1 | /* |
2 | * Copyright (c) 2013-2020 Apple Inc. All rights reserved. |
3 | * |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
5 | * |
6 | * This file contains Original Code and/or Modifications of Original Code |
7 | * as defined in and that are subject to the Apple Public Source License |
8 | * Version 2.0 (the 'License'). You may not use this file except in |
9 | * compliance with the License. The rights granted to you under the License |
10 | * may not be used to create, or enable the creation or redistribution of, |
11 | * unlawful or unlicensed copies of an Apple operating system, or to |
12 | * circumvent, violate, or enable the circumvention or violation of, any |
13 | * terms of an Apple operating system software license agreement. |
14 | * |
15 | * Please obtain a copy of the License at |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
17 | * |
18 | * The Original Code and all software distributed under the License are |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
23 | * Please see the License for the specific language governing rights and |
24 | * limitations under the License. |
25 | * |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
27 | */ |
28 | |
29 | #include <mach/mach_types.h> |
30 | #include <mach/vm_param.h> |
31 | #include <mach/mach_vm.h> |
32 | #include <mach/clock_types.h> |
33 | #include <sys/code_signing.h> |
34 | #include <sys/errno.h> |
35 | #include <sys/stackshot.h> |
36 | #ifdef IMPORTANCE_INHERITANCE |
37 | #include <ipc/ipc_importance.h> |
38 | #endif |
39 | #include <sys/appleapiopts.h> |
40 | #include <kern/debug.h> |
41 | #include <kern/block_hint.h> |
42 | #include <uuid/uuid.h> |
43 | |
44 | #include <kdp/kdp_dyld.h> |
45 | #include <kdp/kdp_en_debugger.h> |
46 | #include <kdp/processor_core.h> |
47 | #include <kdp/kdp_common.h> |
48 | |
49 | #include <libsa/types.h> |
50 | #include <libkern/version.h> |
51 | #include <libkern/section_keywords.h> |
52 | |
53 | #include <string.h> /* bcopy */ |
54 | |
55 | #include <kern/backtrace.h> |
56 | #include <kern/coalition.h> |
57 | #include <kern/exclaves_stackshot.h> |
58 | #include <kern/exclaves_inspection.h> |
59 | #include <kern/processor.h> |
60 | #include <kern/host_statistics.h> |
61 | #include <kern/counter.h> |
62 | #include <kern/thread.h> |
63 | #include <kern/thread_group.h> |
64 | #include <kern/task.h> |
65 | #include <kern/telemetry.h> |
66 | #include <kern/clock.h> |
67 | #include <kern/policy_internal.h> |
68 | #include <kern/socd_client.h> |
69 | #include <vm/vm_map.h> |
70 | #include <vm/vm_kern.h> |
71 | #include <vm/vm_pageout.h> |
72 | #include <vm/vm_fault.h> |
73 | #include <vm/vm_shared_region.h> |
74 | #include <vm/vm_compressor.h> |
75 | #include <libkern/OSKextLibPrivate.h> |
76 | #include <os/log.h> |
77 | |
78 | #ifdef CONFIG_EXCLAVES |
79 | #include <kern/exclaves.tightbeam.h> |
80 | #endif /* CONFIG_EXCLAVES */ |
81 | |
82 | #include <kern/exclaves_test_stackshot.h> |
83 | |
84 | #if defined(__x86_64__) |
85 | #include <i386/mp.h> |
86 | #include <i386/cpu_threads.h> |
87 | #endif |
88 | |
89 | #include <pexpert/pexpert.h> |
90 | |
91 | #if CONFIG_PERVASIVE_CPI |
92 | #include <kern/monotonic.h> |
93 | #endif /* CONFIG_PERVASIVE_CPI */ |
94 | |
95 | #include <san/kasan.h> |
96 | |
97 | #if DEBUG || DEVELOPMENT |
98 | # define STACKSHOT_COLLECTS_LATENCY_INFO 1 |
99 | #else |
100 | # define STACKSHOT_COLLECTS_LATENCY_INFO 0 |
101 | #endif /* DEBUG || DEVELOPMENT */ |
102 | |
103 | extern unsigned int not_in_kdp; |
104 | |
105 | /* indicate to the compiler that some accesses are unaligned */ |
106 | typedef uint64_t unaligned_u64 __attribute__((aligned(1))); |
107 | |
108 | int kdp_snapshot = 0; |
109 | static kern_return_t stack_snapshot_ret = 0; |
110 | static uint32_t stack_snapshot_bytes_traced = 0; |
111 | static uint32_t stack_snapshot_bytes_uncompressed = 0; |
112 | |
113 | #if STACKSHOT_COLLECTS_LATENCY_INFO |
114 | static bool collect_latency_info = true; |
115 | #endif |
116 | static kcdata_descriptor_t stackshot_kcdata_p = NULL; |
117 | static void *stack_snapshot_buf; |
118 | static uint32_t stack_snapshot_bufsize; |
119 | int stack_snapshot_pid; |
120 | static uint64_t stack_snapshot_flags; |
121 | static uint64_t stackshot_out_flags; |
122 | static uint64_t stack_snapshot_delta_since_timestamp; |
123 | static uint32_t stack_snapshot_pagetable_mask; |
124 | static boolean_t panic_stackshot; |
125 | |
126 | static boolean_t stack_enable_faulting = FALSE; |
127 | static struct stackshot_fault_stats fault_stats; |
128 | |
129 | static uint64_t stackshot_last_abs_start; /* start time of last stackshot */ |
130 | static uint64_t stackshot_last_abs_end; /* end time of last stackshot */ |
131 | static uint64_t stackshots_taken; /* total stackshots taken since boot */ |
132 | static uint64_t stackshots_duration; /* total abs time spent in stackshot_trap() since boot */ |
133 | |
134 | /* |
135 | * Experimentally, our current estimates are 40% short 77% of the time; adding |
136 | * 75% to the estimate gets us into 99%+ territory. In the longer run, we need |
137 | * to make stackshot estimates use a better approach (rdar://78880038); this is |
138 | * intended to be a short-term fix. |
139 | */ |
140 | uint32_t stackshot_estimate_adj = 75; /* experiment factor: 0-100, adjust our estimate up by this amount */ |
141 | |
142 | static uint32_t stackshot_initial_estimate; |
143 | static uint32_t stackshot_initial_estimate_adj; |
144 | static uint64_t stackshot_duration_prior_abs; /* prior attempts, abs */ |
145 | static unaligned_u64 * stackshot_duration_outer; |
146 | static uint64_t stackshot_microsecs; |
147 | |
148 | void * kernel_stackshot_buf = NULL; /* Pointer to buffer for stackshots triggered from the kernel and retrieved later */ |
149 | int kernel_stackshot_buf_size = 0; |
150 | |
151 | void * stackshot_snapbuf = NULL; /* Used by stack_snapshot2 (to be removed) */ |
152 | |
153 | #if CONFIG_EXCLAVES |
154 | static ctid_t *stackshot_exclave_inspect_ctids = NULL; |
155 | static size_t stackshot_exclave_inspect_ctid_count = 0; |
156 | static size_t stackshot_exclave_inspect_ctid_capacity = 0; |
157 | |
158 | static kern_return_t stackshot_exclave_kr = KERN_SUCCESS; |
159 | #endif /* CONFIG_EXCLAVES */ |
160 | |
161 | #if DEBUG || DEVELOPMENT |
162 | TUNABLE(bool, disable_exclave_stackshot, "-disable_exclave_stackshot" , false); |
163 | #else |
164 | const bool disable_exclave_stackshot = false; |
165 | #endif |
166 | |
167 | __private_extern__ void stackshot_init( void ); |
168 | static boolean_t memory_iszero(void *addr, size_t size); |
169 | uint32_t get_stackshot_estsize(uint32_t prev_size_hint, uint32_t adj); |
170 | kern_return_t kern_stack_snapshot_internal(int stackshot_config_version, void *stackshot_config, |
171 | size_t stackshot_config_size, boolean_t stackshot_from_user); |
172 | kern_return_t do_stackshot(void *); |
173 | void kdp_snapshot_preflight(int pid, void * tracebuf, uint32_t tracebuf_size, uint64_t flags, kcdata_descriptor_t data_p, uint64_t since_timestamp, uint32_t pagetable_mask); |
174 | boolean_t stackshot_thread_is_idle_worker_unsafe(thread_t thread); |
175 | static int kdp_stackshot_kcdata_format(int pid, uint64_t * trace_flags); |
176 | uint32_t kdp_stack_snapshot_bytes_traced(void); |
177 | uint32_t kdp_stack_snapshot_bytes_uncompressed(void); |
178 | static void kdp_mem_and_io_snapshot(struct mem_and_io_snapshot *memio_snap); |
179 | static vm_offset_t stackshot_find_phys(vm_map_t map, vm_offset_t target_addr, kdp_fault_flags_t fault_flags, uint32_t *kdp_fault_result_flags); |
180 | static boolean_t stackshot_copyin(vm_map_t map, uint64_t uaddr, void *dest, size_t size, boolean_t try_fault, uint32_t *kdp_fault_result); |
181 | static int stackshot_copyin_string(task_t task, uint64_t addr, char *buf, int buf_sz, boolean_t try_fault, uint32_t *kdp_fault_results); |
182 | static boolean_t stackshot_copyin_word(task_t task, uint64_t addr, uint64_t *result, boolean_t try_fault, uint32_t *kdp_fault_results); |
183 | static uint64_t proc_was_throttled_from_task(task_t task); |
184 | static void stackshot_thread_wait_owner_info(thread_t thread, thread_waitinfo_v2_t * waitinfo); |
185 | static int stackshot_thread_has_valid_waitinfo(thread_t thread); |
186 | static void stackshot_thread_turnstileinfo(thread_t thread, thread_turnstileinfo_v2_t *tsinfo); |
187 | static int stackshot_thread_has_valid_turnstileinfo(thread_t thread); |
188 | |
189 | #if CONFIG_COALITIONS |
190 | static void stackshot_coalition_jetsam_count(void *arg, int i, coalition_t coal); |
191 | static void stackshot_coalition_jetsam_snapshot(void *arg, int i, coalition_t coal); |
192 | #endif /* CONFIG_COALITIONS */ |
193 | |
194 | #if CONFIG_THREAD_GROUPS |
195 | static void stackshot_thread_group_count(void *arg, int i, struct thread_group *tg); |
196 | static void stackshot_thread_group_snapshot(void *arg, int i, struct thread_group *tg); |
197 | #endif /* CONFIG_THREAD_GROUPS */ |
198 | |
199 | extern uint32_t workqueue_get_pwq_state_kdp(void *proc); |
200 | |
201 | struct proc; |
202 | extern int proc_pid(struct proc *p); |
203 | extern uint64_t proc_uniqueid(void *p); |
204 | extern uint64_t proc_was_throttled(void *p); |
205 | extern uint64_t proc_did_throttle(void *p); |
206 | extern int proc_exiting(void *p); |
207 | extern int proc_in_teardown(void *p); |
208 | static uint64_t proc_did_throttle_from_task(task_t task); |
209 | extern void proc_name_kdp(struct proc *p, char * buf, int size); |
210 | extern int proc_threadname_kdp(void * uth, char * buf, size_t size); |
211 | extern void proc_starttime_kdp(void * p, uint64_t * tv_sec, uint64_t * tv_usec, uint64_t * abstime); |
212 | extern void proc_archinfo_kdp(void* p, cpu_type_t* cputype, cpu_subtype_t* cpusubtype); |
213 | extern uint64_t proc_getcsflags_kdp(void * p); |
214 | extern boolean_t proc_binary_uuid_kdp(task_t task, uuid_t uuid); |
215 | extern int memorystatus_get_pressure_status_kdp(void); |
216 | extern void memorystatus_proc_flags_unsafe(void * v, boolean_t *is_dirty, boolean_t *is_dirty_tracked, boolean_t *allow_idle_exit); |
217 | |
218 | extern int count_busy_buffers(void); /* must track with declaration in bsd/sys/buf_internal.h */ |
219 | |
220 | #if CONFIG_TELEMETRY |
221 | extern kern_return_t stack_microstackshot(user_addr_t tracebuf, uint32_t tracebuf_size, uint32_t flags, int32_t *retval); |
222 | #endif /* CONFIG_TELEMETRY */ |
223 | |
224 | extern kern_return_t kern_stack_snapshot_with_reason(char* reason); |
225 | extern kern_return_t kern_stack_snapshot_internal(int stackshot_config_version, void *stackshot_config, size_t stackshot_config_size, boolean_t stackshot_from_user); |
226 | |
227 | static size_t stackshot_plh_est_size(void); |
228 | |
229 | #if CONFIG_EXCLAVES |
230 | static kern_return_t collect_exclave_threads(uint64_t); |
231 | #endif |
232 | |
233 | /* |
234 | * Validates that the given address for a word is both a valid page and has |
235 | * default caching attributes for the current map. |
236 | */ |
237 | bool machine_trace_thread_validate_kva(vm_offset_t); |
238 | /* |
239 | * Validates a region that stackshot will potentially inspect. |
240 | */ |
241 | static bool _stackshot_validate_kva(vm_offset_t, size_t); |
242 | /* |
243 | * Must be called whenever stackshot is re-driven. |
244 | */ |
245 | static void _stackshot_validation_reset(void); |
246 | /* |
247 | * A kdp-safe strlen() call. Returns: |
248 | * -1 if we reach maxlen or a bad address before the end of the string, or |
249 | * strlen(s) |
250 | */ |
251 | static long _stackshot_strlen(const char *s, size_t maxlen); |
252 | |
253 | #define MAX_FRAMES 1000 |
254 | #define MAX_LOADINFOS 500 |
255 | #define MAX_DYLD_COMPACTINFO (20 * 1024) // max bytes of compactinfo to include per proc/shared region |
256 | #define TASK_IMP_WALK_LIMIT 20 |
257 | |
258 | typedef struct thread_snapshot *thread_snapshot_t; |
259 | typedef struct task_snapshot *task_snapshot_t; |
260 | |
261 | #if CONFIG_KDP_INTERACTIVE_DEBUGGING |
262 | extern kdp_send_t kdp_en_send_pkt; |
263 | #endif |
264 | |
265 | /* |
266 | * Stackshot locking and other defines. |
267 | */ |
268 | static LCK_GRP_DECLARE(stackshot_subsys_lck_grp, "stackshot_subsys_lock" ); |
269 | static LCK_MTX_DECLARE(stackshot_subsys_mutex, &stackshot_subsys_lck_grp); |
270 | |
271 | #define STACKSHOT_SUBSYS_LOCK() lck_mtx_lock(&stackshot_subsys_mutex) |
272 | #define STACKSHOT_SUBSYS_TRY_LOCK() lck_mtx_try_lock(&stackshot_subsys_mutex) |
273 | #define STACKSHOT_SUBSYS_UNLOCK() lck_mtx_unlock(&stackshot_subsys_mutex) |
274 | #define STACKSHOT_SUBSYS_ASSERT_LOCKED() lck_mtx_assert(&stackshot_subsys_mutex, LCK_MTX_ASSERT_OWNED); |
275 | |
276 | #define SANE_BOOTPROFILE_TRACEBUF_SIZE (64ULL * 1024ULL * 1024ULL) |
277 | #define SANE_TRACEBUF_SIZE (8ULL * 1024ULL * 1024ULL) |
278 | |
279 | #define TRACEBUF_SIZE_PER_GB (1024ULL * 1024ULL) |
280 | #define GIGABYTES (1024ULL * 1024ULL * 1024ULL) |
281 | |
282 | SECURITY_READ_ONLY_LATE(static uint32_t) max_tracebuf_size = SANE_TRACEBUF_SIZE; |
283 | |
284 | /* |
285 | * We currently set a ceiling of 3 milliseconds spent in the kdp fault path |
286 | * for non-panic stackshots where faulting is requested. |
287 | */ |
288 | #define KDP_FAULT_PATH_MAX_TIME_PER_STACKSHOT_NSECS (3 * NSEC_PER_MSEC) |
289 | |
290 | #define STACKSHOT_SUPP_SIZE (16 * 1024) /* Minimum stackshot size */ |
291 | #define TASK_UUID_AVG_SIZE (16 * sizeof(uuid_t)) /* Average space consumed by UUIDs/task */ |
292 | |
293 | #ifndef ROUNDUP |
294 | #define ROUNDUP(x, y) ((((x)+(y)-1)/(y))*(y)) |
295 | #endif |
296 | |
297 | #define STACKSHOT_QUEUE_LABEL_MAXSIZE 64 |
298 | |
299 | #define kcd_end_address(kcd) ((void *)((uint64_t)((kcd)->kcd_addr_begin) + kcdata_memory_get_used_bytes((kcd)))) |
300 | #define kcd_max_address(kcd) ((void *)((kcd)->kcd_addr_begin + (kcd)->kcd_length)) |
301 | /* |
302 | * Use of the kcd_exit_on_error(action) macro requires a local |
303 | * 'kern_return_t error' variable and 'error_exit' label. |
304 | */ |
305 | #define kcd_exit_on_error(action) \ |
306 | do { \ |
307 | if (KERN_SUCCESS != (error = (action))) { \ |
308 | if (error == KERN_RESOURCE_SHORTAGE) { \ |
309 | error = KERN_INSUFFICIENT_BUFFER_SIZE; \ |
310 | } \ |
311 | goto error_exit; \ |
312 | } \ |
313 | } while (0); /* end kcd_exit_on_error */ |
314 | |
315 | /* |
316 | * Initialize the mutex governing access to the stack snapshot subsystem |
317 | * and other stackshot related bits. |
318 | */ |
319 | __private_extern__ void |
320 | stackshot_init(void) |
321 | { |
322 | mach_timebase_info_data_t timebase; |
323 | |
324 | clock_timebase_info(info: &timebase); |
325 | fault_stats.sfs_system_max_fault_time = ((KDP_FAULT_PATH_MAX_TIME_PER_STACKSHOT_NSECS * timebase.denom) / timebase.numer); |
326 | |
327 | max_tracebuf_size = MAX(max_tracebuf_size, ((ROUNDUP(max_mem, GIGABYTES) / GIGABYTES) * TRACEBUF_SIZE_PER_GB)); |
328 | |
329 | PE_parse_boot_argn(arg_string: "stackshot_maxsz" , arg_ptr: &max_tracebuf_size, max_arg: sizeof(max_tracebuf_size)); |
330 | } |
331 | |
332 | /* |
333 | * Called with interrupts disabled after stackshot context has been |
334 | * initialized. Updates stack_snapshot_ret. |
335 | */ |
336 | static kern_return_t |
337 | stackshot_trap(void) |
338 | { |
339 | kern_return_t rv; |
340 | |
341 | #if defined(__x86_64__) |
342 | /* |
343 | * Since mp_rendezvous and stackshot both attempt to capture cpus then perform an |
344 | * operation, it's essential to apply mutual exclusion to the other when one |
345 | * mechanism is in operation, lest there be a deadlock as the mechanisms race to |
346 | * capture CPUs. |
347 | * |
348 | * Further, we assert that invoking stackshot from mp_rendezvous*() is not |
349 | * allowed, so we check to ensure there there is no rendezvous in progress before |
350 | * trying to grab the lock (if there is, a deadlock will occur when we try to |
351 | * grab the lock). This is accomplished by setting cpu_rendezvous_in_progress to |
352 | * TRUE in the mp rendezvous action function. If stackshot_trap() is called by |
353 | * a subordinate of the call chain within the mp rendezvous action, this flag will |
354 | * be set and can be used to detect the inevitable deadlock that would occur |
355 | * if this thread tried to grab the rendezvous lock. |
356 | */ |
357 | |
358 | if (current_cpu_datap()->cpu_rendezvous_in_progress == TRUE) { |
359 | panic("Calling stackshot from a rendezvous is not allowed!" ); |
360 | } |
361 | |
362 | mp_rendezvous_lock(); |
363 | #endif |
364 | |
365 | stackshot_last_abs_start = mach_absolute_time(); |
366 | stackshot_last_abs_end = 0; |
367 | |
368 | rv = DebuggerTrapWithState(db_op: DBOP_STACKSHOT, NULL, NULL, NULL, db_panic_options: 0, NULL, FALSE, db_panic_caller: 0); |
369 | |
370 | stackshot_last_abs_end = mach_absolute_time(); |
371 | stackshots_taken++; |
372 | stackshots_duration += (stackshot_last_abs_end - stackshot_last_abs_start); |
373 | |
374 | #if defined(__x86_64__) |
375 | mp_rendezvous_unlock(); |
376 | #endif |
377 | return rv; |
378 | } |
379 | |
380 | extern void stackshot_get_timing(uint64_t *last_abs_start, uint64_t *last_abs_end, uint64_t *count, uint64_t *total_duration); |
381 | void |
382 | stackshot_get_timing(uint64_t *last_abs_start, uint64_t *last_abs_end, uint64_t *count, uint64_t *total_duration) |
383 | { |
384 | STACKSHOT_SUBSYS_LOCK(); |
385 | *last_abs_start = stackshot_last_abs_start; |
386 | *last_abs_end = stackshot_last_abs_end; |
387 | *count = stackshots_taken; |
388 | *total_duration = stackshots_duration; |
389 | STACKSHOT_SUBSYS_UNLOCK(); |
390 | } |
391 | |
392 | static kern_return_t |
393 | finalize_kcdata(kcdata_descriptor_t kcdata) |
394 | { |
395 | kern_return_t error = KERN_SUCCESS; |
396 | |
397 | kcd_finalize_compression(data: kcdata); |
398 | kcd_exit_on_error(kcdata_add_uint64_with_description(kcdata, stackshot_out_flags, "stackshot_out_flags" )); |
399 | kcd_exit_on_error(kcdata_write_buffer_end(kcdata)); |
400 | stack_snapshot_bytes_traced = (uint32_t) kcdata_memory_get_used_bytes(kcd: kcdata); |
401 | stack_snapshot_bytes_uncompressed = (uint32_t) kcdata_memory_get_uncompressed_bytes(kcd: kcdata); |
402 | kcdata_finish(data: kcdata); |
403 | error_exit: |
404 | return error; |
405 | } |
406 | |
407 | kern_return_t |
408 | stack_snapshot_from_kernel(int pid, void *buf, uint32_t size, uint64_t flags, uint64_t delta_since_timestamp, uint32_t pagetable_mask, unsigned *bytes_traced) |
409 | { |
410 | kern_return_t error = KERN_SUCCESS; |
411 | boolean_t istate; |
412 | |
413 | #if DEVELOPMENT || DEBUG |
414 | if (kern_feature_override(KF_STACKSHOT_OVRD) == TRUE) { |
415 | return KERN_NOT_SUPPORTED; |
416 | } |
417 | #endif |
418 | if ((buf == NULL) || (size <= 0) || (bytes_traced == NULL)) { |
419 | return KERN_INVALID_ARGUMENT; |
420 | } |
421 | |
422 | /* cap in individual stackshot to max_tracebuf_size */ |
423 | if (size > max_tracebuf_size) { |
424 | size = max_tracebuf_size; |
425 | } |
426 | |
427 | /* Serialize tracing */ |
428 | if (flags & STACKSHOT_TRYLOCK) { |
429 | if (!STACKSHOT_SUBSYS_TRY_LOCK()) { |
430 | return KERN_LOCK_OWNED; |
431 | } |
432 | } else { |
433 | STACKSHOT_SUBSYS_LOCK(); |
434 | } |
435 | |
436 | #if CONFIG_EXCLAVES |
437 | assert(!stackshot_exclave_inspect_ctids); |
438 | #endif |
439 | |
440 | struct kcdata_descriptor kcdata; |
441 | uint32_t hdr_tag = (flags & STACKSHOT_COLLECT_DELTA_SNAPSHOT) ? |
442 | KCDATA_BUFFER_BEGIN_DELTA_STACKSHOT : KCDATA_BUFFER_BEGIN_STACKSHOT; |
443 | |
444 | error = kcdata_memory_static_init(data: &kcdata, buffer_addr_p: (mach_vm_address_t)buf, data_type: hdr_tag, size, |
445 | KCFLAG_USE_MEMCOPY | KCFLAG_NO_AUTO_ENDBUFFER); |
446 | if (error) { |
447 | goto out; |
448 | } |
449 | |
450 | stackshot_initial_estimate = 0; |
451 | stackshot_duration_prior_abs = 0; |
452 | stackshot_duration_outer = NULL; |
453 | |
454 | KDBG_RELEASE(MACHDBG_CODE(DBG_MACH_STACKSHOT, STACKSHOT_KERN_RECORD) | DBG_FUNC_START, |
455 | flags, size, pid, delta_since_timestamp); |
456 | |
457 | istate = ml_set_interrupts_enabled(FALSE); |
458 | uint64_t time_start = mach_absolute_time(); |
459 | |
460 | /* Emit a SOCD tracepoint that we are initiating a stackshot */ |
461 | SOCD_TRACE_XNU_START(STACKSHOT); |
462 | |
463 | /* Preload trace parameters*/ |
464 | kdp_snapshot_preflight(pid, tracebuf: buf, tracebuf_size: size, flags, data_p: &kcdata, |
465 | since_timestamp: delta_since_timestamp, pagetable_mask); |
466 | |
467 | /* |
468 | * Trap to the debugger to obtain a coherent stack snapshot; this populates |
469 | * the trace buffer |
470 | */ |
471 | error = stackshot_trap(); |
472 | |
473 | uint64_t time_end = mach_absolute_time(); |
474 | |
475 | /* Emit a SOCD tracepoint that we have completed the stackshot */ |
476 | SOCD_TRACE_XNU_END(STACKSHOT); |
477 | |
478 | ml_set_interrupts_enabled(enable: istate); |
479 | |
480 | #if CONFIG_EXCLAVES |
481 | /* stackshot trap should only finish successfully or with no pending Exclave threads */ |
482 | assert(error == KERN_SUCCESS || stackshot_exclave_inspect_ctids == NULL); |
483 | if (stackshot_exclave_inspect_ctids) { |
484 | error = collect_exclave_threads(flags); |
485 | } |
486 | #endif /* CONFIG_EXCLAVES */ |
487 | if (error == KERN_SUCCESS) { |
488 | error = finalize_kcdata(kcdata: stackshot_kcdata_p); |
489 | } |
490 | |
491 | if (stackshot_duration_outer) { |
492 | *stackshot_duration_outer = time_end - time_start; |
493 | } |
494 | *bytes_traced = kdp_stack_snapshot_bytes_traced(); |
495 | |
496 | KDBG_RELEASE(MACHDBG_CODE(DBG_MACH_STACKSHOT, STACKSHOT_KERN_RECORD) | DBG_FUNC_END, |
497 | error, (time_end - time_start), size, *bytes_traced); |
498 | out: |
499 | |
500 | stackshot_kcdata_p = NULL; |
501 | STACKSHOT_SUBSYS_UNLOCK(); |
502 | return error; |
503 | } |
504 | |
505 | #if CONFIG_TELEMETRY |
506 | kern_return_t |
507 | stack_microstackshot(user_addr_t tracebuf, uint32_t tracebuf_size, uint32_t flags, int32_t *retval) |
508 | { |
509 | int error = KERN_SUCCESS; |
510 | uint32_t bytes_traced = 0; |
511 | |
512 | *retval = -1; |
513 | |
514 | /* |
515 | * Control related operations |
516 | */ |
517 | if (flags & STACKSHOT_GLOBAL_MICROSTACKSHOT_ENABLE) { |
518 | telemetry_global_ctl(enable_disable: 1); |
519 | *retval = 0; |
520 | goto exit; |
521 | } else if (flags & STACKSHOT_GLOBAL_MICROSTACKSHOT_DISABLE) { |
522 | telemetry_global_ctl(enable_disable: 0); |
523 | *retval = 0; |
524 | goto exit; |
525 | } |
526 | |
527 | /* |
528 | * Data related operations |
529 | */ |
530 | *retval = -1; |
531 | |
532 | if ((((void*)tracebuf) == NULL) || (tracebuf_size == 0)) { |
533 | error = KERN_INVALID_ARGUMENT; |
534 | goto exit; |
535 | } |
536 | |
537 | STACKSHOT_SUBSYS_LOCK(); |
538 | |
539 | if (flags & STACKSHOT_GET_MICROSTACKSHOT) { |
540 | if (tracebuf_size > max_tracebuf_size) { |
541 | error = KERN_INVALID_ARGUMENT; |
542 | goto unlock_exit; |
543 | } |
544 | |
545 | bytes_traced = tracebuf_size; |
546 | error = telemetry_gather(buffer: tracebuf, length: &bytes_traced, |
547 | mark: (flags & STACKSHOT_SET_MICROSTACKSHOT_MARK) ? true : false); |
548 | *retval = (int)bytes_traced; |
549 | goto unlock_exit; |
550 | } |
551 | |
552 | unlock_exit: |
553 | STACKSHOT_SUBSYS_UNLOCK(); |
554 | exit: |
555 | return error; |
556 | } |
557 | #endif /* CONFIG_TELEMETRY */ |
558 | |
559 | /* |
560 | * Return the estimated size of a stackshot based on the |
561 | * number of currently running threads and tasks. |
562 | * |
563 | * adj is an adjustment in units of percentage |
564 | * |
565 | * This function is mostly unhinged from reality; struct thread_snapshot and |
566 | * struct task_stackshot are legacy, much larger versions of the structures we |
567 | * actually use, and there's no accounting for how we actually generate |
568 | * task & thread information. rdar://78880038 intends to replace this all. |
569 | */ |
570 | uint32_t |
571 | get_stackshot_estsize(uint32_t prev_size_hint, uint32_t adj) |
572 | { |
573 | vm_size_t thread_total; |
574 | vm_size_t task_total; |
575 | uint64_t size; |
576 | uint32_t estimated_size; |
577 | size_t est_thread_size = sizeof(struct thread_snapshot); |
578 | size_t est_task_size = sizeof(struct task_snapshot) + TASK_UUID_AVG_SIZE; |
579 | |
580 | adj = MIN(adj, 100u); /* no more than double our estimate */ |
581 | |
582 | #if STACKSHOT_COLLECTS_LATENCY_INFO |
583 | if (collect_latency_info) { |
584 | est_thread_size += sizeof(struct stackshot_latency_thread); |
585 | est_task_size += sizeof(struct stackshot_latency_task); |
586 | } |
587 | #endif |
588 | |
589 | thread_total = (threads_count * est_thread_size); |
590 | task_total = (tasks_count * est_task_size); |
591 | |
592 | size = thread_total + task_total + STACKSHOT_SUPP_SIZE; /* estimate */ |
593 | size += (size * adj) / 100; /* add adj */ |
594 | size = MAX(size, prev_size_hint); /* allow hint to increase */ |
595 | size += stackshot_plh_est_size(); /* add space for the port label hash */ |
596 | size = MIN(size, VM_MAP_TRUNC_PAGE(UINT32_MAX, PAGE_MASK)); /* avoid overflow */ |
597 | estimated_size = (uint32_t) VM_MAP_ROUND_PAGE(size, PAGE_MASK); /* round to pagesize */ |
598 | |
599 | return estimated_size; |
600 | } |
601 | |
602 | /* |
603 | * stackshot_remap_buffer: Utility function to remap bytes_traced bytes starting at stackshotbuf |
604 | * into the current task's user space and subsequently copy out the address |
605 | * at which the buffer has been mapped in user space to out_buffer_addr. |
606 | * |
607 | * Inputs: stackshotbuf - pointer to the original buffer in the kernel's address space |
608 | * bytes_traced - length of the buffer to remap starting from stackshotbuf |
609 | * out_buffer_addr - pointer to placeholder where newly mapped buffer will be mapped. |
610 | * out_size_addr - pointer to be filled in with the size of the buffer |
611 | * |
612 | * Outputs: ENOSPC if there is not enough free space in the task's address space to remap the buffer |
613 | * EINVAL for all other errors returned by task_remap_buffer/mach_vm_remap |
614 | * an error from copyout |
615 | */ |
616 | static kern_return_t |
617 | stackshot_remap_buffer(void *stackshotbuf, uint32_t bytes_traced, uint64_t out_buffer_addr, uint64_t out_size_addr) |
618 | { |
619 | int error = 0; |
620 | mach_vm_offset_t stackshotbuf_user_addr = (mach_vm_offset_t)NULL; |
621 | vm_prot_t cur_prot, max_prot; |
622 | |
623 | error = mach_vm_remap_kernel(target_map: get_task_map(current_task()), address: &stackshotbuf_user_addr, size: bytes_traced, mask: 0, |
624 | VM_FLAGS_ANYWHERE, VM_KERN_MEMORY_NONE, src_map: kernel_map, memory_address: (mach_vm_offset_t)stackshotbuf, FALSE, cur_protection: &cur_prot, max_protection: &max_prot, VM_INHERIT_DEFAULT); |
625 | /* |
626 | * If the call to mach_vm_remap fails, we return the appropriate converted error |
627 | */ |
628 | if (error == KERN_SUCCESS) { |
629 | /* |
630 | * If we fail to copy out the address or size of the new buffer, we remove the buffer mapping that |
631 | * we just made in the task's user space. |
632 | */ |
633 | error = copyout(CAST_DOWN(void *, &stackshotbuf_user_addr), (user_addr_t)out_buffer_addr, sizeof(stackshotbuf_user_addr)); |
634 | if (error != KERN_SUCCESS) { |
635 | mach_vm_deallocate(target: get_task_map(current_task()), address: stackshotbuf_user_addr, size: (mach_vm_size_t)bytes_traced); |
636 | return error; |
637 | } |
638 | error = copyout(&bytes_traced, (user_addr_t)out_size_addr, sizeof(bytes_traced)); |
639 | if (error != KERN_SUCCESS) { |
640 | mach_vm_deallocate(target: get_task_map(current_task()), address: stackshotbuf_user_addr, size: (mach_vm_size_t)bytes_traced); |
641 | return error; |
642 | } |
643 | } |
644 | return error; |
645 | } |
646 | |
647 | #if CONFIG_EXCLAVES |
648 | |
649 | static kern_return_t |
650 | stackshot_setup_exclave_waitlist(kcdata_descriptor_t kcdata) |
651 | { |
652 | kern_return_t error = KERN_SUCCESS; |
653 | size_t exclave_threads_max = exclaves_ipc_buffer_count(); |
654 | size_t waitlist_size = 0; |
655 | |
656 | assert(!stackshot_exclave_inspect_ctids); |
657 | |
658 | if (exclaves_inspection_is_initialized() && exclave_threads_max) { |
659 | if (os_mul_overflow(exclave_threads_max, sizeof(ctid_t), &waitlist_size)) { |
660 | error = KERN_INVALID_ARGUMENT; |
661 | goto error; |
662 | } |
663 | stackshot_exclave_inspect_ctids = kcdata_endalloc(kcdata, waitlist_size); |
664 | if (!stackshot_exclave_inspect_ctids) { |
665 | error = KERN_RESOURCE_SHORTAGE; |
666 | goto error; |
667 | } |
668 | stackshot_exclave_inspect_ctid_count = 0; |
669 | stackshot_exclave_inspect_ctid_capacity = exclave_threads_max; |
670 | } |
671 | |
672 | error: |
673 | return error; |
674 | } |
675 | |
676 | static kern_return_t |
677 | collect_exclave_threads(uint64_t stackshot_flags) |
678 | { |
679 | size_t i; |
680 | ctid_t ctid; |
681 | thread_t thread; |
682 | kern_return_t kr = KERN_SUCCESS; |
683 | STACKSHOT_SUBSYS_ASSERT_LOCKED(); |
684 | |
685 | lck_mtx_lock(&exclaves_collect_mtx); |
686 | |
687 | if (stackshot_exclave_inspect_ctid_count == 0) { |
688 | /* Nothing to do */ |
689 | goto out; |
690 | } |
691 | |
692 | // When asking for ASIDs, make sure we get all exclaves asids and mappings as well |
693 | exclaves_stackshot_raw_addresses = (stackshot_flags & STACKSHOT_ASID); |
694 | exclaves_stackshot_all_address_spaces = (stackshot_flags & STACKSHOT_ASID); |
695 | |
696 | /* This error is intentionally ignored: we are now committed to collecting |
697 | * these threads, or at least properly waking them. If this fails, the first |
698 | * collected thread should also fail to append to the kcdata, and will abort |
699 | * further collection, properly clearing the AST and waking these threads. |
700 | */ |
701 | kcdata_add_container_marker(stackshot_kcdata_p, KCDATA_TYPE_CONTAINER_BEGIN, |
702 | STACKSHOT_KCCONTAINER_EXCLAVES, 0); |
703 | |
704 | for (i = 0; i < stackshot_exclave_inspect_ctid_count; ++i) { |
705 | ctid = stackshot_exclave_inspect_ctids[i]; |
706 | thread = ctid_get_thread(ctid); |
707 | assert(thread); |
708 | exclaves_inspection_queue_add(&exclaves_inspection_queue_stackshot, &thread->th_exclaves_inspection_queue_stackshot); |
709 | } |
710 | exclaves_inspection_begin_collecting(); |
711 | exclaves_inspection_wait_complete(&exclaves_inspection_queue_stackshot); |
712 | kr = stackshot_exclave_kr; /* Read the result of work done on our behalf, by collection thread */ |
713 | if (kr != KERN_SUCCESS) { |
714 | goto out; |
715 | } |
716 | |
717 | kr = kcdata_add_container_marker(stackshot_kcdata_p, KCDATA_TYPE_CONTAINER_END, |
718 | STACKSHOT_KCCONTAINER_EXCLAVES, 0); |
719 | if (kr != KERN_SUCCESS) { |
720 | goto out; |
721 | } |
722 | out: |
723 | /* clear Exclave buffer now that it's been used */ |
724 | stackshot_exclave_inspect_ctids = NULL; |
725 | stackshot_exclave_inspect_ctid_capacity = 0; |
726 | stackshot_exclave_inspect_ctid_count = 0; |
727 | |
728 | lck_mtx_unlock(&exclaves_collect_mtx); |
729 | return kr; |
730 | } |
731 | |
732 | static kern_return_t |
733 | stackshot_exclaves_process_stacktrace(const address_v__opt_s *_Nonnull st, void *kcdata_ptr) |
734 | { |
735 | kern_return_t error = KERN_SUCCESS; |
736 | exclave_ecstackentry_addr_t * addr = NULL; |
737 | __block size_t count = 0; |
738 | |
739 | if (!st->has_value) { |
740 | goto error_exit; |
741 | } |
742 | |
743 | address__v_visit(&st->value, ^(size_t __unused i, const stackshot_address_s __unused item) { |
744 | count++; |
745 | }); |
746 | |
747 | kcdata_compression_window_open(kcdata_ptr); |
748 | kcd_exit_on_error(kcdata_get_memory_addr_for_array(kcdata_ptr, STACKSHOT_KCTYPE_EXCLAVE_IPCSTACKENTRY_ECSTACK, |
749 | sizeof(exclave_ecstackentry_addr_t), count, (mach_vm_address_t*)&addr)); |
750 | |
751 | address__v_visit(&st->value, ^(size_t i, const stackshot_address_s item) { |
752 | addr[i] = (exclave_ecstackentry_addr_t)item; |
753 | }); |
754 | |
755 | kcd_exit_on_error(kcdata_compression_window_close(kcdata_ptr)); |
756 | |
757 | error_exit: |
758 | return error; |
759 | } |
760 | |
761 | static kern_return_t |
762 | stackshot_exclaves_process_ipcstackentry(uint64_t index, const stackshot_ipcstackentry_s *_Nonnull ise, void *kcdata_ptr) |
763 | { |
764 | kern_return_t error = KERN_SUCCESS; |
765 | |
766 | kcd_exit_on_error(kcdata_add_container_marker(kcdata_ptr, KCDATA_TYPE_CONTAINER_BEGIN, |
767 | STACKSHOT_KCCONTAINER_EXCLAVE_IPCSTACKENTRY, index)); |
768 | |
769 | struct exclave_ipcstackentry_info info = { 0 }; |
770 | info.eise_asid = ise->asid; |
771 | |
772 | info.eise_tnid = ise->tnid; |
773 | |
774 | if (ise->invocationid.has_value) { |
775 | info.eise_flags |= kExclaveIpcStackEntryHaveInvocationID; |
776 | info.eise_invocationid = ise->invocationid.value; |
777 | } else { |
778 | info.eise_invocationid = 0; |
779 | } |
780 | |
781 | info.eise_flags |= (ise->stacktrace.has_value ? kExclaveIpcStackEntryHaveStack : 0); |
782 | |
783 | kcd_exit_on_error(kcdata_push_data(kcdata_ptr, STACKSHOT_KCTYPE_EXCLAVE_IPCSTACKENTRY_INFO, sizeof(struct exclave_ipcstackentry_info), &info)); |
784 | |
785 | if (ise->stacktrace.has_value) { |
786 | kcd_exit_on_error(stackshot_exclaves_process_stacktrace(&ise->stacktrace, kcdata_ptr)); |
787 | } |
788 | |
789 | kcd_exit_on_error(kcdata_add_container_marker(kcdata_ptr, KCDATA_TYPE_CONTAINER_END, |
790 | STACKSHOT_KCCONTAINER_EXCLAVE_IPCSTACKENTRY, index)); |
791 | |
792 | error_exit: |
793 | return error; |
794 | } |
795 | |
796 | static kern_return_t |
797 | stackshot_exclaves_process_ipcstack(const stackshot_ipcstackentry_v__opt_s *_Nonnull ipcstack, void *kcdata_ptr) |
798 | { |
799 | __block kern_return_t kr = KERN_SUCCESS; |
800 | |
801 | if (!ipcstack->has_value) { |
802 | goto error_exit; |
803 | } |
804 | |
805 | stackshot_ipcstackentry__v_visit(&ipcstack->value, ^(size_t i, const stackshot_ipcstackentry_s *_Nonnull item) { |
806 | if (kr == KERN_SUCCESS) { |
807 | kr = stackshot_exclaves_process_ipcstackentry(i, item, kcdata_ptr); |
808 | } |
809 | }); |
810 | |
811 | error_exit: |
812 | return kr; |
813 | } |
814 | |
815 | static kern_return_t |
816 | stackshot_exclaves_process_stackshotentry(const stackshot_stackshotentry_s *_Nonnull se, void *kcdata_ptr) |
817 | { |
818 | kern_return_t error = KERN_SUCCESS; |
819 | |
820 | kcd_exit_on_error(kcdata_add_container_marker(kcdata_ptr, KCDATA_TYPE_CONTAINER_BEGIN, |
821 | STACKSHOT_KCCONTAINER_EXCLAVE_SCRESULT, se->scid)); |
822 | |
823 | struct exclave_scresult_info info = { 0 }; |
824 | info.esc_id = se->scid; |
825 | info.esc_flags = se->ipcstack.has_value ? kExclaveScresultHaveIPCStack : 0; |
826 | |
827 | kcd_exit_on_error(kcdata_push_data(kcdata_ptr, STACKSHOT_KCTYPE_EXCLAVE_SCRESULT_INFO, sizeof(struct exclave_scresult_info), &info)); |
828 | |
829 | if (se->ipcstack.has_value) { |
830 | kcd_exit_on_error(stackshot_exclaves_process_ipcstack(&se->ipcstack, kcdata_ptr)); |
831 | } |
832 | |
833 | kcd_exit_on_error(kcdata_add_container_marker(kcdata_ptr, KCDATA_TYPE_CONTAINER_END, |
834 | STACKSHOT_KCCONTAINER_EXCLAVE_SCRESULT, se->scid)); |
835 | |
836 | error_exit: |
837 | return error; |
838 | } |
839 | |
840 | static kern_return_t |
841 | stackshot_exclaves_process_textlayout_segments(const stackshot_textlayout_s *_Nonnull tl, void *kcdata_ptr, bool want_raw_addresses) |
842 | { |
843 | kern_return_t error = KERN_SUCCESS; |
844 | __block struct exclave_textlayout_segment * info = NULL; |
845 | |
846 | __block size_t count = 0; |
847 | stackshot_textsegment__v_visit(&tl->textsegments, ^(size_t __unused i, const stackshot_textsegment_s __unused *_Nonnull item) { |
848 | count++; |
849 | }); |
850 | |
851 | if (!count) { |
852 | goto error_exit; |
853 | } |
854 | |
855 | kcdata_compression_window_open(kcdata_ptr); |
856 | kcd_exit_on_error(kcdata_get_memory_addr_for_array(kcdata_ptr, STACKSHOT_KCTYPE_EXCLAVE_TEXTLAYOUT_SEGMENTS, |
857 | sizeof(struct exclave_textlayout_segment), count, (mach_vm_address_t*)&info)); |
858 | |
859 | stackshot_textsegment__v_visit(&tl->textsegments, ^(size_t __unused i, const stackshot_textsegment_s *_Nonnull item) { |
860 | memcpy(&info->layoutSegment_uuid, item->uuid, sizeof(uuid_t)); |
861 | if (want_raw_addresses) { |
862 | info->layoutSegment_loadAddress = item->rawloadaddress.has_value ? item->rawloadaddress.value: 0; |
863 | } else { |
864 | info->layoutSegment_loadAddress = item->loadaddress; |
865 | } |
866 | info++; |
867 | }); |
868 | |
869 | kcd_exit_on_error(kcdata_compression_window_close(kcdata_ptr)); |
870 | |
871 | error_exit: |
872 | return error; |
873 | } |
874 | |
875 | static kern_return_t |
876 | stackshot_exclaves_process_textlayout(uint64_t index, const stackshot_textlayout_s *_Nonnull tl, void *kcdata_ptr, bool want_raw_addresses) |
877 | { |
878 | kern_return_t error = KERN_SUCCESS; |
879 | __block struct exclave_textlayout_info info = { 0 }; |
880 | |
881 | kcd_exit_on_error(kcdata_add_container_marker(kcdata_ptr, KCDATA_TYPE_CONTAINER_BEGIN, |
882 | STACKSHOT_KCCONTAINER_EXCLAVE_TEXTLAYOUT, index)); |
883 | |
884 | info.layout_id = tl->textlayoutid; |
885 | |
886 | info.etl_flags = want_raw_addresses ? 0 : kExclaveTextLayoutLoadAddressesUnslid; |
887 | |
888 | kcd_exit_on_error(kcdata_push_data(kcdata_ptr, STACKSHOT_KCTYPE_EXCLAVE_TEXTLAYOUT_INFO, sizeof(struct exclave_textlayout_info), &info)); |
889 | kcd_exit_on_error(stackshot_exclaves_process_textlayout_segments(tl, kcdata_ptr, want_raw_addresses)); |
890 | kcd_exit_on_error(kcdata_add_container_marker(kcdata_ptr, KCDATA_TYPE_CONTAINER_END, |
891 | STACKSHOT_KCCONTAINER_EXCLAVE_TEXTLAYOUT, index)); |
892 | error_exit: |
893 | return error; |
894 | } |
895 | |
896 | static kern_return_t |
897 | stackshot_exclaves_process_addressspace(const stackshot_addressspace_s *_Nonnull as, void *kcdata_ptr, bool want_raw_addresses) |
898 | { |
899 | kern_return_t error = KERN_SUCCESS; |
900 | struct exclave_addressspace_info info = { 0 }; |
901 | __block size_t name_len = 0; |
902 | uint8_t * name = NULL; |
903 | |
904 | u8__v_visit(&as->name, ^(size_t __unused i, const uint8_t __unused item) { |
905 | name_len++; |
906 | }); |
907 | |
908 | info.eas_id = as->asid; |
909 | |
910 | if (want_raw_addresses && as->rawaddressslide.has_value) { |
911 | info.eas_flags = kExclaveAddressSpaceHaveSlide; |
912 | info.eas_slide = as->rawaddressslide.value; |
913 | } else { |
914 | info.eas_flags = 0; |
915 | info.eas_slide = UINT64_MAX; |
916 | } |
917 | |
918 | info.eas_layoutid = as->textlayoutid; // text layout for this address space |
919 | info.eas_asroot = as->asroot.has_value ? as->asroot.value : 0; |
920 | |
921 | kcd_exit_on_error(kcdata_add_container_marker(kcdata_ptr, KCDATA_TYPE_CONTAINER_BEGIN, |
922 | STACKSHOT_KCCONTAINER_EXCLAVE_ADDRESSSPACE, as->asid)); |
923 | kcd_exit_on_error(kcdata_push_data(kcdata_ptr, STACKSHOT_KCTYPE_EXCLAVE_ADDRESSSPACE_INFO, sizeof(struct exclave_addressspace_info), &info)); |
924 | |
925 | if (name_len > 0) { |
926 | kcdata_compression_window_open(kcdata_ptr); |
927 | kcd_exit_on_error(kcdata_get_memory_addr(kcdata_ptr, STACKSHOT_KCTYPE_EXCLAVE_ADDRESSSPACE_NAME, name_len + 1, (mach_vm_address_t*)&name)); |
928 | |
929 | u8__v_visit(&as->name, ^(size_t i, const uint8_t item) { |
930 | name[i] = item; |
931 | }); |
932 | name[name_len] = 0; |
933 | |
934 | kcd_exit_on_error(kcdata_compression_window_close(kcdata_ptr)); |
935 | } |
936 | |
937 | kcd_exit_on_error(kcdata_add_container_marker(kcdata_ptr, KCDATA_TYPE_CONTAINER_END, |
938 | STACKSHOT_KCCONTAINER_EXCLAVE_ADDRESSSPACE, as->asid)); |
939 | error_exit: |
940 | return error; |
941 | } |
942 | |
943 | kern_return_t |
944 | stackshot_exclaves_process_stackshot(const stackshot_stackshotresult_s *result, void *kcdata_ptr, bool want_raw_addresses); |
945 | |
946 | kern_return_t |
947 | stackshot_exclaves_process_stackshot(const stackshot_stackshotresult_s *result, void *kcdata_ptr, bool want_raw_addresses) |
948 | { |
949 | __block kern_return_t kr = KERN_SUCCESS; |
950 | |
951 | stackshot_stackshotentry__v_visit(&result->stackshotentries, ^(size_t __unused i, const stackshot_stackshotentry_s *_Nonnull item) { |
952 | if (kr == KERN_SUCCESS) { |
953 | kr = stackshot_exclaves_process_stackshotentry(item, kcdata_ptr); |
954 | } |
955 | }); |
956 | |
957 | stackshot_addressspace__v_visit(&result->addressspaces, ^(size_t __unused i, const stackshot_addressspace_s *_Nonnull item) { |
958 | if (kr == KERN_SUCCESS) { |
959 | kr = stackshot_exclaves_process_addressspace(item, kcdata_ptr, want_raw_addresses); |
960 | } |
961 | }); |
962 | |
963 | stackshot_textlayout__v_visit(&result->textlayouts, ^(size_t i, const stackshot_textlayout_s *_Nonnull item) { |
964 | if (kr == KERN_SUCCESS) { |
965 | kr = stackshot_exclaves_process_textlayout(i, item, kcdata_ptr, want_raw_addresses); |
966 | } |
967 | }); |
968 | |
969 | return kr; |
970 | } |
971 | |
972 | kern_return_t |
973 | stackshot_exclaves_process_result(kern_return_t collect_kr, const stackshot_stackshotresult_s *result, bool want_raw_addresses); |
974 | |
975 | kern_return_t |
976 | stackshot_exclaves_process_result(kern_return_t collect_kr, const stackshot_stackshotresult_s *result, bool want_raw_addresses) |
977 | { |
978 | kern_return_t kr = KERN_SUCCESS; |
979 | if (result == NULL) { |
980 | return collect_kr; |
981 | } |
982 | |
983 | kr = stackshot_exclaves_process_stackshot(result, stackshot_kcdata_p, want_raw_addresses); |
984 | |
985 | stackshot_exclave_kr = kr; |
986 | |
987 | return kr; |
988 | } |
989 | |
990 | |
991 | static void |
992 | commit_exclaves_ast(void) |
993 | { |
994 | size_t i = 0; |
995 | thread_t thread = NULL; |
996 | |
997 | assert(debug_mode_active()); |
998 | |
999 | if (stackshot_exclave_inspect_ctids && stackshot_exclave_inspect_ctid_count > 0) { |
1000 | for (i = 0; i < stackshot_exclave_inspect_ctid_count; ++i) { |
1001 | thread = ctid_get_thread(stackshot_exclave_inspect_ctids[i]); |
1002 | thread_reference(thread); |
1003 | os_atomic_or(&thread->th_exclaves_inspection_state, TH_EXCLAVES_INSPECTION_STACKSHOT, relaxed); |
1004 | } |
1005 | } |
1006 | } |
1007 | |
1008 | #endif /* CONFIG_EXCLAVES */ |
1009 | |
1010 | kern_return_t |
1011 | kern_stack_snapshot_internal(int stackshot_config_version, void *stackshot_config, size_t stackshot_config_size, boolean_t stackshot_from_user) |
1012 | { |
1013 | int error = 0; |
1014 | boolean_t prev_interrupt_state; |
1015 | uint32_t bytes_traced = 0; |
1016 | uint32_t stackshot_estimate = 0; |
1017 | uint32_t stackshotbuf_size = 0; |
1018 | void * stackshotbuf = NULL; |
1019 | kcdata_descriptor_t kcdata_p = NULL; |
1020 | |
1021 | void * buf_to_free = NULL; |
1022 | int size_to_free = 0; |
1023 | bool is_traced = false; /* has FUNC_START tracepoint fired? */ |
1024 | uint64_t tot_interrupts_off_abs = 0; /* sum(time with interrupts off) */ |
1025 | |
1026 | /* Parsed arguments */ |
1027 | uint64_t out_buffer_addr; |
1028 | uint64_t out_size_addr; |
1029 | int pid = -1; |
1030 | uint64_t flags; |
1031 | uint64_t since_timestamp; |
1032 | uint32_t size_hint = 0; |
1033 | uint32_t pagetable_mask = STACKSHOT_PAGETABLES_MASK_ALL; |
1034 | |
1035 | if (stackshot_config == NULL) { |
1036 | return KERN_INVALID_ARGUMENT; |
1037 | } |
1038 | #if DEVELOPMENT || DEBUG |
1039 | /* TBD: ask stackshot clients to avoid issuing stackshots in this |
1040 | * configuration in lieu of the kernel feature override. |
1041 | */ |
1042 | if (kern_feature_override(KF_STACKSHOT_OVRD) == TRUE) { |
1043 | return KERN_NOT_SUPPORTED; |
1044 | } |
1045 | #endif |
1046 | |
1047 | switch (stackshot_config_version) { |
1048 | case STACKSHOT_CONFIG_TYPE: |
1049 | if (stackshot_config_size != sizeof(stackshot_config_t)) { |
1050 | return KERN_INVALID_ARGUMENT; |
1051 | } |
1052 | stackshot_config_t *config = (stackshot_config_t *) stackshot_config; |
1053 | out_buffer_addr = config->sc_out_buffer_addr; |
1054 | out_size_addr = config->sc_out_size_addr; |
1055 | pid = config->sc_pid; |
1056 | flags = config->sc_flags; |
1057 | since_timestamp = config->sc_delta_timestamp; |
1058 | if (config->sc_size <= max_tracebuf_size) { |
1059 | size_hint = config->sc_size; |
1060 | } |
1061 | /* |
1062 | * Retain the pre-sc_pagetable_mask behavior of STACKSHOT_PAGE_TABLES, |
1063 | * dump every level if the pagetable_mask is not set |
1064 | */ |
1065 | if (flags & STACKSHOT_PAGE_TABLES && config->sc_pagetable_mask) { |
1066 | pagetable_mask = config->sc_pagetable_mask; |
1067 | } |
1068 | break; |
1069 | default: |
1070 | return KERN_NOT_SUPPORTED; |
1071 | } |
1072 | |
1073 | /* |
1074 | * Currently saving a kernel buffer and trylock are only supported from the |
1075 | * internal/KEXT API. |
1076 | */ |
1077 | if (stackshot_from_user) { |
1078 | if (flags & (STACKSHOT_TRYLOCK | STACKSHOT_SAVE_IN_KERNEL_BUFFER | STACKSHOT_FROM_PANIC)) { |
1079 | return KERN_NO_ACCESS; |
1080 | } |
1081 | #if !DEVELOPMENT && !DEBUG |
1082 | if (flags & (STACKSHOT_DO_COMPRESS)) { |
1083 | return KERN_NO_ACCESS; |
1084 | } |
1085 | #endif |
1086 | } else { |
1087 | if (!(flags & STACKSHOT_SAVE_IN_KERNEL_BUFFER)) { |
1088 | return KERN_NOT_SUPPORTED; |
1089 | } |
1090 | } |
1091 | |
1092 | if (!((flags & STACKSHOT_KCDATA_FORMAT) || (flags & STACKSHOT_RETRIEVE_EXISTING_BUFFER))) { |
1093 | return KERN_NOT_SUPPORTED; |
1094 | } |
1095 | |
1096 | /* Compresssed delta stackshots or page dumps are not yet supported */ |
1097 | if (((flags & STACKSHOT_COLLECT_DELTA_SNAPSHOT) || (flags & STACKSHOT_PAGE_TABLES)) |
1098 | && (flags & STACKSHOT_DO_COMPRESS)) { |
1099 | return KERN_NOT_SUPPORTED; |
1100 | } |
1101 | |
1102 | /* |
1103 | * If we're not saving the buffer in the kernel pointer, we need a place to copy into. |
1104 | */ |
1105 | if ((!out_buffer_addr || !out_size_addr) && !(flags & STACKSHOT_SAVE_IN_KERNEL_BUFFER)) { |
1106 | return KERN_INVALID_ARGUMENT; |
1107 | } |
1108 | |
1109 | if (since_timestamp != 0 && ((flags & STACKSHOT_COLLECT_DELTA_SNAPSHOT) == 0)) { |
1110 | return KERN_INVALID_ARGUMENT; |
1111 | } |
1112 | |
1113 | #if CONFIG_PERVASIVE_CPI && CONFIG_CPU_COUNTERS |
1114 | if (!mt_core_supported) { |
1115 | flags &= ~STACKSHOT_INSTRS_CYCLES; |
1116 | } |
1117 | #else /* CONFIG_PERVASIVE_CPI && CONFIG_CPU_COUNTERS */ |
1118 | flags &= ~STACKSHOT_INSTRS_CYCLES; |
1119 | #endif /* !CONFIG_PERVASIVE_CPI || !CONFIG_CPU_COUNTERS */ |
1120 | |
1121 | STACKSHOT_TESTPOINT(TP_WAIT_START_STACKSHOT); |
1122 | STACKSHOT_SUBSYS_LOCK(); |
1123 | |
1124 | if (flags & STACKSHOT_SAVE_IN_KERNEL_BUFFER) { |
1125 | /* |
1126 | * Don't overwrite an existing stackshot |
1127 | */ |
1128 | if (kernel_stackshot_buf != NULL) { |
1129 | error = KERN_MEMORY_PRESENT; |
1130 | goto error_early_exit; |
1131 | } |
1132 | } else if (flags & STACKSHOT_RETRIEVE_EXISTING_BUFFER) { |
1133 | if ((kernel_stackshot_buf == NULL) || (kernel_stackshot_buf_size <= 0)) { |
1134 | error = KERN_NOT_IN_SET; |
1135 | goto error_early_exit; |
1136 | } |
1137 | error = stackshot_remap_buffer(stackshotbuf: kernel_stackshot_buf, bytes_traced: kernel_stackshot_buf_size, |
1138 | out_buffer_addr, out_size_addr); |
1139 | /* |
1140 | * If we successfully remapped the buffer into the user's address space, we |
1141 | * set buf_to_free and size_to_free so the prior kernel mapping will be removed |
1142 | * and then clear the kernel stackshot pointer and associated size. |
1143 | */ |
1144 | if (error == KERN_SUCCESS) { |
1145 | buf_to_free = kernel_stackshot_buf; |
1146 | size_to_free = (int) VM_MAP_ROUND_PAGE(kernel_stackshot_buf_size, PAGE_MASK); |
1147 | kernel_stackshot_buf = NULL; |
1148 | kernel_stackshot_buf_size = 0; |
1149 | } |
1150 | |
1151 | goto error_early_exit; |
1152 | } |
1153 | |
1154 | if (flags & STACKSHOT_GET_BOOT_PROFILE) { |
1155 | void *bootprofile = NULL; |
1156 | uint32_t len = 0; |
1157 | #if CONFIG_TELEMETRY |
1158 | bootprofile_get(buffer: &bootprofile, length: &len); |
1159 | #endif |
1160 | if (!bootprofile || !len) { |
1161 | error = KERN_NOT_IN_SET; |
1162 | goto error_early_exit; |
1163 | } |
1164 | error = stackshot_remap_buffer(stackshotbuf: bootprofile, bytes_traced: len, out_buffer_addr, out_size_addr); |
1165 | goto error_early_exit; |
1166 | } |
1167 | |
1168 | stackshot_duration_prior_abs = 0; |
1169 | stackshot_initial_estimate_adj = os_atomic_load(&stackshot_estimate_adj, relaxed); |
1170 | stackshotbuf_size = stackshot_estimate = |
1171 | get_stackshot_estsize(prev_size_hint: size_hint, adj: stackshot_initial_estimate_adj); |
1172 | stackshot_initial_estimate = stackshot_estimate; |
1173 | |
1174 | KDBG_RELEASE(MACHDBG_CODE(DBG_MACH_STACKSHOT, STACKSHOT_RECORD) | DBG_FUNC_START, |
1175 | flags, stackshotbuf_size, pid, since_timestamp); |
1176 | is_traced = true; |
1177 | |
1178 | #if CONFIG_EXCLAVES |
1179 | assert(!stackshot_exclave_inspect_ctids); |
1180 | #endif |
1181 | |
1182 | for (; stackshotbuf_size <= max_tracebuf_size; stackshotbuf_size <<= 1) { |
1183 | if (kmem_alloc(map: kernel_map, addrp: (vm_offset_t *)&stackshotbuf, size: stackshotbuf_size, |
1184 | flags: KMA_ZERO | KMA_DATA, VM_KERN_MEMORY_DIAG) != KERN_SUCCESS) { |
1185 | error = KERN_RESOURCE_SHORTAGE; |
1186 | goto error_exit; |
1187 | } |
1188 | |
1189 | |
1190 | uint32_t hdr_tag = (flags & STACKSHOT_COLLECT_DELTA_SNAPSHOT) ? KCDATA_BUFFER_BEGIN_DELTA_STACKSHOT |
1191 | : (flags & STACKSHOT_DO_COMPRESS) ? KCDATA_BUFFER_BEGIN_COMPRESSED |
1192 | : KCDATA_BUFFER_BEGIN_STACKSHOT; |
1193 | kcdata_p = kcdata_memory_alloc_init(crash_data_p: (mach_vm_address_t)stackshotbuf, data_type: hdr_tag, size: stackshotbuf_size, |
1194 | KCFLAG_USE_MEMCOPY | KCFLAG_NO_AUTO_ENDBUFFER); |
1195 | |
1196 | stackshot_duration_outer = NULL; |
1197 | |
1198 | /* if compression was requested, allocate the extra zlib scratch area */ |
1199 | if (flags & STACKSHOT_DO_COMPRESS) { |
1200 | hdr_tag = (flags & STACKSHOT_COLLECT_DELTA_SNAPSHOT) ? KCDATA_BUFFER_BEGIN_DELTA_STACKSHOT |
1201 | : KCDATA_BUFFER_BEGIN_STACKSHOT; |
1202 | error = kcdata_init_compress(kcdata_p, hdr_tag, memcpy_f: kdp_memcpy, type: KCDCT_ZLIB); |
1203 | if (error != KERN_SUCCESS) { |
1204 | os_log(OS_LOG_DEFAULT, "failed to initialize compression: %d!\n" , |
1205 | (int) error); |
1206 | goto error_exit; |
1207 | } |
1208 | } |
1209 | |
1210 | /* |
1211 | * Disable interrupts and save the current interrupt state. |
1212 | */ |
1213 | prev_interrupt_state = ml_set_interrupts_enabled(FALSE); |
1214 | uint64_t time_start = mach_absolute_time(); |
1215 | |
1216 | /* Emit a SOCD tracepoint that we are initiating a stackshot */ |
1217 | SOCD_TRACE_XNU_START(STACKSHOT); |
1218 | |
1219 | /* |
1220 | * Load stackshot parameters. |
1221 | */ |
1222 | kdp_snapshot_preflight(pid, tracebuf: stackshotbuf, tracebuf_size: stackshotbuf_size, flags, data_p: kcdata_p, since_timestamp, |
1223 | pagetable_mask); |
1224 | |
1225 | error = stackshot_trap(); |
1226 | |
1227 | /* record the duration that interupts were disabled */ |
1228 | uint64_t time_end = mach_absolute_time(); |
1229 | |
1230 | /* Emit a SOCD tracepoint that we have completed the stackshot */ |
1231 | SOCD_TRACE_XNU_END(STACKSHOT); |
1232 | ml_set_interrupts_enabled(enable: prev_interrupt_state); |
1233 | |
1234 | #if CONFIG_EXCLAVES |
1235 | /* trigger Exclave thread collection if any are queued */ |
1236 | assert(error == KERN_SUCCESS || stackshot_exclave_inspect_ctids == NULL); |
1237 | if (stackshot_exclave_inspect_ctids) { |
1238 | if (stackshot_exclave_inspect_ctid_count > 0) { |
1239 | STACKSHOT_TESTPOINT(TP_START_COLLECTION); |
1240 | } |
1241 | error = collect_exclave_threads(flags); |
1242 | } |
1243 | #endif /* CONFIG_EXCLAVES */ |
1244 | |
1245 | if (stackshot_duration_outer) { |
1246 | *stackshot_duration_outer = time_end - time_start; |
1247 | } |
1248 | tot_interrupts_off_abs += time_end - time_start; |
1249 | |
1250 | if (error != KERN_SUCCESS) { |
1251 | if (kcdata_p != NULL) { |
1252 | kcdata_memory_destroy(data: kcdata_p); |
1253 | kcdata_p = NULL; |
1254 | stackshot_kcdata_p = NULL; |
1255 | } |
1256 | kmem_free(map: kernel_map, addr: (vm_offset_t)stackshotbuf, size: stackshotbuf_size); |
1257 | stackshotbuf = NULL; |
1258 | if (error == KERN_INSUFFICIENT_BUFFER_SIZE) { |
1259 | /* |
1260 | * If we didn't allocate a big enough buffer, deallocate and try again. |
1261 | */ |
1262 | KDBG_RELEASE(MACHDBG_CODE(DBG_MACH_STACKSHOT, STACKSHOT_RECORD_SHORT) | DBG_FUNC_NONE, |
1263 | time_end - time_start, stackshot_estimate, stackshotbuf_size); |
1264 | stackshot_duration_prior_abs += (time_end - time_start); |
1265 | continue; |
1266 | } else { |
1267 | goto error_exit; |
1268 | } |
1269 | } |
1270 | |
1271 | kcd_exit_on_error(finalize_kcdata(stackshot_kcdata_p)); |
1272 | |
1273 | bytes_traced = kdp_stack_snapshot_bytes_traced(); |
1274 | if (bytes_traced <= 0) { |
1275 | error = KERN_ABORTED; |
1276 | goto error_exit; |
1277 | } |
1278 | |
1279 | assert(bytes_traced <= stackshotbuf_size); |
1280 | if (!(flags & STACKSHOT_SAVE_IN_KERNEL_BUFFER)) { |
1281 | error = stackshot_remap_buffer(stackshotbuf, bytes_traced, out_buffer_addr, out_size_addr); |
1282 | goto error_exit; |
1283 | } |
1284 | |
1285 | /* |
1286 | * Save the stackshot in the kernel buffer. |
1287 | */ |
1288 | kernel_stackshot_buf = stackshotbuf; |
1289 | kernel_stackshot_buf_size = bytes_traced; |
1290 | /* |
1291 | * Figure out if we didn't use all the pages in the buffer. If so, we set buf_to_free to the beginning of |
1292 | * the next page after the end of the stackshot in the buffer so that the kmem_free clips the buffer and |
1293 | * update size_to_free for kmem_free accordingly. |
1294 | */ |
1295 | size_to_free = stackshotbuf_size - (int) VM_MAP_ROUND_PAGE(bytes_traced, PAGE_MASK); |
1296 | |
1297 | assert(size_to_free >= 0); |
1298 | |
1299 | if (size_to_free != 0) { |
1300 | buf_to_free = (void *)((uint64_t)stackshotbuf + stackshotbuf_size - size_to_free); |
1301 | } |
1302 | |
1303 | stackshotbuf = NULL; |
1304 | stackshotbuf_size = 0; |
1305 | goto error_exit; |
1306 | } |
1307 | |
1308 | if (stackshotbuf_size > max_tracebuf_size) { |
1309 | error = KERN_RESOURCE_SHORTAGE; |
1310 | } |
1311 | |
1312 | error_exit: |
1313 | if (is_traced) { |
1314 | KDBG_RELEASE(MACHDBG_CODE(DBG_MACH_STACKSHOT, STACKSHOT_RECORD) | DBG_FUNC_END, |
1315 | error, tot_interrupts_off_abs, stackshotbuf_size, bytes_traced); |
1316 | } |
1317 | |
1318 | error_early_exit: |
1319 | if (kcdata_p != NULL) { |
1320 | kcdata_memory_destroy(data: kcdata_p); |
1321 | kcdata_p = NULL; |
1322 | stackshot_kcdata_p = NULL; |
1323 | } |
1324 | |
1325 | if (stackshotbuf != NULL) { |
1326 | kmem_free(map: kernel_map, addr: (vm_offset_t)stackshotbuf, size: stackshotbuf_size); |
1327 | } |
1328 | if (buf_to_free != NULL) { |
1329 | kmem_free(map: kernel_map, addr: (vm_offset_t)buf_to_free, size: size_to_free); |
1330 | } |
1331 | |
1332 | STACKSHOT_SUBSYS_UNLOCK(); |
1333 | STACKSHOT_TESTPOINT(TP_STACKSHOT_DONE); |
1334 | |
1335 | return error; |
1336 | } |
1337 | |
1338 | /* |
1339 | * Cache stack snapshot parameters in preparation for a trace. |
1340 | */ |
1341 | void |
1342 | kdp_snapshot_preflight(int pid, void * tracebuf, uint32_t tracebuf_size, uint64_t flags, |
1343 | kcdata_descriptor_t data_p, uint64_t since_timestamp, uint32_t pagetable_mask) |
1344 | { |
1345 | uint64_t microsecs = 0, secs = 0; |
1346 | clock_get_calendar_microtime(secs: (clock_sec_t *)&secs, microsecs: (clock_usec_t *)µsecs); |
1347 | |
1348 | stackshot_microsecs = microsecs + (secs * USEC_PER_SEC); |
1349 | stack_snapshot_pid = pid; |
1350 | stack_snapshot_buf = tracebuf; |
1351 | stack_snapshot_bufsize = tracebuf_size; |
1352 | stack_snapshot_flags = flags; |
1353 | stack_snapshot_delta_since_timestamp = since_timestamp; |
1354 | stack_snapshot_pagetable_mask = pagetable_mask; |
1355 | |
1356 | panic_stackshot = ((flags & STACKSHOT_FROM_PANIC) != 0); |
1357 | |
1358 | assert(data_p != NULL); |
1359 | assert(stackshot_kcdata_p == NULL); |
1360 | stackshot_kcdata_p = data_p; |
1361 | |
1362 | stack_snapshot_bytes_traced = 0; |
1363 | stack_snapshot_bytes_uncompressed = 0; |
1364 | } |
1365 | |
1366 | void |
1367 | panic_stackshot_reset_state(void) |
1368 | { |
1369 | stackshot_kcdata_p = NULL; |
1370 | } |
1371 | |
1372 | boolean_t |
1373 | stackshot_active(void) |
1374 | { |
1375 | return stackshot_kcdata_p != NULL; |
1376 | } |
1377 | |
1378 | uint32_t |
1379 | kdp_stack_snapshot_bytes_traced(void) |
1380 | { |
1381 | return stack_snapshot_bytes_traced; |
1382 | } |
1383 | |
1384 | uint32_t |
1385 | kdp_stack_snapshot_bytes_uncompressed(void) |
1386 | { |
1387 | return stack_snapshot_bytes_uncompressed; |
1388 | } |
1389 | |
1390 | static boolean_t |
1391 | memory_iszero(void *addr, size_t size) |
1392 | { |
1393 | char *data = (char *)addr; |
1394 | for (size_t i = 0; i < size; i++) { |
1395 | if (data[i] != 0) { |
1396 | return FALSE; |
1397 | } |
1398 | } |
1399 | return TRUE; |
1400 | } |
1401 | |
1402 | /* |
1403 | * Keep a simple cache of the most recent validation done at a page granularity |
1404 | * to avoid the expensive software KVA-to-phys translation in the VM. |
1405 | */ |
1406 | |
1407 | struct _stackshot_validation_state { |
1408 | vm_offset_t last_valid_page_kva; |
1409 | size_t last_valid_size; |
1410 | } g_validation_state; |
1411 | |
1412 | static void |
1413 | _stackshot_validation_reset(void) |
1414 | { |
1415 | g_validation_state.last_valid_page_kva = -1; |
1416 | g_validation_state.last_valid_size = 0; |
1417 | } |
1418 | |
1419 | static bool |
1420 | _stackshot_validate_kva(vm_offset_t addr, size_t size) |
1421 | { |
1422 | vm_offset_t page_addr = atop_kernel(addr); |
1423 | if (g_validation_state.last_valid_page_kva == page_addr && |
1424 | g_validation_state.last_valid_size <= size) { |
1425 | return true; |
1426 | } |
1427 | |
1428 | if (ml_validate_nofault(virtsrc: addr, size)) { |
1429 | g_validation_state.last_valid_page_kva = page_addr; |
1430 | g_validation_state.last_valid_size = size; |
1431 | return true; |
1432 | } |
1433 | return false; |
1434 | } |
1435 | |
1436 | static long |
1437 | _stackshot_strlen(const char *s, size_t maxlen) |
1438 | { |
1439 | size_t len = 0; |
1440 | for (len = 0; _stackshot_validate_kva(addr: (vm_offset_t)s, size: 1); len++, s++) { |
1441 | if (*s == 0) { |
1442 | return len; |
1443 | } |
1444 | if (len >= maxlen) { |
1445 | return -1; |
1446 | } |
1447 | } |
1448 | return -1; /* failed before end of string */ |
1449 | } |
1450 | |
1451 | /* |
1452 | * For port labels, we have a small hash table we use to track the |
1453 | * struct ipc_service_port_label pointers we see along the way. |
1454 | * This structure encapsulates the global state. |
1455 | * |
1456 | * The hash table is insert-only, similar to "intern"ing strings. It's |
1457 | * only used an manipulated in during the stackshot collection. We use |
1458 | * seperate chaining, with the hash elements and chains being int16_ts |
1459 | * indexes into the parallel arrays, with -1 ending the chain. Array indices are |
1460 | * allocated using a bump allocator. |
1461 | * |
1462 | * The parallel arrays contain: |
1463 | * - plh_array[idx] the pointer entered |
1464 | * - plh_chains[idx] the hash chain |
1465 | * - plh_gen[idx] the last 'generation #' seen |
1466 | * |
1467 | * Generation IDs are used to track entries looked up in the current |
1468 | * task; 0 is never used, and the plh_gen array is cleared to 0 on |
1469 | * rollover. |
1470 | * |
1471 | * The portlabel_ids we report externally are just the index in the array, |
1472 | * plus 1 to avoid 0 as a value. 0 is NONE, -1 is UNKNOWN (e.g. there is |
1473 | * one, but we ran out of space) |
1474 | */ |
1475 | struct port_label_hash { |
1476 | uint16_t plh_size; /* size of allocations; 0 disables tracking */ |
1477 | uint16_t plh_count; /* count of used entries in plh_array */ |
1478 | struct ipc_service_port_label **plh_array; /* _size allocated, _count used */ |
1479 | int16_t *plh_chains; /* _size allocated */ |
1480 | uint8_t *plh_gen; /* last 'gen #' seen in */ |
1481 | int16_t *plh_hash; /* (1 << STACKSHOT_PLH_SHIFT) entry hash table: hash(ptr) -> array index */ |
1482 | int16_t plh_curgen_min; /* min idx seen for this gen */ |
1483 | int16_t plh_curgen_max; /* max idx seen for this gen */ |
1484 | uint8_t plh_curgen; /* current gen */ |
1485 | #if DEVELOPMENT || DEBUG |
1486 | /* statistics */ |
1487 | uint32_t plh_lookups; /* # lookups or inserts */ |
1488 | uint32_t plh_found; |
1489 | uint32_t plh_found_depth; |
1490 | uint32_t plh_insert; |
1491 | uint32_t plh_insert_depth; |
1492 | uint32_t plh_bad; |
1493 | uint32_t plh_bad_depth; |
1494 | uint32_t plh_lookup_send; |
1495 | uint32_t plh_lookup_receive; |
1496 | #define PLH_STAT_OP(...) (void)(__VA_ARGS__) |
1497 | #else /* DEVELOPMENT || DEBUG */ |
1498 | #define PLH_STAT_OP(...) (void)(0) |
1499 | #endif /* DEVELOPMENT || DEBUG */ |
1500 | } port_label_hash; |
1501 | |
1502 | #define STACKSHOT_PLH_SHIFT 7 |
1503 | #define STACKSHOT_PLH_SIZE_MAX ((kdp_ipc_have_splabel)? 1024 : 0) |
1504 | size_t stackshot_port_label_size = (2 * (1u << STACKSHOT_PLH_SHIFT)); |
1505 | #define STASKSHOT_PLH_SIZE(x) MIN((x), STACKSHOT_PLH_SIZE_MAX) |
1506 | |
1507 | static size_t |
1508 | stackshot_plh_est_size(void) |
1509 | { |
1510 | struct port_label_hash *plh = &port_label_hash; |
1511 | size_t size = STASKSHOT_PLH_SIZE(stackshot_port_label_size); |
1512 | |
1513 | if (size == 0) { |
1514 | return 0; |
1515 | } |
1516 | #define SIZE_EST(x) ROUNDUP((x), sizeof (uintptr_t)) |
1517 | return SIZE_EST(size * sizeof(*plh->plh_array)) + |
1518 | SIZE_EST(size * sizeof(*plh->plh_chains)) + |
1519 | SIZE_EST(size * sizeof(*plh->plh_gen)) + |
1520 | SIZE_EST((1ul << STACKSHOT_PLH_SHIFT) * sizeof(*plh->plh_hash)); |
1521 | #undef SIZE_EST |
1522 | } |
1523 | |
1524 | static void |
1525 | stackshot_plh_reset(void) |
1526 | { |
1527 | port_label_hash = (struct port_label_hash){.plh_size = 0}; /* structure assignment */ |
1528 | } |
1529 | |
1530 | static void |
1531 | stackshot_plh_setup(kcdata_descriptor_t data) |
1532 | { |
1533 | struct port_label_hash plh = { |
1534 | .plh_size = STASKSHOT_PLH_SIZE(stackshot_port_label_size), |
1535 | .plh_count = 0, |
1536 | .plh_curgen = 1, |
1537 | .plh_curgen_min = STACKSHOT_PLH_SIZE_MAX, |
1538 | .plh_curgen_max = 0, |
1539 | }; |
1540 | stackshot_plh_reset(); |
1541 | size_t size = plh.plh_size; |
1542 | if (size == 0) { |
1543 | return; |
1544 | } |
1545 | plh.plh_array = kcdata_endalloc(data, length: size * sizeof(*plh.plh_array)); |
1546 | plh.plh_chains = kcdata_endalloc(data, length: size * sizeof(*plh.plh_chains)); |
1547 | plh.plh_gen = kcdata_endalloc(data, length: size * sizeof(*plh.plh_gen)); |
1548 | plh.plh_hash = kcdata_endalloc(data, length: (1ul << STACKSHOT_PLH_SHIFT) * sizeof(*plh.plh_hash)); |
1549 | if (plh.plh_array == NULL || plh.plh_chains == NULL || plh.plh_gen == NULL || plh.plh_hash == NULL) { |
1550 | PLH_STAT_OP(port_label_hash.plh_bad++); |
1551 | return; |
1552 | } |
1553 | for (int x = 0; x < size; x++) { |
1554 | plh.plh_array[x] = NULL; |
1555 | plh.plh_chains[x] = -1; |
1556 | plh.plh_gen[x] = 0; |
1557 | } |
1558 | for (int x = 0; x < (1ul << STACKSHOT_PLH_SHIFT); x++) { |
1559 | plh.plh_hash[x] = -1; |
1560 | } |
1561 | port_label_hash = plh; /* structure assignment */ |
1562 | } |
1563 | |
1564 | static int16_t |
1565 | stackshot_plh_hash(struct ipc_service_port_label *ispl) |
1566 | { |
1567 | uintptr_t ptr = (uintptr_t)ispl; |
1568 | static_assert(STACKSHOT_PLH_SHIFT < 16, "plh_hash must fit in 15 bits" ); |
1569 | #define PLH_HASH_STEP(ptr, x) \ |
1570 | ((((x) * STACKSHOT_PLH_SHIFT) < (sizeof(ispl) * CHAR_BIT)) ? ((ptr) >> ((x) * STACKSHOT_PLH_SHIFT)) : 0) |
1571 | ptr ^= PLH_HASH_STEP(ptr, 16); |
1572 | ptr ^= PLH_HASH_STEP(ptr, 8); |
1573 | ptr ^= PLH_HASH_STEP(ptr, 4); |
1574 | ptr ^= PLH_HASH_STEP(ptr, 2); |
1575 | ptr ^= PLH_HASH_STEP(ptr, 1); |
1576 | #undef PLH_HASH_STEP |
1577 | return (int16_t)(ptr & ((1ul << STACKSHOT_PLH_SHIFT) - 1)); |
1578 | } |
1579 | |
1580 | enum stackshot_plh_lookup_type { |
1581 | STACKSHOT_PLH_LOOKUP_UNKNOWN, |
1582 | STACKSHOT_PLH_LOOKUP_SEND, |
1583 | STACKSHOT_PLH_LOOKUP_RECEIVE, |
1584 | }; |
1585 | |
1586 | static void |
1587 | stackshot_plh_resetgen(void) |
1588 | { |
1589 | struct port_label_hash *plh = &port_label_hash; |
1590 | if (plh->plh_curgen_min == STACKSHOT_PLH_SIZE_MAX && plh->plh_curgen_max == 0) { |
1591 | return; // no lookups, nothing using the current generation |
1592 | } |
1593 | plh->plh_curgen++; |
1594 | plh->plh_curgen_min = STACKSHOT_PLH_SIZE_MAX; |
1595 | plh->plh_curgen_max = 0; |
1596 | if (plh->plh_curgen == 0) { // wrapped, zero the array and increment the generation |
1597 | for (int x = 0; x < plh->plh_size; x++) { |
1598 | plh->plh_gen[x] = 0; |
1599 | } |
1600 | plh->plh_curgen = 1; |
1601 | } |
1602 | } |
1603 | |
1604 | static int16_t |
1605 | stackshot_plh_lookup(struct ipc_service_port_label *ispl, enum stackshot_plh_lookup_type type) |
1606 | { |
1607 | struct port_label_hash *plh = &port_label_hash; |
1608 | int depth; |
1609 | int16_t cur; |
1610 | if (ispl == NULL) { |
1611 | return STACKSHOT_PORTLABELID_NONE; |
1612 | } |
1613 | switch (type) { |
1614 | case STACKSHOT_PLH_LOOKUP_SEND: |
1615 | PLH_STAT_OP(plh->plh_lookup_send++); |
1616 | break; |
1617 | case STACKSHOT_PLH_LOOKUP_RECEIVE: |
1618 | PLH_STAT_OP(plh->plh_lookup_receive++); |
1619 | break; |
1620 | default: |
1621 | break; |
1622 | } |
1623 | PLH_STAT_OP(plh->plh_lookups++); |
1624 | if (plh->plh_size == 0) { |
1625 | return STACKSHOT_PORTLABELID_MISSING; |
1626 | } |
1627 | int16_t hash = stackshot_plh_hash(ispl); |
1628 | assert(hash >= 0 && hash < (1ul << STACKSHOT_PLH_SHIFT)); |
1629 | depth = 0; |
1630 | for (cur = plh->plh_hash[hash]; cur >= 0; cur = plh->plh_chains[cur]) { |
1631 | /* cur must be in-range, and chain depth can never be above our # allocated */ |
1632 | if (cur >= plh->plh_count || depth > plh->plh_count || depth > plh->plh_size) { |
1633 | PLH_STAT_OP((plh->plh_bad++), (plh->plh_bad_depth += depth)); |
1634 | return STACKSHOT_PORTLABELID_MISSING; |
1635 | } |
1636 | assert(cur < plh->plh_count); |
1637 | if (plh->plh_array[cur] == ispl) { |
1638 | PLH_STAT_OP((plh->plh_found++), (plh->plh_found_depth += depth)); |
1639 | goto found; |
1640 | } |
1641 | depth++; |
1642 | } |
1643 | /* not found in hash table, so alloc and insert it */ |
1644 | if (cur != -1) { |
1645 | PLH_STAT_OP((plh->plh_bad++), (plh->plh_bad_depth += depth)); |
1646 | return STACKSHOT_PORTLABELID_MISSING; /* bad end of chain */ |
1647 | } |
1648 | PLH_STAT_OP((plh->plh_insert++), (plh->plh_insert_depth += depth)); |
1649 | if (plh->plh_count >= plh->plh_size) { |
1650 | return STACKSHOT_PORTLABELID_MISSING; /* no space */ |
1651 | } |
1652 | cur = plh->plh_count; |
1653 | plh->plh_count++; |
1654 | plh->plh_array[cur] = ispl; |
1655 | plh->plh_chains[cur] = plh->plh_hash[hash]; |
1656 | plh->plh_hash[hash] = cur; |
1657 | found: |
1658 | plh->plh_gen[cur] = plh->plh_curgen; |
1659 | if (plh->plh_curgen_min > cur) { |
1660 | plh->plh_curgen_min = cur; |
1661 | } |
1662 | if (plh->plh_curgen_max < cur) { |
1663 | plh->plh_curgen_max = cur; |
1664 | } |
1665 | return cur + 1; /* offset to avoid 0 */ |
1666 | } |
1667 | |
1668 | // record any PLH referenced since the last stackshot_plh_resetgen() call |
1669 | static kern_return_t |
1670 | kdp_stackshot_plh_record(void) |
1671 | { |
1672 | kern_return_t error = KERN_SUCCESS; |
1673 | struct port_label_hash *plh = &port_label_hash; |
1674 | uint16_t count = plh->plh_count; |
1675 | uint8_t curgen = plh->plh_curgen; |
1676 | int16_t curgen_min = plh->plh_curgen_min; |
1677 | int16_t curgen_max = plh->plh_curgen_max; |
1678 | if (curgen_min <= curgen_max && curgen_max < count && |
1679 | count <= plh->plh_size && plh->plh_size <= STACKSHOT_PLH_SIZE_MAX) { |
1680 | struct ipc_service_port_label **arr = plh->plh_array; |
1681 | size_t ispl_size, max_namelen; |
1682 | kdp_ipc_splabel_size(ispl_size: &ispl_size, maxnamelen: &max_namelen); |
1683 | for (int idx = curgen_min; idx <= curgen_max; idx++) { |
1684 | struct ipc_service_port_label *ispl = arr[idx]; |
1685 | struct portlabel_info spl = { |
1686 | .portlabel_id = (idx + 1), |
1687 | }; |
1688 | const char *name = NULL; |
1689 | long name_sz = 0; |
1690 | if (plh->plh_gen[idx] != curgen) { |
1691 | continue; |
1692 | } |
1693 | if (_stackshot_validate_kva(addr: (vm_offset_t)ispl, size: ispl_size)) { |
1694 | kdp_ipc_fill_splabel(ispl, spl: &spl, namep: &name); |
1695 | } |
1696 | kcd_exit_on_error(kcdata_add_container_marker(stackshot_kcdata_p, KCDATA_TYPE_CONTAINER_BEGIN, |
1697 | STACKSHOT_KCCONTAINER_PORTLABEL, idx + 1)); |
1698 | if (name != NULL && (name_sz = _stackshot_strlen(s: name, maxlen: max_namelen)) > 0) { /* validates the kva */ |
1699 | kcd_exit_on_error(kcdata_push_data(stackshot_kcdata_p, STACKSHOT_KCTYPE_PORTLABEL_NAME, name_sz + 1, name)); |
1700 | } else { |
1701 | spl.portlabel_flags |= STACKSHOT_PORTLABEL_READFAILED; |
1702 | } |
1703 | kcd_exit_on_error(kcdata_push_data(stackshot_kcdata_p, STACKSHOT_KCTYPE_PORTLABEL, sizeof(spl), &spl)); |
1704 | kcd_exit_on_error(kcdata_add_container_marker(stackshot_kcdata_p, KCDATA_TYPE_CONTAINER_END, |
1705 | STACKSHOT_KCCONTAINER_PORTLABEL, idx + 1)); |
1706 | } |
1707 | } |
1708 | |
1709 | error_exit: |
1710 | return error; |
1711 | } |
1712 | |
1713 | #if DEVELOPMENT || DEBUG |
1714 | static kern_return_t |
1715 | kdp_stackshot_plh_stats(void) |
1716 | { |
1717 | kern_return_t error = KERN_SUCCESS; |
1718 | struct port_label_hash *plh = &port_label_hash; |
1719 | |
1720 | #define PLH_STAT(x) do { if (plh->x != 0) { \ |
1721 | kcd_exit_on_error(kcdata_add_uint32_with_description(stackshot_kcdata_p, plh->x, "stackshot_" #x)); \ |
1722 | } } while (0) |
1723 | PLH_STAT(plh_size); |
1724 | PLH_STAT(plh_lookups); |
1725 | PLH_STAT(plh_found); |
1726 | PLH_STAT(plh_found_depth); |
1727 | PLH_STAT(plh_insert); |
1728 | PLH_STAT(plh_insert_depth); |
1729 | PLH_STAT(plh_bad); |
1730 | PLH_STAT(plh_bad_depth); |
1731 | PLH_STAT(plh_lookup_send); |
1732 | PLH_STAT(plh_lookup_receive); |
1733 | #undef PLH_STAT |
1734 | |
1735 | error_exit: |
1736 | return error; |
1737 | } |
1738 | #endif /* DEVELOPMENT || DEBUG */ |
1739 | |
1740 | static uint64_t |
1741 | kcdata_get_task_ss_flags(task_t task) |
1742 | { |
1743 | uint64_t ss_flags = 0; |
1744 | boolean_t task_64bit_addr = task_has_64Bit_addr(task); |
1745 | void *bsd_info = get_bsdtask_info(task); |
1746 | |
1747 | if (task_64bit_addr) { |
1748 | ss_flags |= kUser64_p; |
1749 | } |
1750 | if (!task->active || task_is_a_corpse(task) || proc_exiting(p: bsd_info)) { |
1751 | ss_flags |= kTerminatedSnapshot; |
1752 | } |
1753 | if (task->pidsuspended) { |
1754 | ss_flags |= kPidSuspended; |
1755 | } |
1756 | if (task->frozen) { |
1757 | ss_flags |= kFrozen; |
1758 | } |
1759 | if (task->effective_policy.tep_darwinbg == 1) { |
1760 | ss_flags |= kTaskDarwinBG; |
1761 | } |
1762 | if (task->requested_policy.trp_role == TASK_FOREGROUND_APPLICATION) { |
1763 | ss_flags |= kTaskIsForeground; |
1764 | } |
1765 | if (task->requested_policy.trp_boosted == 1) { |
1766 | ss_flags |= kTaskIsBoosted; |
1767 | } |
1768 | if (task->effective_policy.tep_sup_active == 1) { |
1769 | ss_flags |= kTaskIsSuppressed; |
1770 | } |
1771 | #if CONFIG_MEMORYSTATUS |
1772 | |
1773 | boolean_t dirty = FALSE, dirty_tracked = FALSE, allow_idle_exit = FALSE; |
1774 | memorystatus_proc_flags_unsafe(v: bsd_info, is_dirty: &dirty, is_dirty_tracked: &dirty_tracked, allow_idle_exit: &allow_idle_exit); |
1775 | if (dirty) { |
1776 | ss_flags |= kTaskIsDirty; |
1777 | } |
1778 | if (dirty_tracked) { |
1779 | ss_flags |= kTaskIsDirtyTracked; |
1780 | } |
1781 | if (allow_idle_exit) { |
1782 | ss_flags |= kTaskAllowIdleExit; |
1783 | } |
1784 | |
1785 | #endif |
1786 | if (task->effective_policy.tep_tal_engaged) { |
1787 | ss_flags |= kTaskTALEngaged; |
1788 | } |
1789 | |
1790 | ss_flags |= (0x7 & workqueue_get_pwq_state_kdp(proc: bsd_info)) << 17; |
1791 | |
1792 | #if IMPORTANCE_INHERITANCE |
1793 | if (task->task_imp_base) { |
1794 | if (task->task_imp_base->iit_donor) { |
1795 | ss_flags |= kTaskIsImpDonor; |
1796 | } |
1797 | if (task->task_imp_base->iit_live_donor) { |
1798 | ss_flags |= kTaskIsLiveImpDonor; |
1799 | } |
1800 | } |
1801 | #endif |
1802 | return ss_flags; |
1803 | } |
1804 | |
1805 | static kern_return_t |
1806 | kcdata_record_shared_cache_info(kcdata_descriptor_t kcd, task_t task, unaligned_u64 *task_snap_ss_flags) |
1807 | { |
1808 | kern_return_t error = KERN_SUCCESS; |
1809 | |
1810 | uint64_t shared_cache_slide = 0; |
1811 | uint64_t shared_cache_first_mapping = 0; |
1812 | uint32_t kdp_fault_results = 0; |
1813 | uint32_t shared_cache_id = 0; |
1814 | struct dyld_shared_cache_loadinfo shared_cache_data = {0}; |
1815 | |
1816 | |
1817 | assert(task_snap_ss_flags != NULL); |
1818 | |
1819 | /* Get basic info about the shared region pointer, regardless of any failures */ |
1820 | if (task->shared_region == NULL) { |
1821 | *task_snap_ss_flags |= kTaskSharedRegionNone; |
1822 | } else if (task->shared_region == primary_system_shared_region) { |
1823 | *task_snap_ss_flags |= kTaskSharedRegionSystem; |
1824 | } else { |
1825 | *task_snap_ss_flags |= kTaskSharedRegionOther; |
1826 | } |
1827 | |
1828 | if (task->shared_region && _stackshot_validate_kva(addr: (vm_offset_t)task->shared_region, size: sizeof(struct vm_shared_region))) { |
1829 | struct vm_shared_region *sr = task->shared_region; |
1830 | shared_cache_first_mapping = sr->sr_base_address + sr->sr_first_mapping; |
1831 | |
1832 | shared_cache_id = sr->sr_id; |
1833 | } else { |
1834 | *task_snap_ss_flags |= kTaskSharedRegionInfoUnavailable; |
1835 | goto error_exit; |
1836 | } |
1837 | |
1838 | /* We haven't copied in the shared region UUID yet as part of setup */ |
1839 | if (!shared_cache_first_mapping || !task->shared_region->sr_uuid_copied) { |
1840 | goto error_exit; |
1841 | } |
1842 | |
1843 | |
1844 | /* |
1845 | * No refcounting here, but we are in debugger context, so that should be safe. |
1846 | */ |
1847 | shared_cache_slide = task->shared_region->sr_slide; |
1848 | |
1849 | if (task->shared_region == primary_system_shared_region) { |
1850 | /* skip adding shared cache info -- it's the same as the system level one */ |
1851 | goto error_exit; |
1852 | } |
1853 | /* |
1854 | * New-style shared cache reference: for non-primary shared regions, |
1855 | * just include the ID of the shared cache we're attached to. Consumers |
1856 | * should use the following info from the task's ts_ss_flags as well: |
1857 | * |
1858 | * kTaskSharedRegionNone - task is not attached to a shared region |
1859 | * kTaskSharedRegionSystem - task is attached to the shared region |
1860 | * with kSharedCacheSystemPrimary set in sharedCacheFlags. |
1861 | * kTaskSharedRegionOther - task is attached to the shared region with |
1862 | * sharedCacheID matching the STACKSHOT_KCTYPE_SHAREDCACHE_ID entry. |
1863 | */ |
1864 | kcd_exit_on_error(kcdata_push_data(kcd, STACKSHOT_KCTYPE_SHAREDCACHE_ID, sizeof(shared_cache_id), &shared_cache_id)); |
1865 | |
1866 | /* |
1867 | * For backwards compatibility; this should eventually be removed. |
1868 | * |
1869 | * Historically, this data was in a dyld_uuid_info_64 structure, but the |
1870 | * naming of both the structure and fields for this use wasn't great. The |
1871 | * dyld_shared_cache_loadinfo structure has better names, but the same |
1872 | * layout and content as the original. |
1873 | * |
1874 | * The imageSlidBaseAddress/sharedCacheUnreliableSlidBaseAddress field |
1875 | * has been used inconsistently for STACKSHOT_COLLECT_SHAREDCACHE_LAYOUT |
1876 | * entries; here, it's the slid first mapping, and we leave it that way |
1877 | * for backwards compatibility. |
1878 | */ |
1879 | shared_cache_data.sharedCacheSlide = shared_cache_slide; |
1880 | kdp_memcpy(dst: &shared_cache_data.sharedCacheUUID, src: task->shared_region->sr_uuid, len: sizeof(task->shared_region->sr_uuid)); |
1881 | shared_cache_data.sharedCacheUnreliableSlidBaseAddress = shared_cache_first_mapping; |
1882 | shared_cache_data.sharedCacheSlidFirstMapping = shared_cache_first_mapping; |
1883 | kcd_exit_on_error(kcdata_push_data(kcd, STACKSHOT_KCTYPE_SHAREDCACHE_LOADINFO, sizeof(shared_cache_data), &shared_cache_data)); |
1884 | |
1885 | error_exit: |
1886 | if (kdp_fault_results & KDP_FAULT_RESULT_PAGED_OUT) { |
1887 | *task_snap_ss_flags |= kTaskUUIDInfoMissing; |
1888 | } |
1889 | |
1890 | if (kdp_fault_results & KDP_FAULT_RESULT_TRIED_FAULT) { |
1891 | *task_snap_ss_flags |= kTaskUUIDInfoTriedFault; |
1892 | } |
1893 | |
1894 | if (kdp_fault_results & KDP_FAULT_RESULT_FAULTED_IN) { |
1895 | *task_snap_ss_flags |= kTaskUUIDInfoFaultedIn; |
1896 | } |
1897 | |
1898 | return error; |
1899 | } |
1900 | |
1901 | static kern_return_t |
1902 | kcdata_record_uuid_info(kcdata_descriptor_t kcd, task_t task, uint64_t trace_flags, boolean_t have_pmap, unaligned_u64 *task_snap_ss_flags) |
1903 | { |
1904 | bool save_loadinfo_p = ((trace_flags & STACKSHOT_SAVE_LOADINFO) != 0); |
1905 | bool save_kextloadinfo_p = ((trace_flags & STACKSHOT_SAVE_KEXT_LOADINFO) != 0); |
1906 | bool save_compactinfo_p = ((trace_flags & STACKSHOT_SAVE_DYLD_COMPACTINFO) != 0); |
1907 | bool should_fault = (trace_flags & STACKSHOT_ENABLE_UUID_FAULTING); |
1908 | |
1909 | kern_return_t error = KERN_SUCCESS; |
1910 | mach_vm_address_t out_addr = 0; |
1911 | |
1912 | mach_vm_address_t dyld_compactinfo_addr = 0; |
1913 | uint32_t dyld_compactinfo_size = 0; |
1914 | |
1915 | uint32_t uuid_info_count = 0; |
1916 | mach_vm_address_t uuid_info_addr = 0; |
1917 | uint64_t uuid_info_timestamp = 0; |
1918 | kdp_fault_result_flags_t kdp_fault_results = 0; |
1919 | |
1920 | |
1921 | assert(task_snap_ss_flags != NULL); |
1922 | |
1923 | int task_pid = pid_from_task(task); |
1924 | boolean_t task_64bit_addr = task_has_64Bit_addr(task); |
1925 | |
1926 | if ((save_loadinfo_p || save_compactinfo_p) && have_pmap && task->active && task_pid > 0) { |
1927 | /* Read the dyld_all_image_infos struct from the task memory to get UUID array count and location */ |
1928 | if (task_64bit_addr) { |
1929 | struct user64_dyld_all_image_infos task_image_infos; |
1930 | if (stackshot_copyin(map: task->map, uaddr: task->all_image_info_addr, dest: &task_image_infos, |
1931 | size: sizeof(struct user64_dyld_all_image_infos), try_fault: should_fault, kdp_fault_result: &kdp_fault_results)) { |
1932 | uuid_info_count = (uint32_t)task_image_infos.uuidArrayCount; |
1933 | uuid_info_addr = task_image_infos.uuidArray; |
1934 | if (task_image_infos.version >= DYLD_ALL_IMAGE_INFOS_TIMESTAMP_MINIMUM_VERSION) { |
1935 | uuid_info_timestamp = task_image_infos.timestamp; |
1936 | } |
1937 | if (task_image_infos.version >= DYLD_ALL_IMAGE_INFOS_COMPACTINFO_MINIMUM_VERSION) { |
1938 | dyld_compactinfo_addr = task_image_infos.compact_dyld_image_info_addr; |
1939 | dyld_compactinfo_size = task_image_infos.compact_dyld_image_info_size; |
1940 | } |
1941 | |
1942 | } |
1943 | } else { |
1944 | struct user32_dyld_all_image_infos task_image_infos; |
1945 | if (stackshot_copyin(map: task->map, uaddr: task->all_image_info_addr, dest: &task_image_infos, |
1946 | size: sizeof(struct user32_dyld_all_image_infos), try_fault: should_fault, kdp_fault_result: &kdp_fault_results)) { |
1947 | uuid_info_count = task_image_infos.uuidArrayCount; |
1948 | uuid_info_addr = task_image_infos.uuidArray; |
1949 | if (task_image_infos.version >= DYLD_ALL_IMAGE_INFOS_TIMESTAMP_MINIMUM_VERSION) { |
1950 | uuid_info_timestamp = task_image_infos.timestamp; |
1951 | } |
1952 | if (task_image_infos.version >= DYLD_ALL_IMAGE_INFOS_COMPACTINFO_MINIMUM_VERSION) { |
1953 | dyld_compactinfo_addr = task_image_infos.compact_dyld_image_info_addr; |
1954 | dyld_compactinfo_size = task_image_infos.compact_dyld_image_info_size; |
1955 | } |
1956 | } |
1957 | } |
1958 | |
1959 | /* |
1960 | * If we get a NULL uuid_info_addr (which can happen when we catch dyld in the middle of updating |
1961 | * this data structure), we zero the uuid_info_count so that we won't even try to save load info |
1962 | * for this task. |
1963 | */ |
1964 | if (!uuid_info_addr) { |
1965 | uuid_info_count = 0; |
1966 | } |
1967 | |
1968 | if (!dyld_compactinfo_addr) { |
1969 | dyld_compactinfo_size = 0; |
1970 | } |
1971 | |
1972 | } |
1973 | |
1974 | if (have_pmap && task_pid == 0) { |
1975 | if (save_kextloadinfo_p && _stackshot_validate_kva(addr: (vm_offset_t)(gLoadedKextSummaries), size: sizeof(OSKextLoadedKextSummaryHeader))) { |
1976 | uuid_info_count = gLoadedKextSummaries->numSummaries + 1; /* include main kernel UUID */ |
1977 | } else { |
1978 | uuid_info_count = 1; /* include kernelcache UUID (embedded) or kernel UUID (desktop) */ |
1979 | } |
1980 | } |
1981 | |
1982 | if (save_compactinfo_p && task_pid > 0) { |
1983 | if (dyld_compactinfo_size == 0) { |
1984 | *task_snap_ss_flags |= kTaskDyldCompactInfoNone; |
1985 | } else if (dyld_compactinfo_size > MAX_DYLD_COMPACTINFO) { |
1986 | *task_snap_ss_flags |= kTaskDyldCompactInfoTooBig; |
1987 | } else { |
1988 | kdp_fault_result_flags_t ci_kdp_fault_results = 0; |
1989 | |
1990 | /* Open a compression window to avoid overflowing the stack */ |
1991 | kcdata_compression_window_open(data: kcd); |
1992 | kcd_exit_on_error(kcdata_get_memory_addr(kcd, STACKSHOT_KCTYPE_DYLD_COMPACTINFO, |
1993 | dyld_compactinfo_size, &out_addr)); |
1994 | |
1995 | if (!stackshot_copyin(map: task->map, uaddr: dyld_compactinfo_addr, dest: (void *)out_addr, |
1996 | size: dyld_compactinfo_size, try_fault: should_fault, kdp_fault_result: &ci_kdp_fault_results)) { |
1997 | bzero(s: (void *)out_addr, n: dyld_compactinfo_size); |
1998 | } |
1999 | if (ci_kdp_fault_results & KDP_FAULT_RESULT_PAGED_OUT) { |
2000 | *task_snap_ss_flags |= kTaskDyldCompactInfoMissing; |
2001 | } |
2002 | |
2003 | if (ci_kdp_fault_results & KDP_FAULT_RESULT_TRIED_FAULT) { |
2004 | *task_snap_ss_flags |= kTaskDyldCompactInfoTriedFault; |
2005 | } |
2006 | |
2007 | if (ci_kdp_fault_results & KDP_FAULT_RESULT_FAULTED_IN) { |
2008 | *task_snap_ss_flags |= kTaskDyldCompactInfoFaultedIn; |
2009 | } |
2010 | |
2011 | kcd_exit_on_error(kcdata_compression_window_close(kcd)); |
2012 | } |
2013 | } |
2014 | if (save_loadinfo_p && task_pid > 0 && (uuid_info_count < MAX_LOADINFOS)) { |
2015 | uint32_t copied_uuid_count = 0; |
2016 | uint32_t uuid_info_size = (uint32_t)(task_64bit_addr ? sizeof(struct user64_dyld_uuid_info) : sizeof(struct user32_dyld_uuid_info)); |
2017 | uint32_t uuid_info_array_size = 0; |
2018 | |
2019 | /* Open a compression window to avoid overflowing the stack */ |
2020 | kcdata_compression_window_open(data: kcd); |
2021 | |
2022 | /* If we found some UUID information, first try to copy it in -- this will only be non-zero if we had a pmap above */ |
2023 | if (uuid_info_count > 0) { |
2024 | uuid_info_array_size = uuid_info_count * uuid_info_size; |
2025 | |
2026 | kcd_exit_on_error(kcdata_get_memory_addr_for_array(kcd, (task_64bit_addr ? KCDATA_TYPE_LIBRARY_LOADINFO64 : KCDATA_TYPE_LIBRARY_LOADINFO), |
2027 | uuid_info_size, uuid_info_count, &out_addr)); |
2028 | |
2029 | if (!stackshot_copyin(map: task->map, uaddr: uuid_info_addr, dest: (void *)out_addr, size: uuid_info_array_size, try_fault: should_fault, kdp_fault_result: &kdp_fault_results)) { |
2030 | bzero(s: (void *)out_addr, n: uuid_info_array_size); |
2031 | } else { |
2032 | copied_uuid_count = uuid_info_count; |
2033 | } |
2034 | } |
2035 | |
2036 | uuid_t binary_uuid; |
2037 | if (!copied_uuid_count && proc_binary_uuid_kdp(task, uuid: binary_uuid)) { |
2038 | /* We failed to copyin the UUID information, try to store the UUID of the main binary we have in the proc */ |
2039 | if (uuid_info_array_size == 0) { |
2040 | /* We just need to store one UUID */ |
2041 | uuid_info_array_size = uuid_info_size; |
2042 | kcd_exit_on_error(kcdata_get_memory_addr_for_array(kcd, (task_64bit_addr ? KCDATA_TYPE_LIBRARY_LOADINFO64 : KCDATA_TYPE_LIBRARY_LOADINFO), |
2043 | uuid_info_size, 1, &out_addr)); |
2044 | } |
2045 | |
2046 | if (task_64bit_addr) { |
2047 | struct user64_dyld_uuid_info *uuid_info = (struct user64_dyld_uuid_info *)out_addr; |
2048 | uint64_t image_load_address = task->mach_header_vm_address; |
2049 | |
2050 | kdp_memcpy(dst: &uuid_info->imageUUID, src: binary_uuid, len: sizeof(uuid_t)); |
2051 | kdp_memcpy(dst: &uuid_info->imageLoadAddress, src: &image_load_address, len: sizeof(image_load_address)); |
2052 | } else { |
2053 | struct user32_dyld_uuid_info *uuid_info = (struct user32_dyld_uuid_info *)out_addr; |
2054 | uint32_t image_load_address = (uint32_t) task->mach_header_vm_address; |
2055 | |
2056 | kdp_memcpy(dst: &uuid_info->imageUUID, src: binary_uuid, len: sizeof(uuid_t)); |
2057 | kdp_memcpy(dst: &uuid_info->imageLoadAddress, src: &image_load_address, len: sizeof(image_load_address)); |
2058 | } |
2059 | } |
2060 | |
2061 | kcd_exit_on_error(kcdata_compression_window_close(kcd)); |
2062 | } else if (task_pid == 0 && uuid_info_count > 0 && uuid_info_count < MAX_LOADINFOS) { |
2063 | uintptr_t image_load_address; |
2064 | |
2065 | do { |
2066 | #if defined(__arm64__) |
2067 | if (kernelcache_uuid_valid && !save_kextloadinfo_p) { |
2068 | struct dyld_uuid_info_64 kc_uuid = {0}; |
2069 | kc_uuid.imageLoadAddress = VM_MIN_KERNEL_AND_KEXT_ADDRESS; |
2070 | kdp_memcpy(dst: &kc_uuid.imageUUID, src: &kernelcache_uuid, len: sizeof(uuid_t)); |
2071 | kcd_exit_on_error(kcdata_push_data(kcd, STACKSHOT_KCTYPE_KERNELCACHE_LOADINFO, sizeof(struct dyld_uuid_info_64), &kc_uuid)); |
2072 | break; |
2073 | } |
2074 | #endif /* defined(__arm64__) */ |
2075 | |
2076 | if (!kernel_uuid || !_stackshot_validate_kva(addr: (vm_offset_t)kernel_uuid, size: sizeof(uuid_t))) { |
2077 | /* Kernel UUID not found or inaccessible */ |
2078 | break; |
2079 | } |
2080 | |
2081 | uint32_t uuid_type = KCDATA_TYPE_LIBRARY_LOADINFO; |
2082 | if ((sizeof(kernel_uuid_info) == sizeof(struct user64_dyld_uuid_info))) { |
2083 | uuid_type = KCDATA_TYPE_LIBRARY_LOADINFO64; |
2084 | #if defined(__arm64__) |
2085 | kc_format_t primary_kc_type = KCFormatUnknown; |
2086 | if (PE_get_primary_kc_format(type: &primary_kc_type) && (primary_kc_type == KCFormatFileset)) { |
2087 | /* return TEXT_EXEC based load information on arm devices running with fileset kernelcaches */ |
2088 | uuid_type = STACKSHOT_KCTYPE_LOADINFO64_TEXT_EXEC; |
2089 | } |
2090 | #endif |
2091 | } |
2092 | |
2093 | /* |
2094 | * The element count of the array can vary - avoid overflowing the |
2095 | * stack by opening a window. |
2096 | */ |
2097 | kcdata_compression_window_open(data: kcd); |
2098 | kcd_exit_on_error(kcdata_get_memory_addr_for_array(kcd, uuid_type, |
2099 | sizeof(kernel_uuid_info), uuid_info_count, &out_addr)); |
2100 | kernel_uuid_info *uuid_info_array = (kernel_uuid_info *)out_addr; |
2101 | |
2102 | image_load_address = (uintptr_t)VM_KERNEL_UNSLIDE(vm_kernel_stext); |
2103 | #if defined(__arm64__) |
2104 | if (uuid_type == STACKSHOT_KCTYPE_LOADINFO64_TEXT_EXEC) { |
2105 | /* If we're reporting TEXT_EXEC load info, populate the TEXT_EXEC base instead */ |
2106 | extern vm_offset_t segTEXTEXECB; |
2107 | image_load_address = (uintptr_t)VM_KERNEL_UNSLIDE(segTEXTEXECB); |
2108 | } |
2109 | #endif |
2110 | uuid_info_array[0].imageLoadAddress = image_load_address; |
2111 | kdp_memcpy(dst: &uuid_info_array[0].imageUUID, src: kernel_uuid, len: sizeof(uuid_t)); |
2112 | |
2113 | if (save_kextloadinfo_p && |
2114 | _stackshot_validate_kva(addr: (vm_offset_t)(gLoadedKextSummaries), size: sizeof(OSKextLoadedKextSummaryHeader)) && |
2115 | _stackshot_validate_kva(addr: (vm_offset_t)(&gLoadedKextSummaries->summaries[0]), |
2116 | size: gLoadedKextSummaries->entry_size * gLoadedKextSummaries->numSummaries)) { |
2117 | uint32_t kexti; |
2118 | for (kexti = 0; kexti < gLoadedKextSummaries->numSummaries; kexti++) { |
2119 | image_load_address = (uintptr_t)VM_KERNEL_UNSLIDE(gLoadedKextSummaries->summaries[kexti].address); |
2120 | #if defined(__arm64__) |
2121 | if (uuid_type == STACKSHOT_KCTYPE_LOADINFO64_TEXT_EXEC) { |
2122 | /* If we're reporting TEXT_EXEC load info, populate the TEXT_EXEC base instead */ |
2123 | image_load_address = (uintptr_t)VM_KERNEL_UNSLIDE(gLoadedKextSummaries->summaries[kexti].text_exec_address); |
2124 | } |
2125 | #endif |
2126 | uuid_info_array[kexti + 1].imageLoadAddress = image_load_address; |
2127 | kdp_memcpy(dst: &uuid_info_array[kexti + 1].imageUUID, src: &gLoadedKextSummaries->summaries[kexti].uuid, len: sizeof(uuid_t)); |
2128 | } |
2129 | } |
2130 | kcd_exit_on_error(kcdata_compression_window_close(kcd)); |
2131 | } while (0); |
2132 | } |
2133 | |
2134 | error_exit: |
2135 | if (kdp_fault_results & KDP_FAULT_RESULT_PAGED_OUT) { |
2136 | *task_snap_ss_flags |= kTaskUUIDInfoMissing; |
2137 | } |
2138 | |
2139 | if (kdp_fault_results & KDP_FAULT_RESULT_TRIED_FAULT) { |
2140 | *task_snap_ss_flags |= kTaskUUIDInfoTriedFault; |
2141 | } |
2142 | |
2143 | if (kdp_fault_results & KDP_FAULT_RESULT_FAULTED_IN) { |
2144 | *task_snap_ss_flags |= kTaskUUIDInfoFaultedIn; |
2145 | } |
2146 | |
2147 | return error; |
2148 | } |
2149 | |
2150 | static kern_return_t |
2151 | kcdata_record_task_iostats(kcdata_descriptor_t kcd, task_t task) |
2152 | { |
2153 | kern_return_t error = KERN_SUCCESS; |
2154 | mach_vm_address_t out_addr = 0; |
2155 | |
2156 | /* I/O Statistics if any counters are non zero */ |
2157 | assert(IO_NUM_PRIORITIES == STACKSHOT_IO_NUM_PRIORITIES); |
2158 | if (task->task_io_stats && !memory_iszero(addr: task->task_io_stats, size: sizeof(struct io_stat_info))) { |
2159 | /* struct io_stats_snapshot is quite large - avoid overflowing the stack. */ |
2160 | kcdata_compression_window_open(data: kcd); |
2161 | kcd_exit_on_error(kcdata_get_memory_addr(kcd, STACKSHOT_KCTYPE_IOSTATS, sizeof(struct io_stats_snapshot), &out_addr)); |
2162 | struct io_stats_snapshot *_iostat = (struct io_stats_snapshot *)out_addr; |
2163 | _iostat->ss_disk_reads_count = task->task_io_stats->disk_reads.count; |
2164 | _iostat->ss_disk_reads_size = task->task_io_stats->disk_reads.size; |
2165 | _iostat->ss_disk_writes_count = (task->task_io_stats->total_io.count - task->task_io_stats->disk_reads.count); |
2166 | _iostat->ss_disk_writes_size = (task->task_io_stats->total_io.size - task->task_io_stats->disk_reads.size); |
2167 | _iostat->ss_paging_count = task->task_io_stats->paging.count; |
2168 | _iostat->ss_paging_size = task->task_io_stats->paging.size; |
2169 | _iostat->ss_non_paging_count = (task->task_io_stats->total_io.count - task->task_io_stats->paging.count); |
2170 | _iostat->ss_non_paging_size = (task->task_io_stats->total_io.size - task->task_io_stats->paging.size); |
2171 | _iostat->ss_metadata_count = task->task_io_stats->metadata.count; |
2172 | _iostat->ss_metadata_size = task->task_io_stats->metadata.size; |
2173 | _iostat->ss_data_count = (task->task_io_stats->total_io.count - task->task_io_stats->metadata.count); |
2174 | _iostat->ss_data_size = (task->task_io_stats->total_io.size - task->task_io_stats->metadata.size); |
2175 | for (int i = 0; i < IO_NUM_PRIORITIES; i++) { |
2176 | _iostat->ss_io_priority_count[i] = task->task_io_stats->io_priority[i].count; |
2177 | _iostat->ss_io_priority_size[i] = task->task_io_stats->io_priority[i].size; |
2178 | } |
2179 | kcd_exit_on_error(kcdata_compression_window_close(kcd)); |
2180 | } |
2181 | |
2182 | |
2183 | error_exit: |
2184 | return error; |
2185 | } |
2186 | |
2187 | #if CONFIG_PERVASIVE_CPI |
2188 | static kern_return_t |
2189 | kcdata_record_task_instrs_cycles(kcdata_descriptor_t kcd, task_t task) |
2190 | { |
2191 | struct instrs_cycles_snapshot_v2 instrs_cycles = { 0 }; |
2192 | struct recount_usage usage = { 0 }; |
2193 | struct recount_usage perf_only = { 0 }; |
2194 | recount_task_terminated_usage_perf_only(task, &usage, &perf_only); |
2195 | instrs_cycles.ics_instructions = recount_usage_instructions(&usage); |
2196 | instrs_cycles.ics_cycles = recount_usage_cycles(&usage); |
2197 | instrs_cycles.ics_p_instructions = recount_usage_instructions(&perf_only); |
2198 | instrs_cycles.ics_p_cycles = recount_usage_cycles(&perf_only); |
2199 | |
2200 | return kcdata_push_data(kcd, STACKSHOT_KCTYPE_INSTRS_CYCLES, sizeof(instrs_cycles), &instrs_cycles); |
2201 | } |
2202 | #endif /* CONFIG_PERVASIVE_CPI */ |
2203 | |
2204 | static kern_return_t |
2205 | kcdata_record_task_cpu_architecture(kcdata_descriptor_t kcd, task_t task) |
2206 | { |
2207 | struct stackshot_cpu_architecture cpu_architecture = {0}; |
2208 | int32_t cputype; |
2209 | int32_t cpusubtype; |
2210 | |
2211 | proc_archinfo_kdp(p: get_bsdtask_info(task), cputype: &cputype, cpusubtype: &cpusubtype); |
2212 | cpu_architecture.cputype = cputype; |
2213 | cpu_architecture.cpusubtype = cpusubtype; |
2214 | |
2215 | return kcdata_push_data(data: kcd, STACKSHOT_KCTYPE_TASK_CPU_ARCHITECTURE, size: sizeof(struct stackshot_cpu_architecture), input_data: &cpu_architecture); |
2216 | } |
2217 | |
2218 | static kern_return_t |
2219 | kcdata_record_task_codesigning_info(kcdata_descriptor_t kcd, task_t task) |
2220 | { |
2221 | struct stackshot_task_codesigning_info codesigning_info = {}; |
2222 | void * bsdtask_info = NULL; |
2223 | uint32_t trust = 0; |
2224 | kern_return_t ret = 0; |
2225 | pmap_t pmap = get_task_pmap(task); |
2226 | if (task != kernel_task) { |
2227 | bsdtask_info = get_bsdtask_info(task); |
2228 | codesigning_info.csflags = proc_getcsflags_kdp(p: bsdtask_info); |
2229 | ret = get_trust_level_kdp(pmap, trust_level: &trust); |
2230 | if (ret != KERN_SUCCESS) { |
2231 | trust = KCDATA_INVALID_CS_TRUST_LEVEL; |
2232 | } |
2233 | codesigning_info.cs_trust_level = trust; |
2234 | } else { |
2235 | return KERN_SUCCESS; |
2236 | } |
2237 | return kcdata_push_data(data: kcd, STACKSHOT_KCTYPE_CODESIGNING_INFO, size: sizeof(struct stackshot_task_codesigning_info), input_data: &codesigning_info); |
2238 | } |
2239 | #if CONFIG_TASK_SUSPEND_STATS |
2240 | static kern_return_t |
2241 | kcdata_record_task_suspension_info(kcdata_descriptor_t kcd, task_t task) |
2242 | { |
2243 | kern_return_t ret = KERN_SUCCESS; |
2244 | struct stackshot_suspension_info suspension_info = {}; |
2245 | task_suspend_stats_data_t suspend_stats; |
2246 | task_suspend_source_array_t suspend_sources; |
2247 | struct stackshot_suspension_source suspension_sources[TASK_SUSPEND_SOURCES_MAX]; |
2248 | int i; |
2249 | |
2250 | if (task == kernel_task) { |
2251 | return KERN_SUCCESS; |
2252 | } |
2253 | |
2254 | ret = task_get_suspend_stats_kdp(task, &suspend_stats); |
2255 | if (ret != KERN_SUCCESS) { |
2256 | return ret; |
2257 | } |
2258 | |
2259 | suspension_info.tss_count = suspend_stats.tss_count; |
2260 | suspension_info.tss_duration = suspend_stats.tss_duration; |
2261 | suspension_info.tss_last_end = suspend_stats.tss_last_end; |
2262 | suspension_info.tss_last_start = suspend_stats.tss_last_start; |
2263 | ret = kcdata_push_data(kcd, STACKSHOT_KCTYPE_SUSPENSION_INFO, sizeof(suspension_info), &suspension_info); |
2264 | if (ret != KERN_SUCCESS) { |
2265 | return ret; |
2266 | } |
2267 | |
2268 | ret = task_get_suspend_sources_kdp(task, suspend_sources); |
2269 | if (ret != KERN_SUCCESS) { |
2270 | return ret; |
2271 | } |
2272 | |
2273 | for (i = 0; i < TASK_SUSPEND_SOURCES_MAX; ++i) { |
2274 | suspension_sources[i].tss_pid = suspend_sources[i].tss_pid; |
2275 | strlcpy(suspension_sources[i].tss_procname, suspend_sources[i].tss_procname, sizeof(suspend_sources[i].tss_procname)); |
2276 | suspension_sources[i].tss_tid = suspend_sources[i].tss_tid; |
2277 | suspension_sources[i].tss_time = suspend_sources[i].tss_time; |
2278 | } |
2279 | return kcdata_push_array(kcd, STACKSHOT_KCTYPE_SUSPENSION_SOURCE, sizeof(suspension_sources[0]), TASK_SUSPEND_SOURCES_MAX, &suspension_sources); |
2280 | } |
2281 | #endif /* CONFIG_TASK_SUSPEND_STATS */ |
2282 | |
2283 | static kern_return_t |
2284 | kcdata_record_transitioning_task_snapshot(kcdata_descriptor_t kcd, task_t task, unaligned_u64 task_snap_ss_flags, uint64_t transition_type) |
2285 | { |
2286 | kern_return_t error = KERN_SUCCESS; |
2287 | mach_vm_address_t out_addr = 0; |
2288 | struct transitioning_task_snapshot * cur_tsnap = NULL; |
2289 | |
2290 | int task_pid = pid_from_task(task); |
2291 | /* Is returning -1 ok for terminating task ok ??? */ |
2292 | uint64_t task_uniqueid = get_task_uniqueid(task); |
2293 | |
2294 | if (task_pid && (task_did_exec_internal(task) || task_is_exec_copy_internal(task))) { |
2295 | /* |
2296 | * if this task is a transit task from another one, show the pid as |
2297 | * negative |
2298 | */ |
2299 | task_pid = 0 - task_pid; |
2300 | } |
2301 | |
2302 | /* the task_snapshot_v2 struct is large - avoid overflowing the stack */ |
2303 | kcdata_compression_window_open(data: kcd); |
2304 | kcd_exit_on_error(kcdata_get_memory_addr(kcd, STACKSHOT_KCTYPE_TRANSITIONING_TASK_SNAPSHOT, sizeof(struct transitioning_task_snapshot), &out_addr)); |
2305 | cur_tsnap = (struct transitioning_task_snapshot *)out_addr; |
2306 | bzero(s: cur_tsnap, n: sizeof(*cur_tsnap)); |
2307 | |
2308 | cur_tsnap->tts_unique_pid = task_uniqueid; |
2309 | cur_tsnap->tts_ss_flags = kcdata_get_task_ss_flags(task); |
2310 | cur_tsnap->tts_ss_flags |= task_snap_ss_flags; |
2311 | cur_tsnap->tts_transition_type = transition_type; |
2312 | cur_tsnap->tts_pid = task_pid; |
2313 | |
2314 | /* Add the BSD process identifiers */ |
2315 | if (task_pid != -1 && get_bsdtask_info(task) != NULL) { |
2316 | proc_name_kdp(p: get_bsdtask_info(task), buf: cur_tsnap->tts_p_comm, size: sizeof(cur_tsnap->tts_p_comm)); |
2317 | } else { |
2318 | cur_tsnap->tts_p_comm[0] = '\0'; |
2319 | } |
2320 | |
2321 | kcd_exit_on_error(kcdata_compression_window_close(kcd)); |
2322 | |
2323 | error_exit: |
2324 | return error; |
2325 | } |
2326 | |
2327 | static kern_return_t |
2328 | #if STACKSHOT_COLLECTS_LATENCY_INFO |
2329 | kcdata_record_task_snapshot(kcdata_descriptor_t kcd, task_t task, uint64_t trace_flags, boolean_t have_pmap, unaligned_u64 task_snap_ss_flags, struct stackshot_latency_task *latency_info) |
2330 | #else |
2331 | kcdata_record_task_snapshot(kcdata_descriptor_t kcd, task_t task, uint64_t trace_flags, boolean_t have_pmap, unaligned_u64 task_snap_ss_flags) |
2332 | #endif /* STACKSHOT_COLLECTS_LATENCY_INFO */ |
2333 | { |
2334 | bool collect_delta_stackshot = ((trace_flags & STACKSHOT_COLLECT_DELTA_SNAPSHOT) != 0); |
2335 | bool collect_iostats = !collect_delta_stackshot && !(trace_flags & STACKSHOT_NO_IO_STATS); |
2336 | #if CONFIG_PERVASIVE_CPI |
2337 | bool collect_instrs_cycles = ((trace_flags & STACKSHOT_INSTRS_CYCLES) != 0); |
2338 | #endif /* CONFIG_PERVASIVE_CPI */ |
2339 | #if __arm64__ |
2340 | bool collect_asid = ((trace_flags & STACKSHOT_ASID) != 0); |
2341 | #endif |
2342 | bool collect_pagetables = ((trace_flags & STACKSHOT_PAGE_TABLES) != 0); |
2343 | |
2344 | |
2345 | kern_return_t error = KERN_SUCCESS; |
2346 | mach_vm_address_t out_addr = 0; |
2347 | struct task_snapshot_v2 * cur_tsnap = NULL; |
2348 | #if STACKSHOT_COLLECTS_LATENCY_INFO |
2349 | latency_info->cur_tsnap_latency = mach_absolute_time(); |
2350 | #endif /* STACKSHOT_COLLECTS_LATENCY_INFO */ |
2351 | |
2352 | int task_pid = pid_from_task(task); |
2353 | uint64_t task_uniqueid = get_task_uniqueid(task); |
2354 | void *bsd_info = get_bsdtask_info(task); |
2355 | uint64_t proc_starttime_secs = 0; |
2356 | |
2357 | if (task_pid && (task_did_exec_internal(task) || task_is_exec_copy_internal(task))) { |
2358 | /* |
2359 | * if this task is a transit task from another one, show the pid as |
2360 | * negative |
2361 | */ |
2362 | task_pid = 0 - task_pid; |
2363 | } |
2364 | |
2365 | /* the task_snapshot_v2 struct is large - avoid overflowing the stack */ |
2366 | kcdata_compression_window_open(data: kcd); |
2367 | kcd_exit_on_error(kcdata_get_memory_addr(kcd, STACKSHOT_KCTYPE_TASK_SNAPSHOT, sizeof(struct task_snapshot_v2), &out_addr)); |
2368 | cur_tsnap = (struct task_snapshot_v2 *)out_addr; |
2369 | bzero(s: cur_tsnap, n: sizeof(*cur_tsnap)); |
2370 | |
2371 | cur_tsnap->ts_unique_pid = task_uniqueid; |
2372 | cur_tsnap->ts_ss_flags = kcdata_get_task_ss_flags(task); |
2373 | cur_tsnap->ts_ss_flags |= task_snap_ss_flags; |
2374 | |
2375 | struct recount_usage term_usage = { 0 }; |
2376 | recount_task_terminated_usage(task, sum: &term_usage); |
2377 | struct recount_times_mach term_times = recount_usage_times_mach(usage: &term_usage); |
2378 | cur_tsnap->ts_user_time_in_terminated_threads = term_times.rtm_user; |
2379 | cur_tsnap->ts_system_time_in_terminated_threads = term_times.rtm_system; |
2380 | |
2381 | proc_starttime_kdp(p: bsd_info, tv_sec: &proc_starttime_secs, NULL, NULL); |
2382 | cur_tsnap->ts_p_start_sec = proc_starttime_secs; |
2383 | cur_tsnap->ts_task_size = have_pmap ? get_task_phys_footprint(task) : 0; |
2384 | cur_tsnap->ts_max_resident_size = get_task_resident_max(task); |
2385 | cur_tsnap->ts_was_throttled = (uint32_t) proc_was_throttled_from_task(task); |
2386 | cur_tsnap->ts_did_throttle = (uint32_t) proc_did_throttle_from_task(task); |
2387 | |
2388 | cur_tsnap->ts_suspend_count = task->suspend_count; |
2389 | cur_tsnap->ts_faults = counter_load(&task->faults); |
2390 | cur_tsnap->ts_pageins = counter_load(&task->pageins); |
2391 | cur_tsnap->ts_cow_faults = counter_load(&task->cow_faults); |
2392 | cur_tsnap->ts_latency_qos = (task->effective_policy.tep_latency_qos == LATENCY_QOS_TIER_UNSPECIFIED) ? |
2393 | LATENCY_QOS_TIER_UNSPECIFIED : ((0xFF << 16) | task->effective_policy.tep_latency_qos); |
2394 | cur_tsnap->ts_pid = task_pid; |
2395 | |
2396 | /* Add the BSD process identifiers */ |
2397 | if (task_pid != -1 && bsd_info != NULL) { |
2398 | proc_name_kdp(p: bsd_info, buf: cur_tsnap->ts_p_comm, size: sizeof(cur_tsnap->ts_p_comm)); |
2399 | } else { |
2400 | cur_tsnap->ts_p_comm[0] = '\0'; |
2401 | #if IMPORTANCE_INHERITANCE && (DEVELOPMENT || DEBUG) |
2402 | if (task->task_imp_base != NULL) { |
2403 | kdp_strlcpy(cur_tsnap->ts_p_comm, &task->task_imp_base->iit_procname[0], |
2404 | MIN((int)sizeof(task->task_imp_base->iit_procname), (int)sizeof(cur_tsnap->ts_p_comm))); |
2405 | } |
2406 | #endif /* IMPORTANCE_INHERITANCE && (DEVELOPMENT || DEBUG) */ |
2407 | } |
2408 | |
2409 | kcd_exit_on_error(kcdata_compression_window_close(kcd)); |
2410 | |
2411 | #if CONFIG_COALITIONS |
2412 | if (task_pid != -1 && bsd_info != NULL && |
2413 | (task->coalition[COALITION_TYPE_JETSAM] != NULL)) { |
2414 | /* |
2415 | * The jetsam coalition ID is always saved, even if |
2416 | * STACKSHOT_SAVE_JETSAM_COALITIONS is not set. |
2417 | */ |
2418 | uint64_t jetsam_coal_id = coalition_id(coal: task->coalition[COALITION_TYPE_JETSAM]); |
2419 | kcd_exit_on_error(kcdata_push_data(kcd, STACKSHOT_KCTYPE_JETSAM_COALITION, sizeof(jetsam_coal_id), &jetsam_coal_id)); |
2420 | } |
2421 | #endif /* CONFIG_COALITIONS */ |
2422 | |
2423 | #if __arm64__ |
2424 | if (collect_asid && have_pmap) { |
2425 | uint32_t asid = PMAP_VASID(task->map->pmap); |
2426 | kcd_exit_on_error(kcdata_push_data(kcd, STACKSHOT_KCTYPE_ASID, sizeof(asid), &asid)); |
2427 | } |
2428 | #endif |
2429 | |
2430 | #if STACKSHOT_COLLECTS_LATENCY_INFO |
2431 | latency_info->cur_tsnap_latency = mach_absolute_time() - latency_info->cur_tsnap_latency; |
2432 | latency_info->pmap_latency = mach_absolute_time(); |
2433 | #endif /* STACKSHOT_COLLECTS_LATENCY_INFO */ |
2434 | |
2435 | if (collect_pagetables && have_pmap) { |
2436 | #if SCHED_HYGIENE_DEBUG |
2437 | // pagetable dumps can be large; reset the interrupt timeout to avoid a panic |
2438 | ml_spin_debug_clear_self(); |
2439 | #endif |
2440 | size_t bytes_dumped = 0; |
2441 | error = pmap_dump_page_tables(pmap: task->map->pmap, kcd_end_address(kcd), kcd_max_address(kcd), level_mask: stack_snapshot_pagetable_mask, bytes_copied: &bytes_dumped); |
2442 | if (error != KERN_SUCCESS) { |
2443 | goto error_exit; |
2444 | } else { |
2445 | /* Variable size array - better not have it on the stack. */ |
2446 | kcdata_compression_window_open(data: kcd); |
2447 | kcd_exit_on_error(kcdata_get_memory_addr_for_array(kcd, STACKSHOT_KCTYPE_PAGE_TABLES, |
2448 | sizeof(uint64_t), (uint32_t)(bytes_dumped / sizeof(uint64_t)), &out_addr)); |
2449 | kcd_exit_on_error(kcdata_compression_window_close(kcd)); |
2450 | } |
2451 | } |
2452 | |
2453 | #if STACKSHOT_COLLECTS_LATENCY_INFO |
2454 | latency_info->pmap_latency = mach_absolute_time() - latency_info->pmap_latency; |
2455 | latency_info->bsd_proc_ids_latency = mach_absolute_time(); |
2456 | #endif /* STACKSHOT_COLLECTS_LATENCY_INFO */ |
2457 | |
2458 | #if STACKSHOT_COLLECTS_LATENCY_INFO |
2459 | latency_info->bsd_proc_ids_latency = mach_absolute_time() - latency_info->bsd_proc_ids_latency; |
2460 | latency_info->end_latency = mach_absolute_time(); |
2461 | #endif /* STACKSHOT_COLLECTS_LATENCY_INFO */ |
2462 | |
2463 | if (collect_iostats) { |
2464 | kcd_exit_on_error(kcdata_record_task_iostats(kcd, task)); |
2465 | } |
2466 | |
2467 | #if CONFIG_PERVASIVE_CPI |
2468 | if (collect_instrs_cycles) { |
2469 | kcd_exit_on_error(kcdata_record_task_instrs_cycles(kcd, task)); |
2470 | } |
2471 | #endif /* CONFIG_PERVASIVE_CPI */ |
2472 | |
2473 | kcd_exit_on_error(kcdata_record_task_cpu_architecture(kcd, task)); |
2474 | kcd_exit_on_error(kcdata_record_task_codesigning_info(kcd, task)); |
2475 | |
2476 | #if CONFIG_TASK_SUSPEND_STATS |
2477 | kcd_exit_on_error(kcdata_record_task_suspension_info(kcd, task)); |
2478 | #endif /* CONFIG_TASK_SUSPEND_STATS */ |
2479 | |
2480 | #if STACKSHOT_COLLECTS_LATENCY_INFO |
2481 | latency_info->end_latency = mach_absolute_time() - latency_info->end_latency; |
2482 | #endif /* STACKSHOT_COLLECTS_LATENCY_INFO */ |
2483 | |
2484 | error_exit: |
2485 | return error; |
2486 | } |
2487 | |
2488 | static kern_return_t |
2489 | kcdata_record_task_delta_snapshot(kcdata_descriptor_t kcd, task_t task, uint64_t trace_flags, boolean_t have_pmap, unaligned_u64 task_snap_ss_flags) |
2490 | { |
2491 | #if !CONFIG_PERVASIVE_CPI |
2492 | #pragma unused(trace_flags) |
2493 | #endif /* !CONFIG_PERVASIVE_CPI */ |
2494 | kern_return_t error = KERN_SUCCESS; |
2495 | struct task_delta_snapshot_v2 * cur_tsnap = NULL; |
2496 | mach_vm_address_t out_addr = 0; |
2497 | (void) trace_flags; |
2498 | #if __arm64__ |
2499 | boolean_t collect_asid = ((trace_flags & STACKSHOT_ASID) != 0); |
2500 | #endif |
2501 | #if CONFIG_PERVASIVE_CPI |
2502 | boolean_t collect_instrs_cycles = ((trace_flags & STACKSHOT_INSTRS_CYCLES) != 0); |
2503 | #endif /* CONFIG_PERVASIVE_CPI */ |
2504 | |
2505 | uint64_t task_uniqueid = get_task_uniqueid(task); |
2506 | |
2507 | kcd_exit_on_error(kcdata_get_memory_addr(kcd, STACKSHOT_KCTYPE_TASK_DELTA_SNAPSHOT, sizeof(struct task_delta_snapshot_v2), &out_addr)); |
2508 | |
2509 | cur_tsnap = (struct task_delta_snapshot_v2 *)out_addr; |
2510 | |
2511 | cur_tsnap->tds_unique_pid = task_uniqueid; |
2512 | cur_tsnap->tds_ss_flags = kcdata_get_task_ss_flags(task); |
2513 | cur_tsnap->tds_ss_flags |= task_snap_ss_flags; |
2514 | |
2515 | struct recount_usage usage = { 0 }; |
2516 | recount_task_terminated_usage(task, sum: &usage); |
2517 | struct recount_times_mach term_times = recount_usage_times_mach(usage: &usage); |
2518 | |
2519 | cur_tsnap->tds_user_time_in_terminated_threads = term_times.rtm_user; |
2520 | cur_tsnap->tds_system_time_in_terminated_threads = term_times.rtm_system; |
2521 | |
2522 | cur_tsnap->tds_task_size = have_pmap ? get_task_phys_footprint(task) : 0; |
2523 | |
2524 | cur_tsnap->tds_max_resident_size = get_task_resident_max(task); |
2525 | cur_tsnap->tds_suspend_count = task->suspend_count; |
2526 | cur_tsnap->tds_faults = counter_load(&task->faults); |
2527 | cur_tsnap->tds_pageins = counter_load(&task->pageins); |
2528 | cur_tsnap->tds_cow_faults = counter_load(&task->cow_faults); |
2529 | cur_tsnap->tds_was_throttled = (uint32_t)proc_was_throttled_from_task(task); |
2530 | cur_tsnap->tds_did_throttle = (uint32_t)proc_did_throttle_from_task(task); |
2531 | cur_tsnap->tds_latency_qos = (task->effective_policy.tep_latency_qos == LATENCY_QOS_TIER_UNSPECIFIED) |
2532 | ? LATENCY_QOS_TIER_UNSPECIFIED |
2533 | : ((0xFF << 16) | task->effective_policy.tep_latency_qos); |
2534 | |
2535 | #if __arm64__ |
2536 | if (collect_asid && have_pmap) { |
2537 | uint32_t asid = PMAP_VASID(task->map->pmap); |
2538 | kcd_exit_on_error(kcdata_get_memory_addr(kcd, STACKSHOT_KCTYPE_ASID, sizeof(uint32_t), &out_addr)); |
2539 | kdp_memcpy(dst: (void*)out_addr, src: &asid, len: sizeof(asid)); |
2540 | } |
2541 | #endif |
2542 | |
2543 | #if CONFIG_PERVASIVE_CPI |
2544 | if (collect_instrs_cycles) { |
2545 | kcd_exit_on_error(kcdata_record_task_instrs_cycles(kcd, task)); |
2546 | } |
2547 | #endif /* CONFIG_PERVASIVE_CPI */ |
2548 | |
2549 | error_exit: |
2550 | return error; |
2551 | } |
2552 | |
2553 | static kern_return_t |
2554 | kcdata_record_thread_iostats(kcdata_descriptor_t kcd, thread_t thread) |
2555 | { |
2556 | kern_return_t error = KERN_SUCCESS; |
2557 | mach_vm_address_t out_addr = 0; |
2558 | |
2559 | /* I/O Statistics */ |
2560 | assert(IO_NUM_PRIORITIES == STACKSHOT_IO_NUM_PRIORITIES); |
2561 | if (thread->thread_io_stats && !memory_iszero(addr: thread->thread_io_stats, size: sizeof(struct io_stat_info))) { |
2562 | kcd_exit_on_error(kcdata_get_memory_addr(kcd, STACKSHOT_KCTYPE_IOSTATS, sizeof(struct io_stats_snapshot), &out_addr)); |
2563 | struct io_stats_snapshot *_iostat = (struct io_stats_snapshot *)out_addr; |
2564 | _iostat->ss_disk_reads_count = thread->thread_io_stats->disk_reads.count; |
2565 | _iostat->ss_disk_reads_size = thread->thread_io_stats->disk_reads.size; |
2566 | _iostat->ss_disk_writes_count = (thread->thread_io_stats->total_io.count - thread->thread_io_stats->disk_reads.count); |
2567 | _iostat->ss_disk_writes_size = (thread->thread_io_stats->total_io.size - thread->thread_io_stats->disk_reads.size); |
2568 | _iostat->ss_paging_count = thread->thread_io_stats->paging.count; |
2569 | _iostat->ss_paging_size = thread->thread_io_stats->paging.size; |
2570 | _iostat->ss_non_paging_count = (thread->thread_io_stats->total_io.count - thread->thread_io_stats->paging.count); |
2571 | _iostat->ss_non_paging_size = (thread->thread_io_stats->total_io.size - thread->thread_io_stats->paging.size); |
2572 | _iostat->ss_metadata_count = thread->thread_io_stats->metadata.count; |
2573 | _iostat->ss_metadata_size = thread->thread_io_stats->metadata.size; |
2574 | _iostat->ss_data_count = (thread->thread_io_stats->total_io.count - thread->thread_io_stats->metadata.count); |
2575 | _iostat->ss_data_size = (thread->thread_io_stats->total_io.size - thread->thread_io_stats->metadata.size); |
2576 | for (int i = 0; i < IO_NUM_PRIORITIES; i++) { |
2577 | _iostat->ss_io_priority_count[i] = thread->thread_io_stats->io_priority[i].count; |
2578 | _iostat->ss_io_priority_size[i] = thread->thread_io_stats->io_priority[i].size; |
2579 | } |
2580 | } |
2581 | |
2582 | error_exit: |
2583 | return error; |
2584 | } |
2585 | |
2586 | bool |
2587 | machine_trace_thread_validate_kva(vm_offset_t addr) |
2588 | { |
2589 | return _stackshot_validate_kva(addr, size: sizeof(uintptr_t)); |
2590 | } |
2591 | |
2592 | struct _stackshot_backtrace_context { |
2593 | vm_map_t sbc_map; |
2594 | vm_offset_t sbc_prev_page; |
2595 | vm_offset_t sbc_prev_kva; |
2596 | uint32_t sbc_flags; |
2597 | bool sbc_allow_faulting; |
2598 | }; |
2599 | |
2600 | static errno_t |
2601 | _stackshot_backtrace_copy(void *vctx, void *dst, user_addr_t src, size_t size) |
2602 | { |
2603 | struct _stackshot_backtrace_context *ctx = vctx; |
2604 | size_t map_page_mask = 0; |
2605 | size_t __assert_only map_page_size = kdp_vm_map_get_page_size(map: ctx->sbc_map, |
2606 | effective_page_mask: &map_page_mask); |
2607 | assert(size < map_page_size); |
2608 | if (src & (size - 1)) { |
2609 | // The source should be aligned to the size passed in, like a stack |
2610 | // frame or word. |
2611 | return EINVAL; |
2612 | } |
2613 | |
2614 | vm_offset_t src_page = src & ~map_page_mask; |
2615 | vm_offset_t src_kva = 0; |
2616 | |
2617 | if (src_page != ctx->sbc_prev_page) { |
2618 | uint32_t res = 0; |
2619 | uint32_t flags = 0; |
2620 | vm_offset_t src_pa = stackshot_find_phys(map: ctx->sbc_map, target_addr: src, |
2621 | fault_flags: ctx->sbc_allow_faulting, kdp_fault_result_flags: &res); |
2622 | |
2623 | flags |= (res & KDP_FAULT_RESULT_PAGED_OUT) ? kThreadTruncatedBT : 0; |
2624 | flags |= (res & KDP_FAULT_RESULT_TRIED_FAULT) ? kThreadTriedFaultBT : 0; |
2625 | flags |= (res & KDP_FAULT_RESULT_FAULTED_IN) ? kThreadFaultedBT : 0; |
2626 | ctx->sbc_flags |= flags; |
2627 | if (src_pa == 0) { |
2628 | return EFAULT; |
2629 | } |
2630 | |
2631 | src_kva = phystokv(pa: src_pa); |
2632 | ctx->sbc_prev_page = src_page; |
2633 | ctx->sbc_prev_kva = (src_kva & ~map_page_mask); |
2634 | } else { |
2635 | src_kva = ctx->sbc_prev_kva + (src & map_page_mask); |
2636 | } |
2637 | |
2638 | #if KASAN |
2639 | /* |
2640 | * KASan does not monitor accesses to userspace pages. Therefore, it is |
2641 | * pointless to maintain a shadow map for them. Instead, they are all |
2642 | * mapped to a single, always valid shadow map page. This approach saves |
2643 | * a considerable amount of shadow map pages which are limited and |
2644 | * precious. |
2645 | */ |
2646 | kasan_notify_address_nopoison(src_kva, size); |
2647 | #endif |
2648 | memcpy(dst, src: (const void *)src_kva, n: size); |
2649 | |
2650 | return 0; |
2651 | } |
2652 | |
2653 | static kern_return_t |
2654 | kcdata_record_thread_snapshot( |
2655 | kcdata_descriptor_t kcd, thread_t thread, task_t task, uint64_t trace_flags, boolean_t have_pmap, boolean_t thread_on_core) |
2656 | { |
2657 | boolean_t dispatch_p = ((trace_flags & STACKSHOT_GET_DQ) != 0); |
2658 | boolean_t active_kthreads_only_p = ((trace_flags & STACKSHOT_ACTIVE_KERNEL_THREADS_ONLY) != 0); |
2659 | boolean_t collect_delta_stackshot = ((trace_flags & STACKSHOT_COLLECT_DELTA_SNAPSHOT) != 0); |
2660 | boolean_t collect_iostats = !collect_delta_stackshot && !(trace_flags & STACKSHOT_NO_IO_STATS); |
2661 | #if CONFIG_PERVASIVE_CPI |
2662 | boolean_t collect_instrs_cycles = ((trace_flags & STACKSHOT_INSTRS_CYCLES) != 0); |
2663 | #endif /* CONFIG_PERVASIVE_CPI */ |
2664 | kern_return_t error = KERN_SUCCESS; |
2665 | |
2666 | #if STACKSHOT_COLLECTS_LATENCY_INFO |
2667 | struct stackshot_latency_thread latency_info; |
2668 | latency_info.cur_thsnap1_latency = mach_absolute_time(); |
2669 | #endif /* STACKSHOT_COLLECTS_LATENCY_INFO */ |
2670 | |
2671 | mach_vm_address_t out_addr = 0; |
2672 | int saved_count = 0; |
2673 | |
2674 | struct thread_snapshot_v4 * cur_thread_snap = NULL; |
2675 | char cur_thread_name[STACKSHOT_MAX_THREAD_NAME_SIZE]; |
2676 | |
2677 | kcd_exit_on_error(kcdata_get_memory_addr(kcd, STACKSHOT_KCTYPE_THREAD_SNAPSHOT, sizeof(struct thread_snapshot_v4), &out_addr)); |
2678 | cur_thread_snap = (struct thread_snapshot_v4 *)out_addr; |
2679 | |
2680 | /* Populate the thread snapshot header */ |
2681 | cur_thread_snap->ths_ss_flags = 0; |
2682 | cur_thread_snap->ths_thread_id = thread_tid(thread); |
2683 | cur_thread_snap->ths_wait_event = VM_KERNEL_UNSLIDE_OR_PERM(thread->wait_event); |
2684 | cur_thread_snap->ths_continuation = VM_KERNEL_UNSLIDE(thread->continuation); |
2685 | cur_thread_snap->ths_total_syscalls = thread->syscalls_mach + thread->syscalls_unix; |
2686 | |
2687 | if (IPC_VOUCHER_NULL != thread->ith_voucher) { |
2688 | cur_thread_snap->ths_voucher_identifier = VM_KERNEL_ADDRPERM(thread->ith_voucher); |
2689 | } else { |
2690 | cur_thread_snap->ths_voucher_identifier = 0; |
2691 | } |
2692 | |
2693 | #if STACKSHOT_COLLECTS_LATENCY_INFO |
2694 | latency_info.cur_thsnap1_latency = mach_absolute_time() - latency_info.cur_thsnap1_latency; |
2695 | latency_info.dispatch_serial_latency = mach_absolute_time(); |
2696 | latency_info.dispatch_label_latency = 0; |
2697 | #endif /* STACKSHOT_COLLECTS_LATENCY_INFO */ |
2698 | |
2699 | cur_thread_snap->ths_dqserialnum = 0; |
2700 | if (dispatch_p && (task != kernel_task) && (task->active) && have_pmap) { |
2701 | uint64_t dqkeyaddr = thread_dispatchqaddr(thread); |
2702 | if (dqkeyaddr != 0) { |
2703 | uint64_t dqaddr = 0; |
2704 | boolean_t copyin_ok = stackshot_copyin_word(task, addr: dqkeyaddr, result: &dqaddr, FALSE, NULL); |
2705 | if (copyin_ok && dqaddr != 0) { |
2706 | uint64_t dqserialnumaddr = dqaddr + get_task_dispatchqueue_serialno_offset(task); |
2707 | uint64_t dqserialnum = 0; |
2708 | copyin_ok = stackshot_copyin_word(task, addr: dqserialnumaddr, result: &dqserialnum, FALSE, NULL); |
2709 | if (copyin_ok) { |
2710 | cur_thread_snap->ths_ss_flags |= kHasDispatchSerial; |
2711 | cur_thread_snap->ths_dqserialnum = dqserialnum; |
2712 | } |
2713 | |
2714 | #if STACKSHOT_COLLECTS_LATENCY_INFO |
2715 | latency_info.dispatch_serial_latency = mach_absolute_time() - latency_info.dispatch_serial_latency; |
2716 | latency_info.dispatch_label_latency = mach_absolute_time(); |
2717 | #endif /* STACKSHOT_COLLECTS_LATENCY_INFO */ |
2718 | |
2719 | /* try copying in the queue label */ |
2720 | uint64_t label_offs = get_task_dispatchqueue_label_offset(task); |
2721 | if (label_offs) { |
2722 | uint64_t dqlabeladdr = dqaddr + label_offs; |
2723 | uint64_t actual_dqlabeladdr = 0; |
2724 | |
2725 | copyin_ok = stackshot_copyin_word(task, addr: dqlabeladdr, result: &actual_dqlabeladdr, FALSE, NULL); |
2726 | if (copyin_ok && actual_dqlabeladdr != 0) { |
2727 | char label_buf[STACKSHOT_QUEUE_LABEL_MAXSIZE]; |
2728 | int len; |
2729 | |
2730 | bzero(s: label_buf, STACKSHOT_QUEUE_LABEL_MAXSIZE * sizeof(char)); |
2731 | len = stackshot_copyin_string(task, addr: actual_dqlabeladdr, buf: label_buf, STACKSHOT_QUEUE_LABEL_MAXSIZE, FALSE, NULL); |
2732 | if (len > 0) { |
2733 | mach_vm_address_t label_addr = 0; |
2734 | kcd_exit_on_error(kcdata_get_memory_addr(kcd, STACKSHOT_KCTYPE_THREAD_DISPATCH_QUEUE_LABEL, len, &label_addr)); |
2735 | kdp_strlcpy(dst: (char*)label_addr, src: &label_buf[0], maxlen: len); |
2736 | } |
2737 | } |
2738 | } |
2739 | #if STACKSHOT_COLLECTS_LATENCY_INFO |
2740 | latency_info.dispatch_label_latency = mach_absolute_time() - latency_info.dispatch_label_latency; |
2741 | #endif /* STACKSHOT_COLLECTS_LATENCY_INFO */ |
2742 | } |
2743 | } |
2744 | } |
2745 | |
2746 | #if STACKSHOT_COLLECTS_LATENCY_INFO |
2747 | if ((cur_thread_snap->ths_ss_flags & kHasDispatchSerial) == 0) { |
2748 | latency_info.dispatch_serial_latency = 0; |
2749 | } |
2750 | latency_info.cur_thsnap2_latency = mach_absolute_time(); |
2751 | #endif /* STACKSHOT_COLLECTS_LATENCY_INFO */ |
2752 | |
2753 | struct recount_times_mach times = recount_thread_times(thread); |
2754 | cur_thread_snap->ths_user_time = times.rtm_user; |
2755 | cur_thread_snap->ths_sys_time = times.rtm_system; |
2756 | |
2757 | if (thread->thread_tag & THREAD_TAG_MAINTHREAD) { |
2758 | cur_thread_snap->ths_ss_flags |= kThreadMain; |
2759 | } |
2760 | if (thread->effective_policy.thep_darwinbg) { |
2761 | cur_thread_snap->ths_ss_flags |= kThreadDarwinBG; |
2762 | } |
2763 | if (proc_get_effective_thread_policy(thread, TASK_POLICY_PASSIVE_IO)) { |
2764 | cur_thread_snap->ths_ss_flags |= kThreadIOPassive; |
2765 | } |
2766 | if (thread->suspend_count > 0) { |
2767 | cur_thread_snap->ths_ss_flags |= kThreadSuspended; |
2768 | } |
2769 | if (thread->options & TH_OPT_GLOBAL_FORCED_IDLE) { |
2770 | cur_thread_snap->ths_ss_flags |= kGlobalForcedIdle; |
2771 | } |
2772 | #if CONFIG_EXCLAVES |
2773 | if ((thread->th_exclaves_state & TH_EXCLAVES_RPC) && stackshot_exclave_inspect_ctids && !panic_stackshot) { |
2774 | /* save exclave thread for later collection */ |
2775 | if (stackshot_exclave_inspect_ctid_count < stackshot_exclave_inspect_ctid_capacity) { |
2776 | /* certain threads, like the collector, must never be inspected */ |
2777 | if ((os_atomic_load(&thread->th_exclaves_inspection_state, relaxed) & TH_EXCLAVES_INSPECTION_NOINSPECT) == 0) { |
2778 | stackshot_exclave_inspect_ctids[stackshot_exclave_inspect_ctid_count] = thread_get_ctid(thread); |
2779 | stackshot_exclave_inspect_ctid_count += 1; |
2780 | if ((os_atomic_load(&thread->th_exclaves_inspection_state, relaxed) & TH_EXCLAVES_INSPECTION_STACKSHOT) != 0) { |
2781 | panic("stackshot: trying to inspect already-queued thread" ); |
2782 | } |
2783 | } |
2784 | } |
2785 | } |
2786 | #endif /* CONFIG_EXCLAVES */ |
2787 | if (thread_on_core) { |
2788 | cur_thread_snap->ths_ss_flags |= kThreadOnCore; |
2789 | } |
2790 | if (stackshot_thread_is_idle_worker_unsafe(thread)) { |
2791 | cur_thread_snap->ths_ss_flags |= kThreadIdleWorker; |
2792 | } |
2793 | |
2794 | /* make sure state flags defined in kcdata.h still match internal flags */ |
2795 | static_assert(SS_TH_WAIT == TH_WAIT); |
2796 | static_assert(SS_TH_SUSP == TH_SUSP); |
2797 | static_assert(SS_TH_RUN == TH_RUN); |
2798 | static_assert(SS_TH_UNINT == TH_UNINT); |
2799 | static_assert(SS_TH_TERMINATE == TH_TERMINATE); |
2800 | static_assert(SS_TH_TERMINATE2 == TH_TERMINATE2); |
2801 | static_assert(SS_TH_IDLE == TH_IDLE); |
2802 | |
2803 | cur_thread_snap->ths_last_run_time = thread->last_run_time; |
2804 | cur_thread_snap->ths_last_made_runnable_time = thread->last_made_runnable_time; |
2805 | cur_thread_snap->ths_state = thread->state; |
2806 | cur_thread_snap->ths_sched_flags = thread->sched_flags; |
2807 | cur_thread_snap->ths_base_priority = thread->base_pri; |
2808 | cur_thread_snap->ths_sched_priority = thread->sched_pri; |
2809 | cur_thread_snap->ths_eqos = thread->effective_policy.thep_qos; |
2810 | cur_thread_snap->ths_rqos = thread->requested_policy.thrp_qos; |
2811 | cur_thread_snap->ths_rqos_override = MAX(thread->requested_policy.thrp_qos_override, |
2812 | thread->requested_policy.thrp_qos_workq_override); |
2813 | cur_thread_snap->ths_io_tier = (uint8_t) proc_get_effective_thread_policy(thread, TASK_POLICY_IO); |
2814 | cur_thread_snap->ths_thread_t = VM_KERNEL_UNSLIDE_OR_PERM(thread); |
2815 | |
2816 | static_assert(sizeof(thread->effective_policy) == sizeof(uint64_t)); |
2817 | static_assert(sizeof(thread->requested_policy) == sizeof(uint64_t)); |
2818 | cur_thread_snap->ths_requested_policy = *(unaligned_u64 *) &thread->requested_policy; |
2819 | cur_thread_snap->ths_effective_policy = *(unaligned_u64 *) &thread->effective_policy; |
2820 | |
2821 | #if STACKSHOT_COLLECTS_LATENCY_INFO |
2822 | latency_info.cur_thsnap2_latency = mach_absolute_time() - latency_info.cur_thsnap2_latency; |
2823 | latency_info.thread_name_latency = mach_absolute_time(); |
2824 | #endif /* STACKSHOT_COLLECTS_LATENCY_INFO */ |
2825 | |
2826 | /* if there is thread name then add to buffer */ |
2827 | cur_thread_name[0] = '\0'; |
2828 | proc_threadname_kdp(uth: get_bsdthread_info(thread), buf: cur_thread_name, STACKSHOT_MAX_THREAD_NAME_SIZE); |
2829 | if (strnlen(s: cur_thread_name, STACKSHOT_MAX_THREAD_NAME_SIZE) > 0) { |
2830 | kcd_exit_on_error(kcdata_get_memory_addr(kcd, STACKSHOT_KCTYPE_THREAD_NAME, sizeof(cur_thread_name), &out_addr)); |
2831 | kdp_memcpy(dst: (void *)out_addr, src: (void *)cur_thread_name, len: sizeof(cur_thread_name)); |
2832 | } |
2833 | |
2834 | #if STACKSHOT_COLLECTS_LATENCY_INFO |
2835 | latency_info.thread_name_latency = mach_absolute_time() - latency_info.thread_name_latency; |
2836 | latency_info.sur_times_latency = mach_absolute_time(); |
2837 | #endif /* STACKSHOT_COLLECTS_LATENCY_INFO */ |
2838 | |
2839 | /* record system, user, and runnable times */ |
2840 | time_value_t runnable_time; |
2841 | thread_read_times(thread, NULL, NULL, runnable_time: &runnable_time); |
2842 | clock_sec_t user_sec = 0, system_sec = 0; |
2843 | clock_usec_t user_usec = 0, system_usec = 0; |
2844 | absolutetime_to_microtime(abstime: times.rtm_user, secs: &user_sec, microsecs: &user_usec); |
2845 | absolutetime_to_microtime(abstime: times.rtm_system, secs: &system_sec, microsecs: &system_usec); |
2846 | |
2847 | kcd_exit_on_error(kcdata_get_memory_addr(kcd, STACKSHOT_KCTYPE_CPU_TIMES, sizeof(struct stackshot_cpu_times_v2), &out_addr)); |
2848 | struct stackshot_cpu_times_v2 *stackshot_cpu_times = (struct stackshot_cpu_times_v2 *)out_addr; |
2849 | *stackshot_cpu_times = (struct stackshot_cpu_times_v2){ |
2850 | .user_usec = user_sec * USEC_PER_SEC + user_usec, |
2851 | .system_usec = system_sec * USEC_PER_SEC + system_usec, |
2852 | .runnable_usec = (uint64_t)runnable_time.seconds * USEC_PER_SEC + runnable_time.microseconds, |
2853 | }; |
2854 | |
2855 | #if STACKSHOT_COLLECTS_LATENCY_INFO |
2856 | latency_info.sur_times_latency = mach_absolute_time() - latency_info.sur_times_latency; |
2857 | latency_info.user_stack_latency = mach_absolute_time(); |
2858 | #endif /* STACKSHOT_COLLECTS_LATENCY_INFO */ |
2859 | |
2860 | /* Trace user stack, if any */ |
2861 | if (!active_kthreads_only_p && task->active && task->map != kernel_map) { |
2862 | uint32_t user_ths_ss_flags = 0; |
2863 | |
2864 | /* |
2865 | * This relies on knowing the "end" address points to the start of the |
2866 | * next elements data and, in the case of arrays, the elements. |
2867 | */ |
2868 | out_addr = (mach_vm_address_t)kcd_end_address(kcd); |
2869 | mach_vm_address_t max_addr = (mach_vm_address_t)kcd_max_address(kcd); |
2870 | assert(out_addr <= max_addr); |
2871 | size_t avail_frames = (max_addr - out_addr) / sizeof(uintptr_t); |
2872 | size_t max_frames = MIN(avail_frames, MAX_FRAMES); |
2873 | if (max_frames == 0) { |
2874 | error = KERN_RESOURCE_SHORTAGE; |
2875 | goto error_exit; |
2876 | } |
2877 | struct _stackshot_backtrace_context ctx = { |
2878 | .sbc_map = task->map, |
2879 | .sbc_allow_faulting = stack_enable_faulting, |
2880 | .sbc_prev_page = -1, |
2881 | .sbc_prev_kva = -1, |
2882 | }; |
2883 | struct backtrace_control ctl = { |
2884 | .btc_user_thread = thread, |
2885 | .btc_user_copy = _stackshot_backtrace_copy, |
2886 | .btc_user_copy_context = &ctx, |
2887 | }; |
2888 | struct backtrace_user_info info = BTUINFO_INIT; |
2889 | |
2890 | saved_count = backtrace_user(bt: (uintptr_t *)out_addr, btlen: max_frames, ctl: &ctl, |
2891 | info_out: &info); |
2892 | if (saved_count > 0) { |
2893 | #if __LP64__ |
2894 | #define STACKLR_WORDS STACKSHOT_KCTYPE_USER_STACKLR64 |
2895 | #else // __LP64__ |
2896 | #define STACKLR_WORDS STACKSHOT_KCTYPE_USER_STACKLR |
2897 | #endif // !__LP64__ |
2898 | mach_vm_address_t out_addr_array; |
2899 | kcd_exit_on_error(kcdata_get_memory_addr_for_array(kcd, |
2900 | STACKLR_WORDS, sizeof(uintptr_t), saved_count, |
2901 | &out_addr_array)); |
2902 | /* |
2903 | * Ensure the kcd_end_address (above) trick worked. |
2904 | */ |
2905 | assert(out_addr == out_addr_array); |
2906 | if (info.btui_info & BTI_64_BIT) { |
2907 | user_ths_ss_flags |= kUser64_p; |
2908 | } |
2909 | if ((info.btui_info & BTI_TRUNCATED) || |
2910 | (ctx.sbc_flags & kThreadTruncatedBT)) { |
2911 | user_ths_ss_flags |= kThreadTruncatedBT; |
2912 | user_ths_ss_flags |= kThreadTruncUserBT; |
2913 | } |
2914 | user_ths_ss_flags |= ctx.sbc_flags; |
2915 | ctx.sbc_flags = 0; |
2916 | #if __LP64__ |
2917 | /* We only support async stacks on 64-bit kernels */ |
2918 | if (info.btui_async_frame_addr != 0) { |
2919 | uint32_t async_start_offset = info.btui_async_start_index; |
2920 | kcd_exit_on_error(kcdata_push_data(kcd, STACKSHOT_KCTYPE_USER_ASYNC_START_INDEX, |
2921 | sizeof(async_start_offset), &async_start_offset)); |
2922 | out_addr = (mach_vm_address_t)kcd_end_address(kcd); |
2923 | assert(out_addr <= max_addr); |
2924 | |
2925 | avail_frames = (max_addr - out_addr) / sizeof(uintptr_t); |
2926 | max_frames = MIN(avail_frames, MAX_FRAMES); |
2927 | if (max_frames == 0) { |
2928 | error = KERN_RESOURCE_SHORTAGE; |
2929 | goto error_exit; |
2930 | } |
2931 | ctl.btc_frame_addr = info.btui_async_frame_addr; |
2932 | ctl.btc_addr_offset = BTCTL_ASYNC_ADDR_OFFSET; |
2933 | info = BTUINFO_INIT; |
2934 | unsigned int async_count = backtrace_user(bt: (uintptr_t *)out_addr, btlen: max_frames, ctl: &ctl, |
2935 | info_out: &info); |
2936 | if (async_count > 0) { |
2937 | mach_vm_address_t async_out_addr; |
2938 | kcd_exit_on_error(kcdata_get_memory_addr_for_array(kcd, |
2939 | STACKSHOT_KCTYPE_USER_ASYNC_STACKLR64, sizeof(uintptr_t), async_count, |
2940 | &async_out_addr)); |
2941 | /* |
2942 | * Ensure the kcd_end_address (above) trick worked. |
2943 | */ |
2944 | assert(out_addr == async_out_addr); |
2945 | if ((info.btui_info & BTI_TRUNCATED) || |
2946 | (ctx.sbc_flags & kThreadTruncatedBT)) { |
2947 | user_ths_ss_flags |= kThreadTruncatedBT; |
2948 | user_ths_ss_flags |= kThreadTruncUserAsyncBT; |
2949 | } |
2950 | user_ths_ss_flags |= ctx.sbc_flags; |
2951 | } |
2952 | } |
2953 | #endif /* _LP64 */ |
2954 | } |
2955 | if (user_ths_ss_flags != 0) { |
2956 | cur_thread_snap->ths_ss_flags |= user_ths_ss_flags; |
2957 | } |
2958 | } |
2959 | |
2960 | #if STACKSHOT_COLLECTS_LATENCY_INFO |
2961 | latency_info.user_stack_latency = mach_absolute_time() - latency_info.user_stack_latency; |
2962 | latency_info.kernel_stack_latency = mach_absolute_time(); |
2963 | #endif /* STACKSHOT_COLLECTS_LATENCY_INFO */ |
2964 | |
2965 | /* Call through to the machine specific trace routines |
2966 | * Frames are added past the snapshot header. |
2967 | */ |
2968 | if (thread->kernel_stack != 0) { |
2969 | uint32_t kern_ths_ss_flags = 0; |
2970 | out_addr = (mach_vm_address_t)kcd_end_address(kcd); |
2971 | #if defined(__LP64__) |
2972 | uint32_t stack_kcdata_type = STACKSHOT_KCTYPE_KERN_STACKLR64; |
2973 | extern int machine_trace_thread64(thread_t thread, char *tracepos, |
2974 | char *tracebound, int nframes, uint32_t *thread_trace_flags); |
2975 | saved_count = machine_trace_thread64( |
2976 | #else |
2977 | uint32_t stack_kcdata_type = STACKSHOT_KCTYPE_KERN_STACKLR; |
2978 | extern int machine_trace_thread(thread_t thread, char *tracepos, |
2979 | char *tracebound, int nframes, uint32_t *thread_trace_flags); |
2980 | saved_count = machine_trace_thread( |
2981 | #endif |
2982 | thread, tracepos: (char *)out_addr, tracebound: (char *)kcd_max_address(kcd), MAX_FRAMES, |
2983 | thread_trace_flags: &kern_ths_ss_flags); |
2984 | if (saved_count > 0) { |
2985 | int frame_size = sizeof(uintptr_t); |
2986 | #if defined(__LP64__) |
2987 | cur_thread_snap->ths_ss_flags |= kKernel64_p; |
2988 | #endif |
2989 | kcd_exit_on_error(kcdata_get_memory_addr_for_array(kcd, stack_kcdata_type, |
2990 | frame_size, saved_count / frame_size, &out_addr)); |
2991 | #if CONFIG_EXCLAVES |
2992 | if (thread->th_exclaves_state & TH_EXCLAVES_RPC) { |
2993 | struct thread_exclaves_info info = { 0 }; |
2994 | |
2995 | info.tei_flags = kExclaveRPCActive; |
2996 | if (thread->th_exclaves_state & TH_EXCLAVES_SCHEDULER_REQUEST) { |
2997 | info.tei_flags |= kExclaveSchedulerRequest; |
2998 | } |
2999 | if (thread->th_exclaves_state & TH_EXCLAVES_UPCALL) { |
3000 | info.tei_flags |= kExclaveUpcallActive; |
3001 | } |
3002 | info.tei_scid = thread->th_exclaves_scheduling_context_id; |
3003 | info.tei_thread_offset = exclaves_stack_offset((uintptr_t *)out_addr, saved_count / frame_size, false); |
3004 | |
3005 | kcd_exit_on_error(kcdata_push_data(kcd, STACKSHOT_KCTYPE_KERN_EXCLAVES_THREADINFO, sizeof(struct thread_exclaves_info), &info)); |
3006 | } |
3007 | #endif /* CONFIG_EXCLAVES */ |
3008 | } |
3009 | if (kern_ths_ss_flags & kThreadTruncatedBT) { |
3010 | kern_ths_ss_flags |= kThreadTruncKernBT; |
3011 | } |
3012 | if (kern_ths_ss_flags != 0) { |
3013 | cur_thread_snap->ths_ss_flags |= kern_ths_ss_flags; |
3014 | } |
3015 | } |
3016 | |
3017 | #if STACKSHOT_COLLECTS_LATENCY_INFO |
3018 | latency_info.kernel_stack_latency = mach_absolute_time() - latency_info.kernel_stack_latency; |
3019 | latency_info.misc_latency = mach_absolute_time(); |
3020 | #endif /* STACKSHOT_COLLECTS_LATENCY_INFO */ |
3021 | |
3022 | #if CONFIG_THREAD_GROUPS |
3023 | if (trace_flags & STACKSHOT_THREAD_GROUP) { |
3024 | uint64_t thread_group_id = thread->thread_group ? thread_group_get_id(tg: thread->thread_group) : 0; |
3025 | kcd_exit_on_error(kcdata_get_memory_addr(kcd, STACKSHOT_KCTYPE_THREAD_GROUP, sizeof(thread_group_id), &out_addr)); |
3026 | kdp_memcpy(dst: (void*)out_addr, src: &thread_group_id, len: sizeof(uint64_t)); |
3027 | } |
3028 | #endif /* CONFIG_THREAD_GROUPS */ |
3029 | |
3030 | if (collect_iostats) { |
3031 | kcd_exit_on_error(kcdata_record_thread_iostats(kcd, thread)); |
3032 | } |
3033 | |
3034 | #if CONFIG_PERVASIVE_CPI |
3035 | if (collect_instrs_cycles) { |
3036 | struct recount_usage usage = { 0 }; |
3037 | recount_sum_unsafe(&recount_thread_plan, thread->th_recount.rth_lifetime, |
3038 | &usage); |
3039 | |
3040 | kcd_exit_on_error(kcdata_get_memory_addr(kcd, STACKSHOT_KCTYPE_INSTRS_CYCLES, sizeof(struct instrs_cycles_snapshot), &out_addr)); |
3041 | struct instrs_cycles_snapshot *instrs_cycles = (struct instrs_cycles_snapshot *)out_addr; |
3042 | instrs_cycles->ics_instructions = recount_usage_instructions(&usage); |
3043 | instrs_cycles->ics_cycles = recount_usage_cycles(&usage); |
3044 | } |
3045 | #endif /* CONFIG_PERVASIVE_CPI */ |
3046 | |
3047 | #if STACKSHOT_COLLECTS_LATENCY_INFO |
3048 | latency_info.misc_latency = mach_absolute_time() - latency_info.misc_latency; |
3049 | if (collect_latency_info) { |
3050 | kcd_exit_on_error(kcdata_push_data(kcd, STACKSHOT_KCTYPE_LATENCY_INFO_THREAD, sizeof(latency_info), &latency_info)); |
3051 | } |
3052 | #endif /* STACKSHOT_COLLECTS_LATENCY_INFO */ |
3053 | |
3054 | error_exit: |
3055 | return error; |
3056 | } |
3057 | |
3058 | static int |
3059 | kcdata_record_thread_delta_snapshot(struct thread_delta_snapshot_v3 * cur_thread_snap, thread_t thread, boolean_t thread_on_core) |
3060 | { |
3061 | cur_thread_snap->tds_thread_id = thread_tid(thread); |
3062 | if (IPC_VOUCHER_NULL != thread->ith_voucher) { |
3063 | cur_thread_snap->tds_voucher_identifier = VM_KERNEL_ADDRPERM(thread->ith_voucher); |
3064 | } else { |
3065 | cur_thread_snap->tds_voucher_identifier = 0; |
3066 | } |
3067 | |
3068 | cur_thread_snap->tds_ss_flags = 0; |
3069 | if (thread->effective_policy.thep_darwinbg) { |
3070 | cur_thread_snap->tds_ss_flags |= kThreadDarwinBG; |
3071 | } |
3072 | if (proc_get_effective_thread_policy(thread, TASK_POLICY_PASSIVE_IO)) { |
3073 | cur_thread_snap->tds_ss_flags |= kThreadIOPassive; |
3074 | } |
3075 | if (thread->suspend_count > 0) { |
3076 | cur_thread_snap->tds_ss_flags |= kThreadSuspended; |
3077 | } |
3078 | if (thread->options & TH_OPT_GLOBAL_FORCED_IDLE) { |
3079 | cur_thread_snap->tds_ss_flags |= kGlobalForcedIdle; |
3080 | } |
3081 | if (thread_on_core) { |
3082 | cur_thread_snap->tds_ss_flags |= kThreadOnCore; |
3083 | } |
3084 | if (stackshot_thread_is_idle_worker_unsafe(thread)) { |
3085 | cur_thread_snap->tds_ss_flags |= kThreadIdleWorker; |
3086 | } |
3087 | |
3088 | cur_thread_snap->tds_last_made_runnable_time = thread->last_made_runnable_time; |
3089 | cur_thread_snap->tds_state = thread->state; |
3090 | cur_thread_snap->tds_sched_flags = thread->sched_flags; |
3091 | cur_thread_snap->tds_base_priority = thread->base_pri; |
3092 | cur_thread_snap->tds_sched_priority = thread->sched_pri; |
3093 | cur_thread_snap->tds_eqos = thread->effective_policy.thep_qos; |
3094 | cur_thread_snap->tds_rqos = thread->requested_policy.thrp_qos; |
3095 | cur_thread_snap->tds_rqos_override = MAX(thread->requested_policy.thrp_qos_override, |
3096 | thread->requested_policy.thrp_qos_workq_override); |
3097 | cur_thread_snap->tds_io_tier = (uint8_t) proc_get_effective_thread_policy(thread, TASK_POLICY_IO); |
3098 | |
3099 | static_assert(sizeof(thread->effective_policy) == sizeof(uint64_t)); |
3100 | static_assert(sizeof(thread->requested_policy) == sizeof(uint64_t)); |
3101 | cur_thread_snap->tds_requested_policy = *(unaligned_u64 *) &thread->requested_policy; |
3102 | cur_thread_snap->tds_effective_policy = *(unaligned_u64 *) &thread->effective_policy; |
3103 | |
3104 | return 0; |
3105 | } |
3106 | |
3107 | /* |
3108 | * Why 12? 12 strikes a decent balance between allocating a large array on |
3109 | * the stack and having large kcdata item overheads for recording nonrunable |
3110 | * tasks. |
3111 | */ |
3112 | #define UNIQUEIDSPERFLUSH 12 |
3113 | |
3114 | struct saved_uniqueids { |
3115 | uint64_t ids[UNIQUEIDSPERFLUSH]; |
3116 | unsigned count; |
3117 | }; |
3118 | |
3119 | enum thread_classification { |
3120 | tc_full_snapshot, /* take a full snapshot */ |
3121 | tc_delta_snapshot, /* take a delta snapshot */ |
3122 | }; |
3123 | |
3124 | static enum thread_classification |
3125 | classify_thread(thread_t thread, boolean_t * thread_on_core_p, boolean_t collect_delta_stackshot) |
3126 | { |
3127 | processor_t last_processor = thread->last_processor; |
3128 | |
3129 | boolean_t thread_on_core = FALSE; |
3130 | if (last_processor != PROCESSOR_NULL) { |
3131 | /* Idle threads are always treated as on-core, since the processor state can change while they are running. */ |
3132 | thread_on_core = (thread == last_processor->idle_thread) || |
3133 | ((last_processor->state == PROCESSOR_SHUTDOWN || last_processor->state == PROCESSOR_RUNNING) && |
3134 | last_processor->active_thread == thread); |
3135 | } |
3136 | |
3137 | *thread_on_core_p = thread_on_core; |
3138 | |
3139 | /* Capture the full thread snapshot if this is not a delta stackshot or if the thread has run subsequent to the |
3140 | * previous full stackshot */ |
3141 | if (!collect_delta_stackshot || thread_on_core || (thread->last_run_time > stack_snapshot_delta_since_timestamp)) { |
3142 | return tc_full_snapshot; |
3143 | } else { |
3144 | return tc_delta_snapshot; |
3145 | } |
3146 | } |
3147 | |
3148 | struct stackshot_context { |
3149 | int pid; |
3150 | uint64_t trace_flags; |
3151 | bool include_drivers; |
3152 | }; |
3153 | |
3154 | static kern_return_t |
3155 | kdp_stackshot_record_task(struct stackshot_context *ctx, task_t task) |
3156 | { |
3157 | boolean_t active_kthreads_only_p = ((ctx->trace_flags & STACKSHOT_ACTIVE_KERNEL_THREADS_ONLY) != 0); |
3158 | boolean_t save_donating_pids_p = ((ctx->trace_flags & STACKSHOT_SAVE_IMP_DONATION_PIDS) != 0); |
3159 | boolean_t collect_delta_stackshot = ((ctx->trace_flags & STACKSHOT_COLLECT_DELTA_SNAPSHOT) != 0); |
3160 | boolean_t save_owner_info = ((ctx->trace_flags & STACKSHOT_THREAD_WAITINFO) != 0); |
3161 | |
3162 | kern_return_t error = KERN_SUCCESS; |
3163 | mach_vm_address_t out_addr = 0; |
3164 | int saved_count = 0; |
3165 | |
3166 | int task_pid = 0; |
3167 | uint64_t task_uniqueid = 0; |
3168 | int num_delta_thread_snapshots = 0; |
3169 | int num_waitinfo_threads = 0; |
3170 | int num_turnstileinfo_threads = 0; |
3171 | |
3172 | uint64_t task_start_abstime = 0; |
3173 | boolean_t have_map = FALSE, have_pmap = FALSE; |
3174 | boolean_t some_thread_ran = FALSE; |
3175 | unaligned_u64 task_snap_ss_flags = 0; |
3176 | #if STACKSHOT_COLLECTS_LATENCY_INFO |
3177 | struct stackshot_latency_task latency_info; |
3178 | latency_info.setup_latency = mach_absolute_time(); |
3179 | #endif /* STACKSHOT_COLLECTS_LATENCY_INFO */ |
3180 | |
3181 | #if SCHED_HYGIENE_DEBUG && CONFIG_PERVASIVE_CPI |
3182 | uint64_t task_begin_cpu_cycle_count = 0; |
3183 | if (!panic_stackshot) { |
3184 | task_begin_cpu_cycle_count = mt_cur_cpu_cycles(); |
3185 | } |
3186 | #endif |
3187 | |
3188 | if ((task == NULL) || !_stackshot_validate_kva(addr: (vm_offset_t)task, size: sizeof(struct task))) { |
3189 | error = KERN_FAILURE; |
3190 | goto error_exit; |
3191 | } |
3192 | |
3193 | void *bsd_info = get_bsdtask_info(task); |
3194 | boolean_t task_in_teardown = (bsd_info == NULL) || proc_in_teardown(p: bsd_info);// has P_LPEXIT set during proc_exit() |
3195 | boolean_t task_in_transition = task_in_teardown; // here we can add other types of transition. |
3196 | uint32_t container_type = (task_in_transition) ? STACKSHOT_KCCONTAINER_TRANSITIONING_TASK : STACKSHOT_KCCONTAINER_TASK; |
3197 | uint32_t transition_type = (task_in_teardown) ? kTaskIsTerminated : 0; |
3198 | |
3199 | if (task_in_transition) { |
3200 | collect_delta_stackshot = FALSE; |
3201 | } |
3202 | |
3203 | have_map = (task->map != NULL) && (_stackshot_validate_kva(addr: (vm_offset_t)(task->map), size: sizeof(struct _vm_map))); |
3204 | have_pmap = have_map && (task->map->pmap != NULL) && (_stackshot_validate_kva(addr: (vm_offset_t)(task->map->pmap), size: sizeof(struct pmap))); |
3205 | |
3206 | task_pid = pid_from_task(task); |
3207 | /* Is returning -1 ok for terminating task ok ??? */ |
3208 | task_uniqueid = get_task_uniqueid(task); |
3209 | |
3210 | if (!task->active || task_is_a_corpse(task) || task_is_a_corpse_fork(task)) { |
3211 | /* |
3212 | * Not interested in terminated tasks without threads. |
3213 | */ |
3214 | if (queue_empty(&task->threads) || task_pid == -1) { |
3215 | return KERN_SUCCESS; |
3216 | } |
3217 | } |
3218 | |
3219 | /* All PIDs should have the MSB unset */ |
3220 | assert((task_pid & (1ULL << 31)) == 0); |
3221 | |
3222 | #if STACKSHOT_COLLECTS_LATENCY_INFO |
3223 | latency_info.setup_latency = mach_absolute_time() - latency_info.setup_latency; |
3224 | latency_info.task_uniqueid = task_uniqueid; |
3225 | #endif /* STACKSHOT_COLLECTS_LATENCY_INFO */ |
3226 | |
3227 | /* Trace everything, unless a process was specified. Add in driver tasks if requested. */ |
3228 | if ((ctx->pid == -1) || (ctx->pid == task_pid) || (ctx->include_drivers && task_is_driver(task))) { |
3229 | /* add task snapshot marker */ |
3230 | kcd_exit_on_error(kcdata_add_container_marker(stackshot_kcdata_p, KCDATA_TYPE_CONTAINER_BEGIN, |
3231 | container_type, task_uniqueid)); |
3232 | |
3233 | if (collect_delta_stackshot) { |
3234 | /* |
3235 | * For delta stackshots we need to know if a thread from this task has run since the |
3236 | * previous timestamp to decide whether we're going to record a full snapshot and UUID info. |
3237 | */ |
3238 | thread_t thread = THREAD_NULL; |
3239 | queue_iterate(&task->threads, thread, thread_t, task_threads) |
3240 | { |
3241 | if ((thread == NULL) || !_stackshot_validate_kva(addr: (vm_offset_t)thread, size: sizeof(struct thread))) { |
3242 | error = KERN_FAILURE; |
3243 | goto error_exit; |
3244 | } |
3245 | |
3246 | if (active_kthreads_only_p && thread->kernel_stack == 0) { |
3247 | continue; |
3248 | } |
3249 | |
3250 | boolean_t thread_on_core; |
3251 | enum thread_classification thread_classification = classify_thread(thread, thread_on_core_p: &thread_on_core, collect_delta_stackshot); |
3252 | |
3253 | switch (thread_classification) { |
3254 | case tc_full_snapshot: |
3255 | some_thread_ran = TRUE; |
3256 | break; |
3257 | case tc_delta_snapshot: |
3258 | num_delta_thread_snapshots++; |
3259 | break; |
3260 | } |
3261 | } |
3262 | } |
3263 | |
3264 | if (collect_delta_stackshot) { |
3265 | proc_starttime_kdp(p: get_bsdtask_info(task), NULL, NULL, abstime: &task_start_abstime); |
3266 | } |
3267 | |
3268 | /* Next record any relevant UUID info and store the task snapshot */ |
3269 | if (task_in_transition || |
3270 | !collect_delta_stackshot || |
3271 | (task_start_abstime == 0) || |
3272 | (task_start_abstime > stack_snapshot_delta_since_timestamp) || |
3273 | some_thread_ran) { |
3274 | /* |
3275 | * Collect full task information in these scenarios: |
3276 | * |
3277 | * 1) a full stackshot or the task is in transition |
3278 | * 2) a delta stackshot where the task started after the previous full stackshot |
3279 | * 3) a delta stackshot where any thread from the task has run since the previous full stackshot |
3280 | * |
3281 | * because the task may have exec'ed, changing its name, architecture, load info, etc |
3282 | */ |
3283 | |
3284 | kcd_exit_on_error(kcdata_record_shared_cache_info(stackshot_kcdata_p, task, &task_snap_ss_flags)); |
3285 | kcd_exit_on_error(kcdata_record_uuid_info(stackshot_kcdata_p, task, ctx->trace_flags, have_pmap, &task_snap_ss_flags)); |
3286 | #if STACKSHOT_COLLECTS_LATENCY_INFO |
3287 | if (!task_in_transition) { |
3288 | kcd_exit_on_error(kcdata_record_task_snapshot(stackshot_kcdata_p, task, ctx->trace_flags, have_pmap, task_snap_ss_flags, &latency_info)); |
3289 | } else { |
3290 | kcd_exit_on_error(kcdata_record_transitioning_task_snapshot(stackshot_kcdata_p, task, task_snap_ss_flags, transition_type)); |
3291 | } |
3292 | #else |
3293 | if (!task_in_transition) { |
3294 | kcd_exit_on_error(kcdata_record_task_snapshot(stackshot_kcdata_p, task, ctx->trace_flags, have_pmap, task_snap_ss_flags)); |
3295 | } else { |
3296 | kcd_exit_on_error(kcdata_record_transitioning_task_snapshot(stackshot_kcdata_p, task, task_snap_ss_flags, transition_type)); |
3297 | } |
3298 | #endif /* STACKSHOT_COLLECTS_LATENCY_INFO */ |
3299 | } else { |
3300 | kcd_exit_on_error(kcdata_record_task_delta_snapshot(stackshot_kcdata_p, task, ctx->trace_flags, have_pmap, task_snap_ss_flags)); |
3301 | } |
3302 | |
3303 | #if STACKSHOT_COLLECTS_LATENCY_INFO |
3304 | latency_info.misc_latency = mach_absolute_time(); |
3305 | #endif /* STACKSHOT_COLLECTS_LATENCY_INFO */ |
3306 | |
3307 | struct thread_delta_snapshot_v3 * delta_snapshots = NULL; |
3308 | int current_delta_snapshot_index = 0; |
3309 | if (num_delta_thread_snapshots > 0) { |
3310 | kcd_exit_on_error(kcdata_get_memory_addr_for_array(stackshot_kcdata_p, STACKSHOT_KCTYPE_THREAD_DELTA_SNAPSHOT, |
3311 | sizeof(struct thread_delta_snapshot_v3), |
3312 | num_delta_thread_snapshots, &out_addr)); |
3313 | delta_snapshots = (struct thread_delta_snapshot_v3 *)out_addr; |
3314 | } |
3315 | |
3316 | #if STACKSHOT_COLLECTS_LATENCY_INFO |
3317 | latency_info.task_thread_count_loop_latency = mach_absolute_time(); |
3318 | #endif |
3319 | /* |
3320 | * Iterate over the task threads to save thread snapshots and determine |
3321 | * how much space we need for waitinfo and turnstile info |
3322 | */ |
3323 | thread_t thread = THREAD_NULL; |
3324 | queue_iterate(&task->threads, thread, thread_t, task_threads) |
3325 | { |
3326 | if ((thread == NULL) || !_stackshot_validate_kva(addr: (vm_offset_t)thread, size: sizeof(struct thread))) { |
3327 | error = KERN_FAILURE; |
3328 | goto error_exit; |
3329 | } |
3330 | |
3331 | uint64_t thread_uniqueid; |
3332 | if (active_kthreads_only_p && thread->kernel_stack == 0) { |
3333 | continue; |
3334 | } |
3335 | thread_uniqueid = thread_tid(thread); |
3336 | |
3337 | boolean_t thread_on_core; |
3338 | enum thread_classification thread_classification = classify_thread(thread, thread_on_core_p: &thread_on_core, collect_delta_stackshot); |
3339 | |
3340 | switch (thread_classification) { |
3341 | case tc_full_snapshot: |
3342 | /* add thread marker */ |
3343 | kcd_exit_on_error(kcdata_add_container_marker(stackshot_kcdata_p, KCDATA_TYPE_CONTAINER_BEGIN, |
3344 | STACKSHOT_KCCONTAINER_THREAD, thread_uniqueid)); |
3345 | |
3346 | /* thread snapshot can be large, including strings, avoid overflowing the stack. */ |
3347 | kcdata_compression_window_open(data: stackshot_kcdata_p); |
3348 | |
3349 | kcd_exit_on_error(kcdata_record_thread_snapshot(stackshot_kcdata_p, thread, task, ctx->trace_flags, have_pmap, thread_on_core)); |
3350 | |
3351 | kcd_exit_on_error(kcdata_compression_window_close(stackshot_kcdata_p)); |
3352 | |
3353 | /* mark end of thread snapshot data */ |
3354 | kcd_exit_on_error(kcdata_add_container_marker(stackshot_kcdata_p, KCDATA_TYPE_CONTAINER_END, |
3355 | STACKSHOT_KCCONTAINER_THREAD, thread_uniqueid)); |
3356 | break; |
3357 | case tc_delta_snapshot: |
3358 | kcd_exit_on_error(kcdata_record_thread_delta_snapshot(&delta_snapshots[current_delta_snapshot_index++], thread, thread_on_core)); |
3359 | break; |
3360 | } |
3361 | |
3362 | /* |
3363 | * We want to report owner information regardless of whether a thread |
3364 | * has changed since the last delta, whether it's a normal stackshot, |
3365 | * or whether it's nonrunnable |
3366 | */ |
3367 | if (save_owner_info) { |
3368 | if (stackshot_thread_has_valid_waitinfo(thread)) { |
3369 | num_waitinfo_threads++; |
3370 | } |
3371 | |
3372 | if (stackshot_thread_has_valid_turnstileinfo(thread)) { |
3373 | num_turnstileinfo_threads++; |
3374 | } |
3375 | } |
3376 | } |
3377 | #if STACKSHOT_COLLECTS_LATENCY_INFO |
3378 | latency_info.task_thread_count_loop_latency = mach_absolute_time() - latency_info.task_thread_count_loop_latency; |
3379 | #endif /* STACKSHOT_COLLECTS_LATENCY_INFO */ |
3380 | |
3381 | |
3382 | thread_waitinfo_v2_t *thread_waitinfo = NULL; |
3383 | thread_turnstileinfo_v2_t *thread_turnstileinfo = NULL; |
3384 | int current_waitinfo_index = 0; |
3385 | int current_turnstileinfo_index = 0; |
3386 | /* allocate space for the wait and turnstil info */ |
3387 | if (num_waitinfo_threads > 0 || num_turnstileinfo_threads > 0) { |
3388 | /* thread waitinfo and turnstileinfo can be quite large, avoid overflowing the stack */ |
3389 | kcdata_compression_window_open(data: stackshot_kcdata_p); |
3390 | |
3391 | if (num_waitinfo_threads > 0) { |
3392 | kcd_exit_on_error(kcdata_get_memory_addr_for_array(stackshot_kcdata_p, STACKSHOT_KCTYPE_THREAD_WAITINFO, |
3393 | sizeof(thread_waitinfo_v2_t), num_waitinfo_threads, &out_addr)); |
3394 | thread_waitinfo = (thread_waitinfo_v2_t *)out_addr; |
3395 | } |
3396 | |
3397 | if (num_turnstileinfo_threads > 0) { |
3398 | /* get space for the turnstile info */ |
3399 | kcd_exit_on_error(kcdata_get_memory_addr_for_array(stackshot_kcdata_p, STACKSHOT_KCTYPE_THREAD_TURNSTILEINFO, |
3400 | sizeof(thread_turnstileinfo_v2_t), num_turnstileinfo_threads, &out_addr)); |
3401 | thread_turnstileinfo = (thread_turnstileinfo_v2_t *)out_addr; |
3402 | } |
3403 | |
3404 | stackshot_plh_resetgen(); // so we know which portlabel_ids are referenced |
3405 | } |
3406 | |
3407 | #if STACKSHOT_COLLECTS_LATENCY_INFO |
3408 | latency_info.misc_latency = mach_absolute_time() - latency_info.misc_latency; |
3409 | latency_info.task_thread_data_loop_latency = mach_absolute_time(); |
3410 | #endif /* STACKSHOT_COLLECTS_LATENCY_INFO */ |
3411 | |
3412 | /* Iterate over the task's threads to save the wait and turnstile info */ |
3413 | queue_iterate(&task->threads, thread, thread_t, task_threads) |
3414 | { |
3415 | uint64_t thread_uniqueid; |
3416 | |
3417 | if (active_kthreads_only_p && thread->kernel_stack == 0) { |
3418 | continue; |
3419 | } |
3420 | |
3421 | thread_uniqueid = thread_tid(thread); |
3422 | |
3423 | /* If we want owner info, we should capture it regardless of its classification */ |
3424 | if (save_owner_info) { |
3425 | if (stackshot_thread_has_valid_waitinfo(thread)) { |
3426 | stackshot_thread_wait_owner_info( |
3427 | thread, |
3428 | waitinfo: &thread_waitinfo[current_waitinfo_index++]); |
3429 | } |
3430 | |
3431 | if (stackshot_thread_has_valid_turnstileinfo(thread)) { |
3432 | stackshot_thread_turnstileinfo( |
3433 | thread, |
3434 | tsinfo: &thread_turnstileinfo[current_turnstileinfo_index++]); |
3435 | } |
3436 | } |
3437 | } |
3438 | |
3439 | #if STACKSHOT_COLLECTS_LATENCY_INFO |
3440 | latency_info.task_thread_data_loop_latency = mach_absolute_time() - latency_info.task_thread_data_loop_latency; |
3441 | latency_info.misc2_latency = mach_absolute_time(); |
3442 | #endif /* STACKSHOT_COLLECTS_LATENCY_INFO */ |
3443 | |
3444 | #if DEBUG || DEVELOPMENT |
3445 | if (current_delta_snapshot_index != num_delta_thread_snapshots) { |
3446 | panic("delta thread snapshot count mismatch while capturing snapshots for task %p. expected %d, found %d" , task, |
3447 | num_delta_thread_snapshots, current_delta_snapshot_index); |
3448 | } |
3449 | if (current_waitinfo_index != num_waitinfo_threads) { |
3450 | panic("thread wait info count mismatch while capturing snapshots for task %p. expected %d, found %d" , task, |
3451 | num_waitinfo_threads, current_waitinfo_index); |
3452 | } |
3453 | #endif |
3454 | |
3455 | if (num_waitinfo_threads > 0 || num_turnstileinfo_threads > 0) { |
3456 | kcd_exit_on_error(kcdata_compression_window_close(stackshot_kcdata_p)); |
3457 | // now, record the portlabel hashes. |
3458 | kcd_exit_on_error(kdp_stackshot_plh_record()); |
3459 | } |
3460 | |
3461 | #if IMPORTANCE_INHERITANCE |
3462 | if (save_donating_pids_p) { |
3463 | kcd_exit_on_error( |
3464 | ((((mach_vm_address_t)kcd_end_address(stackshot_kcdata_p) + (TASK_IMP_WALK_LIMIT * sizeof(int32_t))) < |
3465 | (mach_vm_address_t)kcd_max_address(stackshot_kcdata_p)) |
3466 | ? KERN_SUCCESS |
3467 | : KERN_RESOURCE_SHORTAGE)); |
3468 | saved_count = task_importance_list_pids(task, TASK_IMP_LIST_DONATING_PIDS, |
3469 | pid_list: (void *)kcd_end_address(stackshot_kcdata_p), TASK_IMP_WALK_LIMIT); |
3470 | if (saved_count > 0) { |
3471 | /* Variable size array - better not have it on the stack. */ |
3472 | kcdata_compression_window_open(data: stackshot_kcdata_p); |
3473 | kcd_exit_on_error(kcdata_get_memory_addr_for_array(stackshot_kcdata_p, STACKSHOT_KCTYPE_DONATING_PIDS, |
3474 | sizeof(int32_t), saved_count, &out_addr)); |
3475 | kcd_exit_on_error(kcdata_compression_window_close(stackshot_kcdata_p)); |
3476 | } |
3477 | } |
3478 | #endif |
3479 | |
3480 | #if SCHED_HYGIENE_DEBUG && CONFIG_PERVASIVE_CPI |
3481 | if (!panic_stackshot) { |
3482 | kcd_exit_on_error(kcdata_add_uint64_with_description(stackshot_kcdata_p, (mt_cur_cpu_cycles() - task_begin_cpu_cycle_count), |
3483 | "task_cpu_cycle_count" )); |
3484 | } |
3485 | #endif |
3486 | |
3487 | #if STACKSHOT_COLLECTS_LATENCY_INFO |
3488 | latency_info.misc2_latency = mach_absolute_time() - latency_info.misc2_latency; |
3489 | if (collect_latency_info) { |
3490 | kcd_exit_on_error(kcdata_push_data(stackshot_kcdata_p, STACKSHOT_KCTYPE_LATENCY_INFO_TASK, sizeof(latency_info), &latency_info)); |
3491 | } |
3492 | #endif /* STACKSHOT_COLLECTS_LATENCY_INFO */ |
3493 | |
3494 | /* mark end of task snapshot data */ |
3495 | kcd_exit_on_error(kcdata_add_container_marker(stackshot_kcdata_p, KCDATA_TYPE_CONTAINER_END, container_type, |
3496 | task_uniqueid)); |
3497 | } |
3498 | |
3499 | |
3500 | error_exit: |
3501 | return error; |
3502 | } |
3503 | |
3504 | /* Record global shared regions */ |
3505 | static kern_return_t |
3506 | kdp_stackshot_shared_regions(uint64_t trace_flags) |
3507 | { |
3508 | kern_return_t error = KERN_SUCCESS; |
3509 | |
3510 | boolean_t collect_delta_stackshot = ((trace_flags & STACKSHOT_COLLECT_DELTA_SNAPSHOT) != 0); |
3511 | extern queue_head_t vm_shared_region_queue; |
3512 | vm_shared_region_t sr; |
3513 | |
3514 | extern queue_head_t vm_shared_region_queue; |
3515 | queue_iterate(&vm_shared_region_queue, |
3516 | sr, |
3517 | vm_shared_region_t, |
3518 | sr_q) { |
3519 | struct dyld_shared_cache_loadinfo_v2 scinfo = {0}; |
3520 | if (!_stackshot_validate_kva(addr: (vm_offset_t)sr, size: sizeof(*sr))) { |
3521 | break; |
3522 | } |
3523 | if (collect_delta_stackshot && sr->sr_install_time < stack_snapshot_delta_since_timestamp) { |
3524 | continue; // only include new shared caches in delta stackshots |
3525 | } |
3526 | uint32_t sharedCacheFlags = ((sr == primary_system_shared_region) ? kSharedCacheSystemPrimary : 0) | |
3527 | (sr->sr_driverkit ? kSharedCacheDriverkit : 0); |
3528 | kcd_exit_on_error(kcdata_add_container_marker(stackshot_kcdata_p, KCDATA_TYPE_CONTAINER_BEGIN, |
3529 | STACKSHOT_KCCONTAINER_SHAREDCACHE, sr->sr_id)); |
3530 | kdp_memcpy(dst: scinfo.sharedCacheUUID, src: sr->sr_uuid, len: sizeof(sr->sr_uuid)); |
3531 | scinfo.sharedCacheSlide = sr->sr_slide; |
3532 | scinfo.sharedCacheUnreliableSlidBaseAddress = sr->sr_base_address + sr->sr_first_mapping; |
3533 | scinfo.sharedCacheSlidFirstMapping = sr->sr_base_address + sr->sr_first_mapping; |
3534 | scinfo.sharedCacheID = sr->sr_id; |
3535 | scinfo.sharedCacheFlags = sharedCacheFlags; |
3536 | |
3537 | kcd_exit_on_error(kcdata_push_data(stackshot_kcdata_p, STACKSHOT_KCTYPE_SHAREDCACHE_INFO, |
3538 | sizeof(scinfo), &scinfo)); |
3539 | |
3540 | if ((trace_flags & STACKSHOT_COLLECT_SHAREDCACHE_LAYOUT) && sr->sr_images != NULL && |
3541 | _stackshot_validate_kva(addr: (vm_offset_t)sr->sr_images, size: sr->sr_images_count * sizeof(struct dyld_uuid_info_64))) { |
3542 | assert(sr->sr_images_count != 0); |
3543 | kcd_exit_on_error(kcdata_push_array(stackshot_kcdata_p, STACKSHOT_KCTYPE_SYS_SHAREDCACHE_LAYOUT, sizeof(struct dyld_uuid_info_64), sr->sr_images_count, sr->sr_images)); |
3544 | } |
3545 | kcd_exit_on_error(kcdata_add_container_marker(stackshot_kcdata_p, KCDATA_TYPE_CONTAINER_END, |
3546 | STACKSHOT_KCCONTAINER_SHAREDCACHE, sr->sr_id)); |
3547 | } |
3548 | |
3549 | /* |
3550 | * For backwards compatibility; this will eventually be removed. |
3551 | * Another copy of the Primary System Shared Region, for older readers. |
3552 | */ |
3553 | sr = primary_system_shared_region; |
3554 | /* record system level shared cache load info (if available) */ |
3555 | if (!collect_delta_stackshot && sr && |
3556 | _stackshot_validate_kva(addr: (vm_offset_t)sr, size: sizeof(struct vm_shared_region))) { |
3557 | struct dyld_shared_cache_loadinfo scinfo = {0}; |
3558 | |
3559 | /* |
3560 | * Historically, this data was in a dyld_uuid_info_64 structure, but the |
3561 | * naming of both the structure and fields for this use isn't great. The |
3562 | * dyld_shared_cache_loadinfo structure has better names, but the same |
3563 | * layout and content as the original. |
3564 | * |
3565 | * The imageSlidBaseAddress/sharedCacheUnreliableSlidBaseAddress field |
3566 | * has been used inconsistently for STACKSHOT_COLLECT_SHAREDCACHE_LAYOUT |
3567 | * entries; here, it's the slid base address, and we leave it that way |
3568 | * for backwards compatibility. |
3569 | */ |
3570 | kdp_memcpy(dst: scinfo.sharedCacheUUID, src: &sr->sr_uuid, len: sizeof(sr->sr_uuid)); |
3571 | scinfo.sharedCacheSlide = sr->sr_slide; |
3572 | scinfo.sharedCacheUnreliableSlidBaseAddress = sr->sr_slide + sr->sr_base_address; |
3573 | scinfo.sharedCacheSlidFirstMapping = sr->sr_base_address + sr->sr_first_mapping; |
3574 | |
3575 | kcd_exit_on_error(kcdata_push_data(stackshot_kcdata_p, STACKSHOT_KCTYPE_SHAREDCACHE_LOADINFO, |
3576 | sizeof(scinfo), &scinfo)); |
3577 | |
3578 | if (trace_flags & STACKSHOT_COLLECT_SHAREDCACHE_LAYOUT) { |
3579 | /* |
3580 | * Include a map of the system shared cache layout if it has been populated |
3581 | * (which is only when the system is using a custom shared cache). |
3582 | */ |
3583 | if (sr->sr_images && _stackshot_validate_kva(addr: (vm_offset_t)sr->sr_images, |
3584 | size: (sr->sr_images_count * sizeof(struct dyld_uuid_info_64)))) { |
3585 | assert(sr->sr_images_count != 0); |
3586 | kcd_exit_on_error(kcdata_push_array(stackshot_kcdata_p, STACKSHOT_KCTYPE_SYS_SHAREDCACHE_LAYOUT, sizeof(struct dyld_uuid_info_64), sr->sr_images_count, sr->sr_images)); |
3587 | } |
3588 | } |
3589 | } |
3590 | |
3591 | error_exit: |
3592 | return error; |
3593 | } |
3594 | |
3595 | static kern_return_t |
3596 | kdp_stackshot_kcdata_format(int pid, uint64_t * trace_flags_p) |
3597 | { |
3598 | kern_return_t error = KERN_SUCCESS; |
3599 | mach_vm_address_t out_addr = 0; |
3600 | uint64_t abs_time = 0, abs_time_end = 0; |
3601 | uint64_t system_state_flags = 0; |
3602 | task_t task = TASK_NULL; |
3603 | mach_timebase_info_data_t timebase = {0, 0}; |
3604 | uint32_t length_to_copy = 0, tmp32 = 0; |
3605 | abs_time = mach_absolute_time(); |
3606 | uint64_t last_task_start_time = 0; |
3607 | uint64_t trace_flags = 0; |
3608 | |
3609 | if (!trace_flags_p) { |
3610 | panic("Invalid kdp_stackshot_kcdata_format trace_flags_p value" ); |
3611 | } |
3612 | trace_flags = *trace_flags_p; |
3613 | |
3614 | #if STACKSHOT_COLLECTS_LATENCY_INFO |
3615 | struct stackshot_latency_collection latency_info; |
3616 | #endif |
3617 | |
3618 | #if SCHED_HYGIENE_DEBUG && CONFIG_PERVASIVE_CPI |
3619 | uint64_t stackshot_begin_cpu_cycle_count = 0; |
3620 | |
3621 | if (!panic_stackshot) { |
3622 | stackshot_begin_cpu_cycle_count = mt_cur_cpu_cycles(); |
3623 | } |
3624 | #endif |
3625 | |
3626 | #if STACKSHOT_COLLECTS_LATENCY_INFO |
3627 | collect_latency_info = trace_flags & STACKSHOT_DISABLE_LATENCY_INFO ? false : true; |
3628 | #endif |
3629 | /* process the flags */ |
3630 | bool collect_delta_stackshot = ((trace_flags & STACKSHOT_COLLECT_DELTA_SNAPSHOT) != 0); |
3631 | bool use_fault_path = ((trace_flags & (STACKSHOT_ENABLE_UUID_FAULTING | STACKSHOT_ENABLE_BT_FAULTING)) != 0); |
3632 | bool collect_exclaves = !disable_exclave_stackshot && ((trace_flags & STACKSHOT_SKIP_EXCLAVES) == 0); |
3633 | stack_enable_faulting = (trace_flags & (STACKSHOT_ENABLE_BT_FAULTING)); |
3634 | |
3635 | /* Currently we only support returning explicit KEXT load info on fileset kernels */ |
3636 | kc_format_t primary_kc_type = KCFormatUnknown; |
3637 | if (PE_get_primary_kc_format(type: &primary_kc_type) && (primary_kc_type != KCFormatFileset)) { |
3638 | trace_flags &= ~(STACKSHOT_SAVE_KEXT_LOADINFO); |
3639 | } |
3640 | |
3641 | struct stackshot_context ctx = {}; |
3642 | ctx.trace_flags = trace_flags; |
3643 | ctx.pid = pid; |
3644 | ctx.include_drivers = (pid == 0 && (trace_flags & STACKSHOT_INCLUDE_DRIVER_THREADS_IN_KERNEL) != 0); |
3645 | |
3646 | if (use_fault_path) { |
3647 | fault_stats.sfs_pages_faulted_in = 0; |
3648 | fault_stats.sfs_time_spent_faulting = 0; |
3649 | fault_stats.sfs_stopped_faulting = (uint8_t) FALSE; |
3650 | } |
3651 | |
3652 | if (sizeof(void *) == 8) { |
3653 | system_state_flags |= kKernel64_p; |
3654 | } |
3655 | |
3656 | if (stackshot_kcdata_p == NULL) { |
3657 | error = KERN_INVALID_ARGUMENT; |
3658 | goto error_exit; |
3659 | } |
3660 | |
3661 | _stackshot_validation_reset(); |
3662 | #if CONFIG_EXCLAVES |
3663 | if (!panic_stackshot && collect_exclaves) { |
3664 | kcd_exit_on_error(stackshot_setup_exclave_waitlist(stackshot_kcdata_p)); /* Allocate list of exclave threads */ |
3665 | } |
3666 | #else /* CONFIG_EXCLAVES */ |
3667 | #pragma unused(collect_exclaves) |
3668 | #endif /* CONFIG_EXCLAVES */ |
3669 | stackshot_plh_setup(data: stackshot_kcdata_p); /* set up port label hash */ |
3670 | |
3671 | |
3672 | /* setup mach_absolute_time and timebase info -- copy out in some cases and needed to convert since_timestamp to seconds for proc start time */ |
3673 | clock_timebase_info(info: &timebase); |
3674 | |
3675 | /* begin saving data into the buffer */ |
3676 | kcd_exit_on_error(kcdata_add_uint64_with_description(stackshot_kcdata_p, trace_flags, "stackshot_in_flags" )); |
3677 | kcd_exit_on_error(kcdata_add_uint32_with_description(stackshot_kcdata_p, (uint32_t)pid, "stackshot_in_pid" )); |
3678 | kcd_exit_on_error(kcdata_add_uint64_with_description(stackshot_kcdata_p, system_state_flags, "system_state_flags" )); |
3679 | if (trace_flags & STACKSHOT_PAGE_TABLES) { |
3680 | kcd_exit_on_error(kcdata_add_uint32_with_description(stackshot_kcdata_p, stack_snapshot_pagetable_mask, "stackshot_pagetable_mask" )); |
3681 | } |
3682 | if (stackshot_initial_estimate != 0) { |
3683 | kcd_exit_on_error(kcdata_add_uint32_with_description(stackshot_kcdata_p, stackshot_initial_estimate, "stackshot_size_estimate" )); |
3684 | kcd_exit_on_error(kcdata_add_uint32_with_description(stackshot_kcdata_p, stackshot_initial_estimate_adj, "stackshot_size_estimate_adj" )); |
3685 | } |
3686 | |
3687 | #if STACKSHOT_COLLECTS_LATENCY_INFO |
3688 | latency_info.setup_latency = mach_absolute_time(); |
3689 | #endif /* STACKSHOT_COLLECTS_LATENCY_INFO */ |
3690 | |
3691 | #if CONFIG_JETSAM |
3692 | tmp32 = memorystatus_get_pressure_status_kdp(); |
3693 | kcd_exit_on_error(kcdata_push_data(stackshot_kcdata_p, STACKSHOT_KCTYPE_JETSAM_LEVEL, sizeof(uint32_t), &tmp32)); |
3694 | #endif |
3695 | |
3696 | if (!collect_delta_stackshot) { |
3697 | tmp32 = THREAD_POLICY_INTERNAL_STRUCT_VERSION; |
3698 | kcd_exit_on_error(kcdata_push_data(stackshot_kcdata_p, STACKSHOT_KCTYPE_THREAD_POLICY_VERSION, sizeof(uint32_t), &tmp32)); |
3699 | |
3700 | tmp32 = PAGE_SIZE; |
3701 | kcd_exit_on_error(kcdata_push_data(stackshot_kcdata_p, STACKSHOT_KCTYPE_KERN_PAGE_SIZE, sizeof(uint32_t), &tmp32)); |
3702 | |
3703 | /* save boot-args and osversion string */ |
3704 | length_to_copy = MIN((uint32_t)(strlen(version) + 1), OSVERSIZE); |
3705 | kcd_exit_on_error(kcdata_push_data(stackshot_kcdata_p, STACKSHOT_KCTYPE_OSVERSION, length_to_copy, (const void *)version)); |
3706 | |
3707 | |
3708 | length_to_copy = MIN((uint32_t)(strlen(PE_boot_args()) + 1), BOOT_LINE_LENGTH); |
3709 | kcd_exit_on_error(kcdata_push_data(stackshot_kcdata_p, STACKSHOT_KCTYPE_BOOTARGS, length_to_copy, PE_boot_args())); |
3710 | |
3711 | kcd_exit_on_error(kcdata_push_data(stackshot_kcdata_p, KCDATA_TYPE_TIMEBASE, sizeof(timebase), &timebase)); |
3712 | } else { |
3713 | kcd_exit_on_error(kcdata_push_data(stackshot_kcdata_p, STACKSHOT_KCTYPE_DELTA_SINCE_TIMESTAMP, sizeof(uint64_t), &stack_snapshot_delta_since_timestamp)); |
3714 | } |
3715 | |
3716 | kcd_exit_on_error(kcdata_push_data(stackshot_kcdata_p, KCDATA_TYPE_MACH_ABSOLUTE_TIME, sizeof(uint64_t), &abs_time)); |
3717 | |
3718 | kcd_exit_on_error(kcdata_push_data(stackshot_kcdata_p, KCDATA_TYPE_USECS_SINCE_EPOCH, sizeof(uint64_t), &stackshot_microsecs)); |
3719 | |
3720 | kcd_exit_on_error(kdp_stackshot_shared_regions(trace_flags)); |
3721 | |
3722 | /* Add requested information first */ |
3723 | if (trace_flags & STACKSHOT_GET_GLOBAL_MEM_STATS) { |
3724 | struct mem_and_io_snapshot mais = {0}; |
3725 | kdp_mem_and_io_snapshot(memio_snap: &mais); |
3726 | kcd_exit_on_error(kcdata_push_data(stackshot_kcdata_p, STACKSHOT_KCTYPE_GLOBAL_MEM_STATS, sizeof(mais), &mais)); |
3727 | } |
3728 | |
3729 | #if CONFIG_THREAD_GROUPS |
3730 | struct thread_group_snapshot_v3 *thread_groups = NULL; |
3731 | int num_thread_groups = 0; |
3732 | |
3733 | #if SCHED_HYGIENE_DEBUG && CONFIG_PERVASIVE_CPI |
3734 | uint64_t thread_group_begin_cpu_cycle_count = 0; |
3735 | |
3736 | if (!panic_stackshot && (trace_flags & STACKSHOT_THREAD_GROUP)) { |
3737 | thread_group_begin_cpu_cycle_count = mt_cur_cpu_cycles(); |
3738 | } |
3739 | #endif |
3740 | |
3741 | /* Iterate over thread group names */ |
3742 | if (trace_flags & STACKSHOT_THREAD_GROUP) { |
3743 | /* Variable size array - better not have it on the stack. */ |
3744 | kcdata_compression_window_open(data: stackshot_kcdata_p); |
3745 | |
3746 | if (thread_group_iterate_stackshot(callout: stackshot_thread_group_count, arg: &num_thread_groups) != KERN_SUCCESS) { |
3747 | trace_flags &= ~(STACKSHOT_THREAD_GROUP); |
3748 | } |
3749 | |
3750 | if (num_thread_groups > 0) { |
3751 | kcd_exit_on_error(kcdata_get_memory_addr_for_array(stackshot_kcdata_p, STACKSHOT_KCTYPE_THREAD_GROUP_SNAPSHOT, sizeof(struct thread_group_snapshot_v3), num_thread_groups, &out_addr)); |
3752 | thread_groups = (struct thread_group_snapshot_v3 *)out_addr; |
3753 | } |
3754 | |
3755 | if (thread_group_iterate_stackshot(callout: stackshot_thread_group_snapshot, arg: thread_groups) != KERN_SUCCESS) { |
3756 | error = KERN_FAILURE; |
3757 | goto error_exit; |
3758 | } |
3759 | |
3760 | kcd_exit_on_error(kcdata_compression_window_close(stackshot_kcdata_p)); |
3761 | } |
3762 | |
3763 | #if SCHED_HYGIENE_DEBUG && CONFIG_PERVASIVE_CPI |
3764 | if (!panic_stackshot && (thread_group_begin_cpu_cycle_count != 0)) { |
3765 | kcd_exit_on_error(kcdata_add_uint64_with_description(stackshot_kcdata_p, (mt_cur_cpu_cycles() - thread_group_begin_cpu_cycle_count), |
3766 | "thread_groups_cpu_cycle_count" )); |
3767 | } |
3768 | #endif |
3769 | #else |
3770 | trace_flags &= ~(STACKSHOT_THREAD_GROUP); |
3771 | #endif /* CONFIG_THREAD_GROUPS */ |
3772 | |
3773 | |
3774 | #if STACKSHOT_COLLECTS_LATENCY_INFO |
3775 | latency_info.setup_latency = mach_absolute_time() - latency_info.setup_latency; |
3776 | latency_info.total_task_iteration_latency = mach_absolute_time(); |
3777 | #endif /* STACKSHOT_COLLECTS_LATENCY_INFO */ |
3778 | |
3779 | bool const process_scoped = (ctx.pid != -1) && !ctx.include_drivers; |
3780 | |
3781 | /* Iterate over tasks */ |
3782 | queue_iterate(&tasks, task, task_t, tasks) |
3783 | { |
3784 | if (collect_delta_stackshot) { |
3785 | uint64_t abstime; |
3786 | proc_starttime_kdp(p: get_bsdtask_info(task), NULL, NULL, abstime: &abstime); |
3787 | |
3788 | if (abstime > last_task_start_time) { |
3789 | last_task_start_time = abstime; |
3790 | } |
3791 | } |
3792 | |
3793 | if (process_scoped && (pid_from_task(task) != ctx.pid)) { |
3794 | continue; |
3795 | } |
3796 | |
3797 | error = kdp_stackshot_record_task(ctx: &ctx, task); |
3798 | if (error) { |
3799 | goto error_exit; |
3800 | } else if (process_scoped) { |
3801 | /* Only targeting one process, we're done now. */ |
3802 | break; |
3803 | } |
3804 | } |
3805 | |
3806 | |
3807 | #if STACKSHOT_COLLECTS_LATENCY_INFO |
3808 | latency_info.total_task_iteration_latency = mach_absolute_time() - latency_info.total_task_iteration_latency; |
3809 | #endif /* STACKSHOT_COLLECTS_LATENCY_INFO */ |
3810 | |
3811 | #if CONFIG_COALITIONS |
3812 | /* Don't collect jetsam coalition snapshots in delta stackshots - these don't change */ |
3813 | if (!collect_delta_stackshot || (last_task_start_time > stack_snapshot_delta_since_timestamp)) { |
3814 | int num_coalitions = 0; |
3815 | struct jetsam_coalition_snapshot *coalitions = NULL; |
3816 | |
3817 | #if SCHED_HYGIENE_DEBUG && CONFIG_PERVASIVE_CPI |
3818 | uint64_t coalition_begin_cpu_cycle_count = 0; |
3819 | |
3820 | if (!panic_stackshot && (trace_flags & STACKSHOT_SAVE_JETSAM_COALITIONS)) { |
3821 | coalition_begin_cpu_cycle_count = mt_cur_cpu_cycles(); |
3822 | } |
3823 | #endif /* SCHED_HYGIENE_DEBUG && CONFIG_PERVASIVE_CPI */ |
3824 | |
3825 | /* Iterate over coalitions */ |
3826 | if (trace_flags & STACKSHOT_SAVE_JETSAM_COALITIONS) { |
3827 | if (coalition_iterate_stackshot(callout: stackshot_coalition_jetsam_count, arg: &num_coalitions, COALITION_TYPE_JETSAM) != KERN_SUCCESS) { |
3828 | trace_flags &= ~(STACKSHOT_SAVE_JETSAM_COALITIONS); |
3829 | } |
3830 | } |
3831 | if (trace_flags & STACKSHOT_SAVE_JETSAM_COALITIONS) { |
3832 | if (num_coalitions > 0) { |
3833 | /* Variable size array - better not have it on the stack. */ |
3834 | kcdata_compression_window_open(data: stackshot_kcdata_p); |
3835 | kcd_exit_on_error(kcdata_get_memory_addr_for_array(stackshot_kcdata_p, STACKSHOT_KCTYPE_JETSAM_COALITION_SNAPSHOT, sizeof(struct jetsam_coalition_snapshot), num_coalitions, &out_addr)); |
3836 | coalitions = (struct jetsam_coalition_snapshot*)out_addr; |
3837 | |
3838 | if (coalition_iterate_stackshot(callout: stackshot_coalition_jetsam_snapshot, arg: coalitions, COALITION_TYPE_JETSAM) != KERN_SUCCESS) { |
3839 | error = KERN_FAILURE; |
3840 | goto error_exit; |
3841 | } |
3842 | |
3843 | kcd_exit_on_error(kcdata_compression_window_close(stackshot_kcdata_p)); |
3844 | } |
3845 | } |
3846 | #if SCHED_HYGIENE_DEBUG && CONFIG_PERVASIVE_CPI |
3847 | if (!panic_stackshot && (coalition_begin_cpu_cycle_count != 0)) { |
3848 | kcd_exit_on_error(kcdata_add_uint64_with_description(stackshot_kcdata_p, (mt_cur_cpu_cycles() - coalition_begin_cpu_cycle_count), |
3849 | "coalitions_cpu_cycle_count" )); |
3850 | } |
3851 | #endif /* SCHED_HYGIENE_DEBUG && CONFIG_PERVASIVE_CPI */ |
3852 | } |
3853 | #else |
3854 | trace_flags &= ~(STACKSHOT_SAVE_JETSAM_COALITIONS); |
3855 | #endif /* CONFIG_COALITIONS */ |
3856 | |
3857 | #if STACKSHOT_COLLECTS_LATENCY_INFO |
3858 | latency_info.total_terminated_task_iteration_latency = mach_absolute_time(); |
3859 | #endif /* STACKSHOT_COLLECTS_LATENCY_INFO */ |
3860 | |
3861 | /* |
3862 | * Iterate over the tasks in the terminated tasks list. We only inspect |
3863 | * tasks that have a valid bsd_info pointer. The check for task transition |
3864 | * like past P_LPEXIT during proc_exit() is now checked for inside the |
3865 | * kdp_stackshot_record_task(), and then a safer and minimal |
3866 | * transitioning_task_snapshot struct is collected via |
3867 | * kcdata_record_transitioning_task_snapshot() |
3868 | */ |
3869 | queue_iterate(&terminated_tasks, task, task_t, tasks) |
3870 | { |
3871 | error = kdp_stackshot_record_task(ctx: &ctx, task); |
3872 | if (error) { |
3873 | goto error_exit; |
3874 | } |
3875 | } |
3876 | #if DEVELOPMENT || DEBUG |
3877 | kcd_exit_on_error(kdp_stackshot_plh_stats()); |
3878 | #endif /* DEVELOPMENT || DEBUG */ |
3879 | |
3880 | #if STACKSHOT_COLLECTS_LATENCY_INFO |
3881 | latency_info.total_terminated_task_iteration_latency = mach_absolute_time() - latency_info.total_terminated_task_iteration_latency; |
3882 | #endif /* STACKSHOT_COLLECTS_LATENCY_INFO */ |
3883 | |
3884 | if (use_fault_path) { |
3885 | kcdata_push_data(data: stackshot_kcdata_p, STACKSHOT_KCTYPE_STACKSHOT_FAULT_STATS, |
3886 | size: sizeof(struct stackshot_fault_stats), input_data: &fault_stats); |
3887 | } |
3888 | |
3889 | #if STACKSHOT_COLLECTS_LATENCY_INFO |
3890 | if (collect_latency_info) { |
3891 | latency_info.latency_version = 1; |
3892 | kcd_exit_on_error(kcdata_push_data(stackshot_kcdata_p, STACKSHOT_KCTYPE_LATENCY_INFO, sizeof(latency_info), &latency_info)); |
3893 | } |
3894 | #endif /* STACKSHOT_COLLECTS_LATENCY_INFO */ |
3895 | |
3896 | /* update timestamp of the stackshot */ |
3897 | abs_time_end = mach_absolute_time(); |
3898 | struct stackshot_duration_v2 stackshot_duration = { |
3899 | .stackshot_duration = (abs_time_end - abs_time), |
3900 | .stackshot_duration_outer = 0, |
3901 | .stackshot_duration_prior = stackshot_duration_prior_abs, |
3902 | }; |
3903 | |
3904 | if ((trace_flags & STACKSHOT_DO_COMPRESS) == 0) { |
3905 | kcd_exit_on_error(kcdata_get_memory_addr(stackshot_kcdata_p, STACKSHOT_KCTYPE_STACKSHOT_DURATION, |
3906 | sizeof(struct stackshot_duration_v2), &out_addr)); |
3907 | struct stackshot_duration_v2 *duration_p = (void *) out_addr; |
3908 | kdp_memcpy(dst: duration_p, src: &stackshot_duration, len: sizeof(*duration_p)); |
3909 | stackshot_duration_outer = (unaligned_u64 *)&duration_p->stackshot_duration_outer; |
3910 | } else { |
3911 | kcd_exit_on_error(kcdata_push_data(stackshot_kcdata_p, STACKSHOT_KCTYPE_STACKSHOT_DURATION, sizeof(stackshot_duration), &stackshot_duration)); |
3912 | stackshot_duration_outer = NULL; |
3913 | } |
3914 | |
3915 | #if SCHED_HYGIENE_DEBUG && CONFIG_PERVASIVE_CPI |
3916 | if (!panic_stackshot) { |
3917 | kcd_exit_on_error(kcdata_add_uint64_with_description(stackshot_kcdata_p, (mt_cur_cpu_cycles() - stackshot_begin_cpu_cycle_count), |
3918 | "stackshot_total_cpu_cycle_cnt" )); |
3919 | } |
3920 | #endif |
3921 | |
3922 | #if CONFIG_EXCLAVES |
3923 | /* Avoid setting AST until as late as possible, in case the stackshot fails */ |
3924 | commit_exclaves_ast(); |
3925 | |
3926 | /* If this is the panic stackshot, check if Exclaves panic left its stackshot in the shared region */ |
3927 | if (panic_stackshot) { |
3928 | struct exclaves_panic_stackshot excl_ss; |
3929 | kdp_read_panic_exclaves_stackshot(&excl_ss); |
3930 | |
3931 | if (excl_ss.stackshot_buffer != NULL && excl_ss.stackshot_buffer_size != 0) { |
3932 | tb_error_t tberr = TB_ERROR_SUCCESS; |
3933 | exclaves_panic_ss_status = EXCLAVES_PANIC_STACKSHOT_FOUND; |
3934 | |
3935 | /* this block does not escape, so this is okay... */ |
3936 | kern_return_t *error_in_block = &error; |
3937 | kcdata_add_container_marker(stackshot_kcdata_p, KCDATA_TYPE_CONTAINER_BEGIN, |
3938 | STACKSHOT_KCCONTAINER_EXCLAVES, 0); |
3939 | tberr = stackshot_stackshotresult__unmarshal(excl_ss.stackshot_buffer, excl_ss.stackshot_buffer_size, ^(stackshot_stackshotresult_s result){ |
3940 | *error_in_block = stackshot_exclaves_process_stackshot(&result, stackshot_kcdata_p, true); |
3941 | }); |
3942 | kcdata_add_container_marker(stackshot_kcdata_p, KCDATA_TYPE_CONTAINER_END, |
3943 | STACKSHOT_KCCONTAINER_EXCLAVES, 0); |
3944 | if (tberr != TB_ERROR_SUCCESS) { |
3945 | exclaves_panic_ss_status = EXCLAVES_PANIC_STACKSHOT_DECODE_FAILED; |
3946 | } |
3947 | } else { |
3948 | exclaves_panic_ss_status = EXCLAVES_PANIC_STACKSHOT_NOT_FOUND; |
3949 | } |
3950 | |
3951 | /* check error from the block */ |
3952 | kcd_exit_on_error(error); |
3953 | } |
3954 | #endif |
3955 | |
3956 | *trace_flags_p = trace_flags; |
3957 | |
3958 | error_exit:; |
3959 | |
3960 | #if CONFIG_EXCLAVES |
3961 | if (error != KERN_SUCCESS && stackshot_exclave_inspect_ctids) { |
3962 | /* Clear inspection CTID list: no need to wait for these threads */ |
3963 | stackshot_exclave_inspect_ctid_count = 0; |
3964 | stackshot_exclave_inspect_ctid_capacity = 0; |
3965 | stackshot_exclave_inspect_ctids = NULL; |
3966 | } |
3967 | #endif |
3968 | |
3969 | #if SCHED_HYGIENE_DEBUG |
3970 | bool disable_interrupts_masked_check = kern_feature_override( |
3971 | KF_INTERRUPT_MASKED_DEBUG_STACKSHOT_OVRD) || |
3972 | (trace_flags & STACKSHOT_DO_COMPRESS) != 0; |
3973 | |
3974 | #if STACKSHOT_INTERRUPTS_MASKED_CHECK_DISABLED |
3975 | disable_interrupts_masked_check = true; |
3976 | #endif /* STACKSHOT_INTERRUPTS_MASKED_CHECK_DISABLED */ |
3977 | |
3978 | if (disable_interrupts_masked_check) { |
3979 | ml_spin_debug_clear_self(); |
3980 | } |
3981 | |
3982 | if (!panic_stackshot && interrupt_masked_debug_mode) { |
3983 | /* |
3984 | * Try to catch instances where stackshot takes too long BEFORE returning from |
3985 | * the debugger |
3986 | */ |
3987 | ml_handle_stackshot_interrupt_disabled_duration(current_thread()); |
3988 | } |
3989 | #endif /* SCHED_HYGIENE_DEBUG */ |
3990 | stackshot_plh_reset(); |
3991 | stack_enable_faulting = FALSE; |
3992 | |
3993 | return error; |
3994 | } |
3995 | |
3996 | static uint64_t |
3997 | proc_was_throttled_from_task(task_t task) |
3998 | { |
3999 | uint64_t was_throttled = 0; |
4000 | void *bsd_info = get_bsdtask_info(task); |
4001 | |
4002 | if (bsd_info) { |
4003 | was_throttled = proc_was_throttled(p: bsd_info); |
4004 | } |
4005 | |
4006 | return was_throttled; |
4007 | } |
4008 | |
4009 | static uint64_t |
4010 | proc_did_throttle_from_task(task_t task) |
4011 | { |
4012 | uint64_t did_throttle = 0; |
4013 | void *bsd_info = get_bsdtask_info(task); |
4014 | |
4015 | if (bsd_info) { |
4016 | did_throttle = proc_did_throttle(p: bsd_info); |
4017 | } |
4018 | |
4019 | return did_throttle; |
4020 | } |
4021 | |
4022 | static void |
4023 | kdp_mem_and_io_snapshot(struct mem_and_io_snapshot *memio_snap) |
4024 | { |
4025 | unsigned int pages_reclaimed; |
4026 | unsigned int pages_wanted; |
4027 | kern_return_t kErr; |
4028 | |
4029 | uint64_t compressions = 0; |
4030 | uint64_t decompressions = 0; |
4031 | |
4032 | compressions = counter_load(&vm_statistics_compressions); |
4033 | decompressions = counter_load(&vm_statistics_decompressions); |
4034 | |
4035 | memio_snap->snapshot_magic = STACKSHOT_MEM_AND_IO_SNAPSHOT_MAGIC; |
4036 | memio_snap->free_pages = vm_page_free_count; |
4037 | memio_snap->active_pages = vm_page_active_count; |
4038 | memio_snap->inactive_pages = vm_page_inactive_count; |
4039 | memio_snap->purgeable_pages = vm_page_purgeable_count; |
4040 | memio_snap->wired_pages = vm_page_wire_count; |
4041 | memio_snap->speculative_pages = vm_page_speculative_count; |
4042 | memio_snap->throttled_pages = vm_page_throttled_count; |
4043 | memio_snap->busy_buffer_count = count_busy_buffers(); |
4044 | memio_snap->filebacked_pages = vm_page_pageable_external_count; |
4045 | memio_snap->compressions = (uint32_t)compressions; |
4046 | memio_snap->decompressions = (uint32_t)decompressions; |
4047 | memio_snap->compressor_size = VM_PAGE_COMPRESSOR_COUNT; |
4048 | kErr = mach_vm_pressure_monitor(FALSE, VM_PRESSURE_TIME_WINDOW, pages_reclaimed_p: &pages_reclaimed, pages_wanted_p: &pages_wanted); |
4049 | |
4050 | if (!kErr) { |
4051 | memio_snap->pages_wanted = (uint32_t)pages_wanted; |
4052 | memio_snap->pages_reclaimed = (uint32_t)pages_reclaimed; |
4053 | memio_snap->pages_wanted_reclaimed_valid = 1; |
4054 | } else { |
4055 | memio_snap->pages_wanted = 0; |
4056 | memio_snap->pages_reclaimed = 0; |
4057 | memio_snap->pages_wanted_reclaimed_valid = 0; |
4058 | } |
4059 | } |
4060 | |
4061 | static vm_offset_t |
4062 | stackshot_find_phys(vm_map_t map, vm_offset_t target_addr, kdp_fault_flags_t fault_flags, uint32_t *kdp_fault_result_flags) |
4063 | { |
4064 | vm_offset_t result; |
4065 | struct kdp_fault_result fault_results = {0}; |
4066 | if (fault_stats.sfs_stopped_faulting) { |
4067 | fault_flags &= ~KDP_FAULT_FLAGS_ENABLE_FAULTING; |
4068 | } |
4069 | |
4070 | result = kdp_find_phys(map, target_addr, fault_flags, fault_results: &fault_results); |
4071 | |
4072 | if ((fault_results.flags & KDP_FAULT_RESULT_TRIED_FAULT) || (fault_results.flags & KDP_FAULT_RESULT_FAULTED_IN)) { |
4073 | fault_stats.sfs_time_spent_faulting += fault_results.time_spent_faulting; |
4074 | |
4075 | if ((fault_stats.sfs_time_spent_faulting >= fault_stats.sfs_system_max_fault_time) && !panic_stackshot) { |
4076 | fault_stats.sfs_stopped_faulting = (uint8_t) TRUE; |
4077 | } |
4078 | } |
4079 | |
4080 | if (fault_results.flags & KDP_FAULT_RESULT_FAULTED_IN) { |
4081 | fault_stats.sfs_pages_faulted_in++; |
4082 | } |
4083 | |
4084 | if (kdp_fault_result_flags) { |
4085 | *kdp_fault_result_flags = fault_results.flags; |
4086 | } |
4087 | |
4088 | return result; |
4089 | } |
4090 | |
4091 | /* |
4092 | * Wrappers around kdp_generic_copyin, kdp_generic_copyin_word, kdp_generic_copyin_string that use stackshot_find_phys |
4093 | * in order to: |
4094 | * 1. collect statistics on the number of pages faulted in |
4095 | * 2. stop faulting if the time spent faulting has exceeded the limit. |
4096 | */ |
4097 | static boolean_t |
4098 | stackshot_copyin(vm_map_t map, uint64_t uaddr, void *dest, size_t size, boolean_t try_fault, kdp_fault_result_flags_t *kdp_fault_result_flags) |
4099 | { |
4100 | kdp_fault_flags_t fault_flags = KDP_FAULT_FLAGS_NONE; |
4101 | if (try_fault) { |
4102 | fault_flags |= KDP_FAULT_FLAGS_ENABLE_FAULTING; |
4103 | } |
4104 | return kdp_generic_copyin(map, uaddr, dest, size, fault_flags, find_phys_fn: (find_phys_fn_t)stackshot_find_phys, context: kdp_fault_result_flags) == KERN_SUCCESS; |
4105 | } |
4106 | static boolean_t |
4107 | stackshot_copyin_word(task_t task, uint64_t addr, uint64_t *result, boolean_t try_fault, kdp_fault_result_flags_t *kdp_fault_result_flags) |
4108 | { |
4109 | kdp_fault_flags_t fault_flags = KDP_FAULT_FLAGS_NONE; |
4110 | if (try_fault) { |
4111 | fault_flags |= KDP_FAULT_FLAGS_ENABLE_FAULTING; |
4112 | } |
4113 | return kdp_generic_copyin_word(task, addr, result, fault_flags, find_phys_fn: (find_phys_fn_t)stackshot_find_phys, context: kdp_fault_result_flags) == KERN_SUCCESS; |
4114 | } |
4115 | static int |
4116 | stackshot_copyin_string(task_t task, uint64_t addr, char *buf, int buf_sz, boolean_t try_fault, kdp_fault_result_flags_t *kdp_fault_result_flags) |
4117 | { |
4118 | kdp_fault_flags_t fault_flags = KDP_FAULT_FLAGS_NONE; |
4119 | if (try_fault) { |
4120 | fault_flags |= KDP_FAULT_FLAGS_ENABLE_FAULTING; |
4121 | } |
4122 | return kdp_generic_copyin_string(task, addr, buf, buf_sz, fault_flags, find_phys_fn: (find_phys_fn_t)stackshot_find_phys, context: kdp_fault_result_flags); |
4123 | } |
4124 | |
4125 | kern_return_t |
4126 | do_stackshot(void *context) |
4127 | { |
4128 | #pragma unused(context) |
4129 | kdp_snapshot++; |
4130 | |
4131 | stackshot_out_flags = stack_snapshot_flags; |
4132 | |
4133 | stack_snapshot_ret = kdp_stackshot_kcdata_format(pid: stack_snapshot_pid, trace_flags_p: &stackshot_out_flags); |
4134 | |
4135 | kdp_snapshot--; |
4136 | return stack_snapshot_ret; |
4137 | } |
4138 | |
4139 | kern_return_t |
4140 | do_panic_stackshot(void *context); |
4141 | |
4142 | kern_return_t |
4143 | do_panic_stackshot(void *context) |
4144 | { |
4145 | kern_return_t ret = do_stackshot(context); |
4146 | kern_return_t error = finalize_kcdata(kcdata: stackshot_kcdata_p); |
4147 | |
4148 | // Return ret if it's already an error, error otherwise. Usually both |
4149 | // are KERN_SUCCESS. |
4150 | return (ret != KERN_SUCCESS) ? ret : error; |
4151 | } |
4152 | |
4153 | boolean_t |
4154 | stackshot_thread_is_idle_worker_unsafe(thread_t thread) |
4155 | { |
4156 | /* When the pthread kext puts a worker thread to sleep, it will |
4157 | * set kThreadWaitParkedWorkQueue in the block_hint of the thread |
4158 | * struct. See parkit() in kern/kern_support.c in libpthread. |
4159 | */ |
4160 | return (thread->state & TH_WAIT) && |
4161 | (thread->block_hint == kThreadWaitParkedWorkQueue); |
4162 | } |
4163 | |
4164 | #if CONFIG_COALITIONS |
4165 | static void |
4166 | stackshot_coalition_jetsam_count(void *arg, int i, coalition_t coal) |
4167 | { |
4168 | #pragma unused(i, coal) |
4169 | unsigned int *coalition_count = (unsigned int*)arg; |
4170 | (*coalition_count)++; |
4171 | } |
4172 | |
4173 | static void |
4174 | stackshot_coalition_jetsam_snapshot(void *arg, int i, coalition_t coal) |
4175 | { |
4176 | if (coalition_type(coal) != COALITION_TYPE_JETSAM) { |
4177 | return; |
4178 | } |
4179 | |
4180 | struct jetsam_coalition_snapshot *coalitions = (struct jetsam_coalition_snapshot*)arg; |
4181 | struct jetsam_coalition_snapshot *jcs = &coalitions[i]; |
4182 | task_t leader = TASK_NULL; |
4183 | jcs->jcs_id = coalition_id(coal); |
4184 | jcs->jcs_flags = 0; |
4185 | jcs->jcs_thread_group = 0; |
4186 | |
4187 | if (coalition_term_requested(coal)) { |
4188 | jcs->jcs_flags |= kCoalitionTermRequested; |
4189 | } |
4190 | if (coalition_is_terminated(coal)) { |
4191 | jcs->jcs_flags |= kCoalitionTerminated; |
4192 | } |
4193 | if (coalition_is_reaped(coal)) { |
4194 | jcs->jcs_flags |= kCoalitionReaped; |
4195 | } |
4196 | if (coalition_is_privileged(coal)) { |
4197 | jcs->jcs_flags |= kCoalitionPrivileged; |
4198 | } |
4199 | |
4200 | #if CONFIG_THREAD_GROUPS |
4201 | struct thread_group *thread_group = kdp_coalition_get_thread_group(coal); |
4202 | if (thread_group) { |
4203 | jcs->jcs_thread_group = thread_group_get_id(tg: thread_group); |
4204 | } |
4205 | #endif /* CONFIG_THREAD_GROUPS */ |
4206 | |
4207 | leader = kdp_coalition_get_leader(coal); |
4208 | if (leader) { |
4209 | jcs->jcs_leader_task_uniqueid = get_task_uniqueid(task: leader); |
4210 | } else { |
4211 | jcs->jcs_leader_task_uniqueid = 0; |
4212 | } |
4213 | } |
4214 | #endif /* CONFIG_COALITIONS */ |
4215 | |
4216 | #if CONFIG_THREAD_GROUPS |
4217 | static void |
4218 | stackshot_thread_group_count(void *arg, int i, struct thread_group *tg) |
4219 | { |
4220 | #pragma unused(i, tg) |
4221 | unsigned int *n = (unsigned int*)arg; |
4222 | (*n)++; |
4223 | } |
4224 | |
4225 | static void |
4226 | stackshot_thread_group_snapshot(void *arg, int i, struct thread_group *tg) |
4227 | { |
4228 | struct thread_group_snapshot_v3 *thread_groups = arg; |
4229 | struct thread_group_snapshot_v3 *tgs = &thread_groups[i]; |
4230 | const char *name = thread_group_get_name(tg); |
4231 | uint32_t flags = thread_group_get_flags(tg); |
4232 | tgs->tgs_id = thread_group_get_id(tg); |
4233 | static_assert(THREAD_GROUP_MAXNAME > sizeof(tgs->tgs_name)); |
4234 | kdp_memcpy(dst: tgs->tgs_name, src: name, len: sizeof(tgs->tgs_name)); |
4235 | kdp_memcpy(dst: tgs->tgs_name_cont, src: name + sizeof(tgs->tgs_name), |
4236 | len: sizeof(tgs->tgs_name_cont)); |
4237 | tgs->tgs_flags = |
4238 | ((flags & THREAD_GROUP_FLAGS_EFFICIENT) ? kThreadGroupEfficient : 0) | |
4239 | ((flags & THREAD_GROUP_FLAGS_APPLICATION) ? kThreadGroupApplication : 0) | |
4240 | ((flags & THREAD_GROUP_FLAGS_CRITICAL) ? kThreadGroupCritical : 0) | |
4241 | ((flags & THREAD_GROUP_FLAGS_BEST_EFFORT) ? kThreadGroupBestEffort : 0) | |
4242 | ((flags & THREAD_GROUP_FLAGS_UI_APP) ? kThreadGroupUIApplication : 0) | |
4243 | ((flags & THREAD_GROUP_FLAGS_MANAGED) ? kThreadGroupManaged : 0) | |
4244 | ((flags & THREAD_GROUP_FLAGS_STRICT_TIMERS) ? kThreadGroupStrictTimers : 0) | |
4245 | 0; |
4246 | } |
4247 | #endif /* CONFIG_THREAD_GROUPS */ |
4248 | |
4249 | /* Determine if a thread has waitinfo that stackshot can provide */ |
4250 | static int |
4251 | stackshot_thread_has_valid_waitinfo(thread_t thread) |
4252 | { |
4253 | if (!(thread->state & TH_WAIT)) { |
4254 | return 0; |
4255 | } |
4256 | |
4257 | switch (thread->block_hint) { |
4258 | // If set to None or is a parked work queue, ignore it |
4259 | case kThreadWaitParkedWorkQueue: |
4260 | case kThreadWaitNone: |
4261 | return 0; |
4262 | // There is a short window where the pthread kext removes a thread |
4263 | // from its ksyn wait queue before waking the thread up |
4264 | case kThreadWaitPThreadMutex: |
4265 | case kThreadWaitPThreadRWLockRead: |
4266 | case kThreadWaitPThreadRWLockWrite: |
4267 | case kThreadWaitPThreadCondVar: |
4268 | return kdp_pthread_get_thread_kwq(thread) != NULL; |
4269 | // All other cases are valid block hints if in a wait state |
4270 | default: |
4271 | return 1; |
4272 | } |
4273 | } |
4274 | |
4275 | /* Determine if a thread has turnstileinfo that stackshot can provide */ |
4276 | static int |
4277 | stackshot_thread_has_valid_turnstileinfo(thread_t thread) |
4278 | { |
4279 | struct turnstile *ts = thread_get_waiting_turnstile(thread); |
4280 | |
4281 | return stackshot_thread_has_valid_waitinfo(thread) && |
4282 | ts != TURNSTILE_NULL; |
4283 | } |
4284 | |
4285 | static void |
4286 | stackshot_thread_turnstileinfo(thread_t thread, thread_turnstileinfo_v2_t *tsinfo) |
4287 | { |
4288 | struct turnstile *ts; |
4289 | struct ipc_service_port_label *ispl = NULL; |
4290 | |
4291 | /* acquire turnstile information and store it in the stackshot */ |
4292 | ts = thread_get_waiting_turnstile(thread); |
4293 | tsinfo->waiter = thread_tid(thread); |
4294 | kdp_turnstile_fill_tsinfo(ts, tsinfo, isplp: &ispl); |
4295 | tsinfo->portlabel_id = stackshot_plh_lookup(ispl, |
4296 | type: (tsinfo->turnstile_flags & STACKSHOT_TURNSTILE_STATUS_SENDPORT) ? STACKSHOT_PLH_LOOKUP_SEND : |
4297 | (tsinfo->turnstile_flags & STACKSHOT_TURNSTILE_STATUS_RECEIVEPORT) ? STACKSHOT_PLH_LOOKUP_RECEIVE : |
4298 | STACKSHOT_PLH_LOOKUP_UNKNOWN); |
4299 | } |
4300 | |
4301 | static void |
4302 | stackshot_thread_wait_owner_info(thread_t thread, thread_waitinfo_v2_t *waitinfo) |
4303 | { |
4304 | thread_waitinfo_t *waitinfo_v1 = (thread_waitinfo_t *)waitinfo; |
4305 | struct ipc_service_port_label *ispl = NULL; |
4306 | |
4307 | waitinfo->waiter = thread_tid(thread); |
4308 | waitinfo->wait_type = thread->block_hint; |
4309 | waitinfo->wait_flags = 0; |
4310 | |
4311 | switch (waitinfo->wait_type) { |
4312 | case kThreadWaitKernelMutex: |
4313 | kdp_lck_mtx_find_owner(waitq: thread->waitq.wq_q, event: thread->wait_event, waitinfo: waitinfo_v1); |
4314 | break; |
4315 | case kThreadWaitPortReceive: |
4316 | kdp_mqueue_recv_find_owner(waitq: thread->waitq.wq_q, event: thread->wait_event, waitinfo, isplp: &ispl); |
4317 | waitinfo->portlabel_id = stackshot_plh_lookup(ispl, type: STACKSHOT_PLH_LOOKUP_RECEIVE); |
4318 | break; |
4319 | case kThreadWaitPortSend: |
4320 | kdp_mqueue_send_find_owner(waitq: thread->waitq.wq_q, event: thread->wait_event, waitinfo, isplp: &ispl); |
4321 | waitinfo->portlabel_id = stackshot_plh_lookup(ispl, type: STACKSHOT_PLH_LOOKUP_SEND); |
4322 | break; |
4323 | case kThreadWaitSemaphore: |
4324 | kdp_sema_find_owner(waitq: thread->waitq.wq_q, event: thread->wait_event, waitinfo: waitinfo_v1); |
4325 | break; |
4326 | case kThreadWaitUserLock: |
4327 | kdp_ulock_find_owner(waitq: thread->waitq.wq_q, event: thread->wait_event, waitinfo: waitinfo_v1); |
4328 | break; |
4329 | case kThreadWaitKernelRWLockRead: |
4330 | case kThreadWaitKernelRWLockWrite: |
4331 | case kThreadWaitKernelRWLockUpgrade: |
4332 | kdp_rwlck_find_owner(waitq: thread->waitq.wq_q, event: thread->wait_event, waitinfo: waitinfo_v1); |
4333 | break; |
4334 | case kThreadWaitPThreadMutex: |
4335 | case kThreadWaitPThreadRWLockRead: |
4336 | case kThreadWaitPThreadRWLockWrite: |
4337 | case kThreadWaitPThreadCondVar: |
4338 | kdp_pthread_find_owner(thread, waitinfo: waitinfo_v1); |
4339 | break; |
4340 | case kThreadWaitWorkloopSyncWait: |
4341 | kdp_workloop_sync_wait_find_owner(thread, event: thread->wait_event, waitinfo: waitinfo_v1); |
4342 | break; |
4343 | case kThreadWaitOnProcess: |
4344 | kdp_wait4_find_process(thread, event: thread->wait_event, waitinfo: waitinfo_v1); |
4345 | break; |
4346 | case kThreadWaitSleepWithInheritor: |
4347 | kdp_sleep_with_inheritor_find_owner(waitq: thread->waitq.wq_q, event: thread->wait_event, waitinfo: waitinfo_v1); |
4348 | break; |
4349 | case kThreadWaitEventlink: |
4350 | kdp_eventlink_find_owner(waitq: thread->waitq.wq_q, event: thread->wait_event, waitinfo: waitinfo_v1); |
4351 | break; |
4352 | case kThreadWaitCompressor: |
4353 | kdp_compressor_busy_find_owner(wait_event: thread->wait_event, waitinfo: waitinfo_v1); |
4354 | break; |
4355 | default: |
4356 | waitinfo->owner = 0; |
4357 | waitinfo->context = 0; |
4358 | break; |
4359 | } |
4360 | } |
4361 | |