| 1 | /* |
| 2 | * Copyright (c) 2023 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
| 5 | * |
| 6 | * This file contains Original Code and/or Modifications of Original Code |
| 7 | * as defined in and that are subject to the Apple Public Source License |
| 8 | * Version 2.0 (the 'License'). You may not use this file except in |
| 9 | * compliance with the License. The rights granted to you under the License |
| 10 | * may not be used to create, or enable the creation or redistribution of, |
| 11 | * unlawful or unlicensed copies of an Apple operating system, or to |
| 12 | * circumvent, violate, or enable the circumvention or violation of, any |
| 13 | * terms of an Apple operating system software license agreement. |
| 14 | * |
| 15 | * Please obtain a copy of the License at |
| 16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
| 17 | * |
| 18 | * The Original Code and all software distributed under the License are |
| 19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| 23 | * Please see the License for the specific language governing rights and |
| 24 | * limitations under the License. |
| 25 | * |
| 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
| 27 | */ |
| 28 | |
| 29 | #include <stdint.h> |
| 30 | #include <mach/exclaves.h> |
| 31 | #include <mach/kern_return.h> |
| 32 | |
| 33 | #include "exclaves_boot.h" |
| 34 | #include "exclaves_resource.h" |
| 35 | #include "exclaves_sensor.h" |
| 36 | |
| 37 | #if CONFIG_EXCLAVES |
| 38 | |
| 39 | #include <kern/locks.h> |
| 40 | #include <kern/thread_call.h> |
| 41 | |
| 42 | #include "kern/exclaves.tightbeam.h" |
| 43 | |
| 44 | /* -------------------------------------------------------------------------- */ |
| 45 | #pragma mark EIC |
| 46 | |
| 47 | #define EXCLAVES_EIC "com.apple.service.ExclaveIndicatorController" |
| 48 | |
| 49 | /* Default to 120Hz */ |
| 50 | static uint64_t exclaves_display_healthcheck_rate_hz = |
| 51 | EXCLAVEINDICATORCONTROLLER_REQUESTEDREFRESHRATE_HZ_120; |
| 52 | |
| 53 | static exclaveindicatorcontroller_sensorrequest_s eic_client; |
| 54 | |
| 55 | static inline __unused exclaveindicatorcontroller_sensortype_s |
| 56 | sensor_type_to_eic_sensortype(exclaves_sensor_type_t type) |
| 57 | { |
| 58 | assert3u(type, >, 0); |
| 59 | assert3u(type, <=, EXCLAVES_SENSOR_MAX); |
| 60 | |
| 61 | switch (type) { |
| 62 | case EXCLAVES_SENSOR_CAM: |
| 63 | return EXCLAVEINDICATORCONTROLLER_SENSORTYPE_SENSOR_CAM; |
| 64 | case EXCLAVES_SENSOR_MIC: |
| 65 | return EXCLAVEINDICATORCONTROLLER_SENSORTYPE_SENSOR_MIC; |
| 66 | case EXCLAVES_SENSOR_CAM_ALT_FACEID: |
| 67 | return EXCLAVEINDICATORCONTROLLER_SENSORTYPE_SENSOR_CAM_ALT_FACEID; |
| 68 | default: |
| 69 | panic("unknown sensor type" ); |
| 70 | } |
| 71 | } |
| 72 | |
| 73 | static inline exclaves_sensor_status_t |
| 74 | eic_sensorstatus_to_sensor_status(exclaveindicatorcontroller_sensorstatusresponse_s status) |
| 75 | { |
| 76 | assert3u(status, >, 0); |
| 77 | assert3u(status, <=, EXCLAVEINDICATORCONTROLLER_SENSORSTATUSRESPONSE_SENSOR_CONTROL); |
| 78 | |
| 79 | switch (status) { |
| 80 | case EXCLAVEINDICATORCONTROLLER_SENSORSTATUSRESPONSE_SENSOR_ALLOWED: |
| 81 | return EXCLAVES_SENSOR_STATUS_ALLOWED; |
| 82 | case EXCLAVEINDICATORCONTROLLER_SENSORSTATUSRESPONSE_SENSOR_DENIED: |
| 83 | return EXCLAVES_SENSOR_STATUS_DENIED; |
| 84 | case EXCLAVEINDICATORCONTROLLER_SENSORSTATUSRESPONSE_SENSOR_CONTROL: |
| 85 | return EXCLAVES_SENSOR_STATUS_CONTROL; |
| 86 | default: |
| 87 | panic("unknown sensor status" ); |
| 88 | } |
| 89 | } |
| 90 | |
| 91 | static kern_return_t |
| 92 | exclaves_eic_init(void) |
| 93 | { |
| 94 | exclaves_id_t eic_id = exclaves_service_lookup(EXCLAVES_DOMAIN_KERNEL, |
| 95 | EXCLAVES_EIC); |
| 96 | if (eic_id == UINT64_C(~0)) { |
| 97 | return KERN_FAILURE; |
| 98 | } |
| 99 | |
| 100 | tb_endpoint_t ep = tb_endpoint_create_with_value( |
| 101 | TB_TRANSPORT_TYPE_XNU, eic_id, TB_ENDPOINT_OPTIONS_NONE); |
| 102 | |
| 103 | tb_error_t ret = |
| 104 | exclaveindicatorcontroller_sensorrequest__init(&eic_client, ep); |
| 105 | |
| 106 | return ret == TB_ERROR_SUCCESS ? KERN_SUCCESS : KERN_FAILURE; |
| 107 | } |
| 108 | |
| 109 | static kern_return_t |
| 110 | exclaves_eic_display_healthcheck_rate(uint64_t ns) |
| 111 | { |
| 112 | exclaveindicatorcontroller_requestedrefreshrate_s rate; |
| 113 | |
| 114 | /* Convert time to frequency and round up to nearest supported value. */ |
| 115 | switch (NSEC_PER_SEC / ns) { |
| 116 | case 0 ... 30: |
| 117 | exclaves_display_healthcheck_rate_hz = 30; |
| 118 | rate = EXCLAVEINDICATORCONTROLLER_REQUESTEDREFRESHRATE_HZ_30; |
| 119 | break; |
| 120 | case 31 ... 60: |
| 121 | exclaves_display_healthcheck_rate_hz = 60; |
| 122 | rate = EXCLAVEINDICATORCONTROLLER_REQUESTEDREFRESHRATE_HZ_60; |
| 123 | break; |
| 124 | default: |
| 125 | exclaves_display_healthcheck_rate_hz = 120; |
| 126 | rate = EXCLAVEINDICATORCONTROLLER_REQUESTEDREFRESHRATE_HZ_120; |
| 127 | break; |
| 128 | } |
| 129 | |
| 130 | tb_error_t ret = exclaveindicatorcontroller_sensorrequest_requestdisplayhealthcheckrate( |
| 131 | &eic_client, rate, ^(__unused exclaveindicatorcontroller_requestresponse_s result) {}); |
| 132 | |
| 133 | return ret == TB_ERROR_SUCCESS ? KERN_SUCCESS : KERN_FAILURE; |
| 134 | } |
| 135 | |
| 136 | static kern_return_t |
| 137 | exclaves_eic_sensor_start(exclaves_sensor_type_t __unused sensor_type, |
| 138 | __assert_only uint64_t flags, exclaves_sensor_status_t *status) |
| 139 | { |
| 140 | assert3p(status, !=, NULL); |
| 141 | assert3u(flags, ==, 0); |
| 142 | |
| 143 | *status = EXCLAVES_SENSOR_STATUS_ALLOWED; |
| 144 | return KERN_SUCCESS; |
| 145 | } |
| 146 | |
| 147 | static kern_return_t |
| 148 | exclaves_eic_sensor_stop(exclaves_sensor_type_t __unused sensor_type) |
| 149 | { |
| 150 | return KERN_SUCCESS; |
| 151 | } |
| 152 | |
| 153 | static kern_return_t |
| 154 | exclaves_eic_sensor_status(exclaves_sensor_type_t __unused sensor_type, |
| 155 | __assert_only uint64_t flags, exclaves_sensor_status_t *status) |
| 156 | { |
| 157 | assert3p(status, !=, NULL); |
| 158 | assert3u(flags, ==, 0); |
| 159 | |
| 160 | *status = EXCLAVES_SENSOR_STATUS_ALLOWED; |
| 161 | return KERN_SUCCESS; |
| 162 | } |
| 163 | |
| 164 | /* |
| 165 | * It is intentional to keep "buffer" untyped here as it avoids xnu having to |
| 166 | * understand what those IDs are at all. They are simply passed through from the |
| 167 | * resource table as-is. |
| 168 | */ |
| 169 | static kern_return_t |
| 170 | exclaves_eic_sensor_copy(uint32_t buffer, uint64_t size1, uint64_t offset1, |
| 171 | uint64_t size2, uint64_t offset2, exclaves_sensor_status_t *status) |
| 172 | { |
| 173 | assert3u(size1, >, 0); |
| 174 | assert3p(status, !=, NULL); |
| 175 | |
| 176 | /* |
| 177 | * The plan in the near future is that this TB call will take both sets |
| 178 | * of size/offset. In the meantime call it twice here. |
| 179 | */ |
| 180 | tb_error_t ret = exclaveindicatorcontroller_sensorrequest_copy( |
| 181 | &eic_client, buffer, 0, offset1, size1, |
| 182 | ^(exclaveindicatorcontroller_sensorstatusresponse_s result) { |
| 183 | *status = eic_sensorstatus_to_sensor_status(result); |
| 184 | }); |
| 185 | |
| 186 | if (ret != TB_ERROR_SUCCESS) { |
| 187 | return ret; |
| 188 | } |
| 189 | |
| 190 | /* Return early if the status isn't EXCLAVES_SENSOR_STATUS_ALLOWED */ |
| 191 | if (*status != EXCLAVES_SENSOR_STATUS_ALLOWED || size2 == 0) { |
| 192 | return KERN_SUCCESS; |
| 193 | } |
| 194 | |
| 195 | ret = exclaveindicatorcontroller_sensorrequest_copy( |
| 196 | &eic_client, buffer, 0, offset2, size2, |
| 197 | ^(exclaveindicatorcontroller_sensorstatusresponse_s result) { |
| 198 | *status = eic_sensorstatus_to_sensor_status(result); |
| 199 | }); |
| 200 | |
| 201 | return ret == TB_ERROR_SUCCESS ? KERN_SUCCESS : KERN_FAILURE; |
| 202 | } |
| 203 | |
| 204 | /* -------------------------------------------------------------------------- */ |
| 205 | #pragma mark sensor |
| 206 | |
| 207 | static LCK_GRP_DECLARE(sensor_lck_grp, "exclaves_sensor" ); |
| 208 | |
| 209 | typedef struct { |
| 210 | /* |
| 211 | * Count of how many times sensor_start has been called on this sensor |
| 212 | * without a corresponding sensor_stop. |
| 213 | */ |
| 214 | uint64_t s_startcount; |
| 215 | |
| 216 | /* mutex to protect updates to the above */ |
| 217 | lck_mtx_t s_mutex; |
| 218 | |
| 219 | /* Keep track of whether this sensor was initialised or not. */ |
| 220 | bool s_initialised; |
| 221 | } exclaves_sensor_t; |
| 222 | |
| 223 | /** |
| 224 | * A reverse lookup table for the sensor resources, |
| 225 | * as the kpi uses sensor ids directly to access the same resources */ |
| 226 | static exclaves_sensor_t sensors[EXCLAVES_SENSOR_MAX]; |
| 227 | |
| 228 | /* |
| 229 | * A thread call used to periodically call "status" on any open sensors. |
| 230 | */ |
| 231 | static thread_call_t sensor_healthcheck_tcall = NULL; |
| 232 | |
| 233 | static inline bool |
| 234 | valid_sensor(exclaves_sensor_type_t sensor_type) |
| 235 | { |
| 236 | switch (sensor_type) { |
| 237 | case EXCLAVES_SENSOR_CAM: |
| 238 | case EXCLAVES_SENSOR_MIC: |
| 239 | case EXCLAVES_SENSOR_CAM_ALT_FACEID: |
| 240 | return true; |
| 241 | default: |
| 242 | return false; |
| 243 | } |
| 244 | } |
| 245 | |
| 246 | static inline exclaves_sensor_t * |
| 247 | sensor_type_to_sensor(exclaves_sensor_type_t sensor_type) |
| 248 | { |
| 249 | assert(valid_sensor(sensor_type)); |
| 250 | return &sensors[sensor_type - 1]; |
| 251 | } |
| 252 | |
| 253 | static inline exclaves_sensor_type_t |
| 254 | sensor_to_sensor_type(exclaves_sensor_t *sensor) |
| 255 | { |
| 256 | assert3p(sensor, <=, &sensors[EXCLAVES_SENSOR_MAX]); |
| 257 | assert3p(sensor, >=, &sensors[0]); |
| 258 | |
| 259 | return (exclaves_sensor_type_t)((sensor - &sensors[0]) + 1); |
| 260 | } |
| 261 | |
| 262 | /* |
| 263 | * Called from the threadcall to call into exclaves with a status command for |
| 264 | * every started sensor. Re-arms itself so it runs at a frequency set by the |
| 265 | * display healthcheck rate. Exits when there are no longer any started sensors. |
| 266 | */ |
| 267 | static void |
| 268 | exclaves_sensor_healthcheck(__unused void *param0, __unused void *param1) |
| 269 | { |
| 270 | bool reschedule = false; |
| 271 | |
| 272 | /* |
| 273 | * Calculate the next deadline up-front so the overhead of calling into |
| 274 | * exclaves doesn't add to the period. |
| 275 | */ |
| 276 | uint64_t deadline = 0; |
| 277 | uint64_t leeway = 0; |
| 278 | const uint32_t interval = |
| 279 | NSEC_PER_SEC / exclaves_display_healthcheck_rate_hz; |
| 280 | clock_interval_to_deadline(interval, 1, &deadline); |
| 281 | nanoseconds_to_absolutetime(interval / 2, &leeway); |
| 282 | |
| 283 | for (int i = 0; i < EXCLAVES_SENSOR_MAX; i++) { |
| 284 | exclaves_sensor_t *sensor = &sensors[i]; |
| 285 | |
| 286 | if (!sensor->s_initialised) { |
| 287 | continue; |
| 288 | } |
| 289 | |
| 290 | lck_mtx_lock(&sensor->s_mutex); |
| 291 | |
| 292 | exclaves_sensor_status_t status; |
| 293 | if (sensor->s_startcount != 0) { |
| 294 | (void) exclaves_sensor_status( |
| 295 | sensor_to_sensor_type(sensor), 0, &status); |
| 296 | reschedule = true; |
| 297 | } |
| 298 | |
| 299 | lck_mtx_unlock(&sensor->s_mutex); |
| 300 | } |
| 301 | |
| 302 | if (reschedule) { |
| 303 | thread_call_enter_delayed_with_leeway(sensor_healthcheck_tcall, |
| 304 | NULL, deadline, leeway, THREAD_CALL_DELAY_LEEWAY); |
| 305 | } |
| 306 | } |
| 307 | |
| 308 | static kern_return_t |
| 309 | exclaves_sensor_init(void) |
| 310 | { |
| 311 | kern_return_t kr = exclaves_eic_init(); |
| 312 | if (kr != KERN_SUCCESS) { |
| 313 | return kr; |
| 314 | } |
| 315 | |
| 316 | for (uint32_t i = 1; i <= EXCLAVES_SENSOR_MAX; i++) { |
| 317 | exclaves_sensor_t *sensor = sensor_type_to_sensor(i); |
| 318 | |
| 319 | lck_mtx_init(&sensor->s_mutex, &sensor_lck_grp, NULL); |
| 320 | |
| 321 | sensor->s_startcount = 0; |
| 322 | sensor->s_initialised = true; |
| 323 | } |
| 324 | |
| 325 | sensor_healthcheck_tcall = |
| 326 | thread_call_allocate_with_priority(exclaves_sensor_healthcheck, |
| 327 | NULL, THREAD_CALL_PRIORITY_KERNEL); |
| 328 | |
| 329 | return KERN_SUCCESS; |
| 330 | } |
| 331 | EXCLAVES_BOOT_TASK(exclaves_sensor_init, EXCLAVES_BOOT_RANK_ANY); |
| 332 | |
| 333 | kern_return_t |
| 334 | exclaves_sensor_start(exclaves_sensor_type_t sensor_type, uint64_t flags, |
| 335 | exclaves_sensor_status_t *status) |
| 336 | { |
| 337 | if (!valid_sensor(sensor_type)) { |
| 338 | return KERN_INVALID_ARGUMENT; |
| 339 | } |
| 340 | |
| 341 | exclaves_sensor_t *sensor = sensor_type_to_sensor(sensor_type); |
| 342 | if (!sensor->s_initialised) { |
| 343 | return KERN_FAILURE; |
| 344 | } |
| 345 | |
| 346 | lck_mtx_lock(&sensor->s_mutex); |
| 347 | kern_return_t kr; |
| 348 | |
| 349 | if (sensor->s_startcount == UINT64_MAX) { |
| 350 | lck_mtx_unlock(&sensor->s_mutex); |
| 351 | return KERN_INVALID_ARGUMENT; |
| 352 | } |
| 353 | |
| 354 | if (sensor->s_startcount > 0) { |
| 355 | kr = exclaves_eic_sensor_status(sensor_type, flags, status); |
| 356 | if (kr == KERN_SUCCESS) { |
| 357 | sensor->s_startcount += 1; |
| 358 | } |
| 359 | lck_mtx_unlock(&sensor->s_mutex); |
| 360 | return kr; |
| 361 | } |
| 362 | |
| 363 | // call start iff startcount is 0 |
| 364 | kr = exclaves_eic_sensor_start(sensor_type, flags, status); |
| 365 | if (kr != KERN_SUCCESS) { |
| 366 | lck_mtx_unlock(&sensor->s_mutex); |
| 367 | return kr; |
| 368 | } |
| 369 | |
| 370 | sensor->s_startcount += 1; |
| 371 | |
| 372 | lck_mtx_unlock(&sensor->s_mutex); |
| 373 | |
| 374 | /* Kick off the periodic status check. */ |
| 375 | (void)thread_call_enter(sensor_healthcheck_tcall); |
| 376 | |
| 377 | return KERN_SUCCESS; |
| 378 | } |
| 379 | |
| 380 | kern_return_t |
| 381 | exclaves_sensor_stop(exclaves_sensor_type_t sensor_type, uint64_t flags, |
| 382 | exclaves_sensor_status_t *status) |
| 383 | { |
| 384 | if (!valid_sensor(sensor_type)) { |
| 385 | return KERN_INVALID_ARGUMENT; |
| 386 | } |
| 387 | |
| 388 | exclaves_sensor_t *sensor = sensor_type_to_sensor(sensor_type); |
| 389 | if (!sensor->s_initialised) { |
| 390 | return KERN_FAILURE; |
| 391 | } |
| 392 | |
| 393 | kern_return_t kr; |
| 394 | |
| 395 | lck_mtx_lock(&sensor->s_mutex); |
| 396 | |
| 397 | if (sensor->s_startcount == 0) { |
| 398 | lck_mtx_unlock(&sensor->s_mutex); |
| 399 | return KERN_INVALID_ARGUMENT; |
| 400 | } |
| 401 | |
| 402 | if (sensor->s_startcount > 1) { |
| 403 | kr = exclaves_eic_sensor_status(sensor_type, flags, status); |
| 404 | if (kr == KERN_SUCCESS) { |
| 405 | sensor->s_startcount -= 1; |
| 406 | } |
| 407 | lck_mtx_unlock(&sensor->s_mutex); |
| 408 | return kr; |
| 409 | } |
| 410 | |
| 411 | // call stop iff startcount is going to go to 0 |
| 412 | kr = exclaves_eic_sensor_stop(sensor_type); |
| 413 | if (kr != KERN_SUCCESS) { |
| 414 | lck_mtx_unlock(&sensor->s_mutex); |
| 415 | return kr; |
| 416 | } |
| 417 | |
| 418 | sensor->s_startcount = 0; |
| 419 | kr = exclaves_eic_sensor_status(sensor_type, flags, status); |
| 420 | |
| 421 | lck_mtx_unlock(&sensor->s_mutex); |
| 422 | |
| 423 | return kr; |
| 424 | } |
| 425 | |
| 426 | kern_return_t |
| 427 | exclaves_sensor_status(exclaves_sensor_type_t sensor_type, uint64_t flags, |
| 428 | exclaves_sensor_status_t *status) |
| 429 | { |
| 430 | if (!valid_sensor(sensor_type)) { |
| 431 | return KERN_INVALID_ARGUMENT; |
| 432 | } |
| 433 | |
| 434 | exclaves_sensor_t *sensor = sensor_type_to_sensor(sensor_type); |
| 435 | if (!sensor->s_initialised) { |
| 436 | return KERN_FAILURE; |
| 437 | } |
| 438 | |
| 439 | return exclaves_eic_sensor_status(sensor_type, flags, status); |
| 440 | } |
| 441 | |
| 442 | kern_return_t |
| 443 | exclaves_display_healthcheck_rate(uint64_t ns) |
| 444 | { |
| 445 | /* |
| 446 | * Make sure that the initialisation has taken place before calling into |
| 447 | * the EIC. Any sensor is sufficient. |
| 448 | */ |
| 449 | exclaves_sensor_t *sensor = sensor_type_to_sensor(EXCLAVES_SENSOR_CAM); |
| 450 | if (!sensor->s_initialised) { |
| 451 | return KERN_FAILURE; |
| 452 | } |
| 453 | |
| 454 | return exclaves_eic_display_healthcheck_rate(ns); |
| 455 | } |
| 456 | |
| 457 | kern_return_t |
| 458 | exclaves_sensor_copy(uint32_t buffer, uint64_t size1, uint64_t offset1, |
| 459 | uint64_t size2, uint64_t offset2, exclaves_sensor_status_t *status) |
| 460 | { |
| 461 | /* |
| 462 | * Make sure that the initialisation has taken place before calling into |
| 463 | * the EIC. Any sensor is sufficient. |
| 464 | */ |
| 465 | exclaves_sensor_t *sensor = sensor_type_to_sensor(EXCLAVES_SENSOR_CAM); |
| 466 | if (!sensor->s_initialised) { |
| 467 | return KERN_FAILURE; |
| 468 | } |
| 469 | |
| 470 | |
| 471 | return exclaves_eic_sensor_copy(buffer, size1, offset1, size2, offset2, |
| 472 | status); |
| 473 | } |
| 474 | |
| 475 | #else /* CONFIG_EXCLAVES */ |
| 476 | |
| 477 | kern_return_t |
| 478 | exclaves_display_healthcheck_rate(__unused uint64_t ns) |
| 479 | { |
| 480 | return KERN_NOT_SUPPORTED; |
| 481 | } |
| 482 | |
| 483 | #endif /* CONFIG_EXCLAVES */ |
| 484 | |