| 1 | /* | 
| 2 |  * Copyright (c) 2015-2019 Apple Inc. All rights reserved. | 
| 3 |  * | 
| 4 |  * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ | 
| 5 |  * | 
| 6 |  * This file contains Original Code and/or Modifications of Original Code | 
| 7 |  * as defined in and that are subject to the Apple Public Source License | 
| 8 |  * Version 2.0 (the 'License'). You may not use this file except in | 
| 9 |  * compliance with the License. The rights granted to you under the License | 
| 10 |  * may not be used to create, or enable the creation or redistribution of, | 
| 11 |  * unlawful or unlicensed copies of an Apple operating system, or to | 
| 12 |  * circumvent, violate, or enable the circumvention or violation of, any | 
| 13 |  * terms of an Apple operating system software license agreement. | 
| 14 |  * | 
| 15 |  * Please obtain a copy of the License at | 
| 16 |  * http://www.opensource.apple.com/apsl/ and read it before using this file. | 
| 17 |  * | 
| 18 |  * The Original Code and all software distributed under the License are | 
| 19 |  * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | 
| 20 |  * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | 
| 21 |  * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | 
| 22 |  * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. | 
| 23 |  * Please see the License for the specific language governing rights and | 
| 24 |  * limitations under the License. | 
| 25 |  * | 
| 26 |  * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ | 
| 27 |  */ | 
| 28 |  | 
| 29 | /* | 
| 30 |  * The main orchestrator for kernel (and co-processor) coredumps. Here's a very simplistic view of | 
| 31 |  * the flow: | 
| 32 |  * | 
| 33 |  * At kernel initialization time (kdp_core_init): | 
| 34 |  * ---------------------------------------------- | 
| 35 |  * | 
| 36 |  * - kdp_core_init() takes care of allocating all necessary data structures and initializes the | 
| 37 |  *   coredump output stages | 
| 38 |  * | 
| 39 |  * At coredump time (do_kern_dump): | 
| 40 |  * -------------------------------- | 
| 41 |  * | 
| 42 |  * - Depending on the coredump variant, we chain the necessary output stages together in chain_output_stages() | 
| 43 |  * - [Disk only] We initialize the corefile header | 
| 44 |  * - [Disk only] We stream the stackshot out through the output stages and update the corefile header | 
| 45 |  * - We perform the kernel coredump, streaming it out through the output stages | 
| 46 |  * - [Disk only] We update the corefile header | 
| 47 |  * - [Disk only] We perform the co-processor coredumps (driven by kern_do_coredump), streaming each out | 
| 48 |  *               through the output stages and updating the corefile header. | 
| 49 |  * - [Disk only] We save the coredump log to the corefile | 
| 50 |  */ | 
| 51 |  | 
| 52 | #include <mach/kern_return.h> | 
| 53 | #include <mach/vm_types.h> | 
| 54 | #include <kdp/core_exclude.h> | 
| 55 | #include <kdp/kdp_core.h> | 
| 56 | #include <kdp/core_notes.h> | 
| 57 |  | 
| 58 | #ifdef CONFIG_KDP_INTERACTIVE_DEBUGGING | 
| 59 |  | 
| 60 | #include <mach/mach_types.h> | 
| 61 | #include <mach/vm_attributes.h> | 
| 62 | #include <mach/vm_param.h> | 
| 63 | #include <mach/vm_map.h> | 
| 64 | #include <vm/vm_protos.h> | 
| 65 | #include <vm/vm_kern.h> | 
| 66 | #include <vm/vm_map.h> | 
| 67 | #include <machine/cpu_capabilities.h> | 
| 68 | #include <libsa/types.h> | 
| 69 | #include <libkern/kernel_mach_header.h> | 
| 70 | #include <kern/locks.h> | 
| 71 | #include <kdp/kdp_internal.h> | 
| 72 | #include <kdp/output_stages/output_stages.h> | 
| 73 | #include <kdp/processor_core.h> | 
| 74 | #include <IOKit/IOTypes.h> | 
| 75 | #include <IOKit/IOBSD.h> | 
| 76 | #include <sys/errno.h> | 
| 77 | #include <sys/msgbuf.h> | 
| 78 | #include <san/kasan.h> | 
| 79 | #include <kern/debug.h> | 
| 80 | #include <pexpert/pexpert.h> | 
| 81 | #include <os/atomic_private.h> | 
| 82 |  | 
| 83 | #if CONFIG_SPTM | 
| 84 | #include <sptm/debug_header.h> | 
| 85 | #endif | 
| 86 |  | 
| 87 | #if defined(__x86_64__) | 
| 88 | #include <i386/pmap_internal.h> | 
| 89 | #include <kdp/ml/i386/kdp_x86_common.h> | 
| 90 | #include <kern/debug.h> | 
| 91 | #endif /* defined(__x86_64__) */ | 
| 92 |  | 
| 93 | #if CONFIG_SPTM | 
| 94 | #include <arm64/sptm/sptm.h> | 
| 95 | #endif /* CONFIG_SPTM */ | 
| 96 |  | 
| 97 | kern_return_t kdp_core_polled_io_polled_file_available(IOCoreFileAccessCallback access_data, void *access_context, void *recipient_context); | 
| 98 | kern_return_t kdp_core_polled_io_polled_file_unavailable(void); | 
| 99 |  | 
| 100 | typedef int (*pmap_traverse_callback)(vm_map_offset_t start, | 
| 101 |     vm_map_offset_t end, | 
| 102 |     void *context); | 
| 103 |  | 
| 104 | static kern_return_t kern_dump_init(void *refcon, void *context); | 
| 105 | static int kern_dump_save_summary(void *refcon, core_save_summary_cb callback, void *context); | 
| 106 | static int kern_dump_save_seg_descriptions(void *refcon, core_save_segment_descriptions_cb callback, void *context); | 
| 107 | static int kern_dump_save_thread_state(void *refcon, void *buf, core_save_thread_state_cb callback, void *context); | 
| 108 | static int kern_dump_save_sw_vers_detail(void *refcon, core_save_sw_vers_detail_cb callback, void *context); | 
| 109 | static int kern_dump_save_segment_data(void *refcon, core_save_segment_data_cb callback, void *context); | 
| 110 | static kern_return_t kern_dump_save_note_summary(void *refcon, core_save_note_summary_cb callback, void *context); | 
| 111 | static kern_return_t kern_dump_save_note_descriptions(void *refcon, core_save_note_descriptions_cb callback, void *context); | 
| 112 | static kern_return_t kern_dump_save_note_data(void *refcon, core_save_note_data_cb callback, void *context); | 
| 113 |  | 
| 114 | static int | 
| 115 | kern_dump_pmap_traverse_preflight_callback(vm_map_offset_t start, | 
| 116 |     vm_map_offset_t end, | 
| 117 |     void *context); | 
| 118 | static int | 
| 119 | kern_dump_pmap_traverse_send_segdesc_callback(vm_map_offset_t start, | 
| 120 |     vm_map_offset_t end, | 
| 121 |     void *context); | 
| 122 |  | 
| 123 | static int | 
| 124 | kern_dump_pmap_traverse_send_segdata_callback(vm_map_offset_t start, | 
| 125 |     vm_map_offset_t end, | 
| 126 |     void *context); | 
| 127 |  | 
| 128 | static struct kdp_output_stage disk_output_stage = {}; | 
| 129 | static struct kdp_output_stage lz4_output_stage = {}; | 
| 130 | static struct kdp_output_stage zlib_output_stage = {}; | 
| 131 | static struct kdp_output_stage buffer_output_stage = {}; | 
| 132 | static struct kdp_output_stage net_output_stage = {}; | 
| 133 | static struct kdp_output_stage progress_notify_output_stage = {}; | 
| 134 | #ifdef CONFIG_KDP_COREDUMP_ENCRYPTION | 
| 135 | static struct kdp_output_stage aea_output_stage = {}; | 
| 136 | #endif // CONFIG_KDP_COREDUMP_ENCRYPTION | 
| 137 | #if defined(__arm64__) | 
| 138 | static struct kdp_output_stage shmem_output_stage = {}; | 
| 139 | static struct kdp_output_stage memory_backing_aware_buffer_output_stage = {}; | 
| 140 | #endif /* defined(__arm64__) */ | 
| 141 |  | 
| 142 | extern uint32_t kdp_crashdump_pkt_size; | 
| 143 |  | 
| 144 | static boolean_t kern_dump_successful = FALSE; | 
| 145 |  | 
| 146 | static const size_t  = sizeof(struct mach_core_fileheader_v2) + (KERN_COREDUMP_MAX_CORES * sizeof(struct mach_core_details_v2)); | 
| 147 | static struct mach_core_fileheader_v2 * = NULL; | 
| 148 |  | 
| 149 | static lck_grp_t *kdp_core_initialization_lock_group = NULL; | 
| 150 | static lck_mtx_t *kdp_core_disk_stage_lock = NULL; | 
| 151 | static bool kdp_core_is_initializing_disk_stage = false; | 
| 152 |  | 
| 153 | #ifdef CONFIG_KDP_COREDUMP_ENCRYPTION | 
| 154 | static const size_t PUBLIC_KEY_RESERVED_LENGTH = roundup(4096, KERN_COREDUMP_BEGIN_FILEBYTES_ALIGN); | 
| 155 | static void *kdp_core_public_key = NULL; | 
| 156 | static lck_mtx_t *kdp_core_encryption_stage_lock = NULL; | 
| 157 | static bool kdp_core_is_initializing_encryption_stage = false; | 
| 158 |  | 
| 159 | static bool kern_dump_should_enforce_encryption(void); | 
| 160 | #endif // CONFIG_KDP_COREDUMP_ENCRYPTION | 
| 161 |  | 
| 162 | static lck_mtx_t *kdp_core_lz4_stage_lock = NULL; | 
| 163 | static bool kdp_core_is_initializing_lz4_stage = false; | 
| 164 |  | 
| 165 | /* | 
| 166 |  * These variables will be modified by the BSD layer if the root device is | 
| 167 |  * a RAMDisk. | 
| 168 |  */ | 
| 169 | uint64_t kdp_core_ramdisk_addr = 0; | 
| 170 | uint64_t kdp_core_ramdisk_size = 0; | 
| 171 |  | 
| 172 | #define COREDUMP_ENCRYPTION_OVERRIDES_AVAILABILITY (1 << 0) | 
| 173 | #define COREDUMP_ENCRYPTION_OVERRIDES_ENFORCEMENT  (1 << 1) | 
| 174 |  | 
| 175 | boolean_t | 
| 176 | kdp_has_polled_corefile(void) | 
| 177 | { | 
| 178 | 	return NULL != gIOPolledCoreFileVars; | 
| 179 | } | 
| 180 |  | 
| 181 | kern_return_t | 
| 182 | kdp_polled_corefile_error(void) | 
| 183 | { | 
| 184 | 	return gIOPolledCoreFileOpenRet; | 
| 185 | } | 
| 186 |  | 
| 187 | IOPolledCoreFileMode_t | 
| 188 | kdp_polled_corefile_mode(void) | 
| 189 | { | 
| 190 | 	return gIOPolledCoreFileMode; | 
| 191 | } | 
| 192 |  | 
| 193 | struct kdp_core_excluded_region { | 
| 194 | 	struct kdp_core_excluded_region *next; | 
| 195 | 	vm_offset_t addr; | 
| 196 | 	vm_size_t size; | 
| 197 | }; | 
| 198 |  | 
| 199 | static LCK_GRP_DECLARE(excluded_regions_grp, "kdp-exclude-regions" ); | 
| 200 | static LCK_MTX_DECLARE(excluded_regions_mtx, &excluded_regions_grp); | 
| 201 | static struct kdp_core_excluded_region *excluded_regions; | 
| 202 |  | 
| 203 | void | 
| 204 | kdp_core_exclude_region(vm_offset_t addr, vm_size_t size) | 
| 205 | { | 
| 206 | 	struct kdp_core_excluded_region *region; | 
| 207 |  | 
| 208 | 	if (addr >= addr + size) { | 
| 209 | 		panic("%s: cannot exclude region starting at %p with size %zu (zero or overflowing size)" , | 
| 210 | 		    __func__, (void*)addr, (size_t)size); | 
| 211 | 	} | 
| 212 | 	if (addr != round_page(x: addr) || size != round_page(x: size)) { | 
| 213 | 		panic("%s: cannot exclude region starting at %p with size %zu (not page aligned)" , | 
| 214 | 		    __func__, (void*)addr, (size_t)size); | 
| 215 | 	} | 
| 216 |  | 
| 217 | 	region = kalloc_type(typeof(*region), Z_WAITOK | Z_NOFAIL); | 
| 218 | 	region->addr = addr; | 
| 219 | 	region->size = size; | 
| 220 |  | 
| 221 | 	lck_mtx_lock(lck: &excluded_regions_mtx); | 
| 222 | 	region->next = excluded_regions; | 
| 223 | 	excluded_regions = region; | 
| 224 | 	lck_mtx_unlock(lck: &excluded_regions_mtx); | 
| 225 | } | 
| 226 |  | 
| 227 | void | 
| 228 | kdp_core_unexclude_region(vm_offset_t addr, vm_size_t size) | 
| 229 | { | 
| 230 | 	struct kdp_core_excluded_region *region; | 
| 231 | 	struct kdp_core_excluded_region **fixup = &excluded_regions; | 
| 232 |  | 
| 233 | 	lck_mtx_lock(lck: &excluded_regions_mtx); | 
| 234 | 	for (region = excluded_regions; region; region = region->next) { | 
| 235 | 		if (region->addr == addr && region->size == size) { | 
| 236 | 			*fixup = region->next; | 
| 237 | 			break; | 
| 238 | 		} | 
| 239 | 		fixup = ®ion->next; | 
| 240 | 	} | 
| 241 | 	if (!region) { | 
| 242 | 		panic("%s: cannot unexclude region starting at %p with size %zu (not currently excluded)" , | 
| 243 | 		    __func__, (void*)addr, (size_t)size); | 
| 244 | 	} | 
| 245 | 	lck_mtx_unlock(lck: &excluded_regions_mtx); | 
| 246 |  | 
| 247 | 	// We had exclusive access to the list when we removed the region, and it is no longer | 
| 248 | 	// reachable from the list, so it is safe to free. | 
| 249 | 	kfree_type(typeof(*region), region); | 
| 250 | } | 
| 251 |  | 
| 252 | static bool | 
| 253 | kernel_vaddr_in_excluded_region(vm_offset_t addr, uint64_t *vincr) | 
| 254 | { | 
| 255 | 	struct kdp_core_excluded_region *region; | 
| 256 |  | 
| 257 | 	// We check this earlier before attempting to dump the kernel, but verify here. | 
| 258 | 	assert(!kdp_lck_mtx_lock_spin_is_acquired(&excluded_regions_mtx)); | 
| 259 |  | 
| 260 | 	for (region = excluded_regions; region; region = region->next) { | 
| 261 | 		if (region->addr <= addr && addr < (region->addr + region->size)) { | 
| 262 | 			*vincr = region->size; | 
| 263 | 			return true; | 
| 264 | 		} | 
| 265 | 	} | 
| 266 |  | 
| 267 | 	return false; | 
| 268 | } | 
| 269 |  | 
| 270 | kern_return_t | 
| 271 | kdp_core_output(void *kdp_core_out_state, uint64_t length, void * data) | 
| 272 | { | 
| 273 | 	kern_return_t              err = KERN_SUCCESS; | 
| 274 | 	uint64_t                   percent; | 
| 275 | 	struct kdp_core_out_state *vars = (struct kdp_core_out_state *)kdp_core_out_state; | 
| 276 | 	struct kdp_output_stage   *first_stage = STAILQ_FIRST(&vars->kcos_out_stage); | 
| 277 |  | 
| 278 | 	if (vars->kcos_error == KERN_SUCCESS) { | 
| 279 | #if DEVELOPMENT || DEBUG | 
| 280 | 		// panic testing: force the write to fail after X number of writes | 
| 281 | 		if ((panic_test_case & PANIC_TEST_CASE_COREFILE_IO_ERR) && (--panic_test_action_count == 0)) { | 
| 282 | 			panic_test_case &= ~PANIC_TEST_CASE_COREFILE_IO_ERR; | 
| 283 | 			length = -1; | 
| 284 | 		} | 
| 285 | #endif | 
| 286 |  | 
| 287 | 		if ((err = first_stage->kos_funcs.kosf_outproc(first_stage, KDP_DATA, NULL, length, data)) != KERN_SUCCESS) { | 
| 288 | 			kern_coredump_log(NULL, string: "(kdp_core_output) outproc(KDP_DATA, NULL, 0x%llx, %p) returned 0x%x\n" , | 
| 289 | 			    length, data, err); | 
| 290 | 			vars->kcos_error = err; | 
| 291 | 		} | 
| 292 | 		if (!data && !length) { | 
| 293 | 			kern_coredump_log(NULL, string: "100.." ); | 
| 294 | 		} else { | 
| 295 | 			vars->kcos_bytes_written += length; | 
| 296 | 			percent = (vars->kcos_bytes_written * 100) / vars->kcos_totalbytes; | 
| 297 | 			if ((percent - vars->kcos_lastpercent) >= 10) { | 
| 298 | 				vars->kcos_lastpercent = percent; | 
| 299 | 				kern_coredump_log(NULL, string: "%lld..\n" , percent); | 
| 300 | 			} | 
| 301 | 		} | 
| 302 | 	} | 
| 303 | 	return err; | 
| 304 | } | 
| 305 |  | 
| 306 | #if defined(__arm64__) | 
| 307 | extern pmap_paddr_t avail_start, avail_end; | 
| 308 | extern struct vm_object pmap_object_store; | 
| 309 | #endif | 
| 310 | extern vm_offset_t c_buffers; | 
| 311 | extern vm_size_t   c_buffers_size; | 
| 312 |  | 
| 313 | static bool | 
| 314 | kernel_vaddr_in_coredump_stage(const struct kdp_output_stage *stage, uint64_t vaddr, uint64_t *vincr) | 
| 315 | { | 
| 316 | 	uint64_t start_addr = (uint64_t)stage->kos_data; | 
| 317 | 	uint64_t end_addr = start_addr + stage->kos_data_size; | 
| 318 |  | 
| 319 | 	if (!stage->kos_data) { | 
| 320 | 		return false; | 
| 321 | 	} | 
| 322 |  | 
| 323 | 	if (vaddr >= start_addr && vaddr < end_addr) { | 
| 324 | 		*vincr = stage->kos_data_size - (vaddr - start_addr); | 
| 325 | 		return true; | 
| 326 | 	} | 
| 327 |  | 
| 328 | 	return false; | 
| 329 | } | 
| 330 |  | 
| 331 | static bool | 
| 332 | kernel_vaddr_in_coredump_stages(uint64_t vaddr, uint64_t *vincr) | 
| 333 | { | 
| 334 | 	if (kernel_vaddr_in_coredump_stage(stage: &disk_output_stage, vaddr, vincr)) { | 
| 335 | 		return true; | 
| 336 | 	} | 
| 337 |  | 
| 338 | 	if (kernel_vaddr_in_coredump_stage(stage: &lz4_output_stage, vaddr, vincr)) { | 
| 339 | 		return true; | 
| 340 | 	} | 
| 341 |  | 
| 342 | 	if (kernel_vaddr_in_coredump_stage(stage: &zlib_output_stage, vaddr, vincr)) { | 
| 343 | 		return true; | 
| 344 | 	} | 
| 345 |  | 
| 346 | 	if (kernel_vaddr_in_coredump_stage(stage: &buffer_output_stage, vaddr, vincr)) { | 
| 347 | 		return true; | 
| 348 | 	} | 
| 349 |  | 
| 350 | 	if (kernel_vaddr_in_coredump_stage(stage: &net_output_stage, vaddr, vincr)) { | 
| 351 | 		return true; | 
| 352 | 	} | 
| 353 |  | 
| 354 | 	if (kernel_vaddr_in_coredump_stage(stage: &progress_notify_output_stage, vaddr, vincr)) { | 
| 355 | 		return true; | 
| 356 | 	} | 
| 357 |  | 
| 358 | #ifdef CONFIG_KDP_COREDUMP_ENCRYPTION | 
| 359 | 	if (kernel_vaddr_in_coredump_stage(stage: &aea_output_stage, vaddr, vincr)) { | 
| 360 | 		return true; | 
| 361 | 	} | 
| 362 | #endif // CONFIG_KDP_COREDUMP_ENCRYPTION | 
| 363 |  | 
| 364 | #if defined(__arm64__) | 
| 365 | 	if (kernel_vaddr_in_coredump_stage(stage: &shmem_output_stage, vaddr, vincr)) { | 
| 366 | 		return true; | 
| 367 | 	} | 
| 368 | #endif /* defined(__arm64__) */ | 
| 369 |  | 
| 370 | #if defined(__arm64__) | 
| 371 | 	if (kernel_vaddr_in_coredump_stage(stage: &memory_backing_aware_buffer_output_stage, vaddr, vincr)) { | 
| 372 | 		return true; | 
| 373 | 	} | 
| 374 | #endif /* defined(__arm64__) */ | 
| 375 |  | 
| 376 | 	return false; | 
| 377 | } | 
| 378 |  | 
| 379 | ppnum_t | 
| 380 | kernel_pmap_present_mapping(uint64_t vaddr, uint64_t * pvincr, uintptr_t * pvphysaddr) | 
| 381 | { | 
| 382 | 	ppnum_t ppn = 0; | 
| 383 | 	uint64_t vincr = PAGE_SIZE_64; | 
| 384 |  | 
| 385 | 	assert(!(vaddr & PAGE_MASK_64)); | 
| 386 |  | 
| 387 | 	/* VA ranges to exclude */ | 
| 388 | 	if (vaddr == c_buffers) { | 
| 389 | 		/* compressor data */ | 
| 390 | 		ppn = 0; | 
| 391 | 		vincr = c_buffers_size; | 
| 392 | 	} else if (kernel_vaddr_in_coredump_stages(vaddr, vincr: &vincr)) { | 
| 393 | 		/* coredump output stage working memory */ | 
| 394 | 		ppn = 0; | 
| 395 | 	} else if ((kdp_core_ramdisk_addr != 0) && (vaddr == kdp_core_ramdisk_addr)) { | 
| 396 | 		ppn = 0; | 
| 397 | 		vincr = kdp_core_ramdisk_size; | 
| 398 | 	} else | 
| 399 | #if defined(__arm64__) | 
| 400 | 	if (vaddr == phystokv(pa: avail_start)) { | 
| 401 | 		/* physical memory map */ | 
| 402 | 		ppn = 0; | 
| 403 | 		vincr = (avail_end - avail_start); | 
| 404 | 	} else | 
| 405 | #endif /* defined(__arm64__) */ | 
| 406 | 	{ | 
| 407 | 		ppn = (pvphysaddr != NULL ? | 
| 408 | 		    pmap_find_phys(map: kernel_pmap, va: vaddr) : | 
| 409 | 		    pmap_find_phys_nofault(map: kernel_pmap, va: vaddr)); | 
| 410 | 	} | 
| 411 |  | 
| 412 | 	*pvincr = round_page_64(x: vincr); | 
| 413 |  | 
| 414 | 	if (ppn && pvphysaddr) { | 
| 415 | 		uint64_t phys = ptoa_64(ppn); | 
| 416 | 		if (physmap_enclosed(phys)) { | 
| 417 | 			*pvphysaddr = phystokv(pa: phys); | 
| 418 | 		} else { | 
| 419 | 			ppn = 0; | 
| 420 | 		} | 
| 421 | 	} | 
| 422 |  | 
| 423 | 	return ppn; | 
| 424 | } | 
| 425 |  | 
| 426 | static int | 
| 427 | pmap_traverse_present_mappings(pmap_t __unused pmap, | 
| 428 |     vm_map_offset_t start, | 
| 429 |     vm_map_offset_t end, | 
| 430 |     pmap_traverse_callback callback, | 
| 431 |     void *context) | 
| 432 | { | 
| 433 | 	IOReturn        ret; | 
| 434 | 	vm_map_offset_t vcurstart, vcur; | 
| 435 | 	uint64_t        vincr = 0; | 
| 436 | 	vm_map_offset_t debug_start = trunc_page((vm_map_offset_t) debug_buf_base); | 
| 437 | 	vm_map_offset_t debug_end = round_page(x: (vm_map_offset_t) (debug_buf_base + debug_buf_size)); | 
| 438 | #if defined(XNU_TARGET_OS_BRIDGE) | 
| 439 | 	vm_map_offset_t macos_panic_start = trunc_page((vm_map_offset_t) macos_panic_base); | 
| 440 | 	vm_map_offset_t macos_panic_end = round_page((vm_map_offset_t) (macos_panic_base + macos_panic_size)); | 
| 441 | #endif | 
| 442 |  | 
| 443 | 	boolean_t       lastvavalid; | 
| 444 | #if defined(__arm64__) | 
| 445 | 	vm_page_t m = VM_PAGE_NULL; | 
| 446 | #endif | 
| 447 |  | 
| 448 | #if defined(__x86_64__) | 
| 449 | 	assert(!is_ept_pmap(pmap)); | 
| 450 | #endif | 
| 451 |  | 
| 452 | 	/* Assumes pmap is locked, or being called from the kernel debugger */ | 
| 453 |  | 
| 454 | 	if (start > end) { | 
| 455 | 		return KERN_INVALID_ARGUMENT; | 
| 456 | 	} | 
| 457 |  | 
| 458 | 	ret = KERN_SUCCESS; | 
| 459 | 	lastvavalid = FALSE; | 
| 460 | 	for (vcur = vcurstart = start; (ret == KERN_SUCCESS) && (vcur < end);) { | 
| 461 | 		ppnum_t ppn = 0; | 
| 462 |  | 
| 463 | #if defined(__arm64__) | 
| 464 | 		/* We're at the start of the physmap, so pull out the pagetable pages that | 
| 465 | 		 * are accessed through that region.*/ | 
| 466 | 		if (vcur == phystokv(pa: avail_start) && vm_object_lock_try_shared(&pmap_object_store)) { | 
| 467 | 			m = (vm_page_t)vm_page_queue_first(&pmap_object_store.memq); | 
| 468 | 		} | 
| 469 |  | 
| 470 | 		if (m != VM_PAGE_NULL) { | 
| 471 | 			vm_map_offset_t vprev = vcur; | 
| 472 | 			ppn = (ppnum_t)atop(avail_end); | 
| 473 | 			while (!vm_page_queue_end(&pmap_object_store.memq, (vm_page_queue_entry_t)m)) { | 
| 474 | 				/* Ignore pages that come from the static region and have already been dumped.*/ | 
| 475 | 				if (VM_PAGE_GET_PHYS_PAGE(m) >= atop(avail_start)) { | 
| 476 | 					ppn = VM_PAGE_GET_PHYS_PAGE(m); | 
| 477 | 					break; | 
| 478 | 				} | 
| 479 | 				m = (vm_page_t)vm_page_queue_next(&m->vmp_listq); | 
| 480 | 			} | 
| 481 | 			vincr = PAGE_SIZE_64; | 
| 482 | 			if (ppn == atop(avail_end)) { | 
| 483 | 				vm_object_unlock(&pmap_object_store); | 
| 484 | 				m = VM_PAGE_NULL; | 
| 485 | 				// avail_end is not a valid physical address, | 
| 486 | 				// so phystokv(avail_end) may not produce the expected result. | 
| 487 | #if CONFIG_SPTM | 
| 488 | 				/** | 
| 489 | 				 * The physical aperture in SPTM systems includes mappings to IO memory, | 
| 490 | 				 * following the last page of managed memory. Rather than calculating the | 
| 491 | 				 * end of the physical aperture as a function of the amount of managed memory, | 
| 492 | 				 * simply advance [vcur] to the point advertised by the SPTM as the end of | 
| 493 | 				 * the physical aperture. | 
| 494 | 				 */ | 
| 495 | 				vcur = SPTMArgs->physmap_end; | 
| 496 | #else | 
| 497 | 				vcur = phystokv(pa: avail_start) + (avail_end - avail_start); | 
| 498 | #endif | 
| 499 | 			} else { | 
| 500 | 				m = (vm_page_t)vm_page_queue_next(&m->vmp_listq); | 
| 501 | 				vcur = phystokv(ptoa(ppn)); | 
| 502 | 			} | 
| 503 | 			if (vcur != vprev) { | 
| 504 | 				ret = callback(vcurstart, vprev, context); | 
| 505 | 				lastvavalid = FALSE; | 
| 506 | 			} | 
| 507 | 		} | 
| 508 | 		if (m == VM_PAGE_NULL) { | 
| 509 | 			ppn = kernel_pmap_present_mapping(vaddr: vcur, pvincr: &vincr, NULL); | 
| 510 | 		} | 
| 511 | #else /* defined(__arm64__) */ | 
| 512 | 		ppn = kernel_pmap_present_mapping(vcur, &vincr, NULL); | 
| 513 | #endif | 
| 514 | 		if (ppn != 0 && kernel_vaddr_in_excluded_region(addr: vcur, vincr: &vincr)) { | 
| 515 | 			/* excluded region */ | 
| 516 | 			ppn = 0; | 
| 517 | 		} | 
| 518 | 		if (ppn != 0) { | 
| 519 | 			if (((vcur < debug_start) || (vcur >= debug_end)) | 
| 520 | 			    && !(pmap_valid_page(pn: ppn) || bootloader_valid_page(ppn)) | 
| 521 | #if defined(XNU_TARGET_OS_BRIDGE) | 
| 522 | 			    // include the macOS panic region if it's mapped | 
| 523 | 			    && ((vcur < macos_panic_start) || (vcur >= macos_panic_end)) | 
| 524 | #endif | 
| 525 | 			    ) { | 
| 526 | 				/* not something we want */ | 
| 527 | 				ppn = 0; | 
| 528 | 			} | 
| 529 | 			/* include the phys carveout only if explictly marked */ | 
| 530 | 			if (debug_is_in_phys_carveout(va: vcur) && | 
| 531 | 			    !debug_can_coredump_phys_carveout()) { | 
| 532 | 				ppn = 0; | 
| 533 | 			} | 
| 534 | 		} | 
| 535 |  | 
| 536 | 		if (ppn != 0) { | 
| 537 | 			if (!lastvavalid) { | 
| 538 | 				/* Start of a new virtual region */ | 
| 539 | 				vcurstart = vcur; | 
| 540 | 				lastvavalid = TRUE; | 
| 541 | 			} | 
| 542 | 		} else { | 
| 543 | 			if (lastvavalid) { | 
| 544 | 				/* end of a virtual region */ | 
| 545 | 				ret = callback(vcurstart, vcur, context); | 
| 546 | 				lastvavalid = FALSE; | 
| 547 | 			} | 
| 548 |  | 
| 549 | #if defined(__x86_64__) | 
| 550 | 			/* Try to skip by 2MB if possible */ | 
| 551 | 			if ((vcur & PDMASK) == 0) { | 
| 552 | 				pd_entry_t *pde; | 
| 553 | 				pde = pmap_pde(pmap, vcur); | 
| 554 | 				if (0 == pde || ((*pde & INTEL_PTE_VALID) == 0)) { | 
| 555 | 					/* Make sure we wouldn't overflow */ | 
| 556 | 					if (vcur < (end - NBPD)) { | 
| 557 | 						vincr = NBPD; | 
| 558 | 					} | 
| 559 | 				} | 
| 560 | 			} | 
| 561 | #endif /* defined(__x86_64__) */ | 
| 562 | 		} | 
| 563 | 		vcur += vincr; | 
| 564 | 	} | 
| 565 |  | 
| 566 | 	if ((ret == KERN_SUCCESS) && lastvavalid) { | 
| 567 | 		/* send previous run */ | 
| 568 | 		ret = callback(vcurstart, vcur, context); | 
| 569 | 	} | 
| 570 |  | 
| 571 | #if KASAN | 
| 572 | 	if (ret == KERN_SUCCESS) { | 
| 573 | 		ret = kasan_traverse_mappings(callback, context); | 
| 574 | 	} | 
| 575 | #endif | 
| 576 |  | 
| 577 | 	return ret; | 
| 578 | } | 
| 579 |  | 
| 580 | struct kern_dump_preflight_context { | 
| 581 | 	uint32_t region_count; | 
| 582 | 	uint64_t dumpable_bytes; | 
| 583 | }; | 
| 584 |  | 
| 585 | int | 
| 586 | kern_dump_pmap_traverse_preflight_callback(vm_map_offset_t start, | 
| 587 |     vm_map_offset_t end, | 
| 588 |     void *context) | 
| 589 | { | 
| 590 | 	struct kern_dump_preflight_context *kdc = (struct kern_dump_preflight_context *)context; | 
| 591 | 	IOReturn ret = KERN_SUCCESS; | 
| 592 |  | 
| 593 | 	kdc->region_count++; | 
| 594 | 	kdc->dumpable_bytes += (end - start); | 
| 595 |  | 
| 596 | 	return ret; | 
| 597 | } | 
| 598 |  | 
| 599 |  | 
| 600 | struct kern_dump_send_seg_desc_context { | 
| 601 | 	core_save_segment_descriptions_cb callback; | 
| 602 | 	void *context; | 
| 603 | }; | 
| 604 |  | 
| 605 | int | 
| 606 | kern_dump_pmap_traverse_send_segdesc_callback(vm_map_offset_t start, | 
| 607 |     vm_map_offset_t end, | 
| 608 |     void *context) | 
| 609 | { | 
| 610 | 	struct kern_dump_send_seg_desc_context *kds_context = (struct kern_dump_send_seg_desc_context *)context; | 
| 611 | 	uint64_t seg_start = (uint64_t) start; | 
| 612 | 	uint64_t seg_end = (uint64_t) end; | 
| 613 |  | 
| 614 | 	return kds_context->callback(seg_start, seg_end, kds_context->context); | 
| 615 | } | 
| 616 |  | 
| 617 | struct kern_dump_send_segdata_context { | 
| 618 | 	core_save_segment_data_cb callback; | 
| 619 | 	void *context; | 
| 620 | }; | 
| 621 |  | 
| 622 | int | 
| 623 | kern_dump_pmap_traverse_send_segdata_callback(vm_map_offset_t start, | 
| 624 |     vm_map_offset_t end, | 
| 625 |     void *context) | 
| 626 | { | 
| 627 | 	struct kern_dump_send_segdata_context *kds_context = (struct kern_dump_send_segdata_context *)context; | 
| 628 |  | 
| 629 | 	return kds_context->callback((void *)start, (uint64_t)(end - start), kds_context->context); | 
| 630 | } | 
| 631 |  | 
| 632 | static kern_return_t | 
| 633 | kern_dump_init(__unused void *refcon, void *context) | 
| 634 | { | 
| 635 | 	/* TODO: consider doing mmu flush from an init function */ | 
| 636 |  | 
| 637 | 	// If excluded regions list is locked, it is unsafe to dump the kernel. | 
| 638 | 	if (kdp_lck_mtx_lock_spin_is_acquired(lck: &excluded_regions_mtx)) { | 
| 639 | 		kern_coredump_log(context, string: "%s: skipping kernel because excluded regions list is locked\n" , | 
| 640 | 		    __func__); | 
| 641 | #if defined(__arm64__) | 
| 642 | 		panic_info->eph_panic_flags |= EMBEDDED_PANIC_HEADER_FLAG_KERNEL_COREDUMP_SKIPPED_EXCLUDE_REGIONS_UNAVAILABLE; | 
| 643 | #else | 
| 644 | 		panic_info->mph_panic_flags |= MACOS_PANIC_HEADER_FLAG_KERNEL_COREDUMP_SKIPPED_EXCLUDE_REGIONS_UNAVAILABLE; | 
| 645 | #endif | 
| 646 | 		paniclog_flush(); | 
| 647 | 		return KERN_NODE_DOWN; | 
| 648 | 	} | 
| 649 |  | 
| 650 | 	return KERN_SUCCESS; | 
| 651 | } | 
| 652 |  | 
| 653 | static int | 
| 654 | kern_dump_save_summary(__unused void *refcon, core_save_summary_cb callback, void *context) | 
| 655 | { | 
| 656 | 	struct kern_dump_preflight_context kdc_preflight = { }; | 
| 657 | 	uint64_t thread_state_size = 0, thread_count = 0; | 
| 658 | 	vm_map_offset_t vstart = kdp_core_start_addr(); | 
| 659 | 	kern_return_t ret; | 
| 660 |  | 
| 661 | 	ret = pmap_traverse_present_mappings(pmap: kernel_pmap, | 
| 662 | 	    start: vstart, | 
| 663 | 	    VM_MAX_KERNEL_ADDRESS, | 
| 664 | 	    callback: kern_dump_pmap_traverse_preflight_callback, | 
| 665 | 	    context: &kdc_preflight); | 
| 666 | 	if (ret != KERN_SUCCESS) { | 
| 667 | 		kern_coredump_log(context, string: "save_summary: pmap traversal failed: %d\n" , ret); | 
| 668 | 		return ret; | 
| 669 | 	} | 
| 670 |  | 
| 671 | 	kern_collectth_state_size(tstate_count: &thread_count, tstate_size: &thread_state_size); | 
| 672 |  | 
| 673 | 	ret = callback(kdc_preflight.region_count, kdc_preflight.dumpable_bytes, | 
| 674 | 	    thread_count, thread_state_size, 0, context); | 
| 675 | 	return ret; | 
| 676 | } | 
| 677 |  | 
| 678 | static int | 
| 679 | kern_dump_save_seg_descriptions(__unused void *refcon, core_save_segment_descriptions_cb callback, void *context) | 
| 680 | { | 
| 681 | 	vm_map_offset_t vstart = kdp_core_start_addr(); | 
| 682 | 	kern_return_t ret; | 
| 683 | 	struct kern_dump_send_seg_desc_context kds_context; | 
| 684 |  | 
| 685 | 	kds_context.callback = callback; | 
| 686 | 	kds_context.context = context; | 
| 687 |  | 
| 688 | 	ret = pmap_traverse_present_mappings(pmap: kernel_pmap, | 
| 689 | 	    start: vstart, | 
| 690 | 	    VM_MAX_KERNEL_ADDRESS, | 
| 691 | 	    callback: kern_dump_pmap_traverse_send_segdesc_callback, | 
| 692 | 	    context: &kds_context); | 
| 693 | 	if (ret != KERN_SUCCESS) { | 
| 694 | 		kern_coredump_log(context, string: "save_seg_desc: pmap traversal failed: %d\n" , ret); | 
| 695 | 		return ret; | 
| 696 | 	} | 
| 697 |  | 
| 698 | 	return KERN_SUCCESS; | 
| 699 | } | 
| 700 |  | 
| 701 | static int | 
| 702 | kern_dump_save_thread_state(__unused void *refcon, void *buf, core_save_thread_state_cb callback, void *context) | 
| 703 | { | 
| 704 | 	kern_return_t ret; | 
| 705 | 	uint64_t thread_state_size = 0, thread_count = 0; | 
| 706 |  | 
| 707 | 	kern_collectth_state_size(tstate_count: &thread_count, tstate_size: &thread_state_size); | 
| 708 |  | 
| 709 | 	if (thread_state_size > 0) { | 
| 710 | 		void * iter = NULL; | 
| 711 | 		do { | 
| 712 | 			kern_collectth_state(thread: current_thread(), buffer: buf, size: thread_state_size, iter: &iter); | 
| 713 |  | 
| 714 | 			ret = callback(buf, context); | 
| 715 | 			if (ret != KERN_SUCCESS) { | 
| 716 | 				return ret; | 
| 717 | 			} | 
| 718 | 		} while (iter); | 
| 719 | 	} | 
| 720 |  | 
| 721 | 	return KERN_SUCCESS; | 
| 722 | } | 
| 723 |  | 
| 724 |  | 
| 725 | static int | 
| 726 | kern_dump_save_sw_vers_detail(__unused void *refcon, core_save_sw_vers_detail_cb callback, void *context) | 
| 727 | { | 
| 728 | 	return callback(vm_kernel_stext, kernel_uuid, 0, context); | 
| 729 | } | 
| 730 |  | 
| 731 | static int | 
| 732 | kern_dump_save_segment_data(__unused void *refcon, core_save_segment_data_cb callback, void *context) | 
| 733 | { | 
| 734 | 	vm_map_offset_t vstart = kdp_core_start_addr(); | 
| 735 | 	kern_return_t ret; | 
| 736 | 	struct kern_dump_send_segdata_context kds_context; | 
| 737 |  | 
| 738 | 	kds_context.callback = callback; | 
| 739 | 	kds_context.context = context; | 
| 740 |  | 
| 741 | 	ret = pmap_traverse_present_mappings(pmap: kernel_pmap, | 
| 742 | 	    start: vstart, | 
| 743 | 	    VM_MAX_KERNEL_ADDRESS, callback: kern_dump_pmap_traverse_send_segdata_callback, context: &kds_context); | 
| 744 | 	if (ret != KERN_SUCCESS) { | 
| 745 | 		kern_coredump_log(context, string: "save_seg_data: pmap traversal failed: %d\n" , ret); | 
| 746 | 		return ret; | 
| 747 | 	} | 
| 748 |  | 
| 749 | 	return KERN_SUCCESS; | 
| 750 | } | 
| 751 |  | 
| 752 | kern_return_t | 
| 753 | kdp_reset_output_vars(void *kdp_core_out_state, uint64_t totalbytes, bool encrypt_core, bool *out_should_skip_coredump) | 
| 754 | { | 
| 755 | 	struct kdp_core_out_state *outstate = (struct kdp_core_out_state *)kdp_core_out_state; | 
| 756 | 	struct kdp_output_stage *current_stage = NULL; | 
| 757 |  | 
| 758 | 	/* Re-initialize kdp_outstate */ | 
| 759 | 	outstate->kcos_totalbytes = totalbytes; | 
| 760 | 	outstate->kcos_bytes_written = 0; | 
| 761 | 	outstate->kcos_lastpercent = 0; | 
| 762 | 	outstate->kcos_error = KERN_SUCCESS; | 
| 763 |  | 
| 764 | 	/* Reset the output stages */ | 
| 765 | 	STAILQ_FOREACH(current_stage, &outstate->kcos_out_stage, kos_next) { | 
| 766 | 		current_stage->kos_funcs.kosf_reset(current_stage); | 
| 767 | 	} | 
| 768 |  | 
| 769 | 	*out_should_skip_coredump = false; | 
| 770 | 	if (encrypt_core) { | 
| 771 | 		if (outstate->kcos_enforce_encryption && !outstate->kcos_encryption_stage) { | 
| 772 | 			*out_should_skip_coredump = true; | 
| 773 | #if defined(__arm64__) | 
| 774 | 			panic_info->eph_panic_flags |= EMBEDDED_PANIC_HEADER_FLAG_ENCRYPTED_COREDUMP_SKIPPED; | 
| 775 | #else | 
| 776 | 			panic_info->mph_panic_flags |= MACOS_PANIC_HEADER_FLAG_ENCRYPTED_COREDUMP_SKIPPED; | 
| 777 | #endif | 
| 778 | 			kern_coredump_log(NULL, string: "(kdp_reset_output_vars) Encryption requested, is unavailable, and enforcement is active. Skipping current core.\n" ); | 
| 779 | 		} | 
| 780 | 	} else if (outstate->kcos_encryption_stage) { | 
| 781 | 		outstate->kcos_encryption_stage->kos_bypass = true; | 
| 782 | 	} | 
| 783 |  | 
| 784 | 	return KERN_SUCCESS; | 
| 785 | } | 
| 786 |  | 
| 787 | static kern_return_t | 
| 788 | (struct kdp_core_out_state *outstate) | 
| 789 | { | 
| 790 | 	struct kdp_output_stage *first_stage = STAILQ_FIRST(&outstate->kcos_out_stage); | 
| 791 | 	uint64_t foffset; | 
| 792 | 	kern_return_t ret; | 
| 793 |  | 
| 794 | 	/* Write the file header -- first seek to the beginning of the file */ | 
| 795 | 	foffset = 0; | 
| 796 | 	if ((ret = (first_stage->kos_funcs.kosf_outproc)(first_stage, KDP_SEEK, NULL, sizeof(foffset), &foffset)) != KERN_SUCCESS) { | 
| 797 | 		kern_coredump_log(NULL, string: "(kern_dump_update_header) outproc(KDP_SEEK, NULL, %lu, %p) foffset = 0x%llx returned 0x%x\n" , | 
| 798 | 		    sizeof(foffset), &foffset, foffset, ret); | 
| 799 | 		return ret; | 
| 800 | 	} | 
| 801 |  | 
| 802 | 	if ((ret = (first_stage->kos_funcs.kosf_outproc)(first_stage, KDP_DATA, NULL, kdp_core_header_size, kdp_core_header)) != KERN_SUCCESS) { | 
| 803 | 		kern_coredump_log(NULL, string: "(kern_dump_update_header) outproc(KDP_DATA, NULL, %lu, %p) returned 0x%x\n" , | 
| 804 | 		    kdp_core_header_size, kdp_core_header, ret); | 
| 805 | 		return ret; | 
| 806 | 	} | 
| 807 |  | 
| 808 | 	if ((ret = (first_stage->kos_funcs.kosf_outproc)(first_stage, KDP_DATA, NULL, 0, NULL)) != KERN_SUCCESS) { | 
| 809 | 		kern_coredump_log(NULL, string: "(kern_dump_update_header) outproc data flush returned 0x%x\n" , ret); | 
| 810 | 		return ret; | 
| 811 | 	} | 
| 812 |  | 
| 813 | #if defined(__arm64__) | 
| 814 | 	if ((ret = (first_stage->kos_funcs.kosf_outproc)(first_stage, KDP_FLUSH, NULL, 0, NULL)) != KERN_SUCCESS) { | 
| 815 | 		kern_coredump_log(NULL, string: "(kern_dump_update_header) outproc explicit flush returned 0x%x\n" , ret); | 
| 816 | 		return ret; | 
| 817 | 	} | 
| 818 | #endif /* defined(__arm64__) */ | 
| 819 |  | 
| 820 | 	return ret; | 
| 821 | } | 
| 822 |  | 
| 823 | kern_return_t | 
| 824 | kern_dump_record_file(void *kdp_core_out_state, const char *filename, uint64_t file_offset, uint64_t *out_file_length, uint64_t details_flags) | 
| 825 | { | 
| 826 | 	kern_return_t ret = KERN_SUCCESS; | 
| 827 | 	uint64_t bytes_written = 0; | 
| 828 | 	struct mach_core_details_v2 *core_details = NULL; | 
| 829 | 	struct kdp_output_stage *last_stage; | 
| 830 | 	struct kdp_core_out_state *outstate = (struct kdp_core_out_state *)kdp_core_out_state; | 
| 831 |  | 
| 832 | 	assert(kdp_core_header->num_files < KERN_COREDUMP_MAX_CORES); | 
| 833 | 	assert(out_file_length != NULL); | 
| 834 | 	*out_file_length = 0; | 
| 835 |  | 
| 836 | 	last_stage = STAILQ_LAST(&outstate->kcos_out_stage, kdp_output_stage, kos_next); | 
| 837 | 	bytes_written = last_stage->kos_bytes_written; | 
| 838 |  | 
| 839 | 	core_details = &(kdp_core_header->files[kdp_core_header->num_files]); | 
| 840 | 	core_details->flags = details_flags; | 
| 841 | 	core_details->offset = file_offset; | 
| 842 | 	core_details->length = bytes_written; | 
| 843 | 	strncpy((char *)&core_details->core_name, filename, | 
| 844 | 	    MACH_CORE_FILEHEADER_NAMELEN); | 
| 845 | 	core_details->core_name[MACH_CORE_FILEHEADER_NAMELEN - 1] = '\0'; | 
| 846 |  | 
| 847 | 	kdp_core_header->num_files++; | 
| 848 |  | 
| 849 | 	ret = kern_dump_update_header(outstate); | 
| 850 | 	if (ret == KERN_SUCCESS) { | 
| 851 | 		*out_file_length = bytes_written; | 
| 852 | 	} | 
| 853 |  | 
| 854 | 	return ret; | 
| 855 | } | 
| 856 |  | 
| 857 | kern_return_t | 
| 858 | kern_dump_seek_to_next_file(void *kdp_core_out_state, uint64_t next_file_offset) | 
| 859 | { | 
| 860 | 	struct kdp_core_out_state *outstate = (struct kdp_core_out_state *)kdp_core_out_state; | 
| 861 | 	struct kdp_output_stage *first_stage = STAILQ_FIRST(&outstate->kcos_out_stage); | 
| 862 | 	kern_return_t ret; | 
| 863 |  | 
| 864 | 	if ((ret = (first_stage->kos_funcs.kosf_outproc)(first_stage, KDP_SEEK, NULL, sizeof(next_file_offset), &next_file_offset)) != KERN_SUCCESS) { | 
| 865 | 		kern_coredump_log(NULL, string: "(kern_dump_seek_to_next_file) outproc(KDP_SEEK, NULL, %lu, %p) foffset = 0x%llx returned 0x%x\n" , | 
| 866 | 		    sizeof(next_file_offset), &next_file_offset, next_file_offset, ret); | 
| 867 | 	} | 
| 868 |  | 
| 869 | 	return ret; | 
| 870 | } | 
| 871 |  | 
| 872 | #ifdef CONFIG_KDP_COREDUMP_ENCRYPTION | 
| 873 |  | 
| 874 | static kern_return_t | 
| 875 | kern_dump_write_public_key(struct kdp_core_out_state *outstate) | 
| 876 | { | 
| 877 | 	struct kdp_output_stage *first_stage = STAILQ_FIRST(&outstate->kcos_out_stage); | 
| 878 | 	uint64_t foffset; | 
| 879 | 	uint64_t remainder = PUBLIC_KEY_RESERVED_LENGTH - kdp_core_header->pub_key_length; | 
| 880 | 	kern_return_t ret; | 
| 881 |  | 
| 882 | 	if (kdp_core_header->pub_key_offset == 0 || kdp_core_header->pub_key_length == 0) { | 
| 883 | 		// Nothing to do | 
| 884 | 		return KERN_SUCCESS; | 
| 885 | 	} | 
| 886 |  | 
| 887 | 	/* Write the public key -- first seek to the appropriate offset */ | 
| 888 | 	foffset = kdp_core_header->pub_key_offset; | 
| 889 | 	if ((ret = (first_stage->kos_funcs.kosf_outproc)(first_stage, KDP_SEEK, NULL, sizeof(foffset), &foffset)) != KERN_SUCCESS) { | 
| 890 | 		kern_coredump_log(NULL, string: "(kern_dump_write_public_key) outproc(KDP_SEEK, NULL, %lu, %p) foffset = 0x%llx returned 0x%x\n" , | 
| 891 | 		    sizeof(foffset), &foffset, foffset, ret); | 
| 892 | 		return ret; | 
| 893 | 	} | 
| 894 |  | 
| 895 | 	// Write the public key | 
| 896 | 	if ((ret = (first_stage->kos_funcs.kosf_outproc)(first_stage, KDP_DATA, NULL, kdp_core_header->pub_key_length, kdp_core_public_key)) != KERN_SUCCESS) { | 
| 897 | 		kern_coredump_log(NULL, string: "(kern_dump_write_public_key) outproc(KDP_DATA, NULL, %u, %p) returned 0x%x\n" , | 
| 898 | 		    kdp_core_header->pub_key_length, kdp_core_public_key, ret); | 
| 899 | 		return ret; | 
| 900 | 	} | 
| 901 |  | 
| 902 | 	// Fill out the remainder of the block with zeroes | 
| 903 | 	if ((ret = (first_stage->kos_funcs.kosf_outproc)(first_stage, KDP_DATA, NULL, remainder, NULL)) != KERN_SUCCESS) { | 
| 904 | 		kern_coredump_log(NULL, string: "(kern_dump_write_public_key) outproc(KDP_DATA, NULL, %llu, NULL) returned 0x%x\n" , | 
| 905 | 		    remainder, ret); | 
| 906 | 		return ret; | 
| 907 | 	} | 
| 908 |  | 
| 909 | 	// Do it once more to write the "next" public key | 
| 910 | 	if ((ret = (first_stage->kos_funcs.kosf_outproc)(first_stage, KDP_DATA, NULL, kdp_core_header->pub_key_length, kdp_core_public_key)) != KERN_SUCCESS) { | 
| 911 | 		kern_coredump_log(NULL, string: "(kern_dump_write_public_key) outproc(KDP_DATA, NULL, %u, %p) returned 0x%x\n" , | 
| 912 | 		    kdp_core_header->pub_key_length, kdp_core_public_key, ret); | 
| 913 | 		return ret; | 
| 914 | 	} | 
| 915 |  | 
| 916 | 	if ((ret = (first_stage->kos_funcs.kosf_outproc)(first_stage, KDP_DATA, NULL, remainder, NULL)) != KERN_SUCCESS) { | 
| 917 | 		kern_coredump_log(NULL, string: "(kern_dump_write_public_key) outproc(KDP_DATA, NULL, %llu, NULL) returned 0x%x\n" , | 
| 918 | 		    remainder, ret); | 
| 919 | 		return ret; | 
| 920 | 	} | 
| 921 |  | 
| 922 | 	if ((ret = (first_stage->kos_funcs.kosf_outproc)(first_stage, KDP_DATA, NULL, 0, NULL)) != KERN_SUCCESS) { | 
| 923 | 		kern_coredump_log(NULL, string: "(kern_dump_write_public_key) outproc data flush returned 0x%x\n" , ret); | 
| 924 | 		return ret; | 
| 925 | 	} | 
| 926 |  | 
| 927 | #if defined(__arm64__) | 
| 928 | 	if ((ret = (first_stage->kos_funcs.kosf_outproc)(first_stage, KDP_FLUSH, NULL, 0, NULL)) != KERN_SUCCESS) { | 
| 929 | 		kern_coredump_log(NULL, string: "(kern_dump_write_public_key) outproc explicit flush returned 0x%x\n" , ret); | 
| 930 | 		return ret; | 
| 931 | 	} | 
| 932 | #endif /* defined(__arm64__) */ | 
| 933 |  | 
| 934 | 	return ret; | 
| 935 | } | 
| 936 |  | 
| 937 | #endif // CONFIG_KDP_COREDUMP_ENCRYPTION | 
| 938 |  | 
| 939 | static kern_return_t | 
| 940 | chain_output_stages(enum kern_dump_type kd_variant, struct kdp_core_out_state *outstate, uint64_t *details_flags) | 
| 941 | { | 
| 942 | 	struct kdp_output_stage *current = NULL; | 
| 943 |  | 
| 944 | 	assert(details_flags); | 
| 945 | 	*details_flags = 0; | 
| 946 |  | 
| 947 | 	switch (kd_variant) { | 
| 948 | 	case KERN_DUMP_STACKSHOT_DISK: | 
| 949 | 		OS_FALLTHROUGH; | 
| 950 | 	case KERN_DUMP_DISK: | 
| 951 | #if defined(__arm64__) | 
| 952 | 		STAILQ_INSERT_TAIL(&outstate->kcos_out_stage, &memory_backing_aware_buffer_output_stage, kos_next); | 
| 953 | #endif | 
| 954 | 		if (!kdp_corezip_disabled) { | 
| 955 | 			if (kdp_core_is_initializing_lz4_stage) { | 
| 956 | 				kern_coredump_log(NULL, string: "We were in the middle of initializing LZ4 stage. Cannot write a coredump to disk\n" ); | 
| 957 | 				return KERN_FAILURE; | 
| 958 | 			} else if (!lz4_output_stage.kos_initialized) { | 
| 959 | 				kern_coredump_log(NULL, string: "LZ4 stage is not yet initialized. Cannot write a coredump to disk\n" ); | 
| 960 | 				return KERN_FAILURE; | 
| 961 | 			} | 
| 962 | 			STAILQ_INSERT_TAIL(&outstate->kcos_out_stage, &lz4_output_stage, kos_next); | 
| 963 | 			*details_flags |= MACH_CORE_DETAILS_V2_FLAG_COMPRESSED_LZ4; | 
| 964 | 		} | 
| 965 | 		STAILQ_INSERT_TAIL(&outstate->kcos_out_stage, &progress_notify_output_stage, kos_next); | 
| 966 | #ifdef CONFIG_KDP_COREDUMP_ENCRYPTION | 
| 967 | 		if (kdp_core_is_initializing_encryption_stage) { | 
| 968 | 			kern_coredump_log(NULL, string: "We were in the middle of initializing encryption. Marking it as unavailable\n" ); | 
| 969 | 		} else if (aea_output_stage.kos_initialized) { | 
| 970 | 			STAILQ_INSERT_TAIL(&outstate->kcos_out_stage, &aea_output_stage, kos_next); | 
| 971 | 			outstate->kcos_encryption_stage = &aea_output_stage; | 
| 972 | 			*details_flags |= MACH_CORE_DETAILS_V2_FLAG_ENCRYPTED_AEA; | 
| 973 | 		} | 
| 974 | 		outstate->kcos_enforce_encryption = kern_dump_should_enforce_encryption(); | 
| 975 | #endif // CONFIG_KDP_COREDUMP_ENCRYPTION | 
| 976 | 		if (kdp_core_is_initializing_disk_stage) { | 
| 977 | 			kern_coredump_log(NULL, string: "We were in the middle of initializing the disk stage. Cannot write a coredump to disk\n" ); | 
| 978 | 			return KERN_FAILURE; | 
| 979 | 		} else if (disk_output_stage.kos_initialized == false) { | 
| 980 | 			kern_coredump_log(NULL, string: "Corefile is not yet initialized. Cannot write a coredump to disk\n" ); | 
| 981 | 			return KERN_FAILURE; | 
| 982 | 		} | 
| 983 | 		STAILQ_INSERT_TAIL(&outstate->kcos_out_stage, &disk_output_stage, kos_next); | 
| 984 | 		break; | 
| 985 | 	case KERN_DUMP_NET: | 
| 986 | 		if (!kdp_corezip_disabled) { | 
| 987 | 			if (!zlib_output_stage.kos_initialized) { | 
| 988 | 				kern_coredump_log(NULL, string: "Zlib stage is not initialized. Cannot write a coredump to the network\n" ); | 
| 989 | 				return KERN_FAILURE; | 
| 990 | 			} | 
| 991 | 			STAILQ_INSERT_TAIL(&outstate->kcos_out_stage, &zlib_output_stage, kos_next); | 
| 992 | 			*details_flags |= MACH_CORE_DETAILS_V2_FLAG_COMPRESSED_ZLIB; | 
| 993 | 		} | 
| 994 | 		STAILQ_INSERT_TAIL(&outstate->kcos_out_stage, &progress_notify_output_stage, kos_next); | 
| 995 | 		STAILQ_INSERT_TAIL(&outstate->kcos_out_stage, &buffer_output_stage, kos_next); | 
| 996 | 		STAILQ_INSERT_TAIL(&outstate->kcos_out_stage, &net_output_stage, kos_next); | 
| 997 | 		break; | 
| 998 | #if defined(__arm64__) | 
| 999 | 	case KERN_DUMP_HW_SHMEM_DBG: | 
| 1000 | 		if (!kdp_corezip_disabled) { | 
| 1001 | 			if (!zlib_output_stage.kos_initialized) { | 
| 1002 | 				kern_coredump_log(NULL, string: "Zlib stage is not initialized. Cannot write a coredump to shared memory\n" ); | 
| 1003 | 				return KERN_FAILURE; | 
| 1004 | 			} | 
| 1005 | 			STAILQ_INSERT_TAIL(&outstate->kcos_out_stage, &zlib_output_stage, kos_next); | 
| 1006 | 			*details_flags |= MACH_CORE_DETAILS_V2_FLAG_COMPRESSED_ZLIB; | 
| 1007 | 		} | 
| 1008 | 		STAILQ_INSERT_TAIL(&outstate->kcos_out_stage, &shmem_output_stage, kos_next); | 
| 1009 | 		break; | 
| 1010 | #endif /* defined(__arm64__) */ | 
| 1011 | 	} | 
| 1012 |  | 
| 1013 | 	STAILQ_FOREACH(current, &outstate->kcos_out_stage, kos_next) { | 
| 1014 | 		current->kos_outstate = outstate; | 
| 1015 | 	} | 
| 1016 |  | 
| 1017 | 	return KERN_SUCCESS; | 
| 1018 | } | 
| 1019 |  | 
| 1020 | #if defined(__arm64__) | 
| 1021 | static kern_return_t | 
| 1022 | dump_panic_buffer(struct kdp_core_out_state *outstate, char *panic_buf, size_t panic_len, | 
| 1023 |     uint64_t *foffset, uint64_t details_flags) | 
| 1024 | { | 
| 1025 | 	kern_return_t ret = KERN_SUCCESS; | 
| 1026 | 	bool should_skip = false; | 
| 1027 |  | 
| 1028 | 	kern_coredump_log(NULL, string: "\nBeginning dump of panic region of size 0x%zx\n" , panic_len); | 
| 1029 |  | 
| 1030 | 	ret = kdp_reset_output_vars(kdp_core_out_state: outstate, totalbytes: panic_len, true, out_should_skip_coredump: &should_skip); | 
| 1031 | 	if (KERN_SUCCESS != ret) { | 
| 1032 | 		return ret; | 
| 1033 | 	} | 
| 1034 |  | 
| 1035 | 	if (should_skip) { | 
| 1036 | 		kern_coredump_log(NULL, string: "Skipping panic region dump\n" ); | 
| 1037 | 		return ret; | 
| 1038 | 	} | 
| 1039 |  | 
| 1040 | 	uint64_t compressed_panic_region_len = 0; | 
| 1041 | 	ret = kdp_core_output(kdp_core_out_state: outstate, length: panic_len, data: panic_buf); | 
| 1042 | 	if (KERN_SUCCESS != ret) { | 
| 1043 | 		kern_coredump_log(NULL, string: "Failed to write panic region to file, kdp_coreoutput(outstate, %zu, %p) returned 0x%x\n" , | 
| 1044 | 		    panic_len, panic_buf, ret); | 
| 1045 | 		return ret; | 
| 1046 | 	} | 
| 1047 |  | 
| 1048 | 	ret = kdp_core_output(kdp_core_out_state: outstate, length: 0, NULL); | 
| 1049 | 	if (KERN_SUCCESS != ret) { | 
| 1050 | 		kern_coredump_log(NULL, string: "Failed to flush panic region data : kdp_core_output(%p, 0, NULL) returned 0x%x\n" , outstate, ret); | 
| 1051 | 		return ret; | 
| 1052 | 	} | 
| 1053 |  | 
| 1054 | 	ret = kern_dump_record_file(kdp_core_out_state: outstate, filename: "panic_region" , file_offset: *foffset, out_file_length: &compressed_panic_region_len, | 
| 1055 | 	    details_flags); | 
| 1056 | 	if (KERN_SUCCESS != ret) { | 
| 1057 | 		kern_coredump_log(NULL, string: "Failed to record panic region in corefile header, kern_dump_record_file returned 0x%x\n" , ret); | 
| 1058 | 		return ret; | 
| 1059 | 	} | 
| 1060 |  | 
| 1061 | 	kern_coredump_log(NULL, string: "Recorded panic region in corefile at offset 0x%llx, compressed to %llu bytes\n" , *foffset, compressed_panic_region_len); | 
| 1062 | 	*foffset = roundup((*foffset + compressed_panic_region_len), KERN_COREDUMP_BEGIN_FILEBYTES_ALIGN); | 
| 1063 |  | 
| 1064 | 	ret = kern_dump_seek_to_next_file(kdp_core_out_state: outstate, next_file_offset: *foffset); | 
| 1065 | 	if (KERN_SUCCESS != ret) { | 
| 1066 | 		kern_coredump_log(NULL, string: "Failed to seek to panic region file offset 0x%llx, kern_dump_seek_to_next_file returned 0x%x\n" , *foffset, ret); | 
| 1067 | 		return ret; | 
| 1068 | 	} | 
| 1069 |  | 
| 1070 | 	return ret; | 
| 1071 | } | 
| 1072 | #endif /* defined(__arm64__) */ | 
| 1073 |  | 
| 1074 | static int | 
| 1075 | do_kern_dump(enum kern_dump_type kd_variant) | 
| 1076 | { | 
| 1077 | 	struct kdp_core_out_state outstate = { }; | 
| 1078 | 	struct kdp_output_stage *first_stage = NULL; | 
| 1079 | 	char *coredump_log_start = NULL, *buf = NULL; | 
| 1080 | 	size_t reserved_debug_logsize = 0, prior_debug_logsize = 0; | 
| 1081 | 	uint64_t foffset = 0; | 
| 1082 | 	kern_return_t ret = KERN_SUCCESS; | 
| 1083 | 	boolean_t output_opened = FALSE, dump_succeeded = TRUE; | 
| 1084 | 	uint64_t details_flags = 0; | 
| 1085 |  | 
| 1086 | 	/* Initialize output context */ | 
| 1087 |  | 
| 1088 | 	bzero(s: &outstate, n: sizeof(outstate)); | 
| 1089 | 	STAILQ_INIT(&outstate.kcos_out_stage); | 
| 1090 | 	ret = chain_output_stages(kd_variant, outstate: &outstate, details_flags: &details_flags); | 
| 1091 | 	if (KERN_SUCCESS != ret) { | 
| 1092 | 		dump_succeeded = FALSE; | 
| 1093 | 		goto exit; | 
| 1094 | 	} | 
| 1095 | 	first_stage = STAILQ_FIRST(&outstate.kcos_out_stage); | 
| 1096 |  | 
| 1097 | 	/* | 
| 1098 | 	 * Record the initial panic log buffer length so we can dump the coredump log | 
| 1099 | 	 * and panic log to disk | 
| 1100 | 	 */ | 
| 1101 | 	coredump_log_start = debug_buf_ptr; | 
| 1102 | #if defined(__arm64__) | 
| 1103 | 	assert(panic_info->eph_other_log_offset != 0); | 
| 1104 | 	assert(panic_info->eph_panic_log_len != 0); | 
| 1105 | 	/* Include any data from before the panic log as well */ | 
| 1106 | 	prior_debug_logsize = (panic_info->eph_panic_log_offset - sizeof(struct embedded_panic_header)) + | 
| 1107 | 	    panic_info->eph_panic_log_len + panic_info->eph_other_log_len; | 
| 1108 | #else /* defined(__arm64__) */ | 
| 1109 | 	if (panic_info->mph_panic_log_offset != 0) { | 
| 1110 | 		prior_debug_logsize = (panic_info->mph_panic_log_offset - sizeof(struct macos_panic_header)) + | 
| 1111 | 		    panic_info->mph_panic_log_len + panic_info->mph_other_log_len; | 
| 1112 | 	} | 
| 1113 | #endif /* defined(__arm64__) */ | 
| 1114 |  | 
| 1115 | 	assert(prior_debug_logsize <= debug_buf_size); | 
| 1116 |  | 
| 1117 | 	if ((kd_variant == KERN_DUMP_DISK) || (kd_variant == KERN_DUMP_STACKSHOT_DISK)) { | 
| 1118 | 		/* Open the file for output */ | 
| 1119 | 		if ((ret = first_stage->kos_funcs.kosf_outproc(first_stage, KDP_WRQ, NULL, 0, NULL)) != KERN_SUCCESS) { | 
| 1120 | 			kern_coredump_log(NULL, string: "outproc(KDP_WRQ, NULL, 0, NULL) returned 0x%x\n" , ret); | 
| 1121 | 			dump_succeeded = FALSE; | 
| 1122 | 			goto exit; | 
| 1123 | 		} | 
| 1124 | 	} | 
| 1125 | 	output_opened = true; | 
| 1126 |  | 
| 1127 | 	if ((kd_variant == KERN_DUMP_DISK) || (kd_variant == KERN_DUMP_STACKSHOT_DISK)) { | 
| 1128 | 		const size_t  = roundup(kdp_core_header_size, KERN_COREDUMP_BEGIN_FILEBYTES_ALIGN); | 
| 1129 | #ifdef CONFIG_KDP_COREDUMP_ENCRYPTION | 
| 1130 | 		const size_t aligned_public_key_size = PUBLIC_KEY_RESERVED_LENGTH * 2; | 
| 1131 | #else | 
| 1132 | 		const size_t aligned_public_key_size = 0; | 
| 1133 | #endif // CONFIG_KDP_COREDUMP_ENCRYPTION | 
| 1134 |  | 
| 1135 | 		reserved_debug_logsize = prior_debug_logsize + KERN_COREDUMP_MAXDEBUGLOGSIZE; | 
| 1136 |  | 
| 1137 | 		/* Space for file header, public key, panic log, core log */ | 
| 1138 | 		foffset = roundup(aligned_corefile_header_size + aligned_public_key_size + reserved_debug_logsize, KERN_COREDUMP_BEGIN_FILEBYTES_ALIGN); | 
| 1139 | 		kdp_core_header->log_offset = aligned_corefile_header_size + aligned_public_key_size; | 
| 1140 |  | 
| 1141 | #ifdef CONFIG_KDP_COREDUMP_ENCRYPTION | 
| 1142 | 		/* Write the public key */ | 
| 1143 | 		ret = kern_dump_write_public_key(outstate: &outstate); | 
| 1144 | 		if (KERN_SUCCESS != ret) { | 
| 1145 | 			kern_coredump_log(NULL, string: "(do_kern_dump write public key) returned 0x%x\n" , ret); | 
| 1146 | 			dump_succeeded = FALSE; | 
| 1147 | 			goto exit; | 
| 1148 | 		} | 
| 1149 | #endif // CONFIG_KDP_COREDUMP_ENCRYPTION | 
| 1150 |  | 
| 1151 | 		/* Seek the calculated offset (we'll scrollback later to flush the logs and header) */ | 
| 1152 | 		if ((ret = first_stage->kos_funcs.kosf_outproc(first_stage, KDP_SEEK, NULL, sizeof(foffset), &foffset)) != KERN_SUCCESS) { | 
| 1153 | 			kern_coredump_log(NULL, string: "(do_kern_dump seek begin) outproc(KDP_SEEK, NULL, %lu, %p) foffset = 0x%llx returned 0x%x\n" , | 
| 1154 | 			    sizeof(foffset), &foffset, foffset, ret); | 
| 1155 | 			dump_succeeded = FALSE; | 
| 1156 | 			goto exit; | 
| 1157 | 		} | 
| 1158 | 	} | 
| 1159 |  | 
| 1160 | #if defined(__arm64__) | 
| 1161 | 	flush_mmu_tlb(); | 
| 1162 | #endif | 
| 1163 |  | 
| 1164 | 	kern_coredump_log(NULL, string: "%s" , (kd_variant == KERN_DUMP_DISK) ? "Writing local cores...\n"  : | 
| 1165 | 	    "Transmitting kernel state, please wait:\n" ); | 
| 1166 |  | 
| 1167 | #if defined (__arm64__) | 
| 1168 | 	char *panic_buf = (char *)gPanicBase; | 
| 1169 | 	size_t panic_len = (vm_offset_t)debug_buf_ptr - gPanicBase; | 
| 1170 | 	if (kd_variant == KERN_DUMP_DISK && (panic_buf && panic_len)) { | 
| 1171 | 		ret = dump_panic_buffer(outstate: &outstate, panic_buf, panic_len, foffset: &foffset, details_flags); | 
| 1172 | 		if (KERN_SUCCESS != ret) { | 
| 1173 | 			dump_succeeded = FALSE; | 
| 1174 | 		} | 
| 1175 | 	} | 
| 1176 | #endif | 
| 1177 |  | 
| 1178 | #if defined(__x86_64__) | 
| 1179 | 	if (((kd_variant == KERN_DUMP_STACKSHOT_DISK) || (kd_variant == KERN_DUMP_DISK)) && ((panic_stackshot_buf != 0) && (panic_stackshot_len != 0))) { | 
| 1180 | 		bool should_skip = false; | 
| 1181 |  | 
| 1182 | 		kern_coredump_log(NULL, "\nBeginning dump of kernel stackshot\n" ); | 
| 1183 |  | 
| 1184 | 		ret = kdp_reset_output_vars(&outstate, panic_stackshot_len, true, &should_skip); | 
| 1185 |  | 
| 1186 | 		if (ret != KERN_SUCCESS) { | 
| 1187 | 			kern_coredump_log(NULL, "Failed to reset outstate for stackshot with len 0x%zx, returned 0x%x\n" , panic_stackshot_len, ret); | 
| 1188 | 			dump_succeeded = FALSE; | 
| 1189 | 		} else if (!should_skip) { | 
| 1190 | 			uint64_t compressed_stackshot_len = 0; | 
| 1191 | 			if ((ret = kdp_core_output(&outstate, panic_stackshot_len, (void *)panic_stackshot_buf)) != KERN_SUCCESS) { | 
| 1192 | 				kern_coredump_log(NULL, "Failed to write panic stackshot to file, kdp_coreoutput(outstate, %lu, %p) returned 0x%x\n" , | 
| 1193 | 				    panic_stackshot_len, (void *) panic_stackshot_buf, ret); | 
| 1194 | 				dump_succeeded = FALSE; | 
| 1195 | 			} else if ((ret = kdp_core_output(&outstate, 0, NULL)) != KERN_SUCCESS) { | 
| 1196 | 				kern_coredump_log(NULL, "Failed to flush stackshot data : kdp_core_output(%p, 0, NULL) returned 0x%x\n" , &outstate, ret); | 
| 1197 | 				dump_succeeded = FALSE; | 
| 1198 | 			} else if ((ret = kern_dump_record_file(&outstate, "panic_stackshot.kcdata" , foffset, &compressed_stackshot_len, details_flags)) != KERN_SUCCESS) { | 
| 1199 | 				kern_coredump_log(NULL, "Failed to record panic stackshot in corefile header, kern_dump_record_file returned 0x%x\n" , ret); | 
| 1200 | 				dump_succeeded = FALSE; | 
| 1201 | 			} else { | 
| 1202 | 				kern_coredump_log(NULL, "Recorded panic stackshot in corefile at offset 0x%llx, compressed to %llu bytes\n" , foffset, compressed_stackshot_len); | 
| 1203 | 				foffset = roundup((foffset + compressed_stackshot_len), KERN_COREDUMP_BEGIN_FILEBYTES_ALIGN); | 
| 1204 | 				if ((ret = kern_dump_seek_to_next_file(&outstate, foffset)) != KERN_SUCCESS) { | 
| 1205 | 					kern_coredump_log(NULL, "Failed to seek to stackshot file offset 0x%llx, kern_dump_seek_to_next_file returned 0x%x\n" , foffset, ret); | 
| 1206 | 					dump_succeeded = FALSE; | 
| 1207 | 				} | 
| 1208 | 			} | 
| 1209 | 		} else { | 
| 1210 | 			kern_coredump_log(NULL, "Skipping stackshot dump\n" ); | 
| 1211 | 		} | 
| 1212 | 	} | 
| 1213 | #endif | 
| 1214 |  | 
| 1215 | 	if (kd_variant == KERN_DUMP_DISK) { | 
| 1216 | 		/* | 
| 1217 | 		 * Dump co-processors as well, foffset will be overwritten with the | 
| 1218 | 		 * offset of the next location in the file to be written to. | 
| 1219 | 		 */ | 
| 1220 | 		if (kern_do_coredump(core_outvars: &outstate, FALSE, first_file_offset: foffset, last_file_offset: &foffset, details_flags) != 0) { | 
| 1221 | 			dump_succeeded = FALSE; | 
| 1222 | 		} | 
| 1223 | 	} else if (kd_variant != KERN_DUMP_STACKSHOT_DISK) { | 
| 1224 | 		/* Only the kernel */ | 
| 1225 | 		if (kern_do_coredump(core_outvars: &outstate, TRUE, first_file_offset: foffset, last_file_offset: &foffset, details_flags) != 0) { | 
| 1226 | 			dump_succeeded = FALSE; | 
| 1227 | 		} | 
| 1228 | 	} | 
| 1229 |  | 
| 1230 | 	if (kd_variant == KERN_DUMP_DISK) { | 
| 1231 | 		assert(reserved_debug_logsize != 0); | 
| 1232 | 		size_t remaining_debug_logspace = reserved_debug_logsize; | 
| 1233 |  | 
| 1234 | 		/* Write the debug log -- first seek to the end of the corefile header */ | 
| 1235 | 		foffset = kdp_core_header->log_offset; | 
| 1236 | 		if ((ret = first_stage->kos_funcs.kosf_outproc(first_stage, KDP_SEEK, NULL, sizeof(foffset), &foffset)) != KERN_SUCCESS) { | 
| 1237 | 			kern_coredump_log(NULL, string: "(do_kern_dump seek logfile) outproc(KDP_SEEK, NULL, %lu, %p) foffset = 0x%llx returned 0x%x\n" , | 
| 1238 | 			    sizeof(foffset), &foffset, foffset, ret); | 
| 1239 | 			dump_succeeded = FALSE; | 
| 1240 | 			goto exit; | 
| 1241 | 		} | 
| 1242 |  | 
| 1243 | 		/* First flush the data from just the paniclog */ | 
| 1244 | 		size_t initial_log_length = 0; | 
| 1245 | #if defined(__arm64__) | 
| 1246 | 		initial_log_length = (panic_info->eph_panic_log_offset - sizeof(struct embedded_panic_header)) + | 
| 1247 | 		    panic_info->eph_panic_log_len; | 
| 1248 | #else | 
| 1249 | 		if (panic_info->mph_panic_log_offset != 0) { | 
| 1250 | 			initial_log_length = (panic_info->mph_panic_log_offset - sizeof(struct macos_panic_header)) + | 
| 1251 | 			    panic_info->mph_panic_log_len; | 
| 1252 | 		} | 
| 1253 | #endif | 
| 1254 |  | 
| 1255 | 		buf = debug_buf_base; | 
| 1256 | 		if ((ret = first_stage->kos_funcs.kosf_outproc(first_stage, KDP_DATA, NULL, initial_log_length, buf)) != KERN_SUCCESS) { | 
| 1257 | 			kern_coredump_log(NULL, string: "(do_kern_dump paniclog) outproc(KDP_DATA, NULL, %lu, %p) returned 0x%x\n" , | 
| 1258 | 			    initial_log_length, buf, ret); | 
| 1259 | 			dump_succeeded = FALSE; | 
| 1260 | 			goto exit; | 
| 1261 | 		} | 
| 1262 |  | 
| 1263 | 		remaining_debug_logspace -= initial_log_length; | 
| 1264 |  | 
| 1265 | 		/* Next include any log data from after the stackshot (the beginning of the 'other' log). */ | 
| 1266 | #if defined(__arm64__) | 
| 1267 | 		buf = (char *)(((char *)panic_info) + (uintptr_t) panic_info->eph_other_log_offset); | 
| 1268 | #else | 
| 1269 | 		/* | 
| 1270 | 		 * There may be no paniclog if we're doing a coredump after a call to Debugger() on x86 if debugger_is_panic was | 
| 1271 | 		 * configured to FALSE based on the boot-args. In that case just start from where the debug buffer was when | 
| 1272 | 		 * we began taking a coredump. | 
| 1273 | 		 */ | 
| 1274 | 		if (panic_info->mph_other_log_offset != 0) { | 
| 1275 | 			buf = (char *)(((char *)panic_info) + (uintptr_t) panic_info->mph_other_log_offset); | 
| 1276 | 		} else { | 
| 1277 | 			buf = coredump_log_start; | 
| 1278 | 		} | 
| 1279 | #endif | 
| 1280 | 		assert(debug_buf_ptr >= buf); | 
| 1281 |  | 
| 1282 | 		size_t other_log_length = debug_buf_ptr - buf; | 
| 1283 | 		if (other_log_length > remaining_debug_logspace) { | 
| 1284 | 			other_log_length = remaining_debug_logspace; | 
| 1285 | 		} | 
| 1286 |  | 
| 1287 | 		/* Write the coredump log */ | 
| 1288 | 		if ((ret = first_stage->kos_funcs.kosf_outproc(first_stage, KDP_DATA, NULL, other_log_length, buf)) != KERN_SUCCESS) { | 
| 1289 | 			kern_coredump_log(NULL, string: "(do_kern_dump coredump log) outproc(KDP_DATA, NULL, %lu, %p) returned 0x%x\n" , | 
| 1290 | 			    other_log_length, buf, ret); | 
| 1291 | 			dump_succeeded = FALSE; | 
| 1292 | 			goto exit; | 
| 1293 | 		} | 
| 1294 |  | 
| 1295 | 		kdp_core_header->log_length = initial_log_length + other_log_length; | 
| 1296 | 		kern_dump_update_header(outstate: &outstate); | 
| 1297 | 	} | 
| 1298 |  | 
| 1299 | exit: | 
| 1300 | 	/* close / last packet */ | 
| 1301 | 	if (output_opened && (ret = first_stage->kos_funcs.kosf_outproc(first_stage, KDP_EOF, NULL, 0, ((void *) 0))) != KERN_SUCCESS) { | 
| 1302 | 		kern_coredump_log(NULL, string: "(do_kern_dump close) outproc(KDP_EOF, NULL, 0, 0) returned 0x%x\n" , ret); | 
| 1303 | 		dump_succeeded = FALSE; | 
| 1304 | 	} | 
| 1305 |  | 
| 1306 | 	/* If applicable, update the panic header and flush it so we update the CRC */ | 
| 1307 | #if defined(__arm64__) | 
| 1308 | 	panic_info->eph_panic_flags |= (dump_succeeded ? EMBEDDED_PANIC_HEADER_FLAG_COREDUMP_COMPLETE : | 
| 1309 | 	    EMBEDDED_PANIC_HEADER_FLAG_COREDUMP_FAILED); | 
| 1310 | 	paniclog_flush(); | 
| 1311 | #else | 
| 1312 | 	if (panic_info->mph_panic_log_offset != 0) { | 
| 1313 | 		panic_info->mph_panic_flags |= (dump_succeeded ? MACOS_PANIC_HEADER_FLAG_COREDUMP_COMPLETE : | 
| 1314 | 		    MACOS_PANIC_HEADER_FLAG_COREDUMP_FAILED); | 
| 1315 | 		paniclog_flush(); | 
| 1316 | 	} | 
| 1317 | #endif | 
| 1318 |  | 
| 1319 | 	return dump_succeeded ? 0 : -1; | 
| 1320 | } | 
| 1321 |  | 
| 1322 | boolean_t | 
| 1323 | dumped_kernel_core(void) | 
| 1324 | { | 
| 1325 | 	return kern_dump_successful; | 
| 1326 | } | 
| 1327 |  | 
| 1328 | int | 
| 1329 | kern_dump(enum kern_dump_type kd_variant) | 
| 1330 | { | 
| 1331 | 	static boolean_t local_dump_in_progress = FALSE, dumped_local = FALSE; | 
| 1332 | 	int ret = -1; | 
| 1333 | #if KASAN | 
| 1334 | 	kasan_kdp_disable(); | 
| 1335 | #endif | 
| 1336 | 	if ((kd_variant == KERN_DUMP_DISK) || (kd_variant == KERN_DUMP_STACKSHOT_DISK)) { | 
| 1337 | 		if (dumped_local) { | 
| 1338 | 			return 0; | 
| 1339 | 		} | 
| 1340 | 		if (local_dump_in_progress) { | 
| 1341 | 			return -1; | 
| 1342 | 		} | 
| 1343 | 		local_dump_in_progress = TRUE; | 
| 1344 | 		ret = do_kern_dump(kd_variant); | 
| 1345 | 		if (ret == 0) { | 
| 1346 | 			dumped_local = TRUE; | 
| 1347 | 			kern_dump_successful = TRUE; | 
| 1348 | 			local_dump_in_progress = FALSE; | 
| 1349 | 		} | 
| 1350 |  | 
| 1351 | 		return ret; | 
| 1352 | #if defined(__arm64__) | 
| 1353 | 	} else if (kd_variant == KERN_DUMP_HW_SHMEM_DBG) { | 
| 1354 | 		ret = do_kern_dump(kd_variant); | 
| 1355 | 		if (ret == 0) { | 
| 1356 | 			kern_dump_successful = TRUE; | 
| 1357 | 		} | 
| 1358 | 		return ret; | 
| 1359 | #endif | 
| 1360 | 	} else { | 
| 1361 | 		ret = do_kern_dump(kd_variant); | 
| 1362 | 		if (ret == 0) { | 
| 1363 | 			kern_dump_successful = TRUE; | 
| 1364 | 		} | 
| 1365 | 		return ret; | 
| 1366 | 	} | 
| 1367 | } | 
| 1368 |  | 
| 1369 | static kern_return_t | 
| 1370 | kdp_core_init_output_stages(void) | 
| 1371 | { | 
| 1372 | 	kern_return_t ret = KERN_SUCCESS; | 
| 1373 |  | 
| 1374 | 	// We only zero-out the disk stage. It will be initialized | 
| 1375 | 	// later on when the corefile is initialized | 
| 1376 | 	bzero(s: &disk_output_stage, n: sizeof(disk_output_stage)); | 
| 1377 |  | 
| 1378 | 	// We only zero-out the LZ4 stage. It will be initialized | 
| 1379 | 	// later on when the kext is loaded. | 
| 1380 | 	bzero(s: &lz4_output_stage, n: sizeof(lz4_output_stage)); | 
| 1381 | 	lz4_stage_monitor_availability(); | 
| 1382 |  | 
| 1383 | 	// We only initialize the zlib output stage if we can reach the debugger. | 
| 1384 | 	// This saves us from wasting some wired memory that will never be used | 
| 1385 | 	// in other configurations. | 
| 1386 | 	bzero(s: &zlib_output_stage, n: sizeof(zlib_output_stage)); | 
| 1387 | 	if (debug_boot_arg && (debug_boot_arg & DB_REBOOT_ALWAYS) == 0) { | 
| 1388 | 		ret = zlib_stage_initialize(stage: &zlib_output_stage); | 
| 1389 | 		if (KERN_SUCCESS != ret) { | 
| 1390 | 			return ret; | 
| 1391 | 		} | 
| 1392 | 	} | 
| 1393 |  | 
| 1394 | 	bzero(s: &buffer_output_stage, n: sizeof(buffer_output_stage)); | 
| 1395 | 	ret = buffer_stage_initialize(stage: &buffer_output_stage, buffer_size: kdp_crashdump_pkt_size); | 
| 1396 | 	if (KERN_SUCCESS != ret) { | 
| 1397 | 		return ret; | 
| 1398 | 	} | 
| 1399 |  | 
| 1400 | 	bzero(s: &net_output_stage, n: sizeof(net_output_stage)); | 
| 1401 | 	ret = net_stage_initialize(stage: &net_output_stage); | 
| 1402 | 	if (KERN_SUCCESS != ret) { | 
| 1403 | 		return ret; | 
| 1404 | 	} | 
| 1405 |  | 
| 1406 | 	bzero(s: &progress_notify_output_stage, n: sizeof(progress_notify_output_stage)); | 
| 1407 | 	ret = progress_notify_stage_initialize(stage: &progress_notify_output_stage); | 
| 1408 | 	if (KERN_SUCCESS != ret) { | 
| 1409 | 		return ret; | 
| 1410 | 	} | 
| 1411 |  | 
| 1412 | #ifdef CONFIG_KDP_COREDUMP_ENCRYPTION | 
| 1413 | 	// We only zero-out the AEA stage. It will be initialized | 
| 1414 | 	// later on, if it's supported and needed | 
| 1415 | 	bzero(s: &aea_output_stage, n: sizeof(aea_output_stage)); | 
| 1416 | 	aea_stage_monitor_availability(); | 
| 1417 | #endif // CONFIG_KDP_COREDUMP_ENCRYPTION | 
| 1418 |  | 
| 1419 | #if defined(__arm64__) | 
| 1420 | 	bzero(s: &shmem_output_stage, n: sizeof(shmem_output_stage)); | 
| 1421 | 	if (PE_consistent_debug_enabled() && PE_i_can_has_debugger(NULL)) { | 
| 1422 | 		ret = shmem_stage_initialize(stage: &shmem_output_stage); | 
| 1423 | 		if (KERN_SUCCESS != ret) { | 
| 1424 | 			return ret; | 
| 1425 | 		} | 
| 1426 | 	} | 
| 1427 | #endif /* defined(__arm64__) */ | 
| 1428 |  | 
| 1429 | #if defined(__arm64__) | 
| 1430 | 	bzero(s: &memory_backing_aware_buffer_output_stage, n: sizeof(memory_backing_aware_buffer_output_stage)); | 
| 1431 | 	ret = memory_backing_aware_buffer_stage_initialize(stage: &memory_backing_aware_buffer_output_stage); | 
| 1432 | 	if (KERN_SUCCESS != ret) { | 
| 1433 | 		return ret; | 
| 1434 | 	} | 
| 1435 | #endif /* defined(__arm64__) */ | 
| 1436 |  | 
| 1437 | 	return ret; | 
| 1438 | } | 
| 1439 |  | 
| 1440 | #ifdef CONFIG_KDP_COREDUMP_ENCRYPTION | 
| 1441 |  | 
| 1442 | static bool | 
| 1443 | kern_dump_should_enforce_encryption(void) | 
| 1444 | { | 
| 1445 | 	static int enforce_encryption = -1; | 
| 1446 |  | 
| 1447 | 	// Only check once | 
| 1448 | 	if (enforce_encryption == -1) { | 
| 1449 | 		uint32_t coredump_encryption_flags = 0; | 
| 1450 |  | 
| 1451 | 		// When set, the boot-arg is the sole decider | 
| 1452 | 		if (!kernel_debugging_restricted() && | 
| 1453 | 		    PE_parse_boot_argn(arg_string: "coredump_encryption" , arg_ptr: &coredump_encryption_flags, max_arg: sizeof(coredump_encryption_flags))) { | 
| 1454 | 			enforce_encryption = (coredump_encryption_flags & COREDUMP_ENCRYPTION_OVERRIDES_ENFORCEMENT) != 0 ? 1 : 0; | 
| 1455 | 		} else { | 
| 1456 | 			enforce_encryption = 0; | 
| 1457 | 		} | 
| 1458 | 	} | 
| 1459 |  | 
| 1460 | 	return enforce_encryption != 0; | 
| 1461 | } | 
| 1462 |  | 
| 1463 | static bool | 
| 1464 | kern_dump_is_encryption_available(void) | 
| 1465 | { | 
| 1466 | 	// Default to feature enabled unless boot-arg says otherwise | 
| 1467 | 	uint32_t coredump_encryption_flags = COREDUMP_ENCRYPTION_OVERRIDES_AVAILABILITY; | 
| 1468 |  | 
| 1469 | 	if (!kernel_debugging_restricted()) { | 
| 1470 | 		PE_parse_boot_argn(arg_string: "coredump_encryption" , arg_ptr: &coredump_encryption_flags, max_arg: sizeof(coredump_encryption_flags)); | 
| 1471 | 	} | 
| 1472 |  | 
| 1473 | 	if ((coredump_encryption_flags & COREDUMP_ENCRYPTION_OVERRIDES_AVAILABILITY) == 0) { | 
| 1474 | 		return false; | 
| 1475 | 	} | 
| 1476 |  | 
| 1477 | 	return aea_stage_is_available(); | 
| 1478 | } | 
| 1479 |  | 
| 1480 | /* | 
| 1481 |  * Initialize (or de-initialize) the encryption stage. This is done in a way such that if initializing the | 
| 1482 |  * encryption stage with a new key fails, then the existing encryption stage is left untouched. Once | 
| 1483 |  * the new stage is initialized, the old stage is uninitialized. | 
| 1484 |  * | 
| 1485 |  * This function is called whenever we have a new public key (whether from someone calling our sysctl, or because | 
| 1486 |  * we read it out of a corefile), or when encryption becomes available. | 
| 1487 |  * | 
| 1488 |  * Parameters: | 
| 1489 |  *  - public_key:      The public key to use when initializing the encryption stage. Can be NULL to indicate that | 
| 1490 |  *                     the encryption stage should be de-initialized. | 
| 1491 |  *  - public_key_size: The size of the given public key. | 
| 1492 |  */ | 
| 1493 | static kern_return_t | 
| 1494 | kdp_core_init_encryption_stage(void *public_key, size_t public_key_size) | 
| 1495 | { | 
| 1496 | 	kern_return_t ret = KERN_SUCCESS; | 
| 1497 | 	struct kdp_output_stage new_encryption_stage = {}; | 
| 1498 | 	struct kdp_output_stage old_encryption_stage = {}; | 
| 1499 |  | 
| 1500 | 	lck_mtx_assert(lck: kdp_core_encryption_stage_lock, LCK_MTX_ASSERT_OWNED); | 
| 1501 |  | 
| 1502 | 	bzero(s: &new_encryption_stage, n: sizeof(new_encryption_stage)); | 
| 1503 |  | 
| 1504 | 	if (public_key && kern_dump_is_encryption_available()) { | 
| 1505 | 		ret = aea_stage_initialize(stage: &new_encryption_stage, recipient_public_key: public_key, recipient_public_key_size: public_key_size); | 
| 1506 | 		if (KERN_SUCCESS != ret) { | 
| 1507 | 			printf(format: "(kdp_core_init_encryption_stage) Failed to initialize the encryption stage. Error 0x%x\n" , ret); | 
| 1508 | 			return ret; | 
| 1509 | 		} | 
| 1510 | 	} | 
| 1511 |  | 
| 1512 | 	bcopy(src: &aea_output_stage, dst: &old_encryption_stage, n: sizeof(aea_output_stage)); | 
| 1513 |  | 
| 1514 | 	bcopy(src: &new_encryption_stage, dst: &aea_output_stage, n: sizeof(new_encryption_stage)); | 
| 1515 |  | 
| 1516 | 	if (old_encryption_stage.kos_initialized && old_encryption_stage.kos_funcs.kosf_free) { | 
| 1517 | 		old_encryption_stage.kos_funcs.kosf_free(&old_encryption_stage); | 
| 1518 | 	} | 
| 1519 |  | 
| 1520 | 	return KERN_SUCCESS; | 
| 1521 | } | 
| 1522 |  | 
| 1523 | kern_return_t | 
| 1524 | kdp_core_handle_new_encryption_key(IOCoreFileAccessCallback access_data, void *access_context, void *recipient_context) | 
| 1525 | { | 
| 1526 | 	kern_return_t ret = KERN_SUCCESS; | 
| 1527 | 	struct kdp_core_encryption_key_descriptor *key_descriptor = (struct kdp_core_encryption_key_descriptor *) recipient_context; | 
| 1528 | 	void *old_public_key = NULL; | 
| 1529 | 	size_t old_public_key_size = 0; | 
| 1530 |  | 
| 1531 | 	if (!key_descriptor) { | 
| 1532 | 		return kIOReturnBadArgument; | 
| 1533 | 	} | 
| 1534 |  | 
| 1535 | 	lck_mtx_lock(lck: kdp_core_encryption_stage_lock); | 
| 1536 | 	kdp_core_is_initializing_encryption_stage = true; | 
| 1537 |  | 
| 1538 | 	do { | 
| 1539 | 		// Do the risky part first, and bail out cleanly if it fails | 
| 1540 | 		ret = kdp_core_init_encryption_stage(public_key: key_descriptor->kcekd_key, public_key_size: key_descriptor->kcekd_size); | 
| 1541 | 		if (ret != KERN_SUCCESS) { | 
| 1542 | 			printf(format: "kdp_core_handle_new_encryption_key failed to re-initialize encryption stage. Error 0x%x\n" , ret); | 
| 1543 | 			break; | 
| 1544 | 		} | 
| 1545 |  | 
| 1546 | 		// The rest of this function should technically never fail | 
| 1547 |  | 
| 1548 | 		old_public_key = kdp_core_public_key; | 
| 1549 | 		old_public_key_size = kdp_core_header->pub_key_length; | 
| 1550 |  | 
| 1551 | 		kdp_core_public_key = key_descriptor->kcekd_key; | 
| 1552 | 		kdp_core_header->flags &= ~MACH_CORE_FILEHEADER_V2_FLAGS_NEXT_COREFILE_KEY_FORMAT_MASK; | 
| 1553 | 		kdp_core_header->flags &= ~MACH_CORE_FILEHEADER_V2_FLAGS_EXISTING_COREFILE_KEY_FORMAT_MASK; | 
| 1554 | 		if (key_descriptor->kcekd_key) { | 
| 1555 | 			kdp_core_header->flags |= key_descriptor->kcekd_format & MACH_CORE_FILEHEADER_V2_FLAGS_NEXT_COREFILE_KEY_FORMAT_MASK; | 
| 1556 | 			kdp_core_header->flags |= MACH_CORE_FILEHEADER_V2_FLAGS_NEXT_KEY_FORMAT_TO_KEY_FORMAT(key_descriptor->kcekd_format); | 
| 1557 | 			kdp_core_header->pub_key_offset = roundup(kdp_core_header_size, KERN_COREDUMP_BEGIN_FILEBYTES_ALIGN); | 
| 1558 | 			kdp_core_header->pub_key_length = key_descriptor->kcekd_size; | 
| 1559 | 		} else { | 
| 1560 | 			kdp_core_header->pub_key_offset = 0; | 
| 1561 | 			kdp_core_header->pub_key_length = 0; | 
| 1562 | 		} | 
| 1563 |  | 
| 1564 | 		/* | 
| 1565 | 		 * Return the old key to the caller to free | 
| 1566 | 		 */ | 
| 1567 | 		key_descriptor->kcekd_key = old_public_key; | 
| 1568 | 		key_descriptor->kcekd_size = (uint16_t)old_public_key_size; | 
| 1569 |  | 
| 1570 | 		// If this stuff fails, we have bigger problems | 
| 1571 | 		struct mach_core_fileheader_v2 ; | 
| 1572 | 		bool  = false; | 
| 1573 | 		ret = access_data(access_context, FALSE, 0, sizeof(existing_header), &existing_header); | 
| 1574 | 		if (ret != KERN_SUCCESS) { | 
| 1575 | 			printf(format: "kdp_core_handle_new_encryption_key failed to read the existing corefile header. Error 0x%x\n" , ret); | 
| 1576 | 			break; | 
| 1577 | 		} | 
| 1578 |  | 
| 1579 | 		if (existing_header.signature == MACH_CORE_FILEHEADER_V2_SIGNATURE | 
| 1580 | 		    && existing_header.version == 2 | 
| 1581 | 		    && (existing_header.pub_key_length == 0 | 
| 1582 | 		    || kdp_core_header->pub_key_length == 0 | 
| 1583 | 		    || existing_header.pub_key_length == kdp_core_header->pub_key_length)) { | 
| 1584 | 			used_existing_header = true; | 
| 1585 | 			existing_header.flags &= ~MACH_CORE_FILEHEADER_V2_FLAGS_NEXT_COREFILE_KEY_FORMAT_MASK; | 
| 1586 |  | 
| 1587 | 			if (kdp_core_public_key) { | 
| 1588 | 				existing_header.flags |= key_descriptor->kcekd_format & MACH_CORE_FILEHEADER_V2_FLAGS_NEXT_COREFILE_KEY_FORMAT_MASK; | 
| 1589 |  | 
| 1590 | 				if (existing_header.pub_key_offset == 0) { | 
| 1591 | 					existing_header.pub_key_offset = kdp_core_header->pub_key_offset; | 
| 1592 | 					existing_header.pub_key_length = kdp_core_header->pub_key_length; | 
| 1593 | 				} | 
| 1594 | 			} | 
| 1595 |  | 
| 1596 | 			ret = access_data(access_context, TRUE, 0, sizeof(existing_header), &existing_header); | 
| 1597 | 			if (ret != KERN_SUCCESS) { | 
| 1598 | 				printf(format: "kdp_core_handle_new_encryption_key failed to update the existing corefile header. Error 0x%x\n" , ret); | 
| 1599 | 				break; | 
| 1600 | 			} | 
| 1601 | 		} else { | 
| 1602 | 			ret = access_data(access_context, TRUE, 0, sizeof(struct mach_core_fileheader_v2), kdp_core_header); | 
| 1603 | 			if (ret != KERN_SUCCESS) { | 
| 1604 | 				printf(format: "kdp_core_handle_new_encryption_key failed to write the corefile header. Error 0x%x\n" , ret); | 
| 1605 | 				break; | 
| 1606 | 			} | 
| 1607 | 		} | 
| 1608 |  | 
| 1609 | 		if (kdp_core_header->pub_key_length) { | 
| 1610 | 			uint64_t offset = used_existing_header ? existing_header.pub_key_offset : kdp_core_header->pub_key_offset; | 
| 1611 | 			ret = access_data(access_context, TRUE, offset + PUBLIC_KEY_RESERVED_LENGTH, kdp_core_header->pub_key_length, kdp_core_public_key); | 
| 1612 | 			if (ret != KERN_SUCCESS) { | 
| 1613 | 				printf(format: "kdp_core_handle_new_encryption_key failed to write the next public key. Error 0x%x\n" , ret); | 
| 1614 | 				break; | 
| 1615 | 			} | 
| 1616 |  | 
| 1617 | 			if (!used_existing_header) { | 
| 1618 | 				// Everything that happens here is optional. It's not the end of the world if this stuff fails, so we don't return | 
| 1619 | 				// any errors | 
| 1620 | 				// Since we're writing out a completely new header, we make sure to zero-out the region that's reserved for the public key. | 
| 1621 | 				// This allows us consumers of the corefile to know for sure that this corefile is not encrypted (yet). Once we actually | 
| 1622 | 				// write out a corefile, we'll overwrite this region with the key that we ended up using at the time. | 
| 1623 | 				// If we fail to zero-out this region, consumers would read garbage data and properly fail to interpret it as a public key, | 
| 1624 | 				// which is why it is OK for us to fail here (it's hard to interpret garbage data as a valid key, and even then, they wouldn't | 
| 1625 | 				// find a matching private key anyway) | 
| 1626 | 				void *empty_key = NULL; | 
| 1627 | 				kern_return_t temp_ret = KERN_SUCCESS; | 
| 1628 |  | 
| 1629 | 				empty_key = kalloc_data(PUBLIC_KEY_RESERVED_LENGTH, | 
| 1630 | 				    Z_WAITOK | Z_ZERO | Z_NOFAIL); | 
| 1631 |  | 
| 1632 | 				temp_ret = access_data(access_context, TRUE, offset, PUBLIC_KEY_RESERVED_LENGTH, empty_key); | 
| 1633 | 				kfree_data(empty_key, PUBLIC_KEY_RESERVED_LENGTH); | 
| 1634 |  | 
| 1635 | 				if (temp_ret != KERN_SUCCESS) { | 
| 1636 | 					printf(format: "kdp_core_handle_new_encryption_key failed to zero-out the public key region. Error 0x%x\n" , temp_ret); | 
| 1637 | 					break; | 
| 1638 | 				} | 
| 1639 | 			} | 
| 1640 | 		} | 
| 1641 | 	} while (0); | 
| 1642 |  | 
| 1643 | 	kdp_core_is_initializing_encryption_stage = false; | 
| 1644 | 	lck_mtx_unlock(lck: kdp_core_encryption_stage_lock); | 
| 1645 |  | 
| 1646 | 	return ret; | 
| 1647 | } | 
| 1648 |  | 
| 1649 | kern_return_t | 
| 1650 | kdp_core_handle_encryption_available(void) | 
| 1651 | { | 
| 1652 | 	kern_return_t ret; | 
| 1653 |  | 
| 1654 | 	lck_mtx_lock(lck: kdp_core_encryption_stage_lock); | 
| 1655 | 	kdp_core_is_initializing_encryption_stage = true; | 
| 1656 |  | 
| 1657 | 	ret = kdp_core_init_encryption_stage(public_key: kdp_core_public_key, public_key_size: kdp_core_header->pub_key_length); | 
| 1658 |  | 
| 1659 | 	kdp_core_is_initializing_encryption_stage = false; | 
| 1660 | 	lck_mtx_unlock(lck: kdp_core_encryption_stage_lock); | 
| 1661 |  | 
| 1662 | 	return ret; | 
| 1663 | } | 
| 1664 |  | 
| 1665 | #endif // CONFIG_KDP_COREDUMP_ENCRYPTION | 
| 1666 |  | 
| 1667 | kern_return_t | 
| 1668 | kdp_core_handle_lz4_available(void) | 
| 1669 | { | 
| 1670 | 	kern_return_t ret; | 
| 1671 | 	lck_mtx_lock(lck: kdp_core_lz4_stage_lock); | 
| 1672 | 	kdp_core_is_initializing_lz4_stage = true; | 
| 1673 |  | 
| 1674 | 	ret = lz4_stage_initialize(stage: &lz4_output_stage); | 
| 1675 |  | 
| 1676 | 	kdp_core_is_initializing_lz4_stage = false; | 
| 1677 | 	lck_mtx_unlock(lck: kdp_core_lz4_stage_lock); | 
| 1678 |  | 
| 1679 | 	return ret; | 
| 1680 | } | 
| 1681 |  | 
| 1682 | kern_return_t | 
| 1683 | kdp_core_polled_io_polled_file_available(IOCoreFileAccessCallback access_data, void *access_context, __unused void *recipient_context) | 
| 1684 | { | 
| 1685 | 	kern_return_t ret = KERN_SUCCESS; | 
| 1686 |  | 
| 1687 | 	lck_mtx_lock(lck: kdp_core_disk_stage_lock); | 
| 1688 | 	kdp_core_is_initializing_disk_stage = true; | 
| 1689 |  | 
| 1690 | 	ret = disk_stage_initialize(stage: &disk_output_stage); | 
| 1691 |  | 
| 1692 | 	kdp_core_is_initializing_disk_stage = false; | 
| 1693 | 	lck_mtx_unlock(lck: kdp_core_disk_stage_lock); | 
| 1694 |  | 
| 1695 | 	if (KERN_SUCCESS != ret) { | 
| 1696 | 		return ret; | 
| 1697 | 	} | 
| 1698 |  | 
| 1699 | #ifdef CONFIG_KDP_COREDUMP_ENCRYPTION | 
| 1700 | 	// If someone has already provided a new public key, | 
| 1701 | 	// there's no sense in reading the old one from the corefile. | 
| 1702 | 	if (kdp_core_public_key != NULL) { | 
| 1703 | 		return KERN_SUCCESS; | 
| 1704 | 	} | 
| 1705 |  | 
| 1706 | 	// The kernel corefile is now available. Let's try to retrieve the public key from its | 
| 1707 | 	// header (if available and supported). | 
| 1708 |  | 
| 1709 | 	// First let's read the corefile header itself | 
| 1710 | 	struct mach_core_fileheader_v2  = {}; | 
| 1711 | 	ret = access_data(access_context, FALSE, 0, sizeof(temp_header), &temp_header); | 
| 1712 | 	if (KERN_SUCCESS != ret) { | 
| 1713 | 		printf(format: "kdp_core_polled_io_polled_file_available failed to read corefile header. Error 0x%x\n" , ret); | 
| 1714 | 		return ret; | 
| 1715 | 	} | 
| 1716 |  | 
| 1717 | 	// Check if the corefile header is initialized, and whether it's initialized to values that we support | 
| 1718 | 	// (for backwards and forwards) compatibility, and check whether the header indicates that the corefile has | 
| 1719 | 	// has a public key stashed inside of it. | 
| 1720 | 	if (temp_header.signature == MACH_CORE_FILEHEADER_V2_SIGNATURE | 
| 1721 | 	    && temp_header.version == 2 | 
| 1722 | 	    && temp_header.pub_key_offset != 0 | 
| 1723 | 	    && temp_header.pub_key_length != 0 | 
| 1724 | 	    /* Future-proofing: make sure it's the key format that we support */ | 
| 1725 | 	    && (temp_header.flags & MACH_CORE_FILEHEADER_V2_FLAGS_NEXT_COREFILE_KEY_FORMAT_MASK) == MACH_CORE_FILEHEADER_V2_FLAG_NEXT_COREFILE_KEY_FORMAT_NIST_P256 | 
| 1726 | 	    /* Add some extra sanity checks. These are not necessary */ | 
| 1727 | 	    && temp_header.pub_key_length <= 4096 | 
| 1728 | 	    && temp_header.pub_key_offset < 65535) { | 
| 1729 | 		// The corefile header is properly initialized, is supported, and contains a public key. | 
| 1730 | 		// Let's adopt that public key for our encryption needs | 
| 1731 | 		void *public_key = NULL; | 
| 1732 |  | 
| 1733 | 		public_key = kalloc_data(temp_header.pub_key_length, | 
| 1734 | 		    Z_ZERO | Z_WAITOK | Z_NOFAIL); | 
| 1735 |  | 
| 1736 | 		// Read the public key from the corefile. Note that the key we're trying to adopt is the "next" key, which is | 
| 1737 | 		// PUBLIC_KEY_RESERVED_LENGTH bytes after the public key. | 
| 1738 | 		ret = access_data(access_context, FALSE, temp_header.pub_key_offset + PUBLIC_KEY_RESERVED_LENGTH, temp_header.pub_key_length, public_key); | 
| 1739 | 		if (KERN_SUCCESS != ret) { | 
| 1740 | 			printf(format: "kdp_core_polled_io_polled_file_available failed to read the public key. Error 0x%x\n" , ret); | 
| 1741 | 			kfree_data(public_key, temp_header.pub_key_length); | 
| 1742 | 			return ret; | 
| 1743 | 		} | 
| 1744 |  | 
| 1745 | 		lck_mtx_lock(lck: kdp_core_encryption_stage_lock); | 
| 1746 | 		kdp_core_is_initializing_encryption_stage = true; | 
| 1747 |  | 
| 1748 | 		ret = kdp_core_init_encryption_stage(public_key, public_key_size: temp_header.pub_key_length); | 
| 1749 | 		if (KERN_SUCCESS == ret) { | 
| 1750 | 			kdp_core_header->flags |= temp_header.flags & MACH_CORE_FILEHEADER_V2_FLAGS_NEXT_COREFILE_KEY_FORMAT_MASK; | 
| 1751 | 			kdp_core_header->flags |= MACH_CORE_FILEHEADER_V2_FLAGS_NEXT_KEY_FORMAT_TO_KEY_FORMAT(temp_header.flags); | 
| 1752 | 			kdp_core_header->pub_key_offset = roundup(kdp_core_header_size, KERN_COREDUMP_BEGIN_FILEBYTES_ALIGN); | 
| 1753 | 			kdp_core_header->pub_key_length = temp_header.pub_key_length; | 
| 1754 | 			kdp_core_public_key = public_key; | 
| 1755 | 		} | 
| 1756 |  | 
| 1757 | 		kdp_core_is_initializing_encryption_stage = false; | 
| 1758 | 		lck_mtx_unlock(lck: kdp_core_encryption_stage_lock); | 
| 1759 | 	} | 
| 1760 | #else | 
| 1761 | #pragma unused(access_data, access_context) | 
| 1762 | #endif // CONFIG_KDP_COREDUMP_ENCRYPTION | 
| 1763 |  | 
| 1764 | 	return ret; | 
| 1765 | } | 
| 1766 |  | 
| 1767 | kern_return_t | 
| 1768 | kdp_core_polled_io_polled_file_unavailable(void) | 
| 1769 | { | 
| 1770 | 	lck_mtx_lock(lck: kdp_core_disk_stage_lock); | 
| 1771 | 	kdp_core_is_initializing_disk_stage = true; | 
| 1772 |  | 
| 1773 | 	if (disk_output_stage.kos_initialized && disk_output_stage.kos_funcs.kosf_free) { | 
| 1774 | 		disk_output_stage.kos_funcs.kosf_free(&disk_output_stage); | 
| 1775 | 	} | 
| 1776 |  | 
| 1777 | 	kdp_core_is_initializing_disk_stage = false; | 
| 1778 | 	lck_mtx_unlock(lck: kdp_core_disk_stage_lock); | 
| 1779 |  | 
| 1780 | 	return KERN_SUCCESS; | 
| 1781 | } | 
| 1782 |  | 
| 1783 | void | 
| 1784 | kdp_core_init(void) | 
| 1785 | { | 
| 1786 | 	kern_return_t kr; | 
| 1787 | 	kern_coredump_callback_config core_config = { }; | 
| 1788 |  | 
| 1789 | 	/* Initialize output stages */ | 
| 1790 | 	kr = kdp_core_init_output_stages(); | 
| 1791 | 	assert(KERN_SUCCESS == kr); | 
| 1792 |  | 
| 1793 | 	kmem_alloc(map: kernel_map, addrp: (vm_offset_t*)&kdp_core_header, | 
| 1794 | 	    size: kdp_core_header_size, | 
| 1795 | 	    flags: KMA_NOFAIL | KMA_ZERO | KMA_PERMANENT | KMA_KOBJECT | KMA_DATA, | 
| 1796 | 	    VM_KERN_MEMORY_DIAG); | 
| 1797 |  | 
| 1798 | 	kdp_core_header->signature = MACH_CORE_FILEHEADER_V2_SIGNATURE; | 
| 1799 | 	kdp_core_header->version = 2; | 
| 1800 |  | 
| 1801 | 	kdp_core_initialization_lock_group = lck_grp_alloc_init(grp_name: "KDPCoreStageInit" , LCK_GRP_ATTR_NULL); | 
| 1802 | 	kdp_core_disk_stage_lock = lck_mtx_alloc_init(grp: kdp_core_initialization_lock_group, LCK_ATTR_NULL); | 
| 1803 |  | 
| 1804 | #ifdef CONFIG_KDP_COREDUMP_ENCRYPTION | 
| 1805 | 	kdp_core_encryption_stage_lock = lck_mtx_alloc_init(grp: kdp_core_initialization_lock_group, LCK_ATTR_NULL); | 
| 1806 |  | 
| 1807 | 	(void) kern_dump_should_enforce_encryption(); | 
| 1808 | #endif // CONFIG_KDP_COREDUMP_ENCRYPTION | 
| 1809 |  | 
| 1810 | 	kdp_core_lz4_stage_lock = lck_mtx_alloc_init(grp: kdp_core_initialization_lock_group, LCK_ATTR_NULL); | 
| 1811 |  | 
| 1812 | 	core_config.kcc_coredump_init = kern_dump_init; | 
| 1813 | 	core_config.kcc_coredump_get_summary = kern_dump_save_summary; | 
| 1814 | 	core_config.kcc_coredump_save_segment_descriptions = kern_dump_save_seg_descriptions; | 
| 1815 | 	core_config.kcc_coredump_save_thread_state = kern_dump_save_thread_state; | 
| 1816 | 	core_config.kcc_coredump_save_sw_vers_detail = kern_dump_save_sw_vers_detail; | 
| 1817 | 	core_config.kcc_coredump_save_segment_data = kern_dump_save_segment_data; | 
| 1818 | 	core_config.kcc_coredump_save_note_summary = kern_dump_save_note_summary; | 
| 1819 | 	core_config.kcc_coredump_save_note_descriptions = kern_dump_save_note_descriptions; | 
| 1820 | 	core_config.kcc_coredump_save_note_data = kern_dump_save_note_data; | 
| 1821 |  | 
| 1822 | 	kr = kern_register_xnu_coredump_helper(kc_callbacks: &core_config); | 
| 1823 | 	assert(KERN_SUCCESS == kr); | 
| 1824 | } | 
| 1825 |  | 
| 1826 | /* | 
| 1827 |  * Additional LC_NOTES added to the core. | 
| 1828 |  */ | 
| 1829 |  | 
| 1830 | static kern_return_t | 
| 1831 | kern_dump_save_note_summary(void *refcon __unused, core_save_note_summary_cb callback, void *context) | 
| 1832 | { | 
| 1833 | 	int count = 1; | 
| 1834 | 	size_t size = sizeof(addrable_bits_note_t); | 
| 1835 |  | 
| 1836 | #ifdef CONFIG_SPTM | 
| 1837 | 	/* Load binary spec note */ | 
| 1838 |  | 
| 1839 | 	struct debug_header const *debug_header = SPTMArgs != NULL ? SPTMArgs->debug_header : NULL; | 
| 1840 |  | 
| 1841 | 	if (debug_header != NULL && | 
| 1842 | 	    debug_header->magic == DEBUG_HEADER_MAGIC_VAL && | 
| 1843 | 	    debug_header->version == DEBUG_HEADER_CURRENT_VERSION) { | 
| 1844 | 		/* Also add SPTM, TXM, and xnu kc load binary specs if present */ | 
| 1845 | 		count += debug_header->count; | 
| 1846 | 		size += debug_header->count * sizeof(load_binary_spec_note_t); | 
| 1847 | 	} | 
| 1848 | #endif /* CONFIG_SPTM */ | 
| 1849 |  | 
| 1850 | 	return callback(count, size, context); | 
| 1851 | } | 
| 1852 |  | 
| 1853 | static kern_return_t | 
| 1854 | kern_dump_save_note_descriptions(void *refcon __unused, core_save_note_descriptions_cb callback, void *context) | 
| 1855 | { | 
| 1856 | 	int max_ret = KERN_SUCCESS; | 
| 1857 | 	int ret; | 
| 1858 |  | 
| 1859 | 	max_ret = ret = callback(ADDRABLE_BITS_DATA_OWNER, sizeof(addrable_bits_note_t), context); | 
| 1860 |  | 
| 1861 | #if CONFIG_SPTM | 
| 1862 | 	struct debug_header const *debug_header = SPTMArgs != NULL ? SPTMArgs->debug_header : NULL; | 
| 1863 |  | 
| 1864 | 	for (int i = 0; i < (debug_header != NULL ? debug_header->count : 0); i++) { | 
| 1865 | 		ret = callback(LOAD_BINARY_SPEC_DATA_OWNER, sizeof(load_binary_spec_note_t), context); | 
| 1866 | 		max_ret = MAX(ret, max_ret); | 
| 1867 | 	} | 
| 1868 | #endif /* CONFIG_SPTM */ | 
| 1869 |  | 
| 1870 | 	return max_ret; | 
| 1871 | } | 
| 1872 |  | 
| 1873 | static kern_return_t | 
| 1874 | kern_dump_save_note_data(void *refcon __unused, core_save_note_data_cb callback, void *context) | 
| 1875 | { | 
| 1876 | 	int max_ret = KERN_SUCCESS; | 
| 1877 | 	int ret; | 
| 1878 |  | 
| 1879 | 	addrable_bits_note_t note = { | 
| 1880 | 		.version = ADDRABLE_BITS_VER, | 
| 1881 | 		.addressing_bits = pmap_kernel_va_bits(), | 
| 1882 | 		.unused = 0 | 
| 1883 | 	}; | 
| 1884 |  | 
| 1885 | 	max_ret = ret = callback(¬e, sizeof(addrable_bits_note_t), context); | 
| 1886 |  | 
| 1887 | #if CONFIG_SPTM | 
| 1888 | 	struct debug_header const *debug_header = SPTMArgs != NULL ? SPTMArgs->debug_header : NULL; | 
| 1889 |  | 
| 1890 | 	for (int i = 0; i < (debug_header != NULL ? debug_header->count : 0); i++) { | 
| 1891 | 		load_binary_spec_note_t load_binary_spec = { | 
| 1892 | 			.version = LOAD_BINARY_SPEC_VERSION, | 
| 1893 | 			.uuid = {0}, | 
| 1894 | 			.address = (uint64_t)debug_header->image[i], | 
| 1895 | 			.slide = UINT64_MAX     // unknown, load address specified | 
| 1896 | 		}; | 
| 1897 |  | 
| 1898 | 		char const *name; | 
| 1899 | 		switch (i) { | 
| 1900 | 		case DEBUG_HEADER_ENTRY_SPTM: | 
| 1901 | 			name = "sptm" ; | 
| 1902 | 			break; | 
| 1903 | 		case DEBUG_HEADER_ENTRY_XNU: | 
| 1904 | 			name = "xnu" ; | 
| 1905 | 			break; | 
| 1906 | 		case DEBUG_HEADER_ENTRY_TXM: | 
| 1907 | 			name = "txm" ; | 
| 1908 | 			break; | 
| 1909 | 		default: | 
| 1910 | 			name = "UNKNOWN" ; | 
| 1911 | 			kern_coredump_log(context, "%s(): encountered unknown debug header entry %d, "  | 
| 1912 | 			    "including anyway with name '%s'\n" , __func__, i, name); | 
| 1913 | 		} | 
| 1914 |  | 
| 1915 | 		strlcpy(load_binary_spec.name_cstring, name, LOAD_BINARY_NAME_BUF_SIZE); | 
| 1916 |  | 
| 1917 | 		ret = callback(&load_binary_spec, sizeof(load_binary_spec), context); | 
| 1918 |  | 
| 1919 | 		if (ret != KERN_SUCCESS) { | 
| 1920 | 			kern_coredump_log(context, "%s(): failed to write load binary spec structure "  | 
| 1921 | 			    "for binary #%d ('%s'): callback returned 0x%x\n" , | 
| 1922 | 			    __func__, i, name, ret); | 
| 1923 | 			max_ret = MAX(ret, max_ret); | 
| 1924 | 		} | 
| 1925 | 	} | 
| 1926 | #endif /* CONFIG_SPTM */ | 
| 1927 |  | 
| 1928 | 	return max_ret; | 
| 1929 | } | 
| 1930 |  | 
| 1931 | #else | 
| 1932 |  | 
| 1933 | void | 
| 1934 | kdp_core_exclude_region(__unused vm_offset_t addr, __unused vm_size_t size) | 
| 1935 | { | 
| 1936 | } | 
| 1937 |  | 
| 1938 | void | 
| 1939 | kdp_core_unexclude_region(__unused vm_offset_t addr, __unused vm_size_t size) | 
| 1940 | { | 
| 1941 | } | 
| 1942 |  | 
| 1943 | #endif /* CONFIG_KDP_INTERACTIVE_DEBUGGING */ | 
| 1944 |  |