| 1 | /* |
| 2 | * Copyright (c) 2000-2019 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
| 5 | * |
| 6 | * This file contains Original Code and/or Modifications of Original Code |
| 7 | * as defined in and that are subject to the Apple Public Source License |
| 8 | * Version 2.0 (the 'License'). You may not use this file except in |
| 9 | * compliance with the License. The rights granted to you under the License |
| 10 | * may not be used to create, or enable the creation or redistribution of, |
| 11 | * unlawful or unlicensed copies of an Apple operating system, or to |
| 12 | * circumvent, violate, or enable the circumvention or violation of, any |
| 13 | * terms of an Apple operating system software license agreement. |
| 14 | * |
| 15 | * Please obtain a copy of the License at |
| 16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
| 17 | * |
| 18 | * The Original Code and all software distributed under the License are |
| 19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| 23 | * Please see the License for the specific language governing rights and |
| 24 | * limitations under the License. |
| 25 | * |
| 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
| 27 | */ |
| 28 | /* |
| 29 | * @OSF_COPYRIGHT@ |
| 30 | */ |
| 31 | /* |
| 32 | * Mach Operating System |
| 33 | * Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University |
| 34 | * All Rights Reserved. |
| 35 | * |
| 36 | * Permission to use, copy, modify and distribute this software and its |
| 37 | * documentation is hereby granted, provided that both the copyright |
| 38 | * notice and this permission notice appear in all copies of the |
| 39 | * software, derivative works or modified versions, and any portions |
| 40 | * thereof, and that both notices appear in supporting documentation. |
| 41 | * |
| 42 | * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" |
| 43 | * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR |
| 44 | * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. |
| 45 | * |
| 46 | * Carnegie Mellon requests users of this software to return to |
| 47 | * |
| 48 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU |
| 49 | * School of Computer Science |
| 50 | * Carnegie Mellon University |
| 51 | * Pittsburgh PA 15213-3890 |
| 52 | * |
| 53 | * any improvements or extensions that they make and grant Carnegie Mellon |
| 54 | * the rights to redistribute these changes. |
| 55 | */ |
| 56 | /* |
| 57 | */ |
| 58 | /* |
| 59 | * File: priority.c |
| 60 | * Author: Avadis Tevanian, Jr. |
| 61 | * Date: 1986 |
| 62 | * |
| 63 | * Priority related scheduler bits. |
| 64 | */ |
| 65 | |
| 66 | #include <mach/boolean.h> |
| 67 | #include <mach/kern_return.h> |
| 68 | #include <mach/machine.h> |
| 69 | #include <kern/host.h> |
| 70 | #include <kern/mach_param.h> |
| 71 | #include <kern/sched.h> |
| 72 | #include <sys/kdebug.h> |
| 73 | #include <kern/spl.h> |
| 74 | #include <kern/thread.h> |
| 75 | #include <kern/processor.h> |
| 76 | #include <kern/ledger.h> |
| 77 | #include <kern/monotonic.h> |
| 78 | #include <machine/machparam.h> |
| 79 | #include <kern/machine.h> |
| 80 | #include <kern/policy_internal.h> |
| 81 | #include <kern/sched_clutch.h> |
| 82 | |
| 83 | #ifdef CONFIG_MACH_APPROXIMATE_TIME |
| 84 | #include <machine/commpage.h> /* for commpage_update_mach_approximate_time */ |
| 85 | #endif |
| 86 | |
| 87 | /* |
| 88 | * thread_quantum_expire: |
| 89 | * |
| 90 | * Recalculate the quantum and priority for a thread. |
| 91 | * |
| 92 | * Called at splsched. |
| 93 | */ |
| 94 | |
| 95 | void |
| 96 | thread_quantum_expire( |
| 97 | timer_call_param_t p0, |
| 98 | timer_call_param_t p1) |
| 99 | { |
| 100 | processor_t processor = p0; |
| 101 | thread_t thread = p1; |
| 102 | ast_t preempt; |
| 103 | uint64_t ctime; |
| 104 | |
| 105 | assert(processor == current_processor()); |
| 106 | assert(thread == current_thread()); |
| 107 | |
| 108 | KDBG_RELEASE(MACHDBG_CODE( |
| 109 | DBG_MACH_SCHED, MACH_SCHED_QUANTUM_EXPIRED) | DBG_FUNC_START); |
| 110 | |
| 111 | SCHED_STATS_INC(quantum_timer_expirations); |
| 112 | |
| 113 | /* |
| 114 | * We bill CPU time to both the individual thread and its task. |
| 115 | * |
| 116 | * Because this balance adjustment could potentially attempt to wake this |
| 117 | * very thread, we must credit the ledger before taking the thread lock. |
| 118 | * The ledger pointers are only manipulated by the thread itself at the ast |
| 119 | * boundary. |
| 120 | * |
| 121 | * TODO: This fails to account for the time between when the timer was |
| 122 | * armed and when it fired. It should be based on the system_timer and |
| 123 | * running a timer_update operation here. |
| 124 | */ |
| 125 | ledger_credit(ledger: thread->t_ledger, entry: task_ledgers.cpu_time, amount: thread->quantum_remaining); |
| 126 | ledger_credit(ledger: thread->t_threadledger, entry: thread_ledgers.cpu_time, amount: thread->quantum_remaining); |
| 127 | if (thread->t_bankledger) { |
| 128 | ledger_credit(ledger: thread->t_bankledger, entry: bank_ledgers.cpu_time, |
| 129 | amount: (thread->quantum_remaining - thread->t_deduct_bank_ledger_time)); |
| 130 | } |
| 131 | thread->t_deduct_bank_ledger_time = 0; |
| 132 | |
| 133 | struct recount_snap snap = { 0 }; |
| 134 | recount_snapshot(snap: &snap); |
| 135 | ctime = snap.rsn_time_mach; |
| 136 | check_monotonic_time(ctime); |
| 137 | #ifdef CONFIG_MACH_APPROXIMATE_TIME |
| 138 | commpage_update_mach_approximate_time(ctime); |
| 139 | #endif /* CONFIG_MACH_APPROXIMATE_TIME */ |
| 140 | |
| 141 | sched_update_pset_avg_execution_time(pset: processor->processor_set, delta: thread->quantum_remaining, curtime: ctime, sched_bucket: thread->th_sched_bucket); |
| 142 | |
| 143 | recount_switch_thread(snap: &snap, off_thread: thread, off_task: get_threadtask(thread)); |
| 144 | recount_log_switch_thread(snap: &snap); |
| 145 | |
| 146 | thread_lock(thread); |
| 147 | |
| 148 | /* |
| 149 | * We've run up until our quantum expiration, and will (potentially) |
| 150 | * continue without re-entering the scheduler, so update this now. |
| 151 | */ |
| 152 | processor->last_dispatch = ctime; |
| 153 | thread->last_run_time = ctime; |
| 154 | |
| 155 | /* |
| 156 | * Check for fail-safe trip. |
| 157 | */ |
| 158 | if ((thread->sched_mode == TH_MODE_REALTIME || thread->sched_mode == TH_MODE_FIXED) && |
| 159 | !(thread->sched_flags & TH_SFLAG_PROMOTED) && |
| 160 | !(thread->kern_promotion_schedpri != 0) && |
| 161 | !(thread->sched_flags & TH_SFLAG_PROMOTE_REASON_MASK) && |
| 162 | !(thread->options & TH_OPT_SYSTEM_CRITICAL)) { |
| 163 | uint64_t new_computation; |
| 164 | |
| 165 | new_computation = ctime - thread->computation_epoch; |
| 166 | new_computation += thread->computation_metered; |
| 167 | /* |
| 168 | * Remove any time spent handling interrupts outside of the thread's |
| 169 | * control. |
| 170 | */ |
| 171 | new_computation -= recount_current_thread_interrupt_time_mach() - thread->computation_interrupt_epoch; |
| 172 | |
| 173 | bool demote = false; |
| 174 | switch (thread->sched_mode) { |
| 175 | case TH_MODE_REALTIME: |
| 176 | if (new_computation > max_unsafe_rt_computation) { |
| 177 | thread->safe_release = ctime + sched_safe_rt_duration; |
| 178 | demote = true; |
| 179 | } |
| 180 | break; |
| 181 | case TH_MODE_FIXED: |
| 182 | if (new_computation > max_unsafe_fixed_computation) { |
| 183 | thread->safe_release = ctime + sched_safe_fixed_duration; |
| 184 | demote = true; |
| 185 | } |
| 186 | break; |
| 187 | default: |
| 188 | panic("unexpected mode: %d" , thread->sched_mode); |
| 189 | } |
| 190 | |
| 191 | if (demote) { |
| 192 | KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED, MACH_FAILSAFE) | DBG_FUNC_NONE, |
| 193 | (uintptr_t)thread->sched_pri, (uintptr_t)thread->sched_mode, 0, 0, 0); |
| 194 | sched_thread_mode_demote(thread, TH_SFLAG_FAILSAFE); |
| 195 | } |
| 196 | } |
| 197 | |
| 198 | /* |
| 199 | * Recompute scheduled priority if appropriate. |
| 200 | */ |
| 201 | if (SCHED(can_update_priority)(thread)) { |
| 202 | SCHED(update_priority)(thread); |
| 203 | } else { |
| 204 | SCHED(lightweight_update_priority)(thread); |
| 205 | } |
| 206 | |
| 207 | if (thread->sched_mode != TH_MODE_REALTIME) { |
| 208 | SCHED(quantum_expire)(thread); |
| 209 | } |
| 210 | |
| 211 | /* |
| 212 | * This quantum is up, give this thread another. |
| 213 | */ |
| 214 | processor->first_timeslice = FALSE; |
| 215 | |
| 216 | thread_quantum_init(thread, now: ctime); |
| 217 | |
| 218 | timer_update(timer: &thread->runnable_timer, tstamp: ctime); |
| 219 | |
| 220 | processor->quantum_end = ctime + thread->quantum_remaining; |
| 221 | |
| 222 | /* |
| 223 | * Context switch check |
| 224 | * |
| 225 | * non-urgent flags don't affect kernel threads, so upgrade to urgent |
| 226 | * to ensure that rebalancing and non-recommendation kick in quickly. |
| 227 | */ |
| 228 | |
| 229 | ast_t check_reason = AST_QUANTUM; |
| 230 | if (get_threadtask(thread) == kernel_task) { |
| 231 | check_reason |= AST_URGENT; |
| 232 | } |
| 233 | |
| 234 | if ((preempt = csw_check(thread, processor, check_reason)) != AST_NONE) { |
| 235 | ast_on(reasons: preempt); |
| 236 | } |
| 237 | |
| 238 | /* |
| 239 | * AST_KEVENT does not send an IPI when setting the AST, |
| 240 | * to avoid waiting for the next context switch to propagate the AST, |
| 241 | * the AST is propagated here at quantum expiration. |
| 242 | */ |
| 243 | ast_propagate(thread); |
| 244 | |
| 245 | thread_unlock(thread); |
| 246 | |
| 247 | /* Now that the processor->thread_timer has been updated, evaluate to see if |
| 248 | * the workqueue quantum expired and set AST_KEVENT if it has */ |
| 249 | if (thread_get_tag(thread) & THREAD_TAG_WORKQUEUE) { |
| 250 | thread_evaluate_workqueue_quantum_expiry(thread); |
| 251 | } |
| 252 | |
| 253 | running_timer_enter(processor, timer: RUNNING_TIMER_QUANTUM, param: thread, |
| 254 | deadline: processor->quantum_end, now: ctime); |
| 255 | |
| 256 | /* Tell platform layer that we are still running this thread */ |
| 257 | thread_urgency_t urgency = thread_get_urgency(thread, NULL, NULL); |
| 258 | machine_thread_going_on_core(new_thread: thread, urgency, sched_latency: 0, same_pri_latency: 0, dispatch_time: ctime); |
| 259 | machine_switch_perfcontrol_state_update(event: QUANTUM_EXPIRY, timestamp: ctime, |
| 260 | flags: 0, thread); |
| 261 | |
| 262 | #if defined(CONFIG_SCHED_TIMESHARE_CORE) |
| 263 | sched_timeshare_consider_maintenance(ctime, false); |
| 264 | #endif /* CONFIG_SCHED_TIMESHARE_CORE */ |
| 265 | |
| 266 | #if __arm64__ |
| 267 | if (thread->sched_mode == TH_MODE_REALTIME) { |
| 268 | sched_consider_recommended_cores(ctime, thread); |
| 269 | } |
| 270 | #endif /* __arm64__ */ |
| 271 | |
| 272 | KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED, MACH_SCHED_QUANTUM_EXPIRED) | DBG_FUNC_END, preempt, 0, 0, 0, 0); |
| 273 | } |
| 274 | |
| 275 | /* |
| 276 | * sched_set_thread_base_priority: |
| 277 | * |
| 278 | * Set the base priority of the thread |
| 279 | * and reset its scheduled priority. |
| 280 | * |
| 281 | * This is the only path to change base_pri. |
| 282 | * |
| 283 | * Called with the thread locked. |
| 284 | */ |
| 285 | void |
| 286 | sched_set_thread_base_priority(thread_t thread, int priority) |
| 287 | { |
| 288 | assert(priority >= MINPRI); |
| 289 | uint64_t ctime = 0; |
| 290 | |
| 291 | if (thread->sched_mode == TH_MODE_REALTIME) { |
| 292 | assert((priority >= BASEPRI_RTQUEUES) && (priority <= MAXPRI)); |
| 293 | } else { |
| 294 | assert(priority < BASEPRI_RTQUEUES); |
| 295 | } |
| 296 | |
| 297 | int old_base_pri = thread->base_pri; |
| 298 | thread->req_base_pri = (int16_t)priority; |
| 299 | if (thread->sched_flags & TH_SFLAG_BASE_PRI_FROZEN) { |
| 300 | priority = MAX(priority, old_base_pri); |
| 301 | } |
| 302 | thread->base_pri = (int16_t)priority; |
| 303 | |
| 304 | if ((thread->state & TH_RUN) == TH_RUN) { |
| 305 | assert(thread->last_made_runnable_time != THREAD_NOT_RUNNABLE); |
| 306 | ctime = mach_approximate_time(); |
| 307 | thread->last_basepri_change_time = ctime; |
| 308 | } else { |
| 309 | assert(thread->last_basepri_change_time == THREAD_NOT_RUNNABLE); |
| 310 | assert(thread->last_made_runnable_time == THREAD_NOT_RUNNABLE); |
| 311 | } |
| 312 | |
| 313 | /* |
| 314 | * Currently the perfcontrol_attr depends on the base pri of the |
| 315 | * thread. Therefore, we use this function as the hook for the |
| 316 | * perfcontrol callout. |
| 317 | */ |
| 318 | if (thread == current_thread() && old_base_pri != priority) { |
| 319 | if (!ctime) { |
| 320 | ctime = mach_approximate_time(); |
| 321 | } |
| 322 | machine_switch_perfcontrol_state_update(event: PERFCONTROL_ATTR_UPDATE, |
| 323 | timestamp: ctime, PERFCONTROL_CALLOUT_WAKE_UNSAFE, thread); |
| 324 | } |
| 325 | #if !CONFIG_SCHED_CLUTCH |
| 326 | /* For the clutch scheduler, this operation is done in set_sched_pri() */ |
| 327 | SCHED(update_thread_bucket)(thread); |
| 328 | #endif /* !CONFIG_SCHED_CLUTCH */ |
| 329 | |
| 330 | thread_recompute_sched_pri(thread, options: SETPRI_DEFAULT); |
| 331 | } |
| 332 | |
| 333 | /* |
| 334 | * sched_set_kernel_thread_priority: |
| 335 | * |
| 336 | * Set the absolute base priority of the thread |
| 337 | * and reset its scheduled priority. |
| 338 | * |
| 339 | * Called with the thread unlocked. |
| 340 | */ |
| 341 | void |
| 342 | sched_set_kernel_thread_priority(thread_t thread, int new_priority) |
| 343 | { |
| 344 | spl_t s = splsched(); |
| 345 | |
| 346 | thread_lock(thread); |
| 347 | |
| 348 | assert(thread->sched_mode != TH_MODE_REALTIME); |
| 349 | assert(thread->effective_policy.thep_qos == THREAD_QOS_UNSPECIFIED); |
| 350 | |
| 351 | if (new_priority > thread->max_priority) { |
| 352 | new_priority = thread->max_priority; |
| 353 | } |
| 354 | #if !defined(XNU_TARGET_OS_OSX) |
| 355 | if (new_priority < MAXPRI_THROTTLE) { |
| 356 | new_priority = MAXPRI_THROTTLE; |
| 357 | } |
| 358 | #endif /* !defined(XNU_TARGET_OS_OSX) */ |
| 359 | |
| 360 | thread->importance = new_priority - thread->task_priority; |
| 361 | |
| 362 | sched_set_thread_base_priority(thread, priority: new_priority); |
| 363 | |
| 364 | thread_unlock(thread); |
| 365 | splx(s); |
| 366 | } |
| 367 | |
| 368 | /* |
| 369 | * thread_recompute_sched_pri: |
| 370 | * |
| 371 | * Reset the scheduled priority of the thread |
| 372 | * according to its base priority if the |
| 373 | * thread has not been promoted or depressed. |
| 374 | * |
| 375 | * This is the only way to push base_pri changes into sched_pri, |
| 376 | * or to recalculate the appropriate sched_pri after changing |
| 377 | * a promotion or depression. |
| 378 | * |
| 379 | * Called at splsched with the thread locked. |
| 380 | * |
| 381 | * TODO: Add an 'update urgency' flag to avoid urgency callouts on every rwlock operation |
| 382 | */ |
| 383 | void |
| 384 | thread_recompute_sched_pri(thread_t thread, set_sched_pri_options_t options) |
| 385 | { |
| 386 | uint32_t sched_flags = thread->sched_flags; |
| 387 | sched_mode_t sched_mode = thread->sched_mode; |
| 388 | |
| 389 | int16_t priority = thread->base_pri; |
| 390 | |
| 391 | if (sched_mode == TH_MODE_TIMESHARE) { |
| 392 | priority = (int16_t)SCHED(compute_timeshare_priority)(thread); |
| 393 | } |
| 394 | |
| 395 | if (sched_flags & TH_SFLAG_DEPRESS) { |
| 396 | /* thread_yield_internal overrides kernel mutex promotion */ |
| 397 | priority = DEPRESSPRI; |
| 398 | } else { |
| 399 | /* poll-depress is overridden by mutex promotion and promote-reasons */ |
| 400 | if ((sched_flags & TH_SFLAG_POLLDEPRESS)) { |
| 401 | priority = DEPRESSPRI; |
| 402 | } |
| 403 | |
| 404 | if (thread->kern_promotion_schedpri > 0) { |
| 405 | priority = MAX(priority, thread->kern_promotion_schedpri); |
| 406 | |
| 407 | if (sched_mode != TH_MODE_REALTIME) { |
| 408 | priority = MIN(priority, MAXPRI_PROMOTE); |
| 409 | } |
| 410 | } |
| 411 | |
| 412 | if (sched_flags & TH_SFLAG_PROMOTED) { |
| 413 | priority = MAX(priority, thread->promotion_priority); |
| 414 | |
| 415 | if (sched_mode != TH_MODE_REALTIME) { |
| 416 | priority = MIN(priority, MAXPRI_PROMOTE); |
| 417 | } |
| 418 | } |
| 419 | |
| 420 | if (sched_flags & TH_SFLAG_PROMOTE_REASON_MASK) { |
| 421 | if (sched_flags & TH_SFLAG_RW_PROMOTED) { |
| 422 | priority = MAX(priority, MINPRI_RWLOCK); |
| 423 | } |
| 424 | |
| 425 | if (sched_flags & TH_SFLAG_WAITQ_PROMOTED) { |
| 426 | priority = MAX(priority, MINPRI_WAITQ); |
| 427 | } |
| 428 | |
| 429 | if (sched_flags & TH_SFLAG_EXEC_PROMOTED) { |
| 430 | priority = MAX(priority, MINPRI_EXEC); |
| 431 | } |
| 432 | |
| 433 | if (sched_flags & TH_SFLAG_FLOOR_PROMOTED) { |
| 434 | priority = MAX(priority, MINPRI_FLOOR); |
| 435 | } |
| 436 | } |
| 437 | } |
| 438 | |
| 439 | set_sched_pri(thread, priority, options); |
| 440 | } |
| 441 | |
| 442 | void |
| 443 | sched_default_quantum_expire(thread_t thread __unused) |
| 444 | { |
| 445 | /* |
| 446 | * No special behavior when a timeshare, fixed, or realtime thread |
| 447 | * uses up its entire quantum |
| 448 | */ |
| 449 | } |
| 450 | |
| 451 | int smt_timeshare_enabled = 1; |
| 452 | int smt_sched_bonus_16ths = 8; |
| 453 | |
| 454 | #if defined(CONFIG_SCHED_TIMESHARE_CORE) |
| 455 | |
| 456 | /* |
| 457 | * lightweight_update_priority: |
| 458 | * |
| 459 | * Update the scheduled priority for |
| 460 | * a timesharing thread. |
| 461 | * |
| 462 | * Only for use on the current thread. |
| 463 | * |
| 464 | * Called with the thread locked. |
| 465 | */ |
| 466 | void |
| 467 | lightweight_update_priority(thread_t thread) |
| 468 | { |
| 469 | thread_assert_runq_null(thread); |
| 470 | assert(thread == current_thread()); |
| 471 | |
| 472 | if (thread->sched_mode == TH_MODE_TIMESHARE) { |
| 473 | int priority; |
| 474 | uint32_t delta; |
| 475 | |
| 476 | sched_tick_delta(thread, delta); |
| 477 | |
| 478 | /* |
| 479 | * Accumulate timesharing usage only |
| 480 | * during contention for processor |
| 481 | * resources. |
| 482 | */ |
| 483 | if (thread->pri_shift < INT8_MAX) { |
| 484 | if (thread_no_smt(thread) && smt_timeshare_enabled) { |
| 485 | thread->sched_usage += (delta + ((delta * smt_sched_bonus_16ths) >> 4)); |
| 486 | } else { |
| 487 | thread->sched_usage += delta; |
| 488 | } |
| 489 | } |
| 490 | |
| 491 | thread->cpu_delta += delta; |
| 492 | |
| 493 | #if CONFIG_SCHED_CLUTCH |
| 494 | /* |
| 495 | * Update the CPU usage for the thread group to which the thread belongs. |
| 496 | * The implementation assumes that the thread ran for the entire delta |
| 497 | * as part of the same thread group. |
| 498 | */ |
| 499 | sched_clutch_cpu_usage_update(thread, delta); |
| 500 | #endif /* CONFIG_SCHED_CLUTCH */ |
| 501 | |
| 502 | priority = sched_compute_timeshare_priority(thread); |
| 503 | |
| 504 | if (priority != thread->sched_pri) { |
| 505 | thread_recompute_sched_pri(thread, options: SETPRI_LAZY); |
| 506 | } |
| 507 | } |
| 508 | } |
| 509 | |
| 510 | /* |
| 511 | * Define shifts for simulating (5/8) ** n |
| 512 | * |
| 513 | * Shift structures for holding update shifts. Actual computation |
| 514 | * is usage = (usage >> shift1) +/- (usage >> abs(shift2)) where the |
| 515 | * +/- is determined by the sign of shift 2. |
| 516 | */ |
| 517 | |
| 518 | const struct shift_data sched_decay_shifts[SCHED_DECAY_TICKS] = { |
| 519 | { .shift1 = 1, .shift2 = 1 }, |
| 520 | { .shift1 = 1, .shift2 = 3 }, |
| 521 | { .shift1 = 1, .shift2 = -3 }, |
| 522 | { .shift1 = 2, .shift2 = -7 }, |
| 523 | { .shift1 = 3, .shift2 = 5 }, |
| 524 | { .shift1 = 3, .shift2 = -5 }, |
| 525 | { .shift1 = 4, .shift2 = -8 }, |
| 526 | { .shift1 = 5, .shift2 = 7 }, |
| 527 | { .shift1 = 5, .shift2 = -7 }, |
| 528 | { .shift1 = 6, .shift2 = -10 }, |
| 529 | { .shift1 = 7, .shift2 = 10 }, |
| 530 | { .shift1 = 7, .shift2 = -9 }, |
| 531 | { .shift1 = 8, .shift2 = -11 }, |
| 532 | { .shift1 = 9, .shift2 = 12 }, |
| 533 | { .shift1 = 9, .shift2 = -11 }, |
| 534 | { .shift1 = 10, .shift2 = -13 }, |
| 535 | { .shift1 = 11, .shift2 = 14 }, |
| 536 | { .shift1 = 11, .shift2 = -13 }, |
| 537 | { .shift1 = 12, .shift2 = -15 }, |
| 538 | { .shift1 = 13, .shift2 = 17 }, |
| 539 | { .shift1 = 13, .shift2 = -15 }, |
| 540 | { .shift1 = 14, .shift2 = -17 }, |
| 541 | { .shift1 = 15, .shift2 = 19 }, |
| 542 | { .shift1 = 16, .shift2 = 18 }, |
| 543 | { .shift1 = 16, .shift2 = -19 }, |
| 544 | { .shift1 = 17, .shift2 = 22 }, |
| 545 | { .shift1 = 18, .shift2 = 20 }, |
| 546 | { .shift1 = 18, .shift2 = -20 }, |
| 547 | { .shift1 = 19, .shift2 = 26 }, |
| 548 | { .shift1 = 20, .shift2 = 22 }, |
| 549 | { .shift1 = 20, .shift2 = -22 }, |
| 550 | { .shift1 = 21, .shift2 = -27 } |
| 551 | }; |
| 552 | |
| 553 | /* |
| 554 | * sched_compute_timeshare_priority: |
| 555 | * |
| 556 | * Calculate the timesharing priority based upon usage and load. |
| 557 | */ |
| 558 | extern int sched_pri_decay_band_limit; |
| 559 | |
| 560 | |
| 561 | /* Only use the decay floor logic on non-macOS and non-clutch schedulers */ |
| 562 | #if !defined(XNU_TARGET_OS_OSX) && !CONFIG_SCHED_CLUTCH |
| 563 | |
| 564 | int |
| 565 | sched_compute_timeshare_priority(thread_t thread) |
| 566 | { |
| 567 | int decay_amount; |
| 568 | int decay_limit = sched_pri_decay_band_limit; |
| 569 | |
| 570 | if (thread->base_pri > BASEPRI_FOREGROUND) { |
| 571 | decay_limit += (thread->base_pri - BASEPRI_FOREGROUND); |
| 572 | } |
| 573 | |
| 574 | if (thread->pri_shift == INT8_MAX) { |
| 575 | decay_amount = 0; |
| 576 | } else { |
| 577 | decay_amount = (thread->sched_usage >> thread->pri_shift); |
| 578 | } |
| 579 | |
| 580 | if (decay_amount > decay_limit) { |
| 581 | decay_amount = decay_limit; |
| 582 | } |
| 583 | |
| 584 | /* start with base priority */ |
| 585 | int priority = thread->base_pri - decay_amount; |
| 586 | |
| 587 | if (priority < MAXPRI_THROTTLE) { |
| 588 | if (get_threadtask(thread)->max_priority > MAXPRI_THROTTLE) { |
| 589 | priority = MAXPRI_THROTTLE; |
| 590 | } else if (priority < MINPRI_USER) { |
| 591 | priority = MINPRI_USER; |
| 592 | } |
| 593 | } else if (priority > MAXPRI_KERNEL) { |
| 594 | priority = MAXPRI_KERNEL; |
| 595 | } |
| 596 | |
| 597 | return priority; |
| 598 | } |
| 599 | |
| 600 | #else /* !defined(XNU_TARGET_OS_OSX) && !CONFIG_SCHED_CLUTCH */ |
| 601 | |
| 602 | int |
| 603 | sched_compute_timeshare_priority(thread_t thread) |
| 604 | { |
| 605 | /* start with base priority */ |
| 606 | int priority = thread->base_pri; |
| 607 | |
| 608 | if (thread->pri_shift != INT8_MAX) { |
| 609 | priority -= (thread->sched_usage >> thread->pri_shift); |
| 610 | } |
| 611 | |
| 612 | if (priority < MINPRI_USER) { |
| 613 | priority = MINPRI_USER; |
| 614 | } else if (priority > MAXPRI_KERNEL) { |
| 615 | priority = MAXPRI_KERNEL; |
| 616 | } |
| 617 | |
| 618 | return priority; |
| 619 | } |
| 620 | |
| 621 | #endif /* !defined(XNU_TARGET_OS_OSX) && !CONFIG_SCHED_CLUTCH */ |
| 622 | |
| 623 | /* |
| 624 | * can_update_priority |
| 625 | * |
| 626 | * Make sure we don't do re-dispatches more frequently than a scheduler tick. |
| 627 | * |
| 628 | * Called with the thread locked. |
| 629 | */ |
| 630 | boolean_t |
| 631 | can_update_priority( |
| 632 | thread_t thread) |
| 633 | { |
| 634 | if (sched_tick == thread->sched_stamp) { |
| 635 | return FALSE; |
| 636 | } else { |
| 637 | return TRUE; |
| 638 | } |
| 639 | } |
| 640 | |
| 641 | /* |
| 642 | * update_priority |
| 643 | * |
| 644 | * Perform housekeeping operations driven by scheduler tick. |
| 645 | * |
| 646 | * Called with the thread locked. |
| 647 | */ |
| 648 | void |
| 649 | update_priority( |
| 650 | thread_t thread) |
| 651 | { |
| 652 | uint32_t ticks, delta; |
| 653 | |
| 654 | ticks = sched_tick - thread->sched_stamp; |
| 655 | assert(ticks != 0); |
| 656 | |
| 657 | thread->sched_stamp += ticks; |
| 658 | |
| 659 | /* If requested, accelerate aging of sched_usage */ |
| 660 | if (sched_decay_usage_age_factor > 1) { |
| 661 | ticks *= sched_decay_usage_age_factor; |
| 662 | } |
| 663 | |
| 664 | /* |
| 665 | * Gather cpu usage data. |
| 666 | */ |
| 667 | sched_tick_delta(thread, delta); |
| 668 | if (ticks < SCHED_DECAY_TICKS) { |
| 669 | /* |
| 670 | * Accumulate timesharing usage only during contention for processor |
| 671 | * resources. Use the pri_shift from the previous tick window to |
| 672 | * determine if the system was in a contended state. |
| 673 | */ |
| 674 | if (thread->pri_shift < INT8_MAX) { |
| 675 | if (thread_no_smt(thread) && smt_timeshare_enabled) { |
| 676 | thread->sched_usage += (delta + ((delta * smt_sched_bonus_16ths) >> 4)); |
| 677 | } else { |
| 678 | thread->sched_usage += delta; |
| 679 | } |
| 680 | } |
| 681 | |
| 682 | thread->cpu_usage += delta + thread->cpu_delta; |
| 683 | thread->cpu_delta = 0; |
| 684 | |
| 685 | #if CONFIG_SCHED_CLUTCH |
| 686 | /* |
| 687 | * Update the CPU usage for the thread group to which the thread belongs. |
| 688 | * The implementation assumes that the thread ran for the entire delta |
| 689 | * as part of the same thread group. |
| 690 | */ |
| 691 | sched_clutch_cpu_usage_update(thread, delta); |
| 692 | #endif /* CONFIG_SCHED_CLUTCH */ |
| 693 | |
| 694 | const struct shift_data *shiftp = &sched_decay_shifts[ticks]; |
| 695 | |
| 696 | if (shiftp->shift2 > 0) { |
| 697 | thread->cpu_usage = (thread->cpu_usage >> shiftp->shift1) + |
| 698 | (thread->cpu_usage >> shiftp->shift2); |
| 699 | thread->sched_usage = (thread->sched_usage >> shiftp->shift1) + |
| 700 | (thread->sched_usage >> shiftp->shift2); |
| 701 | } else { |
| 702 | thread->cpu_usage = (thread->cpu_usage >> shiftp->shift1) - |
| 703 | (thread->cpu_usage >> -(shiftp->shift2)); |
| 704 | thread->sched_usage = (thread->sched_usage >> shiftp->shift1) - |
| 705 | (thread->sched_usage >> -(shiftp->shift2)); |
| 706 | } |
| 707 | } else { |
| 708 | thread->cpu_usage = thread->cpu_delta = 0; |
| 709 | thread->sched_usage = 0; |
| 710 | } |
| 711 | |
| 712 | /* |
| 713 | * Check for fail-safe release. |
| 714 | */ |
| 715 | if ((thread->sched_flags & TH_SFLAG_FAILSAFE) && |
| 716 | mach_absolute_time() >= thread->safe_release) { |
| 717 | sched_thread_mode_undemote(thread, TH_SFLAG_FAILSAFE); |
| 718 | } |
| 719 | |
| 720 | /* |
| 721 | * Now that the thread's CPU usage has been accumulated and aged |
| 722 | * based on contention of the previous tick window, update the |
| 723 | * pri_shift of the thread to match the current global load/shift |
| 724 | * values. The updated pri_shift would be used to calculate the |
| 725 | * new priority of the thread. |
| 726 | */ |
| 727 | #if CONFIG_SCHED_CLUTCH |
| 728 | thread->pri_shift = sched_clutch_thread_pri_shift(thread, thread->th_sched_bucket); |
| 729 | #else /* CONFIG_SCHED_CLUTCH */ |
| 730 | thread->pri_shift = sched_pri_shifts[thread->th_sched_bucket]; |
| 731 | #endif /* CONFIG_SCHED_CLUTCH */ |
| 732 | |
| 733 | /* Recompute scheduled priority if appropriate. */ |
| 734 | if (thread->sched_mode == TH_MODE_TIMESHARE) { |
| 735 | thread_recompute_sched_pri(thread, options: SETPRI_LAZY); |
| 736 | } |
| 737 | } |
| 738 | |
| 739 | #endif /* CONFIG_SCHED_TIMESHARE_CORE */ |
| 740 | |
| 741 | |
| 742 | /* |
| 743 | * TH_BUCKET_RUN is a count of *all* runnable non-idle threads. |
| 744 | * Each other bucket is a count of the runnable non-idle threads |
| 745 | * with that property. All updates to these counts should be |
| 746 | * performed with os_atomic_* operations. |
| 747 | * |
| 748 | * For the clutch scheduler, this global bucket is used only for |
| 749 | * keeping the total global run count. |
| 750 | */ |
| 751 | uint32_t sched_run_buckets[TH_BUCKET_MAX]; |
| 752 | |
| 753 | static void |
| 754 | sched_incr_bucket(sched_bucket_t bucket) |
| 755 | { |
| 756 | assert(bucket >= TH_BUCKET_FIXPRI && |
| 757 | bucket <= TH_BUCKET_SHARE_BG); |
| 758 | |
| 759 | os_atomic_inc(&sched_run_buckets[bucket], relaxed); |
| 760 | } |
| 761 | |
| 762 | static void |
| 763 | sched_decr_bucket(sched_bucket_t bucket) |
| 764 | { |
| 765 | assert(bucket >= TH_BUCKET_FIXPRI && |
| 766 | bucket <= TH_BUCKET_SHARE_BG); |
| 767 | |
| 768 | assert(os_atomic_load(&sched_run_buckets[bucket], relaxed) > 0); |
| 769 | |
| 770 | os_atomic_dec(&sched_run_buckets[bucket], relaxed); |
| 771 | } |
| 772 | |
| 773 | static void |
| 774 | sched_add_bucket(sched_bucket_t bucket, uint8_t run_weight) |
| 775 | { |
| 776 | assert(bucket >= TH_BUCKET_FIXPRI && |
| 777 | bucket <= TH_BUCKET_SHARE_BG); |
| 778 | |
| 779 | os_atomic_add(&sched_run_buckets[bucket], run_weight, relaxed); |
| 780 | } |
| 781 | |
| 782 | static void |
| 783 | sched_sub_bucket(sched_bucket_t bucket, uint8_t run_weight) |
| 784 | { |
| 785 | assert(bucket >= TH_BUCKET_FIXPRI && |
| 786 | bucket <= TH_BUCKET_SHARE_BG); |
| 787 | |
| 788 | assert(os_atomic_load(&sched_run_buckets[bucket], relaxed) > 0); |
| 789 | |
| 790 | os_atomic_sub(&sched_run_buckets[bucket], run_weight, relaxed); |
| 791 | } |
| 792 | |
| 793 | uint32_t |
| 794 | sched_run_incr(thread_t thread) |
| 795 | { |
| 796 | assert((thread->state & (TH_RUN | TH_IDLE)) == TH_RUN); |
| 797 | |
| 798 | uint32_t new_count = os_atomic_inc(&sched_run_buckets[TH_BUCKET_RUN], relaxed); |
| 799 | |
| 800 | sched_incr_bucket(bucket: thread->th_sched_bucket); |
| 801 | |
| 802 | return new_count; |
| 803 | } |
| 804 | |
| 805 | uint32_t |
| 806 | sched_run_decr(thread_t thread) |
| 807 | { |
| 808 | assert((thread->state & (TH_RUN | TH_IDLE)) != TH_RUN); |
| 809 | |
| 810 | sched_decr_bucket(bucket: thread->th_sched_bucket); |
| 811 | |
| 812 | uint32_t new_count = os_atomic_dec(&sched_run_buckets[TH_BUCKET_RUN], relaxed); |
| 813 | |
| 814 | return new_count; |
| 815 | } |
| 816 | |
| 817 | uint32_t |
| 818 | sched_smt_run_incr(thread_t thread) |
| 819 | { |
| 820 | assert((thread->state & (TH_RUN | TH_IDLE)) == TH_RUN); |
| 821 | |
| 822 | uint8_t run_weight = (thread_no_smt(thread) && smt_timeshare_enabled) ? 2 : 1; |
| 823 | thread->sched_saved_run_weight = run_weight; |
| 824 | |
| 825 | uint32_t new_count = os_atomic_add(&sched_run_buckets[TH_BUCKET_RUN], run_weight, relaxed); |
| 826 | |
| 827 | sched_add_bucket(bucket: thread->th_sched_bucket, run_weight); |
| 828 | |
| 829 | return new_count; |
| 830 | } |
| 831 | |
| 832 | uint32_t |
| 833 | sched_smt_run_decr(thread_t thread) |
| 834 | { |
| 835 | assert((thread->state & (TH_RUN | TH_IDLE)) != TH_RUN); |
| 836 | |
| 837 | uint8_t run_weight = thread->sched_saved_run_weight; |
| 838 | |
| 839 | sched_sub_bucket(bucket: thread->th_sched_bucket, run_weight); |
| 840 | |
| 841 | uint32_t new_count = os_atomic_sub(&sched_run_buckets[TH_BUCKET_RUN], run_weight, relaxed); |
| 842 | |
| 843 | return new_count; |
| 844 | } |
| 845 | |
| 846 | void |
| 847 | sched_update_thread_bucket(thread_t thread) |
| 848 | { |
| 849 | sched_bucket_t old_bucket = thread->th_sched_bucket; |
| 850 | sched_bucket_t new_bucket = TH_BUCKET_RUN; |
| 851 | |
| 852 | switch (thread->sched_mode) { |
| 853 | case TH_MODE_FIXED: |
| 854 | case TH_MODE_REALTIME: |
| 855 | new_bucket = TH_BUCKET_FIXPRI; |
| 856 | break; |
| 857 | |
| 858 | case TH_MODE_TIMESHARE: |
| 859 | if (thread->base_pri > BASEPRI_DEFAULT) { |
| 860 | new_bucket = TH_BUCKET_SHARE_FG; |
| 861 | } else if (thread->base_pri > BASEPRI_UTILITY) { |
| 862 | new_bucket = TH_BUCKET_SHARE_DF; |
| 863 | } else if (thread->base_pri > MAXPRI_THROTTLE) { |
| 864 | new_bucket = TH_BUCKET_SHARE_UT; |
| 865 | } else { |
| 866 | new_bucket = TH_BUCKET_SHARE_BG; |
| 867 | } |
| 868 | break; |
| 869 | |
| 870 | default: |
| 871 | panic("unexpected mode: %d" , thread->sched_mode); |
| 872 | break; |
| 873 | } |
| 874 | |
| 875 | if (old_bucket != new_bucket) { |
| 876 | thread->th_sched_bucket = new_bucket; |
| 877 | thread->pri_shift = sched_pri_shifts[new_bucket]; |
| 878 | |
| 879 | if ((thread->state & (TH_RUN | TH_IDLE)) == TH_RUN) { |
| 880 | sched_decr_bucket(bucket: old_bucket); |
| 881 | sched_incr_bucket(bucket: new_bucket); |
| 882 | } |
| 883 | } |
| 884 | } |
| 885 | |
| 886 | void |
| 887 | sched_smt_update_thread_bucket(thread_t thread) |
| 888 | { |
| 889 | sched_bucket_t old_bucket = thread->th_sched_bucket; |
| 890 | sched_bucket_t new_bucket = TH_BUCKET_RUN; |
| 891 | |
| 892 | switch (thread->sched_mode) { |
| 893 | case TH_MODE_FIXED: |
| 894 | case TH_MODE_REALTIME: |
| 895 | new_bucket = TH_BUCKET_FIXPRI; |
| 896 | break; |
| 897 | |
| 898 | case TH_MODE_TIMESHARE: |
| 899 | if (thread->base_pri > BASEPRI_DEFAULT) { |
| 900 | new_bucket = TH_BUCKET_SHARE_FG; |
| 901 | } else if (thread->base_pri > BASEPRI_UTILITY) { |
| 902 | new_bucket = TH_BUCKET_SHARE_DF; |
| 903 | } else if (thread->base_pri > MAXPRI_THROTTLE) { |
| 904 | new_bucket = TH_BUCKET_SHARE_UT; |
| 905 | } else { |
| 906 | new_bucket = TH_BUCKET_SHARE_BG; |
| 907 | } |
| 908 | break; |
| 909 | |
| 910 | default: |
| 911 | panic("unexpected mode: %d" , thread->sched_mode); |
| 912 | break; |
| 913 | } |
| 914 | |
| 915 | if (old_bucket != new_bucket) { |
| 916 | thread->th_sched_bucket = new_bucket; |
| 917 | thread->pri_shift = sched_pri_shifts[new_bucket]; |
| 918 | |
| 919 | if ((thread->state & (TH_RUN | TH_IDLE)) == TH_RUN) { |
| 920 | sched_sub_bucket(bucket: old_bucket, run_weight: thread->sched_saved_run_weight); |
| 921 | sched_add_bucket(bucket: new_bucket, run_weight: thread->sched_saved_run_weight); |
| 922 | } |
| 923 | } |
| 924 | } |
| 925 | |
| 926 | static inline void |
| 927 | sched_validate_mode(sched_mode_t mode) |
| 928 | { |
| 929 | switch (mode) { |
| 930 | case TH_MODE_FIXED: |
| 931 | case TH_MODE_REALTIME: |
| 932 | case TH_MODE_TIMESHARE: |
| 933 | break; |
| 934 | |
| 935 | default: |
| 936 | panic("unexpected mode: %d" , mode); |
| 937 | break; |
| 938 | } |
| 939 | } |
| 940 | |
| 941 | /* |
| 942 | * Set the thread's true scheduling mode |
| 943 | * Called with thread mutex and thread locked |
| 944 | * The thread has already been removed from the runqueue. |
| 945 | * |
| 946 | * (saved_mode is handled before this point) |
| 947 | */ |
| 948 | void |
| 949 | sched_set_thread_mode(thread_t thread, sched_mode_t new_mode) |
| 950 | { |
| 951 | thread_assert_runq_null(thread); |
| 952 | |
| 953 | sched_validate_mode(mode: new_mode); |
| 954 | |
| 955 | #if CONFIG_SCHED_AUTO_JOIN |
| 956 | /* |
| 957 | * Realtime threads might have auto-joined a work interval based on |
| 958 | * make runnable relationships. If such an RT thread is now being demoted |
| 959 | * to non-RT, unjoin the thread from the work interval. |
| 960 | */ |
| 961 | if ((thread->sched_flags & TH_SFLAG_THREAD_GROUP_AUTO_JOIN) && (new_mode != TH_MODE_REALTIME)) { |
| 962 | assert((thread->sched_mode == TH_MODE_REALTIME) || (thread->th_work_interval_flags & TH_WORK_INTERVAL_FLAGS_AUTO_JOIN_LEAK)); |
| 963 | work_interval_auto_join_demote(thread); |
| 964 | } |
| 965 | #endif /* CONFIG_SCHED_AUTO_JOIN */ |
| 966 | |
| 967 | thread->sched_mode = new_mode; |
| 968 | |
| 969 | SCHED(update_thread_bucket)(thread); |
| 970 | } |
| 971 | |
| 972 | /* |
| 973 | * TODO: Instead of having saved mode, have 'user mode' and 'true mode'. |
| 974 | * That way there's zero confusion over which the user wants |
| 975 | * and which the kernel wants. |
| 976 | */ |
| 977 | void |
| 978 | sched_set_thread_mode_user(thread_t thread, sched_mode_t new_mode) |
| 979 | { |
| 980 | thread_assert_runq_null(thread); |
| 981 | |
| 982 | sched_validate_mode(mode: new_mode); |
| 983 | |
| 984 | /* If demoted, only modify the saved mode. */ |
| 985 | if (thread->sched_flags & TH_SFLAG_DEMOTED_MASK) { |
| 986 | thread->saved_mode = new_mode; |
| 987 | } else { |
| 988 | sched_set_thread_mode(thread, new_mode); |
| 989 | } |
| 990 | } |
| 991 | |
| 992 | sched_mode_t |
| 993 | sched_get_thread_mode_user(thread_t thread) |
| 994 | { |
| 995 | if (thread->sched_flags & TH_SFLAG_DEMOTED_MASK) { |
| 996 | return thread->saved_mode; |
| 997 | } else { |
| 998 | return thread->sched_mode; |
| 999 | } |
| 1000 | } |
| 1001 | |
| 1002 | /* |
| 1003 | * Demote the true scheduler mode to timeshare (called with the thread locked) |
| 1004 | */ |
| 1005 | void |
| 1006 | sched_thread_mode_demote(thread_t thread, uint32_t reason) |
| 1007 | { |
| 1008 | assert(reason & TH_SFLAG_DEMOTED_MASK); |
| 1009 | assert((thread->sched_flags & reason) != reason); |
| 1010 | |
| 1011 | if (thread->policy_reset) { |
| 1012 | return; |
| 1013 | } |
| 1014 | |
| 1015 | switch (reason) { |
| 1016 | case TH_SFLAG_THROTTLED: |
| 1017 | KDBG(MACHDBG_CODE(DBG_MACH_SCHED, MACH_MODE_DEMOTE_THROTTLED), |
| 1018 | thread_tid(thread), thread->sched_flags); |
| 1019 | break; |
| 1020 | case TH_SFLAG_FAILSAFE: |
| 1021 | KDBG(MACHDBG_CODE(DBG_MACH_SCHED, MACH_MODE_DEMOTE_FAILSAFE), |
| 1022 | thread_tid(thread), thread->sched_flags); |
| 1023 | break; |
| 1024 | case TH_SFLAG_RT_DISALLOWED: |
| 1025 | KDBG(MACHDBG_CODE(DBG_MACH_SCHED, MACH_MODE_DEMOTE_RT_DISALLOWED), |
| 1026 | thread_tid(thread), thread->sched_flags); |
| 1027 | break; |
| 1028 | } |
| 1029 | |
| 1030 | if (thread->sched_flags & TH_SFLAG_DEMOTED_MASK) { |
| 1031 | /* Another demotion reason is already active */ |
| 1032 | thread->sched_flags |= reason; |
| 1033 | return; |
| 1034 | } |
| 1035 | |
| 1036 | assert(thread->saved_mode == TH_MODE_NONE); |
| 1037 | |
| 1038 | boolean_t removed = thread_run_queue_remove(thread); |
| 1039 | |
| 1040 | thread->sched_flags |= reason; |
| 1041 | |
| 1042 | thread->saved_mode = thread->sched_mode; |
| 1043 | |
| 1044 | sched_set_thread_mode(thread, new_mode: TH_MODE_TIMESHARE); |
| 1045 | |
| 1046 | thread_recompute_priority(thread); |
| 1047 | |
| 1048 | if (removed) { |
| 1049 | thread_run_queue_reinsert(thread, options: SCHED_TAILQ); |
| 1050 | } |
| 1051 | } |
| 1052 | |
| 1053 | /* |
| 1054 | * Return true if the thread is demoted for the specified reason |
| 1055 | */ |
| 1056 | bool |
| 1057 | sched_thread_mode_has_demotion(thread_t thread, uint32_t reason) |
| 1058 | { |
| 1059 | assert(reason & TH_SFLAG_DEMOTED_MASK); |
| 1060 | return (thread->sched_flags & reason) != 0; |
| 1061 | } |
| 1062 | |
| 1063 | /* |
| 1064 | * Un-demote the true scheduler mode back to the saved mode (called with the thread locked) |
| 1065 | */ |
| 1066 | void |
| 1067 | sched_thread_mode_undemote(thread_t thread, uint32_t reason) |
| 1068 | { |
| 1069 | assert(reason & TH_SFLAG_DEMOTED_MASK); |
| 1070 | assert((thread->sched_flags & reason) == reason); |
| 1071 | assert(thread->saved_mode != TH_MODE_NONE); |
| 1072 | assert(thread->sched_mode == TH_MODE_TIMESHARE); |
| 1073 | assert(thread->policy_reset == 0); |
| 1074 | |
| 1075 | switch (reason) { |
| 1076 | case TH_SFLAG_THROTTLED: |
| 1077 | KDBG(MACHDBG_CODE(DBG_MACH_SCHED, MACH_MODE_UNDEMOTE_THROTTLED), |
| 1078 | thread_tid(thread), thread->sched_flags); |
| 1079 | break; |
| 1080 | case TH_SFLAG_FAILSAFE: |
| 1081 | KDBG(MACHDBG_CODE(DBG_MACH_SCHED, MACH_MODE_UNDEMOTE_FAILSAFE), |
| 1082 | thread_tid(thread), thread->sched_flags); |
| 1083 | break; |
| 1084 | case TH_SFLAG_RT_DISALLOWED: |
| 1085 | KDBG(MACHDBG_CODE(DBG_MACH_SCHED, MACH_MODE_UNDEMOTE_RT_DISALLOWED), |
| 1086 | thread_tid(thread), thread->sched_flags); |
| 1087 | break; |
| 1088 | } |
| 1089 | |
| 1090 | thread->sched_flags &= ~reason; |
| 1091 | |
| 1092 | if (thread->sched_flags & TH_SFLAG_DEMOTED_MASK) { |
| 1093 | /* Another demotion reason is still active */ |
| 1094 | return; |
| 1095 | } |
| 1096 | |
| 1097 | boolean_t removed = thread_run_queue_remove(thread); |
| 1098 | |
| 1099 | sched_set_thread_mode(thread, new_mode: thread->saved_mode); |
| 1100 | |
| 1101 | thread->saved_mode = TH_MODE_NONE; |
| 1102 | |
| 1103 | thread_recompute_priority(thread); |
| 1104 | |
| 1105 | if (removed) { |
| 1106 | thread_run_queue_reinsert(thread, options: SCHED_TAILQ); |
| 1107 | } |
| 1108 | } |
| 1109 | |
| 1110 | /* |
| 1111 | * Promote thread to have a sched pri floor for a specific reason |
| 1112 | * |
| 1113 | * Promotion must not last past syscall boundary |
| 1114 | * Clients must always pair promote and demote 1:1, |
| 1115 | * Handling nesting of the same promote reason is the client's responsibility |
| 1116 | * |
| 1117 | * Called at splsched with thread locked |
| 1118 | */ |
| 1119 | void |
| 1120 | sched_thread_promote_reason(thread_t thread, |
| 1121 | uint32_t reason, |
| 1122 | __kdebug_only uintptr_t trace_obj /* already unslid */) |
| 1123 | { |
| 1124 | assert(reason & TH_SFLAG_PROMOTE_REASON_MASK); |
| 1125 | assert((thread->sched_flags & reason) != reason); |
| 1126 | |
| 1127 | switch (reason) { |
| 1128 | case TH_SFLAG_RW_PROMOTED: |
| 1129 | KDBG(MACHDBG_CODE(DBG_MACH_SCHED, MACH_RW_PROMOTE), |
| 1130 | thread_tid(thread), thread->sched_pri, |
| 1131 | thread->base_pri, trace_obj); |
| 1132 | break; |
| 1133 | case TH_SFLAG_WAITQ_PROMOTED: |
| 1134 | KDBG(MACHDBG_CODE(DBG_MACH_SCHED, MACH_WAITQ_PROMOTE), |
| 1135 | thread_tid(thread), thread->sched_pri, |
| 1136 | thread->base_pri, trace_obj); |
| 1137 | break; |
| 1138 | case TH_SFLAG_EXEC_PROMOTED: |
| 1139 | KDBG(MACHDBG_CODE(DBG_MACH_SCHED, MACH_EXEC_PROMOTE), |
| 1140 | thread_tid(thread), thread->sched_pri, |
| 1141 | thread->base_pri, trace_obj); |
| 1142 | break; |
| 1143 | case TH_SFLAG_FLOOR_PROMOTED: |
| 1144 | KDBG(MACHDBG_CODE(DBG_MACH_SCHED, MACH_FLOOR_PROMOTE), |
| 1145 | thread_tid(thread), thread->sched_pri, |
| 1146 | thread->base_pri, trace_obj); |
| 1147 | break; |
| 1148 | } |
| 1149 | |
| 1150 | thread->sched_flags |= reason; |
| 1151 | thread_recompute_sched_pri(thread, options: SETPRI_DEFAULT); |
| 1152 | } |
| 1153 | |
| 1154 | /* |
| 1155 | * End a specific promotion reason |
| 1156 | * Demotes a thread back to its expected priority without the promotion in place |
| 1157 | * |
| 1158 | * Called at splsched with thread locked |
| 1159 | */ |
| 1160 | void |
| 1161 | sched_thread_unpromote_reason(thread_t thread, |
| 1162 | uint32_t reason, |
| 1163 | __kdebug_only uintptr_t trace_obj /* already unslid */) |
| 1164 | { |
| 1165 | assert(reason & TH_SFLAG_PROMOTE_REASON_MASK); |
| 1166 | assert((thread->sched_flags & reason) == reason); |
| 1167 | |
| 1168 | switch (reason) { |
| 1169 | case TH_SFLAG_RW_PROMOTED: |
| 1170 | KDBG(MACHDBG_CODE(DBG_MACH_SCHED, MACH_RW_DEMOTE), |
| 1171 | thread_tid(thread), thread->sched_pri, |
| 1172 | thread->base_pri, trace_obj); |
| 1173 | break; |
| 1174 | case TH_SFLAG_WAITQ_PROMOTED: |
| 1175 | KDBG(MACHDBG_CODE(DBG_MACH_SCHED, MACH_WAITQ_DEMOTE), |
| 1176 | thread_tid(thread), thread->sched_pri, |
| 1177 | thread->base_pri, trace_obj); |
| 1178 | break; |
| 1179 | case TH_SFLAG_EXEC_PROMOTED: |
| 1180 | KDBG(MACHDBG_CODE(DBG_MACH_SCHED, MACH_EXEC_DEMOTE), |
| 1181 | thread_tid(thread), thread->sched_pri, |
| 1182 | thread->base_pri, trace_obj); |
| 1183 | break; |
| 1184 | case TH_SFLAG_FLOOR_PROMOTED: |
| 1185 | KDBG(MACHDBG_CODE(DBG_MACH_SCHED, MACH_FLOOR_DEMOTE), |
| 1186 | thread_tid(thread), thread->sched_pri, |
| 1187 | thread->base_pri, trace_obj); |
| 1188 | break; |
| 1189 | } |
| 1190 | |
| 1191 | thread->sched_flags &= ~reason; |
| 1192 | |
| 1193 | thread_recompute_sched_pri(thread, options: SETPRI_DEFAULT); |
| 1194 | } |
| 1195 | |