| 1 | /* |
| 2 | * Copyright (c) 2018 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
| 5 | * |
| 6 | * This file contains Original Code and/or Modifications of Original Code |
| 7 | * as defined in and that are subject to the Apple Public Source License |
| 8 | * Version 2.0 (the 'License'). You may not use this file except in |
| 9 | * compliance with the License. The rights granted to you under the License |
| 10 | * may not be used to create, or enable the creation or redistribution of, |
| 11 | * unlawful or unlicensed copies of an Apple operating system, or to |
| 12 | * circumvent, violate, or enable the circumvention or violation of, any |
| 13 | * terms of an Apple operating system software license agreement. |
| 14 | * |
| 15 | * Please obtain a copy of the License at |
| 16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
| 17 | * |
| 18 | * The Original Code and all software distributed under the License are |
| 19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| 23 | * Please see the License for the specific language governing rights and |
| 24 | * limitations under the License. |
| 25 | * |
| 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
| 27 | */ |
| 28 | |
| 29 | #include <mach/mach_types.h> |
| 30 | #include <mach/machine.h> |
| 31 | #include <machine/machine_routines.h> |
| 32 | #include <machine/sched_param.h> |
| 33 | #include <machine/machine_cpu.h> |
| 34 | #include <kern/kern_types.h> |
| 35 | #include <kern/debug.h> |
| 36 | #include <kern/machine.h> |
| 37 | #include <kern/misc_protos.h> |
| 38 | #include <kern/processor.h> |
| 39 | #include <kern/queue.h> |
| 40 | #include <kern/sched.h> |
| 41 | #include <kern/sched_prim.h> |
| 42 | #include <kern/task.h> |
| 43 | #include <kern/thread.h> |
| 44 | #include <kern/sched_clutch.h> |
| 45 | #include <machine/atomic.h> |
| 46 | #include <kern/sched_clutch.h> |
| 47 | #include <sys/kdebug.h> |
| 48 | |
| 49 | #if CONFIG_SCHED_EDGE |
| 50 | #include <kern/sched_amp_common.h> |
| 51 | #endif /* CONFIG_SCHED_EDGE */ |
| 52 | |
| 53 | #if CONFIG_SCHED_CLUTCH |
| 54 | |
| 55 | /* Forward declarations of static routines */ |
| 56 | |
| 57 | /* Root level hierarchy management */ |
| 58 | static void sched_clutch_root_init(sched_clutch_root_t, processor_set_t); |
| 59 | static void sched_clutch_root_bucket_init(sched_clutch_root_bucket_t, sched_bucket_t, bool); |
| 60 | static void sched_clutch_root_pri_update(sched_clutch_root_t); |
| 61 | static void sched_clutch_root_urgency_inc(sched_clutch_root_t, thread_t); |
| 62 | static void sched_clutch_root_urgency_dec(sched_clutch_root_t, thread_t); |
| 63 | |
| 64 | __enum_decl(sched_clutch_highest_root_bucket_type_t, uint32_t, { |
| 65 | SCHED_CLUTCH_HIGHEST_ROOT_BUCKET_NONE = 0, |
| 66 | SCHED_CLUTCH_HIGHEST_ROOT_BUCKET_UNBOUND_ONLY = 1, |
| 67 | SCHED_CLUTCH_HIGHEST_ROOT_BUCKET_ALL = 2, |
| 68 | }); |
| 69 | |
| 70 | static sched_clutch_root_bucket_t sched_clutch_root_highest_root_bucket(sched_clutch_root_t, uint64_t, sched_clutch_highest_root_bucket_type_t); |
| 71 | |
| 72 | #if CONFIG_SCHED_EDGE |
| 73 | /* Support for foreign threads on AMP platforms */ |
| 74 | static boolean_t sched_clutch_root_foreign_empty(sched_clutch_root_t); |
| 75 | static thread_t sched_clutch_root_highest_foreign_thread_remove(sched_clutch_root_t); |
| 76 | #endif /* CONFIG_SCHED_EDGE */ |
| 77 | |
| 78 | /* Root bucket level hierarchy management */ |
| 79 | static uint64_t sched_clutch_root_bucket_deadline_calculate(sched_clutch_root_bucket_t, uint64_t); |
| 80 | static void sched_clutch_root_bucket_deadline_update(sched_clutch_root_bucket_t, sched_clutch_root_t, uint64_t); |
| 81 | |
| 82 | /* Options for clutch bucket ordering in the runq */ |
| 83 | __options_decl(sched_clutch_bucket_options_t, uint32_t, { |
| 84 | SCHED_CLUTCH_BUCKET_OPTIONS_NONE = 0x0, |
| 85 | /* Round robin clutch bucket on thread removal */ |
| 86 | SCHED_CLUTCH_BUCKET_OPTIONS_SAMEPRI_RR = 0x1, |
| 87 | /* Insert clutch bucket at head (for thread preemption) */ |
| 88 | SCHED_CLUTCH_BUCKET_OPTIONS_HEADQ = 0x2, |
| 89 | /* Insert clutch bucket at tail (default) */ |
| 90 | SCHED_CLUTCH_BUCKET_OPTIONS_TAILQ = 0x4, |
| 91 | }); |
| 92 | |
| 93 | /* Clutch bucket level hierarchy management */ |
| 94 | static void sched_clutch_bucket_hierarchy_insert(sched_clutch_root_t, sched_clutch_bucket_t, sched_bucket_t, uint64_t, sched_clutch_bucket_options_t); |
| 95 | static void sched_clutch_bucket_hierarchy_remove(sched_clutch_root_t, sched_clutch_bucket_t, sched_bucket_t, uint64_t, sched_clutch_bucket_options_t); |
| 96 | static boolean_t sched_clutch_bucket_runnable(sched_clutch_bucket_t, sched_clutch_root_t, uint64_t, sched_clutch_bucket_options_t); |
| 97 | static boolean_t sched_clutch_bucket_update(sched_clutch_bucket_t, sched_clutch_root_t, uint64_t, sched_clutch_bucket_options_t); |
| 98 | static void sched_clutch_bucket_empty(sched_clutch_bucket_t, sched_clutch_root_t, uint64_t, sched_clutch_bucket_options_t); |
| 99 | static uint8_t sched_clutch_bucket_pri_calculate(sched_clutch_bucket_t, uint64_t); |
| 100 | |
| 101 | /* Clutch bucket group level properties management */ |
| 102 | static void sched_clutch_bucket_group_cpu_usage_update(sched_clutch_bucket_group_t, uint64_t); |
| 103 | static void sched_clutch_bucket_group_cpu_adjust(sched_clutch_bucket_group_t, uint8_t); |
| 104 | static void sched_clutch_bucket_group_timeshare_update(sched_clutch_bucket_group_t, sched_clutch_bucket_t, uint64_t); |
| 105 | static uint8_t sched_clutch_bucket_group_pending_ageout(sched_clutch_bucket_group_t, uint64_t); |
| 106 | static uint32_t sched_clutch_bucket_group_run_count_inc(sched_clutch_bucket_group_t); |
| 107 | static uint32_t sched_clutch_bucket_group_run_count_dec(sched_clutch_bucket_group_t); |
| 108 | static uint8_t sched_clutch_bucket_group_interactivity_score_calculate(sched_clutch_bucket_group_t, uint64_t); |
| 109 | |
| 110 | /* Clutch timeshare properties updates */ |
| 111 | static uint32_t sched_clutch_run_bucket_incr(sched_clutch_t, sched_bucket_t); |
| 112 | static uint32_t sched_clutch_run_bucket_decr(sched_clutch_t, sched_bucket_t); |
| 113 | |
| 114 | /* Clutch membership management */ |
| 115 | static boolean_t sched_clutch_thread_insert(sched_clutch_root_t, thread_t, integer_t); |
| 116 | static void sched_clutch_thread_remove(sched_clutch_root_t, thread_t, uint64_t, sched_clutch_bucket_options_t); |
| 117 | static thread_t sched_clutch_thread_highest_remove(sched_clutch_root_t); |
| 118 | |
| 119 | /* Clutch properties updates */ |
| 120 | static uint32_t sched_clutch_root_urgency(sched_clutch_root_t); |
| 121 | static uint32_t sched_clutch_root_count_sum(sched_clutch_root_t); |
| 122 | static int sched_clutch_root_priority(sched_clutch_root_t); |
| 123 | static sched_clutch_bucket_t sched_clutch_root_bucket_highest_clutch_bucket(sched_clutch_root_bucket_t); |
| 124 | static boolean_t sched_thread_sched_pri_promoted(thread_t); |
| 125 | |
| 126 | #if CONFIG_SCHED_EDGE |
| 127 | /* System based routines */ |
| 128 | static bool sched_edge_pset_available(processor_set_t); |
| 129 | static uint32_t sched_edge_thread_bound_cluster_id(thread_t); |
| 130 | static int sched_edge_iterate_clusters_ordered(processor_set_t, uint64_t, int); |
| 131 | |
| 132 | /* Global indicating the maximum number of clusters on the current platform */ |
| 133 | static int sched_edge_max_clusters = 0; |
| 134 | #endif /* CONFIG_SCHED_EDGE */ |
| 135 | |
| 136 | /* Helper debugging routines */ |
| 137 | static inline void sched_clutch_hierarchy_locked_assert(sched_clutch_root_t); |
| 138 | |
| 139 | extern processor_set_t pset_array[MAX_PSETS]; |
| 140 | |
| 141 | /* |
| 142 | * Special markers for buckets that have invalid WCELs/quantums etc. |
| 143 | */ |
| 144 | #define SCHED_CLUTCH_INVALID_TIME_32 ((uint32_t)~0) |
| 145 | #define SCHED_CLUTCH_INVALID_TIME_64 ((uint64_t)~0) |
| 146 | |
| 147 | /* |
| 148 | * Root level bucket WCELs |
| 149 | * |
| 150 | * The root level bucket selection algorithm is an Earliest Deadline |
| 151 | * First (EDF) algorithm where the deadline for buckets are defined |
| 152 | * by the worst-case-execution-latency and the make runnable timestamp |
| 153 | * for the bucket. |
| 154 | * |
| 155 | */ |
| 156 | static uint32_t sched_clutch_root_bucket_wcel_us[TH_BUCKET_SCHED_MAX] = { |
| 157 | SCHED_CLUTCH_INVALID_TIME_32, /* FIXPRI */ |
| 158 | 0, /* FG */ |
| 159 | 37500, /* IN (37.5ms) */ |
| 160 | 75000, /* DF (75ms) */ |
| 161 | 150000, /* UT (150ms) */ |
| 162 | 250000 /* BG (250ms) */ |
| 163 | }; |
| 164 | static uint64_t sched_clutch_root_bucket_wcel[TH_BUCKET_SCHED_MAX] = {0}; |
| 165 | |
| 166 | /* |
| 167 | * Root level bucket warp |
| 168 | * |
| 169 | * Each root level bucket has a warp value associated with it as well. |
| 170 | * The warp value allows the root bucket to effectively warp ahead of |
| 171 | * lower priority buckets for a limited time even if it has a later |
| 172 | * deadline. The warping behavior provides extra (but limited) |
| 173 | * opportunity for high priority buckets to remain responsive. |
| 174 | */ |
| 175 | |
| 176 | /* Special warp deadline value to indicate that the bucket has not used any warp yet */ |
| 177 | #define SCHED_CLUTCH_ROOT_BUCKET_WARP_UNUSED (SCHED_CLUTCH_INVALID_TIME_64) |
| 178 | |
| 179 | /* Warp window durations for various tiers */ |
| 180 | static uint32_t sched_clutch_root_bucket_warp_us[TH_BUCKET_SCHED_MAX] = { |
| 181 | SCHED_CLUTCH_INVALID_TIME_32, /* FIXPRI */ |
| 182 | 8000, /* FG (8ms)*/ |
| 183 | 4000, /* IN (4ms) */ |
| 184 | 2000, /* DF (2ms) */ |
| 185 | 1000, /* UT (1ms) */ |
| 186 | 0 /* BG (0ms) */ |
| 187 | }; |
| 188 | static uint64_t sched_clutch_root_bucket_warp[TH_BUCKET_SCHED_MAX] = {0}; |
| 189 | |
| 190 | /* |
| 191 | * Thread level quantum |
| 192 | * |
| 193 | * The algorithm defines quantums for threads at various buckets. This |
| 194 | * (combined with the root level bucket quantums) restricts how much |
| 195 | * the lower priority levels can preempt the higher priority threads. |
| 196 | */ |
| 197 | |
| 198 | #if XNU_TARGET_OS_OSX |
| 199 | static uint32_t sched_clutch_thread_quantum_us[TH_BUCKET_SCHED_MAX] = { |
| 200 | 10000, /* FIXPRI (10ms) */ |
| 201 | 10000, /* FG (10ms) */ |
| 202 | 10000, /* IN (10ms) */ |
| 203 | 10000, /* DF (10ms) */ |
| 204 | 4000, /* UT (4ms) */ |
| 205 | 2000 /* BG (2ms) */ |
| 206 | }; |
| 207 | #else /* XNU_TARGET_OS_OSX */ |
| 208 | static uint32_t sched_clutch_thread_quantum_us[TH_BUCKET_SCHED_MAX] = { |
| 209 | 10000, /* FIXPRI (10ms) */ |
| 210 | 10000, /* FG (10ms) */ |
| 211 | 8000, /* IN (8ms) */ |
| 212 | 6000, /* DF (6ms) */ |
| 213 | 4000, /* UT (4ms) */ |
| 214 | 2000 /* BG (2ms) */ |
| 215 | }; |
| 216 | #endif /* XNU_TARGET_OS_OSX */ |
| 217 | |
| 218 | static uint64_t sched_clutch_thread_quantum[TH_BUCKET_SCHED_MAX] = {0}; |
| 219 | |
| 220 | /* |
| 221 | * sched_clutch_us_to_abstime() |
| 222 | * |
| 223 | * Initializer for converting all durations in usec to abstime |
| 224 | */ |
| 225 | static void |
| 226 | sched_clutch_us_to_abstime(uint32_t *us_vals, uint64_t *abstime_vals) |
| 227 | { |
| 228 | for (int i = 0; i < TH_BUCKET_SCHED_MAX; i++) { |
| 229 | if (us_vals[i] == SCHED_CLUTCH_INVALID_TIME_32) { |
| 230 | abstime_vals[i] = SCHED_CLUTCH_INVALID_TIME_64; |
| 231 | } else { |
| 232 | clock_interval_to_absolutetime_interval(interval: us_vals[i], |
| 233 | NSEC_PER_USEC, result: &abstime_vals[i]); |
| 234 | } |
| 235 | } |
| 236 | } |
| 237 | |
| 238 | /* Clutch/Edge Scheduler Debugging support */ |
| 239 | #define SCHED_CLUTCH_DBG_THR_COUNT_PACK(a, b, c) ((uint64_t)c | ((uint64_t)b << 16) | ((uint64_t)a << 32)) |
| 240 | |
| 241 | #if DEVELOPMENT || DEBUG |
| 242 | |
| 243 | /* |
| 244 | * sched_clutch_hierarchy_locked_assert() |
| 245 | * |
| 246 | * Debugging helper routine. Asserts that the hierarchy is locked. The locking |
| 247 | * for the hierarchy depends on where the hierarchy is hooked. The current |
| 248 | * implementation hooks the hierarchy at the pset, so the hierarchy is locked |
| 249 | * using the pset lock. |
| 250 | */ |
| 251 | static inline void |
| 252 | sched_clutch_hierarchy_locked_assert( |
| 253 | sched_clutch_root_t root_clutch) |
| 254 | { |
| 255 | pset_assert_locked(root_clutch->scr_pset); |
| 256 | } |
| 257 | |
| 258 | #else /* DEVELOPMENT || DEBUG */ |
| 259 | |
| 260 | static inline void |
| 261 | sched_clutch_hierarchy_locked_assert( |
| 262 | __unused sched_clutch_root_t root_clutch) |
| 263 | { |
| 264 | } |
| 265 | |
| 266 | #endif /* DEVELOPMENT || DEBUG */ |
| 267 | |
| 268 | /* |
| 269 | * sched_clutch_thr_count_inc() |
| 270 | * |
| 271 | * Increment thread count at a hierarchy level with overflow checks. |
| 272 | */ |
| 273 | static void |
| 274 | sched_clutch_thr_count_inc( |
| 275 | uint16_t *thr_count) |
| 276 | { |
| 277 | if (__improbable(os_inc_overflow(thr_count))) { |
| 278 | panic("sched_clutch thread count overflowed!" ); |
| 279 | } |
| 280 | } |
| 281 | |
| 282 | /* |
| 283 | * sched_clutch_thr_count_dec() |
| 284 | * |
| 285 | * Decrement thread count at a hierarchy level with underflow checks. |
| 286 | */ |
| 287 | static void |
| 288 | sched_clutch_thr_count_dec( |
| 289 | uint16_t *thr_count) |
| 290 | { |
| 291 | if (__improbable(os_dec_overflow(thr_count))) { |
| 292 | panic("sched_clutch thread count underflowed!" ); |
| 293 | } |
| 294 | } |
| 295 | |
| 296 | static sched_bucket_t |
| 297 | sched_convert_pri_to_bucket(uint8_t priority) |
| 298 | { |
| 299 | sched_bucket_t bucket = TH_BUCKET_RUN; |
| 300 | |
| 301 | if (priority > BASEPRI_USER_INITIATED) { |
| 302 | bucket = TH_BUCKET_SHARE_FG; |
| 303 | } else if (priority > BASEPRI_DEFAULT) { |
| 304 | bucket = TH_BUCKET_SHARE_IN; |
| 305 | } else if (priority > BASEPRI_UTILITY) { |
| 306 | bucket = TH_BUCKET_SHARE_DF; |
| 307 | } else if (priority > MAXPRI_THROTTLE) { |
| 308 | bucket = TH_BUCKET_SHARE_UT; |
| 309 | } else { |
| 310 | bucket = TH_BUCKET_SHARE_BG; |
| 311 | } |
| 312 | return bucket; |
| 313 | } |
| 314 | |
| 315 | /* |
| 316 | * sched_clutch_thread_bucket_map() |
| 317 | * |
| 318 | * Map a thread to a scheduling bucket for the clutch/edge scheduler |
| 319 | * based on its scheduling mode and the priority attribute passed in. |
| 320 | */ |
| 321 | static sched_bucket_t |
| 322 | sched_clutch_thread_bucket_map(thread_t thread, int pri) |
| 323 | { |
| 324 | switch (thread->sched_mode) { |
| 325 | case TH_MODE_FIXED: |
| 326 | if (pri >= BASEPRI_FOREGROUND) { |
| 327 | return TH_BUCKET_FIXPRI; |
| 328 | } else { |
| 329 | return sched_convert_pri_to_bucket(priority: pri); |
| 330 | } |
| 331 | |
| 332 | case TH_MODE_REALTIME: |
| 333 | return TH_BUCKET_FIXPRI; |
| 334 | |
| 335 | case TH_MODE_TIMESHARE: |
| 336 | return sched_convert_pri_to_bucket(priority: pri); |
| 337 | |
| 338 | default: |
| 339 | panic("unexpected mode: %d" , thread->sched_mode); |
| 340 | break; |
| 341 | } |
| 342 | } |
| 343 | |
| 344 | /* |
| 345 | * The clutch scheduler attempts to ageout the CPU usage of clutch bucket groups |
| 346 | * based on the amount of time they have been pending and the load at that |
| 347 | * scheduling bucket level. Since the clutch bucket groups are global (i.e. span |
| 348 | * multiple clusters, its important to keep the load also as a global counter. |
| 349 | */ |
| 350 | static uint32_t _Atomic sched_clutch_global_bucket_load[TH_BUCKET_SCHED_MAX]; |
| 351 | |
| 352 | /* |
| 353 | * sched_clutch_root_init() |
| 354 | * |
| 355 | * Routine to initialize the scheduler hierarchy root. |
| 356 | */ |
| 357 | static void |
| 358 | sched_clutch_root_init( |
| 359 | sched_clutch_root_t root_clutch, |
| 360 | processor_set_t pset) |
| 361 | { |
| 362 | root_clutch->scr_thr_count = 0; |
| 363 | root_clutch->scr_priority = NOPRI; |
| 364 | root_clutch->scr_urgency = 0; |
| 365 | root_clutch->scr_pset = pset; |
| 366 | #if CONFIG_SCHED_EDGE |
| 367 | root_clutch->scr_cluster_id = pset->pset_cluster_id; |
| 368 | #else /* CONFIG_SCHED_EDGE */ |
| 369 | root_clutch->scr_cluster_id = 0; |
| 370 | #endif /* CONFIG_SCHED_EDGE */ |
| 371 | |
| 372 | for (cluster_shared_rsrc_type_t shared_rsrc_type = CLUSTER_SHARED_RSRC_TYPE_MIN; shared_rsrc_type < CLUSTER_SHARED_RSRC_TYPE_COUNT; shared_rsrc_type++) { |
| 373 | root_clutch->scr_shared_rsrc_load_runnable[shared_rsrc_type] = 0; |
| 374 | } |
| 375 | /* Initialize the queue which maintains all runnable clutch_buckets for timesharing purposes */ |
| 376 | queue_init(&root_clutch->scr_clutch_buckets); |
| 377 | |
| 378 | /* Initialize the priority queue which maintains all runnable foreign clutch buckets */ |
| 379 | priority_queue_init(que: &root_clutch->scr_foreign_buckets); |
| 380 | bzero(s: &root_clutch->scr_cumulative_run_count, n: sizeof(root_clutch->scr_cumulative_run_count)); |
| 381 | bitmap_zero(map: root_clutch->scr_bound_runnable_bitmap, nbits: TH_BUCKET_SCHED_MAX); |
| 382 | bitmap_zero(map: root_clutch->scr_bound_warp_available, nbits: TH_BUCKET_SCHED_MAX); |
| 383 | priority_queue_init(que: &root_clutch->scr_bound_root_buckets); |
| 384 | |
| 385 | /* Initialize the bitmap and priority queue of runnable root buckets */ |
| 386 | priority_queue_init(que: &root_clutch->scr_unbound_root_buckets); |
| 387 | bitmap_zero(map: root_clutch->scr_unbound_runnable_bitmap, nbits: TH_BUCKET_SCHED_MAX); |
| 388 | bitmap_zero(map: root_clutch->scr_unbound_warp_available, nbits: TH_BUCKET_SCHED_MAX); |
| 389 | |
| 390 | /* Initialize all the root buckets */ |
| 391 | for (uint32_t i = 0; i < TH_BUCKET_SCHED_MAX; i++) { |
| 392 | sched_clutch_root_bucket_init(&root_clutch->scr_unbound_buckets[i], i, false); |
| 393 | sched_clutch_root_bucket_init(&root_clutch->scr_bound_buckets[i], i, true); |
| 394 | } |
| 395 | } |
| 396 | |
| 397 | /* |
| 398 | * Clutch Bucket Runqueues |
| 399 | * |
| 400 | * The clutch buckets are maintained in a runq at the root bucket level. The |
| 401 | * runq organization allows clutch buckets to be ordered based on various |
| 402 | * factors such as: |
| 403 | * |
| 404 | * - Clutch buckets are round robin'ed at the same priority level when a |
| 405 | * thread is selected from a clutch bucket. This prevents a clutch bucket |
| 406 | * from starving out other clutch buckets at the same priority. |
| 407 | * |
| 408 | * - Clutch buckets are inserted at the head when it becomes runnable due to |
| 409 | * thread preemption. This allows threads that were preempted to maintain |
| 410 | * their order in the queue. |
| 411 | */ |
| 412 | |
| 413 | /* |
| 414 | * sched_clutch_bucket_runq_init() |
| 415 | * |
| 416 | * Initialize a clutch bucket runq. |
| 417 | */ |
| 418 | static void |
| 419 | sched_clutch_bucket_runq_init( |
| 420 | sched_clutch_bucket_runq_t clutch_buckets_rq) |
| 421 | { |
| 422 | clutch_buckets_rq->scbrq_highq = NOPRI; |
| 423 | for (uint8_t i = 0; i < BITMAP_LEN(NRQS); i++) { |
| 424 | clutch_buckets_rq->scbrq_bitmap[i] = 0; |
| 425 | } |
| 426 | clutch_buckets_rq->scbrq_count = 0; |
| 427 | for (int i = 0; i < NRQS; i++) { |
| 428 | circle_queue_init(&clutch_buckets_rq->scbrq_queues[i]); |
| 429 | } |
| 430 | } |
| 431 | |
| 432 | /* |
| 433 | * sched_clutch_bucket_runq_empty() |
| 434 | * |
| 435 | * Returns if a clutch bucket runq is empty. |
| 436 | */ |
| 437 | static boolean_t |
| 438 | sched_clutch_bucket_runq_empty( |
| 439 | sched_clutch_bucket_runq_t clutch_buckets_rq) |
| 440 | { |
| 441 | return clutch_buckets_rq->scbrq_count == 0; |
| 442 | } |
| 443 | |
| 444 | /* |
| 445 | * sched_clutch_bucket_runq_peek() |
| 446 | * |
| 447 | * Returns the highest priority clutch bucket in the runq. |
| 448 | */ |
| 449 | static sched_clutch_bucket_t |
| 450 | sched_clutch_bucket_runq_peek( |
| 451 | sched_clutch_bucket_runq_t clutch_buckets_rq) |
| 452 | { |
| 453 | if (clutch_buckets_rq->scbrq_count > 0) { |
| 454 | circle_queue_t queue = &clutch_buckets_rq->scbrq_queues[clutch_buckets_rq->scbrq_highq]; |
| 455 | return cqe_queue_first(queue, struct sched_clutch_bucket, scb_runqlink); |
| 456 | } else { |
| 457 | return NULL; |
| 458 | } |
| 459 | } |
| 460 | |
| 461 | /* |
| 462 | * sched_clutch_bucket_runq_enqueue() |
| 463 | * |
| 464 | * Enqueue a clutch bucket into the runq based on the options passed in. |
| 465 | */ |
| 466 | static void |
| 467 | sched_clutch_bucket_runq_enqueue( |
| 468 | sched_clutch_bucket_runq_t clutch_buckets_rq, |
| 469 | sched_clutch_bucket_t clutch_bucket, |
| 470 | sched_clutch_bucket_options_t options) |
| 471 | { |
| 472 | circle_queue_t queue = &clutch_buckets_rq->scbrq_queues[clutch_bucket->scb_priority]; |
| 473 | if (circle_queue_empty(cq: queue)) { |
| 474 | circle_enqueue_tail(cq: queue, elt: &clutch_bucket->scb_runqlink); |
| 475 | bitmap_set(map: clutch_buckets_rq->scbrq_bitmap, n: clutch_bucket->scb_priority); |
| 476 | if (clutch_bucket->scb_priority > clutch_buckets_rq->scbrq_highq) { |
| 477 | clutch_buckets_rq->scbrq_highq = clutch_bucket->scb_priority; |
| 478 | } |
| 479 | } else { |
| 480 | if (options & SCHED_CLUTCH_BUCKET_OPTIONS_HEADQ) { |
| 481 | circle_enqueue_head(cq: queue, elt: &clutch_bucket->scb_runqlink); |
| 482 | } else { |
| 483 | /* |
| 484 | * Default behavior (handles SCHED_CLUTCH_BUCKET_OPTIONS_TAILQ & |
| 485 | * SCHED_CLUTCH_BUCKET_OPTIONS_NONE) |
| 486 | */ |
| 487 | circle_enqueue_tail(cq: queue, elt: &clutch_bucket->scb_runqlink); |
| 488 | } |
| 489 | } |
| 490 | clutch_buckets_rq->scbrq_count++; |
| 491 | } |
| 492 | |
| 493 | /* |
| 494 | * sched_clutch_bucket_runq_remove() |
| 495 | * |
| 496 | * Remove a clutch bucket from the runq. |
| 497 | */ |
| 498 | static void |
| 499 | sched_clutch_bucket_runq_remove( |
| 500 | sched_clutch_bucket_runq_t clutch_buckets_rq, |
| 501 | sched_clutch_bucket_t clutch_bucket) |
| 502 | { |
| 503 | circle_queue_t queue = &clutch_buckets_rq->scbrq_queues[clutch_bucket->scb_priority]; |
| 504 | circle_dequeue(cq: queue, elt: &clutch_bucket->scb_runqlink); |
| 505 | assert(clutch_buckets_rq->scbrq_count > 0); |
| 506 | clutch_buckets_rq->scbrq_count--; |
| 507 | if (circle_queue_empty(cq: queue)) { |
| 508 | bitmap_clear(map: clutch_buckets_rq->scbrq_bitmap, n: clutch_bucket->scb_priority); |
| 509 | clutch_buckets_rq->scbrq_highq = bitmap_first(map: clutch_buckets_rq->scbrq_bitmap, NRQS); |
| 510 | } |
| 511 | } |
| 512 | |
| 513 | static void |
| 514 | sched_clutch_bucket_runq_rotate( |
| 515 | sched_clutch_bucket_runq_t clutch_buckets_rq, |
| 516 | sched_clutch_bucket_t clutch_bucket) |
| 517 | { |
| 518 | circle_queue_t queue = &clutch_buckets_rq->scbrq_queues[clutch_bucket->scb_priority]; |
| 519 | assert(clutch_bucket == cqe_queue_first(queue, struct sched_clutch_bucket, scb_runqlink)); |
| 520 | circle_queue_rotate_head_forward(cq: queue); |
| 521 | } |
| 522 | |
| 523 | /* |
| 524 | * sched_clutch_root_bucket_init() |
| 525 | * |
| 526 | * Routine to initialize root buckets. |
| 527 | */ |
| 528 | static void |
| 529 | sched_clutch_root_bucket_init( |
| 530 | sched_clutch_root_bucket_t root_bucket, |
| 531 | sched_bucket_t bucket, |
| 532 | bool bound_root_bucket) |
| 533 | { |
| 534 | root_bucket->scrb_bucket = bucket; |
| 535 | if (bound_root_bucket) { |
| 536 | /* For bound root buckets, initialize the bound thread runq. */ |
| 537 | root_bucket->scrb_bound = true; |
| 538 | run_queue_init(runq: &root_bucket->scrb_bound_thread_runq); |
| 539 | } else { |
| 540 | /* |
| 541 | * The unbounded root buckets contain a runq of runnable clutch buckets |
| 542 | * which then hold the runnable threads. |
| 543 | */ |
| 544 | root_bucket->scrb_bound = false; |
| 545 | sched_clutch_bucket_runq_init(clutch_buckets_rq: &root_bucket->scrb_clutch_buckets); |
| 546 | } |
| 547 | priority_queue_entry_init(&root_bucket->scrb_pqlink); |
| 548 | root_bucket->scrb_pqlink.deadline = SCHED_CLUTCH_INVALID_TIME_64; |
| 549 | root_bucket->scrb_warped_deadline = 0; |
| 550 | root_bucket->scrb_warp_remaining = sched_clutch_root_bucket_warp[root_bucket->scrb_bucket]; |
| 551 | root_bucket->scrb_starvation_avoidance = false; |
| 552 | root_bucket->scrb_starvation_ts = 0; |
| 553 | } |
| 554 | |
| 555 | /* |
| 556 | * Special case scheduling for Above UI bucket. |
| 557 | * |
| 558 | * AboveUI threads are typically system critical threads that need low latency |
| 559 | * which is why they are handled specially. |
| 560 | * |
| 561 | * Since the priority range for AboveUI and FG Timeshare buckets overlap, it is |
| 562 | * important to maintain some native priority order between those buckets. For unbounded |
| 563 | * root buckets, the policy is to compare the highest clutch buckets of both buckets; if the |
| 564 | * Above UI bucket is higher, schedule it immediately. Otherwise fall through to the |
| 565 | * deadline based scheduling which should pickup the timeshare buckets. For the bound |
| 566 | * case, the policy simply compares the priority of the highest runnable threads in |
| 567 | * the above UI and timeshare buckets. |
| 568 | * |
| 569 | * The implementation allows extremely low latency CPU access for Above UI threads |
| 570 | * while supporting the use case of high priority timeshare threads contending with |
| 571 | * lower priority fixed priority threads. |
| 572 | */ |
| 573 | |
| 574 | |
| 575 | /* |
| 576 | * sched_clutch_root_unbound_select_aboveui() |
| 577 | * |
| 578 | * Routine to determine if the above UI unbounded bucket should be selected for execution. |
| 579 | */ |
| 580 | static bool |
| 581 | sched_clutch_root_unbound_select_aboveui( |
| 582 | sched_clutch_root_t root_clutch) |
| 583 | { |
| 584 | if (bitmap_test(map: root_clutch->scr_unbound_runnable_bitmap, n: TH_BUCKET_FIXPRI)) { |
| 585 | sched_clutch_root_bucket_t root_bucket_aboveui = &root_clutch->scr_unbound_buckets[TH_BUCKET_FIXPRI]; |
| 586 | sched_clutch_root_bucket_t root_bucket_sharefg = &root_clutch->scr_unbound_buckets[TH_BUCKET_SHARE_FG]; |
| 587 | if (!bitmap_test(map: root_clutch->scr_unbound_runnable_bitmap, n: TH_BUCKET_SHARE_FG)) { |
| 588 | /* If the timeshare FG bucket is not runnable, pick the aboveUI bucket for scheduling */ |
| 589 | return true; |
| 590 | } |
| 591 | sched_clutch_bucket_t clutch_bucket_aboveui = sched_clutch_root_bucket_highest_clutch_bucket(root_bucket_aboveui); |
| 592 | sched_clutch_bucket_t clutch_bucket_sharefg = sched_clutch_root_bucket_highest_clutch_bucket(root_bucket_sharefg); |
| 593 | if (clutch_bucket_aboveui->scb_priority >= clutch_bucket_sharefg->scb_priority) { |
| 594 | return true; |
| 595 | } |
| 596 | } |
| 597 | return false; |
| 598 | } |
| 599 | |
| 600 | /* |
| 601 | * sched_clutch_root_bound_select_aboveui() |
| 602 | * |
| 603 | * Routine to determine if the above UI bounded bucket should be selected for execution. |
| 604 | */ |
| 605 | static bool |
| 606 | sched_clutch_root_bound_select_aboveui( |
| 607 | sched_clutch_root_t root_clutch) |
| 608 | { |
| 609 | sched_clutch_root_bucket_t root_bucket_aboveui = &root_clutch->scr_bound_buckets[TH_BUCKET_FIXPRI]; |
| 610 | sched_clutch_root_bucket_t root_bucket_sharefg = &root_clutch->scr_bound_buckets[TH_BUCKET_SHARE_FG]; |
| 611 | if (root_bucket_aboveui->scrb_bound_thread_runq.count == 0) { |
| 612 | return false; |
| 613 | } |
| 614 | return root_bucket_aboveui->scrb_bound_thread_runq.highq >= root_bucket_sharefg->scrb_bound_thread_runq.highq; |
| 615 | } |
| 616 | |
| 617 | /* |
| 618 | * sched_clutch_root_highest_root_bucket() |
| 619 | * |
| 620 | * Main routine to find the highest runnable root level bucket. |
| 621 | * This routine is called from performance sensitive contexts; so it is |
| 622 | * crucial to keep this O(1). The options parameter determines if |
| 623 | * the selection logic should look at unbounded threads only (for |
| 624 | * cross-cluster stealing operations) or both bounded and unbounded |
| 625 | * threads (for selecting next thread for execution on current cluster). |
| 626 | */ |
| 627 | static sched_clutch_root_bucket_t |
| 628 | sched_clutch_root_highest_root_bucket( |
| 629 | sched_clutch_root_t root_clutch, |
| 630 | uint64_t timestamp, |
| 631 | sched_clutch_highest_root_bucket_type_t type) |
| 632 | { |
| 633 | sched_clutch_hierarchy_locked_assert(root_clutch); |
| 634 | int highest_runnable_bucket = -1; |
| 635 | if (type == SCHED_CLUTCH_HIGHEST_ROOT_BUCKET_UNBOUND_ONLY) { |
| 636 | highest_runnable_bucket = bitmap_lsb_first(map: root_clutch->scr_unbound_runnable_bitmap, nbits: TH_BUCKET_SCHED_MAX); |
| 637 | } else { |
| 638 | int highest_unbound_runnable_bucket = bitmap_lsb_first(map: root_clutch->scr_unbound_runnable_bitmap, nbits: TH_BUCKET_SCHED_MAX); |
| 639 | int highest_bound_runnable_bucket = bitmap_lsb_first(map: root_clutch->scr_bound_runnable_bitmap, nbits: TH_BUCKET_SCHED_MAX); |
| 640 | highest_runnable_bucket = (highest_bound_runnable_bucket != -1) ? ((highest_unbound_runnable_bucket != -1) ? MIN(highest_bound_runnable_bucket, highest_unbound_runnable_bucket) : highest_bound_runnable_bucket) : highest_unbound_runnable_bucket; |
| 641 | } |
| 642 | |
| 643 | if (highest_runnable_bucket == -1) { |
| 644 | return NULL; |
| 645 | } |
| 646 | |
| 647 | /* Above UI root bucket selection (see comment above for more details on this special case handling) */ |
| 648 | bool unbound_aboveui = sched_clutch_root_unbound_select_aboveui(root_clutch); |
| 649 | if (type == SCHED_CLUTCH_HIGHEST_ROOT_BUCKET_UNBOUND_ONLY) { |
| 650 | if (unbound_aboveui) { |
| 651 | return &root_clutch->scr_unbound_buckets[TH_BUCKET_FIXPRI]; |
| 652 | } |
| 653 | /* Fall through to selecting a timeshare root bucket */ |
| 654 | } else { |
| 655 | bool bound_aboveui = sched_clutch_root_bound_select_aboveui(root_clutch); |
| 656 | sched_clutch_root_bucket_t unbound_aboveui_root_bucket = &root_clutch->scr_unbound_buckets[TH_BUCKET_FIXPRI]; |
| 657 | sched_clutch_root_bucket_t bound_aboveui_root_bucket = &root_clutch->scr_bound_buckets[TH_BUCKET_FIXPRI]; |
| 658 | |
| 659 | if (unbound_aboveui && bound_aboveui) { |
| 660 | /* |
| 661 | * In this scenario both the bounded and unbounded above UI buckets are runnable; choose based on the |
| 662 | * highest runnable priority in both the buckets. |
| 663 | * */ |
| 664 | int bound_aboveui_pri = root_clutch->scr_bound_buckets[TH_BUCKET_FIXPRI].scrb_bound_thread_runq.highq; |
| 665 | sched_clutch_bucket_t clutch_bucket = sched_clutch_root_bucket_highest_clutch_bucket(unbound_aboveui_root_bucket); |
| 666 | int unbound_aboveui_pri = priority_queue_max_sched_pri(&clutch_bucket->scb_clutchpri_prioq); |
| 667 | return (bound_aboveui_pri >= unbound_aboveui_pri) ? bound_aboveui_root_bucket : unbound_aboveui_root_bucket; |
| 668 | } |
| 669 | if (unbound_aboveui) { |
| 670 | return unbound_aboveui_root_bucket; |
| 671 | } |
| 672 | if (bound_aboveui) { |
| 673 | return bound_aboveui_root_bucket; |
| 674 | } |
| 675 | /* Fall through to selecting a timeshare root bucket */ |
| 676 | } |
| 677 | |
| 678 | /* |
| 679 | * Above UI bucket is not runnable or has a low priority runnable thread; use the |
| 680 | * earliest deadline model to schedule threads. The idea is that as the timeshare |
| 681 | * buckets use CPU, they will drop their interactivity score/sched priority and |
| 682 | * allow the low priority AboveUI buckets to be scheduled. |
| 683 | */ |
| 684 | |
| 685 | /* Find the earliest deadline bucket */ |
| 686 | sched_clutch_root_bucket_t edf_bucket = NULL; |
| 687 | sched_clutch_root_bucket_t warp_bucket = NULL; |
| 688 | int warp_bucket_index = -1; |
| 689 | |
| 690 | evaluate_root_buckets: |
| 691 | if (type == SCHED_CLUTCH_HIGHEST_ROOT_BUCKET_UNBOUND_ONLY) { |
| 692 | edf_bucket = priority_queue_min(&root_clutch->scr_unbound_root_buckets, struct sched_clutch_root_bucket, scrb_pqlink); |
| 693 | } else { |
| 694 | sched_clutch_root_bucket_t unbound_bucket = priority_queue_min(&root_clutch->scr_unbound_root_buckets, struct sched_clutch_root_bucket, scrb_pqlink); |
| 695 | sched_clutch_root_bucket_t bound_bucket = priority_queue_min(&root_clutch->scr_bound_root_buckets, struct sched_clutch_root_bucket, scrb_pqlink); |
| 696 | if (bound_bucket && unbound_bucket) { |
| 697 | /* If bound and unbound root buckets are runnable, select the one with the earlier deadline */ |
| 698 | edf_bucket = (bound_bucket->scrb_pqlink.deadline <= unbound_bucket->scrb_pqlink.deadline) ? bound_bucket : unbound_bucket; |
| 699 | } else { |
| 700 | edf_bucket = (bound_bucket) ? bound_bucket : unbound_bucket; |
| 701 | } |
| 702 | } |
| 703 | /* |
| 704 | * Check if any of the buckets have warp available. The implementation only allows root buckets to warp ahead of |
| 705 | * buckets of the same type (i.e. bound/unbound). The reason for doing that is because warping is a concept that |
| 706 | * makes sense between root buckets of the same type since its effectively a scheduling advantage over a lower |
| 707 | * QoS root bucket. |
| 708 | */ |
| 709 | bitmap_t *warp_available_bitmap = (edf_bucket->scrb_bound) ? (root_clutch->scr_bound_warp_available) : (root_clutch->scr_unbound_warp_available); |
| 710 | warp_bucket_index = bitmap_lsb_first(map: warp_available_bitmap, nbits: TH_BUCKET_SCHED_MAX); |
| 711 | |
| 712 | if ((warp_bucket_index == -1) || (warp_bucket_index >= edf_bucket->scrb_bucket)) { |
| 713 | /* No higher buckets have warp left; best choice is the EDF based bucket */ |
| 714 | if (edf_bucket->scrb_starvation_avoidance) { |
| 715 | /* |
| 716 | * Indicates that the earliest deadline bucket is in starvation avoidance mode. Check to see if the |
| 717 | * starvation avoidance window is still open and return this bucket if it is. |
| 718 | * |
| 719 | * The starvation avoidance window is calculated based on the quantum of threads at that bucket and |
| 720 | * the number of CPUs in the cluster. The idea is to basically provide one quantum worth of starvation |
| 721 | * avoidance across all CPUs. |
| 722 | */ |
| 723 | uint64_t starvation_window = sched_clutch_thread_quantum[edf_bucket->scrb_bucket] / pset_available_cpu_count(pset: root_clutch->scr_pset); |
| 724 | if (timestamp < (edf_bucket->scrb_starvation_ts + starvation_window)) { |
| 725 | return edf_bucket; |
| 726 | } else { |
| 727 | /* Starvation avoidance window is over; update deadline and re-evaluate EDF */ |
| 728 | edf_bucket->scrb_starvation_avoidance = false; |
| 729 | edf_bucket->scrb_starvation_ts = 0; |
| 730 | sched_clutch_root_bucket_deadline_update(edf_bucket, root_clutch, timestamp); |
| 731 | } |
| 732 | goto evaluate_root_buckets; |
| 733 | } |
| 734 | |
| 735 | /* Looks like the EDF bucket is not in starvation avoidance mode; check if it should be */ |
| 736 | if (highest_runnable_bucket < edf_bucket->scrb_bucket) { |
| 737 | /* Since a higher bucket is runnable, it indicates that the EDF bucket should be in starvation avoidance */ |
| 738 | edf_bucket->scrb_starvation_avoidance = true; |
| 739 | edf_bucket->scrb_starvation_ts = timestamp; |
| 740 | } else { |
| 741 | /* EDF bucket is being selected in the natural order; update deadline and reset warp */ |
| 742 | sched_clutch_root_bucket_deadline_update(edf_bucket, root_clutch, timestamp); |
| 743 | edf_bucket->scrb_warp_remaining = sched_clutch_root_bucket_warp[edf_bucket->scrb_bucket]; |
| 744 | edf_bucket->scrb_warped_deadline = SCHED_CLUTCH_ROOT_BUCKET_WARP_UNUSED; |
| 745 | if (edf_bucket->scrb_bound) { |
| 746 | bitmap_set(map: root_clutch->scr_bound_warp_available, n: edf_bucket->scrb_bucket); |
| 747 | } else { |
| 748 | bitmap_set(map: root_clutch->scr_unbound_warp_available, n: edf_bucket->scrb_bucket); |
| 749 | } |
| 750 | } |
| 751 | return edf_bucket; |
| 752 | } |
| 753 | |
| 754 | /* |
| 755 | * Looks like there is a root bucket which is higher in the natural priority |
| 756 | * order than edf_bucket and might have some warp remaining. |
| 757 | */ |
| 758 | warp_bucket = (edf_bucket->scrb_bound) ? &root_clutch->scr_bound_buckets[warp_bucket_index] : &root_clutch->scr_unbound_buckets[warp_bucket_index]; |
| 759 | if (warp_bucket->scrb_warped_deadline == SCHED_CLUTCH_ROOT_BUCKET_WARP_UNUSED) { |
| 760 | /* Root bucket has not used any of its warp; set a deadline to expire its warp and return it */ |
| 761 | warp_bucket->scrb_warped_deadline = timestamp + warp_bucket->scrb_warp_remaining; |
| 762 | sched_clutch_root_bucket_deadline_update(warp_bucket, root_clutch, timestamp); |
| 763 | return warp_bucket; |
| 764 | } |
| 765 | if (warp_bucket->scrb_warped_deadline > timestamp) { |
| 766 | /* Root bucket already has a warp window open with some warp remaining */ |
| 767 | sched_clutch_root_bucket_deadline_update(warp_bucket, root_clutch, timestamp); |
| 768 | return warp_bucket; |
| 769 | } |
| 770 | |
| 771 | /* For this bucket, warp window was opened sometime in the past but has now |
| 772 | * expired. Mark the bucket as not avilable for warp anymore and re-run the |
| 773 | * warp bucket selection logic. |
| 774 | */ |
| 775 | warp_bucket->scrb_warp_remaining = 0; |
| 776 | if (warp_bucket->scrb_bound) { |
| 777 | bitmap_clear(map: root_clutch->scr_bound_warp_available, n: warp_bucket->scrb_bucket); |
| 778 | } else { |
| 779 | bitmap_clear(map: root_clutch->scr_unbound_warp_available, n: warp_bucket->scrb_bucket); |
| 780 | } |
| 781 | goto evaluate_root_buckets; |
| 782 | } |
| 783 | |
| 784 | /* |
| 785 | * sched_clutch_root_bucket_deadline_calculate() |
| 786 | * |
| 787 | * Calculate the deadline for the bucket based on its WCEL |
| 788 | */ |
| 789 | static uint64_t |
| 790 | sched_clutch_root_bucket_deadline_calculate( |
| 791 | sched_clutch_root_bucket_t root_bucket, |
| 792 | uint64_t timestamp) |
| 793 | { |
| 794 | /* For fixpri AboveUI bucket always return it as the earliest deadline */ |
| 795 | if (root_bucket->scrb_bucket < TH_BUCKET_SHARE_FG) { |
| 796 | return 0; |
| 797 | } |
| 798 | |
| 799 | /* For all timeshare buckets set the deadline as current time + worst-case-execution-latency */ |
| 800 | return timestamp + sched_clutch_root_bucket_wcel[root_bucket->scrb_bucket]; |
| 801 | } |
| 802 | |
| 803 | /* |
| 804 | * sched_clutch_root_bucket_deadline_update() |
| 805 | * |
| 806 | * Routine to update the deadline of the root bucket when it is selected. |
| 807 | * Updating the deadline also moves the root_bucket in the EDF priority |
| 808 | * queue. |
| 809 | */ |
| 810 | static void |
| 811 | sched_clutch_root_bucket_deadline_update( |
| 812 | sched_clutch_root_bucket_t root_bucket, |
| 813 | sched_clutch_root_t root_clutch, |
| 814 | uint64_t timestamp) |
| 815 | { |
| 816 | if (root_bucket->scrb_bucket == TH_BUCKET_FIXPRI) { |
| 817 | /* The algorithm never uses the deadlines for scheduling TH_BUCKET_FIXPRI bucket */ |
| 818 | return; |
| 819 | } |
| 820 | |
| 821 | uint64_t old_deadline = root_bucket->scrb_pqlink.deadline; |
| 822 | uint64_t new_deadline = sched_clutch_root_bucket_deadline_calculate(root_bucket, timestamp); |
| 823 | if (__improbable(old_deadline > new_deadline)) { |
| 824 | panic("old_deadline (%llu) > new_deadline (%llu); root_bucket (%d); timestamp (%llu)" , old_deadline, new_deadline, root_bucket->scrb_bucket, timestamp); |
| 825 | } |
| 826 | if (old_deadline != new_deadline) { |
| 827 | root_bucket->scrb_pqlink.deadline = new_deadline; |
| 828 | struct priority_queue_deadline_min *prioq = (root_bucket->scrb_bound) ? &root_clutch->scr_bound_root_buckets : &root_clutch->scr_unbound_root_buckets; |
| 829 | priority_queue_entry_increased(que: prioq, elt: &root_bucket->scrb_pqlink); |
| 830 | } |
| 831 | } |
| 832 | |
| 833 | /* |
| 834 | * sched_clutch_root_bucket_runnable() |
| 835 | * |
| 836 | * Routine to insert a newly runnable root bucket into the hierarchy. |
| 837 | * Also updates the deadline and warp parameters as necessary. |
| 838 | */ |
| 839 | static void |
| 840 | sched_clutch_root_bucket_runnable( |
| 841 | sched_clutch_root_bucket_t root_bucket, |
| 842 | sched_clutch_root_t root_clutch, |
| 843 | uint64_t timestamp) |
| 844 | { |
| 845 | /* Mark the root bucket as runnable */ |
| 846 | bitmap_t *runnable_bitmap = (root_bucket->scrb_bound) ? root_clutch->scr_bound_runnable_bitmap : root_clutch->scr_unbound_runnable_bitmap; |
| 847 | bitmap_set(map: runnable_bitmap, n: root_bucket->scrb_bucket); |
| 848 | |
| 849 | if (root_bucket->scrb_bucket == TH_BUCKET_FIXPRI) { |
| 850 | /* Since the TH_BUCKET_FIXPRI bucket is not scheduled based on deadline, nothing more needed here */ |
| 851 | return; |
| 852 | } |
| 853 | |
| 854 | if (root_bucket->scrb_starvation_avoidance == false) { |
| 855 | /* |
| 856 | * Only update the deadline if the bucket was not in starvation avoidance mode. If the bucket was in |
| 857 | * starvation avoidance and its window has expired, the highest root bucket selection logic will notice |
| 858 | * that and fix it up. |
| 859 | */ |
| 860 | root_bucket->scrb_pqlink.deadline = sched_clutch_root_bucket_deadline_calculate(root_bucket, timestamp); |
| 861 | } |
| 862 | struct priority_queue_deadline_min *prioq = (root_bucket->scrb_bound) ? &root_clutch->scr_bound_root_buckets : &root_clutch->scr_unbound_root_buckets; |
| 863 | priority_queue_insert(que: prioq, elt: &root_bucket->scrb_pqlink); |
| 864 | if (root_bucket->scrb_warp_remaining) { |
| 865 | /* Since the bucket has some warp remaining and its now runnable, mark it as available for warp */ |
| 866 | bitmap_t *warp_bitmap = (root_bucket->scrb_bound) ? root_clutch->scr_bound_warp_available : root_clutch->scr_unbound_warp_available; |
| 867 | bitmap_set(map: warp_bitmap, n: root_bucket->scrb_bucket); |
| 868 | } |
| 869 | } |
| 870 | |
| 871 | /* |
| 872 | * sched_clutch_root_bucket_empty() |
| 873 | * |
| 874 | * Routine to remove an empty root bucket from the hierarchy. |
| 875 | * Also updates the deadline and warp parameters as necessary. |
| 876 | */ |
| 877 | static void |
| 878 | sched_clutch_root_bucket_empty( |
| 879 | sched_clutch_root_bucket_t root_bucket, |
| 880 | sched_clutch_root_t root_clutch, |
| 881 | uint64_t timestamp) |
| 882 | { |
| 883 | bitmap_t *runnable_bitmap = (root_bucket->scrb_bound) ? root_clutch->scr_bound_runnable_bitmap : root_clutch->scr_unbound_runnable_bitmap; |
| 884 | bitmap_clear(map: runnable_bitmap, n: root_bucket->scrb_bucket); |
| 885 | |
| 886 | if (root_bucket->scrb_bucket == TH_BUCKET_FIXPRI) { |
| 887 | /* Since the TH_BUCKET_FIXPRI bucket is not scheduled based on deadline, nothing more needed here */ |
| 888 | return; |
| 889 | } |
| 890 | |
| 891 | struct priority_queue_deadline_min *prioq = (root_bucket->scrb_bound) ? &root_clutch->scr_bound_root_buckets : &root_clutch->scr_unbound_root_buckets; |
| 892 | priority_queue_remove(que: prioq, elt: &root_bucket->scrb_pqlink); |
| 893 | |
| 894 | bitmap_t *warp_bitmap = (root_bucket->scrb_bound) ? root_clutch->scr_bound_warp_available : root_clutch->scr_unbound_warp_available; |
| 895 | bitmap_clear(map: warp_bitmap, n: root_bucket->scrb_bucket); |
| 896 | |
| 897 | if (root_bucket->scrb_warped_deadline != SCHED_CLUTCH_ROOT_BUCKET_WARP_UNUSED) { |
| 898 | if (root_bucket->scrb_warped_deadline > timestamp) { |
| 899 | /* |
| 900 | * For root buckets that were using the warp, check if the warp |
| 901 | * deadline is in the future. If yes, remove the wall time the |
| 902 | * warp was active and update the warp remaining. This allows |
| 903 | * the root bucket to use the remaining warp the next time it |
| 904 | * becomes runnable. |
| 905 | */ |
| 906 | root_bucket->scrb_warp_remaining = root_bucket->scrb_warped_deadline - timestamp; |
| 907 | } else { |
| 908 | /* |
| 909 | * If the root bucket's warped deadline is in the past, it has used up |
| 910 | * all the warp it was assigned. Empty out its warp remaining. |
| 911 | */ |
| 912 | root_bucket->scrb_warp_remaining = 0; |
| 913 | } |
| 914 | } |
| 915 | } |
| 916 | |
| 917 | static int |
| 918 | sched_clutch_global_bucket_load_get( |
| 919 | sched_bucket_t bucket) |
| 920 | { |
| 921 | return (int)os_atomic_load(&sched_clutch_global_bucket_load[bucket], relaxed); |
| 922 | } |
| 923 | |
| 924 | /* |
| 925 | * sched_clutch_root_pri_update() |
| 926 | * |
| 927 | * The root level priority is used for thread selection and preemption |
| 928 | * logic. |
| 929 | * |
| 930 | * The logic uses the same decision as thread selection for deciding between the |
| 931 | * above UI and timeshare buckets. If one of the timesharing buckets have to be |
| 932 | * used for priority calculation, the logic is slightly different from thread |
| 933 | * selection, because thread selection considers deadlines, warps etc. to |
| 934 | * decide the most optimal bucket at a given timestamp. Since the priority |
| 935 | * value is used for preemption decisions only, it needs to be based on the |
| 936 | * highest runnable thread available in the timeshare domain. This logic can |
| 937 | * be made more sophisticated if there are cases of unnecessary preemption |
| 938 | * being seen in workloads. |
| 939 | */ |
| 940 | static void |
| 941 | sched_clutch_root_pri_update( |
| 942 | sched_clutch_root_t root_clutch) |
| 943 | { |
| 944 | sched_clutch_hierarchy_locked_assert(root_clutch); |
| 945 | int16_t root_bound_pri = NOPRI; |
| 946 | int16_t root_unbound_pri = NOPRI; |
| 947 | |
| 948 | if (bitmap_lsb_first(map: root_clutch->scr_bound_runnable_bitmap, nbits: TH_BUCKET_SCHED_MAX) == -1) { |
| 949 | goto root_pri_update_unbound; |
| 950 | } |
| 951 | sched_clutch_root_bucket_t root_bucket_bound = NULL; |
| 952 | if (sched_clutch_root_bound_select_aboveui(root_clutch)) { |
| 953 | root_bucket_bound = &root_clutch->scr_bound_buckets[TH_BUCKET_FIXPRI]; |
| 954 | } else { |
| 955 | int root_bucket_index = bitmap_lsb_next(map: root_clutch->scr_bound_runnable_bitmap, nbits: TH_BUCKET_SCHED_MAX, prev: TH_BUCKET_FIXPRI); |
| 956 | assert(root_bucket_index != -1); |
| 957 | root_bucket_bound = &root_clutch->scr_bound_buckets[root_bucket_index]; |
| 958 | } |
| 959 | root_bound_pri = root_bucket_bound->scrb_bound_thread_runq.highq; |
| 960 | |
| 961 | root_pri_update_unbound: |
| 962 | if (bitmap_lsb_first(map: root_clutch->scr_unbound_runnable_bitmap, nbits: TH_BUCKET_SCHED_MAX) == -1) { |
| 963 | goto root_pri_update_complete; |
| 964 | } |
| 965 | sched_clutch_root_bucket_t root_bucket_unbound = NULL; |
| 966 | if (sched_clutch_root_unbound_select_aboveui(root_clutch)) { |
| 967 | root_bucket_unbound = &root_clutch->scr_unbound_buckets[TH_BUCKET_FIXPRI]; |
| 968 | } else { |
| 969 | int root_bucket_index = bitmap_lsb_next(map: root_clutch->scr_unbound_runnable_bitmap, nbits: TH_BUCKET_SCHED_MAX, prev: TH_BUCKET_FIXPRI); |
| 970 | assert(root_bucket_index != -1); |
| 971 | root_bucket_unbound = &root_clutch->scr_unbound_buckets[root_bucket_index]; |
| 972 | } |
| 973 | /* For the selected root bucket, find the highest priority clutch bucket */ |
| 974 | sched_clutch_bucket_t clutch_bucket = sched_clutch_root_bucket_highest_clutch_bucket(root_bucket_unbound); |
| 975 | root_unbound_pri = priority_queue_max_sched_pri(&clutch_bucket->scb_clutchpri_prioq); |
| 976 | |
| 977 | root_pri_update_complete: |
| 978 | root_clutch->scr_priority = MAX(root_bound_pri, root_unbound_pri); |
| 979 | } |
| 980 | |
| 981 | /* |
| 982 | * sched_clutch_root_urgency_inc() |
| 983 | * |
| 984 | * Routine to increment the urgency at the root level based on the thread |
| 985 | * priority that is being inserted into the hierarchy. The root urgency |
| 986 | * counter is updated based on the urgency of threads in any of the |
| 987 | * clutch buckets which are part of the hierarchy. |
| 988 | * |
| 989 | * Always called with the pset lock held. |
| 990 | */ |
| 991 | static void |
| 992 | sched_clutch_root_urgency_inc( |
| 993 | sched_clutch_root_t root_clutch, |
| 994 | thread_t thread) |
| 995 | { |
| 996 | if (SCHED(priority_is_urgent)(thread->sched_pri)) { |
| 997 | root_clutch->scr_urgency++; |
| 998 | } |
| 999 | } |
| 1000 | |
| 1001 | /* |
| 1002 | * sched_clutch_root_urgency_dec() |
| 1003 | * |
| 1004 | * Routine to decrement the urgency at the root level based on the thread |
| 1005 | * priority that is being removed from the hierarchy. The root urgency |
| 1006 | * counter is updated based on the urgency of threads in any of the |
| 1007 | * clutch buckets which are part of the hierarchy. |
| 1008 | * |
| 1009 | * Always called with the pset lock held. |
| 1010 | */ |
| 1011 | static void |
| 1012 | sched_clutch_root_urgency_dec( |
| 1013 | sched_clutch_root_t root_clutch, |
| 1014 | thread_t thread) |
| 1015 | { |
| 1016 | if (SCHED(priority_is_urgent)(thread->sched_pri)) { |
| 1017 | root_clutch->scr_urgency--; |
| 1018 | } |
| 1019 | } |
| 1020 | |
| 1021 | /* |
| 1022 | * Clutch bucket level scheduling |
| 1023 | * |
| 1024 | * The second level of scheduling is the clutch bucket level scheduling |
| 1025 | * which tries to schedule thread groups within root_buckets. Each |
| 1026 | * clutch represents a thread group and a clutch_bucket_group represents |
| 1027 | * threads at a particular sched_bucket within that thread group. The |
| 1028 | * clutch_bucket_group contains a clutch_bucket per cluster on the system |
| 1029 | * where it holds the runnable threads destined for execution on that |
| 1030 | * cluster. |
| 1031 | * |
| 1032 | * The goal of this level of scheduling is to allow interactive thread |
| 1033 | * groups low latency access to the CPU. It also provides slight |
| 1034 | * scheduling preference for App and unrestricted thread groups. |
| 1035 | * |
| 1036 | * The clutch bucket scheduling algorithm measures an interactivity |
| 1037 | * score for all clutch bucket groups. The interactivity score is based |
| 1038 | * on the ratio of the CPU used and the voluntary blocking of threads |
| 1039 | * within the clutch bucket group. The algorithm is very close to the ULE |
| 1040 | * scheduler on FreeBSD in terms of calculations. The interactivity |
| 1041 | * score provides an interactivity boost in the range of |
| 1042 | * [0:SCHED_CLUTCH_BUCKET_INTERACTIVE_PRI * 2] which allows interactive |
| 1043 | * thread groups to win over CPU spinners. |
| 1044 | * |
| 1045 | * The interactivity score of the clutch bucket group is combined with the |
| 1046 | * highest base/promoted priority of threads in the clutch bucket to form |
| 1047 | * the overall priority of the clutch bucket. |
| 1048 | */ |
| 1049 | |
| 1050 | /* Priority boost range for interactivity */ |
| 1051 | #define SCHED_CLUTCH_BUCKET_GROUP_INTERACTIVE_PRI_DEFAULT (8) |
| 1052 | uint8_t sched_clutch_bucket_group_interactive_pri = SCHED_CLUTCH_BUCKET_GROUP_INTERACTIVE_PRI_DEFAULT; |
| 1053 | |
| 1054 | /* window to scale the cpu usage and blocked values (currently 500ms). Its the threshold of used+blocked */ |
| 1055 | uint64_t sched_clutch_bucket_group_adjust_threshold = 0; |
| 1056 | #define SCHED_CLUTCH_BUCKET_GROUP_ADJUST_THRESHOLD_USECS (500000) |
| 1057 | |
| 1058 | /* The ratio to scale the cpu/blocked time per window */ |
| 1059 | #define SCHED_CLUTCH_BUCKET_GROUP_ADJUST_RATIO (10) |
| 1060 | |
| 1061 | /* Initial value for voluntary blocking time for the clutch_bucket */ |
| 1062 | #define SCHED_CLUTCH_BUCKET_GROUP_BLOCKED_TS_INVALID (uint64_t)(~0) |
| 1063 | |
| 1064 | /* Value indicating the clutch bucket is not pending execution */ |
| 1065 | #define SCHED_CLUTCH_BUCKET_GROUP_PENDING_INVALID ((uint64_t)(~0)) |
| 1066 | |
| 1067 | /* |
| 1068 | * Thread group CPU starvation avoidance |
| 1069 | * |
| 1070 | * In heavily CPU contended scenarios, it is possible that some thread groups |
| 1071 | * which have a low interactivity score do not get CPU time at all. In order to |
| 1072 | * resolve that, the scheduler tries to ageout the CPU usage of the clutch |
| 1073 | * bucket group when it has been pending execution for a certain time as defined |
| 1074 | * by the sched_clutch_bucket_group_pending_delta_us values below. |
| 1075 | * |
| 1076 | * The values chosen here are very close to the WCEL values for each sched bucket. |
| 1077 | * These values are multiplied by the load average of the relevant root bucket to |
| 1078 | * provide an estimate of the actual clutch bucket load. |
| 1079 | */ |
| 1080 | static uint32_t sched_clutch_bucket_group_pending_delta_us[TH_BUCKET_SCHED_MAX] = { |
| 1081 | SCHED_CLUTCH_INVALID_TIME_32, /* FIXPRI */ |
| 1082 | 10000, /* FG */ |
| 1083 | 37500, /* IN */ |
| 1084 | 75000, /* DF */ |
| 1085 | 150000, /* UT */ |
| 1086 | 250000, /* BG */ |
| 1087 | }; |
| 1088 | static uint64_t sched_clutch_bucket_group_pending_delta[TH_BUCKET_SCHED_MAX] = {0}; |
| 1089 | |
| 1090 | /* |
| 1091 | * sched_clutch_bucket_init() |
| 1092 | * |
| 1093 | * Initializer for clutch buckets. |
| 1094 | */ |
| 1095 | static void |
| 1096 | sched_clutch_bucket_init( |
| 1097 | sched_clutch_bucket_t clutch_bucket, |
| 1098 | sched_clutch_bucket_group_t clutch_bucket_group, |
| 1099 | sched_bucket_t bucket) |
| 1100 | { |
| 1101 | clutch_bucket->scb_bucket = bucket; |
| 1102 | /* scb_priority will be recalculated when a thread is inserted in the clutch bucket */ |
| 1103 | clutch_bucket->scb_priority = 0; |
| 1104 | #if CONFIG_SCHED_EDGE |
| 1105 | clutch_bucket->scb_foreign = false; |
| 1106 | priority_queue_entry_init(&clutch_bucket->scb_foreignlink); |
| 1107 | #endif /* CONFIG_SCHED_EDGE */ |
| 1108 | clutch_bucket->scb_group = clutch_bucket_group; |
| 1109 | clutch_bucket->scb_root = NULL; |
| 1110 | priority_queue_init(que: &clutch_bucket->scb_clutchpri_prioq); |
| 1111 | priority_queue_init(que: &clutch_bucket->scb_thread_runq); |
| 1112 | queue_init(&clutch_bucket->scb_thread_timeshare_queue); |
| 1113 | } |
| 1114 | |
| 1115 | /* |
| 1116 | * sched_clutch_bucket_group_init() |
| 1117 | * |
| 1118 | * Initializer for clutch bucket groups. |
| 1119 | */ |
| 1120 | static void |
| 1121 | sched_clutch_bucket_group_init( |
| 1122 | sched_clutch_bucket_group_t clutch_bucket_group, |
| 1123 | sched_clutch_t clutch, |
| 1124 | sched_bucket_t bucket) |
| 1125 | { |
| 1126 | bzero(s: clutch_bucket_group, n: sizeof(struct sched_clutch_bucket_group)); |
| 1127 | clutch_bucket_group->scbg_bucket = bucket; |
| 1128 | clutch_bucket_group->scbg_clutch = clutch; |
| 1129 | |
| 1130 | int max_clusters = ml_get_cluster_count(); |
| 1131 | clutch_bucket_group->scbg_clutch_buckets = kalloc_type(struct sched_clutch_bucket, max_clusters, Z_WAITOK | Z_ZERO); |
| 1132 | for (int i = 0; i < max_clusters; i++) { |
| 1133 | sched_clutch_bucket_init(clutch_bucket: &clutch_bucket_group->scbg_clutch_buckets[i], clutch_bucket_group, bucket); |
| 1134 | } |
| 1135 | |
| 1136 | os_atomic_store(&clutch_bucket_group->scbg_timeshare_tick, 0, relaxed); |
| 1137 | os_atomic_store(&clutch_bucket_group->scbg_pri_shift, INT8_MAX, relaxed); |
| 1138 | os_atomic_store(&clutch_bucket_group->scbg_preferred_cluster, pset0.pset_cluster_id, relaxed); |
| 1139 | /* |
| 1140 | * All thread groups should be initialized to be interactive; this allows the newly launched |
| 1141 | * thread groups to fairly compete with already running thread groups. |
| 1142 | */ |
| 1143 | clutch_bucket_group->scbg_interactivity_data.scct_count = (sched_clutch_bucket_group_interactive_pri * 2); |
| 1144 | clutch_bucket_group->scbg_interactivity_data.scct_timestamp = 0; |
| 1145 | os_atomic_store(&clutch_bucket_group->scbg_cpu_data.cpu_data.scbcd_cpu_blocked, (clutch_cpu_data_t)sched_clutch_bucket_group_adjust_threshold, relaxed); |
| 1146 | clutch_bucket_group->scbg_blocked_data.scct_timestamp = SCHED_CLUTCH_BUCKET_GROUP_BLOCKED_TS_INVALID; |
| 1147 | clutch_bucket_group->scbg_pending_data.scct_timestamp = SCHED_CLUTCH_BUCKET_GROUP_PENDING_INVALID; |
| 1148 | clutch_bucket_group->scbg_amp_rebalance_last_chosen = UINT32_MAX; |
| 1149 | } |
| 1150 | |
| 1151 | static void |
| 1152 | sched_clutch_bucket_group_destroy( |
| 1153 | sched_clutch_bucket_group_t clutch_bucket_group) |
| 1154 | { |
| 1155 | kfree_type(struct sched_clutch_bucket, ml_get_cluster_count(), |
| 1156 | clutch_bucket_group->scbg_clutch_buckets); |
| 1157 | } |
| 1158 | |
| 1159 | /* |
| 1160 | * sched_clutch_init_with_thread_group() |
| 1161 | * |
| 1162 | * Initialize the sched_clutch when the thread group is being created |
| 1163 | */ |
| 1164 | void |
| 1165 | sched_clutch_init_with_thread_group( |
| 1166 | sched_clutch_t clutch, |
| 1167 | struct thread_group *tg) |
| 1168 | { |
| 1169 | os_atomic_store(&clutch->sc_thr_count, 0, relaxed); |
| 1170 | |
| 1171 | /* Initialize all the clutch buckets */ |
| 1172 | for (uint32_t i = 0; i < TH_BUCKET_SCHED_MAX; i++) { |
| 1173 | sched_clutch_bucket_group_init(clutch_bucket_group: &(clutch->sc_clutch_groups[i]), clutch, bucket: i); |
| 1174 | } |
| 1175 | |
| 1176 | /* Grouping specific fields */ |
| 1177 | clutch->sc_tg = tg; |
| 1178 | } |
| 1179 | |
| 1180 | /* |
| 1181 | * sched_clutch_destroy() |
| 1182 | * |
| 1183 | * Destructor for clutch; called from thread group release code. |
| 1184 | */ |
| 1185 | void |
| 1186 | sched_clutch_destroy( |
| 1187 | sched_clutch_t clutch) |
| 1188 | { |
| 1189 | assert(os_atomic_load(&clutch->sc_thr_count, relaxed) == 0); |
| 1190 | for (uint32_t i = 0; i < TH_BUCKET_SCHED_MAX; i++) { |
| 1191 | sched_clutch_bucket_group_destroy(clutch_bucket_group: &(clutch->sc_clutch_groups[i])); |
| 1192 | } |
| 1193 | } |
| 1194 | |
| 1195 | #if CONFIG_SCHED_EDGE |
| 1196 | |
| 1197 | /* |
| 1198 | * Edge Scheduler Preferred Cluster Mechanism |
| 1199 | * |
| 1200 | * In order to have better control over various QoS buckets within a thread group, the Edge |
| 1201 | * scheduler allows CLPC to specify a preferred cluster for each QoS level in a TG. These |
| 1202 | * preferences are stored at the sched_clutch_bucket_group level since that represents all |
| 1203 | * threads at a particular QoS level within a sched_clutch. For any lookup of preferred |
| 1204 | * cluster, the logic always goes back to the preference stored at the clutch_bucket_group. |
| 1205 | */ |
| 1206 | |
| 1207 | static uint32_t |
| 1208 | sched_edge_clutch_bucket_group_preferred_cluster(sched_clutch_bucket_group_t clutch_bucket_group) |
| 1209 | { |
| 1210 | return os_atomic_load(&clutch_bucket_group->scbg_preferred_cluster, relaxed); |
| 1211 | } |
| 1212 | |
| 1213 | static uint32_t |
| 1214 | sched_clutch_bucket_preferred_cluster(sched_clutch_bucket_t clutch_bucket) |
| 1215 | { |
| 1216 | return sched_edge_clutch_bucket_group_preferred_cluster(clutch_bucket->scb_group); |
| 1217 | } |
| 1218 | |
| 1219 | uint32_t |
| 1220 | sched_edge_thread_preferred_cluster(thread_t thread) |
| 1221 | { |
| 1222 | if (SCHED_CLUTCH_THREAD_CLUSTER_BOUND(thread)) { |
| 1223 | /* For threads bound to a specific cluster, return the bound cluster id */ |
| 1224 | return sched_edge_thread_bound_cluster_id(thread); |
| 1225 | } |
| 1226 | |
| 1227 | sched_clutch_t clutch = sched_clutch_for_thread(thread); |
| 1228 | sched_bucket_t sched_bucket = thread->th_sched_bucket; |
| 1229 | if (thread->sched_flags & TH_SFLAG_DEPRESSED_MASK) { |
| 1230 | sched_bucket = sched_clutch_thread_bucket_map(thread, thread->base_pri); |
| 1231 | } |
| 1232 | sched_clutch_bucket_group_t clutch_bucket_group = &clutch->sc_clutch_groups[sched_bucket]; |
| 1233 | return sched_edge_clutch_bucket_group_preferred_cluster(clutch_bucket_group); |
| 1234 | } |
| 1235 | |
| 1236 | /* |
| 1237 | * Edge Scheduler Foreign Bucket Support |
| 1238 | * |
| 1239 | * In the Edge Scheduler, each cluster maintains a priority queue of clutch buckets containing |
| 1240 | * threads that are not native to the cluster. A clutch bucket is considered native if its |
| 1241 | * preferred cluster has the same type as the cluster its enqueued in. The foreign clutch |
| 1242 | * bucket priority queue is used for rebalance operations to get threads back to their native |
| 1243 | * cluster quickly. |
| 1244 | * |
| 1245 | * It is possible to make this policy even more aggressive by considering all clusters that |
| 1246 | * are not the preferred cluster as the foreign cluster, but that would mean a lot of thread |
| 1247 | * migrations which might have performance implications. |
| 1248 | */ |
| 1249 | |
| 1250 | static void |
| 1251 | sched_clutch_bucket_mark_native(sched_clutch_bucket_t clutch_bucket, sched_clutch_root_t root_clutch) |
| 1252 | { |
| 1253 | if (clutch_bucket->scb_foreign) { |
| 1254 | clutch_bucket->scb_foreign = false; |
| 1255 | priority_queue_remove(&root_clutch->scr_foreign_buckets, &clutch_bucket->scb_foreignlink); |
| 1256 | } |
| 1257 | } |
| 1258 | |
| 1259 | static void |
| 1260 | sched_clutch_bucket_mark_foreign(sched_clutch_bucket_t clutch_bucket, sched_clutch_root_t root_clutch) |
| 1261 | { |
| 1262 | if (!clutch_bucket->scb_foreign) { |
| 1263 | clutch_bucket->scb_foreign = true; |
| 1264 | priority_queue_entry_set_sched_pri(&root_clutch->scr_foreign_buckets, &clutch_bucket->scb_foreignlink, clutch_bucket->scb_priority, 0); |
| 1265 | priority_queue_insert(&root_clutch->scr_foreign_buckets, &clutch_bucket->scb_foreignlink); |
| 1266 | } |
| 1267 | } |
| 1268 | |
| 1269 | /* |
| 1270 | * Edge Scheduler Cumulative Load Average |
| 1271 | * |
| 1272 | * The Edge scheduler maintains a per-QoS/scheduling bucket load average for |
| 1273 | * making thread migration decisions. The per-bucket load is maintained as a |
| 1274 | * cumulative count since higher scheduling buckets impact load on lower buckets |
| 1275 | * for thread migration decisions. |
| 1276 | * |
| 1277 | */ |
| 1278 | |
| 1279 | static void |
| 1280 | sched_edge_cluster_cumulative_count_incr(sched_clutch_root_t root_clutch, sched_bucket_t bucket) |
| 1281 | { |
| 1282 | switch (bucket) { |
| 1283 | case TH_BUCKET_FIXPRI: os_atomic_inc(&root_clutch->scr_cumulative_run_count[TH_BUCKET_FIXPRI], relaxed); OS_FALLTHROUGH; |
| 1284 | case TH_BUCKET_SHARE_FG: os_atomic_inc(&root_clutch->scr_cumulative_run_count[TH_BUCKET_SHARE_FG], relaxed); OS_FALLTHROUGH; |
| 1285 | case TH_BUCKET_SHARE_IN: os_atomic_inc(&root_clutch->scr_cumulative_run_count[TH_BUCKET_SHARE_IN], relaxed); OS_FALLTHROUGH; |
| 1286 | case TH_BUCKET_SHARE_DF: os_atomic_inc(&root_clutch->scr_cumulative_run_count[TH_BUCKET_SHARE_DF], relaxed); OS_FALLTHROUGH; |
| 1287 | case TH_BUCKET_SHARE_UT: os_atomic_inc(&root_clutch->scr_cumulative_run_count[TH_BUCKET_SHARE_UT], relaxed); OS_FALLTHROUGH; |
| 1288 | case TH_BUCKET_SHARE_BG: os_atomic_inc(&root_clutch->scr_cumulative_run_count[TH_BUCKET_SHARE_BG], relaxed); break; |
| 1289 | default: |
| 1290 | panic("Unexpected sched_bucket passed to sched_edge_cluster_cumulative_count_incr()" ); |
| 1291 | } |
| 1292 | } |
| 1293 | |
| 1294 | static void |
| 1295 | sched_edge_cluster_cumulative_count_decr(sched_clutch_root_t root_clutch, sched_bucket_t bucket) |
| 1296 | { |
| 1297 | switch (bucket) { |
| 1298 | case TH_BUCKET_FIXPRI: os_atomic_dec(&root_clutch->scr_cumulative_run_count[TH_BUCKET_FIXPRI], relaxed); OS_FALLTHROUGH; |
| 1299 | case TH_BUCKET_SHARE_FG: os_atomic_dec(&root_clutch->scr_cumulative_run_count[TH_BUCKET_SHARE_FG], relaxed); OS_FALLTHROUGH; |
| 1300 | case TH_BUCKET_SHARE_IN: os_atomic_dec(&root_clutch->scr_cumulative_run_count[TH_BUCKET_SHARE_IN], relaxed); OS_FALLTHROUGH; |
| 1301 | case TH_BUCKET_SHARE_DF: os_atomic_dec(&root_clutch->scr_cumulative_run_count[TH_BUCKET_SHARE_DF], relaxed); OS_FALLTHROUGH; |
| 1302 | case TH_BUCKET_SHARE_UT: os_atomic_dec(&root_clutch->scr_cumulative_run_count[TH_BUCKET_SHARE_UT], relaxed); OS_FALLTHROUGH; |
| 1303 | case TH_BUCKET_SHARE_BG: os_atomic_dec(&root_clutch->scr_cumulative_run_count[TH_BUCKET_SHARE_BG], relaxed); break; |
| 1304 | default: |
| 1305 | panic("Unexpected sched_bucket passed to sched_edge_cluster_cumulative_count_decr()" ); |
| 1306 | } |
| 1307 | } |
| 1308 | |
| 1309 | uint16_t |
| 1310 | sched_edge_cluster_cumulative_count(sched_clutch_root_t root_clutch, sched_bucket_t bucket) |
| 1311 | { |
| 1312 | return os_atomic_load(&root_clutch->scr_cumulative_run_count[bucket], relaxed); |
| 1313 | } |
| 1314 | |
| 1315 | #endif /* CONFIG_SCHED_EDGE */ |
| 1316 | |
| 1317 | /* |
| 1318 | * sched_clutch_bucket_hierarchy_insert() |
| 1319 | * |
| 1320 | * Routine to insert a newly runnable clutch_bucket into the root hierarchy. |
| 1321 | */ |
| 1322 | static void |
| 1323 | sched_clutch_bucket_hierarchy_insert( |
| 1324 | sched_clutch_root_t root_clutch, |
| 1325 | sched_clutch_bucket_t clutch_bucket, |
| 1326 | sched_bucket_t bucket, |
| 1327 | uint64_t timestamp, |
| 1328 | sched_clutch_bucket_options_t options) |
| 1329 | { |
| 1330 | sched_clutch_hierarchy_locked_assert(root_clutch); |
| 1331 | if (bucket > TH_BUCKET_FIXPRI) { |
| 1332 | /* Enqueue the timeshare clutch buckets into the global runnable clutch_bucket list; used for sched tick operations */ |
| 1333 | enqueue_tail(que: &root_clutch->scr_clutch_buckets, elt: &clutch_bucket->scb_listlink); |
| 1334 | } |
| 1335 | #if CONFIG_SCHED_EDGE |
| 1336 | /* Check if the bucket is a foreign clutch bucket and add it to the foreign buckets list */ |
| 1337 | uint32_t preferred_cluster = sched_clutch_bucket_preferred_cluster(clutch_bucket); |
| 1338 | if (pset_type_for_id(preferred_cluster) != pset_type_for_id(root_clutch->scr_cluster_id)) { |
| 1339 | sched_clutch_bucket_mark_foreign(clutch_bucket, root_clutch); |
| 1340 | } |
| 1341 | #endif /* CONFIG_SCHED_EDGE */ |
| 1342 | sched_clutch_root_bucket_t root_bucket = &root_clutch->scr_unbound_buckets[bucket]; |
| 1343 | |
| 1344 | /* If this is the first clutch bucket in the root bucket, insert the root bucket into the root priority queue */ |
| 1345 | if (sched_clutch_bucket_runq_empty(clutch_buckets_rq: &root_bucket->scrb_clutch_buckets)) { |
| 1346 | sched_clutch_root_bucket_runnable(root_bucket, root_clutch, timestamp); |
| 1347 | } |
| 1348 | |
| 1349 | /* Insert the clutch bucket into the root bucket run queue with order based on options */ |
| 1350 | sched_clutch_bucket_runq_enqueue(clutch_buckets_rq: &root_bucket->scrb_clutch_buckets, clutch_bucket, options); |
| 1351 | os_atomic_store(&clutch_bucket->scb_root, root_clutch, relaxed); |
| 1352 | os_atomic_inc(&sched_clutch_global_bucket_load[bucket], relaxed); |
| 1353 | } |
| 1354 | |
| 1355 | /* |
| 1356 | * sched_clutch_bucket_hierarchy_remove() |
| 1357 | * |
| 1358 | * Rotuine to remove a empty clutch bucket from the root hierarchy. |
| 1359 | */ |
| 1360 | static void |
| 1361 | sched_clutch_bucket_hierarchy_remove( |
| 1362 | sched_clutch_root_t root_clutch, |
| 1363 | sched_clutch_bucket_t clutch_bucket, |
| 1364 | sched_bucket_t bucket, |
| 1365 | uint64_t timestamp, |
| 1366 | __unused sched_clutch_bucket_options_t options) |
| 1367 | { |
| 1368 | sched_clutch_hierarchy_locked_assert(root_clutch); |
| 1369 | if (bucket > TH_BUCKET_FIXPRI) { |
| 1370 | /* Remove the timeshare clutch bucket from the globally runnable clutch_bucket list */ |
| 1371 | remqueue(elt: &clutch_bucket->scb_listlink); |
| 1372 | } |
| 1373 | #if CONFIG_SCHED_EDGE |
| 1374 | sched_clutch_bucket_mark_native(clutch_bucket, root_clutch); |
| 1375 | #endif /* CONFIG_SCHED_EDGE */ |
| 1376 | |
| 1377 | sched_clutch_root_bucket_t root_bucket = &root_clutch->scr_unbound_buckets[bucket]; |
| 1378 | |
| 1379 | /* Remove the clutch bucket from the root bucket priority queue */ |
| 1380 | sched_clutch_bucket_runq_remove(clutch_buckets_rq: &root_bucket->scrb_clutch_buckets, clutch_bucket); |
| 1381 | os_atomic_store(&clutch_bucket->scb_root, NULL, relaxed); |
| 1382 | |
| 1383 | /* If the root bucket priority queue is now empty, remove it from the root priority queue */ |
| 1384 | if (sched_clutch_bucket_runq_empty(clutch_buckets_rq: &root_bucket->scrb_clutch_buckets)) { |
| 1385 | sched_clutch_root_bucket_empty(root_bucket, root_clutch, timestamp); |
| 1386 | } |
| 1387 | os_atomic_dec(&sched_clutch_global_bucket_load[bucket], relaxed); |
| 1388 | } |
| 1389 | |
| 1390 | /* |
| 1391 | * sched_clutch_bucket_base_pri() |
| 1392 | * |
| 1393 | * Calculates the "base" priority of the clutch bucket, which is equal to the max of the |
| 1394 | * highest base_pri and the highest sched_pri in the clutch bucket. |
| 1395 | */ |
| 1396 | static uint8_t |
| 1397 | sched_clutch_bucket_base_pri( |
| 1398 | sched_clutch_bucket_t clutch_bucket) |
| 1399 | { |
| 1400 | assert(priority_queue_empty(&clutch_bucket->scb_thread_runq) == false); |
| 1401 | /* |
| 1402 | * Since the clutch bucket can contain threads that are members of the group due |
| 1403 | * to the sched_pri being promoted or due to their base pri, the base priority of |
| 1404 | * the entire clutch bucket should be based on the highest thread (promoted or base) |
| 1405 | * in the clutch bucket. |
| 1406 | */ |
| 1407 | uint8_t max_pri = 0; |
| 1408 | if (!priority_queue_empty(&clutch_bucket->scb_clutchpri_prioq)) { |
| 1409 | max_pri = priority_queue_max_sched_pri(&clutch_bucket->scb_clutchpri_prioq); |
| 1410 | } |
| 1411 | return max_pri; |
| 1412 | } |
| 1413 | |
| 1414 | /* |
| 1415 | * sched_clutch_interactivity_from_cpu_data() |
| 1416 | * |
| 1417 | * Routine to calculate the interactivity score of a clutch bucket group from its CPU usage |
| 1418 | */ |
| 1419 | static uint8_t |
| 1420 | sched_clutch_interactivity_from_cpu_data(sched_clutch_bucket_group_t clutch_bucket_group) |
| 1421 | { |
| 1422 | sched_clutch_bucket_cpu_data_t scb_cpu_data; |
| 1423 | scb_cpu_data.scbcd_cpu_data_packed = os_atomic_load_wide(&clutch_bucket_group->scbg_cpu_data.scbcd_cpu_data_packed, relaxed); |
| 1424 | clutch_cpu_data_t cpu_used = scb_cpu_data.cpu_data.scbcd_cpu_used; |
| 1425 | clutch_cpu_data_t cpu_blocked = scb_cpu_data.cpu_data.scbcd_cpu_blocked; |
| 1426 | uint8_t interactive_score = 0; |
| 1427 | |
| 1428 | if ((cpu_blocked == 0) && (cpu_used == 0)) { |
| 1429 | return (uint8_t)clutch_bucket_group->scbg_interactivity_data.scct_count; |
| 1430 | } |
| 1431 | /* |
| 1432 | * For all timeshare buckets, calculate the interactivity score of the bucket |
| 1433 | * and add it to the base priority |
| 1434 | */ |
| 1435 | if (cpu_blocked > cpu_used) { |
| 1436 | /* Interactive clutch_bucket case */ |
| 1437 | interactive_score = sched_clutch_bucket_group_interactive_pri + |
| 1438 | ((sched_clutch_bucket_group_interactive_pri * (cpu_blocked - cpu_used)) / cpu_blocked); |
| 1439 | } else { |
| 1440 | /* Non-interactive clutch_bucket case */ |
| 1441 | interactive_score = ((sched_clutch_bucket_group_interactive_pri * cpu_blocked) / cpu_used); |
| 1442 | } |
| 1443 | return interactive_score; |
| 1444 | } |
| 1445 | |
| 1446 | /* |
| 1447 | * sched_clutch_bucket_pri_calculate() |
| 1448 | * |
| 1449 | * The priority calculation algorithm for the clutch_bucket is a slight |
| 1450 | * modification on the ULE interactivity score. It uses the base priority |
| 1451 | * of the clutch bucket and applies an interactivity score boost to the |
| 1452 | * highly responsive clutch buckets. |
| 1453 | */ |
| 1454 | static uint8_t |
| 1455 | sched_clutch_bucket_pri_calculate( |
| 1456 | sched_clutch_bucket_t clutch_bucket, |
| 1457 | uint64_t timestamp) |
| 1458 | { |
| 1459 | /* For empty clutch buckets, return priority 0 */ |
| 1460 | if (clutch_bucket->scb_thr_count == 0) { |
| 1461 | return 0; |
| 1462 | } |
| 1463 | |
| 1464 | uint8_t base_pri = sched_clutch_bucket_base_pri(clutch_bucket); |
| 1465 | uint8_t interactive_score = sched_clutch_bucket_group_interactivity_score_calculate(clutch_bucket->scb_group, timestamp); |
| 1466 | |
| 1467 | assert(((uint64_t)base_pri + interactive_score) <= UINT8_MAX); |
| 1468 | uint8_t pri = base_pri + interactive_score; |
| 1469 | if (pri != clutch_bucket->scb_priority) { |
| 1470 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, MACHDBG_CODE(DBG_MACH_SCHED_CLUTCH, MACH_SCHED_CLUTCH_TG_BUCKET_PRI) | DBG_FUNC_NONE, |
| 1471 | thread_group_get_id(clutch_bucket->scb_group->scbg_clutch->sc_tg), clutch_bucket->scb_bucket, pri, interactive_score, 0); |
| 1472 | } |
| 1473 | return pri; |
| 1474 | } |
| 1475 | |
| 1476 | /* |
| 1477 | * sched_clutch_root_bucket_highest_clutch_bucket() |
| 1478 | * |
| 1479 | * Routine to find the highest priority clutch bucket |
| 1480 | * within the root bucket. |
| 1481 | */ |
| 1482 | static sched_clutch_bucket_t |
| 1483 | sched_clutch_root_bucket_highest_clutch_bucket( |
| 1484 | sched_clutch_root_bucket_t root_bucket) |
| 1485 | { |
| 1486 | if (sched_clutch_bucket_runq_empty(clutch_buckets_rq: &root_bucket->scrb_clutch_buckets)) { |
| 1487 | return NULL; |
| 1488 | } |
| 1489 | return sched_clutch_bucket_runq_peek(clutch_buckets_rq: &root_bucket->scrb_clutch_buckets); |
| 1490 | } |
| 1491 | |
| 1492 | /* |
| 1493 | * sched_clutch_bucket_runnable() |
| 1494 | * |
| 1495 | * Perform all operations needed when a new clutch bucket becomes runnable. |
| 1496 | * It involves inserting the clutch_bucket into the hierarchy and updating the |
| 1497 | * root priority appropriately. |
| 1498 | */ |
| 1499 | static boolean_t |
| 1500 | sched_clutch_bucket_runnable( |
| 1501 | sched_clutch_bucket_t clutch_bucket, |
| 1502 | sched_clutch_root_t root_clutch, |
| 1503 | uint64_t timestamp, |
| 1504 | sched_clutch_bucket_options_t options) |
| 1505 | { |
| 1506 | sched_clutch_hierarchy_locked_assert(root_clutch); |
| 1507 | /* Since the clutch bucket became newly runnable, update its pending timestamp */ |
| 1508 | clutch_bucket->scb_priority = sched_clutch_bucket_pri_calculate(clutch_bucket, timestamp); |
| 1509 | sched_clutch_bucket_hierarchy_insert(root_clutch, clutch_bucket, bucket: clutch_bucket->scb_bucket, timestamp, options); |
| 1510 | |
| 1511 | /* Update the timesharing properties of this clutch_bucket; also done every sched_tick */ |
| 1512 | sched_clutch_bucket_group_timeshare_update(clutch_bucket->scb_group, clutch_bucket, timestamp); |
| 1513 | int16_t root_old_pri = root_clutch->scr_priority; |
| 1514 | sched_clutch_root_pri_update(root_clutch); |
| 1515 | return root_clutch->scr_priority > root_old_pri; |
| 1516 | } |
| 1517 | |
| 1518 | /* |
| 1519 | * sched_clutch_bucket_update() |
| 1520 | * |
| 1521 | * Update the clutch_bucket's position in the hierarchy. This routine is |
| 1522 | * called when a new thread is inserted or removed from a runnable clutch |
| 1523 | * bucket. The options specify some properties about the clutch bucket |
| 1524 | * insertion order into the clutch bucket runq. |
| 1525 | */ |
| 1526 | static boolean_t |
| 1527 | sched_clutch_bucket_update( |
| 1528 | sched_clutch_bucket_t clutch_bucket, |
| 1529 | sched_clutch_root_t root_clutch, |
| 1530 | uint64_t timestamp, |
| 1531 | sched_clutch_bucket_options_t options) |
| 1532 | { |
| 1533 | sched_clutch_hierarchy_locked_assert(root_clutch); |
| 1534 | uint64_t new_pri = sched_clutch_bucket_pri_calculate(clutch_bucket, timestamp); |
| 1535 | sched_clutch_bucket_runq_t bucket_runq = &root_clutch->scr_unbound_buckets[clutch_bucket->scb_bucket].scrb_clutch_buckets; |
| 1536 | if (new_pri == clutch_bucket->scb_priority) { |
| 1537 | /* |
| 1538 | * If SCHED_CLUTCH_BUCKET_OPTIONS_SAMEPRI_RR is specified, move the clutch bucket |
| 1539 | * to the end of the runq. Typically used when a thread is selected for execution |
| 1540 | * from a clutch bucket. |
| 1541 | */ |
| 1542 | if (options & SCHED_CLUTCH_BUCKET_OPTIONS_SAMEPRI_RR) { |
| 1543 | sched_clutch_bucket_runq_rotate(clutch_buckets_rq: bucket_runq, clutch_bucket); |
| 1544 | } |
| 1545 | return false; |
| 1546 | } |
| 1547 | sched_clutch_bucket_runq_remove(clutch_buckets_rq: bucket_runq, clutch_bucket); |
| 1548 | #if CONFIG_SCHED_EDGE |
| 1549 | if (clutch_bucket->scb_foreign) { |
| 1550 | priority_queue_remove(&root_clutch->scr_foreign_buckets, &clutch_bucket->scb_foreignlink); |
| 1551 | } |
| 1552 | #endif /* CONFIG_SCHED_EDGE */ |
| 1553 | clutch_bucket->scb_priority = new_pri; |
| 1554 | #if CONFIG_SCHED_EDGE |
| 1555 | if (clutch_bucket->scb_foreign) { |
| 1556 | priority_queue_entry_set_sched_pri(&root_clutch->scr_foreign_buckets, &clutch_bucket->scb_foreignlink, clutch_bucket->scb_priority, 0); |
| 1557 | priority_queue_insert(&root_clutch->scr_foreign_buckets, &clutch_bucket->scb_foreignlink); |
| 1558 | } |
| 1559 | #endif /* CONFIG_SCHED_EDGE */ |
| 1560 | sched_clutch_bucket_runq_enqueue(clutch_buckets_rq: bucket_runq, clutch_bucket, options); |
| 1561 | |
| 1562 | int16_t root_old_pri = root_clutch->scr_priority; |
| 1563 | sched_clutch_root_pri_update(root_clutch); |
| 1564 | return root_clutch->scr_priority > root_old_pri; |
| 1565 | } |
| 1566 | |
| 1567 | /* |
| 1568 | * sched_clutch_bucket_empty() |
| 1569 | * |
| 1570 | * Perform all the operations needed when a clutch_bucket is no longer runnable. |
| 1571 | * It involves removing the clutch bucket from the hierarchy and updaing the root |
| 1572 | * priority appropriately. |
| 1573 | */ |
| 1574 | static void |
| 1575 | sched_clutch_bucket_empty( |
| 1576 | sched_clutch_bucket_t clutch_bucket, |
| 1577 | sched_clutch_root_t root_clutch, |
| 1578 | uint64_t timestamp, |
| 1579 | sched_clutch_bucket_options_t options) |
| 1580 | { |
| 1581 | sched_clutch_hierarchy_locked_assert(root_clutch); |
| 1582 | sched_clutch_bucket_hierarchy_remove(root_clutch, clutch_bucket, bucket: clutch_bucket->scb_bucket, timestamp, options); |
| 1583 | clutch_bucket->scb_priority = sched_clutch_bucket_pri_calculate(clutch_bucket, timestamp); |
| 1584 | sched_clutch_root_pri_update(root_clutch); |
| 1585 | } |
| 1586 | |
| 1587 | /* |
| 1588 | * sched_clutch_cpu_usage_update() |
| 1589 | * |
| 1590 | * Routine to update CPU usage of the thread in the hierarchy. |
| 1591 | */ |
| 1592 | void |
| 1593 | sched_clutch_cpu_usage_update( |
| 1594 | thread_t thread, |
| 1595 | uint64_t delta) |
| 1596 | { |
| 1597 | if (!SCHED_CLUTCH_THREAD_ELIGIBLE(thread) || SCHED_CLUTCH_THREAD_CLUSTER_BOUND(thread)) { |
| 1598 | return; |
| 1599 | } |
| 1600 | |
| 1601 | sched_clutch_t clutch = sched_clutch_for_thread(thread); |
| 1602 | sched_clutch_bucket_group_t clutch_bucket_group = &(clutch->sc_clutch_groups[thread->th_sched_bucket]); |
| 1603 | sched_clutch_bucket_group_cpu_usage_update(clutch_bucket_group, delta); |
| 1604 | } |
| 1605 | |
| 1606 | /* |
| 1607 | * sched_clutch_bucket_group_cpu_usage_update() |
| 1608 | * |
| 1609 | * Routine to update the CPU usage of the clutch_bucket. |
| 1610 | */ |
| 1611 | static void |
| 1612 | sched_clutch_bucket_group_cpu_usage_update( |
| 1613 | sched_clutch_bucket_group_t clutch_bucket_group, |
| 1614 | uint64_t delta) |
| 1615 | { |
| 1616 | if (clutch_bucket_group->scbg_bucket == TH_BUCKET_FIXPRI) { |
| 1617 | /* Since Above UI bucket has maximum interactivity score always, nothing to do here */ |
| 1618 | return; |
| 1619 | } |
| 1620 | delta = MIN(delta, sched_clutch_bucket_group_adjust_threshold); |
| 1621 | os_atomic_add(&(clutch_bucket_group->scbg_cpu_data.cpu_data.scbcd_cpu_used), (clutch_cpu_data_t)delta, relaxed); |
| 1622 | } |
| 1623 | |
| 1624 | /* |
| 1625 | * sched_clutch_bucket_group_cpu_pending_adjust() |
| 1626 | * |
| 1627 | * Routine to calculate the adjusted CPU usage value based on the pending intervals. The calculation is done |
| 1628 | * such that one "pending interval" provides one point improvement in interactivity score. |
| 1629 | */ |
| 1630 | static inline uint64_t |
| 1631 | sched_clutch_bucket_group_cpu_pending_adjust( |
| 1632 | uint64_t cpu_used, |
| 1633 | uint64_t cpu_blocked, |
| 1634 | uint8_t pending_intervals) |
| 1635 | { |
| 1636 | uint64_t cpu_used_adjusted = 0; |
| 1637 | if (cpu_blocked < cpu_used) { |
| 1638 | cpu_used_adjusted = (sched_clutch_bucket_group_interactive_pri * cpu_blocked * cpu_used); |
| 1639 | cpu_used_adjusted = cpu_used_adjusted / ((sched_clutch_bucket_group_interactive_pri * cpu_blocked) + (cpu_used * pending_intervals)); |
| 1640 | } else { |
| 1641 | uint64_t adjust_factor = (cpu_blocked * pending_intervals) / sched_clutch_bucket_group_interactive_pri; |
| 1642 | cpu_used_adjusted = (adjust_factor > cpu_used) ? 0 : (cpu_used - adjust_factor); |
| 1643 | } |
| 1644 | return cpu_used_adjusted; |
| 1645 | } |
| 1646 | |
| 1647 | /* |
| 1648 | * sched_clutch_bucket_group_cpu_adjust() |
| 1649 | * |
| 1650 | * Routine to scale the cpu usage and blocked time once the sum gets bigger |
| 1651 | * than sched_clutch_bucket_group_adjust_threshold. Allows the values to remain |
| 1652 | * manageable and maintain the same ratio while allowing clutch buckets to |
| 1653 | * adjust behavior and reflect in the interactivity score in a reasonable |
| 1654 | * amount of time. Also adjusts the CPU usage based on pending_intervals |
| 1655 | * which allows ageout of CPU to avoid starvation in highly contended scenarios. |
| 1656 | */ |
| 1657 | static void |
| 1658 | sched_clutch_bucket_group_cpu_adjust( |
| 1659 | sched_clutch_bucket_group_t clutch_bucket_group, |
| 1660 | uint8_t pending_intervals) |
| 1661 | { |
| 1662 | sched_clutch_bucket_cpu_data_t old_cpu_data = {}; |
| 1663 | sched_clutch_bucket_cpu_data_t new_cpu_data = {}; |
| 1664 | os_atomic_rmw_loop(&clutch_bucket_group->scbg_cpu_data.scbcd_cpu_data_packed, old_cpu_data.scbcd_cpu_data_packed, new_cpu_data.scbcd_cpu_data_packed, relaxed, { |
| 1665 | clutch_cpu_data_t cpu_used = old_cpu_data.cpu_data.scbcd_cpu_used; |
| 1666 | clutch_cpu_data_t cpu_blocked = old_cpu_data.cpu_data.scbcd_cpu_blocked; |
| 1667 | |
| 1668 | if ((pending_intervals == 0) && (cpu_used + cpu_blocked) < sched_clutch_bucket_group_adjust_threshold) { |
| 1669 | /* No changes to the CPU used and blocked values */ |
| 1670 | os_atomic_rmw_loop_give_up(); |
| 1671 | } |
| 1672 | if ((cpu_used + cpu_blocked) >= sched_clutch_bucket_group_adjust_threshold) { |
| 1673 | /* Only keep the recent CPU history to better indicate how this TG has been behaving */ |
| 1674 | cpu_used = cpu_used / SCHED_CLUTCH_BUCKET_GROUP_ADJUST_RATIO; |
| 1675 | cpu_blocked = cpu_blocked / SCHED_CLUTCH_BUCKET_GROUP_ADJUST_RATIO; |
| 1676 | } |
| 1677 | /* Use the shift passed in to ageout the CPU usage */ |
| 1678 | cpu_used = (clutch_cpu_data_t)sched_clutch_bucket_group_cpu_pending_adjust(cpu_used, cpu_blocked, pending_intervals); |
| 1679 | new_cpu_data.cpu_data.scbcd_cpu_used = cpu_used; |
| 1680 | new_cpu_data.cpu_data.scbcd_cpu_blocked = cpu_blocked; |
| 1681 | }); |
| 1682 | } |
| 1683 | |
| 1684 | /* |
| 1685 | * Thread level scheduling algorithm |
| 1686 | * |
| 1687 | * The thread level scheduling algorithm uses the mach timeshare |
| 1688 | * decay based algorithm to achieve sharing between threads within the |
| 1689 | * same clutch bucket. The load/priority shifts etc. are all maintained |
| 1690 | * at the clutch bucket level and used for decay calculation of the |
| 1691 | * threads. The load sampling is still driven off the scheduler tick |
| 1692 | * for runnable clutch buckets (it does not use the new higher frequency |
| 1693 | * EWMA based load calculation). The idea is that the contention and load |
| 1694 | * within clutch_buckets should be limited enough to not see heavy decay |
| 1695 | * and timeshare effectively. |
| 1696 | */ |
| 1697 | |
| 1698 | /* |
| 1699 | * sched_clutch_thread_run_bucket_incr() / sched_clutch_run_bucket_incr() |
| 1700 | * |
| 1701 | * Increment the run count for the clutch bucket associated with the |
| 1702 | * thread. |
| 1703 | */ |
| 1704 | uint32_t |
| 1705 | sched_clutch_thread_run_bucket_incr( |
| 1706 | thread_t thread, |
| 1707 | sched_bucket_t bucket) |
| 1708 | { |
| 1709 | if (!SCHED_CLUTCH_THREAD_ELIGIBLE(thread)) { |
| 1710 | return 0; |
| 1711 | } |
| 1712 | sched_clutch_t clutch = sched_clutch_for_thread(thread); |
| 1713 | return sched_clutch_run_bucket_incr(clutch, bucket); |
| 1714 | } |
| 1715 | |
| 1716 | static uint32_t |
| 1717 | sched_clutch_run_bucket_incr( |
| 1718 | sched_clutch_t clutch, |
| 1719 | sched_bucket_t bucket) |
| 1720 | { |
| 1721 | assert(bucket != TH_BUCKET_RUN); |
| 1722 | sched_clutch_bucket_group_t clutch_bucket_group = &(clutch->sc_clutch_groups[bucket]); |
| 1723 | return sched_clutch_bucket_group_run_count_inc(clutch_bucket_group); |
| 1724 | } |
| 1725 | |
| 1726 | /* |
| 1727 | * sched_clutch_thread_run_bucket_decr() / sched_clutch_run_bucket_decr() |
| 1728 | * |
| 1729 | * Decrement the run count for the clutch bucket associated with the |
| 1730 | * thread. |
| 1731 | */ |
| 1732 | uint32_t |
| 1733 | sched_clutch_thread_run_bucket_decr( |
| 1734 | thread_t thread, |
| 1735 | sched_bucket_t bucket) |
| 1736 | { |
| 1737 | if (!SCHED_CLUTCH_THREAD_ELIGIBLE(thread)) { |
| 1738 | return 0; |
| 1739 | } |
| 1740 | sched_clutch_t clutch = sched_clutch_for_thread(thread); |
| 1741 | return sched_clutch_run_bucket_decr(clutch, bucket); |
| 1742 | } |
| 1743 | |
| 1744 | static uint32_t |
| 1745 | sched_clutch_run_bucket_decr( |
| 1746 | sched_clutch_t clutch, |
| 1747 | sched_bucket_t bucket) |
| 1748 | { |
| 1749 | assert(bucket != TH_BUCKET_RUN); |
| 1750 | sched_clutch_bucket_group_t clutch_bucket_group = &(clutch->sc_clutch_groups[bucket]); |
| 1751 | return sched_clutch_bucket_group_run_count_dec(clutch_bucket_group); |
| 1752 | } |
| 1753 | |
| 1754 | /* |
| 1755 | * sched_clutch_bucket_group_timeshare_update() |
| 1756 | * |
| 1757 | * Routine to update the load and priority shift for the clutch_bucket_group |
| 1758 | * every sched_tick. For multi-cluster platforms, each QoS level will have multiple |
| 1759 | * clutch buckets with runnable threads in them. So it is important to maintain |
| 1760 | * the timesharing information at the clutch_bucket_group level instead of |
| 1761 | * individual clutch buckets (because the algorithm is trying to timeshare all |
| 1762 | * threads at the same QoS irrespective of which hierarchy they are enqueued in). |
| 1763 | * |
| 1764 | * The routine is called from the sched tick handling code to make sure this value |
| 1765 | * is updated at least once every sched tick. For clutch bucket groups which have |
| 1766 | * not been runnable for very long, the clutch_bucket_group maintains a "last |
| 1767 | * updated schedtick" parameter. As threads become runnable in the clutch bucket group, |
| 1768 | * if this value is outdated, the load and shifts are updated. |
| 1769 | * |
| 1770 | * Possible optimization: |
| 1771 | * - The current algorithm samples the load every sched tick (125ms). |
| 1772 | * This is prone to spikes in runnable counts; if that turns out to be |
| 1773 | * a problem, a simple solution would be to do the EWMA trick to sample |
| 1774 | * load at every load_tick (30ms) and use the averaged value for the pri |
| 1775 | * shift calculation. |
| 1776 | */ |
| 1777 | static void |
| 1778 | sched_clutch_bucket_group_timeshare_update( |
| 1779 | sched_clutch_bucket_group_t clutch_bucket_group, |
| 1780 | sched_clutch_bucket_t clutch_bucket, |
| 1781 | uint64_t ctime) |
| 1782 | { |
| 1783 | if (clutch_bucket_group->scbg_bucket < TH_BUCKET_SHARE_FG) { |
| 1784 | /* No timesharing needed for fixed priority Above UI threads */ |
| 1785 | return; |
| 1786 | } |
| 1787 | |
| 1788 | /* |
| 1789 | * Update the timeshare parameters for the clutch bucket group |
| 1790 | * if they havent been updated in this tick. |
| 1791 | */ |
| 1792 | uint32_t sched_ts = os_atomic_load(&clutch_bucket_group->scbg_timeshare_tick, relaxed); |
| 1793 | uint32_t current_sched_ts = sched_tick; |
| 1794 | if (sched_ts < current_sched_ts) { |
| 1795 | os_atomic_store(&clutch_bucket_group->scbg_timeshare_tick, current_sched_ts, relaxed); |
| 1796 | /* NCPU wide workloads should not experience decay */ |
| 1797 | uint64_t bucket_group_run_count = os_atomic_load_wide(&clutch_bucket_group->scbg_blocked_data.scct_count, relaxed) - 1; |
| 1798 | uint32_t bucket_group_load = (uint32_t)(bucket_group_run_count / processor_avail_count); |
| 1799 | bucket_group_load = MIN(bucket_group_load, NRQS - 1); |
| 1800 | uint32_t pri_shift = sched_fixed_shift - sched_load_shifts[bucket_group_load]; |
| 1801 | /* Ensure that the pri_shift value is reasonable */ |
| 1802 | pri_shift = (pri_shift > SCHED_PRI_SHIFT_MAX) ? INT8_MAX : pri_shift; |
| 1803 | os_atomic_store(&clutch_bucket_group->scbg_pri_shift, pri_shift, relaxed); |
| 1804 | } |
| 1805 | |
| 1806 | /* |
| 1807 | * Update the clutch bucket priority; this allows clutch buckets that have been pending |
| 1808 | * for a long time to get an updated interactivity score. |
| 1809 | */ |
| 1810 | sched_clutch_bucket_update(clutch_bucket, root_clutch: clutch_bucket->scb_root, timestamp: ctime, options: SCHED_CLUTCH_BUCKET_OPTIONS_NONE); |
| 1811 | } |
| 1812 | |
| 1813 | /* |
| 1814 | * sched_clutch_thread_clutch_update() |
| 1815 | * |
| 1816 | * Routine called when the thread changes its thread group. The current |
| 1817 | * implementation relies on the fact that the thread group is changed only from |
| 1818 | * the context of the thread itself or when the thread is runnable but not in a |
| 1819 | * runqueue. Due to this fact, the thread group change causes only counter |
| 1820 | * updates in the old & new clutch buckets and no hierarchy changes. The routine |
| 1821 | * also attributes the CPU used so far to the old clutch. |
| 1822 | */ |
| 1823 | void |
| 1824 | sched_clutch_thread_clutch_update( |
| 1825 | thread_t thread, |
| 1826 | sched_clutch_t old_clutch, |
| 1827 | sched_clutch_t new_clutch) |
| 1828 | { |
| 1829 | uint32_t cpu_delta; |
| 1830 | |
| 1831 | if (old_clutch) { |
| 1832 | assert((thread->state & (TH_RUN | TH_IDLE)) == TH_RUN); |
| 1833 | |
| 1834 | sched_clutch_run_bucket_decr(clutch: old_clutch, bucket: thread->th_sched_bucket); |
| 1835 | /* |
| 1836 | * Calculate the CPU used by this thread in the old bucket and |
| 1837 | * add it to the old clutch bucket. This uses the same CPU usage |
| 1838 | * logic as update_priority etc. |
| 1839 | */ |
| 1840 | sched_tick_delta(thread, cpu_delta); |
| 1841 | if (thread->pri_shift < INT8_MAX) { |
| 1842 | thread->sched_usage += cpu_delta; |
| 1843 | } |
| 1844 | thread->cpu_delta += cpu_delta; |
| 1845 | if (!SCHED_CLUTCH_THREAD_CLUSTER_BOUND(thread)) { |
| 1846 | sched_clutch_bucket_group_t clutch_bucket_group = &(old_clutch->sc_clutch_groups[thread->th_sched_bucket]); |
| 1847 | sched_clutch_bucket_group_cpu_usage_update(clutch_bucket_group, delta: cpu_delta); |
| 1848 | } |
| 1849 | } |
| 1850 | |
| 1851 | if (new_clutch) { |
| 1852 | sched_clutch_run_bucket_incr(clutch: new_clutch, bucket: thread->th_sched_bucket); |
| 1853 | } |
| 1854 | } |
| 1855 | |
| 1856 | /* Thread Insertion/Removal/Selection routines */ |
| 1857 | |
| 1858 | #if CONFIG_SCHED_EDGE |
| 1859 | |
| 1860 | /* |
| 1861 | * Edge Scheduler Bound Thread Support |
| 1862 | * |
| 1863 | * The edge scheduler allows threads to be bound to specific clusters. The scheduler |
| 1864 | * maintains a separate runq on the clutch root to hold these bound threads. These |
| 1865 | * bound threads count towards the root priority and thread count, but are ignored |
| 1866 | * for thread migration/steal decisions. Bound threads that are enqueued in the |
| 1867 | * separate runq have the th_bound_cluster_enqueued flag set to allow easy |
| 1868 | * removal. |
| 1869 | * |
| 1870 | * Bound Threads Timesharing |
| 1871 | * The bound threads share the timesharing properties of the clutch bucket group they are |
| 1872 | * part of. They contribute to the load and use priority shifts/decay values from the |
| 1873 | * clutch bucket group. |
| 1874 | */ |
| 1875 | |
| 1876 | static boolean_t |
| 1877 | sched_edge_bound_thread_insert( |
| 1878 | sched_clutch_root_t root_clutch, |
| 1879 | thread_t thread, |
| 1880 | integer_t options) |
| 1881 | { |
| 1882 | /* Update the clutch runnable count and priority */ |
| 1883 | sched_clutch_thr_count_inc(&root_clutch->scr_thr_count); |
| 1884 | sched_clutch_root_bucket_t root_bucket = &root_clutch->scr_bound_buckets[thread->th_sched_bucket]; |
| 1885 | if (root_bucket->scrb_bound_thread_runq.count == 0) { |
| 1886 | sched_clutch_root_bucket_runnable(root_bucket, root_clutch, mach_absolute_time()); |
| 1887 | } |
| 1888 | |
| 1889 | assert((thread->th_bound_cluster_enqueued) == false); |
| 1890 | run_queue_enqueue(&root_bucket->scrb_bound_thread_runq, thread, options); |
| 1891 | thread->th_bound_cluster_enqueued = true; |
| 1892 | |
| 1893 | /* Increment the urgency counter for the root if necessary */ |
| 1894 | sched_clutch_root_urgency_inc(root_clutch, thread); |
| 1895 | |
| 1896 | int16_t root_old_pri = root_clutch->scr_priority; |
| 1897 | sched_clutch_root_pri_update(root_clutch); |
| 1898 | return root_clutch->scr_priority > root_old_pri; |
| 1899 | } |
| 1900 | |
| 1901 | static void |
| 1902 | sched_edge_bound_thread_remove( |
| 1903 | sched_clutch_root_t root_clutch, |
| 1904 | thread_t thread) |
| 1905 | { |
| 1906 | sched_clutch_root_bucket_t root_bucket = &root_clutch->scr_bound_buckets[thread->th_sched_bucket]; |
| 1907 | assert((thread->th_bound_cluster_enqueued) == true); |
| 1908 | run_queue_remove(&root_bucket->scrb_bound_thread_runq, thread); |
| 1909 | thread->th_bound_cluster_enqueued = false; |
| 1910 | |
| 1911 | /* Decrement the urgency counter for the root if necessary */ |
| 1912 | sched_clutch_root_urgency_dec(root_clutch, thread); |
| 1913 | |
| 1914 | /* Update the clutch runnable count and priority */ |
| 1915 | sched_clutch_thr_count_dec(&root_clutch->scr_thr_count); |
| 1916 | if (root_bucket->scrb_bound_thread_runq.count == 0) { |
| 1917 | sched_clutch_root_bucket_empty(root_bucket, root_clutch, mach_absolute_time()); |
| 1918 | } |
| 1919 | sched_clutch_root_pri_update(root_clutch); |
| 1920 | } |
| 1921 | |
| 1922 | /* |
| 1923 | * Edge Scheduler cluster shared resource threads load balancing |
| 1924 | * |
| 1925 | * The Edge scheduler attempts to load balance cluster shared resource intensive threads |
| 1926 | * across clusters in order to reduce contention on the shared resources. It achieves |
| 1927 | * that by maintaining the runnable and running shared resource load on each cluster |
| 1928 | * and balancing the load across multiple clusters. |
| 1929 | * |
| 1930 | * The current implementation for cluster shared resource load balancing looks at |
| 1931 | * the per-cluster load at thread runnable time to enqueue the thread in the appropriate |
| 1932 | * cluster. The thread is enqueued in the cluster bound runqueue to ensure idle CPUs |
| 1933 | * do not steal/rebalance shared resource threads. Some more details for the implementation: |
| 1934 | * |
| 1935 | * - When threads are tagged as shared resource, they go through the cluster selection logic |
| 1936 | * which looks at cluster shared resource loads and picks a cluster accordingly. The thread is |
| 1937 | * enqueued in the cluster bound runqueue. |
| 1938 | * |
| 1939 | * - When the threads start running and call avoid_processor, the load balancing logic will be |
| 1940 | * invoked and cause the thread to be sent to a more preferred cluster if one exists and has |
| 1941 | * no shared resource load. |
| 1942 | * |
| 1943 | * - If a CPU in a preferred cluster is going idle and that cluster has no more shared load, |
| 1944 | * it will look at running shared resource threads on foreign clusters and actively rebalance them. |
| 1945 | * |
| 1946 | * - Runnable shared resource threads are not stolen by the preferred cluster CPUs as they |
| 1947 | * go idle intentionally. |
| 1948 | * |
| 1949 | * - One caveat of this design is that if a preferred CPU has already run and finished its shared |
| 1950 | * resource thread execution, it will not go out and steal the runnable thread in the non-preferred cluster. |
| 1951 | * The rebalancing will happen when the thread actually runs on a non-preferred cluster and one of the |
| 1952 | * events listed above happen. |
| 1953 | * |
| 1954 | * - Also it currently does not consider other properties such as thread priorities and |
| 1955 | * qos level thread load in the thread placement decision. |
| 1956 | * |
| 1957 | * Edge Scheduler cluster shared resource thread scheduling policy |
| 1958 | * |
| 1959 | * The threads for shared resources can be scheduled using one of the two policies: |
| 1960 | * |
| 1961 | * EDGE_SHARED_RSRC_SCHED_POLICY_RR |
| 1962 | * This policy distributes the threads so that they spread across all available clusters |
| 1963 | * irrespective of type. The idea is that this scheduling policy will put a shared resource |
| 1964 | * thread on each cluster on the platform before it starts doubling up on clusters. |
| 1965 | * |
| 1966 | * EDGE_SHARED_RSRC_SCHED_POLICY_NATIVE_FIRST |
| 1967 | * This policy distributes threads so that the threads first fill up all the capacity on |
| 1968 | * the preferred cluster and its homogeneous peers before spilling to different core type. |
| 1969 | * The current implementation defines capacity based on the number of CPUs in the cluster; |
| 1970 | * so a cluster's shared resource is considered full if there are "n" runnable + running |
| 1971 | * shared resource threads on the cluster with n cpus. This policy is different from the |
| 1972 | * default scheduling policy of the edge scheduler since this always tries to fill up the |
| 1973 | * native clusters to capacity even when non-native clusters might be idle. |
| 1974 | */ |
| 1975 | __options_decl(edge_shared_rsrc_sched_policy_t, uint32_t, { |
| 1976 | EDGE_SHARED_RSRC_SCHED_POLICY_RR = 0, |
| 1977 | EDGE_SHARED_RSRC_SCHED_POLICY_NATIVE_FIRST = 1, |
| 1978 | }); |
| 1979 | |
| 1980 | const edge_shared_rsrc_sched_policy_t edge_shared_rsrc_policy[CLUSTER_SHARED_RSRC_TYPE_COUNT] = { |
| 1981 | [CLUSTER_SHARED_RSRC_TYPE_RR] = EDGE_SHARED_RSRC_SCHED_POLICY_RR, |
| 1982 | [CLUSTER_SHARED_RSRC_TYPE_NATIVE_FIRST] = EDGE_SHARED_RSRC_SCHED_POLICY_NATIVE_FIRST, |
| 1983 | }; |
| 1984 | |
| 1985 | static void |
| 1986 | sched_edge_shared_rsrc_runnable_load_incr(sched_clutch_root_t root_clutch, thread_t thread) |
| 1987 | { |
| 1988 | if (thread_shared_rsrc_policy_get(thread, CLUSTER_SHARED_RSRC_TYPE_RR)) { |
| 1989 | root_clutch->scr_shared_rsrc_load_runnable[CLUSTER_SHARED_RSRC_TYPE_RR]++; |
| 1990 | thread->th_shared_rsrc_enqueued[CLUSTER_SHARED_RSRC_TYPE_RR] = true; |
| 1991 | } |
| 1992 | if (thread_shared_rsrc_policy_get(thread, CLUSTER_SHARED_RSRC_TYPE_NATIVE_FIRST)) { |
| 1993 | root_clutch->scr_shared_rsrc_load_runnable[CLUSTER_SHARED_RSRC_TYPE_NATIVE_FIRST]++; |
| 1994 | thread->th_shared_rsrc_enqueued[CLUSTER_SHARED_RSRC_TYPE_NATIVE_FIRST] = true; |
| 1995 | } |
| 1996 | } |
| 1997 | |
| 1998 | static void |
| 1999 | sched_edge_shared_rsrc_runnable_load_decr(sched_clutch_root_t root_clutch, thread_t thread) |
| 2000 | { |
| 2001 | for (cluster_shared_rsrc_type_t shared_rsrc_type = CLUSTER_SHARED_RSRC_TYPE_MIN; shared_rsrc_type < CLUSTER_SHARED_RSRC_TYPE_COUNT; shared_rsrc_type++) { |
| 2002 | if (thread->th_shared_rsrc_enqueued[shared_rsrc_type]) { |
| 2003 | thread->th_shared_rsrc_enqueued[shared_rsrc_type] = false; |
| 2004 | root_clutch->scr_shared_rsrc_load_runnable[shared_rsrc_type]--; |
| 2005 | } |
| 2006 | } |
| 2007 | } |
| 2008 | |
| 2009 | uint16_t |
| 2010 | sched_edge_shared_rsrc_runnable_load(sched_clutch_root_t root_clutch, cluster_shared_rsrc_type_t shared_rsrc_type) |
| 2011 | { |
| 2012 | return root_clutch->scr_shared_rsrc_load_runnable[shared_rsrc_type]; |
| 2013 | } |
| 2014 | |
| 2015 | /* |
| 2016 | * sched_edge_shared_rsrc_idle() |
| 2017 | * |
| 2018 | * Routine used to determine if the constrained resource for the pset is idle. This is |
| 2019 | * used by a CPU going idle to decide if it should rebalance a running shared resource |
| 2020 | * thread from a non-preferred cluster. |
| 2021 | */ |
| 2022 | static boolean_t |
| 2023 | sched_edge_shared_rsrc_idle(processor_set_t pset, cluster_shared_rsrc_type_t shared_rsrc_type) |
| 2024 | { |
| 2025 | return sched_pset_cluster_shared_rsrc_load(pset, shared_rsrc_type) == 0; |
| 2026 | } |
| 2027 | |
| 2028 | /* |
| 2029 | * sched_edge_thread_shared_rsrc_type |
| 2030 | * |
| 2031 | * This routine decides if a given thread needs special handling for being a |
| 2032 | * heavy shared resource user. It is valid for the same thread to be using |
| 2033 | * several shared resources at the same time and have multiple policy flags set. |
| 2034 | * This routine determines which of those properties will be used for load |
| 2035 | * balancing and migration decisions. |
| 2036 | */ |
| 2037 | static cluster_shared_rsrc_type_t |
| 2038 | sched_edge_thread_shared_rsrc_type(thread_t thread) |
| 2039 | { |
| 2040 | if (thread_shared_rsrc_policy_get(thread, CLUSTER_SHARED_RSRC_TYPE_RR)) { |
| 2041 | return CLUSTER_SHARED_RSRC_TYPE_RR; |
| 2042 | } |
| 2043 | if (thread_shared_rsrc_policy_get(thread, CLUSTER_SHARED_RSRC_TYPE_NATIVE_FIRST)) { |
| 2044 | return CLUSTER_SHARED_RSRC_TYPE_NATIVE_FIRST; |
| 2045 | } |
| 2046 | return CLUSTER_SHARED_RSRC_TYPE_NONE; |
| 2047 | } |
| 2048 | |
| 2049 | #endif /* CONFIG_SCHED_EDGE */ |
| 2050 | |
| 2051 | /* |
| 2052 | * sched_clutch_thread_bound_lookup() |
| 2053 | * |
| 2054 | * Routine to lookup the highest priority runnable thread in a bounded root bucket. |
| 2055 | */ |
| 2056 | static thread_t |
| 2057 | sched_clutch_thread_bound_lookup( |
| 2058 | __unused sched_clutch_root_t root_clutch, |
| 2059 | sched_clutch_root_bucket_t root_bucket) |
| 2060 | { |
| 2061 | return run_queue_peek(runq: &root_bucket->scrb_bound_thread_runq); |
| 2062 | } |
| 2063 | |
| 2064 | /* |
| 2065 | * Clutch Bucket Group Thread Counts and Pending time calculation |
| 2066 | * |
| 2067 | * The pending time on the clutch_bucket_group allows the scheduler to track if it |
| 2068 | * needs to ageout the CPU usage because the clutch_bucket_group has been pending for |
| 2069 | * a very long time. The pending time is set to the timestamp as soon as a thread becomes |
| 2070 | * runnable. When a thread is picked up for execution from this clutch_bucket_group, the |
| 2071 | * pending time is advanced to the time of thread selection. |
| 2072 | * |
| 2073 | * Since threads for a clutch bucket group can be added or removed from multiple CPUs |
| 2074 | * simulataneously, it is important that the updates to thread counts and pending timestamps |
| 2075 | * happen atomically. The implementation relies on the following aspects to make that work |
| 2076 | * as expected: |
| 2077 | * - The clutch scheduler would be deployed on single cluster platforms where the pset lock |
| 2078 | * is held when threads are added/removed and pending timestamps are updated |
| 2079 | * - The thread count and pending timestamp can be updated atomically using double wide |
| 2080 | * 128 bit atomics |
| 2081 | * |
| 2082 | * Clutch bucket group interactivity timestamp and score updates also rely on the properties |
| 2083 | * above to atomically update the interactivity score for a clutch bucket group. |
| 2084 | */ |
| 2085 | |
| 2086 | #if CONFIG_SCHED_EDGE |
| 2087 | |
| 2088 | static void |
| 2089 | sched_clutch_bucket_group_thr_count_inc( |
| 2090 | sched_clutch_bucket_group_t clutch_bucket_group, |
| 2091 | uint64_t timestamp) |
| 2092 | { |
| 2093 | sched_clutch_counter_time_t old_pending_data; |
| 2094 | sched_clutch_counter_time_t new_pending_data; |
| 2095 | os_atomic_rmw_loop(&clutch_bucket_group->scbg_pending_data.scct_packed, old_pending_data.scct_packed, new_pending_data.scct_packed, relaxed, { |
| 2096 | new_pending_data.scct_count = old_pending_data.scct_count + 1; |
| 2097 | new_pending_data.scct_timestamp = old_pending_data.scct_timestamp; |
| 2098 | if (old_pending_data.scct_count == 0) { |
| 2099 | new_pending_data.scct_timestamp = timestamp; |
| 2100 | } |
| 2101 | }); |
| 2102 | } |
| 2103 | |
| 2104 | static void |
| 2105 | sched_clutch_bucket_group_thr_count_dec( |
| 2106 | sched_clutch_bucket_group_t clutch_bucket_group, |
| 2107 | uint64_t timestamp) |
| 2108 | { |
| 2109 | sched_clutch_counter_time_t old_pending_data; |
| 2110 | sched_clutch_counter_time_t new_pending_data; |
| 2111 | os_atomic_rmw_loop(&clutch_bucket_group->scbg_pending_data.scct_packed, old_pending_data.scct_packed, new_pending_data.scct_packed, relaxed, { |
| 2112 | new_pending_data.scct_count = old_pending_data.scct_count - 1; |
| 2113 | if (new_pending_data.scct_count == 0) { |
| 2114 | new_pending_data.scct_timestamp = SCHED_CLUTCH_BUCKET_GROUP_PENDING_INVALID; |
| 2115 | } else { |
| 2116 | new_pending_data.scct_timestamp = timestamp; |
| 2117 | } |
| 2118 | }); |
| 2119 | } |
| 2120 | |
| 2121 | static uint8_t |
| 2122 | sched_clutch_bucket_group_pending_ageout( |
| 2123 | sched_clutch_bucket_group_t clutch_bucket_group, |
| 2124 | uint64_t timestamp) |
| 2125 | { |
| 2126 | int bucket_load = sched_clutch_global_bucket_load_get(clutch_bucket_group->scbg_bucket); |
| 2127 | sched_clutch_counter_time_t old_pending_data; |
| 2128 | sched_clutch_counter_time_t new_pending_data; |
| 2129 | uint8_t cpu_usage_shift = 0; |
| 2130 | |
| 2131 | os_atomic_rmw_loop(&clutch_bucket_group->scbg_pending_data.scct_packed, old_pending_data.scct_packed, new_pending_data.scct_packed, relaxed, { |
| 2132 | cpu_usage_shift = 0; |
| 2133 | uint64_t old_pending_ts = old_pending_data.scct_timestamp; |
| 2134 | bool old_update = (old_pending_ts >= timestamp); |
| 2135 | bool no_pending_time = (old_pending_ts == SCHED_CLUTCH_BUCKET_GROUP_PENDING_INVALID); |
| 2136 | bool no_bucket_load = (bucket_load == 0); |
| 2137 | if (old_update || no_pending_time || no_bucket_load) { |
| 2138 | os_atomic_rmw_loop_give_up(); |
| 2139 | } |
| 2140 | |
| 2141 | /* Calculate the time the clutch bucket group has been pending */ |
| 2142 | uint64_t pending_delta = timestamp - old_pending_ts; |
| 2143 | uint64_t interactivity_delta = sched_clutch_bucket_group_pending_delta[clutch_bucket_group->scbg_bucket] * bucket_load; |
| 2144 | if (pending_delta < interactivity_delta) { |
| 2145 | os_atomic_rmw_loop_give_up(); |
| 2146 | } |
| 2147 | cpu_usage_shift = (pending_delta / interactivity_delta); |
| 2148 | new_pending_data.scct_timestamp = old_pending_ts + (cpu_usage_shift * interactivity_delta); |
| 2149 | new_pending_data.scct_count = old_pending_data.scct_count; |
| 2150 | }); |
| 2151 | return cpu_usage_shift; |
| 2152 | } |
| 2153 | |
| 2154 | static uint8_t |
| 2155 | sched_clutch_bucket_group_interactivity_score_calculate( |
| 2156 | sched_clutch_bucket_group_t clutch_bucket_group, |
| 2157 | uint64_t timestamp) |
| 2158 | { |
| 2159 | if (clutch_bucket_group->scbg_bucket == TH_BUCKET_FIXPRI) { |
| 2160 | /* |
| 2161 | * Since the root bucket selection algorithm for Above UI looks at clutch bucket |
| 2162 | * priorities, make sure all AboveUI buckets are marked interactive. |
| 2163 | */ |
| 2164 | assert(clutch_bucket_group->scbg_interactivity_data.scct_count == (2 * sched_clutch_bucket_group_interactive_pri)); |
| 2165 | return (uint8_t)clutch_bucket_group->scbg_interactivity_data.scct_count; |
| 2166 | } |
| 2167 | /* Check if the clutch bucket group CPU usage needs to be aged out due to pending time */ |
| 2168 | uint8_t pending_intervals = sched_clutch_bucket_group_pending_ageout(clutch_bucket_group, timestamp); |
| 2169 | /* Adjust CPU stats based on the calculated shift and to make sure only recent behavior is used */ |
| 2170 | sched_clutch_bucket_group_cpu_adjust(clutch_bucket_group, pending_intervals); |
| 2171 | uint8_t interactivity_score = sched_clutch_interactivity_from_cpu_data(clutch_bucket_group); |
| 2172 | sched_clutch_counter_time_t old_interactivity_data; |
| 2173 | sched_clutch_counter_time_t new_interactivity_data; |
| 2174 | |
| 2175 | bool score_updated = os_atomic_rmw_loop(&clutch_bucket_group->scbg_interactivity_data.scct_packed, old_interactivity_data.scct_packed, new_interactivity_data.scct_packed, relaxed, { |
| 2176 | if (old_interactivity_data.scct_timestamp >= timestamp) { |
| 2177 | os_atomic_rmw_loop_give_up(); |
| 2178 | } |
| 2179 | new_interactivity_data.scct_timestamp = timestamp; |
| 2180 | if (old_interactivity_data.scct_timestamp != 0) { |
| 2181 | new_interactivity_data.scct_count = interactivity_score; |
| 2182 | } |
| 2183 | }); |
| 2184 | if (score_updated) { |
| 2185 | return (uint8_t)new_interactivity_data.scct_count; |
| 2186 | } else { |
| 2187 | return (uint8_t)old_interactivity_data.scct_count; |
| 2188 | } |
| 2189 | } |
| 2190 | |
| 2191 | #else /* CONFIG_SCHED_EDGE */ |
| 2192 | |
| 2193 | /* |
| 2194 | * For the clutch scheduler, atomicity is ensured by making sure all operations |
| 2195 | * are happening under the pset lock of the only cluster present on the platform. |
| 2196 | */ |
| 2197 | static void |
| 2198 | sched_clutch_bucket_group_thr_count_inc( |
| 2199 | sched_clutch_bucket_group_t clutch_bucket_group, |
| 2200 | uint64_t timestamp) |
| 2201 | { |
| 2202 | sched_clutch_hierarchy_locked_assert(root_clutch: &pset0.pset_clutch_root); |
| 2203 | if (clutch_bucket_group->scbg_pending_data.scct_count == 0) { |
| 2204 | clutch_bucket_group->scbg_pending_data.scct_timestamp = timestamp; |
| 2205 | } |
| 2206 | clutch_bucket_group->scbg_pending_data.scct_count++; |
| 2207 | } |
| 2208 | |
| 2209 | static void |
| 2210 | sched_clutch_bucket_group_thr_count_dec( |
| 2211 | sched_clutch_bucket_group_t clutch_bucket_group, |
| 2212 | uint64_t timestamp) |
| 2213 | { |
| 2214 | sched_clutch_hierarchy_locked_assert(root_clutch: &pset0.pset_clutch_root); |
| 2215 | clutch_bucket_group->scbg_pending_data.scct_count--; |
| 2216 | if (clutch_bucket_group->scbg_pending_data.scct_count == 0) { |
| 2217 | clutch_bucket_group->scbg_pending_data.scct_timestamp = SCHED_CLUTCH_BUCKET_GROUP_PENDING_INVALID; |
| 2218 | } else { |
| 2219 | clutch_bucket_group->scbg_pending_data.scct_timestamp = timestamp; |
| 2220 | } |
| 2221 | } |
| 2222 | |
| 2223 | static uint8_t |
| 2224 | sched_clutch_bucket_group_pending_ageout( |
| 2225 | sched_clutch_bucket_group_t clutch_bucket_group, |
| 2226 | uint64_t timestamp) |
| 2227 | { |
| 2228 | sched_clutch_hierarchy_locked_assert(root_clutch: &pset0.pset_clutch_root); |
| 2229 | int bucket_load = sched_clutch_global_bucket_load_get(bucket: clutch_bucket_group->scbg_bucket); |
| 2230 | uint64_t old_pending_ts = clutch_bucket_group->scbg_pending_data.scct_timestamp; |
| 2231 | bool old_update = (old_pending_ts >= timestamp); |
| 2232 | bool no_pending_time = (old_pending_ts == SCHED_CLUTCH_BUCKET_GROUP_PENDING_INVALID); |
| 2233 | bool no_bucket_load = (bucket_load == 0); |
| 2234 | if (old_update || no_pending_time || no_bucket_load) { |
| 2235 | return 0; |
| 2236 | } |
| 2237 | uint64_t pending_delta = timestamp - old_pending_ts; |
| 2238 | uint64_t interactivity_delta = sched_clutch_bucket_group_pending_delta[clutch_bucket_group->scbg_bucket] * bucket_load; |
| 2239 | if (pending_delta < interactivity_delta) { |
| 2240 | return 0; |
| 2241 | } |
| 2242 | uint8_t cpu_usage_shift = (pending_delta / interactivity_delta); |
| 2243 | clutch_bucket_group->scbg_pending_data.scct_timestamp = old_pending_ts + (cpu_usage_shift * interactivity_delta); |
| 2244 | return cpu_usage_shift; |
| 2245 | } |
| 2246 | |
| 2247 | static uint8_t |
| 2248 | sched_clutch_bucket_group_interactivity_score_calculate( |
| 2249 | sched_clutch_bucket_group_t clutch_bucket_group, |
| 2250 | uint64_t timestamp) |
| 2251 | { |
| 2252 | sched_clutch_hierarchy_locked_assert(root_clutch: &pset0.pset_clutch_root); |
| 2253 | if (clutch_bucket_group->scbg_bucket == TH_BUCKET_FIXPRI) { |
| 2254 | /* |
| 2255 | * Since the root bucket selection algorithm for Above UI looks at clutch bucket |
| 2256 | * priorities, make sure all AboveUI buckets are marked interactive. |
| 2257 | */ |
| 2258 | assert(clutch_bucket_group->scbg_interactivity_data.scct_count == (2 * sched_clutch_bucket_group_interactive_pri)); |
| 2259 | return (uint8_t)clutch_bucket_group->scbg_interactivity_data.scct_count; |
| 2260 | } |
| 2261 | /* Check if the clutch bucket group CPU usage needs to be aged out due to pending time */ |
| 2262 | uint8_t pending_intervals = sched_clutch_bucket_group_pending_ageout(clutch_bucket_group, timestamp); |
| 2263 | /* Adjust CPU stats based on the calculated shift and to make sure only recent behavior is used */ |
| 2264 | sched_clutch_bucket_group_cpu_adjust(clutch_bucket_group, pending_intervals); |
| 2265 | uint8_t interactivity_score = sched_clutch_interactivity_from_cpu_data(clutch_bucket_group); |
| 2266 | if (timestamp > clutch_bucket_group->scbg_interactivity_data.scct_timestamp) { |
| 2267 | clutch_bucket_group->scbg_interactivity_data.scct_count = interactivity_score; |
| 2268 | clutch_bucket_group->scbg_interactivity_data.scct_timestamp = timestamp; |
| 2269 | return interactivity_score; |
| 2270 | } else { |
| 2271 | return (uint8_t)clutch_bucket_group->scbg_interactivity_data.scct_count; |
| 2272 | } |
| 2273 | } |
| 2274 | |
| 2275 | #endif /* CONFIG_SCHED_EDGE */ |
| 2276 | |
| 2277 | /* |
| 2278 | * Clutch Bucket Group Run Count and Blocked Time Accounting |
| 2279 | * |
| 2280 | * The clutch bucket group maintains the number of runnable/running threads in the group. |
| 2281 | * Since the blocked time of the clutch bucket group is based on this count, it is |
| 2282 | * important to make sure the blocking timestamp and the run count are updated atomically. |
| 2283 | * |
| 2284 | * Since the run count increments happen without any pset locks held, the scheduler updates |
| 2285 | * the count & timestamp using double wide 128 bit atomics. |
| 2286 | */ |
| 2287 | |
| 2288 | static uint32_t |
| 2289 | sched_clutch_bucket_group_run_count_inc( |
| 2290 | sched_clutch_bucket_group_t clutch_bucket_group) |
| 2291 | { |
| 2292 | sched_clutch_counter_time_t old_blocked_data; |
| 2293 | sched_clutch_counter_time_t new_blocked_data; |
| 2294 | |
| 2295 | bool update_blocked_time = false; |
| 2296 | os_atomic_rmw_loop(&clutch_bucket_group->scbg_blocked_data.scct_packed, old_blocked_data.scct_packed, new_blocked_data.scct_packed, relaxed, { |
| 2297 | new_blocked_data.scct_count = old_blocked_data.scct_count + 1; |
| 2298 | new_blocked_data.scct_timestamp = old_blocked_data.scct_timestamp; |
| 2299 | update_blocked_time = false; |
| 2300 | if (old_blocked_data.scct_count == 0) { |
| 2301 | new_blocked_data.scct_timestamp = SCHED_CLUTCH_BUCKET_GROUP_BLOCKED_TS_INVALID; |
| 2302 | update_blocked_time = true; |
| 2303 | } |
| 2304 | }); |
| 2305 | if (update_blocked_time && (old_blocked_data.scct_timestamp != SCHED_CLUTCH_BUCKET_GROUP_BLOCKED_TS_INVALID)) { |
| 2306 | uint64_t ctime = mach_absolute_time(); |
| 2307 | if (ctime > old_blocked_data.scct_timestamp) { |
| 2308 | uint64_t blocked_time = ctime - old_blocked_data.scct_timestamp; |
| 2309 | blocked_time = MIN(blocked_time, sched_clutch_bucket_group_adjust_threshold); |
| 2310 | os_atomic_add(&(clutch_bucket_group->scbg_cpu_data.cpu_data.scbcd_cpu_blocked), (clutch_cpu_data_t)blocked_time, relaxed); |
| 2311 | } |
| 2312 | } |
| 2313 | return (uint32_t)new_blocked_data.scct_count; |
| 2314 | } |
| 2315 | |
| 2316 | static uint32_t |
| 2317 | sched_clutch_bucket_group_run_count_dec( |
| 2318 | sched_clutch_bucket_group_t clutch_bucket_group) |
| 2319 | { |
| 2320 | sched_clutch_counter_time_t old_blocked_data; |
| 2321 | sched_clutch_counter_time_t new_blocked_data; |
| 2322 | |
| 2323 | uint64_t ctime = mach_absolute_time(); |
| 2324 | os_atomic_rmw_loop(&clutch_bucket_group->scbg_blocked_data.scct_packed, old_blocked_data.scct_packed, new_blocked_data.scct_packed, relaxed, { |
| 2325 | new_blocked_data.scct_count = old_blocked_data.scct_count - 1; |
| 2326 | new_blocked_data.scct_timestamp = old_blocked_data.scct_timestamp; |
| 2327 | if (new_blocked_data.scct_count == 0) { |
| 2328 | new_blocked_data.scct_timestamp = ctime; |
| 2329 | } |
| 2330 | }); |
| 2331 | return (uint32_t)new_blocked_data.scct_count; |
| 2332 | } |
| 2333 | |
| 2334 | /* |
| 2335 | * sched_clutch_thread_insert() |
| 2336 | * |
| 2337 | * Routine to insert a thread into the sched clutch hierarchy. |
| 2338 | * Update the counts at all levels of the hierarchy and insert the nodes |
| 2339 | * as they become runnable. Always called with the pset lock held. |
| 2340 | */ |
| 2341 | static boolean_t |
| 2342 | sched_clutch_thread_insert( |
| 2343 | sched_clutch_root_t root_clutch, |
| 2344 | thread_t thread, |
| 2345 | integer_t options) |
| 2346 | { |
| 2347 | boolean_t result = FALSE; |
| 2348 | |
| 2349 | sched_clutch_hierarchy_locked_assert(root_clutch); |
| 2350 | #if CONFIG_SCHED_EDGE |
| 2351 | sched_edge_cluster_cumulative_count_incr(root_clutch, thread->th_sched_bucket); |
| 2352 | sched_edge_shared_rsrc_runnable_load_incr(root_clutch, thread); |
| 2353 | /* |
| 2354 | * Check if the thread is bound and is being enqueued in its desired bound cluster. |
| 2355 | * One scenario where a bound thread might not be getting enqueued in the bound cluster |
| 2356 | * hierarchy would be if the thread is "soft" bound and the bound cluster is |
| 2357 | * de-recommended. In that case, the thread should be treated as an unbound |
| 2358 | * thread. |
| 2359 | */ |
| 2360 | if (SCHED_CLUTCH_THREAD_CLUSTER_BOUND(thread) && (sched_edge_thread_bound_cluster_id(thread) == root_clutch->scr_cluster_id)) { |
| 2361 | return sched_edge_bound_thread_insert(root_clutch, thread, options); |
| 2362 | } |
| 2363 | /* |
| 2364 | * Use bound runqueue for shared resource threads. See "cluster shared resource |
| 2365 | * threads load balancing" section for details. |
| 2366 | */ |
| 2367 | if (sched_edge_thread_shared_rsrc_type(thread) != CLUSTER_SHARED_RSRC_TYPE_NONE) { |
| 2368 | return sched_edge_bound_thread_insert(root_clutch, thread, options); |
| 2369 | } |
| 2370 | |
| 2371 | #endif /* CONFIG_SCHED_EDGE */ |
| 2372 | sched_clutch_t clutch = sched_clutch_for_thread(thread); |
| 2373 | assert(thread->thread_group == clutch->sc_tg); |
| 2374 | |
| 2375 | uint64_t current_timestamp = mach_absolute_time(); |
| 2376 | sched_clutch_bucket_group_t clutch_bucket_group = &(clutch->sc_clutch_groups[thread->th_sched_bucket]); |
| 2377 | sched_clutch_bucket_t clutch_bucket = &(clutch_bucket_group->scbg_clutch_buckets[root_clutch->scr_cluster_id]); |
| 2378 | assert((clutch_bucket->scb_root == NULL) || (clutch_bucket->scb_root == root_clutch)); |
| 2379 | |
| 2380 | /* |
| 2381 | * Thread linkage in clutch_bucket |
| 2382 | * |
| 2383 | * A thread has a few linkages within the clutch bucket: |
| 2384 | * - A stable priority queue linkage which is the main runqueue (based on sched_pri) for the clutch bucket |
| 2385 | * - A regular priority queue linkage which is based on thread's base/promoted pri (used for clutch bucket priority calculation) |
| 2386 | * - A queue linkage used for timesharing operations of threads at the scheduler tick |
| 2387 | */ |
| 2388 | |
| 2389 | /* Insert thread into the clutch_bucket stable priority runqueue using sched_pri */ |
| 2390 | thread->th_clutch_runq_link.stamp = current_timestamp; |
| 2391 | priority_queue_entry_set_sched_pri(&clutch_bucket->scb_thread_runq, &thread->th_clutch_runq_link, thread->sched_pri, |
| 2392 | (options & SCHED_TAILQ) ? PRIORITY_QUEUE_ENTRY_NONE : PRIORITY_QUEUE_ENTRY_PREEMPTED); |
| 2393 | priority_queue_insert(que: &clutch_bucket->scb_thread_runq, elt: &thread->th_clutch_runq_link); |
| 2394 | |
| 2395 | /* Insert thread into clutch_bucket priority queue based on the promoted or base priority */ |
| 2396 | priority_queue_entry_set_sched_pri(&clutch_bucket->scb_clutchpri_prioq, &thread->th_clutch_pri_link, |
| 2397 | sched_thread_sched_pri_promoted(thread) ? thread->sched_pri : thread->base_pri, false); |
| 2398 | priority_queue_insert(que: &clutch_bucket->scb_clutchpri_prioq, elt: &thread->th_clutch_pri_link); |
| 2399 | |
| 2400 | /* Insert thread into timesharing queue of the clutch bucket */ |
| 2401 | enqueue_tail(que: &clutch_bucket->scb_thread_timeshare_queue, elt: &thread->th_clutch_timeshare_link); |
| 2402 | |
| 2403 | /* Increment the urgency counter for the root if necessary */ |
| 2404 | sched_clutch_root_urgency_inc(root_clutch, thread); |
| 2405 | |
| 2406 | os_atomic_inc(&clutch->sc_thr_count, relaxed); |
| 2407 | sched_clutch_bucket_group_thr_count_inc(clutch_bucket_group: clutch_bucket->scb_group, timestamp: current_timestamp); |
| 2408 | |
| 2409 | /* Enqueue the clutch into the hierarchy (if needed) and update properties; pick the insertion order based on thread options */ |
| 2410 | sched_clutch_bucket_options_t scb_options = (options & SCHED_HEADQ) ? SCHED_CLUTCH_BUCKET_OPTIONS_HEADQ : SCHED_CLUTCH_BUCKET_OPTIONS_TAILQ; |
| 2411 | if (clutch_bucket->scb_thr_count == 0) { |
| 2412 | sched_clutch_thr_count_inc(thr_count: &clutch_bucket->scb_thr_count); |
| 2413 | sched_clutch_thr_count_inc(thr_count: &root_clutch->scr_thr_count); |
| 2414 | result = sched_clutch_bucket_runnable(clutch_bucket, root_clutch, timestamp: current_timestamp, options: scb_options); |
| 2415 | } else { |
| 2416 | sched_clutch_thr_count_inc(thr_count: &clutch_bucket->scb_thr_count); |
| 2417 | sched_clutch_thr_count_inc(thr_count: &root_clutch->scr_thr_count); |
| 2418 | result = sched_clutch_bucket_update(clutch_bucket, root_clutch, timestamp: current_timestamp, options: scb_options); |
| 2419 | } |
| 2420 | |
| 2421 | KDBG(MACHDBG_CODE(DBG_MACH_SCHED_CLUTCH, MACH_SCHED_CLUTCH_THR_COUNT) | DBG_FUNC_NONE, |
| 2422 | root_clutch->scr_cluster_id, thread_group_get_id(clutch_bucket->scb_group->scbg_clutch->sc_tg), clutch_bucket->scb_bucket, |
| 2423 | SCHED_CLUTCH_DBG_THR_COUNT_PACK(root_clutch->scr_thr_count, os_atomic_load(&clutch->sc_thr_count, relaxed), clutch_bucket->scb_thr_count)); |
| 2424 | return result; |
| 2425 | } |
| 2426 | |
| 2427 | /* |
| 2428 | * sched_clutch_thread_remove() |
| 2429 | * |
| 2430 | * Routine to remove a thread from the sched clutch hierarchy. |
| 2431 | * Update the counts at all levels of the hierarchy and remove the nodes |
| 2432 | * as they become empty. Always called with the pset lock held. |
| 2433 | */ |
| 2434 | static void |
| 2435 | sched_clutch_thread_remove( |
| 2436 | sched_clutch_root_t root_clutch, |
| 2437 | thread_t thread, |
| 2438 | uint64_t current_timestamp, |
| 2439 | sched_clutch_bucket_options_t options) |
| 2440 | { |
| 2441 | sched_clutch_hierarchy_locked_assert(root_clutch); |
| 2442 | #if CONFIG_SCHED_EDGE |
| 2443 | sched_edge_cluster_cumulative_count_decr(root_clutch, thread->th_sched_bucket); |
| 2444 | sched_edge_shared_rsrc_runnable_load_decr(root_clutch, thread); |
| 2445 | |
| 2446 | if (thread->th_bound_cluster_enqueued) { |
| 2447 | sched_edge_bound_thread_remove(root_clutch, thread); |
| 2448 | return; |
| 2449 | } |
| 2450 | #endif /* CONFIG_SCHED_EDGE */ |
| 2451 | sched_clutch_t clutch = sched_clutch_for_thread(thread); |
| 2452 | assert(thread->thread_group == clutch->sc_tg); |
| 2453 | thread_assert_runq_nonnull(thread); |
| 2454 | |
| 2455 | sched_clutch_bucket_group_t clutch_bucket_group = &(clutch->sc_clutch_groups[thread->th_sched_bucket]); |
| 2456 | sched_clutch_bucket_t clutch_bucket = &(clutch_bucket_group->scbg_clutch_buckets[root_clutch->scr_cluster_id]); |
| 2457 | assert(clutch_bucket->scb_root == root_clutch); |
| 2458 | |
| 2459 | /* Decrement the urgency counter for the root if necessary */ |
| 2460 | sched_clutch_root_urgency_dec(root_clutch, thread); |
| 2461 | /* Remove thread from the clutch_bucket */ |
| 2462 | priority_queue_remove(que: &clutch_bucket->scb_thread_runq, elt: &thread->th_clutch_runq_link); |
| 2463 | remqueue(elt: &thread->th_clutch_timeshare_link); |
| 2464 | |
| 2465 | priority_queue_remove(que: &clutch_bucket->scb_clutchpri_prioq, elt: &thread->th_clutch_pri_link); |
| 2466 | |
| 2467 | /* |
| 2468 | * Warning: After this point, the thread's scheduling fields may be |
| 2469 | * modified by other cores that acquire the thread lock. |
| 2470 | */ |
| 2471 | thread_clear_runq(thread); |
| 2472 | |
| 2473 | /* Update counts at various levels of the hierarchy */ |
| 2474 | os_atomic_dec(&clutch->sc_thr_count, relaxed); |
| 2475 | sched_clutch_bucket_group_thr_count_dec(clutch_bucket_group: clutch_bucket->scb_group, timestamp: current_timestamp); |
| 2476 | sched_clutch_thr_count_dec(thr_count: &root_clutch->scr_thr_count); |
| 2477 | sched_clutch_thr_count_dec(thr_count: &clutch_bucket->scb_thr_count); |
| 2478 | |
| 2479 | /* Remove the clutch from hierarchy (if needed) and update properties */ |
| 2480 | if (clutch_bucket->scb_thr_count == 0) { |
| 2481 | sched_clutch_bucket_empty(clutch_bucket, root_clutch, timestamp: current_timestamp, options); |
| 2482 | } else { |
| 2483 | sched_clutch_bucket_update(clutch_bucket, root_clutch, timestamp: current_timestamp, options); |
| 2484 | } |
| 2485 | |
| 2486 | KDBG(MACHDBG_CODE(DBG_MACH_SCHED_CLUTCH, MACH_SCHED_CLUTCH_THR_COUNT) | DBG_FUNC_NONE, |
| 2487 | root_clutch->scr_cluster_id, thread_group_get_id(clutch_bucket->scb_group->scbg_clutch->sc_tg), clutch_bucket->scb_bucket, |
| 2488 | SCHED_CLUTCH_DBG_THR_COUNT_PACK(root_clutch->scr_thr_count, os_atomic_load(&clutch->sc_thr_count, relaxed), clutch_bucket->scb_thr_count)); |
| 2489 | } |
| 2490 | |
| 2491 | /* |
| 2492 | * sched_clutch_thread_unbound_lookup() |
| 2493 | * |
| 2494 | * Routine to find the highest unbound thread in the root clutch. |
| 2495 | * Helps find threads easily for steal/migrate scenarios in the |
| 2496 | * Edge scheduler. |
| 2497 | */ |
| 2498 | static thread_t |
| 2499 | sched_clutch_thread_unbound_lookup( |
| 2500 | sched_clutch_root_t root_clutch, |
| 2501 | sched_clutch_root_bucket_t root_bucket) |
| 2502 | { |
| 2503 | sched_clutch_hierarchy_locked_assert(root_clutch); |
| 2504 | |
| 2505 | /* Find the highest priority clutch bucket in this root bucket */ |
| 2506 | sched_clutch_bucket_t clutch_bucket = sched_clutch_root_bucket_highest_clutch_bucket(root_bucket); |
| 2507 | assert(clutch_bucket != NULL); |
| 2508 | |
| 2509 | /* Find the highest priority runnable thread in this clutch bucket */ |
| 2510 | thread_t thread = priority_queue_max(&clutch_bucket->scb_thread_runq, struct thread, th_clutch_runq_link); |
| 2511 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, MACHDBG_CODE(DBG_MACH_SCHED_CLUTCH, MACH_SCHED_CLUTCH_THREAD_SELECT) | DBG_FUNC_NONE, |
| 2512 | thread_tid(thread), thread_group_get_id(clutch_bucket->scb_group->scbg_clutch->sc_tg), clutch_bucket->scb_bucket, 0, 0); |
| 2513 | return thread; |
| 2514 | } |
| 2515 | |
| 2516 | /* |
| 2517 | * sched_clutch_thread_highest_remove() |
| 2518 | * |
| 2519 | * Routine to find and remove the highest priority thread |
| 2520 | * from the sched clutch hierarchy. The algorithm looks at the |
| 2521 | * hierarchy for the most eligible runnable thread and calls |
| 2522 | * sched_clutch_thread_remove(). Always called with the |
| 2523 | * pset lock held. |
| 2524 | */ |
| 2525 | static thread_t |
| 2526 | sched_clutch_thread_highest_remove( |
| 2527 | sched_clutch_root_t root_clutch) |
| 2528 | { |
| 2529 | sched_clutch_hierarchy_locked_assert(root_clutch); |
| 2530 | uint64_t current_timestamp = mach_absolute_time(); |
| 2531 | |
| 2532 | sched_clutch_root_bucket_t root_bucket = sched_clutch_root_highest_root_bucket(root_clutch, timestamp: current_timestamp, type: SCHED_CLUTCH_HIGHEST_ROOT_BUCKET_ALL); |
| 2533 | if (root_bucket == NULL) { |
| 2534 | return THREAD_NULL; |
| 2535 | } |
| 2536 | |
| 2537 | thread_t highest_thread = THREAD_NULL; |
| 2538 | if (root_bucket->scrb_bound) { |
| 2539 | highest_thread = sched_clutch_thread_bound_lookup(root_clutch, root_bucket); |
| 2540 | } else { |
| 2541 | highest_thread = sched_clutch_thread_unbound_lookup(root_clutch, root_bucket); |
| 2542 | } |
| 2543 | sched_clutch_thread_remove(root_clutch, thread: highest_thread, current_timestamp, options: SCHED_CLUTCH_BUCKET_OPTIONS_SAMEPRI_RR); |
| 2544 | return highest_thread; |
| 2545 | } |
| 2546 | |
| 2547 | /* High level global accessor routines */ |
| 2548 | |
| 2549 | /* |
| 2550 | * sched_clutch_root_urgency() |
| 2551 | * |
| 2552 | * Routine to get the urgency of the highest runnable |
| 2553 | * thread in the hierarchy. |
| 2554 | */ |
| 2555 | static uint32_t |
| 2556 | sched_clutch_root_urgency( |
| 2557 | sched_clutch_root_t root_clutch) |
| 2558 | { |
| 2559 | return root_clutch->scr_urgency; |
| 2560 | } |
| 2561 | |
| 2562 | /* |
| 2563 | * sched_clutch_root_count_sum() |
| 2564 | * |
| 2565 | * The count_sum mechanism is used for scheduler runq |
| 2566 | * statistics calculation. Its only useful for debugging |
| 2567 | * purposes; since it takes a mach_absolute_time() on |
| 2568 | * other scheduler implementations, its better to avoid |
| 2569 | * populating this until absolutely necessary. |
| 2570 | */ |
| 2571 | static uint32_t |
| 2572 | sched_clutch_root_count_sum( |
| 2573 | __unused sched_clutch_root_t root_clutch) |
| 2574 | { |
| 2575 | return 0; |
| 2576 | } |
| 2577 | |
| 2578 | /* |
| 2579 | * sched_clutch_root_priority() |
| 2580 | * |
| 2581 | * Routine to get the priority of the highest runnable |
| 2582 | * thread in the hierarchy. |
| 2583 | */ |
| 2584 | static int |
| 2585 | sched_clutch_root_priority( |
| 2586 | sched_clutch_root_t root_clutch) |
| 2587 | { |
| 2588 | return root_clutch->scr_priority; |
| 2589 | } |
| 2590 | |
| 2591 | /* |
| 2592 | * sched_clutch_root_count() |
| 2593 | * |
| 2594 | * Returns total number of runnable threads in the hierarchy. |
| 2595 | */ |
| 2596 | uint32_t |
| 2597 | sched_clutch_root_count( |
| 2598 | sched_clutch_root_t root_clutch) |
| 2599 | { |
| 2600 | return root_clutch->scr_thr_count; |
| 2601 | } |
| 2602 | |
| 2603 | #if CONFIG_SCHED_EDGE |
| 2604 | |
| 2605 | /* |
| 2606 | * sched_clutch_root_foreign_empty() |
| 2607 | * |
| 2608 | * Routine to check if the foreign clutch bucket priority list is empty for a cluster. |
| 2609 | */ |
| 2610 | static boolean_t |
| 2611 | sched_clutch_root_foreign_empty( |
| 2612 | sched_clutch_root_t root_clutch) |
| 2613 | { |
| 2614 | return priority_queue_empty(&root_clutch->scr_foreign_buckets); |
| 2615 | } |
| 2616 | |
| 2617 | /* |
| 2618 | * sched_clutch_root_highest_foreign_thread_remove() |
| 2619 | * |
| 2620 | * Routine to return the thread in the highest priority clutch bucket in a cluster. |
| 2621 | * Must be called with the pset for the cluster locked. |
| 2622 | */ |
| 2623 | static thread_t |
| 2624 | sched_clutch_root_highest_foreign_thread_remove( |
| 2625 | sched_clutch_root_t root_clutch) |
| 2626 | { |
| 2627 | thread_t thread = THREAD_NULL; |
| 2628 | if (priority_queue_empty(&root_clutch->scr_foreign_buckets)) { |
| 2629 | return thread; |
| 2630 | } |
| 2631 | sched_clutch_bucket_t clutch_bucket = priority_queue_max(&root_clutch->scr_foreign_buckets, struct sched_clutch_bucket, scb_foreignlink); |
| 2632 | thread = priority_queue_max(&clutch_bucket->scb_thread_runq, struct thread, th_clutch_runq_link); |
| 2633 | sched_clutch_thread_remove(root_clutch, thread, mach_absolute_time(), 0); |
| 2634 | return thread; |
| 2635 | } |
| 2636 | |
| 2637 | #endif /* CONFIG_SCHED_EDGE */ |
| 2638 | |
| 2639 | /* |
| 2640 | * sched_clutch_thread_pri_shift() |
| 2641 | * |
| 2642 | * Routine to get the priority shift value for a thread. |
| 2643 | * Since the timesharing is done at the clutch_bucket level, |
| 2644 | * this routine gets the clutch_bucket and retrieves the |
| 2645 | * values from there. |
| 2646 | */ |
| 2647 | uint32_t |
| 2648 | sched_clutch_thread_pri_shift( |
| 2649 | thread_t thread, |
| 2650 | sched_bucket_t bucket) |
| 2651 | { |
| 2652 | if (!SCHED_CLUTCH_THREAD_ELIGIBLE(thread)) { |
| 2653 | return INT8_MAX; |
| 2654 | } |
| 2655 | assert(bucket != TH_BUCKET_RUN); |
| 2656 | sched_clutch_t clutch = sched_clutch_for_thread(thread); |
| 2657 | sched_clutch_bucket_group_t clutch_bucket_group = &(clutch->sc_clutch_groups[bucket]); |
| 2658 | return os_atomic_load(&clutch_bucket_group->scbg_pri_shift, relaxed); |
| 2659 | } |
| 2660 | |
| 2661 | #pragma mark -- Clutch Scheduler Algorithm |
| 2662 | |
| 2663 | static void |
| 2664 | sched_clutch_init(void); |
| 2665 | |
| 2666 | static thread_t |
| 2667 | sched_clutch_steal_thread(processor_set_t pset); |
| 2668 | |
| 2669 | static void |
| 2670 | sched_clutch_thread_update_scan(sched_update_scan_context_t scan_context); |
| 2671 | |
| 2672 | static boolean_t |
| 2673 | sched_clutch_processor_enqueue(processor_t processor, thread_t thread, |
| 2674 | sched_options_t options); |
| 2675 | |
| 2676 | static boolean_t |
| 2677 | sched_clutch_processor_queue_remove(processor_t processor, thread_t thread); |
| 2678 | |
| 2679 | static ast_t |
| 2680 | sched_clutch_processor_csw_check(processor_t processor); |
| 2681 | |
| 2682 | static boolean_t |
| 2683 | sched_clutch_processor_queue_has_priority(processor_t processor, int priority, boolean_t gte); |
| 2684 | |
| 2685 | static int |
| 2686 | sched_clutch_runq_count(processor_t processor); |
| 2687 | |
| 2688 | static boolean_t |
| 2689 | sched_clutch_processor_queue_empty(processor_t processor); |
| 2690 | |
| 2691 | static uint64_t |
| 2692 | sched_clutch_runq_stats_count_sum(processor_t processor); |
| 2693 | |
| 2694 | static int |
| 2695 | sched_clutch_processor_bound_count(processor_t processor); |
| 2696 | |
| 2697 | static void |
| 2698 | sched_clutch_pset_init(processor_set_t pset); |
| 2699 | |
| 2700 | static void |
| 2701 | sched_clutch_processor_init(processor_t processor); |
| 2702 | |
| 2703 | static thread_t |
| 2704 | sched_clutch_choose_thread(processor_t processor, int priority, ast_t reason); |
| 2705 | |
| 2706 | static void |
| 2707 | sched_clutch_processor_queue_shutdown(processor_t processor); |
| 2708 | |
| 2709 | static sched_mode_t |
| 2710 | sched_clutch_initial_thread_sched_mode(task_t parent_task); |
| 2711 | |
| 2712 | static uint32_t |
| 2713 | sched_clutch_initial_quantum_size(thread_t thread); |
| 2714 | |
| 2715 | static bool |
| 2716 | sched_clutch_thread_avoid_processor(processor_t processor, thread_t thread, __unused ast_t reason); |
| 2717 | |
| 2718 | static uint32_t |
| 2719 | sched_clutch_run_incr(thread_t thread); |
| 2720 | |
| 2721 | static uint32_t |
| 2722 | sched_clutch_run_decr(thread_t thread); |
| 2723 | |
| 2724 | static void |
| 2725 | sched_clutch_update_thread_bucket(thread_t thread); |
| 2726 | |
| 2727 | static void |
| 2728 | sched_clutch_thread_group_recommendation_change(struct thread_group *tg, cluster_type_t new_recommendation); |
| 2729 | |
| 2730 | const struct sched_dispatch_table sched_clutch_dispatch = { |
| 2731 | .sched_name = "clutch" , |
| 2732 | .init = sched_clutch_init, |
| 2733 | .timebase_init = sched_timeshare_timebase_init, |
| 2734 | .processor_init = sched_clutch_processor_init, |
| 2735 | .pset_init = sched_clutch_pset_init, |
| 2736 | .maintenance_continuation = sched_timeshare_maintenance_continue, |
| 2737 | .choose_thread = sched_clutch_choose_thread, |
| 2738 | .steal_thread_enabled = sched_steal_thread_enabled, |
| 2739 | .steal_thread = sched_clutch_steal_thread, |
| 2740 | .compute_timeshare_priority = sched_compute_timeshare_priority, |
| 2741 | .choose_node = sched_choose_node, |
| 2742 | .choose_processor = choose_processor, |
| 2743 | .processor_enqueue = sched_clutch_processor_enqueue, |
| 2744 | .processor_queue_shutdown = sched_clutch_processor_queue_shutdown, |
| 2745 | .processor_queue_remove = sched_clutch_processor_queue_remove, |
| 2746 | .processor_queue_empty = sched_clutch_processor_queue_empty, |
| 2747 | .priority_is_urgent = priority_is_urgent, |
| 2748 | .processor_csw_check = sched_clutch_processor_csw_check, |
| 2749 | .processor_queue_has_priority = sched_clutch_processor_queue_has_priority, |
| 2750 | .initial_quantum_size = sched_clutch_initial_quantum_size, |
| 2751 | .initial_thread_sched_mode = sched_clutch_initial_thread_sched_mode, |
| 2752 | .can_update_priority = can_update_priority, |
| 2753 | .update_priority = update_priority, |
| 2754 | .lightweight_update_priority = lightweight_update_priority, |
| 2755 | .quantum_expire = sched_default_quantum_expire, |
| 2756 | .processor_runq_count = sched_clutch_runq_count, |
| 2757 | .processor_runq_stats_count_sum = sched_clutch_runq_stats_count_sum, |
| 2758 | .processor_bound_count = sched_clutch_processor_bound_count, |
| 2759 | .thread_update_scan = sched_clutch_thread_update_scan, |
| 2760 | .multiple_psets_enabled = TRUE, |
| 2761 | .sched_groups_enabled = FALSE, |
| 2762 | .avoid_processor_enabled = TRUE, |
| 2763 | .thread_avoid_processor = sched_clutch_thread_avoid_processor, |
| 2764 | .processor_balance = sched_SMT_balance, |
| 2765 | |
| 2766 | .rt_runq = sched_rtlocal_runq, |
| 2767 | .rt_init = sched_rtlocal_init, |
| 2768 | .rt_queue_shutdown = sched_rtlocal_queue_shutdown, |
| 2769 | .rt_runq_scan = sched_rtlocal_runq_scan, |
| 2770 | .rt_runq_count_sum = sched_rtlocal_runq_count_sum, |
| 2771 | .rt_steal_thread = sched_rtlocal_steal_thread, |
| 2772 | |
| 2773 | .qos_max_parallelism = sched_qos_max_parallelism, |
| 2774 | .check_spill = sched_check_spill, |
| 2775 | .ipi_policy = sched_ipi_policy, |
| 2776 | .thread_should_yield = sched_thread_should_yield, |
| 2777 | .run_count_incr = sched_clutch_run_incr, |
| 2778 | .run_count_decr = sched_clutch_run_decr, |
| 2779 | .update_thread_bucket = sched_clutch_update_thread_bucket, |
| 2780 | .pset_made_schedulable = sched_pset_made_schedulable, |
| 2781 | .thread_group_recommendation_change = sched_clutch_thread_group_recommendation_change, |
| 2782 | .cpu_init_completed = NULL, |
| 2783 | .thread_eligible_for_pset = NULL, |
| 2784 | }; |
| 2785 | |
| 2786 | __attribute__((always_inline)) |
| 2787 | static inline run_queue_t |
| 2788 | sched_clutch_bound_runq(processor_t processor) |
| 2789 | { |
| 2790 | return &processor->runq; |
| 2791 | } |
| 2792 | |
| 2793 | __attribute__((always_inline)) |
| 2794 | static inline sched_clutch_root_t |
| 2795 | sched_clutch_processor_root_clutch(processor_t processor) |
| 2796 | { |
| 2797 | return &processor->processor_set->pset_clutch_root; |
| 2798 | } |
| 2799 | |
| 2800 | __attribute__((always_inline)) |
| 2801 | static inline run_queue_t |
| 2802 | sched_clutch_thread_bound_runq(processor_t processor, __assert_only thread_t thread) |
| 2803 | { |
| 2804 | assert(thread->bound_processor == processor); |
| 2805 | return sched_clutch_bound_runq(processor); |
| 2806 | } |
| 2807 | |
| 2808 | static uint32_t |
| 2809 | sched_clutch_initial_quantum_size(thread_t thread) |
| 2810 | { |
| 2811 | if (thread == THREAD_NULL) { |
| 2812 | return std_quantum; |
| 2813 | } |
| 2814 | assert(sched_clutch_thread_quantum[thread->th_sched_bucket] <= UINT32_MAX); |
| 2815 | return (uint32_t)sched_clutch_thread_quantum[thread->th_sched_bucket]; |
| 2816 | } |
| 2817 | |
| 2818 | static sched_mode_t |
| 2819 | sched_clutch_initial_thread_sched_mode(task_t parent_task) |
| 2820 | { |
| 2821 | if (parent_task == kernel_task) { |
| 2822 | return TH_MODE_FIXED; |
| 2823 | } else { |
| 2824 | return TH_MODE_TIMESHARE; |
| 2825 | } |
| 2826 | } |
| 2827 | |
| 2828 | static void |
| 2829 | sched_clutch_processor_init(processor_t processor) |
| 2830 | { |
| 2831 | run_queue_init(runq: &processor->runq); |
| 2832 | } |
| 2833 | |
| 2834 | static void |
| 2835 | sched_clutch_pset_init(processor_set_t pset) |
| 2836 | { |
| 2837 | sched_clutch_root_init(root_clutch: &pset->pset_clutch_root, pset); |
| 2838 | } |
| 2839 | |
| 2840 | static void |
| 2841 | sched_clutch_tunables_init(void) |
| 2842 | { |
| 2843 | sched_clutch_us_to_abstime(us_vals: sched_clutch_root_bucket_wcel_us, abstime_vals: sched_clutch_root_bucket_wcel); |
| 2844 | sched_clutch_us_to_abstime(us_vals: sched_clutch_root_bucket_warp_us, abstime_vals: sched_clutch_root_bucket_warp); |
| 2845 | sched_clutch_us_to_abstime(us_vals: sched_clutch_thread_quantum_us, abstime_vals: sched_clutch_thread_quantum); |
| 2846 | clock_interval_to_absolutetime_interval(SCHED_CLUTCH_BUCKET_GROUP_ADJUST_THRESHOLD_USECS, |
| 2847 | NSEC_PER_USEC, result: &sched_clutch_bucket_group_adjust_threshold); |
| 2848 | assert(sched_clutch_bucket_group_adjust_threshold <= CLUTCH_CPU_DATA_MAX); |
| 2849 | sched_clutch_us_to_abstime(us_vals: sched_clutch_bucket_group_pending_delta_us, abstime_vals: sched_clutch_bucket_group_pending_delta); |
| 2850 | } |
| 2851 | |
| 2852 | static void |
| 2853 | sched_clutch_init(void) |
| 2854 | { |
| 2855 | if (!PE_parse_boot_argn(arg_string: "sched_clutch_bucket_group_interactive_pri" , arg_ptr: &sched_clutch_bucket_group_interactive_pri, max_arg: sizeof(sched_clutch_bucket_group_interactive_pri))) { |
| 2856 | sched_clutch_bucket_group_interactive_pri = SCHED_CLUTCH_BUCKET_GROUP_INTERACTIVE_PRI_DEFAULT; |
| 2857 | } |
| 2858 | sched_timeshare_init(); |
| 2859 | sched_clutch_tunables_init(); |
| 2860 | } |
| 2861 | |
| 2862 | static thread_t |
| 2863 | sched_clutch_choose_thread( |
| 2864 | processor_t processor, |
| 2865 | int priority, |
| 2866 | __unused ast_t reason) |
| 2867 | { |
| 2868 | int clutch_pri = sched_clutch_root_priority(root_clutch: sched_clutch_processor_root_clutch(processor)); |
| 2869 | uint32_t clutch_count = sched_clutch_root_count(root_clutch: sched_clutch_processor_root_clutch(processor)); |
| 2870 | run_queue_t bound_runq = sched_clutch_bound_runq(processor); |
| 2871 | boolean_t choose_from_boundq = false; |
| 2872 | |
| 2873 | if (bound_runq->highq < priority && |
| 2874 | clutch_pri < priority) { |
| 2875 | return THREAD_NULL; |
| 2876 | } |
| 2877 | |
| 2878 | if (bound_runq->count && clutch_count) { |
| 2879 | if (bound_runq->highq >= clutch_pri) { |
| 2880 | choose_from_boundq = true; |
| 2881 | } |
| 2882 | } else if (bound_runq->count) { |
| 2883 | choose_from_boundq = true; |
| 2884 | } else if (clutch_count) { |
| 2885 | choose_from_boundq = false; |
| 2886 | } else { |
| 2887 | return THREAD_NULL; |
| 2888 | } |
| 2889 | |
| 2890 | thread_t thread = THREAD_NULL; |
| 2891 | if (choose_from_boundq == false) { |
| 2892 | sched_clutch_root_t pset_clutch_root = sched_clutch_processor_root_clutch(processor); |
| 2893 | thread = sched_clutch_thread_highest_remove(root_clutch: pset_clutch_root); |
| 2894 | } else { |
| 2895 | thread = run_queue_dequeue(runq: bound_runq, options: SCHED_HEADQ); |
| 2896 | } |
| 2897 | return thread; |
| 2898 | } |
| 2899 | |
| 2900 | static boolean_t |
| 2901 | sched_clutch_processor_enqueue( |
| 2902 | processor_t processor, |
| 2903 | thread_t thread, |
| 2904 | sched_options_t options) |
| 2905 | { |
| 2906 | boolean_t result; |
| 2907 | |
| 2908 | thread_set_runq_locked(thread, new_runq: processor); |
| 2909 | if (SCHED_CLUTCH_THREAD_ELIGIBLE(thread)) { |
| 2910 | sched_clutch_root_t pset_clutch_root = sched_clutch_processor_root_clutch(processor); |
| 2911 | result = sched_clutch_thread_insert(root_clutch: pset_clutch_root, thread, options); |
| 2912 | } else { |
| 2913 | run_queue_t rq = sched_clutch_thread_bound_runq(processor, thread); |
| 2914 | result = run_queue_enqueue(runq: rq, thread, options); |
| 2915 | } |
| 2916 | return result; |
| 2917 | } |
| 2918 | |
| 2919 | static boolean_t |
| 2920 | sched_clutch_processor_queue_empty(processor_t processor) |
| 2921 | { |
| 2922 | return sched_clutch_root_count(root_clutch: sched_clutch_processor_root_clutch(processor)) == 0 && |
| 2923 | sched_clutch_bound_runq(processor)->count == 0; |
| 2924 | } |
| 2925 | |
| 2926 | static ast_t |
| 2927 | sched_clutch_processor_csw_check(processor_t processor) |
| 2928 | { |
| 2929 | boolean_t has_higher; |
| 2930 | int pri; |
| 2931 | |
| 2932 | if (sched_clutch_thread_avoid_processor(processor, thread: current_thread(), AST_NONE)) { |
| 2933 | return AST_PREEMPT | AST_URGENT; |
| 2934 | } |
| 2935 | |
| 2936 | run_queue_t bound_runq = sched_clutch_bound_runq(processor); |
| 2937 | int clutch_pri = sched_clutch_root_priority(root_clutch: sched_clutch_processor_root_clutch(processor)); |
| 2938 | |
| 2939 | assert(processor->active_thread != NULL); |
| 2940 | |
| 2941 | pri = MAX(clutch_pri, bound_runq->highq); |
| 2942 | |
| 2943 | if (processor->first_timeslice) { |
| 2944 | has_higher = (pri > processor->current_pri); |
| 2945 | } else { |
| 2946 | has_higher = (pri >= processor->current_pri); |
| 2947 | } |
| 2948 | |
| 2949 | if (has_higher) { |
| 2950 | if (sched_clutch_root_urgency(root_clutch: sched_clutch_processor_root_clutch(processor)) > 0) { |
| 2951 | return AST_PREEMPT | AST_URGENT; |
| 2952 | } |
| 2953 | |
| 2954 | if (bound_runq->urgency > 0) { |
| 2955 | return AST_PREEMPT | AST_URGENT; |
| 2956 | } |
| 2957 | |
| 2958 | return AST_PREEMPT; |
| 2959 | } |
| 2960 | |
| 2961 | return AST_NONE; |
| 2962 | } |
| 2963 | |
| 2964 | static boolean_t |
| 2965 | sched_clutch_processor_queue_has_priority(processor_t processor, |
| 2966 | int priority, |
| 2967 | boolean_t gte) |
| 2968 | { |
| 2969 | run_queue_t bound_runq = sched_clutch_bound_runq(processor); |
| 2970 | |
| 2971 | int qpri = MAX(sched_clutch_root_priority(sched_clutch_processor_root_clutch(processor)), bound_runq->highq); |
| 2972 | |
| 2973 | if (gte) { |
| 2974 | return qpri >= priority; |
| 2975 | } else { |
| 2976 | return qpri > priority; |
| 2977 | } |
| 2978 | } |
| 2979 | |
| 2980 | static int |
| 2981 | sched_clutch_runq_count(processor_t processor) |
| 2982 | { |
| 2983 | return (int)sched_clutch_root_count(root_clutch: sched_clutch_processor_root_clutch(processor)) + sched_clutch_bound_runq(processor)->count; |
| 2984 | } |
| 2985 | |
| 2986 | static uint64_t |
| 2987 | sched_clutch_runq_stats_count_sum(processor_t processor) |
| 2988 | { |
| 2989 | uint64_t bound_sum = sched_clutch_bound_runq(processor)->runq_stats.count_sum; |
| 2990 | |
| 2991 | if (processor->cpu_id == processor->processor_set->cpu_set_low) { |
| 2992 | return bound_sum + sched_clutch_root_count_sum(root_clutch: sched_clutch_processor_root_clutch(processor)); |
| 2993 | } else { |
| 2994 | return bound_sum; |
| 2995 | } |
| 2996 | } |
| 2997 | static int |
| 2998 | sched_clutch_processor_bound_count(processor_t processor) |
| 2999 | { |
| 3000 | return sched_clutch_bound_runq(processor)->count; |
| 3001 | } |
| 3002 | |
| 3003 | static void |
| 3004 | sched_clutch_processor_queue_shutdown(processor_t processor) |
| 3005 | { |
| 3006 | processor_set_t pset = processor->processor_set; |
| 3007 | sched_clutch_root_t pset_clutch_root = sched_clutch_processor_root_clutch(processor); |
| 3008 | thread_t thread; |
| 3009 | queue_head_t tqueue; |
| 3010 | |
| 3011 | /* We only need to migrate threads if this is the last active processor in the pset */ |
| 3012 | if (pset->online_processor_count > 0) { |
| 3013 | pset_unlock(pset); |
| 3014 | return; |
| 3015 | } |
| 3016 | |
| 3017 | queue_init(&tqueue); |
| 3018 | while (sched_clutch_root_count(root_clutch: pset_clutch_root) > 0) { |
| 3019 | thread = sched_clutch_thread_highest_remove(root_clutch: pset_clutch_root); |
| 3020 | enqueue_tail(que: &tqueue, elt: &thread->runq_links); |
| 3021 | } |
| 3022 | |
| 3023 | pset_unlock(pset); |
| 3024 | |
| 3025 | qe_foreach_element_safe(thread, &tqueue, runq_links) { |
| 3026 | remqueue(elt: &thread->runq_links); |
| 3027 | thread_lock(thread); |
| 3028 | thread_setrun(thread, options: SCHED_TAILQ); |
| 3029 | thread_unlock(thread); |
| 3030 | } |
| 3031 | } |
| 3032 | |
| 3033 | static boolean_t |
| 3034 | sched_clutch_processor_queue_remove( |
| 3035 | processor_t processor, |
| 3036 | thread_t thread) |
| 3037 | { |
| 3038 | processor_set_t pset = processor->processor_set; |
| 3039 | |
| 3040 | pset_lock(pset); |
| 3041 | |
| 3042 | if (processor == thread_get_runq_locked(thread)) { |
| 3043 | /* |
| 3044 | * Thread is on a run queue and we have a lock on |
| 3045 | * that run queue. |
| 3046 | */ |
| 3047 | if (SCHED_CLUTCH_THREAD_ELIGIBLE(thread)) { |
| 3048 | sched_clutch_root_t pset_clutch_root = sched_clutch_processor_root_clutch(processor); |
| 3049 | sched_clutch_thread_remove(root_clutch: pset_clutch_root, thread, current_timestamp: mach_absolute_time(), options: SCHED_CLUTCH_BUCKET_OPTIONS_NONE); |
| 3050 | } else { |
| 3051 | run_queue_t rq = sched_clutch_thread_bound_runq(processor, thread); |
| 3052 | run_queue_remove(runq: rq, thread); |
| 3053 | } |
| 3054 | } else { |
| 3055 | /* |
| 3056 | * The thread left the run queue before we could |
| 3057 | * lock the run queue. |
| 3058 | */ |
| 3059 | thread_assert_runq_null(thread); |
| 3060 | processor = PROCESSOR_NULL; |
| 3061 | } |
| 3062 | |
| 3063 | pset_unlock(pset); |
| 3064 | |
| 3065 | return processor != PROCESSOR_NULL; |
| 3066 | } |
| 3067 | |
| 3068 | static thread_t |
| 3069 | sched_clutch_steal_thread(__unused processor_set_t pset) |
| 3070 | { |
| 3071 | /* Thread stealing is not enabled for single cluster clutch scheduler platforms */ |
| 3072 | return THREAD_NULL; |
| 3073 | } |
| 3074 | |
| 3075 | static void |
| 3076 | sched_clutch_thread_update_scan(sched_update_scan_context_t scan_context) |
| 3077 | { |
| 3078 | boolean_t restart_needed = FALSE; |
| 3079 | processor_t processor = processor_list; |
| 3080 | processor_set_t pset; |
| 3081 | thread_t thread; |
| 3082 | spl_t s; |
| 3083 | |
| 3084 | /* |
| 3085 | * We update the threads associated with each processor (bound and idle threads) |
| 3086 | * and then update the threads in each pset runqueue. |
| 3087 | */ |
| 3088 | |
| 3089 | do { |
| 3090 | do { |
| 3091 | pset = processor->processor_set; |
| 3092 | |
| 3093 | s = splsched(); |
| 3094 | pset_lock(pset); |
| 3095 | |
| 3096 | restart_needed = runq_scan(runq: sched_clutch_bound_runq(processor), scan_context); |
| 3097 | |
| 3098 | pset_unlock(pset); |
| 3099 | splx(s); |
| 3100 | |
| 3101 | if (restart_needed) { |
| 3102 | break; |
| 3103 | } |
| 3104 | |
| 3105 | thread = processor->idle_thread; |
| 3106 | if (thread != THREAD_NULL && thread->sched_stamp != sched_tick) { |
| 3107 | if (thread_update_add_thread(thread) == FALSE) { |
| 3108 | restart_needed = TRUE; |
| 3109 | break; |
| 3110 | } |
| 3111 | } |
| 3112 | } while ((processor = processor->processor_list) != NULL); |
| 3113 | |
| 3114 | /* Ok, we now have a collection of candidates -- fix them. */ |
| 3115 | thread_update_process_threads(); |
| 3116 | } while (restart_needed); |
| 3117 | |
| 3118 | pset_node_t node = &pset_node0; |
| 3119 | pset = node->psets; |
| 3120 | |
| 3121 | do { |
| 3122 | do { |
| 3123 | restart_needed = FALSE; |
| 3124 | while (pset != NULL) { |
| 3125 | s = splsched(); |
| 3126 | pset_lock(pset); |
| 3127 | |
| 3128 | if (sched_clutch_root_count(root_clutch: &pset->pset_clutch_root) > 0) { |
| 3129 | for (sched_bucket_t bucket = TH_BUCKET_SHARE_FG; bucket < TH_BUCKET_SCHED_MAX; bucket++) { |
| 3130 | restart_needed = runq_scan(runq: &pset->pset_clutch_root.scr_bound_buckets[bucket].scrb_bound_thread_runq, scan_context); |
| 3131 | if (restart_needed) { |
| 3132 | break; |
| 3133 | } |
| 3134 | } |
| 3135 | queue_t clutch_bucket_list = &pset->pset_clutch_root.scr_clutch_buckets; |
| 3136 | sched_clutch_bucket_t clutch_bucket; |
| 3137 | qe_foreach_element(clutch_bucket, clutch_bucket_list, scb_listlink) { |
| 3138 | sched_clutch_bucket_group_timeshare_update(clutch_bucket_group: clutch_bucket->scb_group, clutch_bucket, ctime: scan_context->sched_tick_last_abstime); |
| 3139 | restart_needed = sched_clutch_timeshare_scan(thread_queue: &clutch_bucket->scb_thread_timeshare_queue, count: clutch_bucket->scb_thr_count, scan_context); |
| 3140 | if (restart_needed) { |
| 3141 | break; |
| 3142 | } |
| 3143 | } |
| 3144 | } |
| 3145 | |
| 3146 | pset_unlock(pset); |
| 3147 | splx(s); |
| 3148 | |
| 3149 | if (restart_needed) { |
| 3150 | break; |
| 3151 | } |
| 3152 | pset = pset->pset_list; |
| 3153 | } |
| 3154 | |
| 3155 | if (restart_needed) { |
| 3156 | break; |
| 3157 | } |
| 3158 | } while (((node = node->node_list) != NULL) && ((pset = node->psets) != NULL)); |
| 3159 | |
| 3160 | /* Ok, we now have a collection of candidates -- fix them. */ |
| 3161 | thread_update_process_threads(); |
| 3162 | } while (restart_needed); |
| 3163 | } |
| 3164 | |
| 3165 | extern int sched_allow_rt_smt; |
| 3166 | |
| 3167 | /* Return true if this thread should not continue running on this processor */ |
| 3168 | static bool |
| 3169 | sched_clutch_thread_avoid_processor(processor_t processor, thread_t thread, __unused ast_t reason) |
| 3170 | { |
| 3171 | if (processor->processor_primary != processor) { |
| 3172 | /* |
| 3173 | * This is a secondary SMT processor. If the primary is running |
| 3174 | * a realtime thread, only allow realtime threads on the secondary. |
| 3175 | */ |
| 3176 | if ((processor->processor_primary->current_pri >= BASEPRI_RTQUEUES) && ((thread->sched_pri < BASEPRI_RTQUEUES) || !sched_allow_rt_smt)) { |
| 3177 | return true; |
| 3178 | } |
| 3179 | } |
| 3180 | |
| 3181 | return false; |
| 3182 | } |
| 3183 | |
| 3184 | /* |
| 3185 | * For the clutch scheduler, the run counts are maintained in the clutch |
| 3186 | * buckets (i.e thread group scheduling structure). |
| 3187 | */ |
| 3188 | static uint32_t |
| 3189 | sched_clutch_run_incr(thread_t thread) |
| 3190 | { |
| 3191 | assert((thread->state & (TH_RUN | TH_IDLE)) == TH_RUN); |
| 3192 | uint32_t new_count = os_atomic_inc(&sched_run_buckets[TH_BUCKET_RUN], relaxed); |
| 3193 | sched_clutch_thread_run_bucket_incr(thread, bucket: thread->th_sched_bucket); |
| 3194 | return new_count; |
| 3195 | } |
| 3196 | |
| 3197 | static uint32_t |
| 3198 | sched_clutch_run_decr(thread_t thread) |
| 3199 | { |
| 3200 | assert((thread->state & (TH_RUN | TH_IDLE)) != TH_RUN); |
| 3201 | uint32_t new_count = os_atomic_dec(&sched_run_buckets[TH_BUCKET_RUN], relaxed); |
| 3202 | sched_clutch_thread_run_bucket_decr(thread, bucket: thread->th_sched_bucket); |
| 3203 | return new_count; |
| 3204 | } |
| 3205 | |
| 3206 | /* |
| 3207 | * For threads that have changed sched_pri without changing the |
| 3208 | * base_pri for any reason other than decay, use the sched_pri |
| 3209 | * as the bucketizing priority instead of base_pri. All such |
| 3210 | * changes are typically due to kernel locking primitives boosts |
| 3211 | * or demotions. |
| 3212 | */ |
| 3213 | static boolean_t |
| 3214 | sched_thread_sched_pri_promoted(thread_t thread) |
| 3215 | { |
| 3216 | return (thread->sched_flags & TH_SFLAG_PROMOTED) || |
| 3217 | (thread->sched_flags & TH_SFLAG_PROMOTE_REASON_MASK) || |
| 3218 | (thread->sched_flags & TH_SFLAG_DEMOTED_MASK) || |
| 3219 | (thread->sched_flags & TH_SFLAG_DEPRESSED_MASK) || |
| 3220 | (thread->kern_promotion_schedpri != 0); |
| 3221 | } |
| 3222 | |
| 3223 | /* |
| 3224 | * Routine to update the scheduling bucket for the thread. |
| 3225 | * |
| 3226 | * In the clutch scheduler implementation, the thread's bucket |
| 3227 | * is based on sched_pri if it was promoted due to a kernel |
| 3228 | * primitive; otherwise its based on the thread base_pri. This |
| 3229 | * enhancement allows promoted threads to reach a higher priority |
| 3230 | * bucket and potentially get selected sooner for scheduling. |
| 3231 | * |
| 3232 | * Also, the clutch scheduler does not honor fixed priority below |
| 3233 | * FG priority. It simply puts those threads in the corresponding |
| 3234 | * timeshare bucket. The reason for to do that is because it is |
| 3235 | * extremely hard to define the scheduling properties of such threads |
| 3236 | * and they typically lead to performance issues. |
| 3237 | */ |
| 3238 | |
| 3239 | void |
| 3240 | sched_clutch_update_thread_bucket(thread_t thread) |
| 3241 | { |
| 3242 | sched_bucket_t old_bucket = thread->th_sched_bucket; |
| 3243 | thread_assert_runq_null(thread); |
| 3244 | int pri = (sched_thread_sched_pri_promoted(thread)) ? thread->sched_pri : thread->base_pri; |
| 3245 | sched_bucket_t new_bucket = sched_clutch_thread_bucket_map(thread, pri); |
| 3246 | |
| 3247 | if (old_bucket == new_bucket) { |
| 3248 | return; |
| 3249 | } |
| 3250 | |
| 3251 | thread->th_sched_bucket = new_bucket; |
| 3252 | thread->pri_shift = sched_clutch_thread_pri_shift(thread, bucket: new_bucket); |
| 3253 | /* |
| 3254 | * Since this is called after the thread has been removed from the runq, |
| 3255 | * only the run counts need to be updated. The re-insert into the runq |
| 3256 | * would put the thread into the correct new bucket's runq. |
| 3257 | */ |
| 3258 | if ((thread->state & (TH_RUN | TH_IDLE)) == TH_RUN) { |
| 3259 | sched_clutch_thread_run_bucket_decr(thread, bucket: old_bucket); |
| 3260 | sched_clutch_thread_run_bucket_incr(thread, bucket: new_bucket); |
| 3261 | } |
| 3262 | } |
| 3263 | |
| 3264 | static void |
| 3265 | sched_clutch_thread_group_recommendation_change(__unused struct thread_group *tg, __unused cluster_type_t new_recommendation) |
| 3266 | { |
| 3267 | /* Clutch ignores the recommendation because Clutch does not migrate |
| 3268 | * threads between cluster types independently from the Edge scheduler. |
| 3269 | */ |
| 3270 | } |
| 3271 | |
| 3272 | #if CONFIG_SCHED_EDGE |
| 3273 | |
| 3274 | /* Implementation of the AMP version of the clutch scheduler */ |
| 3275 | |
| 3276 | static void |
| 3277 | sched_edge_init(void); |
| 3278 | |
| 3279 | static void |
| 3280 | sched_edge_pset_init(processor_set_t pset); |
| 3281 | |
| 3282 | static thread_t |
| 3283 | sched_edge_processor_idle(processor_set_t pset); |
| 3284 | |
| 3285 | static ast_t |
| 3286 | sched_edge_processor_csw_check(processor_t processor); |
| 3287 | |
| 3288 | static boolean_t |
| 3289 | sched_edge_processor_queue_has_priority(processor_t processor, int priority, boolean_t gte); |
| 3290 | |
| 3291 | static boolean_t |
| 3292 | sched_edge_processor_queue_empty(processor_t processor); |
| 3293 | |
| 3294 | static thread_t |
| 3295 | sched_edge_choose_thread(processor_t processor, int priority, ast_t reason); |
| 3296 | |
| 3297 | static void |
| 3298 | sched_edge_processor_queue_shutdown(processor_t processor); |
| 3299 | |
| 3300 | static processor_t |
| 3301 | sched_edge_choose_processor(processor_set_t pset, processor_t processor, thread_t thread); |
| 3302 | |
| 3303 | static bool |
| 3304 | sched_edge_thread_avoid_processor(processor_t processor, thread_t thread, ast_t reason); |
| 3305 | |
| 3306 | static bool |
| 3307 | sched_edge_balance(processor_t cprocessor, processor_set_t cpset); |
| 3308 | |
| 3309 | static void |
| 3310 | sched_edge_check_spill(processor_set_t pset, thread_t thread); |
| 3311 | |
| 3312 | static bool |
| 3313 | sched_edge_thread_should_yield(processor_t processor, thread_t thread); |
| 3314 | |
| 3315 | static void |
| 3316 | sched_edge_pset_made_schedulable(processor_t processor, processor_set_t dst_pset, boolean_t drop_lock); |
| 3317 | |
| 3318 | static void |
| 3319 | sched_edge_cpu_init_completed(void); |
| 3320 | |
| 3321 | static bool |
| 3322 | sched_edge_thread_eligible_for_pset(thread_t thread, processor_set_t pset); |
| 3323 | |
| 3324 | static bool |
| 3325 | sched_edge_steal_thread_enabled(processor_set_t pset); |
| 3326 | |
| 3327 | static sched_ipi_type_t |
| 3328 | sched_edge_ipi_policy(processor_t dst, thread_t thread, boolean_t dst_idle, sched_ipi_event_t event); |
| 3329 | |
| 3330 | static uint32_t |
| 3331 | sched_edge_qos_max_parallelism(int qos, uint64_t options); |
| 3332 | |
| 3333 | static uint32_t |
| 3334 | sched_edge_cluster_load_metric(processor_set_t pset, sched_bucket_t sched_bucket); |
| 3335 | |
| 3336 | const struct sched_dispatch_table sched_edge_dispatch = { |
| 3337 | .sched_name = "edge" , |
| 3338 | .init = sched_edge_init, |
| 3339 | .timebase_init = sched_timeshare_timebase_init, |
| 3340 | .processor_init = sched_clutch_processor_init, |
| 3341 | .pset_init = sched_edge_pset_init, |
| 3342 | .maintenance_continuation = sched_timeshare_maintenance_continue, |
| 3343 | .choose_thread = sched_edge_choose_thread, |
| 3344 | .steal_thread_enabled = sched_edge_steal_thread_enabled, |
| 3345 | .steal_thread = sched_edge_processor_idle, |
| 3346 | .compute_timeshare_priority = sched_compute_timeshare_priority, |
| 3347 | .choose_node = sched_choose_node, |
| 3348 | .choose_processor = sched_edge_choose_processor, |
| 3349 | .processor_enqueue = sched_clutch_processor_enqueue, |
| 3350 | .processor_queue_shutdown = sched_edge_processor_queue_shutdown, |
| 3351 | .processor_queue_remove = sched_clutch_processor_queue_remove, |
| 3352 | .processor_queue_empty = sched_edge_processor_queue_empty, |
| 3353 | .priority_is_urgent = priority_is_urgent, |
| 3354 | .processor_csw_check = sched_edge_processor_csw_check, |
| 3355 | .processor_queue_has_priority = sched_edge_processor_queue_has_priority, |
| 3356 | .initial_quantum_size = sched_clutch_initial_quantum_size, |
| 3357 | .initial_thread_sched_mode = sched_clutch_initial_thread_sched_mode, |
| 3358 | .can_update_priority = can_update_priority, |
| 3359 | .update_priority = update_priority, |
| 3360 | .lightweight_update_priority = lightweight_update_priority, |
| 3361 | .quantum_expire = sched_default_quantum_expire, |
| 3362 | .processor_runq_count = sched_clutch_runq_count, |
| 3363 | .processor_runq_stats_count_sum = sched_clutch_runq_stats_count_sum, |
| 3364 | .processor_bound_count = sched_clutch_processor_bound_count, |
| 3365 | .thread_update_scan = sched_clutch_thread_update_scan, |
| 3366 | .multiple_psets_enabled = TRUE, |
| 3367 | .sched_groups_enabled = FALSE, |
| 3368 | .avoid_processor_enabled = TRUE, |
| 3369 | .thread_avoid_processor = sched_edge_thread_avoid_processor, |
| 3370 | .processor_balance = sched_edge_balance, |
| 3371 | |
| 3372 | .rt_runq = sched_rtlocal_runq, |
| 3373 | .rt_init = sched_rtlocal_init, |
| 3374 | .rt_queue_shutdown = sched_rtlocal_queue_shutdown, |
| 3375 | .rt_runq_scan = sched_rtlocal_runq_scan, |
| 3376 | .rt_runq_count_sum = sched_rtlocal_runq_count_sum, |
| 3377 | .rt_steal_thread = sched_rtlocal_steal_thread, |
| 3378 | |
| 3379 | .qos_max_parallelism = sched_edge_qos_max_parallelism, |
| 3380 | .check_spill = sched_edge_check_spill, |
| 3381 | .ipi_policy = sched_edge_ipi_policy, |
| 3382 | .thread_should_yield = sched_edge_thread_should_yield, |
| 3383 | .run_count_incr = sched_clutch_run_incr, |
| 3384 | .run_count_decr = sched_clutch_run_decr, |
| 3385 | .update_thread_bucket = sched_clutch_update_thread_bucket, |
| 3386 | .pset_made_schedulable = sched_edge_pset_made_schedulable, |
| 3387 | .thread_group_recommendation_change = NULL, |
| 3388 | .cpu_init_completed = sched_edge_cpu_init_completed, |
| 3389 | .thread_eligible_for_pset = sched_edge_thread_eligible_for_pset, |
| 3390 | }; |
| 3391 | |
| 3392 | static bitmap_t sched_edge_available_pset_bitmask[BITMAP_LEN(MAX_PSETS)]; |
| 3393 | |
| 3394 | /* |
| 3395 | * sched_edge_pset_available() |
| 3396 | * |
| 3397 | * Routine to determine if a pset is available for scheduling. |
| 3398 | */ |
| 3399 | static bool |
| 3400 | sched_edge_pset_available(processor_set_t pset) |
| 3401 | { |
| 3402 | if (pset == NULL) { |
| 3403 | return false; |
| 3404 | } |
| 3405 | return pset_available_cpu_count(pset) > 0; |
| 3406 | } |
| 3407 | |
| 3408 | /* |
| 3409 | * sched_edge_thread_bound_cluster_id() |
| 3410 | * |
| 3411 | * Routine to determine which cluster a particular thread is bound to. Uses |
| 3412 | * the sched_flags on the thread to map back to a specific cluster id. |
| 3413 | * |
| 3414 | * <Edge Multi-cluster Support Needed> |
| 3415 | */ |
| 3416 | static uint32_t |
| 3417 | sched_edge_thread_bound_cluster_id(thread_t thread) |
| 3418 | { |
| 3419 | assert(SCHED_CLUTCH_THREAD_CLUSTER_BOUND(thread)); |
| 3420 | return thread->th_bound_cluster_id; |
| 3421 | } |
| 3422 | |
| 3423 | /* Forward declaration for some thread migration routines */ |
| 3424 | static boolean_t sched_edge_foreign_runnable_thread_available(processor_set_t pset); |
| 3425 | static boolean_t sched_edge_foreign_running_thread_available(processor_set_t pset); |
| 3426 | static processor_set_t sched_edge_steal_candidate(processor_set_t pset); |
| 3427 | static processor_set_t sched_edge_migrate_candidate(processor_set_t preferred_pset, thread_t thread, processor_set_t locked_pset, bool switch_pset_locks); |
| 3428 | |
| 3429 | /* |
| 3430 | * sched_edge_config_set() |
| 3431 | * |
| 3432 | * Support to update an edge configuration. Typically used by CLPC to affect thread migration |
| 3433 | * policies in the scheduler. |
| 3434 | */ |
| 3435 | static void |
| 3436 | sched_edge_config_set(uint32_t src_cluster, uint32_t dst_cluster, sched_clutch_edge edge_config) |
| 3437 | { |
| 3438 | sched_clutch_edge *edge = &pset_array[src_cluster]->sched_edges[dst_cluster]; |
| 3439 | edge->sce_edge_packed = edge_config.sce_edge_packed; |
| 3440 | } |
| 3441 | |
| 3442 | /* |
| 3443 | * sched_edge_config_get() |
| 3444 | * |
| 3445 | * Support to get an edge configuration. Typically used by CLPC to query edge configs to decide |
| 3446 | * if it needs to update edges. |
| 3447 | */ |
| 3448 | static sched_clutch_edge |
| 3449 | sched_edge_config_get(uint32_t src_cluster, uint32_t dst_cluster) |
| 3450 | { |
| 3451 | return pset_array[src_cluster]->sched_edges[dst_cluster]; |
| 3452 | } |
| 3453 | |
| 3454 | /* |
| 3455 | * sched_edge_matrix_set() |
| 3456 | * |
| 3457 | * Routine to update various edges in the cluster edge matrix. The edge_changes_bitmap |
| 3458 | * indicates which edges need to be updated. Both the edge_matrix & edge_changes_bitmap |
| 3459 | * are MAX_PSETS * MAX_PSETS matrices flattened into a single dimensional array. |
| 3460 | */ |
| 3461 | void |
| 3462 | sched_edge_matrix_set(sched_clutch_edge *edge_matrix, bool *edge_changes_bitmap, __unused uint64_t flags, uint64_t matrix_order) |
| 3463 | { |
| 3464 | uint32_t edge_index = 0; |
| 3465 | for (uint32_t src_cluster = 0; src_cluster < matrix_order; src_cluster++) { |
| 3466 | for (uint32_t dst_cluster = 0; dst_cluster < matrix_order; dst_cluster++) { |
| 3467 | if (edge_changes_bitmap[edge_index]) { |
| 3468 | sched_edge_config_set(src_cluster, dst_cluster, edge_matrix[edge_index]); |
| 3469 | } |
| 3470 | edge_index++; |
| 3471 | } |
| 3472 | } |
| 3473 | } |
| 3474 | |
| 3475 | /* |
| 3476 | * sched_edge_matrix_get() |
| 3477 | * |
| 3478 | * Routine to retrieve various edges in the cluster edge matrix. The edge_request_bitmap |
| 3479 | * indicates which edges need to be retrieved. Both the edge_matrix & edge_request_bitmap |
| 3480 | * are MAX_PSETS * MAX_PSETS matrices flattened into a single dimensional array. |
| 3481 | */ |
| 3482 | void |
| 3483 | sched_edge_matrix_get(sched_clutch_edge *edge_matrix, bool *edge_request_bitmap, __unused uint64_t flags, uint64_t matrix_order) |
| 3484 | { |
| 3485 | uint32_t edge_index = 0; |
| 3486 | for (uint32_t src_cluster = 0; src_cluster < matrix_order; src_cluster++) { |
| 3487 | for (uint32_t dst_cluster = 0; dst_cluster < matrix_order; dst_cluster++) { |
| 3488 | if (edge_request_bitmap[edge_index]) { |
| 3489 | edge_matrix[edge_index] = sched_edge_config_get(src_cluster, dst_cluster); |
| 3490 | } |
| 3491 | edge_index++; |
| 3492 | } |
| 3493 | } |
| 3494 | } |
| 3495 | |
| 3496 | /* |
| 3497 | * sched_edge_init() |
| 3498 | * |
| 3499 | * Routine to initialize the data structures for the Edge scheduler. |
| 3500 | */ |
| 3501 | static void |
| 3502 | sched_edge_init(void) |
| 3503 | { |
| 3504 | if (!PE_parse_boot_argn("sched_clutch_bucket_group_interactive_pri" , &sched_clutch_bucket_group_interactive_pri, sizeof(sched_clutch_bucket_group_interactive_pri))) { |
| 3505 | sched_clutch_bucket_group_interactive_pri = SCHED_CLUTCH_BUCKET_GROUP_INTERACTIVE_PRI_DEFAULT; |
| 3506 | } |
| 3507 | sched_timeshare_init(); |
| 3508 | sched_clutch_tunables_init(); |
| 3509 | sched_edge_max_clusters = ml_get_cluster_count(); |
| 3510 | } |
| 3511 | |
| 3512 | static void |
| 3513 | sched_edge_pset_init(processor_set_t pset) |
| 3514 | { |
| 3515 | uint32_t pset_cluster_id = pset->pset_cluster_id; |
| 3516 | pset->pset_type = (pset->pset_cluster_type == PSET_AMP_P) ? CLUSTER_TYPE_P : CLUSTER_TYPE_E; |
| 3517 | |
| 3518 | /* Set the edge weight and properties for the pset itself */ |
| 3519 | bitmap_clear(pset->foreign_psets, pset_cluster_id); |
| 3520 | bitmap_clear(pset->native_psets, pset_cluster_id); |
| 3521 | bitmap_clear(pset->local_psets, pset_cluster_id); |
| 3522 | bitmap_clear(pset->remote_psets, pset_cluster_id); |
| 3523 | pset->sched_edges[pset_cluster_id].sce_edge_packed = (sched_clutch_edge){.sce_migration_weight = 0, .sce_migration_allowed = 0, .sce_steal_allowed = 0}.sce_edge_packed; |
| 3524 | sched_clutch_root_init(&pset->pset_clutch_root, pset); |
| 3525 | bitmap_set(sched_edge_available_pset_bitmask, pset_cluster_id); |
| 3526 | } |
| 3527 | |
| 3528 | static thread_t |
| 3529 | sched_edge_choose_thread( |
| 3530 | processor_t processor, |
| 3531 | int priority, |
| 3532 | __unused ast_t reason) |
| 3533 | { |
| 3534 | int clutch_pri = sched_clutch_root_priority(sched_clutch_processor_root_clutch(processor)); |
| 3535 | run_queue_t bound_runq = sched_clutch_bound_runq(processor); |
| 3536 | boolean_t choose_from_boundq = false; |
| 3537 | |
| 3538 | if ((bound_runq->highq < priority) && |
| 3539 | (clutch_pri < priority)) { |
| 3540 | return THREAD_NULL; |
| 3541 | } |
| 3542 | |
| 3543 | if (bound_runq->highq >= clutch_pri) { |
| 3544 | choose_from_boundq = true; |
| 3545 | } |
| 3546 | |
| 3547 | thread_t thread = THREAD_NULL; |
| 3548 | if (choose_from_boundq == false) { |
| 3549 | sched_clutch_root_t pset_clutch_root = sched_clutch_processor_root_clutch(processor); |
| 3550 | thread = sched_clutch_thread_highest_remove(pset_clutch_root); |
| 3551 | } else { |
| 3552 | thread = run_queue_dequeue(bound_runq, SCHED_HEADQ); |
| 3553 | } |
| 3554 | return thread; |
| 3555 | } |
| 3556 | |
| 3557 | static boolean_t |
| 3558 | sched_edge_processor_queue_empty(processor_t processor) |
| 3559 | { |
| 3560 | return (sched_clutch_root_count(sched_clutch_processor_root_clutch(processor)) == 0) && |
| 3561 | (sched_clutch_bound_runq(processor)->count == 0); |
| 3562 | } |
| 3563 | |
| 3564 | static void |
| 3565 | sched_edge_check_spill(__unused processor_set_t pset, __unused thread_t thread) |
| 3566 | { |
| 3567 | assert(thread->bound_processor == PROCESSOR_NULL); |
| 3568 | } |
| 3569 | |
| 3570 | __options_decl(sched_edge_thread_yield_reason_t, uint32_t, { |
| 3571 | SCHED_EDGE_YIELD_RUNQ_NONEMPTY = 0x0, |
| 3572 | SCHED_EDGE_YIELD_FOREIGN_RUNNABLE = 0x1, |
| 3573 | SCHED_EDGE_YIELD_FOREIGN_RUNNING = 0x2, |
| 3574 | SCHED_EDGE_YIELD_STEAL_POSSIBLE = 0x3, |
| 3575 | SCHED_EDGE_YIELD_DISALLOW = 0x4, |
| 3576 | }); |
| 3577 | |
| 3578 | static bool |
| 3579 | sched_edge_thread_should_yield(processor_t processor, __unused thread_t thread) |
| 3580 | { |
| 3581 | if (!sched_edge_processor_queue_empty(processor) || (rt_runq_count(processor->processor_set) > 0)) { |
| 3582 | KDBG(MACHDBG_CODE(DBG_MACH_SCHED_CLUTCH, MACH_SCHED_EDGE_SHOULD_YIELD) | DBG_FUNC_NONE, |
| 3583 | thread_tid(thread), processor->processor_set->pset_cluster_id, 0, SCHED_EDGE_YIELD_RUNQ_NONEMPTY); |
| 3584 | return true; |
| 3585 | } |
| 3586 | |
| 3587 | /* |
| 3588 | * The yield logic should follow the same logic that steal_thread () does. The |
| 3589 | * thread_should_yield() is effectively trying to quickly check that if the |
| 3590 | * current thread gave up CPU, is there any other thread that would execute |
| 3591 | * on this CPU. So it needs to provide the same answer as the steal_thread()/ |
| 3592 | * processor Idle logic. |
| 3593 | */ |
| 3594 | if (sched_edge_foreign_runnable_thread_available(processor->processor_set)) { |
| 3595 | KDBG(MACHDBG_CODE(DBG_MACH_SCHED_CLUTCH, MACH_SCHED_EDGE_SHOULD_YIELD) | DBG_FUNC_NONE, |
| 3596 | thread_tid(thread), processor->processor_set->pset_cluster_id, 0, SCHED_EDGE_YIELD_FOREIGN_RUNNABLE); |
| 3597 | return true; |
| 3598 | } |
| 3599 | if (sched_edge_foreign_running_thread_available(processor->processor_set)) { |
| 3600 | KDBG(MACHDBG_CODE(DBG_MACH_SCHED_CLUTCH, MACH_SCHED_EDGE_SHOULD_YIELD) | DBG_FUNC_NONE, |
| 3601 | thread_tid(thread), processor->processor_set->pset_cluster_id, 0, SCHED_EDGE_YIELD_FOREIGN_RUNNING); |
| 3602 | return true; |
| 3603 | } |
| 3604 | |
| 3605 | processor_set_t steal_candidate = sched_edge_steal_candidate(processor->processor_set); |
| 3606 | if (steal_candidate != NULL) { |
| 3607 | KDBG(MACHDBG_CODE(DBG_MACH_SCHED_CLUTCH, MACH_SCHED_EDGE_SHOULD_YIELD) | DBG_FUNC_NONE, |
| 3608 | thread_tid(thread), processor->processor_set->pset_cluster_id, 0, SCHED_EDGE_YIELD_STEAL_POSSIBLE); |
| 3609 | return true; |
| 3610 | } |
| 3611 | |
| 3612 | KDBG(MACHDBG_CODE(DBG_MACH_SCHED_CLUTCH, MACH_SCHED_EDGE_SHOULD_YIELD) | DBG_FUNC_NONE, thread_tid(thread), processor->processor_set->pset_cluster_id, |
| 3613 | 0, SCHED_EDGE_YIELD_DISALLOW); |
| 3614 | return false; |
| 3615 | } |
| 3616 | |
| 3617 | static ast_t |
| 3618 | sched_edge_processor_csw_check(processor_t processor) |
| 3619 | { |
| 3620 | boolean_t has_higher; |
| 3621 | int pri; |
| 3622 | |
| 3623 | int clutch_pri = sched_clutch_root_priority(sched_clutch_processor_root_clutch(processor)); |
| 3624 | run_queue_t bound_runq = sched_clutch_bound_runq(processor); |
| 3625 | |
| 3626 | assert(processor->active_thread != NULL); |
| 3627 | |
| 3628 | pri = MAX(clutch_pri, bound_runq->highq); |
| 3629 | |
| 3630 | if (processor->first_timeslice) { |
| 3631 | has_higher = (pri > processor->current_pri); |
| 3632 | } else { |
| 3633 | has_higher = (pri >= processor->current_pri); |
| 3634 | } |
| 3635 | |
| 3636 | if (has_higher) { |
| 3637 | if (sched_clutch_root_urgency(sched_clutch_processor_root_clutch(processor)) > 0) { |
| 3638 | return AST_PREEMPT | AST_URGENT; |
| 3639 | } |
| 3640 | |
| 3641 | if (bound_runq->urgency > 0) { |
| 3642 | return AST_PREEMPT | AST_URGENT; |
| 3643 | } |
| 3644 | |
| 3645 | return AST_PREEMPT; |
| 3646 | } |
| 3647 | |
| 3648 | return AST_NONE; |
| 3649 | } |
| 3650 | |
| 3651 | static boolean_t |
| 3652 | sched_edge_processor_queue_has_priority(processor_t processor, |
| 3653 | int priority, |
| 3654 | boolean_t gte) |
| 3655 | { |
| 3656 | run_queue_t bound_runq = sched_clutch_bound_runq(processor); |
| 3657 | |
| 3658 | int qpri = MAX(sched_clutch_root_priority(sched_clutch_processor_root_clutch(processor)), bound_runq->highq); |
| 3659 | if (gte) { |
| 3660 | return qpri >= priority; |
| 3661 | } else { |
| 3662 | return qpri > priority; |
| 3663 | } |
| 3664 | } |
| 3665 | |
| 3666 | static void |
| 3667 | sched_edge_processor_queue_shutdown(processor_t processor) |
| 3668 | { |
| 3669 | processor_set_t pset = processor->processor_set; |
| 3670 | sched_clutch_root_t pset_clutch_root = sched_clutch_processor_root_clutch(processor); |
| 3671 | thread_t thread; |
| 3672 | queue_head_t tqueue; |
| 3673 | |
| 3674 | /* We only need to migrate threads if this is the last active or last recommended processor in the pset */ |
| 3675 | if ((pset->online_processor_count > 0) && pset_is_recommended(pset)) { |
| 3676 | pset_unlock(pset); |
| 3677 | return; |
| 3678 | } |
| 3679 | |
| 3680 | bitmap_clear(sched_edge_available_pset_bitmask, pset->pset_cluster_id); |
| 3681 | |
| 3682 | queue_init(&tqueue); |
| 3683 | while (sched_clutch_root_count(pset_clutch_root) > 0) { |
| 3684 | thread = sched_clutch_thread_highest_remove(pset_clutch_root); |
| 3685 | enqueue_tail(&tqueue, &thread->runq_links); |
| 3686 | } |
| 3687 | pset_unlock(pset); |
| 3688 | |
| 3689 | qe_foreach_element_safe(thread, &tqueue, runq_links) { |
| 3690 | remqueue(&thread->runq_links); |
| 3691 | thread_lock(thread); |
| 3692 | thread_setrun(thread, SCHED_TAILQ); |
| 3693 | thread_unlock(thread); |
| 3694 | } |
| 3695 | } |
| 3696 | |
| 3697 | /* |
| 3698 | * sched_edge_cluster_load_metric() |
| 3699 | * |
| 3700 | * The load metric for a cluster is a measure of the average scheduling latency |
| 3701 | * experienced by threads on that cluster. It is a product of the average number |
| 3702 | * of threads in the runqueue and the average execution time for threads. The metric |
| 3703 | * has special values in the following cases: |
| 3704 | * - UINT32_MAX: If the cluster is not available for scheduling, its load is set to |
| 3705 | * the maximum value to disallow any threads to migrate to this cluster. |
| 3706 | * - 0: If there are idle CPUs in the cluster or an empty runqueue; this allows threads |
| 3707 | * to be spread across the platform quickly for ncpu wide workloads. |
| 3708 | */ |
| 3709 | static uint32_t |
| 3710 | sched_edge_cluster_load_metric(processor_set_t pset, sched_bucket_t sched_bucket) |
| 3711 | { |
| 3712 | if (sched_edge_pset_available(pset) == false) { |
| 3713 | return UINT32_MAX; |
| 3714 | } |
| 3715 | return (uint32_t)sched_get_pset_load_average(pset, sched_bucket); |
| 3716 | } |
| 3717 | |
| 3718 | /* |
| 3719 | * |
| 3720 | * Edge Scheduler Steal/Rebalance logic |
| 3721 | * |
| 3722 | * = Generic scheduler logic = |
| 3723 | * |
| 3724 | * The SCHED(steal_thread) scheduler callout is invoked when the processor does not |
| 3725 | * find any thread for execution in its runqueue. The aim of the steal operation |
| 3726 | * is to find other threads running/runnable in other clusters which should be |
| 3727 | * executed here. |
| 3728 | * |
| 3729 | * If the steal callout does not return a thread, the thread_select() logic calls |
| 3730 | * SCHED(processor_balance) callout which is supposed to IPI other CPUs to rebalance |
| 3731 | * threads and idle out the current CPU. |
| 3732 | * |
| 3733 | * = SCHED(steal_thread) for Edge Scheduler = |
| 3734 | * |
| 3735 | * The edge scheduler hooks into sched_edge_processor_idle() for steal_thread. This |
| 3736 | * routine tries to do the following operations in order: |
| 3737 | * (1) Find foreign runnnable threads in non-native cluster |
| 3738 | * runqueues (sched_edge_foreign_runnable_thread_remove()) |
| 3739 | * (2) Check if foreign threads are running on the non-native |
| 3740 | * clusters (sched_edge_foreign_running_thread_available()) |
| 3741 | * - If yes, return THREAD_NULL for the steal callout and |
| 3742 | * perform rebalancing as part of SCHED(processor_balance) i.e. sched_edge_balance() |
| 3743 | * (3) Steal a thread from another cluster based on edge |
| 3744 | * weights (sched_edge_steal_thread()) |
| 3745 | * |
| 3746 | * = SCHED(processor_balance) for Edge Scheduler = |
| 3747 | * |
| 3748 | * If steal_thread did not return a thread for the processor, use |
| 3749 | * sched_edge_balance() to rebalance foreign running threads and idle out this CPU. |
| 3750 | * |
| 3751 | * = Clutch Bucket Preferred Cluster Overrides = |
| 3752 | * |
| 3753 | * Since these operations (just like thread migrations on enqueue) |
| 3754 | * move threads across clusters, they need support for handling clutch |
| 3755 | * bucket group level preferred cluster recommendations. |
| 3756 | * For (1), a clutch bucket will be in the foreign runnable queue based |
| 3757 | * on the clutch bucket group preferred cluster. |
| 3758 | * For (2), the running thread will set the bit on the processor based |
| 3759 | * on its preferred cluster type. |
| 3760 | * For (3), the edge configuration would prevent threads from being stolen |
| 3761 | * in the wrong direction. |
| 3762 | * |
| 3763 | * = SCHED(thread_should_yield) = |
| 3764 | * The thread_should_yield() logic needs to have the same logic as sched_edge_processor_idle() |
| 3765 | * since that is expecting the same answer as if thread_select() was called on a core |
| 3766 | * with an empty runqueue. |
| 3767 | */ |
| 3768 | |
| 3769 | static bool |
| 3770 | sched_edge_steal_thread_enabled(__unused processor_set_t pset) |
| 3771 | { |
| 3772 | /* |
| 3773 | * For edge scheduler, the gating for steal is being done by sched_edge_steal_candidate() |
| 3774 | */ |
| 3775 | return true; |
| 3776 | } |
| 3777 | |
| 3778 | static processor_set_t |
| 3779 | sched_edge_steal_candidate(processor_set_t pset) |
| 3780 | { |
| 3781 | uint32_t dst_cluster_id = pset->pset_cluster_id; |
| 3782 | for (int cluster_id = 0; cluster_id < sched_edge_max_clusters; cluster_id++) { |
| 3783 | processor_set_t candidate_pset = pset_array[cluster_id]; |
| 3784 | if (cluster_id == dst_cluster_id) { |
| 3785 | continue; |
| 3786 | } |
| 3787 | if (candidate_pset == NULL) { |
| 3788 | continue; |
| 3789 | } |
| 3790 | sched_clutch_edge *incoming_edge = &pset_array[cluster_id]->sched_edges[dst_cluster_id]; |
| 3791 | if (incoming_edge->sce_steal_allowed && (bitmap_lsb_first(candidate_pset->pset_clutch_root.scr_unbound_runnable_bitmap, TH_BUCKET_SCHED_MAX) != -1)) { |
| 3792 | return candidate_pset; |
| 3793 | } |
| 3794 | } |
| 3795 | return NULL; |
| 3796 | } |
| 3797 | |
| 3798 | static boolean_t |
| 3799 | sched_edge_foreign_runnable_thread_available(processor_set_t pset) |
| 3800 | { |
| 3801 | /* Find all the clusters that are foreign for this cluster */ |
| 3802 | bitmap_t *foreign_pset_bitmap = pset->foreign_psets; |
| 3803 | for (int cluster = bitmap_first(foreign_pset_bitmap, sched_edge_max_clusters); cluster >= 0; cluster = bitmap_next(foreign_pset_bitmap, cluster)) { |
| 3804 | /* |
| 3805 | * For each cluster, see if there are any runnable foreign threads. |
| 3806 | * This check is currently being done without the pset lock to make it cheap for |
| 3807 | * the common case. |
| 3808 | */ |
| 3809 | processor_set_t target_pset = pset_array[cluster]; |
| 3810 | if (sched_edge_pset_available(target_pset) == false) { |
| 3811 | continue; |
| 3812 | } |
| 3813 | |
| 3814 | if (!sched_clutch_root_foreign_empty(&target_pset->pset_clutch_root)) { |
| 3815 | return true; |
| 3816 | } |
| 3817 | } |
| 3818 | return false; |
| 3819 | } |
| 3820 | |
| 3821 | static thread_t |
| 3822 | sched_edge_foreign_runnable_thread_remove(processor_set_t pset, uint64_t ctime) |
| 3823 | { |
| 3824 | thread_t thread = THREAD_NULL; |
| 3825 | |
| 3826 | /* Find all the clusters that are foreign for this cluster */ |
| 3827 | bitmap_t *foreign_pset_bitmap = pset->foreign_psets; |
| 3828 | for (int cluster = bitmap_first(foreign_pset_bitmap, sched_edge_max_clusters); cluster >= 0; cluster = bitmap_next(foreign_pset_bitmap, cluster)) { |
| 3829 | /* |
| 3830 | * For each cluster, see if there are any runnable foreign threads. |
| 3831 | * This check is currently being done without the pset lock to make it cheap for |
| 3832 | * the common case. |
| 3833 | */ |
| 3834 | processor_set_t target_pset = pset_array[cluster]; |
| 3835 | if (sched_edge_pset_available(target_pset) == false) { |
| 3836 | continue; |
| 3837 | } |
| 3838 | |
| 3839 | if (sched_clutch_root_foreign_empty(&target_pset->pset_clutch_root)) { |
| 3840 | continue; |
| 3841 | } |
| 3842 | /* |
| 3843 | * Looks like there are runnable foreign threads in the hierarchy; lock the pset |
| 3844 | * and get the highest priority thread. |
| 3845 | */ |
| 3846 | pset_lock(target_pset); |
| 3847 | if (sched_edge_pset_available(target_pset)) { |
| 3848 | thread = sched_clutch_root_highest_foreign_thread_remove(&target_pset->pset_clutch_root); |
| 3849 | sched_update_pset_load_average(target_pset, ctime); |
| 3850 | } |
| 3851 | pset_unlock(target_pset); |
| 3852 | |
| 3853 | /* |
| 3854 | * Edge Scheduler Optimization |
| 3855 | * |
| 3856 | * The current implementation immediately returns as soon as it finds a foreign |
| 3857 | * runnable thread. This could be enhanced to look at highest priority threads |
| 3858 | * from all foreign clusters and pick the highest amongst them. That would need |
| 3859 | * some form of global state across psets to make that kind of a check cheap. |
| 3860 | */ |
| 3861 | if (thread != THREAD_NULL) { |
| 3862 | KDBG(MACHDBG_CODE(DBG_MACH_SCHED_CLUTCH, MACH_SCHED_EDGE_REBAL_RUNNABLE) | DBG_FUNC_NONE, thread_tid(thread), pset->pset_cluster_id, target_pset->pset_cluster_id, 0); |
| 3863 | break; |
| 3864 | } |
| 3865 | /* Looks like the thread escaped after the check but before the pset lock was taken; continue the search */ |
| 3866 | } |
| 3867 | |
| 3868 | return thread; |
| 3869 | } |
| 3870 | |
| 3871 | /* |
| 3872 | * sched_edge_cpu_running_foreign_shared_rsrc_available() |
| 3873 | * |
| 3874 | * Routine to determine if the thread running on a CPU is a shared resource thread |
| 3875 | * and can be rebalanced to the cluster with an idle CPU. It is used to determine if |
| 3876 | * a CPU going idle on a pset should rebalance a running shared resource heavy thread |
| 3877 | * from another non-ideal cluster based on the former's shared resource load. |
| 3878 | */ |
| 3879 | static boolean_t |
| 3880 | sched_edge_cpu_running_foreign_shared_rsrc_available(processor_set_t target_pset, int foreign_cpu, processor_set_t idle_pset) |
| 3881 | { |
| 3882 | boolean_t idle_pset_shared_rsrc_rr_idle = sched_edge_shared_rsrc_idle(idle_pset, CLUSTER_SHARED_RSRC_TYPE_RR); |
| 3883 | if (bit_test(target_pset->cpu_running_cluster_shared_rsrc_thread[CLUSTER_SHARED_RSRC_TYPE_RR], foreign_cpu) && !idle_pset_shared_rsrc_rr_idle) { |
| 3884 | return false; |
| 3885 | } |
| 3886 | |
| 3887 | boolean_t idle_pset_shared_rsrc_biu_idle = sched_edge_shared_rsrc_idle(idle_pset, CLUSTER_SHARED_RSRC_TYPE_NATIVE_FIRST); |
| 3888 | if (bit_test(target_pset->cpu_running_cluster_shared_rsrc_thread[CLUSTER_SHARED_RSRC_TYPE_NATIVE_FIRST], foreign_cpu) && !idle_pset_shared_rsrc_biu_idle) { |
| 3889 | return false; |
| 3890 | } |
| 3891 | return true; |
| 3892 | } |
| 3893 | |
| 3894 | static boolean_t |
| 3895 | sched_edge_foreign_running_thread_available(processor_set_t pset) |
| 3896 | { |
| 3897 | bitmap_t *foreign_pset_bitmap = pset->foreign_psets; |
| 3898 | int cluster = -1; |
| 3899 | while ((cluster = sched_edge_iterate_clusters_ordered(pset, foreign_pset_bitmap[0], cluster)) != -1) { |
| 3900 | /* Skip the pset if its not schedulable */ |
| 3901 | processor_set_t target_pset = pset_array[cluster]; |
| 3902 | if (sched_edge_pset_available(target_pset) == false) { |
| 3903 | continue; |
| 3904 | } |
| 3905 | |
| 3906 | uint64_t running_foreign_bitmap = target_pset->cpu_state_map[PROCESSOR_RUNNING] & target_pset->cpu_running_foreign; |
| 3907 | for (int cpu_foreign = bit_first(running_foreign_bitmap); cpu_foreign >= 0; cpu_foreign = bit_next(running_foreign_bitmap, cpu_foreign)) { |
| 3908 | if (!sched_edge_cpu_running_foreign_shared_rsrc_available(target_pset, cpu_foreign, pset)) { |
| 3909 | continue; |
| 3910 | } |
| 3911 | return true; |
| 3912 | } |
| 3913 | } |
| 3914 | return false; |
| 3915 | } |
| 3916 | |
| 3917 | static bool |
| 3918 | sched_edge_steal_possible(processor_set_t idle_pset, processor_set_t candidate_pset) |
| 3919 | { |
| 3920 | int highest_runnable_bucket = bitmap_lsb_first(candidate_pset->pset_clutch_root.scr_unbound_runnable_bitmap, TH_BUCKET_SCHED_MAX); |
| 3921 | if (highest_runnable_bucket == -1) { |
| 3922 | /* Candidate cluster runq is empty */ |
| 3923 | return false; |
| 3924 | } |
| 3925 | |
| 3926 | if (idle_pset->pset_cluster_type == candidate_pset->pset_cluster_type) { |
| 3927 | /* Always allow stealing from homogeneous clusters */ |
| 3928 | return true; |
| 3929 | } else { |
| 3930 | /* Use the load metrics for highest runnable bucket since that would be stolen next */ |
| 3931 | int32_t candidate_load = sched_edge_cluster_load_metric(candidate_pset, (sched_bucket_t)highest_runnable_bucket); |
| 3932 | return candidate_load > 0; |
| 3933 | } |
| 3934 | } |
| 3935 | |
| 3936 | static thread_t |
| 3937 | sched_edge_steal_thread(processor_set_t pset, uint64_t candidate_pset_bitmap) |
| 3938 | { |
| 3939 | thread_t thread = THREAD_NULL; |
| 3940 | |
| 3941 | /* |
| 3942 | * Edge Scheduler Optimization |
| 3943 | * |
| 3944 | * The logic today bails as soon as it finds a cluster where the cluster load is |
| 3945 | * greater than the edge weight. Maybe it should have a more advanced version |
| 3946 | * which looks for the maximum delta etc. |
| 3947 | */ |
| 3948 | int cluster_id = -1; |
| 3949 | while ((cluster_id = sched_edge_iterate_clusters_ordered(pset, candidate_pset_bitmap, cluster_id)) != -1) { |
| 3950 | processor_set_t steal_from_pset = pset_array[cluster_id]; |
| 3951 | if (steal_from_pset == NULL) { |
| 3952 | continue; |
| 3953 | } |
| 3954 | sched_clutch_edge *incoming_edge = &pset_array[cluster_id]->sched_edges[pset->pset_cluster_id]; |
| 3955 | if (incoming_edge->sce_steal_allowed == false) { |
| 3956 | continue; |
| 3957 | } |
| 3958 | pset_lock(steal_from_pset); |
| 3959 | if (sched_edge_steal_possible(pset, steal_from_pset)) { |
| 3960 | uint64_t current_timestamp = mach_absolute_time(); |
| 3961 | sched_clutch_root_bucket_t root_bucket = sched_clutch_root_highest_root_bucket(&steal_from_pset->pset_clutch_root, current_timestamp, SCHED_CLUTCH_HIGHEST_ROOT_BUCKET_UNBOUND_ONLY); |
| 3962 | thread = sched_clutch_thread_unbound_lookup(&steal_from_pset->pset_clutch_root, root_bucket); |
| 3963 | sched_clutch_thread_remove(&steal_from_pset->pset_clutch_root, thread, current_timestamp, SCHED_CLUTCH_BUCKET_OPTIONS_SAMEPRI_RR); |
| 3964 | KDBG(MACHDBG_CODE(DBG_MACH_SCHED_CLUTCH, MACH_SCHED_EDGE_STEAL) | DBG_FUNC_NONE, thread_tid(thread), pset->pset_cluster_id, steal_from_pset->pset_cluster_id, 0); |
| 3965 | sched_update_pset_load_average(steal_from_pset, current_timestamp); |
| 3966 | } |
| 3967 | pset_unlock(steal_from_pset); |
| 3968 | if (thread != THREAD_NULL) { |
| 3969 | break; |
| 3970 | } |
| 3971 | } |
| 3972 | return thread; |
| 3973 | } |
| 3974 | |
| 3975 | /* |
| 3976 | * sched_edge_processor_idle() |
| 3977 | * |
| 3978 | * The routine is the implementation for steal_thread() for the Edge scheduler. |
| 3979 | */ |
| 3980 | static thread_t |
| 3981 | sched_edge_processor_idle(processor_set_t pset) |
| 3982 | { |
| 3983 | thread_t thread = THREAD_NULL; |
| 3984 | |
| 3985 | uint64_t ctime = mach_absolute_time(); |
| 3986 | |
| 3987 | processor_t processor = current_processor(); |
| 3988 | bit_clear(pset->pending_spill_cpu_mask, processor->cpu_id); |
| 3989 | |
| 3990 | /* Each of the operations acquire the lock for the pset they target */ |
| 3991 | pset_unlock(pset); |
| 3992 | |
| 3993 | /* Find highest priority runnable thread on all non-native clusters */ |
| 3994 | thread = sched_edge_foreign_runnable_thread_remove(pset, ctime); |
| 3995 | if (thread != THREAD_NULL) { |
| 3996 | return thread; |
| 3997 | } |
| 3998 | |
| 3999 | /* Find highest priority runnable thread on all native clusters */ |
| 4000 | thread = sched_edge_steal_thread(pset, pset->native_psets[0]); |
| 4001 | if (thread != THREAD_NULL) { |
| 4002 | return thread; |
| 4003 | } |
| 4004 | |
| 4005 | /* Find foreign running threads to rebalance; the actual rebalance is done in sched_edge_balance() */ |
| 4006 | boolean_t rebalance_needed = sched_edge_foreign_running_thread_available(pset); |
| 4007 | if (rebalance_needed) { |
| 4008 | return THREAD_NULL; |
| 4009 | } |
| 4010 | |
| 4011 | /* No foreign threads found; find a thread to steal from all clusters based on weights/loads etc. */ |
| 4012 | thread = sched_edge_steal_thread(pset, pset->native_psets[0] | pset->foreign_psets[0]); |
| 4013 | return thread; |
| 4014 | } |
| 4015 | |
| 4016 | /* Return true if this shared resource thread has a better cluster to run on */ |
| 4017 | static bool |
| 4018 | sched_edge_shared_rsrc_migrate_possible(thread_t thread, processor_set_t preferred_pset, processor_set_t current_pset) |
| 4019 | { |
| 4020 | cluster_shared_rsrc_type_t shared_rsrc_type = sched_edge_thread_shared_rsrc_type(thread); |
| 4021 | uint64_t current_pset_load = sched_pset_cluster_shared_rsrc_load(current_pset, shared_rsrc_type); |
| 4022 | /* |
| 4023 | * Adjust the current pset load to discount the current thread only if the current pset is a preferred pset type. This allows the |
| 4024 | * scheduler to rebalance threads from non-preferred cluster to an idle cluster of the preferred type. |
| 4025 | * |
| 4026 | * Edge Scheduler Optimization |
| 4027 | * For multi-cluster machines, it might be useful to enhance this mechanism to migrate between clusters of the preferred type. |
| 4028 | */ |
| 4029 | uint64_t current_pset_adjusted_load = (current_pset->pset_type != preferred_pset->pset_type) ? current_pset_load : (current_pset_load - 1); |
| 4030 | |
| 4031 | uint64_t eligible_pset_bitmask = 0; |
| 4032 | if (edge_shared_rsrc_policy[shared_rsrc_type] == EDGE_SHARED_RSRC_SCHED_POLICY_NATIVE_FIRST) { |
| 4033 | /* |
| 4034 | * For the EDGE_SHARED_RSRC_SCHED_POLICY_NATIVE_FIRST policy, the load balancing occurs |
| 4035 | * only among clusters native with the preferred cluster. |
| 4036 | */ |
| 4037 | eligible_pset_bitmask = preferred_pset->native_psets[0]; |
| 4038 | bit_set(eligible_pset_bitmask, preferred_pset->pset_cluster_id); |
| 4039 | } else { |
| 4040 | /* For EDGE_SHARED_RSRC_SCHED_POLICY_RR, the load balancing happens among all clusters */ |
| 4041 | eligible_pset_bitmask = sched_edge_available_pset_bitmask[0]; |
| 4042 | } |
| 4043 | |
| 4044 | /* For each eligible cluster check if there is an under-utilized cluster; return true if there is */ |
| 4045 | for (int cluster_id = bit_first(eligible_pset_bitmask); cluster_id >= 0; cluster_id = bit_next(eligible_pset_bitmask, cluster_id)) { |
| 4046 | if (cluster_id == current_pset->pset_cluster_id) { |
| 4047 | continue; |
| 4048 | } |
| 4049 | uint64_t cluster_load = sched_pset_cluster_shared_rsrc_load(pset_array[cluster_id], shared_rsrc_type); |
| 4050 | if (current_pset_adjusted_load > cluster_load) { |
| 4051 | KDBG(MACHDBG_CODE(DBG_MACH_SCHED_CLUTCH, MACH_SCHED_EDGE_SHARED_RSRC_MIGRATE) | DBG_FUNC_NONE, current_pset_load, current_pset->pset_cluster_id, cluster_load, cluster_id); |
| 4052 | return true; |
| 4053 | } |
| 4054 | } |
| 4055 | return false; |
| 4056 | } |
| 4057 | |
| 4058 | /* Return true if this thread should not continue running on this processor */ |
| 4059 | static bool |
| 4060 | sched_edge_thread_avoid_processor(processor_t processor, thread_t thread, ast_t reason) |
| 4061 | { |
| 4062 | processor_set_t preferred_pset = pset_array[sched_edge_thread_preferred_cluster(thread)]; |
| 4063 | if (thread_shared_rsrc_policy_get(thread, CLUSTER_SHARED_RSRC_TYPE_RR)) { |
| 4064 | return sched_edge_shared_rsrc_migrate_possible(thread, preferred_pset, processor->processor_set); |
| 4065 | } |
| 4066 | if (thread_shared_rsrc_policy_get(thread, CLUSTER_SHARED_RSRC_TYPE_NATIVE_FIRST)) { |
| 4067 | if (processor->processor_set->pset_type != preferred_pset->pset_type) { |
| 4068 | return true; |
| 4069 | } |
| 4070 | return sched_edge_shared_rsrc_migrate_possible(thread, preferred_pset, processor->processor_set); |
| 4071 | } |
| 4072 | |
| 4073 | /* |
| 4074 | * For long running parallel workloads, it is important to rebalance threads across |
| 4075 | * E/P clusters so that they make equal forward progress. This is achieved through |
| 4076 | * threads expiring their quantum on the non-preferred cluster type and explicitly |
| 4077 | * rebalancing to the preferred cluster runqueue. |
| 4078 | */ |
| 4079 | if (processor->processor_set->pset_type != preferred_pset->pset_type) { |
| 4080 | return true; |
| 4081 | } |
| 4082 | /* If the preferred pset for the thread is now idle, try and migrate thread to that cluster */ |
| 4083 | if ((processor->processor_set != preferred_pset) && |
| 4084 | (sched_edge_cluster_load_metric(preferred_pset, thread->th_sched_bucket) == 0)) { |
| 4085 | return true; |
| 4086 | } |
| 4087 | |
| 4088 | /* |
| 4089 | * On quantum expiry, check the migration bitmask if this thread should be migrated off this core. |
| 4090 | * A migration is only recommended if there's also an idle core available that needn't be avoided. |
| 4091 | */ |
| 4092 | if (reason & AST_QUANTUM) { |
| 4093 | if (bit_test(processor->processor_set->perfcontrol_cpu_migration_bitmask, processor->cpu_id)) { |
| 4094 | uint64_t non_avoided_idle_primary_map = processor->processor_set->cpu_state_map[PROCESSOR_IDLE] & processor->processor_set->recommended_bitmask & ~processor->processor_set->perfcontrol_cpu_migration_bitmask; |
| 4095 | if (non_avoided_idle_primary_map != 0) { |
| 4096 | return true; |
| 4097 | } |
| 4098 | } |
| 4099 | } |
| 4100 | |
| 4101 | return false; |
| 4102 | } |
| 4103 | |
| 4104 | static bool |
| 4105 | sched_edge_balance(__unused processor_t cprocessor, processor_set_t cpset) |
| 4106 | { |
| 4107 | assert(cprocessor == current_processor()); |
| 4108 | pset_unlock(cpset); |
| 4109 | |
| 4110 | uint64_t ast_processor_map = 0; |
| 4111 | sched_ipi_type_t ipi_type[MAX_CPUS] = {SCHED_IPI_NONE}; |
| 4112 | |
| 4113 | bitmap_t *foreign_pset_bitmap = cpset->foreign_psets; |
| 4114 | for (int cluster = bitmap_first(foreign_pset_bitmap, sched_edge_max_clusters); cluster >= 0; cluster = bitmap_next(foreign_pset_bitmap, cluster)) { |
| 4115 | /* Skip the pset if its not schedulable */ |
| 4116 | processor_set_t target_pset = pset_array[cluster]; |
| 4117 | if (sched_edge_pset_available(target_pset) == false) { |
| 4118 | continue; |
| 4119 | } |
| 4120 | |
| 4121 | pset_lock(target_pset); |
| 4122 | uint64_t cpu_running_foreign_map = (target_pset->cpu_running_foreign & target_pset->cpu_state_map[PROCESSOR_RUNNING]); |
| 4123 | for (int cpuid = lsb_first(cpu_running_foreign_map); cpuid >= 0; cpuid = lsb_next(cpu_running_foreign_map, cpuid)) { |
| 4124 | if (!sched_edge_cpu_running_foreign_shared_rsrc_available(target_pset, cpuid, cpset)) { |
| 4125 | continue; |
| 4126 | } |
| 4127 | processor_t target_cpu = processor_array[cpuid]; |
| 4128 | ipi_type[target_cpu->cpu_id] = sched_ipi_action(target_cpu, NULL, SCHED_IPI_EVENT_REBALANCE); |
| 4129 | if (ipi_type[cpuid] != SCHED_IPI_NONE) { |
| 4130 | bit_set(ast_processor_map, cpuid); |
| 4131 | } |
| 4132 | } |
| 4133 | pset_unlock(target_pset); |
| 4134 | } |
| 4135 | |
| 4136 | for (int cpuid = lsb_first(ast_processor_map); cpuid >= 0; cpuid = lsb_next(ast_processor_map, cpuid)) { |
| 4137 | processor_t ast_processor = processor_array[cpuid]; |
| 4138 | sched_ipi_perform(ast_processor, ipi_type[cpuid]); |
| 4139 | KDBG(MACHDBG_CODE(DBG_MACH_SCHED_CLUTCH, MACH_SCHED_EDGE_REBAL_RUNNING) | DBG_FUNC_NONE, 0, cprocessor->cpu_id, cpuid, 0); |
| 4140 | } |
| 4141 | |
| 4142 | /* Core should light-weight idle using WFE if it just sent out rebalance IPIs */ |
| 4143 | return ast_processor_map != 0; |
| 4144 | } |
| 4145 | |
| 4146 | /* |
| 4147 | * sched_edge_migration_check() |
| 4148 | * |
| 4149 | * Routine to evaluate an edge between two clusters to decide if migration is possible |
| 4150 | * across that edge. Also updates the selected_pset and max_edge_delta out parameters |
| 4151 | * accordingly. The return value indicates if the invoking routine should short circuit |
| 4152 | * the search, since an ideal candidate has been found. The routine looks at the regular |
| 4153 | * edges and cluster loads or the shared resource loads based on the type of thread. |
| 4154 | */ |
| 4155 | static bool |
| 4156 | sched_edge_migration_check(uint32_t cluster_id, processor_set_t preferred_pset, |
| 4157 | uint32_t preferred_cluster_load, thread_t thread, processor_set_t *selected_pset, uint32_t *max_edge_delta) |
| 4158 | { |
| 4159 | uint32_t preferred_cluster_id = preferred_pset->pset_cluster_id; |
| 4160 | cluster_type_t preferred_cluster_type = pset_type_for_id(preferred_cluster_id); |
| 4161 | processor_set_t dst_pset = pset_array[cluster_id]; |
| 4162 | cluster_shared_rsrc_type_t shared_rsrc_type = sched_edge_thread_shared_rsrc_type(thread); |
| 4163 | bool shared_rsrc_thread = (shared_rsrc_type != CLUSTER_SHARED_RSRC_TYPE_NONE); |
| 4164 | |
| 4165 | if (cluster_id == preferred_cluster_id) { |
| 4166 | return false; |
| 4167 | } |
| 4168 | |
| 4169 | if (dst_pset == NULL) { |
| 4170 | return false; |
| 4171 | } |
| 4172 | |
| 4173 | sched_clutch_edge *edge = preferred_pset->sched_edges; |
| 4174 | if (edge[cluster_id].sce_migration_allowed == false) { |
| 4175 | return false; |
| 4176 | } |
| 4177 | uint32_t dst_load = shared_rsrc_thread ? (uint32_t)sched_pset_cluster_shared_rsrc_load(dst_pset, shared_rsrc_type) : sched_edge_cluster_load_metric(dst_pset, thread->th_sched_bucket); |
| 4178 | if (dst_load == 0) { |
| 4179 | /* The candidate cluster is idle; select it immediately for execution */ |
| 4180 | *selected_pset = dst_pset; |
| 4181 | *max_edge_delta = preferred_cluster_load; |
| 4182 | return true; |
| 4183 | } |
| 4184 | |
| 4185 | uint32_t edge_delta = 0; |
| 4186 | if (dst_load > preferred_cluster_load) { |
| 4187 | return false; |
| 4188 | } |
| 4189 | edge_delta = preferred_cluster_load - dst_load; |
| 4190 | if (!shared_rsrc_thread && (edge_delta < edge[cluster_id].sce_migration_weight)) { |
| 4191 | /* |
| 4192 | * For non shared resource threads, use the edge migration weight to decide if |
| 4193 | * this cluster is over-committed at the QoS level of this thread. |
| 4194 | */ |
| 4195 | return false; |
| 4196 | } |
| 4197 | |
| 4198 | if (edge_delta < *max_edge_delta) { |
| 4199 | return false; |
| 4200 | } |
| 4201 | if (edge_delta == *max_edge_delta) { |
| 4202 | /* If the edge delta is the same as the max delta, make sure a homogeneous cluster is picked */ |
| 4203 | boolean_t selected_homogeneous = (pset_type_for_id((*selected_pset)->pset_cluster_id) == preferred_cluster_type); |
| 4204 | boolean_t candidate_homogeneous = (pset_type_for_id(dst_pset->pset_cluster_id) == preferred_cluster_type); |
| 4205 | if (selected_homogeneous || !candidate_homogeneous) { |
| 4206 | return false; |
| 4207 | } |
| 4208 | } |
| 4209 | /* dst_pset seems to be the best candidate for migration; however other candidates should still be evaluated */ |
| 4210 | *max_edge_delta = edge_delta; |
| 4211 | *selected_pset = dst_pset; |
| 4212 | return false; |
| 4213 | } |
| 4214 | |
| 4215 | /* |
| 4216 | * sched_edge_iterate_clusters_ordered() |
| 4217 | * |
| 4218 | * Routine to iterate clusters in die local order. For multi-die machines, |
| 4219 | * the routine ensures that the candidate clusters on the same die as the |
| 4220 | * passed in pset are returned before the remote die clusters. This should |
| 4221 | * be used in all places where cluster selection in die order matters. |
| 4222 | */ |
| 4223 | |
| 4224 | static int |
| 4225 | sched_edge_iterate_clusters_ordered(processor_set_t starting_pset, uint64_t candidate_map, int previous_cluster) |
| 4226 | { |
| 4227 | int cluster_id = -1; |
| 4228 | |
| 4229 | uint64_t local_candidate_map = starting_pset->local_psets[0] & candidate_map; |
| 4230 | uint64_t remote_candidate_map = starting_pset->remote_psets[0] & candidate_map; |
| 4231 | |
| 4232 | if (previous_cluster == -1) { |
| 4233 | /* previous_cluster == -1 indicates the initial condition */ |
| 4234 | cluster_id = bit_first(local_candidate_map); |
| 4235 | if (cluster_id != -1) { |
| 4236 | return cluster_id; |
| 4237 | } |
| 4238 | return bit_first(remote_candidate_map); |
| 4239 | } else { |
| 4240 | /* |
| 4241 | * After the initial condition, the routine attempts to return a |
| 4242 | * cluster in the previous_cluster's locality. If none is available, |
| 4243 | * it looks at remote clusters. |
| 4244 | */ |
| 4245 | if (bit_test(local_candidate_map, previous_cluster)) { |
| 4246 | cluster_id = bit_next(local_candidate_map, previous_cluster); |
| 4247 | if (cluster_id != -1) { |
| 4248 | return cluster_id; |
| 4249 | } else { |
| 4250 | return bit_first(remote_candidate_map); |
| 4251 | } |
| 4252 | } |
| 4253 | return bit_next(remote_candidate_map, previous_cluster); |
| 4254 | } |
| 4255 | } |
| 4256 | |
| 4257 | /* |
| 4258 | * sched_edge_migrate_edges_evaluate() |
| 4259 | * |
| 4260 | * Routine to find the candidate for thread migration based on edge weights. |
| 4261 | * |
| 4262 | * Returns the most ideal cluster for execution of this thread based on outgoing edges of the preferred pset. Can |
| 4263 | * return preferred_pset if its the most ideal destination for this thread. |
| 4264 | */ |
| 4265 | static processor_set_t |
| 4266 | sched_edge_migrate_edges_evaluate(processor_set_t preferred_pset, uint32_t preferred_cluster_load, thread_t thread) |
| 4267 | { |
| 4268 | processor_set_t selected_pset = preferred_pset; |
| 4269 | uint32_t max_edge_delta = 0; |
| 4270 | bool search_complete = false; |
| 4271 | cluster_shared_rsrc_type_t shared_rsrc_type = sched_edge_thread_shared_rsrc_type(thread); |
| 4272 | bool shared_rsrc_thread = (shared_rsrc_type != CLUSTER_SHARED_RSRC_TYPE_NONE); |
| 4273 | |
| 4274 | bitmap_t *foreign_pset_bitmap = preferred_pset->foreign_psets; |
| 4275 | bitmap_t *native_pset_bitmap = preferred_pset->native_psets; |
| 4276 | /* Always start the search with the native clusters */ |
| 4277 | int cluster_id = -1; |
| 4278 | while ((cluster_id = sched_edge_iterate_clusters_ordered(preferred_pset, native_pset_bitmap[0], cluster_id)) != -1) { |
| 4279 | search_complete = sched_edge_migration_check(cluster_id, preferred_pset, preferred_cluster_load, thread, &selected_pset, &max_edge_delta); |
| 4280 | if (search_complete) { |
| 4281 | break; |
| 4282 | } |
| 4283 | } |
| 4284 | |
| 4285 | if (search_complete) { |
| 4286 | return selected_pset; |
| 4287 | } |
| 4288 | |
| 4289 | if (shared_rsrc_thread && (edge_shared_rsrc_policy[shared_rsrc_type] == EDGE_SHARED_RSRC_SCHED_POLICY_NATIVE_FIRST)) { |
| 4290 | /* |
| 4291 | * If the shared resource scheduling policy is EDGE_SHARED_RSRC_SCHED_POLICY_NATIVE_FIRST, the scheduler tries |
| 4292 | * to fill up the preferred cluster and its homogeneous peers first. |
| 4293 | */ |
| 4294 | |
| 4295 | if (max_edge_delta > 0) { |
| 4296 | /* |
| 4297 | * This represents that there is a peer cluster of the same type as the preferred cluster (since the code |
| 4298 | * above only looks at the native_psets) which has lesser threads as compared to the preferred cluster of |
| 4299 | * the shared resource type. This indicates that there is capacity on a native cluster where this thread |
| 4300 | * should be placed. |
| 4301 | */ |
| 4302 | return selected_pset; |
| 4303 | } |
| 4304 | /* |
| 4305 | * Indicates that all peer native clusters are at the same shared resource usage; check if the preferred cluster has |
| 4306 | * any more capacity left. |
| 4307 | */ |
| 4308 | if (sched_pset_cluster_shared_rsrc_load(preferred_pset, shared_rsrc_type) < pset_available_cpu_count(preferred_pset)) { |
| 4309 | return preferred_pset; |
| 4310 | } |
| 4311 | /* |
| 4312 | * Looks like the preferred cluster and all its native peers are full with shared resource threads; need to start looking |
| 4313 | * at non-native clusters for capacity. |
| 4314 | */ |
| 4315 | } |
| 4316 | |
| 4317 | /* Now look at the non-native clusters */ |
| 4318 | cluster_id = -1; |
| 4319 | while ((cluster_id = sched_edge_iterate_clusters_ordered(preferred_pset, foreign_pset_bitmap[0], cluster_id)) != -1) { |
| 4320 | search_complete = sched_edge_migration_check(cluster_id, preferred_pset, preferred_cluster_load, thread, &selected_pset, &max_edge_delta); |
| 4321 | if (search_complete) { |
| 4322 | break; |
| 4323 | } |
| 4324 | } |
| 4325 | return selected_pset; |
| 4326 | } |
| 4327 | |
| 4328 | /* |
| 4329 | * sched_edge_candidate_alternative() |
| 4330 | * |
| 4331 | * Routine to find an alternative cluster from candidate_cluster_bitmap since the |
| 4332 | * selected_pset is not available for execution. The logic tries to prefer homogeneous |
| 4333 | * clusters over heterogeneous clusters since this is typically used in thread |
| 4334 | * placement decisions. |
| 4335 | */ |
| 4336 | _Static_assert(MAX_PSETS <= 64, "Unable to fit maximum number of psets in uint64_t bitmask" ); |
| 4337 | static processor_set_t |
| 4338 | sched_edge_candidate_alternative(processor_set_t selected_pset, uint64_t candidate_cluster_bitmap) |
| 4339 | { |
| 4340 | /* |
| 4341 | * It looks like the most ideal pset is not available for scheduling currently. |
| 4342 | * Try to find a homogeneous cluster that is still available. |
| 4343 | */ |
| 4344 | uint64_t available_native_clusters = selected_pset->native_psets[0] & candidate_cluster_bitmap; |
| 4345 | int available_cluster_id = lsb_first(available_native_clusters); |
| 4346 | if (available_cluster_id == -1) { |
| 4347 | /* Looks like none of the homogeneous clusters are available; pick the first available cluster */ |
| 4348 | available_cluster_id = bit_first(candidate_cluster_bitmap); |
| 4349 | } |
| 4350 | assert(available_cluster_id != -1); |
| 4351 | return pset_array[available_cluster_id]; |
| 4352 | } |
| 4353 | |
| 4354 | /* |
| 4355 | * sched_edge_switch_pset_lock() |
| 4356 | * |
| 4357 | * Helper routine for sched_edge_migrate_candidate() which switches pset locks (if needed) based on |
| 4358 | * switch_pset_locks. |
| 4359 | * Returns the newly locked pset after the switch. |
| 4360 | */ |
| 4361 | static processor_set_t |
| 4362 | sched_edge_switch_pset_lock(processor_set_t selected_pset, processor_set_t locked_pset, bool switch_pset_locks) |
| 4363 | { |
| 4364 | if (!switch_pset_locks) { |
| 4365 | return locked_pset; |
| 4366 | } |
| 4367 | if (selected_pset != locked_pset) { |
| 4368 | pset_unlock(locked_pset); |
| 4369 | pset_lock(selected_pset); |
| 4370 | return selected_pset; |
| 4371 | } else { |
| 4372 | return locked_pset; |
| 4373 | } |
| 4374 | } |
| 4375 | |
| 4376 | /* |
| 4377 | * sched_edge_amp_rebalance_pset() |
| 4378 | * |
| 4379 | * Routine to decide where a thread which is eligible for AMP rebalance (i.e. |
| 4380 | * has executed on non-preferred cluster type for a while) should be enqueued. |
| 4381 | * The algorithm maintains a history of AMP rebalance decisions on the clutch |
| 4382 | * bucket group of the workload and round-robins between clusters to ensure |
| 4383 | * that all threads get a chance on the performance cores and make equal |
| 4384 | * progress. |
| 4385 | */ |
| 4386 | static processor_set_t |
| 4387 | sched_edge_amp_rebalance_pset(processor_set_t preferred_pset, thread_t thread) |
| 4388 | { |
| 4389 | sched_clutch_t clutch = sched_clutch_for_thread(thread); |
| 4390 | sched_clutch_bucket_group_t clutch_bucket_group = &clutch->sc_clutch_groups[thread->th_sched_bucket]; |
| 4391 | |
| 4392 | uint32_t last_chosen_cluster, new_chosen_cluster; |
| 4393 | |
| 4394 | /* Only AMP rebalance within clusters native to the preferred cluster */ |
| 4395 | uint64_t eligible_pset_bitmask = preferred_pset->native_psets[0]; |
| 4396 | /* Preferred cluster is also eligible for rebalancing */ |
| 4397 | bit_set(eligible_pset_bitmask, preferred_pset->pset_cluster_id); |
| 4398 | /* Atomically update the AMP rebalance cluster for the clutch bucket group */ |
| 4399 | os_atomic_rmw_loop(&clutch_bucket_group->scbg_amp_rebalance_last_chosen, last_chosen_cluster, new_chosen_cluster, relaxed, { |
| 4400 | if (last_chosen_cluster == UINT32_MAX) { |
| 4401 | new_chosen_cluster = preferred_pset->pset_cluster_id; |
| 4402 | } else { |
| 4403 | new_chosen_cluster = lsb_next(eligible_pset_bitmask, last_chosen_cluster); |
| 4404 | if (new_chosen_cluster == -1) { |
| 4405 | /* Rotate to the start of the eligible bitmask */ |
| 4406 | new_chosen_cluster = lsb_first(eligible_pset_bitmask); |
| 4407 | } |
| 4408 | } |
| 4409 | }); |
| 4410 | return pset_array[new_chosen_cluster]; |
| 4411 | } |
| 4412 | |
| 4413 | /* |
| 4414 | * sched_edge_migrate_candidate() |
| 4415 | * |
| 4416 | * Routine to find an appropriate cluster for scheduling a thread. The routine looks at the properties of |
| 4417 | * the thread and the preferred cluster to determine the best available pset for scheduling. |
| 4418 | * |
| 4419 | * The switch_pset_locks parameter defines whether the routine should switch pset locks to provide an |
| 4420 | * accurate scheduling decision. This mode is typically used when choosing a pset for scheduling a thread since the |
| 4421 | * decision has to be synchronized with another CPU changing the recommendation of clusters available |
| 4422 | * on the system. If this parameter is set to false, this routine returns the best effort indication of |
| 4423 | * the cluster the thread should be scheduled on. It is typically used in fast path contexts (such as |
| 4424 | * SCHED(thread_avoid_processor) to determine if there is a possibility of scheduling this thread on a |
| 4425 | * more appropriate cluster. |
| 4426 | * |
| 4427 | * Routine returns the most ideal cluster for scheduling. If switch_pset_locks is set, it ensures that the |
| 4428 | * resultant pset lock is held. |
| 4429 | */ |
| 4430 | static processor_set_t |
| 4431 | sched_edge_migrate_candidate(_Nullable processor_set_t preferred_pset, thread_t thread, processor_set_t locked_pset, bool switch_pset_locks) |
| 4432 | { |
| 4433 | processor_set_t selected_pset = preferred_pset; |
| 4434 | cluster_shared_rsrc_type_t shared_rsrc_type = sched_edge_thread_shared_rsrc_type(thread); |
| 4435 | bool shared_rsrc_thread = (shared_rsrc_type != CLUSTER_SHARED_RSRC_TYPE_NONE); |
| 4436 | |
| 4437 | if (SCHED_CLUTCH_THREAD_CLUSTER_BOUND(thread)) { |
| 4438 | /* For bound threads always recommend the cluster its bound to */ |
| 4439 | selected_pset = pset_array[sched_edge_thread_bound_cluster_id(thread)]; |
| 4440 | if (selected_pset != NULL) { |
| 4441 | locked_pset = sched_edge_switch_pset_lock(selected_pset, locked_pset, switch_pset_locks); |
| 4442 | if (sched_edge_pset_available(selected_pset) || (SCHED_CLUTCH_THREAD_CLUSTER_BOUND_SOFT(thread) == false)) { |
| 4443 | /* |
| 4444 | * If the bound cluster is not available, check if the thread is soft bound. For soft bound threads, |
| 4445 | * fall through to the regular cluster selection logic which handles unavailable clusters |
| 4446 | * appropriately. If the thread is hard bound, then return the bound cluster always. |
| 4447 | */ |
| 4448 | return selected_pset; |
| 4449 | } |
| 4450 | } |
| 4451 | } |
| 4452 | |
| 4453 | uint64_t candidate_cluster_bitmap = mask(sched_edge_max_clusters); |
| 4454 | #if DEVELOPMENT || DEBUG |
| 4455 | extern int enable_task_set_cluster_type; |
| 4456 | task_t task = get_threadtask(thread); |
| 4457 | if (enable_task_set_cluster_type && (task->t_flags & TF_USE_PSET_HINT_CLUSTER_TYPE)) { |
| 4458 | processor_set_t pset_hint = task->pset_hint; |
| 4459 | if (pset_hint && (selected_pset == NULL || selected_pset->pset_cluster_type != pset_hint->pset_cluster_type)) { |
| 4460 | selected_pset = pset_hint; |
| 4461 | goto migrate_candidate_available_check; |
| 4462 | } |
| 4463 | } |
| 4464 | #endif |
| 4465 | |
| 4466 | if (preferred_pset == NULL) { |
| 4467 | /* The preferred_pset has not finished initializing at boot */ |
| 4468 | goto migrate_candidate_available_check; |
| 4469 | } |
| 4470 | |
| 4471 | if (thread->sched_pri >= BASEPRI_RTQUEUES) { |
| 4472 | /* For realtime threads, try and schedule them on the preferred pset always */ |
| 4473 | goto migrate_candidate_available_check; |
| 4474 | } |
| 4475 | |
| 4476 | uint32_t preferred_cluster_load = shared_rsrc_thread ? (uint32_t)sched_pset_cluster_shared_rsrc_load(preferred_pset, shared_rsrc_type) : sched_edge_cluster_load_metric(preferred_pset, thread->th_sched_bucket); |
| 4477 | if (preferred_cluster_load == 0) { |
| 4478 | goto migrate_candidate_available_check; |
| 4479 | } |
| 4480 | |
| 4481 | /* |
| 4482 | * If a thread is being rebalanced for achieving equal progress of parallel workloads, |
| 4483 | * it needs to end up on the preferred runqueue. This mechanism should only be used for |
| 4484 | * threads which have been previously migrated to the non-preferred cluster type. |
| 4485 | * |
| 4486 | * The AMP rebalancing mechanism is available for regular threads or shared resource |
| 4487 | * threads with the EDGE_SHARED_RSRC_SCHED_POLICY_NATIVE_FIRST policy. |
| 4488 | */ |
| 4489 | bool amp_rebalance_eligible = (!shared_rsrc_thread) || (shared_rsrc_thread && (edge_shared_rsrc_policy[shared_rsrc_type] == EDGE_SHARED_RSRC_SCHED_POLICY_NATIVE_FIRST)); |
| 4490 | if (amp_rebalance_eligible) { |
| 4491 | boolean_t amp_rebalance = (thread->reason & (AST_REBALANCE | AST_QUANTUM)) == (AST_REBALANCE | AST_QUANTUM); |
| 4492 | if (amp_rebalance) { |
| 4493 | boolean_t non_preferred_pset = (thread->last_processor->processor_set->pset_type != preferred_pset->pset_type); |
| 4494 | if (non_preferred_pset) { |
| 4495 | selected_pset = sched_edge_amp_rebalance_pset(preferred_pset, thread); |
| 4496 | goto migrate_candidate_available_check; |
| 4497 | } |
| 4498 | } |
| 4499 | } |
| 4500 | |
| 4501 | /* Look at edge weights to decide the most ideal migration candidate for this thread */ |
| 4502 | selected_pset = sched_edge_migrate_edges_evaluate(preferred_pset, preferred_cluster_load, thread); |
| 4503 | |
| 4504 | migrate_candidate_available_check: |
| 4505 | if (selected_pset == NULL) { |
| 4506 | /* The selected_pset has not finished initializing at boot */ |
| 4507 | pset_unlock(locked_pset); |
| 4508 | return NULL; |
| 4509 | } |
| 4510 | |
| 4511 | locked_pset = sched_edge_switch_pset_lock(selected_pset, locked_pset, switch_pset_locks); |
| 4512 | if (sched_edge_pset_available(selected_pset) == true) { |
| 4513 | KDBG(MACHDBG_CODE(DBG_MACH_SCHED_CLUTCH, MACH_SCHED_EDGE_CLUSTER_OVERLOAD) | DBG_FUNC_NONE, thread_tid(thread), preferred_pset->pset_cluster_id, selected_pset->pset_cluster_id, preferred_cluster_load); |
| 4514 | return selected_pset; |
| 4515 | } |
| 4516 | /* Looks like selected_pset is not available for scheduling; remove it from candidate_cluster_bitmap */ |
| 4517 | bitmap_clear(&candidate_cluster_bitmap, selected_pset->pset_cluster_id); |
| 4518 | if (__improbable(bitmap_first(&candidate_cluster_bitmap, sched_edge_max_clusters) == -1)) { |
| 4519 | pset_unlock(locked_pset); |
| 4520 | return NULL; |
| 4521 | } |
| 4522 | /* Try and find an alternative for the selected pset */ |
| 4523 | selected_pset = sched_edge_candidate_alternative(selected_pset, candidate_cluster_bitmap); |
| 4524 | goto migrate_candidate_available_check; |
| 4525 | } |
| 4526 | |
| 4527 | static processor_t |
| 4528 | sched_edge_choose_processor(processor_set_t pset, processor_t processor, thread_t thread) |
| 4529 | { |
| 4530 | /* Bound threads don't call this function */ |
| 4531 | assert(thread->bound_processor == PROCESSOR_NULL); |
| 4532 | processor_t chosen_processor = PROCESSOR_NULL; |
| 4533 | |
| 4534 | /* |
| 4535 | * sched_edge_preferred_pset() returns the preferred pset for a given thread. |
| 4536 | * It should take the passed in "pset" as a hint which represents the recency metric for |
| 4537 | * pset selection logic. |
| 4538 | */ |
| 4539 | processor_set_t preferred_pset = pset_array[sched_edge_thread_preferred_cluster(thread)]; |
| 4540 | processor_set_t chosen_pset = preferred_pset; |
| 4541 | /* |
| 4542 | * If the preferred pset is overloaded, find a pset which is the best candidate to migrate |
| 4543 | * threads to. sched_edge_migrate_candidate() returns the preferred pset |
| 4544 | * if it has capacity; otherwise finds the best candidate pset to migrate this thread to. |
| 4545 | * |
| 4546 | * Edge Scheduler Optimization |
| 4547 | * It might be useful to build a recency metric for the thread for multiple clusters and |
| 4548 | * factor that into the migration decisions. |
| 4549 | */ |
| 4550 | chosen_pset = sched_edge_migrate_candidate(preferred_pset, thread, pset, true); |
| 4551 | if (chosen_pset) { |
| 4552 | chosen_processor = choose_processor(chosen_pset, processor, thread); |
| 4553 | } |
| 4554 | /* For RT threads, choose_processor() can return a different cluster than the one passed into it */ |
| 4555 | assert(chosen_processor ? chosen_processor->processor_set->pset_type == chosen_pset->pset_type : true); |
| 4556 | return chosen_processor; |
| 4557 | } |
| 4558 | |
| 4559 | /* |
| 4560 | * sched_edge_clutch_bucket_threads_drain() |
| 4561 | * |
| 4562 | * Drains all the runnable threads which are not restricted to the root_clutch (due to clutch |
| 4563 | * bucket overrides etc.) into a local thread queue. |
| 4564 | */ |
| 4565 | static void |
| 4566 | sched_edge_clutch_bucket_threads_drain(sched_clutch_bucket_t clutch_bucket, sched_clutch_root_t root_clutch, queue_t clutch_threads) |
| 4567 | { |
| 4568 | thread_t thread = THREAD_NULL; |
| 4569 | uint64_t current_timestamp = mach_approximate_time(); |
| 4570 | qe_foreach_element_safe(thread, &clutch_bucket->scb_thread_timeshare_queue, th_clutch_timeshare_link) { |
| 4571 | sched_clutch_thread_remove(root_clutch, thread, current_timestamp, SCHED_CLUTCH_BUCKET_OPTIONS_NONE); |
| 4572 | enqueue_tail(clutch_threads, &thread->runq_links); |
| 4573 | } |
| 4574 | } |
| 4575 | |
| 4576 | /* |
| 4577 | * sched_edge_run_drained_threads() |
| 4578 | * |
| 4579 | * Makes all drained threads in a local queue runnable. |
| 4580 | */ |
| 4581 | static void |
| 4582 | sched_edge_run_drained_threads(queue_t clutch_threads) |
| 4583 | { |
| 4584 | thread_t thread; |
| 4585 | /* Now setrun all the threads in the local queue */ |
| 4586 | qe_foreach_element_safe(thread, clutch_threads, runq_links) { |
| 4587 | remqueue(&thread->runq_links); |
| 4588 | thread_lock(thread); |
| 4589 | thread_setrun(thread, SCHED_TAILQ); |
| 4590 | thread_unlock(thread); |
| 4591 | } |
| 4592 | } |
| 4593 | |
| 4594 | /* |
| 4595 | * sched_edge_update_preferred_cluster() |
| 4596 | * |
| 4597 | * Routine to update the preferred cluster for QoS buckets within a thread group. |
| 4598 | * The buckets to be updated are specifed as a bitmap (clutch_bucket_modify_bitmap). |
| 4599 | */ |
| 4600 | static void |
| 4601 | sched_edge_update_preferred_cluster( |
| 4602 | sched_clutch_t sched_clutch, |
| 4603 | bitmap_t *clutch_bucket_modify_bitmap, |
| 4604 | uint32_t *tg_bucket_preferred_cluster) |
| 4605 | { |
| 4606 | for (int bucket = bitmap_first(clutch_bucket_modify_bitmap, TH_BUCKET_SCHED_MAX); bucket >= 0; bucket = bitmap_next(clutch_bucket_modify_bitmap, bucket)) { |
| 4607 | os_atomic_store(&sched_clutch->sc_clutch_groups[bucket].scbg_preferred_cluster, tg_bucket_preferred_cluster[bucket], relaxed); |
| 4608 | } |
| 4609 | } |
| 4610 | |
| 4611 | /* |
| 4612 | * sched_edge_migrate_thread_group_runnable_threads() |
| 4613 | * |
| 4614 | * Routine to implement the migration of threads on a cluster when the thread group |
| 4615 | * recommendation is updated. The migration works using a 2-phase |
| 4616 | * algorithm. |
| 4617 | * |
| 4618 | * Phase 1: With the pset lock held, check the recommendation of the clutch buckets. |
| 4619 | * For each clutch bucket, if it needs to be migrated immediately, drain the threads |
| 4620 | * into a local thread queue. Otherwise mark the clutch bucket as native/foreign as |
| 4621 | * appropriate. |
| 4622 | * |
| 4623 | * Phase 2: After unlocking the pset, drain all the threads from the local thread |
| 4624 | * queue and mark them runnable which should land them in the right hierarchy. |
| 4625 | * |
| 4626 | * The routine assumes that the preferences for the clutch buckets/clutch bucket |
| 4627 | * groups have already been updated by the caller. |
| 4628 | * |
| 4629 | * - Called with the pset locked and interrupts disabled. |
| 4630 | * - Returns with the pset unlocked. |
| 4631 | */ |
| 4632 | static void |
| 4633 | sched_edge_migrate_thread_group_runnable_threads( |
| 4634 | sched_clutch_t sched_clutch, |
| 4635 | sched_clutch_root_t root_clutch, |
| 4636 | bitmap_t *clutch_bucket_modify_bitmap, |
| 4637 | __unused uint32_t *tg_bucket_preferred_cluster, |
| 4638 | bool migrate_immediately) |
| 4639 | { |
| 4640 | /* Queue to hold threads that have been drained from clutch buckets to be migrated */ |
| 4641 | queue_head_t clutch_threads; |
| 4642 | queue_init(&clutch_threads); |
| 4643 | |
| 4644 | for (int bucket = bitmap_first(clutch_bucket_modify_bitmap, TH_BUCKET_SCHED_MAX); bucket >= 0; bucket = bitmap_next(clutch_bucket_modify_bitmap, bucket)) { |
| 4645 | /* Get the clutch bucket for this cluster and sched bucket */ |
| 4646 | sched_clutch_bucket_group_t clutch_bucket_group = &(sched_clutch->sc_clutch_groups[bucket]); |
| 4647 | sched_clutch_bucket_t clutch_bucket = &(clutch_bucket_group->scbg_clutch_buckets[root_clutch->scr_cluster_id]); |
| 4648 | sched_clutch_root_t scb_root = os_atomic_load(&clutch_bucket->scb_root, relaxed); |
| 4649 | if (scb_root == NULL) { |
| 4650 | /* Clutch bucket not runnable or already in the right hierarchy; nothing to do here */ |
| 4651 | assert(clutch_bucket->scb_thr_count == 0); |
| 4652 | continue; |
| 4653 | } |
| 4654 | assert(scb_root == root_clutch); |
| 4655 | uint32_t clutch_bucket_preferred_cluster = sched_clutch_bucket_preferred_cluster(clutch_bucket); |
| 4656 | |
| 4657 | if (migrate_immediately) { |
| 4658 | /* |
| 4659 | * For transitions where threads need to be migrated immediately, drain the threads into a |
| 4660 | * local queue unless we are looking at the clutch buckets for the newly recommended |
| 4661 | * cluster. |
| 4662 | */ |
| 4663 | if (root_clutch->scr_cluster_id != clutch_bucket_preferred_cluster) { |
| 4664 | sched_edge_clutch_bucket_threads_drain(clutch_bucket, scb_root, &clutch_threads); |
| 4665 | } else { |
| 4666 | sched_clutch_bucket_mark_native(clutch_bucket, root_clutch); |
| 4667 | } |
| 4668 | } else { |
| 4669 | /* Check if this cluster is the same type as the newly recommended cluster */ |
| 4670 | boolean_t homogeneous_cluster = (pset_type_for_id(root_clutch->scr_cluster_id) == pset_type_for_id(clutch_bucket_preferred_cluster)); |
| 4671 | /* |
| 4672 | * If threads do not have to be migrated immediately, just change the native/foreign |
| 4673 | * flag on the clutch bucket. |
| 4674 | */ |
| 4675 | if (homogeneous_cluster) { |
| 4676 | sched_clutch_bucket_mark_native(clutch_bucket, root_clutch); |
| 4677 | } else { |
| 4678 | sched_clutch_bucket_mark_foreign(clutch_bucket, root_clutch); |
| 4679 | } |
| 4680 | } |
| 4681 | } |
| 4682 | |
| 4683 | pset_unlock(root_clutch->scr_pset); |
| 4684 | sched_edge_run_drained_threads(&clutch_threads); |
| 4685 | } |
| 4686 | |
| 4687 | /* |
| 4688 | * sched_edge_migrate_thread_group_running_threads() |
| 4689 | * |
| 4690 | * Routine to find all running threads of a thread group on a specific cluster |
| 4691 | * and IPI them if they need to be moved immediately. |
| 4692 | */ |
| 4693 | static void |
| 4694 | sched_edge_migrate_thread_group_running_threads( |
| 4695 | sched_clutch_t sched_clutch, |
| 4696 | sched_clutch_root_t root_clutch, |
| 4697 | __unused bitmap_t *clutch_bucket_modify_bitmap, |
| 4698 | uint32_t *tg_bucket_preferred_cluster, |
| 4699 | bool migrate_immediately) |
| 4700 | { |
| 4701 | if (migrate_immediately == false) { |
| 4702 | /* If CLPC has recommended not to move threads immediately, nothing to do here */ |
| 4703 | return; |
| 4704 | } |
| 4705 | |
| 4706 | /* |
| 4707 | * Edge Scheduler Optimization |
| 4708 | * |
| 4709 | * When the system has a large number of clusters and cores, it might be useful to |
| 4710 | * narrow down the iteration by using a thread running bitmap per clutch. |
| 4711 | */ |
| 4712 | uint64_t ast_processor_map = 0; |
| 4713 | sched_ipi_type_t ipi_type[MAX_CPUS] = {SCHED_IPI_NONE}; |
| 4714 | |
| 4715 | uint64_t running_map = root_clutch->scr_pset->cpu_state_map[PROCESSOR_RUNNING]; |
| 4716 | /* |
| 4717 | * Iterate all CPUs and look for the ones running threads from this thread group and are |
| 4718 | * not restricted to the specific cluster (due to overrides etc.) |
| 4719 | */ |
| 4720 | for (int cpuid = lsb_first(running_map); cpuid >= 0; cpuid = lsb_next(running_map, cpuid)) { |
| 4721 | processor_t src_processor = processor_array[cpuid]; |
| 4722 | boolean_t expected_tg = (src_processor->current_thread_group == sched_clutch->sc_tg); |
| 4723 | sched_bucket_t processor_sched_bucket = src_processor->processor_set->cpu_running_buckets[cpuid]; |
| 4724 | if (processor_sched_bucket == TH_BUCKET_SCHED_MAX) { |
| 4725 | continue; |
| 4726 | } |
| 4727 | boolean_t non_preferred_cluster = tg_bucket_preferred_cluster[processor_sched_bucket] != root_clutch->scr_cluster_id; |
| 4728 | |
| 4729 | if (expected_tg && non_preferred_cluster) { |
| 4730 | ipi_type[cpuid] = sched_ipi_action(src_processor, NULL, SCHED_IPI_EVENT_REBALANCE); |
| 4731 | if (ipi_type[cpuid] != SCHED_IPI_NONE) { |
| 4732 | bit_set(ast_processor_map, cpuid); |
| 4733 | } else if (src_processor == current_processor()) { |
| 4734 | bit_set(root_clutch->scr_pset->pending_AST_PREEMPT_cpu_mask, cpuid); |
| 4735 | ast_t new_preempt = update_pending_nonurgent_preemption(src_processor, AST_PREEMPT); |
| 4736 | ast_on(new_preempt); |
| 4737 | } |
| 4738 | } |
| 4739 | } |
| 4740 | |
| 4741 | /* Perform all the IPIs */ |
| 4742 | if (bit_first(ast_processor_map) != -1) { |
| 4743 | for (int cpuid = lsb_first(ast_processor_map); cpuid >= 0; cpuid = lsb_next(ast_processor_map, cpuid)) { |
| 4744 | processor_t ast_processor = processor_array[cpuid]; |
| 4745 | sched_ipi_perform(ast_processor, ipi_type[cpuid]); |
| 4746 | } |
| 4747 | KDBG(MACHDBG_CODE(DBG_MACH_SCHED, MACH_AMP_RECOMMENDATION_CHANGE) | DBG_FUNC_NONE, thread_group_get_id(sched_clutch->sc_tg), ast_processor_map, 0, 0); |
| 4748 | } |
| 4749 | } |
| 4750 | |
| 4751 | /* |
| 4752 | * sched_edge_tg_preferred_cluster_change() |
| 4753 | * |
| 4754 | * Routine to handle changes to a thread group's recommendation. In the Edge Scheduler, the preferred cluster |
| 4755 | * is specified on a per-QoS basis within a thread group. The routine updates the preferences and performs |
| 4756 | * thread migrations based on the policy specified by CLPC. |
| 4757 | * tg_bucket_preferred_cluster is an array of size TH_BUCKET_SCHED_MAX which specifies the new preferred cluster |
| 4758 | * for each QoS within the thread group. |
| 4759 | */ |
| 4760 | void |
| 4761 | sched_edge_tg_preferred_cluster_change(struct thread_group *tg, uint32_t *tg_bucket_preferred_cluster, sched_perfcontrol_preferred_cluster_options_t options) |
| 4762 | { |
| 4763 | sched_clutch_t clutch = sched_clutch_for_thread_group(tg); |
| 4764 | /* |
| 4765 | * In order to optimize the processing, create a bitmap which represents all QoS buckets |
| 4766 | * for which the preferred cluster has changed. |
| 4767 | */ |
| 4768 | bitmap_t clutch_bucket_modify_bitmap[BITMAP_LEN(TH_BUCKET_SCHED_MAX)] = {0}; |
| 4769 | for (sched_bucket_t bucket = TH_BUCKET_FIXPRI; bucket < TH_BUCKET_SCHED_MAX; bucket++) { |
| 4770 | uint32_t old_preferred_cluster = sched_edge_clutch_bucket_group_preferred_cluster(&clutch->sc_clutch_groups[bucket]); |
| 4771 | uint32_t new_preferred_cluster = tg_bucket_preferred_cluster[bucket]; |
| 4772 | if (old_preferred_cluster != new_preferred_cluster) { |
| 4773 | bitmap_set(clutch_bucket_modify_bitmap, bucket); |
| 4774 | } |
| 4775 | } |
| 4776 | if (bitmap_lsb_first(clutch_bucket_modify_bitmap, TH_BUCKET_SCHED_MAX) == -1) { |
| 4777 | /* No changes in any clutch buckets; nothing to do here */ |
| 4778 | return; |
| 4779 | } |
| 4780 | |
| 4781 | for (uint32_t cluster_id = 0; cluster_id < sched_edge_max_clusters; cluster_id++) { |
| 4782 | processor_set_t pset = pset_array[cluster_id]; |
| 4783 | spl_t s = splsched(); |
| 4784 | pset_lock(pset); |
| 4785 | /* |
| 4786 | * The first operation is to update the preferred cluster for all QoS buckets within the |
| 4787 | * thread group so that any future threads becoming runnable would see the new preferred |
| 4788 | * cluster value. |
| 4789 | */ |
| 4790 | sched_edge_update_preferred_cluster(clutch, clutch_bucket_modify_bitmap, tg_bucket_preferred_cluster); |
| 4791 | /* |
| 4792 | * Currently iterates all clusters looking for running threads for a TG to be migrated. Can be optimized |
| 4793 | * by keeping a per-clutch bitmap of clusters running threads for a particular TG. |
| 4794 | * |
| 4795 | * Edge Scheduler Optimization |
| 4796 | */ |
| 4797 | /* Migrate all running threads of the TG on this cluster based on options specified by CLPC */ |
| 4798 | sched_edge_migrate_thread_group_running_threads(clutch, &pset->pset_clutch_root, clutch_bucket_modify_bitmap, |
| 4799 | tg_bucket_preferred_cluster, (options & SCHED_PERFCONTROL_PREFERRED_CLUSTER_MIGRATE_RUNNING)); |
| 4800 | /* Migrate all runnable threads of the TG in this cluster's hierarchy based on options specified by CLPC */ |
| 4801 | sched_edge_migrate_thread_group_runnable_threads(clutch, &pset->pset_clutch_root, clutch_bucket_modify_bitmap, |
| 4802 | tg_bucket_preferred_cluster, (options & SCHED_PERFCONTROL_PREFERRED_CLUSTER_MIGRATE_RUNNABLE)); |
| 4803 | /* sched_edge_migrate_thread_group_runnable_threads() returns with pset unlocked */ |
| 4804 | splx(s); |
| 4805 | } |
| 4806 | } |
| 4807 | |
| 4808 | /* |
| 4809 | * sched_edge_pset_made_schedulable() |
| 4810 | * |
| 4811 | * Routine to migrate all the clutch buckets which are not in their recommended |
| 4812 | * pset hierarchy now that a new pset has become runnable. Its possible that this |
| 4813 | * routine is called when the pset is already marked schedulable. |
| 4814 | * |
| 4815 | * Invoked with the pset lock held and interrupts disabled. |
| 4816 | */ |
| 4817 | static void |
| 4818 | sched_edge_pset_made_schedulable(__unused processor_t processor, processor_set_t dst_pset, boolean_t drop_lock) |
| 4819 | { |
| 4820 | if (bitmap_test(sched_edge_available_pset_bitmask, dst_pset->pset_cluster_id)) { |
| 4821 | /* Nothing to do here since pset is already marked schedulable */ |
| 4822 | if (drop_lock) { |
| 4823 | pset_unlock(dst_pset); |
| 4824 | } |
| 4825 | return; |
| 4826 | } |
| 4827 | |
| 4828 | bitmap_set(sched_edge_available_pset_bitmask, dst_pset->pset_cluster_id); |
| 4829 | |
| 4830 | thread_t thread = sched_edge_processor_idle(dst_pset); |
| 4831 | if (thread != THREAD_NULL) { |
| 4832 | thread_lock(thread); |
| 4833 | thread_setrun(thread, SCHED_TAILQ); |
| 4834 | thread_unlock(thread); |
| 4835 | } |
| 4836 | |
| 4837 | if (!drop_lock) { |
| 4838 | pset_lock(dst_pset); |
| 4839 | } |
| 4840 | } |
| 4841 | |
| 4842 | /* |
| 4843 | * sched_edge_cpu_init_completed() |
| 4844 | * |
| 4845 | * Callback routine from the platform layer once all CPUs/clusters have been initialized. This |
| 4846 | * provides an opportunity for the edge scheduler to initialize all the edge parameters. |
| 4847 | */ |
| 4848 | static void |
| 4849 | sched_edge_cpu_init_completed(void) |
| 4850 | { |
| 4851 | spl_t s = splsched(); |
| 4852 | for (int src_cluster_id = 0; src_cluster_id < sched_edge_max_clusters; src_cluster_id++) { |
| 4853 | processor_set_t src_pset = pset_array[src_cluster_id]; |
| 4854 | pset_lock(src_pset); |
| 4855 | |
| 4856 | /* For each cluster, set all its outgoing edge parameters */ |
| 4857 | for (int dst_cluster_id = 0; dst_cluster_id < sched_edge_max_clusters; dst_cluster_id++) { |
| 4858 | if (dst_cluster_id == src_cluster_id) { |
| 4859 | continue; |
| 4860 | } |
| 4861 | processor_set_t dst_pset = pset_array[dst_cluster_id]; |
| 4862 | if (src_pset->pset_type == dst_pset->pset_type) { |
| 4863 | /* P->P/E->E edge config */ |
| 4864 | bitmap_clear(src_pset->foreign_psets, dst_cluster_id); |
| 4865 | bitmap_set(src_pset->native_psets, dst_cluster_id); |
| 4866 | sched_edge_config_set(src_cluster_id, dst_cluster_id, (sched_clutch_edge){.sce_migration_weight = 0, .sce_migration_allowed = 1, .sce_steal_allowed = 1}); |
| 4867 | } else if ((src_pset->pset_type == CLUSTER_TYPE_P) && (dst_pset->pset_type == CLUSTER_TYPE_E)) { |
| 4868 | /* P->E edge config */ |
| 4869 | bitmap_set(src_pset->foreign_psets, dst_cluster_id); |
| 4870 | bitmap_clear(src_pset->native_psets, dst_cluster_id); |
| 4871 | sched_edge_config_set(src_cluster_id, dst_cluster_id, (sched_clutch_edge){.sce_migration_weight = 64, .sce_migration_allowed = 1, .sce_steal_allowed = 1}); |
| 4872 | } else { |
| 4873 | /* E->P edge config */ |
| 4874 | bitmap_set(src_pset->foreign_psets, dst_cluster_id); |
| 4875 | bitmap_clear(src_pset->native_psets, dst_cluster_id); |
| 4876 | sched_edge_config_set(src_cluster_id, dst_cluster_id, (sched_clutch_edge){.sce_migration_weight = 0, .sce_migration_allowed = 0, .sce_steal_allowed = 0}); |
| 4877 | } |
| 4878 | bool clusters_local = (ml_get_die_id(src_cluster_id) == ml_get_die_id(dst_cluster_id)); |
| 4879 | if (clusters_local) { |
| 4880 | bitmap_set(src_pset->local_psets, dst_cluster_id); |
| 4881 | bitmap_clear(src_pset->remote_psets, dst_cluster_id); |
| 4882 | } else { |
| 4883 | bitmap_set(src_pset->remote_psets, dst_cluster_id); |
| 4884 | bitmap_clear(src_pset->local_psets, dst_cluster_id); |
| 4885 | } |
| 4886 | } |
| 4887 | |
| 4888 | pset_unlock(src_pset); |
| 4889 | } |
| 4890 | splx(s); |
| 4891 | } |
| 4892 | |
| 4893 | static bool |
| 4894 | sched_edge_thread_eligible_for_pset(thread_t thread, processor_set_t pset) |
| 4895 | { |
| 4896 | uint32_t preferred_cluster_id = sched_edge_thread_preferred_cluster(thread); |
| 4897 | if (preferred_cluster_id == pset->pset_cluster_id) { |
| 4898 | return true; |
| 4899 | } else { |
| 4900 | processor_set_t preferred_pset = pset_array[preferred_cluster_id]; |
| 4901 | return preferred_pset->sched_edges[pset->pset_cluster_id].sce_migration_allowed; |
| 4902 | } |
| 4903 | } |
| 4904 | |
| 4905 | extern int sched_amp_spill_deferred_ipi; |
| 4906 | extern int sched_amp_pcores_preempt_immediate_ipi; |
| 4907 | |
| 4908 | int sched_edge_migrate_ipi_immediate = 1; |
| 4909 | |
| 4910 | sched_ipi_type_t |
| 4911 | sched_edge_ipi_policy(processor_t dst, thread_t thread, boolean_t dst_idle, sched_ipi_event_t event) |
| 4912 | { |
| 4913 | processor_set_t pset = dst->processor_set; |
| 4914 | assert(dst != current_processor()); |
| 4915 | |
| 4916 | boolean_t deferred_ipi_supported = false; |
| 4917 | #if defined(CONFIG_SCHED_DEFERRED_AST) |
| 4918 | deferred_ipi_supported = true; |
| 4919 | #endif /* CONFIG_SCHED_DEFERRED_AST */ |
| 4920 | |
| 4921 | switch (event) { |
| 4922 | case SCHED_IPI_EVENT_SPILL: |
| 4923 | /* For Spill event, use deferred IPIs if sched_amp_spill_deferred_ipi set */ |
| 4924 | if (deferred_ipi_supported) { |
| 4925 | return sched_ipi_deferred_policy(pset, dst, thread, event); |
| 4926 | } |
| 4927 | break; |
| 4928 | case SCHED_IPI_EVENT_PREEMPT: |
| 4929 | /* For preemption, the default policy is to use deferred IPIs |
| 4930 | * for Non-RT P-core preemption. Override that behavior if |
| 4931 | * sched_amp_pcores_preempt_immediate_ipi is set |
| 4932 | */ |
| 4933 | if (thread && thread->sched_pri < BASEPRI_RTQUEUES) { |
| 4934 | if (sched_amp_pcores_preempt_immediate_ipi && (pset_type_for_id(pset->pset_cluster_id) == CLUSTER_TYPE_P)) { |
| 4935 | return dst_idle ? SCHED_IPI_IDLE : SCHED_IPI_IMMEDIATE; |
| 4936 | } |
| 4937 | if (sched_edge_migrate_ipi_immediate) { |
| 4938 | processor_set_t preferred_pset = pset_array[sched_edge_thread_preferred_cluster(thread)]; |
| 4939 | /* |
| 4940 | * For IPI'ing CPUs that are homogeneous with the preferred cluster, use immediate IPIs |
| 4941 | */ |
| 4942 | if (preferred_pset->pset_type == pset->pset_type) { |
| 4943 | return dst_idle ? SCHED_IPI_IDLE : SCHED_IPI_IMMEDIATE; |
| 4944 | } |
| 4945 | /* |
| 4946 | * For workloads that are going wide, it might be useful use Immediate IPI to |
| 4947 | * wakeup the idle CPU if the scheduler estimates that the preferred pset will |
| 4948 | * be busy for the deferred IPI timeout. The Edge Scheduler uses the avg execution |
| 4949 | * latency on the preferred pset as an estimate of busyness. |
| 4950 | */ |
| 4951 | if ((preferred_pset->pset_execution_time[thread->th_sched_bucket].pset_avg_thread_execution_time * NSEC_PER_USEC) >= ml_cpu_signal_deferred_get_timer()) { |
| 4952 | return dst_idle ? SCHED_IPI_IDLE : SCHED_IPI_IMMEDIATE; |
| 4953 | } |
| 4954 | } |
| 4955 | } |
| 4956 | break; |
| 4957 | default: |
| 4958 | break; |
| 4959 | } |
| 4960 | /* Default back to the global policy for all other scenarios */ |
| 4961 | return sched_ipi_policy(dst, thread, dst_idle, event); |
| 4962 | } |
| 4963 | |
| 4964 | /* |
| 4965 | * sched_edge_qos_max_parallelism() |
| 4966 | */ |
| 4967 | uint32_t |
| 4968 | sched_edge_qos_max_parallelism(int qos, uint64_t options) |
| 4969 | { |
| 4970 | uint32_t ecpu_count = ml_get_cpu_number_type(CLUSTER_TYPE_E, false, false); |
| 4971 | uint32_t pcpu_count = ml_get_cpu_number_type(CLUSTER_TYPE_P, false, false); |
| 4972 | uint32_t ecluster_count = ml_get_cluster_number_type(CLUSTER_TYPE_E); |
| 4973 | uint32_t pcluster_count = ml_get_cluster_number_type(CLUSTER_TYPE_P); |
| 4974 | |
| 4975 | if (options & QOS_PARALLELISM_REALTIME) { |
| 4976 | /* For realtime threads on AMP, we would want them |
| 4977 | * to limit the width to just the P-cores since we |
| 4978 | * do not spill/rebalance for RT threads. |
| 4979 | */ |
| 4980 | return (options & QOS_PARALLELISM_CLUSTER_SHARED_RESOURCE) ? pcluster_count : pcpu_count; |
| 4981 | } |
| 4982 | |
| 4983 | /* |
| 4984 | * The Edge scheduler supports per-QoS recommendations for thread groups. |
| 4985 | * This enables lower QoS buckets (such as UT) to be scheduled on all |
| 4986 | * CPUs on the system. |
| 4987 | * |
| 4988 | * The only restriction is for BG/Maintenance QoS classes for which the |
| 4989 | * performance controller would never recommend execution on the P-cores. |
| 4990 | * If that policy changes in the future, this value should be changed. |
| 4991 | */ |
| 4992 | switch (qos) { |
| 4993 | case THREAD_QOS_BACKGROUND: |
| 4994 | case THREAD_QOS_MAINTENANCE: |
| 4995 | return (options & QOS_PARALLELISM_CLUSTER_SHARED_RESOURCE) ? ecluster_count : ecpu_count; |
| 4996 | default: |
| 4997 | return (options & QOS_PARALLELISM_CLUSTER_SHARED_RESOURCE) ? (ecluster_count + pcluster_count) : (ecpu_count + pcpu_count); |
| 4998 | } |
| 4999 | } |
| 5000 | |
| 5001 | |
| 5002 | |
| 5003 | #endif /* CONFIG_SCHED_EDGE */ |
| 5004 | |
| 5005 | #endif /* CONFIG_SCHED_CLUTCH */ |
| 5006 | |