| 1 | /* |
| 2 | * Copyright (c) 2022 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
| 5 | * |
| 6 | * This file contains Original Code and/or Modifications of Original Code |
| 7 | * as defined in and that are subject to the Apple Public Source License |
| 8 | * Version 2.0 (the 'License'). You may not use this file except in |
| 9 | * compliance with the License. The rights granted to you under the License |
| 10 | * may not be used to create, or enable the creation or redistribution of, |
| 11 | * unlawful or unlicensed copies of an Apple operating system, or to |
| 12 | * circumvent, violate, or enable the circumvention or violation of, any |
| 13 | * terms of an Apple operating system software license agreement. |
| 14 | * |
| 15 | * Please obtain a copy of the License at |
| 16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
| 17 | * |
| 18 | * The Original Code and all software distributed under the License are |
| 19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| 23 | * Please see the License for the specific language governing rights and |
| 24 | * limitations under the License. |
| 25 | * |
| 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
| 27 | */ |
| 28 | |
| 29 | #define LOCK_PRIVATE 1 |
| 30 | |
| 31 | #include <mach_ldebug.h> |
| 32 | #include <kern/locks_internal.h> |
| 33 | #include <kern/lock_stat.h> |
| 34 | #include <kern/locks.h> |
| 35 | #include <kern/kalloc.h> |
| 36 | #include <kern/thread.h> |
| 37 | |
| 38 | #include <mach/machine/sdt.h> |
| 39 | |
| 40 | #include <machine/cpu_data.h> |
| 41 | #include <machine/machine_cpu.h> |
| 42 | |
| 43 | #if !LCK_MTX_USE_ARCH |
| 44 | |
| 45 | /* |
| 46 | * lck_mtx_t |
| 47 | * ~~~~~~~~~ |
| 48 | * |
| 49 | * Kernel mutexes in this implementation are made of four 32 bits words: |
| 50 | * |
| 51 | * - word 0: turnstile compact ID (24 bits) and the 0x22 lock tag |
| 52 | * - word 1: padding (to be used for group compact IDs) |
| 53 | * - word 2: mutex state (lock owner + interlock, spin and waiters bits), |
| 54 | * refered to as "data" in the code. |
| 55 | * - word 3: adaptive spin and interlock MCS queue tails. |
| 56 | * |
| 57 | * The 64 bits word made of the last two words is refered to |
| 58 | * as the "mutex state" in code. |
| 59 | * |
| 60 | * |
| 61 | * Core serialization rules |
| 62 | * ~~~~~~~~~~~~~~~~~~~~~~~~ |
| 63 | * |
| 64 | * The mutex has a bit (lck_mtx_t::lck_mtx.ilocked or bit LCK_MTX_ILOCK |
| 65 | * of the data word) that serves as a spinlock for the mutex state. |
| 66 | * |
| 67 | * |
| 68 | * Updating the lock fields must follow the following rules: |
| 69 | * |
| 70 | * - It is ok to "steal" the mutex (updating its data field) if no one |
| 71 | * holds the interlock. |
| 72 | * |
| 73 | * - Holding the interlock allows its holder to update the first 3 words |
| 74 | * of the kernel mutex without using RMW atomics (plain stores are OK). |
| 75 | * |
| 76 | * - Holding the interlock is required for a thread to remove itself |
| 77 | * from the adaptive spin queue. |
| 78 | * |
| 79 | * - Threads can enqueue themselves onto the adaptive spin wait queue |
| 80 | * or the interlock wait queue at any time. |
| 81 | * |
| 82 | * |
| 83 | * Waiters bit and turnstiles |
| 84 | * ~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| 85 | * |
| 86 | * The turnstile on a kernel mutex is set by waiters, and cleared |
| 87 | * once they have all been resumed and successfully acquired the lock. |
| 88 | * |
| 89 | * LCK_MTX_NEEDS_WAKEUP being set (always with an owner set too) |
| 90 | * forces threads to the lck_mtx_unlock slowpath, |
| 91 | * in order to evaluate whether lck_mtx_unlock_wakeup() must be called. |
| 92 | * |
| 93 | * As a result it means it really only needs to be set at select times: |
| 94 | * |
| 95 | * - when a thread blocks and "snitches" on the current thread owner, |
| 96 | * so that when that thread unlocks it calls wake up, |
| 97 | * |
| 98 | * - when a thread that was woken up resumes its work and became |
| 99 | * the inheritor. |
| 100 | */ |
| 101 | |
| 102 | #define ADAPTIVE_SPIN_ENABLE 0x1 |
| 103 | |
| 104 | #define NOINLINE __attribute__((noinline)) |
| 105 | #define LCK_MTX_EVENT(lck) CAST_EVENT64_T(&(lck)->lck_mtx.data) |
| 106 | #define LCK_EVENT_TO_MUTEX(e) __container_of((uint32_t *)(e), lck_mtx_t, lck_mtx.data) |
| 107 | #define LCK_MTX_HAS_WAITERS(l) ((l)->lck_mtx.data & LCK_MTX_NEEDS_WAKEUP) |
| 108 | |
| 109 | #if DEVELOPMENT || DEBUG |
| 110 | TUNABLE(bool, LckDisablePreemptCheck, "-disable_mtx_chk" , false); |
| 111 | #endif /* DEVELOPMENT || DEBUG */ |
| 112 | |
| 113 | extern unsigned int not_in_kdp; |
| 114 | |
| 115 | KALLOC_TYPE_DEFINE(KT_LCK_MTX, lck_mtx_t, KT_PRIV_ACCT); |
| 116 | |
| 117 | #define LCK_MTX_NULL_CTID 0x00000000u |
| 118 | |
| 119 | __enum_decl(lck_mtx_mode_t, uint32_t, { |
| 120 | LCK_MTX_MODE_SLEEPABLE, |
| 121 | LCK_MTX_MODE_SPIN, |
| 122 | LCK_MTX_MODE_SPIN_ALWAYS, |
| 123 | }); |
| 124 | |
| 125 | __enum_decl(lck_ilk_mode_t, uint32_t, { |
| 126 | LCK_ILK_MODE_UNLOCK, |
| 127 | LCK_ILK_MODE_DIRECT, |
| 128 | LCK_ILK_MODE_FROM_AS, |
| 129 | }); |
| 130 | |
| 131 | static inline void |
| 132 | lck_mtx_mcs_clear(lck_mtx_mcs_t mcs) |
| 133 | { |
| 134 | *mcs = (struct lck_mtx_mcs){ }; |
| 135 | } |
| 136 | |
| 137 | static inline lck_mcs_id_t |
| 138 | lck_mtx_get_mcs_id(void) |
| 139 | { |
| 140 | return lck_mcs_id_current(LCK_MCS_SLOT_0); |
| 141 | } |
| 142 | |
| 143 | __pure2 |
| 144 | static inline lck_mtx_mcs_t |
| 145 | lck_mtx_get_mcs(lck_mcs_id_t idx) |
| 146 | { |
| 147 | return &lck_mcs_get_other(mcs_id: idx)->mcs_mtx; |
| 148 | } |
| 149 | |
| 150 | |
| 151 | #pragma mark lck_mtx_t: validation |
| 152 | |
| 153 | __abortlike |
| 154 | static void |
| 155 | __lck_mtx_invalid_panic(lck_mtx_t *lck) |
| 156 | { |
| 157 | panic("Invalid/destroyed mutex %p: " |
| 158 | "<0x%06x 0x%02x 0x%08x 0x%08x/%p 0x%04x 0x%04x>" , |
| 159 | lck, lck->lck_mtx_tsid, lck->lck_mtx_type, lck->lck_mtx_grp, |
| 160 | lck->lck_mtx.data, ctid_get_thread_unsafe(lck->lck_mtx.owner), |
| 161 | lck->lck_mtx.as_tail, lck->lck_mtx.ilk_tail); |
| 162 | } |
| 163 | |
| 164 | __abortlike |
| 165 | static void |
| 166 | __lck_mtx_not_owned_panic(lck_mtx_t *lock, thread_t thread) |
| 167 | { |
| 168 | panic("Mutex %p is unexpectedly not owned by thread %p" , lock, thread); |
| 169 | } |
| 170 | |
| 171 | __abortlike |
| 172 | static void |
| 173 | __lck_mtx_owned_panic(lck_mtx_t *lock, thread_t thread) |
| 174 | { |
| 175 | panic("Mutex %p is unexpectedly owned by thread %p" , lock, thread); |
| 176 | } |
| 177 | |
| 178 | __abortlike |
| 179 | static void |
| 180 | __lck_mtx_lock_is_sleepable_panic(lck_mtx_t *lck) |
| 181 | { |
| 182 | // "Always" variants can never block. If the lock is held as a normal mutex |
| 183 | // then someone is mixing always and non-always calls on the same lock, which is |
| 184 | // forbidden. |
| 185 | panic("Mutex %p is held as a full-mutex (spin-always lock attempted)" , lck); |
| 186 | } |
| 187 | |
| 188 | #if DEVELOPMENT || DEBUG |
| 189 | __abortlike |
| 190 | static void |
| 191 | __lck_mtx_preemption_disabled_panic(lck_mtx_t *lck, int expected) |
| 192 | { |
| 193 | panic("Attempt to take mutex %p with preemption disabled (%d)" , |
| 194 | lck, get_preemption_level() - expected); |
| 195 | } |
| 196 | |
| 197 | __abortlike |
| 198 | static void |
| 199 | __lck_mtx_at_irq_panic(lck_mtx_t *lck) |
| 200 | { |
| 201 | panic("Attempt to take mutex %p in IRQ context" , lck); |
| 202 | } |
| 203 | |
| 204 | /* |
| 205 | * Routine: lck_mtx_check_preemption |
| 206 | * |
| 207 | * Verify preemption is enabled when attempting to acquire a mutex. |
| 208 | */ |
| 209 | static inline void |
| 210 | lck_mtx_check_preemption(lck_mtx_t *lock, thread_t thread, int expected) |
| 211 | { |
| 212 | #pragma unused(thread) |
| 213 | if (lock_preemption_level_for_thread(thread) == expected) { |
| 214 | return; |
| 215 | } |
| 216 | if (LckDisablePreemptCheck) { |
| 217 | return; |
| 218 | } |
| 219 | if (current_cpu_datap()->cpu_hibernate) { |
| 220 | return; |
| 221 | } |
| 222 | if (startup_phase < STARTUP_SUB_EARLY_BOOT) { |
| 223 | return; |
| 224 | } |
| 225 | __lck_mtx_preemption_disabled_panic(lock, expected); |
| 226 | } |
| 227 | |
| 228 | static inline void |
| 229 | lck_mtx_check_irq(lck_mtx_t *lock) |
| 230 | { |
| 231 | if (ml_at_interrupt_context()) { |
| 232 | __lck_mtx_at_irq_panic(lock); |
| 233 | } |
| 234 | } |
| 235 | |
| 236 | #define LCK_MTX_SNIFF_PREEMPTION(thread) lock_preemption_level_for_thread(thread) |
| 237 | #define LCK_MTX_CHECK_INVARIANTS 1 |
| 238 | #else |
| 239 | #define lck_mtx_check_irq(lck) ((void)0) |
| 240 | #define LCK_MTX_SNIFF_PREEMPTION(thread) 0 |
| 241 | #define LCK_MTX_CHECK_INVARIANTS 0 |
| 242 | #endif /* !DEVELOPMENT && !DEBUG */ |
| 243 | |
| 244 | #if CONFIG_DTRACE |
| 245 | #define LCK_MTX_SNIFF_DTRACE() lck_debug_state.lds_value |
| 246 | #else |
| 247 | #define LCK_MTX_SNIFF_DTRACE() 0 |
| 248 | #endif |
| 249 | |
| 250 | |
| 251 | #pragma mark lck_mtx_t: alloc/init/destroy/free |
| 252 | |
| 253 | lck_mtx_t * |
| 254 | lck_mtx_alloc_init(lck_grp_t *grp, lck_attr_t *attr) |
| 255 | { |
| 256 | lck_mtx_t *lck; |
| 257 | |
| 258 | lck = zalloc(kt_view: KT_LCK_MTX); |
| 259 | lck_mtx_init(lck, grp, attr); |
| 260 | return lck; |
| 261 | } |
| 262 | |
| 263 | void |
| 264 | lck_mtx_free(lck_mtx_t *lck, lck_grp_t *grp) |
| 265 | { |
| 266 | lck_mtx_destroy(lck, grp); |
| 267 | zfree(KT_LCK_MTX, lck); |
| 268 | } |
| 269 | |
| 270 | void |
| 271 | lck_mtx_init(lck_mtx_t *lck, lck_grp_t *grp, lck_attr_t *attr) |
| 272 | { |
| 273 | if (attr == LCK_ATTR_NULL) { |
| 274 | attr = &lck_attr_default; |
| 275 | } |
| 276 | |
| 277 | *lck = (lck_mtx_t){ |
| 278 | .lck_mtx_type = LCK_TYPE_MUTEX, |
| 279 | .lck_mtx_grp = grp->lck_grp_attr_id, |
| 280 | }; |
| 281 | if (attr->lck_attr_val & LCK_ATTR_DEBUG) { |
| 282 | lck->lck_mtx.data |= LCK_MTX_PROFILE; |
| 283 | } |
| 284 | |
| 285 | lck_grp_reference(grp, cnt: &grp->lck_grp_mtxcnt); |
| 286 | } |
| 287 | |
| 288 | void |
| 289 | lck_mtx_destroy(lck_mtx_t *lck, lck_grp_t *grp) |
| 290 | { |
| 291 | if (lck->lck_mtx_tsid && lck->lck_mtx_type == LCK_TYPE_MUTEX) { |
| 292 | panic("Mutex to destroy still has waiters: %p: " |
| 293 | "<0x%06x 0x%02x 0x%08x 0x%08x/%p 0x%04x 0x%04x>" , |
| 294 | lck, lck->lck_mtx_tsid, lck->lck_mtx_type, lck->lck_mtx_grp, |
| 295 | lck->lck_mtx.data, ctid_get_thread_unsafe(lck->lck_mtx.owner), |
| 296 | lck->lck_mtx.as_tail, lck->lck_mtx.ilk_tail); |
| 297 | } |
| 298 | if (lck->lck_mtx_type != LCK_TYPE_MUTEX || |
| 299 | (lck->lck_mtx.data & ~LCK_MTX_PROFILE) || |
| 300 | lck->lck_mtx.as_tail || lck->lck_mtx.ilk_tail) { |
| 301 | __lck_mtx_invalid_panic(lck); |
| 302 | } |
| 303 | LCK_GRP_ASSERT_ID(grp, lck->lck_mtx_grp); |
| 304 | lck->lck_mtx_type = LCK_TYPE_NONE; |
| 305 | lck->lck_mtx.data = LCK_MTX_TAG_DESTROYED; |
| 306 | lck->lck_mtx_grp = 0; |
| 307 | lck_grp_deallocate(grp, cnt: &grp->lck_grp_mtxcnt); |
| 308 | } |
| 309 | |
| 310 | |
| 311 | #pragma mark lck_mtx_t: lck_mtx_ilk* |
| 312 | |
| 313 | static hw_spin_timeout_status_t |
| 314 | lck_mtx_ilk_timeout_panic(void *_lock, hw_spin_timeout_t to, hw_spin_state_t st) |
| 315 | { |
| 316 | lck_mtx_t *lck = _lock; |
| 317 | |
| 318 | panic("Mutex interlock[%p] " HW_SPIN_TIMEOUT_FMT "; " |
| 319 | "current owner: %p, " |
| 320 | "<0x%06x 0x%02x 0x%08x 0x%08x 0x%04x 0x%04x>, " |
| 321 | HW_SPIN_TIMEOUT_DETAILS_FMT, |
| 322 | lck, HW_SPIN_TIMEOUT_ARG(to, st), |
| 323 | ctid_get_thread_unsafe(lck->lck_mtx.owner), |
| 324 | lck->lck_mtx_tsid, lck->lck_mtx_type, |
| 325 | lck->lck_mtx_grp, lck->lck_mtx.data, |
| 326 | lck->lck_mtx.as_tail, lck->lck_mtx.ilk_tail, |
| 327 | HW_SPIN_TIMEOUT_DETAILS_ARG(to, st)); |
| 328 | } |
| 329 | |
| 330 | static const struct hw_spin_policy lck_mtx_ilk_timeout_policy = { |
| 331 | .hwsp_name = "lck_mtx_t (ilk)" , |
| 332 | .hwsp_timeout_atomic = &lock_panic_timeout, |
| 333 | .hwsp_op_timeout = lck_mtx_ilk_timeout_panic, |
| 334 | }; |
| 335 | |
| 336 | static void |
| 337 | lck_mtx_ilk_lock_cleanup_as_mcs( |
| 338 | lck_mtx_t *lock, |
| 339 | lck_mcs_id_t idx, |
| 340 | lck_mtx_mcs_t mcs, |
| 341 | hw_spin_timeout_t to, |
| 342 | hw_spin_state_t *ss) |
| 343 | { |
| 344 | lck_mtx_mcs_t nnode = NULL; |
| 345 | lck_mcs_id_t pidx = (lck_mcs_id_t)mcs->lmm_as_prev; |
| 346 | bool was_last; |
| 347 | |
| 348 | /* |
| 349 | * This is called when the thread made use |
| 350 | * of the adaptive spin queue and needs |
| 351 | * to remove itself from it. |
| 352 | */ |
| 353 | |
| 354 | /* |
| 355 | * If the thread is last, set the tail to the node before us. |
| 356 | */ |
| 357 | was_last = lock_cmpxchg(&lock->lck_mtx.as_tail, idx, pidx, release); |
| 358 | |
| 359 | if (was_last) { |
| 360 | /* |
| 361 | * If @c mcs was last, we need to erase the previous |
| 362 | * node link to it. |
| 363 | * |
| 364 | * However, new nodes could have now taken our place |
| 365 | * and set the previous node's @c lmm_as_next field |
| 366 | * already, so we must CAS rather than blindly set. |
| 367 | * |
| 368 | * We know the previous node is stable because |
| 369 | * we hold the interlock (preventing concurrent |
| 370 | * removals). |
| 371 | */ |
| 372 | if (pidx) { |
| 373 | os_atomic_cmpxchg(&lck_mtx_get_mcs(pidx)->lmm_as_next, |
| 374 | mcs, nnode, relaxed); |
| 375 | } |
| 376 | } else { |
| 377 | /* |
| 378 | * If @c mcs wasn't last, then wait to make sure |
| 379 | * we observe @c lmm_as_next. Once we do, we know |
| 380 | * the field is stable since we hold the interlock |
| 381 | * (preventing concurrent dequeues). |
| 382 | * |
| 383 | * We can then update it to @c mcs next node index |
| 384 | * (which is also stable for similar reasons). |
| 385 | * |
| 386 | * Lastly update the previous node @c lmm_as_next |
| 387 | * field as well to terminate the dequeue. |
| 388 | */ |
| 389 | while (!hw_spin_wait_until(&mcs->lmm_as_next, nnode, nnode)) { |
| 390 | hw_spin_policy_t pol = &lck_mtx_ilk_timeout_policy; |
| 391 | hw_spin_should_keep_spinning(lock, policy: pol, to, state: ss); |
| 392 | } |
| 393 | |
| 394 | os_atomic_store(&nnode->lmm_as_prev, pidx, relaxed); |
| 395 | if (pidx) { |
| 396 | os_atomic_store(&lck_mtx_get_mcs(pidx)->lmm_as_next, |
| 397 | nnode, relaxed); |
| 398 | } |
| 399 | } |
| 400 | |
| 401 | /* |
| 402 | * @c mcs's fields are left dangling, |
| 403 | * it is the responsibilty of the caller |
| 404 | * to terminate the cleanup. |
| 405 | */ |
| 406 | } |
| 407 | |
| 408 | static NOINLINE void |
| 409 | lck_mtx_ilk_lock_contended( |
| 410 | lck_mtx_t *lock, |
| 411 | lck_mtx_state_t state, |
| 412 | lck_ilk_mode_t mode) |
| 413 | { |
| 414 | hw_spin_policy_t pol = &lck_mtx_ilk_timeout_policy; |
| 415 | hw_spin_timeout_t to = hw_spin_compute_timeout(policy: pol); |
| 416 | hw_spin_state_t ss = { }; |
| 417 | |
| 418 | lck_mtx_mcs_t mcs, nnode, pnode; |
| 419 | lck_mcs_id_t idx, pidx; |
| 420 | lck_mtx_state_t nstate; |
| 421 | unsigned long ready; |
| 422 | uint64_t spin_start; |
| 423 | |
| 424 | /* |
| 425 | * Take a spot in the interlock MCS queue, |
| 426 | * and then spin until we're at the head of it. |
| 427 | */ |
| 428 | |
| 429 | idx = lck_mtx_get_mcs_id(); |
| 430 | mcs = &lck_mcs_get_current()->mcs_mtx; |
| 431 | if (mode != LCK_MTX_MODE_SPIN) { |
| 432 | spin_start = LCK_MTX_ADAPTIVE_SPIN_BEGIN(); |
| 433 | } |
| 434 | |
| 435 | mcs->lmm_ilk_current = lock; |
| 436 | pidx = os_atomic_xchg(&lock->lck_mtx.ilk_tail, idx, release); |
| 437 | if (pidx) { |
| 438 | pnode = lck_mtx_get_mcs(idx: pidx); |
| 439 | os_atomic_store(&pnode->lmm_ilk_next, mcs, relaxed); |
| 440 | |
| 441 | while (!hw_spin_wait_until(&mcs->lmm_ilk_ready, ready, ready)) { |
| 442 | hw_spin_should_keep_spinning(lock, policy: pol, to, state: &ss); |
| 443 | } |
| 444 | } |
| 445 | |
| 446 | |
| 447 | /* |
| 448 | * We're now the first in line, wait for the interlock |
| 449 | * to look ready and take it. |
| 450 | * |
| 451 | * We can't just assume the lock is ours for the taking, |
| 452 | * because the fastpath of lck_mtx_lock_spin{,_always} |
| 453 | * only look at the mutex "data" and might steal it. |
| 454 | * |
| 455 | * Also clear the interlock MCS tail if @c mcs is last. |
| 456 | */ |
| 457 | do { |
| 458 | while (!hw_spin_wait_until(&lock->lck_mtx.val, |
| 459 | state.val, state.ilocked == 0)) { |
| 460 | hw_spin_should_keep_spinning(lock, policy: pol, to, state: &ss); |
| 461 | } |
| 462 | |
| 463 | nstate = state; |
| 464 | nstate.ilocked = 1; |
| 465 | if (nstate.ilk_tail == idx) { |
| 466 | nstate.ilk_tail = 0; |
| 467 | } |
| 468 | } while (!os_atomic_cmpxchg(&lock->lck_mtx, state, nstate, acquire)); |
| 469 | |
| 470 | |
| 471 | /* |
| 472 | * We now have the interlock, let's cleanup the MCS state. |
| 473 | * |
| 474 | * First, if there is a node after us, notify that it |
| 475 | * is at the head of the interlock queue. |
| 476 | * |
| 477 | * Second, perform the adaptive spin MCS cleanup if needed. |
| 478 | * |
| 479 | * Lastly, clear the MCS node. |
| 480 | */ |
| 481 | if (state.ilk_tail != idx) { |
| 482 | while (!hw_spin_wait_until(&mcs->lmm_ilk_next, nnode, nnode)) { |
| 483 | hw_spin_should_keep_spinning(lock, policy: pol, to, state: &ss); |
| 484 | } |
| 485 | |
| 486 | os_atomic_store(&nnode->lmm_ilk_ready, 1, relaxed); |
| 487 | } |
| 488 | |
| 489 | if (mode == LCK_ILK_MODE_FROM_AS) { |
| 490 | lck_mtx_ilk_lock_cleanup_as_mcs(lock, idx, mcs, to, ss: &ss); |
| 491 | } |
| 492 | lck_mtx_mcs_clear(mcs); |
| 493 | |
| 494 | if (mode != LCK_MTX_MODE_SPIN) { |
| 495 | LCK_MTX_ADAPTIVE_SPIN_END(lock, lock->lck_mtx_grp, spin_start); |
| 496 | } |
| 497 | } |
| 498 | |
| 499 | static void |
| 500 | lck_mtx_ilk_lock_nopreempt(lck_mtx_t *lock, lck_ilk_mode_t mode) |
| 501 | { |
| 502 | lck_mtx_state_t state, nstate; |
| 503 | |
| 504 | os_atomic_rmw_loop(&lock->lck_mtx.val, state.val, nstate.val, acquire, { |
| 505 | if (__improbable(state.ilocked || state.ilk_tail)) { |
| 506 | os_atomic_rmw_loop_give_up({ |
| 507 | return lck_mtx_ilk_lock_contended(lock, state, mode); |
| 508 | }); |
| 509 | } |
| 510 | |
| 511 | nstate = state; |
| 512 | nstate.ilocked = true; |
| 513 | }); |
| 514 | } |
| 515 | |
| 516 | static void |
| 517 | lck_mtx_ilk_unlock_v(lck_mtx_t *lock, uint32_t data) |
| 518 | { |
| 519 | os_atomic_store(&lock->lck_mtx.data, data, release); |
| 520 | lock_enable_preemption(); |
| 521 | } |
| 522 | |
| 523 | static void |
| 524 | lck_mtx_ilk_unlock(lck_mtx_t *lock) |
| 525 | { |
| 526 | lck_mtx_ilk_unlock_v(lock, data: lock->lck_mtx.data & ~LCK_MTX_ILOCK); |
| 527 | } |
| 528 | |
| 529 | |
| 530 | #pragma mark lck_mtx_t: turnstile integration |
| 531 | |
| 532 | /* |
| 533 | * Routine: lck_mtx_lock_wait |
| 534 | * |
| 535 | * Invoked in order to wait on contention. |
| 536 | * |
| 537 | * Called with the interlock locked and |
| 538 | * returns it unlocked. |
| 539 | * |
| 540 | * Always aggressively sets the owning thread to promoted, |
| 541 | * even if it's the same or higher priority |
| 542 | * This prevents it from lowering its own priority while holding a lock |
| 543 | * |
| 544 | * TODO: Come up with a more efficient way to handle same-priority promotions |
| 545 | * <rdar://problem/30737670> ARM mutex contention logic could avoid taking the thread lock |
| 546 | */ |
| 547 | static struct turnstile * |
| 548 | lck_mtx_lock_wait( |
| 549 | lck_mtx_t *lck, |
| 550 | thread_t self, |
| 551 | thread_t holder, |
| 552 | struct turnstile *ts) |
| 553 | { |
| 554 | uint64_t sleep_start = LCK_MTX_BLOCK_BEGIN(); |
| 555 | |
| 556 | KERNEL_DEBUG(MACHDBG_CODE(DBG_MACH_LOCKS, LCK_MTX_LCK_WAIT_CODE) | DBG_FUNC_START, |
| 557 | unslide_for_kdebug(lck), (uintptr_t)thread_tid(self), 0, 0, 0); |
| 558 | |
| 559 | if (ts == TURNSTILE_NULL) { |
| 560 | ts = turnstile_prepare_compact_id(proprietor: (uintptr_t)lck, |
| 561 | compact_id: lck->lck_mtx_tsid, type: TURNSTILE_KERNEL_MUTEX); |
| 562 | if (lck->lck_mtx_tsid == 0) { |
| 563 | lck->lck_mtx_tsid = ts->ts_compact_id; |
| 564 | } |
| 565 | } |
| 566 | assert3u(ts->ts_compact_id, ==, lck->lck_mtx_tsid); |
| 567 | |
| 568 | thread_set_pending_block_hint(thread: self, block_hint: kThreadWaitKernelMutex); |
| 569 | turnstile_update_inheritor(turnstile: ts, new_inheritor: holder, flags: (TURNSTILE_DELAYED_UPDATE | TURNSTILE_INHERITOR_THREAD)); |
| 570 | |
| 571 | waitq_assert_wait64(waitq: &ts->ts_waitq, LCK_MTX_EVENT(lck), |
| 572 | THREAD_UNINT | THREAD_WAIT_NOREPORT_USER, TIMEOUT_WAIT_FOREVER); |
| 573 | |
| 574 | lck_mtx_ilk_unlock(lock: lck); |
| 575 | |
| 576 | turnstile_update_inheritor_complete(turnstile: ts, flags: TURNSTILE_INTERLOCK_NOT_HELD); |
| 577 | |
| 578 | thread_block(THREAD_CONTINUE_NULL); |
| 579 | |
| 580 | KERNEL_DEBUG(MACHDBG_CODE(DBG_MACH_LOCKS, LCK_MTX_LCK_WAIT_CODE) | DBG_FUNC_END, 0, 0, 0, 0, 0); |
| 581 | |
| 582 | LCK_MTX_BLOCK_END(lck, lck->lck_mtx_grp, sleep_start); |
| 583 | |
| 584 | return ts; |
| 585 | } |
| 586 | |
| 587 | static void |
| 588 | lck_mtx_lock_wait_done(lck_mtx_t *lck, struct turnstile *ts) |
| 589 | { |
| 590 | if (turnstile_complete_compact_id(proprietor: (uintptr_t)lck, turnstile: ts, |
| 591 | type: TURNSTILE_KERNEL_MUTEX)) { |
| 592 | lck->lck_mtx_tsid = 0; |
| 593 | } |
| 594 | } |
| 595 | |
| 596 | /* |
| 597 | * Routine: lck_mtx_lock_will_need_wakeup |
| 598 | * |
| 599 | * Returns whether the thread is the current turnstile inheritor, |
| 600 | * which means it will have to call lck_mtx_unlock_wakeup() |
| 601 | * on unlock. |
| 602 | */ |
| 603 | __attribute__((always_inline)) |
| 604 | static bool |
| 605 | lck_mtx_lock_will_need_wakeup(lck_mtx_t *lck, thread_t self) |
| 606 | { |
| 607 | uint32_t tsid = lck->lck_mtx_tsid; |
| 608 | |
| 609 | return tsid && turnstile_get_by_id(tsid)->ts_inheritor == self; |
| 610 | } |
| 611 | |
| 612 | /* |
| 613 | * Routine: lck_mtx_unlock_wakeup |
| 614 | * |
| 615 | * Invoked on unlock when there is contention. |
| 616 | * |
| 617 | * Called with the interlock locked. |
| 618 | * |
| 619 | * NOTE: callers should call turnstile_clenup after |
| 620 | * dropping the interlock. |
| 621 | */ |
| 622 | static void |
| 623 | lck_mtx_unlock_wakeup( |
| 624 | lck_mtx_t *lck, |
| 625 | __kdebug_only thread_t thread) |
| 626 | { |
| 627 | struct turnstile *ts; |
| 628 | kern_return_t did_wake; |
| 629 | |
| 630 | KERNEL_DEBUG(MACHDBG_CODE(DBG_MACH_LOCKS, LCK_MTX_UNLCK_WAKEUP_CODE) | DBG_FUNC_START, |
| 631 | unslide_for_kdebug(lck), (uintptr_t)thread_tid(thread), 0, 0, 0); |
| 632 | |
| 633 | ts = turnstile_get_by_id(tsid: lck->lck_mtx_tsid); |
| 634 | |
| 635 | /* |
| 636 | * We can skip turnstile_{prepare,cleanup} because |
| 637 | * we hold the interlock of the primitive, |
| 638 | * and enqueues/wakeups all happen under the interlock, |
| 639 | * which means the turnstile is stable. |
| 640 | */ |
| 641 | did_wake = waitq_wakeup64_one(waitq: &ts->ts_waitq, LCK_MTX_EVENT(lck), |
| 642 | THREAD_AWAKENED, flags: WAITQ_UPDATE_INHERITOR); |
| 643 | assert(did_wake == KERN_SUCCESS); |
| 644 | |
| 645 | turnstile_update_inheritor_complete(turnstile: ts, flags: TURNSTILE_INTERLOCK_HELD); |
| 646 | |
| 647 | KERNEL_DEBUG(MACHDBG_CODE(DBG_MACH_LOCKS, LCK_MTX_UNLCK_WAKEUP_CODE) | DBG_FUNC_END, 0, 0, 0, 0, 0); |
| 648 | } |
| 649 | |
| 650 | |
| 651 | #pragma mark lck_mtx_t: lck_mtx_lock |
| 652 | |
| 653 | static inline bool |
| 654 | lck_mtx_ctid_on_core(uint32_t ctid) |
| 655 | { |
| 656 | thread_t th = ctid_get_thread_unsafe(ctid); |
| 657 | |
| 658 | return th && machine_thread_on_core_allow_invalid(thread: th); |
| 659 | } |
| 660 | |
| 661 | #define LCK_MTX_OWNER_FOR_TRACE(lock) \ |
| 662 | VM_KERNEL_UNSLIDE_OR_PERM(ctid_get_thread_unsafe((lock)->lck_mtx.data)) |
| 663 | |
| 664 | static void |
| 665 | lck_mtx_lock_adaptive_spin(lck_mtx_t *lock, lck_mtx_state_t state) |
| 666 | { |
| 667 | __kdebug_only uintptr_t trace_lck = VM_KERNEL_UNSLIDE_OR_PERM(lock); |
| 668 | hw_spin_policy_t pol = &lck_mtx_ilk_timeout_policy; |
| 669 | hw_spin_timeout_t to = hw_spin_compute_timeout(policy: pol); |
| 670 | hw_spin_state_t ss = { }; |
| 671 | uint64_t deadline; |
| 672 | |
| 673 | lck_mtx_mcs_t mcs, node; |
| 674 | lck_mcs_id_t idx, pidx, clear_idx; |
| 675 | unsigned long prev; |
| 676 | lck_mtx_state_t nstate; |
| 677 | ast_t *const astp = ast_pending(); |
| 678 | |
| 679 | idx = lck_mtx_get_mcs_id(); |
| 680 | mcs = &lck_mcs_get_current()->mcs_mtx; |
| 681 | |
| 682 | KERNEL_DEBUG(MACHDBG_CODE(DBG_MACH_LOCKS, LCK_MTX_LCK_SPIN_CODE) | DBG_FUNC_START, |
| 683 | trace_lck, LCK_MTX_OWNER_FOR_TRACE(lock), lock->lck_mtx_tsid, 0, 0); |
| 684 | |
| 685 | /* |
| 686 | * Take a spot in the adaptive spin queue, |
| 687 | * and then spin until we're at the head of it. |
| 688 | * |
| 689 | * Until we're at the head, we do not need to monitor |
| 690 | * for whether the current owner is on core or not: |
| 691 | * |
| 692 | * 1. the head of the queue is doing it already, |
| 693 | * |
| 694 | * 2. when the entire adaptive spin queue will "give up" |
| 695 | * as a result of the owner going off core, we want |
| 696 | * to avoid a thundering herd and let the AS queue |
| 697 | * pour into the interlock one slowly. |
| 698 | * |
| 699 | * Do give up if the scheduler made noises something |
| 700 | * more important has shown up. |
| 701 | * |
| 702 | * Note: this function is optimized so that we do not touch |
| 703 | * our local mcs node when we're the head of the queue. |
| 704 | * |
| 705 | * This allows us in the case when the contention is |
| 706 | * between 2 cores only to not have to touch this |
| 707 | * cacheline at all. |
| 708 | */ |
| 709 | pidx = os_atomic_xchg(&lock->lck_mtx.as_tail, idx, release); |
| 710 | if (pidx) { |
| 711 | node = lck_mtx_get_mcs(idx: pidx); |
| 712 | mcs->lmm_as_prev = pidx; |
| 713 | os_atomic_store(&node->lmm_as_next, mcs, release); |
| 714 | |
| 715 | while (!hw_spin_wait_until(&mcs->lmm_as_prev, prev, |
| 716 | prev == 0 || (os_atomic_load(astp, relaxed) & AST_URGENT))) { |
| 717 | hw_spin_should_keep_spinning(lock, policy: pol, to, state: &ss); |
| 718 | } |
| 719 | |
| 720 | if (__improbable(prev)) { |
| 721 | goto adaptive_spin_fail; |
| 722 | } |
| 723 | |
| 724 | clear_idx = 0; |
| 725 | } else { |
| 726 | clear_idx = idx; |
| 727 | } |
| 728 | |
| 729 | /* |
| 730 | * We're now first in line. |
| 731 | * |
| 732 | * It's our responsbility to monitor the lock's state |
| 733 | * for whether (1) the lock has become available, |
| 734 | * (2) its owner has gone off core, (3) the scheduler |
| 735 | * wants its CPU back, or (4) we've spun for too long. |
| 736 | */ |
| 737 | deadline = ml_get_timebase() + os_atomic_load(&MutexSpin, relaxed); |
| 738 | |
| 739 | for (;;) { |
| 740 | state.val = lock_load_exclusive(&lock->lck_mtx.val, acquire); |
| 741 | |
| 742 | if (__probable(!state.ilocked && !state.ilk_tail && !state.owner)) { |
| 743 | /* |
| 744 | * 2-core contention: if we can, try to dequeue |
| 745 | * ourselves from the adaptive spin queue |
| 746 | * as part of this CAS in order to avoid |
| 747 | * the cost of lck_mtx_ilk_lock_cleanup_as_mcs() |
| 748 | * and zeroing the mcs node at all. |
| 749 | * |
| 750 | * Because the queue is designed to limit contention, |
| 751 | * using store-exclusive over an armv8.1 LSE atomic |
| 752 | * is actually marginally better (presumably due to |
| 753 | * the better codegen). |
| 754 | */ |
| 755 | nstate = state; |
| 756 | nstate.ilocked = true; |
| 757 | if (state.as_tail == clear_idx) { |
| 758 | nstate.as_tail = 0; |
| 759 | } |
| 760 | if (__probable(lock_store_exclusive(&lock->lck_mtx.val, |
| 761 | state.val, nstate.val, acquire))) { |
| 762 | break; |
| 763 | } |
| 764 | } else { |
| 765 | lock_wait_for_event(); |
| 766 | } |
| 767 | |
| 768 | if (__improbable(ml_get_timebase() > deadline || |
| 769 | (os_atomic_load(astp, relaxed) & AST_URGENT) || |
| 770 | (!state.ilocked && !state.ilk_tail && state.owner && |
| 771 | !lck_mtx_ctid_on_core(state.owner)))) { |
| 772 | goto adaptive_spin_fail; |
| 773 | } |
| 774 | } |
| 775 | |
| 776 | /* |
| 777 | * If we're here, we got the lock, we just have to cleanup |
| 778 | * the MCS nodes and return. |
| 779 | */ |
| 780 | if (state.as_tail != clear_idx) { |
| 781 | lck_mtx_ilk_lock_cleanup_as_mcs(lock, idx, mcs, to, ss: &ss); |
| 782 | lck_mtx_mcs_clear(mcs); |
| 783 | } |
| 784 | |
| 785 | KERNEL_DEBUG(MACHDBG_CODE(DBG_MACH_LOCKS, LCK_MTX_LCK_SPIN_CODE) | DBG_FUNC_END, |
| 786 | trace_lck, VM_KERNEL_UNSLIDE_OR_PERM(thread), |
| 787 | lock->lck_mtx_tsid, 0, 0); |
| 788 | return; |
| 789 | |
| 790 | adaptive_spin_fail: |
| 791 | KERNEL_DEBUG(MACHDBG_CODE(DBG_MACH_LOCKS, LCK_MTX_LCK_SPIN_CODE) | DBG_FUNC_END, |
| 792 | trace_lck, LCK_MTX_OWNER_FOR_TRACE(lock), lock->lck_mtx_tsid, 0, 0); |
| 793 | return lck_mtx_ilk_lock_contended(lock, state, mode: LCK_ILK_MODE_FROM_AS); |
| 794 | } |
| 795 | |
| 796 | static NOINLINE void |
| 797 | lck_mtx_lock_contended(lck_mtx_t *lock, thread_t thread, lck_mtx_mode_t mode) |
| 798 | { |
| 799 | struct turnstile *ts = TURNSTILE_NULL; |
| 800 | lck_mtx_state_t state; |
| 801 | uint32_t ctid = thread->ctid; |
| 802 | uint32_t data; |
| 803 | #if CONFIG_DTRACE |
| 804 | int first_miss = 0; |
| 805 | #endif /* CONFIG_DTRACE */ |
| 806 | bool direct_wait = false; |
| 807 | uint64_t spin_start; |
| 808 | uint32_t profile; |
| 809 | |
| 810 | lck_mtx_check_irq(lock); |
| 811 | if (mode == LCK_MTX_MODE_SLEEPABLE) { |
| 812 | lock_disable_preemption_for_thread(thread); |
| 813 | } |
| 814 | |
| 815 | for (;;) { |
| 816 | /* |
| 817 | * Load the current state and perform sanity checks |
| 818 | * |
| 819 | * Note that the various "corrupt" values are designed |
| 820 | * so that the slowpath is taken when a mutex was used |
| 821 | * after destruction, so that we do not have to do |
| 822 | * sanity checks in the fast path. |
| 823 | */ |
| 824 | state = os_atomic_load(&lock->lck_mtx, relaxed); |
| 825 | if (state.owner == ctid) { |
| 826 | __lck_mtx_owned_panic(lock, thread); |
| 827 | } |
| 828 | if (lock->lck_mtx_type != LCK_TYPE_MUTEX || |
| 829 | state.data == LCK_MTX_TAG_DESTROYED) { |
| 830 | __lck_mtx_invalid_panic(lck: lock); |
| 831 | } |
| 832 | profile = (state.data & LCK_MTX_PROFILE); |
| 833 | |
| 834 | /* |
| 835 | * Attempt steal |
| 836 | * |
| 837 | * When the lock state is 0, then no thread can be queued |
| 838 | * for adaptive spinning or for the interlock yet. |
| 839 | * |
| 840 | * As such we can attempt to try to take the interlock. |
| 841 | * (we can't take the mutex directly because we need |
| 842 | * the interlock to do turnstile operations on the way out). |
| 843 | */ |
| 844 | if ((state.val & ~(uint64_t)LCK_MTX_PROFILE) == 0) { |
| 845 | if (!os_atomic_cmpxchgv(&lock->lck_mtx.val, |
| 846 | state.val, state.val | LCK_MTX_ILOCK, |
| 847 | &state.val, acquire)) { |
| 848 | continue; |
| 849 | } |
| 850 | break; |
| 851 | } |
| 852 | |
| 853 | #if CONFIG_DTRACE |
| 854 | if (profile) { |
| 855 | LCK_MTX_PROF_MISS(mtx: lock, grp_attr_id: lock->lck_mtx_grp, first_miss: &first_miss); |
| 856 | } |
| 857 | #endif /* CONFIG_DTRACE */ |
| 858 | |
| 859 | if (mode == LCK_MTX_MODE_SLEEPABLE) { |
| 860 | spin_start = LCK_MTX_ADAPTIVE_SPIN_BEGIN(); |
| 861 | } else { |
| 862 | spin_start = LCK_MTX_SPIN_SPIN_BEGIN(); |
| 863 | } |
| 864 | |
| 865 | /* |
| 866 | * Adaptive spin or interlock |
| 867 | * |
| 868 | * Evaluate if adaptive spinning should be attempted, |
| 869 | * and if yes go to adaptive spin. |
| 870 | * |
| 871 | * Otherwise (and this includes always-spin mutexes), |
| 872 | * go for the interlock. |
| 873 | */ |
| 874 | if (mode != LCK_MTX_MODE_SPIN_ALWAYS && |
| 875 | (state.ilocked || state.as_tail || !state.owner || |
| 876 | lck_mtx_ctid_on_core(ctid: state.owner))) { |
| 877 | lck_mtx_lock_adaptive_spin(lock, state); |
| 878 | } else { |
| 879 | direct_wait = true; |
| 880 | lck_mtx_ilk_lock_nopreempt(lock, mode: LCK_ILK_MODE_DIRECT); |
| 881 | } |
| 882 | |
| 883 | if (mode == LCK_MTX_MODE_SLEEPABLE) { |
| 884 | LCK_MTX_ADAPTIVE_SPIN_END(lock, lock->lck_mtx_grp, spin_start); |
| 885 | } else { |
| 886 | LCK_MTX_SPIN_SPIN_END(lock, lock->lck_mtx_grp, spin_start); |
| 887 | } |
| 888 | |
| 889 | /* |
| 890 | * Take or sleep |
| 891 | * |
| 892 | * We now have the interlock. Either the owner |
| 893 | * isn't set, and the mutex is ours to claim, |
| 894 | * or we must go to sleep. |
| 895 | * |
| 896 | * If we go to sleep, we need to set LCK_MTX_NEEDS_WAKEUP |
| 897 | * to force the current lock owner to call |
| 898 | * lck_mtx_unlock_wakeup(). |
| 899 | */ |
| 900 | state = os_atomic_load(&lock->lck_mtx, relaxed); |
| 901 | if (state.owner == LCK_MTX_NULL_CTID) { |
| 902 | break; |
| 903 | } |
| 904 | |
| 905 | if (mode == LCK_MTX_MODE_SPIN_ALWAYS) { |
| 906 | __lck_mtx_lock_is_sleepable_panic(lck: lock); |
| 907 | } |
| 908 | |
| 909 | #if CONFIG_DTRACE |
| 910 | if (profile) { |
| 911 | LCK_MTX_PROF_WAIT(mtx: lock, grp_attr_id: lock->lck_mtx_grp, |
| 912 | direct_wait, first_miss: &first_miss); |
| 913 | } |
| 914 | #endif /* CONFIG_DTRACE */ |
| 915 | os_atomic_store(&lock->lck_mtx.data, |
| 916 | state.data | LCK_MTX_ILOCK | LCK_MTX_NEEDS_WAKEUP, |
| 917 | compiler_acq_rel); |
| 918 | ts = lck_mtx_lock_wait(lck: lock, self: thread, |
| 919 | holder: ctid_get_thread(ctid: state.owner), ts); |
| 920 | |
| 921 | /* returns interlock unlocked and preemption re-enabled */ |
| 922 | lock_disable_preemption_for_thread(thread); |
| 923 | } |
| 924 | |
| 925 | /* |
| 926 | * We can take the lock! |
| 927 | * |
| 928 | * We only have the interlock and the owner field is 0. |
| 929 | * |
| 930 | * Perform various turnstile cleanups if needed, |
| 931 | * claim the lock, and reenable preemption (if needed). |
| 932 | */ |
| 933 | if (ts) { |
| 934 | lck_mtx_lock_wait_done(lck: lock, ts); |
| 935 | } |
| 936 | data = ctid | profile; |
| 937 | if (lck_mtx_lock_will_need_wakeup(lck: lock, self: thread)) { |
| 938 | data |= LCK_MTX_NEEDS_WAKEUP; |
| 939 | } |
| 940 | if (mode != LCK_MTX_MODE_SLEEPABLE) { |
| 941 | data |= LCK_MTX_ILOCK | LCK_MTX_SPIN_MODE; |
| 942 | } |
| 943 | os_atomic_store(&lock->lck_mtx.data, data, release); |
| 944 | |
| 945 | if (mode == LCK_MTX_MODE_SLEEPABLE) { |
| 946 | lock_enable_preemption(); |
| 947 | } |
| 948 | |
| 949 | assert(thread->turnstile != NULL); |
| 950 | |
| 951 | if (ts) { |
| 952 | turnstile_cleanup(); |
| 953 | } |
| 954 | LCK_MTX_ACQUIRED(lock, lock->lck_mtx_grp, |
| 955 | mode != LCK_MTX_MODE_SLEEPABLE, profile); |
| 956 | } |
| 957 | |
| 958 | #if LCK_MTX_CHECK_INVARIANTS || CONFIG_DTRACE |
| 959 | __attribute__((noinline)) |
| 960 | #else |
| 961 | __attribute__((always_inline)) |
| 962 | #endif |
| 963 | static void |
| 964 | lck_mtx_lock_slow( |
| 965 | lck_mtx_t *lock, |
| 966 | thread_t thread, |
| 967 | lck_mtx_state_t state, |
| 968 | lck_mtx_mode_t mode) |
| 969 | { |
| 970 | #pragma unused(state) |
| 971 | #if CONFIG_DTRACE |
| 972 | lck_mtx_state_t ostate = { |
| 973 | .data = LCK_MTX_PROFILE, |
| 974 | }; |
| 975 | #endif /* CONFIG_DTRACE */ |
| 976 | |
| 977 | #if LCK_MTX_CHECK_INVARIANTS |
| 978 | if (mode != LCK_MTX_MODE_SPIN_ALWAYS) { |
| 979 | lck_mtx_check_preemption(lock, thread, |
| 980 | (mode == LCK_MTX_MODE_SPIN)); |
| 981 | } |
| 982 | #endif /* LCK_MTX_CHECK_INVARIANTS */ |
| 983 | #if CONFIG_DTRACE |
| 984 | if (state.val == ostate.val) { |
| 985 | state.data = thread->ctid | LCK_MTX_PROFILE; |
| 986 | if (mode != LCK_MTX_MODE_SLEEPABLE) { |
| 987 | state.ilocked = true; |
| 988 | state.spin_mode = true; |
| 989 | } |
| 990 | os_atomic_cmpxchgv(&lock->lck_mtx.val, |
| 991 | ostate.val, state.val, &state.val, acquire); |
| 992 | } |
| 993 | if ((state.val & ~ostate.val) == 0) { |
| 994 | LCK_MTX_ACQUIRED(lock, lock->lck_mtx_grp, |
| 995 | mode != LCK_MTX_MODE_SLEEPABLE, |
| 996 | state.data & LCK_MTX_PROFILE); |
| 997 | return; |
| 998 | } |
| 999 | #endif /* CONFIG_DTRACE */ |
| 1000 | lck_mtx_lock_contended(lock, thread, mode); |
| 1001 | } |
| 1002 | |
| 1003 | static __attribute__((always_inline)) void |
| 1004 | lck_mtx_lock_fastpath(lck_mtx_t *lock, lck_mtx_mode_t mode) |
| 1005 | { |
| 1006 | thread_t thread = current_thread(); |
| 1007 | lck_mtx_state_t state = { |
| 1008 | .data = thread->ctid, |
| 1009 | }; |
| 1010 | uint64_t take_slowpath = 0; |
| 1011 | |
| 1012 | if (mode != LCK_MTX_MODE_SPIN_ALWAYS) { |
| 1013 | take_slowpath |= LCK_MTX_SNIFF_PREEMPTION(thread); |
| 1014 | } |
| 1015 | take_slowpath |= LCK_MTX_SNIFF_DTRACE(); |
| 1016 | |
| 1017 | if (mode != LCK_MTX_MODE_SLEEPABLE) { |
| 1018 | lock_disable_preemption_for_thread(thread); |
| 1019 | state.ilocked = true; |
| 1020 | state.spin_mode = true; |
| 1021 | } |
| 1022 | |
| 1023 | /* |
| 1024 | * Do the CAS on the entire mutex state, |
| 1025 | * which hence requires for the ILK/AS queues |
| 1026 | * to be empty (which is fairer). |
| 1027 | */ |
| 1028 | lock_cmpxchgv(&lock->lck_mtx.val, |
| 1029 | 0, state.val, &state.val, acquire); |
| 1030 | |
| 1031 | take_slowpath |= state.val; |
| 1032 | if (__improbable(take_slowpath)) { |
| 1033 | return lck_mtx_lock_slow(lock, thread, state, mode); |
| 1034 | } |
| 1035 | } |
| 1036 | |
| 1037 | void |
| 1038 | lck_mtx_lock(lck_mtx_t *lock) |
| 1039 | { |
| 1040 | lck_mtx_lock_fastpath(lock, mode: LCK_MTX_MODE_SLEEPABLE); |
| 1041 | } |
| 1042 | |
| 1043 | void |
| 1044 | lck_mtx_lock_spin(lck_mtx_t *lock) |
| 1045 | { |
| 1046 | lck_mtx_lock_fastpath(lock, mode: LCK_MTX_MODE_SPIN); |
| 1047 | } |
| 1048 | |
| 1049 | void |
| 1050 | lck_mtx_lock_spin_always(lck_mtx_t *lock) |
| 1051 | { |
| 1052 | lck_mtx_lock_fastpath(lock, mode: LCK_MTX_MODE_SPIN_ALWAYS); |
| 1053 | } |
| 1054 | |
| 1055 | |
| 1056 | #pragma mark lck_mtx_t: lck_mtx_try_lock |
| 1057 | |
| 1058 | static __attribute__((always_inline)) bool |
| 1059 | lck_mtx_try_lock_slow_inline( |
| 1060 | lck_mtx_t *lock, |
| 1061 | thread_t thread, |
| 1062 | uint32_t odata, |
| 1063 | uint32_t ndata, |
| 1064 | bool spin) |
| 1065 | { |
| 1066 | #pragma unused(lock, thread, odata, ndata) |
| 1067 | #if CONFIG_DTRACE |
| 1068 | if (odata == LCK_MTX_PROFILE) { |
| 1069 | os_atomic_cmpxchgv(&lock->lck_mtx.data, |
| 1070 | odata, ndata | LCK_MTX_PROFILE, &odata, acquire); |
| 1071 | } |
| 1072 | if ((odata & ~LCK_MTX_PROFILE) == 0) { |
| 1073 | LCK_MTX_TRY_ACQUIRED(lock, lock->lck_mtx_grp, |
| 1074 | spin, odata & LCK_MTX_PROFILE); |
| 1075 | return true; |
| 1076 | } |
| 1077 | if (odata & LCK_MTX_PROFILE) { |
| 1078 | LCK_MTX_PROF_MISS(mtx: lock, grp_attr_id: lock->lck_mtx_grp, first_miss: &(int){ 0 }); |
| 1079 | } |
| 1080 | #endif /* CONFIG_DTRACE */ |
| 1081 | |
| 1082 | if (spin) { |
| 1083 | lock_enable_preemption(); |
| 1084 | } |
| 1085 | return false; |
| 1086 | } |
| 1087 | |
| 1088 | #if CONFIG_DTRACE || LCK_MTX_CHECK_INVARIANTS |
| 1089 | __attribute__((noinline)) |
| 1090 | #else |
| 1091 | __attribute__((always_inline)) |
| 1092 | #endif |
| 1093 | static bool |
| 1094 | lck_mtx_try_lock_slow( |
| 1095 | lck_mtx_t *lock, |
| 1096 | thread_t thread, |
| 1097 | uint32_t odata, |
| 1098 | uint32_t ndata) |
| 1099 | { |
| 1100 | return lck_mtx_try_lock_slow_inline(lock, thread, odata, ndata, false); |
| 1101 | } |
| 1102 | |
| 1103 | #if CONFIG_DTRACE || LCK_MTX_CHECK_INVARIANTS |
| 1104 | __attribute__((noinline)) |
| 1105 | #else |
| 1106 | __attribute__((always_inline)) |
| 1107 | #endif |
| 1108 | static bool |
| 1109 | lck_mtx_try_lock_slow_spin( |
| 1110 | lck_mtx_t *lock, |
| 1111 | thread_t thread, |
| 1112 | uint32_t odata, |
| 1113 | uint32_t ndata) |
| 1114 | { |
| 1115 | return lck_mtx_try_lock_slow_inline(lock, thread, odata, ndata, true); |
| 1116 | } |
| 1117 | |
| 1118 | static __attribute__((always_inline)) bool |
| 1119 | lck_mtx_try_lock_fastpath(lck_mtx_t *lock, lck_mtx_mode_t mode) |
| 1120 | { |
| 1121 | thread_t thread = current_thread(); |
| 1122 | uint32_t odata, ndata = thread->ctid; |
| 1123 | uint32_t take_slowpath = 0; |
| 1124 | |
| 1125 | #if CONFIG_DTRACE |
| 1126 | take_slowpath |= lck_debug_state.lds_value; |
| 1127 | #endif |
| 1128 | if (mode != LCK_MTX_MODE_SLEEPABLE) { |
| 1129 | lock_disable_preemption_for_thread(thread); |
| 1130 | ndata |= LCK_MTX_SPIN_MODE | LCK_MTX_ILOCK; |
| 1131 | } |
| 1132 | |
| 1133 | /* |
| 1134 | * try_lock because it's likely to be used for cases |
| 1135 | * like lock inversion resolutions tries a bit harder |
| 1136 | * than lck_mtx_lock() to take the lock and ignores |
| 1137 | * adaptive spin / interlock queues by doing the CAS |
| 1138 | * on the 32bit mutex data only. |
| 1139 | */ |
| 1140 | lock_cmpxchgv(&lock->lck_mtx.data, 0, ndata, &odata, acquire); |
| 1141 | |
| 1142 | take_slowpath |= odata; |
| 1143 | if (__probable(!take_slowpath)) { |
| 1144 | return true; |
| 1145 | } |
| 1146 | |
| 1147 | if (mode == LCK_MTX_MODE_SPIN_ALWAYS && |
| 1148 | (odata & LCK_MTX_CTID_MASK) && |
| 1149 | !(odata & LCK_MTX_SPIN_MODE)) { |
| 1150 | __lck_mtx_lock_is_sleepable_panic(lck: lock); |
| 1151 | } |
| 1152 | |
| 1153 | if (mode == LCK_MTX_MODE_SLEEPABLE) { |
| 1154 | return lck_mtx_try_lock_slow(lock, thread, odata, ndata); |
| 1155 | } else { |
| 1156 | return lck_mtx_try_lock_slow_spin(lock, thread, odata, ndata); |
| 1157 | } |
| 1158 | } |
| 1159 | |
| 1160 | boolean_t |
| 1161 | lck_mtx_try_lock(lck_mtx_t *lock) |
| 1162 | { |
| 1163 | return lck_mtx_try_lock_fastpath(lock, mode: LCK_MTX_MODE_SLEEPABLE); |
| 1164 | } |
| 1165 | |
| 1166 | boolean_t |
| 1167 | lck_mtx_try_lock_spin(lck_mtx_t *lock) |
| 1168 | { |
| 1169 | return lck_mtx_try_lock_fastpath(lock, mode: LCK_MTX_MODE_SPIN); |
| 1170 | } |
| 1171 | |
| 1172 | boolean_t |
| 1173 | lck_mtx_try_lock_spin_always(lck_mtx_t *lock) |
| 1174 | { |
| 1175 | return lck_mtx_try_lock_fastpath(lock, mode: LCK_MTX_MODE_SPIN_ALWAYS); |
| 1176 | } |
| 1177 | |
| 1178 | |
| 1179 | #pragma mark lck_mtx_t: lck_mtx_unlock |
| 1180 | |
| 1181 | static NOINLINE void |
| 1182 | lck_mtx_unlock_contended(lck_mtx_t *lock, thread_t thread, uint32_t data) |
| 1183 | { |
| 1184 | bool cleanup = false; |
| 1185 | |
| 1186 | #if !CONFIG_DTRACE |
| 1187 | /* |
| 1188 | * This check is done by lck_mtx_unlock_slow() when it is enabled. |
| 1189 | */ |
| 1190 | if (thread->ctid != (data & LCK_MTX_CTID_MASK)) { |
| 1191 | __lck_mtx_not_owned_panic(lock, thread); |
| 1192 | } |
| 1193 | #endif /* !CONFIG_DTRACE */ |
| 1194 | |
| 1195 | if ((data & LCK_MTX_SPIN_MODE) == 0) { |
| 1196 | lock_disable_preemption_for_thread(thread); |
| 1197 | lck_mtx_ilk_lock_nopreempt(lock, mode: LCK_ILK_MODE_UNLOCK); |
| 1198 | } |
| 1199 | |
| 1200 | /* |
| 1201 | * We must re-load the data: we might have taken |
| 1202 | * the slowpath because another thread had taken |
| 1203 | * the interlock and set the NEEDS_WAKEUP bit |
| 1204 | * while we were spinning to get it. |
| 1205 | */ |
| 1206 | data = os_atomic_load(&lock->lck_mtx.data, compiler_acq_rel); |
| 1207 | if (data & LCK_MTX_NEEDS_WAKEUP) { |
| 1208 | lck_mtx_unlock_wakeup(lck: lock, thread); |
| 1209 | cleanup = true; |
| 1210 | } |
| 1211 | lck_mtx_ilk_unlock_v(lock, data: data & LCK_MTX_PROFILE); |
| 1212 | |
| 1213 | LCK_MTX_RELEASED(lock, lock->lck_mtx_grp, data & LCK_MTX_PROFILE); |
| 1214 | |
| 1215 | /* |
| 1216 | * Do not do any turnstile operations outside of this block. |
| 1217 | * |
| 1218 | * lock/unlock is called at early stage of boot while single |
| 1219 | * threaded, without turnstiles being available yet. |
| 1220 | * Even without contention we can come throught the slow path |
| 1221 | * if the mutex is acquired as a spin lock. |
| 1222 | */ |
| 1223 | if (cleanup) { |
| 1224 | turnstile_cleanup(); |
| 1225 | } |
| 1226 | } |
| 1227 | |
| 1228 | #if CONFIG_DTRACE |
| 1229 | __attribute__((noinline)) |
| 1230 | #else |
| 1231 | __attribute__((always_inline)) |
| 1232 | #endif |
| 1233 | static void |
| 1234 | lck_mtx_unlock_slow(lck_mtx_t *lock, thread_t thread, uint32_t data) |
| 1235 | { |
| 1236 | #if CONFIG_DTRACE |
| 1237 | /* |
| 1238 | * If Dtrace is enabled, locks can be profiled, |
| 1239 | * which causes the fastpath of unlock to fail. |
| 1240 | */ |
| 1241 | if ((data & LCK_MTX_BITS_MASK) == LCK_MTX_PROFILE) { |
| 1242 | os_atomic_cmpxchgv(&lock->lck_mtx.data, data, LCK_MTX_PROFILE, |
| 1243 | &data, release); |
| 1244 | } |
| 1245 | if (thread->ctid != (data & LCK_MTX_CTID_MASK)) { |
| 1246 | __lck_mtx_not_owned_panic(lock, thread); |
| 1247 | } |
| 1248 | if ((data & (LCK_MTX_BITS_MASK & ~LCK_MTX_PROFILE)) == 0) { |
| 1249 | LCK_MTX_RELEASED(lock, lock->lck_mtx_grp, false); |
| 1250 | return; |
| 1251 | } |
| 1252 | #endif /* CONFIG_DTRACE */ |
| 1253 | |
| 1254 | lck_mtx_unlock_contended(lock, thread, data); |
| 1255 | } |
| 1256 | |
| 1257 | void |
| 1258 | lck_mtx_unlock(lck_mtx_t *lock) |
| 1259 | { |
| 1260 | thread_t thread = current_thread(); |
| 1261 | uint32_t take_slowpath = 0; |
| 1262 | uint32_t data; |
| 1263 | |
| 1264 | take_slowpath |= LCK_MTX_SNIFF_DTRACE(); |
| 1265 | |
| 1266 | /* |
| 1267 | * The fast path ignores the ILK/AS queues on purpose, |
| 1268 | * those really are a "lock" concept, not unlock. |
| 1269 | */ |
| 1270 | if (__probable(lock_cmpxchgv(&lock->lck_mtx.data, |
| 1271 | thread->ctid, 0, &data, release))) { |
| 1272 | if (__probable(!take_slowpath)) { |
| 1273 | return; |
| 1274 | } |
| 1275 | } |
| 1276 | |
| 1277 | lck_mtx_unlock_slow(lock, thread, data); |
| 1278 | } |
| 1279 | |
| 1280 | |
| 1281 | #pragma mark lck_mtx_t: misc |
| 1282 | |
| 1283 | void |
| 1284 | lck_mtx_assert(lck_mtx_t *lock, unsigned int type) |
| 1285 | { |
| 1286 | lck_mtx_state_t state = os_atomic_load(&lock->lck_mtx, relaxed); |
| 1287 | thread_t thread = current_thread(); |
| 1288 | |
| 1289 | if (type == LCK_MTX_ASSERT_OWNED) { |
| 1290 | if (state.owner != thread->ctid) { |
| 1291 | __lck_mtx_not_owned_panic(lock, thread); |
| 1292 | } |
| 1293 | } else if (type == LCK_MTX_ASSERT_NOTOWNED) { |
| 1294 | if (state.owner == thread->ctid) { |
| 1295 | __lck_mtx_owned_panic(lock, thread); |
| 1296 | } |
| 1297 | } else { |
| 1298 | panic("lck_mtx_assert(): invalid arg (%u)" , type); |
| 1299 | } |
| 1300 | } |
| 1301 | |
| 1302 | /* |
| 1303 | * Routine: lck_mtx_convert_spin |
| 1304 | * |
| 1305 | * Convert a mutex held for spin into a held full mutex |
| 1306 | */ |
| 1307 | void |
| 1308 | lck_mtx_convert_spin(lck_mtx_t *lock) |
| 1309 | { |
| 1310 | lck_mtx_state_t state = os_atomic_load(&lock->lck_mtx, relaxed); |
| 1311 | thread_t thread = current_thread(); |
| 1312 | uint32_t data = thread->ctid; |
| 1313 | |
| 1314 | if (state.owner != data) { |
| 1315 | __lck_mtx_not_owned_panic(lock, thread); |
| 1316 | } |
| 1317 | |
| 1318 | if (state.spin_mode) { |
| 1319 | /* |
| 1320 | * Note: we can acquire the lock in spin mode |
| 1321 | * _and_ be the inheritor if we waited. |
| 1322 | * |
| 1323 | * We must only clear ilocked and spin_mode, |
| 1324 | * but preserve owner and needs_wakeup. |
| 1325 | */ |
| 1326 | state.ilocked = false; |
| 1327 | state.spin_mode = false; |
| 1328 | lck_mtx_ilk_unlock_v(lock, data: state.data); |
| 1329 | turnstile_cleanup(); |
| 1330 | } |
| 1331 | } |
| 1332 | |
| 1333 | /* |
| 1334 | * Routine: kdp_lck_mtx_lock_spin_is_acquired |
| 1335 | * NOT SAFE: To be used only by kernel debugger to avoid deadlock. |
| 1336 | */ |
| 1337 | boolean_t |
| 1338 | kdp_lck_mtx_lock_spin_is_acquired(lck_mtx_t *lck) |
| 1339 | { |
| 1340 | lck_mtx_state_t state = os_atomic_load(&lck->lck_mtx, relaxed); |
| 1341 | |
| 1342 | if (not_in_kdp) { |
| 1343 | panic("panic: spinlock acquired check done outside of kernel debugger" ); |
| 1344 | } |
| 1345 | if (state.data == LCK_MTX_TAG_DESTROYED) { |
| 1346 | return false; |
| 1347 | } |
| 1348 | return state.owner || state.ilocked; |
| 1349 | } |
| 1350 | |
| 1351 | void |
| 1352 | kdp_lck_mtx_find_owner( |
| 1353 | struct waitq *waitq __unused, |
| 1354 | event64_t event, |
| 1355 | thread_waitinfo_t *waitinfo) |
| 1356 | { |
| 1357 | lck_mtx_t *mutex = LCK_EVENT_TO_MUTEX(event); |
| 1358 | lck_mtx_state_t state = os_atomic_load(&mutex->lck_mtx, relaxed); |
| 1359 | |
| 1360 | assert3u(state.data, !=, LCK_MTX_TAG_DESTROYED); |
| 1361 | waitinfo->context = VM_KERNEL_UNSLIDE_OR_PERM(mutex); |
| 1362 | waitinfo->owner = thread_tid(thread: ctid_get_thread(ctid: state.owner)); |
| 1363 | } |
| 1364 | |
| 1365 | #endif /* !LCK_MTX_USE_ARCH */ |
| 1366 | |
| 1367 | /* |
| 1368 | * Routine: mutex_pause |
| 1369 | * |
| 1370 | * Called by former callers of simple_lock_pause(). |
| 1371 | */ |
| 1372 | #define MAX_COLLISION_COUNTS 32 |
| 1373 | #define MAX_COLLISION 8 |
| 1374 | |
| 1375 | unsigned int max_collision_count[MAX_COLLISION_COUNTS]; |
| 1376 | |
| 1377 | uint32_t collision_backoffs[MAX_COLLISION] = { |
| 1378 | 10, 50, 100, 200, 400, 600, 800, 1000 |
| 1379 | }; |
| 1380 | |
| 1381 | |
| 1382 | void |
| 1383 | mutex_pause(uint32_t collisions) |
| 1384 | { |
| 1385 | wait_result_t wait_result; |
| 1386 | uint32_t back_off; |
| 1387 | |
| 1388 | if (collisions >= MAX_COLLISION_COUNTS) { |
| 1389 | collisions = MAX_COLLISION_COUNTS - 1; |
| 1390 | } |
| 1391 | max_collision_count[collisions]++; |
| 1392 | |
| 1393 | if (collisions >= MAX_COLLISION) { |
| 1394 | collisions = MAX_COLLISION - 1; |
| 1395 | } |
| 1396 | back_off = collision_backoffs[collisions]; |
| 1397 | |
| 1398 | wait_result = assert_wait_timeout(event: (event_t)mutex_pause, THREAD_UNINT, interval: back_off, NSEC_PER_USEC); |
| 1399 | assert(wait_result == THREAD_WAITING); |
| 1400 | |
| 1401 | wait_result = thread_block(THREAD_CONTINUE_NULL); |
| 1402 | assert(wait_result == THREAD_TIMED_OUT); |
| 1403 | } |
| 1404 | |
| 1405 | |
| 1406 | unsigned int mutex_yield_wait = 0; |
| 1407 | unsigned int mutex_yield_no_wait = 0; |
| 1408 | |
| 1409 | boolean_t |
| 1410 | lck_mtx_yield( |
| 1411 | lck_mtx_t *lck) |
| 1412 | { |
| 1413 | bool has_waiters = LCK_MTX_HAS_WAITERS(lck); |
| 1414 | |
| 1415 | #if DEBUG |
| 1416 | lck_mtx_assert(lck, LCK_MTX_ASSERT_OWNED); |
| 1417 | #endif /* DEBUG */ |
| 1418 | |
| 1419 | if (!has_waiters) { |
| 1420 | mutex_yield_no_wait++; |
| 1421 | } else { |
| 1422 | mutex_yield_wait++; |
| 1423 | lck_mtx_unlock(lock: lck); |
| 1424 | mutex_pause(collisions: 0); |
| 1425 | lck_mtx_lock(lock: lck); |
| 1426 | } |
| 1427 | return has_waiters; |
| 1428 | } |
| 1429 | |