| 1 | /* |
| 2 | * Copyright (c) 2000-2019 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
| 5 | * |
| 6 | * This file contains Original Code and/or Modifications of Original Code |
| 7 | * as defined in and that are subject to the Apple Public Source License |
| 8 | * Version 2.0 (the 'License'). You may not use this file except in |
| 9 | * compliance with the License. The rights granted to you under the License |
| 10 | * may not be used to create, or enable the creation or redistribution of, |
| 11 | * unlawful or unlicensed copies of an Apple operating system, or to |
| 12 | * circumvent, violate, or enable the circumvention or violation of, any |
| 13 | * terms of an Apple operating system software license agreement. |
| 14 | * |
| 15 | * Please obtain a copy of the License at |
| 16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
| 17 | * |
| 18 | * The Original Code and all software distributed under the License are |
| 19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| 23 | * Please see the License for the specific language governing rights and |
| 24 | * limitations under the License. |
| 25 | * |
| 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
| 27 | */ |
| 28 | /* |
| 29 | * @OSF_COPYRIGHT@ |
| 30 | */ |
| 31 | /* |
| 32 | */ |
| 33 | /*- |
| 34 | * Copyright (c) 1982, 1986, 1993 |
| 35 | * The Regents of the University of California. All rights reserved. |
| 36 | * |
| 37 | * Redistribution and use in source and binary forms, with or without |
| 38 | * modification, are permitted provided that the following conditions |
| 39 | * are met: |
| 40 | * 1. Redistributions of source code must retain the above copyright |
| 41 | * notice, this list of conditions and the following disclaimer. |
| 42 | * 2. Redistributions in binary form must reproduce the above copyright |
| 43 | * notice, this list of conditions and the following disclaimer in the |
| 44 | * documentation and/or other materials provided with the distribution. |
| 45 | * 4. Neither the name of the University nor the names of its contributors |
| 46 | * may be used to endorse or promote products derived from this software |
| 47 | * without specific prior written permission. |
| 48 | * |
| 49 | * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND |
| 50 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 51 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 52 | * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE |
| 53 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| 54 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| 55 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| 56 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| 57 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| 58 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| 59 | * SUCH DAMAGE. |
| 60 | * |
| 61 | * @(#)time.h 8.5 (Berkeley) 5/4/95 |
| 62 | * $FreeBSD$ |
| 63 | */ |
| 64 | |
| 65 | #include <mach/mach_types.h> |
| 66 | |
| 67 | #include <kern/spl.h> |
| 68 | #include <kern/sched_prim.h> |
| 69 | #include <kern/thread.h> |
| 70 | #include <kern/clock.h> |
| 71 | #include <kern/host_notify.h> |
| 72 | #include <kern/thread_call.h> |
| 73 | #include <libkern/OSAtomic.h> |
| 74 | |
| 75 | #include <IOKit/IOPlatformExpert.h> |
| 76 | |
| 77 | #include <machine/commpage.h> |
| 78 | #include <machine/config.h> |
| 79 | #include <machine/machine_routines.h> |
| 80 | |
| 81 | #include <mach/mach_traps.h> |
| 82 | #include <mach/mach_time.h> |
| 83 | |
| 84 | #include <sys/kdebug.h> |
| 85 | #include <sys/timex.h> |
| 86 | #include <kern/arithmetic_128.h> |
| 87 | #include <os/log.h> |
| 88 | |
| 89 | #if HIBERNATION && HAS_CONTINUOUS_HWCLOCK |
| 90 | // On ARM64, the hwclock keeps ticking across a normal S2R so we use it to reset the |
| 91 | // system clock after a normal wake. However, on hibernation we cut power to the hwclock, |
| 92 | // so we have to add an offset to the hwclock to compute continuous_time after hibernate resume. |
| 93 | uint64_t hwclock_conttime_offset = 0; |
| 94 | #endif /* HIBERNATION && HAS_CONTINUOUS_HWCLOCK */ |
| 95 | |
| 96 | #if HIBERNATION_USES_LEGACY_CLOCK || !HAS_CONTINUOUS_HWCLOCK |
| 97 | #define ENABLE_LEGACY_CLOCK_CODE 1 |
| 98 | #endif /* HIBERNATION_USES_LEGACY_CLOCK || !HAS_CONTINUOUS_HWCLOCK */ |
| 99 | |
| 100 | #if HIBERNATION_USES_LEGACY_CLOCK |
| 101 | #include <IOKit/IOHibernatePrivate.h> |
| 102 | #endif /* HIBERNATION_USES_LEGACY_CLOCK */ |
| 103 | |
| 104 | uint32_t hz_tick_interval = 1; |
| 105 | #if ENABLE_LEGACY_CLOCK_CODE |
| 106 | static uint64_t has_monotonic_clock = 0; |
| 107 | #endif /* ENABLE_LEGACY_CLOCK_CODE */ |
| 108 | |
| 109 | lck_ticket_t clock_lock; |
| 110 | LCK_GRP_DECLARE(clock_lock_grp, "clock" ); |
| 111 | |
| 112 | static LCK_GRP_DECLARE(settime_lock_grp, "settime" ); |
| 113 | static LCK_MTX_DECLARE(settime_lock, &settime_lock_grp); |
| 114 | |
| 115 | #define clock_lock() \ |
| 116 | lck_ticket_lock(&clock_lock, &clock_lock_grp) |
| 117 | |
| 118 | #define clock_unlock() \ |
| 119 | lck_ticket_unlock(&clock_lock) |
| 120 | |
| 121 | boolean_t |
| 122 | kdp_clock_is_locked() |
| 123 | { |
| 124 | return kdp_lck_ticket_is_acquired(tlock: &clock_lock); |
| 125 | } |
| 126 | |
| 127 | struct bintime { |
| 128 | time_t sec; |
| 129 | uint64_t frac; |
| 130 | }; |
| 131 | |
| 132 | static __inline void |
| 133 | bintime_addx(struct bintime *_bt, uint64_t _x) |
| 134 | { |
| 135 | uint64_t _u; |
| 136 | |
| 137 | _u = _bt->frac; |
| 138 | _bt->frac += _x; |
| 139 | if (_u > _bt->frac) { |
| 140 | _bt->sec++; |
| 141 | } |
| 142 | } |
| 143 | |
| 144 | static __inline void |
| 145 | bintime_subx(struct bintime *_bt, uint64_t _x) |
| 146 | { |
| 147 | uint64_t _u; |
| 148 | |
| 149 | _u = _bt->frac; |
| 150 | _bt->frac -= _x; |
| 151 | if (_u < _bt->frac) { |
| 152 | _bt->sec--; |
| 153 | } |
| 154 | } |
| 155 | |
| 156 | static __inline void |
| 157 | bintime_addns(struct bintime *bt, uint64_t ns) |
| 158 | { |
| 159 | bt->sec += ns / (uint64_t)NSEC_PER_SEC; |
| 160 | ns = ns % (uint64_t)NSEC_PER_SEC; |
| 161 | if (ns) { |
| 162 | /* 18446744073 = int(2^64 / NSEC_PER_SEC) */ |
| 163 | ns = ns * (uint64_t)18446744073LL; |
| 164 | bintime_addx(bt: bt, x: ns); |
| 165 | } |
| 166 | } |
| 167 | |
| 168 | static __inline void |
| 169 | bintime_subns(struct bintime *bt, uint64_t ns) |
| 170 | { |
| 171 | bt->sec -= ns / (uint64_t)NSEC_PER_SEC; |
| 172 | ns = ns % (uint64_t)NSEC_PER_SEC; |
| 173 | if (ns) { |
| 174 | /* 18446744073 = int(2^64 / NSEC_PER_SEC) */ |
| 175 | ns = ns * (uint64_t)18446744073LL; |
| 176 | bintime_subx(bt: bt, x: ns); |
| 177 | } |
| 178 | } |
| 179 | |
| 180 | static __inline void |
| 181 | bintime_addxns(struct bintime *bt, uint64_t a, int64_t xns) |
| 182 | { |
| 183 | uint64_t uxns = (xns > 0)?(uint64_t)xns:(uint64_t)-xns; |
| 184 | uint64_t ns = multi_overflow(a, b: uxns); |
| 185 | if (xns > 0) { |
| 186 | if (ns) { |
| 187 | bintime_addns(bt, ns); |
| 188 | } |
| 189 | ns = (a * uxns) / (uint64_t)NSEC_PER_SEC; |
| 190 | bintime_addx(bt: bt, x: ns); |
| 191 | } else { |
| 192 | if (ns) { |
| 193 | bintime_subns(bt, ns); |
| 194 | } |
| 195 | ns = (a * uxns) / (uint64_t)NSEC_PER_SEC; |
| 196 | bintime_subx(bt: bt, x: ns); |
| 197 | } |
| 198 | } |
| 199 | |
| 200 | |
| 201 | static __inline void |
| 202 | bintime_add(struct bintime *_bt, const struct bintime *_bt2) |
| 203 | { |
| 204 | uint64_t _u; |
| 205 | |
| 206 | _u = _bt->frac; |
| 207 | _bt->frac += _bt2->frac; |
| 208 | if (_u > _bt->frac) { |
| 209 | _bt->sec++; |
| 210 | } |
| 211 | _bt->sec += _bt2->sec; |
| 212 | } |
| 213 | |
| 214 | static __inline void |
| 215 | bintime_sub(struct bintime *_bt, const struct bintime *_bt2) |
| 216 | { |
| 217 | uint64_t _u; |
| 218 | |
| 219 | _u = _bt->frac; |
| 220 | _bt->frac -= _bt2->frac; |
| 221 | if (_u < _bt->frac) { |
| 222 | _bt->sec--; |
| 223 | } |
| 224 | _bt->sec -= _bt2->sec; |
| 225 | } |
| 226 | |
| 227 | static __inline void |
| 228 | clock2bintime(const clock_sec_t *secs, const clock_usec_t *microsecs, struct bintime *_bt) |
| 229 | { |
| 230 | _bt->sec = *secs; |
| 231 | /* 18446744073709 = int(2^64 / 1000000) */ |
| 232 | _bt->frac = *microsecs * (uint64_t)18446744073709LL; |
| 233 | } |
| 234 | |
| 235 | static __inline void |
| 236 | bintime2usclock(const struct bintime *_bt, clock_sec_t *secs, clock_usec_t *microsecs) |
| 237 | { |
| 238 | *secs = _bt->sec; |
| 239 | *microsecs = ((uint64_t)USEC_PER_SEC * (uint32_t)(_bt->frac >> 32)) >> 32; |
| 240 | } |
| 241 | |
| 242 | static __inline void |
| 243 | bintime2nsclock(const struct bintime *_bt, clock_sec_t *secs, clock_usec_t *nanosecs) |
| 244 | { |
| 245 | *secs = _bt->sec; |
| 246 | *nanosecs = ((uint64_t)NSEC_PER_SEC * (uint32_t)(_bt->frac >> 32)) >> 32; |
| 247 | } |
| 248 | |
| 249 | #if ENABLE_LEGACY_CLOCK_CODE |
| 250 | static __inline void |
| 251 | bintime2absolutetime(const struct bintime *_bt, uint64_t *abs) |
| 252 | { |
| 253 | uint64_t nsec; |
| 254 | nsec = (uint64_t) _bt->sec * (uint64_t)NSEC_PER_SEC + (((uint64_t)NSEC_PER_SEC * (uint32_t)(_bt->frac >> 32)) >> 32); |
| 255 | nanoseconds_to_absolutetime(nanoseconds: nsec, result: abs); |
| 256 | } |
| 257 | |
| 258 | struct latched_time { |
| 259 | uint64_t monotonic_time_usec; |
| 260 | uint64_t mach_time; |
| 261 | }; |
| 262 | |
| 263 | extern int |
| 264 | kernel_sysctlbyname(const char *name, void *oldp, size_t *oldlenp, void *newp, size_t newlen); |
| 265 | |
| 266 | #endif /* ENABLE_LEGACY_CLOCK_CODE */ |
| 267 | /* |
| 268 | * Time of day (calendar) variables. |
| 269 | * |
| 270 | * Algorithm: |
| 271 | * |
| 272 | * TOD <- bintime + delta*scale |
| 273 | * |
| 274 | * where : |
| 275 | * bintime is a cumulative offset that includes bootime and scaled time elapsed betweed bootime and last scale update. |
| 276 | * delta is ticks elapsed since last scale update. |
| 277 | * scale is computed according to an adjustment provided by ntp_kern. |
| 278 | */ |
| 279 | static struct clock_calend { |
| 280 | uint64_t s_scale_ns; /* scale to apply for each second elapsed, it converts in ns */ |
| 281 | int64_t s_adj_nsx; /* additional adj to apply for each second elapsed, it is expressed in 64 bit frac of ns */ |
| 282 | uint64_t tick_scale_x; /* scale to apply for each tick elapsed, it converts in 64 bit frac of s */ |
| 283 | uint64_t offset_count; /* abs time from which apply current scales */ |
| 284 | struct bintime offset; /* cumulative offset expressed in (sec, 64 bits frac of a second) */ |
| 285 | struct bintime bintime; /* cumulative offset (it includes bootime) expressed in (sec, 64 bits frac of a second) */ |
| 286 | struct bintime boottime; /* boot time expressed in (sec, 64 bits frac of a second) */ |
| 287 | #if ENABLE_LEGACY_CLOCK_CODE |
| 288 | struct bintime basesleep; |
| 289 | #endif /* ENABLE_LEGACY_CLOCK_CODE */ |
| 290 | } clock_calend; |
| 291 | |
| 292 | static uint64_t ticks_per_sec; /* ticks in a second (expressed in abs time) */ |
| 293 | |
| 294 | #if DEVELOPMENT || DEBUG |
| 295 | extern int g_should_log_clock_adjustments; |
| 296 | |
| 297 | static void print_all_clock_variables(const char*, clock_sec_t* pmu_secs, clock_usec_t* pmu_usec, clock_sec_t* sys_secs, clock_usec_t* sys_usec, struct clock_calend* calend_cp); |
| 298 | static void print_all_clock_variables_internal(const char *, struct clock_calend* calend_cp); |
| 299 | #else |
| 300 | #define print_all_clock_variables(...) do { } while (0) |
| 301 | #define print_all_clock_variables_internal(...) do { } while (0) |
| 302 | #endif |
| 303 | |
| 304 | #if CONFIG_DTRACE |
| 305 | |
| 306 | |
| 307 | /* |
| 308 | * Unlocked calendar flipflop; this is used to track a clock_calend such |
| 309 | * that we can safely access a snapshot of a valid clock_calend structure |
| 310 | * without needing to take any locks to do it. |
| 311 | * |
| 312 | * The trick is to use a generation count and set the low bit when it is |
| 313 | * being updated/read; by doing this, we guarantee, through use of the |
| 314 | * os_atomic functions, that the generation is incremented when the bit |
| 315 | * is cleared atomically (by using a 1 bit add). |
| 316 | */ |
| 317 | static struct unlocked_clock_calend { |
| 318 | struct clock_calend calend; /* copy of calendar */ |
| 319 | uint32_t gen; /* generation count */ |
| 320 | } flipflop[2]; |
| 321 | |
| 322 | static void clock_track_calend_nowait(void); |
| 323 | |
| 324 | #endif |
| 325 | |
| 326 | void _clock_delay_until_deadline(uint64_t interval, uint64_t deadline); |
| 327 | void _clock_delay_until_deadline_with_leeway(uint64_t interval, uint64_t deadline, uint64_t leeway); |
| 328 | |
| 329 | /* Boottime variables*/ |
| 330 | static uint64_t clock_boottime; |
| 331 | static uint32_t clock_boottime_usec; |
| 332 | |
| 333 | #define TIME_ADD(rsecs, secs, rfrac, frac, unit) \ |
| 334 | MACRO_BEGIN \ |
| 335 | if (((rfrac) += (frac)) >= (unit)) { \ |
| 336 | (rfrac) -= (unit); \ |
| 337 | (rsecs) += 1; \ |
| 338 | } \ |
| 339 | (rsecs) += (secs); \ |
| 340 | MACRO_END |
| 341 | |
| 342 | #define TIME_SUB(rsecs, secs, rfrac, frac, unit) \ |
| 343 | MACRO_BEGIN \ |
| 344 | if ((int)((rfrac) -= (frac)) < 0) { \ |
| 345 | (rfrac) += (unit); \ |
| 346 | (rsecs) -= 1; \ |
| 347 | } \ |
| 348 | (rsecs) -= (secs); \ |
| 349 | MACRO_END |
| 350 | |
| 351 | /* |
| 352 | * clock_config: |
| 353 | * |
| 354 | * Called once at boot to configure the clock subsystem. |
| 355 | */ |
| 356 | void |
| 357 | clock_config(void) |
| 358 | { |
| 359 | lck_ticket_init(tlock: &clock_lock, grp: &clock_lock_grp); |
| 360 | |
| 361 | clock_oldconfig(); |
| 362 | |
| 363 | ntp_init(); |
| 364 | |
| 365 | nanoseconds_to_absolutetime(nanoseconds: (uint64_t)NSEC_PER_SEC, result: &ticks_per_sec); |
| 366 | } |
| 367 | |
| 368 | /* |
| 369 | * clock_init: |
| 370 | * |
| 371 | * Called on a processor each time started. |
| 372 | */ |
| 373 | void |
| 374 | clock_init(void) |
| 375 | { |
| 376 | clock_oldinit(); |
| 377 | } |
| 378 | |
| 379 | /* |
| 380 | * clock_timebase_init: |
| 381 | * |
| 382 | * Called by machine dependent code |
| 383 | * to initialize areas dependent on the |
| 384 | * timebase value. May be called multiple |
| 385 | * times during start up. |
| 386 | */ |
| 387 | void |
| 388 | clock_timebase_init(void) |
| 389 | { |
| 390 | uint64_t abstime; |
| 391 | |
| 392 | /* |
| 393 | * BSD expects a tick to represent 10ms. |
| 394 | */ |
| 395 | nanoseconds_to_absolutetime(NSEC_PER_SEC / 100, result: &abstime); |
| 396 | hz_tick_interval = (uint32_t)abstime; |
| 397 | |
| 398 | sched_timebase_init(); |
| 399 | } |
| 400 | |
| 401 | /* |
| 402 | * mach_timebase_info_trap: |
| 403 | * |
| 404 | * User trap returns timebase constant. |
| 405 | */ |
| 406 | kern_return_t |
| 407 | mach_timebase_info_trap( |
| 408 | struct mach_timebase_info_trap_args *args) |
| 409 | { |
| 410 | mach_vm_address_t out_info_addr = args->info; |
| 411 | mach_timebase_info_data_t info = {}; |
| 412 | |
| 413 | clock_timebase_info(info: &info); |
| 414 | |
| 415 | copyout((void *)&info, out_info_addr, sizeof(info)); |
| 416 | |
| 417 | return KERN_SUCCESS; |
| 418 | } |
| 419 | |
| 420 | /* |
| 421 | * Calendar routines. |
| 422 | */ |
| 423 | |
| 424 | /* |
| 425 | * clock_get_calendar_microtime: |
| 426 | * |
| 427 | * Returns the current calendar value, |
| 428 | * microseconds as the fraction. |
| 429 | */ |
| 430 | void |
| 431 | clock_get_calendar_microtime( |
| 432 | clock_sec_t *secs, |
| 433 | clock_usec_t *microsecs) |
| 434 | { |
| 435 | clock_get_calendar_absolute_and_microtime(secs, microsecs, NULL); |
| 436 | } |
| 437 | |
| 438 | /* |
| 439 | * get_scale_factors_from_adj: |
| 440 | * |
| 441 | * computes scale factors from the value given in adjustment. |
| 442 | * |
| 443 | * Part of the code has been taken from tc_windup of FreeBSD |
| 444 | * written by Poul-Henning Kamp <phk@FreeBSD.ORG>, Julien Ridoux and |
| 445 | * Konstantin Belousov. |
| 446 | * https://github.com/freebsd/freebsd/blob/master/sys/kern/kern_tc.c |
| 447 | */ |
| 448 | static void |
| 449 | get_scale_factors_from_adj(int64_t adjustment, uint64_t* tick_scale_x, uint64_t* s_scale_ns, int64_t* s_adj_nsx) |
| 450 | { |
| 451 | uint64_t scale; |
| 452 | int64_t nano, frac; |
| 453 | |
| 454 | /*- |
| 455 | * Calculating the scaling factor. We want the number of 1/2^64 |
| 456 | * fractions of a second per period of the hardware counter, taking |
| 457 | * into account the th_adjustment factor which the NTP PLL/adjtime(2) |
| 458 | * processing provides us with. |
| 459 | * |
| 460 | * The th_adjustment is nanoseconds per second with 32 bit binary |
| 461 | * fraction and we want 64 bit binary fraction of second: |
| 462 | * |
| 463 | * x = a * 2^32 / 10^9 = a * 4.294967296 |
| 464 | * |
| 465 | * The range of th_adjustment is +/- 5000PPM so inside a 64bit int |
| 466 | * we can only multiply by about 850 without overflowing, that |
| 467 | * leaves no suitably precise fractions for multiply before divide. |
| 468 | * |
| 469 | * Divide before multiply with a fraction of 2199/512 results in a |
| 470 | * systematic undercompensation of 10PPM of th_adjustment. On a |
| 471 | * 5000PPM adjustment this is a 0.05PPM error. This is acceptable. |
| 472 | * |
| 473 | * We happily sacrifice the lowest of the 64 bits of our result |
| 474 | * to the goddess of code clarity. |
| 475 | * |
| 476 | */ |
| 477 | scale = (uint64_t)1 << 63; |
| 478 | scale += (adjustment / 1024) * 2199; |
| 479 | scale /= ticks_per_sec; |
| 480 | *tick_scale_x = scale * 2; |
| 481 | |
| 482 | /* |
| 483 | * hi part of adj |
| 484 | * it contains ns (without fraction) to add to the next sec. |
| 485 | * Get ns scale factor for the next sec. |
| 486 | */ |
| 487 | nano = (adjustment > 0)? adjustment >> 32 : -((-adjustment) >> 32); |
| 488 | scale = (uint64_t) NSEC_PER_SEC; |
| 489 | scale += nano; |
| 490 | *s_scale_ns = scale; |
| 491 | |
| 492 | /* |
| 493 | * lo part of adj |
| 494 | * it contains 32 bit frac of ns to add to the next sec. |
| 495 | * Keep it as additional adjustment for the next sec. |
| 496 | */ |
| 497 | frac = (adjustment > 0)? ((uint32_t) adjustment) : -((uint32_t) (-adjustment)); |
| 498 | *s_adj_nsx = (frac > 0)? ((uint64_t) frac) << 32 : -(((uint64_t) (-frac)) << 32); |
| 499 | |
| 500 | return; |
| 501 | } |
| 502 | |
| 503 | /* |
| 504 | * scale_delta: |
| 505 | * |
| 506 | * returns a bintime struct representing delta scaled accordingly to the |
| 507 | * scale factors provided to this function. |
| 508 | */ |
| 509 | static struct bintime |
| 510 | scale_delta(uint64_t delta, uint64_t tick_scale_x, uint64_t s_scale_ns, int64_t s_adj_nsx) |
| 511 | { |
| 512 | uint64_t sec, new_ns, over; |
| 513 | struct bintime bt; |
| 514 | |
| 515 | bt.sec = 0; |
| 516 | bt.frac = 0; |
| 517 | |
| 518 | /* |
| 519 | * If more than one second is elapsed, |
| 520 | * scale fully elapsed seconds using scale factors for seconds. |
| 521 | * s_scale_ns -> scales sec to ns. |
| 522 | * s_adj_nsx -> additional adj expressed in 64 bit frac of ns to apply to each sec. |
| 523 | */ |
| 524 | if (delta > ticks_per_sec) { |
| 525 | sec = (delta / ticks_per_sec); |
| 526 | new_ns = sec * s_scale_ns; |
| 527 | bintime_addns(bt: &bt, ns: new_ns); |
| 528 | if (s_adj_nsx) { |
| 529 | if (sec == 1) { |
| 530 | /* shortcut, no overflow can occur */ |
| 531 | if (s_adj_nsx > 0) { |
| 532 | bintime_addx(bt: &bt, x: (uint64_t)s_adj_nsx / (uint64_t)NSEC_PER_SEC); |
| 533 | } else { |
| 534 | bintime_subx(bt: &bt, x: (uint64_t)-s_adj_nsx / (uint64_t)NSEC_PER_SEC); |
| 535 | } |
| 536 | } else { |
| 537 | /* |
| 538 | * s_adj_nsx is 64 bit frac of ns. |
| 539 | * sec*s_adj_nsx might overflow in int64_t. |
| 540 | * use bintime_addxns to not lose overflowed ns. |
| 541 | */ |
| 542 | bintime_addxns(bt: &bt, a: sec, xns: s_adj_nsx); |
| 543 | } |
| 544 | } |
| 545 | delta = (delta % ticks_per_sec); |
| 546 | } |
| 547 | |
| 548 | over = multi_overflow(a: tick_scale_x, b: delta); |
| 549 | if (over) { |
| 550 | bt.sec += over; |
| 551 | } |
| 552 | |
| 553 | /* |
| 554 | * scale elapsed ticks using the scale factor for ticks. |
| 555 | */ |
| 556 | bintime_addx(bt: &bt, x: delta * tick_scale_x); |
| 557 | |
| 558 | return bt; |
| 559 | } |
| 560 | |
| 561 | /* |
| 562 | * get_scaled_time: |
| 563 | * |
| 564 | * returns the scaled time of the time elapsed from the last time |
| 565 | * scale factors were updated to now. |
| 566 | */ |
| 567 | static struct bintime |
| 568 | get_scaled_time(uint64_t now) |
| 569 | { |
| 570 | uint64_t delta; |
| 571 | |
| 572 | /* |
| 573 | * Compute ticks elapsed since last scale update. |
| 574 | * This time will be scaled according to the value given by ntp kern. |
| 575 | */ |
| 576 | delta = now - clock_calend.offset_count; |
| 577 | |
| 578 | return scale_delta(delta, tick_scale_x: clock_calend.tick_scale_x, s_scale_ns: clock_calend.s_scale_ns, s_adj_nsx: clock_calend.s_adj_nsx); |
| 579 | } |
| 580 | |
| 581 | static void |
| 582 | clock_get_calendar_absolute_and_microtime_locked( |
| 583 | clock_sec_t *secs, |
| 584 | clock_usec_t *microsecs, |
| 585 | uint64_t *abstime) |
| 586 | { |
| 587 | uint64_t now; |
| 588 | struct bintime bt; |
| 589 | |
| 590 | now = mach_absolute_time(); |
| 591 | if (abstime) { |
| 592 | *abstime = now; |
| 593 | } |
| 594 | |
| 595 | bt = get_scaled_time(now); |
| 596 | bintime_add(bt: &bt, bt2: &clock_calend.bintime); |
| 597 | bintime2usclock(bt: &bt, secs, microsecs); |
| 598 | } |
| 599 | |
| 600 | static void |
| 601 | clock_get_calendar_absolute_and_nanotime_locked( |
| 602 | clock_sec_t *secs, |
| 603 | clock_usec_t *nanosecs, |
| 604 | uint64_t *abstime) |
| 605 | { |
| 606 | uint64_t now; |
| 607 | struct bintime bt; |
| 608 | |
| 609 | now = mach_absolute_time(); |
| 610 | if (abstime) { |
| 611 | *abstime = now; |
| 612 | } |
| 613 | |
| 614 | bt = get_scaled_time(now); |
| 615 | bintime_add(bt: &bt, bt2: &clock_calend.bintime); |
| 616 | bintime2nsclock(bt: &bt, secs, nanosecs); |
| 617 | } |
| 618 | |
| 619 | /* |
| 620 | * clock_get_calendar_absolute_and_microtime: |
| 621 | * |
| 622 | * Returns the current calendar value, |
| 623 | * microseconds as the fraction. Also |
| 624 | * returns mach_absolute_time if abstime |
| 625 | * is not NULL. |
| 626 | */ |
| 627 | void |
| 628 | clock_get_calendar_absolute_and_microtime( |
| 629 | clock_sec_t *secs, |
| 630 | clock_usec_t *microsecs, |
| 631 | uint64_t *abstime) |
| 632 | { |
| 633 | spl_t s; |
| 634 | |
| 635 | s = splclock(); |
| 636 | clock_lock(); |
| 637 | |
| 638 | clock_get_calendar_absolute_and_microtime_locked(secs, microsecs, abstime); |
| 639 | |
| 640 | clock_unlock(); |
| 641 | splx(s); |
| 642 | } |
| 643 | |
| 644 | /* |
| 645 | * clock_get_calendar_nanotime: |
| 646 | * |
| 647 | * Returns the current calendar value, |
| 648 | * nanoseconds as the fraction. |
| 649 | * |
| 650 | * Since we do not have an interface to |
| 651 | * set the calendar with resolution greater |
| 652 | * than a microsecond, we honor that here. |
| 653 | */ |
| 654 | void |
| 655 | clock_get_calendar_nanotime( |
| 656 | clock_sec_t *secs, |
| 657 | clock_nsec_t *nanosecs) |
| 658 | { |
| 659 | spl_t s; |
| 660 | |
| 661 | s = splclock(); |
| 662 | clock_lock(); |
| 663 | |
| 664 | clock_get_calendar_absolute_and_nanotime_locked(secs, nanosecs, NULL); |
| 665 | |
| 666 | clock_unlock(); |
| 667 | splx(s); |
| 668 | } |
| 669 | |
| 670 | /* |
| 671 | * clock_gettimeofday: |
| 672 | * |
| 673 | * Kernel interface for commpage implementation of |
| 674 | * gettimeofday() syscall. |
| 675 | * |
| 676 | * Returns the current calendar value, and updates the |
| 677 | * commpage info as appropriate. Because most calls to |
| 678 | * gettimeofday() are handled in user mode by the commpage, |
| 679 | * this routine should be used infrequently. |
| 680 | */ |
| 681 | void |
| 682 | clock_gettimeofday( |
| 683 | clock_sec_t *secs, |
| 684 | clock_usec_t *microsecs) |
| 685 | { |
| 686 | clock_gettimeofday_and_absolute_time(secs, microsecs, NULL); |
| 687 | } |
| 688 | |
| 689 | void |
| 690 | clock_gettimeofday_and_absolute_time( |
| 691 | clock_sec_t *secs, |
| 692 | clock_usec_t *microsecs, |
| 693 | uint64_t *mach_time) |
| 694 | { |
| 695 | uint64_t now; |
| 696 | spl_t s; |
| 697 | struct bintime bt; |
| 698 | |
| 699 | s = splclock(); |
| 700 | clock_lock(); |
| 701 | |
| 702 | now = mach_absolute_time(); |
| 703 | bt = get_scaled_time(now); |
| 704 | bintime_add(bt: &bt, bt2: &clock_calend.bintime); |
| 705 | bintime2usclock(bt: &bt, secs, microsecs); |
| 706 | |
| 707 | clock_gettimeofday_set_commpage(abstime: now, sec: bt.sec, frac: bt.frac, scale: clock_calend.tick_scale_x, tick_per_sec: ticks_per_sec); |
| 708 | |
| 709 | clock_unlock(); |
| 710 | splx(s); |
| 711 | |
| 712 | if (mach_time) { |
| 713 | *mach_time = now; |
| 714 | } |
| 715 | } |
| 716 | |
| 717 | /* |
| 718 | * clock_set_calendar_microtime: |
| 719 | * |
| 720 | * Sets the current calendar value by |
| 721 | * recalculating the epoch and offset |
| 722 | * from the system clock. |
| 723 | * |
| 724 | * Also adjusts the boottime to keep the |
| 725 | * value consistent, writes the new |
| 726 | * calendar value to the platform clock, |
| 727 | * and sends calendar change notifications. |
| 728 | */ |
| 729 | void |
| 730 | clock_set_calendar_microtime( |
| 731 | clock_sec_t secs, |
| 732 | clock_usec_t microsecs) |
| 733 | { |
| 734 | uint64_t absolutesys; |
| 735 | clock_sec_t newsecs; |
| 736 | clock_sec_t oldsecs; |
| 737 | clock_usec_t newmicrosecs; |
| 738 | clock_usec_t oldmicrosecs; |
| 739 | uint64_t commpage_value; |
| 740 | spl_t s; |
| 741 | struct bintime bt; |
| 742 | clock_sec_t deltasecs; |
| 743 | clock_usec_t deltamicrosecs; |
| 744 | |
| 745 | newsecs = secs; |
| 746 | newmicrosecs = microsecs; |
| 747 | |
| 748 | /* |
| 749 | * settime_lock mtx is used to avoid that racing settimeofdays update the wall clock and |
| 750 | * the platform clock concurrently. |
| 751 | * |
| 752 | * clock_lock cannot be used for this race because it is acquired from interrupt context |
| 753 | * and it needs interrupts disabled while instead updating the platform clock needs to be |
| 754 | * called with interrupts enabled. |
| 755 | */ |
| 756 | lck_mtx_lock(lck: &settime_lock); |
| 757 | |
| 758 | s = splclock(); |
| 759 | clock_lock(); |
| 760 | |
| 761 | #if DEVELOPMENT || DEBUG |
| 762 | struct clock_calend clock_calend_cp = clock_calend; |
| 763 | #endif |
| 764 | commpage_disable_timestamp(); |
| 765 | |
| 766 | /* |
| 767 | * Adjust the boottime based on the delta. |
| 768 | */ |
| 769 | clock_get_calendar_absolute_and_microtime_locked(secs: &oldsecs, microsecs: &oldmicrosecs, abstime: &absolutesys); |
| 770 | |
| 771 | #if DEVELOPMENT || DEBUG |
| 772 | if (g_should_log_clock_adjustments) { |
| 773 | os_log(OS_LOG_DEFAULT, "%s wall %lu s %d u computed with %llu abs\n" , |
| 774 | __func__, (unsigned long)oldsecs, oldmicrosecs, absolutesys); |
| 775 | os_log(OS_LOG_DEFAULT, "%s requested %lu s %d u\n" , |
| 776 | __func__, (unsigned long)secs, microsecs ); |
| 777 | } |
| 778 | #endif |
| 779 | |
| 780 | if (oldsecs < secs || (oldsecs == secs && oldmicrosecs < microsecs)) { |
| 781 | // moving forwards |
| 782 | deltasecs = secs; |
| 783 | deltamicrosecs = microsecs; |
| 784 | |
| 785 | TIME_SUB(deltasecs, oldsecs, deltamicrosecs, oldmicrosecs, USEC_PER_SEC); |
| 786 | |
| 787 | TIME_ADD(clock_boottime, deltasecs, clock_boottime_usec, deltamicrosecs, USEC_PER_SEC); |
| 788 | clock2bintime(secs: &deltasecs, microsecs: &deltamicrosecs, bt: &bt); |
| 789 | bintime_add(bt: &clock_calend.boottime, bt2: &bt); |
| 790 | } else { |
| 791 | // moving backwards |
| 792 | deltasecs = oldsecs; |
| 793 | deltamicrosecs = oldmicrosecs; |
| 794 | |
| 795 | TIME_SUB(deltasecs, secs, deltamicrosecs, microsecs, USEC_PER_SEC); |
| 796 | |
| 797 | TIME_SUB(clock_boottime, deltasecs, clock_boottime_usec, deltamicrosecs, USEC_PER_SEC); |
| 798 | clock2bintime(secs: &deltasecs, microsecs: &deltamicrosecs, bt: &bt); |
| 799 | bintime_sub(bt: &clock_calend.boottime, bt2: &bt); |
| 800 | } |
| 801 | |
| 802 | clock_calend.bintime = clock_calend.boottime; |
| 803 | bintime_add(bt: &clock_calend.bintime, bt2: &clock_calend.offset); |
| 804 | |
| 805 | clock2bintime(secs: (clock_sec_t *) &secs, microsecs: (clock_usec_t *) µsecs, bt: &bt); |
| 806 | |
| 807 | clock_gettimeofday_set_commpage(abstime: absolutesys, sec: bt.sec, frac: bt.frac, scale: clock_calend.tick_scale_x, tick_per_sec: ticks_per_sec); |
| 808 | |
| 809 | #if DEVELOPMENT || DEBUG |
| 810 | struct clock_calend clock_calend_cp1 = clock_calend; |
| 811 | #endif |
| 812 | |
| 813 | commpage_value = clock_boottime * USEC_PER_SEC + clock_boottime_usec; |
| 814 | |
| 815 | clock_unlock(); |
| 816 | splx(s); |
| 817 | |
| 818 | /* |
| 819 | * Set the new value for the platform clock. |
| 820 | * This call might block, so interrupts must be enabled. |
| 821 | */ |
| 822 | #if DEVELOPMENT || DEBUG |
| 823 | uint64_t now_b = mach_absolute_time(); |
| 824 | #endif |
| 825 | |
| 826 | PESetUTCTimeOfDay(secs: newsecs, usecs: newmicrosecs); |
| 827 | |
| 828 | #if DEVELOPMENT || DEBUG |
| 829 | uint64_t now_a = mach_absolute_time(); |
| 830 | if (g_should_log_clock_adjustments) { |
| 831 | os_log(OS_LOG_DEFAULT, "%s mach bef PESet %llu mach aft %llu \n" , __func__, now_b, now_a); |
| 832 | } |
| 833 | #endif |
| 834 | |
| 835 | print_all_clock_variables_internal(__func__, &clock_calend_cp); |
| 836 | print_all_clock_variables_internal(__func__, &clock_calend_cp1); |
| 837 | |
| 838 | commpage_update_boottime(boottime_usec: commpage_value); |
| 839 | |
| 840 | /* |
| 841 | * Send host notifications. |
| 842 | */ |
| 843 | host_notify_calendar_change(); |
| 844 | host_notify_calendar_set(); |
| 845 | |
| 846 | #if CONFIG_DTRACE |
| 847 | clock_track_calend_nowait(); |
| 848 | #endif |
| 849 | |
| 850 | lck_mtx_unlock(lck: &settime_lock); |
| 851 | } |
| 852 | |
| 853 | uint64_t mach_absolutetime_asleep = 0; |
| 854 | uint64_t mach_absolutetime_last_sleep = 0; |
| 855 | |
| 856 | void |
| 857 | clock_get_calendar_uptime(clock_sec_t *secs) |
| 858 | { |
| 859 | uint64_t now; |
| 860 | spl_t s; |
| 861 | struct bintime bt; |
| 862 | |
| 863 | s = splclock(); |
| 864 | clock_lock(); |
| 865 | |
| 866 | now = mach_absolute_time(); |
| 867 | |
| 868 | bt = get_scaled_time(now); |
| 869 | bintime_add(bt: &bt, bt2: &clock_calend.offset); |
| 870 | |
| 871 | *secs = bt.sec; |
| 872 | |
| 873 | clock_unlock(); |
| 874 | splx(s); |
| 875 | } |
| 876 | |
| 877 | |
| 878 | /* |
| 879 | * clock_update_calendar: |
| 880 | * |
| 881 | * called by ntp timer to update scale factors. |
| 882 | */ |
| 883 | void |
| 884 | clock_update_calendar(void) |
| 885 | { |
| 886 | uint64_t now, delta; |
| 887 | struct bintime bt; |
| 888 | spl_t s; |
| 889 | int64_t adjustment; |
| 890 | |
| 891 | s = splclock(); |
| 892 | clock_lock(); |
| 893 | |
| 894 | now = mach_absolute_time(); |
| 895 | |
| 896 | /* |
| 897 | * scale the time elapsed since the last update and |
| 898 | * add it to offset. |
| 899 | */ |
| 900 | bt = get_scaled_time(now); |
| 901 | bintime_add(bt: &clock_calend.offset, bt2: &bt); |
| 902 | |
| 903 | /* |
| 904 | * update the base from which apply next scale factors. |
| 905 | */ |
| 906 | delta = now - clock_calend.offset_count; |
| 907 | clock_calend.offset_count += delta; |
| 908 | |
| 909 | clock_calend.bintime = clock_calend.offset; |
| 910 | bintime_add(bt: &clock_calend.bintime, bt2: &clock_calend.boottime); |
| 911 | |
| 912 | /* |
| 913 | * recompute next adjustment. |
| 914 | */ |
| 915 | ntp_update_second(adjustment: &adjustment, secs: clock_calend.bintime.sec); |
| 916 | |
| 917 | #if DEVELOPMENT || DEBUG |
| 918 | if (g_should_log_clock_adjustments) { |
| 919 | os_log(OS_LOG_DEFAULT, "%s adjustment %lld\n" , __func__, adjustment); |
| 920 | } |
| 921 | #endif |
| 922 | |
| 923 | /* |
| 924 | * recomputing scale factors. |
| 925 | */ |
| 926 | get_scale_factors_from_adj(adjustment, tick_scale_x: &clock_calend.tick_scale_x, s_scale_ns: &clock_calend.s_scale_ns, s_adj_nsx: &clock_calend.s_adj_nsx); |
| 927 | |
| 928 | clock_gettimeofday_set_commpage(abstime: now, sec: clock_calend.bintime.sec, frac: clock_calend.bintime.frac, scale: clock_calend.tick_scale_x, tick_per_sec: ticks_per_sec); |
| 929 | |
| 930 | #if DEVELOPMENT || DEBUG |
| 931 | struct clock_calend calend_cp = clock_calend; |
| 932 | #endif |
| 933 | |
| 934 | clock_unlock(); |
| 935 | splx(s); |
| 936 | |
| 937 | print_all_clock_variables(__func__, NULL, NULL, NULL, NULL, &calend_cp); |
| 938 | } |
| 939 | |
| 940 | |
| 941 | #if DEVELOPMENT || DEBUG |
| 942 | |
| 943 | void |
| 944 | print_all_clock_variables_internal(const char* func, struct clock_calend* clock_calend_cp) |
| 945 | { |
| 946 | clock_sec_t offset_secs; |
| 947 | clock_usec_t offset_microsecs; |
| 948 | clock_sec_t bintime_secs; |
| 949 | clock_usec_t bintime_microsecs; |
| 950 | clock_sec_t bootime_secs; |
| 951 | clock_usec_t bootime_microsecs; |
| 952 | |
| 953 | if (!g_should_log_clock_adjustments) { |
| 954 | return; |
| 955 | } |
| 956 | |
| 957 | bintime2usclock(&clock_calend_cp->offset, &offset_secs, &offset_microsecs); |
| 958 | bintime2usclock(&clock_calend_cp->bintime, &bintime_secs, &bintime_microsecs); |
| 959 | bintime2usclock(&clock_calend_cp->boottime, &bootime_secs, &bootime_microsecs); |
| 960 | |
| 961 | os_log(OS_LOG_DEFAULT, "%s s_scale_ns %llu s_adj_nsx %lld tick_scale_x %llu offset_count %llu\n" , |
| 962 | func, clock_calend_cp->s_scale_ns, clock_calend_cp->s_adj_nsx, |
| 963 | clock_calend_cp->tick_scale_x, clock_calend_cp->offset_count); |
| 964 | os_log(OS_LOG_DEFAULT, "%s offset.sec %ld offset.frac %llu offset_secs %lu offset_microsecs %d\n" , |
| 965 | func, clock_calend_cp->offset.sec, clock_calend_cp->offset.frac, |
| 966 | (unsigned long)offset_secs, offset_microsecs); |
| 967 | os_log(OS_LOG_DEFAULT, "%s bintime.sec %ld bintime.frac %llu bintime_secs %lu bintime_microsecs %d\n" , |
| 968 | func, clock_calend_cp->bintime.sec, clock_calend_cp->bintime.frac, |
| 969 | (unsigned long)bintime_secs, bintime_microsecs); |
| 970 | os_log(OS_LOG_DEFAULT, "%s bootime.sec %ld bootime.frac %llu bootime_secs %lu bootime_microsecs %d\n" , |
| 971 | func, clock_calend_cp->boottime.sec, clock_calend_cp->boottime.frac, |
| 972 | (unsigned long)bootime_secs, bootime_microsecs); |
| 973 | |
| 974 | #if !HAS_CONTINUOUS_HWCLOCK |
| 975 | clock_sec_t basesleep_secs; |
| 976 | clock_usec_t basesleep_microsecs; |
| 977 | |
| 978 | bintime2usclock(&clock_calend_cp->basesleep, &basesleep_secs, &basesleep_microsecs); |
| 979 | os_log(OS_LOG_DEFAULT, "%s basesleep.sec %ld basesleep.frac %llu basesleep_secs %lu basesleep_microsecs %d\n" , |
| 980 | func, clock_calend_cp->basesleep.sec, clock_calend_cp->basesleep.frac, |
| 981 | (unsigned long)basesleep_secs, basesleep_microsecs); |
| 982 | #endif |
| 983 | } |
| 984 | |
| 985 | |
| 986 | void |
| 987 | print_all_clock_variables(const char* func, clock_sec_t* pmu_secs, clock_usec_t* pmu_usec, clock_sec_t* sys_secs, clock_usec_t* sys_usec, struct clock_calend* clock_calend_cp) |
| 988 | { |
| 989 | if (!g_should_log_clock_adjustments) { |
| 990 | return; |
| 991 | } |
| 992 | |
| 993 | struct bintime bt; |
| 994 | clock_sec_t wall_secs; |
| 995 | clock_usec_t wall_microsecs; |
| 996 | uint64_t now; |
| 997 | uint64_t delta; |
| 998 | |
| 999 | if (pmu_secs) { |
| 1000 | os_log(OS_LOG_DEFAULT, "%s PMU %lu s %d u \n" , func, (unsigned long)*pmu_secs, *pmu_usec); |
| 1001 | } |
| 1002 | if (sys_secs) { |
| 1003 | os_log(OS_LOG_DEFAULT, "%s sys %lu s %d u \n" , func, (unsigned long)*sys_secs, *sys_usec); |
| 1004 | } |
| 1005 | |
| 1006 | print_all_clock_variables_internal(func, clock_calend_cp); |
| 1007 | |
| 1008 | now = mach_absolute_time(); |
| 1009 | delta = now - clock_calend_cp->offset_count; |
| 1010 | |
| 1011 | bt = scale_delta(delta, clock_calend_cp->tick_scale_x, clock_calend_cp->s_scale_ns, clock_calend_cp->s_adj_nsx); |
| 1012 | bintime_add(&bt, &clock_calend_cp->bintime); |
| 1013 | bintime2usclock(&bt, &wall_secs, &wall_microsecs); |
| 1014 | |
| 1015 | os_log(OS_LOG_DEFAULT, "%s wall %lu s %d u computed with %llu abs\n" , |
| 1016 | func, (unsigned long)wall_secs, wall_microsecs, now); |
| 1017 | } |
| 1018 | |
| 1019 | |
| 1020 | #endif /* DEVELOPMENT || DEBUG */ |
| 1021 | |
| 1022 | |
| 1023 | /* |
| 1024 | * clock_initialize_calendar: |
| 1025 | * |
| 1026 | * Set the calendar and related clocks |
| 1027 | * from the platform clock at boot. |
| 1028 | * |
| 1029 | * Also sends host notifications. |
| 1030 | */ |
| 1031 | void |
| 1032 | clock_initialize_calendar(void) |
| 1033 | { |
| 1034 | clock_sec_t sys; // sleepless time since boot in seconds |
| 1035 | clock_sec_t secs; // Current UTC time |
| 1036 | clock_sec_t utc_offset_secs; // Difference in current UTC time and sleepless time since boot |
| 1037 | clock_usec_t microsys; |
| 1038 | clock_usec_t microsecs; |
| 1039 | clock_usec_t utc_offset_microsecs; |
| 1040 | spl_t s; |
| 1041 | struct bintime bt; |
| 1042 | #if ENABLE_LEGACY_CLOCK_CODE |
| 1043 | struct bintime monotonic_bt; |
| 1044 | struct latched_time monotonic_time; |
| 1045 | uint64_t monotonic_usec_total; |
| 1046 | clock_sec_t sys2, monotonic_sec; |
| 1047 | clock_usec_t microsys2, monotonic_usec; |
| 1048 | size_t size; |
| 1049 | |
| 1050 | #endif /* ENABLE_LEGACY_CLOCK_CODE */ |
| 1051 | //Get the UTC time and corresponding sys time |
| 1052 | PEGetUTCTimeOfDay(secs: &secs, usecs: µsecs); |
| 1053 | clock_get_system_microtime(secs: &sys, microsecs: µsys); |
| 1054 | |
| 1055 | #if ENABLE_LEGACY_CLOCK_CODE |
| 1056 | /* |
| 1057 | * If the platform has a monotonic clock, use kern.monotonicclock_usecs |
| 1058 | * to estimate the sleep/wake time, otherwise use the UTC time to estimate |
| 1059 | * the sleep time. |
| 1060 | */ |
| 1061 | size = sizeof(monotonic_time); |
| 1062 | if (kernel_sysctlbyname(name: "kern.monotonicclock_usecs" , oldp: &monotonic_time, oldlenp: &size, NULL, newlen: 0) != 0) { |
| 1063 | has_monotonic_clock = 0; |
| 1064 | os_log(OS_LOG_DEFAULT, "%s system does not have monotonic clock\n" , __func__); |
| 1065 | } else { |
| 1066 | has_monotonic_clock = 1; |
| 1067 | monotonic_usec_total = monotonic_time.monotonic_time_usec; |
| 1068 | absolutetime_to_microtime(abstime: monotonic_time.mach_time, secs: &sys2, microsecs: µsys2); |
| 1069 | os_log(OS_LOG_DEFAULT, "%s system has monotonic clock\n" , __func__); |
| 1070 | } |
| 1071 | #endif /* ENABLE_LEGACY_CLOCK_CODE */ |
| 1072 | |
| 1073 | s = splclock(); |
| 1074 | clock_lock(); |
| 1075 | |
| 1076 | commpage_disable_timestamp(); |
| 1077 | |
| 1078 | utc_offset_secs = secs; |
| 1079 | utc_offset_microsecs = microsecs; |
| 1080 | |
| 1081 | /* |
| 1082 | * We normally expect the UTC clock to be always-on and produce |
| 1083 | * greater readings than the tick counter. There may be corner cases |
| 1084 | * due to differing clock resolutions (UTC clock is likely lower) and |
| 1085 | * and errors reading the UTC clock (some implementations return 0 |
| 1086 | * on error) in which that doesn't hold true. Bring the UTC measurements |
| 1087 | * in-line with the tick counter measurements as a best effort in that case. |
| 1088 | */ |
| 1089 | if ((sys > secs) || ((sys == secs) && (microsys > microsecs))) { |
| 1090 | os_log(OS_LOG_DEFAULT, "%s WARNING: UTC time is less then sys time, (%lu s %d u) UTC (%lu s %d u) sys\n" , |
| 1091 | __func__, (unsigned long) secs, microsecs, (unsigned long)sys, microsys); |
| 1092 | secs = utc_offset_secs = sys; |
| 1093 | microsecs = utc_offset_microsecs = microsys; |
| 1094 | } |
| 1095 | |
| 1096 | // UTC - sys |
| 1097 | // This macro stores the subtraction result in utc_offset_secs and utc_offset_microsecs |
| 1098 | TIME_SUB(utc_offset_secs, sys, utc_offset_microsecs, microsys, USEC_PER_SEC); |
| 1099 | // This function converts utc_offset_secs and utc_offset_microsecs in bintime |
| 1100 | clock2bintime(secs: &utc_offset_secs, microsecs: &utc_offset_microsecs, bt: &bt); |
| 1101 | |
| 1102 | /* |
| 1103 | * Initialize the boot time based on the platform clock. |
| 1104 | */ |
| 1105 | clock_boottime = secs; |
| 1106 | clock_boottime_usec = microsecs; |
| 1107 | commpage_update_boottime(boottime_usec: clock_boottime * USEC_PER_SEC + clock_boottime_usec); |
| 1108 | |
| 1109 | nanoseconds_to_absolutetime(nanoseconds: (uint64_t)NSEC_PER_SEC, result: &ticks_per_sec); |
| 1110 | clock_calend.boottime = bt; |
| 1111 | clock_calend.bintime = bt; |
| 1112 | clock_calend.offset.sec = 0; |
| 1113 | clock_calend.offset.frac = 0; |
| 1114 | |
| 1115 | clock_calend.tick_scale_x = (uint64_t)1 << 63; |
| 1116 | clock_calend.tick_scale_x /= ticks_per_sec; |
| 1117 | clock_calend.tick_scale_x *= 2; |
| 1118 | |
| 1119 | clock_calend.s_scale_ns = NSEC_PER_SEC; |
| 1120 | clock_calend.s_adj_nsx = 0; |
| 1121 | |
| 1122 | #if ENABLE_LEGACY_CLOCK_CODE |
| 1123 | if (has_monotonic_clock) { |
| 1124 | OS_ANALYZER_SUPPRESS("82347749" ) monotonic_sec = monotonic_usec_total / (clock_sec_t)USEC_PER_SEC; |
| 1125 | monotonic_usec = monotonic_usec_total % (clock_usec_t)USEC_PER_SEC; |
| 1126 | |
| 1127 | // monotonic clock - sys |
| 1128 | // This macro stores the subtraction result in monotonic_sec and monotonic_usec |
| 1129 | TIME_SUB(monotonic_sec, sys2, monotonic_usec, microsys2, USEC_PER_SEC); |
| 1130 | clock2bintime(secs: &monotonic_sec, microsecs: &monotonic_usec, bt: &monotonic_bt); |
| 1131 | |
| 1132 | // set the baseleep as the difference between monotonic clock - sys |
| 1133 | clock_calend.basesleep = monotonic_bt; |
| 1134 | } |
| 1135 | #endif /* ENABLE_LEGACY_CLOCK_CODE */ |
| 1136 | commpage_update_mach_continuous_time(sleeptime: mach_absolutetime_asleep); |
| 1137 | |
| 1138 | #if DEVELOPMENT || DEBUG |
| 1139 | struct clock_calend clock_calend_cp = clock_calend; |
| 1140 | #endif |
| 1141 | |
| 1142 | clock_unlock(); |
| 1143 | splx(s); |
| 1144 | |
| 1145 | print_all_clock_variables(__func__, &secs, µsecs, &sys, µsys, &clock_calend_cp); |
| 1146 | |
| 1147 | /* |
| 1148 | * Send host notifications. |
| 1149 | */ |
| 1150 | host_notify_calendar_change(); |
| 1151 | |
| 1152 | #if CONFIG_DTRACE |
| 1153 | clock_track_calend_nowait(); |
| 1154 | #endif |
| 1155 | } |
| 1156 | |
| 1157 | #if HAS_CONTINUOUS_HWCLOCK |
| 1158 | |
| 1159 | static void |
| 1160 | scale_sleep_time(void) |
| 1161 | { |
| 1162 | /* Apply the current NTP frequency adjustment to the time slept. |
| 1163 | * The frequency adjustment remains stable between calls to ntp_adjtime(), |
| 1164 | * and should thus provide a reasonable approximation of the total adjustment |
| 1165 | * required for the time slept. */ |
| 1166 | struct bintime sleep_time; |
| 1167 | uint64_t tick_scale_x, s_scale_ns; |
| 1168 | int64_t s_adj_nsx; |
| 1169 | int64_t sleep_adj = ntp_get_freq(); |
| 1170 | if (sleep_adj) { |
| 1171 | get_scale_factors_from_adj(sleep_adj, &tick_scale_x, &s_scale_ns, &s_adj_nsx); |
| 1172 | sleep_time = scale_delta(mach_absolutetime_last_sleep, tick_scale_x, s_scale_ns, s_adj_nsx); |
| 1173 | } else { |
| 1174 | tick_scale_x = (uint64_t)1 << 63; |
| 1175 | tick_scale_x /= ticks_per_sec; |
| 1176 | tick_scale_x *= 2; |
| 1177 | sleep_time.sec = mach_absolutetime_last_sleep / ticks_per_sec; |
| 1178 | sleep_time.frac = (mach_absolutetime_last_sleep % ticks_per_sec) * tick_scale_x; |
| 1179 | } |
| 1180 | bintime_add(&clock_calend.offset, &sleep_time); |
| 1181 | bintime_add(&clock_calend.bintime, &sleep_time); |
| 1182 | } |
| 1183 | |
| 1184 | static void |
| 1185 | clock_wakeup_calendar_hwclock(void) |
| 1186 | { |
| 1187 | spl_t s; |
| 1188 | |
| 1189 | s = splclock(); |
| 1190 | clock_lock(); |
| 1191 | |
| 1192 | commpage_disable_timestamp(); |
| 1193 | |
| 1194 | uint64_t abstime = mach_absolute_time(); |
| 1195 | uint64_t total_sleep_time = mach_continuous_time() - abstime; |
| 1196 | |
| 1197 | mach_absolutetime_last_sleep = total_sleep_time - mach_absolutetime_asleep; |
| 1198 | mach_absolutetime_asleep = total_sleep_time; |
| 1199 | |
| 1200 | scale_sleep_time(); |
| 1201 | |
| 1202 | KDBG_RELEASE(MACHDBG_CODE(DBG_MACH_CLOCK, MACH_EPOCH_CHANGE), |
| 1203 | (uintptr_t)mach_absolutetime_last_sleep, |
| 1204 | (uintptr_t)mach_absolutetime_asleep, |
| 1205 | (uintptr_t)(mach_absolutetime_last_sleep >> 32), |
| 1206 | (uintptr_t)(mach_absolutetime_asleep >> 32)); |
| 1207 | |
| 1208 | commpage_update_mach_continuous_time(mach_absolutetime_asleep); |
| 1209 | #if HIBERNATION |
| 1210 | commpage_update_mach_continuous_time_hw_offset(hwclock_conttime_offset); |
| 1211 | #endif |
| 1212 | adjust_cont_time_thread_calls(); |
| 1213 | |
| 1214 | clock_unlock(); |
| 1215 | splx(s); |
| 1216 | |
| 1217 | host_notify_calendar_change(); |
| 1218 | |
| 1219 | #if CONFIG_DTRACE |
| 1220 | clock_track_calend_nowait(); |
| 1221 | #endif |
| 1222 | } |
| 1223 | |
| 1224 | #endif /* HAS_CONTINUOUS_HWCLOCK */ |
| 1225 | |
| 1226 | #if ENABLE_LEGACY_CLOCK_CODE |
| 1227 | |
| 1228 | static void |
| 1229 | clock_wakeup_calendar_legacy(void) |
| 1230 | { |
| 1231 | clock_sec_t wake_sys_sec; |
| 1232 | clock_usec_t wake_sys_usec; |
| 1233 | clock_sec_t wake_sec; |
| 1234 | clock_usec_t wake_usec; |
| 1235 | clock_sec_t wall_time_sec; |
| 1236 | clock_usec_t wall_time_usec; |
| 1237 | clock_sec_t diff_sec; |
| 1238 | clock_usec_t diff_usec; |
| 1239 | clock_sec_t var_s; |
| 1240 | clock_usec_t var_us; |
| 1241 | spl_t s; |
| 1242 | struct bintime bt, last_sleep_bt; |
| 1243 | struct latched_time monotonic_time; |
| 1244 | uint64_t monotonic_usec_total; |
| 1245 | uint64_t wake_abs; |
| 1246 | size_t size; |
| 1247 | |
| 1248 | /* |
| 1249 | * If the platform has the monotonic clock use that to |
| 1250 | * compute the sleep time. The monotonic clock does not have an offset |
| 1251 | * that can be modified, so nor kernel or userspace can change the time |
| 1252 | * of this clock, it can only monotonically increase over time. |
| 1253 | * During sleep mach_absolute_time (sys time) does not tick, |
| 1254 | * so the sleep time is the difference between the current monotonic time |
| 1255 | * less the absolute time and the previous difference stored at wake time. |
| 1256 | * |
| 1257 | * basesleep = (monotonic - sys) ---> computed at last wake |
| 1258 | * sleep_time = (monotonic - sys) - basesleep |
| 1259 | * |
| 1260 | * If the platform does not support monotonic clock we set the wall time to what the |
| 1261 | * UTC clock returns us. |
| 1262 | * Setting the wall time to UTC time implies that we loose all the adjustments |
| 1263 | * done during wake time through adjtime/ntp_adjustime. |
| 1264 | * The UTC time is the monotonic clock + an offset that can be set |
| 1265 | * by kernel. |
| 1266 | * The time slept in this case is the difference between wall time and UTC |
| 1267 | * at wake. |
| 1268 | * |
| 1269 | * IMPORTANT: |
| 1270 | * We assume that only the kernel is setting the offset of the PMU/RTC and that |
| 1271 | * it is doing it only througth the settimeofday interface. |
| 1272 | */ |
| 1273 | if (has_monotonic_clock) { |
| 1274 | #if DEVELOPMENT || DEBUG |
| 1275 | /* |
| 1276 | * Just for debugging, get the wake UTC time. |
| 1277 | */ |
| 1278 | PEGetUTCTimeOfDay(&var_s, &var_us); |
| 1279 | #endif |
| 1280 | /* |
| 1281 | * Get monotonic time with corresponding sys time |
| 1282 | */ |
| 1283 | size = sizeof(monotonic_time); |
| 1284 | if (kernel_sysctlbyname(name: "kern.monotonicclock_usecs" , oldp: &monotonic_time, oldlenp: &size, NULL, newlen: 0) != 0) { |
| 1285 | panic("%s: could not call kern.monotonicclock_usecs" , __func__); |
| 1286 | } |
| 1287 | wake_abs = monotonic_time.mach_time; |
| 1288 | absolutetime_to_microtime(abstime: wake_abs, secs: &wake_sys_sec, microsecs: &wake_sys_usec); |
| 1289 | |
| 1290 | monotonic_usec_total = monotonic_time.monotonic_time_usec; |
| 1291 | wake_sec = monotonic_usec_total / (clock_sec_t)USEC_PER_SEC; |
| 1292 | wake_usec = monotonic_usec_total % (clock_usec_t)USEC_PER_SEC; |
| 1293 | } else { |
| 1294 | /* |
| 1295 | * Get UTC time and corresponding sys time |
| 1296 | */ |
| 1297 | PEGetUTCTimeOfDay(secs: &wake_sec, usecs: &wake_usec); |
| 1298 | wake_abs = mach_absolute_time(); |
| 1299 | absolutetime_to_microtime(abstime: wake_abs, secs: &wake_sys_sec, microsecs: &wake_sys_usec); |
| 1300 | } |
| 1301 | |
| 1302 | #if DEVELOPMENT || DEBUG |
| 1303 | os_log(OS_LOG_DEFAULT, "time at wake %lu s %d u from %s clock, abs %llu\n" , (unsigned long)wake_sec, wake_usec, (has_monotonic_clock)?"monotonic" :"UTC" , wake_abs); |
| 1304 | if (has_monotonic_clock) { |
| 1305 | OS_ANALYZER_SUPPRESS("82347749" ) os_log(OS_LOG_DEFAULT, "UTC time %lu s %d u\n" , (unsigned long)var_s, var_us); |
| 1306 | } |
| 1307 | #endif /* DEVELOPMENT || DEBUG */ |
| 1308 | |
| 1309 | s = splclock(); |
| 1310 | clock_lock(); |
| 1311 | |
| 1312 | commpage_disable_timestamp(); |
| 1313 | |
| 1314 | #if DEVELOPMENT || DEBUG |
| 1315 | struct clock_calend clock_calend_cp1 = clock_calend; |
| 1316 | #endif /* DEVELOPMENT || DEBUG */ |
| 1317 | |
| 1318 | /* |
| 1319 | * We normally expect the UTC/monotonic clock to be always-on and produce |
| 1320 | * greater readings than the sys counter. There may be corner cases |
| 1321 | * due to differing clock resolutions (UTC/monotonic clock is likely lower) and |
| 1322 | * and errors reading the UTC/monotonic clock (some implementations return 0 |
| 1323 | * on error) in which that doesn't hold true. |
| 1324 | */ |
| 1325 | if ((wake_sys_sec > wake_sec) || ((wake_sys_sec == wake_sec) && (wake_sys_usec > wake_usec))) { |
| 1326 | os_log_error(OS_LOG_DEFAULT, "WARNING: %s clock is less then sys clock at wake: %lu s %d u vs %lu s %d u, defaulting sleep time to zero\n" , (has_monotonic_clock)?"monotonic" :"UTC" , (unsigned long)wake_sec, wake_usec, (unsigned long)wake_sys_sec, wake_sys_usec); |
| 1327 | mach_absolutetime_last_sleep = 0; |
| 1328 | goto done; |
| 1329 | } |
| 1330 | |
| 1331 | if (has_monotonic_clock) { |
| 1332 | /* |
| 1333 | * computer the difference monotonic - sys |
| 1334 | * we already checked that monotonic time is |
| 1335 | * greater than sys. |
| 1336 | */ |
| 1337 | diff_sec = wake_sec; |
| 1338 | diff_usec = wake_usec; |
| 1339 | // This macro stores the subtraction result in diff_sec and diff_usec |
| 1340 | TIME_SUB(diff_sec, wake_sys_sec, diff_usec, wake_sys_usec, USEC_PER_SEC); |
| 1341 | //This function converts diff_sec and diff_usec in bintime |
| 1342 | clock2bintime(secs: &diff_sec, microsecs: &diff_usec, bt: &bt); |
| 1343 | |
| 1344 | /* |
| 1345 | * Safety belt: the monotonic clock will likely have a lower resolution than the sys counter. |
| 1346 | * It's also possible that the device didn't fully transition to the powered-off state on |
| 1347 | * the most recent sleep, so the sys counter may not have reset or may have only briefly |
| 1348 | * turned off. In that case it's possible for the difference between the monotonic clock and the |
| 1349 | * sys counter to be less than the previously recorded value in clock.calend.basesleep. |
| 1350 | * In that case simply record that we slept for 0 ticks. |
| 1351 | */ |
| 1352 | if ((bt.sec > clock_calend.basesleep.sec) || |
| 1353 | ((bt.sec == clock_calend.basesleep.sec) && (bt.frac > clock_calend.basesleep.frac))) { |
| 1354 | //last_sleep is the difference between (current monotonic - abs) and (last wake monotonic - abs) |
| 1355 | last_sleep_bt = bt; |
| 1356 | bintime_sub(bt: &last_sleep_bt, bt2: &clock_calend.basesleep); |
| 1357 | |
| 1358 | bintime2absolutetime(bt: &last_sleep_bt, abs: &mach_absolutetime_last_sleep); |
| 1359 | mach_absolutetime_asleep += mach_absolutetime_last_sleep; |
| 1360 | |
| 1361 | //set basesleep to current monotonic - abs |
| 1362 | clock_calend.basesleep = bt; |
| 1363 | |
| 1364 | //update wall time |
| 1365 | bintime_add(bt: &clock_calend.offset, bt2: &last_sleep_bt); |
| 1366 | bintime_add(bt: &clock_calend.bintime, bt2: &last_sleep_bt); |
| 1367 | |
| 1368 | bintime2usclock(bt: &last_sleep_bt, secs: &var_s, microsecs: &var_us); |
| 1369 | os_log(OS_LOG_DEFAULT, "time_slept (%lu s %d u)\n" , (unsigned long) var_s, var_us); |
| 1370 | } else { |
| 1371 | bintime2usclock(bt: &clock_calend.basesleep, secs: &var_s, microsecs: &var_us); |
| 1372 | os_log_error(OS_LOG_DEFAULT, "WARNING: last wake monotonic-sys time (%lu s %d u) is greater then current monotonic-sys time(%lu s %d u), defaulting sleep time to zero\n" , (unsigned long) var_s, var_us, (unsigned long) diff_sec, diff_usec); |
| 1373 | |
| 1374 | mach_absolutetime_last_sleep = 0; |
| 1375 | } |
| 1376 | } else { |
| 1377 | /* |
| 1378 | * set the wall time to UTC value |
| 1379 | */ |
| 1380 | bt = get_scaled_time(now: wake_abs); |
| 1381 | bintime_add(bt: &bt, bt2: &clock_calend.bintime); |
| 1382 | bintime2usclock(bt: &bt, secs: &wall_time_sec, microsecs: &wall_time_usec); |
| 1383 | |
| 1384 | if (wall_time_sec > wake_sec || (wall_time_sec == wake_sec && wall_time_usec > wake_usec)) { |
| 1385 | os_log(OS_LOG_DEFAULT, "WARNING: wall time (%lu s %d u) is greater than current UTC time (%lu s %d u), defaulting sleep time to zero\n" , (unsigned long) wall_time_sec, wall_time_usec, (unsigned long) wake_sec, wake_usec); |
| 1386 | |
| 1387 | mach_absolutetime_last_sleep = 0; |
| 1388 | } else { |
| 1389 | diff_sec = wake_sec; |
| 1390 | diff_usec = wake_usec; |
| 1391 | // This macro stores the subtraction result in diff_sec and diff_usec |
| 1392 | TIME_SUB(diff_sec, wall_time_sec, diff_usec, wall_time_usec, USEC_PER_SEC); |
| 1393 | //This function converts diff_sec and diff_usec in bintime |
| 1394 | clock2bintime(secs: &diff_sec, microsecs: &diff_usec, bt: &bt); |
| 1395 | |
| 1396 | //time slept in this case is the difference between PMU/RTC and wall time |
| 1397 | last_sleep_bt = bt; |
| 1398 | |
| 1399 | bintime2absolutetime(bt: &last_sleep_bt, abs: &mach_absolutetime_last_sleep); |
| 1400 | mach_absolutetime_asleep += mach_absolutetime_last_sleep; |
| 1401 | |
| 1402 | //update wall time |
| 1403 | bintime_add(bt: &clock_calend.offset, bt2: &last_sleep_bt); |
| 1404 | bintime_add(bt: &clock_calend.bintime, bt2: &last_sleep_bt); |
| 1405 | |
| 1406 | bintime2usclock(bt: &last_sleep_bt, secs: &var_s, microsecs: &var_us); |
| 1407 | os_log(OS_LOG_DEFAULT, "time_slept (%lu s %d u)\n" , (unsigned long)var_s, var_us); |
| 1408 | } |
| 1409 | } |
| 1410 | done: |
| 1411 | KDBG_RELEASE(MACHDBG_CODE(DBG_MACH_CLOCK, MACH_EPOCH_CHANGE), |
| 1412 | (uintptr_t)mach_absolutetime_last_sleep, |
| 1413 | (uintptr_t)mach_absolutetime_asleep, |
| 1414 | (uintptr_t)(mach_absolutetime_last_sleep >> 32), |
| 1415 | (uintptr_t)(mach_absolutetime_asleep >> 32)); |
| 1416 | |
| 1417 | commpage_update_mach_continuous_time(sleeptime: mach_absolutetime_asleep); |
| 1418 | adjust_cont_time_thread_calls(); |
| 1419 | |
| 1420 | #if DEVELOPMENT || DEBUG |
| 1421 | struct clock_calend clock_calend_cp = clock_calend; |
| 1422 | #endif |
| 1423 | |
| 1424 | clock_unlock(); |
| 1425 | splx(s); |
| 1426 | |
| 1427 | #if DEVELOPMENT || DEBUG |
| 1428 | if (g_should_log_clock_adjustments) { |
| 1429 | print_all_clock_variables("clock_wakeup_calendar: BEFORE" , NULL, NULL, NULL, NULL, &clock_calend_cp1); |
| 1430 | print_all_clock_variables("clock_wakeup_calendar: AFTER" , NULL, NULL, NULL, NULL, &clock_calend_cp); |
| 1431 | } |
| 1432 | #endif /* DEVELOPMENT || DEBUG */ |
| 1433 | |
| 1434 | host_notify_calendar_change(); |
| 1435 | |
| 1436 | #if CONFIG_DTRACE |
| 1437 | clock_track_calend_nowait(); |
| 1438 | #endif |
| 1439 | } |
| 1440 | |
| 1441 | #endif /* ENABLE_LEGACY_CLOCK_CODE */ |
| 1442 | |
| 1443 | void |
| 1444 | clock_wakeup_calendar(void) |
| 1445 | { |
| 1446 | #if HAS_CONTINUOUS_HWCLOCK |
| 1447 | #if HIBERNATION_USES_LEGACY_CLOCK |
| 1448 | if (gIOHibernateState) { |
| 1449 | // if we're resuming from hibernation, we have to take the legacy wakeup path |
| 1450 | return clock_wakeup_calendar_legacy(); |
| 1451 | } |
| 1452 | #endif /* HIBERNATION_USES_LEGACY_CLOCK */ |
| 1453 | // use the hwclock wakeup path |
| 1454 | return clock_wakeup_calendar_hwclock(); |
| 1455 | #elif ENABLE_LEGACY_CLOCK_CODE |
| 1456 | return clock_wakeup_calendar_legacy(); |
| 1457 | #else |
| 1458 | #error "can't determine which clock code to run" |
| 1459 | #endif |
| 1460 | } |
| 1461 | |
| 1462 | /* |
| 1463 | * clock_get_boottime_nanotime: |
| 1464 | * |
| 1465 | * Return the boottime, used by sysctl. |
| 1466 | */ |
| 1467 | void |
| 1468 | clock_get_boottime_nanotime( |
| 1469 | clock_sec_t *secs, |
| 1470 | clock_nsec_t *nanosecs) |
| 1471 | { |
| 1472 | spl_t s; |
| 1473 | |
| 1474 | s = splclock(); |
| 1475 | clock_lock(); |
| 1476 | |
| 1477 | *secs = (clock_sec_t)clock_boottime; |
| 1478 | *nanosecs = (clock_nsec_t)clock_boottime_usec * NSEC_PER_USEC; |
| 1479 | |
| 1480 | clock_unlock(); |
| 1481 | splx(s); |
| 1482 | } |
| 1483 | |
| 1484 | /* |
| 1485 | * clock_get_boottime_nanotime: |
| 1486 | * |
| 1487 | * Return the boottime, used by sysctl. |
| 1488 | */ |
| 1489 | void |
| 1490 | clock_get_boottime_microtime( |
| 1491 | clock_sec_t *secs, |
| 1492 | clock_usec_t *microsecs) |
| 1493 | { |
| 1494 | spl_t s; |
| 1495 | |
| 1496 | s = splclock(); |
| 1497 | clock_lock(); |
| 1498 | |
| 1499 | *secs = (clock_sec_t)clock_boottime; |
| 1500 | *microsecs = (clock_nsec_t)clock_boottime_usec; |
| 1501 | |
| 1502 | clock_unlock(); |
| 1503 | splx(s); |
| 1504 | } |
| 1505 | |
| 1506 | |
| 1507 | /* |
| 1508 | * Wait / delay routines. |
| 1509 | */ |
| 1510 | static void |
| 1511 | mach_wait_until_continue( |
| 1512 | __unused void *parameter, |
| 1513 | wait_result_t wresult) |
| 1514 | { |
| 1515 | thread_syscall_return(ret: (wresult == THREAD_INTERRUPTED)? KERN_ABORTED: KERN_SUCCESS); |
| 1516 | /*NOTREACHED*/ |
| 1517 | } |
| 1518 | |
| 1519 | /* |
| 1520 | * mach_wait_until_trap: Suspend execution of calling thread until the specified time has passed |
| 1521 | * |
| 1522 | * Parameters: args->deadline Amount of time to wait |
| 1523 | * |
| 1524 | * Returns: 0 Success |
| 1525 | * !0 Not success |
| 1526 | * |
| 1527 | */ |
| 1528 | kern_return_t |
| 1529 | mach_wait_until_trap( |
| 1530 | struct mach_wait_until_trap_args *args) |
| 1531 | { |
| 1532 | uint64_t deadline = args->deadline; |
| 1533 | wait_result_t wresult; |
| 1534 | |
| 1535 | |
| 1536 | wresult = assert_wait_deadline_with_leeway(event: (event_t)mach_wait_until_trap, THREAD_ABORTSAFE, |
| 1537 | TIMEOUT_URGENCY_USER_NORMAL, deadline, leeway: 0); |
| 1538 | if (wresult == THREAD_WAITING) { |
| 1539 | wresult = thread_block(continuation: mach_wait_until_continue); |
| 1540 | } |
| 1541 | |
| 1542 | return (wresult == THREAD_INTERRUPTED)? KERN_ABORTED: KERN_SUCCESS; |
| 1543 | } |
| 1544 | |
| 1545 | void |
| 1546 | clock_delay_until( |
| 1547 | uint64_t deadline) |
| 1548 | { |
| 1549 | uint64_t now = mach_absolute_time(); |
| 1550 | |
| 1551 | if (now >= deadline) { |
| 1552 | return; |
| 1553 | } |
| 1554 | |
| 1555 | _clock_delay_until_deadline(interval: deadline - now, deadline); |
| 1556 | } |
| 1557 | |
| 1558 | /* |
| 1559 | * Preserve the original precise interval that the client |
| 1560 | * requested for comparison to the spin threshold. |
| 1561 | */ |
| 1562 | void |
| 1563 | _clock_delay_until_deadline( |
| 1564 | uint64_t interval, |
| 1565 | uint64_t deadline) |
| 1566 | { |
| 1567 | _clock_delay_until_deadline_with_leeway(interval, deadline, leeway: 0); |
| 1568 | } |
| 1569 | |
| 1570 | /* |
| 1571 | * Like _clock_delay_until_deadline, but it accepts a |
| 1572 | * leeway value. |
| 1573 | */ |
| 1574 | void |
| 1575 | _clock_delay_until_deadline_with_leeway( |
| 1576 | uint64_t interval, |
| 1577 | uint64_t deadline, |
| 1578 | uint64_t leeway) |
| 1579 | { |
| 1580 | if (interval == 0) { |
| 1581 | return; |
| 1582 | } |
| 1583 | |
| 1584 | if (ml_delay_should_spin(interval) || |
| 1585 | get_preemption_level() != 0 || |
| 1586 | ml_get_interrupts_enabled() == FALSE) { |
| 1587 | machine_delay_until(interval, deadline); |
| 1588 | } else { |
| 1589 | /* |
| 1590 | * For now, assume a leeway request of 0 means the client does not want a leeway |
| 1591 | * value. We may want to change this interpretation in the future. |
| 1592 | */ |
| 1593 | |
| 1594 | if (leeway) { |
| 1595 | assert_wait_deadline_with_leeway(event: (event_t)clock_delay_until, THREAD_UNINT, TIMEOUT_URGENCY_LEEWAY, deadline, leeway); |
| 1596 | } else { |
| 1597 | assert_wait_deadline(event: (event_t)clock_delay_until, THREAD_UNINT, deadline); |
| 1598 | } |
| 1599 | |
| 1600 | thread_block(THREAD_CONTINUE_NULL); |
| 1601 | } |
| 1602 | } |
| 1603 | |
| 1604 | void |
| 1605 | delay_for_interval( |
| 1606 | uint32_t interval, |
| 1607 | uint32_t scale_factor) |
| 1608 | { |
| 1609 | uint64_t abstime; |
| 1610 | |
| 1611 | clock_interval_to_absolutetime_interval(interval, scale_factor, result: &abstime); |
| 1612 | |
| 1613 | _clock_delay_until_deadline(interval: abstime, deadline: mach_absolute_time() + abstime); |
| 1614 | } |
| 1615 | |
| 1616 | void |
| 1617 | delay_for_interval_with_leeway( |
| 1618 | uint32_t interval, |
| 1619 | uint32_t leeway, |
| 1620 | uint32_t scale_factor) |
| 1621 | { |
| 1622 | uint64_t abstime_interval; |
| 1623 | uint64_t abstime_leeway; |
| 1624 | |
| 1625 | clock_interval_to_absolutetime_interval(interval, scale_factor, result: &abstime_interval); |
| 1626 | clock_interval_to_absolutetime_interval(interval: leeway, scale_factor, result: &abstime_leeway); |
| 1627 | |
| 1628 | _clock_delay_until_deadline_with_leeway(interval: abstime_interval, deadline: mach_absolute_time() + abstime_interval, leeway: abstime_leeway); |
| 1629 | } |
| 1630 | |
| 1631 | void |
| 1632 | delay( |
| 1633 | int usec) |
| 1634 | { |
| 1635 | delay_for_interval(interval: (usec < 0)? -usec: usec, NSEC_PER_USEC); |
| 1636 | } |
| 1637 | |
| 1638 | /* |
| 1639 | * Miscellaneous routines. |
| 1640 | */ |
| 1641 | void |
| 1642 | clock_interval_to_deadline( |
| 1643 | uint32_t interval, |
| 1644 | uint32_t scale_factor, |
| 1645 | uint64_t *result) |
| 1646 | { |
| 1647 | uint64_t abstime; |
| 1648 | |
| 1649 | clock_interval_to_absolutetime_interval(interval, scale_factor, result: &abstime); |
| 1650 | |
| 1651 | if (os_add_overflow(mach_absolute_time(), abstime, result)) { |
| 1652 | *result = UINT64_MAX; |
| 1653 | } |
| 1654 | } |
| 1655 | |
| 1656 | void |
| 1657 | nanoseconds_to_deadline( |
| 1658 | uint64_t interval, |
| 1659 | uint64_t *result) |
| 1660 | { |
| 1661 | uint64_t abstime; |
| 1662 | |
| 1663 | nanoseconds_to_absolutetime(nanoseconds: interval, result: &abstime); |
| 1664 | |
| 1665 | if (os_add_overflow(mach_absolute_time(), abstime, result)) { |
| 1666 | *result = UINT64_MAX; |
| 1667 | } |
| 1668 | } |
| 1669 | |
| 1670 | void |
| 1671 | clock_absolutetime_interval_to_deadline( |
| 1672 | uint64_t abstime, |
| 1673 | uint64_t *result) |
| 1674 | { |
| 1675 | if (os_add_overflow(mach_absolute_time(), abstime, result)) { |
| 1676 | *result = UINT64_MAX; |
| 1677 | } |
| 1678 | } |
| 1679 | |
| 1680 | void |
| 1681 | clock_continuoustime_interval_to_deadline( |
| 1682 | uint64_t conttime, |
| 1683 | uint64_t *result) |
| 1684 | { |
| 1685 | if (os_add_overflow(mach_continuous_time(), conttime, result)) { |
| 1686 | *result = UINT64_MAX; |
| 1687 | } |
| 1688 | } |
| 1689 | |
| 1690 | void |
| 1691 | clock_get_uptime( |
| 1692 | uint64_t *result) |
| 1693 | { |
| 1694 | *result = mach_absolute_time(); |
| 1695 | } |
| 1696 | |
| 1697 | void |
| 1698 | clock_deadline_for_periodic_event( |
| 1699 | uint64_t interval, |
| 1700 | uint64_t abstime, |
| 1701 | uint64_t *deadline) |
| 1702 | { |
| 1703 | assert(interval != 0); |
| 1704 | |
| 1705 | // *deadline += interval; |
| 1706 | if (os_add_overflow(*deadline, interval, deadline)) { |
| 1707 | *deadline = UINT64_MAX; |
| 1708 | } |
| 1709 | |
| 1710 | if (*deadline <= abstime) { |
| 1711 | // *deadline = abstime + interval; |
| 1712 | if (os_add_overflow(abstime, interval, deadline)) { |
| 1713 | *deadline = UINT64_MAX; |
| 1714 | } |
| 1715 | |
| 1716 | abstime = mach_absolute_time(); |
| 1717 | if (*deadline <= abstime) { |
| 1718 | // *deadline = abstime + interval; |
| 1719 | if (os_add_overflow(abstime, interval, deadline)) { |
| 1720 | *deadline = UINT64_MAX; |
| 1721 | } |
| 1722 | } |
| 1723 | } |
| 1724 | } |
| 1725 | |
| 1726 | uint64_t |
| 1727 | mach_continuous_time(void) |
| 1728 | { |
| 1729 | #if HIBERNATION && HAS_CONTINUOUS_HWCLOCK |
| 1730 | return ml_get_hwclock() + hwclock_conttime_offset; |
| 1731 | #elif HAS_CONTINUOUS_HWCLOCK |
| 1732 | return ml_get_hwclock(); |
| 1733 | #else |
| 1734 | while (1) { |
| 1735 | uint64_t read1 = mach_absolutetime_asleep; |
| 1736 | uint64_t absolute = mach_absolute_time(); |
| 1737 | OSMemoryBarrier(); |
| 1738 | uint64_t read2 = mach_absolutetime_asleep; |
| 1739 | |
| 1740 | if (__builtin_expect(read1 == read2, 1)) { |
| 1741 | return absolute + read1; |
| 1742 | } |
| 1743 | } |
| 1744 | #endif |
| 1745 | } |
| 1746 | |
| 1747 | uint64_t |
| 1748 | mach_continuous_approximate_time(void) |
| 1749 | { |
| 1750 | #if HAS_CONTINUOUS_HWCLOCK |
| 1751 | return mach_continuous_time(); |
| 1752 | #else |
| 1753 | while (1) { |
| 1754 | uint64_t read1 = mach_absolutetime_asleep; |
| 1755 | uint64_t absolute = mach_approximate_time(); |
| 1756 | OSMemoryBarrier(); |
| 1757 | uint64_t read2 = mach_absolutetime_asleep; |
| 1758 | |
| 1759 | if (__builtin_expect(read1 == read2, 1)) { |
| 1760 | return absolute + read1; |
| 1761 | } |
| 1762 | } |
| 1763 | #endif |
| 1764 | } |
| 1765 | |
| 1766 | /* |
| 1767 | * continuoustime_to_absolutetime |
| 1768 | * Must be called with interrupts disabled |
| 1769 | * Returned value is only valid until the next update to |
| 1770 | * mach_continuous_time |
| 1771 | */ |
| 1772 | uint64_t |
| 1773 | continuoustime_to_absolutetime(uint64_t conttime) |
| 1774 | { |
| 1775 | if (conttime <= mach_absolutetime_asleep) { |
| 1776 | return 0; |
| 1777 | } else { |
| 1778 | return conttime - mach_absolutetime_asleep; |
| 1779 | } |
| 1780 | } |
| 1781 | |
| 1782 | /* |
| 1783 | * absolutetime_to_continuoustime |
| 1784 | * Must be called with interrupts disabled |
| 1785 | * Returned value is only valid until the next update to |
| 1786 | * mach_continuous_time |
| 1787 | */ |
| 1788 | uint64_t |
| 1789 | absolutetime_to_continuoustime(uint64_t abstime) |
| 1790 | { |
| 1791 | return abstime + mach_absolutetime_asleep; |
| 1792 | } |
| 1793 | |
| 1794 | #if CONFIG_DTRACE |
| 1795 | |
| 1796 | /* |
| 1797 | * clock_get_calendar_nanotime_nowait |
| 1798 | * |
| 1799 | * Description: Non-blocking version of clock_get_calendar_nanotime() |
| 1800 | * |
| 1801 | * Notes: This function operates by separately tracking calendar time |
| 1802 | * updates using a two element structure to copy the calendar |
| 1803 | * state, which may be asynchronously modified. It utilizes |
| 1804 | * barrier instructions in the tracking process and in the local |
| 1805 | * stable snapshot process in order to ensure that a consistent |
| 1806 | * snapshot is used to perform the calculation. |
| 1807 | */ |
| 1808 | void |
| 1809 | clock_get_calendar_nanotime_nowait( |
| 1810 | clock_sec_t *secs, |
| 1811 | clock_nsec_t *nanosecs) |
| 1812 | { |
| 1813 | int i = 0; |
| 1814 | uint64_t now; |
| 1815 | struct unlocked_clock_calend stable; |
| 1816 | struct bintime bt; |
| 1817 | |
| 1818 | for (;;) { |
| 1819 | stable = flipflop[i]; /* take snapshot */ |
| 1820 | |
| 1821 | /* |
| 1822 | * Use a barrier instructions to ensure atomicity. We AND |
| 1823 | * off the "in progress" bit to get the current generation |
| 1824 | * count. |
| 1825 | */ |
| 1826 | os_atomic_andnot(&stable.gen, 1, relaxed); |
| 1827 | |
| 1828 | /* |
| 1829 | * If an update _is_ in progress, the generation count will be |
| 1830 | * off by one, if it _was_ in progress, it will be off by two, |
| 1831 | * and if we caught it at a good time, it will be equal (and |
| 1832 | * our snapshot is threfore stable). |
| 1833 | */ |
| 1834 | if (flipflop[i].gen == stable.gen) { |
| 1835 | break; |
| 1836 | } |
| 1837 | |
| 1838 | /* Switch to the other element of the flipflop, and try again. */ |
| 1839 | i ^= 1; |
| 1840 | } |
| 1841 | |
| 1842 | now = mach_absolute_time(); |
| 1843 | |
| 1844 | bt = get_scaled_time(now); |
| 1845 | |
| 1846 | bintime_add(bt: &bt, bt2: &clock_calend.bintime); |
| 1847 | |
| 1848 | bintime2nsclock(bt: &bt, secs, nanosecs); |
| 1849 | } |
| 1850 | |
| 1851 | static void |
| 1852 | clock_track_calend_nowait(void) |
| 1853 | { |
| 1854 | int i; |
| 1855 | |
| 1856 | for (i = 0; i < 2; i++) { |
| 1857 | struct clock_calend tmp = clock_calend; |
| 1858 | |
| 1859 | /* |
| 1860 | * Set the low bit if the generation count; since we use a |
| 1861 | * barrier instruction to do this, we are guaranteed that this |
| 1862 | * will flag an update in progress to an async caller trying |
| 1863 | * to examine the contents. |
| 1864 | */ |
| 1865 | os_atomic_or(&flipflop[i].gen, 1, relaxed); |
| 1866 | |
| 1867 | flipflop[i].calend = tmp; |
| 1868 | |
| 1869 | /* |
| 1870 | * Increment the generation count to clear the low bit to |
| 1871 | * signal completion. If a caller compares the generation |
| 1872 | * count after taking a copy while in progress, the count |
| 1873 | * will be off by two. |
| 1874 | */ |
| 1875 | os_atomic_inc(&flipflop[i].gen, relaxed); |
| 1876 | } |
| 1877 | } |
| 1878 | |
| 1879 | #endif /* CONFIG_DTRACE */ |
| 1880 | |