1 | /* Copyright (c) (2019,2021-2023) Apple Inc. All rights reserved. |
2 | * |
3 | * corecrypto is licensed under Apple Inc.’s Internal Use License Agreement (which |
4 | * is contained in the License.txt file distributed with corecrypto) and only to |
5 | * people who accept that license. IMPORTANT: Any license rights granted to you by |
6 | * Apple Inc. (if any) are limited to internal use within your organization only on |
7 | * devices and computers you own or control, for the sole purpose of verifying the |
8 | * security characteristics and correct functioning of the Apple Software. You may |
9 | * not, directly or indirectly, redistribute the Apple Software or any portions thereof. |
10 | * |
11 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
12 | * |
13 | * This file contains Original Code and/or Modifications of Original Code |
14 | * as defined in and that are subject to the Apple Public Source License |
15 | * Version 2.0 (the 'License'). You may not use this file except in |
16 | * compliance with the License. The rights granted to you under the License |
17 | * may not be used to create, or enable the creation or redistribution of, |
18 | * unlawful or unlicensed copies of an Apple operating system, or to |
19 | * circumvent, violate, or enable the circumvention or violation of, any |
20 | * terms of an Apple operating system software license agreement. |
21 | * |
22 | * Please obtain a copy of the License at |
23 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
24 | * |
25 | * The Original Code and all software distributed under the License are |
26 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
27 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
28 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
29 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
30 | * Please see the License for the specific language governing rights and |
31 | * limitations under the License. |
32 | * |
33 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
34 | */ |
35 | |
36 | #ifndef _CORECRYPTO_CC_INTERNAL_H_ |
37 | #define _CORECRYPTO_CC_INTERNAL_H_ |
38 | |
39 | #include <corecrypto/cc_priv.h> |
40 | #include "cc_runtime_config.h" |
41 | |
42 | #if CC_XNU_KERNEL_PRIVATE |
43 | #elif CC_EFI |
44 | #elif CC_KERNEL |
45 | #include <libkern/libkern.h> |
46 | #else |
47 | #include <stdlib.h> |
48 | #include <stdio.h> |
49 | #endif |
50 | |
51 | #include <stdarg.h> |
52 | |
53 | #include "cc_macros.h" |
54 | |
55 | #if CC_EFI |
56 | #include "cc_efi_shim.h" |
57 | int cc_memcmp(const void *buf1, const void *buf2, size_t len); |
58 | #else |
59 | #define cc_memcmp(buf1, buf2, len) memcmp(buf1, buf2, len) |
60 | #endif |
61 | |
62 | extern bool cc_rdrand(uint64_t *rand); |
63 | |
64 | #if CC_BUILT_FOR_TESTING |
65 | extern bool (*cc_rdrand_mock)(uint64_t *rand); |
66 | |
67 | extern void (*cc_abort_mock)(const char *msg); |
68 | #endif |
69 | |
70 | |
71 | #if CC_DIT_MAYBE_SUPPORTED |
72 | |
73 | // Use the DIT register's encoded name to avoid assembler |
74 | // complaints when compiling for ARM64 before v8.4. |
75 | #define CC_DIT_REGISTER "s3_3_c4_c2_5" |
76 | |
77 | #define CC_DIT_BIT (1U << 24) |
78 | |
79 | CC_INLINE bool |
80 | cc_is_dit_enabled(void) |
81 | { |
82 | return __builtin_arm_rsr64(CC_DIT_REGISTER) & CC_DIT_BIT; |
83 | } |
84 | |
85 | CC_INLINE bool |
86 | cc_enable_dit(void) |
87 | { |
88 | if (!CC_HAS_DIT()) { |
89 | return false; |
90 | } |
91 | |
92 | // DIT might have already been enabled by another corecrypto function, in |
93 | // that case that function is responsible for disabling DIT when returning. |
94 | // |
95 | // This also covers when code _outside_ corecrypto enabled DIT before |
96 | // calling us. In that case we're not responsible for disabling it either. |
97 | if (cc_is_dit_enabled()) { |
98 | return false; |
99 | } |
100 | |
101 | // Encoding of <msr dit, #1>. |
102 | __asm__ __volatile__ (".long 0xd503415f" ); |
103 | |
104 | #if CC_BUILT_FOR_TESTING |
105 | // Check that DIT was enabled. |
106 | cc_try_abort_if(!cc_is_dit_enabled(), "DIT not enabled" ); |
107 | #endif |
108 | |
109 | // To the cleanup function, indicate that we toggled DIT and |
110 | // that cc_disable_dit() should actually disable it again. |
111 | return true; |
112 | } |
113 | |
114 | void cc_disable_dit(volatile bool *cc_unsafe_indexable dit_was_enabled); |
115 | |
116 | #define CC_ENSURE_DIT_ENABLED \ |
117 | volatile bool _cc_dit_auto_disable \ |
118 | __attribute__((cleanup(cc_disable_dit))) \ |
119 | __attribute__((unused)) = cc_enable_dit(); |
120 | |
121 | #else |
122 | |
123 | #define CC_ENSURE_DIT_ENABLED |
124 | |
125 | #endif // CC_DIT_MAYBE_SUPPORTED |
126 | |
127 | /*! |
128 | * @function cc_is_vmm_present |
129 | * @abstract Determine if corecrypto is running in a VM |
130 | * |
131 | * @return True iff running in a VM; false otherwise |
132 | * |
133 | * @discussion This function merely checks the relevant sysctl, which |
134 | * may not be accurate. Thus, it should not be used to make any |
135 | * security decisions. |
136 | */ |
137 | extern bool cc_is_vmm_present(void); |
138 | |
139 | /*! |
140 | * @function cc_current_arch |
141 | * @abstract The architecture loaded in the current process |
142 | * |
143 | * @return A string representation of the current architecture or |
144 | * "unknown" |
145 | */ |
146 | extern const char *cc_current_arch(void); |
147 | |
148 | // MARK: - popcount |
149 | |
150 | /// Count number of bits set |
151 | CC_INLINE CC_CONST unsigned |
152 | cc_popcount32_fallback(uint32_t v) |
153 | { |
154 | v = v - ((v >> 1) & 0x55555555); |
155 | v = (v & 0x33333333) + ((v >> 2) & 0x33333333); |
156 | return ((v + (v >> 4) & 0xf0f0f0f) * 0x1010101) >> 24; |
157 | } |
158 | |
159 | /// Count number of bits set |
160 | CC_INLINE CC_CONST unsigned |
161 | cc_popcount64_fallback(uint64_t v) |
162 | { |
163 | v = v - ((v >> 1) & 0x5555555555555555); |
164 | v = (v & 0x3333333333333333) + ((v >> 2) & 0x3333333333333333); |
165 | v = (v + (v >> 4)) & 0xf0f0f0f0f0f0f0f; |
166 | return (v * 0x101010101010101) >> 56; |
167 | } |
168 | |
169 | /// Count number of bits set |
170 | CC_INLINE CC_CONST unsigned |
171 | cc_popcount32(uint32_t data) |
172 | { |
173 | #if __has_builtin(__builtin_popcount) |
174 | return (unsigned)__builtin_popcount(data); |
175 | #else |
176 | return cc_popcount32_fallback(data); |
177 | #endif |
178 | } |
179 | |
180 | /// Count number of bits set |
181 | CC_INLINE CC_CONST unsigned |
182 | cc_popcount64(uint64_t data) |
183 | { |
184 | #if __has_builtin(__builtin_popcountll) |
185 | return (unsigned)__builtin_popcountll(data); |
186 | #else |
187 | return cc_popcount64_fallback(data); |
188 | #endif |
189 | } |
190 | |
191 | // Use with volatile variables only. |
192 | #define CC_MULTI_IF_AND(condition) \ |
193 | ((condition) && (condition) && (condition)) |
194 | |
195 | // MARK: - Byte Extraction |
196 | #ifdef _MSC_VER |
197 | #define cc_byte(x, n) ((unsigned char)((x) >> (8 * (n)))) |
198 | #else |
199 | #define cc_byte(x, n) (((x) >> (8 * (n))) & 255) |
200 | #endif |
201 | |
202 | // MARK: - 32-bit Rotates |
203 | |
204 | #if defined(_MSC_VER) |
205 | // MARK: -- MSVC version |
206 | |
207 | #include <stdlib.h> |
208 | #if !defined(__clang__) |
209 | #pragma intrinsic(_lrotr,_lrotl) |
210 | #endif |
211 | #define CC_ROR(x, n) _lrotr(x,n) |
212 | #define CC_ROL(x, n) _lrotl(x,n) |
213 | #define CC_RORc(x, n) _lrotr(x,n) |
214 | #define CC_ROLc(x, n) _lrotl(x,n) |
215 | |
216 | #elif (defined(__i386__) || defined(__x86_64__)) |
217 | // MARK: -- intel asm version |
218 | |
219 | CC_INLINE uint32_t |
220 | CC_ROL(uint32_t word, int i) |
221 | { |
222 | __asm__ ("roll %%cl,%0" |
223 | :"=r" (word) |
224 | :"0" (word),"c" (i)); |
225 | return word; |
226 | } |
227 | |
228 | CC_INLINE uint32_t |
229 | CC_ROR(uint32_t word, int i) |
230 | { |
231 | __asm__ ("rorl %%cl,%0" |
232 | :"=r" (word) |
233 | :"0" (word),"c" (i)); |
234 | return word; |
235 | } |
236 | |
237 | /* Need to be a macro here, because 'i' is an immediate (constant) */ |
238 | #define CC_ROLc(word, i) \ |
239 | ({ uint32_t _word=(word); \ |
240 | __asm__ __volatile__ ("roll %2,%0" \ |
241 | :"=r" (_word) \ |
242 | :"0" (_word),"I" (i)); \ |
243 | _word; \ |
244 | }) |
245 | |
246 | |
247 | #define CC_RORc(word, i) \ |
248 | ({ uint32_t _word=(word); \ |
249 | __asm__ __volatile__ ("rorl %2,%0" \ |
250 | :"=r" (_word) \ |
251 | :"0" (_word),"I" (i)); \ |
252 | _word; \ |
253 | }) |
254 | |
255 | #else |
256 | |
257 | // MARK: -- default version |
258 | |
259 | CC_INLINE uint32_t |
260 | CC_ROL(uint32_t word, int i) |
261 | { |
262 | return (word << (i & 31)) | (word >> ((32 - (i & 31)) & 31)); |
263 | } |
264 | |
265 | CC_INLINE uint32_t |
266 | CC_ROR(uint32_t word, int i) |
267 | { |
268 | return (word >> (i & 31)) | (word << ((32 - (i & 31)) & 31)); |
269 | } |
270 | |
271 | #define CC_ROLc(x, y) CC_ROL(x, y) |
272 | #define CC_RORc(x, y) CC_ROR(x, y) |
273 | |
274 | #endif |
275 | |
276 | // MARK: - 64 bits rotates |
277 | |
278 | #if defined(__x86_64__) && !defined(_MSC_VER) //clang _MSVC doesn't support GNU-style inline assembly |
279 | // MARK: -- intel 64 asm version |
280 | |
281 | CC_INLINE uint64_t |
282 | CC_ROL64(uint64_t word, int i) |
283 | { |
284 | __asm__("rolq %%cl,%0" |
285 | :"=r" (word) |
286 | :"0" (word),"c" (i)); |
287 | return word; |
288 | } |
289 | |
290 | CC_INLINE uint64_t |
291 | CC_ROR64(uint64_t word, int i) |
292 | { |
293 | __asm__("rorq %%cl,%0" |
294 | :"=r" (word) |
295 | :"0" (word),"c" (i)); |
296 | return word; |
297 | } |
298 | |
299 | /* Need to be a macro here, because 'i' is an immediate (constant) */ |
300 | #define CC_ROL64c(word, i) \ |
301 | ({ \ |
302 | uint64_t _word=(word); \ |
303 | __asm__("rolq %2,%0" \ |
304 | :"=r" (_word) \ |
305 | :"0" (_word),"J" (i)); \ |
306 | _word; \ |
307 | }) |
308 | |
309 | #define CC_ROR64c(word, i) \ |
310 | ({ \ |
311 | uint64_t _word=(word); \ |
312 | __asm__("rorq %2,%0" \ |
313 | :"=r" (_word) \ |
314 | :"0" (_word),"J" (i)); \ |
315 | _word; \ |
316 | }) |
317 | |
318 | |
319 | #else /* Not x86_64 */ |
320 | |
321 | // MARK: -- default C version |
322 | |
323 | CC_INLINE uint64_t |
324 | CC_ROL64(uint64_t word, int i) |
325 | { |
326 | return (word << (i & 63)) | (word >> ((64 - (i & 63)) & 63)); |
327 | } |
328 | |
329 | CC_INLINE uint64_t |
330 | CC_ROR64(uint64_t word, int i) |
331 | { |
332 | return (word >> (i & 63)) | (word << ((64 - (i & 63)) & 63)); |
333 | } |
334 | |
335 | #define CC_ROL64c(x, y) CC_ROL64(x, y) |
336 | #define CC_ROR64c(x, y) CC_ROR64(x, y) |
337 | |
338 | #endif |
339 | |
340 | // MARK: -- Count Leading / Trailing Zeros |
341 | /* Count leading zeros (for nonzero inputs) */ |
342 | |
343 | /* |
344 | * On i386 and x86_64, we know clang and GCC will generate BSR for |
345 | * __builtin_clzl. This instruction IS NOT constant time on all micro- |
346 | * architectures, but it *is* constant time on all micro-architectures that |
347 | * have been used by Apple, and we expect that to continue to be the case. |
348 | * |
349 | * When building for x86_64h with clang, this produces LZCNT, which is exactly |
350 | * what we want. |
351 | * |
352 | * On arm and arm64, we know that clang and GCC generate the constant-time CLZ |
353 | * instruction from __builtin_clzl( ). |
354 | */ |
355 | |
356 | #if defined(_WIN32) |
357 | /* We use the Windows implementations below. */ |
358 | #elif defined(__x86_64__) || defined(__i386__) || defined(__arm64__) || defined(__arm__) |
359 | /* We use a thought-to-be-good version of __builtin_clz. */ |
360 | #elif defined __GNUC__ |
361 | #warning Using __builtin_clz() on an unknown architecture; it may not be constant-time. |
362 | /* If you find yourself seeing this warning, file a radar for someone to |
363 | * check whether or not __builtin_clz() generates a constant-time |
364 | * implementation on the architecture you are targeting. If it does, append |
365 | * the name of that architecture to the list of "safe" architectures above. */ |
366 | #endif |
367 | |
368 | CC_INLINE CC_CONST unsigned |
369 | cc_clz32_fallback(uint32_t data) |
370 | { |
371 | unsigned int b = 0; |
372 | unsigned int bit = 0; |
373 | // Work from LSB to MSB |
374 | for (int i = 0; i < 32; i++) { |
375 | bit = (data >> i) & 1; |
376 | // If the bit is 0, update the "leading bits are zero" counter "b". |
377 | b += (1 - bit); |
378 | /* If the bit is 0, (bit - 1) is 0xffff... therefore b is retained. |
379 | * If the bit is 1, (bit - 1) is 0 therefore b is set to 0. |
380 | */ |
381 | b &= (bit - 1); |
382 | } |
383 | return b; |
384 | } |
385 | |
386 | CC_INLINE CC_CONST unsigned |
387 | cc_clz64_fallback(uint64_t data) |
388 | { |
389 | unsigned int b = 0; |
390 | unsigned int bit = 0; |
391 | // Work from LSB to MSB |
392 | for (int i = 0; i < 64; i++) { |
393 | bit = (data >> i) & 1; |
394 | // If the bit is 0, update the "leading bits are zero" counter. |
395 | b += (1 - bit); |
396 | /* If the bit is 0, (bit - 1) is 0xffff... therefore b is retained. |
397 | * If the bit is 1, (bit - 1) is 0 therefore b is set to 0. |
398 | */ |
399 | b &= (bit - 1); |
400 | } |
401 | return b; |
402 | } |
403 | |
404 | CC_INLINE CC_CONST unsigned |
405 | cc_ctz32_fallback(uint32_t data) |
406 | { |
407 | unsigned int b = 0; |
408 | unsigned int bit = 0; |
409 | // Work from MSB to LSB |
410 | for (int i = 31; i >= 0; i--) { |
411 | bit = (data >> i) & 1; |
412 | // If the bit is 0, update the "trailing zero bits" counter. |
413 | b += (1 - bit); |
414 | /* If the bit is 0, (bit - 1) is 0xffff... therefore b is retained. |
415 | * If the bit is 1, (bit - 1) is 0 therefore b is set to 0. |
416 | */ |
417 | b &= (bit - 1); |
418 | } |
419 | return b; |
420 | } |
421 | |
422 | CC_INLINE CC_CONST unsigned |
423 | cc_ctz64_fallback(uint64_t data) |
424 | { |
425 | unsigned int b = 0; |
426 | unsigned int bit = 0; |
427 | // Work from MSB to LSB |
428 | for (int i = 63; i >= 0; i--) { |
429 | bit = (data >> i) & 1; |
430 | // If the bit is 0, update the "trailing zero bits" counter. |
431 | b += (1 - bit); |
432 | /* If the bit is 0, (bit - 1) is 0xffff... therefore b is retained. |
433 | * If the bit is 1, (bit - 1) is 0 therefore b is set to 0. |
434 | */ |
435 | b &= (bit - 1); |
436 | } |
437 | return b; |
438 | } |
439 | |
440 | /*! |
441 | * @function cc_clz32 |
442 | * @abstract Count leading zeros of a nonzero 32-bit value |
443 | * |
444 | * @param data A nonzero 32-bit value |
445 | * |
446 | * @result Count of leading zeros of @p data |
447 | * |
448 | * @discussion @p data is assumed to be nonzero. |
449 | */ |
450 | CC_INLINE CC_CONST unsigned |
451 | cc_clz32(uint32_t data) |
452 | { |
453 | cc_assert(data != 0); |
454 | #if __has_builtin(__builtin_clz) |
455 | cc_static_assert(sizeof(unsigned) == 4, "clz relies on an unsigned int being 4 bytes" ); |
456 | return (unsigned)__builtin_clz(data); |
457 | #else |
458 | return cc_clz32_fallback(data); |
459 | #endif |
460 | } |
461 | |
462 | /*! |
463 | * @function cc_clz64 |
464 | * @abstract Count leading zeros of a nonzero 64-bit value |
465 | * |
466 | * @param data A nonzero 64-bit value |
467 | * |
468 | * @result Count of leading zeros of @p data |
469 | * |
470 | * @discussion @p data is assumed to be nonzero. |
471 | */ |
472 | CC_INLINE CC_CONST unsigned |
473 | cc_clz64(uint64_t data) |
474 | { |
475 | cc_assert(data != 0); |
476 | #if __has_builtin(__builtin_clzll) |
477 | return (unsigned)__builtin_clzll(data); |
478 | #else |
479 | return cc_clz64_fallback(data); |
480 | #endif |
481 | } |
482 | |
483 | /*! |
484 | * @function cc_ctz32 |
485 | * @abstract Count trailing zeros of a nonzero 32-bit value |
486 | * |
487 | * @param data A nonzero 32-bit value |
488 | * |
489 | * @result Count of trailing zeros of @p data |
490 | * |
491 | * @discussion @p data is assumed to be nonzero. |
492 | */ |
493 | CC_INLINE CC_CONST unsigned |
494 | cc_ctz32(uint32_t data) |
495 | { |
496 | cc_assert(data != 0); |
497 | #if __has_builtin(__builtin_ctz) |
498 | cc_static_assert(sizeof(unsigned) == 4, "ctz relies on an unsigned int being 4 bytes" ); |
499 | return (unsigned)__builtin_ctz(data); |
500 | #else |
501 | return cc_ctz32_fallback(data); |
502 | #endif |
503 | } |
504 | |
505 | /*! |
506 | * @function cc_ctz64 |
507 | * @abstract Count trailing zeros of a nonzero 64-bit value |
508 | * |
509 | * @param data A nonzero 64-bit value |
510 | * |
511 | * @result Count of trailing zeros of @p data |
512 | * |
513 | * @discussion @p data is assumed to be nonzero. |
514 | */ |
515 | CC_INLINE CC_CONST unsigned |
516 | cc_ctz64(uint64_t data) |
517 | { |
518 | cc_assert(data != 0); |
519 | #if __has_builtin(__builtin_ctzll) |
520 | return (unsigned)__builtin_ctzll(data); |
521 | #else |
522 | return cc_ctz64_fallback(data); |
523 | #endif |
524 | } |
525 | |
526 | // MARK: -- Find first bit set |
527 | |
528 | /*! |
529 | * @function cc_ffs32_fallback |
530 | * @abstract Find first bit set in a 32-bit value |
531 | * |
532 | * @param data A 32-bit value |
533 | * |
534 | * @result One plus the index of the least-significant bit set in @p data or, if @p data is zero, zero |
535 | */ |
536 | CC_INLINE CC_CONST unsigned |
537 | cc_ffs32_fallback(int32_t data) |
538 | { |
539 | unsigned b = 0; |
540 | unsigned bit = 0; |
541 | unsigned seen = 0; |
542 | |
543 | // Work from LSB to MSB |
544 | for (int i = 0; i < 32; i++) { |
545 | bit = ((uint32_t)data >> i) & 1; |
546 | |
547 | // Track whether we've seen a 1 bit. |
548 | seen |= bit; |
549 | |
550 | // If the bit is 0 and we haven't seen a 1 yet, increment b. |
551 | b += (1 - bit) & (seen - 1); |
552 | } |
553 | |
554 | // If we saw a 1, return b + 1, else 0. |
555 | return (~(seen - 1)) & (b + 1); |
556 | } |
557 | |
558 | /*! |
559 | * @function cc_ffs64_fallback |
560 | * @abstract Find first bit set in a 64-bit value |
561 | * |
562 | * @param data A 64-bit value |
563 | * |
564 | * @result One plus the index of the least-significant bit set in @p data or, if @p data is zero, zero |
565 | */ |
566 | CC_INLINE CC_CONST unsigned |
567 | cc_ffs64_fallback(int64_t data) |
568 | { |
569 | unsigned b = 0; |
570 | unsigned bit = 0; |
571 | unsigned seen = 0; |
572 | |
573 | // Work from LSB to MSB |
574 | for (int i = 0; i < 64; i++) { |
575 | bit = ((uint64_t)data >> i) & 1; |
576 | |
577 | // Track whether we've seen a 1 bit. |
578 | seen |= bit; |
579 | |
580 | // If the bit is 0 and we haven't seen a 1 yet, increment b. |
581 | b += (1 - bit) & (seen - 1); |
582 | } |
583 | |
584 | // If we saw a 1, return b + 1, else 0. |
585 | return (~(seen - 1)) & (b + 1); |
586 | } |
587 | |
588 | /*! |
589 | * @function cc_ffs32 |
590 | * @abstract Find first bit set in a 32-bit value |
591 | * |
592 | * @param data A 32-bit value |
593 | * |
594 | * @result One plus the index of the least-significant bit set in @p data or, if @p data is zero, zero |
595 | */ |
596 | CC_INLINE CC_CONST unsigned |
597 | cc_ffs32(int32_t data) |
598 | { |
599 | cc_static_assert(sizeof(int) == 4, "ffs relies on an int being 4 bytes" ); |
600 | #if __has_builtin(__builtin_ffs) |
601 | return (unsigned)__builtin_ffs(data); |
602 | #else |
603 | return cc_ffs32_fallback(data); |
604 | #endif |
605 | } |
606 | |
607 | /*! |
608 | * @function cc_ffs64 |
609 | * @abstract Find first bit set in a 64-bit value |
610 | * |
611 | * @param data A 64-bit value |
612 | * |
613 | * @result One plus the index of the least-significant bit set in @p data or, if @p data is zero, zero |
614 | */ |
615 | CC_INLINE CC_CONST unsigned |
616 | cc_ffs64(int64_t data) |
617 | { |
618 | #if __has_builtin(__builtin_ffsll) |
619 | return (unsigned)__builtin_ffsll(data); |
620 | #else |
621 | return cc_ffs64_fallback(data); |
622 | #endif |
623 | } |
624 | |
625 | // MARK: -- Overflow wrappers |
626 | #define cc_add_overflow __builtin_add_overflow |
627 | |
628 | // On 32-bit architectures, clang emits libcalls to __mulodi4 when |
629 | // __builtin_mul_overflow() encounters `long long` types. |
630 | // |
631 | // The libgcc runtime does not provide __mulodi4, so for Linux on ARMv7 |
632 | // we cannot call __builtin_mul_overflow(). |
633 | // |
634 | // Using __has_builtin(__builtin_mul_overflow) would be better but that will |
635 | // return the correct response for ARMv7/Linux only with LLVM-14 or higher. |
636 | #if defined(__clang__) && defined(__arm__) && CC_LINUX |
637 | CC_INLINE bool |
638 | cc_mul_overflow(uint64_t a, uint64_t b, uint64_t *r) |
639 | { |
640 | *r = a * b; |
641 | return (a != 0) && ((*r / a) != b); |
642 | } |
643 | #else |
644 | #define cc_mul_overflow __builtin_mul_overflow |
645 | #endif |
646 | |
647 | // MARK: -- Heavyside Step |
648 | /* HEAVISIDE_STEP (shifted by one) |
649 | * function f(x): x->0, when x=0 |
650 | * x->1, when x>0 |
651 | * Can also be seen as a bitwise operation: |
652 | * f(x): x -> y |
653 | * y[0]=(OR x[i]) for all i (all bits) |
654 | * y[i]=0 for all i>0 |
655 | * Run in constant time (log2(<bitsize of x>)) |
656 | * Useful to run constant time checks |
657 | */ |
658 | #define CC_HEAVISIDE_STEP(r, s) do { \ |
659 | cc_static_assert(sizeof(uint64_t) >= sizeof(s), "max type is uint64_t"); \ |
660 | const uint64_t _s = (uint64_t)s; \ |
661 | const uint64_t _t = (_s & 0xffffffff) | (_s >> 32); \ |
662 | r = (uint8_t)((_t + 0xffffffff) >> 32); \ |
663 | } while (0) |
664 | |
665 | /* Return 1 if x mod 4 =1,2,3, 0 otherwise */ |
666 | #define CC_CARRY_2BITS(x) (((x>>1) | x) & 0x1) |
667 | #define CC_CARRY_3BITS(x) (((x>>2) | (x>>1) | x) & 0x1) |
668 | |
669 | /*! |
670 | * @brief CC_MUXU(r, s, a, b) is equivalent to r = s ? a : b, but executes in constant time |
671 | * @param a Input a |
672 | * @param b Input b |
673 | * @param s Selection parameter s. Must be 0 or 1. |
674 | * @param r Output, set to a if s=1, or b if s=0. |
675 | */ |
676 | #define CC_MUXU(r, s, a, b) do { \ |
677 | cc_assert((s) == 0 || (s) == 1); \ |
678 | r = (~((s)-1) & (a)) | (((s)-1) & (b)); \ |
679 | } while (0) |
680 | |
681 | #endif // _CORECRYPTO_CC_INTERNAL_H_ |
682 | |