| 1 | /* |
| 2 | * Copyright (c) 2007-2017 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
| 5 | * |
| 6 | * This file contains Original Code and/or Modifications of Original Code |
| 7 | * as defined in and that are subject to the Apple Public Source License |
| 8 | * Version 2.0 (the 'License'). You may not use this file except in |
| 9 | * compliance with the License. The rights granted to you under the License |
| 10 | * may not be used to create, or enable the creation or redistribution of, |
| 11 | * unlawful or unlicensed copies of an Apple operating system, or to |
| 12 | * circumvent, violate, or enable the circumvention or violation of, any |
| 13 | * terms of an Apple operating system software license agreement. |
| 14 | * |
| 15 | * Please obtain a copy of the License at |
| 16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
| 17 | * |
| 18 | * The Original Code and all software distributed under the License are |
| 19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| 23 | * Please see the License for the specific language governing rights and |
| 24 | * limitations under the License. |
| 25 | * |
| 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
| 27 | */ |
| 28 | |
| 29 | #include <arm64/machine_machdep.h> |
| 30 | #include <arm64/proc_reg.h> |
| 31 | #include <arm/machine_cpu.h> |
| 32 | #include <arm/cpu_internal.h> |
| 33 | #include <arm/cpuid.h> |
| 34 | #include <arm/cpu_data.h> |
| 35 | #include <arm/cpu_data_internal.h> |
| 36 | #include <arm/caches_internal.h> |
| 37 | #include <arm/misc_protos.h> |
| 38 | #include <arm/machdep_call.h> |
| 39 | #include <arm/machine_routines.h> |
| 40 | #include <arm/rtclock.h> |
| 41 | #include <arm/cpuid_internal.h> |
| 42 | #include <arm/cpu_capabilities.h> |
| 43 | #include <console/serial_protos.h> |
| 44 | #include <kern/machine.h> |
| 45 | #include <kern/misc_protos.h> |
| 46 | #include <prng/random.h> |
| 47 | #include <kern/startup.h> |
| 48 | #include <kern/thread.h> |
| 49 | #include <kern/timer_queue.h> |
| 50 | #include <mach/machine.h> |
| 51 | #include <machine/atomic.h> |
| 52 | #include <machine/config.h> |
| 53 | #include <vm/pmap.h> |
| 54 | #include <vm/vm_page.h> |
| 55 | #include <vm/vm_shared_region.h> |
| 56 | #include <vm/vm_map.h> |
| 57 | #include <sys/codesign.h> |
| 58 | #include <sys/kdebug.h> |
| 59 | #include <kern/coalition.h> |
| 60 | #include <pexpert/device_tree.h> |
| 61 | |
| 62 | #include <IOKit/IOPlatformExpert.h> |
| 63 | #if HIBERNATION |
| 64 | #include <IOKit/IOHibernatePrivate.h> |
| 65 | #endif /* HIBERNATION */ |
| 66 | |
| 67 | #if defined(KERNEL_INTEGRITY_KTRR) || defined(KERNEL_INTEGRITY_CTRR) |
| 68 | #include <arm64/amcc_rorgn.h> |
| 69 | #endif |
| 70 | |
| 71 | |
| 72 | #if CONFIG_SPTM |
| 73 | #include <arm64/sptm/sptm.h> |
| 74 | #endif /* CONFIG_SPTM */ |
| 75 | |
| 76 | #include <libkern/section_keywords.h> |
| 77 | |
| 78 | /** |
| 79 | * On supported hardware, debuggable builds make the HID bits read-only |
| 80 | * without locking them. This lets people manually modify HID bits while |
| 81 | * debugging, since they can use a debugging tool to first reset the HID |
| 82 | * bits back to read/write. However it will still catch xnu changes that |
| 83 | * accidentally write to HID bits after they've been made read-only. |
| 84 | */ |
| 85 | SECURITY_READ_ONLY_LATE(bool) skip_spr_lockdown_glb = 0; |
| 86 | |
| 87 | /* |
| 88 | * On some SoCs, PIO lockdown is applied in assembly in early boot by |
| 89 | * secondary CPUs. |
| 90 | * Since the cluster_pio_ro_ctl value is dynamic, it is stored here by the |
| 91 | * primary CPU so that it doesn't have to be computed each time by the |
| 92 | * startup code. |
| 93 | */ |
| 94 | SECURITY_READ_ONLY_LATE(uint64_t) cluster_pio_ro_ctl_mask_glb = 0; |
| 95 | |
| 96 | #if CONFIG_CPU_COUNTERS |
| 97 | #include <kern/kpc.h> |
| 98 | #endif /* CONFIG_CPU_COUNTERS */ |
| 99 | |
| 100 | #define MPIDR_CPU_ID(mpidr_el1_val) (((mpidr_el1_val) & MPIDR_AFF0_MASK) >> MPIDR_AFF0_SHIFT) |
| 101 | #define MPIDR_CLUSTER_ID(mpidr_el1_val) (((mpidr_el1_val) & MPIDR_AFF1_MASK) >> MPIDR_AFF1_SHIFT) |
| 102 | |
| 103 | #if HAS_CLUSTER |
| 104 | static uint8_t cluster_initialized = 0; |
| 105 | #endif |
| 106 | |
| 107 | MACHINE_TIMEOUT_DEV_WRITEABLE(LockTimeOut, "lock" , 6e6 /* 0.25s */, MACHINE_TIMEOUT_UNIT_TIMEBASE, NULL); |
| 108 | machine_timeout_t LockTimeOutUsec; // computed in ml_init_lock_timeout |
| 109 | |
| 110 | MACHINE_TIMEOUT_DEV_WRITEABLE(TLockTimeOut, "ticket-lock" , 3e6 /* 0.125s */, MACHINE_TIMEOUT_UNIT_TIMEBASE, NULL); |
| 111 | |
| 112 | MACHINE_TIMEOUT_DEV_WRITEABLE(MutexSpin, "mutex-spin" , 240 /* 10us */, MACHINE_TIMEOUT_UNIT_TIMEBASE, NULL); |
| 113 | |
| 114 | uint64_t low_MutexSpin; |
| 115 | int64_t high_MutexSpin; |
| 116 | |
| 117 | |
| 118 | |
| 119 | static uint64_t ml_wfe_hint_max_interval; |
| 120 | #define MAX_WFE_HINT_INTERVAL_US (500ULL) |
| 121 | |
| 122 | /* Must be less than cpu_idle_latency to ensure ml_delay_should_spin is true */ |
| 123 | TUNABLE(uint32_t, yield_delay_us, "yield_delay_us" , 0); |
| 124 | |
| 125 | extern vm_offset_t segLOWEST; |
| 126 | extern vm_offset_t segLOWESTTEXT; |
| 127 | extern vm_offset_t segLASTB; |
| 128 | extern unsigned long segSizeLAST; |
| 129 | |
| 130 | /* ARM64 specific bounds; used to test for presence in the kernelcache. */ |
| 131 | extern vm_offset_t vm_kernelcache_base; |
| 132 | extern vm_offset_t vm_kernelcache_top; |
| 133 | |
| 134 | /* Location of the physmap / physical aperture */ |
| 135 | extern uint64_t physmap_base; |
| 136 | |
| 137 | #if defined(CONFIG_SPTM) |
| 138 | extern const arm_physrange_t *arm_vm_kernelcache_ranges; |
| 139 | extern int arm_vm_kernelcache_numranges; |
| 140 | #else /* defined(CONFIG_SPTM) */ |
| 141 | extern vm_offset_t arm_vm_kernelcache_phys_start; |
| 142 | extern vm_offset_t arm_vm_kernelcache_phys_end; |
| 143 | #endif /* defined(CONFIG_SPTM) */ |
| 144 | |
| 145 | #if defined(HAS_IPI) |
| 146 | unsigned int gFastIPI = 1; |
| 147 | #define kDeferredIPITimerDefault (64 * NSEC_PER_USEC) /* in nanoseconds */ |
| 148 | static TUNABLE_WRITEABLE(uint64_t, deferred_ipi_timer_ns, "fastipitimeout" , |
| 149 | kDeferredIPITimerDefault); |
| 150 | #endif /* defined(HAS_IPI) */ |
| 151 | |
| 152 | thread_t Idle_context(void); |
| 153 | |
| 154 | SECURITY_READ_ONLY_LATE(bool) cpu_config_correct = true; |
| 155 | |
| 156 | SECURITY_READ_ONLY_LATE(static ml_topology_cpu_t) topology_cpu_array[MAX_CPUS]; |
| 157 | SECURITY_READ_ONLY_LATE(static ml_topology_cluster_t) topology_cluster_array[MAX_CPU_CLUSTERS]; |
| 158 | SECURITY_READ_ONLY_LATE(static ml_topology_info_t) topology_info = { |
| 159 | .version = CPU_TOPOLOGY_VERSION, |
| 160 | .cpus = topology_cpu_array, |
| 161 | .clusters = topology_cluster_array, |
| 162 | }; |
| 163 | |
| 164 | _Atomic unsigned int cluster_type_num_active_cpus[MAX_CPU_TYPES]; |
| 165 | |
| 166 | /** |
| 167 | * Represents the offset of each cluster within a hypothetical array of MAX_CPUS |
| 168 | * entries of an arbitrary data type. This is intended for use by specialized consumers |
| 169 | * that must quickly access per-CPU data using only the physical CPU ID (MPIDR_EL1), |
| 170 | * as follows: |
| 171 | * hypothetical_array[cluster_offsets[AFF1] + AFF0] |
| 172 | * Most consumers should instead use general-purpose facilities such as PERCPU or |
| 173 | * ml_get_cpu_number(). |
| 174 | */ |
| 175 | SECURITY_READ_ONLY_LATE(int64_t) cluster_offsets[MAX_CPU_CLUSTER_PHY_ID + 1]; |
| 176 | |
| 177 | SECURITY_READ_ONLY_LATE(static uint32_t) arm64_eventi = UINT32_MAX; |
| 178 | |
| 179 | extern uint32_t lockdown_done; |
| 180 | |
| 181 | /** |
| 182 | * Represents regions of virtual address space that should be reserved |
| 183 | * (pre-mapped) in each user address space. |
| 184 | */ |
| 185 | static const struct vm_reserved_region vm_reserved_regions[] = { |
| 186 | { |
| 187 | .vmrr_name = "GPU Carveout" , |
| 188 | .vmrr_addr = MACH_VM_MIN_GPU_CARVEOUT_ADDRESS, |
| 189 | .vmrr_size = (vm_map_size_t)(MACH_VM_MAX_GPU_CARVEOUT_ADDRESS - MACH_VM_MIN_GPU_CARVEOUT_ADDRESS) |
| 190 | }, |
| 191 | /* |
| 192 | * Reserve the virtual memory space representing the commpage nesting region |
| 193 | * to prevent user processes from allocating memory within it. The actual |
| 194 | * page table entries for the commpage are inserted by vm_commpage_enter(). |
| 195 | * This vm_map_enter() just prevents userspace from allocating/deallocating |
| 196 | * anything within the entire commpage nested region. |
| 197 | */ |
| 198 | { |
| 199 | .vmrr_name = "commpage nesting" , |
| 200 | .vmrr_addr = _COMM_PAGE64_NESTING_START, |
| 201 | .vmrr_size = _COMM_PAGE64_NESTING_SIZE |
| 202 | } |
| 203 | }; |
| 204 | |
| 205 | uint32_t get_arm_cpu_version(void); |
| 206 | |
| 207 | #if defined(HAS_IPI) |
| 208 | static inline void |
| 209 | ml_cpu_signal_type(unsigned int cpu_mpidr, uint32_t type) |
| 210 | { |
| 211 | #if HAS_CLUSTER |
| 212 | uint64_t local_mpidr; |
| 213 | /* NOTE: this logic expects that we are called in a non-preemptible |
| 214 | * context, or at least one in which the calling thread is bound |
| 215 | * to a single CPU. Otherwise we may migrate between choosing which |
| 216 | * IPI mechanism to use and issuing the IPI. */ |
| 217 | MRS(local_mpidr, "MPIDR_EL1" ); |
| 218 | if (MPIDR_CLUSTER_ID(local_mpidr) == MPIDR_CLUSTER_ID(cpu_mpidr)) { |
| 219 | uint64_t x = type | MPIDR_CPU_ID(cpu_mpidr); |
| 220 | MSR("S3_5_C15_C0_0" , x); |
| 221 | } else { |
| 222 | #define IPI_RR_TARGET_CLUSTER_SHIFT 16 |
| 223 | uint64_t x = type | (MPIDR_CLUSTER_ID(cpu_mpidr) << IPI_RR_TARGET_CLUSTER_SHIFT) | MPIDR_CPU_ID(cpu_mpidr); |
| 224 | MSR("S3_5_C15_C0_1" , x); |
| 225 | } |
| 226 | #else |
| 227 | uint64_t x = type | MPIDR_CPU_ID(cpu_mpidr); |
| 228 | MSR("S3_5_C15_C0_1" , x); |
| 229 | #endif |
| 230 | /* The recommended local/global IPI sequence is: |
| 231 | * DSB <sys> (This ensures visibility of e.g. older stores to the |
| 232 | * pending CPU signals bit vector in DRAM prior to IPI reception, |
| 233 | * and is present in cpu_signal_internal()) |
| 234 | * MSR S3_5_C15_C0_1, Xt |
| 235 | * ISB |
| 236 | */ |
| 237 | __builtin_arm_isb(ISB_SY); |
| 238 | } |
| 239 | #endif |
| 240 | |
| 241 | #if !defined(HAS_IPI) |
| 242 | __dead2 |
| 243 | #endif |
| 244 | void |
| 245 | ml_cpu_signal(unsigned int cpu_mpidr __unused) |
| 246 | { |
| 247 | #if defined(HAS_IPI) |
| 248 | ml_cpu_signal_type(cpu_mpidr, ARM64_REG_IPI_RR_TYPE_IMMEDIATE); |
| 249 | #else |
| 250 | panic("Platform does not support ACC Fast IPI" ); |
| 251 | #endif |
| 252 | } |
| 253 | |
| 254 | #if !defined(HAS_IPI) |
| 255 | __dead2 |
| 256 | #endif |
| 257 | void |
| 258 | ml_cpu_signal_deferred_adjust_timer(uint64_t nanosecs) |
| 259 | { |
| 260 | #if defined(HAS_IPI) |
| 261 | /* adjust IPI_CR timer countdown value for deferred IPI |
| 262 | * accepts input in nanosecs, convert to absolutetime (REFCLK ticks), |
| 263 | * clamp maximum REFCLK ticks to 0xFFFF (16 bit field) |
| 264 | * |
| 265 | * global register, should only require a single write to update all |
| 266 | * CPU cores: from Skye ACC user spec section 5.7.3.3 |
| 267 | * |
| 268 | * IPICR is a global register but there are two copies in ACC: one at pBLK and one at eBLK. |
| 269 | * IPICR write SPR token also traverses both pCPM and eCPM rings and updates both copies. |
| 270 | */ |
| 271 | uint64_t abstime; |
| 272 | |
| 273 | nanoseconds_to_absolutetime(nanosecs, &abstime); |
| 274 | |
| 275 | abstime = MIN(abstime, 0xFFFF); |
| 276 | |
| 277 | /* update deferred_ipi_timer_ns with the new clamped value */ |
| 278 | absolutetime_to_nanoseconds(abstime, &deferred_ipi_timer_ns); |
| 279 | |
| 280 | MSR("S3_5_C15_C3_1" , abstime); |
| 281 | #else |
| 282 | (void)nanosecs; |
| 283 | panic("Platform does not support ACC Fast IPI" ); |
| 284 | #endif |
| 285 | } |
| 286 | |
| 287 | uint64_t |
| 288 | ml_cpu_signal_deferred_get_timer() |
| 289 | { |
| 290 | #if defined(HAS_IPI) |
| 291 | return deferred_ipi_timer_ns; |
| 292 | #else |
| 293 | return 0; |
| 294 | #endif |
| 295 | } |
| 296 | |
| 297 | #if !defined(HAS_IPI) |
| 298 | __dead2 |
| 299 | #endif |
| 300 | void |
| 301 | ml_cpu_signal_deferred(unsigned int cpu_mpidr __unused) |
| 302 | { |
| 303 | #if defined(HAS_IPI) |
| 304 | ml_cpu_signal_type(cpu_mpidr, ARM64_REG_IPI_RR_TYPE_DEFERRED); |
| 305 | #else |
| 306 | panic("Platform does not support ACC Fast IPI deferral" ); |
| 307 | #endif |
| 308 | } |
| 309 | |
| 310 | #if !defined(HAS_IPI) |
| 311 | __dead2 |
| 312 | #endif |
| 313 | void |
| 314 | ml_cpu_signal_retract(unsigned int cpu_mpidr __unused) |
| 315 | { |
| 316 | #if defined(HAS_IPI) |
| 317 | ml_cpu_signal_type(cpu_mpidr, ARM64_REG_IPI_RR_TYPE_RETRACT); |
| 318 | #else |
| 319 | panic("Platform does not support ACC Fast IPI retraction" ); |
| 320 | #endif |
| 321 | } |
| 322 | |
| 323 | extern uint32_t idle_proximate_io_wfe_unmasked; |
| 324 | |
| 325 | #define CPUPM_IDLE_WFE 0x5310300 |
| 326 | static bool |
| 327 | wfe_process_recommendation(void) |
| 328 | { |
| 329 | bool ipending = false; |
| 330 | if (__probable(idle_proximate_io_wfe_unmasked == 1)) { |
| 331 | /* Check for an active perf. controller generated |
| 332 | * WFE recommendation for this cluster. |
| 333 | */ |
| 334 | cpu_data_t *cdp = getCpuDatap(); |
| 335 | uint32_t cid = cdp->cpu_cluster_id; |
| 336 | uint64_t wfe_ttd = 0; |
| 337 | uint64_t wfe_deadline = 0; |
| 338 | |
| 339 | if ((wfe_ttd = ml_cluster_wfe_timeout(wfe_cluster_id: cid)) != 0) { |
| 340 | wfe_deadline = mach_absolute_time() + wfe_ttd; |
| 341 | } |
| 342 | |
| 343 | if (wfe_deadline != 0) { |
| 344 | /* Poll issuing event-bounded WFEs until an interrupt |
| 345 | * arrives or the WFE recommendation expires |
| 346 | */ |
| 347 | #if DEVELOPMENT || DEBUG |
| 348 | uint64_t wc = cdp->wfe_count; |
| 349 | KDBG(CPUPM_IDLE_WFE | DBG_FUNC_START, ipending, wc, wfe_ttd, cdp->cpu_stat.irq_ex_cnt_wake); |
| 350 | #endif |
| 351 | /* Issue WFE until the recommendation expires, |
| 352 | * with IRQs unmasked. |
| 353 | */ |
| 354 | ipending = wfe_to_deadline_or_interrupt(cid, wfe_deadline, cdp, true, true); |
| 355 | #if DEVELOPMENT || DEBUG |
| 356 | KDBG(CPUPM_IDLE_WFE | DBG_FUNC_END, ipending, cdp->wfe_count - wc, wfe_deadline, cdp->cpu_stat.irq_ex_cnt_wake); |
| 357 | #endif |
| 358 | } |
| 359 | } |
| 360 | return ipending; |
| 361 | } |
| 362 | |
| 363 | void |
| 364 | machine_idle(void) |
| 365 | { |
| 366 | /* Interrupts are expected to be masked on entry or re-entry via |
| 367 | * Idle_load_context() |
| 368 | */ |
| 369 | assert((__builtin_arm_rsr("DAIF" ) & (DAIF_IRQF | DAIF_FIQF)) == (DAIF_IRQF | DAIF_FIQF)); |
| 370 | /* Check for, and act on, a WFE recommendation. |
| 371 | * Bypasses context spill/fill for a minor perf. increment. |
| 372 | * May unmask and restore IRQ+FIQ mask. |
| 373 | */ |
| 374 | if (wfe_process_recommendation() == false) { |
| 375 | /* If WFE recommendation absent, or WFE deadline |
| 376 | * arrived with no interrupt pending/processed, |
| 377 | * fall back to WFI. |
| 378 | */ |
| 379 | Idle_context(); |
| 380 | } |
| 381 | __builtin_arm_wsr("DAIFClr" , (DAIFSC_IRQF | DAIFSC_FIQF)); |
| 382 | } |
| 383 | |
| 384 | void |
| 385 | OSSynchronizeIO(void) |
| 386 | { |
| 387 | __builtin_arm_dsb(DSB_SY); |
| 388 | } |
| 389 | |
| 390 | uint64_t |
| 391 | get_aux_control(void) |
| 392 | { |
| 393 | uint64_t value; |
| 394 | |
| 395 | MRS(value, "ACTLR_EL1" ); |
| 396 | return value; |
| 397 | } |
| 398 | |
| 399 | uint64_t |
| 400 | get_mmu_control(void) |
| 401 | { |
| 402 | uint64_t value; |
| 403 | |
| 404 | MRS(value, "SCTLR_EL1" ); |
| 405 | return value; |
| 406 | } |
| 407 | |
| 408 | uint64_t |
| 409 | get_tcr(void) |
| 410 | { |
| 411 | uint64_t value; |
| 412 | |
| 413 | MRS(value, "TCR_EL1" ); |
| 414 | return value; |
| 415 | } |
| 416 | |
| 417 | boolean_t |
| 418 | ml_get_interrupts_enabled(void) |
| 419 | { |
| 420 | uint64_t value; |
| 421 | |
| 422 | MRS(value, "DAIF" ); |
| 423 | if (value & DAIF_IRQF) { |
| 424 | return FALSE; |
| 425 | } |
| 426 | return TRUE; |
| 427 | } |
| 428 | |
| 429 | pmap_paddr_t |
| 430 | get_mmu_ttb(void) |
| 431 | { |
| 432 | pmap_paddr_t value; |
| 433 | |
| 434 | MRS(value, "TTBR0_EL1" ); |
| 435 | return value; |
| 436 | } |
| 437 | |
| 438 | uint32_t |
| 439 | get_arm_cpu_version(void) |
| 440 | { |
| 441 | uint32_t value = machine_read_midr(); |
| 442 | |
| 443 | /* Compose the register values into 8 bits; variant[7:4], revision[3:0]. */ |
| 444 | return ((value & MIDR_EL1_REV_MASK) >> MIDR_EL1_REV_SHIFT) | ((value & MIDR_EL1_VAR_MASK) >> (MIDR_EL1_VAR_SHIFT - 4)); |
| 445 | } |
| 446 | |
| 447 | bool |
| 448 | ml_feature_supported(uint32_t feature_bit) |
| 449 | { |
| 450 | uint64_t aidr_el1_value = 0; |
| 451 | |
| 452 | MRS(aidr_el1_value, "AIDR_EL1" ); |
| 453 | |
| 454 | #ifdef APPLEAVALANCHE |
| 455 | #endif // APPLEAVALANCHE |
| 456 | |
| 457 | return aidr_el1_value & feature_bit; |
| 458 | } |
| 459 | |
| 460 | /* |
| 461 | * user_cont_hwclock_allowed() |
| 462 | * |
| 463 | * Indicates whether we allow EL0 to read the virtual timebase (CNTVCT_EL0) |
| 464 | * as a continuous time source (e.g. from mach_continuous_time) |
| 465 | */ |
| 466 | boolean_t |
| 467 | user_cont_hwclock_allowed(void) |
| 468 | { |
| 469 | #if HAS_CONTINUOUS_HWCLOCK |
| 470 | return TRUE; |
| 471 | #else |
| 472 | return FALSE; |
| 473 | #endif |
| 474 | } |
| 475 | |
| 476 | /* |
| 477 | * user_timebase_type() |
| 478 | * |
| 479 | * Indicates type of EL0 virtual timebase read (CNTVCT_EL0). |
| 480 | * |
| 481 | * USER_TIMEBASE_NONE: EL0 has no access to timebase register |
| 482 | * USER_TIMEBASE_SPEC: EL0 has access to speculative timebase reads (CNTVCT_EL0) |
| 483 | * USER_TIMEBASE_NOSPEC: EL0 has access to non speculative timebase reads (CNTVCTSS_EL0) |
| 484 | * |
| 485 | */ |
| 486 | |
| 487 | uint8_t |
| 488 | user_timebase_type(void) |
| 489 | { |
| 490 | #if HAS_ACNTVCT |
| 491 | return USER_TIMEBASE_NOSPEC_APPLE; |
| 492 | #elif __ARM_ARCH_8_6__ |
| 493 | return USER_TIMEBASE_NOSPEC; |
| 494 | #else |
| 495 | return USER_TIMEBASE_SPEC; |
| 496 | #endif |
| 497 | } |
| 498 | |
| 499 | void |
| 500 | machine_startup(__unused boot_args * args) |
| 501 | { |
| 502 | #if defined(HAS_IPI) && (DEVELOPMENT || DEBUG) |
| 503 | if (!PE_parse_boot_argn("fastipi" , &gFastIPI, sizeof(gFastIPI))) { |
| 504 | gFastIPI = 1; |
| 505 | } |
| 506 | #endif /* defined(HAS_IPI) && (DEVELOPMENT || DEBUG)*/ |
| 507 | |
| 508 | |
| 509 | machine_conf(); |
| 510 | |
| 511 | |
| 512 | /* |
| 513 | * Kick off the kernel bootstrap. |
| 514 | */ |
| 515 | kernel_bootstrap(); |
| 516 | /* NOTREACHED */ |
| 517 | } |
| 518 | |
| 519 | typedef void (*invalidate_fn_t)(void); |
| 520 | |
| 521 | static SECURITY_READ_ONLY_LATE(invalidate_fn_t) invalidate_hmac_function = NULL; |
| 522 | |
| 523 | void set_invalidate_hmac_function(invalidate_fn_t fn); |
| 524 | |
| 525 | void |
| 526 | set_invalidate_hmac_function(invalidate_fn_t fn) |
| 527 | { |
| 528 | if (NULL != invalidate_hmac_function) { |
| 529 | panic("Invalidate HMAC function already set" ); |
| 530 | } |
| 531 | |
| 532 | invalidate_hmac_function = fn; |
| 533 | } |
| 534 | |
| 535 | void |
| 536 | machine_lockdown(void) |
| 537 | { |
| 538 | |
| 539 | #if CONFIG_SPTM |
| 540 | /** |
| 541 | * On devices that make use of the SPTM, the SPTM is responsible for |
| 542 | * managing system register locks. Due to this, we skip the call to |
| 543 | * spr_lockdown() below. |
| 544 | */ |
| 545 | #else |
| 546 | #endif |
| 547 | |
| 548 | arm_vm_prot_finalize(args: PE_state.bootArgs); |
| 549 | |
| 550 | #if CONFIG_KERNEL_INTEGRITY |
| 551 | #if KERNEL_INTEGRITY_WT |
| 552 | /* Watchtower |
| 553 | * |
| 554 | * Notify the monitor about the completion of early kernel bootstrap. |
| 555 | * From this point forward it will enforce the integrity of kernel text, |
| 556 | * rodata and page tables. |
| 557 | */ |
| 558 | |
| 559 | #ifdef MONITOR |
| 560 | monitor_call(MONITOR_LOCKDOWN, 0, 0, 0); |
| 561 | #endif |
| 562 | #endif /* KERNEL_INTEGRITY_WT */ |
| 563 | |
| 564 | #if CONFIG_SPTM |
| 565 | extern void pmap_prepare_commpages(void); |
| 566 | pmap_prepare_commpages(); |
| 567 | |
| 568 | /** |
| 569 | * sptm_lockdown_xnu() disables preemption like all SPTM calls, but may take |
| 570 | * a fair amount of time as it involves retyping a large number of pages. |
| 571 | * This preemption latency is not really a concern since we're still fairly |
| 572 | * early in the boot process, so just explicitly disable preemption before |
| 573 | * invoking the SPTM and abandon preemption latency measurements before |
| 574 | * re-enabling it. |
| 575 | */ |
| 576 | disable_preemption(); |
| 577 | /* Signal the SPTM that XNU is ready for RO memory to actually become read-only */ |
| 578 | sptm_lockdown_xnu(); |
| 579 | #if SCHED_HYGIENE_DEBUG |
| 580 | abandon_preemption_disable_measurement(); |
| 581 | #endif /* SCHED_HYGIENE_DEBUG */ |
| 582 | enable_preemption(); |
| 583 | #else |
| 584 | #if defined(KERNEL_INTEGRITY_KTRR) || defined(KERNEL_INTEGRITY_CTRR) |
| 585 | /* KTRR |
| 586 | * |
| 587 | * Lock physical KTRR region. KTRR region is read-only. Memory outside |
| 588 | * the region is not executable at EL1. |
| 589 | */ |
| 590 | |
| 591 | rorgn_lockdown(); |
| 592 | #endif /* defined(KERNEL_INTEGRITY_KTRR) || defined(KERNEL_INTEGRITY_CTRR) */ |
| 593 | #endif /* CONFIG_SPTM */ |
| 594 | |
| 595 | #if XNU_MONITOR |
| 596 | pmap_lockdown_ppl(); |
| 597 | #endif |
| 598 | |
| 599 | #endif /* CONFIG_KERNEL_INTEGRITY */ |
| 600 | |
| 601 | |
| 602 | if (NULL != invalidate_hmac_function) { |
| 603 | invalidate_hmac_function(); |
| 604 | } |
| 605 | |
| 606 | lockdown_done = 1; |
| 607 | } |
| 608 | |
| 609 | |
| 610 | char * |
| 611 | machine_boot_info( |
| 612 | __unused char *buf, |
| 613 | __unused vm_size_t size) |
| 614 | { |
| 615 | return PE_boot_args(); |
| 616 | } |
| 617 | |
| 618 | void |
| 619 | slave_machine_init(__unused void *param) |
| 620 | { |
| 621 | cpu_machine_init(); /* Initialize the processor */ |
| 622 | clock_init(); /* Init the clock */ |
| 623 | } |
| 624 | |
| 625 | /* |
| 626 | * Routine: machine_processor_shutdown |
| 627 | * Function: |
| 628 | */ |
| 629 | thread_t |
| 630 | machine_processor_shutdown( |
| 631 | __unused thread_t thread, |
| 632 | void (*doshutdown)(processor_t), |
| 633 | processor_t processor) |
| 634 | { |
| 635 | return Shutdown_context(doshutdown, processor); |
| 636 | } |
| 637 | |
| 638 | /* |
| 639 | * Routine: ml_init_lock_timeout |
| 640 | * Function: |
| 641 | */ |
| 642 | static void __startup_func |
| 643 | ml_init_lock_timeout(void) |
| 644 | { |
| 645 | /* |
| 646 | * This function is called after STARTUP_SUB_TIMEOUTS |
| 647 | * initialization, so using the "legacy" boot-args here overrides |
| 648 | * the ml-timeout-... configuration. (Given that these boot-args |
| 649 | * here are usually explicitly specified, this makes sense by |
| 650 | * overriding ml-timeout-..., which may come from the device tree. |
| 651 | */ |
| 652 | |
| 653 | uint64_t lto_timeout_ns; |
| 654 | uint64_t lto_abstime; |
| 655 | uint32_t slto; |
| 656 | |
| 657 | if (PE_parse_boot_argn(arg_string: "slto_us" , arg_ptr: &slto, max_arg: sizeof(slto))) { |
| 658 | lto_timeout_ns = slto * NSEC_PER_USEC; |
| 659 | nanoseconds_to_absolutetime(nanoseconds: lto_timeout_ns, result: <o_abstime); |
| 660 | os_atomic_store(&LockTimeOut, lto_abstime, relaxed); |
| 661 | } else { |
| 662 | lto_abstime = os_atomic_load(&LockTimeOut, relaxed); |
| 663 | absolutetime_to_nanoseconds(abstime: lto_abstime, result: <o_timeout_ns); |
| 664 | } |
| 665 | |
| 666 | os_atomic_store(&LockTimeOutUsec, lto_timeout_ns / NSEC_PER_USEC, relaxed); |
| 667 | |
| 668 | if (PE_parse_boot_argn(arg_string: "tlto_us" , arg_ptr: &slto, max_arg: sizeof(slto))) { |
| 669 | nanoseconds_to_absolutetime(nanoseconds: slto * NSEC_PER_USEC, result: <o_abstime); |
| 670 | os_atomic_store(&TLockTimeOut, lto_abstime, relaxed); |
| 671 | } else if (lto_abstime != 0) { |
| 672 | os_atomic_store(&TLockTimeOut, lto_abstime >> 1, relaxed); |
| 673 | } // else take default from MACHINE_TIMEOUT. |
| 674 | |
| 675 | uint64_t mtxspin; |
| 676 | uint64_t mtx_abstime; |
| 677 | if (PE_parse_boot_argn(arg_string: "mtxspin" , arg_ptr: &mtxspin, max_arg: sizeof(mtxspin))) { |
| 678 | if (mtxspin > USEC_PER_SEC >> 4) { |
| 679 | mtxspin = USEC_PER_SEC >> 4; |
| 680 | } |
| 681 | nanoseconds_to_absolutetime(nanoseconds: mtxspin * NSEC_PER_USEC, result: &mtx_abstime); |
| 682 | os_atomic_store(&MutexSpin, mtx_abstime, relaxed); |
| 683 | } else { |
| 684 | mtx_abstime = os_atomic_load(&MutexSpin, relaxed); |
| 685 | } |
| 686 | |
| 687 | low_MutexSpin = os_atomic_load(&MutexSpin, relaxed); |
| 688 | /* |
| 689 | * high_MutexSpin should be initialized as low_MutexSpin * real_ncpus, but |
| 690 | * real_ncpus is not set at this time |
| 691 | * |
| 692 | * NOTE: active spinning is disabled in arm. It can be activated |
| 693 | * by setting high_MutexSpin through the sysctl. |
| 694 | */ |
| 695 | high_MutexSpin = low_MutexSpin; |
| 696 | |
| 697 | uint64_t maxwfeus = MAX_WFE_HINT_INTERVAL_US; |
| 698 | PE_parse_boot_argn(arg_string: "max_wfe_us" , arg_ptr: &maxwfeus, max_arg: sizeof(maxwfeus)); |
| 699 | nanoseconds_to_absolutetime(nanoseconds: maxwfeus * NSEC_PER_USEC, result: &ml_wfe_hint_max_interval); |
| 700 | } |
| 701 | STARTUP(TIMEOUTS, STARTUP_RANK_MIDDLE, ml_init_lock_timeout); |
| 702 | |
| 703 | |
| 704 | /* |
| 705 | * This is called when all of the ml_processor_info_t structures have been |
| 706 | * initialized and all the processors have been started through processor_start(). |
| 707 | * |
| 708 | * Required by the scheduler subsystem. |
| 709 | */ |
| 710 | void |
| 711 | ml_cpu_init_completed(void) |
| 712 | { |
| 713 | if (SCHED(cpu_init_completed) != NULL) { |
| 714 | SCHED(cpu_init_completed)(); |
| 715 | } |
| 716 | } |
| 717 | |
| 718 | /* |
| 719 | * These are called from the machine-independent routine cpu_up() |
| 720 | * to perform machine-dependent info updates. |
| 721 | * |
| 722 | * The update to CPU counts needs to be separate from other actions |
| 723 | * because we don't update the counts when CLPC causes temporary |
| 724 | * cluster powerdown events, as these must be transparent to the user. |
| 725 | */ |
| 726 | void |
| 727 | ml_cpu_up(void) |
| 728 | { |
| 729 | } |
| 730 | |
| 731 | void |
| 732 | ml_cpu_up_update_counts(int cpu_id) |
| 733 | { |
| 734 | ml_topology_cpu_t *cpu = &ml_get_topology_info()->cpus[cpu_id]; |
| 735 | |
| 736 | os_atomic_inc(&cluster_type_num_active_cpus[cpu->cluster_type], relaxed); |
| 737 | |
| 738 | os_atomic_inc(&machine_info.physical_cpu, relaxed); |
| 739 | os_atomic_inc(&machine_info.logical_cpu, relaxed); |
| 740 | } |
| 741 | |
| 742 | /* |
| 743 | * These are called from the machine-independent routine cpu_down() |
| 744 | * to perform machine-dependent info updates. |
| 745 | * |
| 746 | * The update to CPU counts needs to be separate from other actions |
| 747 | * because we don't update the counts when CLPC causes temporary |
| 748 | * cluster powerdown events, as these must be transparent to the user. |
| 749 | */ |
| 750 | void |
| 751 | ml_cpu_down(void) |
| 752 | { |
| 753 | /* |
| 754 | * If we want to deal with outstanding IPIs, we need to |
| 755 | * do relatively early in the processor_doshutdown path, |
| 756 | * as we pend decrementer interrupts using the IPI |
| 757 | * mechanism if we cannot immediately service them (if |
| 758 | * IRQ is masked). Do so now. |
| 759 | * |
| 760 | * We aren't on the interrupt stack here; would it make |
| 761 | * more sense to disable signaling and then enable |
| 762 | * interrupts? It might be a bit cleaner. |
| 763 | */ |
| 764 | cpu_data_t *cpu_data_ptr = getCpuDatap(); |
| 765 | cpu_data_ptr->cpu_running = FALSE; |
| 766 | |
| 767 | if (cpu_data_ptr != &BootCpuData) { |
| 768 | /* |
| 769 | * Move all of this cpu's timers to the master/boot cpu, |
| 770 | * and poke it in case there's a sooner deadline for it to schedule. |
| 771 | */ |
| 772 | timer_queue_shutdown(queue: &cpu_data_ptr->rtclock_timer.queue); |
| 773 | kern_return_t rv = cpu_xcall(BootCpuData.cpu_number, &timer_queue_expire_local, &ml_cpu_down); |
| 774 | if (rv != KERN_SUCCESS) { |
| 775 | panic("ml_cpu_down: IPI failure %d" , rv); |
| 776 | } |
| 777 | } |
| 778 | |
| 779 | cpu_signal_handler_internal(TRUE); |
| 780 | } |
| 781 | void |
| 782 | ml_cpu_down_update_counts(int cpu_id) |
| 783 | { |
| 784 | ml_topology_cpu_t *cpu = &ml_get_topology_info()->cpus[cpu_id]; |
| 785 | |
| 786 | os_atomic_dec(&cluster_type_num_active_cpus[cpu->cluster_type], relaxed); |
| 787 | |
| 788 | os_atomic_dec(&machine_info.physical_cpu, relaxed); |
| 789 | os_atomic_dec(&machine_info.logical_cpu, relaxed); |
| 790 | } |
| 791 | |
| 792 | |
| 793 | unsigned int |
| 794 | ml_get_machine_mem(void) |
| 795 | { |
| 796 | return machine_info.memory_size; |
| 797 | } |
| 798 | |
| 799 | __attribute__((noreturn)) |
| 800 | void |
| 801 | halt_all_cpus(boolean_t reboot) |
| 802 | { |
| 803 | if (reboot) { |
| 804 | printf(format: "MACH Reboot\n" ); |
| 805 | PEHaltRestart(type: kPERestartCPU); |
| 806 | } else { |
| 807 | printf(format: "CPU halted\n" ); |
| 808 | PEHaltRestart(type: kPEHaltCPU); |
| 809 | } |
| 810 | while (1) { |
| 811 | ; |
| 812 | } |
| 813 | } |
| 814 | |
| 815 | __attribute__((noreturn)) |
| 816 | void |
| 817 | halt_cpu(void) |
| 818 | { |
| 819 | halt_all_cpus(FALSE); |
| 820 | } |
| 821 | |
| 822 | /* |
| 823 | * Routine: machine_signal_idle |
| 824 | * Function: |
| 825 | */ |
| 826 | void |
| 827 | machine_signal_idle( |
| 828 | processor_t processor) |
| 829 | { |
| 830 | cpu_signal(target: processor_to_cpu_datap(processor), SIGPnop, p0: (void *)NULL, p1: (void *)NULL); |
| 831 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, MACHDBG_CODE(DBG_MACH_SCHED, MACH_REMOTE_AST), processor->cpu_id, 0 /* nop */, 0, 0, 0); |
| 832 | } |
| 833 | |
| 834 | void |
| 835 | machine_signal_idle_deferred( |
| 836 | processor_t processor) |
| 837 | { |
| 838 | cpu_signal_deferred(target: processor_to_cpu_datap(processor)); |
| 839 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, MACHDBG_CODE(DBG_MACH_SCHED, MACH_REMOTE_DEFERRED_AST), processor->cpu_id, 0 /* nop */, 0, 0, 0); |
| 840 | } |
| 841 | |
| 842 | void |
| 843 | machine_signal_idle_cancel( |
| 844 | processor_t processor) |
| 845 | { |
| 846 | cpu_signal_cancel(target: processor_to_cpu_datap(processor)); |
| 847 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, MACHDBG_CODE(DBG_MACH_SCHED, MACH_REMOTE_CANCEL_AST), processor->cpu_id, 0 /* nop */, 0, 0, 0); |
| 848 | } |
| 849 | |
| 850 | /* |
| 851 | * Routine: ml_install_interrupt_handler |
| 852 | * Function: Initialize Interrupt Handler |
| 853 | */ |
| 854 | void |
| 855 | ml_install_interrupt_handler( |
| 856 | void *nub, |
| 857 | int source, |
| 858 | void *target, |
| 859 | IOInterruptHandler handler, |
| 860 | void *refCon) |
| 861 | { |
| 862 | cpu_data_t *cpu_data_ptr; |
| 863 | boolean_t current_state; |
| 864 | |
| 865 | current_state = ml_set_interrupts_enabled(FALSE); |
| 866 | cpu_data_ptr = getCpuDatap(); |
| 867 | |
| 868 | cpu_data_ptr->interrupt_nub = nub; |
| 869 | cpu_data_ptr->interrupt_source = source; |
| 870 | cpu_data_ptr->interrupt_target = target; |
| 871 | cpu_data_ptr->interrupt_handler = handler; |
| 872 | cpu_data_ptr->interrupt_refCon = refCon; |
| 873 | |
| 874 | (void) ml_set_interrupts_enabled(enable: current_state); |
| 875 | } |
| 876 | |
| 877 | /* |
| 878 | * Routine: ml_init_interrupt |
| 879 | * Function: Initialize Interrupts |
| 880 | */ |
| 881 | void |
| 882 | ml_init_interrupt(void) |
| 883 | { |
| 884 | #if defined(HAS_IPI) |
| 885 | /* |
| 886 | * ml_init_interrupt will get called once for each CPU, but this is redundant |
| 887 | * because there is only one global copy of the register for skye. do it only |
| 888 | * on the bootstrap cpu |
| 889 | */ |
| 890 | if (getCpuDatap()->cluster_master) { |
| 891 | ml_cpu_signal_deferred_adjust_timer(deferred_ipi_timer_ns); |
| 892 | } |
| 893 | #endif |
| 894 | } |
| 895 | |
| 896 | /* |
| 897 | * Routine: ml_init_timebase |
| 898 | * Function: register and setup Timebase, Decremeter services |
| 899 | */ |
| 900 | void |
| 901 | ml_init_timebase( |
| 902 | void *args, |
| 903 | tbd_ops_t tbd_funcs, |
| 904 | vm_offset_t int_address, |
| 905 | vm_offset_t int_value __unused) |
| 906 | { |
| 907 | cpu_data_t *cpu_data_ptr; |
| 908 | |
| 909 | cpu_data_ptr = (cpu_data_t *)args; |
| 910 | |
| 911 | if ((cpu_data_ptr == &BootCpuData) |
| 912 | && (rtclock_timebase_func.tbd_fiq_handler == (void *)NULL)) { |
| 913 | rtclock_timebase_func = *tbd_funcs; |
| 914 | rtclock_timebase_addr = int_address; |
| 915 | } |
| 916 | } |
| 917 | |
| 918 | #define ML_READPROP_MANDATORY UINT64_MAX |
| 919 | |
| 920 | static uint64_t |
| 921 | ml_readprop(const DTEntry entry, const char *propertyName, uint64_t default_value) |
| 922 | { |
| 923 | void const *prop; |
| 924 | unsigned int propSize; |
| 925 | |
| 926 | if (SecureDTGetProperty(entry, propertyName, propertyValue: &prop, propertySize: &propSize) == kSuccess) { |
| 927 | if (propSize == sizeof(uint8_t)) { |
| 928 | return *((uint8_t const *)prop); |
| 929 | } else if (propSize == sizeof(uint16_t)) { |
| 930 | return *((uint16_t const *)prop); |
| 931 | } else if (propSize == sizeof(uint32_t)) { |
| 932 | return *((uint32_t const *)prop); |
| 933 | } else if (propSize == sizeof(uint64_t)) { |
| 934 | return *((uint64_t const *)prop); |
| 935 | } else { |
| 936 | panic("CPU property '%s' has bad size %u" , propertyName, propSize); |
| 937 | } |
| 938 | } else { |
| 939 | if (default_value == ML_READPROP_MANDATORY) { |
| 940 | panic("Missing mandatory property '%s'" , propertyName); |
| 941 | } |
| 942 | return default_value; |
| 943 | } |
| 944 | } |
| 945 | |
| 946 | static boolean_t |
| 947 | ml_read_reg_range(const DTEntry entry, const char *propertyName, uint64_t *pa_ptr, uint64_t *len_ptr) |
| 948 | { |
| 949 | uint64_t const *prop; |
| 950 | unsigned int propSize; |
| 951 | |
| 952 | if (SecureDTGetProperty(entry, propertyName, propertyValue: (void const **)&prop, propertySize: &propSize) != kSuccess) { |
| 953 | return FALSE; |
| 954 | } |
| 955 | |
| 956 | if (propSize != sizeof(uint64_t) * 2) { |
| 957 | panic("Wrong property size for %s" , propertyName); |
| 958 | } |
| 959 | |
| 960 | *pa_ptr = prop[0]; |
| 961 | *len_ptr = prop[1]; |
| 962 | return TRUE; |
| 963 | } |
| 964 | |
| 965 | static boolean_t |
| 966 | ml_is_boot_cpu(const DTEntry entry) |
| 967 | { |
| 968 | void const *prop; |
| 969 | unsigned int propSize; |
| 970 | |
| 971 | if (SecureDTGetProperty(entry, propertyName: "state" , propertyValue: &prop, propertySize: &propSize) != kSuccess) { |
| 972 | panic("unable to retrieve state for cpu" ); |
| 973 | } |
| 974 | |
| 975 | if (strncmp(s1: (char const *)prop, s2: "running" , n: propSize) == 0) { |
| 976 | return TRUE; |
| 977 | } else { |
| 978 | return FALSE; |
| 979 | } |
| 980 | } |
| 981 | |
| 982 | static void |
| 983 | ml_read_chip_revision(unsigned int *rev __unused) |
| 984 | { |
| 985 | // The CPU_VERSION_* macros are only defined on APPLE_ARM64_ARCH_FAMILY builds |
| 986 | #ifdef APPLE_ARM64_ARCH_FAMILY |
| 987 | DTEntry entryP; |
| 988 | |
| 989 | if ((SecureDTFindEntry(propName: "name" , propValue: "arm-io" , entryH: &entryP) == kSuccess)) { |
| 990 | *rev = (unsigned int)ml_readprop(entry: entryP, propertyName: "chip-revision" , CPU_VERSION_UNKNOWN); |
| 991 | } else { |
| 992 | *rev = CPU_VERSION_UNKNOWN; |
| 993 | } |
| 994 | #endif |
| 995 | } |
| 996 | |
| 997 | void |
| 998 | ml_parse_cpu_topology(void) |
| 999 | { |
| 1000 | DTEntry entry, child __unused; |
| 1001 | OpaqueDTEntryIterator iter; |
| 1002 | uint32_t cpu_boot_arg = MAX_CPUS; |
| 1003 | uint64_t cpumask_boot_arg = ULLONG_MAX; |
| 1004 | int err; |
| 1005 | |
| 1006 | int64_t cluster_phys_to_logical[MAX_CPU_CLUSTER_PHY_ID + 1]; |
| 1007 | int64_t cluster_max_cpu_phys_id[MAX_CPU_CLUSTER_PHY_ID + 1]; |
| 1008 | const boolean_t cpus_boot_arg_present = PE_parse_boot_argn(arg_string: "cpus" , arg_ptr: &cpu_boot_arg, max_arg: sizeof(cpu_boot_arg)); |
| 1009 | const boolean_t cpumask_boot_arg_present = PE_parse_boot_argn(arg_string: "cpumask" , arg_ptr: &cpumask_boot_arg, max_arg: sizeof(cpumask_boot_arg)); |
| 1010 | |
| 1011 | // The cpus=N and cpumask=N boot args cannot be used simultaneously. Flag this |
| 1012 | // so that we trigger a panic later in the boot process, once serial is enabled. |
| 1013 | if (cpus_boot_arg_present && cpumask_boot_arg_present) { |
| 1014 | cpu_config_correct = false; |
| 1015 | } |
| 1016 | |
| 1017 | err = SecureDTLookupEntry(NULL, pathName: "/cpus" , foundEntry: &entry); |
| 1018 | assert(err == kSuccess); |
| 1019 | |
| 1020 | err = SecureDTInitEntryIterator(startEntry: entry, iter: &iter); |
| 1021 | assert(err == kSuccess); |
| 1022 | |
| 1023 | for (int i = 0; i <= MAX_CPU_CLUSTER_PHY_ID; i++) { |
| 1024 | cluster_offsets[i] = -1; |
| 1025 | cluster_phys_to_logical[i] = -1; |
| 1026 | cluster_max_cpu_phys_id[i] = 0; |
| 1027 | } |
| 1028 | |
| 1029 | while (kSuccess == SecureDTIterateEntries(iterator: &iter, nextEntry: &child)) { |
| 1030 | boolean_t is_boot_cpu = ml_is_boot_cpu(entry: child); |
| 1031 | boolean_t cpu_enabled = cpumask_boot_arg & 1; |
| 1032 | cpumask_boot_arg >>= 1; |
| 1033 | |
| 1034 | // Boot CPU disabled in cpumask. Flag this so that we trigger a panic |
| 1035 | // later in the boot process, once serial is enabled. |
| 1036 | if (is_boot_cpu && !cpu_enabled) { |
| 1037 | cpu_config_correct = false; |
| 1038 | } |
| 1039 | |
| 1040 | // Ignore this CPU if it has been disabled by the cpumask= boot-arg. |
| 1041 | if (!is_boot_cpu && !cpu_enabled) { |
| 1042 | continue; |
| 1043 | } |
| 1044 | |
| 1045 | // If the number of CPUs is constrained by the cpus= boot-arg, and the boot CPU hasn't |
| 1046 | // been added to the topology struct yet, and we only have one slot left, then skip |
| 1047 | // every other non-boot CPU in order to leave room for the boot CPU. |
| 1048 | // |
| 1049 | // e.g. if the boot-args say "cpus=3" and CPU4 is the boot CPU, then the cpus[] |
| 1050 | // array will list CPU0, CPU1, and CPU4. CPU2-CPU3 and CPU5-CPUn will be omitted. |
| 1051 | if (topology_info.num_cpus >= (cpu_boot_arg - 1) && topology_info.boot_cpu == NULL && !is_boot_cpu) { |
| 1052 | continue; |
| 1053 | } |
| 1054 | if (topology_info.num_cpus >= cpu_boot_arg) { |
| 1055 | break; |
| 1056 | } |
| 1057 | |
| 1058 | ml_topology_cpu_t *cpu = &topology_info.cpus[topology_info.num_cpus]; |
| 1059 | |
| 1060 | cpu->cpu_id = topology_info.num_cpus++; |
| 1061 | assert(cpu->cpu_id < MAX_CPUS); |
| 1062 | topology_info.max_cpu_id = MAX(topology_info.max_cpu_id, cpu->cpu_id); |
| 1063 | |
| 1064 | cpu->die_id = 0; |
| 1065 | topology_info.max_die_id = 0; |
| 1066 | |
| 1067 | cpu->phys_id = (uint32_t)ml_readprop(entry: child, propertyName: "reg" , ML_READPROP_MANDATORY); |
| 1068 | |
| 1069 | cpu->l2_access_penalty = (uint32_t)ml_readprop(entry: child, propertyName: "l2-access-penalty" , default_value: 0); |
| 1070 | cpu->l2_cache_size = (uint32_t)ml_readprop(entry: child, propertyName: "l2-cache-size" , default_value: 0); |
| 1071 | cpu->l2_cache_id = (uint32_t)ml_readprop(entry: child, propertyName: "l2-cache-id" , default_value: 0); |
| 1072 | cpu->l3_cache_size = (uint32_t)ml_readprop(entry: child, propertyName: "l3-cache-size" , default_value: 0); |
| 1073 | cpu->l3_cache_id = (uint32_t)ml_readprop(entry: child, propertyName: "l3-cache-id" , default_value: 0); |
| 1074 | |
| 1075 | ml_read_reg_range(entry: child, propertyName: "cpu-uttdbg-reg" , pa_ptr: &cpu->cpu_UTTDBG_pa, len_ptr: &cpu->cpu_UTTDBG_len); |
| 1076 | ml_read_reg_range(entry: child, propertyName: "cpu-impl-reg" , pa_ptr: &cpu->cpu_IMPL_pa, len_ptr: &cpu->cpu_IMPL_len); |
| 1077 | ml_read_reg_range(entry: child, propertyName: "coresight-reg" , pa_ptr: &cpu->coresight_pa, len_ptr: &cpu->coresight_len); |
| 1078 | cpu->cluster_type = CLUSTER_TYPE_SMP; |
| 1079 | |
| 1080 | int cluster_type = (int)ml_readprop(entry: child, propertyName: "cluster-type" , default_value: 0); |
| 1081 | if (cluster_type == 'E') { |
| 1082 | cpu->cluster_type = CLUSTER_TYPE_E; |
| 1083 | } else if (cluster_type == 'P') { |
| 1084 | cpu->cluster_type = CLUSTER_TYPE_P; |
| 1085 | } |
| 1086 | |
| 1087 | topology_info.cluster_type_num_cpus[cpu->cluster_type]++; |
| 1088 | |
| 1089 | /* |
| 1090 | * Since we want to keep a linear cluster ID space, we cannot just rely |
| 1091 | * on the value provided by EDT. Instead, use the MPIDR value to see if we have |
| 1092 | * seen this exact cluster before. If so, then reuse that cluster ID for this CPU. |
| 1093 | */ |
| 1094 | #if HAS_CLUSTER |
| 1095 | uint32_t phys_cluster_id = MPIDR_CLUSTER_ID(cpu->phys_id); |
| 1096 | #else |
| 1097 | uint32_t phys_cluster_id = (cpu->cluster_type == CLUSTER_TYPE_P); |
| 1098 | #endif |
| 1099 | assert(phys_cluster_id <= MAX_CPU_CLUSTER_PHY_ID); |
| 1100 | cpu->cluster_id = ((cluster_phys_to_logical[phys_cluster_id] == -1) ? |
| 1101 | topology_info.num_clusters : cluster_phys_to_logical[phys_cluster_id]); |
| 1102 | |
| 1103 | assert(cpu->cluster_id < MAX_CPU_CLUSTERS); |
| 1104 | |
| 1105 | ml_topology_cluster_t *cluster = &topology_info.clusters[cpu->cluster_id]; |
| 1106 | if (cluster->num_cpus == 0) { |
| 1107 | assert(topology_info.num_clusters < MAX_CPU_CLUSTERS); |
| 1108 | |
| 1109 | topology_info.num_clusters++; |
| 1110 | topology_info.max_cluster_id = MAX(topology_info.max_cluster_id, cpu->cluster_id); |
| 1111 | topology_info.cluster_types |= (1 << cpu->cluster_type); |
| 1112 | |
| 1113 | cluster->cluster_id = cpu->cluster_id; |
| 1114 | cluster->cluster_type = cpu->cluster_type; |
| 1115 | cluster->first_cpu_id = cpu->cpu_id; |
| 1116 | assert(cluster_phys_to_logical[phys_cluster_id] == -1); |
| 1117 | cluster_phys_to_logical[phys_cluster_id] = cpu->cluster_id; |
| 1118 | |
| 1119 | topology_info.cluster_type_num_clusters[cluster->cluster_type]++; |
| 1120 | |
| 1121 | // Since we don't have a per-cluster EDT node, this is repeated in each CPU node. |
| 1122 | // If we wind up with a bunch of these, we might want to create separate per-cluster |
| 1123 | // EDT nodes and have the CPU nodes reference them through a phandle. |
| 1124 | ml_read_reg_range(entry: child, propertyName: "acc-impl-reg" , pa_ptr: &cluster->acc_IMPL_pa, len_ptr: &cluster->acc_IMPL_len); |
| 1125 | ml_read_reg_range(entry: child, propertyName: "cpm-impl-reg" , pa_ptr: &cluster->cpm_IMPL_pa, len_ptr: &cluster->cpm_IMPL_len); |
| 1126 | } |
| 1127 | |
| 1128 | #if HAS_CLUSTER |
| 1129 | if (MPIDR_CPU_ID(cpu->phys_id) > cluster_max_cpu_phys_id[phys_cluster_id]) { |
| 1130 | cluster_max_cpu_phys_id[phys_cluster_id] = MPIDR_CPU_ID(cpu->phys_id); |
| 1131 | } |
| 1132 | #endif |
| 1133 | |
| 1134 | cpu->die_cluster_id = (int)ml_readprop(entry: child, propertyName: "die-cluster-id" , MPIDR_CLUSTER_ID(cpu->phys_id)); |
| 1135 | cpu->cluster_core_id = (int)ml_readprop(entry: child, propertyName: "cluster-core-id" , MPIDR_CPU_ID(cpu->phys_id)); |
| 1136 | |
| 1137 | cluster->num_cpus++; |
| 1138 | cluster->cpu_mask |= 1ULL << cpu->cpu_id; |
| 1139 | |
| 1140 | if (is_boot_cpu) { |
| 1141 | assert(topology_info.boot_cpu == NULL); |
| 1142 | topology_info.boot_cpu = cpu; |
| 1143 | topology_info.boot_cluster = cluster; |
| 1144 | } |
| 1145 | |
| 1146 | #if CONFIG_SPTM |
| 1147 | sptm_register_cpu(cpu->phys_id); |
| 1148 | #endif |
| 1149 | } |
| 1150 | |
| 1151 | #if HAS_CLUSTER |
| 1152 | /* |
| 1153 | * Build the cluster offset array, ensuring that the region reserved |
| 1154 | * for each physical cluster contains enough entries to be indexed |
| 1155 | * by the maximum physical CPU ID (AFF0) within the cluster. |
| 1156 | */ |
| 1157 | unsigned int cur_cluster_offset = 0; |
| 1158 | for (int i = 0; i <= MAX_CPU_CLUSTER_PHY_ID; i++) { |
| 1159 | if (cluster_phys_to_logical[i] != -1) { |
| 1160 | cluster_offsets[i] = cur_cluster_offset; |
| 1161 | cur_cluster_offset += (cluster_max_cpu_phys_id[i] + 1); |
| 1162 | } |
| 1163 | } |
| 1164 | assert(cur_cluster_offset <= MAX_CPUS); |
| 1165 | #else |
| 1166 | /* |
| 1167 | * For H10, there are really 2 physical clusters, but they are not separated |
| 1168 | * into distinct ACCs. AFF1 therefore always reports 0, and AFF0 numbering |
| 1169 | * is linear across both clusters. For the purpose of MPIDR_EL1-based indexing, |
| 1170 | * treat H10 and earlier devices as though they contain a single cluster. |
| 1171 | */ |
| 1172 | cluster_offsets[0] = 0; |
| 1173 | #endif |
| 1174 | assert(topology_info.boot_cpu != NULL); |
| 1175 | ml_read_chip_revision(rev: &topology_info.chip_revision); |
| 1176 | |
| 1177 | /* |
| 1178 | * Set TPIDR_EL0 to indicate the correct cpu number & cluster id, |
| 1179 | * as we may not be booting from cpu 0. Userspace will consume |
| 1180 | * the current CPU number through this register. For non-boot |
| 1181 | * cores, this is done in start.s (start_cpu) using the per-cpu |
| 1182 | * data object. |
| 1183 | */ |
| 1184 | ml_topology_cpu_t *boot_cpu = topology_info.boot_cpu; |
| 1185 | uint64_t tpidr_el0 = ((boot_cpu->cpu_id << MACHDEP_TPIDR_CPUNUM_SHIFT) & MACHDEP_TPIDR_CPUNUM_MASK) | \ |
| 1186 | ((boot_cpu->cluster_id << MACHDEP_TPIDR_CLUSTERID_SHIFT) & MACHDEP_TPIDR_CLUSTERID_MASK); |
| 1187 | assert(((tpidr_el0 & MACHDEP_TPIDR_CPUNUM_MASK) >> MACHDEP_TPIDR_CPUNUM_SHIFT) == boot_cpu->cpu_id); |
| 1188 | assert(((tpidr_el0 & MACHDEP_TPIDR_CLUSTERID_MASK) >> MACHDEP_TPIDR_CLUSTERID_SHIFT) == boot_cpu->cluster_id); |
| 1189 | __builtin_arm_wsr64("TPIDR_EL0" , tpidr_el0); |
| 1190 | |
| 1191 | __builtin_arm_wsr64("TPIDRRO_EL0" , 0); |
| 1192 | } |
| 1193 | |
| 1194 | const ml_topology_info_t * |
| 1195 | ml_get_topology_info(void) |
| 1196 | { |
| 1197 | return &topology_info; |
| 1198 | } |
| 1199 | |
| 1200 | void |
| 1201 | ml_map_cpu_pio(void) |
| 1202 | { |
| 1203 | unsigned int i; |
| 1204 | |
| 1205 | for (i = 0; i < topology_info.num_cpus; i++) { |
| 1206 | ml_topology_cpu_t *cpu = &topology_info.cpus[i]; |
| 1207 | if (cpu->cpu_IMPL_pa) { |
| 1208 | cpu->cpu_IMPL_regs = (vm_offset_t)ml_io_map(phys_addr: cpu->cpu_IMPL_pa, size: cpu->cpu_IMPL_len); |
| 1209 | cpu->coresight_regs = (vm_offset_t)ml_io_map(phys_addr: cpu->coresight_pa, size: cpu->coresight_len); |
| 1210 | } |
| 1211 | if (cpu->cpu_UTTDBG_pa) { |
| 1212 | cpu->cpu_UTTDBG_regs = (vm_offset_t)ml_io_map(phys_addr: cpu->cpu_UTTDBG_pa, size: cpu->cpu_UTTDBG_len); |
| 1213 | } |
| 1214 | } |
| 1215 | |
| 1216 | for (i = 0; i < topology_info.num_clusters; i++) { |
| 1217 | ml_topology_cluster_t *cluster = &topology_info.clusters[i]; |
| 1218 | if (cluster->acc_IMPL_pa) { |
| 1219 | cluster->acc_IMPL_regs = (vm_offset_t)ml_io_map(phys_addr: cluster->acc_IMPL_pa, size: cluster->acc_IMPL_len); |
| 1220 | } |
| 1221 | if (cluster->cpm_IMPL_pa) { |
| 1222 | cluster->cpm_IMPL_regs = (vm_offset_t)ml_io_map(phys_addr: cluster->cpm_IMPL_pa, size: cluster->cpm_IMPL_len); |
| 1223 | } |
| 1224 | } |
| 1225 | } |
| 1226 | |
| 1227 | unsigned int |
| 1228 | ml_get_cpu_count(void) |
| 1229 | { |
| 1230 | return topology_info.num_cpus; |
| 1231 | } |
| 1232 | |
| 1233 | unsigned int |
| 1234 | ml_get_cluster_count(void) |
| 1235 | { |
| 1236 | return topology_info.num_clusters; |
| 1237 | } |
| 1238 | |
| 1239 | int |
| 1240 | ml_get_boot_cpu_number(void) |
| 1241 | { |
| 1242 | return topology_info.boot_cpu->cpu_id; |
| 1243 | } |
| 1244 | |
| 1245 | cluster_type_t |
| 1246 | ml_get_boot_cluster_type(void) |
| 1247 | { |
| 1248 | return topology_info.boot_cluster->cluster_type; |
| 1249 | } |
| 1250 | |
| 1251 | int |
| 1252 | ml_get_cpu_number(uint32_t phys_id) |
| 1253 | { |
| 1254 | phys_id &= MPIDR_AFF1_MASK | MPIDR_AFF0_MASK; |
| 1255 | |
| 1256 | for (unsigned i = 0; i < topology_info.num_cpus; i++) { |
| 1257 | if (topology_info.cpus[i].phys_id == phys_id) { |
| 1258 | return i; |
| 1259 | } |
| 1260 | } |
| 1261 | |
| 1262 | return -1; |
| 1263 | } |
| 1264 | |
| 1265 | int |
| 1266 | ml_get_cluster_number(uint32_t phys_id) |
| 1267 | { |
| 1268 | int cpu_id = ml_get_cpu_number(phys_id); |
| 1269 | if (cpu_id < 0) { |
| 1270 | return -1; |
| 1271 | } |
| 1272 | |
| 1273 | ml_topology_cpu_t *cpu = &topology_info.cpus[cpu_id]; |
| 1274 | |
| 1275 | return cpu->cluster_id; |
| 1276 | } |
| 1277 | |
| 1278 | unsigned int |
| 1279 | ml_get_cpu_number_local(void) |
| 1280 | { |
| 1281 | uint64_t mpidr_el1_value = 0; |
| 1282 | unsigned cpu_id; |
| 1283 | |
| 1284 | /* We identify the CPU based on the constant bits of MPIDR_EL1. */ |
| 1285 | MRS(mpidr_el1_value, "MPIDR_EL1" ); |
| 1286 | cpu_id = ml_get_cpu_number(phys_id: (uint32_t)mpidr_el1_value); |
| 1287 | |
| 1288 | assert(cpu_id <= (unsigned int)ml_get_max_cpu_number()); |
| 1289 | |
| 1290 | return cpu_id; |
| 1291 | } |
| 1292 | |
| 1293 | int |
| 1294 | ml_get_cluster_number_local() |
| 1295 | { |
| 1296 | uint64_t mpidr_el1_value = 0; |
| 1297 | unsigned cluster_id; |
| 1298 | |
| 1299 | /* We identify the cluster based on the constant bits of MPIDR_EL1. */ |
| 1300 | MRS(mpidr_el1_value, "MPIDR_EL1" ); |
| 1301 | cluster_id = ml_get_cluster_number(phys_id: (uint32_t)mpidr_el1_value); |
| 1302 | |
| 1303 | assert(cluster_id <= (unsigned int)ml_get_max_cluster_number()); |
| 1304 | |
| 1305 | return cluster_id; |
| 1306 | } |
| 1307 | |
| 1308 | int |
| 1309 | ml_get_max_cpu_number(void) |
| 1310 | { |
| 1311 | return topology_info.max_cpu_id; |
| 1312 | } |
| 1313 | |
| 1314 | int |
| 1315 | ml_get_max_cluster_number(void) |
| 1316 | { |
| 1317 | return topology_info.max_cluster_id; |
| 1318 | } |
| 1319 | |
| 1320 | unsigned int |
| 1321 | ml_get_first_cpu_id(unsigned int cluster_id) |
| 1322 | { |
| 1323 | return topology_info.clusters[cluster_id].first_cpu_id; |
| 1324 | } |
| 1325 | |
| 1326 | static_assert(MAX_CPUS <= 256, "MAX_CPUS must fit in _COMM_PAGE_CPU_TO_CLUSTER; Increase table size if needed" ); |
| 1327 | |
| 1328 | void |
| 1329 | ml_map_cpus_to_clusters(uint8_t *table) |
| 1330 | { |
| 1331 | for (uint16_t cpu_id = 0; cpu_id < topology_info.num_cpus; cpu_id++) { |
| 1332 | *(table + cpu_id) = (uint8_t)(topology_info.cpus[cpu_id].cluster_id); |
| 1333 | } |
| 1334 | } |
| 1335 | |
| 1336 | /* |
| 1337 | * Return the die id of a cluster. |
| 1338 | */ |
| 1339 | unsigned int |
| 1340 | ml_get_die_id(unsigned int cluster_id) |
| 1341 | { |
| 1342 | /* |
| 1343 | * The current implementation gets the die_id from the |
| 1344 | * first CPU of the cluster. |
| 1345 | * rdar://80917654 (Add the die_id field to the cluster topology info) |
| 1346 | */ |
| 1347 | unsigned int first_cpu = ml_get_first_cpu_id(cluster_id); |
| 1348 | return topology_info.cpus[first_cpu].die_id; |
| 1349 | } |
| 1350 | |
| 1351 | /* |
| 1352 | * Return the index of a cluster in its die. |
| 1353 | */ |
| 1354 | unsigned int |
| 1355 | ml_get_die_cluster_id(unsigned int cluster_id) |
| 1356 | { |
| 1357 | /* |
| 1358 | * The current implementation gets the die_id from the |
| 1359 | * first CPU of the cluster. |
| 1360 | * rdar://80917654 (Add the die_id field to the cluster topology info) |
| 1361 | */ |
| 1362 | unsigned int first_cpu = ml_get_first_cpu_id(cluster_id); |
| 1363 | return topology_info.cpus[first_cpu].die_cluster_id; |
| 1364 | } |
| 1365 | |
| 1366 | /* |
| 1367 | * Return the highest die id of the system. |
| 1368 | */ |
| 1369 | unsigned int |
| 1370 | ml_get_max_die_id(void) |
| 1371 | { |
| 1372 | return topology_info.max_die_id; |
| 1373 | } |
| 1374 | |
| 1375 | void |
| 1376 | ml_lockdown_init() |
| 1377 | { |
| 1378 | #if defined(KERNEL_INTEGRITY_KTRR) || defined(KERNEL_INTEGRITY_CTRR) |
| 1379 | rorgn_stash_range(); |
| 1380 | #endif |
| 1381 | } |
| 1382 | |
| 1383 | kern_return_t |
| 1384 | ml_lockdown_handler_register(lockdown_handler_t f, void *this) |
| 1385 | { |
| 1386 | if (!f) { |
| 1387 | return KERN_FAILURE; |
| 1388 | } |
| 1389 | |
| 1390 | assert(lockdown_done); |
| 1391 | f(this); // XXX: f this whole function |
| 1392 | |
| 1393 | return KERN_SUCCESS; |
| 1394 | } |
| 1395 | |
| 1396 | static mcache_flush_function mcache_flush_func; |
| 1397 | static void* mcache_flush_service; |
| 1398 | kern_return_t |
| 1399 | ml_mcache_flush_callback_register(mcache_flush_function func, void *service) |
| 1400 | { |
| 1401 | mcache_flush_service = service; |
| 1402 | mcache_flush_func = func; |
| 1403 | |
| 1404 | return KERN_SUCCESS; |
| 1405 | } |
| 1406 | |
| 1407 | kern_return_t |
| 1408 | ml_mcache_flush(void) |
| 1409 | { |
| 1410 | if (!mcache_flush_func) { |
| 1411 | panic("Cannot flush M$ with no flush callback registered" ); |
| 1412 | |
| 1413 | return KERN_FAILURE; |
| 1414 | } else { |
| 1415 | return mcache_flush_func(mcache_flush_service); |
| 1416 | } |
| 1417 | } |
| 1418 | |
| 1419 | |
| 1420 | extern lck_mtx_t pset_create_lock; |
| 1421 | |
| 1422 | kern_return_t |
| 1423 | ml_processor_register(ml_processor_info_t *in_processor_info, |
| 1424 | processor_t *processor_out, ipi_handler_t *ipi_handler_out, |
| 1425 | perfmon_interrupt_handler_func *pmi_handler_out) |
| 1426 | { |
| 1427 | cpu_data_t *this_cpu_datap; |
| 1428 | processor_set_t pset; |
| 1429 | boolean_t is_boot_cpu; |
| 1430 | static unsigned int reg_cpu_count = 0; |
| 1431 | |
| 1432 | if (in_processor_info->log_id > (uint32_t)ml_get_max_cpu_number()) { |
| 1433 | return KERN_FAILURE; |
| 1434 | } |
| 1435 | |
| 1436 | if ((unsigned)OSIncrementAtomic((SInt32*)®_cpu_count) >= topology_info.num_cpus) { |
| 1437 | return KERN_FAILURE; |
| 1438 | } |
| 1439 | |
| 1440 | if (in_processor_info->log_id != (uint32_t)ml_get_boot_cpu_number()) { |
| 1441 | is_boot_cpu = FALSE; |
| 1442 | this_cpu_datap = cpu_data_alloc(FALSE); |
| 1443 | cpu_data_init(cpu_data_ptr: this_cpu_datap); |
| 1444 | } else { |
| 1445 | this_cpu_datap = &BootCpuData; |
| 1446 | is_boot_cpu = TRUE; |
| 1447 | } |
| 1448 | |
| 1449 | assert(in_processor_info->log_id <= (uint32_t)ml_get_max_cpu_number()); |
| 1450 | |
| 1451 | this_cpu_datap->cpu_id = in_processor_info->cpu_id; |
| 1452 | |
| 1453 | if (!is_boot_cpu) { |
| 1454 | this_cpu_datap->cpu_number = (unsigned short)(in_processor_info->log_id); |
| 1455 | |
| 1456 | if (cpu_data_register(cpu_data_ptr: this_cpu_datap) != KERN_SUCCESS) { |
| 1457 | goto processor_register_error; |
| 1458 | } |
| 1459 | assert((this_cpu_datap->cpu_number & MACHDEP_TPIDR_CPUNUM_MASK) == this_cpu_datap->cpu_number); |
| 1460 | } |
| 1461 | |
| 1462 | this_cpu_datap->cpu_idle_notify = in_processor_info->processor_idle; |
| 1463 | this_cpu_datap->cpu_cache_dispatch = (cache_dispatch_t)in_processor_info->platform_cache_dispatch; |
| 1464 | nanoseconds_to_absolutetime(nanoseconds: (uint64_t) in_processor_info->powergate_latency, result: &this_cpu_datap->cpu_idle_latency); |
| 1465 | this_cpu_datap->cpu_reset_assist = kvtophys(va: in_processor_info->powergate_stub_addr); |
| 1466 | |
| 1467 | this_cpu_datap->idle_timer_notify = in_processor_info->idle_timer; |
| 1468 | this_cpu_datap->idle_timer_refcon = in_processor_info->idle_timer_refcon; |
| 1469 | |
| 1470 | this_cpu_datap->platform_error_handler = in_processor_info->platform_error_handler; |
| 1471 | this_cpu_datap->cpu_regmap_paddr = in_processor_info->regmap_paddr; |
| 1472 | this_cpu_datap->cpu_phys_id = in_processor_info->phys_id; |
| 1473 | this_cpu_datap->cpu_l2_access_penalty = in_processor_info->l2_access_penalty; |
| 1474 | |
| 1475 | this_cpu_datap->cpu_cluster_type = in_processor_info->cluster_type; |
| 1476 | this_cpu_datap->cpu_cluster_id = in_processor_info->cluster_id; |
| 1477 | this_cpu_datap->cpu_l2_id = in_processor_info->l2_cache_id; |
| 1478 | this_cpu_datap->cpu_l2_size = in_processor_info->l2_cache_size; |
| 1479 | this_cpu_datap->cpu_l3_id = in_processor_info->l3_cache_id; |
| 1480 | this_cpu_datap->cpu_l3_size = in_processor_info->l3_cache_size; |
| 1481 | |
| 1482 | /* |
| 1483 | * Encode cpu_id, cluster_id to be stored in TPIDR_EL0 (see |
| 1484 | * cswitch.s:set_thread_registers, start.s:start_cpu) for consumption |
| 1485 | * by userspace. |
| 1486 | */ |
| 1487 | this_cpu_datap->cpu_tpidr_el0 = ((this_cpu_datap->cpu_number << MACHDEP_TPIDR_CPUNUM_SHIFT) & MACHDEP_TPIDR_CPUNUM_MASK) | \ |
| 1488 | ((this_cpu_datap->cpu_cluster_id << MACHDEP_TPIDR_CLUSTERID_SHIFT) & MACHDEP_TPIDR_CLUSTERID_MASK); |
| 1489 | assert(((this_cpu_datap->cpu_tpidr_el0 & MACHDEP_TPIDR_CPUNUM_MASK) >> MACHDEP_TPIDR_CPUNUM_SHIFT) == this_cpu_datap->cpu_number); |
| 1490 | assert(((this_cpu_datap->cpu_tpidr_el0 & MACHDEP_TPIDR_CLUSTERID_MASK) >> MACHDEP_TPIDR_CLUSTERID_SHIFT) == this_cpu_datap->cpu_cluster_id); |
| 1491 | |
| 1492 | #if HAS_CLUSTER |
| 1493 | this_cpu_datap->cluster_master = !OSTestAndSet(this_cpu_datap->cpu_cluster_id, &cluster_initialized); |
| 1494 | #else /* HAS_CLUSTER */ |
| 1495 | this_cpu_datap->cluster_master = is_boot_cpu; |
| 1496 | #endif /* HAS_CLUSTER */ |
| 1497 | lck_mtx_lock(lck: &pset_create_lock); |
| 1498 | pset = pset_find(cluster_id: in_processor_info->cluster_id, NULL); |
| 1499 | kprintf(fmt: "[%d]%s>pset_find(cluster_id=%d) returned pset %d\n" , current_processor()->cpu_id, __FUNCTION__, in_processor_info->cluster_id, pset ? pset->pset_id : -1); |
| 1500 | if (pset == NULL) { |
| 1501 | #if __AMP__ |
| 1502 | pset_cluster_type_t pset_cluster_type = this_cpu_datap->cpu_cluster_type == CLUSTER_TYPE_E ? PSET_AMP_E : PSET_AMP_P; |
| 1503 | pset = pset_create(ml_get_boot_cluster_type() == this_cpu_datap->cpu_cluster_type ? &pset_node0 : &pset_node1, pset_cluster_type, this_cpu_datap->cpu_cluster_id, this_cpu_datap->cpu_cluster_id); |
| 1504 | assert(pset != PROCESSOR_SET_NULL); |
| 1505 | kprintf("[%d]%s>pset_create(cluster_id=%d) returned pset %d\n" , current_processor()->cpu_id, __FUNCTION__, this_cpu_datap->cpu_cluster_id, pset->pset_id); |
| 1506 | #else /* __AMP__ */ |
| 1507 | pset_cluster_type_t pset_cluster_type = PSET_SMP; |
| 1508 | pset = pset_create(node: &pset_node0, pset_type: pset_cluster_type, pset_cluster_id: this_cpu_datap->cpu_cluster_id, pset_id: this_cpu_datap->cpu_cluster_id); |
| 1509 | assert(pset != PROCESSOR_SET_NULL); |
| 1510 | #endif /* __AMP__ */ |
| 1511 | } |
| 1512 | kprintf(fmt: "[%d]%s>cpu_id %p cluster_id %d cpu_number %d is type %d\n" , current_processor()->cpu_id, __FUNCTION__, in_processor_info->cpu_id, in_processor_info->cluster_id, this_cpu_datap->cpu_number, in_processor_info->cluster_type); |
| 1513 | lck_mtx_unlock(lck: &pset_create_lock); |
| 1514 | |
| 1515 | processor_t processor = PERCPU_GET_RELATIVE(processor, cpu_data, this_cpu_datap); |
| 1516 | if (!is_boot_cpu) { |
| 1517 | processor_init(processor, cpu_id: this_cpu_datap->cpu_number, processor_set: pset); |
| 1518 | |
| 1519 | if (this_cpu_datap->cpu_l2_access_penalty) { |
| 1520 | /* |
| 1521 | * Cores that have a non-zero L2 access penalty compared |
| 1522 | * to the boot processor should be de-prioritized by the |
| 1523 | * scheduler, so that threads use the cores with better L2 |
| 1524 | * preferentially. |
| 1525 | */ |
| 1526 | processor_set_primary(processor, master_processor); |
| 1527 | } |
| 1528 | } |
| 1529 | |
| 1530 | *processor_out = processor; |
| 1531 | *ipi_handler_out = cpu_signal_handler; |
| 1532 | #if CPMU_AIC_PMI && CONFIG_CPU_COUNTERS |
| 1533 | *pmi_handler_out = mt_cpmu_aic_pmi; |
| 1534 | #else |
| 1535 | *pmi_handler_out = NULL; |
| 1536 | #endif /* CPMU_AIC_PMI && CONFIG_CPU_COUNTERS */ |
| 1537 | if (in_processor_info->idle_tickle != (idle_tickle_t *) NULL) { |
| 1538 | *in_processor_info->idle_tickle = (idle_tickle_t) cpu_idle_tickle; |
| 1539 | } |
| 1540 | |
| 1541 | #if CONFIG_CPU_COUNTERS |
| 1542 | if (kpc_register_cpu(this_cpu_datap) != TRUE) { |
| 1543 | goto processor_register_error; |
| 1544 | } |
| 1545 | #endif /* CONFIG_CPU_COUNTERS */ |
| 1546 | |
| 1547 | |
| 1548 | if (!is_boot_cpu) { |
| 1549 | random_cpu_init(cpu: this_cpu_datap->cpu_number); |
| 1550 | // now let next CPU register itself |
| 1551 | OSIncrementAtomic((SInt32*)&real_ncpus); |
| 1552 | } |
| 1553 | |
| 1554 | return KERN_SUCCESS; |
| 1555 | |
| 1556 | processor_register_error: |
| 1557 | #if CONFIG_CPU_COUNTERS |
| 1558 | kpc_unregister_cpu(this_cpu_datap); |
| 1559 | #endif /* CONFIG_CPU_COUNTERS */ |
| 1560 | if (!is_boot_cpu) { |
| 1561 | cpu_data_free(cpu_data_ptr: this_cpu_datap); |
| 1562 | } |
| 1563 | |
| 1564 | return KERN_FAILURE; |
| 1565 | } |
| 1566 | |
| 1567 | void |
| 1568 | ml_init_arm_debug_interface( |
| 1569 | void * in_cpu_datap, |
| 1570 | vm_offset_t virt_address) |
| 1571 | { |
| 1572 | ((cpu_data_t *)in_cpu_datap)->cpu_debug_interface_map = virt_address; |
| 1573 | do_debugid(); |
| 1574 | } |
| 1575 | |
| 1576 | /* |
| 1577 | * Routine: init_ast_check |
| 1578 | * Function: |
| 1579 | */ |
| 1580 | void |
| 1581 | init_ast_check( |
| 1582 | __unused processor_t processor) |
| 1583 | { |
| 1584 | } |
| 1585 | |
| 1586 | /* |
| 1587 | * Routine: cause_ast_check |
| 1588 | * Function: |
| 1589 | */ |
| 1590 | void |
| 1591 | cause_ast_check( |
| 1592 | processor_t processor) |
| 1593 | { |
| 1594 | if (current_processor() != processor) { |
| 1595 | cpu_signal(target: processor_to_cpu_datap(processor), SIGPast, p0: (void *)NULL, p1: (void *)NULL); |
| 1596 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, MACHDBG_CODE(DBG_MACH_SCHED, MACH_REMOTE_AST), processor->cpu_id, 1 /* ast */, 0, 0, 0); |
| 1597 | } |
| 1598 | } |
| 1599 | |
| 1600 | extern uint32_t cpu_idle_count; |
| 1601 | |
| 1602 | void |
| 1603 | ml_get_power_state(boolean_t *icp, boolean_t *pidlep) |
| 1604 | { |
| 1605 | *icp = ml_at_interrupt_context(); |
| 1606 | *pidlep = (cpu_idle_count == real_ncpus); |
| 1607 | } |
| 1608 | |
| 1609 | /* |
| 1610 | * Routine: ml_cause_interrupt |
| 1611 | * Function: Generate a fake interrupt |
| 1612 | */ |
| 1613 | void |
| 1614 | ml_cause_interrupt(void) |
| 1615 | { |
| 1616 | return; /* BS_XXX */ |
| 1617 | } |
| 1618 | |
| 1619 | /* Map memory map IO space */ |
| 1620 | vm_offset_t |
| 1621 | ml_io_map( |
| 1622 | vm_offset_t phys_addr, |
| 1623 | vm_size_t size) |
| 1624 | { |
| 1625 | return io_map(phys_addr, size, VM_WIMG_IO, VM_PROT_DEFAULT, false); |
| 1626 | } |
| 1627 | |
| 1628 | /* Map memory map IO space (with protections specified) */ |
| 1629 | vm_offset_t |
| 1630 | ml_io_map_with_prot( |
| 1631 | vm_offset_t phys_addr, |
| 1632 | vm_size_t size, |
| 1633 | vm_prot_t prot) |
| 1634 | { |
| 1635 | return io_map(phys_addr, size, VM_WIMG_IO, prot, false); |
| 1636 | } |
| 1637 | |
| 1638 | vm_offset_t |
| 1639 | ml_io_map_unmappable( |
| 1640 | vm_offset_t phys_addr, |
| 1641 | vm_size_t size, |
| 1642 | unsigned int flags) |
| 1643 | { |
| 1644 | return io_map(phys_addr, size, flags, VM_PROT_DEFAULT, true); |
| 1645 | } |
| 1646 | |
| 1647 | vm_offset_t |
| 1648 | ml_io_map_wcomb( |
| 1649 | vm_offset_t phys_addr, |
| 1650 | vm_size_t size) |
| 1651 | { |
| 1652 | return io_map(phys_addr, size, VM_WIMG_WCOMB, VM_PROT_DEFAULT, false); |
| 1653 | } |
| 1654 | |
| 1655 | void |
| 1656 | ml_io_unmap(vm_offset_t addr, vm_size_t sz) |
| 1657 | { |
| 1658 | pmap_remove(map: kernel_pmap, s: addr, e: addr + sz); |
| 1659 | kmem_free(map: kernel_map, addr, size: sz); |
| 1660 | } |
| 1661 | |
| 1662 | vm_map_address_t |
| 1663 | ml_map_high_window( |
| 1664 | vm_offset_t phys_addr, |
| 1665 | vm_size_t len) |
| 1666 | { |
| 1667 | return pmap_map_high_window_bd(pa: phys_addr, len, VM_PROT_READ | VM_PROT_WRITE); |
| 1668 | } |
| 1669 | |
| 1670 | vm_offset_t |
| 1671 | ml_static_ptovirt( |
| 1672 | vm_offset_t paddr) |
| 1673 | { |
| 1674 | return phystokv(pa: paddr); |
| 1675 | } |
| 1676 | |
| 1677 | vm_offset_t |
| 1678 | ml_static_slide( |
| 1679 | vm_offset_t vaddr) |
| 1680 | { |
| 1681 | vm_offset_t slid_vaddr = 0; |
| 1682 | |
| 1683 | #if CONFIG_SPTM |
| 1684 | if ((vaddr >= vm_sptm_offsets.unslid_base) && (vaddr < vm_sptm_offsets.unslid_top)) { |
| 1685 | slid_vaddr = vaddr + vm_sptm_offsets.slide; |
| 1686 | } else if ((vaddr >= vm_txm_offsets.unslid_base) && (vaddr < vm_txm_offsets.unslid_top)) { |
| 1687 | slid_vaddr = vaddr + vm_txm_offsets.slide; |
| 1688 | } else |
| 1689 | #endif /* CONFIG_SPTM */ |
| 1690 | { |
| 1691 | slid_vaddr = vaddr + vm_kernel_slide; |
| 1692 | } |
| 1693 | |
| 1694 | if (!VM_KERNEL_IS_SLID(slid_vaddr)) { |
| 1695 | /* This is only intended for use on static kernel addresses. */ |
| 1696 | return 0; |
| 1697 | } |
| 1698 | |
| 1699 | return slid_vaddr; |
| 1700 | } |
| 1701 | |
| 1702 | vm_offset_t |
| 1703 | ml_static_unslide( |
| 1704 | vm_offset_t vaddr) |
| 1705 | { |
| 1706 | if (!VM_KERNEL_IS_SLID(vaddr)) { |
| 1707 | /* This is only intended for use on static kernel addresses. */ |
| 1708 | return 0; |
| 1709 | } |
| 1710 | |
| 1711 | #if CONFIG_SPTM |
| 1712 | /** |
| 1713 | * Addresses coming from the SPTM and TXM have a different slide than the |
| 1714 | * rest of the kernel. |
| 1715 | */ |
| 1716 | if ((vaddr >= vm_sptm_offsets.slid_base) && (vaddr < vm_sptm_offsets.slid_top)) { |
| 1717 | return vaddr - vm_sptm_offsets.slide; |
| 1718 | } |
| 1719 | |
| 1720 | if ((vaddr >= vm_txm_offsets.slid_base) && (vaddr < vm_txm_offsets.slid_top)) { |
| 1721 | return vaddr - vm_txm_offsets.slide; |
| 1722 | } |
| 1723 | #endif /* CONFIG_SPTM */ |
| 1724 | |
| 1725 | return vaddr - vm_kernel_slide; |
| 1726 | } |
| 1727 | |
| 1728 | extern tt_entry_t *arm_kva_to_tte(vm_offset_t va); |
| 1729 | |
| 1730 | kern_return_t |
| 1731 | ml_static_protect( |
| 1732 | vm_offset_t vaddr, /* kernel virtual address */ |
| 1733 | vm_size_t size, |
| 1734 | vm_prot_t new_prot __unused) |
| 1735 | { |
| 1736 | #if CONFIG_SPTM |
| 1737 | /** |
| 1738 | * Retype any frames that may be passed to the VM to XNU_DEFAULT. |
| 1739 | */ |
| 1740 | for (vm_offset_t sptm_vaddr_cur = vaddr; sptm_vaddr_cur < trunc_page_64(vaddr + size); sptm_vaddr_cur += PAGE_SIZE) { |
| 1741 | /* Check if this frame is XNU_DEFAULT and only retype it if is not */ |
| 1742 | sptm_paddr_t sptm_paddr_cur = kvtophys_nofail(sptm_vaddr_cur); |
| 1743 | sptm_frame_type_t current_type = sptm_get_frame_type(sptm_paddr_cur); |
| 1744 | if (current_type != XNU_DEFAULT) { |
| 1745 | sptm_retype_params_t retype_params = {.raw = SPTM_RETYPE_PARAMS_NULL}; |
| 1746 | sptm_retype(sptm_paddr_cur, current_type, XNU_DEFAULT, retype_params); |
| 1747 | } |
| 1748 | } |
| 1749 | |
| 1750 | return KERN_SUCCESS; |
| 1751 | #else /* CONFIG_SPTM */ |
| 1752 | pt_entry_t arm_prot = 0; |
| 1753 | pt_entry_t arm_block_prot = 0; |
| 1754 | vm_offset_t vaddr_cur; |
| 1755 | ppnum_t ppn; |
| 1756 | kern_return_t result = KERN_SUCCESS; |
| 1757 | |
| 1758 | if (vaddr < physmap_base) { |
| 1759 | panic("ml_static_protect(): %p < %p" , (void *) vaddr, (void *) physmap_base); |
| 1760 | return KERN_FAILURE; |
| 1761 | } |
| 1762 | |
| 1763 | assert((vaddr & (PAGE_SIZE - 1)) == 0); /* must be page aligned */ |
| 1764 | |
| 1765 | if ((new_prot & VM_PROT_WRITE) && (new_prot & VM_PROT_EXECUTE)) { |
| 1766 | panic("ml_static_protect(): WX request on %p" , (void *) vaddr); |
| 1767 | } |
| 1768 | if (lockdown_done && (new_prot & VM_PROT_EXECUTE)) { |
| 1769 | panic("ml_static_protect(): attempt to inject executable mapping on %p" , (void *) vaddr); |
| 1770 | } |
| 1771 | |
| 1772 | /* Set up the protection bits, and block bits so we can validate block mappings. */ |
| 1773 | if (new_prot & VM_PROT_WRITE) { |
| 1774 | arm_prot |= ARM_PTE_AP(AP_RWNA); |
| 1775 | arm_block_prot |= ARM_TTE_BLOCK_AP(AP_RWNA); |
| 1776 | } else { |
| 1777 | arm_prot |= ARM_PTE_AP(AP_RONA); |
| 1778 | arm_block_prot |= ARM_TTE_BLOCK_AP(AP_RONA); |
| 1779 | } |
| 1780 | |
| 1781 | arm_prot |= ARM_PTE_NX; |
| 1782 | arm_block_prot |= ARM_TTE_BLOCK_NX; |
| 1783 | |
| 1784 | if (!(new_prot & VM_PROT_EXECUTE)) { |
| 1785 | arm_prot |= ARM_PTE_PNX; |
| 1786 | arm_block_prot |= ARM_TTE_BLOCK_PNX; |
| 1787 | } |
| 1788 | |
| 1789 | for (vaddr_cur = vaddr; |
| 1790 | vaddr_cur < trunc_page_64(vaddr + size); |
| 1791 | vaddr_cur += PAGE_SIZE) { |
| 1792 | ppn = pmap_find_phys(map: kernel_pmap, va: vaddr_cur); |
| 1793 | if (ppn != (vm_offset_t) NULL) { |
| 1794 | tt_entry_t *tte2; |
| 1795 | pt_entry_t *pte_p; |
| 1796 | pt_entry_t ptmp; |
| 1797 | |
| 1798 | #if XNU_MONITOR |
| 1799 | assert(!pmap_is_monitor(ppn)); |
| 1800 | assert(!TEST_PAGE_RATIO_4); |
| 1801 | #endif |
| 1802 | |
| 1803 | tte2 = arm_kva_to_tte(va: vaddr_cur); |
| 1804 | |
| 1805 | if (((*tte2) & ARM_TTE_TYPE_MASK) != ARM_TTE_TYPE_TABLE) { |
| 1806 | if ((((*tte2) & ARM_TTE_TYPE_MASK) == ARM_TTE_TYPE_BLOCK) && |
| 1807 | ((*tte2 & (ARM_TTE_BLOCK_NXMASK | ARM_TTE_BLOCK_PNXMASK | ARM_TTE_BLOCK_APMASK)) == arm_block_prot)) { |
| 1808 | /* |
| 1809 | * We can support ml_static_protect on a block mapping if the mapping already has |
| 1810 | * the desired protections. We still want to run checks on a per-page basis. |
| 1811 | */ |
| 1812 | continue; |
| 1813 | } |
| 1814 | |
| 1815 | result = KERN_FAILURE; |
| 1816 | break; |
| 1817 | } |
| 1818 | |
| 1819 | pte_p = (pt_entry_t *)&((tt_entry_t*)(phystokv(pa: (*tte2) & ARM_TTE_TABLE_MASK)))[(((vaddr_cur) & ARM_TT_L3_INDEX_MASK) >> ARM_TT_L3_SHIFT)]; |
| 1820 | ptmp = *pte_p; |
| 1821 | |
| 1822 | if ((ptmp & ARM_PTE_HINT_MASK) && ((ptmp & (ARM_PTE_APMASK | ARM_PTE_PNXMASK | ARM_PTE_NXMASK)) != arm_prot)) { |
| 1823 | /* |
| 1824 | * The contiguous hint is similar to a block mapping for ml_static_protect; if the existing |
| 1825 | * protections do not match the desired protections, then we will fail (as we cannot update |
| 1826 | * this mapping without updating other mappings as well). |
| 1827 | */ |
| 1828 | result = KERN_FAILURE; |
| 1829 | break; |
| 1830 | } |
| 1831 | |
| 1832 | __unreachable_ok_push |
| 1833 | if (TEST_PAGE_RATIO_4) { |
| 1834 | { |
| 1835 | unsigned int i; |
| 1836 | pt_entry_t *ptep_iter; |
| 1837 | |
| 1838 | ptep_iter = pte_p; |
| 1839 | for (i = 0; i < 4; i++, ptep_iter++) { |
| 1840 | /* Note that there is a hole in the HINT sanity checking here. */ |
| 1841 | ptmp = *ptep_iter; |
| 1842 | |
| 1843 | /* We only need to update the page tables if the protections do not match. */ |
| 1844 | if ((ptmp & (ARM_PTE_APMASK | ARM_PTE_PNXMASK | ARM_PTE_NXMASK)) != arm_prot) { |
| 1845 | ptmp = (ptmp & ~(ARM_PTE_APMASK | ARM_PTE_PNXMASK | ARM_PTE_NXMASK)) | arm_prot; |
| 1846 | *ptep_iter = ptmp; |
| 1847 | } |
| 1848 | } |
| 1849 | } |
| 1850 | } else { |
| 1851 | ptmp = *pte_p; |
| 1852 | /* We only need to update the page tables if the protections do not match. */ |
| 1853 | if ((ptmp & (ARM_PTE_APMASK | ARM_PTE_PNXMASK | ARM_PTE_NXMASK)) != arm_prot) { |
| 1854 | ptmp = (ptmp & ~(ARM_PTE_APMASK | ARM_PTE_PNXMASK | ARM_PTE_NXMASK)) | arm_prot; |
| 1855 | *pte_p = ptmp; |
| 1856 | } |
| 1857 | } |
| 1858 | __unreachable_ok_pop |
| 1859 | } |
| 1860 | } |
| 1861 | |
| 1862 | if (vaddr_cur > vaddr) { |
| 1863 | assert(((vaddr_cur - vaddr) & 0xFFFFFFFF00000000ULL) == 0); |
| 1864 | flush_mmu_tlb_region(va: vaddr, length: (uint32_t)(vaddr_cur - vaddr)); |
| 1865 | } |
| 1866 | |
| 1867 | |
| 1868 | return result; |
| 1869 | #endif /* CONFIG_SPTM */ |
| 1870 | } |
| 1871 | |
| 1872 | #if defined(CONFIG_SPTM) |
| 1873 | /* |
| 1874 | * Returns true if the given physical address is in one of the boot kernelcache ranges. |
| 1875 | */ |
| 1876 | static bool |
| 1877 | ml_physaddr_in_bootkc_range(vm_offset_t physaddr) |
| 1878 | { |
| 1879 | for (int i = 0; i < arm_vm_kernelcache_numranges; i++) { |
| 1880 | if (physaddr >= arm_vm_kernelcache_ranges[i].start_phys && physaddr < arm_vm_kernelcache_ranges[i].end_phys) { |
| 1881 | return true; |
| 1882 | } |
| 1883 | } |
| 1884 | return false; |
| 1885 | } |
| 1886 | #endif /* defined(CONFIG_SPTM) */ |
| 1887 | |
| 1888 | /* |
| 1889 | * Routine: ml_static_mfree |
| 1890 | * Function: |
| 1891 | */ |
| 1892 | void |
| 1893 | ml_static_mfree( |
| 1894 | vm_offset_t vaddr, |
| 1895 | vm_size_t size) |
| 1896 | { |
| 1897 | vm_offset_t vaddr_cur; |
| 1898 | vm_offset_t paddr_cur; |
| 1899 | ppnum_t ppn; |
| 1900 | uint32_t freed_pages = 0; |
| 1901 | uint32_t freed_kernelcache_pages = 0; |
| 1902 | |
| 1903 | |
| 1904 | /* It is acceptable (if bad) to fail to free. */ |
| 1905 | if (vaddr < physmap_base) { |
| 1906 | return; |
| 1907 | } |
| 1908 | |
| 1909 | assert((vaddr & (PAGE_SIZE - 1)) == 0); /* must be page aligned */ |
| 1910 | |
| 1911 | for (vaddr_cur = vaddr; |
| 1912 | vaddr_cur < trunc_page_64(vaddr + size); |
| 1913 | vaddr_cur += PAGE_SIZE) { |
| 1914 | ppn = pmap_find_phys(map: kernel_pmap, va: vaddr_cur); |
| 1915 | if (ppn != (vm_offset_t) NULL) { |
| 1916 | /* |
| 1917 | * It is not acceptable to fail to update the protections on a page |
| 1918 | * we will release to the VM. We need to either panic or continue. |
| 1919 | * For now, we'll panic (to help flag if there is memory we can |
| 1920 | * reclaim). |
| 1921 | */ |
| 1922 | if (ml_static_protect(vaddr: vaddr_cur, PAGE_SIZE, VM_PROT_WRITE | VM_PROT_READ) != KERN_SUCCESS) { |
| 1923 | panic("Failed ml_static_mfree on %p" , (void *) vaddr_cur); |
| 1924 | } |
| 1925 | |
| 1926 | paddr_cur = ptoa(ppn); |
| 1927 | |
| 1928 | |
| 1929 | vm_page_create(start: ppn, end: (ppn + 1)); |
| 1930 | freed_pages++; |
| 1931 | #if defined(CONFIG_SPTM) |
| 1932 | if (ml_physaddr_in_bootkc_range(paddr_cur)) { |
| 1933 | #else |
| 1934 | if (paddr_cur >= arm_vm_kernelcache_phys_start && paddr_cur < arm_vm_kernelcache_phys_end) { |
| 1935 | #endif |
| 1936 | freed_kernelcache_pages++; |
| 1937 | } |
| 1938 | } |
| 1939 | } |
| 1940 | vm_page_lockspin_queues(); |
| 1941 | vm_page_wire_count -= freed_pages; |
| 1942 | vm_page_wire_count_initial -= freed_pages; |
| 1943 | vm_page_kernelcache_count -= freed_kernelcache_pages; |
| 1944 | vm_page_unlock_queues(); |
| 1945 | #if DEBUG |
| 1946 | kprintf("ml_static_mfree: Released 0x%x pages at VA %p, size:0x%llx, last ppn: 0x%x, +%d bad\n" , freed_pages, (void *)vaddr, (uint64_t)size, ppn, bad_page_cnt); |
| 1947 | #endif |
| 1948 | } |
| 1949 | |
| 1950 | /* |
| 1951 | * Routine: ml_page_protection_type |
| 1952 | * Function: Returns the type of page protection that the system supports. |
| 1953 | */ |
| 1954 | ml_page_protection_t |
| 1955 | ml_page_protection_type(void) |
| 1956 | { |
| 1957 | #if CONFIG_SPTM |
| 1958 | return 2; |
| 1959 | #elif XNU_MONITOR |
| 1960 | return 1; |
| 1961 | #else |
| 1962 | return 0; |
| 1963 | #endif |
| 1964 | } |
| 1965 | |
| 1966 | /* virtual to physical on wired pages */ |
| 1967 | vm_offset_t |
| 1968 | ml_vtophys(vm_offset_t vaddr) |
| 1969 | { |
| 1970 | return kvtophys(va: vaddr); |
| 1971 | } |
| 1972 | |
| 1973 | /* |
| 1974 | * Routine: ml_nofault_copy |
| 1975 | * Function: Perform a physical mode copy if the source and destination have |
| 1976 | * valid translations in the kernel pmap. If translations are present, they are |
| 1977 | * assumed to be wired; e.g., no attempt is made to guarantee that the |
| 1978 | * translations obtained remain valid for the duration of the copy process. |
| 1979 | */ |
| 1980 | vm_size_t |
| 1981 | ml_nofault_copy(vm_offset_t virtsrc, vm_offset_t virtdst, vm_size_t size) |
| 1982 | { |
| 1983 | addr64_t cur_phys_dst, cur_phys_src; |
| 1984 | vm_size_t count, nbytes = 0; |
| 1985 | |
| 1986 | while (size > 0) { |
| 1987 | if (!(cur_phys_src = kvtophys(va: virtsrc))) { |
| 1988 | break; |
| 1989 | } |
| 1990 | if (!(cur_phys_dst = kvtophys(va: virtdst))) { |
| 1991 | break; |
| 1992 | } |
| 1993 | if (!pmap_valid_address(trunc_page_64(cur_phys_dst)) || |
| 1994 | !pmap_valid_address(trunc_page_64(cur_phys_src))) { |
| 1995 | break; |
| 1996 | } |
| 1997 | count = PAGE_SIZE - (cur_phys_src & PAGE_MASK); |
| 1998 | if (count > (PAGE_SIZE - (cur_phys_dst & PAGE_MASK))) { |
| 1999 | count = PAGE_SIZE - (cur_phys_dst & PAGE_MASK); |
| 2000 | } |
| 2001 | if (count > size) { |
| 2002 | count = size; |
| 2003 | } |
| 2004 | |
| 2005 | bcopy_phys(from: cur_phys_src, to: cur_phys_dst, nbytes: count); |
| 2006 | |
| 2007 | nbytes += count; |
| 2008 | virtsrc += count; |
| 2009 | virtdst += count; |
| 2010 | size -= count; |
| 2011 | } |
| 2012 | |
| 2013 | return nbytes; |
| 2014 | } |
| 2015 | |
| 2016 | /* |
| 2017 | * Routine: ml_validate_nofault |
| 2018 | * Function: Validate that ths address range has a valid translations |
| 2019 | * in the kernel pmap. If translations are present, they are |
| 2020 | * assumed to be wired; i.e. no attempt is made to guarantee |
| 2021 | * that the translation persist after the check. |
| 2022 | * Returns: TRUE if the range is mapped and will not cause a fault, |
| 2023 | * FALSE otherwise. |
| 2024 | */ |
| 2025 | |
| 2026 | boolean_t |
| 2027 | ml_validate_nofault( |
| 2028 | vm_offset_t virtsrc, vm_size_t size) |
| 2029 | { |
| 2030 | addr64_t cur_phys_src; |
| 2031 | uint32_t count; |
| 2032 | |
| 2033 | while (size > 0) { |
| 2034 | if (!(cur_phys_src = kvtophys(va: virtsrc))) { |
| 2035 | return FALSE; |
| 2036 | } |
| 2037 | if (!pmap_valid_address(trunc_page_64(cur_phys_src))) { |
| 2038 | return FALSE; |
| 2039 | } |
| 2040 | count = (uint32_t)(PAGE_SIZE - (cur_phys_src & PAGE_MASK)); |
| 2041 | if (count > size) { |
| 2042 | count = (uint32_t)size; |
| 2043 | } |
| 2044 | |
| 2045 | virtsrc += count; |
| 2046 | size -= count; |
| 2047 | } |
| 2048 | |
| 2049 | return TRUE; |
| 2050 | } |
| 2051 | |
| 2052 | void |
| 2053 | ml_get_bouncepool_info(vm_offset_t * phys_addr, vm_size_t * size) |
| 2054 | { |
| 2055 | *phys_addr = 0; |
| 2056 | *size = 0; |
| 2057 | } |
| 2058 | |
| 2059 | void |
| 2060 | active_rt_threads(__unused boolean_t active) |
| 2061 | { |
| 2062 | } |
| 2063 | |
| 2064 | static void |
| 2065 | cpu_qos_cb_default(__unused int urgency, __unused uint64_t qos_param1, __unused uint64_t qos_param2) |
| 2066 | { |
| 2067 | return; |
| 2068 | } |
| 2069 | |
| 2070 | cpu_qos_update_t cpu_qos_update = cpu_qos_cb_default; |
| 2071 | |
| 2072 | void |
| 2073 | cpu_qos_update_register(cpu_qos_update_t cpu_qos_cb) |
| 2074 | { |
| 2075 | if (cpu_qos_cb != NULL) { |
| 2076 | cpu_qos_update = cpu_qos_cb; |
| 2077 | } else { |
| 2078 | cpu_qos_update = cpu_qos_cb_default; |
| 2079 | } |
| 2080 | } |
| 2081 | |
| 2082 | void |
| 2083 | thread_tell_urgency(thread_urgency_t urgency, uint64_t rt_period, uint64_t rt_deadline, uint64_t sched_latency __unused, __unused thread_t nthread) |
| 2084 | { |
| 2085 | SCHED_DEBUG_PLATFORM_KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED, MACH_URGENCY) | DBG_FUNC_START, urgency, rt_period, rt_deadline, sched_latency, 0); |
| 2086 | |
| 2087 | cpu_qos_update((int)urgency, rt_period, rt_deadline); |
| 2088 | |
| 2089 | SCHED_DEBUG_PLATFORM_KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED, MACH_URGENCY) | DBG_FUNC_END, urgency, rt_period, rt_deadline, 0, 0); |
| 2090 | } |
| 2091 | |
| 2092 | void |
| 2093 | machine_run_count(__unused uint32_t count) |
| 2094 | { |
| 2095 | } |
| 2096 | |
| 2097 | processor_t |
| 2098 | machine_choose_processor(__unused processor_set_t pset, processor_t processor) |
| 2099 | { |
| 2100 | return processor; |
| 2101 | } |
| 2102 | |
| 2103 | #if KASAN |
| 2104 | vm_offset_t ml_stack_base(void); |
| 2105 | vm_size_t ml_stack_size(void); |
| 2106 | |
| 2107 | vm_offset_t |
| 2108 | ml_stack_base(void) |
| 2109 | { |
| 2110 | uintptr_t local = (uintptr_t) &local; |
| 2111 | vm_offset_t intstack_top_ptr; |
| 2112 | |
| 2113 | intstack_top_ptr = getCpuDatap()->intstack_top; |
| 2114 | if ((local < intstack_top_ptr) && (local > intstack_top_ptr - INTSTACK_SIZE)) { |
| 2115 | return intstack_top_ptr - INTSTACK_SIZE; |
| 2116 | } else { |
| 2117 | return current_thread()->kernel_stack; |
| 2118 | } |
| 2119 | } |
| 2120 | vm_size_t |
| 2121 | ml_stack_size(void) |
| 2122 | { |
| 2123 | uintptr_t local = (uintptr_t) &local; |
| 2124 | vm_offset_t intstack_top_ptr; |
| 2125 | |
| 2126 | intstack_top_ptr = getCpuDatap()->intstack_top; |
| 2127 | if ((local < intstack_top_ptr) && (local > intstack_top_ptr - INTSTACK_SIZE)) { |
| 2128 | return INTSTACK_SIZE; |
| 2129 | } else { |
| 2130 | return kernel_stack_size; |
| 2131 | } |
| 2132 | } |
| 2133 | #endif |
| 2134 | |
| 2135 | #ifdef CONFIG_KCOV |
| 2136 | |
| 2137 | kcov_cpu_data_t * |
| 2138 | current_kcov_data(void) |
| 2139 | { |
| 2140 | return ¤t_cpu_datap()->cpu_kcov_data; |
| 2141 | } |
| 2142 | |
| 2143 | kcov_cpu_data_t * |
| 2144 | cpu_kcov_data(int cpuid) |
| 2145 | { |
| 2146 | return &cpu_datap(cpuid)->cpu_kcov_data; |
| 2147 | } |
| 2148 | |
| 2149 | #endif /* CONFIG_KCOV */ |
| 2150 | |
| 2151 | boolean_t |
| 2152 | machine_timeout_suspended(void) |
| 2153 | { |
| 2154 | return FALSE; |
| 2155 | } |
| 2156 | |
| 2157 | kern_return_t |
| 2158 | ml_interrupt_prewarm(__unused uint64_t deadline) |
| 2159 | { |
| 2160 | return KERN_FAILURE; |
| 2161 | } |
| 2162 | |
| 2163 | /* |
| 2164 | * Assumes fiq, irq disabled. |
| 2165 | */ |
| 2166 | void |
| 2167 | ml_set_decrementer(uint32_t dec_value) |
| 2168 | { |
| 2169 | cpu_data_t *cdp = getCpuDatap(); |
| 2170 | |
| 2171 | assert(ml_get_interrupts_enabled() == FALSE); |
| 2172 | cdp->cpu_decrementer = dec_value; |
| 2173 | |
| 2174 | if (cdp->cpu_set_decrementer_func) { |
| 2175 | cdp->cpu_set_decrementer_func(dec_value); |
| 2176 | } else { |
| 2177 | __builtin_arm_wsr64("CNTV_TVAL_EL0" , (uint64_t)dec_value); |
| 2178 | } |
| 2179 | } |
| 2180 | |
| 2181 | /** |
| 2182 | * Perform a read of the timebase which is permitted to be executed |
| 2183 | * speculatively and/or out of program order. |
| 2184 | */ |
| 2185 | static inline uint64_t |
| 2186 | speculative_timebase(void) |
| 2187 | { |
| 2188 | return __builtin_arm_rsr64("CNTVCT_EL0" ); |
| 2189 | } |
| 2190 | |
| 2191 | /** |
| 2192 | * Read a non-speculative view of the timebase if one is available, |
| 2193 | * otherwise fallback on an ISB to prevent prevent speculation and |
| 2194 | * enforce ordering. |
| 2195 | */ |
| 2196 | static inline uint64_t |
| 2197 | nonspeculative_timebase(void) |
| 2198 | { |
| 2199 | #if defined(HAS_ACNTVCT) |
| 2200 | return __builtin_arm_rsr64("S3_4_c15_c10_6" ); |
| 2201 | #elif __ARM_ARCH_8_6__ |
| 2202 | return __builtin_arm_rsr64("CNTVCTSS_EL0" ); |
| 2203 | #else |
| 2204 | // ISB required by ARMV7C.b section B8.1.2 & ARMv8 section D6.1.2 |
| 2205 | // "Reads of CNT[PV]CT[_EL0] can occur speculatively and out of order relative |
| 2206 | // to other instructions executed on the same processor." |
| 2207 | __builtin_arm_isb(ISB_SY); |
| 2208 | return speculative_timebase(); |
| 2209 | #endif |
| 2210 | } |
| 2211 | |
| 2212 | |
| 2213 | uint64_t |
| 2214 | ml_get_hwclock() |
| 2215 | { |
| 2216 | uint64_t timebase = nonspeculative_timebase(); |
| 2217 | return timebase; |
| 2218 | } |
| 2219 | |
| 2220 | uint64_t |
| 2221 | ml_get_timebase() |
| 2222 | { |
| 2223 | uint64_t clock, timebase; |
| 2224 | |
| 2225 | //the retry is for the case where S2R catches us in the middle of this. see rdar://77019633 |
| 2226 | do { |
| 2227 | timebase = getCpuDatap()->cpu_base_timebase; |
| 2228 | os_compiler_barrier(); |
| 2229 | clock = ml_get_hwclock(); |
| 2230 | os_compiler_barrier(); |
| 2231 | } while (getCpuDatap()->cpu_base_timebase != timebase); |
| 2232 | |
| 2233 | return clock + timebase; |
| 2234 | } |
| 2235 | |
| 2236 | /** |
| 2237 | * Issue a barrier that guarantees all prior memory accesses will complete |
| 2238 | * before any subsequent timebase reads. |
| 2239 | */ |
| 2240 | void |
| 2241 | ml_memory_to_timebase_fence(void) |
| 2242 | { |
| 2243 | __builtin_arm_dmb(DMB_SY); |
| 2244 | const uint64_t take_backwards_branch = 0; |
| 2245 | asm volatile ( |
| 2246 | "1:" |
| 2247 | "ldr x0, [%[take_backwards_branch]]" "\n" |
| 2248 | "cbnz x0, 1b" "\n" |
| 2249 | : |
| 2250 | : [take_backwards_branch] "r" (&take_backwards_branch) |
| 2251 | : "x0" |
| 2252 | ); |
| 2253 | |
| 2254 | /* throwaway read to prevent ml_get_speculative_timebase() reordering */ |
| 2255 | (void)ml_get_hwclock(); |
| 2256 | } |
| 2257 | |
| 2258 | /** |
| 2259 | * Issue a barrier that guarantees all prior timebase reads will |
| 2260 | * be ordered before any subsequent memory accesses. |
| 2261 | */ |
| 2262 | void |
| 2263 | ml_timebase_to_memory_fence(void) |
| 2264 | { |
| 2265 | __builtin_arm_isb(ISB_SY); |
| 2266 | } |
| 2267 | |
| 2268 | /* |
| 2269 | * Get the speculative timebase without an ISB. |
| 2270 | */ |
| 2271 | uint64_t |
| 2272 | ml_get_speculative_timebase(void) |
| 2273 | { |
| 2274 | uint64_t clock, timebase; |
| 2275 | |
| 2276 | //the retry is for the case where S2R catches us in the middle of this. see rdar://77019633&77697482 |
| 2277 | do { |
| 2278 | timebase = getCpuDatap()->cpu_base_timebase; |
| 2279 | os_compiler_barrier(); |
| 2280 | clock = speculative_timebase(); |
| 2281 | |
| 2282 | os_compiler_barrier(); |
| 2283 | } while (getCpuDatap()->cpu_base_timebase != timebase); |
| 2284 | |
| 2285 | return clock + timebase; |
| 2286 | } |
| 2287 | |
| 2288 | uint64_t |
| 2289 | ml_get_timebase_entropy(void) |
| 2290 | { |
| 2291 | return ml_get_speculative_timebase(); |
| 2292 | } |
| 2293 | |
| 2294 | uint32_t |
| 2295 | ml_get_decrementer(void) |
| 2296 | { |
| 2297 | cpu_data_t *cdp = getCpuDatap(); |
| 2298 | uint32_t dec; |
| 2299 | |
| 2300 | assert(ml_get_interrupts_enabled() == FALSE); |
| 2301 | |
| 2302 | if (cdp->cpu_get_decrementer_func) { |
| 2303 | dec = cdp->cpu_get_decrementer_func(); |
| 2304 | } else { |
| 2305 | uint64_t wide_val; |
| 2306 | |
| 2307 | wide_val = __builtin_arm_rsr64("CNTV_TVAL_EL0" ); |
| 2308 | dec = (uint32_t)wide_val; |
| 2309 | assert(wide_val == (uint64_t)dec); |
| 2310 | } |
| 2311 | |
| 2312 | return dec; |
| 2313 | } |
| 2314 | |
| 2315 | boolean_t |
| 2316 | ml_get_timer_pending(void) |
| 2317 | { |
| 2318 | uint64_t cntv_ctl = __builtin_arm_rsr64("CNTV_CTL_EL0" ); |
| 2319 | return ((cntv_ctl & CNTV_CTL_EL0_ISTATUS) != 0) ? TRUE : FALSE; |
| 2320 | } |
| 2321 | |
| 2322 | __attribute__((noreturn)) |
| 2323 | void |
| 2324 | platform_syscall(arm_saved_state_t *state) |
| 2325 | { |
| 2326 | uint32_t code; |
| 2327 | |
| 2328 | #define platform_syscall_kprintf(x...) /* kprintf("platform_syscall: " x) */ |
| 2329 | |
| 2330 | code = (uint32_t)get_saved_state_reg(iss: state, reg: 3); |
| 2331 | |
| 2332 | KDBG(MACHDBG_CODE(DBG_MACH_MACHDEP_EXCP_SC_ARM, code) | DBG_FUNC_START, |
| 2333 | get_saved_state_reg(state, 0), |
| 2334 | get_saved_state_reg(state, 1), |
| 2335 | get_saved_state_reg(state, 2)); |
| 2336 | |
| 2337 | switch (code) { |
| 2338 | case 2: |
| 2339 | /* set cthread */ |
| 2340 | platform_syscall_kprintf("set cthread self.\n" ); |
| 2341 | thread_set_cthread_self(get_saved_state_reg(iss: state, reg: 0)); |
| 2342 | break; |
| 2343 | case 3: |
| 2344 | /* get cthread */ |
| 2345 | platform_syscall_kprintf("get cthread self.\n" ); |
| 2346 | set_user_saved_state_reg(iss: state, reg: 0, value: thread_get_cthread_self()); |
| 2347 | break; |
| 2348 | case 0: /* I-Cache flush (removed) */ |
| 2349 | case 1: /* D-Cache flush (removed) */ |
| 2350 | default: |
| 2351 | platform_syscall_kprintf("unknown: %d\n" , code); |
| 2352 | break; |
| 2353 | } |
| 2354 | |
| 2355 | KDBG(MACHDBG_CODE(DBG_MACH_MACHDEP_EXCP_SC_ARM, code) | DBG_FUNC_END, |
| 2356 | get_saved_state_reg(state, 0)); |
| 2357 | |
| 2358 | thread_exception_return(); |
| 2359 | } |
| 2360 | |
| 2361 | static void |
| 2362 | _enable_timebase_event_stream(uint32_t bit_index) |
| 2363 | { |
| 2364 | uint64_t cntkctl; /* One wants to use 32 bits, but "mrs" prefers it this way */ |
| 2365 | |
| 2366 | if (bit_index >= 64) { |
| 2367 | panic("%s: invalid bit index (%u)" , __FUNCTION__, bit_index); |
| 2368 | } |
| 2369 | |
| 2370 | __asm__ volatile ("mrs %0, CNTKCTL_EL1" : "=r" (cntkctl)); |
| 2371 | |
| 2372 | cntkctl |= (bit_index << CNTKCTL_EL1_EVENTI_SHIFT); |
| 2373 | cntkctl |= CNTKCTL_EL1_EVNTEN; |
| 2374 | cntkctl |= CNTKCTL_EL1_EVENTDIR; /* 1->0; why not? */ |
| 2375 | |
| 2376 | /* |
| 2377 | * If the SOC supports it (and it isn't broken), enable |
| 2378 | * EL0 access to the timebase registers. |
| 2379 | */ |
| 2380 | if (user_timebase_type() != USER_TIMEBASE_NONE) { |
| 2381 | cntkctl |= (CNTKCTL_EL1_PL0PCTEN | CNTKCTL_EL1_PL0VCTEN); |
| 2382 | } |
| 2383 | |
| 2384 | __builtin_arm_wsr64("CNTKCTL_EL1" , cntkctl); |
| 2385 | } |
| 2386 | |
| 2387 | /* |
| 2388 | * Turn timer on, unmask that interrupt. |
| 2389 | */ |
| 2390 | static void |
| 2391 | _enable_virtual_timer(void) |
| 2392 | { |
| 2393 | uint64_t cntvctl = CNTV_CTL_EL0_ENABLE; /* One wants to use 32 bits, but "mrs" prefers it this way */ |
| 2394 | |
| 2395 | __builtin_arm_wsr64("CNTV_CTL_EL0" , cntvctl); |
| 2396 | /* disable the physical timer as a precaution, as its registers reset to architecturally unknown values */ |
| 2397 | __builtin_arm_wsr64("CNTP_CTL_EL0" , CNTP_CTL_EL0_IMASKED); |
| 2398 | } |
| 2399 | |
| 2400 | void |
| 2401 | fiq_context_init(boolean_t enable_fiq __unused) |
| 2402 | { |
| 2403 | /* Interrupts still disabled. */ |
| 2404 | assert(ml_get_interrupts_enabled() == FALSE); |
| 2405 | _enable_virtual_timer(); |
| 2406 | } |
| 2407 | |
| 2408 | void |
| 2409 | wfe_timeout_init(void) |
| 2410 | { |
| 2411 | _enable_timebase_event_stream(bit_index: arm64_eventi); |
| 2412 | } |
| 2413 | |
| 2414 | /** |
| 2415 | * Configures, but does not enable, the WFE event stream. The event stream |
| 2416 | * generates an event at a set interval to act as a timeout for WFEs. |
| 2417 | * |
| 2418 | * This function sets the static global variable arm64_eventi to be the proper |
| 2419 | * bit index for the CNTKCTL_EL1.EVENTI field to generate events at the correct |
| 2420 | * period (1us unless specified by the "wfe_events_sec" boot-arg). arm64_eventi |
| 2421 | * is used by wfe_timeout_init to actually poke the registers and enable the |
| 2422 | * event stream. |
| 2423 | * |
| 2424 | * The CNTKCTL_EL1.EVENTI field contains the index of the bit of CNTVCT_EL0 that |
| 2425 | * is the trigger for the system to generate an event. The trigger can occur on |
| 2426 | * either the rising or falling edge of the bit depending on the value of |
| 2427 | * CNTKCTL_EL1.EVNTDIR. This is arbitrary for our purposes, so we use the |
| 2428 | * falling edge (1->0) transition to generate events. |
| 2429 | */ |
| 2430 | void |
| 2431 | wfe_timeout_configure(void) |
| 2432 | { |
| 2433 | /* Could fill in our own ops here, if we needed them */ |
| 2434 | uint64_t ticks_per_sec, ticks_per_event, events_per_sec = 0; |
| 2435 | uint32_t bit_index; |
| 2436 | |
| 2437 | if (PE_parse_boot_argn(arg_string: "wfe_events_sec" , arg_ptr: &events_per_sec, max_arg: sizeof(events_per_sec))) { |
| 2438 | if (events_per_sec <= 0) { |
| 2439 | events_per_sec = 1; |
| 2440 | } else if (events_per_sec > USEC_PER_SEC) { |
| 2441 | events_per_sec = USEC_PER_SEC; |
| 2442 | } |
| 2443 | } else { |
| 2444 | events_per_sec = USEC_PER_SEC; |
| 2445 | } |
| 2446 | ticks_per_sec = gPEClockFrequencyInfo.timebase_frequency_hz; |
| 2447 | ticks_per_event = ticks_per_sec / events_per_sec; |
| 2448 | |
| 2449 | /* Bit index of next power of two greater than ticks_per_event */ |
| 2450 | bit_index = flsll(mask: ticks_per_event) - 1; |
| 2451 | /* Round up to next power of two if ticks_per_event is initially power of two */ |
| 2452 | if ((ticks_per_event & ((1 << bit_index) - 1)) != 0) { |
| 2453 | bit_index++; |
| 2454 | } |
| 2455 | |
| 2456 | /* |
| 2457 | * The timer can only trigger on rising or falling edge, not both; we don't |
| 2458 | * care which we trigger on, but we do need to adjust which bit we are |
| 2459 | * interested in to account for this. |
| 2460 | * |
| 2461 | * In particular, we set CNTKCTL_EL1.EVENTDIR to trigger events on the |
| 2462 | * falling edge of the given bit. Therefore, we must decrement the bit index |
| 2463 | * by one as when the bit before the one we care about makes a 1 -> 0 |
| 2464 | * transition, the bit we care about makes a 0 -> 1 transition. |
| 2465 | * |
| 2466 | * For example if we want an event generated every 8 ticks (if we calculated |
| 2467 | * a bit_index of 3), we would want the event to be generated whenever the |
| 2468 | * lower four bits of the counter transition from 0b0111 -> 0b1000. We can |
| 2469 | * see that the bit at index 2 makes a falling transition in this scenario, |
| 2470 | * so we would want EVENTI to be 2 instead of 3. |
| 2471 | */ |
| 2472 | if (bit_index != 0) { |
| 2473 | bit_index--; |
| 2474 | } |
| 2475 | |
| 2476 | arm64_eventi = bit_index; |
| 2477 | } |
| 2478 | |
| 2479 | boolean_t |
| 2480 | ml_delay_should_spin(uint64_t interval) |
| 2481 | { |
| 2482 | cpu_data_t *cdp = getCpuDatap(); |
| 2483 | |
| 2484 | if (cdp->cpu_idle_latency) { |
| 2485 | return (interval < cdp->cpu_idle_latency) ? TRUE : FALSE; |
| 2486 | } else { |
| 2487 | /* |
| 2488 | * Early boot, latency is unknown. Err on the side of blocking, |
| 2489 | * which should always be safe, even if slow |
| 2490 | */ |
| 2491 | return FALSE; |
| 2492 | } |
| 2493 | } |
| 2494 | |
| 2495 | boolean_t |
| 2496 | ml_thread_is64bit(thread_t thread) |
| 2497 | { |
| 2498 | return thread_is_64bit_addr(thread); |
| 2499 | } |
| 2500 | |
| 2501 | void |
| 2502 | ml_delay_on_yield(void) |
| 2503 | { |
| 2504 | #if DEVELOPMENT || DEBUG |
| 2505 | if (yield_delay_us) { |
| 2506 | delay(yield_delay_us); |
| 2507 | } |
| 2508 | #endif |
| 2509 | } |
| 2510 | |
| 2511 | void |
| 2512 | ml_timer_evaluate(void) |
| 2513 | { |
| 2514 | } |
| 2515 | |
| 2516 | boolean_t |
| 2517 | ml_timer_forced_evaluation(void) |
| 2518 | { |
| 2519 | return FALSE; |
| 2520 | } |
| 2521 | |
| 2522 | void |
| 2523 | ml_gpu_stat_update(__unused uint64_t gpu_ns_delta) |
| 2524 | { |
| 2525 | /* |
| 2526 | * For now: update the resource coalition stats of the |
| 2527 | * current thread's coalition |
| 2528 | */ |
| 2529 | task_coalition_update_gpu_stats(task: current_task(), gpu_ns_delta); |
| 2530 | } |
| 2531 | |
| 2532 | uint64_t |
| 2533 | ml_gpu_stat(__unused thread_t t) |
| 2534 | { |
| 2535 | return 0; |
| 2536 | } |
| 2537 | |
| 2538 | thread_t |
| 2539 | current_thread(void) |
| 2540 | { |
| 2541 | return current_thread_fast(); |
| 2542 | } |
| 2543 | |
| 2544 | #if defined(HAS_APPLE_PAC) |
| 2545 | uint8_t |
| 2546 | ml_task_get_disable_user_jop(task_t task) |
| 2547 | { |
| 2548 | assert(task); |
| 2549 | return task->disable_user_jop; |
| 2550 | } |
| 2551 | |
| 2552 | void |
| 2553 | ml_task_set_disable_user_jop(task_t task, uint8_t disable_user_jop) |
| 2554 | { |
| 2555 | assert(task); |
| 2556 | task->disable_user_jop = disable_user_jop; |
| 2557 | } |
| 2558 | |
| 2559 | void |
| 2560 | ml_thread_set_disable_user_jop(thread_t thread, uint8_t disable_user_jop) |
| 2561 | { |
| 2562 | assert(thread); |
| 2563 | if (disable_user_jop) { |
| 2564 | thread->machine.arm_machine_flags |= ARM_MACHINE_THREAD_DISABLE_USER_JOP; |
| 2565 | } else { |
| 2566 | thread->machine.arm_machine_flags &= ~ARM_MACHINE_THREAD_DISABLE_USER_JOP; |
| 2567 | } |
| 2568 | } |
| 2569 | |
| 2570 | void |
| 2571 | ml_task_set_rop_pid(task_t task, task_t parent_task, boolean_t inherit) |
| 2572 | { |
| 2573 | if (inherit) { |
| 2574 | task->rop_pid = parent_task->rop_pid; |
| 2575 | } else { |
| 2576 | task->rop_pid = early_random(); |
| 2577 | } |
| 2578 | } |
| 2579 | |
| 2580 | /** |
| 2581 | * jop_pid may be inherited from the parent task or generated inside the shared |
| 2582 | * region. Unfortunately these two parameters are available at very different |
| 2583 | * times during task creation, so we need to split this into two steps. |
| 2584 | */ |
| 2585 | void |
| 2586 | ml_task_set_jop_pid(task_t task, task_t parent_task, boolean_t inherit, boolean_t disable_user_jop) |
| 2587 | { |
| 2588 | if (inherit) { |
| 2589 | task->jop_pid = parent_task->jop_pid; |
| 2590 | } else if (disable_user_jop) { |
| 2591 | task->jop_pid = ml_non_arm64e_user_jop_pid(); |
| 2592 | } else { |
| 2593 | task->jop_pid = ml_default_jop_pid(); |
| 2594 | } |
| 2595 | } |
| 2596 | |
| 2597 | void |
| 2598 | ml_task_set_jop_pid_from_shared_region(task_t task, boolean_t disable_user_jop) |
| 2599 | { |
| 2600 | if (disable_user_jop) { |
| 2601 | task->jop_pid = ml_non_arm64e_user_jop_pid(); |
| 2602 | return; |
| 2603 | } |
| 2604 | |
| 2605 | vm_shared_region_t sr = vm_shared_region_get(task); |
| 2606 | /* |
| 2607 | * If there's no shared region, we can assign the key arbitrarily. This |
| 2608 | * typically happens when Mach-O image activation failed part of the way |
| 2609 | * through, and this task is in the middle of dying with SIGKILL anyway. |
| 2610 | */ |
| 2611 | if (__improbable(!sr)) { |
| 2612 | task->jop_pid = early_random(); |
| 2613 | return; |
| 2614 | } |
| 2615 | vm_shared_region_deallocate(shared_region: sr); |
| 2616 | |
| 2617 | /* |
| 2618 | * Similarly we have to worry about jetsam having killed the task and |
| 2619 | * already cleared the shared_region_id. |
| 2620 | */ |
| 2621 | task_lock(task); |
| 2622 | if (task->shared_region_id != NULL) { |
| 2623 | task->jop_pid = shared_region_find_key(shared_region_id: task->shared_region_id); |
| 2624 | } else { |
| 2625 | task->jop_pid = early_random(); |
| 2626 | } |
| 2627 | task_unlock(task); |
| 2628 | } |
| 2629 | |
| 2630 | void |
| 2631 | ml_thread_set_jop_pid(thread_t thread, task_t task) |
| 2632 | { |
| 2633 | thread->machine.jop_pid = task->jop_pid; |
| 2634 | } |
| 2635 | #endif /* defined(HAS_APPLE_PAC) */ |
| 2636 | |
| 2637 | #if DEVELOPMENT || DEBUG |
| 2638 | static uint64_t minor_badness_suffered = 0; |
| 2639 | #endif |
| 2640 | void |
| 2641 | ml_report_minor_badness(uint32_t __unused badness_id) |
| 2642 | { |
| 2643 | #if DEVELOPMENT || DEBUG |
| 2644 | (void)os_atomic_or(&minor_badness_suffered, 1ULL << badness_id, relaxed); |
| 2645 | #endif |
| 2646 | } |
| 2647 | |
| 2648 | #if defined(HAS_APPLE_PAC) |
| 2649 | #if __ARM_ARCH_8_6__ || APPLEVIRTUALPLATFORM |
| 2650 | /** |
| 2651 | * The ARMv8.6 implementation is also safe for non-FPAC CPUs, but less efficient; |
| 2652 | * guest kernels need to use it because it does not know at compile time whether |
| 2653 | * the host CPU supports FPAC. |
| 2654 | */ |
| 2655 | |
| 2656 | /** |
| 2657 | * Emulates the poisoning done by ARMv8.3-PAuth instructions on auth failure. |
| 2658 | */ |
| 2659 | static void * |
| 2660 | ml_poison_ptr(void *ptr, ptrauth_key key) |
| 2661 | { |
| 2662 | bool b_key = key & (1ULL << 0); |
| 2663 | uint64_t error_code; |
| 2664 | if (b_key) { |
| 2665 | error_code = 2; |
| 2666 | } else { |
| 2667 | error_code = 1; |
| 2668 | } |
| 2669 | |
| 2670 | bool kernel_pointer = (uintptr_t)ptr & (1ULL << 55); |
| 2671 | bool data_key = key & (1ULL << 1); |
| 2672 | /* When PAC is enabled, only userspace data pointers use TBI, regardless of boot parameters */ |
| 2673 | bool tbi = data_key && !kernel_pointer; |
| 2674 | unsigned int poison_shift; |
| 2675 | if (tbi) { |
| 2676 | poison_shift = 53; |
| 2677 | } else { |
| 2678 | poison_shift = 61; |
| 2679 | } |
| 2680 | |
| 2681 | uintptr_t poisoned = (uintptr_t)ptr; |
| 2682 | poisoned &= ~(3ULL << poison_shift); |
| 2683 | poisoned |= error_code << poison_shift; |
| 2684 | return (void *)poisoned; |
| 2685 | } |
| 2686 | |
| 2687 | /* |
| 2688 | * ptrauth_sign_unauthenticated() reimplemented using asm volatile, forcing the |
| 2689 | * compiler to assume this operation has side-effects and cannot be reordered |
| 2690 | */ |
| 2691 | #define ptrauth_sign_volatile(__value, __suffix, __data) \ |
| 2692 | ({ \ |
| 2693 | void *__ret = __value; \ |
| 2694 | asm volatile ( \ |
| 2695 | "pac" #__suffix " %[value], %[data]" \ |
| 2696 | : [value] "+r"(__ret) \ |
| 2697 | : [data] "r"(__data) \ |
| 2698 | ); \ |
| 2699 | __ret; \ |
| 2700 | }) |
| 2701 | |
| 2702 | #define ml_auth_ptr_unchecked_for_key(_ptr, _suffix, _key, _modifier) \ |
| 2703 | do { \ |
| 2704 | void *stripped = ptrauth_strip(_ptr, _key); \ |
| 2705 | void *reauthed = ptrauth_sign_volatile(stripped, _suffix, _modifier); \ |
| 2706 | if (__probable(_ptr == reauthed)) { \ |
| 2707 | _ptr = stripped; \ |
| 2708 | } else { \ |
| 2709 | _ptr = ml_poison_ptr(stripped, _key); \ |
| 2710 | } \ |
| 2711 | } while (0) |
| 2712 | |
| 2713 | #define _ml_auth_ptr_unchecked(_ptr, _suffix, _modifier) \ |
| 2714 | ml_auth_ptr_unchecked_for_key(_ptr, _suffix, ptrauth_key_as ## _suffix, _modifier) |
| 2715 | #else |
| 2716 | #define _ml_auth_ptr_unchecked(_ptr, _suffix, _modifier) \ |
| 2717 | asm volatile ("aut" #_suffix " %[ptr], %[modifier]" : [ptr] "+r"(_ptr) : [modifier] "r"(_modifier)); |
| 2718 | #endif /* __ARM_ARCH_8_6__ || APPLEVIRTUALPLATFORM */ |
| 2719 | |
| 2720 | /** |
| 2721 | * Authenticates a signed pointer without trapping on failure. |
| 2722 | * |
| 2723 | * @warning This function must be called with interrupts disabled. |
| 2724 | * |
| 2725 | * @warning Pointer authentication failure should normally be treated as a fatal |
| 2726 | * error. This function is intended for a handful of callers that cannot panic |
| 2727 | * on failure, and that understand the risks in handling a poisoned return |
| 2728 | * value. Other code should generally use the trapping variant |
| 2729 | * ptrauth_auth_data() instead. |
| 2730 | * |
| 2731 | * @param ptr the pointer to authenticate |
| 2732 | * @param key which key to use for authentication |
| 2733 | * @param modifier a modifier to mix into the key |
| 2734 | * @return an authenticated version of ptr, possibly with poison bits set |
| 2735 | */ |
| 2736 | void * |
| 2737 | ml_auth_ptr_unchecked(void *ptr, ptrauth_key key, uint64_t modifier) |
| 2738 | { |
| 2739 | switch (key & 0x3) { |
| 2740 | case ptrauth_key_asia: |
| 2741 | _ml_auth_ptr_unchecked(ptr, ia, modifier); |
| 2742 | break; |
| 2743 | case ptrauth_key_asib: |
| 2744 | _ml_auth_ptr_unchecked(ptr, ib, modifier); |
| 2745 | break; |
| 2746 | case ptrauth_key_asda: |
| 2747 | _ml_auth_ptr_unchecked(ptr, da, modifier); |
| 2748 | break; |
| 2749 | case ptrauth_key_asdb: |
| 2750 | _ml_auth_ptr_unchecked(ptr, db, modifier); |
| 2751 | break; |
| 2752 | } |
| 2753 | |
| 2754 | return ptr; |
| 2755 | } |
| 2756 | #endif /* defined(HAS_APPLE_PAC) */ |
| 2757 | |
| 2758 | #ifdef CONFIG_XNUPOST |
| 2759 | void |
| 2760 | ml_expect_fault_begin(expected_fault_handler_t expected_fault_handler, uintptr_t expected_fault_addr) |
| 2761 | { |
| 2762 | thread_t thread = current_thread(); |
| 2763 | thread->machine.expected_fault_handler = expected_fault_handler; |
| 2764 | thread->machine.expected_fault_addr = expected_fault_addr; |
| 2765 | thread->machine.expected_fault_pc = 0; |
| 2766 | } |
| 2767 | |
| 2768 | /** Expect an exception to be thrown at EXPECTED_FAULT_PC */ |
| 2769 | void |
| 2770 | ml_expect_fault_pc_begin(expected_fault_handler_t expected_fault_handler, uintptr_t expected_fault_pc) |
| 2771 | { |
| 2772 | thread_t thread = current_thread(); |
| 2773 | thread->machine.expected_fault_handler = expected_fault_handler; |
| 2774 | thread->machine.expected_fault_addr = 0; |
| 2775 | uintptr_t raw_func = (uintptr_t)ptrauth_strip( |
| 2776 | (void *)expected_fault_pc, |
| 2777 | ptrauth_key_function_pointer); |
| 2778 | thread->machine.expected_fault_pc = raw_func; |
| 2779 | } |
| 2780 | |
| 2781 | void |
| 2782 | ml_expect_fault_end(void) |
| 2783 | { |
| 2784 | thread_t thread = current_thread(); |
| 2785 | thread->machine.expected_fault_handler = NULL; |
| 2786 | thread->machine.expected_fault_addr = 0; |
| 2787 | thread->machine.expected_fault_pc = 0; |
| 2788 | } |
| 2789 | #endif /* CONFIG_XNUPOST */ |
| 2790 | |
| 2791 | void |
| 2792 | ml_hibernate_active_pre(void) |
| 2793 | { |
| 2794 | #if HIBERNATION |
| 2795 | if (kIOHibernateStateWakingFromHibernate == gIOHibernateState) { |
| 2796 | |
| 2797 | hibernate_rebuild_vm_structs(); |
| 2798 | } |
| 2799 | #endif /* HIBERNATION */ |
| 2800 | } |
| 2801 | |
| 2802 | void |
| 2803 | ml_hibernate_active_post(void) |
| 2804 | { |
| 2805 | #if HIBERNATION |
| 2806 | if (kIOHibernateStateWakingFromHibernate == gIOHibernateState) { |
| 2807 | hibernate_machine_init(); |
| 2808 | hibernate_vm_lock_end(); |
| 2809 | current_cpu_datap()->cpu_hibernate = 0; |
| 2810 | } |
| 2811 | #endif /* HIBERNATION */ |
| 2812 | } |
| 2813 | |
| 2814 | /** |
| 2815 | * Return back a machine-dependent array of address space regions that should be |
| 2816 | * reserved by the VM (pre-mapped in the address space). This will prevent user |
| 2817 | * processes from allocating or deallocating from within these regions. |
| 2818 | * |
| 2819 | * @param vm_is64bit True if the process has a 64-bit address space. |
| 2820 | * @param regions An out parameter representing an array of regions to reserve. |
| 2821 | * |
| 2822 | * @return The number of reserved regions returned through `regions`. |
| 2823 | */ |
| 2824 | size_t |
| 2825 | ml_get_vm_reserved_regions(bool vm_is64bit, const struct vm_reserved_region **regions) |
| 2826 | { |
| 2827 | assert(regions != NULL); |
| 2828 | |
| 2829 | /** |
| 2830 | * Reserved regions only apply to 64-bit address spaces. This is because |
| 2831 | * we only expect to grow the maximum user VA address on 64-bit address spaces |
| 2832 | * (we've essentially already reached the max for 32-bit spaces). The reserved |
| 2833 | * regions should safely fall outside of the max user VA for 32-bit processes. |
| 2834 | */ |
| 2835 | if (vm_is64bit) { |
| 2836 | *regions = vm_reserved_regions; |
| 2837 | return ARRAY_COUNT(vm_reserved_regions); |
| 2838 | } else { |
| 2839 | /* Don't reserve any VA regions on arm64_32 processes. */ |
| 2840 | *regions = NULL; |
| 2841 | return 0; |
| 2842 | } |
| 2843 | } |
| 2844 | |
| 2845 | /* These WFE recommendations are expected to be updated on a relatively |
| 2846 | * infrequent cadence, possibly from a different cluster, hence |
| 2847 | * false cacheline sharing isn't expected to be material |
| 2848 | */ |
| 2849 | static uint64_t arm64_cluster_wfe_recs[MAX_CPU_CLUSTERS]; |
| 2850 | |
| 2851 | uint32_t |
| 2852 | ml_update_cluster_wfe_recommendation(uint32_t wfe_cluster_id, uint64_t wfe_timeout_abstime_interval, __unused uint64_t wfe_hint_flags) |
| 2853 | { |
| 2854 | assert(wfe_cluster_id < MAX_CPU_CLUSTERS); |
| 2855 | assert(wfe_timeout_abstime_interval <= ml_wfe_hint_max_interval); |
| 2856 | os_atomic_store(&arm64_cluster_wfe_recs[wfe_cluster_id], wfe_timeout_abstime_interval, relaxed); |
| 2857 | return 0; /* Success */ |
| 2858 | } |
| 2859 | |
| 2860 | #if DEVELOPMENT || DEBUG |
| 2861 | int wfe_rec_max = 0; |
| 2862 | int wfe_rec_none = 0; |
| 2863 | uint64_t wfe_rec_override_mat = 0; |
| 2864 | uint64_t wfe_rec_clamp = 0; |
| 2865 | #endif |
| 2866 | |
| 2867 | uint64_t |
| 2868 | ml_cluster_wfe_timeout(uint32_t wfe_cluster_id) |
| 2869 | { |
| 2870 | /* This and its consumer does not synchronize vis-a-vis updates |
| 2871 | * of the recommendation; races are acceptable. |
| 2872 | */ |
| 2873 | uint64_t wfet = os_atomic_load(&arm64_cluster_wfe_recs[wfe_cluster_id], relaxed); |
| 2874 | #if DEVELOPMENT || DEBUG |
| 2875 | if (wfe_rec_clamp) { |
| 2876 | wfet = MIN(wfe_rec_clamp, wfet); |
| 2877 | } |
| 2878 | |
| 2879 | if (wfe_rec_max) { |
| 2880 | for (int i = 0; i < MAX_CPU_CLUSTERS; i++) { |
| 2881 | if (arm64_cluster_wfe_recs[i] > wfet) { |
| 2882 | wfet = arm64_cluster_wfe_recs[i]; |
| 2883 | } |
| 2884 | } |
| 2885 | } |
| 2886 | |
| 2887 | if (wfe_rec_none) { |
| 2888 | wfet = 0; |
| 2889 | } |
| 2890 | |
| 2891 | if (wfe_rec_override_mat) { |
| 2892 | wfet = wfe_rec_override_mat; |
| 2893 | } |
| 2894 | #endif |
| 2895 | return wfet; |
| 2896 | } |
| 2897 | |
| 2898 | __pure2 bool |
| 2899 | ml_addr_in_non_xnu_stack(__unused uintptr_t addr) |
| 2900 | { |
| 2901 | #if CONFIG_SPTM |
| 2902 | /** |
| 2903 | * If the address is within one of the SPTM-allocated per-cpu stacks, then |
| 2904 | * return true. |
| 2905 | */ |
| 2906 | if ((addr >= SPTMArgs->cpu_stack_papt_start) && |
| 2907 | (addr < SPTMArgs->cpu_stack_papt_end)) { |
| 2908 | return true; |
| 2909 | } |
| 2910 | |
| 2911 | /** |
| 2912 | * If the address is within one of the TXM thread stacks, then return true. |
| 2913 | * The SPTM guarantees that these stacks are virtually contiguous. |
| 2914 | */ |
| 2915 | if ((addr >= SPTMArgs->txm_thread_stacks[0]) && |
| 2916 | (addr < SPTMArgs->txm_thread_stacks[MAX_CPUS - 1])) { |
| 2917 | return true; |
| 2918 | } |
| 2919 | |
| 2920 | return false; |
| 2921 | #elif XNU_MONITOR |
| 2922 | return (addr >= (uintptr_t)pmap_stacks_start) && (addr < (uintptr_t)pmap_stacks_end); |
| 2923 | #else |
| 2924 | return false; |
| 2925 | #endif /* CONFIG_SPTM || XNU_MONITOR */ |
| 2926 | } |
| 2927 | |
| 2928 | uint64_t |
| 2929 | ml_get_backtrace_pc(struct arm_saved_state *state) |
| 2930 | { |
| 2931 | assert((state != NULL) && is_saved_state64(state)); |
| 2932 | |
| 2933 | #if CONFIG_SPTM |
| 2934 | /** |
| 2935 | * On SPTM-based systems, when a non-XNU domain (e.g., SPTM) is interrupted, |
| 2936 | * the PC value saved into the state is not the actual PC at the interrupted |
| 2937 | * point, but a fixed value to a handler that knows how to re-enter the |
| 2938 | * interrupted domain. The interrupted domain's actual PC value is saved |
| 2939 | * into x14, so let's return that instead. |
| 2940 | */ |
| 2941 | if (ml_addr_in_non_xnu_stack(get_saved_state_fp(state))) { |
| 2942 | return saved_state64(state)->x[14]; |
| 2943 | } |
| 2944 | #endif /* CONFIG_SPTM */ |
| 2945 | |
| 2946 | return get_saved_state_pc(iss: state); |
| 2947 | } |
| 2948 | |
| 2949 | |
| 2950 | bool |
| 2951 | ml_paddr_is_exclaves_owned(vm_offset_t paddr) |
| 2952 | { |
| 2953 | #if CONFIG_SPTM |
| 2954 | const sptm_frame_type_t type = sptm_get_frame_type(paddr); |
| 2955 | return type == SK_DEFAULT || type == SK_IO; // SK_SHARED_R[OW] are not exclusively exclaves frames |
| 2956 | #else |
| 2957 | #pragma unused(paddr) |
| 2958 | return false; |
| 2959 | #endif /* CONFIG_SPTM */ |
| 2960 | } |
| 2961 | |
| 2962 | /** |
| 2963 | * Panic because an ARM saved-state accessor expected user saved-state but was |
| 2964 | * passed non-user saved-state. |
| 2965 | * |
| 2966 | * @param ss invalid saved-state (CPSR.M != EL0) |
| 2967 | */ |
| 2968 | void |
| 2969 | ml_panic_on_invalid_old_cpsr(const arm_saved_state_t *ss) |
| 2970 | { |
| 2971 | panic("invalid CPSR in user saved-state %p" , ss); |
| 2972 | } |
| 2973 | |
| 2974 | /** |
| 2975 | * Panic because an ARM saved-state accessor was passed user saved-state and |
| 2976 | * asked to assign a non-user CPSR. |
| 2977 | * |
| 2978 | * @param ss original EL0 saved-state |
| 2979 | * @param cpsr invalid new CPSR value (CPSR.M != EL0) |
| 2980 | */ |
| 2981 | void |
| 2982 | ml_panic_on_invalid_new_cpsr(const arm_saved_state_t *ss, uint32_t cpsr) |
| 2983 | { |
| 2984 | panic("attempt to set non-user CPSR %#010x on user saved-state %p" , cpsr, ss); |
| 2985 | } |
| 2986 | |
| 2987 | /** |
| 2988 | * Explicitly preallocates a floating point save area. |
| 2989 | * This is a noop on ARM because preallocation isn't required at this time. |
| 2990 | */ |
| 2991 | void |
| 2992 | ml_fp_save_area_prealloc(void) |
| 2993 | { |
| 2994 | } |
| 2995 | |