| 1 | /* |
| 2 | * Copyright (c) 2000-2018 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
| 5 | * |
| 6 | * This file contains Original Code and/or Modifications of Original Code |
| 7 | * as defined in and that are subject to the Apple Public Source License |
| 8 | * Version 2.0 (the 'License'). You may not use this file except in |
| 9 | * compliance with the License. The rights granted to you under the License |
| 10 | * may not be used to create, or enable the creation or redistribution of, |
| 11 | * unlawful or unlicensed copies of an Apple operating system, or to |
| 12 | * circumvent, violate, or enable the circumvention or violation of, any |
| 13 | * terms of an Apple operating system software license agreement. |
| 14 | * |
| 15 | * Please obtain a copy of the License at |
| 16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
| 17 | * |
| 18 | * The Original Code and all software distributed under the License are |
| 19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| 23 | * Please see the License for the specific language governing rights and |
| 24 | * limitations under the License. |
| 25 | * |
| 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
| 27 | */ |
| 28 | #include <mach/mach_types.h> |
| 29 | #include <mach/machine/vm_param.h> |
| 30 | #include <mach/task.h> |
| 31 | |
| 32 | #include <kern/kern_types.h> |
| 33 | #include <kern/ledger.h> |
| 34 | #include <kern/processor.h> |
| 35 | #include <kern/thread.h> |
| 36 | #include <kern/task.h> |
| 37 | #include <kern/spl.h> |
| 38 | #include <kern/ast.h> |
| 39 | #include <kern/monotonic.h> |
| 40 | #include <machine/monotonic.h> |
| 41 | #include <ipc/ipc_port.h> |
| 42 | #include <ipc/ipc_object.h> |
| 43 | #include <vm/vm_map.h> |
| 44 | #include <vm/vm_kern.h> |
| 45 | #include <vm/pmap.h> |
| 46 | #include <vm/vm_protos.h> /* last */ |
| 47 | #include <sys/resource.h> |
| 48 | #include <sys/signal.h> |
| 49 | #include <sys/errno.h> |
| 50 | #include <sys/proc_require.h> |
| 51 | |
| 52 | #include <machine/limits.h> |
| 53 | #include <sys/codesign.h> /* CS_CDHASH_LEN */ |
| 54 | |
| 55 | #undef thread_should_halt |
| 56 | |
| 57 | /* BSD KERN COMPONENT INTERFACE */ |
| 58 | |
| 59 | extern unsigned int not_in_kdp; /* Skip acquiring locks if we're in kdp */ |
| 60 | |
| 61 | thread_t get_firstthread(task_t); |
| 62 | int get_task_userstop(task_t); |
| 63 | int get_thread_userstop(thread_t); |
| 64 | boolean_t current_thread_aborted(void); |
| 65 | void task_act_iterate_wth_args_locked(task_t, void (*)(thread_t, void *), void *); |
| 66 | void task_act_iterate_wth_args(task_t, void (*)(thread_t, void *), void *); |
| 67 | kern_return_t get_signalact(task_t, thread_t *, int); |
| 68 | int fill_task_rusage(task_t task, rusage_info_current *ri); |
| 69 | int fill_task_io_rusage(task_t task, rusage_info_current *ri); |
| 70 | int fill_task_qos_rusage(task_t task, rusage_info_current *ri); |
| 71 | uint64_t get_task_logical_writes(task_t task, bool external); |
| 72 | void fill_task_billed_usage(task_t task, rusage_info_current *ri); |
| 73 | void task_bsdtask_kill(task_t); |
| 74 | |
| 75 | extern uint64_t get_dispatchqueue_serialno_offset_from_proc(void *p); |
| 76 | extern uint64_t get_dispatchqueue_label_offset_from_proc(void *p); |
| 77 | extern uint64_t proc_uniqueid_task(void *p, void *t); |
| 78 | extern int proc_pidversion(void *p); |
| 79 | extern int proc_getcdhash(void *p, char *cdhash); |
| 80 | |
| 81 | int mach_to_bsd_errno(kern_return_t mach_err); |
| 82 | kern_return_t bsd_to_mach_failure(int bsd_err); |
| 83 | |
| 84 | #if MACH_BSD |
| 85 | extern void psignal(void *, int); |
| 86 | #endif |
| 87 | |
| 88 | /* |
| 89 | * |
| 90 | */ |
| 91 | void * |
| 92 | get_bsdtask_info(task_t t) |
| 93 | { |
| 94 | void *proc_from_task = task_get_proc_raw(task: t); |
| 95 | proc_require(proc: proc_from_task, flags: PROC_REQUIRE_ALLOW_NULL | PROC_REQUIRE_ALLOW_ALL); |
| 96 | return task_has_proc(t) ? proc_from_task : NULL; |
| 97 | } |
| 98 | |
| 99 | void |
| 100 | task_bsdtask_kill(task_t t) |
| 101 | { |
| 102 | void * bsd_info = get_bsdtask_info(t); |
| 103 | if (bsd_info != NULL) { |
| 104 | psignal(bsd_info, SIGKILL); |
| 105 | } |
| 106 | } |
| 107 | /* |
| 108 | * |
| 109 | */ |
| 110 | void * |
| 111 | get_bsdthreadtask_info(thread_t th) |
| 112 | { |
| 113 | return get_thread_ro(th)->tro_proc; |
| 114 | } |
| 115 | |
| 116 | /* |
| 117 | * |
| 118 | */ |
| 119 | void |
| 120 | set_bsdtask_info(task_t t, void * v) |
| 121 | { |
| 122 | void *proc_from_task = task_get_proc_raw(task: t); |
| 123 | if (v == NULL) { |
| 124 | task_clear_has_proc(t); |
| 125 | } else { |
| 126 | if (v != proc_from_task) { |
| 127 | panic("set_bsdtask_info trying to set random bsd_info %p" , v); |
| 128 | } |
| 129 | task_set_has_proc(t); |
| 130 | } |
| 131 | } |
| 132 | |
| 133 | __abortlike |
| 134 | static void |
| 135 | __thread_ro_circularity_panic(thread_t th, thread_ro_t tro) |
| 136 | { |
| 137 | panic("tro %p points back to %p instead of %p" , tro, tro->tro_owner, th); |
| 138 | } |
| 139 | |
| 140 | __attribute__((always_inline)) |
| 141 | thread_ro_t |
| 142 | get_thread_ro_unchecked(thread_t th) |
| 143 | { |
| 144 | return th->t_tro; |
| 145 | } |
| 146 | |
| 147 | thread_ro_t |
| 148 | get_thread_ro(thread_t th) |
| 149 | { |
| 150 | thread_ro_t tro = th->t_tro; |
| 151 | |
| 152 | zone_require_ro(zone_id: ZONE_ID_THREAD_RO, elem_size: sizeof(struct thread_ro), addr: tro); |
| 153 | if (tro->tro_owner != th) { |
| 154 | __thread_ro_circularity_panic(th, tro); |
| 155 | } |
| 156 | return tro; |
| 157 | } |
| 158 | |
| 159 | __attribute__((always_inline)) |
| 160 | thread_ro_t |
| 161 | current_thread_ro_unchecked(void) |
| 162 | { |
| 163 | return get_thread_ro_unchecked(th: current_thread()); |
| 164 | } |
| 165 | |
| 166 | thread_ro_t |
| 167 | current_thread_ro(void) |
| 168 | { |
| 169 | return get_thread_ro(th: current_thread()); |
| 170 | } |
| 171 | |
| 172 | void |
| 173 | clear_thread_ro_proc(thread_t th) |
| 174 | { |
| 175 | thread_ro_t tro = get_thread_ro(th); |
| 176 | |
| 177 | zalloc_ro_clear_field(ZONE_ID_THREAD_RO, tro, tro_proc); |
| 178 | } |
| 179 | |
| 180 | struct uthread * |
| 181 | get_bsdthread_info(thread_t th) |
| 182 | { |
| 183 | return (struct uthread *)((uintptr_t)th + sizeof(struct thread)); |
| 184 | } |
| 185 | |
| 186 | thread_t |
| 187 | get_machthread(struct uthread *uth) |
| 188 | { |
| 189 | return (struct thread *)((uintptr_t)uth - sizeof(struct thread)); |
| 190 | } |
| 191 | |
| 192 | /* |
| 193 | * This is used to remember any FS error from VNOP_PAGEIN code when |
| 194 | * invoked under vm_fault(). The value is an errno style value. It can |
| 195 | * be retrieved by exception handlers using thread_get_state(). |
| 196 | */ |
| 197 | void |
| 198 | set_thread_pagein_error(thread_t th, int error) |
| 199 | { |
| 200 | assert(th == current_thread()); |
| 201 | if (error == 0 || th->t_pagein_error == 0) { |
| 202 | th->t_pagein_error = error; |
| 203 | } |
| 204 | } |
| 205 | |
| 206 | #if defined(__x86_64__) |
| 207 | /* |
| 208 | * Returns non-zero if the thread has a non-NULL task |
| 209 | * and that task has an LDT. |
| 210 | */ |
| 211 | int |
| 212 | thread_task_has_ldt(thread_t th) |
| 213 | { |
| 214 | task_t task = get_threadtask(th); |
| 215 | return task && task->i386_ldt != 0; |
| 216 | } |
| 217 | #endif /* __x86_64__ */ |
| 218 | |
| 219 | /* |
| 220 | * XXX |
| 221 | */ |
| 222 | int get_thread_lock_count(thread_t th); /* forced forward */ |
| 223 | int |
| 224 | get_thread_lock_count(thread_t th __unused) |
| 225 | { |
| 226 | /* |
| 227 | * TODO: one day: resurect counting locks held to disallow |
| 228 | * holding locks across upcalls. |
| 229 | * |
| 230 | * never worked on arm. |
| 231 | */ |
| 232 | return 0; |
| 233 | } |
| 234 | |
| 235 | /* |
| 236 | * Returns a thread reference. |
| 237 | */ |
| 238 | thread_t |
| 239 | get_firstthread(task_t task) |
| 240 | { |
| 241 | thread_t thread = THREAD_NULL; |
| 242 | task_lock(task); |
| 243 | |
| 244 | if (!task->active) { |
| 245 | task_unlock(task); |
| 246 | return THREAD_NULL; |
| 247 | } |
| 248 | |
| 249 | thread = (thread_t)(void *)queue_first(&task->threads); |
| 250 | |
| 251 | if (queue_end(&task->threads, (queue_entry_t)thread)) { |
| 252 | task_unlock(task); |
| 253 | return THREAD_NULL; |
| 254 | } |
| 255 | |
| 256 | thread_reference(thread); |
| 257 | task_unlock(task); |
| 258 | return thread; |
| 259 | } |
| 260 | |
| 261 | kern_return_t |
| 262 | get_signalact( |
| 263 | task_t task, |
| 264 | thread_t *result_out, |
| 265 | int setast) |
| 266 | { |
| 267 | kern_return_t result = KERN_SUCCESS; |
| 268 | thread_t inc, thread = THREAD_NULL; |
| 269 | |
| 270 | task_lock(task); |
| 271 | |
| 272 | if (!task->active) { |
| 273 | task_unlock(task); |
| 274 | |
| 275 | return KERN_FAILURE; |
| 276 | } |
| 277 | |
| 278 | for (inc = (thread_t)(void *)queue_first(&task->threads); |
| 279 | !queue_end(&task->threads, (queue_entry_t)inc);) { |
| 280 | thread_mtx_lock(thread: inc); |
| 281 | if (inc->active && |
| 282 | (inc->sched_flags & TH_SFLAG_ABORTED_MASK) != TH_SFLAG_ABORT) { |
| 283 | thread = inc; |
| 284 | break; |
| 285 | } |
| 286 | thread_mtx_unlock(thread: inc); |
| 287 | |
| 288 | inc = (thread_t)(void *)queue_next(&inc->task_threads); |
| 289 | } |
| 290 | |
| 291 | if (result_out) { |
| 292 | *result_out = thread; |
| 293 | } |
| 294 | |
| 295 | if (thread) { |
| 296 | if (setast) { |
| 297 | act_set_astbsd(thread); |
| 298 | } |
| 299 | |
| 300 | thread_mtx_unlock(thread); |
| 301 | } else { |
| 302 | result = KERN_FAILURE; |
| 303 | } |
| 304 | |
| 305 | task_unlock(task); |
| 306 | |
| 307 | return result; |
| 308 | } |
| 309 | |
| 310 | |
| 311 | kern_return_t |
| 312 | check_actforsig( |
| 313 | task_t task, |
| 314 | thread_t thread, |
| 315 | int setast) |
| 316 | { |
| 317 | kern_return_t result = KERN_FAILURE; |
| 318 | thread_t inc; |
| 319 | |
| 320 | task_lock(task); |
| 321 | |
| 322 | if (!task->active) { |
| 323 | task_unlock(task); |
| 324 | |
| 325 | return KERN_FAILURE; |
| 326 | } |
| 327 | |
| 328 | for (inc = (thread_t)(void *)queue_first(&task->threads); |
| 329 | !queue_end(&task->threads, (queue_entry_t)inc);) { |
| 330 | if (inc == thread) { |
| 331 | thread_mtx_lock(thread: inc); |
| 332 | |
| 333 | if (inc->active && |
| 334 | (inc->sched_flags & TH_SFLAG_ABORTED_MASK) != TH_SFLAG_ABORT) { |
| 335 | result = KERN_SUCCESS; |
| 336 | break; |
| 337 | } |
| 338 | |
| 339 | thread_mtx_unlock(thread: inc); |
| 340 | break; |
| 341 | } |
| 342 | |
| 343 | inc = (thread_t)(void *)queue_next(&inc->task_threads); |
| 344 | } |
| 345 | |
| 346 | if (result == KERN_SUCCESS) { |
| 347 | if (setast) { |
| 348 | act_set_astbsd(thread); |
| 349 | } |
| 350 | |
| 351 | thread_mtx_unlock(thread); |
| 352 | } |
| 353 | |
| 354 | task_unlock(task); |
| 355 | |
| 356 | return result; |
| 357 | } |
| 358 | |
| 359 | ledger_t |
| 360 | get_task_ledger(task_t t) |
| 361 | { |
| 362 | return t->ledger; |
| 363 | } |
| 364 | |
| 365 | /* |
| 366 | * This is only safe to call from a thread executing in |
| 367 | * in the task's context or if the task is locked. Otherwise, |
| 368 | * the map could be switched for the task (and freed) before |
| 369 | * we go to return it here. |
| 370 | */ |
| 371 | vm_map_t |
| 372 | get_task_map(task_t t) |
| 373 | { |
| 374 | return t->map; |
| 375 | } |
| 376 | |
| 377 | vm_map_t |
| 378 | get_task_map_reference(task_t t) |
| 379 | { |
| 380 | vm_map_t m; |
| 381 | |
| 382 | if (t == NULL) { |
| 383 | return VM_MAP_NULL; |
| 384 | } |
| 385 | |
| 386 | task_lock(t); |
| 387 | if (!t->active) { |
| 388 | task_unlock(t); |
| 389 | return VM_MAP_NULL; |
| 390 | } |
| 391 | m = t->map; |
| 392 | vm_map_reference(map: m); |
| 393 | task_unlock(t); |
| 394 | return m; |
| 395 | } |
| 396 | |
| 397 | /* |
| 398 | * |
| 399 | */ |
| 400 | ipc_space_t |
| 401 | get_task_ipcspace(task_t t) |
| 402 | { |
| 403 | return t->itk_space; |
| 404 | } |
| 405 | |
| 406 | int |
| 407 | get_task_numacts(task_t t) |
| 408 | { |
| 409 | return t->thread_count; |
| 410 | } |
| 411 | |
| 412 | /* does this machine need 64bit register set for signal handler */ |
| 413 | int |
| 414 | is_64signalregset(void) |
| 415 | { |
| 416 | if (task_has_64Bit_data(current_task())) { |
| 417 | return 1; |
| 418 | } |
| 419 | |
| 420 | return 0; |
| 421 | } |
| 422 | |
| 423 | /* |
| 424 | * Swap in a new map for the task/thread pair; the old map reference is |
| 425 | * returned. Also does a pmap switch if thread provided is current thread. |
| 426 | */ |
| 427 | vm_map_t |
| 428 | swap_task_map(task_t task, thread_t thread, vm_map_t map) |
| 429 | { |
| 430 | vm_map_t old_map; |
| 431 | boolean_t doswitch = (thread == current_thread()) ? TRUE : FALSE; |
| 432 | |
| 433 | if (task != get_threadtask(thread)) { |
| 434 | panic("swap_task_map" ); |
| 435 | } |
| 436 | |
| 437 | task_lock(task); |
| 438 | mp_disable_preemption(); |
| 439 | |
| 440 | old_map = task->map; |
| 441 | thread->map = task->map = map; |
| 442 | vm_commit_pagezero_status(tmap: map); |
| 443 | |
| 444 | if (doswitch) { |
| 445 | PMAP_SWITCH_USER(thread, map, cpu_number()); |
| 446 | } |
| 447 | mp_enable_preemption(); |
| 448 | task_unlock(task); |
| 449 | |
| 450 | return old_map; |
| 451 | } |
| 452 | |
| 453 | /* |
| 454 | * |
| 455 | * This is only safe to call from a thread executing in |
| 456 | * in the task's context or if the task is locked. Otherwise, |
| 457 | * the map could be switched for the task (and freed) before |
| 458 | * we go to return it here. |
| 459 | */ |
| 460 | pmap_t |
| 461 | get_task_pmap(task_t t) |
| 462 | { |
| 463 | return t->map->pmap; |
| 464 | } |
| 465 | |
| 466 | /* |
| 467 | * |
| 468 | */ |
| 469 | uint64_t |
| 470 | get_task_resident_size(task_t task) |
| 471 | { |
| 472 | uint64_t val; |
| 473 | |
| 474 | ledger_get_balance(ledger: task->ledger, entry: task_ledgers.phys_mem, balance: (ledger_amount_t *) &val); |
| 475 | return val; |
| 476 | } |
| 477 | |
| 478 | uint64_t |
| 479 | get_task_compressed(task_t task) |
| 480 | { |
| 481 | uint64_t val; |
| 482 | |
| 483 | ledger_get_balance(ledger: task->ledger, entry: task_ledgers.internal_compressed, balance: (ledger_amount_t *) &val); |
| 484 | return val; |
| 485 | } |
| 486 | |
| 487 | uint64_t |
| 488 | get_task_resident_max(task_t task) |
| 489 | { |
| 490 | uint64_t val; |
| 491 | |
| 492 | ledger_get_lifetime_max(ledger: task->ledger, entry: task_ledgers.phys_mem, max_lifetime_balance: (ledger_amount_t *) &val); |
| 493 | return val; |
| 494 | } |
| 495 | |
| 496 | /* |
| 497 | * Get the balance for a given field in the task ledger. |
| 498 | * Returns 0 if the entry is invalid. |
| 499 | */ |
| 500 | static uint64_t |
| 501 | get_task_ledger_balance(task_t task, int entry) |
| 502 | { |
| 503 | ledger_amount_t balance = 0; |
| 504 | |
| 505 | ledger_get_balance(ledger: task->ledger, entry, balance: &balance); |
| 506 | return balance; |
| 507 | } |
| 508 | |
| 509 | uint64_t |
| 510 | get_task_purgeable_size(task_t task) |
| 511 | { |
| 512 | kern_return_t ret; |
| 513 | ledger_amount_t balance = 0; |
| 514 | uint64_t volatile_size = 0; |
| 515 | |
| 516 | ret = ledger_get_balance(ledger: task->ledger, entry: task_ledgers.purgeable_volatile, balance: &balance); |
| 517 | if (ret != KERN_SUCCESS) { |
| 518 | return 0; |
| 519 | } |
| 520 | |
| 521 | volatile_size += balance; |
| 522 | |
| 523 | ret = ledger_get_balance(ledger: task->ledger, entry: task_ledgers.purgeable_volatile_compressed, balance: &balance); |
| 524 | if (ret != KERN_SUCCESS) { |
| 525 | return 0; |
| 526 | } |
| 527 | |
| 528 | volatile_size += balance; |
| 529 | |
| 530 | return volatile_size; |
| 531 | } |
| 532 | |
| 533 | /* |
| 534 | * |
| 535 | */ |
| 536 | uint64_t |
| 537 | (task_t task) |
| 538 | { |
| 539 | return get_task_ledger_balance(task, entry: task_ledgers.phys_footprint); |
| 540 | } |
| 541 | |
| 542 | #if CONFIG_LEDGER_INTERVAL_MAX |
| 543 | /* |
| 544 | * |
| 545 | */ |
| 546 | uint64_t |
| 547 | (task_t task, int reset) |
| 548 | { |
| 549 | kern_return_t ret; |
| 550 | ledger_amount_t max; |
| 551 | |
| 552 | ret = ledger_get_interval_max(ledger: task->ledger, entry: task_ledgers.phys_footprint, max_interval_balance: &max, reset); |
| 553 | |
| 554 | if (KERN_SUCCESS == ret) { |
| 555 | return max; |
| 556 | } |
| 557 | |
| 558 | return 0; |
| 559 | } |
| 560 | #endif /* CONFIG_LEDGER_INTERVAL_MAX */ |
| 561 | |
| 562 | /* |
| 563 | * |
| 564 | */ |
| 565 | uint64_t |
| 566 | (task_t task) |
| 567 | { |
| 568 | kern_return_t ret; |
| 569 | ledger_amount_t max; |
| 570 | |
| 571 | ret = ledger_get_lifetime_max(ledger: task->ledger, entry: task_ledgers.phys_footprint, max_lifetime_balance: &max); |
| 572 | |
| 573 | if (KERN_SUCCESS == ret) { |
| 574 | return max; |
| 575 | } |
| 576 | |
| 577 | return 0; |
| 578 | } |
| 579 | |
| 580 | /* |
| 581 | * |
| 582 | */ |
| 583 | uint64_t |
| 584 | (task_t task) |
| 585 | { |
| 586 | kern_return_t ret; |
| 587 | ledger_amount_t max; |
| 588 | |
| 589 | ret = ledger_get_limit(ledger: task->ledger, entry: task_ledgers.phys_footprint, limit: &max); |
| 590 | if (KERN_SUCCESS == ret) { |
| 591 | return max; |
| 592 | } |
| 593 | |
| 594 | return 0; |
| 595 | } |
| 596 | |
| 597 | uint64_t |
| 598 | get_task_internal(task_t task) |
| 599 | { |
| 600 | return get_task_ledger_balance(task, entry: task_ledgers.internal); |
| 601 | } |
| 602 | |
| 603 | uint64_t |
| 604 | get_task_internal_compressed(task_t task) |
| 605 | { |
| 606 | return get_task_ledger_balance(task, entry: task_ledgers.internal_compressed); |
| 607 | } |
| 608 | |
| 609 | uint64_t |
| 610 | get_task_purgeable_nonvolatile(task_t task) |
| 611 | { |
| 612 | return get_task_ledger_balance(task, entry: task_ledgers.purgeable_nonvolatile); |
| 613 | } |
| 614 | |
| 615 | uint64_t |
| 616 | get_task_purgeable_nonvolatile_compressed(task_t task) |
| 617 | { |
| 618 | return get_task_ledger_balance(task, entry: task_ledgers.purgeable_nonvolatile_compressed); |
| 619 | } |
| 620 | |
| 621 | uint64_t |
| 622 | get_task_alternate_accounting(task_t task) |
| 623 | { |
| 624 | return get_task_ledger_balance(task, entry: task_ledgers.alternate_accounting); |
| 625 | } |
| 626 | |
| 627 | uint64_t |
| 628 | get_task_alternate_accounting_compressed(task_t task) |
| 629 | { |
| 630 | return get_task_ledger_balance(task, entry: task_ledgers.alternate_accounting_compressed); |
| 631 | } |
| 632 | |
| 633 | uint64_t |
| 634 | get_task_page_table(task_t task) |
| 635 | { |
| 636 | return get_task_ledger_balance(task, entry: task_ledgers.page_table); |
| 637 | } |
| 638 | |
| 639 | #if CONFIG_FREEZE |
| 640 | uint64_t |
| 641 | get_task_frozen_to_swap(task_t task) |
| 642 | { |
| 643 | return get_task_ledger_balance(task, task_ledgers.frozen_to_swap); |
| 644 | } |
| 645 | #endif /* CONFIG_FREEZE */ |
| 646 | |
| 647 | uint64_t |
| 648 | get_task_iokit_mapped(task_t task) |
| 649 | { |
| 650 | return get_task_ledger_balance(task, entry: task_ledgers.iokit_mapped); |
| 651 | } |
| 652 | |
| 653 | uint64_t |
| 654 | get_task_network_nonvolatile(task_t task) |
| 655 | { |
| 656 | return get_task_ledger_balance(task, entry: task_ledgers.network_nonvolatile); |
| 657 | } |
| 658 | |
| 659 | uint64_t |
| 660 | get_task_network_nonvolatile_compressed(task_t task) |
| 661 | { |
| 662 | return get_task_ledger_balance(task, entry: task_ledgers.network_nonvolatile_compressed); |
| 663 | } |
| 664 | |
| 665 | uint64_t |
| 666 | get_task_wired_mem(task_t task) |
| 667 | { |
| 668 | return get_task_ledger_balance(task, entry: task_ledgers.wired_mem); |
| 669 | } |
| 670 | |
| 671 | uint64_t |
| 672 | (task_t task) |
| 673 | { |
| 674 | kern_return_t ret; |
| 675 | ledger_amount_t credit, debit; |
| 676 | |
| 677 | ret = ledger_get_entries(ledger: task->ledger, entry: task_ledgers.tagged_footprint, credit: &credit, debit: &debit); |
| 678 | if (KERN_SUCCESS == ret) { |
| 679 | return credit - debit; |
| 680 | } |
| 681 | |
| 682 | return 0; |
| 683 | } |
| 684 | |
| 685 | uint64_t |
| 686 | (task_t task) |
| 687 | { |
| 688 | kern_return_t ret; |
| 689 | ledger_amount_t credit, debit; |
| 690 | |
| 691 | ret = ledger_get_entries(ledger: task->ledger, entry: task_ledgers.tagged_footprint_compressed, credit: &credit, debit: &debit); |
| 692 | if (KERN_SUCCESS == ret) { |
| 693 | return credit - debit; |
| 694 | } |
| 695 | |
| 696 | return 0; |
| 697 | } |
| 698 | |
| 699 | uint64_t |
| 700 | (task_t task) |
| 701 | { |
| 702 | kern_return_t ret; |
| 703 | ledger_amount_t credit, debit; |
| 704 | |
| 705 | ret = ledger_get_entries(ledger: task->ledger, entry: task_ledgers.media_footprint, credit: &credit, debit: &debit); |
| 706 | if (KERN_SUCCESS == ret) { |
| 707 | return credit - debit; |
| 708 | } |
| 709 | |
| 710 | return 0; |
| 711 | } |
| 712 | |
| 713 | uint64_t |
| 714 | (task_t task) |
| 715 | { |
| 716 | kern_return_t ret; |
| 717 | ledger_amount_t credit, debit; |
| 718 | |
| 719 | ret = ledger_get_entries(ledger: task->ledger, entry: task_ledgers.media_footprint_compressed, credit: &credit, debit: &debit); |
| 720 | if (KERN_SUCCESS == ret) { |
| 721 | return credit - debit; |
| 722 | } |
| 723 | |
| 724 | return 0; |
| 725 | } |
| 726 | |
| 727 | uint64_t |
| 728 | (task_t task) |
| 729 | { |
| 730 | kern_return_t ret; |
| 731 | ledger_amount_t credit, debit; |
| 732 | |
| 733 | ret = ledger_get_entries(ledger: task->ledger, entry: task_ledgers.graphics_footprint, credit: &credit, debit: &debit); |
| 734 | if (KERN_SUCCESS == ret) { |
| 735 | return credit - debit; |
| 736 | } |
| 737 | |
| 738 | return 0; |
| 739 | } |
| 740 | |
| 741 | |
| 742 | uint64_t |
| 743 | (task_t task) |
| 744 | { |
| 745 | kern_return_t ret; |
| 746 | ledger_amount_t credit, debit; |
| 747 | |
| 748 | ret = ledger_get_entries(ledger: task->ledger, entry: task_ledgers.graphics_footprint_compressed, credit: &credit, debit: &debit); |
| 749 | if (KERN_SUCCESS == ret) { |
| 750 | return credit - debit; |
| 751 | } |
| 752 | |
| 753 | return 0; |
| 754 | } |
| 755 | |
| 756 | uint64_t |
| 757 | (task_t task) |
| 758 | { |
| 759 | kern_return_t ret; |
| 760 | ledger_amount_t credit, debit; |
| 761 | |
| 762 | ret = ledger_get_entries(ledger: task->ledger, entry: task_ledgers.neural_footprint, credit: &credit, debit: &debit); |
| 763 | if (KERN_SUCCESS == ret) { |
| 764 | return credit - debit; |
| 765 | } |
| 766 | |
| 767 | return 0; |
| 768 | } |
| 769 | |
| 770 | uint64_t |
| 771 | (task_t task) |
| 772 | { |
| 773 | kern_return_t ret; |
| 774 | ledger_amount_t credit, debit; |
| 775 | |
| 776 | ret = ledger_get_entries(ledger: task->ledger, entry: task_ledgers.neural_footprint_compressed, credit: &credit, debit: &debit); |
| 777 | if (KERN_SUCCESS == ret) { |
| 778 | return credit - debit; |
| 779 | } |
| 780 | |
| 781 | return 0; |
| 782 | } |
| 783 | |
| 784 | uint64_t |
| 785 | get_task_cpu_time(task_t task) |
| 786 | { |
| 787 | return get_task_ledger_balance(task, entry: task_ledgers.cpu_time); |
| 788 | } |
| 789 | |
| 790 | uint32_t |
| 791 | get_task_loadTag(task_t task) |
| 792 | { |
| 793 | return os_atomic_load(&task->loadTag, relaxed); |
| 794 | } |
| 795 | |
| 796 | uint32_t |
| 797 | set_task_loadTag(task_t task, uint32_t loadTag) |
| 798 | { |
| 799 | return os_atomic_xchg(&task->loadTag, loadTag, relaxed); |
| 800 | } |
| 801 | |
| 802 | |
| 803 | task_t |
| 804 | get_threadtask(thread_t th) |
| 805 | { |
| 806 | return get_thread_ro(th)->tro_task; |
| 807 | } |
| 808 | |
| 809 | task_t |
| 810 | get_threadtask_early(thread_t th) |
| 811 | { |
| 812 | if (__improbable(startup_phase < STARTUP_SUB_EARLY_BOOT)) { |
| 813 | if (th == THREAD_NULL || th->t_tro == NULL) { |
| 814 | return TASK_NULL; |
| 815 | } |
| 816 | } |
| 817 | return get_threadtask(th); |
| 818 | } |
| 819 | |
| 820 | /* |
| 821 | * |
| 822 | */ |
| 823 | vm_map_offset_t |
| 824 | get_map_min( |
| 825 | vm_map_t map) |
| 826 | { |
| 827 | return vm_map_min(map); |
| 828 | } |
| 829 | |
| 830 | /* |
| 831 | * |
| 832 | */ |
| 833 | vm_map_offset_t |
| 834 | get_map_max( |
| 835 | vm_map_t map) |
| 836 | { |
| 837 | return vm_map_max(map); |
| 838 | } |
| 839 | vm_map_size_t |
| 840 | get_vmmap_size( |
| 841 | vm_map_t map) |
| 842 | { |
| 843 | return vm_map_adjusted_size(map); |
| 844 | } |
| 845 | int |
| 846 | get_task_page_size( |
| 847 | task_t task) |
| 848 | { |
| 849 | return vm_map_page_size(map: task->map); |
| 850 | } |
| 851 | |
| 852 | #if CONFIG_COREDUMP |
| 853 | |
| 854 | static int |
| 855 | get_vmsubmap_entries( |
| 856 | vm_map_t map, |
| 857 | vm_object_offset_t start, |
| 858 | vm_object_offset_t end) |
| 859 | { |
| 860 | int total_entries = 0; |
| 861 | vm_map_entry_t entry; |
| 862 | |
| 863 | if (not_in_kdp) { |
| 864 | vm_map_lock(map); |
| 865 | } |
| 866 | entry = vm_map_first_entry(map); |
| 867 | while ((entry != vm_map_to_entry(map)) && (entry->vme_start < start)) { |
| 868 | entry = entry->vme_next; |
| 869 | } |
| 870 | |
| 871 | while ((entry != vm_map_to_entry(map)) && (entry->vme_start < end)) { |
| 872 | if (entry->is_sub_map) { |
| 873 | total_entries += |
| 874 | get_vmsubmap_entries(VME_SUBMAP(entry), |
| 875 | start: VME_OFFSET(entry), |
| 876 | end: (VME_OFFSET(entry) + |
| 877 | entry->vme_end - |
| 878 | entry->vme_start)); |
| 879 | } else { |
| 880 | total_entries += 1; |
| 881 | } |
| 882 | entry = entry->vme_next; |
| 883 | } |
| 884 | if (not_in_kdp) { |
| 885 | vm_map_unlock(map); |
| 886 | } |
| 887 | return total_entries; |
| 888 | } |
| 889 | |
| 890 | int |
| 891 | get_vmmap_entries( |
| 892 | vm_map_t map) |
| 893 | { |
| 894 | int total_entries = 0; |
| 895 | vm_map_entry_t entry; |
| 896 | |
| 897 | if (not_in_kdp) { |
| 898 | vm_map_lock(map); |
| 899 | } |
| 900 | entry = vm_map_first_entry(map); |
| 901 | |
| 902 | while (entry != vm_map_to_entry(map)) { |
| 903 | if (entry->is_sub_map) { |
| 904 | total_entries += |
| 905 | get_vmsubmap_entries(VME_SUBMAP(entry), |
| 906 | start: VME_OFFSET(entry), |
| 907 | end: (VME_OFFSET(entry) + |
| 908 | entry->vme_end - |
| 909 | entry->vme_start)); |
| 910 | } else { |
| 911 | total_entries += 1; |
| 912 | } |
| 913 | entry = entry->vme_next; |
| 914 | } |
| 915 | if (not_in_kdp) { |
| 916 | vm_map_unlock(map); |
| 917 | } |
| 918 | return total_entries; |
| 919 | } |
| 920 | #endif /* CONFIG_COREDUMP */ |
| 921 | |
| 922 | int |
| 923 | get_task_userstop( |
| 924 | task_t task) |
| 925 | { |
| 926 | return task->user_stop_count; |
| 927 | } |
| 928 | |
| 929 | int |
| 930 | get_thread_userstop( |
| 931 | thread_t th) |
| 932 | { |
| 933 | return th->user_stop_count; |
| 934 | } |
| 935 | |
| 936 | boolean_t |
| 937 | get_task_pidsuspended( |
| 938 | task_t task) |
| 939 | { |
| 940 | return task->pidsuspended; |
| 941 | } |
| 942 | |
| 943 | boolean_t |
| 944 | get_task_frozen( |
| 945 | task_t task) |
| 946 | { |
| 947 | return task->frozen; |
| 948 | } |
| 949 | |
| 950 | boolean_t |
| 951 | thread_should_abort( |
| 952 | thread_t th) |
| 953 | { |
| 954 | return (th->sched_flags & TH_SFLAG_ABORTED_MASK) == TH_SFLAG_ABORT; |
| 955 | } |
| 956 | |
| 957 | /* |
| 958 | * This routine is like thread_should_abort() above. It checks to |
| 959 | * see if the current thread is aborted. But unlike above, it also |
| 960 | * checks to see if thread is safely aborted. If so, it returns |
| 961 | * that fact, and clears the condition (safe aborts only should |
| 962 | * have a single effect, and a poll of the abort status |
| 963 | * qualifies. |
| 964 | */ |
| 965 | boolean_t |
| 966 | current_thread_aborted( |
| 967 | void) |
| 968 | { |
| 969 | thread_t th = current_thread(); |
| 970 | spl_t s; |
| 971 | |
| 972 | if ((th->sched_flags & TH_SFLAG_ABORTED_MASK) == TH_SFLAG_ABORT && |
| 973 | (th->options & TH_OPT_INTMASK) != THREAD_UNINT) { |
| 974 | return TRUE; |
| 975 | } |
| 976 | if (th->sched_flags & TH_SFLAG_ABORTSAFELY) { |
| 977 | s = splsched(); |
| 978 | thread_lock(th); |
| 979 | if (th->sched_flags & TH_SFLAG_ABORTSAFELY) { |
| 980 | th->sched_flags &= ~TH_SFLAG_ABORTED_MASK; |
| 981 | } |
| 982 | thread_unlock(th); |
| 983 | splx(s); |
| 984 | } |
| 985 | return FALSE; |
| 986 | } |
| 987 | |
| 988 | /* Iterate over a task that is already protected by a held lock. */ |
| 989 | void |
| 990 | task_act_iterate_wth_args_locked( |
| 991 | task_t task, |
| 992 | void (*func_callback)(thread_t, void *), |
| 993 | void *func_arg) |
| 994 | { |
| 995 | for (thread_t inc = (thread_t)(void *)queue_first(&task->threads); |
| 996 | !queue_end(&task->threads, (queue_entry_t)inc);) { |
| 997 | (void) (*func_callback)(inc, func_arg); |
| 998 | inc = (thread_t)(void *)queue_next(&inc->task_threads); |
| 999 | } |
| 1000 | } |
| 1001 | |
| 1002 | void |
| 1003 | task_act_iterate_wth_args( |
| 1004 | task_t task, |
| 1005 | void (*func_callback)(thread_t, void *), |
| 1006 | void *func_arg) |
| 1007 | { |
| 1008 | task_lock(task); |
| 1009 | task_act_iterate_wth_args_locked(task, func_callback, func_arg); |
| 1010 | task_unlock(task); |
| 1011 | } |
| 1012 | |
| 1013 | #include <sys/bsdtask_info.h> |
| 1014 | |
| 1015 | void |
| 1016 | fill_taskprocinfo(task_t task, struct proc_taskinfo_internal * ptinfo) |
| 1017 | { |
| 1018 | vm_map_t map; |
| 1019 | task_absolutetime_info_data_t tinfo; |
| 1020 | thread_t thread; |
| 1021 | uint32_t cswitch = 0, numrunning = 0; |
| 1022 | uint32_t syscalls_unix = 0; |
| 1023 | uint32_t syscalls_mach = 0; |
| 1024 | |
| 1025 | task_lock(task); |
| 1026 | |
| 1027 | map = (task == kernel_task)? kernel_map: task->map; |
| 1028 | |
| 1029 | ptinfo->pti_virtual_size = vm_map_adjusted_size(map); |
| 1030 | ledger_get_balance(ledger: task->ledger, entry: task_ledgers.phys_mem, balance: (ledger_amount_t *) &ptinfo->pti_resident_size); |
| 1031 | |
| 1032 | ptinfo->pti_policy = ((task != kernel_task)? |
| 1033 | POLICY_TIMESHARE: POLICY_RR); |
| 1034 | |
| 1035 | queue_iterate(&task->threads, thread, thread_t, task_threads) { |
| 1036 | spl_t x; |
| 1037 | |
| 1038 | if (thread->options & TH_OPT_IDLE_THREAD) { |
| 1039 | continue; |
| 1040 | } |
| 1041 | |
| 1042 | x = splsched(); |
| 1043 | thread_lock(thread); |
| 1044 | |
| 1045 | if ((thread->state & TH_RUN) == TH_RUN) { |
| 1046 | numrunning++; |
| 1047 | } |
| 1048 | cswitch += thread->c_switch; |
| 1049 | |
| 1050 | syscalls_unix += thread->syscalls_unix; |
| 1051 | syscalls_mach += thread->syscalls_mach; |
| 1052 | |
| 1053 | thread_unlock(thread); |
| 1054 | splx(x); |
| 1055 | } |
| 1056 | |
| 1057 | struct recount_times_mach term_times = recount_task_terminated_times(task); |
| 1058 | struct recount_times_mach total_times = recount_task_times(task); |
| 1059 | |
| 1060 | tinfo.threads_user = total_times.rtm_user - term_times.rtm_user; |
| 1061 | tinfo.threads_system = total_times.rtm_system - term_times.rtm_system; |
| 1062 | ptinfo->pti_threads_system = tinfo.threads_system; |
| 1063 | ptinfo->pti_threads_user = tinfo.threads_user; |
| 1064 | |
| 1065 | ptinfo->pti_total_system = total_times.rtm_system; |
| 1066 | ptinfo->pti_total_user = total_times.rtm_user; |
| 1067 | |
| 1068 | ptinfo->pti_faults = (int32_t) MIN(counter_load(&task->faults), INT32_MAX); |
| 1069 | ptinfo->pti_pageins = (int32_t) MIN(counter_load(&task->pageins), INT32_MAX); |
| 1070 | ptinfo->pti_cow_faults = (int32_t) MIN(counter_load(&task->cow_faults), INT32_MAX); |
| 1071 | ptinfo->pti_messages_sent = (int32_t) MIN(counter_load(&task->messages_sent), INT32_MAX); |
| 1072 | ptinfo->pti_messages_received = (int32_t) MIN(counter_load(&task->messages_received), INT32_MAX); |
| 1073 | ptinfo->pti_syscalls_mach = (int32_t) MIN(task->syscalls_mach + syscalls_mach, INT32_MAX); |
| 1074 | ptinfo->pti_syscalls_unix = (int32_t) MIN(task->syscalls_unix + syscalls_unix, INT32_MAX); |
| 1075 | ptinfo->pti_csw = (int32_t) MIN(task->c_switch + cswitch, INT32_MAX); |
| 1076 | ptinfo->pti_threadnum = task->thread_count; |
| 1077 | ptinfo->pti_numrunning = numrunning; |
| 1078 | ptinfo->pti_priority = task->priority; |
| 1079 | |
| 1080 | task_unlock(task); |
| 1081 | } |
| 1082 | |
| 1083 | int |
| 1084 | fill_taskthreadinfo(task_t task, uint64_t thaddr, bool thuniqueid, struct proc_threadinfo_internal * ptinfo, void * vpp, int *vidp) |
| 1085 | { |
| 1086 | thread_t thact; |
| 1087 | int err = 0; |
| 1088 | mach_msg_type_number_t count; |
| 1089 | thread_basic_info_data_t basic_info; |
| 1090 | kern_return_t kret; |
| 1091 | uint64_t addr = 0; |
| 1092 | |
| 1093 | task_lock(task); |
| 1094 | |
| 1095 | for (thact = (thread_t)(void *)queue_first(&task->threads); |
| 1096 | !queue_end(&task->threads, (queue_entry_t)thact);) { |
| 1097 | addr = (thuniqueid) ? thact->thread_id : thact->machine.cthread_self; |
| 1098 | if (addr == thaddr) { |
| 1099 | count = THREAD_BASIC_INFO_COUNT; |
| 1100 | if ((kret = thread_info_internal(thread: thact, THREAD_BASIC_INFO, thread_info_out: (thread_info_t)&basic_info, thread_info_count: &count)) != KERN_SUCCESS) { |
| 1101 | err = 1; |
| 1102 | goto out; |
| 1103 | } |
| 1104 | ptinfo->pth_user_time = (((uint64_t)basic_info.user_time.seconds * NSEC_PER_SEC) + ((uint64_t)basic_info.user_time.microseconds * NSEC_PER_USEC)); |
| 1105 | ptinfo->pth_system_time = (((uint64_t)basic_info.system_time.seconds * NSEC_PER_SEC) + ((uint64_t)basic_info.system_time.microseconds * NSEC_PER_USEC)); |
| 1106 | |
| 1107 | ptinfo->pth_cpu_usage = basic_info.cpu_usage; |
| 1108 | ptinfo->pth_policy = basic_info.policy; |
| 1109 | ptinfo->pth_run_state = basic_info.run_state; |
| 1110 | ptinfo->pth_flags = basic_info.flags; |
| 1111 | ptinfo->pth_sleep_time = basic_info.sleep_time; |
| 1112 | ptinfo->pth_curpri = thact->sched_pri; |
| 1113 | ptinfo->pth_priority = thact->base_pri; |
| 1114 | ptinfo->pth_maxpriority = thact->max_priority; |
| 1115 | |
| 1116 | if (vpp != NULL) { |
| 1117 | bsd_threadcdir(uth: get_bsdthread_info(th: thact), vptr: vpp, vidp); |
| 1118 | } |
| 1119 | bsd_getthreadname(uth: get_bsdthread_info(th: thact), buffer: ptinfo->pth_name); |
| 1120 | err = 0; |
| 1121 | goto out; |
| 1122 | } |
| 1123 | thact = (thread_t)(void *)queue_next(&thact->task_threads); |
| 1124 | } |
| 1125 | err = 1; |
| 1126 | |
| 1127 | out: |
| 1128 | task_unlock(task); |
| 1129 | return err; |
| 1130 | } |
| 1131 | |
| 1132 | int |
| 1133 | fill_taskthreadlist(task_t task, void * buffer, int thcount, bool thuniqueid) |
| 1134 | { |
| 1135 | int numthr = 0; |
| 1136 | thread_t thact; |
| 1137 | uint64_t * uptr; |
| 1138 | uint64_t thaddr; |
| 1139 | |
| 1140 | uptr = (uint64_t *)buffer; |
| 1141 | |
| 1142 | task_lock(task); |
| 1143 | |
| 1144 | for (thact = (thread_t)(void *)queue_first(&task->threads); |
| 1145 | !queue_end(&task->threads, (queue_entry_t)thact);) { |
| 1146 | thaddr = (thuniqueid) ? thact->thread_id : thact->machine.cthread_self; |
| 1147 | *uptr++ = thaddr; |
| 1148 | numthr++; |
| 1149 | if (numthr >= thcount) { |
| 1150 | goto out; |
| 1151 | } |
| 1152 | thact = (thread_t)(void *)queue_next(&thact->task_threads); |
| 1153 | } |
| 1154 | |
| 1155 | out: |
| 1156 | task_unlock(task); |
| 1157 | return (int)(numthr * sizeof(uint64_t)); |
| 1158 | } |
| 1159 | |
| 1160 | int |
| 1161 | fill_taskthreadschedinfo(task_t task, uint64_t thread_id, struct proc_threadschedinfo_internal *thread_sched_info) |
| 1162 | { |
| 1163 | int err = 0; |
| 1164 | |
| 1165 | thread_t thread = current_thread(); |
| 1166 | |
| 1167 | /* |
| 1168 | * Looking up threads is pretty expensive and not realtime-safe |
| 1169 | * right now, requiring locking the task and iterating over all |
| 1170 | * threads. As long as that is the case, we officially only |
| 1171 | * support getting this info for the current thread. |
| 1172 | */ |
| 1173 | if (task != current_task() || thread_id != thread->thread_id) { |
| 1174 | return -1; |
| 1175 | } |
| 1176 | |
| 1177 | #if SCHED_HYGIENE_DEBUG |
| 1178 | absolutetime_to_nanoseconds(thread->machine.int_time_mt, &thread_sched_info->int_time_ns); |
| 1179 | #else |
| 1180 | (void)thread; |
| 1181 | thread_sched_info->int_time_ns = 0; |
| 1182 | #endif |
| 1183 | |
| 1184 | return err; |
| 1185 | } |
| 1186 | |
| 1187 | int |
| 1188 | get_numthreads(task_t task) |
| 1189 | { |
| 1190 | return task->thread_count; |
| 1191 | } |
| 1192 | |
| 1193 | /* |
| 1194 | * Gather the various pieces of info about the designated task, |
| 1195 | * and collect it all into a single rusage_info. |
| 1196 | */ |
| 1197 | int |
| 1198 | fill_task_rusage(task_t task, rusage_info_current *ri) |
| 1199 | { |
| 1200 | struct task_power_info powerinfo; |
| 1201 | |
| 1202 | assert(task != TASK_NULL); |
| 1203 | task_lock(task); |
| 1204 | |
| 1205 | struct task_power_info_extra = { 0 }; |
| 1206 | task_power_info_locked(task, info: &powerinfo, NULL, NULL, extra_info: &extra); |
| 1207 | ri->ri_pkg_idle_wkups = powerinfo.task_platform_idle_wakeups; |
| 1208 | ri->ri_interrupt_wkups = powerinfo.task_interrupt_wakeups; |
| 1209 | ri->ri_user_time = powerinfo.total_user; |
| 1210 | ri->ri_system_time = powerinfo.total_system; |
| 1211 | ri->ri_runnable_time = extra.runnable_time; |
| 1212 | ri->ri_cycles = extra.cycles; |
| 1213 | ri->ri_instructions = extra.instructions; |
| 1214 | ri->ri_pcycles = extra.pcycles; |
| 1215 | ri->ri_pinstructions = extra.pinstructions; |
| 1216 | ri->ri_user_ptime = extra.user_ptime; |
| 1217 | ri->ri_system_ptime = extra.system_ptime; |
| 1218 | ri->ri_energy_nj = extra.energy; |
| 1219 | ri->ri_penergy_nj = extra.penergy; |
| 1220 | ri->ri_secure_time_in_system = extra.secure_time; |
| 1221 | ri->ri_secure_ptime_in_system = extra.secure_ptime; |
| 1222 | |
| 1223 | ri->ri_phys_footprint = get_task_phys_footprint(task); |
| 1224 | ledger_get_balance(ledger: task->ledger, entry: task_ledgers.phys_mem, |
| 1225 | balance: (ledger_amount_t *)&ri->ri_resident_size); |
| 1226 | ri->ri_wired_size = get_task_wired_mem(task); |
| 1227 | |
| 1228 | ri->ri_pageins = counter_load(&task->pageins); |
| 1229 | |
| 1230 | task_unlock(task); |
| 1231 | return 0; |
| 1232 | } |
| 1233 | |
| 1234 | void |
| 1235 | fill_task_billed_usage(task_t task __unused, rusage_info_current *ri) |
| 1236 | { |
| 1237 | bank_billed_balance_safe(task, cpu_time: &ri->ri_billed_system_time, energy: &ri->ri_billed_energy); |
| 1238 | bank_serviced_balance_safe(task, cpu_time: &ri->ri_serviced_system_time, energy: &ri->ri_serviced_energy); |
| 1239 | } |
| 1240 | |
| 1241 | int |
| 1242 | fill_task_io_rusage(task_t task, rusage_info_current *ri) |
| 1243 | { |
| 1244 | assert(task != TASK_NULL); |
| 1245 | task_lock(task); |
| 1246 | |
| 1247 | if (task->task_io_stats) { |
| 1248 | ri->ri_diskio_bytesread = task->task_io_stats->disk_reads.size; |
| 1249 | ri->ri_diskio_byteswritten = (task->task_io_stats->total_io.size - task->task_io_stats->disk_reads.size); |
| 1250 | } else { |
| 1251 | /* I/O Stats unavailable */ |
| 1252 | ri->ri_diskio_bytesread = 0; |
| 1253 | ri->ri_diskio_byteswritten = 0; |
| 1254 | } |
| 1255 | task_unlock(task); |
| 1256 | return 0; |
| 1257 | } |
| 1258 | |
| 1259 | int |
| 1260 | fill_task_qos_rusage(task_t task, rusage_info_current *ri) |
| 1261 | { |
| 1262 | thread_t thread; |
| 1263 | |
| 1264 | assert(task != TASK_NULL); |
| 1265 | task_lock(task); |
| 1266 | |
| 1267 | /* Rollup QoS time of all the threads to task */ |
| 1268 | queue_iterate(&task->threads, thread, thread_t, task_threads) { |
| 1269 | if (thread->options & TH_OPT_IDLE_THREAD) { |
| 1270 | continue; |
| 1271 | } |
| 1272 | |
| 1273 | thread_update_qos_cpu_time(thread); |
| 1274 | } |
| 1275 | ri->ri_cpu_time_qos_default = task->cpu_time_eqos_stats.cpu_time_qos_default; |
| 1276 | ri->ri_cpu_time_qos_maintenance = task->cpu_time_eqos_stats.cpu_time_qos_maintenance; |
| 1277 | ri->ri_cpu_time_qos_background = task->cpu_time_eqos_stats.cpu_time_qos_background; |
| 1278 | ri->ri_cpu_time_qos_utility = task->cpu_time_eqos_stats.cpu_time_qos_utility; |
| 1279 | ri->ri_cpu_time_qos_legacy = task->cpu_time_eqos_stats.cpu_time_qos_legacy; |
| 1280 | ri->ri_cpu_time_qos_user_initiated = task->cpu_time_eqos_stats.cpu_time_qos_user_initiated; |
| 1281 | ri->ri_cpu_time_qos_user_interactive = task->cpu_time_eqos_stats.cpu_time_qos_user_interactive; |
| 1282 | |
| 1283 | task_unlock(task); |
| 1284 | return 0; |
| 1285 | } |
| 1286 | |
| 1287 | uint64_t |
| 1288 | get_task_logical_writes(task_t task, bool external) |
| 1289 | { |
| 1290 | assert(task != TASK_NULL); |
| 1291 | struct ledger_entry_info lei; |
| 1292 | int entry = external ? task_ledgers.logical_writes_to_external : |
| 1293 | task_ledgers.logical_writes; |
| 1294 | |
| 1295 | task_lock(task); |
| 1296 | ledger_get_entry_info(ledger: task->ledger, entry, lei: &lei); |
| 1297 | task_unlock(task); |
| 1298 | |
| 1299 | return lei.lei_balance; |
| 1300 | } |
| 1301 | |
| 1302 | uint64_t |
| 1303 | get_task_dispatchqueue_serialno_offset(task_t task) |
| 1304 | { |
| 1305 | uint64_t dq_serialno_offset = 0; |
| 1306 | void *bsd_info = get_bsdtask_info(t: task); |
| 1307 | |
| 1308 | if (bsd_info) { |
| 1309 | dq_serialno_offset = get_dispatchqueue_serialno_offset_from_proc(p: bsd_info); |
| 1310 | } |
| 1311 | |
| 1312 | return dq_serialno_offset; |
| 1313 | } |
| 1314 | |
| 1315 | uint64_t |
| 1316 | get_task_dispatchqueue_label_offset(task_t task) |
| 1317 | { |
| 1318 | uint64_t dq_label_offset = 0; |
| 1319 | void *bsd_info = get_bsdtask_info(t: task); |
| 1320 | |
| 1321 | if (bsd_info) { |
| 1322 | dq_label_offset = get_dispatchqueue_label_offset_from_proc(p: bsd_info); |
| 1323 | } |
| 1324 | |
| 1325 | return dq_label_offset; |
| 1326 | } |
| 1327 | |
| 1328 | uint64_t |
| 1329 | get_task_uniqueid(task_t task) |
| 1330 | { |
| 1331 | void *bsd_info = get_bsdtask_info(t: task); |
| 1332 | |
| 1333 | if (bsd_info) { |
| 1334 | return proc_uniqueid_task(p: bsd_info, t: task); |
| 1335 | } else { |
| 1336 | return UINT64_MAX; |
| 1337 | } |
| 1338 | } |
| 1339 | |
| 1340 | int |
| 1341 | get_task_version(task_t task) |
| 1342 | { |
| 1343 | void *bsd_info = get_bsdtask_info(t: task); |
| 1344 | |
| 1345 | if (bsd_info) { |
| 1346 | return proc_pidversion(p: bsd_info); |
| 1347 | } else { |
| 1348 | return INT_MAX; |
| 1349 | } |
| 1350 | } |
| 1351 | |
| 1352 | #if CONFIG_MACF |
| 1353 | struct label * |
| 1354 | get_task_crash_label(task_t task) |
| 1355 | { |
| 1356 | return task->crash_label; |
| 1357 | } |
| 1358 | |
| 1359 | void |
| 1360 | set_task_crash_label(task_t task, struct label *label) |
| 1361 | { |
| 1362 | task->crash_label = label; |
| 1363 | } |
| 1364 | #endif |
| 1365 | |
| 1366 | int |
| 1367 | fill_taskipctableinfo(task_t task, uint32_t *table_size, uint32_t *table_free) |
| 1368 | { |
| 1369 | ipc_space_t space = task->itk_space; |
| 1370 | if (space == NULL) { |
| 1371 | return -1; |
| 1372 | } |
| 1373 | |
| 1374 | is_read_lock(space); |
| 1375 | if (!is_active(space)) { |
| 1376 | is_read_unlock(space); |
| 1377 | return -1; |
| 1378 | } |
| 1379 | |
| 1380 | *table_size = ipc_entry_table_count(array: is_active_table(space)); |
| 1381 | *table_free = space->is_table_free; |
| 1382 | |
| 1383 | is_read_unlock(space); |
| 1384 | |
| 1385 | return 0; |
| 1386 | } |
| 1387 | |
| 1388 | int |
| 1389 | get_task_cdhash(task_t task, char cdhash[static CS_CDHASH_LEN]) |
| 1390 | { |
| 1391 | int result = 0; |
| 1392 | void *bsd_info = NULL; |
| 1393 | |
| 1394 | task_lock(task); |
| 1395 | bsd_info = get_bsdtask_info(t: task); |
| 1396 | result = bsd_info ? proc_getcdhash(p: bsd_info, cdhash) : ESRCH; |
| 1397 | task_unlock(task); |
| 1398 | |
| 1399 | return result; |
| 1400 | } |
| 1401 | |
| 1402 | /* moved from ubc_subr.c */ |
| 1403 | int |
| 1404 | mach_to_bsd_errno(kern_return_t mach_err) |
| 1405 | { |
| 1406 | switch (mach_err) { |
| 1407 | case KERN_SUCCESS: |
| 1408 | return 0; |
| 1409 | |
| 1410 | case KERN_INVALID_ADDRESS: |
| 1411 | case KERN_INVALID_ARGUMENT: |
| 1412 | case KERN_NOT_IN_SET: |
| 1413 | case KERN_INVALID_NAME: |
| 1414 | case KERN_INVALID_TASK: |
| 1415 | case KERN_INVALID_RIGHT: |
| 1416 | case KERN_INVALID_VALUE: |
| 1417 | case KERN_INVALID_CAPABILITY: |
| 1418 | case KERN_INVALID_HOST: |
| 1419 | case KERN_MEMORY_PRESENT: |
| 1420 | case KERN_INVALID_PROCESSOR_SET: |
| 1421 | case KERN_INVALID_POLICY: |
| 1422 | case KERN_ALREADY_WAITING: |
| 1423 | case KERN_DEFAULT_SET: |
| 1424 | case KERN_EXCEPTION_PROTECTED: |
| 1425 | case KERN_INVALID_LEDGER: |
| 1426 | case KERN_INVALID_MEMORY_CONTROL: |
| 1427 | case KERN_INVALID_SECURITY: |
| 1428 | case KERN_NOT_DEPRESSED: |
| 1429 | case KERN_LOCK_OWNED: |
| 1430 | case KERN_LOCK_OWNED_SELF: |
| 1431 | return EINVAL; |
| 1432 | |
| 1433 | case KERN_NOT_RECEIVER: |
| 1434 | case KERN_NO_ACCESS: |
| 1435 | case KERN_POLICY_STATIC: |
| 1436 | return EACCES; |
| 1437 | |
| 1438 | case KERN_NO_SPACE: |
| 1439 | case KERN_RESOURCE_SHORTAGE: |
| 1440 | case KERN_UREFS_OVERFLOW: |
| 1441 | case KERN_INVALID_OBJECT: |
| 1442 | return ENOMEM; |
| 1443 | |
| 1444 | case KERN_MEMORY_FAILURE: |
| 1445 | case KERN_MEMORY_ERROR: |
| 1446 | case KERN_PROTECTION_FAILURE: |
| 1447 | return EFAULT; |
| 1448 | |
| 1449 | case KERN_POLICY_LIMIT: |
| 1450 | case KERN_CODESIGN_ERROR: |
| 1451 | case KERN_DENIED: |
| 1452 | return EPERM; |
| 1453 | |
| 1454 | case KERN_ALREADY_IN_SET: |
| 1455 | case KERN_NAME_EXISTS: |
| 1456 | case KERN_RIGHT_EXISTS: |
| 1457 | return EEXIST; |
| 1458 | |
| 1459 | case KERN_ABORTED: |
| 1460 | return EINTR; |
| 1461 | |
| 1462 | case KERN_TERMINATED: |
| 1463 | case KERN_LOCK_SET_DESTROYED: |
| 1464 | case KERN_LOCK_UNSTABLE: |
| 1465 | case KERN_SEMAPHORE_DESTROYED: |
| 1466 | case KERN_NOT_FOUND: |
| 1467 | case KERN_NOT_WAITING: |
| 1468 | return ENOENT; |
| 1469 | |
| 1470 | case KERN_RPC_SERVER_TERMINATED: |
| 1471 | return ECONNRESET; |
| 1472 | |
| 1473 | case KERN_NOT_SUPPORTED: |
| 1474 | return ENOTSUP; |
| 1475 | |
| 1476 | case KERN_NODE_DOWN: |
| 1477 | return ENETDOWN; |
| 1478 | |
| 1479 | case KERN_OPERATION_TIMED_OUT: |
| 1480 | return ETIMEDOUT; |
| 1481 | |
| 1482 | default: |
| 1483 | return EIO; /* 5 == KERN_FAILURE */ |
| 1484 | } |
| 1485 | } |
| 1486 | |
| 1487 | kern_return_t |
| 1488 | bsd_to_mach_failure(int bsd_err) |
| 1489 | { |
| 1490 | switch (bsd_err) { |
| 1491 | case EIO: |
| 1492 | case EACCES: |
| 1493 | case ENOMEM: |
| 1494 | case EFAULT: |
| 1495 | return KERN_MEMORY_ERROR; |
| 1496 | |
| 1497 | case EINVAL: |
| 1498 | return KERN_INVALID_ARGUMENT; |
| 1499 | |
| 1500 | case ETIMEDOUT: |
| 1501 | case EBUSY: |
| 1502 | return KERN_OPERATION_TIMED_OUT; |
| 1503 | |
| 1504 | case ECONNRESET: |
| 1505 | return KERN_RPC_SERVER_TERMINATED; |
| 1506 | |
| 1507 | case ENOTSUP: |
| 1508 | return KERN_NOT_SUPPORTED; |
| 1509 | |
| 1510 | case ENETDOWN: |
| 1511 | return KERN_NODE_DOWN; |
| 1512 | |
| 1513 | case ENOENT: |
| 1514 | return KERN_NOT_FOUND; |
| 1515 | |
| 1516 | case EINTR: |
| 1517 | return KERN_ABORTED; |
| 1518 | |
| 1519 | case EPERM: |
| 1520 | return KERN_DENIED; |
| 1521 | |
| 1522 | case EEXIST: |
| 1523 | return KERN_ALREADY_IN_SET; |
| 1524 | |
| 1525 | default: |
| 1526 | return KERN_FAILURE; |
| 1527 | } |
| 1528 | } |
| 1529 | |