| 1 | /* |
| 2 | * Copyright (c) 2000-2019 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
| 5 | * |
| 6 | * This file contains Original Code and/or Modifications of Original Code |
| 7 | * as defined in and that are subject to the Apple Public Source License |
| 8 | * Version 2.0 (the 'License'). You may not use this file except in |
| 9 | * compliance with the License. The rights granted to you under the License |
| 10 | * may not be used to create, or enable the creation or redistribution of, |
| 11 | * unlawful or unlicensed copies of an Apple operating system, or to |
| 12 | * circumvent, violate, or enable the circumvention or violation of, any |
| 13 | * terms of an Apple operating system software license agreement. |
| 14 | * |
| 15 | * Please obtain a copy of the License at |
| 16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
| 17 | * |
| 18 | * The Original Code and all software distributed under the License are |
| 19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| 23 | * Please see the License for the specific language governing rights and |
| 24 | * limitations under the License. |
| 25 | * |
| 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
| 27 | */ |
| 28 | /* |
| 29 | * @OSF_COPYRIGHT@ |
| 30 | */ |
| 31 | /* |
| 32 | * Mach Operating System |
| 33 | * Copyright (c) 1991,1990,1989,1988 Carnegie Mellon University |
| 34 | * All Rights Reserved. |
| 35 | * |
| 36 | * Permission to use, copy, modify and distribute this software and its |
| 37 | * documentation is hereby granted, provided that both the copyright |
| 38 | * notice and this permission notice appear in all copies of the |
| 39 | * software, derivative works or modified versions, and any portions |
| 40 | * thereof, and that both notices appear in supporting documentation. |
| 41 | * |
| 42 | * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" |
| 43 | * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR |
| 44 | * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. |
| 45 | * |
| 46 | * Carnegie Mellon requests users of this software to return to |
| 47 | * |
| 48 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU |
| 49 | * School of Computer Science |
| 50 | * Carnegie Mellon University |
| 51 | * Pittsburgh PA 15213-3890 |
| 52 | * |
| 53 | * any improvements or extensions that they make and grant Carnegie Mellon |
| 54 | * the rights to redistribute these changes. |
| 55 | */ |
| 56 | /* |
| 57 | */ |
| 58 | |
| 59 | /* |
| 60 | * processor.c: processor and processor_set manipulation routines. |
| 61 | */ |
| 62 | |
| 63 | #include <mach/boolean.h> |
| 64 | #include <mach/policy.h> |
| 65 | #include <mach/processor.h> |
| 66 | #include <mach/processor_info.h> |
| 67 | #include <mach/vm_param.h> |
| 68 | #include <kern/cpu_number.h> |
| 69 | #include <kern/host.h> |
| 70 | #include <kern/ipc_host.h> |
| 71 | #include <kern/ipc_tt.h> |
| 72 | #include <kern/kalloc.h> |
| 73 | #include <kern/machine.h> |
| 74 | #include <kern/misc_protos.h> |
| 75 | #include <kern/processor.h> |
| 76 | #include <kern/sched.h> |
| 77 | #include <kern/task.h> |
| 78 | #include <kern/thread.h> |
| 79 | #include <kern/timer.h> |
| 80 | #if KPERF |
| 81 | #include <kperf/kperf.h> |
| 82 | #endif /* KPERF */ |
| 83 | #include <ipc/ipc_port.h> |
| 84 | |
| 85 | #include <security/mac_mach_internal.h> |
| 86 | |
| 87 | #if defined(CONFIG_XNUPOST) |
| 88 | |
| 89 | #include <tests/xnupost.h> |
| 90 | |
| 91 | #endif /* CONFIG_XNUPOST */ |
| 92 | |
| 93 | /* |
| 94 | * Exported interface |
| 95 | */ |
| 96 | #include <mach/mach_host_server.h> |
| 97 | #include <mach/processor_set_server.h> |
| 98 | #include <san/kcov.h> |
| 99 | |
| 100 | /* |
| 101 | * The first pset and the pset_node are created by default for all platforms. |
| 102 | * Those typically represent the boot-cluster. For AMP platforms, all clusters |
| 103 | * of the same type are part of the same pset_node. This allows for easier |
| 104 | * CPU selection logic. |
| 105 | */ |
| 106 | struct processor_set pset0; |
| 107 | struct pset_node pset_node0; |
| 108 | |
| 109 | #if __AMP__ |
| 110 | struct pset_node pset_node1; |
| 111 | pset_node_t ecore_node; |
| 112 | pset_node_t pcore_node; |
| 113 | #endif |
| 114 | |
| 115 | LCK_SPIN_DECLARE(pset_node_lock, LCK_GRP_NULL); |
| 116 | |
| 117 | LCK_GRP_DECLARE(pset_lck_grp, "pset" ); |
| 118 | |
| 119 | queue_head_t tasks; |
| 120 | queue_head_t terminated_tasks; /* To be used ONLY for stackshot. */ |
| 121 | queue_head_t corpse_tasks; |
| 122 | int tasks_count; |
| 123 | int terminated_tasks_count; |
| 124 | queue_head_t threads; |
| 125 | queue_head_t terminated_threads; |
| 126 | int threads_count; |
| 127 | int terminated_threads_count; |
| 128 | LCK_GRP_DECLARE(task_lck_grp, "task" ); |
| 129 | LCK_ATTR_DECLARE(task_lck_attr, 0, 0); |
| 130 | LCK_MTX_DECLARE_ATTR(tasks_threads_lock, &task_lck_grp, &task_lck_attr); |
| 131 | LCK_MTX_DECLARE_ATTR(tasks_corpse_lock, &task_lck_grp, &task_lck_attr); |
| 132 | |
| 133 | processor_t processor_list; |
| 134 | unsigned int processor_count; |
| 135 | static processor_t processor_list_tail; |
| 136 | SIMPLE_LOCK_DECLARE(processor_list_lock, 0); |
| 137 | |
| 138 | uint32_t processor_avail_count; |
| 139 | uint32_t processor_avail_count_user; |
| 140 | uint32_t primary_processor_avail_count; |
| 141 | uint32_t primary_processor_avail_count_user; |
| 142 | |
| 143 | SECURITY_READ_ONLY_LATE(int) master_cpu = 0; |
| 144 | |
| 145 | struct processor PERCPU_DATA(processor); |
| 146 | processor_t processor_array[MAX_SCHED_CPUS] = { 0 }; |
| 147 | processor_set_t pset_array[MAX_PSETS] = { 0 }; |
| 148 | |
| 149 | static timer_call_func_t running_timer_funcs[] = { |
| 150 | [RUNNING_TIMER_QUANTUM] = thread_quantum_expire, |
| 151 | [RUNNING_TIMER_PREEMPT] = thread_preempt_expire, |
| 152 | [RUNNING_TIMER_KPERF] = kperf_timer_expire, |
| 153 | }; |
| 154 | static_assert(sizeof(running_timer_funcs) / sizeof(running_timer_funcs[0]) |
| 155 | == RUNNING_TIMER_MAX, "missing running timer function" ); |
| 156 | |
| 157 | #if defined(CONFIG_XNUPOST) |
| 158 | kern_return_t ipi_test(void); |
| 159 | extern void arm64_ipi_test(void); |
| 160 | |
| 161 | kern_return_t |
| 162 | ipi_test() |
| 163 | { |
| 164 | #if __arm64__ |
| 165 | processor_t p; |
| 166 | |
| 167 | for (p = processor_list; p != NULL; p = p->processor_list) { |
| 168 | thread_bind(p); |
| 169 | thread_block(THREAD_CONTINUE_NULL); |
| 170 | kprintf("Running IPI test on cpu %d\n" , p->cpu_id); |
| 171 | arm64_ipi_test(); |
| 172 | } |
| 173 | |
| 174 | /* unbind thread from specific cpu */ |
| 175 | thread_bind(PROCESSOR_NULL); |
| 176 | thread_block(THREAD_CONTINUE_NULL); |
| 177 | |
| 178 | T_PASS("Done running IPI tests" ); |
| 179 | #else |
| 180 | T_PASS("Unsupported platform. Not running IPI tests" ); |
| 181 | |
| 182 | #endif /* __arm64__ */ |
| 183 | |
| 184 | return KERN_SUCCESS; |
| 185 | } |
| 186 | #endif /* defined(CONFIG_XNUPOST) */ |
| 187 | |
| 188 | int sched_enable_smt = 1; |
| 189 | |
| 190 | void |
| 191 | processor_bootstrap(void) |
| 192 | { |
| 193 | /* Initialize PSET node and PSET associated with boot cluster */ |
| 194 | pset_node0.psets = &pset0; |
| 195 | pset_node0.pset_cluster_type = PSET_SMP; |
| 196 | |
| 197 | #if __AMP__ |
| 198 | const ml_topology_info_t *topology_info = ml_get_topology_info(); |
| 199 | |
| 200 | /* |
| 201 | * Since this is an AMP system, fill up cluster type and ID information; this should do the |
| 202 | * same kind of initialization done via ml_processor_register() |
| 203 | */ |
| 204 | ml_topology_cluster_t *boot_cluster = topology_info->boot_cluster; |
| 205 | pset0.pset_id = boot_cluster->cluster_id; |
| 206 | pset0.pset_cluster_id = boot_cluster->cluster_id; |
| 207 | if (boot_cluster->cluster_type == CLUSTER_TYPE_E) { |
| 208 | pset0.pset_cluster_type = PSET_AMP_E; |
| 209 | pset_node0.pset_cluster_type = PSET_AMP_E; |
| 210 | ecore_node = &pset_node0; |
| 211 | |
| 212 | pset_node1.pset_cluster_type = PSET_AMP_P; |
| 213 | pcore_node = &pset_node1; |
| 214 | } else { |
| 215 | pset0.pset_cluster_type = PSET_AMP_P; |
| 216 | pset_node0.pset_cluster_type = PSET_AMP_P; |
| 217 | pcore_node = &pset_node0; |
| 218 | |
| 219 | pset_node1.pset_cluster_type = PSET_AMP_E; |
| 220 | ecore_node = &pset_node1; |
| 221 | } |
| 222 | |
| 223 | /* Link pset_node1 to pset_node0 */ |
| 224 | pset_node0.node_list = &pset_node1; |
| 225 | #endif |
| 226 | |
| 227 | pset_init(pset: &pset0, node: &pset_node0); |
| 228 | queue_init(&tasks); |
| 229 | queue_init(&terminated_tasks); |
| 230 | queue_init(&threads); |
| 231 | queue_init(&terminated_threads); |
| 232 | queue_init(&corpse_tasks); |
| 233 | |
| 234 | processor_init(master_processor, cpu_id: master_cpu, processor_set: &pset0); |
| 235 | } |
| 236 | |
| 237 | /* |
| 238 | * Initialize the given processor for the cpu |
| 239 | * indicated by cpu_id, and assign to the |
| 240 | * specified processor set. |
| 241 | */ |
| 242 | void |
| 243 | processor_init( |
| 244 | processor_t processor, |
| 245 | int cpu_id, |
| 246 | processor_set_t pset) |
| 247 | { |
| 248 | spl_t s; |
| 249 | |
| 250 | assert(cpu_id < MAX_SCHED_CPUS); |
| 251 | processor->cpu_id = cpu_id; |
| 252 | |
| 253 | if (processor != master_processor) { |
| 254 | /* Scheduler state for master_processor initialized in sched_init() */ |
| 255 | SCHED(processor_init)(processor); |
| 256 | smr_cpu_init(processor); |
| 257 | } |
| 258 | |
| 259 | processor->state = PROCESSOR_OFF_LINE; |
| 260 | processor->active_thread = processor->startup_thread = processor->idle_thread = THREAD_NULL; |
| 261 | processor->processor_set = pset; |
| 262 | processor_state_update_idle(processor); |
| 263 | processor->starting_pri = MINPRI; |
| 264 | processor->quantum_end = UINT64_MAX; |
| 265 | processor->deadline = UINT64_MAX; |
| 266 | processor->first_timeslice = FALSE; |
| 267 | processor->processor_offlined = false; |
| 268 | processor->processor_primary = processor; /* no SMT relationship known at this point */ |
| 269 | processor->processor_secondary = NULL; |
| 270 | processor->is_SMT = false; |
| 271 | processor->is_recommended = true; |
| 272 | processor->processor_self = IP_NULL; |
| 273 | processor->processor_list = NULL; |
| 274 | processor->must_idle = false; |
| 275 | processor->next_idle_short = false; |
| 276 | processor->last_startup_reason = REASON_SYSTEM; |
| 277 | processor->last_shutdown_reason = REASON_NONE; |
| 278 | processor->shutdown_temporary = false; |
| 279 | processor->shutdown_locked = false; |
| 280 | processor->last_recommend_reason = REASON_SYSTEM; |
| 281 | processor->last_derecommend_reason = REASON_NONE; |
| 282 | processor->running_timers_active = false; |
| 283 | for (int i = 0; i < RUNNING_TIMER_MAX; i++) { |
| 284 | timer_call_setup(call: &processor->running_timers[i], |
| 285 | func: running_timer_funcs[i], param0: processor); |
| 286 | running_timer_clear(processor, timer: i); |
| 287 | } |
| 288 | recount_processor_init(processor); |
| 289 | simple_lock_init(&processor->start_state_lock, 0); |
| 290 | |
| 291 | s = splsched(); |
| 292 | pset_lock(pset); |
| 293 | bit_set(pset->cpu_bitmask, cpu_id); |
| 294 | bit_set(pset->recommended_bitmask, cpu_id); |
| 295 | bit_set(pset->primary_map, cpu_id); |
| 296 | bit_set(pset->cpu_state_map[PROCESSOR_OFF_LINE], cpu_id); |
| 297 | if (pset->cpu_set_count++ == 0) { |
| 298 | pset->cpu_set_low = pset->cpu_set_hi = cpu_id; |
| 299 | } else { |
| 300 | pset->cpu_set_low = (cpu_id < pset->cpu_set_low)? cpu_id: pset->cpu_set_low; |
| 301 | pset->cpu_set_hi = (cpu_id > pset->cpu_set_hi)? cpu_id: pset->cpu_set_hi; |
| 302 | } |
| 303 | pset_unlock(pset); |
| 304 | splx(s); |
| 305 | |
| 306 | simple_lock(&processor_list_lock, LCK_GRP_NULL); |
| 307 | if (processor_list == NULL) { |
| 308 | processor_list = processor; |
| 309 | } else { |
| 310 | processor_list_tail->processor_list = processor; |
| 311 | } |
| 312 | processor_list_tail = processor; |
| 313 | processor_count++; |
| 314 | simple_unlock(&processor_list_lock); |
| 315 | processor_array[cpu_id] = processor; |
| 316 | } |
| 317 | |
| 318 | bool system_is_SMT = false; |
| 319 | |
| 320 | void |
| 321 | processor_set_primary( |
| 322 | processor_t processor, |
| 323 | processor_t primary) |
| 324 | { |
| 325 | assert(processor->processor_primary == primary || processor->processor_primary == processor); |
| 326 | /* Re-adjust primary point for this (possibly) secondary processor */ |
| 327 | processor->processor_primary = primary; |
| 328 | |
| 329 | assert(primary->processor_secondary == NULL || primary->processor_secondary == processor); |
| 330 | if (primary != processor) { |
| 331 | /* Link primary to secondary, assumes a 2-way SMT model |
| 332 | * We'll need to move to a queue if any future architecture |
| 333 | * requires otherwise. |
| 334 | */ |
| 335 | assert(processor->processor_secondary == NULL); |
| 336 | primary->processor_secondary = processor; |
| 337 | /* Mark both processors as SMT siblings */ |
| 338 | primary->is_SMT = TRUE; |
| 339 | processor->is_SMT = TRUE; |
| 340 | |
| 341 | if (!system_is_SMT) { |
| 342 | system_is_SMT = true; |
| 343 | sched_rt_n_backup_processors = SCHED_DEFAULT_BACKUP_PROCESSORS_SMT; |
| 344 | } |
| 345 | |
| 346 | processor_set_t pset = processor->processor_set; |
| 347 | spl_t s = splsched(); |
| 348 | pset_lock(pset); |
| 349 | if (!pset->is_SMT) { |
| 350 | pset->is_SMT = true; |
| 351 | } |
| 352 | bit_clear(pset->primary_map, processor->cpu_id); |
| 353 | pset_unlock(pset); |
| 354 | splx(s); |
| 355 | } |
| 356 | } |
| 357 | |
| 358 | processor_set_t |
| 359 | processor_pset( |
| 360 | processor_t processor) |
| 361 | { |
| 362 | return processor->processor_set; |
| 363 | } |
| 364 | |
| 365 | #if CONFIG_SCHED_EDGE |
| 366 | |
| 367 | cluster_type_t |
| 368 | pset_type_for_id(uint32_t cluster_id) |
| 369 | { |
| 370 | return pset_array[cluster_id]->pset_type; |
| 371 | } |
| 372 | |
| 373 | /* |
| 374 | * Processor foreign threads |
| 375 | * |
| 376 | * With the Edge scheduler, each pset maintains a bitmap of processors running threads |
| 377 | * which are foreign to the pset/cluster. A thread is defined as foreign for a cluster |
| 378 | * if its of a different type than its preferred cluster type (E/P). The bitmap should |
| 379 | * be updated every time a new thread is assigned to run on a processor. Cluster shared |
| 380 | * resource intensive threads are also not counted as foreign threads since these |
| 381 | * threads should not be rebalanced when running on non-preferred clusters. |
| 382 | * |
| 383 | * This bitmap allows the Edge scheduler to quickly find CPUs running foreign threads |
| 384 | * for rebalancing. |
| 385 | */ |
| 386 | static void |
| 387 | processor_state_update_running_foreign(processor_t processor, thread_t thread) |
| 388 | { |
| 389 | cluster_type_t current_processor_type = pset_type_for_id(processor->processor_set->pset_cluster_id); |
| 390 | cluster_type_t thread_type = pset_type_for_id(sched_edge_thread_preferred_cluster(thread)); |
| 391 | |
| 392 | boolean_t non_rt_thr = (processor->current_pri < BASEPRI_RTQUEUES); |
| 393 | boolean_t non_bound_thr = (thread->bound_processor == PROCESSOR_NULL); |
| 394 | if (non_rt_thr && non_bound_thr && (current_processor_type != thread_type)) { |
| 395 | bit_set(processor->processor_set->cpu_running_foreign, processor->cpu_id); |
| 396 | } else { |
| 397 | bit_clear(processor->processor_set->cpu_running_foreign, processor->cpu_id); |
| 398 | } |
| 399 | } |
| 400 | |
| 401 | /* |
| 402 | * Cluster shared resource intensive threads |
| 403 | * |
| 404 | * With the Edge scheduler, each pset maintains a bitmap of processors running |
| 405 | * threads that are shared resource intensive. This per-thread property is set |
| 406 | * by the performance controller or explicitly via dispatch SPIs. The bitmap |
| 407 | * allows the Edge scheduler to calculate the cluster shared resource load on |
| 408 | * any given cluster and load balance intensive threads accordingly. |
| 409 | */ |
| 410 | static void |
| 411 | processor_state_update_running_cluster_shared_rsrc(processor_t processor, thread_t thread) |
| 412 | { |
| 413 | if (thread_shared_rsrc_policy_get(thread, CLUSTER_SHARED_RSRC_TYPE_RR)) { |
| 414 | bit_set(processor->processor_set->cpu_running_cluster_shared_rsrc_thread[CLUSTER_SHARED_RSRC_TYPE_RR], processor->cpu_id); |
| 415 | } else { |
| 416 | bit_clear(processor->processor_set->cpu_running_cluster_shared_rsrc_thread[CLUSTER_SHARED_RSRC_TYPE_RR], processor->cpu_id); |
| 417 | } |
| 418 | if (thread_shared_rsrc_policy_get(thread, CLUSTER_SHARED_RSRC_TYPE_NATIVE_FIRST)) { |
| 419 | bit_set(processor->processor_set->cpu_running_cluster_shared_rsrc_thread[CLUSTER_SHARED_RSRC_TYPE_NATIVE_FIRST], processor->cpu_id); |
| 420 | } else { |
| 421 | bit_clear(processor->processor_set->cpu_running_cluster_shared_rsrc_thread[CLUSTER_SHARED_RSRC_TYPE_NATIVE_FIRST], processor->cpu_id); |
| 422 | } |
| 423 | } |
| 424 | |
| 425 | #endif /* CONFIG_SCHED_EDGE */ |
| 426 | |
| 427 | void |
| 428 | processor_state_update_idle(processor_t processor) |
| 429 | { |
| 430 | processor->current_pri = IDLEPRI; |
| 431 | processor->current_sfi_class = SFI_CLASS_KERNEL; |
| 432 | processor->current_recommended_pset_type = PSET_SMP; |
| 433 | #if CONFIG_THREAD_GROUPS |
| 434 | processor->current_thread_group = NULL; |
| 435 | #endif |
| 436 | processor->current_perfctl_class = PERFCONTROL_CLASS_IDLE; |
| 437 | processor->current_urgency = THREAD_URGENCY_NONE; |
| 438 | processor->current_is_NO_SMT = false; |
| 439 | processor->current_is_bound = false; |
| 440 | processor->current_is_eagerpreempt = false; |
| 441 | #if CONFIG_SCHED_EDGE |
| 442 | os_atomic_store(&processor->processor_set->cpu_running_buckets[processor->cpu_id], TH_BUCKET_SCHED_MAX, relaxed); |
| 443 | bit_clear(processor->processor_set->cpu_running_cluster_shared_rsrc_thread[CLUSTER_SHARED_RSRC_TYPE_RR], processor->cpu_id); |
| 444 | bit_clear(processor->processor_set->cpu_running_cluster_shared_rsrc_thread[CLUSTER_SHARED_RSRC_TYPE_NATIVE_FIRST], processor->cpu_id); |
| 445 | #endif /* CONFIG_SCHED_EDGE */ |
| 446 | sched_update_pset_load_average(pset: processor->processor_set, curtime: 0); |
| 447 | } |
| 448 | |
| 449 | void |
| 450 | processor_state_update_from_thread(processor_t processor, thread_t thread, boolean_t pset_lock_held) |
| 451 | { |
| 452 | processor->current_pri = thread->sched_pri; |
| 453 | processor->current_sfi_class = thread->sfi_class; |
| 454 | processor->current_recommended_pset_type = recommended_pset_type(thread); |
| 455 | #if CONFIG_SCHED_EDGE |
| 456 | processor_state_update_running_foreign(processor, thread); |
| 457 | processor_state_update_running_cluster_shared_rsrc(processor, thread); |
| 458 | /* Since idle and bound threads are not tracked by the edge scheduler, ignore when those threads go on-core */ |
| 459 | sched_bucket_t bucket = ((thread->state & TH_IDLE) || (thread->bound_processor != PROCESSOR_NULL)) ? TH_BUCKET_SCHED_MAX : thread->th_sched_bucket; |
| 460 | os_atomic_store(&processor->processor_set->cpu_running_buckets[processor->cpu_id], bucket, relaxed); |
| 461 | #endif /* CONFIG_SCHED_EDGE */ |
| 462 | |
| 463 | #if CONFIG_THREAD_GROUPS |
| 464 | processor->current_thread_group = thread_group_get(t: thread); |
| 465 | #endif |
| 466 | processor->current_perfctl_class = thread_get_perfcontrol_class(thread); |
| 467 | processor->current_urgency = thread_get_urgency(thread, NULL, NULL); |
| 468 | processor->current_is_NO_SMT = thread_no_smt(thread); |
| 469 | processor->current_is_bound = thread->bound_processor != PROCESSOR_NULL; |
| 470 | processor->current_is_eagerpreempt = thread_is_eager_preempt(thread); |
| 471 | if (pset_lock_held) { |
| 472 | /* Only update the pset load average when the pset lock is held */ |
| 473 | sched_update_pset_load_average(pset: processor->processor_set, curtime: 0); |
| 474 | } |
| 475 | } |
| 476 | |
| 477 | void |
| 478 | processor_state_update_explicit(processor_t processor, int pri, sfi_class_id_t sfi_class, |
| 479 | pset_cluster_type_t pset_type, perfcontrol_class_t perfctl_class, thread_urgency_t urgency, __unused sched_bucket_t bucket) |
| 480 | { |
| 481 | processor->current_pri = pri; |
| 482 | processor->current_sfi_class = sfi_class; |
| 483 | processor->current_recommended_pset_type = pset_type; |
| 484 | processor->current_perfctl_class = perfctl_class; |
| 485 | processor->current_urgency = urgency; |
| 486 | #if CONFIG_SCHED_EDGE |
| 487 | os_atomic_store(&processor->processor_set->cpu_running_buckets[processor->cpu_id], bucket, relaxed); |
| 488 | bit_clear(processor->processor_set->cpu_running_cluster_shared_rsrc_thread[CLUSTER_SHARED_RSRC_TYPE_RR], processor->cpu_id); |
| 489 | bit_clear(processor->processor_set->cpu_running_cluster_shared_rsrc_thread[CLUSTER_SHARED_RSRC_TYPE_NATIVE_FIRST], processor->cpu_id); |
| 490 | #endif /* CONFIG_SCHED_EDGE */ |
| 491 | } |
| 492 | |
| 493 | pset_node_t |
| 494 | pset_node_root(void) |
| 495 | { |
| 496 | return &pset_node0; |
| 497 | } |
| 498 | |
| 499 | LCK_GRP_DECLARE(pset_create_grp, "pset_create" ); |
| 500 | LCK_MTX_DECLARE(pset_create_lock, &pset_create_grp); |
| 501 | |
| 502 | processor_set_t |
| 503 | pset_create( |
| 504 | pset_node_t node, |
| 505 | pset_cluster_type_t pset_type, |
| 506 | uint32_t pset_cluster_id, |
| 507 | int pset_id) |
| 508 | { |
| 509 | /* some schedulers do not support multiple psets */ |
| 510 | if (SCHED(multiple_psets_enabled) == FALSE) { |
| 511 | return processor_pset(master_processor); |
| 512 | } |
| 513 | |
| 514 | processor_set_t *prev, pset = zalloc_permanent_type(struct processor_set); |
| 515 | |
| 516 | if (pset != PROCESSOR_SET_NULL) { |
| 517 | pset->pset_cluster_type = pset_type; |
| 518 | pset->pset_cluster_id = pset_cluster_id; |
| 519 | pset->pset_id = pset_id; |
| 520 | pset_init(pset, node); |
| 521 | |
| 522 | lck_spin_lock(lck: &pset_node_lock); |
| 523 | |
| 524 | prev = &node->psets; |
| 525 | while (*prev != PROCESSOR_SET_NULL) { |
| 526 | prev = &(*prev)->pset_list; |
| 527 | } |
| 528 | |
| 529 | *prev = pset; |
| 530 | |
| 531 | lck_spin_unlock(lck: &pset_node_lock); |
| 532 | } |
| 533 | |
| 534 | return pset; |
| 535 | } |
| 536 | |
| 537 | /* |
| 538 | * Find processor set with specified cluster_id. |
| 539 | * Returns default_pset if not found. |
| 540 | */ |
| 541 | processor_set_t |
| 542 | pset_find( |
| 543 | uint32_t cluster_id, |
| 544 | processor_set_t default_pset) |
| 545 | { |
| 546 | lck_spin_lock(lck: &pset_node_lock); |
| 547 | pset_node_t node = &pset_node0; |
| 548 | processor_set_t pset = NULL; |
| 549 | |
| 550 | do { |
| 551 | pset = node->psets; |
| 552 | while (pset != NULL) { |
| 553 | if (pset->pset_cluster_id == cluster_id) { |
| 554 | break; |
| 555 | } |
| 556 | pset = pset->pset_list; |
| 557 | } |
| 558 | } while (pset == NULL && (node = node->node_list) != NULL); |
| 559 | lck_spin_unlock(lck: &pset_node_lock); |
| 560 | if (pset == NULL) { |
| 561 | return default_pset; |
| 562 | } |
| 563 | return pset; |
| 564 | } |
| 565 | |
| 566 | /* |
| 567 | * Initialize the given processor_set structure. |
| 568 | */ |
| 569 | void |
| 570 | pset_init( |
| 571 | processor_set_t pset, |
| 572 | pset_node_t node) |
| 573 | { |
| 574 | pset->online_processor_count = 0; |
| 575 | pset->load_average = 0; |
| 576 | bzero(s: &pset->pset_load_average, n: sizeof(pset->pset_load_average)); |
| 577 | pset->cpu_set_low = pset->cpu_set_hi = 0; |
| 578 | pset->cpu_set_count = 0; |
| 579 | pset->last_chosen = -1; |
| 580 | pset->cpu_bitmask = 0; |
| 581 | pset->recommended_bitmask = 0; |
| 582 | pset->primary_map = 0; |
| 583 | pset->realtime_map = 0; |
| 584 | pset->cpu_available_map = 0; |
| 585 | |
| 586 | for (uint i = 0; i < PROCESSOR_STATE_LEN; i++) { |
| 587 | pset->cpu_state_map[i] = 0; |
| 588 | } |
| 589 | pset->pending_AST_URGENT_cpu_mask = 0; |
| 590 | pset->pending_AST_PREEMPT_cpu_mask = 0; |
| 591 | #if defined(CONFIG_SCHED_DEFERRED_AST) |
| 592 | pset->pending_deferred_AST_cpu_mask = 0; |
| 593 | #endif |
| 594 | pset->pending_spill_cpu_mask = 0; |
| 595 | pset->rt_pending_spill_cpu_mask = 0; |
| 596 | pset_lock_init(pset); |
| 597 | pset->pset_self = IP_NULL; |
| 598 | pset->pset_name_self = IP_NULL; |
| 599 | pset->pset_list = PROCESSOR_SET_NULL; |
| 600 | pset->is_SMT = false; |
| 601 | #if CONFIG_SCHED_EDGE |
| 602 | bzero(&pset->pset_execution_time, sizeof(pset->pset_execution_time)); |
| 603 | pset->cpu_running_foreign = 0; |
| 604 | for (cluster_shared_rsrc_type_t shared_rsrc_type = CLUSTER_SHARED_RSRC_TYPE_MIN; shared_rsrc_type < CLUSTER_SHARED_RSRC_TYPE_COUNT; shared_rsrc_type++) { |
| 605 | pset->cpu_running_cluster_shared_rsrc_thread[shared_rsrc_type] = 0; |
| 606 | pset->pset_cluster_shared_rsrc_load[shared_rsrc_type] = 0; |
| 607 | } |
| 608 | #endif /* CONFIG_SCHED_EDGE */ |
| 609 | |
| 610 | /* |
| 611 | * No initial preferences or forced migrations, so use the least numbered |
| 612 | * available idle core when picking amongst idle cores in a cluster. |
| 613 | */ |
| 614 | pset->perfcontrol_cpu_preferred_bitmask = 0; |
| 615 | pset->perfcontrol_cpu_migration_bitmask = 0; |
| 616 | pset->cpu_preferred_last_chosen = -1; |
| 617 | |
| 618 | pset->stealable_rt_threads_earliest_deadline = UINT64_MAX; |
| 619 | |
| 620 | if (pset != &pset0) { |
| 621 | /* |
| 622 | * Scheduler runqueue initialization for non-boot psets. |
| 623 | * This initialization for pset0 happens in sched_init(). |
| 624 | */ |
| 625 | SCHED(pset_init)(pset); |
| 626 | SCHED(rt_init)(pset); |
| 627 | } |
| 628 | |
| 629 | /* |
| 630 | * Because the pset_node_lock is not taken by every client of the pset_map, |
| 631 | * we need to make sure that the initialized pset contents are visible to any |
| 632 | * client that loads a non-NULL value from pset_array. |
| 633 | */ |
| 634 | os_atomic_store(&pset_array[pset->pset_id], pset, release); |
| 635 | |
| 636 | lck_spin_lock(lck: &pset_node_lock); |
| 637 | bit_set(node->pset_map, pset->pset_id); |
| 638 | pset->node = node; |
| 639 | lck_spin_unlock(lck: &pset_node_lock); |
| 640 | } |
| 641 | |
| 642 | kern_return_t |
| 643 | processor_info_count( |
| 644 | processor_flavor_t flavor, |
| 645 | mach_msg_type_number_t *count) |
| 646 | { |
| 647 | switch (flavor) { |
| 648 | case PROCESSOR_BASIC_INFO: |
| 649 | *count = PROCESSOR_BASIC_INFO_COUNT; |
| 650 | break; |
| 651 | |
| 652 | case PROCESSOR_CPU_LOAD_INFO: |
| 653 | *count = PROCESSOR_CPU_LOAD_INFO_COUNT; |
| 654 | break; |
| 655 | |
| 656 | default: |
| 657 | return cpu_info_count(flavor, count); |
| 658 | } |
| 659 | |
| 660 | return KERN_SUCCESS; |
| 661 | } |
| 662 | |
| 663 | void |
| 664 | processor_cpu_load_info(processor_t processor, |
| 665 | natural_t ticks[static CPU_STATE_MAX]) |
| 666 | { |
| 667 | struct recount_usage usage = { 0 }; |
| 668 | uint64_t idle_time = 0; |
| 669 | recount_processor_usage(pr: &processor->pr_recount, usage: &usage, idle_time_mach: &idle_time); |
| 670 | |
| 671 | ticks[CPU_STATE_USER] += (uint32_t)(usage.ru_metrics[RCT_LVL_USER].rm_time_mach / |
| 672 | hz_tick_interval); |
| 673 | ticks[CPU_STATE_SYSTEM] += (uint32_t)( |
| 674 | recount_usage_system_time_mach(usage: &usage) / hz_tick_interval); |
| 675 | ticks[CPU_STATE_IDLE] += (uint32_t)(idle_time / hz_tick_interval); |
| 676 | } |
| 677 | |
| 678 | kern_return_t |
| 679 | processor_info( |
| 680 | processor_t processor, |
| 681 | processor_flavor_t flavor, |
| 682 | host_t *host, |
| 683 | processor_info_t info, |
| 684 | mach_msg_type_number_t *count) |
| 685 | { |
| 686 | int cpu_id, state; |
| 687 | kern_return_t result; |
| 688 | |
| 689 | if (processor == PROCESSOR_NULL) { |
| 690 | return KERN_INVALID_ARGUMENT; |
| 691 | } |
| 692 | |
| 693 | cpu_id = processor->cpu_id; |
| 694 | |
| 695 | switch (flavor) { |
| 696 | case PROCESSOR_BASIC_INFO: |
| 697 | { |
| 698 | processor_basic_info_t basic_info; |
| 699 | |
| 700 | if (*count < PROCESSOR_BASIC_INFO_COUNT) { |
| 701 | return KERN_FAILURE; |
| 702 | } |
| 703 | |
| 704 | basic_info = (processor_basic_info_t) info; |
| 705 | basic_info->cpu_type = slot_type(slot_num: cpu_id); |
| 706 | basic_info->cpu_subtype = slot_subtype(slot_num: cpu_id); |
| 707 | state = processor->state; |
| 708 | if (((state == PROCESSOR_OFF_LINE || state == PROCESSOR_PENDING_OFFLINE) && !processor->shutdown_temporary) |
| 709 | #if defined(__x86_64__) |
| 710 | || !processor->is_recommended |
| 711 | #endif |
| 712 | ) { |
| 713 | basic_info->running = FALSE; |
| 714 | } else { |
| 715 | basic_info->running = TRUE; |
| 716 | } |
| 717 | basic_info->slot_num = cpu_id; |
| 718 | if (processor == master_processor) { |
| 719 | basic_info->is_master = TRUE; |
| 720 | } else { |
| 721 | basic_info->is_master = FALSE; |
| 722 | } |
| 723 | |
| 724 | *count = PROCESSOR_BASIC_INFO_COUNT; |
| 725 | *host = &realhost; |
| 726 | |
| 727 | return KERN_SUCCESS; |
| 728 | } |
| 729 | |
| 730 | case PROCESSOR_CPU_LOAD_INFO: |
| 731 | { |
| 732 | processor_cpu_load_info_t cpu_load_info; |
| 733 | |
| 734 | if (*count < PROCESSOR_CPU_LOAD_INFO_COUNT) { |
| 735 | return KERN_FAILURE; |
| 736 | } |
| 737 | |
| 738 | cpu_load_info = (processor_cpu_load_info_t) info; |
| 739 | |
| 740 | cpu_load_info->cpu_ticks[CPU_STATE_SYSTEM] = 0; |
| 741 | cpu_load_info->cpu_ticks[CPU_STATE_USER] = 0; |
| 742 | cpu_load_info->cpu_ticks[CPU_STATE_IDLE] = 0; |
| 743 | processor_cpu_load_info(processor, ticks: cpu_load_info->cpu_ticks); |
| 744 | cpu_load_info->cpu_ticks[CPU_STATE_NICE] = 0; |
| 745 | |
| 746 | *count = PROCESSOR_CPU_LOAD_INFO_COUNT; |
| 747 | *host = &realhost; |
| 748 | |
| 749 | return KERN_SUCCESS; |
| 750 | } |
| 751 | |
| 752 | default: |
| 753 | result = cpu_info(flavor, slot_num: cpu_id, info, count); |
| 754 | if (result == KERN_SUCCESS) { |
| 755 | *host = &realhost; |
| 756 | } |
| 757 | |
| 758 | return result; |
| 759 | } |
| 760 | } |
| 761 | |
| 762 | void |
| 763 | processor_wait_for_start(processor_t processor) |
| 764 | { |
| 765 | spl_t s = splsched(); |
| 766 | simple_lock(&processor->start_state_lock, LCK_GRP_NULL); |
| 767 | while (processor->state == PROCESSOR_START) { |
| 768 | assert_wait_timeout(event: (event_t)&processor->state, THREAD_UNINT, interval: 1000, scale_factor: 1000 * NSEC_PER_USEC); /* 1 second */ |
| 769 | simple_unlock(&processor->start_state_lock); |
| 770 | splx(s); |
| 771 | |
| 772 | wait_result_t wait_result = thread_block(THREAD_CONTINUE_NULL); |
| 773 | if (wait_result == THREAD_TIMED_OUT) { |
| 774 | panic("%s>cpu %d failed to start\n" , __FUNCTION__, processor->cpu_id); |
| 775 | } |
| 776 | |
| 777 | s = splsched(); |
| 778 | simple_lock(&processor->start_state_lock, LCK_GRP_NULL); |
| 779 | } |
| 780 | simple_unlock(&processor->start_state_lock); |
| 781 | splx(s); |
| 782 | } |
| 783 | |
| 784 | LCK_GRP_DECLARE(processor_updown_grp, "processor_updown" ); |
| 785 | LCK_MTX_DECLARE(processor_updown_lock, &processor_updown_grp); |
| 786 | |
| 787 | static kern_return_t |
| 788 | processor_startup( |
| 789 | processor_t processor, |
| 790 | processor_reason_t reason, |
| 791 | uint32_t flags) |
| 792 | { |
| 793 | processor_set_t pset; |
| 794 | thread_t thread; |
| 795 | kern_return_t result; |
| 796 | spl_t s; |
| 797 | |
| 798 | if (processor == PROCESSOR_NULL || processor->processor_set == PROCESSOR_SET_NULL) { |
| 799 | return KERN_INVALID_ARGUMENT; |
| 800 | } |
| 801 | |
| 802 | if ((flags & (LOCK_STATE | UNLOCK_STATE)) && (reason != REASON_SYSTEM)) { |
| 803 | return KERN_INVALID_ARGUMENT; |
| 804 | } |
| 805 | |
| 806 | lck_mtx_lock(lck: &processor_updown_lock); |
| 807 | |
| 808 | if (processor == master_processor) { |
| 809 | processor_t prev; |
| 810 | |
| 811 | processor->last_startup_reason = reason; |
| 812 | |
| 813 | ml_cpu_power_enable(cpu_id: processor->cpu_id); |
| 814 | |
| 815 | prev = thread_bind(processor); |
| 816 | thread_block(THREAD_CONTINUE_NULL); |
| 817 | |
| 818 | result = cpu_start(slot_num: processor->cpu_id); |
| 819 | |
| 820 | thread_bind(processor: prev); |
| 821 | |
| 822 | lck_mtx_unlock(lck: &processor_updown_lock); |
| 823 | return result; |
| 824 | } |
| 825 | |
| 826 | bool scheduler_disable = false; |
| 827 | |
| 828 | if ((processor->processor_primary != processor) && (sched_enable_smt == 0)) { |
| 829 | if (cpu_can_exit(slot_num: processor->cpu_id)) { |
| 830 | lck_mtx_unlock(lck: &processor_updown_lock); |
| 831 | return KERN_SUCCESS; |
| 832 | } |
| 833 | /* |
| 834 | * This secondary SMT processor must start in order to service interrupts, |
| 835 | * so instead it will be disabled at the scheduler level. |
| 836 | */ |
| 837 | scheduler_disable = true; |
| 838 | } |
| 839 | |
| 840 | s = splsched(); |
| 841 | pset = processor->processor_set; |
| 842 | pset_lock(pset); |
| 843 | if (flags & LOCK_STATE) { |
| 844 | processor->shutdown_locked = true; |
| 845 | } else if (flags & UNLOCK_STATE) { |
| 846 | processor->shutdown_locked = false; |
| 847 | } |
| 848 | |
| 849 | if (processor->state == PROCESSOR_START) { |
| 850 | pset_unlock(pset); |
| 851 | splx(s); |
| 852 | |
| 853 | processor_wait_for_start(processor); |
| 854 | |
| 855 | lck_mtx_unlock(lck: &processor_updown_lock); |
| 856 | return KERN_SUCCESS; |
| 857 | } |
| 858 | |
| 859 | if ((processor->state != PROCESSOR_OFF_LINE) || ((flags & SHUTDOWN_TEMPORARY) && !processor->shutdown_temporary)) { |
| 860 | pset_unlock(pset); |
| 861 | splx(s); |
| 862 | |
| 863 | lck_mtx_unlock(lck: &processor_updown_lock); |
| 864 | return KERN_FAILURE; |
| 865 | } |
| 866 | |
| 867 | pset_update_processor_state(pset, processor, new_state: PROCESSOR_START); |
| 868 | processor->last_startup_reason = reason; |
| 869 | pset_unlock(pset); |
| 870 | splx(s); |
| 871 | |
| 872 | /* |
| 873 | * Create the idle processor thread. |
| 874 | */ |
| 875 | if (processor->idle_thread == THREAD_NULL) { |
| 876 | result = idle_thread_create(processor); |
| 877 | if (result != KERN_SUCCESS) { |
| 878 | s = splsched(); |
| 879 | pset_lock(pset); |
| 880 | pset_update_processor_state(pset, processor, new_state: PROCESSOR_OFF_LINE); |
| 881 | pset_unlock(pset); |
| 882 | splx(s); |
| 883 | |
| 884 | lck_mtx_unlock(lck: &processor_updown_lock); |
| 885 | return result; |
| 886 | } |
| 887 | } |
| 888 | |
| 889 | /* |
| 890 | * If there is no active thread, the processor |
| 891 | * has never been started. Create a dedicated |
| 892 | * start up thread. |
| 893 | */ |
| 894 | if (processor->active_thread == THREAD_NULL && |
| 895 | processor->startup_thread == THREAD_NULL) { |
| 896 | result = kernel_thread_create(continuation: processor_start_thread, NULL, MAXPRI_KERNEL, new_thread: &thread); |
| 897 | if (result != KERN_SUCCESS) { |
| 898 | s = splsched(); |
| 899 | pset_lock(pset); |
| 900 | pset_update_processor_state(pset, processor, new_state: PROCESSOR_OFF_LINE); |
| 901 | pset_unlock(pset); |
| 902 | splx(s); |
| 903 | |
| 904 | lck_mtx_unlock(lck: &processor_updown_lock); |
| 905 | return result; |
| 906 | } |
| 907 | |
| 908 | s = splsched(); |
| 909 | thread_lock(thread); |
| 910 | thread->bound_processor = processor; |
| 911 | processor->startup_thread = thread; |
| 912 | thread->state = TH_RUN; |
| 913 | thread->last_made_runnable_time = thread->last_basepri_change_time = mach_absolute_time(); |
| 914 | thread_unlock(thread); |
| 915 | splx(s); |
| 916 | |
| 917 | thread_deallocate(thread); |
| 918 | } |
| 919 | |
| 920 | if (processor->processor_self == IP_NULL) { |
| 921 | ipc_processor_init(processor); |
| 922 | } |
| 923 | |
| 924 | ml_cpu_power_enable(cpu_id: processor->cpu_id); |
| 925 | ml_cpu_begin_state_transition(cpu_id: processor->cpu_id); |
| 926 | ml_broadcast_cpu_event(event: CPU_BOOT_REQUESTED, cpu_or_cluster: processor->cpu_id); |
| 927 | result = cpu_start(slot_num: processor->cpu_id); |
| 928 | #if defined (__arm__) || defined (__arm64__) |
| 929 | assert(result == KERN_SUCCESS); |
| 930 | #else |
| 931 | if (result != KERN_SUCCESS) { |
| 932 | s = splsched(); |
| 933 | pset_lock(pset); |
| 934 | pset_update_processor_state(pset, processor, PROCESSOR_OFF_LINE); |
| 935 | pset_unlock(pset); |
| 936 | splx(s); |
| 937 | ml_cpu_end_state_transition(processor->cpu_id); |
| 938 | |
| 939 | lck_mtx_unlock(&processor_updown_lock); |
| 940 | return result; |
| 941 | } |
| 942 | #endif |
| 943 | if (scheduler_disable) { |
| 944 | assert(processor->processor_primary != processor); |
| 945 | sched_processor_enable(processor, FALSE); |
| 946 | } |
| 947 | |
| 948 | if (flags & WAIT_FOR_START) { |
| 949 | processor_wait_for_start(processor); |
| 950 | } |
| 951 | |
| 952 | ml_cpu_end_state_transition(cpu_id: processor->cpu_id); |
| 953 | ml_broadcast_cpu_event(event: CPU_ACTIVE, cpu_or_cluster: processor->cpu_id); |
| 954 | |
| 955 | #if CONFIG_KCOV |
| 956 | kcov_start_cpu(processor->cpu_id); |
| 957 | #endif |
| 958 | |
| 959 | lck_mtx_unlock(lck: &processor_updown_lock); |
| 960 | return KERN_SUCCESS; |
| 961 | } |
| 962 | |
| 963 | kern_return_t |
| 964 | processor_exit_reason(processor_t processor, processor_reason_t reason, uint32_t flags) |
| 965 | { |
| 966 | if (processor == PROCESSOR_NULL) { |
| 967 | return KERN_INVALID_ARGUMENT; |
| 968 | } |
| 969 | |
| 970 | if (sched_is_in_sleep() && (reason != REASON_SYSTEM)) { |
| 971 | #ifdef RHODES_CLUSTER_POWERDOWN_WORKAROUND |
| 972 | /* |
| 973 | * Must allow CLPC to finish powering down the whole cluster, |
| 974 | * or IOCPUSleepKernel() will fail to restart the offline cpus. |
| 975 | */ |
| 976 | if (reason != REASON_CLPC_SYSTEM) { |
| 977 | return KERN_FAILURE; |
| 978 | } |
| 979 | #else |
| 980 | return KERN_FAILURE; |
| 981 | #endif |
| 982 | } |
| 983 | |
| 984 | if ((reason == REASON_USER) && !cpu_can_exit(slot_num: processor->cpu_id)) { |
| 985 | return sched_processor_enable(processor, FALSE); |
| 986 | } else if ((reason == REASON_SYSTEM) || cpu_can_exit(slot_num: processor->cpu_id)) { |
| 987 | return processor_shutdown(processor, reason, flags); |
| 988 | } |
| 989 | |
| 990 | return KERN_INVALID_ARGUMENT; |
| 991 | } |
| 992 | |
| 993 | kern_return_t |
| 994 | processor_exit( |
| 995 | processor_t processor) |
| 996 | { |
| 997 | return processor_exit_reason(processor, reason: REASON_SYSTEM, flags: 0); |
| 998 | } |
| 999 | |
| 1000 | kern_return_t |
| 1001 | processor_exit_from_user( |
| 1002 | processor_t processor) |
| 1003 | { |
| 1004 | return processor_exit_reason(processor, reason: REASON_USER, flags: 0); |
| 1005 | } |
| 1006 | |
| 1007 | kern_return_t |
| 1008 | processor_start_reason(processor_t processor, processor_reason_t reason, uint32_t flags) |
| 1009 | { |
| 1010 | if (processor == PROCESSOR_NULL) { |
| 1011 | return KERN_INVALID_ARGUMENT; |
| 1012 | } |
| 1013 | |
| 1014 | if (sched_is_in_sleep() && (reason != REASON_SYSTEM)) { |
| 1015 | return KERN_FAILURE; |
| 1016 | } |
| 1017 | |
| 1018 | if ((reason == REASON_USER) && !cpu_can_exit(slot_num: processor->cpu_id)) { |
| 1019 | return sched_processor_enable(processor, TRUE); |
| 1020 | } else { |
| 1021 | return processor_startup(processor, reason, flags); |
| 1022 | } |
| 1023 | } |
| 1024 | |
| 1025 | kern_return_t |
| 1026 | processor_start( |
| 1027 | processor_t processor) |
| 1028 | { |
| 1029 | return processor_start_reason(processor, reason: REASON_SYSTEM, flags: 0); |
| 1030 | } |
| 1031 | |
| 1032 | kern_return_t |
| 1033 | processor_start_from_user( |
| 1034 | processor_t processor) |
| 1035 | { |
| 1036 | return processor_start_reason(processor, reason: REASON_USER, flags: 0); |
| 1037 | } |
| 1038 | |
| 1039 | kern_return_t |
| 1040 | enable_smt_processors(bool enable) |
| 1041 | { |
| 1042 | if (machine_info.logical_cpu_max == machine_info.physical_cpu_max) { |
| 1043 | /* Not an SMT system */ |
| 1044 | return KERN_INVALID_ARGUMENT; |
| 1045 | } |
| 1046 | |
| 1047 | int ncpus = machine_info.logical_cpu_max; |
| 1048 | |
| 1049 | for (int i = 1; i < ncpus; i++) { |
| 1050 | processor_t processor = processor_array[i]; |
| 1051 | |
| 1052 | if (processor->processor_primary != processor) { |
| 1053 | if (enable) { |
| 1054 | processor_start_from_user(processor); |
| 1055 | } else { /* Disable */ |
| 1056 | processor_exit_from_user(processor); |
| 1057 | } |
| 1058 | } |
| 1059 | } |
| 1060 | |
| 1061 | #define BSD_HOST 1 |
| 1062 | host_basic_info_data_t hinfo; |
| 1063 | mach_msg_type_number_t count = HOST_BASIC_INFO_COUNT; |
| 1064 | kern_return_t kret = host_info(host: (host_t)BSD_HOST, HOST_BASIC_INFO, host_info_out: (host_info_t)&hinfo, host_info_outCnt: &count); |
| 1065 | if (kret != KERN_SUCCESS) { |
| 1066 | return kret; |
| 1067 | } |
| 1068 | |
| 1069 | if (enable && (hinfo.logical_cpu != hinfo.logical_cpu_max)) { |
| 1070 | return KERN_FAILURE; |
| 1071 | } |
| 1072 | |
| 1073 | if (!enable && (hinfo.logical_cpu != hinfo.physical_cpu)) { |
| 1074 | return KERN_FAILURE; |
| 1075 | } |
| 1076 | |
| 1077 | return KERN_SUCCESS; |
| 1078 | } |
| 1079 | |
| 1080 | bool |
| 1081 | processor_should_kprintf(processor_t processor, bool starting) |
| 1082 | { |
| 1083 | processor_reason_t reason = starting ? processor->last_startup_reason : processor->last_shutdown_reason; |
| 1084 | |
| 1085 | return reason != REASON_CLPC_SYSTEM; |
| 1086 | } |
| 1087 | |
| 1088 | kern_return_t |
| 1089 | processor_control( |
| 1090 | processor_t processor, |
| 1091 | processor_info_t info, |
| 1092 | mach_msg_type_number_t count) |
| 1093 | { |
| 1094 | if (processor == PROCESSOR_NULL) { |
| 1095 | return KERN_INVALID_ARGUMENT; |
| 1096 | } |
| 1097 | |
| 1098 | return cpu_control(slot_num: processor->cpu_id, info, count); |
| 1099 | } |
| 1100 | |
| 1101 | kern_return_t |
| 1102 | processor_get_assignment( |
| 1103 | processor_t processor, |
| 1104 | processor_set_t *pset) |
| 1105 | { |
| 1106 | int state; |
| 1107 | |
| 1108 | if (processor == PROCESSOR_NULL) { |
| 1109 | return KERN_INVALID_ARGUMENT; |
| 1110 | } |
| 1111 | |
| 1112 | state = processor->state; |
| 1113 | if (state == PROCESSOR_SHUTDOWN || state == PROCESSOR_OFF_LINE || state == PROCESSOR_PENDING_OFFLINE) { |
| 1114 | return KERN_FAILURE; |
| 1115 | } |
| 1116 | |
| 1117 | *pset = &pset0; |
| 1118 | |
| 1119 | return KERN_SUCCESS; |
| 1120 | } |
| 1121 | |
| 1122 | kern_return_t |
| 1123 | processor_set_info( |
| 1124 | processor_set_t pset, |
| 1125 | int flavor, |
| 1126 | host_t *host, |
| 1127 | processor_set_info_t info, |
| 1128 | mach_msg_type_number_t *count) |
| 1129 | { |
| 1130 | if (pset == PROCESSOR_SET_NULL) { |
| 1131 | return KERN_INVALID_ARGUMENT; |
| 1132 | } |
| 1133 | |
| 1134 | if (flavor == PROCESSOR_SET_BASIC_INFO) { |
| 1135 | processor_set_basic_info_t basic_info; |
| 1136 | |
| 1137 | if (*count < PROCESSOR_SET_BASIC_INFO_COUNT) { |
| 1138 | return KERN_FAILURE; |
| 1139 | } |
| 1140 | |
| 1141 | basic_info = (processor_set_basic_info_t) info; |
| 1142 | #if defined(__x86_64__) |
| 1143 | basic_info->processor_count = processor_avail_count_user; |
| 1144 | #else |
| 1145 | basic_info->processor_count = processor_avail_count; |
| 1146 | #endif |
| 1147 | basic_info->default_policy = POLICY_TIMESHARE; |
| 1148 | |
| 1149 | *count = PROCESSOR_SET_BASIC_INFO_COUNT; |
| 1150 | *host = &realhost; |
| 1151 | return KERN_SUCCESS; |
| 1152 | } else if (flavor == PROCESSOR_SET_TIMESHARE_DEFAULT) { |
| 1153 | policy_timeshare_base_t ts_base; |
| 1154 | |
| 1155 | if (*count < POLICY_TIMESHARE_BASE_COUNT) { |
| 1156 | return KERN_FAILURE; |
| 1157 | } |
| 1158 | |
| 1159 | ts_base = (policy_timeshare_base_t) info; |
| 1160 | ts_base->base_priority = BASEPRI_DEFAULT; |
| 1161 | |
| 1162 | *count = POLICY_TIMESHARE_BASE_COUNT; |
| 1163 | *host = &realhost; |
| 1164 | return KERN_SUCCESS; |
| 1165 | } else if (flavor == PROCESSOR_SET_FIFO_DEFAULT) { |
| 1166 | policy_fifo_base_t fifo_base; |
| 1167 | |
| 1168 | if (*count < POLICY_FIFO_BASE_COUNT) { |
| 1169 | return KERN_FAILURE; |
| 1170 | } |
| 1171 | |
| 1172 | fifo_base = (policy_fifo_base_t) info; |
| 1173 | fifo_base->base_priority = BASEPRI_DEFAULT; |
| 1174 | |
| 1175 | *count = POLICY_FIFO_BASE_COUNT; |
| 1176 | *host = &realhost; |
| 1177 | return KERN_SUCCESS; |
| 1178 | } else if (flavor == PROCESSOR_SET_RR_DEFAULT) { |
| 1179 | policy_rr_base_t rr_base; |
| 1180 | |
| 1181 | if (*count < POLICY_RR_BASE_COUNT) { |
| 1182 | return KERN_FAILURE; |
| 1183 | } |
| 1184 | |
| 1185 | rr_base = (policy_rr_base_t) info; |
| 1186 | rr_base->base_priority = BASEPRI_DEFAULT; |
| 1187 | rr_base->quantum = 1; |
| 1188 | |
| 1189 | *count = POLICY_RR_BASE_COUNT; |
| 1190 | *host = &realhost; |
| 1191 | return KERN_SUCCESS; |
| 1192 | } else if (flavor == PROCESSOR_SET_TIMESHARE_LIMITS) { |
| 1193 | policy_timeshare_limit_t ts_limit; |
| 1194 | |
| 1195 | if (*count < POLICY_TIMESHARE_LIMIT_COUNT) { |
| 1196 | return KERN_FAILURE; |
| 1197 | } |
| 1198 | |
| 1199 | ts_limit = (policy_timeshare_limit_t) info; |
| 1200 | ts_limit->max_priority = MAXPRI_KERNEL; |
| 1201 | |
| 1202 | *count = POLICY_TIMESHARE_LIMIT_COUNT; |
| 1203 | *host = &realhost; |
| 1204 | return KERN_SUCCESS; |
| 1205 | } else if (flavor == PROCESSOR_SET_FIFO_LIMITS) { |
| 1206 | policy_fifo_limit_t fifo_limit; |
| 1207 | |
| 1208 | if (*count < POLICY_FIFO_LIMIT_COUNT) { |
| 1209 | return KERN_FAILURE; |
| 1210 | } |
| 1211 | |
| 1212 | fifo_limit = (policy_fifo_limit_t) info; |
| 1213 | fifo_limit->max_priority = MAXPRI_KERNEL; |
| 1214 | |
| 1215 | *count = POLICY_FIFO_LIMIT_COUNT; |
| 1216 | *host = &realhost; |
| 1217 | return KERN_SUCCESS; |
| 1218 | } else if (flavor == PROCESSOR_SET_RR_LIMITS) { |
| 1219 | policy_rr_limit_t rr_limit; |
| 1220 | |
| 1221 | if (*count < POLICY_RR_LIMIT_COUNT) { |
| 1222 | return KERN_FAILURE; |
| 1223 | } |
| 1224 | |
| 1225 | rr_limit = (policy_rr_limit_t) info; |
| 1226 | rr_limit->max_priority = MAXPRI_KERNEL; |
| 1227 | |
| 1228 | *count = POLICY_RR_LIMIT_COUNT; |
| 1229 | *host = &realhost; |
| 1230 | return KERN_SUCCESS; |
| 1231 | } else if (flavor == PROCESSOR_SET_ENABLED_POLICIES) { |
| 1232 | int *enabled; |
| 1233 | |
| 1234 | if (*count < (sizeof(*enabled) / sizeof(int))) { |
| 1235 | return KERN_FAILURE; |
| 1236 | } |
| 1237 | |
| 1238 | enabled = (int *) info; |
| 1239 | *enabled = POLICY_TIMESHARE | POLICY_RR | POLICY_FIFO; |
| 1240 | |
| 1241 | *count = sizeof(*enabled) / sizeof(int); |
| 1242 | *host = &realhost; |
| 1243 | return KERN_SUCCESS; |
| 1244 | } |
| 1245 | |
| 1246 | |
| 1247 | *host = HOST_NULL; |
| 1248 | return KERN_INVALID_ARGUMENT; |
| 1249 | } |
| 1250 | |
| 1251 | /* |
| 1252 | * processor_set_statistics |
| 1253 | * |
| 1254 | * Returns scheduling statistics for a processor set. |
| 1255 | */ |
| 1256 | kern_return_t |
| 1257 | processor_set_statistics( |
| 1258 | processor_set_t pset, |
| 1259 | int flavor, |
| 1260 | processor_set_info_t info, |
| 1261 | mach_msg_type_number_t *count) |
| 1262 | { |
| 1263 | if (pset == PROCESSOR_SET_NULL || pset != &pset0) { |
| 1264 | return KERN_INVALID_PROCESSOR_SET; |
| 1265 | } |
| 1266 | |
| 1267 | if (flavor == PROCESSOR_SET_LOAD_INFO) { |
| 1268 | processor_set_load_info_t load_info; |
| 1269 | |
| 1270 | if (*count < PROCESSOR_SET_LOAD_INFO_COUNT) { |
| 1271 | return KERN_FAILURE; |
| 1272 | } |
| 1273 | |
| 1274 | load_info = (processor_set_load_info_t) info; |
| 1275 | |
| 1276 | load_info->mach_factor = sched_mach_factor; |
| 1277 | load_info->load_average = sched_load_average; |
| 1278 | |
| 1279 | load_info->task_count = tasks_count; |
| 1280 | load_info->thread_count = threads_count; |
| 1281 | |
| 1282 | *count = PROCESSOR_SET_LOAD_INFO_COUNT; |
| 1283 | return KERN_SUCCESS; |
| 1284 | } |
| 1285 | |
| 1286 | return KERN_INVALID_ARGUMENT; |
| 1287 | } |
| 1288 | |
| 1289 | /* |
| 1290 | * processor_set_things: |
| 1291 | * |
| 1292 | * Common internals for processor_set_{threads,tasks} |
| 1293 | */ |
| 1294 | static kern_return_t |
| 1295 | processor_set_things( |
| 1296 | processor_set_t pset, |
| 1297 | void **thing_list, |
| 1298 | mach_msg_type_number_t *countp, |
| 1299 | int type, |
| 1300 | mach_task_flavor_t flavor) |
| 1301 | { |
| 1302 | unsigned int i; |
| 1303 | task_t task; |
| 1304 | thread_t thread; |
| 1305 | |
| 1306 | task_t *task_list; |
| 1307 | vm_size_t actual_tasks, task_count_cur, task_count_needed; |
| 1308 | |
| 1309 | thread_t *thread_list; |
| 1310 | vm_size_t actual_threads, thread_count_cur, thread_count_needed; |
| 1311 | |
| 1312 | void *addr, *newaddr; |
| 1313 | vm_size_t count, count_needed; |
| 1314 | |
| 1315 | if (pset == PROCESSOR_SET_NULL || pset != &pset0) { |
| 1316 | return KERN_INVALID_ARGUMENT; |
| 1317 | } |
| 1318 | |
| 1319 | task_count_cur = 0; |
| 1320 | task_count_needed = 0; |
| 1321 | task_list = NULL; |
| 1322 | actual_tasks = 0; |
| 1323 | |
| 1324 | thread_count_cur = 0; |
| 1325 | thread_count_needed = 0; |
| 1326 | thread_list = NULL; |
| 1327 | actual_threads = 0; |
| 1328 | |
| 1329 | for (;;) { |
| 1330 | lck_mtx_lock(lck: &tasks_threads_lock); |
| 1331 | |
| 1332 | /* do we have the memory we need? */ |
| 1333 | if (type == PSET_THING_THREAD) { |
| 1334 | thread_count_needed = threads_count; |
| 1335 | } |
| 1336 | #if !CONFIG_MACF |
| 1337 | else |
| 1338 | #endif |
| 1339 | task_count_needed = tasks_count; |
| 1340 | |
| 1341 | if (task_count_needed <= task_count_cur && |
| 1342 | thread_count_needed <= thread_count_cur) { |
| 1343 | break; |
| 1344 | } |
| 1345 | |
| 1346 | /* unlock and allocate more memory */ |
| 1347 | lck_mtx_unlock(lck: &tasks_threads_lock); |
| 1348 | |
| 1349 | /* grow task array */ |
| 1350 | if (task_count_needed > task_count_cur) { |
| 1351 | kfree_type(task_t, task_count_cur, task_list); |
| 1352 | assert(task_count_needed > 0); |
| 1353 | task_count_cur = task_count_needed; |
| 1354 | |
| 1355 | task_list = kalloc_type(task_t, task_count_cur, Z_WAITOK | Z_ZERO); |
| 1356 | if (task_list == NULL) { |
| 1357 | kfree_type(thread_t, thread_count_cur, thread_list); |
| 1358 | return KERN_RESOURCE_SHORTAGE; |
| 1359 | } |
| 1360 | } |
| 1361 | |
| 1362 | /* grow thread array */ |
| 1363 | if (thread_count_needed > thread_count_cur) { |
| 1364 | kfree_type(thread_t, thread_count_cur, thread_list); |
| 1365 | |
| 1366 | assert(thread_count_needed > 0); |
| 1367 | thread_count_cur = thread_count_needed; |
| 1368 | |
| 1369 | thread_list = kalloc_type(thread_t, thread_count_cur, Z_WAITOK | Z_ZERO); |
| 1370 | if (thread_list == NULL) { |
| 1371 | kfree_type(task_t, task_count_cur, task_list); |
| 1372 | return KERN_RESOURCE_SHORTAGE; |
| 1373 | } |
| 1374 | } |
| 1375 | } |
| 1376 | |
| 1377 | /* OK, have memory and the list locked */ |
| 1378 | |
| 1379 | /* If we need it, get the thread list */ |
| 1380 | if (type == PSET_THING_THREAD) { |
| 1381 | queue_iterate(&threads, thread, thread_t, threads) { |
| 1382 | task = get_threadtask(thread); |
| 1383 | #if defined(SECURE_KERNEL) |
| 1384 | if (task == kernel_task) { |
| 1385 | /* skip threads belonging to kernel_task */ |
| 1386 | continue; |
| 1387 | } |
| 1388 | #endif |
| 1389 | if (!task->ipc_active || task_is_exec_copy(task)) { |
| 1390 | /* skip threads in inactive tasks (in the middle of exec/fork/spawn) */ |
| 1391 | continue; |
| 1392 | } |
| 1393 | |
| 1394 | thread_reference(thread); |
| 1395 | thread_list[actual_threads++] = thread; |
| 1396 | } |
| 1397 | } |
| 1398 | #if !CONFIG_MACF |
| 1399 | else |
| 1400 | #endif |
| 1401 | { |
| 1402 | /* get a list of the tasks */ |
| 1403 | queue_iterate(&tasks, task, task_t, tasks) { |
| 1404 | #if defined(SECURE_KERNEL) |
| 1405 | if (task == kernel_task) { |
| 1406 | /* skip kernel_task */ |
| 1407 | continue; |
| 1408 | } |
| 1409 | #endif |
| 1410 | if (!task->ipc_active || task_is_exec_copy(task)) { |
| 1411 | /* skip inactive tasks (in the middle of exec/fork/spawn) */ |
| 1412 | continue; |
| 1413 | } |
| 1414 | |
| 1415 | task_reference(task); |
| 1416 | task_list[actual_tasks++] = task; |
| 1417 | } |
| 1418 | } |
| 1419 | |
| 1420 | lck_mtx_unlock(lck: &tasks_threads_lock); |
| 1421 | |
| 1422 | #if CONFIG_MACF |
| 1423 | unsigned int j, used; |
| 1424 | |
| 1425 | /* for each task, make sure we are allowed to examine it */ |
| 1426 | for (i = used = 0; i < actual_tasks; i++) { |
| 1427 | if (mac_task_check_expose_task(t: task_list[i], flavor)) { |
| 1428 | task_deallocate(task_list[i]); |
| 1429 | continue; |
| 1430 | } |
| 1431 | task_list[used++] = task_list[i]; |
| 1432 | } |
| 1433 | actual_tasks = used; |
| 1434 | task_count_needed = actual_tasks; |
| 1435 | |
| 1436 | if (type == PSET_THING_THREAD) { |
| 1437 | /* for each thread (if any), make sure it's task is in the allowed list */ |
| 1438 | for (i = used = 0; i < actual_threads; i++) { |
| 1439 | boolean_t found_task = FALSE; |
| 1440 | |
| 1441 | task = get_threadtask(thread_list[i]); |
| 1442 | for (j = 0; j < actual_tasks; j++) { |
| 1443 | if (task_list[j] == task) { |
| 1444 | found_task = TRUE; |
| 1445 | break; |
| 1446 | } |
| 1447 | } |
| 1448 | if (found_task) { |
| 1449 | thread_list[used++] = thread_list[i]; |
| 1450 | } else { |
| 1451 | thread_deallocate(thread: thread_list[i]); |
| 1452 | } |
| 1453 | } |
| 1454 | actual_threads = used; |
| 1455 | thread_count_needed = actual_threads; |
| 1456 | |
| 1457 | /* done with the task list */ |
| 1458 | for (i = 0; i < actual_tasks; i++) { |
| 1459 | task_deallocate(task_list[i]); |
| 1460 | } |
| 1461 | kfree_type(task_t, task_count_cur, task_list); |
| 1462 | task_count_cur = 0; |
| 1463 | actual_tasks = 0; |
| 1464 | task_list = NULL; |
| 1465 | } |
| 1466 | #endif |
| 1467 | |
| 1468 | if (type == PSET_THING_THREAD) { |
| 1469 | if (actual_threads == 0) { |
| 1470 | /* no threads available to return */ |
| 1471 | assert(task_count_cur == 0); |
| 1472 | kfree_type(thread_t, thread_count_cur, thread_list); |
| 1473 | *thing_list = NULL; |
| 1474 | *countp = 0; |
| 1475 | return KERN_SUCCESS; |
| 1476 | } |
| 1477 | count_needed = actual_threads; |
| 1478 | count = thread_count_cur; |
| 1479 | addr = thread_list; |
| 1480 | } else { |
| 1481 | if (actual_tasks == 0) { |
| 1482 | /* no tasks available to return */ |
| 1483 | assert(thread_count_cur == 0); |
| 1484 | kfree_type(task_t, task_count_cur, task_list); |
| 1485 | *thing_list = NULL; |
| 1486 | *countp = 0; |
| 1487 | return KERN_SUCCESS; |
| 1488 | } |
| 1489 | count_needed = actual_tasks; |
| 1490 | count = task_count_cur; |
| 1491 | addr = task_list; |
| 1492 | } |
| 1493 | |
| 1494 | /* if we allocated too much, must copy */ |
| 1495 | if (count_needed < count) { |
| 1496 | newaddr = kalloc_type(void *, count_needed, Z_WAITOK | Z_ZERO); |
| 1497 | if (newaddr == 0) { |
| 1498 | for (i = 0; i < actual_tasks; i++) { |
| 1499 | if (type == PSET_THING_THREAD) { |
| 1500 | thread_deallocate(thread: thread_list[i]); |
| 1501 | } else { |
| 1502 | task_deallocate(task_list[i]); |
| 1503 | } |
| 1504 | } |
| 1505 | kfree_type(void *, count, addr); |
| 1506 | return KERN_RESOURCE_SHORTAGE; |
| 1507 | } |
| 1508 | |
| 1509 | bcopy(src: addr, dst: newaddr, n: count_needed * sizeof(void *)); |
| 1510 | kfree_type(void *, count, addr); |
| 1511 | |
| 1512 | addr = newaddr; |
| 1513 | count = count_needed; |
| 1514 | } |
| 1515 | |
| 1516 | *thing_list = (void **)addr; |
| 1517 | *countp = (mach_msg_type_number_t)count; |
| 1518 | |
| 1519 | return KERN_SUCCESS; |
| 1520 | } |
| 1521 | |
| 1522 | /* |
| 1523 | * processor_set_tasks: |
| 1524 | * |
| 1525 | * List all tasks in the processor set. |
| 1526 | */ |
| 1527 | static kern_return_t |
| 1528 | processor_set_tasks_internal( |
| 1529 | processor_set_t pset, |
| 1530 | task_array_t *task_list, |
| 1531 | mach_msg_type_number_t *count, |
| 1532 | mach_task_flavor_t flavor) |
| 1533 | { |
| 1534 | kern_return_t ret; |
| 1535 | mach_msg_type_number_t i; |
| 1536 | |
| 1537 | ret = processor_set_things(pset, thing_list: (void **)task_list, countp: count, PSET_THING_TASK, flavor); |
| 1538 | if (ret != KERN_SUCCESS) { |
| 1539 | return ret; |
| 1540 | } |
| 1541 | |
| 1542 | /* do the conversion that Mig should handle */ |
| 1543 | switch (flavor) { |
| 1544 | case TASK_FLAVOR_CONTROL: |
| 1545 | for (i = 0; i < *count; i++) { |
| 1546 | if ((*task_list)[i] == current_task()) { |
| 1547 | /* if current_task(), return pinned port */ |
| 1548 | (*task_list)[i] = (task_t)convert_task_to_port_pinned((*task_list)[i]); |
| 1549 | } else { |
| 1550 | (*task_list)[i] = (task_t)convert_task_to_port((*task_list)[i]); |
| 1551 | } |
| 1552 | } |
| 1553 | break; |
| 1554 | case TASK_FLAVOR_READ: |
| 1555 | for (i = 0; i < *count; i++) { |
| 1556 | (*task_list)[i] = (task_t)convert_task_read_to_port((*task_list)[i]); |
| 1557 | } |
| 1558 | break; |
| 1559 | case TASK_FLAVOR_INSPECT: |
| 1560 | for (i = 0; i < *count; i++) { |
| 1561 | (*task_list)[i] = (task_t)convert_task_inspect_to_port((*task_list)[i]); |
| 1562 | } |
| 1563 | break; |
| 1564 | case TASK_FLAVOR_NAME: |
| 1565 | for (i = 0; i < *count; i++) { |
| 1566 | (*task_list)[i] = (task_t)convert_task_name_to_port((*task_list)[i]); |
| 1567 | } |
| 1568 | break; |
| 1569 | default: |
| 1570 | return KERN_INVALID_ARGUMENT; |
| 1571 | } |
| 1572 | |
| 1573 | return KERN_SUCCESS; |
| 1574 | } |
| 1575 | |
| 1576 | kern_return_t |
| 1577 | processor_set_tasks( |
| 1578 | processor_set_t pset, |
| 1579 | task_array_t *task_list, |
| 1580 | mach_msg_type_number_t *count) |
| 1581 | { |
| 1582 | return processor_set_tasks_internal(pset, task_list, count, TASK_FLAVOR_CONTROL); |
| 1583 | } |
| 1584 | |
| 1585 | /* |
| 1586 | * processor_set_tasks_with_flavor: |
| 1587 | * |
| 1588 | * Based on flavor, return task/inspect/read port to all tasks in the processor set. |
| 1589 | */ |
| 1590 | kern_return_t |
| 1591 | processor_set_tasks_with_flavor( |
| 1592 | processor_set_t pset, |
| 1593 | mach_task_flavor_t flavor, |
| 1594 | task_array_t *task_list, |
| 1595 | mach_msg_type_number_t *count) |
| 1596 | { |
| 1597 | switch (flavor) { |
| 1598 | case TASK_FLAVOR_CONTROL: |
| 1599 | case TASK_FLAVOR_READ: |
| 1600 | case TASK_FLAVOR_INSPECT: |
| 1601 | case TASK_FLAVOR_NAME: |
| 1602 | return processor_set_tasks_internal(pset, task_list, count, flavor); |
| 1603 | default: |
| 1604 | return KERN_INVALID_ARGUMENT; |
| 1605 | } |
| 1606 | } |
| 1607 | |
| 1608 | /* |
| 1609 | * processor_set_threads: |
| 1610 | * |
| 1611 | * List all threads in the processor set. |
| 1612 | */ |
| 1613 | #if defined(SECURE_KERNEL) |
| 1614 | kern_return_t |
| 1615 | processor_set_threads( |
| 1616 | __unused processor_set_t pset, |
| 1617 | __unused thread_array_t *thread_list, |
| 1618 | __unused mach_msg_type_number_t *count) |
| 1619 | { |
| 1620 | return KERN_FAILURE; |
| 1621 | } |
| 1622 | #elif !defined(XNU_TARGET_OS_OSX) |
| 1623 | kern_return_t |
| 1624 | processor_set_threads( |
| 1625 | __unused processor_set_t pset, |
| 1626 | __unused thread_array_t *thread_list, |
| 1627 | __unused mach_msg_type_number_t *count) |
| 1628 | { |
| 1629 | return KERN_NOT_SUPPORTED; |
| 1630 | } |
| 1631 | #else |
| 1632 | kern_return_t |
| 1633 | processor_set_threads( |
| 1634 | processor_set_t pset, |
| 1635 | thread_array_t *thread_list, |
| 1636 | mach_msg_type_number_t *count) |
| 1637 | { |
| 1638 | kern_return_t ret; |
| 1639 | mach_msg_type_number_t i; |
| 1640 | |
| 1641 | ret = processor_set_things(pset, thing_list: (void **)thread_list, countp: count, PSET_THING_THREAD, TASK_FLAVOR_CONTROL); |
| 1642 | if (ret != KERN_SUCCESS) { |
| 1643 | return ret; |
| 1644 | } |
| 1645 | |
| 1646 | /* do the conversion that Mig should handle */ |
| 1647 | for (i = 0; i < *count; i++) { |
| 1648 | (*thread_list)[i] = (thread_t)convert_thread_to_port((*thread_list)[i]); |
| 1649 | } |
| 1650 | return KERN_SUCCESS; |
| 1651 | } |
| 1652 | #endif |
| 1653 | |
| 1654 | pset_cluster_type_t |
| 1655 | recommended_pset_type(thread_t thread) |
| 1656 | { |
| 1657 | #if CONFIG_THREAD_GROUPS && __AMP__ |
| 1658 | if (thread == THREAD_NULL) { |
| 1659 | return PSET_AMP_E; |
| 1660 | } |
| 1661 | |
| 1662 | #if DEVELOPMENT || DEBUG |
| 1663 | extern bool system_ecore_only; |
| 1664 | extern int enable_task_set_cluster_type; |
| 1665 | task_t task = get_threadtask(thread); |
| 1666 | if (enable_task_set_cluster_type && (task->t_flags & TF_USE_PSET_HINT_CLUSTER_TYPE)) { |
| 1667 | processor_set_t pset_hint = task->pset_hint; |
| 1668 | if (pset_hint) { |
| 1669 | return pset_hint->pset_cluster_type; |
| 1670 | } |
| 1671 | } |
| 1672 | |
| 1673 | if (system_ecore_only) { |
| 1674 | return PSET_AMP_E; |
| 1675 | } |
| 1676 | #endif |
| 1677 | |
| 1678 | if (thread->th_bound_cluster_id != THREAD_BOUND_CLUSTER_NONE) { |
| 1679 | return pset_array[thread->th_bound_cluster_id]->pset_cluster_type; |
| 1680 | } |
| 1681 | |
| 1682 | if (thread->base_pri <= MAXPRI_THROTTLE) { |
| 1683 | if (os_atomic_load(&sched_perfctl_policy_bg, relaxed) != SCHED_PERFCTL_POLICY_FOLLOW_GROUP) { |
| 1684 | return PSET_AMP_E; |
| 1685 | } |
| 1686 | } else if (thread->base_pri <= BASEPRI_UTILITY) { |
| 1687 | if (os_atomic_load(&sched_perfctl_policy_util, relaxed) != SCHED_PERFCTL_POLICY_FOLLOW_GROUP) { |
| 1688 | return PSET_AMP_E; |
| 1689 | } |
| 1690 | } |
| 1691 | |
| 1692 | struct thread_group *tg = thread_group_get(thread); |
| 1693 | cluster_type_t recommendation = thread_group_recommendation(tg); |
| 1694 | switch (recommendation) { |
| 1695 | case CLUSTER_TYPE_SMP: |
| 1696 | default: |
| 1697 | if (get_threadtask(thread) == kernel_task) { |
| 1698 | return PSET_AMP_E; |
| 1699 | } |
| 1700 | return PSET_AMP_P; |
| 1701 | case CLUSTER_TYPE_E: |
| 1702 | return PSET_AMP_E; |
| 1703 | case CLUSTER_TYPE_P: |
| 1704 | return PSET_AMP_P; |
| 1705 | } |
| 1706 | #else |
| 1707 | (void)thread; |
| 1708 | return PSET_SMP; |
| 1709 | #endif |
| 1710 | } |
| 1711 | |
| 1712 | #if CONFIG_THREAD_GROUPS && __AMP__ |
| 1713 | |
| 1714 | void |
| 1715 | sched_perfcontrol_inherit_recommendation_from_tg(perfcontrol_class_t perfctl_class, boolean_t inherit) |
| 1716 | { |
| 1717 | sched_perfctl_class_policy_t sched_policy = inherit ? SCHED_PERFCTL_POLICY_FOLLOW_GROUP : SCHED_PERFCTL_POLICY_RESTRICT_E; |
| 1718 | |
| 1719 | KDBG(MACHDBG_CODE(DBG_MACH_SCHED, MACH_AMP_PERFCTL_POLICY_CHANGE) | DBG_FUNC_NONE, perfctl_class, sched_policy, 0, 0); |
| 1720 | |
| 1721 | switch (perfctl_class) { |
| 1722 | case PERFCONTROL_CLASS_UTILITY: |
| 1723 | os_atomic_store(&sched_perfctl_policy_util, sched_policy, relaxed); |
| 1724 | break; |
| 1725 | case PERFCONTROL_CLASS_BACKGROUND: |
| 1726 | os_atomic_store(&sched_perfctl_policy_bg, sched_policy, relaxed); |
| 1727 | break; |
| 1728 | default: |
| 1729 | panic("perfctl_class invalid" ); |
| 1730 | break; |
| 1731 | } |
| 1732 | } |
| 1733 | |
| 1734 | #elif defined(__arm64__) |
| 1735 | |
| 1736 | /* Define a stub routine since this symbol is exported on all arm64 platforms */ |
| 1737 | void |
| 1738 | sched_perfcontrol_inherit_recommendation_from_tg(__unused perfcontrol_class_t perfctl_class, __unused boolean_t inherit) |
| 1739 | { |
| 1740 | } |
| 1741 | |
| 1742 | #endif /* defined(__arm64__) */ |
| 1743 | |