ); |
| 405 | enqueue_tail(que: &tqueue, elt: &thread->runq_links); |
| 406 | } |
| 407 | |
| 408 | pset_unlock(pset); |
| 409 | |
| 410 | qe_foreach_element_safe(thread, &tqueue, runq_links) { |
| 411 | remqueue(elt: &thread->runq_links); |
| 412 | |
| 413 | thread_lock(thread); |
| 414 | |
| 415 | thread_setrun(thread, options: SCHED_TAILQ); |
| 416 | |
| 417 | thread_unlock(thread); |
| 418 | } |
| 419 | } |
| 420 | |
| 421 | static boolean_t |
| 422 | sched_dualq_processor_queue_remove( |
| 423 | processor_t processor, |
| 424 | thread_t thread) |
| 425 | { |
| 426 | run_queue_t rq; |
| 427 | processor_set_t pset = processor->processor_set; |
| 428 | |
| 429 | pset_lock(pset); |
| 430 | |
| 431 | rq = dualq_runq_for_thread(processor, thread); |
| 432 | |
| 433 | if (processor == thread_get_runq_locked(thread)) { |
| 434 | /* |
| 435 | * Thread is on a run queue and we have a lock on |
| 436 | * that run queue. |
| 437 | */ |
| 438 | run_queue_remove(runq: rq, thread); |
| 439 | } else { |
| 440 | /* |
| 441 | * The thread left the run queue before we could |
| 442 | * lock the run queue. |
| 443 | */ |
| 444 | thread_assert_runq_null(thread); |
| 445 | processor = PROCESSOR_NULL; |
| 446 | } |
| 447 | |
| 448 | pset_unlock(pset); |
| 449 | |
| 450 | return processor != PROCESSOR_NULL; |
| 451 | } |
| 452 | |
| 453 | static thread_t |
| 454 | sched_dualq_steal_thread(processor_set_t pset) |
| 455 | { |
| 456 | processor_set_t cset = pset; |
| 457 | processor_set_t nset = next_pset(pset: cset); |
| 458 | thread_t thread; |
| 459 | |
| 460 | /* Secondary processors on SMT systems never steal */ |
| 461 | assert(current_processor()->processor_primary == current_processor()); |
| 462 | |
| 463 | while (nset != pset) { |
| 464 | pset_unlock(cset); |
| 465 | cset = nset; |
| 466 | pset_lock(cset); |
| 467 | |
| 468 | if (pset_has_stealable_threads(pset: cset)) { |
| 469 | /* Need task_restrict logic here */ |
| 470 | thread = run_queue_dequeue(runq: &cset->pset_runq, options: SCHED_HEADQ); |
| 471 | pset_unlock(cset); |
| 472 | return thread; |
| 473 | } |
| 474 | |
| 475 | nset = next_pset(pset: cset); |
| 476 | } |
| 477 | |
| 478 | pset_unlock(cset); |
| 479 | |
| 480 | return THREAD_NULL; |
| 481 | } |
| 482 | |
| 483 | static void |
| 484 | sched_dualq_thread_update_scan(sched_update_scan_context_t scan_context) |
| 485 | { |
| 486 | boolean_t restart_needed = FALSE; |
| 487 | processor_t processor = processor_list; |
| 488 | processor_set_t pset; |
| 489 | thread_t thread; |
| 490 | spl_t s; |
| 491 | |
| 492 | /* |
| 493 | * We update the threads associated with each processor (bound and idle threads) |
| 494 | * and then update the threads in each pset runqueue. |
| 495 | */ |
| 496 | |
| 497 | do { |
| 498 | do { |
| 499 | pset = processor->processor_set; |
| 500 | |
| 501 | s = splsched(); |
| 502 | pset_lock(pset); |
| 503 | |
| 504 | restart_needed = runq_scan(runq: dualq_bound_runq(processor), scan_context); |
| 505 | |
| 506 | pset_unlock(pset); |
| 507 | splx(s); |
| 508 | |
| 509 | if (restart_needed) { |
| 510 | break; |
| 511 | } |
| 512 | |
| 513 | thread = processor->idle_thread; |
| 514 | if (thread != THREAD_NULL && thread->sched_stamp != sched_tick) { |
| 515 | if (thread_update_add_thread(thread) == FALSE) { |
| 516 | restart_needed = TRUE; |
| 517 | break; |
| 518 | } |
| 519 | } |
| 520 | } while ((processor = processor->processor_list) != NULL); |
| 521 | |
| 522 | /* Ok, we now have a collection of candidates -- fix them. */ |
| 523 | thread_update_process_threads(); |
| 524 | } while (restart_needed); |
| 525 | |
| 526 | pset = &pset0; |
| 527 | |
| 528 | do { |
| 529 | do { |
| 530 | s = splsched(); |
| 531 | pset_lock(pset); |
| 532 | |
| 533 | restart_needed = runq_scan(runq: &pset->pset_runq, scan_context); |
| 534 | |
| 535 | pset_unlock(pset); |
| 536 | splx(s); |
| 537 | |
| 538 | if (restart_needed) { |
| 539 | break; |
| 540 | } |
| 541 | } while ((pset = pset->pset_list) != NULL); |
| 542 | |
| 543 | /* Ok, we now have a collection of candidates -- fix them. */ |
| 544 | thread_update_process_threads(); |
| 545 | } while (restart_needed); |
| 546 | } |
| 547 | |
| 548 | extern int sched_allow_rt_smt; |
| 549 | |
| 550 | /* Return true if this thread should not continue running on this processor */ |
| 551 | static bool |
| 552 | sched_dualq_thread_avoid_processor(processor_t processor, thread_t thread, __unused ast_t reason) |
| 553 | { |
| 554 | if (thread->bound_processor == processor) { |
| 555 | /* Thread is bound here */ |
| 556 | return false; |
| 557 | } |
| 558 | |
| 559 | if (processor->processor_primary != processor) { |
| 560 | /* |
| 561 | * This is a secondary SMT processor. If the primary is running |
| 562 | * a realtime thread, only allow realtime threads on the secondary. |
| 563 | */ |
| 564 | processor_t primary = processor->processor_primary; |
| 565 | if ((primary->current_pri >= BASEPRI_RTQUEUES) && ((thread->sched_pri < BASEPRI_RTQUEUES) || !sched_allow_rt_smt)) { |
| 566 | return true; |
| 567 | } |
| 568 | |
| 569 | /* NO_SMT threads are not allowed on secondary processors */ |
| 570 | if (thread_no_smt(thread)) { |
| 571 | return true; |
| 572 | } |
| 573 | |
| 574 | if (primary->state == PROCESSOR_RUNNING) { |
| 575 | if (processor_active_thread_no_smt(processor: primary)) { |
| 576 | /* No threads allowed on secondary if primary has NO_SMT */ |
| 577 | return true; |
| 578 | } |
| 579 | } |
| 580 | } |
| 581 | |
| 582 | if (processor->processor_secondary != PROCESSOR_NULL) { |
| 583 | /* |
| 584 | * This is a primary SMT processor. If the secondary is running |
| 585 | * a bound thread, the primary may not run a NO_SMT thread. |
| 586 | */ |
| 587 | processor_t secondary = processor->processor_secondary; |
| 588 | |
| 589 | if (secondary->state == PROCESSOR_RUNNING) { |
| 590 | if (secondary->current_is_bound && thread_no_smt(thread)) { |
| 591 | return true; |
| 592 | } |
| 593 | } |
| 594 | } |
| 595 | |
| 596 | return false; |
| 597 | } |
| 598 | |