| 1 | /* |
| 2 | * Copyright (c) 2000-2019 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
| 5 | * |
| 6 | * This file contains Original Code and/or Modifications of Original Code |
| 7 | * as defined in and that are subject to the Apple Public Source License |
| 8 | * Version 2.0 (the 'License'). You may not use this file except in |
| 9 | * compliance with the License. The rights granted to you under the License |
| 10 | * may not be used to create, or enable the creation or redistribution of, |
| 11 | * unlawful or unlicensed copies of an Apple operating system, or to |
| 12 | * circumvent, violate, or enable the circumvention or violation of, any |
| 13 | * terms of an Apple operating system software license agreement. |
| 14 | * |
| 15 | * Please obtain a copy of the License at |
| 16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
| 17 | * |
| 18 | * The Original Code and all software distributed under the License are |
| 19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| 23 | * Please see the License for the specific language governing rights and |
| 24 | * limitations under the License. |
| 25 | * |
| 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
| 27 | */ |
| 28 | /* |
| 29 | * @OSF_COPYRIGHT@ |
| 30 | */ |
| 31 | /* |
| 32 | * Mach Operating System |
| 33 | * Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University |
| 34 | * All Rights Reserved. |
| 35 | * |
| 36 | * Permission to use, copy, modify and distribute this software and its |
| 37 | * documentation is hereby granted, provided that both the copyright |
| 38 | * notice and this permission notice appear in all copies of the |
| 39 | * software, derivative works or modified versions, and any portions |
| 40 | * thereof, and that both notices appear in supporting documentation. |
| 41 | * |
| 42 | * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" |
| 43 | * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR |
| 44 | * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. |
| 45 | * |
| 46 | * Carnegie Mellon requests users of this software to return to |
| 47 | * |
| 48 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU |
| 49 | * School of Computer Science |
| 50 | * Carnegie Mellon University |
| 51 | * Pittsburgh PA 15213-3890 |
| 52 | * |
| 53 | * any improvements or extensions that they make and grant Carnegie Mellon |
| 54 | * the rights to redistribute these changes. |
| 55 | */ |
| 56 | |
| 57 | #define LOCK_PRIVATE 1 |
| 58 | |
| 59 | #include <mach_ldebug.h> |
| 60 | #include <debug.h> |
| 61 | |
| 62 | #include <mach/kern_return.h> |
| 63 | |
| 64 | #include <kern/locks_internal.h> |
| 65 | #include <kern/lock_stat.h> |
| 66 | #include <kern/locks.h> |
| 67 | #include <kern/misc_protos.h> |
| 68 | #include <kern/zalloc.h> |
| 69 | #include <kern/thread.h> |
| 70 | #include <kern/processor.h> |
| 71 | #include <kern/sched_prim.h> |
| 72 | #include <kern/debug.h> |
| 73 | #include <libkern/section_keywords.h> |
| 74 | #if defined(__x86_64__) |
| 75 | #include <i386/tsc.h> |
| 76 | #include <i386/machine_routines.h> |
| 77 | #endif |
| 78 | #include <machine/atomic.h> |
| 79 | #include <machine/machine_cpu.h> |
| 80 | #include <string.h> |
| 81 | #include <vm/pmap.h> |
| 82 | |
| 83 | #include <sys/kdebug.h> |
| 84 | |
| 85 | #define LCK_MTX_SLEEP_CODE 0 |
| 86 | #define LCK_MTX_SLEEP_DEADLINE_CODE 1 |
| 87 | #define LCK_MTX_LCK_WAIT_CODE 2 |
| 88 | #define LCK_MTX_UNLCK_WAKEUP_CODE 3 |
| 89 | |
| 90 | // Panic in tests that check lock usage correctness |
| 91 | // These are undesirable when in a panic or a debugger is runnning. |
| 92 | #define LOCK_CORRECTNESS_PANIC() (kernel_debugger_entry_count == 0) |
| 93 | |
| 94 | #if MACH_LDEBUG |
| 95 | #define ALIGN_TEST(p, t) do{if((uintptr_t)p&(sizeof(t)-1)) __builtin_trap();}while(0) |
| 96 | #else |
| 97 | #define ALIGN_TEST(p, t) do{}while(0) |
| 98 | #endif |
| 99 | |
| 100 | #define NOINLINE __attribute__((noinline)) |
| 101 | |
| 102 | #define ordered_load_hw(lock) os_atomic_load(&(lock)->lock_data, compiler_acq_rel) |
| 103 | #define ordered_store_hw(lock, value) os_atomic_store(&(lock)->lock_data, (value), compiler_acq_rel) |
| 104 | |
| 105 | KALLOC_TYPE_DEFINE(KT_GATE, gate_t, KT_PRIV_ACCT); |
| 106 | |
| 107 | struct lck_spinlock_to_info PERCPU_DATA(lck_spinlock_to_info); |
| 108 | volatile lck_spinlock_to_info_t lck_spinlock_timeout_in_progress; |
| 109 | |
| 110 | SECURITY_READ_ONLY_LATE(boolean_t) spinlock_timeout_panic = TRUE; |
| 111 | |
| 112 | struct lck_tktlock_pv_info PERCPU_DATA(lck_tktlock_pv_info); |
| 113 | |
| 114 | #if CONFIG_PV_TICKET |
| 115 | SECURITY_READ_ONLY_LATE(bool) has_lock_pv = FALSE; /* used by waitq.py */ |
| 116 | #endif |
| 117 | |
| 118 | #if DEBUG |
| 119 | TUNABLE(uint32_t, LcksOpts, "lcks" , LCK_OPTION_ENABLE_DEBUG); |
| 120 | #else |
| 121 | TUNABLE(uint32_t, LcksOpts, "lcks" , 0); |
| 122 | #endif |
| 123 | |
| 124 | #if CONFIG_DTRACE |
| 125 | #if defined (__x86_64__) |
| 126 | machine_timeout_t dtrace_spin_threshold = 500; // 500ns |
| 127 | #elif defined(__arm64__) |
| 128 | MACHINE_TIMEOUT(dtrace_spin_threshold, "dtrace-spin-threshold" , |
| 129 | 0xC /* 12 ticks == 500ns with 24MHz OSC */, MACHINE_TIMEOUT_UNIT_TIMEBASE, NULL); |
| 130 | #endif |
| 131 | #endif |
| 132 | |
| 133 | struct lck_mcs PERCPU_DATA(lck_mcs); |
| 134 | |
| 135 | __kdebug_only |
| 136 | uintptr_t |
| 137 | unslide_for_kdebug(const void* object) |
| 138 | { |
| 139 | if (__improbable(kdebug_enable)) { |
| 140 | return VM_KERNEL_UNSLIDE_OR_PERM(object); |
| 141 | } else { |
| 142 | return 0; |
| 143 | } |
| 144 | } |
| 145 | |
| 146 | static __abortlike void |
| 147 | __lck_require_preemption_disabled_panic(void *lock) |
| 148 | { |
| 149 | panic("Attempt to take no-preempt lock %p in preemptible context" , lock); |
| 150 | } |
| 151 | |
| 152 | static inline void |
| 153 | __lck_require_preemption_disabled(void *lock, thread_t self __unused) |
| 154 | { |
| 155 | if (__improbable(!lock_preemption_disabled_for_thread(self))) { |
| 156 | __lck_require_preemption_disabled_panic(lock); |
| 157 | } |
| 158 | } |
| 159 | |
| 160 | #pragma mark - HW Spin policies |
| 161 | |
| 162 | /* |
| 163 | * Input and output timeouts are expressed in absolute_time for arm and TSC for Intel |
| 164 | */ |
| 165 | __attribute__((always_inline)) |
| 166 | hw_spin_timeout_t |
| 167 | hw_spin_compute_timeout(hw_spin_policy_t pol) |
| 168 | { |
| 169 | hw_spin_timeout_t ret = { |
| 170 | .hwst_timeout = os_atomic_load(pol->hwsp_timeout, relaxed), |
| 171 | }; |
| 172 | |
| 173 | ret.hwst_timeout <<= pol->hwsp_timeout_shift; |
| 174 | #if SCHED_HYGIENE_DEBUG |
| 175 | ret.hwst_in_ppl = pmap_in_ppl(); |
| 176 | /* Note we can't check if we are interruptible if in ppl */ |
| 177 | ret.hwst_interruptible = !ret.hwst_in_ppl && ml_get_interrupts_enabled(); |
| 178 | #endif /* SCHED_HYGIENE_DEBUG */ |
| 179 | |
| 180 | #if SCHED_HYGIENE_DEBUG |
| 181 | #ifndef KASAN |
| 182 | if (ret.hwst_timeout > 0 && |
| 183 | !ret.hwst_in_ppl && |
| 184 | !ret.hwst_interruptible && |
| 185 | interrupt_masked_debug_mode == SCHED_HYGIENE_MODE_PANIC) { |
| 186 | uint64_t int_timeout = os_atomic_load(&interrupt_masked_timeout, relaxed); |
| 187 | |
| 188 | #if defined(__x86_64__) |
| 189 | int_timeout = tmrCvt(int_timeout, tscFCvtn2t); |
| 190 | #endif |
| 191 | if (int_timeout < ret.hwst_timeout) { |
| 192 | ret.hwst_timeout = int_timeout; |
| 193 | } |
| 194 | } |
| 195 | #endif /* !KASAN */ |
| 196 | #endif /* SCHED_HYGIENE_DEBUG */ |
| 197 | |
| 198 | return ret; |
| 199 | } |
| 200 | |
| 201 | __attribute__((always_inline)) |
| 202 | bool |
| 203 | hw_spin_in_ppl(hw_spin_timeout_t to) |
| 204 | { |
| 205 | #if SCHED_HYGIENE_DEBUG |
| 206 | return to.hwst_in_ppl; |
| 207 | #else |
| 208 | (void)to; |
| 209 | return pmap_in_ppl(); |
| 210 | #endif |
| 211 | } |
| 212 | |
| 213 | bool |
| 214 | hw_spin_should_keep_spinning( |
| 215 | void *lock, |
| 216 | hw_spin_policy_t pol, |
| 217 | hw_spin_timeout_t to, |
| 218 | hw_spin_state_t *state) |
| 219 | { |
| 220 | hw_spin_timeout_status_t rc; |
| 221 | #if SCHED_HYGIENE_DEBUG |
| 222 | uint64_t irq_time = 0; |
| 223 | #endif |
| 224 | uint64_t now; |
| 225 | |
| 226 | if (__improbable(to.hwst_timeout == 0)) { |
| 227 | return true; |
| 228 | } |
| 229 | |
| 230 | now = ml_get_timebase(); |
| 231 | if (__probable(now < state->hwss_deadline)) { |
| 232 | /* keep spinning */ |
| 233 | return true; |
| 234 | } |
| 235 | |
| 236 | #if SCHED_HYGIENE_DEBUG |
| 237 | if (to.hwst_interruptible) { |
| 238 | irq_time = current_thread()->machine.int_time_mt; |
| 239 | } |
| 240 | #endif /* SCHED_HYGIENE_DEBUG */ |
| 241 | |
| 242 | if (__probable(state->hwss_deadline == 0)) { |
| 243 | state->hwss_start = now; |
| 244 | state->hwss_deadline = now + to.hwst_timeout; |
| 245 | #if SCHED_HYGIENE_DEBUG |
| 246 | state->hwss_irq_start = irq_time; |
| 247 | #endif |
| 248 | return true; |
| 249 | } |
| 250 | |
| 251 | /* |
| 252 | * Update fields that the callback needs |
| 253 | */ |
| 254 | state->hwss_now = now; |
| 255 | #if SCHED_HYGIENE_DEBUG |
| 256 | state->hwss_irq_end = irq_time; |
| 257 | #endif /* SCHED_HYGIENE_DEBUG */ |
| 258 | |
| 259 | rc = pol->hwsp_op_timeout((char *)lock - pol->hwsp_lock_offset, |
| 260 | to, *state); |
| 261 | if (rc == HW_LOCK_TIMEOUT_CONTINUE) { |
| 262 | /* push the deadline */ |
| 263 | state->hwss_deadline += to.hwst_timeout; |
| 264 | } |
| 265 | return rc == HW_LOCK_TIMEOUT_CONTINUE; |
| 266 | } |
| 267 | |
| 268 | __attribute__((always_inline)) |
| 269 | void |
| 270 | lck_spinlock_timeout_set_orig_owner(uintptr_t owner) |
| 271 | { |
| 272 | #if DEBUG || DEVELOPMENT |
| 273 | PERCPU_GET(lck_spinlock_to_info)->owner_thread_orig = owner & ~0x7ul; |
| 274 | #else |
| 275 | (void)owner; |
| 276 | #endif |
| 277 | } |
| 278 | |
| 279 | __attribute__((always_inline)) |
| 280 | void |
| 281 | lck_spinlock_timeout_set_orig_ctid(uint32_t ctid) |
| 282 | { |
| 283 | #if DEBUG || DEVELOPMENT |
| 284 | PERCPU_GET(lck_spinlock_to_info)->owner_thread_orig = |
| 285 | (uintptr_t)ctid_get_thread_unsafe(ctid); |
| 286 | #else |
| 287 | (void)ctid; |
| 288 | #endif |
| 289 | } |
| 290 | |
| 291 | lck_spinlock_to_info_t |
| 292 | lck_spinlock_timeout_hit(void *lck, uintptr_t owner) |
| 293 | { |
| 294 | lck_spinlock_to_info_t lsti = PERCPU_GET(lck_spinlock_to_info); |
| 295 | |
| 296 | if (owner < (1u << CTID_SIZE_BIT)) { |
| 297 | owner = (uintptr_t)ctid_get_thread_unsafe(ctid: (uint32_t)owner); |
| 298 | } else { |
| 299 | /* strip possible bits used by the lock implementations */ |
| 300 | owner &= ~0x7ul; |
| 301 | } |
| 302 | |
| 303 | lsti->lock = lck; |
| 304 | lsti->owner_thread_cur = owner; |
| 305 | lsti->owner_cpu = ~0u; |
| 306 | os_atomic_store(&lck_spinlock_timeout_in_progress, lsti, release); |
| 307 | |
| 308 | if (owner == 0) { |
| 309 | /* if the owner isn't known, just bail */ |
| 310 | goto out; |
| 311 | } |
| 312 | |
| 313 | for (uint32_t i = 0; i <= ml_early_cpu_max_number(); i++) { |
| 314 | cpu_data_t *data = cpu_datap(cpu: i); |
| 315 | if (data && (uintptr_t)data->cpu_active_thread == owner) { |
| 316 | lsti->owner_cpu = i; |
| 317 | os_atomic_store(&lck_spinlock_timeout_in_progress, lsti, release); |
| 318 | #if __x86_64__ |
| 319 | if ((uint32_t)cpu_number() != i) { |
| 320 | /* Cause NMI and panic on the owner's cpu */ |
| 321 | NMIPI_panic(cpu_to_cpumask(i), SPINLOCK_TIMEOUT); |
| 322 | } |
| 323 | #endif |
| 324 | break; |
| 325 | } |
| 326 | } |
| 327 | |
| 328 | out: |
| 329 | return lsti; |
| 330 | } |
| 331 | |
| 332 | #pragma mark - HW locks |
| 333 | |
| 334 | /* |
| 335 | * Routine: hw_lock_init |
| 336 | * |
| 337 | * Initialize a hardware lock. |
| 338 | */ |
| 339 | MARK_AS_HIBERNATE_TEXT void |
| 340 | hw_lock_init(hw_lock_t lock) |
| 341 | { |
| 342 | ordered_store_hw(lock, 0); |
| 343 | } |
| 344 | |
| 345 | __result_use_check |
| 346 | static inline bool |
| 347 | hw_lock_trylock_contended(hw_lock_t lock, uintptr_t newval) |
| 348 | { |
| 349 | #if OS_ATOMIC_USE_LLSC |
| 350 | uintptr_t oldval; |
| 351 | os_atomic_rmw_loop(&lock->lock_data, oldval, newval, acquire, { |
| 352 | if (oldval != 0) { |
| 353 | wait_for_event(); // clears the monitor so we don't need give_up() |
| 354 | return false; |
| 355 | } |
| 356 | }); |
| 357 | return true; |
| 358 | #else // !OS_ATOMIC_USE_LLSC |
| 359 | #if OS_ATOMIC_HAS_LLSC |
| 360 | uintptr_t oldval = os_atomic_load_exclusive(&lock->lock_data, relaxed); |
| 361 | if (oldval != 0) { |
| 362 | wait_for_event(); // clears the monitor so we don't need give_up() |
| 363 | return false; |
| 364 | } |
| 365 | #endif |
| 366 | return lock_cmpxchg(&lock->lock_data, 0, newval, acquire); |
| 367 | #endif // !OS_ATOMIC_USE_LLSC |
| 368 | } |
| 369 | |
| 370 | __result_use_check |
| 371 | static inline bool |
| 372 | hw_lock_trylock_bit(uint32_t *target, unsigned int bit, bool wait) |
| 373 | { |
| 374 | uint32_t mask = 1u << bit; |
| 375 | |
| 376 | #if OS_ATOMIC_USE_LLSC || !OS_ATOMIC_HAS_LLSC |
| 377 | uint32_t oldval, newval; |
| 378 | os_atomic_rmw_loop(target, oldval, newval, acquire, { |
| 379 | newval = oldval | mask; |
| 380 | if (__improbable(oldval & mask)) { |
| 381 | #if OS_ATOMIC_HAS_LLSC |
| 382 | if (wait) { |
| 383 | wait_for_event(); // clears the monitor so we don't need give_up() |
| 384 | } else { |
| 385 | os_atomic_clear_exclusive(); |
| 386 | } |
| 387 | #else |
| 388 | if (wait) { |
| 389 | cpu_pause(); |
| 390 | } |
| 391 | #endif |
| 392 | return false; |
| 393 | } |
| 394 | }); |
| 395 | return true; |
| 396 | #else |
| 397 | uint32_t oldval = os_atomic_load_exclusive(target, relaxed); |
| 398 | if (__improbable(oldval & mask)) { |
| 399 | if (wait) { |
| 400 | wait_for_event(); // clears the monitor so we don't need give_up() |
| 401 | } else { |
| 402 | os_atomic_clear_exclusive(); |
| 403 | } |
| 404 | return false; |
| 405 | } |
| 406 | return (os_atomic_or_orig(target, mask, acquire) & mask) == 0; |
| 407 | #endif // !OS_ATOMIC_USE_LLSC && OS_ATOMIC_HAS_LLSC |
| 408 | } |
| 409 | |
| 410 | static hw_spin_timeout_status_t |
| 411 | hw_spin_timeout_panic(void *_lock, hw_spin_timeout_t to, hw_spin_state_t st) |
| 412 | { |
| 413 | hw_lock_t lock = _lock; |
| 414 | uintptr_t owner = lock->lock_data & ~0x7ul; |
| 415 | lck_spinlock_to_info_t lsti; |
| 416 | |
| 417 | if (!spinlock_timeout_panic) { |
| 418 | /* keep spinning rather than panicing */ |
| 419 | return HW_LOCK_TIMEOUT_CONTINUE; |
| 420 | } |
| 421 | |
| 422 | if (pmap_in_ppl()) { |
| 423 | /* |
| 424 | * This code is used by the PPL and can't write to globals. |
| 425 | */ |
| 426 | panic("Spinlock[%p] " HW_SPIN_TIMEOUT_FMT "; " |
| 427 | "current owner: %p, " HW_SPIN_TIMEOUT_DETAILS_FMT, |
| 428 | lock, HW_SPIN_TIMEOUT_ARG(to, st), |
| 429 | (void *)owner, HW_SPIN_TIMEOUT_DETAILS_ARG(to, st)); |
| 430 | } |
| 431 | |
| 432 | // Capture the actual time spent blocked, which may be higher than the timeout |
| 433 | // if a misbehaving interrupt stole this thread's CPU time. |
| 434 | lsti = lck_spinlock_timeout_hit(lck: lock, owner); |
| 435 | panic("Spinlock[%p] " HW_SPIN_TIMEOUT_FMT "; " |
| 436 | "current owner: %p (on cpu %d), " |
| 437 | #if DEBUG || DEVELOPMENT |
| 438 | "initial owner: %p, " |
| 439 | #endif /* DEBUG || DEVELOPMENT */ |
| 440 | HW_SPIN_TIMEOUT_DETAILS_FMT, |
| 441 | lock, HW_SPIN_TIMEOUT_ARG(to, st), |
| 442 | (void *)lsti->owner_thread_cur, lsti->owner_cpu, |
| 443 | #if DEBUG || DEVELOPMENT |
| 444 | (void *)lsti->owner_thread_orig, |
| 445 | #endif /* DEBUG || DEVELOPMENT */ |
| 446 | HW_SPIN_TIMEOUT_DETAILS_ARG(to, st)); |
| 447 | } |
| 448 | |
| 449 | const struct hw_spin_policy hw_lock_spin_policy = { |
| 450 | .hwsp_name = "hw_lock_t" , |
| 451 | .hwsp_timeout_atomic = &lock_panic_timeout, |
| 452 | .hwsp_op_timeout = hw_spin_timeout_panic, |
| 453 | }; |
| 454 | |
| 455 | static hw_spin_timeout_status_t |
| 456 | hw_spin_always_return(void *_lock, hw_spin_timeout_t to, hw_spin_state_t st) |
| 457 | { |
| 458 | #pragma unused(_lock, to, st) |
| 459 | return HW_LOCK_TIMEOUT_RETURN; |
| 460 | } |
| 461 | |
| 462 | const struct hw_spin_policy hw_lock_spin_panic_policy = { |
| 463 | .hwsp_name = "hw_lock_t[panic]" , |
| 464 | #if defined(__x86_64__) |
| 465 | .hwsp_timeout = &LockTimeOutTSC, |
| 466 | #else |
| 467 | .hwsp_timeout_atomic = &LockTimeOut, |
| 468 | #endif |
| 469 | .hwsp_timeout_shift = 2, |
| 470 | .hwsp_op_timeout = hw_spin_always_return, |
| 471 | }; |
| 472 | |
| 473 | #if DEBUG || DEVELOPMENT |
| 474 | static machine_timeout_t hw_lock_test_to; |
| 475 | const struct hw_spin_policy hw_lock_test_give_up_policy = { |
| 476 | .hwsp_name = "testing policy" , |
| 477 | #if defined(__x86_64__) |
| 478 | .hwsp_timeout = &LockTimeOutTSC, |
| 479 | #else |
| 480 | .hwsp_timeout_atomic = &LockTimeOut, |
| 481 | #endif |
| 482 | .hwsp_timeout_shift = 2, |
| 483 | .hwsp_op_timeout = hw_spin_always_return, |
| 484 | }; |
| 485 | |
| 486 | __startup_func |
| 487 | static void |
| 488 | hw_lock_test_to_init(void) |
| 489 | { |
| 490 | uint64_t timeout; |
| 491 | |
| 492 | nanoseconds_to_absolutetime(100 * NSEC_PER_USEC, &timeout); |
| 493 | #if defined(__x86_64__) |
| 494 | timeout = tmrCvt(timeout, tscFCvtn2t); |
| 495 | #endif |
| 496 | os_atomic_init(&hw_lock_test_to, timeout); |
| 497 | } |
| 498 | STARTUP(TIMEOUTS, STARTUP_RANK_FIRST, hw_lock_test_to_init); |
| 499 | #endif |
| 500 | |
| 501 | static hw_spin_timeout_status_t |
| 502 | hw_lock_bit_timeout_panic(void *_lock, hw_spin_timeout_t to, hw_spin_state_t st) |
| 503 | { |
| 504 | hw_lock_bit_t *lock = _lock; |
| 505 | |
| 506 | if (!spinlock_timeout_panic) { |
| 507 | /* keep spinning rather than panicing */ |
| 508 | return HW_LOCK_TIMEOUT_CONTINUE; |
| 509 | } |
| 510 | |
| 511 | panic("Spinlock[%p] " HW_SPIN_TIMEOUT_FMT "; " |
| 512 | "current value: 0x%08x, " HW_SPIN_TIMEOUT_DETAILS_FMT, |
| 513 | lock, HW_SPIN_TIMEOUT_ARG(to, st), |
| 514 | *lock, HW_SPIN_TIMEOUT_DETAILS_ARG(to, st)); |
| 515 | } |
| 516 | |
| 517 | const struct hw_spin_policy hw_lock_bit_policy = { |
| 518 | .hwsp_name = "hw_lock_bit_t" , |
| 519 | .hwsp_timeout_atomic = &lock_panic_timeout, |
| 520 | .hwsp_op_timeout = hw_lock_bit_timeout_panic, |
| 521 | }; |
| 522 | |
| 523 | #if __arm64__ |
| 524 | const uint64_t hw_lock_bit_timeout_2s = 0x3000000; |
| 525 | const struct hw_spin_policy hw_lock_bit_policy_2s = { |
| 526 | .hwsp_name = "hw_lock_bit_t" , |
| 527 | .hwsp_timeout = &hw_lock_bit_timeout_2s, |
| 528 | .hwsp_op_timeout = hw_lock_bit_timeout_panic, |
| 529 | }; |
| 530 | #endif |
| 531 | |
| 532 | /* |
| 533 | * Routine: hw_lock_lock_contended |
| 534 | * |
| 535 | * Spin until lock is acquired or timeout expires. |
| 536 | * timeout is in mach_absolute_time ticks. Called with |
| 537 | * preemption disabled. |
| 538 | */ |
| 539 | static hw_lock_status_t NOINLINE |
| 540 | hw_lock_lock_contended( |
| 541 | hw_lock_t lock, |
| 542 | uintptr_t data, |
| 543 | hw_spin_policy_t pol |
| 544 | LCK_GRP_ARG(lck_grp_t *grp)) |
| 545 | { |
| 546 | hw_spin_timeout_t to = hw_spin_compute_timeout(pol); |
| 547 | hw_spin_state_t state = { }; |
| 548 | hw_lock_status_t rc = HW_LOCK_CONTENDED; |
| 549 | |
| 550 | if (HW_LOCK_STATE_TO_THREAD(lock->lock_data) == |
| 551 | HW_LOCK_STATE_TO_THREAD(data) && LOCK_CORRECTNESS_PANIC()) { |
| 552 | panic("hwlock: thread %p is trying to lock %p recursively" , |
| 553 | HW_LOCK_STATE_TO_THREAD(data), lock); |
| 554 | } |
| 555 | |
| 556 | #if CONFIG_DTRACE || LOCK_STATS |
| 557 | uint64_t begin = 0; |
| 558 | boolean_t stat_enabled = lck_grp_spin_spin_enabled(lock LCK_GRP_ARG(grp)); |
| 559 | |
| 560 | if (__improbable(stat_enabled)) { |
| 561 | begin = mach_absolute_time(); |
| 562 | } |
| 563 | #endif /* CONFIG_DTRACE || LOCK_STATS */ |
| 564 | |
| 565 | if (!hw_spin_in_ppl(to)) { |
| 566 | /* |
| 567 | * This code is used by the PPL and can't write to globals. |
| 568 | */ |
| 569 | lck_spinlock_timeout_set_orig_owner(owner: lock->lock_data); |
| 570 | } |
| 571 | |
| 572 | do { |
| 573 | for (uint32_t i = 0; i < LOCK_SNOOP_SPINS; i++) { |
| 574 | cpu_pause(); |
| 575 | if (hw_lock_trylock_contended(lock, newval: data)) { |
| 576 | lck_grp_spin_update_held(lock LCK_GRP_ARG(grp)); |
| 577 | rc = HW_LOCK_ACQUIRED; |
| 578 | goto end; |
| 579 | } |
| 580 | } |
| 581 | } while (hw_spin_should_keep_spinning(lock, pol, to, state: &state)); |
| 582 | |
| 583 | end: |
| 584 | #if CONFIG_DTRACE || LOCK_STATS |
| 585 | if (__improbable(stat_enabled)) { |
| 586 | lck_grp_spin_update_spin(lock LCK_GRP_ARG(grp), |
| 587 | time: mach_absolute_time() - begin); |
| 588 | } |
| 589 | lck_grp_spin_update_miss(lock LCK_GRP_ARG(grp)); |
| 590 | #endif /* CONFIG_DTRACE || LOCK_STATS */ |
| 591 | return rc; |
| 592 | } |
| 593 | |
| 594 | static hw_spin_timeout_status_t |
| 595 | hw_wait_while_equals32_panic(void *_lock, hw_spin_timeout_t to, hw_spin_state_t st) |
| 596 | { |
| 597 | uint32_t *address = _lock; |
| 598 | |
| 599 | if (!spinlock_timeout_panic) { |
| 600 | /* keep spinning rather than panicing */ |
| 601 | return HW_LOCK_TIMEOUT_CONTINUE; |
| 602 | } |
| 603 | |
| 604 | panic("wait_while_equals32[%p] " HW_SPIN_TIMEOUT_FMT "; " |
| 605 | "current value: 0x%08x, " HW_SPIN_TIMEOUT_DETAILS_FMT, |
| 606 | address, HW_SPIN_TIMEOUT_ARG(to, st), |
| 607 | *address, HW_SPIN_TIMEOUT_DETAILS_ARG(to, st)); |
| 608 | } |
| 609 | |
| 610 | static const struct hw_spin_policy hw_wait_while_equals32_policy = { |
| 611 | .hwsp_name = "hw_wait_while_equals32" , |
| 612 | .hwsp_timeout_atomic = &lock_panic_timeout, |
| 613 | .hwsp_op_timeout = hw_wait_while_equals32_panic, |
| 614 | }; |
| 615 | |
| 616 | static hw_spin_timeout_status_t |
| 617 | hw_wait_while_equals64_panic(void *_lock, hw_spin_timeout_t to, hw_spin_state_t st) |
| 618 | { |
| 619 | uint64_t *address = _lock; |
| 620 | |
| 621 | if (!spinlock_timeout_panic) { |
| 622 | /* keep spinning rather than panicing */ |
| 623 | return HW_LOCK_TIMEOUT_CONTINUE; |
| 624 | } |
| 625 | |
| 626 | panic("wait_while_equals64[%p] " HW_SPIN_TIMEOUT_FMT "; " |
| 627 | "current value: 0x%016llx, " HW_SPIN_TIMEOUT_DETAILS_FMT, |
| 628 | address, HW_SPIN_TIMEOUT_ARG(to, st), |
| 629 | *address, HW_SPIN_TIMEOUT_DETAILS_ARG(to, st)); |
| 630 | } |
| 631 | |
| 632 | static const struct hw_spin_policy hw_wait_while_equals64_policy = { |
| 633 | .hwsp_name = "hw_wait_while_equals64" , |
| 634 | .hwsp_timeout_atomic = &lock_panic_timeout, |
| 635 | .hwsp_op_timeout = hw_wait_while_equals64_panic, |
| 636 | }; |
| 637 | |
| 638 | uint32_t |
| 639 | hw_wait_while_equals32(uint32_t *address, uint32_t current) |
| 640 | { |
| 641 | hw_spin_policy_t pol = &hw_wait_while_equals32_policy; |
| 642 | hw_spin_timeout_t to = hw_spin_compute_timeout(pol); |
| 643 | hw_spin_state_t state = { }; |
| 644 | uint32_t v; |
| 645 | |
| 646 | while (__improbable(!hw_spin_wait_until(address, v, v != current))) { |
| 647 | hw_spin_should_keep_spinning(lock: address, pol, to, state: &state); |
| 648 | } |
| 649 | |
| 650 | return v; |
| 651 | } |
| 652 | |
| 653 | uint64_t |
| 654 | hw_wait_while_equals64(uint64_t *address, uint64_t current) |
| 655 | { |
| 656 | hw_spin_policy_t pol = &hw_wait_while_equals64_policy; |
| 657 | hw_spin_timeout_t to = hw_spin_compute_timeout(pol); |
| 658 | hw_spin_state_t state = { }; |
| 659 | uint64_t v; |
| 660 | |
| 661 | while (__improbable(!hw_spin_wait_until(address, v, v != current))) { |
| 662 | hw_spin_should_keep_spinning(lock: address, pol, to, state: &state); |
| 663 | } |
| 664 | |
| 665 | return v; |
| 666 | } |
| 667 | |
| 668 | __result_use_check |
| 669 | static inline hw_lock_status_t |
| 670 | hw_lock_to_internal( |
| 671 | hw_lock_t lock, |
| 672 | thread_t thread, |
| 673 | hw_spin_policy_t pol |
| 674 | LCK_GRP_ARG(lck_grp_t *grp)) |
| 675 | { |
| 676 | uintptr_t state = HW_LOCK_THREAD_TO_STATE(thread); |
| 677 | |
| 678 | if (__probable(hw_lock_trylock_contended(lock, state))) { |
| 679 | lck_grp_spin_update_held(lock LCK_GRP_ARG(grp)); |
| 680 | return HW_LOCK_ACQUIRED; |
| 681 | } |
| 682 | |
| 683 | return hw_lock_lock_contended(lock, data: state, pol LCK_GRP_ARG(grp)); |
| 684 | } |
| 685 | |
| 686 | /* |
| 687 | * Routine: hw_lock_lock |
| 688 | * |
| 689 | * Acquire lock, spinning until it becomes available, |
| 690 | * return with preemption disabled. |
| 691 | */ |
| 692 | void |
| 693 | (hw_lock_lock)(hw_lock_t lock LCK_GRP_ARG(lck_grp_t *grp)) |
| 694 | { |
| 695 | thread_t thread = current_thread(); |
| 696 | lock_disable_preemption_for_thread(thread); |
| 697 | (void)hw_lock_to_internal(lock, thread, pol: &hw_lock_spin_policy |
| 698 | LCK_GRP_ARG(grp)); |
| 699 | } |
| 700 | |
| 701 | /* |
| 702 | * Routine: hw_lock_lock_nopreempt |
| 703 | * |
| 704 | * Acquire lock, spinning until it becomes available. |
| 705 | */ |
| 706 | void |
| 707 | (hw_lock_lock_nopreempt)(hw_lock_t lock LCK_GRP_ARG(lck_grp_t *grp)) |
| 708 | { |
| 709 | thread_t thread = current_thread(); |
| 710 | __lck_require_preemption_disabled(lock, self: thread); |
| 711 | (void)hw_lock_to_internal(lock, thread, pol: &hw_lock_spin_policy |
| 712 | LCK_GRP_ARG(grp)); |
| 713 | } |
| 714 | |
| 715 | /* |
| 716 | * Routine: hw_lock_to |
| 717 | * |
| 718 | * Acquire lock, spinning until it becomes available or timeout. |
| 719 | * Timeout is in mach_absolute_time ticks (TSC in Intel), return with |
| 720 | * preemption disabled. |
| 721 | */ |
| 722 | unsigned |
| 723 | int |
| 724 | (hw_lock_to)(hw_lock_t lock, hw_spin_policy_t pol LCK_GRP_ARG(lck_grp_t *grp)) |
| 725 | { |
| 726 | thread_t thread = current_thread(); |
| 727 | lock_disable_preemption_for_thread(thread); |
| 728 | return (unsigned)hw_lock_to_internal(lock, thread, pol LCK_GRP_ARG(grp)); |
| 729 | } |
| 730 | |
| 731 | /* |
| 732 | * Routine: hw_lock_to_nopreempt |
| 733 | * |
| 734 | * Acquire lock, spinning until it becomes available or timeout. |
| 735 | * Timeout is in mach_absolute_time ticks, called and return with |
| 736 | * preemption disabled. |
| 737 | */ |
| 738 | unsigned |
| 739 | int |
| 740 | (hw_lock_to_nopreempt)(hw_lock_t lock, hw_spin_policy_t pol LCK_GRP_ARG(lck_grp_t *grp)) |
| 741 | { |
| 742 | thread_t thread = current_thread(); |
| 743 | __lck_require_preemption_disabled(lock, self: thread); |
| 744 | return (unsigned)hw_lock_to_internal(lock, thread, pol LCK_GRP_ARG(grp)); |
| 745 | } |
| 746 | |
| 747 | __result_use_check |
| 748 | static inline unsigned int |
| 749 | hw_lock_try_internal(hw_lock_t lock, thread_t thread LCK_GRP_ARG(lck_grp_t *grp)) |
| 750 | { |
| 751 | if (__probable(lock_cmpxchg(&lock->lock_data, 0, |
| 752 | HW_LOCK_THREAD_TO_STATE(thread), acquire))) { |
| 753 | lck_grp_spin_update_held(lock LCK_GRP_ARG(grp)); |
| 754 | return true; |
| 755 | } |
| 756 | return false; |
| 757 | } |
| 758 | |
| 759 | /* |
| 760 | * Routine: hw_lock_try |
| 761 | * |
| 762 | * returns with preemption disabled on success. |
| 763 | */ |
| 764 | unsigned |
| 765 | int |
| 766 | (hw_lock_try)(hw_lock_t lock LCK_GRP_ARG(lck_grp_t *grp)) |
| 767 | { |
| 768 | thread_t thread = current_thread(); |
| 769 | lock_disable_preemption_for_thread(thread); |
| 770 | unsigned int success = hw_lock_try_internal(lock, thread LCK_GRP_ARG(grp)); |
| 771 | if (!success) { |
| 772 | lock_enable_preemption(); |
| 773 | } |
| 774 | return success; |
| 775 | } |
| 776 | |
| 777 | unsigned |
| 778 | int |
| 779 | (hw_lock_try_nopreempt)(hw_lock_t lock LCK_GRP_ARG(lck_grp_t *grp)) |
| 780 | { |
| 781 | thread_t thread = current_thread(); |
| 782 | __lck_require_preemption_disabled(lock, self: thread); |
| 783 | return hw_lock_try_internal(lock, thread LCK_GRP_ARG(grp)); |
| 784 | } |
| 785 | |
| 786 | #if DEBUG || DEVELOPMENT |
| 787 | __abortlike |
| 788 | static void |
| 789 | __hw_lock_unlock_unowned_panic(hw_lock_t lock) |
| 790 | { |
| 791 | panic("hwlock: thread %p is trying to lock %p recursively" , |
| 792 | current_thread(), lock); |
| 793 | } |
| 794 | #endif /* DEBUG || DEVELOPMENT */ |
| 795 | |
| 796 | /* |
| 797 | * Routine: hw_lock_unlock |
| 798 | * |
| 799 | * Unconditionally release lock, release preemption level. |
| 800 | */ |
| 801 | static inline void |
| 802 | hw_lock_unlock_internal(hw_lock_t lock) |
| 803 | { |
| 804 | #if DEBUG || DEVELOPMENT |
| 805 | if (HW_LOCK_STATE_TO_THREAD(lock->lock_data) != current_thread() && |
| 806 | LOCK_CORRECTNESS_PANIC()) { |
| 807 | __hw_lock_unlock_unowned_panic(lock); |
| 808 | } |
| 809 | #endif /* DEBUG || DEVELOPMENT */ |
| 810 | |
| 811 | os_atomic_store(&lock->lock_data, 0, release); |
| 812 | #if CONFIG_DTRACE |
| 813 | LOCKSTAT_RECORD(LS_LCK_SPIN_UNLOCK_RELEASE, lock, 0); |
| 814 | #endif /* CONFIG_DTRACE */ |
| 815 | } |
| 816 | |
| 817 | void |
| 818 | (hw_lock_unlock)(hw_lock_t lock) |
| 819 | { |
| 820 | hw_lock_unlock_internal(lock); |
| 821 | lock_enable_preemption(); |
| 822 | } |
| 823 | |
| 824 | void |
| 825 | (hw_lock_unlock_nopreempt)(hw_lock_t lock) |
| 826 | { |
| 827 | hw_lock_unlock_internal(lock); |
| 828 | } |
| 829 | |
| 830 | void |
| 831 | hw_lock_assert(__assert_only hw_lock_t lock, __assert_only unsigned int type) |
| 832 | { |
| 833 | #if MACH_ASSERT |
| 834 | thread_t thread, holder; |
| 835 | |
| 836 | holder = HW_LOCK_STATE_TO_THREAD(lock->lock_data); |
| 837 | thread = current_thread(); |
| 838 | |
| 839 | if (type == LCK_ASSERT_OWNED) { |
| 840 | if (holder == 0) { |
| 841 | panic("Lock not owned %p = %p" , lock, holder); |
| 842 | } |
| 843 | if (holder != thread) { |
| 844 | panic("Lock not owned by current thread %p = %p" , lock, holder); |
| 845 | } |
| 846 | } else if (type == LCK_ASSERT_NOTOWNED) { |
| 847 | if (holder != THREAD_NULL && holder == thread) { |
| 848 | panic("Lock owned by current thread %p = %p" , lock, holder); |
| 849 | } |
| 850 | } else { |
| 851 | panic("hw_lock_assert(): invalid arg (%u)" , type); |
| 852 | } |
| 853 | #endif /* MACH_ASSERT */ |
| 854 | } |
| 855 | |
| 856 | /* |
| 857 | * Routine hw_lock_held, doesn't change preemption state. |
| 858 | * N.B. Racy, of course. |
| 859 | */ |
| 860 | unsigned int |
| 861 | hw_lock_held(hw_lock_t lock) |
| 862 | { |
| 863 | return ordered_load_hw(lock) != 0; |
| 864 | } |
| 865 | |
| 866 | static hw_lock_status_t NOINLINE |
| 867 | hw_lock_bit_to_contended( |
| 868 | hw_lock_bit_t *lock, |
| 869 | uint32_t bit, |
| 870 | hw_spin_policy_t pol, |
| 871 | bool (^lock_pause)(void) |
| 872 | LCK_GRP_ARG(lck_grp_t *grp)) |
| 873 | { |
| 874 | hw_spin_timeout_t to = hw_spin_compute_timeout(pol); |
| 875 | hw_spin_state_t state = { }; |
| 876 | hw_lock_status_t rc = HW_LOCK_CONTENDED; |
| 877 | |
| 878 | #if CONFIG_DTRACE || LOCK_STATS |
| 879 | uint64_t begin = 0; |
| 880 | boolean_t stat_enabled = lck_grp_spin_spin_enabled(lock LCK_GRP_ARG(grp)); |
| 881 | |
| 882 | if (__improbable(stat_enabled)) { |
| 883 | begin = mach_absolute_time(); |
| 884 | } |
| 885 | #endif /* LOCK_STATS || CONFIG_DTRACE */ |
| 886 | |
| 887 | do { |
| 888 | for (int i = 0; i < LOCK_SNOOP_SPINS; i++) { |
| 889 | rc = (hw_lock_trylock_bit(target: lock, bit, true) ? HW_LOCK_ACQUIRED : HW_LOCK_CONTENDED); |
| 890 | |
| 891 | if (rc == HW_LOCK_ACQUIRED) { |
| 892 | lck_grp_spin_update_held(lock LCK_GRP_ARG(grp)); |
| 893 | goto end; |
| 894 | } |
| 895 | |
| 896 | if (__improbable(lock_pause && lock_pause())) { |
| 897 | goto end; |
| 898 | } |
| 899 | } |
| 900 | |
| 901 | assert(rc == HW_LOCK_CONTENDED); |
| 902 | } while (hw_spin_should_keep_spinning(lock, pol, to, state: &state)); |
| 903 | |
| 904 | end: |
| 905 | #if CONFIG_DTRACE || LOCK_STATS |
| 906 | if (__improbable(stat_enabled)) { |
| 907 | lck_grp_spin_update_spin(lock LCK_GRP_ARG(grp), |
| 908 | time: mach_absolute_time() - begin); |
| 909 | } |
| 910 | lck_grp_spin_update_miss(lock LCK_GRP_ARG(grp)); |
| 911 | #endif /* CONFIG_DTRACE || LCK_GRP_STAT */ |
| 912 | return rc; |
| 913 | } |
| 914 | |
| 915 | __result_use_check |
| 916 | static inline hw_lock_status_t |
| 917 | hw_lock_bit_to_internal( |
| 918 | hw_lock_bit_t *lock, |
| 919 | unsigned int bit, |
| 920 | hw_spin_policy_t pol, |
| 921 | bool (^lock_pause)(void) |
| 922 | LCK_GRP_ARG(lck_grp_t *grp)) |
| 923 | { |
| 924 | if (__probable(hw_lock_trylock_bit(lock, bit, true))) { |
| 925 | lck_grp_spin_update_held(lock LCK_GRP_ARG(grp)); |
| 926 | return HW_LOCK_ACQUIRED; |
| 927 | } |
| 928 | |
| 929 | return hw_lock_bit_to_contended(lock, bit, pol, lock_pause LCK_GRP_ARG(grp)); |
| 930 | } |
| 931 | |
| 932 | /* |
| 933 | * Routine: hw_lock_bit_to |
| 934 | * |
| 935 | * Acquire bit lock, spinning until it becomes available or timeout. |
| 936 | * Timeout is in mach_absolute_time ticks (TSC in Intel), return with |
| 937 | * preemption disabled. |
| 938 | */ |
| 939 | unsigned |
| 940 | int |
| 941 | (hw_lock_bit_to)( |
| 942 | hw_lock_bit_t * lock, |
| 943 | uint32_t bit, |
| 944 | hw_spin_policy_t pol |
| 945 | LCK_GRP_ARG(lck_grp_t *grp)) |
| 946 | { |
| 947 | _disable_preemption(); |
| 948 | return (unsigned int)hw_lock_bit_to_internal(lock, bit, pol, NULL LCK_GRP_ARG(grp)); |
| 949 | } |
| 950 | |
| 951 | /* |
| 952 | * Routine: hw_lock_bit |
| 953 | * |
| 954 | * Acquire bit lock, spinning until it becomes available, |
| 955 | * return with preemption disabled. |
| 956 | */ |
| 957 | void |
| 958 | (hw_lock_bit)(hw_lock_bit_t * lock, unsigned int bit LCK_GRP_ARG(lck_grp_t *grp)) |
| 959 | { |
| 960 | _disable_preemption(); |
| 961 | (void)hw_lock_bit_to_internal(lock, bit, pol: &hw_lock_bit_policy, NULL LCK_GRP_ARG(grp)); |
| 962 | } |
| 963 | |
| 964 | /* |
| 965 | * Routine: hw_lock_bit_nopreempt |
| 966 | * |
| 967 | * Acquire bit lock with preemption already disabled, spinning until it becomes available. |
| 968 | */ |
| 969 | void |
| 970 | (hw_lock_bit_nopreempt)(hw_lock_bit_t * lock, unsigned int bit LCK_GRP_ARG(lck_grp_t *grp)) |
| 971 | { |
| 972 | __lck_require_preemption_disabled(lock, current_thread()); |
| 973 | (void)hw_lock_bit_to_internal(lock, bit, pol: &hw_lock_bit_policy, NULL LCK_GRP_ARG(grp)); |
| 974 | } |
| 975 | |
| 976 | /* |
| 977 | * Routine: hw_lock_bit_to_b |
| 978 | * |
| 979 | * Acquire bit lock, spinning until it becomes available, times out, |
| 980 | * or the supplied lock_pause callout returns true. |
| 981 | * Timeout is in mach_absolute_time ticks (TSC in Intel), return with |
| 982 | * preemption disabled iff the lock is successfully acquired. |
| 983 | */ |
| 984 | hw_lock_status_t |
| 985 | (hw_lock_bit_to_b)( |
| 986 | hw_lock_bit_t * lock, |
| 987 | uint32_t bit, |
| 988 | hw_spin_policy_t pol, |
| 989 | bool (^lock_pause) (void) |
| 990 | LCK_GRP_ARG(lck_grp_t * grp)) |
| 991 | { |
| 992 | _disable_preemption(); |
| 993 | hw_lock_status_t ret = hw_lock_bit_to_internal(lock, bit, pol, lock_pause LCK_GRP_ARG(grp)); |
| 994 | if (ret != HW_LOCK_ACQUIRED) { |
| 995 | lock_enable_preemption(); |
| 996 | } |
| 997 | return ret; |
| 998 | } |
| 999 | |
| 1000 | |
| 1001 | bool |
| 1002 | (hw_lock_bit_try)(hw_lock_bit_t * lock, unsigned int bit LCK_GRP_ARG(lck_grp_t *grp)) |
| 1003 | { |
| 1004 | bool success = false; |
| 1005 | |
| 1006 | _disable_preemption(); |
| 1007 | success = hw_lock_trylock_bit(target: lock, bit, false); |
| 1008 | if (!success) { |
| 1009 | lock_enable_preemption(); |
| 1010 | } |
| 1011 | |
| 1012 | if (success) { |
| 1013 | lck_grp_spin_update_held(lock LCK_GRP_ARG(grp)); |
| 1014 | } |
| 1015 | |
| 1016 | return success; |
| 1017 | } |
| 1018 | |
| 1019 | static inline void |
| 1020 | hw_unlock_bit_internal(hw_lock_bit_t *lock, unsigned int bit) |
| 1021 | { |
| 1022 | os_atomic_andnot(lock, 1u << bit, release); |
| 1023 | #if CONFIG_DTRACE |
| 1024 | LOCKSTAT_RECORD(LS_LCK_SPIN_UNLOCK_RELEASE, lock, bit); |
| 1025 | #endif |
| 1026 | } |
| 1027 | |
| 1028 | /* |
| 1029 | * Routine: hw_unlock_bit |
| 1030 | * |
| 1031 | * Release spin-lock. The second parameter is the bit number to test and set. |
| 1032 | * Decrement the preemption level. |
| 1033 | */ |
| 1034 | void |
| 1035 | hw_unlock_bit(hw_lock_bit_t * lock, unsigned int bit) |
| 1036 | { |
| 1037 | hw_unlock_bit_internal(lock, bit); |
| 1038 | lock_enable_preemption(); |
| 1039 | } |
| 1040 | |
| 1041 | void |
| 1042 | hw_unlock_bit_nopreempt(hw_lock_bit_t * lock, unsigned int bit) |
| 1043 | { |
| 1044 | __lck_require_preemption_disabled(lock, current_thread()); |
| 1045 | hw_unlock_bit_internal(lock, bit); |
| 1046 | } |
| 1047 | |
| 1048 | |
| 1049 | #pragma mark - lck_*_sleep |
| 1050 | |
| 1051 | /* |
| 1052 | * Routine: lck_spin_sleep |
| 1053 | */ |
| 1054 | wait_result_t |
| 1055 | lck_spin_sleep_grp( |
| 1056 | lck_spin_t *lck, |
| 1057 | lck_sleep_action_t lck_sleep_action, |
| 1058 | event_t event, |
| 1059 | wait_interrupt_t interruptible, |
| 1060 | lck_grp_t *grp) |
| 1061 | { |
| 1062 | wait_result_t res; |
| 1063 | |
| 1064 | if ((lck_sleep_action & ~LCK_SLEEP_MASK) != 0) { |
| 1065 | panic("Invalid lock sleep action %x" , lck_sleep_action); |
| 1066 | } |
| 1067 | |
| 1068 | res = assert_wait(event, interruptible); |
| 1069 | if (res == THREAD_WAITING) { |
| 1070 | lck_spin_unlock(lck); |
| 1071 | res = thread_block(THREAD_CONTINUE_NULL); |
| 1072 | if (!(lck_sleep_action & LCK_SLEEP_UNLOCK)) { |
| 1073 | lck_spin_lock_grp(lck, grp); |
| 1074 | } |
| 1075 | } else if (lck_sleep_action & LCK_SLEEP_UNLOCK) { |
| 1076 | lck_spin_unlock(lck); |
| 1077 | } |
| 1078 | |
| 1079 | return res; |
| 1080 | } |
| 1081 | |
| 1082 | wait_result_t |
| 1083 | lck_spin_sleep( |
| 1084 | lck_spin_t *lck, |
| 1085 | lck_sleep_action_t lck_sleep_action, |
| 1086 | event_t event, |
| 1087 | wait_interrupt_t interruptible) |
| 1088 | { |
| 1089 | return lck_spin_sleep_grp(lck, lck_sleep_action, event, interruptible, LCK_GRP_NULL); |
| 1090 | } |
| 1091 | |
| 1092 | /* |
| 1093 | * Routine: lck_spin_sleep_deadline |
| 1094 | */ |
| 1095 | wait_result_t |
| 1096 | lck_spin_sleep_deadline( |
| 1097 | lck_spin_t *lck, |
| 1098 | lck_sleep_action_t lck_sleep_action, |
| 1099 | event_t event, |
| 1100 | wait_interrupt_t interruptible, |
| 1101 | uint64_t deadline) |
| 1102 | { |
| 1103 | wait_result_t res; |
| 1104 | |
| 1105 | if ((lck_sleep_action & ~LCK_SLEEP_MASK) != 0) { |
| 1106 | panic("Invalid lock sleep action %x" , lck_sleep_action); |
| 1107 | } |
| 1108 | |
| 1109 | res = assert_wait_deadline(event, interruptible, deadline); |
| 1110 | if (res == THREAD_WAITING) { |
| 1111 | lck_spin_unlock(lck); |
| 1112 | res = thread_block(THREAD_CONTINUE_NULL); |
| 1113 | if (!(lck_sleep_action & LCK_SLEEP_UNLOCK)) { |
| 1114 | lck_spin_lock(lck); |
| 1115 | } |
| 1116 | } else if (lck_sleep_action & LCK_SLEEP_UNLOCK) { |
| 1117 | lck_spin_unlock(lck); |
| 1118 | } |
| 1119 | |
| 1120 | return res; |
| 1121 | } |
| 1122 | |
| 1123 | /* |
| 1124 | * Routine: lck_mtx_sleep |
| 1125 | */ |
| 1126 | wait_result_t |
| 1127 | lck_mtx_sleep( |
| 1128 | lck_mtx_t *lck, |
| 1129 | lck_sleep_action_t lck_sleep_action, |
| 1130 | event_t event, |
| 1131 | wait_interrupt_t interruptible) |
| 1132 | { |
| 1133 | wait_result_t res; |
| 1134 | thread_pri_floor_t token; |
| 1135 | |
| 1136 | KERNEL_DEBUG(MACHDBG_CODE(DBG_MACH_LOCKS, LCK_MTX_SLEEP_CODE) | DBG_FUNC_START, |
| 1137 | VM_KERNEL_UNSLIDE_OR_PERM(lck), (int)lck_sleep_action, VM_KERNEL_UNSLIDE_OR_PERM(event), (int)interruptible, 0); |
| 1138 | |
| 1139 | if ((lck_sleep_action & ~LCK_SLEEP_MASK) != 0) { |
| 1140 | panic("Invalid lock sleep action %x" , lck_sleep_action); |
| 1141 | } |
| 1142 | |
| 1143 | if (lck_sleep_action & LCK_SLEEP_PROMOTED_PRI) { |
| 1144 | /* |
| 1145 | * We get a priority floor |
| 1146 | * during the time that this thread is asleep, so that when it |
| 1147 | * is re-awakened (and not yet contending on the mutex), it is |
| 1148 | * runnable at a reasonably high priority. |
| 1149 | */ |
| 1150 | token = thread_priority_floor_start(); |
| 1151 | } |
| 1152 | |
| 1153 | res = assert_wait(event, interruptible); |
| 1154 | if (res == THREAD_WAITING) { |
| 1155 | lck_mtx_unlock(lck); |
| 1156 | res = thread_block(THREAD_CONTINUE_NULL); |
| 1157 | if (!(lck_sleep_action & LCK_SLEEP_UNLOCK)) { |
| 1158 | if ((lck_sleep_action & LCK_SLEEP_SPIN)) { |
| 1159 | lck_mtx_lock_spin(lck); |
| 1160 | } else if ((lck_sleep_action & LCK_SLEEP_SPIN_ALWAYS)) { |
| 1161 | lck_mtx_lock_spin_always(lck); |
| 1162 | } else { |
| 1163 | lck_mtx_lock(lck); |
| 1164 | } |
| 1165 | } |
| 1166 | } else if (lck_sleep_action & LCK_SLEEP_UNLOCK) { |
| 1167 | lck_mtx_unlock(lck); |
| 1168 | } |
| 1169 | |
| 1170 | if (lck_sleep_action & LCK_SLEEP_PROMOTED_PRI) { |
| 1171 | thread_priority_floor_end(token: &token); |
| 1172 | } |
| 1173 | |
| 1174 | KERNEL_DEBUG(MACHDBG_CODE(DBG_MACH_LOCKS, LCK_MTX_SLEEP_CODE) | DBG_FUNC_END, (int)res, 0, 0, 0, 0); |
| 1175 | |
| 1176 | return res; |
| 1177 | } |
| 1178 | |
| 1179 | |
| 1180 | /* |
| 1181 | * Routine: lck_mtx_sleep_deadline |
| 1182 | */ |
| 1183 | wait_result_t |
| 1184 | lck_mtx_sleep_deadline( |
| 1185 | lck_mtx_t *lck, |
| 1186 | lck_sleep_action_t lck_sleep_action, |
| 1187 | event_t event, |
| 1188 | wait_interrupt_t interruptible, |
| 1189 | uint64_t deadline) |
| 1190 | { |
| 1191 | wait_result_t res; |
| 1192 | thread_pri_floor_t token; |
| 1193 | |
| 1194 | KERNEL_DEBUG(MACHDBG_CODE(DBG_MACH_LOCKS, LCK_MTX_SLEEP_DEADLINE_CODE) | DBG_FUNC_START, |
| 1195 | VM_KERNEL_UNSLIDE_OR_PERM(lck), (int)lck_sleep_action, VM_KERNEL_UNSLIDE_OR_PERM(event), (int)interruptible, 0); |
| 1196 | |
| 1197 | if ((lck_sleep_action & ~LCK_SLEEP_MASK) != 0) { |
| 1198 | panic("Invalid lock sleep action %x" , lck_sleep_action); |
| 1199 | } |
| 1200 | |
| 1201 | if (lck_sleep_action & LCK_SLEEP_PROMOTED_PRI) { |
| 1202 | /* |
| 1203 | * See lck_mtx_sleep(). |
| 1204 | */ |
| 1205 | token = thread_priority_floor_start(); |
| 1206 | } |
| 1207 | |
| 1208 | res = assert_wait_deadline(event, interruptible, deadline); |
| 1209 | if (res == THREAD_WAITING) { |
| 1210 | lck_mtx_unlock(lck); |
| 1211 | res = thread_block(THREAD_CONTINUE_NULL); |
| 1212 | if (!(lck_sleep_action & LCK_SLEEP_UNLOCK)) { |
| 1213 | if ((lck_sleep_action & LCK_SLEEP_SPIN)) { |
| 1214 | lck_mtx_lock_spin(lck); |
| 1215 | } else { |
| 1216 | lck_mtx_lock(lck); |
| 1217 | } |
| 1218 | } |
| 1219 | } else if (lck_sleep_action & LCK_SLEEP_UNLOCK) { |
| 1220 | lck_mtx_unlock(lck); |
| 1221 | } |
| 1222 | |
| 1223 | if (lck_sleep_action & LCK_SLEEP_PROMOTED_PRI) { |
| 1224 | thread_priority_floor_end(token: &token); |
| 1225 | } |
| 1226 | |
| 1227 | KERNEL_DEBUG(MACHDBG_CODE(DBG_MACH_LOCKS, LCK_MTX_SLEEP_DEADLINE_CODE) | DBG_FUNC_END, (int)res, 0, 0, 0, 0); |
| 1228 | |
| 1229 | return res; |
| 1230 | } |
| 1231 | |
| 1232 | /* |
| 1233 | * sleep_with_inheritor and wakeup_with_inheritor KPI |
| 1234 | * |
| 1235 | * Functions that allow to sleep on an event and use turnstile to propagate the priority of the sleeping threads to |
| 1236 | * the latest thread specified as inheritor. |
| 1237 | * |
| 1238 | * The inheritor management is delegated to the caller, the caller needs to store a thread identifier to provide to this functions to specified upon whom |
| 1239 | * direct the push. The inheritor cannot return to user space or exit while holding a push from an event. Therefore is the caller responsibility to call a |
| 1240 | * wakeup_with_inheritor from inheritor before running in userspace or specify another inheritor before letting the old inheritor run in userspace. |
| 1241 | * |
| 1242 | * sleep_with_inheritor requires to hold a locking primitive while invoked, but wakeup_with_inheritor and change_sleep_inheritor don't require it. |
| 1243 | * |
| 1244 | * Turnstile requires a non blocking primitive as interlock to synchronize the turnstile data structure manipulation, threfore sleep_with_inheritor, change_sleep_inheritor and |
| 1245 | * wakeup_with_inheritor will require the same interlock to manipulate turnstiles. |
| 1246 | * If sleep_with_inheritor is associated with a locking primitive that can block (like lck_mtx_t or lck_rw_t), an handoff to a non blocking primitive is required before |
| 1247 | * invoking any turnstile operation. |
| 1248 | * |
| 1249 | * All functions will save the turnstile associated with the event on the turnstile kernel hash table and will use the the turnstile kernel hash table bucket |
| 1250 | * spinlock as the turnstile interlock. Because we do not want to hold interrupt disabled while holding the bucket interlock a new turnstile kernel hash table |
| 1251 | * is instantiated for this KPI to manage the hash without interrupt disabled. |
| 1252 | * Also: |
| 1253 | * - all events on the system that hash on the same bucket will contend on the same spinlock. |
| 1254 | * - every event will have a dedicated wait_queue. |
| 1255 | * |
| 1256 | * Different locking primitives can be associated with sleep_with_inheritor as long as the primitive_lock() and primitive_unlock() functions are provided to |
| 1257 | * sleep_with_inheritor_turnstile to perform the handoff with the bucket spinlock. |
| 1258 | */ |
| 1259 | |
| 1260 | |
| 1261 | typedef enum { |
| 1262 | LCK_WAKEUP_THREAD, |
| 1263 | LCK_WAKEUP_ONE, |
| 1264 | LCK_WAKEUP_ALL |
| 1265 | } lck_wakeup_type_t; |
| 1266 | |
| 1267 | static kern_return_t |
| 1268 | wakeup_with_inheritor_and_turnstile( |
| 1269 | event_t event, |
| 1270 | wait_result_t result, |
| 1271 | lck_wakeup_type_t wake_type, |
| 1272 | lck_wake_action_t action, |
| 1273 | thread_t *thread_wokenup) |
| 1274 | { |
| 1275 | turnstile_type_t type = TURNSTILE_SLEEP_INHERITOR; |
| 1276 | uint32_t index; |
| 1277 | struct turnstile *ts = NULL; |
| 1278 | kern_return_t ret = KERN_NOT_WAITING; |
| 1279 | |
| 1280 | /* |
| 1281 | * the hash bucket spinlock is used as turnstile interlock |
| 1282 | */ |
| 1283 | turnstile_hash_bucket_lock(proprietor: (uintptr_t)event, index_proprietor: &index, type); |
| 1284 | |
| 1285 | ts = turnstile_prepare_hash(proprietor: (uintptr_t)event, type); |
| 1286 | |
| 1287 | switch (wake_type) { |
| 1288 | case LCK_WAKEUP_ONE: { |
| 1289 | waitq_wakeup_flags_t flags = WAITQ_WAKEUP_DEFAULT; |
| 1290 | |
| 1291 | if (action == LCK_WAKE_DEFAULT) { |
| 1292 | flags = WAITQ_UPDATE_INHERITOR; |
| 1293 | } else { |
| 1294 | assert(action == LCK_WAKE_DO_NOT_TRANSFER_PUSH); |
| 1295 | } |
| 1296 | |
| 1297 | /* |
| 1298 | * WAITQ_UPDATE_INHERITOR will call turnstile_update_inheritor |
| 1299 | * if it finds a thread |
| 1300 | */ |
| 1301 | if (thread_wokenup) { |
| 1302 | thread_t wokeup; |
| 1303 | |
| 1304 | wokeup = waitq_wakeup64_identify(waitq: &ts->ts_waitq, |
| 1305 | CAST_EVENT64_T(event), result, flags); |
| 1306 | *thread_wokenup = wokeup; |
| 1307 | ret = wokeup ? KERN_SUCCESS : KERN_NOT_WAITING; |
| 1308 | } else { |
| 1309 | ret = waitq_wakeup64_one(waitq: &ts->ts_waitq, |
| 1310 | CAST_EVENT64_T(event), result, flags); |
| 1311 | } |
| 1312 | if (ret == KERN_SUCCESS && action == LCK_WAKE_DO_NOT_TRANSFER_PUSH) { |
| 1313 | goto complete; |
| 1314 | } |
| 1315 | if (ret == KERN_NOT_WAITING) { |
| 1316 | turnstile_update_inheritor(turnstile: ts, TURNSTILE_INHERITOR_NULL, |
| 1317 | flags: TURNSTILE_IMMEDIATE_UPDATE); |
| 1318 | } |
| 1319 | break; |
| 1320 | } |
| 1321 | case LCK_WAKEUP_ALL: { |
| 1322 | ret = waitq_wakeup64_all(waitq: &ts->ts_waitq, CAST_EVENT64_T(event), |
| 1323 | result, flags: WAITQ_UPDATE_INHERITOR); |
| 1324 | break; |
| 1325 | } |
| 1326 | case LCK_WAKEUP_THREAD: { |
| 1327 | assert(thread_wokenup); |
| 1328 | ret = waitq_wakeup64_thread(waitq: &ts->ts_waitq, CAST_EVENT64_T(event), |
| 1329 | thread: *thread_wokenup, result); |
| 1330 | break; |
| 1331 | } |
| 1332 | } |
| 1333 | |
| 1334 | /* |
| 1335 | * turnstile_update_inheritor_complete could be called while holding the interlock. |
| 1336 | * In this case the new inheritor or is null, or is a thread that is just been woken up |
| 1337 | * and have not blocked because it is racing with the same interlock used here |
| 1338 | * after the wait. |
| 1339 | * So there is no chain to update for the new inheritor. |
| 1340 | * |
| 1341 | * However unless the current thread is the old inheritor, |
| 1342 | * old inheritor can be blocked and requires a chain update. |
| 1343 | * |
| 1344 | * The chain should be short because kernel turnstiles cannot have user turnstiles |
| 1345 | * chained after them. |
| 1346 | * |
| 1347 | * We can anyway optimize this by asking turnstile to tell us |
| 1348 | * if old inheritor needs an update and drop the lock |
| 1349 | * just in that case. |
| 1350 | */ |
| 1351 | turnstile_hash_bucket_unlock(proprietor: (uintptr_t)NULL, index_proprietor: &index, type, s: 0); |
| 1352 | |
| 1353 | turnstile_update_inheritor_complete(turnstile: ts, flags: TURNSTILE_INTERLOCK_NOT_HELD); |
| 1354 | |
| 1355 | turnstile_hash_bucket_lock(proprietor: (uintptr_t)NULL, index_proprietor: &index, type); |
| 1356 | |
| 1357 | complete: |
| 1358 | turnstile_complete_hash(proprietor: (uintptr_t)event, type); |
| 1359 | |
| 1360 | turnstile_hash_bucket_unlock(proprietor: (uintptr_t)NULL, index_proprietor: &index, type, s: 0); |
| 1361 | |
| 1362 | turnstile_cleanup(); |
| 1363 | |
| 1364 | return ret; |
| 1365 | } |
| 1366 | |
| 1367 | static wait_result_t |
| 1368 | sleep_with_inheritor_and_turnstile( |
| 1369 | event_t event, |
| 1370 | thread_t inheritor, |
| 1371 | wait_interrupt_t interruptible, |
| 1372 | uint64_t deadline, |
| 1373 | void (^primitive_lock)(void), |
| 1374 | void (^primitive_unlock)(void)) |
| 1375 | { |
| 1376 | turnstile_type_t type = TURNSTILE_SLEEP_INHERITOR; |
| 1377 | wait_result_t ret; |
| 1378 | uint32_t index; |
| 1379 | struct turnstile *ts = NULL; |
| 1380 | |
| 1381 | /* |
| 1382 | * the hash bucket spinlock is used as turnstile interlock, |
| 1383 | * lock it before releasing the primitive lock |
| 1384 | */ |
| 1385 | turnstile_hash_bucket_lock(proprietor: (uintptr_t)event, index_proprietor: &index, type); |
| 1386 | |
| 1387 | primitive_unlock(); |
| 1388 | |
| 1389 | ts = turnstile_prepare_hash(proprietor: (uintptr_t)event, type); |
| 1390 | |
| 1391 | thread_set_pending_block_hint(current_thread(), block_hint: kThreadWaitSleepWithInheritor); |
| 1392 | /* |
| 1393 | * We need TURNSTILE_DELAYED_UPDATE because we will call |
| 1394 | * waitq_assert_wait64 after. |
| 1395 | */ |
| 1396 | turnstile_update_inheritor(turnstile: ts, new_inheritor: inheritor, flags: (TURNSTILE_DELAYED_UPDATE | TURNSTILE_INHERITOR_THREAD)); |
| 1397 | |
| 1398 | ret = waitq_assert_wait64(waitq: &ts->ts_waitq, CAST_EVENT64_T(event), interruptible, deadline); |
| 1399 | |
| 1400 | turnstile_hash_bucket_unlock(proprietor: (uintptr_t)NULL, index_proprietor: &index, type, s: 0); |
| 1401 | |
| 1402 | /* |
| 1403 | * Update new and old inheritor chains outside the interlock; |
| 1404 | */ |
| 1405 | turnstile_update_inheritor_complete(turnstile: ts, flags: TURNSTILE_INTERLOCK_NOT_HELD); |
| 1406 | |
| 1407 | if (ret == THREAD_WAITING) { |
| 1408 | ret = thread_block(THREAD_CONTINUE_NULL); |
| 1409 | } |
| 1410 | |
| 1411 | turnstile_hash_bucket_lock(proprietor: (uintptr_t)NULL, index_proprietor: &index, type); |
| 1412 | |
| 1413 | turnstile_complete_hash(proprietor: (uintptr_t)event, type); |
| 1414 | |
| 1415 | turnstile_hash_bucket_unlock(proprietor: (uintptr_t)NULL, index_proprietor: &index, type, s: 0); |
| 1416 | |
| 1417 | turnstile_cleanup(); |
| 1418 | |
| 1419 | primitive_lock(); |
| 1420 | |
| 1421 | return ret; |
| 1422 | } |
| 1423 | |
| 1424 | /* |
| 1425 | * change_sleep_inheritor is independent from the locking primitive. |
| 1426 | */ |
| 1427 | |
| 1428 | /* |
| 1429 | * Name: change_sleep_inheritor |
| 1430 | * |
| 1431 | * Description: Redirect the push of the waiting threads of event to the new inheritor specified. |
| 1432 | * |
| 1433 | * Args: |
| 1434 | * Arg1: event to redirect the push. |
| 1435 | * Arg2: new inheritor for event. |
| 1436 | * |
| 1437 | * Returns: KERN_NOT_WAITING if no threads were waiting, KERN_SUCCESS otherwise. |
| 1438 | * |
| 1439 | * Conditions: In case of success, the new inheritor cannot return to user space or exit until another inheritor is specified for the event or a |
| 1440 | * wakeup for the event is called. |
| 1441 | * NOTE: this cannot be called from interrupt context. |
| 1442 | */ |
| 1443 | kern_return_t |
| 1444 | change_sleep_inheritor(event_t event, thread_t inheritor) |
| 1445 | { |
| 1446 | uint32_t index; |
| 1447 | struct turnstile *ts = NULL; |
| 1448 | kern_return_t ret = KERN_SUCCESS; |
| 1449 | turnstile_type_t type = TURNSTILE_SLEEP_INHERITOR; |
| 1450 | |
| 1451 | /* |
| 1452 | * the hash bucket spinlock is used as turnstile interlock |
| 1453 | */ |
| 1454 | turnstile_hash_bucket_lock(proprietor: (uintptr_t)event, index_proprietor: &index, type); |
| 1455 | |
| 1456 | ts = turnstile_prepare_hash(proprietor: (uintptr_t)event, type); |
| 1457 | |
| 1458 | if (!turnstile_has_waiters(turnstile: ts)) { |
| 1459 | ret = KERN_NOT_WAITING; |
| 1460 | } |
| 1461 | |
| 1462 | /* |
| 1463 | * We will not call an assert_wait later so use TURNSTILE_IMMEDIATE_UPDATE |
| 1464 | */ |
| 1465 | turnstile_update_inheritor(turnstile: ts, new_inheritor: inheritor, flags: (TURNSTILE_IMMEDIATE_UPDATE | TURNSTILE_INHERITOR_THREAD)); |
| 1466 | |
| 1467 | turnstile_hash_bucket_unlock(proprietor: (uintptr_t)NULL, index_proprietor: &index, type, s: 0); |
| 1468 | |
| 1469 | /* |
| 1470 | * update the chains outside the interlock |
| 1471 | */ |
| 1472 | turnstile_update_inheritor_complete(turnstile: ts, flags: TURNSTILE_INTERLOCK_NOT_HELD); |
| 1473 | |
| 1474 | turnstile_hash_bucket_lock(proprietor: (uintptr_t)NULL, index_proprietor: &index, type); |
| 1475 | |
| 1476 | turnstile_complete_hash(proprietor: (uintptr_t)event, type); |
| 1477 | |
| 1478 | turnstile_hash_bucket_unlock(proprietor: (uintptr_t)NULL, index_proprietor: &index, type, s: 0); |
| 1479 | |
| 1480 | turnstile_cleanup(); |
| 1481 | |
| 1482 | return ret; |
| 1483 | } |
| 1484 | |
| 1485 | wait_result_t |
| 1486 | lck_spin_sleep_with_inheritor( |
| 1487 | lck_spin_t *lock, |
| 1488 | lck_sleep_action_t lck_sleep_action, |
| 1489 | event_t event, |
| 1490 | thread_t inheritor, |
| 1491 | wait_interrupt_t interruptible, |
| 1492 | uint64_t deadline) |
| 1493 | { |
| 1494 | if (lck_sleep_action & LCK_SLEEP_UNLOCK) { |
| 1495 | return sleep_with_inheritor_and_turnstile(event, inheritor, |
| 1496 | interruptible, deadline, |
| 1497 | primitive_lock: ^{}, primitive_unlock: ^{ lck_spin_unlock(lck: lock); }); |
| 1498 | } else { |
| 1499 | return sleep_with_inheritor_and_turnstile(event, inheritor, |
| 1500 | interruptible, deadline, |
| 1501 | primitive_lock: ^{ lck_spin_lock(lck: lock); }, primitive_unlock: ^{ lck_spin_unlock(lck: lock); }); |
| 1502 | } |
| 1503 | } |
| 1504 | |
| 1505 | wait_result_t |
| 1506 | hw_lck_ticket_sleep_with_inheritor( |
| 1507 | hw_lck_ticket_t *lock, |
| 1508 | lck_grp_t *grp __unused, |
| 1509 | lck_sleep_action_t lck_sleep_action, |
| 1510 | event_t event, |
| 1511 | thread_t inheritor, |
| 1512 | wait_interrupt_t interruptible, |
| 1513 | uint64_t deadline) |
| 1514 | { |
| 1515 | if (lck_sleep_action & LCK_SLEEP_UNLOCK) { |
| 1516 | return sleep_with_inheritor_and_turnstile(event, inheritor, |
| 1517 | interruptible, deadline, |
| 1518 | primitive_lock: ^{}, primitive_unlock: ^{ hw_lck_ticket_unlock(tlock: lock); }); |
| 1519 | } else { |
| 1520 | return sleep_with_inheritor_and_turnstile(event, inheritor, |
| 1521 | interruptible, deadline, |
| 1522 | primitive_lock: ^{ hw_lck_ticket_lock(lock, grp); }, primitive_unlock: ^{ hw_lck_ticket_unlock(tlock: lock); }); |
| 1523 | } |
| 1524 | } |
| 1525 | |
| 1526 | wait_result_t |
| 1527 | lck_ticket_sleep_with_inheritor( |
| 1528 | lck_ticket_t *lock, |
| 1529 | lck_grp_t *grp, |
| 1530 | lck_sleep_action_t lck_sleep_action, |
| 1531 | event_t event, |
| 1532 | thread_t inheritor, |
| 1533 | wait_interrupt_t interruptible, |
| 1534 | uint64_t deadline) |
| 1535 | { |
| 1536 | if (lck_sleep_action & LCK_SLEEP_UNLOCK) { |
| 1537 | return sleep_with_inheritor_and_turnstile(event, inheritor, |
| 1538 | interruptible, deadline, |
| 1539 | primitive_lock: ^{}, primitive_unlock: ^{ lck_ticket_unlock(tlock: lock); }); |
| 1540 | } else { |
| 1541 | return sleep_with_inheritor_and_turnstile(event, inheritor, |
| 1542 | interruptible, deadline, |
| 1543 | primitive_lock: ^{ lck_ticket_lock(tlock: lock, grp); }, primitive_unlock: ^{ lck_ticket_unlock(tlock: lock); }); |
| 1544 | } |
| 1545 | } |
| 1546 | |
| 1547 | wait_result_t |
| 1548 | lck_mtx_sleep_with_inheritor( |
| 1549 | lck_mtx_t *lock, |
| 1550 | lck_sleep_action_t lck_sleep_action, |
| 1551 | event_t event, |
| 1552 | thread_t inheritor, |
| 1553 | wait_interrupt_t interruptible, |
| 1554 | uint64_t deadline) |
| 1555 | { |
| 1556 | LCK_MTX_ASSERT(lock, LCK_MTX_ASSERT_OWNED); |
| 1557 | |
| 1558 | if (lck_sleep_action & LCK_SLEEP_UNLOCK) { |
| 1559 | return sleep_with_inheritor_and_turnstile(event, |
| 1560 | inheritor, |
| 1561 | interruptible, |
| 1562 | deadline, |
| 1563 | primitive_lock: ^{;}, |
| 1564 | primitive_unlock: ^{lck_mtx_unlock(lck: lock);}); |
| 1565 | } else if (lck_sleep_action & LCK_SLEEP_SPIN) { |
| 1566 | return sleep_with_inheritor_and_turnstile(event, |
| 1567 | inheritor, |
| 1568 | interruptible, |
| 1569 | deadline, |
| 1570 | primitive_lock: ^{lck_mtx_lock_spin(lck: lock);}, |
| 1571 | primitive_unlock: ^{lck_mtx_unlock(lck: lock);}); |
| 1572 | } else if (lck_sleep_action & LCK_SLEEP_SPIN_ALWAYS) { |
| 1573 | return sleep_with_inheritor_and_turnstile(event, |
| 1574 | inheritor, |
| 1575 | interruptible, |
| 1576 | deadline, |
| 1577 | primitive_lock: ^{lck_mtx_lock_spin_always(lck: lock);}, |
| 1578 | primitive_unlock: ^{lck_mtx_unlock(lck: lock);}); |
| 1579 | } else { |
| 1580 | return sleep_with_inheritor_and_turnstile(event, |
| 1581 | inheritor, |
| 1582 | interruptible, |
| 1583 | deadline, |
| 1584 | primitive_lock: ^{lck_mtx_lock(lck: lock);}, |
| 1585 | primitive_unlock: ^{lck_mtx_unlock(lck: lock);}); |
| 1586 | } |
| 1587 | } |
| 1588 | |
| 1589 | /* |
| 1590 | * sleep_with_inheritor functions with lck_rw_t as locking primitive. |
| 1591 | */ |
| 1592 | |
| 1593 | wait_result_t |
| 1594 | lck_rw_sleep_with_inheritor( |
| 1595 | lck_rw_t *lock, |
| 1596 | lck_sleep_action_t lck_sleep_action, |
| 1597 | event_t event, |
| 1598 | thread_t inheritor, |
| 1599 | wait_interrupt_t interruptible, |
| 1600 | uint64_t deadline) |
| 1601 | { |
| 1602 | __block lck_rw_type_t lck_rw_type = LCK_RW_TYPE_EXCLUSIVE; |
| 1603 | |
| 1604 | LCK_RW_ASSERT(lock, LCK_RW_ASSERT_HELD); |
| 1605 | |
| 1606 | if (lck_sleep_action & LCK_SLEEP_UNLOCK) { |
| 1607 | return sleep_with_inheritor_and_turnstile(event, |
| 1608 | inheritor, |
| 1609 | interruptible, |
| 1610 | deadline, |
| 1611 | primitive_lock: ^{;}, |
| 1612 | primitive_unlock: ^{lck_rw_type = lck_rw_done(lck: lock);}); |
| 1613 | } else if (!(lck_sleep_action & (LCK_SLEEP_SHARED | LCK_SLEEP_EXCLUSIVE))) { |
| 1614 | return sleep_with_inheritor_and_turnstile(event, |
| 1615 | inheritor, |
| 1616 | interruptible, |
| 1617 | deadline, |
| 1618 | primitive_lock: ^{lck_rw_lock(lck: lock, lck_rw_type);}, |
| 1619 | primitive_unlock: ^{lck_rw_type = lck_rw_done(lck: lock);}); |
| 1620 | } else if (lck_sleep_action & LCK_SLEEP_EXCLUSIVE) { |
| 1621 | return sleep_with_inheritor_and_turnstile(event, |
| 1622 | inheritor, |
| 1623 | interruptible, |
| 1624 | deadline, |
| 1625 | primitive_lock: ^{lck_rw_lock_exclusive(lck: lock);}, |
| 1626 | primitive_unlock: ^{lck_rw_type = lck_rw_done(lck: lock);}); |
| 1627 | } else { |
| 1628 | return sleep_with_inheritor_and_turnstile(event, |
| 1629 | inheritor, |
| 1630 | interruptible, |
| 1631 | deadline, |
| 1632 | primitive_lock: ^{lck_rw_lock_shared(lck: lock);}, |
| 1633 | primitive_unlock: ^{lck_rw_type = lck_rw_done(lck: lock);}); |
| 1634 | } |
| 1635 | } |
| 1636 | |
| 1637 | /* |
| 1638 | * wakeup_with_inheritor functions are independent from the locking primitive. |
| 1639 | */ |
| 1640 | |
| 1641 | kern_return_t |
| 1642 | wakeup_thread_with_inheritor(event_t event, wait_result_t result, lck_wake_action_t action, thread_t thread_towake) |
| 1643 | { |
| 1644 | return wakeup_with_inheritor_and_turnstile(event, |
| 1645 | result, |
| 1646 | wake_type: LCK_WAKEUP_THREAD, |
| 1647 | action, |
| 1648 | thread_wokenup: &thread_towake); |
| 1649 | } |
| 1650 | |
| 1651 | kern_return_t |
| 1652 | wakeup_one_with_inheritor(event_t event, wait_result_t result, lck_wake_action_t action, thread_t *thread_wokenup) |
| 1653 | { |
| 1654 | return wakeup_with_inheritor_and_turnstile(event, |
| 1655 | result, |
| 1656 | wake_type: LCK_WAKEUP_ONE, |
| 1657 | action, |
| 1658 | thread_wokenup); |
| 1659 | } |
| 1660 | |
| 1661 | kern_return_t |
| 1662 | wakeup_all_with_inheritor(event_t event, wait_result_t result) |
| 1663 | { |
| 1664 | return wakeup_with_inheritor_and_turnstile(event, |
| 1665 | result, |
| 1666 | wake_type: LCK_WAKEUP_ALL, |
| 1667 | action: 0, |
| 1668 | NULL); |
| 1669 | } |
| 1670 | |
| 1671 | void |
| 1672 | kdp_sleep_with_inheritor_find_owner(struct waitq * waitq, __unused event64_t event, thread_waitinfo_t * waitinfo) |
| 1673 | { |
| 1674 | assert(waitinfo->wait_type == kThreadWaitSleepWithInheritor); |
| 1675 | assert(waitq_type(waitq) == WQT_TURNSTILE); |
| 1676 | waitinfo->owner = 0; |
| 1677 | waitinfo->context = 0; |
| 1678 | |
| 1679 | if (waitq_held(wq: waitq)) { |
| 1680 | return; |
| 1681 | } |
| 1682 | |
| 1683 | struct turnstile *turnstile = waitq_to_turnstile(waitq); |
| 1684 | assert(turnstile->ts_inheritor_flags & TURNSTILE_INHERITOR_THREAD); |
| 1685 | waitinfo->owner = thread_tid(thread: turnstile->ts_inheritor); |
| 1686 | } |
| 1687 | |
| 1688 | static_assert(SWI_COND_OWNER_BITS == CTID_SIZE_BIT); |
| 1689 | static_assert(sizeof(cond_swi_var32_s) == sizeof(uint32_t)); |
| 1690 | static_assert(sizeof(cond_swi_var64_s) == sizeof(uint64_t)); |
| 1691 | |
| 1692 | static wait_result_t |
| 1693 | cond_sleep_with_inheritor_and_turnstile_type( |
| 1694 | cond_swi_var_t cond, |
| 1695 | bool (^cond_sleep_check)(ctid_t*), |
| 1696 | wait_interrupt_t interruptible, |
| 1697 | uint64_t deadline, |
| 1698 | turnstile_type_t type) |
| 1699 | { |
| 1700 | wait_result_t ret; |
| 1701 | uint32_t index; |
| 1702 | struct turnstile *ts = NULL; |
| 1703 | ctid_t ctid = 0; |
| 1704 | thread_t inheritor; |
| 1705 | |
| 1706 | /* |
| 1707 | * the hash bucket spinlock is used as turnstile interlock, |
| 1708 | * lock it before checking the sleep condition |
| 1709 | */ |
| 1710 | turnstile_hash_bucket_lock(proprietor: (uintptr_t)cond, index_proprietor: &index, type); |
| 1711 | |
| 1712 | /* |
| 1713 | * In case the sleep check succeeds, the block will |
| 1714 | * provide us the ctid observed on the variable. |
| 1715 | */ |
| 1716 | if (!cond_sleep_check(&ctid)) { |
| 1717 | turnstile_hash_bucket_unlock(proprietor: (uintptr_t)NULL, index_proprietor: &index, type, s: 0); |
| 1718 | return THREAD_NOT_WAITING; |
| 1719 | } |
| 1720 | |
| 1721 | /* |
| 1722 | * We can translate the ctid to a thread_t only |
| 1723 | * if cond_sleep_check succeded. |
| 1724 | */ |
| 1725 | inheritor = ctid_get_thread(ctid); |
| 1726 | assert(inheritor != NULL); |
| 1727 | |
| 1728 | ts = turnstile_prepare_hash(proprietor: (uintptr_t)cond, type); |
| 1729 | |
| 1730 | thread_set_pending_block_hint(current_thread(), block_hint: kThreadWaitSleepWithInheritor); |
| 1731 | /* |
| 1732 | * We need TURNSTILE_DELAYED_UPDATE because we will call |
| 1733 | * waitq_assert_wait64 after. |
| 1734 | */ |
| 1735 | turnstile_update_inheritor(turnstile: ts, new_inheritor: inheritor, flags: (TURNSTILE_DELAYED_UPDATE | TURNSTILE_INHERITOR_THREAD)); |
| 1736 | |
| 1737 | ret = waitq_assert_wait64(waitq: &ts->ts_waitq, CAST_EVENT64_T(cond), interruptible, deadline); |
| 1738 | |
| 1739 | turnstile_hash_bucket_unlock(proprietor: (uintptr_t)NULL, index_proprietor: &index, type, s: 0); |
| 1740 | |
| 1741 | /* |
| 1742 | * Update new and old inheritor chains outside the interlock; |
| 1743 | */ |
| 1744 | turnstile_update_inheritor_complete(turnstile: ts, flags: TURNSTILE_INTERLOCK_NOT_HELD); |
| 1745 | if (ret == THREAD_WAITING) { |
| 1746 | ret = thread_block(THREAD_CONTINUE_NULL); |
| 1747 | } |
| 1748 | |
| 1749 | turnstile_hash_bucket_lock(proprietor: (uintptr_t)NULL, index_proprietor: &index, type); |
| 1750 | |
| 1751 | turnstile_complete_hash(proprietor: (uintptr_t)cond, type); |
| 1752 | |
| 1753 | turnstile_hash_bucket_unlock(proprietor: (uintptr_t)NULL, index_proprietor: &index, type, s: 0); |
| 1754 | |
| 1755 | turnstile_cleanup(); |
| 1756 | return ret; |
| 1757 | } |
| 1758 | |
| 1759 | /* |
| 1760 | * Name: cond_sleep_with_inheritor32_mask |
| 1761 | * |
| 1762 | * Description: Conditionally sleeps with inheritor, with condition variable of 32bits. |
| 1763 | * Allows a thread to conditionally sleep while indicating which thread should |
| 1764 | * inherit the priority push associated with the condition. |
| 1765 | * The condition should be expressed through a cond_swi_var32_s pointer. |
| 1766 | * The condition needs to be populated by the caller with the ctid of the |
| 1767 | * thread that should inherit the push. The remaining bits of the condition |
| 1768 | * can be used by the caller to implement its own synchronization logic. |
| 1769 | * A copy of the condition value observed by the caller when it decided to call |
| 1770 | * this function should be provided to prevent races with matching wakeups. |
| 1771 | * This function will atomically check the value stored in the condition against |
| 1772 | * the expected/observed one provided only for the bits that are set in the mask. |
| 1773 | * If the check doesn't pass the thread will not sleep and the function will return. |
| 1774 | * The ctid provided in the condition will be used only after a successful |
| 1775 | * check. |
| 1776 | * |
| 1777 | * Args: |
| 1778 | * Arg1: cond_swi_var32_s pointer that stores the condition to check. |
| 1779 | * Arg2: cond_swi_var32_s observed value to check for conditionally sleep. |
| 1780 | * Arg3: mask to apply to the condition to check. |
| 1781 | * Arg4: interruptible flag for wait. |
| 1782 | * Arg5: deadline for wait. |
| 1783 | * |
| 1784 | * Conditions: The inheritor specified cannot return to user space or exit until another inheritor is specified for the cond or a |
| 1785 | * wakeup for the cond is called. |
| 1786 | * |
| 1787 | * Returns: result of the wait. |
| 1788 | */ |
| 1789 | static wait_result_t |
| 1790 | cond_sleep_with_inheritor32_mask(cond_swi_var_t cond, cond_swi_var32_s expected_cond, uint32_t check_mask, wait_interrupt_t interruptible, uint64_t deadline) |
| 1791 | { |
| 1792 | bool (^cond_sleep_check)(uint32_t*) = ^(ctid_t *ctid) { |
| 1793 | cond_swi_var32_s cond_val = {.cond32_data = os_atomic_load((uint32_t*) cond, relaxed)}; |
| 1794 | bool ret; |
| 1795 | if ((cond_val.cond32_data & check_mask) == (expected_cond.cond32_data & check_mask)) { |
| 1796 | ret = true; |
| 1797 | *ctid = cond_val.cond32_owner; |
| 1798 | } else { |
| 1799 | ret = false; |
| 1800 | } |
| 1801 | return ret; |
| 1802 | }; |
| 1803 | |
| 1804 | return cond_sleep_with_inheritor_and_turnstile_type(cond, cond_sleep_check, interruptible, deadline, type: TURNSTILE_SLEEP_INHERITOR); |
| 1805 | } |
| 1806 | |
| 1807 | /* |
| 1808 | * Name: cond_sleep_with_inheritor64_mask |
| 1809 | * |
| 1810 | * Description: Conditionally sleeps with inheritor, with condition variable of 64bits. |
| 1811 | * Allows a thread to conditionally sleep while indicating which thread should |
| 1812 | * inherit the priority push associated with the condition. |
| 1813 | * The condition should be expressed through a cond_swi_var64_s pointer. |
| 1814 | * The condition needs to be populated by the caller with the ctid of the |
| 1815 | * thread that should inherit the push. The remaining bits of the condition |
| 1816 | * can be used by the caller to implement its own synchronization logic. |
| 1817 | * A copy of the condition value observed by the caller when it decided to call |
| 1818 | * this function should be provided to prevent races with matching wakeups. |
| 1819 | * This function will atomically check the value stored in the condition against |
| 1820 | * the expected/observed one provided only for the bits that are set in the mask. |
| 1821 | * If the check doesn't pass the thread will not sleep and the function will return. |
| 1822 | * The ctid provided in the condition will be used only after a successful |
| 1823 | * check. |
| 1824 | * |
| 1825 | * Args: |
| 1826 | * Arg1: cond_swi_var64_s pointer that stores the condition to check. |
| 1827 | * Arg2: cond_swi_var64_s observed value to check for conditionally sleep. |
| 1828 | * Arg3: mask to apply to the condition to check. |
| 1829 | * Arg4: interruptible flag for wait. |
| 1830 | * Arg5: deadline for wait. |
| 1831 | * |
| 1832 | * Conditions: The inheritor specified cannot return to user space or exit until another inheritor is specified for the cond or a |
| 1833 | * wakeup for the cond is called. |
| 1834 | * |
| 1835 | * Returns: result of the wait. |
| 1836 | */ |
| 1837 | wait_result_t |
| 1838 | cond_sleep_with_inheritor64_mask(cond_swi_var_t cond, cond_swi_var64_s expected_cond, uint64_t check_mask, wait_interrupt_t interruptible, uint64_t deadline) |
| 1839 | { |
| 1840 | bool (^cond_sleep_check)(uint32_t*) = ^(ctid_t *ctid) { |
| 1841 | cond_swi_var64_s cond_val = {.cond64_data = os_atomic_load((uint64_t*) cond, relaxed)}; |
| 1842 | bool ret; |
| 1843 | if ((cond_val.cond64_data & check_mask) == (expected_cond.cond64_data & check_mask)) { |
| 1844 | ret = true; |
| 1845 | *ctid = cond_val.cond64_owner; |
| 1846 | } else { |
| 1847 | ret = false; |
| 1848 | } |
| 1849 | return ret; |
| 1850 | }; |
| 1851 | |
| 1852 | return cond_sleep_with_inheritor_and_turnstile_type(cond, cond_sleep_check, interruptible, deadline, type: TURNSTILE_SLEEP_INHERITOR); |
| 1853 | } |
| 1854 | |
| 1855 | /* |
| 1856 | * Name: cond_sleep_with_inheritor32 |
| 1857 | * |
| 1858 | * Description: Conditionally sleeps with inheritor, with condition variable of 32bits. |
| 1859 | * Allows a thread to conditionally sleep while indicating which thread should |
| 1860 | * inherit the priority push associated with the condition. |
| 1861 | * The condition should be expressed through a cond_swi_var32_s pointer. |
| 1862 | * The condition needs to be populated by the caller with the ctid of the |
| 1863 | * thread that should inherit the push. The remaining bits of the condition |
| 1864 | * can be used by the caller to implement its own synchronization logic. |
| 1865 | * A copy of the condition value observed by the caller when it decided to call |
| 1866 | * this function should be provided to prevent races with matching wakeups. |
| 1867 | * This function will atomically check the value stored in the condition against |
| 1868 | * the expected/observed one provided. If the check doesn't pass the thread will not |
| 1869 | * sleep and the function will return. |
| 1870 | * The ctid provided in the condition will be used only after a successful |
| 1871 | * check. |
| 1872 | * |
| 1873 | * Args: |
| 1874 | * Arg1: cond_swi_var32_s pointer that stores the condition to check. |
| 1875 | * Arg2: cond_swi_var32_s observed value to check for conditionally sleep. |
| 1876 | * Arg3: interruptible flag for wait. |
| 1877 | * Arg4: deadline for wait. |
| 1878 | * |
| 1879 | * Conditions: The inheritor specified cannot return to user space or exit until another inheritor is specified for the cond or a |
| 1880 | * wakeup for the cond is called. |
| 1881 | * |
| 1882 | * Returns: result of the wait. |
| 1883 | */ |
| 1884 | wait_result_t |
| 1885 | cond_sleep_with_inheritor32(cond_swi_var_t cond, cond_swi_var32_s expected_cond, wait_interrupt_t interruptible, uint64_t deadline) |
| 1886 | { |
| 1887 | return cond_sleep_with_inheritor32_mask(cond, expected_cond, check_mask: ~0u, interruptible, deadline); |
| 1888 | } |
| 1889 | |
| 1890 | /* |
| 1891 | * Name: cond_sleep_with_inheritor64 |
| 1892 | * |
| 1893 | * Description: Conditionally sleeps with inheritor, with condition variable of 64bits. |
| 1894 | * Allows a thread to conditionally sleep while indicating which thread should |
| 1895 | * inherit the priority push associated with the condition. |
| 1896 | * The condition should be expressed through a cond_swi_var64_s pointer. |
| 1897 | * The condition needs to be populated by the caller with the ctid of the |
| 1898 | * thread that should inherit the push. The remaining bits of the condition |
| 1899 | * can be used by the caller to implement its own synchronization logic. |
| 1900 | * A copy of the condition value observed by the caller when it decided to call |
| 1901 | * this function should be provided to prevent races with matching wakeups. |
| 1902 | * This function will atomically check the value stored in the condition against |
| 1903 | * the expected/observed one provided. If the check doesn't pass the thread will not |
| 1904 | * sleep and the function will return. |
| 1905 | * The ctid provided in the condition will be used only after a successful |
| 1906 | * check. |
| 1907 | * |
| 1908 | * Args: |
| 1909 | * Arg1: cond_swi_var64_s pointer that stores the condition to check. |
| 1910 | * Arg2: cond_swi_var64_s observed value to check for conditionally sleep. |
| 1911 | * Arg3: interruptible flag for wait. |
| 1912 | * Arg4: deadline for wait. |
| 1913 | * |
| 1914 | * Conditions: The inheritor specified cannot return to user space or exit until another inheritor is specified for the cond or a |
| 1915 | * wakeup for the cond is called. |
| 1916 | * |
| 1917 | * Returns: result of the wait. |
| 1918 | */ |
| 1919 | wait_result_t |
| 1920 | cond_sleep_with_inheritor64(cond_swi_var_t cond, cond_swi_var64_s expected_cond, wait_interrupt_t interruptible, uint64_t deadline) |
| 1921 | { |
| 1922 | return cond_sleep_with_inheritor64_mask(cond, expected_cond, check_mask: ~0ull, interruptible, deadline); |
| 1923 | } |
| 1924 | |
| 1925 | /* |
| 1926 | * Name: cond_wakeup_one_with_inheritor |
| 1927 | * |
| 1928 | * Description: Wake up one waiter waiting on the condition (if any). |
| 1929 | * The thread woken up will be the one with the higher sched priority waiting on the condition. |
| 1930 | * The push for the condition will be transferred from the last inheritor to the woken up thread. |
| 1931 | * |
| 1932 | * Args: |
| 1933 | * Arg1: condition to wake from. |
| 1934 | * Arg2: wait result to pass to the woken up thread. |
| 1935 | * Arg3: pointer for storing the thread wokenup. |
| 1936 | * |
| 1937 | * Returns: KERN_NOT_WAITING if no threads were waiting, KERN_SUCCESS otherwise. |
| 1938 | * |
| 1939 | * Conditions: The new inheritor wokenup cannot return to user space or exit until another inheritor is specified for the |
| 1940 | * condition or a wakeup for the event is called. |
| 1941 | * A reference for the wokenup thread is acquired. |
| 1942 | * NOTE: this cannot be called from interrupt context. |
| 1943 | */ |
| 1944 | kern_return_t |
| 1945 | cond_wakeup_one_with_inheritor(cond_swi_var_t cond, wait_result_t result, lck_wake_action_t action, thread_t *thread_wokenup) |
| 1946 | { |
| 1947 | return wakeup_with_inheritor_and_turnstile(event: (event_t)cond, |
| 1948 | result, |
| 1949 | wake_type: LCK_WAKEUP_ONE, |
| 1950 | action, |
| 1951 | thread_wokenup); |
| 1952 | } |
| 1953 | |
| 1954 | /* |
| 1955 | * Name: cond_wakeup_all_with_inheritor |
| 1956 | * |
| 1957 | * Description: Wake up all waiters waiting on the same condition. The old inheritor will lose the push. |
| 1958 | * |
| 1959 | * Args: |
| 1960 | * Arg1: condition to wake from. |
| 1961 | * Arg2: wait result to pass to the woken up threads. |
| 1962 | * |
| 1963 | * Returns: KERN_NOT_WAITING if no threads were waiting, KERN_SUCCESS otherwise. |
| 1964 | * |
| 1965 | * Conditions: NOTE: this cannot be called from interrupt context. |
| 1966 | */ |
| 1967 | kern_return_t |
| 1968 | cond_wakeup_all_with_inheritor(cond_swi_var_t cond, wait_result_t result) |
| 1969 | { |
| 1970 | return wakeup_with_inheritor_and_turnstile(event: (event_t)cond, |
| 1971 | result, |
| 1972 | wake_type: LCK_WAKEUP_ALL, |
| 1973 | action: 0, |
| 1974 | NULL); |
| 1975 | } |
| 1976 | |
| 1977 | |
| 1978 | #pragma mark - gates |
| 1979 | |
| 1980 | #define GATE_TYPE 3 |
| 1981 | #define GATE_ILOCK_BIT 0 |
| 1982 | #define GATE_WAITERS_BIT 1 |
| 1983 | |
| 1984 | #define GATE_ILOCK (1 << GATE_ILOCK_BIT) |
| 1985 | #define GATE_WAITERS (1 << GATE_WAITERS_BIT) |
| 1986 | |
| 1987 | #define gate_ilock(gate) hw_lock_bit((hw_lock_bit_t*)(&(gate)->gt_data), GATE_ILOCK_BIT, LCK_GRP_NULL) |
| 1988 | #define gate_iunlock(gate) hw_unlock_bit((hw_lock_bit_t*)(&(gate)->gt_data), GATE_ILOCK_BIT) |
| 1989 | #define gate_has_waiter_bit(state) ((state & GATE_WAITERS) != 0) |
| 1990 | #define ordered_load_gate(gate) os_atomic_load(&(gate)->gt_data, compiler_acq_rel) |
| 1991 | #define ordered_store_gate(gate, value) os_atomic_store(&(gate)->gt_data, value, compiler_acq_rel) |
| 1992 | |
| 1993 | #define GATE_THREAD_MASK (~(uintptr_t)(GATE_ILOCK | GATE_WAITERS)) |
| 1994 | #define GATE_STATE_TO_THREAD(state) (thread_t)((state) & GATE_THREAD_MASK) |
| 1995 | #define GATE_STATE_MASKED(state) (uintptr_t)((state) & GATE_THREAD_MASK) |
| 1996 | #define GATE_THREAD_TO_STATE(thread) ((uintptr_t)(thread)) |
| 1997 | |
| 1998 | #define GATE_DESTROYED GATE_STATE_MASKED(0xdeadbeefdeadbeef) |
| 1999 | |
| 2000 | #define GATE_EVENT(gate) ((event_t) gate) |
| 2001 | #define EVENT_TO_GATE(event) ((gate_t *) event) |
| 2002 | |
| 2003 | typedef void (*void_func_void)(void); |
| 2004 | |
| 2005 | __abortlike |
| 2006 | static void |
| 2007 | gate_verify_tag_panic(gate_t *gate) |
| 2008 | { |
| 2009 | panic("Gate used is invalid. gate %p data %lx turnstile %p refs %d flags %x " , gate, gate->gt_data, gate->gt_turnstile, gate->gt_refs, gate->gt_flags); |
| 2010 | } |
| 2011 | |
| 2012 | __abortlike |
| 2013 | static void |
| 2014 | gate_verify_destroy_panic(gate_t *gate) |
| 2015 | { |
| 2016 | panic("Gate used was destroyed. gate %p data %lx turnstile %p refs %d flags %x" , gate, gate->gt_data, gate->gt_turnstile, gate->gt_refs, gate->gt_flags); |
| 2017 | } |
| 2018 | |
| 2019 | static void |
| 2020 | gate_verify(gate_t *gate) |
| 2021 | { |
| 2022 | if (gate->gt_type != GATE_TYPE) { |
| 2023 | gate_verify_tag_panic(gate); |
| 2024 | } |
| 2025 | if (GATE_STATE_MASKED(gate->gt_data) == GATE_DESTROYED) { |
| 2026 | gate_verify_destroy_panic(gate); |
| 2027 | } |
| 2028 | |
| 2029 | assert(gate->gt_refs > 0); |
| 2030 | } |
| 2031 | |
| 2032 | __abortlike |
| 2033 | static void |
| 2034 | gate_already_owned_panic(gate_t *gate, thread_t holder) |
| 2035 | { |
| 2036 | panic("Trying to close a gate already closed gate %p holder %p current_thread %p" , gate, holder, current_thread()); |
| 2037 | } |
| 2038 | |
| 2039 | static kern_return_t |
| 2040 | gate_try_close(gate_t *gate) |
| 2041 | { |
| 2042 | uintptr_t state; |
| 2043 | thread_t holder; |
| 2044 | kern_return_t ret; |
| 2045 | thread_t thread = current_thread(); |
| 2046 | |
| 2047 | gate_verify(gate); |
| 2048 | |
| 2049 | if (os_atomic_cmpxchg(&gate->gt_data, 0, GATE_THREAD_TO_STATE(thread), acquire)) { |
| 2050 | return KERN_SUCCESS; |
| 2051 | } |
| 2052 | |
| 2053 | gate_ilock(gate); |
| 2054 | state = ordered_load_gate(gate); |
| 2055 | holder = GATE_STATE_TO_THREAD(state); |
| 2056 | |
| 2057 | if (holder == NULL) { |
| 2058 | assert(gate_has_waiter_bit(state) == FALSE); |
| 2059 | |
| 2060 | state = GATE_THREAD_TO_STATE(current_thread()); |
| 2061 | state |= GATE_ILOCK; |
| 2062 | ordered_store_gate(gate, state); |
| 2063 | ret = KERN_SUCCESS; |
| 2064 | } else { |
| 2065 | if (holder == current_thread()) { |
| 2066 | gate_already_owned_panic(gate, holder); |
| 2067 | } |
| 2068 | ret = KERN_FAILURE; |
| 2069 | } |
| 2070 | |
| 2071 | gate_iunlock(gate); |
| 2072 | return ret; |
| 2073 | } |
| 2074 | |
| 2075 | static void |
| 2076 | gate_close(gate_t* gate) |
| 2077 | { |
| 2078 | uintptr_t state; |
| 2079 | thread_t holder; |
| 2080 | thread_t thread = current_thread(); |
| 2081 | |
| 2082 | gate_verify(gate); |
| 2083 | |
| 2084 | if (os_atomic_cmpxchg(&gate->gt_data, 0, GATE_THREAD_TO_STATE(thread), acquire)) { |
| 2085 | return; |
| 2086 | } |
| 2087 | |
| 2088 | gate_ilock(gate); |
| 2089 | state = ordered_load_gate(gate); |
| 2090 | holder = GATE_STATE_TO_THREAD(state); |
| 2091 | |
| 2092 | if (holder != NULL) { |
| 2093 | gate_already_owned_panic(gate, holder); |
| 2094 | } |
| 2095 | |
| 2096 | assert(gate_has_waiter_bit(state) == FALSE); |
| 2097 | |
| 2098 | state = GATE_THREAD_TO_STATE(thread); |
| 2099 | state |= GATE_ILOCK; |
| 2100 | ordered_store_gate(gate, state); |
| 2101 | |
| 2102 | gate_iunlock(gate); |
| 2103 | } |
| 2104 | |
| 2105 | static void |
| 2106 | gate_open_turnstile(gate_t *gate) |
| 2107 | { |
| 2108 | struct turnstile *ts = NULL; |
| 2109 | |
| 2110 | ts = turnstile_prepare(proprietor: (uintptr_t)gate, tstore: &gate->gt_turnstile, |
| 2111 | TURNSTILE_NULL, type: TURNSTILE_KERNEL_MUTEX); |
| 2112 | waitq_wakeup64_all(waitq: &ts->ts_waitq, CAST_EVENT64_T(GATE_EVENT(gate)), |
| 2113 | THREAD_AWAKENED, flags: WAITQ_UPDATE_INHERITOR); |
| 2114 | turnstile_update_inheritor_complete(turnstile: ts, flags: TURNSTILE_INTERLOCK_HELD); |
| 2115 | turnstile_complete(proprietor: (uintptr_t)gate, tstore: &gate->gt_turnstile, NULL, type: TURNSTILE_KERNEL_MUTEX); |
| 2116 | /* |
| 2117 | * We can do the cleanup while holding the interlock. |
| 2118 | * It is ok because: |
| 2119 | * 1. current_thread is the previous inheritor and it is running |
| 2120 | * 2. new inheritor is NULL. |
| 2121 | * => No chain of turnstiles needs to be updated. |
| 2122 | */ |
| 2123 | turnstile_cleanup(); |
| 2124 | } |
| 2125 | |
| 2126 | __abortlike |
| 2127 | static void |
| 2128 | gate_not_owned_panic(gate_t *gate, thread_t holder, bool open) |
| 2129 | { |
| 2130 | if (open) { |
| 2131 | panic("Trying to open a gate %p owned by %p from current_thread %p" , gate, holder, current_thread()); |
| 2132 | } else { |
| 2133 | panic("Trying to handoff a gate %p owned by %p from current_thread %p" , gate, holder, current_thread()); |
| 2134 | } |
| 2135 | } |
| 2136 | |
| 2137 | static void |
| 2138 | gate_open(gate_t *gate) |
| 2139 | { |
| 2140 | uintptr_t state; |
| 2141 | thread_t holder; |
| 2142 | bool waiters; |
| 2143 | thread_t thread = current_thread(); |
| 2144 | |
| 2145 | gate_verify(gate); |
| 2146 | if (os_atomic_cmpxchg(&gate->gt_data, GATE_THREAD_TO_STATE(thread), 0, release)) { |
| 2147 | return; |
| 2148 | } |
| 2149 | |
| 2150 | gate_ilock(gate); |
| 2151 | state = ordered_load_gate(gate); |
| 2152 | holder = GATE_STATE_TO_THREAD(state); |
| 2153 | waiters = gate_has_waiter_bit(state); |
| 2154 | |
| 2155 | if (holder != thread) { |
| 2156 | gate_not_owned_panic(gate, holder, true); |
| 2157 | } |
| 2158 | |
| 2159 | if (waiters) { |
| 2160 | gate_open_turnstile(gate); |
| 2161 | } |
| 2162 | |
| 2163 | state = GATE_ILOCK; |
| 2164 | ordered_store_gate(gate, state); |
| 2165 | |
| 2166 | gate_iunlock(gate); |
| 2167 | } |
| 2168 | |
| 2169 | static kern_return_t |
| 2170 | gate_handoff_turnstile(gate_t *gate, |
| 2171 | int flags, |
| 2172 | thread_t *thread_woken_up, |
| 2173 | bool *waiters) |
| 2174 | { |
| 2175 | struct turnstile *ts = NULL; |
| 2176 | kern_return_t ret = KERN_FAILURE; |
| 2177 | thread_t hp_thread; |
| 2178 | |
| 2179 | ts = turnstile_prepare(proprietor: (uintptr_t)gate, tstore: &gate->gt_turnstile, TURNSTILE_NULL, type: TURNSTILE_KERNEL_MUTEX); |
| 2180 | /* |
| 2181 | * Wake up the higest priority thread waiting on the gate |
| 2182 | */ |
| 2183 | hp_thread = waitq_wakeup64_identify(waitq: &ts->ts_waitq, CAST_EVENT64_T(GATE_EVENT(gate)), |
| 2184 | THREAD_AWAKENED, flags: WAITQ_UPDATE_INHERITOR); |
| 2185 | |
| 2186 | if (hp_thread != NULL) { |
| 2187 | /* |
| 2188 | * In this case waitq_wakeup64_identify has called turnstile_update_inheritor for us |
| 2189 | */ |
| 2190 | turnstile_update_inheritor_complete(turnstile: ts, flags: TURNSTILE_INTERLOCK_HELD); |
| 2191 | *thread_woken_up = hp_thread; |
| 2192 | *waiters = turnstile_has_waiters(turnstile: ts); |
| 2193 | /* |
| 2194 | * Note: hp_thread is the new holder and the new inheritor. |
| 2195 | * In case there are no more waiters, it doesn't need to be the inheritor |
| 2196 | * and it shouldn't be it by the time it finishes the wait, so that its next open or |
| 2197 | * handoff can go through the fast path. |
| 2198 | * We could set the inheritor to NULL here, or the new holder itself can set it |
| 2199 | * on its way back from the sleep. In the latter case there are more chanses that |
| 2200 | * new waiters will come by, avoiding to do the opearation at all. |
| 2201 | */ |
| 2202 | ret = KERN_SUCCESS; |
| 2203 | } else { |
| 2204 | /* |
| 2205 | * waiters can have been woken up by an interrupt and still not |
| 2206 | * have updated gate->waiters, so we couldn't find them on the waitq. |
| 2207 | * Update the inheritor to NULL here, so that the current thread can return to userspace |
| 2208 | * indipendently from when the interrupted waiters will finish the wait. |
| 2209 | */ |
| 2210 | if (flags == GATE_HANDOFF_OPEN_IF_NO_WAITERS) { |
| 2211 | turnstile_update_inheritor(turnstile: ts, TURNSTILE_INHERITOR_NULL, flags: TURNSTILE_IMMEDIATE_UPDATE); |
| 2212 | turnstile_update_inheritor_complete(turnstile: ts, flags: TURNSTILE_INTERLOCK_HELD); |
| 2213 | } |
| 2214 | // there are no waiters. |
| 2215 | ret = KERN_NOT_WAITING; |
| 2216 | } |
| 2217 | |
| 2218 | turnstile_complete(proprietor: (uintptr_t)gate, tstore: &gate->gt_turnstile, NULL, type: TURNSTILE_KERNEL_MUTEX); |
| 2219 | |
| 2220 | /* |
| 2221 | * We can do the cleanup while holding the interlock. |
| 2222 | * It is ok because: |
| 2223 | * 1. current_thread is the previous inheritor and it is running |
| 2224 | * 2. new inheritor is NULL or it is a just wokenup thread that will race acquiring the lock |
| 2225 | * of the gate before trying to sleep. |
| 2226 | * => No chain of turnstiles needs to be updated. |
| 2227 | */ |
| 2228 | turnstile_cleanup(); |
| 2229 | |
| 2230 | return ret; |
| 2231 | } |
| 2232 | |
| 2233 | static kern_return_t |
| 2234 | gate_handoff(gate_t *gate, |
| 2235 | int flags) |
| 2236 | { |
| 2237 | kern_return_t ret; |
| 2238 | thread_t new_holder = NULL; |
| 2239 | uintptr_t state; |
| 2240 | thread_t holder; |
| 2241 | bool waiters; |
| 2242 | thread_t thread = current_thread(); |
| 2243 | |
| 2244 | assert(flags == GATE_HANDOFF_OPEN_IF_NO_WAITERS || flags == GATE_HANDOFF_DEFAULT); |
| 2245 | gate_verify(gate); |
| 2246 | |
| 2247 | if (flags == GATE_HANDOFF_OPEN_IF_NO_WAITERS) { |
| 2248 | if (os_atomic_cmpxchg(&gate->gt_data, GATE_THREAD_TO_STATE(thread), 0, release)) { |
| 2249 | //gate opened but there were no waiters, so return KERN_NOT_WAITING. |
| 2250 | return KERN_NOT_WAITING; |
| 2251 | } |
| 2252 | } |
| 2253 | |
| 2254 | gate_ilock(gate); |
| 2255 | state = ordered_load_gate(gate); |
| 2256 | holder = GATE_STATE_TO_THREAD(state); |
| 2257 | waiters = gate_has_waiter_bit(state); |
| 2258 | |
| 2259 | if (holder != current_thread()) { |
| 2260 | gate_not_owned_panic(gate, holder, false); |
| 2261 | } |
| 2262 | |
| 2263 | if (waiters) { |
| 2264 | ret = gate_handoff_turnstile(gate, flags, thread_woken_up: &new_holder, waiters: &waiters); |
| 2265 | if (ret == KERN_SUCCESS) { |
| 2266 | state = GATE_THREAD_TO_STATE(new_holder); |
| 2267 | if (waiters) { |
| 2268 | state |= GATE_WAITERS; |
| 2269 | } |
| 2270 | } else { |
| 2271 | if (flags == GATE_HANDOFF_OPEN_IF_NO_WAITERS) { |
| 2272 | state = 0; |
| 2273 | } |
| 2274 | } |
| 2275 | } else { |
| 2276 | if (flags == GATE_HANDOFF_OPEN_IF_NO_WAITERS) { |
| 2277 | state = 0; |
| 2278 | } |
| 2279 | ret = KERN_NOT_WAITING; |
| 2280 | } |
| 2281 | state |= GATE_ILOCK; |
| 2282 | ordered_store_gate(gate, state); |
| 2283 | |
| 2284 | gate_iunlock(gate); |
| 2285 | |
| 2286 | if (new_holder) { |
| 2287 | thread_deallocate(thread: new_holder); |
| 2288 | } |
| 2289 | return ret; |
| 2290 | } |
| 2291 | |
| 2292 | static void_func_void |
| 2293 | gate_steal_turnstile(gate_t *gate, |
| 2294 | thread_t new_inheritor) |
| 2295 | { |
| 2296 | struct turnstile *ts = NULL; |
| 2297 | |
| 2298 | ts = turnstile_prepare(proprietor: (uintptr_t)gate, tstore: &gate->gt_turnstile, TURNSTILE_NULL, type: TURNSTILE_KERNEL_MUTEX); |
| 2299 | |
| 2300 | turnstile_update_inheritor(turnstile: ts, new_inheritor, flags: (TURNSTILE_IMMEDIATE_UPDATE | TURNSTILE_INHERITOR_THREAD)); |
| 2301 | turnstile_update_inheritor_complete(turnstile: ts, flags: TURNSTILE_INTERLOCK_HELD); |
| 2302 | turnstile_complete(proprietor: (uintptr_t)gate, tstore: &gate->gt_turnstile, NULL, type: TURNSTILE_KERNEL_MUTEX); |
| 2303 | |
| 2304 | /* |
| 2305 | * turnstile_cleanup might need to update the chain of the old holder. |
| 2306 | * This operation should happen without the turnstile interlock held. |
| 2307 | */ |
| 2308 | return turnstile_cleanup; |
| 2309 | } |
| 2310 | |
| 2311 | __abortlike |
| 2312 | static void |
| 2313 | gate_not_closed_panic(gate_t *gate, bool wait) |
| 2314 | { |
| 2315 | if (wait) { |
| 2316 | panic("Trying to wait on a not closed gate %p from current_thread %p" , gate, current_thread()); |
| 2317 | } else { |
| 2318 | panic("Trying to steal a not closed gate %p from current_thread %p" , gate, current_thread()); |
| 2319 | } |
| 2320 | } |
| 2321 | |
| 2322 | static void |
| 2323 | gate_steal(gate_t *gate) |
| 2324 | { |
| 2325 | uintptr_t state; |
| 2326 | thread_t holder; |
| 2327 | thread_t thread = current_thread(); |
| 2328 | bool waiters; |
| 2329 | |
| 2330 | void_func_void func_after_interlock_unlock; |
| 2331 | |
| 2332 | gate_verify(gate); |
| 2333 | |
| 2334 | gate_ilock(gate); |
| 2335 | state = ordered_load_gate(gate); |
| 2336 | holder = GATE_STATE_TO_THREAD(state); |
| 2337 | waiters = gate_has_waiter_bit(state); |
| 2338 | |
| 2339 | if (holder == NULL) { |
| 2340 | gate_not_closed_panic(gate, false); |
| 2341 | } |
| 2342 | |
| 2343 | state = GATE_THREAD_TO_STATE(thread) | GATE_ILOCK; |
| 2344 | if (waiters) { |
| 2345 | state |= GATE_WAITERS; |
| 2346 | ordered_store_gate(gate, state); |
| 2347 | func_after_interlock_unlock = gate_steal_turnstile(gate, new_inheritor: thread); |
| 2348 | gate_iunlock(gate); |
| 2349 | |
| 2350 | func_after_interlock_unlock(); |
| 2351 | } else { |
| 2352 | ordered_store_gate(gate, state); |
| 2353 | gate_iunlock(gate); |
| 2354 | } |
| 2355 | } |
| 2356 | |
| 2357 | static void_func_void |
| 2358 | gate_wait_turnstile(gate_t *gate, |
| 2359 | wait_interrupt_t interruptible, |
| 2360 | uint64_t deadline, |
| 2361 | thread_t holder, |
| 2362 | wait_result_t* wait, |
| 2363 | bool* waiters) |
| 2364 | { |
| 2365 | struct turnstile *ts; |
| 2366 | uintptr_t state; |
| 2367 | |
| 2368 | ts = turnstile_prepare(proprietor: (uintptr_t)gate, tstore: &gate->gt_turnstile, TURNSTILE_NULL, type: TURNSTILE_KERNEL_MUTEX); |
| 2369 | |
| 2370 | turnstile_update_inheritor(turnstile: ts, new_inheritor: holder, flags: (TURNSTILE_DELAYED_UPDATE | TURNSTILE_INHERITOR_THREAD)); |
| 2371 | waitq_assert_wait64(waitq: &ts->ts_waitq, CAST_EVENT64_T(GATE_EVENT(gate)), interruptible, deadline); |
| 2372 | |
| 2373 | gate_iunlock(gate); |
| 2374 | |
| 2375 | turnstile_update_inheritor_complete(turnstile: ts, flags: TURNSTILE_INTERLOCK_NOT_HELD); |
| 2376 | |
| 2377 | *wait = thread_block(THREAD_CONTINUE_NULL); |
| 2378 | |
| 2379 | gate_ilock(gate); |
| 2380 | |
| 2381 | *waiters = turnstile_has_waiters(turnstile: ts); |
| 2382 | |
| 2383 | if (!*waiters) { |
| 2384 | /* |
| 2385 | * We want to enable the fast path as soon as we see that there are no more waiters. |
| 2386 | * On the fast path the holder will not do any turnstile operations. |
| 2387 | * Set the inheritor as NULL here. |
| 2388 | * |
| 2389 | * NOTE: if it was an open operation that woke this thread up, the inheritor has |
| 2390 | * already been set to NULL. |
| 2391 | */ |
| 2392 | state = ordered_load_gate(gate); |
| 2393 | holder = GATE_STATE_TO_THREAD(state); |
| 2394 | if (holder && |
| 2395 | ((*wait != THREAD_AWAKENED) || // thread interrupted or timedout |
| 2396 | holder == current_thread())) { // thread was woken up and it is the new holder |
| 2397 | turnstile_update_inheritor(turnstile: ts, TURNSTILE_INHERITOR_NULL, flags: TURNSTILE_IMMEDIATE_UPDATE); |
| 2398 | turnstile_update_inheritor_complete(turnstile: ts, flags: TURNSTILE_INTERLOCK_NOT_HELD); |
| 2399 | } |
| 2400 | } |
| 2401 | |
| 2402 | turnstile_complete(proprietor: (uintptr_t)gate, tstore: &gate->gt_turnstile, NULL, type: TURNSTILE_KERNEL_MUTEX); |
| 2403 | |
| 2404 | /* |
| 2405 | * turnstile_cleanup might need to update the chain of the old holder. |
| 2406 | * This operation should happen without the turnstile primitive interlock held. |
| 2407 | */ |
| 2408 | return turnstile_cleanup; |
| 2409 | } |
| 2410 | |
| 2411 | static void |
| 2412 | gate_free_internal(gate_t *gate) |
| 2413 | { |
| 2414 | zfree(KT_GATE, gate); |
| 2415 | } |
| 2416 | |
| 2417 | __abortlike |
| 2418 | static void |
| 2419 | gate_too_many_refs_panic(gate_t *gate) |
| 2420 | { |
| 2421 | panic("Too many refs taken on gate. gate %p data %lx turnstile %p refs %d flags %x" , gate, gate->gt_data, gate->gt_turnstile, gate->gt_refs, gate->gt_flags); |
| 2422 | } |
| 2423 | |
| 2424 | static gate_wait_result_t |
| 2425 | gate_wait(gate_t* gate, |
| 2426 | wait_interrupt_t interruptible, |
| 2427 | uint64_t deadline, |
| 2428 | void (^primitive_unlock)(void), |
| 2429 | void (^primitive_lock)(void)) |
| 2430 | { |
| 2431 | gate_wait_result_t ret; |
| 2432 | void_func_void func_after_interlock_unlock; |
| 2433 | wait_result_t wait_result; |
| 2434 | uintptr_t state; |
| 2435 | thread_t holder; |
| 2436 | bool waiters; |
| 2437 | |
| 2438 | gate_verify(gate); |
| 2439 | |
| 2440 | gate_ilock(gate); |
| 2441 | state = ordered_load_gate(gate); |
| 2442 | holder = GATE_STATE_TO_THREAD(state); |
| 2443 | |
| 2444 | if (holder == NULL) { |
| 2445 | gate_not_closed_panic(gate, true); |
| 2446 | } |
| 2447 | |
| 2448 | /* |
| 2449 | * Get a ref on the gate so it will not |
| 2450 | * be freed while we are coming back from the sleep. |
| 2451 | */ |
| 2452 | if (gate->gt_refs == UINT16_MAX) { |
| 2453 | gate_too_many_refs_panic(gate); |
| 2454 | } |
| 2455 | gate->gt_refs++; |
| 2456 | state |= GATE_WAITERS; |
| 2457 | ordered_store_gate(gate, state); |
| 2458 | |
| 2459 | /* |
| 2460 | * Release the primitive lock before any |
| 2461 | * turnstile operation. Turnstile |
| 2462 | * does not support a blocking primitive as |
| 2463 | * interlock. |
| 2464 | * |
| 2465 | * In this way, concurrent threads will be |
| 2466 | * able to acquire the primitive lock |
| 2467 | * but still will wait for me through the |
| 2468 | * gate interlock. |
| 2469 | */ |
| 2470 | primitive_unlock(); |
| 2471 | |
| 2472 | func_after_interlock_unlock = gate_wait_turnstile( gate, |
| 2473 | interruptible, |
| 2474 | deadline, |
| 2475 | holder, |
| 2476 | wait: &wait_result, |
| 2477 | waiters: &waiters); |
| 2478 | |
| 2479 | state = ordered_load_gate(gate); |
| 2480 | holder = GATE_STATE_TO_THREAD(state); |
| 2481 | |
| 2482 | switch (wait_result) { |
| 2483 | case THREAD_INTERRUPTED: |
| 2484 | case THREAD_TIMED_OUT: |
| 2485 | assert(holder != current_thread()); |
| 2486 | |
| 2487 | if (waiters) { |
| 2488 | state |= GATE_WAITERS; |
| 2489 | } else { |
| 2490 | state &= ~GATE_WAITERS; |
| 2491 | } |
| 2492 | ordered_store_gate(gate, state); |
| 2493 | |
| 2494 | if (wait_result == THREAD_INTERRUPTED) { |
| 2495 | ret = GATE_INTERRUPTED; |
| 2496 | } else { |
| 2497 | ret = GATE_TIMED_OUT; |
| 2498 | } |
| 2499 | break; |
| 2500 | default: |
| 2501 | /* |
| 2502 | * Note it is possible that even if the gate was handed off to |
| 2503 | * me, someone called gate_steal() before I woke up. |
| 2504 | * |
| 2505 | * As well as it is possible that the gate was opened, but someone |
| 2506 | * closed it while I was waking up. |
| 2507 | * |
| 2508 | * In both cases we return GATE_OPENED, as the gate was opened to me |
| 2509 | * at one point, it is the caller responsibility to check again if |
| 2510 | * the gate is open. |
| 2511 | */ |
| 2512 | if (holder == current_thread()) { |
| 2513 | ret = GATE_HANDOFF; |
| 2514 | } else { |
| 2515 | ret = GATE_OPENED; |
| 2516 | } |
| 2517 | break; |
| 2518 | } |
| 2519 | |
| 2520 | assert(gate->gt_refs > 0); |
| 2521 | uint32_t ref = --gate->gt_refs; |
| 2522 | bool to_free = gate->gt_alloc; |
| 2523 | gate_iunlock(gate); |
| 2524 | |
| 2525 | if (GATE_STATE_MASKED(state) == GATE_DESTROYED) { |
| 2526 | if (to_free == true) { |
| 2527 | assert(!waiters); |
| 2528 | if (ref == 0) { |
| 2529 | gate_free_internal(gate); |
| 2530 | } |
| 2531 | ret = GATE_OPENED; |
| 2532 | } else { |
| 2533 | gate_verify_destroy_panic(gate); |
| 2534 | } |
| 2535 | } |
| 2536 | |
| 2537 | /* |
| 2538 | * turnstile func that needs to be executed without |
| 2539 | * holding the primitive interlock |
| 2540 | */ |
| 2541 | func_after_interlock_unlock(); |
| 2542 | |
| 2543 | primitive_lock(); |
| 2544 | |
| 2545 | return ret; |
| 2546 | } |
| 2547 | |
| 2548 | static void |
| 2549 | gate_assert(gate_t *gate, int flags) |
| 2550 | { |
| 2551 | uintptr_t state; |
| 2552 | thread_t holder; |
| 2553 | |
| 2554 | gate_verify(gate); |
| 2555 | |
| 2556 | gate_ilock(gate); |
| 2557 | state = ordered_load_gate(gate); |
| 2558 | holder = GATE_STATE_TO_THREAD(state); |
| 2559 | |
| 2560 | switch (flags) { |
| 2561 | case GATE_ASSERT_CLOSED: |
| 2562 | assert(holder != NULL); |
| 2563 | break; |
| 2564 | case GATE_ASSERT_OPEN: |
| 2565 | assert(holder == NULL); |
| 2566 | break; |
| 2567 | case GATE_ASSERT_HELD: |
| 2568 | assert(holder == current_thread()); |
| 2569 | break; |
| 2570 | default: |
| 2571 | panic("invalid %s flag %d" , __func__, flags); |
| 2572 | } |
| 2573 | |
| 2574 | gate_iunlock(gate); |
| 2575 | } |
| 2576 | |
| 2577 | enum { |
| 2578 | GT_INIT_DEFAULT = 0, |
| 2579 | GT_INIT_ALLOC |
| 2580 | }; |
| 2581 | |
| 2582 | static void |
| 2583 | gate_init(gate_t *gate, uint type) |
| 2584 | { |
| 2585 | bzero(s: gate, n: sizeof(gate_t)); |
| 2586 | |
| 2587 | gate->gt_data = 0; |
| 2588 | gate->gt_turnstile = NULL; |
| 2589 | gate->gt_refs = 1; |
| 2590 | switch (type) { |
| 2591 | case GT_INIT_ALLOC: |
| 2592 | gate->gt_alloc = 1; |
| 2593 | break; |
| 2594 | default: |
| 2595 | gate->gt_alloc = 0; |
| 2596 | break; |
| 2597 | } |
| 2598 | gate->gt_type = GATE_TYPE; |
| 2599 | gate->gt_flags_pad = 0; |
| 2600 | } |
| 2601 | |
| 2602 | static gate_t* |
| 2603 | gate_alloc_init(void) |
| 2604 | { |
| 2605 | gate_t *gate; |
| 2606 | gate = zalloc_flags(KT_GATE, Z_WAITOK | Z_NOFAIL); |
| 2607 | gate_init(gate, type: GT_INIT_ALLOC); |
| 2608 | return gate; |
| 2609 | } |
| 2610 | |
| 2611 | __abortlike |
| 2612 | static void |
| 2613 | gate_destroy_owned_panic(gate_t *gate, thread_t holder) |
| 2614 | { |
| 2615 | panic("Trying to destroy a gate owned by %p. Gate %p" , holder, gate); |
| 2616 | } |
| 2617 | |
| 2618 | __abortlike |
| 2619 | static void |
| 2620 | gate_destroy_waiter_panic(gate_t *gate) |
| 2621 | { |
| 2622 | panic("Trying to destroy a gate with waiters. Gate %p data %lx turnstile %p" , gate, gate->gt_data, gate->gt_turnstile); |
| 2623 | } |
| 2624 | |
| 2625 | static uint16_t |
| 2626 | gate_destroy_internal(gate_t *gate) |
| 2627 | { |
| 2628 | uintptr_t state; |
| 2629 | thread_t holder; |
| 2630 | uint16_t ref; |
| 2631 | |
| 2632 | gate_ilock(gate); |
| 2633 | state = ordered_load_gate(gate); |
| 2634 | holder = GATE_STATE_TO_THREAD(state); |
| 2635 | |
| 2636 | /* |
| 2637 | * The gate must be open |
| 2638 | * and all the threads must |
| 2639 | * have been woken up by this time |
| 2640 | */ |
| 2641 | if (holder != NULL) { |
| 2642 | gate_destroy_owned_panic(gate, holder); |
| 2643 | } |
| 2644 | if (gate_has_waiter_bit(state)) { |
| 2645 | gate_destroy_waiter_panic(gate); |
| 2646 | } |
| 2647 | |
| 2648 | assert(gate->gt_refs > 0); |
| 2649 | |
| 2650 | ref = --gate->gt_refs; |
| 2651 | |
| 2652 | /* |
| 2653 | * Mark the gate as destroyed. |
| 2654 | * The interlock bit still need |
| 2655 | * to be available to let the |
| 2656 | * last wokenup threads to clear |
| 2657 | * the wait. |
| 2658 | */ |
| 2659 | state = GATE_DESTROYED; |
| 2660 | state |= GATE_ILOCK; |
| 2661 | ordered_store_gate(gate, state); |
| 2662 | gate_iunlock(gate); |
| 2663 | return ref; |
| 2664 | } |
| 2665 | |
| 2666 | __abortlike |
| 2667 | static void |
| 2668 | gate_destroy_panic(gate_t *gate) |
| 2669 | { |
| 2670 | panic("Trying to destroy a gate that was allocated by gate_alloc_init(). gate_free() should be used instead, gate %p thread %p" , gate, current_thread()); |
| 2671 | } |
| 2672 | |
| 2673 | static void |
| 2674 | gate_destroy(gate_t *gate) |
| 2675 | { |
| 2676 | gate_verify(gate); |
| 2677 | if (gate->gt_alloc == 1) { |
| 2678 | gate_destroy_panic(gate); |
| 2679 | } |
| 2680 | gate_destroy_internal(gate); |
| 2681 | } |
| 2682 | |
| 2683 | __abortlike |
| 2684 | static void |
| 2685 | gate_free_panic(gate_t *gate) |
| 2686 | { |
| 2687 | panic("Trying to free a gate that was not allocated by gate_alloc_init(), gate %p thread %p" , gate, current_thread()); |
| 2688 | } |
| 2689 | |
| 2690 | static void |
| 2691 | gate_free(gate_t *gate) |
| 2692 | { |
| 2693 | uint16_t ref; |
| 2694 | |
| 2695 | gate_verify(gate); |
| 2696 | |
| 2697 | if (gate->gt_alloc == 0) { |
| 2698 | gate_free_panic(gate); |
| 2699 | } |
| 2700 | |
| 2701 | ref = gate_destroy_internal(gate); |
| 2702 | /* |
| 2703 | * Some of the threads waiting on the gate |
| 2704 | * might still need to run after being woken up. |
| 2705 | * They will access the gate to cleanup the |
| 2706 | * state, so we cannot free it. |
| 2707 | * The last waiter will free the gate in this case. |
| 2708 | */ |
| 2709 | if (ref == 0) { |
| 2710 | gate_free_internal(gate); |
| 2711 | } |
| 2712 | } |
| 2713 | |
| 2714 | /* |
| 2715 | * Name: lck_rw_gate_init |
| 2716 | * |
| 2717 | * Description: initializes a variable declared with decl_lck_rw_gate_data. |
| 2718 | * |
| 2719 | * Args: |
| 2720 | * Arg1: lck_rw_t lock used to protect the gate. |
| 2721 | * Arg2: pointer to the gate data declared with decl_lck_rw_gate_data. |
| 2722 | */ |
| 2723 | void |
| 2724 | lck_rw_gate_init(lck_rw_t *lock, gate_t *gate) |
| 2725 | { |
| 2726 | (void) lock; |
| 2727 | gate_init(gate, type: GT_INIT_DEFAULT); |
| 2728 | } |
| 2729 | |
| 2730 | /* |
| 2731 | * Name: lck_rw_gate_alloc_init |
| 2732 | * |
| 2733 | * Description: allocates and initializes a gate_t. |
| 2734 | * |
| 2735 | * Args: |
| 2736 | * Arg1: lck_rw_t lock used to protect the gate. |
| 2737 | * |
| 2738 | * Returns: |
| 2739 | * gate_t allocated. |
| 2740 | */ |
| 2741 | gate_t* |
| 2742 | lck_rw_gate_alloc_init(lck_rw_t *lock) |
| 2743 | { |
| 2744 | (void) lock; |
| 2745 | return gate_alloc_init(); |
| 2746 | } |
| 2747 | |
| 2748 | /* |
| 2749 | * Name: lck_rw_gate_destroy |
| 2750 | * |
| 2751 | * Description: destroys a variable previously initialized |
| 2752 | * with lck_rw_gate_init(). |
| 2753 | * |
| 2754 | * Args: |
| 2755 | * Arg1: lck_rw_t lock used to protect the gate. |
| 2756 | * Arg2: pointer to the gate data declared with decl_lck_rw_gate_data. |
| 2757 | */ |
| 2758 | void |
| 2759 | lck_rw_gate_destroy(lck_rw_t *lock, gate_t *gate) |
| 2760 | { |
| 2761 | (void) lock; |
| 2762 | gate_destroy(gate); |
| 2763 | } |
| 2764 | |
| 2765 | /* |
| 2766 | * Name: lck_rw_gate_free |
| 2767 | * |
| 2768 | * Description: destroys and tries to free a gate previously allocated |
| 2769 | * with lck_rw_gate_alloc_init(). |
| 2770 | * The gate free might be delegated to the last thread returning |
| 2771 | * from the gate_wait(). |
| 2772 | * |
| 2773 | * Args: |
| 2774 | * Arg1: lck_rw_t lock used to protect the gate. |
| 2775 | * Arg2: pointer to the gate obtained with lck_rw_gate_alloc_init(). |
| 2776 | */ |
| 2777 | void |
| 2778 | lck_rw_gate_free(lck_rw_t *lock, gate_t *gate) |
| 2779 | { |
| 2780 | (void) lock; |
| 2781 | gate_free(gate); |
| 2782 | } |
| 2783 | |
| 2784 | /* |
| 2785 | * Name: lck_rw_gate_try_close |
| 2786 | * |
| 2787 | * Description: Tries to close the gate. |
| 2788 | * In case of success the current thread will be set as |
| 2789 | * the holder of the gate. |
| 2790 | * |
| 2791 | * Args: |
| 2792 | * Arg1: lck_rw_t lock used to protect the gate. |
| 2793 | * Arg2: pointer to the gate data declared with decl_lck_rw_gate_data. |
| 2794 | * |
| 2795 | * Conditions: Lock must be held. Returns with the lock held. |
| 2796 | * |
| 2797 | * Returns: |
| 2798 | * KERN_SUCCESS in case the gate was successfully closed. The current thread is the new holder |
| 2799 | * of the gate. |
| 2800 | * A matching lck_rw_gate_open() or lck_rw_gate_handoff() needs to be called later on |
| 2801 | * to wake up possible waiters on the gate before returning to userspace. |
| 2802 | * If the intent is to conditionally probe the gate before waiting, the lock must not be dropped |
| 2803 | * between the calls to lck_rw_gate_try_close() and lck_rw_gate_wait(). |
| 2804 | * |
| 2805 | * KERN_FAILURE in case the gate was already closed. Will panic if the current thread was already the holder of the gate. |
| 2806 | * lck_rw_gate_wait() should be called instead if the intent is to unconditionally wait on this gate. |
| 2807 | * The calls to lck_rw_gate_try_close() and lck_rw_gate_wait() should |
| 2808 | * be done without dropping the lock that is protecting the gate in between. |
| 2809 | */ |
| 2810 | int |
| 2811 | lck_rw_gate_try_close(__assert_only lck_rw_t *lock, gate_t *gate) |
| 2812 | { |
| 2813 | LCK_RW_ASSERT(lock, LCK_RW_ASSERT_HELD); |
| 2814 | |
| 2815 | return gate_try_close(gate); |
| 2816 | } |
| 2817 | |
| 2818 | /* |
| 2819 | * Name: lck_rw_gate_close |
| 2820 | * |
| 2821 | * Description: Closes the gate. The current thread will be set as |
| 2822 | * the holder of the gate. Will panic if the gate is already closed. |
| 2823 | * A matching lck_rw_gate_open() or lck_rw_gate_handoff() needs to be called later on |
| 2824 | * to wake up possible waiters on the gate before returning to userspace. |
| 2825 | * |
| 2826 | * Args: |
| 2827 | * Arg1: lck_rw_t lock used to protect the gate. |
| 2828 | * Arg2: pointer to the gate data declared with decl_lck_rw_gate_data. |
| 2829 | * |
| 2830 | * Conditions: Lock must be held. Returns with the lock held. |
| 2831 | * The gate must be open. |
| 2832 | * |
| 2833 | */ |
| 2834 | void |
| 2835 | lck_rw_gate_close(__assert_only lck_rw_t *lock, gate_t *gate) |
| 2836 | { |
| 2837 | LCK_RW_ASSERT(lock, LCK_RW_ASSERT_HELD); |
| 2838 | |
| 2839 | return gate_close(gate); |
| 2840 | } |
| 2841 | |
| 2842 | /* |
| 2843 | * Name: lck_rw_gate_open |
| 2844 | * |
| 2845 | * Description: Opens the gate and wakes up possible waiters. |
| 2846 | * |
| 2847 | * Args: |
| 2848 | * Arg1: lck_rw_t lock used to protect the gate. |
| 2849 | * Arg2: pointer to the gate data declared with decl_lck_rw_gate_data. |
| 2850 | * |
| 2851 | * Conditions: Lock must be held. Returns with the lock held. |
| 2852 | * The current thread must be the holder of the gate. |
| 2853 | * |
| 2854 | */ |
| 2855 | void |
| 2856 | lck_rw_gate_open(__assert_only lck_rw_t *lock, gate_t *gate) |
| 2857 | { |
| 2858 | LCK_RW_ASSERT(lock, LCK_RW_ASSERT_HELD); |
| 2859 | |
| 2860 | gate_open(gate); |
| 2861 | } |
| 2862 | |
| 2863 | /* |
| 2864 | * Name: lck_rw_gate_handoff |
| 2865 | * |
| 2866 | * Description: Tries to transfer the ownership of the gate. The waiter with highest sched |
| 2867 | * priority will be selected as the new holder of the gate, and woken up, |
| 2868 | * with the gate remaining in the closed state throughout. |
| 2869 | * If no waiters are present, the gate will be kept closed and KERN_NOT_WAITING |
| 2870 | * will be returned. |
| 2871 | * GATE_HANDOFF_OPEN_IF_NO_WAITERS flag can be used to specify if the gate should be opened in |
| 2872 | * case no waiters were found. |
| 2873 | * |
| 2874 | * |
| 2875 | * Args: |
| 2876 | * Arg1: lck_rw_t lock used to protect the gate. |
| 2877 | * Arg2: pointer to the gate data declared with decl_lck_rw_gate_data. |
| 2878 | * Arg3: flags - GATE_HANDOFF_DEFAULT or GATE_HANDOFF_OPEN_IF_NO_WAITERS |
| 2879 | * |
| 2880 | * Conditions: Lock must be held. Returns with the lock held. |
| 2881 | * The current thread must be the holder of the gate. |
| 2882 | * |
| 2883 | * Returns: |
| 2884 | * KERN_SUCCESS in case one of the waiters became the new holder. |
| 2885 | * KERN_NOT_WAITING in case there were no waiters. |
| 2886 | * |
| 2887 | */ |
| 2888 | kern_return_t |
| 2889 | lck_rw_gate_handoff(__assert_only lck_rw_t *lock, gate_t *gate, gate_handoff_flags_t flags) |
| 2890 | { |
| 2891 | LCK_RW_ASSERT(lock, LCK_RW_ASSERT_HELD); |
| 2892 | |
| 2893 | return gate_handoff(gate, flags); |
| 2894 | } |
| 2895 | |
| 2896 | /* |
| 2897 | * Name: lck_rw_gate_steal |
| 2898 | * |
| 2899 | * Description: Set the current ownership of the gate. It sets the current thread as the |
| 2900 | * new holder of the gate. |
| 2901 | * A matching lck_rw_gate_open() or lck_rw_gate_handoff() needs to be called later on |
| 2902 | * to wake up possible waiters on the gate before returning to userspace. |
| 2903 | * NOTE: the previous holder should not call lck_rw_gate_open() or lck_rw_gate_handoff() |
| 2904 | * anymore. |
| 2905 | * |
| 2906 | * |
| 2907 | * Args: |
| 2908 | * Arg1: lck_rw_t lock used to protect the gate. |
| 2909 | * Arg2: pointer to the gate data declared with decl_lck_rw_gate_data. |
| 2910 | * |
| 2911 | * Conditions: Lock must be held. Returns with the lock held. |
| 2912 | * The gate must be closed and the current thread must not already be the holder. |
| 2913 | * |
| 2914 | */ |
| 2915 | void |
| 2916 | lck_rw_gate_steal(__assert_only lck_rw_t *lock, gate_t *gate) |
| 2917 | { |
| 2918 | LCK_RW_ASSERT(lock, LCK_RW_ASSERT_HELD); |
| 2919 | |
| 2920 | gate_steal(gate); |
| 2921 | } |
| 2922 | |
| 2923 | /* |
| 2924 | * Name: lck_rw_gate_wait |
| 2925 | * |
| 2926 | * Description: Waits for the current thread to become the holder of the gate or for the |
| 2927 | * gate to become open. An interruptible mode and deadline can be specified |
| 2928 | * to return earlier from the wait. |
| 2929 | * |
| 2930 | * Args: |
| 2931 | * Arg1: lck_rw_t lock used to protect the gate. |
| 2932 | * Arg2: pointer to the gate data declared with decl_lck_rw_gate_data. |
| 2933 | * Arg3: sleep action. LCK_SLEEP_DEFAULT, LCK_SLEEP_SHARED, LCK_SLEEP_EXCLUSIVE, LCK_SLEEP_UNLOCK. |
| 2934 | * Arg3: interruptible flag for wait. |
| 2935 | * Arg4: deadline |
| 2936 | * |
| 2937 | * Conditions: Lock must be held. Returns with the lock held according to the sleep action specified. |
| 2938 | * Lock will be dropped while waiting. |
| 2939 | * The gate must be closed. |
| 2940 | * |
| 2941 | * Returns: Reason why the thread was woken up. |
| 2942 | * GATE_HANDOFF - the current thread was handed off the ownership of the gate. |
| 2943 | * A matching lck_rw_gate_open() or lck_rw_gate_handoff() needs to be called later on. |
| 2944 | * to wake up possible waiters on the gate before returning to userspace. |
| 2945 | * GATE_OPENED - the gate was opened by the holder. |
| 2946 | * GATE_TIMED_OUT - the thread was woken up by a timeout. |
| 2947 | * GATE_INTERRUPTED - the thread was interrupted while sleeping. |
| 2948 | */ |
| 2949 | gate_wait_result_t |
| 2950 | lck_rw_gate_wait(lck_rw_t *lock, gate_t *gate, lck_sleep_action_t lck_sleep_action, wait_interrupt_t interruptible, uint64_t deadline) |
| 2951 | { |
| 2952 | __block lck_rw_type_t lck_rw_type = LCK_RW_TYPE_EXCLUSIVE; |
| 2953 | |
| 2954 | LCK_RW_ASSERT(lock, LCK_RW_ASSERT_HELD); |
| 2955 | |
| 2956 | if (lck_sleep_action & LCK_SLEEP_UNLOCK) { |
| 2957 | return gate_wait(gate, |
| 2958 | interruptible, |
| 2959 | deadline, |
| 2960 | primitive_unlock: ^{lck_rw_type = lck_rw_done(lck: lock);}, |
| 2961 | primitive_lock: ^{;}); |
| 2962 | } else if (!(lck_sleep_action & (LCK_SLEEP_SHARED | LCK_SLEEP_EXCLUSIVE))) { |
| 2963 | return gate_wait(gate, |
| 2964 | interruptible, |
| 2965 | deadline, |
| 2966 | primitive_unlock: ^{lck_rw_type = lck_rw_done(lck: lock);}, |
| 2967 | primitive_lock: ^{lck_rw_lock(lck: lock, lck_rw_type);}); |
| 2968 | } else if (lck_sleep_action & LCK_SLEEP_EXCLUSIVE) { |
| 2969 | return gate_wait(gate, |
| 2970 | interruptible, |
| 2971 | deadline, |
| 2972 | primitive_unlock: ^{lck_rw_type = lck_rw_done(lck: lock);}, |
| 2973 | primitive_lock: ^{lck_rw_lock_exclusive(lck: lock);}); |
| 2974 | } else { |
| 2975 | return gate_wait(gate, |
| 2976 | interruptible, |
| 2977 | deadline, |
| 2978 | primitive_unlock: ^{lck_rw_type = lck_rw_done(lck: lock);}, |
| 2979 | primitive_lock: ^{lck_rw_lock_shared(lck: lock);}); |
| 2980 | } |
| 2981 | } |
| 2982 | |
| 2983 | /* |
| 2984 | * Name: lck_rw_gate_assert |
| 2985 | * |
| 2986 | * Description: asserts that the gate is in the specified state. |
| 2987 | * |
| 2988 | * Args: |
| 2989 | * Arg1: lck_rw_t lock used to protect the gate. |
| 2990 | * Arg2: pointer to the gate data declared with decl_lck_rw_gate_data. |
| 2991 | * Arg3: flags to specified assert type. |
| 2992 | * GATE_ASSERT_CLOSED - the gate is currently closed |
| 2993 | * GATE_ASSERT_OPEN - the gate is currently opened |
| 2994 | * GATE_ASSERT_HELD - the gate is currently closed and the current thread is the holder |
| 2995 | */ |
| 2996 | void |
| 2997 | lck_rw_gate_assert(__assert_only lck_rw_t *lock, gate_t *gate, gate_assert_flags_t flags) |
| 2998 | { |
| 2999 | LCK_RW_ASSERT(lock, LCK_RW_ASSERT_HELD); |
| 3000 | |
| 3001 | gate_assert(gate, flags); |
| 3002 | return; |
| 3003 | } |
| 3004 | |
| 3005 | /* |
| 3006 | * Name: lck_mtx_gate_init |
| 3007 | * |
| 3008 | * Description: initializes a variable declared with decl_lck_mtx_gate_data. |
| 3009 | * |
| 3010 | * Args: |
| 3011 | * Arg1: lck_mtx_t lock used to protect the gate. |
| 3012 | * Arg2: pointer to the gate data declared with decl_lck_mtx_gate_data. |
| 3013 | */ |
| 3014 | void |
| 3015 | lck_mtx_gate_init(lck_mtx_t *lock, gate_t *gate) |
| 3016 | { |
| 3017 | (void) lock; |
| 3018 | gate_init(gate, type: GT_INIT_DEFAULT); |
| 3019 | } |
| 3020 | |
| 3021 | /* |
| 3022 | * Name: lck_mtx_gate_alloc_init |
| 3023 | * |
| 3024 | * Description: allocates and initializes a gate_t. |
| 3025 | * |
| 3026 | * Args: |
| 3027 | * Arg1: lck_mtx_t lock used to protect the gate. |
| 3028 | * |
| 3029 | * Returns: |
| 3030 | * gate_t allocated. |
| 3031 | */ |
| 3032 | gate_t* |
| 3033 | lck_mtx_gate_alloc_init(lck_mtx_t *lock) |
| 3034 | { |
| 3035 | (void) lock; |
| 3036 | return gate_alloc_init(); |
| 3037 | } |
| 3038 | |
| 3039 | /* |
| 3040 | * Name: lck_mtx_gate_destroy |
| 3041 | * |
| 3042 | * Description: destroys a variable previously initialized |
| 3043 | * with lck_mtx_gate_init(). |
| 3044 | * |
| 3045 | * Args: |
| 3046 | * Arg1: lck_mtx_t lock used to protect the gate. |
| 3047 | * Arg2: pointer to the gate data declared with decl_lck_mtx_gate_data. |
| 3048 | */ |
| 3049 | void |
| 3050 | lck_mtx_gate_destroy(lck_mtx_t *lock, gate_t *gate) |
| 3051 | { |
| 3052 | (void) lock; |
| 3053 | gate_destroy(gate); |
| 3054 | } |
| 3055 | |
| 3056 | /* |
| 3057 | * Name: lck_mtx_gate_free |
| 3058 | * |
| 3059 | * Description: destroys and tries to free a gate previously allocated |
| 3060 | * with lck_mtx_gate_alloc_init(). |
| 3061 | * The gate free might be delegated to the last thread returning |
| 3062 | * from the gate_wait(). |
| 3063 | * |
| 3064 | * Args: |
| 3065 | * Arg1: lck_mtx_t lock used to protect the gate. |
| 3066 | * Arg2: pointer to the gate obtained with lck_rw_gate_alloc_init(). |
| 3067 | */ |
| 3068 | void |
| 3069 | lck_mtx_gate_free(lck_mtx_t *lock, gate_t *gate) |
| 3070 | { |
| 3071 | (void) lock; |
| 3072 | gate_free(gate); |
| 3073 | } |
| 3074 | |
| 3075 | /* |
| 3076 | * Name: lck_mtx_gate_try_close |
| 3077 | * |
| 3078 | * Description: Tries to close the gate. |
| 3079 | * In case of success the current thread will be set as |
| 3080 | * the holder of the gate. |
| 3081 | * |
| 3082 | * Args: |
| 3083 | * Arg1: lck_mtx_t lock used to protect the gate. |
| 3084 | * Arg2: pointer to the gate data declared with decl_lck_mtx_gate_data. |
| 3085 | * |
| 3086 | * Conditions: Lock must be held. Returns with the lock held. |
| 3087 | * |
| 3088 | * Returns: |
| 3089 | * KERN_SUCCESS in case the gate was successfully closed. The current thread is the new holder |
| 3090 | * of the gate. |
| 3091 | * A matching lck_mtx_gate_open() or lck_mtx_gate_handoff() needs to be called later on |
| 3092 | * to wake up possible waiters on the gate before returning to userspace. |
| 3093 | * If the intent is to conditionally probe the gate before waiting, the lock must not be dropped |
| 3094 | * between the calls to lck_mtx_gate_try_close() and lck_mtx_gate_wait(). |
| 3095 | * |
| 3096 | * KERN_FAILURE in case the gate was already closed. Will panic if the current thread was already the holder of the gate. |
| 3097 | * lck_mtx_gate_wait() should be called instead if the intent is to unconditionally wait on this gate. |
| 3098 | * The calls to lck_mtx_gate_try_close() and lck_mtx_gate_wait() should |
| 3099 | * be done without dropping the lock that is protecting the gate in between. |
| 3100 | */ |
| 3101 | int |
| 3102 | lck_mtx_gate_try_close(__assert_only lck_mtx_t *lock, gate_t *gate) |
| 3103 | { |
| 3104 | LCK_MTX_ASSERT(lock, LCK_MTX_ASSERT_OWNED); |
| 3105 | |
| 3106 | return gate_try_close(gate); |
| 3107 | } |
| 3108 | |
| 3109 | /* |
| 3110 | * Name: lck_mtx_gate_close |
| 3111 | * |
| 3112 | * Description: Closes the gate. The current thread will be set as |
| 3113 | * the holder of the gate. Will panic if the gate is already closed. |
| 3114 | * A matching lck_mtx_gate_open() or lck_mtx_gate_handoff() needs to be called later on |
| 3115 | * to wake up possible waiters on the gate before returning to userspace. |
| 3116 | * |
| 3117 | * Args: |
| 3118 | * Arg1: lck_mtx_t lock used to protect the gate. |
| 3119 | * Arg2: pointer to the gate data declared with decl_lck_mtx_gate_data. |
| 3120 | * |
| 3121 | * Conditions: Lock must be held. Returns with the lock held. |
| 3122 | * The gate must be open. |
| 3123 | * |
| 3124 | */ |
| 3125 | void |
| 3126 | lck_mtx_gate_close(__assert_only lck_mtx_t *lock, gate_t *gate) |
| 3127 | { |
| 3128 | LCK_MTX_ASSERT(lock, LCK_MTX_ASSERT_OWNED); |
| 3129 | |
| 3130 | return gate_close(gate); |
| 3131 | } |
| 3132 | |
| 3133 | /* |
| 3134 | * Name: lck_mtx_gate_open |
| 3135 | * |
| 3136 | * Description: Opens of the gate and wakes up possible waiters. |
| 3137 | * |
| 3138 | * Args: |
| 3139 | * Arg1: lck_mtx_t lock used to protect the gate. |
| 3140 | * Arg2: pointer to the gate data declared with decl_lck_mtx_gate_data. |
| 3141 | * |
| 3142 | * Conditions: Lock must be held. Returns with the lock held. |
| 3143 | * The current thread must be the holder of the gate. |
| 3144 | * |
| 3145 | */ |
| 3146 | void |
| 3147 | lck_mtx_gate_open(__assert_only lck_mtx_t *lock, gate_t *gate) |
| 3148 | { |
| 3149 | LCK_MTX_ASSERT(lock, LCK_MTX_ASSERT_OWNED); |
| 3150 | |
| 3151 | gate_open(gate); |
| 3152 | } |
| 3153 | |
| 3154 | /* |
| 3155 | * Name: lck_mtx_gate_handoff |
| 3156 | * |
| 3157 | * Description: Tries to transfer the ownership of the gate. The waiter with highest sched |
| 3158 | * priority will be selected as the new holder of the gate, and woken up, |
| 3159 | * with the gate remaining in the closed state throughout. |
| 3160 | * If no waiters are present, the gate will be kept closed and KERN_NOT_WAITING |
| 3161 | * will be returned. |
| 3162 | * GATE_HANDOFF_OPEN_IF_NO_WAITERS flag can be used to specify if the gate should be opened in |
| 3163 | * case no waiters were found. |
| 3164 | * |
| 3165 | * |
| 3166 | * Args: |
| 3167 | * Arg1: lck_mtx_t lock used to protect the gate. |
| 3168 | * Arg2: pointer to the gate data declared with decl_lck_mtx_gate_data. |
| 3169 | * Arg3: flags - GATE_HANDOFF_DEFAULT or GATE_HANDOFF_OPEN_IF_NO_WAITERS |
| 3170 | * |
| 3171 | * Conditions: Lock must be held. Returns with the lock held. |
| 3172 | * The current thread must be the holder of the gate. |
| 3173 | * |
| 3174 | * Returns: |
| 3175 | * KERN_SUCCESS in case one of the waiters became the new holder. |
| 3176 | * KERN_NOT_WAITING in case there were no waiters. |
| 3177 | * |
| 3178 | */ |
| 3179 | kern_return_t |
| 3180 | lck_mtx_gate_handoff(__assert_only lck_mtx_t *lock, gate_t *gate, gate_handoff_flags_t flags) |
| 3181 | { |
| 3182 | LCK_MTX_ASSERT(lock, LCK_MTX_ASSERT_OWNED); |
| 3183 | |
| 3184 | return gate_handoff(gate, flags); |
| 3185 | } |
| 3186 | |
| 3187 | /* |
| 3188 | * Name: lck_mtx_gate_steal |
| 3189 | * |
| 3190 | * Description: Steals the ownership of the gate. It sets the current thread as the |
| 3191 | * new holder of the gate. |
| 3192 | * A matching lck_mtx_gate_open() or lck_mtx_gate_handoff() needs to be called later on |
| 3193 | * to wake up possible waiters on the gate before returning to userspace. |
| 3194 | * NOTE: the previous holder should not call lck_mtx_gate_open() or lck_mtx_gate_handoff() |
| 3195 | * anymore. |
| 3196 | * |
| 3197 | * |
| 3198 | * Args: |
| 3199 | * Arg1: lck_mtx_t lock used to protect the gate. |
| 3200 | * Arg2: pointer to the gate data declared with decl_lck_mtx_gate_data. |
| 3201 | * |
| 3202 | * Conditions: Lock must be held. Returns with the lock held. |
| 3203 | * The gate must be closed and the current thread must not already be the holder. |
| 3204 | * |
| 3205 | */ |
| 3206 | void |
| 3207 | lck_mtx_gate_steal(__assert_only lck_mtx_t *lock, gate_t *gate) |
| 3208 | { |
| 3209 | LCK_MTX_ASSERT(lock, LCK_MTX_ASSERT_OWNED); |
| 3210 | |
| 3211 | gate_steal(gate); |
| 3212 | } |
| 3213 | |
| 3214 | /* |
| 3215 | * Name: lck_mtx_gate_wait |
| 3216 | * |
| 3217 | * Description: Waits for the current thread to become the holder of the gate or for the |
| 3218 | * gate to become open. An interruptible mode and deadline can be specified |
| 3219 | * to return earlier from the wait. |
| 3220 | * |
| 3221 | * Args: |
| 3222 | * Arg1: lck_mtx_t lock used to protect the gate. |
| 3223 | * Arg2: pointer to the gate data declared with decl_lck_mtx_gate_data. |
| 3224 | * Arg3: sleep action. LCK_SLEEP_DEFAULT, LCK_SLEEP_UNLOCK, LCK_SLEEP_SPIN, LCK_SLEEP_SPIN_ALWAYS. |
| 3225 | * Arg3: interruptible flag for wait. |
| 3226 | * Arg4: deadline |
| 3227 | * |
| 3228 | * Conditions: Lock must be held. Returns with the lock held according to the sleep action specified. |
| 3229 | * Lock will be dropped while waiting. |
| 3230 | * The gate must be closed. |
| 3231 | * |
| 3232 | * Returns: Reason why the thread was woken up. |
| 3233 | * GATE_HANDOFF - the current thread was handed off the ownership of the gate. |
| 3234 | * A matching lck_mtx_gate_open() or lck_mtx_gate_handoff() needs to be called later on |
| 3235 | * to wake up possible waiters on the gate before returning to userspace. |
| 3236 | * GATE_OPENED - the gate was opened by the holder. |
| 3237 | * GATE_TIMED_OUT - the thread was woken up by a timeout. |
| 3238 | * GATE_INTERRUPTED - the thread was interrupted while sleeping. |
| 3239 | */ |
| 3240 | gate_wait_result_t |
| 3241 | lck_mtx_gate_wait(lck_mtx_t *lock, gate_t *gate, lck_sleep_action_t lck_sleep_action, wait_interrupt_t interruptible, uint64_t deadline) |
| 3242 | { |
| 3243 | LCK_MTX_ASSERT(lock, LCK_MTX_ASSERT_OWNED); |
| 3244 | |
| 3245 | if (lck_sleep_action & LCK_SLEEP_UNLOCK) { |
| 3246 | return gate_wait(gate, |
| 3247 | interruptible, |
| 3248 | deadline, |
| 3249 | primitive_unlock: ^{lck_mtx_unlock(lck: lock);}, |
| 3250 | primitive_lock: ^{;}); |
| 3251 | } else if (lck_sleep_action & LCK_SLEEP_SPIN) { |
| 3252 | return gate_wait(gate, |
| 3253 | interruptible, |
| 3254 | deadline, |
| 3255 | primitive_unlock: ^{lck_mtx_unlock(lck: lock);}, |
| 3256 | primitive_lock: ^{lck_mtx_lock_spin(lck: lock);}); |
| 3257 | } else if (lck_sleep_action & LCK_SLEEP_SPIN_ALWAYS) { |
| 3258 | return gate_wait(gate, |
| 3259 | interruptible, |
| 3260 | deadline, |
| 3261 | primitive_unlock: ^{lck_mtx_unlock(lck: lock);}, |
| 3262 | primitive_lock: ^{lck_mtx_lock_spin_always(lck: lock);}); |
| 3263 | } else { |
| 3264 | return gate_wait(gate, |
| 3265 | interruptible, |
| 3266 | deadline, |
| 3267 | primitive_unlock: ^{lck_mtx_unlock(lck: lock);}, |
| 3268 | primitive_lock: ^{lck_mtx_lock(lck: lock);}); |
| 3269 | } |
| 3270 | } |
| 3271 | |
| 3272 | /* |
| 3273 | * Name: lck_mtx_gate_assert |
| 3274 | * |
| 3275 | * Description: asserts that the gate is in the specified state. |
| 3276 | * |
| 3277 | * Args: |
| 3278 | * Arg1: lck_mtx_t lock used to protect the gate. |
| 3279 | * Arg2: pointer to the gate data declared with decl_lck_mtx_gate_data. |
| 3280 | * Arg3: flags to specified assert type. |
| 3281 | * GATE_ASSERT_CLOSED - the gate is currently closed |
| 3282 | * GATE_ASSERT_OPEN - the gate is currently opened |
| 3283 | * GATE_ASSERT_HELD - the gate is currently closed and the current thread is the holder |
| 3284 | */ |
| 3285 | void |
| 3286 | lck_mtx_gate_assert(__assert_only lck_mtx_t *lock, gate_t *gate, gate_assert_flags_t flags) |
| 3287 | { |
| 3288 | LCK_MTX_ASSERT(lock, LCK_MTX_ASSERT_OWNED); |
| 3289 | |
| 3290 | gate_assert(gate, flags); |
| 3291 | } |
| 3292 | |
| 3293 | #pragma mark - LCK_*_DECLARE support |
| 3294 | |
| 3295 | __startup_func |
| 3296 | void |
| 3297 | lck_spin_startup_init(struct lck_spin_startup_spec *sp) |
| 3298 | { |
| 3299 | lck_spin_init(lck: sp->lck, grp: sp->lck_grp, attr: sp->lck_attr); |
| 3300 | } |
| 3301 | |
| 3302 | __startup_func |
| 3303 | void |
| 3304 | lck_mtx_startup_init(struct lck_mtx_startup_spec *sp) |
| 3305 | { |
| 3306 | lck_mtx_init(lck: sp->lck, grp: sp->lck_grp, attr: sp->lck_attr); |
| 3307 | } |
| 3308 | |
| 3309 | __startup_func |
| 3310 | void |
| 3311 | lck_rw_startup_init(struct lck_rw_startup_spec *sp) |
| 3312 | { |
| 3313 | lck_rw_init(lck: sp->lck, grp: sp->lck_grp, attr: sp->lck_attr); |
| 3314 | } |
| 3315 | |
| 3316 | __startup_func |
| 3317 | void |
| 3318 | usimple_lock_startup_init(struct usimple_lock_startup_spec *sp) |
| 3319 | { |
| 3320 | simple_lock_init(sp->lck, sp->lck_init_arg); |
| 3321 | } |
| 3322 | |
| 3323 | __startup_func |
| 3324 | void |
| 3325 | lck_ticket_startup_init(struct lck_ticket_startup_spec *sp) |
| 3326 | { |
| 3327 | lck_ticket_init(tlock: sp->lck, grp: sp->lck_grp); |
| 3328 | } |
| 3329 | |