| 1 | /* |
| 2 | * Copyright (c) 2007-2021 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
| 5 | * |
| 6 | * This file contains Original Code and/or Modifications of Original Code |
| 7 | * as defined in and that are subject to the Apple Public Source License |
| 8 | * Version 2.0 (the 'License'). You may not use this file except in |
| 9 | * compliance with the License. The rights granted to you under the License |
| 10 | * may not be used to create, or enable the creation or redistribution of, |
| 11 | * unlawful or unlicensed copies of an Apple operating system, or to |
| 12 | * circumvent, violate, or enable the circumvention or violation of, any |
| 13 | * terms of an Apple operating system software license agreement. |
| 14 | * |
| 15 | * Please obtain a copy of the License at |
| 16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. |
| 17 | * |
| 18 | * The Original Code and all software distributed under the License are |
| 19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| 23 | * Please see the License for the specific language governing rights and |
| 24 | * limitations under the License. |
| 25 | * |
| 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
| 27 | */ |
| 28 | /* |
| 29 | * File: arm64/cpu.c |
| 30 | * |
| 31 | * cpu specific routines |
| 32 | */ |
| 33 | |
| 34 | #include <pexpert/arm64/board_config.h> |
| 35 | #include <kern/kalloc.h> |
| 36 | #include <kern/machine.h> |
| 37 | #include <kern/cpu_number.h> |
| 38 | #include <kern/percpu.h> |
| 39 | #include <kern/thread.h> |
| 40 | #include <kern/timer_queue.h> |
| 41 | #include <arm/cpu_data.h> |
| 42 | #include <arm/cpuid.h> |
| 43 | #include <arm/caches_internal.h> |
| 44 | #include <arm/cpu_data_internal.h> |
| 45 | #include <arm/cpu_internal.h> |
| 46 | #include <arm/misc_protos.h> |
| 47 | #include <arm/machine_cpu.h> |
| 48 | #include <arm/rtclock.h> |
| 49 | #include <arm64/proc_reg.h> |
| 50 | #include <mach/processor_info.h> |
| 51 | #include <vm/pmap.h> |
| 52 | #include <vm/vm_kern.h> |
| 53 | #include <vm/vm_map.h> |
| 54 | #include <pexpert/arm/protos.h> |
| 55 | #include <pexpert/device_tree.h> |
| 56 | #include <sys/kdebug.h> |
| 57 | #include <arm/machine_routines.h> |
| 58 | |
| 59 | #include <machine/atomic.h> |
| 60 | |
| 61 | #include <san/kasan.h> |
| 62 | |
| 63 | #include <kern/kpc.h> |
| 64 | #if CONFIG_CPU_COUNTERS |
| 65 | #include <kern/monotonic.h> |
| 66 | #endif /* CONFIG_CPU_COUNTERS */ |
| 67 | |
| 68 | #if KPERF |
| 69 | #include <kperf/kptimer.h> |
| 70 | #endif /* KPERF */ |
| 71 | |
| 72 | #if HIBERNATION |
| 73 | #include <IOKit/IOPlatformExpert.h> |
| 74 | #include <IOKit/IOHibernatePrivate.h> |
| 75 | #endif /* HIBERNATION */ |
| 76 | |
| 77 | |
| 78 | #include <libkern/section_keywords.h> |
| 79 | |
| 80 | extern boolean_t idle_enable; |
| 81 | extern uint64_t wake_abstime; |
| 82 | |
| 83 | #if WITH_CLASSIC_S2R |
| 84 | void sleep_token_buffer_init(void); |
| 85 | #endif |
| 86 | |
| 87 | #if !CONFIG_SPTM |
| 88 | extern uintptr_t resume_idle_cpu; |
| 89 | extern uintptr_t start_cpu; |
| 90 | vm_address_t start_cpu_paddr; |
| 91 | #endif |
| 92 | |
| 93 | #if __ARM_KERNEL_PROTECT__ |
| 94 | extern void exc_vectors_table; |
| 95 | #endif /* __ARM_KERNEL_PROTECT__ */ |
| 96 | |
| 97 | #if APPLEVIRTUALPLATFORM |
| 98 | extern void __attribute__((noreturn)) arm64_prepare_for_sleep(boolean_t deep_sleep, unsigned int cpu, uint64_t entry_pa); |
| 99 | #else |
| 100 | extern void __attribute__((noreturn)) arm64_prepare_for_sleep(boolean_t deep_sleep); |
| 101 | #endif |
| 102 | extern void arm64_force_wfi_clock_gate(void); |
| 103 | #if defined(APPLETYPHOON) |
| 104 | // <rdar://problem/15827409> |
| 105 | extern void typhoon_prepare_for_wfi(void); |
| 106 | extern void typhoon_return_from_wfi(void); |
| 107 | #endif |
| 108 | |
| 109 | #if HAS_RETENTION_STATE |
| 110 | extern void arm64_retention_wfi(void); |
| 111 | #endif |
| 112 | |
| 113 | sysreg_restore_t sysreg_restore __attribute__((section("__DATA, __const" ))) = { |
| 114 | .tcr_el1 = TCR_EL1_BOOT, |
| 115 | }; |
| 116 | |
| 117 | // wfi - wfi mode |
| 118 | // 0 : disabled |
| 119 | // 1 : normal |
| 120 | // 2 : overhead simulation (delay & flags) |
| 121 | TUNABLE(unsigned int, wfi, "wfi" , 1); |
| 122 | #if DEVELOPMENT || DEBUG |
| 123 | |
| 124 | // wfi_flags |
| 125 | // 1 << 0 : flush L1s |
| 126 | // 1 << 1 : flush TLBs |
| 127 | static int wfi_flags = 0; |
| 128 | |
| 129 | // wfi_delay - delay ticks after wfi exit |
| 130 | static uint64_t wfi_delay = 0; |
| 131 | |
| 132 | #endif /* DEVELOPMENT || DEBUG */ |
| 133 | |
| 134 | #define CPUPM_IDLE_WFE 0x5310300 |
| 135 | #define CPUPM_IDLE_TIMER_WFE 0x5310304 |
| 136 | |
| 137 | #define DEFAULT_EXPECTING_IPI_WFE_TIMEOUT_USEC (60ULL) |
| 138 | TUNABLE(uint32_t, expecting_ipi_wfe_timeout_usec, |
| 139 | "expecting_ipi_wfe_timeout_usec" , DEFAULT_EXPECTING_IPI_WFE_TIMEOUT_USEC); |
| 140 | uint64_t expecting_ipi_wfe_timeout_mt = 0x0ULL; /* initialized to a non-zero value in sched_init */ |
| 141 | |
| 142 | /* When recommended, issue WFE with [FI]IRQ unmasked in the idle |
| 143 | * loop. The default. |
| 144 | */ |
| 145 | uint32_t idle_proximate_io_wfe_unmasked = 1; |
| 146 | #if DEVELOPMENT || DEBUG |
| 147 | uint32_t idle_proximate_timer_wfe = 1; |
| 148 | uint32_t idle_proximate_io_wfe_masked = 0; |
| 149 | #else |
| 150 | /* Issue WFE in lieu of WFI when awaiting a proximate timer. */ |
| 151 | static uint32_t idle_proximate_timer_wfe = 1; |
| 152 | /* When recommended, issue WFE with [FI]IRQ masked in the idle loop. |
| 153 | * Non-default, retained for experimentation. |
| 154 | */ |
| 155 | static uint32_t idle_proximate_io_wfe_masked = 0; |
| 156 | #endif |
| 157 | |
| 158 | #if __ARM_GLOBAL_SLEEP_BIT__ |
| 159 | volatile boolean_t arm64_stall_sleep = TRUE; |
| 160 | #endif |
| 161 | |
| 162 | #if WITH_CLASSIC_S2R |
| 163 | /* |
| 164 | * These must be aligned to avoid issues with calling bcopy_phys on them before |
| 165 | * we are done with pmap initialization. |
| 166 | */ |
| 167 | static const uint8_t __attribute__ ((aligned(8))) suspend_signature[] = {'X', 'S', 'O', 'M', 'P', 'S', 'U', 'S'}; |
| 168 | static const uint8_t __attribute__ ((aligned(8))) running_signature[] = {'X', 'S', 'O', 'M', 'N', 'N', 'U', 'R'}; |
| 169 | #endif |
| 170 | |
| 171 | #if WITH_CLASSIC_S2R |
| 172 | static vm_offset_t sleepTokenBuffer = (vm_offset_t)NULL; |
| 173 | #endif |
| 174 | static boolean_t coresight_debug_enabled = FALSE; |
| 175 | |
| 176 | #if defined(CONFIG_XNUPOST) |
| 177 | void arm64_ipi_test_callback(void *); |
| 178 | void arm64_immediate_ipi_test_callback(void *); |
| 179 | |
| 180 | void |
| 181 | arm64_ipi_test_callback(void *parm) |
| 182 | { |
| 183 | volatile uint64_t *ipi_test_data = parm; |
| 184 | cpu_data_t *cpu_data; |
| 185 | |
| 186 | cpu_data = getCpuDatap(); |
| 187 | |
| 188 | *ipi_test_data = cpu_data->cpu_number; |
| 189 | } |
| 190 | |
| 191 | void |
| 192 | arm64_immediate_ipi_test_callback(void *parm) |
| 193 | { |
| 194 | volatile uint64_t *ipi_test_data = parm; |
| 195 | cpu_data_t *cpu_data; |
| 196 | |
| 197 | cpu_data = getCpuDatap(); |
| 198 | |
| 199 | *ipi_test_data = cpu_data->cpu_number + MAX_CPUS; |
| 200 | } |
| 201 | |
| 202 | uint64_t arm64_ipi_test_data[MAX_CPUS * 2]; |
| 203 | |
| 204 | MACHINE_TIMEOUT(arm64_ipi_test_timeout, "arm64-ipi-test" , 100, MACHINE_TIMEOUT_UNIT_MSEC, NULL); |
| 205 | |
| 206 | void |
| 207 | arm64_ipi_test() |
| 208 | { |
| 209 | volatile uint64_t *ipi_test_data, *immediate_ipi_test_data; |
| 210 | uint64_t timeout_ms = os_atomic_load(&arm64_ipi_test_timeout, relaxed); |
| 211 | uint64_t then, now, delta; |
| 212 | int current_cpu_number = getCpuDatap()->cpu_number; |
| 213 | |
| 214 | /* |
| 215 | * probably the only way to have this on most systems is with the |
| 216 | * cpus=1 boot-arg, but nonetheless, if we only have 1 CPU active, |
| 217 | * IPI is not available |
| 218 | */ |
| 219 | if (real_ncpus == 1) { |
| 220 | return; |
| 221 | } |
| 222 | |
| 223 | const unsigned int max_cpu_id = ml_get_max_cpu_number(); |
| 224 | for (unsigned int i = 0; i <= max_cpu_id; ++i) { |
| 225 | ipi_test_data = &arm64_ipi_test_data[i]; |
| 226 | immediate_ipi_test_data = &arm64_ipi_test_data[i + MAX_CPUS]; |
| 227 | *ipi_test_data = ~i; |
| 228 | kern_return_t error = cpu_xcall((int)i, (void *)arm64_ipi_test_callback, (void *)(uintptr_t)ipi_test_data); |
| 229 | if (error != KERN_SUCCESS) { |
| 230 | panic("CPU %d was unable to IPI CPU %u: error %d" , current_cpu_number, i, error); |
| 231 | } |
| 232 | |
| 233 | while ((error = cpu_immediate_xcall((int)i, (void *)arm64_immediate_ipi_test_callback, |
| 234 | (void *)(uintptr_t)immediate_ipi_test_data)) == KERN_ALREADY_WAITING) { |
| 235 | now = mach_absolute_time(); |
| 236 | absolutetime_to_nanoseconds(now - then, &delta); |
| 237 | if ((delta / NSEC_PER_MSEC) > timeout_ms) { |
| 238 | panic("CPU %d was unable to immediate-IPI CPU %u within %lldms" , current_cpu_number, i, timeout_ms); |
| 239 | } |
| 240 | } |
| 241 | |
| 242 | if (error != KERN_SUCCESS) { |
| 243 | panic("CPU %d was unable to immediate-IPI CPU %u: error %d" , current_cpu_number, i, error); |
| 244 | } |
| 245 | |
| 246 | then = mach_absolute_time(); |
| 247 | |
| 248 | while ((*ipi_test_data != i) || (*immediate_ipi_test_data != (i + MAX_CPUS))) { |
| 249 | now = mach_absolute_time(); |
| 250 | absolutetime_to_nanoseconds(now - then, &delta); |
| 251 | if ((delta / NSEC_PER_MSEC) > timeout_ms) { |
| 252 | panic("CPU %d tried to IPI CPU %d but didn't get correct responses within %lldms, responses: %llx, %llx" , |
| 253 | current_cpu_number, i, timeout_ms, *ipi_test_data, *immediate_ipi_test_data); |
| 254 | } |
| 255 | } |
| 256 | } |
| 257 | } |
| 258 | #endif /* defined(CONFIG_XNUPOST) */ |
| 259 | |
| 260 | static void |
| 261 | configure_coresight_registers(cpu_data_t *cdp) |
| 262 | { |
| 263 | int i; |
| 264 | |
| 265 | assert(cdp); |
| 266 | vm_offset_t coresight_regs = ml_get_topology_info()->cpus[cdp->cpu_number].coresight_regs; |
| 267 | |
| 268 | /* |
| 269 | * ARMv8 coresight registers are optional. If the device tree did not |
| 270 | * provide either cpu_regmap_paddr (from the legacy "reg-private" EDT property) |
| 271 | * or coresight_regs (from the new "coresight-reg" property), assume that |
| 272 | * coresight registers are not supported. |
| 273 | */ |
| 274 | if (cdp->cpu_regmap_paddr || coresight_regs) { |
| 275 | for (i = 0; i < CORESIGHT_REGIONS; ++i) { |
| 276 | if (i == CORESIGHT_CTI) { |
| 277 | continue; |
| 278 | } |
| 279 | /* Skip debug-only registers on production chips */ |
| 280 | if (((i == CORESIGHT_ED) || (i == CORESIGHT_UTT)) && !coresight_debug_enabled) { |
| 281 | continue; |
| 282 | } |
| 283 | |
| 284 | if (!cdp->coresight_base[i]) { |
| 285 | if (coresight_regs) { |
| 286 | cdp->coresight_base[i] = coresight_regs + CORESIGHT_OFFSET(i); |
| 287 | } else { |
| 288 | uint64_t addr = cdp->cpu_regmap_paddr + CORESIGHT_OFFSET(i); |
| 289 | cdp->coresight_base[i] = (vm_offset_t)ml_io_map(phys_addr: addr, CORESIGHT_SIZE); |
| 290 | } |
| 291 | } |
| 292 | /* Unlock EDLAR, CTILAR, PMLAR */ |
| 293 | if (i != CORESIGHT_UTT) { |
| 294 | *(volatile uint32_t *)(cdp->coresight_base[i] + ARM_DEBUG_OFFSET_DBGLAR) = ARM_DBG_LOCK_ACCESS_KEY; |
| 295 | } |
| 296 | } |
| 297 | } |
| 298 | } |
| 299 | |
| 300 | |
| 301 | /* |
| 302 | * Routine: cpu_bootstrap |
| 303 | * Function: |
| 304 | */ |
| 305 | void |
| 306 | cpu_bootstrap(void) |
| 307 | { |
| 308 | } |
| 309 | |
| 310 | /* |
| 311 | * Routine: cpu_sleep |
| 312 | * Function: |
| 313 | */ |
| 314 | void |
| 315 | cpu_sleep(void) |
| 316 | { |
| 317 | cpu_data_t *cpu_data_ptr = getCpuDatap(); |
| 318 | |
| 319 | cpu_data_ptr->cpu_active_thread = current_thread(); |
| 320 | #if CONFIG_SPTM |
| 321 | cpu_data_ptr->cpu_reset_handler = (uintptr_t) VM_KERNEL_STRIP_PTR(arm_init_cpu); |
| 322 | #else |
| 323 | cpu_data_ptr->cpu_reset_handler = (uintptr_t) start_cpu_paddr; |
| 324 | #endif |
| 325 | cpu_data_ptr->cpu_flags |= SleepState; |
| 326 | |
| 327 | if (cpu_data_ptr->cpu_user_debug != NULL) { |
| 328 | arm_debug_set(NULL); |
| 329 | } |
| 330 | |
| 331 | #if CONFIG_CPU_COUNTERS |
| 332 | kpc_idle(); |
| 333 | mt_cpu_down(cpu_data_ptr); |
| 334 | #endif /* CONFIG_CPU_COUNTERS */ |
| 335 | #if KPERF |
| 336 | kptimer_stop_curcpu(); |
| 337 | #endif /* KPERF */ |
| 338 | |
| 339 | CleanPoC_Dcache(); |
| 340 | |
| 341 | #if USE_APPLEARMSMP |
| 342 | if (ml_is_quiescing()) { |
| 343 | PE_cpu_machine_quiesce(target: cpu_data_ptr->cpu_id); |
| 344 | } else { |
| 345 | bool deep_sleep = PE_cpu_down(target: cpu_data_ptr->cpu_id); |
| 346 | cpu_data_ptr->cpu_sleep_token = ARM_CPU_ON_SLEEP_PATH; |
| 347 | // hang CPU on spurious wakeup |
| 348 | cpu_data_ptr->cpu_reset_handler = (uintptr_t)0; |
| 349 | __builtin_arm_dsb(DSB_ISH); |
| 350 | CleanPoU_Dcache(); |
| 351 | #if APPLEVIRTUALPLATFORM |
| 352 | arm64_prepare_for_sleep(deep_sleep, cpu: cpu_data_ptr->cpu_number, entry_pa: ml_vtophys(vaddr: (vm_offset_t)&LowResetVectorBase)); |
| 353 | #else |
| 354 | arm64_prepare_for_sleep(deep_sleep); |
| 355 | #endif |
| 356 | } |
| 357 | #else |
| 358 | PE_cpu_machine_quiesce(cpu_data_ptr->cpu_id); |
| 359 | #endif |
| 360 | /*NOTREACHED*/ |
| 361 | } |
| 362 | |
| 363 | /* |
| 364 | * Routine: cpu_interrupt_is_pending |
| 365 | * Function: Returns a bool signifying a non-zero ISR_EL1, |
| 366 | * indicating a pending IRQ, FIQ or external abort. |
| 367 | */ |
| 368 | |
| 369 | bool |
| 370 | cpu_interrupt_is_pending(void) |
| 371 | { |
| 372 | uint64_t isr_value; |
| 373 | isr_value = __builtin_arm_rsr64("ISR_EL1" ); |
| 374 | return isr_value != 0; |
| 375 | } |
| 376 | |
| 377 | static bool |
| 378 | cpu_proximate_timer(void) |
| 379 | { |
| 380 | return !SetIdlePop(); |
| 381 | } |
| 382 | |
| 383 | #ifdef ARM64_BOARD_CONFIG_T6000 |
| 384 | int wfe_allowed = 0; |
| 385 | #else |
| 386 | int wfe_allowed = 1; |
| 387 | #endif /* ARM64_BOARD_CONFIG_T6000 */ |
| 388 | |
| 389 | #if DEVELOPMENT || DEBUG |
| 390 | #define WFE_STAT(x) \ |
| 391 | do { \ |
| 392 | (x); \ |
| 393 | } while(0) |
| 394 | #else |
| 395 | #define WFE_STAT(x) do {} while(0) |
| 396 | #endif /* DEVELOPMENT || DEBUG */ |
| 397 | |
| 398 | bool |
| 399 | wfe_to_deadline_or_interrupt(uint32_t cid, uint64_t wfe_deadline, cpu_data_t *cdp, bool unmask, bool check_cluster_recommendation) |
| 400 | { |
| 401 | bool ipending = false; |
| 402 | uint64_t irqc = 0, nirqc = 0; |
| 403 | |
| 404 | /* The ARMv8 architecture permits a processor dwelling in WFE |
| 405 | * with F/IRQ masked to ignore a pending interrupt, i.e. |
| 406 | * not classify it as an 'event'. This is potentially |
| 407 | * problematic with AICv2's IRQ distribution model, as |
| 408 | * a transient interrupt masked interval can cause an SIQ |
| 409 | * query rejection, possibly routing the interrupt to |
| 410 | * another core/cluster in a powergated state. |
| 411 | * Hence, optionally unmask IRQs+FIQs across WFE. |
| 412 | */ |
| 413 | if (unmask) { |
| 414 | /* Latch SW IRQ+FIQ counter prior to unmasking |
| 415 | * interrupts. |
| 416 | */ |
| 417 | irqc = nirqc = os_atomic_load(&cdp->cpu_stat.irq_ex_cnt_wake, relaxed); |
| 418 | /* Unmask IRQ+FIQ. Mirrors mask used by machine_idle() |
| 419 | * with ASYNCF omission. Consider that this could |
| 420 | * delay recognition of an async abort, including |
| 421 | * those triggered by ISRs |
| 422 | */ |
| 423 | __builtin_arm_wsr("DAIFClr" , (DAIFSC_IRQF | DAIFSC_FIQF)); |
| 424 | } |
| 425 | |
| 426 | while ((ipending = (cpu_interrupt_is_pending())) == false) { |
| 427 | if (unmask) { |
| 428 | /* If WFE was issued with IRQs unmasked, an |
| 429 | * interrupt may have been processed. |
| 430 | * Consult the SW IRQ counter to determine |
| 431 | * whether the 'idle loop' must be |
| 432 | * re-evaluated. |
| 433 | */ |
| 434 | nirqc = os_atomic_load(&cdp->cpu_stat.irq_ex_cnt_wake, relaxed); |
| 435 | if (nirqc != irqc) { |
| 436 | break; |
| 437 | } |
| 438 | } |
| 439 | |
| 440 | if (__probable(wfe_allowed)) { |
| 441 | /* |
| 442 | * If IRQs are unmasked, there's a small window |
| 443 | * where an 'extra' WFE may be issued after |
| 444 | * the consultation of the SW interrupt counter |
| 445 | * and new interrupt arrival. Hence this WFE |
| 446 | * relies on the [FI]RQ interrupt handler |
| 447 | * epilogue issuing a 'SEVL', to post an |
| 448 | * event which causes the next WFE on the same |
| 449 | * PE to retire immediately. |
| 450 | */ |
| 451 | |
| 452 | __builtin_arm_wfe(); |
| 453 | } |
| 454 | |
| 455 | WFE_STAT(cdp->wfe_count++); |
| 456 | if (wfe_deadline != ~0ULL) { |
| 457 | WFE_STAT(cdp->wfe_deadline_checks++); |
| 458 | /* Check if the WFE recommendation has expired. |
| 459 | * We do not recompute the deadline here. |
| 460 | */ |
| 461 | if ((check_cluster_recommendation && ml_cluster_wfe_timeout(wfe_cluster_id: cid) == 0) || |
| 462 | mach_absolute_time() >= wfe_deadline) { |
| 463 | WFE_STAT(cdp->wfe_terminations++); |
| 464 | break; |
| 465 | } |
| 466 | } |
| 467 | } |
| 468 | |
| 469 | if (unmask) { |
| 470 | /* Re-mask IRQ+FIQ |
| 471 | * Mirrors mask used by machine_idle(), with ASYNCF |
| 472 | * omission |
| 473 | */ |
| 474 | __builtin_arm_wsr64("DAIFSet" , (DAIFSC_IRQF | DAIFSC_FIQF)); |
| 475 | /* Refetch SW interrupt counter with IRQs masked |
| 476 | * It is important that this routine accurately flags |
| 477 | * any observed interrupts via its return value, |
| 478 | * inaccuracy may lead to an erroneous WFI fallback. |
| 479 | */ |
| 480 | nirqc = os_atomic_load(&cdp->cpu_stat.irq_ex_cnt_wake, relaxed); |
| 481 | } |
| 482 | |
| 483 | return ipending || (nirqc != irqc); |
| 484 | } |
| 485 | |
| 486 | /* |
| 487 | * Routine: cpu_idle |
| 488 | * Function: |
| 489 | */ |
| 490 | void __attribute__((noreturn)) |
| 491 | cpu_idle(void) |
| 492 | { |
| 493 | cpu_data_t *cpu_data_ptr = getCpuDatap(); |
| 494 | processor_t processor = current_processor(); |
| 495 | uint64_t new_idle_timeout_ticks = 0x0ULL, lastPop; |
| 496 | bool idle_disallowed = false; |
| 497 | /* Read and reset the next_idle_short flag */ |
| 498 | bool next_idle_short = processor->next_idle_short; |
| 499 | processor->next_idle_short = false; |
| 500 | |
| 501 | if (__improbable((!idle_enable))) { |
| 502 | idle_disallowed = true; |
| 503 | } else if (__improbable(cpu_data_ptr->cpu_signal & SIGPdisabled)) { |
| 504 | idle_disallowed = true; |
| 505 | } |
| 506 | |
| 507 | if (__improbable(idle_disallowed)) { |
| 508 | Idle_load_context(); |
| 509 | } |
| 510 | |
| 511 | bool ipending = false; |
| 512 | uint32_t cid = cpu_data_ptr->cpu_cluster_id; |
| 513 | bool check_cluster_recommendation = true; |
| 514 | uint64_t wfe_timeout = 0; |
| 515 | |
| 516 | if (idle_proximate_io_wfe_masked == 1) { |
| 517 | /* Check for an active perf. controller generated |
| 518 | * WFE recommendation for this cluster. |
| 519 | */ |
| 520 | wfe_timeout = ml_cluster_wfe_timeout(wfe_cluster_id: cid); |
| 521 | } |
| 522 | |
| 523 | if (next_idle_short && expecting_ipi_wfe_timeout_mt > wfe_timeout) { |
| 524 | /* In this case we should WFE because a response IPI |
| 525 | * is expected soon. |
| 526 | */ |
| 527 | wfe_timeout = expecting_ipi_wfe_timeout_mt; |
| 528 | check_cluster_recommendation = false; |
| 529 | } |
| 530 | |
| 531 | if (wfe_timeout != 0) { |
| 532 | uint64_t wfe_deadline = mach_absolute_time() + wfe_timeout; |
| 533 | /* Poll issuing event-bounded WFEs until an interrupt |
| 534 | * arrives or the WFE recommendation expires |
| 535 | */ |
| 536 | KDBG(CPUPM_IDLE_WFE | DBG_FUNC_START, ipending, cpu_data_ptr->wfe_count, wfe_timeout, !check_cluster_recommendation); |
| 537 | ipending = wfe_to_deadline_or_interrupt(cid, wfe_deadline, cdp: cpu_data_ptr, false, check_cluster_recommendation); |
| 538 | KDBG(CPUPM_IDLE_WFE | DBG_FUNC_END, ipending, cpu_data_ptr->wfe_count, wfe_deadline); |
| 539 | if (ipending == true) { |
| 540 | /* Back to machine_idle() */ |
| 541 | Idle_load_context(); |
| 542 | } |
| 543 | } |
| 544 | |
| 545 | if (__improbable(cpu_proximate_timer())) { |
| 546 | if (idle_proximate_timer_wfe == 1) { |
| 547 | /* Poll issuing WFEs until the expected |
| 548 | * timer FIQ arrives. |
| 549 | */ |
| 550 | KDBG(CPUPM_IDLE_TIMER_WFE | DBG_FUNC_START, ipending, cpu_data_ptr->wfe_count, ~0ULL); |
| 551 | ipending = wfe_to_deadline_or_interrupt(cid, wfe_deadline: ~0ULL, cdp: cpu_data_ptr, false, false); |
| 552 | KDBG(CPUPM_IDLE_TIMER_WFE | DBG_FUNC_END, ipending, cpu_data_ptr->wfe_count, ~0ULL); |
| 553 | assert(ipending == true); |
| 554 | } |
| 555 | Idle_load_context(); |
| 556 | } |
| 557 | |
| 558 | lastPop = cpu_data_ptr->rtcPop; |
| 559 | |
| 560 | cpu_data_ptr->cpu_active_thread = current_thread(); |
| 561 | |
| 562 | if (wfi && (cpu_data_ptr->cpu_idle_notify != NULL)) { |
| 563 | cpu_data_ptr->cpu_idle_notify(cpu_data_ptr->cpu_id, TRUE, &new_idle_timeout_ticks); |
| 564 | } |
| 565 | |
| 566 | if (cpu_data_ptr->idle_timer_notify != NULL) { |
| 567 | if (new_idle_timeout_ticks == 0x0ULL) { |
| 568 | /* turn off the idle timer */ |
| 569 | cpu_data_ptr->idle_timer_deadline = 0x0ULL; |
| 570 | } else { |
| 571 | /* set the new idle timeout */ |
| 572 | clock_absolutetime_interval_to_deadline(abstime: new_idle_timeout_ticks, result: &cpu_data_ptr->idle_timer_deadline); |
| 573 | } |
| 574 | timer_resync_deadlines(); |
| 575 | if (cpu_data_ptr->rtcPop != lastPop) { |
| 576 | SetIdlePop(); |
| 577 | } |
| 578 | } |
| 579 | |
| 580 | #if CONFIG_CPU_COUNTERS |
| 581 | kpc_idle(); |
| 582 | mt_cpu_idle(cpu_data_ptr); |
| 583 | #endif /* CONFIG_CPU_COUNTERS */ |
| 584 | |
| 585 | if (wfi) { |
| 586 | #if !defined(APPLE_ARM64_ARCH_FAMILY) |
| 587 | platform_cache_idle_enter(); |
| 588 | #endif |
| 589 | |
| 590 | #if DEVELOPMENT || DEBUG |
| 591 | // When simulating wfi overhead, |
| 592 | // force wfi to clock gating only |
| 593 | if (wfi == 2) { |
| 594 | arm64_force_wfi_clock_gate(); |
| 595 | } |
| 596 | #endif /* DEVELOPMENT || DEBUG */ |
| 597 | |
| 598 | #if defined(APPLETYPHOON) |
| 599 | // <rdar://problem/15827409> CPU1 Stuck in WFIWT Because of MMU Prefetch |
| 600 | typhoon_prepare_for_wfi(); |
| 601 | #endif |
| 602 | __builtin_arm_dsb(DSB_SY); |
| 603 | #if HAS_RETENTION_STATE |
| 604 | arm64_retention_wfi(); |
| 605 | #else |
| 606 | __builtin_arm_wfi(); |
| 607 | #endif |
| 608 | |
| 609 | #if defined(APPLETYPHOON) |
| 610 | // <rdar://problem/15827409> CPU1 Stuck in WFIWT Because of MMU Prefetch |
| 611 | typhoon_return_from_wfi(); |
| 612 | #endif |
| 613 | |
| 614 | #if DEVELOPMENT || DEBUG |
| 615 | // Handle wfi overhead simulation |
| 616 | if (wfi == 2) { |
| 617 | uint64_t deadline; |
| 618 | |
| 619 | // Calculate wfi delay deadline |
| 620 | clock_absolutetime_interval_to_deadline(wfi_delay, &deadline); |
| 621 | |
| 622 | // Flush L1 caches |
| 623 | if ((wfi_flags & 1) != 0) { |
| 624 | InvalidatePoU_Icache(); |
| 625 | FlushPoC_Dcache(); |
| 626 | } |
| 627 | |
| 628 | // Flush TLBs |
| 629 | if ((wfi_flags & 2) != 0) { |
| 630 | flush_core_tlb(); |
| 631 | } |
| 632 | |
| 633 | // Wait for the ballance of the wfi delay |
| 634 | clock_delay_until(deadline); |
| 635 | } |
| 636 | #endif /* DEVELOPMENT || DEBUG */ |
| 637 | } |
| 638 | |
| 639 | ClearIdlePop(TRUE); |
| 640 | |
| 641 | cpu_idle_exit(FALSE); |
| 642 | } |
| 643 | |
| 644 | /* |
| 645 | * Routine: cpu_idle_exit |
| 646 | * Function: |
| 647 | */ |
| 648 | void |
| 649 | cpu_idle_exit(boolean_t from_reset) |
| 650 | { |
| 651 | uint64_t new_idle_timeout_ticks = 0x0ULL; |
| 652 | cpu_data_t *cpu_data_ptr = getCpuDatap(); |
| 653 | |
| 654 | assert(exception_stack_pointer() != 0); |
| 655 | |
| 656 | /* Back from WFI, unlock OSLAR and EDLAR. */ |
| 657 | if (from_reset) { |
| 658 | configure_coresight_registers(cdp: cpu_data_ptr); |
| 659 | } |
| 660 | |
| 661 | #if CONFIG_CPU_COUNTERS |
| 662 | kpc_idle_exit(); |
| 663 | mt_cpu_run(cpu_data_ptr); |
| 664 | #endif /* CONFIG_CPU_COUNTERS */ |
| 665 | |
| 666 | if (wfi && (cpu_data_ptr->cpu_idle_notify != NULL)) { |
| 667 | cpu_data_ptr->cpu_idle_notify(cpu_data_ptr->cpu_id, FALSE, &new_idle_timeout_ticks); |
| 668 | } |
| 669 | |
| 670 | if (cpu_data_ptr->idle_timer_notify != NULL) { |
| 671 | if (new_idle_timeout_ticks == 0x0ULL) { |
| 672 | /* turn off the idle timer */ |
| 673 | cpu_data_ptr->idle_timer_deadline = 0x0ULL; |
| 674 | } else { |
| 675 | /* set the new idle timeout */ |
| 676 | clock_absolutetime_interval_to_deadline(abstime: new_idle_timeout_ticks, result: &cpu_data_ptr->idle_timer_deadline); |
| 677 | } |
| 678 | timer_resync_deadlines(); |
| 679 | } |
| 680 | |
| 681 | #if KASAN_TBI |
| 682 | kasan_unpoison_curstack(false); |
| 683 | #endif /* KASAN_TBI */ |
| 684 | |
| 685 | Idle_load_context(); |
| 686 | } |
| 687 | |
| 688 | void |
| 689 | cpu_init(void) |
| 690 | { |
| 691 | cpu_data_t *cdp = getCpuDatap(); |
| 692 | arm_cpu_info_t *cpu_info_p; |
| 693 | |
| 694 | assert(exception_stack_pointer() != 0); |
| 695 | |
| 696 | if (cdp->cpu_type != CPU_TYPE_ARM64) { |
| 697 | cdp->cpu_type = CPU_TYPE_ARM64; |
| 698 | |
| 699 | timer_call_queue_init(&cdp->rtclock_timer.queue); |
| 700 | cdp->rtclock_timer.deadline = EndOfAllTime; |
| 701 | |
| 702 | if (cdp == &BootCpuData) { |
| 703 | do_cpuid(); |
| 704 | do_mvfpid(); |
| 705 | } else { |
| 706 | /* |
| 707 | * We initialize non-boot CPUs here; the boot CPU is |
| 708 | * dealt with as part of pmap_bootstrap. |
| 709 | */ |
| 710 | pmap_cpu_data_init(); |
| 711 | } |
| 712 | |
| 713 | do_cacheid(); |
| 714 | |
| 715 | /* ARM_SMP: Assuming identical cpu */ |
| 716 | do_debugid(); |
| 717 | |
| 718 | cpu_info_p = cpuid_info(); |
| 719 | |
| 720 | /* switch based on CPU's reported architecture */ |
| 721 | switch (cpu_info_p->arm_info.arm_arch) { |
| 722 | case CPU_ARCH_ARMv8: |
| 723 | cdp->cpu_subtype = CPU_SUBTYPE_ARM64_V8; |
| 724 | break; |
| 725 | case CPU_ARCH_ARMv8E: |
| 726 | cdp->cpu_subtype = CPU_SUBTYPE_ARM64E; |
| 727 | break; |
| 728 | default: |
| 729 | //cdp->cpu_subtype = CPU_SUBTYPE_ARM64_ALL; |
| 730 | /* this panic doesn't work this early in startup */ |
| 731 | panic("Unknown CPU subtype..." ); |
| 732 | break; |
| 733 | } |
| 734 | |
| 735 | cdp->cpu_threadtype = CPU_THREADTYPE_NONE; |
| 736 | } |
| 737 | cdp->cpu_stat.irq_ex_cnt_wake = 0; |
| 738 | cdp->cpu_stat.ipi_cnt_wake = 0; |
| 739 | #if CONFIG_CPU_COUNTERS |
| 740 | cdp->cpu_stat.pmi_cnt_wake = 0; |
| 741 | #endif /* CONFIG_CPU_COUNTERS */ |
| 742 | cdp->cpu_running = TRUE; |
| 743 | cdp->cpu_sleep_token_last = cdp->cpu_sleep_token; |
| 744 | cdp->cpu_sleep_token = 0x0UL; |
| 745 | #if CONFIG_CPU_COUNTERS |
| 746 | kpc_idle_exit(); |
| 747 | mt_cpu_up(cdp); |
| 748 | #endif /* CONFIG_CPU_COUNTERS */ |
| 749 | } |
| 750 | |
| 751 | void |
| 752 | cpu_stack_alloc(cpu_data_t *cpu_data_ptr) |
| 753 | { |
| 754 | vm_offset_t irq_stack = 0; |
| 755 | vm_offset_t exc_stack = 0; |
| 756 | |
| 757 | kmem_alloc(map: kernel_map, addrp: &irq_stack, |
| 758 | INTSTACK_SIZE + ptoa(2), flags: KMA_NOFAIL | KMA_PERMANENT | KMA_ZERO | |
| 759 | KMA_GUARD_FIRST | KMA_GUARD_LAST | KMA_KSTACK | KMA_KOBJECT, |
| 760 | VM_KERN_MEMORY_STACK); |
| 761 | |
| 762 | cpu_data_ptr->intstack_top = irq_stack + PAGE_SIZE + INTSTACK_SIZE; |
| 763 | cpu_data_ptr->istackptr = (void *)cpu_data_ptr->intstack_top; |
| 764 | |
| 765 | kmem_alloc(map: kernel_map, addrp: &exc_stack, |
| 766 | EXCEPSTACK_SIZE + ptoa(2), flags: KMA_NOFAIL | KMA_PERMANENT | KMA_ZERO | |
| 767 | KMA_GUARD_FIRST | KMA_GUARD_LAST | KMA_KSTACK | KMA_KOBJECT, |
| 768 | VM_KERN_MEMORY_STACK); |
| 769 | |
| 770 | cpu_data_ptr->excepstack_top = exc_stack + PAGE_SIZE + EXCEPSTACK_SIZE; |
| 771 | } |
| 772 | |
| 773 | void |
| 774 | cpu_data_free(cpu_data_t *cpu_data_ptr) |
| 775 | { |
| 776 | if ((cpu_data_ptr == NULL) || (cpu_data_ptr == &BootCpuData)) { |
| 777 | return; |
| 778 | } |
| 779 | |
| 780 | int cpu_number = cpu_data_ptr->cpu_number; |
| 781 | |
| 782 | if (CpuDataEntries[cpu_number].cpu_data_vaddr == cpu_data_ptr) { |
| 783 | CpuDataEntries[cpu_number].cpu_data_vaddr = NULL; |
| 784 | CpuDataEntries[cpu_number].cpu_data_paddr = 0; |
| 785 | __builtin_arm_dmb(DMB_ISH); // Ensure prior stores to cpu array are visible |
| 786 | } |
| 787 | kmem_free(map: kernel_map, |
| 788 | addr: cpu_data_ptr->intstack_top - INTSTACK_SIZE - PAGE_SIZE, |
| 789 | INTSTACK_SIZE + 2 * PAGE_SIZE); |
| 790 | kmem_free(map: kernel_map, |
| 791 | addr: cpu_data_ptr->excepstack_top - EXCEPSTACK_SIZE - PAGE_SIZE, |
| 792 | EXCEPSTACK_SIZE + 2 * PAGE_SIZE); |
| 793 | } |
| 794 | |
| 795 | void |
| 796 | cpu_data_init(cpu_data_t *cpu_data_ptr) |
| 797 | { |
| 798 | uint32_t i; |
| 799 | |
| 800 | cpu_data_ptr->cpu_flags = 0; |
| 801 | cpu_data_ptr->cpu_int_state = 0; |
| 802 | cpu_data_ptr->cpu_pending_ast = AST_NONE; |
| 803 | cpu_data_ptr->cpu_cache_dispatch = NULL; |
| 804 | cpu_data_ptr->rtcPop = EndOfAllTime; |
| 805 | cpu_data_ptr->rtclock_datap = &RTClockData; |
| 806 | cpu_data_ptr->cpu_user_debug = NULL; |
| 807 | |
| 808 | |
| 809 | cpu_data_ptr->cpu_base_timebase = 0; |
| 810 | cpu_data_ptr->cpu_idle_notify = NULL; |
| 811 | cpu_data_ptr->cpu_idle_latency = 0x0ULL; |
| 812 | cpu_data_ptr->cpu_idle_pop = 0x0ULL; |
| 813 | cpu_data_ptr->cpu_reset_type = 0x0UL; |
| 814 | cpu_data_ptr->cpu_reset_handler = 0x0UL; |
| 815 | cpu_data_ptr->cpu_reset_assist = 0x0UL; |
| 816 | cpu_data_ptr->cpu_regmap_paddr = 0x0ULL; |
| 817 | cpu_data_ptr->cpu_phys_id = 0x0UL; |
| 818 | cpu_data_ptr->cpu_l2_access_penalty = 0; |
| 819 | cpu_data_ptr->cpu_cluster_type = CLUSTER_TYPE_SMP; |
| 820 | cpu_data_ptr->cpu_cluster_id = 0; |
| 821 | cpu_data_ptr->cpu_l2_id = 0; |
| 822 | cpu_data_ptr->cpu_l2_size = 0; |
| 823 | cpu_data_ptr->cpu_l3_id = 0; |
| 824 | cpu_data_ptr->cpu_l3_size = 0; |
| 825 | |
| 826 | cpu_data_ptr->cpu_signal = SIGPdisabled; |
| 827 | |
| 828 | cpu_data_ptr->cpu_get_fiq_handler = NULL; |
| 829 | cpu_data_ptr->cpu_tbd_hardware_addr = NULL; |
| 830 | cpu_data_ptr->cpu_tbd_hardware_val = NULL; |
| 831 | cpu_data_ptr->cpu_get_decrementer_func = NULL; |
| 832 | cpu_data_ptr->cpu_set_decrementer_func = NULL; |
| 833 | cpu_data_ptr->cpu_sleep_token = ARM_CPU_ON_SLEEP_PATH; |
| 834 | cpu_data_ptr->cpu_sleep_token_last = 0x00000000UL; |
| 835 | cpu_data_ptr->cpu_xcall_p0 = NULL; |
| 836 | cpu_data_ptr->cpu_xcall_p1 = NULL; |
| 837 | cpu_data_ptr->cpu_imm_xcall_p0 = NULL; |
| 838 | cpu_data_ptr->cpu_imm_xcall_p1 = NULL; |
| 839 | |
| 840 | for (i = 0; i < CORESIGHT_REGIONS; ++i) { |
| 841 | cpu_data_ptr->coresight_base[i] = 0; |
| 842 | } |
| 843 | |
| 844 | #if !XNU_MONITOR |
| 845 | pmap_cpu_data_t * pmap_cpu_data_ptr = &cpu_data_ptr->cpu_pmap_cpu_data; |
| 846 | |
| 847 | pmap_cpu_data_ptr->cpu_number = PMAP_INVALID_CPU_NUM; |
| 848 | pmap_cpu_data_ptr->pv_free.list = NULL; |
| 849 | pmap_cpu_data_ptr->pv_free.count = 0; |
| 850 | pmap_cpu_data_ptr->pv_free_spill_marker = NULL; |
| 851 | #if !CONFIG_SPTM |
| 852 | pmap_cpu_data_ptr->cpu_nested_pmap = (struct pmap *) NULL; |
| 853 | bzero(s: &(pmap_cpu_data_ptr->cpu_sw_asids[0]), n: sizeof(pmap_cpu_data_ptr->cpu_sw_asids)); |
| 854 | #endif |
| 855 | #endif /* !XNU_MONITOR */ |
| 856 | cpu_data_ptr->halt_status = CPU_NOT_HALTED; |
| 857 | #if __ARM_KERNEL_PROTECT__ |
| 858 | cpu_data_ptr->cpu_exc_vectors = (vm_offset_t)&exc_vectors_table; |
| 859 | #endif /* __ARM_KERNEL_PROTECT__ */ |
| 860 | |
| 861 | #if defined(HAS_APPLE_PAC) |
| 862 | cpu_data_ptr->rop_key = 0; |
| 863 | cpu_data_ptr->jop_key = ml_default_jop_pid(); |
| 864 | #endif |
| 865 | } |
| 866 | |
| 867 | kern_return_t |
| 868 | cpu_data_register(cpu_data_t *cpu_data_ptr) |
| 869 | { |
| 870 | int cpu = cpu_data_ptr->cpu_number; |
| 871 | |
| 872 | #if KASAN |
| 873 | for (int i = 0; i < CPUWINDOWS_MAX; i++) { |
| 874 | kasan_notify_address_nopoison(pmap_cpu_windows_copy_addr(cpu, i), PAGE_SIZE); |
| 875 | } |
| 876 | #endif |
| 877 | |
| 878 | __builtin_arm_dmb(DMB_ISH); // Ensure prior stores to cpu data are visible |
| 879 | CpuDataEntries[cpu].cpu_data_vaddr = cpu_data_ptr; |
| 880 | CpuDataEntries[cpu].cpu_data_paddr = (void *)ml_vtophys(vaddr: (vm_offset_t)cpu_data_ptr); |
| 881 | return KERN_SUCCESS; |
| 882 | } |
| 883 | |
| 884 | #if defined(KERNEL_INTEGRITY_CTRR) |
| 885 | /* Hibernation needs to reset this state, so data and text are in the hib segment; |
| 886 | * this allows them be accessed and executed early. |
| 887 | */ |
| 888 | LCK_GRP_DECLARE(ctrr_cpu_start_lock_grp, "ctrr_cpu_start_lock" ); |
| 889 | LCK_SPIN_DECLARE(ctrr_cpu_start_lck, &ctrr_cpu_start_lock_grp); |
| 890 | enum ctrr_cluster_states ctrr_cluster_locked[MAX_CPU_CLUSTERS] MARK_AS_HIBERNATE_DATA; |
| 891 | |
| 892 | MARK_AS_HIBERNATE_TEXT |
| 893 | void |
| 894 | init_ctrr_cluster_states(void) |
| 895 | { |
| 896 | for (int i = 0; i < MAX_CPU_CLUSTERS; i++) { |
| 897 | ctrr_cluster_locked[i] = CTRR_UNLOCKED; |
| 898 | } |
| 899 | } |
| 900 | #endif |
| 901 | |
| 902 | kern_return_t |
| 903 | cpu_start(int cpu) |
| 904 | { |
| 905 | cpu_data_t *cpu_data_ptr = CpuDataEntries[cpu].cpu_data_vaddr; |
| 906 | processor_t processor = PERCPU_GET_RELATIVE(processor, cpu_data, cpu_data_ptr); |
| 907 | |
| 908 | if (processor_should_kprintf(processor, true)) { |
| 909 | kprintf(fmt: "cpu_start() cpu: %d\n" , cpu); |
| 910 | } |
| 911 | |
| 912 | if (cpu == cpu_number()) { |
| 913 | cpu_machine_init(); |
| 914 | configure_coresight_registers(cdp: cpu_data_ptr); |
| 915 | } else { |
| 916 | thread_t first_thread; |
| 917 | #if CONFIG_SPTM |
| 918 | cpu_data_ptr->cpu_reset_handler = (vm_offset_t) VM_KERNEL_STRIP_PTR(arm_init_cpu); |
| 919 | #else |
| 920 | cpu_data_ptr->cpu_reset_handler = (vm_offset_t) start_cpu_paddr; |
| 921 | #if !XNU_MONITOR |
| 922 | cpu_data_ptr->cpu_pmap_cpu_data.cpu_nested_pmap = NULL; |
| 923 | #endif |
| 924 | #endif /* !CONFIG_SPTM */ |
| 925 | |
| 926 | if (processor->startup_thread != THREAD_NULL) { |
| 927 | first_thread = processor->startup_thread; |
| 928 | } else { |
| 929 | first_thread = processor->idle_thread; |
| 930 | } |
| 931 | cpu_data_ptr->cpu_active_thread = first_thread; |
| 932 | first_thread->machine.CpuDatap = cpu_data_ptr; |
| 933 | first_thread->machine.pcpu_data_base = |
| 934 | (char *)cpu_data_ptr - __PERCPU_ADDR(cpu_data); |
| 935 | |
| 936 | configure_coresight_registers(cdp: cpu_data_ptr); |
| 937 | |
| 938 | flush_dcache(addr: (vm_offset_t)&CpuDataEntries[cpu], count: sizeof(cpu_data_entry_t), FALSE); |
| 939 | flush_dcache(addr: (vm_offset_t)cpu_data_ptr, count: sizeof(cpu_data_t), FALSE); |
| 940 | #if CONFIG_SPTM |
| 941 | /** |
| 942 | * On SPTM devices, CTRR is configured entirely by the SPTM. Due to this, this logic |
| 943 | * is no longer required in XNU. |
| 944 | */ |
| 945 | #else |
| 946 | #if defined(KERNEL_INTEGRITY_CTRR) |
| 947 | |
| 948 | /* First CPU being started within a cluster goes ahead to lock CTRR for cluster; |
| 949 | * other CPUs block until cluster is locked. */ |
| 950 | lck_spin_lock(&ctrr_cpu_start_lck); |
| 951 | switch (ctrr_cluster_locked[cpu_data_ptr->cpu_cluster_id]) { |
| 952 | case CTRR_UNLOCKED: |
| 953 | ctrr_cluster_locked[cpu_data_ptr->cpu_cluster_id] = CTRR_LOCKING; |
| 954 | lck_spin_unlock(&ctrr_cpu_start_lck); |
| 955 | break; |
| 956 | case CTRR_LOCKING: |
| 957 | assert_wait(&ctrr_cluster_locked[cpu_data_ptr->cpu_cluster_id], THREAD_UNINT); |
| 958 | lck_spin_unlock(&ctrr_cpu_start_lck); |
| 959 | thread_block(THREAD_CONTINUE_NULL); |
| 960 | assert(ctrr_cluster_locked[cpu_data_ptr->cpu_cluster_id] != CTRR_LOCKING); |
| 961 | break; |
| 962 | default: // CTRR_LOCKED |
| 963 | lck_spin_unlock(&ctrr_cpu_start_lck); |
| 964 | break; |
| 965 | } |
| 966 | #endif |
| 967 | #endif /* CONFIG_SPTM */ |
| 968 | (void) PE_cpu_start(target: cpu_data_ptr->cpu_id, start_paddr: (vm_offset_t)NULL, arg_paddr: (vm_offset_t)NULL); |
| 969 | } |
| 970 | |
| 971 | return KERN_SUCCESS; |
| 972 | } |
| 973 | |
| 974 | |
| 975 | void |
| 976 | cpu_timebase_init(boolean_t from_boot) |
| 977 | { |
| 978 | cpu_data_t *cdp = getCpuDatap(); |
| 979 | uint64_t timebase_offset = 0; |
| 980 | |
| 981 | if (cdp->cpu_get_fiq_handler == NULL) { |
| 982 | cdp->cpu_get_fiq_handler = rtclock_timebase_func.tbd_fiq_handler; |
| 983 | cdp->cpu_get_decrementer_func = rtclock_timebase_func.tbd_get_decrementer; |
| 984 | cdp->cpu_set_decrementer_func = rtclock_timebase_func.tbd_set_decrementer; |
| 985 | cdp->cpu_tbd_hardware_addr = (void *)rtclock_timebase_addr; |
| 986 | cdp->cpu_tbd_hardware_val = (void *)rtclock_timebase_val; |
| 987 | } |
| 988 | |
| 989 | if (!from_boot && (cdp == &BootCpuData)) { |
| 990 | /* |
| 991 | * When we wake from sleep, we have no guarantee about the state |
| 992 | * of the hardware timebase. It may have kept ticking across sleep, or |
| 993 | * it may have reset. |
| 994 | * |
| 995 | * To deal with this, we calculate an offset to the clock that will |
| 996 | * produce a timebase value wake_abstime at the point the boot |
| 997 | * CPU calls cpu_timebase_init on wake. |
| 998 | * |
| 999 | * This ensures that mach_absolute_time() stops ticking across sleep. |
| 1000 | */ |
| 1001 | rtclock_base_abstime = wake_abstime - ml_get_hwclock(); |
| 1002 | } else if (from_boot) { |
| 1003 | #if DEBUG || DEVELOPMENT |
| 1004 | if (PE_parse_boot_argn("timebase_offset" , &timebase_offset, sizeof(timebase_offset))) { |
| 1005 | rtclock_base_abstime += timebase_offset; |
| 1006 | } |
| 1007 | #endif |
| 1008 | /* On initial boot, initialize time_since_reset to CNTPCT_EL0. */ |
| 1009 | ml_set_reset_time(wake_time: ml_get_hwclock()); |
| 1010 | } |
| 1011 | |
| 1012 | cdp->cpu_decrementer = 0x7FFFFFFFUL; |
| 1013 | cdp->cpu_timebase = timebase_offset; |
| 1014 | cdp->cpu_base_timebase = rtclock_base_abstime; |
| 1015 | } |
| 1016 | |
| 1017 | int |
| 1018 | cpu_cluster_id(void) |
| 1019 | { |
| 1020 | return getCpuDatap()->cpu_cluster_id; |
| 1021 | } |
| 1022 | |
| 1023 | __attribute__((noreturn)) |
| 1024 | void |
| 1025 | ml_arm_sleep(void) |
| 1026 | { |
| 1027 | cpu_data_t *cpu_data_ptr = getCpuDatap(); |
| 1028 | |
| 1029 | if (cpu_data_ptr == &BootCpuData) { |
| 1030 | cpu_data_t *target_cdp; |
| 1031 | int cpu; |
| 1032 | int max_cpu; |
| 1033 | |
| 1034 | max_cpu = ml_get_max_cpu_number(); |
| 1035 | for (cpu = 0; cpu <= max_cpu; cpu++) { |
| 1036 | target_cdp = (cpu_data_t *)CpuDataEntries[cpu].cpu_data_vaddr; |
| 1037 | |
| 1038 | if ((target_cdp == NULL) || (target_cdp == cpu_data_ptr)) { |
| 1039 | continue; |
| 1040 | } |
| 1041 | |
| 1042 | while (target_cdp->cpu_sleep_token != ARM_CPU_ON_SLEEP_PATH) { |
| 1043 | ; |
| 1044 | } |
| 1045 | } |
| 1046 | |
| 1047 | /* |
| 1048 | * Now that the other cores have entered the sleep path, set |
| 1049 | * the abstime value we'll use when we resume. |
| 1050 | */ |
| 1051 | wake_abstime = ml_get_timebase(); |
| 1052 | ml_set_reset_time(UINT64_MAX); |
| 1053 | } else { |
| 1054 | CleanPoU_Dcache(); |
| 1055 | } |
| 1056 | |
| 1057 | cpu_data_ptr->cpu_sleep_token = ARM_CPU_ON_SLEEP_PATH; |
| 1058 | |
| 1059 | if (cpu_data_ptr == &BootCpuData) { |
| 1060 | #if WITH_CLASSIC_S2R |
| 1061 | // Classic suspend to RAM writes the suspend signature into the |
| 1062 | // sleep token buffer so that iBoot knows that it's on the warm |
| 1063 | // boot (wake) path (as opposed to the cold boot path). Newer SoC |
| 1064 | // do not go through SecureROM/iBoot on the warm boot path. The |
| 1065 | // reconfig engine script brings the CPU out of reset at the kernel's |
| 1066 | // reset vector which points to the warm boot initialization code. |
| 1067 | if (sleepTokenBuffer != (vm_offset_t) NULL) { |
| 1068 | platform_cache_shutdown(); |
| 1069 | bcopy((const void *)suspend_signature, (void *)sleepTokenBuffer, sizeof(SleepToken)); |
| 1070 | } else { |
| 1071 | panic("No sleep token buffer" ); |
| 1072 | } |
| 1073 | #endif |
| 1074 | |
| 1075 | #if __ARM_GLOBAL_SLEEP_BIT__ |
| 1076 | /* Allow other CPUs to go to sleep. */ |
| 1077 | arm64_stall_sleep = FALSE; |
| 1078 | __builtin_arm_dmb(DMB_ISH); |
| 1079 | #endif |
| 1080 | |
| 1081 | /* Architectural debug state: <rdar://problem/12390433>: |
| 1082 | * Grab debug lock EDLAR and clear bit 0 in EDPRCR, |
| 1083 | * tell debugger to not prevent power gating . |
| 1084 | */ |
| 1085 | if (cpu_data_ptr->coresight_base[CORESIGHT_ED]) { |
| 1086 | *(volatile uint32_t *)(cpu_data_ptr->coresight_base[CORESIGHT_ED] + ARM_DEBUG_OFFSET_DBGLAR) = ARM_DBG_LOCK_ACCESS_KEY; |
| 1087 | *(volatile uint32_t *)(cpu_data_ptr->coresight_base[CORESIGHT_ED] + ARM_DEBUG_OFFSET_DBGPRCR) = 0; |
| 1088 | } |
| 1089 | |
| 1090 | #if HIBERNATION |
| 1091 | uint32_t mode = hibernate_write_image(); |
| 1092 | if (mode == kIOHibernatePostWriteHalt) { |
| 1093 | HIBLOG("powering off after writing hibernation image\n" ); |
| 1094 | int halt_result = -1; |
| 1095 | if (PE_halt_restart) { |
| 1096 | /** |
| 1097 | * Drain serial FIFOs now as the normal call further down won't |
| 1098 | * be hit when the CPU halts here for hibernation. Here, it'll |
| 1099 | * make sure the preceding HIBLOG is flushed as well. |
| 1100 | */ |
| 1101 | serial_go_to_sleep(); |
| 1102 | halt_result = (*PE_halt_restart)(kPEHaltCPU); |
| 1103 | } |
| 1104 | panic("can't shutdown: PE_halt_restart returned %d" , halt_result); |
| 1105 | } |
| 1106 | #endif /* HIBERNATION */ |
| 1107 | |
| 1108 | serial_go_to_sleep(); |
| 1109 | |
| 1110 | #if CONFIG_CPU_COUNTERS |
| 1111 | mt_sleep(); |
| 1112 | #endif /* CONFIG_CPU_COUNTERS */ |
| 1113 | /* ARM64-specific preparation */ |
| 1114 | #if APPLEVIRTUALPLATFORM |
| 1115 | arm64_prepare_for_sleep(true, cpu: cpu_data_ptr->cpu_number, entry_pa: ml_vtophys(vaddr: (vm_offset_t)&LowResetVectorBase)); |
| 1116 | #else |
| 1117 | arm64_prepare_for_sleep(true); |
| 1118 | #endif |
| 1119 | } else { |
| 1120 | #if __ARM_GLOBAL_SLEEP_BIT__ |
| 1121 | /* |
| 1122 | * With the exception of the CPU revisions listed above, our ARM64 CPUs have a |
| 1123 | * global register to manage entering deep sleep, as opposed to a per-CPU |
| 1124 | * register. We cannot update this register until all CPUs are ready to enter |
| 1125 | * deep sleep, because if a CPU executes WFI outside of the deep sleep context |
| 1126 | * (by idling), it will hang (due to the side effects of enabling deep sleep), |
| 1127 | * which can hang the sleep process or cause memory corruption on wake. |
| 1128 | * |
| 1129 | * To avoid these issues, we'll stall on this global value, which CPU0 will |
| 1130 | * manage. |
| 1131 | */ |
| 1132 | while (arm64_stall_sleep) { |
| 1133 | __builtin_arm_wfe(); |
| 1134 | } |
| 1135 | #endif |
| 1136 | CleanPoU_DcacheRegion(va: (vm_offset_t) cpu_data_ptr, length: sizeof(cpu_data_t)); |
| 1137 | |
| 1138 | /* Architectural debug state: <rdar://problem/12390433>: |
| 1139 | * Grab debug lock EDLAR and clear bit 0 in EDPRCR, |
| 1140 | * tell debugger to not prevent power gating . |
| 1141 | */ |
| 1142 | if (cpu_data_ptr->coresight_base[CORESIGHT_ED]) { |
| 1143 | *(volatile uint32_t *)(cpu_data_ptr->coresight_base[CORESIGHT_ED] + ARM_DEBUG_OFFSET_DBGLAR) = ARM_DBG_LOCK_ACCESS_KEY; |
| 1144 | *(volatile uint32_t *)(cpu_data_ptr->coresight_base[CORESIGHT_ED] + ARM_DEBUG_OFFSET_DBGPRCR) = 0; |
| 1145 | } |
| 1146 | |
| 1147 | /* ARM64-specific preparation */ |
| 1148 | #if APPLEVIRTUALPLATFORM |
| 1149 | arm64_prepare_for_sleep(true, cpu: cpu_data_ptr->cpu_number, entry_pa: ml_vtophys(vaddr: (vm_offset_t)&LowResetVectorBase)); |
| 1150 | #else |
| 1151 | arm64_prepare_for_sleep(true); |
| 1152 | #endif |
| 1153 | } |
| 1154 | } |
| 1155 | |
| 1156 | void |
| 1157 | cpu_machine_idle_init(boolean_t from_boot) |
| 1158 | { |
| 1159 | #if !CONFIG_SPTM |
| 1160 | static vm_address_t resume_idle_cpu_paddr = (vm_address_t)NULL; |
| 1161 | #endif |
| 1162 | cpu_data_t *cpu_data_ptr = getCpuDatap(); |
| 1163 | |
| 1164 | if (from_boot) { |
| 1165 | uint32_t production = 1; |
| 1166 | DTEntry entry; |
| 1167 | |
| 1168 | unsigned long jtag = 0; |
| 1169 | |
| 1170 | if (PE_parse_boot_argn(arg_string: "jtag" , arg_ptr: &jtag, max_arg: sizeof(jtag))) { |
| 1171 | if (jtag != 0) { |
| 1172 | idle_enable = FALSE; |
| 1173 | } else { |
| 1174 | idle_enable = TRUE; |
| 1175 | } |
| 1176 | } else { |
| 1177 | idle_enable = TRUE; |
| 1178 | } |
| 1179 | |
| 1180 | #if DEVELOPMENT || DEBUG |
| 1181 | uint32_t wfe_mode = 0; |
| 1182 | if (PE_parse_boot_argn("wfe_mode" , &wfe_mode, sizeof(wfe_mode))) { |
| 1183 | idle_proximate_timer_wfe = ((wfe_mode & 1) == 1); |
| 1184 | idle_proximate_io_wfe_masked = ((wfe_mode & 2) == 2); |
| 1185 | extern uint32_t idle_proximate_io_wfe_unmasked; |
| 1186 | idle_proximate_io_wfe_unmasked = ((wfe_mode & 4) == 4); |
| 1187 | } |
| 1188 | #endif |
| 1189 | |
| 1190 | // bits 7..0 give the wfi type |
| 1191 | switch (wfi & 0xff) { |
| 1192 | case 0: |
| 1193 | // disable wfi |
| 1194 | wfi = 0; |
| 1195 | break; |
| 1196 | |
| 1197 | #if DEVELOPMENT || DEBUG |
| 1198 | case 2: |
| 1199 | // wfi overhead simulation |
| 1200 | // 31..16 - wfi delay is us |
| 1201 | // 15..8 - flags |
| 1202 | // 7..0 - 2 |
| 1203 | wfi = 2; |
| 1204 | wfi_flags = (wfi >> 8) & 0xFF; |
| 1205 | nanoseconds_to_absolutetime(((wfi >> 16) & 0xFFFF) * NSEC_PER_MSEC, &wfi_delay); |
| 1206 | break; |
| 1207 | #endif /* DEVELOPMENT || DEBUG */ |
| 1208 | |
| 1209 | case 1: |
| 1210 | default: |
| 1211 | // do nothing |
| 1212 | break; |
| 1213 | } |
| 1214 | #if !CONFIG_SPTM |
| 1215 | ResetHandlerData.assist_reset_handler = 0; |
| 1216 | ResetHandlerData.cpu_data_entries = ml_static_vtop((vm_offset_t)CpuDataEntries); |
| 1217 | #endif |
| 1218 | |
| 1219 | #ifdef MONITOR |
| 1220 | monitor_call(MONITOR_SET_ENTRY, (uintptr_t)ml_static_vtop((vm_offset_t)&LowResetVectorBase), 0, 0); |
| 1221 | #elif !defined(NO_MONITOR) |
| 1222 | #error MONITOR undefined, WFI power gating may not operate correctly |
| 1223 | #endif /* MONITOR */ |
| 1224 | |
| 1225 | // Determine if we are on production or debug chip |
| 1226 | if (kSuccess == SecureDTLookupEntry(NULL, pathName: "/chosen" , foundEntry: &entry)) { |
| 1227 | unsigned int size; |
| 1228 | void const *prop; |
| 1229 | |
| 1230 | if (kSuccess == SecureDTGetProperty(entry, propertyName: "effective-production-status-ap" , propertyValue: &prop, propertySize: &size)) { |
| 1231 | if (size == 4) { |
| 1232 | bcopy(src: prop, dst: &production, n: size); |
| 1233 | } |
| 1234 | } |
| 1235 | } |
| 1236 | if (!production) { |
| 1237 | #if defined(APPLE_ARM64_ARCH_FAMILY) |
| 1238 | // Enable coresight debug registers on debug-fused chips |
| 1239 | coresight_debug_enabled = TRUE; |
| 1240 | #endif |
| 1241 | } |
| 1242 | #if !CONFIG_SPTM |
| 1243 | start_cpu_paddr = ml_static_vtop((vm_offset_t)&start_cpu); |
| 1244 | resume_idle_cpu_paddr = ml_static_vtop((vm_offset_t)&resume_idle_cpu); |
| 1245 | #endif |
| 1246 | } |
| 1247 | |
| 1248 | #if WITH_CLASSIC_S2R |
| 1249 | if (cpu_data_ptr == &BootCpuData) { |
| 1250 | static addr64_t SleepToken_low_paddr = (addr64_t)NULL; |
| 1251 | if (sleepTokenBuffer != (vm_offset_t) NULL) { |
| 1252 | SleepToken_low_paddr = ml_vtophys(sleepTokenBuffer); |
| 1253 | } else { |
| 1254 | panic("No sleep token buffer" ); |
| 1255 | } |
| 1256 | |
| 1257 | bcopy_phys((addr64_t)ml_static_vtop((vm_offset_t)running_signature), |
| 1258 | SleepToken_low_paddr, sizeof(SleepToken)); |
| 1259 | flush_dcache((vm_offset_t)SleepToken, sizeof(SleepToken), TRUE); |
| 1260 | } |
| 1261 | ; |
| 1262 | #endif |
| 1263 | #if CONFIG_SPTM |
| 1264 | cpu_data_ptr->cpu_reset_handler = (uintptr_t) VM_KERNEL_STRIP_PTR(arm_init_idle_cpu); |
| 1265 | #else |
| 1266 | cpu_data_ptr->cpu_reset_handler = resume_idle_cpu_paddr; |
| 1267 | #endif |
| 1268 | clean_dcache(addr: (vm_offset_t)cpu_data_ptr, count: sizeof(cpu_data_t), FALSE); |
| 1269 | } |
| 1270 | |
| 1271 | _Atomic uint32_t cpu_idle_count = 0; |
| 1272 | |
| 1273 | void |
| 1274 | machine_track_platform_idle(boolean_t entry) |
| 1275 | { |
| 1276 | if (entry) { |
| 1277 | os_atomic_inc(&cpu_idle_count, relaxed); |
| 1278 | } else { |
| 1279 | os_atomic_dec(&cpu_idle_count, relaxed); |
| 1280 | } |
| 1281 | } |
| 1282 | |
| 1283 | #if WITH_CLASSIC_S2R |
| 1284 | void |
| 1285 | sleep_token_buffer_init(void) |
| 1286 | { |
| 1287 | cpu_data_t *cpu_data_ptr = getCpuDatap(); |
| 1288 | DTEntry entry; |
| 1289 | size_t size; |
| 1290 | void const * const *prop; |
| 1291 | |
| 1292 | if ((cpu_data_ptr == &BootCpuData) && (sleepTokenBuffer == (vm_offset_t) NULL)) { |
| 1293 | /* Find the stpage node in the device tree */ |
| 1294 | if (kSuccess != SecureDTLookupEntry(0, "stram" , &entry)) { |
| 1295 | return; |
| 1296 | } |
| 1297 | |
| 1298 | if (kSuccess != SecureDTGetProperty(entry, "reg" , (const void **)&prop, (unsigned int *)&size)) { |
| 1299 | return; |
| 1300 | } |
| 1301 | |
| 1302 | /* Map the page into the kernel space */ |
| 1303 | sleepTokenBuffer = ml_io_map(((vm_offset_t const *)prop)[0], ((vm_size_t const *)prop)[1]); |
| 1304 | } |
| 1305 | } |
| 1306 | #endif |
| 1307 | |