| 1 | // Copyright (c) 2021 Apple Inc. All rights reserved. |
| 2 | // |
| 3 | // @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
| 4 | // |
| 5 | // This file contains Original Code and/or Modifications of Original Code |
| 6 | // as defined in and that are subject to the Apple Public Source License |
| 7 | // Version 2.0 (the 'License'). You may not use this file except in |
| 8 | // compliance with the License. The rights granted to you under the License |
| 9 | // may not be used to create, or enable the creation or redistribution of, |
| 10 | // unlawful or unlicensed copies of an Apple operating system, or to |
| 11 | // circumvent, violate, or enable the circumvention or violation of, any |
| 12 | // terms of an Apple operating system software license agreement. |
| 13 | // |
| 14 | // Please obtain a copy of the License at |
| 15 | // http://www.opensource.apple.com/apsl/ and read it before using this file. |
| 16 | // |
| 17 | // The Original Code and all software distributed under the License are |
| 18 | // distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 19 | // EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 20 | // INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 21 | // FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| 22 | // Please see the License for the specific language governing rights and |
| 23 | // limitations under the License. |
| 24 | // |
| 25 | // @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
| 26 | |
| 27 | #include <kern/assert.h> |
| 28 | #include <kern/kalloc.h> |
| 29 | #include <pexpert/pexpert.h> |
| 30 | #include <sys/kdebug.h> |
| 31 | #include <sys/_types/_size_t.h> |
| 32 | #include <kern/monotonic.h> |
| 33 | #include <kern/percpu.h> |
| 34 | #include <kern/processor.h> |
| 35 | #include <kern/recount.h> |
| 36 | #include <kern/startup.h> |
| 37 | #include <kern/task.h> |
| 38 | #include <kern/thread.h> |
| 39 | #include <kern/work_interval.h> |
| 40 | #include <mach/mach_time.h> |
| 41 | #include <mach/mach_types.h> |
| 42 | #include <machine/config.h> |
| 43 | #include <machine/machine_routines.h> |
| 44 | #include <os/atomic_private.h> |
| 45 | #include <stdbool.h> |
| 46 | #include <stdint.h> |
| 47 | |
| 48 | // Recount's machine-independent implementation and interfaces for the kernel |
| 49 | // at-large. |
| 50 | |
| 51 | #define PRECISE_USER_KERNEL_PMCS PRECISE_USER_KERNEL_TIME |
| 52 | |
| 53 | // On non-release kernels, allow precise PMC (instructions, cycles) updates to |
| 54 | // be disabled for performance characterization. |
| 55 | #if PRECISE_USER_KERNEL_PMCS && (DEVELOPMENT || DEBUG) |
| 56 | #define PRECISE_USER_KERNEL_PMC_TUNABLE 1 |
| 57 | |
| 58 | TUNABLE(bool, no_precise_pmcs, "-no-precise-pmcs" , false); |
| 59 | #endif // PRECISE_USER_KERNEL_PMCS |
| 60 | |
| 61 | #if !PRECISE_USER_KERNEL_TIME |
| 62 | #define PRECISE_TIME_FATAL_FUNC OS_NORETURN |
| 63 | #define PRECISE_TIME_ONLY_FUNC OS_UNUSED |
| 64 | #else // !PRECISE_USER_KERNEL_TIME |
| 65 | #define PRECISE_TIME_FATAL_FUNC |
| 66 | #define PRECISE_TIME_ONLY_FUNC |
| 67 | #endif // PRECISE_USER_KERNEL_TIME |
| 68 | |
| 69 | #if !PRECISE_USER_KERNEL_PMCS |
| 70 | #define PRECISE_PMCS_ONLY_FUNC OS_UNUSED |
| 71 | #else // !PRECISE_PMCS_ONLY_FUNC |
| 72 | #define PRECISE_PMCS_ONLY_FUNC |
| 73 | #endif // PRECISE_USER_KERNEL_PMCS |
| 74 | |
| 75 | #if HAS_CPU_DPE_COUNTER |
| 76 | // Only certain platforms have DPE counters. |
| 77 | #define RECOUNT_ENERGY CONFIG_PERVASIVE_ENERGY |
| 78 | #else // HAS_CPU_DPE_COUNTER |
| 79 | #define RECOUNT_ENERGY 0 |
| 80 | #endif // !HAS_CPU_DPE_COUNTER |
| 81 | |
| 82 | // Topography helpers. |
| 83 | size_t recount_topo_count(recount_topo_t topo); |
| 84 | static bool recount_topo_matches_cpu_kind(recount_topo_t topo, |
| 85 | recount_cpu_kind_t kind, size_t idx); |
| 86 | static size_t recount_topo_index(recount_topo_t topo, processor_t processor); |
| 87 | static size_t recount_convert_topo_index(recount_topo_t from, recount_topo_t to, |
| 88 | size_t i); |
| 89 | |
| 90 | // Prevent counter updates before the system is ready. |
| 91 | __security_const_late bool _recount_started = false; |
| 92 | |
| 93 | // Lookup table that matches CPU numbers (indices) to their track index. |
| 94 | __security_const_late uint8_t _topo_cpu_kinds[MAX_CPUS] = { 0 }; |
| 95 | |
| 96 | // Allocation metadata and zones. |
| 97 | |
| 98 | // Keep static strings for `zone_create`. |
| 99 | static const char *_usage_zone_names[RCT_TOPO_COUNT] = { |
| 100 | [RCT_TOPO_CPU] = "recount_usage_cpu" , |
| 101 | [RCT_TOPO_CPU_KIND] = "recount_usage_cpu_kind" , |
| 102 | }; |
| 103 | |
| 104 | static const char *_track_zone_names[RCT_TOPO_COUNT] = { |
| 105 | [RCT_TOPO_CPU] = "recount_track_cpu" , |
| 106 | [RCT_TOPO_CPU_KIND] = "recount_track_cpu_kind" , |
| 107 | }; |
| 108 | |
| 109 | static const bool _topo_allocates[RCT_TOPO_COUNT] = { |
| 110 | [RCT_TOPO_SYSTEM] = false, |
| 111 | [RCT_TOPO_CPU] = true, |
| 112 | [RCT_TOPO_CPU_KIND] = true, |
| 113 | }; |
| 114 | |
| 115 | // Fixed-size zones for allocations. |
| 116 | __security_const_late zone_t _recount_usage_zones[RCT_TOPO_COUNT] = { }; |
| 117 | __security_const_late zone_t _recount_track_zones[RCT_TOPO_COUNT] = { }; |
| 118 | |
| 119 | __startup_func |
| 120 | static void |
| 121 | recount_startup(void) |
| 122 | { |
| 123 | #if __AMP__ |
| 124 | unsigned int cpu_count = ml_get_cpu_count(); |
| 125 | const ml_topology_info_t *topo_info = ml_get_topology_info(); |
| 126 | for (unsigned int i = 0; i < cpu_count; i++) { |
| 127 | cluster_type_t type = topo_info->cpus[i].cluster_type; |
| 128 | uint8_t cluster_i = (type == CLUSTER_TYPE_P) ? RCT_CPU_PERFORMANCE : |
| 129 | RCT_CPU_EFFICIENCY; |
| 130 | _topo_cpu_kinds[i] = cluster_i; |
| 131 | } |
| 132 | #endif // __AMP__ |
| 133 | |
| 134 | for (unsigned int i = 0; i < RCT_TOPO_COUNT; i++) { |
| 135 | if (_topo_allocates[i]) { |
| 136 | const char *usage_name = _usage_zone_names[i]; |
| 137 | assert(usage_name != NULL); |
| 138 | _recount_usage_zones[i] = zone_create(name: usage_name, |
| 139 | size: sizeof(struct recount_usage) * recount_topo_count(topo: i), |
| 140 | flags: 0); |
| 141 | |
| 142 | const char *track_name = _track_zone_names[i]; |
| 143 | assert(track_name != NULL); |
| 144 | _recount_track_zones[i] = zone_create(name: track_name, |
| 145 | size: sizeof(struct recount_track) * recount_topo_count(topo: i), |
| 146 | flags: 0); |
| 147 | } |
| 148 | } |
| 149 | |
| 150 | _recount_started = true; |
| 151 | } |
| 152 | |
| 153 | STARTUP(PERCPU, STARTUP_RANK_LAST, recount_startup); |
| 154 | |
| 155 | #pragma mark - tracks |
| 156 | |
| 157 | RECOUNT_PLAN_DEFINE(recount_thread_plan, RCT_TOPO_CPU_KIND); |
| 158 | RECOUNT_PLAN_DEFINE(recount_work_interval_plan, RCT_TOPO_CPU); |
| 159 | RECOUNT_PLAN_DEFINE(recount_task_plan, RCT_TOPO_CPU); |
| 160 | RECOUNT_PLAN_DEFINE(recount_task_terminated_plan, RCT_TOPO_CPU_KIND); |
| 161 | RECOUNT_PLAN_DEFINE(recount_coalition_plan, RCT_TOPO_CPU_KIND); |
| 162 | RECOUNT_PLAN_DEFINE(recount_processor_plan, RCT_TOPO_SYSTEM); |
| 163 | |
| 164 | OS_ALWAYS_INLINE |
| 165 | static inline uint64_t |
| 166 | recount_timestamp_speculative(void) |
| 167 | { |
| 168 | #if __arm__ || __arm64__ |
| 169 | return ml_get_speculative_timebase(); |
| 170 | #else // __arm__ || __arm64__ |
| 171 | return mach_absolute_time(); |
| 172 | #endif // !__arm__ && !__arm64__ |
| 173 | } |
| 174 | |
| 175 | OS_ALWAYS_INLINE |
| 176 | void |
| 177 | recount_snapshot_speculative(struct recount_snap *snap) |
| 178 | { |
| 179 | snap->rsn_time_mach = recount_timestamp_speculative(); |
| 180 | #if CONFIG_PERVASIVE_CPI |
| 181 | mt_cur_cpu_cycles_instrs_speculative(&snap->rsn_cycles, &snap->rsn_insns); |
| 182 | #endif // CONFIG_PERVASIVE_CPI |
| 183 | } |
| 184 | |
| 185 | void |
| 186 | recount_snapshot(struct recount_snap *snap) |
| 187 | { |
| 188 | #if __arm__ || __arm64__ |
| 189 | __builtin_arm_isb(ISB_SY); |
| 190 | #endif // __arm__ || __arm64__ |
| 191 | recount_snapshot_speculative(snap); |
| 192 | } |
| 193 | |
| 194 | static struct recount_snap * |
| 195 | recount_get_snap(processor_t processor) |
| 196 | { |
| 197 | return &processor->pr_recount.rpr_snap; |
| 198 | } |
| 199 | |
| 200 | static struct recount_snap * |
| 201 | recount_get_interrupt_snap(processor_t processor) |
| 202 | { |
| 203 | return &processor->pr_recount.rpr_interrupt_snap; |
| 204 | } |
| 205 | |
| 206 | // A simple sequence lock implementation. |
| 207 | |
| 208 | static void |
| 209 | _seqlock_shared_lock_slowpath(const uint32_t *lck, uint32_t gen) |
| 210 | { |
| 211 | disable_preemption(); |
| 212 | do { |
| 213 | gen = hw_wait_while_equals32(address: (uint32_t *)(uintptr_t)lck, current: gen); |
| 214 | } while (__improbable((gen & 1) != 0)); |
| 215 | os_atomic_thread_fence(acquire); |
| 216 | enable_preemption(); |
| 217 | } |
| 218 | |
| 219 | static uintptr_t |
| 220 | _seqlock_shared_lock(const uint32_t *lck) |
| 221 | { |
| 222 | uint32_t gen = os_atomic_load(lck, acquire); |
| 223 | if (__improbable((gen & 1) != 0)) { |
| 224 | _seqlock_shared_lock_slowpath(lck, gen); |
| 225 | } |
| 226 | return gen; |
| 227 | } |
| 228 | |
| 229 | static bool |
| 230 | _seqlock_shared_try_unlock(const uint32_t *lck, uintptr_t on_enter) |
| 231 | { |
| 232 | return os_atomic_load(lck, acquire) == on_enter; |
| 233 | } |
| 234 | |
| 235 | static void |
| 236 | _seqlock_excl_lock_relaxed(uint32_t *lck) |
| 237 | { |
| 238 | __assert_only uintptr_t new = os_atomic_inc(lck, relaxed); |
| 239 | assert3u((new & 1), ==, 1); |
| 240 | } |
| 241 | |
| 242 | static void |
| 243 | _seqlock_excl_commit(void) |
| 244 | { |
| 245 | os_atomic_thread_fence(release); |
| 246 | } |
| 247 | |
| 248 | static void |
| 249 | _seqlock_excl_unlock_relaxed(uint32_t *lck) |
| 250 | { |
| 251 | __assert_only uint32_t new = os_atomic_inc(lck, relaxed); |
| 252 | assert3u((new & 1), ==, 0); |
| 253 | } |
| 254 | |
| 255 | static struct recount_track * |
| 256 | recount_update_start(struct recount_track *tracks, recount_topo_t topo, |
| 257 | processor_t processor) |
| 258 | { |
| 259 | struct recount_track *track = &tracks[recount_topo_index(topo, processor)]; |
| 260 | _seqlock_excl_lock_relaxed(lck: &track->rt_sync); |
| 261 | return track; |
| 262 | } |
| 263 | |
| 264 | #if RECOUNT_ENERGY |
| 265 | |
| 266 | static struct recount_track * |
| 267 | recount_update_single_start(struct recount_track *tracks, recount_topo_t topo, |
| 268 | processor_t processor) |
| 269 | { |
| 270 | return &tracks[recount_topo_index(topo, processor)]; |
| 271 | } |
| 272 | |
| 273 | #endif // RECOUNT_ENERGY |
| 274 | |
| 275 | static void |
| 276 | recount_update_commit(void) |
| 277 | { |
| 278 | _seqlock_excl_commit(); |
| 279 | } |
| 280 | |
| 281 | static void |
| 282 | recount_update_end(struct recount_track *track) |
| 283 | { |
| 284 | _seqlock_excl_unlock_relaxed(lck: &track->rt_sync); |
| 285 | } |
| 286 | |
| 287 | static const struct recount_usage * |
| 288 | recount_read_start(const struct recount_track *track, uintptr_t *on_enter) |
| 289 | { |
| 290 | const struct recount_usage *stats = &track->rt_usage; |
| 291 | *on_enter = _seqlock_shared_lock(lck: &track->rt_sync); |
| 292 | return stats; |
| 293 | } |
| 294 | |
| 295 | static bool |
| 296 | recount_try_read_end(const struct recount_track *track, uintptr_t on_enter) |
| 297 | { |
| 298 | return _seqlock_shared_try_unlock(lck: &track->rt_sync, on_enter); |
| 299 | } |
| 300 | |
| 301 | static void |
| 302 | recount_read_track(struct recount_usage *stats, |
| 303 | const struct recount_track *track) |
| 304 | { |
| 305 | uintptr_t on_enter = 0; |
| 306 | do { |
| 307 | const struct recount_usage *vol_stats = |
| 308 | recount_read_start(track, on_enter: &on_enter); |
| 309 | *stats = *vol_stats; |
| 310 | } while (!recount_try_read_end(track, on_enter)); |
| 311 | } |
| 312 | |
| 313 | static void |
| 314 | recount_metrics_add(struct recount_metrics *sum, const struct recount_metrics *to_add) |
| 315 | { |
| 316 | sum->rm_time_mach += to_add->rm_time_mach; |
| 317 | #if CONFIG_PERVASIVE_CPI |
| 318 | sum->rm_instructions += to_add->rm_instructions; |
| 319 | sum->rm_cycles += to_add->rm_cycles; |
| 320 | #endif // CONFIG_PERVASIVE_CPI |
| 321 | } |
| 322 | |
| 323 | static void |
| 324 | recount_usage_add(struct recount_usage *sum, const struct recount_usage *to_add) |
| 325 | { |
| 326 | for (unsigned int i = 0; i < RCT_LVL_COUNT; i++) { |
| 327 | recount_metrics_add(sum: &sum->ru_metrics[i], to_add: &to_add->ru_metrics[i]); |
| 328 | } |
| 329 | #if CONFIG_PERVASIVE_ENERGY |
| 330 | sum->ru_energy_nj += to_add->ru_energy_nj; |
| 331 | #endif // CONFIG_PERVASIVE_CPI |
| 332 | } |
| 333 | |
| 334 | OS_ALWAYS_INLINE |
| 335 | static inline void |
| 336 | recount_usage_add_snap(struct recount_usage *usage, recount_level_t level, |
| 337 | struct recount_snap *snap) |
| 338 | { |
| 339 | struct recount_metrics *metrics = &usage->ru_metrics[level]; |
| 340 | |
| 341 | metrics->rm_time_mach += snap->rsn_time_mach; |
| 342 | #if CONFIG_PERVASIVE_CPI |
| 343 | metrics->rm_cycles += snap->rsn_cycles; |
| 344 | metrics->rm_instructions += snap->rsn_insns; |
| 345 | #else // CONFIG_PERVASIVE_CPI |
| 346 | #pragma unused(usage) |
| 347 | #endif // !CONFIG_PERVASIVE_CPI |
| 348 | } |
| 349 | |
| 350 | static void |
| 351 | recount_rollup(recount_plan_t plan, const struct recount_track *tracks, |
| 352 | recount_topo_t to_topo, struct recount_usage *stats) |
| 353 | { |
| 354 | recount_topo_t from_topo = plan->rpl_topo; |
| 355 | size_t topo_count = recount_topo_count(topo: from_topo); |
| 356 | struct recount_usage tmp = { 0 }; |
| 357 | for (size_t i = 0; i < topo_count; i++) { |
| 358 | recount_read_track(stats: &tmp, track: &tracks[i]); |
| 359 | size_t to_i = recount_convert_topo_index(from: from_topo, to: to_topo, i); |
| 360 | recount_usage_add(sum: &stats[to_i], to_add: &tmp); |
| 361 | } |
| 362 | } |
| 363 | |
| 364 | // This function must be run when counters cannot increment for the track, like from the current thread. |
| 365 | static void |
| 366 | recount_rollup_unsafe(recount_plan_t plan, struct recount_track *tracks, |
| 367 | recount_topo_t to_topo, struct recount_usage *stats) |
| 368 | { |
| 369 | recount_topo_t from_topo = plan->rpl_topo; |
| 370 | size_t topo_count = recount_topo_count(topo: from_topo); |
| 371 | for (size_t i = 0; i < topo_count; i++) { |
| 372 | size_t to_i = recount_convert_topo_index(from: from_topo, to: to_topo, i); |
| 373 | recount_usage_add(sum: &stats[to_i], to_add: &tracks[i].rt_usage); |
| 374 | } |
| 375 | } |
| 376 | |
| 377 | void |
| 378 | recount_sum(recount_plan_t plan, const struct recount_track *tracks, |
| 379 | struct recount_usage *sum) |
| 380 | { |
| 381 | recount_rollup(plan, tracks, to_topo: RCT_TOPO_SYSTEM, stats: sum); |
| 382 | } |
| 383 | |
| 384 | void |
| 385 | recount_sum_unsafe(recount_plan_t plan, const struct recount_track *tracks, |
| 386 | struct recount_usage *sum) |
| 387 | { |
| 388 | recount_topo_t topo = plan->rpl_topo; |
| 389 | size_t topo_count = recount_topo_count(topo); |
| 390 | for (size_t i = 0; i < topo_count; i++) { |
| 391 | recount_usage_add(sum, to_add: &tracks[i].rt_usage); |
| 392 | } |
| 393 | } |
| 394 | |
| 395 | void |
| 396 | recount_sum_and_isolate_cpu_kind(recount_plan_t plan, |
| 397 | struct recount_track *tracks, recount_cpu_kind_t kind, |
| 398 | struct recount_usage *sum, struct recount_usage *only_kind) |
| 399 | { |
| 400 | size_t topo_count = recount_topo_count(topo: plan->rpl_topo); |
| 401 | struct recount_usage tmp = { 0 }; |
| 402 | for (size_t i = 0; i < topo_count; i++) { |
| 403 | recount_read_track(stats: &tmp, track: &tracks[i]); |
| 404 | recount_usage_add(sum, to_add: &tmp); |
| 405 | if (recount_topo_matches_cpu_kind(topo: plan->rpl_topo, kind, idx: i)) { |
| 406 | recount_usage_add(sum: only_kind, to_add: &tmp); |
| 407 | } |
| 408 | } |
| 409 | } |
| 410 | |
| 411 | static void |
| 412 | recount_sum_usage(recount_plan_t plan, const struct recount_usage *usages, |
| 413 | struct recount_usage *sum) |
| 414 | { |
| 415 | const size_t topo_count = recount_topo_count(topo: plan->rpl_topo); |
| 416 | for (size_t i = 0; i < topo_count; i++) { |
| 417 | recount_usage_add(sum, to_add: &usages[i]); |
| 418 | } |
| 419 | } |
| 420 | |
| 421 | void |
| 422 | recount_sum_usage_and_isolate_cpu_kind(recount_plan_t plan, |
| 423 | struct recount_usage *usage, recount_cpu_kind_t kind, |
| 424 | struct recount_usage *sum, struct recount_usage *only_kind) |
| 425 | { |
| 426 | const size_t topo_count = recount_topo_count(topo: plan->rpl_topo); |
| 427 | for (size_t i = 0; i < topo_count; i++) { |
| 428 | recount_usage_add(sum, to_add: &usage[i]); |
| 429 | if (only_kind && recount_topo_matches_cpu_kind(topo: plan->rpl_topo, kind, idx: i)) { |
| 430 | recount_usage_add(sum: only_kind, to_add: &usage[i]); |
| 431 | } |
| 432 | } |
| 433 | } |
| 434 | |
| 435 | void |
| 436 | recount_sum_perf_levels(recount_plan_t plan, struct recount_track *tracks, |
| 437 | struct recount_usage *sums) |
| 438 | { |
| 439 | recount_rollup(plan, tracks, to_topo: RCT_TOPO_CPU_KIND, stats: sums); |
| 440 | } |
| 441 | |
| 442 | struct recount_times_mach |
| 443 | recount_usage_times_mach(struct recount_usage *usage) |
| 444 | { |
| 445 | return (struct recount_times_mach){ |
| 446 | .rtm_user = usage->ru_metrics[RCT_LVL_USER].rm_time_mach, |
| 447 | .rtm_system = recount_usage_system_time_mach(usage), |
| 448 | }; |
| 449 | } |
| 450 | |
| 451 | uint64_t |
| 452 | recount_usage_system_time_mach(struct recount_usage *usage) |
| 453 | { |
| 454 | uint64_t system_time = usage->ru_metrics[RCT_LVL_KERNEL].rm_time_mach; |
| 455 | #if RECOUNT_SECURE_METRICS |
| 456 | system_time += usage->ru_metrics[RCT_LVL_SECURE].rm_time_mach; |
| 457 | #endif // RECOUNT_SECURE_METRICS |
| 458 | return system_time; |
| 459 | } |
| 460 | |
| 461 | uint64_t |
| 462 | recount_usage_time_mach(struct recount_usage *usage) |
| 463 | { |
| 464 | uint64_t time = 0; |
| 465 | for (unsigned int i = 0; i < RCT_LVL_COUNT; i++) { |
| 466 | time += usage->ru_metrics[i].rm_time_mach; |
| 467 | } |
| 468 | return time; |
| 469 | } |
| 470 | |
| 471 | uint64_t |
| 472 | recount_usage_cycles(struct recount_usage *usage) |
| 473 | { |
| 474 | uint64_t cycles = 0; |
| 475 | #if CONFIG_CPU_COUNTERS |
| 476 | for (unsigned int i = 0; i < RCT_LVL_COUNT; i++) { |
| 477 | cycles += usage->ru_metrics[i].rm_cycles; |
| 478 | } |
| 479 | #else // CONFIG_CPU_COUNTERS |
| 480 | #pragma unused(usage) |
| 481 | #endif // !CONFIG_CPU_COUNTERS |
| 482 | return cycles; |
| 483 | } |
| 484 | |
| 485 | uint64_t |
| 486 | recount_usage_instructions(struct recount_usage *usage) |
| 487 | { |
| 488 | uint64_t instructions = 0; |
| 489 | #if CONFIG_CPU_COUNTERS |
| 490 | for (unsigned int i = 0; i < RCT_LVL_COUNT; i++) { |
| 491 | instructions += usage->ru_metrics[i].rm_instructions; |
| 492 | } |
| 493 | #else // CONFIG_CPU_COUNTERS |
| 494 | #pragma unused(usage) |
| 495 | #endif // !CONFIG_CPU_COUNTERS |
| 496 | return instructions; |
| 497 | } |
| 498 | |
| 499 | // Plan-specific helpers. |
| 500 | |
| 501 | void |
| 502 | recount_coalition_rollup_task(struct recount_coalition *co, |
| 503 | struct recount_task *tk) |
| 504 | { |
| 505 | recount_rollup(plan: &recount_task_plan, tracks: tk->rtk_lifetime, |
| 506 | to_topo: recount_coalition_plan.rpl_topo, stats: co->rco_exited); |
| 507 | } |
| 508 | |
| 509 | void |
| 510 | recount_task_rollup_thread(struct recount_task *tk, |
| 511 | const struct recount_thread *th) |
| 512 | { |
| 513 | recount_rollup(plan: &recount_thread_plan, tracks: th->rth_lifetime, |
| 514 | to_topo: recount_task_terminated_plan.rpl_topo, stats: tk->rtk_terminated); |
| 515 | } |
| 516 | |
| 517 | #pragma mark - scheduler |
| 518 | |
| 519 | // `result = lhs - rhs` for snapshots. |
| 520 | OS_ALWAYS_INLINE |
| 521 | static void |
| 522 | recount_snap_diff(struct recount_snap *result, |
| 523 | const struct recount_snap *lhs, const struct recount_snap *rhs) |
| 524 | { |
| 525 | assert3u(lhs->rsn_time_mach, >=, rhs->rsn_time_mach); |
| 526 | result->rsn_time_mach = lhs->rsn_time_mach - rhs->rsn_time_mach; |
| 527 | #if CONFIG_PERVASIVE_CPI |
| 528 | assert3u(lhs->rsn_insns, >=, rhs->rsn_insns); |
| 529 | assert3u(lhs->rsn_cycles, >=, rhs->rsn_cycles); |
| 530 | result->rsn_cycles = lhs->rsn_cycles - rhs->rsn_cycles; |
| 531 | result->rsn_insns = lhs->rsn_insns - rhs->rsn_insns; |
| 532 | #endif // CONFIG_PERVASIVE_CPI |
| 533 | } |
| 534 | |
| 535 | static void |
| 536 | _fix_time_precision(struct recount_usage *usage) |
| 537 | { |
| 538 | #if PRECISE_USER_KERNEL_TIME |
| 539 | #pragma unused(usage) |
| 540 | #else // PRECISE_USER_KERNEL_TIME |
| 541 | // Attribute all time to user, as the system is only acting "on behalf |
| 542 | // of" user processes -- a bit sketchy. |
| 543 | usage->ru_metrics[RCT_LVL_USER].rm_time_mach += |
| 544 | recount_usage_system_time_mach(usage); |
| 545 | usage->ru_metrics[RCT_LVL_KERNEL].rm_time_mach = 0; |
| 546 | #endif // !PRECISE_USER_KERNEL_TIME |
| 547 | } |
| 548 | |
| 549 | void |
| 550 | recount_current_thread_usage(struct recount_usage *usage) |
| 551 | { |
| 552 | assert(ml_get_interrupts_enabled() == FALSE); |
| 553 | thread_t thread = current_thread(); |
| 554 | struct recount_snap snap = { 0 }; |
| 555 | recount_snapshot(snap: &snap); |
| 556 | recount_sum_unsafe(plan: &recount_thread_plan, tracks: thread->th_recount.rth_lifetime, |
| 557 | sum: usage); |
| 558 | struct recount_snap *last = recount_get_snap(processor: current_processor()); |
| 559 | struct recount_snap diff = { 0 }; |
| 560 | recount_snap_diff(result: &diff, lhs: &snap, rhs: last); |
| 561 | recount_usage_add_snap(usage, level: RCT_LVL_KERNEL, snap: &diff); |
| 562 | _fix_time_precision(usage); |
| 563 | } |
| 564 | |
| 565 | void |
| 566 | recount_current_thread_usage_perf_only(struct recount_usage *usage, |
| 567 | struct recount_usage *usage_perf_only) |
| 568 | { |
| 569 | struct recount_usage usage_perf_levels[RCT_CPU_KIND_COUNT] = { 0 }; |
| 570 | recount_current_thread_perf_level_usage(usage_levels: usage_perf_levels); |
| 571 | recount_sum_usage(plan: &recount_thread_plan, usages: usage_perf_levels, sum: usage); |
| 572 | *usage_perf_only = usage_perf_levels[RCT_CPU_PERFORMANCE]; |
| 573 | _fix_time_precision(usage); |
| 574 | _fix_time_precision(usage: usage_perf_only); |
| 575 | } |
| 576 | |
| 577 | void |
| 578 | recount_thread_perf_level_usage(struct thread *thread, |
| 579 | struct recount_usage *usage_levels) |
| 580 | { |
| 581 | recount_rollup(plan: &recount_thread_plan, tracks: thread->th_recount.rth_lifetime, |
| 582 | to_topo: RCT_TOPO_CPU_KIND, stats: usage_levels); |
| 583 | size_t topo_count = recount_topo_count(topo: RCT_TOPO_CPU_KIND); |
| 584 | for (size_t i = 0; i < topo_count; i++) { |
| 585 | _fix_time_precision(usage: &usage_levels[i]); |
| 586 | } |
| 587 | } |
| 588 | |
| 589 | void |
| 590 | recount_current_thread_perf_level_usage(struct recount_usage *usage_levels) |
| 591 | { |
| 592 | assert(ml_get_interrupts_enabled() == FALSE); |
| 593 | processor_t processor = current_processor(); |
| 594 | thread_t thread = current_thread(); |
| 595 | struct recount_snap snap = { 0 }; |
| 596 | recount_snapshot(snap: &snap); |
| 597 | recount_rollup_unsafe(plan: &recount_thread_plan, tracks: thread->th_recount.rth_lifetime, |
| 598 | to_topo: RCT_TOPO_CPU_KIND, stats: usage_levels); |
| 599 | struct recount_snap *last = recount_get_snap(processor); |
| 600 | struct recount_snap diff = { 0 }; |
| 601 | recount_snap_diff(result: &diff, lhs: &snap, rhs: last); |
| 602 | size_t cur_i = recount_topo_index(topo: RCT_TOPO_CPU_KIND, processor); |
| 603 | struct recount_usage *cur_usage = &usage_levels[cur_i]; |
| 604 | recount_usage_add_snap(usage: cur_usage, level: RCT_LVL_KERNEL, snap: &diff); |
| 605 | size_t topo_count = recount_topo_count(topo: RCT_TOPO_CPU_KIND); |
| 606 | for (size_t i = 0; i < topo_count; i++) { |
| 607 | _fix_time_precision(usage: &usage_levels[i]); |
| 608 | } |
| 609 | } |
| 610 | |
| 611 | uint64_t |
| 612 | recount_current_thread_energy_nj(void) |
| 613 | { |
| 614 | #if RECOUNT_ENERGY |
| 615 | assert(ml_get_interrupts_enabled() == FALSE); |
| 616 | thread_t thread = current_thread(); |
| 617 | size_t topo_count = recount_topo_count(recount_thread_plan.rpl_topo); |
| 618 | uint64_t energy_nj = 0; |
| 619 | for (size_t i = 0; i < topo_count; i++) { |
| 620 | energy_nj += thread->th_recount.rth_lifetime[i].rt_usage.ru_energy_nj; |
| 621 | } |
| 622 | return energy_nj; |
| 623 | #else // RECOUNT_ENERGY |
| 624 | return 0; |
| 625 | #endif // !RECOUNT_ENERGY |
| 626 | } |
| 627 | |
| 628 | static void |
| 629 | _times_add_usage(struct recount_times_mach *times, struct recount_usage *usage) |
| 630 | { |
| 631 | times->rtm_user += usage->ru_metrics[RCT_LVL_USER].rm_time_mach; |
| 632 | #if PRECISE_USER_KERNEL_TIME |
| 633 | times->rtm_system += recount_usage_system_time_mach(usage); |
| 634 | #else // PRECISE_USER_KERNEL_TIME |
| 635 | times->rtm_user += recount_usage_system_time_mach(usage); |
| 636 | #endif // !PRECISE_USER_KERNEL_TIME |
| 637 | } |
| 638 | |
| 639 | struct recount_times_mach |
| 640 | recount_thread_times(struct thread *thread) |
| 641 | { |
| 642 | size_t topo_count = recount_topo_count(topo: recount_thread_plan.rpl_topo); |
| 643 | struct recount_times_mach times = { 0 }; |
| 644 | for (size_t i = 0; i < topo_count; i++) { |
| 645 | _times_add_usage(times: ×, usage: &thread->th_recount.rth_lifetime[i].rt_usage); |
| 646 | } |
| 647 | return times; |
| 648 | } |
| 649 | |
| 650 | uint64_t |
| 651 | recount_thread_time_mach(struct thread *thread) |
| 652 | { |
| 653 | struct recount_times_mach times = recount_thread_times(thread); |
| 654 | return times.rtm_user + times.rtm_system; |
| 655 | } |
| 656 | |
| 657 | static uint64_t |
| 658 | _time_since_last_snapshot(void) |
| 659 | { |
| 660 | struct recount_snap *last = recount_get_snap(processor: current_processor()); |
| 661 | uint64_t cur_time = mach_absolute_time(); |
| 662 | return cur_time - last->rsn_time_mach; |
| 663 | } |
| 664 | |
| 665 | uint64_t |
| 666 | recount_current_thread_time_mach(void) |
| 667 | { |
| 668 | assert(ml_get_interrupts_enabled() == FALSE); |
| 669 | uint64_t previous_time = recount_thread_time_mach(thread: current_thread()); |
| 670 | return previous_time + _time_since_last_snapshot(); |
| 671 | } |
| 672 | |
| 673 | struct recount_times_mach |
| 674 | recount_current_thread_times(void) |
| 675 | { |
| 676 | assert(ml_get_interrupts_enabled() == FALSE); |
| 677 | struct recount_times_mach times = recount_thread_times( |
| 678 | thread: current_thread()); |
| 679 | #if PRECISE_USER_KERNEL_TIME |
| 680 | // This code is executing in the kernel, so the time since the last snapshot |
| 681 | // (with precise user/kernel time) is since entering the kernel. |
| 682 | times.rtm_system += _time_since_last_snapshot(); |
| 683 | #else // PRECISE_USER_KERNEL_TIME |
| 684 | times.rtm_user += _time_since_last_snapshot(); |
| 685 | #endif // !PRECISE_USER_KERNEL_TIME |
| 686 | return times; |
| 687 | } |
| 688 | |
| 689 | void |
| 690 | recount_thread_usage(thread_t thread, struct recount_usage *usage) |
| 691 | { |
| 692 | recount_sum(plan: &recount_thread_plan, tracks: thread->th_recount.rth_lifetime, sum: usage); |
| 693 | _fix_time_precision(usage); |
| 694 | } |
| 695 | |
| 696 | uint64_t |
| 697 | recount_current_thread_interrupt_time_mach(void) |
| 698 | { |
| 699 | thread_t thread = current_thread(); |
| 700 | return thread->th_recount.rth_interrupt_time_mach; |
| 701 | } |
| 702 | |
| 703 | void |
| 704 | recount_work_interval_usage(struct work_interval *work_interval, struct recount_usage *usage) |
| 705 | { |
| 706 | recount_sum(plan: &recount_work_interval_plan, tracks: work_interval_get_recount_tracks(work_interval), sum: usage); |
| 707 | _fix_time_precision(usage); |
| 708 | } |
| 709 | |
| 710 | struct recount_times_mach |
| 711 | recount_work_interval_times(struct work_interval *work_interval) |
| 712 | { |
| 713 | size_t topo_count = recount_topo_count(topo: recount_work_interval_plan.rpl_topo); |
| 714 | struct recount_times_mach times = { 0 }; |
| 715 | for (size_t i = 0; i < topo_count; i++) { |
| 716 | _times_add_usage(times: ×, usage: &work_interval_get_recount_tracks(work_interval)[i].rt_usage); |
| 717 | } |
| 718 | return times; |
| 719 | } |
| 720 | |
| 721 | uint64_t |
| 722 | recount_work_interval_energy_nj(struct work_interval *work_interval) |
| 723 | { |
| 724 | #if RECOUNT_ENERGY |
| 725 | size_t topo_count = recount_topo_count(recount_work_interval_plan.rpl_topo); |
| 726 | uint64_t energy = 0; |
| 727 | for (size_t i = 0; i < topo_count; i++) { |
| 728 | energy += work_interval_get_recount_tracks(work_interval)[i].rt_usage.ru_energy_nj; |
| 729 | } |
| 730 | return energy; |
| 731 | #else // RECOUNT_ENERGY |
| 732 | #pragma unused(work_interval) |
| 733 | return 0; |
| 734 | #endif // !RECOUNT_ENERGY |
| 735 | } |
| 736 | |
| 737 | void |
| 738 | recount_current_task_usage(struct recount_usage *usage) |
| 739 | { |
| 740 | task_t task = current_task(); |
| 741 | struct recount_track *tracks = task->tk_recount.rtk_lifetime; |
| 742 | recount_sum(plan: &recount_task_plan, tracks, sum: usage); |
| 743 | _fix_time_precision(usage); |
| 744 | } |
| 745 | |
| 746 | void |
| 747 | recount_current_task_usage_perf_only(struct recount_usage *usage, |
| 748 | struct recount_usage *usage_perf_only) |
| 749 | { |
| 750 | task_t task = current_task(); |
| 751 | struct recount_track *tracks = task->tk_recount.rtk_lifetime; |
| 752 | recount_sum_and_isolate_cpu_kind(plan: &recount_task_plan, |
| 753 | tracks, kind: RCT_CPU_PERFORMANCE, sum: usage, only_kind: usage_perf_only); |
| 754 | _fix_time_precision(usage); |
| 755 | _fix_time_precision(usage: usage_perf_only); |
| 756 | } |
| 757 | |
| 758 | void |
| 759 | recount_task_times_perf_only(struct task *task, |
| 760 | struct recount_times_mach *sum, struct recount_times_mach *sum_perf_only) |
| 761 | { |
| 762 | const recount_topo_t topo = recount_task_plan.rpl_topo; |
| 763 | const size_t topo_count = recount_topo_count(topo); |
| 764 | struct recount_track *tracks = task->tk_recount.rtk_lifetime; |
| 765 | for (size_t i = 0; i < topo_count; i++) { |
| 766 | struct recount_usage *usage = &tracks[i].rt_usage; |
| 767 | _times_add_usage(times: sum, usage); |
| 768 | if (recount_topo_matches_cpu_kind(topo, kind: RCT_CPU_PERFORMANCE, idx: i)) { |
| 769 | _times_add_usage(times: sum_perf_only, usage); |
| 770 | } |
| 771 | } |
| 772 | } |
| 773 | |
| 774 | void |
| 775 | recount_task_terminated_usage(task_t task, struct recount_usage *usage) |
| 776 | { |
| 777 | recount_sum_usage(plan: &recount_task_terminated_plan, |
| 778 | usages: task->tk_recount.rtk_terminated, sum: usage); |
| 779 | _fix_time_precision(usage); |
| 780 | } |
| 781 | |
| 782 | struct recount_times_mach |
| 783 | recount_task_terminated_times(struct task *task) |
| 784 | { |
| 785 | size_t topo_count = recount_topo_count(topo: recount_task_terminated_plan.rpl_topo); |
| 786 | struct recount_times_mach times = { 0 }; |
| 787 | for (size_t i = 0; i < topo_count; i++) { |
| 788 | _times_add_usage(times: ×, usage: &task->tk_recount.rtk_terminated[i]); |
| 789 | } |
| 790 | return times; |
| 791 | } |
| 792 | |
| 793 | void |
| 794 | recount_task_terminated_usage_perf_only(task_t task, |
| 795 | struct recount_usage *usage, struct recount_usage *perf_only) |
| 796 | { |
| 797 | recount_sum_usage_and_isolate_cpu_kind(plan: &recount_task_terminated_plan, |
| 798 | usage: task->tk_recount.rtk_terminated, kind: RCT_CPU_PERFORMANCE, sum: usage, only_kind: perf_only); |
| 799 | _fix_time_precision(usage); |
| 800 | _fix_time_precision(usage: perf_only); |
| 801 | } |
| 802 | |
| 803 | void |
| 804 | recount_task_usage_perf_only(task_t task, struct recount_usage *sum, |
| 805 | struct recount_usage *sum_perf_only) |
| 806 | { |
| 807 | recount_sum_and_isolate_cpu_kind(plan: &recount_task_plan, |
| 808 | tracks: task->tk_recount.rtk_lifetime, kind: RCT_CPU_PERFORMANCE, sum, only_kind: sum_perf_only); |
| 809 | _fix_time_precision(usage: sum); |
| 810 | _fix_time_precision(usage: sum_perf_only); |
| 811 | } |
| 812 | |
| 813 | void |
| 814 | recount_task_usage(task_t task, struct recount_usage *usage) |
| 815 | { |
| 816 | recount_sum(plan: &recount_task_plan, tracks: task->tk_recount.rtk_lifetime, sum: usage); |
| 817 | _fix_time_precision(usage); |
| 818 | } |
| 819 | |
| 820 | struct recount_times_mach |
| 821 | recount_task_times(struct task *task) |
| 822 | { |
| 823 | size_t topo_count = recount_topo_count(topo: recount_task_plan.rpl_topo); |
| 824 | struct recount_times_mach times = { 0 }; |
| 825 | for (size_t i = 0; i < topo_count; i++) { |
| 826 | _times_add_usage(times: ×, usage: &task->tk_recount.rtk_lifetime[i].rt_usage); |
| 827 | } |
| 828 | return times; |
| 829 | } |
| 830 | |
| 831 | uint64_t |
| 832 | recount_task_energy_nj(struct task *task) |
| 833 | { |
| 834 | #if RECOUNT_ENERGY |
| 835 | size_t topo_count = recount_topo_count(recount_task_plan.rpl_topo); |
| 836 | uint64_t energy = 0; |
| 837 | for (size_t i = 0; i < topo_count; i++) { |
| 838 | energy += task->tk_recount.rtk_lifetime[i].rt_usage.ru_energy_nj; |
| 839 | } |
| 840 | return energy; |
| 841 | #else // RECOUNT_ENERGY |
| 842 | #pragma unused(task) |
| 843 | return 0; |
| 844 | #endif // !RECOUNT_ENERGY |
| 845 | } |
| 846 | |
| 847 | void |
| 848 | recount_coalition_usage_perf_only(struct recount_coalition *coal, |
| 849 | struct recount_usage *sum, struct recount_usage *sum_perf_only) |
| 850 | { |
| 851 | recount_sum_usage_and_isolate_cpu_kind(plan: &recount_coalition_plan, |
| 852 | usage: coal->rco_exited, kind: RCT_CPU_PERFORMANCE, sum, only_kind: sum_perf_only); |
| 853 | _fix_time_precision(usage: sum); |
| 854 | _fix_time_precision(usage: sum_perf_only); |
| 855 | } |
| 856 | |
| 857 | OS_ALWAYS_INLINE |
| 858 | static void |
| 859 | recount_absorb_snap(struct recount_snap *to_add, thread_t thread, task_t task, |
| 860 | processor_t processor, recount_level_t level) |
| 861 | { |
| 862 | // Idle threads do not attribute their usage back to the task or processor, |
| 863 | // as the time is not spent "running." |
| 864 | // |
| 865 | // The processor-level metrics include idle time, instead, as the idle time |
| 866 | // needs to be read as up-to-date from `recount_processor_usage`. |
| 867 | |
| 868 | const bool was_idle = (thread->options & TH_OPT_IDLE_THREAD) != 0; |
| 869 | |
| 870 | struct recount_track *wi_tracks_array = NULL; |
| 871 | if (!was_idle) { |
| 872 | wi_tracks_array = work_interval_get_recount_tracks( |
| 873 | work_interval: thread->th_work_interval); |
| 874 | } |
| 875 | bool absorb_work_interval = wi_tracks_array != NULL; |
| 876 | |
| 877 | struct recount_track *th_track = recount_update_start( |
| 878 | tracks: thread->th_recount.rth_lifetime, topo: recount_thread_plan.rpl_topo, |
| 879 | processor); |
| 880 | struct recount_track *wi_track = NULL; |
| 881 | if (absorb_work_interval) { |
| 882 | wi_track = recount_update_start(tracks: wi_tracks_array, |
| 883 | topo: recount_work_interval_plan.rpl_topo, processor); |
| 884 | } |
| 885 | struct recount_track *tk_track = was_idle ? NULL : recount_update_start( |
| 886 | tracks: task->tk_recount.rtk_lifetime, topo: recount_task_plan.rpl_topo, processor); |
| 887 | struct recount_track *pr_track = was_idle ? NULL : recount_update_start( |
| 888 | tracks: &processor->pr_recount.rpr_active, topo: recount_processor_plan.rpl_topo, |
| 889 | processor); |
| 890 | recount_update_commit(); |
| 891 | |
| 892 | recount_usage_add_snap(usage: &th_track->rt_usage, level, snap: to_add); |
| 893 | if (!was_idle) { |
| 894 | if (absorb_work_interval) { |
| 895 | recount_usage_add_snap(usage: &wi_track->rt_usage, level, snap: to_add); |
| 896 | } |
| 897 | recount_usage_add_snap(usage: &tk_track->rt_usage, level, snap: to_add); |
| 898 | recount_usage_add_snap(usage: &pr_track->rt_usage, level, snap: to_add); |
| 899 | } |
| 900 | |
| 901 | recount_update_commit(); |
| 902 | recount_update_end(track: th_track); |
| 903 | if (!was_idle) { |
| 904 | if (absorb_work_interval) { |
| 905 | recount_update_end(track: wi_track); |
| 906 | } |
| 907 | recount_update_end(track: tk_track); |
| 908 | recount_update_end(track: pr_track); |
| 909 | } |
| 910 | } |
| 911 | |
| 912 | void |
| 913 | recount_switch_thread(struct recount_snap *cur, struct thread *off_thread, |
| 914 | struct task *off_task) |
| 915 | { |
| 916 | assert(ml_get_interrupts_enabled() == FALSE); |
| 917 | |
| 918 | if (__improbable(!_recount_started)) { |
| 919 | return; |
| 920 | } |
| 921 | |
| 922 | processor_t processor = current_processor(); |
| 923 | |
| 924 | struct recount_snap *last = recount_get_snap(processor); |
| 925 | struct recount_snap diff = { 0 }; |
| 926 | recount_snap_diff(result: &diff, lhs: cur, rhs: last); |
| 927 | recount_absorb_snap(to_add: &diff, thread: off_thread, task: off_task, processor, |
| 928 | #if RECOUNT_THREAD_BASED_LEVEL |
| 929 | level: off_thread->th_recount.rth_current_level |
| 930 | #else // RECOUNT_THREAD_BASED_LEVEL |
| 931 | RCT_LVL_KERNEL |
| 932 | #endif // !RECOUNT_THREAD_BASED_LEVEL |
| 933 | ); |
| 934 | memcpy(dst: last, src: cur, n: sizeof(*last)); |
| 935 | } |
| 936 | |
| 937 | void |
| 938 | recount_add_energy(struct thread *off_thread, struct task *off_task, |
| 939 | uint64_t energy_nj) |
| 940 | { |
| 941 | #if RECOUNT_ENERGY |
| 942 | assert(ml_get_interrupts_enabled() == FALSE); |
| 943 | if (__improbable(!_recount_started)) { |
| 944 | return; |
| 945 | } |
| 946 | |
| 947 | bool was_idle = (off_thread->options & TH_OPT_IDLE_THREAD) != 0; |
| 948 | struct recount_track *wi_tracks_array = work_interval_get_recount_tracks(off_thread->th_work_interval); |
| 949 | bool collect_work_interval_telemetry = wi_tracks_array != NULL; |
| 950 | processor_t processor = current_processor(); |
| 951 | |
| 952 | struct recount_track *th_track = recount_update_single_start( |
| 953 | off_thread->th_recount.rth_lifetime, recount_thread_plan.rpl_topo, |
| 954 | processor); |
| 955 | struct recount_track *wi_track = (was_idle || !collect_work_interval_telemetry) ? NULL : |
| 956 | recount_update_single_start(wi_tracks_array, |
| 957 | recount_work_interval_plan.rpl_topo, processor); |
| 958 | struct recount_track *tk_track = was_idle ? NULL : |
| 959 | recount_update_single_start(off_task->tk_recount.rtk_lifetime, |
| 960 | recount_task_plan.rpl_topo, processor); |
| 961 | struct recount_track *pr_track = was_idle ? NULL : |
| 962 | recount_update_single_start(&processor->pr_recount.rpr_active, |
| 963 | recount_processor_plan.rpl_topo, processor); |
| 964 | |
| 965 | th_track->rt_usage.ru_energy_nj += energy_nj; |
| 966 | if (!was_idle) { |
| 967 | if (collect_work_interval_telemetry) { |
| 968 | wi_track->rt_usage.ru_energy_nj += energy_nj; |
| 969 | } |
| 970 | tk_track->rt_usage.ru_energy_nj += energy_nj; |
| 971 | pr_track->rt_usage.ru_energy_nj += energy_nj; |
| 972 | } |
| 973 | #else // RECOUNT_ENERGY |
| 974 | #pragma unused(off_thread, off_task, energy_nj) |
| 975 | #endif // !RECOUNT_ENERGY |
| 976 | } |
| 977 | |
| 978 | #define MT_KDBG_IC_CPU_CSWITCH \ |
| 979 | KDBG_EVENTID(DBG_MONOTONIC, DBG_MT_INSTRS_CYCLES, 1) |
| 980 | |
| 981 | #define MT_KDBG_IC_CPU_CSWITCH_ON \ |
| 982 | KDBG_EVENTID(DBG_MONOTONIC, DBG_MT_INSTRS_CYCLES_ON_CPU, 1) |
| 983 | |
| 984 | void |
| 985 | recount_log_switch_thread(const struct recount_snap *snap) |
| 986 | { |
| 987 | #if CONFIG_PERVASIVE_CPI |
| 988 | if (kdebug_debugid_explicitly_enabled(MT_KDBG_IC_CPU_CSWITCH)) { |
| 989 | // In Monotonic's event hierarchy for backwards-compatibility. |
| 990 | KDBG_RELEASE(MT_KDBG_IC_CPU_CSWITCH, snap->rsn_insns, snap->rsn_cycles); |
| 991 | } |
| 992 | #else // CONFIG_PERVASIVE_CPI |
| 993 | #pragma unused(snap) |
| 994 | #endif // CONFIG_PERVASIVE_CPI |
| 995 | } |
| 996 | |
| 997 | void |
| 998 | recount_log_switch_thread_on(const struct recount_snap *snap) |
| 999 | { |
| 1000 | #if CONFIG_PERVASIVE_CPI |
| 1001 | if (kdebug_debugid_explicitly_enabled(MT_KDBG_IC_CPU_CSWITCH_ON)) { |
| 1002 | if (!snap) { |
| 1003 | snap = recount_get_snap(current_processor()); |
| 1004 | } |
| 1005 | // In Monotonic's event hierarchy for backwards-compatibility. |
| 1006 | KDBG_RELEASE(MT_KDBG_IC_CPU_CSWITCH_ON, snap->rsn_insns, snap->rsn_cycles); |
| 1007 | } |
| 1008 | #else // CONFIG_PERVASIVE_CPI |
| 1009 | #pragma unused(snap) |
| 1010 | #endif // CONFIG_PERVASIVE_CPI |
| 1011 | } |
| 1012 | |
| 1013 | OS_ALWAYS_INLINE |
| 1014 | PRECISE_TIME_ONLY_FUNC |
| 1015 | static void |
| 1016 | recount_precise_transition_diff(struct recount_snap *diff, |
| 1017 | struct recount_snap *last, struct recount_snap *cur) |
| 1018 | { |
| 1019 | #if PRECISE_USER_KERNEL_PMCS |
| 1020 | #if PRECISE_USER_KERNEL_PMC_TUNABLE |
| 1021 | // The full `recount_snapshot_speculative` shouldn't get PMCs with a tunable |
| 1022 | // in this configuration. |
| 1023 | if (__improbable(no_precise_pmcs)) { |
| 1024 | cur->rsn_time_mach = recount_timestamp_speculative(); |
| 1025 | diff->rsn_time_mach = cur->rsn_time_mach - last->rsn_time_mach; |
| 1026 | } else |
| 1027 | #endif // PRECISE_USER_KERNEL_PMC_TUNABLE |
| 1028 | { |
| 1029 | recount_snapshot_speculative(snap: cur); |
| 1030 | recount_snap_diff(result: diff, lhs: cur, rhs: last); |
| 1031 | } |
| 1032 | #else // PRECISE_USER_KERNEL_PMCS |
| 1033 | cur->rsn_time_mach = recount_timestamp_speculative(); |
| 1034 | diff->rsn_time_mach = cur->rsn_time_mach - last->rsn_time_mach; |
| 1035 | #endif // !PRECISE_USER_KERNEL_PMCS |
| 1036 | } |
| 1037 | |
| 1038 | #if MACH_ASSERT && RECOUNT_THREAD_BASED_LEVEL |
| 1039 | |
| 1040 | PRECISE_TIME_ONLY_FUNC |
| 1041 | static void |
| 1042 | recount_assert_level(thread_t thread, recount_level_t old) |
| 1043 | { |
| 1044 | assert3u(thread->th_recount.rth_current_level, ==, old); |
| 1045 | } |
| 1046 | |
| 1047 | #else // MACH_ASSERT && RECOUNT_THREAD_BASED_LEVEL |
| 1048 | |
| 1049 | PRECISE_TIME_ONLY_FUNC |
| 1050 | static void |
| 1051 | recount_assert_level(thread_t __unused thread, |
| 1052 | recount_level_t __unused old) |
| 1053 | { |
| 1054 | } |
| 1055 | |
| 1056 | #endif // !(MACH_ASSERT && RECOUNT_THREAD_BASED_LEVEL) |
| 1057 | |
| 1058 | /// Called when entering or exiting the kernel to maintain system vs. user counts, extremely performance sensitive. |
| 1059 | /// |
| 1060 | /// Must be called with interrupts disabled. |
| 1061 | /// |
| 1062 | /// - Parameter from: What level is being switched from. |
| 1063 | /// - Parameter to: What level is being switched to. |
| 1064 | /// |
| 1065 | /// - Returns: The value of Mach time that was sampled inside this function. |
| 1066 | PRECISE_TIME_FATAL_FUNC |
| 1067 | static uint64_t |
| 1068 | recount_transition(recount_level_t from, recount_level_t to) |
| 1069 | { |
| 1070 | #if PRECISE_USER_KERNEL_TIME |
| 1071 | // Omit interrupts-disabled assertion for performance reasons. |
| 1072 | processor_t processor = current_processor(); |
| 1073 | thread_t thread = processor->active_thread; |
| 1074 | if (thread) { |
| 1075 | task_t task = get_thread_ro_unchecked(thread)->tro_task; |
| 1076 | |
| 1077 | recount_assert_level(thread, old: from); |
| 1078 | #if RECOUNT_THREAD_BASED_LEVEL |
| 1079 | thread->th_recount.rth_current_level = to; |
| 1080 | #else // RECOUNT_THREAD_BASED_LEVEL |
| 1081 | #pragma unused(to) |
| 1082 | #endif // !RECOUNT_THREAD_BASED_LEVEL |
| 1083 | struct recount_snap *last = recount_get_snap(processor); |
| 1084 | struct recount_snap diff = { 0 }; |
| 1085 | struct recount_snap cur = { 0 }; |
| 1086 | recount_precise_transition_diff(diff: &diff, last, cur: &cur); |
| 1087 | recount_absorb_snap(to_add: &diff, thread, task, processor, level: from); |
| 1088 | memcpy(dst: last, src: &cur, n: sizeof(*last)); |
| 1089 | |
| 1090 | return cur.rsn_time_mach; |
| 1091 | } else { |
| 1092 | return 0; |
| 1093 | } |
| 1094 | #else // PRECISE_USER_KERNEL_TIME |
| 1095 | #pragma unused(from, to) |
| 1096 | panic("recount: kernel transition called with precise time off" ); |
| 1097 | #endif // !PRECISE_USER_KERNEL_TIME |
| 1098 | } |
| 1099 | |
| 1100 | PRECISE_TIME_FATAL_FUNC |
| 1101 | void |
| 1102 | recount_leave_user(void) |
| 1103 | { |
| 1104 | recount_transition(from: RCT_LVL_USER, to: RCT_LVL_KERNEL); |
| 1105 | } |
| 1106 | |
| 1107 | PRECISE_TIME_FATAL_FUNC |
| 1108 | void |
| 1109 | recount_enter_user(void) |
| 1110 | { |
| 1111 | recount_transition(from: RCT_LVL_KERNEL, to: RCT_LVL_USER); |
| 1112 | } |
| 1113 | |
| 1114 | void |
| 1115 | recount_enter_interrupt(void) |
| 1116 | { |
| 1117 | processor_t processor = current_processor(); |
| 1118 | struct recount_snap *last = recount_get_interrupt_snap(processor); |
| 1119 | recount_snapshot_speculative(snap: last); |
| 1120 | } |
| 1121 | |
| 1122 | void |
| 1123 | recount_leave_interrupt(void) |
| 1124 | { |
| 1125 | processor_t processor = current_processor(); |
| 1126 | thread_t thread = processor->active_thread; |
| 1127 | struct recount_snap *last = recount_get_snap(processor); |
| 1128 | uint64_t last_time = last->rsn_time_mach; |
| 1129 | recount_snapshot_speculative(snap: last); |
| 1130 | processor->pr_recount.rpr_interrupt_time_mach += |
| 1131 | last->rsn_time_mach - last_time; |
| 1132 | thread->th_recount.rth_interrupt_time_mach += |
| 1133 | last->rsn_time_mach - last_time; |
| 1134 | } |
| 1135 | |
| 1136 | #if __x86_64__ |
| 1137 | |
| 1138 | void |
| 1139 | recount_enter_intel_interrupt(x86_saved_state_t *state) |
| 1140 | { |
| 1141 | // The low bits of `%cs` being set indicate interrupt was delivered while |
| 1142 | // executing in user space. |
| 1143 | bool from_user = (is_saved_state64(state) ? state->ss_64.isf.cs : |
| 1144 | state->ss_32.cs) & 0x03; |
| 1145 | uint64_t timestamp = recount_transition( |
| 1146 | from_user ? RCT_LVL_USER : RCT_LVL_KERNEL, RCT_LVL_KERNEL); |
| 1147 | current_cpu_datap()->cpu_int_event_time = timestamp; |
| 1148 | } |
| 1149 | |
| 1150 | void |
| 1151 | recount_leave_intel_interrupt(void) |
| 1152 | { |
| 1153 | recount_transition(RCT_LVL_KERNEL, RCT_LVL_KERNEL); |
| 1154 | current_cpu_datap()->cpu_int_event_time = 0; |
| 1155 | } |
| 1156 | |
| 1157 | #endif // __x86_64__ |
| 1158 | |
| 1159 | #if RECOUNT_SECURE_METRICS |
| 1160 | |
| 1161 | PRECISE_TIME_FATAL_FUNC |
| 1162 | void |
| 1163 | recount_leave_secure(void) |
| 1164 | { |
| 1165 | boolean_t intrs_en = ml_set_interrupts_enabled(FALSE); |
| 1166 | recount_transition(RCT_LVL_SECURE, RCT_LVL_KERNEL); |
| 1167 | ml_set_interrupts_enabled(intrs_en); |
| 1168 | } |
| 1169 | |
| 1170 | PRECISE_TIME_FATAL_FUNC |
| 1171 | void |
| 1172 | recount_enter_secure(void) |
| 1173 | { |
| 1174 | boolean_t intrs_en = ml_set_interrupts_enabled(FALSE); |
| 1175 | recount_transition(RCT_LVL_KERNEL, RCT_LVL_SECURE); |
| 1176 | ml_set_interrupts_enabled(intrs_en); |
| 1177 | } |
| 1178 | |
| 1179 | #endif // RECOUNT_SECURE_METRICS |
| 1180 | |
| 1181 | // Set on rpr_state_last_abs_time when the processor is idle. |
| 1182 | #define RCT_PR_IDLING (0x1ULL << 63) |
| 1183 | |
| 1184 | void |
| 1185 | recount_processor_idle(struct recount_processor *pr, struct recount_snap *snap) |
| 1186 | { |
| 1187 | __assert_only uint64_t state_time = os_atomic_load_wide( |
| 1188 | &pr->rpr_state_last_abs_time, relaxed); |
| 1189 | assert((state_time & RCT_PR_IDLING) == 0); |
| 1190 | assert((snap->rsn_time_mach & RCT_PR_IDLING) == 0); |
| 1191 | uint64_t new_state_stamp = RCT_PR_IDLING | snap->rsn_time_mach; |
| 1192 | os_atomic_store_wide(&pr->rpr_state_last_abs_time, new_state_stamp, |
| 1193 | relaxed); |
| 1194 | } |
| 1195 | |
| 1196 | OS_PURE OS_ALWAYS_INLINE |
| 1197 | static inline uint64_t |
| 1198 | _state_time(uint64_t state_stamp) |
| 1199 | { |
| 1200 | return state_stamp & ~(RCT_PR_IDLING); |
| 1201 | } |
| 1202 | |
| 1203 | void |
| 1204 | recount_processor_init(processor_t processor) |
| 1205 | { |
| 1206 | #if __AMP__ |
| 1207 | processor->pr_recount.rpr_cpu_kind_index = |
| 1208 | processor->processor_set->pset_cluster_type == PSET_AMP_P ? |
| 1209 | RCT_CPU_PERFORMANCE : RCT_CPU_EFFICIENCY; |
| 1210 | #else // __AMP__ |
| 1211 | #pragma unused(processor) |
| 1212 | #endif // !__AMP__ |
| 1213 | } |
| 1214 | |
| 1215 | void |
| 1216 | recount_processor_run(struct recount_processor *pr, struct recount_snap *snap) |
| 1217 | { |
| 1218 | uint64_t state = os_atomic_load_wide(&pr->rpr_state_last_abs_time, relaxed); |
| 1219 | assert(state == 0 || (state & RCT_PR_IDLING) == RCT_PR_IDLING); |
| 1220 | assert((snap->rsn_time_mach & RCT_PR_IDLING) == 0); |
| 1221 | uint64_t new_state_stamp = snap->rsn_time_mach; |
| 1222 | pr->rpr_idle_time_mach += snap->rsn_time_mach - _state_time(state_stamp: state); |
| 1223 | os_atomic_store_wide(&pr->rpr_state_last_abs_time, new_state_stamp, |
| 1224 | relaxed); |
| 1225 | } |
| 1226 | |
| 1227 | void |
| 1228 | recount_processor_online(processor_t processor, struct recount_snap *cur) |
| 1229 | { |
| 1230 | recount_processor_run(pr: &processor->pr_recount, snap: cur); |
| 1231 | struct recount_snap *pr_snap = recount_get_snap(processor); |
| 1232 | memcpy(dst: pr_snap, src: cur, n: sizeof(*pr_snap)); |
| 1233 | } |
| 1234 | |
| 1235 | void |
| 1236 | recount_processor_usage(struct recount_processor *pr, |
| 1237 | struct recount_usage *usage, uint64_t *idle_time_out) |
| 1238 | { |
| 1239 | recount_sum(plan: &recount_processor_plan, tracks: &pr->rpr_active, sum: usage); |
| 1240 | _fix_time_precision(usage); |
| 1241 | |
| 1242 | uint64_t idle_time = pr->rpr_idle_time_mach; |
| 1243 | uint64_t idle_stamp = os_atomic_load_wide(&pr->rpr_state_last_abs_time, |
| 1244 | relaxed); |
| 1245 | bool idle = (idle_stamp & RCT_PR_IDLING) == RCT_PR_IDLING; |
| 1246 | if (idle) { |
| 1247 | // Since processors can idle for some time without an update, make sure |
| 1248 | // the idle time is up-to-date with respect to the caller. |
| 1249 | idle_time += mach_absolute_time() - _state_time(state_stamp: idle_stamp); |
| 1250 | } |
| 1251 | *idle_time_out = idle_time; |
| 1252 | } |
| 1253 | |
| 1254 | uint64_t |
| 1255 | recount_current_processor_interrupt_time_mach(void) |
| 1256 | { |
| 1257 | assert(!preemption_enabled()); |
| 1258 | return current_processor()->pr_recount.rpr_interrupt_time_mach; |
| 1259 | } |
| 1260 | |
| 1261 | bool |
| 1262 | recount_task_thread_perf_level_usage(struct task *task, uint64_t tid, |
| 1263 | struct recount_usage *usage_levels) |
| 1264 | { |
| 1265 | thread_t thread = task_findtid(task, tid); |
| 1266 | if (thread != THREAD_NULL) { |
| 1267 | if (thread == current_thread()) { |
| 1268 | boolean_t interrupt_state = ml_set_interrupts_enabled(FALSE); |
| 1269 | recount_current_thread_perf_level_usage(usage_levels); |
| 1270 | ml_set_interrupts_enabled(enable: interrupt_state); |
| 1271 | } else { |
| 1272 | recount_thread_perf_level_usage(thread, usage_levels); |
| 1273 | } |
| 1274 | } |
| 1275 | return thread != THREAD_NULL; |
| 1276 | } |
| 1277 | |
| 1278 | #pragma mark - utilities |
| 1279 | |
| 1280 | // For rolling up counts, convert an index from one topography to another. |
| 1281 | static size_t |
| 1282 | recount_convert_topo_index(recount_topo_t from, recount_topo_t to, size_t i) |
| 1283 | { |
| 1284 | if (from == to) { |
| 1285 | return i; |
| 1286 | } else if (to == RCT_TOPO_SYSTEM) { |
| 1287 | return 0; |
| 1288 | } else if (from == RCT_TOPO_CPU) { |
| 1289 | assertf(to == RCT_TOPO_CPU_KIND, |
| 1290 | "recount: cannot convert from CPU topography to %d" , to); |
| 1291 | return _topo_cpu_kinds[i]; |
| 1292 | } else { |
| 1293 | panic("recount: unexpected rollup request from %d to %d" , from, to); |
| 1294 | } |
| 1295 | } |
| 1296 | |
| 1297 | // Get the track index of the provided processor and topography. |
| 1298 | OS_ALWAYS_INLINE |
| 1299 | static size_t |
| 1300 | recount_topo_index(recount_topo_t topo, processor_t processor) |
| 1301 | { |
| 1302 | switch (topo) { |
| 1303 | case RCT_TOPO_SYSTEM: |
| 1304 | return 0; |
| 1305 | case RCT_TOPO_CPU: |
| 1306 | return processor->cpu_id; |
| 1307 | case RCT_TOPO_CPU_KIND: |
| 1308 | #if __AMP__ |
| 1309 | return processor->pr_recount.rpr_cpu_kind_index; |
| 1310 | #else // __AMP__ |
| 1311 | return 0; |
| 1312 | #endif // !__AMP__ |
| 1313 | default: |
| 1314 | panic("recount: invalid topology %u to index" , topo); |
| 1315 | } |
| 1316 | } |
| 1317 | |
| 1318 | // Return the number of tracks needed for a given topography. |
| 1319 | size_t |
| 1320 | recount_topo_count(recount_topo_t topo) |
| 1321 | { |
| 1322 | // Allow the compiler to reason about at least the system and CPU kind |
| 1323 | // counts. |
| 1324 | switch (topo) { |
| 1325 | case RCT_TOPO_SYSTEM: |
| 1326 | return 1; |
| 1327 | |
| 1328 | case RCT_TOPO_CPU_KIND: |
| 1329 | #if __AMP__ |
| 1330 | return 2; |
| 1331 | #else // __AMP__ |
| 1332 | return 1; |
| 1333 | #endif // !__AMP__ |
| 1334 | |
| 1335 | case RCT_TOPO_CPU: |
| 1336 | #if __arm__ || __arm64__ |
| 1337 | return ml_get_cpu_count(); |
| 1338 | #else // __arm__ || __arm64__ |
| 1339 | return ml_early_cpu_max_number() + 1; |
| 1340 | #endif // !__arm__ && !__arm64__ |
| 1341 | |
| 1342 | default: |
| 1343 | panic("recount: invalid topography %d" , topo); |
| 1344 | } |
| 1345 | } |
| 1346 | |
| 1347 | static bool |
| 1348 | recount_topo_matches_cpu_kind(recount_topo_t topo, recount_cpu_kind_t kind, |
| 1349 | size_t idx) |
| 1350 | { |
| 1351 | #if !__AMP__ |
| 1352 | #pragma unused(kind, idx) |
| 1353 | #endif // !__AMP__ |
| 1354 | switch (topo) { |
| 1355 | case RCT_TOPO_SYSTEM: |
| 1356 | return true; |
| 1357 | |
| 1358 | case RCT_TOPO_CPU_KIND: |
| 1359 | #if __AMP__ |
| 1360 | return kind == idx; |
| 1361 | #else // __AMP__ |
| 1362 | return false; |
| 1363 | #endif // !__AMP__ |
| 1364 | |
| 1365 | case RCT_TOPO_CPU: { |
| 1366 | #if __AMP__ |
| 1367 | return _topo_cpu_kinds[idx] == kind; |
| 1368 | #else // __AMP__ |
| 1369 | return false; |
| 1370 | #endif // !__AMP__ |
| 1371 | } |
| 1372 | |
| 1373 | default: |
| 1374 | panic("recount: unexpected topography %d" , topo); |
| 1375 | } |
| 1376 | } |
| 1377 | |
| 1378 | struct recount_track * |
| 1379 | recount_tracks_create(recount_plan_t plan) |
| 1380 | { |
| 1381 | assert(_topo_allocates[plan->rpl_topo]); |
| 1382 | return zalloc_flags(_recount_track_zones[plan->rpl_topo], |
| 1383 | Z_VM_TAG(Z_WAITOK | Z_ZERO | Z_NOFAIL, VM_KERN_MEMORY_RECOUNT)); |
| 1384 | } |
| 1385 | |
| 1386 | static void |
| 1387 | recount_tracks_copy(recount_plan_t plan, struct recount_track *dst, |
| 1388 | struct recount_track *src) |
| 1389 | { |
| 1390 | size_t topo_count = recount_topo_count(topo: plan->rpl_topo); |
| 1391 | for (size_t i = 0; i < topo_count; i++) { |
| 1392 | recount_read_track(stats: &dst[i].rt_usage, track: &src[i]); |
| 1393 | } |
| 1394 | } |
| 1395 | |
| 1396 | void |
| 1397 | recount_tracks_destroy(recount_plan_t plan, struct recount_track *tracks) |
| 1398 | { |
| 1399 | assert(_topo_allocates[plan->rpl_topo]); |
| 1400 | zfree(_recount_track_zones[plan->rpl_topo], tracks); |
| 1401 | } |
| 1402 | |
| 1403 | void |
| 1404 | recount_thread_init(struct recount_thread *th) |
| 1405 | { |
| 1406 | th->rth_lifetime = recount_tracks_create(plan: &recount_thread_plan); |
| 1407 | } |
| 1408 | |
| 1409 | void |
| 1410 | recount_thread_copy(struct recount_thread *dst, struct recount_thread *src) |
| 1411 | { |
| 1412 | recount_tracks_copy(plan: &recount_thread_plan, dst: dst->rth_lifetime, |
| 1413 | src: src->rth_lifetime); |
| 1414 | } |
| 1415 | |
| 1416 | void |
| 1417 | recount_task_copy(struct recount_task *dst, const struct recount_task *src) |
| 1418 | { |
| 1419 | recount_tracks_copy(plan: &recount_task_plan, dst: dst->rtk_lifetime, |
| 1420 | src: src->rtk_lifetime); |
| 1421 | } |
| 1422 | |
| 1423 | void |
| 1424 | recount_thread_deinit(struct recount_thread *th) |
| 1425 | { |
| 1426 | recount_tracks_destroy(plan: &recount_thread_plan, tracks: th->rth_lifetime); |
| 1427 | } |
| 1428 | |
| 1429 | void |
| 1430 | recount_task_init(struct recount_task *tk) |
| 1431 | { |
| 1432 | tk->rtk_lifetime = recount_tracks_create(plan: &recount_task_plan); |
| 1433 | tk->rtk_terminated = recount_usage_alloc( |
| 1434 | topo: recount_task_terminated_plan.rpl_topo); |
| 1435 | } |
| 1436 | |
| 1437 | void |
| 1438 | recount_task_deinit(struct recount_task *tk) |
| 1439 | { |
| 1440 | recount_tracks_destroy(plan: &recount_task_plan, tracks: tk->rtk_lifetime); |
| 1441 | recount_usage_free(topo: recount_task_terminated_plan.rpl_topo, |
| 1442 | usage: tk->rtk_terminated); |
| 1443 | } |
| 1444 | |
| 1445 | void |
| 1446 | recount_coalition_init(struct recount_coalition *co) |
| 1447 | { |
| 1448 | co->rco_exited = recount_usage_alloc(topo: recount_coalition_plan.rpl_topo); |
| 1449 | } |
| 1450 | |
| 1451 | void |
| 1452 | recount_coalition_deinit(struct recount_coalition *co) |
| 1453 | { |
| 1454 | recount_usage_free(topo: recount_coalition_plan.rpl_topo, usage: co->rco_exited); |
| 1455 | } |
| 1456 | |
| 1457 | void |
| 1458 | recount_work_interval_init(struct recount_work_interval *wi) |
| 1459 | { |
| 1460 | wi->rwi_current_instance = recount_tracks_create(plan: &recount_work_interval_plan); |
| 1461 | } |
| 1462 | |
| 1463 | void |
| 1464 | recount_work_interval_deinit(struct recount_work_interval *wi) |
| 1465 | { |
| 1466 | recount_tracks_destroy(plan: &recount_work_interval_plan, tracks: wi->rwi_current_instance); |
| 1467 | } |
| 1468 | |
| 1469 | struct recount_usage * |
| 1470 | recount_usage_alloc(recount_topo_t topo) |
| 1471 | { |
| 1472 | assert(_topo_allocates[topo]); |
| 1473 | return zalloc_flags(_recount_usage_zones[topo], |
| 1474 | Z_VM_TAG(Z_WAITOK | Z_ZERO | Z_NOFAIL, VM_KERN_MEMORY_RECOUNT)); |
| 1475 | } |
| 1476 | |
| 1477 | void |
| 1478 | recount_usage_free(recount_topo_t topo, struct recount_usage *usage) |
| 1479 | { |
| 1480 | assert(_topo_allocates[topo]); |
| 1481 | zfree(_recount_usage_zones[topo], usage); |
| 1482 | } |
| 1483 | |